-
Notifications
You must be signed in to change notification settings - Fork 0
/
object_tracker.py
134 lines (104 loc) · 4.82 KB
/
object_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from absl import flags
import sys
FLAGS = flags.FLAGS
FLAGS(sys.argv)
import time
import numpy as np
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
from yolov3_tf2.models import YoloV3
from yolov3_tf2.dataset import transform_images
from yolov3_tf2.utils import convert_boxes
from deep_sort import preprocessing
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
class_names = [c.strip() for c in open('./data/labels/coco.names').readlines()]
yolo = YoloV3(classes=len(class_names))
yolo.load_weights('./weights/yolov3.tf')
max_cosine_distance = 0.5
nn_budget = None
nms_max_overlap = 0.8
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
metric = nn_matching.NearestNeighborDistanceMetric('cosine', max_cosine_distance, nn_budget)
tracker = Tracker(metric)
vid = cv2.VideoCapture('./data/video/car_2.mp4')
codec = cv2.VideoWriter_fourcc(*'XVID')
vid_fps =int(vid.get(cv2.CAP_PROP_FPS))
vid_width,vid_height = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter('./data/video/results.avi', codec, vid_fps, (vid_width, vid_height))
from _collections import deque
pts = [deque(maxlen=30) for _ in range(1000)]
counter = []
while True:
_, img = vid.read()
if img is None:
print('Completed')
break
img_in = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_in = tf.expand_dims(img_in, 0)
img_in = transform_images(img_in, 416)
t1 = time.time()
boxes, scores, classes, nums = yolo.predict(img_in)
classes = classes[0]
names = []
for i in range(len(classes)):
names.append(class_names[int(classes[i])])
names = np.array(names)
converted_boxes = convert_boxes(img, boxes[0])
features = encoder(img, converted_boxes)
detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in
zip(converted_boxes, scores[0], names, features)]
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
classes = np.array([d.class_name for d in detections])
indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
tracker.predict()
tracker.update(detections)
cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0,1,20)]
current_count = int(0)
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update >1:
continue
bbox = track.to_tlbr()
class_name= track.get_class()
color = colors[int(track.track_id) % len(colors)]
color = [i * 255 for i in color]
cv2.rectangle(img, (int(bbox[0]),int(bbox[1])), (int(bbox[2]),int(bbox[3])), color, 2)
cv2.rectangle(img, (int(bbox[0]), int(bbox[1]-30)), (int(bbox[0])+(len(class_name)
+len(str(track.track_id)))*17, int(bbox[1])), color, -1)
cv2.putText(img, class_name+"-"+str(track.track_id), (int(bbox[0]), int(bbox[1]-10)), 0, 0.75,
(255, 255, 255), 2)
center = (int(((bbox[0]) + (bbox[2]))/2), int(((bbox[1])+(bbox[3]))/2))
pts[track.track_id].append(center)
for j in range(1, len(pts[track.track_id])):
if pts[track.track_id][j-1] is None or pts[track.track_id][j] is None:
continue
thickness = int(np.sqrt(64/float(j+1))*2)
cv2.line(img, (pts[track.track_id][j-1]), (pts[track.track_id][j]), color, thickness)
height, width, _ = img.shape
cv2.line(img, (0, int(3*height/6+height/20)), (width, int(3*height/6+height/20)), (0, 255, 0), thickness=2)
cv2.line(img, (0, int(3*height/6-height/20)), (width, int(3*height/6-height/20)), (0, 255, 0), thickness=2)
center_y = int(((bbox[1])+(bbox[3]))/2)
if center_y <= int(3*height/6+height/20) and center_y >= int(3*height/6-height/20):
if class_name == 'car' or class_name == 'truck':
counter.append(int(track.track_id))
current_count += 1
total_count = len(set(counter))
cv2.putText(img, "Current Vehicle Count: " + str(current_count), (0, 80), 0, 1, (0, 0, 255), 2)
cv2.putText(img, "Total Vehicle Count: " + str(total_count), (0,130), 0, 1, (0,0,255), 2)
fps = 1./(time.time()-t1)
cv2.putText(img, "FPS: {:.2f}".format(fps), (0,30), 0, 1, (0,0,255), 2)
cv2.resizeWindow('output', 1024, 768)
cv2.imshow('output', img)
out.write(img)
if cv2.waitKey(1) == ord('q'):
break
vid.release()
out.release()
cv2.destroyAllWindows()