forked from wjm41/soapgp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_data.py
74 lines (61 loc) · 2.35 KB
/
parse_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import pandas as pd
from rdkit.Chem import MolFromSmiles
PATHS = {
'FreeSolv': 'data/FreeSolv/FreeSolv.csv',
'esol': 'data/esol/esol.csv',
'lipo': 'data/lipo/lipo.csv',
'dls': 'data/DLS/DLS-100.csv',
'bradley': 'data/bradley/bradley.csv',
'IC50': 'data/IC50/'
}
def parse_dataset(task_name, subtask=None):
"""
Returns list of molecular smiles, as well as the y-targets of the dataset
:param task_name: name of the task
:param path: dataset path
:return: x, y where x is a list of SMILES and y is a numpy array of the target values.
"""
smiles_list = []
y = None
path = PATHS[task_name]
if task_name == 'FreeSolv':
df = pd.read_csv(path)
smiles_list = df['smiles'].tolist()
y = df['expt'].to_numpy() # can change to df['calc'] for calculated values
elif task_name == 'esol':
df = pd.read_csv(path)
smiles_list = df['smiles'].tolist()
y = df['measured log solubility in mols per litre'].to_numpy()
elif task_name == 'dls':
df = pd.read_csv(path)
smiles_list = df['SMILES'].tolist()
y = df['LogS exp (mol/L)'].to_numpy()
elif task_name == 'lipo':
df = pd.read_csv(path)
smiles_list = df['smiles'].tolist()
y = df['exp'].to_numpy()
elif task_name == 'bradley':
df = pd.read_csv(path)
smiles_list = df['SMILES'].tolist()
rdkit_mols = [MolFromSmiles(smiles) for smiles in smiles_list]
good_inds = []
# There are 3025/3042 molecules that can be parsed by RDKit. 3025 is the dataset size commonly reported in the
# literature cf. the paper:
# "Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and
# active learning"
for ind, mol in enumerate(rdkit_mols):
if mol != None:
good_inds.append(ind)
df = df.iloc[good_inds]
smiles_list = df['SMILES'].tolist()
y = df['Melting Point {measured, converted}'].to_numpy()
elif task_name == 'IC50':
path = path + subtask+'.can'
df = pd.read_csv(path, delim_whitespace=True)
smiles_list = df['SMILES'].tolist()
y = df['affinity'].to_numpy()
else:
raise Exception('Must provide valid dataset')
print('length of dataset = '+str(len(y)))
return smiles_list, y