forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
executable file
·160 lines (134 loc) · 5.91 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Optional, Tuple
import os
import sys
import torch
import fire
import time
import json
import numpy as np
import pandas as pd
from tqdm import trange
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model.eval()
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def run_csv(
generator: LLaMA,
csv_path: str,
save_activations_path: str,
max_batch_size: int,
temperature: float,
top_p: float,
):
prompt_df = pd.read_csv(csv_path, index_col=0)
# create save directories
save_dir = Path(save_activations_path)
plus_dir = save_dir / "plus"
minus_dir = save_dir / "minus"
plus_dir.mkdir(parents=True, exist_ok=True)
minus_dir.mkdir(parents=True, exist_ok=True)
bsz = max_batch_size // 2
for i in trange(0, len(prompt_df), bsz):
idx = prompt_df.index[i : i + bsz]
plus_prompts, minus_prompts = [
prompt_df[col].loc[idx].tolist() for col in ["plus_prompt", "minus_prompt"]
]
_, activations = generator.generate(
plus_prompts + minus_prompts,
max_gen_len=1,
temperature=temperature,
top_p=top_p,
return_activations=True,
)
plus_activations, minus_activations = np.split(activations, 2, axis=0)
for j, (plus, minus) in enumerate(zip(plus_activations, minus_activations)):
np.save(plus_dir / f"{idx[j]}", plus)
np.save(minus_dir / f"{idx[j]}", minus)
def main(
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.8,
top_p: float = 0.95,
max_seq_len: int = 512,
max_batch_size: int = 32,
save_activations_path: Optional[str] = None,
prompt_csv: Optional[str] = None,
):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
if prompt_csv is not None:
run_csv(
generator,
prompt_csv,
save_activations_path,
max_batch_size,
temperature,
top_p,
)
return
prompts = [
# the first question from BoolQ
"Persian (/ˈpɜːrʒən, -ʃən/), also known by its endonym Farsi (فارسی fārsi (fɒːɾˈsiː) ( listen)), is one of the Western Iranian languages within the Indo-Iranian branch of the Indo-European language family. It is primarily spoken in Iran, Afghanistan (officially known as Dari since 1958), and Tajikistan (officially known as Tajiki since the Soviet era), and some other regions which historically were Persianate societies and considered part of Greater Iran. It is written in the Persian alphabet, a modified variant of the Arabic script, which itself evolved from the Aramaic alphabet.\n\nAfter reading this passage, I have a question: do iran and afghanistan speak the same language?\n\nTrue or False: True",
"Persian (/ˈpɜːrʒən, -ʃən/), also known by its endonym Farsi (فارسی fārsi (fɒːɾˈsiː) ( listen)), is one of the Western Iranian languages within the Indo-Iranian branch of the Indo-European language family. It is primarily spoken in Iran, Afghanistan (officially known as Dari since 1958), and Tajikistan (officially known as Tajiki since the Soviet era), and some other regions which historically were Persianate societies and considered part of Greater Iran. It is written in the Persian alphabet, a modified variant of the Arabic script, which itself evolved from the Aramaic alphabet.\n\nAfter reading this passage, I have a question: do iran and afghanistan speak the same language?\n\nTrue or False: False",
]
results = generator.generate(
prompts,
max_gen_len=256,
temperature=temperature,
top_p=top_p,
return_activations=save_activations_path is not None,
)
if save_activations_path is not None:
results, activations = results
np.save(save_activations_path, activations)
print(f"Saved activations to {save_activations_path}")
for result in results:
print(result)
print("\n==================================\n")
if __name__ == "__main__":
fire.Fire(main)