Parametrize tests within unittest TestCases.
Testing a Django project? Check out my book Speed Up Your Django Tests which covers loads of recommendations to write faster, more accurate tests.
Install with:
python -m pip install unittest-parametrize
Python 3.9 to 3.13 supported.
The API mirrors @pytest.mark.parametrize
as much as possible.
(Even the name parametrize over the slightly more common parameterize with an extra “e”.
Don’t get caught out by that…)
There are two steps to parametrize a test case:
- Use
ParametrizedTestCase
in the base classes for your test case. - Apply
@parametrize
to any tests for parametrization. This decorator takes (at least):- the argument names to parametrize, as comma-separated string
- a list of parameter tuples to create individual tests for
Here’s a basic example:
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class SquareTests(ParametrizedTestCase):
@parametrize(
"x,expected",
[
(1, 1),
(2, 4),
],
)
def test_square(self, x: int, expected: int) -> None:
self.assertEqual(x**2, expected)
@parametrize
modifies the class at definition time with Python’s __init_subclass__
hook.
It removes the original test method and creates wrapped copies with individual names.
Thus the parametrization should work regardless of the test runner you use (be it unittest, Django’s test runner, pytest, etc.).
You can provide argument names as a sequence of strings instead:
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class SquareTests(ParametrizedTestCase):
@parametrize(
("x", "expected"),
[
(1, 1),
(2, 4),
],
)
def test_square(self, x: int, expected: int) -> None:
self.assertEqual(x**2, expected)
ParametrizedTestCase
does nothing if there aren’t any @parametrize
-decorated tests within a class.
Therefore you can include it in your project’s base test case class so that @parametrize
works immediately in all test cases.
For example, within a Django project, you can create a set of project-specific base test case classes extending those provided by Django.
You can do this in a module like example.test
, and use the base classes throughout your test suite.
To add ParametrizedTestCase
to all your copies, use it in a custom SimpleTestCase
and then mixin to others using multiple inheritance like so:
from django import test
from unittest_parametrize import ParametrizedTestCase
class SimpleTestCase(ParametrizedTestCase, test.SimpleTestCase):
pass
class TestCase(SimpleTestCase, test.TestCase):
pass
class TransactionTestCase(SimpleTestCase, test.TransactionTestCase):
pass
class LiveServerTestCase(SimpleTestCase, test.LiveServerTestCase):
pass
By default, test names are extended with an index, starting at zero. You can see these names when running the tests:
$ python -m unittest t.py -v
test_square_0 (t.SquareTests.test_square_0) ... ok
test_square_1 (t.SquareTests.test_square_1) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
You can customize these names by passing param
objects, which contain the arguments and an optional ID for the suffix:
from unittest_parametrize import param
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class SquareTests(ParametrizedTestCase):
@parametrize(
"x,expected",
[
param(1, 1, id="one"),
param(2, 4, id="two"),
],
)
def test_square(self, x: int, expected: int) -> None:
self.assertEqual(x**2, expected)
Yielding perhaps more natural names:
$ python -m unittest t.py -v
test_square_one (t.SquareTests.test_square_one) ... ok
test_square_two (t.SquareTests.test_square_two) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
Parameter IDs should be valid Python identifier suffixes.
Since parameter IDs are optional, you can provide them only for some tests:
from unittest_parametrize import param
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class SquareTests(ParametrizedTestCase):
@parametrize(
"x,expected",
[
param(1, 1),
param(20, 400, id="large"),
],
)
def test_square(self, x: int, expected: int) -> None:
self.assertEqual(x**2, expected)
ID-free param
s fall back to the default index suffixes:
$ python -m unittest t.py -v
test_square_0 (example.SquareTests.test_square_0) ... ok
test_square_large (example.SquareTests.test_square_large) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
Alternatively, you can provide the id’s separately with the ids
argument:
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class SquareTests(ParametrizedTestCase):
@parametrize(
"x,expected",
[
(1, 1),
(2, 4),
],
ids=["one", "two"],
)
def test_square(self, x: int, expected: int) -> None:
self.assertEqual(x**2, expected)
@parametrize
tries to ensure it is the top-most (outermost) decorator.
This limitation exists to ensure that other decorators apply to each parametrized test.
So decorators like @mock.patch
need be beneath @parametrize
:
from unittest import mock
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class CarpentryTests(ParametrizedTestCase):
@parametrize(
"nails",
[(11,), (17,)],
)
@mock.patch("example.hammer", autospec=True)
def test_nail_a_board(self, mock_hammer, nails):
...
Also note that due to how mock.patch
always adds positional arguments at the start, the parametrized arguments must come last.
@parametrize
always adds parameters as keyword arguments, so you can also use keyword-only syntax for parametrized arguments:
# ...
def test_nail_a_board(self, mock_hammer, *, nails):
...
@parametrize
is not stackable.
To create a cross-product of tests, you can use nested list comprehensions:
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class RocketTests(ParametrizedTestCase):
@parametrize(
"use_ions,hyperdrive_level",
[
(use_ions, hyperdrive_level)
for use_ions in [True, False]
for hyperdrive_level in [0, 1, 2]
],
)
def test_takeoff(self, use_ions, hyperdrive_level) -> None:
...
The above creates 2 * 3 = 6 versions of test_takeoff
.
For larger combinations, itertools.product()
may be more readable:
from itertools import product
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
class RocketTests(ParametrizedTestCase):
@parametrize(
"use_ions,hyperdrive_level,nose_colour",
list(
product(
[True, False],
[0, 1, 2],
["red", "yellow"],
)
),
)
def test_takeoff(self, use_ions, hyperdrive_level, nose_colour) -> None:
...
The above creates 2 * 3 * 2 = 12 versions of test_takeoff
.
@parametrize
only works as a function decorator, not a class decorator.
To parametrize all tests within a test case, create a separate decorator and apply it to each method:
from unittest_parametrize import parametrize
from unittest_parametrize import ParametrizedTestCase
parametrize_race = parametrize(
"race",
[("Human",), ("Halfling",), ("Dwarf",), ("Elf",)],
)
class StatsTests(ParametrizedTestCase):
@parametrize_race
def test_strength(self, race: str) -> None:
...
@parametrize_race
def test_dexterity(self, race: str) -> None:
...
...
When I started writing unit tests, I learned to use DDT (Data-Driven Tests) for parametrizing tests.
It works, but the docs are a bit thin, and the API a little obscure (what does @ddt
stand for again?).
Later when picking up pytest, I learned to use its parametrization API. It’s legible and flexible, but it doesn’t work with unittest test cases, which Django’s test tooling provides.
So, until the creation of this package, I was using parameterized on my (Django) test cases. This package supports parametrization across multiple test runners, though most of them are “legacy” by now.
I created unittest-parametrize as a smaller alternative to parameterized, with these goals:
- Only support unittest test cases. For other types of test, you can use pytest’s parametrization.
- Avoid any custom test runner support. Modifying the class at definition time means that all test runners will see the tests the same.
- Use modern Python features like
__init_subclass__
. - Have full type hint coverage. You shouldn’t find unittest-parametrize a blocker when adopting Mypy with strict mode on.
- Use the name “parametrize” rather than “parameterize”. This unification of spelling with pytest should help reduce confusion around the extra “e”.
Thanks to the creators and maintainers of ddt, parameterized, and pytest for their hard work.
TestCase.subTest()
is unittest’s built-in “parametrization” solution.
You use it in a loop within a single test method:
from unittest import TestCase
class SquareTests(TestCase):
def test_square(self):
tests = [
(1, 1),
(2, 4),
]
for x, expected in tests:
with self.subTest(x=x):
self.assertEqual(x**2, expected)
This approach crams multiple actual tests into one test method, with several consequences:
- If a subtest fails, it prevents the next subtests from running. Thus, failures are harder to debug, since each test run can only give you partial information.
- Subtests can leak state. Without correct isolation, they may not test what they appear to.
- Subtests cannot be reordered by tools that detect state leakage, like pytest-randomly.
- Subtests skew test timings, since the test method runs multiple tests.
- Everything is indented two extra levels for the loop and context manager.
Parametrization avoids all these issues by creating individual test methods.