-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSbEncoder.cs
896 lines (791 loc) · 22 KB
/
SbEncoder.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
//
// Copyright (C) 2003 Jean-Marc Valin
// Copyright (C) 1999-2003 Wimba S.A., All Rights Reserved.
// Copyright (C) 2008 Filip Navara
// Copyright (C) 2009-2010 Christoph Fröschl
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the Xiph.org Foundation nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
using System;
namespace NSpeex
{
/// <summary>
/// Wideband Speex Encoder
/// </summary>
internal class SbEncoder : SbCodec, IEncoder
{
/// <summary>
/// The Narrowband Quality map indicates which narrowband submode to use for
/// the given wideband/ultra-wideband quality setting
/// </summary>
private static readonly int[] NB_QUALITY_MAP = { 1, 8, 2, 3, 4, 5, 5, 6, 6, 7, 7 };
/// <summary>
/// The Wideband Quality map indicates which sideband submode to use for the
/// given wideband/ultra-wideband quality setting
/// </summary>
private static readonly int[] WB_QUALITY_MAP = { 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4 };
/// <summary>
/// The Ultra-wideband Quality map indicates which sideband submode to use
/// for the given ultra-wideband quality setting
/// </summary>
///
private static readonly int[] UWB_QUALITY_MAP = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
/// <summary>
/// The encoder for the lower half of the Spectrum.
/// </summary>
protected internal IEncoder lowenc;
private float[] x1d;
private float[] h0_mem;
private float[] buf;
private float[] swBuf;
/// <summary>
/// Weighted signal buffer
/// </summary>
///
private float[] res;
private float[] target;
private float[] window;
private float[] lagWindow;
private float[] rc;
/// <summary>
/// Reflection coefficients
/// </summary>
private float[] autocorr;
/// <summary>
/// auto-correlation
/// </summary>
private float[] lsp;
/// <summary>
/// LSPs for current frame
/// </summary>
private float[] old_lsp;
/// <summary>
/// LSPs for previous frame
/// </summary>
private float[] interp_lsp;
/// <summary>
/// Interpolated LSPs
/// </summary>
private float[] interp_lpc;
/// <summary>
/// Interpolated LPCs
/// </summary>
private float[] bw_lpc1;
/// <summary>
/// LPCs after bandwidth expansion by gamma1 for perceptual weighting
/// </summary>
private float[] bw_lpc2;
/// <summary>
/// LPCs after bandwidth expansion by gamma2 for perceptual weighting
/// </summary>
private float[] mem_sp2;
private float[] mem_sw;
/** Filter memory for perceptually-weighted signal */
protected internal int nb_modes;
private bool uwb;
protected internal int complexity;
/// <summary>
/// Complexity setting (0-10 from least complex to most complex)
/// </summary>
protected internal int vbr_enabled;
/// <summary>
/// 1 for enabling VBR, 0 otherwise
/// </summary>
protected internal int vad_enabled;
/// <summary>
/// 1 for enabling VAD, 0 otherwise
/// </summary>
protected internal int abr_enabled;
/// <summary>
/// ABR setting (in bps), 0 if off
/// </summary>
protected internal float vbr_quality;
/// <summary>
/// Quality setting for VBR encoding
/// </summary>
protected internal float relative_quality;
/// <summary>
/// Relative quality that will be needed by VBR
/// </summary>
protected internal float abr_drift;
protected internal float abr_drift2;
protected internal float abr_count;
protected internal int sampling_rate;
protected internal int submodeSelect;
/** Mode chosen by the user (may differ from submodeID if VAD is on) */
public SbEncoder(bool ultraWide)
: base(ultraWide)
{
if (ultraWide)
Uwbinit();
else
Wbinit();
}
/// <summary>
/// Wideband initialisation
/// </summary>
private void Wbinit()
{
lowenc = new NbEncoder();
// Initialize variables
Init(160, 40, 8, 640, .9f);
uwb = false;
nb_modes = 5;
sampling_rate = 16000;
}
/// <summary>
/// Ultra-wideband initialisation
/// </summary>
private void Uwbinit()
{
lowenc = new SbEncoder(false);
// Initialize variables
Init(320, 80, 8, 1280, .7f);
uwb = true;
nb_modes = 2;
sampling_rate = 32000;
}
protected override void Init(
int frameSize, int subframeSize,
int lpcSize, int bufSize, float foldingGain)
{
base.Init(frameSize, subframeSize, lpcSize, bufSize, foldingGain);
complexity = 3; // in C it's 2 here, but set to 3 automatically by the
// encoder
vbr_enabled = 0; // disabled by default
vad_enabled = 0; // disabled by default
abr_enabled = 0; // disabled by default
vbr_quality = 8;
submodeSelect = submodeID;
x1d = new float[frameSize];
h0_mem = new float[NSpeex.SbCodec.QMF_ORDER];
buf = new float[windowSize];
swBuf = new float[frameSize];
res = new float[frameSize];
target = new float[subframeSize];
window = NSpeex.Misc.Window(windowSize, subframeSize);
lagWindow = NSpeex.Misc.LagWindow(lpcSize, lag_factor);
rc = new float[lpcSize];
autocorr = new float[lpcSize + 1];
lsp = new float[lpcSize];
old_lsp = new float[lpcSize];
interp_lsp = new float[lpcSize];
interp_lpc = new float[lpcSize + 1];
bw_lpc1 = new float[lpcSize + 1];
bw_lpc2 = new float[lpcSize + 1];
mem_sp2 = new float[lpcSize];
mem_sw = new float[lpcSize];
abr_count = 0;
}
/// <summary>
/// Encode the given input signal.
/// </summary>
/// <returns>1 if successful.</returns>
public virtual int Encode(Bits bits, float[] ins0)
{
int i;
float[] mem, innov, syn_resp;
float[] low_pi_gain, low_exc, low_innov;
int dtx;
/* Compute the two sub-bands by filtering with h0 and h1 */
NSpeex.Filters.Qmf_decomp(ins0, NSpeex.Codebook_Constants.h0, x0d, x1d,
fullFrameSize, NSpeex.SbCodec.QMF_ORDER, h0_mem);
/* Encode the narrowband part */
lowenc.Encode(bits, x0d);
/* High-band buffering / sync with low band */
for (i = 0; i < windowSize - frameSize; i++)
high[i] = high[frameSize + i];
for (i = 0; i < frameSize; i++)
high[windowSize - frameSize + i] = x1d[i];
System.Array.Copy(excBuf, frameSize, excBuf, 0, bufSize
- frameSize);
low_pi_gain = lowenc.PiGain;
low_exc = lowenc.Exc;
low_innov = lowenc.Innov;
int low_mode = lowenc.Mode;
if (low_mode == 0)
dtx = 1;
else
dtx = 0;
/* Start encoding the high-band */
for (i = 0; i < windowSize; i++)
buf[i] = high[i] * window[i];
/* Compute auto-correlation */
NSpeex.Lpc.Autocorr(buf, autocorr, lpcSize + 1, windowSize);
autocorr[0] += 1; /* prevents NANs */
autocorr[0] *= lpc_floor; /* Noise floor in auto-correlation domain */
/* Lag windowing: equivalent to filtering in the power-spectrum domain */
for (i = 0; i < lpcSize + 1; i++)
autocorr[i] *= lagWindow[i];
/* Levinson-Durbin */
NSpeex.Lpc.Wld(lpc, autocorr, rc, lpcSize); // tmperr
System.Array.Copy(lpc, 0, lpc, 1, lpcSize);
lpc[0] = 1;
/* LPC to LSPs (x-domain) transform */
int roots = NSpeex.Lsp.Lpc2lsp(lpc, lpcSize, lsp, 15, 0.2f);
if (roots != lpcSize)
{
roots = NSpeex.Lsp.Lpc2lsp(lpc, lpcSize, lsp, 11, 0.02f);
if (roots != lpcSize)
{
/*
* If we can't find all LSP's, do some damage control and use a
* flat filter
*/
for (i = 0; i < lpcSize; i++)
{
lsp[i] = (float)System.Math.Cos(System.Math.PI
* ((float)(i + 1)) / (lpcSize + 1));
}
}
}
/* x-domain to angle domain */
for (i = 0; i < lpcSize; i++)
lsp[i] = (float)System.Math.Acos(lsp[i]);
float lsp_dist = 0;
for (i = 0; i < lpcSize; i++)
lsp_dist += (old_lsp[i] - lsp[i]) * (old_lsp[i] - lsp[i]);
/* VBR stuff */
if ((vbr_enabled != 0 || vad_enabled != 0) && dtx == 0)
{
float e_low = 0, e_high = 0;
float ratio;
if (abr_enabled != 0)
{
float qual_change = 0;
if (abr_drift2 * abr_drift > 0)
{
/*
* Only adapt if long-term and short-term drift are the same
* sign
*/
qual_change = -.00001f * abr_drift / (1 + abr_count);
if (qual_change > .1f)
qual_change = .1f;
if (qual_change < -.1f)
qual_change = -.1f;
}
vbr_quality += qual_change;
if (vbr_quality > 10)
vbr_quality = 10;
if (vbr_quality < 0)
vbr_quality = 0;
}
for (i = 0; i < frameSize; i++)
{
e_low += x0d[i] * x0d[i];
e_high += high[i] * high[i];
}
ratio = (float)Math.Log((1 + e_high) / (1 + e_low));
relative_quality = lowenc.RelativeQuality;
if (ratio < -4)
ratio = -4;
if (ratio > 2)
ratio = 2;
/* if (ratio>-2) */
if (vbr_enabled != 0)
{
int modeid;
modeid = nb_modes - 1;
relative_quality += 1.0f * (ratio + 2);
if (relative_quality < -1)
{
relative_quality = -1;
}
while (modeid != 0)
{
int v1;
float thresh;
v1 = (int)Math.Floor(vbr_quality);
if (v1 == 10)
thresh = NSpeex.Vbr.hb_thresh[modeid][v1];
else
thresh = (vbr_quality - v1)
* NSpeex.Vbr.hb_thresh[modeid][v1 + 1]
+ (1 + v1 - vbr_quality)
* NSpeex.Vbr.hb_thresh[modeid][v1];
if (relative_quality >= thresh)
break;
modeid--;
}
Mode = modeid;
if (abr_enabled != 0)
{
int bitrate;
bitrate = BitRate;
abr_drift += (bitrate - abr_enabled);
abr_drift2 = .95f * abr_drift2 + .05f
* (bitrate - abr_enabled);
abr_count += 1.0f;
}
}
else
{
/* VAD only */
int modeid_0;
if (relative_quality < 2.0d)
modeid_0 = 1;
else
modeid_0 = submodeSelect;
/* speex_encoder_ctl(state, SPEEX_SET_MODE, &mode); */
submodeID = modeid_0;
}
/* fprintf (stderr, "%f %f\n", ratio, low_qual); */
}
bits.Pack(1, 1);
if (dtx != 0)
bits.Pack(0, NSpeex.SbCodec.SB_SUBMODE_BITS);
else
bits.Pack(submodeID, NSpeex.SbCodec.SB_SUBMODE_BITS);
/* If null mode (no transmission), just set a couple things to zero */
if (dtx != 0 || submodes[submodeID] == null)
{
for (i = 0; i < frameSize; i++)
excBuf[excIdx + i] = swBuf[i] = NSpeex.NbCodec.VERY_SMALL;
for (i = 0; i < lpcSize; i++)
mem_sw[i] = 0;
first = 1;
/* Final signal synthesis from excitation */
NSpeex.Filters.Iir_mem2(excBuf, excIdx, interp_qlpc, high, 0,
subframeSize, lpcSize, mem_sp);
/* Reconstruct the original */
filters.Fir_mem_up(x0d, NSpeex.Codebook_Constants.h0, y0,
fullFrameSize, NSpeex.SbCodec.QMF_ORDER, g0_mem);
filters.Fir_mem_up(high, NSpeex.Codebook_Constants.h1, y1,
fullFrameSize, NSpeex.SbCodec.QMF_ORDER, g1_mem);
for (i = 0; i < fullFrameSize; i++)
ins0[i] = 2 * (y0[i] - y1[i]);
if (dtx != 0)
return 0;
else
return 1;
}
/* LSP quantization */
submodes[submodeID].LsqQuant.Quant(lsp, qlsp, lpcSize, bits);
if (first != 0)
{
for (i = 0; i < lpcSize; i++)
old_lsp[i] = lsp[i];
for (i = 0; i < lpcSize; i++)
old_qlsp[i] = qlsp[i];
}
mem = new float[lpcSize];
syn_resp = new float[subframeSize];
innov = new float[subframeSize];
for (int sub = 0; sub < nbSubframes; sub++)
{
float tmp, filter_ratio;
int exc, sp, sw, resp;
int offset;
float rl, rh, eh = 0, el = 0;
int fold;
offset = subframeSize * sub;
sp = offset;
exc = excIdx + offset;
resp = offset;
sw = offset;
/* LSP interpolation (quantized and unquantized) */
tmp = (1.0f + sub) / nbSubframes;
for (i = 0; i < lpcSize; i++)
interp_lsp[i] = (1 - tmp) * old_lsp[i] + tmp * lsp[i];
for (i = 0; i < lpcSize; i++)
interp_qlsp[i] = (1 - tmp) * old_qlsp[i] + tmp * qlsp[i];
NSpeex.Lsp.Enforce_margin(interp_lsp, lpcSize, .05f);
NSpeex.Lsp.Enforce_margin(interp_qlsp, lpcSize, .05f);
/* Compute interpolated LPCs (quantized and unquantized) */
for (i = 0; i < lpcSize; i++)
interp_lsp[i] = (float)System.Math.Cos(interp_lsp[i]);
for (i = 0; i < lpcSize; i++)
interp_qlsp[i] = (float)System.Math.Cos(interp_qlsp[i]);
m_lsp.Lsp2lpc(interp_lsp, interp_lpc, lpcSize);
m_lsp.Lsp2lpc(interp_qlsp, interp_qlpc, lpcSize);
NSpeex.Filters.Bw_lpc(gamma1, interp_lpc, bw_lpc1, lpcSize);
NSpeex.Filters.Bw_lpc(gamma2, interp_lpc, bw_lpc2, lpcSize);
/*
* Compute mid-band (4000 Hz for wideband) response of low-band and
* high-band filters
*/
rl = rh = 0;
tmp = 1;
pi_gain[sub] = 0;
for (i = 0; i <= lpcSize; i++)
{
rh += tmp * interp_qlpc[i];
tmp = -tmp;
pi_gain[sub] += interp_qlpc[i];
}
rl = low_pi_gain[sub];
rl = 1 / (Math.Abs(rl) + .01f);
rh = 1 / (Math.Abs(rh) + .01f);
/* Compute ratio, will help predict the gain */
filter_ratio = Math.Abs(.01f + rh)
/ (.01f + Math.Abs(rl));
fold = (filter_ratio < 5) ? 1 : 0;
/* printf ("filter_ratio %f\n", filter_ratio); */
fold = 0;
/* Compute "real excitation" */
NSpeex.Filters.Fir_mem2(high, sp, interp_qlpc, excBuf, exc,
subframeSize, lpcSize, mem_sp2);
/* Compute energy of low-band and high-band excitation */
for (i = 0; i < subframeSize; i++)
eh += excBuf[exc + i] * excBuf[exc + i];
if (submodes[submodeID].Innovation == null)
{/*
* 1 for spectral
* folding
* excitation, 0 for
* stochastic
*/
float g;
/* speex_bits_pack(bits, 1, 1); */
for (i = 0; i < subframeSize; i++)
el += low_innov[offset + i] * low_innov[offset + i];
/*
* Gain to use if we want to use the low-band excitation for
* high-band
*/
g = eh / (.01f + el);
g = (float)Math.Sqrt(g);
g *= filter_ratio;
/* print_vec(&g, 1, "gain factor"); */
/* Gain quantization */
{
int quant = (int)Math.Floor(.5d + 10 + 8.0d * Math.Log((g + .0001d)));
/* speex_warning_int("tata", quant); */
if (quant < 0)
quant = 0;
if (quant > 31)
quant = 31;
bits.Pack(quant, 5);
g = (float)(.1d * Math.Exp(quant / 9.4d));
}
/* printf ("folding gain: %f\n", g); */
g /= filter_ratio;
}
else
{
float gc, scale, scale_1;
for (i = 0; i < subframeSize; i++)
el += low_exc[offset + i] * low_exc[offset + i];
/* speex_bits_pack(bits, 0, 1); */
gc = (float)(Math.Sqrt(1 + eh) * filter_ratio / Math.Sqrt((1 + el) * subframeSize));
{
int qgc = (int)Math.Floor(.5d + 3.7d * (Math.Log(gc) + 2));
if (qgc < 0)
qgc = 0;
if (qgc > 15)
qgc = 15;
bits.Pack(qgc, 4);
gc = (float)Math.Exp((1 / 3.7d) * qgc - 2);
}
scale = gc * (float)Math.Sqrt(1 + el) / filter_ratio;
scale_1 = 1 / scale;
for (i = 0; i < subframeSize; i++)
excBuf[exc + i] = 0;
excBuf[exc] = 1;
NSpeex.Filters.Syn_percep_zero(excBuf, exc, interp_qlpc,
bw_lpc1, bw_lpc2, syn_resp, subframeSize, lpcSize);
/* Reset excitation */
for (i = 0; i < subframeSize; i++)
excBuf[exc + i] = 0;
/*
* Compute zero response (ringing) of A(z/g1) / ( A(z/g2) *
* Aq(z) )
*/
for (i = 0; i < lpcSize; i++)
mem[i] = mem_sp[i];
NSpeex.Filters.Iir_mem2(excBuf, exc, interp_qlpc, excBuf, exc,
subframeSize, lpcSize, mem);
for (i = 0; i < lpcSize; i++)
mem[i] = mem_sw[i];
NSpeex.Filters.Filter_mem2(excBuf, exc, bw_lpc1, bw_lpc2, res,
resp, subframeSize, lpcSize, mem, 0);
/* Compute weighted signal */
for (i = 0; i < lpcSize; i++)
mem[i] = mem_sw[i];
NSpeex.Filters.Filter_mem2(high, sp, bw_lpc1, bw_lpc2, swBuf,
sw, subframeSize, lpcSize, mem, 0);
/* Compute target signal */
for (i = 0; i < subframeSize; i++)
target[i] = swBuf[sw + i] - res[resp + i];
for (i = 0; i < subframeSize; i++)
excBuf[exc + i] = 0;
for (i = 0; i < subframeSize; i++)
target[i] *= scale_1;
/* Reset excitation */
for (i = 0; i < subframeSize; i++)
innov[i] = 0;
/* print_vec(target, st->subframeSize, "\ntarget"); */
submodes[submodeID].Innovation.Quantify(target, interp_qlpc,
bw_lpc1, bw_lpc2, lpcSize, subframeSize, innov, 0,
syn_resp, bits, (complexity + 1) >> 1);
/* print_vec(target, st->subframeSize, "after"); */
for (i = 0; i < subframeSize; i++)
excBuf[exc + i] += innov[i] * scale;
if (submodes[submodeID].DoubleCodebook != 0)
{
float[] innov2 = new float[subframeSize];
for (i = 0; i < subframeSize; i++)
innov2[i] = 0;
for (i = 0; i < subframeSize; i++)
target[i] *= 2.5f;
submodes[submodeID].Innovation.Quantify(target, interp_qlpc,
bw_lpc1, bw_lpc2, lpcSize, subframeSize, innov2, 0,
syn_resp, bits, (complexity + 1) >> 1);
for (i = 0; i < subframeSize; i++)
innov2[i] *= (float)(scale * (1 / 2.5d));
for (i = 0; i < subframeSize; i++)
excBuf[exc + i] += innov2[i];
}
}
/* Keep the previous memory */
for (i = 0; i < lpcSize; i++)
mem[i] = mem_sp[i];
/* Final signal synthesis from excitation */
NSpeex.Filters.Iir_mem2(excBuf, exc, interp_qlpc, high, sp,
subframeSize, lpcSize, mem_sp);
/*
* Compute weighted signal again, from synthesized speech (not sure
* it's the right thing)
*/
NSpeex.Filters.Filter_mem2(high, sp, bw_lpc1, bw_lpc2, swBuf, sw,
subframeSize, lpcSize, mem_sw, 0);
}
// #ifndef RELEASE
/* Reconstruct the original */
filters.Fir_mem_up(x0d, NSpeex.Codebook_Constants.h0, y0, fullFrameSize,
NSpeex.SbCodec.QMF_ORDER, g0_mem);
filters.Fir_mem_up(high, NSpeex.Codebook_Constants.h1, y1,
fullFrameSize, NSpeex.SbCodec.QMF_ORDER, g1_mem);
for (i = 0; i < fullFrameSize; i++)
ins0[i] = 2 * (y0[i] - y1[i]);
// #endif
for (i = 0; i < lpcSize; i++)
old_lsp[i] = lsp[i];
for (i = 0; i < lpcSize; i++)
old_qlsp[i] = qlsp[i];
first = 0;
return 1;
}
public virtual int EncodedFrameSize
{
get
{
int size = NSpeex.SbCodec.SB_FRAME_SIZE[submodeID];
size += lowenc.EncodedFrameSize;
return size;
}
}
public virtual int Quality
{
set
{
if (value < 0)
value = 0;
if (value > 10)
value = 10;
if (uwb)
{
lowenc.Quality = value;
this.Mode = UWB_QUALITY_MAP[value];
}
else
{
lowenc.Mode = NB_QUALITY_MAP[value];
this.Mode = WB_QUALITY_MAP[value];
}
}
}
public virtual int BitRate
{
get
{
if (submodes[submodeID] != null)
return lowenc.BitRate + sampling_rate
* submodes[submodeID].BitsPerFrame / frameSize;
else
return lowenc.BitRate + sampling_rate
* (NSpeex.SbCodec.SB_SUBMODE_BITS + 1) / frameSize;
}
set
{
for (int i = 10; i >= 0; i--)
{
Quality = i;
if (BitRate <= value)
return;
}
}
}
public virtual int LookAhead
{
get
{
return 2 * lowenc.LookAhead + NSpeex.SbCodec.QMF_ORDER - 1;
}
}
public virtual int Mode
{
get
{
return submodeID;
}
set
{
if (value < 0)
{
value = 0;
}
submodeID = submodeSelect = value;
}
}
public virtual bool Vbr
{
get
{
return vbr_enabled != 0;
}
set
{
// super.setVbr(vbr);
vbr_enabled = (value) ? 1 : 0;
lowenc.Vbr = value;
}
}
public virtual bool Vad
{
get
{
return vad_enabled != 0;
}
set
{
vad_enabled = (value) ? 1 : 0;
}
}
public new bool Dtx
{
get
{
return dtx_enabled == 1;
}
set
{
dtx_enabled = (value) ? 1 : 0;
}
}
public virtual int Abr
{
get
{
return abr_enabled;
}
set
{
lowenc.Vbr = true;
// super.setAbr(abr);
abr_enabled = (value != 0) ? 1 : 0;
vbr_enabled = 1;
{
int i = 10, rate, target_0;
float vbr_qual;
target_0 = value;
while (i >= 0)
{
Quality = i;
rate = BitRate;
if (rate <= target_0)
break;
i--;
}
vbr_qual = i;
if (vbr_qual < 0)
vbr_qual = 0;
VbrQuality = vbr_qual;
abr_count = 0;
abr_drift = 0;
abr_drift2 = 0;
}
}
}
public virtual float VbrQuality
{
get
{
return vbr_quality;
}
set
{
vbr_quality = value;
float qual = value + 0.6f;
if (qual > 10)
qual = 10;
lowenc.VbrQuality = qual;
int q = (int)Math.Floor(.5d + value);
if (q > 10)
q = 10;
Quality = q;
}
}
public virtual int Complexity
{
get
{
return complexity;
}
set
{
if (value < 0)
value = 0;
if (value > 10)
value = 10;
this.complexity = value;
}
}
public virtual int SamplingRate
{
get
{
return sampling_rate;
}
set
{
// super.setSamplingRate(rate);
sampling_rate = value;
lowenc.SamplingRate = value;
}
}
public virtual float RelativeQuality
{
get
{
return relative_quality;
}
}
}
}