-
Notifications
You must be signed in to change notification settings - Fork 0
/
application.py
46 lines (36 loc) · 1.39 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask, request, render_template
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from src.pipeline.predict_pipeline import CustomData, PredictPipeline
application = Flask(__name__)
app = application
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predictions', methods=['GET', 'POST'])
def predict_datapoint():
if request.method == 'GET':
return render_template('home.html')
else:
data = CustomData(
gender=request.form.get('gender'),
race_ethnicity=request.form.get('ethnicity'),
parental_level_of_education=request.form.get(
'parental_level_of_education'),
lunch=request.form.get('lunch'),
test_preparation_course=request.form.get(
'test_preparation_course'),
reading_score=float(request.form.get('writing_score')),
writing_score=float(request.form.get('reading_score'))
)
pred_df = data.get_data_as_data_frame()
print(pred_df)
print("Before Prediction")
predict_pipeline = PredictPipeline()
print("Mid Prediction")
results = predict_pipeline.predict(pred_df)
print("after Prediction")
return render_template('home.html', results=results[0])
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5001)