-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pointnetvlad_PCL_supervise.py
executable file
·481 lines (394 loc) · 18.9 KB
/
train_pointnetvlad_PCL_supervise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#import torch
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import datetime
import argparse
import importlib
import math
import os
import socket
import sys
import numpy as np
from sklearn.neighbors import KDTree, NearestNeighbors
import config as cfg
import evaluate
import loss.pointnetvlad_loss as PNV_loss
import models.PointNetVlad as PNV
import torch
import torch.nn as nn
from loading_pointclouds import *
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.backends import cudnn
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
cudnn.enabled = True
parser = argparse.ArgumentParser()
parser.add_argument('--log_dir', default='log/', help='Log dir [default: log]')
parser.add_argument('--results_dir', default='results/',
help='results dir [default: results]')
parser.add_argument('--positives_per_query', type=int, default=2,
help='Number of potential positives in each training tuple [default: 2]')
parser.add_argument('--negatives_per_query', type=int, default=18,
help='Number of definite negatives in each training tuple [default: 18]')
parser.add_argument('--max_epoch', type=int, default=100,
help='Epoch to run [default: 100]')
parser.add_argument('--batch_num_queries', type=int, default=2,
help='Batch Size during training [default: 2]')
parser.add_argument('--learning_rate', type=float, default=0.000005,
help='Initial learning rate [default: 0.000005]')
parser.add_argument('--momentum', type=float, default=0.9,
help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam',
help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000,
help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7,
help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--margin_1', type=float, default=0.5,
help='Margin for hinge loss [default: 0.5]')
parser.add_argument('--margin_2', type=float, default=0.2,
help='Margin for hinge loss [default: 0.2]')
parser.add_argument('--loss_function', default='quadruplet', choices=[
'triplet', 'quadruplet'], help='triplet or quadruplet [default: quadruplet]')
parser.add_argument('--loss_not_lazy', action='store_false',
help='If present, do not use lazy variant of loss')
parser.add_argument('--loss_ignore_zero_batch', action='store_true',
help='If present, mean only batches with loss > 0.0')
parser.add_argument('--triplet_use_best_positives', action='store_true',
help='If present, use best positives, otherwise use hardest positives')
parser.add_argument('--resume', action='store_true',
help='If present, restore checkpoint and resume training')
parser.add_argument('--dataset_folder', default='../../dataset/',
help='PointNetVlad Dataset Folder')
FLAGS = parser.parse_args()
cfg.BATCH_NUM_QUERIES = FLAGS.batch_num_queries
#cfg.EVAL_BATCH_SIZE = 12
cfg.NUM_POINTS = 256
cfg.TRAIN_POSITIVES_PER_QUERY = FLAGS.positives_per_query
cfg.TRAIN_NEGATIVES_PER_QUERY = FLAGS.negatives_per_query
cfg.MAX_EPOCH = FLAGS.max_epoch
cfg.BASE_LEARNING_RATE = FLAGS.learning_rate
cfg.MOMENTUM = FLAGS.momentum
cfg.OPTIMIZER = FLAGS.optimizer
cfg.DECAY_STEP = FLAGS.decay_step
cfg.DECAY_RATE = FLAGS.decay_rate
cfg.MARGIN1 = FLAGS.margin_1
cfg.MARGIN2 = FLAGS.margin_2
cfg.FEATURE_OUTPUT_DIM = 256
cfg.LOSS_FUNCTION = FLAGS.loss_function
cfg.TRIPLET_USE_BEST_POSITIVES = FLAGS.triplet_use_best_positives
cfg.LOSS_LAZY = FLAGS.loss_not_lazy
cfg.LOSS_IGNORE_ZERO_BATCH = FLAGS.loss_ignore_zero_batch
cfg.TRAIN_FILE = 'generating_queries/training_queries_baseline.pickle'
cfg.TEST_FILE = 'generating_queries/test_queries_baseline.pickle'
cfg.LOG_DIR = FLAGS.log_dir
if not os.path.exists(cfg.LOG_DIR):
os.mkdir(cfg.LOG_DIR)
LOG_FOUT = open(os.path.join(cfg.LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
cfg.RESULTS_FOLDER = FLAGS.results_dir
print("cfg.RESULTS_FOLDER:"+str(cfg.RESULTS_FOLDER))
cfg.DATASET_FOLDER = FLAGS.dataset_folder
# Load dictionary of training queries
TRAINING_QUERIES = get_queries_dict(cfg.TRAIN_FILE)
TEST_QUERIES = get_queries_dict(cfg.TEST_FILE)
cfg.BN_INIT_DECAY = 0.5
cfg.BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(cfg.DECAY_STEP)
cfg.BN_DECAY_CLIP = 0.99
HARD_NEGATIVES = {}
TRAINING_LATENT_VECTORS = []
TOTAL_ITERATIONS = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_bn_decay(batch):
bn_momentum = cfg.BN_INIT_DECAY * \
(cfg.BN_DECAY_DECAY_RATE **
(batch * cfg.BATCH_NUM_QUERIES // BN_DECAY_DECAY_STEP))
return min(cfg.BN_DECAY_CLIP, 1 - bn_momentum)
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
# learning rate halfed every 5 epoch
def get_learning_rate(epoch):
learning_rate = cfg.BASE_LEARNING_RATE * ((0.9) ** (epoch // 5))
learning_rate = max(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def train():
train_start = datetime.datetime.now()
global HARD_NEGATIVES, TOTAL_ITERATIONS
bn_decay = get_bn_decay(0)
#tf.summary.scalar('bn_decay', bn_decay)
#loss = lazy_quadruplet_loss(q_vec, pos_vecs, neg_vecs, other_neg_vec, MARGIN1, MARGIN2)
if cfg.LOSS_FUNCTION == 'quadruplet':
loss_function = PNV_loss.quadruplet_loss
else:
loss_function = PNV_loss.triplet_loss_wrapper
learning_rate = get_learning_rate(0)
train_writer = SummaryWriter(os.path.join(cfg.LOG_DIR, 'train'))
#test_writer = SummaryWriter(os.path.join(cfg.LOG_DIR, 'test'))
model = PNV.PointNetVlad(global_feat=True, feature_transform=True,
max_pool=False, output_dim=cfg.FEATURE_OUTPUT_DIM, num_points=cfg.NUM_POINTS)
model = model.to(device)
parameters = filter(lambda p: p.requires_grad, model.parameters())
if cfg.OPTIMIZER == 'momentum':
optimizer = torch.optim.SGD(
parameters, learning_rate, momentum=cfg.MOMENTUM)
elif cfg.OPTIMIZER == 'adam':
optimizer = torch.optim.Adam(parameters, learning_rate)
else:
optimizer = None
exit(0)
if FLAGS.resume:
resume_filename = cfg.LOG_DIR + "checkpoint.pth.tar"
print("Resuming From ", resume_filename)
checkpoint = torch.load(resume_filename)
saved_state_dict = checkpoint['state_dict']
starting_epoch = checkpoint['epoch']
TOTAL_ITERATIONS = starting_epoch * len(TRAINING_QUERIES)
model.load_state_dict(saved_state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
else:
starting_epoch = 0
#model = nn.DataParallel(model)
LOG_FOUT.write(cfg.cfg_str())
LOG_FOUT.write("\n")
LOG_FOUT.flush()
for epoch in range(starting_epoch, cfg.MAX_EPOCH):
print(epoch)
print()
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(model, optimizer, train_writer, loss_function, epoch)
log_string('EVALUATING...')
cfg.OUTPUT_FILE = cfg.RESULTS_FOLDER + 'results_' + str(epoch) + '.txt'
train_end = datetime.datetime.now()
eval_start = datetime.datetime.now()
eval_recall_1, eval_recall_5, eval_recall_10 = evaluate.evaluate_model(model,optimizer,epoch,True)
eval_end = datetime.datetime.now()
log_string('EVAL RECALL_1: %s' % str(eval_recall_1))
log_string('EVAL RECALL_5: %s' % str(eval_recall_5))
log_string('EVAL RECALL_10: %s' % str(eval_recall_10))
def train_one_epoch(model, optimizer, train_writer, loss_function, epoch):
global HARD_NEGATIVES
global TRAINING_LATENT_VECTORS, TOTAL_ITERATIONS
is_training = True
sampled_neg = 4000
# number of hard negatives in the training tuple
# which are taken from the sampled negatives
num_to_take = 10
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAINING_QUERIES.keys()))
np.random.shuffle(train_file_idxs)
for i in range(len(train_file_idxs)//cfg.BATCH_NUM_QUERIES):
batch_keys = train_file_idxs[i *
cfg.BATCH_NUM_QUERIES:(i+1)*cfg.BATCH_NUM_QUERIES]
q_tuples = []
faulty_tuple = False
no_other_neg = False
for j in range(cfg.BATCH_NUM_QUERIES):
if (len(TRAINING_QUERIES[batch_keys[j]]["positives"]) < cfg.TRAIN_POSITIVES_PER_QUERY):
faulty_tuple = True
break
# no cached feature vectors
if (len(TRAINING_LATENT_VECTORS) == 0):
q_tuples.append(
get_query_tuple(TRAINING_QUERIES[batch_keys[j]], cfg.TRAIN_POSITIVES_PER_QUERY, cfg.TRAIN_NEGATIVES_PER_QUERY,
TRAINING_QUERIES, hard_neg=[], other_neg=True))
#print("q_tuples:"+str(q_tuples))
# q_tuples.append(get_rotated_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_neg=[], other_neg=True))
# q_tuples.append(get_jittered_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_neg=[], other_neg=True))
elif (len(HARD_NEGATIVES.keys()) == 0):
query = get_feature_representation(
TRAINING_QUERIES[batch_keys[j]]['query'], model)
random.shuffle(TRAINING_QUERIES[batch_keys[j]]['negatives'])
negatives = TRAINING_QUERIES[batch_keys[j]
]['negatives'][0:sampled_neg]
hard_negs = get_random_hard_negatives(
query, negatives, num_to_take)
q_tuples.append(
get_query_tuple(TRAINING_QUERIES[batch_keys[j]], cfg.TRAIN_POSITIVES_PER_QUERY, cfg.TRAIN_NEGATIVES_PER_QUERY,
TRAINING_QUERIES, hard_negs, other_neg=True))
# q_tuples.append(get_rotated_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_negs, other_neg=True))
# q_tuples.append(get_jittered_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_negs, other_neg=True))
else:
query = get_feature_representation(
TRAINING_QUERIES[batch_keys[j]]['query'], model)
random.shuffle(TRAINING_QUERIES[batch_keys[j]]['negatives'])
negatives = TRAINING_QUERIES[batch_keys[j]
]['negatives'][0:sampled_neg]
hard_negs = get_random_hard_negatives(
query, negatives, num_to_take)
hard_negs = list(set().union(
HARD_NEGATIVES[batch_keys[j]], hard_negs))
q_tuples.append(
get_query_tuple(TRAINING_QUERIES[batch_keys[j]], cfg.TRAIN_POSITIVES_PER_QUERY, cfg.TRAIN_NEGATIVES_PER_QUERY,
TRAINING_QUERIES, hard_negs, other_neg=True))
# q_tuples.append(get_rotated_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_negs, other_neg=True))
# q_tuples.append(get_jittered_tuple(TRAINING_QUERIES[batch_keys[j]],POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY, TRAINING_QUERIES, hard_negs, other_neg=True))
if (q_tuples[j][3].shape[0] != cfg.NUM_POINTS):
no_other_neg = True
break
if(faulty_tuple):
log_string('----' + str(i) + '-----')
log_string('----' + 'FAULTY TUPLE' + '-----')
continue
if(no_other_neg):
log_string('----' + str(i) + '-----')
log_string('----' + 'NO OTHER NEG' + '-----')
continue
queries = []
positives = []
negatives = []
other_neg = []
for k in range(len(q_tuples)):
queries.append(q_tuples[k][0])
positives.append(q_tuples[k][1])
negatives.append(q_tuples[k][2])
other_neg.append(q_tuples[k][3])
queries = np.array(queries, dtype=np.float32)
queries = np.expand_dims(queries, axis=1)
other_neg = np.array(other_neg, dtype=np.float32)
other_neg = np.expand_dims(other_neg, axis=1)
positives = np.array(positives, dtype=np.float32)
negatives = np.array(negatives, dtype=np.float32)
log_string('----' + str(i) + '-----')
if (len(queries.shape) != 4):
log_string('----' + 'FAULTY QUERY' + '-----')
continue
model.train()
optimizer.zero_grad()
output_queries, output_positives, output_negatives, output_other_neg = run_model(
model, queries, positives, negatives, other_neg)
#print("output_queries:"+str(output_queries))
#print("output_positives:"+str(output_positives))
#print("output_negatives:"+str(output_negatives))
#print("output_other_neg:"+str(output_other_neg))
#print("negatives:"+str(negatives))
#print("other_neg:"+str(other_neg))
#print("queries:"+str(queries))
loss = loss_function(output_queries, output_positives, output_negatives, output_other_neg, cfg.MARGIN_1, cfg.MARGIN_2, use_min=cfg.TRIPLET_USE_BEST_POSITIVES, lazy=cfg.LOSS_LAZY, ignore_zero_loss=cfg.LOSS_IGNORE_ZERO_BATCH)
loss.backward()
optimizer.step()
log_string('batch loss: %f' % loss)
train_writer.add_scalar("Loss", loss.cpu().item(), TOTAL_ITERATIONS)
TOTAL_ITERATIONS += cfg.BATCH_NUM_QUERIES
# EVALLLL
if (epoch > 5 and i % (1400 // cfg.BATCH_NUM_QUERIES) == 29):
TRAINING_LATENT_VECTORS = get_latent_vectors(
model, TRAINING_QUERIES)
print("Updated cached feature vectors")
if (i % (6000 // cfg.BATCH_NUM_QUERIES) == 101):
if isinstance(model, nn.DataParallel):
model_to_save = model.module
else:
model_to_save = model
save_name = cfg.LOG_DIR + cfg.MODEL_FILENAME
torch.save({
'epoch': epoch,
'iter': TOTAL_ITERATIONS,
'state_dict': model_to_save.state_dict(),
'optimizer': optimizer.state_dict(),
},
save_name)
print("Model Saved As " + save_name)
def get_feature_representation(filename, model):
model.eval()
queries = load_pc_files([filename],True)
queries = np.expand_dims(queries, axis=1)
# if(BATCH_NUM_QUERIES-1>0):
# fake_queries=np.zeros((BATCH_NUM_QUERIES-1,1,NUM_POINTS,3))
# q=np.vstack((queries,fake_queries))
# else:
# q=queries
with torch.no_grad():
q = torch.from_numpy(queries).float()
q = q.to(device)
output = model(q)
output = output.detach().cpu().numpy()
output = np.squeeze(output)
model.train()
return output
def get_random_hard_negatives(query_vec, random_negs, num_to_take):
global TRAINING_LATENT_VECTORS
latent_vecs = []
for j in range(len(random_negs)):
latent_vecs.append(TRAINING_LATENT_VECTORS[random_negs[j]])
latent_vecs = np.array(latent_vecs)
nbrs = KDTree(latent_vecs)
distances, indices = nbrs.query(np.array([query_vec]), k=num_to_take)
hard_negs = np.squeeze(np.array(random_negs)[indices[0]])
hard_negs = hard_negs.tolist()
return hard_negs
def get_latent_vectors(model, dict_to_process):
train_file_idxs = np.arange(0, len(dict_to_process.keys()))
batch_num = cfg.BATCH_NUM_QUERIES * \
(1 + cfg.TRAIN_POSITIVES_PER_QUERY + cfg.TRAIN_NEGATIVES_PER_QUERY + 1)
q_output = []
model.eval()
for q_index in range(len(train_file_idxs)//batch_num):
file_indices = train_file_idxs[q_index *
batch_num:(q_index+1)*(batch_num)]
file_names = []
for index in file_indices:
file_names.append(dict_to_process[index]["query"])
queries = load_pc_files(file_names,True)
feed_tensor = torch.from_numpy(queries).float()
feed_tensor = feed_tensor.unsqueeze(1)
feed_tensor = feed_tensor.to(device)
with torch.no_grad():
out = model(feed_tensor)
out = out.detach().cpu().numpy()
out = np.squeeze(out)
q_output.append(out)
q_output = np.array(q_output)
if(len(q_output) != 0):
q_output = q_output.reshape(-1, q_output.shape[-1])
# handle edge case
for q_index in range((len(train_file_idxs) // batch_num * batch_num), len(dict_to_process.keys())):
index = train_file_idxs[q_index]
queries = load_pc_files([dict_to_process[index]["query"]],True)
queries = np.expand_dims(queries, axis=1)
# if (BATCH_NUM_QUERIES - 1 > 0):
# fake_queries = np.zeros((BATCH_NUM_QUERIES - 1, 1, NUM_POINTS, 3))
# q = np.vstack((queries, fake_queries))
# else:
# q = queries
#fake_pos = np.zeros((BATCH_NUM_QUERIES, POSITIVES_PER_QUERY, NUM_POINTS, 3))
#fake_neg = np.zeros((BATCH_NUM_QUERIES, NEGATIVES_PER_QUERY, NUM_POINTS, 3))
#fake_other_neg = np.zeros((BATCH_NUM_QUERIES, 1, NUM_POINTS, 3))
#o1, o2, o3, o4 = run_model(model, q, fake_pos, fake_neg, fake_other_neg)
with torch.no_grad():
queries_tensor = torch.from_numpy(queries).float()
o1 = model.to(device)(queries_tensor.to(device))
output = o1.detach().cpu().numpy()
output = np.squeeze(output)
if (q_output.shape[0] != 0):
q_output = np.vstack((q_output, output))
else:
q_output = output
model.train()
return q_output
def run_model(model, queries, positives, negatives, other_neg, require_grad=True):
queries_tensor = torch.from_numpy(queries).float()
positives_tensor = torch.from_numpy(positives).float()
negatives_tensor = torch.from_numpy(negatives).float()
other_neg_tensor = torch.from_numpy(other_neg).float()
feed_tensor = torch.cat(
(queries_tensor, positives_tensor, negatives_tensor, other_neg_tensor), 1)
feed_tensor = feed_tensor.view((-1, 1, cfg.NUM_POINTS, 3))
feed_tensor.requires_grad_(require_grad)
feed_tensor = feed_tensor.to(device)
if require_grad:
output = model(feed_tensor)
else:
with torch.no_grad():
output = model(feed_tensor)
#print("output:"+str(output))
output = output.view(cfg.BATCH_NUM_QUERIES, -1, cfg.FEATURE_OUTPUT_DIM)
o1, o2, o3, o4 = torch.split(
output, [1, cfg.TRAIN_POSITIVES_PER_QUERY, cfg.TRAIN_NEGATIVES_PER_QUERY, 1], dim=1)
return o1, o2, o3, o4
if __name__ == "__main__":
train()