-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathregularized_logistic.py
48 lines (42 loc) · 1.82 KB
/
regularized_logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import pandas as pd
import statsmodels.api as sm
from sklearn.model_selection import StratifiedKFold, LeaveOneOut
# comment
def roc_auc_np(y_true, y_prob):
y_true = np.asarray(y_true)
y_true = y_true[np.argsort(y_prob)]
nfalse = 0
auc = 0
n = len(y_true)
nfalse = np.cumsum(1 - y_true)
auc = np.cumsum(y_true * nfalse)
auc = auc[-1] / (nfalse[-1] * (n - nfalse[-1]))
return auc
def cv_regularized_logistic_regression(X, y, alphas, n_folds=10, **fit_kwargs):
cv = StratifiedKFold(n_splits=n_folds, shuffle=True)
cv_iter = cv.split(X=X, y=y)
n_alphas = len(alphas)
auc = np.nan * np.zeros((n_alphas, n_folds))
coefs = np.zeros((n_alphas, X.shape[1]))
for outi, (train_ind, test_ind) in enumerate(cv_iter):
for i, alpha in enumerate(alphas):
Xtrain, Xtest = X.iloc[train_ind], X.iloc[test_ind]
ytrain, ytest = y.iloc[train_ind], y.iloc[test_ind]
results = sm.GLM(endog=ytrain, exog=Xtrain, family=sm.families.Binomial()).fit_regularized(alpha=alpha, **fit_kwargs)
prob = results.predict(Xtest)
auc[i, outi] = roc_auc_np(ytest, prob)
coefs[i, :] = results.params.values
mini = np.argmax(np.mean(auc, axis=1))
alpha = alphas[mini]
results = sm.GLM(endog=y, exog=X, family=sm.families.Binomial()).fit_regularized(alpha=alpha, **fit_kwargs)
prob = results.predict(X)
refit_auc = roc_auc_np(y, prob)
out = dict(auc_folds=pd.Series(auc[mini, :], index=range(n_folds)),
aucs=pd.DataFrame(aucs, index=alphas, columns=range(n_folds)),
cv_auc=np.mean(auc[mini, :]),
refit_auc=refit_auc,
alpha=alpha,
refit=results,
coefs=pd.DataFrame(coefs, index=alphas, columns=X.columns))
return out