-
Notifications
You must be signed in to change notification settings - Fork 640
/
pytorch_nn.py
95 lines (81 loc) · 3.24 KB
/
pytorch_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
def simple_gradient():
# print the gradient of 2x^2 + 5x
x = Variable(torch.ones(2, 2) * 2, requires_grad=True)
z = 2 * (x * x) + 5 * x
# run the backpropagation
z.backward(torch.ones(2, 2))
print(x.grad)
def create_nn(batch_size=200, learning_rate=0.01, epochs=10,
log_interval=10):
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, 10)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x)
net = Net()
print(net)
# create a stochastic gradient descent optimizer
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
# create a loss function
criterion = nn.NLLLoss()
# run the main training loop
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
# resize data from (batch_size, 1, 28, 28) to (batch_size, 28*28)
data = data.view(-1, 28*28)
optimizer.zero_grad()
net_out = net(data)
loss = criterion(net_out, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
# run a test loop
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True), Variable(target)
data = data.view(-1, 28 * 28)
net_out = net(data)
# sum up batch loss
test_loss += criterion(net_out, target).data[0]
pred = net_out.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
if __name__ == "__main__":
run_opt = 2
if run_opt == 1:
simple_gradient()
elif run_opt == 2:
create_nn()