-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathsolution.java
78 lines (70 loc) · 3.84 KB
/
solution.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
class Result {
static int nonDivisibleSubset(int k, int[] S) {
// In maths. if (a + b) % k = 0 => then ((a % k) + (b % k)) % k = 0
// Example: (5 + 7) % 6 = 0 => then (5 % 6) + (7 % 6) > (5 + 1) % 6 = 0
// Solution: Find remainder of each element in the array.
// then, choose max element from the pair which together can able to be divided by k. If one pair is "i" then other pair will be "k-i"
// For example: S = {2, 3, 7, 8, 12} and k = 5.
// Now we have 3 numbers whose remainder 2 => ( 2 % 5 = 2, 7 % 5 = 2, 12 % 5 = 2)
// and also we have 2 numbers whose remainder 3 => (3, 8)
// Right now we have to choose one of the element from that pair (3, 2) (where 3 > numbers 2, 7, 12 && 2 > numbers 3, 8)
// Because of the problem, we will choose the max which is 3.
int[] remainderArr = new int[k];
// find remainder of each element in the array S
// For example k = 4, S = {0, 5, 7, 10} => remainderArr will be: {0, 1, 1, 1}
// where each index represents remainder. For example remainderArr[2] = 1 means
// that there is 1 number whose remainder 2 after divided 4. (10 % 4 = 2)
for (Integer each : S) {
remainderArr[each % k]++;
}
// After getting each remainder, index 0 (actually remainder 0) is a special case
// Think of it like this:
// 1. There will be no element such as k - 0 = k. (remainderArr[k] will give us ArrayIndexOutOfBoundsException)
// 2. If there are 2 elements in remainderArr[0], we have to choose only 1, otherwise, we can sum up 2 or more
// zeros, then non-sub divisible set could be divisible by k.
int zeroRemainder = remainderArr[0];
// That's why, our initial subset size is 1, if there is a zero remainder,
// otherwise it is 0
int maxNumberOfDivisibleSet = zeroRemainder > 0 ? 1 : 0;
// Another thing is that pair which is itself. That's means, let's say k = 4, therefore pair of remainderArr[2]
// will also be remainderArr[2]( i = 2 then, k - i = 2). Thus, we have to choose only 1 element from that pair (or we should increment
// the result number just 1)
// if condition "i != k - i" will handle this situation.
for (int i = 1; i <= (k / 2); i++) {
if (i != k - i)
maxNumberOfDivisibleSet += Math.max(remainderArr[i], remainderArr[k - i]);
else
maxNumberOfDivisibleSet ++;
}
return maxNumberOfDivisibleSet;
}
}
/* Driver Code */
public class Solution {
public static void main(String[] args) throws IOException {
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
String[] firstMultipleInput = bufferedReader.readLine().replaceAll("\\s+$", "").split(" ");
int n = Integer.parseInt(firstMultipleInput[0]);
int k = Integer.parseInt(firstMultipleInput[1]);
int []s = Stream.of(bufferedReader.readLine().replaceAll("\\s+$", "").split(" "))
.mapToInt(Integer::parseInt)
.toArray();
int result = Result.nonDivisibleSubset(k, s);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
bufferedReader.close();
bufferedWriter.close();
}
}