-
Notifications
You must be signed in to change notification settings - Fork 0
/
026-reciprocal-cycles.lhs
executable file
·53 lines (39 loc) · 1.44 KB
/
026-reciprocal-cycles.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env runhaskell
[Reciprocal cycles](http://projecteuler.net/problem=26)
A unit fraction contains 1 in the numerator. The decimal representation of the
unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
Code
----
> import Data.List
> import Data.Numbers.Primes
> longDivision :: Integral alpha => alpha -> alpha -> [(alpha, alpha)]
> longDivision x y | x == 0 = []
> | otherwise = let (d, m) = divMod x y
> in (d, m) : longDivision (m * 10) y
> cycleLength :: Int -> Int -> Int
> cycleLength x y = let decimable n = isInfixOf (nub $ primeFactors n) [2, 5]
> ms = drop y . map snd $ longDivision x y
> -- longest cycle of different remainders is y
> in if decimable y
> then 0
> else elemIndices (head ms) ms !! 1
> main :: IO ()
> main = let cs = map (cycleLength 1) [2..999]
> m = maximum cs
> i = head $ elemIndices m cs
> r = i + 2
> in print r
Answer
------
983