-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
656 lines (525 loc) · 24.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import copy
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional
import os
os.system("pip install streamlit")
import streamlit as st
import torch
from FlagEmbedding import FlagReranker
from torch import nn
from transformers.generation.utils import (LogitsProcessorList,
StoppingCriteriaList)
from transformers.utils import logging
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
# from hougegpt import (InternLM_LLM,
# retrieve_context_per_question,
# keep_only_relevant_content,
# answer_question_from_context,
# get_answer_prompt)
logger = logging.get_logger(__name__)
from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.output_parsers import JsonOutputParser
import torch
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
base_path = './final_model'
os.system(f'git clone https://code.openxlab.org.cn/bob12/hougeGPT.git {base_path}')
embedding_path = './bce-embedding-base_v1'
os.system(f'git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh-v1.5.git {embedding_path}')
reranker_path = './bce-reranker-base_v1'
os.system(f'git clone https://www.modelscope.cn/AI-ModelScope/bge-reranker-v2-m3.git {reranker_path}')
os.system(f'cd {base_path} && git lfs pull')
os.system(f'cd {embedding_path} && git lfs pull')
os.system(f'cd {reranker_path} && git lfs pull')
model_name_or_path = "final_model"
chunks_vector_store = "./chunks_vector_store"
chapter_summaries_vector_store = "./chapter_summaries_vector_store"
embedding_path="bce-embedding-base_v1"
bge_embedding_path="bce-embedding-base_v1"
rerank_path = "bce-reranker-base_v1"
beg_chunks_vector_store = "./beg_chunks_vector_store"
beg_chapter_summaries_vector_store = "./beg_chapter_summaries_vector_store"
# model_name_or_path = "/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b"
# chunks_vector_store = "./chunks_vector_store"
# chapter_summaries_vector_store = "./chapter_summaries_vector_store"
# embedding_path="/root/bce-embedding-base_v1"
# bge_embedding_path="/root/bge-large-zh-v1.5"
# rerank_path = "/root/bge-reranker-v2-m3"
# beg_chunks_vector_store = "./beg_chunks_vector_store"
# beg_chapter_summaries_vector_store = "./beg_chapter_summaries_vector_store"
class InternLM_LLM(LLM):
# 基于本地 InternLM 自定义 LLM 类
tokenizer : AutoTokenizer = None
model: AutoModelForCausalLM = None
def __init__(self, llm,tokenizer):
# model_path: InternLM 模型路径
# 从本地初始化模型
super().__init__()
print("正在从本地加载模型...")
self.tokenizer = tokenizer
self.model = llm
self.model = self.model.eval()
print("完成本地模型的加载")
def _call(self, prompt : str, stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any):
# 重写调用函数
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
response, history = self.model.chat(self.tokenizer, prompt , history=messages)
return response
@property
def _llm_type(self) -> str:
return "InternLM"
def escape_quotes(text):
"""Escapes both single and double quotes in a string.
Args:
text: The string to escape.
Returns:
The string with single and double quotes escaped.
"""
return text.replace('"', '\\"').replace("'", "\\'")
def retrieve_context_per_question(state,chunks_query_retriever,chapter_summaries_query_retriever):
"""
Retrieves relevant context for a given question. The context is retrieved from the book chunks and chapter summaries.
Args:
state: A dictionary containing the question to answer.
"""
# Retrieve relevant documents
print("检索相关 chunks...")
question = state["question"]
docs = chunks_query_retriever.invoke(question)
# Concatenate document content
context = " ".join(doc.page_content for doc in docs)
print("检索相关章节 summaries...")
docs_summaries = chapter_summaries_query_retriever.invoke(state["question"])
# Concatenate chapter summaries with citation information
context_summaries = " ".join(
f"{doc.page_content} (Chapter {doc.metadata['chapter']})" for doc in docs_summaries
)
# print("Retrieving relevant book quotes...")
# docs_book_quotes = book_quotes_query_retriever.get_relevant_documents(state["question"])
# book_qoutes = " ".join(doc.page_content for doc in docs_book_quotes)
all_contexts = context + context_summaries #+ book_qoutes
all_contexts = escape_quotes(all_contexts)
return {"context": all_contexts, "question": question}
def keep_only_relevant_content(state,llm):
"""
Keeps only the relevant content from the retrieved documents that is relevant to the query.
Args:
question: The query question.
context: The retrieved documents.
chain: The LLMChain instance.
Returns:
The relevant content from the retrieved documents that is relevant to the query.
"""
class KeepRelevantContent(BaseModel):
relevant_content: str = Field(description="The relevant content from the retrieved documents that is relevant to the query.")
question = state["question"]
context = state["context"]
input_data = {
"query": question,
"retrieved_documents": context
}
print("LLM 处理相关 content...")
keep_only_relevant_content_parser = JsonOutputParser(pydantic_object=KeepRelevantContent)
#keep_only_relevant_content_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=2000)
keep_only_relevant_content_prompt_template = """您将收到一个查询:{query}和检索到的文档:{retrieved_documents}矢量存储。您需要过滤掉所有不提供有关{query}的重要信息的非相关信息。
你的目标只是过滤掉不相关的信息。
您可以删除与查询不相关的句子部分,或删除与查询无关的整个句子。
不要添加任何不在检索到的文档中的新信息。
输出过滤后的相关内容。
"""
keep_only_relevant_content_prompt = PromptTemplate(
template=keep_only_relevant_content_prompt_template,
input_variables=["query", "retrieved_documents"],
)
keep_only_relevant_content_chain = keep_only_relevant_content_prompt | llm #| keep_only_relevant_content_parser
print("--------------------")
output = keep_only_relevant_content_chain.invoke(input_data)
#print(output)
relevant_content = output
relevant_content = "".join(relevant_content)
relevant_content = escape_quotes(relevant_content)
return {"relevant_context": relevant_content, "context": context, "question": question}
def answer_question_from_context(state,llm):
"""
Answers a question from a given context.
Args:
question: The query question.
context: The context to answer the question from.
chain: The LLMChain instance.
Returns:
The answer to the question from the context.
"""
question_answer_cot_prompt_template = """
Examples of Chain-of-Thought Reasoning
Example
Context: 哈利正在读一本关于咒语的书。一个咒语可以让施法者在短时间内将人变成动物。另一个咒语可以使物体漂浮。
第三个咒语在施法者魔杖的末端产生了一道亮光.
Question: 根据上下文,如果哈利施展这些咒语,他能做什么?
Reasoning Chain:
上下文描述了三种不同的咒语
第一个咒语允许将人暂时变成动物
第二个咒语可以使物体漂浮
第三个咒语会产生明亮的光线
如果哈利施展这些咒语,他可以在一段时间内将某人变成动物,使物体漂浮,并创造出明亮的光源
因此,根据上下文,如果哈利施展这些咒语,他可以改变人,使物体漂浮,照亮一个区域
说明。
对于下面的问题,首先展示你的逐步推理过程,在得出最终答案之前将问题分解为一连串的思考,然后给出你的答案,
就像前面的例子一样。
Context
{context}
Question
{question}
"""
question_answer_from_context_cot_prompt = PromptTemplate(
template=question_answer_cot_prompt_template,
input_variables=["context", "question"],
)
question_answer_from_context_cot_chain = question_answer_from_context_cot_prompt | llm
question = state["question"]
context = state["aggregated_context"] if "aggregated_context" in state else state["context"]
input_data = {
"question": question,
"context": context
}
print("从相关内容中回答相关问题...")
output = question_answer_from_context_cot_chain.invoke(input_data)
print("完成从相关内容中回答相关问题")
#print(output)
answer = output
#print(f'answer before checking hallucination: {answer}')
return {"answer": answer, "context": context, "question": question}
def get_query_classification(llm,stat):
pass
def get_answer_prompt(state):
question_answer_cot_prompt_template1 = """
Examples of Chain-of-Thought Reasoning
Example
Context: 哈利正在读一本关于咒语的书。一个咒语可以让施法者在短时间内将人变成动物。另一个咒语可以使物体漂浮。
第三个咒语在施法者魔杖的末端产生了一道亮光.
Question: 根据上下文,如果哈利施展这些咒语,他能做什么?
Reasoning Chain:
上下文描述了三种不同的咒语
第一个咒语允许将人暂时变成动物
第二个咒语可以使物体漂浮
第三个咒语会产生明亮的光线
如果哈利施展这些咒语,他可以在一段时间内将某人变成动物,使物体漂浮,并创造出明亮的光源
因此,根据上下文,如果哈利施展这些咒语,他可以改变人,使物体漂浮,照亮一个区域
说明。
对于下面的问题,首先展示你的逐步推理过程,在得出最终答案之前将问题分解为一连串的思考,然后给出你的答案,
就像前面的例子一样。
Context
{context}
Question
{question}
"""
question_answer_cot_prompt_template = """
你是一个小说家,请根据下面的Context内容回答Question。
Context
{context}
Question
{question}
"""
if "关系" in state["question"]:
question_answer_cot_prompt_template = question_answer_cot_prompt_template1
question_answer_from_context_cot_prompt = PromptTemplate(
template=question_answer_cot_prompt_template,
input_variables=["context", "question"],
)
question = state["question"]
context = state["aggregated_context"] if "aggregated_context" in state else state["context"]
input_data = {
"question": question,
"context": context
}
print("从相关内容中回答相关问题...")
return question_answer_from_context_cot_prompt.invoke(input_data).text
def get_rank(query,relevate_document,reranker,top_n=1):
querys =[[query,i.page_content] for i in relevate_document]
scores = reranker.compute_score(querys, normalize=True)
querys_documents = list(zip(scores,relevate_document))
querys_documents = sorted(querys_documents,key=lambda x:x[0],reverse=True)
scores,relevate_document = zip(*querys_documents)
return scores[:top_n],relevate_document[:top_n]
def beg_retrieve_context_per_question(state,beg_chunks_query_retriever,beg_chapter_summaries_query_retriever,beg_rerank=None):
"""
Retrieves relevant context for a given question. The context is retrieved from the book chunks and chapter summaries.
Args:
state: A dictionary containing the question to answer.
"""
# Retrieve relevant documents
print("检索相关 chunks...")
question = state["question"]
docs = beg_chunks_query_retriever.invoke(question)
print("检索相关章节 summaries...")
docs_summaries = beg_chapter_summaries_query_retriever.invoke(state["question"])
print("reranks ...")
scores,rerank_document = get_rank(question,docs+docs_summaries,beg_rerank)
all_contexts = " ".join(doc.page_content for doc in rerank_document)
all_contexts = escape_quotes(all_contexts)
return {"context": all_contexts, "question": question}
@dataclass
class GenerationConfig:
# this config is used for chat to provide more diversity
max_length: int = 8192
top_p: float = 0.75
temperature: float = 0.1
do_sample: bool = True
repetition_penalty: float = 1.000
@torch.inference_mode()
def generate_interactive(
model,
tokenizer,
prompt,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
List[int]]] = None,
additional_eos_token_id: Optional[int] = None,
**kwargs,
):
#print("prompt",prompt)
print("开始生成")
inputs = tokenizer([prompt], padding=True, return_tensors='pt')
input_length = len(inputs['input_ids'][0])
for k, v in inputs.items():
inputs[k] = v.cuda()
input_ids = inputs['input_ids']
_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = model.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
generation_config.bos_token_id,
generation_config.eos_token_id,
)
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get(
'max_length') is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using 'max_length''s default ({repr(generation_config.max_length)}) \
to control the generation length. "
'This behaviour is deprecated and will be removed from the \
config in v5 of Transformers -- we'
' recommend using `max_new_tokens` to control the maximum \
length of the generation.',
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + \
input_ids_seq_length
if not has_default_max_length:
logger.warn( # pylint: disable=W4902
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
f"and 'max_length'(={generation_config.max_length}) seem to "
"have been set. 'max_new_tokens' will take precedence. "
'Please refer to the documentation for more information. '
'(https://huggingface.co/docs/transformers/main/'
'en/main_classes/text_generation)',
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = 'input_ids'
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, "
f"but 'max_length' is set to {generation_config.max_length}. "
'This can lead to unexpected behavior. You should consider'
" increasing 'max_new_tokens'.")
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None \
else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None \
else StoppingCriteriaList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = model._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria)
logits_warper = model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = model.prepare_inputs_for_generation(
input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=False)
unfinished_sequences = unfinished_sequences.mul(
(min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
#print("decode",tokenizer.decode(output_token_ids))
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
if output_token_ids[-1] == each_eos_token_id:
output_token_ids = output_token_ids[:-1]
response = tokenizer.decode(output_token_ids)
yield response
# stop when each sentence is finished
# or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(
input_ids, scores):
print("break")
break
#print("ggsddf",response)
def on_btn_click():
del st.session_state.messages
@st.cache_resource
def load_model():
model = (AutoModelForCausalLM.from_pretrained(model_name_or_path,
trust_remote_code=True).to(
torch.bfloat16).cuda())
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
trust_remote_code=True)
return model, tokenizer
@st.cache_resource
def load_rag(embedding_path="/root/bce-embedding-base_v1" ,chunks_vector_store="chunks_vector_store",chapter_summaries_vector_store='chapter_summaries_vector_store'):
embeddings_model = HuggingFaceEmbeddings(model_name=embedding_path)
chunks_vector = FAISS.load_local(chunks_vector_store, embeddings_model, allow_dangerous_deserialization=True)
chapter_summaries_vector= FAISS.load_local(chapter_summaries_vector_store, embeddings_model, allow_dangerous_deserialization=True)
return chunks_vector, chapter_summaries_vector,embeddings_model
@st.cache_resource
def load_rerank():
beg_rerank = FlagReranker(rerank_path, use_fp16=True)
return beg_rerank
def prepare_generation_config():
with st.sidebar:
max_length = st.slider('Max Length',
min_value=8,
max_value=32768,
value=4096)
top_p = st.slider('Top P', 0.0, 1.0, 0.75, step=0.01)
temperature = st.slider('Temperature', 0.0, 1.0, 0.1, step=0.01)
st.button('Clear Chat History', on_click=on_btn_click)
generation_config = GenerationConfig(max_length=max_length,
top_p=top_p,
temperature=temperature)
return generation_config
user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
<|im_start|>assistant\n'
def combine_history(prompt):
messages = st.session_state.messages
meta_instruction = ('')
total_prompt = f"<s><|im_start|>system\n{meta_instruction}<|im_end|>\n"
# for message in messages:
# cur_content = message['content']
# if message['role'] == 'user':
# cur_prompt = user_prompt.format(user=cur_content)
# elif message['role'] == 'robot':
# cur_prompt = robot_prompt.format(robot=cur_content)
# else:
# raise RuntimeError
# total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
return total_prompt
def main():
# torch.cuda.empty_cache()
print('load model begin.')
model, tokenizer = load_model()
print('load model end.')
BEG = True
rank_model = None
if not BEG:
print('begin bce')
chunks_vector ,chapter_summaries_vector,embedding= load_rag()
print('end bce')
else:
print('begin bge')
chunks_vector ,chapter_summaries_vector,embedding= load_rag(bge_embedding_path,chunks_vector_store=beg_chunks_vector_store,chapter_summaries_vector_store=beg_chapter_summaries_vector_store)
rank_model = load_rerank()
print('end bge')
chunks_query_retriever = chunks_vector.as_retriever(search_kwargs={"k": 1})
chapter_summaries_query_retriever = chapter_summaries_vector.as_retriever(search_kwargs={"k": 1})
st.title('HougeGPT')
llm = InternLM_LLM(model,tokenizer)
generation_config = prepare_generation_config()
# Initialize chat history
if 'messages' not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message['role'], avatar=message.get('avatar')):
st.markdown(message['content'])
# Accept user input
if prompt := st.chat_input('有啥事找俺猴哥?'):
# Display user message in chat message container
with st.chat_message('user'):
st.markdown(prompt)
real_prompt = combine_history(prompt)
# Add user message to chat history
st.session_state.messages.append({
'role': 'user',
'content': prompt,
})
if not BEG:
sta = retrieve_context_per_question({"question":prompt},chunks_query_retriever,chapter_summaries_query_retriever)
else:
sta = beg_retrieve_context_per_question({"question":prompt},beg_chunks_query_retriever=chunks_query_retriever,beg_chapter_summaries_query_retriever=chapter_summaries_query_retriever,beg_rerank=rank_model)
keep_only_relevant = keep_only_relevant_content(sta,llm)
prompt = get_answer_prompt(keep_only_relevant)
#answer_question_from_context(keep_only_relevant,llm)
prompt = prompt[:2048]
real_prompt = combine_history(prompt)
with st.chat_message('robot'):
print("chat begin",prompt)
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(cur_response + '▌')
message_placeholder.markdown(cur_response)
# Add robot response to chat history
st.session_state.messages.append({
'role': 'robot',
'content': cur_response, # pylint: disable=undefined-loop-variable
})
torch.cuda.empty_cache()
if __name__ == '__main__':
main()