-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdop.py
26 lines (22 loc) · 939 Bytes
/
dop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import os
import cv2
import numpy as np
import pickle
items = {}
for path in os.listdir('/home/afentev/Pictures/datasets/dogs'):
for file in os.listdir(os.path.join('/home/afentev/Pictures/datasets/dogs', path)):
file1 = os.path.join('/home/afentev/Pictures/datasets/dogs', path + '/' + file)
img = np.array(cv2.cvtColor(cv2.imread(file1), cv2.COLOR_BGR2RGB))
r = round(img[:, :, 0].mean())
g = round(img[:, :, 1].mean())
b = round(img[:, :, 2].mean())
items[file1] = (r, g, b,)
for file in os.listdir('/home/afentev/Pictures/datasets/cats'):
file1 = os.path.join('/home/afentev/Pictures/datasets/cats', file)
img = np.array(cv2.cvtColor(cv2.imread(file1), cv2.COLOR_BGR2RGB))
r = round(img[:, :, 0].mean())
g = round(img[:, :, 1].mean())
b = round(img[:, :, 2].mean())
items[file1] = (r, g, b,)
with open('data.pickle', 'wb') as f:
pickle.dump(items, f)