Skip to content

Commit

Permalink
Add KDE/DQ statistic (gwastro#4463)
Browse files Browse the repository at this point in the history
* Add KDE/DQ statistic

* Some fixes

* less code copying, add to coinc_lim_for_thresh

* properly inherit the coinc_lim_for_thresh from KDE stat

* make codeclimate happier

* restore docsctring

* bad rebase

* move self.curr_tnum to ExpFitFgBgNormStatistic

* Some fixes for inherited functions

* Remove superfluous comment

* only assign_kdes needs redefining, find_kdes can be used directly

* TDsuggestion

* initialise self.kde_names

---------

Co-authored-by: Thomas Dent <[email protected]>
  • Loading branch information
2 people authored and acorreia61201 committed Apr 4, 2024
1 parent aa60683 commit c5fd950
Showing 1 changed file with 65 additions and 33 deletions.
98 changes: 65 additions & 33 deletions pycbc/events/stat.py
Original file line number Diff line number Diff line change
Expand Up @@ -1406,6 +1406,8 @@ def __init__(self, sngl_ranking, files=None, ifos=None,
for ifo in ref_ifos], axis=0)
self.benchmark_logvol = 3.0 * numpy.log(hl_net_med_sigma)
self.single_increasing = False
# Initialize variable to hold event template id(s)
self.curr_tnum = None

def assign_median_sigma(self, ifo):
"""
Expand Down Expand Up @@ -1484,14 +1486,16 @@ def single(self, trigs):
singles['sigmasq'] = trigs['sigmasq'][:]
singles['snr'] = trigs['snr'][:]
try:
tnum = trigs.template_num # exists if accessed via coinc_findtrigs
# exists if accessed via coinc_findtrigs
self.curr_tnum = trigs.template_num
except AttributeError:
tnum = trigs['template_id'] # exists for SingleDetTriggers
# exists for SingleDetTriggers
self.curr_tnum = trigs['template_id']
# Should only be one ifo fit file provided
assert len(self.ifos) == 1
# Store benchmark log volume as single-ifo information since the coinc
# method does not have access to template id
singles['benchmark_logvol'] = self.benchmark_logvol[tnum]
singles['benchmark_logvol'] = self.benchmark_logvol[self.curr_tnum]
return numpy.array(singles, ndmin=1)

def rank_stat_single(self, single_info,
Expand Down Expand Up @@ -1623,6 +1627,7 @@ def coinc_lim_for_thresh(self, s, thresh, limifo,
allowed_names = ['ExpFitFgBgNormStatistic',
'ExpFitFgBgNormBBHStatistic',
'DQExpFitFgBgNormStatistic',
'DQExpFitFgBgKDEStatistic',
'ExpFitFgBgKDEStatistic']
self._check_coinc_lim_subclass(allowed_names)

Expand Down Expand Up @@ -1828,6 +1833,16 @@ def __init__(self, sngl_ranking, files=None, ifos=None, **kwargs):
"""
ExpFitFgBgNormStatistic.__init__(self, sngl_ranking, files=files,
ifos=ifos, **kwargs)
self.kde_names = []
self.find_kdes()
self.kde_by_tid = {}
for kname in self.kde_names:
self.assign_kdes(kname)

def find_kdes(self):
"""
Find which associated files are for the KDE reweighting
"""
# The stat file attributes are hard-coded as 'signal-kde_file'
# and 'template-kde_file'
parsed_attrs = [f.split('-') for f in self.files.keys()]
Expand All @@ -1837,13 +1852,6 @@ def __init__(self, sngl_ranking, files=None, ifos=None, **kwargs):
"Two stat files are required, they should have stat attr " \
"'signal-kde_file' and 'template-kde_file' respectively"

self.kde_by_tid = {}
for kname in self.kde_names:
self.assign_kdes(kname)
# This will hold the template ids of the events for the statistic
# calculation
self.curr_tnum = None

def assign_kdes(self, kname):
"""
Extract values from KDE files
Expand All @@ -1856,29 +1864,6 @@ def assign_kdes(self, kname):
with h5py.File(self.files[kname+'-kde_file'], 'r') as kde_file:
self.kde_by_tid[kname+'_kdevals'] = kde_file['data_kde'][:]

def single(self, trigs):
"""
Calculate the necessary single detector information including getting
template ids from single detector triggers.
Parameters
----------
trigs: dict of numpy.ndarrays, h5py group or similar dict-like object
Object holding single detector trigger information
Returns
-------
numpy.ndarray
The array of single detector values
"""
try:
# template_num exists if accessed via coinc_findtrigs
self.curr_tnum = trigs.template_num
except AttributeError:
# exists for SingleDetTriggers
self.curr_tnum = trigs['template_id']
return ExpFitFgBgNormStatistic.single(self, trigs)

def logsignalrate(self, stats, shift, to_shift):
"""
Calculate the normalized log rate density of signals via lookup.
Expand Down Expand Up @@ -2084,6 +2069,52 @@ def lognoiserate(self, trigs):
return logr_n


class DQExpFitFgBgKDEStatistic(DQExpFitFgBgNormStatistic):
"""
The ExpFitFgBgKDEStatistic with DQ-based reranking.
This is the same as the DQExpFitFgBgNormStatistic except the signal
rate is adjusted according to the KDE statistic files
"""

def __init__(self, sngl_ranking, files=None, ifos=None, **kwargs):
"""
Parameters
----------
sngl_ranking: str
The name of the ranking to use for the single-detector triggers.
files: list of strs, needed here
A list containing the filenames of hdf format files used to help
construct the coincident statistics. The files must have a 'stat'
attribute which is used to associate them with the appropriate
statistic class.
ifos: list of strs, not used here
The list of detector names
"""
DQExpFitFgBgNormStatistic.__init__(self, sngl_ranking, files=files,
ifos=ifos, **kwargs)
self.kde_names = []
ExpFitFgBgKDEStatistic.find_kdes(self)
self.kde_by_tid = {}
for kname in self.kde_names:
ExpFitFgBgKDEStatistic.assign_kdes(self, kname)

def logsignalrate(self, stats, shift, to_shift):
"""
Inherited, see docstring for ExpFitFgBgKDEStatistic.logsignalrate
"""
return ExpFitFgBgKDEStatistic.logsignalrate(self, stats, shift,
to_shift)

def coinc_lim_for_thresh(self, s, thresh, limifo, **kwargs):
"""
Inherited, see docstring for
ExpFitFgBgKDEStatistic.coinc_lim_for_thresh
"""
return ExpFitFgBgKDEStatistic.coinc_lim_for_thresh(
self, s, thresh, limifo, **kwargs)


statistic_dict = {
'quadsum': QuadratureSumStatistic,
'single_ranking_only': QuadratureSumStatistic,
Expand All @@ -2096,6 +2127,7 @@ def lognoiserate(self, trigs):
'phasetd_exp_fit_fgbg_norm': ExpFitFgBgNormStatistic,
'phasetd_exp_fit_fgbg_bbh_norm': ExpFitFgBgNormBBHStatistic,
'phasetd_exp_fit_fgbg_kde': ExpFitFgBgKDEStatistic,
'dq_phasetd_exp_fit_fgbg_kde': DQExpFitFgBgKDEStatistic,
}


Expand Down

0 comments on commit c5fd950

Please sign in to comment.