forked from IBM/ehr_section_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
executable file
·332 lines (251 loc) · 11.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.use_cuda = torch.cuda.is_available()
self.method = method
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(1, hidden_size))
def forward(self, hidden, targets, mask=None):
this_batch_size = targets.size(0)
max_len = targets.size(1)
# Create variable to store attention energies
attn_energies = Variable(torch.zeros(this_batch_size, max_len)) # B x S
if torch.cuda.is_available():
attn_energies = attn_energies.cuda()
# For each batch of encoder outputs
for b in range(this_batch_size):
# Calculate energy for each encoder output
for i in range(max_len):
attn_energies[b, i] = self.score(hidden[:, b], targets[b, i].unsqueeze(0))
if mask is not None:
attn_energies = attn_energies + mask
# Normalize energies to weights in range 0 to 1, resize to 1 x B x S
return F.softmax(attn_energies, dim=1).unsqueeze(1)
def score(self, hidden, target):
if self.method == 'dot':
energy = torch.dot(hidden.squeeze(0), target.squeeze(0))
return energy
elif self.method == 'general':
energy = self.attn(target)
return torch.dot(hidden.squeeze(0), energy.squeeze(0))
elif self.method == 'concat':
energy = self.attn(torch.cat((hidden, target), 1))
energy = self.v.dot(energy)
return energy
class BasicRNN(nn.Module):
def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout):
super(BasicRNN, self).__init__()
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
if pretrained_embeddings is not None:
for i in range(vocab_size):
word = lang.index2word[i]
if word in pretrained_embeddings:
self.word_embeds.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word]))
self.word_embeds = nn.Embedding.from_pretrained(self.word_embeds.weight)
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_directions = 1
self.rnn = nn.RNN(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=num_layers,
batch_first=True, bidirectional=False)
self.fc1 = nn.Linear(hidden_size * self.num_directions, 64)
self.fc2 = nn.Linear(64, num_classes)
self.dropout = nn.Dropout(p=dropout)
# figure this out
self.use_cuda = torch.cuda.is_available()
def freeze_layer(self, layer):
fc = self.fc1
if layer == "fc2":
fc = self.fc2
for param in fc.parameters():
print(param)
param.requires_grad = False
def forward(self, inputs, seq_lengths):
batch_size = inputs.size(0)
inputs = self.word_embeds(inputs)
# Set initial states
h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size))
if self.use_cuda:
h0 = h0.cuda()
# Forward propagate RNN
outputs, _ = self.rnn(inputs, h0)
# Decode hidden state of last time step
outputs = F.relu(self.fc1(outputs[:, -1, :]))
outputs = self.dropout(outputs)
outputs = self.fc2(outputs)
return outputs
def to_cuda(self, tensor):
if torch.cuda.is_available():
return tensor.cuda()
else:
return tensor
class AttentionRNN(BasicRNN):
def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout):
super(AttentionRNN, self).__init__(
embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout)
self.attn = Attn('general', hidden_size)
def forward(self, inputs, lang, seq_lengths):
batch_size = inputs.size(0)
embedded = self.word_embeds(inputs)
total_length = embedded.size(1) # get the max sequence length
# Set initial states
h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size))
if torch.cuda.is_available():
h0 = h0.cuda()
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, seq_lengths, batch_first=True)
# Forward propagate RNN
# rnn_outputs, state = self.rnn(embedded, h0)
rnn_outputs, state = self.rnn(packed, h0)
rnn_outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(
rnn_outputs, batch_first=True, total_length=total_length) # unpack (back to padded)
encoder_mask = torch.Tensor(np.array(inputs.cpu().data.numpy() == lang.PAD_token,
dtype=float) * (-1e6)) # [b x seq]
encoder_mask = Variable(self.to_cuda(encoder_mask))
# use attention to compute soft alignment score corresponding
# between each of the hidden_state and the last hidden_state of the RNN
attn_weights = self.attn(state, rnn_outputs, mask=encoder_mask)
new_state = attn_weights.bmm(rnn_outputs) # B x 1 x N
# Decode hidden state of last time step
# outputs = F.relu(self.fc1(rnn_outputs[:, -1, :]))
outputs = F.relu(self.fc1(new_state.squeeze(1)))
outputs = self.dropout(outputs)
outputs = self.fc2(outputs)
return outputs
class LSTM(BasicRNN):
def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout):
super(LSTM, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout)
self.rnn = nn.LSTM(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=num_layers,
batch_first=True, bidirectional=False)
def forward(self, inputs, seq_lengths):
batch_size = inputs.size(0)
inputs = self.word_embeds(inputs)
# Set initial states
h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size))
c0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size))
if torch.cuda.is_available():
h0 = h0.cuda()
c0 = c0.cuda()
# Forward propagate RNN
outputs, _ = self.rnn(inputs, (h0, c0))
# Decode hidden state of last time step
outputs = F.relu(self.fc1(outputs[:, -1, :]))
outputs = self.dropout(outputs)
outputs = self.fc2(outputs)
return outputs
class GRURNN(BasicRNN):
def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout):
super(GRURNN, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout)
self.rnn = nn.GRU(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=num_layers,
batch_first=True, bidirectional=False)
class AttentionGRURNN(AttentionRNN):
def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout):
super(AttentionGRURNN, self).__init__(
embedding_dim, hidden_size, lang, pretrained_embeddings,
num_layers, vocab_size, num_classes, dropout)
self.rnn = nn.GRU(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=num_layers,
batch_first=True, bidirectional=False)
class HighwayNetwork(nn.Module):
def __init__(self, input_size):
super(HighwayNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, input_size, bias=True)
self.fc2 = nn.Linear(input_size, input_size, bias=True)
def forward(self, x):
t = F.sigmoid(self.fc1(x))
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x)
class CNN(nn.Module):
def __init__(self, vocab_size, output_size, embedding_dim, lang,
pretrained_embeddings, dropout=0.1):
super(CNN, self).__init__()
self.use_cuda = torch.cuda.is_available()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.output_size = output_size
self.dropout = dropout
print('vocab_size:', vocab_size)
self.embedding = nn.Embedding(vocab_size, embedding_dim)
if pretrained_embeddings is not None:
for i in range(vocab_size):
word = lang.index2word[i]
if word in pretrained_embeddings:
self.embedding.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word]))
self.embedding = nn.Embedding.from_pretrained(self.embedding.weight)
self.conv1 = None
self.conv2 = None
self.init_conv1_layer()
self.maxpool1 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1))
self.init_conv2_layer()
self.maxpool2 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1))
self.fc1 = None
self.fc2 = None
self.init_fc_layers()
# Highway Networks
self.batch_norm = nn.BatchNorm1d(num_features=128, affine=False)
self.highway1 = HighwayNetwork(input_size=128)
self.highway2 = HighwayNetwork(input_size=128)
def init_conv1_layer(self):
self.conv1 = nn.Sequential(
nn.Conv2d(1, 10, kernel_size=(5, self.embedding_dim), stride=1, padding=2),
nn.ReLU())
def init_conv2_layer(self):
self.conv2 = nn.Sequential(
nn.Conv2d(5, 20, kernel_size=(5, 3), stride=1),
nn.ReLU())
def freeze_conv1_layer(self):
for param in self.conv1.parameters():
param.requires_grad = False
def freeze_conv2_layer(self):
for param in self.conv2.parameters():
param.requires_grad = False
def init_fc_layers(self):
self.fc1 = nn.Sequential(
nn.Linear(4160, 256),
nn.ReLU(),
nn.Dropout(p=0.5)
)
self.fc2 = nn.Linear(256, self.output_size)
def forward(self, input_seqs):
x1 = self.embedding(input_seqs)
x2 = x1.unsqueeze(1)
x3 = self.conv1(x2)
x4 = x3.transpose(1, 3)
x5 = self.maxpool1(x4)
x6 = self.conv2(x5)
x7 = x6.transpose(1, 3)
x8 = self.maxpool2(x7)
x9 = x8.view(x8.size(0), -1)
x10 = self.fc1(x9)
x = self.fc2(x10)
# print('x1:', x1.size())
# print('x2:', x2.size())
# print('x3:', x3.size())
# print('x4:', x4.size())
# print('x5:', x5.size())
# print('x6:', x6.size())
# print('x7:', x7.size())
# print('x8:', x8.size())
# print('x9:', x9.size())
# print('x10:', x10.size())
# x = self.batch_norm(x)
# x = self.highway1(x)
# x = self.highway2(x)
return x