Ramooflax

iuibervisor

Stéphane Duverger

stephane.duverger@eads.net

EADS Innovation Works
Suresnes, FRANCE

Abstract. Ramooflax is a free and open source! virtualization tool,
delivered under the form of a minimalistic kernel acting as an hypervisor
and a remote client allowing high level access to the features implemented
into the hypervisor.

This tool” architecture seamlessly simplifies the deployment of a flexible,
powerfull, isolated and relieved of any software dependencies system
analysis environment.

Its main target being up and ready operating systems, installed on physical
x86 32 and 64 bits machines equipped with hardware virtualization
extensions.

1 Introduction

This tool tries to highlight the use of hardware virtualization extensions
as a means to help remote analysis of operating systems.

The on-the-fly? approach wasn’t convincing from a seamlessly point of
view. The main disadvantage being that the hypervisor is living inside the
virtualized system memory and under this situation depends on features
and concepts implemented by the virtualized system: memory model,
scheduling, interruptibility and so on. If in the simplest situation, this
dependency is only related to the virtualized system initialization, it can
in the worst situation tamper the hypervisor continuity and integrity.
Although hardware virtualization enables efficient protections implemen-
tation for that kind of hypervisors, some complex mechanisms still need
to be implemented as well.

Our approach seems to be original in the sens that it is absolutely inde-
pendent from the targeted system. We are, on the other side, constrained
to start our software stack before the targeted system®. At first being
more restrictive, this approach has the ability to allow a complete control
over devices visibility, such as the amount of physical memory that will
be given to the virtualized system.

This tool focuses on:

! GPLv2
2 the hypervisor is loaded while system is running as a driver.
3 Several scenarii are possible. The simplest one could be using a bootable USB key.

— being lightweight, simple and fast

— taking benefit of existing stuffs (i.e. BIOS)
being solely hardware dependent

delegating analysis complexity to a remote client

The remote analysis is operated with a python framework providing
high level access to the hypervisor features, in order to easily implement
numerous plugins:

— remote debugger

— process memory mappings graph

— behavioral analysis of a boot loader
One could also think about a plugin illustrating modern CPU mechanisms,
from a pedagogical perspective, as Nate Robins[?] did with OpenGL API.
This article presents the conception and implementation of the hypervisor
and the python framework giving the opportunities to develop analysis
tools.

2 The hypervisor

2.1 Targeted architecture

Our hypervisor supports x86 family processors that come with recent
hardware virtualization extensions®. By recent, we mean using mainly
the last advances regarding MMU virtualization, more specifically EPT®
and RVI°.

These features interest resides in the fact that they really simplify the
hypervisor implementation while drastically increasing performances as
opposed to an SPT” implementation. The hypervisor attack surface is
also reduced once relieved of the SPTs complexity.

All processors featured with hardware virtualization extensions (CoreXX,
Phenom, Athlon, ...) do not necessarely provide recent extensions such
as the MMU one. We can find them in really cutting edge processors that
are usually delivered into servers ou high performances workstations.
At the term of Intel[?] roadmap, we should more likely encouter that
features in processors delivered with standard workstations.

2.2 The Ramooflax concept

The objective is to virtualize already installed operating systems on
physical dedicated machine. Virtualization is enabled at boot time in
order to start the already installed operating system in a virtualized
environment.

* Intel VT-x and AMD-V

5 Intel’s Extended Page Tables

6 AMD’s Rapid Virtualization Indexing, formerly Nested Page Tables
7 Shadow Page Tables

This allows virtualization, and so analysis, of operating systems running
in their native environment more specifically regarding devices which are
hardly emulated by common existing virtualization solutions.

The idea is to boot the hypervisor from an external storage media (USB
key), and once the hypervisor has been initialized, to tell the BIOS (now
virtualized) to boot the already installed operating system.

2.3 Architecture

Ramooflax is compound of 3 minimalistic kernels: Loader, Setup and
VMM.

Loader Following the multiboot standard, being able to be loaded from
GRUB, this kernel only setups longmode on the CPU. Mainly because the
multiboot standard does not allow to directly start a 64 bits longmode
kernel. Our hypervisor runs into longmode to be able to manage 32 and
64 bits VMs. The loader finally loads the setup.

Setup This 64 bits kernel is responsible for CPU and virtualization
features initialization. Init code once used is not needed anymore and
can be dropped out from memory. That’s why putting it into a kernel
was a simple idea to get rid of this unneeded code later.

The setup then retrieves physical memory size (RAM) and relocate the
VMM at its end. By providing the VM a slightly lower RAM size, we can
be sure that the VM won't try to allocate physical memory pages used
by the VMM (except targeted attacks of course).

Once the VMM initialized, the setup installs in conventional memory®
the int 0x19 instruction and starts VMM execution. The VMM will
starts its single VM on the previously installed instruction. The BIOS
will then load the boot sector from its first bootable device (ie HDD in
most situation).

The interest behind this being to reuse existing software pieces that are
already able to access SATA or SCSI devices, whatever they can be.

VMM The final hypervisor is a PIE’ ELF 64 bits executable. As
previously mentioned, the 64 bits code allows us to virtualize 32 and 64
bits VMs.

The PIE was needed to be able to relocate the VMM without being
dependent of the amount of available RAM. Every machine can have a
different RAM size, this seemed us to be an elegant solution.

The hypervisor role is to control the VM behavior on the CPU and
devices. The section 77 will detail the hypervisor mechanisms.

The figure ??7 summarizes the VMM and VM boot sequence.

8 The 640KB of lower memory ... nostalgia.
9 Position Independent Executable

BIOS USB Key (grub) ’

Loader

Fig. 1. Virtualized operating system boot chain.

2.4 Interest

We wanted to minimize the impact on the VM execution environment
(being as close as its real world) and promote the ease of deployment.
Looking at existing hypervisors, we found:

— inadequate solutions
e Xen, VirtualBox, KVM
e too complex to deploy (dom0, linux+userland, ...)
e emulated environment (dumb bios, devices)
— intrusive solutions
e bluepill[?], vitriol[?], virtdbg[?], hyperdbg[?], abyss[?]
e in vivo virtualization
e OS dependency

It was more interesting to restart from scratch, on one hand because

existing architectures did not met our requirements, on the other hand

because the author is not ashamed to confess that he indulges keep on

reinventing the wheel although this kind of hypervisor has never been

met before'”.

Notice that existing hypervisors only virtualize minimalistic and feature-

less BIOS. Our solution allows the analysis of real life BIOS. Ramooflax am-
bitious !

10 Ag far as the author knows.

2.5 Limitations

To date, Ramooflax has been tested with success under Windows XP /7
Pro 32 bits and Debian GNU/Linux 5.0 32 bits. Simpler operating systems
should also work. Linux 64 bits kernels have also been virtualized. However
we prefer focus on hypervisor and python framework features rather than
providing a featureless hypervisor able to run any VM in any CPU mode.
The hypervisor only runs on AMD processors, for the moment. The Intel
port needs to be rewritten.

The hypervisor only virtualizes a single Core, which does not prevent VMs
to make use of the unvirtualized ones (discouraged). Cores virtualization
is relatively complex to setup in our architecture, mainly because the
Application Processors or Cores initialization must be done by the hyper-
visor to enable virtualization on each of them, but must also intercept
initialization done by the VM (standard SMP kernel boot code).

It is still possible to hide the remaining Cores, either by giving specific
parameters to the VM (/numproc, maxcpus, ...) or using only uniprocessor
kernels, either by directly acting on cpuid, rdmsr instructions. The later
solution may not be sufficient due to ACPI tables configuration or other
unknown pieces of information stored elsewhere telling there are many
Cores installed.

Finally, the hypervisor does not implement nested virtualization (virtu-
alization of hardware virtualization extensions). As it does make use of
them, they are hidden to the VM.

3 A brief overview of hardware virtualization

Hardware virtualization extensions, provided by means of a reduced in-
structions set and interceptions mechanisms, greatly simplify hypervisor
development. Although initially compatible, Intel and AMD have devel-
opped on their own side these hardware virtualization extensions leading
to incompatible implementations.

‘We present in this section, non exhaustively, their approach illustrating
their common points, differences and over all their limitations.

3.1 Common elements

Whether it is for Intel or AMD, VM execution on the CPU relies upon
configuring a huge data structure (VMCS'!, VMCB'?) which is respon-
sible for the setup of system registers, sensitive instructions execution
interception, but also injection and interception of events (interrupts,
exceptions).

Under AMD this structure is directly accessible from main memory, while
under Intel it is accessed using specific instructions (vmread et vmwrite)
each VMCS field having its own encoding value.

1 Tntel Virtual Machine Control Structure
12 AMD Virtual Machine Control Block

The hypervisor and the VM both have their own data structure, to be
able to save/restore each of them.
In example, the VMCB structure allows interception and configuration
of the following elements:
— interception:
e read/write accesses on cr, dr, idtr, gdtr, ...
e pushf, popf, cpuid, iret, int, hlt, ...
e vmrun, vmmcall, vmload, ...
e exceptions, hardware and software interrupts, smi, ...
— setup values for:
e cs, ds, ..., gs (base, limit, attributs)
e efer, cpl, rflags, cr[0-4], dr6 et dr7
e ...
The execution/interruption of a VM are respectively called vm-entry
and vm-exit. Notice that the CPU operates automatic restrictive checks
upon each vm-entry and vm-exit with regard to the values stored into
the VMCS/VMCB.
Notice that Intel and AMD offer hardware virtualization instructions
intercept. This allows an hypervisor to properly emulate them in case a
VM needs to run an hardware based hypervisor.
Each intercept provides details on the context it happened, for instance:
— exception vector
— targeted cr register
— out desination port and operation size
Of course, Intel and AMD do not give the same detail level on each
vm-exit. Moreover, the hypervisor state might not be fully restored after
a vm-exit (GDT limit under Intel, LDT under AMD).
Despite all of these features, an hypervisor must be able to manage CPU
mode transitions (real, protected, long) on its own, as well as physical
memory mappings as seen by the VM, events injection consistency (ie
exception injection while injecting exception can lead to double fault
exception) ...
Embedding a disassembly and emulation engine is often needed to assist
and get further details on the vm-exit context.

3.2 Intel-VT (vmx)

Intel approach perfectly applies to the wvirtual cpu notion. The hyper-
visor runs in a privileged vmx-root mode, whereas the VM runs in a
vmx-nonroot mode, once virtualization enabled.
Instead of providing standard intercept mechanisms for control registers,
Intel offers a register shadowing system. The hypervisor setups a bitmap
of register bits which will be alterable, read to a fixed value or will
generate a vm-exit.
In other words:
— some bits are owned by the VMM and their access lead to vm-exit
— some bits are read in a read shadow copy of control register
— some bits are owned by the VM

This limits vm-exits only to filtered bits (ie enabling protected mode,
paging, ...) and seamlessly give a fake version of the control register to
the VM.

This shadowing mechanism is not limited to control registers. It also
applies for instance to rflags.

Last note on control registers filtering, Intel provides the general purpose
register used in the instruction to access the control register. This prevents
the hypervisor from disassembling.

In return, this shadowing setup is sensitive and depends upon many
things amongst them the processors revision or specific virtualization
features. For instance, Intel does not allow to disable paging under the
VM and so the shadowing must be configured to hide enabled paging bit
depending on the VM execution mode.

The MSRs accesses are pretty straightforward to manage. The hypervisor
chooses which of them will reflect reality and which of them will be
set to specific values for the VM. These MSRs being automatically
saved /restored upon vm-entry and vm-exit.

3.3 AMD-V (svi)

AMD’s hardware virtualization is far more simpler and sadly far more
subtle than Intel one. It can be seen as a new CPU mode. There is no
register shadowing. The hypervisor logic is based on intercepts only.
Thus for control registers, one can only setup bitmaps for enabling/dis-
abling read/write accesses. The system registers loaded from the VMCB
will be the real ones used by the CPU at the VM runtime, except some
of them which are directly accessed through the VMCB. There is no bit
control granularity as we could find under Intel.

Even if it seems simpler, it isn’t convenient for performances because
many more vm-exits will be raised for unnecessary bits. Moreover, it
can be complex for the hypervisor to hide only some bits (ie rflags.tf
used for single-stepping). AMD rather provides interceptions of RFELAGS
related instructions (pushf, popf) and the hypervisor is thus constrained
to emulate them. Instruction emulation is sensitive and complex under x86
because of the wide variety of executions modes and protection features.

3.4 MMU virtualization

Former CPUs did not provided MMU virtualization features. Hypervisors
were constrained to implement the so called Shadow Page Tables (SPTs),
complex mechanism responsible for virtualization of the physical memory
of the VM (translatation of physical VM addresses to physical VMM
addresses, also called system addresses).
This approach was massively based on #PF and thus considerably lowered
performances. A basic SPT implementation could have been:

— VM cr3 is owned by the VMM

— VMM provides any page tables used by the CPU while the VM is

running

— initially (and upon each cr3 write) every page tables entries are
cleared

— on each #PF, the VMM walks through the VM page tables and fills
in the SPTs accordingly

— the VMM modifies the final physical address to target the physical
memory space dedicated to the VM leaving in the whole system
memory space (system)

The figure ?? summarizes this mechanism.

Linear space RAM

(vm Cr3)—>

A 4

® | check_addr()

Y

(real cr3)—>

#F | ® 3 -

acpi
mm i/o

Fig. 2. Shadow Page Tables.

Recent CPUs provide MMU hardware assisted virtualization. The CPU
is able, once having translated VM virtual addresses to VM physical
addresses, to translate VM physical addresses to VMM physical addresses.
This second level of page tables are called the Nested Page Tables (NPT).
Since it is done by the CPU and does not rely on fault management,
performances are really increased and the hypervisor complexity reduced
(no complex TLBs, dirty/accessed bits management, ...).

These NPTs are generally configured once, except when mode transitions
are operated (real to protected) under Ramooflax.

The figure ?? illustrates NPT's.

Linear space RAM

(real cr3)—>

® | guest paddr

(nested cr3)—>

acpi

1
1
I
I
I
I
I
I
I
I
I
1
)
1
I
I
I
I
I
I
I
1
1
I
I
I
I
I
I
I
I .
, mm i/o
1 e

1

I

Fig. 3. Nested Page Tables.

3.5 (Un)-real mode management

Actually, hardware virtualization exists into x86 since the 80386. When
protected mode first appeared, Intel wanted to offer conveniences to
operating system developers in order to allow for real mode applications
to still be able to run under protected mode kernels. A new mode appeared,
the v8086.

This mode emulates the real mode mechanisms such as the ones involved
into interrupts or far jumps, for tasks running in protected mode. It is
feature-rich and especially allows interrupts and I/O redirection using
bitmaps.

This can really be seen as hardware real mode virtualization. So that’s
why Intel recommends'® the use of v8086 mode to manage VM running
in real mode. This recommendation comes from the fact that it is not
possible to disable paging and so protected mode under a VM as previously
mentioned.

Under AMD, hardware virtualization comes with a brand new CPU
mode called paged real mode, where it is possible to enable paging without
enabling protected mode, which is under normal circumstances prohibited.
The VM run easily in real mode and the hypervisor still benefits from
memory accesses indirection thanks to paging.

13 Intel Volume 3B Section 27.2

14

So under Intel, an hypervisor which wants to run VMs in real mode has
to be able to manage v8086 tasks which is not a simple job. This is far
more complex than AMD special paged real mode.

Last point, using v8086 mode on vm-entry is subject to numerous checks

operated by the CPU, especially regarding segmentation registers setting.

Segmentation reminder Segment registers consist of a visible
and an hidden part. The visible part, accessible to the developer, is called
the selector. It has a length of 16 bits and its interpretation depends
upon the CPU execution mode. The hidden part consist of a set of fields
(base address, limit, attributs) defining properties when accessing memory
using a given segment register.

In protected mode, a selector can be seen as an index into segment
descriptor table (GDT, IDT, LDT). Each descriptor defining the fields
which are to be loaded into the hidden part of the register when it is
written.

CS.selector GDT

(index=0x10 ,ti, rpl) | Null |

[——— === =-"=-== === = 1 .
' 1jmp $0x10, $0x72b6 | *| base,limit,attr |

| .

i CPU internal :

l CS.attr = ... :
eip = (3 CS.base = ... | |

CS.limit = ...

Flg 4. Protected mode far jump.

In example, the mov 0x1234, %ax instruction retrieves the 2 bytes located
at linear address ds.base_address + 0x1234. The segment base address
coming from the descriptor whose index is stored into the ds selector.
In real mode, there is no such descriptor tables. The selector value is
multiplied by 16 before being stored into the base address field of the
hidden part. That’s why one can only'* access ~1MB into real mode
using 4 bits of segment selector and 16 bits of offsets. The limit (64KB)
and attributs have default values.

The previous instruction will thus retrieve in real mode, the 2 bytes
located at linear address ds.selector<<4 + 0x1234.

For obvious performance reasons, each time a selector is written, the
CPU automatically fills in its hidden part.

except when using A20 Gate

Unreal mode The hidden part of segment registers is normally
ignored by real mode developers, because no official means allow to
configure it. Thereby, the default base and limit values for segment
hidden parts at CPU startup are respectively fixed to 0 and 64KB. As
general purpose registers are 16 bits wide, segment offsets can’t exceed
216 bytes.

Nevertheless, real mode allows address prefix usage and it’s then possible
to access memory for instance using 32 bits general purpose register,
generating 32 bits offsets into segments. However, since limit is fixed to
64KB any access beyond would raise #GP.

As it is possible to setup hidden segment register parts in protected mode,
what happens when entering protected mode then returning to real mode
? Intel recommends reloading 16 bits segments with 64KB limit. However
if it is not done and segment selectors are not rewritten once returned
to real mode, the hidden part will remain the one configured while in
protected mode.

Some real mode developers were fed up with memory addressing limits.
As they didn’t wanted to rewrite their code for protected mode they
made use of this internal cache feature. While entering protected mode
they set up base to 0 and limit to 4GB then return to real mode without
reloading segment registers (at least data related ones ds,es). Using an
address prefix on memory access they were able to access 4GB of memory
while in real mode.

This unreal mode is still intensively used by BIOS developers.

Intel fail When a hypervisor resumes a VM in v8086 mode, the CPU
will verify'® that the base address of the segment is equal to the selector
value multiplied by 16.
As a consequence, it is really tricky and some times impossible to resume
an unreal mode VM using v8086. The following BIOS code excerpt
illustrates the problem:

: seg000:F7284 mov bx, 20h

I seg000:F7287 cli

: seg000:F7288 mov ax, cs

: seg000:F728A cmp ax, OFOOOh

1 5eg000:F728D jnz short near ptr unk_7297

|

: seg000:F728F lgdt fword ptr cs:byte_8163 (1)
: seg000:F7295 jmp short near ptr unk_729D

: seg000:F7297 lgdt fword ptr cs:byte_8169

|

: seg000:F729D mov eax, cr0

1 seg000:F72A0 or al, 1

| seg000:F72A2 mov cr0, eax (2)
I seg000:F72A5 mov ax, cs

: seg000:F72A7 cmp ax, OFOOOh

|

At (1) and (2), the BIOS enters protected mode after loading a new GDT.

15 Intel Volume 3B Section 23.3.1.2

s5eg000:F72AA jnz short near ptr unk_72B1

|

|

: seg000:F72AC jmp far ptr 10h:72B6h (3)
| seg000:F72B1 jmp far ptr 28h:72B6h

|

: seg000:F72B6 mov ds, bx 4)
I seg000:F72B8 mov es, bx

|

Once in protected mode, the BIOS initalize hidden parts of the cs segment
register doing a far jump at (3). It also reloads data segment registers at

: seg000:F72BA mov eax, cr0

: seg000:F72BD and al, OFEh

: seg000:F72BF mov cr0, eax (5)
|

: seg000:F72C2 mov ax, cs

I seg000:F72C4 cmp ax, 10h (6)
: seg000:F72C7 jnz short near ptr unk_72CE

I seg000:F72C9 jmp far ptr OFO0Oh:72D3h

: seg000:F72CE jmp far ptr OEOOOh:72D3h

|

It finally goes back to real mode at (5) and checks the value of cs at (6).
In a non virtualized situation, cs should be equal to 0x10 whatever could
be the base address of cs. However, using v8086 mode if the base address
loaded into cs at (3) is not 0x100 then the hypervisor won’t be able
to resume this BIOS code. This is the same situation for reloaded data
segment registers.

A solution could be to emulate real mode mechanisms in protected mode
and do not make use of v8086 mode. This is a pretty complex task. Every
segment register access should be trapped in order to emulate real mode
far call/jump, mov/pop seg, iret. Interrupts mechanism should also be
emulated as it is not the same as in protected mode. Moreover, Intel
hardware virtualization does not provide any means to intercept segment
registers accesses. One may imagine a way to trap them using a trick. A
solution could be to force GDT and IDT limit to 0, thus leading to #GP
on any segment register access and emulate the desired behavior.
Recently, Intel provided an unrestricted guest mode allowing an hypervisor
to run VMs in real mode. Paging and protected mode being disabled,
it is thus needed to have hardware MMU virtualization feature such as
EPT to be able to protect hypervisor address space.

3.6 Event intercepts

Hardware virtualization extensions allow events intercepts and injection.
This is valid for exceptions, hardware and software interrupts.

If the injection mechanism offers the finest granularity (vector number),
the intercept mechanism is far less fine grain. Excepted for exceptions,
interrupts intercepts are of enable/disable type.

With this approach, the hypervisor is constrained to intercept all of the
raised interrupts, introducing an inacceptable latency, especially for the
timer irq. One can imagine another tricky mechanism using for instance

a shadow IDT to filter only on desired vectors, but it’s too bad that the
CPU is able to do it for exceptions and not interrupts.

Notice that under AMD, hardware interrupts are kept pending. This
means that the hypervisor is constrained to enable interrupts in its own
code, then handle the interrupt in its IDT to detect which vector has
been raised (providing the fact the interrupt controllers have the same
mappings that the VM ones, which is the case in Ramooflax).

Intel is a bit more forgiving, doing or not (configurable) the acknowledge-
ment cycle between the CPU and the interrupt controller, thus allowing
the hypervisor to directly receive the IDT vector number on interrupt
intercepts.

About software interrupts (int xx), it is not possible to intercept them
under Intel while it is possible under AMD but still as an on/off mecha-
nism.

It’s funny to remember that 20 years ago, the v8086 mode was really
feature-rich against modern hardware virtualization, allowing for inter-
rupts intercepts using per vector bitmaps.

3.7 SMIs special case

Hardware virtualization allows for SMIs'® intercepts whether under Intel
or AMD.

Under AMD, intercepted SMIs are kept pending until the hypervisor
enables interrupts in its context which leads to CPU entering SMM.
AMD recommends to not intercept SMIs in order SMM code to be able
to handle them in any situation. Despite this, Frratas'” in AMD CPUs
force hypervisors to intercept SMIs.

SMIs can come from different sources such as interrupts or I/O operations.
In this later case, AMD recommends'® to containerise SMM before
handling the pending SMI. In other words, to create a dedicated VM
for the SMM code. But to be able to containerise SMM, you must have
access to some BIOS locked MSRs.

4 Ramooflax organization

Ramooflax is developed in C and assembly language. The remote client
has been written in python.

Ramooflax provides a simple configuration menu for the few present
options, CPU manufacturer, control and debug device, proxy mode.
The proxy mode is used to intercept, log and emulate MSRs accesses for
instance. The cpuid instruction is managed this way by default because
the hypervisor needs to hide some features to the VM.

Below are some screenshots of the configuration menu:

16 System Management Interrupts
17 Errata 342, non intercepted SMIs lead to interrupts disabling in the VM[?]
18 AMD Manual Vol.2 section 15.22.3

Ranooflax Ranoof Lax

hange build settines)
install change install directory
cuit save configuration and quit

cpu select_manufacturer
debug select dsbug output devics
proxy select various proxy nodes

Kk] <Cancel > Kk] <Cancel>

Ranoof Lax
Enable/Disable proxy nodes

.18 ONFIG_URRT_PROXY]
[1 CONFIG_HSR_PROXY um operations on mers are proxufied

Cancel>

Fig. 5. The Ramooflax configuration menu.

Ramooflax code size is not that huge and is shown below:

riot(”) sloccount ramooflax

[...]

SLOC Directory SLOC-by-Language (Sorted)
11356 vmm ansic=11093,asm=263

6767 include ansic=6767

1898 common ansic=1898

1443 setup ansic=1362,asm=81

1391 client python=1391

102 loader ansic=92,asm=10

Totals grouped by language (dominant language first):

ansic: 21239 (91.81%)
python: 1391 (6.01%)
asm: 354 (1.53%)
sh: 150 (0.65%)
[...]

|
|
|
|
|
|
|
|
|
|
|
|
|
: 177 tools sh=150,ansic=27
|
|
|
|
|
|
|
|
|
|
|
|
|

We can find the 3 kernels, the client and some tools. Each module is
located in its own directory, excepted for common code pieces (drivers,
libc). Each virtualization specific implementation is located under src/svm
or src/vmi.

The final kernel (VMM) is organized in sub-systems, responsible for a
specific feature:

riot(vmm) 1ls -1 src/
total 32K

| |
; 1
: drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 control :
: drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 core :
| drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 devices !
: drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 disasm :
I drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 drivers :
| drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 libc ‘
I drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 svm !
: drwxr-xr-x 2 stf stf 4.0K Mar 3 13:37 vmx :

5 Ramooflax initialization

As previously (section ??) explained, Ramooflax is made of 3 minimalistic
kernels but only one of them will be resident in memory, the vmm.

5.1 Ramooflax loader

This is the first kernel to run and it is loaded by a bootloader (ie GRUB).
Multiboot[?] compliant, this 32 bits kernel is loaded at physical address
2MB. Its role is to enable longmode then load the setup.

It sets up a temporary GDT mixing 32 and 64 bits segments, an indentity
mapping paging model (virtual equals physical address) using 1GB or
2MB pages depending upon CPU features.

5.2 Ramooflax setup

This is the configuration kernel. It is responsible for device initialization,
especially debugging and control ones, as well as virtualization structures.
It also loads the final vimm kernel by choosing its physical location. The
idea behind Ramooflax was to have the minimum impact on VM native
environment and avoid complex protection mechanism implementation.
The vmm module being a PIE one can thus be relocated anywhere in
physical memory and especially at the end of the RAM.

More precisely, the vmm is loaded at size (RAM) - size(VMM). The RAM
size is retrivied from GRUB. If the physical machine has more than 4GB
installed, the hypervisor will always be relocated below the 4GB limit.
In order to reduce the amount of RAM, the setup prepares fake SMAPs,
which are a kind of physical memory organization map provided by the
BIOS, specifically crafted for the VM. The hypervisor will be in charge
of VM SMAPs access interception to give it the fake ones.

FEach SMAPs entry is composed of a base address, a size and a type
defining the kind of memory area (ACPI, reserved, usable).

The setup only patches one entry from the original SMAPs, the one
describing the first high memory chunk above 1IMB and below 4GB.
It is usually found right before ACPI entries. The patch consists in
substracting the vmm area size from the original entry size.

The following logs, from a Linux kernel, detail BIOS SMAPs. The entry
to be patched could have been the third one:

BIOS-provided physical RAM map:

|

|

: BIOS-e820: 0000000000000000 - 000000000009bc00 (usable)

1 BIOS-e820: 000000000009bc00 - 00000000000a0000 (reserved)
: BI0S-€820: 0000000000100000 - 00000000dd04d400 (usable)

I BIOS-e820: 00000000dd04d400 - 00000000dd04£400 (ACPI NVS)
: BIOS-e820: 00000000dd04£400 - 00000000e0000000 (reserved)
: BIOS-e820: 00000000£8000000 - 00000000£c000000 (reserved)
| BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)
: BIOS-e820: 00000000fed18000 - 00000000fed1c000 (reserved)
1 BIOS-e820: 00000000£ed20000 - 00000000£ed90000 (reserved)
: BI0S-€820: 00000000feda0000 - 00000000feda6000 (reserved)
I BIOS-e820: 00000000fee00000 - 00000000fee10000 (reserved)
: BI0S-€820: 00000000££e60000 - 0000000100000000 (reserved)
: BIOS-e820: 0000000100000000 - 0000000120000000 (usable)

We will detail the implemented mechanisms used to intercept VM SMAPs
access.

The setup also prepares a simple physical memory pages allocator for
future dynamic memory needs. Our hypervisor can’t use virtualized OS
services.

The GDT, IDT and paging structures are relocated at the end of the
physical memory where the hypervisor is living. Notice that setup prepares
a set of page tables for real and protected modes. Mode transitions are
really common during VM boot process. For performance reasons we
preferred to fix only one PML4 entry and provide specific mode page
tables.

The VM Nested Page Tables are set up to exclude physical memory area
of the hypervisor. Related entries are set as non present. Other entries
are configured as identity mapping, VM physical addresses are the same
as system ones.

Finally, the setup configures virtualization related data structures. The
I/O and MSRs interception bitmaps are prepared for keyboard, ps2
system controllers and EFER. The control registers, sensitive instructions
like cpuid, htl, intn and all virtualization related instructions are also
intercepted.

By default, exceptions and hardware interrupts are not intercepted.
The setup finishes its execution by installing the first VM instructions in
conventional memory: int 0x16 and int 0x19. The first one is a BIOS
service which allows to wait for a keystroke. The second one tells the
BIOS to load the bootsector of its first bootable device which uses to be
an hard drive where the native operating system is already installed.
By doing this, we take benefit of existing BIOS features (devices access
like USB, SATA, ...). The hypervisor seamlessly virtualizes real mode
code whether it is BIOS or not.

6 Ramooflax execution model

The hypervisor waits for vm-exit that will give it the opportunity to exe-
cute its treatments. The figure 77 details the execution paths architecture
of the hypervisor.

vm-exit

1‘ vm-resume

{ vim J‘

svm_vmexit_handler ()

eve

<

svm_vmexit_pre_hdl();
svm_vmexit_dispatcher ()

[instructions] [nested #PF] [control sub-system]

cpuid check
access

)

svm_vmexit_post_hdl(tsc);

void svm_vmexit_pre_hdl()

vmcb_ctrls_area_t *ctrls = &info->vm.cpu.vmc->vm_vmcb.ctrls_area;
vmcb_state_area_t *state = &info->vm.cpu.vmc->vm_vmcb.state_area;

svm_vmsave (&info->vm. cpu.vmc->vm_vmcb) ;
info->vm.cpu.gpr->rax.raw = state->rax.raw;
info->vm.cpu.gpr->rsp.raw = state->rsp.raw;

if (ctrls->tlb_ctrl.tlb_
ctrls->tlb_ctrl.tlb_

control != VMCB_TLB_CTL_NONE)
control = VMCB_TLB_CTL_NONE;

void svm_vmexit_post_hdl(raw64_t tsc)

vmcb_state_area_t *state = &info->vm.cpu.vmc->vm_vmcb.state_area;

vmm_ctrl();
db_post_hd1();

state->rax.raw = info->vm.cpu.gpr->rax.raw;
state->rsp.raw = info->vm.cpu.gpr->rsp.raw;
info->vm.cpu.gpr->rax.raw = (offset_t)&info->vm.cpu.vmc->vm_vmcb;

info->vmm.ctrl.vmexit_cnt.raw++;
svm_vmexit_tsc_rebase(tsc);

We can see a pre-processing which is architecture specific, then a call
to the subsystem responsible for the raised vm-exit, followed by a post-
processing which checks if the remote client wants to interact with the
hypervisor before resuming the VM.

7 System registers filtering

7.1 Control Registers

Accesses to cr0, cr3 and cr4 registers are intercepted because they are
responsible for sensitive settings such as mode transitions, TLBs control
and different options related to paging and cache consistency.

About TLBs management, the hypervisor must keep the standard CPU
behavior which is:

— a write to cr3 leads to non-global TLBs flush'’
— a change to cr4 PAE, PSE or PGE bits leads to full TLBs flush

Since Nested Page Tables, TLBs are tagged with an ASID?°, which
allows the hypervisor to flush only those related to the VM. Once again,
these features are not found into every CPUs shipped with hardware
virtualization extensions.

Another interesting point is the cache consistency via CD bit from cr0.
The Linux kernel for instance sets it (cache disable) while booting and
disables MTRRs in order to not reference caches anymore. Our hypervisor
running as seamlessly as possible, undergoes MTRRs disabling (rather
emulating it). To be consistent, the hypervisor must follow the VM
settings of cr0 related cache settings.

The following hypervisor log illustrates a classical cache disabling scheme
under Linux:

: <0x67aaf:0xc1013d68:124>rdmsr 0x2ff | 0x0 0xc00

: <0x67ab0:0xc1013d68:124>rdmsr 0xc0010010 | 0x0 0x160600
I <0x67abl:0xc1013d32:16>cache disable

: <0x67ab2:0xc1013d54:137>wbinvd

: <0x67ab4:0xc1013d68:124>rdmsr 0x2ff | 0x0 0xc00

I <0x67ab5:0xc1013d79:124>wrmsr 0x2ff | 0x0 0x0

| <0x67ab5:0xc1013d79:124>disabling mtrr

The logs are generated using the hypervisor prory msr mode. Linux
disables caches using cr0, flush CPU cache lines and finally disables
MTRRs. All the memory is now uncacheable and every line is invalidated.
If the hypervisor, while intercepting write to cr0, doesn’t disable its
own cr0 cache setting, it may still fill cache lines after the VM does the
writeback. Thus when MTRRs will be disabled, information will be lost
and the hypervisor will enter an inconsistent state.

The use of Nested Page Tables implies a punctilious PAT and MTRRs
management. Rather emulating it, the hypervisor follows VM settings.

19 Those whose page table entries don’t have global bit set.
20 Address Space IDentifier

7.2 CPUID and MSRs

The hypervisor has a passthrough mode where it lets full access to a
ressource to the VM. It can also run in prozified mode where it must
ensure execution of ressource access.
A wrmsr implies:

— msr filtering depending on architecture

— emulate access if the msr is stored into the VMCS/VMCB

— native execution on the contrary
The interception of cpuid or rdmsr is handled as:

— native execution or read into VMCS/VMCB

— post-processing to filter out information

static int __resolve_cpuid()
{
uint32_t idx = info->vm.cpu.gpr->rax.low;

__resolve_cpuid_native(); /* native execution */
__resolve_cpuid_arch(idx); /* amd/intel centric post-processing */

|

|

|

|

|

|

|

|

|

:

: /* generic post-processing */
: switch(idx)

! {

: case CPUID_FEATURE_INFQ:
: __resolve_cpuid_feature();
| break;

: default:

| break;

|
|
|
|
|
|
|

}

return CPUID_SUCCESS;

8 Events filtering

8.1 Software interrupts

Software interrupts intercept is only performed when the VM is in real
mode. It allows specific filtering of BIOS services requests mainly related
to SMAPs and GateA20 via int 0x15. The interception leads to the
emulation of the service if needed, or redirect real mode code execution
to the correct IVT handler.

8.2 Hardware interrupts
Hardware interrupts are not intercepted. But it is possible to do so. The

hypervisor can be interruptible, under AMD, in order to detect which
IDT vector has been raised and need to be injected to the VM.

8.3 Exceptions

Under AMD, where sofware interrupts intercept is available, exceptions
management is rather simple. The hypervisor only checks that the raised
exception is not related to the control subsystem (#DB and #BP for break-
points and single-stepping). If it is a leggit VM exception, it is injected.
Under Intel, which does not allow software interrupts intercept, a specific
exception handler must be implemented into the hypervisor to deal with
software interrupts intercept emulation trick based on #GP exceptions.

8.4 Input/Output operations

The I/0 intercepts is operated via a bitmap (one bit per port). On a
vm-exit, the CPU provides information related to the I/O operation,
direction, size, whether it was a string operation or not, the port. The
hypervisor can thus emulate or proxify the operation requested by the
VM.

Notice that some I/O operations emulation can be very complex and
dangerous. Especially the string ones. They are not fully supported into
Ramooflax.

9 Emulation

9.1 Instructions

For the time being, the hypervisor embeds a disassembly engine (udsi86[?])
giving precious help to the emulation subsystem. Under AMD, the need
for a disassembler is far less consequent than under Intel. We could
have skip it because emulated instructions have a simple encoding: mov
to/from cr, intn, clts.

Instruction emulation is sensitive under x86 because of the numerous
protected mode mechanisms. As for sensitive instructions intercepted
and then natively executed, the emulation engine must take into account
the vm-exit context, especially the TF bit from rflags. If it is set, the
hypervisor should inject, right after emulating the instruction, a #DB
exception. By the way it is a simple detection mechanism over hypervisors,
as mentioned into [?].

If stealthness is not the main objective of Ramooflax, it has to be consis-
tent with regard to the virtualized system.

9.2 Devices

The hypervisor offers some devices emulation: UART, PIC, KBD and
PS2 system controllers.

The UART emulation allows to simply retrieve kernel logs written to
a serial port and redirect it into the debugging interface used by the
hypervisor. A passthrough mode is not sufficient due to the fact that the
UART settings can differ from VM to hypervisor (parity, speed, ...).
Emulation allows fine grain control.

The KBD and PS2 system controllers emulation was needed, partially, to
prevent the VM from rebooting the system. Historically, some bits lurk
into these controllers that allow a hard reset. They also control GateA20
enabling/disabling.

10 Remote communication

The hypervisor lets the VM directly access devices, except those which
are used by the hypervisor, as explained in figure ?7?.

[VMM owned HW J [VMM emulated HW J [VM owned HW]

Remote

Fig. 7. VMM/VM/Client devices access.

The hypervisor distinguishes its debug from its control interface. The
debug interface is used for writting debug logs, while control one is used
to remotly interact with the client.

10.1 UART

The serial port is used as a debug interface. It is slow, unreliable and it
can hardly be found nowadays in modern workstations.

10.2 EHCI Debug port

The USB EHCI specification tells that a physical USB port can be used
as an EHCI Debug port if the controller allows it. Most of the EHCI
controllers have the feature implemented.

The Debug port interest comes from the fact that it is standardized, easy
to control (as opposed to classical USB) and faster than serial port (480
Mbits/s).

On hypervisor side The hypervisor implements a Debug port
driver on the EHCI controller side. The VM loses a physical USB port.
The hypervisor ensures the VM will never get this port back under its
control.

On remote client side The main problem comes from the USB
specification. It does not allow two host controllers to directly exchange
data between each other. To exchange data with a Debug port, you need
a Debug Device. One can find it on the market which can expose a serial
USB device on the remote client.

One can also take benefit of embedded development boards or smart-
phones providing USB OTG?! controllers which can run as a host or
device controller. That’s how many smartphones are able to act as mass
storage devices when connected to a host controller on a PC, simply
because the device controller is able to emulate a mass storage device.
Under Linux, an API is available to developpers in order to tell device
controllers to emulate any usb device: the Gadget API.

We thus developped a USB Gadget emulating a Debug Device while
exposing a serial interface to the userland. This gadget is now part of the
official Linux kernel branch since 2.6.36 release.

vmm client
ehci host python
debug port framework

7777777777777777777777777777

development board

Flg 8. VM control via EHCI Debug port.

The hypervisor is connected through USB Debug Port to a development
board with a device controller running the Debug Device Gadget. The

21 USB On-the-Go

exposed serial interface (ttyGS0) is forwarded into a TCP connection on
the port 1234 using socat. A remote client can thus access the hypervisor
using a network connection.

11 Remote interaction

As previously mentioned, the hypervisor waits for events coming from
the VM whether they are leggit or related to remote client interaction.

11.1 Taking control

The critical point for remote control is to ensure that the hypervisor will
be able to take over the VM when the remote client decides it.

Under Intel, a specific timer called vmz_preemption_timer has been re-
cently implemented. It allows vm-exit to be raised after a number of
CPU cycles. Under AMD, there is no such feature.

For the time being, the hypervisor computes a ratio at each vm-exit to
determine whether it should check its controlling interface or not. The
idea is to raise as many vm-exit as possible in order to guarantee the
take over as instantly as possible. On the other hand, the more vm-exit
you have, the less reactive the VM becomes.

The hypervisor uses an heuristic related to modern OS principles: the use
of cr3. Modern operating systems such as Linux and Windows schedule
processes on a regular basis, which implies a write to cr3. Since the
hypervisor intercepts writes to cr3, it can check its controlling interface
regularly.

Notice that no interrupt is raised for the Debug port, which prevents us
from intercepting interrupts on remote client requests. However, since
interrupts are a global setting (all of them are intercepted), it should
have introduced inacceptable latency to the VM.

11.2 GDB stub

The control subsystem is implemented under the form of a GDB stub.
This allows traditional gdb clients to connect to the hypervisor.
The hypervisor implements the basic GDB protocol commands:

— read/write general purpose registers

— read/write memory

— add/remove software/hardware breakpoints

— single-stepping
The GDB protocol is well designed for userland processes. However,
when dealing with a kernel or a VM, it shows its limits. As an example,
connecting to the VMware GDB stub usually brings the analyst into
kernel code and attaching to a specific process is a really inconvenient
task using classical GDB protocol.
That’s why we decided to implement extensions to the GDB protocol in
order to be more convenient.

11.3 GDB specific extensions

System registers access The first limitation was that we can’t
access system registers. We offer the possibility to read/write:

— cr0, cr2, cr3, crd

— dr0-dr3, dr6, dr7

— efer, dbgctl MSRs

— cs, ss, ds, es, fs, gs (base address only)

— gdtr, idtr, 1dtr, tr

Memory access The read/write memory feature from the classical
GDB protocol does not really make sense under a VM. From an application
point of view, the GDB stub has only access to the virtual space of the
currently debugged process. Under an hypervisor, the remote client may
want to access physical or virtual addresses depending on the execution
mode of the VM (real, protected, ...). When accessing virtual addresses
for a specific process, the hypervisor must access physical memory using
the process page tables.

Our extension allows to read/write physical and virtual memory. When
using virtual addresses, the hypervisor does make use of the current cr3.
We also provide a special cr3 tracking feature. The client is able to tell
the hypervisor to work with a specific cr3 when accessing memory. This
is usefull when installing software breakpoints into a process userspace.
We also offer a translation service (virtual to physical).

Last Branch Record Amongst the numerous features provided by
the x86 architecture, the LBRs one is really interesting. It allows branch
recording into the following MSRs:

— from_eip, eip value before branch

— to_eip, branch target

— last_excp-_from, eip value before exception is raised
— last_excp_to, exception branch target

We allow enabling/disabling of the feature into Ramooflax. Notice that
AMD provides LBRs virtualization by means of VMCB backed MSRs.
This is really appreciable when dealing with bugged BIOS that does not
restore LBRs enabled setting upon SMM resuming.

Virtualization control We also provide some features to control
over virtualization settings from VMCS/VMCB. They are not complete
but should ultimately allow full control over virtualization extensions.
To date, we only allow interception bitmaps modification related to
exceptions and control registers.

11.4 The art of single-stepping

The different single-stepping scenarii while debugging a virtual machine
can be really complex to handle, especially on privilege level transitions.
We can summarize them as follows:

— global single-step

— ring3 only, specific process single-step

— rin0-ring3, specific process single-step

— kernel thread single-step
The Ramooflax single-stepping implementation is merly based upon TF
bit from rflags and the interception of #DB. We have only implemented
global and ring3 specific process single-stepping.
Single-stepping a process is pretty easy to handle independently from
the operating system running under the hypervisor, mainly because we
can identify a process from its cr3 register or its kernel stack pointer
(tss.esp0). However, it is far more complex to identify a kernel thread.
From an hardware point of view, only the kernel stack of the kernel thread
is changed upon scheduling. At the same privilege level (scheduling from
and to a kernel thread), only the general purpose registers will be updated
(esp/ebp) and this is not feasible to intercept write access on them.
Notice that Ramooflax can not ensure a consistent single-stepping state at
any time. When single-stepping a process, the hypervisor does not single-
step into the process kernel control path (scheduling, interrupt handlers,
syscalls, ...), and thus disable single-stepping. The hypervisor will wait
for a re-scheduling of the correct cr3 and thus its rflags register which
will lead to #DB. The kernel can kill the process and never re-schedule it.
The hypervisor will never know about it.
About its stealthness, but also its consistency, the hypervisor must inter-
cept TF bit related instructions:

— pushf in order to hide TF to the VM

— popf, iret in order to prevent the VM from modifying TF

— intN, exceptions and hardware interrupts, in order to preserve TF

setting

The hypervisor also uses single-stepping internally to restore software
breakpoints. This never leads to remote client interaction.

12 Remote client

We have chosen to develop a python API to remotely control the hyper-
visor. We detail the different elements of the API as well as some usage
examples.

The purpose of this section is to illustrate hypervisor features and the sim-
plicity of its services access. Already existing frameworks, like Metasm|[?],
could have been used with Ramooflax. The one we developped is only
illustrative.

12.1 Python framework elements

The API provides some easy to use classes:
— VM, providing high level features
— CPU, allowing registers and filters access
Breakpoints, ... self explained
— GDB, a GDB client providing hypervisor specific extensions
— Memory, controlling memory access
— Event, allowing developers to implement their own vm-exit handlers

12.2 VM

At the highest level, it provides the following services: run, interact,
singlestep, resume, stop, attach, detach.

We thought it could be interesting to be interactive and scriptable. The
interactive mode allows a scapy-like[?] interactive python shell, while the
scriptable mode is good for automating analysis tasks.

The VM class is instancied as:

We have the CPU model, the target address and port of the develop-
ment board. Controlling the hypervisor via serial interface has not been
implemented on the client side. But the hypervisor part should work.
The interactive mode is used as:

It is entered/leaved with ctrl+d, ctrl+c. The scriptable mode needs
some additional steps:

vm.attach() # remote connection
vm.stop() # stop the vm

vm.resume() # resume the vm and wait for next vm-exit

|

|

|

!

|

: # xxxx (breakpoints, filters, ...)

|

|

|

| vm.detach() # detach so that the vm gets control back

12.3 CPU, Memory and Breakpoints

These classes give access to system and general purpose registers, ex-
ceptions management, breakpoints. Notice that registers modification is
lazily operated (upon vm resume).

Following are some examples installing breakpoints and reading memory:

data write breakpoint
vm.cpu.breakpoints.add_data_w(vm.cpu.sr.tr+4, 4, filter, "espO")

physical memory read
xx = vm.mem.pread(0xa0000, 12)

enabling a specific cr3 for translations

then reading a virtual memory page

vm.cpu.set_active_cr3(my_cr3)

pg = vm.mem.vread(0x8048000, 4096)

The breakpoint is related to the esp0O field from the TSS pointed to by
the TR register. We will explain later the use of filter. We can name
breakpoints (here esp0). It is also easy to list installed breakpoints:

: >>> vm.cpu.breakpoints
| espO 0xc1331f14 Write (4)
| kernel_f1 0xc0001234 eXecute (1)

>>> vm. cpu.sr

|

|

| cro = 0x000000008005003b
| cr2 = 0x00000000b7681ed0
e = 0x00000000371£9000
| crd = 0x0000000000000690
| dro = 0x0000000000000000
I dri = 0x0000000000000000
| dr2 = 0x0000000000000000
| dr3 = 0x0000000000000000
| dr6 = 0x00000000££££0££0
' dr7 = 0x0000000000000400
i dbgctl = 0x0000000000000000
| efer = 0x0000000000001000
| cs = 0x0000000000000000
| ss = 0x0000000000000000
| ds = 0x0000000000000000
| es = 0x0000000000000000
! fs = 0x0000000000000000
I gs = 0x00000000c1367¢c00
| gdtr = 0x00000000c132¢000
' idtr = 0x00000000¢132d000
i ldtr = 0x0000000000000000
' tr = 0x00000000c1331£10
12.4 Event

Rather implemeting the counter-intuitive conditional breakpoints syntax
from the GDB protocol, we decided to implement a callback mechanism
based on filters that can be linked to any vm-exit.

This approach allows for implementing anything interesting in python,
from conditional breakpoints to complex memory analysis functions.

These filters dissociate elements which are hardware dependent (and
provided by the framework) from those which are software dependent
(specific to the virtualized operating system).

Thus, most of the previous classes services give the opportunity to define
filters associated to a python function.

The vm.resume() method gives control back to the VM and once a
vm-exit is raised, directly calls the corresponding filter and forwards its
return value.

A usage example could be to return True when the filter wants to enter

interactive. The following code illustrates it. It enters interactive mode
when a #PF is raised by the instruction located at 0x1234:

def handle_excp(vm):
if vm.cpu.gpr.eip == 0x1234:
return True
return False

while not vm.resume():

|
|
|
|
|
|
|
|
!
| vm.cpu. filter_exception(CPUException.page_fault, handle_excp)
|
|
|
I continue

|

|

|

!

The annexe 77 shows a script that retrieves a specific process page
directory given its name, under Linux 2.6.

13 Conclusion

Although hardware virtualization extensions ease hypervisor implementa-
tion, its development still remains complex and sensitive. If Ramooflax is
far from being a finished product, it provides to date sufficient features
to try complex operating systems analysis in native environment.
About the actual limitations, especially regarding SMM, open-source
BIOS could in the long term allow for a better virtualization of native
systems. The exploration of ACPI tables and all of their subtleties could
also be an ideal application field for Ramooflax.

14 Annexe: process_finder

The principle is to install a filter on writes to cr3 . On each write, the
hypervisor takes control over the VM and contacts the remote client. The
API will call the installed filter.

The filter is responsible for inspecting the kernel stack of the last scheduled
process (tss.esp0), retrieving its thread_info then its task-struct and
its mm_struct to reach the pgd. If the comm field is the desired one, the
filter returns True.

Notice that we prefer to walk only the process list on the first write to
cr3, because nothing can ensure that all of the processes will be scheduled
each time our filter is called. This comes from the fact that the latency
introduced by the analysis can bring the virtualized kernel to strategically
re-schedule highest priority processes leading to a small subset of the
process list being scheduled.

#!/usr/bin/env python

import sys
from vm import *

if len(sys.argv) < 2:
print "need prog name"
sys.exit(-1)

process_name = sys.argv[1]
process_cr3 = 0

Some offsets for debian 2.6.32-5-486 kernel
com_off = 540

next_off = 240

mm_off = 268

pgd_off = 36

def next_task(vm, task):
next = vm.mem.read_dword(task+next_off)
next -= next_off
return next

def walk_process(vm, task):
global process_cr3
head = task
while True:
mm = vm.mem.read_dword(task+mm_off)
if mm != O:
comm = task+com_off
name = vm.mem.vread(comm, 15)
pgd = vm.mem.read_dword(mm+pgd_off)
print "task",name
if process_name in name:
process_cr3 = pgd - 0xc0000000
print "===> task cr3",hex(process_cr3)
return True

task = next_task(vm, task)
if task == head:
return False

def find_process(vm):
esp0 = vm.mem.read_dword(vm.cpu.sr.tr+4)
thread_info = espO & O0xffffe000
task = vm.mem.read_dword(thread_info)
if task ==
return False
return walk_process(vm, task)

Main (architecture dependent only)
vm = VM(CPUFamily.AMD, 32, "192.168.254.254:1234")

vm.attach()
vm.stop()
vm.cpu.filter_write_cr(3, find_process)

while not vm.resume():
continue

vm.cpu.release_write_cr(3)

print "success"
vm.detach()

References

1. Intel virtualization roadmap
http://software.intel.com/file/1024
http://www.xen.org/files/xensummit_4/VT_roadmap_d_Nakajima.
pdf

2. OpenGL tutors (N. Robins)
http://www.xmission.com/~nate/tutors.html

3. bluepill (J. Rutkowska)
http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html

4. vitriol (DDZ matasano)
http://www.thetad4.org/software/HVM_Rootkits_ddz_bh-usa-06.
pdf

5. virtdbg (D. Aumaitre, C. Devine)
http://code.google.com/p/virtdbg/

6. hyperdbg (A. Fattori)
http://code.google.com/p/hyperdbg/

7. abyss (IvanlefOu)
http://www.ivanlefOu.tuxfamily.org/?p=120

8. multiboot specification
http://www.gnu.org/software/grub/manual/multiboot/multiboot.
html

9. udis86, disassembler library for x86 and x86-64 (V. Thampi)
http://udis86.sourceforge.net

10. Detecting simple hypervisors (N. Falliere)
http://0x5a4d.blogspot.com/2009/11/
detecting-simple-hypervisors.html

11. Revision Guide for AMD Family 10h Processors (AMD)
http://support.amd.com/us/Processor_TechDocs/41322.pdf

12. The METASM assembly manipulation suite (Y. Guillot)
http://metasm.cr0.org/

13. Metasm HowTo: bintrace (A. Gazet)
http://esec-lab.sogeti.com/dotclear/index.php?post/2010/07/
19/90-metasm-howto-bintrace

14. Scapy: a powerful interactive packet manipulation program (P.
Biondi)
http://http://www.secdev.org/projects/scapy

http://software.intel.com/file/1024
http://www.xen.org/files/xensummit_4/VT_roadmap_d_Nakajima.pdf
http://www.xen.org/files/xensummit_4/VT_roadmap_d_Nakajima.pdf
http://www.xmission.com/~nate/tutors.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://www.theta44.org/software/HVM_Rootkits_ddz_bh-usa-06.pdf
http://www.theta44.org/software/HVM_Rootkits_ddz_bh-usa-06.pdf
http://code.google.com/p/virtdbg/
http://code.google.com/p/hyperdbg/
http://www.ivanlef0u.tuxfamily.org/?p=120
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://udis86.sourceforge.net
http://0x5a4d.blogspot.com/2009/11/detecting-simple-hypervisors.html
http://0x5a4d.blogspot.com/2009/11/detecting-simple-hypervisors.html
http://support.amd.com/us/Processor_TechDocs/41322.pdf
http://metasm.cr0.org/
http://esec-lab.sogeti.com/dotclear/index.php?post/2010/07/19/90-metasm-howto-bintrace
http://esec-lab.sogeti.com/dotclear/index.php?post/2010/07/19/90-metasm-howto-bintrace
http://http://www.secdev.org/projects/scapy

