forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuse.py
114 lines (101 loc) · 3.65 KB
/
fuse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright © 2023-2024 Apple Inc.
import argparse
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import utils
from mlx.utils import tree_flatten, tree_unflatten
from models import LoRALinear
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--save-path",
default="lora_fused_model",
help="The path to save the fused model.",
)
parser.add_argument(
"--adapter-file",
type=str,
default="adapters.npz",
help="Path to the trained adapter weights (npz or safetensors).",
)
parser.add_argument(
"--hf-path",
help=(
"Path to the original Hugging Face model. This is "
"required for upload if --model is a local directory."
),
type=str,
default=None,
)
parser.add_argument(
"--upload-name",
help="The name of model to upload to Hugging Face MLX Community",
type=str,
default=None,
)
parser.add_argument(
"-d",
"--de-quantize",
help="Generate a de-quantized model.",
action="store_true",
)
print("Loading pretrained model")
args = parser.parse_args()
model, tokenizer, config = utils.load(args.model)
# Load adapters and get number of LoRA layers
adapters = list(mx.load(args.adapter_file).items())
lora_layers = len([m for m in adapters if "q_proj.lora_a" in m[0]])
# Freeze all layers other than LORA linears
model.freeze()
for l in model.model.layers[len(model.model.layers) - lora_layers :]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
l.block_sparse_moe.gate = LoRALinear.from_linear(l.block_sparse_moe.gate)
model.update(tree_unflatten(adapters))
fused_linears = [
(n, m.to_linear())
for n, m in model.named_modules()
if isinstance(m, LoRALinear)
]
model.update_modules(tree_unflatten(fused_linears))
if args.de_quantize:
de_quantize_layers = []
for n, m in model.named_modules():
if isinstance(m, nn.QuantizedLinear):
bias = "bias" in m
weight = m.weight
weight = mx.dequantize(
weight,
m.scales,
m.biases,
m.group_size,
m.bits,
).astype(mx.float16)
output_dims, input_dims = weight.shape
linear = nn.Linear(input_dims, output_dims, bias=bias)
linear.weight = weight
if bias:
linear.bias = m.bias
de_quantize_layers.append((n, linear))
model.update_modules(tree_unflatten(de_quantize_layers))
weights = dict(tree_flatten(model.parameters()))
if args.de_quantize:
config.pop("quantization", None)
utils.save_model(args.save_path, weights, tokenizer, config)
if args.upload_name is not None:
hf_path = args.hf_path
if not Path(args.model).exists():
# If the model path doesn't exist, assume it's an HF repo
hf_path = args.model
elif hf_path is None:
raise ValueError(
"Must provide original Hugging Face repo to upload local model."
)
utils.upload_to_hub(args.save_path, args.upload_name, hf_path)