-
Notifications
You must be signed in to change notification settings - Fork 1
/
VAISALAraw2nc.py
228 lines (203 loc) · 9.34 KB
/
VAISALAraw2nc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 22 19:52:29 2020
@author: Weather Radar Team
"""
from netCDF4 import Dataset, date2num
import os, gc, warnings, glob
import numpy as np
import wradlib as wrl
from datetime import datetime
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
def searchFile(path,time,scanName):
searchTime=time.strftime("%Y%m%d%H%M")[2:-1]
results = glob.glob('{}/*{}*'.format(path,searchTime))
radarFiles=[]
sweepNumbers=[]
for file in results:
f = wrl.util.get_wradlib_data_file(file)
raw=wrl.io.read_iris(f)
ppiVolType=raw['product_hdr']['product_configuration']['product_name']
if str(ppiVolType)==scanName:
sweepNumber=raw['product_hdr']['product_configuration']['product_specific_info']['sweep_number']
radarFiles.append(file)
sweepNumbers.append(sweepNumber)
return radarFiles,sweepNumbers
def extractRadarData(radarFiles,sweepNumbers,time,scanName,moment):
f = wrl.util.get_wradlib_data_file(radarFiles[0])
raw=wrl.io.read_iris(f)
# ekstrak lokasi radar
radarLon=float(raw['product_hdr']['product_end']['longitude'])
radarLat=float(raw['product_hdr']['product_end']['latitude'])
radarAlt=float(raw['product_hdr']['product_end']['ground_height'])
radarLat -= 360 # radarLat=radarLat-360
sitecoords=(radarLon,radarLat,radarAlt)
# mempersiapkan container data
res=250. # resolusi data yang diinginkan dalam meter
resCoords=res/111229. # resolusi data dalam derajat
rmax=250000./111229. # range maksimum
lonMax,lonMin=radarLon+(rmax),radarLon-(rmax)
latMax,latMin=radarLat+(rmax),radarLat-(rmax)
nGrid=int(np.floor((lonMax-lonMin)/resCoords)) # jumlah grid
lonGrid=np.linspace(lonMin,lonMax,nGrid) # grid longitude
latGrid=np.linspace(latMin,latMax,nGrid) # grid latitude
dataContainer = np.zeros((len(lonGrid),len(latGrid))) # penampung data
allElevation=[]
for file,sweep in zip(radarFiles,sweepNumbers):
f = wrl.util.get_wradlib_data_file(file)
raw=wrl.io.read_iris(f)
timeEnd=raw['product_hdr']['product_end']['ingest_time']
# ekstrak azimuth data
missing_ray = None
x = raw['data'][sweep]['sweep_data'][moment]
az_start = x['azi_start'].copy()
az_stop = x['azi_stop'].copy()
ixmissing = np.array([], dtype="i4")
if missing_ray is not None:
ismissing1 = (az_start == missing_ray)
ismissing2 = (az_stop == missing_ray)
ismissing = (ismissing1 & ismissing2)
ixmissing = np.where(ismissing)[0]
if len(ixmissing) > 0:
# beamwidth = data["ingest_header"]["task_configuration"]
# ["task_misc_info"]["horizontal_beam_width"]
nrays = raw["nrays"]
# Interpolate az_start
f = interpolate.interp1d(np.arange(nrays)[~ismissing],
az_start[~ismissing])
az_start[ixmissing] = f(np.arange(nrays)[ismissing])
# Interpolate az_start
f = interpolate.interp1d(np.arange(nrays)[~ismissing],
az_stop[~ismissing])
az_stop[ixmissing] = f(np.arange(nrays)[ismissing])
az_stop[az_stop < az_start] += 360.
az = (az_start + az_stop) / 2.
az[az > 360.] -= 360.
az_start[az_start > 360.] -= 360.
az_stop[az_stop > 360.] -= 360.
rollby = -np.argmin(az)
az = np.roll(az, rollby, axis=0)
az_start = np.roll(az_start, rollby, axis=0)
az_stop = np.roll(az_stop, rollby, axis=0)
assert np.all(np.diff(az) > 0), "List of azimuth angles " \
"is not strictly increasing."
# ekstrak range data
range_info = raw['ingest_header']['task_configuration']['task_range_info']
first_bin = range_info['range_first_bin']
# last_bin = range_info['range_last_bin']
range_step = range_info['step_output_bins']
# nbins = data["nbins"]
# We assume that range_info['range_first_bin'] specifies
# the midpoint of the first bin
# If, however, range_info['range_first_bin'] is zero,
# we have to treat it differently
# ATTENTION: The resulting ranges are not fully consistent
# with range_info['range_last_bin']
if first_bin > 0.:
r = np.arange(raw["nbins"]) * range_step + first_bin
else:
r = np.arange(raw["nbins"]) * range_step + range_step/2.
# divide by 1e2 to get from cm to m according to spec
r = r / 1e2
# ekstrak elevation data
elevation=float('{0:.1f}'.format(raw['data'][sweep]['ingest_data_hdrs']['DB_DBZ']["fixed_angle"]))
allElevation.append(elevation)
print('Extracting radar data : SWEEP-{0} at Elevation Angle {1:.1f} deg ...'.format(sweep,elevation))
# ekstrak radar data
data = raw['data'][sweep]['sweep_data'][moment]['data']
# transformasi dari koordinat bola ke koordinat kartesian
rangeMesh, azimuthMesh =np.meshgrid(r,az) # meshgrid azimuth dan range
lonlatalt = wrl.georef.polar.spherical_to_proj(
rangeMesh, azimuthMesh, elevation, sitecoords
)
x, y = lonlatalt[:, :, 0], lonlatalt[:, :, 1]
# proses regriding ke data container yang sudah dibuat sebelumnya
lonMesh, latMesh=np.meshgrid(lonGrid,latGrid)
gridLatLon = np.vstack((lonMesh.ravel(), latMesh.ravel())).transpose()
xy=np.concatenate([x.ravel()[:,None],y.ravel()[:,None]], axis=1)
radius=r[np.size(r)-1]
center=[x.mean(),y.mean()]
gridded = wrl.comp.togrid(
xy, gridLatLon,
radius, center, data.ravel(),
wrl.ipol.Linear
)
griddedData = np.ma.masked_invalid(gridded).reshape((len(lonGrid), len(latGrid)))
dataContainer=np.dstack((dataContainer,griddedData))
dataContainer = np.delete(dataContainer,0,2) # menghapus base layer dataContainer
return lonGrid,latGrid,timeEnd,allElevation,dataContainer
def writeNetcdf(ncpath,site,timeEnd,lonGrid,latGrid,dataContainer,allElevation):
cmaxData=np.nanmax(dataContainer[:,:,:],axis=2)
cmaxData[cmaxData<0]=np.nan;cmaxData[cmaxData>100]=np.nan
filename='{}/{}{}.nc'.format(ncpath,site,timeEnd.strftime("%Y%m%d%H%M"))
print('Writing netcdf file {}'.format(filename))
ncout = Dataset(filename,'w',format='NETCDF4')
nlat=len(latGrid)
nlon=len(lonGrid)
nelev=len(allElevation)
# create axis size
ncout.createDimension('time', None)
ncout.createDimension('lat', nlat)
ncout.createDimension('lon', nlon)
ncout.createDimension('lev', nelev)
# create time axis
time = ncout.createVariable('time', np.dtype('double').char, ('time',))
time.long_name = 'time'
time.units = 'hours since 1990-01-01 00:00:00'
time.calendar = 'standard'
time.axis = 'T'
time[:] = date2num(timeEnd,units=time.units,calendar=time.calendar)
# create latitude axis
lat = ncout.createVariable('lat', np.dtype('double').char, ('lat'))
lat.standard_name = 'latitude'
lat.long_name = 'latitude'
lat.units = 'degrees_north'
lat.axis = 'Y'
lat[:] = sorted(latGrid[:])
# create longitude axis
lon = ncout.createVariable('lon', np.dtype('double').char, ('lon'))
lon.standard_name = 'longitude'
lon.long_name = 'longitude'
lon.units = 'degrees_east'
lon.axis = 'X'
lon[:] = sorted(lonGrid[:])
# create altitude axis
lev = ncout.createVariable('lev', np.dtype('double').char, ('lev'))
lev.standard_name = 'elevation'
lev.long_name = 'elevation'
lev.units = 'degrees_angle'
lev.axis = 'Z'
lev[:] = allElevation[:]
# create variable cmax
voutCMAX = ncout.createVariable('max_dbz', np.dtype('double').char, ('lon', 'lat'))
voutCMAX.long_name = 'max dBZ'
voutCMAX.units = 'dBZ'
voutCMAX[:] = cmaxData[:].transpose()
# create variable ppi
voutPPI = ncout.createVariable('ppi_dbz', np.dtype('double').char, ('lon', 'lat','lev'))
voutPPI.long_name = 'ppi dBZ'
voutPPI.units = 'dBZ'
for i in range(len(allElevation)):
ppiData=dataContainer[:,:,i]
ppiData[ppiData<0]=np.nan
ppiData[ppiData>100]=np.nan
voutPPI[:,:,i]=ppiData[:].transpose()
del ppiData
ncout.close()
gc.collect();del gc.garbage[:]
print('Complete writing netcdf file')
def main():
site='AMQ'
path='D:/project_webprogramming/wxradarexplore/radarDataExtraction/data/AMQ'
time=datetime(2020,6,20,12,10)
scanName='RAW_PPIVOLA '
moment='DB_DBZ'
radarFiles,sweepNumbers=searchFile(path,time,scanName)
ncpath='D:/project_webprogramming/wxradarexplore/radarDataConversion/nc'
try:os.makedirs(ncpath)
except:pass
lonGrid,latGrid,timeEnd,allElevation,dataContainer=extractRadarData(radarFiles,sweepNumbers,time,scanName,moment)
writeNetcdf(ncpath,site,timeEnd,lonGrid,latGrid,dataContainer,allElevation)
main()