-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark_keras.py
62 lines (49 loc) · 1.67 KB
/
benchmark_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import os
import os.path
parser = argparse.ArgumentParser()
parser.add_argument("--backend")
args = parser.parse_args()
os.environ['KERAS_BACKEND'] = args.backend
import tensorflow.python.keras.backend
if args.backend == "theano":
tensorflow.python.keras.backend.set_image_dim_ordering("th")
elif args.backend == "tensorflow":
tensorflow.python.keras.backend.set_image_dim_ordering("tf")
else:
print("Backend must be theano or tensorflow")
tensorflow.python.keras.backend.set_floatx('float32')
tensorflow.python.keras.backend.set_epsilon(1e-07)
import numpy as np
import time
import sys
import tensorflow
# from tensorflow.keras.optimizers import SGD
from tensorflow.python.keras.applications.vgg16 import VGG16
width = 224
height = 224
batch_size = 16
model = VGG16(include_top=True, weights=None)
sgd = tensorflow.keras.optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd) # loss='hinge'
if args.backend == "theano":
x = np.zeros((batch_size, 3, width, height), dtype=np.float32)
elif args.backend == "tensorflow":
x = np.zeros((batch_size, width, height, 3), dtype=np.float32)
else:
print("Backend must be theano or tensorflow")
y = np.zeros((batch_size, 1000), dtype=np.float32)
# warmup
model.train_on_batch(x, y)
t0 = time.time()
n = 0
while n < 100:
tstart = time.time()
model.train_on_batch(x, y)
tend = time.time()
print("Iteration: %d train on batch time: %7.3f ms." %( n, (tend - tstart)*1000 ))
n += 1
t1 = time.time()
print("Batch size: %d" %(batch_size))
print("Iterations: %d" %(n))
print("Time per iteration: %7.3f ms" %((t1 - t0) *1000 / n))