forked from Gastron/sb-fin-parl-2015-2020-kevat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-xent-per-batch-anneal-fbank.py
252 lines (212 loc) · 9.64 KB
/
train-xent-per-batch-anneal-fbank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env/python3
"""Finnish Parliament ASR
"""
import os
import sys
import torch
import logging
import speechbrain as sb
from hyperpyyaml import load_hyperpyyaml
from speechbrain.utils.distributed import run_on_main
import webdataset as wds
from glob import glob
import io
import torchaudio
import local
import tqdm
from ptpython.repl import embed
logger = logging.getLogger(__name__)
# Brain class for speech recognition training
class XentAM(sb.Brain):
def compute_forward(self, batch, stage):
batch = batch.to(self.device)
feats = (self.hparams.compute_features(batch.wav.data)).detach()
print(feats.shape[1], batch.ali.data.shape[1])
epoch = self.hparams.epoch_counter.current
normalized = self.modules.normalize(feats, lengths=batch.wav.lengths, epoch=epoch)
encoded = self.modules.encoder(normalized, lengths=batch.wav.lengths)
out = self.modules.lin_out(encoded)
predictions = self.hparams.log_softmax(out)
return predictions
def compute_objectives(self, predictions, batch, stage):
loss = sb.nnet.losses.nll_loss(
log_probabilities=predictions,
length=batch.ali.lengths,
targets=batch.ali.data,
label_smoothing=self.hparams.label_smoothing,
)
if stage != sb.Stage.TRAIN:
min_length = min(predictions.shape[1], batch.ali.data.shape[1])
self.accuracy_metric.append(predictions[:,:min_length,:], batch.ali.data[:,:min_length], length=batch.ali.lengths)
return loss
def on_stage_start(self, stage, epoch):
if stage != sb.Stage.TRAIN:
self.accuracy_metric = self.hparams.accuracy_computer()
def on_stage_end(self, stage, stage_loss, epoch):
# Store the train loss until the validation stage.
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
# Summarize the statistics from the stage for record-keeping.
else:
stage_stats["accuracy"] = self.accuracy_metric.summarize()
old_lr = self.hparams.lr_annealing.current_lr
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
# The train_logger writes a summary to stdout and to the logfile.
self.hparams.train_logger.log_stats(
stats_meta={"epoch": epoch, "lr": old_lr},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
# Save the current checkpoint and delete previous checkpoints.
self.checkpointer.save_and_keep_only(
meta={"accuracy": stage_stats["accuracy"]}, max_keys=["accuracy"],
num_to_keep=getattr(self.hparams, "ckpts_to_keep", 1)
)
# We also write statistics about test data to stdout and to the logfile.
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
predictions = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
# normalize the loss by gradient_accumulation step
(loss / self.hparams.gradient_accumulation).backward()
if self.step % self.hparams.gradient_accumulation == 0:
# gradient clipping & early stop if loss is not fini
if self.check_gradients(loss):
old_lr, new_lr = self.hparams.lr_annealing(self.optimizer)
self.optimizer.step()
self.optimizer.zero_grad()
return loss.detach().cpu()
def on_evaluate_start(self, max_key=None, min_key=None):
super().on_evaluate_start(max_key=max_key, min_key=min_key)
if getattr(self.hparams, "avg_ckpts", 1) > 1:
ckpts = self.checkpointer.find_checkpoints(
max_key=max_key,
min_key=min_key,
max_num_checkpoints=self.hparams.avg_ckpts
)
model_state_dict = sb.utils.checkpoints.average_checkpoints(
ckpts, "model"
)
self.hparams.model.load_state_dict(model_state_dict)
self.checkpointer.save_checkpoint(name=f"AVERAGED-{self.hparams.avg_ckpts}")
def estimate_prior_empirical(self, train_data, loader_kwargs={}, max_key=None, min_key=None):
self.on_evaluate_start(max_key=max_key, min_key=min_key)
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded for prior": self.hparams.epoch_counter.current},
)
dataloader = self.make_dataloader(train_data, **loader_kwargs, stage=sb.Stage.TEST)
with torch.no_grad():
prior_floor = 1.0e-15
prior = torch.ones((self.hparams.num_units,)) * prior_floor
for batch in tqdm.tqdm(dataloader):
log_predictions = self.compute_forward(batch, stage=sb.Stage.TEST)
predictions = log_predictions.exp()
lengths = batch.wav.lengths*predictions.shape[1]
mask = sb.dataio.dataio.length_to_mask(lengths).float()
summed_preds = torch.sum(predictions * mask.unsqueeze(-1), dim=(0,1))
prior += summed_preds.detach().cpu()
# Normalize:
prior = prior / prior.sum()
return prior.log()
def estimate_prior_frequency(self, train_data, loader_kwargs={}, max_key=None, min_key=None):
self.on_evaluate_start(max_key=max_key, min_key=min_key)
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded for prior": self.hparams.epoch_counter.current},
)
dataloader = self.make_dataloader(train_data, **loader_kwargs, stage=sb.Stage.TEST)
with torch.no_grad():
num_classes = self.hparams.num_units
total_occurences = torch.zeros((num_classes,))
for batch in tqdm.tqdm(dataloader):
occurences = torch.nn.functional.one_hot(batch.ali.data.long(), num_classes = num_classes)
lengths = batch.ali.lengths*occurences.shape[1]
mask = sb.dataio.dataio.length_to_mask(lengths)
total_occurences += torch.sum(occurences * mask.unsqueeze(-1), dim=(0,1))
if any(count == 0 for count in total_occurences):
logger.warn("Zero count detected, using EPS")
EPS = 1e-5
log_prior = ((total_occurences+EPS) / total_occurences.sum()).log()
else:
log_prior = (total_occurences / total_occurences.sum()).log()
return log_prior
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions.
Arguments
---------
hparams : dict
This dictionary is loaded from the `train.yaml` file, and it includes
all the hyperparameters needed for dataset construction and loading.
Returns
-------
datasets : dict
Dictionary containing "train", "valid", and "test" keys mapping to
WebDataset datasets dataloaders for them.
"""
traindata = (
wds.WebDataset(hparams["trainshards"])
.decode()
.rename(feats="feats.pth", ali="ali.pth")
.repeat()
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
**hparams["dynamic_batch_kwargs"]
)
)
validdata = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(feats="feats.pth", ali="ali.pth")
.batched(hparams["valid_batchsize"], collation_fn=sb.dataio.batch.PaddedBatch)
)
return {"train": traindata, "valid": validdata}
if __name__ == "__main__":
# Reading command line arguments
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# Load hyperparameters file with command-line overrides
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# We can now directly create the datasets for training, valid, and test
datasets = dataio_prepare(hparams)
# Pretrain if defined:
if "pretrainer" in hparams:
ckpt = hparams["ckpt_finder"].find_checkpoint(max_key="accuracy")
hparams["pretrainer"].collect_files(ckpt.path)
hparams["pretrainer"].load_collected()
# Trainer initialization
asr_brain = XentAM(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# The `fit()` method iterates the training loop, calling the methods
# necessary to update the parameters of the model. Since all objects
# with changing state are managed by the Checkpointer, training can be
# stopped at any point, and will be resumed on next call.
asr_brain.fit(
asr_brain.hparams.epoch_counter,
datasets["train"],
datasets["valid"],
train_loader_kwargs = hparams["train_loader_kwargs"]
)
prior = asr_brain.estimate_prior_empirical(
datasets["train"],
loader_kwargs=hparams["prior_loader_kwargs"],
max_key=hparams["test_max_key"]
)
torch.save(prior, hparams["prior_file"])