diff --git a/Entrepreneurial Capacity in Student/Dataset/Readme.md b/Entrepreneurial Capacity in Student/Dataset/Readme.md deleted file mode 100644 index d98bce308..000000000 --- a/Entrepreneurial Capacity in Student/Dataset/Readme.md +++ /dev/null @@ -1 +0,0 @@ -### Link to dataset https://www.kaggle.com/namanmanchanda/entrepreneurial-competency-in-university-students diff --git a/Entrepreneurial Capacity in Student/Dataset/data.csv b/Entrepreneurial Capacity in Student/Dataset/data.csv deleted file mode 100644 index dfb68d9fa..000000000 --- a/Entrepreneurial Capacity in Student/Dataset/data.csv +++ /dev/null @@ -1,220 +0,0 @@ -"EducationSector","IndividualProject","Age","Gender","City","Influenced","Perseverance","DesireToTakeInitiative","Competitiveness","SelfReliance","StrongNeedToAchieve","SelfConfidence","GoodPhysicalHealth","MentalDisorder","KeyTraits","ReasonsForLack","y" -"Engineering Sciences","No",19,"Male","Yes","No",2,2,3,3,2,2,3,"Yes","Passion","","1" -"Engineering Sciences","Yes",22,"Male","No","Yes",3,3,3,4,4,3,4,"Yes","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",18,"Male","Yes","No",3,4,3,3,3,4,4,"No","Passion","Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,3,3,3,4,3,3,"No","Resilience","Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",2,3,3,3,4,3,2,"Yes","Vision","","1" -"Engineering Sciences","No",19,"Male","Yes","Yes",3,3,3,3,3,3,3,"No","Positivity","","1" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",3,2,3,3,4,1,1,"No","Work Ethic","","1" -"Engineering Sciences","No",20,"Male","Yes","Yes",4,2,4,4,5,3,4,"Yes","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Lack of Knowledge, Not able to take a Financial Risk","0" -"Others","Yes",20,"Male","Yes","Yes",2,3,3,1,2,2,2,"No","Passion","Academic Pressure, Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",17,"Male","Yes","Yes",2,3,2,1,4,3,3,"Yes","Work Ethic","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","No",3,3,3,4,3,5,4,"No","Resilience","Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","Yes",3,3,4,4,5,4,5,"No","Passion","","1" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",4,4,4,4,4,4,3,"Yes","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",21,"Male","Yes","Yes",4,3,4,4,5,4,4,"No","Vision","","1" -"Others","No",20,"Male","No","Yes",2,1,2,3,3,2,3,"No","Passion","","1" -"Engineering Sciences","No",18,"Male","Yes","Yes",3,4,3,3,4,4,5,"No","Positivity","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,2,3,2,3,2,2,"Yes","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Parental Pressure","0" -"Engineering Sciences","No",21,"Male","Yes","No",4,3,4,4,4,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",4,4,4,5,5,3,4,"No","Passion","","1" -"Engineering Sciences","No",20,"Female","Yes","Yes",3,4,4,5,5,2,4,"Yes","Passion","Academic Pressure, Lack of Knowledge, Mental Block","0" -"Engineering Sciences","No",19,"Male","Yes","No",1,3,2,3,3,2,3,"Yes","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",21,"Female","Yes","Yes",4,5,4,4,5,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",2,3,3,2,3,2,3,"No","Vision","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","Yes",5,5,5,5,5,5,5,"No","Vision","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,3,3,4,3,3,3,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",18,"Male","Yes","Yes",3,4,3,4,5,4,4,"No","Vision","Lack of Knowledge","0" -"Art, Music or Design","Yes",21,"Male","Yes","Yes",3,3,3,3,3,3,3,"No","Passion","","1" -"Economic Sciences, Business Studies, Commerce and Law","No",20,"Male","Yes","No",4,4,4,4,4,4,4,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","No",23,"Female","Yes","Yes",2,3,3,3,3,3,3,"No","Work Ethic","","1" -"Engineering Sciences","No",18,"Male","Yes","Yes",4,4,4,5,5,4,3,"No","Passion","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",17,"Male","Yes","Yes",3,5,2,4,5,3,5,"Yes","Work Ethic","","1" -"Engineering Sciences","No",18,"Male","Yes","Yes",3,3,4,3,3,3,3,"No","Work Ethic","Academic Pressure, Unwillingness to take risk, Lack of Knowledge","0" -"Humanities and Social Sciences","No",19,"Male","Yes","Yes",4,4,4,4,4,4,4,"No","Vision","","1" -"Engineering Sciences","Yes",22,"Male","No","No",4,3,5,5,4,2,4,"No","Resilience","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Parental Pressure, Mental Block","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",3,3,3,4,5,5,3,"No","Positivity","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",21,"Male","Yes","Yes",4,4,3,4,4,3,5,"No","Passion","Unwillingness to take risk, Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","No",19,"Male","Yes","No",3,4,4,3,3,4,3,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Unwillingness to take risk, Lack of Knowledge","0" -"Economic Sciences, Business Studies, Commerce and Law","No",23,"Male","No","Yes",5,4,4,3,5,4,4,"No","Passion","","1" -"Engineering Sciences","No",18,"Male","Yes","No",3,4,4,5,5,3,5,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Unwillingness to take risk, Lack of Knowledge, Parental Pressure, Not able to take a Financial Risk","0" -"Engineering Sciences","No",21,"Male","Yes","No",3,4,3,3,3,4,4,"No","Positivity","Lack of Knowledge","0" -"Engineering Sciences","No",18,"Male","No","Yes",3,4,2,3,3,4,4,"No","Positivity","","1" -"Art, Music or Design","Yes",20,"Male","Yes","No",4,1,3,4,5,2,2,"Yes","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",26,"Male","No","Yes",2,3,2,3,3,2,3,"Yes","Vision","","1" -"Engineering Sciences","No",20,"Female","Yes","Yes",5,4,5,5,5,4,5,"No","Positivity","","1" -"Engineering Sciences","No",20,"Female","No","No",5,4,5,5,4,5,4,"Yes","Passion","Academic Pressure, Lack of Knowledge","0" -"Engineering Sciences","Yes",21,"Male","Yes","No",4,4,5,5,4,4,3,"No","Positivity","","1" -"Engineering Sciences","Yes",20,"Female","Yes","No",5,3,4,4,5,3,3,"No","Work Ethic","Unwillingness to take risk","0" -"Others","Yes",20,"Male","Yes","Yes",4,5,5,4,4,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Medicine, Health Sciences","Yes",19,"Female","Yes","Yes",1,1,1,1,1,1,1,"No","Positivity","","1" -"Engineering Sciences","Yes",21,"Female","Yes","Yes",4,5,5,5,5,4,4,"Yes","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",2,2,2,3,3,3,2,"No","Vision","","1" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",5,5,5,4,5,4,4,"No","Positivity","","1" -"Teaching Degree (e.g., B.Ed)","No",19,"Male","Yes","Yes",3,2,2,2,3,1,2,"No","Work Ethic","Academic Pressure, Lack of Knowledge, Parental Pressure, Mental Block, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",21,"Male","Yes","Yes",4,5,5,5,4,5,5,"No","Work Ethic","","1" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",4,4,5,5,5,5,5,"Yes","Passion","","1" -"Engineering Sciences","No",20,"Female","Yes","No",3,4,4,5,4,3,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",20,"Female","Yes","Yes",3,4,3,5,4,5,3,"No","Positivity","Lack of Knowledge, Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",19,"Male","Yes","No",3,3,3,4,2,4,4,"Yes","Work Ethic","Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,5,5,4,5,2,4,"Yes","Passion","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","Yes",3,4,3,3,4,3,4,"Yes","Work Ethic","Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",19,"Female","Yes","No",4,5,4,4,5,5,3,"Yes","Positivity","","1" -"Engineering Sciences","No",19,"Male","Yes","Yes",3,5,4,5,5,5,3,"No","Positivity","Academic Pressure","0" -"Engineering Sciences","No",20,"Male","Yes","Yes",5,5,5,5,5,5,5,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Unwillingness to take risk, Lack of Knowledge, Parental Pressure, Mental Block, Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",2,3,1,2,2,1,3,"No","Passion","","1" -"Engineering Sciences","Yes",22,"Male","No","No",5,5,5,5,5,5,5,"No","Positivity","","1" -"Engineering Sciences","No",19,"Male","No","Yes",4,5,5,5,4,4,5,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,4,4,3,4,3,5,"No","Work Ethic","","1" -"Mathematics or Natural Sciences","No",20,"Male","Yes","Yes",4,4,3,4,4,3,5,"No","Positivity","Lack of Knowledge","0" -"Art, Music or Design","Yes",24,"Male","Yes","Yes",4,5,5,4,4,4,5,"Yes","Work Ethic","","1" -"Engineering Sciences","No",19,"Male","Yes","Yes",2,2,3,3,3,1,2,"No","Resilience","Unwillingness to take risk","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",2,2,3,2,3,3,2,"No","Resilience","Lack of Knowledge","0" -"Engineering Sciences","No",20,"Male","Yes","Yes",4,4,5,4,4,4,4,"No","Positivity","","1" -"Medicine, Health Sciences","No",20,"Female","Yes","Yes",4,4,3,4,5,3,3,"No","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",21,"Female","Yes","No",2,2,2,3,2,2,2,"Yes","Resilience","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",5,5,3,5,5,3,3,"Yes","Positivity","","1" -"Others","Yes",21,"Female","Yes","No",4,4,5,4,3,3,3,"No","Passion","Academic Pressure","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",5,4,4,4,5,4,5,"Yes","Vision","","1" -"Engineering Sciences","No",19,"Male","No","Yes",4,5,4,5,5,4,4,"Yes","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",5,5,5,4,4,5,5,"Yes","Resilience","","1" -"Engineering Sciences","Yes",21,"Male","Yes","No",2,3,3,3,3,3,3,"No","Positivity","","1" -"Engineering Sciences","No",19,"Male","Yes","Yes",3,3,3,3,4,2,3,"No","Positivity","","1" -"Others","Yes",19,"Female","Yes","Yes",4,4,4,4,4,5,4,"Yes","Vision","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Female","No","Yes",3,5,4,5,5,5,5,"No","Resilience","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","Yes","No",4,5,4,4,5,5,4,"No","Positivity","Lack of Knowledge","0" -"Economic Sciences, Business Studies, Commerce and Law","No",18,"Male","Yes","Yes",4,4,3,4,5,5,4,"Yes","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge","0" -"Engineering Sciences","No",20,"Male","Yes","Yes",1,1,1,5,5,5,5,"Yes","Positivity","","1" -"Economic Sciences, Business Studies, Commerce and Law","No",19,"Male","No","Yes",4,5,5,5,5,4,5,"Yes","Passion","Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",4,4,4,4,4,4,4,"No","Positivity","","1" -"Others","No",20,"Male","Yes","Yes",3,2,3,2,2,3,3,"No","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",20,"Male","Yes","No",4,5,4,5,5,3,4,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Humanities and Social Sciences","Yes",21,"Male","Yes","Yes",4,3,3,5,4,3,4,"Yes","Positivity","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",20,"Male","No","No",3,4,3,4,5,2,3,"No","Vision","Unwillingness to take risk","0" -"Engineering Sciences","Yes",22,"Male","Yes","Yes",2,5,5,3,4,4,5,"Yes","Positivity","Lack of Knowledge, Parental Pressure","0" -"Medicine, Health Sciences","Yes",20,"Male","Yes","Yes",4,5,5,4,4,5,4,"No","Positivity","","1" -"Others","No",19,"Male","Yes","Yes",3,3,2,2,3,3,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",20,"Male","Yes","Yes",3,3,3,4,4,3,4,"Yes","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",18,"Female","Yes","No",4,5,5,4,5,4,4,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",21,"Male","No","No",4,4,4,4,4,4,4,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Others","No",22,"Male","Yes","Yes",2,2,3,3,3,3,3,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","No","Yes",5,4,5,5,5,4,3,"No","Vision","","1" -"Economic Sciences, Business Studies, Commerce and Law","No",19,"Female","Yes","Yes",4,3,3,4,5,4,3,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge","0" -"Language and Cultural Studies","No",19,"Male","No","Yes",3,5,3,3,5,5,2,"No","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Not willing to start a venture in India and waiting for future relocation","0" -"Others","No",19,"Male","Yes","Yes",4,3,3,4,5,5,5,"No","Passion","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,3,5,3,5,4,2,"Yes","Vision","Academic Pressure, Unwillingness to take risk, Lack of Knowledge","0" -"Medicine, Health Sciences","Yes",20,"Female","Yes","No",5,4,5,5,5,5,3,"Yes","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Humanities and Social Sciences","No",20,"Male","Yes","Yes",4,4,5,5,5,5,5,"No","Passion","","1" -"Engineering Sciences","Yes",20,"Male","Yes","No",5,4,4,4,4,5,3,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",22,"Male","No","Yes",3,4,4,4,5,5,5,"No","Passion","Parental Pressure, Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","Yes",4,3,5,4,5,4,3,"Yes","Work Ethic","","1" -"Art, Music or Design","Yes",20,"Male","Yes","Yes",5,5,5,5,4,5,4,"Yes","Passion","Not willing to start a venture in India and waiting for future relocation","0" -"Medicine, Health Sciences","No",20,"Male","Yes","No",5,4,4,5,5,4,5,"No","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Humanities and Social Sciences","No",19,"Female","Yes","Yes",3,5,2,4,4,4,2,"No","Positivity","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",5,5,4,4,5,5,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Lack of Knowledge","0" -"Engineering Sciences","Yes",20,"Male","Yes","No",4,3,5,4,5,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",19,"Male","Yes","Yes",4,4,4,5,5,4,5,"No","Positivity","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",5,5,5,5,4,4,4,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",18,"Male","Yes","No",2,3,3,2,2,2,3,"No","Positivity","Academic Pressure, Not able to take a Financial Risk","0" -"Economic Sciences, Business Studies, Commerce and Law","No",17,"Male","Yes","No",5,4,4,5,5,5,5,"No","Positivity","Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","No","Yes",3,4,5,5,5,4,5,"No","Work Ethic","Mental Block","0" -"Engineering Sciences","No",20,"Male","Yes","No",2,3,3,2,3,2,2,"Yes","Positivity","Lack of Knowledge, Not able to take a Financial Risk","0" -"Art, Music or Design","No",20,"Female","Yes","Yes",4,4,3,4,5,4,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Medicine, Health Sciences","Yes",20,"Male","Yes","Yes",3,5,5,5,3,4,5,"No","Vision","","1" -"Engineering Sciences","Yes",20,"Female","Yes","No",3,4,4,4,4,3,3,"No","Passion","","1" -"Engineering Sciences","Yes",21,"Male","Yes","Yes",5,3,4,4,4,4,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Mathematics or Natural Sciences","Yes",20,"Male","Yes","Yes",2,3,2,1,2,3,2,"Yes","Vision","Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","No",20,"Female","Yes","No",5,5,5,5,5,5,5,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",21,"Male","Yes","Yes",3,5,5,4,5,5,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",21,"Male","Yes","Yes",4,4,4,4,4,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",4,5,4,4,4,5,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","No",19,"Male","Yes","Yes",3,3,3,3,3,3,3,"No","Positivity","Academic Pressure, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",3,5,4,4,5,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",4,3,3,3,4,4,4,"No","Passion","Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",3,4,4,4,5,5,3,"No","Passion","","1" -"Others","No",19,"Female","Yes","Yes",4,5,5,4,5,4,3,"No","Passion","Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,3,3,4,4,4,4,"Yes","Work Ethic","","1" -"Art, Music or Design","Yes",19,"Male","Yes","Yes",3,3,3,3,3,3,3,"No","Passion","Academic Pressure, Unwillingness to take risk, Lack of Knowledge, Parental Pressure, Mental Block, Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","No",20,"Male","Yes","No",1,2,1,2,3,2,2,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",19,"Male","Yes","No",5,5,5,5,5,5,5,"Yes","Vision","","1" -"Others","Yes",20,"Male","Yes","Yes",3,4,4,4,3,3,4,"Yes","Passion","Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","No",20,"Male","No","Yes",2,2,3,2,3,3,2,"Yes","Resilience","Academic Pressure, Lack of Knowledge, Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",4,5,5,5,4,5,4,"No","Work Ethic","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,4,3,5,5,5,5,"No","Passion","Academic Pressure, Lack of Knowledge, Parental Pressure","0" -"Engineering Sciences","Yes",20,"Male","Yes","No",4,4,4,4,4,4,4,"No","Positivity","","1" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",2,2,2,2,2,2,2,"No","Vision","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Not able to take a Financial Risk","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",20,"Male","Yes","Yes",3,4,3,5,4,3,2,"Yes","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","No",21,"Male","No","Yes",3,4,3,4,5,3,4,"Yes","Passion","Academic Pressure","0" -"Engineering Sciences","Yes",20,"Male","No","No",3,4,5,5,3,4,4,"No","Passion","Lack of Knowledge, Parental Pressure","0" -"Medicine, Health Sciences","No",19,"Male","Yes","No",3,1,3,4,3,3,5,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Lack of Knowledge, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",20,"Male","No","Yes",4,4,4,4,5,5,5,"No","Positivity","Academic Pressure","0" -"Economic Sciences, Business Studies, Commerce and Law","No",18,"Female","Yes","Yes",4,3,4,4,4,5,5,"Yes","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","No",22,"Male","Yes","No",2,3,2,3,3,3,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","No",19,"Male","Yes","Yes",2,3,2,3,2,2,1,"No","Passion","","1" -"Art, Music or Design","No",19,"Female","Yes","Yes",2,2,2,2,2,2,2,"Yes","Positivity","","1" -"Medicine, Health Sciences","No",17,"Female","Yes","No",3,2,1,3,3,2,3,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Mathematics or Natural Sciences","No",18,"Female","Yes","Yes",2,1,3,1,2,3,4,"No","Work Ethic","Academic Pressure","0" -"Others","Yes",20,"Female","Yes","No",2,2,2,2,2,1,3,"No","Positivity","","1" -"Others","Yes",19,"Male","Yes","Yes",4,5,5,5,5,4,4,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Unwillingness to take risk","0" -"Art, Music or Design","No",22,"Female","Yes","Yes",4,3,4,5,5,4,3,"No","Positivity","Academic Pressure","0" -"Art, Music or Design","Yes",21,"Male","Yes","Yes",2,1,2,2,2,1,1,"No","Vision","Academic Pressure","0" -"Economic Sciences, Business Studies, Commerce and Law","No",20,"Female","No","Yes",2,1,1,2,2,2,1,"No","Resilience","Academic Pressure, Unwillingness to take risk, Parental Pressure, Not able to take a Financial Risk","0" -"Art, Music or Design","No",21,"Male","No","No",1,1,1,1,5,5,5,"No","Passion","Not able to take a Financial Risk, Not willing to start a venture in India and waiting for future relocation","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",25,"Female","Yes","Yes",4,4,3,3,3,4,4,"No","Passion","Lack of Knowledge, Parental Pressure, Mental Block, Not able to take a Financial Risk","0" -"Medicine, Health Sciences","Yes",22,"Male","No","Yes",2,1,2,3,2,3,3,"Yes","Vision","Academic Pressure, Unwillingness to take risk, Not able to take a Financial Risk","0" -"Art, Music or Design","Yes",21,"Male","No","Yes",2,2,3,3,3,3,3,"No","Passion","Not willing to start a venture in India and waiting for future relocation","0" -"Art, Music or Design","Yes",21,"Male","Yes","No",4,4,4,3,4,5,5,"No","Passion","Academic Pressure, Lack of Knowledge, Not able to take a Financial Risk","0" -"Teaching Degree (e.g., B.Ed)","Yes",18,"Male","Yes","Yes",5,5,5,5,5,5,5,"No","Vision","","1" -"Medicine, Health Sciences","No",19,"Female","Yes","No",4,5,5,5,5,5,5,"Yes","Vision","Parental Pressure","0" -"Others","Yes",22,"Female","Yes","No",3,3,3,3,3,3,2,"No","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Art, Music or Design","No",21,"Female","Yes","Yes",4,5,5,5,5,4,2,"Yes","Positivity","Academic Pressure","0" -"Teaching Degree (e.g., B.Ed)","Yes",20,"Male","Yes","Yes",4,4,4,4,4,4,4,"Yes","Work Ethic","","1" -"Engineering Sciences","Yes",18,"Female","Yes","Yes",4,3,4,4,3,3,4,"No","Passion","Lack of Knowledge","0" -"Engineering Sciences","No",18,"Male","No","Yes",3,3,4,4,4,3,4,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Art, Music or Design","Yes",21,"Male","Yes","Yes",3,4,4,4,5,4,5,"Yes","Passion","","1" -"Art, Music or Design","Yes",19,"Female","Yes","No",2,2,2,2,1,2,2,"No","Passion","Not able to take a Financial Risk","0" -"Others","Yes",20,"Male","Yes","Yes",2,3,3,3,3,3,3,"No","Work Ethic","","1" -"Engineering Sciences","Yes",20,"Male","No","Yes",2,1,1,2,3,1,3,"No","Passion","","1" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",4,5,5,4,5,5,5,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Not able to take a Financial Risk","0" -"Art, Music or Design","Yes",19,"Female","Yes","Yes",4,5,5,5,5,5,5,"No","Passion","","1" -"Humanities and Social Sciences","No",19,"Female","No","No",2,2,1,2,2,2,3,"No","Positivity","","1" -"Engineering Sciences","No",18,"Male","Yes","Yes",3,3,2,2,3,3,2,"No","Work Ethic","","1" -"Others","Yes",20,"Female","Yes","No",4,5,4,4,3,5,5,"Yes","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure, Lack of Knowledge, Parental Pressure, Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",22,"Male","No","Yes",4,3,4,4,5,3,4,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Lack of Knowledge, Not able to take a Financial Risk","0" -"Others","Yes",19,"Male","Yes","Yes",4,3,3,4,4,3,3,"No","Work Ethic","","1" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",3,4,5,5,4,4,2,"No","Work Ethic","","1" -"Economic Sciences, Business Studies, Commerce and Law","No",20,"Male","Yes","Yes",4,5,5,4,5,4,5,"Yes","Passion","","1" -"Art, Music or Design","Yes",19,"Male","Yes","Yes",3,4,3,4,5,4,4,"No","Vision","","1" -"Engineering Sciences","No",17,"Male","Yes","Yes",5,5,4,4,5,5,4,"No","Positivity","Lack of Knowledge, Not able to take a Financial Risk","0" -"Others","No",21,"Female","No","Yes",3,1,2,3,2,2,1,"Yes","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Economic Sciences, Business Studies, Commerce and Law","Yes",20,"Female","Yes","No",4,4,4,4,4,4,2,"Yes","Work Ethic","Academic Pressure","0" -"Economic Sciences, Business Studies, Commerce and Law","No",18,"Female","Yes","No",4,5,3,2,3,1,1,"Yes","Passion","Lack of Knowledge, Mental Block, Not able to take a Financial Risk","0" -"Engineering Sciences","No",17,"Male","No","Yes",3,4,4,2,3,2,3,"No","Passion","Academic Pressure, Unwillingness to take risk, Lack of Knowledge","0" -"Others","Yes",21,"Female","Yes","No",4,5,4,5,4,4,4,"Yes","Positivity","","1" -"Others","Yes",19,"Female","No","Yes",4,4,4,5,4,4,4,"No","Passion","","1" -"Art, Music or Design","Yes",20,"Male","Yes","Yes",2,3,2,3,2,3,2,"No","Positivity","","1" -"Engineering Sciences","No",20,"Male","Yes","Yes",4,4,4,5,4,4,4,"No","Work Ethic","","1" -"Engineering Sciences","No",19,"Male","Yes","Yes",5,5,5,5,5,5,5,"No","Positivity","","1" -"Engineering Sciences","Yes",19,"Female","Yes","No",3,4,5,4,4,3,3,"Yes","Work Ethic","Academic Pressure, Unwillingness to take risk, Lack of Knowledge","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",3,4,5,5,4,5,5,"No","Positivity","","1" -"Art, Music or Design","Yes",19,"Male","Yes","Yes",4,5,5,5,4,5,4,"No","Passion","Academic Pressure","0" -"Engineering Sciences","No",19,"Male","Yes","No",3,3,3,3,3,3,3,"No","Positivity","Unwillingness to take risk","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",4,4,4,4,4,5,3,"No","Work Ethic","","1" -"Engineering Sciences","No",19,"Male","No","Yes",4,5,5,4,4,4,5,"No","Positivity","","1" -"Mathematics or Natural Sciences","Yes",17,"Male","Yes","Yes",4,5,5,3,4,4,4,"No","Vision","Academic Pressure","0" -"Art, Music or Design","Yes",20,"Female","Yes","Yes",3,4,3,4,3,4,3,"Yes","Positivity","","1" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",2,3,3,2,3,2,2,"No","Passion","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",20,"Male","Yes","Yes",4,4,5,3,4,4,5,"Yes","Positivity","","1" -"Engineering Sciences","Yes",21,"Male","Yes","Yes",4,5,4,5,4,4,3,"Yes","Positivity","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else)","0" -"Engineering Sciences","Yes",21,"Female","No","No",2,2,3,3,3,3,2,"No","Positivity","","1" -"Engineering Sciences","No",20,"Male","Yes","No",4,5,4,4,5,5,5,"No","Vision","","1" -"Economic Sciences, Business Studies, Commerce and Law","Yes",19,"Male","Yes","No",2,2,3,3,2,2,3,"No","Positivity","Lack of Knowledge, Mental Block","0" -"Engineering Sciences","Yes",20,"Female","Yes","Yes",2,3,2,3,3,3,2,"No","Passion","","1" -"Economic Sciences, Business Studies, Commerce and Law","No",19,"Male","Yes","Yes",4,5,5,5,5,5,5,"Yes","Vision","","1" -"Art, Music or Design","Yes",20,"Female","Yes","Yes",4,5,5,4,4,5,5,"No","Work Ethic","","1" -"Engineering Sciences","No",19,"Male","Yes","No",3,2,3,3,4,2,4,"Yes","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Not able to take a Financial Risk","0" -"Engineering Sciences","Yes",19,"Male","Yes","Yes",4,5,4,3,4,4,5,"Yes","Positivity","","1" -"Engineering Sciences","Yes",19,"Male","Yes","No",2,2,2,2,2,2,2,"No","Work Ethic","Just not interested! (Want to work in the corporate sector, or for the government or pursue research or something else), Academic Pressure","0" -"Engineering Sciences","Yes",22,"Female","Yes","Yes",3,4,4,3,4,4,3,"No","Vision","","1" -"Engineering Sciences","No",19,"Male","Yes","No",1,2,2,3,3,2,2,"No","Passion","Lack of Knowledge","0" -"Engineering Sciences","Yes",18,"Male","No","Yes",3,5,3,5,5,5,2,"No","Passion","","1" diff --git a/Entrepreneurial Capacity in Student/Images/Education.png b/Entrepreneurial Capacity in Student/Images/Education.png deleted file mode 100644 index a0a54e865..000000000 Binary files a/Entrepreneurial Capacity in Student/Images/Education.png and /dev/null differ diff --git a/Entrepreneurial Capacity in Student/Images/Histogram(y).png b/Entrepreneurial Capacity in Student/Images/Histogram(y).png deleted file mode 100644 index 03483b439..000000000 Binary files a/Entrepreneurial Capacity in Student/Images/Histogram(y).png and /dev/null differ diff --git a/Entrepreneurial Capacity in Student/Images/features.png b/Entrepreneurial Capacity in Student/Images/features.png deleted file mode 100644 index 27f52601c..000000000 Binary files a/Entrepreneurial Capacity in Student/Images/features.png and /dev/null differ diff --git a/Entrepreneurial Capacity in Student/Model/Entrepreneurial_Capacity_in_Student.ipynb b/Entrepreneurial Capacity in Student/Model/Entrepreneurial_Capacity_in_Student.ipynb deleted file mode 100644 index 035b622f9..000000000 --- a/Entrepreneurial Capacity in Student/Model/Entrepreneurial_Capacity_in_Student.ipynb +++ /dev/null @@ -1,1715 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "Entrepreneurial Capacity in Student.ipynb", - "provenance": [], - "collapsed_sections": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "**IMPORTING LIBRARIES**" - ], - "metadata": { - "id": "lucQUHf-W7ZJ" - } - }, - { - "cell_type": "code", - "execution_count": 167, - "metadata": { - "id": "tTMMhRop2XhO" - }, - "outputs": [], - "source": [ - "import numpy as np # linear algebra\n", - "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", - "\n", - "# keeps the plots in one place. calls image as static pngs\n", - "%matplotlib inline \n", - "import matplotlib.pyplot as plt # side-stepping mpl backend\n", - "import seaborn as sns" - ] - }, - { - "cell_type": "code", - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\") #to avoid printing warnings " - ], - "metadata": { - "id": "uxf4pxMcEY8D" - }, - "execution_count": 168, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**DATA EXTRACTION**" - ], - "metadata": { - "id": "zqfK58-7NVL6" - } - }, - { - "cell_type": "code", - "source": [ - "dataset = pd.read_csv(\"data.csv\",header = 0) #read csv files\n", - "dataset.head() #read top 5 rows" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 409 - }, - "id": "7HxzepWe2wgJ", - "outputId": "eca020eb-224a-433c-9562-8d01578ce683" - }, - "execution_count": 169, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EducationSectorIndividualProjectAgeGenderCityInfluencedPerseveranceDesireToTakeInitiativeCompetitivenessSelfRelianceStrongNeedToAchieveSelfConfidenceGoodPhysicalHealthMentalDisorderKeyTraitsReasonsForLacky
0Engineering SciencesNo19MaleYesNo2233223YesPassionNaN1
1Engineering SciencesYes22MaleNoYes3334434YesVisionJust not interested! (Want to work in the corp...0
2Engineering SciencesNo18MaleYesNo3433344NoPassionNot willing to start a venture in India and wa...0
3Engineering SciencesYes20MaleYesYes3333433NoResilienceNot able to take a Financial Risk0
4Engineering SciencesYes19MaleYesYes2333432YesVisionNaN1
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " EducationSector ... y\n", - "0 Engineering Sciences ... 1\n", - "1 Engineering Sciences ... 0\n", - "2 Engineering Sciences ... 0\n", - "3 Engineering Sciences ... 0\n", - "4 Engineering Sciences ... 1\n", - "\n", - "[5 rows x 17 columns]" - ] - }, - "metadata": {}, - "execution_count": 169 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.info()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5e9RQXMH3FTb", - "outputId": "434a02a6-129f-4841-c2da-6aeff55f62ad" - }, - "execution_count": 170, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "RangeIndex: 219 entries, 0 to 218\n", - "Data columns (total 17 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 EducationSector 219 non-null object\n", - " 1 IndividualProject 219 non-null object\n", - " 2 Age 219 non-null int64 \n", - " 3 Gender 219 non-null object\n", - " 4 City 219 non-null object\n", - " 5 Influenced 219 non-null object\n", - " 6 Perseverance 219 non-null int64 \n", - " 7 DesireToTakeInitiative 219 non-null int64 \n", - " 8 Competitiveness 219 non-null int64 \n", - " 9 SelfReliance 219 non-null int64 \n", - " 10 StrongNeedToAchieve 219 non-null int64 \n", - " 11 SelfConfidence 219 non-null int64 \n", - " 12 GoodPhysicalHealth 219 non-null int64 \n", - " 13 MentalDisorder 219 non-null object\n", - " 14 KeyTraits 219 non-null object\n", - " 15 ReasonsForLack 128 non-null object\n", - " 16 y 219 non-null int64 \n", - "dtypes: int64(9), object(8)\n", - "memory usage: 29.2+ KB\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**DATA PREPARATION**" - ], - "metadata": { - "id": "nlCofx06NwRJ" - } - }, - { - "cell_type": "code", - "source": [ - "dataset.isnull().sum()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "RaNtOQlX4F0V", - "outputId": "741002a0-882c-4e9a-953f-7660a8f07a2e" - }, - "execution_count": 171, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "EducationSector 0\n", - "IndividualProject 0\n", - "Age 0\n", - "Gender 0\n", - "City 0\n", - "Influenced 0\n", - "Perseverance 0\n", - "DesireToTakeInitiative 0\n", - "Competitiveness 0\n", - "SelfReliance 0\n", - "StrongNeedToAchieve 0\n", - "SelfConfidence 0\n", - "GoodPhysicalHealth 0\n", - "MentalDisorder 0\n", - "KeyTraits 0\n", - "ReasonsForLack 91\n", - "y 0\n", - "dtype: int64" - ] - }, - "metadata": {}, - "execution_count": 171 - } - ] - }, - { - "cell_type": "code", - "source": [ - "#dropping unnecessary data from dataset\n", - "dataset.drop('ReasonsForLack',axis=1,inplace=True) \n" - ], - "metadata": { - "id": "WdXPBOnr4lGg" - }, - "execution_count": 172, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "dataset.describe() #getting an overview of dataset" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 300 - }, - "id": "mYIS-2V35BIm", - "outputId": "309b0e45-1f3f-45c4-ff3c-04adf42d90f6" - }, - "execution_count": 173, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AgePerseveranceDesireToTakeInitiativeCompetitivenessSelfRelianceStrongNeedToAchieveSelfConfidenceGoodPhysicalHealthy
count219.000000219.000000219.000000219.000000219.000000219.000000219.000000219.000000219.000000
mean19.7534253.3515983.6210053.5890413.7214613.9086763.5753423.5616440.415525
std1.2898420.9952341.1524671.1108591.0536291.0230681.1200981.1002870.493941
min17.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000000.000000
25%19.0000003.0000003.0000003.0000003.0000003.0000003.0000003.0000000.000000
50%20.0000003.0000004.0000004.0000004.0000004.0000004.0000004.0000000.000000
75%20.0000004.0000005.0000004.5000005.0000005.0000004.0000004.0000001.000000
max26.0000005.0000005.0000005.0000005.0000005.0000005.0000005.0000001.000000
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " Age Perseverance ... GoodPhysicalHealth y\n", - "count 219.000000 219.000000 ... 219.000000 219.000000\n", - "mean 19.753425 3.351598 ... 3.561644 0.415525\n", - "std 1.289842 0.995234 ... 1.100287 0.493941\n", - "min 17.000000 1.000000 ... 1.000000 0.000000\n", - "25% 19.000000 3.000000 ... 3.000000 0.000000\n", - "50% 20.000000 3.000000 ... 4.000000 0.000000\n", - "75% 20.000000 4.000000 ... 4.000000 1.000000\n", - "max 26.000000 5.000000 ... 5.000000 1.000000\n", - "\n", - "[8 rows x 9 columns]" - ] - }, - "metadata": {}, - "execution_count": 173 - } - ] - }, - { - "cell_type": "code", - "source": [ - "# size of the dataframe\n", - "len(dataset)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Oc4p890A6gtn", - "outputId": "e50c69ef-d26d-456a-d51f-db864dbf11f3" - }, - "execution_count": 174, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "219" - ] - }, - "metadata": {}, - "execution_count": 174 - } - ] - }, - { - "cell_type": "code", - "source": [ - "#finding unique values of 'y' column of dataset\n", - "dataset.y.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "GbFClEiz6sKt", - "outputId": "510942fa-c2a3-4f75-cd75-3b87382374b7" - }, - "execution_count": 175, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1, 0])" - ] - }, - "metadata": {}, - "execution_count": 175 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.IndividualProject.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "aYUNzLk8-Q8c", - "outputId": "16b490fa-f326-40ae-b88f-bc3e9bfbe0a6" - }, - "execution_count": 176, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['No', 'Yes'], dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 176 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.City.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "B9aF1zQv-bGd", - "outputId": "0989e9f1-cf60-4493-dd47-cc657b71665b" - }, - "execution_count": 177, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['Yes', 'No'], dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 177 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.Influenced.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "VfwXGvhb-kp4", - "outputId": "b59783f2-7aa9-4b17-f5bc-0f53a07ef73e" - }, - "execution_count": 178, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['No', 'Yes'], dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 178 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.Gender.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "peArCsSh-pH_", - "outputId": "a2392e25-24f0-411b-aef2-a2786f1a85f6" - }, - "execution_count": 179, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['Male', 'Female'], dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 179 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.MentalDisorder.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "I4mwD2Qw-w0W", - "outputId": "25c6ccac-e21d-41eb-f8dc-1565cc5aa8dd" - }, - "execution_count": 180, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['Yes', 'No'], dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 180 - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.KeyTraits.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "e_7wT2IaIKuI", - "outputId": "23275d49-f737-4c23-a05a-a5d344149d1f" - }, - "execution_count": 181, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['Passion', 'Vision', 'Resilience', 'Positivity', 'Work Ethic'],\n", - " dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 181 - } - ] - }, - { - "cell_type": "code", - "source": [ - "# encoding IndividualProject', 'Gender', 'City', 'Influenced','MentalDisorder'\n", - "dataset['IndividualProject'] = dataset['IndividualProject'].map({'Yes':1,'No':0}) \n", - "dataset['City'] = dataset['City'].map({'Yes':1,'No':0}) \n", - "dataset['Influenced'] = dataset['Influenced'].map({'Yes':1,'No':0}) \n", - "dataset['Gender'] = dataset['Gender'].map({'Male':1,'Female':0}) \n", - "dataset['MentalDisorder'] = dataset['MentalDisorder'].map({'Yes':1,'No':0}) \n", - "dataset['KeyTraits'] = dataset['KeyTraits'].map({'Passion':0, 'Vision':1, 'Resilience':2, 'Positivity':3, 'Work Ethic': 4})" - ], - "metadata": { - "id": "5azkRjZ78_e7" - }, - "execution_count": 182, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "dataset.head()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 357 - }, - "id": "GUmAOBGzHqNH", - "outputId": "41e8eb36-bfa5-491c-e46f-d7aeb6e0f258" - }, - "execution_count": 183, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EducationSectorIndividualProjectAgeGenderCityInfluencedPerseveranceDesireToTakeInitiativeCompetitivenessSelfRelianceStrongNeedToAchieveSelfConfidenceGoodPhysicalHealthMentalDisorderKeyTraitsy
0Engineering Sciences0191102233223101
1Engineering Sciences1221013334434110
2Engineering Sciences0181103433344000
3Engineering Sciences1201113333433020
4Engineering Sciences1191112333432111
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " EducationSector IndividualProject Age ... MentalDisorder KeyTraits y\n", - "0 Engineering Sciences 0 19 ... 1 0 1\n", - "1 Engineering Sciences 1 22 ... 1 1 0\n", - "2 Engineering Sciences 0 18 ... 0 0 0\n", - "3 Engineering Sciences 1 20 ... 0 2 0\n", - "4 Engineering Sciences 1 19 ... 1 1 1\n", - "\n", - "[5 rows x 16 columns]" - ] - }, - "metadata": {}, - "execution_count": 183 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**DATA EXPLORATION**" - ], - "metadata": { - "id": "O8X8ea0_N3jU" - } - }, - { - "cell_type": "code", - "source": [ - "plt.hist(dataset['y'])\n", - "plt.title('Result (1:yes 0:no)')\n", - "plt.show() #plotting a histogram " - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 281 - }, - "id": "NQs2_ove7fjc", - "outputId": "938cd201-f16c-429d-ddc3-2381b29da908" - }, - "execution_count": 184, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT1UlEQVR4nO3de7TdZX3n8fdHIuIFCZozSBMkuIrVSGtlUoujRVpqi1gJa8YysLwEm2mKdZw6dGpBXYOrHWdg2dbLDFObCkOwijD0QlqwlnKR0RacgyK3SI0IEhrIUQFBqoXynT/2L3ZPOCdnn7P3Pofz8H6tlXV+v+d3+z7n8tnPfn5776SqkCS15SmLXYAkafQMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuWpKSXJ3k383xmF9J8qFx1bRUJHl9kgsXuw6Nl+GuoSW5I8k/JHkoyT1JzkvyrAW8/slJPjfLPnsD7wU+0Ne2KcltSR5LcvKYy5xVkqclOTfJd7rv46njuE5V/TnwkiQ/No7z64nBcNeovL6qngX8OPAy4PRFrmd364CvVNXdfW1fBn4V+OLilPQ47wMOBQ4Gfhp4V5JjxnStC4CNYzq3ngAMd41UVd0DfIZeyAOQ5Igkf5Pk/iRfTnJU37aTk9ye5MEkX0/yxq79fUn+qG+/1UkqybL+6yV5MfBR4BXdM4f7ZyjttcBnd6v17Kq6AvjenvqU5HlJHk7y3L62w5NMJXlqt/5LSbYmuS/JZ5Ic3LUnyQeT7OxG5DclOWyGS60Hfruq7quqrcAfAifPUNNRSbYn+fXu3DuSvLVv+35Jzu9qvDPJe5P0/71fDbxuT/3W0ma4a6SSrKIXpNu69ZXApcB/AZ4D/Cfgj5NMJHkm8BHgtVW1L/CvgBvmcr0uBE8B/raqnlVVy2fY9UeB2+bQj1fteqDoHrCuBk7o2+XNwKeq6pEk64B3A/8amAD+D72RMcDPAUcCLwT2687xrWmutz9wIL1nE7t8GXhJ3z73J3lV3/bndedcCWwAzu7OA/Dfu20vAF4NvAV4a9+xW4HVSZ49wLdDS5DhrlH5syQPAncBO4EzuvY3AZdV1WVV9VhVXQ5MAsd22x8DDkvy9KraUVW3jKm+5cCDg+5cVZ/b7YFiM72+kGQv4CTg4922U4D/VlVbq+pR4L8CP96N3h8B9gVeBKTbZ8c0l9x1j+KBvrYHumN31bS8qvrvLTwC/FZVPVJVlwEPAT/S1XcicHpVPVhVdwC/S+8BaZdd34uZHgy1xBnuGpXju9H3UfSCbEXXfjDwi92o8/5uNPwq4MCq+i7wb+mF444klyZ50Zjqu4++oJyHS4A1SQ4BXgM8UFVf6LYdDHy4r3/fBgKsrKorgf8BnA3s7G7iTjdafqj72r/t2ez5Aelb3YPJLg/Te5BYATwVuLNv2530Rvi77PpezDSNpSXOcNdIVdVngfOA3+ma7gI+3o06d/17ZlWd2e3/map6Db0pia/Qm2cG+C7wjL5TP29Plx2gtBvpTY3MS1V9D7iI3uj9zfzzqB16ffyV3fr49Kr6m+7Yj1TVvwTWdDX8xjTnvw/YAby0r/mlwHyeyXyT3qj+4L625wP9N5NfDNxRVd+Zx/m1BBjuGocPAa9J8lLgj4DXJ/n5JHsl2ae7GbgqyQFJ1nVz79+nN3p9rDvHDcCRSZ6fZD/2/Oqbe4FV3csdZ3IZvbnnH0iyd5J96I2yn9rVtqe/ifPp3eA8jv8/3D8KnJ7kJd1590vyi93yTyT5ye7G63fp3bx9jOmdD7w3yf7dM5hfpvdAOSdV9U/0Hojen2TfbnroVHo/i11eDXx6rufW0mG4a+SqaopeUP3nqrqL3ssQ3w1M0Rvl/ga9372n0Audv6c3lfFq4G3dOS4HLqQ34r4e+Is9XPJKeiPce5J8c4Z9/hx4UZIf6mv7K+Af6N3I3dQtHwmQ5KeSPNR/gqr6PL1g/mJV3dnX/qfAWcCnknwHuJneTWXoTa38Ib1poTvp3Uz9ANM7A/hat99ngQ9U1V/u2ti9Guin9vB96PcOeg8mtwOfAz4JnNu3/STgDwY8l5ag+J916MkiyUZgTVW9c4hzXAl8sqo+NrrKFlaS1wNvrqoTZt1ZS5bhLg0oyU8AlwMHVdXAr7yRFoPTMtIAkmwG/hp4p8GupcCRuyQ1yJG7JDVo2ey7jN+KFStq9erVi12GJC0p119//TeramK6bU+IcF+9ejWTk5OLXYYkLSlJ7pxpm9MyktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoCfEO1SHsfq0Sxft2nec+bpFu7Yk7Ykjd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDZg33JOcm2Znk5r62DyT5SpIbk/xpkuV9205Psi3JbUl+flyFS5JmNsjI/TzgmN3aLgcOq6ofA/4OOB0gyRrgROAl3TH/M8leI6tWkjSQWcO9qq4Bvr1b219V1aPd6rXAqm55HfCpqvp+VX0d2Aa8fIT1SpIGMIo5918CPt0trwTu6tu2vWuTJC2gocI9yXuAR4FPzOPYjUkmk0xOTU0NU4YkaTfzDvckJwO/ALyxqqprvhs4qG+3VV3b41TVpqpaW1VrJyYm5luGJGka8wr3JMcA7wKOq6qH+zZtAU5M8rQkhwCHAl8YvkxJ0lzM+nnuSS4AjgJWJNkOnEHv1TFPAy5PAnBtVZ1SVbckuQi4ld50zdur6p/GVbwkaXqzhntVnTRN8zl72P/9wPuHKUqSNBzfoSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQrOGe5NwkO5Pc3Nf2nCSXJ/lq93X/rj1JPpJkW5Ibkxw+zuIlSdMbZOR+HnDMbm2nAVdU1aHAFd06wGuBQ7t/G4HfH02ZkqS5mDXcq+oa4Nu7Na8DNnfLm4Hj+9rPr55rgeVJDhxVsZKkwcx3zv2AqtrRLd8DHNAtrwTu6ttve9f2OEk2JplMMjk1NTXPMiRJ0xn6hmpVFVDzOG5TVa2tqrUTExPDliFJ6jPfcL9313RL93Vn1343cFDffqu6NknSAppvuG8B1nfL64FL+trf0r1q5gjggb7pG0nSAlk22w5JLgCOAlYk2Q6cAZwJXJRkA3AncEK3+2XAscA24GHgrWOoWZI0i1nDvapOmmHT0dPsW8Dbhy1KkjQc36EqSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNmvUdqpLUutWnXbpo177jzNeN5byO3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkho0VLgn+Y9Jbklyc5ILkuyT5JAk1yXZluTCJHuPqlhJ0mDmHe5JVgL/AVhbVYcBewEnAmcBH6yqHwbuAzaMolBJ0uCGnZZZBjw9yTLgGcAO4GeAi7vtm4Hjh7yGJGmO5h3uVXU38DvAN+iF+gPA9cD9VfVot9t2YOV0xyfZmGQyyeTU1NR8y5AkTWOYaZn9gXXAIcAPAc8Ejhn0+KraVFVrq2rtxMTEfMuQJE1jmGmZnwW+XlVTVfUI8CfAK4Hl3TQNwCrg7iFrlCTN0TDh/g3giCTPSBLgaOBW4CrgDd0+64FLhitRkjRXw8y5X0fvxukXgZu6c20CfhM4Nck24LnAOSOoU5I0B8tm32VmVXUGcMZuzbcDLx/mvJKk4fgOVUlqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoOGCvcky5NcnOQrSbYmeUWS5yS5PMlXu6/7j6pYSdJghh25fxj4y6p6EfBSYCtwGnBFVR0KXNGtS5IW0LzDPcl+wJHAOQBV9Y9VdT+wDtjc7bYZOH7YIiVJczPMyP0QYAr4X0m+lORjSZ4JHFBVO7p97gEOmO7gJBuTTCaZnJqaGqIMSdLuhgn3ZcDhwO9X1cuA77LbFExVFVDTHVxVm6pqbVWtnZiYGKIMSdLuhgn37cD2qrquW7+YXtjfm+RAgO7rzuFKlCTN1bzDvaruAe5K8iNd09HArcAWYH3Xth64ZKgKJUlztmzI498BfCLJ3sDtwFvpPWBclGQDcCdwwpDXkCTN0VDhXlU3AGun2XT0MOeVJA3Hd6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1KChwz3JXkm+lOQvuvVDklyXZFuSC5PsPXyZkqS5GMXI/deArX3rZwEfrKofBu4DNozgGpKkORgq3JOsAl4HfKxbD/AzwMXdLpuB44e5hiRp7oYduX8IeBfwWLf+XOD+qnq0W98OrJzuwCQbk0wmmZyamhqyDElSv3mHe5JfAHZW1fXzOb6qNlXV2qpaOzExMd8yJEnTWDbEsa8EjktyLLAP8Gzgw8DyJMu60fsq4O7hy5QkzcW8R+5VdXpVraqq1cCJwJVV9UbgKuAN3W7rgUuGrlKSNCfjeJ37bwKnJtlGbw7+nDFcQ5K0B8NMy/xAVV0NXN0t3w68fBTnlSTNj+9QlaQGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB8w73JAcluSrJrUluSfJrXftzklye5Kvd1/1HV64kaRDDjNwfBX69qtYARwBvT7IGOA24oqoOBa7o1iVJC2je4V5VO6rqi93yg8BWYCWwDtjc7bYZOH7YIiVJczOSOfckq4GXAdcBB1TVjm7TPcABMxyzMclkksmpqalRlCFJ6gwd7kmeBfwx8M6q+k7/tqoqoKY7rqo2VdXaqlo7MTExbBmSpD5DhXuSp9IL9k9U1Z90zfcmObDbfiCwc7gSJUlzNcyrZQKcA2ytqt/r27QFWN8trwcumX95kqT5WDbEsa8E3gzclOSGru3dwJnARUk2AHcCJwxXoiRpruYd7lX1OSAzbD56vueVJA3Pd6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaNLZwT3JMktuSbEty2riuI0l6vLGEe5K9gLOB1wJrgJOSrBnHtSRJjzeukfvLgW1VdXtV/SPwKWDdmK4lSdrNsjGddyVwV9/6duAn+3dIshHY2K0+lOS2eV5rBfDNeR47lJy1GFcFFrHPi8g+Pzk86fqcs4bq88EzbRhXuM+qqjYBm4Y9T5LJqlo7gpKWDPv85GCfnxzG1edxTcvcDRzUt76qa5MkLYBxhfv/BQ5NckiSvYETgS1jupYkaTdjmZapqkeT/HvgM8BewLlVdcs4rsUIpnaWIPv85GCfnxzG0udU1TjOK0laRL5DVZIaZLhLUoOWTLjP9nEGSZ6W5MJu+3VJVi98laM1QJ9PTXJrkhuTXJFkxte8LhWDfmxFkn+TpJIs+ZfNDdLnJCd0P+tbknxyoWsctQF+t5+f5KokX+p+v49djDpHJcm5SXYmuXmG7Unyke77cWOSw4e+aFU94f/Ruyn7NeAFwN7Al4E1u+3zq8BHu+UTgQsXu+4F6PNPA8/olt/2ZOhzt9++wDXAtcDaxa57AX7OhwJfAvbv1v/FYte9AH3eBLytW14D3LHYdQ/Z5yOBw4GbZ9h+LPBpIMARwHXDXnOpjNwH+TiDdcDmbvli4OgkWcAaR23WPlfVVVX1cLd6Lb33Eyxlg35sxW8DZwHfW8jixmSQPv8ycHZV3QdQVTsXuMZRG6TPBTy7W94P+PsFrG/kquoa4Nt72GUdcH71XAssT3LgMNdcKuE+3ccZrJxpn6p6FHgAeO6CVDceg/S53wZ6j/xL2ax97p6uHlRVly5kYWM0yM/5hcALk3w+ybVJjlmw6sZjkD6/D3hTku3AZcA7Fqa0RTPXv/dZLdrHD2h0krwJWAu8erFrGackTwF+Dzh5kUtZaMvoTc0cRe/Z2TVJfrSq7l/UqsbrJOC8qvrdJK8APp7ksKp6bLELWyqWysh9kI8z+ME+SZbReyr3rQWpbjwG+giHJD8LvAc4rqq+v0C1jctsfd4XOAy4Oskd9OYmtyzxm6qD/Jy3A1uq6pGq+jrwd/TCfqkapM8bgIsAqupvgX3ofahYq0b+kS1LJdwH+TiDLcD6bvkNwJXV3alYombtc5KXAX9AL9iX+jwszNLnqnqgqlZU1eqqWk3vPsNxVTW5OOWOxCC/239Gb9ROkhX0pmluX8giR2yQPn8DOBogyYvphfvUgla5sLYAb+leNXME8EBV7RjqjIt9F3kOd5uPpTdi+Rrwnq7tt+j9cUPvh/+/gW3AF4AXLHbNC9DnvwbuBW7o/m1Z7JrH3efd9r2aJf5qmQF/zqE3HXUrcBNw4mLXvAB9XgN8nt4raW4Afm6xax6yvxcAO4BH6D0T2wCcApzS9zM+u/t+3DSK32s/fkCSGrRUpmUkSXNguEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QG/T/7brbs4P2mMAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "source": [ - "# features to be used for prediction\n", - "features_mean=list(dataset.columns[1:15])\n", - "datasety=dataset[dataset['y'] ==1]\n", - "datasetn=dataset[dataset['y'] ==0]\n", - "features_mean" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XvMY9JDo8LEc", - "outputId": "3203e89a-1598-4ec1-b231-6072ae8e38f2" - }, - "execution_count": 185, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "['IndividualProject',\n", - " 'Age',\n", - " 'Gender',\n", - " 'City',\n", - " 'Influenced',\n", - " 'Perseverance',\n", - " 'DesireToTakeInitiative',\n", - " 'Competitiveness',\n", - " 'SelfReliance',\n", - " 'StrongNeedToAchieve',\n", - " 'SelfConfidence',\n", - " 'GoodPhysicalHealth',\n", - " 'MentalDisorder',\n", - " 'KeyTraits']" - ] - }, - "metadata": {}, - "execution_count": 185 - } - ] - }, - { - "cell_type": "code", - "source": [ - "#Plotting histogram for all features from both datasetM and datasetB\n", - "plt.rcParams.update({'font.size': 8})\n", - "fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(10,12))\n", - "axes = axes.ravel()\n", - "for idx,ax in enumerate(axes):\n", - " binwidth= (max(dataset[features_mean[idx]]) - min(dataset[features_mean[idx]]))/50\n", - " ax.hist([datasety[features_mean[idx]],datasetn[features_mean[idx]]],stacked=True,label=['Yes','No'],color=['r','g'])\n", - " ax.legend(loc='upper right')\n", - " ax.set_title(features_mean[idx])\n", - "plt.tight_layout()\n", - "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 878 - }, - "id": "OwxMOIRA8qoH", - "outputId": "c2266837-1d99-4463-e833-170f540ede59" - }, - "execution_count": 186, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAANdCAYAAABvXkF2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5hcZXnw8e9NSIiVxEiIMSFCkCpFEZFshKCBRCJYi4J9i7RFESuNSC+hKLyCVkKKVZFaXkWqAu9FaBGs+EIQGwUiCSQEAknEX6AVRGtS0RDM8nPTJNzvH3NSJsvuzmZ3Zs7M5Pu5rr32zDlnzrmfyew9d555znkiM5EkSZLUv13KDkCSJElqdRbNkiRJUg0WzZIkSVINFs2SJElSDRbNkiRJUg0WzZIkSVINFs1quIh4dAf3/3pEzCqWF9fY97SI+LM+1r8tIhbsyHmrnntBRJxWLC+IiIcj4gcRcU9EHLADx3lnRJwxhPPPioiuHX2eJLWyiPibiHgqIl5UdizSUFg0q6Vl5pwa27+Smd9scBh/k5mvB64APle9ISr6/DvKzG9l5heHcL5ZgEWzpE5zAvBD4E/KDkQaCotmNU3Rg3pLRNwcET+PiE9UbbswIn4WEbcC46vWP1r8viEiZlatXxkRe/fqFZ4RET+JiDXAO6r2XRARbyuWp0bEPVX73x0R34+I2yNiUo0m3AXsVzz3txHxZeBHwCsi4ksR8eOIWB0RhxX7nBIRny2WJ0bETRGxKiKWRcSri/V/FBF3FD3ZKyNiH+A04BMRcX9E7D+0V1uSWkdEvByYCJxPpXjelheXFrnzooj4ZbF+14j4QkTcV+TBd/R/ZKl5LJrVbG8ATgFeD5wWES+OiDcCbwUOBN4PHNbH864H/hdAUViSmf/Za58rgJOAacDLBxHLT4A3Z+YbgK8A/7vG/m8vngPwMmBhZh4IHApMAV5XtG1BH8+9BJifmV3AR4B/Ktb/K3BB0ZN9NPDrIpZ/yMyDM/Nng2iHJLW6/wXcACwFDo2IPwDmAd8s8uivq/Y9FXgkM6cDRwCfjYiRTY5XeoFdyw5AO527MnMDQEQ8AkwGDgduyMzNwLqIWNbH874NzI+Is4A/A/5f9caIGAfskpn3F4//jUqRO5CXAtdExL5U/hZ6F+HbXBYRTxXb/6ZY92Rm3lIsHw5cm5U56X8UEc9ExMRex3gL8JqI2PZ4a0SMBcZk5hKAzOwuYq8RtiS1nXcDZ2TmluJalbdTyZ3ziu3/BpxdLL+VSr48pXg8hspnxa+aF670QhbNarZNVcvPASOK5axaX71cWZH5ZEQ8ALyRStF8Uh/H7u8YW3n+W5Xdqtb/PZVifUFx4d0/9hPz32Tmd3ute6afffuTwCGZ+dy2FUXRLEkdrRiacShwU9EpMBoYC/TXQxDABzJzRXMilAbH4RlqBSuAd0XEyIiYDMzsZ7/rgbOAkZn5i+oNmbkReC4iDopKVn531eZfAQcXy++sWj8W+E2xfMow4z+huCjwtcCLMvO3vfZZRuUrRyJil4h4XWY+AXRHxOxi/UuKiwqfpNKzIkmd4M+ASzNzamZOpTKc7XBgDcX45qrfAIuBD227yDoiDkZqARbNKl1m3gt8D/gxcBVwTz+73gwcT2VcXF/mAtcBq4HqovX/An8aEd8H9qxa/4/ApcWFg08NuQHwzeJ8P6IyRvn9Vdu29Xh/GPjjiPgBlXZuu3r8ZCrDTn4AfBcYSaWd7y0uUPRCQEnt7gRg4bYHmbmFytjm24ETI+JHwKuAJ4pdvkolp/4gIn5C5eJBqXRRGYYpqd4i4qPArpl5UdmxSFKriYjRwObM3BoR7wHmZOYpJYcl9csxzVIDRMTJwPuo9IxLkl5oKnBdRIwAHqfyzZvUsuxpliRJkmpwTLMkSZJUg0WzJEmSVINFsyRJklRDKRcC7rnnnjl16tQyTi1JLWf16tWPZeaEoTy3mI74euDFQDeVe5R/FugC1mTmmQM933wsSc8bKB+XUjRPnTqVVatWlXFqSWo5ETGc6YHfBqzMzL+PiE8A5wK7Z+bMiPhyREzPzPv6e7L5WJKeN1A+dniGJLW3h6n0MgOMozKhzm3F48XAjDKCkqROY9EsSe3t58CMYua0LmALz8+s1k2lkN5ORMyNiFURsWr9+vXNi1SS2piTm0jqKBs3buSuB+5iRIxo6nn3GbfPoPedNGkS48a9oJYdqvcBN2fmxRFxNpVe57HFtrHAxt5PyMzLgcsBurq6vFl/i4r5Ucp5c55vCQ3f5s2bWbt2LT09PWWH0q/Ro0czZcoURo4cOaj9LZoldZTHHnuMiXtNhMHlwLo5YPIBg9rv2WefZd26dfUsmoPKbGoAj1Epmo8CvgHMARbU60SSNFhr165lzJgxTJ06lYhy/gM4kMxkw4YNrF27ln333XdQz3F4hqSOsnnz5pbuDhg9enQlxvq5Fnh3RCwFTgIuBXoiYhmwNTPvrefJJGkwenp6GD9+fEsWzAARwfjx43eoJ9yiWVLnaUKOPv3E01n/aGU88B233sHZZ589qOfV+wMkMzdm5jGZOSsz35qZj2fmmZk5MzM/XNeTSdIOaFbBPGfOHP7rv/4LgG9961sNy8cWzZI0BKedcxpfufgrbNmyhWu+fA1/93d/V3ZIkrRTuvDCC/nkJz/Jli1buPjiixuWj1v4S0xJGp6uvaYP6/mr1vV7e2MO6jqIb1z1DT5//uc59IhDOfnkk3nyySc54IAD+Od//mcuu+wy/vVf/5UXvehFfP7zn+eQQw4ZViyS1LaG2+OcA1+cOmPGDC699FLOPPNMjj766IblY3uaJWmITj/3dFbcvoInn3iS8847jyVLljBmzBjuvvtubrrpJpYsWcKSJUt4wxveUHaoktTRPv3pT7No0SI2btzYsHxsT7MkDdHkV0xmwssn8MuHfsm5555LRPDUU0/xxje+kfnz5/OhD32IUaNGceGFFzJx4sSyw5WkjjV16lT22msvHnzwwYblY4tmSRqmfV65Dx897aNMmzYNgC1btrB582YWLFjAtddey4IFC/jYxz5WcpSS1Pn2339/3vOe9zQkH1s0S9Iwvf+M9/Op8z9Fd3c3u+yyC1deeSXz5s3jkUceYdOmTVx11VVlh6hhKmuiEUk75uMf/zhz585tSD62aJbUsQa6kK9erlx4JQA33njjduuvvvrqhp9bktpCjQv56mX58uVA4/KxFwJKkiRJNdQsmiNickSsiYieiNi1WHdJRCyLiC9U7feCdZIkSVInGExP8+PAUcA9ABFxCLB7Zs4ERkXE9L7WNSxiSZIkqclqjmnOzB6gp2qqwcOA24rlxcAMYEsf6xo/mFCSJElqgqGMaR4HPFEsdxeP+1q3nYiYGxGrImLV+vXrhxKrJEmSVIqhFM3dwNhieSywsZ9128nMyzOzKzO7JkyYMJRYJallrF6xmiNffSRPdj8JwCmnnMJDDz1USiwRcXJEfC8ilkbEXl5jImlnsnTpUsaMGcPGjZXys1H5eChF891UxjgDzKEy1rmvdZLU0SZOnsjC6xaWGkNE7AUcmZlHZeYsYCJeYyJpJ/OKV7yCK6+8sqHnqDmmOSJGAt8BXg/cAnycyhjnZcD9mXlvsd8L1klSmaZfMbx68b6/HvjSjCOOOYJlty3jL//6LwF4+umnOfbYY3niiSc4+OCD+eIXvzis8w/SMcCIiPge8ADwU7zGRFILGe7kQDmv9n2ejzvuOG6++WbOOussoDH5eDAXAm6m0ntcbWUf+5057GgGoaxZmQbzDyZp5zJilxHMfOtMlixaAsCtt97KiSeeyHvf+15OPfVUVq5cyaGHHtroMCYCozLzqIi4CHgJ8HCxrRt4be8nRMRcYC7A3nvv3ej4JKnhRowYwTve8Q5uuOEGoDH52MlNJGkYjv+L41l4bWWIxi233MIhhxwCQFdXV7PGOHcDdxTLtwOB15hI2gmdeuqpXHHFFUBj8rFFsyQNw5iXjGGf/fbh3nvv5ZhjjmH16tUArFq1iv32268ZIawADiqWDwYSrzGRtBMaN24c+++/f8PysUWzJA3TiX91Ij/96U+ZPXs2X//615k5cya77bYbhx12WMPPnZn3A89GxFJgOvCPPH/dyVavMZG0MznjjDMalo9rjmmWpHZV60K+4Zh2+DSmHT4NgL1fuTfPPfccAIsWLWrYOfuTmWf3WtWUa0wkaTAafV3YrFmzmDVrFgCvetWrGpaP7WmWJEmSarBoliRJkmqwaJYkSZJqsGiW1HmeKzuA/m3durXsECSpKZ599lkyW3Oei8zk2Wef3aHneCGgpI6yxx578MgvHmGXJvcJPNj94KD33WOPPRoYiSSVb9KkSaxbt47NmzeXHUq/Ro4cyaRJkwa9v0WzpI4yceJE/uQrf9L08zprqCQ9b9y4cYwbN67sMOrK4RmSJElSDRbNkiRJUg0WzZIkSVINFs2SJElSDRbNkiRJUg0WzZIkSVINFs2S1OYi4qyIWF4sXxIRyyLiC2XHJUmdxKJZktpYROwGHFwsHwLsnpkzgVERMb3U4CSpg1g0S1J7+wBwdbF8GHBbsbwYmFFKRJLUgSyaJalNRcRIYFZm3l6sGgc8USx3F4/7et7ciFgVEavWr1/fhEglqf1ZNEtS+3ovcG3V425gbLE8FtjY15My8/LM7MrMrgkTJjQ4REnqDBbNktS+9gc+FBHfBV4L7AkcVWybA9xTVmCS1Gl2LTsASaq3vKCEk85r/ikz82PbliNieWbOj4gvRMQy4P7MvLf5UUlSZ7JolqQOkJlvLn6fWXYsnaiM/4hFCeeU1L8hDc+IiKkR8duIWBoRtxbrzomI5RHxteLiFEmSJKkjDGdM822ZOSszj46IlwGzi56OHwLH1yc8SZIkqXzDKZpnF7NOnQV0AUuL9d4bVJIkSR1lqGOafwO8GtgE3ASMAX5XbOv33qCSJGlwSrmgFUq5qFVqB0Pqac7MTZn5dGZuAb4NPEyNe4N6M31JkiS1q6FeCDim6uGbgIeAI4vHfd4b1JvpS5IkqV0NdUzzzIhYHRErgHWZuRK4MyKWAwcDC+sWoSRJklSyIY1pzsxFwKJe6y4CLqpHUJIkqRwxP5p+zpyXTT+ntKOcRluSJEmqwaJZkiRJqsGiWZIkSarBolmSJEmqwaJZktpYRBwaESsiYnlEXFKsO6d4/LWIGFl2jJLUCSyaJam9/Qp4S2a+GXhZRBwJzC4e/xA4vtToJKlDDHUa7dI4ragkPS8zH616uBl4LbC0eLwYOAm4vslhSVLHsadZkjpARBwETAA2Ak8Uq7uBcX3sOzciVkXEqvXr1zcxSklqXxbNktTmImIP4EvAB6gUymOLTWOpFNHbyczLM7MrM7smTJjQvEAlqY1ZNEtSG4uIXYFrgLOLoRr3AUcWm+cA95QVmyR1krYb0yxJ2s4JwHTgcxEBcB5wZ0QsB/4T+D8lxlZ3ZUzxDOAkz5IsmiWpjWXmdcB1vVbfDVxUQjiS1LEcniFJkiTVYNEsSZIk1WDRLEmSJNVg0SxJkiTV4IWAkiSpVKXdFWWe90XR4NnTLEmSJNVg0SxJkiTV4PAMSZL0P/KC5p8zSjintKPsaZYkSZJqsKdZkjQkZV28JUllsGiWJLWNMoYOSBI4PEOSJEmqqa5Fc0RcEhHLIuIL9TyuJGnHmI8lqb7qVjRHxCHA7pk5ExgVEdPrdWxJ0uCZjyWp/uo5pvkw4LZieTEwA7ivjseXJA1OU/Kx44tVL6W9ly4o6WLWdCbCdlTPonkc8ItiuRt4bR2PLUkaPPOx1Mqi+cV6WffCLuU/RA36T0k9i+ZuYGyxPBbYWL0xIuYCc4uHT0XEz4Z4nj2Bx4b43KEr4Q1OWW0th23tTDtPWyOG09Z96hkKzcvHrWDneY/1z9egwtehou/X4YKmxwFAKdVTg/JxZJ2q8WIM3Qcz84MR8c/Agsy8ty4H3/48qzKzq97HbUW2tTPZ1s7USm1tVj5uBa30upfF16DC16HC16Fxr0HdLgTMzDVAT0QsA7Z2aoKWpFZnPpak+qvr5CaZeWY9jydJGhrzsSTVVztObnJ52QE0kW3tTLa1M+1MbW0lvu6+Btv4OlT4OjToNajbmGZJkiSpU7VjT7MkSZLUVC1dNPc3DWxEHBgRyyPirog4qKz46mmAtn61aOfyTm9rse1FEfFoRMwpI7ZGGODfdo+I+EZE3B4RnygrvnoaoK0nRMS9EbEyIo4rK756iYjJEbEmInoiYtde2zouP7WK3q97RPxBRPx7RCyNiJsiYreyY2yGiDg0IlYU77NLinXnFI+/FhEjy46x0Xq/BhGxb5F77oyIayNiRNkxNkNf74Vi/Z9GxK/LjK2Z+vmbeGvx+bo0IqbV4zwtWzTXmAb2QuAvgHcXy22tRls/m5lvAt4PzCslwDoaxPS+pwI/an5kjVGjvfOA8zPzLZn5D+VEWD812noWMKv4+Ujzo6u7x4GjgHv62NZR+anF9H7d3waszMxZwL3F453Br4C3ZOabgZdFxJHA7OLxD4HjS42uObZ7DYApwLGZeQTwCPD2MoNrot7vhdcV6/8M2GmKZvp+HT4IvDUzZ2Xm6nqcpGWLZvqeBnabl2bmrzNzHZWZr9pdv23NzEeKxc3A1ibH1Qj9tjUiRhXb7yohrkYZ6H18IPDxiFgSETNe8Mz2M1BbHwZeDOwOPNHkuOouM3sy8/f9bO60/NQy+njdt72voPJab2h+VM2XmY9mZk/xcDOVGR+XFo97/+11pD5egw2Z2V31uBM+L2vq43XYGhFvp/I+eK68yJqrj9dhJpX2fyci/jUiXtz/swevlYvmcTz/4drN9h8+1XGXNHF8XQ3U1m0+A3yxaRE1zkBtPQW4ptkBNdhA7T2cyr/rnwMXNzmuRhiorTcC3wfuBy5tclzN1mn5qZX9HJgRET8BuoAVJcfTVMXwnwlUZnys9RnSkba9Bpn5QPF4MvBW4NZSA2uyXq/D++i8z9JBqfqb+D0wCfhjKnnhg/U4fisXzQNNA1t9y49O+J9UrSlv/xZ4IDOXNzuwBuizrcW40GMy8ztlBdYgA/3b/kdmPpiZv6Xz38fnA68BDiiWO1mn5adW9j7g5sx8LfDvwHtKjqdpImIP4EvAB6jxGdKper0GFGParwb+OjO3lBlbM1W/DhHxFuDuzPzvksNquj7+JpZn5lbgdiqfPcPWykXz3VTGrgHMYfuxg49HxJTif5Rt/1UvA7Q1Io6m0iP5qRLiaoT+2joR2Dsivkvlg+8zEfHSEuKrt4Hex/8REZOKr43qOtFQSQZq6ybgGeBpYFST42q2TstPrSyojHMGeAx4SYmxNE3RyXANcHZmPgrcBxxZbO79t9eR+ngNoHJv3su29TrvDPp4HQ4E3ll8lr42IjqldhhQP38T2wrlg6mMcx+2li2ae08DC/xn1R0G5gH/BlxPB/Ra1WjrpcC+wJKI+GpZMdZLf23NzHWZOT0z30bljX/eAGNG28Yg3sfXUflfcNsnthpt/TKVseor6IAb70fEyIhYDLweuCUijuzU/NRKer/uwGrg3RGxFDgJ+FqJ4TXTCcB04HNF2/cD7oyI5VQKhIUlxtYs270GxXUhfwr8bfH4XeWG1zS93wv3FReXvw34SWb+XanRNU/v1+EPgTsi4k4qN1L4Sj1O4uQmkiRJUg0t29MsSZIktQqLZkmSJKkGi2ZJkiSpBotmSZIkqQaLZkmSJKkGi2ZJkiSpBotmSZIkqQaLZkmSJKkGi2ZJkiSpBotmtbWI2DsiboyIX0TE6oj4bkS8fpjHfFtELKhTiJK004uIV0TEwoh4uMjVX4uI90XEGcX24yPiD8uOUxrIrmUHIA1VROwCLAT+T2a+q1g3HdgP+EET4xiRmVubdT5JaicREcCNwBcz8/hi3dHAQ5n5i2K344Ee4KFyopRqs6dZ7ewoYGNm/su2FZl5X2beEBGviojbqnqfJwJExC8jYn5E/CAi7oyIscX6GRHxk4hYA7xj2/EiYmJE3BQRqyJiWUS8uli/NCIuiYjVwAlNbbUktZejgCd75epbgSMi4rMRcSjwTuCyiLg/It4REf+zb0ScGRHnNT9saXsWzWpnBwD397PtMuDUzJwG/F/gk1XbHsrM11PpjT6xWHcFcBIwDXh51b6XAPMzswv4CPBPVdt6MnNaZn592C2RpM71GvrP1WTmSuBbwN9k5sHAIuDQiHhxsctJwDUNj1KqweEZ6hgRcSOwP3A38Cbgpsq3gowAHq7a9VvF7+8D+0XEOGCXzLy/OM6/AW8v9nkL8JriOADVwzCub0AzJKkT5aB3zNwaETcA74qI71Pppf5140KTBseiWe3sp8Bx2x5k5rsi4m3AB4F1RY9FXzYVv5+jUlDD9gm99/IhmflcH8d5ZkhRS9LO5UHgXTv4nAXAF4HXAf9a74CkoXB4htrZYmB8RLynat2LgG7g98WFJkTEyIg4oL+DZOZG4LmIOKi4YOXdVZuXAacWx9klIl5X70ZIUodbDLykOldHxBy2r0GeBMZse5CZPwP+gEo+/maT4pQGZNGstlX0/h4HnFDccu5u4ANUxjOfBJwTET+gMpbu0BqHmwtcB6wGflu1/sPAHxfH+THwJ/VthSR1tsxMKnfHeHdxy7mfAO8Dxlbt9nVgfnEh4Lbi+ZvAisx8qrkRS32LyntZkiSpdUTE14ErM3Nx2bFIYE+zJElqMUVv9Gjge2XHIm1jT7MkSZJUgz3NkiRJUg0WzZIkSVINFs2SJElSDaVMbrLnnnvm1KlTyzi1JLWc1atXP5aZE8o4t/lYkp43UD4upWieOnUqq1atKuPUktRyIuJXZZ3bfCxJzxsoHzs8Q5IkSarBolmSJEmqoZThGZLUKBs3buSuB+5iRIxo6nn3GbfPoPedNGkS48aNa2A0klSuzZs3s3btWh589EF2aXIf7WDz8ejRo5kyZQojR44c1P4WzZI6ymOPPcbEvSbC4HJg3Rww+YBB7ffss8+ybt06i2ZJHW3t2rWMGTOGl416GURzzz2YfJyZbNiwgbVr17LvvvsO6rgOz5DUUTZv3tzS3QGjR4+uxChJHaynp4fx48c3vWAerIhg/Pjx9PT0DPo5NYvmiJgcEWsioicido2IqRHx24hYGhG3Vu13TkQsj4ivRUST+3gkqUqLJmmoJGpJ2hm0er7b0fgG09P8OHAUcE/Vutsyc1ZmHl2c9GXA7Mx8M/BD4PgdikKS2szpJ57O+kfXA3DHrXdw9tlnlxyRJO2cmpWPa36JmZk9QE+vanx2RCwDbsjMS4AuYGmxbTFwEnB9fUOVpB3Ttdf0YT1/1br7+t122jmn8ZWLv8J5F53HNV++hiW3LBnWuSSpUzUyF0Pz8vFQxjT/Bng1MBuYExEHAeOAJ4rt3cXj7UTE3IhYFRGr1q9fP9R4JaklHNR1EJt6NvH58z/PoUccysknn8zs2bM5/fTTAbjssss47LDDmD17NmvWrCk5WknqXM3KxztcNGfmpsx8OjO3AN8GDqRSKI8tdhkLbOzjeZdnZldmdk2YUMpssZJUV6efezorbl/Bk088yXnnnceSJUsYM2YMd999NzfddBNLlixhyZIlvOENbyg7VEnqaM3Ixzt8jXlEjMnMJ4uHbwIuBR4BTgc+B8xh+/HPktSRJr9iMhNePoFfPvRLzj33XCKCp556ije+8Y3Mnz+fD33oQ4waNYoLL7yQiRMnlh2uJHWsZuTjmkVzcSeM7wCvB24B7oyIdwKbgGWZubLY786IWA78J/B/hhSNJLWhfV65Dx897aNMmzYNgC1btrB582YWLFjAtddey4IFC/jYxz5WcpSS1PkamY8HcyHgZiq9x9Xm97HfRcBFQ4pCkhqg1sUj9fL+M97Pp87/FN3d3eyyyy5ceeWVzJs3j0ceeYRNmzZx1VVXNSUOSWpFzcrF0Nh83MJTAEhS67ty4ZUA3Hjjjdutv/rqq+t+roiYTOVaktcAuwNTgJXAg8B/V90G9BzgOOBXwClF54ckdbRG52NnBJSk9uF98yWpJBbNktQmMrMnM3/fa/XsiFgWEWcVj3vfN39Gs+KTpE7m8AxJal/b7pu/CbgpIr7HIO6bL0nacfY0S1KbGup9851sSpJ2nEWzJLWpiBhT9fBNwMPAfcCRxbo+75vvZFOStOMsmiVpCFavWM2Rrz6SJ7srcz2dcsopPPTQQw09Z0SMjIjFPH/f/I9ExOqIWAGsy8yVmfk7KvfTXw4cDCxsaFCSVLJm5WPHNEvqWNOvmD6s59/31wPfW3Ti5IksvG4h7z3tvcM6z2B533xJ7ajRuRiak4/taZakITrimCNYdtsytm7dCsDTTz/NscceyxFHHMEZZ5xRcnSStPNoRj62aJakIRqxywhmvnUmSxYtAeDWW2/lxBNP5M477+SZZ55h5cqVJUcoSTuHZuRji2ZJGobj/+J4Fl5bGTZ8yy23cMghhwDQ1dXV8DHOkqTnNTofWzRL0jCMeckY9tlvH+69916OOeYYVq9eDcCqVavYb7/9So5OknYejc7HXggoqWMN5uKRejjxr07k+gXXM3v2bM4//3yuuOIKDjroIA477LCmnF+SWlmzcjE0Nh9bNEvSEEw7fBrTDp8GwN6v3JvnnnsOgEWLFpUZliTtdJqVjx2eIUmSJNVg0SxJkiTVULNojojJEbEmInoiYtdi3SURsSwivlC13wvWSVIpsuwA+pfZwsFJUh21er7b0fgG09P8OHAUcA9ARBwC7J6ZM4FRETG9r3U7FrYk1cfIkSNhS9lR9K+np6cSoyR1sNGjR7Nhw4aW7cTITDZs2MDo0aMH/ZyaFwJmZg/QExHbVh0G3FYsLwZmUPmI6r2ueZdKSlJhzz335GcP/IwRMaKp532w+8FB7ztp0qQGRiJJ5ZsyZQpr167ld4/+jl2aPBp4sPl49OjRTJkyZdDHHcrdM8YBvyiWu4HXUimae6+TpKYbN24cx952bNPPm/NatDtFkkowcuRI9t13X175L69s+rkblY+HUvp3A2OL5bHAxn7WbSci5kbEqohYtX79+qHEKkmSJJViKEXz3VTGOAPMoTLWua9129bwINwAACAASURBVMnMyzOzKzO7JkyYMJRYJUmSpFIM5u4ZIyNiMfB64BZgJJUxzsuArZl5b2au6b2uoVFL0k7IuxlJUnkGcyHgZiq9x9VW9rHfmfUKSpLUp213M7oRtr+bUUR8ubhz0dbe6zLTC7MlaZicRluS2oR3M5Kk8jgjoCS1r3HAE8Vyd/G4r3Xb8cJsSdpxFs2S1L6GdDcjL8yWpB1n0SxJ7WtIdzOSJO04i2ZJahPezUiSyuOFgJLUJrybkSSVx55mSZIkqQaLZkmSJKkGi2ZJkiSpBotmSZIkqQYvBJTUcfKCEk46r4RzSlKL66R8bE+zJEmSVINFsyRJklSDRbMkSZJUg0WzJEmSVINFsyRJklSDRbMkSZJUw5BuORcRU4GVwIPAf2fm0RFxDnAc8CvglMzcXK8gtzv3/GjEYWvKeVnKeSVJklS+4fQ035aZs4qC+WXA7Mx8M/BD4Pj6hCdJkiSVbzhF8+yIWBYRZwFdwNJi/WJgxnADkyRJklrFUGcE/A3wamATcBMwBvhdsa0bGNf7CRExF5gLsPfeew/xtJKkamUOl5OkncmQepozc1NmPp2ZW4BvAw8DY4vNY4GNfTzn8szsysyuCRMmDDlgSdILOFxOkhpsSEVzRIypevgm4CHgyOLxHOCeYcYlSRo8h8tJUoMNdUzzzIhYHRErgHWZuRK4MyKWAwcDC+sWoSRpINuGy82m0mnRBTxRbOt3uFxErIqIVevXr29aoJLUzoY0pjkzFwGLeq27CLioHkFJkgYnMzdRub6EiPg2lYJ5r2Jzv8PlgMsBurq6vJ+mJA2Ck5tIUhtzuJwkNYdFsyS1N4fLSVITDPWWc5KkFuBwOUlqDnuaJUmSpBrsaZYkDUnMj6afM+d53aKkctjTLEmSJNVg0SxJkiTVYNEsSZIk1WDRLEmSJNVg0SxJkiTV0HZ3z8gLSjrxvJLOK0mSpNLZ0yxJkiTVYNEsSZIk1WDRLEmSJNVg0SxJkiTV0HYXAkqSWkMpF2Z7UbakktS1pzkiLomIZRHxhXoeV5K0Y8zHklRfdSuaI+IQYPfMnAmMiojp9Tq2JGnwzMeSVH/17Gk+DLitWF4MzKjjsSVJg2c+lqQ6q2fRPA54oljuLh5LkprPfCxJdVbPCwG7gbHF8lhgY/XGiJgLzC0ePhURPxviefYEHhvic4cuoumnpKy2lsO2dqadp60Rw2nrPvUMhU7Ox+XkYtiZ3su2tVPtPG1tUD6OzBziMXsdqDKG7oOZ+cGI+GdgQWbeW5eDb3+eVZnZVe/jtiLb2plsa2dqpbaaj+vPtnYm29qZGtXWug3PyMw1QE9ELAO2NiJBS5JqMx9LUv3V9T7NmXlmPY8nSRoa87Ek1Vc7zgh4edkBNJFt7Uy2tTPtTG3dZmdqs23tTLa1MzWkrXUb0yxJkiR1qnbsaZYkSZKaqqWL5v6mgY2IAyNieUTcFREHlRVfPQ3Q1q8W7Vze6W0ttr0oIh6NiDllxNYIA/zb7hER34iI2yPiE2XFV08DtPWEiLg3IlZGxHFlxVcvETE5ItZERE9E7NprW8flJzAfF+vNx23MXNx5uRiam49btmiuMQ3shcBfAO8ulttajbZ+NjPfBLwfmFdKgHU0iOl9TwV+1PzIGqNGe+cB52fmWzLzH8qJsH5qtPUsYFbx85HmR1d3jwNHAff0sa2j8hOYj6s2m4/blLn4f3RaLoYm5uOWLZoZeBrYl2bmrzNzHZ0x01W/bc3MR4rFzcDWJsfVCP22NSJGFdvvKiGuRhnofXwg8PGIWBIRnTDN8UBtfRh4MbA7z89U17Yysyczf9/P5k7LT2A+BszHbc5cXNFRuRiam49buWgeaBrY6rhLmx6qjgYz5e1ngC82LaLGGaitpwDXNDugBhuovYdT+Xf9c+DiJsfVCAO19Ubg+8D9wKVNjqvZOi0/gfm4N/Nx+zEXV+xMuRjqnJ9auWgeaBrY6lt+PNe0iBqn1pS3fws8kJnLmx1YA/TZ1mIc0jGZ+Z2yAmuQgf5t/yMzH8zM39L57+PzgdcABxTLnazT8hOYj/+H+bhtmYsrdqZcDHXOT61cNN9NZYwKwBy2H6vyeERMiYjJdMbXC/22NSKOpvK/4E+VEFcj9NfWicDeEfFd4D3AZyLipSXEV28DvY//IyImRcSLqfNEQyUZqK2bgGeAp4FRTY6r2TotP4H5GDAflxBfPZmLK3amXAx1zk8tWzT3ngYW+M+qq1rnAf8GXE8H/E+pRlsvBfYFlkTEV8uKsV76a2tmrsvM6Zn5NipfCZ43wBiltjGI9/F1wO10wIdwjbZ+mcrYyBV0wA32I2JkRCwGXg/cEhFHdmp+AvOx+bj987G5uDNzMTQ3Hzu5iSRJklRDy/Y0S5IkSa3ColmSJEmqwaJZkiRJqsGiWZIkSarBolmSJEmqwaJZkiRJqsGiWZIkSarBolmSJEmqwaJZkiRJqsGiWZIkSarBolktLSIeHcQ+/xQRP46IcyJiaUT8UTNiqyUi3hYRC8qOQ5IGIyI2R8T9EfFARFwZEdYIUhX/INQJ/hJ4XWZeXHYgktTGNmTmwcDrgD8E3jWYJ0XEiIZG1eTzSP2xaFZbiIhZEXFLRNwcET+PiE8U678JjAe+HxHH9HrOo1XLF0TEacXyGyNiWUSsiYjrI+IPtu0fEV+IiJ9ExE3bEnREHB4R90bEDyLiO8W6icU+q4pjvbpYP6N4/hrgHU14aSSprjJzK3APsN8AuW5pRFwSEauBEyLi4oj4aZEnzyn2eVVE3BYRqyPiu8Wx3hkR/3fbuSLi9Ig4v1j+q4i4rzjGvGLdrIhYHBHfBRZHxNiIuL3I39+PiDdX7feCz4hi219HxI+K484v1vX5OSANKDP98adlf4BHi9+zgN9RKZD/APg18OLqfYrlpcAf9bH+AuA0YBRwB/DSYv05wNnFcgJHFMs3A28FdgMeAg4o1u9R/L4WOKRYng58u1j+MXAwEMD/AxaU/Rr6448//gzmpyrfvghYCfzJALluKfCZYnk88AiwS/H4JcXvW4F9iuUTgC8VOfUXwK7F+iXAa4qfbwAjqHTofQvoKnL/74GXF/uPBMYUy1OAlcVyn58RwEHA/cDYYr89Bvoc8MefgX52RWofd2XmBoCIeASYDPx8B4+xP5UkuiQioJI8v1ds25iZdxbL3wemAr8FHsrMBwEy8/Fi+1uA1xTHANgaEeOofGjcX8T4b8DbdzA+SSrL+Ii4n0oHwr9n5r8XvcLb5bqq/a8vfncDTwFXRsRC4N8jYgzwJuCm4rkjgIczc1NErABmRcQPgfGZ+UBEfBiYAawujrk78CrgN8CyzNz2zWEAnyt6mLdSGUayTV+fEbOAr2fmE1DJ4RHxOvr/HJD6ZdGsdrKpavk5Kkl4IFm1vFvxO4D7MvPoYR4/qfS+PLdtRVE0Z699JKldbBvTXO0Fua7KMwCZuSUiuoBjgJOAPwXOBNb1cTyAbwL/C9gPWFisC+DLmfnp6h0jYta28xROolLkHpyZWyPiqaptg83hA30OSP1yTLM62dMRMSUidgO2JcefAvsWPQ1ExIsj4g/7PUJl//0i4oBi/z2K9cuAU4t1u0TE6zJzI/BcRBwUle6LdzegTZLUTC/Idb13iIjdqQzJ+Bbwv6kUtN3A7yPi6GKfkdvyKPBdYA5wIpUCGuB24M+LzgeK3D2+j3jGAr8rCuY/ozIEYyDbjju2OO4e7PjngARYNKuzzaMybu1W4GcAmfnfVO628ZWI+AFwN9t/vbedYv+TgX8p9v+XYtOHgT8u1v2Yytg/gLnAdVS+YvxtvRskSU3WX66rNobKkIwfADcBnyzWnwScU6y/HzgUIDN7gPuAvTLzh8W6HwP/CNxRDNv4Bn0XxNcCbyn2OYIaebY47peAFUUcZ+zo54C0TWT6DbIkSZI0EHuaJUmSpBosmiVJkqQaLJolSZKkGiyaJUmSpBpKuU/znnvumVOnTi3j1JLUclavXv1YZk4YynOL6X+vp3KngW4qtzr8LJXZ1NZk5pkDPd98LEnPGygfl1I0T506lVWrVpVxaklqORHxq2E8/W1UphL++4j4BHAusHtmzoyIL0fE9My8r78nm48l6XkD5WOHZ0hSe3uY5+9nu21WytuKx4upTE0sSRomi2ZJam8/B2ZExE+oDMnYAjxRbOumUkhvJyLmRsSqiFi1fv365kUqSW2slOEZktQoGzdu5K4H7mJEjGjqefcZt8+g9500aRLjxr2glh2q9wE3Z+bFEXE2lV7nscW2scDG3k/IzMuBywG6urqc4UpqspgfTT9nzmvun/rmzZtZu3YtPT09TT3vjhg9ejRTpkxh5MiRg9q/ZtEcEZOBbwOvAXYHpgArgQeB/87MbfPKnwMcB/wKOCUzNw+pBZI0DI899hgT95oIg8uBdXPA5AMGtd+zzz7LunXr6lk0B/B4sfwYlaL5KCrTEM8BFtTrRJI0WGvXrmXMmDFMnTqViOb/J6GWzGTDhg2sXbuWfffdd1DPGczwjMepJOB7qtbdlpmzqgrmlwGzM/PNwA+B43csdEmqj82bN7f0d2ijR4+uxFg/1wLvjoilwEnApUBPRCwDtmbmvfU8mSQNRk9PD+PHj2/JghkgIhg/fvwO9YTX/GjJzB4qCbh69ewiId+QmZdQGUe3tNi2mErivn7QUUhSPbVmjgao+wdIZm4Ejum1esDbzElSM7RqwbzNjsY3lAsBfwO8GpgNzImIg6hcaOKFJ5J2GqefeDrrH63ksjtuvYOzzz675Igkaec0Z84c/uu//guAb33rWw3Lxzv8JWZmbgI2AUTEt4EDqRTKU4pdvPBEUkvo2mv6sJ6/al2/tzfmtHNO4ysXf4XzLjqPa758DUtuWTKsc0lSxxpuj3MOXDZeeOGFfPKTn+SrX/0qF198MTfffPPwztePHe5pjogxVQ/fROUeofcBRxbr5rD9+GdJ6jgHdR3Epp5NfP78z3PoEYdy8sknM3v2bE4//XQALrvsMg477DBmz57NmjVrSo5WkjrXjBkzePbZZznzzDM5+uijG5aPaxbNETEyIhYDrwduAT4SEasjYgWwLjNXZubvgDsjYjlwMLBwyBFJUps4/dzTWXH7Cp584knOO+88lixZwpgxY7j77ru56aabWLJkCUuWLOENb3hD2aFKUkf79Kc/zaJFi9i4cWPD8vFgLgTcTKX3uNr8Pva7CLhoyJFIUpuZ/IrJTHj5BH750C8599xziQieeuop3vjGNzJ//nw+9KEPMWrUKC688EImTpxYdriS1LGmTp3KXnvtxYMPPtiwfNzCN2aSpPawzyv34aOnfZRp06YBsGXLFjZv3syCBQu49tprWbBgAR/72MdKjlKSOt/+++/Pe97znobkY4tmSRqm95/xfj51/qfo7u5ml1124corr2TevHk88sgjbNq0iauuuqrsECVpp/Dxj3+cuXPnNiQfWzRL6lgD3f2iXq5ceCUAN95443brr7766oafW+oUZUwrDc2fWnqnVePuF/WyfPlyoHH5eCj3aZYkSZJ2KhbNkiRJUg0WzZIkSVINFs2SJElSDRbNktTmIuLkiPheRCyNiL0i4pKIWBYRXyg7NknqFBbNkjQEq1es5shXH8mT3U8CcMopp/DQQw81PY6I2As4MjOPysxZwERg98ycCYyKiOlND0qSmmjp0qWMGTOGjRs3Ao3Lx95yTlLHmn7F8OrF+/564FvWTZw8kYXXLeS9p713WOcZpmOAERHxPeAB4KfAbcW2xcAMoPH33pOkfgz3loKDuTXgK17xCq688krOPvvsYZ1rIPY0S9IQHXHMESy7bRlbt24F4Omnn+bYY4/liCOO4IwzzmhWGBOBUZl5FPAM8BLgiWJbNzCuWYFIUlmOO+44br755obmY4tmSRqiEbuMYOZbZ7Jk0RIAbr31Vk488UTuvPNOnnnmGVauXNmMMLqBO4rl24EAxhaPxwIbez8hIuZGxKqIWLV+/fpmxChJDTVixAje8Y53cMMNNwCNyccWzZI0DMf/xfEsvHYhALfccguHHHIIAF1dXc0a47wCOKhYPhhI4Kji8Rzgnt5PyMzLM7MrM7smTJjQjBglqeFOPfVUrrjiCqAx+diiWZKGYcxLxrDPfvtw7733cswxx7B69WoAVq1axX777dfw82fm/cCzEbEUmA78I9ATEcuArZl5b8ODkKQWMG7cOPbff/+G5WOLZkkaphP/6kR++tOfMnv2bL7+9a8zc+ZMdtttNw477LCmnD8zz87MWZn5Z5n535l5ZmbOzMwPNyUASWoRZ5xxRsPysXfPkNSxat39YjimHT6NaYdPA2DvV+7Nc889B8CiRYsadk5JakeDufvFcMyaNYtZs2YB8KpXvaph+dieZkmSJKmGmkVzREyOiDUR0RMRuxbrXjDblDNQSZIkqVMNpqf5cSpXYt8DEBGH0Gu2qb7WNSxiSaqlsd8EDktmCwcnSXXU6vluR+OrWTRnZk9m/r5q1WG8cLapvtZJUtONHDkStpQdRf96enoqMUpSBxs9ejQbNmxo2cI5M9mwYQOjR48e9HOGciHgOOAXxXI38FoqH1G910lS0+2555787IGfMSJGNPW8D3Y/OOh9J02a1MBIJKl8U6ZMYe3atbTyBEqjR49mypQpg95/KEVzNy+cbWprH+u2ExFzgbkAe++99xBOK0m1jRs3jmNvO7bp52301eGS1E5GjhzJvvvuW3YYdTWUu2fczQtnm+pr3XacgUqSJEntajB3zxgZEYuB1wO3ACPpNdtUZq7pva6hUUuSJElNVHN4RmZuptJ7XG1lH/udWa+gJEmSpFbi5CaSJElSDRbNkiRJUg0WzZLU5iLirIhYXiw7O6skNYBFsyS1sYjYDTi4WHZ2VklqEItmSWpvHwCuLpadnVWSGsSiWZLaVESMBGZl5u3FqnHAE8Vyd/FYklQHQ5kRUJLUGt4LXFv1uK8ZW1/AGVp3XMyPpp/TWSal1mLRLKnj5AUlnHReCeeE/YGDI+I04LXAnsBBwDeo3F9/QV9PyszLgcsBurq6rMwkaRAcniFJbSozP5aZx2Tm24CfZOZ8nJ1VkhrCnmZJ6gCZ+ebit7OzSlID2NMsSZIk1WDRLEmSJNXg8AxJkqQm2okuVu4o9jRLkiRJNVg0S5IkSTW03fCMMm4wD95kXpIkaWdmT7MkSZJUw5CK5oiYGhG/jYilEXFrse6ciFgeEV+LiJH1DVOSJEkqz3B6mm/LzFmZeXREvAyYXdxc/4fA8fUJT5IkSSrfcIrm2RGxLCLOArqApcX6xcCM4QYmSZIktYqhXgj4G+DVwCbgJmAM8LtiWzcwbvihSZIkSa1hSEVzZm6iUjATEd8GngD2KjaPBTb2fk5EzAXmAuy9995DOa0kSZLaSBl3PWvUHc+GVDRHxJjMfLJ4+CbgUuAvgc8Bc4B7ej8nMy8HLgfo6ury/m2SVAcRcShwCfAccF9mnhUR5wDHAb8CTsnMzWXGKNVSygx54Cx52iFDHdM8MyJWR8QKYF1mrgTujIjlwMHAwrpFKEkayK+AtxQXYr8sIo7EC7Mlqe6GOjxjEbCo17qLgIvqEZQkaXAy89Gqh5uB17L9hdknAdc3OSxJ6jhtNyOgJOmFIuIgYAKVa0qeK1Z7YbYk1YkzAkpSm4uIPYAvAR+gUiiPLTb1e2F2RKyKiFXr169vXqCS1MbsaZakNhYRuwLXAGdn5qMRcR9wOl6YXVelXKjmRWpSS7GnWZLa2wnAdOBzEbEU2A8vzJakurOnWZLaWGZeB1zXa/XdeGG2JNWVPc2SJElSDRbNkiRJUg0WzZIkSVINFs2SJElSDV4IKEmSpIbopNs12tMsSZIk1WDRLEmSJNVg0SxJkiTVYNEsSZIk1dB2FwKWMqAcGjaoXJIkSa2v7YpmSVJriPnR9HPmvGz6OSUJHJ4hSZIk1WTRLEmSJNVQ16I5Ii6JiGUR8YV6HleStGPMx5JUX3Ub0xwRhwC7Z+bMiPhyREzPzPvqdXxJ0uA0Kx930kxfklRLPXuaDwNuK5YXAzPqeGxJ0uCZjyWpzup594xxwC+K5W7gtdUbI2IuMLd4+FRE/GyI59kTeGyIzx26aP5V4pTV1nLY1s6087Q1Yjht3aeeodDJ+bh2Lm7F99zQYmrs506rvU6t+Nneaq8RDCemxr2fWu91alA+rmfR3A2MLZbHAhurN2bm5cDlwz1JRKzKzK7hHqcd2NbOZFs7U4u1dafNx8Y0OK0WU6vFA8Y0WDtTTPUcnnE3cFSxPAe4p47HliQNnvlYkuqsbkVzZq4BeiJiGbA1M++t17ElSYNnPpak+qvrjICZeWY9j9ePYX+l2EZsa2eyrZ2ppdq6E+djYxqcVoup1eIBYxqsnSamyHRKUkmSJGkgzggoSZIk1dDSRXN/M1pFxIERsTwi7oqIg8qKr54GaOtXi3Yu7/S2FtteFBGPRsScMmJrhAH+bfeIiG9ExO0R8Ymy4qunAdp6QkTcGxErI+K4suKrl4iYHBFrIqInInbtta0T81PLtbdGTAuK99rSiPjLJsZ0aESsKF6PS/qI9/Zie9PyW42YLoiIHxSv00eaGNOBRUzLIuKqiOfvhVbi+2mgmEp5PxXnPisilvcRa2k5pp+YyvqbmxoRvy3Oe2uvbfX/m8vMlvwBDgGuKJa/DEyv2nYj8ApgL+CmsmNtcFv3LX6/Cvh/ZcfayLYW6z5MZVKGOWXH2oR/2y8Af1R2jE1q6wrgD4AXAXeUHWsd2joaeCmwFNi117aOyk+t2t4aMS0A/rCE1+nlwOhi+WvA66q2fRF4E7A7sLRFYrqgjFwLjKxavqoVPt9rxFTW+2k34Gpgea/1peWYAWIq6zWaClzTz7a6/821ck/zQDNavTQzf52Z66jcxL/d9dvWzHykWNwMbG1yXI3Qb1sjYlSx/a4S4mqUgd7HBwIfj4glEdEJM7YN1NaHgRdTSV5PNDmuusvMnsz8fT+bOy0/tWR7a8SUwL9ExM0RUe+JYwaK6dHM7Cke9s7ZrwNWZOZTwJMRMfYFB2h+TAAXRcTiiDi4GfEUMW2uergJ+HXV47LeTwPFVMr7CfgAlQK1tzJzTH8xlfUaAcwuviE4q9f6uv/NtXLRPI7nP1y72f6NUR13KVP11dlAbd3mM1T+19TuBmrrKcA1zQ6owQZq7+FU/l3/HLi4yXE1wkBtvRH4PnA/cGmT42q2TstPtbRiez+amYcDFwGfb/bJi6/MJ2TmA1WrR2TR/UX/eb7ZMX0xM6cBH6LJf5cR8c6I+DEwEdhQtam099MAMTX9/RQRI4FZmXl7H5tLeY1qxFTW39xvgFcDs4E5vYar1P1vrpWL5oFmtKq+5cdzTYuocQacvSsi/hZ4IDOX935iG+qzrcWYxGMy8ztlBdYgA/3b/kdmPpiZv6Xz38fnA68BDiiWO1mn5adaWq69mfl48Xs5leEJTRMRewBfotIjV636tXlBni8jpqrX6efNiqXq3N/KzAOBtcCx1Zuqlpv6fuovppLeT+8Fru1nW1mvUb8xlfU3l5mbMvPpzNwCfJvKN7jb1P1vrpWL5oFmtHo8IqZExGQ64KteBmhrRBxNpUfyUyXE1Qj9tXUisHdEfBd4D/CZiHhpCfHV20Dv4/+IiEkR8WLqfM/0kgzU1k3AM8DTwKgmx9VsnZafamm59m77GjYi9qe5xemuVL4tOzszH+21+YcRMaP4ex+bmU15rQaKqep12pMm5qCI/8/e3cdZVZf7/3+9wUE8AU4Ih8C7KU0qb0IZFEwEktRS08638nSj0dE4ab/k2LHjTRqS5/g4ZmVq/jTl+xPLyNONinYoFYUEEWUgUxMtTT1paiCBd8BBuH5/rM/kdpyZvWfP3ntt9ryfj8c8WHd7fa692Puaaz7rs9bS9gWzLwEbCuZz+Tx1F1NOn6fRwCnpd+Lekr5csC6v71yXMeX4nRtcMPsBsqGA7Sr/nav1oO0eDvC+FFhMdtroHcDX0vL9yMa93gOMyTvOKr/Xx4DlZBe7fD/vOKv5XgvWn0+DXAhY5P/2fen/9T7gI3nHWeX3Oi29z/uAk/OOswLvs4ls3PZfgTuBSQ2en+ru/RaJ6VZgSfos7lPDmD4FrE7f60Vk4/ovT+t2Ae4i++Py8DqJ6fvp/+1eYFINYzoW+HX6mQ2MqoPPU3cx5fJ5Koitvfe2bnJMJzHl9Z37CLCC7GLzi9Kyqn3n/HATMzMzM7Mi6nl4hpmZmZlZXXDRbGZmZmZWhItmMzMzM7MiXDSbmZmZmRXhotnMzMzMrAgXzWZmZmZmRbhoNjMzMzMrwkWzmZmZmVkRLprNzMzMzIpw0WxmZmZmVoSLZusRSZsl/UbSKkn3SfpEmfuZLamlxG3HSHog/byS2n5A0n922O7vC7ZbK+mJNP2DLvb7fA/iXSTpPUW2mS9pgKRmSScXLP+opNOKvPY4SXt23Fep8ZmZlULSrpJuTvlxhaQfSXp7DdvvMj86D1q9U0TkHYNtQyQ9HxHvSNPvBX4BfCkiflWBfYvsM7m1m20WAV+MiEeL7GsOcEN3cRW+lxJiK6ndtG1Lant8KftOr5lDkXjNzHoj5djlwGUR8YO07HDg8Yj4Y41iaKGL/Og8aPXOPc1WtohYBXwDOAVA0ghJ8yS1SVosaa+0/GJJj0r6raSvpmV/67mV9IKkK4GHgF0lfU3SckkPSvpCV+1LOlfSw2m7Y7rZ7uoU0+8kfamT9S2pvX0lvVvSHakH5leSRnSy/fOSLk37myepf1r+lKSBwH8A+6Ze7q9KmtbeK556Uu5L6+ZJGiTpIOCjwBVp+eD2fUn6jqQTCtr+iaRDJW2XYlieXtPl+zczSw4DXm4vmAEi4nbgeUk/lvSQpHsKcvf5kv4/SUtTz/QkSXMl/V7SrLRNi7Kzjz9Xdhbwakn90rqj106NVwAAIABJREFUJC1LOeqqtLzT/FjJPJjivkbSkhT34Wl5V9v/o6RH0u+on3a1zIyI8I9/Sv4Bnu8w/35gVZqeCxyQpseR9ULvBDwJ9EvLd0z/LgLek6YDOCJNHwl8N00PAO4DRha0twh4D3AgcD+wPTASeAoYVLDdHODIND00/dtE1ssyrP29AC1AG7BfWnY7sHua/gTwvS7iPTRN3wp8KE0/BQxM+1xWEMs04D/T9NsLlv8bMKNjvB32NQG4OS3bAXic7I/dLwL/kpYPAX4HNOX9+fCPf/xTvz/AacAlnSz/N7LeZ4CPAAvS9PnAL1POORZYC7wr5d3/AQalfLcFGAMIuBH4ODAMuAMYmPZ1RVreXX6sSB5Mcd8O9AfGAvekbbra/iHgnWl5+++otyzzj3+2w6x3VDD9QeB92RlAIEuk64FXgNmSbgb+u5N9vBwRt6XpDwHHSJqc5ncE9gCe6/Cag4GfRcQm4DlJK4G9yYrsjj4t6SSyBLor8G5gDfB3wHzgMxHxoKTBwAeAeek99Aee6GR/6yLi7jT9G7JfAqXaLfVajEjtLyiy/TKyYzoIOAK4PSK2SvpQWj4tbTcYGAU83YNYzKzv6WxM5sHAhQARMV/SNQXrfplyzkPAU5GGcUh6iqzDYjPwWEQ8kJbfABwCbAL2A5alfLoDWX5qKyPmnuZBgP+OiC2SCnN0V9vfA1wjaS7ws7Sus2XWx7lott7aD3gsTQdZT/ObxiRLaiVLdJ8B/oGsZ6HQa4WbA+dFxNxKBCfpXcA/AwdHxMuSfkHWSwKwEXgUOJSs+O0HPBsRY4rsdlPB9Fay4rpUlwEzI2KRpI8DR3e3cUSEpPnAUcBxQPsvMwEnRcTSHrRtZn3bKuBjPXzN/6Z/txZMt8/3JyuaCwvxSD8C5kXE9MKdqcQLwAv1NA+mIn1Teu3W9iF03Wx/Cllv9keB+yTtSzbs8E3LIuL1nsZujcVjmq1skkYDXwe+nxYtBk5O6/opGyM8iOzU1i1kpwCLFaQLgJPS2GAkjW6f7mAp8DFJTZLeAexPdqqto8HAy8ArKVlPKli3FfgUcKykT0fEeuCvBePfmpRd7NhTL6d2OzOErGe8H3BCwfLuXvNT4LPAQcCv07IFwCkFYweLHVczswXAjpI+275A0lSyfHp8mj8SeKSH+32PpP2UVaufBJaQ9Q4fJmmXtN+d0nR3ua7aebCr7d+ZCulzyIZrDO5imfVx7mm2ntpJ0gNk48zWA+dExC/Tui8DVym72K4J+AFwHXCLstsGBXBedztPpwb3AZanBPwX4C0XuUXE/ZL+m6yHeCtwWkS80sl2v5X0BFmP8hNkp9wK12+SdBxwh6S1ZL3hV0q6mOz7cTFZ70zJIuJFZRcnPgj8EFhdsPoCsjGCL6ZYmtPyG8hOBX4NmNhhl0vJ/iiYHxFb0rLvk40t/G36BfAYWS++mVmnUo/tccD3lF3ItxFYCZwJfDvlrJeBz/dw1w8CM8mGyN0N3JR6eL9ENtytiaxH+gsRsbKb/FjtPNjV9t9Wdqs7AddFxF+VXQD5pmU9PCbWgHzLOTMzMyuLyrjFptm2ysMzzMzMzMyKcE+zmZmZmVkR7mk2MzMzMyvCRbOZmZmZWREums3MzMzMisjllnPDhg2LlpaWPJo2M6s7K1asWBMRw/No2/nYzOwN3eXjXIrmlpYW2trKeZKmmVnjkZTb48+dj83M3tBdPvbwDDMzMzOzIlw0m5mZmZkV4cdom/URmqWatxkza38f+BdeeIG1a9fWvN2eGDp0KCNGjMg7DLO6kUd+gnxyVF+xbt061qxZw+bNm/MOpUtNTU0MGzaM5ubmkrZ30WxmDWXt2rXstdde9O/fP+9QOrVlyxZ+//vfu2g2s4b23HPP0dLSwsCBA5Hy+aOoOxHBxo0beeqpp1w0m1nfVa8FM9R3bGZmlbTDDjvkHUKXJPU4PhfNZmZlmDp1Kj/4wQ8YNWoUt9xyC3fffTff+ta3colF0onA54D+wGeAM4BWYGVEzMglKDPrUl8ZLlcrtcrHvhDQzBqX1LufblxwwQWcd955vP7661x88cWce+65NXpTbyZpZ2BSRBwWEZOBEcCgiJgIDJA0LpfAzMzaVTEXQ+3ysYtmM7MyTJgwgQ0bNjBjxgwOP/xwTjzxRKZMmcKpp54KwBVXXMH48eOZMmUKK1eurGYoRwD9Jd0p6XJgAnBHWrcgzZuZNaxa5WMXzWZmZbrwwguZP38+69at4+yzz2bhwoUMHjyYe++9l3nz5rFw4UIWLlzI/vvvX80wRgADIuIw4DVgR+CltG49UNoVLmZm27Ba5OOyxzR7DJ2Z9XUtLS3svPPOrFq1irPOOgtJvPLKKxx44IHMmjWLU045hQEDBnDBBRdU824Z64Ffp+m7yPLwkDQ/BFjX8QWSpgPTAXbbbbdqxWVmVjO1yMdl9TR7DJ2Z2RtGjx7Nd77zHRYtWkRbWxvHHnssY8aMYc6cOUyePJk5c+ZUs/mlwH5pegwQwGFpfiqwrOMLIuLqiGiNiNbhw4dXMzYzs5qqZj4ut6f5b2PogEeAR3nrGLrlZUdlZrYNOeecc5g+fTrr16+nX79+zJ49m5kzZ/Lkk0+yadMmrr322qq1HREPSNogaRGwBvg0cLGkxcADEXF/1Ro3M6sz1czH5RbNfxtDJ+kisjF0T6R164G9O77ApwPNrOai+rdYWrJkCQA33XTTm5Zfd911VW+7XUSc0WGRh8iZWf2oQS6G6ufjci8E7DiGThQZQ+fTgWZmZma2rSq3p3kp8IU0XTiG7idkY+jm9DoyM7Mytf25reZtto5qrXmbZmZWO2UVzR5DZ2ZmZmbFNFInRtm3nPMYOjMzMzPrK/xwEzMzMzOzIsruaTZrBJpV/Jn2lRYza3MVsVXXiqUr+Mq0r/CL5b9g8I6DmTZtGueeey577rln3qGZmfUptcrHLprNrGGNu6Z3z1la/oXubzc/YtQIbv7xzZzwxRN61Y6ZWSOrdi6G2uRjD88wMyvToUccyuI7FrNlyxYAXn31VY4++mgOPfRQTjvttJyjMzPrO2qRj100m5mVqX+//kz80EQWzl8IwO23387xxx/P3XffzWuvvcZ9992Xc4RmZn1DLfKxi2Yzs1447lPHcfPcmwG47bbbOOCAAwBobW3l8ccfzzM0M7M+pdr52EWzmVkvDN5xMLvvsTv3338/RxxxBCtWrACgra2NPfbYI+fozMz6jmrnYxfNZma9dPw/Hc+jjz7KlClTuOGGG5g4cSLbb78948ePzzs0M7M+pZr52HfPMLOGVcoV1+Uae/BYxh48FoDd3rUbW7duBWD+/PlVa9PMbFtUzVwMtcvH7mk2MzMzMyvCRbOZmZmZWREums2s8dTxQxcj6jg4M7MKqvd819P4XDSbWUNpamqC1/OOomsbN27MYjQza2ADBw7kxRdfrNtOjIjgxRdfZODAgSW/xhcCmllDGTZsGI898hj91b+m7a5av6rkbUeOHFnRtiWdDvyfiDhE0iVAK7AyImZUtCEzsxLtsssuPPPMM/zl+b/Qr8Z9tKXm44EDB7LLLruUvF8XzWbWUJqbmzn6jqNr3m7MzKc7RdL2wJg0fQAwKCImSrpS0riIqO5l62ZmnWhqauKd73wn7/rBu2redrXyca9Kf0mnS1qSpi+RtFjSpZUJzczMSnAScF2aHg/ckaYXABNyicjMrAGVXTR31bsBDJA0rkLxmZlZFyQ1AZMj4q60qBl4KU2vT/OdvW66pDZJbatXr65BpGZm277e9DS7d8PMLF8nAHML5tcDQ9L0EGBdZy+KiKsjojUiWocPH17lEM3MGkNZRXM5vRvu2TAzq7jRwCmSfgXsDQwDDkvrpgLL8grMzKzRlNvT3OPeDfdsmJlVVkScGRFHRMSRwO8iYhawUdJiYEtE3J9ziGZmDaPcu2eMBsZI+iJv9G7sB/yErHdjTkWiMzOzkkTEIelf32bOzKwKyuppdu+GmZmZmfUlvb5Ps3s3zMzMzKzR+THaZmZmZmZFuGg2MzMzMyvCRbOZmZmZWREums3MzMzMinDRbGZmZmZWRK/vnmFm24Y4P4dGZ+bQppmZWRW4p9nMzMzMrAj3NJuZmZlZVTTSWU73NJuZmZmZFeGi2czMzMysCA/PMDMzK0KzVPM2Y2bUvE0z65qLZjNrOI00hs7MzOqDi+Y6lkfPBrh3w8zMrJr8h/22yWOazczMzMyKcNFsZrYNk3SQpKWSlki6JC37apr/kaSmvGM0M2sEZQ3PkHQQcAmwFVgeEadL+ipwLPA0MC0iNlcuTLPq8CkyawBPAx+MiI2pSJ4ETImIQySdCRwH/DTfEM3Mtn3ljml2kjYzqwMR8XzB7GZgb2BRml8AfAbnY6tzuXRggDsxrEfKGp4REc9HxMY021mSntD70MzMrFSS9gOGA+uAl9Li9UBzJ9tOl9QmqW316tU1jNLMbNvVqzHNTtJmZvmTNBT4HnASWQ4eklYNIcvPbxIRV0dEa0S0Dh8+vHaBmpltw8oump2kzczyJ2k74HrgjDRUYzkwKa2eCizLKzYzs0ZSVtHsJG1mVjc+AYwDvilpEbAHcLekJcAY4OYcYzMzaxjlXghYmKQBzuaNJP0/wHcrE56ZmXUnIn4M/LjD4nuBi3IIx8ysYZVVNDtJm5mZmVlf4oebmJmZmZkV4aLZzMzMzKwIF81mZmZmZkWUeyGgmZlZn5HLE+v8tDqzurLNFc2apVzajZmRS7tmZmZmlj8PzzAzMzMzK8JFs5mZmZlZEdvc8AwzM6sPeQyX81A5M8uLe5rNzMzMzIpw0WxmZmZmVoSHZ9SxXG5xBL7NkZmZmVkH7mk2MzMzMyvCPc1mZlYWP/DDzPoS9zSbmZmZmRWxzfU0e5yvmZmZmdVaRXuaJV0iabGkSyu5XzMz6xnnYzOzyqpY0SzpAGBQREwEBkgaV6l9m5lZ6ZyPzcwqr5I9zeOBO9L0AmBCBfdtZmalcz42M6uwSo5pbgb+mKbXA3sXrpQ0HZieZl+R9FiZ7QwD1pT52vKp28fF5hNT98qPqfv32huNdZzKVfz4Ns5xqt5nCertOEm9iWf3SoZCI+djf38qpd6Ok3+3l8a/20tRpXxcyaJ5PTAkTQ8B1hWujIirgat724iktoho7e1+KskxlcYxlcYxlabeYqqzeJyP64hjKq7e4gHHVKq+FFMlh2fcCxyWpqcCyyq4bzMzK53zsZlZhVWsaI6IlcBGSYuBLRFxf6X2bWZmpXM+NjOrvIrepzkiZlRyf13o9SnFKnBMpXFMpXFMpam3mOoqHufjuuKYiqu3eMAxlarPxKSIqMZ+zczMzMwahh+jbWZmZmZWRF0XzZJGSVopaaOk7Tqs20fSEkn3SNqvTmKaI+k+SYskfbpG8RwkaWk6Fpd0Eutdaf3UWsRTQkznS/ptOkZfqWFM+6SYFku6Vnrj3js5fpa6i6nmn6UOsZ0uaUkn8db8OBWJKZfjJKlF0gup3ds7rMvle1dNzsUlx+R8XFpMzselx+Vc3H0stc3FEVG3P8BA4O3AImC7DutuAnYFdgbm1UlMc4A9a3yM3gEMTNM/AvYtWHcZ8AFgELCoTmI6H5iaw2epqWD6WmBcHXyWuoup5p+lgra3B64DlnRYnstxKhJTLscJaAGu72JdLt+7Kr9f5+LSYnI+Li0m5+PSYnIuLh5PTXNxXfc0R8TGiPhrF6vfHhF/iohnyW7kXw8xBfADSbdKqvTDCrqK5/mI2JhmNwNbClbvCyyNiFeAlyUNecsOah8TwEWSFkgaU4t4UkybC2Y3AX8qmM/rs9RdTDX/LBU4iSwpdpTLcSoSU57HaUrqlTq9w/JcvnfV5FxcckzOx6XF5HxcGufi0tQsF9d10VxEYexVfWxSD/xrRBwMXAR8u5YNp1M0wyPikYLF/SP9uUX2sIOafrm6iOmyiBgLnAJcXuN4PirpYWAE8GLBqtw+S93ElMtnSVITMDki7upkdS7HqUhMeX3nngP2AqYAUzucIs31e5cD5+IOnI9Lisf5uPtYnItLU9NcvC0XzYW3/diaWxQFImJt+ncJ2SmxmpA0FPge2V+AhQqPy1ueCpZHTAXH6A+1iqWg7VsiYh/gGeDowlUF0zX9LHUVU16fJeAEYG4X6/I6Tl3GlNdxiohNEfFqRLwO/ALYp2B1bt+7nDgXF3A+Lo3zcVHOxSWodS7elovmtZJ2kTQKeCnvYADau/4ljaZGCTFdAHM9cEZEPN9h9YOSJkh6GzAkImpynLqLqeAYDaPC9wkvEtP2BbMvARsK5nP5LHUXUx6fpWQ0cIqkXwF7S/pywbq8vnNdxpTXcZI0uGD2A8ATBfO5fO9y5Fz8RrvOx6XF5HxcnHNxCWqeiysxMLpaP0ATsAD4K3AnMAn4Wlq3H3BP+hlTJzHdCiwBFgP71CieTwGryS6GWQRMAC5P63YB7iJ7pO7hNTxG3cX0/fR/di8wqYYxHQv8Ov3MBkbVwWepu5hq/lnqJL72HoNcj1ORmHI5TsBHgBXAUuCitCzX712V369zcWkxOR+XFpPzcc9icy7uOo6a5mI/3MTMzMzMrIhteXiGmZmZmVlNuGg2MzMzMyvCRbOZmZmZWREums3MzMzMinDRbGZmZmZWhItmMzMzM7MiXDSbmZmZmRXhotnMzMzMrAgXzWZmZmZmRbhoNjMzMzMrwkWz1RVJX5f0O0kPSWqT9M4utmuRtCxND5R0l6TfSJoi6SlJv5X0sKT5kt5epM1Fkt6TphdU/l2ZmVVHZzlT0hk1aHeypJA0qWDZU5IGVmDfz0v6e0kPpJ+1kp5I0z/o5nVfkvSKpB2K7H+apP/sZHlrZ8vN2rlotroh6WBgEjAmIvYFjgPWlfDS/YGXImL/iFiYlh0UEfsAq4EvlRpDREztYdhmZrnoJmd2WjRL6l/hEJ4FzqzwPgGIiL9ExJiIGAPcAnwpzZ/Yzcs+ATwIHFVmm20RcVY5r7W+wUWz1ZN3AH+JiM0AEfFMRPxV0lGSlqVehqsk/e1zK6kZ+CEwKa3fqcM+7wV2TtuOkDQv9cYslrRXxwAkPZ/+HZJ6r1emHuxD0vLJkm6TdKukP0j6WsFrv5B6e34raVZadmBqa6Wkn0r6u4oeMTPry96SM8kK5p1SPrwk5awFkn4FLJA0XNIvU666TdIIAElzJF0q6X5JqySNSctHpLNxD0u6SNJTBe0vAYZJ2q9jYJL+SdLylA9nFiz/Wlr+oKQvpGVvk3STpEckXdXdG5b0+RTLw5KmFyx/BzAC+DpZ8dy+fJSk/05xrJC0a1rVIunO1IP9ubTtZEk3pOlBkn6YYl0uabykoZIeLdj3+yTdlaad6/sAF81WT+4A9kmnGi9Np8qGAf8CTE49DluAf2h/QUSsA04Gbku9EC+2r0vF9WHAL9KiS4BZEdEKfAX4TjexbACOjYgDgGOAbxes2x+YBrwf+GJK+PuR9Wh/ICLeD1wqaQBwMfDRtJ/7gVPLOjJmZm/1lpwZEV8DXkz58PS03VhgWkRMAWYBd6Se6XnAfxTsb1BEHAicC3w1LZsJ/CyduftTJzF8E/i3wgWS3gccCYwny5djUz4/EhgeEeOAVuBkSSPJcueTEfE+4Jdkxe9bSNoF+BpwCDAB+IqklrT6/wA3AouAgwqK1suAn6a8fAiwJi3fmyy3fyAdk47OBX6eYv0YcEVErAWebv+Dgqw4/5lzfd+xXd4BmLWLiJcl7Q9MBqaS/UI4EdgPWCYJYAfgaaCtyO7uI+uFeRq4PS37IPC+tB/ICvCuCPhm6mHeAuxZsO6e9uJc0pPAqBTzDRHxUnovayXtm2JfmNocANxZJG4zs5J0ljMlfbKTTRdHxPNp+mDg/DR9PfDlgu1uSf/+hqxjoX379p7i/+KtQz9uBL4hafeCZYeRFbUr0vwg4N1khfIxkian5TsCe6Q2LkzvaZ6k17p4y63A7amzBEnzgYOAp4BPAqdFxOvKrk35CPCzFMcn0r43pNcBLIiI14DXJPWT1NShrQ8BH5Z0fprfSdJ2wE+BjwMPkBXTRwKjca7vE1w0W12JiNeBBWSnEdcAlwLzImJ64XYFvQtdOQgIYD5ZL8Z30/wBEbG1hFA+Q5b4xkTEFkmvFKzbVDC9FehqnKCA5RFxeAntmZn1WCc589hONuuqCO2oPbcV5jV1sW17+1slfRf414LFAq6MiAsLt5U0DjgvIuZ2WH4GWX4uSxqacRAwLxWtA4EhZEVzV4rlcQEfjog/d2jrZrLi+IfA+oh4XtLf41zfJ3h4htUNSaMl7ZGmBewDXAUclk7LIWmn9uliImITcDrwL8ougFlMNpSD1LOwbzcvH0I2VnCLpI8DbyvS3F3AP0oakvY/FHgUeGd7O2kYx57d7MPMrGRd5Mz/Abaq4NqPDpYCx6fpT5ONS+7OUt4YI/yJLra5juziuyFpvj0fNqfYdlF2vckC4CSlO2yk+AcWxiTpaKCr8cDLyX4fDJE0CPgw2VnFjwOXR0RLRLQAuwAHpyEa9wDtY5YHqsidNQosoOAicknvB4iINcDzZL31P0+rnev7CBfNVk8GAddL+h3wMNnn83KyxDVP0oNkQy3+vtQdRsSDZFdTf5zsNOSHJf027b+7K6znAh9MbR4KvFCknYeB7wFL0/5Pi4j/JfuldFVadi9vHuZhZtYbXeXM64GHJF3SyWvOBz6Scts/kI3d7c4s4HhJD5ENsXip4wapg+Ia4O1p/mHgW8CvUzs/Ad4WEfOB24Dlkh4GriTr4b0C2DO9j6PoIt9GxLPARWRF9jLgkoh4iqyYv7lgu9fJxjYfBcwAPpniWAJ0vFi8K98ARim7YPERUodL8lOyIv/nqT3n+j5CEWWfETEzM7MGlnqCN6ezbp8FpkbEtJzDMsuFxzSbmZlZV1qAH6chbmvJLs4265Pc02xmZmZmVoTHNJuZmZmZFeGi2cxsGybp75Q98WyRsidebq/sSXCLJV2ad3xmZo3CRbOZ2bbtSOC+iJhM9iSys8ie7DYRGJDujWtmZr1U1oWA6d6HPyW7d+16sifx/CfZ03pWRsSM7l4/bNiwaGlpKadpM7OGs2LFijURMbzMlz9B9mAHgGbgZbKnaUJ2r9kJZPe37ZTzsZnZG7rLx+XePaO9Z+Mbkr5GQc+GpCsljYuILpN0S0sLbW3FnoJsZtY3SHq6Fy//AzAh3eP2L2QFc/u9dNcDe3f3YudjM7M3dJePyx2e8QRvPCGtmezxlx17NszMrPo+B9waEXsD/w008caT2YYA6zq+QNJ0SW2S2lavXl27SM3MtmHlFs2FPRutwOu8uWejuQKxmZlZcSK7fy7AmvTvYenfqWRPTnuTiLg6IlojonX48HJHhZiZ9S3lDs9o79m4WNIZZL3ORXs2gOkAu+22W5nNmlm5NEs1bzNm1v4+8C+88AJr164tvmGOhg4dyogRIyq1u7nAf0k6AdhM9njfmZIWAw9ExP2VasjMrFTr1q1jzZo1/GH1HxC1/f2ze/PuJW3X1NTEsGHDaG4ura+33KK5Y8/G28h6Nn5C1rMxp+MLIuJq4GqA1tZWP1HFzKpi7dq17LXXXvTv3z/vUDq1ZcsWfv/731esaI6IdcARHRZ3ezG2mVm1Pffcc7S0tLBuh3XUuGbmvaPeW3SbiGDjxo089dRTJRfN5Q7PmAt8UtIi4DPA5cDG1LOxxT0bZpanei2Yob5jMzOrpB122KHmBXOpJGXx9UBZRXNErIuIIyJickR8KCLWRsSMiJgYEV8uZ59mZtuSqVOn8uc//xmAW265hTPOOCPniMzM+qZTjz+V1c9nFzX/+vZfVy0flzs8w8ys/qmXXRzR9UiyCy64gPPOO4/vf//7XHzxxdx66629a8vMrEG17ty7Zyy1PdvlXYwB+OJXv8hVF1/F2RedzfVXXs/C2xb2qr2u+ImAZmZlmDBhAhs2bGDGjBkcfvjhnHjiiUyZMoVTTz0VgCuuuILx48czZcoUVq5cmXO0ZmaNa7/W/di0cRPf/vq3OejQg6qWj100m5mV6cILL2T+/PmsW7eOs88+m4ULFzJ48GDuvfde5s2bx8KFC1m4cCH7779/3qGamTW0U886laV3LeXll16uWj728AwzszK1tLSw8847s2rVKs466ywk8corr3DggQcya9YsTjnlFAYMGMAFF1xQyVvMmZlZB6N2HcXwdwznqcefqlo+dtFsZtZLo0eP5rOf/Sxjx44F4PXXX2fz5s3MmTOHuXPnMmfOHM4888ycozQza3y7v2t3/vWL/1qVfOyi2cysl8455xymT5/O+vXr6devH7Nnz2bmzJk8+eSTbNq0iWuvvTbvEM3M+oTPn/Z5/v3r/16VfOyi2cwaVzd3v6iUJUuWAHDTTTe9afl1111X9bbNbNvUV57Q2q7Y3S8qZfbNs4Hq5WNfCGhmZmZmVoSLZjMzMzOzIlw0m5mZmZkV4aLZzMzMzKwIF81mZts4SSdKulPSIkk7S7pE0mJJl+Ydm5lZoyi7aHaSNrO+bNGiRQwePJh169YBMG3aNB5//PGaxyFpZ2BSRBwWEZOBEcCgiJgIDJA0ruZBmZnV0IqlK5i01yReXv8yUL18XNYt5wqTdJo/gJSkJV0paVxE1Ob+ImZmXejtbZ2K3aJp1113Zfbs2Zxxxhm9aqeXjgD6S7oTeAR4FLgjrVsATACcj80sN+Ou6d3f7su/UDyFjRg1gpt/fDMnfPGEXrXVnXJ7mv+WpCVdTpaUOyZpM7OGduyxx3LrrbeyZcsWAF599VWOPvpoDj30UE477bRahTECGJA6MV4DdgReSuvWA80dXyBpuqQ2SW2rV6+uVZxmZlVz6BGHsviOxVXNx+UWzT1O0mZmjaZ///4cc8wx3HjjjQDcfvvtHH/88dx999289tpr3HfffbUIYz3w6zR9FyDK4JNBAAAgAElEQVRgSJofAqzr+IKIuDoiWiOidfjw4bWI0cysqvr368/ED01k4fyFQHXycblFc4+TtHs2zKwRnXzyyVxzzTUA3HbbbRxwwAEAtLa21mqM81JgvzQ9BgjgsDQ/FVhWiyDMzPJ23KeO4+a5NwPVycflFs09TtLu2TCzRtTc3Mzo0aO5//77OeKII1ixYgUAbW1t7LHHHlVvPyIeADZIWgSMA74FbJS0GNgSEfdXPQgzszoweMfB7L7H7lXLx2UVzU7SZmZvOO2003j00UeZMmUKN9xwAxMnTmT77bdn/PjxNWk/Is6IiMkR8fGI+N+ImBEREyPiyzUJwMysThz/T8dXLR+XdfcMyJJ0h0UzehmLmVlFtP25DSjtiutS9tOZQXsN4ri9jsu2eRts3boVgPnz5/eqTTOzRtPbXFzM2IPHMvbgsQDs9q7dqpaP/XATMzMzM7MiXDSbmZmZmRXhotnMzMzMrAgXzWbWeLbmHUDX2m+8b2bW6DZs2JDdX60ORUQWXw+UfSGgWSPo7WOWy1Hs0czWO0OHDuXJPz5Jvxr3Caxav6rkbYcOHVrFSMy2PXnkYnA+rqaRI0fy7LPPsnr1akRt/39LzcdNTU2MHDmy5P26aDazhjJixAiOuuqomrfrX75mZm9obm6mubmZd//o3TVvu1r52MMzzMzMzMyKcNFsZmZmZlaEi2YzMzMzsyJcNJuZmZmZFeGi2czMzMysCBfNZmbbOEmnS1qSpi+RtFjSpXnHZWbWSHpVNDtRm5nlS9L2wJg0fQAwKCImAgMkjcs1ODOzBlJ20exEbWZWF04CrkvT44E70vQCYEIuEZmZNaDe9DQ7UZuZ5UhSEzA5Iu5Ki5qBl9L0+jRvZmYVUFbR7ERtZlYXTgDmFsyvB4ak6SHAus5eJGm6pDZJbatXr65yiGZmjaHcnuYeJ2onaTOzihsNnCLpV8DewDDgsLRuKrCssxdFxNUR0RoRrcOHD69NpGZm27hyi+YeJ2onaTOzyoqIMyPiiIg4EvhdRMwCNkpaDGyJiPtzDtHMrGFsV86LIuLM9mlJSyJilqRLU6J+wInazKy2IuKQ9O+MvGMxM2tEZRXNhZyozczMzKzR+eEmZmZmZmZF9Lqn2czMzMxKF+fn0OjMHNpsMC6azczMzKwqGukPBA/PMDMzMzMrwj3NZn1EI/21b2ZmVmvuaTYzMzMzK8JFs5mZmZlZES6azczMzMyKcNFsZmZmZlaELwQ0s4bjix7NzKzS3NNsZmZmZlaEi2YzMzMzsyLKGp4h6SDgEmArsDwiTpf0VeBY4GlgWkRsrlyYfZNmKZd2Y2bk0q6Z9ZzzsZlZbZQ7pvlp4IMRsVHSjyRNAqZExCGSzgSOA35asSjNqsRjX60BOB+bmdVAWUVzRDxfMLsZ2BtYlOYXAJ/BSdrMrOqcj2sjjzN/PutnVl96dfcMSfsBw4F1ZKcGAdYDzb2My8zMeqAn+VjSdGA6wG677VarEM3MtmllXwgoaSjwPeAkssQ8JK0aQpa0O24/XVKbpLbVq1eX26yZmXXQ03wcEVdHRGtEtA4fPrx2gZqZbcPKKpolbQdcD5yRTg0uByal1VOBZR1f4yRtZlZ55eRjMzPruXJ7mj8BjAO+KWkRsAdwt6QlwBjg5sqEZ2ZmRTgfm5nVQLkXAv4Y+HGHxfcCF/U6IjMzK5nzsTWCXO5kBL6bkfWIH25iZmZmZlaEi2YzMzMzsyJcNJuZmZmZFeGi2czMzMysCBfNZmZmZmZFuGg2MzMzMyvCRbOZmZmZWREums3MzMzMiijr4SZWG77Zu5lZfcglHzsXm9WVba5o1izl0m7MjFzaNTMzM7P8eXiGmZmZmVkRLprNzMzMzIqoaNEs6RJJiyVdWsn9mplZzzgfm5lVVsXGNEs6ABgUERMlXSlpXEQsr9T+2/niODOz7tUqH+dxjYmvLzGzvFTyQsDxwB1pegEwAah4kjYzs6Jqko99Rwkz60sqWTQ3A39M0+uBvQtXSpoOTE+zr0h6rMx2hgFrynxt+dRtj0o+MXWv/Ji6f6+90VjHqVzFj2/jHKfqfZag3o6T1Jt4dq9kKDRyPvb3p1Lq7Tj5d3tp/Lu9FFXKx5UsmtcDQ9L0EGBd4cqIuBq4ureNSGqLiNbe7qeSHFNpHFNpHFNp6i2mOovH+biOOKbi6i0ecEyl6ksxVfJCwHuBw9L0VGBZBfdtZmalcz42M6uwihXNEbES2ChpMbAlIu6v1L7NzKx0zsdmZpVX0ScCRsSMSu6vC70+pVgFjqk0jqk0jqk09RZTXcXjfFxXHFNx9RYPOKZS9ZmYFOHb95iZmZmZdcdPBDQzMzMzK8JFs5mZmZlZEXVdNEsaJWmlpI2Stuuwbh9JSyTdI2m/OolpjqT7JC2S9OkaxXOQpKXpWFzSSax3pfVTaxFPCTGdL+m36Rh9pYYx7ZNiWizpWumNG1bm+FnqLqaaf5Y6xHa6pCWdxFvz41QkplyOk6QWSS+kdm/vsC6X7101OReXHJPzcWkxOR+XHpdzcfex1DYXR0Td/gADgbcDi4DtOqy7CdgV2BmYVycxzQH2rPExegcwME3/CNi3YN1lwAeAQcCiOonpfGBqDp+lpoLpa4FxdfBZ6i6mmn+WCtreHrgOWNJheS7HqUhMuRwnoAW4vot1uXzvqvx+nYtLi8n5uLSYnI9Li8m5uHg8Nc3Fdd3THBEbI+KvXax+e0T8KSKeJXv6VT3EFMAPJN0qqdJP+OoqnucjYmOa3QxsKVi9L7A0Il4BXpY05C07qH1MABdJWiBpTC3iSTFtLpjdBPypYD6vz1J3MdX8s1TgJLKk2FEux6lITHkepympV+r0Dstz+d5Vk3NxyTE5H5cWk/NxaZyLS1OzXFzXRXMRhbFX9VmjPfCvEXEwcBHw7Vo2nE7RDI+IRwoW94/05xbZE8Jq+uXqIqbLImIscApweY3j+aikh4ERwIsFq3L7LHUTUy6fJUlNwOSIuKuT1bkcpyIx5fWdew7YC5gCTO1wijTX710OnIs7cD4uKR7n4+5jcS4uTU1z8bZcNBfeK29rblEUiIi16d8lZKfEakLSUOB7ZH8BFio8Lm95lG4eMRUcoz/UKpaCtm+JiH2AZ4CjC1cVTNf0s9RVTHl9loATgLldrMvrOHUZU17HKSI2RcSrEfE68Atgn4LVuX3vcuJcXMD5uDTOx0U5F5eg1rl4Wy6a10raRdIo4KW8gwFo7/qXNJoaJcR0Acz1wBkR8XyH1Q9KmiDpbcCQiKjJceoupoJjNIwKP1ynSEzbF8y+BGwomM/ls9RdTHl8lpLRwCmSfgXsLenLBevy+s51GVNex0nS4ILZDwBPFMzn8r3LkXPxG+06H5cWk/Nxcc7FJah5Lq7EwOhq/QBNwALgr8CdwCTga2ndfsA96WdMncR0K7AEWAzsU6N4PgWsJrsYZhEwAbg8rdsFuAu4Fzi8hseou5i+n/7P7gUm1TCmY4Ffp5/ZwKg6+Cx1F1PNP0udxNfeY5DrcSoSUy7HCfgIsAJYClyUluX6vavy+3UuLi0m5+PSYnI+7llszsVdx1HTXOwnApqZmZmZFbEtD88wMzMzM6sJF81mZmZmZkW4aDYzMzMzK8JFs5mZmZlZES6azczMzMyKcNFsZmZmZlaEi2YzMzMzsyJcNJuZmZmZFeGi2czMzMysCBfNVnOSvi7pd5IektQm6Z1dbNciaVmaHijpLkm/kTRFUrOk6yT9Me3jFkm7lxnPTyT9VtJnJM2XNKCTbW6QNLmc/ZuZ1Yqk3STdlHLjCkm/kvT+Xu7zPyVNS9OLJK2S9KCkOyWNTMuf72UboyT9oIzXFf6emCzphg7rn5I0sIz9/m1fabq1YN0iSe/p6T5t27dd3gFY3yLpYGASMCYiNkvaBXi1hJfuD7wUER9M+7kJ+E1EfC7NjwWGA0/3MJ6RwF4R0f5L5Uc9eb2ZWb2Q1A+4GfhuRHwsLRsH7AH8toJNfSwiHpV0AXAO8OXe7jAi/gyc2OvIqmMy8DzQlnMcljP3NFutvQP4S0RsBoiIZyLir5KOkrRM0gOSrkrJHwBJzcAPgUlp/UHAfsC/t28TESsiok1SP0nfk/Rw6mUZn/YxLfUW3ynpCUmfSy+9FXh32u++hb0Ski6Q9Jik24GdCuJ5S6ypt2OlpB9JelTSlQXbfzRt+1tJs9Oyd0u6o6AnaER1DreZ9SGHAesi4m89thGxPCJulDQunZV7SNKVkvoDSPpI6jV+WNL57a+TdIqk30taTFZ0d+aewnWSLk1nEedJ6i/pyMLeY0kzJJ2depXvSXnxQUnv6dBj3JTy+ENp/TFp+S9SznxI0j/09OBI+idJy1MunpmWDVF2FnOlsjOZh3R4za7AF4GvpXhHp1WfT7H8Jm1jfYCLZqu1O4B9UmK9VFKrpGHAvwCTI2IMsAX4W0KMiHXAycBtaf0I4MGI2NrJ/j8O7ALsC0wD5hSs2xs4BvgAMKtg+4ciYkxEPNS+oaQDgQ8B+wCfB9qL7+5ifR9wfmpnQiqMRwDfAT6cerP/LW17BXByRIwF/i9wXmmHz8ysS+8FHuhi3bXAP0fEvsBQ4FOSdgD+X+AosrN5H5J0iKSdgdOB1rRuXBf7/DDwuzQ9Avh5ROxNVlt8kCzfHyTpbWmbzwDXA58CFqQcOpa3niH8Z+BtZJ0j7weWpOUnppz5AeACSeokpiNScfuApAeAUQCS3gccSZbL9wfGpiEXG4BjI+IAst8P3y7cWUT8CbgK+I/0e+KxtOqVFMv1ZEW19QEenmE1FREvS9qf7HTXVLKkeiJZclyWcuAOZEm0u1Nh0cXyg4G5ERHAQ5JeK+jFXRARrwGvpd7hpm72fzBwY+oRfzb1tgBM6CbWVRHxBwBJDwItaf2CiHguvf+1kgaTJf15aR/9gSe6icXMrMeUDWMbTZZn+0XEirTqR2QF78PAI6kwRNJ/keWmYWR566W0fH6HXd8k6X/JCuYvpWXrIuLuNP0boCUitki6EfiYpN8AL0fEnyQtB+ZI2gr8NCIe6VD/fhD4ZsrjAH9N/54u6aNpuoXszGVHt0XEPxYcg6fS5GFk+bv9GAwC3g08CHwz9TBvAfbsZJ+duaXgvZ5U4mtsG+ei2WouIl4HFgALJK0BLgXmRcT0wu0ktXSxi1XAfpJUkFRLsalgeitZsdptqJ1Mi65jLXX//YBnUy+LmVmlPAoc2z4TER+TdCTl9YR2lv/afSwiHu2wrKv8Nwe4jOzs3w9TXHdLOpSsZ/fnkv4finQcSJoCHAgcGBGbJD0MbF/620HAlRFxYYf9fh4YQHadzRZJr5S4v/b3W8rvEmsQHp5hNSVptKQ90rTIhj9cBRym7KJAJO3UPt2Z1Jv7MNkFKO37PSCdalsKfEKZvYEdIuKFMkJdStY70iRpFDAxLV/Wk1jT9lP1xhXmQyNiPfBXSYenZU2S3ltGjGZmhRYAO0n6bMGyHYB1wBa9cReNT5ENeXgMeG8aY7wd8AmyccrLyfLW4HRm7MPlBpSGM/wd8EngZwDK7nT0XERcCdxAVlB3fB//rDc0A0OAtalgPpBsKEpP3AX8Y9oXknaRtFPa719SwfxxsmEhHb0MDO5he9aA3NNstTYI+J6kIWl+BXA52SmyeWnIxGbgC8DabvbzeeAySX8EXiPrpfgysBI4FHgI+N+0XY9FxP2S7iQrzp8iK36JiL9I+lKpsabtTwd+lU4/3gdMJxvbd6Wki8m+hxeT9aCbmZUlIrZKOpYsN34DeAF4kTeu4fi/krYnK4xvSIXil4BfkvWW/iwilgBI+i5Zfn6B3t814mdkPcTtvbiTgX9LQzxeBP6R7HdDu6vJrhF5GHidrIPkNuBLkn5H9vuiR3cDiYiHJX0L+HXqsHkltTsX+EUaUreI7P12dCvwM0mfTq+xPko9O7ttZmZmVjpl9zueHREL8o7FrDc8PMPMzMyqIvUMDwTuzDsWs95yT7OZmZmZWRHuaTYzMzMzK8JFs5mZmZlZES6azczMzMyKyOWWc8OGDYuWlpY8mjYzqzsrVqxYExHD82jb+djM7A3d5eNciuaWlhba2np720czs8Yg6em82nY+NjN7Q3f52MMzzMzMzMyKcNFsZmZmZlaEH6Nt1kdolmreZsys/X3g161bx3PPPVfzdnti5MiRNDc35x2GmeWkL+TjzZs388wzz7Bx48aattsTAwcOZJdddqGpqamk7V00m1lDWbNmDS0tLeywww55h9KpDRs28Oyzz7poNrOG9swzzzB48GBaWlqQav9HQjERwYsvvsgzzzzDO9/5zpJe46LZzBrK5s2bGThwYN5hdGngwIFs3rw57zDM6koePa+Qz9mwvmLjxo11WzADSGKnnXZi9erVJb/GY5rNrOHUIklPnTqVP//5zwDccsstnHHGGSW9rhqxSTpR0p2SFknaWdIlkhZLurTijZmZlahWBXOt8rGLZjOzMlxwwQWcd955vP7661x88cWce+65ucQhaWdgUkQcFhGTgRHAoIiYCAyQNC6XwMzMaqRW+dhFs5k1Lql3P92YMGECGzZsYMaMGRx++OGceOKJTJkyhVNPPRWAK664gvHjxzNlyhRWrlxZzXd5BNA/9TRfDkwA7kjrFqR5M7P8VDEXQ+3ysYtmM7MyXXjhhcyfP59169Zx9tlns3DhQgYPHsy9997LvHnzWLhwIQsXLmT//fevZhgjgAERcRjwGrAj8FJatx54yxWHkqZLapPU1pPxfGZm9aoW+dgXApqZlamlpYWdd96ZVatWcdZZZyGJV155hQMPPJBZs2ZxyimnMGDAAC644AJGjBhRrTDWA79O03cBrcCQND8EWNfxBRFxNXA1QGtrq6+EMrNtXi3ysYtmM7NeGj16NJ/97GcZO3YsAK+//jqbN29mzpw5zJ07lzlz5nDmmWdWq/mlwBfS9BgggMOAnwBTgTnVatjMrN5UMx+XXTRLOhH4HNAf+AxwBlkPx8qImFHufs3MtjXnnHMO06dPZ/369fTr14/Zs2czc+ZMnnzySTZt2sS1115btbYj4gFJGyQtAtYAnwYulrQYeCAi7q9a42Zmdaaa+bisornwau00fwDpam1JV0oaFxHLy47KzKwSovojD5YsWQLATTfd9Kbl1113XdXbbhcRHe+v5I4LM6sfNcjFUP18XG5P89+u1gYeAR7lrVdru2g2MzMzs4ZQ7t0zfLW2mZmZmfUZ5RbNHa/WFiVcrR0RrRHROnz48DKbNTMzMzOrvXKL5qXAfmm68GptyK7WXtbLuMzMzMzM6kZZRXNEPAC0X609DvgWsDFdrb3FV2ubmZmZWSMp+5ZzvlrbzPqyRYsWccwxx/CnP/2J5uZmpk2bxrnnnsuee+6Zd2hmZnWj7c9tVW9jxdIVfGXaV/jF8l8weMfBfO+c71UlH/vhJtanaVbxZ9pXWsz0A9gaxa677srs2bM544yOfQhmZlZLI0aN4OYf38wJXzyham24aDazhtXbP4qK/YFz7LHHcuutt3L66acD8Oqrr3L00Ufz0ksvMWbMGC677LJetW9m1gjGXTOuV69f/oXidzE+9IhDWXzHYj79hU8D1cnH5V4IaGbW5/Xv359jjjmGG2+8EYDbb7+d448/nrvvvpvXXnuN++67L+cIzcz6hv79+jPxQxNZOH8hUJ187KLZzKwXTj75ZK655hoAbrvtNg444AAAWltbefzxx/MMzcysTznuU8dx89ybgerkYw/PMLOGU6kLT7rbz2NrHuO5l5/j8dce5+27vJ37l93P5z//eVasWMHee+9NW1sbJ598ckXiMDOz4gbvOJjd99i9avnYPc1mZr10/D8dz6OPPsqUKVO44YYbmDhxIttvvz3jx4/POzQzsz6lmvnYPc1m1rBKuXikXGMPHsvYg8cCsNu7dmPr1q0AzJ8/v2ptmplti6qZi6F2+dg9zWZmZmZmRbhoNjMzMzMrwkWzmZmZmVkRLprNrPFszTuArm3ZsqXi+5R0uqQlafoSSYslXVrxhszMemDDhg1Qpw/BjYgsvh7whYBm1lCGDh3Kk398kn417hNYtX5VydsOHTq0Yu1K2h4Yk6YPAAZFxERJV0oaFxHVvQLHzKwTI0eO5Nlnn2X16tWI3j2dtadKzcdNTU2MHDmy5P26aDazhjJixAiOuuqomrdb7JHbVXQScB3wDWA8cEdavgCYALhoNrOaa25uprm5mXf/6N01b7ta+djDM8zMtlGSmoDJEXFXWtQMvJSm16d5MzOrgF4VzR5HZ2aWqxOAuQXz64EhaXoIsK6zF0maLqlNUtvq1aurHKKZWWMou2juahwdMEDSuArFZ2ZmXRsNnCLpV8DewDDgsLRuKrCssxdFxNUR0RoRrcOHD69NpGZm27je9DS3j6ODzsfRmZlZFUXEmRFxREQcCfwuImYBGyUtBrZExP05h2hm1jDKKpo9js7MrL5ExCHp3xkRMTEivpx3TGZmjaTcnuYej6PzGDozMzMz21aVWzT3eBydx9CZmZmZ2baqrKLZ4+jMzMzMrC/p9cNNCsfR9T4cMzMzM7P644ebmJmZmZkV4cdom5mZFaFZqnmbOT6a3cw64aLZrI+I83NodGYObZqZmVWBh2eYmZmZmRXhnmYzMzMzq4pGOsvpnmYzMzMzsyLc01zH8rjwBHzxiZmZ1VYuvZHg6y6sR9zTbGZmZmZWhItmMzMzM7MiXDSbmZmZmRXhotnMzMzMrAgXzWZmZmZmRbhoNjMzMzMrwkWzmdk2TNJBkpZKWiLpkrTsq2n+R5Ka8o7RzKwR+D7NZtZwGukJVCV4GvhgRGxMRfIkYEpEHCLpTOA44Ke5RWdm1iDK6ml2z4aZWX2IiOcjYmOa3QzsDf9/e3cfbVdd33n8/RGCsZI0CimKkYaxilVECkFBpSQlBWu1dqZjtZZaOzKx2KnWlhl8qALjLDtou6iidQnMGK1iq634tBiBFCKJPAZ8lmp11AqKDWCCIJcJ8J0/zo4cLvfec3Jz7t7n3rxfa92V/XDO3p+9777f88vv7Ac2NuMbgGO6yCVJC81se5rt2ZCkMZLkMGA5sA24v5m8HVg2xWvXAesADjrooLYiSmrsYd+GLRiz6mm2Z0OSxkeSRwPvAl5Br6G8tJm1lF4j+kGq6tyqWlVVq5YvX95eUEmax3brQsBJPRt3NJOn7dlIsiXJlq1bt+7OaiVJjSR7Ax8ETq2qW4DrgOOa2WuBq7vKJkkLyawvBOzr2fht4EhgRTNr2p4N4FyAVatW1WzXK42SX5FpAXgRcBTwtiQArweuSLIZ+FfgrzvMJkkLxqwazZN7NpJcB7wKeBv2bEhSa6rqw8CHJ02+CjirgziStGDN9vSM/p6NjcATeKBn43Dg46OJJ0mSJHVvVj3N9mxIkiRpT+ITASVJkqQBbDRLkiRJA9holiRJkgaw0SxJkiQNYKNZkiRJGmDWDzeRJGlP4YOQJNnTLEmSJA1go1mSJEkaYN6dnpEz08l66/Rqf51ntL7KHr8SlCRJepB512iWJI2HLjoxuujAkCTw9AxJkiRpIBvNkiRJ0gDz7vQMz/OVJElS2+xpliRJkgYYaU9zkrOBVcANVfWaUS5bkjS8NuqxD/yQtCcZWU9zkiOAfavqWGCfJEeNatmSpOFZjyVp9EZ5esbRwKXN8AbgmBEuW5I0POuxJI3YKBvNy4A7muHtzbgkqX3WY0kasVGe07wdWNoMLwW29c9Msg5Y14zemeTrs1zP/sCts3zv7GXGm/h3k2lms88087bujoW1n2Zr8P5dOPtp7o4lGLf9lOxOnp8fZRQWcj3272dUxm0/+dk+HD/bhzFH9ThVo3m6UnMO3Sur6pVJ/gZYX1XXjmThD17PlqpaNerl7g4zDcdMwzHTcMYt0zjlsR6baZBxyzRuecBMw9qTMo3s9IyqugGYSLIJuG8uCrQkaTDrsSSN3khvOedt5iRpPFiPJWm05uPDTc7tOsAUzDQcMw3HTMMZt0zjlqcN47jNZhrOuGUatzxgpmHtMZlGdk6zJEmStFDNx55mSZIkqVVj3WhOcmCSG5JMJNl70rxDk2xO8rkkh41JpvVJrkmyMclLW8rzzCRXNvvi7CmyXtbMX9tGniEynZHki80++tMWMx3aZNqU5H3JA/fe6fBYmilT68fSpGyvTbJ5iryt76cBmTrZT0lWJvlhs95LJs3r5O9uLlmLh85kPR4uk/V4+FzW4pmztFuLq2psf4DFwKOAjcDek+ZdCDweeBzwiTHJtB74hZb30WOAxc3wh4Cn9c17J/BsYF9g45hkOgNY28GxtKhv+H3AUWNwLM2UqfVjqW/dDwfeD2yeNL2T/TQgUyf7CVgJfHCaeZ383c3x9lqLh8tkPR4uk/V4uEzW4sF5Wq3FY93TXFUTVfWjaWY/qqq+V1U30+LTrgZkKuADST6VZNQPK5guzy1VNdGM7gDu65v9NODKqroT+HGSpQ9ZQPuZAM5KsiHJ4W3kaTLt6Bu9B/he33hXx9JMmVo/lvq8gl5RnKyT/TQgU5f7aU3TK/XaSdM7+bubS9bioTNZj4fLZD0ejrV4OK3V4rFuNA/Qn31OH5u0C/6sqp4FnAX8VZsrbr6iWV5VX+ubvFc1/92ig0fpTpPpnVV1JHAKcE7LeX4jyVeAA4Db+mZ1dizNkKmTYynJImB1VV02xexO9tOATF39zf0AeBKwBlg76SvSTv/uOmAtnsR6PFQe6/HMWazFw2m1Fs/nRnP/bT/u7yxFn6q6vfl3M72vxFqR5NHAu+j9D7Bf/355yKN0u8jUt4/+pa0sfev+ZFUdCtwEPL9/Vt9wq8fSdJm6OpaA3wMumGZeV/tp2kxd7aequqeq7qqqe4FPA4f2ze7s764j1uI+1uPhWI8HshYPoe1aPJ8bzbcnWZHkQOCOrsMA7Oz6T3IILRXE5qhov9cAABdYSURBVAKYDwKnVtUtk2Z/KckxSR4JLK2qVvbTTJn69tH+jPjhOgMyPbxv9A7g7r7xTo6lmTJ1cSw1DgFOSfIZ4KlJ/rhvXld/c9Nm6mo/JVnSN/ps4Ft945383XXIWvzAeq3Hw2WyHg9mLR5C67V4FCdGz9UPsAjYAPwI+CfgOOCNzbzDgM81P4ePSaZPAZuBTcChLeX5HWArvYthNgLHAOc081YAlwFXASe0uI9myvTe5nd2FXBci5leCHy2+TkfOHAMjqWZMrV+LE2Rb2ePQaf7aUCmTvYT8DzgeuBK4KxmWqd/d3O8vdbi4TJZj4fLZD3etWzW4ulztFqLfbiJJEmSNMB8Pj1DkiRJaoWNZkmSJGkAG82SJEnSADaaJUmSpAFsNEuSJEkD2GiWJEmSBrDRLEmSJA1go1mSJEkawEazJEmSNICNZrUqSSV5Z9/4Ic20P5zl8l6eZP8hXndL8+/KJHcl+XySryfZmORX+l53fpKVs8kyw7qvHvUyJalLO2tqM/yHST6X5Gd24f0nJ/lC87Ojb/g/DvHeA5N8oBk+PMna2W2FtGv27jqA9jhbgWcnSfWe4f4i4Cu7sbyXA1cDt+7Ce75cVUcDJDkGuDDJr1bVl6vq5N3IQpK9quq+rt4vSW1K8jvAOuBXquonw76vqs4Hzm+WcUtVHT5pudPWwqr6PvCyZvRw4MnAhlnEl3aJPc1q2/3ANcAxzfjzgIt2zkzyxCSXJrk+yWeSHNBM/06SM5N8MckVSZYm+ffAKnqN3k3N685NsiXJV5P80aAwVXUV8B7g5Ob9G5M8Ocm+zfq/lOTLSVY38/8gyVean3XNtJVND8lHgK8l2SvJeUluTPIPwMP7tu8/Jbmu2Y7Tm2mrk2xI8hks/JLmiSS/DrwJ+LWq2tZMe2NT476U5D83065K8oRmeO8k30iyeIrlPaiWNtM+3XwefDnJf+h73dVJ9gL+O/AHzfvWJPmTJP/c1Ni/bmVHaI9hT7O68FHgRUluBb4H3N03793AyVX13SQvoleQ/0sz75tV9fQk5wAvrqrzkmwB/rCq/rl5zeuq6vYki4Ark/x9VQ3qhf4CMPn0kBOBH1bVc5M8DHhkkhXAG+k11O8DrktySfP6pwK/W1VfTfLbwKOBp9DrBbkeIMlTgOcCRwMFfDzJqub9RwK/WFU//cpTksbYMmA9cFRV/RAgyXOB5VV1VJJ9gE1JPg28HzgJOBP4NeCzVTUxzXJ/Wkub8Zc1NX0pcFWSC3e+sKruS/Jm4MlV9bomw0eAg6rq7iQ/O+qN1p7NnmZ14Qrg2cBvA/+wc2KSJc30TyT5AvBmYEXf+z7Z/Pt5YOU0y35pks/Ta6j+AvDEIfJkimlfBlYnOQtYVVU/ptdYvqSqtjXjFwHPbF5/Y1+Rfxbw99XzeWBng/54ej3s1wM30GtU78y3yQazpHnkTnq9wS/um/arwAua+n0t8HPAE4C/A3aeq/wy4AMzLLe/lgK8NskXgU306v5jBuS6HvhgkpcA9wy3KdJw7GlW65regS30encPodezAL3/xN08+dy2PjsL4P3AXpNnJvl3wCuBZ1XVj5sejodPft0UDgO+PinjN5IcCTwfeFeS9wA/mmEZk8/lqymGA7ynqt46KffqKd4vSePsXuA3gc1JvltVf0evxr2pqi6Y/OLmlLbnAYcCm2dY7k9rYZI1wDOAZ1TVPUm+wuCa/uvAGuC36H3GrB5+k6SZ2dOsrpwDnFZVd+2cUFXbgR8lOQEgyaIkvzhgOT8GljTDS5rxO9O7W8Vxg0IkeSZwCvC/J00/ELizqtbTO2Xk6cB1wPHN+dT70vua8ZopFnslvV50kjyd3kUqAJcBL0myrJm3Isl+gzJK0jiqqh/Ra6T+zyTH0rsm4xU7z1dO7+5IO89dXg/8L+CjzUXgw1gK3N40mJ8BTPV58NPPgOZUuhVVtQH4M+BJs9syaWr2NKsTVXUjcOMUs34XeE+St9M7Pt8+zet2Wg/8bZKtVXVskm/ROx3iW8DnpnnP05pTOH4G+AFwUlV9afJrgL9Mch9wF/D7VXVzc7rGlc1rzq6q7+Sht5P7R+CEJDfSuzPIl5pt/kqSvwQ+myT0vt58yQzbJkljramBvwVcCJwAXEzveo8A/wa8oHnppcAi4G93YfEXA3+U5Kv06ugXp3jN5cDrmpr+34AzmlP9Qu8UP2lkMvx/+CRJknZd863huVV1bNdZpNny9AxJkjRnkpwMfAZ7fjXP2dMsSZIkDWBPsyRJkjSAjWZJkiRpABvNkiRJ0gCd3HJu//33r5UrV3axakkaO9dff/2tVbW8i3VbjyXpATPV404azStXrmTLli1drFqSxk6S73a1buuxJD1gpnrs6RmSJEnSAAMbzUkOTHJDkokkeydZmeSHSTYmuaTvdf81yeYkH0qyaG5jS5IkSe0Z5vSM24Hj6T0ic6dLq+qknSNJfg5YU1XPSXIa8JvAR0eadOe6zsxcLHagOt37WUvzwbZt2/jBD37QdYwZPfaxj2XZsmVdx5DUkS7aMm23Y3bs2MFNN93ExMREq+vdFYsXL2bFihUsWjRcX+/ARnNVTQATvcfI/9SaJJuAj1XV2cAqYGMzbwPwu8xRo1mSZnLrrbeycuVKHvGIR3QdZUp33303N998s41mSQvaTTfdxJIlS1i5ciWT2pBjoaq47bbbuOmmmzj44IOHes9szmn+AfAkYA2wNslhwDLgjmb+9mZcklq3Y8cOFi9e3HWMaS1evJgdO3Z0HUOS5tTExAT77bffWDaYAZKw33777VJP+C43mqvqnqq6q6ruBT4NHEqvoby0eclSYNsU4dYl2ZJky9atW3d1tZI0tHEt0jDe2SRplMa93u1qvl1uNCdZ0jf6bOBbwHXAcc20tcDVk99XVedW1aqqWrV8eSe3I5WkkVm7di3f//73AfjkJz/Jqaee2nEiSdoztVWPh7l7xqIkG4CnAxcDf5rk+iRXAjdX1TVV9W/AFUk2A4cDH5+TtJK0K5Ld+5nBW97yFt70pjdx77338va3v50///M/b2mjJGmemcNaDO3V44GN5qraUVVrq+pRVXV8VZ1ZVUdW1bOq6rS+151VVc+pqpdW1f+bk7SSNCaOOeYY7r77bl7zmtdwwgkn8LKXvYw1a9bwqle9CoB3v/vdHH300axZs4Ybbrih47SStHC1VY99uIkkzdJb3/pWLrroIrZt28brX/96Lr/8cpYsWcJVV13FJz7xCS6//HIuv/xyfumXfqnrqJK0oLVRjzt5jLYkLQQrV67kcY97HDfeeCOve93rSMKdd97JM57xDM4880xOOeUU9tlnH97ylrdwwAEHdB1XkhasNuqxjWZJ2k2HHHIIJ510EkceeSQA9957Lzt27GD9+vVccMEFrF+/ntNOO23AUiRJu2su67GNZkkLV7XzBKw3vOENrFu3ju3bt/Owhz2M888/n9NPP51vf/vb3HPPPbzvfe9rJYckjaWWajHMbT220SxJu2Hz5s0AXHjhhQ+a/v73v7+1DEleBvw+sBe9J7KeSu9JrTdU1WtaCyJJHZrremyjWZLmsSSPA46rquOb8SOAfavq2CTvSXJUVV03J+s+s/0HF9Tp7fVYSVI/G82SNL+dCOyV5J+ArwH/DFzazNsAHEPvAVSSpN3gLeckaX47ANin6Wn+CfCzwB3NvO3AsslvSLIuyZYkW7Zu3dpeUkmax2w0S9L8th34bDN8GRBgaTO+FNg2+Q1VdW5VraqqVcuXL28npSTNczaaJWl+uxI4rBk+HCjg+GZ8LXB1F6EkaaGx0SxJs7Bx40aWLFnCtm29jtyXv/zlfPOb32w9R1V9Abg7yUbgKOAvgYkkm4D7qura1kNJUovaqsdeCChpwdrduzsMulPD4x//eM4//3xOPfXU3VrP7qqqyQG8zZyksTHXtRjaqcf2NEvSLL3whS/kU5/6FPfddx8Ad911F89//vP55V/+ZV796ld3nE6S9hxt1GMbzZI0S3vttRcveMEL+NjHPgbAJZdcwotf/GKuuOIKfvKTn3DNNdd0nFCS9gxt1GMbzZK0G04++WTOO+88AC6++GKOOOIIAFatWtXJOc6StKea63pso1mSdsOyZcs45JBDuPbaaznxxBO5/vrrAdiyZQtPeMITOk4nSXuOua7HXggoacFq65HLr371q3n3u9/NmjVrePOb38x5553HYYcdxtFHH93K+iVpnLVVi2Fu67GNZkmahdWrV7N69WoAnvjEJ3L//fcDcNFFF3WYSpL2PG3V44GnZyQ5MMkNSSaS7N1MOzvJpiTv6HvdQ6ZJkiRJC8Ew5zTfTu/pUlcDJDkC2LeqjgX2SXLUVNPmLLEkSZLUsoGnZ1TVBL2nS+2cdDRwaTO8ATgGuHeKadeNNKkkDamq6KtZY6WqvXP7JKlL41yLYdfr8WzunrEMuKMZ3t6MTzXtQZKsS7IlyZatW7fOYrWSNNiiRYuYmJjoOsa0JiYmWLRoUdcxJGlOLV68mNtuu21sOwqqittuu43FixcP/Z7ZXAi4HVjaDC8FtgH3TTFtcrhzgXMBVq1aNZ57UNK8t//++/Od73yn6xgzeuxjH9t1BEmaUytWrOCmm25inDtKFy9ezIoVK4Z+/WwazVcBrwQ+AqwF1tM7PWPyNElq3bJly1i27CFfdkmSWrRo0SIOPvjgrmOM1DB3z1iUZAPwdOBiYBG9c5w3AfdV1bVVdcPkaXOaWpIkSWrRMBcC7qDXe9zvIQ/wrqrXjCqUJEmSNE58jLYkzXNJXptkczPsPfMlaQ7YaJakeSzJw4HDm2HvmS9Jc8RGsyTNb68A3t8MT3UffUnSCNholqR5KskiYHVVXdZMGnjP/OZ93jdfknbRbG45J0kaD78HXNA3PtV99B/C++ZLakvObP+JgHX63JQ1e5olaf46BDglyWeApwL7A8c389YCV3cVTJIWGhvNkjRPVdVpVXViVT0X+GpVnYn3zJekOeHpGZK0AFTVc5p/vWe+JM0Be5olSZKkAexpliRpgIV0MZOk2bGnWZIkSRrAnmZJkqQW1RkdrPT0Dta5wNjTLEmSJA1go1mSJEkaYN6dntHJVxrg1xrSPOJFW5KkUbOnWZIkSRrARrMkSZI0gI1mSZIkaYBZNZqTrEzywyQbk1zSTPuvSTYn+VCSRaONKUmSJHVnd3qaL62q1VV1QpKfA9ZU1XOALwG/OZp4kiRJUvd2p9G8JsmmJK8FVgEbm+kbgGN2N5gkSZI0LmZ7y7kfAE8C7gE+ASwB/q2Ztx1YNvkNSdYB6wAOOuigWa5WkiRJat+sepqr6p6ququq7gU+DXwLWNrMXgpsm+I951bVqqpatXz58lkHliQ9IMkzk1zZXFNydjPNa0wkacRm1dOcZElV/bgZfTZwDvBS4G3AWuDq0cSTJA3wXeBXqmqiaSQfR3ONSZLT6F1j8tG5WHEnD5vyQVOSOjLbc5qPTXJ9kiuBm6vqGuCKJJuBw4GPjyyhJGlaVXVLVU00ozuAp+I1JpI0crPqaa6qi4CLJk07CzhrFKEkSbsmyWHAcnqnx93fTPYaE0kaER9uIknzXJJHA+8CXkGvoew1JpI0YrO9e4YkaQwk2Rv4IHBqVd2S5DrgVXiNiaQxsJCufbDRLEnz24uAo4C3JQF4PQ9cY/KvwF93mG3BWEgf/JJmx0azJM1jVfVh4MOTJl+F15hI0kh5TrMkSZI0gI1mSZIkaQAbzZIkSdIAntMsacHxoi1J0qjZ0yxJkiQNYKNZkiRJGsDTMyRJUqdyZjpZb51enaxX85M9zZIkSdIANpolSZKkAWw0S5IkSQPYaJYkSZIGsNEsSZIkDWCjWZIkSRpgpI3mJGcn2ZTkHaNcriRp11iPJWm0RtZoTnIEsG9VHQvsk+SoUS1bkjQ867Ekjd4oe5qPBi5thjcAx4xw2ZKk4VmPJWnERvlEwGXA/22GtwNPHeGyJUnDsx5rXqkzOlrx6R2tV/PSKBvN24GlzfBSYFv/zCTrgHXN6J1Jvj7L9ewP3DrL985eOnnEZzfb2g23dWHac7Y12Z1t/flRRmEh1+PBtXgcj7nZZZrbz51x20/j+Nk+bvsIdifT3B1P47ef5qgep2o0z11vzqF7ZVW9MsnfAOur6tqRLPzB69lSVatGvdxx5LYuTG7rwjRO27on12MzDWfcMo1bHjDTsPakTCM7p7mqbgAmkmwC7puLAi1JGsx6LEmjN8rTM6iq14xyeZKk2bEeS9JozceHm5zbdYAWua0Lk9u6MO1J27rTOG6zmYYzbpnGLQ+YaVh7TKaRndMsSZIkLVTzsadZkiRJatVYN5qnewxskkOTbE7yuSSHdZVvlGbY1vc227l5oW9rM+8RSW5JsraLbHNhht/to5N8JMllSd7YVb5RmmFbX5Tk2iTXJHlhV/lGJcmBSW5IMpFk70nzFlx9gvGsxzNkWt8caxuTvLTFPGN3XAzI1NV+emaSK5v9cfYUeS9r5rf2OTAg0xlJvtjspz9tMdOhTaZNSd6XPHDPuC6OpwF5OjmW+tb/2iSbp8g72n1UVWP5AxwBnNcMvwc4qm/ehcDjgccBn+g66xxv68HNv08E/rHrrHO5rc20P6b3JLO1XWdt4Xf7DuDJXWdsaVuvBH4GeATw2a6zjmBbFwOPAjYCe0+at6Dq0xC/2062d0Cm9cAveFwMzNTVfnoMsLgZ/hDwtL557wSeDewLbByTTGd08ZkELOobfl/Xf3cD8nRyLDXrfjjwfmDzpOkj30fj3NM802NgH1VV36uqm+k9+Wq+m3Zbq+rbzeAO4L6Wc82Fabc1yT7N/M91kGuuzHQcHwq8IcnlSRbCY45n2tZvAY+k90F4R8u5Rq6qJqrqR9PMXmj1CcazHs+UqYAPJPlUklE/OGZa43hcDMjU1X66paommtHJn21PA66sqjuBHydZ+pAFtJ8J4KwkG5Ic3kaeJtOOvtF7gO/1jbd+PA3I08mx1HgFvUbzZCPfR+PcaF7GAx+u23nwBvfn7uRRfSM207bu9Bf0/gc+3820rS8HPth2oDk20/Y+i97v9SXA21vONRdm2tYLgc8DXwDOaTlX2xZafYLxrMczZfqzqnoWcBbwVy1mmsk4Hhed7qfmK/PlVfW1vsl7VdNNyPSfh21nemdVHQmcQsv1K8lvJPkKcABwW9+sTo6nGfJ0ciwlWQSsrqrLppg98n00zo3mmR4D23/Lj/tbSzR3Bj3y9k+Ar1XV5slvnIem3NbmXLsTq+r/dBVsjsz0u/1GVd1YVT9k4R/HbwaeAvxiM7yQLbT6BONZj6fNVFW3N/9upve1+zgYu+Oiy/2U5NHAu+j1Evbr3zcP+TzsIlPffvqXtrL0rfuTVXUocBPw/P5ZfcOtHU/T5enwWPo94IJp5o18H41zo/kq4PhmeC1wdd+825OsSHIgC+CrXmbY1iQn0OuR/B8d5JoL023rAcBBST4DnAT8RZJHdZBv1GY6jr+R5LFJHsmIHzTUkZm29R7gJ8BdwD4t52rbQqtPMJ71eKa6ubT59xBabHQNMHbHRVf7qekk+SBwalXdMmn2l5Ic09TFpVXVyr6aKVPfftqfFmt1kof3jd4B3N033vrxNFOeDv/mDgFOadoOT03yx33zRr+PujhpexdO7n4HsIne1yGPAd7YTD+M3nmvnwMO7zrnHG/r14Hr6F3E8d6uc87ltvbNP4MFciHggN/tU5rf6zXA87rOOcfb+vJmO68BTu465wi2cxG982h/BPwTcNxCrk8Dfredbe8MmT4FbG7mHbonHxcDMnW1n34H2NrUv430zkc/p5m3AriM3n+KThiTTO9tfm9XAce1mOmFwGebn/OBA7s8ngbk6eRYmpRvZy/3nO0jH24iSZIkDTDOp2dIkiRJY8FGsyRJkjSAjWZJkiRpABvNkiRJ0gA2miVJkqQBbDRLkiRJA9holiRJkgaw0SxJkiQN8P8B86kK+Ip+mdIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "source": [ - "dataset.EducationSector.unique()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "52ePFraiAwVh", - "outputId": "7643216a-8236-4061-edef-f60d41ef9ddb" - }, - "execution_count": 187, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array(['Engineering Sciences', 'Others',\n", - " 'Economic Sciences, Business Studies, Commerce and Law',\n", - " 'Art, Music or Design', 'Humanities and Social Sciences',\n", - " 'Medicine, Health Sciences', 'Teaching Degree (e.g., B.Ed)',\n", - " 'Mathematics or Natural Sciences', 'Language and Cultural Studies'],\n", - " dtype=object)" - ] - }, - "metadata": {}, - "execution_count": 187 - } - ] - }, - { - "cell_type": "code", - "source": [ - "sns.countplot(dataset.EducationSector)\n", - "sns.despine(left=True,bottom=True)\n", - "plt.xticks(rotation = 90)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 537 - }, - "id": "yJscU0zf_M2U", - "outputId": "3eb08287-07f3-47fc-c3a0-7283a0e82302" - }, - "execution_count": 188, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(array([0, 1, 2, 3, 4, 5, 6, 7, 8]),\n", - " )" - ] - }, - "metadata": {}, - "execution_count": 188 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAHmCAYAAAB6aln4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxlVXnu8d8DDQgiggIaNI5oJAqCgtphnpEQEeOMTIqoSZSr1wlEQZGLYAwSJ2ynIBjjzKAI0swICC04oFEcMSqKyOCINM1z/1jrUKdOV0N3p89Zu2s/38+nPmefU1W93646td+9pnfJNhER0T+rtA4gIiLaSAKIiOipJICIiJ5KAoiI6KkkgIiInkoCiIjoqTmtA1gGma8aEbHstKRPpAUQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VMr00rgaZ78uo83Oe/X37l/k/NGRKxoaQFERPTUWBKApI0kXS3pdklzJD1V0mWSLpV0wtDXva6+9glJq40jloiImNm4WgA3AzsDV9Tn1wM72d4G2FDSppI2BHasr30LeOaYYomIiBmMJQHYvt32LUPPf2X79vp0IbAI2BK4sL42H5g7jlgiImJmEx0DkLQZsIHt7wLrAr+rn7qtPh/9+kMkLZC0YN68eROMNCJi9pvYLCBJDwDeCzy3vnQb8NB6vA5w6+j32J4HDK782Q8gImIFmkgLQNIc4FTgtbZ/VV++Cti+Hu/C1HhBRERMwFhaAHVGz5eBJwLnABcDWwHHSwI4zPblki6WdCnwM+Dd44glIiJmNpYEYHsh5a5+2Ftn+LrjgOPGEUNERNyzLASLiOipJICIiJ5KAoiI6KkkgIiInkoCiIjoqSSAiIieSgKIiOipJICIiJ5KAoiI6KkkgIiInkoCiIjoqSSAiIieSgKIiOipJICIiJ5KAoiI6KkkgIiInkoCiIjoqSSAiIieSgKIiOipJICIiJ5KAoiI6KkkgIiInkoCiIjoqSSAiIieSgKIiOipJICIiJ4aSwKQtJGkqyXdLmlOfe0ESZdIOnHo6xZ7LSIiJmNcLYCbgZ2BKwAkPQlY2/a2wOqStprptTHFEhERM5gzjn/U9u3A7ZIGLz0NOLcezwfmAnfO8NpV44gnIiIWN6kxgHWB39Xj2+rzmV6bRtIhkhZIWjBv3ryJBBoR0RdjaQHM4DZgnXq8DnArsGiG16axPQ8YXPk95hgjInplUi2AyyljAgC7UMYGZnotIiImZFyzgFaTNB94InAOsBplTOASYJHtK21fPfraOGKJiIiZjWsQeCHlrn7Y12b4ukPHcf6IiLh3WQgWEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTE0sAktaS9CVJF0o6XdIakk6QdImkEycVR0REFJNsAewBfM32DsCVwBuBtW1vC6wuaasJxhIR0XuTTAA/Au5bj9cFDJxbn88H5k4wloiI3ptkAvgBMFfSd4AtgTuB39XP3UZJCtNIOkTSAkkL5s2bN7lIIyJ6YM4Ez3UAcKbtd0p6LaU1sE793DrAraPfYHseMLjyeyJRRkT0xCRbAAJursc31ced6+MuwBUTjCUiovcmmQD+E3iupAuBfYH3ALdLugRYZPvKCcYSEdF7E+sCsn0rsPvIy4dO6vwRETFdFoJFRPRUEkBERE8lAURE9FQSQERETyUBRET0VBJARERPJQFERPRUEkBERE8lAURE9FQSQERETyUBRET0VBJARERPLVUCkLTvyPN9xhNORERMyr0mAEmrAgerWEXS6sDB4w8tIiLG6R7LQUs6ADgQ2Bw4j7Kpyx3AWWOPLCIixuoeE4Dtk4GTJW1l+6oJxRQREROwtBvCPEHSvwKLBi/Y3mk8IUVExCQsbQJ4ObCt7TvGGUxEREzO0k4DvQR4nKRV60Bwpo9GRKzklrYF8OT6MWAgXUARESuxpUoAtnccdyARETFZS5UAJF1Aueu/WwaBIyJWbsvcApC0GfCssUUUERETsTyDud8Dnr6iA4mIiMla2i6gSyhdQKovfWhsEUVExEQsbRfQtuMOJCIiJmtpq4HuJOmrki6SdKmkXZbnZJL2l3SepAslPUTSCZIukXTi8vx7ERGx/JZ2DODtwB62twf2BI5e1hNJegiwve2dbe8APAhYu7YuVpe01bL+mxERsfyWdiGYgLvq8V1MjQUsi92BVSWdB3yXMph8bv3cfGAukIJzERETsrQtgCOAsyVdDHy5Pl9WDwJWt70z8Cfg/sDv6uduA9Yd/QZJh0haIGnBvHnzluOUERGxJEvbAngNsJ1t1zpAZ1Du2pfFbcBF9fh8YEtgnfp8HeDW0W+wPQ8YXPk9+vmIiFh+S9sCuK9tA9i+C7jfcpzrMmCzerw55YK+c32+C3DFcvybERGxnJY2AfxA0tsl7SnpaOAHy3oi298A/izpQmAr4F+B2+sag0W2r1zWfzMiIpbf0nYBHQLsDTwBWEDpAlpmtl878tKhy/PvRETE/97SLgQzcNqYY4mIiAnKxi4RET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET018QQg6dWSLq3HJ0i6RNKJk44jIqLvJpoAJK0BbF6PnwSsbXtbYHVJW00yloiIvpt0C+AlwMn1+GnAufV4PjB3wrFERPTaxBKApNWAHWyfX19aF/hdPb6tPh/9nkMkLZC0YN68eROKNCKiH+ZM8Fz7Af859Pw2YJ16vA5w6+g32J4HDK78Hmt0ERE9M8kuoL8BXiHpbODxwPrAzvVzuwBXTDCWiIjem1gCsP0G27vb3gP4ju23ArdLugRYZPvKScUSERGT7QK6m+1t6uOhLc4fERFZCBYR0VtJABERPZUEEBHRU0kAERE9lQQQEdFTSQARET2VBBAR0VNJABERPdVkIVhMztbv2brJeb/6yq82OW9ELL20ACIieioJICKip5IAIiJ6KgkgIqKnkgAiInoqCSAioqeSACIieioJICKip5IAIiJ6KgkgIqKnkgAiInoqCSAioqeSACIieioJICKip5IAIiJ6KgkgIqKnJpYAJD1V0mWSLpV0Qn3tdfX5JyStNqlYIiJisi2A64GdbG8DbChpe2DH+vxbwDMnGEtERO9NbEtI278aeroQeDxwYX0+H9gX+Myk4om2Ltpu+4mfc/uLL5r4OSO6bOJ7AkvaDNgAuBW4q758G7DuDF97CHAIwAc/+EEOOeSQSYW5XH72tk2bnPdhb/l2k/NGxMptoglA0gOA9wLPBZ4MPLR+ah1KQpjG9jxg3uDpJGKMiOiLSQ4CzwFOBV5bu4OuAgb9ALsAV0wqloiImOwg8HOArYDjJV0IPBq4WNKlwObAaROMJSKi9yY5CPxJ4JMjL18OHDepGCIiYkoWgkVE9FQSQERETyUBRET0VBJARERPJQFERPRUEkBERE8lAURE9FQSQERETyUBRET0VBJARERPJQFERPRUEkBERE9NfEOYiFh6x7zo2U3O+6ZTP9vkvDFZaQFERPRUEkBERE8lAURE9FQSQERETyUBRET0VBJARERPJQFERPRUEkBERE9lIVhE9d7/e2aT8/7Lu/6hyXkjkgAiYqV31FFH9eq8K0q6gCIieiotgIhYJv99zPlNzrvJm3Zqct7ZLC2AiIieap4AJJ0g6RJJJ7aOJSKiT5p2AUl6ErC27W0lfUDSVravahlTRMSK8unPPGXi53zuc65c6q9t3QJ4GnBuPZ4PzG0YS0REv9hu9gEcDuxRj3cB3jLy+UOABfXjkBV43hX2byWmxJWYEtPKGlfrFsBtwDr1eB3g1uFP2p5ne8v6MW8FnveQFfhvrSiJael1Ma7EtHQS09Ibe1ytE8DlwM71eBfgioaxRET0StMEYPtq4HZJlwCLbC/96EVERPyvNF8IZvvQBqddkd1JK0piWnpdjCsxLZ3EtPTGHpfqYENERPRM6zGAiIhoJAkgIqKnkgBiGknPlrRR6zgi+kzSVpLuM+7z9CIBSDqoPm4l6SxJz24dU4etDRxVf06nSPrn1gFJerOkKySdL+kCSW3KUU6PafP6uIGk10l6XAdi6uT7XNJ6kp5WP9ZrHQ+ApD3q48aS3idpuw7EdF59PBo4GPjcuM/ZiwQAvKg+vhJ4CfDGhrHcrYtvQuC0+nE1ZXHe09qGA8Cutp9meyfbO9ruQl3gd9XHo4GfAx9rGMtAp97nkp4j6XPA+4G968cHJH1e0nNaxga8tj4eDpzK1O+zpcH1+BG2Xwbcf9wnbD4NdELuWy+uv7d9g6Q/tg6oei1wNuVN+CHg34GtmkYEvwIuAI63fUTjWAa+I2lv4FrAALZ/3DYk1pK0BrCG7U9KennjeKB77/O/AM/2yFRDSQJa74N5P0kPo6w/urwDPyuA6yWdC5wsaQ6waNwn7EsCeDWwB3B07Vf7fON4Brr4JlwPeAowV9JhwB9t79M4pvsAz6wfUJLAi9uFA5S7xtOBI+t76ieN44Huvc+/Afx1ud5PZ/uMyYczzTsorbdj6s+qeRUC2wdKWh14IOXi/4xxn7MvCeC7wPaUP5DDgR+1Dedux9KxNyHlwjqX8ib8KXBZ02gA2we1jmGU7fdJ+jqwEXAV8JbGIUH33udvrY+PpLyfvg1sSmll7toqqOoMYA1gd0oX1dj72++NpAMo3XgbAk8GPgyMtausL2MAp1LuRubaXgT8n8bxDJrBz7J9gO3rbN9uuwtjEz8BXmn76bYPsf0frQOqGwZ9X9JX6+PFks6U1Gx8QtJ7KS2Sw2zfRfljba1T73PbB9XkfSuwue0XApsDXWjpngqsC7yg/qyObRwPwMG2dwVutn0nJWmOVV8SwJq2zwburM8Xb5NOWO0XvUHSUyTNkbSKpC78Pi4GnlVn3rxFUlfubHe0vTWwI/A94GWUMZNWNqkJe3AxW7VhLAOde59XDwYG0xq3qs9b28D2ScDtrQMZcqektQFLWpM63jVOXbjgTMJ1kt4APEDSq4HvtA6oegpwHGVTnPMom+K09tn6uA/wS+AhDWMZeDJwcz2+hXI3+UvgT+1C4g+SngogaQtKafPWuvo+fz6wH/CF+vjCtuEAcKOk5wFrStoHuKF1QMAbKH9/m9THsfcI9KYWkKS9KD/Y73dgAOpuklaj3I38snUsAJIusL2jpItsby/pLNt7No7pGcDrKQNjAt4JnEWZYfKpRjGtT/kD3YTSIjnW9k0tYhnWpfe5pIfa/nk9nlO7NZD0eNtNk1NtjRzM1O/vQ7a71BqYiF4kAEnPsf2ZeizKheMzjcMaHfR5EvBftpvOj5b0KeAA4F+BtYDH2N62ZUxdJOkxwA9tu76nNrb9g8Yxdep9Lun8wZqNJR03jG1b4NKh3982ti9pFMuJtg9VKYs/uCCL0lM81rVBfUkA095wks6zvfM9fc8kSLrE9rZDd93N/zAG6njE5sBfWt2ttfzDuDej76EuvKe69j4fvK9nOG7+Pp/h9zff9i4tY2qhL9NAV5e0nu1bJD2AMq+8CyY+6LO06syWqyV9BditUQyH1scutkDWGhzUO8i17uFrJ6Vr7/P1JO1ESdrTjtuGBZSFfKvbvqMu6Fu7VSD3NNHC9tvGee6+JIA3AKfVP9S7gNc1jmdg4oM+KyNJb7T9DpXSGW8FPmG75QwggI9Lmk8pmfEk4OON44Huvc+/AGw7w/FpbcKZ5jjgUknXA39NWRjWykX18WDKjLevA1sAjxn3iXvRBRT3TtJMK2sFvNr2EyYdz7QganNd0imUhWqX2W5dMgNJGwCPAH7ShQHgWDY1Ua4P3DRarqJRPF+xvdvQ83PruoCx6UULQKVK4oEM1dZo3QcJnYtrSXVH3jnRKGa2pqT9gRttL5T059YBSdqMMli+LvVaYrtpeYqOvZ+WaDC20ziG3YCXUwquDX5/rX9W/yPpg8A1lPG3n4/7hL1oAUj6GrCt7TtaxzKsq3F1jaRHA9sBn6EscnqG7U83juka4J+BXwxes319u4jyfloWkq4G9urK9OsBSVsBj6K0Kq8c9/n6shDsEuBxklbtworboRg6FVeHLQSeCpxUj9dpGw5Q+mqvsn394KN1QHTs/SRpDUl7S9qxHh8h6V2SHtkyrmoBpVppZ9RW7iaUGkWPq8/He86etAAuGHnJLZt7NR4ztVR/cNw0rq6qg63/Arzf9k6tpzfWmL4FbAD8sL7UhampXXufn0kpJrgO8PfAYZQV00cPpoQ2jO1y4AHAbyh/f134/R0wOKQUzVvf9gH38C3/a70YA6hz7Duz4nZoPvQutu8u/yBpm1YxSfoYS5iG2rpvG1jV9vc0VVa4eUvJ9matYxjVtfc5sLbtYwEk7WD7S/W4bVSA7bmtYxhl++Th55K+OO5zNv9DmoSaWc8Cvlybx81XAVeHjzx/TZMoiqMoUyzvoNQmegdwDvCHhjENnC/pJGAjSSdS4mtK0uaSviDpvPqeelMHYura+3y92v2zM2Ugf6d6vG7juJC0m6T5kr5df1bv6UBMR0t6W/34EBO4PveiBUApszpYcbtI0tjLrN6TOlvjxcATJF1cXzalrnwTgz5sSZvYHuxudZ2kf2oV04DtoyVtSimYd53tb7aOCTiRUg768/U9tRNwTOOYOvU+p8z9327ouEvrAN5CqSz7lfqzenzrgJgqBmngtkm8z/uSALq24vZkYHXgA5RZLQspfyDzWgZVXSTpLOBbwGaU8tDNqGy+/g+UEsI3AN9vGc8Q1RW3g/dSF/6WOvU+t/3We/+qZhbVj0EtoPb9UnDE8Lx/SZ+0/YJxnrALb9pJ6NqK2+Mpg09r2v5LXYr+akoBtpbdQNh+i6QHAw8DTrD961axSHo+sC9lw+5Baeqj6x/Gf7WKqzpZ0unAoyR9mm5sCt+193mXHU9pUW5C6eo8vlUgknYEdgIeI2lQ+mEOZbe58Z67D7OAukZLKIaloYJZrYwucIJ2g8CSzgf29FCZXpUyvmd1YbZU7WIZzNnOSuCVTL3zb74SWNLDKSvKD2GqF2AhcK3t343z3LO6BaCZq0kC0HjK1xxJ9xm5sK1JN3aVOpmRBU4NLfJIjXbbt0ta0qrlsZN0kO2PSTqaofdUXUnaZPe0Dr/PFyNpPcoK3E/Z/nGD8x9m+1iVsiKjv7+xz7tfgjuBy21fVK8D+1NuvsY+BpAWQAOSdqfMAPo4U10b+1E2FTm7cWyfAA60vbBlHDWWn7J4kTUBL7LdZDGRpCfa/qak7Uc/Z/uimb4nptQW3NbAE2yf2OD8D7L963rXPU2rxXySLgV2qpVJP0UpBncTZcX7M8d57r5MAz1m6FiS3t4yHtvnAM+iNPM2o0y9fHbri3+1KfAzlY3YLxmapdTCAZR+2uGP+ZR6N00MzczY0PZF9aJ/MWVTn6a69j6fSW3Rnd/i4l/PPxjTesbQCu6fAc9oEU+1sF787wc80fbxtj8K3G/cJ57VXUBD7l70YduS/q5lMDWO39KNEsLTdGmBU8fvqF9BqU00eE+9fPC8oc69z5fg3yiTHlraB3gP3P2zuvt5A4vqQPAOwPDir/uO+8R9SQC3S9qFsix9LuWOO2ZQpxE+jzIDYTAIPNZNKVZSXdt8BVaS97nt1hd/KI2kx9j+gcr2ni17Qw4CXgX8CTiyBvco4KPjPnEvxgAkPYhSh+SxlA2gj2s5vbHLJJ1NuZP9Z+D9wFa2X9YwHgEH2P6PVjHMpN5dH0tJkncBh9u+rHFMnXyfa/EyIwuBHwMfri3hFjH9DeX3tz5wI/Am211ZYzIxvUgAA/WXLtvfax1LV2lqf+KLbG8v6SzbezaO6dO2n9syhpVJ197nkv4duBT4BmXMa2fgAuBlHSjqd19KL9CfWsbRyqweBJZ0uqT71+O3UDY3OUzScW0j67Qb60yNb0uayEDUUli/1mw5VdIpkpqNnUh6y9B76hmSFki6TFKzBLUSvM83s/1p29fZ/izwty77OUy8C1rSSUM/q5dSJhZ8UVLTDWpame1jAOvavk3SHMrc2sfavktSlwcXm7L9PABJr6LsStSFZvFBrQMYssvQmMjxlL72P1DuaFttUtP19/klKpUtrwX+llJuZFXg8gaxbFJ/VgJeD2xa15ZcQqnvNHGjaxIGL1NaJmNdmzDbE8BqktaiLLP+mu27Bq83jGmlUH9WV7eOo7qZsnhoY+BHlI1hWpkDd6+Yvt72LfX5Xff4XePV6fe57TerlBd5OPBu27+qn2pRqmL1evGfS1lpe/u9fcMEHNHqxLM9AbyZUh73LuClAJI2ptyJxMrjE8B/AWcAWwL/CezVKJbPqWy88iDgUABJG9F2xk3n3+f1ov8rAElPt/3lRqG8B7gCWIu6nqT+rG5tFM9wJV5RkvjdM/AY81TxXg0Cx9KR9FTKm/B04KG2f9Y4notsbz/0/OKWJQ7qgp1Fg4HDOmayhu3bWsW0MpG0e10MGUNU9m/4HvCPwOeBh9veb5znnO0tgFhGkt5L6dPeyfYXJH0Y2K1xWN9Q2SDjauDJlFLVzdj+/cjz24EudCV01shNxX83DqerNrD9HEnb2j5C0hnjPmESQIzaxPbOmtpftnmBulrobEvg0cBJthe0jimWXkdvKrroTpXS8L+os7keMu4T9iIBSBodSV8I/Nj211rE03F/qHdrSNqCsol3c/Wi3/zCX1dozqhFdcthdSziH5leyrsLq7g7c1OhsnPbjGyfP8lYZvB8l/1BDgF2Bz4y7hP2IgEATwduYWohyoOA30h6ue0uTTHsgpdQZmf8CXgRpUZ5THnzEl43ZZvPlk6n1Nlp2kU2gy7dVGy7hNcNtE4ApwJ72P4jZQxg7HoxCDy6mlXSl20/XdKltrdpGVvX1LooP6wFsgRsbPsHjWNax0MbY4w+j0LSZ20/u3UcoyStT7mp2IQyyHmss4HOYurCy+9TykHfBeNvlfSlBbBQ0uuZ2uf2jroQ5Q9tw+qkkwbL82sSOImydL+lzwO73MPziatF114HPJTyx3pLq5lJQwuJNpT0deC79XnLTU6QtLrtO+rF/rUzfa5RaEh6EWVtySaUKaC32N6yVTzV9ZSiglvX52NvlfQlATwHeCbwREoRqnfbXgTs0TSqblprcFBbAGvdw9dOyhojz7tQefP/UZLQGcDewDH3/OVj1Wwh0b14v6SbKaukf1pfewRlrvu61DULjbyKshjsPMrv8cMNYwHA9lsnfc6+JIA5lGl6NwBrAs+ng7X4O+JkSfMpUy63oGwR2dqFkk5lqszxhW3DAeCPtn8nyZT31latAhlaSHSu7V0Hr0v6JPCChnEdXBdZ7cXUwr3rgHmtuxUpv79FkhZSpqdu3jge6iC5KQP4jwV+aXus76u+JIBzKCslf9k6kC6rd/w/oVw0Hgkc34W+2lpKYHPKH8W/empXrpZOrgvA/p2yI9gX7+Xrx0ZlM5GdgMdIGsz6mUO5sDVl+4fAu1vHMYN31N/fW4H30qgO0DDbOw6O63TQD477nH0ZBD7Ddsst31Yakk7zmPchXVqDkgGSFptdU7fMC0Blf9tHUGZsfZByB7mQUusmg+Uj6o3OO22/9l6/eIJGphj/FfA+22NtmfSlBTBH0hcotVEGg2NvaRtSZ0nSWZQuoMFMhFY/q0FRs0WNzr8YSSfWhWmXMFLBsWF5ikfXx48w9Te9KqVuUuupjZ1TJzesKemvbN/QOp4hgynGpgxMj32Kel8SQFfqoq8M/q11AAND9WK+afsbkjakFPAa+xL5e4jp0Pq4pPnkLXR5bju1++5IYB3KCuA32m45aA7wJOBiSb+m/Jzcsr5Uda3tdw2e1AVh14zzhLO6C0jSFravmWn1XwdW/XVS3SzjFcB6wJsoC1Oa9W/XmM6rK0lPAi4CXmV77r1935hj+ojtl9RjAR+yfXDLmLqq7kvwTODzdbe581rvBNYlktYFHkhZCPZCShfeqsD7hwf1x2G2twA2o2TQ0TukTtwZddSpwPsoe9zeKen/0HCAs1qrDoqtYfuTkl7eOB6Au/tra5fCo+/piyeho3Pbodxo3lJnTEEHrjtafJ9ibLdayb09JUE+gtINNBjDGfu+F81/EeNk++R6d3a/rg34dNiats+uC+dgqi55S6dSyhwcWWdu/KRxPAA3STqYqampTTY3H9G5ue3VyZJOBx4l6dPAx1oHBBxVHwVsCjTr/rF9OnC6pL+2/T+TPPes7gIakPQ+4O0dG/DpJEnvp6xIfAFlDcAjbb+qbVTdo7ID1yHAYyjL9z/sxhuLS7qgdrGcS6npdMa4Z5EsLUkPpLSaftKFqcWjWu4xMdOEAqa2hBxrTH1JAJcD6wM3UmaWdGHAp7Mk7UWt22L7zA7EM1ggswrlgjv2BTJLQ9JTKNtU/tD2lR2IZ3fKGMmWlP1uv2C7+d12FweBhy66oqw0/1KLlbit9SIBxLKpf7DrMVVSuDPjJYMFMrYPbBzHuyllMr5OueDebvuVLWOCaRuvnAE8xI13c4Npg8Cfs71TFwaBJT3B9rVDzx9r+7rGMU18XGJWjwEMSNqNckf0IMqS73d34Y+1iySdCfyCUjYDOjBgPsMCmSe2imXI5rZ3qMcfrBe5ptTdjVcGg8CD51247vw7ZfX0wDGUmmEtHVUfJzYu0YVfxCS8BdgR+Eqt//H41gF12Jq2uzDLZtjwApnbaF93H+D3kvalLJjbkm5Ulu3MxisjOjMILOkgyvtnU0kXU/vagYkOvs5kUNOp+qmk1437nH1JAIvqx6DGfRdmtnTVKZJOYPqq6aZlFzq6ac++lEHgVwE/pMzfbq1LG69Q4xDwc8pFt/kgcB0T+R/aSh8AABzmSURBVJikl9r+UKs4ZjLDuMRZYz9nH8YAJP09pR75JpQ9AU6w/eW2UXWTpMuAMxkqnGe7SUVQSXdRdnG7dfjlEpKXuLXfmGNazfbCeixKF4uAc9z4j0kd3XilS/WlBiStDTyPMl7Spe0zJ6oXCQDu/mPdAPhN6z/ULpN0uu29W8cBIOk5wN9TSnifT5nVcmPjmC4G9rT9B0kfoNyx3QQ8rNXAtKRVlvQ523ct6XOTUrt/VqMb9aUGMZ0NfAb4Z+D9wFa2X9YolhMoq6QvGXptW+BZtl891nP34VqYQeClJ+lLwB10qHCepNWAXSmle8+z/caGsVxoe4e6IO1a2xvX1y8YLuc74ZiG68g/kdJqatpSGiZp+9HXbDcdNB9aM3GR7e01sm3shGOZcQ3CJNYm9GUMIIPAS+/41gEMqGzbuQNlCuGDgU/Xj5ZWkfRIStfPeUOvr9kontE68hd04aI/YvQuc2EHKnHeWJP4t+v0y/s1jGVJd+FjvzvvSwLIIPBSsn3R6DqAhm4EfkQpA/ENyh/EzpJaDky/kpIk/0hpVVLrAHVlTKmLTfrXULqAvkmpz2VKr+w1tt98j985JrafRwniVZRege+3iKM6rXYnvpMy/Xojyn7Tp437xH3pAsog8FKaaR1Aq8ExSQcs6XOtBqa7SFMb5ohy4bi7Fdd6BheApC/a3mvo+Vm295R0+aSruko6mpmTpG0fOclYhknaA3guZZ3LL4HP2D573OftRQvA9pdUNjlZ3/ZvWsfTcZ1ZB5CL/FIb3jDn2GZRLNlakp5LufnaDLhPfX1hg1jmDx0beBxwKKWYX7MEUC/2Y7/gj+pLC2A3Spnc+zM15atr/aSdUO+6N6dD6wBi5SbpAcDBlHLHP6HsXHYLsLbt3zeKaRfgn4DfAe+x/fUWcbTWixYA8A5gL9vZFP7evYyyDuDO1oF0kaQjWUI/ex/nkS+l24CfAX8GPgBsYfsqYOIX/9pdti/wVeAVtn896Ri6pC8JYAHwl9ZBrCR+Y7uL3QgAqGwL+XbgP21f2CCEwTkPBr5LKQa3BaVKaczsVEqV0hfYfo+kYyn7FbTwZuA3lFmBO9T6RBMpvbwkLW8q+pIANgUukzRYRJRy0Es2R9IX6NA6gBG/pezx3KQg3GD+uqQ32d6vvvyVWoO/MzqQKIdtYPukOg7QlO1Hto5hBhfWx4nfVPQiAUx6psFKrjPrAAYknTK42NZ1HK9y3Zy9of+R9EHKlqObU+rddEnTRDniRknPA9aUtA9TM8yCtjcVs3oQWNJhto+VdAqL19nev1FYnVbLCvwjZaOTH1FquC+65+8aWyxbAE+iTOF9Z315DvCiLrTgJG1FKXD249qn3Tqe+wOvoKzhOBx4uu3W+zlTF1wdzFSNog/Zvr1tVN0j6SOUsbfBTcUa4y6EONsTwINs/1rSw0c/N1J6NSpJnwC+w9RGJ0+w/YJGsTyR8odwCDCvvrwQuML2j1vENCBpI0qiXJeOFBOrazjeBxxueztJ82236msfxHQfYCvKSu4bgKtsNx2Pq4tBT+7iTeCkbypmdRfQ0Aj/aC2ShZIebPtrk45pJfBQ2/vW43NabnRi+5uSvgXs0sE1AacD/0aZ294Va9o+W9Lr6/OmK7klPYmSkM6mXPyfABwn6V9sX9MqLtuWdEMtnf11pgrUNS2cV28qnka5qfgbSU/PIPCK8XTKvONvUBaiPAj4jaSXj7uJtRL6haQ3MbXRSdP+2vrH+guV/XeHq0m2rnJ5ve1PNo5h1HWS3gA8QNKrKS25lo4Gnm37F4MXJM2jtOb+vllUxVPqx4CZvkNYCxO/qZjVXUADo5X+JH3Z9tMlXWp7m5axdU0twLYP8GjKRien2266JkBTO1wNNK9yWctC35cyawNKTM27FCTtRe1rt31m41jOtb3r0r7ed5I+a/vZkzxnX1oAC2uzeLAU/Y56oevCNn6dIGl34NbaLfbZ+tpTKXdFX2kZ20i1SwHbNgxnYL97/5LJkrQWpdvnV8B6kva3/fGGIW0gaTRRC1i/RTDTgihxHU0ZdF0VOMr2/Hv+rrHbUNLXmeBNRV9aAKtTSgo/Evgx5a72jrZRdUu9o91p+G5f0hzg/NYzbup+ALsAz6AUy/qu7cMbxyRKchzeUarlxXawpeBZdGA3txrPEmvr2H7rJGMZpbLz3e62fy9pHcqObk2ni7eYrNKXFsAc4HZKf/aawPOBpn+sHbRotKvH9p2SmkwBBagLh/4BWAs4B3is7Z1bxTPi05Qpjf8IfB54OO3fU7d0aRV364v8vRB1PKk+ti59DqVcxrSbCsb8nupLAjiHkTujWMyvJG1t+6uDFyRtQ+lOaOXtwCWUHdy+LqlL+8puYPs5kra1fYSkM1oHRPdXcXfJEcDZkgY7qTXZl2DExG8q+tIFdIbtZ7SOo8skPRB4D2W+9m+ADSkJ81W2f9swrs2AZ1GWxm8KvAS4rANzyedTZrJ8lLKZyN62n9w4ps5tvRhLT1PbjQ4ex37d6ksCOItSDC53RveirgTegFIUrvVUy2nqzlvPomzK3mT/3aFY5tQusvsCuwNfG57uOOFYtrB9zQwDrtg+v0VMwySN/q0tpIzFfSFjcVNa3FT0JQHkzihmLUkH2D55hkFXt16dDHeXOPg+U+twNqWsUdja9t4tY+uSFjcVszoBSNprUAtF0pa2F9TjfW1/om10ESuWpMcAP6yL5wRsbPsHHYjrK7Z3G3p+ru1dJV1ke7GbswnFtEddNb0x8GrgU7YvbhFLS6u0DmDMXjN0PFzl8iWTDmRlJGmOpL9qHUfXSdqq1rxp7STXO7r6eFLjeAZ+Lun9kl4u6f2USqqrUnYHa+W19fFwyn4F72oYSzN9mQUUy2c94HhJt9n+l9bBdImk82zvrLLJ+IbAQ2lf3mCtwUFtAax1D187MbZfXEt5PBL42FCRswPbRcX9JD2MMv35ckl/bBjL3Wo9oIfYvkrSWrb/NM7zzfYE8ChJb6NM8xo+7uKmEJ3kqfrkMd2g9fwI2/tJurRpNMXH60Di1ZRZU63XJQDTipzdnwkVOVsKx1JWAh9TW29XNI4HSYdTCuY9TtKWwOcodczGZrYngAOGjucv4TiGSPov28+vxcT2kPTrLtS46aDrVTbsOLmumG62YG7A9gckfZZyg3O87Ztax1QNipx9s3UgQ34LHDg0XvKl1gEBu9reUdIFtu+qFQzGalYngMz0WS4b1scn2d69LpmPEbYPrH+gD6Rc/JutM5F0kO2P1e4oD73elenOXaycetRgVXlNAkfSbp/igTskPQSwpAcxgX3MZ3UCiOXyJ0kfBa6ud0bN72y7SNIBwIsoCfPJwIeB5zQK5+r62NWW7cSLnC2FtSStbvsOSWsAazeOB+CfKIPR6wHvBl457hMmAcSofSibwvyk3uG+uHVAHXWw7W1rc/3OupK6lftL2o6RbU87pIvjSMcBl0q6Hvhr4B2N48H2jyh1yiYmCSBG7Qi8vjZBNwdexQTuRFZCd0pam9JcX5O2F9/BquitKH/Tg0Hg24Fmc9vrYO+XgZkK+H100vEMs32apNOZWvXePHnWaq4bAjdRSmb/GrgNOMb2WAapkwBi1FsoF5Sv2F4k6W9bB9RRb6Dsm7BJfXxjq0AGVTclfcn2HoPXJbUe2ByUEhntRmx2sZV0mO1jJZ3C4uMlrbulvgs8z/Yv68ypo+rHaUzfvWyFSQKIUYvqx2B2xGxfLLhcbF8J7HGvXzhZa0p6AXANpfXWdB2A7XPq48mSNqXsddu67PKg5XFE0yhm9mTg5np8C7B5TQZjWwuQBBCjjgfOo9zZnsP0FdS9J+lE24fW5vq0O9nWG+dQyggfTNkx7Sf1eXOSvgj8gqly7KZR15TtX9fDDw9vSynpk8ALWsQ05G3A/LoHh4Cj64rpD4zrhLO6FlAsn3rnvz5wUxf6RrtI0vrD8+wlrWf7lsYxrUqZibQB5aKxxdCq22Zq11TrVdIASNqRsunKfkwtlJtDKUzXpC5RS0kAASy5bxToQt9o50g630Mb00v6tO3nNo7pk8BFwP62/07SfNvN5rZLGswg2xP4H6aXY28yCKyy7eIjgEOAefXlhcC1tn/XIqYBSU8EXkfZ9nSwzehiJb5XpHQBxUCX+0Y7Q9I+lD0J/lbS8B3kOu2iutsGtk9S2UqzCwaDv2eOvN7srtNlj93rgYtU9pfYiPL725yGM6aqkyhrSz4MvBQ4aNwnTAKIgd1Lz8+MOlFTpiPOp0yz/BnwQcqd2kLabp05cKOk51EGg/eh7IHdjOuG9JK2BS4dKruwTcu4akzvpdQm2hq4jDJg3joB/MX2jyStYvuH9ec2VpnhEQOqH3tT/ijuA8ylezNdWvu7ehf5Y0rpgJ0pP6MDWwZVvZjS/381pTrpS9uGc7ejRspUj25c08JmtdDh9bZf1DqY6uxamO4/JX2Dsj/wWKUFEMC0u7Xn2X7Z4HVJX24XVScN5rbfOfJ6y7ntDxt6ekb9gLKo6GeTj2gxXSy7cKfK9qe3Stof2Lh1QLYHq5E/WD/GLgkgRt0h6TCm5pIvbBxPp3R0bvtPgaso2ywOiJKUulDKo3NlF4B9KT0grwBeCDSf6CDpAhafgDHWQeDMAoppJK0GPBN4FGUu+WnZuHtxM81tb1XjXtJWlN/Z44H/Bj432P60K2rff2fKLgBI2pxSeG0w4+b8thFNkbQZ8CzbR431PB35XURH1KJi0/Rxr9R706W57cMkPZUym2SB7U6MAUh6KPAyyoybwcW2actE0pmUBD4YKG+WwGdSCzFeYvup4zxPuoBi1KCwmIBNabhqs+P+LOkEujG3fX3K4P3OlAJwxwBntYhlCT5BWeV6NKXW1J5twwFgTdsvbx3EsKHV5YMuxQ+N/ZxpAcQ9kXSa7We2jqNr6n4A0wwG0hvEspAyZnMBcAdD/chd2BCmlszeUdLFtrdrvUCtxnQAZYyreQJvKS2AmGZo9SaUFYnrt4qly+og8BqUmTatB4Fb72R1b75ZpzeeXwc6/9A6IEqX1JksPpurGUmjYxALKdON32X7h2M5Z1oAMWzoztaUWuTzbf+xYUidJOmNwG7A44AfURbxdP1C3JykBwC3tB4IlnS67b1bxjBK0juAzwPfAJ5I2RzmU8AJtrcexzmzECxG7WL7ZNsft3068P9aB9RRe9cpetfZ3payyXjMQNJukuZL+jblpuLfW8cEzJH0BUlHS3qbpC4MAG9n+8o6624BMLeWHR/bVOx0AQUAkrYAngRsOdQNNIeys1QsbrBh95/qzKlsnLNko5sMPb51QHSzzPnHJV1OWbz3UODkWuH1tHGdMC2AGLiL0h96M1ObwvyBbpQ46KJD6xjA/wWeDby2cTydI+kj9XB0k6HWYyZQulnmUmYkfRW4X9twwPZJlDpJr6S0Bj5oe5Htd4/rnBkDCODuBWB3DhXs2pVyg3BO6/7arpK0LtMXEv24bUTdMiiZLenvKYlyE+DbwL/ZPrtxbGcC7wMO79DMpN2Al1OK1E2kHHQSQAAg6WJgT9t/kPQByiDwTcDDbB/YNLgOkjQPeDjTVwJ3oexCZ0i6FfgW5WK2CqVsxq3Aota7pw0u+ENJ6jzbM21eP8mYrgb2sv3Le/3iFSRjADFwV7343wfY1fbGcHd9kljc3/RxB6lldI3tHe/9y5q4TtIbgAdIejXT6yi1soCpsaWJSAKIgVUkPZIytfG8odfXbBRP1/2XpEOZvpCoM7Vk4p7Z/idJe1FWKf/Q9gmtY6KsvL9M0o31ucfdUkoCiIFXUmZG/BF4PUDdMSnloGe2N2VnqXXrc1M2i4kpnZpnP0zSWpSuqV8B60na33bTjY9sz530OTMGELEcJH3R9l6t44jlU+vunMXUGE6zUh4DLYrmpQUQsXw6Uwwulsstto9tHcSIiRfNSwKIWD5fbB1ALDtJR1MS9hxJX2B6Am9dOO8u2+dJOtL2/FpuZKySAGIaSW+0/Q5Je1DuRk613YWl+12T2VErp/n18byR17vQFz4omndenX33+3GfMGMAMc1gPrSkUyjbCV5me6vWcXWNpI9RLhqrUHbiutn27m2jiqUl6ZS6Kfzg+Ym2D20Z07BaNG8z2xeO8zxpAcSoNesm2TfaXijpz60D6iLbBw0/l/SpVrHE0qvbQD6Zjte8sn2zpMOBC8d5niSAGLUfsD1wZK11897G8XSSpOEl+hsBj24VSywTM73mFZRd1A5sFVBLSQAxajvbH60bjb8V+FjrgDpq2/o42Ddhn4axxFKy/U3gm5RKm53Y0GdoYHray0zgpiJjADHN0BjAx4E3AGfa3rJ1XF0h6VFL+lyKwa08urShj6QllhSxfdE4z50WQIy6b61v/3vbN0jKbmDTvZmpjbt3B86ux6YMmsfKYW/bcyVdaHuHlmM4477I35MkgBj1amAP4Og6Je3zjePplOHB37rZeS76K6ds6EM2hInFfRf4MyURLKQ0j2Nm6T9deWVDHzIGECO6uFFGlwwN2IkyY+ruAmIdWEka90LSw5b0Ods/m2QsXZAuoBi1pu2zJb2+Pu/C9n1dMn8Jx7Fy+ClwFdPr//d2DCcJIEZ1caOMzmg5YBcrxFOBZ1JWb/838DnbC9qG1E66gGIxdaOMTYDv2T6zdTwR4yDpqcBJwALbL20dTwtJADFN3ShjZ8pGJ4Oa5E03yohYUSStT9moZmfKCuCzgLNs/6lpYI0kAcQ0XdwoI2JFkbQQuIZSzfUOhmZy9XEQP2MAMaqLG2VErCiZ0TYkLYCYRtJZlEUyXdooIyLGIC2AGHVc6wAiYjKyEjgAkDSoh77qDB8RMQulBRADm1EGx7Yded3A+ZMPJyLGLWMAMY2kB9v+VZ0Ouhdwoe0bW8cVESteuoBi1Cfq49spG1J8pmEsETFGSQAxavX6uH6dDppaQBGzVBJAjLpE0gXAJ+t+ANkUPmKWyhhARERPZRZQTFPv/gf17v8K+LXtJe5ZGhErrySAmMb2joPjWjgrq4AjZqkkgJhG0vC40H2AbVrFEhHjlQQQo85jqkLircCbGsYSEWOUQeCIiJ7KNNAAQNLWkk6TdLKknSVdIOkKSQe1ji0ixiMtgABA0uXAs4D7U7qBNqaUhb7U9t+1jC0ixiNjADHwZ9s3ADdIus72nwEk3d44rogYkySAGPhbSR+nzP/fZPi4bVgRMS7pAgoAJD18SZ+zff0kY4mIyUgCiIjoqcwCiojoqSSAiIieSgKIJZK0UV0PcGTrWCJixcsYQNwrSQ+0/dvWcUTEipUWQEwj6Y31cQ9JV0p6VS7+EbNTEkCM2rU+7gtsDezXMJaIGKMkgBi1pqT9gRttLyRbQkbMWkkAMWo/YFXgyLon8HsbxxMRY5IEEKMWAk8FTqrH67QNJyLGJQkgRn0UeDewke1FwAsaxxMRY5IEEKNWtf29oed5j0TMUvnjjlHnSzoJ2EjSicC5rQOKiPHIQrBYjKRNgccB19n+Zut4ImI80gKIaSS90va3bX8G+JakV7aOKSLGIwkgRu0zOHBpHu5zD18bESuxJIAYJUmPqQePIe+RiFkrW0LGqJcDx0laH7gReFnjeCJiTDIIHBHRU2kBxDSS3gzsyVANINs7tYsoIsYlCSBG7WZ7busgImL8kgBi1LWS9gauBQxg+8dtQ4qIccgYQEwj6WMjL9n2i5sEExFjlQQQi5H0EGAjYAGwlu0/Ng4pIsYgCSCmkXQ48ATgb4AtgbNsP71tVBExDlnkE6N2tf1C4Hd1JfDqrQOKiPFIAohRd9QuIEt6EPCX1gFFxHikCyimkfRo4BhKF9D3gCNs/6htVBExDkkAERE9lXUAAYCkE20fKukS6vz/AdvbNQorIsYoLYCIiJ7KIHBMI+kjQ8eS9OGW8UTE+CQBxKhHDQ7qNNBHN4wlIsYoYwAx6iZJBwOXAXOB3zaOJyLGJGMAMY2ktYBDgMcA3wc+bPtPbaOKiHFIAggAJK1me2E9FrAbIOAc500SMSslAQQAki4G9rT9B0kfoEwFvQl4mO0DmwYXEWORMYAYuKte/O9DqQe0MYCkCxrHFRFjkgQQA6tIeiSl6+e8odfXbBRPRIxZEkAMvBI4Hvgj8Hq4uy7Ql1sGFRHjkzGAiIieykKwiIieSgKIiOipJICYRtIxQ8eS9PaW8UTE+CQBxKi5g4O6AOzvGsYSEWOUBBCjbpe0i6S1JO0M3NE6oIgYj8wCimnqPsCHAY+lbAl5nO1ft40qIsYhCSCA0t9v25IGrUJRdwazfVe7yCJiXLIQLAbeBbyGsgp4cFcwSAI7tQoqIsYnLYCIiJ5KCyCmkbQr8C/AupQWQDaFj5il0gKIaSRdQykLfUPrWCJivDINNEZdCyxsHUREjF+6gGLUlcD3JP13fe50AUXMTkkAMWo/YCPbWQAWMculCyhGXQQ8TtKqklYZWhcQEbNMBoFjmhm2gLTtrAOImIWSACIieirN+5hG0k6SvirpIkmXStqldUwRMR5pAcQ0ki4Ddrf9e0nrAOfYnntv3xcRK5+0AGKUgEHxt7vq84iYhTINNEa9GThbkikX/zc3jicixiRdQBERPZUWQEwj6SDgAKa6gcg00IjZKS2AmEbS14BtsxI4YvbLIHCMuoSsBI7ohbQAYpqsBI7ojySAiIieSvM+pslK4Ij+SAsgpslK4Ij+SAsgRmUlcERPZB1AjMpK4IieSBdQRERPpQsoppH0paFjSfpiy3giYnySAGLUfQcHLs3D+zWMJSLGKGMAMeoHkt4OXAbMBX7QOJ6IGJOMAcQ0kgTsDTwW+D5whvMmiZiV0gUUAEjaC+7u9vm57eNtnw68sG1kETEuSQAx8Jqh4+OHjl8y6UAiYjKSACIieiqDwDHwKElvoyz+Gj5+ZNuwImJcMggcAEjafkmfs33RJGOJiMlIAoiI6KmMAURE9FQSQERETyUBxEpP0g6Srpd0Yf14xtDnDpR04P/y33+mpAcM/XtPXobvXUfSl2pcV0jacnnOGzEOmQUUs8Upto8Y07/9TOBa4Gbb/7GM37s/8HnbH5E0B1hzec57T19UV2+TFduxrJIAYtaRtDrwGWAN4E/AGZJ2AHaxfcSgRWD7P2rdox2AO4BnAfsABwBrA4cD3wP2ADaR9FlKsbxLgQuBU4CHAL8A9gO2Ad4A3Ak8ANi9nv/vJJ1u+ybg9zXGtwA7UTbdebHtn47EcuDIeT8F/Ef9P51h+zhJRwEPrzHsC/xmRf0Mox/SBRSzxX6DLiDg/wBX2t4DuGlJ3yBpC+BRtrcBdgZuAz5le4f6/LW2fwacDexr+51D374P8F3b2wHfAf6xvn6H7X8Azqr/xinAz4ALJM2X9GBJmwEPqef5Z+CwGWL5n5HzvgE40vbWwI6SNqrnu872brZz8Y9llgQQs8UptneoF9VVgGvq61+vj8PdI4NtLh9LqXqKK2D3mkTOAP76Hs73aODqerwA2LgeX1sffwGsa3uh7bfZ3hT4CCU5PQ7YoZ7nA8A6S4hlSef7BlML9L5OxHJKAojZ6CfAE+vxFvXxNuCv6vGm9fH7wNMG31T70g8Dnk6piDrYG3khsOrIOX4EDAaDt6zPYSTRSHq4pNXq8xspf3PXAV8ZSlj7LyGW4fMOn28L4Kf1eBBjxDLLGEDMFvtJ2qYef4zS734OcEt97VvARpLOAn4LYPsbdfbQV4G/UMYAvghcDFwJ3Fq/9xzg/ZI+M3S+04BnS7oYuAE4Dth6hrg2Bz4t6c+UC/pBtn8u6Ve1BWDgk7bnzRDL8HmPB06u4xtn2v5FHfuNWG5ZCRwR0VPpAoqI6KkkgIiInkoCiIjoqSSAiIieSgKIiOipJICIiJ5KAoiI6KkkgIiInvr/maDAvHCIQ10AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**MODELING**" - ], - "metadata": { - "id": "dxaGyDKRN99z" - } - }, - { - "cell_type": "code", - "source": [ - "#Import models from scikit learn module:\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn import metrics as mt\n" - ], - "metadata": { - "id": "V8r9Yvb5Bltw" - }, - "execution_count": 189, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from sklearn.svm import SVC\n", - "from sklearn.tree import DecisionTreeClassifier\n", - "from sklearn.ensemble import RandomForestClassifier" - ], - "metadata": { - "id": "YMGsbSGDC_5C" - }, - "execution_count": 190, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "X = dataset.drop(['y','EducationSector'],axis=1)\n", - "Y = dataset['y']" - ], - "metadata": { - "id": "jxeArH1GQRAQ" - }, - "execution_count": 191, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "#Building train and test dataset\n", - "x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.6)" - ], - "metadata": { - "id": "X5P8v-4BQzap" - }, - "execution_count": 192, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**LOGISTIC REGRESSION**" - ], - "metadata": { - "id": "rAjlWgBUODH3" - } - }, - { - "cell_type": "code", - "source": [ - "model=LogisticRegression() # Logistic regression\n", - "model.fit(x_train,y_train)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "zPOHfTdHCI0y", - "outputId": "7c358766-8608-48cc-f888-751fd6c9a80c" - }, - "execution_count": 193, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "LogisticRegression()" - ] - }, - "metadata": {}, - "execution_count": 193 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pre1 = model.predict(x_test)" - ], - "metadata": { - "id": "ltJHuL6iSWwT" - }, - "execution_count": 194, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "mt.accuracy_score(y_test,pre1)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "jd8kO1eSS2yS", - "outputId": "4ce2f963-c0be-4a50-cde1-66b593e3b8d2" - }, - "execution_count": 195, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "0.5833333333333334" - ] - }, - "metadata": {}, - "execution_count": 195 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**SVC**" - ], - "metadata": { - "id": "kKi6Hu9IOJS0" - } - }, - { - "cell_type": "code", - "source": [ - "model2 = SVC() # SVC\n", - "model2.fit(x_train,y_train)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "pkmi3qBTDDXn", - "outputId": "ba79f69d-8494-4a8b-8081-614311cf2e46" - }, - "execution_count": 196, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "SVC()" - ] - }, - "metadata": {}, - "execution_count": 196 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pre2 = model2.predict(x_test)" - ], - "metadata": { - "id": "cjgcf37TTgTS" - }, - "execution_count": 197, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "mt.accuracy_score(y_test,pre2)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "12bbxia5Tnhj", - "outputId": "0b41e044-d93c-4c68-f185-425f5d127b68" - }, - "execution_count": 198, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "0.5833333333333334" - ] - }, - "metadata": {}, - "execution_count": 198 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**DECISION TREE CLASSIFIER**" - ], - "metadata": { - "id": "tRuqDYzQON-6" - } - }, - { - "cell_type": "code", - "source": [ - "model3 = DecisionTreeClassifier() # DecisionTreeClassifier\n", - "model3.fit(x_train,y_train)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "NbsS1FGLDPRY", - "outputId": "06227b0c-cfff-4cdc-ab4d-d18aa4caffc1" - }, - "execution_count": 199, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "DecisionTreeClassifier()" - ] - }, - "metadata": {}, - "execution_count": 199 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pre3 = model3.predict(x_test)" - ], - "metadata": { - "id": "RVqfLnF8Gdld" - }, - "execution_count": 200, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "mt.accuracy_score(y_test,pre3)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "QBzzJWpaUA3k", - "outputId": "513885a5-5e82-429b-a1da-a5775521d19e" - }, - "execution_count": 201, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "0.5757575757575758" - ] - }, - "metadata": {}, - "execution_count": 201 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**RANDOM FOREST CLASSIFIER**" - ], - "metadata": { - "id": "ow_6UU43OWJT" - } - }, - { - "cell_type": "code", - "source": [ - "model4 = RandomForestClassifier(n_estimators=500,criterion='entropy') # RandomForestClassifier\n", - "model4.fit(x_train,y_train)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "M_O3-VnADt_y", - "outputId": "ba756f2f-532d-47f4-bc69-f7ca08ee40a8" - }, - "execution_count": 202, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "RandomForestClassifier(criterion='entropy', n_estimators=500)" - ] - }, - "metadata": {}, - "execution_count": 202 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pre4 = model4.predict(x_test)" - ], - "metadata": { - "id": "R9v_x-j8Uip5" - }, - "execution_count": 203, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "mt.accuracy_score(y_test,pre4)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9vsvurrZUwli", - "outputId": "3066f457-c59c-4a53-f73d-c160725bc2aa" - }, - "execution_count": 204, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "0.6893939393939394" - ] - }, - "metadata": {}, - "execution_count": 204 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "####Comparing All above algorithms Random Forest Classifier is more accurate." - ], - "metadata": { - "id": "KrpPGtYpWEC-" - } - } - ] -} \ No newline at end of file diff --git a/Entrepreneurial Capacity in Student/Model/Readme.md b/Entrepreneurial Capacity in Student/Model/Readme.md deleted file mode 100644 index 6da713315..000000000 --- a/Entrepreneurial Capacity in Student/Model/Readme.md +++ /dev/null @@ -1,35 +0,0 @@ -### Entrepreneurial Capacity in Student - **GOAL** - ##### To Create a machine learning model with highest accuracy which will predict the Entrepreneurial Capacity in Student. - **DATASET** - ##### [LINK](https://www.kaggle.com/namanmanchanda/entrepreneurial-competency-in-university-students) - **DESCRIPTION** - ##### Entrepreneurs have been shaping the world in every way possible. The dataset comprises 16 features collected from university students in India. The target variable consists whether the student is likely to become an entrepreneur or not. Hence, we need to classify the dataset into whether the student is likely to become an enterpreneur or not. - **WHAT I HAD DONE** - ##### 1. Imported libraries required - ##### 2. Extracted data from kaggle - ##### 3. Prepared dataset - ##### 4. Performed exploratory data analysis on updated data - ##### 5. Split data for training and testing purpose - ##### 6. Checked the accuracy of different algorithms. Comparing the accuracy scores among Logistic Regression , SVC, Decision Tree Classifier and Random Forest Classifier, Random Forest Classifier had highest value. - **MODELS USED** - - ##### Logistic Regression , SVC, Decision Tree Classifier and Random Forest Classifier - - **LIBRARIES NEEDED** - - ##### Numpy, Pandas, Matplotlib, Seaborn, Sklearn - - **ACCURACIES** - - ##### Logistic Regression: 0.5833333333333334 - ##### SVC: 0.5833333333333334 - ##### Decision Tree Classifier: 0.5757575757575758 - ##### Random Forest Classifier: 0.6893939393939394 - - **CONCLUSION** - - ##### Comparing the accuracy scores among Logistic Regression , SVC, Decision Tree Classifier and Random Forest Classifier, Random Forest Classifier had highest value. - - **NAME** - ##### Mrunal Jambenal [Github](https://github.com/mrunal736) [Linkedin](https://www.linkedin.com/in/mrunal-jambenal-70922b206) diff --git a/Entrepreneurial Capacity in Student/Model/Requirements.txt b/Entrepreneurial Capacity in Student/Model/Requirements.txt deleted file mode 100644 index f0c2c8464..000000000 --- a/Entrepreneurial Capacity in Student/Model/Requirements.txt +++ /dev/null @@ -1,5 +0,0 @@ -matplotlib==3.4.2 -seaborn==0.9.0 -numpy==1.21.1 -pandas==1.3.0 -scikit_learn==1.0.2