-
Notifications
You must be signed in to change notification settings - Fork 4
/
westfall_adjust.py
264 lines (216 loc) · 9.97 KB
/
westfall_adjust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Version in kyotil used in correlates analysis:
https://github.com/youyifong/kyotil/blob/master/R/P.adj.perm.R
"""
###############################################################################
### Compute p-values on permuted data to adjust for family-wise error rate (FWER) or false discovery rate(FDR)
### Created by Sue Li, 10-17-2014; modified by Paul T Edlefsen 11-14-2014
################################################################################
### Calculate FWER- and FDR- adjusted p-values (p.FWER,p.FDR,p.unadj, num.null.permutations.by.variable ), returned in sorted order (ascending) by p.
### The return value is a three-column matrix with rownames matching the names of the given value of p (but in a different order).
### p: the vector of p-values estimated from the original data
### p.b: the matrix of p-values from permuted data set; rows are different permuations.
### num.null.permutations.by.variable: count of non-NA values in the permuted data.
### Precondition: ncol( p.b ) == length( p ).
##################################################
p.adj.usingPValuesOfPermutedData <- function ( p.unadj, p.perms )
{
stopifnot( ncol( p.perms ) == length( p.unadj ) );
# If "p" has no names, give it names either from colnames( p.perms ) or as 1:length( p.unadj ).
if( is.null( names( p.unadj ) ) ) {
if( is.null( colnames( p.perms ) ) ) {
names( p.unadj ) <- 1:length( p.unadj );
} else {
names( p.unadj ) <- colnames( p.perms );
}
}
# We must sort the p.unadj values first.
mode( p.unadj ) <- "numeric";
which.are.NA <- which( is.na( p.unadj ) );
p.unadj.order <- order( p.unadj ); # Note this puts NAs last/"largest".
# We must maintain the same ordering between p.unadj and the columns of p.perms.
p.unadj <- p.unadj[ p.unadj.order ];
p.perms <- p.perms[ , p.unadj.order, drop = FALSE ];
if( any( is.na( p.perms ) ) ) {
num.null.permutations.by.variable <-
apply( p.perms, 2, function ( .col ) { sum( !is.na( .col ) ) } );
} else {
num.null.permutations.by.variable <- rep( nrow( p.perms ), ncol( p.perms ) );
}
# FWER (family-wide error rate) adjusted p-values.
p.FWER <- sapply( 1:length( p.unadj ), function ( j ) { sum( apply( p.perms, 1, base:::min ) <= p.unadj[ j ] ) / num.null.permutations.by.variable[ j ] } );
# calculate p-values adjusted for FDR
p.FDR <- rep( 0, length( p.unadj ) );
# First, calculate empirical estimates of E( R0/R | R>0 ), where R0 is number of rejections at a level alpha under the null and R is rejections at level alpha in the observed data.
p.FDR <- sapply( 1:length( p.unadj ), function ( j ) {
## Expected number of rejections at level p.unadj[ j ] under null hypothesis (false rejections R0)
ER0 <- sum( apply( p.perms <= p.unadj[ j ], 1, sum, na.rm = T ) ) / num.null.permutations.by.variable[ j ];
## Number of rejections at level p.unadj[ j ] observed in the actual p-values; since they're sorted, this is just j.
R <- j;
## E( R0/R | R>0 ) (Note that here by definition p.unadj[ j ] is one of the observed values, so R > 0!)
return( base:::min( ER0 / R, 1 ) );
} );
## Actually, FDR( p.unadj[ j ] ) is min_{j:( p.unadj[ j ] >= p.unadj[ i ] )} { FDR..(p.unadj[ j ]) }, so walk down from top.unadj and replace them.
for( j in ( length( p.unadj ) - 1 ):1 )
{
p.FDR[ j ] <- base:::min( p.FDR[ j ], p.FDR[ j+1 ] );
}
.rv <- cbind( p.FWER, p.FDR, p.unadj, num.null.permutations.by.variable );
rownames( .rv ) <- names( p.unadj );
return( .rv );
} # p.adj.usingPValuesOfPermutedData (..)
##################################################
### Calculate the adjusted p-values to control familywise error rate(FWER)and false discovery rate(FDR)
### using the resampleing based methods.
###
### Input:
### p.unadj: an 1xm vector of unjected p-values calculated from the original data set
### p.perms: an Bxm matrix of p-values calculated from B sets of data sets that are resampled from the orginal data
### set under null hypothese
### alpha: any unjected p-values less than alpha will not be calculated for adjusted p-values and their adjusted
### p-values are NA.
### Output:
### p.FWER: an 1xm vector of adjusted p-values to control FWER
### p.FDR: an 1xm vector of adjusted p-values to control FDR
###
### FWER adjusted p-values, P.FWER, are calculated based on the resampling step down procedure (Westfall and Young 1993).
### FDR adjusted p-values, p.FDR, are calculated based on the estimations of E(R0)/E(R) where E(R0) is the
### expectation of the number of rejected null hypotheses (R0) that is estimated from the resampled data sets
### under the null hypotheses; E(R) is the expection of the number of all rejected hypotheses (R) that is estimated
### by the maximum of R0 and the number of rejections from the observed data set.
### According to Jensen inequality and R0 is a positive linear function of R,
### FDR=E(R0/R) <= E(R0)/E(R). Therefore, our estimation for p.FDR would control below the FDR level.
### Ref:
### Westfall and Young 1993 "Resampling-based multiple testing: Examples and methods for p-value
### adjustment", John Wiley & Sons.
### Westfall and Troendle "Multiple testing wirh minimum aasumptions", Biom J. 2008
### Storey and Tibshrani "Statistical siggnificance for genomewide studies", PNAS 2003
###
### Created by Sue Li, 4/2015
##################################################
p.adj <- function(p.unadj,p.perms,alpha=0.05)
{
stopifnot( ncol( p.perms ) == length( p.unadj ) );
# If "p.unadj" has no names, give it names either from colnames( p.perms ) or as 1:length( p.unadj ).
if( is.null( names( p.unadj ) ) ) {
if( is.null( colnames( p.perms ) ) ) {
names( p.unadj ) <- 1:length( p.unadj );
} else {
names( p.unadj ) <- colnames( p.perms );
}
}
B = dim(p.perms)[1]
m = length(p.unadj)
### order p from the smallest to the largest
# We must sort the p.unadj values first.
mode( p.unadj ) <- "numeric";
which.are.NA <- which( is.na( p.unadj ) );
p.unadj.order <- order( p.unadj ); # Note this puts NAs last/"largest".
# We must maintain the same ordering between p.unadj and the columns of p.perms.
p.unadj <- p.unadj[ p.unadj.order ];
p.perms <- p.perms[ , p.unadj.order, drop = FALSE ];
len = sum(round(p.unadj,2)<=alpha)
# calculate FWER-adjusted p-values
p.FWER=rep(NA,length(p.unadj))
for (j in 1:len)
{
p.FWER[j] = sum((apply(p.perms[,j:m], 1, min, na.rm = T)<=p.unadj[j]))/B
}
## enforce monotonicity using successive maximization
p.FWER[1:len] = cummax(p.FWER[1:len])
# calculate FDR-adjusted p-values
p.FDR=rep(NA,length(p.unadj))
for (j in 1:len)
{
## given each p-value
## estimate the expectation of # of rejections under null hypotheses
R0_by_resample = apply(p.perms<=p.unadj[j], 1, sum, na.rm = T )
ER0 = sum(R0_by_resample)/B
## calculate # of rejections observed in the data
R.ob = j #sum(p.unadj<=p.unadj[j])
## R is max(R0,R)
R = sum(pmax(R0_by_resample,R.ob))/B
## FDR=E(R0/R|R>0) FDR=0 if R=0
p.FDR[j]=min(ifelse(R>0,ER0/R,0),1)
}
o1=order(p.unadj[1:len],decreasing=TRUE)
ro=order(o1)
p.FDR[1:len]=pmin(1,cummin(p.FDR[1:len][o1]))[ro]
## the results are in an ascending order of the unadjusted p-values
.rv <- cbind(p.unadj,p.FWER,p.FDR)
rownames(.rv) <- names(p.unadj)
return(.rv)
}
"""Test code from Sue Li"""
library("doBy")
p_value <- function(snp,data)
{
data$group = as.factor(data[[snp]])
# use case-only (Jame Dai's paper) to test interaction between gene and treatment and calculate the VE by gene
out <- glm(treat ~ group,family=binomial,data=data)
# test the significance of interaction of treatment and gene group
nlev <- length(unique(data$group[!is.na(data$group)]))
p_d <- round(summary(out)$coef[,4],2)
contr <- diag(nlev)[2:nlev,]
p <- esticon(out,contr,level=0.95,joint.test=TRUE)
p <- as.numeric(p[3])
return(p)
}
load("snp.169match.data")
snp.dat=snp.169match.data
snp <- names(snp.dat)[3:30]
p.da=NULL
for (s in snp)
{
p.da=c(p.da,p_value(s,snp.dat))
}
p.BH=p.adjust(p,method="BH")
# p.fdr=p.adjust(p,method="fdr")
B=10000
len=length(snp)
p.b=matrix(0,B,len)
dat=snp.dat
for (i in 1:B)
{
dat$treat = sample(snp.dat$treat)
for (j in 1:len)
{
p.b[i,j]=p_value(snp[j],dat)
}
}
save(p.b,file="FcRsnps_p_169match.b")
"""From Bing 3-23-2023"""
import numpy as np
from scipy.stats import norm
def westfall_young(p_values, num_permutations=10000):
"""
Westfall and Young (1993) permutation-based multiplicity adjustment algorithm.
Parameters
----------
p_values : array_like
Array of p-values to be adjusted.
num_permutations : int, optional
Number of permutations to perform. Default is 10000.
Returns
-------
adjusted_p_values : ndarray
Array of adjusted p-values.
"""
p_values = np.asarray(p_values)
num_tests = len(p_values)
# Initialize array to store adjusted p-values
adjusted_p_values = np.zeros(num_tests)
# Compute the maximum statistic for the observed data
max_statistic = -norm.ppf(p_values).max()
# Initialize counter for number of times the maximum statistic is exceeded
num_exceeds = np.zeros(num_tests)
# Perform permutations
for i in range(num_permutations):
# Generate random normal deviates for each test
random_deviates = norm.rvs(size=num_tests)
# Compute the maximum statistic for this permutation
max_statistic_permutation = np.abs(random_deviates).max()
# Update the counter for number of times the maximum statistic is exceeded
num_exceeds += (max_statistic_permutation >= max_statistic)
# Compute adjusted p-values
adjusted_p_values = (num_exceeds + 1) / (num_permutations + 1)
return adjusted_p_values