forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
census_main.py
112 lines (91 loc) · 3.7 KB
/
census_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train DNN on census income dataset."""
import os
from absl import app as absl_app
from absl import flags
import tensorflow as tf
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.wide_deep import census_dataset
from official.wide_deep import wide_deep_run_loop
def define_census_flags():
wide_deep_run_loop.define_wide_deep_flags()
flags.adopt_module_key_flags(wide_deep_run_loop)
flags_core.set_defaults(data_dir='/tmp/census_data',
model_dir='/tmp/census_model',
train_epochs=40,
epochs_between_evals=2,
batch_size=40)
def build_estimator(model_dir, model_type, model_column_fn):
"""Build an estimator appropriate for the given model type."""
wide_columns, deep_columns = model_column_fn()
hidden_units = [100, 75, 50, 25]
# Create a tf.estimator.RunConfig to ensure the model is run on CPU, which
# trains faster than GPU for this model.
run_config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(device_count={'GPU': 0}))
if model_type == 'wide':
return tf.estimator.LinearClassifier(
model_dir=model_dir,
feature_columns=wide_columns,
config=run_config)
elif model_type == 'deep':
return tf.estimator.DNNClassifier(
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=hidden_units,
config=run_config)
else:
return tf.estimator.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=hidden_units,
config=run_config)
def run_census(flags_obj):
"""Construct all necessary functions and call run_loop.
Args:
flags_obj: Object containing user specified flags.
"""
if flags_obj.download_if_missing:
census_dataset.download(flags_obj.data_dir)
train_file = os.path.join(flags_obj.data_dir, census_dataset.TRAINING_FILE)
test_file = os.path.join(flags_obj.data_dir, census_dataset.EVAL_FILE)
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
def train_input_fn():
return census_dataset.input_fn(
train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size)
def eval_input_fn():
return census_dataset.input_fn(test_file, 1, False, flags_obj.batch_size)
tensors_to_log = {
'average_loss': '{loss_prefix}head/truediv',
'loss': '{loss_prefix}head/weighted_loss/Sum'
}
wide_deep_run_loop.run_loop(
name="Census Income", train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
model_column_fn=census_dataset.build_model_columns,
build_estimator_fn=build_estimator,
flags_obj=flags_obj,
tensors_to_log=tensors_to_log,
early_stop=True)
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_census(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_census_flags()
absl_app.run(main)