-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore_framework.py
101 lines (82 loc) · 3.67 KB
/
core_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import random
def initialize_network(num_neurons, connectivity=0.1, weight_scale=1.0):
network = np.random.rand(num_neurons, num_neurons) * weight_scale
mask = np.random.rand(num_neurons, num_neurons) < connectivity
return network * mask
def create_new_neurons(num_neurons):
return np.random.rand(num_neurons, num_neurons)
def integrate_neurons(network, new_neurons):
size = len(network)
new_size = size + len(new_neurons)
new_network = np.zeros((new_size, new_size))
new_network[:size, :size] = network
new_network[size:, size:] = new_neurons
new_network[:size, size:] = np.random.rand(size, len(new_neurons))
new_network[size:, :size] = np.random.rand(len(new_neurons), size)
return new_network
def apply_synaptic_plasticity(network, alpha=0.02, beta=0.02):
pre_synaptic_activity = np.random.rand(len(network))
post_synaptic_activity = np.random.rand(len(network))
for i in range(len(network)):
for j in range(len(network)):
if pre_synaptic_activity[i] > 0.5 and post_synaptic_activity[j] > 0.5:
network[i, j] += alpha * (1 - network[i, j])
else:
network[i, j] -= beta * network[i, j]
return np.clip(network, 0, 1)
class RLAgent:
def __init__(self):
self.threshold = 0.7
self.num_neurons_to_add = 5
self.reward_history = []
def get_reward(self, network):
return np.mean(network)
def update_policy(self, network, reward):
self.reward_history.append(reward)
avg_reward = np.mean(self.reward_history[-100:])
if reward > self.threshold:
self.threshold += 0.01
else:
self.threshold -= 0.01
if len(self.reward_history) > 1000:
self.reward_history = self.reward_history[-1000:]
class MultimodalSNN:
def __init__(self, initial_neurons):
self.network = initialize_network(initial_neurons)
self.rl_agent = RLAgent()
self.nlu_module = None
self.tts_module = None
self.servo_control_module = None
def set_modules(self, nlu_module, tts_module, servo_control_module):
self.nlu_module = nlu_module
self.tts_module = tts_module
self.servo_control_module = servo_control_module
def process_nlu_input(self, text):
return self.nlu_module.process(text)
def process_tts_input(self, text):
return self.tts_module.convert(text)
def process_servo_input(self, commands):
return self.servo_control_module.execute(commands)
def evaluate_performance(self):
return self.rl_agent.get_reward(self.network)
def add_neurons(self, num_neurons):
new_neurons = create_new_neurons(num_neurons)
self.network = integrate_neurons(self.network, new_neurons)
self.network = self.update_synaptic_weights()
def update_synaptic_weights(self):
self.network = apply_synaptic_plasticity(self.network)
def train(self, iterations):
for _ in range(iterations):
reward = self.evaluate_performance()
if reward < self.rl_agent.threshold:
self.add_neurons(self.rl_agent.num_neurons_to_add)
self.rl_agent.update_policy(self.network, reward)
def handle_input(self, input_type, data, **kwargs):
if input_type == 'nlu':
processed_data = self.process_nlu_input(data, **kwargs)
elif input_type == 'tts':
processed_data = self.process_tts_input(data, **kwargs)
elif input_type == 'servo':
processed_data = self.process_servo_input(data)
return f"Processed data: {processed_data}"