-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathsolution.py
70 lines (54 loc) · 2.06 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Node:
def __init__(self, info):
self.info = info
self.left = None
self.right = None
self.level = None
def __str__(self):
return str(self.info)
class BinarySearchTree:
def __init__(self):
self.root = None
def create(self, val):
if self.root == None:
self.root = Node(val)
else:
current = self.root
while True:
if val < current.info:
if current.left:
current = current.left
else:
current.left = Node(val)
break
elif val > current.info:
if current.right:
current = current.right
else:
current.right = Node(val)
break
else:
break
# Enter your code here. Read input from STDIN. Print output to STDOUT
'''
class Node:
def __init__(self,info):
self.info = info
self.left = None
self.right = None
// this is a node of the tree , which contains info as data, left , right
'''
# This is a Function to get the Maximum Height of A Binary Tree [0 - Based Indexing Height]
# Main Aim : To get the maximum of left and right subtree height at every node.
# If node is NULL or Leaf node simply return -1
# Note: If 1-Based Indexing Height Asked also called depth, We can return 0 at the Leaf Node or where node == NULL.
def height(root):
#initializing Height of left and right subtree of current node
left_height,reight_height = 0,0
if root is not None:
left_height = height(root.left) #calling for Height for left child
reight_height = height(root.right) #calling for Height for Right child
return 1+max(left_height,reight_height)
# Return maximum of the Two at each node
return -1
# Returning -1 when no futher child