-
Notifications
You must be signed in to change notification settings - Fork 130
/
utils.py
79 lines (75 loc) · 2.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import numpy as np
def get_topic_diversity(beta, topk):
num_topics = beta.shape[0]
list_w = np.zeros((num_topics, topk))
for k in range(num_topics):
idx = beta[k,:].argsort()[-topk:][::-1]
list_w[k,:] = idx
n_unique = len(np.unique(list_w))
TD = n_unique / (topk * num_topics)
print('Topic diveristy is: {}'.format(TD))
def get_document_frequency(data, wi, wj=None):
if wj is None:
D_wi = 0
for l in range(len(data)):
doc = data[l].squeeze(0)
if len(doc) == 1:
continue
else:
doc = doc.squeeze()
if wi in doc:
D_wi += 1
return D_wi
D_wj = 0
D_wi_wj = 0
for l in range(len(data)):
doc = data[l].squeeze(0)
if len(doc) == 1:
doc = [doc.squeeze()]
else:
doc = doc.squeeze()
if wj in doc:
D_wj += 1
if wi in doc:
D_wi_wj += 1
return D_wj, D_wi_wj
def get_topic_coherence(beta, data, vocab):
D = len(data) ## number of docs...data is list of documents
print('D: ', D)
TC = []
num_topics = len(beta)
for k in range(num_topics):
print('k: {}/{}'.format(k, num_topics))
top_10 = list(beta[k].argsort()[-11:][::-1])
top_words = [vocab[a] for a in top_10]
TC_k = 0
counter = 0
for i, word in enumerate(top_10):
# get D(w_i)
D_wi = get_document_frequency(data, word)
j = i + 1
tmp = 0
while j < len(top_10) and j > i:
# get D(w_j) and D(w_i, w_j)
D_wj, D_wi_wj = get_document_frequency(data, word, top_10[j])
# get f(w_i, w_j)
if D_wi_wj == 0:
f_wi_wj = -1
else:
f_wi_wj = -1 + ( np.log(D_wi) + np.log(D_wj) - 2.0 * np.log(D) ) / ( np.log(D_wi_wj) - np.log(D) )
# update tmp:
tmp += f_wi_wj
j += 1
counter += 1
# update TC_k
TC_k += tmp
TC.append(TC_k)
print('counter: ', counter)
print('num topics: ', len(TC))
TC = np.mean(TC) / counter
print('Topic coherence is: {}'.format(TC))
def nearest_neighbors(model, word):
nearest_neighbors = model.wv.most_similar(word, topn=20)
nearest_neighbors = [comp[0] for comp in nearest_neighbors]
return nearest_neighbors