-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNALM-16_v1.rmd
155 lines (110 loc) · 3.66 KB
/
NALM-16_v1.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
title: "NALM-16 TP53 Exp"
author: "Alex"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
toc: TRUE
toc_float: FALSE
editor_options:
chunk_output_type: console
chunk_output_type: console
---
<style type="text/css">
.main-container {
max-width: 2500px;
margin-left: 5px;
margin-right: auto;
}
.toc-content {
max-width: 2500px;
margin-left: 50px;
margin-right: auto;
}
div {
margin-left: 5px;
}
hr.new1 {
border-top: 1px solid #84a8e0;
}
</style>
version: 1.0 <br />
Run at "`r format(Sys.time())`"
# Data {.tabset}
## Overview/Method:
* GOAL, Study the role of p53 mutations in the context of hypodiploidy.
* Cell lines derived from NALM-16.
* Hypothesis: Mutant p53 activates transcription and expression of genes being pro-oncogenic. This would indicate a gain of function of the mutant p53. This would then challenge the line of thought that the only effect of mutations on p53 is to be similar to the absence of p53
```{r setup, include=FALSE, echo=FALSE, message=FALSE, warning=FALSE, cache=F}
knitr::opts_chunk$set(include=F, echo=FALSE, message=FALSE, warning=FALSE, fig.show="asis", fig.keep="all",tidy.opts=list(width.cutoff=100),tidy=TRUE)
options(knitr.table.format = "latex")
options(width = 1600)
### global options
options(scipen=999)
### standard libraries
library("RColorBrewer")
library(dplyr)
library(openxlsx)
library ( parallelDist)
library(forcats)
library ( factoextra)
library ( FactoMineR)
library ( ggplot2)
library ( ggplotify)
library ( patchwork)
library ( limma)
library ( edgeR)
library(knitr)
library ( kableExtra)
library(tidyr)
library ( data.table )
library (DT)
library ( ComplexHeatmap)
library (regioneR )
library ( karyoploteR )
library ( car )
library ( CEMiTool )
getPalette = colorRampPalette(brewer.pal(9, "Set1")) # expand color pallete
# keeping things consistent
ss = 123
set.seed(ss)
## read in resources
##
main.data = "/data/"
resource = "/ehome/resource/"
resource.ext = "/ehome/"
source ( "/ehome/scripts/config.ext/ext_June.2022.R" )
# for info on genes
genecard <- readRDS( paste0( resource, "annotation/genecard.rds" ) )
genecard = genecard[ , c("InputTerm","EntrezGene")]
genecard = genecard[!is.na(genecard$EntrezGene), ]
colnames(genecard) = c("GENE","description")
## pathways
pathways = readRDS( paste0( resource, "/gsea/limma/go_path.rds"))
# change column to make it work with profiler
pathway.p = pathways
colnames ( pathway.p)[1] = c("geneID")
annt = readRDS( paste0( resource, "/gsea/limma/go_path_withWeneName.rds"))
annt$GeneID = NULL
colnames ( annt ) = c ( "gene" , "term")
annt = annt [ , c ( "term" , "gene") ]
pathgsea = readRDS( paste0( resource, "/gsea/limma/go_path_fgsea_genename.rds"))
ens = readRDS( paste0( resource, "annotation/gene.detail.rds"))
goanadb = readRDS( paste0( resource, "/gsea/limma/go_path.rds"))
humangene = read.table( paste0(resource, "annotation/humangene.txt"), sep="\t", header=T, stringsAsFactors = FALSE,na.strings=".", quote = "")
# loading up cancer genes
cosmic = read.csv("https://www.dropbox.com/s/ceo0ol2h9vt01c3/cosmic-cancer_gene_census.v85.csv?dl=1")
tsg = cosmic[ grepl("TSG", cosmic$Role.in.Cancer, ignore.case = T), ]
oncogene = cosmic[ grepl("oncog", cosmic$Role.in.Cancer, ignore.case = T), ]
cosmic$Gene.Symbol = as.character(cosmic$Gene.Symbol)
# load drug database
drug.db = "https://www.dropbox.com/s/1k60wzvstbp0m7w/7.8.2020.xlsx?dl=1"
drug.db <- read.xlsx(drug.db , colNames = TRUE)
drug.db = drug.db[ grepl ( "antagonist|blocker|antibody|antisense|inhibit", drug.db$interaction_types), ]
# main excel output for later
wb <- createWorkbook()
out.dir = "./results.out/"
dir.create(out.dir)
```
```{r}
```