Skip to content

Latest commit

 

History

History
261 lines (149 loc) · 8.25 KB

cs231n-lecture-8-localization-and-detection.md

File metadata and controls

261 lines (149 loc) · 8.25 KB
<iframe width="560" height="315" src="https://youtu.be/_GfPYLNQank" frameborder="0" allowfullscreen></iframe>

Localization and Detection

동영상, 강의자료

기존 VGG, GoogLeNet, ResNet등이 좋은 성과를 보이고 있으나 이들은 주로 Classification용이다.

새로운 연구 분야 중에 Localization and Detection 이 있다. (일부 Classification Network도 가능)

Localization and Detection 의 용어 적인 차이는 Localization 는 이미지에서 하나의 물체의 위치를 탐지 하는것, Detection 는 여러 물체의 위치를 탐지 하는것

Classification Localization
Input Image Image
Output Class label Box in the image (x, y, w, h)
Evaluation metric Accuracy Intersection over Union
[참고] 활용가능한 데이터셋

1 . Localization

1.1 Localization as Regression

간단하면서도 성능이 좋다.

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)
Step 2: Attach new fully-connected “regression head” to the network
  • Conv layer 이후 : Overfeat, VGG
  • Last FC layer 이후 : DeepPose, R-CNN
Step 3: Train the regression head only with SGD and L2 loss
Step 4: At test time use both heads

1.2 Sliding Window (Overfeat)

  • Run classification + regression network at multiple locations on a high resolution image

  • Convert fully-connected layers into convolutional layers for efficient computation

  • Combine classifier and regressor predictions across all scales for final prediction

OverfeatL Alexnet기반, Winner of ILSVRC 2013 localization challenge

특징 : Efficient sliding window by converting fully connected layers into convolutions (Fully connected Layer를 Conv. Layer로 바꾸어서 작업 )

1.3 Localization 네트워크 성능

2 . (Object) Detection

Detection as Regression이 가능한가? : 이미지에 여러(variabl) 객체가 있으면 Output도 다양해(1개의 위치 정보, n개의 위치정보) 지므로 어려움

  • 해결책?? : Detection as Classification (0 , 1로 Output이 고정됨)

2.1 Detection as Classification #1

  • Problem: Need to test many positions and scales
  • Solution: If your classifier is fast enough, just do it

A. Histogram of Oriented Gradients

Dalal and Triggs, “Histograms of Oriented Gradients for Human Detection”, CVPR 2005

B. Deformable Parts Model (DPM)

Felzenszwalb et al, “Object Detection with Discriminatively

2.2 Detection as Classification #2

  • Problem: Need to test many positions and scales,
  • and use a computationally demanding classifier (CNN)
  • Solution: Only look at a tiny subset of possible positions (CNN은 Cost가 높기 때문에 일부영역만 선택적으로 탐색)
Region Proposal
  • Find “blobby” image regions that are likely to contain objects
  • “Class-agnostic” object detector
  • Look for “blob-like” regions

정확도가 높지 않고, 분류 기능이 없는 Object Detector를 이용하여서 물체가 있을듯한 위치 미리 찾아서 이후 작업 수행

A. Region Proposal : Selective Search

  • 픽셀들간의 유사성을 중심으로 비슷한 색깔, 질감을 중심으로 영역 선정

  • Bottom-up segmentation, merging regions at multiple scales

[참고] 기타 Detection Proposals

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015

B. Region Proposal : R-CNN

  • CNN과 Region Proposal을 합친 아이디어 .

단점

  • Slow at test-time: need to run full forward pass of CNN for each region proposal
  • SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
  • Complex multistage training pipeline
Step 1. Train (or download) a classification model for ImageNet (AlexNet)

Step 2. Fine-tune model for detection
  • Instead of 1000 ImageNet classes, want 20 object classes + background
  • Throw away final fully-connected layer, reinitialize from scratch
  • Keep training model using positive / negative regions from detection images

Step 3. Extract features
  • Extract region proposals for all images
  • For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
  • Have a big hard drive: features are ~200GB for PASCAL dataset!

Step 4. Train one binary SVM per class to classify region features

Step 5. bbox regression

For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for “slightly wrong” proposals

C. Region Proposal : Fast R-CNN

R-CNN의 속도 단점 해결 : Extract Region과 CNN의 위치 바꿈 (cf. 슬라이딩 위도우의 아이디어 유사) Region of Interest pooling 이 중심 아이디어

CS231n Lecture 8의 Fast R-CNN부분

Problem #1 Slow at test-time due to independent forward passes of the CNN #2 Post-hoc training: CNN not updated in response to final classifiers and regressors

#3: Complex training pipeline
Solution Share computation of convolutional layers between proposals for an image Just train the whole system end-to-end all at once!

|

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

D. Region Proposal : Faster R-CNN

  • Fast R-CNN문제 : Test-time speeds don’t include region proposals
  • Faster R-CNN 해결책 : Just make the CNN do region proposals too!
가. 기존과 다른점

  • Insert a Region Proposal Network (RPN) after the last convolutional layer

  • RPN trained to produce region proposals directly; no need for external region proposals!

  • After RPN, use RoI Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

나. Region Proposal Network (RPN)

Slide a small window on the feature map

Build a small network for:

  • classifying object or not-object, and
  • regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window

Use N anchor boxes at each location

Anchors are translation invariant: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

다. Training

In the paper: Ugly pipeline

  • Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
  • More complex than it has to be

Since publication: Joint training! One network, four losses

  • RPN classification (anchor good / bad)
  • RPN regression (anchor -> proposal)
  • Fast R-CNN classification (over classes)
  • Fast R-CNN regression (proposal -> box)

2016년 현재 최고의 성능은 ResNet 101 + Faster R-CNN + some extras 합친것

  • He et. al, “Deep Residual Learning for Image Recognition”, arXiv 2015

E. Region Proposal : YOLO

정확도는 R-CNN보다 느리나, 속도가 빠름(Real-time)

Divide image into S x S grid

Within each grid cell predict:

  • B Boxes: 4 coordinates + confidence
  • Class scores: C numbers

Regression from image to 7 x 7 x (5 * B + C) tensor

Direct prediction using a CNN