forked from DeepSceneSeg/SSMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
127 lines (111 loc) · 5.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
''' SSMA: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
Copyright (C) 2018 Abhinav Valada, Rohit Mohan and Wolfram Burgard
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.'''
import argparse
import datetime
import importlib
import os
import re
import numpy as np
import tensorflow as tf
import yaml
from dataset.helper import *
PARSER = argparse.ArgumentParser()
PARSER.add_argument('-c', '--config', default='config/cityscapes_train.config')
def train_func(config):
os.environ['CUDA_VISIBLE_DEVICES'] = config['gpu_id']
module = importlib.import_module('models.'+config['model'])
model_func = getattr(module, config['model'])
data_list, iterator = get_train_data(config)
global_step = tf.Variable(0, trainable=False, name='Global_Step')
model = model_func(num_classes=config['num_classes'], learning_rate=config['learning_rate'], decay_steps=config['max_iteration'], power=config['power'], global_step=global_step, mode=config['mode'])
images_pl = tf.placeholder(tf.float32, [None, config['height'], config['width'], 3])
images_pl1 = tf.placeholder(tf.float32, [None, config['height'], config['width'], 3])
labels_pl = tf.placeholder(tf.float32, [None, config['height'], config['width'], config['num_classes']])
model.build_graph(images_pl, images_pl1, labels_pl)
model.create_optimizer()
config1 = tf.ConfigProto()
config1.gpu_options.allow_growth = True
sess = tf.Session(config=config1)
sess.run(tf.global_variables_initializer())
step = 0
total_loss = 0.0
t0 = None
ckpt = tf.train.get_checkpoint_state(os.path.dirname(os.path.join(config['checkpoint'],
'checkpoint')))
if ckpt and ckpt.model_checkpoint_path:
saver = tf.train.Saver(max_to_keep=1000)
saver.restore(sess, ckpt.model_checkpoint_path)
step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])+1
sess.run(tf.assign(global_step, step))
print 'Model Loaded'
else:
if 'checkpoint1' in config and 'checkpoint2' in config :
modalities = {'rgb':config['checkpoint1'], 'depth':config['checkpoint2']}
for modality in modalities:
reader = tf.train.NewCheckpointReader(modalities[modality])
var_str = reader.debug_string()
name_var = re.findall('[A-Za-z0-9/:_]+ ', var_str)
import_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
initialize_variables = {}
for var in import_variables:
if modality in var.name:
temp1 = var.name.replace(modality+'/', '')
temp = temp1.split(':')
if temp[0]+' ' in name_var:
initialize_variables[temp[0]] = var
print 'varaibles_loaded:', len(initialize_variables.keys())
saver = tf.train.Saver(initialize_variables)
saver.restore(save_path=modalities[modality], sess=sess
print 'Pretrained Unimodal Model Intialization'
saver = tf.train.Saver(max_to_keep=1000)
while 1:
try:
img, label, img1 = sess.run([data_list[0], data_list[1], data_list[2]])
feed_dict = {images_pl: img, labels_pl: label, images_pl1: img1}
loss_batch, _ = sess.run([model.loss, model.train_op],
feed_dict=feed_dict)
total_loss += loss_batch
if (step + 1) % config['save_step'] == 0:
saver.save(sess, os.path.join(config['checkpoint'], 'model.ckpt'), step)
if (step + 1) % config['skip_step'] == 0:
left_hours = 0
if t0 is not None:
delta_t = (datetime.datetime.now() - t0).seconds
left_time = (config['max_iteration'] - step) / config['skip_step'] * delta_t
left_hours = left_time/3600.0
t0 = datetime.datetime.now()
total_loss /= config['skip_step']
print '%s %s] Step %s, lr = %f ' \
% (str(datetime.datetime.now()), str(os.getpid()), step,
model.lr.eval(session=sess))
print '\t loss = %.4f' % (total_loss)
print '\t estimated time left: %.1f hours. %d/%d' % (left_hours, step,
config['max_iteration'])
print '\t', config['model']
total_loss = 0.0
step += 1
if step > config['max_iteration']:
saver.save(sess, os.path.join(config['checkpoint'], 'model.ckpt'), step-1)
print 'training_completed'
break
except tf.errors.OutOfRangeError:
print 'Epochs in dataset repeat < max_iteration'
break
def main():
args = PARSER.parse_args()
if args.config:
file_address = open(args.config)
config = yaml.load(file_address)
else:
print '--config config_file_address missing'
train_func(config)
if __name__ == '__main__':
main()