forked from influxdata/telegraf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstackdriver.go
709 lines (619 loc) · 21.9 KB
/
stackdriver.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
package stackdriver
import (
"context"
"fmt"
"log"
"math"
"strconv"
"strings"
"sync"
"time"
monitoring "cloud.google.com/go/monitoring/apiv3"
googlepbduration "github.com/golang/protobuf/ptypes/duration"
googlepbts "github.com/golang/protobuf/ptypes/timestamp"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/internal/limiter"
"github.com/influxdata/telegraf/metric"
"github.com/influxdata/telegraf/plugins/inputs" // Imports the Stackdriver Monitoring client package.
"github.com/influxdata/telegraf/selfstat"
"google.golang.org/api/iterator"
distributionpb "google.golang.org/genproto/googleapis/api/distribution"
metricpb "google.golang.org/genproto/googleapis/api/metric"
monitoringpb "google.golang.org/genproto/googleapis/monitoring/v3"
)
const (
defaultRateLimit = 14
description = "Gather timeseries from Google Cloud Platform v3 monitoring API"
sampleConfig = `
## GCP Project
project = "erudite-bloom-151019"
## Include timeseries that start with the given metric type.
metric_type_prefix_include = [
"compute.googleapis.com/",
]
## Exclude timeseries that start with the given metric type.
# metric_type_prefix_exclude = []
## Many metrics are updated once per minute; it is recommended to override
## the agent level interval with a value of 1m or greater.
interval = "1m"
## Maximum number of API calls to make per second. The quota for accounts
## varies, it can be viewed on the API dashboard:
## https://cloud.google.com/monitoring/quotas#quotas_and_limits
# rate_limit = 14
## The delay and window options control the number of points selected on
## each gather. When set, metrics are gathered between:
## start: now() - delay - window
## end: now() - delay
#
## Collection delay; if set too low metrics may not yet be available.
# delay = "5m"
#
## If unset, the window will start at 1m and be updated dynamically to span
## the time between calls (approximately the length of the plugin interval).
# window = "1m"
## TTL for cached list of metric types. This is the maximum amount of time
## it may take to discover new metrics.
# cache_ttl = "1h"
## If true, raw bucket counts are collected for distribution value types.
## For a more lightweight collection, you may wish to disable and use
## distribution_aggregation_aligners instead.
# gather_raw_distribution_buckets = true
## Aggregate functions to be used for metrics whose value type is
## distribution. These aggregate values are recorded in in addition to raw
## bucket counts; if they are enabled.
##
## For a list of aligner strings see:
## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
# distribution_aggregation_aligners = [
# "ALIGN_PERCENTILE_99",
# "ALIGN_PERCENTILE_95",
# "ALIGN_PERCENTILE_50",
# ]
## Filters can be added to reduce the number of time series matched. All
## functions are supported: starts_with, ends_with, has_substring, and
## one_of. Only the '=' operator is supported.
##
## The logical operators when combining filters are defined statically using
## the following values:
## filter ::= <resource_labels> {AND <metric_labels>}
## resource_labels ::= <resource_labels> {OR <resource_label>}
## metric_labels ::= <metric_labels> {OR <metric_label>}
##
## For more details, see https://cloud.google.com/monitoring/api/v3/filters
#
## Resource labels refine the time series selection with the following expression:
## resource.labels.<key> = <value>
# [[inputs.stackdriver.filter.resource_labels]]
# key = "instance_name"
# value = 'starts_with("localhost")'
#
## Metric labels refine the time series selection with the following expression:
## metric.labels.<key> = <value>
# [[inputs.stackdriver.filter.metric_labels]]
# key = "device_name"
# value = 'one_of("sda", "sdb")'
`
)
var (
defaultCacheTTL = internal.Duration{Duration: 1 * time.Hour}
defaultWindow = internal.Duration{Duration: 1 * time.Minute}
defaultDelay = internal.Duration{Duration: 5 * time.Minute}
)
type (
// Stackdriver is the Google Stackdriver config info.
Stackdriver struct {
Project string `toml:"project"`
RateLimit int `toml:"rate_limit"`
Window internal.Duration `toml:"window"`
Delay internal.Duration `toml:"delay"`
CacheTTL internal.Duration `toml:"cache_ttl"`
MetricTypePrefixInclude []string `toml:"metric_type_prefix_include"`
MetricTypePrefixExclude []string `toml:"metric_type_prefix_exclude"`
GatherRawDistributionBuckets bool `toml:"gather_raw_distribution_buckets"`
DistributionAggregationAligners []string `toml:"distribution_aggregation_aligners"`
Filter *ListTimeSeriesFilter `toml:"filter"`
client metricClient
timeSeriesConfCache *timeSeriesConfCache
prevEnd time.Time
}
// ListTimeSeriesFilter contains resource labels and metric labels
ListTimeSeriesFilter struct {
ResourceLabels []*Label `json:"resource_labels"`
MetricLabels []*Label `json:"metric_labels"`
}
// Label contains key and value
Label struct {
Key string `toml:"key"`
Value string `toml:"value"`
}
// TimeSeriesConfCache caches generated timeseries configurations
timeSeriesConfCache struct {
TTL time.Duration
Generated time.Time
TimeSeriesConfs []*timeSeriesConf
}
// Internal structure which holds our configuration for a particular GCP time
// series.
timeSeriesConf struct {
// The influx measurement name this time series maps to
measurement string
// The prefix to use before any influx field names that we'll write for
// this time series. (Or, if we only decide to write one field name, this
// field just holds the value of the field name.)
fieldKey string
// The GCP API request that we'll use to fetch data for this time series.
listTimeSeriesRequest *monitoringpb.ListTimeSeriesRequest
}
// stackdriverMetricClient is a metric client for stackdriver
stackdriverMetricClient struct {
conn *monitoring.MetricClient
listMetricDescriptorsCalls selfstat.Stat
listTimeSeriesCalls selfstat.Stat
}
// metricClient is convenient for testing
metricClient interface {
ListMetricDescriptors(ctx context.Context, req *monitoringpb.ListMetricDescriptorsRequest) (<-chan *metricpb.MetricDescriptor, error)
ListTimeSeries(ctx context.Context, req *monitoringpb.ListTimeSeriesRequest) (<-chan *monitoringpb.TimeSeries, error)
Close() error
}
lockedSeriesGrouper struct {
sync.Mutex
*metric.SeriesGrouper
}
)
func (g *lockedSeriesGrouper) Add(
measurement string,
tags map[string]string,
tm time.Time,
field string,
fieldValue interface{},
) error {
g.Lock()
defer g.Unlock()
return g.SeriesGrouper.Add(measurement, tags, tm, field, fieldValue)
}
// ListMetricDescriptors implements metricClient interface
func (c *stackdriverMetricClient) ListMetricDescriptors(
ctx context.Context,
req *monitoringpb.ListMetricDescriptorsRequest,
) (<-chan *metricpb.MetricDescriptor, error) {
mdChan := make(chan *metricpb.MetricDescriptor, 1000)
go func() {
log.Printf("D! [inputs.stackdriver] ListMetricDescriptors: %s", req.Filter)
defer close(mdChan)
// Iterate over metric descriptors and send them to buffered channel
mdResp := c.conn.ListMetricDescriptors(ctx, req)
c.listMetricDescriptorsCalls.Incr(1)
for {
mdDesc, mdErr := mdResp.Next()
if mdErr != nil {
if mdErr != iterator.Done {
log.Printf("E! [inputs.stackdriver] Received error response: %s: %v", req, mdErr)
}
break
}
mdChan <- mdDesc
}
}()
return mdChan, nil
}
// ListTimeSeries implements metricClient interface
func (c *stackdriverMetricClient) ListTimeSeries(
ctx context.Context,
req *monitoringpb.ListTimeSeriesRequest,
) (<-chan *monitoringpb.TimeSeries, error) {
tsChan := make(chan *monitoringpb.TimeSeries, 1000)
go func() {
log.Printf("D! [inputs.stackdriver] ListTimeSeries: %s", req.Filter)
defer close(tsChan)
// Iterate over timeseries and send them to buffered channel
tsResp := c.conn.ListTimeSeries(ctx, req)
c.listTimeSeriesCalls.Incr(1)
for {
tsDesc, tsErr := tsResp.Next()
if tsErr != nil {
if tsErr != iterator.Done {
log.Printf("E! [inputs.stackdriver] Received error response: %s: %v", req, tsErr)
}
break
}
tsChan <- tsDesc
}
}()
return tsChan, nil
}
// Close implements metricClient interface
func (s *stackdriverMetricClient) Close() error {
return s.conn.Close()
}
// Description implements telegraf.Input interface
func (s *Stackdriver) Description() string {
return description
}
// SampleConfig implements telegraf.Input interface
func (s *Stackdriver) SampleConfig() string {
return sampleConfig
}
// Gather implements telegraf.Input interface
func (s *Stackdriver) Gather(acc telegraf.Accumulator) error {
ctx := context.Background()
if s.RateLimit == 0 {
s.RateLimit = defaultRateLimit
}
err := s.initializeStackdriverClient(ctx)
if err != nil {
return err
}
start, end := s.updateWindow(s.prevEnd)
s.prevEnd = end
tsConfs, err := s.generatetimeSeriesConfs(ctx, start, end)
if err != nil {
return err
}
lmtr := limiter.NewRateLimiter(s.RateLimit, time.Second)
defer lmtr.Stop()
grouper := &lockedSeriesGrouper{
SeriesGrouper: metric.NewSeriesGrouper(),
}
var wg sync.WaitGroup
wg.Add(len(tsConfs))
for _, tsConf := range tsConfs {
<-lmtr.C
go func(tsConf *timeSeriesConf) {
defer wg.Done()
acc.AddError(s.gatherTimeSeries(ctx, grouper, tsConf))
}(tsConf)
}
wg.Wait()
for _, metric := range grouper.Metrics() {
acc.AddMetric(metric)
}
return nil
}
// Returns the start and end time for the next collection.
func (s *Stackdriver) updateWindow(prevEnd time.Time) (time.Time, time.Time) {
var start time.Time
if s.Window.Duration != 0 {
start = time.Now().Add(-s.Delay.Duration).Add(-s.Window.Duration)
} else if prevEnd.IsZero() {
start = time.Now().Add(-s.Delay.Duration).Add(-defaultWindow.Duration)
} else {
start = prevEnd
}
end := time.Now().Add(-s.Delay.Duration)
return start, end
}
// Generate filter string for ListTimeSeriesRequest
func (s *Stackdriver) newListTimeSeriesFilter(metricType string) string {
functions := []string{
"starts_with",
"ends_with",
"has_substring",
"one_of",
}
filterString := fmt.Sprintf(`metric.type = "%s"`, metricType)
if s.Filter == nil {
return filterString
}
var valueFmt string
if len(s.Filter.ResourceLabels) > 0 {
resourceLabelsFilter := make([]string, len(s.Filter.ResourceLabels))
for i, resourceLabel := range s.Filter.ResourceLabels {
// check if resource label value contains function
if includeExcludeHelper(resourceLabel.Value, functions, nil) {
valueFmt = `resource.labels.%s = %s`
} else {
valueFmt = `resource.labels.%s = "%s"`
}
resourceLabelsFilter[i] = fmt.Sprintf(valueFmt, resourceLabel.Key, resourceLabel.Value)
}
if len(resourceLabelsFilter) == 1 {
filterString += fmt.Sprintf(" AND %s", resourceLabelsFilter[0])
} else {
filterString += fmt.Sprintf(" AND (%s)", strings.Join(resourceLabelsFilter, " OR "))
}
}
if len(s.Filter.MetricLabels) > 0 {
metricLabelsFilter := make([]string, len(s.Filter.MetricLabels))
for i, metricLabel := range s.Filter.MetricLabels {
// check if metric label value contains function
if includeExcludeHelper(metricLabel.Value, functions, nil) {
valueFmt = `metric.labels.%s = %s`
} else {
valueFmt = `metric.labels.%s = "%s"`
}
metricLabelsFilter[i] = fmt.Sprintf(valueFmt, metricLabel.Key, metricLabel.Value)
}
if len(metricLabelsFilter) == 1 {
filterString += fmt.Sprintf(" AND %s", metricLabelsFilter[0])
} else {
filterString += fmt.Sprintf(" AND (%s)", strings.Join(metricLabelsFilter, " OR "))
}
}
return filterString
}
// Create and initialize a timeSeriesConf for a given GCP metric type with
// defaults taken from the gcp_stackdriver plugin configuration.
func (s *Stackdriver) newTimeSeriesConf(
metricType string, startTime, endTime time.Time,
) *timeSeriesConf {
filter := s.newListTimeSeriesFilter(metricType)
interval := &monitoringpb.TimeInterval{
EndTime: &googlepbts.Timestamp{Seconds: endTime.Unix()},
StartTime: &googlepbts.Timestamp{Seconds: startTime.Unix()},
}
tsReq := &monitoringpb.ListTimeSeriesRequest{
Name: monitoring.MetricProjectPath(s.Project),
Filter: filter,
Interval: interval,
}
cfg := &timeSeriesConf{
measurement: metricType,
fieldKey: "value",
listTimeSeriesRequest: tsReq,
}
// GCP metric types have at least one slash, but we'll be defensive anyway.
slashIdx := strings.LastIndex(metricType, "/")
if slashIdx > 0 {
cfg.measurement = metricType[:slashIdx]
cfg.fieldKey = metricType[slashIdx+1:]
}
return cfg
}
// Change this configuration to query an aggregate by specifying an "aligner".
// In GCP monitoring, "aligning" is aggregation performed *within* a time
// series, to distill a pile of data points down to a single data point for
// some given time period (here, we specify 60s as our time period). This is
// especially useful for scraping GCP "distribution" metric types, whose raw
// data amounts to a ~60 bucket histogram, which is fairly hard to query and
// visualize in the TICK stack.
func (t *timeSeriesConf) initForAggregate(alignerStr string) {
// Check if alignerStr is valid
alignerInt, isValid := monitoringpb.Aggregation_Aligner_value[alignerStr]
if !isValid {
alignerStr = monitoringpb.Aggregation_Aligner_name[alignerInt]
}
aligner := monitoringpb.Aggregation_Aligner(alignerInt)
agg := &monitoringpb.Aggregation{
AlignmentPeriod: &googlepbduration.Duration{Seconds: 60},
PerSeriesAligner: aligner,
}
t.fieldKey = t.fieldKey + "_" + strings.ToLower(alignerStr)
t.listTimeSeriesRequest.Aggregation = agg
}
// IsValid checks timeseriesconf cache validity
func (c *timeSeriesConfCache) IsValid() bool {
return c.TimeSeriesConfs != nil && time.Since(c.Generated) < c.TTL
}
func (s *Stackdriver) initializeStackdriverClient(ctx context.Context) error {
if s.client == nil {
client, err := monitoring.NewMetricClient(ctx)
if err != nil {
return fmt.Errorf("failed to create stackdriver monitoring client: %v", err)
}
tags := map[string]string{
"project_id": s.Project,
}
listMetricDescriptorsCalls := selfstat.Register(
"stackdriver", "list_metric_descriptors_calls", tags)
listTimeSeriesCalls := selfstat.Register(
"stackdriver", "list_timeseries_calls", tags)
s.client = &stackdriverMetricClient{
conn: client,
listMetricDescriptorsCalls: listMetricDescriptorsCalls,
listTimeSeriesCalls: listTimeSeriesCalls,
}
}
return nil
}
func includeExcludeHelper(key string, includes []string, excludes []string) bool {
if len(includes) > 0 {
for _, includeStr := range includes {
if strings.HasPrefix(key, includeStr) {
return true
}
}
return false
}
if len(excludes) > 0 {
for _, excludeStr := range excludes {
if strings.HasPrefix(key, excludeStr) {
return false
}
}
return true
}
return true
}
// Test whether a particular GCP metric type should be scraped by this plugin
// by checking the plugin name against the configuration's
// "includeMetricTypePrefixes" and "excludeMetricTypePrefixes"
func (s *Stackdriver) includeMetricType(metricType string) bool {
k := metricType
inc := s.MetricTypePrefixInclude
exc := s.MetricTypePrefixExclude
return includeExcludeHelper(k, inc, exc)
}
// Generates filter for list metric descriptors request
func (s *Stackdriver) newListMetricDescriptorsFilters() []string {
if len(s.MetricTypePrefixInclude) == 0 {
return nil
}
metricTypeFilters := make([]string, len(s.MetricTypePrefixInclude))
for i, metricTypePrefix := range s.MetricTypePrefixInclude {
metricTypeFilters[i] = fmt.Sprintf(`metric.type = starts_with(%q)`, metricTypePrefix)
}
return metricTypeFilters
}
// Generate a list of timeSeriesConfig structs by making a ListMetricDescriptors
// API request and filtering the result against our configuration.
func (s *Stackdriver) generatetimeSeriesConfs(
ctx context.Context, startTime, endTime time.Time,
) ([]*timeSeriesConf, error) {
if s.timeSeriesConfCache != nil && s.timeSeriesConfCache.IsValid() {
// Update interval for timeseries requests in timeseries cache
interval := &monitoringpb.TimeInterval{
EndTime: &googlepbts.Timestamp{Seconds: endTime.Unix()},
StartTime: &googlepbts.Timestamp{Seconds: startTime.Unix()},
}
for _, timeSeriesConf := range s.timeSeriesConfCache.TimeSeriesConfs {
timeSeriesConf.listTimeSeriesRequest.Interval = interval
}
return s.timeSeriesConfCache.TimeSeriesConfs, nil
}
ret := []*timeSeriesConf{}
req := &monitoringpb.ListMetricDescriptorsRequest{
Name: monitoring.MetricProjectPath(s.Project),
}
filters := s.newListMetricDescriptorsFilters()
if len(filters) == 0 {
filters = []string{""}
}
for _, filter := range filters {
// Add filter for list metric descriptors if
// includeMetricTypePrefixes is specified,
// this is more effecient than iterating over
// all metric descriptors
req.Filter = filter
mdRespChan, err := s.client.ListMetricDescriptors(ctx, req)
if err != nil {
return nil, err
}
for metricDescriptor := range mdRespChan {
metricType := metricDescriptor.Type
valueType := metricDescriptor.ValueType
if filter == "" && !s.includeMetricType(metricType) {
continue
}
if valueType == metricpb.MetricDescriptor_DISTRIBUTION {
if s.GatherRawDistributionBuckets {
tsConf := s.newTimeSeriesConf(metricType, startTime, endTime)
ret = append(ret, tsConf)
}
for _, alignerStr := range s.DistributionAggregationAligners {
tsConf := s.newTimeSeriesConf(metricType, startTime, endTime)
tsConf.initForAggregate(alignerStr)
ret = append(ret, tsConf)
}
} else {
ret = append(ret, s.newTimeSeriesConf(metricType, startTime, endTime))
}
}
}
s.timeSeriesConfCache = &timeSeriesConfCache{
TimeSeriesConfs: ret,
Generated: time.Now(),
TTL: s.CacheTTL.Duration,
}
return ret, nil
}
// Do the work to gather an individual time series. Runs inside a
// timeseries-specific goroutine.
func (s *Stackdriver) gatherTimeSeries(
ctx context.Context, grouper *lockedSeriesGrouper, tsConf *timeSeriesConf,
) error {
tsReq := tsConf.listTimeSeriesRequest
tsRespChan, err := s.client.ListTimeSeries(ctx, tsReq)
if err != nil {
return err
}
for tsDesc := range tsRespChan {
tags := map[string]string{
"resource_type": tsDesc.Resource.Type,
}
for k, v := range tsDesc.Resource.Labels {
tags[k] = v
}
for k, v := range tsDesc.Metric.Labels {
tags[k] = v
}
for _, p := range tsDesc.Points {
ts := time.Unix(p.Interval.EndTime.Seconds, 0)
if tsDesc.ValueType == metricpb.MetricDescriptor_DISTRIBUTION {
dist := p.Value.GetDistributionValue()
s.addDistribution(dist, tags, ts, grouper, tsConf)
} else {
var value interface{}
// Types that are valid to be assigned to Value
// See: https://godoc.org/google.golang.org/genproto/googleapis/monitoring/v3#TypedValue
switch tsDesc.ValueType {
case metricpb.MetricDescriptor_BOOL:
value = p.Value.GetBoolValue()
case metricpb.MetricDescriptor_INT64:
value = p.Value.GetInt64Value()
case metricpb.MetricDescriptor_DOUBLE:
value = p.Value.GetDoubleValue()
case metricpb.MetricDescriptor_STRING:
value = p.Value.GetStringValue()
}
grouper.Add(tsConf.measurement, tags, ts, tsConf.fieldKey, value)
}
}
}
return nil
}
// AddDistribution adds metrics from a distribution value type.
func (s *Stackdriver) addDistribution(
metric *distributionpb.Distribution,
tags map[string]string, ts time.Time, grouper *lockedSeriesGrouper, tsConf *timeSeriesConf,
) {
field := tsConf.fieldKey
name := tsConf.measurement
grouper.Add(name, tags, ts, field+"_count", metric.Count)
grouper.Add(name, tags, ts, field+"_mean", metric.Mean)
grouper.Add(name, tags, ts, field+"_sum_of_squared_deviation", metric.SumOfSquaredDeviation)
if metric.Range != nil {
grouper.Add(name, tags, ts, field+"_range_min", metric.Range.Min)
grouper.Add(name, tags, ts, field+"_range_max", metric.Range.Max)
}
linearBuckets := metric.BucketOptions.GetLinearBuckets()
exponentialBuckets := metric.BucketOptions.GetExponentialBuckets()
explicitBuckets := metric.BucketOptions.GetExplicitBuckets()
var numBuckets int32
if linearBuckets != nil {
numBuckets = linearBuckets.NumFiniteBuckets + 2
} else if exponentialBuckets != nil {
numBuckets = exponentialBuckets.NumFiniteBuckets + 2
} else {
numBuckets = int32(len(explicitBuckets.Bounds)) + 1
}
var i int32
var count int64
for i = 0; i < numBuckets; i++ {
// The last bucket is the overflow bucket, and includes all values
// greater than the previous bound.
if i == numBuckets-1 {
tags["lt"] = "+Inf"
} else {
var upperBound float64
if linearBuckets != nil {
upperBound = linearBuckets.Offset + (linearBuckets.Width * float64(i))
} else if exponentialBuckets != nil {
width := math.Pow(exponentialBuckets.GrowthFactor, float64(i))
upperBound = exponentialBuckets.Scale * width
} else if explicitBuckets != nil {
upperBound = explicitBuckets.Bounds[i]
}
tags["lt"] = strconv.FormatFloat(upperBound, 'f', -1, 64)
}
// Add to the cumulative count; trailing buckets with value 0 are
// omitted from the response.
if i < int32(len(metric.BucketCounts)) {
count += metric.BucketCounts[i]
}
grouper.Add(name, tags, ts, field+"_bucket", count)
}
}
func init() {
f := func() telegraf.Input {
return &Stackdriver{
CacheTTL: defaultCacheTTL,
RateLimit: defaultRateLimit,
Delay: defaultDelay,
GatherRawDistributionBuckets: true,
DistributionAggregationAligners: []string{},
}
}
inputs.Add("stackdriver", f)
}