-
Notifications
You must be signed in to change notification settings - Fork 261
/
Copy pathbenchmark.py
executable file
·44 lines (30 loc) · 1.18 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python3
import cv2
import time
import sys
def benchmark(num_times):
"""
call face_cascade.detectMultiScale 'num_times' number of times
and return the execution time
"""
start = time.clock_gettime(time.CLOCK_REALTIME)
# Load the cascade
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Read the input image
img = cv2.imread('test.jpg')
# Convert into grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# overhead time just to set things up
overhead_time = time.clock_gettime(time.CLOCK_REALTIME) - start
start = time.clock_gettime(time.CLOCK_REALTIME)
# Detect faces
for i in range(0,num_times):
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
face_detect_time = time.clock_gettime(time.CLOCK_REALTIME) - start
return (overhead_time,face_detect_time)
if __name__ == '__main__':
import sys
num_times = int(sys.argv[1])
(overhead_time,face_detect_time) = benchmark(num_times)
print("overhead_time to load classifier and image -> %f seconds" % overhead_time)
print("time to do %d face detections -> %f seconds" % (num_times,face_detect_time))