-
Notifications
You must be signed in to change notification settings - Fork 636
/
datasets.py
183 lines (156 loc) · 7.92 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data.sampler import BatchSampler
class SiameseMNIST(Dataset):
"""
Train: For each sample creates randomly a positive or a negative pair
Test: Creates fixed pairs for testing
"""
def __init__(self, mnist_dataset):
self.mnist_dataset = mnist_dataset
self.train = self.mnist_dataset.train
self.transform = self.mnist_dataset.transform
if self.train:
self.train_labels = self.mnist_dataset.train_labels
self.train_data = self.mnist_dataset.train_data
self.labels_set = set(self.train_labels.numpy())
self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0]
for label in self.labels_set}
else:
# generate fixed pairs for testing
self.test_labels = self.mnist_dataset.test_labels
self.test_data = self.mnist_dataset.test_data
self.labels_set = set(self.test_labels.numpy())
self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0]
for label in self.labels_set}
random_state = np.random.RandomState(29)
positive_pairs = [[i,
random_state.choice(self.label_to_indices[self.test_labels[i].item()]),
1]
for i in range(0, len(self.test_data), 2)]
negative_pairs = [[i,
random_state.choice(self.label_to_indices[
np.random.choice(
list(self.labels_set - set([self.test_labels[i].item()]))
)
]),
0]
for i in range(1, len(self.test_data), 2)]
self.test_pairs = positive_pairs + negative_pairs
def __getitem__(self, index):
if self.train:
target = np.random.randint(0, 2)
img1, label1 = self.train_data[index], self.train_labels[index].item()
if target == 1:
siamese_index = index
while siamese_index == index:
siamese_index = np.random.choice(self.label_to_indices[label1])
else:
siamese_label = np.random.choice(list(self.labels_set - set([label1])))
siamese_index = np.random.choice(self.label_to_indices[siamese_label])
img2 = self.train_data[siamese_index]
else:
img1 = self.test_data[self.test_pairs[index][0]]
img2 = self.test_data[self.test_pairs[index][1]]
target = self.test_pairs[index][2]
img1 = Image.fromarray(img1.numpy(), mode='L')
img2 = Image.fromarray(img2.numpy(), mode='L')
if self.transform is not None:
img1 = self.transform(img1)
img2 = self.transform(img2)
return (img1, img2), target
def __len__(self):
return len(self.mnist_dataset)
class TripletMNIST(Dataset):
"""
Train: For each sample (anchor) randomly chooses a positive and negative samples
Test: Creates fixed triplets for testing
"""
def __init__(self, mnist_dataset):
self.mnist_dataset = mnist_dataset
self.train = self.mnist_dataset.train
self.transform = self.mnist_dataset.transform
if self.train:
self.train_labels = self.mnist_dataset.train_labels
self.train_data = self.mnist_dataset.train_data
self.labels_set = set(self.train_labels.numpy())
self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0]
for label in self.labels_set}
else:
self.test_labels = self.mnist_dataset.test_labels
self.test_data = self.mnist_dataset.test_data
# generate fixed triplets for testing
self.labels_set = set(self.test_labels.numpy())
self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0]
for label in self.labels_set}
random_state = np.random.RandomState(29)
triplets = [[i,
random_state.choice(self.label_to_indices[self.test_labels[i].item()]),
random_state.choice(self.label_to_indices[
np.random.choice(
list(self.labels_set - set([self.test_labels[i].item()]))
)
])
]
for i in range(len(self.test_data))]
self.test_triplets = triplets
def __getitem__(self, index):
if self.train:
img1, label1 = self.train_data[index], self.train_labels[index].item()
positive_index = index
while positive_index == index:
positive_index = np.random.choice(self.label_to_indices[label1])
negative_label = np.random.choice(list(self.labels_set - set([label1])))
negative_index = np.random.choice(self.label_to_indices[negative_label])
img2 = self.train_data[positive_index]
img3 = self.train_data[negative_index]
else:
img1 = self.test_data[self.test_triplets[index][0]]
img2 = self.test_data[self.test_triplets[index][1]]
img3 = self.test_data[self.test_triplets[index][2]]
img1 = Image.fromarray(img1.numpy(), mode='L')
img2 = Image.fromarray(img2.numpy(), mode='L')
img3 = Image.fromarray(img3.numpy(), mode='L')
if self.transform is not None:
img1 = self.transform(img1)
img2 = self.transform(img2)
img3 = self.transform(img3)
return (img1, img2, img3), []
def __len__(self):
return len(self.mnist_dataset)
class BalancedBatchSampler(BatchSampler):
"""
BatchSampler - from a MNIST-like dataset, samples n_classes and within these classes samples n_samples.
Returns batches of size n_classes * n_samples
"""
def __init__(self, labels, n_classes, n_samples):
self.labels = labels
self.labels_set = list(set(self.labels.numpy()))
self.label_to_indices = {label: np.where(self.labels.numpy() == label)[0]
for label in self.labels_set}
for l in self.labels_set:
np.random.shuffle(self.label_to_indices[l])
self.used_label_indices_count = {label: 0 for label in self.labels_set}
self.count = 0
self.n_classes = n_classes
self.n_samples = n_samples
self.n_dataset = len(self.labels)
self.batch_size = self.n_samples * self.n_classes
def __iter__(self):
self.count = 0
while self.count + self.batch_size < self.n_dataset:
classes = np.random.choice(self.labels_set, self.n_classes, replace=False)
indices = []
for class_ in classes:
indices.extend(self.label_to_indices[class_][
self.used_label_indices_count[class_]:self.used_label_indices_count[
class_] + self.n_samples])
self.used_label_indices_count[class_] += self.n_samples
if self.used_label_indices_count[class_] + self.n_samples > len(self.label_to_indices[class_]):
np.random.shuffle(self.label_to_indices[class_])
self.used_label_indices_count[class_] = 0
yield indices
self.count += self.n_classes * self.n_samples
def __len__(self):
return self.n_dataset // self.batch_size