-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
82 lines (73 loc) · 4.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
""" Main function for this repo. """
import argparse
import torch
from utils.misc import pprint
from utils.gpu_tools import set_gpu
from trainer.meta import MetaTrainer
from trainer.pre import PreTrainer
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Basic parameters
parser.add_argument('--model_type', type=str, default='UNet', choices=['UNet']) # The network architecture
parser.add_argument('--dataset', type=str, default='COCO', choices=['COCO','Fewshot']) # Dataset
parser.add_argument('--phase', type=str, default='meta_eval', choices=['pre_train', 'meta_train', 'meta_eval']) # Phase
parser.add_argument('--seed', type=int, default=0) # Manual seed for PyTorch, "0" means using random seed
parser.add_argument('--gpu', default='1') # GPU id
parser.add_argument('--dataset_dir', type=str, default='../Datasets/COCO/') # Dataset folder
# Parameters for meta-train phase
parser.add_argument('--mdataset_dir', type=str, default='../Datasets/Fewshot/') # Dataset folder
parser.add_argument('--max_epoch', type=int, default=200) # Epoch number for meta-train phase
parser.add_argument('--num_batch', type=int, default=50) # The number for different tasks used for meta-train
parser.add_argument('--num_classes', type=int, default=5)# Total number of pre-labelled classes
parser.add_argument('--way', type=int, default=2) # Way number, how many classes in a task
parser.add_argument('--shot', type=int, default=3) # Shot number, how many samples for one class in a task
parser.add_argument('--teshot', type=int, default=1) # Shot number, how many samples for one class in a meta test task
parser.add_argument('--train_query', type=int, default=1) # The number of meta train samples for each class in a task
parser.add_argument('--val_query', type=int, default=1) # The number of meta val samples for each class in a task
parser.add_argument('--test_query', type=int, default=1) # The number of meta test samples for each class in a task
parser.add_argument('--meta_lr1', type=float, default=0.0005) # Learning rate for SS weights
parser.add_argument('--meta_lr2', type=float, default=0.005) # Learning rate for FC weights
parser.add_argument('--base_lr', type=float, default=0.01) # Learning rate for the inner loop
parser.add_argument('--update_step', type=int, default=50) # The number of updates for the inner loop
parser.add_argument('--step_size', type=int, default=20) # The number of epochs to reduce the meta learning rates
parser.add_argument('--gamma', type=float, default=0.5) # Gamma for the meta-train learning rate decay
parser.add_argument('--init_weights', type=str, default=None) # The pre-trained weights for meta-train phase
parser.add_argument('--eval_weights', type=str, default=None) # The meta-trained weights for meta-eval phase
parser.add_argument('--meta_label', type=str, default='exp1') # Additional label for meta-train
# Parameters for pretain phase
parser.add_argument('--pre_max_epoch', type=int, default=200) # Epoch number for pre-train phase
parser.add_argument('--pre_batch_size', type=int, default=16) # Batch size for pre-train phase
parser.add_argument('--pre_lr', type=float, default=0.1) # Learning rate for pre-train phase
parser.add_argument('--pre_gamma', type=float, default=0.2) # Gamma for the pre-train learning rate decay
parser.add_argument('--pre_step_size', type=int, default=20) # The number of epochs to reduce the pre-train learning rate
parser.add_argument('--pre_custom_momentum', type=float, default=0.9) # Momentum for the optimizer during pre-train
parser.add_argument('--pre_custom_weight_decay', type=float, default=0.0005) # Weight decay for the optimizer during pre-train
parser.add_argument('--pre_init_weights', type=str, default=None)# The pre-trained weights for pre-train phase
# Set and print the parameters
args = parser.parse_args()
pprint(vars(args))
# Set the GPU id
set_gpu(args.gpu)
#torch.cuda.set_device(0)
# Set manual seed for PyTorch
if args.seed==0:
print ('Using random seed.')
torch.backends.cudnn.benchmark = True
else:
print ('Using manual seed:', args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Start trainer for pre-train, meta-train or meta-eval
if args.phase=='meta_train':
trainer = MetaTrainer(args)
trainer.train()
elif args.phase=='meta_eval':
trainer = MetaTrainer(args)
trainer.eval()
elif args.phase=='pre_train':
trainer = PreTrainer(args)
trainer.train()
else:
raise ValueError('Please set correct phase.')