-
Notifications
You must be signed in to change notification settings - Fork 40
/
shapenet_seg.py
441 lines (343 loc) · 14.7 KB
/
shapenet_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# MODELNET40 Example with ConvPoint
# add the parent folder to the python path to access convpoint library
import sys
sys.path.append('../../')
import os
import argparse
from datetime import datetime
from tqdm import tqdm
import numpy as np
import math
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import BallTree
import torch
import torch.utils.data
import torch.nn.functional as F
import utils.metrics as metrics
import utils.data_utils as data_utils
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def pc_normalize(pc):
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
class PartNormalDataset():
def __init__ (self, data, data_num, label, npoints, num_iter_per_shape=1, training=False):
self.data = data
self.data_num = data_num
self.label = label
self.npoints = npoints
self.num_iter_per_shape = num_iter_per_shape
def __getitem__(self, index):
index = index//self.num_iter_per_shape
npts = self.data_num[index]
pts = self.data[index, :npts]
choice = np.random.choice(npts, self.npoints, replace=True)
pts = pts[choice]
lbs = self.label[index][choice]
features = torch.ones(pts.shape[0], 1).float()
pts = torch.from_numpy(pts).float()
lbs = torch.from_numpy(lbs).long()
return pts, features, lbs, index
def __len__(self):
return self.data.shape[0] * self.num_iter_per_shape
def nearest_correspondance(pts_src, pts_dest, data_src):
tree = BallTree(pts_src, leaf_size=2)
_, indices = tree.query(pts_dest, k=1)
indices = indices.ravel()
data_dest = data_src[indices]
return data_dest
def get_model(model_name,input_channels, output_channels):
if model_name == "SegSmall":
from networks.network_seg import SegSmall as Net
return Net(input_channels, output_channels)
def train(args):
THREADS = 4
USE_CUDA = True
N_CLASSES = 50
EPOCHS = 200
MILESTONES = [60,120]
shapenet_labels = [['Airplane',4],
['Bag',2],
['Cap',2],
['Car',4],
['Chair',4],
['Earphone',3],
['Guitar',3],
['Knife',2],
['Lamp',4],
['Laptop',2],
['Motorbike',6],
['Mug',2],
['Pistol',3],
['Rocket',3],
['Skateboard',3],
['Table',3],]
category_range = []
count = 0
for element in shapenet_labels:
part_start = count
count += element[1]
part_end = count
category_range.append([part_start, part_end])
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
is_list_of_h5_list = not data_utils.is_h5_list(args.filelist)
if is_list_of_h5_list:
seg_list = data_utils.load_seg_list(args.filelist)
seg_list_idx = 0
filelist_train = seg_list[seg_list_idx]
seg_list_idx = seg_list_idx + 1
else:
filelist_train = args.filelist
data_train, labels, data_num_train, label_train, _ = data_utils.load_seg(filelist_train)
print("Done", data_train.shape)
print("Computing class weights (if needed, 1 otherwise)...")
if args.weighted:
frequences = []
for i in range(len(shapenet_labels)):
frequences.append((labels == i).sum())
frequences = np.array(frequences)
frequences = frequences.mean() / frequences
else:
frequences = [1 for _ in range(len(shapenet_labels))]
weights = torch.FloatTensor(frequences)
if USE_CUDA:
weights = weights.cuda()
print("Done")
print("Creating network...")
net = get_model(args.model, input_channels=1, output_channels=N_CLASSES)
net.cuda()
print("parameters", count_parameters(net))
ds = PartNormalDataset(data_train, data_num_train, label_train, npoints=args.npoints)
train_loader = torch.utils.data.DataLoader(ds, batch_size=args.batchsize, shuffle=True,
num_workers=THREADS
)
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, MILESTONES)
# create the model folder
time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
root_folder = os.path.join(args.savedir, "{}_b{}_pts{}_weighted{}_{}".format(args.model,args.batchsize, args.npoints, args.weighted, time_string))
os.makedirs(root_folder, exist_ok=True)
# create the log file
logs = open(os.path.join(root_folder, "log.txt"), "w")
for epoch in range(EPOCHS):
scheduler.step()
cm = np.zeros((N_CLASSES, N_CLASSES))
t = tqdm(train_loader, ncols=120, desc="Epoch {}".format(epoch))
for pts, features, seg, indices in t:
if USE_CUDA:
features = features.cuda()
pts = pts.cuda()
seg = seg.cuda()
optimizer.zero_grad()
outputs = net(features, pts)
# loss = F.cross_entropy(outputs.view(-1, N_CLASSES), seg.view(-1))
loss = 0
for i in range(pts.size(0)):
# get the number of part for the shape
object_label = labels[indices[i]]
part_start, part_end = category_range[object_label]
part_nbr = part_end - part_start
loss = loss + weights[object_label] * F.cross_entropy(outputs[i,:,part_start:part_end].view(-1, part_nbr), seg[i].view(-1)-part_start)
loss.backward()
optimizer.step()
outputs_np = outputs.cpu().detach().numpy()
for i in range(pts.size(0)):
# get the number of part for the shape
object_label = labels[indices[i]]
part_start, part_end = category_range[object_label]
part_nbr = part_end - part_start
outputs_np[i,:,:part_start] = -1e7
outputs_np[i,:,part_end:] = -1e7
output_np = np.argmax(outputs_np, axis=2).copy()
target_np = seg.cpu().numpy().copy()
cm_ = confusion_matrix(target_np.ravel(), output_np.ravel(), labels=list(range(N_CLASSES)))
cm += cm_
oa = "{:.3f}".format(metrics.stats_overall_accuracy(cm))
aa = "{:.3f}".format(metrics.stats_accuracy_per_class(cm)[0])
t.set_postfix(OA=oa, AA=aa)
# save the model
torch.save(net.state_dict(), os.path.join(root_folder, "state_dict.pth"))
# write the logs
logs.write("{} {} {} \n".format(epoch, oa, aa))
logs.flush()
logs.close()
def IoU_from_confusions(confusions):
"""
Computes IoU from confusion matrices.
:param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by
the last axes. n_c = number of classes
:param ignore_unclassified: (bool). True if the the first class should be ignored in the results
:return: ([..., n_c] np.float32) IoU score
"""
# Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a
# confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix)
TP = np.diagonal(confusions, axis1=-2, axis2=-1)
TP_plus_FN = np.sum(confusions, axis=-1)
TP_plus_FP = np.sum(confusions, axis=-2)
# Compute IoU
IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6)
# Compute mIoU with only the actual classes
mask = TP_plus_FN < 1e-3
counts = np.sum(1 - mask, axis=-1, keepdims=True)
mIoU = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6)
# If class is absent, place mIoU in place of 0 IoU to get the actual mean later
IoU += mask * mIoU
return IoU
def test(args):
THREADS = 4
USE_CUDA = True
N_CLASSES = 50
args.data_folder = os.path.join(args.rootdir, "test_data")
# create the output folders
output_folder = os.path.join(args.savedir,'_predictions2')
category_list = [(category, int(label_num)) for (category, label_num) in
[line.split() for line in open(args.category, 'r')]]
offset = 0
category_range = dict()
for category, category_label_seg_max in category_list:
category_range[category] = (offset, offset + category_label_seg_max)
offset = offset + category_label_seg_max
folder = os.path.join(output_folder, category)
if not os.path.exists(folder):
os.makedirs(folder)
input_filelist = []
output_filelist = []
output_ply_filelist = []
for category in sorted(os.listdir(args.data_folder)):
data_category_folder = os.path.join(args.data_folder, category)
for filename in sorted(os.listdir(data_category_folder)):
input_filelist.append(os.path.join(args.data_folder, category, filename))
output_filelist.append(os.path.join(output_folder, category, filename[0:-3] + 'seg'))
output_ply_filelist.append(os.path.join(output_folder + '_ply', category, filename[0:-3] + 'ply'))
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
data, label, data_num, label_test, _ = data_utils.load_seg(args.filelist_val) # no segmentation labels
# net = Net(input_channels=1, output_channels=N_CLASSES)
net = get_model(args.model, input_channels=1, output_channels=N_CLASSES)
net.load_state_dict(torch.load(os.path.join(args.savedir, "state_dict.pth")))
net.cuda()
net.eval()
ds = PartNormalDataset(data, data_num, label_test, npoints=args.npoints, num_iter_per_shape=args.ntree)
test_loader = torch.utils.data.DataLoader(ds, batch_size=args.batchsize, shuffle=False,
num_workers=THREADS
)
shapenet_labels = [['Airplane',4],
['Bag',2],
['Cap',2],
['Car',4],
['Chair',4],
['Earphone',3],
['Guitar',3],
['Knife',2],
['Lamp',4],
['Laptop',2],
['Motorbike',6],
['Mug',2],
['Pistol',3],
['Rocket',3],
['Skateboard',3],
['Table',3],]
cm = np.zeros((N_CLASSES, N_CLASSES))
t = tqdm(test_loader, ncols=120)
Confs = []
predictions = [None for _ in range(data.shape[0])]
predictions_max = [[] for _ in range(data.shape[0])]
with torch.no_grad():
for pts, features, seg, indices in t:
if USE_CUDA:
features = features.cuda()
pts = pts.cuda()
outputs = net(features, pts)
indices = np.int32(indices.numpy())
outputs = np.float32(outputs.cpu().numpy())
# save results
for i in range(pts.size(0)):
# shape id
shape_id = indices[i]
# pts_src
pts_src = pts[i].cpu().numpy()
# pts_dest
point_num = data_num[shape_id]
pts_dest = data[shape_id]
pts_dest = pts_dest[:point_num]
# get the number of part for the shape
object_label = label[indices[i]]
category = category_list[object_label][0]
part_start, part_end = category_range[category]
part_nbr = part_end - part_start
# get the segmentation correspongin to part range
seg_ = outputs[i][:,part_start:part_end]
# interpolate to original points
seg_ = nearest_correspondance(pts_src, pts_dest, seg_)
if predictions[shape_id] is None:
predictions[shape_id] = seg_
else:
predictions[shape_id] += seg_
predictions_max[shape_id].append(seg_)
for i in range(len(predictions)):
a = np.stack(predictions_max[i], axis=1)
a = np.argmax(a, axis=2)
a = np.apply_along_axis(np.bincount,1,a, minlength=6)
predictions_max[i] = np.argmax(a, axis=1)
# compute labels
for i in range(len(predictions)):
predictions[i] = np.argmax(predictions[i], axis=1)
def scores_from_predictions(predictions):
shape_ious = {cat[0]:[] for cat in category_list}
for shape_id, prediction in enumerate(predictions):
segp = prediction
cat = label[shape_id]
category = category_list[cat][0]
part_start, part_end = category_range[category]
part_nbr = part_end - part_start
point_num = data_num[shape_id]
segl = label_test[shape_id][:point_num] - part_start
part_ious = [0.0 for _ in range(part_nbr)]
for l in range(part_nbr):
if (np.sum(segl==l) == 0) and (np.sum(segp==l) == 0): # part is not present, no prediction as well
part_ious[l] = 1.0
else:
part_ious[l] = np.sum((segl==l) & (segp==l)) / float(np.sum((segl==l) | (segp==l)))
shape_ious[category].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
print(len(all_shape_ious))
mean_shape_ious = np.mean(list(shape_ious.values()))
for cat in sorted(shape_ious.keys()):
print('eval mIoU of %s:\t %f'%(cat, shape_ious[cat]))
print('eval mean mIoU: %f' % (mean_shape_ious))
print('eval mean mIoU (all shapes): %f' % (np.mean(all_shape_ious)))
scores_from_predictions(predictions)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--test", action="store_true")
parser.add_argument("--ply", action="store_true", help="save ply files (test mode)")
parser.add_argument("--savedir", default="results/", type=str)
parser.add_argument("--rootdir", type=str, required=True)
parser.add_argument("--batchsize", "-b", default=16, type=int)
parser.add_argument("--ntree", default=1, type=int)
parser.add_argument("--npoints", default=2500, type=int)
parser.add_argument("--weighted", action="store_true")
parser.add_argument("--model", default="SegSmall", type=str)
args = parser.parse_args()
args.filelist = os.path.join(args.rootdir, "train_files.txt")
args.filelist_val = os.path.join(args.rootdir,"test_files.txt")
args.category = os.path.join(args.rootdir, "categories.txt")
if args.test:
# if args.ntree == 1:
# test(args)
# else:
# test_multiple(args)
test(args)
else:
train(args)
if __name__ == '__main__':
main()