diff --git a/.bumpversion.cfg b/.bumpversion.cfg
index 4a9b23366..994fd8761 100644
--- a/.bumpversion.cfg
+++ b/.bumpversion.cfg
@@ -1,5 +1,5 @@
[bumpversion]
-current_version = 0.6.1
+current_version = 0.7.0
commit = False
tag = False
allow_dirty = False
diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md
index bca771635..8aac99a66 100644
--- a/.github/PULL_REQUEST_TEMPLATE.md
+++ b/.github/PULL_REQUEST_TEMPLATE.md
@@ -1,7 +1,7 @@
### Description
@@ -17,4 +17,4 @@ This PR closes #XXX
- [ ] Wrote Unit tests (if necessary)
- [ ] Updated Documentation (if necessary)
- [ ] Updated Changelog
-- [ ] If notebooks were added/changed, added boilerplate cells are tagged with `"nbsphinx":"hidden"`
+- [ ] If notebooks were added/changed, added boilerplate cells are tagged with `"tags": ["hide"]` or `"tags": ["hide-input"]`
diff --git a/.github/actions/deploy-docs/action.yml b/.github/actions/deploy-docs/action.yml
new file mode 100644
index 000000000..ff2c48756
--- /dev/null
+++ b/.github/actions/deploy-docs/action.yml
@@ -0,0 +1,43 @@
+name: Deploy Docs
+description: Deploy documentation from develop or master branch
+inputs:
+ version:
+ description: Version number to use
+ required: true
+ alias:
+ description: Alias to use (latest or stable)
+ required: true
+ title:
+ description: Alternative title to use
+ required: false
+ default: ''
+ email:
+ description: Email to use for git config
+ required: true
+ username:
+ description: Username to use for git config
+ required: true
+ set-default:
+ description: Set alias as the default version
+ required: false
+ default: 'false'
+runs:
+ using: "composite"
+ steps:
+ - run: |
+ # https://github.com/jimporter/mike#deploying-via-ci
+ git fetch origin gh-pages --depth=1
+ git config --local user.email ${{ inputs.email }}
+ git config --local user.name ${{ inputs.username }}
+ shell: bash
+ - run: |
+ if [ -z "${{ inputs.title }}" ]
+ then
+ mike deploy ${{ inputs.version }} ${{ inputs.alias }} --push --update-aliases
+ else
+ mike deploy ${{ inputs.version }} ${{ inputs.alias }} --title=${{ inputs.title }} --push --update-aliases
+ fi
+ shell: bash
+ - if: ${{ inputs.set-default == 'true' }}
+ run: mike set-default ${{ inputs.alias }}
+ shell: bash
diff --git a/.github/actions/python/action.yml b/.github/actions/python/action.yml
new file mode 100644
index 000000000..ee9d66e3e
--- /dev/null
+++ b/.github/actions/python/action.yml
@@ -0,0 +1,20 @@
+name: Setup Python
+description: Setup Python on GitHub Actions and install dev and docs requirements.
+inputs:
+ python_version:
+ description: Python version to use
+ required: true
+runs:
+ using: "composite"
+ steps:
+ - name: Set up Python ${{ inputs.python_version }}
+ uses: actions/setup-python@v4
+ with:
+ python-version: ${{ inputs.python_version }}
+ cache: 'pip'
+ cache-dependency-path: |
+ requirements-dev.txt
+ requirements-docs.txt
+ - name: Install Dev & Docs Requirements
+ run: pip install -r requirements-dev.txt -r requirements-docs.txt
+ shell: bash
diff --git a/.github/workflows/publish.yaml b/.github/workflows/publish.yaml
index 2ea899fa3..751298462 100644
--- a/.github/workflows/publish.yaml
+++ b/.github/workflows/publish.yaml
@@ -1,17 +1,17 @@
name: Publish Python Package to PyPI
on:
- push:
- tags:
- - "v*"
+ release:
+ types:
+ - published
workflow_dispatch:
inputs:
reason:
description: Why did you trigger the pipeline?
required: False
default: Check if it runs again due to external changes
- tag:
- description: Tag for which a package should be published
+ tag_name:
+ description: The name of the tag for which a package should be published
type: string
required: false
@@ -27,22 +27,24 @@ jobs:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- - name: Fail if manually triggered workflow does not have 'tag' input
- if: github.event_name == 'workflow_dispatch' && inputs.tag == ''
+ - name: Fail if manually triggered workflow does not have 'tag_name' input
+ if: github.event_name == 'workflow_dispatch' && inputs.tag_name == ''
run: |
- echo "Input 'tag' should not be empty"
+ echo "Input 'tag_name' should not be empty"
exit -1
- name: Extract branch name from input
id: get_branch_name_input
if: github.event_name == 'workflow_dispatch'
run: |
- export BRANCH_NAME=$(git log -1 --format='%D' ${{ inputs.tag }} | sed -e 's/.*origin\/\(.*\).*/\1/')
+ export BRANCH_NAME=$(git log -1 --format='%D' ${{ inputs.tag_name }} | sed -e 's/.*origin\/\(.*\).*/\1/')
+ echo "$BRANCH_NAME"
echo "branch_name=${BRANCH_NAME}" >> $GITHUB_OUTPUT
- name: Extract branch name from tag
id: get_branch_name_tag
- if: github.ref_type == 'tag'
+ if: github.release.tag_name != ''
run: |
- export BRANCH_NAME=$(git log -1 --format='%D' $GITHUB_REF | sed -e 's/.*origin\/\(.*\).*/\1/')
+ export BRANCH_NAME=$(git log -1 --format='%D' ${{ github.release.tag_name }} | sed -e 's/.*origin\/\(.*\).*/\1/')
+ echo "$BRANCH_NAME"
echo "branch_name=${BRANCH_NAME}" >> $GITHUB_OUTPUT
shell: bash
- name: Fail if tag is not on 'master' branch
@@ -52,19 +54,33 @@ jobs:
echo "Should be on Master branch instead"
exit -1
- name: Fail if running locally
- if: ${{ !github.event.act }} # skip during local actions testing
+ if: ${{ env.ACT }} # skip during local actions testing
run: |
echo "Running action locally. Failing"
exit -1
- - name: Set up Python 3.8
- uses: actions/setup-python@v4
+ - name: Setup Python 3.8
+ uses: ./.github/actions/python
with:
- python-version: 3.8
- cache: 'pip'
- - name: Install Dev Requirements
- run: pip install -r requirements-dev.txt
+ python_version: 3.8
+ - name: Get Current Version
+ run: |
+ export CURRENT_VERSION=$(python setup.py --version --quiet | awk -F. '{print $1"."$2"."$3}')
+ # Make the version available as env variable for next steps
+ echo CURRENT_VERSION=$CURRENT_VERSION >> $GITHUB_ENV
+ shell: bash
+ - name: Deploy Docs
+ uses: ./.github/actions/deploy-docs
+ with:
+ version: ${{ env.CURRENT_VERSION }}
+ alias: latest
+ title: Latest
+ email: ${{ env.GITHUB_BOT_EMAIL }}
+ username: ${{ env.GITHUB_BOT_USERNAME }}
+ set-default: 'true'
- name: Build and publish to PyPI
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
- run: tox -e publish-release-package
+ run: |
+ python setup.py sdist bdist_wheel
+ twine upload --verbose --non-interactive dist/*
diff --git a/.github/workflows/run-tests-workflow.yaml b/.github/workflows/run-tests-workflow.yaml
index 6d92cd92a..b4a8fc0ca 100644
--- a/.github/workflows/run-tests-workflow.yaml
+++ b/.github/workflows/run-tests-workflow.yaml
@@ -22,13 +22,10 @@ jobs:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- - name: Set up Python ${{ inputs.python_version }}
- uses: actions/setup-python@v4
+ - name: Setup Python ${{ inputs.python_version }}
+ uses: ./.github/actions/python
with:
- python-version: ${{ inputs.python_version }}
- cache: 'pip'
- - name: Install Dev Requirements
- run: pip install -r requirements-dev.txt
+ python_version: ${{ inputs.python_version }}
- name: Cache Tox Directory for Tests
uses: actions/cache@v3
with:
diff --git a/.github/workflows/tox.yaml b/.github/workflows/tox.yaml
index 26e83fa80..f76c044b2 100644
--- a/.github/workflows/tox.yaml
+++ b/.github/workflows/tox.yaml
@@ -16,31 +16,32 @@ env:
GITHUB_BOT_USERNAME: github-actions[bot]
GITHUB_BOT_EMAIL: 41898282+github-actions[bot]@users.noreply.github.com
PY_COLORS: 1
+ MYPY_FORCE_COLOR: 1
+ PANDOC_VERSION: '3.1.6.2'
jobs:
- lint:
+ code-quality:
name: Lint code and check type hints
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- - name: Set up Python 3.8
- uses: actions/setup-python@v4
+ - name: Setup Python 3.8
+ uses: ./.github/actions/python
with:
- python-version: 3.8
- cache: 'pip'
- - name: Install Dev Requirements
- run: pip install -r requirements-dev.txt
- - name: Cache Tox Directory for Linting
- uses: actions/cache@v3
+ python_version: 3.8
+ - uses: actions/cache@v3
with:
- key: tox-${{ github.ref }}-${{ runner.os }}-${{ hashFiles('tox.ini') }}
- path: .tox
+ path: ~/.cache/pre-commit
+ key: pre-commit-${{ env.pythonLocation }}-${{ hashFiles('.pre-commit-config.yaml') }}
- name: Lint Code
- run: tox -e linting
+ run: |
+ pre-commit run --all --show-diff-on-failure
+ python build_scripts/run_pylint.py | (pylint-json2html -f jsonextended -o pylint.html)
+ shell: bash
- name: Check Type Hints
- run: tox -e type-checking
+ run: mypy src/
docs:
name: Build Docs
runs-on: ubuntu-latest
@@ -48,28 +49,16 @@ jobs:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- - name: Set up Python 3.8
- uses: actions/setup-python@v4
+ - name: Setup Python 3.8
+ uses: ./.github/actions/python
with:
- python-version: 3.8
- cache: 'pip'
- - name: Install Dev Requirements
- run: pip install -r requirements-dev.txt
+ python_version: 3.8
- name: Install Pandoc
- run: sudo apt-get install --no-install-recommends --yes pandoc
- - name: Cache Tox Directory for Docs
- uses: actions/cache@v3
+ uses: r-lib/actions/setup-pandoc@v2
with:
- key: tox-${{ github.ref }}-${{ runner.os }}-${{ hashFiles('tox.ini') }}
- path: .tox
+ pandoc-version: ${{ env.PANDOC_VERSION }}
- name: Build Docs
- run: tox -e docs
- - name: Save built docs
- uses: actions/upload-artifact@v3
- with:
- name: docs
- path: ./docs/_build
- retention-days: 1
+ run: mkdocs build
base-tests:
strategy:
matrix:
@@ -79,7 +68,7 @@ jobs:
with:
tests_to_run: base
python_version: ${{ matrix.python_version }}
- needs: [lint]
+ needs: [code-quality]
torch-tests:
strategy:
matrix:
@@ -89,7 +78,7 @@ jobs:
with:
tests_to_run: torch
python_version: ${{ matrix.python_version }}
- needs: [lint]
+ needs: [code-quality]
notebook-tests:
strategy:
matrix:
@@ -99,50 +88,41 @@ jobs:
with:
tests_to_run: notebooks
python_version: ${{ matrix.python_version }}
- needs: [lint]
+ needs: [code-quality]
push-docs-and-release-testpypi:
name: Push Docs and maybe release Package to TestPyPI
runs-on: ubuntu-latest
needs: [docs, base-tests, torch-tests, notebook-tests]
+ if: ${{ github.ref == 'refs/heads/develop' }}
concurrency:
- group: push-docs-and-release-testpypi
+ group: publish
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- - name: Set up Python 3.8
- uses: actions/setup-python@v4
- with:
- python-version: 3.8
- cache: 'pip'
- - name: Install Dev Requirements
- run: pip install -r requirements-dev.txt
- - name: Cache Tox Directory
- uses: actions/cache@v3
+ - name: Setup Python 3.8
+ uses: ./.github/actions/python
with:
- key: tox-${{ github.ref }}-${{ runner.os }}-${{ hashFiles('tox.ini') }}
- path: .tox
- - name: Download built docs
- uses: actions/download-artifact@v3
+ python_version: 3.8
+ - name: Install Pandoc
+ uses: r-lib/actions/setup-pandoc@v2
with:
- name: docs
- path: ./docs/_build
+ pandoc-version: ${{ env.PANDOC_VERSION }}
- name: Deploy Docs
- uses: peaceiris/actions-gh-pages@v3
- if: ${{ github.ref == 'refs/heads/develop' }}
+ uses: ./.github/actions/deploy-docs
with:
- github_token: ${{ secrets.GITHUB_TOKEN }}
- publish_dir: ./docs/_build/html
- user_name: ${{ env.GITHUB_BOT_USERNAME }}
- user_email: ${{ env.GITHUB_BOT_EMAIL }}
+ version: devel
+ alias: develop
+ title: Development
+ email: ${{ env.GITHUB_BOT_EMAIL }}
+ username: ${{ env.GITHUB_BOT_USERNAME }}
- name: Build and publish to TestPyPI
- if: ${{ github.ref == 'refs/heads/develop' }}
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.TEST_PYPI_PASSWORD }}
run: |
set -x
- export CURRENT_VERSION=$(python setup.py --version)
export BUILD_NUMBER=$GITHUB_RUN_NUMBER
- tox -e bump-dev-version
- tox -e publish-test-package
+ bump2version --no-tag --no-commit --verbose --serialize '\{major\}.\{minor\}.\{patch\}.\{release\}\{$BUILD_NUMBER\}' boguspart
+ python setup.py sdist bdist_wheel
+ twine upload -r testpypi --verbose --non-interactive dist/*
diff --git a/.gitignore b/.gitignore
index 1ee9bb1d2..7445020d2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -139,3 +139,6 @@ pylint.html
# Saved data
runs/
data/models/
+
+# Docs
+docs_build
diff --git a/CHANGELOG.md b/CHANGELOG.md
index a6bf217e1..bc82e515b 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,95 +1,154 @@
# Changelog
-## 0.6.1 - 🏗 Bug fixes and small improvement
+## 0.7.0 - 📚🆕 Documentation and IF overhaul, new methods and bug fixes 💥🐞
+
+This is our first β release! We have worked hard to deliver improvements across
+the board, with a focus on documentation and usability. We have also reworked
+the internals of the `influence` module, improved parallelism and handling of
+randomness.
+
+### Added
+
+- Implemented solving the Hessian equation via spectral low-rank approximation
+ [PR #365](https://github.com/aai-institute/pyDVL/pull/365)
+- Enabled parallel computation for Leave-One-Out values
+ [PR #406](https://github.com/aai-institute/pyDVL/pull/406)
+- Added more abbreviations to documentation
+ [PR #415](https://github.com/aai-institute/pyDVL/pull/415)
+- Added seed to functions from `pydvl.utils.numeric`, `pydvl.value.shapley` and
+ `pydvl.value.semivalues`. Introduced new type `Seed` and conversion function
+ `ensure_seed_sequence`.
+ [PR #396](https://github.com/aai-institute/pyDVL/pull/396)
+
+### Changed
+
+- Replaced sphinx with mkdocs for documentation. Major overhaul of documentation
+ [PR #352](https://github.com/aai-institute/pyDVL/pull/352)
+- Made ray an optional dependency, relying on joblib as default parallel backend
+ [PR #408](https://github.com/aai-institute/pyDVL/pull/408)
+- Decoupled `ray.init` from `ParallelConfig`
+ [PR #373](https://github.com/aai-institute/pyDVL/pull/383)
+- **Breaking Changes**
+ - Signature change: return information about Hessian inversion from
+ `compute_influence_factors`
+ [PR #375](https://github.com/aai-institute/pyDVL/pull/376)
+ - Major changes to IF interface and functionality. Foundation for a framework
+ abstraction for IF computation.
+ [PR #278](https://github.com/aai-institute/pyDVL/pull/278)
+ [PR #394](https://github.com/aai-institute/pyDVL/pull/394)
+ - Renamed `semivalues` to `compute_generic_semivalues`
+ [PR #413](https://github.com/aai-institute/pyDVL/pull/413)
+ - New `joblib` backend as default instead of ray. Simplify MapReduceJob.
+ [PR #355](https://github.com/aai-institute/pyDVL/pull/355)
+ - Bump torch dependency for influence package to 2.0
+ [PR #365](https://github.com/aai-institute/pyDVL/pull/365)
+
+### Fixed
+
+- Fixes to parallel computation of generic semi-values: properly handle all
+ samplers and stopping criteria, irrespective of parallel backend.
+ [PR #372](https://github.com/aai-institute/pyDVL/pull/372)
+- Optimises memory usage in IF calculation
+ [PR #375](https://github.com/aai-institute/pyDVL/pull/376)
+- Fix adding valuation results with overlapping indices and different lengths
+ [PR #370](https://github.com/aai-institute/pyDVL/pull/370)
+- Fixed bugs in conjugate gradient and `linear_solve`
+ [PR #358](https://github.com/aai-institute/pyDVL/pull/358)
+- Fix installation of dev requirements for Python3.10
+ [PR #382](https://github.com/aai-institute/pyDVL/pull/382)
+- Improvements to IF documentation
+ [PR #371](https://github.com/aai-institute/pyDVL/pull/371)
+
+## 0.6.1 - 🏗 Bug fixes and small improvements
- Fix parsing keyword arguments of `compute_semivalues` dispatch function
- [PR #333](https://github.com/appliedAI-Initiative/pyDVL/pull/333)
+ [PR #333](https://github.com/aai-institute/pyDVL/pull/333)
- Create new `RayExecutor` class based on the concurrent.futures API,
use the new class to fix an issue with Truncated Monte Carlo Shapley
(TMCS) starting too many processes and dying, plus other small changes
- [PR #329](https://github.com/appliedAI-Initiative/pyDVL/pull/329)
+ [PR #329](https://github.com/aai-institute/pyDVL/pull/329)
- Fix creation of GroupedDataset objects using the `from_arrays`
and `from_sklearn` class methods
- [PR #324](https://github.com/appliedAI-Initiative/pyDVL/pull/334)
+ [PR #324](https://github.com/aai-institute/pyDVL/pull/334)
- Fix release job not triggering on CI when a new tag is pushed
- [PR #331](https://github.com/appliedAI-Initiative/pyDVL/pull/331)
+ [PR #331](https://github.com/aai-institute/pyDVL/pull/331)
- Added alias `ApproShapley` from Castro et al. 2009 for permutation Shapley
- [PR #332](https://github.com/appliedAI-Initiative/pyDVL/pull/332)
+ [PR #332](https://github.com/aai-institute/pyDVL/pull/332)
## 0.6.0 - 🆕 New algorithms, cleanup and bug fixes 🏗
- Fixes in `ValuationResult`: bugs around data names, semantics of
`empty()`, new method `zeros()` and normalised random values
- [PR #327](https://github.com/appliedAI-Initiative/pyDVL/pull/327)
+ [PR #327](https://github.com/aai-institute/pyDVL/pull/327)
- **New method**: Implements generalised semi-values for data valuation,
including Data Banzhaf and Beta Shapley, with configurable sampling strategies
- [PR #319](https://github.com/appliedAI-Initiative/pyDVL/pull/319)
+ [PR #319](https://github.com/aai-institute/pyDVL/pull/319)
- Adds kwargs parameter to `from_array` and `from_sklearn` Dataset and
GroupedDataset class methods
- [PR #316](https://github.com/appliedAI-Initiative/pyDVL/pull/316)
+ [PR #316](https://github.com/aai-institute/pyDVL/pull/316)
- PEP-561 conformance: added `py.typed`
- [PR #307](https://github.com/appliedAI-Initiative/pyDVL/pull/307)
+ [PR #307](https://github.com/aai-institute/pyDVL/pull/307)
- Removed default non-negativity constraint on least core subsidy
and added instead a `non_negative_subsidy` boolean flag.
Renamed `options` to `solver_options` and pass it as dict.
Change default least-core solver to SCS with 10000 max_iters.
- [PR #304](https://github.com/appliedAI-Initiative/pyDVL/pull/304)
+ [PR #304](https://github.com/aai-institute/pyDVL/pull/304)
- Cleanup: removed unnecessary decorator `@unpackable`
- [PR #233](https://github.com/appliedAI-Initiative/pyDVL/pull/233)
+ [PR #233](https://github.com/aai-institute/pyDVL/pull/233)
- Stopping criteria: fixed problem with `StandardError` and enable proper
composition of index convergence statuses. Fixed a bug with `n_jobs` in
`truncated_montecarlo_shapley`.
- [PR #300](https://github.com/appliedAI-Initiative/pyDVL/pull/300) and
- [PR #305](https://github.com/appliedAI-Initiative/pyDVL/pull/305)
+ [PR #300](https://github.com/aai-institute/pyDVL/pull/300) and
+ [PR #305](https://github.com/aai-institute/pyDVL/pull/305)
- Shuffling code around to allow for simpler user imports, some cleanup and
documentation fixes.
- [PR #284](https://github.com/appliedAI-Initiative/pyDVL/pull/284)
+ [PR #284](https://github.com/aai-institute/pyDVL/pull/284)
- **Bug fix**: Warn instead of raising an error when `n_iterations`
is less than the size of the dataset in Monte Carlo Least Core
- [PR #281](https://github.com/appliedAI-Initiative/pyDVL/pull/281)
+ [PR #281](https://github.com/aai-institute/pyDVL/pull/281)
## 0.5.0 - 💥 Fixes, nicer interfaces and... more breaking changes 😒
- Fixed parallel and antithetic Owen sampling for Shapley values. Simplified
and extended tests.
- [PR #267](https://github.com/appliedAI-Initiative/pyDVL/pull/267)
+ [PR #267](https://github.com/aai-institute/pyDVL/pull/267)
- Added `Scorer` class for a cleaner interface. Fixed minor bugs around
Group-Testing Shapley, added more tests and switched to cvxpy for the solver.
- [PR #264](https://github.com/appliedAI-Initiative/pyDVL/pull/264)
+ [PR #264](https://github.com/aai-institute/pyDVL/pull/264)
- Generalised stopping criteria for valuation algorithms. Improved classes
`ValuationResult` and `Status` with more operations. Some minor issues fixed.
- [PR #252](https://github.com/appliedAI-Initiative/pyDVL/pull/250)
+ [PR #252](https://github.com/aai-institute/pyDVL/pull/250)
- Fixed a bug whereby `compute_shapley_values` would only spawn one process when
using `n_jobs=-1` and Monte Carlo methods.
- [PR #270](https://github.com/appliedAI-Initiative/pyDVL/pull/270)
+ [PR #270](https://github.com/aai-institute/pyDVL/pull/270)
- Bugfix in `RayParallelBackend`: wrong semantics for `kwargs`.
- [PR #268](https://github.com/appliedAI-Initiative/pyDVL/pull/268)
+ [PR #268](https://github.com/aai-institute/pyDVL/pull/268)
- Splitting of problem preparation and solution in Least-Core computation.
Umbrella function for LC methods.
- [PR #257](https://github.com/appliedAI-Initiative/pyDVL/pull/257)
+ [PR #257](https://github.com/aai-institute/pyDVL/pull/257)
- Operations on `ValuationResult` and `Status` and some cleanup
- [PR #248](https://github.com/appliedAI-Initiative/pyDVL/pull/248)
+ [PR #248](https://github.com/aai-institute/pyDVL/pull/248)
- **Bug fix and minor improvements**: Fixes bug in TMCS with remote Ray cluster,
raises an error for dummy sequential parallel backend with TMCS, clones model
inside `Utility` before fitting by default, with flag `clone_before_fit`
to disable it, catches all warnings in `Utility` when `show_warnings` is
`False`. Adds Miner and Gloves toy games utilities
- [PR #247](https://github.com/appliedAI-Initiative/pyDVL/pull/247)
+ [PR #247](https://github.com/aai-institute/pyDVL/pull/247)
## 0.4.0 - 🏭💥 New algorithms and more breaking changes
- GH action to mark issues as stale
- [PR #201](https://github.com/appliedAI-Initiative/pyDVL/pull/201)
+ [PR #201](https://github.com/aai-institute/pyDVL/pull/201)
- Disabled caching of Utility values as well as repeated evaluations by default
- [PR #211](https://github.com/appliedAI-Initiative/pyDVL/pull/211)
+ [PR #211](https://github.com/aai-institute/pyDVL/pull/211)
- Test and officially support Python version 3.9 and 3.10
- [PR #208](https://github.com/appliedAI-Initiative/pyDVL/pull/208)
+ [PR #208](https://github.com/aai-institute/pyDVL/pull/208)
- **Breaking change:** Introduces a class ValuationResult to gather and inspect
results from all valuation algorithms
- [PR #214](https://github.com/appliedAI-Initiative/pyDVL/pull/214)
+ [PR #214](https://github.com/aai-institute/pyDVL/pull/214)
- Fixes bug in Influence calculation with multidimensional input and adds new
example notebook
- [PR #195](https://github.com/appliedAI-Initiative/pyDVL/pull/195)
+ [PR #195](https://github.com/aai-institute/pyDVL/pull/195)
- **Breaking change**: Passes the input to `MapReduceJob` at initialization,
removes `chunkify_inputs` argument from `MapReduceJob`, removes `n_runs`
argument from `MapReduceJob`, calls the parallel backend's `put()` method for
@@ -97,38 +156,38 @@
attribute to `n_local_workers`, fixes a bug in `MapReduceJob`'s chunkification
when `n_runs` >= `n_jobs`, and defines a sequential parallel backend to run
all jobs in the current thread
- [PR #232](https://github.com/appliedAI-Initiative/pyDVL/pull/232)
+ [PR #232](https://github.com/aai-institute/pyDVL/pull/232)
- **New method**: Implements exact and monte carlo Least Core for data valuation,
adds `from_arrays()` class method to the `Dataset` and `GroupedDataset`
classes, adds `extra_values` argument to `ValuationResult`, adds
`compute_removal_score()` and `compute_random_removal_score()` helper functions
- [PR #237](https://github.com/appliedAI-Initiative/pyDVL/pull/237)
+ [PR #237](https://github.com/aai-institute/pyDVL/pull/237)
- **New method**: Group Testing Shapley for valuation, from _Jia et al. 2019_
- [PR #240](https://github.com/appliedAI-Initiative/pyDVL/pull/240)
+ [PR #240](https://github.com/aai-institute/pyDVL/pull/240)
- Fixes bug in ray initialization in `RayParallelBackend` class
- [PR #239](https://github.com/appliedAI-Initiative/pyDVL/pull/239)
+ [PR #239](https://github.com/aai-institute/pyDVL/pull/239)
- Implements "Egalitarian Least Core", adds [cvxpy](https://www.cvxpy.org/) as a
dependency and uses it instead of scipy as optimizer
- [PR #243](https://github.com/appliedAI-Initiative/pyDVL/pull/243)
+ [PR #243](https://github.com/aai-institute/pyDVL/pull/243)
## 0.3.0 - 💥 Breaking changes
- Simplified and fixed powerset sampling and testing
- [PR #181](https://github.com/appliedAI-Initiative/pyDVL/pull/181)
+ [PR #181](https://github.com/aai-institute/pyDVL/pull/181)
- Simplified and fixed publishing to PyPI from CI
- [PR #183](https://github.com/appliedAI-Initiative/pyDVL/pull/183)
+ [PR #183](https://github.com/aai-institute/pyDVL/pull/183)
- Fixed bug in release script and updated contributing docs.
- [PR #184](https://github.com/appliedAI-Initiative/pyDVL/pull/184)
+ [PR #184](https://github.com/aai-institute/pyDVL/pull/184)
- Added Pull Request template
- [PR #185](https://github.com/appliedAI-Initiative/pyDVL/pull/185)
+ [PR #185](https://github.com/aai-institute/pyDVL/pull/185)
- Modified Pull Request template to automatically link PR to issue
- [PR ##186](https://github.com/appliedAI-Initiative/pyDVL/pull/186)
+ [PR ##186](https://github.com/aai-institute/pyDVL/pull/186)
- First implementation of Owen Sampling, squashed scores, better testing
- [PR #194](https://github.com/appliedAI-Initiative/pyDVL/pull/194)
+ [PR #194](https://github.com/aai-institute/pyDVL/pull/194)
- Improved documentation on caching, Shapley, caveats of values, bibtex
- [PR #194](https://github.com/appliedAI-Initiative/pyDVL/pull/194)
+ [PR #194](https://github.com/aai-institute/pyDVL/pull/194)
- **Breaking change:** Rearranging of modules to accommodate for new methods
- [PR #194](https://github.com/appliedAI-Initiative/pyDVL/pull/194)
+ [PR #194](https://github.com/aai-institute/pyDVL/pull/194)
## 0.2.0 - 📚 Better docs
@@ -137,7 +196,7 @@ Mostly API documentation and notebooks, plus some bugfixes.
### Added
-In [PR #161](https://github.com/appliedAI-Initiative/pyDVL/pull/161):
+In [PR #161](https://github.com/aai-institute/pyDVL/pull/161):
- Support for $$ math in sphinx docs.
- Usage of sphinx extension for external links (introducing new directives like
`:gh:`, `:issue:` and `:tfl:` to construct standardised links to external
@@ -149,7 +208,7 @@ In [PR #161](https://github.com/appliedAI-Initiative/pyDVL/pull/161):
### Changed
-In [PR #161](https://github.com/appliedAI-Initiative/pyDVL/pull/161):
+In [PR #161](https://github.com/aai-institute/pyDVL/pull/161):
- Improved main docs and Shapley notebooks. Added or fixed many docstrings,
readme and documentation for contributors. Typos, grammar and style in code,
documentation and notebooks.
@@ -158,9 +217,9 @@ In [PR #161](https://github.com/appliedAI-Initiative/pyDVL/pull/161):
### Fixed
- Bug in random matrix generation
- [PR #161](https://github.com/appliedAI-Initiative/pyDVL/pull/161).
+ [PR #161](https://github.com/aai-institute/pyDVL/pull/161).
- Bugs in MapReduceJob's `_chunkify` and `_backpressure` methods
- [PR #176](https://github.com/appliedAI-Initiative/pyDVL/pull/176).
+ [PR #176](https://github.com/aai-institute/pyDVL/pull/176).
## 0.1.0 - 🎉 first release
diff --git a/CITATION.cff b/CITATION.cff
new file mode 100644
index 000000000..8ce54eb5f
--- /dev/null
+++ b/CITATION.cff
@@ -0,0 +1,31 @@
+# This CITATION.cff file was generated with cffinit.
+# Visit https://bit.ly/cffinit to generate yours today!
+
+cff-version: 1.2.0
+title: pyDVL
+message: >-
+ If you use this software, please cite it using the
+ metadata from this file.
+type: software
+authors:
+ - given-names: TransferLab team
+ email: info+pydvl@appliedai.de
+ affiliation: appliedAI Institute gGmbH
+repository-code: 'https://github.com/aai-institute/pyDVL'
+abstract: >-
+ pyDVL is a library of stable implementations of algorithms
+ for data valuation and influence function computation
+keywords:
+ - machine learning
+ - data-centric AI
+ - data valuation
+ - influence function
+ - Shapley value
+ - data quality
+ - Least core
+ - Semi-values
+ - Banzhaf index
+license: LGPL-3.0
+commit: 0e929ae121820b0014bf245da1b21032186768cb
+version: v0.6.1
+date-released: '2023-04-13'
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 6bd181636..b7d4bf23a 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -11,7 +11,7 @@ improvements to the currently implemented methods and other ideas. Please open a
ticket with yours.
If you are interested in setting up a similar project, consider the template
-[pymetrius](https://github.com/appliedAI-Initiative/pymetrius).
+[pymetrius](https://github.com/aai-institute/pymetrius).
## Local development
@@ -62,7 +62,7 @@ sudo apt-get update -yq && apt-get install -yq pandoc
```
Remember to mark all autogenerated directories as excluded in your IDE. In
-particular `docs/_build` and `.tox` should be marked as excluded to avoid
+particular `docs_build` and `.tox` should be marked as excluded to avoid
slowdowns when searching or refactoring code.
If you use remote execution, don't forget to exclude data paths from deployment
@@ -120,7 +120,7 @@ python setup.py sdist bdist_wheel
## Notebooks
We use notebooks both as documentation (copied over to `docs/examples`) and as
-integration tests. All notebooks in the `notebooks` directory are be executed
+integration tests. All notebooks in the `notebooks` directory are executed
during the test run. Because run times are typically too long for large
datasets, you must check for the `CI` environment variable to work
with smaller ones. For example, you can select a subset of the data:
@@ -131,13 +131,15 @@ if os.environ.get('CI'):
training_data = training_data[:10]
```
-This switching should happen in a function, not in the notebook: we want to
-avoid as much clutter and boilerplate as possible in the notebooks themselves.
+This switching should happen in a separate notebook cell tagged with
+`hide` to hide the cell's input and output when rendering it as part of
+the documents. We want to avoid as much clutter and boilerplate
+as possible in the notebooks themselves.
Because we want documentation to include the full dataset, we commit notebooks
with their outputs running with full datasets to the repo. The notebooks are
then added by CI to the section
-[Examples](https://appliedAI-Initiative.github.io/pyDVL/examples.html) of the
+[Examples](https://aai-institute.github.io/pyDVL/examples.html) of the
documentation.
### Hiding cells in notebooks
@@ -147,79 +149,87 @@ all examples of boilerplate code irrelevant to a reader interested in pyDVL's
functionality. For this reason we choose to isolate this code into separate
cells which are then hidden in the documentation.
-In order to do this, cells are marked with metadata understood by the sphinx
-plugin `nbpshinx`, namely adding the following to the relevant cells:
+In order to do this, cells are marked with tags understood by the mkdocs
+plugin [`mkdocs-jupyter`](https://github.com/danielfrg/mkdocs-jupyter#readme),
+namely adding the following to the relevant cells:
```yaml
-metadata: {
- "nbphinx": "hidden"
-}
+"tags": [
+ "hide"
+]
+```
+
+To hide the cell's input and output.
+
+Or:
+
+```yaml
+"tags": [
+ "hide-input"
+]
```
+To only hide the input
+
It is important to leave a warning at the top of the document to avoid confusion.
Examples for hidden imports and plots are available in the notebooks, e.g. in
-[Shapley for data valuation](https://appliedai-initiative.github.io/pyDVL/examples/shapley_basic_spotify.ipynb).
+[Shapley for data valuation](https://aai-institute.github.io/pyDVL/examples/shapley_basic_spotify.ipynb).
## Documentation
API documentation and examples from notebooks are built with
-[sphinx](https://www.sphinx-doc.org/) by tox. Doctests are run during this step.
-In order to construct the API documentation, tox calls a helper script that
-builds `.rst` files from docstrings and templates. It can be invoked manually
-with:
-
-```bash
-python build_scripts/update_docs.py
-```
+[mkdocs](https://www.mkdocs.org/), with versioning handled by
+[mike](https://github.com/jimporter/mike).
-See the documentation inside the script for more details. Notebooks are an
-integral part of the documentation as well, please read
+Notebooks are an integral part of the documentation as well, please read
[the section on notebooks](#notebooks) above.
-It is important to note that sphinx does not listen to changes in the source
-directory. If you want live updating of the auto-generated documentation (i.e.
-any rst files which are not manually created), you can use a file watcher.
-This is not part of the development setup of pyDVL (yet! PRs welcome), but
-modern IDEs provide functionality for this.
-
-Use the **docs** tox environment to build the documentation the same way it is
+Use the following command to build the documentation the same way it is
done in CI:
```bash
-tox -e docs
+mkdocs build
```
-Locally, you can use the **docs-dev** tox environment to continuously rebuild
-documentation on changes to the `docs` folder:
+Locally, you can use this command instead to continuously rebuild documentation
+on changes to the `docs` and `src` folder:
```bash
-tox -e docs-dev
+mkdocs serve
```
-**Again:** this only rebuilds on changes to `.rst` files and notebooks inside
-`docs`.
+This will rebuild the documentation on changes to `.md` files inside `docs`,
+notebooks and python files.
+
+
+### Adding new pages
+
+Navigation is configured in `mkdocs.yaml` using the nav section. We use the
+plugin [mkdoc-literate-nav](https://oprypin.github.io/mkdocs-literate-nav/)
+which allows fine-grained control of the navigation structure. However, most
+pages are explicitly listed and manually arranged in the `nav` section of the
+configuration.
+
### Using bibliography
-Bibliographic citations are managed with the plugin
-[sphinx-bibtex](https://sphinxcontrib-bibtex.readthedocs.io/en/latest/index.html).
+Bibliographic citations are managed with the plugins
+[mkdocs-bibtex]() and [...][].
To enter a citation first add the entry to `docs/pydvl.bib`. For team
contributor this should be an export of the Zotero folder `software/pydvl` in
the [TransferLab Zotero library](https://www.zotero.org/groups/2703043/transferlab/library).
All other contributors just add the bibtex data, and a maintainer will add it to
the group library upon merging.
-To add a citation inside a module or function's docstring, use the sphinx role
-`:footcite:t:`. A references section is automatically added at the bottom of
-each module's auto-generated documentation.
+To add a citation inside a module or function's docstring, use the notation
+`[@citekey]`. A references section is automatically added at the bottom of each
+module's auto-generated documentation.
### Writing mathematics
-In sphinx one can write mathematics with the directives `:math:` (inline) or
-`.. math::` (block). Additionally, we use the extension
-[sphinx-math-dollar](https://github.com/sympy/sphinx-math-dollar) to allow for
-the more common `$` (inline) and `$$` (block) delimiters in RST files.
+Use LaTeX delimiters `$` and `$$` for inline and displayed mathematics
+respectively.
**Warning: backslashes must be escaped in docstrings!** (although there are
exceptions). For simplicity, declare the string as "raw" with the prefix `r`:
@@ -240,6 +250,16 @@ def f(x: float) -> float:
return 1/(x*x)
```
+### Abbreviations
+
+We keep the abbreviations used in the documentation inside the
+[docs_include/abbreviations.md](docs_includes%2Fabbreviations.md) file.
+
+The syntax for abbreviations is:
+
+```markdown
+*[ABBR]: Abbreviation
+```
## CI
@@ -249,7 +269,7 @@ We use workflows to:
* Publish documentation.
* Publish packages to testpypi / pypi.
* Mark issues as stale after 30 days. We do this only for issues with the label
- [`awaiting-reply`](https://github.com/appliedAI-Initiative/pyDVL/labels/awaiting-reply)
+ [`awaiting-reply`](https://github.com/aai-institute/pyDVL/labels/awaiting-reply)
which indicates that we have answered a question / feature request / PR and
are waiting for the OP to reply / update his work.
@@ -397,8 +417,11 @@ If running in interactive mode (without `-y|--yes`), the script will output a
summary of pending changes and ask for confirmation before executing the
actions.
-Once this is done, a package will be automatically created and published from CI
-to PyPI.
+Once this is done, a tag will be created on the repository. You should then
+create a GitHub
+[release](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository#creating-a-release)
+for that tag. That will a trigger a CI pipeline that will automatically create a
+package and publish it from CI to PyPI.
### Manual release process
@@ -441,8 +464,11 @@ create a new release manually by following these steps:
```
7. Delete the release branch if necessary:
`git branch -d release/${RELEASE_VERSION}`
-8. Pour yourself a cup of coffee, you earned it! :coffee: :sparkles:
-9. A package will be automatically created and published from CI to PyPI.
+8. Create a Github
+ [release](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository#creating-a-release)
+ for the created tag.
+9. Pour yourself a cup of coffee, you earned it! :coffee: :sparkles:
+10. A package will be automatically created and published from CI to PyPI.
### CI and requirements for publishing
@@ -466,10 +492,10 @@ a GitHub release.
#### Publish to TestPyPI
We use [bump2version](https://pypi.org/project/bump2version/) to bump
-the build part of the version number and publish a package to TestPyPI from CI.
-
-To do that, we use 2 different tox environments:
+the build part of the version number without commiting or tagging the change
+and then publish a package to TestPyPI from CI using Twine. The version
+has the github run number appended.
-- **bump-dev-version**: Uses bump2version to bump the dev version,
- without committing the new version or creating a corresponding git tag.
-- **publish-test-package**: Builds and publishes a package to TestPyPI
+For more details refer to the
+[.github/workflows/publish.yaml](.github/workflows/publish.yaml) and
+[.github/workflows/tox.yaml](.github/workflows/tox.yaml) files.
diff --git a/README.md b/README.md
index 2201e8c9e..bceef3f65 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,5 @@
-
+
@@ -7,8 +7,8 @@
-
-
+
+
@@ -22,7 +22,7 @@
- Docs
+ Docs
@@ -74,6 +74,9 @@ model. We implement methods from the following papers:
Influence Functions](http://proceedings.mlr.press/v70/koh17a.html). In
Proceedings of the 34th International Conference on Machine Learning,
70:1885–94. Sydney, Australia: PMLR, 2017.
+- Naman Agarwal, Brian Bullins, and Elad Hazan, [Second-Order Stochastic Optimization
+ for Machine Learning in Linear Time](https://www.jmlr.org/papers/v18/16-491.html),
+ Journal of Machine Learning Research 18 (2017): 1-40.
# Installation
@@ -91,11 +94,59 @@ pip install pyDVL --index-url https://test.pypi.org/simple/
```
For more instructions and information refer to [Installing pyDVL
-](https://appliedAI-Initiative.github.io/pyDVL/20-install.html) in the
+](https://aai-institute.github.io/pyDVL/20-install.html) in the
documentation.
# Usage
+### Influence Functions
+
+For influence computation, follow these steps:
+
+1. Wrap your model and loss in a `TorchTwiceDifferential` object
+2. Compute influence factors by providing training data and inversion method
+
+Using the conjugate gradient algorithm, this would look like:
+```python
+import torch
+from torch import nn
+from torch.utils.data import DataLoader, TensorDataset
+
+from pydvl.influence import TorchTwiceDifferentiable, compute_influences, InversionMethod
+
+nn_architecture = nn.Sequential(
+ nn.Conv2d(in_channels=5, out_channels=3, kernel_size=3),
+ nn.Flatten(),
+ nn.Linear(27, 3),
+)
+loss = nn.MSELoss()
+model = TorchTwiceDifferentiable(nn_architecture, loss)
+
+input_dim = (5, 5, 5)
+output_dim = 3
+
+train_data_loader = DataLoader(
+ TensorDataset(torch.rand((10, *input_dim)), torch.rand((10, output_dim))),
+ batch_size=2,
+)
+test_data_loader = DataLoader(
+ TensorDataset(torch.rand((5, *input_dim)), torch.rand((5, output_dim))),
+ batch_size=1,
+)
+
+influences = compute_influences(
+ model,
+ training_data=train_data_loader,
+ test_data=test_data_loader,
+ progress=True,
+ inversion_method=InversionMethod.Cg,
+ hessian_regularization=1e-1,
+ maxiter=200,
+)
+```
+
+
+### Shapley Values
The steps required to compute values for your samples are:
1. Create a `Dataset` object with your train and test splits.
@@ -125,9 +176,9 @@ values = compute_shapley_values(
```
For more instructions and information refer to [Getting
-Started](https://appliedAI-Initiative.github.io/pyDVL/10-getting-started.html) in
+Started](https://aai-institute.github.io/pyDVL/10-getting-started.html) in
the documentation. We provide several
-[examples](https://appliedAI-Initiative.github.io/pyDVL/examples/index.html)
+[examples](https://aai-institute.github.io/pyDVL/examples/index.html)
with details on the algorithms and their applications.
## Caching
@@ -142,8 +193,8 @@ You can run it either locally or, using
docker container run --rm -p 11211:11211 --name pydvl-cache -d memcached:latest
```
-You can read more in the [caching module's
-documentation](https://appliedAI-Initiative.github.io/pyDVL/pydvl/utils/caching.html).
+You can read more in the
+[documentation](https://aai-institute.github.io/pyDVL/getting-started/first-steps/#caching).
# Contributing
diff --git a/build_scripts/copy_changelog.py b/build_scripts/copy_changelog.py
new file mode 100644
index 000000000..2f570295e
--- /dev/null
+++ b/build_scripts/copy_changelog.py
@@ -0,0 +1,39 @@
+import logging
+import os
+import shutil
+from pathlib import Path
+
+import mkdocs.plugins
+
+logger = logging.getLogger(__name__)
+
+root_dir = Path(__file__).parent.parent
+docs_dir = root_dir / "docs"
+changelog_file = root_dir / "CHANGELOG.md"
+target_filepath = docs_dir / changelog_file.name
+
+
+@mkdocs.plugins.event_priority(100)
+def on_pre_build(config):
+ logger.info("Temporarily copying changelog to docs directory")
+ try:
+ if os.path.getmtime(changelog_file) <= os.path.getmtime(target_filepath):
+ logger.info(
+ f"Changelog '{os.fspath(changelog_file)}' hasn't been updated, skipping."
+ )
+ return
+ except FileNotFoundError:
+ pass
+ logger.info(
+ f"Creating symbolic link for '{os.fspath(changelog_file)}' "
+ f"at '{os.fspath(target_filepath)}'"
+ )
+ target_filepath.symlink_to(changelog_file)
+
+ logger.info("Finished copying changelog to docs directory")
+
+
+@mkdocs.plugins.event_priority(-100)
+def on_shutdown():
+ logger.info("Removing temporary changelog in docs directory")
+ target_filepath.unlink()
diff --git a/build_scripts/copy_notebooks.py b/build_scripts/copy_notebooks.py
new file mode 100644
index 000000000..0d0edbfd3
--- /dev/null
+++ b/build_scripts/copy_notebooks.py
@@ -0,0 +1,45 @@
+import logging
+import os
+import shutil
+from pathlib import Path
+
+import mkdocs.plugins
+
+logger = logging.getLogger(__name__)
+
+root_dir = Path(__file__).parent.parent
+docs_examples_dir = root_dir / "docs" / "examples"
+notebooks_dir = root_dir / "notebooks"
+
+
+@mkdocs.plugins.event_priority(100)
+def on_pre_build(config):
+ logger.info("Temporarily copying notebooks to examples directory")
+ docs_examples_dir.mkdir(parents=True, exist_ok=True)
+ notebook_filepaths = list(notebooks_dir.glob("*.ipynb"))
+
+ for notebook in notebook_filepaths:
+ target_filepath = docs_examples_dir / notebook.name
+
+ try:
+ if os.path.getmtime(notebook) <= os.path.getmtime(target_filepath):
+ logger.info(
+ f"Notebook '{os.fspath(notebook)}' hasn't been updated, skipping."
+ )
+ continue
+ except FileNotFoundError:
+ pass
+ logger.info(
+ f"Creating symbolic link for '{os.fspath(notebook)}' "
+ f"at '{os.fspath(target_filepath)}'"
+ )
+ target_filepath.symlink_to(notebook)
+
+ logger.info("Finished copying notebooks to examples directory")
+
+
+@mkdocs.plugins.event_priority(-100)
+def on_shutdown():
+ logger.info("Removing temporary examples directory")
+ for notebook_file in docs_examples_dir.glob("*.ipynb"):
+ notebook_file.unlink()
diff --git a/build_scripts/generate_api_docs.py b/build_scripts/generate_api_docs.py
new file mode 100644
index 000000000..99751aaa8
--- /dev/null
+++ b/build_scripts/generate_api_docs.py
@@ -0,0 +1,30 @@
+"""Generate the code reference pages."""
+from pathlib import Path
+
+import mkdocs_gen_files
+
+nav = mkdocs_gen_files.Nav()
+root = Path("src") # / Path("pydvl")
+for path in sorted(root.rglob("*.py")):
+ module_path = path.relative_to(root).with_suffix("")
+ doc_path = path.relative_to(root).with_suffix(".md")
+ full_doc_path = Path("api") / doc_path
+ parts = tuple(module_path.parts)
+
+ if parts[-1] == "__init__":
+ parts = parts[:-1]
+ doc_path = doc_path.with_name("index.md")
+ full_doc_path = full_doc_path.with_name("index.md")
+ elif parts[-1] == "__main__":
+ continue
+
+ nav[parts] = doc_path.as_posix()
+
+ with mkdocs_gen_files.open(full_doc_path, "w") as fd:
+ identifier = ".".join(parts)
+ fd.write(f"::: {identifier}")
+
+ mkdocs_gen_files.set_edit_path(full_doc_path, path)
+
+# with mkdocs_gen_files.open("api/SUMMARY.md", "w") as nav_file:
+# nav_file.writelines(nav.build_literate_nav())
diff --git a/build_scripts/modify_binder_link.py b/build_scripts/modify_binder_link.py
new file mode 100644
index 000000000..a01da10b5
--- /dev/null
+++ b/build_scripts/modify_binder_link.py
@@ -0,0 +1,65 @@
+"""
+This mkdocs hook replaces the binder link in the rendered notebooks
+with links to the actual notebooks in the repository.
+This is needed because for the docs we create symlinks to the notebooks
+inside the docs directory.
+This is heavily inspired from:
+https://github.com/greenape/mknotebooks/blob/master/mknotebooks/plugin.py#L322
+"""
+
+import logging
+import os
+import re
+from pathlib import Path
+from typing import TYPE_CHECKING, Literal, Optional
+
+from git import Repo
+from mkdocs.plugins import Config, event_priority
+
+if TYPE_CHECKING:
+ from mkdocs.plugins import Files, Page
+
+logger = logging.getLogger("mkdocs")
+
+BINDER_BASE_URL = "https://mybinder.org/v2"
+BINDER_LOGO_WITH_CAPTION = "[![Binder](https://mybinder.org/badge_logo.svg)]"
+BINDER_LOGO_WITHOUT_CAPTION = "[![](https://mybinder.org/badge_logo.svg)]"
+BINDER_LINK_PATTERN = re.compile(
+ re.escape(BINDER_LOGO_WITH_CAPTION) + r"\(" + re.escape(BINDER_BASE_URL) + r".*\)"
+)
+
+branch_name: Optional[str] = None
+
+
+@event_priority(-50)
+def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool) -> None:
+ global branch_name
+ try:
+ branch_name = Repo().active_branch.name
+ logger.info(f"Found branch name using git: {branch_name}")
+ except TypeError:
+ branch_name = os.getenv("GITHUB_REF", "develop").split("/")[-1]
+ logger.info(f"Found branch name from environment variable: {branch_name}")
+
+
+@event_priority(-50)
+def on_page_markdown(
+ markdown: str, page: "Page", config: Config, files: "Files"
+) -> Optional[str]:
+ if "examples" not in page.url:
+ return
+ logger.info(
+ f"Replacing binder link with link to notebook in repository for notebooks in {page.url}"
+ )
+ repo_name = config["repo_name"]
+ root_dir = Path(config["docs_dir"]).parent
+ notebooks_dir = root_dir / "notebooks"
+ notebook_filename = Path(page.file.src_path).name
+ file_path = (notebooks_dir / notebook_filename).relative_to(root_dir)
+ url_path = f"%2Ftree%2F{file_path}"
+ binder_url = f"{BINDER_BASE_URL}/gh/{repo_name}/{branch_name}?urlpath={url_path}"
+ binder_link = f"{BINDER_LOGO_WITHOUT_CAPTION}({binder_url})"
+ logger.info(f"New binder url: {binder_url}")
+ logger.info(f"Using regex: {BINDER_LINK_PATTERN}")
+ markdown = re.sub(BINDER_LINK_PATTERN, binder_link, markdown)
+ return markdown
diff --git a/build_scripts/release-version.sh b/build_scripts/release-version.sh
index 2d4f671b7..e57d860a6 100755
--- a/build_scripts/release-version.sh
+++ b/build_scripts/release-version.sh
@@ -239,7 +239,7 @@ echo "🔨 Merging release branch into master"
git checkout master
git pull --ff-only "$REMOTE" master
git merge --no-ff -X theirs "$RELEASE_BRANCH"
-git tag -a "$RELEASE_TAG" -m"Release $RELEASE_VERSION"
+git tag -a "$RELEASE_TAG" -m "Release $RELEASE_VERSION"
git push --follow-tags "$REMOTE" master
echo "🏷️ Bumping to next patch version"
diff --git a/build_scripts/update_docs.py b/build_scripts/update_docs.py
deleted file mode 100644
index 98f84f47e..000000000
--- a/build_scripts/update_docs.py
+++ /dev/null
@@ -1,241 +0,0 @@
-#!/usr/bin/env python3
-"""
-This script walks through the python source files and creates documentation in .rst format which can
-then be compiled with Sphinx. It is suitable for a standard repository layout src/ as well as for
-a repo containing multiple packages src/, ..., src/.
-"""
-import argparse
-import logging
-import os
-import shutil
-from typing import Optional
-
-log = logging.getLogger(__name__)
-
-
-def module_template(module_qualname: str):
- module_name = module_qualname.split(".")[-1]
- title = module_name.replace("_", r"\_")
- template = f"""{title}
-{"="*len(title)}
-
-.. automodule:: {module_qualname}
- :members:
- :undoc-members:
-
- ----
-
-.. footbibliography::
-
-"""
- return template
-
-
-def package_template(package_qualname: str, *, add_toctree: bool = True):
- package_name = package_qualname.split(".")[-1]
- title = package_name.replace("_", r"\_")
- template = f"""{title}
-{"="*len(title)}
-
-.. automodule:: {package_qualname}
- :members:
- :undoc-members:
-"""
- if add_toctree:
- template += f"""
-.. rubric:: Modules in this package
-
-.. toctree::
- :glob:
-
- {package_name}/*
-
-"""
- return template
-
-
-def index_template(package_name: str, title: Optional[str] = None) -> str:
- if title is None:
- title = package_name.replace("_", r"\_")
- template = f"""{title}
-{"="*len(title)}
-
-.. automodule:: {package_name}
- :members:
- :undoc-members:
-
-.. toctree::
- :glob:
-
- *
-"""
- return template
-
-
-def write_to_file(content: str, path: str):
- os.makedirs(os.path.dirname(path), exist_ok=True)
- with open(path, "w") as f:
- f.write(content)
- os.chmod(path, 0o666)
-
-
-def make_rst(
- src_root: str = "src",
- docs_root: str = "docs",
- clean: bool = False,
- overwrite: bool = False,
- only_update: bool = True,
-):
- """Creates / updates documentation in form of rst files for modules and
- packages. Does not delete any existing rst files if clean and overwrite are
- False. This method should be executed from the project's top-level
- directory.
-
- :param src_root: path to project's src directory that contains all packages,
- usually src. Most projects will only need one top-level package, then
- your layout typically should be src/.
- :param docs_root: path to the project's docs directory containing the
- `conf.py` and the top level `index.rst`.
- :param clean: whether to completely clean the docs target directories
- beforehand, removing any existing files.
- :param overwrite: whether to overwrite existing rst files. This should be
- used with caution as it will delete all manual changes to documentation
- files.
- :param only_update: set to True if rst files should only be recreated if
- their modification date is earlier than that of the modules.
- :return:
- """
- docs_root = os.path.abspath(docs_root)
- src_root = os.path.abspath(src_root)
-
- for top_level_package_name in os.listdir(src_root):
- top_level_package_dir = os.path.join(src_root, top_level_package_name)
- # skipping things in src that are not packages, like .egg files
- if (
- not os.path.isdir(top_level_package_dir)
- or "." in top_level_package_name
- or top_level_package_name.startswith("_")
- ):
- continue
-
- log.info(
- f"Generating documentation for top-level package {top_level_package_name}"
- )
- top_level_package_docs_dir = os.path.join(docs_root, top_level_package_name)
- if clean and os.path.isdir(top_level_package_docs_dir):
- log.info(f"Deleting {top_level_package_docs_dir} since clean=True")
- shutil.rmtree(top_level_package_docs_dir)
-
- index_rst_path = os.path.join(docs_root, top_level_package_name, "index.rst")
- log.info(f"Creating {index_rst_path}")
- write_to_file(
- index_template(top_level_package_name, "API Reference"), index_rst_path
- )
-
- for root, dirnames, filenames in os.walk(top_level_package_dir):
- if os.path.basename(root).startswith("_"):
- log.debug(f"Skipping doc generation in {root}")
- continue
-
- base_package_relpath = os.path.relpath(root, start=top_level_package_dir)
- base_package_qualname = os.path.relpath(root, start=src_root).replace(
- os.path.sep, "."
- )
-
- for dirname in dirnames:
- if not dirname.startswith("_"):
- package_qualname = f"{base_package_qualname}.{dirname}"
- package_rst_path = os.path.abspath(
- os.path.join(
- top_level_package_docs_dir,
- base_package_relpath,
- f"{dirname}.rst",
- )
- )
- package_path = os.path.join(root, dirname)
- add_toctree = True
- package_dir_content = list(
- filter(lambda x: x != "__pycache__", os.listdir(package_path))
- )
- if package_dir_content == ["__init__.py"]:
- add_toctree = False
-
- try:
- dir_path = os.path.join(root, dirname)
- if only_update and os.path.getmtime(
- dir_path
- ) <= os.path.getmtime(package_rst_path):
- log.info(
- f"Package {dir_path} hasn't been modified, skipping."
- )
- continue
- except FileNotFoundError:
- pass
-
- log.info(f"Writing package documentation to {package_rst_path}")
- write_to_file(
- package_template(package_qualname, add_toctree=add_toctree),
- package_rst_path,
- )
-
- for filename in filenames:
- base_name, ext = os.path.splitext(filename)
- if ext == ".py" and not filename.startswith("_"):
- module_qualname = f"{base_package_qualname}.{filename[:-3]}"
- module_rst_path = os.path.abspath(
- os.path.join(
- top_level_package_docs_dir,
- base_package_relpath,
- f"{base_name}.rst",
- )
- )
- if os.path.exists(module_rst_path) and not overwrite:
- log.debug(f"{module_rst_path} already exists, skipping it")
-
- try:
- file_path = os.path.join(root, filename)
- if only_update and os.path.getmtime(
- file_path
- ) <= os.path.getmtime(module_rst_path):
- log.info(
- f"Module {file_path} hasn't been modified, skipping."
- )
- continue
- except FileNotFoundError:
- pass
-
- log.info(f"Writing module documentation to {module_rst_path}")
- write_to_file(module_template(module_qualname), module_rst_path)
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="A tool to create RST files for all source files in the library",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter,
- )
- parser.add_argument(
- "-s", "--source", help="Root of the sources", type=str, default="src"
- )
-
- parser.add_argument(
- "-d", "--doc", help="Root of the documentation", type=str, default="docs"
- )
-
- parser.add_argument(
- "-u",
- "--update",
- help="Whether to only update rst files if sources are newer",
- action="store_true",
- )
- parser.add_argument(
- "-c", "--clean", help="Wipe docs before starting", action="store_true"
- )
- args = parser.parse_args()
-
- logging.basicConfig(level=logging.INFO)
- make_rst(
- src_root=args.source,
- docs_root=args.doc,
- clean=args.clean,
- only_update=args.update,
- )
diff --git a/docs/.gitignore b/docs/.gitignore
index 9c4a2f7cd..e9ceace7b 100644
--- a/docs/.gitignore
+++ b/docs/.gitignore
@@ -1,6 +1,9 @@
-_build
+# Notebooks
*.ipynb
# Generated Documentation from Code
pydvl/*
!pydvl/index.rst
+
+# Changelog
+CHANGELOG.md
diff --git a/docs/10-getting-started.rst b/docs/10-getting-started.rst
deleted file mode 100644
index 16b58185d..000000000
--- a/docs/10-getting-started.rst
+++ /dev/null
@@ -1,35 +0,0 @@
-.. _getting started:
-
-===============
-Getting started
-===============
-
-.. warning::
- Make sure you have read :ref:`the installation instructions
- ` before using the library. In particular read about how
- caching and parallelization work, since they require additional setup.
-
-pyDVL aims to be a repository of production-ready, reference implementations of
-algorithms for data valuation and influence functions. You can read:
-
-* :ref:`data valuation` for key objects and usage patterns for Shapley value
- computation and related methods.
-* :ref:`influence` for instructions on how to compute influence functions (still
- in a pre-alpha state)
-
-We only briefly introduce key concepts in the documentation. For a thorough
-introduction and survey of the field, we refer to **the upcoming review** at the
-:tfl:`TransferLab website `.
-
-Running the examples
-====================
-
-If you are somewhat familiar with the concepts of data valuation, you can start
-by browsing our worked-out examples illustrating pyDVL's capabilities either:
-
-- :ref:`In this documentation`.
-- Using `binder `_ notebooks, deployed from each
- example's page.
-- Locally, by starting a jupyter server at the root of the project. You will
- have to install jupyter first manually since it's not a dependency of the
- library.
diff --git a/docs/20-install.rst b/docs/20-install.rst
deleted file mode 100644
index e803487aa..000000000
--- a/docs/20-install.rst
+++ /dev/null
@@ -1,78 +0,0 @@
-.. _pyDVL Installation:
-
-================
-Installing pyDVL
-================
-
-To install the latest release use:
-
-.. code-block:: shell
-
- pip install pyDVL
-
-To use all features of influence functions use instead:
-
-.. code-block:: shell
-
- pip install pyDVL[influence]
-
-This includes a dependency on `PyTorch `_ and thus is left
-out by default.
-
-In order to check the installation you can use:
-
-.. code-block:: shell
-
- python -c "import pydvl; print(pydvl.__version__)"
-
-You can also install the latest development version from
-`TestPyPI `_:
-
-.. code-block:: shell
-
- pip install pyDVL --index-url https://test.pypi.org/simple/
-
-Dependencies
-============
-
-pyDVL requires Python >= 3.8, `Memcached `_ for caching
-and `ray `_ for parallelization. Additionally,
-:mod:`Influence functions` requires PyTorch (see
-:ref:`pyDVL Installation`).
-
-ray is used to distribute workloads both locally and across nodes. Please follow
-the instructions in their documentation for installation.
-
-.. _caching setup:
-
-Setting up the cache
-====================
-
-memcached is an in-memory key-value store accessible over the network. pyDVL
-uses it to cache certain results and speed-up the computations. You can either
-install it as a package or run it inside a docker container (the simplest). For
-installation instructions, refer to `Getting started
-`_ in memcached's
-wiki. Then you can run it with:
-
-.. code-block:: shell
-
- memcached -u user
-
-To run memcached inside a container in daemon mode instead, do:
-
-.. code-block:: shell
-
- docker container run -d --rm -p 11211:11211 memcached:latest
-
-.. warning::
- To read more about caching and how it might affect your usage, in particular
- about cache reuse and its pitfalls, please the documentation for the module
- :mod:`pydvl.utils.caching`.
-
-What's next
-===========
-
-- Read on :ref:`data valuation`.
-- Read on :ref:`influence functions `.
-- Browse the :ref:`examples`.
diff --git a/docs/30-data-valuation.rst b/docs/30-data-valuation.rst
deleted file mode 100644
index b2ca10224..000000000
--- a/docs/30-data-valuation.rst
+++ /dev/null
@@ -1,736 +0,0 @@
-.. _data valuation:
-
-=====================
-Computing data values
-=====================
-
-**Data valuation** is the task of assigning a number to each element of a
-training set which reflects its contribution to the final performance of a
-model trained on it. This value is not an intrinsic property of the element of
-interest, but a function of three factors:
-
-1. The dataset $D$, or more generally, the distribution it was sampled
- from (with this we mean that *value* would ideally be the (expected)
- contribution of a data point to any random set $D$ sampled from the same
- distribution).
-
-2. The algorithm $\mathcal{A}$ mapping the data $D$ to some estimator $f$
- in a model class $\mathcal{F}$. E.g. MSE minimization to find the parameters
- of a linear model.
-
-3. The performance metric of interest $u$ for the problem. E.g. the $R^2$
- score or the negative MSE over a test set.
-
-pyDVL collects algorithms for the computation of data values in this sense,
-mostly those derived from cooperative game theory. The methods can be found in
-the package :mod:`~pydvl.value`, with support from modules
-:mod:`pydvl.utils.dataset` and :mod:`~pydvl.utils.utility`, as detailed below.
-
-.. warning::
- Be sure to read the section on
- :ref:`the difficulties using data values `.
-
-Creating a Dataset
-==================
-
-The first item in the tuple $(D, \mathcal{A}, u)$ characterising data value is
-the dataset. The class :class:`~pydvl.utils.dataset.Dataset` is a simple
-convenience wrapper for the train and test splits that is used throughout pyDVL.
-The test set will be used to evaluate a scoring function for the model.
-
-It can be used as follows:
-
-.. code-block:: python
-
- import numpy as np
- from pydvl.utils import Dataset
- from sklearn.model_selection import train_test_split
-
- X, y = np.arange(100).reshape((50, 2)), np.arange(50)
- X_train, X_test, y_train, y_test = train_test_split(
- X, y, test_size=0.5, random_state=16
- )
-
- dataset = Dataset(X_train, X_test, y_train, y_test)
-
-It is also possible to construct Datasets from sklearn toy datasets for
-illustrative purposes using :meth:`~pydvl.utils.dataset.Dataset.from_sklearn`.
-
-Grouping data
-^^^^^^^^^^^^^
-
-Be it because data valuation methods are computationally very expensive, or
-because we are interested in the groups themselves, it can be often useful or
-necessary to group samples so as to valuate them together.
-:class:`~pydvl.utils.dataset.GroupedDataset` provides an alternative to
-`Dataset` with the same interface which allows this.
-
-You can see an example in action in the
-:doc:`Spotify notebook `, but here's a simple
-example grouping a pre-existing `Dataset`. First we construct an array mapping
-each index in the dataset to a group, then use
-:meth:`~pydvl.utils.dataset.GroupedDataset.from_dataset`:
-
-.. code-block:: python
-
- # Randomly assign elements to any one of num_groups:
- data_groups = np.random.randint(0, num_groups, len(dataset))
- grouped_dataset = GroupedDataset.from_dataset(dataset, data_groups)
- grouped_utility = Utility(model=model, data=grouped_dataset)
-
-Creating a Utility
-==================
-
-In pyDVL we have slightly overloaded the name "utility" and use it to refer to
-an object that keeps track of all three items in $(D, \mathcal{A}, u)$. This
-will be an instance of :class:`~pydvl.utils.utility.Utility` which, as mentioned,
-is a convenient wrapper for the dataset, model and scoring function used for
-valuation methods.
-
-Here's a minimal example:
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- import sklearn as sk
-
- dataset = Dataset.from_sklearn(sk.datasets.load_iris())
- model = sk.svm.SVC()
- utility = Utility(model, dataset)
-
-The object `utility` is a callable that data valuation methods will execute
-with different subsets of training data. Each call will retrain the model on a
-subset and evaluate it on the test data using a scoring function. By default,
-:class:`~pydvl.utils.utility.Utility` will use `model.score()`, but it is
-possible to use any scoring function (greater values must be better). In
-particular, the constructor accepts the same types as argument as sklearn's
-`cross_validate() `_:
-a string, a scorer callable or `None` for the default.
-
-.. code-block:: python
-
- utility = Utility(model, dataset, "explained_variance")
-
-
-`Utility` will wrap the `fit()` method of the model to cache its results. This
-greatly reduces computation times of Monte Carlo methods. Because of how caching
-is implemented, it is important not to reuse `Utility` objects for different
-datasets. You can read more about :ref:`caching setup` in the installation guide
-and the documentation of the :mod:`pydvl.utils.caching` module.
-
-Using custom scorers
-^^^^^^^^^^^^^^^^^^^^
-
-The `scoring` argument of :class:`~pydvl.utils.utility.Utility` can be used to
-specify a custom :class:`~pydvl.utils.utility.Scorer` object. This is a simple
-wrapper for a callable that takes a model, and test data and returns a score.
-
-More importantly, the object provides information about the range of the score,
-which is used by some methods by estimate the number of samples necessary, and
-about what default value to use when the model fails to train.
-
-.. note::
- The most important property of a `Scorer` is its default value. Because many
- models will fail to fit on small subsets of the data, it is important to
- provide a sensible default value for the score.
-
-It is possible to skip the construction of the :class:`~pydvl.utils.utility.Scorer`
-when constructing the `Utility` object. The two following calls are equivalent:
-
-.. code-block:: python
-
- utility = Utility(
- model, dataset, "explained_variance", score_range=(-np.inf, 1), default_score=0.0
- )
- utility = Utility(
- model, dataset, Scorer("explained_variance", range=(-np.inf, 1), default=0.0)
- )
-
-Learning the utility
-^^^^^^^^^^^^^^^^^^^^
-
-Because each evaluation of the utility entails a full retrain of the model with
-a new subset of the training set, it is natural to try to learn this mapping
-from subsets to scores. This is the idea behind **Data Utility Learning (DUL)**
-(:footcite:t:`wang_improving_2022`) and in pyDVL it's as simple as wrapping the
-`Utility` inside :class:`~pydvl.utils.utility.DataUtilityLearning`:
-
-.. code-block::python
-
- from pydvl.utils import Utility, DataUtilityLearning, Dataset
- from sklearn.linear_model import LinearRegression, LogisticRegression
- from sklearn.datasets import load_iris
- dataset = Dataset.from_sklearn(load_iris())
- u = Utility(LogisticRegression(), dataset, enable_cache=False)
- training_budget = 3
- wrapped_u = DataUtilityLearning(u, training_budget, LinearRegression())
- # First 3 calls will be computed normally
- for i in range(training_budget):
- _ = wrapped_u((i,))
- # Subsequent calls will be computed using the fit model for DUL
- wrapped_u((1, 2, 3))
-
-As you can see, all that is required is a model to learn the utility itself and
-the fitting and using of the learned model happens behind the scenes.
-
-There is a longer example with an investigation of the results achieved by DUL
-in :doc:`a dedicated notebook `.
-
-.. _LOO:
-
-Leave-One-Out values
-====================
-
-The Leave-One-Out method is a simple approach that assigns each sample its
-*marginal utility* as value:
-
-$$v_u(x_i) = u(D) − u(D \setminus \{x_i\}).$$
-
-For the purposes of data valuation, this is rarely useful beyond serving as a
-baseline for benchmarking. One particular weakness is that it does not
-necessarily correlate with an intrinsic value of a sample: since it is a
-marginal utility, it is affected by the "law" of diminishing returns. Often, the
-training set is large enough for a single sample not to have any significant
-effect on training performance, despite any qualities it may possess. Whether
-this is indicative of low value or not depends on each one's goals and
-definitions, but other methods are typically preferable.
-
-.. code-block:: python
-
- from pydvl.value.loo.naive import naive_loo
- utility = Utility(...)
- values = naive_loo(utility)
-
-The return value of all valuation functions is an object of type
-:class:`~pydvl.value.result.ValuationResult`. This can be iterated over,
-indexed with integers, slices and Iterables, as well as converted to a
-`pandas DataFrame `_.
-
-.. _Shapley:
-
-Shapley values
-==============
-
-The Shapley method is an approach to compute data values originating in
-cooperative game theory. Shapley values are a common way of assigning payoffs to
-each participant in a cooperative game (i.e. one in which players can form
-coalitions) in a way that ensures that certain axioms are fulfilled.
-
-pyDVL implements several methods for the computation and approximation of
-Shapley values. They can all be accessed via the facade function
-:func:`~pydvl.value.shapley.compute_shapley_values`. The supported methods are
-enumerated in :class:`~pydvl.value.shapley.ShapleyMode`.
-
-
-Combinatorial Shapley
-^^^^^^^^^^^^^^^^^^^^^
-
-The first algorithm is just a verbatim implementation of the definition. As such
-it returns as exact a value as the utility function allows (see what this means
-in :ref:`problems of data values`).
-
-The value $v$ of the $i$-th sample in dataset $D$ wrt. utility $u$ is computed
-as a weighted sum of its marginal utility wrt. every possible coalition of
-training samples within the training set:
-
-$$
-v_u(x_i) = \frac{1}{n} \sum_{S \subseteq D \setminus \{x_i\}}
-\binom{n-1}{ | S | }^{-1} [u(S \cup \{x_i\}) − u(S)]
-,$$
-
-.. code-block:: python
-
- from pydvl.value import compute_shapley_value
-
- utility = Utility(...)
- values = compute_shapley_values(utility, mode="combinatorial_exact")
- df = values.to_dataframe(column='value')
-
-We can convert the return value to a
-`pandas DataFrame `_
-and name the column with the results as `value`. Please refer to the
-documentation in :mod:`pydvl.value.shapley` and
-:class:`~pydvl.value.result.ValuationResult` for more information.
-
-Monte Carlo Combinatorial Shapley
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Because the number of subsets $S \subseteq D \setminus \{x_i\}$ is
-$2^{ | D | - 1 }$, one typically must resort to approximations. The simplest
-one is done via Monte Carlo sampling of the powerset $\mathcal{P}(D)$. In pyDVL
-this simple technique is called "Monte Carlo Combinatorial". The method has very
-poor converge rate and others are preferred, but if desired, usage follows the
-same pattern:
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_shapley_values
-
- model = ...
- data = Dataset(...)
- utility = Utility(model, data)
- values = compute_shapley_values(
- utility, mode="combinatorial_montecarlo", done=MaxUpdates(1000)
- )
- df = values.to_dataframe(column='cmc')
-
-The DataFrames returned by most Monte Carlo methods will contain approximate
-standard errors as an additional column, in this case named `cmc_stderr`.
-
-Note the usage of the object :class:`~pydvl.value.stopping.MaxUpdates` as the
-stop condition. This is an instance of a
-:class:`~pydvl.value.stopping.StoppingCriterion`. Other examples are
-:class:`~pydvl.value.stopping.MaxTime` and :class:`~pydvl.value.stopping.StandardError`.
-
-
-Owen sampling
-^^^^^^^^^^^^^
-
-**Owen Sampling** (:footcite:t:`okhrati_multilinear_2021`) is a practical
-algorithm based on the combinatorial definition. It uses a continuous extension
-of the utility from $\{0,1\}^n$, where a 1 in position $i$ means that sample
-$x_i$ is used to train the model, to $[0,1]^n$. The ensuing expression for
-Shapley value uses integration instead of discrete weights:
-
-$$
-v_u(i) = \int_0^1 \mathbb{E}_{S \sim P_q(D_{\backslash \{ i \}})}
-[u(S \cup {i}) - u(S)]
-.$$
-
-Using Owen sampling follows the same pattern as every other method for Shapley
-values in pyDVL. First construct the dataset and utility, then call
-:func:`~pydvl.value.shapley.compute_shapley_values`:
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_shapley_values
-
- model = ...
- dataset = Dataset(...)
- utility = Utility(data, model)
- values = compute_shapley_values(
- u=utility, mode="owen", n_iterations=4, max_q=200
- )
-
-There are more details on Owen sampling, and its variant *Antithetic Owen
-Sampling* in the documentation for the function doing the work behind the scenes:
-:func:`~pydvl.value.shapley.montecarlo.owen_sampling_shapley`.
-
-Note that in this case we do not pass a
-:class:`~pydvl.value.stopping.StoppingCriterion` to the function, but instead
-the number of iterations and the maximum number of samples to use in the
-integration.
-
-Permutation Shapley
-^^^^^^^^^^^^^^^^^^^
-
-An equivalent way of computing Shapley values (``ApproShapley``) appeared in
-:footcite:t:`castro_polynomial_2009` and is the basis for the method most often
-used in practice. It uses permutations over indices instead of subsets:
-
-$$
-v_u(x_i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)}
-[u(\sigma_{:i} \cup \{i\}) − u(\sigma_{:i})]
-,$$
-
-where $\sigma_{:i}$ denotes the set of indices in permutation sigma before the
-position where $i$ appears. To approximate this sum (which has $\mathcal{O}(n!)$
-terms!) one uses Monte Carlo sampling of permutations, something which has
-surprisingly low sample complexity. One notable difference wrt. the
-combinatorial approach above is that the approximations always fulfill the
-efficiency axiom of Shapley, namely $\sum_{i=1}^n \hat{v}_i = u(D)$ (see
-:footcite:t:`castro_polynomial_2009`, Proposition 3.2).
-
-By adding early stopping, the result is the so-called **Truncated Monte Carlo
-Shapley** (:footcite:t:`ghorbani_data_2019`), which is efficient enough to be
-useful in applications.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_shapley_values
-
- model = ...
- data = Dataset(...)
- utility = Utility(model, data)
- values = compute_shapley_values(
- u=utility, mode="truncated_montecarlo", done=MaxUpdates(1000)
- )
-
-
-Exact Shapley for KNN
-^^^^^^^^^^^^^^^^^^^^^
-
-It is possible to exploit the local structure of K-Nearest Neighbours to reduce
-the amount of subsets to consider: because no sample besides the K closest
-affects the score, most are irrelevant and it is possible to compute a value in
-linear time. This method was introduced by :footcite:t:`jia_efficient_2019a`,
-and can be used in pyDVL with:
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_shapley_values
- from sklearn.neighbors import KNeighborsClassifier
-
- model = KNeighborsClassifier(n_neighbors=5)
- data = Dataset(...)
- utility = Utility(model, data)
- values = compute_shapley_values(u=utility, mode="knn")
-
-
-Group testing
-^^^^^^^^^^^^^
-
-An alternative approach introduced in :footcite:t:`jia_efficient_2019a`
-first approximates the differences of values with a Monte Carlo sum. With
-
-$$\hat{\Delta}_{i j} \approx v_i - v_j,$$
-
-one then solves the following linear constraint satisfaction problem (CSP) to
-infer the final values:
-
-$$
-\begin{array}{lll}
-\sum_{i = 1}^N v_i & = & U (D)\\
-| v_i - v_j - \hat{\Delta}_{i j} | & \leqslant &
-\frac{\varepsilon}{2 \sqrt{N}}
-\end{array}
-$$
-
-.. warning::
- We have reproduced this method in pyDVL for completeness and benchmarking,
- but we don't advocate its use because of the speed and memory cost. Despite
- our best efforts, the number of samples required in practice for convergence
- can be several orders of magnitude worse than with e.g. Truncated Monte Carlo.
- Additionally, the CSP can sometimes turn out to be infeasible.
-
-Usage follows the same pattern as every other Shapley method, but with the
-addition of an ``epsilon`` parameter required for the solution of the CSP. It
-should be the same value used to compute the minimum number of samples required.
-This can be done with :func:`~pydvl.value.shapley.gt.num_samples_eps_delta`, but
-note that the number returned will be huge! In practice, fewer samples can be
-enough, but the actual number will strongly depend on the utility, in particular
-its variance.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_shapley_values
-
- model = ...
- data = Dataset(...)
- utility = Utility(model, data, score_range=(_min, _max))
- min_iterations = num_samples_eps_delta(epsilon, delta, n, utility.score_range)
- values = compute_shapley_values(
- u=utility, mode="group_testing", n_iterations=min_iterations, eps=eps
- )
-
-.. _Least Core:
-
-Core values
-===========
-
-The Shapley values define a fair way to distribute payoffs amongst all
-participants when they form a grand coalition. But they do not consider
-the question of stability: under which conditions do all participants
-form the grand coalition? Would the participants be willing to form
-the grand coalition given how the payoffs are assigned,
-or would some of them prefer to form smaller coalitions?
-
-The Core is another approach to computing data values originating
-in cooperative game theory that attempts to ensure this stability.
-It is the set of feasible payoffs that cannot be improved upon
-by a coalition of the participants.
-
-It satisfies the following 2 properties:
-
-- **Efficiency**:
- The payoffs are distributed such that it is not possible
- to make any participant better off
- without making another one worse off.
- $$\sum_{x_i\in D} v_u(x_i) = u(D)\,$$
-
-- **Coalitional rationality**:
- The sum of payoffs to the agents in any coalition S is at
- least as large as the amount that these agents could earn by
- forming a coalition on their own.
- $$\sum_{x_i\in S} v_u(x_i) \geq u(S), \forall S \subset D\,$$
-
-The second property states that the sum of payoffs to the agents
-in any subcoalition $S$ is at least as large as the amount that
-these agents could earn by forming a coalition on their own.
-
-Least Core values
-^^^^^^^^^^^^^^^^^
-
-Unfortunately, for many cooperative games the Core may be empty.
-By relaxing the coalitional rationality property by a subsidy $e \gt 0$,
-we are then able to find approximate payoffs:
-
-$$
-\sum_{x_i\in S} v_u(x_i) + e \geq u(S), \forall S \subset D, S \neq \emptyset \
-,$$
-
-The least core value $v$ of the $i$-th sample in dataset $D$ wrt.
-utility $u$ is computed by solving the following Linear Program:
-
-$$
-\begin{array}{lll}
-\text{minimize} & e & \\
-\text{subject to} & \sum_{x_i\in D} v_u(x_i) = u(D) & \\
-& \sum_{x_i\in S} v_u(x_i) + e \geq u(S) &, \forall S \subset D, S \neq \emptyset \\
-\end{array}
-$$
-
-Exact Least Core
-----------------
-
-This first algorithm is just a verbatim implementation of the definition.
-As such it returns as exact a value as the utility function allows
-(see what this means in :ref:`problems of data values`).
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_least_core_values
-
- model = ...
- dataset = Dataset(...)
- utility = Utility(data, model)
- values = compute_least_core_values(utility, mode="exact")
-
-Monte Carlo Least Core
-----------------------
-
-Because the number of subsets $S \subseteq D \setminus \{x_i\}$ is
-$2^{ | D | - 1 }$, one typically must resort to approximations.
-
-The simplest approximation consists in using a fraction of all subsets for the
-constraints. :footcite:t:`yan_if_2021` show that a quantity of order
-$\mathcal{O}((n - \log \Delta ) / \delta^2)$ is enough to obtain a so-called
-$\delta$-*approximate least core* with high probability. I.e. the following
-property holds with probability $1-\Delta$ over the choice of subsets:
-
-$$
-\mathbb{P}_{S\sim D}\left[\sum_{x_i\in S} v_u(x_i) + e^{*} \geq u(S)\right]
-\geq 1 - \delta,
-$$
-
-where $e^{*}$ is the optimal least core subsidy.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_least_core_values
-
- model = ...
- dataset = Dataset(...)
- n_iterations = ...
- utility = Utility(data, model)
- values = compute_least_core_values(
- utility, mode="montecarlo", n_iterations=n_iterations
- )
-
-.. note::
-
- Although any number is supported, it is best to choose ``n_iterations`` to be
- at least equal to the number of data points.
-
-Because computing the Least Core values requires the solution of a linear and a
-quadratic problem *after* computing all the utility values, we offer the
-possibility of splitting the latter from the former. This is useful when running
-multiple experiments: use
-:func:`~pydvl.value.least_core.montecarlo.mclc_prepare_problem` to prepare a
-list of problems to solve, then solve them in parallel with
-:func:`~pydvl.value.least_core.common.lc_solve_problems`.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value.least_core import mclc_prepare_problem, lc_solve_problems
-
- model = ...
- dataset = Dataset(...)
- n_iterations = ...
- utility = Utility(data, model)
- n_experiments = 10
- problems = [mclc_prepare_problem(utility, n_iterations=n_iterations)
- for _ in range(n_experiments)]
- values = lc_solve_problems(problems)
-
-
-Semi-values
-===========
-
-Shapley values are a particular case of a more general concept called semi-value,
-which is a generalization to different weighting schemes. A **semi-value** is
-any valuation function with the form:
-
-$$
-v\_\text{semi}(i) = \sum_{i=1}^n w(k)
-\sum_{S \subset D\_{-i}^{(k)}} [U(S\_{+i})-U(S)],
-$$
-
-where the coefficients $w(k)$ satisfy the property:
-
-$$\sum_{k=1}^n w(k) = 1.$$
-
-Two instances of this are **Banzhaf indices** (:footcite:t:`wang_data_2022`),
-and **Beta Shapley** (:footcite:t:`kwon_beta_2022`), with better numerical and
-rank stability in certain situations.
-
-.. note::
-
- Shapley values are a particular case of semi-values and can therefore also be
- computed with the methods described here. However, as of version 0.6.0, we
- recommend using :func:`~pydvl.value.shapley.compute_shapley_values` instead,
- in particular because it implements truncated Monte Carlo sampling for faster
- computation.
-
-
-Beta Shapley
-^^^^^^^^^^^^
-
-For some machine learning applications, where the utility is typically the
-performance when trained on a set $S \subset D$, diminishing returns are often
-observed when computing the marginal utility of adding a new data point.
-
-Beta Shapley is a weighting scheme that uses the Beta function to place more
-weight on subsets deemed to be more informative. The weights are defined as:
-
-$$
-w(k) := \frac{B(k+\beta, n-k+1+\alpha)}{B(\alpha, \beta)},
-$$
-
-where $B$ is the `Beta function `_,
-and $\alpha$ and $\beta$ are parameters that control the weighting of the
-subsets. Setting both to 1 recovers Shapley values, and setting $\alpha = 1$, and
-$\beta = 16$ is reported in :footcite:t:`kwon_beta_2022` to be a good choice for
-some applications. See however :ref:`banzhaf indices` for an alternative choice
-of weights which is reported to work better.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_semivalues
-
- model = ...
- data = Dataset(...)
- utility = Utility(model, data)
- values = compute_semivalues(
- u=utility, mode="beta_shapley", done=MaxUpdates(500), alpha=1, beta=16
- )
-
-.. _banzhaf indices:
-
-Banzhaf indices
-^^^^^^^^^^^^^^^
-
-As noted below in :ref:`problems of data values`, the Shapley value can be very
-sensitive to variance in the utility function. For machine learning applications,
-where the utility is typically the performance when trained on a set $S \subset
-D$, this variance is often largest for smaller subsets $S$. It is therefore
-reasonable to try reducing the relative contribution of these subsets with
-adequate weights.
-
-One such choice of weights is the Banzhaf index, which is defined as the
-constant:
-
-$$w(k) := 2^{n-1},$$
-
-for all set sizes $k$. The intuition for picking a constant weight is that for
-any choice of weight function $w$, one can always construct a utility with
-higher variance where $w$ is greater. Therefore, in a worst-case sense, the best
-one can do is to pick a constant weight.
-
-The authors of :footcite:t:`wang_data_2022` show that Banzhaf indices are more
-robust to variance in the utility function than Shapley and Beta Shapley values.
-
-.. code-block:: python
-
- from pydvl.utils import Dataset, Utility
- from pydvl.value import compute_semivalues
-
- model = ...
- data = Dataset(...)
- utility = Utility(model, data)
- values = compute_semivalues( u=utility, mode="banzhaf", done=MaxUpdates(500))
-
-
-.. _problems of data values:
-
-Problems of data values
-=======================
-
-There are a number of factors that affect how useful values can be for your
-project. In particular, regression can be especially tricky, but the particular
-nature of every (non-trivial) ML problem can have an effect:
-
-* **Unbounded utility**: Choosing a scorer for a classifier is simple: accuracy
- or some F-score provides a bounded number with a clear interpretation. However,
- in regression problems most scores, like $R^2$, are not bounded because
- regressors can be arbitrarily bad. This leads to great variability in the
- utility for low sample sizes, and hence unreliable Monte Carlo approximations
- to the values. Nevertheless, in practice it is only the ranking of samples
- that matters, and this tends to be accurate (wrt. to the true ranking) despite
- inaccurate values.
-
- pyDVL offers a dedicated :func:`function composition
- ` for scorer functions which can be used to
- squash a score. The following is defined in module :mod:`~pydvl.utils.scorer`:
-
- .. code-block:: python
-
- def sigmoid(x: float) -> float:
- return float(1 / (1 + np.exp(-x)))
-
- squashed_r2 = compose_score("r2", sigmoid, "squashed r2")
-
- squashed_variance = compose_score(
- "explained_variance", sigmoid, "squashed explained variance"
- )
-
- These squashed scores can prove useful in regression problems, but they can
- also introduce issues in the low-value regime.
-
-* **High variance utility**: Classical applications of game theoretic value
- concepts operate with deterministic utilities, but in ML we use an evaluation
- of the model on a validation set as a proxy for the true risk. Even if the
- utility *is* bounded, if it has high variance then values will also have high
- variance, as will their Monte Carlo estimates. One workaround in pyDVL is to
- configure the caching system to allow multiple evaluations of the utility for
- every index set. A moving average is computed and returned once the standard
- error is small, see :class:`~pydvl.utils.config.MemcachedConfig`.
-
- :footcite:t:`wang_data_2022` prove that by relaxing one of the Shapley axioms
- and considering the general class of semi-values, of which Shapley is an
- instance, one can prove that a choice of constant weights is the best one can
- do in a utility-agnostic setting. So-called *Data Banzhaf* is on our to-do
- list!
-
-* **Data set size**: Computing exact Shapley values is NP-hard, and Monte Carlo
- approximations can converge slowly. Massive datasets are thus impractical, at
- least with current techniques. A workaround is to group samples and investigate
- their value together. In pyDVL you can do this using
- :class:`~pydvl.utils.dataset.GroupedDataset`. There is a fully worked-out
- :doc:`example here `. Some algorithms also
- provide different sampling strategies to reduce the variance, but due to a
- no-free-lunch-type theorem, no single strategy can be optimal for all
- utilities.
-
-* **Model size**: Since every evaluation of the utility entails retraining the
- whole model on a subset of the data, large models require great amounts of
- computation. But also, they will effortlessly interpolate small to medium
- datasets, leading to great variance in the evaluation of performance on the
- dedicated validation set. One mitigation for this problem is cross-validation,
- but this would incur massive computational cost. As of v.0.3.0 there are no
- facilities in pyDVL for cross-validating the utility (note that this would
- require cross-validating the whole value computation).
-
-References
-==========
-
-.. footbibliography::
diff --git a/docs/40-influence.rst b/docs/40-influence.rst
deleted file mode 100644
index d1a43017a..000000000
--- a/docs/40-influence.rst
+++ /dev/null
@@ -1,116 +0,0 @@
-.. _influence:
-
-==========================
-Computing influence values
-==========================
-
-
-.. warning::
- Much of the code in the package :mod:`pydvl.influence` is experimental or
- untested. Package structure and basic API are bound to change before v1.0.0
-
-.. todo::
-
- This section needs rewriting:
- - Introduce some theory
- - Explain how the methods differ
- - Add example for `TwiceDifferentiable`
- - Improve uninformative examples
-
-There are two ways to compute influences. For linear regression, the influences
-can be computed analytically. For more general models or loss functions, one can
-implement the :class:`TwiceDifferentiable` protocol, which provides the required
-methods for computing the influences.
-
-pyDVL supports two ways of computing the empirical influence function, namely
-up-weighting of samples and perturbation influences. The choice is done by a
-parameter in the call to the main entry points,
-:func:`~pydvl.influence.linear.compute_linear_influences` and
-:func:`~pydvl.influence.compute_influences`.
-
-Influence for OLS
------------------
-.. warning::
-
- This will be deprecated. It makes no sense to have a separate interface for
- linear models.
-
-Because the Hessian of the least squares loss for a regression problem can be
-computed analytically, we provide
-:func:`~pydvl.influence.linear.compute_linear_influences` as a convenience
-function to work with these models.
-
-.. code-block:: python
-
- >>> from pydvl.influence.linear import compute_linear_influences
- >>> compute_linear_influences(
- ... x_train,
- ... y_train,
- ... x_test,
- ... y_test
- ... )
-
-
-This method calculates the influence function for each sample in x_train for a
-least squares regression problem.
-
-
-Exact influences using the `TwiceDifferentiable` protocol
----------------------------------------------------------
-
-More generally, influences can be computed for any model which implements the
-:class:`TwiceDifferentiable` protocol, i.e. which is capable of calculating
-second derivative matrix vector products and gradients of the loss evaluated on
-training and test samples.
-
-.. code-block:: python
-
- >>> from pydvl.influence import influences
- >>> compute_influences(
- ... model,
- ... x_train,
- ... y_train,
- ... x_test,
- ... y_test,,
- ... )
-
-
-Approximate matrix inversion
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Sometimes it is not possible to construct the complete Hessian in memory. In
-that case one can use conjugate gradient as a space-efficient approximation to
-inverting the full matrix. In pyDVL this can be done with the parameter
-`inversion_method` of :func:`~pydvl.influence.compute_influences`:
-
-
-.. code-block:: python
-
- >>> from pydvl.influence import compute_influences
- >>> compute_influences(
- ... model,
- ... x_train,
- ... y_train,
- ... x_test,
- ... y_test,
- ... inversion_method="cg"
- ... )
-
-
-Perturbation influences
------------------------
-
-As mentioned, the method of empirical influence computation can be selected
-in :func:`~pydvl.influence.compute_influences` with `influence_type`:
-
-.. code-block:: python
-
- >>> from pydvl.influence import compute_influences
- >>> compute_influences(
- ... model,
- ... x_train,
- ... y_train,
- ... x_test,
- ... y_test,
- ... influence_type="perturbation"
- ... )
diff --git a/docs/_ext/copy_notebooks.py b/docs/_ext/copy_notebooks.py
deleted file mode 100644
index 84fe3cf2e..000000000
--- a/docs/_ext/copy_notebooks.py
+++ /dev/null
@@ -1,36 +0,0 @@
-import os
-import shutil
-from pathlib import Path
-
-from sphinx.application import Sphinx
-from sphinx.config import Config
-from sphinx.util import logging
-
-logger = logging.getLogger(__name__)
-
-
-def copy_notebooks(app: Sphinx, config: Config) -> None:
- logger.info("Copying notebooks to examples directory")
- root_dir = Path(app.confdir).parent
- notebooks_dir = root_dir / "notebooks"
- docs_examples_dir = root_dir / "docs" / "examples"
- notebook_filepaths = list(notebooks_dir.glob("*.ipynb"))
- for notebook in notebook_filepaths:
- target_filepath = docs_examples_dir / notebook.name
- try:
- if os.path.getmtime(notebook) <= os.path.getmtime(target_filepath):
- logger.info(
- f"Notebook '{os.fspath(notebook)}' hasn't been updated, skipping."
- )
- continue
- except FileNotFoundError:
- pass
- logger.info(
- f"Copying '{os.fspath(notebook)}' to '{os.fspath(target_filepath)}'"
- )
- shutil.copyfile(src=notebook, dst=target_filepath)
- logger.info("Finished copying notebooks to examples directory")
-
-
-def setup(app):
- app.connect("config-inited", copy_notebooks)
diff --git a/docs/assets/elsevier-harvard.csl b/docs/assets/elsevier-harvard.csl
new file mode 100644
index 000000000..0ef7b190f
--- /dev/null
+++ b/docs/assets/elsevier-harvard.csl
@@ -0,0 +1,239 @@
+
+
diff --git a/docs/assets/logo.svg b/docs/assets/logo.svg
new file mode 100644
index 000000000..5869662b9
--- /dev/null
+++ b/docs/assets/logo.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/assets/material-code.svg b/docs/assets/material-code.svg
new file mode 100644
index 000000000..cbbc31424
--- /dev/null
+++ b/docs/assets/material-code.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/assets/material-computer.svg b/docs/assets/material-computer.svg
new file mode 100644
index 000000000..74162d034
--- /dev/null
+++ b/docs/assets/material-computer.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/assets/material-description.svg b/docs/assets/material-description.svg
new file mode 100644
index 000000000..904da8a7b
--- /dev/null
+++ b/docs/assets/material-description.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/assets/material-toolbox.svg b/docs/assets/material-toolbox.svg
new file mode 100644
index 000000000..85146d8ac
--- /dev/null
+++ b/docs/assets/material-toolbox.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/assets/pydvl.bib b/docs/assets/pydvl.bib
new file mode 100644
index 000000000..aa6a206e6
--- /dev/null
+++ b/docs/assets/pydvl.bib
@@ -0,0 +1,314 @@
+@article{agarwal_secondorder_2017,
+ title = {Second-{{Order Stochastic Optimization}} for {{Machine Learning}} in {{Linear Time}}},
+ author = {Agarwal, Naman and Bullins, Brian and Hazan, Elad},
+ date = {2017},
+ journaltitle = {Journal of Machine Learning Research},
+ shortjournal = {JMLR},
+ volume = {18},
+ eprint = {1602.03943},
+ eprinttype = {arxiv},
+ pages = {1--40},
+ url = {https://www.jmlr.org/papers/v18/16-491.html},
+ abstract = {First-order stochastic methods are the state-of-the-art in large-scale machine learning optimization owing to efficient per-iteration complexity. Second-order methods, while able to provide faster convergence, have been much less explored due to the high cost of computing the second-order information. In this paper we develop second-order stochastic methods for optimization problems in machine learning that match the per-iteration cost of gradient based methods, and in certain settings improve upon the overall running time over popular first-order methods. Furthermore, our algorithm has the desirable property of being implementable in time linear in the sparsity of the input data.},
+ langid = {english}
+}
+
+@article{benmerzoug_re_2023,
+ title = {[{{Re}}] {{If}} You like {{Shapley}}, Then You'll Love the Core},
+ author = {Benmerzoug, Anes and Delgado, Miguel de Benito},
+ date = {2023-07-31},
+ journaltitle = {ReScience C},
+ volume = {9},
+ number = {2},
+ pages = {\#32},
+ doi = {10.5281/zenodo.8173733},
+ url = {https://zenodo.org/record/8173733},
+ urldate = {2023-08-27},
+ abstract = {Replication}
+}
+
+@article{castro_polynomial_2009,
+ title = {Polynomial Calculation of the {{Shapley}} Value Based on Sampling},
+ author = {Castro, Javier and Gómez, Daniel and Tejada, Juan},
+ date = {2009-05-01},
+ journaltitle = {Computers \& Operations Research},
+ shortjournal = {Computers \& Operations Research},
+ series = {Selected Papers Presented at the {{Tenth International Symposium}} on {{Locational Decisions}} ({{ISOLDE X}})},
+ volume = {36},
+ number = {5},
+ pages = {1726--1730},
+ issn = {0305-0548},
+ doi = {10.1016/j.cor.2008.04.004},
+ url = {http://www.sciencedirect.com/science/article/pii/S0305054808000804},
+ urldate = {2020-11-21},
+ abstract = {In this paper we develop a polynomial method based on sampling theory that can be used to estimate the Shapley value (or any semivalue) for cooperative games. Besides analyzing the complexity problem, we examine some desirable statistical properties of the proposed approach and provide some computational results.},
+ langid = {english}
+}
+
+@inproceedings{ghorbani_data_2019,
+ title = {Data {{Shapley}}: {{Equitable Valuation}} of {{Data}} for {{Machine Learning}}},
+ shorttitle = {Data {{Shapley}}},
+ booktitle = {Proceedings of the 36th {{International Conference}} on {{Machine Learning}}, {{PMLR}}},
+ author = {Ghorbani, Amirata and Zou, James},
+ date = {2019-05-24},
+ eprint = {1904.02868},
+ eprinttype = {arxiv},
+ pages = {2242--2251},
+ publisher = {{PMLR}},
+ issn = {2640-3498},
+ url = {http://proceedings.mlr.press/v97/ghorbani19c.html},
+ urldate = {2020-11-01},
+ abstract = {As data becomes the fuel driving technological and economic growth, a fundamental challenge is how to quantify the value of data in algorithmic predictions and decisions. For example, in healthcare and consumer markets, it has been suggested that individuals should be compensated for the data that they generate, but it is not clear what is an equitable valuation for individual data. In this work, we develop a principled framework to address data valuation in the context of supervised machine learning. Given a learning algorithm trained on n data points to produce a predictor, we propose data Shapley as a metric to quantify the value of each training datum to the predictor performance. Data Shapley uniquely satisfies several natural properties of equitable data valuation. We develop Monte Carlo and gradient-based methods to efficiently estimate data Shapley values in practical settings where complex learning algorithms, including neural networks, are trained on large datasets. In addition to being equitable, extensive experiments across biomedical, image and synthetic data demonstrate that data Shapley has several other benefits: 1) it is more powerful than the popular leave-one-out or leverage score in providing insight on what data is more valuable for a given learning task; 2) low Shapley value data effectively capture outliers and corruptions; 3) high Shapley value data inform what type of new data to acquire to improve the predictor.},
+ eventtitle = {International {{Conference}} on {{Machine Learning}} ({{ICML}} 2019)},
+ langid = {english},
+ keywords = {notion}
+}
+
+@article{hampel_influence_1974,
+ title = {The {{Influence Curve}} and {{Its Role}} in {{Robust Estimation}}},
+ author = {Hampel, Frank R.},
+ date = {1974},
+ journaltitle = {Journal of the American Statistical Association},
+ shortjournal = {J. Am. Stat. Assoc.},
+ volume = {69},
+ number = {346},
+ eprint = {2285666},
+ eprinttype = {jstor},
+ pages = {383--393},
+ publisher = {{[American Statistical Association, Taylor \& Francis, Ltd.]}},
+ issn = {0162-1459},
+ doi = {10.2307/2285666},
+ url = {https://www.jstor.org/stable/2285666},
+ urldate = {2022-05-09},
+ abstract = {This paper treats essentially the first derivative of an estimator viewed as functional and the ways in which it can be used to study local robustness properties. A theory of robust estimation "near" strict parametric models is briefly sketched and applied to some classical situations. Relations between von Mises functionals, the jackknife and U-statistics are indicated. A number of classical and new estimators are discussed, including trimmed and Winsorized means, Huber-estimators, and more generally maximum likelihood and M-estimators. Finally, a table with some numerical robustness properties is given.}
+}
+
+@online{hataya_nystrom_2023,
+ title = {Nystrom {{Method}} for {{Accurate}} and {{Scalable Implicit Differentiation}}},
+ author = {Hataya, Ryuichiro and Yamada, Makoto},
+ date = {2023-02-19},
+ eprint = {2302.09726},
+ eprinttype = {arxiv},
+ eprintclass = {cs},
+ url = {http://arxiv.org/abs/2302.09726},
+ urldate = {2023-05-01},
+ abstract = {The essential difficulty of gradient-based bilevel optimization using implicit differentiation is to estimate the inverse Hessian vector product with respect to neural network parameters. This paper proposes to tackle this problem by the Nystrom method and the Woodbury matrix identity, exploiting the low-rankness of the Hessian. Compared to existing methods using iterative approximation, such as conjugate gradient and the Neumann series approximation, the proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations. As a result, the proposed method works stably in various tasks and is faster than iterative approximations. Throughout experiments including large-scale hyperparameter optimization and meta learning, we demonstrate that the Nystrom method consistently achieves comparable or even superior performance to other approaches. The source code is available from https://github.com/moskomule/hypergrad.},
+ pubstate = {preprint},
+ keywords = {notion}
+}
+
+@inproceedings{jia_efficient_2019,
+ title = {Towards {{Efficient Data Valuation Based}} on the {{Shapley Value}}},
+ booktitle = {Proceedings of the 22nd {{International Conference}} on {{Artificial Intelligence}} and {{Statistics}}},
+ author = {Jia, Ruoxi and Dao, David and Wang, Boxin and Hubis, Frances Ann and Hynes, Nick and Gürel, Nezihe Merve and Li, Bo and Zhang, Ce and Song, Dawn and Spanos, Costas J.},
+ date = {2019-04-11},
+ pages = {1167--1176},
+ publisher = {{PMLR}},
+ issn = {2640-3498},
+ url = {http://proceedings.mlr.press/v89/jia19a.html},
+ urldate = {2021-02-12},
+ abstract = {“How much is my data worth?” is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits...},
+ eventtitle = {International {{Conference}} on {{Artificial Intelligence}} and {{Statistics}} ({{AISTATS}})},
+ langid = {english},
+ keywords = {notion}
+}
+
+@article{jia_efficient_2019a,
+ title = {Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms},
+ shorttitle = {{{VLDB}} 2019},
+ author = {Jia, Ruoxi and Dao, David and Wang, Boxin and Hubis, Frances Ann and Gurel, Nezihe Merve and Li, Bo and Zhang, Ce and Spanos, Costas and Song, Dawn},
+ date = {2019-07-01},
+ journaltitle = {Proceedings of the VLDB Endowment},
+ shortjournal = {Proc. VLDB Endow.},
+ volume = {12},
+ number = {11},
+ pages = {1610--1623},
+ issn = {2150-8097},
+ doi = {10.14778/3342263.3342637},
+ url = {https://doi.org/10.14778/3342263.3342637},
+ urldate = {2021-02-12},
+ abstract = {Given a data set D containing millions of data points and a data consumer who is willing to pay for \$X to train a machine learning (ML) model over D, how should we distribute this \$X to each data point to reflect its "value"? In this paper, we define the "relative value of data" via the Shapley value, as it uniquely possesses properties with appealing real-world interpretations, such as fairness, rationality and decentralizability. For general, bounded utility functions, the Shapley value is known to be challenging to compute: to get Shapley values for all N data points, it requires O(2N) model evaluations for exact computation and O(N log N) for (ϵ, δ)-approximation. In this paper, we focus on one popular family of ML models relying on K-nearest neighbors (KNN). The most surprising result is that for unweighted KNN classifiers and regressors, the Shapley value of all N data points can be computed, exactly, in O(N log N) time - an exponential improvement on computational complexity! Moreover, for (ϵ, δ)-approximation, we are able to develop an algorithm based on Locality Sensitive Hashing (LSH) with only sublinear complexity O(Nh(ϵ, K) log N) when ϵ is not too small and K is not too large. We empirically evaluate our algorithms on up to 10 million data points and even our exact algorithm is up to three orders of magnitude faster than the baseline approximation algorithm. The LSH-based approximation algorithm can accelerate the value calculation process even further. We then extend our algorithm to other scenarios such as (1) weighed KNN classifiers, (2) different data points are clustered by different data curators, and (3) there are data analysts providing computation who also requires proper valuation. Some of these extensions, although also being improved exponentially, are less practical for exact computation (e.g., O(NK) complexity for weigthed KNN). We thus propose an Monte Carlo approximation algorithm, which is O(N(log N)2/(log K)2) times more efficient than the baseline approximation algorithm.},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{just_lava_2023,
+ title = {{{LAVA}}: {{Data Valuation}} without {{Pre-Specified Learning Algorithms}}},
+ shorttitle = {{{LAVA}}},
+ author = {Just, Hoang Anh and Kang, Feiyang and Wang, Tianhao and Zeng, Yi and Ko, Myeongseob and Jin, Ming and Jia, Ruoxi},
+ date = {2023-02-01},
+ url = {https://openreview.net/forum?id=JJuP86nBl4q},
+ urldate = {2023-04-25},
+ abstract = {Traditionally, data valuation is posed as a problem of equitably splitting the validation performance of a learning algorithm among the training data. As a result, the calculated data values depend on many design choices of the underlying learning algorithm. However, this dependence is undesirable for many use cases of data valuation, such as setting priorities over different data sources in a data acquisition process and informing pricing mechanisms in a data marketplace. In these scenarios, data needs to be valued before the actual analysis and the choice of the learning algorithm is still undetermined then. Another side-effect of the dependence is that to assess the value of individual points, one needs to re-run the learning algorithm with and without a point, which incurs a large computation burden. This work leapfrogs over the current limits of data valuation methods by introducing a new framework that can value training data in a way that is oblivious to the downstream learning algorithm. Our main results are as follows. \$\textbackslash textbf\{(1)\}\$ We develop a proxy for the validation performance associated with a training set based on a non-conventional \$\textbackslash textit\{class-wise\}\$ \$\textbackslash textit\{Wasserstein distance\}\$ between the training and the validation set. We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions. \$\textbackslash textbf\{(2)\}\$ We develop a novel method to value individual data based on the sensitivity analysis of the \$\textbackslash textit\{class-wise\}\$ Wasserstein distance. Importantly, these values can be directly obtained \$\textbackslash textit\{for free\}\$ from the output of off-the-shelf optimization solvers once the Wasserstein distance is computed. \$\textbackslash textbf\{(3) \}\$We evaluate our new data valuation framework over various use cases related to detecting low-quality data and show that, surprisingly, the learning-agnostic feature of our framework enables a \$\textbackslash textit\{significant improvement\}\$ over the state-of-the-art performance while being \$\textbackslash textit\{orders of magnitude faster.\}\$},
+ eventtitle = {The {{Eleventh International Conference}} on {{Learning Representations}} ({{ICLR}} 2023)},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{koh_understanding_2017,
+ title = {Understanding {{Black-box Predictions}} via {{Influence Functions}}},
+ booktitle = {Proceedings of the 34th {{International Conference}} on {{Machine Learning}}},
+ author = {Koh, Pang Wei and Liang, Percy},
+ date = {2017-07-17},
+ eprint = {1703.04730},
+ eprinttype = {arxiv},
+ pages = {1885--1894},
+ publisher = {{PMLR}},
+ url = {https://proceedings.mlr.press/v70/koh17a.html},
+ urldate = {2022-05-09},
+ abstract = {How can we explain the predictions of a black-box model? In this paper, we use influence functions — a classic technique from robust statistics — to trace a model’s prediction through the learning algorithm and back to its training data, thereby identifying training points most responsible for a given prediction. To scale up influence functions to modern machine learning settings, we develop a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. We show that even on non-convex and non-differentiable models where the theory breaks down, approximations to influence functions can still provide valuable information. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for multiple purposes: understanding model behavior, debugging models, detecting dataset errors, and even creating visually-indistinguishable training-set attacks.},
+ eventtitle = {International {{Conference}} on {{Machine Learning}}},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{kwon_beta_2022,
+ title = {Beta {{Shapley}}: A {{Unified}} and {{Noise-reduced Data Valuation Framework}} for {{Machine Learning}}},
+ shorttitle = {Beta {{Shapley}}},
+ booktitle = {Proceedings of the 25th {{International Conference}} on {{Artificial Intelligence}} and {{Statistics}} ({{AISTATS}}) 2022,},
+ author = {Kwon, Yongchan and Zou, James},
+ date = {2022-01-18},
+ volume = {151},
+ eprint = {2110.14049},
+ eprinttype = {arxiv},
+ publisher = {{PMLR}},
+ location = {{Valencia, Spain}},
+ url = {http://arxiv.org/abs/2110.14049},
+ urldate = {2022-04-06},
+ abstract = {Data Shapley has recently been proposed as a principled framework to quantify the contribution of individual datum in machine learning. It can effectively identify helpful or harmful data points for a learning algorithm. In this paper, we propose Beta Shapley, which is a substantial generalization of Data Shapley. Beta Shapley arises naturally by relaxing the efficiency axiom of the Shapley value, which is not critical for machine learning settings. Beta Shapley unifies several popular data valuation methods and includes data Shapley as a special case. Moreover, we prove that Beta Shapley has several desirable statistical properties and propose efficient algorithms to estimate it. We demonstrate that Beta Shapley outperforms state-of-the-art data valuation methods on several downstream ML tasks such as: 1) detecting mislabeled training data; 2) learning with subsamples; and 3) identifying points whose addition or removal have the largest positive or negative impact on the model.},
+ eventtitle = {{{AISTATS}} 2022},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{kwon_efficient_2021,
+ title = {Efficient {{Computation}} and {{Analysis}} of {{Distributional Shapley Values}}},
+ booktitle = {Proceedings of the 24th {{International Conference}} on {{Artificial Intelligence}} and {{Statistics}}},
+ author = {Kwon, Yongchan and Rivas, Manuel A. and Zou, James},
+ date = {2021-03-18},
+ eprint = {2007.01357},
+ eprinttype = {arxiv},
+ pages = {793--801},
+ publisher = {{PMLR}},
+ issn = {2640-3498},
+ url = {http://proceedings.mlr.press/v130/kwon21a.html},
+ urldate = {2021-04-23},
+ abstract = {Distributional data Shapley value (DShapley) has recently been proposed as a principled framework to quantify the contribution of individual datum in machine learning. DShapley develops the founda...},
+ eventtitle = {International {{Conference}} on {{Artificial Intelligence}} and {{Statistics}}},
+ langid = {english}
+}
+
+@inproceedings{okhrati_multilinear_2021,
+ title = {A {{Multilinear Sampling Algorithm}} to {{Estimate Shapley Values}}},
+ booktitle = {2020 25th {{International Conference}} on {{Pattern Recognition}} ({{ICPR}})},
+ author = {Okhrati, Ramin and Lipani, Aldo},
+ date = {2021-01},
+ eprint = {2010.12082},
+ eprinttype = {arxiv},
+ pages = {7992--7999},
+ publisher = {{IEEE}},
+ issn = {1051-4651},
+ doi = {10.1109/ICPR48806.2021.9412511},
+ url = {https://ieeexplore.ieee.org/abstract/document/9412511},
+ abstract = {Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics.},
+ eventtitle = {2020 25th {{International Conference}} on {{Pattern Recognition}} ({{ICPR}})},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{schioppa_scaling_2021,
+ title = {Scaling {{Up Influence Functions}}},
+ author = {Schioppa, Andrea and Zablotskaia, Polina and Vilar, David and Sokolov, Artem},
+ date = {2021-12-06},
+ eprint = {2112.03052},
+ eprinttype = {arxiv},
+ eprintclass = {cs},
+ publisher = {{arXiv}},
+ doi = {10.48550/arXiv.2112.03052},
+ url = {http://arxiv.org/abs/2112.03052},
+ urldate = {2023-03-10},
+ abstract = {We address efficient calculation of influence functions for tracking predictions back to the training data. We propose and analyze a new approach to speeding up the inverse Hessian calculation based on Arnoldi iteration. With this improvement, we achieve, to the best of our knowledge, the first successful implementation of influence functions that scales to full-size (language and vision) Transformer models with several hundreds of millions of parameters. We evaluate our approach on image classification and sequence-to-sequence tasks with tens to a hundred of millions of training examples. Our code will be available at https://github.com/google-research/jax-influence.},
+ eventtitle = {{{AAAI-22}}},
+ keywords = {notion}
+}
+
+@inproceedings{schoch_csshapley_2022,
+ title = {{{CS-Shapley}}: {{Class-wise Shapley Values}} for {{Data Valuation}} in {{Classification}}},
+ shorttitle = {{{CS-Shapley}}},
+ booktitle = {Proc. of the Thirty-Sixth {{Conference}} on {{Neural Information Processing Systems}} ({{NeurIPS}})},
+ author = {Schoch, Stephanie and Xu, Haifeng and Ji, Yangfeng},
+ date = {2022-10-31},
+ location = {{New Orleans, Louisiana, USA}},
+ url = {https://openreview.net/forum?id=KTOcrOR5mQ9},
+ urldate = {2022-11-23},
+ abstract = {Data valuation, or the valuation of individual datum contributions, has seen growing interest in machine learning due to its demonstrable efficacy for tasks such as noisy label detection. In particular, due to the desirable axiomatic properties, several Shapley value approximations have been proposed. In these methods, the value function is usually defined as the predictive accuracy over the entire development set. However, this limits the ability to differentiate between training instances that are helpful or harmful to their own classes. Intuitively, instances that harm their own classes may be noisy or mislabeled and should receive a lower valuation than helpful instances. In this work, we propose CS-Shapley, a Shapley value with a new value function that discriminates between training instances’ in-class and out-of-class contributions. Our theoretical analysis shows the proposed value function is (essentially) the unique function that satisfies two desirable properties for evaluating data values in classification. Further, our experiments on two benchmark evaluation tasks (data removal and noisy label detection) and four classifiers demonstrate the effectiveness of CS-Shapley over existing methods. Lastly, we evaluate the “transferability” of data values estimated from one classifier to others, and our results suggest Shapley-based data valuation is transferable for application across different models.},
+ eventtitle = {Advances in {{Neural Information Processing Systems}} ({{NeurIPS}} 2022)},
+ langid = {english},
+ keywords = {notion}
+}
+
+@online{wang_data_2022,
+ title = {Data {{Banzhaf}}: {{A Robust Data Valuation Framework}} for {{Machine Learning}}},
+ shorttitle = {Data {{Banzhaf}}},
+ author = {Wang, Jiachen T. and Jia, Ruoxi},
+ date = {2022-10-22},
+ eprint = {2205.15466},
+ eprinttype = {arxiv},
+ eprintclass = {cs, stat},
+ doi = {10.48550/arXiv.2205.15466},
+ url = {http://arxiv.org/abs/2205.15466},
+ urldate = {2022-10-28},
+ abstract = {This paper studies the robustness of data valuation to noisy model performance scores. Particularly, we find that the inherent randomness of the widely used stochastic gradient descent can cause existing data value notions (e.g., the Shapley value and the Leave-one-out error) to produce inconsistent data value rankings across different runs. To address this challenge, we first pose a formal framework within which one can measure the robustness of a data value notion. We show that the Banzhaf value, a value notion originated from cooperative game theory literature, achieves the maximal robustness among all semivalues -- a class of value notions that satisfy crucial properties entailed by ML applications. We propose an algorithm to efficiently estimate the Banzhaf value based on the Maximum Sample Reuse (MSR) principle. We derive the lower bound sample complexity for Banzhaf value estimation, and we show that our MSR algorithm's sample complexity is close to the lower bound. Our evaluation demonstrates that the Banzhaf value outperforms the existing semivalue-based data value notions on several downstream ML tasks such as learning with weighted samples and noisy label detection. Overall, our study suggests that when the underlying ML algorithm is stochastic, the Banzhaf value is a promising alternative to the semivalue-based data value schemes given its computational advantage and ability to robustly differentiate data quality.},
+ pubstate = {preprint},
+ keywords = {notion}
+}
+
+@inproceedings{wang_improving_2022,
+ title = {Improving {{Cooperative Game Theory-based Data Valuation}} via {{Data Utility Learning}}},
+ author = {Wang, Tianhao and Yang, Yu and Jia, Ruoxi},
+ date = {2022-04-07},
+ eprint = {2107.06336v2},
+ eprinttype = {arxiv},
+ publisher = {{arXiv}},
+ doi = {10.48550/arXiv.2107.06336},
+ url = {http://arxiv.org/abs/2107.06336v2},
+ urldate = {2022-05-19},
+ abstract = {The Shapley value (SV) and Least core (LC) are classic methods in cooperative game theory for cost/profit sharing problems. Both methods have recently been proposed as a principled solution for data valuation tasks, i.e., quantifying the contribution of individual datum in machine learning. However, both SV and LC suffer computational challenges due to the need for retraining models on combinatorially many data subsets. In this work, we propose to boost the efficiency in computing Shapley value or Least core by learning to estimate the performance of a learning algorithm on unseen data combinations. Theoretically, we derive bounds relating the error in the predicted learning performance to the approximation error in SV and LC. Empirically, we show that the proposed method can significantly improve the accuracy of SV and LC estimation.},
+ eventtitle = {International {{Conference}} on {{Learning Representations}} ({{ICLR}} 2022). {{Workshop}} on {{Socially Responsible Machine Learning}}},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{wu_davinz_2022,
+ title = {{{DAVINZ}}: {{Data Valuation}} Using {{Deep Neural Networks}} at {{Initialization}}},
+ shorttitle = {{{DAVINZ}}},
+ booktitle = {Proceedings of the 39th {{International Conference}} on {{Machine Learning}}},
+ author = {Wu, Zhaoxuan and Shu, Yao and Low, Bryan Kian Hsiang},
+ date = {2022-06-28},
+ pages = {24150--24176},
+ publisher = {{PMLR}},
+ url = {https://proceedings.mlr.press/v162/wu22j.html},
+ urldate = {2022-10-29},
+ abstract = {Recent years have witnessed a surge of interest in developing trustworthy methods to evaluate the value of data in many real-world applications (e.g., collaborative machine learning, data marketplaces). Existing data valuation methods typically valuate data using the generalization performance of converged machine learning models after their long-term model training, hence making data valuation on large complex deep neural networks (DNNs) unaffordable. To this end, we theoretically derive a domain-aware generalization bound to estimate the generalization performance of DNNs without model training. We then exploit this theoretically derived generalization bound to develop a novel training-free data valuation method named data valuation at initialization (DAVINZ) on DNNs, which consistently achieves remarkable effectiveness and efficiency in practice. Moreover, our training-free DAVINZ, surprisingly, can even theoretically and empirically enjoy the desirable properties that training-based data valuation methods usually attain, thus making it more trustworthy in practice.},
+ eventtitle = {International {{Conference}} on {{Machine Learning}}},
+ langid = {english},
+ keywords = {notion}
+}
+
+@inproceedings{yan_if_2021,
+ title = {If {{You Like Shapley Then You}}’ll {{Love}} the {{Core}}},
+ booktitle = {Proceedings of the 35th {{AAAI Conference}} on {{Artificial Intelligence}}, 2021},
+ author = {Yan, Tom and Procaccia, Ariel D.},
+ date = {2021-05-18},
+ volume = {6},
+ pages = {5751--5759},
+ publisher = {{Association for the Advancement of Artificial Intelligence}},
+ location = {{Virtual conference}},
+ doi = {10.1609/aaai.v35i6.16721},
+ url = {https://ojs.aaai.org/index.php/AAAI/article/view/16721},
+ urldate = {2021-04-23},
+ abstract = {The prevalent approach to problems of credit assignment in machine learning — such as feature and data valuation— is to model the problem at hand as a cooperative game and apply the Shapley value. But cooperative game theory offers a rich menu of alternative solution concepts, which famously includes the core and its variants. Our goal is to challenge the machine learning community’s current consensus around the Shapley value, and make a case for the core as a viable alternative. To that end, we prove that arbitrarily good approximations to the least core — a core relaxation that is always feasible — can be computed efficiently (but prove an impossibility for a more refined solution concept, the nucleolus). We also perform experiments that corroborate these theoretical results and shed light on settings where the least core may be preferable to the Shapley value.},
+ eventtitle = {{{AAAI Conference}} on {{Artificial Intelligence}}},
+ langid = {english},
+ keywords = {notion}
+}
diff --git a/docs/assets/signet.svg b/docs/assets/signet.svg
new file mode 100644
index 000000000..068ac68e8
--- /dev/null
+++ b/docs/assets/signet.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/conf.py b/docs/conf.py
deleted file mode 100644
index b9e13dd9c..000000000
--- a/docs/conf.py
+++ /dev/null
@@ -1,419 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# pyDVL documentation build configuration file
-#
-# This file is execfile()d with the current directory set to its containing dir.
-#
-# All configuration values have a default; values that are commented out
-# serve to show the default.
-
-import ast
-import logging
-import os
-import sys
-from pathlib import Path
-
-import pkg_resources
-
-logger = logging.getLogger("docs")
-
-ROOT_DIR = Path(__file__).resolve().parent.parent
-
-# If extensions (or modules to document with autodoc) are in another directory,
-# add these directories to sys.path here. If the directory is relative to the
-# documentation root, use os.path.abspath to make it absolute, like shown here.
-sys.path.insert(0, os.fspath(ROOT_DIR / "src"))
-
-# For custom extensions
-sys.path.append(os.path.abspath("_ext"))
-
-# -- General configuration -----------------------------------------------------
-
-# If your documentation needs a minimal Sphinx version, state it here.
-# needs_sphinx = '1.0'
-
-# Add any Sphinx extension module names here, as strings. They can be extensions
-# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
-extensions = [
- "sphinx.ext.napoleon",
- "sphinx.ext.autodoc",
- "sphinx.ext.doctest",
- "sphinx.ext.linkcode",
- "sphinx.ext.mathjax",
- "sphinx.ext.extlinks",
- "sphinx_math_dollar",
- "sphinx.ext.todo",
- "hoverxref.extension", # This only works on read the docs
- "sphinx_design",
- "sphinxcontrib.bibtex",
- "nbsphinx",
- # see https://github.com/spatialaudio/nbsphinx/issues/24 for an explanation why this extension is necessary
- "IPython.sphinxext.ipython_console_highlighting",
- # Custom extensions
- "copy_notebooks",
-]
-
-# sphinx_math_dollar
-mathjax3_config = {
- "tex": {
- "inlineMath": [["\\(", "\\)"]],
- "displayMath": [["\\[", "\\]"]],
- }
-}
-
-extlinks_detect_hardcoded_links = True
-extlinks = {
- "gh": ("https://github.com/appliedAI-Initiative/pyDVL/%s", "GitHub %s"),
- "issue": ("https://github.com/appliedAI-Initiative/pyDVL/issues/%s", "issue %s"),
- "tfl": ("https://transferlab.appliedai.de/%s", "%s"),
-}
-
-bibtex_bibfiles = ["pydvl.bib"]
-bibtex_bibliography_header = "References\n=========="
-bibtex_footbibliography_header = bibtex_bibliography_header
-
-# NBSphinx
-
-# This is processed by Jinja2 and inserted before each notebook
-nbsphinx_prolog = r"""
-{% set docname = env.doc2path(env.docname, base=False).replace('examples', 'notebooks') %}
-
-.. raw:: html
-
-
- This page was generated from
-
{{ docname|e }}
-
- Interactive online version:
-
-
-
-
-
-
-
-
-"""
-
-# Display todos by setting to True
-todo_include_todos = True
-
-
-# adding links to source files (this works for gitlab and github like hosts and might need to be adjusted for others)
-# see https://www.sphinx-doc.org/en/master/usage/extensions/linkcode.html#module-sphinx.ext.linkcode
-def linkcode_resolve(domain, info):
- link_prefix = "https://github.com/appliedAI-Initiative/pyDVL/blob/develop"
- if domain != "py":
- return None
- if not info["module"]:
- return None
-
- path, link_extension = get_path_and_link_extension(info["module"])
- object_name = info["fullname"]
- if (
- "." in object_name
- ): # don't add source link to methods within classes (you might want to change that)
- return None
- lineno = lineno_from_object_name(path, object_name)
- return f"{link_prefix}/{link_extension}#L{lineno}"
-
-
-def get_path_and_link_extension(module: str):
- """
- :return: tuple of the form (path, link_extension) where
- the first entry is the local path to a given module or to __init__.py of the package
- and the second entry is the corresponding path from the top level directory
- """
- filename = module.replace(".", "/")
- docs_dir = os.path.dirname(os.path.realpath(__file__))
- source_path_prefix = os.path.join(docs_dir, f"../src/{filename}")
-
- if os.path.exists(source_path_prefix + ".py"):
- link_extension = f"src/{filename}.py"
- return source_path_prefix + ".py", link_extension
- elif os.path.exists(os.path.join(source_path_prefix, "__init__.py")):
- link_extension = f"src/{filename}/__init__.py"
- return os.path.join(source_path_prefix, "__init__.py"), link_extension
- else:
- raise Exception(
- f"{source_path_prefix} is neither a module nor a package with init - "
- f"did you forget to add an __init__.py?"
- )
-
-
-def lineno_from_object_name(source_file, object_name):
- desired_node_name = object_name.split(".")[0]
- with open(source_file, "r") as f:
- source_node = ast.parse(f.read())
- desired_node = next(
- (
- node
- for node in source_node.body
- if getattr(node, "name", "") == desired_node_name
- ),
- None,
- )
- if desired_node is None:
- logger.warning(f"Could not find object {desired_node_name} in {source_file}")
- return 0
- else:
- return desired_node.lineno
-
-
-# this is useful for keeping the docs build environment small. Add heavy requirements here
-# and all other requirements to docs/requirements.txt
-autodoc_mock_imports = []
-
-autodoc_default_options = {
- "exclude-members": "log",
- "member-order": "bysource",
- "show-inheritance": True,
-}
-
-# Add any paths that contain templates here, relative to this directory.
-templates_path = ["_templates"]
-
-# The suffix of source filenames.
-source_suffix = ".rst"
-
-# The encoding of source files.
-# source_encoding = 'utf-8-sig'
-
-# The master toctree document.
-master_doc = "index"
-
-# General information about the project.
-project = "pyDVL"
-
-# The version info for the project you're documenting, acts as replacement for
-# |version| and |release|, also used in various other places throughout the
-# built documents.
-#
-# The full version, including alpha/beta/rc tags.
-version = pkg_resources.get_distribution(project).version
-release = version
-# The short X.Y version.
-major_v, minor_v = version.split(".")[:2]
-version = f"{major_v}.{minor_v}"
-
-# The language for content autogenerated by Sphinx. Refer to documentation
-# for a list of supported languages.
-# language = None
-
-# There are two options for replacing |today|: either, you set today to some
-# non-false value, then it is used:
-# today = ''
-# Else, today_fmt is used as the format for a strftime call.
-# today_fmt = '%B %d, %Y'
-
-# List of patterns, relative to source directory, that match files and
-# directories to ignore when looking for source files.
-exclude_patterns = ["_build"]
-
-# The reST default role (used for this markup: `text`) to use for all documents.
-# default_role = None
-
-# If true, '()' will be appended to :func: etc. cross-reference text.
-# add_function_parentheses = True
-
-# If true, the current module name will be prepended to all description
-# unit titles (such as .. function::).
-add_module_names = False
-
-# If true, sectionauthor and moduleauthor directives will be shown in the
-# output. They are ignored by default.
-# show_authors = False
-
-# The name of the Pygments (syntax highlighting) style to use.
-pygments_style = "sphinx"
-
-# A list of ignored prefixes for module index sorting.
-# modindex_common_prefix = []
-
-
-# -- Options for HTML output ---------------------------------------------------
-
-# Add a tooltip to all :ref: roles
-# This requires a backend server to retrieve the tooltip content. As of Nov 22,
-# sphinx-hoverxref only supports Read the Docs as backend.
-# See https://sphinx-hoverxref.readthedocs.io/en/latest/configuration.html
-# for further configuration options
-# hoverxref_auto_ref = True
-
-# The theme to use for HTML and HTML Help pages. See the documentation for
-# a list of builtin themes.
-html_theme = "furo"
-
-# Furo theme options:
-html_theme_options = {
- "sidebar_hide_name": True,
- "navigation_with_keys": True,
- "announcement": "pyDVL is in an early stage of development. Expect changes to functionality and the API until version 1.0.0.",
- "footer_icons": [
- {
- "name": "GitHub",
- "url": "https://github.com/appliedAI-Initiative/pyDVL",
- "html": """
-
-
-
- """,
- "class": "",
- },
- ],
-}
-
-# Add any paths that contain custom themes here, relative to this directory.
-# html_theme_path = []
-
-# The name for this set of Sphinx documents. If None, it defaults to
-# " v documentation".
-# html_title = None
-
-# A shorter title for the navigation bar. Default is the same as html_title.
-# html_short_title = None
-
-# The name of an image file (relative to this directory) to place at the top
-# of the sidebar.
-html_logo = os.fspath(ROOT_DIR.joinpath("logo.svg"))
-
-# The name of an image file (within the static path) to use as favicon of the
-# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
-# pixels large.
-# html_favicon = None
-
-# Add any paths that contain custom static files (such as style sheets) here,
-# relative to this directory. They are copied after the builtin static files,
-# so a file named "default.css" will overwrite the builtin "default.css".
-html_static_path = []
-
-# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
-# using the given strftime format.
-# html_last_updated_fmt = '%b %d, %Y'
-
-# If true, SmartyPants will be used to convert quotes and dashes to
-# typographically correct entities.
-# html_use_smartypants = True
-
-# Custom sidebar templates, maps document names to template names.
-# html_sidebars = {}
-
-# Additional templates that should be rendered to pages, maps page names to
-# template names.
-# html_additional_pages = {}
-
-# If false, no module index is generated.
-# html_domain_indices = True
-
-# If false, no index is generated.
-# html_use_index = True
-
-# If true, the index is split into individual pages for each letter.
-# html_split_index = False
-
-# If true, links to the reST sources are added to the pages.
-# html_show_sourcelink = True
-
-# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
-# html_show_sphinx = True
-
-# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
-html_show_copyright = True
-copyright = "AppliedAI Institute gGmbH"
-
-# If true, an OpenSearch description file will be output, and all pages will
-# contain a tag referring to it. The value of this option must be the
-# base URL from which the finished HTML is served.
-# html_use_opensearch = ''
-
-# This is the file name suffix for HTML files (e.g. ".xhtml").
-# html_file_suffix = None
-
-# Output file base name for HTML help builder.
-htmlhelp_basename = "pydvl_doc"
-
-
-# -- Options for LaTeX output --------------------------------------------------
-
-latex_elements = {
- # The paper size ('letterpaper' or 'a4paper').
- # 'papersize': 'letterpaper',
- # The font size ('10pt', '11pt' or '12pt').
- # 'pointsize': '10pt',
- # Additional stuff for the LaTeX preamble.
- # 'preamble': '',
-}
-
-# Grouping the document tree into LaTeX files. List of tuples
-# (source start file, target name, title, author, documentclass [howto/manual]).
-# latex_documents = []
-
-# The name of an image file (relative to this directory) to place at the top of
-# the title page.
-# latex_logo = None
-
-# For "manual" documents, if this is true, then toplevel headings are parts,
-# not chapters.
-# latex_use_parts = False
-
-# If true, show page references after internal links.
-# latex_show_pagerefs = False
-
-# If true, show URL addresses after external links.
-# latex_show_urls = False
-
-# Documents to append as an appendix to all manuals.
-# latex_appendices = []
-
-# If false, no module index is generated.
-# latex_domain_indices = True
-
-
-# -- Options for manual page output --------------------------------------------
-
-# One entry per manual page. List of tuples
-# (source start file, name, description, authors, manual section).
-man_pages = [
- (
- "index",
- "pydvl",
- "",
- ["appliedAI"],
- 1,
- )
-]
-
-# If true, show URL addresses after external links.
-# man_show_urls = False
-
-
-# -- Options for Texinfo output ------------------------------------------------
-
-# Grouping the document tree into Texinfo files. List of tuples
-# (source start file, target name, title, author,
-# dir menu entry, description, category)
-# texinfo_documents = []
-
-# Documents to append as an appendix to all manuals.
-# texinfo_appendices = []
-
-# If false, no module index is generated.
-# texinfo_domain_indices = True
-
-# How to display URL addresses: 'footnote', 'no', or 'inline'.
-# texinfo_show_urls = 'footnote'
diff --git a/docs/css/extra.css b/docs/css/extra.css
new file mode 100644
index 000000000..4716fee11
--- /dev/null
+++ b/docs/css/extra.css
@@ -0,0 +1,127 @@
+.announcement {
+ align-items: center;
+ display: flex;
+ overflow-x: auto;
+}
+
+.announcement-content {
+ box-sizing: border-box;
+ min-width: 100%;
+ padding: .5rem;
+ text-align: center;
+ white-space: nowrap;
+ color: white;
+ font-size: larger;
+}
+
+/* Indentation. */
+div.doc-contents:not(.first) {
+ padding-left: 25px;
+ border-left: .05rem solid var(--md-typeset-table-color);
+}
+
+/* Mark external links as such. */
+a.autorefs-external::after {
+ /* https://primer.style/octicons/arrow-up-right-24 */
+ background-image: url('data:image/svg+xml, ');
+ content: ' ';
+
+ display: inline-block;
+ position: relative;
+ top: 0.1em;
+ margin-left: 0.2em;
+ margin-right: 0.1em;
+
+ height: 1em;
+ width: 1em;
+ border-radius: 100%;
+ background-color: var(--md-typeset-a-color);
+}
+
+a.autorefs-external:hover::after {
+ background-color: var(--md-accent-fg-color);
+}
+
+/* Headers */
+.md-typeset h1 {
+ font-size: 2.5em;
+ font-weight: 500;
+}
+
+.md-typeset h2 {
+ font-size: 1.7em;
+ font-weight: 300;
+}
+
+/* Highlight function names in red */
+.highlight > :first-child {
+ color: #b30000;
+}
+
+/* Highlight svg logos on hover */
+/* The filter was generated using this link: https://codepen.io/sosuke/pen/Pjoqqp */
+.nt-card-image:hover,
+.nt-card-image:focus {
+ filter: invert(32%) sepia(93%) saturate(1535%) hue-rotate(220deg) brightness(102%) contrast(99%);
+}
+.md-header__button.md-logo {
+ padding: 0;
+}
+
+.md-header__button.md-logo img, .md-header__button.md-logo svg {
+ height: 1.9rem;
+}
+
+/* Prevent selection of >>>, ... and output in Python code blocks */
+.highlight .gp, .highlight .go { /* Generic.Prompt, Generic.Output */
+ user-select: none;
+}
+
+/* Nicer style of headers in generated API */
+h2 code {
+ font-size: large!important;
+ background-color: inherit!important;
+}
+
+/* Remove cell input and output prompt */
+.jp-InputArea-prompt, .jp-OutputArea-prompt {
+ display: none !important;
+}
+
+/* Alert boxes */
+.alert {
+ border-radius: 0.375rem;
+ padding: 1rem;
+ position: relative;
+ margin: auto;
+ text-align: center;
+}
+
+.alert-info {
+ background: var(--md-typeset-ins-color);
+ border: 0.1rem solid var(--md-primary-fg-color);
+}
+
+.alert-warning {
+ background: var(--md-warning-bg-color);
+ border: 0.1rem solid var(--md-primary-fg-color);
+ color: black;
+}
+
+
+body[data-md-color-scheme="default"] .invertible img {
+}
+
+body[data-md-color-scheme="slate"] .invertible img {
+ filter: invert(100%) hue-rotate(180deg);
+}
+
+/* Rendered dataframe from jupyter */
+table.dataframe {
+ display: block;
+ max-width: -moz-fit-content;
+ max-width: fit-content;
+ margin: 0 auto;
+ overflow-x: auto;
+ white-space: nowrap;
+}
diff --git a/docs/css/neoteroi.css b/docs/css/neoteroi.css
new file mode 100644
index 000000000..363c9229a
--- /dev/null
+++ b/docs/css/neoteroi.css
@@ -0,0 +1 @@
+:root{--nt-color-0: #CD853F;--nt-color-1: #B22222;--nt-color-2: #000080;--nt-color-3: #4B0082;--nt-color-4: #3CB371;--nt-color-5: #D2B48C;--nt-color-6: #FF00FF;--nt-color-7: #98FB98;--nt-color-8: #FFEBCD;--nt-color-9: #2E8B57;--nt-color-10: #6A5ACD;--nt-color-11: #48D1CC;--nt-color-12: #FFA500;--nt-color-13: #F4A460;--nt-color-14: #A52A2A;--nt-color-15: #FFE4C4;--nt-color-16: #FF4500;--nt-color-17: #AFEEEE;--nt-color-18: #FA8072;--nt-color-19: #2F4F4F;--nt-color-20: #FFDAB9;--nt-color-21: #BC8F8F;--nt-color-22: #FFC0CB;--nt-color-23: #00FA9A;--nt-color-24: #F0FFF0;--nt-color-25: #FFFACD;--nt-color-26: #F5F5F5;--nt-color-27: #FF6347;--nt-color-28: #FFFFF0;--nt-color-29: #7FFFD4;--nt-color-30: #E9967A;--nt-color-31: #7B68EE;--nt-color-32: #FFF8DC;--nt-color-33: #0000CD;--nt-color-34: #D2691E;--nt-color-35: #708090;--nt-color-36: #5F9EA0;--nt-color-37: #008080;--nt-color-38: #008000;--nt-color-39: #FFE4E1;--nt-color-40: #FFFF00;--nt-color-41: #FFFAF0;--nt-color-42: #DCDCDC;--nt-color-43: #ADFF2F;--nt-color-44: #ADD8E6;--nt-color-45: #8B008B;--nt-color-46: #7FFF00;--nt-color-47: #800000;--nt-color-48: #20B2AA;--nt-color-49: #556B2F;--nt-color-50: #778899;--nt-color-51: #E6E6FA;--nt-color-52: #FFFAFA;--nt-color-53: #FF7F50;--nt-color-54: #FF0000;--nt-color-55: #F5DEB3;--nt-color-56: #008B8B;--nt-color-57: #66CDAA;--nt-color-58: #808000;--nt-color-59: #FAF0E6;--nt-color-60: #00BFFF;--nt-color-61: #C71585;--nt-color-62: #00FFFF;--nt-color-63: #8B4513;--nt-color-64: #F0F8FF;--nt-color-65: #FAEBD7;--nt-color-66: #8B0000;--nt-color-67: #4682B4;--nt-color-68: #F0E68C;--nt-color-69: #BDB76B;--nt-color-70: #A0522D;--nt-color-71: #FAFAD2;--nt-color-72: #FFD700;--nt-color-73: #DEB887;--nt-color-74: #E0FFFF;--nt-color-75: #8A2BE2;--nt-color-76: #32CD32;--nt-color-77: #87CEFA;--nt-color-78: #00CED1;--nt-color-79: #696969;--nt-color-80: #DDA0DD;--nt-color-81: #EE82EE;--nt-color-82: #FFB6C1;--nt-color-83: #8FBC8F;--nt-color-84: #D8BFD8;--nt-color-85: #9400D3;--nt-color-86: #A9A9A9;--nt-color-87: #FFFFE0;--nt-color-88: #FFF5EE;--nt-color-89: #FFF0F5;--nt-color-90: #FFDEAD;--nt-color-91: #800080;--nt-color-92: #B0E0E6;--nt-color-93: #9932CC;--nt-color-94: #DAA520;--nt-color-95: #F0FFFF;--nt-color-96: #40E0D0;--nt-color-97: #00FF7F;--nt-color-98: #006400;--nt-color-99: #808080;--nt-color-100: #87CEEB;--nt-color-101: #0000FF;--nt-color-102: #6495ED;--nt-color-103: #FDF5E6;--nt-color-104: #B8860B;--nt-color-105: #BA55D3;--nt-color-106: #C0C0C0;--nt-color-107: #000000;--nt-color-108: #F08080;--nt-color-109: #B0C4DE;--nt-color-110: #00008B;--nt-color-111: #6B8E23;--nt-color-112: #FFE4B5;--nt-color-113: #FFA07A;--nt-color-114: #9ACD32;--nt-color-115: #FFFFFF;--nt-color-116: #F5F5DC;--nt-color-117: #90EE90;--nt-color-118: #1E90FF;--nt-color-119: #7CFC00;--nt-color-120: #FF69B4;--nt-color-121: #F8F8FF;--nt-color-122: #F5FFFA;--nt-color-123: #00FF00;--nt-color-124: #D3D3D3;--nt-color-125: #DB7093;--nt-color-126: #DA70D6;--nt-color-127: #FF1493;--nt-color-128: #228B22;--nt-color-129: #FFEFD5;--nt-color-130: #4169E1;--nt-color-131: #191970;--nt-color-132: #9370DB;--nt-color-133: #483D8B;--nt-color-134: #FF8C00;--nt-color-135: #EEE8AA;--nt-color-136: #CD5C5C;--nt-color-137: #DC143C}:root{--nt-group-0-main: #000000;--nt-group-0-dark: #FFFFFF;--nt-group-0-light: #000000;--nt-group-0-main-bg: #F44336;--nt-group-0-dark-bg: #BA000D;--nt-group-0-light-bg: #FF7961;--nt-group-1-main: #000000;--nt-group-1-dark: #FFFFFF;--nt-group-1-light: #000000;--nt-group-1-main-bg: #E91E63;--nt-group-1-dark-bg: #B0003A;--nt-group-1-light-bg: #FF6090;--nt-group-2-main: #FFFFFF;--nt-group-2-dark: #FFFFFF;--nt-group-2-light: #000000;--nt-group-2-main-bg: #9C27B0;--nt-group-2-dark-bg: #6A0080;--nt-group-2-light-bg: #D05CE3;--nt-group-3-main: #FFFFFF;--nt-group-3-dark: #FFFFFF;--nt-group-3-light: #000000;--nt-group-3-main-bg: #673AB7;--nt-group-3-dark-bg: #320B86;--nt-group-3-light-bg: #9A67EA;--nt-group-4-main: #FFFFFF;--nt-group-4-dark: #FFFFFF;--nt-group-4-light: #000000;--nt-group-4-main-bg: #3F51B5;--nt-group-4-dark-bg: #002984;--nt-group-4-light-bg: #757DE8;--nt-group-5-main: #000000;--nt-group-5-dark: #FFFFFF;--nt-group-5-light: #000000;--nt-group-5-main-bg: #2196F3;--nt-group-5-dark-bg: #0069C0;--nt-group-5-light-bg: #6EC6FF;--nt-group-6-main: #000000;--nt-group-6-dark: #FFFFFF;--nt-group-6-light: #000000;--nt-group-6-main-bg: #03A9F4;--nt-group-6-dark-bg: #007AC1;--nt-group-6-light-bg: #67DAFF;--nt-group-7-main: #000000;--nt-group-7-dark: #000000;--nt-group-7-light: #000000;--nt-group-7-main-bg: #00BCD4;--nt-group-7-dark-bg: #008BA3;--nt-group-7-light-bg: #62EFFF;--nt-group-8-main: #000000;--nt-group-8-dark: #FFFFFF;--nt-group-8-light: #000000;--nt-group-8-main-bg: #009688;--nt-group-8-dark-bg: #00675B;--nt-group-8-light-bg: #52C7B8;--nt-group-9-main: #000000;--nt-group-9-dark: #FFFFFF;--nt-group-9-light: #000000;--nt-group-9-main-bg: #4CAF50;--nt-group-9-dark-bg: #087F23;--nt-group-9-light-bg: #80E27E;--nt-group-10-main: #000000;--nt-group-10-dark: #000000;--nt-group-10-light: #000000;--nt-group-10-main-bg: #8BC34A;--nt-group-10-dark-bg: #5A9216;--nt-group-10-light-bg: #BEF67A;--nt-group-11-main: #000000;--nt-group-11-dark: #000000;--nt-group-11-light: #000000;--nt-group-11-main-bg: #CDDC39;--nt-group-11-dark-bg: #99AA00;--nt-group-11-light-bg: #FFFF6E;--nt-group-12-main: #000000;--nt-group-12-dark: #000000;--nt-group-12-light: #000000;--nt-group-12-main-bg: #FFEB3B;--nt-group-12-dark-bg: #C8B900;--nt-group-12-light-bg: #FFFF72;--nt-group-13-main: #000000;--nt-group-13-dark: #000000;--nt-group-13-light: #000000;--nt-group-13-main-bg: #FFC107;--nt-group-13-dark-bg: #C79100;--nt-group-13-light-bg: #FFF350;--nt-group-14-main: #000000;--nt-group-14-dark: #000000;--nt-group-14-light: #000000;--nt-group-14-main-bg: #FF9800;--nt-group-14-dark-bg: #C66900;--nt-group-14-light-bg: #FFC947;--nt-group-15-main: #000000;--nt-group-15-dark: #FFFFFF;--nt-group-15-light: #000000;--nt-group-15-main-bg: #FF5722;--nt-group-15-dark-bg: #C41C00;--nt-group-15-light-bg: #FF8A50;--nt-group-16-main: #FFFFFF;--nt-group-16-dark: #FFFFFF;--nt-group-16-light: #000000;--nt-group-16-main-bg: #795548;--nt-group-16-dark-bg: #4B2C20;--nt-group-16-light-bg: #A98274;--nt-group-17-main: #000000;--nt-group-17-dark: #FFFFFF;--nt-group-17-light: #000000;--nt-group-17-main-bg: #9E9E9E;--nt-group-17-dark-bg: #707070;--nt-group-17-light-bg: #CFCFCF;--nt-group-18-main: #000000;--nt-group-18-dark: #FFFFFF;--nt-group-18-light: #000000;--nt-group-18-main-bg: #607D8B;--nt-group-18-dark-bg: #34515E;--nt-group-18-light-bg: #8EACBB}.nt-pastello{--nt-group-0-main: #000000;--nt-group-0-dark: #000000;--nt-group-0-light: #000000;--nt-group-0-main-bg: #EF9A9A;--nt-group-0-dark-bg: #BA6B6C;--nt-group-0-light-bg: #FFCCCB;--nt-group-1-main: #000000;--nt-group-1-dark: #000000;--nt-group-1-light: #000000;--nt-group-1-main-bg: #F48FB1;--nt-group-1-dark-bg: #BF5F82;--nt-group-1-light-bg: #FFC1E3;--nt-group-2-main: #000000;--nt-group-2-dark: #000000;--nt-group-2-light: #000000;--nt-group-2-main-bg: #CE93D8;--nt-group-2-dark-bg: #9C64A6;--nt-group-2-light-bg: #FFC4FF;--nt-group-3-main: #000000;--nt-group-3-dark: #000000;--nt-group-3-light: #000000;--nt-group-3-main-bg: #B39DDB;--nt-group-3-dark-bg: #836FA9;--nt-group-3-light-bg: #E6CEFF;--nt-group-4-main: #000000;--nt-group-4-dark: #000000;--nt-group-4-light: #000000;--nt-group-4-main-bg: #9FA8DA;--nt-group-4-dark-bg: #6F79A8;--nt-group-4-light-bg: #D1D9FF;--nt-group-5-main: #000000;--nt-group-5-dark: #000000;--nt-group-5-light: #000000;--nt-group-5-main-bg: #90CAF9;--nt-group-5-dark-bg: #5D99C6;--nt-group-5-light-bg: #C3FDFF;--nt-group-6-main: #000000;--nt-group-6-dark: #000000;--nt-group-6-light: #000000;--nt-group-6-main-bg: #81D4FA;--nt-group-6-dark-bg: #4BA3C7;--nt-group-6-light-bg: #B6FFFF;--nt-group-7-main: #000000;--nt-group-7-dark: #000000;--nt-group-7-light: #000000;--nt-group-7-main-bg: #80DEEA;--nt-group-7-dark-bg: #4BACB8;--nt-group-7-light-bg: #B4FFFF;--nt-group-8-main: #000000;--nt-group-8-dark: #000000;--nt-group-8-light: #000000;--nt-group-8-main-bg: #80CBC4;--nt-group-8-dark-bg: #4F9A94;--nt-group-8-light-bg: #B2FEF7;--nt-group-9-main: #000000;--nt-group-9-dark: #000000;--nt-group-9-light: #000000;--nt-group-9-main-bg: #A5D6A7;--nt-group-9-dark-bg: #75A478;--nt-group-9-light-bg: #D7FFD9;--nt-group-10-main: #000000;--nt-group-10-dark: #000000;--nt-group-10-light: #000000;--nt-group-10-main-bg: #C5E1A5;--nt-group-10-dark-bg: #94AF76;--nt-group-10-light-bg: #F8FFD7;--nt-group-11-main: #000000;--nt-group-11-dark: #000000;--nt-group-11-light: #000000;--nt-group-11-main-bg: #E6EE9C;--nt-group-11-dark-bg: #B3BC6D;--nt-group-11-light-bg: #FFFFCE;--nt-group-12-main: #000000;--nt-group-12-dark: #000000;--nt-group-12-light: #000000;--nt-group-12-main-bg: #FFF59D;--nt-group-12-dark-bg: #CBC26D;--nt-group-12-light-bg: #FFFFCF;--nt-group-13-main: #000000;--nt-group-13-dark: #000000;--nt-group-13-light: #000000;--nt-group-13-main-bg: #FFE082;--nt-group-13-dark-bg: #CAAE53;--nt-group-13-light-bg: #FFFFB3;--nt-group-14-main: #000000;--nt-group-14-dark: #000000;--nt-group-14-light: #000000;--nt-group-14-main-bg: #FFCC80;--nt-group-14-dark-bg: #CA9B52;--nt-group-14-light-bg: #FFFFB0;--nt-group-15-main: #000000;--nt-group-15-dark: #000000;--nt-group-15-light: #000000;--nt-group-15-main-bg: #FFAB91;--nt-group-15-dark-bg: #C97B63;--nt-group-15-light-bg: #FFDDC1;--nt-group-16-main: #000000;--nt-group-16-dark: #000000;--nt-group-16-light: #000000;--nt-group-16-main-bg: #BCAAA4;--nt-group-16-dark-bg: #8C7B75;--nt-group-16-light-bg: #EFDCD5;--nt-group-17-main: #000000;--nt-group-17-dark: #000000;--nt-group-17-light: #000000;--nt-group-17-main-bg: #EEEEEE;--nt-group-17-dark-bg: #BCBCBC;--nt-group-17-light-bg: #FFFFFF;--nt-group-18-main: #000000;--nt-group-18-dark: #000000;--nt-group-18-light: #000000;--nt-group-18-main-bg: #B0BEC5;--nt-group-18-dark-bg: #808E95;--nt-group-18-light-bg: #E2F1F8}.nt-group-0 .nt-plan-group-summary,.nt-group-0 .nt-timeline-dot{color:var(--nt-group-0-dark);background-color:var(--nt-group-0-dark-bg)}.nt-group-0 .period{color:var(--nt-group-0-main);background-color:var(--nt-group-0-main-bg)}.nt-group-1 .nt-plan-group-summary,.nt-group-1 .nt-timeline-dot{color:var(--nt-group-1-dark);background-color:var(--nt-group-1-dark-bg)}.nt-group-1 .period{color:var(--nt-group-1-main);background-color:var(--nt-group-1-main-bg)}.nt-group-2 .nt-plan-group-summary,.nt-group-2 .nt-timeline-dot{color:var(--nt-group-2-dark);background-color:var(--nt-group-2-dark-bg)}.nt-group-2 .period{color:var(--nt-group-2-main);background-color:var(--nt-group-2-main-bg)}.nt-group-3 .nt-plan-group-summary,.nt-group-3 .nt-timeline-dot{color:var(--nt-group-3-dark);background-color:var(--nt-group-3-dark-bg)}.nt-group-3 .period{color:var(--nt-group-3-main);background-color:var(--nt-group-3-main-bg)}.nt-group-4 .nt-plan-group-summary,.nt-group-4 .nt-timeline-dot{color:var(--nt-group-4-dark);background-color:var(--nt-group-4-dark-bg)}.nt-group-4 .period{color:var(--nt-group-4-main);background-color:var(--nt-group-4-main-bg)}.nt-group-5 .nt-plan-group-summary,.nt-group-5 .nt-timeline-dot{color:var(--nt-group-5-dark);background-color:var(--nt-group-5-dark-bg)}.nt-group-5 .period{color:var(--nt-group-5-main);background-color:var(--nt-group-5-main-bg)}.nt-group-6 .nt-plan-group-summary,.nt-group-6 .nt-timeline-dot{color:var(--nt-group-6-dark);background-color:var(--nt-group-6-dark-bg)}.nt-group-6 .period{color:var(--nt-group-6-main);background-color:var(--nt-group-6-main-bg)}.nt-group-7 .nt-plan-group-summary,.nt-group-7 .nt-timeline-dot{color:var(--nt-group-7-dark);background-color:var(--nt-group-7-dark-bg)}.nt-group-7 .period{color:var(--nt-group-7-main);background-color:var(--nt-group-7-main-bg)}.nt-group-8 .nt-plan-group-summary,.nt-group-8 .nt-timeline-dot{color:var(--nt-group-8-dark);background-color:var(--nt-group-8-dark-bg)}.nt-group-8 .period{color:var(--nt-group-8-main);background-color:var(--nt-group-8-main-bg)}.nt-group-9 .nt-plan-group-summary,.nt-group-9 .nt-timeline-dot{color:var(--nt-group-9-dark);background-color:var(--nt-group-9-dark-bg)}.nt-group-9 .period{color:var(--nt-group-9-main);background-color:var(--nt-group-9-main-bg)}.nt-group-10 .nt-plan-group-summary,.nt-group-10 .nt-timeline-dot{color:var(--nt-group-10-dark);background-color:var(--nt-group-10-dark-bg)}.nt-group-10 .period{color:var(--nt-group-10-main);background-color:var(--nt-group-10-main-bg)}.nt-group-11 .nt-plan-group-summary,.nt-group-11 .nt-timeline-dot{color:var(--nt-group-11-dark);background-color:var(--nt-group-11-dark-bg)}.nt-group-11 .period{color:var(--nt-group-11-main);background-color:var(--nt-group-11-main-bg)}.nt-group-12 .nt-plan-group-summary,.nt-group-12 .nt-timeline-dot{color:var(--nt-group-12-dark);background-color:var(--nt-group-12-dark-bg)}.nt-group-12 .period{color:var(--nt-group-12-main);background-color:var(--nt-group-12-main-bg)}.nt-group-13 .nt-plan-group-summary,.nt-group-13 .nt-timeline-dot{color:var(--nt-group-13-dark);background-color:var(--nt-group-13-dark-bg)}.nt-group-13 .period{color:var(--nt-group-13-main);background-color:var(--nt-group-13-main-bg)}.nt-group-14 .nt-plan-group-summary,.nt-group-14 .nt-timeline-dot{color:var(--nt-group-14-dark);background-color:var(--nt-group-14-dark-bg)}.nt-group-14 .period{color:var(--nt-group-14-main);background-color:var(--nt-group-14-main-bg)}.nt-group-15 .nt-plan-group-summary,.nt-group-15 .nt-timeline-dot{color:var(--nt-group-15-dark);background-color:var(--nt-group-15-dark-bg)}.nt-group-15 .period{color:var(--nt-group-15-main);background-color:var(--nt-group-15-main-bg)}.nt-group-16 .nt-plan-group-summary,.nt-group-16 .nt-timeline-dot{color:var(--nt-group-16-dark);background-color:var(--nt-group-16-dark-bg)}.nt-group-16 .period{color:var(--nt-group-16-main);background-color:var(--nt-group-16-main-bg)}.nt-group-17 .nt-plan-group-summary,.nt-group-17 .nt-timeline-dot{color:var(--nt-group-17-dark);background-color:var(--nt-group-17-dark-bg)}.nt-group-17 .period{color:var(--nt-group-17-main);background-color:var(--nt-group-17-main-bg)}.nt-group-18 .nt-plan-group-summary,.nt-group-18 .nt-timeline-dot{color:var(--nt-group-18-dark);background-color:var(--nt-group-18-dark-bg)}.nt-group-18 .period{color:var(--nt-group-18-main);background-color:var(--nt-group-18-main-bg)}.nt-error{border:2px dashed darkred;padding:0 1rem;background:#faf9ba;color:darkred}.nt-timeline{margin-top:30px}.nt-timeline .nt-timeline-title{font-size:1.1rem;margin-top:0}.nt-timeline .nt-timeline-sub-title{margin-top:0}.nt-timeline .nt-timeline-content{font-size:.8rem;border-bottom:2px dashed #ccc;padding-bottom:1.2rem}.nt-timeline.horizontal .nt-timeline-items{flex-direction:row;overflow-x:scroll}.nt-timeline.horizontal .nt-timeline-items>div{min-width:400px;margin-right:50px}.nt-timeline.horizontal.reverse .nt-timeline-items{flex-direction:row-reverse}.nt-timeline.horizontal.center .nt-timeline-before{background-image:linear-gradient(rgba(252, 70, 107, 0) 0%, rgb(252, 70, 107) 100%);background-repeat:no-repeat;background-size:100% 2px;background-position:0 center}.nt-timeline.horizontal.center .nt-timeline-after{background-image:linear-gradient(180deg, rgb(252, 70, 107) 0%, rgba(252, 70, 107, 0) 100%);background-repeat:no-repeat;background-size:100% 2px;background-position:0 center}.nt-timeline.horizontal.center .nt-timeline-items{background-image:radial-gradient(circle, rgb(63, 94, 251) 0%, rgb(252, 70, 107) 100%);background-repeat:no-repeat;background-size:100% 2px;background-position:0 center}.nt-timeline.horizontal .nt-timeline-dot{left:50%}.nt-timeline.horizontal .nt-timeline-dot:not(.bigger){top:calc(50% - 4px)}.nt-timeline.horizontal .nt-timeline-dot.bigger{top:calc(50% - 15px)}.nt-timeline.vertical .nt-timeline-items{flex-direction:column}.nt-timeline.vertical.reverse .nt-timeline-items{flex-direction:column-reverse}.nt-timeline.vertical.center .nt-timeline-before{background:linear-gradient(rgba(252, 70, 107, 0) 0%, rgb(252, 70, 107) 100%) no-repeat center/2px 100%}.nt-timeline.vertical.center .nt-timeline-after{background:linear-gradient(rgb(252, 70, 107) 0%, rgba(252, 70, 107, 0) 100%) no-repeat center/2px 100%}.nt-timeline.vertical.center .nt-timeline-items{background:radial-gradient(circle, rgb(63, 94, 251) 0%, rgb(252, 70, 107) 100%) no-repeat center/2px 100%}.nt-timeline.vertical.center .nt-timeline-dot{left:calc(50% - 10px)}.nt-timeline.vertical.center .nt-timeline-dot:not(.bigger){top:10px}.nt-timeline.vertical.center .nt-timeline-dot.bigger{left:calc(50% - 20px)}.nt-timeline.vertical.left{padding-left:100px}.nt-timeline.vertical.left .nt-timeline-item{padding-left:70px}.nt-timeline.vertical.left .nt-timeline-sub-title{left:-100px;width:100px}.nt-timeline.vertical.left .nt-timeline-before{background:linear-gradient(rgba(252, 70, 107, 0) 0%, rgb(252, 70, 107) 100%) no-repeat 30px/2px 100%}.nt-timeline.vertical.left .nt-timeline-after{background:linear-gradient(rgb(252, 70, 107) 0%, rgba(252, 70, 107, 0) 100%) no-repeat 30px/2px 100%}.nt-timeline.vertical.left .nt-timeline-items{background:radial-gradient(circle, rgb(63, 94, 251) 0%, rgb(252, 70, 107) 100%) no-repeat 30px/2px 100%}.nt-timeline.vertical.left .nt-timeline-dot{left:21px;top:8px}.nt-timeline.vertical.left .nt-timeline-dot.bigger{top:0px;left:10px}.nt-timeline.vertical.right{padding-right:100px}.nt-timeline.vertical.right .nt-timeline-sub-title{right:-100px;text-align:left;width:100px}.nt-timeline.vertical.right .nt-timeline-item{padding-right:70px}.nt-timeline.vertical.right .nt-timeline-before{background:linear-gradient(rgba(252, 70, 107, 0) 0%, rgb(252, 70, 107) 100%) no-repeat calc(100% - 30px)/2px 100%}.nt-timeline.vertical.right .nt-timeline-after{background:linear-gradient(rgb(252, 70, 107) 0%, rgba(252, 70, 107, 0) 100%) no-repeat calc(100% - 30px)/2px 100%}.nt-timeline.vertical.right .nt-timeline-items{background:radial-gradient(circle, rgb(63, 94, 251) 0%, rgb(252, 70, 107) 100%) no-repeat calc(100% - 30px)/2px 100%}.nt-timeline.vertical.right .nt-timeline-dot{right:21px;top:8px}.nt-timeline.vertical.right .nt-timeline-dot.bigger{top:10px;right:10px}.nt-timeline-items{display:flex;position:relative}.nt-timeline-items>div{min-height:100px;padding-top:2px;padding-bottom:20px}.nt-timeline-before{content:"";height:15px}.nt-timeline-after{content:"";height:60px;margin-bottom:20px}.nt-timeline-sub-title{position:absolute;width:50%;top:4px;font-size:18px;color:var(--nt-color-50)}[data-md-color-scheme=slate] .nt-timeline-sub-title{color:var(--nt-color-51)}.nt-timeline-item{position:relative}.nt-timeline.vertical.center:not(.alternate) .nt-timeline-item{padding-left:calc(50% + 40px)}.nt-timeline.vertical.center:not(.alternate) .nt-timeline-item .nt-timeline-sub-title{left:0;padding-right:40px;text-align:right}.nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(odd){padding-left:calc(50% + 40px)}.nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(odd) .nt-timeline-sub-title{left:0;padding-right:40px;text-align:right}.nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(even){text-align:right;padding-right:calc(50% + 40px)}.nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(even) .nt-timeline-sub-title{right:0;padding-left:40px;text-align:left}.nt-timeline-dot{position:relative;width:20px;height:20px;border-radius:100%;background-color:#fc5b5b;position:absolute;top:0px;z-index:2;display:flex;justify-content:center;align-items:center;box-shadow:0 2px 1px -1px rgba(0,0,0,.2),0 1px 1px 0 rgba(0,0,0,.14),0 1px 3px 0 rgba(0,0,0,.12);border:3px solid #fff}.nt-timeline-dot:not(.bigger) .icon{font-size:10px}.nt-timeline-dot.bigger{width:40px;height:40px;padding:3px}.nt-timeline-dot .icon{color:#fff}@supports not (-moz-appearance: none){details .nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(odd) .nt-timeline-sub-title,details .nt-timeline.vertical.center:not(.alternate) .nt-timeline-item .nt-timeline-sub-title{left:-40px}details .nt-timeline.vertical.center.alternate .nt-timeline-item:nth-child(even) .nt-timeline-sub-title{right:-40px}details .nt-timeline.vertical.center .nt-timeline-dot{left:calc(50% - 12px)}details .nt-timeline-dot.bigger{font-size:1rem !important}}.nt-timeline-item:nth-child(0) .nt-timeline-dot{background-color:var(--nt-color-0)}.nt-timeline-item:nth-child(1) .nt-timeline-dot{background-color:var(--nt-color-1)}.nt-timeline-item:nth-child(2) .nt-timeline-dot{background-color:var(--nt-color-2)}.nt-timeline-item:nth-child(3) .nt-timeline-dot{background-color:var(--nt-color-3)}.nt-timeline-item:nth-child(4) .nt-timeline-dot{background-color:var(--nt-color-4)}.nt-timeline-item:nth-child(5) .nt-timeline-dot{background-color:var(--nt-color-5)}.nt-timeline-item:nth-child(6) .nt-timeline-dot{background-color:var(--nt-color-6)}.nt-timeline-item:nth-child(7) .nt-timeline-dot{background-color:var(--nt-color-7)}.nt-timeline-item:nth-child(8) .nt-timeline-dot{background-color:var(--nt-color-8)}.nt-timeline-item:nth-child(9) .nt-timeline-dot{background-color:var(--nt-color-9)}.nt-timeline-item:nth-child(10) .nt-timeline-dot{background-color:var(--nt-color-10)}.nt-timeline-item:nth-child(11) .nt-timeline-dot{background-color:var(--nt-color-11)}.nt-timeline-item:nth-child(12) .nt-timeline-dot{background-color:var(--nt-color-12)}.nt-timeline-item:nth-child(13) .nt-timeline-dot{background-color:var(--nt-color-13)}.nt-timeline-item:nth-child(14) .nt-timeline-dot{background-color:var(--nt-color-14)}.nt-timeline-item:nth-child(15) .nt-timeline-dot{background-color:var(--nt-color-15)}.nt-timeline-item:nth-child(16) .nt-timeline-dot{background-color:var(--nt-color-16)}.nt-timeline-item:nth-child(17) .nt-timeline-dot{background-color:var(--nt-color-17)}.nt-timeline-item:nth-child(18) .nt-timeline-dot{background-color:var(--nt-color-18)}.nt-timeline-item:nth-child(19) .nt-timeline-dot{background-color:var(--nt-color-19)}.nt-timeline-item:nth-child(20) .nt-timeline-dot{background-color:var(--nt-color-20)}:root{--nt-scrollbar-color: #2751b0;--nt-plan-actions-height: 24px;--nt-units-background: #ff9800;--nt-months-background: #2751b0;--nt-plan-vertical-line-color: #a3a3a3ad}.nt-pastello{--nt-scrollbar-color: #9fb8f4;--nt-units-background: #f5dc82;--nt-months-background: #5b7fd1}[data-md-color-scheme=slate]{--nt-units-background: #003773}[data-md-color-scheme=slate] .nt-pastello{--nt-units-background: #3f4997}.nt-plan-root{min-height:200px;scrollbar-width:20px;scrollbar-color:var(--nt-scrollbar-color);display:flex}.nt-plan-root ::-webkit-scrollbar{width:20px}.nt-plan-root ::-webkit-scrollbar-track{box-shadow:inset 0 0 5px gray;border-radius:10px}.nt-plan-root ::-webkit-scrollbar-thumb{background:var(--nt-scrollbar-color);border-radius:10px}.nt-plan-root .nt-plan{flex:80%}.nt-plan-root.no-groups .nt-plan-periods{padding-left:0}.nt-plan-root.no-groups .nt-plan-group-summary{display:none}.nt-plan-root .nt-timeline-dot.bigger{top:-10px}.nt-plan-root .nt-timeline-dot.bigger[title]{cursor:help}.nt-plan{white-space:nowrap;overflow-x:auto;display:flex}.nt-plan .ug-timeline-dot{left:368px;top:-8px;cursor:help}.months{display:flex}.month{flex:auto;display:inline-block;box-shadow:rgba(0,0,0,.2) 0px 3px 1px -2px,rgba(0,0,0,.14) 0px 2px 2px 0px,rgba(0,0,0,.12) 0px 1px 5px 0px inset;background-color:var(--nt-months-background);color:#fff;text-transform:uppercase;font-family:Roboto,Helvetica,Arial,sans-serif;padding:2px 5px;font-size:12px;border:1px solid #000;width:150px;border-radius:8px}.nt-plan-group-activities{flex:auto;position:relative}.nt-vline{border-left:1px dashed var(--nt-plan-vertical-line-color);height:100%;left:0;position:absolute;margin-left:-0.5px;top:0;-webkit-transition:all .5s linear !important;-moz-transition:all .5s linear !important;-ms-transition:all .5s linear !important;-o-transition:all .5s linear !important;transition:all .5s linear !important;z-index:-2}.nt-plan-activity{display:flex;margin:2px 0;background-color:rgba(187,187,187,.2509803922)}.actions{height:var(--nt-plan-actions-height)}.actions{position:relative}.period{display:inline-block;height:var(--nt-plan-actions-height);width:120px;position:absolute;left:0px;background:#1da1f2;border-radius:5px;transition:all .5s;cursor:help;-webkit-transition:width 1s ease-in-out;-moz-transition:width 1s ease-in-out;-o-transition:width 1s ease-in-out;transition:width 1s ease-in-out}.period .nt-tooltip{display:none;top:30px;position:relative;padding:1rem;text-align:center;font-size:12px}.period:hover .nt-tooltip{display:inline-block}.period-0{left:340px;visibility:visible;background-color:#456165}.period-1{left:40px;visibility:visible;background-color:green}.period-2{left:120px;visibility:visible;background-color:pink;width:80px}.period-3{left:190px;visibility:visible;background-color:darkred;width:150px}.weeks>span,.days>span{height:25px}.weeks>span{display:inline-block;margin:0;padding:0;font-weight:bold}.weeks>span .week-text{font-size:10px;position:absolute;display:inline-block;padding:3px 4px}.days{z-index:-2;position:relative}.day-text{font-size:10px;position:absolute;display:inline-block;padding:3px 4px}.period span{font-size:12px;vertical-align:top;margin-left:4px;color:#000;background:rgba(255,255,255,.6588235294);border-radius:6px;padding:0 4px}.weeks,.days{height:20px;display:flex;box-sizing:content-box}.months{display:flex}.week,.day{height:20px;position:relative;border:1;flex:auto;border:2px solid #fff;border-radius:4px;background-color:var(--nt-units-background);cursor:help}.years{display:flex}.year{text-align:center;border-right:1px solid var(--nt-plan-vertical-line-color);font-weight:bold}.year:first-child{border-left:1px solid var(--nt-plan-vertical-line-color)}.year:first-child:last-child{width:100%}.quarters{display:flex}.quarter{width:12.5%;text-align:center;border-right:1px solid var(--nt-plan-vertical-line-color);font-weight:bold}.quarter:first-child{border-left:1px solid var(--nt-plan-vertical-line-color)}.nt-plan-group{margin:20px 0;position:relative}.nt-plan-group{display:flex}.nt-plan-group-summary{background:#2751b0;width:150px;white-space:normal;padding:.1rem .5rem;border-radius:5px;color:#fff;z-index:3}.nt-plan-group-summary p{margin:0;padding:0;font-size:.6rem;color:#fff}.nt-plan-group-summary,.month,.period,.week,.day,.nt-tooltip{border:3px solid #fff;box-shadow:0 2px 3px -1px rgba(0,0,0,.2),0 3px 3px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12)}.nt-plan-periods{padding-left:150px}.months{z-index:2;position:relative}.weeks{position:relative;top:-2px;z-index:0}.month,.quarter,.year,.week,.day,.nt-tooltip{font-family:Roboto,Helvetica,Arial,sans-serif;box-sizing:border-box}.nt-cards.nt-grid{display:grid;grid-auto-columns:1fr;gap:.5rem;max-width:100vw;overflow-x:auto;padding:1px}.nt-cards.nt-grid.cols-1{grid-template-columns:repeat(1, 1fr)}.nt-cards.nt-grid.cols-2{grid-template-columns:repeat(2, 1fr)}.nt-cards.nt-grid.cols-3{grid-template-columns:repeat(3, 1fr)}.nt-cards.nt-grid.cols-4{grid-template-columns:repeat(4, 1fr)}.nt-cards.nt-grid.cols-5{grid-template-columns:repeat(5, 1fr)}.nt-cards.nt-grid.cols-6{grid-template-columns:repeat(6, 1fr)}@media only screen and (max-width: 400px){.nt-cards.nt-grid{grid-template-columns:repeat(1, 1fr) !important}}.nt-card{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 3px 1px -2px rgba(0,0,0,.2),0 1px 5px 0 rgba(0,0,0,.12)}.nt-card:hover{box-shadow:0 2px 2px 0 rgba(0,0,0,.24),0 3px 1px -2px rgba(0,0,0,.3),0 1px 5px 0 rgba(0,0,0,.22)}[data-md-color-scheme=slate] .nt-card{box-shadow:0 2px 2px 0 rgba(4,40,33,.14),0 3px 1px -2px rgba(40,86,94,.47),0 1px 5px 0 rgba(139,252,255,.64)}[data-md-color-scheme=slate] .nt-card:hover{box-shadow:0 2px 2px 0 rgba(0,255,206,.14),0 3px 1px -2px rgba(33,156,177,.47),0 1px 5px 0 rgba(96,251,255,.64)}.nt-card>a{color:var(--md-default-fg-color)}.nt-card>a>div{cursor:pointer}.nt-card{padding:5px;margin-bottom:.5rem}.nt-card-title{font-size:1rem;font-weight:bold;margin:4px 0 8px 0;line-height:22px}.nt-card-content{padding:.4rem .8rem .8rem .8rem}.nt-card-text{font-size:14px;padding:0;margin:0}.nt-card .nt-card-image{text-align:center;border-radius:2px;background-position:center center;background-size:cover;background-repeat:no-repeat;min-height:120px}.nt-card .nt-card-image.tags img{margin-top:12px}.nt-card .nt-card-image img{height:105px;margin-top:5px}.nt-card a:hover,.nt-card a:focus{color:var(--md-accent-fg-color)}.nt-card h2{margin:0}.span-table-wrapper table{border-collapse:collapse;margin-bottom:2rem;border-radius:.1rem}.span-table td,.span-table th{padding:.2rem;background-color:var(--md-default-bg-color);font-size:.64rem;max-width:100%;overflow:auto;touch-action:auto;border-top:.05rem solid var(--md-typeset-table-color);padding:.9375em 1.25em;vertical-align:top}.span-table tr:first-child td{font-weight:700;min-width:5rem;padding:.9375em 1.25em;vertical-align:top}.span-table td:first-child{border-left:.05rem solid var(--md-typeset-table-color)}.span-table td:last-child{border-right:.05rem solid var(--md-typeset-table-color)}.span-table tr:last-child{border-bottom:.05rem solid var(--md-typeset-table-color)}.span-table [colspan],.span-table [rowspan]{font-weight:bold;border:.05rem solid var(--md-typeset-table-color)}.span-table tr:not(:first-child):hover td:not([colspan]):not([rowspan]),.span-table td[colspan]:hover,.span-table td[rowspan]:hover{background-color:rgba(0,0,0,.035);box-shadow:0 .05rem 0 var(--md-default-bg-color) inset;transition:background-color 125ms}.nt-contribs{margin-top:2rem;font-size:small;border-top:1px dotted #d3d3d3;padding-top:.5rem}.nt-contribs .nt-contributors{padding-top:.5rem;display:flex;flex-wrap:wrap}.nt-contribs .nt-contributor{background:#d3d3d3;background-size:cover;width:40px;height:40px;border-radius:100%;margin:0 6px 6px 0;cursor:help;opacity:.7}.nt-contribs .nt-contributor:hover{opacity:1}.nt-contribs .nt-initials{text-transform:uppercase;font-size:24px;text-align:center;width:40px;height:40px;display:inline-block;vertical-align:middle;position:relative;top:2px;color:inherit;font-weight:bold}.nt-contribs .nt-group-0{background-color:var(--nt-color-0)}.nt-contribs .nt-group-1{background-color:var(--nt-color-1)}.nt-contribs .nt-group-2{background-color:var(--nt-color-2)}.nt-contribs .nt-group-3{background-color:var(--nt-color-3)}.nt-contribs .nt-group-4{background-color:var(--nt-color-4)}.nt-contribs .nt-group-5{background-color:var(--nt-color-5)}.nt-contribs .nt-group-6{background-color:var(--nt-color-6)}.nt-contribs .nt-group-7{color:#000;background-color:var(--nt-color-7)}.nt-contribs .nt-group-8{color:#000;background-color:var(--nt-color-8)}.nt-contribs .nt-group-9{background-color:var(--nt-color-9)}.nt-contribs .nt-group-10{background-color:var(--nt-color-10)}.nt-contribs .nt-group-11{background-color:var(--nt-color-11)}.nt-contribs .nt-group-12{background-color:var(--nt-color-12)}.nt-contribs .nt-group-13{background-color:var(--nt-color-13)}.nt-contribs .nt-group-14{background-color:var(--nt-color-14)}.nt-contribs .nt-group-15{color:#000;background-color:var(--nt-color-15)}.nt-contribs .nt-group-16{background-color:var(--nt-color-16)}.nt-contribs .nt-group-17{color:#000;background-color:var(--nt-color-17)}.nt-contribs .nt-group-18{background-color:var(--nt-color-18)}.nt-contribs .nt-group-19{background-color:var(--nt-color-19)}.nt-contribs .nt-group-20{color:#000;background-color:var(--nt-color-20)}.nt-contribs .nt-group-21{color:#000;background-color:var(--nt-color-21)}.nt-contribs .nt-group-22{color:#000;background-color:var(--nt-color-22)}.nt-contribs .nt-group-23{color:#000;background-color:var(--nt-color-23)}.nt-contribs .nt-group-24{color:#000;background-color:var(--nt-color-24)}.nt-contribs .nt-group-25{color:#000;background-color:var(--nt-color-25)}.nt-contribs .nt-group-26{color:#000;background-color:var(--nt-color-26)}.nt-contribs .nt-group-27{background-color:var(--nt-color-27)}.nt-contribs .nt-group-28{color:#000;background-color:var(--nt-color-28)}.nt-contribs .nt-group-29{color:#000;background-color:var(--nt-color-29)}.nt-contribs .nt-group-30{background-color:var(--nt-color-30)}.nt-contribs .nt-group-31{background-color:var(--nt-color-31)}.nt-contribs .nt-group-32{color:#000;background-color:var(--nt-color-32)}.nt-contribs .nt-group-33{background-color:var(--nt-color-33)}.nt-contribs .nt-group-34{background-color:var(--nt-color-34)}.nt-contribs .nt-group-35{background-color:var(--nt-color-35)}.nt-contribs .nt-group-36{background-color:var(--nt-color-36)}.nt-contribs .nt-group-37{background-color:var(--nt-color-37)}.nt-contribs .nt-group-38{background-color:var(--nt-color-38)}.nt-contribs .nt-group-39{color:#000;background-color:var(--nt-color-39)}.nt-contribs .nt-group-40{color:#000;background-color:var(--nt-color-40)}.nt-contribs .nt-group-41{color:#000;background-color:var(--nt-color-41)}.nt-contribs .nt-group-42{color:#000;background-color:var(--nt-color-42)}.nt-contribs .nt-group-43{color:#000;background-color:var(--nt-color-43)}.nt-contribs .nt-group-44{color:#000;background-color:var(--nt-color-44)}.nt-contribs .nt-group-45{background-color:var(--nt-color-45)}.nt-contribs .nt-group-46{color:#000;background-color:var(--nt-color-46)}.nt-contribs .nt-group-47{background-color:var(--nt-color-47)}.nt-contribs .nt-group-48{background-color:var(--nt-color-48)}.nt-contribs .nt-group-49{background-color:var(--nt-color-49)}
\ No newline at end of file
diff --git a/docs/examples/index.rst b/docs/examples/index.rst
deleted file mode 100644
index af5b87812..000000000
--- a/docs/examples/index.rst
+++ /dev/null
@@ -1,21 +0,0 @@
-.. _examples:
-
-Examples
-========
-
-The following examples illustrate the usage of pyDVL features.
-
-.. toctree::
- :caption: Data valuation
- :titlesonly:
- :glob:
-
- shapley*
- least_core*
-
-.. toctree::
- :caption: Influence function
- :titlesonly:
- :glob:
-
- influence*
diff --git a/docs/getting-started/first-steps.md b/docs/getting-started/first-steps.md
new file mode 100644
index 000000000..a86cf6307
--- /dev/null
+++ b/docs/getting-started/first-steps.md
@@ -0,0 +1,84 @@
+---
+title: Getting Started
+alias:
+ name: getting-started
+ text: Getting Started
+---
+
+# Getting started
+
+!!! Warning
+ Make sure you have read [[installation]] before using the library.
+ In particular read about how caching and parallelization work,
+ since they might require additional setup.
+
+## Main concepts
+
+pyDVL aims to be a repository of production-ready, reference implementations of
+algorithms for data valuation and influence functions. Even though we only
+briefly introduce key concepts in the documentation, the following sections
+should be enough to get you started.
+
+* [[data-valuation]] for key objects and usage patterns for Shapley value
+ computation and related methods.
+* [[influence-values]] for instructions on how to compute influence functions.
+
+
+## Running the examples
+
+If you are somewhat familiar with the concepts of data valuation, you can start
+by browsing our worked-out examples illustrating pyDVL's capabilities either:
+
+- In the examples under [[data-valuation]] and [[influence-values]].
+- Using [binder](https://mybinder.org/) notebooks, deployed from each
+ example's page.
+- Locally, by starting a jupyter server at the root of the project. You will
+ have to install jupyter first manually since it's not a dependency of the
+ library.
+
+# Advanced usage
+
+Besides the do's and don'ts of data valuation itself, which are the subject of
+the examples and the documentation of each method, there are two main things to
+keep in mind when using pyDVL.
+
+## Caching
+
+pyDVL uses [memcached](https://memcached.org/) to cache the computation of the
+utility function and speed up some computations (see the [installation
+guide](installation.md/#setting-up-the-cache)).
+
+Caching of the utility function is disabled by default. When it is enabled it
+takes into account the data indices passed as argument and the utility function
+wrapped into the [Utility][pydvl.utils.utility.Utility] object. This means that
+care must be taken when reusing the same utility function with different data,
+see the documentation for the [caching module][pydvl.utils.caching] for more
+information.
+
+In general, caching won't play a major role in the computation of Shapley values
+because the probability of sampling the same subset twice, and hence needing
+the same utility function computation, is very low. However, it can be very
+useful when comparing methods that use the same utility function, or when
+running multiple experiments with the same data.
+
+!!! tip "When is the cache really necessary?"
+ Crucially, semi-value computations with the
+ [PermutationSampler][pydvl.value.sampler.PermutationSampler] require caching
+ to be enabled, or they will take twice as long as the direct implementation
+ in [compute_shapley_values][pydvl.value.shapley.compute_shapley_values].
+
+## Parallelization
+
+pyDVL supports [joblib](https://joblib.readthedocs.io/en/latest/) for local
+parallelization (within one machine) and [ray](https://ray.io) for distributed
+parallelization (across multiple machines).
+
+The former works out of the box but for the latter you will need to provide a
+running cluster (or run ray in local mode).
+
+As of v0.7.0 pyDVL does not allow requesting resources per task sent to the
+cluster, so you will need to make sure that each worker has enough resources to
+handle the tasks it receives. A data valuation task using game-theoretic methods
+will typically make a copy of the whole model and dataset to each worker, even
+if the re-training only happens on a subset of the data. This means that you
+should make sure that each worker has enough memory to handle the whole dataset.
diff --git a/docs/getting-started/installation.md b/docs/getting-started/installation.md
new file mode 100644
index 000000000..2d2164ada
--- /dev/null
+++ b/docs/getting-started/installation.md
@@ -0,0 +1,87 @@
+---
+title: Installing pyDVL
+alias:
+ name: installation
+ text: Installing pyDVL
+---
+
+# Installing pyDVL
+
+To install the latest release use:
+
+```shell
+pip install pyDVL
+```
+
+To use all features of influence functions use instead:
+
+```shell
+pip install pyDVL[influence]
+```
+
+This includes a dependency on [PyTorch](https://pytorch.org/) (Version 2.0 and
+above) and thus is left out by default.
+
+In case that you have a supported version of CUDA installed (v11.2 to 11.8 as of
+this writing), you can enable eigenvalue computations for low-rank approximations
+with [CuPy](https://docs.cupy.dev/en/stable/index.html) on the GPU by using:
+
+```shell
+pip install pyDVL[cupy]
+```
+
+If you use a different version of CUDA, please install CuPy
+[manually](https://docs.cupy.dev/en/stable/install.html).
+
+In order to check the installation you can use:
+
+```shell
+python -c "import pydvl; print(pydvl.__version__)"
+```
+
+You can also install the latest development version from
+[TestPyPI](https://test.pypi.org/project/pyDVL/):
+
+```shell
+pip install pyDVL --index-url https://test.pypi.org/simple/
+```
+
+## Dependencies
+
+pyDVL requires Python >= 3.8, [Memcached](https://memcached.org/) for caching
+and [Ray](https://ray.io) for parallelization in a cluster (locally it uses joblib).
+Additionally, the [Influence functions][pydvl.influence] module requires PyTorch
+(see [[installation]]).
+
+ray is used to distribute workloads across nodes in a cluster (it can be used
+locally as well, but for this we recommend joblib instead). Please follow the
+instructions in their documentation to set up the cluster. Once you have a
+running cluster, you can use it by passing the address of the head node to
+parallel methods via [ParallelConfig][pydvl.utils.parallel].
+
+## Setting up the cache
+
+[memcached](https://memcached.org/) is an in-memory key-value store accessible
+over the network. pyDVL uses it to cache the computation of the utility function
+and speed up some computations (in particular, semi-value computations with the
+[PermutationSampler][pydvl.value.sampler.PermutationSampler] but other methods
+may benefit as well).
+
+You can either install it as a package or run it inside a docker container (the
+simplest). For installation instructions, refer to the [Getting
+started](https://github.com/memcached/memcached/wiki#getting-started) section in
+memcached's wiki. Then you can run it with:
+
+```shell
+memcached -u user
+```
+
+To run memcached inside a container in daemon mode instead, do:
+
+```shell
+docker container run -d --rm -p 11211:11211 memcached:latest
+```
+
+!!! tip "Using the cache"
+ Continue reading about the cache in the [First Steps](first-steps.md#caching)
+ and the documentation for the [caching module][pydvl.utils.caching].
diff --git a/docs/index.md b/docs/index.md
new file mode 100644
index 000000000..fb6408b9e
--- /dev/null
+++ b/docs/index.md
@@ -0,0 +1,34 @@
+---
+title: Home
+---
+
+# The python library for data valuation
+
+pyDVL collects algorithms for data valuation and influence function computation.
+It runs most of them in parallel either locally or in a cluster and supports
+distributed caching of results.
+
+If you're a first time user of pyDVL, we recommend you to go through the
+[[getting-started]] and [[installation]] guides.
+
+::cards:: cols=2
+
+- title: Installation
+ content: Steps to install and requirements
+ url: getting-started/installation.md
+
+- title: Data valuation
+ content: >
+ Basics of data valuation and description of the main algorithms
+ url: value/
+
+- title: Influence Function
+ content: >
+ An introduction to the influence function and its computation with pyDVL
+ url: influence/
+
+- title: Browse the API
+ content: Full documentation of the API
+ url: api/pydvl/
+
+::/cards::
diff --git a/docs/index.rst b/docs/index.rst
deleted file mode 100644
index 217c08e2b..000000000
--- a/docs/index.rst
+++ /dev/null
@@ -1,93 +0,0 @@
-.. _home:
-
-===================
-pyDVL Documentation
-===================
-
-Welcome to the pyDVL library for data valuation!
-
-pyDVL collects algorithms for data valuation and influence function computation.
-It runs most of them in parallel either locally or in a cluster and supports
-distributed caching of results.
-
-If you're a first time user of pyDVL, we recommend you to go through the
-:ref:`Getting Started ` and
-:ref:`Installation ` guides.
-
-.. grid:: 2
- :gutter: 4
- :padding: 4
-
- .. grid-item-card::
- :class-item: sd-text-center
-
- :material-regular:`home_repair_service;12em`
-
- .. button-ref:: 20-install
- :expand:
- :color: primary
- :outline:
- :click-parent:
-
- To the installation guide
-
- .. grid-item-card::
- :class-item: sd-text-center
-
- :material-regular:`code;12em`
-
- .. button-link:: https://github.com/appliedAI-Initiative/pyDVL
- :expand:
- :color: primary
- :outline:
- :click-parent:
-
- To the sources
-
- .. grid-item-card::
- :class-item: sd-text-center
-
- :material-regular:`description;12em`
-
- .. button-ref:: pydvl
- :expand:
- :color: primary
- :outline:
- :click-parent:
-
- Browse the API
-
- .. grid-item-card::
- :class-item: sd-text-center
-
- :material-regular:`computer;12em`
-
- .. button-link:: examples
- :expand:
- :color: primary
- :outline:
- :click-parent:
-
- To the examples
-
-Contents
-========
-
-.. toctree::
- :glob:
-
- *
- examples/index
-
-.. toctree::
- :caption: Reference
- :hidden:
-
- pydvl/index
-
-Indices and tables
-==================
-
-* :ref:`genindex`
-* :ref:`modindex`
-* :ref:`search`
diff --git a/docs/influence/index.md b/docs/influence/index.md
new file mode 100644
index 000000000..c23ed0360
--- /dev/null
+++ b/docs/influence/index.md
@@ -0,0 +1,501 @@
+---
+title: The influence function
+alias:
+ name: influence-values
+ text: Computing Influence Values
+---
+
+## The influence function
+
+!!! Warning
+ The code in the package [pydvl.influence][pydvl.influence] is experimental.
+ Package structure and basic API are bound to change before v1.0.0
+
+The influence function (IF) is a method to quantify the effect (influence) that
+each training point has on the parameters of a model, and by extension on any
+function thereof. In particular, it allows to estimate how much each training
+sample affects the error on a test point, making the IF useful for understanding
+and debugging models.
+
+Alas, the influence function relies on some assumptions that can make their
+application difficult. Yet another drawback is that they require the computation
+of the inverse of the Hessian of the model wrt. its parameters, which is
+intractable for large models like deep neural networks. Much of the recent
+research tackles this issue using approximations, like a Neuman series
+[@agarwal_secondorder_2017], with the most successful solution using a low-rank
+approximation that iteratively finds increasing eigenspaces of the Hessian
+[@schioppa_scaling_2021].
+
+pyDVL implements several methods for the efficient computation of the IF for
+machine learning. In the examples we document some of the difficulties that can
+arise when using the IF.
+
+## Construction
+
+First introduced in the context of robust statistics in [@hampel_influence_1974],
+the IF was popularized in the context of machine learning in
+[@koh_understanding_2017].
+
+Following their formulation, consider an input space $\mathcal{X}$ (e.g. images)
+and an output space $\mathcal{Y}$ (e.g. labels). Let's take $z_i = (x_i, y_i)$,
+for $i \in \{1,...,n\}$ to be the $i$-th training point, and $\theta$ to be the
+(potentially highly) multi-dimensional parameters of a model (e.g. $\theta$ is a
+big array with all of a neural network's parameters, including biases and/or
+dropout rates). We will denote with $L(z, \theta)$ the loss of the model for
+point $z$ when the parameters are $\theta.$
+
+To train a model, we typically minimize the loss over all $z_i$, i.e. the
+optimal parameters are
+
+$$\hat{\theta} = \arg \min_\theta \sum_{i=1}^n L(z_i, \theta).$$
+
+In practice, lack of convexity means that one doesn't really obtain the
+minimizer of the loss, and the training is stopped when the validation loss
+stops decreasing.
+
+For notational convenience, let's define
+
+$$\hat{\theta}_{-z} = \arg \min_\theta \sum_{z_i \ne z} L(z_i, \theta), $$
+
+i.e. $\hat{\theta}_{-z}$ are the model parameters that minimize the total loss
+when $z$ is not in the training dataset.
+
+In order to compute the impact of each training point on the model, we would
+need to calculate $\hat{\theta}_{-z}$ for each $z$ in the training dataset, thus
+re-training the model at least ~$n$ times (more if model training is
+stochastic). This is computationally very expensive, especially for big neural
+networks. To circumvent this problem, we can just calculate a first order
+approximation of $\hat{\theta}$. This can be done through single backpropagation
+and without re-training the full model.
+
+
+pyDVL supports two ways of computing the empirical influence function, namely
+up-weighting of samples and perturbation influences. The choice is done by the
+parameter `influence_type` in the main entry point
+[compute_influences][pydvl.influence.general.compute_influences].
+
+### Approximating the influence of a point
+
+Let's define
+
+$$\hat{\theta}_{\epsilon, z} = \arg \min_\theta \frac{1}{n}\sum_{i=1}^n L(z_i,
+\theta) + \epsilon L(z, \theta), $$
+
+which is the optimal $\hat{\theta}$ when we up-weight $z$ by an amount $\epsilon
+\gt 0$.
+
+From a classical result (a simple derivation is available in Appendix A of
+[@koh_understanding_2017]), we know that:
+
+$$\frac{d \ \hat{\theta}_{\epsilon, z}}{d \epsilon} \Big|_{\epsilon=0} =
+-H_{\hat{\theta}}^{-1} \nabla_\theta L(z, \hat{\theta}), $$
+
+where $H_{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^n \nabla_\theta^2 L(z_i,
+\hat{\theta})$ is the Hessian of $L$. These quantities are also knows as
+**influence factors**.
+
+Importantly, notice that this expression is only valid when $\hat{\theta}$ is a
+minimum of $L$, or otherwise $H_{\hat{\theta}}$ cannot be inverted! At the same
+time, in machine learning full convergence is rarely achieved, so direct Hessian
+inversion is not possible. Approximations need to be developed that circumvent
+the problem of inverting the Hessian of the model in all those (frequent) cases
+where it is not positive definite.
+
+The influence of training point $z$ on test point $z_{\text{test}}$ is defined
+as:
+
+$$\mathcal{I}(z, z_{\text{test}}) = L(z_{\text{test}}, \hat{\theta}_{-z}) -
+L(z_{\text{test}}, \hat{\theta}). $$
+
+Notice that $\mathcal{I}$ is higher for points $z$ which positively impact the
+model score, since the loss is higher when they are excluded from training. In
+practice, one needs to rely on the following infinitesimal approximation:
+
+$$\mathcal{I}_{up}(z, z_{\text{test}}) = - \frac{d L(z_{\text{test}},
+\hat{\theta}_{\epsilon, z})}{d \epsilon} \Big|_{\epsilon=0} $$
+
+Using the chain rule and the results calculated above, we get:
+
+$$\mathcal{I}_{up}(z, z_{\text{test}}) = - \nabla_\theta L(z_{\text{test}},
+\hat{\theta})^\top \ \frac{d \hat{\theta}_{\epsilon, z}}{d \epsilon}
+\Big|_{\epsilon=0} = \nabla_\theta L(z_{\text{test}}, \hat{\theta})^\top \
+H_{\hat{\theta}}^{-1} \ \nabla_\theta L(z, \hat{\theta}) $$
+
+All the resulting factors are gradients of the loss wrt. the model parameters
+$\hat{\theta}$. This can be easily computed through one or more backpropagation
+passes.
+
+### Perturbation definition of the influence score
+
+How would the loss of the model change if, instead of up-weighting an individual
+point $z$, we were to up-weight only a single feature of that point? Given $z =
+(x, y)$, we can define $z_{\delta} = (x+\delta, y)$, where $\delta$ is a vector
+of zeros except for a 1 in the position of the feature we want to up-weight. In
+order to approximate the effect of modifying a single feature of a single point
+on the model score we can define
+
+$$\hat{\theta}_{\epsilon, z_{\delta} ,-z} = \arg \min_\theta
+\frac{1}{n}\sum_{i=1}^n L(z_{i}, \theta) + \epsilon L(z_{\delta}, \theta) -
+\epsilon L(z, \theta), $$
+
+Similarly to what was done above, we up-weight point $z_{\delta}$, but then we
+also remove the up-weighting for all the features that are not modified by
+$\delta$. From the calculations in
+[the previous section](#approximating-the-influence-of-a-point),
+it is then easy to see that
+
+$$\frac{d \ \hat{\theta}_{\epsilon, z_{\delta} ,-z}}{d \epsilon}
+\Big|_{\epsilon=0} = -H_{\hat{\theta}}^{-1} \nabla_\theta \Big( L(z_{\delta},
+\hat{\theta}) - L(z, \hat{\theta}) \Big) $$
+
+and if the feature space is continuous and as $\delta \to 0$ we can write
+
+$$\frac{d \ \hat{\theta}_{\epsilon, z_{\delta} ,-z}}{d \epsilon}
+\Big|_{\epsilon=0} = -H_{\hat{\theta}}^{-1} \ \nabla_x \nabla_\theta L(z,
+\hat{\theta}) \delta + \mathcal{o}(\delta) $$
+
+The influence of each feature of $z$ on the loss of the model can therefore be
+estimated through the following quantity:
+
+$$\mathcal{I}_{pert}(z, z_{\text{test}}) = - \lim_{\delta \to 0} \
+\frac{1}{\delta} \frac{d L(z_{\text{test}}, \hat{\theta}_{\epsilon, \
+z_{\delta}, \ -z})}{d \epsilon} \Big|_{\epsilon=0} $$
+
+which, using the chain rule and the results calculated above, is equal to
+
+$$\mathcal{I}_{pert}(z, z_{\text{test}}) = - \nabla_\theta L(z_{\text{test}},
+\hat{\theta})^\top \ \frac{d \hat{\theta}_{\epsilon, z_{\delta} ,-z}}{d
+\epsilon} \Big|_{\epsilon=0} = \nabla_\theta L(z_{\text{test}},
+\hat{\theta})^\top \ H_{\hat{\theta}}^{-1} \ \nabla_x \nabla_\theta L(z,
+\hat{\theta}) $$
+
+The perturbation definition of the influence score is not straightforward to
+understand, but it has a simple interpretation: it tells how much the loss of
+the model changes when a certain feature of point z is up-weighted. A positive
+perturbation influence score indicates that the feature might have a positive
+effect on the accuracy of the model.
+
+It is worth noting that the perturbation influence score is a very rough
+estimate of the impact of a point on the models loss and it is subject to large
+approximation errors. It can nonetheless be used to build training-set attacks,
+as done in [@koh_understanding_2017].
+
+## Computation
+
+The main entry point of the library for influence calculation is
+[compute_influences][pydvl.influence.general.compute_influences]. Given a
+pre-trained pytorch model with a loss, first an instance of
+[TorchTwiceDifferentiable][pydvl.influence.torch.torch_differentiable.TorchTwiceDifferentiable]
+needs to be created:
+
+```python
+from pydvl.influence import TorchTwiceDifferentiable
+wrapped_model = TorchTwiceDifferentiable(model, loss, device)
+```
+
+The device specifies where influence calculation will be run.
+
+Given training and test data loaders, the influence of each training point on
+each test point can be calculated via:
+
+```python
+from pydvl.influence import compute_influences
+from torch.utils.data import DataLoader
+training_data_loader = DataLoader(...)
+test_data_loader = DataLoader(...)
+compute_influences(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+)
+```
+
+The result is a tensor with one row per test point and one column per training
+point. Thus, each entry $(i, j)$ represents the influence of training point $j$
+on test point $i$. A large positive influence indicates that training point $j$
+tends to improve the performance of the model on test point $i$, and vice versa,
+a large negative influence indicates that training point $j$ tends to worsen the
+performance of the model on test point $i$.
+
+### Perturbation influences
+
+The method of empirical influence computation can be selected in
+[compute_influences][pydvl.influence.general.compute_influences] with the
+parameter `influence_type`:
+
+```python
+from pydvl.influence import compute_influences
+compute_influences(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+ influence_type="perturbation",
+)
+```
+
+The result is a tensor with at least three dimensions. The first two dimensions
+are the same as in the case of `influence_type=up` case, i.e. one row per test
+point and one column per training point. The remaining dimensions are the same
+as the number of input features in the data. Therefore, each entry in the tensor
+represents the influence of each feature of each training point on each test
+point.
+
+### Approximate matrix inversion
+
+In almost every practical application it is not possible to construct, even less
+invert the complete Hessian in memory. pyDVL offers several approximate
+algorithms to invert it by setting the parameter `inversion_method` of
+[compute_influences][pydvl.influence.general.compute_influences].
+
+```python
+from pydvl.influence import compute_influences
+compute_influences(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+ inversion_method="cg"
+)
+```
+
+Each inversion method has its own set of parameters that can be tuned to improve
+the final result. These parameters can be passed directly to
+[compute_influences][pydvl.influence.general.compute_influences] as keyword
+arguments. For example, the following code sets the maximum number of iterations
+for conjugate gradient to $100$ and the minimum relative error to $0.01$:
+
+```python
+from pydvl.influence import compute_influences
+compute_influences(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+ inversion_method="cg",
+ hessian_regularization=1e-4,
+ maxiter=100,
+ rtol=0.01
+)
+```
+
+### Hessian regularization
+
+Additionally, and as discussed in [the introduction](#the-influence-function),
+in machine learning training rarely converges to a global minimum of the loss.
+Despite good apparent convergence, $\hat{\theta}$ might be located in a region
+with flat curvature or close to a saddle point. In particular, the Hessian might
+have vanishing eigenvalues making its direct inversion impossible. Certain
+methods, such as the [Arnoldi method](#arnoldi-solver) are robust against these
+problems, but most are not.
+
+To circumvent this problem, many approximate methods can be implemented. The
+simplest adds a small *hessian perturbation term*, i.e. $H_{\hat{\theta}} +
+\lambda \mathbb{I}$, with $\mathbb{I}$ being the identity matrix. This standard
+trick ensures that the eigenvalues of $H_{\hat{\theta}}$ are bounded away from
+zero and therefore the matrix is invertible. In order for this regularization
+not to corrupt the outcome too much, the parameter $\lambda$ should be as small
+as possible while still allowing a reliable inversion of $H_{\hat{\theta}} +
+\lambda \mathbb{I}$.
+
+```python
+from pydvl.influence import compute_influences
+compute_influences(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+ inversion_method="cg",
+ hessian_regularization=1e-4
+)
+```
+
+### Influence factors
+
+The [compute_influences][pydvl.influence.general.compute_influences]
+method offers a fast way to obtain the influence scores given a model
+and a dataset. Nevertheless, it is often more convenient
+to inspect and save some of the intermediate results of
+influence calculation for later use.
+
+The influence factors(refer to
+[the previous section](#approximating-the-influence-of-a-point) for a definition)
+are typically the most computationally demanding part of influence calculation.
+They can be obtained via the
+[compute_influence_factors][pydvl.influence.general.compute_influence_factors]
+function, saved, and later used for influence calculation
+on different subsets of the training dataset.
+
+```python
+from pydvl.influence import compute_influence_factors
+influence_factors = compute_influence_factors(
+ wrapped_model,
+ training_data_loader,
+ test_data_loader,
+ inversion_method="cg"
+)
+```
+
+The result is an object of type
+[InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+which holds the calculated influence factors (`influence_factors.x`) and a
+dictionary with the info on the inversion process (`influence_factors.info`).
+
+## Methods for inverse HVP calculation
+
+In order to calculate influence values, pydvl implements several methods for the
+calculation of the inverse Hessian vector product (iHVP). More precisely, given
+a model, training data and a tensor $b$, the function
+[solve_hvp][pydvl.influence.inversion.solve_hvp]
+will find $x$ such that $H x = b$, with $H$ is the hessian of model.
+
+Many different inversion methods can be selected via the parameter
+`inversion_method` of
+[compute_influences][pydvl.influence.general.compute_influences].
+
+The following subsections will offer more detailed explanations for each method.
+
+### Direct inversion
+
+With `inversion_method = "direct"` pyDVL will calculate the inverse Hessian
+using the direct matrix inversion. This means that the Hessian will first be
+explicitly created and then inverted. This method is the most accurate, but also
+the most computationally demanding. It is therefore not recommended for large
+datasets or models with many parameters.
+
+```python
+import torch
+from pydvl.influence.inversion import solve_hvp
+b = torch.Tensor(...)
+solve_hvp(
+ "direct",
+ wrapped_model,
+ training_data_loader,
+ b,
+)
+```
+
+The result, an object of type
+[InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+which holds two objects: `influence_factors.x` and `influence_factors.info`.
+The first one is the inverse Hessian vector product, while the second one is a
+dictionary with the info on the inversion process. For this method, the info
+consists of the Hessian matrix itself.
+
+### Conjugate Gradient
+
+This classical procedure for solving linear systems of equations is an iterative
+method that does not require the explicit inversion of the Hessian. Instead, it
+only requires the calculation of Hessian-vector products, making it a good
+choice for large datasets or models with many parameters. It is nevertheless
+much slower to converge than the direct inversion method and not as accurate.
+More info on the theory of conjugate gradient can be found on
+[Wikipedia](https://en.wikipedia.org/wiki/Conjugate_gradient_method).
+
+In pyDVL, you can select conjugate gradient with `inversion_method = "cg"`, like
+this:
+
+```python
+from pydvl.influence.inversion import solve_hvp
+solve_hvp(
+ "cg",
+ wrapped_model,
+ training_data_loader,
+ b,
+ x0=None,
+ rtol=1e-7,
+ atol=1e-7,
+ maxiter=None,
+)
+```
+
+The additional optional parameters `x0`, `rtol`, `atol`, and `maxiter` are passed
+to the [solve_batch_cg][pydvl.influence.torch.torch_differentiable.solve_batch_cg]
+function, and are respecively the initial guess for the solution, the relative
+tolerance, the absolute tolerance, and the maximum number of iterations.
+
+The resulting
+[InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult] holds
+the solution of the iHVP, `influence_factors.x`, and some info on the inversion
+process `influence_factors.info`. More specifically, for each batch this will
+contain the number of iterations, a boolean indicating if the inversion
+converged, and the residual of the inversion.
+
+### Linear time Stochastic Second-Order Approximation (LiSSA)
+
+The LiSSA method is a stochastic approximation of the inverse Hessian vector
+product. Compared to [conjugate gradient](#conjugate-gradient)
+it is faster but less accurate and typically suffers from instability.
+
+In order to find the solution of the HVP, LiSSA iteratively approximates the
+inverse of the Hessian matrix with the following update:
+
+$$H^{-1}_{j+1} b = b + (I - d) \ H - \frac{H^{-1}_j b}{s},$$
+
+where $d$ and $s$ are a dampening and a scaling factor, which are essential
+for the convergence of the method and they need to be chosen carefully, and I
+is the identity matrix. More info on the theory of LiSSA can be found in the
+original paper [@agarwal_secondorder_2017].
+
+In pyDVL, you can select LiSSA with `inversion_method = "lissa"`, like this:
+
+```python
+from pydvl.influence.inversion import solve_hvp
+solve_hvp(
+ "lissa",
+ wrapped_model,
+ training_data_loader,
+ b,
+ maxiter=1000,
+ dampen=0.0,
+ scale=10.0,
+ h0=None,
+ rtol=1e-4,
+)
+```
+
+with the additional optional parameters `maxiter`, `dampen`, `scale`, `h0`, and
+`rtol`, which are passed to the
+[solve_lissa][pydvl.influence.torch.torch_differentiable.solve_lissa] function,
+being the maximum number of iterations, the dampening factor, the scaling
+factor, the initial guess for the solution and the relative tolerance,
+respectively.
+
+The resulting [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult]
+holds the solution of the iHVP, `influence_factors.x`, and,
+within `influence_factors.info`, the maximum percentage error
+and the mean percentage error of the approximation.
+
+### Arnoldi solver
+
+The [Arnoldi method](https://en.wikipedia.org/wiki/Arnoldi_iteration) is a
+Krylov subspace method for approximating dominating eigenvalues and
+eigenvectors. Under a low rank assumption on the Hessian at a minimizer (which
+is typically observed for deep neural networks), this approximation captures the
+essential action of the Hessian. More concretely, for $Hx=b$ the solution is
+approximated by
+
+\[x \approx V D^{-1} V^T b\]
+
+where \(D\) is a diagonal matrix with the top (in absolute value) eigenvalues of
+the Hessian and \(V\) contains the corresponding eigenvectors. See also
+[@schioppa_scaling_2021].
+
+In pyDVL, you can use Arnoldi with `inversion_method = "arnoldi"`, as follows:
+
+```python
+from pydvl.influence.inversion import solve_hvp
+solve_hvp(
+ "arnoldi",
+ wrapped_model,
+ training_data_loader,
+ b,
+ hessian_perturbation=0.0,
+ rank_estimate=10,
+ tol=1e-6,
+ eigen_computation_on_gpu=False
+)
+```
+
+For the parameters, check
+[solve_arnoldi][pydvl.influence.torch.torch_differentiable.solve_arnoldi]. The
+resulting
+[InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult] holds
+the solution of the iHVP, `influence_factors.x`, and, within
+`influence_factors.info`, the computed eigenvalues and eigenvectors.
diff --git a/docs/javascripts/mathjax.js b/docs/javascripts/mathjax.js
new file mode 100644
index 000000000..06dbf38bf
--- /dev/null
+++ b/docs/javascripts/mathjax.js
@@ -0,0 +1,16 @@
+window.MathJax = {
+ tex: {
+ inlineMath: [["\\(", "\\)"]],
+ displayMath: [["\\[", "\\]"]],
+ processEscapes: true,
+ processEnvironments: true
+ },
+ options: {
+ ignoreHtmlClass: ".*|",
+ processHtmlClass: "arithmatex"
+ }
+};
+
+document$.subscribe(() => {
+ MathJax.typesetPromise()
+})
diff --git a/docs/overrides/main.html b/docs/overrides/main.html
new file mode 100644
index 000000000..e573b98e9
--- /dev/null
+++ b/docs/overrides/main.html
@@ -0,0 +1,9 @@
+{% extends "base.html" %}
+
+{% block announce %}
+
+
+ pyDVL is in an early stage of development. Expect changes to functionality and the API until version 1.0.0.
+
+
+{% endblock %}
\ No newline at end of file
diff --git a/docs/overrides/partials/copyright.html b/docs/overrides/partials/copyright.html
new file mode 100644
index 000000000..942387ae9
--- /dev/null
+++ b/docs/overrides/partials/copyright.html
@@ -0,0 +1,19 @@
+
+ {% if config.copyright %}
+
+ {% endif %}
+ {% if not config.extra.generator == false %}
+ Made with
+
+ Material for MkDocs
+
+ {% endif %}
+
diff --git a/docs/pydvl.bib b/docs/pydvl.bib
deleted file mode 100644
index 69af8af14..000000000
--- a/docs/pydvl.bib
+++ /dev/null
@@ -1,209 +0,0 @@
-@article{castro_polynomial_2009,
- title = {Polynomial Calculation of the {{Shapley}} Value Based on Sampling},
- author = {Castro, Javier and G{\'o}mez, Daniel and Tejada, Juan},
- year = {2009},
- month = may,
- journal = {Computers \& Operations Research},
- series = {Selected Papers Presented at the {{Tenth International Symposium}} on {{Locational Decisions}} ({{ISOLDE X}})},
- volume = {36},
- number = {5},
- pages = {1726--1730},
- issn = {0305-0548},
- doi = {10.1016/j.cor.2008.04.004},
- url = {http://www.sciencedirect.com/science/article/pii/S0305054808000804},
- urldate = {2020-11-21},
- abstract = {In this paper we develop a polynomial method based on sampling theory that can be used to estimate the Shapley value (or any semivalue) for cooperative games. Besides analyzing the complexity problem, we examine some desirable statistical properties of the proposed approach and provide some computational results.},
- langid = {english}
-}
-
-@inproceedings{ghorbani_data_2019,
- title = {Data {{Shapley}}: {{Equitable Valuation}} of {{Data}} for {{Machine Learning}}},
- shorttitle = {Data {{Shapley}}},
- booktitle = {Proceedings of the 36th {{International Conference}} on {{Machine Learning}}, {{PMLR}}},
- author = {Ghorbani, Amirata and Zou, James},
- year = {2019},
- month = may,
- eprint = {1904.02868},
- pages = {2242--2251},
- publisher = {{PMLR}},
- issn = {2640-3498},
- url = {http://proceedings.mlr.press/v97/ghorbani19c.html},
- urldate = {2020-11-01},
- abstract = {As data becomes the fuel driving technological and economic growth, a fundamental challenge is how to quantify the value of data in algorithmic predictions and decisions. For example, in healthcare and consumer markets, it has been suggested that individuals should be compensated for the data that they generate, but it is not clear what is an equitable valuation for individual data. In this work, we develop a principled framework to address data valuation in the context of supervised machine learning. Given a learning algorithm trained on n data points to produce a predictor, we propose data Shapley as a metric to quantify the value of each training datum to the predictor performance. Data Shapley uniquely satisfies several natural properties of equitable data valuation. We develop Monte Carlo and gradient-based methods to efficiently estimate data Shapley values in practical settings where complex learning algorithms, including neural networks, are trained on large datasets. In addition to being equitable, extensive experiments across biomedical, image and synthetic data demonstrate that data Shapley has several other benefits: 1) it is more powerful than the popular leave-one-out or leverage score in providing insight on what data is more valuable for a given learning task; 2) low Shapley value data effectively capture outliers and corruptions; 3) high Shapley value data inform what type of new data to acquire to improve the predictor.},
- archiveprefix = {arxiv},
- langid = {english},
- keywords = {notion}
-}
-
-@inproceedings{jia_efficient_2019,
- title = {Towards {{Efficient Data Valuation Based}} on the {{Shapley Value}}},
- booktitle = {Proceedings of the 22nd {{International Conference}} on {{Artificial Intelligence}} and {{Statistics}}},
- author = {Jia, Ruoxi and Dao, David and Wang, Boxin and Hubis, Frances Ann and Hynes, Nick and G{\"u}rel, Nezihe Merve and Li, Bo and Zhang, Ce and Song, Dawn and Spanos, Costas J.},
- year = {2019},
- month = apr,
- pages = {1167--1176},
- publisher = {{PMLR}},
- issn = {2640-3498},
- url = {http://proceedings.mlr.press/v89/jia19a.html},
- urldate = {2021-02-12},
- abstract = {``How much is my data worth?'' is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits...},
- langid = {english},
- keywords = {notion}
-}
-
-@article{jia_efficient_2019a,
- title = {Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms},
- shorttitle = {{{VLDB}} 2019},
- author = {Jia, Ruoxi and Dao, David and Wang, Boxin and Hubis, Frances Ann and Gurel, Nezihe Merve and Li, Bo and Zhang, Ce and Spanos, Costas and Song, Dawn},
- year = {2019},
- month = jul,
- journal = {Proceedings of the VLDB Endowment},
- volume = {12},
- number = {11},
- pages = {1610--1623},
- issn = {2150-8097},
- doi = {10.14778/3342263.3342637},
- url = {https://doi.org/10.14778/3342263.3342637},
- urldate = {2021-02-12},
- abstract = {Given a data set D containing millions of data points and a data consumer who is willing to pay for \$X to train a machine learning (ML) model over D, how should we distribute this \$X to each data point to reflect its "value"? In this paper, we define the "relative value of data" via the Shapley value, as it uniquely possesses properties with appealing real-world interpretations, such as fairness, rationality and decentralizability. For general, bounded utility functions, the Shapley value is known to be challenging to compute: to get Shapley values for all N data points, it requires O(2N) model evaluations for exact computation and O(N log N) for ({$\epsilon$}, {$\delta$})-approximation. In this paper, we focus on one popular family of ML models relying on K-nearest neighbors (KNN). The most surprising result is that for unweighted KNN classifiers and regressors, the Shapley value of all N data points can be computed, exactly, in O(N log N) time - an exponential improvement on computational complexity! Moreover, for ({$\epsilon$}, {$\delta$})-approximation, we are able to develop an algorithm based on Locality Sensitive Hashing (LSH) with only sublinear complexity O(Nh({$\epsilon$}, K) log N) when {$\epsilon$} is not too small and K is not too large. We empirically evaluate our algorithms on up to 10 million data points and even our exact algorithm is up to three orders of magnitude faster than the baseline approximation algorithm. The LSH-based approximation algorithm can accelerate the value calculation process even further. We then extend our algorithm to other scenarios such as (1) weighed KNN classifiers, (2) different data points are clustered by different data curators, and (3) there are data analysts providing computation who also requires proper valuation. Some of these extensions, although also being improved exponentially, are less practical for exact computation (e.g., O(NK) complexity for weigthed KNN). We thus propose an Monte Carlo approximation algorithm, which is O(N(log N)2/(log K)2) times more efficient than the baseline approximation algorithm.},
- langid = {english},
- keywords = {notion}
-}
-
-@inproceedings{koh_understanding_2017,
- title = {Understanding {{Black-box Predictions}} via {{Influence Functions}}},
- booktitle = {Proceedings of the 34th {{International Conference}} on {{Machine Learning}}},
- author = {Koh, Pang Wei and Liang, Percy},
- year = {2017},
- month = jul,
- eprint = {1703.04730},
- pages = {1885--1894},
- publisher = {{PMLR}},
- url = {https://proceedings.mlr.press/v70/koh17a.html},
- urldate = {2022-05-09},
- abstract = {How can we explain the predictions of a black-box model? In this paper, we use influence functions \textemdash{} a classic technique from robust statistics \textemdash{} to trace a model's prediction through the learning algorithm and back to its training data, thereby identifying training points most responsible for a given prediction. To scale up influence functions to modern machine learning settings, we develop a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. We show that even on non-convex and non-differentiable models where the theory breaks down, approximations to influence functions can still provide valuable information. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for multiple purposes: understanding model behavior, debugging models, detecting dataset errors, and even creating visually-indistinguishable training-set attacks.},
- archiveprefix = {arxiv},
- langid = {english},
- keywords = {notion}
-}
-
-@inproceedings{kwon_beta_2022,
- title = {Beta {{Shapley}}: A {{Unified}} and {{Noise-reduced Data Valuation Framework}} for {{Machine Learning}}},
- shorttitle = {Beta {{Shapley}}},
- booktitle = {Proceedings of the 25th {{International Conference}} on {{Artificial Intelligence}} and {{Statistics}} ({{AISTATS}}) 2022,},
- author = {Kwon, Yongchan and Zou, James},
- year = {2022},
- month = jan,
- volume = {151},
- eprint = {2110.14049},
- publisher = {{PMLR}},
- address = {{Valencia, Spain}},
- url = {http://arxiv.org/abs/2110.14049},
- urldate = {2022-04-06},
- abstract = {Data Shapley has recently been proposed as a principled framework to quantify the contribution of individual datum in machine learning. It can effectively identify helpful or harmful data points for a learning algorithm. In this paper, we propose Beta Shapley, which is a substantial generalization of Data Shapley. Beta Shapley arises naturally by relaxing the efficiency axiom of the Shapley value, which is not critical for machine learning settings. Beta Shapley unifies several popular data valuation methods and includes data Shapley as a special case. Moreover, we prove that Beta Shapley has several desirable statistical properties and propose efficient algorithms to estimate it. We demonstrate that Beta Shapley outperforms state-of-the-art data valuation methods on several downstream ML tasks such as: 1) detecting mislabeled training data; 2) learning with subsamples; and 3) identifying points whose addition or removal have the largest positive or negative impact on the model.},
- archiveprefix = {arxiv},
- langid = {english},
- keywords = {notion}
-}
-
-@inproceedings{okhrati_multilinear_2021,
- title = {A {{Multilinear Sampling Algorithm}} to {{Estimate Shapley Values}}},
- booktitle = {2020 25th {{International Conference}} on {{Pattern Recognition}} ({{ICPR}})},
- author = {Okhrati, Ramin and Lipani, Aldo},
- year = {2021},
- month = jan,
- eprint = {2010.12082},
- pages = {7992--7999},
- publisher = {{IEEE}},
- issn = {1051-4651},
- doi = {10.1109/ICPR48806.2021.9412511},
- url = {https://ieeexplore.ieee.org/abstract/document/9412511},
- abstract = {Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics.},
- archiveprefix = {arxiv},
- langid = {english},
- keywords = {notion}
-}
-
-@misc{schioppa_scaling_2021,
- title = {Scaling {{Up Influence Functions}}},
- author = {Schioppa, Andrea and Zablotskaia, Polina and Vilar, David and Sokolov, Artem},
- year = {2021},
- month = dec,
- number = {arXiv:2112.03052},
- eprint = {arXiv:2112.03052},
- publisher = {{arXiv}},
- doi = {10.48550/arXiv.2112.03052},
- url = {http://arxiv.org/abs/2112.03052},
- urldate = {2023-03-10},
- abstract = {We address efficient calculation of influence functions for tracking predictions back to the training data. We propose and analyze a new approach to speeding up the inverse Hessian calculation based on Arnoldi iteration. With this improvement, we achieve, to the best of our knowledge, the first successful implementation of influence functions that scales to full-size (language and vision) Transformer models with several hundreds of millions of parameters. We evaluate our approach on image classification and sequence-to-sequence tasks with tens to a hundred of millions of training examples. Our code will be available at https://github.com/google-research/jax-influence.},
- archiveprefix = {arxiv},
- keywords = {notion}
-}
-
-@inproceedings{schoch_csshapley_2022,
- title = {{{CS-Shapley}}: {{Class-wise Shapley Values}} for {{Data Valuation}} in {{Classification}}},
- shorttitle = {{{CS-Shapley}}},
- booktitle = {Proc. of the Thirty-Sixth {{Conference}} on {{Neural Information Processing Systems}} ({{NeurIPS}})},
- author = {Schoch, Stephanie and Xu, Haifeng and Ji, Yangfeng},
- year = {2022},
- month = oct,
- address = {{New Orleans, Louisiana, USA}},
- url = {https://openreview.net/forum?id=KTOcrOR5mQ9},
- urldate = {2022-11-23},
- abstract = {Data valuation, or the valuation of individual datum contributions, has seen growing interest in machine learning due to its demonstrable efficacy for tasks such as noisy label detection. In particular, due to the desirable axiomatic properties, several Shapley value approximations have been proposed. In these methods, the value function is usually defined as the predictive accuracy over the entire development set. However, this limits the ability to differentiate between training instances that are helpful or harmful to their own classes. Intuitively, instances that harm their own classes may be noisy or mislabeled and should receive a lower valuation than helpful instances. In this work, we propose CS-Shapley, a Shapley value with a new value function that discriminates between training instances' in-class and out-of-class contributions. Our theoretical analysis shows the proposed value function is (essentially) the unique function that satisfies two desirable properties for evaluating data values in classification. Further, our experiments on two benchmark evaluation tasks (data removal and noisy label detection) and four classifiers demonstrate the effectiveness of CS-Shapley over existing methods. Lastly, we evaluate the ``transferability'' of data values estimated from one classifier to others, and our results suggest Shapley-based data valuation is transferable for application across different models.},
- langid = {english},
- keywords = {notion}
-}
-
-@misc{wang_data_2022,
- title = {Data {{Banzhaf}}: {{A Robust Data Valuation Framework}} for {{Machine Learning}}},
- shorttitle = {Data {{Banzhaf}}},
- author = {Wang, Jiachen T. and Jia, Ruoxi},
- year = {2022},
- month = oct,
- number = {arXiv:2205.15466},
- eprint = {arXiv:2205.15466},
- publisher = {{arXiv}},
- doi = {10.48550/arXiv.2205.15466},
- url = {http://arxiv.org/abs/2205.15466},
- urldate = {2022-10-28},
- abstract = {This paper studies the robustness of data valuation to noisy model performance scores. Particularly, we find that the inherent randomness of the widely used stochastic gradient descent can cause existing data value notions (e.g., the Shapley value and the Leave-one-out error) to produce inconsistent data value rankings across different runs. To address this challenge, we first pose a formal framework within which one can measure the robustness of a data value notion. We show that the Banzhaf value, a value notion originated from cooperative game theory literature, achieves the maximal robustness among all semivalues -- a class of value notions that satisfy crucial properties entailed by ML applications. We propose an algorithm to efficiently estimate the Banzhaf value based on the Maximum Sample Reuse (MSR) principle. We derive the lower bound sample complexity for Banzhaf value estimation, and we show that our MSR algorithm's sample complexity is close to the lower bound. Our evaluation demonstrates that the Banzhaf value outperforms the existing semivalue-based data value notions on several downstream ML tasks such as learning with weighted samples and noisy label detection. Overall, our study suggests that when the underlying ML algorithm is stochastic, the Banzhaf value is a promising alternative to the semivalue-based data value schemes given its computational advantage and ability to robustly differentiate data quality.},
- archiveprefix = {arxiv},
- keywords = {notion}
-}
-
-@inproceedings{wang_improving_2022,
- title = {Improving {{Cooperative Game Theory-based Data Valuation}} via {{Data Utility Learning}}},
- booktitle = {International {{Conference}} on {{Learning Representations}} ({{ICLR}} 2022). {{Workshop}} on {{Socially Responsible Machine Learning}}},
- author = {Wang, Tianhao and Yang, Yu and Jia, Ruoxi},
- year = {2022},
- month = apr,
- eprint = {2107.06336v2},
- publisher = {{arXiv}},
- doi = {10.48550/arXiv.2107.06336},
- url = {http://arxiv.org/abs/2107.06336v2},
- urldate = {2022-05-19},
- abstract = {The Shapley value (SV) and Least core (LC) are classic methods in cooperative game theory for cost/profit sharing problems. Both methods have recently been proposed as a principled solution for data valuation tasks, i.e., quantifying the contribution of individual datum in machine learning. However, both SV and LC suffer computational challenges due to the need for retraining models on combinatorially many data subsets. In this work, we propose to boost the efficiency in computing Shapley value or Least core by learning to estimate the performance of a learning algorithm on unseen data combinations. Theoretically, we derive bounds relating the error in the predicted learning performance to the approximation error in SV and LC. Empirically, we show that the proposed method can significantly improve the accuracy of SV and LC estimation.},
- archiveprefix = {arxiv},
- langid = {english},
- keywords = {notion}
-}
-
-@inproceedings{yan_if_2021,
- title = {If {{You Like Shapley Then You}}'ll {{Love}} the {{Core}}},
- booktitle = {Proceedings of the 35th {{AAAI Conference}} on {{Artificial Intelligence}}, 2021},
- author = {Yan, Tom and Procaccia, Ariel D.},
- year = {2021},
- month = may,
- volume = {6},
- pages = {5751--5759},
- publisher = {{Association for the Advancement of Artificial Intelligence}},
- address = {{Virtual conference}},
- doi = {10.1609/aaai.v35i6.16721},
- url = {https://ojs.aaai.org/index.php/AAAI/article/view/16721},
- urldate = {2021-04-23},
- abstract = {The prevalent approach to problems of credit assignment in machine learning \textemdash{} such as feature and data valuation\textemdash{} is to model the problem at hand as a cooperative game and apply the Shapley value. But cooperative game theory offers a rich menu of alternative solution concepts, which famously includes the core and its variants. Our goal is to challenge the machine learning community's current consensus around the Shapley value, and make a case for the core as a viable alternative. To that end, we prove that arbitrarily good approximations to the least core \textemdash{} a core relaxation that is always feasible \textemdash{} can be computed efficiently (but prove an impossibility for a more refined solution concept, the nucleolus). We also perform experiments that corroborate these theoretical results and shed light on settings where the least core may be preferable to the Shapley value.},
- copyright = {Copyright (c) 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.},
- langid = {english},
- keywords = {notion}
-}
diff --git a/docs/pydvl/index.rst b/docs/pydvl/index.rst
deleted file mode 100644
index 02a140baa..000000000
--- a/docs/pydvl/index.rst
+++ /dev/null
@@ -1,11 +0,0 @@
-API Reference
-=============
-
-.. automodule:: pydvl
- :members:
- :undoc-members:
-
-.. toctree::
- :glob:
-
- *
diff --git a/docs/requirements.txt b/docs/requirements.txt
deleted file mode 100644
index e69de29bb..000000000
diff --git a/docs/value/img/mclc-best-removal-10k-natural.svg b/docs/value/img/mclc-best-removal-10k-natural.svg
new file mode 100644
index 000000000..360e932f9
--- /dev/null
+++ b/docs/value/img/mclc-best-removal-10k-natural.svg
@@ -0,0 +1 @@
+0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Percentage Removal 0.970 0.975 0.980 0.985 0.990 0.995 Accuracy TMC Shapley Group Testing Shapley Least Core Leave One Out Random
\ No newline at end of file
diff --git a/docs/value/img/mclc-worst-removal-10k-natural.svg b/docs/value/img/mclc-worst-removal-10k-natural.svg
new file mode 100644
index 000000000..da04f1caa
--- /dev/null
+++ b/docs/value/img/mclc-worst-removal-10k-natural.svg
@@ -0,0 +1 @@
+0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Percentage Removal 0.990 0.992 0.994 0.996 0.998 Accuracy TMC Shapley Group Testing Shapley Least Core Leave One Out Random
\ No newline at end of file
diff --git a/docs/value/index.md b/docs/value/index.md
new file mode 100644
index 000000000..e9253a17c
--- /dev/null
+++ b/docs/value/index.md
@@ -0,0 +1,368 @@
+---
+title: Data valuation
+alias:
+ name: data-valuation
+ text: Basics of data valuation
+---
+
+# Data valuation
+
+!!! Note
+ If you want to jump right into the steps to compute values, skip ahead
+ to [Computing data values](#computing-data-values).
+
+**Data valuation** is the task of assigning a number to each element of a
+training set which reflects its contribution to the final performance of some
+model trained on it. Some methods attempt to be model-agnostic, but in most
+cases the model is an integral part of the method. In these cases, this number
+not an intrinsic property of the element of interest, but typically a function
+of three factors:
+
+1. The dataset $D$, or more generally, the distribution it was sampled
+ from (with this we mean that *value* would ideally be the (expected)
+ contribution of a data point to any random set $D$ sampled from the same
+ distribution).
+
+2. The algorithm $\mathcal{A}$ mapping the data $D$ to some estimator $f$
+ in a model class $\mathcal{F}$. E.g. MSE minimization to find the parameters
+ of a linear model.
+
+3. The performance metric of interest $u$ for the problem. When value depends on
+ a model, it must be measured in some way which uses it. E.g. the $R^2$ score or
+ the negative MSE over a test set.
+
+pyDVL collects algorithms for the computation of data values in this sense,
+mostly those derived from cooperative game theory. The methods can be found in
+the package [pydvl.value][pydvl.value] , with support from modules
+[pydvl.utils.dataset][pydvl.utils.dataset]
+and [pydvl.utils.utility][pydvl.utils.utility], as detailed below.
+
+!!! Warning
+ Be sure to read the section on
+ [the difficulties using data values][problems-of-data-values].
+
+There are three main families of methods for data valuation: game-theoretic,
+influence-based and intrinsic. As of v0.7.0 pyDVL supports the first two. Here,
+we focus on game-theoretic concepts and refer to the main documentation on the
+[influence funtion][the-influence-function] for the second.
+
+## Game theoretical methods
+
+The main contenders in game-theoretic approaches are [Shapley
+values](shapley.md]) [@ghorbani_data_2019], [@kwon_efficient_2021],
+[@schoch_csshapley_2022], their generalization to so-called
+[semi-values](semi-values.md) by [@kwon_beta_2022] and [@wang_data_2022],
+and [the Core](the-core.md) [@yan_if_2021]. All of these are implemented
+in pyDVL.
+
+In these methods, data points are considered players in a cooperative game
+whose outcome is the performance of the model when trained on subsets
+(*coalitions*) of the data, measured on a held-out **valuation set**. This
+outcome, or **utility**, must typically be computed for *every* subset of
+the training set, so that an exact computation is $\mathcal{O} (2^n)$ in the
+number of samples $n$, with each iteration requiring a full re-fitting of the
+model using a coalition as training set. Consequently, most methods involve
+Monte Carlo approximations, and sometimes approximate utilities which are
+faster to compute, e.g. proxy models [@wang_improving_2022] or constant-cost
+approximations like Neural Tangent Kernels [@wu_davinz_2022].
+
+The reasoning behind using game theory is that, in order to be useful, an
+assignment of value, dubbed **valuation function**, is usually required to
+fulfil certain requirements of consistency and "fairness". For instance, in some
+applications value should not depend on the order in which data are considered,
+or it should be equal for samples that contribute equally to any subset of the
+data (of equal size). When considering aggregated value for (sub-)sets of data
+there are additional desiderata, like having a value function that does not
+increase with repeated samples. Game-theoretic methods are all rooted in axioms
+that by construction ensure different desiderata, but despite their practical
+usefulness, none of them are either necessary or sufficient for all
+applications. For instance, SV methods try to equitably distribute all value
+among all samples, failing to identify repeated ones as unnecessary, with e.g. a
+zero value.
+
+
+## Applications of data valuation
+
+Many applications are touted for data valuation, but the results can be
+inconsistent. Values have a strong dependency on the training procedure and the
+performance metric used. For instance, accuracy is a poor metric for imbalanced
+sets and this has a stark effect on data values. Some models exhibit great
+variance in some regimes and this again has a detrimental effect on values.
+
+Nevertheless, some of the most promising applications are:
+
+* Cleaning of corrupted data.
+* Pruning unnecessary or irrelevant data.
+* Repairing mislabeled data.
+* Guiding data acquisition and annotation (active learning).
+* Anomaly detection and model debugging and interpretation.
+
+Additionally, one of the motivating applications for the whole field is that of
+data markets: a marketplace where data owners can sell their data to interested
+parties. In this setting, data valuation can be key component to determine the
+price of data. Algorithm-agnostic methods like LAVA [@just_lava_2023] are
+particularly well suited for this, as they use the Wasserstein distance between
+a vendor's data and the buyer's to determine the value of the former.
+
+However, this is a complex problem which can face practical banal problems like
+the fact that data owners may not wish to disclose their data for valuation.
+
+
+## Computing data values
+
+Using pyDVL to compute data values is a simple process that can be broken down
+into three steps:
+
+1. Creating a [Dataset][pydvl.utils.dataset.Dataset] object from your data.
+2. Creating a [Utility][pydvl.utils.utility.Utility] which ties your model to
+ the dataset and a [scoring function][pydvl.utils.utility.Scorer].
+3. Computing values with a method of your choice, e.g. via
+ [compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values].
+
+### Creating a Dataset
+
+The first item in the tuple $(D, \mathcal{A}, u)$ characterising data value is
+the dataset. The class [Dataset][pydvl.utils.dataset.Dataset] is a simple
+convenience wrapper for the train and test splits that is used throughout pyDVL.
+The test set will be used to evaluate a scoring function for the model.
+
+It can be used as follows:
+
+```python
+import numpy as np
+from pydvl.utils import Dataset
+from sklearn.model_selection import train_test_split
+X, y = np.arange(100).reshape((50, 2)), np.arange(50)
+X_train, X_test, y_train, y_test = train_test_split(
+ X, y, test_size=0.5, random_state=16
+)
+dataset = Dataset(X_train, X_test, y_train, y_test)
+```
+
+It is also possible to construct Datasets from sklearn toy datasets for
+illustrative purposes using [from_sklearn][pydvl.utils.dataset.Dataset.from_sklearn].
+
+#### Grouping data
+
+Be it because data valuation methods are computationally very expensive, or
+because we are interested in the groups themselves, it can be often useful or
+necessary to group samples to valuate them together.
+[GroupedDataset][pydvl.utils.dataset.GroupedDataset] provides an alternative to
+[Dataset][pydvl.utils.dataset.Dataset] with the same interface which allows this.
+
+You can see an example in action in the
+[Spotify notebook](../examples/shapley_basic_spotify), but here's a simple
+example grouping a pre-existing `Dataset`. First we construct an array mapping
+each index in the dataset to a group, then use
+[from_dataset][pydvl.utils.dataset.GroupedDataset.from_dataset]:
+
+```python
+import numpy as np
+from pydvl.utils import GroupedDataset
+
+# Randomly assign elements to any one of num_groups:
+data_groups = np.random.randint(0, num_groups, len(dataset))
+grouped_dataset = GroupedDataset.from_dataset(dataset, data_groups)
+```
+
+### Creating a Utility
+
+In pyDVL we have slightly overloaded the name "utility" and use it to refer to
+an object that keeps track of all three items in $(D, \mathcal{A}, u)$. This
+will be an instance of [Utility][pydvl.utils.utility.Utility] which, as mentioned,
+is a convenient wrapper for the dataset, model and scoring function used for
+valuation methods.
+
+Here's a minimal example:
+
+```python
+import sklearn as sk
+from pydvl.utils import Dataset, Utility
+
+dataset = Dataset.from_sklearn(sk.datasets.load_iris())
+model = sk.svm.SVC()
+utility = Utility(model, dataset)
+```
+
+The object `utility` is a callable that data valuation methods will execute with
+different subsets of training data. Each call will retrain the model on a subset
+and evaluate it on the test data using a scoring function. By default,
+[Utility][pydvl.utils.utility.Utility] will use `model.score()`, but it is
+possible to use any scoring function (greater values must be better). In
+particular, the constructor accepts the same types as argument as
+[sklearn.model_selection.cross_validate][]: a string, a scorer callable or
+[None][] for the default.
+
+```python
+utility = Utility(model, dataset, "explained_variance")
+```
+
+`Utility` will wrap the `fit()` method of the model to cache its results. This
+greatly reduces computation times of Monte Carlo methods. Because of how caching
+is implemented, it is important not to reuse `Utility` objects for different
+datasets. You can read more about [setting up the cache][setting-up-the-cache]
+in the installation guide and the documentation
+of the [caching][pydvl.utils.caching] module.
+
+#### Using custom scorers
+
+The `scoring` argument of [Utility][pydvl.utils.utility.Utility] can be used to
+specify a custom [Scorer][pydvl.utils.utility.Scorer] object. This is a simple
+wrapper for a callable that takes a model, and test data and returns a score.
+
+More importantly, the object provides information about the range of the score,
+which is used by some methods by estimate the number of samples necessary, and
+about what default value to use when the model fails to train.
+
+!!! Note
+ The most important property of a `Scorer` is its default value. Because many
+ models will fail to fit on small subsets of the data, it is important to
+ provide a sensible default value for the score.
+
+It is possible to skip the construction of the [Scorer][pydvl.utils.utility.Scorer]
+when constructing the `Utility` object. The two following calls are equivalent:
+
+```python
+from pydvl.utils import Utility, Scorer
+
+utility = Utility(
+ model, dataset, "explained_variance", score_range=(-np.inf, 1), default_score=0.0
+)
+utility = Utility(
+ model, dataset, Scorer("explained_variance", range=(-np.inf, 1), default=0.0)
+)
+```
+
+#### Learning the utility
+
+Because each evaluation of the utility entails a full retrain of the model with
+a new subset of the training set, it is natural to try to learn this mapping
+from subsets to scores. This is the idea behind **Data Utility Learning (DUL)**
+[@wang_improving_2022] and in pyDVL it's as simple as wrapping the
+`Utility` inside [DataUtilityLearning][pydvl.utils.utility.DataUtilityLearning]:
+
+```python
+from pydvl.utils import Utility, DataUtilityLearning, Dataset
+from sklearn.linear_model import LinearRegression, LogisticRegression
+from sklearn.datasets import load_iris
+
+dataset = Dataset.from_sklearn(load_iris())
+u = Utility(LogisticRegression(), dataset, enable_cache=False)
+training_budget = 3
+wrapped_u = DataUtilityLearning(u, training_budget, LinearRegression())
+
+# First 3 calls will be computed normally
+for i in range(training_budget):
+ _ = wrapped_u((i,))
+# Subsequent calls will be computed using the fit model for DUL
+wrapped_u((1, 2, 3))
+```
+
+As you can see, all that is required is a model to learn the utility itself and
+the fitting and using of the learned model happens behind the scenes.
+
+There is a longer example with an investigation of the results achieved by DUL
+in [a dedicated notebook](../examples/shapley_utility_learning).
+
+### Leave-One-Out values
+
+LOO is the simplest approach to valuation. It assigns to each sample its
+*marginal utility* as value:
+
+$$v_u(i) = u(D) − u(D_{-i}).$$
+
+For notational simplicity, we consider the valuation function as defined over
+the indices of the dataset $D$, and $i \in D$ is the index of the sample,
+$D_{-i}$ is the training set without the sample $x_i$, and $u$ is the utility
+function.
+
+For the purposes of data valuation, this is rarely useful beyond serving as a
+baseline for benchmarking. Although in some benchmarks it can perform
+astonishingly well on occasion. One particular weakness is that it does not
+necessarily correlate with an intrinsic value of a sample: since it is a
+marginal utility, it is affected by diminishing returns. Often, the training set
+is large enough for a single sample not to have any significant effect on
+training performance, despite any qualities it may possess. Whether this is
+indicative of low value or not depends on each one's goals and definitions, but
+other methods are typically preferable.
+
+```python
+from pydvl.value.loo import compute_loo
+
+values = compute_loo(utility, n_jobs=-1)
+```
+
+The return value of all valuation functions is an object of type
+[ValuationResult][pydvl.value.result.ValuationResult]. This can be iterated over,
+indexed with integers, slices and Iterables, as well as converted to a
+[pandas.DataFrame][].
+
+
+## Problems of data values
+
+There are a number of factors that affect how useful values can be for your
+project. In particular, regression can be especially tricky, but the particular
+nature of every (non-trivial) ML problem can have an effect:
+
+* **Unbounded utility**: Choosing a scorer for a classifier is simple: accuracy
+ or some F-score provides a bounded number with a clear interpretation. However,
+ in regression problems most scores, like $R^2$, are not bounded because
+ regressors can be arbitrarily bad. This leads to great variability in the
+ utility for low sample sizes, and hence unreliable Monte Carlo approximations
+ to the values. Nevertheless, in practice it is only the ranking of samples
+ that matters, and this tends to be accurate (wrt. to the true ranking) despite
+ inaccurate values.
+
+ ??? tip "Squashing scores"
+ pyDVL offers a dedicated [function
+ composition][pydvl.utils.score.compose_score] for scorer functions which
+ can be used to squash a score. The following is defined in module
+ [score][pydvl.utils.score]:
+ ```python
+ import numpy as np
+ from pydvl.utils import compose_score
+
+ def sigmoid(x: float) -> float:
+ return float(1 / (1 + np.exp(-x)))
+
+ squashed_r2 = compose_score("r2", sigmoid, "squashed r2")
+
+ squashed_variance = compose_score(
+ "explained_variance", sigmoid, "squashed explained variance"
+ )
+ ```
+ These squashed scores can prove useful in regression problems, but they
+ can also introduce issues in the low-value regime.
+
+* **High variance utility**: Classical applications of game theoretic value
+ concepts operate with deterministic utilities, but in ML we use an evaluation
+ of the model on a validation set as a proxy for the true risk. Even if the
+ utility *is* bounded, if it has high variance then values will also have high
+ variance, as will their Monte Carlo estimates. One workaround in pyDVL is to
+ configure the caching system to allow multiple evaluations of the utility for
+ every index set. A moving average is computed and returned once the standard
+ error is small, see [MemcachedConfig][pydvl.utils.config.MemcachedConfig].
+ [@wang_data_2022] prove that by relaxing one of the Shapley axioms
+ and considering the general class of semi-values, of which Shapley is an
+ instance, one can prove that a choice of constant weights is the best one can
+ do in a utility-agnostic setting. This method, dubbed *Data Banzhaf*, is
+ available in pyDVL as
+ [compute_banzhaf_semivalues][pydvl.value.semivalues.compute_banzhaf_semivalues].
+
+* **Data set size**: Computing exact Shapley values is NP-hard, and Monte Carlo
+ approximations can converge slowly. Massive datasets are thus impractical, at
+ least with [game-theoretical methods][game-theoretical-methods]. A workaround
+ is to group samples and investigate their value together. You can do this using
+ [GroupedDataset][pydvl.utils.dataset.GroupedDataset]. There is a fully
+ worked-out [example here](../examples/shapley_basic_spotify). Some algorithms
+ also provide different sampling strategies to reduce the variance, but due to a
+ no-free-lunch-type theorem, no single strategy can be optimal for all utilities.
+
+* **Model size**: Since every evaluation of the utility entails retraining the
+ whole model on a subset of the data, large models require great amounts of
+ computation. But also, they will effortlessly interpolate small to medium
+ datasets, leading to great variance in the evaluation of performance on the
+ dedicated validation set. One mitigation for this problem is cross-validation,
+ but this would incur massive computational cost. As of v.0.7.0 there are no
+ facilities in pyDVL for cross-validating the utility (note that this would
+ require cross-validating the whole value computation).
diff --git a/docs/value/notation.md b/docs/value/notation.md
new file mode 100644
index 000000000..f14ce6466
--- /dev/null
+++ b/docs/value/notation.md
@@ -0,0 +1,24 @@
+---
+title: Notation for valuation
+---
+
+# Notation for valuation
+
+The following notation is used throughout the documentation:
+
+Let $D = \{x_1, \ldots, x_n\}$ be a training set of $n$ samples.
+
+The utility function $u:\mathcal{D} \rightarrow \mathbb{R}$ maps subsets of $D$
+to real numbers.
+
+The value $v$ of the $i$-th sample in dataset $D$ wrt. utility $u$ is
+denoted as $v_u(x_i)$ or simply $v(i)$.
+
+For any $S \subseteq D$, we donote by $S_{-i}$ the set of samples in $D$
+excluding $x_i$, and $S_{+i}$ denotes the set $S$ with $x_i$ added.
+
+The marginal utility of adding sample $x_i$ to a subset $S$ is denoted as
+$\delta(i) := u(S_{+i}) - u(S)$.
+
+The set $D_{-i}^{(k)}$ contains all subsets of $D$ of size $k$ that do not
+include sample $x_i$.
diff --git a/docs/value/semi-values.md b/docs/value/semi-values.md
new file mode 100644
index 000000000..2aebe0d80
--- /dev/null
+++ b/docs/value/semi-values.md
@@ -0,0 +1,150 @@
+---
+title: Semi-values
+---
+
+# Semi-values
+
+SV is a particular case of a more general concept called semi-value, which is a
+generalization to different weighting schemes. A **semi-value** is any valuation
+function with the form:
+
+$$
+v_\text{semi}(i) = \sum_{i=1}^n w(k)
+\sum_{S \subset D_{-i}^{(k)}} [u(S_{+i}) - u(S)],
+$$
+
+where the coefficients $w(k)$ satisfy the property:
+
+$$\sum_{k=1}^n w(k) = 1,$$
+
+the set $D_{-i}^{(k)}$ contains all subsets of $D$ of size $k$ that do not
+include sample $x_i$, $S_{+i}$ is the set $S$ with $x_i$ added, and $u$ is the
+utility function.
+
+Two instances of this are **Banzhaf indices** [@wang_data_2022],
+and **Beta Shapley** [@kwon_beta_2022], with better numerical and
+rank stability in certain situations.
+
+!!! Note
+ Shapley values are a particular case of semi-values and can therefore also
+ be computed with the methods described here. However, as of version 0.7.0,
+ we recommend using
+ [compute_shapley_values][pydvl.value.shapley.compute_shapley_values]
+ instead, in particular because it implements truncation policies for TMCS.
+
+
+## Beta Shapley
+
+For some machine learning applications, where the utility is typically the
+performance when trained on a set $S \subset D$, diminishing returns are often
+observed when computing the marginal utility of adding a new data point.
+
+Beta Shapley is a weighting scheme that uses the Beta function to place more
+weight on subsets deemed to be more informative. The weights are defined as:
+
+$$
+w(k) := \frac{B(k+\beta, n-k+1+\alpha)}{B(\alpha, \beta)},
+$$
+
+where $B$ is the [Beta function](https://en.wikipedia.org/wiki/Beta_function),
+and $\alpha$ and $\beta$ are parameters that control the weighting of the
+subsets. Setting both to 1 recovers Shapley values, and setting $\alpha = 1$,
+and $\beta = 16$ is reported in [@kwon_beta_2022] to be a good choice for some
+applications. Beta Shapley values are available in pyDVL through
+[compute_beta_shapley_semivalues][pydvl.value.semivalues.compute_beta_shapley_semivalues]:
+
+```python
+from pydvl.value import *
+
+utility = Utility(model, data)
+values = compute_beta_shapley_semivalues(
+ u=utility, done=AbsoluteStandardError(threshold=1e-4), alpha=1, beta=16
+)
+```
+
+See however the [Banzhaf indices][banzhaf-indices] section
+for an alternative choice of weights which is reported to work better.
+
+## Banzhaf indices
+
+As noted in the section [Problems of Data Values][problems-of-data-values], the
+Shapley value can be very sensitive to variance in the utility function. For
+machine learning applications, where the utility is typically the performance
+when trained on a set $S \subset D$, this variance is often largest for smaller
+subsets $S$. It is therefore reasonable to try reducing the relative
+contribution of these subsets with adequate weights.
+
+One such choice of weights is the Banzhaf index, which is defined as the
+constant:
+
+$$w(k) := 2^{n-1},$$
+
+for all set sizes $k$. The intuition for picking a constant weight is that for
+any choice of weight function $w$, one can always construct a utility with
+higher variance where $w$ is greater. Therefore, in a worst-case sense, the best
+one can do is to pick a constant weight.
+
+The authors of [@wang_data_2022] show that Banzhaf indices are more robust to
+variance in the utility function than Shapley and Beta Shapley values. They are
+available in pyDVL through
+[compute_banzhaf_semivalues][pydvl.value.semivalues.compute_banzhaf_semivalues]:
+
+```python
+from pydvl.value import *
+
+utility = Utility(model, data)
+values = compute_banzhaf_semivalues(
+ u=utility, done=AbsoluteStandardError(threshold=1e-4), alpha=1, beta=16
+)
+```
+
+## General semi-values
+
+As explained above, both Beta Shapley and Banzhaf indices are special cases of
+semi-values. In pyDVL we provide a general method for computing these with any
+combination of the three ingredients that define a semi-value:
+
+- A utility function $u$.
+- A sampling method
+- A weighting scheme $w$.
+
+You can construct any combination of these three ingredients with
+[compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues].
+The utility function is the same as for Shapley values, and the sampling method
+can be any of the types defined in [the samplers module][pydvl.value.sampler].
+For instance, the following snippet is equivalent to the above:
+
+```python
+from pydvl.value import *
+
+data = Dataset(...)
+utility = Utility(model, data)
+values = compute_generic_semivalues(
+ sampler=PermutationSampler(data.indices),
+ u=utility,
+ coefficient=beta_coefficient(alpha=1, beta=16),
+ done=AbsoluteStandardError(threshold=1e-4),
+)
+```
+
+Allowing any coefficient can help when experimenting with models which are more
+sensitive to changes in training set size. However, Data Banzhaf indices are
+proven to be the most robust to variance in the utility function, in the sense
+of rank stability, across a range of models and datasets [@wang_data_2022].
+
+!!! warning "Careful with permutation sampling"
+ This generic implementation of semi-values allowing for any combination of
+ sampling and weighting schemes is very flexible and, in principle, it
+ recovers the original Shapley value, so that
+ [compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values]
+ is no longer necessary. However, it loses the optimization in permutation
+ sampling that reuses the utility computation from the last iteration when
+ iterating over a permutation. This doubles the computation requirements (and
+ slightly increases variance) when using permutation sampling, unless [the
+ cache](getting-started/installation.md#setting-up-the-cache) is enabled.
+ In addition, as mentioned above,
+ [truncation policies][pydvl.value.shapley.truncated.TruncationPolicy] are
+ not supported by this generic implementation (as of v0.7.0). For these
+ reasons it is preferable to use
+ [compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values]
+ whenever not computing other semi-values.
diff --git a/docs/value/shapley.md b/docs/value/shapley.md
new file mode 100644
index 000000000..77af2ae2b
--- /dev/null
+++ b/docs/value/shapley.md
@@ -0,0 +1,221 @@
+---
+title: Shapley value
+---
+
+## Shapley value
+
+The Shapley method is an approach to compute data values originating in
+cooperative game theory. Shapley values are a common way of assigning payoffs to
+each participant in a cooperative game (i.e. one in which players can form
+coalitions) in a way that ensures that certain axioms are fulfilled.
+
+pyDVL implements several methods for the computation and approximation of
+Shapley values. They can all be accessed via the facade function
+[compute_shapley_values][pydvl.value.shapley.compute_shapley_values].
+The supported methods are enumerated in
+[ShapleyMode][pydvl.value.shapley.ShapleyMode].
+
+Empirically, the most useful method is the so-called *Truncated Monte Carlo
+Shapley* [@ghorbani_data_2019], which is a Monte Carlo approximation of the
+[permutation Shapley value][permutation-shapley].
+
+
+### Combinatorial Shapley
+
+The first algorithm is just a verbatim implementation of the definition. As such
+it returns as exact a value as the utility function allows (see what this means
+in [Problems of Data Values][problems-of-data-values]).
+
+The value $v$ of the $i$-th sample in dataset $D$ wrt. utility $u$ is computed
+as a weighted sum of its marginal utility wrt. every possible coalition of
+training samples within the training set:
+
+$$
+v(i) = \frac{1}{n} \sum_{S \subseteq D_{-i}}
+\binom{n-1}{ | S | }^{-1} [u(S_{+i}) − u(S)]
+,$$
+
+where $D_{-i}$ denotes the set of samples in $D$ excluding $x_i$, and $S_{+i}$
+denotes the set $S$ with $x_i$ added.
+
+```python
+from pydvl.value import compute_shapley_values
+
+values = compute_shapley_values(utility, mode="combinatorial_exact")
+df = values.to_dataframe(column='value')
+```
+
+We can convert the return value to a
+[pandas.DataFrame][].
+and name the column with the results as `value`. Please refer to the
+documentation in [shapley][pydvl.value.shapley] and
+[ValuationResult][pydvl.value.result.ValuationResult] for more information.
+
+### Monte Carlo Combinatorial Shapley
+
+Because the number of subsets $S \subseteq D_{-i}$ is
+$2^{ | D | - 1 }$, one typically must resort to approximations. The simplest
+one is done via Monte Carlo sampling of the powerset $\mathcal{P}(D)$. In pyDVL
+this simple technique is called "Monte Carlo Combinatorial". The method has very
+poor converge rate and others are preferred, but if desired, usage follows the
+same pattern:
+
+```python
+from pydvl.value import compute_shapley_values, MaxUpdates
+
+values = compute_shapley_values(
+ utility, mode="combinatorial_montecarlo", done=MaxUpdates(1000)
+)
+df = values.to_dataframe(column='cmc')
+```
+
+The DataFrames returned by most Monte Carlo methods will contain approximate
+standard errors as an additional column, in this case named `cmc_stderr`.
+
+Note the usage of the object [MaxUpdates][pydvl.value.stopping.MaxUpdates] as the
+stop condition. This is an instance of a
+[StoppingCriterion][pydvl.value.stopping.StoppingCriterion]. Other examples are
+[MaxTime][pydvl.value.stopping.MaxTime] and
+[AbsoluteStandardError][pydvl.value.stopping.AbsoluteStandardError].
+
+
+### Owen sampling
+
+**Owen Sampling** [@okhrati_multilinear_2021] is a practical algorithm based on
+the combinatorial definition. It uses a continuous extension of the utility from
+$\{0,1\}^n$, where a 1 in position $i$ means that sample $x_i$ is used to train
+the model, to $[0,1]^n$. The ensuing expression for Shapley value uses
+integration instead of discrete weights:
+
+$$
+v_u(i) = \int_0^1 \mathbb{E}_{S \sim P_q(D_{-i})} [u(S_{+i}) - u(S)].
+$$
+
+Using Owen sampling follows the same pattern as every other method for Shapley
+values in pyDVL. First construct the dataset and utility, then call
+[compute_shapley_values][pydvl.value.shapley.compute_shapley_values]:
+
+```python
+from pydvl.value import compute_shapley_values
+
+values = compute_shapley_values(
+ u=utility, mode="owen", n_iterations=4, max_q=200
+)
+```
+
+There are more details on Owen sampling, and its variant *Antithetic Owen
+Sampling* in the documentation for the function doing the work behind the scenes:
+[owen_sampling_shapley][pydvl.value.shapley.owen.owen_sampling_shapley].
+
+Note that in this case we do not pass a
+[StoppingCriterion][pydvl.value.stopping.StoppingCriterion] to the function, but
+instead the number of iterations and the maximum number of samples to use in the
+integration.
+
+### Permutation Shapley
+
+An equivalent way of computing Shapley values (`ApproShapley`) appeared in
+[@castro_polynomial_2009] and is the basis for the method most often used in
+practice. It uses permutations over indices instead of subsets:
+
+$$
+v_u(x_i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)}
+[u(\sigma_{:i} \cup \{x_i\}) − u(\sigma_{:i})],
+$$
+
+where $\sigma_{:i}$ denotes the set of indices in permutation sigma before the
+position where $i$ appears. To approximate this sum (which has $\mathcal{O}(n!)$
+terms!) one uses Monte Carlo sampling of permutations, something which has
+surprisingly low sample complexity. One notable difference wrt. the
+combinatorial approach above is that the approximations always fulfill the
+efficiency axiom of Shapley, namely $\sum_{i=1}^n \hat{v}_i = u(D)$ (see
+[@castro_polynomial_2009], Proposition 3.2).
+
+By adding two types of early stopping, the result is the so-called **Truncated
+Monte Carlo Shapley** [@ghorbani_data_2019], which is efficient enough to be
+useful in applications. The first is simply a convergence criterion, of which
+there are [several to choose from][pydvl.value.stopping]. The second is a
+criterion to truncate the iteration over single permutations.
+[RelativeTruncation][pydvl.value.shapley.truncated.RelativeTruncation] chooses
+to stop iterating over samples in a permutation when the marginal utility
+becomes too small.
+
+```python
+from pydvl.value import compute_shapley_values, MaxUpdates, RelativeTruncation
+
+values = compute_shapley_values(
+ u=utility,
+ mode="permutation_montecarlo",
+ done=MaxUpdates(1000),
+ truncation=RelativeTruncation(utility, rtol=0.01)
+)
+```
+
+You can see this method in action in
+[this example](../../examples/shapley_basic_spotify/) using the Spotify dataset.
+
+### Exact Shapley for KNN
+
+It is possible to exploit the local structure of K-Nearest Neighbours to reduce
+the amount of subsets to consider: because no sample besides the K closest
+affects the score, most are irrelevant and it is possible to compute a value in
+linear time. This method was introduced by [@jia_efficient_2019a], and can be
+used in pyDVL with:
+
+```python
+from pydvl.utils import Dataset, Utility
+from pydvl.value import compute_shapley_values
+from sklearn.neighbors import KNeighborsClassifier
+
+model = KNeighborsClassifier(n_neighbors=5)
+data = Dataset(...)
+utility = Utility(model, data)
+values = compute_shapley_values(u=utility, mode="knn")
+```
+
+### Group testing
+
+An alternative approach introduced in [@jia_efficient_2019a] first approximates
+the differences of values with a Monte Carlo sum. With
+
+$$\hat{\Delta}_{i j} \approx v_i - v_j,$$
+
+one then solves the following linear constraint satisfaction problem (CSP) to
+infer the final values:
+
+$$
+\begin{array}{lll}
+\sum_{i = 1}^N v_i & = & U (D)\\
+| v_i - v_j - \hat{\Delta}_{i j} | & \leqslant &
+\frac{\varepsilon}{2 \sqrt{N}}
+\end{array}
+$$
+
+!!! Warning
+ We have reproduced this method in pyDVL for completeness and benchmarking,
+ but we don't advocate its use because of the speed and memory cost. Despite
+ our best efforts, the number of samples required in practice for convergence
+ can be several orders of magnitude worse than with e.g. TMCS. Additionally,
+ the CSP can sometimes turn out to be infeasible.
+
+Usage follows the same pattern as every other Shapley method, but with the
+addition of an `epsilon` parameter required for the solution of the CSP. It
+should be the same value used to compute the minimum number of samples required.
+This can be done with
+[num_samples_eps_delta][pydvl.value.shapley.gt.num_samples_eps_delta], but
+note that the number returned will be huge! In practice, fewer samples can be
+enough, but the actual number will strongly depend on the utility, in particular
+its variance.
+
+```python
+from pydvl.utils import Dataset, Utility
+from pydvl.value import compute_shapley_values
+
+model = ...
+data = Dataset(...)
+utility = Utility(model, data, score_range=(_min, _max))
+min_iterations = num_samples_eps_delta(epsilon, delta, n, utility.score_range)
+values = compute_shapley_values(
+ u=utility, mode="group_testing", n_iterations=min_iterations, eps=eps
+)
+```
diff --git a/docs/value/the-core.md b/docs/value/the-core.md
new file mode 100644
index 000000000..9c4e4bb3b
--- /dev/null
+++ b/docs/value/the-core.md
@@ -0,0 +1,138 @@
+---
+title: The Least Core for Data Valuation
+---
+
+# Core values
+
+The Shapley values define a fair way to distribute payoffs amongst all
+participants when they form a grand coalition. But they do not consider
+the question of stability: under which conditions do all participants
+form the grand coalition? Would the participants be willing to form
+the grand coalition given how the payoffs are assigned,
+or would some of them prefer to form smaller coalitions?
+
+The Core is another approach to computing data values originating
+in cooperative game theory that attempts to ensure this stability.
+It is the set of feasible payoffs that cannot be improved upon
+by a coalition of the participants.
+
+It satisfies the following 2 properties:
+
+- **Efficiency**:
+ The payoffs are distributed such that it is not possible
+ to make any participant better off
+ without making another one worse off.
+ $$\sum_{i\in D} v(i) = u(D)\,$$
+
+- **Coalitional rationality**:
+ The sum of payoffs to the agents in any coalition S is at
+ least as large as the amount that these agents could earn by
+ forming a coalition on their own.
+ $$\sum_{i \in S} v(i) \geq u(S), \forall S \subset D\,$$
+
+The second property states that the sum of payoffs to the agents
+in any subcoalition $S$ is at least as large as the amount that
+these agents could earn by forming a coalition on their own.
+
+## Least Core values
+
+Unfortunately, for many cooperative games the Core may be empty.
+By relaxing the coalitional rationality property by a subsidy $e \gt 0$,
+we are then able to find approximate payoffs:
+
+$$
+\sum_{i\in S} v(i) + e \geq u(S), \forall S \subset D, S \neq \emptyset \
+,$$
+
+The least core value $v$ of the $i$-th sample in dataset $D$ wrt.
+utility $u$ is computed by solving the following Linear Program:
+
+$$
+\begin{array}{lll}
+\text{minimize} & e & \\
+\text{subject to} & \sum_{i\in D} v(i) = u(D) & \\
+& \sum_{i\in S} v(i) + e \geq u(S) &, \forall S \subset D, S \neq \emptyset \\
+\end{array}
+$$
+
+## Exact Least Core
+
+This first algorithm is just a verbatim implementation of the definition.
+As such it returns as exact a value as the utility function allows
+(see what this means in Problems of Data Values][problems-of-data-values]).
+
+```python
+from pydvl.value import compute_least_core_values
+
+values = compute_least_core_values(utility, mode="exact")
+```
+
+## Monte Carlo Least Core
+
+Because the number of subsets $S \subseteq D \setminus \{i\}$ is
+$2^{ | D | - 1 }$, one typically must resort to approximations.
+
+The simplest approximation consists in using a fraction of all subsets for the
+constraints. [@yan_if_2021] show that a quantity of order
+$\mathcal{O}((n - \log \Delta ) / \delta^2)$ is enough to obtain a so-called
+$\delta$-*approximate least core* with high probability. I.e. the following
+property holds with probability $1-\Delta$ over the choice of subsets:
+
+$$
+\mathbb{P}_{S\sim D}\left[\sum_{i\in S} v(i) + e^{*} \geq u(S)\right]
+\geq 1 - \delta,
+$$
+
+where $e^{*}$ is the optimal least core subsidy.
+
+```python
+from pydvl.value import compute_least_core_values
+
+values = compute_least_core_values(
+ utility, mode="montecarlo", n_iterations=n_iterations
+)
+```
+
+!!! Note
+ Although any number is supported, it is best to choose `n_iterations` to be
+ at least equal to the number of data points.
+
+Because computing the Least Core values requires the solution of a linear and a
+quadratic problem *after* computing all the utility values, we offer the
+possibility of splitting the latter from the former. This is useful when running
+multiple experiments: use
+[mclc_prepare_problem][pydvl.value.least_core.montecarlo.mclc_prepare_problem] to prepare a
+list of problems to solve, then solve them in parallel with
+[lc_solve_problems][pydvl.value.least_core.common.lc_solve_problems].
+
+```python
+from pydvl.value.least_core import mclc_prepare_problem, lc_solve_problems
+
+n_experiments = 10
+problems = [mclc_prepare_problem(utility, n_iterations=n_iterations)
+ for _ in range(n_experiments)]
+values = lc_solve_problems(problems)
+```
+
+## Method comparison
+
+The TransferLab team reproduced the results of the original paper in a
+publication for the 2022 MLRC [@benmerzoug_re_2023].
+
+![Best sample removal on binary image
+classification](img/mclc-best-removal-10k-natural.svg){ align=left width=50% class=invertible}
+
+Roughly speaking, MCLC performs better in identifying **high value** points, as
+measured by best-sample removal tasks. In all other aspects, it performs worse
+or similarly to TMCS at comparable sample budgets. But using an equal number of
+subsets is more computationally expensive because of the need to solve large
+linear and quadratic optimization problems.
+
+
+![Worst sample removal on binary image
+classification](img/mclc-worst-removal-10k-natural.svg){ align=right width=50% class=invertible}
+
+For these reasons we recommend some variation of SV like TMCS for outlier
+detection, data cleaning and pruning, and perhaps MCLC for the selection of
+interesting points to be inspected for the improvement of data collection or
+model design.
diff --git a/docs_includes/abbreviations.md b/docs_includes/abbreviations.md
new file mode 100644
index 000000000..e0fa67a4c
--- /dev/null
+++ b/docs_includes/abbreviations.md
@@ -0,0 +1,15 @@
+*[CSP]: Constraint Satisfaction Problem
+*[GT]: Group Testing
+*[LC]: Least Core
+*[LOO]: Leave-One-Out
+*[MCLC]: Monte Carlo Least Core
+*[MCS]: Monte Carlo Shapley
+*[ML]: Machine Learning
+*[MLRC]: Machine Learning Reproducibility Challenge
+*[MSE]: Mean Squared Error
+*[SV]: Shapley Value
+*[TMCS]: Truncated Monte Carlo Shapley
+*[IF]: Influence Function
+*[iHVP]: inverse Hessian-vector product
+*[LiSSA]: Linear-time Stochastic Second-order Algorithm
+*[DUL]: Data Utility Learning
diff --git a/mkdocs.yml b/mkdocs.yml
new file mode 100644
index 000000000..51f24e756
--- /dev/null
+++ b/mkdocs.yml
@@ -0,0 +1,210 @@
+site_name: "pyDVL"
+site_dir: "docs_build"
+site_url: "https://aai-institute.github.io/pyDVL/"
+repo_name: "aai-institute/pyDVL"
+repo_url: "https://github.com/aai-institute/pyDVL"
+copyright: "Copyright © AppliedAI Institute gGmbH"
+remote_branch: gh-pages
+
+watch:
+ - src/pydvl
+ - notebooks
+
+hooks:
+ - build_scripts/copy_notebooks.py
+ - build_scripts/copy_changelog.py
+ - build_scripts/modify_binder_link.py
+
+plugins:
+ - autorefs
+ - glightbox:
+ touchNavigation: true
+ loop: false
+ effect: zoom
+ slide_effect: slide
+ width: 100%
+ height: auto
+ zoomable: true
+ draggable: true
+ skip_classes:
+ - custom-skip-class-name
+ auto_caption: true
+ caption_position: bottom
+ - macros
+ - mike:
+ canonical_version: stable
+ - search
+ - section-index
+ - alias:
+ use_relative_link: true
+ verbose: true
+ - gen-files:
+ scripts:
+ - build_scripts/generate_api_docs.py
+ - literate-nav:
+ nav_file: SUMMARY.md
+ implicit_index: false
+ tab_length: 2
+ - mknotebooks:
+ execute: false
+ enable_default_jupyter_cell_styling: false
+ tag_remove_configs:
+ remove_cell_tags:
+ - hide
+ remove_input_tags:
+ - hide-input
+ binder: true
+ binder_service_name: "gh"
+ binder_branch: "develop"
+ - mkdocstrings:
+ enable_inventory: true
+ handlers:
+ python:
+ import:
+ - https://docs.python.org/3/objects.inv
+ - https://numpy.org/doc/stable/objects.inv
+ - https://pandas.pydata.org/docs/objects.inv
+ - https://scikit-learn.org/stable/objects.inv
+ - https://pytorch.org/docs/stable/objects.inv
+ - https://pymemcache.readthedocs.io/en/latest/objects.inv
+ paths: [ src ] # search packages in the src folder
+ options:
+ docstring_style: google
+ docstring_section_style: spacy
+ line_length: 80
+ show_bases: true
+ members_order: source
+ show_submodules: false
+ show_signature_annotations: false
+ signature_crossrefs: true
+ merge_init_into_class: true
+ docstring_options:
+ ignore_init_summary: true
+ - bibtex:
+ bib_file: "docs/assets/pydvl.bib"
+ csl_file: "docs/assets/elsevier-harvard.csl"
+ cite_inline: true
+ - git-revision-date-localized:
+ enable_creation_date: true
+ type: iso_date
+ fallback_to_build_date: true
+
+theme:
+ name: material
+ custom_dir: docs/overrides
+ logo: assets/signet.svg
+ favicon: assets/signet.svg
+ icon:
+ repo: fontawesome/brands/github
+ features:
+ - content.code.annotate
+ - content.code.copy
+ - navigation.footer
+# - content.tooltips # insiders only
+# - navigation.indexes
+ - navigation.instant
+ - navigation.path
+# - navigation.sections
+# - navigation.tabs
+ - navigation.top
+ - navigation.tracking
+ - search.suggest
+ - search.highlight
+ - toc.follow
+ palette: # Palette toggle for light mode
+ - media: "(prefers-color-scheme: light)"
+ scheme: default
+ primary: teal
+ toggle:
+ icon: material/brightness-7
+ name: Switch to dark mode
+ # Palette toggle for dark mode
+ - media: "(prefers-color-scheme: dark)"
+ scheme: slate
+ primary: teal
+ toggle:
+ icon: material/brightness-4
+ name: Switch to light mode
+
+extra_css:
+ - css/extra.css
+ - css/neoteroi.css
+
+extra_javascript:
+ - javascripts/mathjax.js
+ - https://polyfill.io/v3/polyfill.min.js?features=es6
+ - https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
+
+extra:
+ transferlab:
+ website: https://transferlab.appliedai.de
+ data_valuation_review: https://transferlab.appliedai.de/reviews/data-valuation
+ copyright_link: https://appliedai-institute.de
+ version:
+ provider: mike
+ default: stable
+ social:
+ - icon: fontawesome/brands/github
+ link: https://github.com/aai-institute/pyDVL
+ - icon: fontawesome/brands/python
+ link: https://pypi.org/project/pyDVL/
+ - icon: fontawesome/brands/twitter
+ link: https://twitter.com/aai_transferlab
+ - icon: fontawesome/brands/linkedin
+ link: https://de.linkedin.com/company/appliedai-institute-for-europe-ggmbh
+
+markdown_extensions:
+ - abbr
+ - admonition
+ - attr_list
+ - footnotes
+ - markdown_captions
+ - md_in_html
+ - neoteroi.cards
+ - codehilite
+ - toc:
+ permalink: True
+ toc_depth: 3
+ - pymdownx.tabbed:
+ alternate_style: true
+ - pymdownx.emoji:
+ emoji_index: !!python/name:materialx.emoji.twemoji
+ emoji_generator: !!python/name:materialx.emoji.to_svg
+ - pymdownx.highlight:
+ anchor_linenums: true
+ pygments_lang_class: true
+ line_spans: __span
+ - pymdownx.arithmatex:
+ generic: true
+ - pymdownx.inlinehilite
+ - pymdownx.snippets:
+ auto_append:
+ - docs_includes/abbreviations.md
+ - pymdownx.superfences
+ - pymdownx.details
+
+nav:
+ - Home: index.md
+ - Getting Started:
+ - Installation: getting-started/installation.md
+ - First steps: getting-started/first-steps.md
+ - Data Valuation:
+ - Introduction: value/index.md
+ - Notation: value/notation.md
+ - Shapley Values: value/shapley.md
+ - Semi-values: value/semi-values.md
+ - The core: value/the-core.md
+ - Examples:
+ - Shapley values: examples/shapley_basic_spotify.ipynb
+ - KNN Shapley: examples/shapley_knn_flowers.ipynb
+ - Data utility learning: examples/shapley_utility_learning.ipynb
+ - Least Core: examples/least_core_basic.ipynb
+ - The Influence Function:
+ - Introduction: influence/index.md
+ - Examples:
+ - For CNNs: examples/influence_imagenet.ipynb
+ - For mislabeled data: examples/influence_synthetic.ipynb
+ - For outlier detection: examples/influence_wine.ipynb
+ - Code:
+ - Changelog: CHANGELOG.md
+ - API: api/pydvl/
diff --git a/notebooks/influence_imagenet.ipynb b/notebooks/influence_imagenet.ipynb
index d7494436a..bbc6e827f 100644
--- a/notebooks/influence_imagenet.ipynb
+++ b/notebooks/influence_imagenet.ipynb
@@ -333,52 +333,9 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eb973044c7634b2eb8ca3a1bc0b1a79f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Split Gradient: 0%| | 0/98 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a56ca4bccb724034a58eb32c2dd08859",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Conjugate gradient: 0%| | 0/98 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ddb9905c50c54ff7b8beab0d52e0e4da",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Split Gradient: 0%| | 0/707 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"influences = compute_influences(\n",
" model=mgr.model,\n",
diff --git a/notebooks/influence_synthetic.ipynb b/notebooks/influence_synthetic.ipynb
index 739226324..309ab0c24 100644
--- a/notebooks/influence_synthetic.ipynb
+++ b/notebooks/influence_synthetic.ipynb
@@ -1,6 +1,7 @@
{
"cells": [
{
+ "attachments": {},
"cell_type": "markdown",
"id": "6bd4dc3a",
"metadata": {},
@@ -33,6 +34,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "eaef59fe",
"metadata": {},
@@ -60,7 +62,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/Users/fabio/miniconda3/envs/data_shapley/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ "/Users/fabio/miniconda3/envs/pydvl_env/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
@@ -76,15 +78,23 @@
"import torch\n",
"import torch.nn.functional as F\n",
"import matplotlib.pyplot as plt\n",
- "from pydvl.influence.general import compute_influences\n",
- "from pydvl.influence.model_wrappers import TorchBinaryLogisticRegression\n",
- "from pydvl.utils.dataset import (\n",
+ "from pydvl.influence import compute_influences, TorchTwiceDifferentiable\n",
+ "from support.shapley import (\n",
" synthetic_classification_dataset,\n",
" decision_boundary_fixed_variance_2d,\n",
")\n",
- "from notebook_support import plot_dataset, plot_influences\n",
+ "from support.common import (\n",
+ " plot_gaussian_blobs,\n",
+ " plot_losses,\n",
+ " plot_influences,\n",
+ ")\n",
+ "from support.torch import (\n",
+ " fit_torch_model,\n",
+ " TorchLogisticRegression,\n",
+ ")\n",
"from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n",
- "from torch.optim import AdamW, lr_scheduler"
+ "from torch.optim import AdamW, lr_scheduler\n",
+ "from torch.utils.data import DataLoader"
]
},
{
@@ -101,6 +111,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "001696b5",
"metadata": {},
@@ -144,6 +155,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "99733a2f",
"metadata": {},
@@ -152,6 +164,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "6623665f",
"metadata": {},
@@ -175,6 +188,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "ebc8a087",
"metadata": {},
@@ -194,6 +208,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "ec223a74",
"metadata": {},
@@ -210,19 +225,17 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABagAAALYCAYAAACZoRUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddVhWyd8G8Hvo7hYQOzBQEezutbt17VjX7m7XtXbt7rVz7e7EViwURSUkpJF65v0Dfr66ipIe0PtzXVwrz5mZc5/H2PN8mTMjpJQgIiIiIiIiIiIiIvre1JQOQEREREREREREREQ/JxaoiYiIiIiIiIiIiEgRLFATERERERERERERkSJYoCYiIiIiIiIiIiIiRbBATURERERERERERESKYIGaiIiIiIiIiIiIiBTBAjURERERpZkQQgohOip4/uJCiGtCiPdCiBff6ZxOyddd6Xuc73v70a+PiIiIiLInFqiJiIiI6BNCiHXJhUophEgQQrwUQiwTQphnYMxKyeM5ZVLM2QDCARQGUDaFc47L5OL1KwC2AK5mdCAhxAkhxLoMJ/p83FVCiDOZPe5XzpfZ7zERERER/WRYoCYiIiKiLzmPpGKsE4DfAbQAsEHJQP9RAMBZKeULKWVgRgYSQmilpp2UMlFK6S+ljM/I+YiIiIiI6P+xQE1EREREXxKXXIx9LaXcB2ABgHpCCN0vNRZC2AohtgohQoUQMUKIM0II1+RjTkgqeAOAd/JM6jMpnfhbYwkhJIB8AKYkjzXpC2N0BTAVQO6PZoNPSj72QggxTQixRAgR/L9sQoiBQojbQohIIYR/cgbbj8b8ZAmMj75vLYQ4IISIFkI8Tz53ipJnTtcE0OWjbNWSj1knz2APFEJECCEuCiGqfNRXUwgxTwjxWggRK4TwE0JsTT42CUB3AFU/GjfFLMm5vZKXSbkEoMR/jgshxEohxLPk34fnQogZQgjtVLzH7YUQV4UQYUKIICHEQSFEwa+9L0RERET0c9JQOgARERER5QgxSJrc8Nn9oxBCANgLQBtAQwBhAMYBOC6EKICkpTGaANgHwC35+7gvnSSVY9kCuA5gM5IK55FfGGobkpb/6ID/XwLk43a/A5gHoPx/rmkYgGcAbADMBbAVQNUvZf3ILACjAAwC0A3AKiHEJSnlkxTaDwSQF4Bf8q8BICS5+H8awEMA9QGEAmiTfO0uUsqHAAYAaA2gI4DnAKwBVEweYw6SZpbnAdA8+bWwLwUQQpQCsAVJS6WsA+AM4K//NgPwFkB7AAFIKmAvBxAPYCK+/h5rA5gGwBOAEYDJAA4KIZyllF/8vSciIiKinxML1ERERET0VUKIogD6A7gqpYz4QpMaSCo8O0spPZP7dAbwAkA/KeUUIURIcttAKaX/V073zbEA+AshEgFEpjSWlDJGCBEJIDGFNtellJP+0+fjAq23EKI/gJtCiFxSyjdfybxISrk9Oet4JBWRqwP4YoFaShkmhIgDEPNxtuQZyUYA2kgpE5Jfni6EqAmgN5IK4LmTxz0rpZQAfJBUrIeUMlIIEYPk2e9fyQsAQwFckVKOTv7+sRDCDsDCj3KqAIz9qM8LIUQ+AP0ATPzaeyylXPvx98nXFoykQvbFb2QjIiIiop8Il/ggIiIioi+plrzURQyA+0iards+hbbOAIL/V1AGACllLJI2E3RO43kzc6yvufbfF4QQ1YQQR4UQr4QQEQAuJB/K/Y2xbv/vF1LKRCTNOrZOHnNM8vv4v6/KXxmnLJJmbod+3AdAZSTNjAaAtQCKA/ASSRtXthCpXEP7P4oCuPSf1y78t5EQomfyUh0ByVlm4tvvB4QQLkKIPUII7+T30if50Df7EhEREdHPhTOoiYiIiOhLrgLoAiABgO8PuCxD1MffCCEcARwCsBHAFABBAOwBnADwrQLwf98bif+fCLIMwPaPjn1tJrYakpb3aPaFY9EAIKW8LYTIA6A2kmZp/wVgqhCinJQy/Bs500QI0QrAYiQtX3IWQDiAVgCmf6OfHoBjSCp4/4qk5UEA4AG+/V4SERER0U+GBWoiIiIi+pIYKaVXKts+AGAuhCj60bIc2gDcASxJbvO/Iq56JoyVWnGpON//lAWgC2CQlDIm+bxl0ni+z0gpQwCEfOHQl7J5AOgMIFxK+fYrY0YC2ANgjxBiBpLWsq4K4N8Uxv0STwAV/vNaxf98XwXALSnlvP+9IJI2vPzWdRQBYAlgbPK62RBCVEDSmtZERERERJ/gEh9ERERElFGnkLRkxj9CiIpCiGIANgDQAbA0uc1LACoADYQQVkII4wyMlVreAGyEEOWFEBbJM3tT8hRJM5+HCiHyCCGaApiQxvOlNVsZIUS+5GyaSNr00RtJmwnWEUI4CSHchRCjk/NACDFcCNFBCOGcPJO6G4BE/P96194ACicft0gu7n/JfADlhRDThRAFhRDNkLQu9cceAyguhGiSnHMg/n/zxY+v47/v8UsAsQAGJPeriaSZ3jLd7xYRERER/bBYoCYiIiKiDEnerK8pgEcADiJp0z4bALWllEHJbQIAjEbSchF+APald6w02AtgR/I4gQBGfOUa7iJpc8PeSJpdPAxJmxJmlblIWkbkTnK2ilLK90iaCe2BpLWmnwDYjaRNI18m9wsHMATAZQD3kLQcSAsp5ePk46uR9J5dSh633ZdOLqW8gaQ1xdsmjzMKwOD/NFuOpCVP1gK4haRZ7JP+02Yv/vMeJ/8+dUTSMiQPAMxB0vup+vbbQkREREQ/G5H0GYCIiIiIiIiIiIiI6PviDGoiIiIiIiIiIiIiUgQL1ERERERERERERESkCBaoiYiIiIiIiIiIiEgRLFATERERERERERERkSJYoCYiIiIiIiIiIiIiRbBATURERERERERERESKYIGaiIiIiIiIiIiIiBTBAjURERERERERERERKYIFaiKin4AQoqsQIkHpHEREREREREREH2OBmogomxJCnBBCrMuk4bYByJVJYxERERER/dAy+V78f2OuEkKcycwxiYh+BBpKByAiovQTQmhJKeO+1U5KGQMg5jtEIiIiIiIiIiJKNc6gJiLKhpJna9QE0EUIIZO/uib/t4MQ4pAQIgrAVJFkpRDimRAiRgjxXAgxQwih/dF4nyzx8b/vhRAVhRA3hRDRQogbQoiy3/9qiYiIiIiyjxTuxasJIayFEOuEEIFCiAghxEUhRJWP+mkKIeYJIV4LIWKFEH5CiK3JxyYB6A6g6sf39wpcHhFRtsMZ1ERE2dNAAHkB+CX/GgCMkv/7B4CRAPonfy8AvAXQHkAAgBIAlgOIBzDxK+dQAzAzefxAAPMBbBdCFJBScr1qIiIiIvpZfelePAbAZQAPAdQHEAqgDYDjQggXKeVDAAMAtAbQEcBzANYAKib3nwOgAIA8AJonvxaW1RdCRJQTsEBNRJQNSSnDhBBxAGKklP4AIITQST68XEq5+T9dxn706xdCiHwA+uHrBWoBYJCU8mby+JMAXAGQD8DjjF8FEREREVHOk8K9eFckTRhp89FkjulCiJoAegMYBCA3gCcAzkopJQAfANeTx4wUQsQAiPvfmERElIQFaiKinOfaf18QQvQE0AOAEwB9JP37/q1lnCSAOx9975v8X2uwQE1ERERE9LGyAGwAhAohPn5dG/+/18taAMcBeAkhjif/+t/U7BlDRPQzY4GaiCjnifr4GyFEKwCLAYwCcBZAOIBWAKZ/YxyVlDLxo+9l8n+5PwERERER0afUkLS8R7MvHIsGACnlbSFEHgC1AVQH8BeS9owpJ6UM/25JiYhyGBaoiYiyrzgA6qloVwXALSnlvP+9IIRwyqpQREREREQ/gf/ei3sA6AwgXEr5NqVOUspIAHsA7BFCzEDSOtZVAfz7hTGJiAicJUdElJ15AygjhMgnhLAAoJlCu8cAigshmiS3HYj/33iFiIiIiIjS7r/34tuTXzsohKgjhHASQrgLIUYLIZoCgBBiuBCigxDCOXkmdTcAiUhal/p/YxZOPm4hhND+/pdFRJT9sEBNRJR9zQUQhKR1ogPx/zuA/9dyABuRtObdLQDuACZ9h3xERERERD+q/96Ll0HSTGgPJN13PwGwG4AbgJfJfcIBDAFwGcA9JC0H0kJK+b/9XVYjadPES8ljtvseF0JElN2JpI1liYiIiIiIiIiIiIi+L86gJiIiIiIiIiIiIiJFsEBNRERERERERERERIpggZqIiIiIiIiIiIiIFMECNREREREREREREREpggVqIiIiIiIiIiIiIlKEhtIB0svCwkI6OTkpHYOIiIiIcqAbN24ESSktlc6Rk/D+m4iIiIjS62v33zm2QO3k5AQPDw+lYxARERFRDiSEeKl0hpyG999ERERElF5fu//mEh9EREREREREREREpAgWqImIiIiIiIiIiIhIESxQExEREREREREREZEiWKAmIiIiIiIiIiIiIkWwQE1EREREREREREREimCBmoiIiIiIiIiIiIgUwQI1ERERERERERERESmCBWoiIiIiIiIiIiIiUgQL1ERERERERERERESkCBaoiYiIiIiIiIiIiEgRLFATERERERERERERkSJYoCYiIiIiIiIiIiIiRbBATURERERERERERESKYIGaiIiIiIiIiIiIiBTBAjURERERERERERERKSLbFKiFEDpCiGtCiDtCiAdCiMlKZyIiIiIiIiIiIiKirKOhdICPxAKoIaWMFEJoArgghDgspbyidDAiIiIiIiIiIiIiynzZpkAtpZQAIpO/1Uz+ksolIiIiIiIiIiIiIqKslG2W+AAAIYS6EOI2gLcAjkspryociYiIiIiIiIiIiIiySLYqUEspE6WULgDsAbgJIYp9fFwI0UsI4SGE8AgMDFQkIxERERERERERERFljmxVoP4fKWUogNMA6v3n9RVSSlcppaulpaUi2YiIiIiIiIiIiIgoc2SbArUQwlIIYZL8a10AtQE8UjQUEREREREREREREWWZbFOgBmAL4LQQ4i6A60hag/qAwpmIiIh+eMHBwdixYwdu3rypdBQiygRCCAchxGkhhKcQ4oEQYuAX2lQTQoQJIW4nf01QIisREdH3FhgYiB07duDOnTtKRyGiZBpKB/gfKeVdAKWUzkFERPQzCQ4ORnGX0hAm9oj09cLC+XPQuXMnpWMRUcYkABgqpbwphDAEcEMIcVxK6fmfduellA0VyEdERKQIf39/lCzlCg2L3Ih48wSrly9Bq1atlI5F9NPLTjOoiYiI6Ds7fvw4hIkDHJpPgG3d3/D3kuVKRyKiDJJS+kkpbyb/OgLAQwC5lE1FRESkvEOHDkHTphAcmk+Adc3eWLh0pdKRiAgsUBMREf3U8ubNi0g/L4Q+u4GIJxdRqGB+pSMRUSYSQjgh6SnFq184XF4IcUcIcVgI4fx9kxEREX1/+fLlQ+SbRwh7fhNRXpdRmPe+RNkCC9REREQ/MTc3N8ydNR06j/ajSmErLP57gdKRiCiTCCEMAOwCMEhKGf6fwzcB5JZSlgSwEMDeFMboJYTwEEJ4BAYGZmleIiKirFa1alVMmzgG2g/3oWbJ3Jj75x9KRyIiAEJKqXSGdHF1dZUeHh5KxyAiIiKiHEgIcUNK6ap0jqwihNAEcADAUSnlvFS0fwHAVUoZlFIb3n8TERERUXp97f6bM6iJiIiIiH4gQggBYDWAhykVp4UQNsntIIRwQ9LnguDvl5KIiIiIKImG0gGIiIiIiChTVQTQCcA9IcTt5NfGAHAEACnlMgAtAfQVQiQAiAHQVubURyuJiChNQkND8fr1axQsWBBaWlpKxyEiYoGaiIiIiOhHIqW8AEB8o80iAIu+TyIiIsourly5grr1f4G6jj5sLM1w5cI5GBkZKR2LiH5yXOKDiIiIiIiIiOgnMGnqDJhX6oQCPVfgnUofu3btUjoSEREL1EREREREREREPwNTUxPEv3uD+MgQJEQEw9jYWOlIREQsUBMRERERERER/Qzmzp4F6wRfPF3dH03rVUfTpk2VjkRExDWoiYiIiIiIiIh+BnZ2dvC4clHpGEREn+AMaiIiIiIiIiIiIiJSBAvURERERERERERERKQIFqiJiIiIiIiIiIiISBEsUBMRERERERERERGRIligJiIiIiIiIiIiIiJFsEBNRERERERERERERIpggZqIiIiIiIiIiIiIFMECNREREREREREREREpggVqIiIiIiIiIiIiIlIEC9REREREREREREREpAgWqImIiIiIiIiIiIhIESxQExEREREREREREZEiWKAmIiIiIiIiIiIiIkWwQE1EREREREREREREimCBmoiIiIiIiIiIiIgUwQI1ERERERERERERESmCBWoiIiIiIiIiIiIiUgQL1ERERERERERERESkCBaoiYiIiIiIiIiIiEgRLFATERERERERERERkSJYoCYiIiIiIiIiIiIiRbBATURERERERERERESKYIGaiIiIiIiIiIiIiBTBAjURERERERERERERKYIFaiIiIiIiIiIiIiJSBAvURERERERERERERKQIFqiJiIiIiIiIiIiISBEsUBMRERERERERERGRIligJiIiIiIiIiIiIiJFsEBNRERERERERERERIpggZqIiIiIiIiIiIiIFMECNREREREREREREREpggVqIiIiIiIiIiIiIlIEC9REREREREREREREpAgWqImIiIiIiIiIiIhIESxQExEREREREREREZEiWKAmIiIiIiIiIiIiIkWwQE1EREREREREREREimCBmoiIiIiIiIiIiIgUwQI1ERERERERERERESmCBWoiIiIiIiIiIiIiUgQL1ERERERERERERESkCBaoiYiIiIiIiIgoVS5duoT169fD399f6ShE9INggZqIiIgyzdGjRzF23DicOnVK6ShERERElMlWrVqN+k1aYOz8tShRqgwCAgKUjkREPwAWqImIiChT/Pvvv2jdoQvWn3+Bpi3b4sSJE0pHIiIiIqJMtHz1OtjW7g/7JqOhZZUPJ0+eVDoSEf0AWKAmIiKiTHHw8FGYlG4M+2qdYFyyPo4cPaZ0JCIiIiLKRM5FCyPM8xRCHl9G+OvHKFiwoNKRiOgHwAI1ERERZYqqlSsi/N5R+F/bj4gHJ1ClciWlIxERERFRJlq4YB5+cSsIC99zWPLXPLi6uiodiYh+ABpKByAiIqLvy8fHB+fPn4eLiwucnZ0zbdx27dpBpVLhxKkzqP/rfDRu3DjTxiYiIiIi5RkaGmLVimVKxyCiHwwL1ERERD+RJ0+ewK18RRg6Fkeo9x3s3rEVtWvXzrTxO3TogA4dOmTaeERERERERPRj4xIfREREP5E9e/bAoGAl5Go8EhaVOmDF6nVKRyIiIiIiIsp0jx8/xtatW+Hj46N0FPoGFqiJiIh+IgUKFEC0zx2EPbuJaK8rKFqYG9sQEREREdGP5fz583B1L4/hs5ahuEtpPHz4UOlI9BUsUBMREf1EmjVrhpED+0Lf6yBa16uEsWNGKx2JiIiIiIgoU61csw5m7q2Rq8loGBSphu3btysdib6Ca1ATERH9RIQQGDliOEaOGK50FCIiIiIioixRpFBBHL20A2HWeRH76h4KFGiudCT6Cs6gJiKin9rr169RqVoN2Dvlw5y585WOQ0RERERElCVCQkKwYsUK7Nq1CyqVSuk4WWrY0CFo06AqdB7uwYAeHdGuXTulI9FXcAY1ERGlma+vL4aPGoPwiEhMmTAWpUqVUjpSunXv1Rc+KmuY1mmBqbOmoWqVSihbtqzSsYiIiIiIiDJNTEwMyriVQ5xBLsS988OpM+eweOFfSsfKMpqamvh7/lylY1AqcQY1ERGlWYPGTXHuWRTuv7dCjdp1ERkZqXSkdPP184OeQzHo2eSDrqkNAgIClI5ERERERESUqe7du4fIeMChySjkajwS27gmc6Y4e/YsOnXthhkzZyE+Pl7pODkWC9RERJRmjzwfwLpiG1iVbQwpNODr66t0pHQbP3oE3hycC+8Ng2ChC9SoUUPpSEREGSKEcBBCnBZCeAohHgghBn6hjRBC/C2E8BJC3BVClFYiKxEREX0fTk5OiA0PxtsbhxB4bTeKFS+hdKQc79GjR2jUtDnO+2tjwdodGDGKG9CnFwvUREQ5xMmTJ2FpYwdDYxMsX7FC0SzNW7SEz85JeLVnGuztrJE3b15F82RE69atceemB3ZtXAmPq5ehp6endCQiooxKADBUSlkUQDkA/YUQRf/Tpj6AAslfvQAs/b4RiYgop5FSYuXKVejUtRt27dqldBxKIysrKxw5+C+KqPmgTnFb7Ny6WelIOd6tW7dg7FQCNu5NYe7eCmfPX1I6Uo7FNaiJiHKINu07wqLWb9A2tsLgIUPRonlzWFhYKJJl47o12LFjByIjI9GmTRtoaOTs/53kzZs3RxfZiYg+JqX0A+CX/OsIIcRDALkAeH7UrAmADVJKCeCKEMJECGGb3JdyKA8PD1hZWcHR0VHpKET0A1q5chVGT/kDRiXqYX/v32BgYIC6desqHYvSoEKFCji4f4/SMX4YFSpUQPjLAVCdWInYV3cxsHdXpSPlWDm7okBE9BOJiY6GtqkNNA1MIdTU8f79e8WyqKuro23btoqdn4iIUkcI4QSgFICr/zmUC8Crj75/nfzaJwVqIUQvJM2wZtEzm0tMTESHDh0QGhqKvXv3onz58kpHIqIfzNkLl2BUsgGsXX9BfEQQLl++zAI1/dRy586NKxfPY/v27ShYsAU/I2cAl/ggIsoh/vxjFp6uG4xHS3ugc6eOsLe3VzoSUbbn4+ODBo2aoGz5yjhy5IjScYi+KyGEAYBdAAZJKcPTM4aUcoWU0lVK6WppaZm5ASlTqaurY+/evTA0NES1atWwadMmpSMR0Q+mScP6CLm2E29Or0fY/ROoU6eO0pFyHB8fHxQrWRo6evro2q0HVCqV0pFyJD8/P5SvXBXmVjYYMmw4kh4IU0aRIkUwceJEtGvXDkIIxXLkdCxQExHlEP369YX3s6fwvHcbSxcvVDoOUY7QrFVb3A83QJhDNbRq2x4BAQFKRyL6LoQQmkgqTm+WUu7+QpM3ABw++t4++TXKhl69eoXz588jOjr6q+2KFCmCq1evokKFCujUqRNGjx7N4gf9lG7duoVcjk7Q0tbB8JHctCyztG7dGls3rEa36gVw5MA+VKhQQelIOc7gYSMRblIYzv3X4eCpi9i3b5/SkXKk3wcNxWtpBYc2M7F+624cPXpU6UiUQSxQExHlINbW1nzEmigNvJ8/g1mJWjAtXBFaesbw9fVVOhJRlhNJ03dWA3gopZyXQrP9ADqLJOUAhHH96ezp6NGjKFqsJFp26Y3iLqURFhb21fbm5uY4evQoevbsiVmzZqFFixaIjIz8TmmJsofuvfpC26UZig9Yj5Vr18PDw0PpSD+M+vXrY/LkyahYsaLSUXKkiIgIaBhZQUPXEBp6Rvz3OZ3eBgVB2zIPtE1toWVshaCgIKUjUQaxQE1EREQ/rN69esFn5yT4bBsLexsLFCtWTOlIRN9DRQCdANQQQtxO/moghOgjhOiT3OYQgOcAvACsBNBPoaz0DdP/mAObWr2Rp9N8xGiZ499///1mHy0tLSxfvhwLFizA/v37UalSJfj4+HyHtETZQ3RMDLQMzKCuow91LV3ExMQoHYkUpFKpEBoaqugyEP8zbfIEhFzchEdLf4W1nkTz5s2VjpQjTRo3GgGnV+HZmv4wEVFo0qSJ0pEog7hJIhEREf2wZkybgrq1ayIkJAT16tWDpqam0pGIspyU8gKAry6CKJM+pff/PokoI+xsbfD8+UNEWznhfcgbWFtbp6qfEAIDBw5EoUKF0KZNG7i5uWHPnj3cPJF+Cgvm/IGWrdsCauqoXq0ql6L4iT1//hyVq9VAUGAgSpUug1PHj0BPT0+xPG5ubnj10hv+/v7IkycPNDRYlkuP6tWrw+vxQ7x69QrFixeHtra20pEog0R2+AlSeri6uko+pkNERDndhQsXcPDgIbi7u6Fp06ZKxyH6aQghbkgpXZXOkZPw/lsZb9++RduOnfHo0WP06NYVkydOSPMmTJ6enmjUqBHevHmDVatWoWPHjlmUlij7CA8PR2hoKBwcHLhx2U+sQ+euOP8qEbaV2+PlrqmY/HsX9O7dW+lYRD+lr91/c4kPIiIihVy9ehX1GzbBxss++LXPAKxfv0HpSERElM1YWVnh1LEj8PXxxpRJE9NVaCtatCiuXbuGcuXKoVOnThg7diw3T6QfnpGRERwdHVmc/skJIQBVIiAloFJl+Z+Hp0+fonK1mijmUiZVSzIRURIWqImIiBRy6tQpmDjXgH3VTjB1a4V/D3P3aSIiyhrm5uY4duwYevbsiRkzZqBly5bcnIuIfnjTJk+E2uvruPlHUxS0MUCnTp2y9HxNW7bBK808SCjaFO06dsbbt2+/2Sc2Nhadf+0Op/yF0Lf/ACQkJGRpRqLsiAVqIiIihVSoUAFhj87B/+pehN36FzWqVlI6EhER/cD+t3ni/PnzsW/fPlSuXBmvXr1SOhYRUZZxcnKCt9cThL57h3OnT0BXVzdLz/f6lQ9MilSCcX5XaOoaICAg4Jt95sydh6NXHsCw5iDsOnoeq1evztKMP7pDhw6hU9duWLhoMZ8WykFYoCYiIlJI1apVsWXDGtR0UGH2pNHo26eP0pGIiOgHJ4TAoEGDcODAATx//hxly5bF1atXlY5FRPRN//77L/788088efIkTf2EENDX18+iVJ8aNPB3vNg6Ft6bhqFIgXwoWrToN/v4vHoNbbsi0LfJC03rAnj1+vV3SPpjunjxItp27ILzAbqY/OcizJk7X+lIlErcJJGIiIiIfjrcJDHteP/94/l488Q1a9agffv2Skci+iEtXrIEq9dtRPFizlj89wIYGBgoHSnH+fvvRZg080/oOZVCxOMLOHf6JB49egQHBwdUqFBB6XifuHr1KkJDQ1G9enVoaWl9s/3t27dRtUYt6FvlRkzQK1y7fBEFChT4Dkl/PPPnz8e87WeRq05fBN07jUKJT3Bw326lY1EybpJIRET0E4qPj4eHhwfevHmjdBQiIsqGihYtiqtXr6JcuXLo0KEDxo0bx8ehiTLZ2bNnMXbSdMQUbIxjN55j6IiRSkfKkbbs2AXLat1hX6cvDByLo1bd+hg8ZQEaNG2JBQv+VjreJ9zd3VG3bt1UFacBwMXFBY8e3MO6v2fiycMHLE5nQPXq1RH68Bxen1qL4Mtb0LRRA6UjUSqxQE1ElAVUKhUePHiA13w8ixTy/v17lKtYBXWbtEKhosWwb98+pSMREVE2ZGFhgWPHjqFHjx6YPn06WrVqhaioKKVjEf0wvLy8YJCrEIzzlYZBwQp4+Pip0pFypArlyiL05r94e/Mw3j27AWFgCceWk5Cr4XAsXr7ii31UKhWePn2KkJCQ75w27WxtbVGnTh1YWloqHSVHc3FxwanjR9G9RiGsW/Y3evbooXQkSiUWqImIMplKpULTFq1QsVptFCpaDKu4yQUp4NSpU3gdEoX83ZfC/pchGD95mtKRiIgom9LS0sKKFSswf/587N27l5snEmWiBg0aIM7vMV7vmYaAk8sxoE9PpSPlSLNmTEff9o3gouOP+XP+REzwG7x7fAWhD06jUMGCn7VPSEhArboN4FquEhyd8uLw4cMKpCYllC1bFpMnT0aTJk2UjkJpwAI1EVEmu3fvHs5fuoqCvVcgb9tpGDt+otKRfmgxMTH466+/MGPGDAQGBmZ4vKtXr8LF1R3FS7ni3LlzmZBQGebm5ogND8L74NeI9nsKC3Pzr7b39PREtx69MGz4SISFhX2nlERElF18vHmil5cX3NzcuHkiUSawtbXF/bu3MHfsbzh36jhatWqldKQcSVNTE5MmTsDuHVvRu3dvrFmxFEYvT6BCHkOsW/35DOozZ87g3pMXKNxvLXL9MgTDR49TIDURpRYL1EREmczY2Bjx76PxPvgNogO8YWxiqnSkH1qT5q0wc/lWLNp1Du4VKiE+Pj7dY0kp0aBhY0Q6VsP7/PXQsHFTxMXFZWLazJGYmIgXL14gJiYmxTbu7u4YOvA3vNk5HhZRT7F6xdIU24aHh6NS1eo48TwW/5y8hWYtW2dFbCIiygHq16+Py5cvQ1dXF1WrVsWWLVuUjkSU41lZWaFNmzZwcXFROsoPo1WrVrh++Tx2bN0MCwuLz44bGhoi4X0k4iPfIS7UD4bcmJIoW2OBmogokzk5OWHW9Kl4s3Mi8PAQtm5ar3SkLBcZGYneffujcvXa2Lp163c995lTx+HQZCQcGw5GSGg4fHx80j1WfHw8wkLfwbRgOZgWcENcXGya1uG8ePEiBgwchNWrV0NKme4cXxMZGYkybuVRorQbcjk64c6dOym2HT92DIIC/HDz2mXkyZMnxXbe3t5Q09aHXeX2sKn+KzyuX8+K6BkSGhqKlStXYseOHdzAi4goizk7O+PatWtwd3dH+/btMX78eP7bS/QTiIyMRJPmrWCTyxE9evVBYmKi0pHSzd3dHb26dcGjFX2g9uzMVydrEJHyRFZ9gM5qrq6u0sPDQ+kYREQ/jAMHDmDRspUoUqgAZkybCl1d3VT3/bVHLxy5/hSGhSrB/+RynD52GGXKlMnCtP+vXMUq8InVh7q+KeKfnseL50+ho6OT7vF69u6LXfsPQaipo1bVCtj2z6ZU9bt79y4qVq0Ok9KNEfP0Eob1745RI0ekO0dKVq9ejXHzVsOxxQQEXNuHknpB2Ld7R4bGjI6ORsEizlBZFUFi+FtUcSmIHdv+yaTEGRcbG4viLqURqWmO+PAgNK1bFSuX80MGZYwQ4oaU0lXpHDkJ779/PnFxcejXrx9Wr16NFi1aYP369dDX11c6FhFlkZGjx2DDocuwqtwRfof/wqyxg9CtWzelYxHRD+Jr99+cQU1ERLh37x7adeqKp5oFseXYVfw+aEja+t/3hHGxWjArUglG9oXx5MmTLEr6uUP/7kX76sXRoKgpLl04m6HiNACsWLYEB3Ztwd6t67Fl04ZU97t06RJMC5ZDrkptYVa+LY4cP5WhHCnR1dVF4vtIqOJikBj9Dnp6qf9BQkr09PTgcfUyfm9RBZMH98DmjesyHjQTPXr0CMHh0XBoOgb2zcZg+/btSkciIvopaGlpYeXKlZg3bx727NmDypUr4/Xr10rHIqIs4uvnDy3r/NA1t4emRW4EBAR8l/OeOXMGs2bNwrVr177L+TLbjRs30LVbD4wbPwHR0dFKx8kyK1auhIGRMcytbHDs2DGl49APhgVqIiLCgwcPYOxYFJYlasHUpQFu3Ep52Ygv6dmtM/yPL8br/bMRG+CFGjVqwMvLC+07dUHnX7tnaNmNbzEzM8OcP2dj+dLFyJs3b4bHE0KgQoUKqFy5MtTUUv+/yYoVK+Ld48t4c34LQi5vRf06NTOc5Utat26NKq7OuDW3DQzfPcLsmdMzZdyNmzbjz3kLsHDpCjx//jxTxswsjo6OSIgOx9sbhxB4dReKOjsrHYmI6KchhMDgwYPx77//wsvLC2XLls2xRSQi+rohAwcg1GMPXmwaipjn16ClpQU/P78sPee///6LJi3bYPGBG6hZpz4uXbqUpefLbL6+vqheqw5OvxJYtecUuvfqo3SkLBEcHIyBg4cgX6e5sKo3GG3bd1Q6Ev1gWKAmIiJUrVoV0b6P8frQAgScWIZO7dqkqX/vXr3w765tmPp7R9y9dQPm5uaoUq0GLryWOP0sCtVr182i5NlH8eLFcfTQAbQoaYY5U0ZjxPBhWXIeDQ0N7Ny2BRs3bICfny9Ku7rj4MGDH46HhISgW49eqNugEU6dSt0s7vv372PqjD9g33IqomzKolPX7lmSPb1MTU1x7MghFFV/hRqFzLB3V8aWNCEiorRr0KDBJ5snfu89J4goc4SHh2P37t24/oU9R0qVKoWnjzzRsXl9JEqB+ZsPoWRp1yydSb1zzz6Ylm2JXDV7wLhEHRw+fDjLzpUVPD09YWCVG7YVWsKqUkdcvHRZ6UhZIi4uDkKoQdPADNrGVoiJic6yPXfo56ShdAAiIlKera0tbt+4jv379yN//oGoV69emseoXLkyKleuDAAIDAzEu9BQlKjcDpASHjMaIy4uDlpaWpkdPVupUKECKlSokOXniY6ORrcePZGv/Qyo4mPRpl0HhIeGQE1NDR27/Io7/vHQyVUUTZq3gue923BwcPjqeCEhIdDSN4aOeS7ER4ch2Ptcll9DWrm7u+Pg/j1KxyAi+qn9b/PE5s2bo127dvD09MSkSZPS9MQRESknMjISLmXK4r2mMaLe+mDGlAno36/fJ22srKxw+twl2NYdAJP8rni9dzpOnTqFdu3aZUmmCu5uODDtT6hpaiPy8QW4DW+fJef5mpCQECxduhRqamro168fjI2NU923VKlSiAv1w6ujSxH39hla/9IgC5NmnEqlQnh4OIyNjSGESHU/W1tbdO/eHWuWdoNUqfDnH3+kqT/Rt7BATUREAJKWUfjtt98yZSwLCws4OxeDz+5pkInxqFqj1g9RnH7+/Dk6/dodAQFvMWncGHTs2EGRHHFxcZBSBR1TW6gS4hAXG4PExESoqanh7r37MK83HHrWeRB1/yiePXv2zQJ1hQoVUDR/btxb2Qfx0RFYsWzJd7oSIiLKaSwsLHDixAn07dsXU6dOhaenJzdPJMohzp8/jxihh9ytpiLC5z7+WrzsswI1AJQoVhRHPE5CFf8e4a8foVChQlmWqVevnohPiMfpcxfQ5M8ZaNSoUZad60uklKhcrSbeaVhAqhKxc89+3LiW+lnQ5ubm8Lh6GRs3bkSuXI3RpUuXLEybJDAwEGMnTER4WATGjRmJYsWKparfq1evULlaDfj5+qJY8RI4c/IYDA0NU33ehQvmYeSwIdDS0oKVlVV64xN9kcipU/K5izgRUfYWFRWFjRs3Ql1dHZ06dcrQ5oU7duzAgMFDoa2ljQ1rV6Fq1aqZmDT1XMtVQKB+QejbO8Nn30zcu3UDefLkUSTLsBEjsWz5SkipwphRozB2zCgAwKgx47BywxboWOSGWugLeN67k6obz8TERNy7dw+WlpbIlStXVscnUtzXdhGnL+P9N31MSon58+dj2LBhKFWqFPbt2wd7e3ulYxF9F+/evcPY8RPxNjAII4cNRtmyZZWOlCqenp5wr1gFuRoMRuRzD5S0xBefUIuMjMSQYSPg+egJfuvTA23btlUg7fcREhICO3tHlBy2E4DEjZlNEBEeBl3djG9EnlXKlq8EP2kGdUMrRNz+Fz7ez2BgYPDNfr369MXh+8Gwq/ErfPbOwshuzTBo0KCsD5wDvHr1CuMnTkZ8QgImTxiH/PnzKx3ph/S1+2/OoCYioiyhr6+PPn0yvklIREQEunbrDqdWk5EQHYZmLVohODBAkUfKfN/4wrxBR+hZ54WOgSkCAgIUK1DPmf0HBvTvB3V19U8KAjOnT0XF8u7w8/ND8+bNUz0rQl1dHS4uLlmUNmVLly3DlGkzYWFpgW2bN6Jo0aLfPUNmuHnzJub/vQi2NtaYMG5sqj4kEBHlZEIIDBkyBIUKFUK7du3g5uaGvXv3ws3NTeloRFmudbuOeBCUCC2LPKhVtz6ePXkECwsLpWN9U9GiRbFs0d+YPf8vFM6dGyuWLvpiOwMDg5/miToTExPksrfHm+PLIVUJKFC4SIYm1jx9+hTr12+Ao6MDunfvDnV19UxMm+T+ndso2n8tNHQNEX73CF6/fo3ChQt/s58QakDyJFWpUnGJjmRSSlSvXRexliUgNLRQpVpN+Lx4Bg0Nlky/J86gJiKibC0gIAB58hWE84D1SIyNxv3Fv+J9TIwi613+9ddCjJ88FTrG5shtY4ZL585AU1Pzu+f4UXh5ecHF1R15Wk9BxKv7MH57A3duXFM6Vpq9ffsWBQoXhYlrM8T5P4Vbfkvs282NHLM7zqBOO95/U0ru37+PRo0awd/fH+vWrUObNmnbbJkop7GwtoV9m5nQMbXF8/UDcWD7Bv5wJgfz8/PD7Dlzoa6mhpEjhsPS0jJd47x9+xaFihaDXqGqiPN/jFb1q2HJor8zOS3Qqk17nLv5EOr6ptB/748Hd2+najnFN2/eoEr1mvB54Y3Srm44eewwJ1UgaflEXV09uI7ZDwiBe/Pa4qW3V7r/HFDKvnb/zd0siChHiImJwebNm7Fr1y4kJiYqHYe+4s6dO6hQpTrKlq+EixcvZng8a2trtGvXFk9W9sHTNb9j3PgJim3GNHDgAFw8exJbVy/GxbOnM6U4/eDBAxQo7AwjEzNMnT4jE1LmHMHBwdDWN4KedR4Y5CqCoMBApSOly+PHj6Fragvb8i1hVaUTrl3LeUV2IqKMKFasGK5duwZXV1e0bdsWEydOhEqlUjoWUZZp1rQp3hyYg1cH5kIbcXB2dlY6EmWAra0t5s+dgw7t2+HEiRPw9/dP1zi3bt2CnmVuONTqAZuavXH46LFMTprkn03r8cfYgRjdvRmuXb74WXHa09MT+QoWgZ6+IUaOHvvhdQ0NDdSoXg3NW7TE+jUrWZxOpqWlhao1auHlzsnw2T0dRYoWzRFPRPxoOIOaiLI9lUqF8pWq4mVIDFSxMahevhS2/bNJ6Vj0BVJK2OZyhF7pZlDT0kPg6ZV46+8LbW3tDI/78OFDaGlpZZv1wOLi4rB+/XpERkaic+fOMDc3T9c4ZdzKI8SiNIzzl4X35pE4e/JompfakFJCpVJlySOEWSkhIQG16jbA3YdPEBcVjvlzZ6Nnjx5Kx0qzsLAwFCzsDA3HUogPeokmtSpi5fKlSseib+AM6rTj/Td9S2xsLPr27Yu1a9eiVatWWLduHfT09JSORZTpEhMTsW3bNgQFBaFt27bcMO4HsHPnTnTr1RdGDkXw3v8p7t66ATs7uzSN4evriyLFSsC4VCPE+nqiXvniWL9mVRYlTln5SlXhZ1gUZoUrwfufkTi8byfKlSsHlzJuCNLKBXU9Y8R4HoeP97MMLWfyI3n//j02bNiAhIQEdO7cmcX7LMI1qIkoR/P19cUDT084/74JqvhY7PqzFeTmjVwzKxtKTExE0Ft/lCpeA0JdA2+OLUFYWFiGb9qFEN9cmzggIAAHDhxAnjx5UKNGjQydLzXatu+Ei/e8oK5vhsXLVsDz3p1UPVr3X2Hh4dAp5ABtYyto6hkiPDw8Tf1v3LiB+g0bIyTwLXr16YvFC//KMX83NDQ0cPLYYdy8eRPm5ubImzev0pHSxdjYGDeuX8GmTZtgZdXsu+zeTkSUHWlra2P16tUoWrQoRowYgefPn2Pfvn3cfJd+OOrq6mjfvr3SMSgTLVq+CtY1esHcuQpe/zsHBw8eRM+ePdM0hp2dHc6cPI5lK1Yhd82mGDp0SBal/bqIyEhoO9hC08AUGjoGiIyMhJQS9+/cQqnhY6GmqY2Htw/D398fTk5O/98vIgJv376Fk5NTjpv4klE6Ojro1auX0jF+apxBTUTZ3vv372Fn7whj99ZIjAmH1hsPeD32VDoWfeTIkSMYMWY8DA0MYG1libNXbkBNXRPuLkXw797dWV4wDQ4OhnNxF2hYF0CU71NMGDUMgwcPzNJz6ujpo9hv66GuY4Any3vgyrmTKFSoUJrH2bVrFzr/2h2a2nooU6okjh76N00bcpQuWx5hdhVgWrginm0YhEO7t6F8+fJpzkH0s+EM6rTj/TelxYEDB9CuXTsYGhpi//79cHXlXzciyr76/fY79py7A+MSdRFwfAn2bNuEatWqKR0rXQ4fPoxWbdpBXVMbZUqXwrHDB6ChoYFfGjfDjSevoaZjAJPEENy9dePD547Lly+jXoOGkGoaKFywAM6dPpFtZld7e3vj3r17cHNzg42NjdJxKAO4BjUR5Wg6Ojo4efwoCsqXKG36HsePHFQ60k8hISEBqfkh5rt379CydVvEFvwFvnqFcOfuPezYsBKbVvyFfbt3fpfZvOfOnYO6qT3sG4+Ebb3fsWrdhiw/Z0mX0vA7sw7+F7dBTSbA3t4+XeO0aNEC3l5PcPncSRw/cjBNxWk/Pz94PnoIdR19qGloQqhpID4+Pl05viUqKgpPnjzJsvGJiOjH0rBhQ1y6dAna2tqoXLkytm3bpnQkIqIU/fnHTNR3Lwz9pwcxbeKYHFucBoD69evj1UtveFy5gBNHD334fLFn5zZMHdoLo7o1w6XzZz/53DFq3ERYVOmKIv3XwSc4Gvv371cq/icuXbqEkqVc0W/MTBQpVgLPnj1TOhJlES7xQUQ5QqlSpXD00L9Kx/gmKSWioqKgr6+fY5ZZ+C+VSoWOXX7Ftn82w9beAcePHEJ4eDhWrFqDAvnzYcjgQZ8sZREUFAQ1TW2YFHBDfFQoHp3f/F2W2PhYwYIFEe77FMEPziLq2TVULVEsy895cP8eTJg0BeERERiz8BT09fXTPZaVlVW6lkH5c85cGDgUw/N/F0AmxqNwoUKoVKlSunOkxNPTE5Wr1YBKqMPC1BhXL12AmZlZpp+HiIh+LMWLF8fVq1fRvHlztG3bFg8fPsTEiRNz7D0SEf249PX1sWblcqVjZBpTU1OYmpp+8pqWllaKy5YYGhggPiIICTGRSHgfmaHPNplpyfKVMCvXGjbuTfHq2DJs3boVY8eO/XZHynE4g5qIKJMEBASgsHNxmJlboJSrO0JDQ5WOlC5HjhzB8XNXUHrkLmgUroMeffqjdt0GOP4iEfPXbMfAwUM/aZ8vXz6UdimJ5xuHwHvzSPw2YMB3z+zs7IxN61YjV+hN/OJWAMsXL0zXOFJKjBg1BnkKFEbrth0QGRmZYlsLCwssWfQ3Nq1f+831sbOKuro6tPSNUWrgBpjnL40ObVtDTS3z/9c+beYfMCjRAAV7r0aUri02btyY6ecgIqIfk5WVFU6ePImuXbti8uTJaNu2LaKjo5WORUQET09PlHJ1R+58BbFp02al4yjq7/lzoBdwC/cXdkaTutVRv359pSMBAPLlccJ7n9uIeP0Qsb6PkDt3bqUjURZhgZqIKJPM/nMOIo3yotTIvQhQGWHJkiVKR0qX+Ph4CA0tqKlrQk1bH6HvQmHkUBh2FVrBomIHnD1/8ZP2ampqOH7kIDav+BsH92zDHzOnK5K7SZMmOHPiCFYuXwojI6M091epVBgyZAiWb9gGg+q/4fxDX0ycNCULkmaekSOGwzzeHzdnt0RuQ+C3337LkvMYGhogISIIie8jkRgVmu5dradOmw5Tcys4lyyNJ0+eZHJKIiLKrrS1tbFmzRrMnj0bO3bsQNWqVfHmzRulY30XUkocOHAAa9aswbt375SOQ99ReHg4WrRuhwJFimHq9BmpWjqPvq8WbdrjnWVpGFTpgz79fsPr16+VjqSYvHnz4tGDu4h9H4PVK5dnyaSX9Bg9aiQaVCyBhKtr0b19c25O+gPLHn/iiIh+AEk3neI/3+c8DRo0QPF89ri3oB3eXdyI2TOnItL3CV6dWI23p1ehYYN6n/XR1NREnTp1UKFChRz72G7/AQOxcv0/0LLKC33bAtCxL4YXPq+UjvVVFhYWuHf7BmJionH9ysV0FeY/plKpsGrVKgwdOgw3btz48Pq0yZNgpxaC+ws7o2KJ/OjcuXOax75x4wbm/rUYudv/gSjrMvi1R+8MZSUiopxFCIHhw4dj3759ePToEdzc3PAzbLo5fOQodOk7COMXrEMZt3KcPf4TGTZiFC57BUO7Qk/MX7wCR48eVToS/cfbAH8Y5SkFA/vC0NQzRHBwcJrHCAgIQN/+A9CtRy88f/48C1L+3HR0dLBm5XI8vn8Hf8ycnm0K55T5+DtLRIoICAj44WaRjBg+DHqhT3F7dnNYyHfo37+/0pHSRVNTEyeOHsLzp4/h7/sav/zyCy5fOIduNQtj9oRhmDVjGi5evIgKVaqjVr0GP8xM2O07dsCx6UiEe9/G/VUD8Pb8Rgz+PWO/h5s2bYZbhSro1LUbwsLCPry+b98+1P2lMQYNGZopH1Q/XhM8IyZNmYpR0+Zh240AVK9ZB0+fPgUAWFpa4vrlC3gfE43dO7dBU1MzzWO/e/cOWvrG0Da1gY5VHoT8YH//iYgodRo1aoRLly5BU1MTVapUwfbt25WOlKU2bNwM+8aj4NBsLCLjBe7cuaN0JPpOvF/6QC+3CwzsC0PPJj98fHyUjkT/MXb0aLzYOhbP1g6AS/EiKFYs7fvY1KrbAP/efIXjT6NQqUq1DG0o/uTJE8yZMweHDh1KVXspJTZs2IBBg4fgwoUL6T4vUXbAAjURfXdDhg2HU74CsHNwxIqVK5WOk2lsbGzw5OEDvA3ww91bHjAxMVE6UroJIWBjYwNtbW0AQJEiRTB1yhT8+uuviImJQYOGjRFg7govVS7UbdBI4bSZo0TJkgi7fwrWbs2gCvPD+TOnUr3h4Pnz52GfOw/MLK2xdu06AMDt27fRb+BghOWuhZP33qBP/6S1ue/cuYNOXbvjmXYRbD1+DYOGDMuqS0qzw0dPwLJSJ9hX7QjjvC64evVqpo1dpUoVFHC0wZMVvfH63z8xY8rETBubiIhyluLFi+PatWsoVaoU2rRpg8mTJ+fYJ8++xbmYM4Jv7EfgnROICX0LJycnpSPRdzJ04G8IOLMaPtvHIjHgCZo0aaJ0pGzvwYMHaNW2A7p26wFfX98sP9+QwQNx9eI57N++EccPH4S6unqa+qtUKjy4dxt2NXvArmonhEdG4e3bt+nK4u3tjbLlKmDBznPo0K0PFi1e/M0+8+b/hcFjp2LXnXeo36gJbt++na5zE2UHLFAT0Xfl5+eHZctWwLnfGhTsMh+DBg1ROlKmEkLA2Ng4xy5zkRpBQUFQQcCiWHVYuNTFa58XP8SHyp1b/0GDUg5wMQjByePHULp06VT3bdmmHfTKdUau5pPQf8DvCAwMhJeXFwxt88O0oDuMi1SD58PHAJKWujByLAqL4jVgUrI+btzK3JlUHh4ecMyTDwZGxpj5x+w09a1TszqCLm3Gm/NbEfr8Ftzc3DItl5aWFs6dPoGzxw7A6/FDNGvWLNPGJiKinMfKygqnTp1C586dMWnSJLRr1w4xMTFKx8p02//ZhGqFzJHnvSf279kFW1tbpSPRd1KvXj3cun4Vq+ZOgef9O7C2tlY6Uprcu3cPq1evxuPHj7/L+WJiYlC1Ri1cC9bFySdh320STJEiRVChQgVoaGikua+amhqq1agNnz3T4bN/NhwdHWBjY5OuHKdPn4ZRnlKwr9sfVtW6Y8v23d/sc/jYCZiVa4NcldvCpGAFXLz4/3sFvX37FkePHv0uhX6izJD2v4FZQAjhAGADAGsAEsAKKeVfyqYioqygqakJKVVIiIlAfFQotHV0lI6UrUkpsWbNWly5dg3NmzbJFrspOzg4wKVkSTzZMgqJsdHo0vXXH6Igb25ujpXLl37yWkJCAm7cuAELCwvky5cvxb6RERGwtXKCpqEZ1DQ0ER0djerVq0MOGoJXe6Yh0s8Ls6dNxq/de2Lzpk1IlBIq9bmI8X2IyWNGZup1dOzaDZolm6NA7mKYMWsomjdtgkKFCqWq75TJE2Fna4OHjx+j08zDKFiwYKZmU1dXR4kSJTJ1TCIiyrm0tbWxbt06FC1aFKNHj8azZ8+wb98+2NnZKR0t01haWmLT+rVKxyCF5M+fH/nz51c6RpqdPXsWDZs2h0k+V4QNHYEzp46nafJGegQEBCAuQYV85VtCFR+LW3NaQUqZ7T9nHNy/B6tXr0ZcXBy6deuW5lnY/1OyZEmEeY+E5q2jiHp8Hr80rIYrV67A2toaefLk+WKferVrYuaCpXgf8gahjy+hQoWkDd6fPHkC9wqVoGeZG5EB3jh3+iRKliyZ7muk7CshIQEHDhwAADRs2DBdP2jJLkR2mPUmhLAFYCulvCmEMARwA0BTKaVnSn1cXV3lz7CpBtGPaPHiJRg6fDi0tXWw9Z9N2aLoml0tWboU46fPhYFzLby7vhsH9+1C5cqVlY6FuLg4HDp0CLq6uqhTp062v3FMj/j4eFSrWQePn/sgNjIUC+b+ie7du32x7YK/FmLs+PFQ19BC0yaNsH7NKgghEBQUhGPHjiFPnjxQU1NDvSYtkf/XRQi6fwbRHtuxcf1a1KlTJ1Nz2zvlg3H1/tC3K4Cnq/vjxME9KFOmTKaeg+hHIIS4IaV0VTpHTsL7b8pK+/fvR/v27WFsbIz9+/fz/11ECurRqw+Ov1DBtnwLvD69Dp0r5cWMGdM/HPfz88P0GbOQqFJh7OiRsLe3T9d51q/fgIFDhkJbWxsb163BkBGjEJyoD9X7SJQrnh/7du/IrEvKEQ4cOIBVazegeNHCOHriFJ6/8sP7yHdYuvBvdOrU8bP2UkqsW7cON2/fQeuWLT58Thw7dhzWnX0Ch5rd4Xt+CxoUNsCyJYu+9+XQd/BLo6a4/sALkBLlSxXBvt07lY70VV+7/84WS3xIKf2klDeTfx0B4CGAXMqmotSKiIhQOgLlMP3790NMVCRCQ4JYnP6GE6fOwqRME9iWawbjIlVw6dIlRfNIKXHp0qWkWRUNG6Ju3bo/ZHEaAK5du4bH3q+Qr9si5G4xAZOnz0ix7aCBA/DY8z48rlz4UJwGAAsLC7Rv3x7ly5dP2nFaSkCqoKlrAHMLy0wvTgPAnFkz8GLnZDxa2h3VKpVDqVKl0jzG7D/nwNY+N8pVqsINfYiI6Lto3LgxLl26BA0NDVSuXBk7dvxchSnKWaSUSEhI+GqbJ0+eYNasWdi1a1eOWw6veDFnRHtdxrsnVxHj7QFn56IfjkkpUbVGbez18MGB2/6oVLU6VCpVms/x7t079O3fHw4tp8C0Rj+0bd8Rl86dwYR+7fHH2IHYue2fVI91584dtG7XEb369kNQUFCas2QXDRs2xN5d21GjRnV4+wUhX7dFcGw6BpOmfflziBACv/76Kxb+teCTSUwODvaI93+CKP9niPV7CCdHh+91CfQdhYWF4cTxY3BqPwtO7Wfh0IF/ERUVpXSsdMsWBeqPCSGcAJQCkHk7M1GWCQgIQNGiRTFx4sR0/U+Jfl5CiB+2sJmZGjWoh5CrO/D67CaEPjiNatWqpXssKSXOnj2LI0eOpHt36aHDR+CX5m3QoefvqNugUY672U4LS0tLxEaGItrvGSJf3YeVldVX29vb26NgwYIp/rl2dXVF6xZNcHteGwScWIIVS1M3i+HPOXNha58bbhUq4cWLF99s37ZtG7z0foZb1y9j945tSYXxNLh+/Tqmz54Ly4aj8EbDAd169UlTfyIiovQqUaLEh80TW7dujSlTpvzQ9xr0qfj4eDx9+hTR0dFKR/mqR48ewcEpL7S1ddCmfUckJiZ+1sbHxwdu5Sti4b6r6DVwBGalcV8Qpf3Wvx/6dm4JS79zGDGgF9q3b//hWExMDLyfPUGu2r1gV7M7/P38EBYW9kn/d+/effJ5Iy4uDjdu3ICfn9+H196/fw9ADdqm1tA1t0d0VCQMDQ3Rt29fdOjQIdVLFYSHh6Nazdq4GqyHgzdfoVGzlmm61qCgIDx79ixT/63x8/PD48eP0z2mpaUlYsNDEB3gjajXnrD+xueQ/+rRowda1K2MiJN/oX6FEhg8eFC6clD2ZmBgAENjYwTeOoLAm4dhZm4JXV1dpWOln5Qy23wBMEDS8h7NUzjeC4AHAA9HR0dJyouOjpZdu3aVAGT9+vVlcHCw0pGIfji7du2SI0eOkufPn8/QOH37D5CmtrmlZe7CskbtelKlUqV5DG0dXVl6yBbpNu6gNDS1lM+ePctQpuxuydKl0s7BSbq4usnHjx9nypjR0dEyISEhVW09PDykkbm1LN57qXSo1klWq1UnUzJ8zYEDB6R1/hLSbfxhWaj9NOlcskyWn5NICQA8ZDa4/81JX2XK8N8D+j5iYmJkp06dJADZtm1bGR0drXQkymIhISGyQOGi0tjCVppZWktPT0+lI6Wodv2GMnftnrLs6H3SIndhuW/fvs/abN68WdqXrCrdJxyRhTvOkKXdKiiQNOuULVdR2hSvIm1KVJclSrl++FyRkJAgGzVtLrV19aSJmYW8evWqjI6OlvkLFZGaekZSQ0dfTp069cM4ffr9JvWNzaSegbGcO2++jIuLk42aNpdqaurSMU8++fTp029muXfvnjSzdZTuE47I0kO2SH0j41Rfx+bN/0g9AyNpYGohm7dqk67PR/+1du06qWdoLI3MrDI05oIFf0ubXI6ytFt56eXlleFcGfX+/XvWe7Kh27dvyxq168katevJu3fvKh3nm752/50t1qAGACGEJoADAI5KKed9qz3XwMs+pJRYvnw5fv/9d9jb22P37t1wcXFROhYRfURKCS1tHZQctBnq2np4sLATHty5idy5c6dpHKf8BSEK1IKmsRV8Dy3Am1cvYWxsnEWp6ciRI+jSfzicOvyJ8Oe3IO5uh+fdW1l6zpiYGJSrWAW+QaF4Hx6MtatWoGXLtM1EIcoJuAZ12vH+m74nKSVmz56N0aNHw9XVFXv37v2hNk+kT/3111/4Y+0+ODQeAf+L21Apl8TmDeuUjvVF1WrVhY9OYViWqosXW0ZjyR8T0KJFi0/aPHjwAOUqVoFFxfaIfnYVretVwrjRI/H3wkXQ0tTEoEED8eTJE7Tr2AXh4WGYNX0aunX79avn3bt3L/YdOIQqFSuga9cuij6NGhERgZUrV0KlUqFnz54fPg8cPnwYnfsORp4OfyL4/hlYBntg5NBBaNW2A5wa/g4NbQN47ZyG8NAQ6OnpAQC8vb2hra0NOzs7bN26Fb+PmwmnNtMQcGUXSplEY++u7V/NEhsbi6LFSyJGPxcSIoJQs1xJbNm0IVXXYefgBNPaA6Fvmx9PV/XF6aMHMlzLsLazh9Uvo6BrlRtPVvbG+ZNHUbx48Q/Hr169igmTpyEuLhYPPT0RH5+AeXNmo0uXzmk+1507dzDrz7kwNzPD1MkTYWpqmqHsKTl9+jQaN2uO+Lg4NG/REps3rOPT0JQu2X4NapH0J3s1gIepKU5T9iKEQJ8+fXDu3DnExcWhfPny2Lhxo9KxiOgjQgjY2Tsg+N5JhDy6CCFVUFdXx++DhqBdh864efMmgKQPgyNHj4WZhTXKuFf4sP7wsWPHULl6LRQuVAjmIbeh8+Qgdu/cnqOK01euXEGDRk3RqWs3BAQEpLqfSqXC9evX8ejRoyxM92XVqlVDLjN9PF3dDy/2zsSAvr0y/RzTZ8yCrr4BbO0dcfXqVejq6uL6lYvYt3U97t+5xeI0EREpQgiBkSNHYs+ePfD09ISbmxtu3LihdCzKIvr6+kiMCUNibDQSo4JhaGCgdKQUzf1jBkKvbMG9+e1QNI8NGjVq9FkbZ2dn7N21HWWN3qFvu4aYPXM6KlSuinXHb2PZnnOoXe8XtGrbASjaENaNxmDAoMGfLH/xX0ePHkWXHn1x+o0Gho6bgrVr12XhFX6boaEhhgwZgmHDhn3yeUBdXR1SlQgpVZCqBGioq8PExASJ8bEwyecKI6cSgBCIjIz80CdPnjwffviUkJAANXVNCDV1qGnqID7h28sSamtr4/qVSxjdrSnmTBiKjevWpPo6DAwNERvqj7iIECTEvoe+vn4a3oUvMzQ0QkyQD2JDA5AQ+x4GBgbYtm0bChYtDveKlVG7bn08Vc+HR1GGCE/QgF2z8ejb/zeEhISkavyoqCg0aNQUxqbmcKtQGRf91LHn0mM0a9U2w9lT0u/3wbCt+ztKDNqCIyfP4vLly1l2LvqJpTS1+nt+AagEQAK4C+B28leDr/XhI4bZk7+/v6xWrZoEIPv37y9jY2OVjkREyR48eCArVa0hS5UtJ0+fPi0rVK4mrV1qydx1ekkjU3MZFBQkT506JU1tcsuSv62RDlXayQaNm8pXr15JAyNTmb/FaJmrfDNZtWbWLzOR2YKDg6WhiZnM88vvMle5prJcxcqp6qdSqWSjps2lqY2jNDS1kDNm/ZHFST938uRJqatvKK0LuUpjM4tMWWokKChIHjx4UJ44cUIamJhLl4EbZL7mI2X+ws6ZkJgoZwCX+OASH5Rj3L59Wzo6OkpdXV25Y8cOpeNQFoiNjZVNmrWUWto6soxbeRkQEKB0pK96//699Pf3T/XyDb6+vlLfyFS6Tzgi3cYdlEJNTRqbWcgSfVfIsmP2S0MzK/no0aMU+0+YMEHmqtxWuk84Ip3q95cdu/yaWZeSqRITE2XbDp2kuoamtLC2lbdu3ZIqlUq6V6gkNfWMpbaxpWzUtHmK/WNiYmTFKtWlrr6RtLC2lffu3cvSvNeuXZP2ufNIfUMjOfOP2Zk2pmOe/NLI1FwuWPC3fPnypdQ3MpGFO82StuWaSS1DM+k2/rAsPWSLVNPSla6j9kg9Q2P5+vXrVI0/afIUaVO8iiw1eLM0yuMiHWv3lKUGbZJGpuaZkv9LipUsLfM3HyXLjNwlTazs5ZUrV7LsXF/y4sUL2bhZS1mtVl158eLF73puylxfu/9O3arzWUxKeQEAnw/4AVhbW+P48eMYOXIk5s2bh1u3bmHHjh18HI8oGyhatCjOnzkJIGnpiCtXr6BEn2XQNrFB5MNTePbsGUJCQqBlZA5tU1toW+VBsO8FvHz5Erqm1jB3ropoy9x4/O+Xd5HOznx8fKCpZwTL0vURFxEEz/WDUtXPy8sLZ85dQOG+qxEXHowZMwZi9MgR6coQFhaGkydPwsHBAWXLlk11v7UbNsGqUgfYuDfFq2PLsX37dowbNy5dGQDg9evXKF3WHRomdgh9/Rjq2nrQ1DeBtrE1QnPwrs9ERPTjKlmyJK5du4ZmzZqhVatWmDJlCsaNG8dHzH8gWlpa2Lt7h9IxUk1bWxvW1tapbm9paQlLSwu8OrIYMj4GpV3d0aVjB4weNwLqWrqoXbM6ChYsmGL/WrVqYd7fiwGhjkjPU2i0eEGqzx0WFoY/Zv+JyKgoDB08KM1L/KWFmpoatmzagHWrV0JLS+vD39HLF87h1q1biIuLg7u7e4r9dXR0cP7MSQQGBsLU1BSamppZlhUAypYti1cvnmf6mC+fP/3wvYeHB7QNTGDkVAIaOoYIunMMPrsmIzo0EOrqani0vCfatW2LXLlypWr84JAQqJvYQcvQHLqWjgi5dxIxz699cSZ/Zlm5bDEaNGwM7/1z0bNXb7i5uWXJeaSUX/y9/6VxM4SZFoGWsTPq/9IIr156w8jIKEsykHKyRYGafiwaGhqYO3cu3Nzc0L17d5QuXRrbt29HlSpVlI5GRMkWLFoKg1xF4LV7NrRNbaCKDoezszOKFSsG6+mz4LWqL2KjQrF4xzaULl0axjoCPrsm432IL/r16PrJWIGBgfDx8YGzszN0dHQyNWd8fDx69e2PI0ePoUqlSli3ZuVXdyaOjIzE9BkzsHDhIujo6eOfjetRp04dFClSBBbG+ni1dzriw4PQpnXrVJ3/f48kRr15jPchvoBQx82bN1G6dOk0XUdERARcypRFrJYpot6+xMypE9Gvb99U9S2YPx+OXdmHcJt8iH3zAHnzZmzJjR07dkDTviQcGgyElscBJHoegufirlAlxGPt6lUp9jtz5gxWr9uAYkWLYOiQwaneWZ2IiCgzWFtb49SpU+jVqxcmTJgAT09PrFmz5qv3BUTZhYaGBi5fOIf5C/6ClpYWhg4ZDBMTEzRq9AsiIiJQrFixr/7ApXLlyji4bzeOHjuGCiNW4pdffsGZM2cwdOQY6OnqYsXSRShSpMgX+/7SuBmeh6tDTd8UOytWhvezp9DW1s6qSwWAz8YXQqT6/lkIASsrq6yI9VWxsbGYN28+Xr/xRZ/ePT9ZNzojSpYsify57eG9cQhiw0MwYexYONjbwcjICKVLl0ZcXBzy58+f6vF+/60/tlSsgmcvPCDiozGoRzfkzZsXnTp1ypS8X1KuXDkEBwYgPj4eWlpaWXKOmJgYVK9VF3du34aOthZWrlj2YanBZ15PULTvSGjoGSP40hb4+/uzQP0jSmlqdXb/4iOGOcP9+/dlgQIFpLq6ulywYEGm7IpLRBnXf8BAaV28mrSr1E7qGprKTZs2fTgWFxcnb9y4If39/T+8FhoaKjdt2iSPHTv2yd/jc+fOSUMTM2lun08WKFxUhoaGZmrOJUuWSMv8pWSJfiultXMFOWnylE+Oq1SqD0sJ+fv7S9tcjlLb1FZq6BpJp/q/SVNzy0+uYeXKlXLnzp0yMTHxs3MFBQXJy5cvy7CwsE9e37Jlq9QzNJVahubSplwzaWRqLt++fZum6zhw4IC0KVhauk84Iot0+VMWKlYy1X1jY2Nln36/yWIurnL8xEkZ/nd0x44d0tw+v3Tu/pe0KVFVDho8VL548eKru3Lfv39fGpiYydx1+0jL/KXkkGHDM5ThR+Hv7y+HjxgpR44aLQMDA5WOQ2kELvHB+2/KkVQqlZw5c6YUQsiyZctKX19fpSNRDhEdHS1Pnz4tvby8lI6SYeHh4dLAyETmbzlGOtXtI3PnK5BiW00tLek6ao90n3BEmljayadPn2ZqlpCQENmjVx9Z95fG8tSpUxka6+bNm3LgoMFy0aJFMiEhIZMSpk7HLr9Kq8Ju0r5aJ2lkav7JZ6GMio2NlSdOnJC3bt3KlPHCwsLkzZs3ZURERKaMlx2sWbNGWhcqK43ylpa6lrmltqGpHD9xkpRSyh69+kgLx4LSprCrLOXq/t3/bFDm+dr9N6c/UZZydnbG9evX0aVLFwwaNAjXrl3DihUrMmXzASJKv1kzpuFd399w8/Yd9B89Au3bt/9wTFNT87MZDsbGxujQoQPi4+Px/Plz2NnZQVdXF1Nm/AHLKl1hUbI2Xu2ZhlWrVmHths148ugBmrVohX82roe6unq6c/r5+0PTMg90LRygZZUfvn7+H449f/4cNWrXxasX3qjb4BdUr1IJsC4Ml4ZD4Hd5N8Je3EZMTDSklBBCwNjYGD169Pjiee7evYsq1WtC29gS4n0EPK5dhr29PQCgbds2+H3wUNi1nAodMzt4BzzC06dPYWlp+cWxYmNjcf/+fTg4OODNmzdYunwFtLW0EPn2JUK9PBD57BpK5cuX6vdAS0sLSxcv/GqbxMREhISEwNzcHGpqX9//uEWLFrh1+y627VyOaq5lMHXKJBh8YyOiW7duwSSPC2zcmyLUwgHnLhxOdf4flUqlQuVqNRBllBcyMREHDtXB/Ts3lY5FRPTDE0Jg1KhRKFy4MDp27IiyZcti//79aX66iX4uUVFRcHUvj5CoBES/C8CalcvQqlUrpWOlW3BwMKCmDrPCFZHwPhL3Tq9NsW2VajVx/9+5UNc3gaG+DhwdHTM1S8cu3XDLNwa6uZzRpFlLPLh3Gw4ODmke58WLF6haoxaMSzZA7P4T8H7pgzmz/8jUrF9z5uxZWNcbAT0rJyT63sf9+/fTtIzL12hpaaFmzZqZMhYAGBkZoVSpUpk2XnagoaGB+JgIvA8LgcuAtYgLD8SCBYMxZdJELF+6GE0OHUJERASaNGmSoc+XlH19/VMsUSYwNjbG7t27MX36dGzZsgXly5eHl5eX0rGIsqUHDx6gU9duGDBwcKp3ck4PAwMDbN64Dg/v3cKY0aNStYZjSEgInEu4oEy5SnDMkw+PHz+GpYU5YgO9ERsagLiwt9j37wGEGxVEiUFbcPrqHWzfvj1NuQ4dOoROXbvh74WLoFKp8GvXroh9dgkv/xmO8DuH8Fu/Ph/ajhw9DirH8igzei9uPPKBl5cXEkL98P6dPyJ9HyPi+U38+ccfqbq2+X8thFGpRsjTaT7UHUph/fr1nxxv0rgRfA/Nx6tDf0EtNjLFR/7+t5RH3SatkbdAIVSqUg1Hnr7H9uNX4VKiOHQe/4uy9jpYs3JZmt6Xr3n58iWc8hWAY558cCnjhrCwsK+2F0Jg+rQp8Hr0AFs2bfhmcRoAKlasiDDv23h1YhUCz65F08a/ZFb8HCs0NBQ+L1/Cvm5/ODQYgEee9xETE6N0LCKin0bTpk1x8eJFqKmpoVKlSti1a5fSkSgbO3HiBELjNeHUaR5yNRiMaX/M+Wr76Oho3L59G+Hh4d8pYdrkzp0bZV1d4b1pGLw3j0DPXr1TbLtv9w4M6dwIPeqXwbXLFzN9iYa79+7CwrUpLF3qQM8iV7o/61+/fh3Gjs7IVbUjLCp3wdHjpxAXF4fXr19j8+bNuHv3bqbm/q+6tWvD/+RyvDq5Gu9D3qBkyZKZMu7Lly/RvWdv9OrTF2/evMmUMT8WFxeHY8eOwcPDI9PHTq+3b9/i1atXXzx27NgxDBg4CNu2bUPShNokbdq0QckCjoiPCkXY81t49+gS7HIlTRhSU1NDw4YN0a5dO+jp6X2Xa6DvjwVq+i7U1NQwZswYHD58GG/evIGrqysOHDigdCyiDAsPD8e06dMxYcJEBAYGZmisiIgIVKleE+deSey6+AhNmmd8VoeUEk+fPk2aZZFB69evR6SOLQr1XQs95zqYNvMPzJ8zG7k1Q+GzZQTaNfsFxqbmUDMwhbq2HtR1DREdHZ3q8S9fvoy2nbri/FtdTJ27BH/OnYc8efLg6SNPbFu9CE8feX5SGI5PiIfQ0IIQahAamnB3d0ejGuXxetsoFLPShOe92/jtt/6pOre1lSXiA1/g/Tt/xIe8+mzdu2VLFmH2+CEY1Lo6bly/AkNDwy+Os3fvXoTBAPm6LYZ19R6QGjqwq9QWVpU74bWvH257XMGendtSnH2dHtNnzgIcyqLEkO0IVBli9erVmTb2/+TJkweXL5xDrzrFsPjPqRgzamSmnyOnMTExQZ58+fDq4AK8OjAPxUq4cB1UIqLv7H+bJ5YsWRItW7bEtGnTPil4EP2PjY0NYkL8EO3nhSifu7C3s0uxra+vLwoUKoJaDVsgT/6CePTo0XdMmjpCCBw99C/WL5mLPVvWY9HfC1Jsq6+vjxEjRmDypEmwsbHJlPM/e/YMe/fuRUBAADq0a4c3B+bg1f7ZUI8LR5kyZVLsFxISgvaduqBcpWrYuXMnEhMT0X/AQDjmyY8Nm7cg9OV9vDm3GW/PrIa/ny90dHWRt2ARjPhjGSpWrYFDhw5lSv4vWbp4IcYP+BVW718gPj4ejZq1QEBAQIbGTExMRKWq1XHscRgO3wtCtZq1M/XfqISEBFSpXgsdew9CrfqNMXW68pvZL1u+HE5586Owcwn06ffbJ8fOnDmDlm07Yt+DCPQZNALr12/4cExLSwunThzFzm1bIO7ugG30I+zdlbbJTpSzsUBN31XdunVx48YN5M2bF40aNcLEiROhUqmUjkWUbnUbNMLi7Sew6tB1lK9UBYmJieke6+XLl4CGDmwrtYVtta64dTNjPwVPTExE/V8ao0y5SsidJx/279+fofH09fWRGB2GxLhoJESGwNDAANbW1rh49hRCAgOw8K/5mDpxHMKv78KjxV1gpRWHNm3apHr8a9euwbhgediUbQzjMo1x9vxFAICpqSmqVKnyWVF3xtTJeH//CO7Ob4u8Fnpo164dVq9cjqAAP5w9dRwFChRI1XmllBgzehTKOJngzfbRqFepNH799ddP2qirq6Nr164YPnw47FL4QDP7zzkYPGwkgl8+RMQrT8QGPocqLgavTqyC34llqFqpYob+fKREXV0DMjEekCrIxPgse+TN2dkZEydORNu2bVM1K/1Hp6amhgtnTqFnw3Lo3bQyTp84qnQkIqKfko2NDU6fPo0OHTpg/Pjx6NixI59ooc+4u7tj3KjhCDu5APl0wrBy2eIU265evRqwK4H83ZdA37kO5i346zsmTT1NTU3Ur18fVatW/a73ZmfPnoVLmbL4bfxsFClWAr16dMOaxXPRvVFFGBgaIn/holiydOkX+/7aozfOPg5CiH01/NqzD2bNmoXtB0/CpO5QXPcKRJvWrdDCxQIl8tlBK3cZlB3zL/TtnaFhUwRWVbpg2co1WXZdmpqasLOzw+ugCOTv+jdeJZhh2MjRGRozNDQUQYGBsKvWBXY1foX3My/ExsZmUmLg/v37ePL8JfJ0movcbaZifjb4szp8xEgU6DIPRfutwabN/8DHx+fDsXPnzsHIuQbsKraGaZmmOHri1Gf9mzdvjof3buPy+bMoXLjw94xOCmOBmr47JycnXLx4EV27dsWUKVPQsGFDvHv3TulYRGmWmJiIq5cvwLHxcDg0+B3+AW8z9FP2AgUKwFBXEz4H5uH1/tmoX/8XeHp6omfvPhg9ZiwiIiLSNN7Fixfhce8hCvddA4fGIzF05Jh0ZwOALl26wK2II+7ObwdbBGHyxPGftXFxccFrnxe4df0ybl6/mqrlI/6nevXqCH14Hq9PrUXwpS1o2qjBV9sXLVoUr3284eP9DBfPnU7X7NVr167B2s4eZuYWKFQwPwL9fbFh7WpoaKRti4br169jxux5sG06HpYudfFs+2Q4qAXh5LHDaOFqBxkZiB2796Bo8ZKZMpv9YxPGjYFBmBc8ZjRGPjPNFNfZzi7CwsLQoFFT2Nrnxu+Dh+boH1Kam5tj8uRJmDhhAkxNTT85JqXEs2fP4Ofnp1A6IqKfh46ODjZu3Ijp06fjn3/+QfXq1eHv7//tjvRTGTZ0MHyee+HMiaMpTjgAkiZHJIT6Iy4iGPHv3sDczOw7psz+Fi9bCfMK7WDffCL08rlj586daNKkCfb8exBxuavAutFYjBg97otLfTx8/BgmzjVhVqg8DKyd8PjxY2hZ5YeedV5o2xVBXHwCFsyfhyJFikJNUwcQalDT1EJ0oA+ivC7BuWjWFizfvXsHTSMLaBlZQMvcEcHB315yUUqJLVu2YPz48bh169Ynx8zMzFC4SFH47JmJl7unw718Rejo6HxzTJVKhfj4+G+2s7a2Rlx0OMKe3UTo40uwd8jc9cXTQ0dXL2n5x8gQqBITPrneqlWrIvzBSfhe2IZ3HntQr3bmrctNOR8L1KQIXV1drFmzBkuXLsWJEydQpkwZ3L59W+lYRGmirq6OUmXc8OrQ33h9fDnMzUw/WxoiLbS1tXH9yiUMaVcb04b3weKFC1CxSjUcfRqDdQcvo3W7jmkaz9DQEPHvoxAf+Q6xoX4wSmFZirTk+3fvLsTFxsLj6qUUl6nQ09ND3rx50zyTt0SJEjh94hi61yiEtUv/Qq+ePT85Hh8fj6dPn36ybIimpiYsLS0hhEBoaCiOHj0Kb2/vVJ+ze6++MCrXASUHbcbq9Ztw82b6NrkLCAiAjokV9KzzwMCxOAoWLIDL58+iYsWKkBDQLVAZxQb+gwjdXFj60YyS8PBwzJ07F3Pnzk3zDyD+x9bWFo8e3EVMTDQunjud7TehHTNuAm6/iYZVk/HYsucQdu7cqXSkTCelRJduPeBSthzyFyyS4iwiIiLKPEIIjBkzBrt378a9e/dQtmzZz4pFRKnRs2dPVHbJj2drB6CYjQ5GZ/LSZvHx8bhx40aO/SG2poYaQh9fRsQrT4R530Xu3LkBACHBIdC3KwQ9q9zQ1jP64iS0fj174M3BuXi1eyo03odg2LBhiPW+Cp+to/Hu+i783r8vAGDUyOEQb27g3vw20Ap7CXuNMDSvXhaTJnw+QSYztWrVCgbxIfBa3RdBFzdhwthRX23v4+OD3n36ov+wcVh7xgtVq9f6ZEkYIQTOnT6BUT1aYFzfdjh+5OA3Mxw+fBhGJmbQ0zfApMlTv9rW1tYWG9auhtq9nXCMf4Hd27ek7kKz0NbNGxF8YjGebRiCuXNmf/L5uGrVqti17R80K26MFQvnokuXzgompewmbVPEiDKREAJ9+vSBi4sLWrZsifLly2PFihXo1KmT0tGIUu3E0UOY/eccxMXFYeiQxWmeeftflpaWGDZsGADAw8MDmvqmsKvcHrFhgbi6aUiaxipVqhQG9u+DOXP6wdrGFuv2ZM9CoJTyw2OJZcqUSZpJ/p9i+rt37+BeoRLeBodCHYm4cPY0ihQp8uH427dv4VK6LKS+OSIDXmD3jm2oXbv2N88dGxsLDV0jqGvpQF1D68Mjd97e3oiKioKzszN27NiBsROnwNzcDBvWrELBggU/G6dmzZqw0p+I5+t/x/uwIKxdteLDMW0tLci4aECqoIqL+bAxjZQSVWvUwpv3OgAktmzfhetXLqb7Ec3M3vAmq7zx84O2bSHoWjhAy9zxh5zh5u3tjT1796Fw39WICwvEqNEj0K9vX6VjERH9FJo1a4YLFy6gcePGqFSpEjZu3IjmzZsrHYsykZ+fHzw9PeHi4gJzc/MvtgkPD8fJkyfh6Oj41TWRv0RbWxs7t2VNoS8mJgblK1fFK79AxEWGYes/G/HLLzlr8+lLV64B6sZ4cXgJVNGhKFSoEABg8sRxGDRkGLT0DFGquDNKly79Wd9Bg36Hq2tp+Pj4oF69ejAzM8Njz/u4ffs2ihQp8mFmu4ODA7y9niA4OBgWFhZQU/s+cyuNjY2xdfNGXL58GY0bN4aDg8NnbRISEhAbG4tbt26hQcMmiIc6HOv1g3F+V6jCfHH27KdLU2hpaUEIgeDgYLx79+6bm/x17d4Tjs3GQNcyN+bM64tfu3b+8EOAL2nevHmm/RsXFhYGfX39DH2mrVmzJgIDfFM8Xrt27VR9TqOfkJQyR36VKVNG0o/D399fVq1aVQKQ/fv3l7GxsUpHIlJcRESEtLFzkHZujaRlgdKybYdOSkeSiYmJ8o/Zc2T9Rk3lqlWrMzTWqVOnpJmFldTS1pEz/5gto6KiZIXK1aSWtq7M5egknz179qHtggULpK1LDek2/rB0rPmrbN+pyydjLVu2TOYqVVO6Tzgi8zYZJmvXb5iqDEeOHJH6hkZS18BItmjdViYmJsq58xZIfSNTaWxhKxs0aiL1DU1k4U5/yNy1e8hiLqVTHOv9+/fywoUL0tvb+5PXAwMDZcnSZaVQU5MVq1SXERERUkopQ0JCpJqGpnQbf0i6jT8k1dQ1ZUREhNyxY4csXqqsrPtLI/nq1atvXoNKpZJbtmyRM2fOlM+fP0+xXUREhOzT7zdZrVY9uWfPnlS9P1nh0qVL0tDETFrndZZ29o7S399fsSxZxc/PT+oaGMnifZbJAq3HS5tcDkpHoi8A4CGzwT1tTvri/TflJH5+ftLd3V0CkNOmTZMqlUrpSJQJPDw8pJGpubQtWEqaW9l8dt8lpZTh4eEyT/6C0qawqzQys5JLly37/kFTsHfvXmmdv6R0G39YFmgzUZZyK690pDQ5dOiQNLWwlE6/DJBlRu6Sxha28tatWx+Oe3t7yxs3bsiEhIQszREUFCT79PtNtmnXUd6+fTvTxl2zZq00NLWQ1vlLyIJFnGVkZOQnx0+ePCkNjIykuoamdMiTV+au31/aV+ssdS1zSw09Y6muYyAd8+SXQUFBH/o0a9FaWhV2k3bujaVtLkcZFRX14VhCQoIcNmKUdHEtJ8eMHS8TExOluZWNLNptviwzfIc0MDb75DNRVomPj5eNmjaXWtq60szCSt64cSPLz0k/p6/df3OJD8oWrK2tceLECQwZMgSLFy9G9erV4eub8k/diH4GBgYGuH71Evo0LItJg7pjw9rVSkfCosVL8Ofi1XiiUQjDxk7K0MaLHbt0g0Wt/ijaZyWmTp+Bv//+G8+CYuAyfCfU8lbCuImTP7RN2qAxFImxUUiMDILhf9a2tre3R0zAc0T5PkWMzx045f58tsOX1K1bFwF+vnj25BF2bP0HampqmDhpEvJ3nouCvZbjzJmz0NAzgJFTcRjnd4PfV/5d0tbWRsWKFeHk5PTJ6xYWFrh94xri4+Jw4eypD+tyv3v3DkJdEy+PrcTLYysANXUEBATg1x69EFe4MR6E66Fdpy5fzR8QEIAhw4bjt5ETsXDvZZRxK5fiOuj9BgzE3gsP8Nq4FDp364F79+6l6j3KbOXLl8djz/vYsW4pHnneh7W1tSI5spKNjQ3mz/0TPtvGIuryBmzfslnpSEREPx0bGxucOXMG7du3x7hx49CpUye8f/9e6ViUQQsXL4VxmaZwbDsT2nncsWnTps/anDt3DjFqBsjdehpyNRqOBYuyz1Jb5ubmiA0PxvuQN3jv7wUriy/PAM+Olq9YgfZde0E3b3n4HFuBO/Paol3rFihZsuSHNk5OTihdunSWbdr9P01atML+a89x0Q9wr1AZbTt0wuPHjzM87ux5C2DfaDic2s9GWIImzpw5g4iICBw6dAj3799Ht169EZuoBr1cRfDmtS/e3T0O4/xlkRAVAqtSdVFm+A7Em+TBypUrP4x54sRx5Ko/EA51+yEOGnj69OmHY4sWL8b6XYfwvkgzLN+0E2vXrsXyJYvgvXU87i3sgl49uyNv3rwZvq5vOXLkCK7cfoiSw7bDuFw7DBo6IsvPSfRfLFBTtqGhoYG5c+di27ZtuHPnDsqUKYPz588rHYtIUfb29hg/fjz69esHTU3NLD/fiRMnsGrVqhSLnNeu34BB0RqwKF4d+gUqpHrN5mXLl8Pc0gZ5CxSGh4cHACD2/XtoGphCQ9cA6uqaSEhIAGRSeyk/3Tivc+fOqFAsH+791RE2CMbUyRM/Od6gQQP81qsros4uhlseE/w5a+aHY48ePcKUKVNw5MiRL2bT19eHra3th6U1TExNEen7GNFvX0CqElEwT248Xz8IL7aNw/Chny+z8s8/W+BesSo6de2G0NBQAEkbaHbt1gN6BkYoXbYcvL29sXbtWixatAjh4eEAACsrK+hqa+F9kA+i/bxgb58Lvr6+0DWxgnF+V5gUrgxv7xcfzvP8+XPYO+WDroEx2rRrj7HjJ8IpXwEsWrIc1jX7wKFuP+hZ58XVq1c/yxgUFIQr167DpGRdmDtXhWGuQplyE+/r64uDBw+m+QeK9+/fx+Tps/D7oCEICfn25jM5Ue9evRAaEoQ3Pi9QuXJlpeMQEf2UdHR0sGnTJkyfPh2bN29GtWrVfsilpZSSmJgIT0/PTN8A+msc7HMhzu8Rot++QFzg8y9udujo6IioQB+EPruB8McXkP87FPhSq1KlShjQtwfe7BgHy5jnWL5k0Wdtnj17hoULF+LEiRMKJEzZlh27YVm1Kxzq9YOdS3XMnTMHSxcvTPfydBlx59YtWFfugLBnt2BUqCIu+amhUtXqiImJydC4uR0dEPHsOsJf3kd00BuYmJigZGlXdB88DhWqVEdIUDCM85VB0S6zkbtub+jIGESeXogSzs6QsZGQifFQxUZ+snl7ufIV4HdyJd6c2QDER39ScH78+Cm0c5eGcZ6S0HF0weMnT9GiRQsEB73FW39fzP1zdoauJ7WEEEmfv6SEVCUq8ntKpPijgun94iOGP7b79+/LAgUKSA0NDfnXX3/xkTyiNAoICJCbN2+W169fT3Wf2X/OlSbWDjKXS3VpbWv/yaNp//Pvv/9KQ1NL6VCuiTQwNv3m+H//vUgamphJdS1dma/ZSJm36TCZJ38hKaWUmzZtlrr6BlLXwEj26NVHRkVFyUpVa0gNTS2pZ2QqrXM5yEFDhsrExMQP48XHx8v4+PgUzxcYGCgHDh4ie/XpJ58/fy4PHDgg1TW1pbaJjdTQMZDjJ0765vtw5coVmbdAYWllm0uuW7dexsXFyVOnTn32+KBKpZJ79+6VBibmsmCbSdK2dB3Zpn1HKaWU27dvlxZORWTpoVulfcWW0s4xj7Qq6CptileWxUqW/vDY48WLF2WFKtVl7Xq/yCdPnsiYmBhZtLiLtC7gIo0tbOUfs+d8OF+eAoWlbfmWsnifZVLTwFRqaGnJ0sO2SfPiNaRR3lIyd71+0sDY9LPHAM+dOycNjU2lnomF1DI0k3YuNaSljZ0MCAj45ntx4cIFuWrVKvn69evPjt29e1camZpLu6Lu0sjUXN69e/eb40kp5YsXL6SBsanM13S4tHOtLxs0apqqfkSZDVzig/ff9FPZvXu31NPTkw4ODp8sSUDp8/79e+lWvpI0trSTBkYm8tixY9/lvNHR0bJN+47SwSmf7Nt/QIpLSaxfv0EWL1VWNmneSr59+/a7ZMsM3t7e0tjMQtq7/SJNrHLJ5StWKB3pg9FjxkmrAqVlnkaDpaGZpbxy5YpiWdp36iIt85WQQk1duo7cLd3GH5bGFjbSy8srQ+P6+vrKug0ayoJFi8vlK1bIPXv2SNvCZaX7hCOyUIfp0srGTuqY2spiPRZKi6KV5W+/D5Lbtm2TU6dOlcVLlpZqauqyRu16Mjo6+sOY4eHhcszYcbJvv9/k48ePPznflStXpKGxmbR3qSoNjc3kP//8I318fDJ0DemRkJAgm7dqIzU0NaWFtW2mLptC9LGv3X8rfqOb3i/eIP/4QkNDZZMmTSQA2b59+8/WfyKiLwsICJBWNrlkrhKVpZG5lVy/fkOq+hUu5iKdGg6SdpXaSmO7vCmuU3zx4kU5f/78b964eHt7Sz0jE1mi7wqZr9kIqWvpKIv3XirNLKw/tHn37p309fX9pF/vvv2lrUtNWbzPMmnuWEhu27ZNSinl4sVLpJa2jtTW1ftwTWfOnJG9+vSTS5YslYmJidLOwUmqaWhJDT1jaWZhJZ1Llpb5mo2QbuMPS6O8paWFtW2q3otvUalUsm2HTlJH30gaOhaT7hOOyMIdZ8ripcpKKaVcvXq1tHWuIN3GH5ZODQZIoaktDeyLSG0TG6mlZ/DJjWdERIS8c+fOh/XooqKi5L59++TVq1ellElF+fXr10tdIzNZoM1E6Tb+sDSwLyLVNbRk8b7LZZEuc6Smtq5s076jPH/+/GdZq9WqK/M2GSrdxh+WprmLyG7dun32nn/J2rXrpJGFjbQvVUuaWVp/VqQeNHiItK/SQbpPOCJzVekgBw4anKr37uTJk9I6fwnpPuGILNZrsXTIkz9V/YgyGwvUvP+mn8/Nmzelvb291NPTk7t371Y6To62f/9+aZWvuHQbf0gWaDVOlk5hLeV9+/bJvv1+kzt37vzOCXOmlStXSvsydaT7hCOyQOsJslK1WkpH+iAuLk5OnjJVNm3RWu7du1fRLPHx8XLdunXSuUQpaVXQVdq61JQFCheVcXFxmXoeDw8PaWRmJYt0+VPmKtdENmraQo4aM1Y65S8kW7ZuJ3/7fZA0dywo7crUk9a29jIkJCTN53jy5IncuHGjLF3WXZra5pb6RiZy8+Z/MvU6UisqKuqTyUFEme1r999c4oOyLWNjY+zevRvTpk3Dli1bUL58eXh5eSkdi35ykZGRaNqiNWztc6N3v/5ITExUOtJnjh07Bk2rvLBvOhY2tftj8fJVqeqXJ7cDXh1bDgiB2Pfvcf7ipS+2q1ChAgYNGvTJenNfEhkZCTUNLWib2kDXwhGxYW/xYM1gTJ/2/2tLm5iYwNbW9pN+AYGB0LYrAj0rJ2hbOsHPzw9RUVEYMnQYivRaikJdF6BXnz7w8PBAwybNcdgrFuNn/YWhw0fAPyAAJfqthFP9fgiPjIKZqSmifJ8iNtQfse/8kOc/60On1+PHj3Ho8FEU6bkEsaH+eLRxNPyO/I2+vboBAFq1agVTtWg8Wd4D7y7/A21tXZgWKo8CrcYhMVHi3bt3AAAvLy/kyV8QNeo3Rf6CRfDmzRvo6emhcePGcHNzAwC079QFw6bMg9DUwbPds3B3SQ+8D3qJKZMn4dnG4Xi9bzq2bdmMrZs3olKlSp9ltTAzQ1yQD+LCA6GWGI9mzZp99p5/ycq1G2BdszdyNRoGXXtnHDt27JPjTrkdEevriSjfp4jz9UQep5R3F/9Y2bJloRkfgVf7ZsL3wBx06dQhVf2IiIgyqlSpUrh+/TqKFy+O5s2bY8aMGUj6vExpZWRkhPioMMSFByM2+DVMTIw/a3Pw4EF06tYbB5/Gonvfgdi5c6cCSXOW4sWLI+z5LQTdPYmwu0dQtoyLIjmklDh37hz279//Ye12TU1NTBg/Dnt2bkOTJk0UyfU/Ghoa6NKlC25cu4wpQ3qgafmCaNOyOW7fvp2p5ylTpgz+mDEFKo+NcLFSw6rlSzBz+jR4P32EHdv+wd79+2FXfzAcfhkEoW+GW7dupfkcBQoUgL29PXwC3qFAj6VwbDoaE6ZM+2qfqKgoLFy4EH/99RciIiLSe3mf0dPTg5oay4SkDP7Jo2xNTU0NY8eOxeHDh/HmzRu4urriwIEDSsein9iUadNx1SsQVk3GY/eRc9i4caPSkT6TP39+RLx5gtCn1xHx6ByKFi744dj79+8x+88/MXz4CDx79uyTfg3q1YF5IXc4VO8Cxzq9cfV66taXTomzszMqlXfHrfkd8HDDSBg4OKNQ4YLo07v3J+0OHz4MSxs7mFpYYcuWrRg+eCCCL/2Dl5uHQ+XniTZt2kClUkGqVAi8cwIRrx9CqlS4evUqTAuVg12FVjAr1woXLl6BprYuNPVNoG1sDQFg0/o1MI58Bs+VvyFvLiscOpD+TR0/ZmBggIT4WCTGRiNXlY5Qj3iDw/t3oW+fPgAAQ0ND3L5xDZfOHIfPi+cwNzeDoWMx6NnkhbGF9Yd1qBf8tRA6Bashf4+lEPYuWL5ixWfn2r93Dxybj0OxfquhraOLdo3r4N6tGxgzZjQiw0MRFhKMZs2apZj1r/lzYJPoi+cbBqNd84Z4+zYQdX9pjEmTpySt+52CksWdEf7gJEIeXkCEzwMUKVLkk+P9+vVDizoVEXN+KVrUqYj+/fun6r0zNDTELY9rmDKgEzauXIQpkyZ+uxMREVEmsbGxwenTp9G+fXuMHTuWmyemU5UqVdC9Uzt4rR0Ag8DbWPGFtZRPnzkLoxJ1YVu+BYxdGuDEqTPfP2gO4+7ujjUrlqBAwhN0a1Ybs2ZMVyTHqDHj0KR1R/QcMh6Vq9f86j3j97Z9+3ZUrl4bPXv3RVxcHKysrLB5+26sO/UINWrX++J+LClJTEyEr68v4uPjU2zTp3dvPLp/Bwf27YaVldUnxwrkL4A35zYjwOMAgl49haOjY5quJTw8HJWr1UStWrURFuiHyDePEe33FBbm5oiJicH4CRPR+dfuuH79+if9atVtgOnLt2HW6t2oWqM2f9BGP4aUplZn9y8+Yvjzef78uSxVqpQEICdMmMBHTyhLvX37Vk6cNElOnz5dhoWFfXi9Q+eu0rF2T+k+4Yi0K/uLnDVrloIpZYrrs69evUa6lqskO//aXYaHh394vXmrNtK6SDlp7fqL1DMwlJs2bfowxt27d6WBiZl0rNVDWjgVlRMnT/nm+ecv+FsaGJnIXI5O8vLly1/MN3v2n9Ixb37pXqGyfPLkySfHExMTpYGRsSzS+Q9ZrMdCqaNnICMjI+WbN2/kmTNnZGhoqJRSypcvX0pdfSNpUbK21DQ0l63atJX37t2TBsamMleVDtLMPr+c/edc2bJNO6mtbyQ1dXTlilSs2Xft2jW5bt26L66x/C2LFi2WxqbmMlfuPPLSpUtfbbtmzVqpb2QqzezyyAqVq314/HDsuPHSpkR1WXrIFmlV2F3Omzfvs76ly5aTuco1lbnr9JSmFlbpXu4oPDxc1q5bX2rqm0irMg2kZb6Sctr0GSm2j4qKkv0HDJSVq9eWGzZsTNc5ibIzcIkP3n/TT02lUslp06ZJALJcuXLSz89P6Ug/nMOHD0tDMytpX6OrNLKwSXH5uJ/VP/9skQWLFpeVq9eUz58/l7dv35YzZ86UR48eVTqaNDI1ly6/r5Nu4w9JI3Mb2bZ9Bzlh4iQZERGhaK7bt29LQ1MLWaDVOGnrUkN26tpNtuvYRTo1GJC07FylNnLSpEmpGis4OFgWKlpc6huZylyOTvLly5dpzlOrbgNplLeUNHeuJk0dCsrNmzenuq9KpZIVKlWWpoUrSNfRe6VF0cpSz8BQFi/lKh8/fizbd+wirZ0rSsfaPaWhidmHzytRUVFSQ1NTuo07KN3GH5LauvoyODhY3rt3Ty5btozrR1O29rX7b8VvdNP7xRvkn1N0dLTs2rWrBCDr168vg4ODlY5EP6CEhARZoHBRaVumnrQpUU26V6j84ZiHh4c0MjWX1vmKSyubXPLVq1eKZPTy8pJ5CxaW6uoaskPnrqn+gY2ZpbV07vG31DQwkxYlakpj69xy6kdFyrNnz8qevfvIhYsWfXPMFy9eSH0jE1mi/yqZv8Vo6ZSvYJqvIz4+XmpqaclSgzfLMsN3SG09/U/+XgcGBsrmrdpKB6e80qZYlaQNStpNlW4VqkgpkzYWGT5i5IdCu0qlkt7e3nLs+AmyjHtFOXDwEBkbG/vFc2/dulUamllK8yLlpYa2rhw6bFiWbsj67NkzefXq1U82eXz37p10KeMmdfQM5C+Nm8mYmJjP+vn7+8tfu/eULVq3k3fu3En3+X/t0UtaFq8qC7WfJrWMLKVtxTayacvW6R7ve1OpVJ9sOEOUUT9ygRrAGgBvAdxP4Xg1AGEAbid/TUjNuLz/ph/Rzp07uXliFjp8+LAcPGSI3L9/v9JRshVvb2+pb2QiC3eaJR2qd5ZFi5dMmnhRobk0trT96uQAlUolBw0ZKvUMDGWhosXlkydP5Jy582XegkVkvV8aZcqmkMVcykiH6l1k3mYjpJqmtrSv0k7aFK8q6zZomOGxM2Lbtm0yV7GKSZ8J2k+TZlZ2UltXX2rpm0jHOr2lsaWdPHjwYKrGmjFjhrQtVUu6jT8s7Su1ln37/ZbmPI2atpCONbrKsmP2S8u8xT7snZMaV69elTr6RtK6bGPpPuGItHZtKEeOGv3heO58BWWxXkuk+4Qj0rZQ6Q8/uFCpVDJ/oSLSvmJLaV+5jXRwyisvXbokDYxNpUPZ+tLA2EyePXs2zdeSE6xZu1YaGJtIUwurVP8+f2++vr5y9+7dGd6w80f1tftvLvFBOYquri7WrFmDpUuX4sSJE3B1dc30daYo5zp79izyF3ZG3oJFcPz48XSPExgYiDdvfOHQYCAcGw/HtSsXPzzWVqZMGTx5+ADb1yzCk0cPYG9vn1nx02TA4KFIsC8Hl2HbcPTMZRw8eDBV/apWrYaXB/+CrqUj8jUdDrt6A/DP1h0AAH9/f9y6dQs1qlX9P/bOOrqqo2vjO8l1d4+7uweCOwR3d3eX4MWhuLVIcXcIFCgUd3d3JwnE5T7fH2nzvWmEBAKB9v7Wumu1nJk9e849SfbM2fNs6tqlyyf1xxISEsiCxSG2WEUcmZ4SEoquf8ZgMGjkyNF065eudHNhR+rcqTNNm/4zlS5XiWbPmUvtOnahk48SydylCr25c5beXNxHcRd2UlCgPxFlHYOcPGkiNWvWjMzMzMjMzIzOnDlD85esokSH6rRm1580afKUPMde+OtyUpftQA4NRpLYMYTmL15a6Pv4OdjZ2VFQUBAxGIzsf2vWohVdvX6DUlNT6fLly8RisXL1U6vVtOSXRbRx3Wry8vL67PFv3LxNUrcyJHEIIJ7almIv7qbmjRt+tr1vyZ07d8jSxo5EYjFVqlqD0tLSStolEya+d5YRUZVPtDkCwOevz5hv4JMJE98l9erVoyNHjpDRaKTw8HDaunVrSbv0r6JKlSo0fdo0qlmzZkm7QkREaWlp9Pbt279f1pUYL1++JI5QRiIbb5I4hdCTR49I4hZJhgodSR7ejDZs3ppv38OHD9PyNRvJucMCStYFUuPmrWjsxCnEjehEV96aUdcevb/Yv22b1pMz+w0xb8eQSK4hfZlWpK3QkU4cz12jJjY2lho0akqevoF5ytUVBgC0ceNGmjNnDr169SrfdmXLlqX0tw/p6fZJ9HjHVDKyheTWZTHJXMPJ/P4hqlaxHP08Zz7NnDn7k98xm80mY1oKwZhJxtREYrFzx+GfYvqUiUQPjtC5iXUo1NuZ6tatW+i+iYmJxBHJKe7uWTo/vSnFXjtEPbpnSeYZjUbSqFT0YPtUehQzl1LfPyM/Pz8iIjIzM6NDB36nqp5KquIqoaOH/6DNW7aS2Kc66ar2ImlgHVq9dn2R5/K9Ex8fT127dSfbJhNJU30gNW7arMR/jv/JvXv3yM3Tm3pETyUf/0A6cuRISbv0Q2HaoDbxw2FmZkadO3emP//8k9LS0igsLIxWrlxZ0m6ZKCHevXtHFSpXI6VGT5WqViNznwbECmhGdes3+OxNLIVCQUqlgp7+vpCe7JlF3r4BOTYV1Wo1lS5dmsTi3MVgCkNycjKNHTeeunbrQdeuXfssG0lJyWTBE5MFk0MWbB4lJycXqt+q35YSJb6lxOe36fX5PfTi+DqytjLQxYsXycbemfoPGUHtu/WhPv0GfNKWm5sbValYnq7PbUM3lvWjxISP1K179yLPZdjQwXTr+lW6euk8qVRKWrxuO71UhdHI8ZPpwsWLJHYpRZqgWiRSaEn+5jS1qVOBfDw9SCASk1gqz7WQvHPnDnGsvEhs70dc+yC6fvN2nuN6urvSu8u/U+ztU/TxyTXiqe3o0aNHRfb/U9y6dYuOHj2aS9suMzOT9u77nbQRjcmn5zJ6+TaWtm8vHo3svOjWqT29+H0+Pdo0hjLf3KV1q1dSvXr1Cuxz48YNWr9+PT179uyr+VUYBg0dQRYOZch34Ba6dO8ZbdiwoUT9MWHiewfAn0T0vqT9MGHiR8HPz4/OnDlDHh4eVKdOHZo4ceJ3t/Fh4ss5e/YsqbV60uotSaWz/KqJCZ/C39+frHUqerCyHz3aMIqaNWtGH26foNcXYujDpT0UFhqcb9+EhARi8kTEFEiJJdFSXFwc8ZRWJDC4EN/Glx4+evzF/tnZ2dHve3bRuVPHiWNupCf7FtCzPbOoXLnyudp27dGLjt+PowzP+jRwaHSRNKD/pv/AQdS57zCasHQb+QUEZddr+SdKpZIuXThL43q1pE7tWhNXpiUmX0psuSVxORzae+QUPeB70ZgpM2n16tUFjtmpUydyUrLp7IRapMh4RcOGDC6y3w4ODvTo/l1KSUmmbZs35lgz/s3OnTtp3LhxdP58zvo+pUuXpmBfd2IglRhIp43rVpNeryciol9++YXuPHtDQhsfir99kvr17kkKhSK7r16vp0Xz59HihQvIysqKvL08KfneSXp/8zgl3TlGPl6etHPnTgoKK0216zWkly9fFnpOiYmJVK1mbRJJ5VSzdr1CrzO/NllrKTNiCeXElqgoNSXlu/s9vX79euI5hpGhbjTJQxvTvIW/lLRLPxb5pVZ/7x/TEUMTQNbR98jISBARunfvnu9RfhP/HoxGI44dO4YjR47AaDSiTbsO0AVWh0fn+TAzt4D/wI0IGLwFLDY3W7/4c3j27Bn69O2HgYMG4+3bt8U4A6Bh42ZQu4XBUKYFxDLFZx3DO3XqFCQyBfhiGUIjIpGSklLovhFlykHhEQmRjQ9YXD6uXbsGTx9/GMq0hGen+WAKZFBqdACA+Ph4zJ8/H8uXL8etW7dyyeoYjUZ4+vjCnMWFOrg2GHwJxv+Uv67x//LgwQNMnDgRq1atypbWaNC42f9ryIXWRVRUbQikSohtsvThrl+/joSEBHB4Anh2XgD3tj+DxxfmkCO5ceMGRFI5DD5lIZDIcODAgTzHT0pKQs2oOmDyRBDr7KDU6PDs2bNC38fCsGDhQggkcigsHREcVipbe/pvOAIJHBuOQNDwXeAqrbBt27ZiHf+fnD17FqtXr8arV68+2Xb//v0QSGQweJWCRK4s0WNqUXXrw7piewQN3wW1sz9+++237GuPHj3CggULinSUMSMjAzdu3EBsbOxX8NbEjwL9iyU+sqZHNlSwxMc7IrpERHuIyL0wNk3xt4l/O0lJSWjSpAmICC1atMhTesvEj0tEZDnY1uyNwGE7wdPYg8sXlGh8k5KSgn379mVLy2zYsAH1GjXBlCnTCpTaS0lJQWhEJEQKDQQiCbZt2wYbe0eoHb0hEMuwcePGYvXz8ePHGD58BKZPn57nz4R/cDicm4zJqtHjHoa1a9cWeQydlS08Oy/Ikrqw98Qff/zxyT7v37+Hg7MreDINzJlsMDh8WJZvl7WOiGyBfv36F2rsjIyMPP89Li4O4aXLwoLBROmyFT5Lf/vXX5dAojZAH94AArE0l1yf0WjE/fv3c61be/XuA0OZFgiOjoGhbCv07NU73zHi4+MRExODQYOHILJ8ZYwd/xPu378PgVgKx4YjoA+rh9LlKhba57Fjx0HtEQHPLosgs/XC2LFj82yXnp6ORk2bg8PlIyAkvFDriy+lb/8B4AnF4ApEmDZ9xlcfr6isXr0acksnuLWZDrVrCEZEjyxpl747Coq/Szx4/tyPKUA28TdpaWno27cviAhhYWHFvsFk4vuibfuOkGqsINVao2nzlqhaIwq2NXohODoGArUNeGIFxEod2nXoVNKu5klycjJ4Iim8ui7+KwDz+GyNsMTERDx69KjIBUOfPn2KytVrwtM3EOvXrwcA2Dq6wqXFRASN2AOu0hrBoRFIT0+Hq6c3NB4R4IgVYPFE4AlEuTZRlWot1IE1ERwdA7uo/giJiMw1Zmpqag4/X716BZlSDV1wTcitnDFw8FAAwO7duyGUyGEIqAyhRIYTJ06ALxRD5VcNupA68PYPRGxsLFgcHvz6r4NPrxVgstg5dJ2BLH3slStX4tq1a5+8H7dv38b27dvx5s2bPK/HxcVh0OAh6NK1e5EXMXprO7i3m4mgEbsht3TAsWPHclz/9ddfwWBzweKL4RsQnGsDu7g4e/YsfAOC4ebli/379xeqT92GTf7/ZUFwLUyePPmr+FYYbty4AbXWABaHh1Jlyme/kHn8+DEkciUM/pUgVmjxyy+/ftJWUlIS/AJDIFHqIBRL/7UafSY+zX98g1pERIK//rsaEd0pwE5HIjpLRGetrKy+8K6bMPH9YzQaMXbsWBARQkND8fLly5J2yUQxUaZ8JVhX6YLAIdvA09hDqrNDTExMSbv1WWRkZODmzZt4//49gKxi2DExMbh169Y39+W331ZAKFNC6xoEvZXNZ9WJql6rDrS+FWFbvSeEYlmhC5jHxsbCgsGAT6/lcGoyGuYsDiyDa0IgluaKu4vKiOiR0HiXQ8CQrVB7lsa48eOLbKNarTqwrzMwa6M5JAozZswoVL9Tp05laUr7VYBALMXJkyfzbPfu3TsYrG2hcfSBQCzL1nr/448/IDU4IGjEHnh2mgc2X4TffvutUElNffr2g8qnIph8KThyA4QSGZ4/f56r3fLly6G094Jf//XQh0R9s/X3kydPvtvfy0ajEcOGR8PFwwftOnQyveTMA9MGtYn/BGvXrgWfz4dGo8Gff/5Z0u6Y+AokJyeDwWQiYPAWBAzZChabm1UdXCKD0toZljZ2OHToEM6fP19sxe5+//13RJQpj7oNGuf5h7moTJgwETy5DkJrL2iC64AvkuDIkSO5grDk5GQsWbIES5cuLVJ29OeyZs0acAUi8GRaaPRWePPmDe7cuQORQgPXVlPAUVghcNhOuDT7CQ7Objn6Dh48BAyuELY1e4OvtstRdBEA+vTrDwaTCZFUhkOHDgEAdu7cCZmlE5S+laEJqQf7/7F59uxZLFq0CLdv38b169chUeoQNGIP/PqtBZcvBAAMGTYCXIEIXL4QU6ZO+6r3JiKyHLS+FWAo1RgqjR5JSUnYunUrunbrgY0bN+LcuXNwcvOESmvAr78uydE3IDgMVuXbwr3tzxBI5Lh9+3Yu+7Gxsbh9+3aRXzQUFqPRCJVGD7tafeHUaCT4IjESExM/2W/Y8BFQuQTDpcUkyPT22LRpU57tNm3ahODwSDRu1gJv377FkydPcOHChXyzUT6XjIwMxMbG5vjZ/vXXX2HwLY/g6Bg4NhqJ8Mjyn7Szfv16qJ18ETRiD+zrDER4ZLli9dPEj8N/eYM6j7YPiUjxqXam+NvEf4mNGzeCy+XCysoKFy9eLGl3TBQDV65cgVAiA5mZg6cwQKu3NJ2mKiYuXryIzZs3Z2+YF5W4uDh06dYDNWvXK9JaPj09HUKxBE6NR8O56Thw+QLMmDGjWAqe9us/APrQOlmZ4cG1MGTosCLbGDR4MGTWLrCp1gNCqRJHjx4tdN8bN25g2bJluHHjRr5tfvvtN+g8SyE4OgYO9YchPLI8jEYjypSvBCZXCIGlG1hCBeRe5WHB5oPBYmPBwoUFjnvv3j1wBWIYyrXJKtDoXxWTJk3K1W7OnDnQekUiaMQeWFfqgPqNmhZ6bib+u5g2qE38Z7hy5QocHR3BYDDw888/F9smpYnvg8zMTEhkCtjXHQSH+sMglEiRlpaGFy9e4Pjx44XadCsKL168gEAshX3dQTCE10doqcgvttmtR0/oSzWFddWuEBhcYbC2gUSlB18owYoVKwFkbShGRJaD2jkQaid/lClf6bPGev/+PU6ePIn4+PhCtX/06BFOnz6dncWbkJAAqUIFbUhdMPgS+PReAdsaveDjH5Sr788//4zS5Srip4kTc2y0Xr58GSK5Gv4DNsCx0UjYObkCADZv3gwLNh/WVbuCp7aDj38gAGDO3LlwcvdC9Vp18Pr1a6SlpcHT2w8atxAorF3Qul2HbNvPnz//JkfJ2Fwe/AduRHB0DKRqA+bPnw+RQgurCu0hVuqhVGvB1zvDnMmGOYOdIxPnzp07CAwNh5WdAxYtXvzVfc2LzMxMWDCY8B+wAYFDt4MrEOHFixef7JeSkoJOXbrByy8IY8f/lOfv05s3b0IgkcOxYTR0gdXhGxAEvlACidoSkeUq5spsLw6OHz+OHTt2IDk5GSdPnoRIroJD/aFQu4Whe8/en+wfExMDucEevn1WwbJMC1StGVXsPpr4Mfgvb1ATkYaIzP767yAievz3/xf0McXfJv5rnDt3Dnq9Hnw+H1u3bi1pd0wUA5mZmdi+fTsWL178WTJ7n2LHjh0YNGgwDh48WOy2S5LPTaTYtWsXLG3sYePgXCjZjs9h//79sHV0gbW9E/bt21dsdp88eQK9lQ3ECg0sbezyPamdmZmJ1atXY9q0aTnaDBk2AjyhBCwuH25evl9Fyu/AgQOQqC3h3m4mNH5V0LR5qyx5D6kC/gM2gCPTwapCBwRHx0DiGASxQyAs2NxPniDs0bM31N7l4dNrBZQOPlicxzomNjYWTq7ukKj0kMqVueRLfjTi4uJQoXI1iKRyNGra/KudbP2vY9qgNvGfIi4uDrVq1QIRoWnTpkhISChpl0wUIydOnICnbwDcvf2+eqb8qVOnIDfYI2jEHnh3+xVyleaLbV69ehVimQIaR28IxVJINFYIGr4Lbm2mw2BjDyDrGWaxuQgavgtBw3eBwWQV6TlOS0vDTz/9BJ5QDKW1MyRyJUaNGoXz588X2d/Lly+jboPG8PL1B4fHh5WtfZGyiC5cuACxUouAwVvg3Gw8rO2dAAAzZ86ELrB61tv+ekNQoUp1nDp1Kitju+UkiCzdYGnjgN9//x0fP37EsmXLsHnz5q+WZQxkZWC8ffs210Zsleq1oHYNgTagOvgiKfgiCQxlW8On1wpwVTYwZ7DBU9shcNgO2NboBf/gsK/m4+fSvVcfSFQGyPV2iKpbv9he3u3evRsaJ18ER8fArc10sPgiuLaaiqDhuyA32OPIkSPFMs7fjBozFmKlDmoHL/gFZkmirFmzBmUrVEHvvv0KdYzOaDSiW49e4AmEcPf2w4MHD4rVRxM/Dv/mDWoiWkNEL4gonYieElE7IupMRJ3/ut6diK79pUF9kojCCmPXFH+b+C/y/PlzBAYGwszMDBMnTjQlwJjIl/Xr10Os0EIf2RxCqeKrbch+S16/fg0v3wCQmRncPb2LpMOcnJwMvlAEl+YT4NR4NEQS6VeN5b8GqampuHfvXoG1rnr37QeFtQt0AVWh0ugRGxuLpKQkMFls+PVfB7/+68BksYs9mQrI2hy3tLYDky8BR6xAzag6iI+Ph0AkgWPDaMjdy4DJF0NsHwALjgBCG29YVeoIgVhaYAwcFxeHilWqQyJTolnL1vkmnaSmpuLGjRufpc/9vdGv/0BofcrDt/dKKB19sWDBgpJ26V9JQfF37hKjJkz84IjFYtqyZQtNmDCBRowYQVeuXKHNmzeTg4NDSbtmohgICQmhy+fPfJOxvL29SSnm0ZONoyg1/jW1a9Pmi226u7vTnZvX6erVq8Tlcqli1RqU8u4ZJb26RzKplIiIhEIhKZRKenFsPWWmp5ERoA4dOtDs2bNJLpd/coxmLVvTrr0HSeJTnST2fnRrzUhasP0kTZ0xi/bs3EYRERGF9tfT05M2rV/z2fM1MzMjN2dHOjujKbFYTFq0YD41a9GaHj16RHE3L5AZi0+J905Sv1FD6fHjx8QUayj+3nmCuQVZuFamOvUb0fEjh6hVq1ZElPVSdc7cubRn3wGqVL4s9ezRnczMzD7bv7+5cuUKlatYmT5++EChYeG0d/cOYrFYRES0ecNaWrhwIW3btp2uahxI4BBCTw8tp3dXD5HEKZiYPBG9Pr+HCCBjRjrx+fwv9qcwAKCBg4bQ4l9/JVs7O9q2aQNZWVnl2XbWjGnUrHFDSktLo4iIiE/es82bN9OpU6dJLpeRvb091ahRg9hsdq524eHhxEyLpyebx1LS64ekUiop6eVdYvCElJb4gaR/PdPFxew5c8m6wVjKSEmg6xvG0LBhw2jChAnUuHHjQtswMzOjObN+pjmzfi5W30yY+J4A0OQT1+cQ0Zxv5I4JEz80Wq2WDh8+TG3btqXBgwfT9evXaeHChcThcEraNRPfGTv37CVJQB3SBNWipzDSgQMHqEyZMiXtVqGJjY2lefPmERFR165dSSqV0tjxP9GtB09JaO1JD15/oFJlytGFs6cLZS8lJYXS0zNIoHcmGDPpfmICZWRkZMfYeXH48GE6duwYlSlThsLCwoplXl8Ci8UiOzu7Atts3LyVtFX6E09tS/dX9qfz589TqVKliMFkUcrbJ0RkRgwmi5hMZrH79/z5c3ofF0e+fVeTMSONdk2qRwKBgLZs2kD9Bg0lJymPugyaTb//vp9Wrb9OVuXbkkDvTJnPLtOVK1dIIpHQwoULycLCgjp27EgikYiIsvZU9u3Z+cnxWSwWubi4FPu8SoJ3798TQ2ZJLJGCGGItxcbGlrRL/z3y27n+3j+mDA4ThSEmJgYymQxisRg7duwoaXdM/IB8+PABq1atwt69e79Kxsy06T9DplDByc0TV65cAZCVAX3w4EFw+CKwxCoIrTwgcysFazuHQulRc7h8aMMbQeocCoVPZRjKtf6rAnRr9Ordp9jnkB8nT56EQCyFzq8SmGwuWrdpA9/AEOjD6sKmeg/whWJ069YNEydORFJSEubNmwcGhw+mUA7npuOyfPYrj8mTJ+Pt27d49eoVHF3cYc5gQ2TnB4FcC2t7J5QqWz5fbbbXr1/j8OHDn9TDq1K9FqyrdEbQ8F1QOfhgzZo1udq069ARluWztNhkzqHgiWRwbTkZgcN2giOSw9yCAaVah0uXLiE+Ph63bt0qssTFx48fcfHixQIz5m/cuIGg0AgYrO3Alyjg03MZ9BEN4R8UgrNnzxZpvLxYsmQpJGpL8HVO4Mj0kNt6ICKyXL7P//v377Fq1Sr8+eefuH79Olw9fSBTqjFl6vQv9uWf+AaGQBMUBQuOAIZyrSG39cCgIUXXAzRhAvh3Z1B/rY8p/jbxX8ZoNGLMmDGm4okm8mXZsuWQaq1hXbkzRHJ1sRdgfPLkCTp16YZOXbrlqF8zc+ZsePkFoUXrtp+dyWo0GuHp4w+NT3lofSrA08cfRqMRzZq3gAWbj6DhuxAwZCvMzM2LVGekQ6cuECk0EMpU6D9wUIFtd+/eDaFUCUN4Awgk8h8mA712vQaQu0bAumpXmDPZ6NKtBwBg69atUKi1UKi12LJlyxePs/iXX6CzsoWXb0B2Ifjk5GTIFCrYVOkCyzLNYe/smm//Pv36Q27tAl1IHUjkSjx//hxevgHQeJeFxjMS/kGhBY6fmJiIzl27I6x0OSxZsvSL5/O9cfXqVUgVKigsHaCztP5k/anExERcvnz5X5E9/i0pKP4u8UD3cz+mANlEYbl//z58fHxARIiOjv7hjhWZ+G/x6tUr2Dk6QyhTZWkaMznw678ewdExEKv0uH79+idtBIZGQBtQFXydE8wsmOArLeFQfxj4SkswmCz4BgTj4MGDqFilOipWqY6rV6/mayszMxNz585D+46diqylN3DgIOgimoCjsITStzLkziFgcvjw7bMKQSP2QKTUgysQQWHpCEcXN3Tq3AW6Us2g9KsKtlQHTXBtMDk88ERS8AQilKtYCeqA6vDtswp8vTPMLJhwbDAcSt8qkClUuHv3bo7xL1++DLFMAbW9B+QqDe7fv5+vrzWi6sK6QjsEDt0OpZ0H1q9fn6vNhQsXIJLKoXH0hlylwZQpUyCQyKGycYWnjx/evXsHo9GIEydOQCSVQ6zQwsc/KM/jfLNmzYFAJIZaZ8iWqrl79y4Uai3kejuotQY8evQoT19dPLxhXakjXJpPgDmLA69uv4IplIMtVkEo//KN4dr1G8K2Zh+YmVsgYNBmBA3fBb5YhsePH3+R3eLgwYMHcPf0gtQpGMHRMXBp/hP8g8OLZCMjIwNz5sxFtx49cerUqa/kqYkfAdMGtSn+NmHic9iwYYOpeKKJPDEajVixYgXad+xU7JrlRqMRtg5OMITVhz6sHuwcnWE0GnHw4EFIVAa4NJ8AjVdZdOrSrch2jUYjPnz4ACabg6ARexA0Yg9YbC7i4+Nx48YNWDA5sK7aFYYyLWBla5+vrXPnzmH8+PHYs2dPDvuXLl3K3lDNi9Wr1yCqbgMEh4XDqmKWXrKhTAv0HzCwSHO5du0aWrRui569+uDdu3dF6vslnDt3Dmy+CHKPsnBsOAI8gbDYx7h//z74Iinc282EoVwrqLQ6TJ8+HYmJibh48SKq1ohCnfqNCpTtyMzMxG+//YaxY8fizp07iI2NBZvL++s73/1JWcmu3XtC41EKTo1GQqTQFKng449CXFwczp8//0k5lqdPn0JnsIJcZwuFWos7d+58Iw9/fAqKv81LMnvbhIlvga2tLR0/fpxatWpFY8aMoZo1a5qOa3yCt2/f0sGDB+n169cl7cp/jkWLFlGyyJbcuv9GmsBaZGZuTo9/X0zPj64jC2SQpaXlJ23s2raZavhbU/XSgXTx/FkaPbgvce/uJYKRPHuuoNdMPVWPqkO3yZLuwJLKVaxMRqMxT1sTJk6iYeOnUsydFIqq24DOnz9f6Ln4+vpQwu0jlJH8kexq9iG7ukMoIy2ZHm8aQ0+2jKPMtCTSlu9Idq1nUYKFmBRyGX24sodYFuZklvqBgtRG4gkk5N7jN7KqM4xOnzlHHIU1MQUyYgmkRGbmlPrhDX18dIUsDD7kHxRCT548yR5/9tz5JPKuTjbNphLbPpSWLluWr69TJ/1E6bf20/nJ9SjEy4nq1KmTq42Pjw/dun6VVi+cQbdvXKP+/fvT5J/GEo9hJKFIRO/evSMzMzMaNnIMySNakHOXJfQyEbRlyxYiynoh/O7dO5o9ezYNHDKE7FtMJ1FEG2rSPEu+ZNacucR2LE0O7eaRhU0gLVy4KE9fX754ThLHYBLZeBGTzaPrv/YkBldEbLmBMlkimvbzzEJ/R3lRvkxpir+wgxh8Kb08s53eXNpPDHOzQsnLfG1sbGxo6+ZNlPH6Dj09tILeHFlBVStXKJKNESNH06hp82jb1XiqUKkq3b59+yt5a8KECRMm/o3Ur1+fjhw5QpmZmRQeHk7btm0raZdMfCeYmZlR8+bNafHCBRQVFVWstj98+EDPnjwhXfm2pC/fjp48ekiJiYl079494uudSWznSwLHULp5+26hbf722woSCMUkFEto9+7dZGtnT0/3zqOne+eRta0dCYVCcnFxoRPH/iTr1DvkI06kg7/vzdPWxYsXKbJcBZq36wI1btmOVqxYSURZ98TLy4vc3Nyy2166dIl8/IPI3smVRo8eTV169qUrmVZ07fZDen9xD72+EEMJNw5RSHBQoefy8eNHKlWmHB1+bKSNR29Q7XoNC9133rz5JBRLSK0z0OHDh3Ndv3DhAtVv1JQ6du5Cb9++zXXdxsYmK1b2KEPp8a9Jp//0eu1TxMfH08KFC2n16tWUmZlJ7969IxZfRDy1Lb25+DtlKlxo3IK1VL5SVfL29qbdO7bS5g1rycbGJl+b5ubm1KJFCxo+fDg5ODiQSCQind5Azw4spme/LyJbewfi8Xj59r989ToJ3cqQ1DmUhJbudPPmzS+e55fy98ZmcSEWi8nX17fA+0BEtGjxYiK9Dzm0n08cpzI04+dZnzXew4cPadKkSbR69epincePikmD2sR/Ai6XS0uXLqXg4GDq1asXBQQE0ObNm8nb27ukXfvuuHPnDgWHRRBHpqOkt0/p6OE/yMPDo6Td+tdz//797D/yxpSPZExPJaR+oGaNG1JGZiaZmYGGzj5IAoGgQDvbtm2jKTNmk52tNS2YN5ukUil5eXmRUMCjUbNXEJMnIoZIRWlp6aTyr05ERBf/WEpJSUm5bKemptLUGTMpMTmVEk5uIZmNGx07doxWrl5DR46dpLpRNWjwoIFkZmZGDx48oHYdu9Dbd+9o7MjhFBUVRY0aNaLnz1/SsOiR9HjfIqLUjxQYEkYD+/amuLg42rVnH51+fp9S3jlTauxLioiIoNq1a9OpU6coPHwcWVhYUHiZCpSeEEepcS9Io1LSm1PrKO78dkpN+kBCgYBeHt9AtjX7ksQhgJ5tn0SHDx+m5s2bExGRTquhtKP7KPntE0p/85B02kr53jdnZ2d6+ugBpaamZmtK3r9/nzIyMsjJySm7nUajIY1GQ0REL1++pAGDh5Khej96+uYB1a7fiK5dOk8ioZAy3rymjKR4ykj6QAKBgK5evUrlK1WhN69eEFukoPQMIzFFcuJkpNKbxAQiIpJJpZQRf47SEt5TRtwLkkrz1t3r368vTZ42lFg8EQX6+dDRP/8gn7YzyJzJonNTG5HWw7XAZ+RTdOvalThsDu39fT89eHiL+CSgNXt2fTJQ+1Y4ODjQ4YP7adXqNeTasiy1KaI2/L79B0kR3ozEdn5EcU/o9OnTOb5jEyZMmDBh4lP4+/vT6dOnqXbt2lSnTh2aMGECDRw4sFjqYpgwkRcikYg8vLzp8daJRAB5+/oTn8+n6tWr09ARI+nxplH07v41up+WTB7efrR39w7S6/X52ktOTqZOnbuQY6tphMwMat22Hd27c5umTZ9BREQDByzOfp4DAwPp8IF9Bfq3f/9+krhFkr5Ce3qjtKGNW7ZRixbN82wbVbcBmbtVI7ZUSz9NHENyjzKk9K5IMBpJ9OwIOfHfUPVJ46hevXqFvj+PHj0iYnBIG9GY0hPj6PyijoXq9/LlS+o/aDA5tpxGKe+eUeNmLejF08fZ1+Pi4qhshUokCaxP6Q+f0rV6DenY4YM5bMhkMtqwbg0NGDKcFCIR/bJlY6H9zov09HQKCS9F8eYSykiMpZ179tKKZUvI292ZLvzSlTKS4sm+9gBCZjqdnFCb0tLSCtT1zg9zc3M6cuggTZg4mcwtzGno4PkF/g7r1K41devdl5LuHKPkp9eoSpUqXzLNz+LWrVv09OlTCg0NpYWLfqEhQwYTl8en9WtXU8WKFbPbpaWlUfeevenw0WNUs1oVmjxxApmbF19+rlQiocwPryk9MY4y4l+QRGJfZBtv3rwh/6AQ4toFUcqL23Tx8lWaPPGnYvPxhyS/1Orv/WM6Ymjiczl+/Dh0Oh24XC5WrFhR0u58dwwePAS6sAbZR6u6/qWhZaLwPHv2DAEh4RDLFOjeq88ntasPHDgAgVgKrYs/lCotwkuXgYUFA4Eh4UU6nnbz5k0IxDI41B8GnX8V1K7XMPtafHw8XD28IFbqIJErERZRGip7T6jsPFCtRlSe9jZv3gyplQuChu+CfZ2BYHKF6NmrN5SOfnBuNh4yvX22FIZvYAgsy7aEc5Ox4IukOXTxHj9+jJ69+2DwkKGIjY3N/vcXL14gokw5KDV6tGzdBnKVBhYWDHTq0i37no0cPQZcvhCWNnYICAqFmbkFOHwRtP5VYVujF5hsHhROAbCt2QdCqSLHUdvExETUb9gEGoM1WrfrUCQ96OiRo8EXyyCUKtG1e88821y6dAlStSWCRuyGd/clEMsUAIBHjx7Bw9sPHC4fbdp1QGZmJsqUrwSbKl0ROGQbeBp7CKw8YMHmgcsXYvEvvwAAEhISUKV6TQjFUtSsXQ/Xr1/PIfNx8+ZNDBkyFPPnz8eZM2dw8OBBpKWlwcHZDYbSTWFdpQtYHB5u3bpV6Hl+j9y5cwf9+w/AlClTkJycXOz2h48YCYWNG/SRzSEUy0xH8v7DkEniwxR/mzDxhSQlJaFRo0YgIrRs2bJQtUJMmPhcPnz4gOnTp2P69On48OFD9r+/fv0a3bt3h8LOEwGDNsMQ3gDNWrYu0NbHjx/B4nDh23c1fHqvAJPFRmpq6mf79scff0AkU8G2Ri/IrV0xecq0fNvyBEL49PoNgcN2gi9RgCcQwRBaGyK5Bl26dIVIIoNCpS2ShndycjKs7Ryg9asElZMf6jVsXKh+9+7dA18sQ8DgLfDsshAiiSzH9UuXLkGms0FwdAx8+6yCUCwttE+fy40bNyBR6RE0Yg/8+q8Dm8PDyZMnkZKSgkOHDsGcwYY2rAGUPpXB4PDx7Nmzr+7T35w4cQJLly7Nsdb7VqxcuSpLXtHOHfZOLuDwhfDpuQwuzX+CUq3L0Xb8TxOgcg6Ee9ufobBxw5IlS4rVl+TkZNSsXQ98kRjlK1XN8fNYWHbu3AmdayCCo2Pg3m4mHFzci9XH75WC4m9TBrWJ/xyhoaF0/vx5atSoEbVo0YJOnz5NU6dO/ay3jv9GdDotpb+JoaTXDyn91R0yVCre42n/BXr16U8vLXRk27wjrdo4mspFlspTMuJvps+cQ8rSrUjlW4We7JpBjRvUoCOHDhY5C+fu3bsk1NiS3K0UsYRyunZqaXZmdkhICF06f5a2b99OFy9epICAAMrIyCAiyvcIIp/PJ7PMNHp75Q96d/UP0mpU9PLNW+I5hJDE3p8S7p/Llkd48vgR6eq1I47cQG8EYnrx4gUZjUa6ePEi+fv708wZ03PZ12g0dOSPA0RE5BcUSuLQZmTjEkbrlvWmls2bUlhYGI2KHkEjhg2l5s1b0PbfD5Fzs5/o7qafSBlcl7gKS0q4soeqhnlSXPwTarNkMQmFQkpNTaX09HTicrm0Yd3qIt1Doqy32ePHjyPvXivIjMGkX2e3pLGjR5JMJsvRzs3NjVwcbOnmst6UGPuGrA1aevr0KVlZWdGVi+ey2wGge/cfEMPdlcjcgoiIWDwh2bu70749O0mlUmXf7z07txMRUc8+/SgwNIIAIw0eOIA6tm9HIeGliOdShtJe7KSG1crQ3NlZUh6/x+yivgMGU0rKc9p64lh2NnBcXBzt2bOH9Ho9lS5dusj3oSSIi4ujkPBSxHYsRRnv/qQz5y/SutUri3WM0aOiycpSTzdu3qJm0/aRg4NDsdo3YcKECRP/HbhcLq1Zs4bc3Nxo5MiRdO/ePdq8eXP23/Z/O/Hx8ZSQkEA6nc6UPZ4P9+7do1OnTlFQUNAXxRxHjhyhixcvUrVq1cjZ2Zn27dtH4ydNJb1OS7NmTCMvLy/a+McFMmdxyYIvoaSkDwXaEwgENGzYMJowISvT+Keffvqi9XCZMmVo6eL5tG7jFgrp3Yl69eyRb9sBAwbQjJn9icHhU+mIMJowbgzt27ePnJ3bUOOmzcih+WRKT/pIDRs3obj37wr1bHE4HDpz8jgtX76cRCJRoU/Y2draUqMG9Wnd/HZkzMygGdOm5Lju5OREHAsj3f6tP5kjk2oXsKYjysrcff/+PanV6s/+mdDr9UQZqfTqzDaKv3OGMsmMqtVtQm6OtvTH/r0UHBJCl24cJzMLJtnb2maf7vwWhISEUEhIyDcb73+ZMGU6Gar3I5GdLz1cM5hgNJIFR0hMvpRSU1NytL13/wGxLb1IYHChWJ0bPXz4sFh94XA4tP0LM+Xd3d3p4/N79PL0Nkp5cpkqFkHS5l9LfjvX3/vHlMFh4ktJS0tD3759QUQIDw//ZJXW/wppaWlo274jDDZ2aNqilSkT5DMoU6Ey7KL6I2jEHgitPSESS3MV8PtfuvfsDY13Wbi3mwmZ3v6zqzzHxsZCZ2kNnVcpSFQGdOjYKTszW6XRY+/evRCIpdCHN4BYpcfy5b8VaM9oNCIoNBwskRKqgBowZ3IQWa4CBGIZDL5lIZLKs4s2jhk3HmKlFip7T/gFhuDUqVMQSmTQu4dALFMUWBgFADx8/OHYYDgCh26HTG+HQ4cOZV8bMXIUxAZnWFXsAAZPDL7WEXylJXRekbCxd0RiYiJevHgBK1t7iORq8IQSMJhsyJRqjB8/HuPGjftklmxqaioOHz6MmJgYyJRqmDPZcG46Dm5tpoPLF+ZbKOPOnTtg8/iwrNAehlKNEFoqMlebOXPmgCuUgMETw5zJBpsvRu16DfPNdnj37h3YXB78B26Cb9/VYLJY2LFjR/Ybdo8Os2Hr6AIAmPHzTCg0Bhhs7LF///5sGx8+fMjKInEPhVilx6TJUwuc/9fk8OHD8PQNgG9gCM6cOVNg2+PHj0Nl64bg6Bh491gKhUZXYPu8WLNmDRxdPRBWuowpO9pEgZApg9oUf5swUYysX78eXC4X1tbWuHz5ckm789XZuHEjeAIheEIxmjZv+ckTg/9Fzp49C6FYBoNPWQjFMpw+ffqz7Kxbtw4imQqGoOoQSmTYv38/BGIp7OsOgj64JipUroYPHz7A09sPQpkKMqUaly9fxsmTJ7F582Z8/PgxX9tv3rzB27dvP3eKn82lS5dw7NgxZGRkZP/b69evweby4T9wI3x6rQCLzUFmZuZX98VoNOLBgwd49epVrmvzFywAX6KA0ModDDavwHXa1atXoVBrwROKERQagQMHDsDBxR2WNkVf350/fx5RdeuDL5bBvd1MBA3fBbneDidOnEBSUhLmzp2LGTNmIC4uroiz/XGpUr0mDOEN4N72Z4jkatRv2BhcvghcvgBLli7N0fb/16KhEMsU3+0J06NHj6JRk+YYMnQYkpKSStqdb0JB8XeJB7qf+zEFyCaKi7Vr14LP50Oj0eDIkSMl7Y6JfwGHDx8GmycAW6wCT+sAXUQDtO/YKd/2Hz58QMPGzWDv7IYRI0d9UYD/5s0bLFu2DAcPHkT1WnVgW7MPgqNjoPevjKioKOhDasOn5zLYVOuBqLoNPmnPwycAzk3HITg6BjK30uDxhTh8+DB8A4Lh5OaFZcuWZ7c9efIkdu3aheTkZHTp2h2WZVtljR3RCIMGDS5wnD/++AMCkQQcvhB1GzTKDkZv3LgBnkgKCzYf+sgWkLqEQySWYsGCBVi8eHG2BMrw4SOgC6oJ5yZjwFVaI3DodthW7wm2UAZ9SB1IZIp8N4TT0tIQFBoBhZUjWBwedKH14dL8JzC4IjC5Aji7e2P37t0AgNu3b8PT1x9ylQYTJ03G8ePHobB0RNCIPfDsvAAavVUOu1G1a4PJ4YGjsAJP5wSbaj0RFFa6wHuRkJAADk8A93Yz4dJ8AgQiMZ48eQKRVA7Lsq2gcg5Em/YdcerUKbD4Yjg3Gw+FV3mweMLs+7F3716oHbyyj4zZOrogLi6uSDInxUFycjKEYikc6g+DXVR/yFWaAp/v9+/fQ6ZUQx/RCCrXENRv2KRI4z169Ah8kQQuLSbBqnxb+AYGf+kUTPyLMW1Qm+JvEyaKm7Nnz0Kn00EgEGD79u0l7c5XRW9lC7fWUxE4ZBvESm0OmTUTWfTu2xf6yBZ/SSe2RPeevXK1SUpKwpMnTwqMj6pH1YVdVP8sO8G10K1bN6js3BEcHQPPTvOhs7IFAGRkZODBgwdISkrCtOk/Q6zQQuPsD0cXt3yTLb4Fr169+qQMxeXLl2GwtoW5hQWYXAE4fCGmTM1bJuT69ev4448/vkkilaunD1xbTkJwdAyE1p7g8vj5xtNRdevDumIHBI3YDbVLEPhCERzqD4Vry8ngCYSfJQPhExAE60od4NF+NvhiGW7fvv2lU/phef78OcpWrAwbB2fMmjUHQJZk5Pv37/Ns//DhQ2zbtu2bSqCY+DQFxd/FpxJuwsQPSqNGjejUqVMkFAqpbNmyNGvWrKy3Nya+Wy5dukTHjh2jzMzMknYlT0qXLk0jhw8lvkxNLs0nEFISiM/n59teKBTSujUr6e7NazRm1MhCHQdLTEykEydO0KtXr3L8u0KhoFatWlHZsmXJ1saakh9fpIRntyj51V3y9/en15cO0NXFPenx74tIJZflY/3/KRUeQs+PrKFX53ZR/P1z5OLmRpOmzqDXDC2Z+zWmHn360dWrV4mIKDg4mKpVq0YcDodsbawp5dlVSnh2i1KfXydbW5sCxylTpgy9efWCHj+4R5vWr80uYtGmQydShDQgz05z6fW5XZTy5DIdP3aEOnXqRO3bt8+W3eDzeZSZHE+ZGWlElPXzCwIxxWoyVOpEfJ0TnTp1Ks+xz5w5Q/eevCC7VjNJ5lOVPj67SWyJhixYbFJ6V6JM1xrUsHEzevr0KbVs257i5T6krzeGfpo0lSwsLEgt5dOjNUPo8aYx1K1r52y77Tt1oQNnb5HMuxJlpiZSRkIcPdo7nzQqeYH3gs/n07Ilv9LL7RMo9uBc2rRhPRkMBjp8cD9VcxFQ3zb1acHc2XT//n3iKG1IYu9PcvdIInNG9vE1Ozs7SnzzlN7fPEaxV/dTUlIyqdRaUmv1dP78+U997Z8FANqwYQONHDmSLl68SERECQkJlJ6eTlKnYJK5hFHc+3fZ0jJ5IZVK6eSxI9QgUE99WtWmFcuXFMmHV69eEVsgIZGNJ4kdg+jZ02dfMqVPkpCQQO07dqbg8EhaunTZVx3LhAkTJkx8//j7+9OZM2fIxcWFoqKiaMqUKf/adQWHw8kq7JySQJnpadlFpkuShw8f0urVq+nGjRsl7QoREbk4OVHqo3MU/+AipTw6T67OOYsynzlzhnQGK3Jx96JSZcpTampqnnaC/H3p47X99O7qIfp4/wxVqVKFeGZp9GTLOHq6YxK1bd2SiIgsLCzIxsaGuFwuzZo7jwxRg8m60XiKTzOjEydOFMrnuLg4OnHiBMXGxn7Z5P9i+oyfycbOgRycXWng4CH5tuvYpTsx3KuTT581xBNKaM3K36h/v7652s1fsIACQyOoYesuFFYqMt97VlzY29nR28sHKO7uWUp594zS09LyHZPJZJExLYmQmUHISKWUpEQSWXkSX+9EIDNKSEiguLg4Kl22AnF5AqoRVZdSUlLytPU3a1YsJ8m7i/R+7zSaOukncnR0/BrT/CHQarV0cF8MPbhzk3r06EZEWZKRUqk0z/bW1tZUq1Yt0ul039JNE19CfjvX3/vHlMFhoriJi4tDVFQUiAhNmzZFQkJCSbtkIg9Gjh6TdXRNZ4uqNWp9t8cJExMTEVm+IhhMJgJDwov16Nzr169hsLaFysYFQokMffr0QY9evXHu3Lkc7f6ZmX3w4EGINTYIHLYTTo1Hw9XTJ5ft5ORkdOjUBe7e/hg9ZixSU1PRoVNn6G3sUaVadbx9+xbO7l5waTEJTo1HQ6Kzxbx58/DixYscdlJTU9GpSzfoLK0REBiMffv2fdZcXT194NxkLIKG74JIkzVWXnz8+BFlyleCuQUDcrUeDBYbHL4QMhsPWFfuDEE+Mitnz57FtGnTwBdJ4dZmOizLtoJcrYNKawBXIIZnl4UIGrEHIo0Ndu/eDUdXD7g0n4CgEbuhtHbBzp07ERJeCubmFrC0scfEiZPAF4qgUGkhVarh1e0XBEfHgKd1hDmLC5cWk2DBYOY4zvi5vH37FnyhBCJrLzC4IihUmhxHw7Zs2YLg8EgEBoeBxZeAr3eGKqAmIiLL5bDz4cOHYvFnxoyZkOpsoQtvAKFYhps3bwIA6jVsDJneDlKNFTp06vLF4xTE39nwShsXiGQqTJk6/auO175jZ2i8ysCp8WiI5GocP378q45nonghUwa1Kf42YeIrkZiYiIYNG4KI0Lp163+lZN6xY8egVOvAZLExaszYknYH165dg1CSJachEEtx+PDhknYJmZmZGDJ0OHwDQzFoyLBc8VaZCpVhW6MXgobvgtrRJ7v4+D9JT09H9MhRqFy9Vvbpxffv32P58uXYu3dvnuuhcpWqQB9WD85NxkJQyMzbO3fuQK7SQGXrBplSjbNnz+LatWtIS0v7jNlnzZ/F5sCn12/wH7ABbB4fL1++RJPmLcEXihASXgqvX7+G0WiEs5snbGv1QeCwnVBYOeVaO+zbtw9RdevBzIIJMmdA4VUBCiunHLKAX4O3b9/C3tkNTJ4YXIEEnbt2z7ftgwcPYOfoDDNzc1SvVQdDhg6HUKqEWKlDsxatAAADBg6C1rci/AdsgMolGDNnzvyq/hcne/bsQc3a9dB/4OD/jByFieKnoPi7xAPdz/2YAmQTX4PMzEyMHz8eZmZm8PT0NOmXfodw+f9f9VkoVX6X31F8fDy8fP3BE0qg0VkWu49z5syBzrc8gqNjYFOtOzgSFQxlWkAokeHBgwf59jt58iQkKj38+q6BbbUeCAgOy9Vm2PARULuGwLXVVMgMDnkGyvMXLACLJwJXYQmuygZMrgBcgQi//PprjnabN2+GSK6BvnQzCKUKHDhw4JNzS09Px6JFizB+/Hg8ffoUO3bsAF8kgVipRemyFQodIH/8+BGJiYkYOWo0GjVtjhkzZuTSwV6zZg2EUiX0XqUhEEmg0VtBo7dEx06d8f79ewyPHgmOWAmhtSeYAikcnF2zJIGEEkg1VgiNiMT06dOhdg9H0PBd0ARUA4PNhVfXxXBuNh4cvhgqtzAYyrSAOYMNVWAt2EX1h1KjK9KLFaPRiFu3buHhw4e5rr1+/Rq9evXC4MGDs+U9/omdkwv0kS3g3GQMLNg8BIeVApB1DDSqbn1YMBhgc7kICiuF7j17f/bLuVJlK8Kx0cis46cBVbBo0SIAWb9XDx06hKNHj36TF0qpqanYv3//NzlqHFqqbPac9T5lsGzZsq8+poniw7RBbYq/TZj4mhiNRowaNQpEhIiICLx+/bqkXfoqfC/JIiNHjoQurD6Co2NgXbkzWrRum2/bLVu2QKO3gsHaDr///vs39DInVWrUglWFtggYvAUKa+dilYV58eIFakTVhZd/ENatW1eoPv37D4AuvAGCo2Og9KkINk8AidoAN0+fz5KnMBqNEIjEcGs9DZ6dF4DD42PBggVQ2nvBr+8a6IJqol2HjqhWIwo8sRzmDBYYLA4qV62RQ0bj+PHjEEjksKrYAVylNawqdgRHYQUOX5SdEPE1MRqNuHDhAi5cuFCo5/1/fb9+/TrOnz+f3a9j564wlG6K4OgYaAOqYezYkn+5UxiuXr0KgVgG25p9oHYP/+pJJyb+vRQUf5skPkyY+B/Mzc1p6NChtGfPHnr27BkFBATQzp07S9qtfyXx8fF0/fp1Sk9PL1I/pUpN8XfP0sdHVygzPTXfIz0lyfLly+l1Bp88eq8hplMZGj3up2K1r1QqKe39M0p5/5wSn90kns6Z9KWbkdjSjc6dO5dvv4CAAFIrZXTh5+b05MCvNKBvLyIiyszMpG3bttHmzZvp1u27xLUNIJG1B3H1bvTgwYNcdtq1bUsZqYnk0WEOeXSYQ0YjyLrOUBo0ZFiOdrv27CVpQG0ylGlBIq8qtG/f75+cW7uOnWnY5Lk0d9sJ8g8ModKlS9ODu7fp+KH99Mf+vcRkMun58+f07t27Au0IBALi8Xg0eNBAun79Ok2Y9QsFh5emxb/8kt1m3qIlpKnQifRRQ4ivd6WkpERi2IbSjtP3qFrN2lS7Vk1KiX9L6YlxZFO9F714+YrCw8Pp1o2rdGD3Vvrzj/1ERGRmwSAyMycytyAzc3NiCmXElqjJjIzUpWFlquYipIXz55A85TGJnv5Ju3dsK1JV785du5N/cDg5unoQTyimCpWrUVxcHBFlPQs///wzTZgwIVvu5J/Evn9Pco9IEjsEkAWbR316Zh2J27t3L+374zAxhCrKMJrRW2UwbfzjAnXq2p2ePn1aoBRHXpQpHU5xZzbTy9PbKO7uGQoICCCirN+rkZGRFB4enmveN27cIE9ff9LorWjuvHlFGi8/WCwWlS9fnry9vYvFXkF0bt+GXu2fT0+3TaDUF7eocuXKX31MEyZMmDDxY2BmZkYjR46kdevW0blz5ygoKChbFu3fRFFimuIiJSWFOnftTt7+wTRh4iQCQE5OTpTy5BLF379ASfdPkZuLc559k5KSqGnzliSt0JP44W2pbv0GlLVn8u2ZNX0qmT84Sucn16fKpUOoevXqxWZbo9HQjq2b6NLZU9SwYcNC9VGrVZTx7jGlxL6kj4+ukLZsG3LquJhijTzatGlTkX0wMzOj1StX0PPtE+j+qoE0Z/YsSk5OJoZATkyBlJgSDd27/4COn71A7t2Xk3Oz8UTmDKpSuSIxGIxsOydOnCCJaynShtYjXUQj+vj0OlFmOnXr3IGcnXN/zxkZGTQ8eiRVqFKdfvnl1yL7ndc8fHx8yMfHp1DPO4PBIADUp19/CggKpqYtWtO9e/eIiGhAvz6UevsQ3V7YgRhvb1KHDh1y9L1//z6dO3fuu5OyvHr1Komt3UnlW5mkfjXp9NnckoGvXr2ieg2bUHB4JG3fvr0EvDTxw5PfzvX3/jFlcJj42jx48AC+vr4gIowcOfKbVBD+r3Dy5EmIJDJIVHq4e/sWWFn6n1y8eBHefoGwd3ItcjXkb8WCBQugdglC4LAd0IfVLbBA4ueQmZmJrt17QqHRwdreCTJrt6wsZYkMjx49yrdfTEwMRCoDWGIVzFlc2Do445dffoGHpxfklk5Q2nkgIDA4q+KxZzgkciXu3bsHAJg3fz6EYimEEhnKlKsIuVIN68qdYVuzNxg8MezrDIS1nWOO8VauXAmJxgrWlTtDpNBi586dMBqNOHz4MHbt2oXU1FQ8fvwYdRs0RrlKVXH8+HHIVRo41B8Gv/7robJxzSWZ0K1HL3AFInD4Aiz8K0O3ILZv3w6OSAGmQAaO0hpsvhjNW7VGcnIyOnXpBrVnaYhsvGHGZIPBFSI4OgYBg7fAgsEEhycAT20LqwrtYc7iQiJToGPnrvD0DcSo0WNgNBr/ypYPAIcvhMHaFs1btQFPKAGXL8S8+fNz+BIbG4sHDx4UKdPoxYsX4PAEsK7SBUIrD/j0WgGtb0X06t230DZGjxkLsVIHpa07AoJDs7M6du3aBQsOH9aVu0DiEIjg6Bi4tpoCtkACgUQOO0fnImV7ZWRkYOq06WjRum2hJV28/QNhXbkzPDrOhUAi/yELv5w6dQorVqzIJXNj4vuHTBnUpvjbhIlvxJkzZ7KLJ+7YsaOk3fmheP78OarXqgMv/yCsXbsWADBk2HCo3ULg0mISpDpbbN68GUajEWPGjYdfUBh69+2X76m79+/fg83lwX/QJnh1+wUWLC4YLBYqVK5WYrIF38s6MyUlBQ2bNINCrYWlrSP04fXh13cNFNau2LhxY5FsGY1GzJk7F42btcTGjRuxatVqsLk8WDCYUKh1kGosIZErsXHjRnCFUnj3WAbbGr3AUVghJKJMDltnz56FQCyDPrI5WCIlLBhMNGzSLN/7NmbsOCgdfOBQfygkKgNiYmI++558Ln/88QekWmv49lkFq/JtUK5SlexriYmJuHHjBlJSUpCZmZm9Npi/YAH4IimkGiuUr1Q1lySM0WjE2bNncenSpW86FyDr51CqUEEfWB1SrQ0mTZ6Sq025SlWgD6kNx4YjIBBLcf/+/RzXr169WugsdBP/XgqKv0s80P3cjylANvEtSEpKQqtWrUBEqFatWr4VYk0UjUpVa2TprY3YA41byL/uWHxycjLKV6oKMzNzqHWWX1UbLSMjA/PmzUOfvv0+KWmwe/duMDh8ODaMhnf3JbBg8aCw84LcowwYAikYPDHMLBgYMmQoNm7ciOfPnwPICkh4AjG8ui6Gff1hMGfxwGRxEBASDgcXd/D4QuitbXHixIkc4xmNRqxYsQJt2nXIDmr79OsPqcYKSls3hISXhpObBwwRjWBbszcEIgk4fCE4cktYcPgQiCQ5tLufPHkCnlAC/4Gb4NVlEfhC0SfvT7sOHSB1DoVPz+UQGFygDq4DobUn/AKC8PHjR4SXKgUmTwiv7r+CJVZB6VMRavdwePsFgCtVw7HhCARHx0DuUQYWTBZkDn5wbTkZcktHLFq0CMuWLcOhQ4fw5s2b7CDy8ePHuTZ2t2zZAp5ABL5YhsrVamDmzJlYvHgxNmzYgKtXr+bpe0JCAnwCgmDOYMGczYPCK0vWxap8OzT9S8ful19+hbWdI4JCSxUoJXPixAns2rUrhwZmRkYGJAo1eBoHWHCEkLmVAk+mgcjGC0Ej9kAbUBWjRo/+5D3+EnRWtnBvNxNBw3dBprPFyZMnv+p4eXH58mX4BgTD3skVmzZt+ubjmyg5TBvUpvjbhIlvydOnT+Hv7w8zMzNMmTLFtElTSMpWrAxDeH04Nx0HgViGO3fuoG6DRrCt3hPB0THQBdXE5MmTsXHjRgwbNgynT5/+pM0u3XpAKFOBxeVD5V0BAYO3QO0WhunTv27tim/N7du34eLuBb5IjAGDhhTpmXv27Bl8AoLBEwjRul2HIm+iz5o9B3JLJ9hU7wGRXA1zJhtmDBYYPDGYbDaOHz+O+Ph4AED3Hj1hzmCBJVJCau2GPv3657J39OhRDBo0GGvXrv2k3EhU3Qawq9U3S4ItJApTpuTeTP3abNu2DSp7TwSN2A2H+sMQEBKeq83EyVPAZLEhksiwd+9eqHQGeHSYg6DhuyDVWGL06NGwd3ZDeOmyuH//Plq0bguJSg+RXI2+/Qd88zk9ePAAP//8M3bs2JHns2RpYw+PDnMQHB0DjsIS3br1yL42cPBQCGUqiJU6tGrTrlDjZWRk4N27d6bflf8yTBvUJkx8AUajEfPmzQOTyYSdnd030TX9t9OwcTMYIhpmvZG3cv5XbgotW7YcIoUG+uBaEEpkuHHjRkm7hIyMDLC4fHh0nIeAwVthzmTDt/dKBI3YAzMGC26tp8Kr62JweHy8efMGT58+RXp6Ou7evQuBRI6AwVshtPaC0NoTUucQWNnaFzlY5fIE8O2zCi4tJmbpzHEEEFp5IGDodnD4Qmj9qyI4OgaW5duheq3aALKy5rv16IkRI6LB5Qvh3X0JXJpPgFyl+eR4bdp1gGXZVllaer5VYSjbGjZVu4HJFWDsuHFg8cUQ2weAwRNDX6YVVBodpkyZgtu3b4PDE4IjN0BfuhkYPBFEtr6wrtI1azEUUhsCoRh670iIlTrMnDm7QD9sHZ3h0mIiAoftAEukgNwxEFyFJQRKAwQSObZt2wYAuHnzJk6ePImMjAzMnz8fGvcwBI3YDU1IXViwOJBobSCWKXDx4kXcuXMHArEMbm1nwKp82zw1xQvi+PHj4Iul0ATUAIPDR+3atVG/QUNo/SojcNgOqD1Lo1PnzujYsSM8ff0RGhFZ7BvIv/66JCtTRGuNyHIVc2j2fSvsHF1gU607XFpMBE8o/tdqhJrIjWmD2hR/mzDxrUlMTET9+vVBRGjTps2/snhiYTAajUhOTi5UW2t7p6yX2SP2QGXrjgMHDmDfvn0QSGQweJWCRK7EmDFjINVaQ1+qMQRi6SfXa0ajETdu3EDT5i1hKNUoSw/Yv8pX0QN+8eIF5s+fj127duW50ZaSkoJNmzYhJiam2DfiIstVhHWFdvDptQIStQFHjhwpVvsF0aBxM9jW6JUVN4fWgwVHgMCh22EX1R8MDj9X7ZRdu3ahdv2GiB45CqmpqYUaIykpKc/YcdOmTRDKVDAEVoNQIsP169dzXN+2bRtCSpVBo6bN8ebNm8+fZAGkpKQgOKwUxAotBCIJ9u/fn+P6kydPwBOI4dN7BVyaT4BKq4ebly9sqnWDR4fZ4ApE4ImkcG01FZZlW8I/OAxsLh8Bg7fCf8AGWDCYJRI3F8S4nyaAKZBCZOcHjtwANpeP169fIz09HQwmC3791yNg8FZweIJPxtu3bt2CRmcJNpeP0IhIU1HGfxEFxd8mDWoTJj6BmZkZdenShQ4fPkwpKSkUGhpKK1euLGm3fmimT51EipRHdHNRR6pVKZJq16792bb27dtHfkGhVLZCZbpz507xOfmFrF6/kVSlW5OhclcSO4XR/v37v7kPp06donXr1tH79++JiMjCwoLmzZlFd1cNohvz25Jao6UXh5fT82PriIyZxBTKicmXEEDkGxBILu5e5OTqTnw+n+rVqU2XZ7Wgj4+ukEvzCeTYcCS9efOWXr16VSSf9JZW9P7qH/R43yKyq9WX/Pqvo8zUJLr7Wz9SyGWUEfecUmJfUvq7h+Ti5ETPnz+n0mXL07YrsbRw3W7y9vamW0t60LPtk6hPz+6Umppa4Hh9e/ekj5d306XZbejd1YP04eFlerz/V6LMDJo5dwHZ1OhDLs3GEV/rQK+Or6e6dWpT7969ydHRkU6dOErBno708sRGsqrUifhaB3pyYAndWTOcYq8eJK7KhgxRQ0hXtRctWrKsQD94XB6lxb+mjKQPZExPI125tuTYMJrS09NJU64D/Tx7Pk2b/jMFhIRTtTqNqFqNKDIzMyNkphMBxGSyqEGDBrR03gzSaLRUukw5Gj12PLGFUhLonUlo60MvXr4s0nfx65IlJPGuRtbVupOudHOSK9W0cMF80jE+0NkJUaRmJNGK1evo199W0/3XiXTyxHEKKxVJp0+fLtI4BdG2bRu6euk87du+kQ7s25NDb/Bvjh8/TqtXr/6k7vjn8vrVS5I4BJDI2pMYLE72z4sJEyZMmDBR3PB4PFq3bh1FR0fT0qVLqUKFCvTmzZuSduub8vr1a3L38iW+QEiBIeH04cOHAtv36taVnmybQI/XDyMp14xCQkKoYsWKdPr4UZo2rDtdvXSBjp06S/KwpmQo25okrqXo8OHDBdo0MzMjFxcXGjdmFKXfPUY357Umdtw96tixY57tP3z4QPv376eHDx8Waa7v378nH79AGrd4EzVv343G/TQhx3Wj0UhlK1SmroPGULP23ahzt+752lq2bDlFlKlAPXr3pZSUlEKNH//hA7FkemKJ5MTiiyk+Pr5I/n8JdWrVoPen1tPTg0so9sp+4vD4ZDRm0scn14jHYdOjR49ytK9WrRpt2bCORo8aSSwW65P2Bw4eQmKJlCQyOcXExOS4VrduXdq7cysNaV2dzp46Qa6urnT58mVav349nT59mpq1bE3vNBF05G48tWjdtljn/TdsNpuO/fkHnTr6Bz1+eJ/Kly+f43p6ejqZWViQBYtHDK6Q0tLSaN2q34j/7AS93T2FunfpRDyJgoRW7iSyD6CXL18Sg2FBH59cow8PL5FQJCYLC4tC+3P69GnauXMnJScnF/dUsxk2ZDCZZ6SQxM6PnJuOJXMLC8rMzCQLCwsSCEX08dFlSnh6g8zNzYjP5xdsK3o0sVzKk3e/9fTgXQqtXr36q/lt4jsiv53r7/1jyuAwURK8fPkSpUuXBhGhR48ehX67a+Lr8PbtWwhEEjg2HAGrCm3h4u5V0i5lEz1yFJQOPrCL6g+RTIU///wzz3bx8fG4cuXKF2XQGI1GrFu3Dh06dMDatWthNBqxYOFCiORq6DzCoLO0ziFP8/r1azx48ADv37+Hq4cXBAY36Eo1hjmTDXMGGz7+gdAFR/11bLIGhgwdBqPRiHoNGoEpkEEdXBu6Uk0gkSvz1ff7m3379qFNuw6YO3ceMjMzcevWLZQuWwEiuQpW5dvBr99aiFSWGDx4MK5cuQIreyew+WIEh4YjPj4ee/bsgc41AMHRMfDoMAe2ji4YPHQ4JCoDVHbuCA0vnUuf7Z+8f/8es2bNAocnAJmZgcnmYt78+VBo9JC5loJTo1Gw4AqhDW8EpYMvhgwdnqP/wkWLIFNqwODwIPMoB3MWB2YWTDC5AtjXHQyNTwU0bNIsz7GvX7+OpUuXYuPGjdBb2YDN4YLNE8CmWg/IPcpCaO0FrU85dOzSFRK5El5dFyNo+C6wBFK0bNUGZSpUgrkFA3ZOLnj06BHKVKgEq/Jt4NNzWVZVdQ8vKCwdIZDIc2le58fx48ehs7KDBYsDlkgJ+zoDIbN0xIIFCwFkZSzcuXMHY8aMgS6sHsjMHDy1HQKHbodtzd4ICo0o1DjFwZy5cyFWaKHzjMj1HBcXY8aOg0imglxvh0pVqn83OpAmvj5kyqA2xd8mTJQga9asAYfDgY2NDa5cuVLS7nwz+vTtB11QzawTYl5lMWHChE/2OXXqFLZs2ZJv3ZqJkyZDbu0C68qdIZDIi3TiKzk5GXfv3s13Xff69WvoLK2hcfCCQCwtdJ0NANi5cye0LllxrFvbGXB09chx/e7duxDKVAgavgt+/deBxebkaefPP/+ESKGBXVR/KBz90bN3n1xt4uPj0aJ1WwSERGDp0mUAsurPCEQSiJVahEZEfvO16549ezBmzBicOHECjZu1gDmDBY5UB11EI1iwOFi8ePFn2b116xYEEjn8B2yAS/MJ0FpaF9h+06ZNEErk0HtGQCxTQGnjiuDoGLi3nwVre6fP8qEofPz4EdeuXct1/7v16AUOXwguX4AVK1bmuJaamgq/wBDILJ3A5otQt3597Ny5E7aOznB09ShSNvyEiZMgVmihtveCl2/AV30Ofl2yBBweHxweH4P/Z0115MgR2Du7wcrOETt37vyknUZNm8OyTHMEDd8FtZM/lixZ8tV8NvFtKSj+LvFA93M/pgDZREmRlpaGPn36gIgQHh6erdP7I/L27VusXLnymx73Kk6uX78OsVKLoBG74dN7RaE0ib8V6enpGD1mLGrWrod169bl2ebixYuQyJWQaa1g7+SS66hbYRg4eCgYTBYs2DwIDG5gcPjo0r0HPH0D4dJ8QtYms1tIDhmVO3fuYP/+/UhISMCo0WMgsfOFe7uZ4CqtoVRrMXTYcKi9yyNw2E4oPUojeuRIbNy4CSyeEPrI5lAF1ARPYUCFChUwbNhwPHv2LE/fTp48Cb5YBqtKnSC3csGkyVOzr92+fRsOzm5gc3no2r0njEYjvHwDYFm6Cexq9YVIIkNcXBxevnwJsUwBfUQjKO290bFzV/AEIvj0XIagEbshlGsKvagzGo05Nh/nzJkLNl8MlkAGgd4ZwdExcGwYjdLlKuXol56ejpiYGMgN9pC5lYZlhXZZ2nA2HlmbvHwRwkuXQVpaGp49e5ZdqPLEiRMQiKWw9K8IgViarYl47Ngx1KpbH6ERpeHi4Y2mzVvhw4cPcHRxh0217nBrMx0WHD4kls6oXacO6tRvhA0bNgAAfAKC4dhoJAKGbIVEa4t58+bhzz//zFNCJiMjA3v37kXbdu1RuXotLF/+G9LS0iCWymFfZyBsa/aBBVsAJk+EESOiYTQa0bV7TwikCvDFMjRv2QoiuRochSU4Mn32BnVoqTLZYzx79gw7duzAkydPCvUdFBU3Lz+4tpyUdfTWNeirFUa9ePEi/vzzz0++7DDx78K0QW2Kv02YKGlOnToFrVYLgUBQqE2bfwM9e/eBPrROVr0LnwoYP378F9vMzMzEnDlz0bpt+2IviLdo0SLovMsiODoGdrX7o0KV6oXue+fOHQgkMtjV7g+tT3nUb9Q0x/X4+HgIxVLY1x4Aq/Jt4ejinq8PMltPWLD5sOAIoDFY55IDadG6LbQ+5eHUeDREchVOnToFIGu9d/369e8ixnH39oNT49EIjo6B1DUCFiwu5sydW2Q7t27dgkCqgP+ADXBtOQlag3WB7ctWqAKHekOy1kW+5SFTKKF1D4NEbcCEiZM+czaF48qVK5AqVJCqLWHn6Jyjvg6Q9QLkby3uf3Lz5k1w+UKoA2tB6eCDHkUokv6/qHQGeHaaj6ARe6CwdMhVhL64+fDhw2eta/+X+/fvw8rWHhYMJspVrPKflUP6J8nJyYiq2wAiqRzVatZGYmJiSbtUZEwb1CZMfAXWrFkDHo8HjUbzQ27wvn//HrZaLarI5bAUCDFn1qySdqnIZGRkIDQiEio7D0jUlug/cHBJu1RoUlNTYevoApZYBU1IXWi9y2L27IJ1jP/JqVOnIFbq4NtnFayrdoPQyhNclS34IjHqN2oKnX8VODcZA6FMma3Ft3HjRnD5IvCkKsiVajx9+hTNW7aGUmtAROlIvHnzBgcOHACDm5VtzBLK0KNnb3B5AthFDcgqbMKXgi+SQuESAl1QLRisbbODhoSEBKxfvx779++Hh5c3FN4VERwdA4d6Q1CpWk2cPn0as2bNylF9+unTp6hUtQbMGSz49V2DoBF7IFbqsvXibty4gW7de0CjtwKRGcxZPOgim8Op0UiYM1iYN28e9uzZkytQT01NRau27WFl64B2HTrlme198uRJTJs2DQKxFPrQ2pCoLTF33rzs648fP4bB2jareCNfBK5MC0PZVggcthNCvTPUwXUQNHwXlNYuaNO2PXgCMXhCCfoNGIiOnbvAUK51VoGWyBbo3bfgoPLSpUtQag1gCmSwrzMIYodACHUOsK3RCyKZCocPH8bu3bvBE4rB4AjAV1pBIJbl+QLEaDSiRlQdCNXWYImUEDsEQqzUYtOmTWBxeAgcuh0Bg7fCzJwBLl+I2NhYvHv3LruqvV+/tWCwWJg6dSpc3T3BFUpgZm4BM3MGKlSoiD/++ANXr16FSCqH3i0YIqn8q+jz12/UFFr/ynBqNBJCqQKXL18u9jFM/HcxbVCb4m8TJr4Hnjx5Aj8/P5iZmWHq1Kn/+oJgz549g62DEzg8Adw8fb77IvQ7d+6EVGcLjw5zoPOvgrbtOxapf0xMDCpWrYFOXbrluRH5559/Iqx0WVSsWiPfgtePHj2CBYsL93YzETBkK3hieS5d5YCQCDg3GZMVd3qVwqpVq4rkZ15kZGTg1atXxXa6rF6DhuBp7GFVsQMYPDHsovrDzsn1s2z16dcfTDYHPIHoky93OnftDo1XGbg0/wkSlQHbtm3DqlWrcOjQIVy9ehUVqlRDhSrVijXOfPv2LU6ePIkGjZvCqnzbrGQL3wqYMWNGgf3i4uIwe/Zs/PLLL1i7di30nuFZGfitp8HNy6/IfiQnJ0MgkUMX0RjOTceBwxdmJ9N87xiNRpP29D+YPHkyVK4h8O2zCmqPCIwdO66kXSoypg1qEya+EleuXIGjoyMYDAZmzpz5QwWU27ZtQ2m5HE91BmyQK+Hn7PzZtl68eAH/oFBweQI0a9n6m76hT0lJwc6dO/Hnn3/+UPd/woSJkNr5wKPDbAgMbhAo9Vi+fHmRbBw8eBBygwMCh+2Ec5MxYMt0sGDx4O0fhPfv36NxsxbwDw7Hb7+tyO7j7u0HC44AluXaQGDphirVauSyu2jRIhj8KyNo+C44NoyGb1AoLBhM+PZZBe/uS8BgskBm5ggYtBnB0TEQyFS4c+cOUlJS4ObpDY1LAIRyDThCKRg8EXQRTcAWq9C9Rw8IJXIYgmtAIJZmZ3ZElq8EQ0QjSJ3DwJHpoHLyh7d/YHbhj4yMDISXKg2lXxUEDtsJsZ0fmAIZ+HoXmDPZUNp5Qm7I2oT+XyZPmQKVcyA8O82H0tEXM2fOzL725s0bXLt2LftZPXPmDGrVqoX27dvnqAzeqUs3GMIbZBXm8SiNqlWrQq7UwNyCARZPBKlrOHx6r4RYbQCDyYRv75XwH7ABbC4Pnt6+4MgtYV25Czhyy0JVED9//jyEEhkMPmXB4olgX3sAgqNjYAiJwrRp0wAAK1asgNLeC0Ej9sC56Th4+AZk98/IyMCcOXPRqk1bsHkCBA7bAf+Bm0Bm5tD9VcW8boNGkOpswZFqIJAosHnzZgBZhZu4fCHc2kyHc7Px4AuEEEpkUHpVAEukgE21HmCJlNBHtoBAIkfjxk2gL9U4y78yLdC9Zy8AWQs5d28/BIVGICKyLGwdXTB5yrRPzj0vYmNj0bR5K2gMNlDrDOjYuesnZWVKkrS0NBw7dizfBaaJ7wvTBrUp/jZh4nshISEhR/HEf7uMYGZmJt6+fVvislrp6emYPGUqWrRum6uI3d8YjUYMjx4JKztH1Iiqm++GekpKCgYPHYZadepj9+7dSElJQaOmzaHQ6FCvYeMv3mjTW9nCscFw+PRcDr5IigcPHuS4vmTJUojkKui9SkGtNXxx0efHjx/D0sYOXIEIrp7eePXqFUZEj0T1WnWyT/b9zYcPHxAbG/tJm/Hx8ZArVTBncWFVsT10oXWLlJH+TxISEgoVF378+BGt2raHt38wZs76/4SgzMxMqLR62FTuDJuqXaFQa4tlHXvx4sUsKRFrZ/BFUmgDqsGv/zqoHH3xyy+/5NsvPT0drp7e0HpFQuXohwqVq2Ylg5RqAoWtB/r2H1BkX2JiYiC3coTEKQRclQ30n5BDMfF9M2jwEOhC62a9iIpohF55yP1875g2qE2Y+IrExcWhVq1aICI0bdoUCQkJJe1Sobh69SpUfD5+lcrRWCxBkzp1PttWi9ZtoQ+tC79+a6G0dcfq1auL0dNvz8WLF2Fl5wAuT4Bhw6OL1Dc+Ph6nT5/G06dPUb9hE9g6umDosBG5Ns87du4Ky7JZ2bXa0Hpw8/D6ZCXmhw8fokZUXUSUKY+1a9eiVp36UOoswRGIYcHiwJzFhTmTjcrVauQbXAWFhEFk55v9Jt7WMXfWwt27dyEQS8HX2IMlkIDF4UJs6wtzJhtMNheNGzcFWyiDzL0MNCF1weTwMGjwYHTo0BFSnQ3c2v0MXammMGdyoAmtB4ZABq5AhCbNmsOqUqesP6ilmmDIkKEAACs7R7i3m4nA4bshVlti2LBhOX6OunbvCbZYCW1Y1kaxzD0S5kw22BI1mDwhgobvgv+ADWCyWDnm0aNXbxgim2X/Ae8/YCCALD08vkgMsVKH4LBSSElJQUh4aajdw6HxLA0f/6Ds76t7j17QBdfK0j9zj8D06dMxbfoMyK1d4dhgONhiFZgsNvr06w++UATXVlPg0WEOODwBxHIlLDh8MIVyWHAEkCk1qFC5Ko4fP17gy5S7d+9i1apV6NChA9hCGTTBtcEXSXDgwAEYjUacPn0aIoUGHu1nwxDRCJWr18zuW6NmFPgaO+gim8OMwYRD/WGwqd4T5kwOuHwhrl69iszMTOzfvx8HDx7M5cemTZug0uqhs7TGoEGDYPAtB48Os8EUKiD3LAeb6j2y72f16tWhtPeGe7uZUDr6Ydr06Xj9+jX4QjGcGo+GVYX2YAnlcG83ExKVPl8d9k8xe/bsrHHaz8oe53skNTUVgSHhkBvsIRDLsvUfTXy/mDaoTfG3CRPfE5mZmRgxYgSICKVKlfriDUYTn2bI0OFQ2nvDukoXCMSyLzoN1qVbD0it3aH0rQK+SIr+/ftD5RwE7x5LoXYLw/jxP32Rr0ePHoVKqweHx8fkKVPzbHPq1CmsWrUq+9k5f/48lixZgnv37hV5vK7dekAfXh9BI/ZA41MekWXKQuXoB7uo/hDKVNkyEQsWLgSbyweby8OoMWM/aTc5ORnR0dFwdvdC1ZpRJSqXmZCQAAaThcBhOxA4bCdYbC7i4uKyrx87dgzr1q3L8W9/k5qaimYtW0OlNaBBo6ZITk7OvtasZWtYVWiH4OgYqL0rwNreEVy+EPUbNilwQ/3+/fsQyVQIGrEHAYO3gMFk4fLly+jXfwAGDhyImJiYT64X/8m5c+cgkqng0XEuLMs0R2T5Sp/uVATb48ePx549e4rN5j958+YNDh48aPp9+BcPHz6ESqOHwtIBCrX2h0yKMW1QmzDxlcnMzMS4ceNgZmYGT0/PH+YXxbp161A2MAhtmzb9ouN1terUh02VLllacp6lsHDhwmL08tvjGxAM2+o94Nt7JUQKDc6fP1+ofvfu3YNCrYXS2hlcgRgar7LwaD8bMoNDdpbq3/ydKatzDYRYpsCtW7c+ad/RxQ1CKw+I7QNgzmTDULoZbKp2g1gqh19QKOxq9UXg0O1QWDnlGygsXrwY5gw2tGENwVPbonff/jn8nzFjBnbv3o3AkHBoAqrBtkYvWLC48Ou3Fi5Nx8Pa3hHHjh3LKrQRWAsCS3dwBWLogmpA410eFmwemHwpRLY+YLB5MGdyYF2lCzgyHfhiOYRKA5S+lWHO5EClNeDMmTOYOXM2RDIV1I4+cPXwys4wSUxMxIIFCyBXqeFQfzjYUi0s2DxYsLhgsNjo3r07RBIZ7KL6w6p8W9j/44jglStXIJYpoHX2g0SuxI0bN/D06VNwRVI4NoxG0IjdUNq6Y9OmTbBgMBE0fBcCh+0Ai8PL1k17+fIlXNy9YGZmDk9vX3z8+BHNW7WBdZWuWRu14Q0xcuRIAMCuXbugUGkhkSmwatVqcPhCeHVZhMBhO8HgieHUaBSkTiFgC8Ro3qpNnt/Phg0bYGPvDDdPH3AFWYUb+Wo7WDBY4ApEqF6rNjIyMjB12gxY2tqjVNnyePr0KYAsKRQmTwTnpuOyMtsNbmBJ1BBae0FscML0Im7s3rhxI0tDu3w78GRamJlZgC1WwapSJwhlKuzduxddu/eEo6sHOnXphrS0NFy7di1LF374Lvj0XA4LNj9L7889FGvWrCnS+H/Tv/+APDO1vzcOHToEhZUTgkbsyXr54/D5p1JMfBtMG9Sm+NuEie+R1atXg81m/+eKJ5YEYaXLZWsia7zLYd7/yLwVFStbezCFckhdwsDgCFCpcmXowupnxS+lm6JHr97F6Pmn2b17NwQSOQx+FSGSyvOsV/K/pKSkoEOnLnDx8MGgIcPQo1fvrGKWw3dB7VEK9o7OcGwwPGs+gVUwf/58ZGZmgs3lwbvbr/DruwYcHj+X9vDdu3fhHxwKnaUNZs+eg/fv3+Pnn3/GwoULvwtd4RpRdaC0dYfSzgNV/ifpY/r0nyFWaqF1C4aNvWOOE5YA8PPPP0PlFADvbr9C7Rqa4wVEv/4DofEuB+8ey6C098avv/5aKF+SkpIgV2lgVb4t9KF14PXXKcl+AwZCojJAYeWECpWrFvnU8NRpM6C1tEFweKlcmfefy4ULF7IkEsPqQ6zU5SryWBzcvHkTErkSGkdviGUKXLt2rdjH+BH5+PEjzp8/n+uZ/FEwbVCbMPGN2LNnD6RSKcRiMXbs2FHS7nwzzp07B4lMAYlKDxd3zzzfMv9IOLp6wLnZeAQO2wm53q7AzM/U1FSMGj0GjZu2QMOGjaAPb4Dg6Bjw1HawrdEra3POvzJm5aHx/fTpU+zevRsvXrz4pE/v3r2DOZMNgZUnGHwJOHI9hNZeCBy2A3yxDH5BIbCt0QuBQ7ZBprfDwoULc7zJ/5vwyHKwLNcG2vBGEKmtsHbtWgBZ2nZimQL6oOqQqC3BF4nh3X0JgqNjwJZqofKrCqWTPzp06gIAGDFyFKRyFdy8vMETShAcHYOg4btAZAbnpmMRHB0Dub0PJFpb8HWOMJRtBceG0WBx+bBg8+DVZRHsovqDweZh7tx5OHv2LHbs2JFd6MFoNGZlNbuFQmrvC7ZQDn1kC1gwWFnFGiMaQShTYfLkyQiPLIdK1Wrg9u3bueb78uVL7Nu3D69evQKQJdnBVVhCG9EYCu+KYPLFWLx4MRycXSFzCoY5gwUzcwtMmvz/chztO3aGRG2AVGOFhk2awdPHH2YMJnhKKwhE0uwXGLGxsZg1axaWLFmCtLQ02Du5wrZmb7i3mwlzFhe+fVbBskJ7KLwrgssX5freX716BZ5QDOem46AOjoIFm4egEXvA1zrCof5Q+PT6DXK9PX7//fc8n5GDBw+CL1ODr3WEPrI5zJlZunwqG1c4ubrj/fv3ePLkSZEkMo4ePYr2HTuhV+8+mDRpEkaOHIkOnTpn/35LT0/HgEFDEBJRBlOmTkd6ejoiIstBae0CgUwNNk8AtYMXbOwdC3X0My/+1rrWfUWt6+Lg2rVrEEoV8Gg/G1blWiM0IrKkXTLxCUwb1Kb424SJ75VTp05Bo9FAKBRi165dJe3Ov5YpU6eDrzBAG1oPFiwuHF1cP1tKTG9jD5dmPyE4OgYiGy+MHj0acpUGKls3SBUq3Lx5s5i9L5ja9RqCr3WAmQUTbIkG0dEFnwodM3YcVC5BcGszHQprV8yZMwdunj4wN7dAaEQk5syZC4lKD0NwDQglMty5cwdGoxE8gQgeHebAu8cysLn8XOvAkIjSsCrfJkvWUKqAjb0DtN5loXIKQLWatXP5cfToUVjZZmWHLl/+G2JjY1GtZm3orGzRf+DgT27Orl+/Ht169MTWrVsxa9YsRI8cicePH+fbPj09HZs2bcKmTZtyfPf2zm5wazsjKwvawTtX8c3Bg4f8/wuIyGbo1qNn9rX4+HhUqV4LcpUGrdq2L1LW8/Xr19G4WQu0bd8xe63A5nDh23c1gobvgkCiyM6I3759O+o3boaJk6dkn55NSUnB1atX8fHjx0KPCWStQ0IiIiGSytGhU5dPyu9MnjwZhtA6WcVDo/ohqm6DIo1XGPoPGAh9RKO/XvI0Q6fOXfDo0aMfStbTRG5MG9QmTHxD7t+/Dx8fHxARRo4cWeLaat+KDx8+4MaNG9+1PuzffPjwAYsXL8bq1avzDBh27NgBnkAEoVSJKtVrFqhF1rV7T6hcgmBdtSvYPCE4EjXkHmUh0tmDzRNA4+QHnkCMGlF1cenSJSQkJKBZy9ZwdPNE9KjRhf4DO2fOHHCV1mDwJfDuvgRBI3aDKZBBZuOGoNAInD17FnKVBhYMJtg8AWRaK1jbOeDVq1c4ffo0Tp8+jWXLloPNF0FXqgl8+6yC3GCfnWm9bNkyGHzLITg6Bs5NxkBrZQe5pRO0XqWht7JBx85dMGXq1Fzfb0ZGBmwdnKANrAGNT3nIlBoovSvCuek4WHD4EIilMGdx4NNzOYJG7IZIoYVAqkTg0O3w6DAHTKEcPIEYz549y2E3NjYWLA4PQSN2I2j4LpgzmGjbviNatW4NfWQLBEfHwKpSJ3To1LlQ9+9vOnTqDI1/NTD4Eii8KsC6cmcIxVL07dsXDBYbHh1mw6fXbzBjMPHzzJl49uwZzC0s4NllIQIGb4UFkw2tX0X49VsLmZ03OnTogMePHyMtLQ1Oru7QepeBysEH9Ro2xoULF+Di4Q2VzgChWAqeyhoWHAFsqvcATyDMFTjevHkTQpkKPI09+DonWLB5EGttweSJILTygAWHD3MGCxMmTMjRLzk5GYOHDkP1WnVg6+AEgUILFpePwUOG4OHDh/jzzz/x+PFjOLq4ZRVJsbQuUnGUQ4cOQSCRwzIkCgKxDIcOHcq+9tPESVA6+MC5yRhItDZo2qw5qtSIwsCBA3Hy5Encvn0b+/btK3KQ/E+eP3+OnTt3ZmeLf6/MnjMHOitbBISE4e7du4Xqk5ycjAaNmkKlNaBJ85b/et3R7wnTBrUp/jZh4nvmyZMn8PX1hbm5OaZPn27alPkKGI1GcHkCaILrwKPjPEg1VjkKeReFps1bQe1dDk6NRkIgUeD8+fOIjY3F8ePHv3ohyEePHiEkojS0BmtMnDQZAFClajWI7fwQMHgrFF7lUat2wXKOLVq3hVWljlnJNaF1MXr0aADIEZfs27cPM2bMyLHZvm7denB5ArDYHMyZMzeXXVsHZ7i1noagEbshMziCJ5RkS1hYMJi52qt1Bjg2GA6P9rPB5QvRsnUbaP0qwb3DbAjkGgwbNizf9fWqVasgVhlgWaEd2AIJxHpH6IKjoNYacsSie/bswcSJEws8oVC1Ri3og2vBqdEoCCTy7DlnZmbi5cuXuHnzJuQqDdT2HpDIlbmKVhYn1naOsKnaFU6NRoEvFCMuLg7Hjx+HUKqEbY1eUNp5YvSYsXj9+jWs7Rwg1VhCplQXyafmrdpAH1IbPr1WQGHtgo0bNxbY/uDBgxDJ1bCt0Qtya1dM+aveTEZGBtasWYOFCxd+cdLajBkzoHTyh2eXhRAbnMHi8MDmCeHu5fufKp747t07XL58+YfYZykMpg1qEya+MUlJSWjVqhWICNWqVfvuq1P/l0hPT4entx807mFQ2nmgUdPmebZ7//497t69+8nFgE9ACFxaTERwdAykDgEQWXvCUKYF2FwBzp49C2dXd2j8KsOqYgdI5Ep079ELGs/ScGs7AzK9fS7pj/woX6kKLDgCsMQqWJZvm1WFmSfE3Llzs/9AZ2ZmommLVrAs95e2tV8lBAWHQKIyQKzUgcnhw6nxKHDkBpgzmOjSrQeuXLmCqLr1UbFyVQgkctjV6gu1SzB69OqDzZs3Y9GiRZ98frdu3QouXwhzCwbq1m8ItkACC44AZMYAkRk0egOECh0Utu5w9fBC9Vq1weCJsjdrBVJFLlmczMxM6K1sYIhsCsvSTWBlaw+j0YitW7dCrNLDtnpPSHW2OQpLZmZm4vbt23j79i2MRiPev3+fK4B99OgRLG3sYM5gwaf3CgRHx4AlUkJs4w0zCya8uiyCX981MGdxwWSxodLqwdfYw4IjgKFMC7C4AliWaYng6BgovSuAKxCDL5Jg0qTJkKh0CBqxJ7tI4v8SGxuL2bNnw9reCQZrOyxbtgzp6em4du0a9uzZg48fPyIzMxP+QcHgqe0QNGIPXFtOhs7KFkOHDgVTIEXAkK1waTERVnaOOWx36dYDatcQ2NbsA75YhkWLFuUKuMeNGwetX2UEjdgDQ0RDdO3Wo1DPHQB06NgJluXaZGUvlGuNnv9zRLVJ81awrto1O1tIbHCGfe0BECt1OTJNPnz4gO49e6N6rTr5FiH6r/LTTxOgdg2Fd/clUDkHFlmKxcTnY9qgNsXfJkx87yQkJKBevXogIrRr1870EvMr4BcYAkOpRrCr3R8CsRRv3779LDvx8fFo2aYdgsMjsfy33/Ds2bNvlqhUoUp1WJZuCs9O8yBWaHHq1CmMGzcOKu8Kf9UOaYwOnbsUaOPYsWMQimXQe4RCIlfmeTIxPzIzM3Mk9Ny5cwe+gcHQGqzRrEVLCMQyyPV2CAgOzZKwKNcKuuBa8A0IzmWLyxfCu8dSBAzZCr5YhrIVKsOmek+IbLwh0DlDpLFG2/Yd8/Sjddv22TJ8ulJNoQ6KyorZrRxx5swZAFnFJMUqPfShdSAUy/KVjXj9+jXqN2wC/+BwrF+/HkDW+tDN0xs8oRh6KxtcvnwZR44c+exn5vbt24WSebx69SqCw0rB3dsvO76ePXs2DEE1EBwdA4d6Q1Gxag1MnjwZOv/KCI6OgWXZVmjZum2hfalaIwo21XtkS3YuWrTok302bNiABo2bYfqMn7Of9eat2kBp6w6tZyk4u3kU+DsrMzMT7969y3e9nZqailZt20NvbQeJUgOnRqMQOGwnODIdIkqXKfTcfmQOHz4MoVgKqcYSXr7+P0y9s4IoKP42JxMmTBQ7XC6Xli5dSvPmzaPff/+dAgIC6NKlSyXtVoFcvHiR3Lx8yGBtR6tWrS5pd74aDx8+pEdPn5FV3RFkVW8kbdm0Mc92UqmU7O3tyczMrEB7dWvXpNd//EJP9i2g+EdXyKpyF9KXbkY8kZR4PB49fvyYdGXbkCakLpkxOHT95i3iWvuS0OBKHK0TPXr0KNtWfHw8nT17lj58+JBrHEuDgWSOAcTXOtKL4xso8fhSWrdmJXXt2pW4XC4REZmbm5NCJqOM+JeUnhhHGR/f0rmzZ8mh7WxybDuHMtJSiK93IeemY4nN5tDP06dS2QqV6OJHKd1MlpKAzyVXs4dU1s+B3rx5S7du36E2bdqQVCot8B70HTiEDNV7k0/vlbRv/0HKTE8jcyabLDhcYsu09Pb9B2pcpzolvHpI75Iy6Nq1a9SvZ1dimhO9Pbaa6kTVInt7+xw2zc3N6cihgxRpzaJIWw7N/nk6nT59mmrVqkVzpk2iYEkcTR49jFq0aEFERJmZmVSlei0KCIkgS2tbkijUJFcoiSMQ0aFDh7LtJicnU7/ePcnM3ILubvyJ7m6eSBnJHyj5w1sicwu6sqgrXZzdhlR+1SgjI50yZPbk0XEuWZVvSx8u76XFC+ZS4rW9dHNBe4q9eZxc2s8l67ojaPb8hWRmzKCXJzbSiz9XkIeXD6Wnp9PSpUtpzpw5RETUvXt3mjJhHCUmJlGHTl1IodJQUFgpat1jMPn4B1JiYiItXjCfzFLiKeHpDfr44By5urpQkyZNiMNikjEthTKSPxCbzaY3b95Q67btqUbtunTwj0Mk9atFKt/KJLXxJD6fTx4eHjnuJ5vNJmNqIsGYQRnJH+ja9WtUqmwFGj5iJGVkZOT73c74eSYtW7aUXp/fQ2+v/kFJt45QgL9f9vW2rZrTy0PL6dKcNpTw9BaBJSCBwZWEjiF08eLF7HbtOnSmTX9epuuwptr1GtD9+/cLfKb+S7x49YqYSlviyHTEVNjQy1evS9olEyZMmDDxncDn82n9+vU0fPhw+vXXX6lixYr09u3bknbrX8W2zRsoQAUyfLhEO7dtIblc/ll2RCIRLV/yC61a/isNGjyMnNw8ycsvgOLj44vZ49y8evWKeAY34qpsiSNR0evXr6ljx44kSHpCN+a2oox7R2nwgP4F2ggLC6OL58/QnLED6drli+To6Fjo8c3NzcnCwiL7/5u3akvvxO4krzaQtu/cTRvWrqIdG1bS8SOH6difh6iUwYxq+BkoZtf2XLbGjhlNd5b3oVsLO1LtqFo0cvgQevPnckp6dZ/c2s0gxxZTacVvy/P0o3LF8hR3bhs9O7qW3p7fRWlvHtCzwyspIyk+ez5rN24mZUQLMlTsRGKXMDpw4ECetpRKJW1Yt5rOnjxKDRo0ICKiX375hWItFOTRey2ZWQXTnHkLKCIi4rOemYGDh5JfUCj5h4RT3/4DCmzr7u5OJ4/9SVcvnqPKlSsTEVH58uUp/tZxevr7Inp79DeqX6cWiUQiyvj4ltKT4ik9/iVJxOJC+xM9bDC9P76a7i3pSoL0d9lzzo/Lly/TL8t+o8SkRKpWtQqZm2dtLW7etJEs6wwny9pD6fW7eLp7926e/Z8/f04Ozq6kM1iRp48/xcbG5mrDYrFo2a+L6enDe6TX6Sgt4R1lpiQQjJl09uzpQs/te2Tt2rXUuFkLmjd/PmXt2ebNiNHjSFm2HTl2WESvk81p+/bcPzP/KvLbuf7eP6YMDhM/CsePH4dOpwOXy8XKlcVfPKC4sHVwhm3N3nBrMx08obhQusg/IgkJCZDIlbCu0hmG8Abw9Cnc75L09HRMnTYdbdt3zKFJbTQasX79evz000+oUKkqVE7+0PpWhI29I1JSUtCoaXMo7b2h9S4LeycXxMTEQCCWQucWBLlKk62JdufOHchVGiitnKDU6HD//v0c47958waR5StBrtKge8/eud40p6en4969e9i6dSvYPCHMLJjw9PGHQCyBY8NoODQYDgsmCxy+CDyhGFOnTcezZ8/+Oma3G4FDt8Pc3OKvghcyWFfpCqWDL/oPHJzvPVmydCmkChWYHD5cW05CwOCtECu1cPPwghmTA89O8xAwZCssuEJY2tpDaOUBvs4ZYr0DfvvtN7x8+RL37t37ZJZ6l249IFHpIdFYomnzVnm22bNnD7hCKTgKK5CZOSSOQQgasRua4DpQa/U4ePAgzp49m1WY0rcCzJkcSB2DIbb1gTmLh4ChOyC294c5kw0LNg8MFhsMDg9clS08Os6FzC0CPXr1AZCVDbxt2zbwxTJ4dl4A68qd4RsYjCtXrqBRk+aIql0H9k6u4IllkNl6QesVCWc3Dxw/fhwcgQQ21XpAYOkGBk8M52bj4dF+NlgCCVRaAzZt2oT5CxbAzskVZStWxtOnT/H+/Xs0adocFgwm5CoNjh07hrDSZaELrgmbat3B4QshUukhtvYAm8fH3r17c92fhIQElC5bAWbm5rCxc4BUawOnRqOgtPfOtxJ8WloamCw2vHsuh2W5NmBwBJg8eUqO7ysmJgZChRZ8gwukzqHQhNUHgyOAQCTNcUTW3tkN7u1mZmX2u/iXuJ5mfHw8KlapDpFUjoZNmpVoRtqNGzcgVaigtnOHXKUptDSIiS+HTBnUpvjbhIkfiFWrVoHNZsPOzs5ULKwAsgpwz8S5c+ey/y0zMxO9+/aDla0DGjRq+lWzEFu1aQdDZLOsTFSvMpgxY8ZXG+tvNm7cCIFYCoWlI7x8/XHgwAFMnjwZx44dw71793LVpUlNTcXSpUuxYMGCL5Zhy4ssWY+pCBqxGworpxzycMePH4e3fxC8/YNw/PjxPPs/fPgQ169fz445b968Cb5QDLuofrAq1xqOLu75jr1p0yb06t0HW7ZswbDhI9CpS7ccBSJHjxkLpb0XbGv2hlCmwtGjRws9rxkzZkDtHo6g4bugC66F7j16Fbrv/5KUlAQGkwX/ARvgP2ADmGzOZz2Tly5dQtu2bSFXaqC3ssXGjRshV+lgzmCCyRVi8pQpnzbyP7x79w4XLlz4ZPHK9PR0yFUa2FTpAuuK7aGztM7+rvyDw6APrQPrKl0hlinylfno2bsP9KF1EDRiDzQ+5fHTTz/l2e5vjh07BgabBzMLBgQae5QuW6FIc/ue2LVrF8RKHWxr9ILM4IAFCxbm2zaqbgNYlmoMn94rIDPY51pDpaWl4dWrVz+UBFRB8XeJB7qf+zEFyCZ+JF6+fInIyEgQEXr06PFdHs8TSeXw6vYLAofthEih+WSl52+F0WjEmHHj4RMQgu69+hTLvbtw4QJq1K6HJs1bFlrTduDgoVDae8OqYgcIxNI8FwapqalYuHAhpk6dijdv3gDI+gO+bNkyzJo1K7uq9d27d7Fjxw68fv06u2+v3n2yi0Dow+ph4KD8N4b/Zv369fAPDkdU3fpwcnWHSKYCg82DQ/1h8O6+BHyRBGvXroWzmyekSjXEakvIrV0RFBqBzMxMZGZmIiA4DBrXYKgcvFGzdt0sLWq/8n9pUY9FcHhknmO/efMGXL4QHh3nQhvRGOYMJjh8ITx8/MDmCWDGYEHqGgG+1hFsqRYWHD6UvlXh0mISGFxhoaukp6SkgMFkwn/gJgQM2QozCwY8vHxzyY54+QZA4hQMuWc5MPgSiB2yNqhFtj5gcARQWrtAqdFDE1w36x5HNgdHIEa1GrXAkyhgKNsKAoMLfHuvhMKzHKQKNfgSBbThDcGWasAXy/HhwwfExMQgvFQkatWui2HDo6FQa+Hm5ZtD402tM8C+7iCYWWT5HTRiD8QKDUaPHg2NbyUER8fAscFwMPlSaIOjwBIpYRfVH64tJ4MnEOH9+/d4/PgxunXviXbtO0KmVEHj4AWRVJ59PFEklcOnV5ZEiVxvi7LlKkBi6Qp96WYQSmR4+PBhnvczMzMTo0aNgi4sq5indZWuaNaidZ5tMzIywOHx4dFxLry6LgaHy88uYvk3U6ZMgT60Niw4Avj1W4vg6BgIFXps2rQpR7sRI0dBpreHzr8yVBp9rgrv35oBgwZD41Mevr1XQuXkn+/zmJaWhkmTJqNVm3Y4fPjwV/Pn3bt3OHr0qEkO6htj2qA2xd8mTPxonDx5EhqNBiKRCLt37y5pd747/vjjDwgkchhCakEglmVvPq5cuRIKG1d4dpoHjWdpDCggAeNvDhw4gN59+2LdunVF2vzp0LkL9CG1EThsB9SuwZg7N7cu89fg4cOHOHbsGHbs2AGhVAFDWF0IxDIcOXIkV9tqNWtD5egHjXs4fPyDil2KZMrUqeAKxJDpbBEcVip7/ZaRkQGJTAH7uoNgX3cQJDJFgbV+/pdjx44hokx5VK5e84te5mdkZOCniZNQt0HjXPHqp0hISEBEZDmYmZvDzdMHL1++RHp6Ot68eVOkZyQ9PR08gQguLSbCteUk8AQipKWl4cOHD5gzZw4WLFiQZ7H7vOzwhSI4NxsPlxYTweHxIdPbIWjEbni0nw2dlW2R5ldY3r59CzaXj6DhuxA4dDssGMzsTe0XL16gReu2qFG7Hs6ePZuvjd59+0EfXDMrocirLCZOnPjJcW/cuIF2HTqi/4CBn118/XsgOjoa+ojGCI6OgU3VbmjQuClOnDiR58uix48fwzcwBEKxNFeS2tWrV6FQa8HlixAaEVmoZ+Z7wLRBbcLEd0BaWhr69u0LIkJ4eDieP39e0i7lYMrUaRBI5JBqrFC9Vu3v5i3c2rVrITM4wLnZeAhUlggODcPp06e/uR+BoaXg3HRclg6vb7kc2sefQ2pqKubNm4cJEybg5cuXGDduPNTu4fDptQIq1xBMyeeNt9FoxPPnz3Hx4kUIJHI4NRoFTUB1cKQa2NToBQs2Hx4d5iBwyDYIZSp06NQZ9Rs1BZPFgV+/tQgavgtCqTK7+nNiYiJmz56N8hUro2rN2li1alVWlnFYPcj0dtmFVv7Jo0ePwBdJETB4K7x7LAWHJ8DNmzfBZHNgV2cgPDsvBJmZgy1RI2jEbnBVttmVzWV23vkGhAkJCRg1egy69+yF27dvIzMzE1y+EP/H3lmHWVV9f3jP7e6+d7p7hikYcuju7g6RlJAYUFBCUVQkFAUUERWRkBKxAxQFFQxApSRE6Y657++Pq/NznCHF/N73eeZ5lLPrnHvuzNprr/VZMS1HE9fmnoDjOzqDu0eNKjZoL1++TIhEQu7Y1eQWrkWm1iNRaQmRypAo1KT0mkFu4VqUJidyvS1Q7MSbgNZs591332XCxPvQ6PRYU6oFNNtq9MAQmYFcpUGjN6HRGXjllVd49913kSk1OPOa4q7YBpvTU2aRTYVSReaQReh8iTiyGhBWswcWu5MtW7agM5pxlW+GXG/FYLLg8gYivtMHPUvO6JXoTFZ27tyJLzwSb8WWOLPqoTDYA0Uha/Wk0y9acj1798USGofJF4/T7SUhJYOkrg8FnO+pFa9pcH/xxRfoTRZ82XXQmaysX78eCDivFyxYwKhRo4ujn1944UU0OgMqjZY5TzzBu+++W2JT8NVXX6E3WdDYQzFEZuLObYLLE1rKkf2rfviMGTNKFcT8qykqKqJ8xcr4qgWKbXpyGnDfffeV2XbosOHYYzIJq90HndH8jzm4C3J7CDqog/Z3kCD/Rvbt2xcsnngV+t1xJ6E1egTs9WqdGTr0LgCmTp2KJ6dB4HC+Tl/atCu7Bs2vvPvuuwFHd0FXTK4w5s2bz4kTJ3j88cd5+umnrxkwc+jQIZJSMwiRSKheq+5f7jTq3fcOwmr1+iUgoxPDho8ocb2oqIgQiYSc0SvJLVyL1mi5rUWof43mNnki0BtNDBs+vNiZePr0aeQKJdmjlpM9ajlyhfK6Edzbt29nyZIl/Pjjj7dtjX+UX4vV7dq1C7c3FJVWT3Zefqko6CtXrrB06VIWLVpU6j1Yu3Yt7tBw3L4wVq1aRVFRERlZubhSKuFMyKVajdrXXcf58+f/PxJ7xFLkCiVag5mkrg8RVqMb2eXzb99N/wa/309BzTo4YtKxR6XQqGnzmx7j8OHDxCelIpXJycqtwMmTJ/+Elf4z+eCDD9AZLXgrtkJntqPW6nBEJODxhd1UFnvjEIhcnAABAABJREFUZi0Jr9WL3LGrcSbk/GH/xF9F0EEdJMg/iBdeeAGNRoPL5SrzRPvv5JtvvmHz5s1/WUGPsvD7/QwcMhSDyUJmTnmGDRuGp0Jz3BVbo/Um4Cvoit5ouaWT8ytXrnDgwIEynYrXY+L9k7CGxuGt1Aa96drznz59mi+++KKUk+63NG/VBkdcNu6sevjCIzl69CiNmrbAbLXTrGWbMo3Zy5cvU7NufTR6IxqtDltkCnnj1pHU7WGkKi3GqCxU9nAkciVao4WYhCQcieWJqD8AqVJDWK1exLQYhd5oLmEENG7WEndmLSIbDkJntPD6668zYcIEXnrppRKbni+//JJadRtQo3Y9PvvsM7p274nebEejN/LQw4/wxJNPIlVq0IenoTQ5Uaq1KNQ6kro+hDmxMlKVFmtkGmGR0cXpXnv27KFKQU1iE1N45plnadC4Gc6Uyvgqt8PqcHHixAkqVqmG0uJB44rGFFcBnSceiVSO0Wzlzjvv5LHHHiM1Mwt3Vj2cuU2QKjVY7S7eeOMNMrPz8BV0IbHLNKQqLZ7K7VE7IlA7o9AazMUFYDZu3IhUoUZhsCPTmkju+SgqjY7PPvuseK39+t+JCPl/R7hcqSkRBQ+BVDuL3YVEpkCpNRIVm0Crth3Yvn178fX77ruPdu3aIVVoCK3RHaXJhUKjx+wKo2mLVhw8eLC4wnnu2NUIEUJK75m4UiozesxYIBBZbnd5MESmo7aFojWYsUal4avW6ZoR1L+yY8cO5s6dy9atW4v/bdw992INS8BbqS1KjY64xFR69enHuXPnOHv2LPFJKcg1BkIkUipVKSg+IPjmm2+YMmUKjRo1pk/fvsWyNf9UHnpoOkZ3JFK1HqXRidXhKj4wPHXqFB27dCMuMZUBAwcGiqB2DBys+DIKWLRo0d+8+iC3k6CDOmh/Bwnyb+XMmTM0b94cIQQ9e/b8R2Zn/h08/fTTWHyxxLQYhdkbVSyvuG/fPmxON+64TPQmCxs3brzmOPfddx/eioFss8iGg2jZtj2Jqem4UqvgiCt3XYfc74sG/pUEnkEMUU2GYXKFFRf4+y3xSan4KrUmrGZ37C7PbX1/MnMqENuqEJUtFEe5+jjSCsitUKn4eofOXbF4IrB4ImjUtDlffPHFVQ9ZVq4MBG94UvKxOdy31ZF+O2jXsTOh1ToFooCTKjBnzhx+/vnn4kzBth06YY9IwhmfRV5+pWvusX/88UfUOkOx/S+RSIsd4dfiruEj0Jlt6C0OBgweyrx584mIiad8pSo3tF9evnw5ZpsDo9nKokXP3/C9X7x4kRdeeIElS5bc0t4aAvv+c+fO3VLffzsbN25k4sSJVKtek/DagQMlT3Zdpk0rW3qxLJq3aktoQWdyxryKIyb9X7NPCTqogwT5h7Ft2zZiY2ORyWQ8+uijwciH37B27Vos3igyBj2Lr3IbatSuh8FsRWW0k9j5gYCjKL0KL7744g2Nd/z4cWrXa4jF7sJgsaMxmImIjr3pCHa/38/ChQsZPWZMCW3d37Nr1y5sTjdWTyRuX9hVDSmt3lAsiWDxRLBt27brrmHVqlXYIxLJGbOKyIaDkCrUGMLTkGmMv4kgXoNcqeazzz4jKa0ciV2mkTduHbbIFIxWJzqTnbvuuquElEBYZAyJ3R7GV9AVrcXF4sWLOXPmDHv37i1+N/1+P063j4g6fYmodwdWh4vLly+zc+fOYodkWrlc4jvcT964deh8iYwcOZLqNWsh11nQhaVg8MbRq1evEs7xCpWqElqtI4mdH0BntGAwWckYvLC44vYnn3zCww8/jFJrxJpSDYlMgVSpIbXvHGRqQyBK22Alr0JF7ho2nH533Mnrr79eHMGwcOFCFDoTSpMLmdZMZMNBqEwO7E438+bNB2D37t2MHz8ehUqNPiIThcmFyuKmSfOWJZ7/vHnzUOhMGKOzMcXmERYZw5YtW3jkkUeoVlATmVyB1mghsv4AMgYuQGuylXAA/xaNVl9cWTyq6TCc3jA++uijYumVhORU3Jk1caZUxh0ajjc8ipat2xXf1+zZs5EoVCR2nUbmkEWEyBTojSYGDBrMW2+9xebNm695QFIW5XLzSeg4mbxx6zDFZOOp1A5nYnnGjC1kzZo1qEx2PJXakjV8CRpHBC+//DIQcOpGxyXgjElHb7Ly3HO3zzj66aef2Lx58201Xpu2bE1U46FkjViKI606EydOLL7Wq08/DKEJyDRGVFYvdpcXszcGT34rDGYru3fvvm3rCPL3E3RQB+3vIEH+zRQVFTFmzBiEEFStWrVYXu5/Gb/fz0MPTadOg8Y8+tiMEnuso0eP8vrrr9+Qk/Odd95Bb7YRWrMHZncEU6ZMRW9xkFu4luy7lyGTK8rsV1RURKeu3ZFKZYRGRJWQgPuVK1euXFfj94/g9/uZ8fjjNGneiiefnFvmPnP//v107NKNlm3al7nGsti6dSsp6eUIi4q95j6sUdMWuLLqI9MYyRu3jpwxqwiRSIod9n6/n3feeYcOnTqjM9kwWF1079m7zLFq1WtIdLMRgWjwcrWYPXv2Da31r6Jjl274KrcpjmBt0qw5Ko0OlUbLtIceRiqVkX33MnIL16A1Wq4ZxHH58mXc3jBCq3XEV7ElsQlJN7yOr7/++oY/x99y5coVNFo9Sd0eJqXX46g0upvePwT5YwwaPBR3Zi3SB8zHHpXKggULbrjvd999R3hUDBKJlPqNmt7QgcY/gaCDOkiQfyAnTpygcePGCCFo37598I/BLyxevBhXQg6Zd72A2hGBRCqjVp36NGrSFEtYIt4q7dGbLDfsKLpz4ODAL/0756FxRRPddDievMal0t3+COfPn2fr1q2079QFk9VRrCXtyWtM4bhxZfapWr0W7sxahBZ0wWJ3curUqevO8/rrr2PxRpE98hUi6vZDrjEQ3XwUMW3GI1WoCa3SntBqnfCEhnPlyhXunTARiy8Gb14jFBo93grNiW83AYlCjUKlZs4TgYIMw0eOQqbSIlGoUBgdmK129CYLWqOFqtVrcenSJc6dO4dUJidn9EpyxqxCoVLzzjvv0K5jZ4bcNYyTJ0/StEVrvHmNSOw8FYPFwSeffMLhw4dxuH2IEAkyhYpnnnmG8ffcw/Tp0zl//jy+iGiSez5GbuFabGFxVK1eE0dCHp4KzXC4vOzcuROD2Yo9sw46exj5lapg8UbhqdQWQ2Qm2aOWY8+oQ4hURlFREZ999hlvv/128Un+5s2bMdjcpA98BmtKATaXj6efnldsrB86dAizzYE3tyEGZzhqnQGn28tjjz1WKvLF7/czafIU4hOTadykKYsXL0ZrNOPOqodUqSG+3UQUehsJnaaQM2YVVm/UVbMkNAYTMrUeX0FXFEYHIVI5kTHxxVptR48eZdKkSUybNq1E6qPf72fRokVoDGZceU2RqQ2YkyojUWiQSKVUKaiJUqPD6o3C6fEVS7ncCMOGj8QenU5ozR5IlRrS7phLRP0BtGjTni1btqDQGIioPyCgqR2RVpxG9sorr+CKzw7olre/j7Ryudec59VXXyUyNp7ElHQ++uijq7bbtGkTepMFW2gMEdGx/Pzzz5w5c4bRY8bSpVsPtmzZcsP39lsWLnwOo90TSKszmkuMU7l6LRQGO8k9Hg3cpyuCwsJCxo0bVxwFH+S/Q9BBHbS/gwT5L/C/Vjzx559/ZtOmTX9Kcb/f8tprr3FH/wEsWrSIs2fPYnO4CavRHW+FZqRlZpfZZ+3atVhDY8ge+QrhtXtTvVbdEtfXrFmDVm9AJlcwemzZe4R/KuFRsUQ2HERil2lo9MZSWYQ//fQTZ8+e5dChQ1StUQu5Soszuz6u9BolIqgh4IyVyRWUu+sFsu9ehkqjK/OApf+AQbjSqpLQaSoKvZX4pBT27t37p97nzbB3716iYuORSGVUrlYDhVJN5tDnyRi0ELlCSVRsAqEFnYioPwCz1X7dgItvv/2Wjl260a1Hr78kWvzSpUvIFAoyhyyi3LAXUao0/ympjQ8//JBx48axatWqv3spV+XEiRPUqd8Qm9NN9569bzrzwu/3/2sc078SdFAHCfIPpaioiPvuu4+QkBDS0tL+UMGH/wpnzpwhNaMcKr0Ze0btQJRjXDazZ8/mySefZNjwEXz22Wcl+nz33XckJKehVGvo1adfiUiBlm3aE16nb6CYXEoBYbV6Yk/KJzWjHJ26dmfLli1/KK3thx9+wBMajkpvxhidhT2zLuaEfMrd9QKOxPI8/PDDZfY7fvw4Q4cNp1uPXmWeeB8+fJh33nmnROVjv99Ptx69kEpl2BwuZEoNcp0FlcVDQnIqHTp3pV3HzsXvkd/vZ/r06dSsWROzzU5S9+nkjVuH1htPZOO7UGt0xdrACqODjEHP4qnUFplKR3TT4eSOXY09KoXly5cDYLQ60Tij0Lhi0BjM6E0Wwmr1wp1Rg7oNGvHTTz/RqGkLElIyip3f33zzDTqzjXLDXiK29XhkSg2e3EY4EsvToHEzZjz+OHqzHUdkMulZOZw8eZKHHnqI0aPHsGfPHtauXYsnMeD8TOn1OJGxCbRp3xGJRIo1pSBQIb1ia6wON/dPnoLB4sAWGkvVgprFf+DHjB2HVm8gOi6xlJPx6aefxhiZHpBK6TqNxNSM637mR48eJSElDYVah0xrImPQs4TW6I4zt0mgSKNSjd7ioE69hlc1MpxuHyEyBUIiI0QqI6HzA7jzWyGRq8oskPnDDz+wfv16cvLykau0/6+vWL0rErkKld6MTKnBVb45hsgMHFn1saZUQ6nWMGHChGIpk2tx+fJlpj30MG3atUdnMOFNrYTOaKZa9ZqkZ+VRq3YdpHIVCq2R5LTM4mjujz/+GIPVSVLXh/BWaEajpi2uOsd7772HUqUhru0EopsOx+n2XrVto2Ytiah/Z+CwJ6OAWbNm0bxVW1ypVQir2QOD2crhw4eve1+/58cff6RcTnlMNif97xxY4tqSJUuQq/X4qnUiqetDJWRggvz3CDqog/Z3kCD/FTZt2oTT6fzPF0/csmULNoOBVLOFCJfrL63p89VXX9G2Qye69+x9VZ3Y5cuXY49KIXfsaqKa3EV+lYIS113eUBI7T6XcsBcDcm4VKmEwW+nSrcdNO6Z++uknvvnmm6vKRnz66afUqtuAxs1aXjdg4aWXXqJGnfoMHnrXVZ2oOoOJ9AHzyRmzCr3FwY4dO4DAfqNr956oNDo0On2xM/DQoUPcPWo048ffU2I/82sfo9lKXJvxvxQJ1JcZrHXmzBnqN2qCXGPEnd+K0CrtqVWvYal2GzZswB0ajtXh4vnnF1/zXiGwB3/ttdd49dVXb1me4rf3cuHCBc6ePYtKrSWt35Ok9J6JSqNlx44dNG7Wklp1G/Dpp5/+oXn+LO6fNAW1zoBGb+Tu0WP/7uXcNjZu3BjQea7UFqPdc1PyJUH+XIIO6iBB/uGsW7cOi8WCyWT6R5/w/VVcunSJhk2aEVrQJeCAzKjBQw89dNX29Ro1IbSgM+XuegFraAxr1qzh8uXLrF27llmzZqE3WbCHx6PU6BBCoNToCK3aAXd+S6QKFXaj8ZYLL44ePQZP+SbY0msRXvcOske+gtrqRanW0KhpixsqjHLlypUSTvLNmzdjMFtxRqfgdPuKT9C/++47Vq1axYEDBzBb7cg0RkJr9cJXvStOj69UCt++fftQaXS4KrRAYw9HoTGg9cajsoXiq94NlVoTKMgXFoHOl0hu4Vqim41AptYTXrsXWSOWYvVF89prr3HhwgVCQiTEtBpLTMsxKJRq7OHx5I1bR/qd87A53WXe25dffonB4iBr5FKiGg9BobeSN25dwDDX6YGALvP69es5f/48ly9fZsWKFTz55JN8//33HDp0CKPFhrdyW+wxmfTuewd79uxh3bp1hEVGo9SZ0BpMbN68GZPVTnr/p8kduxqTw8sXX3xx1We+fv167ug/gPTMLKRKDRENBmCMzqJGrTrX/bymTJmCK6MGuYVrcZVvgSk2F5XVi1SlRapQM2rUqBIbhoMHD7Jt2zaKiorYuHEjy5cvJ7dCJXzVOmFNr4PC5MRbrTO+6l0xRmcjlStKRNS/9dZbKNU61LYwJHIVQiJFaXIR2WgIBoePdu3a0bdvX6RKLfrQZKQqHUqrF5UtFKlKhyOtOnqThS+//JJPPvmEsMgYdAYTD04r/Z367rvvePjhh3nmmWdYsmQJ9Rs1xp1Vh/gO92OwOHj77bf59ttvuXLlCpcvX+bBaQ/RrUcvBg0eTExCMnUaNCrTafzSSy9hsjqQawyobaHoQ5PJHPwccoXiqhJH3Xv2xpPTgIyBC7CFJ/LCCy/gDo0g7Y655I1bhysmjbfffvu6n9fvadm6Hd7yTUjpOQOTw8c777xT4vrq1auJT0olLCq2WAYmyH+ToIM6aH8HCfJfYt++fWRkZCCRSJg+ffp/UkKwW7t2jDUY+cHjo73RxAMPlF3M++/i4sWLFNSsg0Zvwmi2ltK6dri9JHV9iKzhS1Codbiz6pExeCH2qFQWLlx4w/O88soraPVG9BYHtes2KOXcPnfuHGarnYj6Awgr6Ex0XOJVx/r444/Rm+3ENL8bZ1I+d/zu8P5X7p88Bb3ZjsUdQf1GTfH7/cWBLnqrk+y7l5PQcTJhUbHXXPvatWupVrMOdeo1IDQyBl94FCtWrLhq+5UrV+KMSSe3cC1xbe8lLSuX/fv3U6dBI9KyclmyZAlGs5X49veR3ONR1FodJ0+eZO/evaxevbpMu7RT1+5YfTHYI5KoXbfBbfuuDB06FJlMjlKt4YUXbkyO8q9k586dDB4ylEmTJpc4iDh48CD79+//G1d2fb7//ntWrFhxw0UEf68j3/o6hVGD/HUEHdRBgvwL+P7778nIyEAIwfjx4//WQoX/BL7++musDhdGu4fouAR+/vnnq7atVK0GUU2GkVu4BmdcJi+++CJ16jfEHp6AxRtF+46d2bhxI6dPn+bIkSMo1VpyC9eQO3Y10hAJk40malWseNXxFy1aRLcevcosMjJlyhScyZWIbzcRqUKNNSodi915wxIkq1evLk71G3/PBADad+xSXH3bk9OAqVOn8sYbb6AzmvEk5mB1uFAo1UjkKnLHriZnzKuESKRkZOWW0LIeMWIEhoj/jw6WqrSYbQ6kcgUKvRV3Zk0MJjPW0Di0nniUJhcSuZLp06cTHh2LVCane8/exUZbZnYe7oyauLPrEROfgMsbiie7HvaoVJq1aElUbAJqrb7E6bvf76dz127IlWrUWh1Giw1f5Xa40qtTULNkdWq/30+deg3Ru6NRWbzI1TomTZnKl19+ybDhI3jssceoU68BIkRCiERGVGws27Zt48KFC5w+fRqHy4M5oSJxbe9Fqzdx8OBB5jzxBDEJydSsU58NGzZQoVJV4pJSUesMhNbsgdrsxhBVDmtKAWqbj+HDh/PQQw9x//3306BxU5q2aF0qwv3hhx/GEpcbiDDPrIdEqUHjSSDtznm406uXiJp//vnFaPUmDDY3dqcblcGKLSqVuMRkMnPyUOmM6EOTsWfWQSJXEtt6HFK5okSkSUZ2HpENBwX0ypOrIdOaEFIZLl8Ec+c+hd/vZ8yYMdgz65A3bh1htXsjkauQaQyobGGk9J6Jt0IzJk+eTFxSKlFNhpF+5zx0JmuJ6OB9+/Zhstrx5jbE7Apj+vRHycguT2jNniT3eBR3UoUSmoPDR47CHpNOWK1e6Izmq2rf/fzzz2h0BuQ6C6l955A5ZBEKnQWNwczIUWOu+t344YcfSE7PRGc007Z9Jy5evEivPv2wR6XiyWuMzekuoaV+o+TmVyG2dWHg+5VcgcWLrx9pE+S/SdBBHbS/gwT5r3HmzBmaNWuGEIJevXrdcpag3+9n5cqVPP744xw4cOA2r/LWGT54MM2NJj5wuMg1Gpk3b97fso4lS5aQkJJOparVS2XA+v1+Dhw4UGYk8rJly1Br9ShUauKSUgiv0ydgj2TW5NFHHy1zrj179tCoaQuqVK/F+++/D0B0fBIJHSeTO3Z1mZJy+/btQ2u0kFu4huy7lyGVyq7qhF2wYAG+zOrkjVtHXNt7qVC5oMx2EAg82bRpU3ERyLoNGqE12ZDIFEQ1GUZs63HY3aWDZn5l9+7d6IxmopuPxJNdn/qNml51rl85d+4caZlZWH3RaA0mli1bRn6VAkIrtyW+3QR0RjMyuYLMwc+RNXIpKq2edevWoTdZ8CTmYLLa2bVrV/F4V65cKdaGzhmzCrXOcMNOz2vx8ssvY7C68FZui85kLRUA8Xdz/PhxLHYn3kptcCZWoEXrtn/3km6YDz/8EL3Rgje5fKnP82q8/vrrGKxOIur1x+KLYeasWX/BSoPcCEEHdZAg/xLOnTtHly5dEEJQv379W3K+/Bc4evQos2bNYsGCBXz99dfX1VV6//33MZgsGKxOcspX5Pvvv0ejN5IzZhVZI5cilcpKFObIzsvHnlAeY3gaORo99xrN1K9atcyxFy9ejMkZSnjdfhjtnlIn/GfPnqV2vYao1FrKV6zEiy++yI8//njD9+pwe0ns/ADl7noBjcHEnj17uGvYCFxpBaTdMRd7ZAoLFiygUdMWxU5Kb1Zd4hMSUeot6LzxaFzR6MNSiKh/J1GxCcVjjxs3DolcRVjNnuhCk7GkFOCu0AKjzUVCp6nkjVuHI7YccrWO+A6TsGXUJiu3QnH/3xuXx48f55577mXs2EKOHDnCwYMHeeCBB5g/fz45FSoRUe8OMgYvxGj38PHHH+P3++nYpRsavRG1Vs+TTz7J888/T9fuPRk1ekwpjbMjR46g0ujIGbOK7FHLERIpcoWSY8eO0aFzV1IyspEq1Mi0JpRmDyESGVKZAofLg8MTij0pH3NsDmq9iRdffJHZs2cjVWpJ7DINT4UWqHQGIur3J6blGKQKNdl3Lyeq8VCkSi0qixeJXIlSb0Hjikai1OCu2JrQ6t2QKtQlMhvOnDmDyeZChISg9cRhiMwkRKZEZXISFhldQpMvPCqWxC7TCKvdG6lSS0zL0SR1n47JE8UHH3yAXKUhc8gi8satQ2GwI2RyouOTeeONN4rHyC2fjzWlgNS+c1A7IlGa3YgQSYkI8WeeeQZreCKpfedgT6qIVK4kts14IhsOQq6zYHKFsXLlSty+cGLbjMcYk4NcbWD8+PHFYyxcuBBfRkGxlnRWXkWy8yqgMDqQ6wKa5Js2bSquTJ5dvlJxUUxfZvWrRv5899136ExWdL5EzImVkCo1SJVaqhTUvOoGpqioiIpVCrCExiFVqFDqTCSlpnPs2DGeeuopJk6ceMsahCtWrEBnNOOMTiEyJo4TJ05w8eJFjh8/fkvjBfn3EnRQB+3vIEH+ixQVFTF69GiEEFSrVu2aQR5XY+L48cQbDLQyW/DZ7Tc9xunTp6lbtSpKmYwa+fm3Tdf25MmTNKldG4/FQp+uXW9aFuN2sH//frQGEwkdJxFWoxvpWTk31f/ChQucOnWKTz/9FKPFhs0XTXhUzFWLXCanZRJatQNRTe7CYLJw4sQJMrPziKh/JxkDn8FgdZaSPywqKiIvvzLO+CzsEUm0aX/16NH9+/djtjnwZdXBaPcUy/Rdj/fffx+LJ5KcMatI6DgZiUKNVKVD7/Axe/acMvts2LABZ0xasXSf2e66oYKRFy9eZOPGjcVFBj1hkaT0nlVcw6ZX775oDCZ0Zht977iTLt16EFazJ3nj1uHObULDhg154IEHOHLkCH6/H09oOBF1+xHVZBgGk4VqNWojlcnJrVCp2M69WTp360F43TsCe7Uq7Rk79p8ll7Fp0yYcEQnkjVtHxsAFWB2u2zr+Tz/9xKeffvqnFADt2KUbYbV/Ocwp36xEgfNrsXTpUjp07sqcOU/8JzNK/q0EHdRBgvyL8Pv9zJo1C7lcTlRUVCmD47/O+fPniYqNx51eDXtk8lWrOv+ekydPsnPnTq5cucK5c+cwmCxENx9JRP3+eELDS7Q9c+YMjz/+OOWzspCGhBDucl21AFqffv2Lo5l9BV24a9hwIJCeNnjoUJYtW3bD93bx4sVSGmxWh4uk7tPJGr4ErdHC999/z6lTp2jcrCU2pwedyYpKo6NCpSq40qqR3ONRLN5oXnrpJV566SW6d++OUqsne9QKMgY+g1qrLx77hx9+QKMzIFFqUJhcZI9+lfj292FxuHGmVCa66XDUehMqvRm1IwKVLZSMrNxb+gOemJpBfLsJ5I5djS00ljfeeIMvvvgCg9VFxuCFJHSagkypwRmdisFsLfO9vnjxIkazlajGQwmr84tkhcFEzTr1sKUUENfmHqRKDca4PORaM1kjXiap6zTkeitadywR9fuTW7gGuULJqVOnsNgcaL0J5BauJaHTVESIhKwRL5MzZhVShRpXhVaoTE5sGXVw5jYjRKZAH5aCI6sBcoOdxC4Pkjt29S9a0dISkbZvvPEGWoMJjc2HRKEiRCLFaLGVimDJyMolot4dGKOzkettAee6yYVMqWX37t2o9SYsyVXxVu2ERK7CEJpIVJNh6IyW4lS7OXPmIFNqkCjUSBQarGk1scZkldB6Lioqov+AQXjDo6jfqAlqnZGcMa+SNXwJIRIJj8+cCcBzzy1Crg7IviR2eRCdyVpcUOmzzz5Db7YR1XgozsTydO3eE7XWQM7olcXj6K1OdAYT69evZ8J992MNjcNbqQ16k+Wq+oZ+v5+mLVphsLmRyFWk9JpBzuiVGKxX/97t2bMHncmKNbU6oTV6BKR+Uqsw6zZFP3z33Xe88cYbnDlz5pfsBBMKlYZOXbsHDdj/IYIO6qD9HSTIf5nnnnsOpVJJdHT0VbOcrkZadDQrbHZ+8PioYrPdtAThpPvvp4HRxA6Xh2ZGI+MLC2+q/z+ZTz75BIs7gtzCNaT1e/KqMnfX48CBAySlpCORymjSvMVVA3LUGh3lhi4OFG+2ufnmm2/44osviIpNQGswMv7eCWX2O3/+PIsWLWLp0qXXdORfvHiRF154gcLCQt58880bXv9nn32GwRKoYRPZYCBKk4vcwrVE1OtPxy7dyuxz6tQpvGERmKKzUZpcaO1htOvY+Ybn/JUpUx/AaHfjjM0gOS2D8+fPs2fPHnbu3Inf72f8Pfdij8/BllYTmVqPKSIVT1YdwqNiuHDhAtu3b6dKQU3yKlZh4MCBOJPyyRz6PAZfPNVr1Cius3IzPP30PMyeSCLq9cdgc7N69epSbc6dO8fKlSv54IMPbnr8P8qJEyewOlx4K7bCkZBHqzbt2b17N7369mPAwME3FWD1K889t4ja9RvRqUtX9CYLVm8ksQlJJfa727dvp22HTvTo1eeqhzDXY/w99+JMLE9S9+lYwxJuSA7ntddew2AyI1couH/SlBue69y5c8yZM4fZs2eXqYse5I8TdFAHCfIv5MMPP8Tj8aBWq29Kk+zfzpYtW7B6IwOnu4MWYjBbb2mc9957j+zyFalYpaBEpKnf7+fdd98tjvC9dOnSNaM4V65cicHqxFu1A3qznfXr17N+/Xr0FkdAM9juKVP64/e8/vrr6AxGFEo1XXv0Kp5zyZIlv6T6aRgwcBBPPfUUjz76KAcPHiQhJZ2oJneR0mcWCpWGxOQUouISKBx/T3H/oqIiouMSURidyNQGpAp1iQruP/30E3373YHWYMboiUZntFBYWIhCo0NtdqFQqXHElSO3cC2eSm2RKjUMGjK0xNqXL19OUlomlapVL06pKioq4v333+ejjz7C7/f/IlUS0MKrXqsuly9fZseOHSjUOiQKVcC5KlPgyG6Ir3pXunbvWWKOCffdj9FiIyI6DqPFjlxnwZnbBKVah0ylI6HTFPLGrUMXmoRUbUCmNlDurhdI6DQFpcmFO78l+tAkfBVbEhkTh9/vx+HxobL60PkSkSo1qHQGTK4wrGFxpKaXY8CgQYwcORKN3ohUoUaq1BLbaizWlGpIFGrUjkh0YcnofEkk95qJWqsv8a4cPHiQZ555Bp3ZQbmhiwOfVXq5Eve1bds24pJSUWn1CImEckMXkzN6JQqNjv3799P3jjtRm+yo7eGEyBXIdGZ8BV1wRCXzzjvv8NiMxzE5fLjSCgiRyZHrLL9oeL9U4jDit/j9fqrVqI3S7EKht6HQ6IpTQgEiYuJJ6voQuYVrcUSlsH79+uJrq1atolHTFtw9egzHjh1DazAS1+YeopoMQ6pUkzNmFVFNhuHwhNK1e0+mTJnC2LFjr6n3/ev7snnzZrxhkcS0GEV6/6dR6wxXlcI5c+ZMICsiMhNnbhOyRi7FEZPBggULrjnPrRCXmEJYrd4YIjJQaI1/yhz/BdavX098chqpmdm3rNn/TyPooA7a30GC/NfZuHFjcfHEdevW3XC/zq1b08Ro4iGTGatWe0Mp9b9l7OjRdPlFK7q3wciwIUNudun/OO6fPAWz1UFiSjqpGeWwRyRisDqZPGXqLY3XsUs3fPktyR75CvbodJ599tky2/Xq0w9raAyu+CzK5eT94aJ+v+XSpUvk5VfG5ApHqdUzceL9N9X/ngkT0ej0uH1hqHUGvBVbYrA4eOWVV67aZ/Xq1RjsHuLb30da/6dxuH23tPZNmzaxYsWKMp2I58+fJzI2AXN8BSQKFeXueiEglecOKxUcMXHiRFzl6gQy/eLKY4nNIb9ytZtej9/v56mnnqZjl25l7g0vXbpERlYuzph0TA4v91zlYOHP5Ntvv2X4iJE8+OCDnD59Go8vDF/lNnhyG5GacXN/39955x0MNhfRzUeiMjmJbDQ4sJ9MrcTTTz8NBDIp9EYzUpWWEKkcq9NzS1kP58+fp1vP3sQlpzF85KgbkkJ1uL0kdJxM5pBFaPTG4uj761GpanWciXm4kiqQl185GLjyJxB0UAcJ8i/l8OHDVKlSBSEEAwYMuGUduX8Tx44dw2C2El7vDjy5jahY9eo6aDeL3+8nKTUj4IxU6ahbv0GZ7Xbv3k10fCISiZRmLVuzatUqRo0ezYYNGwC4++5ReKt2JG/cOsLr9C0zyruoqIjTp08Xz+vwhBLX9l6y716OyeFj8+bNQOA0+4cffmDRokXIlQEnrtYZgcPlxRsWSVTzUSgMNswJ+diT8ilfsUqpuUx2N77qXUnu9ThaTxydO3dm3759JQyAAwcOULtuPfIqVqZm7TrFUeGunEYBXWqlBqlKh8YVg0SmYNq0aaxatYoWrduiUGmIbT2esJrdSckIOGCbt2iN3u5FbbLT8hcNs6NHj7Jz585io+HLL79EpTeTPfIVErs8iFxvRedLwOCLo2ev3sydO5ft27fz1ltvYbA6Sb9zHuF1+qLWm0ns8iB549ZhjCpHiEyBQm/DFFcBqUJN6zZtsTo9SKQyQqRyLKGxGM1WWrZuQ8/efYojj5cvX06IVI4IkaFxx+JMLE+HDh1Qa3TorS50Jiu+8CimTJlKaERksV53QqepqPRmYmLjEBIp6QMWkHbHXJRqTSmD6MMPP8TsDie552OY4vIwWR0lChz+9t0zWe1ENx1OQsdJaHQGTp48SVFREbVq1UYiV5Ix6FkyBi5AIlcSFhnN6dOnSc/KI6HjJPLGrcMQlYlMY8RTuR325MpUqlr9qu96YWEh1qTKJHV7mNBavenUtXvxtSeefBK92YYzOpWk1PQSGom7d++mXsPGlK9UlQ0bNvD666+TkJJOTHwSequTzMHPoXZEYEupRmhBFyx2J6dOneLJuXOpVrMuffrdwaRJk3jllVfKNOjmz5+PVKFGolCh1OivuVn+4IMPyM7Lx2CxI5XJadq81XXlfm6FhOQ0ZGoDkQ0HEdlwEEaz9X++BsDvOXv2bOCwou29RDUdht3l+U8Y7EEHddD+DhLkf4G9e/eSnp6ORCLhkUceuaHf36dOnWJI//40r1u3xEH2jXLw4EFifD58ej0RLvcNO4duhUOHDjFmzFgmTJh426REfs/WrVsxWByk9X+K8Nq9yClfkfXr1/Ppp5/e8pjNW7UlvFavQNHtlIrMmVO2LIbf72fVqlUsXry4TF3rm+WDDz7gvvvu480332TTpk3ozA7kWjOmmFykCjUHDx68Zv9z586xY8eOUlIOH330Effff38JmbqyOHr0aEBSpEp7nIkVaNWm/R++p7KIikskuedjGKLKYUurQWhBZyx2Z/H+7FeOHDlCWGQ0EpmC3MK1gRpFMvkfftbHjx+nR68+VK9dj7Vr17J582YsnkhyC9eSdsfcG4q8/+6773j77bdvy+f+e55++mlkKi25hWvJGbOKEImklPP49OnTV/198fjjj+PLqR/Yo0Rm4MxpRMbAZ7CGxhUfUHz11VcotEaiGg8lZ/RKlGY3r7322m2/l7Iw2xwk93yMrBFL0Rqvnun5W86cOYNMriB37GpyC9egUGlKZT8H+eMEHdRBgvyLuXTpEkOGDEEIQcWKFa9rNPwX+Pjjj2nSvCXde/Yuoef7R9m0aRMhEinlhi4ma+RSJDJFmZp6LVq3I7RqB7JHLccelcrixYvx+/089PAjVKhcQMtWbdBbnYTV7InR4S1VZG3btm347HZUMhnN6tVjzpwnkKn1OHMaE9NqLGqjjY8++oiZM2eh0mhRabQYLHYSOz9A9t3LUBjs2MITGDVqFCEyZaAY4i8Gk0QqK2UQRscl4qncjrQ75iLTGNEZzGiNFlLTyxUb6g0aN8ORWo2wWr1RanTYojNI7vEotogkWrVqFXCK1uyJ0upDpjXhTK2GRK7EW6UDxuhsbOm1iG46HKXWSF5+ZUSIFIlMibegK0KE0L17d7Zs2VJiXYsWLUKm0lLurheIbzcBldWLLa0GEZGBSG5fVp2AprRcgcriIXfsahI6TkKm1qN1RuGp1AapSkdorV6ESBXI1Vrik1LxhUdRu15DDhw4wP79+1m7dm2ZFbpPnDiBSqPHVb4ZxqgslHoLKRlZRDUdRm7hWvShyfgKuqAxWlCoVEjkSkwxOWjNDiZNnkxRUREDBw9BoVSjVGuY+9RTpeYoKiqiTv2GSGQKfNW7YkmsSO16/3/w4ff7GTbibjQ6PaHhUcTEJxEZG8/KlSuL2yhUgQOThI6TCK/bD5vTU/xeduneE1daVWJajEKq1CBESOAwQabAZLEVH3T8lnPnzhEWEYXKFkpil2lYYzK57/5Jpd7R1157rZTBm5aZTWi1jsS0GI3OaC5OxfP7/QwdNhyNTo9UrqTc0MXkjVuH1RPJ7NmzMTl8xLYai86bgFxnQWdxMvWBB0utrbCwEG+lNoHDnbr96NytR6k2fzWvvfYaIRIZOaNXkjN6JXKFstTm5a/g66+/ZuHChaWKLf0TOHz4cAm5F6lM/rfoft5ugg7qoP0dJMj/CqdPn6Zp06YIIejdu/efcuD7ey5evMi3335bbLf+GX83Ll++TGRMHJ7chrjSC8oM5LgdvPXWW9hCYwO2aqcpxCQk/+Ext23bhsXuRG9xkJperswAh9vNO++8g85kxVuxFXqLg6eeegq5xkBMi9GBCOPEfObOnXvV/t9++y0OlxeTw0tYZHSZ9veN8PXXXzNg0GAmTZrM+fPnb/V2rsnoMYVYfTG4M2qg1htp067DVaVuzp8/j8cXjq9SG7z5LYiJT7yhg5xDhw6RX6UAm8vDsBF3l+jTtEVr3OVqE91sBDqThffffx+dwUxcm3vwVe2ALzyKl1566arzPPvssyjUWtRGOxFRMbfVNv3qq6/QGi0ozW4syVUwx2RTtXqt4usXLlygoGYd5AolntDwMjModu3ahcFsxZdTH53FTmxiMiaLnX79BxQHely4cAGNwUxkoyHkjFqB1ua7pQOvW+H55xej0uhQqrXcOXDwDfXx+/2ERUbjq9yW0Kod8IZFBINW/gSCDuogQf4DLF68GI1Gg8vlKqVz+2/D7/dz6tSpvzwCb/v27UhkCuLb30dSt4eRyBRlaow1aNKM8Lp9yS1cgyshlwULFrB06VLM7gji2t6LPSaTTp07c0f/AWWmcDWqWZN7jWa+d3vJMpmpWLkqMo0RY1Q55HobUqWGzOw85Aol6QPmU+6uF5AqNcS1GU+5u15ApjGi0Rn54IMP0BqtqCxeXBVa4shqQHxSaqn5vvnmGxyeUOQqLS5fOGHVuwbkG5LyUWt1aPUG1HojMrUemdaE1uKmdt36xCamULWgOhqDBWNUFnnj1qFxxxLfbiJ549ZhiskhutkIUnrPRKbSIZEpiWo8FHtGHfQRaWQMWhiIbjY68VRsg95o4fPPP+f777/n/PnzmK12zElVECFSQqRyjA4fbl8YHTt3JbRmj0Chi8rtcVVoicriQa41IVVqiW45GoXWhEyuRG1x4SvoilZvYsqUKZicoSR0morS6ESuUNGoSZOrGg4fffQRtrC4X4qBPINcpUFrtOCt3J7MIYtQ28KIazcBjT0cb9XOJHWfjkprQKc3olRrqVq9FhcuXODkyZPX1KLr268fKquvuOiI1mAqvvb+++9jcvrIHPwc4bV6UaFSVV566SXWr19f/P67fWE4c5ugsvqQqbQldOnOnDlDv/4D0FscOHMaEdNiFCqrj5zRK4lsNIQKZaQgvvLKKzhi0vFW7YjaHo7DE3rV7IsDBw7w1VdfFa9FbzSTMehZcgvXotBZ8IVH8tFHH5Xo06J1W+xxWbiz6uELj2Ty5Mn4yjchb9w6ohoPRReWgkxtICkts9R8L7/8MmZ3ODEtR2OLSOLRx2Zc9bn+lTRt0QpbWBy2sHiat2rzl8///vvvozOa8WVWR2+ysHXrVvbt28e77777j9C/8/v9tGjdFosnAqPdU0oG6N9K0EEdtL+DBPlfoqioiFGjRv2h4om3wrlz56heqy4hEgmJKem3Ndhm//796ExW8satI2fMq4RIJH+KQ+nSpUtUrlYdk9OHVm+6IXm/G+HcuXN8//33f9mh78iRdxdngYbV7kPP3n2oXrM2loR8EjpOxmBzX1OHuu8dd+Kr3C5QfDC7PhMmlJap2LFjB9169GLg4CEl3rGioiJ27tzJsWPHSrS/cOECw0bcTa16DXnxxRdv2736/X5efvllHnnkEX744YdS144dO1ZCLmXv3r306NWHXn37ceDAgRuao2Wb9njzm5PW/yks3sjizMArV64QHh1Hco9HA88qvhxr165l5cqVJKWVQ6HR48isjcUXw4T7Ssqq/Pr+Gq1OLElV8BV0QapQX1UC5mo899xz9Ozdp0y5lRUrVuBOzCFr+BIc2Q1wuLwl7M0FCxbgjM8id+xqwqp3ocUv2bK/Z9euXcyYMYO33377quvYsGEDWr0RqUxO67bt//D3c8+ePcycOZPXX3/9um1PnTp107rXe/bsoWOXbnTo3JXvv//+VpcZ5BoEHdRBgvxH2LZtG7GxschkMh577LHrOnjPnz/Ptm3b/pIT+Rvl9OnTZOflI1coiYyJK5Zj+DP44IMPiI5PwhsWydKlSwHo2LkLUoUKmVLD5MmTy+z3+eefY7E70RotZJfP5+zZs9x///14KzQnb9w6Iurfec1q2AEHtYnv3V6yTWbatm2LxhFRXLFaZQ3FGZuBQhkoGJd+5zzkChUGswWJVEpcUgpvv/02p0+fRqHWYU6oiNLsRmMwc+jQoWvec7cevfDmtyBn9Ep0vkTc+a1I6/ckIVI5qXfMJbrZCEIkkuLCHfHJ6cS0GI1MbcCd3wqZ1owpNpeYlqORqrSY4/IwuSORyBWof7mHtDvmBjSa7WFIFGpiWxcGikhm18VstaEz2dDojYRIZUhkCmRqA3KFktWrV3P69Gkef3wm1ogk4trcg8oaSlSTYbiy6mF3efCUb0pUsxFI5ErM8RWQqnQkp6bx0UcfsXDhQjwplbCmFiBRaHDmNUVpdNCkabNiY+dXh26V6rV5+umnsdid+Cq3wxqfh8rkIKbVOORaIzKFCoVGjy0sDrXehNLsQaY1IVFqCK/dm9yxq3HGZrJo0aLrvmeDhwxFptZjL1cPnS+RpNSM4mvr1q3DHpFI7tjVxLQai0ZvxhWfhcUTyZC7hgGwefNmElPSMRjNaPRG9AYzVavXJK9iVUaOvJvuPXvj9IYT12Y8cW3Go7J4yRm1gsgGA8ipUIl58+axadOm4jnfeustjA4f6XfOI7RqB+o0aFRivZcuXWL8PfeSlpmFUqPDYHXSuFkLioqKGHLXMHQ2L1p3LBpnFFFNhuMLjyzR/+LFi8yePZvJkydz+PBhvv76awxmK9aUasi1ZmJbF6IPT6Xe7+aFwIagd58+mGwuFGodUqUWtzf0D6XI3g6uXLnCmjVrWL16NYXj7sEbHkXNOvVvawbHtejVp2/xoY23cltat26DzmjGEZlIVGz8PyK98Ffd+V/1+/8LBB3UQfs7SJD/RRYuXIhCobil4om3wsyZM3Em5pEzZhXeCs3o1bffbRv78uXLhEVG4ynfBHdGTXIrVLptY/+eK1eu8Pnnn1/XwX7y5Em6du9J+UrVeP755/+09dwIx48fL1H8btmyZZicPiIbDsLsjWLevPmcPn2azt16kJ6Vx2MzHr/meCNG3o07sxZZI17GmVie6dOnl7h+9uxZ7E4PodU64c6uR15+ZSBge1atXgu9xYHOYCoh8zB46F04E/KIbj4SvcVRwqb9lcuXL1/XsXmjjs+LFy9SrWZtlGoNNqf7qgW7f+Wjjz6iV59+PPDAg6UyDyoX1CS62chAMe+k8ixcuJDJU6agNVqRKpQoDHY86QW4fWEcP34cgBdeeAFvWpViWcH0rLzie2zWsjUSiZTYhGTkKi0Zg54lb9w6lGY38+bNu6H7g4Bz2uQMI6x2HwxWV6mCjTt27EClMyHXmVEbzDw47eES1wMO6uxfHNRdad6qbAf1jVJUVPSHAi5mzppFYlomdRs0wmix4c2ug8nhY+ZtKp4e5K8l6KAOEuQ/xIkTJ2jcuDFCCDp06HDVX/Y//vgjMT4f0UYjLrP5LzFAb4Tp06fjTKlMbuEafPkt6d33jj9tLrvTQ0zLMSR2mYZGp78pXboLFy7www8/lNBT1pss+MrVQmeyXlM7d9u2bXhtNtRyOU3r1GHXrl2odUaim4/EllEbqVKLRKagabPmaLR6lCo1c554Ar/fXyKCYtu2bZgcPnwFXfFW7YRGFyiK5/f7rxrRe+DAAZJSM5BIpMiUGlLveIqs4UsCBQrL1UdpduMq3xyd0cz27dtp2bod7nK1Ca3VEyGR4qvRHWdeU2QaI2np6SjVOvQ2DxK5CqXZgzm+AkqzG2deU3zVOqPWmzGHJRBepy9KrQFbYsCZ7shuGNBVHvgMiZ2novpNQb+ioiLunTCRCpWr4Q2LIEQiJSk1g88++4yadeuj1hkwJ1QsLtxodTg5fPgwx48fJyI6FrlajyWpMnnj1hHX9l5kagOpGeXYtGkTPXv3xZVahZiWY9Cb7SxdupQBgwZTsVJlLIkVkSq1hMgUyNU68itXZcWKFbRv3x5jdDa5hWvRuKLxFXQhZ8yrmEITGDhw4HWdcc888wxKIdCEhKCSyoqLVP7888/s2bOHytVqYLC5UGl0qIx2cgvXkjHwGQwmS/EYY8aOQ+uMwle9K1KlBq0vkfh2E5BrzVjTamD0RCNXqlFp9fgiopHK5FjsDvQmM77MGugtDhYvXszGjRuxOdxIpDLUOgPlciuwZ8+eEusdUzgOR2w55FozyT0fC9yrw8vWrVu5cuUKMrkciVJD1vAlpN85D63eyLfffktexcpExMQzf/6CUs9g165dNGveHI3Jji25KlqDqVS0CsCnn36KzmRFqtAQ324CMS3HIFXpiE1MueYzLotz585x//2TGDBoMN98881N9y+L9evXY3aHk9pnFu6cRuRXrvqn6P79noenP4I9KpWEDpOwhsUTl5RKTItRgaib5Pz/qUK5fyVBB3XQ/g4S5H+JM2fOFNuPH374IQ6H46aLJ94KjzzyCK60quQWriW0age6XEPe6+LFixw9evSmxj9w4ADDho9gbOG4Yifg30mHzl1xZ9Ykts149BZ7KQm8v4onnnwyICWo1TNsxMjif3/mmWdp3a4jc+Y8cdMHzsePH6dilQKUKjV1GzQuJc+xc+dOjHYPeePWkTViKQqlCvglYCM8gdyxq4ltM560cjnFfSpVq0Fsm/GBYJdyNYsL7P3K1AenIVco0egMJSTyfuXChQvUqd+IEImEhOS060Y/L168GGdsJrljVxNRpw/1GjYpvvb75/H999+jM5ixplZHZw+lW4+SRd43bNiAzmjGFhpDXGIyzz77LBpLoHCgxh2LxhZKrVq1qFazDpWq1eDDDz/k66+/RmeyEF7vDhzxOdxx50AAnn/+eezRaWSPWk5olfb4IqIxhCZhz6yDwWzl9OnTFBUV3ZAjvlmLVrjympFbuAZv1Y7cffeoEtdbtWmPJ68xyT0fQ291884775S4fv78eaoU1EShVOP2hrFjx45rznf06NESByG3k02bNmGwuUjsPBVXubpobYGs1fh2E8jN/3MkfYL8uVzL/paIIEGC/KswGo1i2bJlYuLEieL5558XFSpUEN99912pdgsWLBDZp8+Id7R60dmPeGTq1L9htWUT8pv/QHBLY5w4cUK888474scffyzzOiBOHD8q9KFJQuuJESJEIk6fPn3D4yuVSuH1eoVEEvg1mZSUJLZ+8rGYcGc78d5bG0SdOnWu2jclJUXs+/FH8ePRo2LZunUiJiZGLHv5RWE68J449uW7IrZVoUju8ahYt+418fNPP4pzZ8+IPr17i5CQECGVSovHCQsLEyFFF4VEKhWcPSoyymWL3bt3i/CoGGEyW0TV6rXEhQsXSszt8XjEl19sFZcvXxLTHpgqvn1miPhqdg/RvHkzcWrXRhFavZsIr91bmOIrirfeeks89eRsUScjTERc2SPMVrvwXzgrdJ444b90Xvx8/JSIan2PSOz3lNCYHUJy5Zw4u/czIZVKRFitXkJpcor09DQxbmg/Uc17ReRmZYhL58+KogtnhTu/tZDIlEKq0gqZ2iAuX7okvvjiCyGEEBKJRIwrHCs+fPct8daG9WLJSy+Kd9/aINLT08UzT88Vep1WnN67TXy/8mHx87a3RIg9TqRnZgu/3y+2fbZFDOrfR5z89hPx4yerxaGNS4W9XF2x47t9okbt+mL9G28JY0otYU2qLAxhSeL8+fPisUemi7lPPiFOfr9VxLYaK7KGvShCZCqx4yhi4aIXhNFoFEUXzwmuXBIaR6Q49MFLYvOkJuLihfNi4curxNQHHhRCCLFnzx4xZcoUMX/+fLF582Zx7NgxIYQQs6dNE7PMVvGNyyOS9HqxZ88ecc+99wqn2yti4hNFWKhPfPj2BqHTasTlC2fFsS/fET9+ukaYrVZx/vx5IYQQ6994S/hq9hDeSm2FISJdaJ1RwhiTI6Qagzj+9Qfi9M8HhVqtEbu++Urs+36XOHP6lLh/wr3CGJ0jvI2GC2dBT/HkvGdF1569halSF5Ex+DkhV6jEgqeeEOHh4aKoqEgE7AEhPtq8RRjS6gi5zizOH9kjLh47JC5fOCcMBkPgHZTJhSE8TWx7sr/Y9mR/cffIEaJth87ikDJaaCr1FgMGDy31OycmJkbMnzdPxEWFi7O7PxW1a9USTqez1Hdj+/btwuBLFAgh9BFpwhiVKfyXL4iTJ05c9ftUVFQkfvjhB3H58uUS/96xSzfx2KJVYtnWI6JCpSri+PHjVx3jRjl8+LBQW31C44wS2rAUseWLr0SlqtVFUVHRHx77WgwccKfo1rqR0H23RrRqUF0UFV0RZ/ZvF+eO7BEXjh0QLpfrT50/SJAgQYL8t3ns4YeF02IRTotFzJoxQ1SoUEFs3rxZREREiPr164vHHnus2E643XTt2lVYQ06JLx9tL658+64oHDOqzHYffvihsDvdwuMLFc1atr7hv70ej0c8+MBUMXHCvcJkMt3Gld8aX371jTAmVReW+ApC74kVu3bt+svXAIjBg4eKuK6PiOQ75omZs2aLw4cPCyGE6Ny5k3jx+YWiT5/A3uNmMJlM4v133hQXzp8TL7/4vJg/f76YM2eOOHfunBBCiPDwcGE16cW+Vx8S+1dMETVr1xVCCKHX68XlC2fE5bMnxLmDO8WJYz+LhQsXCr/fL7p2bC+OvDlX/LDmUXF6z2eiRo0axfP9+OOP4p57J4jkO54SES3Hiy7depRa03PPPSc+++6QyL57uThjihNjCsdf8x4kEonAXyTALyi6IqRSqTh16pSoWKVAyORykV+5mjh16pQQQoitW7cKodKL8z/tFQp7pFj0/AvizJkzxWPVqFFD7Pz6S7FqyXPi8y2fiG927BCmpAJhSykQ9rQaQgjEp599Ib4XXnHQkC7qNWgkwsLCxMpXXhZ5plOiX7uGYvpDgX3GhQsXhFShFhKZQkjUepGWliamjh4gBresIr7e/oVYu3ad0BtMQqPVidmz51z1/ibeP0m89vob4thX74ntT94pTn6+TtSsWaNEm30/HBDa8HSh88QJnTNcHDhwoMR1lUol3n5jvfjpyGHxw77dIi4u7qrzzZo1W3hDw0R4VIwYOWrMNZ/9rbB3716hc0YKQ0S6MMRVEJfOnRI/b3tLnPh8ncjKTL/t8wX5m7ma5/qf/hOM4AhyOzl16tQ/IoX6Zlm7di1msxmTyVQqdWf27NlUNpr4zOmmldHE8MGD//L1nTt3jpdeeol169YVn0ifOnWKrNwKKJRqIqJjb0niY9++fdhdHlzRqRjM1qvKA4y/dwI6sw2j3UOHTl1uao7XXnuNygU1ad22w205Ef7iiy8wmq2ESKRkDn6Ocne9gEKlvm7Bi7feeous3PLUrlOPvXv30qpte0KrdghIUCTkXrOQCQQi6X+NJJhw3/3YIpOJqNcfvdnGxo0bS7TdvXs3NpcXmdqA2mjB7vYRXqsXqX1mozfbefnll3nrrbfIqVARvdmOWmdg2rRpxaf5SrUGXVgKErkKS2Jl1FYvITIFEoUaW1ot4n4XJbtu3Tp0JguexBzsLg8HDhygT7/+eCs0I7LhIGRqPUndpweqQ3ui6datW/FnPXr0aCRyFYaoLFJ6z0Kq1BDbqhCT1Y7R7sabWQOzzcG9997L3LlzuXjxIhaHm7g248kavgS53kp43X5kl6/EZ599hlJrQISEIFPriU9MxhKeTErPGcS3v4/c/CocOXIEi92JJ68xansYGpO9+N2rU6kSDVRqaiqVmBQKVqxYQYhUTtodc8kasRSJXBWIFJcqkBscKIxO5FoztqhUcspXpKioiHvunYDRG4O3SodfnpkKhd6CRKEhtc+sQES6TME99/6/1t/bb7+N3uoitEYPrDGZDBoylIiYeBI6TiJn1ApMzlA2b97MXcNH/BJx7eTDDz9kwYJnMNrd2JMqIVVqMJgstGzVmjv6D+DDDz/kmWeeRaEKFK8cNXoMAJ6wSFJ6ziC3cC1WX3QJnexfGXLXMNyZtcgYtBB7THqZ7+b+/fsxWe1oHRHIdRZkGiNytZYFC54p8/396aefiIlPDGiHh0Wwb9++4ms2p5v0AQvIG7cOZ2QSH3744TW/CzfCr1H6KlsoMrWBuHYTMFid7Ny58w+PfSMcOHAAg9mKp1IblEY7WoOFwvH3/GckNf5piGAEddD+DhLkf4Bz586hUSj4yOFio8OFWi4vLlx4+vRpmjRp8qcXTywqKuLgwYPXHL9cbgWim40kZ/RKrKGxN6Qx+09k9pw5GG1uPGlVcLp9N62Bezvw+/0YzVaSuj5E+oD5qDS626o57vf7ycuvjCMxD50jUO/k1xpJP/30E1OnTmXmzJnF75nf72fY8JGo1BpkCjWevCbYIhIZOmw4AG+++SaPP/54Kc3fH374IZAROOwlUvvMQm80lVrLzJkzcaVWJrdwLWHVu9C2Q6drrv3SpUvUb9QUqUyOxxfGN998w733TsCVXkDO6JW40qszfvw9QGDPKVVqSOv3ZGA/4o66Zi2ojz76CK3BhKNcXaRKDSEyOSJEQtaIpeSOXY3WaGHv3r1l9j179ixZuRXQGi1Y7E6++OKL4mtFRUVotPpiaUiFSsOQu4bRtmPnUvs5jU5PxsBnyBnzKkqdqVi7eseOHbzzzjtcvHiR5cuXozNacEanEhkTd8t+EL/fj1KtIf3OeWQNX4JKo7vt8njHjh3DFx6JOyEHvdnG4MGDqVWvIUPvGv6nZjmeO3eOL7/88i/JpPxf41r2999u6N7qT9BADnK7mDVjBjqlEp1CwdT7779+h38Y33//PRkZGYSEhHDPPfcUp/1cvHiRds2aY9JoqF2p0l+e8nb58mXK5ZTHGVcOizeqRPVcv9/PyZMnb9npMmnSJDy5jQIFPmr1pGOXbldt+/XXX7Ns2TK69+zF0GHDr/scTp48yRdffIHOYCam+d14yzelao3at7TOXzl+/DjR8UmoHRHY0mshkauQqzSMv6d0YZGjR4+SX7kaao2ORk2bY7bZf9FG1iKRq5AqtejD08gZ8yrOhLzrOqh/5dixYzRr2QanL5ysnPKlDjQgkCInk8vJGrGU7LuXI5crSU7LxO72Mn36ozzx5JMoFCpkciWhEVFYw+OxhsbQsUs3ioqKUGm0pPadQ0qfOUhlcgYMGIDe6qLcsJdI6T0Trd7IM888U/yHvm7DJkQ1uSugu5tVm8cff5xeffriKd8Ua0q1gAZ2YiWcuU2QqnR48pqgM5pZu3YtTo8PrSsaiVxJiFSBxh1HaJV2ZOflM23aNPr3749MqcGckI8pIoVmLVrz3HPPIZEpECES5HorKp2BBx98EK3BiCk0AbnWRHSLUci1RjTOKORaMzp7KMOGj2T16tV4EnPIG7eO5J6PoXFGEl6nLy1at6Nz1+5oHJE4shoE5DkMJiQyJQkdJ5N+5zyEVI5cbyVEKkOmMSJECNl3LyO3cA06k5W9e/dSVFTE008/Tb169VEbraT2e4LQgi5IlBpkWhOOcvVRGJ3EJ6Uw96mnsNic+MKjCIuMRmV2odDoeWzG47z66qto9AbUOgNt2ndk69atGGyBzyCmxSgSktPw+/00a9EKiVSKwWylS9fu2CKTCa3eDZ3RzNdff83FixdLpG0+PnMmerMNozOU8MjoYhmT39KxSzdCa3QPyFJk1WXq1KlAQJaodr2GmG0OOnbpxq5du3jssceYMWMGL7/88jVTMSdOnIi7XB1yC9fizW/JgEH//3ukTfuOOOJz8OS3xOpwXdW4Pnz4MNnlK6LW6mnXsfN1CxGdOXOGsMho3OWbEtV4KAaz9abkgf4Ia9euxZOYXaxXHxET/5fM+79K0EEdtL+DBPlf4Pz582gVCt5zuHjH4USrVJYonlxUVMTdd9+NEIKCgoK/rHji78mpUInIRkPIvns5Fk8kb7311t+yDgjYLtcKItm9ezcpGVloDUYGDh5aak/zwQcf8Oyzz/5psgc3wquvvoreaEKpUvP44zNv69jHjx9HodLgzG2CPiKDsNp90BrMZepH/5bf29PR8UnXnWvE3aNRqjWoNDqeffb/Jc/Onz/PkiVLWLp0KakZ5dAaLThc3uvKUfzKuXPnimUT0zOzUZndRDQYgKd8E4aPGMnrr7/OmDFjSE5Lx5FRi8gGA9EbLdfVIN+6dSvTp08nPimV6GYjsGfWRWXxYAlPomKVgmvuf4uKiti/f38p6ZR3330XqUxO+p3zKHfXC8hUGpzJlQiv0xe9yVIi4Cs0MprIRkNI7PIgGp2Bn3/+maefnodab0LvDCcqNoELFy7w7bff8vrrr183WAoCe/c9e/aUKnDp9/vRG00kdXuY9P5Po9JoS7W5HRw/fpzly5eXcNr/mezduxeXJxSLOwyXJ/SqhwpBbo2ggzpIkKtw+fJl1HI5HzpcfOJ0o1Uo/lEFBW+Uc+fO0aVLF4QQNGjQ4Kb/MFy4cKHUH8stW7ZQWFjISy+9dEuO5C+//BKj3UNu4VoyhyxCqzfc9Bi/Zc+ePcyZM4d3332XefPmYYtKJe2OubhSq3D3qNFX7Xf69GmsDlegWEe52lQpqHnVtnOfegqVRotcqcLgiiRv3DpS+87B5Q0rbnPmzBlWrlzJJ598csNrb96qLY70GsS0HINMY8ToiWHatGllth04aAie7HqUG/YSRm8MEpkCpcmJXGfBEFUuUGTRFopULie/crViZ+/JkyeLT6yfePJJsstXomuPXsVGR7uOnfFk1yOxy4MY7W7ef//9EvM+8shjeMOjkClUxLYaS1zbe9EZjMUbmKKiIqQKNUqLB4XJSYhMSfqA+UQ3u5uQkBC++OILnn12IUq1BrlCybSHHqaoqIjadRtgdoUhV+swhSXijM8hMSWdZcuW0a//AFxpBSR1exiV3ozR6iAuKRWN3og1pRrxHSYh0xiQG+xENBgQcGRXbEWDBg3wlKtN3rh1RDYchNoZhVxrIj4pBZ3RjDs+C4lciVSlI7dwLVnDlxRr4O3YsYMHHniAadOm8e6776I3WdC4Y5AqtZhi80jsPBW1I5LcwrUk93wMk83JwYMHKZdbAYlcSXidvhijs7EkV8WdXY++d9xJeHQcKb1nkTduHfrwtIAzWiZHqtIiUagJkSnQh6eSO3Y1noptkKt1hFbtSET9/pit9uLPMBC5rEFlCyW3cA0JHSahUGsxRKQXF1LxRcag1hlI7TMLX/WuKI12cseuJqXnDNy+8OJ3/lfj+eOPP0ZrsuLOb0VozR5ExSXy6aefYrS5yRrxMjEtRqMxWohvfx9549YRmlWTBQsWlPluDho0CKlKizW5KiqtvpSu/eeff47JascWGoM3LKK4oOfQYcNxZ9QgY+Az2GPSeeqpp274u/PAAw/gTKlMzphX8WTXY9jwEcXXLly4wEMPPcSIkXfz3XffXXWMbj164S3flHJ3vYA9KvWG9Jx3795No6YtqFazzm2JzL5RfvzxR0xWO578Vtij04p1CYP8OQQd1EH7O0iQ/xXmPvEEGoUCjULB/N9p/P7Ks88+W1w88euvv/6LVxioU2F1uJDK5HTu1uNvyx4qHHcPSpUGlVrLvPnzy2xTr2FjQqt1InPwc1g8kaxfv56tW7fywAMP8Oabb/61C74Gfr//T3mOly9fRmswB4I+dBZS+87BEJmBXKGidbsOV9VJ3rNnD3qjhbDafXAm5V8zyOi3HDt2rIQj9cqVK+SUr4gzNhOLL5re/e7gwIEDJQ5ersXp06d5++232bdvH33vuBNXahXi29+HXGvC7nSzcOFC9BYH3iod0Jvt1K3fgAaNm10zevr35OVXJrLRYKJbjCFEIkOuVNGiVZub/jx27NiBzmjGklQ5UHxeocJsd5HSe2YgKCS+XImik1u2bCE5LZOwqFiWLFkCgDs0gqSuD5FbuBaV1ceoa+ydf4/f76d1uw6otAYUSnUpO3rFihWBgxC1htlz5lxzrG3btrFu3bpSNbSKioo4duzYPyZjcPiIkXgrNA/sPfNblNh/BPnjXMv+lv1t2iJBgvwDCAkJEVKJRJwD8avK2a+aw/8m1Gq1mD9/vsjLyxODBg0S2dnZYtmyZSItLe2a/S5cuCCa1a0rNrz3nogJCxPr3n5bhIeHi6+++kpULagpDKm1xLmnnxOHDv0oBg68UwghxLZt28S4e+8TGo1aTJ10n/D5fCXGPHr0qPjmm2+E2+0W/kvnxdHtb4tLxw+IyOjYW76/ffv2idz0dFFVKhX3Xb4sJjzyiGhep7J49dX7RYW8PDF2zOir9t27d69AqhSeKh3E5XMnxSdzepbZDhADBw4WcV0fERK5Umyb3UfsfflecfHEIdGvWxchhBDnzp0TWbnlxckrcnHu6EFx3z2FYsCd/a+7/s+/+ELYKnQX+rAUcXjjyyI91isGDRpUZtsTJ08KmcEh5BqDuHj+nIhoMEDY0mqKr58dKeQ6s9C6Y4TelyT69usq7r33XhESEiKef36x6Nm7t0CEiLp1aou33v1QuGrdIdZtflMMuWu4kMlkYtmKV0VY/YHCEJ4qTjqjxd69e0VkZKRo1LSF+OrL7QIhETHtJorLn7wqDr0+W7icTrH8laVCoVAIIYRYu3at8PuLRFqf2cJfdEV8+mAr8fnMniJEIhVKa6gon19JfLblE3HqxHEBCKVSKYQQYs2qFeKTTz4RFfLzRWzHqSJEKhOfTm0heg66WyREuEXV1FDx7uuPiEsXzouIpneLM/u/FP59+4TK6hPGqEyhD0sRIRKZOPzRciGRKcSx7W+JH+OixLnDP4uzh78TJ3dvFWpbqDh96kfx3bffCld+a+Gt0l7w+lzx46drxMEPXhIXjx8SEVExonO3HuLKlStiwvhCERMTIyZPniyUoRkiutkIcXjzSrH/jQUCf5G4eOKwOPX9VnFm3+ciNTVF3D2mUBwOsYvopiPE/vWzhdNqEicO7hFx5cqJ+yfeK06eOiXWvTVf6CMyxLnD3wkRIhG2lOri4r4twl90RVSskCc27TgsREiICJHKRI3qBUKtvizOnd8nJr/+mlCr1eLUqVOi9x0DxKUL54SUEPHZo53FlQtnRYhEIs4e2iWOfLpGnPl2k6iZX0G8umatUFm8QuuOFYfOnxFnD38nTu/5QpjNJnH27Flx5swZoVarxcWLF8V3330nivxChEjl4uC7z4sp908Q27ZtE+cvXhQhUpmQyJVCrVKJn99/Tpz54Wtx6tstokKFmWW+m3MXLBRhtXoLR2YdsXvVo2LRokXivvvuK76elpYmdn+7U3z33XciMTFRaDQaIYQQR376Wcis4UJpcgqZySOOHj163e/Mr/Tr10+sXL1OfDC5icjMyhV3jxxRfE2pVIqhQ4ded4wTJ08JmdElZBqjkOksN6RFHxERIVYue/mG13m7cDgc4qMP3xfPLlwowkJrih49SmstBgkSJEiQIDdLz969Rdfu3YUQQshkZbsAOnXqJKKjo0WzZs1E+fLlxUsvvSRq1679l62xXLly4qfDB8Xly5eL7c+/miNHjohpDz0kkvvPE5fPnRR33jlQdO3SpZRW84mTp4TcGifkeouQ68xi69atYuKkKcKUVE2cmvqQmPfETNGiRYu/5R5+y81qTF+P9957Tyx9ZZmQSSVCabSJpP4LxJGt68SuJfeJS6ePCp03Uax97XWxadMmkZ+fX6p/eHi4WL9utXh89hMiMq+mGD3q7hua12w2l/j/7777Tuz49juR0G+euHLulHh2dg/xxKyy7dffc/ToUZGZnSsuSTTi7M8HRHRsrNDF1xSmmGxhi80U4/u2ER9t/kSYMhsKT8XW4qBcKeJiDeLRR6bf0Pi/MmvGI6JO/Ybi+PETIr79BKEPSxFvzOsvPvnkE5GTk3PD43z22WfCFJEqvE1Gi+M7NwnZVytF7ZoF4rlXHhcKZ4y4dPygyMrKKm6fmZkptn++pcQYcplMnNy9VYRIZeLK+VNi+9df3/D8n3/+uVi5arXwSxRCYfeJHn36iZYtWwqVSiWEEKJx48bi5PFAXZ5rvW9PPz1PDBk+UmgsbmFWCfHpx5uERqMRu3fvFlWqVRc//XREpKVnirc2vCa0Wu0Nr+/PwGgwiCunfxKXz50SV04dEUZD5t+6nv8prua5/qf/BCM4gtwunl+0CJ1KhUah4MnrnPr9G/jwww/xeDyo1Wqee+65a7adO3cuVU0m9ri9DDCa6NGhAxDQrw7NrU/euHXEti6kWs26QCBS22J3El67F75KrUlKzSgx3ldffYXDaKScxYrbYmHRokXkVymgfqOm7N69+5bvae7cubSwWPnB42Ou2UqdihVvuO/58+cJjYjCnVUPR3w2TZu3KrOd3+9HbzKT1H06GQMXoFBpmDFjBq+99lrxae6GDRtwRCWTW7iWpO7Tbyj9/plnnkWh0SLXWTDH5uD2hV0zwv2rr77CYndidoaiM1lxV2hBxqCFKM1uQiQytO5YdEZziVQji81JSs8ZZI1cilKtxZNW9ZfPbhyxiSnYo1IJrdkTiVKD2uzCZLbyxRdf4PSGodBbCa3ZE7U9jJiWY0joNIWElPRS61qwYAESmYK4NvcQ3XwkErmS7LuXE910OEqzG6lSw/jx4696X1Gx8YRW60RY7d7ItWYsydWQaww8+thj9OjRA6XZTW7hWlL7zEKqDDwvjcUdkENRasjIzEapNSLTmAmRKZCqdMjVeqRqPRKVnhCJDFdeU4zRWQE5EU8cnsrtMMXmolDrCI+MJrRyW0ILOuP2hnL58mWaN2+O2h5Oat85mBMqEiJT4CrfHGduU2QqHQU167B//34aNG5GRP1ABLc7rQpPPPFEiXs7e/YsQ+4ahic0AplSiy2zDnqzvVg78ezZs5SvWAWlWoPHF8a3337LZ599RkZWDqHhkcyZM4cJEydiSahIzphVWFKqItUaURjdyHVWXPmtCJGrGD2mkHPnztGuY2cMFgcavZG27drj9ISi1OhRanRI5ErkKi0SmQKt3kD1WnWK1+6p2IYWLVpSpXot9GEpSBRqJDIlWVk5GEwWomLiuGvYcGxON9FxiaWyBNQ6A/rwVGJbjUWus/Dkk08CgaiHyVOmUqteQx6b8Xip6IfPP/8co8WGPSwOjy/suqmRZXEjFcuvxtatWzFZ7ZidocQlJv/lckdB/rmIYAR10P4OEqQMLl26xKpVq3jjjTf+MRF9fyV79uwhLS0NiUTCY4899j/1DH766SdUGh0ZgxaS3PMx9EZTqfs/duwYcUkpCBGCXK0nLTObe+65B2/FlsXZfa3advib7uDP49NPP0VntOAr6IrO4sLkjSVnzCoiGw1GptJiis8nqskwJHIVK1as+FPXcuLECfRGM9FNhxNa0IWE5LQb7vvUU08V75Wimg4jJT0TvdmGN60yNoebAwcOsGTJEowOH+H17sDo8PLyyy+XOda1vhsnT55k1qxZeMIiiW42knJ3vYDe4uDzzz+/qXvdu3dvoD5JfkusoXEUjg9Iei5cuJDJkyezZ8+e647x3HPPIVfrkeutqPVmFi1adMPzf/PNN8hUWpJ7PkZu4Vo0ttBbkt+JTUwhscuD5BauxRmdyrp16wDo1LU7virtyS1cgys5n5kzb68cza1w5swZatVtgFqrp1bdBpw5c+aqbd944w3mz5//t2jN/1u5lv39txu6t/oTNJCD3E6Kioquq0v6b+LQoUNUqVIFIQQDBgy4arrTnDlzqGUys8/tZZjRRNe2bQH45JNP0JtthNfpiy0ymXsnTAQCae96s53cwrVk370MqUxe4g/z4P79Gaw38IPHRx+DkVEjR96W+/nwww9x63TMMVuoaTQxbODNpb0fPnyYyZMnM3PmzGumfi1fvhylWkOIRIrW7KBilQIuX75cfP2bb75BZ7KS0GESvootqV474LhfuXIldw0bzvr160uNGRkTT1LXaSR0moLO4mT58uVlzr1z505iE5JRqtT06NWbL7/8kq+//prQiGhkShVpmVl8/fXXvPrqq6W0Ae0uD/Ed7idz8HOotXqsdifetCrozXYaN26MO7cxWSOXIlMbcGTUwRaVit5kCRgp9nAkSg1aTzx6qwud0cJzz5U2Wn7++eeA/InehsriRarUkNjtIaKaDEMfloIttTojRlw9/en777+neau2aI2BOe2ZdYlvNwGdycqMGTOQqXUB6RKVjrDavckY9CxypYpHHnmEDRs2MHLkSGQKFVKlhqTu08kduxql0YE5IR9daDIShZqU3jOxplZHqtTiDYtAb3Wi1hlYtGgREomUnDGvklu4BrlSzd69e5k4cSJKiw+VxYvaEYEIkWCISMeWVguVRl/sSF2+fDlqrR6zO5zouIQyDxjOnDlDRlYOEpkcqUJN124lUxb9fj/Hjh3jypUr+P1+rHZnQC4jpQCpSkvTZs1xZtULFPzLbYw+Ih2JTIGrQgtUVh+e0HAgoFE+depUmjVrxkMPPcSlS5fo0as3WncsCpMLZ15TFEY72SNfIb7D/VgdLrQ2L+F1+yFT65HIlfgiogmr1ZvMQQtRWX3o7V7S7piLPakicpWWlN4ziWoyjPCoWLZv315c0OiJJ59ErtQg1xjIrVCx+Ls/c+YsrGEJxLQcjdkTyYsvvljq+Rw7doyPP/74mgbehQsXeOutt/jmm2+u2uZWOXnyJF9++eUNp37+E7hy5Qrz5s1j6tSpt+TUD3J9gg7qoP0dJMjv8fv91K1alXImM3FGIwN69/67l/S3cPr0aRo3bowQgj59+vxpxRP/iTz08HTkCiUarZ6lS5eWuj5u3HhcmTUDBcvTa1A4bhxr167FaPcQ1eQubOGJPDz9kb9h5WVz6dIlXnzxRRYvXlxctPBWePTRR/GVb0zeuHVENxuJ3e1DpdFhttqx2J3FcndGXxwbNmy4LWs/fvw4W7ZsKSUJAQFd5opVq1OvYeOrSr35/X7WrFnD888/X2yDrlq1Cos3itQ+s/HkNKBztx48/vjjdOnShY8//piNGzcyf/58Hn/8cTp368Hzzz9fYry1a9fywAMPkJiSjlQqo36jpqXsy8uXL5OUmoE7tTImbwwqrR6ZXMHIUWPKXOepU6d44YUXrnoo9tVXXzF+/HgWLlx4ywdG69atY+CgwcWyHzdDZEw8rgotSOgwCY3exK5du256jBp16uGr2IrELtPQm23FetJduvXAV7lN4PuUWJ7Zs2ff9Nh/F1MfeBCT04c3vSoeX1gwCOYGCTqogwT5H+TSpUsMGTIEIQQVK1Ys08Fx5swZKmdno1cqCXe5SvyxWb9+PZ279WD6I48WO++vXLlCWmY2ruR8HDHpNGvZusR490+cSC2jkfccLqoYjUyfPv266ywqKmL86NFUysig8O67r3pQsOi556hftSojBg8uVTjiduJw+0juNYPcwjVYPBF8/PHHJa4/99wiktLLUa9hYw4ePMiSJUsw2Nz4CrqUiJr9ldwKlQmr2YOU3oEic9u3by9z3hp16hFWszvl7noBizeKl19+GfcvEc5StR6jO5Jp0x4u1W/Lli2otXqkChUhEikDBg3m8OHDzJ07l5iEJBRqDTKlBpMrApXVV1x8LUQqJ6HDJKIaD0Wq1GB3uFi7di3ffPMN90+aTONmLUs5GkePGYMpKgOZ2oA1pVpAX1kqx12hJWq9iY8++uiaz/bZZxcSHh2HXK0nuvmoX3TTsli2bBm+8EhC5CqEVEZs63H4qndFYbAj1xiQawwlihCG1+1Hat85yFVaFCot+vBUohrfhUSmRCKTc/+kKRQVFfHZZ5+xYcMGtm/fjs5kRYgQFHobcp2Fps1bcerUKeQqLSFSGSFyJSEyOSprKCqrD5lKy7Zt23jqqaeQyJWorD6kchX33BsobPnBBx9QUKsuzVq2Yd++fcycORNTdBa5hWvwVGqHXK0rs5Dg5cuXmT9/PkKEYE2rGYjeaDKMygU18YVHIlVqkGuMyJVq7EmVyBu3jvgO95ORXZ4LFy4QER2LVKVDaXKhtvlo1LQ5NqcHZ25jPJXaIv0lOiJr+BLi2t5LREw8FpsTtTOK2DbjsWfWRaZQIdfbCJFIURpsaJ1RqGxhKM1u5BoDOWNeJbXvHCRyFSanj+S0jGJt/iNHjrB79+4SxnH3nr0Jq907EKVduR35FStRLjefEXePvuGDv/Pnz5OWmY09PAGdycq8efPLbLdv3z5mzZpV4nu2fft2GjZtQbOWbfj2229vaL5/Az169cEWlYo7ux4uT+i/sj7CP52ggzpofwcJ8nv27t2LXaNhj9vLNpcHhUz2p0cQ//zzz6xfv75EobN/AkVFRYwcORIhBNWrV+fo0aN/95L+Mi5fvnzV7K27R43Gk9uI3MK1eHIbMmp0wOn47LMLadK8FQ8++NANZ35duXKFo0eP/mnv2Pbt27G7Q1EarJhD46havdYtz/XJJ5+gM1oIrd4Niy+Ghx6azk8//cTFixcZM3YcFk8knowCvGERpYpLnz179qaz4Yprm/ii8YVHcvjw4Zte852DhmD1ReNKyCU1vRyXLl3C7/czavRYPGGR1K7XkMlTpmByhuLNrodGZ0BvtuPNrI7F7iz1nbxv0mTM7nDsyZWRqfVkDF6IMz67VNH6Xbt2YbS5ArVwRixFrlBe9f7Pnz9PQnIqlrAENCYrQ+8aftP3+Wezf/9+atdrSFJ6uRIO+5vhwIED1Kxbn9jEFJ78zfPau3cvEdGxyORyKlYpKPMw4p9KbFIqSd0eLt7Trlq16u9e0r+CoIM6SJD/YZ5//nk0Gg0ul6tUYTwInAT/9NNPJSKFr8Xp06d58sknWbhwYXGfd955h1C7Hb1KRW5aOmF2O93atbuhaMU5c+aQaTDygtVGttH4t6f1pJXLIbxWL5K6PYzWYOb777+/ZvvuPXsTXqcveePWYUmqglKtRWcwFkch79y5k4zsXJyeUB59dMZVx8mrWIXo5iPJHbsaR3QaLVu2ROMIJ6xWL3wFXdGHp9GsZZtS/QYNHoK3SgfS+j+Nu2IbBg8ZCsCDDz6IK62A3MK1ePNbUKdeA/QmC2G1euJIykeq0JAzeiWZQ58nRCLl3XffBWDCffdjj0olqvFQDFYnb7/9dvFcp06dIjQ8EnfF1uSNW0dY7T7klM+nXccurF69+prP6dtvv0VntJDY+QF8VTsi1+hxJ5UnNCKKNWvWoLP7yBmzCl9BV6QqPUqTk7A6/dCFJqOyhpLaJxCVoXHHIteZkchV3DVsOO+88w5RsQmotAasDhebN28GAoZwWmYWZnc4CrUWZ3YDcsa8ijE6G3fF1thdXt577z30VhdqRyQhMhUyjZHEzlOxpddCqjbg8kWgN5gxRGYQXqcvzrzmyNU61qxZg95oJqrxUNz5LTHZnMyYMQNjZDq5Y1fjrtgGpd7MlClT2LRpE88++yw7d+4EoH2nLtij07Ak5CNRqIlpMRpjRBpjxo7j8uXLvPvuuzz22GM899xz6EwWwuv0xR6TyV3DR7Bt2zbUehMqaygR9e9Erg843UMkEnLHria3cC0SuYoQqYIQiRS90cybb75Jw0aNsSRVIWfMKswJFZGq9dizGhDXZjxqnRGJXElil2mE1emL1mjBaHcjU2qwplYnt3AtpqhMYhOSSrwLv+Xpp58OHHJk1EGiUKPUW0joOBlbVCozZlz9nf8tGzZswBGZRG7hWhK7TCMqLrFUm4MHD2KxO/Fl1cHk9PHYjMe5dOkSNqeb8Nq9CC3oQnhUzN+ainz27FmmTp3K2LGF/PDDD39oLJvLQ/qd88gbtw5HROJfWqzxf4WggzpofwcJ8ntOnz6NRadjptnCeKOJ+LCw63f6A+zduxeP1Uq+1YZVp2Pjxo1/6ny3wjPPPINCoSAmJuZvKZ74T+PQoUNExcaj0ZuIjku4KcfpiRMn6NytB/lVqjNz5ky8YREo1VqyciuUKAJ4O/D7/bh94YTV7k1U46HItCYUKk2pTMyb4e2336b/gIHMnz+/hL3l9/tZtWoVTz75ZAmpg6KiIjp06oJMrsBstV83mOW3tO/UhbCaPQIBEFl1ePDBB296vQaThYxBz5JbuBazK6xMeY3s8pWKi4WrLW5iWxcGiuNl1uDp3xUUjU1MKXZI6kKTiWt7L+60qkyfPp3ly5ezcuVKrly5wtmzZzHbHITX7oU3vznp5XKuusYPP/wQrcWJ0uzCFJuLTKn5nwtK8Pv9/yrH9K80bdEad1YdYlqORme0/ClZoL/y+eefs27dOs6dO/enzfFXcS37+99XDS5IkCA3Rbt27cSmTZuETqcT1apVEzNmzBCB3wsBQkJChM1mu2rBlN+j0+lEr169RMeOHYv7dG/XTtxzxS/WGkxi166d4v1PPxXznn/+hgqcfPrxx2Lfxcui47Fj4tylK2LHl1/e2o3eJl56fqGwndouzrwzWzz+6HQRGRl5zfY1CqqKk5+tFgc/WCKO7/hQxHSYLCLaThY9e/UWFy5cELGxsWLr5o/E4QP7igtNlsUDkyaKI288Kb6e1U1EOPRi3etvCGN0tjj5/Vbx87Y3xcWf94pWzZuW6uf1uMWRT14VXz87UhzZvFLotIHCdBKJRAiKhBAI4S8SBoNedGzXRkT594hO9SuJ1JQkseXh9uLzGd1FxYqVROXKlYUQQmz8aLMwpNcT9ozawhCbJ7Zu3Vo8l16vFw9OnSwu7N4sjn3zgTjx5ZviyE8/iazMDFGvXr3idvv37xdDht4lxowtFCdOnBBCCHH48GGh0JkEILS+BGHQ60WTKhniydkzhcvlEiFFl8Tls8eFTK0TIQIhLbooLvy8T1w+fVRoXFFi/5sLxKGNS8XF4wdFiL9IhIgiMXvOHDHtoYdFpUoVxbrVK8XD0x4Q/QfdJTp17S6WLFkijpwTIrbnHKH2JAqJUicunT4uzv34nTi0cak4e/acePvtt4XG4hapfWYJfViy0DgjhSEiXVgS8oVUrhKnLoWIsxcuCAHi1L5t4uj2t4TS6BCffPKJuCKkwpZeS7jymolTJ46LkJAQ4VBeEZsnNRY/frxCXLl4QTw093lRsXI1MfKBJ0RWTnmxZcsWsXzZKyK0ySgR06pQqLQGEfLlCtG1WS0xrnCMkMlkonLlymLAgAGiQ4cO4tVlS0UV9yVxV692Ysqk+0VYWJjw+/3CU6m1cGY3FJbESsLmcIiqBTXF3qUTxb7lk0VKSrK4eP6MOH/urDhx7GdRUFAgFj77jLCL4+KTSY3Eqe+3iIQOk4X/4lmxe9Ujon/fXkJvsgp9aKIwRWcJhUwm3n9zvahdq5ZQG6zi8plj4uKZY+KUMU40atJMHDt2rNQ7KJPJhDUiWWhc0SK0Zk8RotAIY1SmUEVkia+/2Vnm+w6IU6dOCb/fL4QQwuVyifMnjoizB3aIM3u2Cq/XU6rP22+/LdTueOFtMEQ4a/YTCxY+L44fPy7OnjkrnLlNhSu/pdi/Z7e4cuXKVb9nfzbNW7URDz+7Usx7/QuRW6GiuHDhwi2PlZuTK468v0gc2rhUXDh5RMTG3nqh2SBBggQJcmPodDqxbPVq8VJUpPgoLVUsW7fuT51v8eLFouaVIvGSUiUGSKRizvSbK8T2V9C5c2fx1ltviZMnT4ry5cuL9evX/91LumkAsWrVKjFr1ixx6NChWxpj2kPThdFiE/mVq4kXn39OfLfza7Hjq+3C6XTe8Bi9+twhXv98v/jJmS+GDL9bFNmTRPqwJeLAOalYsGBBibZ+v19MmHifqFK9tnhw2sMl9m83QlFRkThy6IBwlKsvrKnVhf/yRaHT6YTRaLypcX5L1apVxeOPPSq6du1aoiBeSEiIaNCggejVq5eQy+Vi165doqioSLzzzjti7ZvviYxhLwlzpS6izx0DxMaNG8WhQ4fEkSNHrmkn2SwWcfnYfnHp1M/i8skfhcViuen1xsTGiZ+3rBZHt70pLp8/Lbxeb6k2OVmZ4uinK8VPn28QV86fFie3vyGO7dgoTu//UsTHxxe3A0RKcrI4vnW1+PmLN8T5H78XB9Y8IkycEGvXbxC9Bo8WPQaOFC3btBMajUa88+YGkWU8LarHmcTaVSuuusawsDBx8dxZEdN8lIhvN0GorR6xcePGm77XfxsnTpwQ8+fPFytXrhRCiOLi6v8m5j/1hKiV5hPuox+LRc/OL/G+3E5mzZ4tKlWrKTrfMUzkVah0S/uL3bt3i+zy+cLlDRMPTnv4T1jlbeJqnut/+k8wgiPIvwG/38/69et55ZVX/lRZihvh+PHjNGrUCCEEHTt2vK2nlC6zmdfsDna6PLi0Wnbs2HHDfWvUrosnvzVZI5aisYczadKkP7QWv9/PvHnzaduhM8888+wfGutGWbx4MT1790Uqk2PPrItcZ0Gq1NxQ0YrfcvLkSb799ls++OADHBGJ5I1bR/qABciUmlLFOTZs2MDYsWOJT0zEHFee3MK1hFbvRpt2HYFAtHNO+YpIZXLCo2LQ6I14K7bCYHNToVIVQqRyJHIVBm8c7Tt2Yffu3WzZsoUFC57BaHfjrdAUvdFSSpLE7/czffqjRMUlobP7iG0zHrM7gmXLlgFw8eJFPKHhePNb4M6oSfmKVQD47rvvkKs0aByRSORKlBot3szqGGwu5s2bz9jC8ag1OpyeUNavX8+bb75Jxy7dqFilGhqdHrvLg83lQSJXIpEpyRi0kMTOU5HIlXjyW2IwWdAZLcS1uQd3udpUq14TiyeC9AELsJerh1SlQ6rS4arQgqwRL6Nxx6BSa0lKTUdncSAkMiRyFTpfIlKlBolSS3LPGQgRQs6YVYHoZIUapVpLp85dUGoN6EKTUZo9KA12Hn44IL+yZcsWyleqSmSjweSNW4c1pRrh9e7AW6U9latUQ6bSYi9Xl7BavdHqjShVGhQqNfdPmnJD78jE++5DabDizm+FXKVl1apVnDt3jpkzZ/LII49w8uRJXn75Zbp27crixYtL9L1y5Qr1GjbBmZCHO6sOEdGxnDt3joKadbB6o9Cb7Tzw4DQAfvjhB8rllCdEJseWXpOcsasxOX1lStTs3LkTvdGCt0oHzL44lBodvowCdEYLmzZtKtX+7NmzVKhUFblShS88sriA6qzZswmPiqVcbgVefPHFUhkYn332GTqTlehmI3GlVKZn7774/X7Sy2Wj8yWicUVjdXpuSmf6yJEj10xZPnToEHPnzi0l3XM1VGotWcOXkDduHWZn6B+KNDt58iRDhw2nfacufPrpp7c8TpCrI4IR1EH7O0iQv5mFCxeSYTTymt1BfaOJMbepfsufwZ49e0hNTUUqlTJjxox/VfHEeydMxOKJxJtVG4fLe9NRxDt27EBntJLW/ykiGw0hMTX9ltaRmJZJYpcHA3ZCZBrWhPyA9m5ShVJZpDMefxxbRBKxbcZj8cXcVGG7X+nQqQsWbzQ6dxQ2l7dY9/d63Opn+/bbb6M3mjFYneTlV2bdunVYvVHkjFpBRIOBqLQG7OHxyH+xf/VGM++99x6nT59m6LDhtGrboThj7Pjx4xTUrI3BbKV9py5lZvseP36cOvUbYnd56dd/QCkZjf3799O0RWsqF9S8aiZgm/YdkWvNyA02JHIllasWkF+lOvPnLyhus2vXroAUn0xGaGQM1WvXY8WKFezZs4ejR4+iUKrJGfMqOaNXIpMrbnqfnVM+H3tGbWJbjUWh1rFt27ab6v9P4cKFCzcU/X3+/Hmi4xJwp1bCGhrLwMFDy2x35MgR2rTvSKVqNVi7du0NreHHH39kx44d/ynd/PDouEANpsK12CMSefPNN296jCoFNQkt6Exqn9kYrM6/dW9xLfv7bzd0b/UnaCAH+TcwpH9/4o1GypvNVMnJ+dsLMRYVFTFx4kRCQkJIS0u7bXqtC+bPx6hSYdNo6NW58w0bNT///DMObxgR9fqTW7gWY0QakydP/kNref755zG5wohsMBCTM5SXXnqJXbt2/aF0thulbbv2qGyhpA+Yj7NcXXr06gP8f9r/mDFjb0hf8Pjx41jsTryV2uBMrECL1m1LXF+5ciUGiwNPxdaEyJToQpPJGrEUd24jevXpW9zu6NGjNG7WAoPVicrsIv3OeXirdkKhM5N99zISOk1BaXJhstrRGsyYnKHUrtuA1157jQcffPCqxtHZs2fxhEcRUX9AIO2ufFNq167NtGnT2L59Owarg7xx68gZtQKpNKDdOGHCBOwZtYulQRTGQJu4NvdQvlK14nHLSm88duwYs2bNQmu0kNTtYSQKNVkjXial9ywkCjWeim3Q2UMxhQWc+gkdJ5GamcOw4SMxWmzIVFpUrhhkGhPhdfsF3rWYHLQmKx9//DEOt4+krtPIHLwImcaIkMrReuIxhSYgVWpw5jbBU6kdMqUae2I+3kptCJEpiKh/JxENByOEhKeeeorTp0+zZ88erA43lsSKpPScgdLsxlOlA5bQOEJkcrShyaidUYEDAqmM1H5PkDlkESqNliFDh6HSaAmNiGL58uXEJaag1ugYMHhoie/Uq6++yvjx43nqqadYtmxZicKDDzz4IEqDHVtaTSRyFUPvGlbiWZ4/f54ZM2YwadIkjhw5AgR0Ft9///0yNbPvHDgYizcKV3wWGVm5V5UC+vTTTxk2fATz5s1j165dLFq06KoHVXPmzMGZVIHcsasJrdKejl3+v6Dkk3PnojNZsYXFkZVbgYsXL/LRRx9Rq24Dmrdqy9y5c6lZtwEDBw8tNv4rF9TEllGb6KbDsUen3XDxl9Fjx6HS6FBpdMyY8Xip6z///DNOtw9vRnVMzlAeePCh645ZrUZtXGnV8FZshdPt+0+k4f2XCTqog/Z3kCB/BufPn6d/z57kJCYyYdy4a9rFRUVFDB80iMTQMDq3av2PT3M/depUcfHEvn37/mucQLGJKSR1nx7Qik3Ivmmt2M2bN2NyhZIz5lWSuk/HGxZ5S+t45JHHMDm8eNKq4HB7CY+KQSorW3u3Z+8+hNXqFZCbqNyOu+8eddPzFRUVsWbNGlasWHFDn9XRo0fJrVAJqVRGtRq1r1ncuiyKJQsL1+CMSWfp0qW0btcBuVKFWqPFGp8XqL/SeCimuPLEtBhFZk55mrVsgyutgPC6/dCbLDcsk9av/wDc5WqT3v9pbBGJpYIzbgSpTE7WiJcDhdS1ZkIjo0u1adqiNWHVu5AzZhWOmAyee+654muXL1/GancS2WAAEfXuwO7y3JDedol6Lt27I9Oa0HoTMPriGTO28Kbv4+9mxYoVqLV6FCo1Q363//g9H3/8MVZfdCAY6855WOzOMtvVqF0PT15jYlqMQmc0Xzf466mnn0au0hAikSKVK5j3m0OGfzOVC2oQWqUdiZ0fQGey3lIATEJKOgkdJ5FbuBZHZDKvvfban7DSGyPooA4S5G9Cr1Kxxelmn9uLT6//U3WJboY1a9ZgNpsxmUzX1Q6+UX766Sf27t17U33ad+qCLbEiMrUBqUqPwmAnNCKK+OQ0UjOzSxUovBHu6D+A0F/0ynwFXYmIikFvcaDRGYqjfP8sZs2ahTutGnnj1hFRfwCNmrYAoHa9hjiTK+LOaYTZYuXZZ5+9rpG4c+dOBg8ZyuTJU0pF33fr0QtHdiPi2ozHld8aqdpAiESKJzSCH3/8sbhdo6bNsaXXJK7N+OIIYqMrHJXeTLlhLxHXZnygAKHeREqvx8kcuhi5xoBUoSQxJZ0TJ06wYcMG3nvvvRJG1P33T8IUnoxMY8Qcn49EpsAcm4szpTIVKlUlPCoGd04DnKlVqFJQk2PHjpGYmIjaEUFqvycwxVdASBVENByIKTaXPv36U6tOPUKkMiQyORMm3lc815EjR3B6fKjNDqRKLY6sBqjtEcUFGhVGJxp3DBKFColchTk6C6PNzew5c4CAlqTeaMYUXwGlyYVUpUWq0iHXGklITuHixYtExycFDOTBzyFVatB6E1CqtZTLycNb0AVDVDlkagMiRErWyKXkjVuHTGMkpuVYNK4YZBojRk80iSnpVK5WA09+S8yJlZBrDISGR5KQko43NAJnXjMsSVVQWX2481sjkSmIbzeBjEELUag06C0OMocsIrLhIAwWB2E1u5M59HnM7nAWL15M/UZNiYyJo0PHjvTu0xedxYkjNoOk1PTidyQhJYP4DvcHInPi8zGardd9b0+cOME999zL8BEjOXDg/9g77ygpqrQPV+fu6pzj5JzzDMww5JxzzjknyTCjKGICJYiCShRRVBQRGEwIrlkxw64oCggGck4D/Xx/NPa3s8yQxLBrP+fM8Ujde+tWd3X3e9967++3v8KxX93KV69efc1F84kTJ2jcrAVmm4NuPXtXeY8vXLgQZ1I18qauxxiZidXlZeTosVy4cIGI6LhghYAtPJ4NGzZgMFuJaj6KsJpdSMu88re/UbMWRNTvR+6ktdgiEnnppZeuec2HDh1CJWrJHreajBHLUKrUVywm1q5diyc5sJBK6jWLpLSsq465adMmqhfXJiUtgwGDBgcrw0P8dQklqEPxd4gQvwd3TJtGPaOJNVY7KUbjFabT/+1cvHiRCRMmIAgC9erV+68wT+zYuRvuzLpEtxyL3mSpYAx/PVy6dIlmLVtjsDoR9UaefHLltTtVwdatW1m+fDkHDhzg3LlzV8Rev/Lmm28GTAlzG6Mzmvn444/ZuXMnnbp0p1vP3pUm6/bs2cOEiZO4e+bMm3rYMX7CRNzZjcib/BLOlCIKi2sSFZdIj959q9wN/OWXX5KWlYM3IprUjBzC6/Uhe+zTWLzRwR1ox48fp6i4Jmqrl/RhT2DPaoQhKguF3opSo8Vic5I26FEKSjfhisvg9ddfv675tmnfkYgmQwMFM9kNmDt37jX7HDp0qEKVb0RMHN6a3YhqMRqZSqRW3fpX9GnZpj3h9fsFqt0TclixouIu3U8//ZRadRtQp36ja1ap//jjj6RmZCOVymjavBVvvPEGSo0We1bjy2vI4bTv1PW6rv9m+Omnn9i2bdstf7jk9PhI6vUAOeOfQ2eyBv13KuOXX35Bd9nPx1utNUW16lTazhsRHfQhckSnVFkF/ytmqwOpQkXGiGWkD30cpVpz3T5bf2X27t1LnfqNiE9OY9my5Tc1xurVq9EaTFi90eTkV+fcuXO3eJbXTyhBHSLEn0RmfDwTjCYeNlmw6HQcPXr0z55SkF27dpGZmYlEIuGOO+64YWflW0FRrXrEtp9C7qS16KOy8NTshlSuJL7zdKJbj8Pu8tzwFrOysrKA+3KNTogGC3qri7yp60nsfg8xlRivAZw5c4YPPviAn376iXXr1rFq1aqbCuoOHTpERHQstvA49CZL0OhGI+rIGf8cpvgCtO5YbFGpNGrS/IbH/5V6DRqhNDrQeuKRqUTcNTrjyG1OzToVAyqr00tSr1kUlG5C601AptRQUno74yZMQiZXoBK1jB49mpj4JKKajsCaWgdben2yxz6N1hOP1e7EFhaH2R3B4KHDg+OOvW0czuwmuAs7IsiVSJUi+SVl5E/bgEQioWPHTnTr3p177rmHY8eOkZSajtriQaJQBRLlKi3CZYkRqVJDQkoaEqmMjOFLyBz9JFK5IhisL1u2DNHqxZpSC1NcPjKlSFSL0WSPW405oToyhRJDVDae4i4oDTbkSjUvv/xycK47d+7EYHNhjMsnrmMpuZPW4kipQc+ePXn00YWkZeWRkZUTMBeUylGZXEjkStQ6E127dcfoCEOmEjEn1kCus2CMycad1wyL3YVGq0fjiCS61W0ojQ5UeityjZ6oFqNJH7YYmVqHUm9Ba7Si1urJHLkMfUQaid1mBhLIiYUIEikSuYLqRUWY3RFENR+FXDQgU2rw1upOfslGHDFpxMQloA9PQeuJx5nfCqlSQ9qgR8gvKcPqi+Uf//gHAF2798IQnUV0q3HI1XqycvOveT9Vr1ELV0ZdPNVaERYZzfvvv8/06dMrvI7Xw/iJk3Bl1CWp1wOoTQ4ysvMqlQQ5ffo0hcW1kcnkaGxhJPW8D3tcNvfcex/VatQkrE4vkvs+hM5kZePGjRhtbvJLysi+7RnUGu0V43399ddERMcilcro3K3HdX2XHTt2DLWoJX3YE6T0m4uoM1zxXbNjx46ApEjbibgz69G5W48qx9uzZw86o5nYtpPwFrSkfqOm1/GK/f6cPHmSF154IWSwWAWhBHUo/g4R4vegR4cOzDCa2Ofx0cdg/M27A/+qLFu2DKVSSVxc3F+mCKcqTpw4wbARo2jcvBWvvvrqTY1x6dIlduzYwY8//nhL5rR582YsOh06pZLenTtXuub57LPPWLRoETt27KC8vByXJ4zwur3wFXcmOi6hQp/Tp08Hdn4VtsOZUoPGzVre8JyGjxyFt6gDBaWbcGY1QjQ7SR3wMM6kahUKSP6dhJR0IpsOI6XvHDQ6PTHxSahFLUOHj6wwP6c3HHt2Y5RGBwqdGYlMQXyn20npPw+FSoPFF48ntwkOl5eDBw8y+8GH6Naz91WlHd5//330JguOyCQ8YRFs3ryZBQsW8Mknn1TafvTY21CJWtSiLmhov2vXLjJzC9Cb7RQUFlX6wGDHjh04XF5UGi01atW9IenOCxcu8PbbbwcTtn37D8RbvS15k1/CEZ9Dbl4eEpkCiUyO2h6JXCXelITD9VBWVobOaMbijiQjO6/CTj+/389HH33Etm3bbkrixe0LJ7HHvWSPW43OaLnmTu233nqL+o2b0a1n7woFVv9O6R3TMbsi8KQWERUbf82Kfk9YZFAKMmP4EhQq9f9EgvpWsXv3bt5///0/fedLKEEdIsSfxK5du2jZoAF18vN58803/+zpXMHp06fp2bMngiDQtGlTjhw5csvGfuutt2hZvz59u3at8kfn5ZdfRme0oPfEIldrEQ0WFGqRvCnryBn/HDK54qZkUd58802mT5/O4sWLMVidZI5aQVTzkWTmXJmsO3LkCNFxCdjCYlGKOszeGFyJuWTnFdzUuU+fPs2HH34YlE8AqFO/EfakQiQyOXlT15M3dT0Kpeqqbt2HDx+mZ59+1GnQmE2bNlU4ptZoyR77NPklG5FrDGQMW0xK3zlExSVWaBcdl4hCb8MUV4Bco8dqd/Dzzz8zeuxt9Os/gG+++YZnn30Wjd6IUmtCphKD1eeWlNpIFSrypr5MzoTnkcnkwcTfwoULkSk1qK1eJHIlUoUKV0Eb7JkNkapEfLV7oNQaeO211/jxxx9RqrVIVRq03gTUtrDAA4Me9yFTa0npOwdbRkMkUjnpQx4jY8QyJDIFWbkFnD17lvzCGkikMrTeBHLGP4doC0OjM+CKz8Lh8iJXKIOvqUSmwGxzVNAgLi8vJzouEa09ArUtDF+d3siUaqZMmYLebMeZ1xKZSkR0RpM97llc1doiVWqIbD4Kk9NHw4aNkCrU+Or2Rh+Rjlqrp3uPHhhMAZ3x6JZjA0F8XkskUhmxHUsCGtZKDZ7iLkS1GINco0cl6rB4o9HafGjdcYTX749MpUUiV+At6ogzqRoOTxhSuZK0QY8Q17EEmVKNweaieo1aGM1WVGY3qQPmU1C6CYXOgruwA/Gdp6MSdezevZvTp0+TlpmDSmdCptKSmJR8zUWU3+9HKpORN2Vd4EGGyYaoN+At6ojR4WXJkqXXeedD7779CavTC7XVizOvFfqINESdocrvlUmTJuEpDCyCwhsMoHff/nz33XdUq1GT8Og4Fj32GOXl5aRn5eJKyscWkUjvvv2rPP+BAwcYNmIUXbr3rNSl/T9Z9NhjqEUteqOpyt0V69ato079xgwYNITjx49XOdbWrVtxRCVTULqJtEGP4LnJrb+3kjNnzpCYkoYrIRuj3c29993/Z0/pL0coQR2Kv0OE+D3YsmULVq2WBjYbDqPxlknq/RV5++23sdvtmEymm078/i/zzjvv0LlVK8YMH35FHJGdkMATZivfuDzEGAy88847Vx3rwIEDqLV68ks2kjd1PVKprELM++WXX2LxRFJQuons255Bqzfc8Hx3796N2xeO3uLAbHPizG1KQekmwur1pd+AgZX2sTpcpA1eSP5lv5LPPvus0nY9evfFEZ+Dp7ADFrsTpUpD5qgV5E5ai6g3Mn36dNq3b8+aNWu4864Z2KJSiWgyFP1lSb6LFy/y7LPPsmTJkgoV0D///DPvvvsur7/+OjqjmbD8ZuiMFrZu3XrFtWkN5oBM4ICHMVlsN/TalJeXc/jw4RtK3h47dgyr04Pa7Eap0fHYY4/TpXtPwuv2Jr+kDFdaTWRyOZmjVgTWQFIZM2f+fg+0cqsVEdexhPySMpxxWbzwwgvBY337D8Tk8GK0exgybMQNj11WVoZWb0CuUDJpyrRbMl+/389rr73Gk08+eV2Ffm+//TYGsxWJVI5cqWLhokW3ZB4hbi2hBHWIECGqxO/3s2DBAhQKBdHR0deV2PlPtm/fTnJ6FnaXhzlz5vHLL79g1emYZTLT12iiQVFRlX2//fZbNmzYwMaNG/nss89o17EzFk8kRruHUWMqN0y4EUrvmI6o0xMRHVdpwPT4449ji83Gm14PiUxB9rjV5JdsxGBz3ZDZ469UVr155MgRoj0eFAoVYfX7E16/Hy6P76qVns1atsGT24SYNhPRGc0V5ALik1IJr9eX2HaTkSlUOOKyMNhc9OzZm6S0TGrVa8h3333HE08sRmuyYYxIRS3q+OSTTygoLMad0xhfza44XF4yc6sR33l6ICkdloBUoUJpdCBXiSjVInEdphHVfCQub1jw/AVFtYjrWIopLp/wRoNJH/YEcq0JiVyJNbVuQCuvVg8GDBzIqVOnkMoUxLWfhlSpQS4aLz8wGIVCZ6agdBOxHaYhUaiRSGVI5Soimw5DrlBy//3340yqRs7ENVjT6iI6orA73Xz22We88sorHD16lAaNm2GPTsfgS8Tm8l5x/65btw5Rb0IfloIgkWCMzcNTozMyhRK9Iwy1LRx3YQfMCdXJLykjvNFgVCZX4BoKWtK9e3eMkekUlG4iuc+DuHyRWB1uolvehsYZg1xjwJHTDJlSjUKpJqnXA8hFI1K5MngvKbQm4pKS2bhxI0mpGeickWisXtRaPVpHOAWlm8gcuQyT1YZoMJM7eS0ZwxajUGn44IMPuHjxIgnJacg0OgyRGZcr1xXow1NR6i0MGzYMgDVr1uCMzya/pIzY9lPJKyy+6r26fft2EpNTkSvVGMJTcWY1RKU1oLGFkdz3IWJaj6dZq7ZXHePkyZOsX7+eRx99lNGjRyNX65Ao1Mi1Jjw1umCKr0bteg2rPL/BbMWXXhOd0czbb79dabtTp06xYsUKXnjhhat+ZmrVbYA7pzHh9fthstqvK5D1+/23xOTp1KlTRMXG40kNVMKX3H7Hbx7zt7J161bskUnkl5SROuBhvBHRf/aU/nKEEtSh+DtEiN+LnTt38vzzz1cp3/C/xPfffx80T3z44Ss9Hf6u7N+/H6tOx91GE+2MJjo0r7h7Mi85mQVmC/90eYjU6ys1lv53/H4/uQWFuJKr40zIpV7DJhWOnzp16nIFdXucqcU0vMndmufPn+f7779nx44dmG0OPIm56E0WPv7440rbz507H53JisUdQf1GTaos8Dl//jxz585l4qTJvPXWW7Tv0BGNzoDe4qBD566YrHa8OQ0w2FykZGQT12FaIDme34wFCxbQs08/bJFJuFIKSUnPvKIKdOzY2/DV7hFMqLu84Tww68FgnLdv3z5EnZGs0StJ6nkfNqf7pl6fG6Fvv36orT7yS8pI7vMgVqeHf/3rX9hdHnRmG0mp6SjVGjKGLyF96OMoVOrftbq1UbMW+Gp1JWP4Esyu8KBkxvHjx1GqNOROepGciWuQKxQ3VCX+KxcvXvxTpSN+5dSpU3+anr/f7//TK5T/6oQS1CFChLgm7777Lh6PB41GU8H44XrIyMkjsvEQ0gYvRGey8uyzz5JkCmxtfMfhwm02X/dYly5d4u233+bDDz/8Q9zBlyxZgloqZYrBiE6pxpxYhD2nKXqj+aoVk/+J3++n34BBSOVK5CqR7Pxq/PTTTwB88cUXRBkMvGFzUF1nRK5UU6tuvateX3h0XLBa1hWbHtRwg4CTdL1GTcirXoMhQ4cFjEe0elQaLYndZhJWpyepmdl06NSVmrXrUVpaynfffQeAQqkkd+ILFJRuwmB1kZiciuiMIqxeXxRaExKpDLlCybRp03jzzTdJTEknOS0jGJReunSJDp264s5thi4smagWo8mbuh7RHY8zvzVy0Uh4w0HIRQMrV67k1KlTKJQqsm97hsTu9yCVKwOu3SYLKo0OrSsa6eWKY4lchSO3Jc68FjjcPmbMmIE7p3HQHCY8MprU9Aw6de4SvJ7z58+zatUqVq1aVaGKBAIPP9RaPQqtGbnWhCANVArHtJ2ETK3FntEAqVLEnFILldmNXDRerghXY4sPBONbtmzBYLLgKeqIJSKJUWNuQ6pQobZ48dXuiat6OyQyOQMHDuTZZ58lLCoWiVSGLaM+ojMarTcRndHCv/71Ly5cuIBEKiVr7NNENh0R2M6n1OCu3h5rfB5tO3SifccuQRkUQ0QK7rAoatdrgFytxZ7dBF1YClKlBqWox2h1MGrM2GDSdvPmzZjdEWSMWIq3RmeMVmeVhoHffvstCpUGmVqHp7grctGIqDfhqdaWqGYjkam0mH1x3Hf/LPx+P+vWrWPevHns3bsXgFdffZXbb78dX0Q0ek9cQNtbY8AUXw13UUeUBjsFpZvIGvMUBpOlyvt8z549PPPMMzf1MOg/0ZssZI15ioLSTVi9UXz66ae/ecwb4ejRo6xYsYJXX331D/nuuhbfffcdOqOZ+M7T8dUIONiHqEgoQR2Kv0OE+F/ngw8+oFvP3kyeMvV3Tdjs3buXMI8HQRCoW6fO/0SC5ptvvmHyxInMmTPnihjzeli9ejVmUU+OzsQDRhMx7ooJ0eeeew6tQoFMIqFts2bXFTucOnWKRYsWsXjx4koTgd9//z23jRvPjBl337DBYWX88ssvlJWVXdO08Ouvv+b999+/rt2n3333HUaLDV92fXRGKw899BCLFi3Cl9OAgtJNxHWYRmxCMmZ3BJ6iDuiNFrZv345G1JF92zPkl5RhsnuuMIpbsWIFFm8McR2mobGF4cxvjcUTxZo1a4Jt7rnvfhRKFTqD8arSIbeKTp27ItfoSek3F1/tXvguFwucO3eOPXv2cPHiRRYuWoRSpUal1vDE4sW/63x2795Ndn51zDYHU6aWBO+58+fPozMYie90B3EdSzGYLH+K/OfN8t133/HGG29cdXfyH8Fnn32Gw+1FJpPTs0+/v8R64K9IKEEdIkSI6+Knn36iZs2aCILAiBEjrju4DIuKIbnPg+RP24DVG82bb75JcnQ0jc0WUoxGbhtx49uE/ii2bt1Ksiiyz+MjX9SjsUeg9yaQnVdQ4Uflww8/ZPbs2VVWN2zevBm9xYna6iN96OO48lvS4bLBxS+//IJZFFlisTLeYMRqD0dvtl/VoOWO6XcGArP0Wvgiojh+/DgnT55kWkkp/foPZOHChXz00UeoRS0Zw5eQ3OdBpHIledM2kjboUaRKDb7aPQir0wuPLzwYZDRq2gJnUjXcOY2w2J2YfXFENh2OTK1DkEhJ6H4Pyb1nYbY5WLHiSdSiFpXejN3tY/KUqSiUKvQmMzKFGpnaENSSlkjlgf/KlSg1WoYP///3fPLUEtSiDo1OT+nt04P/fuLECVq1CkhB5JdsxF3YHqXJHdDLVmmYM3cuCrUWpc6MTKlGqlBhiMzAWdAatVbP9OnTGT9+Ag888MAVT/nPnz+PNywce2bDgGN7YUekCnUwER3VfBSRTUcgyBRIZAqkChUylRZTfDWiWoxBqlAxe/ZstmzZwpNPPsmECRNp07YdUpkciVSOIJGSPW414Y0GIVWoeeyxx4Lnnnb7HYgGC6LBQkH1Qn755Rdmz57NPffcE5Bd0ZowJxSitnixZTbCEJNDRlYuZ8+eZevWrVh8MWSOfpL0IY+h0Jrw1uyGXGvCltUYQSoja8xT5Excg1rUcfDgweB5jxw5Qk5+NWRKNSqTi+iWtyFTaXjuuee4cOEC99//AAMGDeb9999nzpw5yEUjnuKuFJRuIqLxECRyJVljniK/pAyNycHEiZO4dOkSd99zLxZPFN7cxlgdLh59dCEGmxtrYiFaTzwFpZtI7D4TrSc+INUyfElA9iWvBY7EfNq063g9H8XfTNcevbDHZODKrIvebCW/sGbQLPPvyvPPP09mbjWatWzzt6jiu1H+1xPUgiAsEQThgCAIX1VxXCIIwjxBEL4VBOELQRCyrzVmKP4OEeK/h3379qE3WQhvMABnSg06de3+u52rd+fOtDcYaarWIAgCeXl5t1Q68I/m8OHDuMxmBusNFBuNDOhRtQ9FVWRk5+Eu7EBs20nIFCqG9q8oU5aSkY2vdg9i2kxAZzBx6NAh3n33XdasWVNBwuJ/if3799OzZ0/sSdUpKN1ETNuJNGjSnK1bt6K3OIhtPxVncnVGjRnLCy+8wB133BHUk87MycdX1IHIpsMxmq1XFBL5/X5mzX4IV1gU5sQi8kvK8FZvy913312h3cWLF284cXj06FEeeOABHnrooSsS/99++y2NmjanenHtK0z8vvzySzRaPQqNHqWor1Jb+sKFCzf0UOfgwYMcO3asQv9vv/32pqqef+WNN94gNjGF+KS0K+RRnnvuOVq17cCMu2f+5TSd169fj85oxhmTSkR07J/6vVO9uDZRzUaQO2ktVm/0dZt9/t0IJahDhAhx3Vy4cIExY8YgCAI1atS4LiOQ5ctXoDWYMLvCqF2/IeXl5Rw9epTFixezdu3a6w4C3nrrLWrWbUDLNu3Zs2fPb72Ua3LgwAHad+qCXqmkq06PIJGQN2Ud+dM2oNbqgzrSb731FjqjBV/11uhM1kp/bMrKytBb3Rhj88gvKSOm7cQKFYsbNmzArFJhtYUR02Yios7AoUOHqpyb3+9n06ZNLF68ONiuYZPmONNq4SnqFNBN1htRabTkjH+OjGGLkUhlqO0RyEUDEpmC/GkbyJ+2AaVKEwzizp49y7x585g5cyaNm7ciquVYcsY/hz2nOVpvInKNAV/d3qg0It7wSGRqHdGtxmFNrY1MpSFr9EoSus5AptQgVWqIbjUOpdFB7qQXie90O1KliFqrZ8WKJ4FAoriwuDb6y67nZWVlrF69mqlTp/Lxxx+zdOlS7HFZ5E1dj7uoE7aMBqT0n4dMJaLQ6HEVdUTrS0IQJEgVajJHraCgdBNqWxgSuQq5aMAWn0vrth04e/Ys77//Ph999BGesAgEQUBt9RLeaDDmpGIKaxQzduxYqlUvRHTFIL0sRZE64GFyJ76ATKUlrmMpBaWbEF0xqM3OQFLc5qGgsBiVRotCZ8ZbqwcytQ651oTWm4C3Vnf0JkuFe3b79u18/PHH+P1+imrWwZlajDO9Lg6XF70jgoLSTQFpFNGE2RPFE08EKiZOnjxJWGQ0nozaqEwu3IUdyZ+2AalCTdrQx5HIFCR0nUFK3zkoVGrqNWrKypUree+996hWVIw7uxEKnYXUgQsCiWZHJAajmWEjRuGIyyasXj/0RgtLly5FpTUgF41ENB6C0mBHH5aK2urDGJ2FUqMLusMnp2eT1OuBQCV7aiEFhUVEtRhDav/5yEUjSb1m4cxvhdYTj1Qpore6GDBoMCWlpcyZM+cP2+pXXl7OkiVLqF23Ho6kgHSNyeG9ZnB48eLFP73iIsSfw98gQV1TEITsqySomwqCUHY5UV1NEIQPrjVmKP4OEeK/h1dffRV3fBYFpZtIHfgI4dFxv9u5ijIyWGmxsc/jI1mrRSaTER8ff0t2SP0ZbNmyhTyrlX0eH1sdTqKczhsew2ixkTlyGfklZejtXrZt21bhuNZgJHPUk+SXbMTk8DJu/ESMdjeuxFziEpNvecX7xYsXGT9xMqmZuYwaM/YPTzT+8MMPWOxOXKk1kKl1uKq3x5FYQGJSKhKpDKPFRk5BIaPH3lZpovXuu2ci12hRaPS0ade+yvO8+uqr6E1WwrLrozdZ2LFjx3XP8fXXX8ftC8dicwZNFC9dukRKehaujDo4U4ooqlmnQp/ElHTC6/Yips1E9EZzhcQxBNabW7du5fDhw9c1hxMnTjB23Hg6deleaWHUhElTUIs61KKWx594ggMHDhAdl4DR5sbu9LBy5UreeuutW1a9+9Zbb2GwOIhuORZ7THqVZpl/FoW16hLbfgoFpZvwpBbx5JNP/mlzya1WREybCeRNfRlbeMIVPlIhAoQS1CFC/E05f/48Y4YNo3paGnfdfvsN/VA9/fTTiKKIy+WqUhv239m7dy+ffPLJTRkLQqD6U280E91qHGE1u5KelXtT49wItes3xFvQkvCGA1Eo1ZisdiLq9yOy6TAsdmfwSXZA06znZU2zfgwZOvyKscrLy6lbvyEypQaV2Y1GZwiaxZSVlWGy2FCpNXjDo4iIia9SeuHf8fv9vPHGG6xdu5Zz584h6gwY4/IxJxSiMrvw1OxObEIyalGHTKHCmlYPXVgK3to9MMbkog9PxRKdSXHt/5cTefXVV4lNSCYxJZ2RI0cGDP0UKqRKDUk970N0x6HQmrDH5aAS9ahtPgpKN5HQ7W5kKm1ggdNoMEqNFolURlynO1AaHeRMXENcx1LUtnCSej2A0+3jzJkzbNiwAXtUMvnTNhDX6XYcnnDUBhtyjQGpQsXdM++hXsPGCJJAAlptC0Om1qEyOYlpMwG51oTK7CFr7CrkogljTA7uok4o9FYcuS1Q28IIbzAAndGERmdEZXYhU6oxx+UjVYo4cpohuuOQq7VBs86VK1ciWtxIFSoUeisJXe4ic+RypAo1Mo0BlcWDVKkhZ8LzRDYdjiWlFnqrG7lKE9S2C284CJlKS3KfBwMBUUp1XnzxRcrLy4PV6t999x3/+te/kEilgYcFJWVI5CqkChVRzUfhzG6EyxdBjVp16NmnXzAhfOjQIRYtWkRKWgaWmCwMEekoDXZsMRkU16qDJywCUW/C4I4huuVtyDU6TO5IJHIlprh87JkNkYtGdGHJiM5oZHL55STzLApKN+FLq8Fzzz3HgkceISIqFplSgzWtLmENByNViUQ0GYZCa0YikVK9qCadunbHnlxEdMux6IwWxt52G9aIRKJajEajM2GyOZFr9Gh9iVgzGpKakX3LguI333yTfgMGMm/+fI4cOUKnrt1Jzcxl/lU0Lhs0aU5Mm4mBhHpu46vqYX700UeYrXYUShXtO3X5r9rOGOK387+eoA5cohB5lQT1IkEQuvzb/38tCIL7auOF4u8QIf57OHToEFaHC09BS2yRKQwfNeZ3O9fSJUtw63TUt1qJdLlYv349NpsNk8n0X1lFePDgQRxGI2P0BuoZjfTq1OmGxxg7bjwWTxSuhFzSs3Ku1EweNx6zOwJnbAa51QoJj44jpf88Cko34YhKqbTa9uLFi+zfv/+mksuPPfYYtqgUknrNwh6byYMPPXTV9r/88st1+XncyPm92fUD/jPtp2B2eIhPSkEikyNVarBnNb6qHJmoM5A+7AlyJ76AqDcFZecq4/PPP2fp0qXs2rXruufn9/sxmq0kdJ1Bav/5aLQ6jh8/zi+//IJGZyC/pCxQNCKVVXgvNaIuaF5/sx5Gx44d45lnnuEf//gHrdp2wJVeh4hGg9GbLBWKxX766Sc0OgPZ454lfejjiFo9M2fOxJ3dKGB27o5Da/Vg8UTSq0+/G55HZcydOxdfQfNgxXvj5q1uqP+GDRto1rINt42bwJkzZ27JnP6dzt164C1oQeqAhzG7wnnjjTdu+Tmul3feeQeDyYJa1NGsZeubzov8rxNKUIcI8Tfl7jvvpKbRxLNWGykGI6tWrbqh/l988QWxsbHI5XLmzZv3u+oobd++HZPDS35JGVljnrop5+kbxeEOyHEUlG7CHpHA008/TZMWrWjQuFkFQ8VVq1Zh9kQR02YCFl8sS5YsqXS8U6dO0a1HL9Kz85g7dy4Q2PalN5pJ6nkfGcMWoxZ1V62c/pVPPvmEho2bYnJF4IhJo1phMWqtIWCy2GgwUoUKR0oRo8aM5cCBAwwbPhJnSlGwuteVXhu1qOWee+4JViGcPXsWUW8gptU4YtsHnr678luRX1KGJakGpoRqyFRaZGot5oTq2CISkavUKM1uZEoNRpMZiVyJ6IrBbHMwavRoFKqA9IZEKkOqUKN1x6M02FHqzNhdHp566il0VheZo54krF5flFo9ctFI7uS1JHS7G4VSxSuvvIJC1BPTbgoJXe5CrjMT3XIsBaWbMMUVoDK5iGg8BGN0Dqb46sg1Bjw1OqPQmVEaHRjDkzBZbBiiMgMGgW0nodCa0TgCTubpQx/H7vaxb98+BgwaTJt27ZEqVHhqdg3KkkhkcmQKFbaM+oTV64tUoSZ1wMNYU+tgSamFVm+iZq3ayFRaRGcMMo0eqVKD6IrFU9wFUW+kb/8BSGVyZGotcrUOuVKDaDAj6k3Ysxrjqt4eucaA2hGJITIDhUaLy+PDV9wZX3FnwqNiKnzG2nfsjEQmD8xNJWK2O5FIpRQW16a4TgNi208hsftMNI4IUgc9GnjfC9qgNNiQKVRIlVpkah2+yBjGTZiENSIJb1FHDGZrhaB+8+bNxCUmY3f5sCUUYIjMRKE1Y0mpjUwlYrM70FpcKLUmEpNSkCuUqDQiNevWp7S0lM6dOyNTqpGpdSiNdmrUrnvdn8GXX36Z7PxCmrRoxQ8//FDh2KefforOGNiabI1IJDYhEXtyDRJ73IfR7uGtt96qdMznnnsOvcWOL6suJqu9gsHof1JQVJPolmPJm7IOa1hc8KFSiL8HoQS1sF4QhBr/9v9vCIKQe7XxQvF3iBD/XezevZuZM2eyfPnyKh/CHjx48Lp2TF6Ljz76iGeeeSYY53733XekpKQgk8l45JFHfvP4v5VXX32V1Mwc8qvXuC5T+O3btzN62DDumTnzpqQT/H4/r776KqtXr660Gtrv97N582ZefPFFzp49S92GjfEWtiW+83R0RssVUoA///wz0XEJaI0WImPigl43Fy5cYN++fddMho2fMBFvcZdAsUKd3pUW3PzKiNFjUWv1aLQ6li5ddsPXXhlbtmzBaHcT33k65ogUImPjUai1ZI9bTUq/ucg0eqoX166yv9XhIqHrDNKHPo7m33a63iouXbqEQqkic/STASk9rZ6ff/6Z8vJyfBFR+Gp0wlutFUmpGcE+fr+fbj17YXZH4ozNIL96jRtOSp48eZLImDjcydUw2j0YzDbSBi8M+hC9+eabwbYHDx5ELerIHLmM5D4PYjBZmDt3Ls6kamSOfhKJTEHe5JfInbQWuUJxSxLCO3bsQG+y4K3WGqPdw7Jly6+775dffonOZCW65VicKUX0Hzj4N8/nPzl48CCNmjYnPCr2uqq7P/30Uxo1a0GL1u3YuXPnLZ/PuXPnOHDgQEh/+iqEEtQhQvxN6du1K9MNRvZ5fAwwGLnrrrtueIyjR4/SvHlzBEGge/fuwQDrwIED/Pzzz7dsruXl5WRk5+FKzMXqi2XwVYKmm2X37t2MHjOWaSWlHD9+nHETJmHxxeBJq0FUbHyVW+n8fj8LHnmEZq3aMnfe/Cp/cIYMG4ErtZi4jiUYrE66tm+PXRQRJRK8eS3JmfA8Gp3hqouA/fv3k5VXgEKjRyKVkTV2FfklG9FbHMjkCvKmvkze1PVIZHKqFdYI6qCdOXOG/gMHk56dz/DhI3jssceCRoK/snDRIiRyBTKNHntmIwSZHHt2U/JLNmJOKEQik2OKySZ77NOYEwtRqgMyH/asRpgTC5FrzUhVWrLGPIU3sw6PPfYYa9euxRmTRu7ktaT0fxipXIE1tXYg+K3VnRat2qASDUiVIkq9FZvTg1ShJqHrXcjUOmzp9TDaPSSnpmPPbEhy79koRQNakw1fQctAtURWDhKZHF1YMrlTXkYfkR4wVZTJiYqNZ/r0O0lNz0Jl9pA+9HGc+a1QaHTIVCK+un0wxeWTkJxKVGw8vsL2ODIbojTYyC8pI334EgS5HEEmR+uORa4xkNj9HpRaI2abA5PNSVhkNE8+uZKmLVrjzG5ETNuJSBUqwhr0x1e3D1KFmrz8akgUgSRtRJNhxLSZiFSuwhQf+He5xoAjuwnuwg6XdfE2YnZFIFeqglIsCpU6qDn4448/olCLZIxcTniDAQhSOfasRuRP24AjpZDCwiLkGj1SeUA721WtHfasgKFkbNtJiEYrkU1HkDpwARZfNJ27dKV2nXoMGjSY7du3B++J8+fPk5GThyMmDa3JhsFkQa7RE995euABQXwBCo2O/JIyUgcuQKbSkjNxDfGdp+Py+tBbHLgLWiFTiST3eRBbej2GDbvys3vnjLvxRcZQv1HT4ILihx9+QGswE9fpdnzFnahWo2aFPosWLSIsrzF5k19CbQtHbXYjU+uIbTcZT3pNli+vOkD+6KOPWLZs2RVJ7/8kmKCe/FIoQf03JJSgvr4EtSAIAwVB+FgQhI/Dw8N/46seIkSIvxILFyzAoFJhVKsZP2rULR//+PHjNGvWDEEQGDZs2J+mX3vixAl0BhNxnW4nqtkIfBFRNzzG+fPnadC4CVKZnPSs3Fu6DoJAdWyL1u3IzK1W6U7LqVOn4c5rFti5V9CS8RMmsmvXLtzeMHRGC0mp6VeteP7ss89QqEUMUZlIFSpKSkoqbbdnzx5EvYmcCc+TNuhR9MbrN7u/Fosee4yUjGxUoh5f3d5IlRqyb3sm4KWjUBEWFcPCRYsq7fv6669jd3rQGYy/m8fIPffdj6g3ojNZK6xF9+zZw8DBQxk2fGTwfff7/XTv1QetyYpKIzJw0KCbepDx6quv4opNp6B0Eyn95mK0OrBFJuPJa4rD5b3iPZ0zdz5KlRqdwchLL73E2bNnadikOTK5HLlSTWzbScS0Ho/Zar/mzsATJ07w5JNPsn79+qsmVL/66iseeOCBG46Tn3nmGbxpNQJ+NT3uJSOn4Ib632rOnz+Pxe4ksslQwuv1ISI69k+dz9+VUII6RIi/KVu3bsWq1dLUZsem1/PPf/6T8vJyBvbsidNoolndete1devSpUvceeedSCQS0tPTmTxhAga1GoNKxR1TpwKBH65OLVvSrV27KxKj18vp06dZtWpVpT+Sfr+fX3755aZdwc+ePYvLE4a3sD2ujLrUrFMfv9/P+vXrWbJkyS0xVCiqVY+4TrcHpAUy66CSydju8vCJ041MEFCLekaNGXvVMWrXb4i7ejsSu81EqhRxFrQhtt0U9EYzDZs0Q3REIbpikGtNSOTKG9JVszndpPSfR+6kF5Fr9DRt1hyZSkQilSO6Y1FpRDzVWl82FexA/QYN0ehMFJRuIm/qegRBgtLsJqx+f8zuSMrKyjhy5AgOlxdvXhOs4QnUrVcPa1wOORPWYEuvj9Fsw52UT/rwxUQ2G0ViaiZmmwOJVI4luThg0NdoMDFxCWgNZhQ6M1qbl9r16vPQQw/x0UcfYbTYCKvXF40tDEEQkCo1pA54mIQud6I1BILmV155BYVai0wlojNZadC4Ke5qbdFHZiBVqDG6o5EoVKQNfpTkfnOD1c8ytQ6ZRo9Mo8dbsxtRLUaj0FuRypUVKhYAImLiSR0wP6BR7YwirH5/8qasQ6mzIJXJkIlGBImU3IkvkDd1fcCU0eIhbfBCrGl1kYsGpHIVcpWIzuIkPTOHgsJinMnVcSZXp1pRzeB9f/jwYaRyJWqLF2NsHkq9DX14CjkT1qDQmpGLRqRKDQnd7sYclYEglSFT64hsNgKNMwqdwYzK6sMUXw2FRoczvQ5htXtgsTsrmKi88847WMNiLyegH0GuNSHXGDDF5RPXYRpyjQ6VqCWh6wx8xZ1RiIZAgrrTHejNNiKaDA3cL0Wd8BR3wZVRhxkzKlYvbN68GZMzjNSBC/BWa0XHzt0AeO+997BdPnfakEU43L4K/bZv347OaMaaUgvRGUV+SRmJ3Wei0ltwecJuqnLm4MGDFR5Evf7662gNJmQKJR06dQ1JfPzNCCWoQxIfIUL8nfH7/ejVat5yONnu8mBUq29JJfV/cvHiRW677TYEQaBBgwZ/ionZnj170Bot5E1dT/a41SiUyhuucBw6dBhSZcBwW21206df/2t3uoVMn34nrsx65E/bgDurPtNKSunbfyC+Wl3JLynDnVmX2bNnV9n/008/xWB1EdN2EvGdbsfpCau03a8yEpkjl5PY415sDvctvY4lS5bguyz1YU2vd3kXoxJLfDWSes1Cb3FU2Mn6R7Nnz54rqtdPnDhxhafKN998g85sI3fyWtKGLMJott7U+Xbu3InOaCGu0+14ClrSsElzVq5cyQMPPMC+ffsq7XPp0qXg/bthwwZEnQGZXE7LNm3IyMknM7egUv3qf+fcuXMkpabjTq6G1RfLyNFXX6PeDD/++CNmmwNvbhPM7gjuf6Dq+/Nq+P1+jhw58pvj9J9//jkg1zJtA3lT1iGVyv5ypo9/B0IJ6hAh/sb861//4plnnglu6V+6dCn5RhPvO1x0MJoYO/z6K5U3btyI2WxGEAQeMpn53OlGq1Ry4MABPFYrJUYTY4wmkiIjb+k1nDlzhoLCYjRaA3aXh88++4yPPvrohioXdu7cicnhoaB0EzkT16BUqX/zvC5evMisWQ/SsUt3XnrpJZYtW47B6sSbVReLzYFOpWKdzc5qqw2TKLJv3z7OnDnDypUref755yvdAhYRE09Kv7kBgzt7BFKlmvjkNDZv3syJEyeQSGWY4qsHTAUL2zNixEi++eYb2nXsQpv2na6qe+aLiCa+0x1kjnoSpUZLp86dSU7LQK5QoRF1LFjwCC5PGFZvFHaXh+3bt2M023DkNseWXi+gD60UkSo1yJXqoBHivn37mD17Nk8//TRnzpzBYHUgkSvRR6Rj8saiUIlBk8O4xCTUWj1JvWeh0Fvx1u4R0EBOqYlUoUaQyZGLBhRKJe+//z6pmbkoRD2JvR/AGJ0dGEclEtViDLaMBkgVKsrKytDqDag0Wpq3bM25c+f44osvMNscyNU6kvs8SHSr8YFqY7UOucaAs1o7JJflPXInvkD2uNVIZHI0rhjkohFjdBZmm6PCImr6nXdhcoZjjMlFrjEgyBTINXp0YclIlRosqXWQKtQojQ7UVh9SpQZTfMClPKr5KMKj47j99tsR9SY8mXXRGc384x//4JFHHuGRRx65ooLf4fKitgY0wNMGPYpMqUEiV2KIyiK/pIzIJsOwJNXAndMYiUyOLbMRWk88EpkSQa5CF5YSfJCRNXYVBaWb0JhdqDRaDCYL77zzDt9//z06o5nEbjPxFHfFEJlBXIdp6M028gqLWbFiBatXryYlI4f6jZvSvUcvFEoVeqOJpOQ0NLYwolvdhkJnRpBIyatWdIWr+lNPPYU7pfplzcGpVC8OmMucO3eOlPRMXPHZmBw+pt955Q6Pjz76iD59+iIaraQOeBhfza6kZeZcVSZn//79bNmypcI8/H4/ffoNQC3qEHV61q1bFzSkdKcVY3ZFMK30djZt2kT3Xn148KE5wc+n3+8PfnZD/G8RSlALzf7DJPHDa40Xir9DhPjfwe/3Yzcaec5q5y2HE4NKfV0ydDfL4sWLUSgUxMfH/y5b66+G3++ncbMW2MLiMDl91ywYqQyXL4KEbneTX7IRjSOS2nXr/Q4zrZpjx46RX70GEqmU3IJCjhw5wpBhI/AUtCRv6ss4k6sxf/78Kvvv2rULrcFM2uCFRLUYQ3xyWpVtZz/40OV4z3zLjd527dqFwWzFW70NZncks2bNJjE1g8Qe9wVkLeIyefnll2/pOX8LY24bh1KtQS3qmDt3Lt9++y0QSL6KOiNpQxYR12Ea3vCbX/8+//zz5FUvpn3HLjdUgHH69GlUWiOx7aeQM3ENGqOdDz744Lr6fvLJJ1g8keSXlJE5chkmi/1mp39Vdu/ezdy5c1m/fv0VxxY88ghJaVm0btexShPJY8eOkZ6Vi0ojEhkTV2XS/noImtfHZWGPSqFthxvXlg/x2wklqEOECBFk9uzZdDSa2OfxUWIw0qtjxxvqv3PnTqQSCRJBoKeoRatUsmvXLsxqDXvdXna5vcik0lv6NHLJkiU4E/PJL9lIeP1+mMxWEk0mLFptpQYilXHu3Dl84ZF4ClriTCmiXsMmv3leM+6eiS0qhahmI9FbHLz99tu8/fbbLF68mB9++IHnnn0Wj8VCuMPBpk2buHTpEsW5uRSbzWSZTPTo0OGKMefMmYfe4kB0xaI02DFHZ9K1e6/g8YJq1TFEZZIxYinmmCzuu+8+vOGRhNXpRXi9Pri9YVU+Xd6yZQtqrT5QqaDWodBZkKlE1KKOhx9+mFbtOjB1Wgkff/wxS5YsweH2otYakMiVaGy+gGyGQkHmqBWkDV6IWtQGz+X3+/n222/58ccfcYdFojTYsWbUR6YSkWsMKHRmfLV7ItfoMJotAeNCrRmpQoW3ZregAaUjpxmx7aag0hoQtXq03kSUBjuCIKB1x5E3ZR3uwo5IVWJAh1o04PZFkNB1BrmT12Jy+Ni8eTNr167lgw8+IK9aEWG1uqLQWUjpP4+8KeuQi0Y0zmikah0SmYKknvcT33k6ErkSmVoXDJB1viSGDB0KBIxiHn74YaZNm8bo0aNJSAokf9NHLCWl/3yMFjs2hwuzzUHt2rWpW7cuc+bMwe0NxxGdgt5oYevWrQwZOpywen0DVfY1uzFu/IQK79HBgwd54oknePnllxkyZAgSqZzIpsNx5DRDphIJq9cXrSee7NuewZnfGrnGQHhUDK1at0Wu1iJRqJCLRlQmJ1KFirQhizDF5aMPT8WV2xS5SiR7wvMBh+nqNQBYvXo1Zocb2eXXVOuKRWswk5yeyXvvvXfFfXT69GnKy8vJzK2GObkmOl8iOkdYUFbm22+/ZcuWLcGE7rFjx4iKjccZnYrOaK4QoJ46dYo1a9ZUqSd94MABmrZojd0dhtFip1qNmuzZs6eqjyRvv/02epMFZ3QqHl948CHW559/jtHmJnfSWpJ63ocvIprNmzfjjEmloHQTqQMfwe7yojNZiWg8FIM3juEjRnH+/HmKa9dDazBjstiuGfSfO3eO1atX88ILL4SMUf4L+F9PUAuC8LQgCD8JglAuCMI+QRD6CYIwWBCEwZePSwRBWCAIwi5BEL68lv40ofg7RIj/OTZu3IjdaESvVrPwD9CJ3rp1K1arFbPZfEvMzFaseJLuvfrw5JMrrzh26dIlBg4Zislip6hWHX766SfeeOMN3n333Uqrpy9evMiHH37Iv/71r0rPVVBYTFi9vmQMW4xcNPDss8/+5vnfDP8eX/z888+kZmQjSCQ4POFk5VfnmWeeqbLv/PkPY7E5iYlPYv369TRv1ZbiOvV56aWXeOyxx3jttdcAeGLxYtSiFlGr5+mnqx6vKpYuWUKdvDyG9O3LyZMnrzj++eef0759ewYNGsSxY8dYsmQperMNZ2wGcYnJQQnDP5tvvvkGrdFCzvjnArsSRQNao4UZd98DwCOPPorBZMETFsE//vGPW3LO8vJyPvzww6B5OgTu5W3btgWT47/y3nvvodAaiet0O7mT16LUWyvE7mfPnq1yp8CBAwfQGc1EtxqHr6g9+YXFt2T+18v777+PweYiqed9eHKb0qlL90rb3X///bjSa5PQdQZy0YBGZ6xUAud6OXv2LKtWreK5554LVU//SYQS1CFC/AXZu3cvn3322R+exHj33XfR642YRR0WnY5PPvnkhsdYtWoVSrkcQRDIzMjg8OHD1MzLo7bJTDWTiXZNm97SOa9YsQJHXCZ5U1/GV7MrTlHPD24vc01mGhdf/4/p/v37mTathHvvvbdKvekboXHzVsS0nRjQWy5oyZw5c6ps++OPPzJnzhxMajV73V6+dnmQS6WVBg2LFi3C5I4kd9JaUgcuQKM3oVJrqFGrLj/++CP1GjbBZHPQvlNXDh06hFyhDOoYK9UiR44cYcbMe6hdvzEPzHoQv99PeXk5q1atQqPVE9FkWNBQMKbtRFQGKxqDmagWY7DHZtGocVPUOhPW1Nrkl5ThLepI7br1WL16NVK5gqwxT5E+9HFUGpFLly5x8eJFGjZuhs5kQyZToDS5iG49HoXOgikun/ySMsLq9cMQnYVcrUUl6gIJeLMLmVqP2uIlvvN0NI5IwhsNJrbdFKQKNVKlhpjW4zHG5KCPSL88542E1e+P6I4LJLXr98NsdxHXYRo545/DYHXicHlwJ+ahFHVYHB4sTg8KjZbYdpPJGL4EmUpEkMpJ6TcXd1FHpEo1Cr0VvS8RldaANa0u8Z2nIxeNyBVKvvjiC9y+cOyJ1VAbbKRnZqNQaZBpTSiNDqQKNbHxCVy4cIGwiCiUBhsSpQa12YOoM7BgwYLg0/6HH16ALTKZhC53Yg2LZ+nSpcH3/fjx43jCIjDHFyDT6FEZHTgz6qFQi7Ro1YYRo0ZjsLlQaE1IZHLUOiPLly8PBp+tW7dGbfXhKvh/mRaJXIXGEYXFaqdX796YXeHkTnqRyKbDKapZh6+//ppadRuQmVtARmYWOqMFmUJFbPsSYttOwmJzVBnYDhg4EIlCiT2zEVKFCrVWj1qrR64WsUcmkZiSFlyUnDp1is2bN1/VsLAy2rTviDuvBcm9Z2OwuSpNmP87Ldu2J7LpiMD1Z9Vn3rx5wGWDF7Od7NueIa7T7UTGJrB79250RjMxbSYEqvHlSuzp9Sgo3URch2kotUYWL16MIzaD/GkbiGox5qru8n6/n+La9XDEZWKPTKZ9py43dK0h/nj+1xPUv8dfKP4OESLEb+XfzRMfffTRmx5n9erVmJxhRDYdjtHhuyJp9eyzz2KLSCJz5HK8BS3o3bdqSY5Lly7RuFkLzO4IdCYrsx+8MqZ/7LHHMNmcqLV6ppWUVjrOuXPn+O677ypNfO3du5eWbdpTo3a96y6wuV6atmyNJ79FwGDRZL0uCcDktEzCancnovFQZAo1nsy6mJxh3H33Pag1WtKHPk7qwEdQi9obWq++++67eHQ6llmstDCaGNb/yte9TbuOOGIzcacVk5yWSXl5OV9++SXr1q1jx44d7Nu3jw0bNlRalLB7924GDx3O6LG3sWPHDj7//PObloC8Frt27UJrtJA66BFkah25k9eSOfpJVGrNDUnEHDt2jIZNmmO2OejRu2+VidELFy5QvagmFk8kWoOJlSuf4tKlSzRp3hKTMwyt0cK8eQ8H2//8889otPqAZKNciTssIrjua9mmHTK5Ao8vnH/+85+Vnm/Lli3Urt+I9h27sH///uu6lt9q/nfixAnGjRtHXEIiOkc4uZPXEt95Otn5hZW2nzVrFo7UYmQaPYnd7yG570NotPpbspYP8ecQSlCHCPEXYP/+/TSrW5f0mBj69e6NWaMhUm+gSe3af1iS+vz58zjdXsLq9MRTrQ0JV9nadS38fj8LFixAoVAQHR3NBx98wNKlS1m5cuUtDxLOnz9Pk+YtkUpluLxhRIhalpit9DcY6dau3S09143wxBOLMTp8eAvbozOa+fLLL69oc+bMGUaOGo1aq8eVWgOZUoNBJWJQiYS7XJWOe+jQoYBeV41O6Ow+zLE55Ex4HndWAyZOmgwEXv8Jk6YQHh2HwxOOPTYTZ0IuxbXr8cgjj2CNSCSuYwkWXyxPPvkkvTt3JtdkwqLRYYzORmXxkDlyOZ6iTgF5ipRawcSc2eHFntkIU3w18qa+jCunCaPGjKVH777oPIlI5EokMgU9evYE4M0338Tqi8VXtzdqixd3USfkohGtLxGtJ56cCWtw5DRHqlAFFiRqPWprGHLRiESpQabUoLZ4kF/WcJbIldgyGmCMzqagdBMJ3e5GobehtnqRKjVIL5sORjYdjkJnRalUozeakckVNG3eEk9qIUk970NpdJLafz6u3GaYbE7kam2g/+W/3MlryRy1AolMHpDRGLwwYNyY0QCNMwqV2Y1MqUZjMCNXa5GLRmwZDZBpDEikMiRSOSprGNb0usgUKjp37Y5MJWJNr4dUKaLQW5GpRDKzc2jQuBkdOnVl7969lN4xnfyimrRu044nn3wyGKS++uqrmMISAlIcjkiSe88KGOEkV2Pt2rVAQPJiy5YtlX5n7NixA6lMjjE6m6wxT2GKK8Bd1BFbWl3atG3HxYsXScvMQaYSEQ0mPvjgA+ISUwiv34+4DtPQGUx8++23qEUdeZNfImfC88jkiuD8jhw5QvtOXUnLyqNJsxYoRT1yjR53YQfUFi9xHUvR+QLJ9/ySMlwJ2bzwwgs39dl64403SM/OQ6UzkdDlTgpKN2GISGXVqlVV9tm/fz8JyWlYU2phiMpCECR4w6OCAfekKdOQK5SYLDa2bt0KBBavco0ea1odoluPQypX4S7siNoWhsHh4+6778YaFk/uxBeIqN+Phk2bV3n+XzUb86dtIG/ySyFdu/8CQgnqUPwdIsR/C5988gm18/OpkZXNO++882dP5zdz/PhxmjZtiiAIDB8+vMLv5b59+1i6dOk1NXSHjRhJWL1+gYKFun0YNXpMheMLFy7Ekx6IbyObjqBaUTFtO3Zm/IRJVyS3vvrqK4x2N3lT15M+9HFM1opyBx9//DF6k5XIZiOwx2YwZeqVBoO7du3C6fZhsDiIiU/k4MGDFY5n5VXDV9yZmDYT0RnNVxz/LcQlpZLce3ZAIiM+iw0bNgSP/fTTT+zYseOKHZYaUUf22KeJ7TANfVgKBaWbSOr1AAkpGajUIlljV5E5agUKparC2s7v93PnXTOIjE2gZZv2V/gZLVu2jBZWK/s8PhabrdQruNIYT64ISOzll5RhsDj49ttvGTJsBAq1FqVoQKbU4IzNRG+yVLgPLly4gMcXjq9GR1w5TZCrtZhdYWTnVatUiu3s2bN88sknVcpHXA+Tp5YglcmRyBTofMlYU+vcsC732HHjcWfWI3PkcmzRacycObPSdm+++Sa28HjySzaS1OsB5GodTZu3xGgL3JtpgxdisTsr9HnnnXdo0rwV3Xr0Ckr0PP/889ijUsmbso6IBv1p3LzlVefn9/uvuX7//vvviU9KRSaT06lr95vOX+QWVA/s2izuijEmF43Jid5s46mnnqq0/YkTJ8gtKESQSMke+zQ5E9ag0oi3RMv+xx9/JC0zB7lCSZv2HX+3Bx0hKhJKUIcI8Regeb16DDaaWGO1Y5RKmWsys8ftJd5ovGZV4K3ihx9+QGu0kF9SRt6UdUik0t9sNvDOO+/gdrvRaDSsXHnl9rpbyYULF3jrrbdQabSoDHa0euNVNZf/CNavX8+MGTP49NNPgUCA+/HHH+P3+/nnP/9JSlo6apMDS3Ix+SVlyMWATlhSz/vQaHWcOHGi0nG//vprxo0bT3FxMbakGuSXbMRX3Jmhw0YA8Nxzz2ENiyN14AJcGXVp2LgJS5cu5ezZswwcPJSw+v2CMhLjJ0xEVCr50uXhC6cLrUpDZEwcKo0Ws82B0R2DXDTgyGmO2mjHExaB1h2P6IxGECTEJ6Vy4MABqhXVQKE1YYqvhlSp4d577wUCSVOj3Y3K5CKhy10UlG7CnFiIIJWhMNiQSGWIzmicea2wOVwodBbyp20gbdAjAd1pqZwuXbsxZsxYRL0RqVIkrvN0pAo19syGqMxuJFIFglyFIJMjUajx1emFPasRctGELiyF8OhY3nzzTVavXo3e7EB0x2GIzAgm3eWiCblGj0ytI7zREGyZjZCLRpQaHSqNiCWhGubwJNQGKznjnyO8QX+kSg2u7CYUlG7CmdcCqVJErrMgkcnJHPUkGcOXIJHKkcjVKFQiEVGx6HxJyNR69BFp5JeUEdt2EnK1jqgWo/EVdSA6LpEPP/yQ9KwcXCmF2GPSaduhE+Xl5Tz44IPIlSqimo9CY4/AlFCd6Fa3oTNaqtxu+p9s27aN+MQUFCoNKouH3Elr8dbqgVShRqZQIdrCSOk/D3tyEeMnTEKj1ZM15inyp23AYHXy9ddf07lbD8yucIx2NyP+zTClc7ceeHIak9h9JjKNnoSuM8iZ8DxSuQqlzkRE4yGY4qvhqtaG1AHzMdrdN/XdduLECXQGE3EdpmHLbIhMKaIPT0WuEnn33Xer7JeelYs7vyVKowOdL5m8KevwFravUDFVXl5eofLj0KFDqEUdmaOfJHXgAuQKJaLFhTmhOiarnQMHDtCtZ2+kUhkR0bFX/b45d+4cFpuDyKbDCa/fl/ComBu+9hB/LKEEdSj+/jty5syZoFFuiP8O/H4/XpuN+41m5pssWPV6zp8//2dP6zdz8eJFxo4diyAINGzYkKNHj7J3795AkUZWXQxWB089VfWD6bKyMvQWB97iLujNdjZu3MjMO++ka5s2vPzyyxw5coTouASs3mi0eiOi3khk0xG4Uovp1rN3hbH279+PVm8iuc+DRDUbSWxCcoXjixYtwpfbOBBXdiylZt2GV8xnwOAh+Gp2CRgWZjfknnvuqXDcYLKQOWoF+SVlmF3hfP7557/h1avI3LnzMdrcuJOrER4VE/TheOqpVYh6IwariybNW1ZIKg4cPBRrWCy2yGTkai0xbSfizqxHl+49uXPG3ahFLWpRy4MPzalwrrKyMszuCFL6z8OT04i+/QdWOP7TTz/hsVppbrXi1GqJT0pFI+po2aZ98L5Ny8zBW9iW8Pr90egMjBkzBo3BiiOvBQWlm3DkNsdT1InwBgPo3qtPcOy9e/eiM1mDa1lBIiVv2kacsRm8+OKLFeZx5MgRYuITsXqj0JsszJs3j9WrV1cqH3L8+HE+/vjjKtdlixcvxuCOIr7zdERnNKPHjKm0XVV079WH8MtrM1t6fRRqDWNuG3dFuy+//BK92U7aoEcJq9cHXVgylsgUVKKOlP7ziGo+itjElGueb/Xq1cEdgJFNhtKgcbMq23733XdExcYjlcpo3Kxlld8tbdp3IqxWN3InvoAtMvmmZDYuXLiAIJEEd8JmjFiG3mSttMjrP5k6rRStwYzOZK2wPvkt9OrTD29hO3InvoAjLpNly5Zdtf2BAwf46quvQjJ+v5Grxd9SIUSIEH8I+/bsEerJFUK+Uin4FAph24ULwrcXLwrHLl4UTCbTHzIHt9stREVGCj+8dK+w94W7hAaNmgpS6W/7GigsLBQ++eQTITc3V+jevbswcuRIoby8/DfP9ccffxSOHj1a4d8UCoUw/e57BW+DQULGqBWCITxFeO+996oc49KlS8L8hx8WBgwaLGzdulUQBEE4d+6cMGH0aKFZ7drC7FmzhHfffVe4ePHiTc+zWbNmwtSpU4XMzEyh9PbpQvWadYX6TVsLrdq0F/KrFwmHdXECUrlwcu924dg3HwiXzp0SDOFpgtabIAgSqXDq1KlKx42PjxfCPG5hx8cfC9Kd7wv/vL+tcH7nW8JtY0cLBw4cEObNf1iQWcIFrStGEESzsPnNt4R+AwcLxbXqCI0a1BN+eXuV8PWyscKxzzYI7dq2EdITE4X5Z88Ia8+dE0SVQnA6nQJ+vyARJIJMqRASe9wnXDjxixDmsgrnBZVgjMsTJDKZkJNfIHy940vBbrcLZ85eEKJajBESOt8hGMNTBK1WKwwbMUqYed8DQoPaNYULp44K+/+xSvjpvTXC8V3bBLlGL/jPHheUBptw7siPwoFPNwogCJfOnxZO//StcGLPl4JcNAoqg1V4bs0LQtlrbwjFNYoFiUQQdr14vwB+4czBPYJUphTkol6QCAhel1NQ6syCRCoT7JmNBP/Fc4LWmyDs27dfaNO1r9B3wGBB4KKg9yUKZw7uEb5cOFjYtXaW4KrWRnDkNBcEQSIc/OwV4dAXrwv+i+eF8gvnBb9ELpz5eZdgUV0SGtevI3z6YBfhp3+sEoRLF4ST+/8pXLpYLgjlZwXBf1FwZDUSBEEi4L8k4L8kCIIgqAwWoUnTJkLN4iLh1I87BQRBuHD8oHDh+AHh9C/fC1KZTLhw4rBw+JuPhN179gh1GjYRdn79jeBtPk4wZbUUXnpxjdC5Ww/hrrlPCDpfirDn1ceEc0d/EU5+/5nww2uPC1IJwfviyJEjQu16DQWT1S707NPvins3OztbeOO1TYJaoxH8588Inz/cV/jxndVCdKvbBIlSFLS+ZEHniRe0EZnCjq+/FgYNGijsfnqysHvVBCEtJVmIjY0VVj25XHjh6eVCSmK8sHzFk0L1omLh1KlTws5vdgn6+CLBGJ0taB1RwskftgtnD+wWJBJBGNyvjyDsfF04vftTQfHLl8KxVx8Spk4YJ1SrVq3S+/ujjz4SwqNiBb3RLMya/WCFY0ePHhX8giDIRKOg9SQIly6cFUR3nKBWq4TExMQqP4v/3P6F4KndS3AXdhBkalGQyBSCTK0Vzl+4EGwjl8sFiUQS/H+r1Srceed0Yfsj/YVvV04Qli9fJtx7xxRhYJvawofvvSPY7XZh5fKlQnn5BWH3rm+E+Pj4Ks+vUqmE11/dJMRe+k5I0RwWXtu0scq2IUKECPFn8NADDwhWo1GwGU3C0sWL/+zphLhOysvLhQNHjwqtNBqhqUYjXDh/Xjh58uSfPa3fjEwmE2bPni088cQTwptvvilUq1ZNWL58uSCGZwi+FhMER50BwmNLllfZv3HjxsKLz64S+taOFV5as1p47623hPWzZwuZm7cI3du0ER599FFh+xefCa+ue054bOEjgiksQXDmNhOs+e2EDz/6uMJYHo9HWPjIw8LxzQ8L4r63hTXPPl3heJ06dYTj334o7HvtMeHQW8uEDm1bXjEfrSgKl84cE/wXzwv+sycEURQrHO/Tp7ew97nbhb3PlQhhbruQlJR0zdfohx9+ENauXSvs3bv3qu1GjhwulK1bI8y5fYzw+ScfCwaDQRAEQZg4tUSIbFcqJAx+Qnh/2+fCtm3bgn0WPvKwsGLhXOHhe0uFp59cJuj3bhGM5QeF/JxsYdqUycK+vXuEH/f9IIwZParCufbt2ydonNGCzhMvaMIzhN17f6hw3OVyCdu++kro+NBDQp1WrYWTok9IGrpEeH/HbmHx5e+dVza+LGTbEX5+d7WgTygWFi1eLkg1euHSmROCv/y8UH7qqHDx3Cnh/P6vhOjIiODYHo9HcLucwg8bHhK+fe4uQWV0CNsfHy4c3vet8P7771eYx7PPPiucUTuF2H6PClJbjDDxjnuEUaX3C9WLagoX/i023LVrlxAdlyA0adtFiIlPFL7//vsrXt+dO78R9HGFgjm+QLCm1RHOnD1f4fjJkyeFqdNKhGHDRwrffPNN8N8XL14itGrbQXDZ7cLxbWuFz+b1Fk7s+UJI6jNXWPDwAuHEiRMVxklNTRXuKJkqfLtqsnDgk01CTMvbBLU9UmjRtLFwuGyWoNq9RXj+maeqvhEu07p1ayE10iV8PrujcHLbC8Ks+2ZW2XbSlBLhojdPyJm8Vvhk517hmWeeqbTdmbNnBJnWJEiVakGm1gpnz5695jz+E4VCISSlpAvnj/4k7H5lofDdS7OEpk2bCKmpqdfsO+Ou6cJXn38ifPrR+8K8h2bf8Lkr49TpM4JcaxakSo0gU+uFM2fOVNl2/fr1QlRsvFBUp6FQs079CvfQXwVAOH369J89jd9GVZnrv/pfqIIjxH8bSxYvxqnVkmexkBgRQWZ8PB6LhXkPPfSHzuPYsWPMmzePRYsWce7cuSrbvffee8yYMYPXX3/9usa9cOECo0ePRhAEatSowY8//nhT8/P7/fQbMAiNzoBGq7vC9KRT1+54C9uSOXI5Vl8s69atq3Ks0jumY4tKIbzBAHRGC59//jljhw+ngdFEZ60OmUrE5I6kRq26170V3+/38+CDc6jToAkzZt5TwSRQoVSSNXYVeVPWodLqcSfmXd4uNwuZxohMrcPtC0dntmG0e+jWo1eFsY8ePcprr70W1FtzGI1ssTv53u3Fo9Wybds2zp49S2R0LNbE6sg1erTuWKQKNXEdppE6YD5ShQqlRos9vS7WuFyqFdUEAluYWjRqhMXmxOH2Yo/PI3/aBsJq98ATFolUJkOtN5GckobG5MQQlYnK6iM8Mjp4n/TuNwBXRh3iO92BweKgsLg27uyGhNXti1KjQ64WsSTXwhCTg0ytwxKTSa1atZDI5KQNXkjmqBVI5Qq0zkikSg0ylRapQkNMm0nI1Dpi20/Bk98ST1gkglSGRCkikcrRehPIm/oy4Q0HYXN60OiMqC1eZGotgkSGVKFCdEaTX1JGfJc7kcjk5JdsJGfiGqQyOUqDnfySMlL6zUWht6IyuUjqPQuF1kzmqBVENh2O1h2HXKNHZzQTm5hCVNMRZI97FpXRhiCRkJqZTavWrVHpzBiicy5LfMiQKtQ43R569O6L0e5GodFjjM3DGJODRK7EFxGN2xeG2uIhpe8cTAnVsSQXoxANKA02tJ545GodUpmcnIlrAlX2GgP6qEyMcfnkTllHeN3edL18rwwZNgJPbhMyRz+J0RONwxNGVFwir776avA+evrpp/Gm1yRvyjqimo9GqtKSM3ENctGIQmvGEJWJVKFmwYIF+P1+HnvsMXLyCmjfqUtQK3v4iFEYY3JJ7T8fjT2CnLwCSm+/HZ3ZhisxD4vdidPjxeH28uKLL3L69OlrbrU7fPgwO3fu5NKlS8QlpRLdehwZw5egNVp47733yKteA63BSKs27VCoRZQGGzKVFoXOQmRsPK+88spVKxbad+yCPSYdR1I1NHoTWqMFh8t7Xbsszp8//5vlOC5dusT777/PV1999ZvGCfHHIYQqqEPx99+I48ePo1Op+NDp4i2HE61KFaoC+y9iQI8eJBiNpJhMdGjR4s+ezi3nV/NEvV6P1mAhvtPtOFNrMGLU9VeqNi4u5glzQFqihVaPStQH5SEOHDiA1eHCk9cMa1gcU6dVriF9Nb788ktmzpwZlF37d06fPk37Tl3QGMxI5UrqNWxyheSE3+/nlVde4Zlnnrku/dzPP/8cg9mKN7UQvckS3K15I6RkZBPVfBQZwxajM1mr1CJ+99130ZtthDcchDUsngcva3CvWbOGli1bcf/99wfbHjhwAI8vHFd8FjqjmbKysirP36ffAMLq9Ax4g2Q34r777gsee+ihh/BVaxWUYFFr9aj0FgSJBJvLS1RsAj379Kuw4+Pnn3+mfqOmOLzhNG/eHLXeRESTYaT0m4vWYGLv3r3BtqtXr8YWmUTmqBXIVFoyRiwLSIrYfWzbti3YbvSYsXiKOhDVYjT6sGQGDBx0xXV89NFH6IwWwnIboTNZglJxv1K/UVNc6bXx1uiM1mDivffe44UXXsDkCsdV2B6ZUo1CFfiL73wXyX0eRKPVV7mb5csvv8RktWMPj8PjC7/muvrdd98lIjoOq93JE4sXA4H77dChQ9eMb9u070R4/X7kl2zEmZjP4sv9/5Nt27ZhttrRmazkFhTetAb0gQMH6NuvP7l5Bdxxxx2/+26QH3/8kUcffZQNGzZcoZ/95ZdfYnW4MFgcpKRnBnceVEZKRjbxnaeTX7IRe2QSmzZt+l3nfaP88MMPxMQnIlcoKSgs/ssYjVbG1eLvPz3Qvdm/UIAc4r+Rr776ik2bNv3lRf3fffddbFotgw1G3FrdFVumrsaqVasQRRGXy8Xbb799w+f++uuv0Zvt5E56kdT+87HaK+o0//TTTxQUFWOy2Bk+cvRVjRpq1K5PfKc7AiaGuY14/PHHaVBYyBNmKw61SOrABeRP24DFE8mHH354XfN76qmnsHhjiOswDdERQXRsPLt27QJAJeqJaTuRpJ73IVOo0BrMhDcYEJAn0JqQKkVUopbly5fzySefVJj7Tz/9hMsThisuE73RwpYtW0iOiuIBo5mXbQ7MGg27du0iPSsHtcWLQmsmotEQZAoVEpmCjBFLyZ28NpD0VYqBrW+TX0Imk+P3+3nnnXdQarREtxqHPbsp+vBU8qdtwFerKw0aNUFrshHTZgL6iDSkSjXuwo6Y4gtQGp1ojRaefHIlJ06coE//gRQU1WLZsuW4vOGkD30cQ2Qm9qzGhDcciEyhQqHRoVCqkas0eArbI5HJSR/6OFmjVyKRKcge/yw5k9YiSOVIlRoSus1E64mnoHQTqQMfQarUIDoikCjUyDR6NI4o0oc9gTWlFjpPPHXrN2TylCmsXr0ahUpFXMfbkSpF1LYIZBojUqUGY0wuxpgc5Gotot6E3hmFTKVFIlMg15pJ6D4TtdVH/rQNJHafiUJvwxCVhSu7MXK1jriOpeRNXY/ZG4PWYAwk3xMLMUVnYrLaSU5NJ7zhIPJLyrDGZCGVK/DV6R2QcGk3JSALEp/Nxo0bue+++3BmNaCgdFNAvsMWRk5uPsawJApKN5HYfSZKUY+rWhvCGwxALhpwVWuLVKFGIpWj88TT/3Kw3LFzNyIaDiR/2gakSjXxne7AV7sXMqUGvcnK7NmzqVGzNhKZAo0zGqXRgUwlBv6UGlRaU0DDW63Daneybds2TBYbkU2G4avRkfSsXADq1G9ERKPBgW2WOU2RyOTYIxJQijpkCiWiVs+GDRu4cOECL7zwAiqNFrlKJDo+qcLiZ9u2bbz11lu89NJLaPVGDBYHNWrVQaU1onFEEt16PCaHl6YtWuKt3oasMU+hMdoJq9snsA0yowGuam1R6wwoVGpsTjdffPFFpZ/N8vJyVqxYwcKFCzl69Cj79+//w7ZA+/1+WrRui9kdgd5s5867Zvwh5w3x2wglqEPx99+JXxPU7ztcvGkPJaj/2/D7/WzevJlXX331f/Z927VrF8nJychkMqJj4xkybESlusJV8cjDD+NRKOip0yMqNThTCnniiSeCx/fs2cOsWbN49tlnf7PR238yYdJknCk1SOk3F2t4PE8//fRvHnP02LF4a3YLrGNqdWfkqNE3PMZnn31GdFwiBrOV+x+YVWW7Bx98EF+1VuSXlOGr24cateqyZs0aFKIBX+2eyEUD3S97z0Cg4OmVV14JroGq4p///CdWhwuzM4yI6FgOHDgQPPbee++hM1kJbzgQS1gcd999D5s3b67UGPGbb76h/8BBRMUl4q3ehqSe96E32zHbHKQNXkj+tA2YnD4+++yzYJ9Lly7Rf+BgjBYbOpMVd2F7YttOQqpQUVJ6e7DdjBl3o7WHo/Um4sxvhUar56mnnuLZZ5/l1KlTTCu9nZp1GzJ58lQef/zxSuNQrcFI9tinKSjdhMrkQtQZGDRoEN7iLij0VhK7zyRj+BKUahGjxYbV4WLNmjVXfe2OHj3Kxx9/fF2JRm94JLHtppA6cAEanYGff/75mn1+ZceOHThcXjRaAwWFxVfNU5w5c4bdu3f/ZonQP4pDhw7hcHnxZjfA7I7krruv1P4+c+YMu3btumYiv0atuoTX70fGiGUY7Z5rauT/0QwYPARfYfvAg4aUIubOnftnT6lKQgnqECFC3BAlJSWM1BvY5/Fxt9FEv27dbqj/F198QUxMDHK5nHnz5t1QELh7925Eg4nMUSuI7zwdb3jkVdv//PPPPPvss/Ts0gWbxYZCqSKnoDo///wz9953PxZfbECbzmjhn//8J0uXLMGn02PW6Air35/kvg+hNZj57rvvrjm3Dz74AJPNgUytJ6rFmEDyOSyZ3IJCjh07hlSuQqbWBZLEMjmvv/467Tp0Qq3RoraFkz9tA7FtJ5FXvcYVY8+fPx9vTsNgErN5q7Z8+umnZCUk4DVbyEpKIjkhMZBULSkjufdsFDozCp0Zc3KtYNJRolAj11nw1OiCLbMh0XGJ/Pzzzyg1AYPAuA7TAuZ3Sg1yhZKwyGhmzJiBM6NuUK9ZdMdhTatDfOfp6MNTkam1aPWmYHXtrwwbORqLLxapQhUMyizucD799FOmT5+Or3prCko3Yc8OJDjlClXAADGtHo6cpkTGxJOUmoFCb0Wq1KCPSENpdOKp0Qm1xYtcoyc9PYPI6FjkGj2WpBrEtB6PJyI6mHgsuf0OZHJlIJmt1qM0OpBrTYQ1GIAlpRY6XxLugtbIVBrs2U3Ivu0ZRHcsCqUahUaHxmAJJNVFPe6iTkjkCiwptZBp9AHzSIeb8EaDESRS8qdtIL+kDJlKQ2ZmDu7q7cgauwqV1YdUoUZ0xQSTwTpPPDanm0OHDvHDDz9gc7oxRqQgVahRaA3k5OVjsDhI6jULb/U2FBXXQqbWojK50NgjUBodxLadRM6ENSh1FjZu3AgETJKMFhtWbxQSqYzs8c8hU+tI6HY3Sb1mIZHJ0UdmIVWoiW0/FUtqbWQqLQVFNVmyZAnt27cPmkxq7JG0bN0Oo81NfklZoGJcIwKBqhapXIXOl4RUocKW0YC0IYuQi0ZyJqwhsfs9yFQicoUCrcGMyuTCU7MbYXX7YLU7KS8vZ+q0UgxWF1ZvNHqLPWCeOG0DGqsXS0otErvNRKbU0KBxE5q2bE1k0+Hkl5ShMnuwpdcla8xT6MNTA6aeegt5U18msvEQ6jduel3fJX8ku3btQme2kTf15UCljkJFTkHhVauKQvz5hBLUofj778a8hx5Co1CgValYvnTpnz2dP5SLFy+ydevWCpWT/8uUl5fz8ssvs3Hjxv+aZBIEHqQ0adIEQRAYMWLEDe9uGjFiJGqtHmdqTYwWG99///3vM9H/oEPnbkQ0GRowt85vUaFS+GaZP38+9pgMkvs8iD02g3nz5gGBYp7p06ezcuXKW5Zo37ZtGzqTBV14KnLRgGiyER0TR1i9vgETynr90BrNwfY//vgjjZo2Jyk9i+XLV1x17FOnTrFjx45Kd+6+8sor9BswkIULF1V5LWfOnMHu8uCr1Q2lwU5Sz/sCZpBxmQwePBSt0YLZHUF8Uir9Bgys1P/koYceQrR6MURn46vbh/zCmsFjp0+fRmeykTrgYQpKN6G1uDG6IrHHZBAeFYstKpW4Trdjdkfy/PPPVzrHlm3aY4rOwpHbPBATZzdi/Pjx6IxmpAo16UMfJ2fCGqRKNc64TIwWW5XV7NfD6dOnKb39DgYOHspXX32F3mgmfejj5E1+CZ3ZxjfffHND4124cIFffvnlpu4nv9/PZ5999pfcQbhu3To8SYEdzcl9HiQ+Jf2mx/r6669JSs1AbzTf1A6M35v+Awfhq9GJ/JKNuFKLmTNnzp89pSoJJahDhAhxQ6xfv55wnY77jWaSDQYWLVx4RZvdu3fz1VdfVflDdvToUZo3b44gCHTv3v2Gqsbvvf8BVGoNVoeLN998s8p2e/bswWU2U1NvQCUIGF0xZI9bjTu/JX36DcDv97Ny5UomTZpcYUGydetW7rjjDlIzc/BFxrBkydLrmld4VCwxbSYEq3xlaj2RzUeh0Zv48ssvkalE8qasu1wpLA8uCDZu3IjJFUHO+OeIaDiQWnUbXDH2mjVrLpsePoI7sx7DRozi+PHjZOcVoBYk3GkwIpMpkGsDBi6eGl3Q6E0YY/OxeRMpUqkYptWhEgTMScUBiQmFClFvJiE5FZ0viahmI5GqRGRqHXK1lk2bNuH3+9m1axei3ogtvT5Kgx2V2YPGHoFCZ0HrScAUl4/J4a1g5nL69Gkys3NRqDUoNToskSl4MusSE5/IuXPnuOeee1CIeizJtdA4Y9C5ozHbXMhUWrTeBKRyFWPGjOHcuXPk5OYh11tQ6Kx4a3ULJDEdUUhVIga7m7Vr12J3eRCdUcjUeoyeWO6acTcHDx4MmHooNchFE0m9ZpFfUoba6iWuQwmu6u0wJxcT0XgIUqWGsPr9yS8pwxRfjUmTJnHq1Cl27tzJgQMHuO/+B1CLejT2cJRGBwqjA6lSTWRMPBH1+6H1xGNLr48jL2DCpzVakMiUyFRalEYnctEUqA6/7Rlyxj+HXKFky5YtwYXVwYMHkcpkxHedgTO/FUpRT6/evYmKS6RRsxZs3LiRrl27IpPJkSqUyNVa4jrdTu7ktSj0VlzesGBS/siRI2zbto0hw4aj1JoCrta3PUPOhDVIZHJs2U3RXjYfMcbmYUmuSWzbSeiMFnyRMcS0mRh8jZs2a05aRjau5OoYvXFk5+Zz+PBhnn76aaxRadjS66P1JmGITCex+0zkGj05458joesMlAYH2eOevSy1IiVv6nryp21AJeo4cOAAmsvmg3lT16PQ6IlsPJTM0U8iF41EtxpH3rSNmDzRvPnmm3z44YdIFSpUJhcqsxe5WotGq8fq9JJbUIglLP5ygnrwdSWoDx8+zBdffHFL3bj379/PCy+8wNRpJegMJrzhkUHTxkOHDiHqDCT1vJ/olmNR6CzEdSxBazBVWsXy+eefs3nz5v8Jk6v/ZkIJ6lD8/Xfk3Llzf7vvHr/fT4v69UkyGvHqdNwxdeqfPaXfFb/fT9PmrbBHJmELj6djlxsrNLmV81i3bh2PP/44hw8fvu5+Fy9eZMyYMRXME2+EN954g/nz51+zuvdW8tZbb6E3WvAk5WOxO9m9e/d19Ttx4gR3zZjBtGkl/PTTTxWOlZeXM3L0WBJTMxk+agzl5eXs27cPo8WGp3pbrOEJV02U/Ro/O9zeq0oi/sqbb74ZkJyb8Dy5E19AJpej0JoIbzgQpd5GclpGsG3dho3xFbUnsfs96ExWduzYcV3XezN88803GO0eYttNQR+RjlSuwhWfRWxCEidPnmTnzp106tIVa3QGvrp90RstVyRov/jiC/QmK5FNhmGPy2bsuPEVjvfo3RdnUjXC6vULFICMW01+yUbkGj2ey1Xs3qIO3HnnnZXO8ezZszRq3BjR7MRXtzc6k5UPP/yQjz/+mHbtO6DSaFGotegj0smbsg5nbnMmT5ly069Jm/adcKYWE1a7ByarnXvuvfeyGaaTTl2737IHF88//zxWuwub081LL71UaZve/QZgtLvRWxyMnzj5usY9fvw4deo3RCPqaNK81Q3tlLgRvv76a3QmC9Gtx+HOrEunrt1/l/P8FdizZw/hUTGoNCLZedWqNPz8KxBKUIcIEeKGeWrlSnp06MCjl3Vq/515Dz2ERaPBq9PRo0OHKn8EL126xJ133olEIiE9PZ1vv/32us9/PT+sc+bMoYvJzD6Pj7YaEUtcPvklZYQ3GEjbDp2r7PfNN9/w+uuv37A2k9FiI23IIvKmrEOu0aPQ21DozOi9cfTtNwCFUk1EoyHEtJmA3eWpcC0DhwxFrlASER3Hjh07OHXqFGVlZUHXYr/fz4RJUwiPiqVV2w4cP36cmTNnYonJIkrU86HThVqpJqLxENRWH3K1FrWow13YHp1Mxiabg9uMZgxqLS6XB5laS2y7KeROfAG5Rh+UOrGm1EbjiESusyBXqsktKOTLL7/km2++oV379iQkpxIVm4DdHYbD5UKp0WJ2RVC3QeNgwv3SpUskpqQhFw0BremUWmTl5DF//nwOHz7MP/7xD/RmO5FNh6OxR2BOLCKi8VDkSg2eok6B6pKaXbHYnQDMmjULU1w+Cd3uRqpQB3SH9VbSBj2KN7cRCxYsYOrUqZjjC0gfvgR7dlNUWiMSmQytJx7pZVkTX+2epA6Yj0ylRZDKkKnEgMSFQok1rR5yrQmFNlDJYDRXDKbnz5+PTCXiLuyATK3Dnt2E1IELUBns2J1uBEGCVKFGkEixZzVB54lDqlTjKe5CROMhSGQKpAo1iT3uI7n3bKRyJRqdAbc3jJ07d9KxS7egZrUxrgBTfDWkChUanZGimrXQGG1oHJEojc5ANbkvEYlMgUSuxJxQiDYsmf4DBgTnW1ZWhtXuQqZUo7aFBaqZNQaUBjtSdaD62xCdhUytJ7n37ID2X2IeKelZRDQaRM7ENWjMge2FJ0+eJD4xGaMvAWdabeKTUvjll19we8PxpBaiM9spKCzG6nDh9kUglckDkib1+pE76UW0ZjtylYjWE48pKo2CwmL8fj/h0bFENRtBQre70Yg6ImPiA/Ig7jgUOjMytQ5BIqW4dj3Onj2LWqMlvsudZI17BlFvDFbsl5eX07RFaxRKFXaX55pO32+//TZ6kwWzK4yUjCxOnjx5Q5/zyti5cydGiw13cuB9i2kzidh2U4iIjgu2ef7554mIjkOh0RHX6XbyS8owu8Kv0Iyc/eAc9BYHtogECgqLf7P2dYibJ5SgDsXfIf4e7Ny5E7dWx263lw+dLgwazZ89pd+VQ4cOodJoyZv6ckDuTa64qu/M78WUceNIMhhpbrYQFxZ2w7/HTzzxBHK5nISEhBuuCP2jOXr0KMuXL2fx4sUVZCyuRVHNOrjSa+PJb05kTNw1H6w///zzeNOKAhWhvWeRklH5d/L58+fRaPUk955FUq9ZiDrDNce+ePEieqOJ+E53ENlsFAqVmvr16+Nw+8grqF4hgR4dn0RynwcDknYxaRW8UG4158+fx+ZwodDbiGg0GLnWRGZWdoX7yRsehVSuRKbWYY1IYvXq1VeM89prr9G5aw9m3D3zitfi7NmzTL/zLvr0G4BcrcVbuyfRrcYhlSsR9SZ8uY3RmywVinX+k4sXL/LAA7Pp0r1XcOfjrxw8eJBJkyZjDk9GLhqRqUSi4xKr1KC+FnaXl4zhSwKvf3Qyb7/9Nnv27GHHjh23LDl97tw5NKKO5L4Pkdw7cA/9p7zQr981uZPWkj3uWeQKxXXFtVOmTsOVUZec8c/hTKrOrFlVy8/8VsrKymjYtAVDh4/8SydtbwWXLl3iyJEjt1zC6FYTSlCHCBHilmLR6XjL4eRbtxeXVnvNoHHjxo2YzWZMJhMbNmy4ZfN46aWXiDcYWGO1U0OpQqVUo9CaMFzFSOT5559HZ7TgjEklNiGJEydO8Pnnn/Piiy9WavK2fft21qxZw4EDB1jwyCNodAZ0Zjsp6ZlY4vJJHfgIvrp90egMOFNqoNCZcbi9fPDBB1eM9euPxalTp0hITsUZm45GZ6Bater07Nnzii1pt99xB66sBphMLorVIqJChVwlotHq6d6jB77cRgGN4Lh87AolBk88Ma3HY7A60eoNJHS5i5S+c1CoNIhmF868FperV29DoTOTPW41prgClGoNL7/8MgDVi2vjK2p/ueLWzKuvvkpaRhaCRIIvPJL9+/fzwQcfoNCZyZv6Mil95yDXmmjboRMAv/zyC23btsUan0d+SRkxbSYgWlyo1CIaswutN5HUgQswRGYiUygBOHnyJFFxiQgSCXKNHm9YBDqTDV9mHcw2B++++y6esEgkMgVKnRmJIiClovMlIZErcRd1wpnXCqXJhcrsxppWF7nGgD2rMaLZQefOnbFFpWLLaIBCZ0YXloI9uwlJ/1YJMmToMHy1e1BQugmNI5LY9gEdaUNkBosWLSInvzpRzUeRM+F5FHorksva3ykD5pPQdQZqnZFqhUVoDWb0RgumiGTyS8oIq92Deg0aYfXFkjf5JaJbjkXrS0IiU5A1dhXZ41YjkcpJGfAw+SUbUVs8mOKrI3oSAnItWhOJ3WfirdmNrJy84H1kMFlI7HEfaYMeDbwuJifpQx8nfejjgWrxiEgGDx5Ml67dMLvC8WbWweUJ45133sEXEYVMJqffgEH4/X4uXbqEIJFgSQkYWkoVal577TUOHTrE6tWr+fjjj4HAzgO92U54gwEYXFEo1BpUGpGateugt7pRGZ0IEilWh4vt27fz+eefk51Xjbik1GDlTnZeAUqDHbXVh7uwA/nTNmCPz6VDhw5MmjwZjc6A1mhh8NDhV3x+Tp48ecU25cOHD7N9+/YKwXDdhk2IbjmW/JIyXMnVWLHi6ltPr4cZM2bgqdaGgtJNRDQajC2jPqkDHsbqcPHJJ58wfOQoHnzoIcrLy5k0ZRomZxjO2AyycguuWAQ53D7SBj1KfsnGG9K/D3HrCSWoQ/F3iL8Hhw8fxiSKPGWxMdNoJiky8s+e0u/KhQsXMFvtRLUYQ2TTYTjc3j8lYRHldPKG3ck+j48si4W33nrrhsfYsmULVqsVs9nM5s2bf4dZ/nZ+/vnngI/MZdPAN954o8LxPXv2VJq09vv9SKUy8qaso6B0E3qzvVL95X/nm2++QWc0E95wEI6EPAYNGVZpu9OnT6NQqsge9yzZ41ajUKquq0p18+bNhEXFIlOq8RR1xBadzrARo4CA1Eazlm0Ca4zkNPRmO664TBKSU2/aX+n06dNkZOeh0Ohxh0VUWXnerHlLwuv3D+hx1+mNqDMGjx09ehS5Uk3GiKWk9JuLRKa4IWmXc+fO8eijjzJ79mwOHz6MxxeBLiwZfUQaalHH+vXrWbRoEf/617+ue0y/339Fovb8+fOER8cR0XhIQCc4IYeVK1de95j/To/efbHHZeOp1gab082xY8euOP/YcePRiDpiE5JvaO6/cvLkSRQqdeAeuu0Z5ArlFQ+6Tp8+jVZvILH7PXhr90Qjaq9p6AgwbMRIfMWdgpI4pbfffsPzC/HfSyhBHSJEiFtKjMfDArOFTXYHJo3muowYdu3aRWZmJhKJhNtvv/2aeniXLl1iztx5dOvRm/Xr11c4Vl5eztmzZ/H7/dw7Ywa5SUl0aduWZcuW8frrr1/16WhWXnXiO08PVpSOHjUKp1ZLbauVKLe7whbERYsWodbqcSfm43B52LlzJ4mp6QGtM5sDs9WOOz4LtajDmRjQt0rscR+RcYmVXt+WLVvo1rM3PXv1xhGTRlLP+5GqROSiAWdBazQ6YwVX6AMHDhCbkIRGZ0Cp0WGNzsASkUjDJs349NNP0ZmsRDQajDUqFYvDQ0zr8YHAraAFQ4cOxRsehd3l4YknFpOSmoZEpsCcVAOlyYnS6AxUVKfWRRuWTLUatQCwOd2kD3uC/JIyNBYPSrUGqUKNPbspSoONoho1+eijj5AqNWQMW0x0y7FIlRq2b9/O8ePH8YRF4M6og9rsQR+WgtHhZcTIUUyZMgVHWjEKvRW51oTSaKdh42YVXp9PP/2ULVu2cP78eT7++GOWLVvGyy+/TIuWrfFeNn2wJhWi1FkwJxQiF43Ys5thS69HXIcSFDoLsW0nIbpjUdvCA0FPTmMeeOABRo+9DblaJLzBAGLbTUGq1CBVagiPjuO28RN4/vnn0du9RDUfFTC0VKgDFc0aLYcPHyYtK5e4jiXkTX0ZldmNXDSg9SUFDB1dMahEPYcOHQJg4cKFOBPzyZu6Hl9hexo1boo1LI68KesCDwdEIxKZnOQ+D5Lafz4SmQJvcVcSutyFVK5CotAgkSlI6DqDhK4zkMiVCDIFw4YNC342ZHIFmSOXkzPheaRyJYJEhjEuH2NsLqLehMXmoFnLNhw7doyysjI6dOhA165dg/pw/3l/RkbHorFHkDdlHRGNh5CSkX3FYvbee+/FW9iOgtJNRLccS8u27dm/fz9FtergyG2B1hO4xoiGA6uU4cgpKMJT3BWtNxFvzW7kl2zEEJWJ3hOHSi2ycOHC694Wu3nzZnRGMyaHl5z86sGFV/uOXfDV6EjW6JVYw+Kua1vr1Xj88SfwhEWgdUSQ3Hs2puhMlKIOjc7ArFmz0Zss+Gr3wBKVRv9Bg/H7/WzdupUXX3yx0sVgRk4e4fX7ktTzfrQGU/B6y8vLr+oefi0OHz5805U4f1dCCepQ/B3i78O6devIiI2lKDOzSrPdW4Hf72f16tXcddddbN++/Xc7z7X46KOPKKpVl1p1G1y16vNqfP/99zzzzDM3Xb3cvF59uhlNPGgyY9XprvAyuV5+NU+Uy+UsrER28M/mkUcewZNVPxgfNW7eCgjcC+06dkKp0aFQaXioEk3YgsJi3Jn18VRrjS8i6rqkyd5++2269+rDXTPuvqpcz4RJU9AaLWiNFiZNmXbd17NhwwY8SfkB8/L+84lJSAZgxIgRmMKSyBy9EldaLQYMHMT69etveEfqv9Ord1+MsXmkDnwE0RVTQUbk31mxYkWgiKVWj8AOPEFC5249uHTpEgcPHkQt6si+7Rkyhi1Gqdbc0AOZpi1a40jIw51Zj7jEZLZs2YLLG4aoMzD7wSvfs2vx4YcfYnW4kMnkDBk2osJcWrVtT1idnuROXos9KpVnn332hseHwEOoBQsWUFJaWmky/h//+AcmZxhZY54iosEAimvXu6nzTJg0Ba3BjGgwUVJ6R6VtNmzYgNnmQKm34EqvjcPl5eDBg1cdd9euXThcXizucDxhEezfv/+m5hfiv5NQgjpEiL85Fy9e5Mcff7xlW8nfe+89EsMj8FqtLF2y5Lr7nT59mp49eyIIAs2aNau0YvlX7r3vfqwRSUQ2GYbeYuedd94BAgsMUWdAoVRV+UN5NVq17YC3eltS+s/DaHeTk5DIMouVfR4fDa1WnnrqKebNf5iMnAKkSjWiOx611Ys7rRbdunXDlVIUkBGp348Wrdsxa9YswiOjUSjUhNXvhzWlJmqDlTbtOlR4mv2vf/0LvckSqL6MzUYpGi7r+yYQ3nBgQNusVg9GjR7NAw88wN13381XX31FeXk5n3/+ORqtgfxpG8ibsg6JVMpPP/3Ea6+9Ro/efZkwYSIqUYdCZ8Ge1QilRhuUr9i3bx8OlxdrZDJShQpdWApSZSABKlPrkIsG1BYvbl8Ely5dCgQiVk/AHFGjxxiTiyW5OGCg2LEUV1gkTz/9NEqDFZlGj1w0Eh4ZDQS065wxqRSUbiJt8EKMFnswOXjo0CHsThcSmRxBIkXrjEBnMAerxv1+P9u2batgsDF23HiMdg9amxeNPZy8aRswx+UjlckDZoQaA95aPVDbIxCkMpQmF4bobHTeBJRqDY7IJDy+8OCWxEAVwGryp21AptKiC0shdeACrOHxPPPMMyxbtpyMrDw0FhfhDQejMliDhjSbN29GZzAhVapRGuy4qrVDptYR12FawKgluTorV67k448/plHTFji9EQgSCfFJqezdu5f2nbqgUKlRqkWkCjWOnKbIRSNSuRKl0YVCZ0FtCye2/TRUFg8SqYycCWvImfA8glSKISqL4SNHcfHiRd555x1c3nCkyoCsh+iMxlPcJSBpotYEdMRNblRmN0OHj6Rl6zZIFSrUFi9ShYo5c+Zw7tw5nnvuOdavX8+lS5dYvnw5encMkU2Ho9Bbkal1DB4ytMJn58MPPwxUOHsTUOtNzJ79IFGx8eisHqRyBaI7lryp64lqNoI69RsF+128eJHVq1fzxBNPsHTpUnQmK7bIZBRqEZlChdLkRCYasaXXQyXq+Oijj67rs1xQoxax7SYHqlDisoJu6Pv27SM7vzo6g4nBQ4f/pqqxTz/9FL3ZTkL3ezGEJWOwOhkwaAjbt2/nl19+Ye3atTgTA4u45L4PoRQN7N2796pjfvPNN1SvUQuXN4y0rDyGDh/J66+/jtFsRaFS06lr9xsytPL7/XTv1QeVRkRrMP6u22z/1wglqEPxd4gQt5r7Z84kyWBgoMGITa+/LhPuW8X777/P8EGDmDtnzhVb8W+Uzz//HKtORzObHatWV6nx3LU4dOgQA3v1omX9+r+5+vnYsWNB88SRI0f+peSxXnrpJSzeGFIHzMedVT+4C+zzzz9HphLJnfQiaUMWoVCqr+h79OhRppWUctu48TedwL8au3btuuF78IcffsBgtuKr0xNHQi79Bw7mzrtmoDFY0dgjMERm4inqwIhRo3/z/GrWqRdcBzlymuF0e4FAbDNv/sO0bt+RpUuXATBv3jxEvRFHbnNyJ6/FGhYXlNKYMq0UtahFrdHSrXsPnn766ev+DCiUSnInvkB+SRlGm+uGJCkrIyMnn+jW48iZsAaT01fhs7Njx47AekgioU27Dr/5c1oVGzduxOyLIW3IIuI6lpKRk3/TY+3evTtY2b9v3z6GDR/JiFGjKxSopWbmBs0rPSnVgjH51Th9+jTbt28PFVf8DQklqEOE+Jtw5swZOjRvjlWvp13Tppw+fZojR/6PvfMMk6JY23BNzjnPbM45B3LOOeecc86woCgIImJCQQRURBFBQCQdQQyIigFFVFBREZAMSt5ld+7vx+B87iEthqOes/d18YPtqurqnu6Z6rff93nOkB4Xj02jIdLjKXN24p+F3+9n/vz5yOVyoqKibpjVsWnTJvQWO9Gtxgcygis0CzrR2l0eErs/QNboFWgMJh555BEWLVpU5szDY8eOUbt+Q8Kj47h/zlx6dOhAB5OZF212fHo9M2bMwOKJILbtFHTeOMIbDMQUk4vWaGXs2LE4YzLImbiWkMpt6dCpCwqVhrA6fXBl1EOu1GBPr0dk0xEB2QW1JmjCsWLFCkLSqwezrMOi4vCFRSBX6VDbQohqNgq9zUNkdCzWqAykSjVytY6o2HgWL16MzekmrF4/fNW7oNAa8YaGB01jVqxYgTOxAgldZ+PKaUJcYmrweB944AG8OQ0D0gQNBhITn0SDBg1Qm5xIZHIyhi8jb8oGDFYnX331FX6/H5PFhiEqC40rEnHNCDCq+RgMock0btqMBx54AGtMFpFNRxBap3dQ7/vQoUMYTFYimwzHm12fRk1bBOfRb8AgdM5wzLF5KPRWcie9Qmid3vTu2w+Azl27Y3b6MFidTJoyFb/fj1yhJGvMi+ROXo9MqUFIpKjtYTjS62A0m5GptDgy6iNVqLEkVUWht2BLrYnBbOXtt99m586dpfTpBg0ZhtEZgtYZjkJjILzBNbf1nIbMnTuXoqIiPCHhyNQGZGo9SoMDd0goiclpGCx2qteui9nuJG3QU+RP3Rx8IZDc+2EUegsrV67EbLUT0XAwIVXbk5yWWerau//++3HE56K2h5HQdRa5k19Fb/ch1wS06CIaDSZ73GpUJhehEVEorml8y1R6FDoTs2fPpmGTZli9kcjVeiQKDfrQgJZd2pDFyDUGpAo14fUHoA9NQkjlNGraAo3RQnj9AeRP3Yw9rQ5SmZwKlavijEnHFhpLj159uHr1KilpmUiVGpL7PEJo7Z5oDJbgPQsBx3ad0Uxo7V44EiqSmZWDJ6P2NXf3XmiMFhQqDVaHi48//jh43B06dcEWnog7uRJJqRl88sknvPrqq5w5c4aZ981CZbQHH068VTsycWLZTGPqN25KaM2uZIxYhtUbyWuvvQYEKg8KCqZy9/Tpd2ys9O+sW7cOd3zWtft2FklpWaW2Hzp0CIVai7dqRwyhyei9McydO/e243755ZfoTVaiW4zFnV4Tm8tHdMtx5E5ch80XdUcP8rt27cLsCiVn4lriO04nOj7xjo/zf5XyAHX5+ruccsrKjh07SImKItbnY+3atTdtVz07m+esdg57Q2hus/8hMlNl4auvvsKm0zHBYCTfZGLimDG/a7yJ48cz1GDksDeEiQYjg3/lgwGB4NI999zL0OEjfpN8wG/h1+aJ9evXv07WAAK/idHxSbi8ITzzzJ2f+6KiIvbv339Hetl+v5/JU6YSERNPi9btgs8k//rXv5DJlaQNfoq4Dncju0GA+q/i2WeXkZyeTeNmLW9YCbt7924GDhrC/ffP4cqVK5isNtIGPUVewUYUBisWm+N3B3IBWrdti1SuQuuOQSpXBU0IFy58EmtIDFHNRmF2hbBmzRoAKlWrSWTTkeROfhVHRFIwEaa4uJjPP/+cmPhEPKlVsUcm07VHrzLNITuvIraEChjDUzFarHdk2Pfuu+8yd+7cUskVSWmZxLSbSkTjoagNVgqmBows/X4/1WvVxRWXjTM2k9r1GpZ5P3fK2PETUGj0gecZjf4PSV4oKSkhPCoGX8VWePObEZ/0/8+bnbp0x5NRO2BkabGXSjj6p7Jt2zb69h/AE08s+NtrOv/TKA9Ql1PO/wiz7ruPeiYzH7k8NDCZmHHvvcyePZtWJhOHPD4GGU0M6dfvr54mAO+88w4ejweNRlNKf+sXLSt3fktUZlfABNBkCQaybU43ST0fJGvMSvQKJVlGE/UtVjITEspUFvcL27dvZ+nSpezfv59OrVqRk5jIE/PnU1BQgK9K+2BA15JQGZXRxoABgygqKqJpy9ZIZXLCo2NZuXIlCr2V/KmbyRr1AhKpHK1MjkEqw5ffkuyxL6EzWfn22285ePAgRosNb8VWWHwxTJwcKLVbvXo1FStXJadCZeY//gRKlQZjZAZRLcaQN2UDOk8MBoeP7j16ojfb0TjCCanRDWdMelDP+55770WqVOPMaYLK4iEmPoG+AwZy7Ngxli9fjj08kdT+T+BOq8moMWPp168fcp0ZtS2U8AaDiO90LzqDKShRUbdBY8wRKaisXrJGr8ASXwmFwYYlsQp6o5leffoGtJJjcpCpNKW09t58800aN2tJv4GDSgUHTVY7GcOfJa9gE0qTk8imI9G7IoiMTaBv/wGotQZyJ64jc9QLSKQy2rVsicVmJ7LpCOI63I1UqcYcXxm51oTWHY1Sow9q0fmqd8WSWBVXdiNCIyL59NNPKZg6ja49epXS9/X7/Wzfvp0NGzawfft2DCYrrph0dEYzs2bNYv369VhCYsmbsgFXXnOkChVSlRaV2UVK38ewp9YiMjYBZ2IFQqp2RCJXYghPQ2GwodAaeeCBBzDaXOQVbCJ77EsolCq6du9JckY2Q0eMYvLkyTgz6hHbrgCpUoNcY8TicNOiVRsUGu21ILyEkIhozpw5w9atW1GoNSR0nU14vX5ExSVgtDrJnfwqGcOeRqpUI6TygFa1xohMqcGSEDDOietwNzK1nu3btxMdl4g1qRrpgxej88YjJFKUGj06TyyOrIbI5IpgSbLK7CavYCPJvR5Ca7TgDQ1HrlAyYtRotm7diicuI5ghb7E7cESnkTlyOd7cxvQfOJhTp04F78Pjx49zzz33IJHJyRq9IpCZ4vDy5ZdfBj+TkpISmrVoidYRRmidPuhtHnr16sX+/ftvew9/++23pKRnoTOaGD5yVFBPOy4xGU9OQ9wZtcnOq1jm74Qbce7cOSJj4nDHZWGwOFi8+PqKkW7de6JzhOGp1A5rSOwNjXn+nTVr1uBNqhA0OdIaAw7jORPXYvVG8sYbb5R5jh9//DEmu4fscauIaTOZ+OTU23cqB7j1Arn83//2+nvp4sW4zGaiPJ7fpJtbzn8Xfr8fj9XKAouVlTY7Jo3mpnJy40eOpLLJxHSjGbtO9x8L1Dz//PM0sTs47A3hRZudyunpv2u8xYsXk2E08aLNTgWTiXkPPlhqe/NWbXElVyakWicsductqyL/aBYtWoRcLicxMfG6IGloRDTRLcaS3CeQbVsWGcJf+Pnnn0lMScNk92CxOfjkk09+1zwvXryIzWxGIVOgVKipV6PG7xrvj+D06dOMGzcOtd5EQueZ+Cq2pH6jJjdtf/HiRSpWCXiUKPRWopqPRqM3cuDAgT9kPklpWUS3nkRYvf44YtJZtWoVAN179saSUBlzbB7GyAwmTgokL+zatQuz1Y5aq6dB46ZcvXqVQ4cOER4Vg1KjQ6bSkTX2JbJGvYBWbyi1r/PnzzN12l0MHjqMr776Kvj3NWvWoNIZ8VXthN7qLFP2L8DWrVsxmG2EVGyB3mRl48aNFBYWsnXrVpQqDSqzi8jGwzA5fKxbt46zZ8+iVGkCFbGTX0WuUF6n3X3u3DnqNmiMwWShZet2Qc3nkpKSMhv8Xbly5VqSz0qyx61GoVL/Lgm5Xzh16hRqrZ68gk3kFWxEJldw+fJlTp06Rd/+A4lNTCavUtXgy4R/Mh988AF6s42wun2xhcUz+/4/z8Txf5HyAHU55fyPMH7MGPobTRz2hjDQaGLMyJHMmzeP+iYz33l8dDWZGDnkevOx34vf7+fChQv4/X7OnDlDm/adSM3MZcHChbfsd/ToUapWrRos1ysqKuLEiRMo1VpyJq4lusU4JBIp7733XrDP6tWr0egMKFRq1DI5n7k9HPL4CDMYypzB8dBDj2B2+vClV8ftDQ0GZgE++ugj9CYLvtyGKDR6nB4fM++bxZUrV3juueeYO3cuRosNT1wmRosNjc6ALaEyRncMWpmcNjoDq20O7Eo1ce3vQmsIlNyXlJSwd+9eYuMTUGl0aPVGNm3adN15jIqNR2MPJbR2b7LHrULjjCC8wSAiYxNw+cLQhyZhislFrv5/GY/mrdoSWrs3obV7YYrKxhiVha9Cc9KzcikpKdeYlYEAAQAASURBVGH4yFGERkTTsk17zp8/z9q1a1HoTCT3figQ7NUagyaJEFi81qxdB1N4CnkFm4hqNgpTdDa5k15BrdVjcwZ0qvOnbsYWGhssXTtw4ADVa9clJTOH5LR0VGoNDRo349KlS1SqVhNPXlMiGg9FIg+YHEqVGqJajMEck4NCrSO61QQMvkS8MhmTjSYMEgkqrR6pSktU8zEodBZUFg+eyu2QKVTonGFEtRiDTG1AIleQmZPHgQMH6NC5CxqLG6lCjUKjv+l1sWfPHgwmM5aEClhC42jcpBlWb0QguGy0k9RjLhGNhmKOyw/oCrYYQ+Vqtbhv1iyGjxhJnfoNURptmOLy8VXrgtnqIDktE3dSBUy+2IChpTOCxO4P4IjNJDevAjJ1QIpFrrMQUqsnETFxRMclIJXKqF2vYamsjU8//RSzM4S8KRtIG7QIk8WO1mAioetsIhsPQ6rUYIzMJHPU80Q1H4NcrUNrMOGp1BaNzcugwYF7/ccff8Tm8iJVqpEqNaiMdtS2EJJ6PogxMgO9yYLf76eoqIjktAy0Nh9KrYHQiCgimwwPmGk6Q9iyZQs2pxtvhRY4olJp1aYtvvAoFCoNORUqlbqP3nnnHQxmK7JrGt3uCq2IaDgYqVzJ4KHDWbhwIQ8//DAff/wxY8eORa5UozLakam0+LLrYzBbg9f3zTh69Cjbtm3j5ZdfJiElnbSsXLZs2RKQw7m2eJZKZbfUZywL586d45VXXrnpg+qFCxfo0LkrUXGJjJswqUxZFidPnsTh9uLLqovFE86gwUOw2BzIFUo6d+txR5kafr+foSNGIVcoMFvt7Nixo8x9/9cpD1CXr79vxIkTJzCp1fzL4eQpi41Qh+OvnlI5fzElJSWo5HI+cXn42u3FrFYH5cP+naKiImbNmEHPjh2vM8v7Mzlw4AA2vZ7hBiMZJhN3TZ78u8YrKSlh6sSJVExNZdyIEddJaticbjKGPR2QZohIKLVW/0+wfft2rFYrVquV7du3B/9uMFlIH7yY3EmvYLA6y/TC+xeeeOIJPKlVySvYRHi9frRs0/6mbV9//XVSM3PIrVjlloHsH3/8kfvuu48FCxbcUSLNn0FRURGxCUlYo9LRuqOvvSSfS0xC8k37PP7447iSKpI3ZQPeSm0x211/aABy1Jix2KNS8VXrhMFsDUpJjB07FpXZTWy7ArTOCEaOHBnsU1hYyMmTJ4NrpUGDh17zqtkUCGrHV8SV24zw6LhS+6rfqAmu1GqEVO2IzekOBnwnTJiIr1rnoBF2z96lqwVuRv+Bg//fuLFGV2QKJTqjEU9IGBKpDI0zktxJr+Cr3pkJEyZSXFyM2xtKWJ1ehNXuiTc0/Lr13qTJU3Cn1SRz5HKcCXk8/PDD7N+/H48vDIVSRWZOHh999NEt51VcXIzeGHgBkdjtfrR6w3Xmhr8Fv99PQnIa5ogUbDGZ5FaoDECFytXw5jQirFYPbE7379IkP3bsGK3bdaRi1ZrXPSf/J3n00UcJzW9K/tTNxLSZRN2GN3+JU86d848IUAshlgghTggh9pal/f/CArmccu6U7777jhCHg0SLBZ/dzoEDB7hw4QJ1q1RBKpGQm5LC8ePH/9B9nj17lvy0NFRyORnx8bRo0w5vdgMSutyH0ea67YK1qKiIESNGIISgSpUq7NmzB5VKg15vRaM1YjVbr+tz5coVzp8/T8X0dPqZzNxjMuMwmW77Zvm1114jLTMbjcGCr1qXgKRAUgVefvnlUu327t3L/Pnzg9m3fr+fqjVq44rLwhSagMYZEViMVOtMj169adGiBVqtDrvVy0KzlcYGMzKZIiDTodJicnipWac+27ZtwxYSTe7k9cR1uJv45LTr5njkyBE6de6KwWxDSKToQ5Mx6czo5HKERELupFfIK9iIXKUlJSOHDRs2sPDJJ7F4wgmp0TUod2FNqoZUKrthoMvv99OpS3cUKjVaveGGC4CLFy+SmZOHye5BqdFhsLmwhcTQonVbqteuhy+/GVHNRmEwWzl69Cjnz59HY7Ag1xgwRmUikStJH7oUV2IF5s2bx/Hjx+nWszc6k42IxsOIbjkeU3R2QDqh80xcvnBkSjVms4v7TRYOe0Popzciv2YiqTQ68FbpQHznGQHdbIMFmVKDwmDDFJOLK7cZFpuDixcvYrE5MMXkkDV6BdaEynTs1PmG18PWrVtR6kzIdeZACZxKQ/uOnRASKTK1nohGg0nqNQ+pQo3WFY1UoWLdunVcunSJhQsXMnny5EBZoisSpdGByenj/fffD+gsG83YsxriqdTumgRGb0LCo4hoMhydNx6ZxoBMpcVodeLKaUTu5Fdxxefw1FNPBedXXFxM1Rq1sYUEXiIYrQ5q1q5LREw86Vm5rFu3DqPZiqdCK0yeSBo2aozJYsVgMjNt2rRSn/2ePXuw2J14q3YkpEY3XHnNyJ+6mbB6/VHqTDz11GIgcD++8847fP311ySlZRLX/i5yJ6/HFhLDM888Q99+/ahfvwFNmzZDpdUT0WAgodU7E/tvDzeNmrYgsvEwlCYn0a0mYk2ugUytJ7rFWJRaI47YLGyxWYHPPCYHmVpPcp9H0YckEttuKr785reUyvj4448xWmy4olORypXEtZ9GdIux2J1uImPi8OY1xZNdn/Ss3JuO8Vdz5MgRnnjiieD9V1JSckdlpf9OUVFReQniHVIeoC4PUN+I77//HrtWy9duL2873Zg0mr96SuX8DZg2aRJunY4wg4FenTr91dO5IZ988gnjx45l8eLFd+Rl8Fto17Ezzvg8vBVbYXd5bii38WfzzTffkJiYiFwu58knnwTgwXkPozNZMTm8tGrb/o5+F5ctW4YjOo3ssS/hq9Sa7j1737DdhQsX0BvNxLadQmSTYXhCwv6Q4/mj8fv9pTSOv/rqK0wOL9nj16C2h6HzxGK0Opn/+OM3HSMYoC7YSGi1jmWWzSgrxcXFPP7444wePaaU7OPESZPwVelwba3aj159bl4BPHjocDx5zcgr2Ig5Lh+NKwqdO4ox/yZzYzRbyRy5PCB5FxLN7t27gYDJn9HuCVTOesJvKA3z9ttvM2z4CJYuXRq8ppYsWYLVF010y3GozC6imo/GGJmJt3L7gHxiWArmmBz0ZluwMm7fvn00b9WGFq3blcri9vv9rFq1iqrVahBSrVPgGTW/GdPuuosWrdsRVrsXeVM2oA9JQK018PDDj97yvG7ZsgVfWCSekPBgEtLVq1dZvnw5S5YsuS5zuyycPHkSlzcEe2w2aoOZJxctAkCl0ZI99iXyp27G7PT9Lsmf6rXq4qvYipg2k9AbLbf1dfmz+OSTTwIJa9U6Y/VF3fZ8l3Nn/FMC1NWEEFnlAepyyvntbNu2jcY1a9KmefPrvtD/LBOGe6ZPD0qIdDaa8Lq9xHecHvhhTanECy+8UKr9vn37mDFjBitXriy1aHz++efRarU4HA6sKjVrbQ6ettiw6HRAQF/7ww8/LJWl+eOPP9KzY0faNm5827fJe/fuRanRY4zKJKzBQKRyJebYfPRmK5999tkt+548eRKlWovTG4fZYEUqJCT3fRRnQh73z5kDwPLlz6NUqVEJgdGXQNboFdhTamJNrkHelA3YQqJZuHAhJoeX5D6PoDS7kEildOzS7aafzY4dO4iLjqGxRssHLg9alQZv5baE1OqBXGMgpvVk9EYLq1evJis9ncz0DFQ6I46M+oQ3HIRCrS11vn7hpZdewu0LIzQ8KqjbC4GH8pkzZ9KoaTNi4pOQSKTYXV5q16tP79592LJlC8XFxZw4cYIu3XtSp0Hj4IJrwsRJWOIrkjHsaXS+BCRyJfFdZ+HJacToMWOCgbe6DRrjq9iS6BbjkMpV2FJroTDYaNiwMb7kikQ1G4VbJmO8wYheIkWhMVChUhVkSg2p/R8nr2ATaosHty8UtT0MqUJN1ugVgUWRK5Q9e/aQkZmFIyugu+2p1I5ev8qEOHfuHK3adiAiJp4OnTojkavRemJwV2iNRKEmJT0DldlJXMfpARNCrRGNKxKpQo1Ko2PmrNlUrlYTV2I+WpsvmHHhzGmC2WoLZigkpKTjrdw+ELCPCMiI3H///RgsdpyxWciUGpJ6zSO0di/UVi95BRtxJ1diwYIFPPjgQ4RHx1Gzbn1++OEHevTshSOxImmDFuGIyeTxXz1IfPnll9x9990sWLAAjc5ASt/HiG03Fec1kxkIGKXojBaMkQGN6ZBaPZHKVRjC05BrTXgqt6N1++sftv/1r3+hM5jQGS3Uqd8Qs82Br0p7TOEpgWxnjYG8go3kTFh73cuQHr364M1rSlTz0UgVKiRSGY7MBuRMXIeQSMiZuBZXfktCanS7JtPSBUdmAxQGG77qXTA5fWzZsuWG98XRo0cJj44jtHYvskavQKpQkzvpFbLHrUImV3D48GHGjB3HxEmTr7v+9+/fT1ZuBUIioln0q5cB5fxvUh6gLg9Q3wi/30+frl1x63RYNBoemTfvr55SOX8TvvjiC3bv3v1f8TLwypUrzJ41i+GDB992HXyz/g8++CATJ076jxpB/js//fQTDRo0QAjBiGuZ3gcOHOCTTz6548/p6tWrtOvYGZVaQ2ZOPj/++OMN2x0+fBitwUzu5PVkj30pKJX2d+K1117DaLYgVyiZdldA1/nixYsBT5taPXBnNyQ6LoEPP/zwluNcuHCB/EpVUajUhEZE3dbLqKSk5A/J1v3www/RmyyE5jbEYLbdsBrB7/ezc+dOGjZuglytCySYqLQ4IhJwun388MMPnDt3Lqgn3rxVW5wJ+XgrtMDtDS2V6btq1Sp69OrDs88+e91nuXv3bvRmK5bEqqgMVipUrhasHH7o4UeoVK0mWpON7PEvY4xIw1etM3kFG3HE59G0adMyVbaNHjsOW2gczqRKyJRqbL5IPL4wDh8+fC1A3TMQ9I5IJ6RGN7xhkXd8Tlu2bocjOg13Yj5ZuRXu+CXW888/jze1SlBKMKdCFQBatGqLMy4bT2YdomLjf1flotsXRuqABeRP3YwjPIG33377N4/1e3n33XcZP34CL7zwwt/u/v6n848IUAfmKSLKA9TllANnzpzh/vvv58EHH7yuTOaTTz5h+/bt15WJHTx4EJtOxzyzhfYmM60aNPiPzHX63XfT5lqAurvJRNOGDTFYHXiS8vGGhnP69OlSc7QbDPQxmkg0mph1772lxtqzZw/R0dFIJBIcajUurZZZ997LqVOnCI+KwR4SjdFiK6UrfCMemz8fT0gEoeFRdOrUmeEjRjJt2jQ0Fg8xbaZgMjlop9VRRaWmYkbGbY/x6tWrmJQqRhqMbLI7MUmlOD0+uvboFVyEHT9+HJPFhs4Tiy21ViDDumZ3DGEppA1+CoPVyZ49exg9dlxAxqBqJ7LHr8YRkXRLrTOP3cGYayY1TdRqZEo1UqWWuE73BDR93WFI5UrkGiNytQGZTEFIzR4B+Y2Q6OsWnj///DNavYGkng8S134aVrsTv9/PRx99hEarvxZMDOjM5UxcF9BiVmqQKrWYbC6i4hJZvvx5AJYufRqbw0VIeBSNmzYPBhud2Y2RqXRoDGbUOiMavQm11kDVGrWJiU9ArtYhU+uRyJQYwlLQ2rx0694TvclCSM3uSBVqvHnN8VbrhFSuRKlSU7lqdRRaIxpnBAaLLaANZrIg1xgxx+XjqdQGp9vHhQsXqFG7LnKtCZXFi0yp5oUXXuDq1as8+uijZGRlY4vLI6Xvo+gsLhR6K5FNR6Cxh6HQW5FI5RgtdpQmJ1KFJrjYjWg0mPQhS9Bb7MjlCvKmbMBXrTPm2Hwyhj2DJSqd++67L3ie9+7dS0Z2Ht6wCIYOHRbUSNyzZw/33HMPVm8keQUbSenzKHK1Do3OSFZuBd544w2MdjfJvR/GU6EluRUq03fAQEJqBs6tt2IrCqZO5fTp06WyH77//ntUOiM5E9aSPnQpGt3/6+41ad6KqGajAhkj6XVQGGxIlOqAFrXFi9kVxqJFNw7Wnj9/ni1btjB58mTcsf+vPy1TaVGaXBjCUrGEJtCmfcdS/U6cOEH1WnWxOd0MHDyUAQMHotDoUaq1mG1OfBWaY4nLR+eOJqHrLDTOwEsAiVwVyOaZf/Nsnmq16mIIS8Icl0/qgAWoTA4MDh9mZwhDho24aT+AjJw8wuv2IbnXQ+hN1j/E4Kecfy7lAeryAPXN8Pv97N+/n0OHDv3VU/mf48iRI+zYseM3ZfiVU3b6dOlCDZOJUUYTDqPxjrSa/25cvXqV4cOHI4SgQYMGf3o2t9/vp1GT5thCY7G4wxg0ZNifur/fgjc0gvhO95I16gV0JmtQM/qLL76gc7ceDBg0hBMnTpTqU1hYeEOtYr/fz88//3zLIN2SJUtxeUOQqzTI5AoGDBryu4N6n3/+OQsWLChlvP1rOnftjsUdhkJnxpnThKyxK1GqNWzevJmffvqJ2XMeQKXWolJrmT//cS5fvszcuXOZMqXgjjJzH3vsMRyJlVAaHYFnp/gKDBj0/5KZfr+fXn36IZMrMFms2F0eVBodeRWrlPl7zBceRWr/JwLPUVHJLFq0KNh3//79OD0+JFI5+pAkQqp3IbdilTLPHwIvDqRSGTkT15JXsBGdyXrHv2/vvfceRpuLhM4z8WTVo3O3HkDgunnyySeZO3cuJ0+eLNNYn332GRnZeYRHxfL884FktnPnzlG5anVUegv2qFS8IWGsWrXqOnmh/xbOnTvHoCHDaNCkeamEsf8F/msC1EKIfkKID4UQH4aF/T1Lacr5z/H+++8zoGcvZs2c+bs1Rv8u+P1+1q9fT4TXSxOjkQYmM7UrVQpun3PffXh0OpLNZupUrlwq83bbtm3k2mwc9obwL4eTOJ/vRru46X5/6yLi9OnTZCUmolMoSI6O5tixY+zevZvVq1dfZ5iyfPlymtgDzuYv2OxUuUFw+OzZszRu3BghBE2aNOHixYs89thjeNJrkthtNs7cZjRv1eam8/noo4/Qme0k9XwQfUgSWmcEvupd0RnNKNRaFDoLdrmCw94QPnd70SqVZTrOxNBQXrI5OOTxkWY0XfdDsnnzZjzx2WSNXoFca0aqUCNVqLC73JhtDmbNvj/Ytm6DxkQ0GhrImo3PKWUS+e+YLDa0Ki1hGgMaqYyQOn3wVGmPQm/FGJKAUq1FabCT3OcRHBn1ArIiWiP2uBwiomOvkww4evQoKo0efUgiCr0VmUJJSUkJQ4YNR2V2E9NmMjkT16I02kns8QAhNXugsrhRGh2E1u5NYvc56IxmPv74YxRqbSBjt+0UrHYXUoUKjTMCpcmJNS6Ptm3b4oxOx3pNciSsXn+kCjUytQ57el0M4WnkT91MSt9HiYpLZNu2bTRs2jxgDNhlJgqDjbj2d5ExfBlytRZndmNi2kxCa3bQt29f3n//fRYsWMDAQYMZMXJUcPHtC48muvUkUvo/gT0yhZdffpkhw0fiiE7HFJ2LVKlB541Haw/FV71rsHxQqlBjTaoaOA57OJ5K7dB6Y5Gr9SR2n0PelA1oLG5sdhch1Tvhq9IejcGCxe6kfacu130PXb58mb79B5Kamcu9M+8L3mNFRUVUrFIdW2gMWqOFqNh4ImLimTR5CitXrsQWlUZY3b5IZAokciVVqlXHaLHhjknD6nDRoVNnlGptoArAamPevHncPX06KoMVudaERKEiLTMbq8NF5eo1GTRkGO7kyiR0uQ+l0Y5ErsSSUJns8auxJVamTZu2wbmdOXOGK1eucOLECY4dO8bKlSsxWOy4E3KRKVS4K7ZBbQ/DEJ6GRKFBpdHy6KOPcvnyZUpKSnjiiScYPmJkKTfzZcuWYXKHE9V8DBqrh+nTp9N3wEA6dulGn34DSM/OwxcWidrqJabNZNyp1bnn315e/RpPSDjJvR/GklQVmUqHyepk6tSpvP/++7f9HvOGRpDS51HyCjZi9UYG9dP/SM6dO8cbb7xRHtj6B1AeoC4PUJfz92Lbtm1YdTrSLBYSIiL+o8Z7t+KDDz5g+/btf1o14l9BnM/HVoeLw94QKtrtbN269a+e0u9m4cKFNzVP/KMpLi5m27Zt7Nix42+TXXnp0qXgXJweH0k9HyR7/GoMFsdtZRe2bt2K3mhCqdLQu2//Ozqmb7/9Fp3RgsYRTkzrSWSPX43e6qJeg8YsXPhkmcc6ceJEmfWLT58+jUoT8CzKHrcaiVRGTJsp6E1mCgsLOX/+PCq1lswRz5E+dClKlfo3a4Dv3r0blUaHJaES+VM3E9tuKpWq1bqu3ZUrV4KyKqdPn8bv9/P222+TmJpBdFwiL7300k330aR5KzyZdYlsPAzDDYLHJSUlLFz4JNHxSVSuVvM3VS3EJiQTWq0j4fX7Y3W4uHz58h2PsfDJJ0nPzqdD566cPXv2jvv/QlxiChENB5HY/QF0BjM//vgjDRo3w51Wg5AaXVGotZg9ETgikqjXoPHf5h77I2nTriOejNpENRuF3mT5w4xH/wn81wSof/2vfIH8v813332HTa9nksFENZOZof1urkv1T2LUkCEkGI1kK5SkKxR84/YilUiCP6gei4U3HC4OenxEGo1B7SwIZMZGejw0t1hJMJoomDChTPtc+vTTqLU6NFo9y5bdPFB6K/x+P2fPnr3tj8cXX3yBXafjXpOZaiYzo4cOvWG7kpISpk+fjkQiIS0tjXnz5qExO1DbQlBbvUTFJdx0H+vXr8cSlkhewSa07hgSuswMZDNn1qR79+7IlCo0MhmD9QZa6Q3UrlixTMe4dMkS9FIZYTI5OqmMdevWldpeMHUqUrkKX83uSBUqErrcR0rfx1Br9ddlI3z44YeYbQ70Fju5FSrfVHf2+PHjtGjZCp3ZhsETiVSpQeOKJrLZGCQyJbbUWphj8zBF55A/dTPRrcYj15qwR6fTt29fjh8/zurVq3nuuedK7cMbFoWvWmfSBi1Ca3awc+dO5j30EEq9hZjWE8mZsAaF3opUqUGht6Iw2JBrTaQOWEBewUb0VidOtxeZKrAwTB+yBJlCgdYa+JvWHYtCreWZZ57BHhaPyuImbeCTRDYehsYRTmz7aWgc4UgUKsLq9MERl0t0XCLZ+ZVZuvRp1q1bR3RcIgq1juTeD5MzYQ1yjR5TTA6G8DQ0rijcmfXw+MKu0x3//PPP0eiMSNV65FozMpWWCpWrER4dR3TL8Sj0VlL6zSekZneUGgM6kxVPxdbIVDps6fVI7b8AiUKNOb4icp0FiVyJLaUGUqUGudaE1h2Nw+2lU5duxCYmYzBbya9crVQZ6JkzZ+jeoxcR0TFYw5NJ7DYbqy+KlStXMnv2/fTp15+NGzfy0ksvoTOaCW8wEE+ldih0ZhJS0pGptEgVKjJGLCOh62ykChXHjx/njTfeCJgPWp3kjH+ZxO5zkCq1gc9JrcMcVyFgphidhcEVTvrQpfgqtKB9py70GzCIjJwKJKdloHOG4cptFszIHjN2HH6/n87deqDSaFFpdCjVWtQ6A2FRscS0mRwotYvPQabUYIrKRuuOQabU8Mwzz+DyhCCTyUnPysEekURIja4YTNagtl6PXgEDz/ypmwmp1QOLrbTh2KuvvkpsYgrG0GRyJ6/Hm9eUwUOG3lCeBuCuu6djdoWiNjlw5bcgvtO9yFVa/vWvf13X9ueff2b8hIn06defL774gsefeAK92YbNF0WlqjXKnJWxbds2GjRpzoBBQ27phH7y5ElCwiJwRaWgN1lKGTfdCZs3byYzryK16zf8n1qw/qcpD1CXB6jL+XvRqHoNHjIHfCgaWK0sXbr0L5vLmTNn6NKmDREOBx61miSTmaZ16vzXBEoG9upFZZOJwQYjTpPpumza34rf7+eNN95g7dq1vykA9nt5/fXXg+aJv8jQ/VMoKipiw4YNvPHGG3d0nV26dIlqNesgkyuIiI7l+++/Z9WqVWh0BlQaHQMHD73teNHxiQHZhvEvY3J4byv98Wvef/99rN4ItO4YYttPCyS6GGy4K7XF4ou6aZXeL/j9fnr37Y9Kq0OmUKHW6Ojdt/8tJSguXbqEQqUhrv00YlpPRCpX4vSGBqVALly4gEqtJX3IElIHLkSl0d5yzbdy5UpCIqKJT069rlL3m2++oVadeijUWuzxeRitTp59dtltz0txcTEGkwVjVCZyXSB56YG5D96w7U8//cSgIcNo0rwVb7311m3Hvhl79+7l7bffvuGxHjx4kHYdOtOsZRv27Nnzm/fxR2C2OUgbtIi8KRswObx89tlnmK0OMoYvI3/qZpRmF4k9HiB38qtodP/sCo+bERWXSHLvhwOSlAnZbNy48a+e0n+M8gB1Of91rFmzhjp2B4e9IayzO8iKi7t9p38ANoOBXS43hzw+vDIZzfR6shITg9uzExOZajLzos2ORavl8OHDpfqfOHGChQsX8sorr5RpYXPlyhVUGi1pA58kdcAC1Brdn+4w/frrr9OjfXtmTJ9+28z3jRs3YrFYMJvNSKRSciasJXfSKyjVmpu+tb1w4QKhEdFoHeHIFWq0zkhCanTDYLIyaNAgfNU64a3aEYXOjNnq4LvvvivTvLt2647SYCOh22zi2k0lIiY+uO2nn35CJpcjVenRh6UgkcrIHPEc2eNWo9bqb7jov3jxIt9//z0bN27k7rvvZufOnaW2nzhxglCnk0Y2G26NBqVSRWL3B3Dntwxk1kpl5E5eT+ao55EqVGhdUUgVauRGO2qdkZMnT9Khc1ccEUm443PIrVA5uNBLy8wlrsPd5BVswhmdyvr167l69Spt23VAplQjkcrIq1iZGrXrYXV6kKs0aIx2FBoDFl8UcqUaS1I1NK4oFAYbMpWO0LBw9CGJpA9ZgiO7MVKlltOnT9OxSzekchUqswu5xkho7d5BzWG5Sk1ehUqkZebgyahDfMfpGG1Odu3ahd/vp137jgH5EqUGrcGELbk6Ok8slsSq11zjE0udtx9//JENGzZg8YQT1mAASpOL1AELcGTUR6nRo7aHobaHEtV8DI6sRhgsdmrWrIVEpkDvS0CqVAfOrUxBVKvxaF1RmOMqYk2sgsJoxxRbgezxq5FKZdx9992ozK6AEWReC/IqVg7OIzk1EGTWeWKRKtWkD3sWX15TKlWpit4ZhsYZiUSmQKHSoNAayCvYRPa4VUhkCmRKNbHt70aq1JA9bhUp/eYjV6qDY+/fvx+dyUrW6BXEtpuKkMrIGr2C7LEvIZHJkevMCCGwxOaSP3UzUc1GERYVF8z6unDhAsOGjwhoUts9eEPC+OGHH3jvvfcwu0PJujaPjBHLyBq9AplCiTOlKgldZqK3ONBZXeQVbCJz5HJUWh0VqlQnsskwciasQam3lHoh9EtlQFpmNjK1PigXI5FKg99PH330EQazjcimIzCEpaDSGdGbrGj0JjQ6ww2NagC2b9+OxeEOLuy07mjSMrN46qmnmDNnTtAMtm6DxrjTaxFasxsWu5OffvqJ/fv3884775Q5OP3dd9+hN1mIajYKT2YdWrRud9O2CxcuxJtRk/ypm4lsOpL6jZuVaR+/5sSJE+iMZmLbFRBaszspGeXrnT+L8gB1eYC6nL8XPTt2pLvJzHaHiwSTiQ0bNvxlc+napi0dTWa0EgkfuDx87/Hh1un+a6ShioqKeOSRR5gwbtzvMjX7d6aMH0+U0UgFq5VKmZl/SXn+119/TUJCAnK5nEXXjNz+zly5coWjR49SvVZdHJFJWDzhDBk+ssz9n3zySVwJeeRN2UBI1Q506d4TCKz5bvay/9+JTUgmtv00ssetxmj33FRW40ZcvXqVytVqYrR7kMqVyBRKdN448go2Ed5wEN1uYDZ59erV4Av/zz77DKPdTc6ENSR2ux+V2Y09/NYZx/v370ejN6F1RaFxRiJTarGGxLB48eJgmycWLEClDlT73SqgfOrUKbR6I4ndHyCqxRh8YRHBbYWFhbg8IYRU74I3vzmhkdHs3LmTyVOm4nD7MNldWO1OxoybcN2z94ULF5ArlMh15mBCj1Zv+Pfd/2E8MHceeosdW0g01WvW+VtXfMy+fw4GiwObL4ra9RpSUlJC+05dcMRl481rilylIaxOH6Kaj8Zksf0huuZ/N6bedTdWXxS+rLq4PCGlZFH/2ykPUJfzX8eRI0dwGI0MMBjJNJqY+G8uvf9UKmVkMMRk5iGzBb1CQf/evUu9Mdy3bx/Vc3JIjYrixRdf/N37u3TpEkqVmsyRy8kYvgylSv23+wE4cOAAGRkZgaBbfEWiWo7DZLFRVFRESUkJn3/+OUeOHCnV5+LFi8ycOZNWzZvToGFD+g8cxK5du3jjjTfQ6I0oDHaSejyAK6Numd2oU9KzUBrtZI1eQWTTEYRHxQKBhUt+WhrxcgUWqZTwmt0Jrd0rEDQ2WujavWfQnKO4uJiDBw8GM0pWrlyJ0e7BV6U9epO1lNzAiy++SD1bQA5ludWORakmr2ATYfX6o/fGYomviD4kCb03DqlCjdLsJqRmD+I63oPBFcnGjRuRyeTkjH85kPVstnHw4EEAXnnlFdRqLUa5AptGi8lqx2y1s3z585SUlFyX0X3gwAF27NjBnDlz6NmzJ3qLk7RBi5BpTGg9MWj0RuRKFVKlGplaj1xnRqXRBsdZu3YtMpUWiVyJVKnBmlwdmVKDp1I79CYrqZm5xHe8JxC4Tq3C888/z7p167B4I4nrOB1zeDJ6u4/8qZvJHPEcMqWG8Hr9MFpsweB/y5atUWgNKNQ6YhOSkCvVmGKuZZa3GItUqSG0dm/kWhMaRxiOrAbIVFpUZhfO7MaBLHCVjuyxL5HUYy4SuQqJTE5ewSbyCjYikcqQq/Uo9RbiE5Nxe0MwRmWSV7CJ6BZjkal0rFixAgCF1kBs2ynkT92MISIdoyscg8mCUqNH641HIleSPngxWWNeRCJXBqRo3DGoTXZ84VH4KrRAFxIwmpTKldSsVauUwcr4CZMQEikShRqJXEli9zkk9ZqHVK4ktGYPMoYvQ6oKZHzL1AZ0Vg8LFy4s9ZleuXKF/fv3B6/FDz74AJPDS9aYlUgVapJ7PxzQd9Zo6dS1Oxk5FZh9//0YLTYiGg8lpHIbsvMrkp1fiehW48mdvB6txYklNOG6DOrw6Diimo4itE5vVBYvNWvXCc5jyZIlhGTVCRquJKdnYbA4yJm4lpQ+j2J3eW56T/bp0xeF1oQxIh2VxYPV6cERk4E3uz4h4ZFcvHgRo8VG5ojnAvrboTF39MD1C5s3b8YTlxmQo+nzaKmXU//O2rVrsYbEkDpgAd6chvTu2/+O97dnzx4srlDyCjaSMexpjGbrHY9RTtkoD1CXB6jL+Xtx4sQJGtWoQbjTyaSxY//SbOWKqWkst9qJkcuZYTSxzGrHrNX+bWRH/o6UlJTgMBrZ6Qwk20QajXz66ad/yVzOnj1L/fr1g+aJ/6lgXXFxMdOnT6dn7z5lyoT94IMPsNgcqDR6FFojeVM2kDV6BUqV+rZ9f2HBggW4kiqSV7CR0Bpd6dS1+x3Pe+vWrej0BmRyBYOGDLuje+/MmTNs2bKFtWvX8umnn7JxY+C5w1elPUabi5dffrlU+/fffx+LzYFSpaFlm3Z8/vnn6C2BZ6y49nehtofiSalyy5cLhw4dQmswkT54MbHtClBZvYTW6c3AX2lDQyAQfrvP/ttvv0VvtpE76RUyhj+LRqsPbvvhhx/Qm23kFWwid9IrSKUytmzZgsUTTurAhbhym2GJr4TVG8nmzZuvG7tDx85I5aqgJKLbF1qWU1oKv9/P6LHjsNgc5FSofF2CGgRiBGq9EXt6XbJGr8DiDv1Na97/JHv37i2VMFJYWMj8+fOZPn06r732GtVr1aVi1Rp/ihzf3wG/38+6deuYP3/+TQ1Z/1v5RwSohRAvCCGOCiGuCiEOCyF636p9+QK5nC+//JIpkyezePHiO3ah/bty6NAhOjRvTv0qVf9jZWn3zb4ftTZQ0l+/bj0KJk/+w8r8/iguXrwY1KU2msxs2rSJkpISGjRuitZsR6XVs3jJ0lJ9Nm/ejE2no6LNRqTHw/vvv8/PP//MxIkTscfnBzTE2k4hJSO7TA8b98yYicbsRCKTI1NqWLNmDRBw+E00mznk8fGaw4VOKsMSGke1GrVJSErFaHNhtFipWLkqWpMNlc6Azelmy5Yt1Kxdl4jGQwOB2SrtmT59enB/H3/8MW6dnsUWG011esxaHRZvJFqDGblSjSurMRqjHblMTotWrVHozPiqdyGp54PINHpmz55NTHwSoTW6EtFoCDKlGl9YJBs2bGDu3LkYZDJW2RwM1xuwOcJJ7vMoCoWSho0aX7eQBBg+chS20Di86TVQ64w4IpMx2N3ExsXj8njQeWJx5bdEolChUGtZtWpVsG/X7j2RKjVYEiqjtvqQqrRYU2oESprisxg1ajRGmxNfahVcnhBOnDjBvHnz8OU2Jn/qZtyV2wWlJdwZdQiNjKFD567B8sPt27cjU+uJbVeAJSHgfv3oo49ekxuJQabSYnd5cESno9CZSOn7WCB4HJ6KXGtCqlAFZTyyRq8goetsFAY7UoUaV15zXLnNUFk8SBRqQuv0vmYaqUGuM6M0OgLmfjIFZpuD48ePExYVizOrIcl9HkGhtxAfH39NkzyQTS3XGEju9RDpQ5cikSkQQhASGobD7cPlDaVK9Ro0atqC4SNGYHKG4KveBa3RTMXKVWnaojVff/01+/bto0mzFmRkZQcMaVRaZEo1Uc1GkTdlAwqdGXd+S6Jbjkem1DJs2PBS99OyZcuYNGkSDz30EM1atqF7rz706NUHmVyBVm9AZzCi1Ruvy2B+//33adC4GR27dOPHH3/k7bffxmi2otYZaNysBfPnz2fY8BF88MEHnDt3jlmzZlG7Tl2MDi+OhHwsdidbtmzh8OHDFBYW8t1332G02PDlN8Ngc+Nw+5ApNYTW6RPIII6Ivuk9WVhYSEp6JlqDBZ3BhM5g+v9gdEg09913H3qzDaXeiiOlGt6QsDJrG/6as2fP4vaG4s2sg9UXxeSCqTdt6/f7GTNuAt6wSBo0bvqbAhlXr14lp0IlnNFpmF2hjJsw6Y7HKKdslAeoywPU5fwzefvtt1m8ePF1CQp/JEuXLMGj15NrMmFVKkmLjubVV1/93eMePHjwjgza/gn4/X5GDByIQibDqFDQVW9gkcWGRasNVjT9FVy9epVhw4YhhKBhw4ZlMk/0+/3s3r2b/fv3/6b9xUXFoLGF4K3cHrVCSc+uXW/5XFWtVl0imwwne+xLSBUqYtpMJrxePyJjb/4y/NesWbMGq92JQqNHodLgDQ2/4yz/wsJC8itVxeIOQ2cwBZ9xysLBgwexuzy4Y9MxXjMxB9ixYwd33333DeXX8itVJar5aHInvYItNJbNmzczacpUZHIFUrkSvdVJfFLKLSXVAO5/4AHkysD62hSahN5sC0p8/Bq/38/y5csZMmz4dR5CvxjF16pbD7MrBI3eRH6lyjz11FNBPenElDTc6TVxJeRRt0FjnnvuOTxJFcifupmY1hMxRWfjSapwQ08hv9/P5ClTMFnshEZE8/bbb5f53P7Cli1bsHojSR+6lJAq7Wneqm2p7RcvXsTu8uCr1hl7el103jh0RnOZvmfeffddHnjgAd5///07ntc/lbNnz7Jr167rZCLL+c/xjwhQ3+m/8gVyOf/N/Drg/s033zBq2DCm33XXbwqulIXTp0+Tk5xMG5OJziYTqTExdxz0/8UYoqw8MGsWmbGxdGrVqswLxvnz5yOXy4mOjua5555DZbCRO3k9yb0fRme0lGrfuEYNHjFbOewNoa5Gi1GpxKrXs3btWryh4ThjM5EpNcTq9XhtNr7//vvb7v/ZZ59l/PgJpd5If//991i1Wp6z2hlpMpMaHc3LL7/MU089hTupQqC8rcEgVBYvxqhspCotOm8cMqUmIF+hNRPRaChGWyBo/WsWLlyIWaHEZA9DptYhV2mJS0zBZjBQQ6VCJVMglSno2bMXDqcLmVqPRK5AqlCTV6EyBw4coFnLNig0BsIbDCKhy8yAqaLeTIRcwSGPj1ftTkxaE/b0esg1RtwV2yBVali5cmWpuTjcPtIGPxXQIg5PYPz48Wj0xmvSIip8NQJmg87sxtStW69U30mTJqGyesmfupm0wU8hVWrQW914sxvgdPs4ffo0u3bt4vnnn2fGjJl4QsJJycjCZLFidIUjVagIqdENS2weMfFJnDlzho8//piHH36YDz74gEWLFmGOzQtk4bafhlxjoKioiHtnzMQXFkGdeg356KOPsDndyFQ6zDG5hNcfgFShIqxeP9IGLUKu0hIbn4CQSJEqNXgqtw9khStU2NPrkjFiGSqzm5R+j6Myu7EmV0NI5Whd0WjdMdjT6uDIrE9MfCKffvoperMNmUqLISwFqUqH0uRE54vHllIDW2qtazItchxZDckavQKJXIUlqRr6kEQkEhkffPABzVu1Jar5GPKnbsaV0xRzfAXCavUgLDI6eK+9/PLLuONzrhk99keuVKMzWlCodaQPWUJewSZUJmfwhcHFixeJiU9C64pEqtIhlSsJbzAQb34zKlSuSmFhIYcPH2bCxElMn35PmRZvly9f5vjx49fd/5Wq1sCVWg1PdgN8YRFUqVoNo90TeIjS6HG4vXz55Zfs37+fOXPm4A2NILLJcJL7PBJ4aeB033YhX1xczJdffsnp06epVbc+nqx6hNXpjcliQ6M3kth9DhGNBmNzeX5XIOPYsWM8/vjjrFu3LmgqO2XqNEIjomnQuOkfXpZ3+fJlXnnlFd56663/Gr3TvyPlAery9Xc5/zyeWrSIEL2BFlYbHqv1T808++ijj1i1atUfljU9deJErBoNFo2G6QUF7Nu3jzlz5vylUiZ/BDt27CDKaGSv28ssswWf0UiVzMwbZpT+Edzp7+KCBQvKZJ7o9/tp17EzJocXvdnGPTNm3nbsvXv3Mn/+/KCRpkFrJKbNJEwmJ910ejrqDeQkJ9+0f+36DQmv14+ciWsxOkOISUimao3afPnll7fdd1FREWqtHnNcBeR6GzJlQALxqcWL0eqNmCw2XnnllduOM2DgINT2QOVWfKd7SUrLvG2fX5g5cybevKaBdWjdvnTu1uO6NidOnKCgYCp33z2ds2fPBuThmo4gd+I6bCExwSB2cXExZ86cYc+ePRQWFrJixQqsNgcuh5MXXnjhunG79eyNO7UaUc1Ho9YZg5WMJSUlpbyRnnxyERZPBKG1e6E320pVJfbo1QeTw4vB6qRRk6bojGZCa/XEGhrL7PvnAIGA5oMPPsj8+fO5fPkyP//8MzHxiVh80UgVKowOLzHxiUyePJmZM2feNrB+p7zwwgu4E3IDVZutxlO5emmDxn379mF2BipNf5H8K4uv1LZt29CbbYRUbIneZOXNN9/8Q+f9W9i+fTthkTG4fWGsXr261Da/38+4CZMCWtU5+bd9dr8RX3zxBRa7E0dYHC5PSLC6uJz/LOUB6nLK+Ydw5MgR4hNTEBIJdRs05tSpU/jsdgYbTTQ2mWlRvz4QKKVq0bodcclpzH3wod+93ytXriCXSvnB4+OQx4dRpeLkyZNl7tuoZk3kUinx4eFl+rF47bXXiDQYWWt30MZkZkDPnmWe6zvvvIPH40GlUiGRKwPme01HIlfpSrXr36MH7U1mNtidhMhkPGOx8ZjZSo3cXL755huq5OfTX6vjsDeEHkYTM2bMKPMc/p2VK1eSnZBAhfR0nJ4QXN4QRo8ejSMymeyxL+Gp1AaZSkdEoyHoQ5KQKlRkj1tNxrCnkcgUSFVa7rrrrlJjlpSUsHPnTpyRSTizG+Gt2om8gk24U6sRGx2NRConpd98UgcsQCKT467UFqlSQ2L3B8iZsBaDzc2nn37K5cuXkSuUZI99iexxqwPayCGJmC1u4rRGjDI5cqkchd6KPbU2Cp0Fa3INatWuHZzL1atXqVS1Ot7cxkQ2GY7BbGXUqFG481sE9IZrdkeq0qJ1RyNT6wiLjObTTz+luLiYXn36oTOakSnURDYdgSOjHiarg6eeeoqHHnqoVNDws88+w2BxkNL3MUJrdUdrtGAMTULjCCN/6mbSBy9GqdXzxhtvoDWYcWbWD0h3hEehN5oDC3SNkYGDBgfH9Pv9vPTSS+RXrIy3YmuyJ6xB6wi7lnGsJaXvo+ROegW91YXWaMaV1xKZxoBaZ0AqV2KKzUNptKO2hSDXGDHF5CLXmcmduA5fja7I1AaEVEZewUbyCjah1hnIr1QFY3gq1sSqZIxYhkylw5XbFLU9DKXJiVSpwe70IFVqSeg6i4Ru9yOkMpRGB5FNhqM02NFqdTz8yKNYfdGE1u2LVKnFHJsfuGYkUqbfcy/tOnbh4YcfxmhzkdTzQXwVW9KoaQsOHTpEuw4d0dm82KIziU1IDkr3bNq0CWt4IrlTNqD1xKAw2IKa0lq9kdOnT+N0e3Fm1MMen0elqjV+0z1RXFyMRCIhd/Kr5BVsQme0IFeqCK8/EHNsfkCupnYv2rTvFOxjtbtIHbiQ3MmvYnJ4+Oyzz0qN+eCD82jQqAlLlz59w32ePXuW4SNG0alrd15++WVMdg95UzaQPmQJRovtlvN988036dqjF/fNml0mHf5NmzZh8USQ0m8+3pxGZZYKKivHjh1j3rx5LFu27G+tIfhPpzxAXb7+LuefR42cHJ6x2jjsDaGxzcayZbc3K/s7cOHCBTQKBXtcHj5xeVDKZNgNBnqYzEQaDDwxf/5fPcXfzNatW0k2mfnW4+NJi40KKSl/yn6+++47YuKTkMpktGnf8Y5+H19//XUsFgs2m+2mVaoHDx5EZ7Jek3pYhlqru2G7X/jwww/RmyyE5DVCb7Yxf/58TGo1RrMbjVTGIY+PHzw+ZFLpTX13vvjiC7yh4UilMtp36nJHCUKXL19GKpNjisoiffBiDOFpTJ48BbVWR9rAJ0nq+SB6o+mWAf0TJ06gUmtRGh2kDX6KkJrdqVqz9k3b/ztLly7FHplM6oAFuFOrMWFi6aqvkpIS4hKT8WQ3wJNRh6zcCnz44YfYHC7kCsVNj/nEiRNolSqS1VpGGoxopFK+/fZbAM6fP0/B1GlYnR6iW4wLVKKmVGL16tUcOHAAX1gESnXAJP3ixYu0ateBqGajAs8sldswc+ZM9u3bx5gxY1CoNORMWBvIYJdKCcltFKyyrVm34U2P+9KlS+zYsYOPPvqId999N3CMWfVxp9UgJ79Smc9fWTh//jzJaRlYvRHoTRa2bt1aanthYSER0bF4supji8kiIzu3TMlfgwYPDXoDhdTszshRo//Qed8pfr8fk8VGXIe7SerxAFq9ISiTCdfuYU/ABD6keicaNLlzn5f+AwcTei2pypvfnKnTpv2BR1BOWbnV+lsqyimnnD8dQHz00Udi9+7dInBP3phmDRuJb/d9IVQyhXjnwz1i8ODBQl9cLCbqDeIetUa89c47Qgghho0cLXZ9f07Ic7uJe2bNEW+++ebvmp9KpRJZyclizKULYuLFCyIsJERYrVYhhBBfffWVqJqVJeJDQ8XTS5de1/f5558XF3Z/Ir5xeUSDn34Wd02YcNv9/fDDDyJFoRA5SpWoJZWK77/5psxzrVSpkvj4449FVlaWoLhIfPbkYHFo+zMiKjqyVLtZ8+YJf9UqYqhUIorlcpGuUIgj+MWly5dFWkaW+PDz/WIdQnxZVCT2SoTweDxlnsOvuXz5sjCbzWLWo4+Kz779TlhrDRK2eiPF/CcWCqMC8fHcjuLkx5uFxhEmXDlNhLdyW4HfL4rOnRRXzhwVUoVSyJUaERsbK4QQ4uzZsyK3QmUhVyjEqLETRPGF0+Lij1+LkisXBP4SQXGhOH7mrEAgLh37VkhVWiFAnNqzTUgkElF8+WdRUnRJUHJVqFQqoVarxdBhw8RXiweLr54aKMLCwoRM+MVlIRUnw9PEVbVGWFweEdVslIhuOVZo3dHi7L53RG5OjhBCiDfeeENo9Caxc8cOceKzN8QP/3pSlBQXCUAUHvtaXDrxvTh/6HMh8RcLmUIt4jtMF6cuISpVqSaWL18uXtm6Q8T2elRYYrLEyR3PiQsHPxVSk0cMHTVWfPzpHqHVaoUQQpw/f14cP35cqIxWoXVHCaXZK4quFouYDneL4isXxfebHhffbnhE+JGIwUOHCmt2UxHZdKTwVe0kzlyViarVqokHJ/QTb27dJB6f/1jw85nzwFzRf8R48fkPp8TVKxeETK4UQqYUOm+cCG84UHz57ATxyUNdRGSYT5gTqgq1xSVkSq3wy9VCZQsRl45+LZz5LYWMYjGgdzeR7tUKUXJVHNu1Tpz+dKtQW71CptSIb16eLQ5tfESEhoaJL7/8UngqtxfnfvhMHH5jmdB540REw8EistEQgb9YqNQasXPHm+KBWfeKgy/PEAdemi6M4anCldtMOLMaCmduE3G5sEjcPf0eceH0j+Lw60uFoET8/O3H4tP5fYXRYhOPPrNa7PrZIiZPmy4G9Okhit5dLFIsV0XXTu1F+05dxKqX1wpUenHm+72iQf06QqVSCSGE8Pl8ovDnE+LUntdF0bnTQq7Wi69fulfsWz5ZSKQykZSSJn6+4henvnhbnDv6rXjvvXfFwYMHb3jtv/766+Lee+8VO3fuFEIIcfLkSdGle09Rp0Fj8fbbb4uM7DxxePNj4si2p4TFYhZqtVpcPnNElBReFJRcFf7Ci0KlUgbHu2tqgfj2+Yni66cGisr5eSIpKSm4bejQYWLMhIli+84PRb/Bw8Tzzz9/3XzMZrN4aN5csfzZp0Xz5s1Ffk6W+GbJEPHt8vFi0oTxN72H9+3bJ5o0byneOqoU8xa/KMZNmHjb+/7o0aNC4wgXOne00ISmiMNHfrxtn7Jy4cIFkZWbL+Ys2yRGTp0lBg4e+oeNXU455ZTzTycpPV28VFIiNl6+LD4uLBTx8fF/9ZTKhEKhEHKZTHxfUiy+LykWUqlU1FAqxb06vZgiV4o1N/hd+6dQo0YNEVeposj56YwYX3RFzHzkkT9lP7369hcnL0lEWINB4o3394jVq1eXuW/NmjXFrl27hMPhEHXq1BGLFy++ro3BYBD+4qvi4o9fiwuHPhdmi/WWY65du1aYUusJX4NhwpbfVuz6aLcYPW6cKL50RsgkQow4f04MuXRBVMzMFErl/693Zt17rwh3OkX13Fyh0+nEwW+/EefPnxMrli8TUmnZwzNqtVrk51cQWneUOH/kS1Fy5aLYtn278IOQ68xCabCKosLCWz57FhcXC6lcLhwZdcUXT48Rx95dJZY8uaBUm4sXL4rPPvtMXLp06br+Xbt2Fe0a1xZnNt0vqiT6xJTJk0ptP336tDj0wyER2mi4CG06Snzy0QciJSVFnDj2o/j5p59uesxnz54VCr9f3K3TidEGo8hWKMQHH3wghBCidbuOYtHaN4Umrrr4fuMj4odX5ogrJ74VlStXFlPvmi6kkZVFxpiXxHdnr4ply5aJhnXriDMfrBZHdqwQP32+XSQlJYn8SlXE8rcPiJKSEnHh0Bfi3ME9Qqc3ip++elccefsFcfrdFSIvO0P4/f4bnjeNRiOEEOLbb78VRqNRfPfd9+LSudNCG5UrPv7gfVFUVHTrD+8O0Ov14uMP3hevrV8tDny1T9SuXbvUdqVSKXa9+46I1FwUV04dEscuy0VuhUriypUrtxw3LzdbXNz3hji1Z5u4uP8tkZuTXWp7YWHhbcf4I/H7/eLSxfNC740TWne08PsRly9fDm4/e/asUOqtQmV2C7UjUpw+feaO92G3WcXV0wdF4c8nRPHZI8Jht/+Rh1DOH8HNItd/93/lGRz/nWzfvp0lS5aUMgb8b6B/jx6EGwyE6PWMHjLkhm2+++47DHI5n7k9rLM70MrkaORyfDY7fYwm6ppMtG3SBICKVWsGTdi8aVV59tlnbzjmnXD69GkKJk9m0vjxpfTiKqanM8VkZp3dgU2r5cCBA8FtJSUlNGnYkMpqNT94fIwzmenapi3FxcW8++67fP755zfc1/Hjxwl3ualqs+HQ6XjllVfw+/3s27evzOU6RUVFtGvXDiEENrsjqEf87/j9fob1749OpSI1JgaXJ4Skng+SO+kVNCYHoXY7wwcMoLCwkC+++KLMpfqFhYUcO3aM1PQsdFZ3QIdYriSkVg+yx61GoVSh1BrQeWKJ73QPUoUad24TrL5oWrRshVKtRapQIVfpcHtDWLhwIQ899BBDhg7Dk1Wf3MnrcaVWY9y4cQwbNhy3LwyJREp8UgrukHCUJicaRzhSpRql1YfCYCOh6yzkWhMSqYypd91dar6ff/45n332GT/99BNDho0gJ78CEVHRKDVapEoN5tg8olqMQabSkpWdEzSsiIiJxxiZgSu3GTpvHKaYPOI7TicsMoY+/QdidXqITUimVp16hNXtG9CMrtgahUrDjBkzcCZXJX/qZkLr9EGm0mEIS0Wq0hLdchzuzLo0a9ma+o2aolCpcbg8pKRlYguJRqEJyE+E1u6NPb0uMrUeT8U2SJXagOGgyYk9ox5yvRWZSkdKWvoNP6e8StWI73QvWaNXoDJYkUikKI0O5BojITW6ofdE07VbD2rXa4BEoULnS8BbuT1SlT74mUoVambPeSCYgfL666/Tr/9ApDIZ2ePXkNT7USQyBXKVBl9YBJ26dMMenogpLDkg5aJQE95gEIawVGQaIyabIzjW+fPnadW2PdaESoFjrNQWudaEkMqJ63QvUoWK1AELSOn7GBKZAlNMLjK1nshfMkGy6wYdy9977z30ZhvhDQaidUcTVrcvloTK6AzGUufkyUWLMFrsSBUq4jvPwJZSE4XBhlQmC8hxVO2EMzug/+3Kb4HT7eWuu+4qZZ75yiuvYLQ68VVph95s480336R67Xr48psS1Xw0epOFvXv3MnbceIaNGMmhQ4d48MEH8YSEozfbkEikxCYkX6eP98033/D0008zffr0UrqFJpuTpB4PkFewEbUthFat29z2Hi0uLuadd95h7969t2y3fPlyQjICmugJXe4jK+/2mS+nT58mNCIKV3QqepPlOnme38O7776LIzw+UDUwZMktjSIh8FncfffdQd3HcsqOKM+gLl9/l/OP48KFCwzr3596lSqx/Aaar39nVq1ahdtiwW2xMGfOHFw6HQ+YLVQ1mZk0duxfPb3fhd/v5/Dhw3+aHOE333yDTi5nqN5ArEaH2e7jmWeeueNxzp49S7169RBCMHLkyOuysF988UW8oRHEJCTf1pxt5cqVWDwRxLadgj0iiYcefiS47dSpU0yfPv06yYedO3cSZjCwzeFiuMlMVmpqwAtIpebBeQ/f8fF89dVXaPVGFHorUc3HYA2Np1bdemj0RtRaPfMeeuS2Y4wZNx61Vo9aq+Opa2vKXzhw4AAOtxebNxK3N/SO9dNLSkqIjkvAm98UT3Z9UjOyaduhE2arg/qNmpTKkP01fr+fuKgYUhRKxhiMGJWqYAa1wWQhc9Tz5E/djMkVyvjx4zl06BAAXbr3JLRaR/KmbMCVmM/ChQvx+/2sWLGC4SNGsm3bNtatW4cvueI1WZJ+qHRGouOTeOutt3jnnXdo3aYtKrUWg9VJpao1bpj9Pmv2/ZgcXjyJeQFpPYMNjSMcmUpH1C3MtP9MLDYn6UOXklewCVtI9E2fjX/B7/fz6GOP0bRFax5/4olSmfYLn3wSpVqDUq3h4Uce+7OnHmTqtLvRm6wYrE769BtQatulS5dIz87F6gn/zWvvCxcu0LhZSyx2J+07dblpZUM5fy63Wn//5Qvd3/qvfIH838djjzxCmN5AM6uNEIejzBITf3fOnj2LTqnkK7eXz91elDJZsNz+13z//fdY1Go+dXlYbXOgk0iINhpZv349kyZMYM6cOcEA0erVq9GbbXgScvCGhnPq1KnfNccLFy4EF09vv/02/bp3Z86sWYwcPQaDTM4mu5MfPD7iTCbee++9YL+lS5eSZjSSKlegkUiw6/Xs27eP5vXrE2sy4dLpmHPffTfc55kzZ1i/fj379u0DAhpgBqsTrdHM/XMeKNO8T5w4weOPP45Wq8Xj8fDOO+/csN2lS5comDqNnr37EhEdR1TzMaQPfRq92ca+ffu4cuUK+ZWqYnJ40BvN1xlo/DuvvfYaFp0OtVyOUWdCqtSSPfalgPyCVIbWZEWh1hDX4e6A/IjOjFZvoGPHjixZsgS/309hYSEDBg0mt2IVqteshT0yGW9WPQxmK66shoTXH4ApPIUpBQUAFEy7C4s3Em9mHSQyOVmjXiBvygbkGgPO3KbIVDoyhj1DVLNRyNU3L0k8f/48P/zwA2+++SYmZwjuCi2R663ofAnow1JQaXSlFp8mmwNDWGpAxkOhRggpKqsXuUpD/UZNgiVk7777Lgq1FmNEOjKlhsSUNDZv3oxMpUVl8SJVarEmVSW65XikSg1pg58iuffDyNU6dFYPuZNfJaJ+f+o1bMK6detQ64xEt56ITKVDbQ9FqtYh15rQmm3EJiQh1xoxxeQgVahw5TZDrjEG5RCOHDkSDLCPGTseZ2wW4Q0HoTdZuf/++7F4IwmvPwCt1U29+g0YP348MpUWhc6C0uQipd98pAo1GcOeJr7TvZisDiCwyB4+YhRxSan06z+ARk2bI1frERIpcq0JtT0UvSeWocOG88ILL/D444/TvEXLQJBaqcWWXoeEzjORyhSlXoQ8+OA8NAYzEpkcpVqLLywCuVJFxojnkCpUZI56nrSBTyKRK4lsMjzwAkBrxFexFQazNain+PDDDxOS3zRo2qIPS0am1uMLC7/uOliyZAkGZxhyjQGZxoBSbyYzKxuNyYE5oTKmmFxyxr+MNbEKKqsPY0Qa6Vk5hEZEY7TYqFC5KuH1BwTKKqt3ZsKEiQGd8kGLrumUx7Nz587g/u6bNRuTMwRvWjV8YRE3fRG0c+dO9CYrvirtMNrdQe3suKRUQuv0IbX/E8hUOhYuXHjLe/TXfPPNN7c0O/r+++/RG804sxthDY1l+j33lmncc+fO8frrr/8mDbxf8Pv9fPPNN6X0TU+cOIHRYiO8/gA8WfWo17DJTfsvWbIUsysEX+V26E0Wdu/e/Zvn8r9IeYC6fP1dTjl/Ja+88godmjXjnmnTyiQv9b/MsmXLaGIJeMsst9px6fWlXpzfCbt376ZJkyYIIWjUqNFv1gz2+/088uhj1K7fiOn3ziiTPMcrr7xCBauVQx4fT1usyOQKUvo9TsbwZ1Frdb9J73zixIl4K7Uhf+pmIhoPpUPngJH1V199FdRzvh0nT54MnoejR4/ywQcfcOXKFUaMHIWvSrtAUlSFltdJeJSFDz/8kJCwCMxWO40bN8YZn0PGiGW402oycdLkm/YrLCxkzOjRdO/UORhsPXbsGAaLHWNEOq6cJjg9vlIvRb777jvCIqORK5RUqV7rhtfId999h8FsJbROb5zxufTtP7DU9pwKlYlpM4m8KRtwRqXcUMc7LDKGlD6PklewEalcRXSLscS0nohUoWbevHl3fI4ADh06RFZeRUxWOyNHjwkGjC9dulSma6ti1Rr4KrQgqtkoDGbrLc05b0VRUREqtYb0IUvIGPY0SrXmd794unr1KpMLplK7fmOWLFl6y7ZfffUVe/fuvaE0TVFREbt37/5LzVfL+f2UB6jL+UeQn5zMizY7h70h1LbZg4GJfzpXrlzBotPxjNXGIosNu9F40x+ZuyZPRimVohSCWJ2OCunpN12wfvHFF6xfv56zZ8/+rvktXbwYvUqFTqlk+JAh2HQ6phpN5Ov1GA0WQiq3xyCTE6lWU6tixWDgD2DK5MkMMhg55PExUm+gf4+efPHFF/j0er7z+Hjb6cb+b9mbN+LQoUNoDWZyJqwlY9gzqDTa2/aZ++A81Fo9Gr2R3n37ER0djVwup3fv3qxYsaLUYqxD5664kisTWrsXOoMJb2g4OoORmbNmA7Bu3Tqc0ankFWwkps1ksm+jHZYaFcUzVhv73V7sUhkSuZLUgQtJ7D4HvdHMm2++idZgJnfSK2SNWYlEKkOjN+KOy8Tp9nHkyBHGjp+IMz6H6BZjkWsMxLSeRP7UzdhDY5GpNFjiK6EPSaBxsxYARMYmkNT7IaxJVZEqtYTW7kVMm0nIVFqyx61G541DqlCjMNhQ6wN6c19//TWHDx8Oznvbtm3ojeaAvl5+pUBWd4VWmOMrIlPpiIlPYt26daWONSwqluReD5E/dTP60CRs6XVQ28NI6v0Qnsw69O3Xn5kzZ/LEE0+wd+9e2rVrR7169Vi3bh1Tp07FEplGfOcZqCxekno+GBjHF4/eF4/K7MZTqS0Kg5WE7vcTUb8/9Rs3Zf/+/cjVOmQqLfqQJFRqDa3btsUVEoFcqcZkcxHdchwhNXvgym9J/tTNRDYZTvXadYmKjUdnshIeFcORI0coKipixn2z6NC5G1u3bmXXrl1k5uTjDY0gJS0TpVqDTKnGW7l9ILCaWR+dLx6ZUkv2uFW4cpuh1BqZUjCVSZOnoHVGENNqAkqDDblai6di64CxTUQ63iodMISlUrNWQLtv586dGGwuUvo+iiuvBTpfApFNRyJTahg3bjw1atcjKS0DrcFMUo+5+Kp1RqkzkZaZzaAhw9CbbSg1euQqNXKFCoXOHNCLHvU8Ko2OGTNmlKpS+PTTT9GbLHgqtw9m2Bsj0mnVuvV113BRURGt2rZHqdYQm5BE9Vp10Nh8aBxhyDVGVFojQqZAptJhS6lJ9vjVSKQyIpuOJG3QIpRqLWZPwNTQ5PCxbt06xowdj9UXjSelKpHRcVy8eBEIfFcpNXokUhnOnCa4YjPYuHHjDe+tzp274K0ceBCKaDSEzl17AAEDmKi4BPQmC4MG37gK5UZMKZiGzmRFb7EzdMSoG7YZOHgoWqMVpUZPh46d/mOmhMXFxdRv2ASDxYHOYOLVV18Nbtu1axdt2ndiyLARt/yOb9qiNdEtxgay6Su24IEHyvZyr5wA5QHq8vV3OeX83fjFO6OgoICPPvror57O34Yvv/wSm07HJIOJXKPxN2ecP/fccvRmG+74bKx2BzKZjKSkpFIVon8mly5dIjclhUSzGYtGg1KlIW3QIjJHPY9aq/tNSUdBLeyKLTBYnaxZs4adO3diNFuxuENJTE0vk+k1BPTE9SYLNl8USanpTJo0GVdqNbJGr8CVVInZs2ff8fwiY+LxVG5HZJPhSOUqjGHJAfPzuHx69+1/R2ONHDUaT25jwur1Q+eKZPz48de18fv9tw2ovv/++/Ts3ZcZM++7LoBfs059wuv0JnPU81g84Wzfvv26/rXqNcBXsRUxbSYjJFJyJqwhd+I6JDI5X3zxxR0d0y80a9mG0KodyBj2NFZvJFu2bKFbz97IFQosNgfvv//+LfsfO3aMjl26Uad+I956663fNAcoe4B6/fr1NGjSnFGjx972ZdHd0+/BEZNJTOtJmBzeUlWS5fzvUR6gLucfQc+OHWlpMrPAYsWl17Nnz54/dPwjR45QMGUK999/fzBw8p/iX//6FymRUaTFxNz2B+Py5cu89dZbrF+/nsuXL/+p8/L7/RjUarY7XOx2edDI5TS2BYxnVtjsWLXGaxmSXalctfp1wfI1a9ZglssJUyoxabW8++67HD16FLNGw2qbg1kmM8mRkbedx+nTp9HoDKT0eZTY9tNwuLy3bF9cXIxCqSJj+LNkjXkRlUbL999/j8vtQQiBymChSvVawUBTSEQ0qQMWkD91M57YjOvMJbZv347FE07GiGWE1e5JrXoNSm0/fvw4jz76KCtXrqSkpIT0mBiestj4wu3FpVKhuiZHYbLa2bhxI36/n2YtW2P1RWF2+oiKSySyyfDAucyuzyOPPEKNOg2CMi2O1JoYQ5MIbzAQvcmC0e4mr2AT2WNfQqXRcvToUWrUroc1NgeV2U3KgCfQhyah1BnRWRx4K7VBqlAhpHJkSg2tW7elUdPm6C12tHoTj1wrzUrLyiW27RRyJ7+K1uZFobcEHZ+lChV6o/m6zI3hI0dhj0rBU6kdMrUetSsKmcaATK3HmlgFrcGMN7cxztgsatetfy37tT1aoxW1zogxMhOZSodKZ0Jv9+LLrI3N4UKh1uKr1pncKRvQu6OQyeU4PT4+//xzJk2egj25GlljXsQYmUH37t1ZtmwZjqhUMkevQGMPxRiWjLdKB+RaE1HNRqFxhFGzdh28OY2Dxhejx4wpdSxHjx7FYLYSVrcvzpSqKHUmcsa/jC2lJtakqmSPfQljZAbZOTm069ARhUqNxh5GfMfpaBxhOFwuIhoNCVxHFdsgVetR20KDGdS+mt3wVutEv/4DeP/992nStBlGdwS5UzYS1+Fu5FoTxsgM3PktMNmchNftQ0iNbqgtHjKGP4spNh+pSofa5GDUqNF8/fXX7N69m27dutG6dRtiE5JwJ+ZjD4u/6YJ+165dxCckoPPEkTniOUwR6Tz44IO3vJ+KioqQymTkTFxL7uT1AQNJuQKdI4zk3g9jiauAPjQRuVpLcp9HyJ30Ckabm6nTptG+U5egU/iVK1dITc9EJleiNRipU78RCxYupHqtuoTV60f2uNWobSGotQa++uqr4P4vXbrE22+/zTPPPINGb0JhsBHZeBhGdwQLFtw6U7qkpISDBw/ecOFcVFSEXKEka/QKssetRqnWXhfsPXHiBGqtnuzxq8kc8RwKpeqODIp+D2+88Qa2kGhyJ79KfKd7iUtKveMx7p8zF3t4AhGNhmCwOH7XA8n/IuUB6vL1dznl/JH4/X5mz5hBnQoVuLug4DeZ3D72yCPEGo0MMRix6XQ3lcv7X+Sdd95hUJ8+PPzQQ7/ZQDgjpwLxHe8JrOUS8wLJFBYLVquVfv36MXv27DIHc38rhYWFvPfee/zwww88tXgxao0OlVrLPTNm3rLf5cuX+f7772947Lt372bOnDm8+eabANRr2ITIJsMDButJFVm6dGmZ5la5ei2iW40nr2AThrBkLDYHOXkV0BlNNGra4o6z1letWoVUriBr9AryCjah0FuRyBU4sxuj88bRqm37Oxpv+MhRePObB44ro/bvMrm/GV999RWxCclotHqGjRgVfJ48c+YMHTp3JTu/Mo899hjNW7UlO78yterUw+QMxeAIoVnL65NCykqlajWD596dkMO0adOweiPImbCWqBZjSM/O+81VA5cvX+bRRx9l1qxZZapSD0p8qNQ88uj1Eh979uxBb7YR1Xw0ruTK18lx/DtNW7QmqvmYwLNwfjPmzp37m46jnP8ObrX+lv81ytfllHM9Dy9cKCaMHCnW7N8vHhs+XKSmpv5hY1+5ckVUyckR1S9eEj9KhHhn61axdsuWP2z821G3bl3x2bcHytRWrVaLqlWr/skz+n+kEon4tKhIaCUSIZFIxHuFhWJG0VXxthACmUQcfH6cuHjysLhv/Vpx7Ngx8fXXX4vs7Gxx9epV0aNDBzFSqxMlQiKWKOUiPz9fSCQS8cTixWLS+PHCZHKJ55cvL7W/w4cPi5UrV4rQ0FDRpk0bIZFIhNVqFU8ueEKMGD1GaDRasWrlC7ecs0QiEQqlSlw9f0ZIVRohERJhMBjEiRMnhK9aJ3HkrRfEO2+/IT788EORm5srGjdsIF7eMl8onNGi8KejIiMjQ/z4449i0aJFwmQyif79+4sendqKJ58cLMIiokTHYYPF1KlTRf369UV6erqomJkpMi9fEV/7S8T7b70lHlm8WLRu0lScO/eTUMrkwp7fWhQe/Fj07tBcNGzYUAghxJpVK8WOHTuEWq0Wzz73vFj91mfioidGXDl+QPh8PtG1YzsxasIUcfngbnH+2w9FpM8r3FcPiGdfWStatmknju18SRSfPykiIqNEbEKSUBntovDcSeG/6hdypVY4MuoLsW+TeOiB2WLPnj0idVwXsX//frFqzTqx7Z1d4vzZkyJz5PPi6vnTYuz4YWLIkEFCo1aLcxd/Ev6iy6K4qFDg94vvNjwqrl44K4yRmeLqiQPiww8/FEVFRaJixYrCarWKuXPuF0kJ8eKtt94Waz6ViCs/nxDZI5eLSycPii+WjhYmh1eENhwqis6dEjsW9hP27KYipFZP8fP3e4Qrva5wZjcSBzc+IrRnvxIXLl0WiQ6Z+LHYJX66cFn8uPMlcfyjDULqLxEanUEMHthfSCQScfLUKaE02sXFo98ItdEmdn3wkVj23HNCrjEK6dsrhB8higsviTOfbhHJcVHiwr7NYnifLkKtVokvX35D4C8RVy78JB5+5FFh0BtEYVGhyMnOFnK5XEh1NuGp2FpcOnlQnP56lPCXFAtzbL74cesC8dmj3US16jXFK2tWicLCQnH40CHxgzJamGPzxMWj34hjO1eKM9uWilN73xQXj+wTQgihMFhF2sAF4uC/Fomzn/5LyLkqGo9eImrXayDMmU1EcYlffPlEL+G/ekXIRYnQ6ozi9Kf/Ev7iYhGVUlPI1Dpx7L3VYu+Tg4XaHi60znDhzGwgFix+WjRs2EC07dBZXFWZReFPx4RMlIjZM2eI8PBw0axZsxveG7m5ueLDDz4QTZq3Eh8tGSLq1qsvBg0adMv7SS6XC7vDJU5+8i8hU2qEEBJhsVqFMjxV6H3xwhSTI/z7toih90wX06YXCJlCJerVqSXumjZNFBYWipUrV4pJkyaJS5cuiWPni0VEs1Hi8OtPi29VCWLi3bOEzagVisRMIVOqhVyhFCMHjQiagl64cEHkVqgkTl8oEudOHBG6qBxhTagoju1aJ9JjwkS/fn1vOu/CwkJRp34j8cmnnwqpQGze+KqoWLFicLtMJhNqjUZcOv6tkMpVwu/3C7n8/5c9O3bsEFu2bBF+f4m4cvqIKL58XiiUKiGRSG55vv4odDqduHrlkii+9LMo+vm4sOr1dzzG6FEjhEqlFLs++Ei0e/qp/+hvRznllFNOOaV57rnnxLOzZ4txcoV49MsvhdXhEEOG3pnR7aaXXxZjZHLRWKMVZ65cFm+++WYp0+C/mh07dojhffoIv98vHly4UNSsWfM/st/Lly+LnJwcUalSpVJ/37Jli+jRu68oLi4WTzz2iGjTps0tx4mKjBDvHdglpEqNuHjyB9G4cWPRqVMnkZaeLp5ctEgYvbFi9dr14v2db/9px6JUKkV+fr4QQojevXqJjh06iJKSEmEwGG7aZ//+/aJqjVriSuFVERLiFe++/aYwmUzB7RkZGSIjIyP4f4vFLK4ePCKuXjgjrl44XartrXDY7eLg8e9EoTdeXL34szCmNhR7P1gj9HqDOHnqlDh16pQIDQ0t01g7d+4UXXv2ETK1QexZMECoLB5BcaEwuyNEZOOh4vLpw+KdNXeXaaxfmDBurNhQo5b45P5WIiEp6ZZr3A0bNoivv/5atGjRQkRERJR5H7GxseKrL/de9/f+A4eId745Iwxx9cXEqXeLt7b9S2RkZAhA7NixQ/j9/lLrsMOHD4v2HTuJ7w/+IDp17Chm3zfjliaY90ybIpq3aiNOv/O8MGgUwu12CyGRColEIi4c3ie+/2S3MFusYsaMGWLM6FFlPh4hhGjZpr3YfeC4kGpN4snFS8W+zz8TCoVCfPjhh+Ldd98VVatWLXX99OvbV3Tv1k0IIYJG67/m888/F6awJOFIryuUBpv48ONXgts++eQT8c0334iaNWsKm80mhBCiW+cOoveAwaLo6Bfi3FfviUaNZt/R/Mv5H+Jmkeu/+7/yDI5y7oQvv/ySSKORw94Q9rq96FWq3zTOxYsX6dWpE6mRkUwaM6bMpeBXrlz5zW/6/2ya1quPXSrFI5ORn5bGZ599RkFBAcuWLeOnn37i9ddf59ChQ7z55pvY9HrybDbC3W4a1aqFSkj4zuPjW48PpUx227e6p06dwmuz0clsJtloomDChN887zVr1mA0W9HqjSxZuhS/348vLILwOr1x5jRGIpFgNpvZsGEDxcXFLFq0iLvuuotvv/2Wy5cv4wuLwJvXBFdiBRo1bREc94UXXiBMb2CYwYhdq+OJJ54g0xrQvHvD4SLc4QRg7oMPIVeqkKl0JHSdfUtztXPnztG6XQciYuKZOGlK8LrZunUr9evUIVmvZ7zBiFWrZcCAgYwaNYp2HTrTf+BgatatT2TTEYGs4PTqRMXGI5UrURisaPSGUtq6R44cQWswkTFiGVKlltT+TxDXfhoylZY5DzzInj17AvrGCiU5+RWQqrQBczylDo0zCrvLg85oxhOfg9ZgIjUjh8fmz6e4uJhGTZqj1hmRyBVENBqG2upDrjUFNKBzmuBKr4VWb0KuNRHReChqkx1bXC4JXWehs/swhyWR0m8+SqMdmVqPzhuPyuJBSOVEtxyHOa4CUoUKmUp7zZhQhdYdjVShRm/3kTNhDe6KbZCpdCT1moc5rgJCIiUuKSVYDrl+/XqMVidCSNC6ogmp0xuJXIErtzlGhxdPSBgytR5HVkNUFk8g61wiRSJTYHd7mXHfLIqKivj5558Ji4zGGpGMVKHCmlQNmcaAVm8kKTUdqVxJ2sAnceY0wRSTS17BJkKqdaJu/Yb8+OOPLF68mJCceuRP3Uxch7tx+8IwmCy4Q8JQavSE1u6N1uZFZ/PgjEqhYpXqyOQBA8SYNgGpF1N4MgqVBplSS2L3OSR2m41Sby2lg+f3+/n2229/t6nsxx9/TER0HAqNHo3eRH6lKrz00ktYbA48CTnoTRbWrVtH9dr1sDpcdOvek5KSEk6dOkVsYjJamxeVyYnBF49SZ8KV35yQmt2vmWP2pkXL1hjNVnRGCzXr1C9VibFq1Src8TnkFWwitv00FFojoXV6Y3L6WLFixS3nvXr1apzRaeRN2UBU89FUrl7rujZ9+/VDrtajMNgwOMNo3rIVGTkVaNa8JXqzDV/ltih1xsA9pbOg0ZvYsWPH7zqfd8KESVNQa3WER8Xy6aef/sf2W04AUZ5BXb7+LqecP5CJEyYw3BB43phiNDGoT587HmPm9OlkmUxMN5px6HR/KwPc4uJi7EYjCyxWFltsWPX6/4h29vR7Z6BQqlBrdbz44srg30tKStAbTSR0nUVSr3lodIbbVsmePHmSpi1aE5+czmPz5wf/ptLqMUZlIoRASCR/mtnjb6VT1+6E1epOXsEmPGnVefjhWxsqHjlyhOz8iuiNZvr2H1jm6rDDhw+TnVcxIANYsTUxbQtQ6CykDVpEaLVO1G/ctMxznjNnDjKlhqhmowKSfho9Dz/8MCarndDaPXGnVqNF63ZlHu8X/H4/P/300y2fwx+YOw+LOwxfbmPMNkcpycPfSmpmLgld7gs8kyVVYOXKlWzZsoXXX3/9urmcPXsWg9mGKSoLpdGBzubmuTKYur7++uto9UZCMmqhN1upWbsOCqUaiVRO2sAnyRixDJVGF/QAKgunT59GIpORM/5lUvo9jlyjxxMSzsRJk9CbbYTmN0VvspTyjrkdP/74Ixa7E19OQyzucB6YOw+A5cufx2B14E2uiMcXWipbe8eOHcyfP/+WvjDl/G9wq/X3zV/hlFPOfxFhYWGiWK0WMy+cF5MuXhCRoaFiz549dzzOzOnTxY8bNopZ5y+KVxctEitWrLhtn7smTxYmvV7YjUaxefPm3zL9P42SkhKxedtW8abTLd52usWX+/cLp9Mppk+fLrp06SJMJpOoWbOmCAkJEY/Nvl+Mk8nFyyqNyC0sFHs//VRkKBWi3emToumpEyI/K0toNJpb7m/Xrl0iSkjE/Vq9uF+pEmtffPE3z71Fixbi57OnxcXzP4uePXoIiUQitv1rs0jSnBLpdiHWr18vwsPDRZMmTcSMGTNEr169xLRp00RkZKT49ttvxaWiEhHaYIjwNR4ltm/bGhx305o1YpBMJsYZjKKdXC6+++478UNRkVh28YJ4vKhQZGRkiCNHjoiCqdNEcv8FIqbVBPHN6pni1I5lokHd2sFxdu/eLTZv3iwuX74sDAaDWPXiC+LB++8TcplEfPjhh0IIIWrXri1+OnpUTFaqxVCDUWT6EStee18s3/yeuHDxoljw+GMiNCREFB7/Rlw+fVgUnvlRIKQiruM9Imvk88IWnSV2794tioqKxNGjR4XRaBRSiURc/PEroXGEiS+WjhYH//WkcFdoJTZs3iIKCwvF/i/2iqLCK+KD994VHdu0FMWXzwm1xSWKfjoqrhQVC3NmExHW/l6hDksXx+UeMeXumWLevHli16dfiNQRz4uoZqPFwS0LhNJoF1mjV4iwOn2E9PhecXb/e6KwBOGp2Eac3L1FeJ1W0aZ2nlB9sUZEh7iEMbGa0LmjBX6/CKnRVRjCU4QQQkhkclF04aw4991uYUupKSRypaD4qjDF5IrUfvNFRKPBoujqVSFVqIXSYBVyuVwc3vKEoOSqyBn/sjivCRX3zJgpjh07Jjp26SYc1boLZ04TIaRScfTtF4TelyBO731dXDx/Xhw/flwkdL1PqM1uUXzpnIhqPkZkjlgmpHKFUMZUE7Mff1bUb9BYvPXWW6JIYRKx3eaKyMbDxNmv3hMKUSLUarU4dlUnEBKhMNqEM6uhOP/DXvHhrBbi+K61osTvFyqVSuTn54ufvv5AHNmxQhx/82nx08/nRFSXB4Q6tamQqLTCW7mtcFftIpLjosTih+8Tb2z7l2jdtp3w//yjOLh5gfhmzf3i/I/fiKQ+j4nolmPFN2tmizNfviOuFl0We/bsEd98840ARM/efUVqZo6IjIkTTy5a9JvvpXYduwhJUiMR3+U+IZEI0bRxQ9Gjd19RIpGJEJNcfPLRB2LVmnXi0+9OiJ/O/iSWPbdMDBg4SKRlZosDBw6IwkvnRWKPuSKx10NCKpOLE7vWi6M7XxKHty4SZz9cKxo1rC/2fPKx2Pf5HrHtX5uEQqEI7tvlconLZ4+Kyye+E5cPfyEy09NEs0SdWPz4w6J9+/bivffeE2mZOSI5PUu88cYbpeat0WhESdElUVJ0RZRc/Elotdrrjk2hUAl3xVYia+RyobCGim07dokrCc3F1h3vC3NmUxFSu7dwVWwrDBHpImv0C8KWUl188MEH140DiJdfflkUFBSIXbt2/eZz/e/cN+MecfniBfH9ga9EWlraHzZuOeWUU84/heLiYrFv3z7x888//9VTKRN+v18Enq+vp03btuI5/GJE4RXxREmxaN+16x2PP37yZNH9rrvEoeZNxXMvvyxycnJ+75T/MK5evSrOXbwoqqvUoqpKJa4UForLly//qfs8duyYmHnfLJEyZKmI6TRL9OnfP7itqKhIXL50SWgd4UJjDxV+f4koLCy85Xh2u128smaV2Lf3EzH4WvatxWIRer1BqG0hQm0PFwJEq1atxLlz5/7UY7sTdFqNKLn0s/AXF4qSKxdv+8zl9XrFh+/tFOd/PiueXPD4LTN3f43P5xMfvr9T9OrZQ1zc/7b4Yf1coTI7AufGEytOnDxV5jknJSUJqUIt7Ol1hTu/hZAKxLBhw8Sbr28VdSLkolezauK5Z5aUaaw9e/aIVatWiVOnTgmJRCJMJtN1FW8XL14Uly5dEkIIsXzFSuGqPUCENBwqdCFJ4q233irzvG/GkIF9xY+bHhKHXp4uxPmj4qklT4vOfYeKNl16iz79BpRq+9ZbbwmZySMSuswU0S3HieJivzh8+PBt97Ht9deFJaOh8DUbJ6y5rUVERKQ4fuxHoVQpAw1u/NVzS+Y8MFcodFbx/abHxf4XCkRo7d7CUne4eODBh4Qptb7w1h8sTBmNxZq168o8psfjEZ989IEY362hWL7kCTF61AghhBCPPL5QeOoOEqGtpwmpLUJs+VXFeuXKlcWgQYNEXFzcDcf85JNPxKxZs0r1Ked/kJtFrv/u/8ozOMq5U7799lvatGiBXqGgvcWCTae7rdnAv9OtbTvuMZk57A2hm8nMrFmzbtn+wIED2LVaPnV5eNFmx2O10aF5c3p06MAPP/zwew7nD8Hv9+O12XjYbGGJ1YZFpyuVBV1SUkL/Hj0wajSE2Ww0Mhh5zeEi2WSia6dORBoMZOn1OM3mMulZfffdd9h0Ou4zmWlqMtOt3Z2/Nf+FM2fO8PLLL/PJJ5/ctM3Fixfp2rUrQgiaNGkS1J+9ePEiDreXkKodcaZWJzktI2hEs3DBAhKNRu41mfHq9bz22mu88847tGvShKH9+nH27FkOHDiAzmQlZ/zLpPZ/HLVWz4IFC4LZCQ899AhGqxNndCppmdlcuXKFBQsXYnaH4avSHr3JwieffILf78diNBKvVDPKYEQtkZA6cCFZY15EqzcAgayOGnXq4XD7GDFqNFOn3YUtLA5vpTYYLTY2b96M1eFCazBRoXI1Nm3aREpGNkkp6WiNZkJqdMPsjUKl1aG1+1Bq9Sxfvjx4jt58801UWh0xbSYT2XgYco2e5F4Pobb5CKnZHb07kmbNmmGwuVGZ3UjkSlQWDxpHOFljXsRdoRUOdwh6iwOdJ5assS9hTa6O1mihTv0GzH/8cXbs2IHBZMUanoxUoUamNhBSswdKgx2r3YlMrsRzzRgvvP4ApEoNaquXlL6P4kyrhVSpRa4zI1WqUao0VKxUGXtqrWDmcoNGTcirWAWd3UdewSbShyxBSOW4K7YOZPHW7oXS6EDjjETnjcOaXB2ZSkNi9wfImbgWhc5CSr/HSeg8E6XewiOPPILebCOuw914choTGRPPk08+iVShwhiRjkytR6LUIFPrUZrdyBRqknrMxZvTkC7dewLwzDPPYDBbkcnk6O0+8qZsILH7HORqHb68Jhjtbp57LvA5bN26Fa3eiEQqJS0tnZEjR6I1WsmZsJbU/k8gVahQmj3IVDrUVi8avYn758xBb7EH2gxYgMliu+l98IvG88GDB2+43epwkTpgAbmTX8Xk8GKy2kjt/zi5k9ejt7rQ6PTI1AGd9bTBT5E+eDFyhRJHZDIKgx2VxYO3aidiWk9EpdFx5MgRduzYwfTp00nNyMLk8KA1mKhYpRresEgGDBpSqqLknhkz8YRGULVmbY4cORL8e0lJCRabg+hW44ltV4DBZCllZFNSUkLP3n2RyRVExsbfMCPj448/xmC24kuugEqjxZvf7JoZZgM0ZheRTUdgcISgNVrxVW6L3mQplcl87tw5Jk6aTJVqNTA5Q/FV7RC8f8v55yPKM6jL19/l/KVcuHCB9KxczA4vRrP1jjL4/gqeeOwxtNd8V1avXn3DNvv27WPx4sV89tln/+HZ/Xn4/X5eeOEF7rnnHrq2a0e4wUCk0UiDmjUZ0LMnzzz99J9mMHz06FE0eiNZo14gpe+jGEyW4LYRAwcSqtGhVGqQqbT0ukPDvV8TFZ+ENaka7gqt0ds8SKVSkpOT/2Pmibfj6NGjpGXmIJPJadS0BVeuXPlT9+f3+4PZvCqLB5XFg0KtLWXofDuKioqIS0zBFp2B2RtFv4GDftNcXnzxRQwWO96USrg8ITesHLz/gbko1RpUGi0LFi6k/8DBuJIqEtVsFAaL/Q/ztnrvvfdYsWIF+/btQ6Mzkjt5PTnjX0Ymk3P16tVgu71796I1WohtPw17Wh1UOiPffffdbcd/7rnnsIbEEN/pXhzRacx9cB4AS59+GpVGi1Kl5oG5t/aWgcD69euvv6a4uJhRo8dgispEZfUhU2lJG/xUwI/IbMfkDiem9SQs3kief/7533pagnTp3hNPVj0SuszEZPeU+Tt9z5496E0WfP/H3llHW1Wmf/yePmf36brd3UF356W7pFG6UynBAmwUQRBQUVCGHtQxRxzHDsRWwC5CBeHe8/n9cfDM3KEuCOr85n7Wuou1OPuNvU/sZz/v836/dTqjugPcd9/a3zyXGv68nCv+/sMD3Yv9qwmQa7gYRgwaxNWKysFANGNlhRnTp19Q++eeew6nJNHA5cIhy/Tq1ImF8+ad5v77K++//z4eQeBtX4AHHS4EvZ7ZqsZVqkZeauqlOKXfzIsvvkhZdjaFaWmnmQdu2rSJfE3jNa+fEapGit9PSiDA9FPyJo899hirVq2qVnL6V55++ml6lZczZfz4i94+99133xGIiSOQWYakOVmwYOFpAeTJkyeZM306rerXp2ePHhiNRpKSkiLJpw8++IChw0bgt9upY3fglySmTp7M0qVLuW7xYob268cjjzxyxvFDoRBDh49EkFVsoszKVauqvB6MSyR7yK2Uzt6JKzaVZ555hlbtOpLUeSplc3YRXasDy5Yt4/4HHiBKb0BnMKIG0tAZTfhKO+LLbUTDJs345z//edoWrlAoxLp167j66qt55ZVXaNS0ObEthlM6aztKbGYVd+3nnnuO8RMmUqdefYKNB1I2Zxeu/BaYrTa++uorILxFyyaFA6z0ftch6HRogojRYkVvFpDjcjCJKgaLQHzbMWiptfCWlWNS3OjNNmyeBOKTUklKScOiuDDaFBxZDYlpegUGq4QWSOCee1ayf/9+HnzwQWRFxVvSgbjWo7Cn16VN+47cddddyO5okrvOxOaJJ0qnx2QVMVhEjBYBOS6f9H6LiW4yiNSMbL755huSUtNRnF5cHh+CpBLffhxGQUWOzcaiuIiNi0PwJZF5xVLkuFz0ZhtROj1xrUcR02wwUXojeqMZvcmK3mzFW1aOzROPHJfD0KFDefDBB0lKy0RvEZDj88J9B9Mpm7OL9H6LMStu0novwCQo2GMzKJuzi+SuM6jXsCkA+UWlJLQdQ/7YtZgEGdkZXkRYsmQJy5Ytq+II7o+JI63XfIomP4zBKrF582YGDh6KqDowWwVEuweDTUHwJlI6eycZA24kNjEFQVLJHbWClO5zCMTEnfGzeuTIEVIzsnDHpSMq9jM+WEyZOhWTxYZNsdO6XUeSUjNIaD+e7GG3ozdZSelxNQkdJqDTG8gfs4b8sfdhslgRFY2Y5kMwa36MgopZcdGzZ09efvllPv74Y6LjEoiK0qGmlJLcdSZmxUXOyLtwJ2RXy6zn+PHjGE0miqc+Qsn0v2CxCaeZeP76nTgX+/fvZ8uWLTz77LOoDhfReQ2RVAeTJk2iW88+rFhxD1u2bGHevHmRhapfadysJb7cRgi+pCrf36VLl553/jX8+alJUNfE3zX8saxbtw5felgqK6H9eJq0aP1HT+ms/PDDD8gWC895fGx3edAE4bIlZf9sXDtvHpmKylBFxSlJbNmyhZtvvhm/KHKNopIiK9z7H7HwpWTu/AWYLVasgsgDD/xL/isvOZmtLg97PD5q2e2sW7eOPv0HUr9Jc7Zv335BY7Ru14Fg7c6k91uMbHdx9913Y7fbcblcl8yA+Ntvv+WGG27gtttu49ixYxfVx+/1mQuFQgweMhQlOo2SmVtJLJ9CMO78xvf/yY8//si6devYsmXLRc+9bsOmEWP5YF5DVq9eXeX1I0eOYLEK5I9bS95Vq7BYbRw9epQpU6fTtmPnan0WDh48yMyZs7juuuv46aefOH78OOvXr+eBBx6oImPz8ccf8+KLL3L06FEUzUFy52kktB2N1x992vlt2LCBgpJaNG7Wooo5+LkIhUIsXLSYsroNmTp9ZpWCjl9++aVan5sXXngBxe5EcXopLCnjgw8+wBeIxmARceW3wGCVsNm9tGrbnsXX3UCLNu255dbbzvv+fPbZZ1x51RiuvGoMn3/++RmPOXToED379CO3sJQ7ly+v1jkD3HjjjUTXLqdszi4SyyfRvvzizSZr+PNTk6CuoYZT3HH77eSrKsvtDlIVhQ0bNlxwHx9//DH33HMPDkHgakWloaoxetiwsx4/eexYBJMJyWLBYbGw3x/kfX8Qg15/1hvBjz/+yBdffPGHB7733nsvzewODviDLFY1OjZvfsnHCIVCHDlypNraaBDWiQ5k1wkngIPpuI1GnILArcuWRY65dt48aqsqd9udJMgy11xzDS6XC5vNFqkg3rVrF6Wn9KV72ET0ZisWzYfJKvHKK6+cdx4HDhyI6B//O7XrNySmYe+w/rJq54MPPuC662/EGZdOXKtRyHYXzz//PHaXh6zBN1M46SEMZht5hUXkFRYTiE1AVDQc0UkIksLcuXNP0zB/+eWXsTvdGEw2jKKGv043BF8yMfGnB4/jJ07CkVGf/LH3IcdmIyiOSAVoKBSicdPmGKwilqgo5ioaw2UFxWzGrPlQEgtI73stFs1HoG4PUnpcjc5kwyiEE6aS5mL58ru48qoxqA43RqtI9vA7KZuzC5snHl+tLlwxJPz9qKys5J577sFkk5Djc3HnNcfu8vDSSy/hj47DZJMpqVWHzZs344xJpnj6ZoRAKibZicEqYrIKPPHEE0C4KuOjjz7i4YcfJpBZRtmcXcS3GY3BaMFotiLbnVgVZ7ja2xVNg0ZNMFlF4ttcSXKX6RisMs6kArp07crw4cMxmq2IwfRw0l0O6xDnF5Ui+JJIaDoYq9GMwSqS3m8x/pL2mGwyBpuCWXZhMNtwxWUgqQ7+8pe/0H/QYAwWgbTeCyiZuQ1HIIHVq1fzxRdfnPFzJNudpPddRNHUTRhFjeYtWvL888/zySef8NVXX3HXXXdjMJowiXayhtyCM6cpkuqge4+eiLKCNxB91oenDRs24M8opWzOLlK6zaK0ToMqr+/duxdR0QjU64nF7ic6LoG///3vpKRn4fT40BtMuAtakT3sdoxmKyaLFYvVxtJlt7B9+3Zq1WuE0xtAp9OTmJqOqDrQPNHEJiQTrNeDkhlbEP0pGKwSVmd0WLevtD3XXnst18ydj8kmYTBZKKlV94x6esNGjELzRmP3x9G7b/8znuOvnDx5kkceeYSHH374jIuG33//PR06dSY+KZVrr110zr5CoRC9+vZHbzRTMG4dsc2HYnPHEtdyBLLdxZ49e87Zvob/DmoS1DXxdw1/LOH7fSqFEx4gpkEvOnXt8bvP4dtvv61W0ufbb79Ftlh43evnWY8P0WK5oNj1v5m6eXk86HRxMBBNW5eL+++/n9mzZzPmlN72QlVjSN++l3UOP//882n39vGjRlFLVRknK7hkmcbNWhIoaUtyl+lIqv2Cqp+//PJL2rQvJyO3gFWr7gXgvffeIzU1FZPJxKrfmIA/efIkKemZ+Aua4U0vo0Xrdr+pv8vNPffcgz2QhFHQcOU1Rw0mM3HSlHO2uVx+S4OGDMOf35T0votQ3YHTYt6jR49isQrkjV5N7si7sdiEC5rLsWPHwoVPZR3xZtWlZZt2NGzSHG9KAZ6kPNq06wjAmjX3hZ/P/HHUbdCYpUuXYrJJGK0iLVq1+c2/B3evWEF6dj5t2pdHColCoRDPPfcczz33XLXzAk1atCah3VhKZ+/Em1bMmDFjuPnmm7nuuuuoXb8x5V268be//e2CrlEoFCIxJY1g7U4EapWTlJp+SfMUTz31FIrDQ0L7cbgSslh03fWXrO8a/nzUJKhr+J+gsrKSI0eOnPeY66+9lg5Nm3LbLbdc9A/rpk2baOFyczAQzaNON8Xp6ec8/vDhw/z888/Uzs+nmd1OLU2jW/szm0w89thj2EURzWqlZ3l5tW52P//8MytWrGDFihXnNSq8EI4ePUpRZiaxsoxLUS5YEmXz5s3069aNpTfddMbz+Pnnn2lWty42k4nEQKDageQLL7yA4vKR0GECdoORj/xBnnR7cStK5JieHTtyg2rnYCCa9qKEYrGQpqpYzWaioqIYM2YMr732Gh5RpL2oYLAIZF6xlNLZO7A6o+nUpesFneu/8+mnn9K4WUvSs/MiMg6VlZXccutt9B0wiHvvvZfjx4/jdPvIHHgjhRMewCLIXDFkKJ60EmRBQRcVhcMVjae4PTbNw5RpM6qM0aJ1O3y1OmNWXCR1mooUnYnFFYPT4zttPocOHSI+KWyuaFVd5BeVsuzmm+neqy8PPvgg5V264S3pgNNi44A/yFu+AMaoKMyqh/jWV1I2Zxfekg5E6Q0YbQpm1YPL4+Wee+7h9ddfZ+LEiYjuGHJH3o07rxkW1Y0rpwlGQUXSXGzbto3KykratOuI6g6gM5gonPggZXN2YVZc6PQGBG8i+ePW4YxJZsiQIQiqg+jGgzAKCiUzt5E7agWyaicUCjF33nwaNGrC3Xev4JtvvkFUNIw2GYNVIrb5UEpn78DmjMFgEVCTijDbRPbu3cuePXtweXyYFTcZA24kUK8Hdeo1YPacq3H5gshxuVgdQcyKi0GDBtGrd1/0JiuK0cwzHi9dbAIWm4w3EEuU3ohJduLIaoi/bndUu5PXX3+dJ554AkcwkeSuMzGYBUw2mdbtOkSCwJMnTzJ9xiwaNm3J8rvuAmDIkCHham6jBaNNRvEnoHmCTJsxK/Iezpp9dVgexSZjsAjENB2Mxe6noKiEr7/++qyfxaeeegrNG0NylxmIvkQSktPo3K0HLl+ATl26c/vtt+POaRQ2dOxxNVbNy12n5lVQXIY3vzne0o7oTVamzZjF0aNHOXr06GnjhEIhBEkhf8xqSmZswSzIxDYbTOnsHagppUjBdExmK77kXNy+AI899ljYkCg+j4Lx63FmNTzjg08oFGLPnj3VCsw7de2OOyETT1IuTZq3Ou34rj16EyhqRVqv+ch29zkXofbs2YPdF4sjox5ybDauglYYzVa69+rDzp07zzmPX/niiy/429/+xnfffVet42v4/alJUNfE3zX8sVRWVjJ46HBsokxuQfFZpagu19h9u3ZFNptxSBJ/+9vfztvmmpkzkS0WZIuFu+6883eY5aUjFAqxf//+iNzdhTDxqqtooGrMVVScosg777zD008/jUcUmSArxEryeY2NLzXfffcdjzzyCDNnzmTiuHG8/vrrxCWlkj3k1nDcmpzLY4899pvH+f7772nWrBlRUVFMnDjxopOwH330EYrDQ+nsnRRP34zBaPrNCb6PP/6YqdOmc8MNN5x1kaWiooLPP/+8ivxEdRh0xRA8xe3JGbkCNbGQNm3aRsy5a9drSGxiSiSOraiooGuPXuj1BmLiEy+5Cd7hw4fp3W8AuYWl3HrbbWc85rbbbsdssWKxCdz7HxXW52Pv3r3YfTGUzdlF0eSHsQoiFptI6aztlMzcisFo4tixY8QnpZI58EZKZ+/AGZNMfHIaKd1nUzL9LzgC8Tz77LMXdX6vv/463Xr0xCzIpPVZSLB2Oe06dgZg4BVDsPvjsPvjIjKC56Nj527ENOwdlozU3GiBJAKFzQhEx3L48OGLmuPhw4cxW2yUzt5J6ewdmMyW8+ZdLpSHH36YLj16c8MNZ84b1PD/h5oEdQ0XzWuvvcaIQYOYM2PGn87N+N956623iHa7sZlMlLdsedkdpQ8ePIhbURimqOSpKnOqKRXy448/smLFCtauXXvWORampXGvw8mH/iCpqlqtm12zunVppNlprNlpUrv2JV3RPHHiBO+8884F39CeffZZ/JLEYlWjUFW5ftEiQqEQq1auZGi/fmzatIkVK1bQSLPzqT/IBFVjQI+qlTM//fQTY4YPp0WdOqz/D+fjO5cvJy0rF9FgYIfLw1LNTkZcXOT1v/zlL3hFkR5OJ6rRyDwlrB3eWdVo0KABUVFR1K9fn2XLlqHT65GiM4lpOpjsIbdisIg0bVb9avHvv/+eadNnMH7CxHNqi3///fekZ+Ug2914fEHuuusurDYRUacjYLeTkZOPK6859W0Cn/iDDJAUJM2Lu6A1uYWlVfoq79IdLaUUV36LsLxElxmYRZXrb7gRCCf/B/fpQ3Z8PFMnTKBDpy5Idg9WUaZrt+44Y1JJaDcWxeUnIyePmGZDcLjjqGuxkWERsLvDEhl6sxUtuRiD2YboTcBolWjYpBnffPMNlZWVrFixAouoYM+oR9mcXSS0H4dFcSGrGpMnT+app54C4NVXX0VxByiZuQ0pNgtHZgOCDftitMnhAMqXREr3q3El5WOTVLyFrdGZrJGFg4R2Y3F6/HTt2g29yYLNE4/BIpCSmoZZcpAzYjmCN5FA/V6UzNiCVXKQ1GkKZXN24cltQt++ffH4gzjj0sNa1rITg1XGpnlQYzNw57dAZzST1mchKd1mISkahw8fpqCoBL/BwMf+II843ShWiWC9HphkJ3qTlaIpGymbswu7N5p9+/axZcsWrKoLqzMaJbGIrNwCQqEQP/30E5s2baK0rDaOhFxSus1CdPgoLq3NkqXLGDx0ONFxCVhlB6WztpM/di2irHDo0CHWrl3L7t27MVlFAnW74y0J6ygndZqCzR1H3YaNI5+LzZs3U6teI3r07hup7p82fQYGk4XYZkPwFLTAorjIHLwMyZ9MTGwcJqtIbPOhiME0JHcMK1eupKKiAp1eT8nMbZTO3omg2M/qgP7r700wNp6k8slkDlqC1SZikxQMVhEpOgNPRm2uvvpqnnzySb7//nuef/55bLIdd0GrcFV1/d6071h+Qa7k/86xY8fQGc3hCnhXLCaL7bTdDWH39Wsj7usbN248a3///Oc/Ud0B/HW6YfMmEqjXE3d6LebNm1+t+bzyyisodie+5FycHl+1dAdr+P2pSVDXxN81/O/y7LPPkqKofOAPssLupDgjo1rtvv3224u+V/1RhEIhBvTogdNmQ7XZeOihhy6o/YkTJ7h2/nwG9eoViesAnnzySaZPm8bWrVsv6VwPHDjATz/9dNZjvvzyS2K9Xho6XbhEMTL+vAULsftiCeTUJyY+8ZIl0E6ePMmVV14Z8bS5mCTf8ePH8fiCRDfsQ6CkLYUltX7TnI4cOYLHFyRQuzPejFp06nK6r88333xDTnIyTpuN5OhoDhw4UK2+X375ZeyCQLzRiGiyIsgqf//73wGo06ARMY37k3XFMiTNyd69e3nkkUdwx2dSMv0vxDa7gtbtO/6mc7tYTpw4ccGJeAg/M3n9QQJ1uuHJbkijps1x+wLEtRhGbNMrCMbGEwqFKC6rQ1zzoeQMvwPZ7iI1M4ekTlMomroJzRtT7d11oVCICZMm4/YFqdugMeIpzyAlIR93YWvi245Bsrup27AJBqOR4mmbKZ62GZPFWq3P9CeffEJmTj4Wqw1RcZAz8q7wok1SdpXv74UQCoXILyrFl9sIX05DCorL/vCd3keOHOGJJ56oibH/C6lJUNdwUXz99de4FYVpikobVaNnefkfPaWz0qF5c65RNT7yBymx23n44Ycv+5jvvvsuc+fOZe3atZf0B7pWTg5jJJkykxnNYDirCcuvHD16FKvRyKf+IJ/6gwgm058icF6yZAkD7WH5jJGiRFZqKnNmzyZNUZivagQlibFjx54zQX3V0KG0UTXutjvxS9IZK7jvXbWKWLebnKQkXnrppSqv/eMf/2D58uUM6NWLHqrG3z0+4mwiJrMVg9GE2WxGVVWMZiuxLUcgeBPDCS5fMqJS/a2BJbXq4i9oTrBOF4Kx8WdcfNixYwfNmjXHkZRP6eydxDTqx4BBg0mJjibLJiEIarhC1myhhU3ggD/ISFHCZhHQgkl07tItEpS8/fbbTJs2LWysZzTjyW+OZPcwf8GCyHhzZsyghaqxw+UhTZIQNTclM7eSM/xOjBaBuFajwlpu9brTpk0b9CYLOpMNvdlGoH4vrM7osHRFdkMsNpGO5Z0YP2FiJEl58uRJGjdriUWQ8Ba3x+IIRK5fxoAbcEUnVdHz/eijjzBZRXJGLCeu1Uj0ZhuS5iTYoDclM7dic8ciKHY0l5f4NqPDEiHeRARf8qmqYRGDyYTOYCLQoC9lc3ahpZSiM5gwKS6Kpmwioe0YTBYbOp0Ov0VATSwirfcCzLIDq+JEismKVAqbRDvZQ29Diskivu1okrvORGc0Uzxtc1gL2mji5MmTVFRUUKewELfJjFWnI6nTFAonP4zOYMJgU7B5E/EWtiQmPpHjx48zc9Zs7CklZA1ehtUZzYQJE6jXsDE6vR690YzNm0hC+/HhxHlhG5zZjXAEk1i7di3ffvstoqyS2nMucS2GkZSWQVJqOr7M2ggOHyargEHQ0JltRDfqj80VS3TjgSh2Jz/99BPvvfcekuogpdssAiVtadM+/Jv96quv4gwmUjZnFwXj1qE3WTHJTpSEAvRmAb3BhN5kJUqno6C4LGK8U6d+I7w5DfAXtSI5LaNK1VAoFGLz5s2kpGeh1xto2KQ5Tz/9NKmZOQRjE7j//gc4cOAA/mAMepOF5NR0svMLiU9K46GHHqKiooJGTZthMNswSU4MZiv2QAJ2l+eijKWef/55zJKDgvHriW05ArOgnPY9vOvuu1GcXgJZdQjExJ1Rz/rfz++qsePRGYx4S9qHvyu1OjFl6rRqzWfQ4KHENL0inAyvVc7cuXMv+Jz+rDz99NPcf//957x+/y3UJKhr4u8a/nt46qmn2LBhwyVLOu7Zs4cEWeEdX4CbNTu1cnIuSb9/Rl577TViJJn3/UEedbpJ9Pn/6CmdkV9++YUW9evjEgRcinLWhN/dd99NucPJwUA0t2kO2jZqFHntscceY/Xq1Zdl99Idd9yBwWAgOzv7opJi77//PoMGD2X0mHEX5N9zJl566SXcsSmR2E51uE47Zv78+fRQNQ74gwxVVSaMGVOtvgd0786cU4U93WWZ8ePHR16LT04jc9ASSmfvxB2XzpNPPsmGDRvwpORTOms7CW1H06xlmyr9nS9p/M477zB//vxIEvyPoHXb9lgVBxZBIT0rm6nTptGqXQfal3eJVITv27eP3MISPP5oli27hRdeeAGH24vBaGL4yCurnQ/YsmULjuhkcketwFvcFpPkpGzOLnKG34FJUNCbLMS3uYqEtqPRmywkdZ5KcpcZKJrjghPwbdqX4y9sQXzb0ciao4oZ+bkIhULccOMS6jRowtTpMzl58iSHDx/mhhtu4IYbbrjoSuzfSigU4sUXX2T37t1ExyXgTc5FUu3s2rXrD5lPDRdHTYK6hovimWeeoejUzf8Zj5d4j+ePntJZ+T0S1O+99x7//Oc/L5u+1q88+eSTmKKiEHU6BJ0Ov6Kc84YXCoVICgYZp2pMUDUSA4E/xbaYN954A6co0tRmw6XXM0xWkI1GrpIkDgaiGaMoTJ8+naZ16lSR+PjVfHH9+vXULyxk9anPYHunkzVr1lzUXL7//nvaNmmC327HYDSRe+U95I9Zg9FkRqc3EKXThZPDFoG4liMonbUduy+2SsL7448/ZvTw4UweP75KUBkKhdDrDZTM2ELZnF3IdvdpW1Q3btyI4vITrN8Lg1Uirdd8/CXtGDHqKqwmE6JNpmTGFnJH3o0gKQg6HVJUFH6dHqNOj1VS8aUWEJ+UwtKly5DMFtwGA3a9HtWbhCDJ7Nixo8qYg3r14ppThqDdJBmTVSBn+B0kdpyIUVAxCTLuvGaIip2nn36aqKgocq9aibesE0arhC8YQ0zTwWFTuEb9GTdhQpX+n3rqKVwxKWQOugmDTcZbWo7RJqHGZhPXcgSK3Xnaw0FiSjoGq4hZ9WASFbS4LAwWAZ3BiNEiYBEVcvMLcSZkk1Q+GZ3JitEm48prFk6qihqe4vYYzAIp3a/G4ggQ32Y09vS6GAUNiyBx7733Ur+oCEmnx6p5MUt2DCYLMU0GYRI1sobcEunDaJPRGc0Yo6IQDEb0JhuC5kZ2eJg4eQrffvstOfkF6C0C/rrdsTmDyL4ELKeSu4kdJmAwC+TlF0QcxfsNvIJAvV5YtLCUiFWQ0ZssuAtbY3EEMGs+jIKCM7sRerONnOHLiW4ykDFjxwGwfft2svIKqVO/EevWrcMdl06gfi8EbyJRurChZpTegM5oRvQlYXPHYhZkVLuTm2++GV9KPmVzdpE1+GYSUsLSQz///DOxCUkECprjSsjBaLbizGkSNiLpMAGDTaZwykaSu82OtIHw4tfixYu5Zu7c0x6kxo6fgFW248xpQsmMLXiz63H99VX14q5dtBhXfCbxbUdjtEl4a3XGnd8Sg1Wkeas2fPvtt7z22msMGzYMf1G4kjq26SD6Dbzi/F/q/+Cxxx7DEZ1C6aztpPa4huT0rDMe9+KLL7Jhw4ZqP7h+9NFHBGLi0DwBAjFx1a4+mjV7Dt6semFTyKRcVqxYUe1z+TNz/Q03oXmCBLLrEJuQdMm3d/7e1CSoa+Lv/1VCoRCvvPIKr7zyyh9eBXcuduzYQf/u3WndrBnxkkQjh4Oc5JRLImcXCoUYM3w4JoMBn8NxwTJ2Z+OXX35hzowZdG7V6ncpmKkO7777Lh5B5EWvjzvtDrITE//oKZ2RRx99lBJ7uHBliWanWZ06Zzxu9+7dJCoKjzrddFE1rhwy5Heb42OPPYamabhcrouWdLgUHD58GKfHR7BeD7xZ9SKSEP/O4sWLaa9qfOIP0ktVmTppUrX6njR2LJ1Vjec8PkpUjdWrV0d+J+65ZyWS5sQVm0phSS2OHz/O8ePHqd+oKTZJwe7y8Morr/Dcc8/RrWdvfMEYonQ6SmvXO2NS829/+xsGkwWbOxa9yRqRmasuoVCIl19+mT179lz0b9m3336LxSaSO2oFRptCdKN+uJJyGTdhYrXGP5PvyblYuXIlgdwGVeJwX+2uiIFU6tRviNFkpmTGFkpmbMFotpCZk092ftFFfd4OHTrEiFFX0b68ywW1f+ihh3AEE0ntORd3ch7XXX/DBY99qaioqODgwYOcPHky7E3jCWKT7TjTap3aUTqVxs1b/WHzq+HCqUlQ13BR/PDDDwRdLgYqCrVUlRGDqqd7dLn56aefTrsB/SrxYTUaL4vEx63LluEWBBIVhQ4tWlxUAvjxxx8nwecj6HTy4AMPnPW4999/H0mv52Gnm3d9Aex6Pa+//vo5+/7oo48Y0KMHA3r04IMPPrjguV0uXnnlFYoyMliihbWgBysKqtnMWFnBLYo8++yzhEIhDh8+HLmms+Zcjd0Xhz+zFl5/NEFJotzhxO9wnNUxuLqcPHkSi9VG3pUrwwlqswVvURu0lDKioqJwutwIsormjaFZqzaRxYhffvmFeJ+fK1WN3qpG7fz8Kv3Wa9gEb3YDAsVtSUhOPW11e+AVQyIVy4H6vYmK0qPTG5g952p6dO6MwWQhe9jtJHWaQkxcAgaTFZPJimCyYDBZSeu9gLI5u/BnlOLw+LAYjLzvC/CWL4A+SodZVCLJ9L1797Jw4UIWLFiAQxRp4HLhs9vp1LkzRquEzRNPbPNhGAUF0e6lQeOm/Pjjj9hkDcGXhFnzYbLYSMvMQvUnkNRpKvZAQsRYEmDr1q3ExCdhtMk4c5qgM1rQ6Q306NWLYSNH0axla1LTM0lISa8iozB//nwMZhtSTGbYfG78elJ6XINJcZF31Sp8tTpjtXtp3aYtuQXFmGwyieWTKJuzC3dBKxzZYa1kT1EbdAYjgjcpXI3ebDAWQebxxx+noqKCaTNmkZKeRWFhEevWraOwpBau7AYYRQ2rMxqLMxqz4qJk5lbS+y0mYJNYotmRJQcmq4hOpycjOxd3IAaz7PiXpEb5ZBS7G5tsj0hFaCllZObkRYLuf/7zn5itAp7idpTN2YWvdhfMmpec4XeGE+0WISxdYpXQGYzhhL1NZN68eezfv5977llJ05ZtmTXnatavX4/RKmGU7CSWT0VnMJE99DbyRq9GZzDRsWNHZE8cJbO2kdBuLHXqNwonorPronmiue76GyPX/uuvv2bp0qWsXr2atWvXYlbdZAy4AS2lFL1FoGjqJtJ6zauSoP53fvjhhyoBuCDJuAtb46vdNXyeha1OqxJu3b6cpE5TT71/LXFkNcDqjCF76K34C1tGzDPvvvtu3Mn5FIxfj7+gOeMnTop87/bv31+tRcFfK/plhwdRVqvoRP/4448cOHDgoh9cjh8/znvvvRepLK8OP/30E9179iEYl8iwEaMu+8Lm70ViagZZVywLv+cp+f/1FSs1Ceqa+Pt/ldHDhhEjy8TIMmOGD/+jp3NGXnzxRTyiyCJVI9dkZqAgcsAfJNduP6sx8MVw4sSJS5Kk/+WXX5g0ZgxJfj91RJFlmh2/JP1pTHWvnTcPwWwmxu3m+eefB8KJn2VLlnBFr16nFTr8EezYsYMsVeUdX4BZqkbbJk3OeuwNixZRmJpKv67dfvdqznfffTdinnjvvff+rmP/O++//z5jx41n/vwFZ5REOXLkCI1r1UKv01GWmxuRPluz5j7yisro0r3XGc3eDx8+THmLFgQdDoYPGsTgocMxGE3EJSazd+9e9u3bx1NPPVUlLgyFQnzxxRccP348/Cyr2oltMRwlPg9PcXt8uY1YuHDhaWPVb9iYYMO+Eb+b+KTkC7oG4ydOQnX7sfti6d6rzwW1/ZXjx48jq3Z8tbqgJhdTNmcXmQNvIjO3EAhrRDdt0ZqmLVtf1C6//+T7778nPikFd1waBpMFb0lH3IVt0OsNlJeX06R5K9xx6bjjM+jQqct5+7vjzjuxOz3EJaZc1EJbZWUlf/3rX9m5c2ckXp03bx6BOuEYP67VSPr0G3jB/V4Kvv76a5LTMrDJGlZRRm+2EdNsMCndZ2NW3GQPvY1ASRv6Dxr8h8yvhoujJkFdw0XzySefMHfuXO66666L0nS6lBw7doxWDRtiMRpJjo4+TX6hOiaJF4vfbucJt5dP/EFiZZk33nijWu3uX7+eJqVlDBswAIcss9bhYpvLg2I9u4ZURUUFDouFVQ4nr3n92E0m3nnnnUt5Ohw9epTu7dsT63YzYtCgy/reLrnhBvJVletUjYAkce211zJr1qyzPlz4grHkjFgeTmrFpXH77bezcuVKPvjgAyoqKvjss8/YsWPHRSer716xArPVhtliZdLkKUiqnWBZe8w2EZ1OR0ZGBlu2bKGiooKKigr27dvHm2++iVcMPxi95vWj1+mqPMwcPXqURYsWMWfO1RHX5X9n1ap7sfvjiWs1CqOgEtdqFLlXrsRgsaH5YjGabYiKRkJKGhMnTkQKplE6azuxLYdjFWSCZR3IGHAjistHVm4BFoORtQ4Xy+0OLHojSkIBdRs25qOPPsIlywxRVNIVhVnTprF9+3a+/vprPvnkE1SHi2BJG0ySHXdha+JajUJUHTz66KM4AgkokoOWNoFiixWHNxGLIFGnQWNGjroyYih3+PBhBEkhrc9CEjtOQm+yUDDhfgrGr8dssXLs2DESU9JJaDua9H7XIcgqX331FZ9++imeQCzJXWecSuyWYE8pwZFWGzkum9LZO0nqNBWbO5Zhw0dgsYl4itsjxWSR1HkqRkHFYveT0H48BptMVnY2NklB8sZjMFuRNDeiojFs2DAkd3Tk+OS0TD799FN69xuA5vScqkA2YhRUCsatI7HDBFIFmUecbswWgUC9npTM2BLW3zbZsHmTMFhEAvV6YpJdiP4U5LhczIoLV15zdEYzFlFGsTsjiwT9+/dHTSqmcNJD2NPrhuVArCKuvOZYVA9RegNiMJ2SmVtPyZ0IBLLrYBVErLIdT1FbtJg0LIJEcpfpRDcagNUdh05vJO/KlRROeACdwcSCBQuwumIomrKJYMO++GPi+f7771m/fv1pGnNHjx7luuuuY/78+Xz11VdYBRmz5sPmTcRgtmKyWJEU9TRDoS+//JJmLVtjttpQNEek+iI9K5dAnW6YZAcGq0R8UsppZo0rV65C80YTrNMViyBhstrQUsoiyf4mLVoDsGHDBkxWEb3RjC86LL3x/vvv4/VHI2lOMrJzq2XqVFlZyXvvvVdFeuKpp55CVu2Iip1mrdr84fex/3batC8nUNqOlO6zkVTHJTdC+r2pSVDXxN//i/z4449YjUbe8QV4xxfAajSeU+/3j+DHH3+kbevWdJZkDgaiWWF3kmIycbfdiVMUf1czxeoyZ8YMGqkahafmeTAQTXeH84IrQn9Prp03jyJVZaGq4RVFXnjhhfO2OXDgANdeey333HPPee+pH330EStXrqwi+XYuKisrGdq/P0a9ntTYWPbt21etdn8E/26eOHny5IteiP7ll18YNGQYsYkpXDFk2GXxUfr3ub322mtImpO03gsIlLSl/Aza1f/O448/jiOYSNGUjcS1GEbDJuf36Nm4cSPBnLqnEr03YrDKONPKuPqaa047tm+//mjJJeRdtQo5Jot6DRpe0HkZjCaKJj9MyYwt2EQlsqPxfBw8eJC+AwbRuVtP3nzzzYhMndFsJdigD67EHCZMCr+vLq+f+NajiG81Erfv0uxU/umnn3j++efZvHkzgZg4jOaw/J49tRZGi41Vq1axdevW836u9u/fjyCr5IxYTlKnKcQnpV7wXHr07osjmIQWTKJV2/ZAeCe0rDmILmqOrDkvieHoxTB33jw8+c0pnb0Tb2lHbN4EzIqbQMN+WGwSMQnJtGlfXmNI/l9GTYK6hv8XrFq1igaanU9O6RX3737uG+qlJDc5mcWqxlaXB7vNdtZt3t988w2LFy/m5ptv5qGHHkK1WLhW0eikagh6PS95/ezzBVAsltOSOf/OY489hl0QMOn11TZg/JUffviBdevW8cQTT5z1mJlTp9Je1XjG46WWqlbZfv7EE0+QFAgQ43ZfsInKmaisrGTQgAGkBYP06937vDfaBk2aE6zdieQuM5AUO/v372f0sGFYjEZUQUCx2WjgcuGUZYYPGcLEsWOrve3+V44dOxbZHvrGG2+wdOlSnnvuOXbs2IGmadjtdjZv3kzD0lKCkoRDFInz+8kwmzFHRWHV69m+fTsAX331Fffeey9PP/30Gcd69tln2bRpE3fdfTf9Bw3GbLaSM/IuEssnI3gSKJ29k7Re88gpKAZg0qRJSN4ESmZsIaZhXxRZo1nL1qRl5XLb7bfz0UcfkZGdi2IyYdXrsRnNBKwiot4Q1uRzuTgYiGadw0XD//id/PDDDxk2bFhY1kSvRwykojdZ2LJlC7LmwG40ccAf5F1fAIPeQCCnHsGYWLzJucgOD7ffcQf79+9HVOyUzNgSTpTqDWQNuZXMQTdhNlt55plnkBSNvNGrKZ21HcXlY8eOHciqHYvmw5HZgIz+12OWHDRv2YqSsto43D4sqgeD2YogKezYsQO92UrRlE34anXGYBGJitIT23wockIeUTo90bHxBGp1wlvSAZ3Rgiu3KZ6itjg8fkySnewht1I6eweSO5o9e/ZQWVkZrp6/ahWFEx4Ia24bzZgsNsSoKCw6HUabQmzzIeF2sdlYndHozTb0JgtReiM6g4mC8espmbEFvUXEaFOIMpgQvIkYBY3GzVuyc+dO5s2bh0m0Y7AIYeNBRcPmjsUku06ZK1oQvEmUzNhCbIvhWN3xODLqhauqjWbk2GwMVgmzqFI6ewcF49ejM5rDJoAmCzqDCb3Zxty5cxHsXnQGE1ZnNDHxSXz44Yc8++yzPP/88xw7dozKykref/99yurUP6Un3ZKU9Ewef/xxouMS8fiDPPTQQxw9erTKg+abb77Jddddh0UQMUkO8sfeR3KXGeQWlnDs2DEGDBqMwxskLjGZ+++//6wPqVu3bmX+/Pm88sorPPPMM3h8QXwpeUiqnb/+9a8ARMcnkTHgBkqm/wXNE+SVV15hwKDBxDTqR+nsnfhyG7N06dIL+o7/SkFJLZK7zqBk5jbccelVKqsvhA8//JAmLVqRV1wW+e7/L/Ltt9/So3dfyuo25NFHH/2jp/ObqUlQ18Tf/4ucOHECuyiy2uFktcOJQ5L+dIt3Xdq0oaEkI+t0DBYlEiWJkpxcGhWXsG3btj96emekW9u2LNHs3KTZ8eoN9JQVXLJcbT+TP4IOTZuy/JRfTF+Hg1tvvfWcxx86dIgYj4d+ikqZqjLyirNLcu3btw+XLNPZ6cIjiud937744gueeeYZjhw58qeQKqwOJ06cYNSoURHzxIsplLrxppvwpBaRM/wO3CmFLFu27DLM9F/cfPPNSMF0yubsIr3fYlIyzq29vnXrVtwJmZTO2k5S56mU1K533jEOHjyIpNrxlnZE8CXjyGyAVdLOqLv9448/kptfjMkmkZSacVZ/izMl7kOhEE6Pj6ROU0nrNR9RVqq92JaVW0B03a7ENR+K0+OLPBe+9tprTJw4iTvuuIOKigoOHz6MyWKlZObWsOSGycyPP/5YrTEuBLOokDnwJsrm7EKKzmDRokXVavf222+juHyUzNhCzvA7cbi85zz+yJEjtGjdDs3hpmeffhw+fBiD0UTJ9L9QMmMLOoOJF198EQhX6K9cuZLXXnut2udRWVnJBx98cMn8sObOnYuWUkbJzG248lugM5hQEguxCBJPPvnkJRmjht+fmgR1Df8vuOeee2h8ylBvsqrRrF49enbsyOzp0y9o6/XF8Prrr1OcmUmiz8fqs2zlOnHiBJmJiXRTNUpFCVFvoInFikOvZ4GikeLz4RQEvKLI6GHDzjtmKBS64NX4H3/8kfT4eJo7nCQqCgvOsFINMLR/f2ac0iceoKiRLVehUAiXonCfw8lfXG4Uq5WjR4+ec8yTJ0/yxBNPRG5m/8nTTz+NX5K4UbNToqos/jcjvzPx5Zdf0rV7L+o0bMLOnTt5+eWXiZFl3vEFWGl3EtAbOBiIJt5goLMoMUxVSQwEqlVx8PDDD9O/e3duvfnms27n/PDDD8nLy0On0xG0WvnEF+B2u4PijAzcFgvv+AI86HThkWRWrFhBjMdDe6eTWFnmtltuqdLXwrlziZNl6jgcFGVmcvz4ce5dvRqrTURvMGISVHJHrSC6YV+atAhrZ7333ntYrAI6nQ6r2YpkE5EU+2lJsWPHjmE3hyvtD/iDZJrMREVFYTQLBK0S2VYrfreXqdNnVgn0nW4fmQNvpGDC/RhtMt7CVixYsICXXnoJ1WJlkqzQRxBRbOGqYHsgibTeC0jpNpv45DQqKytJSE7DJDsx2mTKatdFUlSMFgFHfCaqO0DT5mGpBUcwkRat2jJ//ny8xe1QNS+KRcBoETFZbGRk5+LLqosntZicvEIeeOABPv/8c44ePYrBbMNgk9GbrJhVL0ZBQQqmY7QpBBv0wWCVSO46k9LZOzFYRYKN+mNzx6E32zBYBKIbDySxfDI6k4XefftTWVmJIMqnJDLuRW8006Z9OZ9//jltO3REsHuw2P0YrOHtYxbNR/H0zXjLyjGdMmm0OILIcblYNB+iPxXBm4jgS6J09g6EQCpGq4gWnYpNtmO0yVjsPvQmG1F6A1E6PUWTH6Z46iPojSYExU6U3oDeaEFwRWN1BMOSI30XYfPEo6WW4fUF8CbnYffH06ZdB5LTMogymEjsNJWYZkOIT04lEBOHP7cBdl8cTZq1xCapGKwSNtVFcloGZXXqIzs86Awm0vpcS+nsnYjquU1SNm7ciGx3osXnhq+/4sZoUwjU70Vqeiay5kRJyCel+xxUt79KgLhnzx4CMXEIksKi664/re/Dhw/z2GOP8dFHH0X+LyUjm+TO0ygYvx7J7uKdd95h+MgrCdbqSMmMLXjSS7njjjvO/sU+B3XqNyK+9SiKJj+M3R930cFsbmEJMY0HkNrjakRFq3aFTg1/bmoS1DXx9/8qTzzxBNmJiWQnJp6zoOGPwqdp/MPj4zG3F4/Vyg03/HH6p9Vly5YteCWJTk4XqiAwc+ZM3nvvvT96Wudk+R13kCQrjJQVnKLIW2+9dc7jn3vuOQocjog/kUsQKMnIoF+PHixevDiy8Axw/fXXM0gNG+1dr9rpVV5+1n6ff/55nJJEocNJvM/PF198ccnO8ffgtttuO6t54uuvv07dBo0prVP/jHIvY8eNJ9igd9jzpX4vxldD9/i3UKdefUyiHTWpCKOo0ap1m3Mef+LECRo1a4GoOpDV6svrPPjgg1gllYT240nqMoPM3IKLmu+RI0eoVbcBOr2e7LzC0wq8XnjhBbJyC0hJz6ry+TsXoVAIg8FI8bRHKZ29E9nuPqfpZet2HXAnZuNOyKR9+ela3xfLu+++y0033cSOHTvwR8fjzG5EcpfpGMy2sxY+/SehUIgu3XuiOL0Issry8+zYmDJ1Gr68JuSPW4snpZDbb78dqyiT0G4siR0moDcLNG7ShHHjJ1R7B8O6detp27Ez8+YvoE79RsgOD5KiXZIE8rfffovRKhKl02HzJBB1qkhn8pSpv7nvGv44ahLUNfy/4Oeff6ZJ7dqIJhPRLhcOm43rVTtNVY2xI0ZcsnEu1jjmo48+IiBJHPAHuUIQmSwrHAxEM1FWUE0m7l6+nI8//viyBqtPPvkkRacCx7+6PaQEAgB8/vnnDOzZk/IWLdizZw+vvvoqstWKz2TCIQgR3eqKigrMBgMvn6r0ls9T6V1ZWUnbJk3I0jRiZZlZU0+/WSxdupQB9rAG9S2agySP56zJ7DPx8ssvEyvL7PMFuNfhxGkwsMPpRhcVxYf+IAcD0fiqsd3z8ccfJyBJLFY1chWVW/6jQqGyspJt27bx6KOPcujQIRo3bkxUVBT1zRbGKgpNa9fGJ4q86Qtwn8OJYhURVBf15fD20w1OF2VZVY3ZYt1u/ub2csAfJEPTWLNmDcuXL+fJJ59EMJkYpWioZhsGi433338/0u7WW29FtlgxGowktJ9ASvc5FJaebhTTol59xisqz3i8uI1G9GYb6f0WE9d6FEarSHq/63DGZ3LPPfdE2mhON1lDbqFw0kMYrBKqO8Bf/vIXAKZNm44iyEh2H3qjifLycnRGC1JM2MywoLiU119/HdnhJb3vIuLbXEVsYgovvvgizmAipbN3kjvybty+AG+88QbPPfccFRUVPPjggwiamzIhfK3usTvRLDb0Rguls3dQOms7eoOxykLT2PET0BlNxDYfSkq3WegMJuITEoluMpCyObuIaTYYk+TAmVKMWXFTOms7iR0mIHgTSOkxF71FwCiEk7WC5mbXrl089NDD2EQJs8XK7bf/K+H5+eef4w7EkNpzLiUzt6Ill2C2+8m6Yhk2Tzz+ut3JGnIrequIM7tJeN6ztlMyYwtROh1iMCMsl+GJp3T2TrKG3IJRUEjpPgeDRcDqikVvtGDRfMS3vgqz1caxY8f47LPPOHz4ML369MMkKOSPW0tC+/HY3LGImounnnqKRx99lMcff5yDBw+SlVeA0SZTOms7BePXYxMkvvnmG1auXMnOnTsxmc0UTniAoqmb0JttOJMKUNzRlM7aTnLXGVg0H9F1uhIdl1ClWu7jjz+mUbMWZOUVsnHjRuo3aU5y15lhKZbUMhI7TCCh3VhMgowvGIsUnUFyl+lhTfWillWSx0mpGSR3nkb+mNWIqqPK5/ps7NmzB48/iNli5eq584DwQlVuQTF6vYHmrdpy7Nix09odOXLkvMY0b775JjHxiRiMJkaMuuqidUY1h5u8q1ZROnsHdl/MBVWT1PDnpSZBXRN/1/DnpF+3bjRUNa5QVKLd7ksu4ff4449Tr6CANo0bV+s+VV1efvllVq9ezSeffHLJ+rzcPProo8ydOzci5XYuvv76a9yKwgxFpa0k4zWZuFWzI+h09JNl4mSZlad2ZW7dupVEWeZeh5MGqsa8OXPO2m+vTp1YeCqZ3V2zX/Yq4svB7t270TQNt9vNc889B4SfKVXNgZpURKB+T1S787SiqrfffhvV4cKfVojqcLF3797LNsf3338fk01Eic8jtsUwBE88t91223nbhUIh9u/ff0GVw6FQiIFXDMFktlSRiLtQrrvuOrw5DSidtZ1ASVvGT5jIp59+yvPPP/+bCtTKO3fDk5yPL7seOXmF5ywKO3nyJI888giPPPLIJdltsmHDBho3a3lKxrE9mjeaBQsXkp6Vg8sfw7XXXntB/YVCId555x0OHjx43mMHDR5KTOMB4Ri+pC0LFixg9OgxWBQXYiANi+zAmVxEdP1eaE73GTXK/53HH38cxeUnsXwS9rgMJGcg/NzRZXq1qu2rw+bNm3H7AqgOF1k5ucybv+D/jbfL/yo1Ceoa/t8QCoUiEhZtT0kZPOB0UTcvLyLwv3v37t+0NeyqoUOJkWSiJYlxI0dWGftcHD9+nBiPh7GqRonVRrbZwgani1xRZPLkyWc8l927d7NmzZqzbme6UD7++GOcoshyu4OB/2Yu0qC4mKGndKBdsswjjzxCjCRxt91JA0VlzowZAPz1r39FEmQkowlVb6Bh7dpnHOef//wnnVq2onObNrhtNj7xB/mn149stTLhqqvo2bFjJDh78803cUoSA0UJr95AV5uAS5arfc6hUIgrhwzBZjJhFyU6tmlDdnw8ST4f7VSVPopKenx8JGA4cuQIjZu1wGITaNqidSSYWrRoEcPUcNX4jZqd3p06VRmnR+++uGLTcCdm07BJMxIDAVSjkaioKExGI9u2bWPS2LEYdXosBiOxzYdisAhE6fS0EmS6qBoDe/as0mej0lJGqxqrHE40qxVB1oguaY2oaIhmM4+7vWxxuVFstiqfWYfLQ1qv+WQPux2DRSBQpyst27Srck2uGjMOUVZwCSKa1Yrijo0kavNG34vBIlA2ZxfBej2ZNi0sE/Pkk0/i8UdjsAjoDUZiE1O47fbbI/3WqteQuDZXYRLt+Gp1Qg6kIPqTwgYZrUdRv1FT3nrrLRSHh6LJD5Pacy7+mHiWLl2KqGik9pxLTMM+FNeqw5NPPok/Oha7y8OEiRMxGQy49Hp2uDz0E0QEvQGDVSLYoA/R9XqQmJpe5TtWUVGB3mCgaMqmsKSGyYKouTBJduJajcRi9yM6fHTr1g2rKKEll2CR7NhTiskZeRcGi0DJjC3kjV6N3miOyNVUVlby9ttvR7RzT5w4QUJyKnJ0OjZ3HNGN+odlNEwWzKoHLaUMvcmK3iKgN1rC/5qsxLUaSXSTgZhVD3JcLlJsNkZBJb3fYoL1euL0BtDp9FgcfvRmG7kj7yah/bhwhbbByMmTJzlx4kTE2Gf21ddgtYnImpP8olLuu29tlc9Sm/bleMs6IcflYHXFYNPcDBtR9fdJ0Ryk9V5A5qAl6M02FE80ksND4YQHiG02mNjEFEaPHXeaJE5RaW1iGvUjrfcCREWje8/eeHIbk9H/OkySnaROU/EWt6XfgEE4XF5iml6BSXJgT6+DVZSZNWsWb7/9Nm07dMIqa8S3HU3JjC2obv8FJXLP9Bv75JNPUrdhE+rUb8iiRYvYv38/oVCIocNHYrbYkBSV3bt3X1Tf1aGyspJ77rmH2nXqItk9eJJyKC6r/afbDl/DxVGToK6Jv2v4c/LLL79wyy23MGf27EuuN/39999jPxUrT1M1CtLSLmn//9959dVXGdKvHw3r1mOQrLBQ1ehqEzgYiGa53UG7xo0jx952yy00q1WLaRMnnnOn47hRo+iiajzp9pKnqjxwDjP5PwOfffYZq1evPq0iet++faSkpGA2m1m9ejV33XU3JtlJsGFfjIKKyWIjKS0Th8vDDTcuibT78ssv2b1792XfnfWPf/wDuy8Od34LLJoXUXWc8X1Zv/5+4pPSKCyp9ZsT5j/++ONvSiYuXLgQf0EzSmfvJFinC23atkNUNFwxKWTnFVRb0mPPnj2sXLkyEgOfOHEiUjh0uTyszsSzzz6L4vDgym+BI7M+ZXN2kdLjauo3Pr+296Xg7bffRnO6ccem4A/G8tlnn/HLL78wbMQoUrNykTQnuaNWhM2wk3POWcn91FNPkZ6Zja8kbAyf2HEiVsVB4cQHiWs+hMbNWv4u51TDfx81Ceoa/t9x4MAB3IpCf00jVVG4cfFi+nTpQpaqkaVq9OvW7aL6PXLkCDaTiX2+AHt9ASxGI0eOHKFP5y6YDAYK0tPZv3//Wdu/9tprdGrfnhFDhzJh9Gjq5uUxe9q0MybM5199NUmKQiuHk5SYmAu+OS676SYaFBYyftSoKivI27dvp1nt2vTv1j1S/WwXRf7p9XPAHyRRUZkyZQp9T2nO3azZ6dwqLC9x7bXXEqzThbzR9xJs1J/O3XudNu7hw4dxKQrXqhrDVRVZr2eNw8l8VcMjCHRWNa5VNZySFJEReP311xHMZm7WwpXUKarGq6++ysmTJ1l03fV079X3vLqu/6mR+6sx4dVz5lQxJpw7dx6+3EYUTdmIN7s+C0+tQr/00ks4RZGRikqMJHH/+vWRNidOnECvN1A8fTMlM7dhMFnIOhVsj5ZkLGYzBoMBm06HajSiM1owyU5Sul9N4aQNmGwSaanpFJTUZv6ChezZs4evvvqKLVu2EBsTR7Q/QJOmzYhtPjScNK7fiw7t2iFbrcg2G6tXr+bNN99kyZIlPPXUU1isNvLHrAnLQZisZOcXRapx1q5di2YyIet0uFPKCNbrTpt2HYlPSsFkk7BqXkTViUWQiM6tj2J38uabb1JZWYmi2UntOZf0vosQRLlKVerJkydJycjCJDmQYrMpm7OL7CG3YrSFZTHsaXWwCjJHjhxhwqTJGIxGjGYLJkFGpzdgMFtJzcyhWau2fPLJJzg9PlJ7ziVr6K0YzDYUbyKq3Y+k0+MOpJ4yiRRISkljwKDBZ/xejRh1FZo3BovqxZ5el+Lpf0FvNGFVXdjTaqPYnaxfvx5BsePJaYhNlElOy0CvN4Tfw8E3k9xlOmabFNGWa9K8JWZBwSqpTJoyjY8++ghBcVA6ewdxba4kSm+kb7/+WAWRwokPnpIQCZsVlszYgtUVi9FsRXG40ZsFogwm7On1MFpF7PHZGG0SxWV1GDRoENExsZhVDxbNR8nMbWQNvjlstCirPP300yiaA7PFRp9+A05Lzt9zzz3MnTs3IoURiE0ksXwSxTO2YvPEI3oTsbs8VR5mHn/8cXzBWMyChKLZmTJtOoOHjcBkthATl8h9993Hhg0bTpPtsUlhc5XS2TuR3EE6lpdjlOxYHEH0JiuK5qReoyZ8/fXX3HHnnRjMNnRGC1E6A1IgGW9WPUTVQUyjfmHjTKMZQdHo1rP3aYnhL774gnfeeadaCePvvvsOSbWT1GkKgXo9sCgu7C4PO3fuRHX7KZ76CGm95pOQkn7evi6WWbOvxhmXQbBBbwRZZdmyZbQv70JqVi5Lliy7bOPW8PtQk6Cuib9r+N9j3759REsy+08VV6g22x89pT8VX3/9dbUqZfft24dbUShTNVS9niWanTqqxtWnil4uhEOHDtG5VSsSvF4mXHVVleemUCjEzClTCDocNC4rO69J+rFjx/jiiy8uemH6fHz22WdoTjdadCqCrLFk6VL+/ve/c/z4cd58802uueYaCgoKiIqKIiU1jYQO4ymbswtvSQesgkhcq5HkjlqBZHfx9ttvX5Y5no2KigoaN2uJ3ReLqNhZ8W87LH/lwIEDiLJGxoAbiWs5goyc/Ms2nxdffJH4pFQcLi93Ll9+xmO+++47MrJzsUkKsQlJZOYWktpzbtg0L6WAzZs3n3ecdevWozg9RBc0xe7yVHvRq7KykhdeeIFXX331Qk7rnNxyyy1El7Yla/DNGAWVxA4T8KQWM2nKtEs2xvn44YcfeOmll874Pe/dbwCetBKC9Xpgd3nOWkG9f/9+ZNURll002/AWtUFx+mjeshUWm0ByWuZ/vZF2DZePmgR1Df8v+eCDD7jhhhvYvHkzhw8fxmYy8YE/yPv+IBaj8aIMDH41jlnjcLLK4cQhy6xdu5YSTeNdX4ArVY0BPXqcse3+/fuJdrspcDhxKwqvv/76OcdKi45ml9vDwUA0RQ7HBWkAbt26lSRZYZ3DRRNVY/Z5jBSvHDKEXFWjpd1BXmoqb7/9Ni5ZprvDiV+SItWlL7/8MpJqJ1i7M4rLx4YNG8KO2v36IVkslGRl8cQTTxAryxzwB3nN60c0mylMS6NhcTFxbjdPuL0cDERT7HBW0Z4aMWgQBapGe7udzMREjh07xqw5V+NOyiO+zWgkzRmR/giFQnzzzTcXtXVrwsRJBOt0pWzOLjx5zehYXh7Z8vTiiy8yf/7804zSQqEQgehY4loMI6H9OASTBa9ez3xFpa+qUZCdjaLXExUVhVevR43SYYiKQtO8ZA+/A4sg40ouIK3PQqx2H4rLj6TaESSZ2BbD8GbXp6i0Fs64DFK6z8YRTOLqq69GVh0EMkrQHG5EWSW6rAOKw0O/fgMQZBVJczJsxKjIPH/++Wckg5GuNoG/uNw4dDrsdj95hcWcPHmSjz/+mCeffJLXX3+daZMmkezz0bFlSw4dOsSJEycwmkwRHWSLTeD777/n8OHDlNWpj06vx+72ocRmozfbiGl6Bc6UYgxmG1ZnNGbNS1RUFAnJqezatQtFc2JRvVg0H0VTNhLTZBDZ+QU899xz/Pzzz1gFkZxRK5DjcojS6Sme+gils3eiN1lJ77eYgvHrMZhtyKqdxs1bYne66dG7bxXJhlAoFK40sDtIaD+OpM7TiNLpidLpqFW7Lm+//TY9+/Qjvs1V4cR/nS4sWLCAUCjEunXr8fjDxoG/VvOvX78end5I0ZSNFE1+GIPRxHvvvYfeZMFfuyvO3CYYrBJ6oxmTTcEoaIjBdIy2sDZb8dRHMKtuRo68EpsokT30NvLHrEFnMGFSPQiSzJ49e0jPzMKsuHDlNUeKzcGeXjdijqi3CLRv357s/CKSu86gePpm7P64KlsfR145GldiDv6ycgRJ4YYbbiArNw+DRcCsuLG6Yiie9ijBrNps2rSJ/fv3k5mTj8lspkfvvpFKlW+++QZ/MIZAVi2skoqgOvGll5CelcOxY8f45Zdf6NG7LwaLgNGmIATS0JusGKwSSeWTw9+horYMGzaMhx9+mGeffZZbbrkFk6hRMv0vZA5agsXuo3TWdnR646mE/g5kp5fHH3/8tIfD++5biyCrKE4v7cs7V3kArays5NpFi2nZtkNEP+/NN99E80ZTOnsn+ePWYrDJBAuaMHfuXBSnj6Ipm0jtcQ1JaRl89913PPPMM+fdinihFJTUJr3f4rA2ZH4j6tZvQKC4NZkDb0LzBKutEVjDn5OaBHVN/F3DpeOdd97hmWeeOa/00h9NRUUFjcrKKLHbSVIUpowb90dP6U9BKBRiaL9+yBYLitXKli1bztvmwIEDbNy4kdtvu412TZowYezYS77DaPfu3aQoCs94vAxXVXqWlxMKhZg0ZRpuX5D6jZtFFuv/8Y9/4FZV7FYrrRs1qpY/zYWydOlSDBYBV25TzIobvUXAFZtKUlo6kmonunY5istPkyZNwrswrQLRTQaGiyn8QTIH3kjprO04gomR+PT3pKKigpdeeumsmsuvvvoqmjeG0lnbyR15Nw73uU33fgvxSakkdZpCzvA7EWT1rKb3lZWVfPXVV+zatQuzIOOv042cEctR3QH+/ve/n3echk1bRqTrgoXNufvuu8/b5ldtZ7svFsXpZcq0C194ORP79u1D1hxEl3VAUBwUlNRiztXXVPuzGgqFIkU3F8KBAwd4++23z7tw88svv3DTTTcxceKkcyaYn3jiCbzJueEK8G6z0OxO/va3v511znfccSd9BwyKyErW8L9NTYK6hv96fvnll3NWGFdUVODRNJZodm7U7Hjt9ouW+Xj88cfJTggbx/ztb3/jnnvuoZndzgF/kGtUje7t2p2x3bx58xh4ynhwmqIyfODAc47TsXkL+qkat9sdOEXxnOYM/8lNN91Ev1PVyDdqdnqcZU6/UllZyaZNm1i5cmVEUuDDDz/krrvuOm172iuvvMLixYt5/PHHAdi0aRP5msYbXj9XqRq9OnWiMCOD5nY7+arGkH79Im0njx1LrqrSRlZwKEqVoKGiooIHHniAO++8MyLv0bBpS1K6zw5rCpe0Yvny5Zw8eZJOrVsjWyy4FOWMhiLn4tNPP8UXiEGyuxD1elqcWjA4n8bg22+/TXRMPPE2me0uD6NlBU0QaNe0KSOGDGG0JDNYlIiKisKl1/Oyx0e5zYYxKgqj2Upc61HhConSjkQ3HkB8m9HYNG+4EnnYHfhj4pk5ew51Gzala9dulNauS1yrkeEtVMVtUE5VLSe0H0/nbj04cOAAH3zwAaFQiGeeeYZx48bRqXMXZJ2OmzQ73WwCLa1WFqkaqtXKunXrIosyjz32GImKwl9cbrqpGiMGDQJg0pSpyA4PitPHkGEj2Lt3L23atMGemEfprO34Clvij45BUjSycgvo338ABcWlCHYvUnQG+WPvI1i7M0mp6Qi+JAw2BbPqCbet0xWj2YYjOgWbpBKXmILRbEXwJiL6U/DX6Upsi2HoTVZ0RhM6g5GYpoORffHYk4vwlXVC8sSSV1DEwmsXVXnAeemll8gvKkVnsGCwCNg88ejNVvbt28fCRYtxJ+eT2nMu9kACmzZtOut7PH36dPQmCxn9ryO977XojWZsooTBIuAt6YCnqB1RBiMGq0hKt1k4MuphdcchBtMxmK3o9Hpq1a3PyZMnsdgEcketoHDCA+jNNvRmG56ETK677jp0eiPRTQaeSmh7sSgudAYjNl8SRkHFJilk5OST1HkqxdMexe6L5e9//zufffYZX3zxBTEJyeQMv5OyObsQ/SnozTZcyQXoTRaMVgE1uYiE9uOQNAf79u2jR6++xNTvSdGUTbgTsnjggQe44447aNm6DfbY9LAGtsmCWfVSOnsnrthU/v73v7NkyRLcqUXkDL8TOS4XJaEAiyBiFDXMqhd/3R7ozTbcHi/+9BI0T5Cu3bphsAjkj11LcpcZ4a2rZe1xePw4o5PxphZSVFr7jNs5AzHxZF6xNKzz7Y3mpZdeiry2dNnNuOKzSO4yHc0Xy+bNmzl58iT5RaWosVmYVS86owWLGP5NuGrseIwmM7JmZ+3atdhdHrxJOdhdnnOaurz//vs88sgj563A+pXJU6fjTswhpskgJNVBfnFZ5DcrkFOftWvXnr+TGv601CSoa+LvGi4Ny++4A48okqVpNCgpuSyJwUvBSy+9RLzPh8VopFunTjz55JOXrdL2v41XX32VGElmpqxgjorCotNVK0kNMGXcODyCgFsQmD3tX5Wgb7zxRsRk/t5Vq6q02bBhA4P79GHVypXnfA/uv/9+GjscHPAHud3uoFnt2mzfHk7w5l55D8Fa5fTsE34WaV63Ljdqdj7xBynW7Dz66KMXfiHOw5w5c1CTiiibs4u03gswK56w0Z47SKCkLWVzdpHUaQqt25dz6623otfrcTgcrF69mvXr70eUNTRPkCbNWl7SZP6XX37JsmXLWL9+/W+SuqyoqKBhk+Y4o5OQ7e4qUiSXGofLS87wOymZsQXF5TtvRbk/OpbE8snIp7xxJlXTKG/02PF4s+qS0uNqVJc/YvRYUVHBlUOGEO/x0L19+yo7DNeuXYvRKiL4kkntNQ+D0cTWrVt/k+71r+zdu5clS5bw2GOPXVC7gwcPkpSajsFoona9hqcV47300kts2rSJQ4cOVfn/u+6++1SBiI/yLt0uyW/eoUOHCETHEihohjM6mclTz14sd/Mtt+KMSSWu9Shkh+eSmCfW8N9NTYK6hv9qtm/fjiYICCYTE6688qzHvfjiizQqKaFRaWmVxMfF8OGHHzJqyBAmjhnDxx9/TFluLj5RxKtpZ9VUXb58ObVVlec8PtpVo6r522+/ZVCvXrSsV48dO3Zc8PzcikJ7lwuPKLJ9+3YqKioY0q8fqs1G/aKiaumY/fTTT+etNF+zZg2N7eHAcLGq0aFZM44cOcLKlSt5+OGHqaiooLKyklAoRGVlJTfeeCOKxUJHhxOXKEYS3Wfitttvx+6LJVinC/KpZNuOHTvI1TQ+8gdZptlpVFJyQdcGwpXG5S1bRgxXBikqixcv5ujRo1zRuzeFaWlct3DhaTfobdu24RNFBmt2nIIYSY6/9dZbuGWFHKsVQ1QUhqgoPHo9Dc0WRogSN6oaepMVb1Y99CYrab0X4MlviVVU8Je2R/DEI6guHG4veWlptNTsRNtE7CmlZA25BS2YjE3WSOo0BVdCNouvv6HKnETViTO3GXqLiM0qYtPpsOvCes4HA9Hkmsxo/ngSU9I4fPgwK1eupL3DycFANLfbHTSvU4f+gwbTtGUbVq5cyWuvvcYDDzyAIKn4ilpjEjWSOk0lUKucCRMnAbBkyTLsvjj8Ra0wmG0YRQ2DVcKRVhvF4cZT3I6U7rPRm21EGUwYrCLJnadRNmcXamIh7rzmWAUJwekne9jtiME0jIJK9rA7UJNLEf3JxDQdjNEqYLCI+Gt3weaJx+qKxZWYS/sOHdm0aVMk0fnkk0+GNZ77XBtJ3K5cuZKTJ09SUlYbg1XEKkgsWbLkjLsXvvvuO5q3aoPRJqE32zCYbUiuaPLHrUP0JmIWNYwWGzqDCTkuXBGQ3vdazJIdQdZISEoJGx7KGo2btSAYHUuU3oDeZMGZ0xSdwYgkqwwZOgydyYLRpuCv0w29WWDixImIskJsyxFkDb0Vk6AQm5iCKCsYTeGq5wmTpmCTFGyiTF5hCY6UEmKaXoHeZCWpfEo4IZpVhxtvvJEJkyaTlZuP2Sqg2h0UFJcS33oUpbN34susRZt2HXDGZxHdqB96k4VAg94UjF+PSbIT02QQgqTy0EMPMfLKKwnW7xXuu15PVIebqVOnonhiwtXeZhsOtxd3fDolM7fhr9MNWbWTV1iMTm/AaLHRtHlzRo8dx5dffsn27dvZsGHDWSs70rJySewwgbwrVyKpDkaMHEVMQhJtO3Sia49exLe+MlzdUrc711xzDRDeaizIGhZHgOgmg7DJdt555x0gvI23oqKCSZMmE6zXI1zlXL8X48ZPOOP4Tz31VHiHSHYdVIeLJ5544rxa+BUVFdx8yy2MHHUVL7zwAhs3bkTSnPjTigjGxl/yiu0afl9qEtT/HfH3J598wosvvnhZtd9ffPFF1q1bV0UyrIbqkxwIsN3lYf8pU+g/ojK0OpRlZ7NEs/Oa109Qknj55Zcv21jbtm1jyZIlfPjhh5H/27t3Lx2aN6dt48aXVDagOnz55ZcsXryYO+6444xV7m+99RYeQUDW6XjR6+NRpxuPqp233yNHjiCYTLzlC/CG14/F+C/T6/zUVK5V7WxzeXAIQkTObevWrcRIEteqYanG1ffee87+81LTyNA0HKLI7t27Wb16Nf7sOmHd2/JJNDqlddu2SROuVjXe8wXI1rTzygdeDK+88go2WSO58zS0lBKkQCo5w+9EVJ2ImovEDhNwJ+Ywb8FCIOzvo6pqxDzxs88+44033qiykP9bdx0cPXqUYGw8gcIWuBKyGDZyVJXXP/roIxqWlJASCHLnv3nPnI2TJ0/y7LPP8tZbb13wXL7//nuGjhhJ246dIongs3Hn8uXhxKnLR+duPc6bOHW6fWQNuYWiqZuQNGe1DU5//vlnrhozjroNm7Jy5b8WSlatWkWJqvG0x0t7VWP6Kc+on376CUFSSOu9gOQu0zHaFPQma9iHpFadS3YvOnbsGDfeeCNTp02PSPqdi6EjRhJdp2u4MCirLrfcckvktbvuvhvF6cGfUUpcYnKVJLXL6yd72B1hfxiXnzfffPOSzP/LL7/ktttu45FHHjnne9epaw8SO0wIx+l1urB48eJLMn4N/73UJKhr+K8mKRBgg9PFXl8Avyhedr2u48ePE+v1MkZR6aOq1CkooKKigo8//viMiZdQKMSPP/7IyZMnGdqvHzEuF93atbsoiZELYf/+/axbty6SjLv//vspVDVe9foZ/B+VzWfizttuQzSbEcxmlt1441mP+/HHHynNySFalnEpCv/4xz+qvH7P3XcjWizIVisP3H8/8+fPZ9ipSvIFqkZWXDz1CwrOGnxu3ryZhQsXRm6Wu3fvJkNVec8XYJFmp+lZjBrPxzWzZtFY1XjI6SJDCSfkxl95Je1VjUecbpIV5YyB6zPPPMP1119/2iLHV199xRNPPMHbb79NSlwcuqgooqKiGCVKbHa6sEVFYTMYw8lPq4TVGaReg8Y0atQYLamQ0tk78JV2RDOZOOAP8pYvgN5kITE1g8lTp7N69RradOjEwmsXVQlaO3ftjlHUwlWtigtndmOi4xLo1K4d2YpCV1FEtAgUTnoILZiM0+MnKS0Tn8NBPWd4kaCgqARvYUsSOk7EZjBi1OkQ9HrsGXUjlR4mm4zLG+Dhhx/mu+++I7ugmPQ+15I97HbMspOSmVvDemkWAV90HNlDb6Nszi6srliUpCJMooq/tAM5I+/C6owmpec16PQGEpJT0RmMGK0SOoMJb0kHBIOBJKMJ4VRViRwfTghnDLgRwZcUNh6MycIVn0Gvvv0BePfddzFaJXxlncgctASjTeaFF17gtddeQ3H5KJr8MCndZ2MSFGS7m5tvvrXK+9epaw8CJW1I7TkXi6gyYMAA/DkNKJ29k7hWo2jYpBkLFixASyrArLjRUmthkjTGjBnLmDFj0JusZA68ifg2ozGr3rC2tCNIlNGM3mjBnlKCqDqYNm0aRot4qqraitPt4cSJE8y++hpEuye8yOCKJVCvFzZRoWv3nlhFmSidAXdhG6TYbKL0RoxmKwZLuHLDkVGP1J5zUZwetm7dSp36jTBaw4l2e1odDCYrsmpHcXjIKyohr6gsIkuhJhXhqx0OZkV3DLHxidgkBW9SDm5fAFlzVHGOr6ysZNKUaaRm5tCrTz/27t2LpNpREwuRY7PxFrfH4wtGdmKEQiFmzJyNxx9NvUZN+OKLL6pc988++4wevfvSsk171qxZQ3xSKormYNAVg3EEE8O7C4pa0rJVa2S7i+iy9kiqPZI0GDHqKuxptUjrsxCz6kXUXLzyyitVxrjxxhvxpJWQd+VKPOllLL7uujP+JnTv1Ze41qMonbUdqzOIVbYjyuoFLxDu3buXrVu38sMPP5zx9crKyt9UvVTD70dNgvrPH3+vX7cOhyCQoqo0Kiu7LJW5a++7D78k0cbpIuhyXXajsv+P1C8qYpqq8ReXG5cgVDtx9HuTm5TEOoeLD/1BUlT1siXSl910E0myQh/NjkdVIwa/cT4fc1SNhaqGz35mg7rLwbFjx0iOjqanqtFA1ehZ3umMx40eMQKbTsebvgCPu704JOm8fR8/fhzFZmOT080GpwtNECJxbNDp5HG3l0/8QeJlJVLkM2P6dMZLMgcD0cxTtPPuOj127Bj/+Mc/IrufDh06RHJaBq7YVGT1XzKJe/fuJSkYxKDXM6hXrwu6F1dWVrJ///5qySds3LiRpi3bcMWQYZTWqYcvGMvCaxfx0EMP0bFLNxYuWlwlln/nnXdITk7GbDazZs2ayP9//vnnpGXmoNcbqN+o6TkN/yoqKvjqq68i5/TWW29x33338eGHH/L888/jiU+nbM4u8q5ahdsXrNK2NDcX0WRFr9MhWIVLlqA8E63atsdf1JKEdmORNUfEj+hsnE964rPPPovsMl6//n5sooRVlOk3cBDffPPNb/oOLV68mL6nnllnKypX9O4NhJ/5rKJMyfS/UDT5YaJ0epK7zqB09g7svthLtrjUpXtPPOllBOt0weX1R2LrszFk2HCi6/cIP1Nm12fZsmU89NBDtG5fjtsXJK33Qsrm7MKfXlxFSiMpNYP4duOIazUKqyBdcuPZ87FmzX2o7iDB+j2RVAf//Oc/f9fxa/jzcdkS1FFRUf1/S/vf8leToP7fISUYZL3DxZu+AD5RjFTPXS4++eQT/KLEgVN61ka9/qw3zY8++ojk6GgsRiMt6tevYjp3Nvbv309ZTg6qzcZVQ4deskTG8uXLaX1KimT+OaRIIKy1bTOZ+JvbSwerDVmvZ9LYsWedy8mTJ3n33XdPk1n58ccfkSwWnvF42e32IFmsbNiwgXRFYa3DRYnNRq7VyppTWtfVuSFVVlZyRZ8+GHQ6NKuV26ux0n8mjh8/zpjhw6mVnc3CuXMJhUKUt2jBslPSKN3sjip9v/jii4waMoTrFi06ayXD7t27ccgyZoOBbp06ER8XR9SpiupMgxFRpyNQrydyXC6ugpakZeUyd+5crJoXqysG2ZeIXRCYpmp0lSREgwGTwcDgPn3Oeu3rN2yMv043SmfvxJFRH4ukMXrcBEKhEBs2bCAuPhElOoOkTtPQG81kDryRpE5T8AVj2bZtG++++y6eQAw5w+8krdd84owm3vYFmCqrSEYzSZ2mIAZSiTIYsahu9CYLJosNg9mKmlhETLPBGMw2cketILHDBOwuLzNnzUZ1B5FjszHYZIqnbya56yxMNhmLIGOSHFjdcZgkB7pTVcZGQcVX1hm90Ui+2cwBf5A5ior+VCI2tvlQpJhMDFYZg02mdPYOiqZswmgyR67F0mXLMNokDFYJweGjU9duvPzyy6juAMXTNpPWewFWVyzuwtZYRSlSuXHo0CFi4hJJPKWrLAbSECWZhORUHP44FHtY/3z16tW4k/PJG7MaNakIg0VEbzBiNJkwSfawHt+V92AUNWKbDcFb2hGz5sWV0zhSxVNauz4Gsw1PcXvMsouevXpH5h8dl4gzpzEJ7cdjFBRsdh+CYqdg4oPoLQKOrEa4C1uhM5iJbzsavcmKFJuDwSYTm5jKmjX3UbteQ6Ib9Ca97yIMVom80ffiK+vEzJkz+fDDD6moqGDKtOkI3gSCDfthOLUwIGkumjRviS86PqLZ7S9szoIFC3jsscf46quvOHbsGE1btEan15OVWxBJNj/66KOYrCL5Y1aHdanj03nhhRf45ptvaN68OUarSHSTKwjW7kTX/zBWLSypRXTdriS0HYNid0YqOpYvX04gv0n4unWYQIs27Xn++ee5+eabeeONNyLtw7qBMyibswt7Wm1Kymqd9nt8/PhxevcbgDcQQ88+/c66/XLGzFm400qIbTEcqyNA6aztpPWad0kNgNasuQ+rIGITJO67r0b+48/OnzFB/UfG1tX5+73j76z4eDY63ez3B8nWNJ566qlLPkbjklJWndp11Nbh5L777rvkY/wnx44dY/GiRYwfPZq9e/de9vEuN++//z4NS0pIj4lh1cqVf/R0zsqvuzKdNhvd2re/bIuJDQoLWedwcTAQTTuni7Vr13L8+HGMej0f+oN87A8im82/2y6cN998kyQ1nIh7zetHE4SzHjtt4kRkiwXZYmHN6tXV6n/z5s3EejzEe71VFn1vv+UWXIJAkqLSrlmzyPV+6qmn8IgiYxSFgCRVy+juV0KhUESHd8+ePWeU7DqTzNiZePXVVxl15WgWXruIklp1EVUHmtP9m3finonvvvsuoks9depUKisrGT7ySoK1O1E6azvezNrceuutZ2x78OBB4hKTsUkK6Vk5bN68GYcg0FBVsYsiTz/9NLLmIK7VSAJFLWnRuuozoCirJLQfT9HUTVhkJ8uWLTvrPL/55hvqNmyMYncy8Ioh1b6Wv+KLjiNn5F1h2cPErPNWUZ+Lm5YsRZBURNXBqKvGAOGYvrxLV6xC2DPGYDQycfKUi+r/wIEDRLvdFDmcuGSZNWvWMGvWLB555BF69umH5otBcfpw+4LENhlAao9rEBXtki1i2l0e8sfeR9mcXTiCSUydOvWcldSffvopMfGJWGwiBcVlPPbYY8gOD4nlk1DjcpCDaaT1WYjscFfZ8b1nz56wF403EdHhZcas2axevZqlS5fyzTffXJJzgXC+4GzV5Vu2bGHOnDkXJN35448/MmLUVdRr1Iz16++/VNOs4U/Ab05QR0VFZZ7hLysqKurv1Wl/Of5qEtT/O+zevRu7KGIxGpk24cxbtyGcWH711Vd/c7B58uRJspKS6KqqNFNV2jZpctZjB/TowThV4xN/kEaanRUrVpy3/57l5VypqLzi9ZNssZxRw/Snn35i0pgxdGrZstrb0w4dOkRuSioJioJbUc4ZXJ04cQLBbKa/INLSYmWHy0OuorJ+/fpqjfUrv27rW+dw8ZTbi9Vk4sSJE9y4eDGNS0pI8HhYZXdwMBBNniTTuFZt7rrzzvNu4Vp2001kywrXyAqqxUJadDQNiotZvGgRjUtKGTFo0Dk1yc/Gjh07cIkiTZwuAk5nxDzxk08+wSlJTJcVGqgqo4cNO2P7BJ+P9Q4Xr3r9iHo9ZpuI4VQlddBgoIdNwO1PIanzVMyiyp3Ll9Ole0+8RW3IGnwzFsXJXXfdRb+u3Uhwubnu1DbEdFVl165dZ7wuo8eOx1fclpKZW7EnF9GlS5fIzX/R4uvQfLG4shpiMNswCxIlM7aQP/Y+bEJ4QaBBURFelxuL5kUMppNlMvOpP8hSzY5ddqK3CPhqd8Vb1gm9yUrRlE3kjLwLvdlGoF5PBFcM6ZlZ6E0WDIKKzmDCaLbQo2cvLGI4mZzQfhxqUhFSMI0WrdshSDIm2YUjpylFUzYix2Yj+lOJbjIQ2RuPy2Bkl9tDXYsVR2Z9MgctQU0uwXBKesMoasS3GU2gfi9SM7Mj12L//v2IqoOiqZtQ4vOJitKRX1RCzz79MFsFdAYTNnc8BouI1RWL0SJyxYABGM1WpEAqerMVwZ+MSXZiFDW8Xh/jx4+PJAdOnDhBWZ36ROn0WBxBDFaRwokPktR1FgZz2KDQYBGR4/Mw2mT8tbtiFWRUT5C03gtwpZXiD8bgym36L9MQT4BffvmFTz/9FLvbF9GWtnnikZSwfEj+2LWYJAe+Wp2xeeLx1+0RNmu0iMQ0vQKrK4bElDR++uknArEJZA+9jdLZO7E6gsS2GI7ii+f++/8VuFVUVBCXkIToiceVVY+Y+ET27dvH+vXrEew+nDlNyBmxHNEbx4YNGyLt7rjjDrzppZTM3EqwVjlDR4yMvNauY2e8OQ2IadQPzenm4MGDuH0BtNQybJ748AJErU7Ua9i0yudXkGQKJzxA6eydaN7oyA6Yr7/+mkBMHL7kXARJoV6jJnTt0fu0wPzhhx9GtrsI5NTD4faetxLnbPz888/UqtcAg8mMySpglR0UjF8flkapXe+cbf/+97+zdOnS8xrfHj9+HItNIGfkXeSMWI7FJvzpzcL+1/kjE9R/xti6On+/d/zdqKSEGarGY24vPlG8LJV/IwYNoqOqscbhJHjK7PZyM6B7d5qoKmMVFY+qXtIkQQ3n5vDhw5GK5n/nzTffZN26db+5uvDo0aO0bNSIhpLETZodjyhGkkU9OnakUNMotdtp26TJZde//uCDD+jVqRNd2rTBo6pMVlS6qRot6p37vvfdd99dVJx9Jt577z1efPHF0xKdzzzzDHPmzOGvf/1rtfu6b80aZKsVxWbj/lPPLCdOnGDjxo088sgjFyS9cPDgQRS7k+jG/XEk5SM4/ZTO3kF8m9E0a9mm2v1Uh1AoxIEDB/j6668ZMWIEUVFRdOzYkX4DBhFdv2dYoi23IUuXLq3S7lf5tCsGDw0nsmfvxF/Ygsy0NGwmCy5HAJvJwtixY/nHP/5Bl+69uHL02NN2eMUmpJDSbRYlM7Zgc/jZtWvXWec6dPgIAqXtyB+3FndC1gU/G46fOAlnTCqBgqYEY+Mv+nMUCoWwWG3kj1lD0ZRN2ESFL774gtdeew3V7cfmjiOlx9UUTX4YxeG56HvDoUOHeOaZZ3jiiSfCMnD1eqL5Ylm+/C7+8Y9/8Morr/Dhhx/SuFlLcgtL2LZt20WNcyY6dOqKN6suwXo9wpJ8+U1RHa4qskD/SWVlJd999x2hUIg777yT6OJWkWcOTzCO3MJSVq9eU6XNK6+8giMQT+nsneRdtQqLIONOzCFQ0Iy4xOTTdg1UVlby3nvvnXWn4JlYc999WGwCZouVO+6484Kuw9kYOnwkvpwGpHSbhezw8OKLL16Sfmv447kUCeojUVFRq6Kiou79j7+D1Wl/Of5qEtT/W1RUVJyzOnnFXXfhsAnEywodWrT4zUnqb7/9lsWLF3PzzTefc6vXgO7dmahqfOoP0riaCerGZWXcpIUrnWubLRTn5Jx2zLD+/WmjaizT7LgvQNbkqaeeon/v3ixbtoxXX32VVvXr06xOnTNWLt+7ciWSXs88JazT3F/VmD9/Ph1btECx2WjTuDFD+/enNDOTa+fNO2MQ/fzzz6NYLAQNBgSdnusXLao6xqpV+CWJQlnBZTCwWNXIUBRW/Id78jfffEOzOnVwyjL9unenZYMGLDslVyLqdDzgdHGNqqHo9axyOOmoagwfMOC0+Zw4cYL5V19Nn86dz7ptf9++fTz66KN8/fXXkf/btGkTDU7pVf/F5aYwNfWMbaNdLv7icrPXF0A1W/HV6YpgtODUG1F1OmSdDovegGh3M2/+fADK6jb8l6laVu1IIrFBURFjJIn5iorHZMag1xNwOnn55Zd54IEHaFBYSP/u3Vm/fj0eSUbQ6SgsLuOBBx6IBGHp2flkDrwp3HdmGbXq1EPzRCNpTuYtWIjP4WCJZucW1Y5Fr8em2JGMRuxmM4LBSFxiMiaLlbTe8zEKKnqzQN7oe0nvtxiDRSB76G04Y1JJz8hADKahM5opGL+evNH3YjRbcMVnkNp7Pkp8HmbFTWKnqRSU1MLp9iJ6EzFYRDKvWIo9ox5iMA05mIqsOZAlGUlvwKrToTOa8RS1wyQ5uOqq0Xh8QXwlYd1uye7i7bff5pq58xg9dhxvvvkmDrcXLbUWWmqtsC5ycWsmTprM999/z8iRozBYRLIG30zp7J1Y7H50BiPaKTOb5K4zEPzJxLcbi85owSjZ8eQ0wheI4a677qJZi1ZMnjw5XJVhtmGwCBRNfpjMQUuQVDvdevTA5fGRmp5Jm7btad66Hdu3b+eWW2/DE4zDZvdgTyoMB5n1e2PRfMTExuP1RyPZXdgkFbPmw5HZAKNNJjM3n2sXX4fFasMmq5glO6k9rglXC6fXJSpKh1FQSO1xNe7MurRt3xGzTcBolZADyciak8SUDOYtOF1P/dChQ1xzzVymz5gZqfS47777cCfn48ioh0l2kpiSXuW3cunSpTjT61A6eyeB+r3Izs0nLTuPNu3L+eijj5g1ew7DRozi7bff5vnnn0f2xoW3k165EoNFwGC0nPagOWjwUFxx6fiz6pCVm19lK+ahQ4dYsmQJihbWxo5p1I+4xOTTzuWVV17hgQce+E0VK/fccw/e9FJKZ20npvEA0rPzsAkS8UmpPProo7zwwgtnvG9s27YN2eEmulYHJNV+zoW/n3/+GbPFSsG4deSPW4vZYq3Wrpoa/jj+4AT1ny62rs7f7x1/v/fee9TKzSXG5WLZTTddljGOHDnC8IEDaVBY+LtV/yZ4vTzt8XIwEE2J08nTTz/9u4xbw5nZvXs3LlGkvcuFS1Z49913L6qfyspKauXl0VjTiLVYSPb5qiS0KioqePTRR9m4ceNll/cIhUIkBYNMUjWmqxo+h4Oh/fszefz4C0o8/Vk4fvw4ksXCE24vj7m9iBYLv/zyC81btcWTlIM7IYsOnbpUu7/t27cTyCgNm5kPuRWToFI89RFiG/enfXn1+zkXO3fu5KabbqJz27Y4bDZUm40HH3ggYp6Ynp6Oxx/EJink5BdVkXh499130ZxuAhklmG0i/qLWYe3hnIbExsVHPES8JR3o1KkzEE665xeVYrGJNGrSlA8++AAIPx+KiorFJtK+vPM5n5M7de0RMXEP5Dfhtttuu6BzDoVCbNq0idtvv73Ks1Z12q1du5ZhI0axdetWQqEQqt1Jet9ryRl+BzZR4ocffuDdd99F0sKFJnqzDYvmQ9Sc55Xd2LBhA0lpmZTUrnvG3dhLly4lplbHU9KHU2ndvvyCzvti+Omnn1iwYCExCUnEthgR1mgubsUdd9xRrfYffPABit1JsLQdqjtQRV/73/n8888RFY3UHlcT06gfJptEwbh1lM3ZhTOYWEU675dffqFewybIDg+Sop3TS+pXfjWPzxl5F3mj78ViFS6J1GlpnQak9pwb9qfJa3TBu5uOHTvGzTffzLhx41i1alWNfNefiEuRoP5HVFSU8wz/v7067S/HX02C+r+Tzz77LFK1eimJdbvZ6fLwiT9IgqLwzDPP8O6771JRUUEoFDqv4+7PP//Mvn37LjiZ8MEHH5Dg9yOazDSpXbtaumVLly5F0OmINRhIN5rIiIk57ZjSzEwecoa3BjZ3udi4ceN5+7377ruRDEamygq5ioJDFFmoatyo2fFoWiQQPnnyZCQB9NRTT+EUReo5XfgdDqZMnkwrVeVNn59WokiKxcpGp5sUSaJ927bceeedVYKaTi1bsfhUYreN3c7d/5F4hrB0RudOnRgjKxFd6qH/oY89avAQ+qka16oaNp0Oh9GIw2ikj03ApdfzqT/Icx4fok7HwUA0axxOGhQWnjbWtAkTqK9qLFY1PKJYLY2wY8eO4VRUbFE6hosSOVYrU8ePP+OxDz/0EKLJhEWnw5/VAFd6LQxmG5rdR65NxniqmnrgwIGR6/Too48iqQ58ybnEJ6VEHgpmz5yJXa+nltmMX29gny/AjZqdwowMPKLIaoeT3qqKajSyTLMzXFYwWwUCmbWQNScPP/wwzVu1wZVZn8TySUiqg7179/Lyyy9HPstmg4G9Xj+vef2YdTpmzJzJBx98wND+/dEEgZKsLK6ZOw+jyYTgSSCu9ZXojRb0RjNGi4CkqGguLwaLiFFyojOayLtqFTkjlmMwmalVtwGaJ4jBbEV2+pAUO0OGDCFQ3JqyObuIazkCg1XCYBHwBmKYO3cu77//Pvfddx/26FRKZm4j2KgfeqOZwYOHAuEFhK49etO73wA2btyIyx+NzeHHU9wOzenib3/7G6kZmbhzm1I6eyfBul25avRYnn32WRSHB7PiJrphPzIHLUFvtuEtLccsu8gctARXThP0Jit6kxU5LhdvWSfMigur6sAkasQ2H4pJsqNoDhLLJxGo1xOdwYjOaMZoNqN4oskafDP+opY0aNSEyVOmRlbzZdWOp6gN0U2uQG8W0BktWJxBDGYb0Q37nJJoqYvOaMZb0gFvWTmpGeHq8F+3q3bv0Qs1Oo3YFsMwWEWc2Y3QUmuFKyO6z0FQnaT1XkDGoJswWiWcCblo3mgWX3f9eT/nv37W69RvhFWUcfsCEfObUCjEQw89RPfu3TFaRQwWIXzONpmMATcQrFVOh05dq/R10003oTdZSGg3Fnd+S8RAKjZJZd++fVWOq6ysZOPGjaxateq0Kpqhw0eieWOwqF6cWY0ombkNvcF4QVXHu3bt4o477jjvfWXVqlV404rDCepG/ejRuy8A8xYsRLa7sfvjaNex02nJ8T79Bv7LvLFeD66++upzjnPdDTdiFUSsgsj1N16eZFoNl44/OEH9p4utq/NXE39fGgb36UMDVWWUouDVtBrD1T+YPl26sOhUPHuFql20idenn36KRxDCMoG+wDllAi83P//8MyaDgXd8AR51uhFMpvMaA/+Z+emnn7CZTLzs9fOi14fVZOLzzz/HYhMombmNkhlbMBhN1X6W+/zzz1EdLoL1euBOyiM1IxuDwUhSasY5K1irQ2VlJXfefjvxsky/U882T7i9bHa5SfD5gH+ZJ3o8HrZt23Za0njW7NkE6nQJJ4rr98bp8aPXGyirU5+p06bjTKtF/pg12BPzI5XX3Xv2wVPQAsFspa7Vhma1RoqUjh07Vi0T2JdeegnF7sQZTCAhOZVPP/2UkVeOplmrtpe0evg/uffe1Wj+OGJbDENxeHj88cfZvXs3bl8A1e6sUhU8bvwEDGYbeaNXk9RpCmZBqWIK+J989tlniLJGRv/riGsxlMzcgtOOef7555HtLuJajcQZm871N/x+MdykKdPwpJeS3HUGist3QQuW7777LsuWLeOxxx4753Hbt28nv7iMpi1bU1qrLoHi1sS1GIrqcFX5Xdi2bRuexCxKZ20npdssCkrP7wV18uRJzBYreaPvpWDcOixW4ZLswFix4h5Ul59gQROcHt8Z5XzORet2HVFj0jBYRJS4XJxu7++uv13DmbnoBHVUVJTx1L9KVFSU4VzH/t5/NQHyfxeHDh2ieaNGSEYjmtXKnOnTL2n/+ampLFY1drs92K1WNFEkKEnkZ2SQGAgHiF3atDljtcInn3xCnNdHvKKQ4PdXO4H+1ltvMWvmTFatWsX3339f7QD06NGjJMfEUEtViZUkbrr+9OTSDYsWkSDLdNXs+B2O8674vf/++4hmM52sNg4GornX4UTR6XnfH+SjUzp33333HdMmTMBsMOBWFEpzc2lSqxaPPvooO3bs4JtvvmH61KkMOWUWMUySaWS2cDAQTQ9BpIHFQqGiMnvatMi4Q/r1Y6CqscfjI1dVz5pIf+6553AJIqMUlYAk8cgjj1R5vWd5OfMUjWSjkU1ONx/7gwRNJgb070/tggKyNA2/KOIQBNqe2oK7auVKXnjhBTLj44lxubhvzRqalJayxuHkNa+fbEFg4MCB561QmTlzJtYoHR2sNjSdDl1UFBUVFbz77rvUrteQ1MycKud1+PBhrhg8lNjEFLp074kkytic0cgxWQiSQvfu3YmKiqJdu3aRZPT777/P7t27OXr0aKSf5nXqcI/dyQaniwSjkQ/9QWbICn6Xi3qOsCzKRqcbu8HAAX+QuYqKllwc2cZlFlVMNgkpOhOzpDF16tTTzq15w0YYjCZ0eiM21YvFJrJlyxZSFYU9Hh/DZIVOLVvyww8/kJ6VgyM2Hb1FJKHDRNL6LMRoldFSykjrNQ+T5MCseojS6dEbLfiCMVRUVPDGG2+wf/9+XnjhBT777DPuvfdeHNGp5IxYji+3MQMGDeaTTz6psrVz+/btuGJTKZ6+mfhWI6lTv9Fpc//hhx8QRPlUMrcTFp0eo9GM1Wxh8+bNuL0+zDaRYEwc+/fv59ZbbyW6tC25V63EovkwWASs7nCFr7ugFQarRFZuPs888wwWQSJ/7NpTJo8xROkNRDceSNmcXcQ2H4rebMOZ3YisIbdg1rzozLawcWJKSbiyovNULLKTYIM+SKqdLVu2YLQIeIraoTdZsXniEXxJ+Gt3Cbt+F7ahZMYW5LgcpOh0DBYBvclSRZYDwpVV/uhYrM5o1OQSzJoXg8mCkpAfXiSw2EjuOpOiyQ9jFFRyht9B1uCbSUhJP+36VVZWMuqqMdhdHuo1ahKpYgmFQnz99ddVvhdLl96MPZBAoE53dCYrgQZ9CDbogxhMo2zOrrBZZkFx5PgvvvgCiyCR2GEiUmwWRptM4aSH8KcXs3Xr1nN+337lxIkTGAxGiqZuomTGFvQmC67EHFq2Prt2/n9y401LsftiCRa1wOnxnfPB69ixYzRq2gKjyURMfGLk4VOQZPLHrKFk5lZkuztSbfQry26+BWdcBkmdp6J5Y6qYzpyN77///r86CfB78sQTTxATn4T//9g77ygpqu1tV+dQ1V3VOU7OOc+Qc845g+QgOWcQERUxoAKiyFVBDGBAkWAOKJgAc0SCIHgFJEiQMP18f8zYP+cywJDUe7951uq1YLrOqdPV1d27du39vsEonn/++b98/39HgvqfHFtX5FEZf18bTp8+zT333MOkCRP47rvv/u7l/H/PrOnTqS0rPGF3kmS1nhenVpRTp07htdmYISsMkxWyk5Ku8UovjyZ16mDTaIjRahE1Gl555ZW/dT1Xy+yZMzFoNBg0GmZMncrZs2dxuL1EN72RqEYD8fojLuuGwFdffcWEiZN44IEHwkVNf7B82TJq5uTQu0uXy6o4X7VyJRajEVmtZqmtRNu+mdHEFIuVxTY7qdHR4W3/bJ74n9WhS5YswRmbQXr/+3EnF3LLnFvDsdvx48dp2aY9NqebTl27h2/sN27WEltsLiOlkqKgCRYrI4cOrfDa/+DXX39l69atnDp1im49bsCbVZe4thOwKI7rppnfo1efsEdKsGZXZsyYccFtt27dimT3UDDlxRLjdLOV0WPGXXD7Tz75BMUTUeIlc+MS7E53udutW7eOXn36sWDBwgp1Yy9f/jiNm7di2oyZV9UR8fvvvzNuwiTqNmzKY49dfw+EQ4cOMWTocDp16X6e8fjbb7+NzRdFzpgniGrYn9r1GpZ5/kKfr0WLHsBgNGMwmpk7785rttaNGzeydOnSK5L4MxhN2JKrE9NydMmNnrwmF9Vfr+Sv42oS1K8KgiBdbJu/61EZIP93UaugAK0gsNXj4zOPD7NOd820zQA+/fRTshMTCTqcZCYkcGephEZQr2eiVWaHL0ChYuOpp546b+y40aMZVJqU7WuVmVqB5Pm2bdswazQMFiWS9QYmj7vwj+IfbNy4keXLl3PgwAEOHz7Mk08+Wa5xxJkzZ2jZoAEmrRa7KFYomHzppZfIlRXsajXjLFYSdDry09NJlxWyFYW2TZvyySef4JckPvf6WWyzE6HRcI9iw2m1hivMf/zxR6I8XuJkGa+iYDOZqCsrSGo1m9xennY4qZ6VFd7vL7/8Qr0qVZANBtKjoy9693bTpk3Mnj37vG3OnDnDsGHD0KvVyCoVd8g23nN7sahUbN26lbNnz/Lmm2+ydetWfv75Z5YtWxbWh4z1+Vmg2FnrdCObTNwyaxaxFgtOtZrWJhNVrFZ6deoElFS7t2jdjvqNmpaRPOnRowfNSxP7D9sc2DQadu7cicPhRIlMI67tBMySzG233cbDDz9cphr/iSeeoIHNzgLFTkeTmWpZ2YRCIe6//360Wi1xcXEX1K0dM2wYjWSFRYoNRavFqNFgUampKyuIag31bXaCkkRcMEgNm50oUcQkO0nuORd7Wu2SBGi1jhTN2EB08+F06d4zHDRs3LgRly+IWm/CEpWJI60OepsXnc7AY489Rp6s4DeYMehNiJLMwYMHOXnyJAsWLECU7XirdSgxCNSbURKroCqtOE7oOB21zojKINK2fYfzXtNrr72GaJFRqTWotHrUehNLljx83nbFxcV07tYDtUaL2aKg1eqIiU8qU33bq3df9LILS2Q6BsWLWmdEJ9rQmmW0RhFvWnVcCXlhncBvv/0Wi2InWNQSye5Gozei1htR4gvQSTZ0RlM4SduidTs8aTXwVy/RfNNKdjRGC8G6N6AVFURvAo70OmhNVtR6E/Edp5E77unSquV0tEYz/prdKJqxgYj8xvTs2ZNgfmMi6vfDU9AKsyeWtP73UTRjA1JkOhqDGUFQYXRGUjDlRaKaDKFx0+YAPPfcc7Rv34EOHTvx7LPPolKrKZy2lsLp61HrjHj9Eaj1JozOCLQmC6JFRqPVoTdJJHSchr+gBc1btT3vGD/77LM4IhPJGv4o/qJW9Ozdt9zzEKBWvUYkdJ5J0YwNaAxmMm9cEpbtUOsM6M2WMm2Dvfv0RWMQyZ+8msyhD6PW6glk18Xrj+CNN95g48aNlzTVCYVCONxeYluPJb7DVEyihTvvvJMWrdtRtWadS1aCAGTkFJDcc25J0JlejVWrVl1yzPHjx8sE1xExccS0HE1KrzswS9bzqhiLi4u5/Y55NG3ZhocqIOFUScUpLi7GqthI6jqblBvmYZYsnDhx4i9dw9+UoP7HxtYVeVTG35X8L3L69GnGDhtGzZwc5t1221VVPX/22Wd0adWKGzp35scff7yiOYqLi69J5fWjjz5KLcnCXn+QBYqd+lXONxq+Vpw5c4Z///vfF53/888/58MPP7xiKcYW9evT2Cpzg1Umxufns88+48MPP6RBk2Y0ataiwpKIl2Lr1q14RYnH7A46Kwq9Onaq0LhQKIRiNrPO6aa3WSRfr+cexYZDb8Cg1RJ0uXjvvffKjDl06BB169ZFEAQmTZoUPjbnzp1jxKgxxCWl0rvfgEt2AwN88MEHGM0iqTo9zzlcVLHKV52QS8nIIeWGO0vMtVMKmTVrVoU6VC+XJ554AtkVIFinF5JycdmjUChEZk4eWpMFjVHCmdmAjl26X3D7c+fOUbNOPZyRCVjs7gp3Hl6MN998E6vTS1y7ibgTcpk4aQp33HEHt9566391kUIoFGLk6DEYzSIJyWl88803hEIhdu7cSVJqBhqNlnYdO5er9378+PFrmt+5WqrVrIPki0dJrELKDXdi80VXqNCkkuvP1SSo5wmC8KkgCP4//a2WIAgbLzbur3hUBsh/PwcPHqyQvlBxcTEqQcCiUvGC08U6pxtRr79u2pydWrZkpKzwqceHW6djZqmJYXWbjccff/y87WfNnEkrWeFLr5+mckki8lK0aNaMOgZDuMo1obRd60IsvP9+IiQLTe0Oor1eDh06dMFtV61aRaHNxk5fgJtlhZYNGpS73ZkzZ8LtTIcOHSLoclHXYsWp19O2dWvOnTvHunXrWLNmDWfPnuXjjz8m2mLle6+fFXYnCVotO30BrAZDGY2wkydP8uWXX3LixAm++eYb7rvvPmxmM+MsVvL+o4IaYEDPnjQpldVwimKFK4G++OILlixZQrMGDcjUG6hjEjEbJUSVCkmlwiGKhEIhfvjhB15//fVyzzWbKLLR7WW7L4DLZCIuEECrVhPQ6djrD7LV48MmigDEJiYTUfcGYpqPQLE7w4mQd955B7k0WZ+v11O1oACTWo1NpSZBq0U0y+hMFtwpVfAk5dOwSfPw/t9++22iLBZedLroJSv07NAx/Ny7776Lz+fDZDKVazBy6tQpxo0YQdNatVjx+OM0qFKFxaWGks0VGwMGDGDTpk2cPHmSp556irVr15ZUc3oCmL3xxLYag1ZUiGoyBIs7EoNOj00UeeCBBzCaJQw2PxqDSKBWD4J1b0CtN9K5SzdOnjyJz+PFU9iawunr8WQ3ZHapXjbAnXfehUZnIH3gIuLaTUKtM+DOa46SWAVbUlWMjiD+Wt2xOV3nXYRExiYgx+djckVhdEQgBpIxiZYLXqysX78emy+a3HEriWo4gPzCKtx+++288cYbiBaZ7JHLKZy+Do1ZRlCryRu/isxhS1HrjBROX0/B1DUIKhVVa9bhnXfeYfz4CdSsXYeHHnqIw4cPU69hY4xmiUBEJGmxsRSkpvLOO+9w4sQJbr55Nl5/EL3ioXD6epzZjUrkWhwunCnVSyqptXpUelOJyWX/+5CdfubOnUv/AQPQW+zorU4MZpFnnnkGSbHjzGqETrIjxxdgicwgWPcGNEYRlUZHoHYvjHY/8e0mYXRGUFS1Go8tW4aoONBJJRrMkt1DdFwCvrzG+ItaEROXiMMbJL7dJAqnr8cSmc748eN55513WLp0KVVr1qVbjxvKbQ1fsmQJvoxaFM3YQEyLkTRp3uqCn8XpM2/CGZtBVJMhGMwWRMWB0erAndOYnDFP4IhO47HH/q+10myxYk+vg06yo9YZ6NqtO0uWLGH4yFHITh/2QCzNW7W54Pt++vRpBgwaQkRMHJ5AJBk5+bz11lsUVK1BsGZn4ttPRpJtl+wc6dWnH96MWsS1nYCkOMKSJZfDli1bSMnIJio2oUIJ7kquHWfPnkWr05M79inyJz6HwSxe9LfxevA3Jaj/sbF1RR6V8Xcl/79w+vRp5s+fz5RJk87rrrmeTBozBp1Gg9/h4P3337+quUaNHIlfo+Etl4feooioUhEXCFy1hMV/8uWXXxJwOpGNRuoUFZUreXjT1Kn4JIkYq5Vu7dpdUaLcrNfzldfPXn8Qp0aD1eHBF4i84I2AM2fOsG7dOjZu3HhZ+3vmmWeo5yipfn7S4aRKevqlB1GS3LMYjbzl8vCR24uo0dC6YcNLdgidOXOGQYMGhc0T/9xxebkcOnSIgX36UJCSwviRIy/LOLI8bp97BzZvFP6ceujNFpxRSVjtbu64RJXs/v37adqiNamZOTzyyKMV2tfzzz/PuPETeP311y+57d69e3G6fbiikrEodj744IOLbn/mzBneeuutSxpeV5T58+cTLGoR1qy2uf14M2rhy25ASkbWVfth/RM4d+4ca9euxarYUGt1yHF55E9ajSs247wu0H8iv/76KyNGjiIxNZ2ElHRmz7n1b5NcqqQsV6VBLQjCYEEQdgqC0KW06uNnQRDGXmrc9X5UBsh/H88++yw5ySkYNVqsRiPPPvvsJcfUKSqiyGzGolJhUquv65farl27yEtJQTQY6NS2LX6HA4vBQMMaNcq9+3zs2DGa1K6NaDDQon79CiXde3btikWlYppVJl+vp3aVKkBJZfX4sWN56KGH+O233xg2YCD1i4qI9XrDmtJ1HM6LBirPPPMMeYrCDl+AmbJC60aNzttm48aNOCwWzDodvTp1ori4mH379rFw4cKwscR/EgqF6NutGxaDAbNWS6RZJEex0aphw0t+WX/00UeMHj6cRYsWnVcZmZuUxPMOF3v9Qeo7XaxevfqSx2/z5s04RJFODicmlYon7U72+AIoOiNmtRaX0cjYUaN44YUXcJhF8ux2UmJiypiHAMy/6y4cZjNBSSLa7aavKDLDYsUoCIyRLAS1WpwWC6+99hoajZb8ic9ROG0tomxn9erV9O7bn5tn38LKlStp27gJM6dOJSkigmccLnb4AsRqtFhUajQGE4XT15Vo5Ko1Zdq47rrjDtKio2nXpAkHDhwos779+/dTs2ZNBEFg5MiRZcb99NNPDB02gqHDRvDTTz8xYtAgWsoKj9ud+EWRMWPGlKki3bZtGy+99BJjx49HrdWj1hkwmCXatOuAQavlDaebtU43Jr0e2RuNkliESqMtqcadthaNzhC+oz9m3Dhc6bXIGv4I7rTqZRLUP/zwA5LiIH/yahK7zUYn2iiasYG88atQaXSo9SYyhz+CRqs7TytYZ5IQ1GryJz1fcqz0ZswXSFC/9dZbpGXlYpJdZI94jGCdkiS6r6gNFrubyNgEIur0JL79FASNDpVGR2Lnm0jqOhu1zkCwTi+8pRrSsa3HljhSJ+YRrN0Do1lCq9Pj8QXYvHkzLllmoc3OYpsdu8USfh++/vprDGaJxM43EazRmSo1alOtZm0Mkg2VVo+/Rlf8tXugMYr4glHEJaYgqNRoDGYcGfVI7TcfyeZm4KDBZOQWEBkTi0qrL5HmMFlR680YRQs6vYHMG5cQ0aA/ar0ZkysKndlKfFIKclwewXql8iIN+tOv/0AmT5nKuPET2LdvH02at8JbpS2ZQx/GZPNitiiYZCdmSb6gESiUBGVxick4g3FYFDvvvvvuBbc9d+4cc+feQURMPEazSHZePjn5hUQ1HFBSMZNdj/vuuy+8fVpWLsE6PYlsNAizRQ4nFQ1GEzljnqBg6hokxcHOnTvL3d/tt8/FnZhPWr97ccakh81lbU43WcP+ReH09TgCMRc1JISSSo1hI0dTtUYt2rVvz4MPPnjJyu0/8/PPP5OYmo5Wpycnv+ii+oWVXB+mTJuBpDiw2t0MGnL5bchXy9+lQf1Pja0r8qiMvyu51mzatIl6RUU0rV37uskHXAl/6IQPssp4bba/pCpy27ZtBCULn3t93K/YyUs+X8Lrcoh0uehmMhPQaFBUKpbbHYz5j4KKa0HnVq2YXmoaX8dm49FHz09ImnQ6tnp8bPcFcJhMV1Rd3qhmTdrIMoMkC2adkYLJLxCo2o6x48YDJUU2DzzwAPfff3+JvGSNGuTYbMRYrEwYNarC+zl06BDRPh8NHQ78ksSSBx+s8Nh/PfwwksGAqNdz8/TpFR4XCoW47777UKvVZGVl/aO0cjds2MCkSZNQvJEUTl9HxuDFuLyBi45p3KwFgWrtSO55OxabM2zwXh5nzpzh3nvvZfyEieUaGF6Io0eP8vbbb7N///4Kj7lWfP311xhFC+7sRphlB4KgCndAmkTrRQ0iDx8+fE1MBK8FCxctwu0PkpaVW6YDYeHCRegNRtQ6A8k955I9cjkag5nsUcvxphSx9C8yFK7kf5OrTVBnlVZ6FJe6jZsuNeaveFQGyH8Pa9aswW82M9MqE6nRME6yEuUuX8fpzxw5coRZN93ElIkTL1vg/mo5e/YsBw4cuKZ3zHbt2oXP4cCq1eJ3ONi/fz87duzAIUmMsljJlWWqZmfTXFH4l92BQ6ejnijxsM2BWxR59913eeedd8qtfDx79iztmzdHr9EQ6fGU265WJSODRTY73/sCJMoyb731VoXXfuDAAY4fP86GDRvC1dVXwy033USKVaa7YsNru3TVI8Do4cOZYPk/fbRMnY5pVhlRpaK9WeRFp4sYi5WsxCQeLtVvq2t3nCfR8uGHHzJz5kyeeeYZ0uLjMRrM+BMK0eoM2PR6CvV6JlmsmNVqmrdqg8XpR3T4SEnPQJJtRDYcgCe5iL4DBoXnzE9NZZ5sY7Pbi02txiXLuL0BIuvdQLBGZ+KTUit8bF5++WUeeOABBgwYgCAI1KxZk/3795c4qycmE6jalkDVtsQlJvPbb78xuE8fsuIT0OpNOFJrYnH6mD//Ph584AF8kkQVux2zWk3G4MXkjV+FwSzxzjvvoDOYSBOtFOj06AQBi06HxmRFa5YRA8nYYrOoVrNO+DMwdMAALBoNerUGlUaL3mjigQcWs3nzZuo1aorscKM1SuiMIibJirdKe2xJ1dBJdlR6Mxanl4FDbgy/zlAoxO7du9Hp9Kh1RqKa3khcm/GotHqWLy/btfDhhx8Sn5yGRmcgrs14fKVyIoJag69qhxLJkmbDadmmHY2btUBUnLgLW+Ov3QO1wYzGKBLdfDjW2Dw0RpGYVqMpnLYWrVEkfeBCimZsQPQnEt9uEnFtJ5CUmoFeo+Fbr5/vvX7MOl2ZGx2rV68mO78KTVu25oknnsAVlUzhtLUkdr4JMZBEYpdZ6ESZMWPGIPkTcOc2Q4pIRaUzIgVTsUWlYnEFSOwyC4PiRSsqFE5fT+64lajUWubMmcPDS5diMJpRqdXoJDueojak9r4Lg6RgtNrRSXYiGvRDsnvO073cvn07ouwoMS7UGQjW7Y07vyUmdzRF1Wpd9Pz75ptvuOuuu86rLP7999+57777mHnTTezZsweAO++8E3dKFSLq9y3R77ba0RnN2H1RxMQnlqls3bFjB42btaCoeq0yVS7BqBhiWowkqdstiBb5gpqNAwYNIaJenxJpjuodmTJ1KlBiEmP3R+NNzictK6dCZok//vhjiYN5zS44Y9IZU3qRWhFGjRmLv6glhdPX4c2sU6HumUquPd9++y1ffvnl31LV8jcmqP+RsXVFHpXxdyXXkpMnT+K0Wpmv2LhJVogPBv/uJYWJdrt5x+1hrz9IvsNRrizfteb9998n1mpluy/AcruT9JiYq5ovJykp7NEjqVRsdHmYICt0b9/+Gq24hG7t2jFGLimuqaqU37Ea5fFwr2LjaYcTxWS6opvCR48eZea0adSsWhWrOwp/bA6KL46bbpoFQONatainKDRVFHKSk/GaRXb7Amzx+LAYjZe1r4MHD/LUU09dsjK3PH777Tf27NlTYe3qM2fO8OOPP3LmzBk2bNgQNk/ctGnTZe/7erF7925Eq0Jyz9uJrN+XrLyCi26fkJIelgaxBhKx2ux07dGr3Niu/8DBuBJyCNTojOJwXdBT5OWXX6Zv/4E88MDiv70S9pFHHkH2ROLMbIDk9BEIRuIvbEGgWnsiY+IuWDAxbsJEDCYzRrPEihXXrmDvnnvuxR8RTWHVmhcsEPlPvvvuO0TZTvrAhUQ3GUJmqd/M0aNHMZhEsoY/gtZkIX3gIvImPINGb8JsVcjJL7omCfaXXnqJzt16MG/eXZdVYFLJfz9XI/HxvCAIhwVBmCEIQmtBEH4SBKH5xcb8VY/KAPnvYfzYseHE4gyrTGODkfjAxe+g/q+yb98+2jZtSvWsLJ588kmWLVtGnMFIglZLc6MRnyiGzTFa2e3UrFKFeoVF3Dt/Pl6bjXyHA49EIAb7AAEAAElEQVSiXPBO8YkTJ8I/vmfOnGH37t3hys+qWVncp9j51usn3mrljTfeYOLo0VTNyGDG5MnXrK3oo48+YlDv3tw8c+YFJVlCoRDPPfccd911V4Xv9i9ZsoQsq8yjdgeZFis1q1ShfrXqZMTG8kCpzEUzu4Oi3Fz6yQrrnW6iLZYyemSvvvoqblGkp82OQxTJyM4jtvW4ElO8rAZYVCrWON0lFxZ6PW3atsXqjcJXpR1avRGraCVr6FLS+t1LQmpGeN41a9YgGwwYVCrys7LYu3cv3377LV2696Rn774VrviYO2cOcVYrre0OojxeHnroIUwmEz6fj1dffRWdwUjh9HUUTl+HzmDkk08+YcWKFRhMItborBJzuh63kZqZS0ZsbLhKPVmnI7LRIDKHPozRLJKenYfoT8TojCBPp+dzr49OkoTTYqFmzZrMnTuXpUuXcvLkSbZu3crNN9+MqNOxxeNFp9GSPeIxsob9C53egEWxE9NyFN5qHTDaA8juIA8++CDJqekYJQVHdAqZOXm899574XOzuLiYlm3aIcolCU29yYJelHF4AuVezPmCkQTr9EKv+Mgdv4qs4Y+g1uqxp9fBoHiIbTUGkzOC+xcs4MyZMxRWq0GwTi9yRq/ArNVjNZjRiTbUeiNqrR5bIAZXbDo2hxuD7EIKpiBodEQ1uZHIxoOJjk9icJ8+REoSkaJEx1atuH3OHJrVrs3cOXPCn5WzZ8+yefNmFHeQ7JHLiWw4AI1RQq0zkF9YxJAhQ9AYLUQ2GojRGYHZn4Q1JhuzZMFfu3tJsrVGF1RaPREN++POa47ebAlrt2XlFuBOLUnyJ3WfQ9GMDXiT8hgxYgSNGjehRavWZTorQqEQe/fuZfXq1bjjMsi4cQl6q5PC6evD1eyt2124Auq9997DItvxpxZhc7rLtPO279QFd1IB/qJWeP0RHD9+nGnTpuMvao3O4iRj0AMUTH0J2enjmWeeqZDuIZRUfmXnFZKQkn5Bp/dQKES3Hr3QGMyYFDcWxR7+DiwuLmb27Nn069evwu3Hzz33HIH06hTN2EBqn7tJyTjfmf1CjBg1mkCVNhROX483qz633nprhcdW8r/B3yTx8Y+NrSvyqIy/K7mW7N27F7vJxC5fgG+8Jabm16M1/uTJk5ctLdizQ0cayjKjLFbcsnxel9wfrF27luGDB1+T7tDi4mJ6dOiAYjSWaBlfpFMKSmLhekVFdGjePHzD+c98+umn5CQlEXQ6SY2NRdTpiPJ6r7kx5w8//EBSZBQatZp2TZuWaxj34YcfkpuUTEpk5FXrwC5dupQovZ4Fip1YvZ4HHniA06dPo1Gr2eUL8KMvgGwwYDWZWGJzMENWSI+Lu6p9Qok831NPPcULL7xw0fN0yYMPIhkMSHo9sy9i9gcl15ORMXFINieRMXHs27ePr7/+mri4OPR6PcuXL7+qNb/11lsMuXEYS5Ysueqk7lNPPUVCSjrVatbh+++/v+B2+/btw+Z0oTVKiL54dGaZ9MGLcSfmce+99563fWRMPBmDHijp2kvKLdeH5P3330dSHEQ2GoQjIpF5d959Va/lahk6fAQR9fuWmDrWvYGBgwYzcvQYhg4bwd69e8sdM/uWOWiNInJcHkndbkG2Oa7JWrZt24bV7iZ9wAIi6vSkZt36FRr3/vvvY/dHUzhtLWn97sUfWXJD7PDhwxhMIjmjVxDZcAAqjQ6DSaRr957s3LnzmnxHb968GYvNSXSz4ThjM5h18+xLD6rkf4arSVDPFQTB/qf/Z5S2JA692Li/4lEZIP89vPzyy/hEkfEWKza1GovRyGuvvfZ3L+tvoUPz5twgKzxmL6mK7n3DDVTVG3jF5SZLpyczLQ2fJNHK4cBnt4fdZyeOG8eN1pIk/0irzJgRI8Jzbtq0iaL0dApSU+narh1eRaFGbi4xfj9eUSTK42HEiBHceuutuGQZvUbDwBtu4J677qKKLLPS4SRblsMJyT8bTj2xYgWt6tdn6oQJFapM3LNnDw5JYqpVpoEs079Hj0tu/+qrr1aoBbK4uJjbZs+mYdWq3DZ7dviHbt68eSgaDV6dDpeicPPNN1O3alWSgkHmzplTZo7Bffows9TccqTFSkFhEfaEfJK63YLiicCnKGTqdAwRJUxqNRk5Jc8VzdiAO7GIZkYjosGEIyqFceMnAiVSB05RpK8o0tVsRlKrmTt3brl3iY8fP84nn3xyQZ24zLg4XnCWJJVrOBy89NJLfPrpp8TFxaHT6QhGRuHJqI03sw6JyWk4JIlEUcLsS0BrshDXbiJKQiEag5naBQUMkmWedjhxGI2IFhmTWeLBhx5CZ5LwFLXBGptLq1Kzx3GSFZNGi6TTkx4Xx6lTp3j//fdxiCI9ZAW9oOJZhwudRktq3/mYvfEIKjV6USZ/yhpyxzyJSqNDJ9kZOHAgoVCIl19+meeff/68c+fdd9/F7o+hYOoakrrdQlRMPFu2bLlgEKw3mvBWaY9Zo0WvUmHWaFHrDMjx+bhymqAV7RRVqcovv/yCPyKypHJYo0OjNxLl9dHfLDLJYsWjVhOfkMj69eu54447sNhdJHSchj2xEEmro0BvwK5WM6BvX+6Ydyd6k4jWIKI1mNFodYyRrGTLMjfffDOSUtKapzg9DBs+ErNkIT45jRUrVvDCCy+wY8cObr75Ztx5zYluNhyTKwq1QUSJSGbixImIVgWzI4Baqw8bK5q98QRrdSMyJo4DBw5gNEsUTl9HbJvxqPUmPPFZxCUml2smcu7cOVq0blsi5yFKmGU7Kb3uQGdxoCRWQfQn4vD4L+po3a3HDUQ1HlySOC9qzZw5cwiFQoweOw6VWoPB5iNj8GKcEfFs3bqVPXv24AtEoDNZiG4+nPT+92MwS9x2221lzCuvlueeew5HRAKZQx7Cm9uErt17hp+bOetm7P4YArkN8fiCFfou2blzZ4k5Zt0bcMXnMGzEqAqvZd++fcQmJKE3msnIyq1wpVMl/zv8TQnqvyy2FgShiSAI3wqCsF0QhEnlPN9bEIQDgiB8Uvrof6k5K+PvSq4loVCIpnXqkGezkSrLDOjV65rv4+477sCk0yEaDDxyGW3pp06dYs7s2YwcOvSC5nuvvvoqPlFkmlUm1mJh2Z/8Gq6G/fv3X7JC8d///jd2UWSRzc4wWaHmJT6boVCIw4cPX9dKxfIS09eDcaNHM760YGqKRWbEkCEApMfFMUiWGSUrRHt9rF+/nqqZmTSqUeOypCPKo7i4mKJqNfEk5OCMTCrXfHrHjh18/fXXiAYD77g9bPP4sBgM5XbM/sHESZPxF7UqjddaMWnyFKCkgrtOnToIgsDkKyw+2rJlC5JsJ6J+P+zBBObecXHd6D9e543DRuANRtGidbvz5BUrwuQpU/EXtSJ94EKMNh++6iWm7v6q7ZgyZep529/Qtz/upAKCtbsj253lduPec889RFRpXaL53G4iTVq0vux1XUvefPNNJMVBsEorJNl+yQ6LrVu3YrG5SO1zN96q7bFEZWJ3ea7JWl555RVcMakUTl9Pcs+5JP6p8OpinDt3jjoNGmHzRiJabTz88P99P86ecysGoxmDSaRb956YRAtWp5dmLVpfkwT1ggULCBY2p2jGBuI7TKF+4+aXHlTJ/wxXJfFx3gBBCAiC8MnljrvWj8oA+e9jw4YNTBg3jhdeeOFvb6/5q3nxxRfp0ro1s2fOJCsujudKq1qr2R00b9yYCaUJ00GShSmTJrF582YeffTRMomkqVOmUMti5R23h3pWmWp5eZj1enKSk7FbLCy02RkiSkRptGxye+ktSqSUmv51N4sU6vUkWK0suv/+cDXIsIEDmVQaqI2wWGnWuDFmnQ6jVstN06axceNG/JLEQpud2orClPElbfD//ve/Lxg0rV+/nprOEt3sDS43aVFRFzwu7733Hg5JoqrDSdDluuCd44vx+++/47RauUexMVtWMKtUtLPZcVosbNiwgTpFRaTHxLCitG1wwvjxePV6ephF4iUJXzAS0RONQXaRmpHFzz//TIO6dcnLzGTDhg2MGz8RV3wOUU2GIOpNrHO6UatULFmyJPxDu2PHDkwqFXt8AXb7AqgFgTxRpE5RUZlzfdeuXUS43SQpCgGns9xqz65t29FBVuhkltCbJFq0bsvRo0c5fPgwzZs3RxAEcnNzmTVrFm1atOBGUaK3RSZQqztas4w1OgtPQasSd2qzGa8kkej389ijjxIKhQiFQhQXFyOoVBRMeZGcsU9hUqlxqtWIRpG0/vdj0ptIMppYt24dU6dOZWTpOdLRZMKqN2CzWlHrjbjzWpA38VkswWQs7igM9gC25Or4qnVEbzDSsnVbmrZsTXpWDjq9gcbNWobPvS1btiA7feSOfYrYVmPIzMnnkUceYfLEiXzyySfnHZfcgiL0iocGJjM/+gIMslhJTUhArTMgRaSi0Rno0q0HzZu3QC/ZiW0zjqzhj6IxmElISkZSq1EJAla9CbPsYO3atSxbtoxAdh2KZmwgULsn6QYje/1BXnC6SIuORqvTE9l4MFrRhr9GF2LbTiRZtDLVKmNTbIj+JDKGPIgtsQrNm7cIr/X2O+ZhNEvoDGaiYuNQafXoLA6Se9yKLakabl+AvXv3MmDgIFxpNckZ9ThydCZqtZqcMU+SP2k1KrWatWvXEoiMxplZD5M7ClG2sXLlSn777Te+/vprJkycxMKFC8NyO2+88QZWV5CkHrcS32Ea/ogonN4ABqsLf40uyJEpjJ8w8aKfp2nTZ+BJrUpav3txRCXz+OOPs2nTJhRPkNyxTxHVdChGRxC7yxO++Dhx4gSrVq0iEBWLxmBGYxAxe+MQrbarNhD84yZHz5498WfVDZs3Nv3TBUZsYgpp/e4traDJY/369RWa++OPP2bIjcO46+67L/viuLi4mMOHD1/Wb9mmTZvYsGHDX3YhXsn14++S+PjPx/WIrQVB0AiC8IMgCLGCIOhLJUVS/2Ob3oIgLLiceSvj70quNWfOnOHFF1/k5ZdfvubXFUeOHEHSG/jQ4+VttwfRYLgmCdrly5ZRKzeXrLS0cGx1q6zQr3v3a7DqirF161biZZk9vgDvub14ZOWK5vnqq6/o3aULQ/r2q5BM3z+BjRs34hRFetvsuESRN954AyipyB/cpw/9e/a85kaQO3fuRLI5KZy+jrwJz6LWaNm1a1f4+ZtvmYNotSEpTkxaLRtcbja5vUgGw0VvgN900yy8WfUomLoGb1a9sFwJlHw2Bg4ciCAItG3b9rLNExcsWIAvuwGiPxFBrcbli7hkkdLjjz+OMzqVzBuX4M2qd0X+ELNvuQVvRm0KJr+AM7kKJsmKOyYVp8fHjh07ztv+9OnT3DFvHsNGjLygVvW2bduQZBuBWt1RfFEseuCBy17Xteajjz5i/vz5l/RMgZIOXW9CdkkSucdtaE0Sa9asqdB+zpw5w4IFC5gyZWq5hq2///47uQVFOCLiEWUbjz++osKv4dy5c3z88cflyoIcOXKE3377jUBULKl97qZg6kvYvJF89NFHFZ7/Qnz55ZdYZDuBau1RPBE8sHjxVc9ZyX8P1zRBXTKfYLmScdfyURkgX3/OnTvH+++/f9V3nP9g586drFq1qtwfpgtRXFzM0qVLmTRhQrnJrivh4MGDfPLJJ+Ef6BdeeAGf3Y5HUVi1cuUFx3344Yd4RJE7FRs1ZIWm9esTtFio63CQGBnJe++9h9NiobrTiVuWy22fm3fbbdhNJhStDrvRSN0aNciQZT73+hgpK4hqNd96/dxuVaiu17PHF+BuxUaURsMPvgDNjSbGW6wsstlp3aBBeN6S6liJ5k4XdlHEoNGQqdMRq9FiUqno27cvne0lciOLbXZa1K3L9IkTsRoMWA0GFpYaoG3atIkOzZoxqHdvvv76azyKwgCrTL4sM3bYsAsem27t2jFHVtjrD9JVUbjrrrsu+3355ZdfsOj17PQF+M7rRyMI7PQF6GEW8TqdTJYVnnG4cJjNvPbaazhKK/mTDQYa1KmD1e6mcPp68ietRqPVnTf/mTNnuPW22/H5AqSJEvmKQseWLcPPh0IhauTlYVWpaG000dhgxKpS8anHi0GjKTHJS0pl06ZNTJk0iQGlNyNutMqMHTnyvP0dOXKE1s2aYZBsJPe4DV9OA3r3GwCUnNezZs1CpVJh0Ovx6/WIKhX9zCJanQGNUSKh0wyyRy1HozfR1WTmcbsTh9l8XsCdX1QVS1QGtuRqGJ2RqHV64ttPJn3AAgxaPQ6djsjYeKpWr0msZOE+xU6mVeaBRYsA6NC5G5H1+5bIHGTUomPHjmj1RiIbDcZoD5RqRJvxVe+MxmAma+QyPClVyrToTZg0BZ3egD8iiiEDBpBllRlusSJqtcyYeROHDx/m9ddfZ+/evcQmpuCt0o56opUffQH6iRJGrZ7opkPJHlGSiI6o1wdbTAYag1gSEE15EZ3FiUqjpadZ5COXB5tBRK94cHv92BwuDGaJQHY9JMWFzWDgEbuD3qUmoyqtHq3ZirdaB+xptTF74nCYLEgGIzpRwZXTFK3ZipJYhfr164ffI41Gh1ZUkIIpqHVGVBodSmJR6d3+qWiMEoJKhUVx4KvanqIZG/DkNiNZp8diMCF5ojFa7Dgi4nF7A6h1BmJbjcGd3ZAmzVvy888/I9udBGp0xhWXxeAbSz5jHTt3RSfZMbkiEQNJ5BVWZeZNN2FPLESOL8DsjaPfgIFlzrX/NIk5deoUN/TtT0JKOhMmTaG4uLjkcxORQMHUl0joPBOTxcbDDz/Mhg0bylywt+nQCVduM+T4AopmbCCx80zyq9S45Ge4uLiYadNLtp06bUaZCovZc27F5o3Ck1YNrcGMKzoFi1K24qRdxy74susT23oskmy7rIvL4uLivyRhPHHyVBR3EFd0CjVq16twFcnZs2f56quvKqu0/2H8UxLUXIfYWhCEqoIgvPyn/08WBGHyf2xTmaCu5H+ao0ePIhkMfOD28qbr2iSot23bhleUeMzuoK4oomi1TLRYibZYrqsJ/H9y+vRp8tPSqGW3k2CVmTR27GXPcfLkSXx2O5OsMn1lmSqZmddhpdeHjz/+mHvuuYf333+fGZMnE+ly0bB69TKx0OPLl9OjQwcWLVhwWTc/3n77bWbPnl3G4+f48ePINgcxLUcRqN0Di9GMy2pl+/btFBcXo9PryRm9gvyJz6E3GLEYjZh0uvA11oU4cuQIVarXQqVWU6V6rfO0uUOhEPfeey9qtZrs7OzLMpf85JNP0JskPIWtyZ+8GntMZtjc7tSpU8ybN4/xEyaWibfuuusu/PlNKJqxgajGg9EbTHRr1+6yqmaPHTtGzTr10Wh1VK9Vl507d7Jp06arNqPevHkzkyZNZuXKlVd1M+vXX3/l2LFjbN++/aLdiJciFAqViT2//fZb2nboTNsOnfn222/LbHv8+HGSUtPxxKYjKXYeW7aswvvp3W8AzvhsfFXaYnd5yi0uO336NO+9995l5VkqSmpmNjEtR5E59GEkxXHea7tSPv30U2655RZefPHFcp//97//zYhRoxl847AyN4Mq+e/nmieo/wmPygD5+lJcXEzrxo2Jt8q4zSJ33n77Vc33ySef4JAkmjhdOCSJLVu2VGjczClTyJZlRlqsOCTpqr90/6j0jZdlshKTOHToELLZzPMOF2ucbixG4wX1Vh966CE6OkqSvEttDhpXr87mzZtZuXJl+Ad33759vPLKK+c59+7evZtXX30Vs17PB24v33n92E0mZs6cSb5V5kevn3myjXivlzirlWhRRFKpSdBqMatUWFUqVIKARa1mksVKllVm3n8Yen3//fc8+eSTfP/99xi0WnJ1Ovb4Ajxmd5AVH4/TYqGLzU5QsrDg/vuxGAx87vWxye3FrNfz888/45AkbpcVesgKTWrVYvv27dx0000sXbqUs2fPsnLlSqZPn87WrVuBksB2wYIFNKhdm1ayzCsuN5myzJNPPnnZ700oFCI5KooUrZYYjZaAWsO/7A4Cag0aQaCzycwrTjeJskzPnj1pLors9QdZZndQOz8fm8OF3RWF7IxEZzDz5ptvlruf33//nRUrVvD000+XMYhcv349klpNP7NITb0erSDQySwyVFbQq1Q4bV6c/kScbi933HEHDawyWz0+mlisDC1tLfxPHnvsMQJZtSmasYGETtOpVqtemXVE+XyoBAGVINDCaMRjMjF62DCmTJmCWqtHpdagaHSkanV87/WTYbPxzDPPlJGF2L17N1q9AdGfiMkVhd5oRnG40epLgmOjwYQ1JhtrRAo1a9SkfdOm3D1vXjjQ/PLLL1EcLnRmGb1J4p758+nVpx96SSG+w9QSTe+cpkQ1uRG91Ulcmwn48pow5z8kV/bt28eqVasoSEnhKUdJ5X090YLZ5sYq2/HGZ2JR7LRt3xFnbAayxYFGEDBrdAhqLXJsLsG6vcP626m978IoWkuTyzKO9DooiVVoaTTS0qLgTKtNYueZaIwSSV1vxhGXQ8eOHdm4cSOrVq2iZk4O3dq145dffsHrD6ITbRTN2FCq36ylatWq5BVVQ0muhiunCXJ8ARqdnq+++ip8PupMFpJ73EbRjA2YvXHIEckYzBKW6Ew0BjNiIJnC6etw5zbDaLZgkN249CY+cHvRqFSoVGryJj5H1vBHUGl0iIFkimZsIGPwYgKRMaxfvx5PQg5FMzaUGJTEJZUkxrU68savomDqGjR6I6+88gpbtmxBozcS124i7rzmVK1RG4CffvoJrz8C2ROBRm/E7Qvy1ltvcezYMV555RW2b99OKBTixRdfZP78+QSj49AaJTRGEbMzAlFx4oxMomWbduFg/7a5d6D4Y9FbnaT2vQdfQQs6dO52yc/w4sWLcUSnktz9VhzRqTzwp+qWP1dHu+MzmTdv3nmGuUePHqVFq9aYLDKKw33Jqu3i4mL27NnDSy+9hGiR0Wh1TJl2ca3Hq0W0WMkeuZzCaWuRnb4K3cA9fvw4mTn5yC4/VsXOe++9d13X+Ae//PILn3322VUb4f4v809KUF/rhyAIHQRBePhP/+/5n8no0gT1fkEQPhME4RlBECIuMNdAQRA+FgTh48jIyKs/8JVU8hcy/847wxIfyx599Krne+aZZ6hXej3wpMNJSnQ040aP5tlnn70Gq708jh8/ztNPP82rr75aJmH3zDPPkBYbS156Op999tkFx//www/4JIk9pRrgeq32mq2tuLj4iuQhLpdXXnmFeKuVN10eBsgy3dq1A0q6XqMkC/NkG6lWKw89+GCF5nvttdew2JwEanTCYnOxYcOG8HMffPABHm+ANLPEu24vPWw27r77bkKhELLNQVLX2aT1nY9JlDhy5Mhl3Qy5VAJ4/fr1WK1WPB4PmzdvrvC8DRo3JaJeHwqnr8eXUYsFCxYAJX4knpQqBKp3xOnxha9l/4grRXcURp2BZx0ukmX5gtdVP/30E81btSU7v8p5n4F/Yqf1pCnT0BtNmLU6HAYDisnEgnJ0sS/FO++8g2xzoNXpGDt+AsXFxfiDkUTW70Nk/T74g5Hh9/TgwYOcOHGCEydO8Oqrr1528Z/N6UatN6HS6pGcgQu+F9eLbdu2EZuQjNXm+Eu1v9OzcvEXtiRYoxOByOjKePZ/iMoEdSWXzVdffUVAktjpC/CO24PTar2q+caNHs3o0ha4cRYro4cPr9C4apmZPF2a7GrhdF11ZULL+vWZJ9vY4wvQ0GbnoYcewqjTsc3j43OvD7NOV64mLMD27dtxWiz0URRiLBYeWLiwQvt88803cYgiVRwORLWau2QbLzndSFotdqMJRaPBrtPhtFrZvHkz7777Lq+99hrJ0dFkmkW8ajV7fAHedrlxSRYG9e7NwgULLhrITJs6FYdazVsuD2OsMs3q1mX79u0sXLiQt956iyNHjmAp1Ud7welCMYu8//77pNls7PUHec/txW+3l5nzvnvuIclqZZjFikOU+Oqrr2hSuzYNZIWmVhmf1UpiMMjE0aOvOCBZsmQJUSYzRTodKWoNdQwG/Go1aTo9wyULJpWKnNRUrMaS6uYJFispBgNTJ07EIUmMlyz4NRrUgoCs1XLo0KEK7feHH37AZjRxi6xQx2AgQ6sj6HIx4IYbaNawIRaVmhV2J90kK6JGw8mTJ2nXrBkGtRqDRoeoOJg4+XxNtZ9//hm3L4A/rSoWm5OnnnqKDRs24PT60Wh1JBuNbHR5iNRoEASB5Lg4jh49SmpGNlaVihU2B3t8AZK1WhLMZtwWK2aLgmiRWbhwIV6HA5VKhc5gwl+zKzEtx+CISODDDz8EoHfvPugVD94q7TDYvKSkl69JlpyehRRIRk4owihZ+e677xg2fAT2qBSimtyIxigiRaSiNVlR6YxojSKZufm899575BYUIloU9CYJX2oRosFIttHEFIuMqDfir9EF0R1N4fR1WKOz0ZtE4pOSGTZsOBHRsRjsfnLHPY01JgeD2YrRLBGo0RlndCrjxk/ErtiQPLFENR2KRm/CoNGiM4jhxLElOouEjtMIVO94QdmLDz74AI3ehDu3KdbYXAw2H7bIVEwWBXtKDSLq90WtM/Dss8/yyy+/UKV6TUSrjN3jx1PYhtTed6ExWTBJVgYNHoxOdqHSGrGn1qJw+no8ha2pUasO8RERdLJYaWuViQ8GUevNqHVGRH8SglqD3urCEp2N1mSlT7/+LF26tERGw5eAGEgiOa2kcsnrjyCm5SgSOs9EtMocP36cjRs34or+vwS33e0t0ZmOiUMr2VDrjKT1u5fELrOwOd1ExsThic9Ekm1079ETmz+GQF5jDKIVf/VO5E18FmdmAwJ1elEwdQ1GsxQ2gDp37hw33zKH5LRMPIFImrVsc0FzqD8IhUIMGz6CYJ2eJYYxdXoyYuSo8POt23XEl9eYuHYTkRR7uS2KoVAIq2InqdstpPa5G5MonafB+fvvvzNp8lSatWxDUmo6ZqsNtc5AVJMbyR37FEap/O6Va0ViSjpRDQeQ2PkmRKtyUV3JP3j88cfxJhdQOH09sa3GULdhk+u2vj94+eWXEa0KNk8E+VWqXbY52P8vVCaoBYcgCIbSfw8SBOGNS81bGX9X8lfwyy+/sHjxYp5//vlrkuT6/fffK+S/UhEOHTpEtNdHI4cTvySxpIKJz7+K3bt3I+n1ONRqivR6ZL3+gvHw2bNnyUpMoqWiUENR6ND82ujAfvHFFwRdLkw6Ha0aNryuHU4rVqygnr0kXl5ks9OgalUApk2bFpZfmS0rDOjZ8xIzlTBq9BiCdXtTNGMDEQ36MXTYiDLPT580ibqywmyrjE2jIdbr5dlnn+X1118nEBmDy+vnqaeevuavE0quz+Pi4jAYDDxeKnlYkTFOj69E/zgjO3zTwO7ykD3isZLCgagkPvjgg/CYo0ePkh4fzyyrzDdeP3FWKxs3bix3/pp16xOs3pHELrOQZFu5UhGXori4mI8//jhcJHK92LdvHybJStqA+7Fo9Xzn9fOO24NiNl/2XHFJqSR0mkHe+FVY7W42b96MzmCkcNpaCqetRWcwcvToUfoNGITBJGKWLBWW9PhPDGaJ1L73kDv2KdQ6Y7hQ7H+Zs2fPolKrS47n9PWYLUqZ7ohff/2VtWvXlns9Uck/n8oEdSWXzf79+1FMJp53uLhdVkiNibmq+RYtWkSBLPOsw0WRLHP//fdXaNykMWOoIstMKk2KXm3ioVenTgyUFT70eEmXZVavXs0tN92EzWTCbjIxbcKEi47/5ptvmDdvHmvXrr3odl9++WX4R7ZdkybMk0sSv60kC25FIeBwoNdoeM/t5R2XB0mnC7dXnT59mo8++oivvvqKefPmYTUY+JfdwWhZISkykjvvvPO8Cu0333yTnj17ctttt4WNEWfPmIHfZqNadna5wcIDixYhaTRY1Goa1qzJvffcg1Wno7HZTIbVyuC+fcPJl59++okkn58ltpKKkS52B4sWLUKtUrHTF2CPL4DDZDqvIvJyCYVCzJ0zh1r5+cg6XUmiWa3m+VKt7yxJItrlwqvTschmo73JhEeWWb9+PREGI+MtVtoaTfzoC9DOZGbqpEmX3Oe+fftoUKMGfq2W1U4XLzhdONVqhpdKmrzwwgvklpoPrnQ4cYsiAKNuvJForZZ2koxolNBotRw4cIAOnbqSlVfEzJkz8dntaNVq6teuzbZt29i+fTsGk0RE/b4kdZ+DTa3hTZeHkaKERhAQBIGEhARcCTkoJgsjJAsvu9woajX9+vULmxHGt5tcknDNqI/DE4tJb8IqKWhVKoxqNRMnTuTHH3+kUaMmaIwSclweWpOFxo3LT4wZLQrOzAZENByAWmfk5Zdfpri4mHvm30v3Xr1p2bIlsj+O9AEL0JospPW7l8gG/dCZLEgRqZg8saj0JmyptfBW7UBsXDxmvQFXRm3MVhsWV4CI+n0xe2LIHvEovvymDBxyI7feeisGxUvBlBeJazuB7PwivvjiCyZNmhzWBj9w4ADNmrfAbLURrHsDBVNexGAPoDPLeNOqodEbkT0RWBQbX375JaFQiJMnTwIlwU2f/gNx+4I0atKMgsJCDJJCweQXyB7xGGqdkazhj5ZUSDuDvPnmm/TtP5BAUUtyxjyByRmJWm9GY5RQabR07tyFth06EqzbG09ha9Q6IxqDGYPNh95g5KeffmLG9OlMnjQJrdGMO7cZWcMfwWAP0LVrV2wONxqDGW9OI0SrDYNJJLbVGDyFrTHY/ETFJQIlupIxcQnYXV5uK+2UOHHiBN5ABLb4XCSnH71ZIqrJEKRgCrbUWqh1RvInPU/2qOVodXp86dXDxiOi4gxLpZhtHrQGEzZ/LBqDiYgG/YhrOwHZ5uCrr76ieq26JKSks2JFxW8Gbtu2rUTCRKNBb5IIZNfFItvDN0qgxBG8d78B1G3Q5ILfn+fOnUOn15M75knyJj6LwSSelwAeNmIUnpQquHKaIAVTKJy+jqgmQ7BGZ5E38Vm0Jku5FzjHjh1j9+7dV53o+Oabb6heqy7p2XmsW7euQmNefPFFHJGJ5Ix5gohaXWnbofNVraEi5BVVI6HjNAqnr8MTn8ULL7xw3ff538j/eIL6khIf/7G9RhCEo5eatzL+ruR6c+zYMWL9flrb7KTKMpPHjfu7l3QeBw8e5Mknn+T999+/6HahUIgXXniBBx988JI3eq8VmzdvxqnV8kiptF81g/GiBT6HDx/mvvvu4+GHH77iJP4777xD64YNGdCzJwcOHKB1w0bcJCvs9AUotJX4blwv/kimptts2EWRl19+GSjpmnWKIoNkGZ8ohn8H/5CPnD59erkm0CtXrkTxRhLTYiSKN/K8Y/f7778zdvhw7AYDt8oKTzucyCbTeddm14s/mydOmTKlQtIbp06dYteuXWXl3Np1xJNajUCNzthdnvMkyD766CN8djs6jYYb+/W7YPwUiIolfeBCCqevxxWVfEmzwP8kFArRrmNnFE8Eks3JzbfMufSgK+Tf//43JtFC2sAFGDU6XnV5+JfdQYTLddlzRcUlktz9VvInrUZ2+XnzzTcRJStmVzQmVxR5hVX57LPPsDq85E96nuSec4mIjruiddscLtL6zi8pxBCtlyXz8t9Mjdr18KTVwJtdn5T0zPC5vn//frz+CHzJeUiyLfyZr+S/h8oEdSVXxBMrVpAYDFKQlnbV+s/nzp1j0pgxFKamMmHUqAq3PJ09e5b599zDsIEDLxgE/vDDDwzo1Ysb+/W/ZIJ037591MrPx2GxMGLQoPAX3Y8//sju3bsv70VdgLHDhuETRXyiyPiRI6mSnU0rk4mXXW6iNFr69+/PmTNnkM1mFJUKWaXCrFLxxBNP8O2331KUmUmiLGMXRdasWcOaNWuomplJrMdDjsVCR1khISIiXBG3fNkyFI2GugYjFrWaWoWFFVrn/PnzqW61strhIl8UcegNPGJzUMNoJNrvR9LrsRgM3DxjBulxcRQaDGTodMyyyrhEkS1bthC02+llFhkmWfDZ7ZeskDh79iw7d+68oIzKnykuLmbXrl2MHjqUqrLMMFHCqFLxqN3BFIsVj0ZDtFnEYjAg6XSYVSoSNBo6mMzs8QXoKVmYWIGLmsKMDCJMEkGTBaMgkKDR4DUYWL58OaFQiKNHj2JWa8gzSdh0BgyGkkR8SmQk65xuXnV5EFUqdIIKl8WK1iwjBpLRGkXGSha+9fiIs1p58803efDBB3GaLcS3n0zhtLWYRAVZpcKv02OSHBjtfgRBQKXWEN1sOFa9EatGw9hRo3j//fdR3AFyxz2Nr1pHTM4IimZsIGvoUnQaHXF6AzdYFWLMVswGEZvTTU5BFWJajqJoxgYc6XUZWY5WNoDZIpM9cllJotbhL/NZe+211xg/fjyi7CCiQX8MipfC6etI638fKq0BszeOyEaDUOtNGGx+dJKdwqrV+fDDD5k7dy6vv/46FsWGSqNDikwv0bRrciNtO3Tm3LlzNG/ZGp3eiGxzXLRlsf/AwbhTquIpaIlWb+DWW2/l8ccfZ/yEiZisdqy+WBKTU0lKTUej1VFQpTr33XcfrvgssoYuxZtRi6HDhqMzmolo0B9Hel10FgeiLwFXThO0Rolhw0fStkNnohoPpnD6euT4ArSigiOjHqIvAZM7BpNkwWSW0Ik2BJWGtP4LyBz6MAajKXz+//TTT2hNEtFNh2FPq42g1iBaFVq1bktko4ElZo41u2KUFAqnry/R3tab6DdgEFBiLmOUXUTU64OkOHn99ddZu3YtFrsbR2Z9DKIVd1oNimZsIKn7HKzRWZg8MWiMEmq9kfikZBRPBGn978Nf0ILo+CS8mXWQ4wuwRmUS2XgIZovMo48+SpUatcmvUp1NmzaRW1iVyHq9Se4596JVMFu3biW3sCqpmTm8+uqrVKtZh5gWI8iftBqbL4aJEyeW0af75ptvqN+4KVVr1ilX3uLQoUMMGTqcTl26M/jGoYiyHYvNFdbk/jMFVWuS1O0W4ttPQfTGkT95Nf6a3VAbzKh1Bqx2V/giKhQK8dxzzzF69GhEi4xotVFQVK1MBUZFeeedd7jnnnv48ssvL3tscXExAwYNwSxZyMzJ/0suLOo3bkpE3V5kj3gMmzeSt99++7rv87+R//EEtVYQhB2CIMT8ySQx7T+28f3p320FQXj/UvNWxt+VXG/eeust8ux29vqDvO7yEOfz/d1LumKmjBtHiizT2mYnLhC4YJfm1bBv3z6efPLJsJTHA4sWIalUtDeZWelw4jEY2LRp0zXf7x/s378fuygyT7bRU1ZoWrs2rRs1YqassMMXoKCcBHUoFGLJQw8xbOBAXn/99atew8mTJ3nvvffOM2l///33mTNnTthEEWDs+Ak4o1PxV+uAbHeWq0H86KOP0blbD/71r0cumJi1iSKb3V52+gL4RLHcZPf14vTp0wwYMCBsnvif3WYV4eTJk9x6622MGj2G77//niNHjtC5VStSo6K4ecaMsCH7pW5a3Hb7XGSXH29SHslpGeEikYqyc+dORNlOwZQXyR65HKNZvOzXcjnMu/MudHoDRoMRm9lMjNfLoAED6N6+PS+99FKF51m3bh2ixYrBJNK73wDuu+8+YswSZrOMUbITHRXDV199hcXmInfc0yR2vono+KQrWvOzzz5bcu1hMJaRsjt9+jR9+g8kOj6JAYOG/M9JYBw/fpy7776buXPn8uuvv4b/vmjRIgI5DSiasYHY1mNp3LzV37jKSq6EygR1Jf+znDlzhiivl5GyQl+LleykK/viv1YcP34co1bLl14/X3j9GLVaGlSrRpFeT4JWS6pWi1tvICU6GpfJxHzFxpsuD2aVihqygmI0EmkyMdsqc5dio1pWVnhumyiy1eNjrz9Igqzw6aefAlA7L4+lpZXNLYwmVCrVJYOJs2fPkhgdjVutxqpS4VKryTCZ+d7rp6fZjFoQWO90s81TInuiUakYKUoMEyUktZrnnnuOhQsX4tDr6W4WqW8wEOf3s3LlSm6//Xa2b9/Ob7/9xrx587jllls4cOAABw8eJC0uDp8oEunxVNgA7ezZs9xz991079yZoCiy2xdgs9uL1WAgzutlllXGqlLxiM1BE4MRUaXCqFKREh1doUSU3igSrN6ZxM4zUWt1SBYZXzAStVqDxxdk69atWBVbadXzLZgkK/v376dnh440t1jI1Oq42Sqz0xcgRacjokE/vFXao7c66WUSSTRJqDVaglGxrFu3DpvRiFGrR2eUcHl8BEQRyWAiY/BiCqevx2JxoBdUCIJAdGx8ONgOhUKMHjsOrU6Pxx/EKFrwVe+ELbk6kmTFZRJxxWSR0HkmOtGGNSodlUaLklBIap+7Mdq8PPzww+UGjr369MMRk443pyHBqJhwFf4DixcjuwMEC5phtsjoDGb0ejNGRwCtqKBXPMS3m1SSYDVKFEx9idyxT6E3GMNzz5p1M3rZRbDuDaj1ZnSSHavNwWOPPYbD5UGj1dG5Ww/OnDnDli1byC2sSmJqOj179eLOO+8Mr/fkyZPUrdcAk82LL78pisPFRx99hEmSS4/dOjRGCW9BSwqnr8ObUYvGjRvjL2pV0qZZvy9Zufk44vOwp9bCoHgxuKKRgilE1O9LRIN+tGrXga1btyLbnUgOH1qjhMkVRdGMDSWVyaJCRGFzbE430c2H4y5ohaBSo9GbkO0unnnmmfDrrlWnDoJKjdHup2DKi0Q2GohBtGILJpDQcRqKLxrZZkOJTEFyR1Kjdh1Onz7Nd999h94sEd10KEUzNuCv0YXp06czZepUArW6l/ytVg/0JhF/1fYYbD6s3mi0RolAnZ5kDH4QRyCWfv0HEB2fRLOWbdi9ezfDR47G5vaT1O2WEgmOnLosX768zHngDUSSMWgRhdPX4wjEXvCmoDcQQUyLkSSWSpDkFlYlrs14CqauwRmZxPr168tsHxWXQFTD/sS2GYdVsZ93IVWzTn18+U2JajQA2e5k27ZtfPvtt+VeFM6ffx+KNxJ/QVP0ZgtqtQanx4fVZic6PqmMk/qwkaNxRCRisDpJ6DyTgqkvYXQEkKzKZXXjrFpV0r4ZLGqJRbZfVM/zn8KOHTvIyMnHqtgZP3HyP1IH8p/A/3KCuuTlCc0EQfhOEIQfBEGYWvq3mwVBaFX679sEQfiyNHn9piAIyZeaszL+ruR6s3fv3nDCs4us0KZRo797SVdMnM/Hay4Pe/1B8uz2MqZ714Jdu3bhURSaOpy4RJGXXnoJv93Osw4nrY0mbGoN06eeL0F3Ldm0aRMZtpIbCu+4PUQ4nXz55ZdEuN0YtVraNG58XgHLPXfeSbpVZlpp0cufO66uN4lpmaT1nV9SLJBW9Yo7jG656SZ8kkSyrNCyQYPLMhG8FoRCIebPn39F5onlMbR/fzrKCuucbpKs8mUla9977z2ee+45fvvtN3777TcmjxtH786dy8iGXIhDhw5hlqyk3HAncW3G44+IuopXUTHOnTtHcXExP/zwAx5/BFqtnlpmEbfZXKE1/8HJkyfD8jmPPvpoiffMhGfIn7ward7IgQMHmDh5KlqdHqvt6j7/p0+fPi9+nnfnnbgT80gfuBBXfA73XcKQ868iFArx+OOPc9NNN1223nZFWLNmDTZ/DGn97sWX04BBQ4Ze831Ucn25WPytFiqp5L+YQ4cOCUePHBHePHlCePS3Y8K3334nTB4/Xjh79ux12+eJEyeELVu2CEeOHDnvOb1eLxj1euGzs2eET8+cEYx6vdC9f3/hJ4NBSNfphZ+LQ0JvvV4I7f1JiDxXLBwOhYTnTp0UuppF4SlREobqDcLx338Xtp09I9xy7KhgkeXw3AU5OcIdv58SFp04LhxTCUJUVJQgCIKAWi2sPHlCeP33U8IHZ04LMX6/oNfrBUEQhOPHjwsLFy4UFi5cKJw8eTI810svvSQc2bdPaGQ0Cl96/UINg0HYr9MK1Q/+Iuw8Vyy0MpmEIb8eFF75/aRQXFwsRGm0wilBEB45eUJISEoSfjt2TLhl/HhBc+6cMN0qC31Ei3DixAlhZv8Bwre33S4U5eQIVbOzhddvni18Nm+eULdqVeGhhx4SUg4eFD60KkKbU78Ld912W5lj99lnnwkjb7xRmHvbbcLp06fDf9dqtcKo0aOFx1asEJKysoTWp04KXU6dEDp37Sr8evCgsL/4nKATBOGW308LbxeHhN9VGmHxI48IX/zwg+D1ei/5fmq1WsGe1UAQg6mCoFIL9iodhTNytGCJzRXM+R2EAUOGCY8sfVg4uHmlsGPVbGHK5EmC1+sVFj3yLyGlb1/hN5sihFQqISQIQkhQCQbFJ1ijMgRV6KywqviccDAmV8ifskY440gS5t15t/DwihVC47q1hSF9ewl7du8UHnz6acHqcgu/bFkr/Pr1RuHEqeNCP9EsaNVqYdeO7cK8efOEM2fOCI8++qigCRULG995W5gze5YgCILw66evCLbig8LOnT8IZ4xmwZrdRLAnVRXkuFzh+L7tglpvFgSVSti17n7hzG+/CoOHDhe8/qCwefPmMsdg6UOLhbtmjhMm9GwqbPnw/ZLzCoRlK54WPHUHCIGmIwR7fJ7A2d+FCQadoDt7WvAWtBLOnfpN+PG1pcLPH7wohM6dFo5u/1g49NVGwe31h+f+cOs2IVinlxCo2VVwZTcUrEat8MN33wgLFi8RtDFVBK3VLTz7/AvCwoULhWYtWguHnPnCzj37hQ2f/yLcsfQZoX2nroIgCMKxY8eE77ZvF2zp9YSIpiMEQYkUqtWoKZwtRti/+Rnh88WDBYrPCYJaIwiCShDUWiE3N1c4t3uLsOvxscKxbS8KoskoCAZRiGs7QVDi8wWXCUF94heheP8XwpGPnxdGDh0i5OTkCLt3bBeef2qZoMgW4fSRfwv73lsp7HntX4JOtAmHv3tfOHniuCAgCKcP7xdUGq0Q336yEGg1Seh5Q2/hxIkTwhNPPCls++wrwZ1SVTjz26/Cmd9+FdQanaAyiELNvDTBd+gDQThzXDAF0oRzJ44IbZrUFapVrSb4ghFCSlqGUFyMsP+D54V9760S/v3xGqF27dqC2+USDn60Wti1fqFw/MvXhDtumyMMapIp3H3LNGH5g/cKaampgtHmE4x2nxACQSAkzJk1Q1iz+lkhMjJSmDp5oqBVI+xcM1/YueYe4diuz4RatWqVOQ/Gjx0j7Fp1k7Bz2WghJsIr5ObmCrt27RIG9+kjDBs4UNi3b58QCoWEA//+WbCn1BAs0ZnC2TNnhJpVC4UDby0VPr+nq1AlJ1Vo2LBheE5A2Lt7l+DMaSI40+sKxQjCwYMHhfnz7xNatGkvPPjQQ8Knn2wTvDV7CN4q7QWtySIIgiAkJiYKKpXqvM/ryJHDhccfXiSM69pQ+PrzT4QlS5YIp06dEtQ6sxAXGytkZ2eHt33yySeFYOtJgt7mF87+dlAoPn1CIBQSjFHZwmPLll3yu+EPVjy9SnDW6CEEGg8VrKm1hfXr11d47N9FTEyM8NnWj4Sjhw8Jd9x+a7nHspL/fYB1QCIQB8wp/dsM4MXSf08G0oAsoC7wzd+74koqEYRAICA8t3atsKlKoWDv0F7411NPVXjsqpUrhQiXS4jz+4XXXnvtOq6yYmRkZAhLz5wWVp48Iew6c0aIi4u7pvO/+OKLQl2VWnhIbxBu1GiFe+bMEWSLRdhTXCyMsFgFlcEg9B848Jru8z/JysoSTlskYfCpk8KQ078Lnbt1E1JTU4Vd+/cLBw4fFp7fsEHQ6XRlxrzzyivCEI1GGCxZhGZ6g7Bp06brusY/U7tGdeHAeyuEfe+tEo799K2QlZV1RfNMnTlTWP/uu8KSl9YIz2/YIKjV1yatcvr06Qpdx6pUKmHkyJHC2rVrhR07dggFBQXCBx98cMX73bNzp1BdpRIy9XohVaMRfvrppwqPrVatmtC2bVtBkiRhQM+ewhdLHhai128QmtWvL+zfv/+iY+12u/DYI0uF395+QNB+v0FY/eyqK34NFUWj0QhqtVoYNHS4oEuoI6QPfVj4TGsS0jRaYevWrRWex2QyCXa7XRAEQejevbugN5qEoz9sFY7t/FQwGPSCKIrC7bfeIpw6eUI4cuigULt27Stes15fMt+f2f3jHkHvSxFEb5yg9yUJP+7Ze8XzX0tuunm2MHLyzcJDr3wuFFWrIezZs+eazt+8eXNh1OC+wun3HhKqJ7iEO26/9ZrOX8nfzIUy1//0R2UFRyVQ0jodKJWZ2OELUF1vINZoYsaUKddlf/v27SPa6yPVZsMty3z++efnbbN+/XriAwESgsGwJtJbb72F1+FgtGShpdHEKMnCGy4PLrUalSCQZjDwktNNNYOBXmaRvf4guUYjjzzySHjeX3/9ldHDhtGna9dwBd+JEycw6XQ0MxqJ0GgwqFTs2LEDKLl7WTM/n8aKQiPFRu3CwrD+2LPPPkvAYKSLycyPvgAtTGZGjxqFWhD43uvnR68fi0pFrEaLT6OlZakGcyOrlaVLl9K5RQvukRX6iBIGQUDU64nz+bjVqvCR24ukUqESBHaU6lO7zGZmzZpFA1nme1+A7rJC53bteOuttwiFQuzbtw+nxcI4i5U6shw2Mjl79ixzZs2iY/PmrFy5ktOnT7NhwwY2b97MM888Q6GiEK/RoNWbCNbrTfao5ZgVN7lpaTStVYsvvvjiku/pzFk3I9k9WH2xmBz+kmrZEY+ik+wkdJxGenZeeC3lSZN88cUXRLjdGDQanJIFe0QiRskavnPsTK9TosuW2xSDaC231b5XrxvQyx7MvgRsqbWQTGaeeOIJRo4cWVJJHRVFsiQxzmLFIYrYXR7SB9xPwZQXkV0+PvvsM6LjEtGKJaZ/ap0BsysKjclCxuDF5I1fhVpnJLr5CGJbj6NKjdrlHoujR4+SW1AFrU5HYmo6/QcOwpNShbi2E7DYXbRu2hSn0YRKrUVjlHDlNSO+wzQEQUVEg36I/kS0JksZx/OFixYhe6OIKNWs/qPKOCuvELXeRHLPuSR0mo5kVdBotKT2vQeDreR9yBu/CpNZ4ujRo/iDkbgy6mB0RiDHF6IxSlijs/BUaY9Kqyex800E6/VGazRjNEtkZOVy+PBhjhw5wrvvvkvzVq2xRyZhdkejF2WMohWTZEW0yMydO7dck41jx46xfPly2rTviD8YhS8imtmzZ9O7Tz80Rom4dpMQ1BpyxzxJ/sTnwkaDNes1JKHjNIpmbMCeXA1BrUEn2jDZfaxcuZKXX34Zb0I2RTM2kNbvXrzBKCzOABqDiE60oZfdmL2xGGUndes34F//egTZ5cOX2wijaOHRRx8Nf8bfeecd1q5dy9tvv41sc6A3mjGYJfyFLbAFE2jWohUHDhxg5Ogx+ItakdhlFhZ/HOMuIH/zySef8Nprr3H69GnOnTtHrN/PcFlhoKyQER8PwIhRY5BdAfSijBydgTshl/qNmrB+/Xqy8grJzC3g3XffDc/Zt/9AHME43LHp1K7bgMWLH8QeTCCuzXgUbyS16tbHFZuBP6cBUbHxl9UeGoiKJa3vfAqnrcXuiypT9V27XkMCRS0J1O6OWm9EpdbgzGqIMzaDBy/D1OrW2+fiis0gru1EZJe/Uuvufwjhf7yC+no8KuPvSv6p/Pbbb1iNRl5wunjc7sRhsVywe2Tfvn20bNCA7Ph4Hl6y5Lqt6dChQwzu04fWDRuWkZn4g82bN9O7SxemT5582dIIUCIzEG02U0tvwKJSYRAERo4YQUpUFB5FqbCh+9Vy6NAhHnrooQqbWi68/36SrFbGWqw4RfEvNX07ffo0c269jb79B15WtexfwS1zbkOnN2AySzz9dMV1u7/66itiY2MxGAysWLECKJFeWbFiBVu2bKnQHK+88goOUaSqw0GU18u///3vK3oN8X4/r5d2DRQ4HOWe9ytWrKBPvwFh6ZctW7ZQp6CAmrm55UrBXS/yq1QP+3XI3lgsRmMZibrL5b333iMlPYuE5DReeeWVa7jS8vnss8+w2hz4k/OR7c7rbjJZUTJzC0npdUdJx2ZWLZ5++vqYhlby38vF4u+/PdC90kdlgFwJlCRoOrRsyQiLlT2+AC2NJtqbzLSqX/+q5j137hxPPPEECxYsKON8feutt9LdKrPXH2SiVWbgDTdcdJ49e/ZQPScHh8VC765dqZGTQ2IwiGI00tLhxKxWUyRJuPR6Iu124rxeGhmM3KXYENXqsIzHhTh58iSiXs+7bi9vuz2Y9fpwG92RI0cQdXp+9AXY7QugFQRcZjMJUVH06tSJ1Ph4zCoVakEgJzmZL774AotaTWeTmZ4mM5JKxS5fgM+9PjSCwEyLFYtOx+eff87d8+aRLcvcLit4RJFB/fpj0+kIajQENRrqGYzk6/R0NpkZIErE+v0cPXqUFvXro1Wr8dvt2LxR2P0x9LihD6+88grVnU72+oO84nKTHBEBwKzp06kqK9yj2PBJUhnjjSNHjpAUFUVVmx29USSh03QKp6/D7I6ivyhxs6wQ7fVeNFA+efIka9asYfHixTz11FP4g1H485pgCSSiM4pIVoU333zzEmdLSbB725w5tG7WjHbt2oXbBX/99VdE2YFKo8PsicWTUsSyZcvKjP31119xShItTGaijGYk2U2B0UiU18vJkydZsmQJarUaRaVitdNFJ4cTty9ITOuxpA9YgGgt0Qq+cdgIbFGpODLqY5JkUtKzUGl0qDQ61HoTKq2B7JHLiG48iDr1y2+Xvf322/Fm1qFw+jr8Ra0YOnwE4yZMonHzVqxatYqffvoJo9lC5pCHcOY0weyOIqblaDQGEX/1zkQ2Hoxid5a5yAqFQjz22GMMuXFYmWBt7dq1qLV68ietJnfsU2h1Opq3bI1WtKHWGfFV64g3qx616zfizTffxBNXol+dMXgxGqNIsF4ftCYLwYYD0BjMYXkRra7Erf7P7/upU6dKdKmnvEjB1JfQ6vQ4IpMpmPoScW0nUlC1xnnHYs6tt6M3mDCaLRjMFgz2AEZnJBqDiCAI2BIKS7S9M+ujNYpY7G4GDBoCwI3DRuBNr0lil1nozDIak4xWcmC0Oli1ahXff/89kmInvv0U/PlNyczJQ2uyEt9+CukDFqAxmNGbzNxxxx2cO3euJOHdaXpJoJfXiCWlF9Njxo1H8UTgikmleq26nDp1ipUrV+JLyqNoxgbSByxAJynIdicuXwRGewB/ja7Y4nK49dZbL3le//LLL1gNBvaUfodoVCp+//13QqEQL7/8MjqDicJpa0uPqQ7Z5iCu7UTi201CtjnCWnihUIgNGzbw/PPPc/r0afr2H0hko0El7bW1ujNhwkQeffRR5s+ff9kmUhk5eUQ3G0rG4MVIiqPMhcUvv/xCrz79aNK8Fa+99ho9buhDVFwig28cVmEfBCj5Pbj5ljk0bdmGRx997LLWV8k/m8oEdWX8XUlZiouL/2slgQ4cOIDFYOBrr5+tHh8GrfaC3/UtGzRgkCyzyuHCI4plpJtCoRAHDx4sV8/14YceolH16kwYNapCfioXY/fu3TgkiZusMo1lhb7dul3RPHmZmXjUarb7AjztcOK1WK5qXX8FoVCIJ554gvFjx/6lCcl/IgcPHuSjjz5i586dmEQLOaNXkD7gfiyyct62P/74I++//365Uo4HDx6kdu3aCILAiBEj8NpsNLU7sBmNDB8+nCNHjlxyLT/88AMzpk8nOSKCwvR0tm3bdtmvZ9SQIeTKMj1khYDTWUY7GODJJ59E8USUGFw7faxevRqf3cGdio37FTtOqzX8+nbs2MG2bduum3zKK6+8gmRVsDi8BKNjy8jE/VM5evQos2bdzMRJk/npp5/Yt28fGzZsuCJ/levFsBGjcCfmEdloEJJsu6Kk/6+//squXbv+a3+PKrk4lQnqSv5nOHz4ME1q1cJmFunUug2tGzfGYTRiUqmQVCq8Gi1+UWLZY2WTCGfPnmXfvn0VTkoM7tOHHFmmlc1GcnR0OOG2ePFiqskyH3q8tJVlJv1HFeK+ffvKBABd2rThRlnhA7eXFFnm7rvvplWDBrRu3Jgbb7yRTEVhrz/IOqeblMhI6lepSj2DgeZGI1kWC48//jhQ4hjdq1Mn/HY7nVq2DGsEAzz4wAOY9XrMej2PLF0a/ntxcTHxwSDDZYXBkgWPWsMquwNFrWa2rJBhlbltzpwyelbDBw3CqFKRpdUiq1Q8aLNzs1XGrFIhqlQE9HqWLFlCcXEx982fzw2dOvHcc8/hsFjYWGoUIms0eIxGFio2Eg0GclJSyxhQHj58GL3BRMHkF8iftBqtTseuXbtwWCyk6nT4dTq6tG8PQOsGDVhYqmvXw27n/vvvL3O8P//8cyJcLrRqNRqdAa1ZRqMzcKtV5juvH41afUHDiNOnT1OUmUmhzU6kxcKtN9/M999/zy233MLSpUvZs2dPmUTrp59+SmpmDv6IaB555NEyc00dP55UUcSgN+LKboxotYUT2ytXrkRS7HiT8vEHI89LwC1evJgMvZ69/iBrnW4cajU7fAE8ZjNZWTmYdTpMGg0aQUBdWq0+d+5ctHoTKrWG9Kxczp49y+nTp5l50yw6dunOq6++yg8//IBGqyVj0ANkDvsXGr0BlUpNsNS0ozxuvfVWvFn1KZy+Hl9hS7p068bRo0fDz//www+Isp3opsPwVmmH3mSmoEp1tDo9WqOZuMTU84LZw4cPs2LFCm6//XYWLVrE3r17+e2331i8eDE5eQXoRRmd2coNffpikW1ENR1GRMMBaAxGxowdx9GjR/npp5+wyHaimw/HnlYbtd6M1mRFb3Wi0RvxBiJxBONQ3EFGjx3H9u3b+fnnn8NrCIVCeP0RRDceTEzz4VhkBXsglvyJzxHd9EZq1K5XZs3bt29HlO1k3LgEJbEKaoMZneQgucetONLrIQaS0RglnGm1kF0+Zt9yC1999VU4iDpx4gTdevZCZ7ZiS66OJSoTd34L9FY3BrOVO+6Yx5o1a6hRpwHZeQWkZ+eh1urJGrqUgskvoDGIjBs/ASi5idKlW3eccTlENx2Kxe4Kmx2ZJQs5ox6ncNpaDJJCZEw8s26+GYtsJ6rJEGxJVXFmNcAanYUjvS4agxlvlfbozNZwhc3FCIVCFGVmUt9qxWI0I6hUNGneit9//51z587h9UcQWb8vEXV7EYiMRqPVkT9pNfmTV6PR6enUpTtPPfXUefNu2LABi81JsGobJNl+VeZNn3/+OcnpWTg9Pu699/5LD7hCTp8+zX333cf0GTPYtWvXddtPJX8tlQnqyvi7kv9j/p13YtLpsEsSa9eu/buXc0WMGDwYjyjiMJmYc9NNF9wuJyGBVQ4Xe/1Biux21q1bB5Tc0K5frRoWvZ6gy1UmXnrttdeItFh42OagjqwwbeLEi66luLiYUUOG4FEU6letel5F6rp166hZWpyxzukmPTr6il7ztGnTUNRqtnp83K/YifF4rmieSv56Pv74Y5wWC6k2G7F+PwazSO6YJ0kfuBDJKpfZ9vnnn8duNpOiKBSkp5dbcX/69Gn69++PIAj4dHpGSRYiNRqqm0ykxsaWuX4sj4MHD6KYTDztcHKHbCMpMvKyX1NxcTGPPfYYt99+O3v27Dnv+UFDhhLZcEBJ0UWdXowaPQadRsN3Xj8/+AJI+pJCk0UPPIBotaG4gzRt0eq6JakPHDjA559//l9jMFi9Vl28WXXxV2lNMCrmkr5Tfwd/dCn07N23THFZRVm5ciVmyYoo2+nQuWtlkvp/kMoEdSX/M0wcO5YOsswnHh9ZokiM2cxOX4DldgexPh/z588/r+J13759JEVF4TCZSI2JqVDLkstq5UOPl73+IMmKEm6POnPmDL27dMEty7Rs0CCcvAuFQnRq0waTRoNRq2VFaWK5Sc2azFds7PEFqGGxIhmN3C4r3CgrZCcm4RBFFtnsdJcV2jVpQte2bRlolXnK7iTRag0HzAMGDKBIr2ez20t9k5mbZ84ss94zZ86U+8O6a9cuBt5wA2mxsfS0WJlosXJDqYTIfMVGblIS1bKyqFelSliuJDU+nny9nrmyglOtxqJS8ZzDyXqnG0ml4uabbwZK2snGjBzJvDvuIDk6mttlhWcdLhSTiXvuvpvaeXkM7tOH33777by1/lFpGdt6HHanO5xMH2WxMtMq47Pb2b17N1Wzs7FrNNQyiyhmM5MmTSrTPtina1dGygqfeXzoBYFnHE7ecLnRCQKpVutFq1FWrVpFgsXCHl+AN1wenKKIqNcj6vXcd889/PDDD9x1113Mnj2bLVu2EIyMIbLJYNL63YvZIpcJumrn5dHYJBKs27vEkK9eH4YOHxF+ftu2bbzwwgvnVREANGnWEpNKzZ2KjeZmCbNaQ32jEZ3ZillnZJ3TzddePza9nqDfXxJ0+gNENhxAwdQ12CISmTdvXni+4uJi6tRviM4ootEZMJjMiLKd4aPGsGPHDp5//vkyaz9z5gxffvkl+/fv57nnniMhKRW90YjOaMbuj8Hu8oSdyUOhEHGJKYi+BBzpdbE5PZw4cYJjx44xdfoMUjJy6NWnXzgAPnToEB5ZpprBiFujwe6Px+n2kpaZgzetOlqTRLBOL5SEIgyijFZvIGvYv0qkPSRrmSTzxo0bqdOgMQZJwV+jC7bk6hTN2EBUkxvRGEx07NyZ9957j87deiDZnJgkK0uX/gsoqTbo3rMX3mAUeUXV2LJlC337D0Sj0eKPiOKjjz6iT/+BJKdnM+OmWXz++edYnV6cWQ2xpdTEEpWJJTqLohkbSOwyK2ysmJiSekHDkxdffJFAWpWwjIdKZ8ToiCC29TjMNg/PPfccy5YtwxGZSFL3OZjtXtQ6I1qTheS0zHAFV3RcAoo3CrXOiFpvClfMh0IhElPSiWrYn4RO01HrTSR1nY3V4WHp0qVExyUh+eKI7zAVrdmKK7sJ/hpdw8esV59+F/xs/Jk5t96OWqtDY5RI6j4Hd2I+Dz30EADffPMNbTt0pkOnrmzfvp2evfti80VhcQUxWGxENxuG7PKzZs2a8+bdtGkTd911V4WrVQ4dOsTGjRvL/Qz9FXTp3hN3Yj7+Km1xef1lbtxcjOLiYhYuXMSwESMvaDpZyd9HZYK6Mv6upISff/4Z2WjkA7eXZx0uPIrydy/pigiFQnz77bdhubsLsfThh/GIIkV2BxnxCeFijccee4xaNhu7fQGmygqdW7UKj7nvvvvoVlo0cZ9iv6R543PPPUeGLLPZ7aVvORXSv/zyC16bjd5WmWxZZuLo0Vf0mouLi6lXvTpalQqHKLJ58+YrmuefzNq1a4lwuQg4HDz77LNXNdepU6e47777uOWWW8rEmdeDEydOsHjxYhYtWlRucrh7+/bcVNqZ20Gx0aRpM3QGI0aTyIoVT5TZtkpGBo/ZHezxBahit/Piiy+Wu89QKMTQoUMRBAGtILDCXnITJNtmL1dm8M98//33eEWRnb4AH7i9yCbTlb/4cvjyyy/p0qULZtlBoHYPLDYXr7zyCv179iRJlkmTFTq3bg2A0+MjY9AiCqa+hOIOXLKr+K/i3LlzrFq1imXLlpX7nn744Yd4/RHoDUamTZ95TfcdCoXQaLQUTH6BohkbsDrc7Ny585ru459AIDKG1N53UjDlRRR34C+VAKrkr6EyQV3J/wyD+/RlXOkPeVNRwmUw8KHHy1xZoUpGZrljJo0fT5/SMd2tcoXcrBtWr04PWWG2rOC0WMrIfJTHm2++iUmlYpgokavTYS/9QX/ttdcwqdX4NRoUtQa3TsceX4BPPD4sRiNr166lcY0a9OvenUOHDrFjxw7cooRNrUbS6Xj11VcJhUIY1Gr6iSWJ5ZGShXo1a15wLWfOnKFvt264ZZkW9Rtw5MgR9uzZQ25yChqVClGtZqgoEdBoEAUVIyULt8gKUV4vjzzyCIIg0NMskqjVImk0WPV6tnh8rHa6MKhUVK9Vl+q16mKTJEaWaka3a96cwvR0kiIieOrJJ89b06FDh1i0aBFPPvkk586dY9OmTWTnF5FbWJX333+fsSNGYFapqG0wsM3txW4y0aR2bfrJCivsTmx6PXZJoptiI9lqZda0aTz88MPUyC9glCzzuceHQRB43+3lVZcHg0bD2rVry9xt379/P4sXL2bdunWMGDoUUafDKAg8ZncwWlawqNV86PGy0u5ErTWgNYoo8fl4chqj0ZswOoIYHQFyx608L1C6bfZsAkYjos1LfPvJWJwBWrRowcSJE0mNiUGjVlOQns7BgwfDY3bv3s2yZcto1rIVaoMZb2Q6wfwWmGxesjIzCVTrgFWy8bjdyYeekmOyc+dOZs2ahSAI6C1OMocuweKORjYYWL16NQCvvvoqBtlNwdQ1JHW7BaOk8MMPP7BlyxYsip1AejVMohWDScRsUXB5AyieIFq9kSSLBY8o0rRxY/yFLUuqG2p3p1Xrtpw7d46ff/4Zq+Ige9TyEnkLfwwrVqzgySefxOaPIeWGO/Gm16RNuw6sWrWK9h06kaQ3sNcfZIPLjc3qxJdaBYNZomDqSwgqNZ7CVsjx+cS0HI1BtKI3mjBJVsaMGw/A008/TVpWHg2aNGPnzp3UrtsAi92L2R1N9qjluHKb4sioh6g4WLJkCVaHh4LJL5A+cCEOtxeAFq3b4cuuT1STG7Eo9nAbXHFxMb/88gs9b+iNJ7Uqqb3vwhGM5+mnn6bHDX1KpEtqdiOxy82o9SakiDQ0BhGV1oBJtFzUdf6nn35CtjsJVO+EHExCJypENR5M0YwN+Gt2xSrb6Ny5C4EanSmasYHIBv0xuWMRg8noTBY2bdrEokWL8GfXxVvUFm+VdhROX489rTYqtYb8omps3bqV2vUaYpYdBOv1oWjGBnzJ+Tz//PPs3LkTq82JXrKh0uiw+qLRiQq+qh0wWWyMGTP2vDWHQiFGjh6DbHeSV1SVDz/8ELNFJnvEoyR2mYVB8eLLrF2uS3goFGL8xMm4PH7cvmD4Zk2gdncmT746T4BvvvkGm9ONJy4du8vDd999d1XzXQl2l4fsEY9SNGMD7qikCiebp02fiTM6lWDdG5BkW/hmTyX/DCoT1JXx938j27ZtIzsxkSi3m3/9qXPuati7dy82k4kvvH5ec3mwieI1mfefzGeffca6devKdBIuX76cqoqNnb4A42WFLm3ahJ/74YcfcFmtdHA48ElSWD/3Qjz88MM0LU1o3yHbaN2w4Xnb7Ny5k9tuu43ly5dfdYVoeVWGC+69F8VsJsLluqJKxqvl6NGjfP/995clq/WfnDt3DtlsZpXDxQtOF1aTiVOnTl3RXPv27aMoJ4dMs5nmkoWEiIjzpFp+/vlnFi5cWCE97Z9++olZs2Yxf/78ctdUv1o16isKDUu9gA4cOMC3334bfq9HDB5MF1nhfbeXfEVh2bJlHD9+vFz5mJYNGjBSVnjB4UIyiWTkFIR9Xcpj2NChqAQBo0rFhFIPmz93tJZHKBSibdOmJMgyPlHklot0IVwuu3btwmmxMNhiJcpsplaNmrz22mvh/b7xxhu8+uqr4XMlISWNmBYjSR+wAINZumT32uOPryA7vwptO3Tml19+uaq13jz7FmS7k5SM7PPitq49euGMTsGbXEBuQZXzzu2U9Czi2ownZ/QKLHZ3uX5VV8N/QwX11ZKQkk5cu4lkj1yOpDgqY+f/QSoT1JWcx2effcbzzz//t1WjXSlff/01XpuNeFkhLhBg3KhRWIxGEoLBsLRAKBTis88+CxvkTZ86lQ6yzC5fgDayzM2zZl1yPwcOHODGfv3p0qrVRZNQf7B48WKKShNxLzhd2LRaurRuTa28PDwmE6843TxlcyCq1dQQRVLMZvr36HHePC+++CL5Nhs/+gIsttmpkZPDuXPn0KtUKCoVGTodVpWKXqUmguXx0EMPUVVW+NDjpZ0sM2HMmPBzoVAIRa+nvsHAUpuDlkYTGVotXUxmDIJAS4cDm0ZDQ5OZyaXaYXNmzcKg1SLq9ch2J1FNBhPTbDg6nYFdvgBvujzE+XwXXM+pU6dIiYmhpWIj22KhR8eOZZ5/7rnn8BuNNDEaqaE3EKU3UKuggIzYWJ4vbb/Ms1rJslrZ6w+y2unCJ4rUVBRqWaxYdTqMGg1mQcAgCJhUKkS9vsw+Dh06RITbTTubnRiziFkQaGI0YlOpsapU1KtSFZNOx0a3l/qilUDtHqg0WvInraZoxgZ0kp2s4Y9giUxHlB00btqizIVEKBRi+fLlNGrShPiERKxqNTk6PWaVigi1mm5mM0VGI53atyc5MpJIpxOzZCGYXRdRtmNVbOhEG9aIFNIys3nvvfeQZBuOtJoYVWoMWi3zbrstvL+FCxciCCoEQSDTaOZOWaFDs2YArF69Gq1ZJnfsU6X60GYAbhw6nGCdXiUJ0uqdceU0wZ3XHGtMDoXT1xPddCjVJJlVDicBRcGdVEjO6BXYkqtjtNhw+yMwSVb0RjP2xELc+S3Q6I04gnFIsg1Pei2KZmwgpuVoZLOFqjYbTosVUatjsc1Od7OEwxWFpDiwOV1ENuiLXnahFW0kdbuFohkbcKVU5YEHHggnkHfs2IEk20jqPoeIWl2pWrM2p06dYsGCBTRs3BSN3ojJHYNWtGFyRWK2yJgkmcyhDxPffgpRsQkAeINRZA55iKIZG/DEpocrSLZs2YLV5sCkuIhuNqzk2BS2ZO7cuRw9ehTZ7sISlYlOsmM0SxjMEql97ya51x2YROmC5/wffPLJJ9SpW4+ateqQkpqOxijizmuB1mQhqskQjCYzFtlGMKceap0ejVEkvt0knFkNqVG7HrfffjuSNxZXbjNc2Y1LqkgSqxDRoD+e9JrMnz+fo0eP0rBxE3QmC86YNOISkzl27BiLFy/Gn1m7JPndeAhOjxedSURVqu9tsbvDLdzbt28nJT0Lg9GE6AySPeIxgjU6U7dBY3RmC/mTnid94ELUOgNpmdnlVg+vXr0aezCejEEP4MluiEG0EqjZBUlxXLDKvKKMHDWaYM2S6u9A9U5h+ZO/kpZt2uNJr0mwdg9sTneFfzvTs/KIaNCPgikvEpFbn8ceq9Sw/idRmaCujL//G8mIi+MO2cY6pxubyVRuG/2VMHH0aExaLUaVCtlk4ulyJJr+yZw5c4aPP/6YvXv3XvEcp0+fpnWjRmjVauKDwfMMlHfu3MmSJUsqdJPy8OHDpMXFkawoOCSpjHnwX8HevXtRTCbecXtYaivpNL0a9u/fz9iRIxk7cmSFKo83btyIXZJwGE1EOp1MnzLlihLLv//+Owatlk88Pr7w+jHrdBw7duyy5/nuu+9wyzIRGg2ySoVTrcap15dJfh05coQor5d2NhsJZpG6NWpc8Kb4yZMnifH56GWVqScrdGzRgmPHjvHYY4+xevVqjh07hkGrZbcvwI++AAaNFsVkwidKtGzQgHPnzvHrr7/SrE4dvIrC4D59LprI3717N7ULChBFK+6sBiR0nIbF5rioIfzbb7+NJIqoVSrGjx9foeP0RyHRn3XZv/32Wxo2bUHNug0YP2ECXbr3KlfC7WI88cQTNC+VtHna4aR6VtZFt588eQo6sxWdZEe0ecKyl+XxxRdfICkOkrrOJlDUiuat2l7W2g4cOMCDDz7I888/z4cffojs9JE17F9ENRxA1Rq1y2yr1enJm/AshdPXYbG5zuvWiIpLJLnn3JLqX2/ENTfi/EODesLESfz000/XdO5/Cu+//z6+YCRGs8jsOZf2zKkooVCI2+feQWpmLj179y1zc7KSv5bKBHUlZXjyySdxiyJ1HE5ifL4yVZ3/DRw7dozPPvvsgm7XwwcOJCBJ+ESRiaNH8+uvv1ItJwe1SkWt/IIKmURcLrt27cKqNzBCspCh0+GVZYaVmvsZVSrq6A1YhBJ37UYGI6lmMwPKSTK/+eabxFutfOzxMVlWaFa3LgDDhgzBKAikaXVIOh1vvPEGwwYOZNjAgWUC8S+//JIOHTrQtTSZO9mq0P8/9uO2WvGpNdxgFjEJKm6XFRoZjURptOz1B3nY5iDW6aRbu3Zh7b0zZ85w4sSJMkZzao2O/pKFWrIcfi1fffUVc+fO5aWXXgJKtL/Hjh6NS6/nWYeLDz1ejCoVT/6pyrpLx44ka3XMk2241GoSIiM5efIkixYswC9J1LA7SIiIwGE2c4dso5msYFKp2O4LsMcXwGkyUTUrC6MgEKlWE6fWEOUuq7+3Zs0aapUGRS84XURrNOz1B+lkMmPU6Th8+DBLHnwQs16PVmfAk9sMKTIdR0Y9fNU6ojVZSO13L0bFRf2GjcpU1G/dupWcpCRivV6WL1tGWlRUuJ0uRavFXqr5HanRoBME7pAVnne4MKg15E18lpgWI2nToRNvvfUWI0eOwixZEC1Wxo4dS1HVajRr0TLcvhUKhcKJ8f79+6MVBFSCQLTBwLRJk8LH3Onxo1Jr0RpF6jYoqdi56+67ccXnkNrnbszeOKKaDCGifl9MrihyxzyJp7A1Bp0RrUaHWqMlIioOlVaPklBIVNNhiP5ECqetJbLxYLRGEbXOgLeoTWnCuxMGs0QgrSpqnZGHbHZ2+wI4DAaMogW7KCNqdRRVr8VLL73Exo0bqdegEWkZWZicERhsPlw5TdCbRJYsWcK9997L3r172bhxI87IBAqnryd94EJ8EdHUqF0Puz8GSbZTv2FDNEax5DWMW0lE3V5Uq1ELi2wjEBkd1jYeNmIUzugU/PlN8AUiwgnWHjf0IbJhf1J6zUVjMONMyMXmdLNjxw7WrVuHNzGHohkbSO1zN/7IGHQmCZM7usR0Uq3hxmEjLlpd06f/QNxJBQTr9sJqKzFIVKvVJPe8nfyJz6E3mtmyZQvLli1j5MiRmNzRYXPDYFQcepOIWmdEpdWj1psQBBUGm5+8ic9iSyhk7ty5tO3QGV92fQK1e2L8f+ydZ5RUVdaGK1fdfCunzjnQdNMN3eScM5KzRJEgiOQMIgaCqCCIiKCgYsKAgmFUVGQUFXNARQVkREYFyame70e1NbbdJMM4800/a7Fcy7r33FO3qm/ts8/e7yvKsb/ZBx98EE9iNgVXrUH0J6OlFhHXqD9me1TfMKHZEK64cgQATVu2JqHx5SS2GoESn0vx9E2kdppAQkoGojcRs0PGZLFz2WWdY4unH3/8ke69+lC1sJjld9zBsmXLCBU0jm1S1KhVlxkzZvwhFVs33HAj/uya5I+4C19mMQsXLvzdY14qR44cYcbMWVw5fORFu6Qvv+MO7JKKwx2H3RlEVn+bUUwlfx6VCerK+Pu/kaDTyfNeP18GwyQoyh9WoXfq1Clku4MnPT6e9viQ7fbfbQT4Z3HmzBlGDxtGajBIjw4d+Oc//0ndoiLSNQ2nKP4hMhCXqnt67Ngx5s6Zw6grroh9JsePH+fNN9/83RWdv4WdO3fiFyV2BkI86/Xh07Ryx6xfv57RI0bEJAXPRSQSITc1lQGqRn9NIy8t7YL3p0nNmsxWNVwmE1NVjSay8puNIGdPm4ZbEPGIIpN+UXjzS/72t78xc+bMc26Kz507l36KisNo5KNAiA8CIcwGQ5l18HPPPUeJ283eUBzPeH34TWZ8mlZhIvD9998nVYt26L7rD6I6HOTk5RPMqYknIZOhw4aTkZDAKE1ntKajW6zc7/bwZTBMtqb/5vgoq0oB2f3nR7vmsmvEOijPxb59+0hKTMRgMNCtW7ffVKmflJpOYtNBpLQfi8lqjxkcbtq06aLH+OSTT3BLEjNVjTqaxvjRo897/NBhw0loOjhmqD1+wrk13zdu3BiL2bP7LyAjN9pVPe+GGwklJFOvUZNzJnMPHz5MWlwcHZwucjSN7l264EnMpHjaU2T2vo6sKvlljs/KrUp8g14ktR6JrGi0bt+RoVcOjxUubNiwIaqfrDq5rGv3P007+9/BqVOnuGn+Aq64cgTbt2//q6fzu9m4cSPOYCLZ/ecTyKvPVWMqfpZU8udTmaCupAwNq1fnblf0x7eF231RZln/bs6ePcuWLVvYtm3bJQWIBw8eRLLZ+KQ08LCZzezatYszZ878rvayi2Hm9OkIZjOSxYJitbLdH2RPMEyCJGE2GFimu6hZaob3nNdPZlxcuTEikQjjR49GEwTy09PL7Npv3bqV5cuXs3v3bjISEih2OCiy20mLiyMSibB161bckkRrlwvRZCJdltHsdubMmcPRo0cZ0rcvecnJdOnQAWtpYrOq1RYzZ9GMRu52uWkpK4waOrTc3O5auRJBkBE98TjjM6nXsDHjrr6aRYsWcfLkST777LOohETNjuj+eJbefjtTxo2jRNWYoWqoRiPtHQIFViv5qWmxcbu2acsC3cneUBwDJImQ18upU6cA2L59Oxs2bOCnn37i+eefp3vbtkwcO5aq6elcoWlMLJVgqVmtGpLRyENuLxMUlcz4+DJz37lzJx5JYrHupL0kk2i1cp/LQ9BsZtLEiWzYsIFW7ToycNBg3F4/ZpuA0WIjZBfwCSJpmdlYHBJaWg2CBU1p2qJ1bOzspCTma04e90T1t5vUrk0vUeJBtwfBYGC0rLA3FMe1mk6a2cIoWWFnIIRgNJHaaSL+rGKmTZ/BsWPHsNrsOMwWFKMR0WBAUNwEi9sTn5jCypUrCTid2CwWBvXrR1CW6S4IiMZoJXWbNm348ccfgWjy8Pbbb+eee+6JaZOfOnWK4SOvIjUzB5NNwGQTMVjsmKwOzHYJOT4Ho8VOdv/5FE14GLNDwiFKpHaagKegOYIviRpTniCuYb+YBrOaXI1qV69DT6uBVZDpf/kA0uLimKjpLNSdeFSVv/3tb6xYsYIvv/ySI0eOMHz4cBSbjWxNJyM+npT0TOyChO50MWDgYFzhVIKFzTHbHNglBbfXjz+1KqonwIiRV+EOp1A8/WlyB92C2SGR1fcGvNVaomfWwp9bl5mzyndInD17lnXr1rFo0SL27dvHTz/9RP1GTTGZzNg1H1WGLMEVn8HIkSNj1dsff/wxsu4mo/tMQsVtkTQXcY36Y1O9ZPaaS9GER1A9gTIVJj+ft2PHDiKRCCkZ2VQZcls0iZ9dgw6dLsNiFzA7ZETdw5Arroyd99NPPxGXmEIwrx7OQCI9e/XGbBfJH7mKlA7XYBE1bIKMVXZhstixK25uvvlmElLSqTJkSXShklGNZ599ln/+859s2LCBbj164nR7sUsq3mqt8FZrgd0VIlDSCcUbx7333gtAjVp1Ses8haKJj2IVNWRPCKtDJDk1jbiGfak2Zi2BwhbMnj2bQ4cOsXv3bnr26UeoqAVZfeaheQJs2rSJUHwi/tQ8FM1Vzgvg93D8+HG69+qDPxRPzz79/mMTJr8mISWd3IGLKZ6+CcWfxPLly//qKVXyKyoT1JXx938jS2+9FY8okqyqdGrV6g9LgJw4cQKHxcrb/iDv+oMIVmuswmzfvn1MnjCBmdOnx2KNv5I1a9ZQqGm84PXTTtPp3rkzhc6o58tal4eirKzznn/gwAHefPPNc1b0vv/++9QvKqJaRkaFPgoV0bdLV5prOuNUDa+q/iVJ6V8SiUQY0q8fHlFEcwjcdeedZV5fe++9JCsKU9WonMNzzz13zrEOHjyIWCpTuCcYxmGxsG/fvnKV1E888QQjhgxh3bp1tG/WjK6iRK3Stc8z3qgh/G/lyy+/5IsvvqjwtaeffpqgJDFKUfGf472sXbuWKoqKbDRyv9vDWpcHTRA5ffo0L730EmvXruW9997DLUks0J1cJgi0dwg09XjZsGFDufEOHz5MyO1mtKrRSdOoW706zkA8xdM3Ue3qdciqzldffcXgvn0Z2Ls31bNzmKc5ed0XICTL5UzFf2b//v0sX76cJ554osI18OLFt6J5Q4Sq1iMUl3DBjq6pEyZQW9UottowGAw0atSIxYsW0bx2baaMHx9bc52Ln3WPq098lOJpT2F2KBSMvpdw3e7M/JUn0oV4+eWXGdS7N9fPnXvB67700kvImov4Gq2QNScbNmyIxei/5qeffiIpNZ1gdjGqJ8BtS5awdetWNG+IKkNvJ65O13NWVb/88stUc0WleF7w+hGNRkw2B6LTh6Tq5T77r776isu69qBhk2ZIikZS61GEilrSvFXb2DEHDx5k9+7dv8vcLxKJsHPnTnbv3v2bx/i9DB95Fd70QuIaX46iu36T3vXx48d54YUX/iNkOpYsWUK4qAUlMzaT0uEaWrbt8FdP6X+WygR1JWUY0LMnPTSdB90e4mSZrVu3/tVTKkMkEqFHh45kahpJisLYESMu+twTJ06giyL3uz2scbmxG424BYG8tLQ/vVLcKUm84PXzYSCEZDKTrig0dLqoUaUKbkXhVt2Jy2hipKxQV9UYNmDARY17+PBhPvzww5jG1KFDh5BNJlo5HPQRRUSjke+//56RV1zBFCW6kz9CVnBYLAyRFfJVjSb16tFU03jK46OaprFy5Ureeecdwh4PXWWFNIuFlnYHORYrOUlJvPjiiyQHg2iCwE3z5vHZZ5+hWq3kmqNyIA6jkdyUFIb07RszQVyxYgVx1aMP/fRuM6jXqBnVs7Ji1cRN7A6qWa0MlxUal9SMvb/7778ft8nMEEnGZTKRJMuxytctW7bQpGZNOjZvXiYo3bt3L13bt0ezWqmjadgNBuLNZnYHwzzr9ZHo85W7j5s2baJ9kyZcOWgQQ/v3p05+PotLTdpk3U1yh2sQXCHiGvWnePom3KlFXC0rpKgqy5cvxxOfRsmMzRSMuRfN5YmN61FVtviilUzh0hbOkqpVcVttaIKAYjIxWlYImswk2mwoNhthWaZO9RpUr1mXoVeO4Pjx4/z0008oJhNrXO5oVZTZTLHNhiLpmCw2FIuFpU4X7/qD+BwOGpRWbdztdJGekIDFYiEhIYFwfCImk5leffufc9E6a861mMwWbA6BxJR0AlnF+NKrYRMVsvrMo3DceiyCSjgxBYsgY3ZImKwCBqMRk00gUKsL1a6+D4vkjFZZZ5SQO+hWvMEwn332GZ1atKBlvXps27aN1XffTYOiIob260f9Rk1xyk5u0qIbEm2cTpYvX86+ffs4ffo0aVm55A5cTMmMzSiJecQ3HYzRYqNbt2iF+c6dO5E0F1UG30ZisyHYVTclMzaT2fs6bJJG5249LuhQDnDt3LkE8hpQffJjuHPqISkag4cO4+mnn6ZLly5k5ValXYdOpGRkYZc00jKzMRgMJDQfil33k9nzWoomPIJDdZXRIp85ew6y04PmDdGjd19atWmL5A7hL2qNpOhY7QK5Q24jrctUFFUvF7h+//33rF69mmeffZZXX30Vq+yixtQnyRl4MxZBpaCwOuG63Sgc9yCu1AIaN2nKZV264o5LI1TUAn8wjk8//RR/MI5Qdg1kzcXGjRtJSsvEmVmLhGZDMFpsGK0CNofAypUrefXVV3n22WeRVR3NE6SgqAairBJu2A9PVk1sgoQnPo1AOJ57770XSdGQNBdOX4iMHrOjyfcqdZg4cSJxSSn4Q/GsX7/+gp/B/wI169YnvlE/cgYsqtTQ+w+lMkFdGX//t/Kzt8QfXZ03b/ZsNIcD3eFg9rRpQLQzKyMhgQGqxmWaRv0aNf7Qa/4WbrzxRvpoOntDccxSNdo2b06crPCi188ETaflebxaXnvtNdyyTJauk5OSUmGCLzspibmazr0uD7ooVuhFc+rUKaaMH0+zWrW4bfFiUgIBXvL62RuKo4b798tbnT179qIMeRfNn0/17GwG9OxZzpg8Eonw5ZdfVmgQP6RvX+aW3sPRisq00s+7IiKRCMV5eXTSNDpqGtlJSagOB6rdzpB+/YhEImzevJmQLDND1UhRFBYsWEBucjIOo5EBskJ1TWPsyJGXfiMuglHDhjGt1G9ooqIyrgLDyUgkwozJk0mLi8MrSaSFwzz77LMsvOkmEhWFFi43aXFxPPnkk2THx5NkszFRUXFL8jkT4zt37mTUsGFMnTiRr776CkV3kdxuDHF1ulJUXKvMse+99x7ZSUnoosicGTMqHO/QoUMkB4N0dLrIUjVmTJ5c4XFbtmzhnnvu4cCBAxe8Ny3q1OEuZ9RcMV8UMRqN2EwmFmg69TSday+QZD548CApGVmInviop4qgEKrTDVlzxdZrF8uqlSsRbTZEm63chklFvPPOOyxbtowu7drhFUU0h4MV59jsP3jwIA899FBMfufRRx8lkFlE8fRNZPSYTbUatSo875tvvsFVuinRRZTwBNMpGLMWh6Sct2r41VdfxZeUTcmMzVQdsRJfsHzh2e9h0JArkJ0eREVjwcJFf+jYF0tWlQJyBiyKVrFXqc2GDRvYuXMnb7zxxkUV/h0/fpyq1YrwJmUh627uvnv1v2HW52bPnj24fQFCubVQdPcFO0cq+fOoTFBXUoYffviBXpddRvXsbG5fsuSvnk45fnYS/yIY5sNACIvJdEnVz08//TQZcXH4FYV2ksSeYJgumsZ11113SfOIRCJs27aN11577aJ2QP26zkNuL6/5AghGI9mpqaxbt44jR47wwgsvEPZ4cNntVMnMZOHChRfcOYZoBYdf1/E6HPgEgWuuuooTJ05gMhj4LBhmbygOl9nCF198wZIlSyjSNO5xucmRJKpKMo+4vSzSdeKdTmaUBm5NBJHcpCRGDR3Kp59+ylVXXYVqtzNJVkhXVHp17YpgMhE0mbnL6cYritx///34rVEt4b2hOC4TBAZKEu00ndFXRqtA33jjDRSnh+S2o/GlFzJx8lTcskyGxcJwScZhMCJbrBgNBnRJilWenjlzhrT4eBrYHSzQdDyiyBdffMHWrVsRzWZu1V2MUzWqZWaWuTfTpk5luKLykNtLrtlCTZuNXIsV3WRi8TkkAI4dO8aOHTv46KOPGDduHEOHDiUrORm7yYTdYkPyJhGs2YkaU55ATchFE0WmT5oUrZKITyRYvRXetAJ69e3P1q1bSfT7Ea1WFIuFJEXhstaty31XNm3aRG5GBgGnk1FDh/Lxxx/z/vvv8+OPP1JStSqi1UpOSgr79u0jNRhknqrztj9IyGRmo8dHus2OyeZAMpm53+3hs2CYoM2GU5K4zOUiXlFYuWIFW7duxW63YzRZSG53NZ7ETFatWkWPDh1oXqdOuYrWn+d57Ngxbr31VuqWlOB3uTGarRjNVsRgGmaHRFKbUcQ1HoCvsDXF054irlF/TDYHBqMJLa0GBpMZT0EL3Dn1qFpYvcw1Xn/9dYKyzGqXm06ajtFkJlSlEb1llVd9AVIsVrp17hxbYPfo3ZdA1YYktx2NRVTJG7Yck9VBoSSRk5LCkSNHWLZ8OaH4JKoUFOEPhXGn5GMRZJJS0vjwww/P+bd03XXXYZdURNVJx06XESppHw24anXimnHjeeCBB5BdfgIlnTA7ZCySi3CDvuQOvAWTTcCZXQc1KR+jxYbZJmI0WzDbxZgGXyQSwWqzU+3qddSY/Dg2QUL3JxAoaoVNkHBIKq7c+lgElZT2Y/H4y2tBXn/DjSSnZ9GqbQd27dpF0xatsAhKdBPA7WPcuHGkpGdiNJmwigpxjfqjeoKMHz+eW2+9lX379rFixQrC1ZpQMmMzqZ0m0qRFa3SPP6bBLQbTEYNpqMnVsIka7nAKjZu15MCBA3z88cds2bIFX3I04M4fcRcef4g333yTw4cPk1Uln4wes6kx9Ulkpw9JcxHKqUkwnIAoy2T1nkdGj9mouvO/rqVx586d1GvUhNz8Qh5//PE/ZMxdu3ZRq14DElMzuPPOlX/ImJX8sVQmqCvj70rKs2/fvjLt8Hv27MEnRo26dwXDmIzGv/wZv2fPHuK8Xmq43bhlmTfeeIMb5s4l7HJTKz//nAlFgMtatuKG0sRsG6eLO+64o9wxmiDwhj/AV8EwQUmuUId43pw51NF07na5SVVUWjVuTIkkM0iSka3W3yW98tFHHxHv8yFYrbRp3DhWpPKzz85nn30GwLPPPkuyovCQ20sHTeeqK6646Gvcd999JMkKkxSVgCTx2GOPsXHjxnNqLv/444/MmzePefPmkeQP8LDby85AiDhZ5t1332XypEmM+UXX4IBSOY8vvviC2bNnc9ddd/1p3azr1q0jVVG4XtNJVpRLknjJS07mcU/U86a2O5q0OnHiBHNnz2Zw376XVMi1detWmrZsQ7cevS9KH/iOZcuoW1DA0H79OHz4MM8//zzFv5AYqajb9lJZtnQpyYrCgFIt9K5du2I1GPCZTIySFHp06HDe83v16U+goCmh+r1xyCqLFy9mzpw5bNu27ZLmcfLkSSS7nS0+Py/7/Eg2+zk7GH65lvr888/xiSI7AyH+5vXjUdWLut6RI0fIrlIVb2JmrAL7XLz00kt0bN4cVRDI7DOPogkPI2uu2HPkrbfeYvHixWX0pA8fPkxcYjKhak3xJGYx8qox5cY9fvw4K1euZOXKleeUJq2IvXv3Iioa1SdtoOCq1TjEv8a0duy48XiSqxCu2x3V6WbOtXOjXkLBRJq2bH3B34FnnnkGX0pUOjC7302kZ1f5N8383Ozfv59HH32Ujz/++K+eyv80lQnqSv6rOHr0KE5JYpXLzc26kziv9ze1yIwbM4bems6XwTAtNY0FCxac89hPPvmELq1b06FZ81ji9MqBA0lWVVJUlSH9+l3weg8++CB2gxHBaGSOqmE1m1m8eDFffvklO3bswCtJ3KDp1NV0Jl1zzUW9h/7dutFVlEgxW1jlclMsScybM4e6hUV0lGWGKCqJfj8nT57kzJkzzJo2jcbFxYwZORLZZCLdYkE1mshKS0OzWIgXBGSjiWVOF+01PWbU+NxzzzFm5EhuvvlmdIeDpU4n16samRYLCYrCG2+8QWo4TJzZzGhZQTYaec7rZ4nuom2pTjZEtZ47denOnGujrVt2iwXZaKSaxYKl1MCwlyiRZbGQGR/P6dOnaVG/AXGyjGo2k+jxsGb1aiKRCEG3G5/JxO5gmB3+IIrDUeberFmzhqqqxjLdiWg0MlfVaCBJNKlTp8J7uX//ftLi4khTNcRSuZF8qxXRYOBxj5cXvX5sRiO+UBxGk4kWrdvFpAQikQhvvvkms2fPZsWKFZw+fZqshESW6E7q2uxYDAaCTmeFFZIffPABy5cvL9fKd8MNN9BeVdkTDNNflCjIymLHjh2E3W4sBgM5Fgs3aDqK1YZVkPEWtsZhtSOYzIRMZvy6zi233BIz/AOoVa8hdlcIg8GAqHvISU5muKYzX3PiFMVztpt2a9eOIoeDNIuFEpsDs01ATcrHldsILa0G8U0HY5VdpHebgScui8tlFbvRSEZ2FTyyTFdRoqrdTs/LLouN+frrrxOOT6CBQ2BvKI41Ljea7sZXpQFO1YvNYMBstmA0mWnWoiUQDfbatGuPRVAwmCzRal+jiT6KTnWnk2effTY2/uOPP45DkDCaLSS3HU1SyyvJyMmr8P3t3r0bo9lKzuULyOx5LQaTBYekoLr9hOOT2LNnD1169Ca57eioVEatzpgdMtn9F1Aw+h7MdpHi6ZuoMeUJDEYj1Sc/RsHoezCarUyePCV2HV8gRFrnKWT3n49ViFajl8zYjCujGG9hS0pmbMZX1Aabw1FGt+/IkSM8+eST6P44Mntdh01xYzJbyCso4umnn0bWnMQ16IMvszoDBg9lzJiriWvUP2qA+AstaYgGg3oggZzLFxIsaELrtu2xiipSKANvtRaYrA6UhCqYHTJ6egnF055C8wZjC+mffvqJYDieUPWWeJJzGXrl8NjYBUXFhOr3In/kKjRviLVr1/Lwww+za9cubA6R6hMfpWj8Q1is1v86V/Hc/EISmg4ks+e1SKp+UQZQlfz3U5mgroy/K7kwP1dQ91Oj1bMNiov/6ikB0YTpiy++yL59+y7pvCH9+nG5pvN3X4CqmsZDDz1U7pgZkycTryjk6jptGjeuMBHT+7LLYonuQZrO6NGjkW02OgsCfRSFlvXrx449e/Yszz77LM8+++xFJfe7tG7N9NI1TC3dyX333UckEqF/9+7EyTIeUeSmefO444476FQqT7BEd9GmYcNLuhePPPIIY0ePZv369ST4/dR1u/FIUsxE+VzkJCWx0unmHX8Q3WIhJymJVq1aoZtMjFdU/CYzHdu2Pe8YfySRSITVd9/NwF69WFsqX3axdGnTht6azgpn9L3/0V4RZ8+eZePGjaxfv75MQnbLli3EywprXR7aazojhwzlrbfewiWK3Kw76a7rdGnT5g+Zw1NPPcVNN93Exx9/zCeffIImCEgmEwaDgWtK16Rbt24lFJ+Iojm59dZ/FbAVVK8ZMzMPVan9m7vkTpw4gWC18ndfgNd9AQSrtcKk7aKbb8EuiDg9Pp5//nn27duHLgi85I2afSYHAhd9zePHj/PKK69ctDTF+vUPIkgKdkFk9NVRfeKtW7ci6y7iarZH1t387W9/ix3/3XffsWTJEh588MHY3/Xp06e58ab59OrTn7yCIvxZNfBn1aBug8YXnc/4/vvvESSZKkOWkNFjNh7f7zM4/a2cOXOGFStWMGnSZD744AM8/iB5VyyjeNpT6L443nnnnfOe/+6776I4veQOXEx8/V40bNr83zTzSv7TqUxQV/KX88orr1A7P58G1avz1ltvXfD4559/nsKsLGpWrcqbb775m6554MABSqpWxWQ00qxu3XM6tUYiEcJuN5NVjdmaTsjt5tChQ9gtFj4NhKJ6wRfhGH327FlSw2FGqhqNBRGX2Uw3lxuvqjJ//nw6uT2xRF3jiwzuRw4dSjW7g0GllSs3aDoNatZEdTiwm0zULKhWoTbVq6++SqaisCcYZqHmRDWZuF7TSXE4qC/L7A3F8YDbQ80qZXcyH3jgARwGA/lWK26TCcFgoHfnzkQiER566CEyBJEBkoRmNFLHIeCTpNiOdCQS4YcffihTHVG3Rg2mqhq36E4CJlNMg/spjw+vQ+DVV18lS9P5IhBiie4kPRzmm2++YfTw4VgNBqpZrZTYbMSZzXTv1Il169bxxRdfsHv3bm644Qbq165NfnoGPbt2pXOrVowaOvSc2ojz58+nq6rxrNdHQqlJ4tv+IHaDgb/7ArznDyJaLEycMIEZ06fHJGHOnDlDl7ZtcTkc6KLI5s2bAYj3eBgrq9Sy2fgyGGaiqpWrQti+fTuy5iS+RkvkX+ny3njjjbQSRHYHwwwQJfw2e8xc8p///CdXDhpE19ZtePnll2nYuAl6anWy+t2E4gyy1OmiitNZrvXsjTfeQHO6sdjsGAwGLGYz7RwCDoMRh9HIihUryhx/7dzrUHQ3qslMNauVe0vlWOrZ7LjyGpHUagQmq4OMnDy8/iAWu0hfReNelxuHwUDrFi1ItkTNNV/zBQi7XLHvn6a7iG8+FMkhUc9uJyTLLF2yhImTJlNUvRjR5iC7340UjnsQm6jEqoEWLFhAqEZbLJIe1UWe8Ah2SUd3OMosGlIzskluexU2zU/xtKfIH3FXGemVX/Lyyy9jsthKTSnHYLIJKAm5tGjZJpZIXXzLrWih1Gj1tqBiMFsx2yXsrjAmq51Q3R74ClvHjBLtzgA2QS5TTfHaa6+RlpVLOCGZ5i1b48+uSXK7qzHbBAR/MundpiO7g2zcuJFTp04x59q51KxdD5tDxGJzoPiTCNXtgbegBcXTNxGo1pQ+ffsSyqoelTLpcz2y7qFa9WJEzU18k0Fo3lC5SqEbbryJzNx8uvXoTV7VfNx5jUnpcA2u3AYoiXkUT9+EXffjK2pNdr+bkBS9jK7fvn37WLBgAbfffjtbtmzh+++/59tvv8UfisOueTFZbPQfMJAvv/ySJi1aUbWomOYtWqJ5gqguH2PHXZxT/G/h1KlTf0rlnu7ykj9yFcXTn0b3x5eRbqnk/y+VCerK+LuSi+Mf//gHUydPZvasWX+K2fhv5dSpUyxbtoxZs2bx9ddfX9Q53333HU1r18av6YwaOvScvynbt2/nhRdeiHl5/Jqnn34anyTRxe3BLcvcddddFDpd7AmGedzjJScxMXZs786dydV0cjWd3p07X3COXVq3ZmppgrpmaYL6q6++wiOKfBYM83dfANluZ9++fYQ9Hpq4PXgliSeeeKLcWDt27GDLli0Vvo+33nqLVatWcf3119Oh1J/oNt1F6wYNzju/l19+GZ+uYzYaqWV3sN7tQbJaaSxKDJcVuggig0qLYP7T+ec//8nlPXrQuKSkXJXt7t27efrpp3+XnviwAQPI1XRqO53Uq149tk6666676FhaLX2H00VhZiairCLIGkk+P1cOHPin6b1//vnnLFq0iGrVqmEwGJg2bRrhhGTSukyl6vA7ERUtpqHct19/7LKOL6uEYDj+d0lm3rZ4MZLNhmSzccuiRZw9e5b9+/fH7sk333yDKGsUXLWazF5z8fiDPPfccyy86SZcskyi3/+HmG+fj6NHj5aR/Rk56irCDfpGi0KaDi5TFFIRU6ZOx5uaH5UpNFkonvYUxdOewmp3XJRkz8+sWXMPLo+fUHziH+rr8nvIzK1KUuuR5A66BUnVL0ofe+ntt5OYmkHdho3ZvXs3X331FUOuGMbwEaPOqSleyf9/KhPUlfylnDhxAreisNTpYr7mJOzx/C7TAIgmQ5fceiu9L7vsgjvlFQWeO3fuZOPGjfzwww/ctXIlJoOBL4JhvgqGUWw29u/fj0dVWe50cYfThUtRzhmg/pKvvvqKof37kx4IcEepHEYXl5vrrrsOj6IwSNVIV9VzSlD88MMPbNu2LfYDtnnzZgJq1HG6nSTjkySCus7Dbi8fBELRlqdftOIdPXqUWdOn0/OyzugOB4+5PTR3CHSWognumzQd1Wqlk8tNkqJw2+LFsfs5duRIzEYjutHIRo+PKyUZh9kc+6zee+89/JLEGpebzopK7erVY1WXR48epUFxMbLNRnIwGGuJWrNmDemyTBO7ncGlGtPXajqN7HYalNSMBriiSKrZjGY0IhsMBHWdQapGb1FCMRjwm0x4NA2XKNLO40G12xHMZhSjkRpWG25Z5vPPP7/gZ3PnnXdSYLPxktePYjQyWVHpIog4jUbspdXdPlWls6bRTdOolpVFJBJhy5YtJAsCu4Jh1rjceASBI0eOsG7tWgSrlWo2G18Fw0zWdLq3b1/mmhMnTiJcvxclMzbjTqsRlZ1p2pTvvvuOQ4cO4ZNkbAYDWRYLBbLMfffdV27en332WdTwrmdvVKeHZEGipyhhFxUycvJYs2YN46++mmtGj+b999/n9ddf5/PPP2ft2rWYzWZMBgP3uTyscrlx2my4bTYSAwEWLlyI5PSTO+gW9FAGmtFIkdXGFFXFbLWjpRRhlZ04xGjrZr+ePRGNJqxGEw6TGYc3Ca/JhGo00sHuICDIZKVnMHPqVJIUhRyLFVXSUUUV2WRmzZo1sff05ptvYrY5ooaM4x9CUHR27tzJQw89xLRp01B1FyabQEb3mVSf/BhW2cXUqVPL3Jeq1aqT1HY0cnwuds2PxSFTp2atCp8t77zzDoIoYzTbMDlkUtqPRQplkpSaETtm69atOCQVNSkf0Z+CRXJGzQxD6RgtNhKSU2nWshVfffUVCxcuZOTIkRVWDixdejs2uwO7INK2fUdq1KyDM5xOuH5v5Lgc4hJTABgz9hq8GUWY7SJVhi6lcNyDmG0OBN2Lt6A5xdM3ESxswbhx49FcHsL1emBTXASKO5DUZhRGsxWrQ7igQY3VZsMianjym2ERFJzpxaR0moBdkEhISiYxJb3CapidO3fi8vrxp+SiOd34/AE8eY0pmbGZ+MaX03/AIIpKahHXoDeu3AZYHDKNmjTjjTfeOO98zsXFJJ1nzbkWi82GpGh/uG7czNlz0LxBvMk51KpT/6Ke95X891OZoK6Mvyv572ZI377U1jQGqBphj+ffnjx/6623WLlyJZ9//jnHjh2jWlYWNVwugrLMsqVLgWh3mMNi4fNgmM9LDQZ/rRX9az7++GMS/QEcFgvtmjbl5MmTfP/992gOB094vCxzukgo9Vv57rvvePTRRyuUOZs7axYhWSZbK18J/uSTT+KTJDq5PaiCQIos87jHS2dN58qBAy/43iORCFnx8Tzh8bInGCZX0wk6nVR1ufCq6gWrK3/Jhg0bCLvdhN1uHnvssYs+72L44IMPuHzgYMaNn8Bzzz3HzJkzy3SxnYvXX38dtyxTz+PBr+vnlY05H4LVyvuBILuDYYK/WLPs27ePkNtNS7eHgCzjdHvJuXwhNaY+iTMQf1794z+KkydPMnDgQAwGA1abndyBN1Nj8uMoLh+ffPIJd965Emc4hWDtbgiKztq1a3/3NQ8fPszhw4c5cOAAGdm5CLJKcloG+/btY9euXUiai6KJj5B3xe0YzVb0YBIeb+CiOiU++eQTmtWuQ80qVXjmmWd+91x37NiBKCvY9QBpl03CGZd2Qcm2ug2bktF9FsXTn8YiqsQ16EN8w76E4hP/cmmk38t7771Hbn4hofgkVq26+5LPP3PmDHGJycTV7Ua4ZkeycqtWeNw///lPLuvag/yikr9ct7qSP4fKBHUlfykHDhxAsdv5Ihjmk1JN6YvRX/6ZFcuXk5ecQuuGDdm7dy8Aty9ZQhVVY4HuJEFWLtiK9kuefvppPJJEXbeHBL+fprVrU8Nmo8hqo5rVRtX0dCKRCK+++irVs7MpysoqI6NwMUwYM4Ymms4yp4tQqXHeRx99xLx589iwYUMsibZlyxZWrFjBnj17+Oijj/BpGlVdLsIeD2+++SZuWeY6TaeNrFA1K4s333yTJL+f9W4P7weCeEUxVnkKUQfxlprOCFlBNpkwGQz4FRWXKHJFqWnJjddfz5133skLL7wQO+/1118nSVH5MBBise4kz2Kljs1Owq/aqNatXUutvDy6tmtfxjBm+fLlNNWd7A6GGavpXN6jB2fPnuX06dPcvmQJTerWRbPbaaaoaGYLuiCQqihIFgthtxuX0cRURWWdy43NYGBPMMzuYBirwUBPh4BsNMYMIEfKCh6jkepWG6LBQAuXm7Vr17JlyxZmz55dpvXql3z//fdIJhNSaSJcNBjQrFYybTYGixJuQcBqNsccyiWrlR9//JFnnnkGt8nEe/4g8zUnktHIyCFDgOhOf4PiYkSrlQS/v5zEx7p163CFU4lr1B+v2cJTHh8DNJ1epVIYW7duRbbZUIxGFJuD/MIaZSrQf/6u1nF7SAoE+frrr5l33XW4vQESmw8lo+e1SGYzfVSNAYqKaDJhETXMNgfTZ87ivvvuw2w0YjUY6C1IxJlM3O1yoxiN2AwGtOSCqKll12k4bQ5yMjJoWKsWzsRcSmZsJmfAIuyan6yUVFrJCrfoTmSrneR2V2OVXVgsNhyyE5PNQWLL4XjTC5FFiZd9fh52e/CZTDzn9TNUVsq1KS5duhSbQ8Rqs3PN+AlMmz4Td1wa4RqtcXp8CJKM2S5istqxi0pMbuVn3n77beKTUpDMZjoJIve7PORoWrlnwddff41HURiuqGTb7SjuePw12uOu2oSSOv9qv125cmVMuzmhxTBMDgVPfnNKZmwmseVwOnfrUeH36pf89NNP2B0i+aPuJm/YcuyCyLZt21DdfrL7LyBc0p7WbTvw9ttvU1hcm7Ru07GIGjkDFlFtzFoESWH58uUkp2Vgc4ikpGVyxx13sGXLFsaNn4BdlKh29TqKp2/C4QoT32Qg9Ro1Ped8du7cidsfwlO1Ca6sOkiKSsfOXYlLSkX1hvGnF1BYo2aFydhrrhlHuG73qORJ7W5YRA05nEW1sffhy2/C1deMw+MPEt9sMGIgjSpDbsOXW5fxEyZd8D79+p7Vqd8Io8lEUXGtc7rRf/3114iqTrWx95Hd70Z8wfAlXedieP3119m8efN/nTxJJb+dygR1Zfz9v0QkEuHqESPwazqNa9b8r5AyOnPmzHnXDAleL6/4AuwNxVHN5eLVV1/9N86uPEePHmXTpk1lkrNnzpzB73SyUI/+8zudF6XFfPbs2XKJ7Pvvu49En4+cpKSLMqhzShLbfFEt7bAsl9Fd7d62LQv1qGl1X02nXevWVE1NpWenThed6F96220EZZl8TcPtcKAJAt06drwo876fOXnyJKogsMHtZYPbiyoIl7ROPB8HDx7E6fER3/hy/PlNsDtERioq8bIc8xA5F4P79mV6qX/PQFXj2muvBWD8NdeQk5bGyCuv5PTp05w+fZpt27adU7u7ano64zSdRboTt6KU6cj99ttvuf/++3n77bfJqpJPSvux5I9a/W81Vo5EIixcuBCj0YjRZEJUdXr37U8kEuHygYNJbHll1LOlfq9yxSK/h5mzZhEsaknx9E2ESjow9ppxRCIRhg0fiSCrmKw2BLOFGrKOYLYwZsyYC45ZJTWVGZrOXU43Tkk6Z0x5sXTp3ouEZoNJaj0SwR2mY6fLLlhkt2jRYlyhZEK1uyApGq3bdaR7rz4XVUz1/539+/cjSCrF0zdRPO0pTCZzhTF3py7dCdVoS2bv61Cc3nIymZX891OZoK7kLyUSidCtfXtyNZ10VWPYgAEXfe57771HQJLZ4PYyvHT3H6BJ3broRhM+k4mWDoFZs2Zd9JhtGzXiVj1a3dzR5aJls2bUVzUGSzJOu71M4vZi3tu2bdt46623yvxgnThxgoljx9KmYcNzVnivXLGCeEXhMpeLgNPJgD59uKY0EBqkagwcMIA8ZzRwfMUXIM7tBqJJS10UsVssTJswocyYIV3nBa+fHqLIUElmZyBETV1n7ty5zJ0795zmX6+88grpqsbnwTCrShOYPpMJwWot00p16623YjJbMZotZKZnxQLsFStW0FDX+SoYZpSq0bh2bRSHA4fFgmCx4LBamTh+PEuXLqVfv354LRZCpdW3yWYzktHIJo+PrwMhVJOJDopKC4eDJLOZeLOZHoJIvtXK/W4PaRYLV0gyc1QNyWhEczhYvXo1PklipKoRPId2XiQSIcHrpZ1D4HmvnzSbjVWrVtGyUSOCqkZJzdrkpaXTS9Xoo2rkpaURiUTIz8jEZTRiMRiiCWCjmWa1a5cZ9+DBgxXuikciEeYvWER2larULTWOWel006DoX2aCsqqT1W8+NaY+iVUqq5XepmEjbiv9rrbUda666ir27NmDojlJ7z4LKZyNyWBgd2lS3W4yUzhuPVI4C7sgsWvXLob074/JaMRgMFDTZuOjQBCPyYTZYMBoNCP6krHYHDjlqEv5J598gkNSSesyBU9+MyR/CnFOJw+WStTUEiSsihuzXYjpILurNCSh2RDSukzF6fIxVtMZLssUWm3sCYZZ6XSTk5jI0aNHuXbWLAb17UftwkKckkSvzp05ffo0aVm55A66Japxl12DW265hRo165BfVBxbhO3YsYOGxcXUqVYttghtUbcei3Une4Jh6judtG/fgcFDr+CDDz4AotrwybKKzyGRJyqYLDa0lCLseoCCwhp88cUX1KrXgITkNCRFQwplYnZIODzxWASF7MsX4s+tw+Qp0aD8m2++YdLkKcyZc22ZRcbevXt57bXXsDtEql29jvxRd2OzOzhz5gxLb7+dzNyq1KpbH1lz4g4no7m8GM1WTFY7RrMFq83O9TfexPHjx1m8eDFdunRB1lyEq9bH5fXz9ddfM2jIFTjj0tFSChE8CYRKOtCle68K/6ZPnDiBPxgmVKsLUiAVpzcQ63hQdRcFV62hePomdH98THf/l8yfPx9fVjH5I1ehphQS12QgDnc8Jqud5PRMfvzxR2bPmYvFLuIt+Fciv0u3npeU4L3++usJ5DWgxtQnCRY2Z+Kkih3rY1U14x8id9AtuL0Xr0H4n8Y777zDyy+/XFml/R9AZYK6Mv7+X+Kxxx6jiqazzRdgkKYzoGfPv3pK5+Wpp56KxbtzzxHnd2/fntaazgRVw6uql5QY/Xeyfft2GhYX07C4uMLK2O+//56OzZuTGgwydcKE391p+jO5ySlcp+nc7/ag/8qLZObUqTTQdVa73KSo6iUV+/ySHTt20LBmTUapGm/5g+RoGk8++eRFn3/06FEcFgvv+YO85w/isFguyVDufLz99tt44lIpmbGZamPWYrfa2RuK40ZNp1+3buc9d9b06TTXdDZ5fOQpCvPmzWPSxIloJhNdBRHRaGTs6NE0q1uXDE3DK0ksv/32cuPs2rWLzq1a0bJevfNuKrz55pvEJ6UiKSrzbrjxd7/3S2Xjxo3IsozX6+Xvf/87EH1mKC4f4brdkHU3r7zySrnz3nnnHVo3bEjbJk1isTdEN2bOVzE8d+5cAvmNKZ72FMGilkyY+K8Ch2+++Yai6jUYIEVlKaerGs1+oel+LlRB4E1/kK+DYUKy/Lv1xIcMu5JQcVuqjb0Pb2rVMt2gEP1s23fqQvNWbWMSpj/LYs6ZM4fXX3/9v75q+o/k7NmzVMkvJFC1Ef7cOtSp36jC46oUVCer7w3RIpnsGtx33328++6755Rr/a2cPn26XAFUJf8eKhPUlfxbOH369DkTE2fOnOH555/npZdeuqSga/PmzdRwRfXcHnZ7KUhL4/Tp00g2G497vDzp8WE1GC5Jj2rE4MF01nQe93hJU1WeeOIJpk6YQLvGjVl3Ca1LZ86coXfnzqSoKvGKwvjRoys87tSpU6xbt45Vq1Zx9OjR2P9vVKOY1S43XwXD5AgCyV4f+YLIa74A9UtNHVPDYS5zOinQtDLO3KdPn44ZbXzwwQd0bNGCWoWFuKxWCq02Ms0WpipRA776msbAgQMrTEL9zCuvvILTbsdhjGoVe40msi1WWtkdxLndsUS0Q1TI7r+AogmPYHXILFu2DIBjx45Ro0oVzAYDktGIYDDwsNvDK74AotHIix4fss3O4kWL8NrtFFltpJgtLNWdCAYDwVIzxSSrlZKqVZk7dy5DhgzBKcv0EiW+CoZpbncQkmVUk4ldgRCv+QLYDAZcNhs1i4oYr6ixIGbk0KHl3uNrr71G9dxcri81tOmq68yaNQtZdZLWeQrhWp2oXa8hUyZOZNL48ezfv5+zZ88iGY284PWzJxgm2WxBslgqlOLYsGEDLevV48qBA2MSLQcPHqRxzZpYTCacDgc1XC48pbrdb7/9NjfffDMeX5CEpoPJ7HktdqudeoX/erZdOXAgXTWdO5wuRKORWqUO3IMGD8ZkteOq0hDFIdFKUmgvSEhWO/mjVmN3BhFkNVZdf/jwYerUrBlt4TMYkI0mPMkF2CWdnj178tBDD5WplnnwwQdx+kKYrHYSU9OZMWUKybJMK7sDu9GIzSFQVKMYT35TCq95ACmchRKfi+4Lc+ONN9G2SROKc3OJ93hItFgQzVZkV3STpYHDwXhFLTXa9FFT07nrrrvo2acfgbz6JLe5CllzlmulPHPmDD5dZ46qsUR34VaiVdWvvPIKLlkmSVXxqSq+KvWJb9QP3e3lxx9/5I477sDhDJB35R1485tiETVKZmwmf8Rd2ASZvIJCfIUtyexzA6KioXuisifF0zeh+BMJJyTRp/8Ajh07xsmTJ6OO3SUdCFRtSL2GTQC45557kRQdzRsiPSsXu0PELkjcfvuy2PyPHTtGWlYuyW1HRxPDqUX4SzpRY8oTaL742DOsXcfO+LJKEDzxpHYcH61aqd6CJUuWcPbsWR588EFat26Dxx+iXqOm56yA++qrr1Cc3qi54+THMZstvPvuu/TudzneQJj4hn1J6zIVWXNWqK144sQJevTui6g6EdxhMvtcj031ojndMc25r7/+GrtDwiJqKIl5mKx2rDY7NruDRTffUuG8fs3MWbMIVm8dfZ+1LmNMqSlNRVx9zThsDhFBUli//sGLGv+XnD17lu3bt/+lzt1z5l6H6vLhjkulaYtWf9rC5dixY3zxxReVSfALUJmgroy//5dYtWoVLUpj6gW6k/ZNz92B859AnMfDQ24vO/xBXIJQocb0kSNHmDltGlcOHHTeOPc/nSsuv5xems7zXj/ZqlahlvTF8vHHH/P8889z7Ngx3n//feoUFJCXksKjjz5a5riTJ08yYcwYGpeUUKeoCF0UaVhc8puS/K3q1+fm0mKBhk4X69atu6TzZ0yahFsQcAsCMyZXvFH9Wzh69Cih+ESC1VvjTslHdEhcr+nkqGpMguVcHD9+nEG9exPv8SBbLIRlmYAsx6rO+4kS2WlppGsaXwfDbPL4SPb7/7C5/xn8+OOPMW3pivjggw9ITk7G4XBw//33A1FfqDlz5lSYXD99+jRBl4vrNJ1Zmk68z0ckEmH5HXdgdwgIosx9991f4bUOHjxI9ZLamExmqlarXk7betmyZWTbHTzp8VFPlLj2HJtUr776Km0bN6ZP5y6MHDqUZFWlQHfSrG7d3x1jHThwgNr1GiKrOr369i8XU6VmZBPfsC9JrUfidHtjGytnz56lR+++WKxWXB7fv0Wu5Y/g/fffZ/369Wzfvv0P2yT7NQcPHmTBggUsXrz4nAnnFXfeier2EcwpIRSXiNsXwB1OJhCKv2ivgQuxYcMGBEnBYrUxa861f8iYP3PmzBmWLFnKqNFjfrOX2v93KhPUlfzpPPzQQ9GKWauVG6+77g8b9+jRo1TLyqLI6cInSay66y6OHz+Ow2LlnV/stF/KjtqhQ4foddllVE1N5fprr/1ND+Cnn34a0WpFMhqJM5t50O3BajZX2LLXrX17SnSdRk4ndQoLYz+Wo4YOpZWm08khUNVq5XanC4/Fgmi307xhQ06ePMl3333HbbfdxgMPPFDhj+yZM2cIezzM0nRSSnWZE81m8i1WVJsNtyAgms20c3vQHQ7aNGnCzKlT+eSTT5g+bRq33norJ0+eJDsxkeVOF095vIhGI0GTmT6iiNdkQrfb2bt3L8eOHcPmEEhudzWF49ZjsYvc/otKAa8kcZUkszsQorXDwShZ4W1/EMFoZJ6qo5lMBCQpVolbxWJBMRppYncgGI0sWrSIV155pUxb3yeffIJblmkvSagmEwGnE81oJMNiwWU0YTMYcBgMOIxGwg4HY2SFoNnMrF/p8j766KMEZZlmioLDYCBHEHBLEmvWrMGTkEmVobeTffkCgnGJZc576623EC0Wmtod3KI7cRiMyHY7b7/9dpnjPvzwQ7ySxDKni86/qMqYOX06nTSNzwIhWqkaAy6/nM8++4zXXnsNtyRxudOFy27HZnMQLyjUESWG9O0bG/fHH3+kR4cO+HSdQaUV2FNVjfYtW2IwmYhvOgg9vYS4RpejxOdGJTNK9bS7di9bGRWJRGjatCkGgwGT1YGaVIDFLrJjxw4OHz5M/27dyEtJYfb06UQiEc6ePcvHH3/MoUOHiEQieN1uDCYzBrMZuztMQWF1TDYRk9WBTXbSpGkznn32WQ4fPkz3Xn1Iz65Cw4aN8OQ1pGD0PbhyGyAZTbzo9bM3FEee1cqDbg9dNZ0FCxZw5MgRxo4bT4fOXXnxxRfZu3cvK1as4KWXXuLkyZPUrFMfs11Estp5wO1BtlpjidUffviBDz74AN3loWD0PZTM2Iw3IYPt27dz5513EsirR8mMzaS0H4vZLpHS4Rp8RW3QPX5Ek4kkh4TLl4Q7nEJeQRHxDfuS3X8+suZi586dRCIRbl+yhEYlJQiqi5IZm6k++THMFisAcUmp5AxYRPG0p3AFE/nb3/7GTz/9xFdffRWrsu7d73JEdxh/jfYUjL4HwROVGim85gFUTyDWviZICoXj1hOs1QUttTpZveeh++MvWUvvzJkzZOXmESxojD+rmEZNW6C7vSQ0GYi3Sn3c/jA1atXl2WefPe84R44coe/lA8mqUkCnzl3wBkLYHQJz5l7HgQMHECSFrH43EqrfG6PFRt6w5RSMvge7IF1Ui/D+/ftJSc9E1t3EJSazZ8+ecsd8+OGH9OrbnytHjOLzzz8vs9F3sUQiEdp36oweiEd2epg77/pLHqOiMX/88cdLWgApmpP8UXdTPO0pNE+Qjz766HfP49d88MEHuH2BqLRMXv5/lKHZfxqVCerK+Pt/iYMHD1IlLY3M0s3uiqoh/5MIulw84Yl6rnhEkV27dv3VU/rTaN+0KYtKE5/tna5yptY/88MPP3D1yJEM6NmzQjPfNatX45UkqjmdFGZnX1Ql8po1ayjWdHb4g/TTdEYMHnLJ83/11VdxyzKJikJxXt5vqnT88ssv+fLLLy/5vAuxb98+5s2bx/Lly3nggQcY0LMny5ctu+j1X2owyOMeL18Gw3hsNgqsNpY7XfhMJsaMGYNbFHnS42OmplOSl1fu/J9j6r+ahx9+GE0QcAkCfbt2jb3/X8/tu+++o169ehgMBqZPn37euf/www9IVitfBsN8EQxjM5v57rvvsAsS+SNXkXfF7ThE6bySNhUVt/3www+0ad8Jt+YkweXmissvr7DS9fvvv8ctyyzQnQzTdGoXFPDqq6+yadOmP0wm5lxEIhHMZgvVJ22gePrTSJorVsDx/PPP445Lpfrkx0hpP5bi2vV+17VuW7KEmnUbMmbsNX+aDN1VV4/FLjuxCCp2WWfg4PLFXv9Otm/fzsMPP8ywYVfGJAdDtToxefKUSx7r5MmT9BswiHBiCn36D+DkyZO4vH5yBiyicOz9iIpW4frjtzJ+4mQ8KXnENeyHorkq5V0qoDJBXcmfjltR2Ojx8ZY/iOpw/KG6dkePHuXZZ58t0zZ07YwZOAUB5y922o8fP864q66idYMGl1QJfS6++uortm/fXmEFWpzHg2I08qjby0LdScBkIuBylQt2zp49i8lo5LNSTWW3IPDNN98AcPfddxOvO9FMUf3lN/1BJIOBZIsFt8XChHHjKpzXyZMneffddxnYuzfVs7NxmM086vYSMpnZ6gswWVFxms089NBDTJkyhf6aznZ/ENVoZJqq0VzTcNntDFI16msal/foQYLXyxMeL58Fw7jMZu4vTSI3tjvwOZ38+OOP5GdkkifLSKVyEYogUlKlCqtWreLUqVMIBgO9RImPAyFqWG1YTSYcZjMOoxHBaOQGTcdvMtHY7mCdy4NoMDCptOp5tKwgWizMmT693Ptt26w5dQSB23QXfpOJLLOZEZKMZjTylMfH+4EgQmlSNmwyoxqN+HS9zBg9O3ZkvuZklqphNxiwGQwU2R1kJSVhl1RsqheT1U7/y/8lP7N9+3bcksRgVcNpMqEZjcxVdYZqOuPGjWPdunWx1rENGzbQqPSePez2UpSZCcCEa65hcKlsS39VY9qU6I/qpAkTuLo04TxT1ahZWEh+Whp9u3StMJl0eb9+5NpsbPL4aKJpDB08GLusY9O8mAUFk9WO2S7gstt5wx9gse6kKCsrJjvx8wKlfqOmCN7EaKLZYCAxKYn9+/fTrGFD2igqT3i8ZCoKo0aNoqi4JorTi6I5ufHGGxFNJrIFCY9dwGYTsVqszFQ1mksqDqs1logdedUYAlUbkTtwMaoniCBrhOr1xGgyE8ypTzVBZqAk4TAaSVVV0uLiYonmSCTCiy++yD333IPT4yNc2BTNG2T48OE44zMpnvYUqZ0mIjhk4n3+cn9vPXr3xZteSKi4HYFQPIcPH+af//wn8Ukp+JJzUDQXHTt2QnZ6SUhJJzclhftcHvYEw2TbbKRlZvPpp59Sr1ETUjNzYsYcGzZsIE1VWao7sdscBEs6EMhvRN0GUcmhvGpFJLUeSdUrVyDrbj744AMaN2uJrLuRVZ0XXniBxNQMsvpcj5pcgNkmUK9BI/yhOKw2OxMn/0vTr0HjZgQLmhKuEzWkKahek8WLb63wWXAhfvjhBxYuXMjtt98eNfsJJ0fbXK9eh6I5L3m81Mwc0jpPodqYtci6m08//ZS7716N0+MjFJ+E1Wan6vA7o220gnTR7vOnT59mz549FS4mjhw5gsvrJ6Hx5YSK21Jcq+4lzxuiZqOK00uNqU9ScNVqJEX9TeP8zI8//kjVakXYHCLJaRmx5/qFSMvMIan1CLL6Riv29+/f/7vmURHdevQmoemgqNFmXn2WXqBK7H+ZygR1Zfz9v8bx48d58803K+yc+U/jwfXrUR0OJJuNiVdf/VdP50/lhRdewC1JFLlcpIbD56xiblGvHj00namqhk/TysWM1dLTedAdjWuqO108/fTTPP744yxZsuScJnO33XYb7UuT4zM1nd6dO8de++mnn85bcftLfvjhBz788MO/pHPnz0wAF2ZlMV9z8rLPj1cU6dOjB4UZGUwtXX+uXLGCtFCIWlXzy3VoPffcc3jUaJy84IYbLvnaDzzwAMMGDODBB8t2jX3zzTc0q1OHZL+f62bPvqix0kIhHnZH13qJisIrr7xC41q1MBmN1CksLKPX/EvzxM6dO59zwyESidC+WTOq604KdSfd2rfn4MGDUbm7sfeRP2p1TO7uUhgwaAihopZUGXIbzmDSOY2x33vvPZLVaMfwdn8QpyRd0nV+L9179cGbnIM/s4jiWv+q2H7uuedwx6dTY8oTpHQcR/WadX7zNZ566in0QAIZPWbjy6zBtOkz/qjpxzh27BgWq42iCQ9TNPERTBYbVpuD7777jpUrV7Js2bILGrv+WcyaPQd/Xn0Kx96PL7sWN91000WdF4lEGDtuPHZBxO0P4krMIe/KO/BlFnPT/Pnobi+5g26hcNx6RFWPbS78ERRUr0lW3xspmbGZuIIGsW6ESv5FZYL6/zHHjx//01owLgWXLPOM18c7/iCaw3FRTru/lz179pR5mFwzahTNNZ3lzqh79rZt237z2OvWrsUliqRpGo1r1eLQoUNcd+21jB4xgg8//JCA04nXZGJXMMxrvgB2o5HVq1dXOFZmQgKjVI0Zmk7Q5eLEiRPs2rULtyjygNvDGFlBMxqpZbWhG41MUlRu0HQks5njx4/z/vvvM2XyZAYPHkxaIIhuteK2WpGNRhLMZgSjEb/VSobFyu5gmDWuqN4vRLXD0lWViYpKvtXG3lAcz3p9OM1m9obieM0XIOxycd+6dWgOB25BoEpKCg1Ld6M1q5XnnnuOJ598klqlbaH3uNyIJhO5ViuLdSd+q5W1a9eiWCwU22zYDQYEgwHN4SBL1Yj3+0kURNwmEz1K/+sqNemrYrNxv9tDVas1mjy2WMrtkDepWZPlzqgOcy2Hg1y7HdVgxGEw8JjHy9v+IBaDga6CyN5QHNfICqLRSGogQHZCIvULi+jbuzc1VBW7wcAsVWOoJEerry0W/FnFFE/fREqHa2jYtAVffPEF3Tt3JikU4orSBPoNmo7bbGahpuMXBHRBoJ3Hi1uS+Pvf/84///lPEvx+2rncJCkKo0eNIiM+nqDTiU/TCMkyaXFxsb+L9evXk66oLNFdpNsd0cpnu0ByKMTUCRPKBNpvvvkmAUmig0PAbzIjmy34QwkUFFbHYDJhtNhRA0nkVMknIAh0FkT6iRJhjwdZdeKJTyc9K4effvqJnLwCktqMomjSo1gkPVpNbTIjW+3cpEUXJx0cAlZJxyJq+Kq3JaXDOMx2gWCpgeSLXj+CMWrA+bY/yIeBELLNxvfff8+6devIyq1KSvuxUcmGohZcffXVTJo8GUFWyeg+k1Cd7hiNJtavX88777zDsWPHOHXqFCdPniQ5ITEaFElObIqbGlOeILPnHDJz8tD8iRSNf4j4poOxa94Kd/ZPnTrF0qVLmTNnTpmd8MOHD/Pyyy/HTFZ/pnWjRozWdJ7x+ggIAo899hh33nknW7duLXPcnDlzGFa60TBBUamSncOsWbNjUi7vvfceGdlVcHl8XDfvBiZNmoQzLp3iaU+R3nUaBdVLGDn6ajzJVQjV7ITL648tPn/9/D548CATJk5i6LDh5zTc+fm825YsoV3Hziy9/fZz/g5s27aNW2+9tVTbMIVQUQu8aQX06N23wuPPRyg+KeowP/lxNG+ojAkUwF2rVmEXRGwOgRtumn/J46+6+25kVcPp9rJx40Yg2kWhe0MUT99E0fiHsAviJY8L0YogUVbJuXwBKe3HEp+c+pvG+Zkbbrghqp04fRPhWp0YOWr0RZ33wQcfUFijJqkZ2Tz88MO/aw7n4vKBgwnXuozqEx/Fl1bA3Xff/adc5/8DlQnqyvi7kv9sjh07dsEukI8//pjBffty9ciR5WQC/pvYvXs3L730UmzD/9577qEoK4v2zZrFNkFdssxb/iB7Q3Fk6Hq53+HWjRoxslTGMCBJjBg2jCxVo6vTRZzXW8bg/Ge+//57clJSSNWiSe+fx9y0aRNOUcQjilzWuvUlJRkjkQg7duzg7bff/lPXqX//+98JezzYLBamjh//p1xjx44d5CQn41FUFs2/tNgmwedjncvDG/4ATkEos2799NNPeeONN855Xx9++GGSZIXZqkaCLLNhw4bYa93ateMKTeM5r59kRWXLli0XnEteaipLnS7e9AfxSxJjx4yhgSzzqNtLV1VjysSJZY6PRCIsWLAAo9FIYWEhs6ZPp0lJCVMnTCizCXHq1CkeeeQRNmzYEPv/1143D7sgYRckliypeJN8586d1KhVh6TUjFhByM80adE6JnMXym/InXfeWeEYp06dojA7myZOF1U0jVG/kHjcuXMntes3JKtKPo888sgF789v4cyZMzz88MOsW7euTLfC2bNn6dytBza7gO7yxDS9fwsLFy4kXNIu1gnavlOXP2LqZThz5gyyqpHZ81oye1+HySYgKSpNW7TCn1mdQG5tCmvU/MM2gg4cOMA777xzUdXgR44coUXrtsiqTtsOl120Pv2rr76K7o+j2tj7SGx+BQ53XHRtWq8nw4aPYP36BxFEGZtDYNKUab/3LZVhwqQpeJKrENegD4ruKidbWcn54++/PND9rf/+1wPks2fP0q9bN6xmM2GPp8I2r38n961bh+JwIFqtFVbB/jtoXrs2K51u9obiuMzlZuXKleWO2bVrF2NGjGDqpEnnDXirJCfzsNvL7mCYXF2nWf0GNNd0rlZUfJrGmjVrUMxmfCYTitFIgSDik6QyO7yRSITpU6bgNJvxm8y4zGamT4s+ALdu3UqurrMnGI4mx0wmmtjsGA0GPguE+DoYRrFYeOONN/AoCj1ECcloZJ3LwxWSTCO7g4DJxELdyXNeP7LZTE5yMkmKilMUufvuu3nppZc4ePAgC2+6iZp5eag2G/1lmaqiiG63M1bVaKVpdGvXDogGqLt27aJWQQGJDgd+q5V2LVsCUamLoCzzuMdLN1nBZTLFEpoDJZmMpCR8gkAdUaSBLBNSVRZqOs96fYgGA6LRSHuHwN5QHMudLprZHUySVUSDAc1opLco8qDLgyoIsUDt66+/pnv79tTMy0O0WlFMJkSTidYtWjBm1CjMRiNyaaLbZjRSw2bjHX+Qdg6BeLOZv3n91LLZ6SaIeCSJkVdeicNopIrVymBJwmEwEPJ4cIZTKRh9D4Gal5GaloFS2r4nG424S+9xrsVKotVGtaws2rVuzejSxPUkRWXUsGFAVKrgrrvuilbL+v30EyVSzWYcBgMJXm+ZDZNIJMLy22+nRb16iKJM0cQNVBmyBMXmoEDVWLVqVezYRx55hIbu6Pd6gCgjeRPJ7DkHxZ/E8uXLeffdd3nxxRd55ZVX0C0Wrtd0qlit+IJxpHWeEtVSTqhCz969WbduHSaLDbNDxuyQSExKwmA0YrKJ2A1GqpVKhDg8CeRcvgAtrQZqSiFiMAPBZOIel5urZQW/2UxaIIDT4cAjiowfPZopU6fjTsjAnVULk9VBILMIbyAUW1S98MILeANhZM3JLbfeFnt/y5Yvx+4QsNjsWO0iGT1mUzz9aQRvIsE63QlUqcfgocO4fOBgjCYzFrtI3fqNylXnHjp0iAULFrBgwYJY4vhCfP311zQqqUlqMMiMKVNwenzEVWuK6vZz773/6sJ45513cMsyPV1ufJLEpk2beO+991i7dm2ZxcaxY8dIz8rBlZiFTfVQOG49SS2HUad+I86cOcNdd93F7Nmzf1egcurUKVauXEmvXr1xhpJJ7TgeZyi5Qr3HjRs3ojg9xJW0RdZcPP/88yxYsICVK1f+ptbHBx98EEFWkFQnPXr3rXDRefz48d8kwXHo0CEcokTesOVk91+AoulEIhFOnjxJWmY2wYIm+DIK6dT5/KZG52P9+vXEJaWSnZf/uzXhbrzxRgJVG1I8/WnCNTtw1Zj/nOq+ffv2UbVadaw2Gx0v6/qnt7n+N1OZoK6Mvyv57+bIkSMEXS4maDq9NJ2GxcV/9ZT+ED7++GO8ksQDbg/DNJ3WDRsCcHmPHtTUdLrpOunx8eWSNXv27KFl/frkJCaybOlS8pKTedLjY28ojrou9zm1rU+cOMEHH3xQJn4qzMxkjcvNrmCYLE0rkwTduXMnjzzyCBOvuYY6+fmMu+qqMr81V11xBX67HZ/VSouGFRuh/REUZmayRHfxrj9ISJYrXA8fP368jKn1vxO/HjVZ/DgQwiuKsfjv1ptvxiuKpKoq7Zs1qzDxN3rECKaWFkdMUlTG/sLrqH5RESud7qjXkMtVrsK6IrZt20a814tgtXLtzJlUr1GMXVDQVQ/JgsQ15/BSevLJJ3E4HJiNRmaoKrU1nRsuQs7zxx9/PG88Xq1GCYlNB5Fz+UIk1VlGwueZZ55B1pwE0vMJJySdVxf9p59+Ys2aNTz22GNl7mOVgkISmw4iq/c8JFWvsNNt9+7dbNmy5TfFrRfDoUOHfndHwc6dO1GdbuIKm6A4Pb9Ln/5nIpEIX3zxRZkNq+eff55AXCI2USEYF5UWNJpM1Ji6keLpTyMqGv/4xz9+97VfeuklZM2JK5hIlfxqf1pl9jPPPIM3MStaLNR9Jma7hBTKwGwXqd8o6iF04sSJP+X6Z86cYdmyZYwZOzZmnllJWSoT1P8P2bRpE7mazmfBMNfrTprVrv1XT4njx49f1B/5888/z0033VRu1//38Nprr1GzsBCfzUZnpwufppVr1Th+/DgJfj/DVY3LNI1mdc/dKl4tM5OpqsbzXj8BSSLodPGyL6qdW+SOuhgfO3aMIUOG0KXUYfgGTadPly6cOHGCzq1bY7NYiLNYuNvlpsRmo6sg0qJOtMXn5MmT1MzPp8jpxGu3owkCWQmJFFetSqbdTpEo0qhmTR566CGauT1kmC1kWCzsCYbZ6PGRYragGY084/WxKxgmQZZ56623eO+999i4cSNuWaa6y01SIMA//vEPdu3ahS6K1LbZSRQEhgwYwKhhw5g9Y0aZH+VPP/2UsCyzOxjmHX8Q0RrV2P3HP/7BkEGD8IoiitGI1WDAYzLRV5QQjEaukGVu1V0oNht5aWkIJhOa0UQju50Jisp6lweXycStuotim402DgepFgvFNjsrnG5cRhOS0UhJQUFsLsVVqnCVprNQ03EYjax1eXjG60O22/nxxx+5evhw4mWZZEWhce3aaEYTdoMB2WhkSOlncpWscIUkU90VTc6lBQI85vGyNxRHbVHkrrvuwi0rKEYTHnPUqHFWaTDYTRCxGwxkW6zMVjXmqBodW7emKC8Pv8VKN0EgbLNxzdjypm6SzUbYbGaVy00Du50WdgeFmVnljvv666+RVJ38UXeT3m0GQYfEcEVl6pR/6WsdPHiQ9Ph4SmQFh9lCfOMB0R3g+r25Zty/qkWWLVtGD1c0kb3C6SYYiOodV71yBQ5XGKvNQYPGTfHm1MZbrQVOt5drxo1Hjs/BaLJgNFsI1OqC3RnCV9SGkhmbSWo1ArNdJLP3dYQa9EEzGsm3WAk7RExmM6rzX0FxVpUCcgYsomTGZvzpBUyZMuWClUzHjh3DLojkj1xF1eF3YrYJJDTqT/7IVVglnWrVSxh51RiOHDlCUXEtAlXq4c+tQ8mvtNwikQjVqpcQyGtAIK8BhTVqXnLFzooVKwgXNqNkxmbSu06jfuPmZV7/6KOPuP3223njjTfYtGkTiu4mrqAhmssT0xZ7+eWX8SVlU3XkKpyZtTGazCSmpPHhhx8SiUQ4cODABd2id+zYQaOmLWjasnUZWaOfuaxrd3zp1ZB8icQ3GRhtH2t0OVeNHsOHH35YZuOtR+9+JLUeGf2+1OnKtdf+fhOQCxns/FYOHDiAQ5QpGv8QBaPvwWZ3sH37du655x7ee+89br75Zu68884/TXvvUjl06BBFxbWwWG2kZ+X+IUH7pbB///6LllCp5NxUJqgr4+9K/rv55JNPSFSjRQMfBEJIdvufdq133nmHm266ib/97W9/2jV+5rnnnqOotHPxcY+X3KQkICqJddddd7Fw4cKLkmnp07kLHTWdhboTwWgk6HbHDLQvRJ2CAm7SnLzrD5KgKLzxxhtANMHkliRyZZkUi4X1bg91NZ2bro96Oxw9ehSrycTHgRCfBEJYDQaefPLJS74HP/30E/fffz/PP//8OWOO3KQk7nN5+DwYJllVef3118u8/sgjj6AKAqLVyqQK4vU/m7X33ovqcKDa7YwuLWgBCDidvOD181Wp3EZFBp8bN24kKElco6gEf1UE9eSTT+ISRfKcTvIzMi85yfbss89iNJmpdvU6akx5ArNdLHfvfsmoUaNQjEbsBgPdBZH+3S69WCASiTB/wSLqN27OnLnXEQgnUGXIEoqnP407nFKuynjXrl0899xzF1108mucHh9VR6ykePrTOAPxMa+Xn9m8eTOy6sSXnENyWsZfGlPdeNN8wokp1GnQqFy3J0T12e++++4/JNl55swZWrfriOz0IMoqjz322DmPTcvMIa5udxIa98cfjPtDCh4aNGlOSsdxFE/fRCC7+JINVS+WU6dO0bBpcxSXD0FW0HxxZPW9kZwBiwiEE/6Ua1Zy8VQmqP8f8tRTT5Gv6+wKhlmoO2lcs+ZfPaVzEolE2LhxI9dffz23LF5MWJYZpDtxS9IfkqTet28fbllmrqbTQJKpVqUKX331VbnjPv3001gQ+3EghFCafP01b7zxBk5BIMlsRjGZ6NS2LYN696aepnGFqhJwOmM6XY899hipispdTje1NJ3r585l6dKlNNB0RslKLFF6naaTYLMx+Re60sePH2fz5s1lDPfOnDnDhg0buO6661i4cCFPPfUUmiAQZzJRxWKlhs2G02jCYjCgWK1oNhtxskznNm1iu8Y9OnRgnqZH5RokiY4dOnDffffRpjQx+5DbS80qUROPrVu3MmrYMJYsWcKZM2c4ePAgis3GYt3JWFlBMZmYMGECAaeTYl3HazLxWSDEAk1HNhpJKtUy3uqLBlmy1UqxpvFVMMxsVUczm2kmiLzs85PuECjMzKRVkya0qFuX4VdcgdvhYJKikmK2MFqKSnMIFgsBVcVsMNBXlPi6VMLjdV8g+rkZjdwwbx6RSITt27ezbds2tmzZgmw0sszp4l6XG4fBQJ5DQDAaybfZCLlcHD58mJFDhtBQ05iharglmYULF5JptbHZ66OJ3Y5mMNLU7mCz14fXZKK+zY5qNNLKETUVUWw2xsgqTe0OgiYTU1UNtyyX+b4dO3aMdm3acFmp5MgtupM6Njvp4XCF37eFixbjECTMVgfFmoZHUfjwww/LHHPo0CHuvPNOVFHEYnXgyqqNIGuxxQJEq23csswVqkaqojLvuuuwOCRsiodASSdsDhG7IFI0/iFKZmzG6Y/nrbfeolbd+pisDkxWBwaDAYPRhNFsxZmYh9nqoHv3HjhECYco0659B0ry8hA0D0UTHyGt8xRy8goAGDTkCvzZNUlsMQxZc5arEn799ddZuHBhmTkfPXoUm0OgYPQ95I9ajcFowmETMFlsNG/ZKnbcjz/+iM0hUjz9aYqnP43Faovp4X3//ffMnz8fi9UWe91qd5yzWubAgQNMmDiJceMnlEkqvvLKK6ieAOndphPIrcPoq8+9kOnYpRvJbUdTMmMzweptuPHGG4Gobr1NkLEICmaHTHxyGhD9u+7YuSsOUUbRnLz88ss899xzLF26tIwb9alTp3B5/SS1HklSi2EEQvHlFmU/f4ZZfa7HbBcJ1+yIrLlISE5B98ehOd2xe7xw0c14knNJ6zwZPZDA448/fs739Fs5evQon3/+OQcPHmTt2rU88cQTvzl5fc34CYiKhiApDBg4CMXpIVzQCN3trfCZ/p/AkSNH/u0yW2PHjcchKQiSzIpztL1WcnFUJqgr4+9K/rs5efIkWUlJdNF06mt6rCvwj+add97BLUkM0nXCsswDDzzwp1znZ44ePUp+RiY1XVHZwtuXLLnoc99//31GjxjBjTfcwIEDB2jWoAEJVivrXG7GaTr9u3e/qHF27NhBSiiE3WKhddOmhN1uqqSk0KpJE67TdMYqKleUrnNmqhpD+vUDokl0sbRAZ43LjWg0xuKki+X48eNUTc+gkctFqqoya+pUTpw4Qde2bVEFgeZ16/Ljjz+yceNGdFFEdzjKGP/9TNjt5nGPl/dLjTb/ilb7Q4cOlfObqJqWxvW6kyc8XpyCcE6Dts2bNzNp4sQKDa2//vprXnnlFY4fP37e63/xxRe8+OKLZQqSenbsiGpzkNJhHFl9rsfmEM/bWfzhhx/ilCTcFgsGg4E+ffpw5swZps2YSXp2FXr26XdBY8y1a9fiiksjvftMPEk5dO3WHVl344lPp1ad+pdcaXzy5Ek++eSTc1Y/X3vdPFRPAHd8BvFJKdx7771lvh/1GjUl7bJJURmRKnW45557Lun6fxR///vf0bxBqgxdSly97rRo8+c8w37m1VdfxRVKpsbUjWT1mUdqRvY5j929ezd9Lx9Ij959Y75Lv5dOXboTV7c7BaPvwRWXylNPPfWHjFsRZ8+e5fPPP2f37t0EwwmEilrgScrmyhGj/rRrVnJxVCao/x9y+vRpOrdpg2yz4dP1Mkmf/zRunDePOKuV9kI0YTi7tEJ1kO685IDllxw7doy3336bjRs3UlRaOfqi10+y31/h8SdOnCAtLo6+pUaB7Zo2BaIVqtu2bYvtnN5yyy30L9U8vt3pomOzZpw8eZLFixczZdKkMk6skUiEJbfcQos6dZg+aRKnT5/mpptuoqum87zXj2Q00srhQDIaqVqlCm+//TZvvfUWDzzwQKxd6euvv45VWEJ0V9snSfRzuXBLEosWLUK2WFjudNHeIeA3mfCaTGgmE8MGDuT9998v09I0ZvhwLlNUXvD6ybZYSBQEpk+diluWmaCoFGsak8eN46OPPsItSUxWVIo0jfatWkWrDMxmEkxmWjsEOgkiVodId1nhOa8ft8nEe/4gy51Rw8J4s5mGdjuyyUS+plGQk0M1ReWLYJjpmk5IVYmz2VCMRiSjEdnhKBNkPfXUU8gWK23sDuJMJmrbbFhKJUEKLBacRiP5skzQ5UI0GvGYTHRwCGTFx3Pq1CluuuEGRgwZwvbt29Ed0cTyZ8EwuslEYkoqVsWNFMrAZHNw1VVX8d133zF39mwG9+3L1q1buf766+mrqDzn9XO5KJFkNJJnsZBmtqAYjfzN6+dln59ESWLKlCkkWa3sDcXxui+A22SKGkl6vLHE38MPP4zqcCBYrShWK61FCdVoQrTZeOA8BglHjx6NuRWfz6ThH//4B4sXL+a6664rZ8QC8O677zJ37tzYbvjdq1dHNYHtDm6cv4CmLVrjzalDsKQj3kAo1hp6/PhxElPTsQoyhtLq+PmqTr6s8Pjjj/PDDz/EKnW2bduG7o+n+uTHyOg+k8ycvNgYM2bOolef/rzyyitl5vXiiy8i627ianVE1t289NJLsdcW3bwYu0PE7hBZuGgRL7zwQjkX97Nnz5KQnEpc3e7E1elKcloGZ86cYfDQYZhtAnbNh8Uh4y9uT7CkIykZWWWC0JMnTzJr9hx69OpLUkoaweqtCJW0IzUji7Nnz/Ltt9/ywAMPMHv2HOo1asao0VfHAv7du3fz5ptvlgmcp0ydjp5Sjaze87BrfmqURDcIT5w4gdlipXDceorGP4TV5uDw4cOlbt5p1JjyBGmdJxOXmIzuiyNcvQVOjy9WLfH9999jF0RqTN0YrWixWMstPKrXrEOouB0JTQYiKipJqWmkZ2YRyKlN8fRNJLUeSev2HYFoYvza6+bRvHU7lt9xxzm/V7++15OmTCOUmILbH6Jzl+7nrCp59913cXp8KE4vgqITyCrGHZ/OsOEjL+paFbF3716+/fZbmrduR2qnCdHq7+otue222y588v8A33zzDYKsUjT+IaoOvxNR/n1mj//rVCaoK+PvSv77OXDgAPPnz2f58uV/SJfN22+/zcyZM8to/t54440MLi3+WKg76dGhw+++zoU4cuQIGzdujBWyHDlyhAceeIBnnnnmnBuj3377LW5FoYsokSuKXN6zJ3feeSeFssItupMBisqgPn0uaR5ff/01TkHgWa+Pm3UnIV2nmaZzi+ZENBppoem4JYmXX345ds706dNRTSb8ZjOqw1FhR9j5eO2118h1OtkTDPOC10+C18ttt91GI03n/UCQzprOpNKin8OHD7Nv3z4ikQjPPPMMy5cvj8k5xHu9POT28o4/iFsQysWX5+L06dPceeedXH/99RdtgnwpvPfee1TPySE1GGTNOTyMLsTZs2cvqMe7YcMGZM2JLyk75kcDMH3yZAodAvGCjM0uMmnSpAte7/PPP+eOO+6gQ4cOGAwGatWqhTOUQu7AxQTy6jN23Pk1wCdOnES4fm9KZmwmoelghlwxjA8//JAtW7aUq8x94403yKtWnczcqhUm5w8cOEBKeia6L4zbF6hwTfTz+xckhVCtzrji0rj+hn/lHXr07ku4ZgfyrliGM5hY4XX+HTz++OMEMqpRPH0TmT2vpWrRnytTtGPHDlS3n4Ix95LcdjT5hTX+1Ov9mj179lBUUgtVdzFq9NX/tiKPf/zjHyxatIi1a9f+qaaqlVwclQnq/8f88MMP//H6kllx8TzkLpVVsNmJt1hYpDuJk2Wee+653zTmd999R3p8PJm6jldVCbo9dNOdFGgaY0eeOzmyb98+Zs6Ywfz582OVf0GXi3yXi4DTyaeffsrbb7+Np7SlKktVWXLrrZc0twMHDpCVlERQkhBLTQ/HywpeswXFbscrCDR0utAkiTZt2qA7HIRlmV6XXUYkEuGKyy+PyUyMLpV72LhxIyW5ubjsdiwGAx8EQnwQCGEzm1m4cGGZhN/BgwfJz8jEazIxTJKZp2r07dqV7du3M2bkSG677TbOnDnD6tWr6eTxRHWhdRd2k4ktPj8b3F7sRiPDRQmHxYo7rzHxZgsLNSeywYjFYEAyGtGMRh50R8+vp2l07tyZ4oICVJMJs8GAZDaj2mx8HQgxXdFQjUZyLVbcDkeZqtGhQ4eim0xIBgNxZjMfBULMVTVyLVYCZjOdOnXi6aefxulwsFR3MVpRyUtNZeSQIdTTNCYpKm5ZZsFNN6E5HHgFgT5du2IXFfJHrqJkxmYc7jiCZjPZycnce++9TJ8+nbfffpuvvvoqWnlhMpFoNuMymfGYTFgNBnSjkVSzhfaCSKI/wN69e1FtdvpLMsV2B16TiStkBbeisG/fPvbv349f19ng9vBhIITb4WDevHk8/PDD523D3LRpE5ogoJjNBGSZubNmEYlE+Mc//nFBY6CL4cSJE7EA9uqrr8ZiE7DbRSS7nU8++YSffvqJsWPHonjjKJ7+NHGN+mMwGDAbDAhGY5kKf4huyvTudzk2h4is6RfV6jryqtExaZK4xlE5il9y5MiRC1ZerF+/nuKatenctTt79uzhwQcfxBWfQcFVq/EVtcGZUw+T1YFDcTJr1pwy544YNRpfRnUSWw3HaLGR2Go4RRMexiHKvP/++3j8QcJ5dVGcnjI6fg888ACSquMMJlKrTv3Ywnf//v1YbAJKQhXimw7CbLFw9OhRzpw5gyirZPe7kZzLFyBICi+//DIurw+b6qH6xEdJbnc1istHZq+5pe7ODVm7dm3s3jZv2QZfShUkVwCz1UZCcmqZTpPvvvuOK64cQeduPRBllZQO1+DOroPkS6Jw7P2Ea3emV9/+QHShumjRIu69996LNjdas2YNzvgMci5fgJKUjxLOpHe/yys8tmPnriQ2H0qVK5ZhU9wUT99EtTFrkVTtoq51Pq4ZNwF/Tm0ye16L7ov7yxYO/2l89913OESZ/FF3k91/AbrL81dP6b+aygR1ZfxdSSW/5P3338ctSQxXVVIUhTuWLQOikhtxsswi3UmhprHgdxTY/BZOnTpFjSpVqOd0kalpjD+HXvDzzz9PoiCQarFQ3WrDabOxcuVKdLOZejY7osl0ySbyH3zwAXGyzK5gmOe8fgK6zvBBg6ielcXYq65i3bp1fPLJJ+XOe+mll1i8eHG5rsAL8cQTT9CmcWMEsxm/yYTfZKZGXh5z586ld+n6aIyqMWLIkDLn3bxgAcmKQmeXi5Dbzf79+6OdqKKI3WJh9rSLN0Ib2q8fNTWNPqpGgt9fYVdeJBJh//79f+g6/NNPP+XGG2/k8ccfP2/ibtu2bXg1DZvZzLABA855bGFxbTK6z6RkxmYCWdV56KGHALjvvvtQRAW35kPRPNx++7KLnmMkEmH+/PkYjUasokq1MWtJbnMVHTp3LXfc66+/zuuvvx7repU1J/E1WiJrrjJr11+f5/EHSek4jowes5FUrVyV9Pz58wlWi8ryxTfqT/8Bgyoca/Xq1cQXNqVkxuZo3F2nQey17777jsbNWxKMT2LajJn/9m64nzly5Ag5efl4EzORNWfsM/ozmT5jFoIok5CcWk76pJL/Db766iuKa9UjEE7gxt9gbP97qUxQV/KX0rJRI5raHSzSdBSDAafVSlZ8PKvvvvs3j3nzzTfTRY+a9M1Qoy19ixcv5v7777+kXbGJ48YxrDTYGaVqMYOIrVu3MmHcOO67775yP1g/VzA8++yzFf6YnThxgqkTJ1IjP5+g3c4XpfpxiWYzWRYLK50ucixWOgoCDe0Oiq02Pg+GCckyM2fMIKhquM1mZqoa8aLE2LFjYxWM33zzDbLNxv1uD4t1Jw6jkZ5OF2FZ5t5ftCa9+eabpa2IToKSXOGP3aeffopTFEkwm9GNRhwGIxvdXm7QdOxmM4LRSK5dwGex4VE1UsNhGkgyXwfDPOByEzCZ6OQQWOF0o1kssaTuendUC65aaTV0vNmM12Rik8fHnmCYRLMZXRT5+OOPo9rYdju36E7q2+ykmC18GQyzzBnVqh4hK6QmJSFarQgWC6rJRLLFQp6iENajLuV7Q3E09Xh57LHH+Pbbb/nss8+IRCLk5lfDW9Cc5LajMVlsbPB4yJYk4kSRkYqKW5L48MMPCTmd/M3rZ3cwTIIgMm7cOPJSU7lGijpn6zZbTDvvnXfeoWrVfFLSMtBlmaDDgS4ITJo4EV0QcJnMFFttPO32IttsvPzyy5w5c4YPPvjgnAYfuUnJNLc76CIIPOnxkSyKJASCOIxG7EYTt91yS5njI5EIhw4dKvPd+/bbb+nZpx9NWrQ+p5P30aNHMVttBOt0J7HlcKwWG4sWLaJmfj4NFAWLzUHOgEXENxmIao2acJoMBrp37x67ViQSYeWKFfRo144FN910wbbCn7nnnntwhVNJ7TQRZzjaZncuHnzwIXSXB93tjblur7zzTlw2G6LRiM1oZOmSJSxbtoxg1QZRrezWo3B44lGTq5HRYzYldeozesxYuvfsw5tvvklB9Zpk9b2BtE4TkE1mqtrsSDYH6Vk53HHHHYQLGlMyYzNpXaaU0Z5Oy8olq++NUf26uLRYG9qZM2dw+wIktRpOUoth+INxsXv01FNP4Q/F4Q2EohJAGdmkXjYJT9UmGIzGqDSDrOFMq05qpwk4ZL2M7t+pU6eYP38+ku6NVTcUVFBN8cEHH6D74yievomC0fdiFWREWaGwuBb79u3jyJEjhBOSCBU2x5Ocy+Chw8qNUREzZswgWKtztMKl2RC0tBrUqFWvwmN797ucuDpdyB+9BpPVQUr7scTV605B9RIgWt1zy623MWDQEF544YWLuv7PHD9+nCtHjKK4dn2WLK3YAf5/ldtuW4JdEFF155/aGvm/QGWCujL+rqSSX3LrrbfSt7SLcpnTRYfSbkuIGsL3aNeO+TfccN61xhNPPEFGXBxVUlJ49dVX/5B5vfPOO6SoGnuCYf7uC+BRFCBaFNOiXj1CLhdjR45k//79OIxGXvcF2B0ME7TZKMrMZFVpp2kTu4PG9etf0rUjkQhd27UjXlFwCQLLb7/9D3lPFfH222/jl2WuVTUcRiNPeLws0V3Ee718++23pIbDpGoaIbe7nORAcU5OrHCmqdvDww8/DERjtgv5f/yasMvFVl+AvaE4qrpc5ZL6R48epUbNOgiSii8QPmcF76Xw5Zdf4lEUBmg6aarKLYsWnfPYmnl5LNFdfBoIkaKqbN26tcLj2nW8jHCty6gyZAk22YnJbKZdh05MmjSZcP1eUam6Ot2IS0qlYdMWl2Qgfffdd2M0GjFZrAiSUi7OGzh4KLo/Ht0fz6AhVwBRqZDly5efNyl65swZzBYrReMfosaUJxAklW+//bbMMcuXL8eXUZ2iCQ8Tqt6aUVeNqXCs999/H1l3kdD8Cryp+UyYNKXC4/5qjh8/zssvv1zGKLKSSv5MGjZtTnzDPuRdcTuqJ8D27dv/rdevTFBX8rs4fvz4Je0qfv/990ydNIkJ11zDvn37OHToEHlpadgNBjKtVp72+Giu6cy6hJ3sX7N69WpKNJ3t/iA9NZ3RV175m8aZP38+jTWN13wBmmka18+bd97jjx07RrWsLOq7XGSoGhMrMNwYc+WVVBUlHAYDksGIYjBgNxgYIsok2Gw0F0WcRhN7gmG+DIYxGQxs8njR7HYcBgOPuL1MU1Q0mw2f3UEjt5v0+PiYScSmTZtIDQaRHQ46iVIsiG7XuHGZebz99tvMmzePBsXFmIxGqqanl9M4a9msGSU2Gw+6PQRNJgSjkRo2G5rDQVgU2RMM86ovgE+NBgdBl4suuhO/2UyeIOC0WKmakoJgseAwGKhvs9NHlLjP5cFpMvGMx0dnUUKzWLhaVljpdKEbjPSWZCaXaqoVlOrXbXR70Y1GZJMJh9FIK0lGsVhIMJvpKoiEzWYsBgN7gmGe9/rxyzLVNY0RiopHUcqYSnz55Zfcd999OAQJwSZQ32ZjmdOFZDJxfWmA39PtZvTo0cTpOtNUjYfcXlyiyO7du6lZpQqrXW52B8MUOZ1s3LixzH1bu3YtzUqD/TucLtx2Bw+6PXwVDBMym7EaDMRZLKhGI4k+H4mKglOSeOaZZ8p9X7KTkgiaTBRZrTzr9dFAFNFMJj4NhHjC40U0GpEUncTUDHp3745mtWIzGgm7XFx//fWcOnWKOg0aEa7ZkZT2Y7E6RHKSkhjcpw9Hjhzh1KlTdGnbFlPpJkRdWUW1OTAYTTz44IOodjt7gmHm607MNiFqqChqdHaI2M1RjfF+/fpx7Ngx1q9fT5qqslh3kq2q3P2LTabHHnuMBK+PJL+/jJELRBc3ty1ZQuv2nbhtyZJzPk9OnjyJQ5DwVW+LklgVq03g5MmT1MrPx2My8UnpPfHIMt9//z3JaRk4Q8lY7AIWu0h808H40gtJSc8kWNCUhOZXoOouhg67EldcKi5J457Sz62OrLBq1SpefPFFNG+IrN7zCOY34oorR8TmU71mHRKaDCRv2HIsgkooPjG2WfTuu+/SpHkrmrVsU6519bvvvuP666/n1ltvxR+OJ2fgzdSY8gSi7kULJJLZ9wZMNgHBm4QaSqX/wMFlzn/llVdwhVOi+nC955GWmRN77amnnkJzunGIEnEJyaWyGmnlZDW2bduGLzGTkhmbyR91Nx5/sMJ7/ms+/vhjFN2FmpSP2SYgKto5DUz27t1LXkERVpuNho2b0rBpCy7r2iP2nJk951o8STkkNBuCrLkqqzT+QCKRyF9W7fP/icoEdWX8XUklv+Tvf/87fklirqZTqGncMHfuBc/ZuXMnb775JmfPnuXIkSNogsB6t4c7nC78Tucf8qw+cOAALkniNt3FKE2ndqmp+JC+femn6bziC1BF03j00Uepmp7OWFVjudOFS5JoUq8ebRwC95QWl2QlXLpB2NmzZ3nvvff49NNPGTlkCFXT0hg9YkQsUR+JRJgzYwa18vIYd9VVF1VVfPToUV5//fUyBRxr1qyhnqrS0SEgGYx8GAjxmi+A3Whk//79HD9+nA8//JAPP/yQCRMnMWrUKB5//HFOnDjB4D59aKfp3Kq78EpSudjs0KFDrFq1ig0bNlywmOmyli3poGlMUTW8qlrO9HvlypX4s0sonv40CU0H0rlbz4u9ledk9erVdCpNsK9xuWlU49zSC8W5uSx3uvgsECJd08pJ60FU+iQ/IwNBkKLxXCCFYElHLIJK3z59kDUn4ZJ2UYPyZkNIbjsap9t7Scn8LVu24Pf7sdvtrF+/vsy1rTY71SdtoPqkDVht9gt2Sv6Sq64ei+YN4Qol0blbj3Kvnzx5knadOmN3CJTUrndeU/aXXnqJ/gMGMX/BwkvWua6kkv+v5FStRmbv6yievglfal65tfufTWWCupLfxE8//USD4mIsJhP5GRnldi/PRa2CArppGgNUjczExFhr+ezZsxlQWq08U9UY1Lv3b57b6dOnGdS7Nx5FoUW9enz//ffnPf7777/niSeeKLfbfvz4cfp07kLY5aJnp8vOq+W1c+dOgm43AZOZPcEwr/kC+DSt3HH1qlUjx2IhbDbzkNNNA5sd2WjEYTLRvlUr+nfvjmq1MkxR6aWqOG02gk4n+dnZxJnNfB0M8zevH81kjkmj1HW7yzhg37xwIemShM9kYqnTRV1ZYeqECeXmsmrVKurqTr4Ihhmu6Qzs1avM63np6cxRo5p62RZLzFyxr6YhWK3c5XQzVlFJ8no5cuQIe/bsYdmyZaxZs4aVK1fyxhtv8MMPP6CU6ky/4Q/Q3O5ANRqpJYjsDoZp5xCwmkw4bTbspfIgWaLIsmXLOHToEPFeL00cDuLNZmSzmWuuuYb0+Hi8moZkNvOyz8/eUBw5Fis2g4FpqkYrTaNPly7ceeedTJk8uUz74Kuvvopblqmj62h2O9lpaegWC0GLBY/FirNUgkQxmVBNJlxGE7rJRFjTuK80Effkk0/iFEWSVZV61auXC9ZeeOEFkhWFgaKEozSpPlJW2OoL4LbZyLBY6C6ItHUIZFss7A6GuUN3UZCZyY4dO2LJpUgkQkooxBg5Wq0tGgxRHXCDge3+IKtLzWWy+88nrfNkzCYzXYToxkEPUSTBbmdQ7964vH7yR66iePomHJqPGzWd1qrG1SNGMGbMGIpkhWtVnXYOgb2hOJY6XSS4PZw5c4bkYJDRms5QRUURFIqnbyKx1XBSUtLYsGEDs2fPxmg0UlBQwJDBgxmnRI1Gp6saI4cO5dixY9x6663YrVbudbpZ7/agi+JFS0r8kqNHj2KyWJHCmaR3nYZN87Fu3ToG9u2LYjTypj/IPS438Z6orMGxY8fYvn07Bw4cYNOmTXTr2Ye5183D7Q/+Qt4ljE2UsdhFJLOF3rLCw24vYVmOVS4vWbqUajVq0X/g4JgT+tdff43u8mBxyFgknYRmQwjl1WX1BbQCT548SVJqOsGiFviyiikorI4oq0iai2rViwkWNie7341IoQyqDFmC6E/BKiixanEoddhu2wFZjzps/2w8GIlEcIgKRrMVi6hitTtYsWIFGzduLLcAPnDgAKrTTWKLYQQLm9O8VduL/hz27NnD3XffzdKlSys0sv3pp59o2aY9To+Pnn36nXMhWr9xc9JLW0vjqrfkjovUwf7/SiQS4Y47VtC9Vx/uvXftXz2dSjh/gFz5rzL+ruTCvPfee1zeowdjRoy4YCz+38LTTz/NwF69WLxo0QUTmbfefDPe0nixY8uW/OMf/0C127lddzJQlLCYzb8pHqqIF154gaa1atG1bduYX0nH5s2Zr0U7Sts6XaxYsYJdu3bRvlkzGlavznPPPcfOnTvRbDaSLBbCDoHZ06f/5jlcN2cO2YKIZDQiGo20bNQIiHbKVVU11rs91NE0brrhhvOO89133xGXmIw3IQPV6Y5V77366qsIRiPTVY2aNhu60YjbZKJAELi9tHL78OHD+AJhXAm5uMwWUmw2qqSn8+233zL6yitp17gxTzzxRJnrnThxgqrpGbRwusjTNEYNHXre+f30009MHj+ewX37VhgHrV69Gl9GITWmPkl8/V706N039trZs2eZMGYMKf4AxVWrlityORc7duzAK0ncWGr4OWHMmHMe+/LLL+NWFESrlQE9e1a4CbJ69WqaOF3sCYa5QdNRTCZGyCo5VhuJPh87duxgwYIFGE0mqk9+jOJpT1VYrXwh9u/fT506dTAYDMycGZXKOP1/7J11nFRl+4fn1MTp6Zmd7V1qqQU26O5GQEJKOkRECUFABBVREQwUEANRFEXCAoMXCwMDERtBBBUVA15EUWCv3x8zzutK2+/v3evz4R9OPefM2Zn7uZ/v/b0PH8awvZTrPoVy3adg2t4z+jsoKSlh06ZNPP/882V+wWWU8Sdw//33o1teAmm55NcqOu2q6D+KsgR1Gb+Ja6+9lnaWza5ojHMtmwtGjTrlMYcPH0YUBD6OxtgdjeHzeNizZw8Q7yIctm0aBgLxhn3jx9OtbVtumDfvT1WCff7556SFQjTyBwho2jGBwueff84111zD4sWLj7uyeujQIY4ePUrfbt0ZrhtogsB8r48RukGd6vnH7H/dNdcQSCSoz9N1cmWZHdEYS30B8suVA+LJr/NHjGDcBRcklQMXjh5NqixTQZaxRZFysRh9LZu7fH7CmsbWrVuT1+jbvTtTDJMbLC8VFIWmDRoctzHMggULaGnHm4xcbNmc07VrctsPP/yAmrBNaOiMq7eb6QarA0HyLItRo0ZhSxJVZYU6qkbNatV47LHHeOihh7jqqqt47rnnWLJkCc8//zzLly/H63TiF0X0hFo7v0IFJIeD8pKEJTkJSzLbojGW+PykWFbyWe/du5crrriC8jk5eGUZTRCYaVqs9AfRBYGObg+XmRYeh4DgcNC4bj2mTpp0wq7NnVu3ZmYi0X6OqmEqCn6Xi+cDIdq53TRzudkWjdHBo5IlSTwXilDP6aJCZmbyHM8//zy5sRhRr/eEXZ3Hjh6NKYqsC4Ro5HRhiiKaLGMqTixRZLxuoDscREWJl0MRihQnAVkmVddpUqcOqtOJT9eRBIFt0RivhyKogkCeaeIWBCSHA58gIkoKhZPWUGPsPYiCQNdEgrqXqtFP1Yj5fAwcPBQtmIo3Kx/D6ebDaIxrLZuMQIAsVaXQ6eQen58UUeJef4DWmsaQ/v0B2LFjB0P69aNj69Zotp+0ZgOxQjGWLVuWvNdHH30U27YxDAPT5WKI7SWcUIQ3ad6KUMVi7NxCKnh03ghFcMnyGZdT/kz1moVktBoe76pdrwdTp07lhx9+oHGdOsiCgO3xnNL3evDQ4QSzqxCs3gxF86LoPir0vpxK/a5Bk2SqZmVx3oiRTJx48Ql98OfMmUOssB3B/JaEarWj6oiF+GJZp1xh/uCDD7BDKRRPW0etCQ/idLn5+uuv+eijj/jss8+IxtIJZlZEVFwoupfM9hcQrdMNxa1y7733Mmv21bTt2IXbbrudDz/8kK+//ppJl0xFcTrxB0OIipsaF9xNhV4zkZyek04kXnnlFbr3PIfzzr8gqfx+9913Wbp0aalmryfj7bffZubMmSxfvjz5PT3x4klEqjchf8xdBMvVYMGCBcc99pprr8MXyyHWoCe65eOdd945rWv+f+W2227HG8smq/0YrGAs2Vy1jL+PsgR1Wfxdxm9n3759hCyLSyybXpZNi3r1/u4hleKGuXNpUKMGY4YP/1Mm3/v27SNommwIhvkoGiPkdNK+RQtqVa1KSJS4yIiLUI6nbv2jeO655/DrOpW9XipmZvLNN98cd78PP/yQWbNmcd999x0z51qzZg19unVjztVXnzKJOKRfP0xB4MlgmHcjKdiKwkcffcTUqVMZkRAwTDMthiZizBMxY8YMQtWaUDxtHRmthicVyGvWrKGxL26x8lAgSEiSuN3no5JlJRuAv/766wTScjFUk7G6QVAUyZQkbKeThQsWcPDgQTZs2FDKLmHz5s3kWvEKypd/YZHyW/nxxx9p1bYDoiiRXa4CO3fuTG677777qGKYPBEM0cajonk0brvt9tM672OPPUavzp2ZMW3aKRt+/vTTTyftVbNixQryLZs3wlGG6QYpiebuawJBMvz+5H5n9zqHQEZFQjnVaNy85W+akx86dIj+/fvjcDg4++yz+f7773nmmWeoWLkaFStXO6H94KyZM8lNSaF1w4bJfEEZ/z188sknzJgxg5tuuukPaVBbxl/Lzp07eeGFF/6Wz64sQV3Gb+Lqq6+ms2WzOxpjmGVx/mnaaDQoKKCzZdHbtKick5MMdl555RWWLFnCihUruOmmmyhvmtxg+8gzTRbfeuufdh8LFy6kS8JP7gbbR/vEaj/EFZg5sRg9bJs6ls2Anv8pIyopKeGi887DKUn4DYM2TZrQyO0mX1Gok1AijBk9+pjrlZSUsHjxYjLCYTyCiE8UeT0c5WrLS93q1Y87xm+++YbPP/+cTi1bErQsenbtyhdffEHvs86ibrXqLF26lDfffJPt27fz7bffUiE9HU9CVWB7PLz22mvHjGHVqlVcffXVVMzMxFIUIrZdyiPt66+/Rnc6edAXYJimIzocDOnbl5rlK3DZ1Kk8/vjj1PUHeCkUwSeI9FA10tweQi435xgmqiDQxhtvdrng5pspqlyZKYbJU8EwFS2LNWvWoEkSmiCgOAT8spO3Iinc7PVRq2LFUuN988038bvd6A4HHoeDuk4nsy2boKKgJhoyuhwOOnk8pMgK0yZP5sCBA4wcNIjmtWsnk6n/+te/4ol2l5tHAiHKyTLVFAV34ryqw0HvhC3KIE2nQFH4JCWVIZpOfpUqyeaEXrebhV4fDwdCqIrCxIkTk2qVn3nllVfIMk1qO530VTWmJp7JE4EQA3UDXRDwCgIxUcRONJd8N5LCu5EUZIeDcZqOIit4JJlKikKaJNE+oXCeYdpETRNdkjBcHpyqiSbJWJKEnkheBwWRApcLU5Kw3W6qVKhAebcbnyBQ7HRhOp14ZJn3IikUKXH1ukcQCEkSlZ1OMiORY5LIa9eu5fwxFyR9+9atW0f13FyKKldm1qxZiIKAw+HAZ1msX7+en376CUEUKZryKEVT1yIpbnweD9MmTeKDDz5g4OChnD9m7DH+219//TVDhg2nQ+euvPDCC0B8ceumm26ia9duqIZNrKANuuUr9W4fPXr0tALnI0eOMGbMGMJ+P95yRYhOD9VH30HBxJWIihtBcuLUbWKN+mJ4g8c04Dty5AgLFy7EF8uhfK+ZuO0wuuVj4sWTmXbpdIrqNuSSKdOOq+r4/vvvCUZSSG10DtFarahdv1Gp7fv37+eZZ57h6aefRna6SW0yAE8ok/SWQ3HpFlYkk5wuE7BCqTzyyCO8+eabGL4QNS+8l7SWQ5DdOgUTV1J50PWounXKZ/FLnn/+eXTLS2qNJng0nfadujB//s0nfKY7duzA9PpJqXMWvlhOsvv5uYOGkNakf3wRoag9Y8eOZdasWTz11FOlji8pKWHZsmVMnnzJGfka/n/l3EFDkosvsUbncPGkSX/3kP7nKUtQl8XfZfx2tmzZQrmEIOD1cBSvpv3dQ0ry2GOPkW2Y3O0L0MKymTx+/B96/umXXILmdOISBHp6VB4OhNAEgXG6iSXLXJV4LqNMixkzZpz6hL+DL774gpdffvmEwg2IxzV79+495vf++eefJ6rrXGXZ1LIsZs2cedJrbdy4EVUQudsX4IVQBMvl4rPPPuOtt94iYBi0CwTxa9pJvbe/++47graNEcoi//w7CVZvTv8BA2lSXEzU68VyuRhiWuSbJlVycqiQmsqUiROTY//3v/9NMJyCpXsJiSKPBkLsisbIlWUsl4vctDRqeH34NS25EPzVV1/h13WusbwMsSwancQ+42duv+028nNzade0aSkbwV9yvAqy6667ju6JZP0Vlk0wVoFGzVqV2udnlf71c+eelkL43//+90k/3+Nx9OhRhvbvj+n2ULNSJQynk4mGSbGqMnrYsOR+R44cYc2aNaxYseJ3JapKSkq4+uqrEQSBgoICPv3005Pu/9BDD+F1OjlHVelrGPTs1Ok3X7uMv57vvvuOaCyNlKIOhMoXcHav314ZX8afz/bt26lYuRouj8rQESP/dpvAsgR1Gb+Jb7/9loLKlTFcLsqnpx/jX3wi9u3bx8wZM5g2dSpffvklADfOm0eKrlPX54t7o40Zw0WJH+8ppkXvbt2olluOoGly9Sl8oM+UdevWkWOarA4EOcuyOW/If8q6Xn/9dSrY8SDylXC01Ir65s2biek6b0dSuM3rp0J6On7DoE8iwXm+aTFm5MhTXv+S8ePxKAo5KbFjPFhLSko4b8gQdKcTy+M5bhlYSUkJfbt3J1XX8XtUOrRrR6eECmCYYdK7W7djjpkxbRqVTItuhoHb4aCLbuBT1WOSREP79yfDMIjpeqmO4N999x07duzAb5pkKAoNna5Egt9LqiQxStep63TySUoq9/oD1KlalXr5+cy1vbwbSSFDVamRl4dTENgSjvJyKIxbEBAdArrTmUxK/syWLVtwOhw0cDpp7HLR2e1BcTiQHQ6aNGlCXl4e9X5xvaim0bRePTqYJrd6/fjcHto2aULM5yMiCPRUVbIlGdXhYICqEhJFGjpdXKgb5MgyAVHESCS986S4V7TocJAViVIhIwOXw8FLoQjXWjZuh4BPFNEEoVSzyaNHj1K/sBCnw8GWcJTd0RgRSWJ9IMQ820u5lBSCmkaKJPFuOIouCNzp87PE58eZuDdfNJfKA+ehGH58gkANRWFjKMJZqsaYESP44YcfuPPOO6mVl8c5pslyf4CQ200gFMVlBpGcKmMMmzfDUTyKQr+zz6ZSRgZdO3Vi69atRH0+Lrds8hWFpi4343QTf0L17ZMVivIqs2bNGkYNHkxRXh5XXHZZ8gfrwIED2KrKEp+febYXp+JGM4M4FTcOh4OCgoL4YkleVWJ1u5LW6BwC4SibNm3i+++/JxSJkdqoDykFbSmsXVpV1axlG1IK2pDZdjSG7eOLL77gvDFjCeZUJ9agF5phceWVV55x5/efWbNmDam6zhTTIiBJiLKCqLiQ3Aay7sOX14j0lkPj1hON+zFu/H/sce66aymyS40rnN0q6dm59Ol/LgcPHmTx4sX4MypSofflBDLzmD//+I2Ctm3bxuChwxh70bhkyfPhw4fZs2dPqYnI9BkzcWoW2R0vjHdYL+6Et2LdeAKzbjdmzpzJyy+/jB1OpXDyQ1ToMwvDF8StGbhVnWXL7i113aeeeooWLVoRsm0K8vKO8V8cPHQYac0HkTfgWmTVJKP1SPxp5bnuunlAfKL15ptvJr38li5dSmqNeAPJCudcQdX8Au69917Wrl2L7Q8STC+PPxBCceu4rBCSS+X8MRf8ps/sv529e/eyYsWKUpUuv+ahhx7C9IVIrX82uu3n2Wef/QtHWMbxKEtQl8XfZfx2fvjhB8qnp9Pd9lLbsunfo8ffPaQk8+bNo3eimfpc20vXNm3+sHN//vnnmC4XW8JR1gfDOAUBQxSZkJjX5Gg6OZrGdNMiqmnHLN7+1Xz00Udkp6RguFzUyc/n3//+d3Lb9ddfn2wKOd/ro3OLFqc836JFi/CqKqrTyQ1z5yb/f+fOndx3333H2Cn+mldeeYU826anaWM5Pbg9Op1bt2aEZfNMKEyapjGgf39uvvlmHnjgAV577TWOHDnCJRMmUD8/n0snT2bbtm2cO3AQfpeLCUZ8jucXRXJVlfzE57DY66dRrYLkdTdu3EjH5s0Z0LPnKdW6b731FmFN4wF/kJGWTdtfiJtOxaeffkrE66WS4kSVndjplRg3fmJy+4svvpj0Oa9hWcy+4oqTnu/Kyy5DVRR0l4slv+j9cqa8+uqrnDd0KNdeffVpeYQfj08++eSUz27NmjXouk5KSsoJxQklJSWUT0vjLI9KT1UlU5JpWPPEvy1vvvkmdRs0pmZRnbLY6R/Cq6++SiAtl+Jp68i/YCm2L3jMPhs3bmT16tVnvLhSxh9Pmw6dSGvSj5oX3Yc/NZe1a9f+reMpS1CX8ZspKSnhq6+++t3+T3kZGTwUCLI7GqOWz8fcuXMJaBoDvT5CmkblnBxmWDbPhsJENY0333zzN13ns88+48477zwmAXr1lVdSo1w5+nTrxsxLL6VxQQGTxo1j7969hBJNMM62bFrUr8+9997LunXreOGFF0g3DN6PpHCXz0/lzCx2795NejhMOcsmxe9n27ZtfPHFFwzq04fGRcVcd911p/2j/9hjj1G/Rg28sswgTafY6SRie4/Zb8eOHYRUlQ+jMTaGIrgVhZa6zsfRGANOkCRPDYXIk2W6ulVqyjJ3+vwMM0y6devGiIGDkoqCkpISXn311VL+akvuuAPd5cIjSaS6XJytG7gFgQmGiSmItHC5yZAkVIdAtiRT6FEZ2Ls3r7zyCil+P7IgoAkCzoRqeX0gxCOBEIpDQJJdWLLM4sWLk9c7ePAgednZ1Ha5iIoSbRMe1st8AWxBpLeqYQpxBfIFukEDpwsjoR5f6gvwWjgatwWxbNq7PRiCwCBNJ1uS6JdYTLjO9lJVVgiLEpcaFrYgYDocSA4HgzSNBk4XO6MxztONuPedYeJL2JU8FAjGSzdFEUVxJr2A169fT1TTKXQ6qaootNUNdEkiLMsYgoBXlDhf09EkCcHhwO1wYAgiHocDJfF8vOWLKZ62Dn/VppSTJPqoGj5RJN3nT1oyANStVo2lvnjjlKouF4rmpWjKo1QdvgDT6ebhQAjD7ebQoUNJ37ZnnnmG119/nXZNmmA7nUkv74qyQkgUOV83WOT1o8syzUyLFf4glUwrqZ7+7LPPsN1xu5BXwhEcQtyjruDi1QiCiCRJ5Obmsn79egYPHUaDxk1xulVcHpXBQ4dhBSIUTV1LwcSVKE5nqfczEElJekQHMyrwwgsvUC6vKpUHXR9Pzlau85vsD44cOcI333zDBeedx6TEBOUS00J1uginpKKlVMRbsT65XSfhtEJktBqOFYgmvQqPHDmC4nShpVSgaMqjZHW4gHoNm7B3714WLlxI+/YdMHMKSG06gGi9nowafT4//vgjs2fNYsSgQWzatOm449qxYwcpqemohkXV6jVLlWTOmDkTMxgj1qgPHt1CNb2k1u6EbnmZftlleFQdxaPhUo2kH/Xnn3+ebJr6M8899xya5SOt6bkYVpAuHpWav6pUmHPdXII51QjWaEOoVnuKp60ju/M4OnbpxsGDB6lesxBvOA3d8rJhwwbeeustNMtLWvMh2GkVcHk0UvMbYVg+/vWvf7Fp0yZ69uqNovsomvIo1UbeiqS4/+cC0T179hCKxEipXAfDG2DVqlUn3Hf9+vXMnDmTjRs3/nUDLOOElCWoy+LvMo6lpKSEDz744LRK7r/88kvmzJnDbbfd9o9qQPbRRx8Rsiza+wOENK1UH5ffy5dffonudLIpHOHhQCje2Lt5c/IT1aOaJFEhK4teXbuetv/wn8nQ/v05P2HZ2Na2ueGGG5Lb3nrrLfyazjDTItMwuO0X8fnxePLJJ/GqGn6Phy5t2iSrZHfu3MmUSy5h7ty5p7R4++abbwhZFpNMi7Msiw7Nm9O4sJAFCb/khj4fd9xxBzmxGE38fqK6zjm9e1NoWdznD1DDsrg1UXm7bds28jIzMUWRDFWlck4OAaeT2k4n9d0eenbu/Jue2eOPP06BLz6elf4gVbOyz+j4b7/9lqlTp9KwSXMmXjy51DO5/vrr6ZdYFLj5FIsCe/fuxXS5eD0c5V/BMIbb/bcpHyePG4fX48Fyu7n2FB7jW7ZsIRQKIUkSfXr3Pua74bvvvsMlxXs67Y7GcDqEEzbkBkhJyyCz7Shyu07CsLx/SJz50Ucfcc8995SqLi7j9Nm3bx/eQIi0xn2JVG9Cq7ale93MuPwK7FCMcLl8qubX/M3Wj2X8MdRv3IzszuMomvoY4XI1Sonu/g7KEtT/Q3z//feMGjyYetWrl1rV/rtp26QJwyybe3wBgprG+++/z6uvvsqcOXN46aWXqJyZyQP+IDujMSrZ9m/ya9uzZw8pfj8d/X5SdJ07j7PKfN9991HJNFnqC1DHsrh61iy2bNnCub16MWbkSKqWL0+2x4MtCLgdDmxZRhEEbE1L2gAcPHiQLVu2JJupNa9bl366wWzLRhUEiqpXZ968ebz88svs27eP2bNnkx2JEjUMmjZqRJPCQkYOHoxf07jZ66OHRyUqitzi9RGQJPJycqhXs1ZS/bh37964ujoQYr7XR0DTsEQR0eFA/5WqF+KNSpwOB7UUBb8goDgcjNJ0LEkiS1WZblqk6DqPP/74cZ+jpaqsD4YpUJzck0iKtrJtMmIxIorCfK+PR/1BoqLE/f4AlqwkbRhKSkrIjaYw1bDYGomSJknIDgceRcErSbRxu7nKstFlmW3btgEwbdo0Knri1hZPBEPogoBHEBim6QzXdD5JSWWWZVPX6cJMfC4jNZ2eHhWfGLe5KJew6tgQDJMmSfRRVRSHA68gcq3tpYIs4xIE+vXpQ/tWraiRn0++y8Vo3cAQBOo6XeyKxrhQN/BpGjFJIiORoL7G8vJMKIydUFkXVq6MLIpULl+eYabFzkTDQsvjoYmq4nY4uNKyGaBppEoSVRSFaDBIOaeLd8JR3A6BDcEwjwZCKA4HarQ8oqSQqiiIDge5qam89957pT/TJUvwu1zUdDoxHQ5MUSScU0Ba88FITjdB0+SB++/nww8/pFmDBqR4PFS0LLq2a0dJSQlD+valrmUx0LTiqhdZplBxUuR04pNlZiVKUftbNrNnz05+lr3POotc0yRV13GrOtmdxpHTZSIut8qGDRuIRqOoatw72fYFyBt4HdVGLcatm2Rk5xKt0YJg+QKyy1Xk7rvvTgbVo0aPIZBRkZT8pqRlZvPdd98xYtRogrk1SG3cF8P2nXbFxs/s2LGD7JQUdKeTauXKEXQ6udgw8bs8hGq2pV6DhiiKG1lxY4ezESSZ1u3al2pOePjwYWRZQQ1nUzBpNekthlC/cVNi6Zmk5DfBqduYGdUIVGuG5PTw7LPPMnroUBpaNpMME7+uJ30I33//fe6+++64ymfQEFIb9qZo6loi1Roxd+5cSkpKuPSyGdQqrkf9ho3wh1NIzy7HvHnzuO6663jppZdwezSqDl9A5cE34HJ7Si1a3Hbb7dSu35haVasRsW1y0tNJqduV4mnryOowloa6Rao/UOoZHT58mPETJ1Gpaj4uVSdWvydWKJUJEyeyePFiIhVqUTR1LTldJlCruB6rVq3C5VERZYVYeiaxRn0T9hR9k0rpyy+/HFFxk3fudWS2G43s1kv5l58p77zzDlXyaxKMxrjhhpt+83n+ShYvXkwsP640z+06iUbNW536oDL+EZQlqMvi7zJKU1JSQseWLQm63RhOJ1f9wVWNfyW7d+/m7rvvPm6Tu99Lh7ZtURwODEFggKrRu3NnFi9ejMfpZJZlM8OyKZeW9pvP/+OPP7J69Woef/zxEyYkS0pKuHz6dOpWq8aF552XtGdYvXo1zevUYWDv3nz99deMGDiIYZbFx9EYLWybm24q/dv6xhtvcMUVVyST6fcuW0bIskjx+Y5JsBdWqsRtXj87ojHyLJt//etf7N+/n1ggwGDTorFl0bdb91Pe35YtWxjUpw/jLoj3yFi3bh0+TSPP9lKjYjxmbOL380lKKst8AVJ9PiYmhAdjDZPxF11U6nxvv/0269ev5/LLLqNA1bjV6ydFUZJ9ZPbs2cNzzz1XSj1+Mg4ePEh+hYoU+nxENJ1FJ+i18Vt488038WsaowyTbMNg4S23nHDfr7/+GsPlYlM4wuPBEIbHw/Lly9myZUtyn0OHDvHggw/y2GOP/WkNBb/55ht0p5OtkRQ2heO9Zk62IPXaa6/hV1XSJQmHw0HjBg1KvcclJSXUysujh2nRyzCplJV1wvf86NGjSJJMrQkPUnjJI6iGfUr7kFOxdetWDNtHan5jdMv7p/rE/39l79691CysjdOjUTW/Zqk5CkAomkrVEQspmroWf2oOL7300t8z0DKAuJDJtH2Y/jCFtev95U0Rf01Zgvp/iAljx9LKslnmC5BlGKxbt+7vHhIQV2Oe1bo1RZUrc8/ddx+zffny5dgeD+mGQZvGjY/50Xv11VdpXrcurRs0OKG6esmSJXTwxxOqd/j8NC0qOmaf6dOnM8y0kj6/A3v3Tm575ZVXMCWJzm4PMVGirdvNLMvGIwic+4v9fk3YtnkxFOGTlFTKJ9SzHQwTy+Ui7PfjlyTGGyar/EFUh4NrLJs8TaN6Ivm6NhAiJkl8kpJKD49Kc5eL8YnjP/roI0pKSlh6112kB4PkRKO4BAFTEKgiywzTdKrm5HD48GEunTyZVvXqUT47G1UQOEdVyZVkDIeDVFFEkyQyJYkeHpWRmk6H9u2P2wzFZxg8HAjRU1Wp73Qx1/ZiiCIeWeZ83SBHkslP2H7sjsbI93r517/+BcTLHq1Esn1nNEauJJHq95OnxVXQPyeci1WVhx56iAceeIDUhEJ6gddHX1VDFwQqSzKyw0FQFLnB9lFdUeji8VBZlnE6HLwYirA7GsMriNQtLiYtGKSLqlFOlmnjdnORbqCLItMvvZTMYJBUn4+pkybxwAMPYPrDpNQ5C0lxU1HT0AQBSxTjz9XlJujxcKvXTzu3B93hwBIEbEEgJIqYhskgy2ZbJIVKsoImiowyTNJ1HVEQuNK0iIoiu6MxXgtHcTkchESRLFXFkCQ8kpK0BHk5FEFyOLjvvvuYP38+ixYtStpBHI+zu3ShkdNFhiSx3B+ghduNpri4/vrrgXjZXdA0kRPn3xGNEVBVdu3axU8//cQtt9zCpZdeykcffURA07jStJnv9aE4HFhOJ00tm5BlsX37dkpKSvj00085ePAgGzdu5NVXX2XTpk3UKq5LZlYO6YEgtSpV4oknnqB+/fo4HA6cLhdu2YlbUtBkhc2bN3PhhRfidHtIqd8TXyyHa669DogHm/fffz/z589P+lMfPnyYuXPnct75Y46ZTB49epT169fz9NNPnzCAHdi7N2MSCqGWtpcWLVqgGzbpLYcRqdqQMRdcSCwQYLRh0lzVqJWXd9zz3HDDjcguFYcgYHoD3H777YRzqlI8bR2CpFBr4oMUT1uH6Y+wbds2apQrx5pAkE9SUmkWCLJ69WqefvppFI+OonkRFBe67UeUnQSqNSdUqZibbrqJO++8E396BSr2uRItWo5A9ZaU73EpblXnxx9/ZP/+/TjdHmpeeC/5FyxFcbqS1RnPPvssViBKSv0eZCpOXghFaKfpOFWDtGYDcVkhdKeb+b9QSf2al156iZEjR6IZJpHcauimhRlKI3/MUlLq9cCpGngDIfIGzKHmuPtxaSbe1PJU7DubQFYV5s+fD8RV56FIDMmt4bRCmKG036VUq1FYTGarYVQddjO67T9mseafyPr167FDqVTsO5toflOGjji19VMZ/wzKEtRl8XcZpRl7/vl4RZEPozHWBUOognDK5sD/7ZSUlLBy5UquvPLK01ZTPv3000Q0jWmGSSXT5Jb589m5cydBVWVnNMbWSBSXLP8mtevRo0dpXq8ehV4vlSyLkYMGHXe/ZcuWUdm0WO4P0NCyuXLmTN5//30CmsZCr4/elk2d/Hx6nXUWmeEwsijSvF69k6pPv/vuOwy3m8cCIR70B7FVtVTSs0HNmsy2bLZGomQaBi+88AKbNm2iSkIR/HIoQsS2T3mPy+65h3LRKIYo4tN1HnvsMT799FNeeuklDh06xOuvv05U17nHF+Acy6Zl48b4NY0OgSB+Xef1118H4nYSDWrWpHu7dnz22Wec07Vr0v97sGkxa9YsNm7ciF/XqeHzkRWN8sUXX5z02f8cax08eJC1a9f+5qpegI8//pjxF17IjOnTSyXHX3vtNS699NKTVlz9zNxrrsGtKKhOF0HDoKU/QFjTeeCBBzh69ChN69ShttdLZctm+Lnn/uax/kxJSQlXzZpFVjBETiTCXUuWcODAAQy3myeCIVb6g1i/ei9+zaJFizjb72d7NEZdpwuHw0HPnj35/vvvk/t89dVXTL3kEi6ZNClpCXoihgwbgS8lk0BGBVq1af+7VeRTp04lVu9siqetI73FEM4dNOS0jnvkkUfod+4gbr75lhOO4fDhw7z//vunvRjyR7Jp0ya6dDubIcNHnHRO+UcwZNhwUgrbUeOCuwlmV+HuX+V3iuo2ILVBT8r3mI5metm1axcvvfQSjZq1pE37jkmh2v8iR48e5ZlnnuHFF1/8Sysi9u/fzwcffHDKZrh/BWUJ6v8hOrdsybyE51oPr5cbb7zx7x7SafPZZ5+xdevWY37wfvrpJ0K2zTWWlyssm9Rg8Lh/zC+99BJRXec2r58Ots2owYOP2eett97Cr+t0CQQIaBrr169Pbtu0aRPeRHIxW5J5IhiKWyooCgHTpKSkhF27drFo4UJifj+5sRhPP/00Y4YPJ0dRaOFykyZJqA4HdZxOKskyQVHEFASuMW0yEqvI1RSFcYZJQNNo7fOToarYTiedLBuXw8H6YIiPojEkhwOvy0VGLMaUKVPYs2cPLevVZ67tZVc0RnGi2YXf5eKaq66itmVxm9dPQJapkVAUPxIIYQoCGaKILYoUKE6qyAqaIFBR00s9o5+f+4oVK9DkuC+zxyGQKYpcoOuYgsDzoQiLvH6CLjeWJJFvGNSoWDHZPGT79u3YLhdeQSQginhEkUoJv+zHEmOpIivobjd33303XqcTjyBQU1EwHA7auT08EQwhOxxoDgcdE6ppyeHAdDhY7vOjOBykiyK1FCeGKDGgVy+2bt1K5YoVcTocpAgChiAw+rzzWLBgARG3mwt1gyLTpGZhMZltR1M8bR3ROt1wOhzMnj2b+++/n/vuu49ly5bRIhBIel1nh0IENQ1TFAkaJt07duRC0+IRf5BmLjcNXS4ClsUjjzxC0zp1aKbraIJAU5eLCrJMQBB5JhimvKoiO91UGTIfpyM+PkMQ8Igiq1atKhWwHY+ld91F2LZxCQIdEo0Ub/pVw88ZM2bQzLTIkCSutrws8fnxquoxAdKRI0eQRZF3w1E66jai4kKQFVy6SYMGjbjnnnto2aABPo+HoGWVsq3Ys2cPtsfD6kCQqy0veVlZ/PTTTwwaNAiHw0GuLPNSKEI5VeWJJ57gnN69CVhBMpsNJLf7FBo3b33S+zwRZ3XvgT81F19KJgMGHvt3DTC4b1/Os2w+jsZoatvccsstTLh4MtnlK9HznL589913vPfee/To0oXB/fqdNBjev39/spnQrl270C0f2R0vxGmFsHMLiRR2IBSJ8dhjj2H7Q7hdKu08KkHT5NNPP6VGrSLs8sVUHnwD7kAaZlYNGVbkqAABAABJREFUao5bjhrOpmJeFb7//nsmTZpMrH5PiqetI635III1W8ftUySZ/JoFiKJEOJaOW9VwqzrXXDsnOb5FixaRWqtFXCmt6uyOxrjW9lK7Rg1GjT6fGTNmnNIDEmD0mAuINewdb3ZYtzveQATJpaGnViJYtTGS00Ol/tdSc9xy3LrFsOEjyS+ozYSLJ5cKbnbu3EmV6jXxqDpDho34XcFWenYueedeR9GUR/HHsv9rrDDmzr2eKvkFnNNvwN8yKSnjt1GWoC6Lv8sojVeLx3vPhMLc7PUREyXaNW78dw/rT2XenDmUM00GmxYBw2D79u2nddwjjzzC8HPPZfGttybt39o1bUp120uOaXLBaTaX/zUfffQRYU3j42iMtyIpOGX5uPvNmDGDoQnRzWWmxcDevXnssceo64srj9cEgnhFiSssm5imnVYy9Ntvv00qZV8LR49Rym7evJmsaBSnLDPu/PMpKSnh22+/JeL1Msa0aGNZdG/f/iRXgPfee4+AqnKPL8BQTadQcRI+TlL7jttvp3aVqvTqchZff/01H3zwAffccw8ffvgh+/fvp13TpmgJ68EhpknL+vV55JFHCGsaPfx+/LrOW2+9Rc+OHbkykbTu6vWWsjj5JU888QQ+Xccly1w6efIpn9Wp+P7778kIRxhmWnSwLNo0+u1/Rz/99BMLFy6kc+KzXeD10aZhw/i7ov7nXXGd4F05E+688078sswoTWe5P4DP7Y5XBS5dik/XCdt20hrvRLz//vv4dZ1hpkmuYdCxfXsEQaCwsPA3qZ9LSkrYsGED69at+0OshJYuXYo/rTwV+8wimJvP1ddce8pjnnvuOQxvkIzWI0r1b/mZw4cPM2LUaFTTh1u3sbz+v6RB+LPPPktmTnmCkRRUPd5fJqWgDY2bt/xTr3tW955ktI43/k7Jb3pMZcauXbto1a4D1QuKWbNmDQcPHsTy+snqMJb0pgPIKV/pTx3fP5WSkhI6d+2OP5aNHU7lvPMv+LuH9LdQlqD+L+Htt9/m9ttv/11eSA899BAhTaNdIEDYtpPl5v/NfP311+hOJzuiMbZFYyiiyOeff37cfe9asoRmxcWMGjyY77777rj7bN++nSVLlhzTzOr7778nZJpcaJhUlRWyJZnOHg+WINKifn369+iB1+3G5RB4NBDidp+fkGlx9OhRrr/+eipmZ1M+FiPkchERRd4NR7jT64tbXDgE+qgaYVGkUHGiKworV65kyZIlPPnkk3Ro3Ro10bQvU5KopihUTKix8xUFXRBI8QdoUlzMOMNkaySFTEnCEASCms6AHj24IhF89fCoeBwCM0ybFi43uiCQGYvhEQR2RmPsSCS/nwiGyAqH2b59O3lZWUiiSN/u3bnpppuoaVks9QUol0iytnO7yU14OlfxeMhxuRmu6aiShOZ04pZlKqWmMXXSJAb06kVIVdGdTi6dOhWvy80Kf5CLdAOvINDa7aGLaeESBJq53GyNpNDG7UZOjOnJYBi3w0HA4cDlcGCJIimSRGVFwRAEurvcZIsiliBwu9dPQ5eb8mlpdLEsppgWuqJw22238fXXX+PTNNq5PeTIMi1dbuoWFeP2p5Ld8UIMzcYQBLJTU5PvwN69e0kLhWjv85NmGNwyfz4lJSUcOHAg6e2sSxIxScIjCFxlWQRNE4h32J41axadOnZEEQS0xPgVhwNdklANm4KLVxMpV0SqKBJ0xJXwtiCS4vef0Ovx888/x/Z4eDgQYoiq4RFFmnm9hDSN1atX8+WXX1IxIwOHw4EmCJyv64QlmVTbZuXKlYwYOJAWdeuyfPny5DlHDBxIqtuDU7MpnLSGin1nI7k0/JUbYsdyiKg6O6MxrrG8VIjFqF2lCpdMmMBbb71FTNf5KBrj2VCYgGGyf/9+0sNh/KKIklCMp6oa06dPJ0vTmO/1Ud7lRveGmHnFmZcKf/3117g8KgUXryK9+SCcosiLL754zH47d+6kQkYGTkmieb16x036Dx95HprlQ9Ut5s47sbr416xfv57mrdsRiqaiBVJwenQGDRqMW9Uo3/MyKpxzBYrLzRVXXMGmTZuoUVhMRpuRcY/t/FbY5YopmrqWaLVG3HxzvLHili1b4uWFNZogOT3Iqo3LG8VlhfDl1KBw8kPEanei34CBSZX5999/zx133MG8efOw/UFSqjVEkyRyNA2/rp9xieJVV80mVLGYaiNvJVS+Fi1btyFUvoDyPaajWj6s1PJILhVBUsjIKX9G5/4t7Ny5k/SsXETZidvw0rBxs3+Up2kZ//8oS1CXxd9llKZKdg51FCduh4OYJNFM0/4QVeY/maZFRSxJJP66+APc8Tsa0R0+fJh169bxzDPP/ObF2gMHDuDTda63vVxi2VTKzEzGoBs3bkye99133yVgGLQLBPFrGk8//TT79u0jOyWF1j4/UaeTNm43n6SkMsYwmTJlymld/+ILL8Tv8WC73Sds4Pfre3vvvfcYM3IkM6ZPP6U/8JNPPknNhJjqoUCQbEnGUtXTGtvPjL/gAjoaJs+GwtRSnIwzDLIjESAuOFqwYEFyof784cPpbtk8HQxTzbJKxcO/JDsaZZkvwJZwlKCq/m6F53vvvUemGbcleTuSguZy/a7zbdiwgQzD4F5/gI6WzeihQzlw4AB+w2Ce7eViy6Zy9ul7ZR84cIDWjRrhkmVa1K+f7G0ycvBgUkQp2TuqkqomK2XPhDfffJOZM2eycuVKSkpKWL16NZqmEYvFktaQfxclJSVcNmMmNYvqcuG48acVa15zzTWk1ulcqn/LL5k7bx7ejMrkDbgWPbUS/sqNaNuh8591C0n8oQjlzp5GVvsLcNmReNPC8+/EGwj9qdd97bXXsHwB/LEssnLLn1KxvXPnTnTbT9GUR6k14UEkWfnb/NT/Tvbs2YNHNymc/BC1JqxAkpV/hKL5r6YsQf1fwMaNG/FrGl39AXyqyvTp07nzzjt/kz/Mli1bWLZs2e/2Z/qnUFJSQpc2bahmmmTLMn5JImAYSY/m38OhQ4d47733ksHUe++9F1diDh3KmDFjyM/LY0Dvc3j22WdJMwyeC0WwBIEPIim8HIogOxxs3ry51FivvuoqXAmvZCmRoByasLa4yrKppCgMPndg8pi9e/fiFgS2/uKcXlWljtPFyMRxFxkmYZcLr6YRE6W4LYMgEHAIGIrC/PnzCagqHVQVO2H/kfTRTiRI3YLANNNiomHiFUTamSb5FSuSE4lwoWnxQSSFGrZN+9atuTjh83ahYTI0oaYxFIVBfftStXx5enlU/KJIVJTiSnFBYJ7tpb5ucNH559OoqAhJEMjLymLalClYokiaJCE6HOxKNMSQHQ4GJpoYDtF0NEXB9HhwiSIeQcByOKiYsPR4NRxlVzSGXxRJcQh4HA6qygrvRVKYa3uxJYnnEzYr1Xw+XnjhBR5++GHqeb1JFYklSlx33XU4BZFCzWSW5SUgilTIyCz1TnzxxRfceeedx+0Sfccdd9Ay0cRlTuK6AwcMYO3atUn1TJ2aNfE4BGKSRHoiqd/C76dJ85both/F5UEQJVwOB4u8fmZZNl5R5KoTNBx5//33iWga2xNJYVtVeeCBB5ILLBedfz69tXjSuEBRiEkSLZs25dChQww65xw6WzaLvH7Cmpa0zigpKaFybi5Ot0bNC+8lt+tkJI9B8bR1VB2xEKdL5YNICpeYFlFZ4QF/kFqWxYIFC+jSpg3ZpklI05gzezbPPfccNXw+1gVD+AQBh8OBKIq0atWK0bqRVPY0Ki4+Y2+8I0eOcPDgQUzbRyi3gHJOF7bsxCGI1G3QiLfffpu6DRuTmVuBRQkF089/y1u3buXcQUOYMPFi9u/fz7Zt21DcGmZOLaJ1u6O4XGc0no0bN+KPZVM09TEqD7oexaUiihK1xj9A1ZG3IiouUqo3wvCFuOSSKcguD1pKeUTFhex0Y4diVMirUsqjbfv27dx9993cdNNNqIZFsGIxTreHQOUGFE1dS6zhOfTu2z/5mdVt0JhwhUJC5WrQsEkz8msWIkoy/mCY559//oyeLcS//3r16Uc0NYO+AwZy4MABxo2fSN2GTRk2fDi+WDbVRiwipagjPc/pe8bnP1PadzqLtEa9493AIxk8+uijf+r17rxzCTkV8qjXsAk7duz4U69Vxj+TsgR1WfxdRmnefPNNaletRtS2yQ6F6NGx4zHeov/fmDRuHPUtm1mWTfAXsdLfyXPPPUeToiLaNW3K+++/z9iRI8kwDHJMk35nn53c7+OPP+bee+8tJW766quvuOuuu7jsssuI6TpjjHjM9uu49ujRo4wcNIiQZdGyfv3kYjjEq1I7NG9Ok6KiZA+eH374gauvvpqLx48v9Zv5+eef06VVK/Jzc1l4yy3s2LGD66+//oS9bg4ePEjV3HLUUjVsUUSVZRYvWnRGz2dAz55cmlCPn+1R0QSBomrVjjtv/vbbb+ncsiUZoRAXnnfeCWO/9IR9xTuRFMKa9rstxn744QcyI1EGmRZtLYt2TZv9rvMBzL/xRupUrcqQvn2TvZA2btxI87p16diixRkl1a+4/HLaWxbvR1LoZFlMnzYNgEcffRTb6cQnilSUFSplZv5hfrVvvPEG6enpeDyev71J25ny2muvoVteYg16YofTuO2220ttHzX6fFKb9I8rihv0wkit+KfHziUlJShOFzXG3kONi5YjOd1E85sSyMxj8NDhf+q1Ie5Nvnnz5tN6P44ePUqd+o0Il6tBIL0CfQf8JxdSUlLClKmXUrFKPucOHvq3+yP/mRw8eBDdtCnX41KyO15IOBr7n0zUlyWo/ws4f8SIZFKwgixTqGo09HppXq/ef91Lu3v3bkYPG8boYcNOK0m+a9cu6tWoQdA0mTh27HHv9/DhwwS9Xhq64s3sxukmg/ue+Et/x44dzJ07lzvuuIMZM2awYMGCpKfYz+zZs4fc1FQyTZPUQJBXXnnlhM/62WefxZYkKssK5WUZSxDwCiK1PCqzZ8/m4YcfLhWspXq93Gj7eC+Sgl8UCcsK1yea9bkFgcb167N582b+/e9/x71mBYH1wTAr/UFcDoHVq1cT9vnIVxTWBUPUcTpRnU5S9Xg5/9ZICk6Hgwf8QSrqOqogIDscuCSJGprGeCPuRZwtSeyKxnjQH0QVBHRBIGKadGzdGp+moTsEqsoKl5sWu6IxGnh9cV9aSaJlQn0907RwOwQ0UeSVV15hwvjx6KLI2kCIj6MxUiWJRk4nHd0eRIcDVZapr8UVuCNNiyH9+nH55ZdjCwIZksQ5qsoA3cDr9qAJAuGEGloUhKQPcRfLpr+qYQsClWWF8brJLV4fbiGenO6rarR0uUkRJXyJhHahZdHbsokFAkyePJlp06bhV1Wut7100g2a1KlDw6IifFI8OSw5HHgcDi6++OKkRcmpWLNmDZUtixdCEQaaFmleL0VeL3mWxYiBA3n55ZeJejwYgsD2aIx3IimIDgeW281nn33Gtm3bcHlUKvaZhSZKfJQoyZMcjqSy9teUlJTQo1MnMgyDgKoy99rSZWijhw1juG6wOxqjs8eD1+lMJvbqVK3KvQlf9hb+APfff3/yuD5du5Gv6kiiiKi4kJwuMtuOJlqjBWnpcUV9UNcZrGlJ9c2EceM4evQomzZtSgbuX3zxBQHDYLpp0ckw8Wk6jkSi2iVJnGPH1d5r1649rWf8MyseeADD7catKIw57zx8ifexu6oTcnkwozmkZ2aT1rgveedeh277kxO0b7/9FtsfJK3pAMLVmpBfsxY1C4qwy9eOJ+NdKrJq0af/6avCPvjgA3TbT5XBN5LefDBpHp3BpheXx0DxaATy6lM8bR3luk+hfuPmfPTRR8ybN4/777+fr776infeeSfZwOh4bNq0iVtvvZXbb78d2a0hqxaSW6d7j15AfMLpVnWKpjxK4SWPIEoygcw8Ci95mIwWQ2jdvuNJx//iiy9SNb8WedVqsGHDhlPeb0lJCePGTyQQjlK/cdMTVq38kdRr1JScLhPjzSQr1DqhyumPYNu2beiWj0r9ryWtST+K6zX4065Vxj+XsgR1Wfz9T6ekpIQ1a9awcOHCUgnEMv44fvrpJ66cMYM+3br9rt49zz77LLmxGFGvlyV33nnC/T788EMuGDWK6VOnJpOM+/btY/Xq1aVELz9z+PBhFEni7UgK26IxDJfrtN+FRYsW0bVrV5YuXcptt93GypUrkwnae++9l3zL4qVQhD6WzYiB/0kYNahVi1GWzS1eHz5NY8+ePfTs1InmlsUw0yIWCCQVt93atWOQZbPCHySkqvh1nd62l6xEJeLxOHDgAKtXr2bt2rV88803p3Uvv+TVV18lYBjkJaz1LjVNmlk2V8ycecbn+pkVK1ZgyDKmKFIrL48Zl13GxHHjflc18u7du5k0YQJXXnHFCSt7/y4mX3wx5yaS/ENMiwm/aDy5YcMGRo0axZw5c05pQ/hLdu7cyYMPPnjSZ/b5559Tp04dHA4HM2bM+K/Kc7z00ktMnTr1uHY5r776Koblw5dbC1F2Ub5i5dOeX/4eZl5xJbrlxwxE6N6zNzfeeCPLli370xpm/h4OHTrE/fffz8MPP1xqfPfddx++tHLknXsd4bw6XDJl6t84yj+fp556irxqNahRUPyX2MD8EylLUP8XcPP8+dSwLBZ5fUgOBx9FY3wcjaE7nf9VyoWjR49SISODYZbFYNOicnb2KX94urVrx2jL5oVQhPKWxZNPPnnMPiUlJYiCQF2nk03hCO3cHs4+6yzeeOONY87/ySefELIszrFsUiSJqChSXTcY3KdPqf1mzJjBOYkf5lG6gSpJtKhfn0OHDh1z/Zb16zPKMONN/BI2BjmShOV2EzBMGgcC+LX/lNjnROJezduiMdIkCUUQsASBWorCY/4gIVGM+yw7ndx0ww1kRCK4HA48goApSqxevZrDhw8zdMAAUkyTvMxMHnvsMdIjEWokbDa8skJjnx9dFGnpcpMuSaRJEmmBAKOGDsWn6wREkSeCISYaJuVkmR3RGNVtL5dccgkxl5suHg/rgiFsQcCUJBoVFVEtN5fzdIMObjdqQqk9UtMJyjIeWSbftrEVhctMi0cDoWRyvLqi8GE0RmOXi4YuF7d64wn22jVr0aNHD85RNTaHozRzudBFkfnz51OtYkVyVZXqpkmvLl2AuC+YV5LRHQ7cDgeLvT5qKAp+UeRcVcMrxhtK3mh70RNJb9nhoEO7drRs3hyPINBT1air6zSvX5+mtWvTullzoj4fky2bCwwTXRBwiiK2JNNS0wmaJjt37mT58uW0b9GCpk2asGzZsmPerZKSEi487zwitk29GjUIqCof/7xgIMts3LiR7MT5b/X6uc72YggCIaeTm266iSNHjuBye6g26jaC6VXIkCTCokTl7OyTJi+PHj3K5s2b+fDDD4/Z9vHHH5OdkoKlKARUlet+kcC++aabSDcMOvr8pAaDfPnll7z22mvUrteQajUKSE9JQVc1Rg4dSqMmTeON/Txx65AjR46wadMm/LpO20RTmjfeeINvv/2W6dOmMWXy5GSjmVdeeYX+Z59NYc2aRGq1pnDKI+jhTBwOB7FYjPvuu492HbugGSZNW7Q+qUfvgQMH2LRpE5aq8lggxMuhCIbLRbPGjWmX8N++1evHb/oxvf64X/HUtQQzKiYTr5s2bULzBlEjOajR8jitEC47QsU+syietg67XDHZncfhdKulvl+/+OILPvzwwxN+Z92yYAEpaZnE0jOpruvcZPsIezyMHz8eKxClfM/LiFRtyPCR553w/k7Grl27KF+pCrJqEmvUl9yul1C3YVMgPkENR1PJaD6ItCZ9CYRTCOZUo/CSR8hsPYKWbU/s+Xj06FG8/iA5Z02k3NlTMSzvSd+3v4sNGzagW17scCr5tYqOWyb8xhtvkFshD9sf5Lq51//maz333HME0spRNHUtVQbfSCzj9Mtiy/j/Q1mCuiz+/qdzyYQJVDItOnl9ZKeklHnc/4NJCwZZ7PWzLhjCcrv56quvjtnnwIEDpPj9jDYtOlg2HZo3Z9++fZRLS6Oh309E07jj9tLKzJKSEsIJ4csdPj9eTTstheFTTz1FQItX8emSRAvbpqplMXroUADmz59Px0Sl4RWWTY8OHZLHRmyb5xINyctbNq+++iphy2ZTOF6tWMXr5ZVXXgGgMC8vKYYop2m0T1gOLjlBw/rT5fLp0/EbBtVyy/HOO+8cs/2LL76gf79+nGvEq/UmmhYjE711Dh06xFtvvXVGfy833ngjtU2LhwJBarrc5LndDDUt0sPhU9qW/N3s3LmTzZs3n5FVwKeffkpOLEaaYZAZjbJr167fNYY33ngDv67T8leNLI/HDz/8QN++fY/bPPHvYPv27TRr1Yb8gtq/qynsjh07WLFixV9msXr48GFmXH4FTVq05pprrvmvSvb/kquuuoqU4o4UT1tHRpuRnN2rz6kPKuO/mrIE9X8BR48eZca0aTQtKiJkmoy3bCZZNunh8J/iS/Pjjz+ydetW9u3b94ee99tvv0VTFHZHY+yKxnDJ8ilXjJsWFzM/YZtQz+vlmmuuOW5Q165pUzKcTgxBwJZl0nSdVN1g3OjRpfZbtmwZ7X7R6C5XkgmIIik+X6n95s6dS3PL4u1ICp09HkZpOvW9XpYuXXrMtcvHYjwaCBESRZ4JhdkZjRFxuigoKKBvIjCaYdr0T5TdPfHEE2iyjNMRVy0/6Q9SS3Fyh8/P7miM6orCNZaXF0IRZEFAdDjIlmSW+fw0sL0sW7as1PV/+ukniqpWpbKm4XIIeASRourVufbaa/Ekjt8aSWFHNIYmy6SHQsiiiC6KeBwOfE4nF+gGLwfDRJwuquXkxP2dBYHRukFMFBk5fDhHjx4lYBg8HQxjCwJ3+vzc7vPjdDgwBIEcKd48sZymkZeZSUYwiOl2U8njocjpZFc0xkTdxE54K19u2ZRXNQb064dHEOitqvHmiQ4HIVGidn4+S5YsYcWKFUk7h3atWuERBG60fTRyudAEAVMUmW5atDUtAppGL01DFQSW+wNcYVoYgkDlzEx0p5NysswnKam8Go5ieTz4NY0GPj9uQeDjhAe3LIoE3W7mJ7qOd/CoDB8+nLDbjSkIDFA10mWZGZdeesL39pe+b5Msm7ysLI4ePcpZ7drhcjioIsd9xMOCQAOnC11RePbZZ1mwcCEut4rT5WHgoME899xzlJSUsG7dOrIiEdKDIVatWsXrr79OWmY2HlVn8pRp3H///UkrkV9z+PBhPvvss+N+Vzz66KPMnj2bPXv2cPToUfyhCFntx6CnVcbMqkGsfg9Mrx87kk7h5Ico3/MyyudVTR6/fft2li9fzkcffQRA3Ro1OMu0OMe0qJyTw7///e/kBKBvv/54yxVS/fwlRPKb0b9/f2zbxuPxYKVVpOZF9xGp3oQpU6fx7bffsnbtWp599tlksnTXrl2Eo6kE0+PWGBN1kwt0A01RePTRR/G7XMyzvRQ6XXgNk6tmz0a3/QQzKlKjoJgDBw7w/fffs2TJEtz+GHkD52LlFOCv1oLMNqNwGn68FeoiqxbZncahW3by2nfccSeqbqJ7A/To3YfNmzdz7bXX8swzzxz3eV8+fTpdWrXiriVLAFi8+DaK6jZkyLARJ/zOe//991m5cuUJ1cjNWrUhtUFPqgy+EVk10Uwv99xzDxCfoL777rt06daDbj16895779G8VRtcHpVAOMrrr7/OPffcw+LFi5OKrJ85dOgQsqJQMHElhZPW4PKov0mx9Ffw9ddfs3Xr1uP6AW7atIlAJEZWu/OpNvJWdNt/Ws0gj8ePP/5IzcLaBDMrYniD3Pir5i5l/G9QlqAui7//yezbt4+IYfJkMMwnKanU8vlPqwLmv4kPPviAnp0707NTp9/8ff5PwfR42BiKsC2Sgt/j4eOPP05uW7duHRmhMAFdx5Rlxhsmr4QieDWNlStX0sgf98Be5gtQXLnKMed+4YUXqJKdTV5GJk899dRpjadX585cZdk8HgyRJknsjsbYFI6giiKXT5/O3r17qZCRQSXbJmAYvPzyy7z99tv06NiR6uXLk2MYNPT5qJWXx48//kj39u1pZVmcZ1pEfb7kHHLJnXcS1jRq+3xkxWKENI15tpdmts15Q4fy3HPPnbQx9fF47bXXiOk6G0MRpls2jQoKjrvftm3bCNs2dQMBAobB5s2b2bt3LxUzM8k2TcK2fUzPoRMxbuxYLkhUM4/VDfombAhzrdM/x9/B7bfdhk9VyTJN2jdrdkZ5gx9//JFt27YdV5x1plx0wQWMTTy/iwyTsb+an/+akpISZs2alWye+Nlnn/3uMfxWqtUoIK1Jf8r1uBTNtP+SqsE/gstmzCSYU53sTuMwAxGefvrpv3tIv4nt27fjDYSIVamDbnmPO/cq4/8XZQnq/zI+/PBDenXpQs9OnX63/9Xx+Pbbb6mam0u2aRI0zT+0tKCkpITa1avTwbJpZ9nUP43P6amnnsKnaWSbJn63m8yETcDI4cMJWRZVc3J58803+f7777nxxhuZPn06mtPJB5EU3o6k4JSkUmrAN998k6CmMcf20szlZqCqERRFWjVqVOq633//PV1at8YpipSTZd4IR6l9nOQwwA1z55Ki6/ikeDfsVf4guiyT7vZQXpZ5OBCivq5TOTOTxoWFbNiwgUOHDrF3714Mt5u1gRCXmxYeQSBbllEdAk8EQzwVDON0OOjq9pAmSRiKQp38/GNW6rds2UKqqpIrySz3B9gWSSEgirgTqmufIHC15eU2rx9LkrjEtNgRjZGnKFSvVIlrrrkGZ0LpnC3LLPL68Yoig1WNkZqOz+mkab16+DweUvx+bEFAcTh4L5LCuwmbigGJQG2CYaKLYnJl/F//+hdpwSC6KGLKCroskyaKjEj4Z8+2bGpWyqPPOecgCQLlJInbvH52RWPUtCwefvjh5H2OGDiQym4PGYlA+plQGFUQOPuss8gOBEj3+5l88cUMPvdcAorCzmiMjQlfcM3pxHS5sAWB2oqTWoqT7HCYmZbN7miMdFmmrqZT1/bSoUULnA4HLVxulvj8BESR7t2709zlpn1CpbvMFyAvPZ0dO3ZQWLkyfsNg0rhxyQTx559/Tq9u3cgKh2lWrx4ffPABEJ9shVSV9yIp3OsLoAkCqiDgE0QKatbkuuuu46uvvkqWRkJC4app3OsPsNIfxPR4qFytBlkdxpI/ZimKalDdNKlkWZw/bBh3LVlCis9Hbix2wh/xw4cP07ZtW1yJBH9mJMKqVauQZIWCSauRVStpV6HaQTQ7QK3xDxAu6kQoHDmuB/dPP/2E4HDwccJHXJflZLK9Xv2GuFQdO6cmouwit0IlvvnmGz788ENC4TAOh4PUxv2I1e9Bn34DcKs6bl8MUXYSy8iMd2Rv355wQXuKp60j1rA3ktNDqFY7XKrOa6+9xooVK+jSqhXnDRuWTIq/++67bNiwgRUrVmB6PLhlmeZNm5JSFD9PZtvz8PhjZLUfE7cykZ0obo2schVZv3598t4C4ShVhtxI4eSH0Gw/Xo+HgbaXaGLyeLqcqKTuqaeewrB9xCrXwRcMH6OuKCkpwRuKUrHPlRRNXYudWoF58+bx3nvvkZFTDklWGDh4aPL9O3r0KLOumk3rdh1Zctdd9D7rLIpsm+ZeL8XVqh0zQRk6fCSGL4zL8FK1Wo1/vBro17zzzjvolhdF85I3cC6FlzyCN5LOpk2bfvM5Dx06xPr16//RE88y/lzKEtRl8fc/mYaFhWQqCt08KtfZXvya9rtVjv8kjh49SmYkysWWzcWWTUYkwocffsiTTz55jPL1yJEjfPTRR//o3655c+bg9XiIahqD+/Yt9Xvt1TSW+wOsDsQt94oVJzlOJ93ateOVV17Brygs9wfopWq0b9a81HlLSkrofdZZZJkmUU1j+iWXsGfPHm688cZkA7rjMeXii2lh2dzu9eNJzBPO1TSqKwqVTIsHH3yQ77//nldffZWvvvqKn376iVggwBTLZqxpkRoKsXz58uSi+/fff88Vl1/ORRdccIzX8datW3n00Uc5cOAAq1atSsZqKX4/tfx+gqZ5Rt7eGzZsoLJt83E0xjJfgPzc3BPuu3fvXp588slkgvO6666ja0LFPcm0GdCz52ld880338Sv6zQLBNFkmfq6wTDTIi0U+tPfu7179/7ma2RHIjwSCLEzGiPHNH9XXPRLFi9aRNA0yYocf07wa2666SaKLYtV/iC1LYsbb7zxtK6zatWqv715ou0LUn30HRRNfQxvJO0f4UN/OrTp0JmcLhMonraO1OKOzJs37+8e0m9mz549rFq16rjVwmX8/6MsQV1GKRYsWEA7r5fd0Rgzf1XS9Uewf/9+5syZw5w5c45bWrVt2zaGDRjA+cOHJy0CvvzyS2bPnk2DhJL6RtuHV5J4JhTmSstLcZX/KDoPHTqE5nRyl88fL/U3jGOCs6VLl5Jm26QqCk1VlVS//4SKwQ8++ICcWAxFkujSuvUxXtU/8+qrr3LTTTdRWLkyFdLS8GoaZ7k91Fac+CSJoKZxsWUz3+vDp+tJZcEN11+PR1HwKAqzrriCQQMGUJSfj+xwICdUzBfpBqN1g5BpcvjwYQ4cOMAFI0fSoWlT1qxZQ9f27fEIAumSxAKvjy3hKJYgsMof5LVwFKfDQSVJIuByEdZ0ppkWO6MxCp1O8hWFoKZxnz/AO5EUgqLIv4JhOlk2HqcTw+mkRrVqaIlx1FKcZMsybdxuogmPZ6fDQYHi5PlQhJYuNx6Hg7Bl0b5ZcypmZOATRarKMlGPh8q5uRQrTnRB4DzdICCKxESJsKbRrnlzwgnlyAuhCJmGkbRFAahXvTp32D4sQaCO00m6JOFxOEgLhWhu2dztC5CpG0yaNIna+fnEJImgKNLC7SYvK4uCqlWxEgnqoCzTqX17Wlg2awJB8gyTYcOGcdddd/Hjjz/SulEjMl0uUmWZ7FiM9evX4xFFTEHgCsum0OmkU5u2tG/WjHGWzUuhCNmmmVQvVStXjv6GyRDTolxaWjIhWFJSwqjBg7HcbhRRpJPbw+5ojEGaTnXFSWPLovdZZ5V6t3788UdcssyWcDTe6dvpJCOnPBX7zqbwkodxmQFW+QO8Ho5iuN1osszaQIjbvH40SSoVOH7yySeMGjKEShkZ+AWR231+dkZjZEoyHsNL3QYNsSMZyLIT2a3jr9IEPVYRfzCCIIiEJImxukFQ03jhhRdKjXPnzp3okkwnzaCXZuARBKoOX0iNC5chKm7SWw6NNwep241Lf6E+37ZtGx5VxeFw4HS5adu2HZHaXagx9p54klpx07BxUxS3BzMrn/wxS/GWr41dvnY86KrbLen5djx/RoCY389KfzD+t+FyYfuDpOQVo1teevbsTaXK1fB4I5Q7+1LSmvQ/pnFJRnY5crtOovqo21BcboYl7H+usuxSDYlOxDfffENBcV0EUaRug8bHfPe1aN2OrHbnUzxtHdFabZgzZ06p7S+//DKq6UdWLTyhTDy6xffff0/TFq3JaDGEWhMexJ+am/THvOaaOQQy85KqCVkUeT+Swu5ojLCqsmDBguSiCcRLYXXLS1qT/oQr16Pb2b1OeU9/Ns8//zwzZsw4re7wixcvJq2gFTldJiC5VJy6l9btOvwjPfbK+O+hLEFdFn//Uzly5AiiILAlHKWfqmFL0n9dU7FTceDAAdyyzM5ojJ3RGG5JwquqFPn85MRiyWrK7777jro1ahDRNEKWfVLrgC+//JLRw4bRqLiYzHCYRoWFvyvh8c033/Duu++etir1448/5r333kvOSw4cOMATTzyBS4oLYd6OpKAKArd5fVRISeGHH37gkUceIdXjobqiUFWWyc/LS1r9Qby6zO/x8GE0xuvhKK5EpWR3r49KpsXUiy8+7lh++OEHRg0eTHHlygwfMoTsUIhip5PXw1HOsb3HxCFffPEFltudrDaURPGEc6LTYcaMGUmP44tNi2EDBpz2sYcPH6ZVw0akGQa2Rz0jocDixYupa9tsCUc5x7IZM2LEaR336quv8uCDD7Jq1Sree+89rrj8ciZcdNGfatdQUlLC0P79MVwuLI+nlGjndCnIy+MKy+aJYIiAqp5Ro8QT8fnnn2O53TwZDLPY6yc9FDrlMUeOHGH8mDEUVKzIuPPPP24l3Il44403SEtLw+PxsGLFit8z9N/E5EumYodTCeVUpVZRnTMa+9/J0qV3YwWipNbuhGH7ePvtt//yMfz00090PbsnitNJtRoFf6sSvoz/HsoS1GWUYtmyZdSybV4PRxlo2Qzt3/8vu/ahQ4dID4e5wLQYYFkUV/1P4nndunVUtCw2hSOcb1pJhewqf5AKqWnJ/davX0/Yo5IlyYQkiQ6tW5e6xu7du4l4vbT1+bGcLgYPHnxcK5NDhw7x9ttvc+DAAUpKSk7o57Z3717efvvtUirt/fv3YyhOxuoGbVxuTElCc7nYHI6yKxoj4PFwVtu2DB80CL+u08frJU3Xk75y4y+8kHMNg3X+IM6EInVnNIbkcFAtJ4cOrVrRwbK50fYRVFVkUeRef4AaioLbISA5HKgOB2sD8Y7TTkHATvyoy6KIVxBxOwSaudxMMUz8Hg/3+AK8FUnBEkWa6gaGojB6+HA+++wzOrRvT22nk09SUnkkEMISRSbrBl457gXdN9HQ0BAEKsgyFWWZF0MRWug6lijyVDDMJYZJUJapkJnJFMNEcjgYpGpcpJu4HA7auz1Ur1gRv8uFKYroinJMUH3jvHlkGSY+QaCXqnKpYREURVRB4BxV5algCEMQqOT2kGUYNG/ShLysLGpVqsTgwYOp4vFwnz9ALcVJJ7eH/j16MGzAALIiEbLS0hh93nlJhcIPP/zAokWLGDduHNVzy2HJMpVkGTvRTLI4P58ffviBBjVrstDrY1c0RrHXx+rVq/nyyy8RHQ52/awkVpRjGtbs2bOH6dOn00qPN4w82xNXwD8ZDBG27GPes0snTyaoqoQ1jXGjR7Ny5Uo8moFL1ZEVJ3NMiwstm+xYDE0Q+CCSwouhCKogEPZ6+eqrryiqUx9BEEn1aEgOB7WdTmaYFq+HowRFkXCdrnQ9uycTJkwgV1VRdR/F09ZRc9xyJEkhLz2Dq624H+Fwy+byyy/n1VdfJZaWiUszqVSlOi6PRrSoE77cIhyiRJWhN5M/5i4E2YmZWZ1K/a7Gl1b+GKucgwcPMnHiRGRZxrIstEgudoU6RIq7UHXEQnS3iiZKWFYQyWPi9Bi4dB/uQBoewyYUiRGtVIjpC3H77Xcc8/xSfD5WB4JsjUTxezy88sorPPTQQ2zfvp3PPvsMzbQJVG+B25+GlVWd/ucOKnX8iy++SCw9E920GDJ0GBkJ+5Z8y2Leddcd97vhl1w8aTLRmi0pvORhItUac8UVVwDxgH3koEFIihu7XBF5A67FZUeS1h0/8/LLL2OHUqky7GZSm/SjfKV4iW+dBo3J7jyOoimPEsquwurVqwE46+yeZHW4IK42r9uV9FCIUZbNpZaNWxRJySvCsH3JUuBnnnmGcE4Viqeto9rIW4mkZpzynv5MNmzYgGH7idXvgeEL8cgjj5x0/61bt8YT7M0G4k0tx8hR55Ulp8v43ZQlqMvi738ydWvUoJtlca5pUT49/b8maXImtG3ShHq2l/q2l5hlc5Mdt15r6/NxeyJmvvPOO2ni9bIrIazp0qr1Cc9XNz+fvqbFRbpBUBQZZ1o0LixMbv/hhx/4+uuvT2tsGzZswKtppOoGDQsLT8v3+Zd88803lEtLo5bPh6koeF0uDEEk3+mkkmlx1eWXA/Dggw9S7PXycTRGvqJQyeWipu2le0JAtG/fPmyPh+X+ANfbXkK2TZ2EJcjaQIhK6elA3CKrb7fu1M/PZ+ldd5Uay5EjR6hfWIgqCARlmaBllbIggXiytGFhIVkuFxFZpnqFCr/L03bhwoXUtiyeDYVpa9lMnTSJXbt2MaRfP87t1euUCwdHjx7l7bffToqZTsTOnTvZsmVLMib46aef6NO1G5bHQ9PatY9rG/lrJo8bR5phUN6y6Na+/Z/i5fv222+zZs2aUu/fG2+8QZph8EEkheX+AOVTU8/4vFu3bqVGhQqk+gPc/AfZle3YsYOgqvJBJIVnQmG8mvaHnPdk7Nmzh9q1a+NwOJg5c+af8hl89dVX3H777Tz++OPHnP+5557joYceOuO/87+b9evXM2fOnL8lOQ1w1113EcypTq0JDxKrexZ9Bww89UFl/M9TlqAuoxRHjhxhcN++eDWNhgUFx/VZOlnC9vfw8ccfE9Y0dkdjfBiNIQoCnVq2pHFhIU888QRjRozAq2kUV61KjSpVCMgKhixz66JFyXPccccdtPfFA7MFXh8t69UrdY2FCxfS1RcPcG/x+mj7K2uPhx9+mOZ16hDSdTIMg4jXe8Iv9bnXXotHFHELApbLlSybev3116lg2yzx+TES1hnF1atT3jTJtyw0SWK6adFGNyjndLHKH6Sly031ihUpKSlh6uTJnGWYfBhJISKK1HY6qZnwK66rOHGKIvcm7rG530/U62WqZTPL9sYVJrKMIYqokoTlctG0UaNkw8gKGRmkCXH7j3RRRHI4KC4uxnS7ccky7Vq0wEh4UhfoBheMGkXAsvA4HIzWDaorClmRCLogEBBEZiXK5EZoOk6HA48o0i3hMdZP1clOeE8/4A8ScLtZsWIFHocDZ0IdXi2RVC8ny3gEgddDEbaE4orPMWPGHLPS+uSTT1IuI4NqctzvurnLxUzTQnE48DgEuntUUkSJqaYZb1bYsAnBjIqoHo0LE+OaYMR9sDu3a8fSpUuxRJEeqorqcFC/sLCUEiYtGORy08YUBHZFY2yPxhAdDg4fPszq1atpULMmhqKQbhjUr1WLH374gfvuuw9DEGiZsAQxRPG4ybJ///vf1KhYEcHhoJIs09HtIV1R6NauHRBXiLRs0oSwqlKvoIDNmzcnPRiPHj1K3Ro1qGOYVNY0MgMBOjRrRvu2bbEkCcPhwCuIjNNNnLLMRePGE6nZiloXrySUU4tUSaKHx0M00ZDT8KdiRbPQPSqpuo4uySiKi9TG/YhWa0aeahB0u4m4XGRJErYk0al1a/wuN06nh1jj/qQ1G4Rm2kiyjFsQKFQ1BFFGECWs7JoY6ZVx6zZTpl1aKvD78ccf6dq2LaIgkJOWRjAYRBAEBMVF7lkXk9luNNWcLp4NhWnm9uBxeUjLyiW1cT8q9JqB4nQTqVhI8bR1VDznSqrVPLbpzqpVqzA9HjyKwpQJE0ptW758ObGq9ePH952NavpO2Vl7yZ130r1dO66dPfuEidDDhw8n7/PCi8YRq9MlrpAuaMu0aZcC8cCtlmkhOgQC1VuipZTHqRpJT++fKSkpYdCQYShOF4b9H/+1jRs3Yto+NMtHoybNkwtl999/P6Y/TGqdzuiWl8cff5z+PXpQULkyocrxe81qdz6dunYH4hPlQChKSp0uBHNrMGDQkJPe/5/NhAkTiTXqS/G0daS3HMqQYcNPecxzzz3HiJHnMX/+zWXJ6TL+EMoS1GXx9z+Zb775hqmTJzNx3Lj/t6q0Q4cOcdddd7FkyRLO7d2bcyybtYEQuabJ448/DsR/w2vZNu9FUjjfso+pQvslTllOVhNFRYmFXh8V0+IilyeffBKvpqE7nZzbq9cpE2CNCwuZnxAo1Pb6zkjFC7BkyRJaJ2L5+V4fDQoKeOKJJ5g1axYrVqxIXv/HH3+keb16eN1uFIeDHYlY9Jd9fFatWkXF9HRqVKjA6tWr8WsaV1tezrJsenbuDECvLl3obdnc5fMT0fRSNgXTpk0jT1F4LhShvdtD/aLi44558vjxNNJ1lvkClDNMVq5cydzrruP8ESPO2Dri8OHDDD/3XDKCIXp26sSBAwfIy8pipGVzoWWTGYkcd9Fl165dnN2pE+VjMc4fNuyk6vUFN9+Mz+MhTdfxejx4FYXCKlXO2PParSi8EY6yIxqLN0D/VfL+97Jy5UqCmkYjv5+McIQvvviCkpIS3n77baKaxpvhKIu9fipnZf2h1/2ZzZs307FFC7q1bVuquu5ElJSUMLhvX8Kqhu3xMP+GG/6Ucf2aH374gT59+uBwOOjVq9cf2jxx//79pGZkkVKtEd5IBjNmXv6HnfufwMcff8xVV13FkiVL/tIY+ZZbbiFatQFFU9eS0XIIZ3U/PUudP5tDhw7x/PPPHzPfOhn79u1j7ty5zJ8//29v3Pn/nbIEdRlnxMcff0ylzExkUaRVw4Z/aKL6yJEjVC9fns6WTVPbJqLrjLVsFnh92B4PdiJwrFapEl5V5RrLSxfTSgZfEC/fy4hEaOD3E9S0pKLwZzZs2EC6YbDE56eNZXPheeclE+7vvvsuAU1jvtdHJ4+Hrh6ViabF4L59fz1Ujhw5gkuWeSkUYUs4ikcQaFRUxJEjR7hi5kxstxuvKPKAP8jWSAqmKCI4HBTWqEFxQtnwVDCMIYrYgsAEwyRLUcjLzGTeddeRkxL3dtYdDtyJf7YgkCFJaA4HUY9KV5+PFL+f559/no4tWlC/Vi1CCZXwAMsmxTQ5x7IYalnkpqZy+PBhzu7ShZZuD9daNp5EEtUQBLxOF5MnT2b06NHUVFUsQSAkikQNA00QOE/Taeh0oggCfpcbryDQwOkkIsaT1DFJIiMc5tNPPyU7JYUq3rgfotflIiJK6JKUVM3279ePoCAyWo83kDxP0xmh61RTnAzTdMrJMo1dLjq6PRiyzLvvvlvq2X/77bdkx2KkSBKTEypqxeGgq8eTDPQrKgrVKlRAtYMUTXmUcj2m4xEEmrjdaILAIE0jrKo0LCjgWtvL4wn1tS2KFFapklTOu2SZF4JhTEFgqmFxgW5gKQpvvPEGIU3jBttHK8uid9euyUD64Ycfxu1wcIluMMkwERwO1q5dS1owSMA0ue6aa6hTvTq2phELBmnkdPFJSio32D68ssywcwfSukEDmjZsSGVFYY7txS+KnPULu52dO3diKwq7ojHejaQgCQI1K1XibNPiLI+KLghJD/J2rVrRtWt3VMWFJIhYgXSyXC5SvV7aNm7M1KlT6dWnP9lp6aRLEnWdTlSHA1uSUGQnlVxu8mSZsCxjiiL3+wNUlhXqeTw84A+SIUnkdJlI0ZRHUWSFVK+XHFnhlXCUK02Lzq1a0XfAQM7pN4AdO3Yc87d05513Ute2+TAaY6Rl07NLF+rXr4/D4UB2unDrNn01LVkG2rNLF3zBMNVGLaZo6mOYgSiaHaBin1mkFLY7YfDz448/HrdB4dtvv41u+cjqcAHhynUZPPTUydDjsXbtWubMmcPcuXOpVViEKEn4AiE2btzIJ598QlpmNrrtJ7tchaTiZ86cOfSwbc42bAxvFDNWnnoNm5wweNy8eTPVahQQjMa4ds5cdu7cSdMWrcmrWuOY0s8NGzZw7bXXsmXLluT/rVy5El8sh7wBcwhXrs+48ROT23bs2MHUadO45ZZb/hIl3i+rTn7NypUrsULxhofelCzuvPPOP308ZZTxa8oS1GXxdxn/HL7++mvOat2aimlpXD59ejKBe+TIEfqdfTaKJJFfocJJk4dntWlDQ8umnUfFkiQCqsrihMilem4ud/j8bIukkG2avPjiiycdT4fmzZlg2bwWjlLesk67OeHPPPHEE+SYJuuCIfpaNuf2iltrvfnmm1TOysKn68xOVFuVlJSwc+dOoj4fl1s2Myyb1GDwhLHChg0b6NqmLReMHJnsaVKYl8d9/niT+MZ+f6mEeqdOnejmUfkkJZVphkVOOHzc8/bs1ClZSdfPtmlUvz61LYuJholf19m+ffsZPYNf8uOPPyKJIjujMXZFY3hkmbBtEzBN7rn7bgCuveoqPJKEWxAYpukUWRaLFy9OnmP//v28+OKLSRVyzO/niWCIFf4AflFkTSBIH1WjY8uWZzS2zEiErh6V3qqK6fGU6hPzR9Cibl3m2l6GajoZioJbUTDcbhYvWsQl48fjlCSClnVaXs9nyo8//kjE6+XyhNd7ubS0Ux9E/J3ctm0bn376KRAX3fTu05/K1Wsxd+71f/g4f3ndK6+8EofDQVFR0R+2OPfkk08SKVed4mnrqDL4RjJyyv8h5/0n8PXXXxMIR0kpak8gM4/zxoz9y669f/9+8qrmY/rDeAMh3nzzzb/s2ifi4MGDVKleg0B6eXTLe1r2WEeOHCGvaj6Rao0JV6pNk+at/oKR/u9SlqAu44wY3LcvoyybndEYTWwvl112GXPmzEkqGX4v33zzDXPmzOGmm27Cr+u8FIrEfVNlmY5uNxFRpK7ThSGKbI1ES5WvQbyT9ehRo7jwwgt55513jnuNhbfcQuOCAs4bMpTXXnuNjHAERZJoUFBAw4SaYZU/SGVZobdlM/a880odX1JSwr59+9BdLh4JhNgQDOMWBFrUq8fVs2ZRy7KYYlhogsD9/gBbI3FP6MVeHzmmSdiyOMeyybcsquflcXaiYeACr48CxUmmYTB+/HgMQeDRQIguHg+TDJPd0Rit3W6qu1yMGTOGBQsWJAMDgDVr1tAgkfxe7g9gCAI7EzYTfo+HJ554AlOSmWHaDNF0LkgkiCcZJqmiRDm3m+qGiS4IPOoPsj0aI+JyIScUGzuiMWSHAy2hVh6m6ckEt+p0JhNk3333HZs2baJTq1aMMS3u8weoYBisWbMmuT09HKbY6eRfwTD5ikKmJGGKIkGvF8Hh4KPEuC1BoHe3bsd8hn27d08GyUM1nVRJIkWUuNH2UVNxEtR1Ij4/iuyiQq8ZpDcfhOyMJ6evt718GI2RZZoMGzSIqoqTIqeTy0yL3dEYTQyTuoWF3LpoEVMmTsRyOqkmyzR0ugiKIn369GHZsmW0C8QD/Xt8Aern5wPxJF+TZs1xCCIu2UkTl5saFSsStm3u8QV4IhjCLYr01w28gkg3twePIFBLceJLLGK00w1u8fqwRJHr7fg99lZVsn4RNO7duxeXIHBVolmNKgi4Es0jd0djOAWBqCgy3jDRBIHscJgbbR9bI1F8osSIESNK+SDv2rULXZa51x9gvGHiF0UyJIlUUaS1281cy0tVWSYgCHySkkqB4uTyxMSsiizjUtyowQxsWWaVP8gwTaeW4qSuZTNr5syT/s0vXLiQlgnf+8kJ9dNPP/3E+eefj8PhIC8vj4jXSy2/n4ARb6Rz2YyZWMEUQjlVKSiuy8KFi6iSX0Dnrmcft1zz448/Zvbs2dxzzz3HndCtW7eOjl26MWHipN+0Kj7/5puxw6lEarVFVFyEizsjqxZpzQZSsXI1IK4W2r17d6nk7+eff05mNEpVrxfT4+Hqq68+abf0ojoNyGgxmKrDF2B4g1SqUp20RudQvsel6Ka31PfBz2zatImHH36YgwcPUlJSwoyZl1Opag36Dxx83KY7R48e5fXXX//TGpHs37+fwtr1EEWJqvm1jrG/+ZmlS++mR+8+3Hrr4j+llLOMMk5FWYK6LP4u47+H0/mdOHToEAsWLODqq6/m0UcfTValAdSqWJGbvT7eiaSQbhi88sorJz3X9u3bqVGhAqbHkxS7nOl4Z156KeVjMTq1aJn8LSyuWpUrLS/PhyJENK1Uo94tW7bQtnFj2jVpwoYNG7jrrrtOmUj/mUULFpCi6zTz+YnYNt3ateP2226jpKSEJ598EjVh0+cRBCaOH3/cc6xdu5agptEuECBomlTLzeVBf5BPUlJpHQj+bh/01o0a0cT20jJhR/agPxgXkLjdfPXVV3iUuPjh1XAUtyDQzzC57LLLgHiclxoMUlHTUUWRRsXF5GVmcq3t5RLTpFCJWxXe6fNTs/yZJR+b16tHsctNG4+HnFjsD1/EH9q/P9mKQie3hyuteNXmCn8Aw+Vi3759pSry/mg+//xz7IS3+IcJb/HDhw/zwAMPMKRv3+Q7csp7GDGSaH5TKvWbjR1KLdVo/M9g5cqVqKpKamrqSX3nT5cdO3agW15yzppISkEb2nXs8geM8p/BU089RbRcPsXT1lF12C2kZeb8pdc/fPgwH3744T+mie1DDz1EuFw+RVPXUqH35VSpUXDKYz799FM000vR1LUUXvIIgiiedu+BMs6csgR1GWfEwN69udCy2RWNUd8wsdxu+tleMgwjqUL4o5g4diy5pkldr4+gplFOlrnbF08K1na5KNY0KpkW0yZNAuJeXX5NY5xhUsk0mferBh/Ho1PLlky1bLZHY9S0bAKWRUefjxSnE1WWaVq7dik/sG+++YbCKlVwyzIZkQiqLKM4HARNi7feeovu7doxL5FUbK7pqIqC7HCQKUn4RZFMTeOuu+7i6quv5u677+bVV18loGlcbJhUkGWmmxbn2F7mzp1Lms/PtbaXDm4PAzWdDyIp1FCcqKLI3Llzj7mX/fv3UyEjgwZ+P1Fdp1J2Nu0sm+6mRbVy5bjsssuoozixBAGPw0F5WWapL0CeJCM6HGyLpPBRNIbb4WCmafF0MIylOCmuXp2KikIVRaGpy0VAkggmEpVvhqPoLlcyKXjo0CEuuOAC3AmbiQZOF1vCEaroOlUyM+nQvDnDBw6kvmmRnXgmXkFkgmHGk+qyjOVw0NOjMlLT8YoiIwcPBv6zWv/FF19wx+23k20YXGyYGKLIUFVjrG5gCgLNXC7SRRGPIOAXRSIuD4pL5ULdYHGiW7kpy0S8PmoV1aFvr16ENY1husHbkRTyFIVeHpWKpsntt91G906duCTRyGWYYTJt2jQ+++wzIl4vZ3t9ZBkGN15/Pa+99hqWqqK4NWpedB/lelyK5PTw7rvvorlcvBiK8G6iAU6hohAWBFIliTxJRncIlJckTEHgctPivUgKLoeDiCgyQNXiY3Y6kyWZhw8fRlJcBMPZBGMVEAQJQxTpoeucY1mYkszchP3KAE0jpGks9QXYFo0dVxm0adMmck2TXdEY64NhYpLE+mAYzeHALQh4hbjXt+JwUEmKv/OGw4FPFOmnagw1TEKGQYEdTzQ/4A8S8niYMnHiKQP5AwcOULt6dQKqSiwQKLWwdPfdd+PxeIhGo9xyyy2lyjLXrl3L+PHjSzXSPB5fffVV3L6iqD2BjEpcOO74E6+TcfToUWbMvJy6DZsy4/Irjkly123YlPI9plM8bR2+yg3J6jCWUEEHgjXakFOh0inv/8UXXzytktPs8pWo1P8aiqY+RiC9HKbtSyjJ1+JLyeTVV18ttf/V18zB9EcI51anavWap6x4OXr0KO06dsYOp6FZPubN++PLNq+88koi1RpTNPUxogVtGDd+wnH3Kykp4Ysvvjhpwr6MMv5MyhLUZfF3Gf87bNy4kZBto0gSY0eO/NsWRiulp/OAP8jOaIzylsXGjRuP2eeLL74gNRikrd9Pyi962EA80fbII48cN6Z4+eWXGTlyJLmGwRzbS45hsHz5ciDuVdu3b18WLVp0zL1/8803rFy5kjfffJOtW7dyzz33sGvXLiaPG0dN02JMQkH9WxoGPvTQQ0yZMoWNGzfyww8/sHDhQm644QbciUq8rZEUNEWJN+J2uXgyGOapYBinIBDxepOVedOnT+fchJXfRbpBVaeTZvXrUy03F5+qoQkClRUFQ5JYtmzZcceyd+9eenbpQsXUVHp07Zqc2yiSxAc/W8Po+nGrAU/GwYMHTxp/7du3j4DHw5PBMJ+kpFJLcbLY68NwuU64iP9HUVJSQov69anr9VLTtunZqTOPPfYYqbrO5ZZNedMs9X6diEbNW5HbdXK890l+U2699daT7v/FF1/Qo2NH6larzn333febxr5582bS0tJQFIXi/HzuPcHnero89thjNGrWkn7nDjptL/r/Bj755BMM20d6y2FEqjakW4/ef/eQ/lZefvllrECUKkPnk9qgJ63atj/lMT/99BPRWBppjc4hVrszeVXz/4KR/u9SlqAu44z48MMPyYxEMVwuctLTOTvh57zwOH7Ov5eSkhLWr1/Pgw8+yEsvvYTf7aazx8NdPj9hTWPChAmsWrUqGUjddNNN9PmF/3SHpk1PeY0OzZszw7L5KBqj2Ovl1ltvZfHixTz55JPH3X/GZZfR1YorbfuYFhMuvIj777+fG2+8ke3bt9OzRw9sp5Peholf05g0aRIdEsnN620vmX7/MQm7Z555hg6tW2M6XXT1+QkYBtu2beP111+nclYWAdMkOxJFEgQiksy1lk2KrrNhw4Zjxrd//35Wr17N66+/zoEDB5g9ezaXX345X331FfPmzcMjCFximORJMs1cLuo7XVSTFTRJ4jLTYo7txeMQSBFEdEGgc4cOHD58mDo1a9LI5cIUBNIkCVUQ6OlRaWGYdG71nzKXNo0bU+B0UsfpIkeS6e72xBXWositXj8XWTYhVeVWr48rTBu3Q8BMNFLcFY0Rk2UyRZGIKOJ0ONBEkS+++II9e/aQl5mJT1EwXS6W3nUXy5cv58IxY1i0aBFVsrPRBYEGThfbEkngxwIhHvQHcQsCuijS0e3hX8EwlQwDl9tDSqM++KwQttPJo48+SkFeZRRRpJqi8HE0xqWGybABA9i0aRN+XadpIEjQNJOKmzfeeIP+/fvTu3dvHnjgAcaefz79VA1DtSi4eDUV+8xCUtycc/bZNG/UCNvtxpAksmSZfEVBEwSeCIbYHY1RTpYZrxtUlGQCokgzpwtbELjb52esbuB0ODjb52fhwoW88MILXHbZZQQTiWhZdrEsoc72yDKTJ06kXcuWZMoyU0wLQxC46KKLsFUVy+2mb/fulJSU8NFHHzG4b1+G9u/P22+/TX6lSuQZBl5R5GyPylBdJ2qaOB0CpsPBa6EI9/gCqIKAJoo8Hggi/7IZpNNJldxy1LS9BFSVBbfcwsMPP8zzzz+ffD8OHDjA0P79qZ+fz+JfBK9Hjx7lk08+KWX7sHPnTh555BH+9a9/kZ2djaIozJ8/n5KSEr766iuisTRSqtbH9Ie59db/lHj+mnXr1hGtUCtetjfkJlIzc2jfrBl1q1c/rY7ohw4dokuXszCi2ZTveRn+9IrcdtttpfYZe9E4QhUKye54IZJbI1zUGdHpQXZ5KKxTnyeeeOKU1zkd7r77HjTTxhfNpG6DxkyeMhU7lEo4N5/qtQqPsc1ISc+iytD5FE1dSyC9/CmT+W+99RZWIErhJY9QbcQivP5Td2Y/U2bMmEG0ZiuKpq4lpXZnLhh7Yantr732Gq3adiCcmoHLo2P7AmfsbVlGGX8EZQnqsvi7jH8Ohw8f5s477+Smm27i22+//VOuUVJSclL7qb+C5cuXY3s8xHSdDs2bH1eld/fdd9M2UTG5xOenYc2aADz77LP4NY1GgQBRn++YhPGePXuoXr4CUxLzkgmGybixJy/337t3L5mRKE38AUKaViqZePToUW699VYmjh//m0r3l951Fxm6zhjDJKBpvPTSS8lt18yaheVyoQkCQZeLcmlp3DJ/PqbHg+F2M2nixFIVc/Pnz6eOrvNCKEJbt4ez3B5qV6ma3L5p0yauvvrqk46zZYMG9FQ1rrG88Ybo1aoDULtaNQZYFuNNi1ggcEb2lnNmz8ajKGhOF7cvPnGsOuGCC6hmWXQ1DDyCgOF0MXXixBPu/0dy6NAh7r33XlasWMGRI0eYMmUKYxLJ/pmWzdB+/U55jlWrVmF4A6RUrkMoEmPPnj0n3b9Ti5YMtCyW+OKWnL+2czxdxo0diy5JOBwODKeTp59++jed5/87L7/8Mr369GPCxZOOa3f4v8bsq68hmpZJnQaN2L1792kds337dgYMHMywEaNO+X6X8fsoS1CXccYcOXKEr7/+mhdeeIGorjPX9lLfspjyJ/+Qfvvttwzo0ZP6+fnceccdx2x/7bXXCGgakw2LqqbFtbNnn/KcW7ZsIerzoTudNK9fn2uuuYalS5ee0NdtxmWX0S2RoO5rWTQoLqaSadHN68PrdNLatOhrmIRMkw6tWlG/sJAsTWOVP0gny+L8YcOAuOfXpZdcQo/27ZPWFy+//DK33nrrMSvzJSUlcasJSUpaPvT3eo+roj4Za9euxRRFdkdjPOgP4HYI1PL7Cds2FbKyqCwrNHK5aOpyI4sidfLz2b9/P/v372fcuHGYgsjMhCq3ndtDRVkmFgjw2GOPJX285V/4x+mCwFPBMB5ZJsuMW5S8EIpgu934ZJkqikIFWUZNeD9XNk1sRWFRokt7B5cbVZYZO3o0KaEQEVFiezTGw4EQGaEQV11+OT5dJy8ri+eeew7D6cQQBFo5XSgOB1sjKbwWjiI5HNRUFGopCpYg0KC4GKdbxe10U11RyJVkfIZBSUkJI4YORXU4yJYkBIeDvMxM9u7dy86dO1m1ahW9unTBcLupUaEClseDKggM0XTKGwbdu3ShwDRpopkIoozT4UByOKisKPS0bIqqVsWRUB0P0nRMQWCkbnCXz48qCOQYBn63m06qSieXG9UhUKA4yZHiCW2/prFkyRL8Hg+pCa/oS0wLl8PBWN1gqmlROSsbiE8a+vbpQ8zno3JGBrffdhsbNmygWas29D93EHv27CEnFmOMZTPKsrEUhQqWheX2MHr0aBrWqkX3du3YvXs3giBiCgLvRlJYEwhiCCKmJOETRSxBoLlHpWPi/j755BPSMrJR3CpuVaeaZZFlmskqh8F9+9La42GJz49Pkli9ejUlJSXs3r27lKffCy+8gF/XaRwIELZtXn/9ddq2bYvD4aBfv37cfffdpFSuS/G0dVQ45wryC2qf8L3ftWsXhu0jo9VwIlUaEAyGGWvZ3O7z49O0U/rX9e7bH9UfI7XJAIqnrSO1cT/GXFB6Qvfjjz9yydRptO/clREjRjJk2HCKatfDzqpKatMB6Jb3D7PM+Pjjj3nllVeSC13PP/88q1evPq41Sd2GTUht0JMKvS9Ht7ynVP188sknaIZN5UHXk9XhAnLKn1z9/Vv46quvqJBXBY9ukpGdW8qW5LvvvsP2BchsM4po3e6okVyyOoylfuNmf/g4yijjVJQlqMvi7zL+OfTt3p3atk0H20vV3Fx++umnv3tIJ+Xpp5+mS6tWDD/33DNWY37++ee88847J5yLbNq0iaiuc4fPT2fLZtiAAQCc07UrVyTi9N6mxcyZM0slo2pXq0YrVcMnigzWdAKqelyxC8TneosWLaJD+/a08sbnHrd5/dTLr8HBgwfZt28fy5cvL7Xw/dNPP5325/Lhhx/SoLiYqT9XKFoWV155Zal9+px9NkMTdoQ9LZurrroqOd9YsGAB1113Hd98803y2n26d0eXJKJOJwFVPaFS+kSkeL08G4qrmPNkBVmSgLja97yhQxnUpw/vvffeaZ9v37596E4Xm8IRngmFccsyIwYNYt26dcfsW1JSwvLly5k3bx5vvfUWn3/++RmN/bfw2WefsXHjxlLWCytXrqRf37543W4GaDphVWXFihXHHPvJJ59w4UXjuGTK1OSC0datW3nwwQdPS/VdJTOTNYG4PUyRz/ebrUI7NW/OXMtLF4+Kw+GgoKDgD+2PVUYZZfz1lCWoy/hdrFixgu7t2nHZ1Kn/iGDx6aefZvTw4dx6662nXZ53+PBhNm/ejNcZ9wFOdbk4b8iQ4+779ddfUz4tLV5aZllkBIPc6Y2rGGSHg/ciKXySkkpQljlb17nctDBdLvJzc+l/9tlJ39+JY8fS0LKZY3sJa9oxpfkQD1auueoqGtaqRdDlYrphEhZF+mg6/8feeYdHUb1tePruTt/ekhBC770X6R0EBCkSkA7SFQEREFTsBQtFbKBioaioKGJDVFTsCoiioIAVBVGRIuz9/bFrPpGuWH+5ryuXkp05c2Yzm5x553mfJ2iarF279oTOb9++fYw65xxcjwdfxlYiKsuUyMlh4MCBxA2DNmb6iX11109WOMwHH3xAKpUilUpRu1IlGpgmflGkp0/n5UiMuCRRXFGwJZkiHg+uqtGwenWKJZMMt2zOM20cUaSsotC1QwfqVqlC7YwdxnmjRuFVFDZnksg1QWCwYVKvWnW6nHEGCVmmv2HiEwQ8gsD5lk1RWcYRRZ4MRRhjWuRGo8QNg5ciMS5zXAxRxDEMalSujKEoVNM0DFHEzKi9i8gyflEkV5YpnZdH67YdMEWR88x0YKZPFJl60UUEfTptPF4aeTxsiic5y3Ho17s3TWrXpmQySTHD4J1onL6mRbYkUUfTeDESY14gSPkiRWjfsiU5fj+WLDM/EGRtLIEripxjmKiyTFYsRv+M5/hEyyEvEqF2+fLMmTOHl19+mQ8//JCu7dpRs0IFyloWNzoudTUNR5JoUrs2A/v3JyylC8aWKDLIMDFEkWxFIazrvPnmm3z//fesWLGC3t2709ZxuTMQJGEYaF4f4aptSNRsR8069TE1jS3xJJ9mvMU/jMW5zvXTtnHjQ66fdqd3wlI9eAURXRTRZZmuls2KcIRiPh+9e/fm6quv5rvvvqNdu3b4S9Wl5uQniNXuRL7l8FIkRti2AShXpAi3Zz4vLbxemjVqRMczumLYfnTL5rHHHgPSVkJTMzct/WyHSy+9lIMHDzJ16lQEQaBUqVKYTpCcFoNxcyvSucuZx/wMrF69mm49ejFuwgXEXJdVkWhaue44h3z2br/9dqJZRQjFklw/Ix3yksgpSrFO41F0h0CZ+uimc4jK50h8/fXXqF4dq0gFZK+JFckuOLcT4ZNPPmH8hAu44oor/lBS9JYtW2jeuh3lq1Rn4cKFJ7TPvHnziSVzKFWu4inx9TsSBw8e5KuvvjpMGfbRRx9hByLUnPwE1cYtRlQ0clsOoUnzVn/KPAop5FgUFqgL19+F/HMwPR7ei8XZGk9SxLZPqlD4V/PZZ58RNE2ucf30dFw6NGt+ysZ+5513mD17NpdecgmNa9RgSN++BfcWF4wdS2vHZYJlF4gkvJLERRMnAuBTVdbFEiwOhrA1rcDe40iMHzOG6o7DGT6doCTxQCBICU1Dl2VcXSc7GqVxIEgRy+KaK6/kzttvx/B48Kkql06bxrJly46YCQJpO5WgYdDIttFFkZGmRdwwePbZZw/Z7vwxYzjTcXk3Gqeh4zBr1iwAzmjThoaOS0fHpfxvHlb8+OOPrFix4nddH2OGDSNPVWnu8eKXZNqcQCfusdi1axemx8OrkRjPhqOogsBkyyZqGId0F55K9u7de9QHG79m5cqVBAyDCn4/pYoUYceOHdx6yy3kWRYjLBtTUdJiE9Nm8pSph+y7f/9+sooUJVmnE/EqzahZp/5Rj7NhwwYuuugi5s2bd8i8brz+erIsi9MCQcoULcoPP/zwu8737rvuIss06eX68WkagiBQq1atQoVrIYX8iyksUBdSCHB6y5Z013WeCUeJSxKOqjHvzjsPK3KvW7eOkK5zjevS3jAwRRFdEAhKEl5RpKLHwyDDxCsIdPB4+TSWINe2Wbdu3SHjNKtdmzsDQbbGk1Tw6RSLRunXs+chSoe5t9xCBdtmjj9ArqJwg+vnPNOiSDx+wsXpd999l5jfj08UqamqhCSJvoZBR5+PgCjhEQQmZtq4utkOgwYNKlAjQNp3ztQ03orEsAWBSqqKnvFGvtrxU0xWuNpxUQSBAbZN/Zo1cRSFUoqCoyh0Ov10fv75Z7Zs2UJuIoEmy1QpXZqY388ljstFtkNCkhlpO7Rp2gzDdglWaIJquJiyQkuPtyCI0BFFfJlis+3xUMQ02ZzxOw6KIgFRxFUUwprG46EIdwWCuD4fpihyVyDIeMvGFkXK5ORw4MABLEXl+Uyhsqgs45EkQh4PpijSyetjazzJENPC1TQm2ek2NJ8gMM8fYJhh4ssonG1RJE9WqOzxUtrrpaTmISZJLAiEeD+WICZJ+CWJdk2b0rpZM0KSxPWunzKKSpfOnbly+nR0TSMeCNDl9NMZfPbZvPzyyzi6jibKeAWR2/xBRjkuefE4EUliUzzJkmAYWxS5OxBiazxJDX+A+++/nxLZ2dQMBLBkmWFGWnnSUjeIyDJldItIkQrYbpAG1avT0nVpbFkEFYXVkRgDHJcGNWpwxRVXFLQ87du3j5tvvpl61WtwWrVq1KlUiWsySv6Ofn/BDcPPP/+MKkmEi9eg5qRlRKq2oalucr7jUrN8eQDO6tkTvyTRyuPFlSTat25NIF6EGhMfodRZ0wsUu1MnTaK54/JYKEJlx+Guu+4quCYfe+wxXNfF4/Ege3QCxasRiSdP2Kdv2uTJ5FoWtfwBaleqVHBjs3r1ajTdJlKtLWXPvhafHeSVV16hd9/+REpWI1KlJbppHdEP8rfcfvvthMvWJV7vTFQzgKI75PfpW/D6qlWraNSsJV3O7HFYsOHnn3+Oz7SJ1jydYKlatGzTnnXr1v1PeDEfOHCAytVqEitTCyteDEn1EM/KOez3ZyGF/BUUFqgL19+F/Lns27fvhIOz6letSl/HZbLtEHXd313Q+itYtWoVVTIWiM+GoxSNRk/JuC+++CIhw6BHMEjIMA5bj+zevZu+PXrglSQeD0VYE41hiiKO18uWLVvo2bkztV2Xtq6fSiVLHVNYVLVUqQKFa1nDpEg4TFLT2BhPFnTBbUtksSwUoXR2Nrqm8XwkykuRGKogUDcQJBkKsW3btsPGHpifz0UZEcJA06JaxYoF3aS/ZseOHTStWxdTlrFVlS5t2/Ljjz/iURQ2ZDyhk6b1hzvUNm3aRP9evRiQn891111H586dufzyy0+JEveG667Dp6pokkQvXWdbIosBrp+rrrrqD4/9a1KpFKOHDkWTZUK2zapVq465ffumTbkus5Zv6w9w2223cUbr1tyU6WLtoetkNe5D1fPuR1G1gjXorl27GDduHJrPoOrYB6gx8REkST6iKGzbtm04gRCJul0IFinNuAkTD3n9lVdeYcmSJYd0UP4ennnmGWbMmMH777/Pgw8+iM/nI5FI8NZbb/2hcQsppJC/h8ICdSH/am6/7Taa1a7NucOH/6GFRMv69Znh+rk7ECIoSVxsu5Sw7MOsRB588EGaBNNBjfcHQmRJMsVkhUtthxciMVxJopqqsjIcoYiiUN20KJ6dTYmsLIpEIgUJ17NnzqSoZdHIMMiWZR4OhWltWYwdObLgWMMHDy4I5zvPsnFUFcvrZf78+YfN/9cJz9u2bWPC+ecz7aKL6NCsGVMdl0/jSaqqKlYm3HBTPIkoCNRR0rYXtVSNmK7z9NNPHzLuwYMHKZGdzRDHpbWu41dUvILAuExRe5LtcJrmISpJDNANvJKEIYp003WmWjYls7O5ZNo0xowcSU8rbfPR2TA5o3Nn2jZuTF4kgiKKxG2bli1bEilXn1pTllOk9TBcScYSRTr6fFSxbfyWRTdfenE3wbKJWhZuxmaigeaho8/HfcEQIUlCFwRqGAalihUjIklsiSdZFYniE0TGjB7Njh07uPSiiwhKElVVjWqqRlAU8Yhp/+0sWS4IBvQIAi9HYjwcDOMV0sVonyDQyetjWyKL6Y5LSFH4JJ5kRThClixzleOiCQJeQaS0ohI1DHp16UKPM86gpU/ndK+P8l4vF1xwASFdZ000xiw3QFCUGGk7uKpGFVXDKwhkyTJbM/OP2jaWKPJKJMb1rh9LFBljOzwdjpJlWlx88cW0yPiwz/UHcSWJZrqOVxBZHYmxOZ5EE0V69+3Hjz/+yM0338xNN93EyCFDiLkuRSNRKlsWvRyX7EiE77777rBr7dlnnyWg61Q0TKKOU1Bg3bNnT9rDW7eQRAlJ9ZAVCNCmcWM+/vhjAL7//nsqlCyJmlHwP/nkk9ihGFXPu5+808+jfKWqBWMN6t2bCnl5XDB27GFqkI8++gifriMIIlmNehMvX48FCxac8Of9hRdeYOnSpQXq5M2bN1OtZh0U3Sa3zXBqTVmOk1uBhQsXsnLlSkaOHMn548bz4YcfntD4Tz31FG40G1FWqHb+IqpPeAjNq7Nz5062b9+O5fjJO/08sup1pXrteofs26FjZzxujFpTllOmz9VIqgd/LJvcYiVOKEgR0jYgPTp1on3z5if8MOufwo8//sj8+fNZtGgRe/bs+duCqgoppLBAXbj+LuTPY9HChVheLz5V5ZIpU467/ZdffsnQfv0464wzeOedd/6CGf5+fvjhB4olk5zuD1DWcRh/7rnH3+kEGD18OBMy6+9xls25o0Ydtk0qlcLRdZ4OR3k7GsfKFKi3bt3K/v37mT9/PjNnzjzi+u6QYw0dSj3HYXwmAPH+++8n7vOxNpZgpj+ALcnc7g/Sz3Fp17QpPlXlxUiMVyMxNEHgTn+AtpbNjBkzDht7+sUXc5rj8mAwTEX7/0UIL774IlVKlqRCXl5BFtC4cePQRZGYJBGTFSaMHUu9KlXo7bicbzskgsFDOs1eeuklikSjOD4f1x2hCLx+/XpOq16dysWL8+CDD3LgwAGKxuMFlnelc3NP+bpj7969zJk9m2KWxXkZv+1XX32VgwcPsnr16oIA9FQqxaybbya/a9eTDg584403yLYs1scSzPUHqVS8xDG3H5CfT2/H5flIlDKOw9KlS7n2qquo5DhcbLtYokRumxGU6X0VumkXdLzVqtuAWMVGhCo0QTUDRMs3pF7Dxkc8xoMPPkiyfD1qTVlO2b7XUaZClZM6p9/D+aNG4Xq9SKKIqqo8+OCDf/oxN2/ezIUXTmLGjBl/u4d9IYX8FygsUBfyr+W5554j27S43R+kmeP+oQXgzJkz8Yoi/kyr2bZEFpc6Lp3atDlku+3bt5MVDtMxEMQRRaqoKkFJKkjczlFVRpoWm+JJyhgmI0aMIOKm/W4fDoVxfD6+++47Xn31VebMmUOrVq3olCm6Xu34CXu9BQW/5557jpBh0CsQTBcES5Qgz7JwNI0B/Qfw/vvvU6tCBRxNQxFFon4/zz//PMWSSfrZDqfbDjmBAOMclwWBEBExbdHQzafT1ptWFvsEgT66wTmGSUDXDwtwhLRNwLCBAxkxeDD1a9UiLklYgkAPn46VCTIMZryk23m9eAQBn5Au7J5jWuSoKpIg4IgSDwZCdPL6MFSV119/nYsmTaKm45CvG9iiiEf1kGjQE11WuNJxuTcQQpdlrrvuOhKhEDVUjVciMdp4vZTXPOiiSHVNIyFJzMsUZlt6vTT3eGl82mnMmTOHgCxTRlEISxK+jE2FrSj0PussooEApihSXJaJShJRQcQriLTxeAmKIpVkhbZeHyFJIiz9vwd3J5+PsCSxNBSmuW1jqSqXOC5tTQtXUWgbDOHoOuXz8rA1jQscl1GOS8nsbHJjMQI+H9XLlePll18mYZrM8wexRBFNEIiLEoogcI5hco5hUiVTQI/KCkMGDMAriJiiSEKS8coyDatXJycc5qrLLmPlypXkWhaPhSL00A3KK+liuikI1FA1xpgWQdNk3759rF27lrxEAkWSGDZgAKlUiiLhCCvCEZ4LR8nx+dA1jaxQmBdeeIFXXnmFNo0a0alVK2x/kGDpugSLlqffgEEF18qUCy7AEEUsQaC6quJIMi3q1+fTTz8t2CaVSvH999/z888/M3roUBKOg0+SCEZiBWF4H3zwAV3atOH0Fi0KAm3WrVvHlClTuOuuu0ilUnQ/Kx+vP4YgCCiqdtjDlZMhr2Rpshr2ILtpPyTVgx4rRiiaoHe3bhSzbYrbNv179TqpMadfdjmy6qFkt4sofdZlGJbNnj17eP7559HtAEU7nEul4Xdg+4OH7FerXkMUwyVetysef4Ksxn2oNWU58aotuPrqq4973DvvnIeieTE1H919Oqaq/qOVZn+En3/+udBrsJA/jcICdeH6u5A/j5BtsywU4a1oHPdXa99/Ovv37z+mhcIvD1a3b9/OnDlzDglz/6PcdtttVLAdbvUHKW873HmEPB6Au+bPR1dVVEHAJ0lcPHnySR9r//79XHPVVQwfNIjnn3+ekjk55GgeJEHAJ4q0ad2ahtWq0aNTJ7766ivmzJyJoWlooogtilRV01Z7F2QySH7Nvn37GDl4MDXKlGHKBRcUWAqGHYc5/gDzA0H8hsGePXsom5vLta6fLfEkNTWNpg0b8vXXXzNyyJAjekKXyslhjj/AS5EYQV0/LHujUokSTM3cX7g+nQ0bNmD9yvJOleXjWqulUikmT5hAqawsurRte0KhnalUioULFzJu7FhWrVpFKpXizA4dKG7bhHw+KhYrRsOaNSllWlzpuGSbJk888cTxf1AZXnvtNXItmw9jCeYFglTIyzvm9tu3b6dNo0bkhMOMHzOGVCrFwYMHmTVzJgPz85kwYQL+UIRwLMGyZcuA9DUhShI1Jy2j5uQn0HwmEyZMKLCY+S0ff/wxlhMgp/lAIiWrM3josBM+n9/Dzp07MTSNdbEET4UiiIKAIAgMHz78TxM77Nq1i3AsQaJOJyIlq9P9rPw/5TiFFPK/RGGB+hSxZcsWOjRvTu3y5VmyZMlffvz/Jb7++mtmz57N4MGDOTPTQjfTH6D9H/AKG9y3Ly08XpppnrQq1bSISRIlsrMP2/aLL75gzpw5SKLIx/Eks9wAXlEk7vNRo3x5gpaFpWmc0bYt+/fvx6MovBGN80EsgeP10rZpU4rZNjHD4PR27TBFidM8HvyiRESS6NOtW8Gx3njjDW6++WZuu+02yrkuW+JJFgfDBGWZLNflLNMkIcm8F0swyx+gQl4x4mba43hjPIksiuTG4/hEkUsdl0q6jq4oqIJAO82LKAh8Ek+yNZ7EJ4qUzs5m2IABR2y3uu7qqykWjeHJWHwEJAlfxte5daYw7RUEXorEuCcQwhBFZvoDVFM1NsWTjDVtTFFEEARsUUQRRQxZZoRhMdgwmWDZ3O0PUl7V0ASB16JxNseTRHSdjz76iInnn49fljFEkaKyzHmmTRlZJltRqOPxYIsitTQPYUki2zR55JFH+PHHH6lerhy6qqIJAiFJ4qVIjGm2Q0iSyDdMVEEgqGkUlWRGmxanaR62JbK4JxAiLErUUFRsWcZSFDr7dFZFopRXVGxRJG5ZDOrdm2effZazzjiDcWPGsGrVKhYsWMAXX3zBCy+8gK2mF76b4kkkQWDPnj188cUXHDx4kOuuvpqAJ33NzQsE+TCWIEuW8QgCjb3pEMeFwRBFZYW+ffpw1113oWcCC1dHYqiiyM6dO7nnnntYsWIFmzZtomHt2riKQnFFIekz0TQf7b1ezjMtTEXhoYceolnduoS9Xi5xXNbHEpR0HJ555hnaNGmCR/Wgm35kxcOjwTC3+oMUTyYJ2TZXO37G2A6W5qHWlOVUPOdWYsmcQ64Tw+PhVjdAQJK4LxhipGXTuFatw66nW2+9lZqOw5PhCPU8HrxeH4OHDiOVSpGXSHCB4zLNcUkEg3z88cfY/iCJul0JZpdk8kVT2bVrFz3z+5CVk4ssy5QoUYL33nvvqJ/x/fv389RTTxUUwX/hwIEDiJJEjYmPUHPy46g+g/Hjx/PFF1/gURQ+jCXYGEvgVZSTLvQ+99xz5JUsQ5FiJXniiSfYt28feSVKEShdDzNZCo8dYPjI0QXbp1Ip7rvvPgzbjxnOQvMZxKu1ourYB4iUrMott9xyzONt374dn2FRftBMSpw5mbDHh0+SDrFIOVU8++yz9O7bn2uuve4wL+m/gocffhjdsFA1D5MmX/SXH7+Q/z6FBep/x/q7kH8nIdvmsX9ZgfrySy7Boyi4ul5QtPuFn3/+mTM7dECVZXKiUW699VYq5OVRuUQJVq1axZxZs+jevj23zJ79u4tlqVSKqy+/nDanncY1V155zHF++uknduzYcUoe4j755JPUDARo6PFwvmnxVChC3DQPs1DYvXs3V199NQ196Q7DOf4AzWrXOeq4u3fvZuzIkXRs3pwHH3wQVZZZF0vwYSyBqWl8++231KtalZGmxbvROEVlhQEDBhxzrlmhEMtCETbGkySPkNcTsixeisT4NJ4k27J47733qF+tGi1dP01cl+b1j+6n/AtLly6ljOOwIhzhTMdl2IAj5xYdbd/8rl2ZPHEiQZ+PN6NxApLEZY5LH9OkpKKwLZHFMNth2rRpJzxuKpViUJ8+GJqG3zD+kGhj7dq1xAMBQrpO3SpVDrGfrFS1BvFqrUnW6USRvOLHXf+9/PLLnN1vANMvu/xPVxfv3r0b2+vlkVCYB4IhPIJAKUVBEARcf4AzzujCZZdddkIPFE6Ul19+mUjRMtSaspxKI+YRjMRO2diFFPK/SmGB+hTRqFYtRjou8wNBgobBJ5988pfP4X+B77//nrxEgtP9AYpbFo7HQ8dAgLDXy6RJkwq2e/XVV2lSuzYt69fn3Xff5fPPP6dr27bUr1KFG2+8kWXLlhUUYVOpFGVzc6msahSTZYKSxDmmxUjTolrp0kedS8xxGGlaTLJsvIJAXiYR+9a5c3njjTeoWKIEXlWlVqVKhHWdhGnS84wziBkGm+JJXo7EsLxeHE2jv2HQQNWop3no2KJlwTEef/xxiieTFIlGCXm9PB2OcqFlU1vTsCWJ8ZZNriyzMZ7krkCQ8kWLUjwri762QwfHoVndujz44IM0C6VtSR4KhrFEkbii8Fw4iiWKNPF4aeP1YogiNzh+Tjct8rt0BdJhbatXr+ahhx6imGVzTyCIIQgMM0y2xpN09Pro6tMpp6h4xbSy9/1YgmfCUTyiSCOvj6qqxqfxJBfZDuUUhSaah7KKysfxJFNtB0sUqZMp0lqZ4rNfFHFFiSxFRRdFyuTm0r55c6qbFhU9HgxRpJ9h4Igii4Jpj7zarkvjRo3o1LJlgTXLgQMHyO/Zkzyfj24+HzmyzKfxJPcF0/YskYw/dNC26W9aPBGKEJAk5vgDtPB4sUURryBQzqfjEwRCoogjipiCQLnixY+polm8eDFBXScoydTRPFTxGViatyAs75133iFumDwdjpKUZG7xB1gfSxCUJIp7vTStX5/KpUpRJjub0UPP4eeff+arr77CnynG66JIs4YNKVesGM0CAYrbNkHDYIhpUVZRkBSVMr2vpGj70SS8OlvjSaKGQe1KlTjPdigiy8z0B9gcT1LJdXn88ccZNHgokWrtyOtwLkaiBK29Xh4JhvEKAn5JZks8yXuxOIogkN3kbKLlG9CpS7dDznv0sGEERImiGWuS5eEIebHDF2xTpkxhUKZVdbzlkKjYBJ9h88knn6BIEh/Hk3wST2J5PMydO5esig3Tthe9r6RStUML3i+88AKxWAxd14/YFnngwAGa1atHRddPtmkx7TdqorYdOhEpXplYmVpUr12XgwcPcuDAAUK2zUx/gNn+ACHbPmKHwcmwbt06/NFsak5+gqpjH8Dj0wtuMJcvX47luKiaxrARo1i8eDEbN26kboNG+AyLzl27HXdx/8knn2A4Aapf8DCVht+BLKtYqsYLL7zwh+b9W9555x1MJ0CRlkMI51Vg4oUnr876o4QiMcqefS1Vz7sf3XYPUekXUsipoLBA/e9Yfxfy72TxokVYXi9eReHSqVP/7ukck1QqxYSxY7EliaYeL3f6gySCh3Y/PfTQQ1RxXT6OJ5liO9hSOiz7Fn8Ax+ejpGUxw/VTwrK59957//Jz2LdvHxPOO4+W9etz+223ndS+H3zwASHDIE9WeCAYYks8SWW/v8CG4xd27NhBIhQiLsssC0U4y7I5u3t31q9fzxVXXMHDDz98SFF9SN++tHZcrnNcQrpOnx49yLYsiv6qa61u5crkyjI+USQhSQQ9Hi677DKeeOKJQwqnv3D3XXfheL2EdZ2zu3c/rIg/fdo0kqZJOdelZcOGHDx4kB9//JGZM2cye/bsY6qn75o/nxZ169KkYUM6+tP+zde5fjo0bUoqlWL//v0sXryYxYsXH+bvvWvXLvJ79iSgqlzhuFSz00GEVzguOZn18uvROF5RZKjtEDIMXn755aPOZd26ddx555188MEHh3x/586df7gQ3L1jRyY7aVFUU9fPbb+6Xr755hvOHzeeUWPOPaGHSvv27eOK6dMZ1KcPq1ev/kPzOhEWLVpEIhDAlGWucFw6mQ6+cC6CICB7TUJl6lKhcjV++OEH3nnnnSNeQyfDjh078IciZJ3Wi2i5+pzeueshr+/du5e33377lBbFCynkv05hgfoUUTQa5alwOnCtnOueUJBWISfPypUrqZ6xcng6HCU7FCLsutSxbYpaFldOn86+ffsIOw7Xun6mZ7x0WzRowGDH4c5AEF0Uqeq4lMjOZseOHXz55Ze4Xi+fxpN8GEvgE0Usj4eAYfDMM88cdS5FIhFaeLw00Dxkywpb40keDIYpl5tLlzZtOM9xWRtLUMF1mTNnDmvXruXrr7/G8flYHAxzjeunZHY2ixYtIm6ahDSNoGlx0ZQpnNW5MzffeCOurnN/MMQ9gRCmpmHKMjmyzNmmRTwYxPXpBFUVryTh6jrLly/ns88+44Jx47h42jS+//57Pv/8cyKOQ75pUVxRONe0qK95KKooGIKAlikMl8gEnjwcCpMXibB48WICuk5Z1yUnHqeH6/JeLEFxWaax5uGjeJLGHg9TbYdRGcV5A01DF0W8osgZHTvStHFjrEy4YViSqKAodPH6qKCqbIonme64lFYUDFWlYrFiBeEcdTWNcoqCX5S4zHYYYjtIgsDGeJIhhsnYTGGzlqrR2OPlSsclqOu8//77h/yMup/ekWKaRklFoaPHS+gX5bckEZRlptgOW+NJ6lk2rs9HM9ePJgiEJYmQKBEWBMopKmFRoqqqMtV20EWRhqpK0DSPubBpVL06t/uDbIwlKKZ5cIpVRxVFvLLMmGHDeO655yjvuqyLxunk9eLLWHycpnkIatohYZW/ZvPmzZx//vncfPPNrFq1ioqZRfLT4SiWKLEtkcXyYBjZa1LjwkepPOouZFmlveNSuVQpiicSXGDZxCUZO/NQIejz8dNPP9F/wAB8kkw9jxefJKM5ETRZpa+uF7RslnccurRvT9/+Axk95lxuueWWQwqg+/fvx6eqFJFlKqsqriRxzRVXHHYeGzduJOq6VNQ0fKqHYp3G4TNMdu7cSdd27ajuutT1+2nZsCEbNmzAdPzktBhEuERVRow+3M7n888/p379+giCwJgxYw65OVi7di3ZlsWnmQdDAdM8ZN/9+/dz9913c8cddxwS2PTSSy9Rq3x5apYrd0oS17///nv8oQg5zQeQqNmeWnUbFLwWiScpnX8FVcYsQLec31VwTaVS9OrTF9MNIWteNK+PcRMOb6/9o9x+++1kVWtOrSnLKdl9GnUb/rGk+99DMByjbN/rqDr2AQzb/7sfCu/fv5/Lr7iSXn360rJNW8pXrs41115/aidbyL+SwgL1v2P9Xci/l/379x/XTuGfwFNPPUVR0+TxUIReuk4rj5eI4xyyzeLFi6lkGGyOJ7nUdjBFkQ9jCdbFEsiiyHjzlwfy/+8d/eWXX7Jw4cLjZkWkUikefPBBrrvuOrZs2fK7zmHS+PE0clxu9QfJsayTVtguWrSI0rm5mIpCcdumYY0a7Nu3j4MHD/LZZ5+xfv167rrrLipbFqHM2tKWJO6//35ClkV/x6W4bXPj9dcXjFmnQgWucFyikoQqCNSvVo01a9bw6quvFhSWO7Vsybm2wxvROKUUhcaaB1dRqBkIUKF4iSOuw7dv386mTZuOqDDfs2cPl112GVOnTi0I/vvoo49oWb8+1UqXPqpn8erVq0mYJrf6gzSxbIK6Ts1AEFNRUCSJIrEYdatWpbzHQ3mPl+YNGhyyf+vTTqOi10ePTFDiTH+AepUr41fTHZktPF5KKwrFs7O59NJLeeWVV476s3jxxRcJGgadgiGCpskbb7xx3J/fLxSo1lu0KBDM/JY+Z57JCMdlYzxJbdfl7rvvPuHxf8uoIUNo6DhMth2ChvmHAy1PlGEDBlDLcQj7LEqcOQUhk42j2WEUzUMiGKSkm64R/FFR4fvvv885w0YwddrFh9xDfPvtt+muyUQuTiB0Uj+nP8r0y6/A4/URjiZOyf1LIYX8lRQWqE8RV06fTrZlUTsQoHq5cgV/9Ao5tWzdupWgaXKN66e749KgenVqB9MF60dDEcoVKcL27dsxtbStxMZY2mO3WDzOk+EIW+NJyioqi4NhmgaC3Hfffezbt4+oP13MnuC4FM/K4uuvvz5uW9yZ7dvT2XEZbVpYosSjoQhjHZdmdevS5rTTuNpJe6bV8/u5/fbbadukKTHXpUWjRpTMyqJ6mTK8+eabQHqRvm7dOhYsWECuZXG146ekZeGVZdbHEqyNJfAoCuvXr+fs7t05u3t3Pv74Y77++mvefvttPvvss8MW+Z9//nmBSvzjjz+mVrVqNPB46ez1kSvLNNc8xHSdmTNnYmZUyR28PrJlGUdRyPL7udUfZGs8SZbHg0cQcESRuppGSJJRBAFblmlvO+iSxCQrHejYStfp2qULqVSKC8aPZ6BhcpZuEMwsWAOCgCmKaWsNSSJXlhEFgV5dutDfcdP+x7LCPYEQdwSCnObxMMZxCRsGQw2Tzl4fcUnmetdPUUmmlqrhyDKLFy8uOPfPPvuMZnXromVsWDbGk+iCQDVFpbaqkRMOU7daNQZZNutjCWq6Lv369WPkyJHcdNNNuIZByOfD7/PRzuujrKJwXyYcs7En7cFnCALX/2qh/Vt6dz2TfMdlaShMUJIxMsqT9bEEccPg7bffJi+WTjvXBIGEovBONM4Y06J80aIn/HkIGAaz/AH6Oy6uotBD12nh8WCpXvRADCsQpkPHTtxwww3s3LmTmTfdhKGqDDJMNsYSnG/ZhFWVl19+mTEjRxZ4sE+wbGLlG2NrXpaFIkREEa+sMGrUKA4ePMjXX39NVjhMu2CQbMtizqxZBfN68MEHiTgOrmFw5RGK07/w9ddfk5+fj6RoyIqHrGiU7777jmeffZaePXty8cUXF/wuffHFFzm73wAuv+LKoybP79+/n5EjRyIIAg0bNuTLL78E4KuvvsLVde4KBJniuFQuWfKE3t8/g3fffZduPXoxaOg5vP766zzyyCN8+eWXBEJRyvW/gWrjFmM4gYJgyWOxdetW+vYfSJ++/dm8eTOQvpHdsGHD776JPRE+/PBDLDdAst6ZBJLFuPKqa/60Yx2NJUuW4DMsVI+X8Rdc+LvHGTZiFOGS1chpPhBZ81Gs4/m40WyefPLJUzjbQv6NFBao/x3r70IK+bOZP38+rTLimFn+AI4sc/9995FKpXj11Vd57bXX2LdvH7nhMD5RJCpJFFMUEl4vWaZJ144diRgGAzJr2eeee46tW7cSDwRoEQoRNgweffTRox7/0qlTKWM79HT9xAMBvvrqq5M+h47Nm3NjRgTS0x/gxhtv/F3vxaeffsqaNWvYv38/r7/+OoGMMMWSJJKhtK1CXJJYE41xie1QpkgRzsisn+cFgjSrXbtgrOuvuYagojDdTivPKzrOYe/Dpk2bKFOkCJogUlKWCUgyCzPj1Q4EDrNaORZbt26lZE4ONUyTKq7LWWecAUDtihUZ77jcHQjh1/UjKoNvv/12OmWugdv8QRrXrMmFF15IJdthUzzJGMtGEQQ2ZSz9FEE4xC4xLU4KEZAk+hsmEUmmbvXqNGvQgHqaRjefjimK1K1y/CDBYQMHMjFzzzXKshl//vkn/B6kVesOM1w/YcM4ojXep59+SoXixZEliZannUZusZL4dJPzx5+84KFGmTI8mOl0bREKHXKv9mfy888/M3fuXDp06IDPclFUL6HS9ZBUL4Ig0CITdD/Qdhg/duyf4lF98803k6jUmFpTllOk5RA6d+1+yo9xJDZu3IjhBKg86m5KdJ1EbrG/756nkEJ+D4UF6lPIK6+8wtKlSw95evZPZcWKFZw3evS/xi97+fLlTLzgAp566ilWrlxJp5YtOad/f15//XVChsEcf4CzHJeWp51GyexsJEEgpmmUtR3O7t49/QDBMKiiatiiSHOPh6DHW/BU8a233qJ906ac0bo1H3744THn8tVXX7F792527drFmGHD6N6hA2PHjKFkMotGtWqxadMmXnnlFUK2TdwwaFC9OiPPOYcujsPLkRg1HfeowSYTL7iAIabF5Y5LF5+PyqVKETdMYobB+DFjTui9SqVSDMjPx/V60wuizGJg7dq1GKLIKNNigmUTkiQcr5ft27ezcuVKAl4vnX3p8MRb/AFa+XSqaBpPhaN4BZFxpkUVVWNbIoslwTCOJNGpXTsUSUJXVUIeD808XgxZ5rnnngP+XyVbIxjE8nqpoqi8Gokx1/VjZcL7QrJM2yZNGDpgADmui98wcFWVGY5LPa8XU5bJjcXp3KEDZRWVgJAOYHFkGUtVcRSFAf36HfIedGzRgsG2Q0CSuM71c6XtImYU2FvjSWxJ4tVXX6VGufJ4FIWSWVlUdhwa+v3Ur1aNJUuWYHu9OLLMZY7LmT6dPFlhsGGiiyKnaRojTQufKLJ+/fojKoC++eYbzmjdmgpFizJx/HiygkEWBEK8F0vgKgrXXHMNEV1nXSzB4mAYXRRRBIGSioImy+zdu5dt27bRsHp1Yq7LxKMsoJYvX07zunXpdUYXnnjiCSyfj2xdJ2Ca3HXXXQWLz507dxYUe5csWYIuSZzu9RGQJGyPh48++ohbb72VKrbN4mCYyl4dK1kaVfPiFdLKb9MNFhTuHnjgAVpkbhLuDYSoW7FiwZxeeuklRg4dyuxZs45pg/LNN99gyQoTTYtnQhHqah4GDhxIzDAZlLmRW7Vq1Qld97/mnnvuwefzkUgkCloKH3nkEaqVLk2T2rULQnW2bNnCww8//KcWc4/GSy+9hOUESJSthT8UYcaMGXh1E49PZ+SY4we+plIp8kqUIqv+mWQ37EFWkaLHfK9PNW+//TaTJ0/m/vvvP6GF/TfffHPKwxr37t37h8csX7k6ZfpcTa0py3GK16B4lwtJVm3GnDlzTtEsC/m3Ulig/vesvwsp5M/k22+/pXhWFjUDQYK6XnDvNDA/n6K2TRHLYuTgwTzwwAMEvV4a6jquz8e9997Lm2++SSqVYvXq1Vx11VUFtg0333wzZ/rTBeMZrp+OzZsf9fhVS5bk4VC6yNckFGLp0qUnfQ4LFy4kbpp0DQQJWfbvVrLu3LmTaVOnMmniRErn5JCvG6yKRCkqy8QVhZiqUkZR+CSe5O5AiLI5RYgYBuebFtmaRpUyZahaujR+w+C84cOpWa4clznpAnUZXadlkyaHKT5XrVqF3+PlLNPClmQG2TZLgmFihsE777xzQvP+8ccfSYbTNoefZgRMsiRx4MABEoEAK8NRtsSTFHecIypdt23bRszvp1MgSMI0mT9vHvfeey91XD+fxJOMNS28osg022Ga7eAVxUOETl3btaOx7dDS68UVRWa6ARRJYtmyZfhVjZqqRiXdYNzo0cc9l5tuvJHqjsPdgRAVbId58+ad0HsAULt8eR7IrN1bBIO0adYMw+OhUsmShwgjUqkU8+bNIysrh3j9M6kyZgFuJHlM25EjMXnCBCo7DoNth5Bls3Xr1pPa/1Rw+eWXU9006W85nObT0TK+1MMNk2KqiiKKJIJB1qxZw7fffkuDRk0xbZduPXsdVRBzItx9992E88pTZcwCEjXbMXDwkFN4Vkfnvffeww7GqH7Bw5Ttdz3RxOF5WoUU8k+msED9P8izzz5L1DDS/sWmxYIFC/7U482ZNYuaZcuR36XrSXkwpVIpVq5cyfTp00mYZjq40DAOU7Y9+uijtKhXj/5nnUWbRo240HH5IJagrGkydepUDh48yK5du3ANg6qqSlKSme64xL1eHnnkkROez8GDB8nv2hXb48FvGKxYsaLgtdWrV9O0Th1aNWhQUBD84Ycf+Pjjjzl48CBnd+/OFNtlWyKLbq7LNdccWXH4zDPPYEgSLb1eSisqrZs0Ye3ataxcuZKpU6dy/fXXH1fZ/e6775JlWmyMJXgwGKZoLMbDDz9M3cqVkQSBzZmkaq8gEA+FGDl4MJWKF6dNs2YUicVolGk/uycQwu/xYGWCCbtkitd3BIL01A3KKQqOorA2lmCQYWKJIlVUFVMUcT2egmLoN998w8qVK7n77rtxZJkKmW1sj4eLLrqIrl270rZZM1o6LrP8AYIeD506dqRj8+ZMHDeObdu2ceDAAS4cP56yHi/dfOn5DTEMIpLEEN0k4PEcEiBXrXRpRhgWwwyTsKxQLrcohihytm4w1rSxVJW9e/dy04wZ+FQVRRC4JuO3FtUNyuTmcpntkK/raJmisUcQ8GbSyddEY2yJJ/GLIqaq4jeMw7z4Pv/8c7777ruCf69YsQKfnFaeN/N4cHWdsE/n3Wic+4Ih4pKMIQgsCATxyjL79u2ja7t2nOO4vBCJUdy2DzsGpP2V33zzzYIWte3bt/P8888XKGxSqRQDe/cuCE558skn2bJlC8uWLaN4Tg454UiBH+HBgwe5cNw4yhYpgqt5EAWByiVLEQlHME2LsePGFRQj33zzTaKGwa3+IJ0cl/5nnQWkH4QEDYMJlk1lx6FX9+6UzsmhaqnShwUUrly5Ep8kk/QaWIaDrGjk5uRwkZ1Whpxr2UwYN65g+23btnHTTTfx6KOPHrco+vbbb5OXl4eqqsycOfOw7d9++21ClkWzUJiQZR33Jmft2rXMmjWL11577ZjbnSg9e/WhSMsh1JqynETt05k+fTo//vgj33777Qntv3v3bhRVzaSpP47Hpx/VFubvZtiIUXh0A59h8sADC//u6RzChZOmEMwpTaJOFyTVQ7RkNULR+L8isKuQP5fCAnXh+ruQQn7h+++/56mnnioo4n333XcYmsbaaJyXIzE0Webqq65CF0USsoyjqscsxj3xxBPkWTYPBEO0dV3OGzHiqNv2P+ss2jhu2s7OMI4rpDkaL7/8MnPnzmXTpk2/a3+A+lWr0dlx6GU72IrCNY5b0F0YUhSKxmLEM/Zupqry6KOP8tBDD2EpCqNMi3zDIFuWWRONUUzXadSwIRHHQZMkEqrKJCudp/Jrb+XzRo/m/Iy130jDolR2NpWKFePW4wRH/5o33niD0q5LRJKYbjuMtWxKFykCpMMvs0yLqn4/DapXP2reyNatW7n99tsLbDz37dtH60aNMFSVRDBI9fLliasqUVWlVZNDrc/27NnD6NGj8WRsEutoGn7TZM+ePdx5xx20rFeP80aMOKFQywMHDnDRxIk0rlGDyy6++KTUv9ddfTXFbJtu/gB+06SUbfNONM75jkunlv+fgTRt8mQq2g6DDROf6qHSiDsJ5ZQ64n3IsTh48CDz58/noosuOsyG8a9i165dlM7NpW4gSMQwmDVzJslYDEEQ8Igib0Tj3OD6qVmuHMNHjiZerRVVzr2XcPHKh/hvnywHDhwg/+x+WI6fug0bs3379lN4VkcnlUpxVu+z0S0Xn2Fx332HZ/MUUsg/mcIC9f8gkydPZlTmD/10x2VAJojiz2D16tVkWRYPBEN0c1369ex5wvv279WLko5DWNOYlClYjbdsxh5BSfzzzz+TSqVo1aABVzt+Po0nqeX3F6iH33vvPYo5Dn10g6mZsc6zbCaMH39S51LMttkYTzI/EKRS8eLs2bOH1o0b4xEErnX9XOK4FInGDlssvPnmm4Qsi9KOQ24sVmA98Fvefvtt8jIWC69F47i6zqxZswg5DmdZNk0ch67t2hVsP3vmTBpUqcLQfv348ccf+eijj2hcqxauLDPLDXCrP0heLEbcNLnCcQlJEtVVjTqaRlCU8AoCtXSdR0MRKnt9TJo0iUQwSMdAkCzDxNA07g+GuDcQQhUEpEzrXjuvj3qahi8TilhWUbknkH4if1rGAuPXBb+DBw9y5ZVXYisqY02LrqZJ4zp1CNs2fR2XsKIwP9M619TjIc/rpUenzgX7v/fee0yaNInsRILqalqF7RdF2mR8pUsrKkmfj/wePYi4LrokUUJRaOLx4moaa9aswdY0mno8lFZUGtasya5duzA9Hl6JxHg6oxKfbjuEHYfyxYtjZwraAUmif79+zJkzh4jHgyGI1NI0Wnu8xKR0QOW8QJCi0SivvfYae/bsYVCfPgUK9vvvuw9IL1Rcj4eSikJvn05x26Z39+7IGeuU2/wBVEHAEQSydZ1nnnmGJrVqMcsfYGs8ScNAgAceeOCQ6+XAgQM0ad4Kfywb3XJIhsOIgkDIMGhavz7r169nzZo15Fo2G6JxztJ1TFkm5PNRNB7ngw8+OKQF8RfGjh7NWY7LJ/EkTbxeqnm8dHNcav1KJQ1w33330bRWbYb07cv3338PpNsgu2TUGfMDQWxJRlc0OukmRaLRQ/bfvn07qpb2hKs5aRllz74GfzhGGdvmWtdPUcsqUCp9/fXXhKJxktVb4o/nculllx/5g/orduzYQZs2bRAEgd69ex+idD931CjGZH4PjrFszsuoVn788UeatWyDx6fTqGkLvv/+e9544w1MJ0B2zTZY/uAftn/YtGkTbdq2xZ9bnnL9byBYpDT33HPPUbf/8ccfGTx0GPUbNeOee/7/gWK9ho2Jlq1DrHx9qtWs86e0KP5RNm7ciOkGqTZuCeX6zSAUjf/dUzqEX26epkyZwtKlS1m8ePHvap8u5L9HYYG6cP1dyN/Dd999xxtvvPGP7kjdt28fts+HkwmtdlSVuGVxfyZEsJSi0Ldv32OOcf0111C7fHkG9+lzzHPdvXs34889l27t2/PUU09xw/XX07d792PagpwMq1evZsmSJQXruKOxf/9+pIwCeWs8iaNpeEWRIrKMLop0aNGCnTt3smjRIhYsWFDwwP2C8eOxRZGt8SQfx5NIgsCnsQRVNY0OXh8Bw6ByiRLc6Q8wwrTIywQhXjh+PGd368bUqVMpZdnc7AYoa9vccccdR5zf1q1bOaN1axpWq8bjjz9+yGs7d+4k6rr0NkyKKCq5oTAbN24seH3NmjUsX76cvXv38u233x5xbXwkUqkUO3fu5MCBA+zbt49Fixbx4IMPcuDAgUO2e//99wkaBv0NE58ocr5l08iyGZiff0LHOZU8/vjj3HzzzcyePZs6/rQd5QzXT7O6dQu2qVOhQoGVSgOPB69h06RZyz8cFv538f3337Ns2bICEVkqlWLgwIEIgkBlVeVG10/lEiXomd+HnGb9qTVlOfGqLY4qKPs3sHXr1sJwxkL+lRQWqP8Heeqpp4gbBpNshzzL4q758/+0Yy1YsIBWGY/oOwNBTjvBn81PP/2ER1H4MJbgBtdPRJK42HbJMU0eeuihgu1+USfLkkRuLM59991H2HEI+nw0r1+/IMl47969lClalFpGuuA40rSIGgbPPvvsCZ/L66+/To5lsTaW4CY3QI2yZZk9ezZ1bRtbFNn8q5ax/fv3M+vmmymeSNCgWjU2bNhA68aNsTUN1+ejdZMmTL/00sP+0O/YsYOQZXOJ49LZsrBkmVKKQk1NI0eWeSoUxtV1AJ577jlyLIu7A2n1xehzzqFKqVJMcFxu8QfwiCJR12XEiBH0yQTpXe+kQwA1QaCSotLc42VspiA+wrSIBwIsXryYG264geXLl+OVZdZlPLAVUUTJ+EibokhlVcUSRbwZy41uPp0HgiHCkoQmCHzzzTfs3r2bH3/8kYsmTqRkJgHcEEVaNmrETTfdRAPHYZxl08rjJSwrNPV40AUBVxAxJYlvv/2WDz74gKBpMsh2KG5ZlCteHEUQyJJlVoQj5MgyW+JJXozE0EWRW/0BvILA+ZbNxliCPMti4sSJlFHVAq/yEokEZXNz0QSB16NxVkWiaJJEuyZNeP311+nTpw89M0ryGa6frm3bcumll9LfsnknEqOiqhINBskyDNbFEtzsBojIMoYkIYsirqywLhpnrj+Aa5o888wzzJ07l0qZgMyQJGGJIgHDoFXTpriiSFyS6ezTyZVlopLE2fn5rFixgoBhUNJxqFqmzCFhMKlUimFDhuB10sXdcv1vwPTo1NE0mmgezjMtgqbJ888/T7ZlMdgwiUoSXXw6W+NJBls2uiyjqyqTx4/nySefJL9rV6ZffDHDBw9miOOyNZ6kg9fHeMtmSzyJLElHTAffv38/999/P/fccw9vvfUWQcPgPMumuKoSLlOfiufcik/z4VGUw/a9//77UX0mFYfdRm6b4VSsUp3ZM2fSo2NHLrxgIuWKFiUvHuf8888nUbY2taYsp+zZ11CmwvF9+n75HTF16lREUaRKlSoFyqEbbriB2o7D0lCY2o5T4Md4+eWXEy1fn2rjFhOr2IgpF01lypQpJOt3S/vItRpK/tn9jnXIY/Lxxx/jBEJkVWuJx3SJJbM5f/wFx7TnGDBoCLEKDSnRdRJWIFKgRN+9ezczZ87kpptuOuX2GaeKzZs3Y9h+qpx7L6V7XUY8K+fvnlIhhZwQ//UCtSAIrQRB+EAQhI8EQZhwhNc9giA8kHn9VUEQco83ZuH6u5A/ytq1a4m6LmVcP0XjcT7//PPfNc6LL77IpZdeWmA5d7Ls37+fpUuXsmLFiqM+/K1aqhQzXD+b4knKWhaJQIBxls3T4SgBSWLcrzrAThVXXXYZVRyHyxyXmGEWqHl/zcsvv8yQQYOoV6kSQ/r2PWqg94EDB7h46lSyLYsGgSDlixc/7kOBulWq0MVx6OM4lMktypYtW7juuut4/PHHefTRR2ndsCFD+vYt6CA8ePAgefE4ObLM6T4f9bV05k1UUSilKGyMJWgXCtO2RUuCkkQHr4/RpoUhy7SwHabaDkHTZPoll9C5VStuuO66o/48GtWsyTDHZa4/SMAwDuuEWrduHUP69mPiuHFHLcZPvfBCLI8Hy+NhbsbqK5VKMW70aKKuy2k1ahyzw+rAgQPMnDmTcWPHHhJ+OWvWLNrrBgsCIWpqabvEFeEIpbP/PvuFPXv20LBGDRKmScA0Dwk8P2/ECOo7LlNsh6Ce7hr+K23k/goOHjxIg9q1EQQBURSZPXs27777Lv5QhGCiKDlFi/H111//3dMspJD/OQoL1KeABx98kJjfT8zv/9d4Oi9btoyRQ4dy//1/btvHN998Q24sTpNgiKhhcO+9957QfgcPHiTq9zPD9XOzG8Dy+RjYu/dhCtJly5ZR3nHZGEsw1XFp2bAh7777Lh9//PFhC5hvvvmGG264gbFjx3LhhReycuXKox7/5Zdf5r777juk3T6VSjF25EhUWSYeCPDKK69www030MZxaOHxUlZRyVM1coJBzj7rLCKGweOhCOMdl6qlSlPZddmc8SnTRRFHkiiZnX3YYvC1116jW/v2VChWHFkQeD+WyNhJSAQlidanNQJg7ty5dA6k/etm+wO0Oe00HJ+vwH4i7vPxyCOP8O677xI0DPpZNraiEPZ4sEWRqbbNk+FIOpRD8+CKIpogUCMQxDEMpk6dSsQ0CUkSYUkiqGp4FIWwJLEqEuUS2yFuWXSzHa6yXYyM/YVPUbC9XlRJwpRkPLKMRxCQBYHsTChilVKluPfee9FFkcFG+hg1q1bFI4qEJAlFEMiRZSZOnMgtt9zCmYEg78cSjDNtqpUuTa6mEZIkRhkmhihyZyDIONtBEwSKKwrtvD4aeDyUV1Q8gkjJ7GxikkQjj4eIJJOXSDDMtDjXtFAFAVUQuPbqq9m9ezc///wzts+HX5SY4fopr6iUzcvjySefxCuKNPN4sUWRoK7TolEjZFHEEkUaeDyMs2w2xZOUV1XOt2z8okQnXSfHsmjXujVDLZtrXD8NPB62xpNMsmyqlCpFIhiiqWmRK8l4BYFeukHA62XTpk18+eWXvP7664cVhh999FFydB2v5qPC4FkUaTUUR0mr2t3Mly6KTL3oIsaccw62KHG2btDK62VTPMkZPp0zfTrvxeKYmoYpSZyl6xT3eBjcty95iQR+rxdTkjhdN+hsO9SpXPmIn5cu7dpR0/VTz++nWb16vPLKK4wdMwbLcSnX/0ZqTHwE1XAYMmDAEfe/8qqrcQIhipcqy7vvvlvw/WQoxBx/gAeDYUyPB9Pxk9fhXGIVT6NN+9O57rrrDrs5u/ySS/AbaZuWX6v4H3vsMVzXxe/3s3z5cn7++WfOHT6cqiVLcu7w4QUPiyZOvJBErdOpNWU5yXpdGHPueSxevBh/PJcSXScRyi3L9TNuOOrvjuMxc+ZMsmq0ptaU5RTvPIFmrdodd5+adRtSsvu09JwqnXbURPUff/yRlStX/uFE8lPNtEsuRdU0LMc9xBqpkEL+yfyXC9SCIMiCIHwsCEKeIAiaIAjvCIJQ9jfbnCMIwpzM/3cXBOGB4437byxQL1y4kPqVK9O9Y8fC7ol/AIP69CHfMHggGKKHbXP55cfvlvotK1euTAdr2w4xwzhMTXs8UqkULRs2pJrfT2nH4Zz+/Y+4XZPatbkicw9SxnGYNWsWUcPAEEUqlS59QnYNv2XBPfdQtVQp2jVtekSLkE4tW3JzJuywjz/AjBkzDnn92quuIuzzEZZk7gmEaOe4jBw8+LBxNm/eTF4igSVJLAtF2JbIooSi0Ll9+4L7p4MHDx5WlNyxYwdTJk3ignHj+OKLLxiQn09Jx6GUZeMoCje7Abo6Lt07dgTghuuvx68o2IJAMrO+79ShA4P796eKbTPGsgmaJtOmTcMnirwVjbMtkUVclrkl49FdNxg6obVDVjDI85EoW+NJyrgur7766gm/75Du6rM9Ht7JCFcMj4dUKsXjjz9OacfhpUiMwY5Dj06djjrGecOHU8txGGnZhCyLbdu2AXDVVVdhiiJjMveAgw2T2o7DiEGDTmqOp5oDBw7w4YcfHqYY379/P1ddcQWD+vQ5zBP8v8aKFStIJBIYhsFDDz3Erl27eOedd37X57eQQgr54xQWqP8g+/fvx/b5WBoKszQUxqeofPHFF3/Z8f8NfPvttyxZsoS33377pPZ79dVXqVq6NHmxGJdccskRn5jPnj2b8rrB5niSa1w/AU0jx7IpnpV1wqqLHTt2cPPNNzN//nx+/vln5syaRdI0aR4MkpdIsHPnTp5++mkaVa9O+2bN+PDDDwvmsmvXLqqXK0fA68U1DIIeD3f6A1Q2DEpmlKoPBcPkRaOUcRw+iCWopKhcYju8FokRlWTCpsnkCRMOO78hffsSk2WGmxaX2g5hSUIRxYLra9u2bcQDAdpkiv+33norrsdDUpYpq6g4ooiraoweNYq6lSqlvbMliXsCIbr6dBxR5HSfjlcUKefzEVdVJlg2Z/h0qqgarXQDW1EYY1g8HAwR8vno0rkzPlnGK4pkB4O88MILnN29O01r1eaGG24g4jjkygrXun42xpOUzCxWPYKAVxC40Q1wZiapuk7NmgzKWCxc5fhpWKMGhigy2rTYHE9STdWQRZFhgwYR9PkISRKlVBVL06hVuTLBTFG1SoUKJP1+4rLM6Zni8dZ4ko3xJKIg0MurYwgCPkHgHMOklGlSs1w5rnL8bI0nqadquKqK5fXiVRRGDh2KVxQZb9m09nrxCQINDJNhQ4dSzLaZ6fq5OxAkKElk6TqmopCUJGprGpMtm0/jSWrqOpIo0tDjYVUkyu3+AHUrVyZs2xT3eCmvqGyMJRhmmOSGQgzs04eArmNJMl28Pu4Phgjp+jF9AocNG4aZeajglRV000EWBF6LxlkfS2CIIguDIWyPl6+++ophAwZQz3YoqSiIgoAly9wVCPJmNI5XFIl5fISiRfHHiuE6Ab7//nsirstI06Kax0MyFOKTTz5h+vTpXHLJJQUPb/bt24ciSXyc8Ta3PZ4CxcGdd85DtxwMN0TDRk1PqjUwlUrhU1WmOy7NPV4sRWHevHm0anc63XqcRUDXOdsfIPqrm893332XuGGwOhLjCtdPrfIVDhnzo48+omLFioiiSK9evXjggQcKvNJ/Ydu2bSSyi+CPZhFLZPPJJ5+QSqW48aabady8NRdfculhrZsnw8qVK3FCcUp0nUS0dM0TSkW/9dbbcEJxklWaEIzE+Pzzz9m/fz+fffZZwVx27txJqSJFqBoIEDQMnnjiid89xz+DAwcO/CMtSAop5Gj8xwvUdQRBePJX/75AEIQLfrPNk4Ig1Mn8vyIIwjeCIIjHGvffVqDesGEDYcNgXiBIX8elY4sWf/eU/uepX7MmEUmitKIQVxRmz5590mOMGzuWsZn15UW2wzlHeTh+ND799FPCus6n8STrYglUWT7i36+33nqLZCiEIkl079TppBSmL7zwAlVKlqRisWI8/fTTAHzwwQeEdJ37gyGGOS4tGzQ4bL/bbr2VopbF0IxX868f6gOUyspipGnR0etjWyKLOf4ArY4wzuCzz2aE49LM46WfYTA/ECQgSeSaJk8//TT3LliA5fVieDzcfuutRzyHvXv3osoyH8YSfBRP4hFF1sYSLA2FqZCXB8BZnTszwbTRRZGeuk55VeXsnj05ePAgc+fOZeyYMbz55pu88MIL+BWFepqHbrqOrWlUsm16Oy6JYPCE8jmmTppEUcumfiBA1TJlDlvfHY8dO3ZgeTysjsR4LBTB1XVSqRT33HMPjQNpu70b3QAt69c/6hiVihfn0UzBv2k4XBBo+dBDD1HcNOml69TXPJQqWpTZs2cfc128ePFiRgwZwsMPP3xS5/F3sH79espVqkoknsXNM2eesnE3bNhAq4YNaVC16u/uhjgRPv/8c2rUqIEoilx++eWnZL36zDPP0K1nL6ZOu/gQkdGBAwcYOmwE2UWL0/2s/EPsBwsppJB/SYH6eG2Iv/36KxfIP/30E15F4Z1onHeicTRBoHRu7h9KfS0kzYYNGwiaJsMsm9K2zfW/8YH6/PPPCds2eYqCTxTRZZkzDINtiSzybYeLpkw57jH27dtH+eLFae/6qeW49OnWjRplyvBAMMSyUARXljFUDUvTmO0PcL7jUr1s2UPGuPuuu2hapw5N6tenRyYsZJJlE9J1SlkWIV3nzttvZ0B+PnLGHmO4adHO66O/YfJ8JEox6/AAvK1bt1IiOxtTFCkqKzQ2TGpVrHjIH83PP/+cBQsW8MYbb/Dkk09SNxBgUTDMVNuhuCwzyx8gIMuMMi2Sskxjj4dtiSzuDoTIk2USoRCvv/46N998Mx3btaOx14suirwXi7MiFMGXma8uiPgyHtSWph0SXvILjz/+OA1DIepoHma4fj6KJymuKNzguGiCQDlFKWhps0SRM306AUniKsdPKa+PmMdLUpIZnyny1tI0Jlo2hqaRn59PV8NkWyKLqbZDfpcurF+/nnXr1lE6Nxe/JKfnmilEjzAtumeK8DU1Db8o0dLjxZYkzu7enZdeegnb4yEgSQRkBVdVuTcQ5L1YgoiuYykKDwRDvBGNY4gi9T0eIoZByDSp5dPJybynTTxeuhoGlzsuJRUFQ5bxSRJO5r+/qJkjssy5w4ezZMkSDFUlKcuImaJ9uTJlqGDZvBSJ0U3XccM5SKqHfr/xpdu7dy8bNmwoUNxnBUMsCIRYE01bmziahk+WuTcQ4vFQBEMUeSMcJeDxsGnTJvbt28eAvn1xFYVGXi+GouBRFHyShCvLCKJEjYmPUOPCx5BVD2+//TZR3WBrPMmHsQSKJFGjQgUaGyZtLItqZcuSSqVIpVLkJRL0MEzGWDaJYPCQ338bNmxIe3p7PBRLJvn000+P+7n8hUH9+uFKEjP9Aer4fEw8/3wAJk2axIjMzefFtlvg4ffSSy9R0nHYHE+yMBiibCYA59fs3r2b3KJ5CIKAZtjUqtvgsIXonj172LBhw5+2aLzzznmc1rQlY88ff8I3UC+++CJ33HEHn3/+OZs3byY3Hiek61QqWYodO3Ywf/58WmZ83Gf6A7SoV+9PmXshhfyv8B8vUHcRBOG2X/07XxCEm3+zzVpBELJ+9e+PBUEIHWvcf1uB+sknn6RmphNtaShM+dzcv3tKp5T9+/fz3nvv/WMDdI+E4fHwejTOJ/EkfkX5XcFqS5YsoahlpdeXts3831gZplKpYxaTf/zxRwKmyY1ugCmOS6mco1tTXXLRRTgeD36fj6kXXnhC8zt48CAh22aOP8C8QBC/YbB3716effZZKvvT4olHQ0e3f1i6dCnTpk3jjTfeOOy1Vg0b0suyCUoSDTweQl4vt99++2HbndN/AIMcl9ciMbJkmaxMdk2NTDew6fGwIhxJK4k17YjWH6lUilggwHWZblevKFLe56OoZXHl9OkAPPDAA4R8PsopaZu9leEoRX+TR/IL8+fNo2Lp0jRu2JBNmzZx1113cfnll5/wujGVSrFy5UoWL158VFuT4zHrppvQNQ1H1wu6on/44QcqlypNSccl8Bt7yL1799KnWzeyQyF6du7MOf37U89xOD+jDN+yZQuQLkr26tIFOdM9e6T7qF+zZMkSipgWk22HpGGwdOnSf7TFRqVqNSjScgjlB83CdIPHPb8j8fbbb9O5a3f6DRhU0M1StmhRJjsus/0B/IZxwt7gv4effvqJ7t27IwgC+fn5f0hBvX79ekw3QG7rYURK1WDYiFEFr91+++2E8ipQYfBsouXqMXnKRX988oUU8h/iH1+gPpE2xN9+/dUL5KkXXlhQiDrPtMi2rN+dsPxv5eeff+bDDz88pT6oc+fO5cyMf/UdgSAtf1Nweeihh2gaCrE1E1qYEwjQ2XF4P5agpeNw1VVXHfcY69ato6htszWe5J1oHF1V6dS6NT0clzxZYYbr595AiJAksSWeZE00ht8wCvY/b8wYXFmmlqbR0LRwVJVWgQA+UaSN7RDx+bhk2rRD3qfFixfjKAqWKBYE4DWw7SPan6RSKT7//HOmTZ3KJRdffFjYwfr16xl6znCmTruYjz76CEOWOc8wyZVlkpJEaVkhT1V5LhzFEgSMTMHWEUUCpsmrr75asODZvXs3pizjiiL5ukFFRWWK7bAlUywuoyiUUBTKKAqlihQ5bKG0bt06bK+XFh4P3ozPdUiS0AQRryDgiiItMkXoplq6UF7VsmlUqxZ+w+Aa22VxMIwhingy+y4NhtFEkeuvv54qjsPKcJTTLZvT27Th+++/55JLLqG7nS5UnmOYtPJ4MQWBfN2gkqKQK8lsjSd5LBQhS5YpGolw0ZQpfP3117z33ntULV2aYrEYYcfhgWCItbEEUcNg1qxZmJqGLAjYsowlilzl+KmsqmRFo7heL/1cP6aiFLTqxWWZrmecQdww+CiWwCsIvByJ8UFGzRxyHDq0bMlU22FjLEFAlMg3TPIUheYeL9sSWVzhuCRL1CRZryuXXHJJwXv79ddfU6pIEYrY6QLwBx98QMRxeDIc4f1YgpAkcbHtEJZkHFHEJ4rIgoBPFGnRqFFBAXbUOefQw2cQkiS6+nQMWaa018vSYAhN9RCp3h7XcLEVhaVLl1K9XDla+f3UcV1Ob9kSXRQpLiv4RQmvorBjx46MjU+M0l4vpqIclnh99dVXc7rjsDWe5BzHZdjAgRw8eJCvvvrquIrq2bNnc6brL1ABtWvUGEjbKuVZFje5ASo5DrMyao0DBw7QoUULEqaJ69NZtGjRYWMePHgQSZLJbtYfUZIRJemkU8n/boYNHMjwjEd4Z8flqquuYsWKFRSzbVaEI/RxXM7u3v3vnuYJsX379r8s2byQQk6GwgL1iRWoBUEYJAjC64IgvJ5zjELeP5EffviB0rm5NA4EybYsZlx77d89pVPGDz/8QPVy5Shqpwtlf2eb/po1a2hYrRr1q1Th5ZdfPua2pXJymO64zA8EcXX9d4d8zZ83j/yuXZl7yy2HPIReunQpfsPA8HiYddNNR93/hRdeoFHNmrRp1OioRfI9e/bgVVTeyoiUfKp6QoXRffv2ocky62MJPowlMDSNnTt38tNPP1G1TBlq+gPETZObbjh5O7HPP/+cLm3bUrFECWyfj5K2Tdi2C8LhfuGzzz6jQvHiafFB+fL4DYO4YdK4dm1++OEHfKrKK5EYb2TujR577DGGDxp02Pv52muvUb9qVSI+H7UNg4ameVig9sKFC7E9Hi60Hdo6Lt1PP/2kz+sXdu/efUK+wAcPHuTCCy+kYrFi1CxfHtPrJRkMHdPe8df7/la4sHfvXiaMG0ciEKBq6dIF7+d1113HaY7Di5EYzR2HSy++mOuuvZZRw4bx5ptvHjLG008/zS233HLcTutUKkW3M86gh89HBUVFEgQMScKrqMe8Zo/HAw88wKhzzmHZsmWHfP/FF1/kggkT/pBNabJIHuX6zaDmpGUEEkWP+zn/Lbt27cINhinSYhDJ2qdTs05apa5rGu9E43waTxIzDD7++GMAbr7hBkokk+RFouiaRuWSJQte+yOkUikuvvhiBEGgTp06fPnll79rnPvuu49kpdOoNWU5pfOvoHL12gWvTZs2jUTtjtSaspycZv05u9/JdXgUUsh/nX9Dgfq4bYi//fo7FBw1K1Sko2Uz1nZIBIP/U+0aP/74IzUrVCBpmoQdh9dee+2UjPvWW28RNgym2g41HIdpkycf8vrHH39MMPN6U8dlQH4+zerWxaeqtGva9ITSv7///nsijsNk2+Es3SCpKCSDIbp36oSrajwUDPNBLIEry9RwHIrbNuePGgWk1Zoxr5clwTA9dYP6mgdHFKlYsSLFvV4utR1muwHqH8G3t2fnzjTTDRxRJEdRKJGdfUhgx3fffXfcJ7fffvstjj9IrFZH7EgOxRJJBEGgpJwuJN8XDFFe1TC9XmplvJqjksRw0yJHlvGpKjG/H01RmDxhAgBTLriAmK4TVjXszLYbYwnKKyqqIPBuZpHgVxRaNGxIv169+Pbbb/nyyy/JjcWo5rp4ZZk2hsn7sQTzA0Ga1KyJT1Xp5tMpoyh4BIGiksQoy8bVdRrVqYNPFKmkqtiZ4vRjwTBtPV48gkBFXWf27NmMGjKEiGkSVFQa+P1UKF6Cyy+/nBaZMMSuPr1AJT0/EKRv5pzvDYQYbJhYokQ9w6Cn7VA2L4+6lStzrmXzYDCMq6XfJ5+qcs7AgVx4wQVMmzqVTz/9lGgoRIdMq+St/iB+ReHll1/mmmuuoU3Tpgw3Tc63bJr5dM4//3z8Xi9NPR58Qtob+4lQBF0Uae7xoMsyFVWV6bZLQpYL1CS6KFJEVvBKEm7RKvgkiWLxeIEtzhVXXMGZGXX+ubbDkL59mTplClqmCN3B6+P0jDXLtY5LZVXlk3iSC22HM9q0KbhmFixYQFjVuMh22JZIt4HWVNNhLb19PryZhyYLAiFcXeeLL75g9uzZzJs3j0WLFlFRS3tn3+YPEs5489166620y/gEXu/66dCs2SHX6fXXX09Lx+HTeJJ+TrrVtnK1mvhMm3gyh48++ohUKsUTTzzBvHnzDlF6ffzxx7i6TglNI6CqXH/99QWv3XrLLZzRujXXXnXVIQ9LUqkUGzZsOOYNTG6xEuQ060e8bldEUUTTNHr16vWvUZmNGT6c3k7a076l4zJjxoz0onrKFIonErRr2vRfEexy2eVX4tVNvLrJ9Muu+LunU0ghh/AfL1AXWnxk2LVrF4sWLWL16tV/91ROKXfffTeNMyKI61w/bRo1+lvm8UumzPWunxvdAGHHOebD6ffee4+G1apRtVSpwwppf5RUKkXAslgaCvNiJIbl8ZyQdcTR2L9/P5bXyyOhMI+FIlhe7xGDpI/E6KFDybEsito2A37VMbd7926WLVt2WHHzZJk2bRp9M2u9cbbDkL5HDnf+pYtr165dbNy4sWA9ddOMGensD01j5DnnEDYMLrQdKtgO1/5GAPTll1/ier1sjSf5JJ5EEsXDOonffPNNBuTnM2nChMOK+D/99BOzZs3ixhtvPGp4IaQ7NV1dx/J46Nez5zFtGLp16oQhisz1B+mduUebFwhS5Cjq7b1797Ju3bqjPmDYuHEjIV3n0VCYhpqHuGFw9113MWHcOIZk3udRlk33Ll2OuP+Ma6+lqGXRMRAkKxw+5oP50UOHkvD5cESRfobBpniSelo658byeH7XWvWeu++mqGVxoe0QN80CYcarr75KyDAYY1oUtSzuOILa/kS44447MRw//ngRTmvS/KQs/SAtcvJHs6k5+Qmqnnc/PsMC0u9FCduhmt9P8/r1OXjwIO+88w5x02RZKMIo06K+5mHcKbZoWrRoET6fj5ycnJO2KAXYsmULTiBEonZHAsliXDL9soLXNm3aRDASI16yCpYb4PXXXz9l8y6kkP8C/4YC9XFVHr/9+jsWyNu3b2f0sGEM7N2bDRs2/OXH/zu58847aZJpSbvMcenYsuVx99m7dy9vvPHGcZVzTz/9NAPz87n+2muP6Pv64osv0rdHD6ZNmXJIq/y6desYkJ/PucOHH3fx+fbbbxMzTdp6vbwdjdMgGOKxxx7j/vvuw/H5iOoGXdu3Z/HixTzzzDMFC6L77ruPZv60uvPOjHdbHTUd3hcRRYpKMn5RpF+vXocdc/v27ZzRujWlc3IYM3JkQTF6x44d1K1ZE1WSsL3eY/qOXXXVVXhECV2Sqax5uNJxcWSZIqrKKNNiWyKLCZZNzzPPxFBVlobCzPUHiUtpxbcpSczyB3gnGidumgVqgJtvvpkSiQRxWUYXBERBoIqqoosiF1h2gaf0RbZDF59OViAd0nJGpkg5wjDRMx7OpVWVRCCA4/Fwpm4ww/XjFyXqeL1ULF2a8nl5VFI1zvSlC8CTbIccWeahYJiePp2zdJ0qrssDDzzAtm3bCHq9PBVOB6BU9Pt56qmnaNO4MbIopgvwblpNWiQWw8wELjqZYq8gCHwST/JRNJ4OcpRkHg1F2BpPkqso9OvXj1WrVlGqSBF62w4dHYcS2dkU83qxRJHeukFUkshNJIB06ObprVvjKgoNbIeQZXHTjTcStiyae72MyBTIrYxNyg2OH48g0N8wqJCxpRlmWrTxesnOBBqWLVsOU5J4JhzlKsdP1dKlgXSwXiPHZW0sQXfHZeyoUcyePZtOrp9zTYs8WSGi64QdhyKGQUVVY3M8yUTHpWvbtgXXTCqV4qyePSnj8XCLP0COrGCKIg01TzrIUpR4LxZnYzyJpWqHKAdWrVpFrmmxKhJllGXTsmFDAB555BHK2A5Ph6Oc5bgM6tPnkOv0xx9/pEmdOsiSROVSpbjsssuIla9PzclPkN2oF7369OWiiRMpaTu0DAQoVaRIwQ3CVZdfnvbHliQ6GybVyhxqr3My7Ny5k86tWpEXi9EvP5/mrdvRsElzalaqhCPLCIJAyHUZf+65uLpOpRIl/rG/y7/66itqlC+PJIq0aNDghB7G/dPYs2cPmsdLlTELqDJmAZrH+z/1YLeQfz7/8QK1IgjCJkEQiv6qO7Hcb7YZ9puQxIXHG/ffWKD+r7J06VLKOQ6vR+MMc9xjBrv9mezevRuPorAxlmBjPImuqn9qm/6xSKVSmB4vqyJR3ovFCzI6/ghLliwh4jiEHYeFvwlyP95cXn/9dV599VXef/99WjVoQP0qp85nd/bs2dTNKHvbOi5TJk486TG+++47duzYwU033UR+xkJsjj9Ah6ZND9nu559/JjcWY7TjMshxqViixEkdp0WDBjR1XVo7LrUrVTpq4blcbi4LAiE2xhLkWtYxBVGqJFFJTduKPBmOUFSWeSocJWTbh2371VdfUTInhzzbIR4IHFExv2bNGorZNgMMk+YeL7dkVO4LFy4k5vdTUvOk7fZUlfNHjz5s/+plyrAwGEp7UwdDPPjgg0ec9969ewvU9V18OmNMi63xJK29XsZbNrbH87u6zgbm53NpRugyyrKZNGkSAFdeeSUDM9+/zvX/IXX75s2bef31139XTsu+ffsoUbos8YqnES5WkR69egPpz8mzzz7Lo48+WvDwZ8WKFVTN1B0WBcOUU1RudAM0rV37WIc4aV5//XWSySSGYfwuH/APPviA4cOHM3ToUD766KNDXvvmm294+umnTzgvq5BC/pf4zxSo/80thv92Fi5cSGXH5b1YehGc36XrMbfftWsXFUuUoKTrEjRNXnjhhVM6n++//56Y389426G749K0Tp2jbvvDDz/w4Ycf0qtLFzo6Lte7fkKGwcaNG4F0IfkXheev2bdvH2vXrqVYMkk9148piuT7dFRBYE0kRiU1rTi2RJElS5awfPlyhvTty5zZswvG2r59O/WrVkVTFDo0b86HH36IrWkUkWXMjGWMIctceumlR3x6WyKZpLamYYoiEUniPNOivU/H7ziYqkr7YJCgYTBnzhx0UWRjLMGaaAxFEIjKMrYsc38wxMZ4klzL5rXXXuPdd98lbBhc4bjU1DSaaR6yJQmvIKALAnVUjQqKik8Q2JbI4sVIuhDcoFYtyjkOK8IRKnu9VNU0+hsGjT0edEGgQqbA7RUEzvbpTLcdOrdqhSXLRDNezRdaDnUzC7w8WcErinhVldJZWQzp25dqZcpQTFHpbxjM9QcJ6vohvnS/hLDt3r0bQ9W4LxjiNn8QWxRxZZk8WaGGqqFl7EdKKQq2KFJWUTFFke62g6kouJn3ZXM8iZVRXzwbjlJeUYkEg3z22WcA1K9WjWpeL/0NE9fnY+nSpQR1nUYeDxdm/JHbmiZFc3II+3wEvV4cVWVdLMGT4QjeX/yyDZMyikJlVcXNqNw3Z2xJcsJhIL1g7dK2LYbHQ+NatXj77be55ppr8EkSZ+sGMUkiLMt0bt2a559/nlaNGuFVFIrEYmzYsIFUKsWV06fTpGZNmp92GraqElQUDEliqmlTRdPwx0sSyi5HQJJIyjKuohzWEnzRxInE/X7qVanCJ598AqQXjxeOG0exeJwOzZqzdetWnnjiCd56663DPjMAc+bMIVq6JiV7TCMYTFKtSlWKRqM8FY6yLZFFlUCA559/Ph0W5POxKhLlWtdPOUU9alDRsfjuu+94++23Gdq/P10dlzGWgyTJqJqHOXNuQZYk1scS9NUNBEFAznitl1QUGtc6tYvdU80fCWs8Gvv372fZsmU899xzf2qo4b59+/DqBhUGz6LC4Fl4fcYJK88KKeSv4L9coE6fntBGEIQPM9YdF2a+d7EgCB0y/+8VBGFRJv9ljSAIeccbs7BA/c8hlUoxYtAg/IZB3cqV2bp1618+h82bN1O7YkUsVSXq8VDatul1FIXpX8XcOXOwPB5sj4dJ48YdcZsffviBc/r3p0nNWtx9111/+pzKFi3KpFPss7t//34G9OpFVjDIme3bn5Qn84YNGxh1zjlcPHUqu3fv5q233iJoGJyXyQS68frrSaVSzJ41i4H5+Tz22GM8+uijxG2bgNfHtVdffcLH2rt3L7Ik8Uk8ydZ4EsfrPWoHWOUSJZjjD/BeLEHCNI+pbC2Xl0dMkqmveYhIEpai4Hi93PEbGzpIdyl2yxRpx9oOg88++7BtDhw4QJvGjfHLMq08XkabFm1dP7fffjsvvvgijqJQWlZo5/VhSNJh7/fZ3bvT0XGZ5Q8Q1nXmzJnD3Xffza5du9izZw8ffvghe/fuTfuTWzZz/UGucNy0haimYUgSpqYd5nO+ceNGnn766eP+fO+9915yLYsJlk3MMAqCOVetWkXMMJlqO5SxbWbedBNffPEFa9asKRB+vfDCC9x4442nXLTx4YcfUr5yVQLhKNMvv4IdO3Ywc+ZM7rrrrmMqsPfs2UOtihUp77pYsozf4yFgmjz//POndH6QtsL5JTzxiiuuOKl18bJly7D8QbKqNsP2B3+Xn34hhfwv8m8oUP8rLD7+lzlw4AD9evZE1zSqly1bEAhxNO68805aZNoOr3H9tP/Nk/g/ytq1aynmpNut3onGcXy+gtcOHjzImjVrWL9+Pa+99hoh2yZhmlQvV45zBgygY4sWPPnkk4eNOX3aNEyPh6LxOAsXLiQRDBL0+ahRoQILFy5k2tSpmJ60CjVPlmnj9bE1nqS3blAsJwdT0zjHMKlgOwVhj+eOGMFZjssHsQRNHJeWLVrQW0+HPI4xLTRBwBZFuukGQcPglVdeOWROCb+f1l4vL0ZiVFM1IpKERxAwBAHL62XmzJl88MEH9O3RgyqqRkJKeylbsoyuaVxwwQW4uo7r9VK5ZMm05UcwWGDXcE8glPZcluWC4rIsCHglCUUQqK9plFIUAqKI6/UybswYwqaJT5So5/HwaTzJoIwf9rZEFrf4A0QkCb8gYno8jB49mqSi8Ek8yZJgGEsUCckyp2fsNK5wXFxF4SrHT08nvQh5OhSho9dHUD482f26q68m5roUS6aTxD+MJXgvFkcWBKrpBi+Eo2iCwDPhKE9nbDWyJBlXlplk2fTWDRp5PFzhuOiiSHlVJS+ZpIxtM8a0CBoGzz//POPHjuXs3r3xiSK9dIO4JJNlGMycOZNqgQBPhCL4RYlSqkZWOMyWLVtYu3YtGzZsYOyIEdgeD6bmKfAhb6BpFFMUtsaTLA+FMUWRsCShiyLjxo4taHfcu3cv3Tt2wtF1VI+PRMWGyKqXnj6dmRlV+6/90X/44YeCVs0FCxZQ1ra5KxDEI4qsjsT4KJ4k4PHQtE4dunXqhGm7+L0+LrBsHgtFyHf9zJgx44Q/d19//TU33XQTxXNyqOq6xA2Dm361/yuvvMKQvn25dNo0qtaohSGKXOm4NLQdSmdn08dxuckNEDQMtmzZwuuvv06uZbMpnuSRUBhHkuh2ksqOd999FzcYJpgsSkDXudR20GSFSsPvoNLwO9C8PmqUK0cfx2W07eBT015/UUmilqaRHYkA6d8b11x5JT06dmThwoUnNYd/E6lUikbNWhDOLYs/XoShw0b8qcdbsOBedNNGN20WLDjcg/+/RCqV4s033+SVV175Uwv/hZw6/usF6j/jq3D9XcgvHDx4kPZNm3Ku4/JSJEYRw+D666//RwS97dy585g2WEP69qWD43JHIEjcNFmzZs2fOp+j+ez+HezYsYOo6zLKdmjlOJzZvj0Aq1evZtzYsSxYsIBUKsWMa6+lgu1wse0SM0yKJZNc5fjTa2Cvl8qlSlE0GmXOrFnHPF4qlaJ8sWIMdhxGOS5F4/GjFidfeuklon4/qiwz4dxzjznupk2b6NiyJZXLlGH27Nl8+umnR1Uez5o1i4YZoVW3TJfikfjpp58IWxb9DZMOPh+OorB161a++uorDFFkVSQttMhTtcM8mL///nuGDxxI64YNObNjR0o5Ds0CAUoWKUJONEqOZVMsmWT9+vVMmjSJYokkFfLyeOKJJ9i2bRtff/01Q/r2pWKxYowcPJj9+/ezaNEiQoZBtUCAMkWLHvfBxpIlSzh31KjD7nMff/xxhvbrx2233srTTz9NwDAo7bpUKlmK+fPnEzdNevkDBE2TdevWHfMYJ0Od+qeR06w/Fc+5FTsYPSlbm71797Jq1So2bNjABx98wHfffXfK5vVbfvrpJ7p164YgCPTu3fuEw81btz+dou1GUWvKcpK1O3LllVf+aXMspJD/Ev+GAvVx2xB/+1W4QP5n8/DDD1PecXklEmOg49KnW7dTOv6ePXsomZNDV8elvuPSo1NnIL0I6tq+PXm2TdQwKF+8OJdngsYa+wOHpXz/wrp164gZBmuiMWa4fmKWxUTHZUs8SXO/n7lz5xaM36t7d/KU9BP0LfEkTT0eTFGki08nIEmMN23OaN0agKH9+jPKTofHdXEcOnToQG2PhzXRGNXVtEr5F6/g0ZbNBRmf6F84vVUrLsgodXvpBlVVlf66SU/dIKBpdGrTliFDhlC+eHEG6QYrQhEqqSqlFIWQJFE8nuDWW2+lSunSBFWVVyMxzrVsDFmml26QkGUMQeB8y+axULqArGfCDmtoGpYoUlJWqK6oWIpCm6ZNaWhZTLEd7ExIny6KxCWJuf5A2iZEEPAKAkpGPewXJVZFokx3XHKCIQxRIk9WeD4S5QzdIKZpBT7NAa+Xyq5LU3+AqmXK8O677xb4sK1fv56oYbAyHCUvE1qZkGQcUaJEbi4eQSAmSqiCwGvROK9F42iCgF/X6dO7NxVsm+KywpJgmG2JLBp7PKiCQPcuXShbvDh+XWfo4MFUKV2a7rZNESWtxn4/luA6109E19m+fTtl8/JoHAiSNAyGDh7Mzp07+eSTT3j//fcPUc4PGziQzpbNo6EwbsZH+nZ/kAGGSZYkERBFbF0naFr4VJW+PXpwww03UNuyaeP1EqvViVpTllOk5RACmpcqqkpAkmjb5MgPeyZdeCHDM9dKKGPt8mgoguPz8c033xTMa+pFF5FrWQy2HYKGydq1a4F0GEl2KET1smULFqcHDhxg27Zt7N+/n127dlE0HqeD41BEURhtWiwLRSiZTAIZvzXT5ELboaHj0LxxY07PtDreFQhSt1IlenXpwmk1arB8+XIgfXN7Rtu2JAwDS9MYPGjQYZ6Gx+LmG25AlSQ0WaFE18kES9XC0jQkSabSiHlUHjkPzevjkUceoXjJ0pQtW46eZ55JR5+PhCQjCgIVypcnlUpx9RVXUM1xuMb1kzDNU9aCezQ++ugjapQrR9i2ueh3tOX+XjZv3ozpBqk5aRlVxy5E1bQ//ZipVOp/omA75ryxOKE4biyb7mflH3+HQv52CgvUhQXqQn4fs266CZ+q4kgyt/qDbI0nqe0P8PDDD//hzp+DBw9yzz33cM011xR0tJ1qTqtWjfkZS4u2wRD33HPPn3KcX/i1z26zevX+1iL+K6+8QsVAWqjyciRGIhA44nZd27ZlRibEur/rx/b5eCocZXM8SVhRGGJaPBGKENJ1Pvjgg2Mec9u2bQzp25cB+fls2rTpmNumUqlT3j22d+9eunXogO310axu3aN6PG/atImEabItkcXGWAJVlgteq12pEmfq6Q7UgG4cM1wvKxhkVSRtVxjxeBiUCXs/y7KJOg7NA0GKWjaX/yos/aabbqK24/BYKEI9x+H666+nXuXKzPUHOM3jQREEskKhgu7G30uLevW4yU2LyJoEgtSrUoXrMz/ns10/157CINmSZStQutfl1Jz8OOEipQtU3X8Xb731Fq+88soRP3+pVIpp06YhCAJ169Y9rjXQ/Hnz8GkerKwylOw+DTeWw9KlS/+sqRdSyH+Kf3yBOj3Hw9sQj/X1v7ZAXrFiBUVjMbLDYRYvXvx3T+e4pFIpRg8dSsRxaFSz5nHTjH8PX3/9NePHj6dUdjYxxyE7FKJ8sWKEfT42xZO8HInhk2VGOC7vxRIU1XXyolEa1ahx2ELqtddeo6ht83E8yeJgmLCuM9xx+SiepK7rMm/evIJtu3fowFTboZqqoWYU0Jdk2saGGiauonJLRvm7ceNGssJhEqZJ2bw8PvvsMzq1bo2pKDiiSE9dp4KiMssfIE/XeeBX3nbbt2+nU9u26LJMXkaJ6xUELrEdwhlLjiqKgl8QaaqmbUDkjOVIm4z/nl+SsEURRxSxBYF8n85t/iAVihWjUqVKSJlicklFoYKqEhJFFEGgmcfLmmiM8yyLpCQx2/VjiCK2KLLoVwXeHFkmIIpogoBXEDnd68MSRZp4vHT0+jjLpxMWJUxRxJ+Zf1FJpr9hEpIkQj4fuijS0uulqKIyfNAglixZwty5c6lTuTLZlkXANFm5ciWrV6+mpOOwLBTGFUUmm+mielFZwSdJVFdVimSU0kZmTg1r1WLdunWkUimuu+oqEq5LdqY4b2e2SQQC1NY8lM7YgaiCQD1No77moYnHS56sUEXXmZwpIu7atYsHHniAFStWMGPGDDq0a4fr9RLTdc5o377gWu/RqVOBF1wb20GXZWprGm28XiRBwJRloqaJVxCprKoUNS0aN26MKYqUkhW8/gSl86/AzCpDW91IK/Xj8aOGy7zzzjsETZPOoRCO10uRcARX08gOhZl3552HbPvYY48xffr0gtbJDRs2EDEMngpHmea41KlYiR07dlCpZEnCuk6RWIy7776bmsH0zdyKcIQcWWaU49Ksbl0AHnzwQZqH0tfGw6Ew5fPyCFkWfR2X4rbNyGHDCJgmUd2gad26BeqEVCrF+++/f9K/I7799lssj4fVkRiPhiJ4VQ/h4lW48sorGTV6DJrHh+b1cfkVV2L7gxRpNZRE9dbUaXAaiVAISdFQDBdBEGjfvj2dW7UquBHr5/q5JtMF8WfRplEjxmdUZ7mWxUsvvfSnHu8Xvv/+e0zbpXiXieS2HExusZJ/yXH/6xw4cABZUal2/iJqXLAUr2H9Yd/TQv58CgvUhQXq/0VSqRSTJ0ygWDxOu6bNCh5inyg7d+7E8nh4KRLjEtvBK4rk2TbVy5enXF4ekijSqVWr323pdO7w4VR2HHq4LtmRyBGVk7t27WLw2WfTtFZt7rvvvpM+xh23307StGgXDJIMhY5ZbDwVHMln98/khuuuo1xuLqc3b3HY36Jdu3aRDIUYaDuc5rjkdz2ybeMdt99OUctipGUTNAwuGD+eoK6Ta9kEvV6WBsN8Gk9S0nH+UADpwYMHefbZZ3n++edJpVLs3LmTgfn5tKhX73f5Ap8se/fu5cz27XF1nZYNGlAsmSTfdmjrOLRs0KBgu2+//Zah/fpxRus2h9nj/ZZmdesyINM1aKgqp9sOG2IJahoGFYx0J+0ToQilsrIK9hk7ZgyjMkKTcy2bMSNG0K1DB+r5fDTU0l2rI2yb/kfIPToZenTqzGDH5YVIjFKOQ9/8fGo7DrP8AXIsixUrVvyh8X/NokWLMCwXfyyHOvVPO+K1n0qlGH3ueWgeL0WKlTilCu5fc/74C7BDMfyxHLp063FU4cTChQsLwhPfeeedo45XPJFgSTDEINvF0G3GnHfenzLvQgr5L/KvKFCf7Nf/0gI5lUoRME3uDYR4OBTG9nr/lYFZfwbN69VjvOPyTDhKRJIYZZh4RZEHg2Guc/3EHZe4YeKRJExFYWEwxIWOS83y5Q8Z5+DBg3Tv2JGIruP6fMyZPZsKxYsjSxKdW7fmvffeo0a5ciSDQYYOHkzIMGjopIuO8WCQ8qrKXH+QbFmmaGax8Uu79wsvvMBHH310mDK0XpUqNNc8afsMUeKsHof+saxfvTrZikJCklBFkbjHQynNQ0BVKZKdTTlFxc4E71miSEVFoaXHg1cUOd+w0gV6UeQG1083Xae4oqCLIn7DoHyJEjR3/URlhTsCaeVLRVXFKwjYGQW1I6YLp6YoMtcfICxKxDJe0rVVDUNWCPp8rAhHmGY7tPZ6ucrxkyPLDDbMggJwdsb+461oHE+mGL4pY/0S8XqZ4wa43HEpZxgF1gqLFi2irj/AlniSm9wAucEgcb+fsGVhSxIhSSIoigVWDcVlBVUQcESRm10/+aZJncqVD3m/H3roIUpbNuUVBSXjUe1kCtKlFIWloTD1NQ8VFQVREJjrD9DW68UQRcaOHs2BAwd47bXXyIlE8CgKxRMJWjkuLb1eyikqjTWNoCTh+nzcd++9vPjiiwQMg8qBADmxGIascJ5p0V83MESRQYMGUUbTeC8WZ4hh4pckLFlmgmXzYTROTNHwql58okg5ReXOQJC46+fc4cOpU6ECl06detjiasK4cZTJyaF18+ZUKFaM0bbDpbaLqWnHVASvXr2aUo7Dp/EkS0NhSiSTXH311XRy0ur/EbZD7+7dCRoG17p+ulgWMcOgTaNGBR7h27ZtI2zbDLFsKtsOE8eO5YMPPuDKK69k6dKlNKlVixtcP5/Gk9T0+3nooYdO6rP+W77++mtsj4d3onFWRaKogkjX7j0LPmc//fQTP/30E2vWrCGUU4JaU5ZTeeQ8/KEI/QcOJrtpf2pOfhwrpxyCIFCkSBHiusEAxyVoGMdclJ4KaleowB2BIFviSar7Azz22GN/6vF+zXPPPUfVmnVo0Kgp69ev/8uO+18mlUoRCEcp3nkCpXpcgmE7hX+n/wUUFqgL19//iyxbtoxSmeDjfMel/1lnndT+33zzDZbHw9vROC9EYuiaxptvvkmfbt0Y7rh8fARxx8lQLB7n2UxmRY1g8Ijrl749etDZcbnNHySi6yxZsqQgjPxEWb16NfPnz/9TRDR/Nvfddx8D8/O55+67D3tt9erVZJkmS0Nh+jnuEUPxNm/ezKQLL2TGjBnHLJg//PDDTJ48ucCCcNOmTbz55pvcOncuQV2nhOPQvH79Y/oJ/5aff/75EKuKs844g9KOQwnbYVCfPnTv2JFursscf4CwYZyQr+/+/ftZs2bNcS0oj8QNN9xAY8flnWiczo7DyHPOYfKkSVx22WX88MMPR91v586dvPzyy+zcufOw17744gvyu3SlZf36LF26lOb16+NVVRrVqk1Q17nFH6CP49K+WbOCfd577z1ClkXjUJiQZfHOO+/w5ZdfUqZ4cepqHrbEk4wyLZrWr88bb7xB5ZIlyY1Gueso3cFH4/PPP6dxrVrE/X4mnHce+/fv5+IpUzi9WbPDBC3H48CBAzz99NOsWrXqqAXfbdu28eabbx71GnnhhRdwo9lUPe9+irQaQt0GjU5qDifCwYMHUVSNSiPuxC1ZC0n1cEbXbked0+uvv04ikcA0zaOqomuWL8+ljsvT4ShhXf/Hhq7/k3nzzTdZvXr1P8IWqpC/lsIC9b+cn3/+GU1WeDsaZ30sgalpfPvtt3/3tP4RVClRgvuCIbbEk1RS1f9j78zjrZreP76nM+15n3m4U7d7u3Wb53meNIhGFEpRURQlCYWKQplTSiGEzJkThSKFSH0j0kQZoigNuuf9++Oc7k8qFdF3OO/Xyx86a6+9znTPs571PJ8PMxw/iiRREI9TlJ1NTFWZ4vippOvkpCU5Xg9FSAQCh8yVTCZZu3btQa/tgRazxjVrMtqyeSUYJuDz8fDDD/P000+zdetWXnvtNQJuN7Vcbip6fTSr34BBF1xAr+7dydJ18gyD8885tN170aJFuESR81SN6wyL4rw8kslk6R9pS1YYbVg8EQjhE0U6eL1sjmdRUdPI8npxCQLtvF42xRIM1g1UQeAcVaOS14vpchHz+SivKGyOZ/FyKExAkmjbqhVffPEFhicV6Jzi9XKhpvN6KEJIkqnudhNMG41cm5Ye6ZmWAjFFkVtsh0XhCLookq2qFOfl0cCn0tnrwxRFarrc3JPWt+7mU1HSEiAjDJPTvD4auj1kSTJuQcAjy/gkiR4+lQf9ASxJYuzYsWzbto1XXnmFItPi/UiMS3UDWxS5w0pVcc8JBLnSMAmkq8gf8qf+P57WzfZJEoooUpyXd1AS9K677uJUy8YSReKSzLPBEDOcAF5B4Ly0Lvi1pkUtxYUmiqiCiCYI5EkSvbp356zOnUlYNrfZDisiMWxR4qVgmE2xBJookivJpVrb5bKyqFZURMDnI2zbLF++HJcgoIli6j9JolmzFrRMy7+MNS0CkswI3aCJ20Mbj4d6Ljd+SeL1UIRxppUyV7Qsmlg2jwWCVDRNhgwZwosvvkgymeSuu+4iIstMc/xUTR8sXKabxKSUXnpA1w9pC1yxYgVXX301s2fPpk3jxkRVFVuWaVavHuPHj6e1ZbMuluBcy2booEEsWLCA09u04aJ+5x82IP/Xv/7FNddcw6xZsw4JNjq0aMGodDdDBcs6rA788TJm1CgMjwfD42FGWobn9+zatYucMmWJVWtJsExFzu8/kEmTbyVUtgrlz76BQE4RQ4cOxbIsdF2nb9++f2jKc6J44YUXcFSVMqZJ41q1jlnvLsO/L++88w7FlatRUFR8Qj7fGf5+MgnqTPz9v8jMmTNpl5Z4uN126NCs+XHPMXb0aHS3G93j4d6pUwHo2aXLYeXxjpcep57KaVZK+zig63z99deHjKlfuTJzAkGWhKMYkkSOplEmFmPz5s1/6p7/STz11FPkGQbjLJsyhnFQ9yWkijyapeVLHkhLrJ1IyYwvvviCu+++m0ceeYSlS5ceV3L6vffeI2zbqC4XZ3XuzHfffYfmcnOfE6CsrKCLIgWJBE+nuzUbBQLMmzfvD+fcs2cPjWrWpJxl4VfV4/YRuf766zn7gNyiaTHogguOes3atWuJ+f1U9fuJ+f2sXbv2mO83b948Wtarx7k9ehyik75582bmzZt3kOHp/fffTzS9N4lKEnUqVaJCXh6TbId5wTC2z3fY78jfTTKZpFvHjlRMd0oOOv/8PzXPK6+8QjC3iDpXv0Bhj2uoWrPOCV5pinA0gV2uHv5Kzag25EFCBdX+8G/UV199Ra1atRBFkYkTJx6SgP/kk0+oXlRE3O8/yI8nw7Fx+RVXYgaiOLFcunQ/439CCjDD/5NJUP8XcP011xBUVSKaxqUXXXSyl/Nvw2OPPYZfVcnxeLBlmVzd4OL+/QGYOHEi/dISCxNMm2y/n0ppY7dJvzMx2LdvH906dEASRSrm5x+SyKuYl8fD/iA1XG4isozt8zF//vzSx++dOpXmtWtTq2JF6psmVxomXlHklWCYz45wqFC1XDkauz108fkoVBRsnw9LVVHdbqbefTeO18vroQgbYglyZRldEBiqG/hEkZssh7gk0cTjYX0swXmahi2KlJEVcmQZw+PBVhR8gkBzt4e4JKNLEj/99BP79+8nNxpluGWTL6dkLQ5UYmcrCrYkEZNlWni8vBIKU8HjIT87G0OWeS4YYl0sQbYs08bjQZckaqsq2W43jevVo1J+PhXdHm6wbEKSRHWvlyrlyxNSNcooCuNNi6ggoCkKuW43jihiCwIBMVURnet2kx+P88MPPzCwb1/cgkihojBCN8iTZRKyzMZYgkXhCJbHQ0iS2BhL8GoojJbWeR5nWqyNxikjKwQ8Xh577DG6d+xIYTyOX1XR0xXTd9p+TvF4GaDphCSJhm4PPiElk1LN5WZJOMqpXh+GIKBLEkMMk6gs84g/yBexBDFF4VRNZ6BpoaUT+Ae0tgvicU5La59falqc17MnLlFkRSTGikgMRRAIlKtN1LbJNoxUolLXWRqOkiPLWKLISMOkIG0w+WwwVFrtPSbd/tdP08n2eim2LAadfz4N6talTzrRfpPlkCvL2KLEtPSBQVe//6BA7LPPPiOg6wwyTCqYJldefjmOL2Wg2FHXadO4Mac0bYokitSuVOkvyRXs37+fFStWUFymDB5FYdD55x93IJJMJtm1a9ch123btu0Q05hkMsns2bMZ3L8/L774It999x133HEHjzzyCPv372f//v2MGDmKmnUbcu1115ceTlWuXBlRFBk7duw/cpq/detWPvroo+Pa3GXIkOHEkUlQZ+Lv/0W2bdtGuZwcqvtTpsW/jWePhx9++OGg39/Vq1eTCAYJ+HzUr1aNnTt3/ql5f/rpJy4fOpSzu3U7xIjuAPfcfTfZhkFButBiczyLPqbF6GuuOez41atXU6dSJcpEIqUJ9f9ULujbl5HpWPBq0+KSCy886PE5c+bgS3c86i4XEctCkSQu6tfvqLHX0eKRL7/8kpBpcobjJ0s3jrvitlmdOkyyHT6PJaho2cybNw+/rqOLIg/7g8xwApheL3m6QXt/gLxo7Ih60Qd45ZVXqO44bIolmBMIUqPc8UmXff311+TH4xRYNjG//w/1tLdu3cqZp51GTjjMhen3YJBpcflRDB3/Cm+//TbZus5D/gBnmxbn9uhB0DRZFI6wLpYgruvHVGV+otm6dSuW18u6WIJ/ReMokvSnDkJ+/fVXWrQ+Bd0Jopv2n/57dDSWLl2KE4qQ1eI86o5+mXit9kyYMOEPr9m1axc9evRAEAR69+6dKSY5QSSTSRSXmxrDHqX2qOdQDet/4nAxw/+TSVD/l/DFF18c1YTif5GNGzeydOlS3nrrLZYuXVoafM2aNQuXJJHtcmG6XNx666288cYbh23dnz17NvXsVFviEMvm3B49Dnr8kYcfRne7qepysymWYKrjp1mtWofMU7OoqPTUv57bwwBN50F/AEfTDmo9vHjQIDyCwETLZmM0jiGK+BSF5wMhnguG0FwuRo8ahSVJlFMUGrs9ZEsSjdweZFGkgmnSV9Uw0jIXalpOY04gyMP+IG5B4CbLpp3Xiy2KKTfskSNLW87Xrl1LqyZNcCSpVFO6msvFMN2knddLjiRRL22SWNPt5nLDxJPWkHZECUMUae32kCXLbIolWBKOokoSsiiSE4lQ7HJxvxOgs2Vxww038N5776GKqWSzKor4JYk+WspoxCsInKmqrI3G8YoiDRyHZ599lo8//hhbkuijaqWV2JosU8m0iOs6N1x/PfnRGGXT2tHNPB66+FQSsszqaJwiRaGHT6V8Xh7dLZtXQmGKTJOKhYVYUspMURQEQpLEMN3AL0qERBFdUTgrnegdaZjookhYSj1nnyDgEQRsj4c6VatSvbiY09q1Y8OGDQweOBBNUbBdLvIiESr4fHweS3CubtCoTl00t5vngiGeD4ZxKy6Kz7uVMoXl+fTTT9mxYwdnde2GLkl4RZGmbg8RUSSeljPxiSJVFBeG24NPEGjh8eIVRF4Phfk4EkN1uxly8cVookgPn4olijR2u9EVhea6zjTHX2r899vvR5dgsLTCpkaFCmR5vUQlmSxZJujzAfzlRO0777yDTzMQJBmfqrNgwYLjnuP777+nZnExblmmVsWKR+0guW/GDAoNk2tMi6imHbPh4c6dO+nZsyeCINCpU6e/1TH8n+Cbb77h+eefL5VhyZAhw8FkEtSZ+Pt/lZ9//plFixb9KUmEP2Lv3r189dVX/8gh71tvvcXpnTpxmmmxMhqntWVx8803H3ZsnUqVuNayeTFt6vf555//7ev7I77//ns++eST4z6g3rFjBwHTxC9JDNENAi4XL7zwQunjJSUlWKrKM8EQr4bCeESJ6y2bNdE4haZ1xHjom2++oVbFikiiSIv69Y8obTFt2jR6pKuzpzl+2jdpclzrb163LjdbDmtjCQp0g+K8PIK6jkcQ+Cwa55NoHLcs8+qrrzJr1iy+++67o875/vvvE9d1FoQijLBs2jRqdFxrgpQs3MqVK/9Q0gNS3YD9LJsePpWGaR+UVpbFxKMkOv8qt0+eTJWyZenWoQPff/89t0+eTDCtB96tY8eTUn36yy+/4Nd1pjp+brIcHJ+Pa0aNOqJXzh+RTCZZt27dIQUnJ5qPP/4YOxAilFNIPCvnmCrPk8kk1157LYIg0LBhw4y/yAkiEkuQf/pwinqNRzXMP/W5yfCfSyZBneFv5cUXX6RcVhYVcnN5/fXXT/ZygFTQ6hYE/KJIGVnmfE1Hd7no1a3bQW1TB7jvvvto4ThsjCW45gh6bXPmzCFf13knHGWoZXN627Y89thjTJs2rVTu4Mrhw6lhWQwyTCyvl5CqEvJ4uOSSS0q1cRcuXIijKIwxLcrICs3cHoK6jldRqOlyY6UTwZrHQ+/evdHTshv5ikJH06R1o0bMnj2byy+7jHfeeYe9e/cS8/txCwKr08GdIgisjaVa5GxJIiLLVHGl2sNGjRrFU089xa233kq+2825qsZD/iCOKOEXRRKSxPmaxoZYAlEQWBdLsDGWwBBFKisKD/uDtHZ7aOb24IgSUxw/F2k6BYrCv6JxErKMoxtoLhe1K1Xixx9/5Nprr6VVWqLkVtvBJ4gsDUfZHM8iW5ax0xXDtijiuN1UyM2lQc1amOmq6VXRONeZFtXLFTFu3DiWLl0KpAKNsWPHIosia2MJNsezsNJGj0WKQkAUCXm9TE6b33V2/Fx77bX4NY0zbYeYqqJ6PBSkTSirKS68oojl8ZAny3gFkSxFYUMswWOBIAWKwnWmhU8QcCSZIbqB4/Uya9Ys/LrObbZDL59KQJSwJRlBEFK61JJEQNf/P8GdWwU1mM3wESPZunUrs2fPpkphIWPTpnlBSeJS3UB3uWjZvDmSIOASBFxuL61UjUmWgy4I3GY7jLBsqhQWsmfPHrp27EjQNCkTi9Gibl0efPBB2jRrRo1y5Ti9Y0fcskLQMFmwYAFLly7FkFOfwyoeL5defDGyIPBRJMbaWAJNlkt1Gfft28eCBQv44IMPDvt9SyaTLFmyhGXLlpFMJtm7dy9DL7yQuhUrEo5lUbbzFdQa+QyGGSQRDB739/maq67ijLQcSnfT4qorr+Tbb789YkB+bo8eTEx3T1xkWoz9jUv60Ugmk9x+++0oikJhYSErV6486jWfffYZDZs0p0Llav+Ioc+x8Pnnn+MEw8Qr1MGw/aX6kf/ubNq0iZtuuonZs2dnNOky/O1kEtSZ+DvDfzY7duygXdOmGF4vp7dtyy+//HLYcWUiEV4MhtkQS1BoWaVx5D/Jr7/+ymuvvcadd96JrarkGgYNqlc/4poPx3vvvUdlx89jgSB9VQ1H0w65h9flYlkkxspoDI8ocktarq2SbR8iP/Xss8/StlEjahYXc4Zpsj6WoL1lM2nSJADWr1/P9ddfz/Tp09m/fz+LFy8mpuvc7fhpbtmMPEZjuJ07d/LDDz/w/vvvE/X78SgKucEgvTWNrj4fuiQT8fmIaTpXXHrpMb8eB7j5xhvJCgRoUK0aX3zxxXFff4A1a9bw/PPPH7Fqu3x2Ni8Ew3weSxBzuwmbJj27dDlu/fMTweeff84HH3xwUmOlRYsWUbdSJWyXi7M0nVMti44tWx39wpPIDz/8wLJly467w+OAeWJubi4ff/zx37S6/x3ee+89KlapTtlyFQ46ZMvwv0EmQZ3hb2P37t3YqsqcQJD7/QH8hsG+ffu46cYb6dWly0lL1jSoV4+IJBGXUlIVRYpCNcXFqZpG5YKCQ8bv2rWLRjVr4vf5iAcCh3UQTiaTjBw2jIBhUK9KFXp17041y6a946dSQQF79uyhpKSEGTNmMOrKK2lYvToXmhaz/AFUUaRcbi5PPPEE9WrX5gLdYHM8i1tsB0uSePLJJ+l9zjnUcrlTSXLDpJHbQ1F2Nhs3buTVV1/liuHDGXv99aUnjLt27eLdd99ly5YtnN6hA2ra9C8gSRiCQGefjyxZxicIvBmOsCmWICctFVLLtMgJBvEKAn5RIl9WuN12GGGY+HWdqMtFX9PCVBQamhZNPV6iksQ5PpXN8SxGGCZBSSI3XeHriBLjLIsvYwmKlZRhYac2bRg35lpMn4+gaZIty7wWitDdp6IJAgWKQguPl3w5lRyOWRYVy5TB8HiYYjtUdbtxCQIV0jIXUxw/QUWhuu3QqXVrHnjgAUKaRk2/n4DXR1dVY4Cm45ckPIJAFcWFLUqlus/FLje5kQjjxo2jV1r24k7bT8DtoSAnh2F6qlWvo6ZT4PXS1aeiezxENY2FoQhXGyb13G5eCIbJlmVapV+TYpcLw+Ui4PMxPxjGESXOUTXCkoStKBQqCvNDEaq5XMhpHWrL5eKMbt34+uuvSQSDdAgEcWSZwbrO+liCXJeb3HCYzp274jMDeANZKB4VRRDRZIVRhkmuqlKpTBk6t2172EqgvXv3UrmggFNth6qGgaWkdOwf9AcozMpi/Lhx1NE0uvtUKnp9DLn4YryiyFTHz6OBIB5R5Oeff2b//v20qF+fyrZDXNeZOH78IYnh3mecQVnTJMcwGDZ4MOOvv54mls3cQAjVp1HQ9UpqXfkMphUmZFnH/X2+auRIeqUNG0/RdGyfD9PjoXWjRodtt3vwgQfIMwwuN0zCmsZbb7113Pd86623iEajqKrKo48++odji6tUJ7dVP4p6jkMz7X8Lw6WxY8eSqNeZuqNfJqf1BZzd+7yTvaSj8sMPPxCKxonX7kAwrwKXDP37WmYzZIA/DpAz/2Xi7wz/mSSTyUNig+nTphFMm/q1bdLkH5fWSiaTdGzVioq2TURRSj1kamk606ZNO6Y51qxZQ8cWLXBcLtp7fZT1eKheseIhz+WWCRMwvV5sr5fePXvi13Usr5cu7dsfJMGwevVqQprGPY6fzppOscvFpliCLpbFjTfeyLZt24gHApxnWtSxLAZf0J+SkhKGDxtGzUqVuHzo0GOSPHjk4YcxvF50t5srhw2jpKSEXbt2UZSdjSqKDNENcmWZdm3a/C2Jvy1btnBW5860ql+fV155hZKSksMWODz33HMENY1GgQB50egh+tAAt0ycSI5h0MwfoGLZshkzZFLFQoXpopAVkdghhyb/TSxbtqzUPPG555472cvJkOE/lkyCOsPfxo8//ojmdrMmGmdlui3rumuuoY5lMdGyiWoaixcv/sfXVb9qVSKSxGtpF/CidIXsGT4VlyActqWnpKSEr7/++iA36+nTplE5P5/2zZvz1VdfHTTer+ssj8TYFEtQ1rJYvHjxQSfo+dEor4ZSJnqVFBdVPF5sl4s+qpYysDNM4m43Qy65BEhJLlTUND6OxLhMN1ISG5JE5YKC0ha3n3/+mY8++oj169dTmJ1NRcdB93ioZhi8GY5Qw+cjNxgkYdv43W4MRUEXBAbrBvc6AXRR5GyfyoZYAlMUOcvr43Svj7AkMca0SGga7Vq1olmdugwaNIgPPviAGTNm4Nf1lMazIFCoKAQliXGmhSOKRCTp/yuDRZFWnpSBo5L+7zSvj7ssGy2dDLdFkVxRJCedSJbS1147ZgxPP/001W2HbFmmj6pRKf2+6aKIRxB42B/gy1gCy+ulStmyPBYIsjISI8en0qhePRrUrk3f3r0564wzCMgyzwfDnK/ptPB4qGyYPProo7z++utEvV6mOH4auT008HjIDoep5FO5O31gcF3aLKVhMEj/vv2IOQ4RXSeYNh+cbNnUcblp5PawOZ7FVMePIyt4BIGeqspLwTCdvD7cokgLj4eFoQgBSeLDSIypjp+oaZJMJnnggQfoGEi1Ss70B7BlmSxdp33z5vz666/Y/hBVB8+kztUvoOkOLwbDFHq9nNquHTNnziwNsJPJJDt27Dgo4F69ejV5psmmWIJnAkEsUWJNNM5TgRB5kQjnnn02RYqLM3wqZ+sG3bt1wysI5MsKEUlCUxQAPvzwQ8qYZqn2t+P14lEUskMhli5dynfffYfh8bA2lmBVNI5Llulz5pmlr+Gpqobi9iJKMm6P76jJ3sPx7bffUqWwEN3tJqJpjLVsNsQSNHAc5syZc9hrnnzySS4fNuwvdXV8/fXXNGzYEEEQuPTSS0u7IH6P5Q+m3qdrXsSOZB9WRuif5v777yeYV0zF8+8gUqEeo8dce7KXdFRee+01YoXVqDv6ZSoPuIfsvLIne0kZ/svJJKgz8XeG/y62bNlC1XLlkCWJZnXrHiTZ8Pnnnx/V1O+rr75i0PkXMKBPH7788stDHt++fTtXDBvGgD59WL169TGva926dURUjfWxBB9GYrgFgfciKd+RgGkeVboMoCAri6ssOyWPJ4r0UTWKVZVe3bsfMnbr1q189dVXLF++nK7t29OrWze2bNnCqlWr6NuzJ5cMHMhDDz1E00BK6u2pQAi/y4Xj9VKtqIht27bx+uuvUycdo74eilAQj9Pv7LOpZNnUdRxaNWx4TNISIcvi5VCYldE4fp+vVHasQYMGnO71sTmexX1OgLiuUykvj+4dOx5Vd/p4aN2wIRdYFlMcP4bbjVuWCVnWIfHhKY0bMyVdwNJa0xg9evRh51u8eDFz5849bkmCZDLJdddcQ8XcXM48/fS/Xc7i72D79u18+umnBx107Nq1i7xolPNMi5aWRfeOHY94/e7du0+oYefJYPPmzdSsWRNRFLnpppsoKSnhiy++OKGf2f8Fli1bxrx58zKHPP+jZBLUGf5WBp1/PgldJ6ZpjLzsMjq1bMk96R/4s/1+7rzzTu6dOpWWdetx6aBB/0gb1LR77sGRZHqrGlMcPz5RRBMELtB0emo6tSpWPOocH3/8MVFN46lAiP66TkE0yjPPPFPa8t+0dm0qu90EJAldSOkTG14vTz31FAATxo0j6vZQy+2mWHGRkCTO01LaxoN1neKCQp588snUeqdNQ5UkIpKMN52w9aaTtwFJommDBqxZs4Z4IEA528YxDDrZqdPqdl4vbbw+arrchCWJ6sXFZOkG62MJ3g5H8QoChiiWSocM1lJSFF5B5EF/IFVZ7fPRsU1bCrKz6Wma3GilnNMPJOU7tGhBBZeL/HRSeahuUEVVyUqbFt5iOxiiiD+tm5yQJPprOp9F45SVFSZYdulzGqDp1HK5aeHxsDGWoL3Hi1cQaK/r1KlcmXK5ecRlmc3xLD6KxNAFgbN9Kh4hpa882bIJmiZVypXDL0lYokhNl4sCXWfMqFFMu+ceqpYtS67Hw2fROA/4AxQpCiFNY82aNQBc0K8fCcVFN6+PuCTRWFWp5PPh9/lQ0q9TTZeboGFw0003MW/ePPbv389rr71GbiSCpSj4RBFbkngsEKSXqpEjyxTIculr3UfT8CsKbkEgT5bxSxJro3HmBkLoksSVV1zBQw89RFzXecAfoJNl0+ess1i1alVpu16FSlXJbXMB5XvdgMeV0rrLUxRaNm5cWrXy448/UqdyZVSXi4ply5ZW7/78888ETZPBukFvwyQ3FMJwe7B8PmbPno0/rQHeV9OxXS7mzJlDkc/HpliCF4JhcgIBILVZc1SVRwNBLtAN/LLMikiMO2w/NcuX55dffsHRNO73B7jL9hNxHBYuXEhA02gXDBEyTVatWsXnn3/+l/TFkskkP/zwA13atWOkZfN5LEFN22Hu3Ll/es4/Yv369TSrU4cykQiNGzVCEASaNGnC1q1bDxl73fVjsYIxQnkVqN+46b9F8F1SUsJlwy+noHxFzj2v30lpPz1evvrqKwzbT27bgUSrNKVrjzNP9pIy/JeTSVBn4u8M/10MHTSIvpbFhliCdpbF5MmTj+v6ygUF9LdsLjEtysRih/yen9K0KV0tm+GmRdRxjjmu2b59O5bPxyx/gLGmhS6K+ESRC3Wduv4Ar7322kHjd+/ezYYNG0rvv3//fuR0HLk+lkATRXJlmZouN7okMXfuXObOnctNN93EunXrSu8ZNAw6eH3U9HipXbkyUcdhpGnRy7JpWKMGuZEop/oDlDEMbpk4kS1btpTGoFu3biVoGIwyLU6xbHp16YoipYodNsQSBFX1sLKJvyfm9/NkIMTySAzb6y3dW1x22WXoosjVpkVFxYUpSTwfDHOmZXPBOecc0+t6LOSEQrwRSnWS5soKs5wAD/gDlI3HDxo3oE8fuqgazwRDZMkyps932Jjvz/Lcc89RZJq8EAzT1bK5ZMCAw477+eefeeGFF45YTf74448zuH9/nn322RO2tmNh4cKF+HWdhK5Tt0oVxowZUyrHtmnTJkZfcw2TJk06bLyZTCYZeuGFeBQFv2EcszfMvyu7du2ie/fuCIJAVnYOmh1A1c1//D35T+WWSZMx/BEiBVWpWKXaf8QeJcOJJZOgzvC3kkwm+eijj/jkk08AmHHvveQZBuebFgFdZ+bMmeQYBrP8AVpbNiOGDv1H1jR9+nSqly9P/cqVmTlzJlba4HB9LIEkikeshjzASy+9RHUjVYE6NxAiJElke71ENI37ZszgrrvuooLLzdvhKF19KjFJYoRukvUbjd158+ZRvkwZZEGgOF15PNwwyfOpTL/3XiAViLgkibPTxnwX6wbZkQg1XW6iksRttkN5l5vsQIDabg+fRuM09fko7/XxcjBMZ93AEEWuNkxeCoaxXC4Mj4fHA0HGWw6GJNHAsvAIAhFBIJE24gu5XJiiSJ6iUKtiRaoUFmJIEovT2tB5LheCIFCtuJjKBQW09Xq53rRxiyLnnnkmAwcMIF/VKFZcRNOmg3paksMnCFxrWtzr+AmKqcckQaC8y8XmeBZz/EEMUSRLlkuv09OGjyFdx6/rXKQbtPV6aez24IgivXwq+W43hYkEDzzwALbHw0vBMONMi6ouF6+FIsT8frI0jQf9AVp5vMTdbkzFRbXy5UtbsZYsWUJeJIpXFMmWZBxRYlMsUardfaZPJSHJaKJI0DCo5fWR4/VxXdoZ/rHHHqOSbnCNYVLL7cF2e7BEkRXhKG+Ho4iCwMC0hMuNlk01xcVcf5DKigs1nfzOVhQuNkyChsGkW26hac2aDDzvvEPMWdasWUO9hk3ILVsOze1GEQTaeb00N01umjgRgBtuuIHOafmL80yLYUOGAPDMM8+kWjwVhaLsbLZs2cL333/Phg0buOSSS4imWznfj8SwVZXdu3dTs7iY2rZDTNO449ZbS9cxd+5cqhYUUKNiRcroOp+nndKLc/MAmD9/PlULCqhVoQKLFy/mqhEjqFq2LKe2bVu6UTpRfPbZZ5RNJJAliTNOO+2Y2nRXrVrFgAsHMeba6475pL5d06Zcatm8GgoT13XGjh2Lz+cjHo+zZMmSQ8a/9957vPLKKwd1YGQ4ft555x3OOOtshl9+xVHNijJk+KtkEtSZ+DvDfxeD+/dnoGWzKZbgNMvipptuOuZr9+7diyxJbIgl2BRLYHo8h8g8OJrGh5EYm+NZFFr2MXdMrV27lg4dOmBJErVcbu6wHMKyzLXpvdLmzZtLx65atYp4IEBYValdqVJpEvzcHj2oatvUsWx0SaKhy11afVwQi1FsWZxr2URsm4k33Eit8uWxJInmHg+9VBVVFMkxUvHpymgMPf38Zs6ceUQD6w8++ID+vXsz5uqrU7IcOTlcadncYjsETfOY9LPnzZuHrap4XS4mjh9f+u+DBwwgJMt4BAGfKNJE09kcz+Jux88pjRsf0+t6LIy+8koKTJNmtoMuSayIxHg2GCI7FDpo3I8//kjA46FIUbjGtKjpD/Dmm2/+qXt+/fXXDOjTh3N79CittJ8yZQpd0gVck22H09u04ddff+WqESNoVqsWE8aNY8eOHRTn51PfHyCiacyaOfOgeR999FHydIPRpkVC1/9Qu3fNmjVULSzEr+ule5i/QvM6dbjT9rMxlqCSy00Ln0pVy2LU8OFHvfbDDz8kS9dZHY0z0x+gcn7+X17PyaakpIS+ffsiCAJ6djEF3UZRtlyFk72sf3v279+PajpUOv9O6lzzEk5WAYsWLTrZy8rwD5NJUGf4W3jsscfo16sXM++775AWrxdeeIEbb7yRjz/+mClTptDDn/pBvsv2c2qLFv/4WktKSqhWVEQXy6KdZdGifv0/HL9v3z56dOqEKopUVFyEJYnuPh+dfSpzAyGqFRRw6623clo6qXydaZGQpFSrns/H7t27eeaZZ7jtttvYsGEDA/r0obNlc6VhYrpc9OjenaBhYCgKpqqiCALNPR4+isRo7/WSFYtRICv0UlOBsCWKjDYt2nm9tPV4qaaq+GQZtygStywcSWJeMMzGWIIcl4vevXsTNE3KlynD/PnzmTp1KpY3pZlcqCg086nkRaMMHz6cp556igULFlDFceinalRSXLTxeglKEtUVF5VcLnRBYLxp81wwRLHLxfjx49mxYwemLDNcN3nEH8QnigRFkfouN+XLlMEnilRzufAJItmSREySMEWRS3WDkCRxiW4w0x/AJ4j08Pmo63azLpZgmG5Qs7iYlk2bpgwLBRE1rSPdX0u1/1mqSlSWWR9L8FIwTESS6KlqJIIh2qbbBac6fkxR4rHHHjvoc+D4fJiiSEVF4f1wFF0U6adqlJFlQpLEm+EIVdJ60aoo0trjxRZFgmpKU+26664jR5ap63bT0evDlzZlLJs2VVQEgbjXy622Q3mvl4CYOmTIlxV0RSHk8/FMMMTmeBZtgqHSKvqjMfzSSxlgpHSyB5sWw4YOZUCfPmgeDx18KptiCfpY/5+grpiXx5xAkHWxBAWmyZIlS9i7dy9FubkkZJmAJNHC46VQUTjj9NP5/vvvOfO006iSn8/4ceMOuveGDRv4+uuvKSkpoVfXrvh9Pmyfyrx589iyZQvbtm3jp59+YvHixdx2221UNy2eCoRoZFncfBybw2MlmUwe9YDpANu2bcMOhMhqejaRSo05rcuhrbCHIz8ep4bLRc90AP7SSy+xYsUK8vPzcblc3H333SfFNT1DhgwnjkyCOhN/Z/jvYuPGjRRkZWF6PNSqWLHUxPxYadWwIa1tmw62Td0qVQ75nT+rcxeaWDY9LZuyicQxJWi/+OILgobBWZZNQJJQBRFLlmlcrx59zjjjEBPjs7t140ozlWRvazvcc889QCqx8+yzzzJ37lxmzJhB1O3muWCI3pZNwjB5OpCKLWtaFnGfj4f8Ka+Zj9MJ9YTbQ34iQVfboaFlc+bpnQ+73mQyycKFC3nmmWcOqWz89NNPad2wIXHDIDccZuZ99x3T61pSUnJIQcFZnTszzrL5MpbgNNMiYlnUDwQIahrPP//8Mc17LCSTSebPn8+VV15Jpfx8NEXB9HqZ+/jjh4wdfEF/alk2vSyb7HCY7du3/6l71iquyAWWxUjLJh4IsHv3brZu3UpOJELDQJCApjF//nwm3Xwz9SyL2f4gxabJsGHDaOBPyao8FghSs3z5g+a96PzzuTYtoTfcMLni8suPuIbmdesx2rJ5Jxwl2zB47733/tRzOUCn1q0ZYdl8GImRoyg84g8yLxim6mG8nX7P+++/T45hsCbd2VqxTJm/tJZ/F1asWIFPtxBlF4rPoLB88cle0r89r7/+Om7dIdagB0W9xqN4fIf1Usrw300mQZ3hhDNv3jyydZ3xlk2hYXL/rFlHHLt+/XrClsXpgSAxXT8oYXg0kskk98+axYA+fY5quPjLL7+wZcuWIyaNtm3bxo033sikSZOOWpl3//33U8+2eTYQQhUEqnu9qOkk8flaSu5j69atZIdC5CkK3rSEyAzHTxPDoHWTJhSZJj1th6jj8Pnnn9P/3HNpUqMGU+6+G8Pr5cVgmMcCQSxRxBBEzLTOsi6K1DQMInJK7qOlx0M5RWFzPItF4Qi6JBFSVR70B/g0Gidb09AUBStdkRwPBIhpGsMMk7iuM2/ePB5//HFOCQaxRalUNzvftHj++ef59ttv+fLLLwloGvc5flqrKn5dp5OqUSArfBaJEZIkKigKYUnCJ4gsWLCAKVOmYIgiC9Jtc3FJorUnVU3coG5deqariMdbNgExpXG9IBShjsuNKoqlxo0xSaKVx0sjt4cNsQRXGSYF8ThhTaOLYeITRe73B3grFMEriKiCQK4oUtflJiJJqGLqtavvcmNrGoog0MztISJJdPX5OLNLF0pKSpgwbhxFZcpQqCi8HopwqtfHmT6VwvTrfKft50rDJC6lEs1RSaJfuppjjGlhyjIADWrWwiMIfJAO+PNlhdn+AIogMN3284ATIGSanNmpExPGjycRDBFOV7UvXLiQSy+6iAamyUjDRJUkZsyYcdBnb8eOHaVBfElJCRf07kN+NEr75s0J2zaVTRO/pnH99ddT27ZZEAwTk2XckkSlgoJSiY86FSsyyXZYFokR03Q++ugj1qxZg5N+H2c5fm6xHaoZBnPmzKHHqadyjmXzYLpq44CUzfCLL8bv82F5vUyaOJFnnnmG+++/nx9++IHLhwzB8nrRPR7Cpkk1vx/T46F7+uBmlGFx0fnnH/2L/jeyZMkSwmWKqTv6ZapePItgNH7Ua9asWYPj8TDV8dPFpxI3zdJN2g8//ED79u0RBIHevXsf0+b0n+Dnn3/mjTfeKNV2zJAhw9HJJKgz8XeGk8vu3buZNm0ad9555wnT5N2/fz/fffddqVTF8bBr1y7uuusubrvttsOuZ+/evUyZMoUbb7yRFStWcO+99x4iz3GAnTt3csVll1GnenW62g6b41nc6wRo4fHQzjC5/fbbD3vd+eecwwDLYm00TgPbZtbv9lgbNmxg3bp1TL75Zirm5dG5bVt6n3kmbS2bGywbze3mNCd1v/KKQiWXi9N9KvFAgA0bNjB58mSmT59+xIP+qy6/nHzTpK7j0KB6jUMSy41r1mSkZfNsMERQVVm7du0hc/z6669cP3o0ndu25aHZsw97nyVLlhDQdWr6A+RGo3z66ae8/PLLh53v98ydO5dTW7Tg8iFDjikO+/DDDwlpGteaFlUNg6uuuOKw4/bv38+sWbOYOHHiQVXtx0MymURJy7FsiiWIaFppbPbDDz/w8ssv88UXX/DVV1/RvVMnxqQTzhcZJhdccAExXWduIEQ/y6Zru3YHzf3kk0+SretcYZjENI1XXnnliOuoUVTEg/4AG2IJqtgO8+fP/1PP58BzGti3L4qYLhpSFBq4XIRkmSoFhUftHkwmkww6/3xUlwsnnZz/PTt27Pi3MBk/Xq6+ZgxujxdJllFVlWHDhtOpczdunHjTv4Xk378bS5YswQxGsQpq4w0kyC8od7KXlOEkkElQZzjhjLrySi5NJyCvMy0G9Onzh+M3btzIrFmzjvv0duZ991HONLnOtIjrOq+++uphx7355pv4dR3b66Vzu3Z/+Qfhrrvu4lTbYVMswVDDpHG9eoRMkwJFoaXbg6UoOJpGvSpVmDp1Ki1atKBZuop1ku0Q13WeSlcytAoGS3WpIZUoNzweVkXjLI/E8AgClU2T1s2aUbdyZcqmX9dXQ2HiloXtdhOSJHqpKsUuN4MuuICwpjHdCbAqGifq9TFt2jS6d+rExRddxJBBgxiZrrS9yrQYMmgQGzduJGikXLI7eb109vlQZYWwqmL5fDz80EM8/fTT1K1cmeKCAnwuF1paC7tIlonLMptiCRaGImiSxNQpUzBkGZ8gEE4nr01RpJnHw0P+IDk+lSy3m+eDYdp5feRKMqYoMkw3sCUJb/q6Gi43cUnCSFcre4WUJl+T+vUZlzbC09MVylr6EKC52035tLZzJUVhQShCL5+KKYp086mlkiATLJtabjcX9OvHbZMnU8nro4Hbzem+VIX1OMvGFEXquNxYosiGWIKV0RiyIHCOTyXgdlOgKDwdCFHX7aa4bKpCoFH1GpRXFM7yqVxtmAQkiXmBEIogUEVOybhELIv58+fz+eefs2fPHt5//32+/fZbfvrpJybdcguaLFPH5eZa08JRVb755hu++uorYqaJSxAwXG7eeecdGtWtS76iMD8U4XTdoHblymSrKk1tm+xgkM5p1+wxpkWPTp0OOpx5//33KRtPoHk8nNWtG4888ggbN25EFgQGajr5kkwXnw/T66Vpw4bkOA5z05/ZRoEAzz33HN9++23pZ3VpOIpLkgjmVSCYW552HU/F9npZFY0zUNPp5lPZHM/iGtPGUBTqGCaOz8fSpUuB1In5BQMvZOrUaUfdNK5bt44HHnigNEn+V9i+fTuhaJx4vc6EytWk5zm9j3rNCy+8QMO0MdAzwRBVfteKWFJSwpgxYxAEgerVq59wGZPj5YcffiA3v4BIfiV0y+Hll18+qevJkOE/hUyCOhN/Zzi5dGzZkma2TXvbpnalSn8qqXwi2Lt3L6Muv5xW9euXSvAdYM2aNaxYseKgGOvbb78lEQzS2R8gzzC49pprDkn49uzShVMtm/6ajiVJ3G471Hd7uFDTaWrbTJs27bBr2bx5MzXKV0CWJLq2b3/QvDdcdx1+n4+gqnJ5umMOUkU6V48cSa+uXXniiSeIBwI0dxx8oshpmkbc7WHMNdewZ88evv766z/sAAsaBu+Eo2yMJShjmodoIRfE47yQ7tqsYNssXrz4kDmuHz2aBpbNnbafLP3ImsNff/01b7755nEdTixbtoyornO346etZTNk4MDDjtu4cSMvv/wy33//Pffeey9npA0hZ/oDtG3Y8JjvdziO9jnt2r49jWyb9rZDzeLiQ/alj86Zg6OqRHw+DFmmcyBIQE8Vk0yfNo3qhYV0btv2sBrYzz33HMMvvfSosd5zzz2Ho6rkGAatGzU65s7Dw/Huu++SaxisiMSYYDvkRyJU8/p4KRimqWUxccKEY5pnx44dh01mT5w4EcXtxeVVObv3ef+RHYqbN2+msLAQQRDwV2xKIK+YCTfd/LfcK5lM8uijjzJhwoSTvgc5XpLJJIOHXIqsuIhl5fDhhx+e7CVlOAlkEtQZTgjJZJI5c+Zw+bBh3HHHHYQ1jUvSVbpHq27+Ldu2baNz27aUz85m7Jgxh/wILVq0iLlz5/Lzzz/Tt2dPbkgn4S42zCM6KjeoWo27HT/rYgkq2fYfnigfidWrVzNjxgxWrlzJjz/+SJXCQrINg4hts3LlSorz8mjt8aYSqqKII0rUc3uwPB462zbZskIFrxdDktAVhTa6wc2WQ/A35nwHGH7xxTgeDz5RJOTx0KR2bfbs2VNayXyvE6CfZdO8bl1CqsoTgSAdvT6yIxHuuusuChUFWxRTMhSSxBtvvEG9ypUpzs1lxIgR5Og615oWeYbBww8/zPbt21m9ejXdu3dHl2U6qRo+UeSZYIhng6G0ZIMPTZSo6/VSw+WmnddLLbcHQxAwRZEiRaFDWtPY8ngIixL13W6qKgq6KGKlpSw2x7Po6fhp2qgRtiyX6ktnyTKmJJEIBunuU7lEN/AIAoogpEwmIhHOOOMMbrrpJmyvlwqyQjefj3xZ4fNYgvGmRaGsUCutzR2SJDp6U6Z+56kajiixOZ7Fp9E4siAQkWUihsFHH31E8wYNOE/VmO0P4EvLtqiiSBuPlzttB0cUqaC4KKtqdOnYkeGXXsqcOXPo06sXfsWFVxDJj8X4/PPPefPNN9HdbvySVJo8VwSBqCThlyRauj2pZLWmE1C10u/GE088gZF+zw1B4BEnwNponFzDYOXKlbRq1oxyisIXsQQ3WQ4VcnIw3W66pRPqEyybgNvDonTlebFlkxUKUcG2CZkm77//PpA6mW5YvTpNa9Vi+fLl9D7jDKrZNo0cPxULCvCKIgFJoows4xYEbEmij6pR2+XGL8s0DwQozM5mx44dbN++HcPjYX4owmOBIG5RpNao56g96jnkdIvk4nCUQZpBscvFm+FUwKpLEgFJwpRlJowbx7Jly9DtADmtLyCQU3RIwPbbDdPq1asxnQBZ1Vtg2IG/VPFxgC+//JIrrxzFyJEjD9GTPBw//vgjZWIx2vsDlDFMbknrff+eefPmYVkWfr//pCaF77//fuKVG1N39MuU7XIFTVu2OWlrORIfffQRt91222H1uzNkOFlkEtSZ+DvDyWP//v1Iosi6tOZzwOcrNdD7pxk1YgRVPR4qKyl/lnPPPhuA8ddeS1jVyNYN+px5Zume5YknnqBVOuH5eCCII8vkx+MHmQaWz87mlVCYzfEsyukG9atUJSsQQBQETm3VqtTs+kj8fn/066+/4lEUPojEWBWNo7vd/PDDD4e9duvWrQwePJhT0prHD/uD1Cpfnoht43i9tGrY8Ij3r1OpEsMsm3udAI6qHRI3TZ0yhbCmUdG2aVK79mETn53btuUOO3XvcxyH22677bD3Wrp0KWViMUyf7yB96j/igQceoFO6iOABf4DmtWsfMubtt98moOs0DASJBwK8/vrrBHSdwYZJedPk1ltuOaZ7/Z7vv/+eBtWrI4kirRo2PGJH7t69e7nvvvu46667Dpt8L87NZW4gxIZYgnzdYNSoUX+LzME333zDJ5988pcLt9544w2K03Is9/sD5AQCXJQuhhphWlx8hEOCY+Hrr79GcfsoPm8ytUY+g0e3S32t/tMYN24cPn88rUtdkU5duv4t97nq6tEEssuRqHsqTjB8Qs08/yn+Ew8hMpw4MgnqDCeEqVOmUGiYDDdMgprGtGnTGD169HEng/v16kUvy+blUJgC0zzo+nHXXksZ06Sx30+1ovI8+OCD5OgGlxomYU07ollFszp1mGA7/Csap9C0Djqp/+mnn0qDp19++eWQP21q3PoAAQAASURBVIgfffQR06dPx6+qdE/rgr399tvs27ePzz77jJ07dwKplrZ2Xh9eQWB1NM6HkVS1bTWPl83xLF4IhrFkmasMk6cCIXRF4bTWrUurvjdt2sQzzzxT2ub15Zdfsnz5cj788EPeeecdWjVoQNtGjbjjjjtoXqcOZ3XuzNatW5l8880EDIOinByWL1/O1VddxfmazsZYgqGajqW4KJtIMMGyeTwQxPapzJgxgwv79uOSwYPRPR40t5urR4ygfatWjE63kl2sG/RWNW63HXRRZLLlYIkiG2MJvoglkAWBqrqOIYoM1HQe8gdRRZGrDANVFBlv2bT1eAmKqcRsTd3AkCQ6+FMSF83r18eWZVRBYEEowvpYgoAkYbndvJoO2HNlGZ8oUtvjJUuWOd0w8IkiWWKqyloVhNKk7UTLprbLjSmK6ILAWNMkIklYaePBoCQxWNPp7POhiSKWz8e4ceOwfT5UUUxpaadlVDySRO2qVXFJErrbTW40Spl4nJZNmvDaa6+VGtKMGTOGal4f62IJLrdsalWsyBNPPMGqVau48MILKaPr3GhatHB72BzP4mbLISpJFKUlWaY7AZrVSgXOZaJRng6E+CwaxxElbFFEF0Ua1KjBpRddhCKKlEkn428wbcrn5JTqhldzufCJIrqi0M80udP249c0Pv/8c5YvX862bduAVEAcTD8+yXaI+v3Iosin0TgbYwlMSeKxQJAvYwmy3W48sowlimyKJdgQSyAKArbPh6NppS2ZD9x/PwHDIOb3o1s2ZTpcTF67iwjHEtx1xx1oHg8Bw+C0U04hOxjEJ8u8GY7wRSxBSJIwvF7uvPNOsuueSt3RL5Pd+nyKK1dlyZIlfPHFF3zwwQcEDQPT5aJe1aqMGTOGRP0u1B39MnntBnFmz7/u5L5t2zaK8/Mpa1kHJfN/y6+//srYcePpekZPnn/+eb777jvuv/9+Xn/99dIxGzZsYMKECaWu5ZAyPqpcuTKiKDJu3LiTUv318ssv48TzqDxgCvE6Hel1bp9/fA1/xLJly9Ath6y6nTCc4B+a+mTI8E+SSVBn4u8MKbZv314a7/6TVCsqor9lM8yyyYlE/lKV51+hXuUqVFJcDNUNng2GMGWZlStX4nO5WBaJsTaWwHK76dSqFXfefjsrV64kpGnc7fjp4PVxpqrS/zdG1QBXXHopVS2LXpZNIhgsjdX+bJxQUlKCo2k8FgjyfDCM4fX+ofHzhx9+SETXudP2c4plUxCPc4PlsCGWoIHj8Oijjx72unXr1nFqq1Y0rlHjiIfv//rXv1i0aNER369HHn6YhK5ztuMQ0HX+9a9/HXZc5bJlucP28244SljT+PTTT4/yKqQqVSO2TQ/HT45uMC2t0f1bzu7WjbHpAqdets3NN9/MBx98wNVXX82jjz7K999/zzVXXcWoK67gm2++Oeo9D3DF8OGcZVm8EgyTUBTKhMN/KqZpWK0a11k2i8IRor+R1fu72LNnD8uWLfvTicz9+/dzetu2hFQVR1WZPn06IdOkSTBV+f1XqmBfe+01vF6VwjPGUP3Sh1E8h5eN+U/go48+QjMdjKwiBEGgfPnyx1QYc7yUq1iF4vMmU3f0y8SL6/Hss8+e8HtkyPB3kklQZzghdGvfvvQ0vK/jZ9KkSYcdl0wmWbRoEW+88QYlJSX8+OOPPPHEEyxfvhyAUxo35q70PO39gYO01XLDYV5LaxpXdBwWL17MvHnzGHXllSxcuPCw97v5xhvJCYUw3W4USeKifv1IJpMkk0ku6tcPX1rvqlJhIS5Zpmq5cqU/0OOuvZaYppPj8VAkyywJRbhMN7jkwgsPuU/McXgjFMEQRZ4NhpgTCOISBGyvl8m2Q1fLxpQV3g5HWRtLEFZVvvjiCwBWrlxJ0DBoFQwR0HU++OCD0nn37dtH2La52XK4wXLICoWOeKo4b948alWsiCbLVFBSScs2TZtiqypLwlG+jCVKK9qvu+46DEkiLElckZZbUN1ucmWZawyLnLT2siaKWKLIXH+QqCRxlWEyRDcwZJnze/fGEEVeCobZFEtQRpYpL8tUcblKZUhMSWKGk6pkqGfZDBgwgNxgkPM0jZn+AJooMsIwmBcM4xNFChSFhCzTLq3r3UfTqKi4mOH4ucfxU0lx0did0t2+xbJp7/XhSkuA6IKAJknkRCIookhcFDnfpyIKAi8GQ7T1eLFEkWXhKHfZfsKqSlefj15pTeSxlk3Q5yvVC9yzZw/r1q0joGncZfs5U9UIuVwkgkFeeuklVJeLOi4XG2IJrjZMClxuCnQDv6rS0u9HF0XaebzkywpvhaP0VFXikkRYlHgxGOY8y6Znly4AFGXnMNMf4INIDDutwX2ubnB+377ENI2VkRhN3B5kQUCTZd58802mTplC0DTxiiLXmRZ3234sl4u2jRqVPoffbnR++OEHdLebz2MJPovGccky5fPyGG7ZTLBsLFlmomWzNBwlpmnEAwHiskwXn0objxdP2mzz1VAY3eM5ZOPzwQcf0KRFa5q3alva8nngu3aA/FiMO2w/LwTD6KJIXjRK7zPPwlIUjEg+qiTRQdfxiiJ+r5cs22GsabEhlqCay03Pnj3xJ/Ip6jmOcGENxt9w42G/C8fDAcmezfEsrrVszjz99EPGXHHlVYQKqlOm4xAMJ1j69+oA27ZtIxiJEa/TkWBuBYZcelnpYzt37qRnz54IgkCnTp3+tKnOnyWZTHLNmGtJ5ObTpl1Hvvvuu0PW3qlzNwqLKzN58m3/6NoARo8eTaLRGdQd/TK5p1zE2b3PO+jxvXv3ZnT6MpwUMgnqTPydAcaOHo3mdqN7PMw6RtO7E8VXX33FwPPOo2/Pnic1KTV0yBBMUeSpQIhNsQRFHg+vvfYaWaEQUx0/TwdCeESRGyybiqbFvdOm8cwzz1A5P59Ct5uPIjG6WzajfqNtXFJSwpw5c7jlllsOqqz+I0pKSliwYAELFiw4bCL7pZdeIjsUIub4eewICebf8vTTT9OpZUuGX3IJp7dpw0jLZm00TnXbPkh+8O9g4cKF3HbbbYckp7///ns6tmxFmUiEoKbzdCDIF7EEuYZx0P7oACUlJXz77bcHxQkbNmxgypQpLFiwgLvvvJOysRiNa9Ys3XeNHD6cDuliqKqWxSOPPHLQnHUqV6aHZXG2aVGpbNljPjQYOmgQAyyLIkVhjGnxgD+Araqlhw/HyqpVq6hWrhwR2+bmG/96nPtH/PTTT1QtV0R528avaSxYsOBPzZNMJlm/fn1pRfiWLVt48cUX/7RW9wG+//57/LqO1+VBlGTq1an7l+Y72Xz00UfcfPPNXHXVVXg8HvLy8k74AUTvvucTKW5AbruL0C2n9HOfIcN/CpkEdYYTwp23306xaXK1aRHWNN55553Djrvg3HMpNC2KLIsep51G2USCFoEAMU1n5n338dJLLxHQNGr7AxRkZR30o96yfn0GWjYznAB+VWXjxo1/uKa3336bHMPg5VCYAZZNtw4dSh9bvnw5OYbBp9E4s/wBQrLM+mic3qZJ88aNObdHDwyPh3fDUdZE4xhp6QOfKHLFYcwzBvTpQ03DpLY7ZfKnixLdu3Rh/vz5dG7blksGDGDC+PEpuQy3m4r5ZVmxYgUAI4YP55J0K9TlhnlQAnzbtm3objfrYgnWxhK4ZPmwbXcbN27Er6rMcAKcZ5hUKFuWl156iZKSEm64/npimkaRZdG4Vi0CqkqW4uIaI2VMGJQkNFdK1qJBWp7CIwjEPB56qRqN3R58aQNCUxQpVhTaNG7M2rVrsdxuYpJMJcVFXJIpklLa0118KgWygi+d5J5o2cR0nQv798cvybycrpIuKyuogoAmCAzSdTbFEhTKMmXT1dUxSaKKy4UmirT0ePGJIuXllJxIfXfKqC7scqMrCi8Ew7wZjhDQdW644QY8abMOy+XCkmW0tJTI2micux0/EU2jmU+lkuLilVCY9obJyOHDD3pd33jjDWr6/aUJ93xZobrbgy8t3aGJIj5BwCeKvB6KMEjXaZuW3bjH8RNwuVKV4Wnpjohp4bg9hHwq7Zs359tvv2X79u1Mnz6dsGXhkiSK3W5WR+O0t2wuvfTSVPVENM7D/iC54XCpPtvPP//MlClT8CkKrwfDLAlH8LncJJNJtm3bVtpm2LxevdKq77M6d6aibVNkWZx/zjl88cUXdO/YkY4tWvDII49QlJOD5fMxdswYvvjiC3p1706tatW4/PLL8SoKyyMxPorE0NxuduzYwb59+w6pkHnzzTepXq4c1cuVO0RXcOnSpeSFw+iyTJlolMEXXkhjy+LRQJCQLJe6j1+k6QzWDQxZ4XLDYm0sQXm3l7POOouJN91MnQZNuGz45Sekmuqhhx6ilm3zfiTGuZbNhX37HjKmUbNWlDtjDHVHv0xWrbZMnz79oMfnz59PrFx16o5+mcoDppBT5v9dy+c+/jiOpuFzu5FlmcLCwr+9GuZ4OOvsc4nVakdxn0nY4cQRO1H+Lp5++mnsaA4FXUYSyK3A7XfcWfrYVdeMQXG50QyLl1566R9dV4YMmQR1Jv7+X+fbb7/F9HhYEYmxMBTB8HpPeOv10qVLObtbN4YPGXLCjBBPNPv27aMoPx9NFCnrclG1qIjdu3ezePFiKpYpQ1jXae/1HeK98/PPP9O6USNkSaJxrVpHlNz45ZdfuOuuu5g0adIRxwCc26MH5S2L8pZF7zPOOKHP8bPPPqNcTg6yJNGra9eTdjB8wTnn0MuyeT0UocCn4nO58Hu9nHn66Yd89n788UdqVKiA5fVSkJV1yL7wk08+IaJpvBgMM8KyaV63HpAqHDi3Rw+Kc3MZOWzYQQno3bt3o0gSG9PSMqbHc8jB/pHYsGED+fE4bkHkvUiUDenCoGOp/D4aX3/9Nd06dKBB1ao88cQTJJNJNm3a9Iefl2Ph4Ycfprnfz6ZYgjttP23+ov7238G6deu49tprmT59+kGfyz179vDkk0/y0ksv8eWXX7J06dKT1mXxZ1i6dCnRaBTDMHj++edP2Ly//PILo666mu5n9mLRokUnbN4MGf4pMgnqDCeEZDLJfffdx8UDBx5RF3b37t24ZZnPonHeDkdxyzLN0sm/R/xB6lWqDKR+iH4rpXCAr776iu4dOtCkZk3mzZt31DU98cQTNPYH2BRLMMsfoGG1aqWPffDBB2TrBv+KxrnPCaCLIi5BQBcEij0eJlg2hiQxwbIZohtUc7nYmNb/bde06SH32r9/Pw888AAXXngh55xxBnfcfvthg7tuHTvS0jQZYVoEDYOtW7dyzz33UMeyeDYYoqFlMXnSJJLJJFu2bGHXrl10adeOarZNJcumef36lInFqJifz9tvv1067+LFi6nopIwbF4Qi5IbDB933448/ZvHixQzs25erTYtcWebJtL5ZjizToG5d6qeT5I8FguQ4Drfeeium202uJDHT8fNBJEYrj5ceqkan1q1JJpNc2LcvXlmmUFFYG43zbDCEJghUdrmY4vgZY5hUVFzkRaI8/NBD9O/dO63VLVPb5SYgSWiKC0MQqOVyMc608YliqbxHyOMhaJoM0PW0yZ6Flj4oiHo8RHw+bkhLdTwXDHGr7eATBGKWxT22w7pYgmLLYtasWbRs0IDKbjfudHK5cePGNK5dm7Cuk7BszunW/ZAW1mXLlhHUNJr5fGTJMp28PixRxBRTwecD/gCGKKJKEv00jZiiEEpLZXTw+jAkibgkM9ayOVfVqO5ysygcoY1lM/a661LBs21T3rbJi0ZZs2YNbRs3RnW7ad+8BTt37uTKYcPwpI03D0jC7N27lxoVKlDftlHThwc+QShtHx11xRX0SOvBnWpZtG3VigpZWbRt3pznnnuO119//Zg3mfv27WPE0KEUxONoioLl9XLtVVcxbcoUfC4XqtvNfemE7f79+/EbBvc6gdRBkq4f4vD+W/r27Mn1ZqrNsr7HSw1V5QF/gEJFYbRp4nW50RQ3kiBieNRj+t4fKw/Nnk2V/LK0rF+fHqefjqNpNK9b97DtdnfedRdONIdE/c4Ytv+QSq7Nmzdj2H5y2w4kWrkJ3c/oCaSkQQyvlxeCYV4JhfG5XESjUVRVZc6cOSfsufwV6jZsSmGP0alWwEqNeOihh/7xNUydNo1TOp7GjRNvKt0orlu3Ds3yU2PYo5Q/ZyLRRPY/vq4M/9tkEtSZ+Pt/ne+//x7D42FpOMqLwTC2qp7QBPWWLVsI6DrXmRadf1dIciS+++47urZvT7WCAu6+886jjj8R/PDDD5x5+umUz8vjksGDDykUWbJkCUFN43zLJqyqdO7QgbO7dWPZsmXA0fVUO7ZsSQvL5nTLpmq5cofdP/z88894FYW1sQRro3G8inJE2ZXvvvuOF198kfXr1x/3cz2WxPSOHTt4/fXXj7ny+wC//vorzz33HM8///wR73Nqi5bcmu5qq+1yo7tcZOk6VQoLD+lAmzhxIp0ti02xBAOsQ7WO33jjDSqnTe2fCoSomJd3TOusW6UK3SyLXpZF5YKC0rhk69atTJ06lRdffPGI7+m+ffsYctFF5BgGlW2bU5o2PSHybqc0acIAK1WVHVBVunXqhN/nw/L6jqla/ki8/PLLFFkWb4ejDLAszurc+Q/HL1y4kDvvvPOky2yUlJTQvF496joOWT4fhqJQZNk0rlXrsEaL/65s2rSJ6tWrI4oik9L7/wwZ/tfJJKgz/Gn27dvHli1bjvmHt6SkhIjjcKrXh5HWBg643TzsD9LrN3IHx8rmzZu55MILGXLRRXz11Ve8++67PP744/z4449AylAxPxajqu0QULWD2tWSySSXDBiAR1HwiCLjLIsl4SheQeCGdMKsk2FSEIthKAoFisLqaJzLDPOYAugjURCPsyAUYXM8iwJdp33z5syYPp1hF19MjXLlGDJwIL/88guntW2L7fUSMAwWLlzIvHnzmDlzZkqT2e3GEkUsTSOZTLJ///5UlbSuU6hplDFMxl177WHvf9edd1LdtChWFIy0rnG+onD++ecT0TRm+4OcoarokoTl9qC7XERNk7jXS7u0eWLEcQ6qAH377bfxSRIjDZO6bjdBUaSyy8Vb4SidfT4K3W7GXX89JSUlvPfeewR0nYTXi6W4sQtqk92iD6rLg1sQ8IoiZ/hUNsezuMIwCXi9GB4PBYrC3ECIhqbJTRMmsGXLFt555x1++eUXIJVsNCSJbEkmJsl4BIF8WWF5OEqBabJo0SJWrFhB2exsDFmhmstNM48XQ5aZP38+7Zs1R3O7KRMM0r1TJ9avX8/OnTuJOg5DDJM6Xh9BTUdzu2nl8RKRJNZEU07lmihSvqgIVZLo61ORBYFKiouzfCpeQcAlCCyPxLhEN+irpeRELjctBvfvT//evbkiXTXcy7K48QitfLt37z4omH///fcptCwGazpBSeICTeccVSPL7wdg+NChnG+mgvZGPpWwJPOAP0BDt4fccOSYAqCff/6Ze+65h66dO9PIsnjEH6RQ15kwYQK7du1Cc7t5OxzlzXAEjyxTq0IFzjvrLNyyzJponE+jcXwuFz///DPJZPKwVQ0LFy4koGl0SOvUXXTBBdStWJGQYeCoGldfeSXde/SgcbOWzJw566hrPlbWrVtHQFWZGwgxwrJpfAy/Gc899xwTJkxg1apVh3383Xff5cyzz2XEyCtLN4179uzB63KxPBJjRSSG6nKxdu1aGjZsiCAIXHrppSe92uOJJ55AtwPEimqSlVvmuFtR/y7Wrl2LbgeoeflcivtMQrf8nHV2b1588cWTvbQM/yNkEtSZ+DsD3D55Ml6XC8PrZe7jj5/QuRctWkRNf0oGbmEoQplI5KjXnNW5M70tm6cCIRK6zrvvvntC13Q4+px5JmdZNnMDIUI+H+2bN2fk8OEHJYiXLVvGxIkTaVSzJj0sm2vThShHq75NJpPIksTn6YrdiKaV+tH8lv379xOyLG6zHW6zHcK2fdgk7/r164n5/TROx1W/LWY5EXzzzTeUicWo5Q8Q0PUjSiz+nmQySedTTqG67VDFtunV9fAGcQ8++CA+UaSqy0VAlBhtpGLZDo7DlClTDho7adIk2ls2G2IJ+lgWlw4efNDje/fupVHNmhTbNkFV5YH77z+mtf7www+MueYarh41qrRoYdu2beREInR2/BSYJjeOHfuHc7z77rvMnz+/tEjjyy+/5IUXXjjmauzfUy6RKJVUrGJZhHy+0sKgvGP43hxgy5YtLFq0qDTZn0wmGTlsGDHHoXndunz99ddHvPbBBx4gSzfo6fcTNIy/xbjxWFm3bh1RTWNDLEEFReGxQJBNsQRVHadU5vA/hZ07d9K1a1cEQaBv377/UQn2DBn+DjIJ6gx/irVr15ITieB4vdStUuWQaucj8fbbb6OIIh9EYnwcieGRZepWrEivrl2POTHyySef0OfMMwkbBv1Ni36WTcy2CSsK2bKMJklUyMvDkWUq6jpRv/+wumUAu3btwqcoLApHWBmNo4siAVFkoGkR0DQ++ugjdu7cSfP6DXBJEpXKlj1mLadvv/2W9evXH5QMvLBvX+pZFq19KhFZZoJlk+vx0KNbN3bv3g3Aiy++SBU7Vf16p+2nSY3U53n8+PF0SSdvJ1g2mijx+eefkxUIIAkCRbJC3ONh3LhxR1zT7t27ObVDB0K2TaHHwxjTopxh8Pjjj/PA/fcTdLup7nJxmtfHUN1gYyxBG9thyJAh3HvvvaxevfqggPitt97irM6d6XLaaVQvLsbweKjtdqOl5S90UaRR7doUJBIoksQ5PXrw8MMPc+GFF6J4fFQdPJO6o18mFMxCFwS8gkBVl4t3w1Haeb2c5vVRU3Ghp40OTZeLTZs2ce+99zJr1qzSH/FkMklI02jl9jBYS0mFtPB4kUSRwRdcwN69eynMyaGbbiAKAmvTGwFHlKhSrhxtDQNbFLnFdjjDp2IrLp588knyzFRV+cpoHN3jYe3atfhVjSJFwZc2VXQJAl10o9SUsXPaeLG6oqBLEl06diTm9VJW0zFcLmoFUkaRK1eu5Iphw+hq2SyLxKjhduN1uUqrkX/Pd999V6qP/s033+BXNVqnZU82xRJsjCVQRJHdu3ezefNmCrKyUoYlpknX9OfmNjtldnm0VrKSkhLqVa1KW9sh2+0uNZPpp+l4FYWzu3XD53KxNBxlcTiKIgg84g/Q0bKpWVxMrmFQxjQZ0KcPn3zyCbnRKIok0fuMMw450Fq9ejWPPPLIIZU+H3zwAQFdp1MwROAPZIMOt/YVK1YcdoN3gHfeeYfyls2mWIJXQuFj2hT/WSaOH4/p9WJ5vYwdPRpIbZouvvhiBEGgSZMm/4jD9quvvsqQQYOYM2fOIQcU//rXv3j++ef/cX3sozH0smG4PT5cHi9GOIe8doPQ7QBLly492UvL8D9AJkGdib8zpPj111//FsmHHTt2kBOJcKZtU92yGHoYj5ff07BqVR5IJ7Wb+wM8foKT5oejac2azPQHWBqOooki4yybjpbNud17HDI25jgsCUfZHM+iouMc0+9V3cqV6W3ZDDUtsn8j5fZ73n33XRrXqEHjGjWOOO/EiRM5Jx2zjbVsLMXFqa1a/eE+be7cuVw+bNhRk83Lli1j4MCBdHacUvPvLqe0O+rzg4MlCz9PSxYe2Pf8li1btmB6vdxs2TR0uzlX01gZjVHHtpmdNug+wM8//0zzevWQJYnq5csfNpbat28fixcv/svJ1Oeff57GgSCb41k8GwxRpWxZILWP/G1M9c4771A2Hsev69x1++1A6iAmoGk0DgSJBwJHlag8HLdMnEi2YdDIH6BCXh5Bn4/3IlGmOX4q5OYe0xwHioRq+QNkh8PHrQ/dsXlz7nFSnc9n+gOHHBj8k/z8888EDIPbbIdCReFyw+TVUJhYeu9+NPbs2cP777//t5gU/hlKSkq4+uqrS/cFf/YgI0OG/wYyCeoMf4q+PXsyLJ3gaWfb3HXXXX84fvHixTz11FPs2LED0+fj2WCIF9Mu0weqYI+Fn3/+mYhtM9RImcMdSMzJgsA7aSNAUxS5QNN5yB8kIEnUt20ee+yxI87Z5fTT8QgCHkEgKIpkhUJcf/31pUnt3xu9/Z4PPviAji1acGrLltx88828+uqrzJg+HcvrJaiq9Dv7bCbceCNXDB/OZ599xo033kjItrk8LalxjWlRxu2meaNGdG3XjmrFxeS43ayJxhlv2bSsXx+Axx9/nEKPlxeDYdp6vdSpXJnzzzmHCw2TS3QDPZ0QbvYH+mHn9uhBY8viHNMiqOu0rFeP29ItRU899RQRl4urDJMzfSoDNZ31sQTNbYdp06aVzvHdd9+xZMkSVq9ejen10tLjIa4oOG431cuXx/J6eToQZH0sQTnLonHNmlxj2ayJxsmRZVyCQH23B4/bixYrJFyjHbLixhFF/OnnoIkiIUmirsuFJgjookhMkjFEkSqFhTQzDOqbJqe1acPixYsJ+nylmtC91NSJenNdZ8SIEZSJxUqTybqYksM4X9O50jAxRJHiggK6qRrlFYXN8SwWhVO63F3btaN8Xh7dLJvGtk29qlVpVK0aPU47jUQoxBW6wZ22Qx23h83xLE7xeLkmXQ09VDdwCwID+/blutGjaVyrFiMuv5xvvvmGRYsWlQZE27dvp33z5nhFkUZuNw84fnS3+5BE4W233ILp8WB6vIwZNQqAG2+8kbAsY4oi7b1e2ni9NKhevfSaX3/9lc2bN/POO+/gFUXaeVMmkWFFYerUqUf8jEBKTifg87EplmC2P4gqirTweLHTppjZmsbll12G6nbjlWVqqakE+B22n47Nm7N06VKWLl1KMpmkfdOmXGc5rI3GqWTZx+xoPmL4cIakvyMjDfOQ1s3DsX//fk5t1Yo8w8SvqsyaOfOw4/bt20ejmjWp6jjENJ07br31mNb0Z9m6dStbtmw55N9nz56Nz+cjHo8fcwL+z7Bo0SIimsYow6LAMJn5Dxtd/RV27NhBs1ZtKeh2VUoDvE577r777pO9rAz/A2QS1Jn4O8Pfz1dffcWkSZN46KGHjqkj85FHHiGsaTTwByjKzf1HDlYfffRRwppGJcOgitvN5ngWL4fCFB8mMXhh377UtGy62w758fgRZTh+yzfffMMlF17IgD59jphI3bdv3zF1vz3yyCNUsSxeDIZp6fHST9M5zbK5euTIw46fNXMm+YbB5YZJSNNYsmTJYcfdesstJHSdcrpOGZeL+aEIPSybwf37H3VNB9YfcRwmWjbjLPsPTd9nzZxJVjBIYVYW1YqK0D0ezunRg3umTKHvWWcdcihxLBWn+/btO6bP19q1a2lWty6VypTh4d9Inn322WcENY3b08b3Pbt0ofMpp+CWZXLTEn0ARTk5THH8LApH8Pt8bNiwgbNOP50b04cGvWyHSZMmHXUdv2fjxo3UqVSJmG1z/ejRTBg3DtXtJisUOuYq+d49epR6vfSybG6++ebjWsNVI0bQxLK52/ET1/UT6lmyceNGZsyYweLFi4/5mrfffpuW9erRsmFDahUXkxsOc+sttxz1uh07dlC5oJAi28avndjn8Vd5+OGH8Xg8lClThk8++eRkLydDhpNCJkGd4U8xoE8fBlgWX8YSNLPtgxKYv2fi+PHkGAYN/X6qly/P448/TsS2CZomjx6nDuvq1avJM81UG4/LRVuvl46WjeVyMcGySzWBX0i3QVVUUuYay5cvP+Kc33zzDfmJBGFVJWCapUEGpLS5gqaJ6nZz++TJKWmQiy+mfpUqjL3uOnbv3k3EcbjBcrjStLAkibKGgenxMD8U4bNoHFtRaGWaDDBMTLebLL+fjj4VRxQZqOmEJImhuoEhSUyyHRq6PeTIMpIg4Ph8pRUDyWSSUZdfTkEsRoeWLfnpp58476yzuNgw8QoiH6cN7DyyzE8//cR7773Hl19+edBzDVsW70VSlR3FjnPQ6zJ16lQaGAY5sowiCBiyjCJJtG3SpLTK4YMPPiBoGFT1+7E1jYAkUSQr9FY1Xg6FiUsy8bRW84JQhLCm0ahadW61HdbHElRxuajjSgX3t1oOliAQEEVEQWBlNM6/IjFEQeCzaJz1sQSqKGIKAk8EQmyMJciVU/IdG2MJ1sUSSIJA2LLo6lPZFEvQxaeiKgqyKNKkTh3qVKzIlaaFLYqsjMZ5NRTGIwjkyTIBUcRRFGbOnEksEECTJFp6vJRXFGp6PNStWhVH00j4/fTu3ZuEpvGQP8hplk2VggLaWTbDdQNVFJmUPsEvVBTudQIUKQpC+jWsktbjDsky5/bqVRqQl5SUMPWeexjUvz8uScJMJ+V1Sebbb7/lq6++YunSpezatQtvulr5o0gM3e3mxx9/5IsvviCgadxgWlTyeKlaXMxPP/1ESUkJ27dvPyjwHz9+PF5JIurxkBOO8M033wCwcuVKLjr/fK695hp27dpVOn7v3r1khUKMtGwutGxiwSA+WWGsafFBJIajKKxatYqdO3eydu1aYn4/DRwHxe1FlCQ6d+tR2tbYumFDbrEdvowlqOk4PPvss8f0Xb/vvvuoZlrMCQSpbVnceccdR71m2bJl5Jsm62MJng+GyQ4Gjzh2z549vPbaa8dUafF3smLFCvLz83G5XEyZMuVv0Z8bN24cF6Y3JTdZDud0737C7/F3cveUKTjRHOINumNY/iPKrGTIcCLJJKgz8XeGfx++//57nn76aVatWsWqVat44YUXjlgV/NZbbzF+/HjeeuutE3b/lStXMnv2bGJ+P71smyqWxchhww4Zt3//fmbPns2tt95aGmv9FX799VfOPO10ZEmiICuLzz777A/HJ5NJrhw+nCzHoYLLzdponKFpWbnfckA6rmfnzkxKaz4PsCxuuOGGw85bLpHgxWCYjdE4ca+XnGCQru3bl8oqHgvLly+ndcOGtGvShI8//viYrwOYfu+9VDBNbrRssnT9uIyTx44Zg0dRsFX1qEUS9atW5cq0nItfVQ/q7nvppZc4tUULBl/Qn1mzZlEn7XVzlWXTrX17AOJ+P6+EwnyeNkhcvXo1V1x2GR0tm+eDYSpa1p+q+j+9TRsutmzmhyLkGEZpUcO3337LPffcw9NPP33U+HHEpZdymmXzRihCDcviwQcfPK41bN++nepFRdhuNy0aNjxhUhQbN24kYtt09geI6zqzj3Ndx8v9999PGydlDDnZdujYosXfer/j5d133y01TzzWop4MGf6byCSoM/wpNm/eTJXCQiRRpEOLFodt0zpAfjTKq6FUwriy4/ylgHHPnj3kxmIUeTyU8XqpVqkSt9xyC2+//Tb54TCGKGH5fMRUlRo+Fb/Xy7SpU/nll1/48ssvD3H/HTduHCNGjODrr79mzZo1ByXpAOKBAI8FgrwbjmJ5vbRt2RJLFMmWZQKSxMWDBmF5vaxPt6xJgsCZPhWfKFJBUbjbdtBFkbgkc61pUVZW0lIWIka6UriBx0uRz0cbLWUEONsfpIHbQyVFoZLiwnC7D0qibd68mdtvv52nnnqKtWvXkhuJ4BYEngmGeDoQQnW5aFSzJgWWReB3mmudWrfmNMtiuGnh1zRmzJjB7t27Wb9+PdmhML50JbkkCNSrXv2Q16Nvz55cnU50Fbhc3GH7aeD2MMNJtVs29Xho7/Hi+HxEHYfbJ0/mnXfewVZVdFGkmstFIm0i2NrrJSCKaIKALYqUV5TSKudRusEttoOZfvxqw2RBKIIpivhEkZGGyWBNx3K58CoKZ6YT1N19Khf060eLhg1TyW1RZJLllJoaPhUIYbjd+DUNn+Kic/v2jB8/nueff55FixZRt0YN3IpC3LYxRJG3w1EmWDaFiQSd0i2l050ALevWZeSwYbRv3pwuXbrg93g43eOhjCQTEiVsUSQoSuRKMpPTgX8Pn4otSQS9XmpWrMjwoUOpalqMMizUdGXy57EEYbebqVOn4tc0Ktg21cuXx/D5mBcM83oogu7xsG7dOt5//32ee+45Tm3Zku6nnc7IkSO55557KBNLaR23atiQ3bt38+2331K7UiVEQaBy+fIsX76cZDLJd999R0DXGW6YtPD6aN248UHv9Zo1azinW3f6nX02U6ZMwckqRFctFFGiXH7Zg8Z+88031KrbgJwWfag96jlCZSoxd+5cINVSGLIsTI+HU1u1OmbN5ZKSEq675hoaV6/OVSNGHFN78dq1a3E8Hl4LRRhv2RiywurVq9m3bx+tmzTB8XioVVzxsNXMJ5MffviB9u3bIwgCvXv3Pq6ukmPhzTffJKJpjDRM8g3jiJXl/848/fTTXH/99Xz44YcneykZ/kfIJKgz8XeGfw+2bt1KdjhM80CQkKbxzDPPHHHsa6+9RljTGGjZRDTtiMbtf5aNGzdy8803H1Yu6+/giSeeoIZt83kswUjLpmu7/5fUWL58OS+//PIhpo2Q2ivkRqMU2TZRxzmo+GbE0KGl5ttDhwyhyDS5xrSIaNoRq0nbNGrEIMvmYX+QoKb94/rD/Xr25IZ0FfLFhsnotGTa0Vi/fj1+n48PIzHmBkJkBYN88cUX9O/dm0EXXHCI5nJOKMRLwRDd054y5XNzD5GM2759OxMmTKCuZbM+luBay6bLKacAMHPGDCyvl6imcU737pSUlHDl8OFYbg8Bj4dLLrroT31u6lWuzAP+AJtiCer7/TzzzDP89NNP5MfjnO74KbYsRg0f/odz/PTTT/Q49VTKRCIMGTiQPXv2cNOECfTv3fuY9uZjr7uONpbNW+EojS2LO/+kSem3337L008/XfqZnD59Ol3Se6x7nQBt/6AT+ETw3HPPUZz2njrfsund41CpnpPNxo0bqVatGpIkMTldIJchw/8KmQR1hr/EgSrJP6JVgwZcZNnc7w8Q0LQ/5Sp9gBUrVhBQVUYaJsWqyo2/01s+8Af8vffe49lnn2Xnzp18+OGHRGybqKZRv1q10na76uXLU9vtpo3XS9gwDvtcAobB/FCE1dE4fp8Pj8uFIYo8GQhxtWESNQzaNG5MXcumUHFRXlHIkxWWhKMM0HRMUWKEYTI/FMEvSdjpBPBb4SjPBUO4BZHKBQVUyMvDr2mcpRvEZZmKioIqivRRNWxR4sK0Lt/3339PIhjkDMehgmkxfMgQHn/8cfpfcAFqWh6jvteHIUl8Go3zTDBEQTzOokWL2LZtGz/99BOjRoygKCeHYl0n4XYjiyIRw6BAVkoTxYM0HZ8oHtL+dcVll3G6ZfN2OErc7Sbf7aGHT0UVRQoUBb8kYQgitU2TCmXKlFa3/PTTT3Rs3Ro5/fxDHi9dOnSgQtkC3IJAM7eHnqrK6micGi43HjGVwO+k6RhpGQtNFMkOh7F9Phq6PZR3u2nduDFtW7VClyQ8okhQVZkyZQp5Xh/tPV40QUgdBAgCsiCgezxcNWoUps+H4XKjiSItPR5CssLkdFvYyMsuo4LbTa4s82UswROBEHHbJhEMckogSFTTmTNnDu+//z4BTad7IIAuy3TVdB7xB9FEkVGGWVrNbwgCZ6oqVvr9nBsI4ZckHJerNLEflGWmOH7eTLcE1qtShWnp0/0GpsX5/frhNwxMn4+RV1yBX9Mol3Z7X7x4MQFNY5BhEnC5GG5abIglqOvxUly2gL7nnsvZpsVD/gA+UcR0uejaoQMLFy6k0OViczyLN8MRNFE8rG7zvVOn0qllS8qWKYtXM3ACoUM03b/55huisSxyT7mQOle/QKSwOo888kjp43v27OGbb775RwKsypWqoLl9+AMJIpWbMXnyZHr26EGWLLMoHOE8TaNDy5Z/+zqOl5KSEsaMGYMgCFSvXp1169ad0Pnnz5/PpRdfzGOPPZYJdDNkOAYyCepM/J3h34MZM2ZwWjqBNcXxc8rvDtR/y6UXX8zItDzYlYbJ0N8Z5/2nMWfOHBo4DhtiCcZZNqe2agXATTfcQELXqek4NKxR47CH/wf2QDt27Cj9t1WrVhHTND6JxnnQH6AoO5sHHniAwf378/LLLx9xHZs2baJT69bULi7m0UcfPfFP9CjMnTuXhK4z2DAJqqlE+rDBg6mUl0e3Tp3ofeaZXDxwII8//jgLFy4sjXPWrVtHUFX5JBrnuWCImOOQG40yxLI537SoVlR00H1umzQJ2+OhvMvF6micS6yDDR0/+OADQqZJgWXh93pRFYVEMHiQHMOWLVv47LPPSCaTvPHGG+SbJm+GI1z8uwOG4+Hpp5/Gr6pUtFNeL7t27WLhwoXU9Kc0oV8LRSgbix3XnMMvuYSGlsXotO/Sp59++ofjLx44kMvSRUr9TYurr7rquJ/HV199RSIYpEUgddDx4osv8vbbb5PQdaY7AdpaNpf9zd/ZZDLJZYMHE7Fsmtet+29XtHKAnTt30qVLFwRBoF+/fhnzxAz/M2QS1Bn+djZv3kzXdu1oULUqTz/99F+a65577uGswP9XsrZv2vSo13Rr357r03rZLRyHmTNnkkwmU2Z50TibYgksSeL1118/5Nr7Z87E9HoxPR4uGzyY8vn5RCWJjbEE80MRwobB3r17eeyxxxg9ejQVCwqol67mvdP2E/L6eCwQZGMsQVnFhSNJeASBjyMx3kqbyw0wLSbbDraqMnbsWE455RS8osigdEX19aZNlw4d+PTTT7nhhhtonH7+84JhLEmmnm3jFgQsUWR5JMbmeBZxWeYex2GgbqDJMpUsC9vlokZRES+99BKKJHGr7VDb5ebTaJwBmo6armR+LG0C0szjobCggFtvvbW0Qv6nn36iyymnELYsdJeLtoaJrigMHTKEO+64g6hh8mj6+kaBwEFyDslkkt5nnEFc1wn4VG6ZMAGAmydORJNSifxNsQRtPV4Ml4smderSpk0bJk6cyOOPP86DDz7IL7/8wjPPPEPzOnU4p3sPGtasSVPbpo5uUL9aNfbt28cjjzxCGZ9KsaJgCiLXGCbPB0J4BAFVlikbjzM3EGJtNE5Ikng1FGZOIEi247B27Vqa1qzJbCdADZcLR5TwCgLNmjThm2++KU1MA1x5xRWlGslXmxb50SiVypTBJ8u8G46yIZYgIEko6Yp05zevbT23G1kQKDZNLjNMTK+X3HAYf1oPuXuHDlxkWiwKR4jJMqbXy0svvZTSdG7SlNtsh02xBC39fnr27EmftGlJfbeHy4yUxEVDt4cOPh9ZjsNAy6aqy8VMf4B1sQQVLJt58+bhFUX6qRoN3G4MUSQeDB5kzPHMM8+QbxhMcfxUtyzGXn/9YQOkbh06cJpuYLg8SC4P1WvVZc+ePezcuZNLBw2iY/Pmf/m7f6xcd/1YQgVVKdt5BFYwxoIFC6hUUEATt4dNsQR3O36qFhT8Lffetm0bIy67jIsHDDgowZxMJikpKWHHjh3cd999PPnkk0fUQpw3bx6WZeH3+/9ws5ghQ4a/l0yCOhN/Z/j3YMGCBZQxTJ4IhOhi2VzUr98Rxz766KMUGCa32A6FpnnQYfl/Inv27KF1o0apqlzHYcWKFQBkB4MsCEXYlPZ7ee+99w66btmyZTSuUYN6VaocVB27cuVK4rrOv6Jx5gSCFCYSf3j/jz76iHO6dWdw//4n1bjtp59+onK5coiCQPn8fCZPnkwty+IJfxBNEBiqG+QqLsq5PRSY5kGGmyMvuwzN7cbwepk+fTq218v8YJgvonEkUTykQGns2LE0NS02xRKMtWwSpknvHj348ccf6dmlC9emK7lP8XoxfD7eeOONI677iSeeoGG64GSa46dprVp/+jXYsGEDixcvLq2Y37x5MwFd5xbb4UzLpnPbtsc1X4MqVUr3JR2CIeYcRXZz1apVhC2LGoEAMb//TxVS3H333XRP71lusx1Oa90agAfuv582DRty2eDBJ7yL8D+ZkpISrrrqqox5Yob/KTIJ6gz/UXz00UcENI3LDZOKpsktEyfy3Xff0b93b05v0+awrWlnd+3GANPiX5EYtWy79OTfcbvpo2pcrpv4RJG3336bZnXrUpSVxT2/MeH68ccfS52hN27cSNy2yXO5CHg83D558kH32rlzJzUqVKDQSklonNGjB7bXS57PR5bfj1eSGKTp6KKIO11NvDQcZVMsQVnLYsWKFezfv5/2bdoQlWXusP1U1HTO692boKpSbJpoksRNlkMHXSciSUQkCZ8gEJIkOvt8jDRMbJ+P7GCQLH+AYaZFgaJwvWlxrxPA0TRifj8BKZV8jUoSIUmiuuLCTstwXGVa+ESRjppGK8vi1HQAcYARw4cz9HcGdq0bNSLudnOOqvF4IEhM1w+qtN2wYQOO18tw3WCEYaK53axevZpKZctSV9UwRAm/JFFWVlgeiWFJEmfoOkFNO8gAJJlMcsvEidSpUgWPIDDSMDnDpyIKAnv37mXv3r00rVsXryBwqW5Q2eUiIkkUpyVETFnmXifAikgMUxS5zrRo5/VSzu0moOv0OvNMQoqCVxC4zXJ4LBBE83hKA8KSkhIuvegiIrZNWY+HWf4ANX+jkTxm1CgSqkpZRcFKy7s093jwCSKmKFHF5caWZBrVqcP111/PiOHDeffddw96fTdv3kxxmTJYksRlusENpknCsvAoCnmhEH3NVGtaBdOkXevW+GWZVh4v5TWNoK6jCAJNPR5eD0UI6DplEwlMSeYmy2FlNEaeYfLOO+9wzhlnYEsSMUmiudvDKX4/D/3GFGbUqFH01DTWxRKMt2z69ux52O9l1YIChuoG84IhajtOafvtwPPOo71lcYVhElBVVqxYwWeffcbFAwZw1RVXHFTV82fYvn07HVu2Iu73c2Hfvuzfv59ff/2Va6+7nlM6nsbs2annMmH8eExJJl9R8Ikis2bN+kv3PRJNatWio2FQz+MhYJr88ssvLFiwANsfRHG5CUUTxCo1JJhTxAUDLjziPGvXrqVy5cqIosi4ceOOydgnQ4YMJ5ZMgjoTf2c4eWzcuJHLLrmEUSNGsG3bNm695RZqlS9P7x49/jB2SCaT3DdjBr26dGHG9On/FR1DyWSSrVu3HlQg0KBaNS63bB7xB/GrKh9++CED+vShR8eOvPvuu8T8fibbDlMcP4F0Mc2BuYYMHIjqcmGr6h9qOe/YsYOwZXGNaXH2b0zbTwY33ngjp1qpDsFelkWDevUYYJpMsOxSo3tLFFkfS7AyGsOjKECqYnfevHmsWrWKX375hQdmzUJN73sSLhdtmzQ55F47d+6kXtWqhH0+fKLIWNOmh2Vz3llnMeiCCzjbtFgeiVHT5aafqlOUk3PEde/atYtaFSumDfm049LOXr9+PWvXrv3DMQsXLqRz27Zc1K8fP/zwwzHPDXD96NFUNi0GGiZBwzimDufvv/+et99++7i0x3/LCy+8QIFp8lQgxKmWzaWDBv2pef7XOGCemJ+fn/FhyfBfTyZBneEg1q1bx8KFC/+tTy+XLFnCsKFDeeCBB1IVpc2acY5lc7PlEND1g1p1vv/+eyoXFOASRVRRpGvHjqVati+99BIR0yTg9TJxwgRaNWjAMMtmXjBMRNOO6J67b98+Fi1adMTH9+7dy+LFiykuU4b6fj+2ohBXFE7xePCIIg/5g0y2HFRZpnPHjuRqGk1th+rlyx8UfM649166tmvH5Jtvpmb58jziD7IplqDYMGhaqzYtmzRBTRsKnuLxcprXR8N0JWy3zp3ZvXs3466/ntaWhVcQ+CgSY30sQUTVyA2HudlyUEWRCZbNJbqBLoo0cLlKdaAdWWZzPItV0TiKINCifn127drF999/T83KlSnvcvNYIEgdy2LcuHHYXi/vh6O09XoxRJGrrrySGTNm8Nlnn7FkyRIGXXghqijSw6dS3+3GdLnwaxqiIPBlLMFn0Rg+UeRu22F+MIwqCLwTjjLEMLlq1CggZepy4w03UKTp6IKAKQjUcbkZbVr4BJEFCxYA8Pjjj3NKuirgyUAIQxRRBQFfWvLDIwgokoRf07AEkcZuD2uicc4wTEyPh+tMi/ZeL609Xj6MxPC5XOzcuZP9+/czbtw4KhkG84NhKnq9lAmFuOiC/gclEd955x3ClkWRovB0IMTmeBbVXG7OO+88OnfuTKXCQiraNnFdZ/x11wGpjcC2bdtK57j55ptR02uNyTKnaRqfRuO0NS3ys7KIWDZtW7akmmXxkD9IsdtNu1NOYe/evdStWpWY203A5eKiAQP49ddfmT9/PnnRKG5FYfgll5BMJkkmk7Rr2ZKGqsaDToCErpc6uK9Zs4aIZRGQJIKyTOgI5jLffvstYdOkvtuDLUkkgsFSaZcGVapQPy2XYkoSPXv0IB4IMMS06GxZtGva7Cjf9j/m0sGD6W7ZLAlHqWXZRzR8SSaTzJkzh/79+x+2UwLg/fffZ9GiRcekdX0kFEnCcnmJ1+qAL5jNgAsHEc/Oo+issRT1Go/bCFDnmpeoNnQ2pu3/w7l27txJz549EQSB0047je3bt//pdWXIkOH4ySSoM/F3hmNj9+7d3HHHHUxMF438Vfbt20d+PE5/06KHZdGoRuZz9Xu++OIL2jZuTI2iIubOnUurBg0417IZb9kEdB2XLPNpNM7nsQS6231QfAmpiuSjSQZ8/PHHlLVSkg4fRmI4mlb62N69e7nissto27AhM6ZP/1ue428ZO3Ys3dNVzeebFuedey5hy8KRZR7yB1kWjuIRBKY6fq6zHMplZ/PJJ58QNAyaBoJY6YS83+3mYX+AL2MJcny+I2pu79+/nzvuuINmaR+ZB/0BGlatynfffUf9atXwiiLdfCpPBYLkhEIATLrpJsolErRt3JivvvrqoNdq2bJlh+hd/xE3jh2L3+cjrKoHVYOfSJLJJLNnz2b06NH/WNIzmUwycfx4ahYVcd5ZZ/Hzzz//I/f9T+ejjz4iEksgCAJuj4cXX3zxZC8pQ4a/jUyC+n+M7du3M3XqVB566KFDWpqefvppAqpGNcdP5YLC/5gfjexgkDfDETbHs6jsOKUJNoDRV1/NGemApqdpcdXIkaWPbdiwgW4dOtCqQQMWLlxIpTJleCoQYlMsQVXHKU12/hleeeUVaqV1wQbpOn5Roq3Xi1cQyfL7qVy2LDfccAMBTaOiYZAbDnN6+/bUqViRqVOmlM7z5Zdf8sILL9C+WXMuTCfP47rO8uXL+e6771AVhReDYcorCrdZDn5J4lrTooVucME55/DLL79wTrfuBFWVhNtDFdumffPmRGyb2f4AtiiyMZZgZToJnRuN8uqrr/LCCy+QFQox2DA5zeejsdtDK9Oif//+9OjUiV6mxVmqSkCWOfess/jll1+I2KnAeIRhorlcBFWV7oEgts+HpiiUVxSiklwa6HoUhXMcP5VdLvqoGhcbBpqilCaSNVEkLElkaRrPPvts6sfZtrFdLqKSRC2XmzxZ5sl0Aripx0OjunVLX7eArjPMMKmuqmRHIhiiyCQ7peMXlSSyPB5yDYOYbVPD7Wa6EyDq81HFTFWGLwxF0NOmjBddcAG//vorpzRtSszrRRNF7nH8jDEtwm43CV3n+t8ZtpzXsycxWaaz18c9jh9NUQipKg1tB12SUjIvoQgB3WDGvfdieDwYHg9j0sn44rw8pjl+3o/E0CSJgemK9bNNizHpew2/9FKGpf/9CsNEd7lYsWIFNStUoL9pcpWVMsf57YHT76uJtm/fTu8ePahXqTLT7rmn9N/79+7N8LTWXBfdYNARqhxmz55N+7TszCx/gKa/2Uhec9VVOJLEuliCN8MRbFUt3ex8FIlh+Xx/5uvF3XfeScOqVSnOzWNU+vn3sB0m/66j4Vi57uqrSeg6FSyLU1u1+tMVV7WrVMHOqkDd0S9Tse9tFFaoRDASo2K/26l2yQNILg9lOg4h0aArtes3Oup8yWSS22+/HUVRKCwsPOKhWIYMGU48mQR1Jv7OcGyc1qYNLSybbpZFcX7+MZshH4mNGzcS0TQ2x7NYF0sgiWKmk+gohEyT9yJRNsezKLJtup16KoX/x955hklNfn14kqnpZfrMArtL77136b0JCIIUFUQEFFBRFBBRUUQEUUHFQlFALAgqUhQRxA6KhaJS7RRp0pa53w877uv+6UhT574uvpDkyZNMdubkPOf8foZBUcOgU5s2ZzXmwYMHKZKeThvToopp0q1jx5xtd9x6K3UMk6csP3k1jcWLF5+rSzku27dvp3ShQliSRKG8efn++++5tls3bJeLSm43Myw/pttN2UKFqF+1Gl999RW3DB5Mf01nnGlR1u3mk3CU9rJCRbebim4PhijmdD8ejy+++AJZFKnhzS7A6NS+PZAdm1171VVYkoQhScyaOZOVK1eSpqq8GQjR2zDOWmsaspPjnqRc4NeRGJrXe8YLP1999RUlMvNjynLOe0WKfy7lKlUlo1k/il8zAdHlQhRFxo0b96/oEEmR4n9JJaj/Qxw+fJgyhYvQxLSoZJpc9T+utTXKluWZpENwLdvPiy++eJFmemYM7t+f4oZBc8umUN68OSaIcPIEdaUSJRhgmEwwbSxFoU7VqlhOF3mTZorHc8X+k5kzZ3Jl27aMHzfuuEHz119/TUhRmOkPkNfp5IVkNW9ljwfV6+W7776jdvnyPGVl3++KXh8ehwNZEAj4fCxbtozly5fjV1VqBQKEzGwjh6J58/LIww/nnGfa1KnEbJuIaaF7PFTweNkWS2N+IETJzEwgW5Lit99+49133+Wtt97iyJEjTHrsMRSnE1UQqOjxUMjlQnEIOZWvAN9++y2lCxWmktfLmnCUOl4fBRUF2+ViStLcr75l5ej7TZ48GdvppJjTRUAQaOjzsSEa51pFpbTLRXOvD6/DwQBVI8PtxiuKWC4Xd2g6MaeTvOEwPkEg3enEEAQ+DIW5VtVofNllQLaW+F2GyZZonApuD5ogEhJECrhcXJs0dWz+FymSzz77jD69emFpGvUtG0MQaOr1MdowcToc3KnpxEQnsiDQyOMl7nbTvl07IqZJW0mmpNtNR0kmrih88sknvPfeexRJthfO8QexnE58Dgdz/UE+CEVQvV4K5slDeiTC7Nmzefzxx8nw+SjrdpPH6cRyuaji8TA/EKKCx8OVkowtitnmjU4n7wRDfBGOonu9/Prrr2REIryc1MqOyDJxv580TSMtEGDAgAGsXLmSjz/+GNXloplPwhZF2sgyw4cPz6mc2RqNE1EUNm7ceNK/oaNHj7Jr165cgc7Afv3obJh8GY5SWdMZN27ccY99//33iavZBpGXGybXdu2as+2nn35C93qZGwgy1rQonDcvmbEYXXWDywyT9s2bn3ReiUSC2bNnc+vNN+doKL799tvk0zSetwM01XV0t5sSlk1GNJojxXOmGJLEh6EIm6JxoorK+vXrz2qcb775Bp+ika/RdYSKVqFbz2t4/vkXkBQVSdFp1aYtjZq1pHPXbseYsuzfv5/333//uGYt7733HpFIBEVRmDVr1lnNLUWKFGdGKkGdir9TnB4elysn5oirGt99993fGu/IkSMUzcigs27QzDCpX736OZrppcGRI0fofsUVGJJErQoV+PXXX//2mH169qSsadLSsnJMym+++WauvfbaXNW8Z8r27dsZP348zz77bK7CpjaNGjHBzC7EudKymXCSRO+ZsH///hPGckePHuXnn3/O7ma86y5q6wYv+oPkd7qQHQJNkwaSfzJx4kSqGAbXKiotJCnHM8ZwOrlF03nBny2PsnXr1uOe7/nnn6eBbfO4ZXOPYVKjTJlc23/44Yec7rZXXnmF6na21vRztp8qJUue9T1Yv349SvL9oKYnu3jlTIvG6lSsyF2GyYehCHlUjWXLlrFr165LYqHnjz/+YNWqVWctE3Im/P7777Ss34CImf1+8tdn+IcffqBpnToUT0/n0UceOe9z+TsULl6Kwp3upuLQ+dixDGrWrInD4eDaa69NmSem+NeRSlD/h1i7di15NI2tyYpZxevNtb198+b0MkwWBEPk1bRcur+XMolEgldeeYXJkycf08K2fft2yhUtiux2U6Zw4Vwr0Jai8HE4ytZoHL/bTRvd4FHLxpYkPvnkkxP+iL/11lukqSpjDIvShsGEvySM/8rU556jfJEi5I9EaCXJPGP7CYoiDXSDSZMm0bFlS3oZJguDIYKiyLO2n7eD4RyN3Kvad2Cknm3EcZVhcv/995/0PixZsgRbUeihG5QxDG4bPJjt27dTpnBhNK+XYpmZbN26let69CBPIEDQ5+NFO8D1qkpAFFE8Hm4ZOChXYLhx40byx+P4RJFMZ/YLSC2fhCIIlHF7kEWRKqVKUatcebp27YqUTLLfoGrU8nip7vESE0UKOF2Uc2drXNuaRgNZ4YtwlPqSjCGKtPZJ2G43fVWNbbE0uskKA1SNzrpOv2RrW5d2l9PfMFkfiVFe1+nQoQOhWB4CZRoSq9kJrxlm7Nixue7JCy+8QKPk4sBzth9DEIiLTtpLEh6Hg7mBIM8mP5fuqkbdGjXQRZF8TidehwOnw0HdGjV48MEHWbZsGRFF4d1QmJG6iSaIuB0OrlNUhuo6iiAQFsWcezlmzBgaJ80M050urlZU7jVMTEEg6PNhe73cbZhsiMbJcLkYrhusDEVQ3R5+++03enTtikcQUASBFo0bc+DAAe695x4yVJUBmo5fUXj//fdp3bo1EY+HkZpBQV1nzpw5dGzViiqmSWPLokLx4seVrfj+++9Zvnw569evp2CePChuN0UyMigQi1G6YEHeeustalWogCKKqE4npiyzcOHC4z57T0yaRLVSpejRqdMx2pDTpk0jMxKhbOHCfPrpp/zwww/cddddPPzwwznmmyfiqSeeoEDSSDKgKHz44Yf06tWLlsmq6ccsmwbVqvHBBx/kWpg6U4qmp3OPYTLDDmDKMmvWrKFB9epkRiKMHjXqjMZasWIFnbt04447h+Vc3+7du0+aPN+5cycZBQoRzFcI1bBYunTpMfv8+OOPVK9eHYfDwcCBA4/pgEmRIsW5JZWgTsXfKU6PGuXKcaVhcqNukBYMnvK3/XT45ZdfGDF8OKNHjz6vHZ27d+/m9ltuoe+117J27drzdp6/MnXqVCqZJqvDUbobJn169vzbYx49epSZM2fy2GOPsWPHDnp27kwVw6STYZARjbJv3z6+/PJL3nnnnTNOaO3du5eNGzfmei+aPXs2UVXlcr+foK7z7bff/u1rWLRoEZaiYPh8dG7b9qTJ1J6dO+e8I12jqLT2STT4H43sI0eOcFPfvhRLTyeoqhQyTYKGQVDXeScYZks0TgHDyDE//1/WrFlDUFEYY1jUN0z69+59wvns27eP0oUKU9wwMFwuyhcpwltvvXVW9+GKVq242TD5PhqnhNtD/379zniMcoULM9X2szkap4iq4nO78QgCkihe1IrqX3/9lYJ58lDYNAklvZfOJzffeCNtjez3q8qGwZQpU3K2tWzQgOsMk7mB4DG+SeebrVu3cvuQIdx3772n9f7y+uuvo2gGqhWgcbMWHD58OMc8sXbt2mzfvv0CzDpFigtDKkH9H2Lv3r2EDJMRhsk1hknV0qVzbf/xxx9pXKsWBWMxHrj33oszyfNAIpFg9+7dx7TB3NS3L0UMg5q2TdDn4+WkVEQBWcaTTMj9qfE0c+ZMqpcuzRWtWnHbbbfROylT8IBh0aF5c5YsWcIvv/xy3PP//vvvVChWjJjLxVWyQjSp8/vn/c4Ih5FFkQ9C2RWzkiDw888/M/TWW2lsmLweCFHKMHjiiSdO2Tb53Xffcc899zBt2jSOHj3KXSNG0MHIriDvrhs0adCAyobBe6EI6W43nRSVSZaNLAhU9nrprGpYkoTl81E0f37Wr19PncqVMV1uJIeDpj4fIaeTMi43U20/liBwt2HyqGVjOl3crOmUdLvZFkvj/VAEWRBIj8XIcLnYGo2zIBhC93i4WlHZFkvjakWllsfLlmiciOikgdfHp+Eo1T1eHA4HuihiJROxmzdvpnShQrhEkc5t23LkyBFCkTjpTfpS8fbXUPxx+v1PEDdx4kRsl4tpdoDWkkRczK5mXxWOIgsC6yIxPglHcTkcmKpKEVXlBX+A6h4v7ZOJ+HSfj7a6QeF8+Rg9ahRBXUcWBJr7fHSVFdwOB+mxGA28PrZG4wzRdBSHg48++ohKJUvilyQ8gsDq5GJIQBSpUKYM1cuUYYxh8X00TklVwy2KuBwO4pJEq8aNCcgyy0MRJpo2xdLTAWjfrBnjk3p4nXSdkKIQc7uJeDwUiEZ55OGHSSQSHDp0iGaNG+N1uSiSns4333yT677MnDkTvyxT3LSIWxbX6wZfhLM1wOf4g0w0bfKFw7z77rsUNgy+i8Z5xvZTrkiRM/rbmzt3LramoXp9OfIhhw4donf37hROS+O6Hj2OeaYPHDjAW2+9xapVq+jYvDk9ZYW404ktipQsVRorlons8lDD6yOkKMyZM+eM5nQ81qxZQ42yZSldoABz586lXZMm9EkuHuXTNFasWPG3z3EypkyZQqxkTSoPW0Bmy4HUb9zsuPsdOnSIfv365QSkfya9N2zYwPjx41m0aNF5nWeKFP8lUgnqVPz9b+H3338/poDjXLJ9+3YG9e9Pn55Xn9LU7VKjad3LaG0Y3KQbRCwrVyfh+WLixIm0SBYwDDfMs5bgOBkhw8iR/ChuWdw8aBBhRaGEaVK7UqXTlmFZsWIFfk0jJMvUq1YtV3fpypUreeKJJ/j+++/Pao4bNmygYvHihE2TUSNGULZQIZ6x/XwbjVPQME5aKPXuu+9iSRLVvV5MQaC2pp00gXzgwAFWr17Nrl27eODee4mpKmUsi1oVK550wX/ixImEVZWgojDlFFrbf/zxB1VKl6ankSx4UpQTVmefjMubNmW4YbI5GqemZTFt2jT++OMPhg8dSo9OnU4rJp0/fz6mLBNXVQy3m1f8Ab6MxLBFkYAkXTTJuLFjx9LeMHOq2f8qG3Mitm7dyt13383kyZPPuDijZ+fO3JGUK+xkmDzwwAM528oXKcJMf7a/UxXbZv78+Wd8PWfDgQMHSI9G6akbNDEMmterd1rH7dq1i++//z5XPmP69Okp88QU/zpSCer/GKtXr+aKVq24tmvX47aS/5dIJBK8+eabzJo1i/vuHkWGptHAMFAEgc/CUWb7A6QFAnzzzTcEFYXnbD89DJM6VargVxR6GQYxWUaXZaoEAgR1/aTGicNuv502jRoxe/bsY7ZPGDcOj+jE43Cgut0MuuEG9u/fT8/OnSmRnk6J/PlRPR5CpsmHH354zPEffPAB3Tt2ZOitt7Jv3z4WL15MlRIliRkGl0kyW5Ku13Vr1aJL8of6JlWjWL585LVsdEGgrNtNYZcLy+GgjSTRVVawfD5KaxpPWDYNvT6Ku92MNy2Cosgdqo7ocPB1JMbGaBzD6aSbohAURXopKrW8XlSnk/feew/F5aKFT6KRT0L7U1va6cwxAawoy+RxOqnvzTZYDAoicYeDWzWdUYZJ0zp1cn1uf9K6aVMktxenKGLLKjNmzCCRSHDkyBE2b96MrSh0krLHDooiV8ky1Txe7jdMFIcDWxBRBIG61atnLzwk9advVDUkQeAO3aCWx0sPRSWfqnJZ1apc2a4dkiBwnaLSyiehiCIjR46krNvD15EYjZJSJl6ni6u7dGHNmjVkhsMUdLmo482uKFccDgKShOp2400aeEoOB+vDUTZE47idTvKoKt9G48wPhHIMWB4eO5aSusFdyRbFtpLMRNPGEkRkjyfnvqxYsYIMXeeTcJThx3Fe/6vpZtzrpbem834oW6f722icj8NRZI+HDz/8kHyaxppIjLGmdcyi1qn+vmxV5dVAkGWhMJrXy86dOxn74IPUMgwWBcPUNIxc0iEHDx6kcqlSlLcsoqpK25Yt8QoCrwaCzPIH8AgCxa8eT7mBL2BGM3j00UdPez5nQvUyZXLkjqrbNi+//PJ5Oc+fzJ07F3+eApTq+xTxyi3p0q3HSfefNm0akiQRi8V46aWXCGgaV5oW+TSNJydPPq9zTZHiv0IqQZ2Kv/8NPDphAmrS4+KeESMu9nTOKyOGDsVSFIpnZp52As5SFD4LR9kWS6OQafL555+fdP9ffvmFd955528l/Hfu3Enx/PnJ0HVChsGqVauO2Wf79u0sX778rA2Sm9erTzvD5DbdIGQY5A0GeSsYYks0TmHD5IMPPjjmmJdffpni6elULlEiZ071qlTh4aR/SyXLOqfxUINq1RlimLwXipBH0yiemcl40+LLSIx8msZHH3100uPXrVvH9X36UL1MGfr16sX+/ftP+9yffvopixYtOmU1ebGMDB40LeYHQpiSdEq5lPRQiCXBbF+kUpZ1Vt3Ia9asIeb3o3u91KtWjQMHDnBt1640NExG6AZ+VT2ldB9kP0Nr164lLRDgRX8w2+hSEIkrygmrxs83Tz/9NFUMk4/DUa4wTG48gb/Nn+zevZs8oRDddIOqhsE1f5ERPB1WrVpFUNcpYVlkRKO5ch/Tpk4lqCiUt2xKFyr8tzoxz4S1a9eSnnzf/Oo4He1nysqVKwmHw+i6zptvvnmOZpkixcUjlaBO8a9lz549Z2QqsXDhwmzjQkniy0iMeYEQEctiwYIFVLazNZfnBoKUzMjgk08+4d5776VD+/bckJQbuFHTueks2rA+++wzapUvjy6KTDAsvo7EMH2+HLfnN954g1KmyXfROA+ZFnWTRoB/sm3bNvyqygjdoKlhUqtyZXSvl0mWza2aji4IOB0C5YoW5YsvviBPKEQZ2yag6dStWhVJEPggFGFLsrrX4XCwMRpnWywNOZk8vczrRRYEhiavtZuqkTccplq5chTSDUqbJvVr1KBGuXLITieSIGC53VQuX57hw4djer3crOmku91kShIbIjHu0Q0quN0M0HRKlShBWcNgUzTOg4aJLAh0kmSa+SQyXC4qlC7NlClTjtEF//HHH6laujSq10uPTp14++23Ceg6HqeTKzt2pHzyc1sYDGG4XGgeD26Hg+puD35BICaKSA4HEVnm2WefJaBptAgEUDweaiWDh7mBIPmS1zRSN2mjavid2WaPayMxnIJAsZJliGgabocDQxCYaNqsj8QooOu0bNKEDrrOHbpBUMjWlPs0HGV9JIYmCNytG3wdjhJxOumragzXstsDA5KE5fZgSBLTpk4FspO+kx5/nN7du5MRCjE/EGJbLI2ybg+Z8XjOfVmwYAGlky8UT9t+Khcvnuu+Na1ThwGGyVvBEIbHgywIOB0O7KRxZFhRGDViBIlEgsH9++N2OskbCp1RQJtIJFC8XpaHIqyJxHK0tQfdeCMDks9Rf01n8E035RyzbNkyipsmW6Nx3giESA+HkVwuvorE+DwcxSUIhEvWJL3pDWiGzaZNm057PmfCq6++il9RKGlZlClc5LwHrYlEgpsGDSYYiVO7XsPT0qNcvXo1GRkZOJ1OysoKW6NxnrL8NLoAWp1Hjx5lyZIlvPvuuymDlhT/WlIJ6lT8/U/nyJEjSG43K0MRVoWjqB7PWSc8L3U+/vhj0lSVD0MRRhomtStUOO5+fxYx/MkVrdtQ2zDpqmdLYZwsyfn5558T1HUq+v1EbftvaW0fOnSIL7/88hhZNMhOUIYMg7K2TTwQOK1k5P/y+++/c/NNN3F1ly58/vnnVC9ThtsMk5f9QfyyfEzV8/bt2zEliVn+AA8YFoXy5AGgeb163G6YfBmJUcwwzmkCrHyRIky1/WyJxilrWYwfP56Y34/b6WTQDTdcEvFFyDB4Jxjm+2icNFU7pkp1165dzJo1i/yxGLai0OSyyyig69S3bYplZp5R0vyvHD58mF9//TXnHpTKn595yZi/TiDAvHnzTnus119/Hc3rzfa8cblo07RpLvP0C8mRI0fo2bkzfk2jUc2a7Ny585h9Vq9ezY0DBzJx4kTee+89StvZWucrQhHS/H42bdpEjXLliNv+Ywzqj8eOHTv46KOPjhvLf/PNNyxatOisP6ez4Y8//iBvOExvw6CFYdCkdu2/PebmzZspXbo0oijycLKbNkWKfyqpBHUKDhw4wIwZM3jxxRf/Nbqmz8+Yge7zoXu9DDzF6uz/csuNN6J4PGg+H7NnzWLv3r0USU+nju0nTdWY8JeKz3HjxlHTMFgSDFPbMHjgFDrR/0sikSAtGGSMYTHJspEcApVcbhSPJ6c6Y8GCBRQ3TDZEYoxOJqjbN2+OLkk0rFGDl19+mYrJquiFwRCaIOAXRbZE43wSjqIJAj6XK+ec4x96iIhhUDRfPrwuFyXdbm7TdKZYfmSnE8XhoJlP4gpJxvZ4uS/ZitVJVlBdLrrqBrYs88UXX5BIJFiyZAlvvPFGzrNz4MABhg8fTlBRqOrzken10iEp6THJypZTqSDJ6ILAnZpODUnmvnvvpUmdOtiShKUoWC4Xy0LhbHMQQaCUJFHTNGnxFwOURCLBCy+8wIC+fZk4cSKtGzYiKCtMsfysiUQxRZGAotDctimsG9wxZAj9+vTB43AgOhx0lmW2xdK4RdMp5PXy5JNPsnHjRmbMmMHSpUsJ6jq9NZ1iXh9hwyDky5bweNzMlkTpKMvUVTTC6aVxOARef/116tSsSVhReMyy2ZBMUFcvX55xSVmOBr5suY8nTZtHTQtNEJhk2XwXjVNI0yiSmYnf4yHT5eZR0yRdVXnhhReO++zcO3Ik6YpCfUnG9Hpz6bgdPnyYRrVqEVVUTFlmwYIFuY7dvHkzdSpXJjMSQfF4aOeTuFpWsH0+XnvtNb7++utc+x89epQ9e/acsW7h4xMnonm96F4vQ2++Gch2Fg/qOtWTXQd/Pde3335LQFaY5Q9wk2FStUwZ2rZoQUCSCMgyd9x6K4MG30Lb9h1ZtmzZGc3lTNm0aRPvvffeOdHSPF/s3LmTqlWr4nA4qOj2UMMwGDJo0Hk/b9v2HfGn5ceOpdP96mtPuN++fftOKH2UIsWlTipBnYq//+kcPXoUzefjrWCIZaEw6lmYrf1TePvttylummyKxplmByhXqNAx+6xbt4788ThOUeTKtu3Iysri4MGDPPLII4wcOfKU1bHXX3MNtyTj7Wt1g2F33nnOr2Pv3r00bdCAQcmF/KtPcJ4FCxbQq1s3Hp048bSM7zZs2ECdSpUonp7O1OeeO+72iKKwMRrno3AEXZKA7HtWLCMDj8tFn549z2nia+7cuViyTIauU7tSJQ4dOsQPP/xAj27dqFi8OANvuOGkhvUXggnjxhFIzrFt06a57vWyZcuwVZWg00lBp4vFwTB+SeLZZ59l2rRpZ7UYdPTo0ePe49sHD6a0YdBDNwib5hnHVkePHmXlypUEDYM0nw9ZEMgfj19yshCbNm1CM23ita8kmFmSPn1vIKjrDNENWhgmlzdrRssGDbjRMHk3FCb9H+SZ9Vc2bdrE4Jtu4q7hw8+ZrNDevXtp3bo1DoeDXr16nbaMT4oUlxqpBPV/nEQiQd0qVahhWZQzTCqWLMnwYcP+luPzyThw4ACvvPIKS5YsOa+re2HT5I1AiK8jMQKyfMZVDrt27cq1mrp7927mzJnDypUrc+13+PBhenfvTsFYjGu6dDnjQCorKwuXKPJNJMZ30TiKIGAKArLbzbZt23js0Ufp1a0b9WvXxu10Eg8EuPXWW6ljmHwRjtLOMOjXpw+SINBFVijkcnG1rFDV46Goy02a00khj4cmtesA2aaHtiSxMBhijGGhO130VzWKutxYbjfz589n4sSJFC9alLatW3Njv340TFZcFFIUPE4nBX0+DEniiy++4PXXX+euu+7igw8+4NChQzz11FNEg0EUhwOvw8HmaJz5gSCyIHCbplPA4yVimrgdAnU8XqKiiFcQePLJJ0kkEvzwww/s2LEDWRAxksc8a/sxBYFPwhFEQeCzzz4jkUjw7DPPkF/TGKob6KJIT0UhJIrM9AdYF4kREUWKKAodO3Tg9ddfZ86cObiT1cuDNZ0ybjfvhyI08kkYPh9PP/00ZYsUoX7Vqnz11VesXbuW/v36oXi9XK9q5He7yePxoAkiDSUZp9OFFEwnkFGWPF6ZgCRxhWHQQFGQRBGfy0XPzp1ZvHgxfkWhvG2TPx7npZdewvJ4sUUnmseDJknoXi8dW7WiQFoat2kG9xkmIVGkoWXx9NNPH/PcHDx4kFWrVjFnzhyefvpp1q1bd8yzd/ToUdavX89PP/3E119/fdzKgQMHDiCLIn0VlXaShCaKx0j/JBIJbrj2WmS3G0tRTmiUeCJ27NhxjEHgzz//zMKFC48bYM+YPp2yBQtSuXRpbFmmZiBA2DR57733jjt+IpGg7zXXIHs8lCpY8JwY9fyTOHr0KO3bt8fhcBAJh8+7ydOOHTvwSjIVb3+NCkNewelyH3fhItvQRcenaFzZtVuqmiPFP45UgjoVf/8bmDVzJrokIXs8/2oJqCNHjtCkTh1iavbC/GuvvZZr+yuvvILiciELAmMMi7KmySuvvHJG5xg5fDgNDZN3gmGqGgaPJ701zhV//PEHpQoWIl2SuMzr471QhOqGwaOPPkpWVhY//PADhw8f5oMPPiCkKIzQDUrrBg8epzjm4MGDPPXUUzz++OOntSiRSCRo3bgxGbJMwOPhhuuuO6fXdiJ++uknVq9ezZEjR/j+++/xqyrVvV4Mh4M8Hg+N6tdn3bp1zJ8/ny1btlyQOf3Jzz//zIDrr+fKDh2YN2/eMQsBDapVY3xSS7yKx8ME0yKvpuXIxPzxxx9nFPvcOWQIHpeLyHGkQY4ePcq0adO45557zlrzu1e3bgxOLrB0kGTq+3w0qFbtrMY6X7z00kuEClei8rAFFOs+lqIly/LFF1/Qq1s3ht56K3v37qVa6dI8nZThq2LZvPrqqxd72pcMR48e5bbbbsPhcFCnTp2UeWKKfySpBPV/nB9//BFbktgcjbMhGkd0OOiq6WREo+e8/efIkSPUrFCBypZFQd1gcP/+53T8v5InGGSmP8DH4SiWJJ1VUJNIJHhw9GjqVqzIkEGDzulK5F8Dlmu6diXu8ZDpzNZpvksziHo89Ln2WkobBiN0g5CisGzZMhKJBKNGjeLKpEnjTbrBdT17onq9XCsrWILAHarOKN1AlySu6NCBUXffnROcrl69mnyaxsZonIXBEFHTpEW9erSsX/+4en0HDhygW8eOhGQZNSkDYQoCtb0+Lr/8cvKqGn11g4CiUK96dcr5fFT3eFEcAj6Hg0GqRn9VQxJFDK+Xcm4PNd0egqJIO5+EJYh0lmUytf+vTH/4oYco4c2unP4gFGFzNE5EFKng8aKKImmqSpfLL+eqDh0Ynazuvl5RGahqTDZtPA4HkiBwlawwTNPp1a0bAPWrVcPnEFgeivBmIISSlC+pXKo0kyZNwicIREWRAi4XBdLSAHjuuedorGpsi6Uxww4QlmXu/7OiXFFRXC6G6QZPWjYuh4Ot0Thbo3FklyuXMcqWLVtYunQpe/bsYc6cOVTUdbZE4zxi2lxWqTK//PILR44cwSmKbIjG2RSNIzkcBBQVxeulRP78rFu3Dshu2yxRoAAFDAO/qtGwTh00jwdbVXn33XdzfX6//fYbhfPlI0PXidr2MZXRGzZsIJasJP8mEsPjdObavnnzZu655x5issLaSIxpdoCi+fKd9Nk+evQoO3bsyBXIr1u3jpdffvmMdO87t23LPcl7faVp8uCDDx53vzfffJNiRrbJ4y2GScsGDU77HP8m5s2bh2EY2LZ9TMX8ueTQoUPopk2BdreR2XIg/lDkuC9gGQULU/jKe6hw26uYobRTakmmSHGpkUpQp+LvfwuJROK0qmz/6Rw5coRnn32WV199Ndfv0tGjRzFkmdcCQRYHwyiCQEXTPK4nzMn4448/6Nq+PfmjUfr07HnWXae//PILdStXJqBp9L3mmpzPZtmyZZSyLNZHotRL+rhc06UL3377LXHLQne5iAcCDBs2jKusbNmDRy2b1g0bHnOOFvXrU8s0aWRaVC1T5rQ+/yEDB1JYUegsK/hV9bzJqJ2IBx98kI6ywrZYGuXcbiq4PTSUZDSnk1p+P35V5ZNPPjnn5/38889p1aAhlzdrxvr163P+v3yxYnQ3DG4wTNIjEZ544gleeumlnHvZrkkTbjJMPg1HyeN0Ynm9dGrTJru7rUwZ3E4n5YsVOy25yS+//JKoovB5OMoky6ZUgQLn/DoHDxhAe03n83CUGh4vnWSZamfgLXMhmDFjBk63l3jtLmjRAlSqVOWYfebNm4clyxTQdQrmy8c777xz4Sd6iTN16lQ8Hg/58+c/5t3vv8KyZcsIReMoms7D4x+52NNJcQakEtT/cQ4ePEjYshhlmAxUNfI7XWyLpZHfMM55289XX31FXk1jS9KEzVIUABYvXkyJzExK5c+f60cmKyuLDz/8MFewcLq89dZb2JqGz+3mgXvvPav5vvjiixTRdabafqobJveNGnVW4/xJVlYWYx98kOIZGTgFgZIFCvDhhx8SDwQorih4HQ76yNkmgy6HA7/Hw6PJAPQqy+bhhx8GsqsN8sfj5FMUTJ+Py1u2pFqlSijJBLIhCIRFkVggkLNy+qeD+9GjR2nTpAn5NA1bkuncoQOS240hy8c1PtmyZQuW14vX4aCTJLMuEqOGx4siiNStUoUHk9IVvfRsw8Rvo3G2ROPYosgk00J1CFwuSXhEkZDHw7ZYGl9HYngdDiSXiwY+H9tiaTxn+6lVrhyQvcI/Qje4SdWIiCKFvV7y+gPILhfLQxG+jcYJyTLxYJCI6GRIUme7qMtNhtdLUJaRRZHWlk1AUVi6dCmQ7eRcTZJwJyU+3IKQU01UuUQJJlk2W6JxKrg9uEQRyA6WFUHgTt2grNtDnlCIch4PUyw/MaeTsGmSqeuYPomCaWlcrml01HRKFyp0wqqJhx56iDxOJ5+FowxUNSqVLJmz7cp27ShrWlQyTIpmZlJA11kVjnKHYeZolD355JM0trIrNkYbJkG3m2+jcSZZNpVLlMh1rjFjxnB5cjHjZt2gUDxOywYNcuRADh06RME8ebhSN2hgGLkkVNatW0dQ16llmliiyFeRGM/afopnZJzwGd++fTtlChdG83gonj8/a9eu5emnnyagKNQPBIhY1mm98Bw+fJibb7qJpobJ64EQJQ2DmTNnHnffOXPmUNWy2BKN87BpUa/KscHsf4UNGzZQsmRJBEFg1KhR5y0h8d5771G6fCXKV652wpfFwsVLUuDy2yk3eDa6P5xLgiZFin8CqQR1Kv5OcWYcPHiQIYMG0bR27ePKSJxvrmzXjqKGQSHD4OouXXL+PysrC5/bzUfhCF+Eo3gcDupWqXLGsmU7d+7ktdde45tvvvlb87yma1d6GiYfhSOUMUxefPFFILvL0S8rPG376W0YNKxRA4DSxYrRUpLYGo3TW1Fp1bQpfkWhv6ZTQNOZ9NhjucY/cuQIoiCwMRmTWz7pmE6241GpWDFe8gfZFkujoe0/Ydx1vrjnnnvI43Qy2x/A6XCwLhJjazSOXxR5PxThNk2nz9VXn/D4H3/8kV7dunFlu3anbZJ5+PBhorbNSMNkiGFSIC0tR6dcFAQ2JQtPFFGkjmFSyjDpe801QPbnVaFYMQxJolf37qxfv55EIsHdI0fS1jDYEo3TWTcYMnjwKefx2WefkU/T2BCJMcsfoHBSA/xM2Lt3LyPuvJObbrjhuN2EO3fupH716khOJ4bThSnLLFmy5IzPc75IJBL069ePMj6JrqrO5ZJCy3r1jrvvt99+S8E8eahp2+TRNMY+8MAFnu3JSSQSvP7660yYMIHNmzdflDm8//77hEIhdF0/r4UrlyrxvOkU7DCM0n2nIKsG27Ztu9hTSnGapBLUKVi1ahWtGjQkn99PA1Wjn24QDwTOuTHYjh07sBSFxy2bmw2T8kWLcvjwYWxV5Vnbz9O2H1vTyMrKIisriyZ16lDQMAjKCo8+cuYrXyerGNm+fTt33H47Q4cMOcaQbPq0aVQoWpRiBQrQK9kKNcowsT1e2jVtetb6fbcNGkQBSaKU2836SIwBhkmF0qVpn0xCP2RahCSJQl4v30XjtJYk4i4XAzQdS5KoVLIkxfLm5c4776Rbp04EPR4ynU6aeH0Ucrm43zCxBJFBarZuXWO/n+nTp/PoI4+guN3ILhc333gjWVlZjBs3jqFDh6J6PKwMRZgXCGGr6jFJ1et69KCXolLN7UFNaluXd7nJF4sx8MYbCbnclHW7CUoSltdLH0XlNk0nJIq8YAeQBIEmuk61smUJGQYDVI3LJRlNFOnduzem280DhkVljxdbkvjpp59YsmQJAUWhgz+ALkk8+uijHDp0iMxojEctm9cDIVS3h9qGwSTTppbHS1GXC7/Xi+J287TtZ4CqEfH7WbNmTc61/Pbbb5QsVIiQ00lLVSViWfz444/89ttvFIjFKO12M832ExGdlChalB07djB+/HjqqCpdZYWmPh/VK1QgU5Ko6/Vxg6JRPD2dzz77jE2bNpE/FkMVBFRR5Jpk1fbxGDVqFGU9XlRBIJ/TSesmTXK2ZWVl8eCDD9K0cWN69uxJuaTR4STLpkbZsuzdu5dp06ZR2jD4KByhh24QcLtZG4nxsGlRtkgR+lx9Nbffcgu///47o0aNooZusCYS43JZpqrHy92GScSyczoCfv75Z0aOHMlDDz2U0zWxfv16WrVqRVMl23yvtseLWxCwVZW33377hNc2YvhwOuoGW6Nxumo6ituN3+XKqXTvYlrHrYTes2cPjWvXRnK7KVukCLLHg8/lolrZspRIT2foLbecMOF/8OBBaleqRFRR8WvaCaVA/ivs27ePzp0743A4aNWq1UUzxFqxYgV2MIzT5WbwLUMuyhxSpPg7pBLUqfg7xZkxZNAg6homkyyb+HG6us4nu3btQnF7+DYaZ32yI+yvnaDjxoxB9/kwfD4G9et3xrJTv/zyC/nCEWr5/QQVhblz5571XNs2bsJ9RrYhdFPL5oknnsjZ9uqrr1KjbFlqVKxI3YoV6dahA35No4HXxwehCJU8HurUqMGHH37I0KFDmTNnDvv376d39+5UKFKE++6+m0QiQYn8+bneMLnFMMkTCp1WF+jNAwZQSdO4VdORBIG80egFTa6tXLmSgMdDSbcbSxDopqjcqhsogsjL/iB1DJP77rnnhMdXKlGCa3SDoYZJxLJOqxP4l19+wfD52ByN8200jksUc+5Vw5o1aWSYtNJ1DKeTzZEYH4Uj+DUt5/ht27bxzjvv5DK7vGvECDoY2bFwN8Ng4IABp6y2TyQS9OzcGcPnw5TlMzJB/JMW9evTwjC5QTeI+f0nfF9NJBJs3LjxnGkfnyvuHDKETFWjrMdDyOUiLCs5izf/y9tvv0255Pvz64EQRc4ioX8+efD++ymg61xh2UQs64w6SM8lmzZtolSpUoiiyPjx4/9TcnumP0jJ3o9R4bZX0azgWRU8prg4pBLUKXLYvXs3d95+OwOuv/686bguWbKEOhUq0KJ+fb777jv27NmDlEywrQpHUUSRgrEYTevXJyQ62ZyUosgTCJxy7KNHj7J69epTul0nEgnKFytGR02no6IQNU127doFZLv5BhWFF/wBOqgqitNFc8NAFQTGmxYtDJM7hpxesmXTpk1c16Mnfa+9lm3btlGtVCmuV1Vqe71sica5yzCpWq4chXWd1wJBWhsmrZs2pbDXx3fROPdqBrIo0qd3bwKGQSGXizJuN16HA5/DQVOfj/GmRWtJ4qFkJXN3WaGEy80cf5A8qsrSpUvxOJ28n3Rw9wgCvXv2pJCi0ETVkAWBlcEwS4NhVJ+PgwcP8tFHH7FmzRqysrLo1a0bvZP7vRUMMTcQxONwsHjxYgKazoOmxY2aTlCWiTmdBAQBXRBwOxzIgkCdOnW46667uLxZMyoXL0GNKlVoXK8+V7RrRwGvl/JuN7Yg0F/VaKKqPPnkk0C2FMmTTz6ZS0/3gw8+oFh6OnkCAa7v04e410sdr5c6Xh9RTaNP795objfXKioPGhaK18vMF14gYlnkCQZZsGABhWMxnrcDzPEHKebx8tRTT1GvalW66AbDdAOfw4HlcFDb48GvKHz33XekR6KUs7NbC+fOnUtA0xik6dQyDK5PVnJMnDiRvE4XL/uDNPD6kP4ilZFIJDh06BB79uxhxLBhXNG+PQFJYphuUFjXeWLyZL7++msK582L1+VCd7kYpGrkdzrRRBFTFNE8Hnp264bs8SC73VQrVx7N66VYejpXXXEFLlHEVJTsFy/doLVhUjAex/RmJ8LdDgeKIPBpOMqmaBzd6z1mYeZP1q1bR0DT6KDpWKJIP0WjrKISUBQUj4d7R47kxx9/ZNSoUTmLB38y8q67cqpG2ssKjb0++qkadb0+XvYHKaobvPTSS8ec8+6RI2lhGHwTidHQ56OnrPBhKILq9Z40wfrll19Su2JFiuTNy8CBA3O9IPyXSSQSPPzww7hcLgoWLJhroeZCzyMrK+uinDtFir9LKkGdir9THJ/ly5dz1113sWjRolz/36xOHR5PJo062PY512j+K/9bhHL48GECus4jps040yJi2ccUqfzyyy/8+OOPZ3W+KVOm0ML2sy2WxmOWTeOaNc967h988AEBTaOgYVA8f/6cd5A/2bx5M/6k4XZ3w6RwWhp+pxOfw0FDn480RclVNT1k0CAaGyYv+YMU1nVeffVVtmzZwjVdu3JVhw689957p5WsPXLkCGWKFqWoy4UpCFT0eAgbxhnp2N47ciQBTad0wYJnLC2QSCS4qW9fXKJI2LKoWKoUxdMzaFyvHiUzMriuR4+Tev14XC7WJquuY6p6Wv5DiUSCBjVqUM2yqGBadGjZMmfb/v37GT9+PCNHjsRSVO43TK4xTGpXrAhkSwj4VZUKtp/0SDSnSv2v3YRR08TncqFL0mlpnv/888/s3buX33//nWu6dKFOhQrMmD79lMcBWIrC6nCUbbE0Cplmjhb2qdixYwfD77yTYXfckfNZb9u2jQ4tWnBZ5cpn7D1ztsRsm2WhMFujcfIrCs8888wJ9/3222/xyzLP2n56GSZN69S5IHM8XSoXL84sfyC7GyEQOKWc0Jo1a2jZ5nIu79j5lHmMM2Xv3r20atXqP2ee+NSUKUiKhmLYXNX93Bq8pji/pBLUKS46fa+5hryahuXxUE9WWBwMU9LjxedwMC8QYqRunFRWALKT05c3b05eTcOWJB5/9NET7rt//348TmeOXrBPEGiWbCFatGgR5W2brdE4cwNBCsbjtGnThhaKyrZYGrfqBtf16HHKa8rKyqJAWhp9DZNehkmJ/PkZdvvtlNJ08jmdqIJAUNdZtWoVo0aMoFT+/HS9vD0//fQT/qSkRlgUKaUbzJ49G69D4HHL5lZNRxMEvA4HrSWJvE4njbw+/KLINYqKIQhkOJ0Yosigm25i5cqVeJLJ5fdCEbyCQECSWBwMsy2WRkGXC6fDgVcQKJAnD6UKFiLucuETBOLBIH379iWo67gdDtZEonwSjuJ2OLiuVy+iisqWaJw1kRhuQSCWXFBYFgojiyK3Dx7M0aNHaVqnDtcYJlMsP345O+kbkGWWJOdQxOXK1tkWxdNuNRs+dCiVJInHLZuA00nYtnEnDSaHaDpBUaRZo0ZoPh/zAyFm+QNYioLmclHU5SIqOqnk9mC4PXiSxonbYmlERJEpyZerDKeLRYsWsWfPHpYuXcqyZcvYsWMHn3/+OTf27cuDY8bkJGfvvvvuHN280YZJRFGB7EWKIunpOEWRNMuiqa5znW4QMU169+jBc889lx0cV6vOCMNkTSRK3OnkRX+QqOjkUdPiSStbV9vtcPBROMLyUASXw0EXVaOyrnNdjx6Mvuce8ioK+ZISPZ+Go/gEgZJuN/cZJm8Hw2iCQDGXizJuD8UyMo75od62bRsfffQRo0ePpkPyWiaYNhFZJm6aPGLafBSOEJJl8gRDXKkb1DIMrmzbDsgO8qdMmUKeSASXKBJSVfpoOstDEUIeD0Xz5GHUiBHHDRCG3HwzVye7Fdr6JBp4vawIRVA9nhMmqBOJBPFAgLt0gwcMC0kQGDVixGk9P/9GJk2eTMOmLbj7nntzksLPPfccPq8Xl9N5XhMFKVL8G0klqFPxd4pjWbZsGUFFoa9uEFPVXAZl06dNI6aqdLD9BHU9x8ztwdGjSQ+FqV2x4jnRNX777bcJGgZel4t7/vK7//7771OtdBlqlivHxx9//LfP81cWL15Mhqbxsj/I5YZ5Wu8CJ2PHjh2sWrXquAnXpUuXUs7OjkUXBkPkj0a54YYbqK9nd0hOswPULFs2Z/+OzZvzgGElPTssxiU9XY4cOUKL+vWxfD78mnaM8R5kFw49/PDDOT4n3a+4gvwuF09Z2cn4errBtGnTTuuaVq1aRUxVWR6KMMIwqXWW3wdZWVk8OHo0pXSD4bpBUFH46KOP+P777xk0YAAjR4w4bnVw68aNKS/JNFAUShQowJYtW3ItUvz222/s3LnzmOMOHjzI888/z+zZs09Y6fz+++/TqkEDenTqlFMN275Zs5wOwXaWzcSJE3P2TyQSfPHFF1iSxOpwlFcDQSKWddr3oHvHjlxumDxj+4moKqtWrTrlMe2aNqWertNDN8gXjrB///5THvNn0VYHw6CjblC2SBESiQS1KlTgesPkccvGVpQLUgFcu2JF+iY7MGxFOeVi0osvvkj10qVp37z5RatQPhHX9ehBE8NknGkRVJSTyqYePHgQfyhCvobXkqf2lWQWKnLO53P06FGGDBmCw+Ggbt26/xnzxF9//ZWNGzemktP/MFIJ6hTnhX379tHrqquoWrJkjvndiUgkEnz66adc3rIltyeTVN0UlfJuD+lOJ5bTybPPPnvSMdasWUOaqvJ9NM7iYJjoSYKARCJBsYwMWksyV8gyhVyunArt/fv3U6pgIarZNlFV5dFHHmHr1q3kCYUoZdsEDYMvvvjilNe/fft2NK+XrdE4m6NxnA4Hl1Wuwt13380tgwezYMEC/vjjDyZPmsQ1Xbowd+7c7ICgUiXy+nwERZE6kkz+eJxPPvmEoNvNlmicT5PaeZVLlqRJ7dqULFSIHt2706dPH4JOJ28GQrwWCKIKAlHbprCRXYXtcTjwOBzoHg9xw6CDJDPWtFAFgT6KytfhKIbXS9WkpMNE0ybD6STN5aKiLONXFJRkdXRpn4/+N9xA4Xz5qKoblDAMGl92GZIgMMsfYLhu5DL3yIxkmxJui6VR1rR4/vnnCSsKrSWJ+w0TJZlUt5Oa5P97Hz/44INcgejPP/9MjXLlmGBmB+/tJZk8opOiLhcDtezg/S7doFvnzmheL19FYnwajuIWBMKWhSkIOfMp5spuIyzndtPY50NOam2PMy18gsC6des4dOgQdatUIU3VsBQlp5Jg69atOXpzGzduxK+qVPNJqH95Xnt06kR/w2RTNE55t4eRenYgm2kYuSpLqpcpwyTLZlM0TgGni4be7AWa5aEIG6JxtGTV/IpQhKXBMC6HA6fDQabTRcy2KZg3L0M1nbxOJ51lheqKiuZ0kuZ08logyKZonDSnk1tVnTKSxP3/4/g+b948bFmhsGGSJxwmIIo8ZtlU8XjIFwxSIBbjJX+Qb6NxorJCgeR9/jQczWl1vOvOOymm63QzTMKmyYcffkj5okUxJImBN9xwTHCwZMkSxo8fz4YNG9i6dSsZ0SgBnw9FEEh3ulBEkdEn0X0/dOgQTkFgQzTOxmgcRRCoWqrUKf82/428+uqrmJG8FGh3G4GM4ox9aBwHDhwgatv013TCTicOh4OBAweetalTitPjp59+YtGiRadlipTi0iaVoE7F3ymOZejttzMgGQOM1M0cI+o/Wb58OZMmTcpJTn/88cfEVZWFwRA3GiZN69b923MoEI/znO3ns3CUgCyft67P/2XsAw9QtmBBOrdte87ks/5MZP5V13rfvn0USU+nke2ngK4zctgwPv30UyKqyiTLpoWZO0G+cOHC43p9vPHGG5Q2TTYmTblr/8/f57PPPEMeVaOLZeFXVdavX8+2bduImyZtJIkXk92Ypyud9s4771DcNNkcjfOCP0Cp/PlP+z4cPHiQ8ePHM2LECLZt20ar+vV57E8fHttmzJgxpAWD9NENGikq+fx+Hnn44ZzYMpFIUCwzk5qSRBmPF1kUsXw+qpcrx759+xh5553oXi+a18vE8eMBmDlzJuUKFaJxrVpnVbXav3dv2hsmS4JhShgGc+bMybV98+bN2JLEF+Eor51hgrpKiRK8kKzAref3n1Dq4k/27NlDheLFUd1udEk67YKfvXv34nO5coq2FHd2YUjUsnKqmQub5jlf8DkeW7du5fJmzahTseI/XjN5//793HLTTbRt3JjXX3/9pPv+8MMPyJpJpTvfoOLtryGKzvPWffhX88S/q6WfIsX5IpWgTnFeuPH662lumMz0B8jQ9GPaAI/Hp59+il9VqeIPENA0NJ+PkCzTunHjU35Rb9myBUuSWBAMMda0TllxvWnTJixVpbjXRylNo1+vXjnb9u3bx2uvvcann36a83979uzhgw8+YMeOHccd7+WXX8bWNAxZ5rlnniGRSFCldGmaGia1vD6KuVwM1Q3Cuk7H5s1ZsGABj02cSDFd527DJKqqNGvYEEkQ0ASB3oqKKAj8/PPPZGVlUbtSJcqqKmluN8UyM3nggQdyBQv79++naEYG5SUZv8tFlYoV6aUbFHa5uEnVGKkbqC4X8+bN47abbybN46G0240kCHRWVUYbJoYsk+GTeCcYposkYzkEirpcZDqdyIKALIj4HA5KFy6Mraq0tWxMr5fByUrpJ554goKxGNXKlMlJvs6ZMwfN7SbkdFLB4yUgy9kmhi4XmiiiJqvBI5rGPffcw9y5c3M+688++4ygrlPSsgmZFhVKlaJW0vXcdrmwRZH2kozPIfCiP8B0O4ApCNyuGcS8Xp5//nlK5s+PKgjIgkCBZGW5LYpcJSs8afmxBBHDITDayG7Bq1+3bk4iPmLbvPLKK8yfP5/ySRO+Jy0/1UqXZsK4cViSRERRuPaqq0gkEvz000+89NJLOVUoAF0vb88thsmWaJwakkRxSaKHbpAejXLgwIGc/RYtWoRPELAEkUyXC9nhQE7en5jopKTLTSHRiUsQ8LlcFHK52ByN001WUJ1O6ikqAVGkic+H7HYzdOhQnnriCTSfD0kQiEsyIUVBFATqVqlyTOVJtdKledr2szUap5JhoLrdVPd4qeL10rxePV588UVMSSIoy3Ro2ZKIZTFYN2hrmDStexkAGYEAryTNdWob5glbGfft20e/fv0IyzJdLJuApvHtt99y8OBBiuTJwxx/kK3ROKVNk8WLF5/077hVo0ZkulyUcLuJuFzccuONJ93/38rIkSOJV29P5WELSG/Sl05durFp0ybCyQWnL8NRBIcDh8NB7dq1T8ssKcWZs3r1anTLT7RwOaxAiA0bNlzsKaX4G6QS1Kn4O8WxzJs3j7zJuLGIrjPlqadOuv/rr79OBSu7M3GGHaBC0aJ/ew55g0HmBoKsjcSIKsoZS0lcSvTp2ZO4qmJ5vUQsiwY1arB582Z27drF1KlTWbhwYU4SdtasWTSuWZP+vXsf4xO0du1aXnrppVy/70uWLKGwYbA2EmOUYdKgWrVcxzSvW5dJySRwJ9vPo8nu0127dtG5bVvKFynCxAkTTvtajhw5QqNatbK7YmX5uJJuJ6Jjq1bUNUy66QbpkSjjxo6lkK5zo6rhV7K1iAua2UUen4ejKA4HIa+X5k2a8P3337Nnzx58LhdbonHaShK3ajpbonHqWxYPP/wwqsfD6nCUlaEIktudIxHxgj/AQMOkVoUKx8xp3bp1lCxQAF2SuPWmm0gkEuzbt4933nmHjRs38vvvv9OuaVPyR6M52/+XYbfdhuR2o/l8OffjwIEDx7zXPvfss3Rq3ZpHH3mERCLB5McfJ03TaGL7yRsOn7LiddKkSTQysw3UbzdMrmzX7rTueyKRoGyRInQyDCr5fOguF5VKlKD31VdTQNepZduUK1r0jA1FU5w+R48epWKV6kSKVCKUvxQt2pzeZ3e2rFixglAohGEYvPXWW+f1XClSnA2pBHWKE5JIJJg9ezaDbrzxjF1+m9ety8RkhWs722bSpEmnddyPP/7I4sWL2b59O7t27eL7778/7baMp554grRAgJL58+dKLh+PJUuWcP1119G9e3emT59+QjPF0+Ho0aMYssy8QIglwTCaz8e+ffvYs2cPd955J5rbw9fhKJ0lmRoeLw8Y2e0+zerXZ0yyJa+3bqC43XwTibEwGEIXBPLH4znXfvDgQV599VUmT56MrSh0sv2EFIU333wzZx579+7l1Vdf5eOPP2bYsGGUlmVEh4MNkRhbonH8ksTWrVvJyspi7JgxNK5dm3gwiO12EzcMpk+fTvcuXZAEASOZ1F0VjtBP1WgryWyNxrlGN6hXuzadkwHtI6ZN6wYNTnhvqpYqxXO2n5f8AfJKEhmywvfJyoqMUIjhw4fzwQcf0Lh2bSpZFqVNk67t2wPQtlkzCrtcFHA6UQSBy7xeFEGgiyST6XTxsGlxj2FiCQKtJYnbNR2Pw0GRzExeeOEFfvrpJ0yfj3eCYRYFw7gdDnrKCtfLCiFRJCyKhDweVJcLvyRRvnhx6lasSJXSpWmjG0yybIKKwtSpU8nUdT4KR7jdMGlSqxaGJPNeKML6SAy/JPH2228ft5Vu/fr15A2H0b1eapQvz8iRIxl6221s3bo1134///wzhtfLimCY7yMxnILAwIEDqaZpLAyE6CkrWD4fS5cuZfz48TTSs3Wem/gkqiflOF7wB0jTcwcbhw4dYtSoUfTv148ffvjhhAFmywYNGGCYLA2GSdd0+l53HfmjUepVrZoz1507d7Jp0yYSiQRff/011/XoQcumTel73XW88soraE4n9b0+7jFMJEE4bnLuwIEDlClchDI+HxFRZIRu0OEv3w8FYzFuVDXmB0L4PZ5TaidnZWVx7733Ur9WLe69++7/jK7a//LZZ5+hGhZplZujWQHmz59PVlYWFUuUoJFpUdU0ad+8OVOnTsXn8xGPx1m5cuXFnva/jl7XXU+eut2oPGwBsWrtGHrHHRd7Sin+BqkEdSr+TnF8XnjhBXpccQVPPvHEKWP0AwcOULlUKYqZJn5ZOaUW6+nw4osvovt86F4vfa+55h/bvv3bb7+heb0sDoQIiCKXeb2YgkjBvHnPyfiJRILrevTAJYpkRKPHxFR3DhlCDcNkvGkRVdXjSoCcKVlZWXz55ZdnvBBuKQqf/UU/efXq1cyaNYvbhgzhgw8+YP/+/eQNh+mpalzm9ZEnKXF4naoRDwTYu3cvVcuUoYVhkN/j4XpV4/tonOqmyeOPP47q9bIsFOaNQAhdkli+fDlFzWyjyoXBEOnh8DFzalSzJkMNk0/CUTJ1nddff53C+fJRzrLxK8opK2P/ZN++fRw6dIhEIsHAG27A63LlMh1/9dVXydA0xpoWxZLeNJCdSJw+fXouz5j9+/cfVxbmmWeeoZppsiEa5zrD5OouXU773v/2229cd+21WG4PC4MhRhgmVUuXZvHixcyaNeuYxZAU5579+/fzzDPPMGPGjAvyLvNX88QJEyb8Y79DU/w7SSWoU5yQZ55+mvxJN+eQopx2ixfAK6+8QkhRaBQIEPP72bZt23mb5549e5gxYwZvvfXWaX3BLlu2jJCicLOmk6FpTJs69W+d/8iRI3icTqp7PNT3Zlew/ml4kkgkaFSrNiVVDVsUmZls12oaCHJD377k0zT6azp+WUb1elkZimRXAnu8uSpx/+Suu+6iT7K1cpRh0rNz52P2Wb58OX5VpYQkIQkChTxeapoWtSpWzEnE//bbbxiSRFQUuV3LruKOWBa9e/RggJ7tPN3SJ9Fakmjg9dHQ62NTNM4VhkHnjh3Jo2pMtmxqGSZ3/sU08uDBg0yaNImxY8eyY8cO2jVpQm/D4M1AiLAsE5FkPglHedC0qFyiBJCdnDV92eNviMRwiiJHjhwhahjcoelUdHsYbZgsC4Vp55OIJSuni7jcNJBkdEHEFgT8ooguikxNfp779u3DkhWes/08bFpYgoDscDBU07lKNyhXogQLFy5k27ZtdOvUiWamybO2H8vpzKkErpo0+bmxb18MSaJ0wYKsX7+ePMEgT1l+ZvsDyIJIHlUl5vcf9zM7cuQIv/3223GfzUQikWP0U6F4cWp7fVTxeNGdTubNm0ejWrUQBYGIYXD1VVfxww8/5AThqtOJIoqYLhdTLD+XGybdr7gi1/hXtG6TrRNtGOQ7SQXG5s2bqVm+PGl+P8OGDj0tM50J48ZRVNe5VdOxJQnN7aaXotLA60OTpGP2f/aZZyhbqDBhj4cNkRhvBkLERCdRVeX9999n586dyG43VTzZ0j4eUeTgwYN89tln50SzctWqVZTIzCRqWTx6BhVB54qsrCymT5/OY489dowh0rlgzZo1TJgwIVfiec+ePTz++OM8++yzOQHvqlWryMzMxO1289hjj6WC0nPI3aPuIVy0CiV7P06wQOmU7vc/nFSCOhV/pzg+H330EW0aNaL7FVfwww8/nHL/Q4cO8f7775+T3/I/2bNnD7/88ss5G+9isH//fgxJoruscIUksy2WxjjTwnS5zul5TlSEc/jwYUbccQdtGzdm1qxZ5/Scp0sikeDpKVPIDIYoI0n013Sits2ePXuO2Xfz5s1c2akTituNLAg5hoAFTZMvvviC3bt3c//99zNkyBCKpqcjCgKtGzXi0KFDPPXEE6heH6YsM+fFFzl06BBVy5ShvGURU1UeGjMm5zxHjhzhlhtvJOTz8aTlZ3M0TnnLYtCgQdROehJNsmwqFi12Rtf6+eefE1dVvo7EeMb253T7nko250/uHjYspxp71syZubYdOnSIy5s1wymKlC1S5Izfu1esWEFhw2Bz0oOpUFraGR2f4p/H3r17admyJQ6Hg969e/9ni3xSXHqkEtSXGPeOHElGOEyD6tVPK+g7n3Rt3z7HdKOPbjDqJHqwx+Pzzz9n1qxZ57Wd/MCBA5QqWIi6tk1BXWfoLbec8piRI0fSN6l1Pdow6d6x49+aw759+9C9XsaaFoM1nZiZW2Ns0aJFWD4f1Twe0pxOOmk6IcPghx9+YN68edx5550sX76ch8aMQfF6CZsm8+fPZ+itt9KjUyc++OCDnLFmzZpFXkVhomlTwTB46MEHj5nPFa1acW/StKODadG9e3emTZuWK+n4zTffEFMUnA4H30bjbIrGkUWR3ldfzZWGwYZIjJqShCGKlHa5MZ1OREGgSunSbN++nWeefpqmtWtz2+DBuapyyxQuTEWPl+aSTKG8edm8eTONa9WiUDzOg/ffz/Dbb0fxeskfj/PZZ5+RSCT48ccfCRoGow2TOw2T/PE4AIrXy2fhKG18ErIgEBZFdEHAkmWUpCazKgiUcbuRHA6m2n4mWTa618vGjRtZvnw55YoVx+/xoosiaR4vpqJQNE8eapSvkCt4a1CtGk8mDWGKOl0ERZHKsoIkioR8PlRRRPd6uf7qq0kkEowePRpFEHAlzSq3xdIYeIamOZMefRTF68VWVZ566iluvPFGyiZ1uUcbJnWrVmVA377EbJveusE1ukHxzEwSiQTPPfccZXWdJcEw5SSZQtEo13bteowmoqUorEoG8DGnk4Cus3jx4hMGrpMefRTZ40H2eE6ZxG3doEGOPmA3y6Z5o0bIycD5heefz7Xvu+++i+Vy4RdFJEGgjMvNdZpOXsvKeSnat28fms/HG4EQs/0BTFmm6WWXkaHr2LLMM08/fdr39niUKVSIBwyLxcEwflk+LXf3c8nVV15JecOkuWlRokCBi9ouuXPnTpo0aYLD4aBbt26ntSCR4tQcOHCAK6/qTt6MAvS67vqU3vc/nFSC+r8Vf6c4PX7//XcCus59hklvw6BamTIXe0qXNEePHmXWrFmMHTs2VyXsn8ydO5eobRMWnUy1/dTweqlyju/pRx99RKE8eQjoeo7+8v9y4MAB3nvvvbPSYv47zJo1i/yaxoOmRT6fj4Z16+Yq9kgkEqxbty7X4sYnn3xC+WLFqKNqVPP5sHX9uAv/f/0NfvHFF+nUujUP3n9/TsL+wIEDLFiw4Jiu2wkTJlBCVSnpcuMTBIJuDzXKV2Dy5MlEnE7eCoa4SlYISvIZXeuqVatIU1XWRmJMtf0UzZcPyE4OBxSFXknJx3nz5h1z7I8//ojh87E6HOWNQCjH/+V/2bZtG/WqViVfKMTdw4ef9tyOHDlCgxo1yK9nF009+8wzZ3RtKf6ZHD16lFtvvRWHw8Fll112QinTFCkuJKkE9SXEsmXLSNc0FgZD9DYM2jdrdlHn89STT1JA07K1kxWFd99996LO53h8+OGHFEtqbi0LhYnb/lMe8/bbbxNRFO7UDQpqOk9PmXLCfbOysnjgvvu4olWrE1YXbNy4kbCssDka56tIDM//VD488MADXJ2c49WKQplixXLMYwBeeP55NJ8P2eNh0mOPAdCtQweaGAYjdAO/qrJ161a2b99OscxMIj4fqstFjSpVjluxe9MNN9DWMFkcDFPKMJg1axavv/46rRs2ZFC/fuzbt4+srCwa1qyJIYqUdLup7PEQdLmZOnUq1cuWxe100qRuXdo2b07hvHlJs21kj4ebrr/+hBWXH330ES6Hg28iMbZG4wRcrpNqsO7bt48a5cujeTykBQLUqVSJlg0a5Jg23DxgAJm6Ttjl5iEzWwO6oiRjKAq3aDpFXS4WBcO0kSSUpJTJl5EYToeDqG1jqyoPmxYDdYNCaWk8/fTTlC9WjIaWRRXTpH2LFkyePJm7776b8ePHE1VV6nqzDSoHKSpuh4PGXh/fhKNU93gZY5hEFIW1a9dSJG9e0p1Oqnu8VPZ4+CoSo50sc9MNN+Rc3/z584naNgFdZ8b06bmufceOHeg+H++FIgxQNbwOB1ZSI/tJy6KepqG53dygangdAlujcbZE43hdLvbt28cDDzzAlclFiBG6QbcOHY57j5vUrk1rVWOgqhESRap5PKhOJ6bPx313351r30OHDiF7PKwIRVgZiiB7PMdNXO7bt48DBw7w8NixFNN1hmg6AUXhk08+Yd++fcdtPRw+fDh+UWRDNM5bwRCyINCmUaNjEuUvPP88YdMkLRDg4YcfJr+usykaZ14gRGYkcsJn6XTIFwrxRiDExmicDF3ns88++1vjnSmmLLMqHGVrNE6mrp9SvuR8c/ToUYYNG4bD4aBs2bK5vpNSpEhx8gA59e/fFX+nOH2++uor0nWdrdE4q8JRjON0TKX4f67r2RPb6cIrCGguF+vXrz/ufmMfeIBSmZm0bdbsnC8aF0tPZ7xpsTQYxpakY5LQe/fupXShwpSyLPyyckIPkfPBoBtv5NZk9fBQ3aB/nz65tl9/9dVEFAVbknhw9Oic/9+zZw95QyEaKipVdYMOLVqc8BxLly4lqqiMMSzKGwYP3HffSed0Q58+6ILACN3gSllGEwTspOSf6XaT4XRS0e0h4wzj0kQiwQ3XXovsducyXYfs99nRo0ezdOnS4x77448/ong8lHG7KelyYxzHWB7g8mbN6JM0bszQtDN6d8/KyuLjjz++4IsUKS4+zz33HB6PhwIFCqTME1NcdFIJ6kuIOXPmUNPONhKZYvmpWa7cRZ1PIpHg+eefp3+fPpesiP6PP/6IrSg8atn0Ngwuq1LltI574403uKFXL6ZNm3bSFvfRo0ZR0TAYa1oEPB7aNG9+TOXl0aNHqVO5MlUti+KGwbVXXZVr+2effYZfUeijG+TTNKY+91zOtqysLFSfj4XBEMtDEVSvl71791IkTx4WBkN8Ho4SdruxFYVqlSrT1sjWSxuoahT3eAgZBuvWrWPy5Mk888wzfP7553z99de0b96cArEYNw8YwJo1awgqCg+bFs0Mk0Z162KrKpLbTWY0SidZZrxpUdIwclbtjxw5QutGjYgoCrrTyVDd4PNwlIK6kaOZ9r/MmDED2+mkiywzWNWQRfGkLuePPvoojcxsA8EBx9FLSyQSLFu2jNqVKnGTYfJ5OEpxw0DzerlaVmmXrFwebZhYopOgKBITnfRRVYoYBpbbzZZonNXhKB5B4Pbbb8fwetkSibE+EkMSBKoaBl01Hc3lomKJErhEkVf8AdKSGtV60rQy0+nkQcPCL8t8//33lC5YkLjoJL/TSTWPB0kQCLhcOS7biUQCU1aY4w/yVjCE5vOxd+9efvnlF65o3ZpqpUohuVysiUSJJY0bZ9gBrlFUAl4fdWvUoIE/wNZonKIuF40kiWaGSY3kd9tHH32E4nRS2OVCcTqZMmUKbRs3pkOLFrkWBX7//XeaNWpEmsdDE68Pj8PBmkiUT8NRvC5XrnauPxPUy0JhVpwgQX3vXXchud2oXi/Tpk7lmWeeYUDfvicMqP9kxYoVyILAslCYxy2bPP7cC0lHjx7lpr59yRMI0KJ+fXbu3Mn69esJyDILgyHuMUwqJSVhzpanp0zBkiTyaBptmjT5W7rzZ0OtChXoYZjcZZgEdf2kfxsXknnz5mEYBrZt/+Nd01OkOJekEtT/nfg7xelz+PBhyhYpQkPLooxxYjmCFNnokkQzn5Tt46KodGjT5oLPIS0Q4M1AiO+icfJoGl988UWu7S+//DI1kkbZz9p+ql/AqvglS5YQUhSuM0zCisJbb73F119/zdSpU1mxYgWmz8e6SIwPQxEktyfnne37778nmjSCXnuc4qC/ctttt9FU1fguGudh0zplAdhLL72EXxTZGo2zJhJFFgTuNUw6tW7N4P798blcmLJ81jHTnj17zlhO4fDhw2heL49ZNuNNC1tRjhvH1ipfniet7M+ypm3nvJf8m/njjz8YeMMNNKpePdc7doozY8WKFQSDwZR5YoqLTipBfQnx5wp2ScvCryjMnTv3Yk/pH8GiRYtoUK0andq04ccffzynY1/etCnjzWyZkytlhRpeH3nD4WOqRA8cOMDVPXrgcTpRvV5m/0+19SeffMLdd999jKFGVlYWktvNilCET8NRFI+H33//ncH9+5MuSYRFkc6ywgehCHGfj6qywgTTorrHQ09ZoaHfT+G8eWlomMQ8HvwuN5YkMfkv2qdz5syhflL7erY/gOx0MscfZGUogubxErFtPE4nV7RuneMqvXz5cgoZBhujcUq63Dxu2TkabK+99tox92nmzJlYkoRfFFEdDjSHgwI+H/f+pUp35cqVVClZkiolS7J8+XImTJhALUVlczROX92gWYMGx3Vi37hxI+WKFEVJSmxoPh9yUuKjiMuN7vEwatQo6larRjVVpb9uELVtDJeLyh5PdhJXEKgrK/hFkeoeL30ME83pYkUowrZYGsVcbroqKhnhMF6nE9nh4DKvj63ROLdoOroo4nW5uP+eewB4//33sVQVVRDor2osCIaIqioff/wxU6ZM4f7778fncvFxOMqXkRiqx8PKlStpUqcObVSNCYaF7najJpPbJdxutkbjvBYIUjAWY/PmzfhVlRs1nXK6Tt1atRg7dmyOJl/fa6+lu67zgh2gjqajyzIjDJMhhkmBtLScAP7FF1+kRpkyhGSZsi43HoeDNwIhXg0E0SXpmOD2ycmTcyQ+JiXd3P/k119/RU/KriwKhjFk+Yz0i0cOH47u9ZEWCPD+++8f8/yUNgyWhcJcYZj069ULgEcnTCDNH6BckSLnpOJ469atrFmz5oInpwF++eUXenfvzhUtW57SxPVCs2HDBkqWLIkgCIwaNeqi3J8UKS41Ugnq/078/U9h3759l4RvwJ49e5gyZQovvvhi6vfiFBTJn58GXh9bonG6KwrXXISE/tNTpmBKElFFpVObNsc8QytWrCBvsoP3OsOkXZMmF3R+y5cv55577mHZsmWsWLECv6LQOhDArygoHg9vBEI8Z/sJW/8vofjHH38QtW1u002uOUkRw+zZs7EkiXSXi5jTSZqqntJ76PDhwxTLzKSBolLc7aaR10cLw+SWm24CsrXDL7SE165du1A8HjZE46yPxPA4nRw4cOCY/ebPn48tyxS3LMoWKcLevXsv6DwvBgNvuIFGhskTlp/YOTL7/K+yadMmSpYsidPp5JFHHrkkfm9S/PdIJagvMf7UADuXRiIpzp5pU6eSR1W5SlawBZFFgexE5P+2P+3atQvV6+X9UIQFwWyH6NP5Ut+9ezfD77gDxeNB9XgYndT5njNnDmmSRBm3m/uSUg51PV5UQaCQy0UJl5vCLheGz0dAkng7ECIqOvkuGmdxMEzYNHPO8csvvxC1bTpYNvl1Hcnp5O1gmC8jMUyvl7Vr1x5jNLN69WqiisKHoQjXKtlazBFFoX716sfVzi2WLx8v+oNsisbJ63QSEUUKOF10aN0ayE7EBw2DR0ybR61s2YvObdsSdblwOhzIgkAhVUN1u2nXpg27d+8+5hz79u2jYc2aCA4HmU4nE00T1ePl448/zrmXdWvWJDMS4fZbb6VG+fJc5pOo6/GSRxDJ43TS2OdDFgQ6tW1L83r1aK7r3KLpBESRNwMhbFUlqOs08fmomAwEr1FU2jZtluvzTCQSrFq1ijlz5lC9bFkiuk7NypVp0aABVQyTK5JVsqbPh+HxoLtchGUZVRRJdzrxiyKFNY2pU6eyZMkSTI+Hkm4PIa+XR5L6gKtXr2bwTTfx2GOP5Swc/EmfnldzvZFdfd7UMPA6nWyOxvkuGscpihw+fDi7AllReMb2c5WiEhZFWvokbCFbB7p506bHfSYPHTp0XJmO3377Dd3r5eNwlLeCIcwzTFCfjEceeYS2VvZC0L2GedJWzRTnh3379tGpUyccDgetWrW6ZCq8U6S4WKQS1P+t+PtSZvfu3VQvVw6vy0XJAgX46aefLvaUUvyF119/nRaXXUa/Xr2OMffbtGkT+QIB3IJA/nj8gvgLLVmyhPHjx+fqqPvxxx9Zu3YtiUSC1157jQbVqnH1lVeyfft2Hnn4YUrky0dQVal/jjyQFixYwJ133nnG8pDXX3MNQ5M+Qf01nVbNmxO1bDKjUd55551c+3711Vdc1b4Dvbt3P2GBUsVixZhuZ3ckllVU7rrrrtOax++//85jjz1Gy6ZNKZo3L1e2a3fRk71d27ensGFQQNdP2rmwZcsWVqxYcdwE9r+RRtWr80TSR6it7efJJ5+82FP6R7Nnz54c88TrrrsuZZ6Y4oKTSlCnSHEKFi5cSJH8+amqanQwDIplZh6zcr59+3Y0r5dV4SjLQmEUrzenqmTOnDlUL1OGDi1a5DKM/OSTTwjqOnk1jTKFC7Nly5acbX9qso03LWRBIObMlpNw/cXUUBJFyhUujOX1cp2qoQoCi4JhHjFtiuTNl2t+W7dupU+fPtSrXRvJ6UQRBGRBwC9JKB4PiseTyzjl8OHDZESj2Zp5osj1vXvz7bffnrBSplrpMtxtmCwLhdEFgYmmzc2aTlCS2LZtG/v378frcrE+EmNDJIbkdpMvGOTdUJh+ikpQEIiJIt1lhSaSRIPq1Y85x6hRo8j0eKjl9VLN4yWQrII4fPgwa9as4a7hw6limDxr+yms6/Tv3x/F6STsdGEIArOSVeTV5GwduSvbtSNPIEBIVSmqaaRrGn2uvZZM3eD7aJwqHg+Cw0HQ6cSUpFxmlQNvuIG4qpJH06hapgxldZ0ybje6IHCTqmVXZVsWN998Mz6nk86SwkBVo6bXy9ZonNGGiS4IqB4PTz/1FPv27eO1117jk08+Oa1ncvPmzRRIS0PzeKhapgx1KlemumVR0bS4vHnznOe2kp1tYvhaIIguCDxvB9gSjVPUlb0Q8CfjH3oIzefDr6oMGDDghEH4mPvuw5eU+Jj5wgunNdfT4ddffyVvKERm0pCmcpkyx02SXyi2b9/O9OnTWbFixUWbw8UgkUjw8MMP43K5KFSoEF9++eXFnlKKFBeNVII6FX9fKowZM4YWyUXpnoaRy+/iQvPrr7+yYcOGs1qgPnToEFd16EDENGnXtCn79u0743NPnjyZefPmXTKVfWvXriWgKEwwbdoYJledwBPkQlW/Pz1lCnk1jSsti4CmHSNL+GfxwiTLprNhUq18eQrqOk/bfqoY5in1mU/E4cOHGTJwIHUqVKBnt25EFYUBmk5IUY5JLJ+M8ePGUckwmGEHKKUbPPfcc6xfv54xY8Yc08GZSCS4e/hwCsXjtG7YkO3btx8zXvN69ehnmLwVDBFPdjoeOnSIBQsWHNPNd6lz9OhRli5dyrJlyy7Is5RIJLhzyBDyBALUq1r1nHcpnyumPvccMVWlre0nbJq53qdTnB1ZWVnccsstKfPEFBeFVII6xT+SRCLBd999x86dOy/I+f744w/GjRvHPffcw2+//Xbcfe4eNgzV40H1enly8mQgu3U+oCg8a/u5xjBpdtllOfu3adSIhl4fjbw+SsgyTz31VM62hQsX4vf50ASBDlK2QcdNySrYoZrO3YaJJAiM1g3KShLpkQg1K1UibBgUyZePDz/8MNfcFi9eTDRpDBlzOhmlmzxj+XE5HHwUzjbFk9zunOroDz/8kMJJveslwTB5AoGcsRKJBK+88grjxo1j8+bNAHz55ZeULlgQv6IS8XjYEo0zNxAkLIqkGQYTxo3jmq5dKaDrFNB0OrRqRc/OnSkkScScTrrLCpIjW6N4QySG2+lkwYIFTJ48OSepX7ZYMWp7vUwwLUxB5MqOHdm3bx8VS5QgQ9cx3G5GJavNe+sGmWlpPGpla7pH3G5aSjJPWH6CikK75s1pZ5i84A8QV1XGjBnD+PHj6dG5MzHLop1hEnU6uVFR2RZLY4im5xi3HDhwAK/LxdeRGGsjMdyCQGW3m46yzCv+IGHRSRdZQXW7MZ1Ookkta5/DQf6k7EcPRUETBIq73Che72k9g6tWraJ39+6MuPNO/vjjD44ePcqOHTtIJBIcPHiQGTNmMGvWLL799ls+/PBDdu7cSZH0dKoln5vLPF6U5GKH7nLlSGZs27YN0yexIhThOduPKYpULlXqhIsRBw8ePC+r6a0aNKCnovJxKEI102LGjBnn/Bynw86dO0mPRmns95Omqjw2ceJFmcfFZNmyZYTDYRRFOaE5bIoU/3ZSCepU/H2pMHr0aFoZRraOsW4w4PrrL8o8Xnj+eQxJIqIodGzV6ozlPSZMmEAtw+DDUITmhsnwO+447WN3795NRjRKa8umiG4w/Pbbz3T654W5c+dSJ1kA8Yo/SLlChc7Z2H9WO0+cOPG0k4NNatVispVdnNDB9jNp0qRc2998802q+f05xQthy6JXsmL53pMk2E/FfaNGUcMwmWYHSPd66SDJbIulMVDTuW3IkNMeJysriztuvZXa5cszasQINm7cSFDX6WaYFNB1Hh47FoBHH3mEkunpBN1uXvEH6GKYXH3llceMt2XLFupVrUr+aJSxDzxAVlYW9atXp4xlkU/TuPMM5vZfY9GiRRTQdZYGw/Q2TK5IdsVeiqxYsYKnnnrqpMnpnTt38tprr/HVV19dwJn9s3n22WfxeDwULFiQtWvXXuzppPiPkEpQp/jHkZWVRetGjQjLCqYk5Rj7XUj27dvHkEGDuLJdu1xaV7t27crV3rdkyRLKJ6tYXw+EKJo3b862iqVKUcbt5jHLJiQ6ue2223Kd49prr6WHll2NO9a00AQBvyAQcbnIY9tU1HQiopP6Xh+G08kLJ6loHTZsGP2TLtn3GiZ+txvF7cYjiCwLhVkaDCN7PBw+fJh9+/YxcuRIZLebp0yb6zWdqqVL54x178iRFNENrjQtTEmiQCxGg+rV2bp1K4cOHaJ4/vykO134RZErJYVybjcZmsaCBQu47dZbUTwebJ+Pa7p0oUR6ek5bViufRBWPl5a6QWYsRh6vl+aaTp5gMNtkz+mkgMtFXqeT0h4PkydPZsaMGdRJGov2UVR0p5PL/QH8qkrD2rW53jBZHoqQqWm0aNiQBtWqMXv2bOpWrMjTdvZ5m9h+Ro0aRVBRGKEblNY0alSrhuRyUcrtZoYdoKjbzaPJROVXX32F7HLxjO1nqu3H43CgOxw5LwR1FYWaVapgqyox0cmL/gB36jqGw4HXISAJAqpD4DHTZrRhoojiKZ+3n3/+mYCmMUQ3aGQYdL28/XH3e37GDGxZppBhUKtiRX799Veu7NyZCkm5lhqqxuVt2+WSdPn2228JyTLrIjEWBkMERRHL5+Ott966IK2of9K+WTOGGCbfR+NUNq2TPs/nkgMHDnBFq1aEDZOOLVsyc+ZM6iRf3mb5A1QoWvSCzONS44cffqBatWo4HA4GDhx4wfUWU6S42KQS1Kn4+1Lh999/p1LJkqgeD0XS0y/ob/NfyR+N8mogyHfROBm6fsZ+CsOHDaNHMhk6UDe4Iek3cTosXryYSsnf5reCIQqnpZ3p9M8L27dvJ08oRJukjN4D9957zsYeNWIEhXWd9pZNWjB43Arh/+X2m2+mlmEywbSJquoxVcK7d+8mfzxOE9tPhqYzsH9//KpKB3+AkKKctfFf944duSdZJHK1puP3eLnHMMmjqn/rPe25556jVXIBYKrtp06FCixdupS8msZMf4BmPolussJE06ZxzZqnHO/rr78mTVWZHwgy3x/EUpSzntuF4o033qBj8+bcMWTIOZXtWLVqFQXiaahe73EXfJ5//nnqJt+xHrNs6lWpcs7OfaH57bffSI9GqeXPLlSaM2fOxZ7SP4bly5cTDAYxTZOFCxde7Omk+A+QSlCn+MexbNkyiiQN/KbbAUoXKHDez7l06VIefPDBHOfrrpe3p7lhMsow8atqjt7X6NGjcyWs9+/fT/H8+alt+8mjaox94IGcba0bNeLBpAHjVYpCv379cq1OLlq0iDRVZZxpUVrXuaJ9ezq1bs3woUPZvHkzms9HQ6+PbbE0nrD8VC5ePOfYlStX5prL0qVLCSsKt2g66arG5e3aEfD6MAUBr8OB2+HgumuvJZFIULNCBWpqGrUUBd3pRBJF/H8JcssXLszL/iALgiFsUWR+IES/v1SH79y5E0kUUZNjT7Zs2hsmEydOJGQYLAyGWB+JEZQkNLebMm4P9xsmmiBQomBBbh40CMPp5NVAkG2xNCrLCo3r1WNwMsHeSZYxFIXt27fz+OOPU0hR+TgcpZ9h0qhOHUaMGMELL7zA+vXryWNZSIJA8YyMXLIVz8+YQURVqe8PkDcc5sEHH6RDMmE9xfJzWZUqGJJEO0mikMtFzLLIysri4MGDxAMBOsoKYacTVRAYa5pMNC0UQaCKYZARjbJ9+3YqlCyF5BBIczqp5PGgCAIhw6CvohIQRTZG43wcjiK73ad8/t5+++2cF7O3g2Eimkaa30+NcuVy6dUXzZuP2zWdj0IRSpkWS5YsyU7Atm5NxDS5olUr/vjjj1xjJxIJrr/6ahRRRBYEGvskDLebTF3HkmVeffXVU/+BnIREInFayc1169aRGcuunm/bpMkF0zy7f/RoGhgGH4UjNDAMBvTvT0hReNr209Ew6dy27QWZx6XIoUOH6Nu3Lw6Hg9q1a+eSKEqR4t9OKkGdir8vJRKJBLt27bqopoSlCxbkYdPi/VCEkKKwbt26Mzp+y5Yt5AmFKGFZhE3zuMbYJ2LTpk34FYVxpkVH0+TyZs3OdPrnjZ9++olJkybx5ptvntNxS2Zm8loyFq7pDxxjtH48Dh06xLDbbqNNo0Yn7IDavn07zz33HEuWLAGyZT+eeOKJv2XgvGjRIgKKQptAgICmcc+oUVzTpcsZdWH9/PPPNKxRg7zBIENvuYVEIsHq1asJKgoPGBZ1DJPB/fvz9NNP0yLpWzLZsom43fgV5bTu/9atW1FFJ+lOJ5ogkB6NnvU1XwjWrFlDUFEYY1jUM0wGXHfdORu7SsmSPGBYfBKOElNVVq1alWv7nj17KFWwEMVNC1tReOutt87ZuS80U6dOpUnyPe8Jy0/9f3Cy/WKwcePGHPPEif/BztIUF5ZUgjrFP45PP/2UNFXjk3CU0aZFtb9U954P5syZQ1RV6Wla+BWF1atXUzRvXhYEQ2yLpVE9EOCBBx4gpCj0MkxCisKiRYtyjt+zZw9z5sw5porh5ZdfJqqqXGlZ6C4XaYpCWFEYNWJEzj7Pz5hBw5o1MXw+8mga5YsVy6nQbt6kCUFRZJodoInPR4Wkg/XSpUsJ/mUuf652Ll68mME33cTLL79Mo+rVaeLzMVjT2RSNc6emc/0117Bz504UUSQsimiCQFgU+T4aZ4JpU75IEQB6XXUVjQ2THrJKMbebrdE4M/0ByhUunDPvsKpSy+OloyRjCAIBTWPLli1kRCJMsfwsD0VQnS76KyqZTifl3W4eMS3y6zqdrrgCSxTJcDq5R8+uMO519dW0MQw+CUepqqiMHj2aW265BUkQkBwOvIJAhWLFGDJ4MFFFobBhULxgQeoaBh+HozQzTEbceSdZWVm8++67fPrpp6xatYrZs2ezfft2vvnmG/yqSl9Np3CyhXDevHmUKlCQUoUL5wTxmzZtIqwobI3G2RCN4xMEptkBlgbDKB4P06dPZ+fOnSxevJignH3tS4JhtkbjFJBlArrOkkCIxl4faU4nAZeb4UOHnvIZ3LFjB1HbpqduUFHTsN1ulgRCDNB0imdk8OOPP/LNN9+gOF1U8niwBJGAz8fnn39+2s/5Rx99RNcOHahfqxZlDIMt0ThTbf9ZVxB/99131KxYEUkUcTocpFk2K1euPOkxiUTigpu63Dp4MNclK7qu13UG33RTdhV1hQr07NyZXbt2XdD5XIpMnToVn89HPB4/5WeYIsW/hVSCOhV/Xyh+++037r33XsaNG8f+/fsv9nROyMcff0yBeBxTlhlzllrFe/bs4aOPPjqr39bFixfTsn59+vTsec5/m3fu3MmHH354jMnh6ZKVlcXu3bvP6QJC18vb08oweci0CCgK33777Tkb+1yzevVq8obDeF0u+iUl8c6Urpe352rDZGkwTCFdz0k4v/7661zRqhX9r7+e+tWqUbpgQRSnk5peL5YgosnyaS+WzJ8/n7K6ztZonGdtP5og0KZx4+MawF8KzJgxg2bJCvLn7QA1y5Y9Z2OXzMzkeTvA99E4hQyD995775h9Dhw4wMqVKy9a18a54t133yWfpvGyP0hHw+SaLl0u9pT+cezZs4cWLVrgcDi4/vrrU+aJKc4bqQR1in8kw267DdXrpWBaGqtXrz6v5+rcpg1jjOyV+msNg9GjRzNk0CBKGQZXmiYxv5/re/fm1mSF7+2awYC+fU857q5du2jfsiWlCxZEdbvZEI3zSTiK5HbnMr9o06gx9yb1oBtYFk8//TQA06ZNI+L1UcTlIuj25Pz/4Jtu4ubkXIbqBv2Os9p+6003UUZRsEWRAapGWJJ47bXXWLhwIZkuN5uicZ6x/ViCwPpIjNGGielykUgk2L9/P0MGDaJdkyYUyZeP0pZFQJaZMX16zviS281XkRjbYmkERZF80SgHDx7k7bffJi0QQJckGtatS0vDpJTbzSTLZlM0TqYkYbo9vOAP0F1RsESRpg0asHv3bppdVo+AptG1fXv6XnMNeZISHJU8Hqq6PXTp0gW/prE8FGFTNI7h9tAzeR8G6Ab9+/ShVaNGFDEM0lTtmHa2VatWMWzYMGbNmkUikWDbtm2kBYNUS0qGLFu2jKysLMoWKUIL06S2aVK9QgXi/gCmLDNx/HhGjRiB5HZjShK3awbVPV6uU1SmWH5sWWbY0KHogkhhp5OSLjem18vGjRtP+pzs2bOHL774gq+//prBgwdjaxpeh4MMp5Oxhkkep4uwYZIRjXJ90qBxkKpRp1q1XOPMnj2bInnzUql48WOqJP7Khx9+SB5NY1kozBDDpNFptEwej7KFCxMVnUyx/KyJRAmIIgFdv2SMjf7ku+++I+b3U8KyiNr2Jf0CeDFZtWoVGRkZuN1uHnvssUvuc0yR4lyTSlCn4u8LwZEjRyiePz/tDZOGhknTunUv9pT+tTw5eTIFYjGqlSmTK6H55ZdfEjIMSlo2eUIhtm7detpj/vDDD5QuVAhJEPAIAumRCOvXrz8n892zZw83Xn89bRo1uuRb66uWLs1ow+STcJQ0Vcupxl66dCllCxUiIxymU8eOfPPNNycco1GNGjxiZktKNLBtpk6dmrMtkUiQHolQyu2mqyTjcDh4xLRZGAgRkGW2bdt2wnH/+OMP7h01ioH9+zNz5kzyaRrvhsIMVDXqen3UNE2efPLJc3czziHbtm0jZBh0MS0K6joPjRlzzsZ+7bXXMCWJsKzQtmlTsrKyztnYlyIPjx1LuUKF6NSmTar45Cz5q3livXr1LpgXWIr/FqkEdYrzyuOPPkpmJELV0qVPubr9zjvvUCAeJy0QYOYF0p89HcY+8ADlDIOHTYu8araWciKR4IUXXmDMmDFs2bKFmTNnUkDTeMi0KKTpTJ8+nanPPUetcuXo2bkzv//++zHjtmvalA6GyRgjW4biCdPm8aTO3F/p1qED1xkmn4ejlDVNXnzxRSA7WJv8+ONc0aoVT0yaxK+//sr06dMZOXIkBTSdcaZFEV3n2WefPebcBw8eZOgtt1C9fHnatW2b07Y1YcIEgqLIp+EoI3SDmCjicjjwOQScgpCrwiCRSLB582beeustli9fzmOPPcb8+fNJJBLUKFeOFj6JG5RsHeZ8qspDY8ei+Xz43G5GDhvG3r176dCiBWHTRHG50ESRgNNJCbebbbE0XvIH0UWR2bNnHzN/2ePh83CULdE4YVGkvsdL8+bNKZaewb2GxYv+ILrXSzwQoJhlEbEsFi1aRERRcqQ1NJ/vpJ/7uHHjuCIpwXKfkS2PAdlakOPHj2fy5MkcPHiQAwcO0KROHVyiiC6KfBKO0l1WyOtyMVw3CLhcFM+XzoABAxg0aBA+h8BNqsYr/iC6z8f27dv57rvveOONN9ixYwdHjhyhT8+eZITDtKhfn7BpUsAwyYzHiQaDNPD52BqN01tRUR0CN2saAVGki6xQ1u1hQTBELcPgig4d6Hr55TwxeTK//PILpiTzoj/IA4ZFkXz5Tnrto0aMIGKaVC5Z8qwTtprPRz6nk5n+AOsiMeJOJy6n85IMgHfv3s3HH3/M7t27L/ZULml27NhBkyZNcDgcdO/e/Ri5mBQp/k2kEtSp+PtCsGnTJiLJzqxvo3FcophaADwPbNiwgYAsMz8Q4g7DpFqZMjnb+vS8mluSnVTddYORI0ee9ri9u3enriRR3eNlUzTOLbpBpzZtznh+v/3220mTrJc6pQsUYLodYGM0ThHDYNmyZRw+fBhbVXnS8vO4ZaMJAkFdP6GW9qJFi7AVheKWRfH8+XO9O40bN46Y6ORh0yLT6UIRRWrpOs1MiwrFi5+0cv2K1q1pYBj013UilsXQW27B8HhId7p4PximmWnxyCOPnPN7cq747rvvGDt2LK+99to5/27YuXMn33//feo7J8UZ8cwzz+B2u1PmiSnOC6kEdYrzwh9//ME333xDSFF4MxDiTsOkxknakhKJBCHT5Fnbz7xACN3nOyfJoiNHjjBjxgyefPLJXBrEZ8LRo0d54L77aN+sGdP+spr/VxKJBE8+8QTtmjZl7JgxzJ07l4DXy3O2n8sNkx6dOh1zTIFYjEXBMNtiaZTRdWK2nxKZmcdIgWzbto0qpUqh+Xxc3aVLToLv6NGjLFiwgLlz5/LTTz+RLxymie0nTdW46souXNGqFZNOs9Lx6NGj9OrWDdHhwBAEZEFAEQSetGzeC4bxOBz0vPJKPv/8c7Zt28aRI0do1agRhs+H6vGgiiJxl4t0VeXekSO5acAAbEGghMvFAFVD83iwVZX5gRAfh6N4HQJXtm+fM7cFCxZQ3DBYF46S7nRSyu0mLIr0VTUCun7MfEsWKMCtusEE08bncOBzOCio65QrWozKJUpSLF8+Zs+ezd69e/nggw8YP3489957L6YkMd0OcJ9h4pck3n333RPek9mzZ1PCMJgbCNJENxg8YMBx93vqqacoKsu09PkICgIbonFesgOEDIOOLVvSvWtXShQoQDXDIOJycYumkeF0oQoiNw8axOLFi/ErCjX8AdKCQR544AGqGAZLg2HqyzI1vF62xdKop6iE3B7qeLyM0A1qeb1kulzU8PloJclsisap5/USlCSa1qtHuqpmJ6N1ndGjRxNVVDZG47wfilwQU5j+vXuTJst4HQ68DgeW282QgQPP+3lTnF+OHj3KsGHDcDgclCtX7pQdAClS/FNJJahT8feF4ODBg+QLR7jBMOlsmFQ7hy3855ply5bR77rrmPT44xdVC/tsWLlyJYWT8mWvB0Lk/4v28B1DhtDCMFkZilDdMHjsscdOe9zuV1xBU0n+WwnqJydPxvD5sHzSOdUYPpfs3LmT5cuXnzC5PG/ePExZJiwrtG7cmKysLH7//Xdkt5sNkRhrIzE8DgflbZulS5ee8Dw//PAD77///jEL4EUyMnK8aO7QDUK6zmOPPcYjjzxyyvfFmG2zMhRhWyyN0raflStXsnbtWuKBAGFFoWzRoqxdu/aSK6D44YcfGD5sGGPHjr3g8ncpUpyK9957j0AggGmauaRNU6T4u6QS1CnOKTt37qRyqVK4nU4Kp6dTJBkMzg0EKXQSx+1EIoHP7ebjcJR1kRiGz8dPP/30t+fTpd3lVDItGlgWFUuUOK/Bx/333IPu9aJ5vShuNzWTicXpdoDqx9HJvv3mmylmGLSxLNKj0ZMGWAcOHKBVw4a4nU6qly3Lb7/9Rq9u3ShmGJS3LMoUK0a9pIneC/4AVUqUPKO5v/HGGxQ3DL6JxLhd0ynhchP2+ZDcbrwuFzf260eTOnXIp2lYkszNN99MKV3n9UCQoCiyMBjiZk2nvNtD6QIFeOihh6iq6bSRJPK53fS9/npMWWZRMMzqcBRNEEhTFD755BN2797N/PnzsRSFh0yLlqqGRxCYaQd4KxjCSuru/VXrasOGDbSoX59KxYujiCIz7ABbo3HKWRbz5s1j0A03cFmlSkx67DEub96cmqZJS9MiPRojJMvEnE5uVLUcg8vjkUgkaN2sGR5BwCOKDBk0KGfb01OmUK9yZfr16kWD+vWRBIGybjeSw4EiihiSxJw5cxhw3XVU0A0Eh4Pvo3FqeLy09UnYokhep4syhQvTumHDHLPM9pZNs2bNclzuh2g6hT0eVoWjVNA0NJcbTRBo4vNR2OWifIkSXNOjB0FNp43fT1RVmT17NoMHDmRQMpAfrhv0ufpq2jRpQgFdJ6Io3Hf33Wf0fJwNiUSCBQsWMH36dObNm5cjK5JIJFKVGv8C5s2bh2EY2Lb9jzbOSZHiRKQS1Kn4+0Lx/fffc0OvXgy+8cYTJgAvNp9//jkBReE2TaeMYVyQOOJccuTIES6rWpUihklAlnli0qScbXv37qVd06b/x95Zh0dxfX38zPru7I6sSwgECQR3gktxd3co8sOdIi0ULbRAcShuhQKF4u7u7hYIFIdAiGe/7x9J8zaNkISEIPN5njzAzr3nnpndsGfOnPs9cIgi2jVrlixt1X8SnZxcDiXDIKPNlmyJD5Flsddiw1W7EyatFn5+fkmaFxISkqZb7CMjIzF1yhQ0qlULol6PgiYTrDyfoEzHq1evcPv2bbjdbjx//hwvXrxAh5Yt4VKpYJfLUVCpgk0QUvQZL1O0KHiGQTsdCz3DwKDRYOH8+QCi4sqAgIAEY8tWjRqhPM+jC8fDaTLFVGaHhITg0KFDyGi3w6zTIX/27J+MZEFQUBC8HA605nh8w/NoUL16eruULAIDAzGwb19kMJtRpnDhBO+1JD5v7t69i9y5c0Mul2PGjBnp7Y7EF4KUoJZIVUaOGIEGPI8HDheacByyuqIaL5h0OiyIDiQSYvzo0TBpdXCwLLq2b58q/qgUCly1O/HA4YKDZXHnzp1Yx48ePYoJEybEqVpOLkFBQdAqlThtc+CUzQEFEVxyOb5RayDK5Zg/b16cOW63G+vWrcOMGTPw5MmTRO1Pnz4dFXgBN+xOtOQF9O7WDQqZDFftzii9ZbUaVp0OC40m1NXpkC9bNoSEhODMmTNYuXLle+2vW7cORUQR9xwuTBZEZLZasWTxYoSFhSEsLAyHDh2CN8djMi+ip94AK88jg1yBBaIRORVRjRJXmczgGQaZzWb07dEDrRs3RgazGS3qN8Djx48xZ/ZsKImgJEIrHQuXXo9NmzZF6/8aYTFwqFCiBDq1aYNBfftCp1RCp1LBwnFw6Q3w8fLCs2fPYvndqEYN5FAo0V9vwG6LDTaNBu1atUIFPqoaP5PBAIVMht+NZlRSa6CXyaBkGBgYBrNFI4qZTNi1a1eC18VkMGCbxYoLNgcEjQb+/v5Ys2YNnCyLhUYTqvECzBoNxvAC/J0eaKLVoUKFCjHBbzanE7ssNmRXKNBex8JLroCSCGVUatyyO5GL55E9c2b4qNVYaTQjB8fjt99+g9NkQhGTCWaDAcULFIDIsmherz5GjRoFr2gJlCNWOxyiiC1btqBWpUqoXbMm5syZA5teDz3DQCeT4VsDB4dej82bNyMiIgJHjx7FpUuXEv0sJJXg4OBkP/DZunUrzBwHVq3G9F9/TXDc69evMXXq1BgZFYlPk5s3byJPnjxgGAajR4/+7CrqJCQSQ0pQS/G3xP8zZ84cNIkuhJgvmlA1hf0p0gq3240LFy7g/PnzCSYqw8PDceTIkVTTiP6H0NBQ+Pv7p7hJotNkwnKjGQesNvAazXtjdgDYvXs3jHo9WKUSZXx9E61KTg7Pnj3DjRs34Ha78cuECcjP8xjLCzDKZPjTZEFvjkfv9/TZGT96NAzRBTuTJ07Evn370KNHD/Tv0yfFcgAXL16EmeOgJMJAgwE7LFbwWi2uX7+OIrlzQ6tUIk/WrHj8+HGcuSEhIfj5558xeMAA3L59O9ax/3XsiO7RfX7q8TwmTJiQIv9Sm0uXLiELH1WscsHmAKfVprdLSWb79u0wqDWwyGTYa7GhJy+gbuXK6e2WRBoREBCAGjVqgIjQrVs3hIeHp7dLEp85UoJaIlX54fvv0YSLSlC34nkM7NcPx44dixMQJMSdO3dw9erVmOAyMjISR44ciWm2kVwK+eREV17ACF6ATRBidUffu3cvLCyLjoIIK8ti9+7dKVoDiAp+9Go1dlps2GGxQkmEAXoD8mp1qF21apzxYWFhKJo3L3QMAyvL4tixY4nanzhxIhpEB1C9OR6d27ZFtgwZ8AMvYIogwmQwoEuXLuAZBhoieCiVqFuzJmwsiyrR0hF///03BvfrhywOB+pXrRqrQURoaCgqly4Ns04HM8fFSdhfvHgRvFwOX5UKRVQqCCoV8qpUYKLlNQSZDGqGgUWhxDzRhPIcj2wuF7J7eKBR3bpgVSrolErolUqUUWugYRi0bt4cgwcMQOfoauHuHI9+vXvHrPnmzRt0atsWvaKPN+IFjB8/PpZfzevXR3uDAYWUKhhkMrRo0gT1qlTBr9EVyc1FIzwdDugZBmM4ARoi7LXYsNVshZphkMFqjVcf/B+s0RIfp20O8BoNfhwxAqxSiSoaLfydHpgrmmBlWVRWa7DVbEUWhQKj/lVV1KpRI1TheXRj9dAyDEqrNWis1SGzXIHOOhacTIbGrB51dCzMGg1GDh8Ot9uNly9fYv/+/Xjy5Alev36NcsWKQS6ToXThwjDq9fiRE9CMF1CmSBFYWBYTeBHleAEmjQbd9QZMEUToGAZVqlTB3r17E/1sJRe3241+3btDrVDAqNcn6/fGLopYZTLjiNUOLoGbsIiICBT08UHN6EaUdaSg9pMmMDAQzZo1AxGhTp06if4+SUh8TnypCWoiMhLRTiK6Gf2nmMC4SCI6F/2zISm2pfj7y+XSpUswsSz6GTjk4jhMHDfuvXMiIiKwe/du7N+/P813TvXt1g1OvR4uvR69u3ZN07VSm507d8IuiuC0WsxMohZyAW9vTONFeMrlKKNWw0Onw+Sff07Wuq9evcKmTZtiKqJXrVoFXquFnWXRoEYNNKxWDVMFI/ydHmipY9FNb0AlnsfY0aPj2Nq/fz8y2e0wGwzQyOU4bXPghM0OjVIZq3/NhxAeHg5Bp8MBqw037VE7Ivv17Yv60YVRrTkeA/r0SZbN3t26oTUv4K7DhSq8gClTpqSKrx9KYGAgXGYzenI86vICqpUtm94uJZkC3t7ooTfAV6XCA4cLC4wmlPyX5rvEl0dERAT69+8PIkLFihU/mZ0IEp8nUoJaIlV59uwZ8mfPDoNKhdxZsyapCiAh3G43mtWrh6wcBw+9Ht/9S2Ihqfj7+6Nt06ZoXLMmzp07F+tYnx49MDhaBuE7A4fe3bun2FcAGDVqFDQKBbQqFb4fNgwtGzbEsMGD420k1qVLF2gZBquMZnxv4OFltSZq+8WLF/DOmBGCWg2bKOLmzZu4cuUKqpctiwq+vjhy5AgqliuHulotLtgcKKlSw67TYa4YVe1Sy2RCt27dkIvnsctiQ2NeQPdvO8VaIzg4GGvWrMGFCxfirB8QEACNXI57DhfuOVxQyWTw1OtRQaVGDoUSTfV68DodmopRgex0wQhPuQJrjGYoiHDMao/WnibcsDvRz8Chb69emDhxIr7heRy32lGZFzB2zBiEhYXh4cOHiIyMRP9evdCcF3Dd7kQFXsDUqVNjfHr79i16dO8Oq8EAOcOgUc2aCAsLw7p162BjWdQ1mWHhOKxYsQJOtRpXbA7oGAZno4NmlVz+3i1n69atA6fVQq1QYPzo0RB0OvxpssAqk+EbtQZ2lsXsWbOQN2tWWDQa1KtRI9ZN2JQpU8DLZOAYBtpofe8RHI880cl6Ua3GAAMHIVr3+/Lly3F8GNCvH+roDbjtcKE2z6NL585oVq8eenTqhFmzZqG2yRwjJaNmGJyyOfDA4YJNJsfgwYMTPb+UcOHCBTj1ely2O7HYaIJPAg0X3W43rl+/juPHj+OHH37A7NmzwWu12GOx4bLdCVGrxYMHD+LMu3//Pqw6XUzDKDnDwCYI8DCbsXXr1lQ/H4kPx+12Y8qUKZDL5fD29k61Kn0JifTkC05QTyCiwdF/H0xEPyUwLjC5tqX4+8vm2LFjGNC3LxYvXpykhHOTOnXgw/PIynGptjMyPt69eweNQoErdieu2J3QKBQIDAxMs/XSm5CQEGQwmeCjUMBboYC/0wPrTBbky5o1yTaePXsGL4cDpUwmWFgW69atQ/YMGbDWZMEdhwtZOA7fDxsGD60WnfX6qIIagwEt6jeI977G02rFAqMJuyw2aBgGf5os2GGxQq9Wp2pF5bQpUyBGJ9HbNWuG0aNGxU5QJ7PXyZMnT1A4Vy7IGAaVS5eOVciU3ty8eRM9u3bFsO+++6yaePvmyYMJvIA8SiU85HIIGg02btyY3m5JfAQWLFgApVIJb29vXL9+Pb3dkfhMkRLUEqmO2+3GixcvPni798OHDyFqNLjtcOGCzQGVQhEnIA4LC8OsWbMwevRoPHz4MFn2ly9fDm8DhymCiOwch2XLlqXY12vXrsGk16OXgUNujsf4eKoL/uGvv/6CoFSitEoNq0yGuYIRglKZoFxCZGQkDh8+DAvHoarRCAvLYsuWLXHGtWzUCL31Bvg7PdBQq0OubNlQlxew3GhGBoMBffv2Rb3oBPIEXkSDav+vZxYcHAzffPmQW4jS5luyeHEcHzLa7PiOFzCYF5DJbkerli3BKxTYHd3oMZ8gQNTpUE2rhcAwyCiXw04MFETYY7HhgNUGJRGWGU0oHN2EJjg4GM3q1YddENC0Th1cvHgRnjYbzDodCuXMiTt37qBM4cJQKxSoU7lyrCYhFUuWglkuh1Emg4Zh8G2HDjFVIKdOncLChQvh5+eHsLAwFPTxwTeiES61Bjq5HAa1GlOSWGny6tWrmKrQjDYb5ohGLDOaoFUqE02Y3rt3D5xSiUVGE7qwemSRK1AzuvJ6gdGEcoULw9Nuh0Umw1GrParx4X/+7woMDIRJb0BbHRtVEa7ToUHdujHH/fz8YOE4tBFEZOU4FC9YEBkVChRSqmDSauM8wfbz88OMGTM+qJnF3r174WRZXLU7scxoRg5PzzhjIiMj0aROHdh0LLQMg/YGA3x5HhVLlQKn0YDXaNC/R4947YeEhMDDYkF/jkcHXoBeJsMmsxWrTGaILCvpV3/CHDhwADabDSzLYtWqVentjoTEB/EFJ6ivE5Ej+u8OIrqewDgpQf2VcvToUcydOzeOLF5yePbsGQxqNW47XLhmd0IplydL2zk5hIeHQ2RZLDaasNQYFSukRlI0MDDwk4k53G43Dh8+jJ07d6J/z54oE33/wjEMhhh4NNKx4JVKjBg2LEn2Fi9ejGrGqCKWOaIRFYsXRyEfH/wsiDhqtcPGstizZw9YlQrNdTp00xuQL1u2BO2JLIsDVhtu2J0QVSroVCpwWi1+X7EitS5BDPfv38e1a9didhy+T+IjKaRVj6JLly6hWpkyqODri6NHj6bJGp8aJ0+eRAarFQqZDC2bNIm3GEXiy+XAgQMxzRMTk9GUkEgIKUEt8Unx9OlTtG3aFFVKlcK6desg6HRYajRjiiAig8USZ3ybJk1QihfQkuOR0W5PVsWE2+3G7Jkz0bRWLcyaMeODgtAFCxagQXQl62KjCd8UK5bg2DoVK8ZIUNTSaKEkgkWlwv/+9784X+LBwcEoV6wYRJUKBobBFrMVvwgiGsbTLOPatWuwCQIyaHUwsyx69eyJ1o2boGS+fJg9cyaePHkCL4cDhY0mmPR67N+/P2buzp07kZvnUUCphIoItn8F91evXsWMGTOwcuVKNKldG01q10bn9u1RmOeRW6FEZY0GIzgeZoMBubJmg5YYrDdZcNPuhCxac1pDBA0x0DIMfHPlwpD+/eMNBju2aoU+0RIxtYTEt9qpFQrU02rxwOFCT70B+ZRRetWPHj2KM/bNmzdYvHgx1q9fj8ePHyfaoCU0NDRmO+LwQYOgUyph0Giw8vffo7S4M2SA02jEooULE7QBAIcOHUJ2lsUDhws7LFbYoyupu7F65OA4dO3UCd27d0dmjRZ+DheWGc3I/5/g/9ChQ8jBcfCSK2CRyaBnGJj0+lgPf27evImJEydiw4YNcLvd2LBhA2bNmoW3b9/GsrV9+3YICgU8FArYtVrMSOI20n+IjIxEg8ZNoWENUGm0UMnlEFk23gZ5586dQ0aDAcuNZhSI1szea7Ehi8OBly9fvvcG4saNG2jfvDnat2wJnVKJy3YnTtscUCsUkrbZJ87Dhw9RvHhxEBH69u0rvV8Sny1fcIL69b/+zvz73/8ZF0FEp4joGBHVTYptKf7+/Fm1ahUcej0aGk2wcFySJfr+S0hICIx6PWaJRvwiiHCaTGma7N21axd8MmZEDk9P7Nix44NshYSEoEaFClArFPByOHDz5s1U8jLlDOrTB14ch9yCAE9BwILo5HI1jRasTIYCKhW2mK3IaDAkqa/O3r17kclgwDqTBU15AR1btsSZM2eQ3dMTgk6H8aNH48KFC8hoMOCew4U9FhvsopigvRlTp0LQamHV6dCpTRtERkZ+lOR+cHAwXr9+nWiTxPTC7XbDy+HASF7EZEGEmeNiFdp86Uh9Sb5e7ty5g1y5ckEul2PmzJnp7Y7EZ4aUoJb4pKhRoQLa8AKmC0aYWBaLFi1C3ixZUCRnTpw4cQLh4eGxvtytPI8TNjv8nR7IJYo4depUuvh98eJFmFkWQzkehTg+0QqG/j17ohovYIXRDKdMjpZaHQSZDNU5HjZBwL1792LGrlixAiVFEfcdLozjBRRTqVBOp0PP//0vXtsBAQHImiEDmho41DQYkDNLllhJ7zdv3mDfvn0YNWIEcmbMiBoVKuDvv//GhQsXICgU6MiyuGJ3Ir9ag8WLF+PixYsw6fVobjTBzuqxYcMGAECxXLmwxmTBdbsT3lotKhQvgePHj0OtUMAqk+F7Q5Tucha5AiIjA0MEvUwGg0YDpVyO/j16xBtI/q9jR3TgBdxxuFBeEGK+1EJCQjB04EDUqVgxpjIzT44cKKlS46bdiRY6HTqxepQzW7Bp06ZE36tnz57h2bNniIyMxMOHD2M14Zs7ezZ00ZUfP40bBzFaMmWL2QpOrY43+Z0QwcHBKJDDBwW1OphlMhgUCmTLkAEd2rdHs8aN4WUwoJrRCEGthpPVQ9Dp8Ndff8Wy8ejRI4g6HcZyPGqo1bAzURXpnjZbjBxIWFgYvuvfHxWKFsWkiRPjXFe3240bN27ApNdjAi9ihmgEzzAolUw9uAMHDsDo9EKRIRuQrfH3yJE7X4LVULdu3YJZp8NfZgt4hsFAA4cqPI+WDRoma00AGNCzJ8w6HUStFuP+pe/9sTl37hy8M2QAp9Xix+HD082Pz4HQ0FB069YNRISyZcumuKJJQiI9+ZwT1ES0i4guxfNT578JaSJ6lYANV/SfmYnoHhFlSWBcp+hE9inPeHbUSHxe1KlUCdOidYebiUZMS+bD7H9z4MAB+ObNi9IFC6ZbfJ4SlixZgpKCiLsOFwbyApr+a+daeqFVKnHW5ohqjK5SIYNOh0ZaHURGBpdMjkVGE+47XCgkiti8eXOSbE6aOBH5smZF0zp1YvWl+YfIyEjU/OYbZON5WFkWv06alKi9R48e4datWx8tUdyrRw9wMhkMMhk6tm6d4LiwsDCcPXsWf//9NyIjI3Hnzh28efMmzf2LiIiAXCbDdbsTdx0uCBqNFA9JfDVIzRMlUoqUoJb4pMjicGBntGREAaMxVpXvpk2bwOt0UCsUGD5oEACgdsVKqMsLGMjxsPJ8vAFWauPv74+OrVqhef36sZKEbVu1greHB9q2aYNLly5h3bp1ePbsWZz57969Q8lChWBSKsHKZDArFJgefTPQWDTGetK4du1aFBCiNJj76g0wyWTIq1LBN2/eWDafP3+OnTt34vz58+A1Ghyz2mCXyZBToYRJr4+1rez48eNw6fXYYLagEy+gYY0aAADffPkwlOPwwOFCVV7ArFmzMG7cOHSMblL4Ey+gRf36AIDB/fqhGM+jv4GDSa/H4sWLMaBfPxTNnx++ej0yKhRgGQYeMjkGGjjcdLiQQ6lCZzZKu9hDr4+38eWjR49Q0McHMoZBjQoVYh5GDOzdG+V5AdMEIxzR5/PixQvkzZYNciJY5XL01Btg0usT1ZWeMHYsOLUaBpUKWV0umLRaOIxGXLx4ESEhIdCpVDhoteOgNaqxi6DR4IzNgb/MFnAMA29Pz2R9wQYGBmLdunU4fPhwrNdzZcyITWYr/J0e8DWZMG/ePDx9+jReGwcPHkT+rNmgYhj4KJS443Dhe15A3SpVAADjRo9GSZ7HYqMJmXU6DBkyJObmwO12o3XjxrBqdZAR4ZrdiTsOF7QMg46tWiX5PICoLb+CzQOFBq5F5jr9kb9Q0UTHT/nlF5gMBmS02dCodm2MGD48xdp+d+7cgZ+fX4rmppTTp0+jX+/emDVrFiIiIuCbNy/G8wJO2Oxw6vVxNO0l4rJkyRJoNBq4XK6vZmurxJfD55ygTuwnqRIf/5mziIgavm+cFH9//gwdOBDleAFzRRMyJLMR8pfC4sWLUVoQcc/hwmADh6K5c6e3S/DOkAGj+KjKaVGnw6hRo+DQanHQYsMPHA8tI4MXx6FMkSKxCi8+lIiICBw7dgzXrl1LNZuJcf36dSxduhStmjSB2WBA+WLF4u1ndPPmTehlMvxpsmCggQMvl8ereRsUFIRiefMiC8+D12iQxeWCVauF8T87Sd/HiRMnMHz4cPz555/JOp8OLVogFy+goCCi5jfffHJV3hISaUlERAT69esHIkKlSpWk5okSSUJKUEt8UowYOhRZOQ5VjCZkz5gxlmRHRqsVf5jMuGBzwKzT4datWwgICMB3Awagc9u2H60xV0EfH3TmeQzlBTiMRgQHB2P44MEozQuYKhhh1WrBqdUoxPMw83wc2Y49e/bAi+OwzWJFW45Hdk9PfGPgsNhoQkaDIdbNQEREBFo3bgxFdIXAwegGczqVKmbMvXv34DSZUNxkhkmvh5fTiYJqDZpH6xaP4HhULVcOZQsXRu1KlTB79myUit4auNRohm/uPACimt/ZRRFOvR4FcuRAQEAANm3aBC+DAbNFI3x5Hj+NHRvj17Rp09CnRw9Mnz4dDpbFQAOHDHo92rdvjwEDBkClUMApk2EMx8PP4UI+lQrNtDrctDvhxXE4fvx4gtf4v/IfVUqWxG/RDR8bGE347bffYo6FhITgp3Hj0O3bb+NNev9DcHAwNEolTtkc+IHjUUylwv3oZG+T2rURHBwMnUqFI1Y7jljt0KlUGDFsGOREMDAM5otGmLTaZFVRJ0TDGjXQnBcwUzTCzLK4detWvOPevn2L69evIywsDMuWLUPR6IqeEbyA2pUqAQBaN26MsbwAf6cH2rMsrGp1TAPMy5cvw6XX46bDhVoaLZxyObKo1MidOXOyk8Vutxtdu/WAXKGE2ebAyZMnP+wifMLcunULJr0e/QwcCvE8hg0ahNxeXvjdZMZdhwvZeR6HDh1Kbzc/C86ePQsvLy8olUrMnDlTujmT+Gz4ghPUE//TJHFCPGNEIlJH/91MRDeJKOf7bEvx9+dPSEgIBvXpg6qlS2PB/Pnp7U6SefDgAWp+8w0K5ciBFcuXf5Ct4OBgeHt4QE0MrDIZMrBskquS04qLFy+iXNGiKJozJ7Zv346QkBAUzZMHhcSowo1xY8bg/Pnzn3WV4tGjR2FiWVQTBOgYBsuMJrTnhXgLKg4dOgRPhQIPHC5sMVthkMnixNJ3796Fp8UKGRG+UavRVaeHj0IBP4cL0wUjyhUunKAvwcHBMUUy586dg4ll0cPAIYvBgDmzZiX5nCIjI7F161Zs2LDhs35vJCQ+hPnz50OpVCJ79uy4ceNGersj8YkjJaglPincbje2b9+OxYsXx6mGzmCxYK3Jgot2Jyw6XbpowrndbihkMty0O/HA4YKNZXHv3j3ULF8es6MbENZnWeRQKOAlV8BTrkDxAgUARAX99+7dw5IlS1DxX41JRLkcRkYGQSZDh3bt4l03NDQUebN5o5YgorggoGmdujHHxo4dizbRVc7fczya16+PWjVqIJdWix0WK6rzPAxKJWaLRvQxcHAYDPDOmBEFeAFGjQaLFi2KsfXu3TvcunUrVhA1d/Zs1CxfHiOHD483uBo0YAD6G7iYZHi1ChWQ3TMjami0KKBQQs8w0DFM1DY8YqCXy9GhRYtkJarmz5sHT4MBzUQjLByHu3fvJnnuP4SFhUGvVmOHxYrBBg55lErccrjQixfQqmEjAFEaev9IfMyM3tZaulBh1OE4tOB4+Hh5pUojlZcvX6Jjy5aoUqpUgpIkFy5ciNIUNxiQN5s3nj59iloVK0KnVMJlNuPMmTOYOGECGtStC6NGgyoaLYwyGdaYzOC0WgBRDy+MWi0OWG2YKYjIYLVh586dH3QO4eHhX3ySccWKFahptsDf6YFVJjNK5M0bo4nvYFnUrVo1zRrqfIm8ePEC1apVAxGhbdu2CAoKSm+XJCTeyxecoDYR0e7opPMuIjJGv16YiOZF/70EEV0kovPRf3ZIim0p/pZILyqXKoXuvIDfTWaYdewH3yM0qFYNY3gBfg4XWghioj1R0ovg4GBs374d58+fT29XUoXunTvju+j7iZ56A7qxeoznBdSrUjXO2Kj7omzwUihgYBjUqFw5zpi2TZuiJ8fjrsOFkio1CiqU8JTLcdHuwBCOR/Vy5RAREYEHDx7E9J4BgFnTp8fcC8yeMQNTpkxBm+h7vBmiEfWidzB+bI4ePQpPqxWsWp2ukncSEilh//79MJlMEEXxq9yZI5F0pAS1RKpw//59/Prrr9i4cWOaJa/Wr18PTquFVqnEd/36pckaSaFRzZooLgioIogokjs3IiIisGjhQmTQG9BKNEKvVEJOhKt2J245XGCVypiOxnaWRU4vL3h7eqKQ0QhDdLD0wOHCEqMJXvE0gvyHV69eYdq0aViwYEEs7d9FixahIM9HJ6MFDBs8GJGRkejfsydyZMiA2pUqw1OvxwOHC8etdugZBlmdTggaDfLyAnJlyRKnoV5y2LRpE1ysHt9zPGxyOTJqtTBHVzWsMZlBRGCIMNLAY5fFBo1CkeT1IiIiMKhPHxTOkQON6tbFlClTYhr2vH37Fm2bNkVBb2+MGzUqSZ+731esAKfVQqdSoYBPTsgYBrmzZIml+x0UFBQrgfb69WuM+vFHDB86NN5thm/fvk2Tz3zz+vUxPLphZE1BxIzoRp6vX79GREQEOrZqhbK8gN4GDpxWCxXDYKiBQy9eQOGcOWPsTJ08GUZWj8wOpySzkET+qaDub+BQmOcxdOBAAFFSOjdv3vziE/RpQWRkJL7//nsQEQoWLJiih0wSEh+TLzVBnZY/Uvz9dfDy5UtMmjQJs2bNSpGcxLFjxzBowACsWLEi1b5Ps3t4YLPZigcOF/KJIvbt2/dB9jZv3gwLy6KG2Qwrzyf7O+vXSZNQIm8+/K9DB+mhbAJM/vlneJhMKJo7N65fv45fp0xBMZ7HSpMZ2ZVK2LRamPSGBGPX0NBQ7Nq1C2fPno33eKuGjTCQF3Df4UJxtRoahkFZlQpKItg4DidOnEBBHx9YdDpksFpx8+bNmN2Uh612HI7eTblv3z7YWBY/cgLy8zwmjh+fhlclYfJkyYIZohEnbHZYdLoUy65cv34dFy9e/KixbGRkJLp17AijXo8yhQvj77///mhrS3w63L59Gzlz5oRCocDs2bPT2x2JTxQpQS3xwTx+/Bh2UUQzUUQ2jsNPY8ak2VqhoaEflExNCZcuXcLmzZtj1g0LC8OiRYswa9asWE02du/ejV9//RWnT58Gp1JhiiBijmgEp9GgY+vW6BWdbKzPCxgzZgzWr18Pl8kEJRHKqdX4H6tHdg+POOsHBwejZYOG8LRY0LZpU4SGhiI8PByTfv4ZXTt0wKFDh9C3e3dk9/BAq0aN4kg3hIeHo2DOnMijVCKzXIH2OhZqhsHvJjP8nR4oaTLFac6XVEJCQjDll1+gksuhJkIDrRY37E5oGQZtdCz0DIMurB52mQz5FUqIjAwGtTpWpUJiTJ8+HUU4HutMFhTneUyZPDnmWJ9u3VCbF7DOZEE2jntvc0Qg6vNTsmBBZNXrwclksOj1WLRwYYrOPSgoCBVLloRKLkdmpzNWkjs16Ny2LdrzAi7anfAVBCxevDjm2Lt372DRarErWq89l1KFyhoNciiUMGk0UvIvFTh58iT69OiBGTNmSNXSqciGDRvA8zyMRiO2b9+e3u5ISCSIlKCW4m+JuISHhyOftzfq8ALKCv/fDyOpnD9/HiaWRR+9ATk4DlP/FdcFBQVh6MCBaFa3brIr7KZOngynXo9iRiMK+vjEaqieUi5cuIAVK1bA398/WfO2bdsGL4MBv5vMqMoLGNCr1wf78qVx4cIFOFg9dllsGMYLKJA9BxYsWIDe//sfSuXPj+GDB+P06dO4c+cORo4Yge+HDcPTp08REhKCffv2JSk5e/36dXjabDCo1ShTpAhmzpiBcoULo1vHjggMDMTkyZNRixfwwOFCbwOHVo0bx5ugDgkJwdatW9GxZUvMmDYNkZGRH+EKxSWzw4F1JgtuOVzwNBgSTMwnxshhw2DV6eDU69G1fXtcvHgRHTt1xtBhw2PJaqY2a9euRV5ewEmbA9/yPNo2bZrkuQEBAXj48GGa+SbxcQkICIjZVdmjRw9J+kYiDlKCWuKDWbNmDSqZo5Kdq00WFPHxSW+XEuXly5f4ftgwDBk06L3dlJcsXgwry6K40QQfL68kd33euHEjeLkcLrkCLp0O5UuUQCuex02HC98IAqZNm4b+vXqhMcfjot2JoioVtDJZvBUfY8eMQSWex0GrHWV5HpMmTcKgPn3gy/MYyvEwsWy8jUH+zdu3b5EtY0bkZfXIzXHw9vBAR17AWpMFjgQaFr6P5cuWgVWroSBCF1aPA1Yb1ET4lRehJYKGYdBIp4O/0wOzRCOqajSopdXhf//7H9xuN6b88gtqf/MNJk2cGO9T/FUrV0Ijl6OX3gB/pwcGGDiULFIETWrWxJo1a1CnUiW01rGYK5rQUBAxffr0BH2NjIzEr5Mno2qZMvDQ6eCtUGCyIGKz2QpBq01S4LNq1SoUzZUL1cuXx8WLFzF79mzk1rEwMAy0DIN83t5wu90fVJEQFBSEuXPnYu7cubh79y5KFigAVq1GywYNY32BDxs8GFlUKpRQqdGN1UPDMDhtteOuwwWVXJ6sap1Hjx7F0UmPj4iICCxYsAA//fRTsm/WJNKH+/fvY8OGDZ/c+3Xz5k3kzp0bDMNgzJgx6XazJyGRGFKCWoq/JeJy9+5dOFgWDxwu3LQ7oZDJkhX3TJ8+HS2jZe5mi0bUqlAh5ljntm1RhRcwnheSFNv+l9OnT2PTpk0pbsicWkyfPh2NoyUhpggi6kT3DJH4f3777TdkUatx3+HCapMFgkyO6kYTvByOWBKPJQoUQH2eRzOOR67MmVEsb17kFUVYWBYLFyx47zrh4eF49uxZvJ/RmTNnoqRWi9sOF9rqWFj0eoSEhGD2jBmxJD4+FVatWgVeo4VZp0OrRo2Sfb8REREBtUKBczYHrtud0KtU4EQTMpRvA3ueMqhdr2Gi858/f44pU6bE2cmbFObPn48qohEPHC6M54Uk/078+eef4LVaiBot2jZtKu1g/EKIiIhAnz59QESoXLlyHFlXia8bKUEt8cFcuXIFZpbFL4KIaryATq1bp7dLiVKiQAE04Hm05HjkfI+mcNFcubDCGJV8L2U0Yd26dbGOL12yBD6enihdqFCsQHrhwoWoGq0Lvdxohm+ePPDNlw8KmQw1v/kGwcHB6NKuHfpFj2nMcRg5cmS8PvTp0QO9osd14XgMHjgQJfPlw6roCugaZjNWrFiR6Dm73W60atwYGoUCrEqFpUuXok6lysibJQtmz5yZ9Iv3L3uCTocdFivO2BwwMAw2mi1QMgwyyuQoolSinEoNo0yG0byAnEolGml1yGAwYN++fVi8eDFychxmi0bk4jgs+E+Q6Xa7wWm1mCUaYWRk8FWpYVCpkEevxyRBhJ1lkStLFuRWKpFDqYSoVieaZJ4yaRLycTwm8iKMMhl4hsE+iw13HC449XpcuXIl0fO9desWTDodlhnN6MxGVV/XqVkTekaGzWYrrtid4ORy8CwLnUqFaSnQKnS73fimRAmUF0QU0BuQyeHAggUL4g3GOrRogSEGDiM4HnlVamR0OlFCEOEriDHNE5PChLFjwWs0ELXa98rm/K9DBxThBbTgBXjabAgICEj2OUp8PM6ePQuTXo8KZgvMBgMuXryY3i7FIjAwEM2aNQMRoU6dOnj9+nV6uyQhEQspQS3F3xJxCQ4OhofFgn68gLY8D9+8eZM1/9SpU7CwLIZxPPJyPCaOGxdzrHCOHPjTFNX/oaLZgrVr16a2+x8FPz8/2EUR1UxmWFkWGzZsSG+XUp2XL1/i4MGDeP78eazX37x5g61bt+Lq1asJzg0ODoaV5+GtUCCDXA4dw6CfIaoYpZTJFLMjMjQ0FHKZDPcdLhy12GCQyaBnZOinN2CtyYI8Xpk/6ByCg4Ohl8kgI0I+pRIZ9PoYv0NCQhASEoKgoCBMnjwZI0eO/CRkKV6+fAk/P78UJWrdbjcsPI+FRhPWmixgVSpYM/mg2PfbkK/7ApjtzgTnhoSEwMfLC/UEEb6CgFaNGiVr7YCAAOTzzo7MHA+zIWHZlv+SzRX1AOPmB1SNS3y6zJs3DwqFAtmzZ0+X3mISnyZSgloiVdi6dSsaVKuGgX36fPTKhV27duHnn3/GpUuX3js2LCwMMoaBn8OFBw4XRI020SrqRjVrokN0pbEok6Nw7twxGsjXr18HJ5dDQwyyKhQo9K/K8fo1asDAMJjAi/BVqdGt47cAECuguHbtGpwmEzJxHLw9PfH06dN4fbh69SpsgoCCJhMcRiNu3bqFkcOHIx/Ho7uBg0mvx507dxI971OnTiGTgcNNuxPLjWbkzJjpvdcqKCgI06dPxy+//BLnyabb7YbIsthmseKUzQE1MdAqlWjTqhU0DAMNEUqq1FgomuBUqVEoTx5U9PWN6Qjft1cvDIxuhDLYwKF39+6x7D979gxKhsF+qw2bzVaoZDKUKVz4/xtRCiL0SiXuOVy45XBBzjCYNGkSgoODERgYiIY1asAhijGSKC3q18dEXoS/0wPfGjjwWi30cjky6PVoVKtWzPsSFBSEiRMnYviwYbGqivft24d8ohjTLTyTXA6dUglOqcRKkxmnbA7oGAazBCOOWO3gNJp49aoTIyAgAFqlElvMFphkMgwycMjFcejQpg2svACjXo/ly5YBiJKfMOn18OE4GORyeFos6NevH1asWBFvVcPly5exYMGCWA9RwsPDoVYocMrmwMXoSoonT57g5wkT0LNr1zhBoKfFggPWKEmRAkYjDh06hOvXr2PokCGYNWuWtEXrE6N39+7oF/071svAYUDfvuntUhzcbjemTJkCuVwOb2/vJP0fLiHxsZAS1FL8LRE/169fR8dWrdCjc+dkxzoAsGfPHnT79lvMmT071g6a0SNGwIfn0VIQYROETyIhmFIePXqE33//PdEGhqdPn8ayZcvw22+/4ffff0+y/F16c/v2bTiMRhQymWDl+Zgij9evXyN7xozwNZpgYVmsWrUq3vn379+HRafDHbsTf5rM0BChCS9gtmiEUavFgAEDsHTpUkRGRqJonjxowgvIolCgp96AA1YbPORyNGb1qFyq1AefS8USJdCQ49GH4+E0meLcw9arWhUVo4uasrhcKdJcTw5pvaNs7969yJ7BE152O5YuXQqr3QVnsTqwZCuAVm3bJzjv0qVLyMxFxZTnbA7w0c3Yk0NoaCguXLiAly9fxjm2efNm5MyYCQW8vWMlr/NkyYLZohFnbA7YWPa9BUUSnx/79u2LaZ64Z8+e9HZH4hNASlBLpCpPnz6N94snrVi2dCk89Hq0FUSY9Hpcvnz5vXNiVVBnzpxoBfWTJ09QpXQZ8DIZ/qfXYwAvoFyxYgCAAQMGwFelxhW7E020Ohj/9WWdyWrFRF5AQaUSJrkcdatVi1fbKzAwEFevXn1vwPPixQscOnQo5tpGRkZi7ty56NihA44cORJrbHh4OG7cuBFLq/v8+fNw6vW4aHdgtmhEvmzZYo6FhYWhbdOmsPI8alWsGFMZW718eXwjCKjDC8ifPXuc67Rq5UrolEooGAZZXS6cPHkSFUuUwARewHW7EzkUSviyeng5HHGqbQ8ePAgzy6KV0QQzy+LAgQNwu934/fffMXr0aPz222/wZvVgo+UznDyPObNnw6bVIr9aA41cDg3DYDTP4zsDBz3DQEeEfD4++H7IENTkBRy12lGK55E7e3awajXMSiW+5XiwMhkMGg3at2qFM2fOxAoG61erhko8j3Ycj4x2O969e4fw8HCMGD4cNoMBuZVK2GUy9NAboFersX79eogsC7VCAYNSiT0WGy7ZnRC1WqxZswalChZEzUqV8OjRo0Tf33/e0ywuFypotGisjZJGmSMaIcgVWG+2YLvFCoNGExM8+/v7g9dqscRowh8mM3itNl7Nxd9//x1sdIUIp1DgxIkTMesJOh3+NP2/7c5t26I0z6N/9IOPfyfpG1Svjjo8j+HR1Q+XL1+GlefRxcDBl+fRs3Pn956jxMdj8qRJKMnz2Gi2wpfnE5XASW/2798Pm80GNpEb2o+F2+3G1q1bMXfu3BQlXiS+HKQEtRR/S3xc3G431q5di59//vmL76WxfNky2Fk9Sut00MtkKMzzqFauHNxuN27cuIGff/4ZmzdvTm8342XI4MHoHL2zs4+BQ69u3QAAf/zxB8pHy7csNppQKn/+eOdHRkaiVKFCKCeKKCQIaFSrFjq2aoVyRYvCyvFowQsowPPo2707Xrx4gaGDByOL1Yr5ogkPHC7kUamQN3v2OL1f3r17h0ePHiWruvjVq1cY2LcvunboEK+kDKtW45LdCX+nBzJxXKKV4R/CpUuX4PLMBLlcgY6duqRYyiIkJARN69QBr9WicqlS75VO8PPzw4gRIzBz5sxEZTvevHkDa7S0ZEteQPnoe+HUIDAwEIJOh+VGM2aKRjiMxpjzP3z4MJwmE9QKBUYOG5Zqa0p8Wvy7eeKcOXPS2x2JdEZKUEukGsMHDQKnVsOgVn80za76VatiqhBVVdtaFDElCdIKL1++xA/Dh2Pod9+9V4MaiEqe5BKimmhsMFtiGhmOGzcO9aI1lnvrDShTtGjMnJYNGqIIy8Iik2GR0YQaPI8enTolus6tW7dQPF8+eJhM+Pk9HaKfPn0Kb09PZOUF2AQBFy5cwMjhw1HExwceRiPsOh14pQoVS5SIeRL9Xb9+UMnlsIkiDh8+HGNr9uzZKMkLOGGzox7PY3D//oiMjISMYXD7n0pzlSqOTvGbN28g6HSYJRgxlheR1eWBfDlyQMswUBHBrlKha9euCSZ5zpw5g2nTpsXoX48eMQK5eB7N9AbwCgU4mQw1NRpU5Xg0r18fhXLmhFmhgK9KjbY6FkZGhqxyORzR19gpk0NOhHzZs6N/dODcVm9AdrUa52wOFGBZ2MxmNNfrcdLmQHaOx7Zt22L5JOh0OG9zwN/pgay8gIsXL6JP9+4oqNZgHC9AL5dDrVCAVauxYN48AFE3VBEREZj/22/gNBpwajW6deoEVi7HRF5EW5ZFVocj0ffzH27fvo1aVaqAUyhiKqjVMll0lbMDepUqJtgMDQ2FSi7HRbsDV6MroOMLRH0yZMAgA4ebDhdyKZSoV6dOzLENGzbALoowGQxYvmwZ8mTOjM1mK/ydHihvsWDjxo3w9/fHzZs3ERAQgEH9+qFds2Y4ffo0tm3bhtLR2vM7LFb4eHom6RwlPg5hYWHo2aUL8mXNir7du3/yFe4PHz5E8eLFQUTo27dvuvn746jREJ2Z4MpfHg6Xp6SL9xUjJail+Fvi8yciIgK9unRBTs+M+LZVqzSvgE0q5YsUxXwxKplbTaPBJF6EXqXC2bNnYTYY0FoQ4GUwYMa0acmyGxkZCT8/v1RpEpkQU6ZMQZno3jiVeQFjRo0CABw5cgQeej3Wmy1oywtoVq9egjbevXuHxYsXY+XKlTHf97t370YxU9Q12WWxIZvz/yUnNm3aBCPLIhvPwzdfvji9Vvbv3w+jXg9Ro0GdKlVSLYaoVLIk6vM8enI8PCyWNNslXKpsBWSq2hWFBq6F0emV7Cah/zBjxgyU4QWctznQkOcxoE+fVPPxwoULaN24Mbp36oRnz56lmt3Hjx+D12hw0+HCRbsDSrk8TiW5pD395fP69euY5ok9e/b85O9bJNIOKUEtkSo8ffoUnFqNi3YHDlntYNXqj/JlMmbkSBTjeUwRRLj0+nibDH4ooaGhKFmwIPIIIqwsizmzZgGIkqHInjEjXCwLmyDEevIeHByMBvXro2p0g795ogkVfX0TXadSiZIYxAvYbbHBqdfjzJkz8Y7bu3cvGjVqhJrR2/e/4wSULVECeTgea0wW+KrUyCpXoLWOxXhegNlgwIsXLwBEVVf/+33ZuXMnsjkcyKRQYL/FinpaHXwLF4afnx8sOhYtdSx66A3QMQx27doVy4+oMTrcdbhwweaASi4HK5NhlcmM8zYHDHI5bty4keTr7Js7N/4wmVFFo0EnVo+/zBaYlEq0bdkSK1asQAmjERaZDCdsdvg7PZBDocBwAw+7TIbCShVGcDwu2BzIwLIw6fXIYzRC1GrRJvo9aMfxyOxyYZoQ1aSjgFqN3r17x/KhcK5cqKrVoZuBg8tkQmBgIDyFqG2HdxwuZJYrwKnVqFO5cqwK9X949eoVnjx5gvXr18Mpl+OBw4VjVju0DINt27Yhh6cncmbKFO8WpsePH2PLli148OABDh48iD49emDBggWxdKKHDRwIIGo7VP2qVVEsXz5YdDo4WH2CFcwFvL0xhuNxw+6ESyZH/ty5Y+kRX7t2DaULFoSPpyeqV6wIX55HDwMHs4HD6B9/hKDVwsay6NSmTazPzsOHD2E2GDCQ41H+M9Cel/j0CQ0NRbdu3UBEKFu2bJIeIKY2mb19kKvDryj2/TY4shfE1q1bY46dP38e+/btk4LmrwQpQS3F3xKfP3PmzEExnsd2ixUVeAFjR49Ob5cAAJ1at0Z9XsAyoxlWmQztWT1cZjPmzp2L+tE9ZhYaTahUvHiSbQYGBsI3Xz5YdTrYRREXLlxIE99DQ0PRvnlzeFosaNmgYaxk8dTJk5Hbywv5fXzQuUMHnDp1Ksl2Hz58CJNej5Ecj1q8gKZ168Y6/ujRI5w6dSreSt+S+QtgpmjEXYcLeQQhTgFKSnn9+jWGDByIHl264NatW6liMz4K+5ZElvqDUGToJlgy+WDLli0psjNu3Dg046OKdPpxPDq3bZvKnqYNbZo0gRfHwanXY0j//untjkQ68e/miVWqVJGKRL5SpAS1RKrw6tUrGNRqHLTa8ZfZApFlP0qCOjw8HGN//BFlChdG1YoV8eeff6bJOqGhodi7d28c7avQ0FBcv3493ifqjx49gsNoRE2TCQ69HsuWLo05tnXrVhTMnh0l8+eP0fotkC0bVprMuO9woYAoYseOHXFszpw+HRkNBtTkOOgZGXaZrWjGCyhRrBg6Gjj01BsgMDJoicEJmx0PHC54C0K8TSWePn0Kg1KJjHI5iipV0DMMPBUKNOV4mDkOrEyGBlodSqhUMMlk+O233/Du3bsYqRK3241q5csjB8/Dy8ChbKlSEGUy/Gmy4LLdCUGhSFaCunfXrigrCPCSy7HSZMYDhwu+RiM2bdqEAwcOIJPBgLIqNSqrNeipN0DLMLBqdSiSJw94mQxzRCPuOVzIJ4hYvXo1jh07hnPnzsFpMiGbICCj3Y4//vgDrFwOu0yOHAoFzDodrl27hsePH6N4wYLgGRlqarTwUqnRsU0bAIBTFOGSy1FMqUIRpQonbHbU5gUMHzIkwXN5/PgxWJkM36g18FYoYNLpoJXLscxoxiKjCUaDIVZ1wF9//QWDVosiYpRUzcmTJ2PZ+/vvv+Hv7w8gSrvPxOoxgRfRkOdRtWxZXLp0KcHft5MnT4LXaKBnGJRUa9CX42HhuJjK9mJ58mA4L2CdyQJRq8WoUaMwaMAAXL58GYJOhwNWG27YnTDrdHG23J49exbdO3XCuDFjPpmqJInPnyVLlkCj0cDlciW5kU5qUbdBYzgKVkaWugOg58WYG9Kx438CZ7TCnCEbypSvmKg0lMSXgZSgluJvic+fYUOHxshRDOZ4/K9jx/R2CUBU35EOLVqgcI4cKJw7N+pXrYpLly7h1KlTsLEsfhZElOEFDEpGBey8efNQMbpfyg+8gCa1a6fhGSTMd/37oyjPY0C0XNw/vXuSwrFjx9C6UWMM6tcv3kKQhKjg64uxvIgrdieycTz27t2bAs/fz5MnT1C+WDGYDAZ0bd8+1TSjDxw4AAMvguVEVKxaPcUPwh8/foysHh7IwvNwGI1pJkmS2rjdbpw4cSJRzXaJr4fffvsNCoUCOXLkkJonfoVICWqJVGPOrFlg1WqILIv169d/tHU3bNgAD70ewzgennpDkpLUGzduROvGjTFp4sRUTTREREQgIiIChw4dgrdHBtgEAd9++y2OHz8eMyYgIACiTofFRhMm8CIyR29hW7VqFYw6HbLxPEoXLhxvs5SS+fJhuTGqsqKsjoVWqYRJrYaHxQK9Wo0McjkOWu3Ir1Qiq0KBaoKAXFmyxNrq53a7ERISgh9++AF5lSpsNVtRWqWGggjrorunFxYE2BUK3HW4sNlsBcswGPbdd2BVKmiVSnRo1w7tWrcGq1RCp1Sib69e+OOPP+Ch1YGNlvgoVbhwsq5daGgoxvz4I8r6+sKo0aCQ0Yh83tljEuKjfvgBLpMJXk4nOrRqjU2bNsU0Vdu9ezdEloVVp0P1ChViBXZv377F+fPn8e7dO1y6dAkZTCZME0Tcc7hQ1GjE9u3b0bROHZTSalFXq4W/0wO/iSZUjW6+MnvmTIhqNTiFAi11LPydHujL8ej27beJns/atWvh5XAgV7ZssIsi1ES4Znfist0JlVwek9DdvHkzRJUK1TVamGQydGH1iVY87N69G0Wit0DusFjh7XK999qGhITAy2bDHktUk8NiJnNMFbenxYIdFivuO1zIyvExGtUAkMFiwQKjCTstNvAaraTJK/HROHv2LLy8vKBUKjFr1qyPtr3z9evX6PBtZ3xTpXqs6mnRZEXe//2GosM2Q7B5SDdRXwFSglqKvyU+f27cuAErz6OU2QxT9O7EyMhIrFu3DgsWLMDr16/T28U4bNiwAU1q1sSIYcOS1Thx2bJlKCYIuGF3ohsvoE2TJmnoZcIUz5MHf0RXgdcwW7By5co0X/P8+fPIZLdDIZOhW8eOsWKGFy9eoHunTmhWrx5OnjyJV69eYfjQoRjYrx8ePnyYrHW+bdUK7XgBJ20O5OeFVO2b8e7dO/j7+39QvHPx4kUsX74c+/fvT1aCX0LiU2Pv3r0wGo0wGo1p9sBJ4tNESlBLpCput/ujJRK2bduGqqVLI2/27BgcLXcxjOPRs2vXROcdOXIEdlaPcbyAQjyPcdHaaR/KwvnzwarVYNVqWDgOc0Qjtlms4LVaPH36NGacn58fzFod7jhcOGdzQKNUxhy7f/8+Tp48mWCjis5t26IWL2CWaISNZcFFJ7pXmszQKJUoYeDwwOHCdEFE7qxZMXfu3FjbY+7fvw+fTF5QyGTI7OGBrtHyF/31BjhEEdV4AT/xAkw6HYxqNRwyOQwMAy+WhUouxyGrHZXVGmRVKJBVoUBltSZKwkKpREhICEb98AMKeHujfYsWH6R/d/XqVezYsSNZWm9v3rzB3bt3E/z87d69G2aWRT4dC6NMhtKCAB8vL7x9+xZlChXCBF6AWSZDHa0Odq0WCxcsiJl74cIFLF++HJ5WK3KKUd3lk9pJ+u3bt9AoFGijY+GSyyHIZOj1r89o83r18BMvRGlm61hk0WgweuTIBO0FBAQgk92B+qKInDyPIQMGJMmPLu3aoSTPo6uBg00QYvTjpk6eDBvLIqcg4JsSJWIl9/fv3w8vux0WjsP8335L0joSEqnFixcvULVqVRAR2rZtG0dz8mPikzsfMlbuhBytfgJrEJLU+FTi80ZKUEvxt8SXwZMnT7Bt27aYZGSvLl2Qm+dRRTQiT9ZsX8wOsLCwMDStUxcKmQz5s2fH/fv308WPoQMHojDPo290BfWdO3c+2trxVTRXK1sWzXkBP3JRsofF8+dHA55HB45HVg+PBKuVz507B988eZArUyasXbsWANCwenWM5aP6EtUQjSlq6OZ2u9GjUyeILAvfvHlT7X3666+/YGFZVDKb4TSZkp18l5D41Lh16xZ8fHygUCgwd+7c9HZH4iMhJaglPkvu3bsHE8timmBEOR0Lk0KBwQYOHno9/vrrr0TnTp06Fa3EqMaKM0UjvO0OdGzVCn5+fin2JyQkBKxajX0WG/ZabFASYY/Fhpt2Z5RO87+kEdxuN+pXr44cPA9PgwGD+/ZN8jrPnz9HxTJlkC9LFsyfPz+6SZ4T1+xO6JRK5MueHdkFAUaWxc6dO+PM/7Z1a7QxcMivVEJOBJ1cjhK8AEGnw5EjRzC4Xz80rV0bu3btQtf27ZFfr0dbVg8Lx0GnUmGL2QJ19LmtMJqhIsImswWsWp1gUt3tdmPr1q1YvHhxkrSkwsPDsXDhQvzyyy+pWrHbtkkTjI5OBNfRsWjWrBkCAgIAAOvWrYNJp0NunofdbE6wc/rbt29x6tSpeCtuAgICUL1CBVh0LHwLFIj1UKJO5coowgvIbTCg7H+0yEf98ANK8wIWG01wKRSoXL58ojdLbrcbzRs0gEImA6/T4dixY0k6/4cPH6LyN9+gRNGiOHLkSKxjly9fxsGDBxPt4C0hkR5ERERg+PDhICIULFgwjszMx+Lq1aso4lsSmb19UrViSuLTRUpQS/G3xJeJheNwzPr/MngJ9Xz5XEmoUMPtdn+UqtqIiAjMmjUL/fv0SZVrGxISggbVq4NVq1HB1xcvX75M1nwbL+CYNap/jY8gQMYwuONwwd/pAauOjdME/h9yZMyI8byAVSYzBJ0Oz549w/Hjx2E2GJCV55ErS5YUaeRu3LgROXkep2wOdI9Hazul1CxfHtOFqPvb+kYjJkyYID1Ml/jsef36dUyxSu/evaU+MF8BUoJa4rNkz549KGQ0xsgcOI1G9O3VCxs2bHjv3EuXLsHEsujM8bDL5ais1aI7LyBHpkwprv4OCgqCVqnECZsdx612qOVyiBoNHKwe7Zo1i2M3IiIC+/fvj5FTuHfvHn7++WesXr06Xh/8/PzQrF49ZDKZUECvR01BQEEfH9StUQNGhQKiUomu7dsjNDQUp06dwuPHj/Hu3Ts8ePAglr32zZsjv1KFjiyLK3Yn8mp16NevX4y+8b8JCwvDr7/+ioH9++Pq1atYvHAhdCoVlETgGQY+CgV0DAOdShVLX/u/DBs0CN4ch8pGI3y8vN5bFd2xVSsU5QU0FgRkcblSrWP2uNGjUYoXsNxohg/H4Y8//sDDhw9x4sQJhIaG4tatW9i9e3eMpEhy6dG5M3iZDD30BjTR6eCTKVPMsbCwMKxcuRIrV66MlQQ+efIk5s2bhyJ584JXKpE3a9b3dsbev38/vPmopodTBBEl8ud/r29utxsFfXzQgufRmosKqlNLN09C4mOwceNG8DwPY7Qsj4REWiMlqKX4W+LLpHyxYujAC5jIR/X9eF/c9SVw48YNeDkc0CgUqFau3GdVNT59+nSU4wVctjvRhBcwIBm63ADQtX17FOQF1BdEZMuQAWWLFkVtnkcrjkf2jBkTTHgJOh2OWe2463DBwepj+uq8fPkS586dS/E1XLZsGcqJUQ3bJwkiqpctmyI7/6VXly6oFZ1Qt6hUMKhU4DUajBw2LGbM69evMeL77/HdwIFS8lrisyE8PBy9e/cGEaFq1aqfpDSTROohJaglPkvevn2LbBkyoJrRiGwch5HDhydr/tmzZzFkyBBoFQrcd7hwz+GCUi7/oC3kkyZMgF6thl6txpSff4afnx+uXr363qT3kydPYBdFtBSiJBtG/CuQ+IdCPj7owQsYzwswyWS4ZnNAUKth1enwqyCiHMehf69eMeMPHz4Mk8EAs06HqmXLxiRFb926BZNGg+HRUiDVBAGzZs0CELUt7n1Jy/DwcOTLkgVLjVFNDIvxQhzN79WrV6Njy5aYP28e3G43Mlmt2ButfZxXFHHo0CEAUZIc169fjxMYWnkex6MrHXKKYrI6gCdGWFgYBvXpg7KFCmHC2LHYvHkzjCyLHIKAQjlzpjgx/Q8FcuYEzzB44HDhlsMFGcPEee+9OlgRAACCH0lEQVT//PNPdG3fAcuXL8cff/wBO6tHUYMBngoF9llsaM0L6NiqVaLr7N27F9l5HjcdLkwXjCieL1+i491uNyb/8gsUDIP7DhceOFzQq1TJrkCRkEhvbt68idy5c4NhGIwZM0Z6yCKRpkgJain+lvgyefz4Mdo2bYraFSvGxKSfOkFBQR8kodisXj0M5AXcc7hQShCxaNGiVPQubRk3bhyaRO+A7MPx6Nq+Q7LmR0REYNmyZZg6dSqePXuGgIAAjB41CsOGDMHjx48TnDd6xAg49Hp48zzqVq0a5/pfvXoVkyZNwq5du5LlT2BgIIrkzo1MXJQEysGDB5M1PyHevn2Lb1u1QhEfH6hkcpyxOXDO5oBOqYy5xylbpCjq8zzacDy8PT2lalSJz4q5c+dCoVDAx8cnpom5xJeHlKCW+Gx58eIFFi5ciG3btqUoaHO73ShVqBAqCyLKCwIqly6d4Ni///4bDapXR9FcuRKtFn79+nWMbERS+euvv1DeHNVM5C+zBQWyZYszRqdS4aLdgQcOF8wyGTroDeBZFrWitbcXGE2oVLx4zPgKxYphSnQjwEKiGEv25OzZs7DyPJx6PQr6+CAgIACzZ8yATqUCp9Xij/dsX69XpQq68gK2mK3w0BtiNYDcsmULPPR6jOEFZOc4zJ83D1XLlEF7XsA0wQgjy8Lf3x/Hjh2DmePgYTCgWN68sZLD1cqWRWNewPecAAvH4cWLF8m6nkmlTKFCmCua8MDhQknRGKMv9z4eP36Me/fuxXrN398fnEoFL7kcdbValFKpUbFkyVhjVq5cCQ+9HiM4HpkNBhTw8cFM0YiJvIhv1Br4Oz0wWRBR65tv4l03JCQEjWrWhF6thqfJBI1CATPHxZHr+C8L5s9HDoMBWeQK1NRo0VBvQP7s2T+aVryERGoSGBiIZs2agYhQp04dqYpCIs2QEtRS/C0hkVTevXuHTq1bo3COHPhpzJhUi7GePHmCMr6+UMpk8LTZcPny5RTZaVavHgZHJ6iLsSzGjRuXKv59DJ4+fQpvT09k4jg4TaaYSuaPwfnz53Ho0CFERETEev3atWsw6fVoLYjIoNdjcTIT/mFhYbh06VKaFIuEh4fDoNFgo9mKrWYrDBoNQkJCEBkZCRnD4G4S5E0kJD5V/t08cd++fentjkQakFj8LSMJiU8Yo9FIbdu2pSpVqtDmzZspV6ZMVDB7Djp+/HiS5jMMQ9v276e6Y8dQk/Hjaf327XHGvH79mkJCQqhTq1YkHj5Cvf5+Qn27dKGrV6/Ga5PneeI4LlnnkStXLroQHExL3wXSrPBwKlSsWJwxzZs0oVYhwdQyOIg0gkghVauQWqmkvYFvqderlzQk8C01atMmZrxGq6WXAAUDFOx2k1qtjjmWP39+uvvoER04d47+3LqVNm/eTH379KEdgpFW6w3UsW1bcrvdCfo7fcECupM3D/VWK6nfiB+oaNGiMceOHj1KDRgZtWH11JqR0dF9+2jx6tUUWbUKbc6Ti1atX08ul4tGDxlCAxgZHdVzpHvgT+vWrYuxsXzdOnK1akl+VSvT9n37yGg0UkBAANWtUoVcJhN1adeOIiMj4/Xt0aNHtGPHDnr69Ol7r7vZYqEL7ki6ExlBjyIiyGw2xxkTGhpKs2bNogkTJtC9e/cof44clNHhoDxZslDXDh1ixr18+ZIEtZrWma1klcnpnIyhDTt3ElHUg76u7dtTm+bNqQkjo456A7VmZCRjGPrL7SaWIToeHkZVAt/Q6PAw4q1WalG/Pu3ZsyeWL/Pnz6enBw/RMdFEJSIiqdO339LfL15Q8eLFEz3P08eOUSNGRhssVnrldtPjPLlp95EjxDBMnLFhYWE0efJkGtivH127du2911BC4mPDsiwtX76cJk+eTJs2baKiRYvS5cuX09stCQkJCYmvmBFDh5L/hg00+NkLmvfTT7R58+Zk23C73bR8+XIaN24c3bt3j+7fv0+5smalV6fPkIGIKge+o+96906Zf+PH028R4eT990N6FhpKv4wdS48ePXrvvJcvX9Lp06cpKCgoReumBhaLhS7cuEHbTpygm/fvU7Zs2T7a2nnz5qWSJUuSXC6P9frOnTupqlJFY3UsfadU0dqlS5NlV6lUUq5cuUgUxdR0l4iIFAoFLVy6lNqFhVCLkCD6beFCUqvVJJPJqHThItT3XSANDXxLgtlEdrs91deXkEhLypUrR8ePHyer1UoVK1akefPmpbdLEh+ThDLXn/qPVMHxdfHmzRsIWh1+N5kxXTDCw2L5YJv/dFhmVSrwWi2y2h1YZzLjhM2OQqKIbdu2pYLn/8/u3btRskgR1KhaNVZzvX+IjIzE2rVrsWTJEgQGBuLQoUMoYDTisNWOXnoDLBwXa/zVq1fhabNBzzDIarPj7NmzcWxevnwZZoMBFUxmaBgGy41mHLLaoVOpUrx1/sCBA7CwLHoaOLj0eqxevTrecc3q1UMPXsB5mwN5eQHr1q2Ld5y/vz/qVakCL7MZxXQ69NUbIMpkyOftHeep/9mzZ2E2GFDKbIaV599bYfHgwQOULVIELqMpXlmVjRs3wtvlQjaNFo04Hhaeh4ZhcMBqwzW7E5xSGeNDZGQkalasiKwcByvLYsovv8TYOXPmDDIYDFgommCWydAv+tr8/vvv6Nm5M8oXKYJpv/6Kw4cPo3XTpqgULeViZllcu3Ytxs5PP/2ExtFbHPtxPDq3bZvo+f3Djh07YGVZdBREmFkWBw4c+P/XBQF6tQbTf/0VANCpdWuU4Xn0MHCw8ny8n0UJiU+F/fv3w2azgWVZ/PHHH+ntjsQXBkkV1FL8LSGRRBpUq4ZfBDGqQR3LIm+OHLh69WqybAzu1w/5eR5tOR52UcSwYcPQMnqn5AiOR1GVCjUT2GWXFPJnzYrfjVE7B78xW7B+/fpEx58+fRpmjoOPICCrh4cUEyKq8vnFixfYv38/nHp9VC8YXoj3PiI+3G43bt++jb///jvJa/r5+WFA374Y8f33yd6l+19ev36NkT/8gCGDBiXLBwmJT41Xr16hSpUqMc0T/7vLQeLzJbH4O90D3ZT+SAHy18XDhw8hajS45XDhnM0BtULxwVvrLl68CKdej6t2J1aZzLByHASFAgZGBo1MFksyIzXo0KIF8vMCKogiiubJ815NsKdPn8JsMGAox6M2L6BhjRqxjkdERMBhNGK8IGIsL8JpMsVJOn83aBC6Rwe+gwwcdHI59Go1Zs+YkWS/z5w5g0mTJuHo0aMxrx08eBDff/89tm7dmuA8Pz8/FPLxgV6tRqc2bRJMiPvmz496rB4LRSMMDAMLI8NmsxXdDFxMkB4ZGYm9e/eiQe3aGGDgMILjkUOhRNVKlRL9HGzatAk//vgjTp48GefYoUOHYGf1GMsLyKdUYhjHw6hSgWcYLDOasddig06hiNVYJyIiAseOHYuVVAaACxcuwKnX45LdiX56Dhaex+bNm+P1qYiPD9aYLPB3eqCy2YI1a9bEHHv69CmyZ8wYs8Xxv+skxuHDhzFhwoSYppwA4DSZ8LvJjMNWO3iNBo8fP0Y2pxO7o/XCfU1m7N69O8lrSEikB/7+/ihevDiICP369ZP0FCVSDSlBLcXfEhJJZdu2bTCzLHzVaoiMDD0NHDxttmTdj+Tx8sJmsxX+Tg+UMZvRt29fFOB57LBYUUGtgaDV4vz58yn2sVvHjijLCxjK8TDp9bh7926i41s0aIAR0YURDQQRU6ZMSfHaXwKnT5+GTRRhUKlQu1IlLF++HA2rV8eoH35IUuzhdrvxbatWsOh04DUazJ09+71zgoODkcluRyeORx2eT1SO8mMREhKCZvXqw8YLaFC9+gf38JGQSCnh4eHo2bMniAjVqlWTZP++EKQEtcRnj9vtRqtGjeDFcXCwegwfPPiDbV65cgV2lsVFuxOLjSZ4Wq3wNhhwx+HCIqMJBbPnSLbNy5cv48iRIwgNDY1zLEpj2okHDhdcen2S9NXOnDmDDi1a4LsBA/DmzZtYx968eQOtUonbDhduO1xQKxRxAog5c+agCM/jL7MFpXgeo0aOTNaT+aNHj8LEsmgrGmFj2SRVlT948ACzZ89GoZw5IWMYlCpYCK9evYp37IihQyHK5MgcrZ2cSS6Hl1yOBw4XfjeZUShH1HvQqHZtWNRqGORyeCmU8FEoMFM0IotWh+XLl8dre/GiRchoMKArx8PEsjhz5kys45MnT0YbMaoSZppgRG6FEhaeh4njoGMYqImgV6tjJXwTY2Dv3lDJ5TAbOOzfvz/BcWNGjoQPx6O1IMAmCHE6bIeEhODq1aupEgwa9Xrssdhwxe6EUauFn58fvm3VCmV4Hr0MHCwchydPnnzwOhISaU1oaCi6desGIkK5cuWkz61EqiAlqKX4WyLphIaGfnB15+fOiRMnoJLLccJqx53o2Pvdu3dJnt++eXNU4QWMiE4g37lzB/26d0d2Dw80qVMnTqyfXEJDQzFuzBh0btsWx44de+/4nl26oCkv4LjVjiKCgCVLlnzQ+p87VUuXxnhewN3o/j4J7f5MiFu3bsGq0+GGPaoYxPyf3a/xcePGDXhGFxNdtTuhUSpT6H3qMWnSJJTneZyw2VGdF/DjiBHp7ZLEV87s2bOl5olfEFKCWuKLwO1248SJE7hw4UKq2fyuXz+o5HIYDQbMmDEDGQ0GXLA58BMvoFSBAkm2Ex4ejpKFCkFFBB3DIHe2bAgKCoo1pnDOnOjGCxjLC7DwPN6+ffvB/jeqVQv5BQH5BAFN6tSJczwiIgIDe/dGQW9v9OzcGWFhYcmyP+S779DrX1sP3yc5cffuXVh5Hjm0OtTQaHHP4UItrQ5KhkGrRo1iqg/CwsIw6ocfoJLJcMrmwB2HC7xMBm9PT2TPmBF5BRFmHYtlS5di79690BKhhU6H5lodtEQYyvHwd3qgv4HDgL594/WlSc2amBK9FbODIGLixImxjp8/fx4mlkVXAweXWo2yJUrg6tWrmDt3LopyHG7YnRjPC6hdsWKseUePHkXxfPngmzcvDh8+HOtYaGjoe6VT3G431qxZg4kTJ+LOnTuJjv1Q5s2dC06jgaDRoHfXrjE+/jhyJNq1bo2LFy+m6foSEqnNkiVLoNFo4OHhkaSbbwmJxJAS1FL8LZE0tm3bBkGng1apRM/OndOsCXNoaCgePXr0yTZ5drvdqFGhAnwFEUUFEXWrVEnW/KCgIHw/ZAjaNW0aJ4b82Pz999/YsWMHKpcqBSvPo1ObNl/EFvpz586herlyqF6+fLLvGauXK4eRvIhbDhfyCQI2bNiQrPmPHj2CoNVin8WG+aIJXnb7e+eEhIQgs9OJdhyP6jyPamXLJWvNtGDYkCHoGH2v1Yvj0aVDh2TfQ0pIpDZ79uyBKIowmUxS88TPHClBLSGRCP8kFd1uNwb27g21QoHMTidOnTqFTm3aQNDpUKpgwUR1vDZs2IDsKhXuOFwYzwuwK5Vxgpr79++jVcNGqFu5SrySEykhIiICGzZswMaNG2MFladPn0apAgVQxCfnB0k4rFmzBlkMBkwTjMjD8Zg9a1ai46dOnYpmooheegNa6Fj4Oz3QUsfiW1aPwoKAFStWAAC+698fJQwG2GQy/CyI+N1kBhut9xwcHIx9+/bh+vXrqFetGjIZDGAZBqM5Hg8cLsiIYNaxaCMaYWZZHDp0KF5fJk2ciPw8j3G8AKtWiylTpsRJHp8+fRo//vhjrPfqt99+Q16Ow0W7Az14Ac3r1485FhERAasgYKpgxHTBCDPHpbvcwMuXL7Fv374EK0qfP38Of39/jP3xR5TKnx9NGzSAoNPBpdejQvHiePToEZYuXRqjWy0h8alz9uxZeHl5QaVSYfbs2Z9sIkPi00dKUEvxt0TSyJ4hA5Ybzbhqd8Kl13+QDEVCnD9/HnZRhKjRoFyxYggODk71NVKD0NBQrFy5EqtWrfpsk3b79u2DkWWRSxCRM3PmBHc6fm78I384hhfwIy/Aw2JJVs+dS5cuwdNmg1IuR/P69VOUsJ81fTqMej0y2mxJjq39/f0x9LvvMHbs2E9CTuPevXvwsFiQSxRhUKqgUyph5rgPKgx49+4d+vfsibqVK2PTpk2p6K3E18SNGzeQPXt2KBQKzJs3L73dkUghUoJaQiIZ/JPsWLVqFQoIAs7aHOjI8WjXrFmCczZu3IhsKjVuOVwYzfEwKhQ4cuTIx3I5Fm63GxmsVvwsiJgnmiCybLK2H/7X1tzZs1G/alVM/vnn9yaCtm/fDi+DAdMFI0SZHAaZDHaZHKetdlQWxZgvkoq+vlhoNGGbxQqHTA6zTIY6tWrFsnXx4kVkMBhw1+HCbosNBoZBPZ0OOb28cOLECfz6669Yt24dqpQqhRL58mHnzp2x5kdGRmLar78ip6cnHFotshoMaN24caL+L1q4ELxGA1GphEomQ6GcOXH//v2Y4+/evYNaocANuxM3HS5olcoP3o75Idy9excOoxFFTCaYDQacO3cu1vFpU6Ygg9mMzC4XfAyGKNkUtRoNtFr4OVwoJAiwGY2oajTB02DAr5MmpdOZfFpERkbC398/XqkeiU+DFy9eoGrVqiAitG3bNs6OFQmJpCAlqKX4WyJp+GTMiMVGEy7bnXCw+jTZgVW3ShWM5AX4OVwoLYpYunRpqq8hEUXNChUwKXqXYVWjEQsWLEhvl1KFgIAAaJVK3ElE/vB9uN1uhISEpJGH6c+FCxeiKszLlUv0QdObN28wbdo0+PA8bjtcmCKIKFu4cIrX7dKuHarxPKYIIiwsK+3ilEgxr169QuXKlUFE6NOnzxex8+NrI7H4W0YSEl85AQEB1LZJEyqWKzfNmjGDGIYhIqI3b96QlZGRWSYjL4ahN69fExFRWFgYjfnxR2rbpAnt2bOHiIiqVatGOcuXoxyPH9HYwLfUvGNHKl68eLqcDwD6+/lzqqbRUnmNhhAZSW/evEmRLYZh6NvOnWnt1q3Uu1+/mGuTEJUrV6Z+Y8bQ6ixe1LJjB1rx11/kNuipZlAgvXK5qEmTJkREVLd5cxoRHETL372jYLjJwrJUq04dOnLkCC1dupSePn1KgiBQYEQEXQkPp9NhYcQJAuUbMIAOnjpFRYoUoZ49e9L3AwZQkYuXqO19f2pcty69jn6PiIhkMhm1bd+ebj98SHkBehwYSH+sXk0HDhxI0P/vBw6kFXqOTput5GBZmr9iBWXIkCHmuE6no5ZNm1KNoHdUIyiQGtevTwaDIUXXNjVYvHgxVYuIpHVqLXVkZDT7119jjl27do1GfvcdLWDklOH5cyrjBpVWa6iWWkN+EZH03O2mF2HhZI2IoHkaLU1RaWj0kCHUqXXrFH9evgQCAwOpVKFClC9bNvJyOunq1avp7ZJEPBiNRtq0aRMNHz6cFi1aRKVKlaJ79+6lt1sSEhISXyTT5s+nPmGhVPD5U2rZsQPlzp071ddQq9X0lojCiCgYIJVKleprSERhsdnoIkB3IsLJLzKSzGZzmqzj5+dHVUqXpjyZM9OC+fPTZI1/w3EcVa1YkRoGB1Gj4CCqXa0asSybLBsMw5BarU4jD9MXt9tN1SpUoBJnz1GJs+eoWoUK5Ha74x1rMBgoR44cUfMACgORTC5P8drnTp6ktgolNdSxVFCrleJriRQjCAJt3ryZevToQZMnT6batWt/1feuXxwJZa4/9R+pguPjcOXKFTSqUQNNatfG9evX09udNKFTmzZoyAtYZTIjg94Qsx0rICAA+byzw4vjYOa4mGZ5fbt3RxlewBhegJllceXKlRhbQUFBCVYZ79y5E+PHj4/TrC8t6N21K7w4Dj48j0a1aqXbFvjIyEjcuXMH169fj/N0c/369aj0zTcoljs3Rv3wA36bMwcuvR7VTSZksFrx9OlTLFywABmtVuT39sbZs2fj2Oe0Wpy2OeDncMGp18f5jEZERIDT6eCjiKqm+EUQUaFYsQT9zZMlCyYLIvZZbDDpdLh9+3acMW63G/v378e+ffuStW0wIe7fv48DBw6kaEvfnDlz4Mvz2GuxoQrPY8Tw4THH9u/fjwwKBfwcLkwTRGgYBrXMFhi1WmT28ACn1aJ9q1Yw63T4TTShgVaHkio16vMCvm3V6oPP63Nl7ty5qCSKuO9wYch/JF4kPk02bNgAnudhNBqxffv29HZH4jOCpApqKf6WSDIRERFpKrtx69Yt5MiYEXKZDE3r1E13CbUvmSdPnqByqVJwGY0Y0KtXmt0nVCxRAr15AetMFlhZFlevXk2Tdf7N8+fP0axpUzRs0CDWLsjUZs2aNbAJAswGAwrkyIFWDRvh8ePHabZeavD27VtoFArccbhwJwk7QSMjI9Gkbl0oZDI4jMYPuoedNHEisnAcmohG2EUxUelMCYmk8k/zxJw5c8Z73y7xaZJY/J3ugW5Kf6QAOe2JiIiAh8WCYbyAwbwAL4fji9T6rOjri99EE/ydHqhuNGHx4sUxx0JDQ3H+/Hm8fv065rWS+fJhpckMf6cHapjNMbrKibFq1Sq49Hp8y/MwsSxOnz6dJufyD263G0eOHMHevXtTJYmaEl6/fo3CuXJB1Gjh5XDg7t27AKIaHDSpWRP9e/WK1SiyVP78WGaMuq5VTGb8/vvvsey9ePEC27dvjxVsDuzdG5k5DgVFERVLloz3XKdMmYLMShVuOlwYw4uoXLIkAODBgwc4depUrBugU6dOIUfGjLBwHKZOnpyKVyN+duzYASPLIr9oRPaMGdGgRg04jUa0qN8g0e2Fz58/x4ULFxAUFIT/deiALA4HWjZoiA0bNqBjq1b4dfJk+Pv7Qy+TIbNcAZGRQUaERYsWxXqgAgCrV69GvqxZ4aVW45LdicVGE8oULJjWp/7JsmjRIpQQBNxyuNCNFxKV9pH4dLhx4wZy584NhmEwZsyYdPt/T+LzQkpQS/G3xKeHtF37y8HH0xN/mS144HAhnyhiz549ab5muWLFUJfn0Ybj4e3pmSYPOkJDQ2HQaLDBbMFfZgvURCir1aJMkSKpvlZq07BmTRQURBQURDSoUSPRsTOnTQOv0cCi06FLu3bvtf327Vv8r0MHVChaFEuXLIlzfMuWLZg+fXqaPjiQ+PrYvXt3TPPE/fv3p7c7EklASlBLpIiXL19Cr1LhnsOFuw4XVHL5F6nzuWrVKthYPb4xmeFps+Hp06cAovR9c3p5QcYwaFSzZkwjlPGjR8OH49CB42E2GODn5/feNZrXq4eJfJTWWyeex7hx49L0nJLD0aNHUTRXLhTMnj2moeLsmTOR1elE6UKFcPPmTRw7dgylCxZE2cKFcfTo0QRtnTx5EjNmzMDFixcxadIk1OIFPHC40IMX0KVde9y+fRsmlsVPvIBavBBLE7pjy5aozwtYYDTBodfHSuLfv38fLrMZJc1mmPT6mM7nbrcbBw4cwObNmxPUC46MjESbJk2glMvhYbHg/PnzWLVqFUStDll5HuWKFUtzrWG3241JEyeiWpkyGD96dEzyrGrp0pgmGOHv9EAFvQG5tFoctdpRgecxceLEeG3t3bsXRlYPL45D0Tx5YvTFT548CQvLYiTHoyDPY+zIH1GyYEEU0xtQlOOQzelE4Rw58MOQIXEeND19+hQZrFaUEwSIavUn9fn82ISGhqJ+tWqQMQzyZM0qBdGfEYGBgWjWrBmICHXq1In1YFFCIj6kBLUUf39NPH36FM+fP4/z+qVLl7B48WLcunUrHbyS+JKZO3s2bCyL/KKIYnnzprm2c2RkJGQMgzsOF/ydHrCxbJrEcYGBgdAqlbhgc2ACL8DAMKio1kAnk+HRo0epvl5qEh4ejvXr12P9+vXvTd4LOh0OWG24bnfCpNW+9563S7t2qP2ve7njx4+npusSKeDMmTPo06MHpk6d+kXvSvmneaJSqZSaJ34GSAlqiRThdrtRpUwZlBRFFBdE1K5UKb1dSjMuXLiAtWvXxgrcWzRogN58VCVlMUHA8uXLAURdlz/++ANjxozBtWvXkmR/yqRJyM/z+FkQ4aHXY8eOHWlyHv8QHh6O58+fv7fi3e12wyaKmC4YMV80wcjqce7cOVhZFpvNVnTSG2BUq6FhGPzMC8inVIIhQk4vrzhByo4dO2BlWbQwmmBiWfTv3x+VBQH3HC504AV079QJmzdvRuno6vNNZivyeHnFzA8ICEDntm1RvkhRLPtPY5yJEyeihSDA3+mBUbyAlg0bJvuahISExFyPfFmyYpXJjPsOF/IKInbt2pVse8lhyZIlyMlx+IUXYVer0ahhQwQFBaFt06ZoywvYZbEho0aDWjod/J0e6MrxGNS/f7y2KhYvjmmCEQ8cLpQ2GrFy5UoAwIwZM9DcGLUTYI5oRM1y5REYGIjZs2ejTq1aKM1x+NNkQR6Oj/ks/5uDBw9C0GpRRRRhYlkcOnQoTa/Jp45UwfV54na7MWXKFMjlcnh7e+Py5cvp7ZLEJ4yUoJbi76+FUd9/D06tBqdWY8rPP8e8vm/fPphZFnWjCwASa5omIZESLl26hF27dsWRh1m7di1aN26MXydPTvKupwcPHmDq1Kn466+/ErzHKVukKOrzPNpxPLJlyJBmSbkfhgyBUasFz8gwR4wqNqmmN2D+/Plpsl564GE2Y5HRhN0WG3iNJqaIKyHKFS6MxdH3ItVNJqnRaTpz7949mPR69DNw8OV59O/ZM71dSlNevXqFSpUqgYjQt29f6V7uEyax+FtqkiiRIAzD0F87dlCXqVOp+4zptGbz5vR2KdmcPHmSfPPkoYLZs9POnTsTHJcnTx6qX78+mUymmNfCQ0OJIyIVEekYhsLCwogo6ro0atSIhgwZQtmzZ0+SHz169aK2339PZ8qXo4lz51KlSpUSHf/06VPav39/rKZ/R44coaK5clFhHx/at29fgnOvXr1KXk4neTmdVLl0aQoJCUlwbEREBL1884YqaDRURqOh8PAwevDgAVmUSsqjVNKZ0FBqq1ITQ0QRRMQyMrrjcFHFFy/ph0GDYtlas3w5/U+uoJ80Wmouk5NcLifkzk2ZHz+i03YbDR05kooVK0Z3GKL+Qe9oQFgo1W/WLGY+x3E0e+FC2nPiOLVo2TKWbZfLRZcAuhweRseJyCNTpkSvX3z80/Dk7du3ZDSb6FxEBN2KiKBnEeGx3vd/ExISQuPGjKHe3brRlStXkr3mP1w8f54quUHT3r4hHxD5bdpEzerWpQlTp9LTggWok5yhWm3a0gmViqqHBNF6hZy+7dIlXluiyUS34Ka/3ZH0LDKSBEEgIqJy5crR9tAQGv/2Df0cGUFV69cjlmWpc+fOZDIY6BtiqKhaTcWI6O7du3Hs7ty5k5oqlDRfy1I3uYKWzpuXrHN8/PgxfTdwIA0fMoRevnyZ3Ev0ySH/gEYwEukHwzDUq1cv2rNnDwUEBFDRokVp9erV6e2WhISERLrx5s0bGj9+PB0QjLRLEGnwd99ReHg4ERGtWLiQuskVNF2loSaMjNasWZPO3kp8aeTKlYu++eYb0mg0Ma/t27ePerRpQzm376CFI0bQ1MmT32vn2bNnVCx/fjr0ww80oFUr+mnMmHjH/bVzB+Xp2ZNsnTvRvmPHSKFQpNq5/JsRY8bQuevXqWaD+rQxIpz2hYTQZYYoa9asabJeerBszRr6QamgxiFB9MvUqWSxWBId37prVxoSFkZdQoPpHBFVrFjxo/gpET+nT5+mQhot9TFwNEihon07dqS3S2mKIAi0ZcsW6t69O02aNElqnvi5klDm+lP/kSo4JN6H2+2Gy2zGFEHEIqMJIsvGyCEkhYsXL8JhNMKo1aJ04cIfTd7k7NmzMBsMKGIywWky4d69e4iMjISF5zFTNOI30QSjXp+gLEXjmjUxlBfg53ChtChiSTwaYP+mV5cuyGTgkJXj0LpxY4SFhaFs0aLwEQQIcjnmiibU1WhhkslQQqXGfYcLgzkeRfPmjdXsZNqvv6IAz2OOaIQ3x+GPP/4AgBhplH/w9/fHlClT8OeffyZY/fDw4UNUKlkSme12jBs1CpGRkRjUpw98PD3RqmGjFDUUfP78OQrkyAGtUomcWbKgkE9OuEwm/Dx+fIJzWjdujIo8jz4GDhaex7Nnz5K01oJ58+AQRWTz8MDhw4dx7Ngx8BoNDAyDfEoljDIZlHJ5nHmvXr3CsWPHEpUm8PPzg2/evDDq9ejXo0esa3j69Gl8//33WL16dazXDx48CBPLopLZDAvH4caNG3HsLlmyBHk5Hn+YzCjFC5iQyHX5LxEREfDx8kIbjkcTXkCxvHmTPFdCIq3w9/dH8eLFQUTo16/fF721USJlkFRBLcXfXwHv3r2DXq3GXosNW81W6DWamMqyXyZOhC/PY5nRjFwJ7LCS+LqJiIhI0q7M5PDTTz+hIx+1M3KyIKJprVrvnbNu3TpUMEftwlxnsqBg9uyp5s+H8PbtW3Rq3Rql8ufH7Jkz09uddOfIkSNYvHix1ATxE+CfCuo+Bg7FeB4DevVKb5c+GrNmzYJcLkeuXLmk5omfIInF3+ke6Kb052sIkN1ut9To6QOIjIyEUi7HJbsTtxwu8BpNsr8sQ0ND8ejRo2S/D35+flixYkWchnT/JSwsDK0bN4bIsvimeHE8f/4cndu2xXccD3+nB9pyHH788UeEhIRAJZfjmt2Jm3YnWJUKr169itdm07p1MZAXcNfhQnFBxLJly+B2uzFm5EgUy5ULPTp1iqUB53a7cezYMTRr1AhapRI5MmbE+fPncfjwYSxatAgiy8LBssibIwfyZssGg1IJViZDfQMHk16P69evA4i63uNGjULN8uUxferUDwpka1eqhM4GDjssVmQ0GLBjxw4cP348yQni+Bg+dCia8jweOFxoyvMYPnToe+d42WzYb7XB3+kBb4UCmez293bofvz4MXiNBjssVswWjcjscAAAJk2ahFxKJR44XFhhNMOm06X4XFLCzZs3sXbtWjx8+DDe4263GyOHD0fxPHnQr3v3OA8WEuPJkycQNBo8cLhw3+GCXCZLc11vCYmkEBoaim7duoGIUK5cOTx58iS9XZL4hJAS1FL8/bWwaMECGDQaCDod/li1Kub18PBwDB04EOUKF8b40aO/yGboEinn/v37yJYhAwxqNYrkzp1qvR3OnDkDE8uiC8fDU2+It6Hef7l+/TrMLItfBBE1eQEdWrRIFV8kJL5kzp07h369e2PGjBlfneTFrl27IIoizGYzDhw4kN7uSPwLKUH9GbJp0yYY9XpolUpMnTw5vd35bOnfsycyGgzIxvNoXr/+Rwm8r127BrPBgBpmM8wsm2jH6vnz58OXF3DW5kALXkCvrl3x/ZAhqM4L2GexoRjPY+7cuQCA7t9+Cy+OQxaOQ7tmzRK0efPmTWRxuaCUy1GncmWEhYVh9erV8OF4rDZZUIEXMGLYsFhzDhw4gMwch7M2B0bwAiqVKBFz7OXLl7h+/ToiIyPhdrtRqWRJzBCiGj42N5owY8aMD7xisQkODoZZrcYCowkPHC4U0epgMxqRSxRhNhhw4sSJFNkdPnQomkUnqJu9J0EdERGB0SNGwNvhQBaVCp1YPUwyGepotPDNnz/RdW7dugVeocBNhwsHrDbolSoAwKlTp+DQRWl7dzVwqF6+fIrO41MkMjISubNmRXOOR32eR4kCBdLbJQmJWCxevBgajQYeHh44duxYersj8YkgJail+Ptrwu12SwloCbx58ybJO4p6dO6MztGxcx1eSLCBd0o4efIkRo0ahS1btiR5zvbt29GgWjX079kzRbspJSQkvi5u3LgBb29vKJXKL0of/nMnsfhb0qD+RGnfsiX9ptbSXtFEw777jp4+fZreLn2WTJgyhVbv3k0LN2+mpatXE8Mwab7m2rVrqS4jozkqDfVSKGnJnDkJjg0ICCAXw5BFLqdMRBTw8iUNGjqU+AoVqL2coUING1K7du2IiGjqnDn0+44dtGTrVpq/fHmCNrNmzUo3HzygN4GBtH77dlIqlXT79m3yZRgqrlZTRSK6de1arDnv3r0jTiYnUSYjp0xOgYGBMcdEUSRvb2+SyWTEMAyVKFeOlsFNfwS9o71hoZQ/f/4PuFpxuXr1KqkUCur/+hVVefaUroSGkK/bTdu1LPVk5DR53LgU2e3Zuzddtdsp+/OndNVup569eyc4dtLEibRh8mTqExJKgW43rQsKor/MVqqj09HThw/fuxZDRKWf/E21nz2lSLiJiKhQoUL03ZjR1Fejojv589HcpUtTdB6fIjKZjPYcOUJZe/ag/H370uY9e9LbJQmJWLRu3ZqOHj1KSqWSypQpQ3PmzIl6Si8hISHxlcAwzEeJgyU+TQBQhxYtyGYykd1opMOHD793jkwup3AiAhGFU1S8Fx9rVq8mmyCQw2ik9evXJ8mfwoUL07Bhw6hatWpJPofKlSvTmi1baOKvvxLLskmeJyEh8XWSLVs2OnbsGJUtW5Y6dOhA/fv3p8jIyPR2SyIxEspcf+o/X3oFh8iy2GOx4ZLdCUGjgb+/f3q7JJFEVq1aBR+OxyqTGWV4AaNHjkxw7LNnz5A9Y0Zk4XlYeR4XLlyIObZjxw745s6NisVLvFcq5H3cunULFp5H1QSqusPCwlClTFnYWRYiy2LXrl0J2goPD8foESPQpGZNrFmz5oP8io8XL17AbODQV8+hCqtHzixZUJAXcNhqR1NeQM8uXVJs2+12IyAg4L0VRC3q18dP0dp4HTkeSoZBQZUKeobB+HHjEp376tUr8FotxvMCBnE8vDNkSLG/Eh+G2+3GgF69oFOp4JMp0wf/Hkl8/rx48QJVq1YFEaFdu3YfrbeAxKcJSRXUUvwtIfGVcPDgQWTlONy0OzFLNKJY7tzvnfP3338jb7ZsUMrlKFu0KN6+fRtnTEhICAwaDTaarfjLbAGn1Uo9HyQkJD4pwsPD0b17dxARatSogYCAgPR26asmsfibiTr++VG4cGGcOnUqvd1IMxYtWEA9//c/Yojof9260bhffklvlySSCAD6acwY2rh6NfmWKUPjfvmFVCpVguNDQkLo5s2blDFjRuI4joiIXr9+TZk9PGiiSkP+7kj6wyjS5Tt3Psivhw8f0pEjRyhv3ryUPXv2OMfdbjfdu3ePTCYT8Tz/QWsllwMHDtCsX34hV8aM9MOYMXTjxg36edQoMprN9P2YMTRq2DBa9+eflD9fPlq2di2Jopim/mzYsIE6N29BFdUq2hoWRvOWLqWTJ09SuXLlqFKlSu+dv3nzZhrWpw+xLEszFy+mvHnzJnntd+/e0Y4dO8hqtVLJkiU/5DS+eg4dOkSta9SgP7Us/RUSTAd8ctDuo0fT2y2JdCYyMpJGjhxJo0aNooIFC9LatWspU6ZM6e2WRDrAMMxpAIXT24/PiS89/paQ+FI5fPgwtalenbbq9LQzNISWuJx07OLF984DQKGhoaTRaOI9/u7dO7KIIh03mimSiIq/eE6v3r5JcLyEhIREejFr1izq0aMH+fj40MaNG6X4P51ILP6WEtSfMAEBARQWFkYWiyW9XZH4yNy6dYvK5M9PxziBXrjdVPr1SwoMCUlvt5JEQEAAbdmyhRwOB5UrV+694/38/KhQrtw0QKGgo0Skq1CeVvz5Z5r7+T6OHj1Kp0+fpm+++YZ8fHw+ypohISFUsmBB0jx5Qg/Dw6nLwIE0eNgwOnjwIF24cIGqVKlCWbNm/Si+fAls376dBjVtRn9pdbQrJITmuRx0NAk3YxJfBxs3bqRWrVqRXC6nlStXJunhk8SXhZSgTj5fQ/wtIfElAoC6tGtHi5cvJ4NORxu2baPixYuniu0RQ4fStMmTCUTUd8AAGjZyZLzjrl+/TqdPnyZfX1/KnDnzB6/r5+dH8+fNI5PZTF26dCG1Wv3eOW63m0JDQ0mr1X7w+h+DTZs20ZxJk8grWzYa+8svpNfr09slCYnPml27dlGjRo1IoVDQunXrqFSpUunt0leHlKCWkPjMcLvdVL18BXp84QK9cUdSo/bt6afJk9Pbrffy7t07KpInDzlevaZrQe/I4e1Nv//5J2XLli3BOTt27KCRzVvQH2oNXQoPoz5aDV3x8/uIXn86HDlyhDrVqEnbtDq6FhFBnWREYyZNov6dO1NZpYp2RoTTkdOnE72eEv9PeHg41a5Uic6dOkWhRPTH+vVUsWLF9HZL4hPi5s2bVL9+fbpy5QqNHj2aBg8eLGm0fkVICerkI8XfEhKfN0FBQaRWq0kul6eq3QcPHhDDMOTh4RHv8SNHjlDtypWpuFZLR0NCaM/hw8naYfhf3r59SzmzZKEqoWF0myHyqFiJlq5Zneico0ePUp1q1SggMJDat25NM+fP/6S/869evUplixSh75Vq2gU3GatXowUrVsQaExgYSONHj6YXT59R9359KVeuXOnkrYTE58ONGzeoVq1adPfuXZo7dy61bds2vV36qkgs/paaJEpIfILIZDLauGsn/bTydxo7Zw5t+usvUiuV1LV9e/qUHyqdPHmStK8DaImOpQW8QP5XrlLF0qUpIiIiwTlFihShB3IZ9Qt6R/3CQql+06aJrrF3716aMmUKXftPo8cvAQ8PD/o7LJR2hYbQ+rBQypw5M/2xaBENUahoolZHVRRK2rZtW3q7+dmgVCppy969dPjCBbr78KGUnJaIwz/NUxo3bkxDhgyh+vXr05s3b9LbLQkJCQkJiVQBAP355580ZswYunLlCul0ulRPThMRZciQIcHkNBHR8oULqYtcQbNVGmrOyGjVypUftN7169dJiIigkXoD/aTW0s5du947p/e339IImZwuWmy0fe1aOnbs2Af5kFT2799P3hkyUEarlVavTjyJ/m+uXbtGebVaqqfTUSuFki6ePRtnTOtGjeji7DnErV1LFUqWpFevXqWm6+mO2+2mQX36UO5Mmahds2YUFBSU3i5JfAF4e3vHNE9s164dDRw4UGqe+IkgJaglJD4xzpw5Q7t27SIAVKVKFVoxfz7VffmKzpqtdODPP2n79u3p7WKCZMqUifxCQ2hzcBCteveO8iiV9Pr160SDJVEU6djZs1R8xA80cv58GjV+fIJjly9bRq1r16azP/5IpYoUeW+S+ufx48nMcZTTy4vOnTuX0tP6aHh6etKCFStonmcG+ru4Ly1evZryFilCq+CmDcFBtD88jPLkyZOqa4aHh9Off/5J69evT/RBwucKwzCUOXPmj66rLvH5wLIsrVixgiZPnkwbN26kokWL0pUrV9LbLQkJCQkJiQ9m6uTJ9F27dnR/wkQqU6wY3b59O138yObjQ7sZokOhIXRAxpB3PP1wkmUvWzZ6TkQTA9/SyNAQKlWyRMyxGzduUI0KFahCsWJ06NChmNcBkJyiEiAyikp+pibnzp2joUOG0NKlS2MKigBQ47p1aUhQME0DUcfWrZP8ILx06dJ0nWGoR0gQDQwPpWbt28cZc/TYMRqi1lBPvYFsMjndunUrVc8pvVmxYgXtWLiQfn4XTI+3bqPxo0ent0sSXwiiKNKWLVuoW7duNHHiRKpbty69ffs2vd366lGktwMSEhL/z8Rx42jK2LFkVSqJy5qVdh85QsFBQWRlGNIzDOllMgoODk5vNxMkU6ZMtGjVKurasiUxEeHkpdFSPu9sZDabE53ndDqpV69e77W/dulSGqRQUT2tjkBBtH37dsqRI0e8Y69evUo/jx5N61kDHXn1mjq1bEknLl1K0Xl9TOrUqUN16tSJ+fewESMIbjdtO3mSxrZunSRd76QCgBrWqEGPTp4iN4FWlC5Nf2zYkGr2JSQ+FxiGod69e1PBggWpcePGVLRoUVq4cCE1atQovV2TkJCQkPjCOXfuHF26dInKlSuXaBVyStj4xx80VKGkbzRaehEaQvv376csWbKk6hpJoXvPnvTk0SOavns31a9Vi1q1avVB9niep31Hj9LMX3+lohYL9R84MOZYvapVqd7LV2RjZFS3enW69+gR6fV6+mX2bKpbowaFBL6lpo0aUYkSJRJZIXncvHmTKpYuTS0YGU1gGHro50eDhw0jAPTm3TvKazSTnmGIIaLg4GDiOO69Ns1mM504f542btxIXTJlosqVK8cZU61aNeq3ZQtlCSEK0Go+Wt+cj4W/vz/lA1EelYp8w0LJ79699HZJ4gtCqVTS9OnTKWfOnNSzZ08qUaKE1DwxnZE0qCUkPiE8TGZaKldQVoWCKgQF0srduyk0NJRqV61K8shIypM/P23esydJTUDSk9DQUFq2bBlFRkZSy5YtSafTJXkuAHrw4AFxHEeCIMQ6NuqHH2jrr1OpKcPQhIhwWr5pE5UtWzZeOydOnKDmlSrRLtZAZ8PCaLBWTdcfPPiQ00p3tmzZQrN/+YW8smWj0RMnksFg+CB7r1+/Jg+rlS6ZreQmIp+nj+n127efTeMYCYm04OHDh9SoUSM6evQo9e/fn8aNG0cKhfQ8/0tE0qBOPlL8LSGRumzYsIG+bd6cimm0dDwinI6fO5eqyZFhgwbR3jlzqQYRTYkIp52HD1O+fPlSzf6niEappFNmK3EMQ0UDXtOxy5dirml4eHiSE8TJYfHixfRXv/40Ta2hvSEhtCCLF+05cYKIiMb9+CNN+uknUjIyqtO4Ec1asCDV1g0PD6f58+fT8+fPqW3btqn+gCO98fPzo+IFC1JWmYyuhITQpp07ydfXN73dkvgC+ad5olKppD///FNqnpiGSE0SJSQ+E4rny0fl/O5TPoWCugUH0fnr18nDw4MCAwPp+fPn5OnpSTLZl6vM43a7qUX9BrRr5w6KAGjhihVUt27dmOMRERE0fvRoOnv8ODVs1YqaNW+eqK0GNWrQiUOHKCgykmbNn09NmzX7CGcRPyEhIbQiurFJ8+bNSaPRJGv+mjVrqH3TpjTawNFut5uM1arSwg/U74uIiCBPm426Rbopgojmq1Xk9/jxJ90wRkLiYxAWFkZ9+vShmTNnUvny5WnlypVktVrT2y2JVEZKUCcfKf6WkEhd6letSmWPn6CGOpYGBL+j4iNHUo8ePVLNfkREBP0yYQJdPX+emnfoEG8V7pdG92+/pd2rV5NBJiM+Z07afuBAmt8/Xb58mcoWK0Zd5QrazhBV7dqVfhw3Lub47du3KTQ0lHx8fKQ4O5k8f/6cTp06Rbly5aIMGTKktzsSXzA3btygmjVrkp+fH82dO5fatGmT3i59kUgJagmJz4Tbt29T19Zt6PmzpzRk7Fhq2LBheruUprx7947kcnlMsvbEiRPUrFIl2ska6FRYKI1gdXTFzy/F9t1uN924cYNEUSSbzZbo2F27dtGSuXPJO1cuGvjdd6RSqVK8bnxUKVOGQi9eIoaIFLly0o6DB98boJ4/f56G9OlDBND+Y8conxv0h9lCJ0JDabTZSKdToVHkhQsX6LtevUgml9P4X3/9pLt/P3z4kObOmUO8IND//ve/ZCf5JSSSy5IlS6hz585kNptpzZo1VKxYsfR2SSIVkRLUyUeKvyVSi8jISPp+8GDau307VahWjUaOHZsmzfs+dYYMGECnfptHreUK+j48lGatXk1VqlRJb7feS0REBP3y00904fRpatK2LdWuXTu9XYoBAO3atYuCgoKoWrVq743pHz9+TIN69aLnT57SgBE/pFhO79ChQ7Ri4SLKkSc3devR46v8PEtIfO68evWKGjVqRLt376YBAwbQuHHjpN/lVCbR+BvAZ/lTqFAhSEikNe/evcPoH39Ev169cOvWrfR254tizIgR0CqV0KvVWLZ0KYKDg7Fu3TrYWRanbQ5MEUQUypHjo/hy6dIlmNn/a+++o6Oq9jaOP3tm0hNCQkdKEEW89K4QUJEiTaVbKBYsryIqioAVxYpXBRVQvGAviCIiUhRFUQFRpBcpUqSXJIT0TGa/f4AuFAgpk5yU72etWZKZPfs8s9fxzJ7fnNknzD4dWda2iyxr7xs69JQ2mZmZ9pFRo2zXSy6xb7z+erb9bdu2zd4xZIi9/5577OHDh+2xY8dssMdjd1Q5x+6sco4NDQiwR48ezbYPr9drq0RH26ciy9rHI8vaEMlWdbltz+AQW9nlts8/80y+XnNxk5KSYmMqV7E3lIm0l0dG2j7dujkdCaXEb7/9ZmNiYmxgYKB97bXXrM/nczoS/ETSr7YIzGmL0435N/xl4sSJtnlkpP24XHnbPDLSTpo0yelI+ZaZmWmTk5Nz9ZzU1FQ77PbbbbumTe0r48fna/uvjB9vo8LCbM1KlewPP/xw2jaffPKJvapDBzty+HCbmpqa5209/sgj9qLISPt8ZJStHBZuly5dmue+nHb5xRfbIZFl7fiyUTY6LMzu37/f6UgAHJSRkWHvuOMOK8n26NHDJiYmOh2pRMlu/l1y1wpAqfH111/r2Wef1cqVK/3e96C+ffXjCy8o7c231LZlyxxfdbkkOnz4sG4dPFg9O3f+xxWxzyYuLk7jx4/XG2+8oYyMDEnSoUOH9Nwzz+in6PL6rExZ3XHrrbqwVi3df8MNyrBWbeIOa3xwkF57992Cejn/sGrVKl0UHKJBYeG63e3R8p9+OqXNc089pW8mT9ZVa9bqqfvv1/z580/bV3p6ui69+GIFzPhEe998Sz07X6GwsDBVrVhRr6Qk65WUZFUqX17h4eHZZkpKStLRY8d0bWiYBoSGKdMYVQ8P1y9GanRJO90/apRfXntxsW3bNnlSU/VkeIReCA7VwkWLnI6EUqJJkyZasWKF2rdvr9tvv10333yz0tLSnI4FAMXa1k2bdInPqnVQsC7xWW39/XenI+XLggULVCEyUuUiIzXy3ntz/Lzg4GBNmDxZ369YoaFnuWC4tVYvPv+8rurQQa+MH6/jn/OP+/PPP/Xo6NH6PCxcD2V4deM115zy/BUrVujOwYPV4dff9NvUaRo9fHjOX+C//PLjj7rB5da1YWFqHxSk3377Lc99OW3j779rcFCweoeEqlJAgHbt2uV0JAAOCggI0MSJE/Xqq69q7ty5atOmjXZwgc5C4XiB2hjT1xiz3hjjM8bwM0vkyocffKCbevXS9mefVce2bf1epF78448aGxyq0eERirJWW7du9Wv/xcnA3r2V/vlstf75F13dpYsOHjx41udkZGSoXcuWWvz4E3pnxAMa1K+fJP29tEWWpCxZeb1eXZqcou/DInStJ0D/d/vt2r5vn5o3L5xDQtu2bbUsI12PJR3TE94M9ejb95Q2a3/9Vb2NS91CQnWpy63169eftq89e/YoKyVFI8LCNSYkVD+vXiVjjL5avFgHO3XUgY4d9VUO1sIrU6aMOrVvr76pKeqbmqwrr7hCQye+qgnvvae5Cxf65XUXJzExMUrxuDUu6ZgeTUtRa5ZaQCGKjo7WnDlz9Mgjj+jNN99UbGysduZj+SEAKO2uHzxYb1mfbstI11vWp+sHDXI6Ur4MvflmTQoO1a/lK+qdN97Qxo0b/b6N/73xht568kl1/W2lJjz4oCJCQlSjYkV99913SklJUbDLpSout2I8biWlpJzy/PXr16tVcLB6hoZqgNut1flYrueqa67Rc95MPZacpAUZ6Wrfvn1+XpqjBgwapFvSUnVTWqrc5curQYMGTkcCUATceeedmj9/vv7880+1bNlSP53mJDb4V1G4LP06Sb0kve50EBQ/X8yYoXs9AeofGiZfcpK++uorNWnSxG/9t7/0Uo3+/nuda6WjgQE6//zzT9vu8OHDGjP6QcUdOaz7H35YTZs29VuGomLNunWaHhSsWh6P3k5N1o4dO8560bAdO3Yo8eBBvRxeRonWqsW8eZKk8uXL65ExY9T20UflcbnUq18/7ZkzRwvTUvVu0jFlTp6sGjVq6J777/dL9oSEBD371FNKTkzUPQ88oNq1a//j8Ro1auinX3/VzJkz1bVOHfXs2fOUPvrfdJPuWPSdlqenamGWVyO7dTvttqpXr67IChU0PC5ecZI6n1jHrnbt2nrn449znNkYoxlz5mj27NlyuVzq3r27PJ6icMj+p/j4eC1dulQXXHDBKePqT+Hh4fp+2TK9+tJLahwVpftHjiywbQGn43a79cQTT6hFixYaOHCgmjVrpg8//FAdO3Z0OhoAFDvNmjXT8tWr9csvv+jlFi107rnnOh0p34yRjI7fCsKaFSt0pYy6h4Rqs9erfV6vOmf5NLh/f+3Yv19de/ZU65kzleHz6aVXXz3l+e3bt9cIr1f3+VL0szdTo268Mc9Zhtx6q6pWq6a1a9fq++7dVbdu3fy8NEc9++KLatehg44cOaKrrrrqH9c4sdZqxowZWrVypa66+mquRQGUMh06dNCyZcvUo0cPtW/fnosnFrQzrf1R2DdJ30lqntP2rIEHa6198fnnbeMT65+dEx5uFy5c6Nf+U1NT7bhx4+zokSPt9u3bz9iuQ+vWdsCJtYIrlClj4+Li/n7svXfftfVr1bKXtmplt2zZku9My5cvt327dbO3DBpkDxw4kKPn7N27127dujVfa6cOHzrU1o+MtN2jom3dmJgcrbGXlJRkK0dF2VFlIu3AyLK27b/+v01LS7OZmZk2JSXFXt25sw1zuezUqHJ2ScXKNjokxO7cuTPPeU/W/qKLbJ/ISDusTKStVqGCTUlJyVM/S5cutZMnT7abN2/Ott2hQ4fs008/bSdMmJCrbW3bts0++sgj9rXXXrOZmZl5yliY9u3bZ6tXrGhjy5W35cLC7IIFC/za//79++3tN95oB/bpa9etW+fXvoH82Lx5s61fv751uVz2mWeeYV3qYkqsQc0a1ICfzJs3z5YNDbXBHo+9/667CmQb3377ra0QFmYHREXZUGPsR9Hl7aIKlWx0eLi11lqfz2f/+OOPbD8fbN++3b766qv266+/tgkJCbbXFVfYmIoV7T133GGzsrIKJHdxNunVV22dMmXsPRFlbLmwMLty5UqnIwFwwJEjR+zll19uJdkHHnjAer1epyMVW9nNv83xx51njPlO0v3W2hz91oiriEOSfD6fXhk/Xst//FFXXXON+p1YQqKwlS9TRvNDw1XF7Vb7lCRNX7RIjRs31o4dO9S8Xj29HhKmFd5MfV8rRj/lYxmS+Ph41akZo3tdLm2TtL3uBfp22bJsn/PaxIkaPWKEAo3R1X376rU33/x7iY3csNZq1qxZOnz4sHr37q3o6OgcPW/jxo3675NPKiwiQo+MHasKFSqcsW3V6GhNcweotsejS44d1aIVK3TBBRfkOuu/hQUF6dfo8irjcqlNUqK++uUX1alTJ9/9+tORI0dU//zz1SPLp7VGata3r1594w2nY2Xrtdde09cPPqSXQ0L1SUqyFrVorllffXVKO5/Pp6G33KKPZ8xQw//8Rx/Nnn3Ws+8lqXXjxvrPjp2qLGmqy2jb7t0KDQ0tgFcC5F5ycrKGDBmijz76SDfddJOmTp3qdCTkUrZXEcdpMf8GziwzM1MZGRkKCwsrsG2sWLFCS5Ys0eKFC/XdwoXK9Pk07qWXdOvtt+e6r+FDh2rXe+/rrsAg3ZORpgcmT9a1115bAKmLr56dOqnTryt0ZUioHkxNUbMxj2nYsGFOxwLggMzMTN19992aPHmyrrzySr333nuKiIhwOlaxk938u1B+L26MWSip8mkeesha+3ku+rlV0q3S8Z/kAy6XS3cPHy7l4yIf/tDr6qv1f198oWrGyERG/v0zt4MHD6pcQIBaBgaqjMvog71787WdXbt2qazLaFBomPb7fLpi/YazPuehkaM0K7yMqrrdajNjhkY99phq1aqV620bY0679MXZXHjhhZr6/vs5avvc+PG65rbb5DFGvfr29VsRudNll2nYsmWqaKXAyEjVrFnTL/360+rVq1XT5dJjIWH6PTNTt82d63Sks6pevbrWZXn1W0a6Flurmmf4ee4nn3yipZ/O1LzQME3e9LseHjFCU95++6z9r9ywQVPLVVCEMXrrWKL27dtXoMuIALkRFhamDz74QK1atSpyX3gBAApfQECAAgICCnQbzZo1U7NmzTR06FDt3LlTISEhqlSpUp762r93r5pIOi8gQHUyM3TgwAH/hi0BYjt00Gs/L9eBpGOal+XVnRdd5HSkHNu4caPu+7//U2pqqsa+8IJiY2OdjgQUawEBAZo0aZLq1aunu+++W7GxsZo9e3aRrC0UV4VSoLbWdvBTP1MkTZGOn8Hhjz4Bf5j85pv66KOPFB8fr/9de+3fa5c1adJEVS64QN02b9GhzAyNHjs2X9upW7eugitU0O1HjmivterTp/dZnxMRHqZtGV5lScrw+c56BuqxY8d09OhRnXPOOXk60zo/Bg4apK7duiklJUXVq1f3W78ffPaZpkyZomPHjunFW25RUFCQ3/r2l3r16mlbRoZeyfRqpTFq076z05HOqmvXrlp933166O231aBxY40dN+607eLj43WOy6iKy63zJa08ciRH/V/dtZtu/v47lZNR+apVefNHkWOM0T333ON0DABAKWOMUUxMTI7bW2tPmdcPe+ABdf/6a32alqL44GBNuOYaP6cs/u69/36Flymj1b/8qg+uvUYtW7Z0OlKOXd25s65NPKZyxqWru3bVzn37CvTsfqC0uPPOO1WnTh317dtXLVu21KxZs3TxxRc7HatEYIkP5FpSUpKeffJJHdq/X3fce68aNWrkdKQiLSMjQ0uWLFH58uVVv379fPeXkJCg6dOnKyoqSn369JHL5cq2/eLFi3VD//46lpKip8eN0y233XbGtvPmzdN1ffrIZa06dOyoDz/77Kz9lwRPjhmjVydMUM1q1fTBrFmOnaW7evVqvf7KK6pavbrue+ABhYSEFNi2fvvtN3322Wdq0KCB+vbtW6BfRiQkJCi2eXNlHD6ieF+Wvly4MEcT/MzMTL3//vtKTk7WgAEDFBkZWWAZAZQ+LPGRe8y/geIlPT1d/a+8UnMWLlSz//xHsxcu/McZ1/v379fWrVvVqFEjfqpeglhrFRQQoNUVKinUGDVPiNdvv2/y6wlAQGm3adMm9ejRQ7t27dL//vc/DRw40OlIxUJ282/HC9TGmJ6SXpFUQVKCpFXW2rOeOsgE2Tl9u3dX+o8/qb61ekNWG7dtU/ny5Z2OBT9odN55uj8+QW2CgnVFSpLe/PJLtWnTxm/9e71erV69WhUrViywCVJ8fLymTZumoKAg3XzzzWct8v7888/q17Gj3g8J05fpaVrZsIHmL158SrvU1FS9/fbb8nq9Gjx4cI4m8W9OnaoR996rkKAgvfnhh+rQwS8/Jsm3DRs2qF3LlrrO5dZXRrrz8cd1VwGfBZqenq5Nm45PjHO6fjkAFCQK1LnH/BvFxenOGC5OVq9erW+++UYtWrRQ27Zt89zP66+/rg9HjdL/QsL0dEqy0jt11HWDBys2NpYv/ouIv+ox/t5f77j5Zi369FOFuVwq36Ch5n23qFj/PwEURXFxcerbt6++/fZbjRo1Sk899VSpOMEvP7Kbfzs+ctbaz6y11ay1QdbaSjkpTsNZP//8s0YGBevO8AhV83i0efNmpyMVqszMTN0/bJhiGzfW0088Iae/5PGnkJAQHfb5lOTzKTUry69n8GZkZKhDmza65vLL1bhuXU2fPt1vff8lKytL7S++WD+OfVKzHn5Efbp1kySlpaUpPT39tM+Jj49XeY9HNd1uXeh2K/4My0/07tpVH48erbmPPKKOsbHy+XzZZomLi9M9Q4dqenConvNJA/r2zd+Ly0Zu98HFixerU3CwRkaU0X3uAM2fNeuUNr///rtimzRR3eo19E4O1os+m6CgIDVq1IjiNAAAKDAZGRnq26OHAj0etahfX/v27XM6Uq799ttvurxNG60b+6T6d+mqzz/P8SWbTpGamqpIScGSDmdm6MvPZumZwYPVrF49xcXF+S0z8ubVCRMUERKiimXLasGCBX7te+L//qeXZ8zQY2+/rS8Wfk1xGigA0dHRmj9/vm6//XY9++yz6tWrl5KSkpyOVWw5XqBG8dOlWzfdn56mB5OO6YjH45dlK4qTF8aN0/J33tWw3Xv0wQsvFkih1SkT33pLE4IC1fLIIQ28/XY1bdrUb33/+OOPit+8Rd+GhmtySKieeehhv/X9l3379mnPn3/qldAwTQkN04Lvv9fEl19WuchIRZcpozdef/2U51x22WUKP+88XZJ8TPekpeqhZ545pU1mZqYWfP+93gwJ05SQMP2+ebMOHTqUbZb09HS5JJ3jdquWx6Pk1NRsC8mpqam6ddAgNT7/fD324IM5Kjpv3bpV9c49V0EBAbp10KCzFs3/0qJFCy1MS9P/ko7pNZ9Xbdq3P6XNoD59dPn2HRqXlqbhd9yhHTt25KhvAAAAp7z//vva9+OP2lixsprs3q0xo0c7HSnX5s6dq75uj8aGhuluj0ezPvwwz33dcMMN2lmxklokJuinzEy9EFFG04NCVDs1TfPmzfNjauTWgQMH9PCoUfo6MkoTAwJ143XX+bV/Y4w6duyoHj16FPjFO4HS7K+LJ77yyiv64osvFBsbq127djkdq1iiQI1cm/i//+mm58epzgMjtGTFCpUpU8bpSIVqy4YN6mCt2gQFq42kLVu2OB3Jb5o1a6Yd+/crNSNDTz//vF/7jo6O1iFvprZ4vVrl9So6m2VhfD6fFi1apG+++SbHRVdJqlixokIiIvTflGSNTUlS47p19cCIEVpYNlpflY3WPcOGnXImdVBQkL5ZskSfLV6sDdu26corrzyl34CAANWrXVvPpCTpxeQkRUaWVbly5bLNUqVKFQ2+4Qa1TUxQl8QEPfPcc6c9cyEzM1PjnnlG7Vq21OqZn+mJhKOaOWmSZsyYcdbXe/+dd+rKuHitqVBJS2d/keMPGs2aNdMHs2Zpb8+rdeMTT2jUw6d+WbD/wAHFBgaqcUCgogICdPjw4Rz1DQAA4JTjZwwbBRuj8tYoNTnF6Ui51qRJE823Pn2akqyPZNXkoovy3FfZsmX16/p1WrZ+vbpdfbUW+bL0S3q6NmVmqEaNGn5MjdzKyMiQ2xiVdblU3uVW2hl+7Qmg6DPGaOjQoZo3b5527NihFi1aaOnSpU7HKnYoUCPXPB6PbrnlFj300EOqVq2a03EK3aBbb9XLWV7dlpGmmdanPn36OB3J7wriJ2CNGzfW/Y88osE+r76tUV2vv/uOpOPLU0yeOFGD+/f/uyg7ZMAA/V/Pnrqrd28N7t8/x9sIDAzUoiVLlN6rlyKvv14z/1WwzczM1Nq1a095nsfjUaNGjVS5cuUz9j3vu+9kevVS4pU99M1PP8rj8Zw1z/jJk/Xrhg3atH27ht5992nbjB4+XF8895y67fpTm1KSFeVyqalMjs5YTktJUQVjFGqMwl1GqampZ33OXzp06KDX33pLQ4cNO+06WQ88/LAGpCTritRkxdSvr8aNG+e4bwAAACcMGDBAB6pWUYvEBL0d4NboJx53OlKudevWTWNeflk/tL5YAx58UEOHDcu2fWZmpgb26auyoaG6/OKLdeRfy9Xt2bNHCQkJenHSJHkvaafHoyI1fMyYfK1tjfyrXr26brz5Zl2cEKeex47qhQkTnI4EIJ86deqkZcuWKSIiQpdeeqnee+89pyMVK45fJDGvuEgLnLRp0yatXLlSbdq04eyDfJo8caImPvigBhqXXsnyatL776tf795aV76iZIwaHj6o/YcP5/lM/Scee0xPPvGE3DLqFhKs7TVrasXGjX5+FXnXumFD3bt3n1oHBeu6I4d1ODBAcR6Plv72m2JiYrJ97s8//6zunTrJeL1q0KiR5i5apKCgIL9l27Rpk44cOaJWrVrlqCAPAMUJF0nMPebfxd93332nuXPmqOVFF5XIkyyk49ck2b17typVqqTg4GCn4xS4qVOnatr992tyUIjGpaWq/HXXavykSZKkN15/XaPuHa4yHo8atb5YM+fO5QJeBWjWrFl67YUXFHPeeXpu/PgcXYhy//79CgoKUlRUVCEkBFAYjhw5or59+2rRokUaPXq0nnzySY69J2Q3/6biAORB3bp1VbduXadjlAjLFi/WQOPSgLBw7Uw6plWrVqlsRITmpKXKJSk8NFShoaF57r9rjx6a9tJLWhAWoS1er4bFJ/gtuz906dlTY8dPUOuMDK33eDRu/Hh1795dFStWPOtzW7VqpZ379unw4cOqVq2a39/02McBACg5lixZov7du2uwy62RU6Yo6dgx3XDjjU7H8ju3262aNWs6HaPQJCYmqoqVyrndqmGl/QkJfz829uGH9UF4uC7wBKj90qVavXq1mjRp4lzYEmzjxo26dcAAjQ0M0sK163TnsWN675NPzvq87H7BCaB4KleunBYsWKChQ4fqmWee0caNG/Xuu+8qPDzc6WhFGiV8AH9bvHixZs6cqZSUwluvr1vv3no1y6unko5pRpZXnTt31hcLFuiz2udqRq0YzZ4/P19n7zZt2lSNW7dWp+RjGpR8TGOeezbfmZOSkpSVlZXvfiTp4TFjNHLSRFUefq9++GW5brrpphwVp/8SGhqqGjVq8I0sAADI1nfffadengDdHVFGd7g9WjhnjtORSgVrbY7njdZaTXjxRXVq3VqPPfigvF7vWZ8zcOBArSsbqUuSj2maSxr+4IN/P1YuOlqrMjK0xZupRK+Xs3QL0JYtW/Sf4GB1DwnVtZ4AbVy3zulIABwUEBCg1157TRMmTNDs2bPVtm1b/fnnn07HKtI4gxqAJOmJRx/VW+MnqEqAR89UqaKffvtNgYGBBb7dfv36qWzZslq+fLm+7NRJLVu2lCR976efELtcLs2cO1cbNmxQVFSUzjnnnDz35fP5NGTAAH04Y4YiwsI0e/58XZSPC9dIx9f7vv766/PVBwAAwNnExsaq39NPq3zSMX1sre7v1Cnb9vtO/EqrXr16fBGeR1999ZWu7d1byWlpGvPYY6e9MPXJPv30U01+/HGN8gTo9Q0bVCYqSveNGJHtc8qXL6/Vv/+urVu3qkaNGoqIiPj7sbc+/liD+/bVq3HxevqFF866fBzyLjY2VsM8Abo9LVXrMjN09y23OB0JgMOMMRo2bJjq1Kmj/v37q0WLFpo1a1a+awglFTMNoATJzMzUnDlz9PXXXyu368tPmThJbwaHaHpQiJL27NHq1atz9fy33nxTzS64QFd36qx9+/bl6rmdOnXSww8//HdxOq8++vBD1alWTU3r1tWKFSv+vt/lcql+/fr5Kk5L0g8//KCf5s7V2vIV9Yhxa/jtt+erPwAAUPps3rxZndu21cUNGmj+/PmFtt127drp7U8/VcI1/fXQq69oyK23nrHt9OnTVe+889S9TRt1v/zyHJ3Ji1PdMnCgJgUFa0m5Cnr+6ae1a9eubNuvX79el1mpY3CIuslow6pVOdpOUFCQ6tWr94/itCQ1atRIqzZv1p+HD+lW5q0FKjo6Wr+sXaNe/31e0z7/XDcOGaLt27fn+jMZgJLniiuu0LJlyxQeHq5LL71U77//vtORiiQK1EAJYa3VVZ066bGBgzSsb1/dOWRIrp5f+9xa+jQjXQvS0nQwMzNXxdz169dr1F13aeSROFVe/rNuGzQot/Hz7eDBg7r95ps1Li1DAw8c1HU9exZ6BgAAnGaM6WuMWW+M8RljzngRSGPMFcaY340xW40xowozY2nXr3t3tVy7Trfu3afr+vTRkSNHCm3bnTt31iuvv65BgwbJGHPGdk+MHKkpIWFaHF5G21eu1LJlywotY0mSmelVuHEpxBi5jTlrob9ChQp6NyVZdyQmaEJmhq4tgWuEl2QVKlTQjTfeqIyMDMVUraqL6zfQVZ068QUPAF144YX6+eefdfHFF2vAgAF66KGH5PP5nI5VpFCgBkqIPXv2aPnPP2tmSKhmhoTpf2+/natv7N+bOVN7Lr5Ib9eqqXemT1fVqlVz/Nzdu3erZlCQ2gQFq7MnUDu3b8/LS8iXo0ePKtTlUqPAQLUKDNKhuDi/b6Nt27Zq07WrGhw+qLE2Sy++9prftwEAQD6tk9RL0uIzNTDGuCVNlNRF0n8kXWuM+U/hxMOuvXt1ZXCwLg8KVrjLpYMHDzod6RRly0ZpkzdTu7K8SvB6VbZsWacjFUsvTZqo65IS1Sr+iAbedJPOPffcM7bdsWOHHn3gAY0IC9fhrCxdWL++OnToUIhpi5+VK1eqcZ06qlmxoqb9739Ox/nbQ/fcq5eCQ7Qssqz++PVXLV58xsMxgFLkr4sn3nLLLXr66afVp08fJSUlOR2ryGANaqCEiI6OljwezU5NVZz1KaZq1WzPjPm36tWr69N58/K07djYWKWVK6c+R45oZ0aGHh8xNk/95Md5552n2Pbtdfn33yvZm6XRDz/k9224XC5N++ADvTxlikJCQuR2u/2+DQAA8sNau1HS2eYALSVttdb+caLtR5KukrShwANCd9x5p/pNnqwoj0d1GjRQnTp1nI50iinvv6fre/bUKwcPasTDD6t+/fpORyqW+l9zjbp176709HSVK1cu27Y7duxQzcAgDQkJVevMDN25e3chpSy+Bvftq0GH41Q/IEDXDRumjp07q3r16k7HUnh4mPbuy1KCz6ekrCyFhYU5HQlAEREYGKjXX39d9erV0/DhwxUbG6vZs2erRo0aTkdzHAVqoIQIDQ3VrLlz9cjw4QoODtbnr79eaNsOCwvTkpUr9f333+ucc85Ro0aNCmQ71lrt2rVL0dHRp6yxZ4zRR7Nm6bffflN4eLjq1q1bIBkkKTw8vMD6BgCgEJwj6eRLye+W1Op0DY0xt0q6VRIfnvzkyeeeU9errlJiYqLat29fJL/wrlevnlZt3ux0jBIhPDw8R3PHFi1aKCWyjG5MPKZt3kzddOfwHPUfHx8vj8dzyty4NDgSH68mgYGq7fEowuNRQkJCkShQvzJtmvp066anDhzQsLvuyvd1dgCULMYY3X333brgggvUv39/vfzyy/rvf//rdCzHmeK6aH/z5s3tr7/+6nQMoNRITU1VcHBwrs7K9iev16urO3fW8mXL5DVGn8yerfbt2zuSpaBt2bJFaWlpql+/vmPjXdi2bdumbdu2qVWrVoqMjHQ6DoBSwBizwlp7xjWaizJjzEJJlU/z0EPW2s9PtPlO0v3W2lMmzMaYPpKusNYOOfH3QEmtrLVDs9su82/Af+Li4jR9+nRFRUWpX79+crlcSkhI0Jw5c1SlShVdfvnlZ+3j8Ycf1n+ff14yRuNfeUU333JLISQvOiZPnKhHHnhAEW6PmraN1YwvvpDLxSqmAIqPrVu3qkaNGgoMDHQ6SqHIbv5NgRpAtjIyMtSnWzfNX7RINSpX1oLvv1ft2rULPcdXX32lEf37a3ZImL5KS9O0alW1dM2aQs9R0J4ZO1YvPfusglxudbrqSk197z2nIxW4efPmaWDfvqoTHKwDQUH6efVqlS9f3ulYAEq44lygzomzFKgvljTGWtv5xN+jJcla+0x2fTL/BvwjLS1NTf/zH52fkKA/rdVFvXpp0tSpuerj8OHDql2tmn4oG60E61O3o0eVmJpSak5u+Mv27dt19OhRNWzYkOI0ABRx2c2/OYIDJcyqVav06quvasWKFdm227lzp+bOnatDhw5l2+7jjz/WkV9XaHPFyuqVlKxHRozwZ9wcCwkJUUJ6hhJ9Ph3wZSkkNNSRHAXJWquxY8dqbkSkFoVH6LNPP9WePXucjlXgXnn2WT0eEKQZQSH6T1q6Zs+e7XQkACjpfpF0vjGmljEmUNI1kjj4AoVk48aN8sXHa1JImF4PCtYnn3yS6z7cbrespBRrdcxn5XGXzo/2tWrVUuPGjSlOA0Axx1EcKEGWLl2qDrGxWv7YGHW55BItWrTojO2a1a+v5wYPVsMLLtCOHTvO2GdWVpY8On6wCJBkfb6CiH5WycnJSvZmqtmBffrvsUQ1b9Mm1334fD69++67GjdunHb74cIzmzZt0vLly5WVlZXvvqTja1FFR0bqt4x0rfdmymdMqVjvunpMjH60Pq3OyNBGb6aqVavmdCQAKLaMMT2NMbslXSzpS2PMghP3VzXGzJUka61X0lBJCyRtlPSxtXa9U5mB0qZmzZo6kpWlt5OT9Gpamhrl4SKUUVFRembcOLWPP6Lrko9p6jvvlLqzp0uTL7/8Ur27dNGo++5Tamqq03EAwO8oUAMlyGeffqobXG49ExyiW90effbxx6dtN2XCBA1zufVBYLCu8Pn00UcfnbHP/v37K7Def1TvyCG9GxSox559tqDiZ2vVqlXqFRqq7VWr6eGISO3Npqh+JiPuvlsv3XWX1jz9jC5q0kQJCQl5zvPS88/rkmbNdX3HTurVtat8fircT581S+PLROget0tvvP12qViP+dnx45XVNlYPhIXo5vvvV8eOHZ2OBADFlrX2M2ttNWttkLW20l/LeFhr91pru57Ubq61to61tra19innEgOlT3R0tL5cuFCr28YqtFdPfTBrVp76uXPYMB1LTVV8UpJ69e7t35AoMtauXasb+/dXu2U/a9XUaRoxbJjTkQDA7zxOBwDgP42aNNGTRjo/NUWzJQ1r2vS07aqfe66WGKMWGRlaKalDNle7Dg4O1lc//KCEhASVKVPGsSvNd+nSRZc/+aS8KclakJWpCddem+s+Zs+cqdcDg3VBQIB6padq5cqVuuyyy/KU59mnntKM8HDVcHvUbulSbdy4UfXq1ctTXydr06aNNuSh+F6cRUVF6eMvvnA6BgAAQKFp2bKlpvth/uPU3Ly4Sk5O1vLlyxUTE6NatWo5HSdH1q9frxYhIeoTGKxK6Wl69ZdfnI4EAH5HgRooQa677jrFHTqkuXPm6IbOnXXzkCGnbTf6kUc0dOdOPbBkiXr0GaRrz1LsNcYoKiqqICLnWKNGjbRo6VJ9/fXXGtysmS655JJc99G8ZUuNX/SdmqWnaZsvSxdccEGe81QsV05Lj8QpPsCnY16v4+MDAAAA4MwSEhJ0cZMmCktM1I70dL09fbq6devmdKyzateune7xenV/VoqWe70aNmiQ05EAwO+MtdbpDHnCVcSB4mnLli06cuSImjdvLo+ncL8jS0pK0lOPP659u3bp/4YPV6tWrfLc15o1a3TLddcpPiFBY557Ttddf70fkxZN33//vRYtWqR27dqpffv2TscBgHzJ7iriOD3m3wCKs/fff19vD7tbbwaHaE5qimZcUEcLly51OlaO7Ny5U7Nnz9Z5552nLl26OB0HAPIku/k3Z1ADKDRvvP66Hhw+XNEBAapRv77mffddoRapw8PD9czzz/ulr4YNG+rndev80ldxsHDhQg24+mr1c7k14L//1dQZM5gcAwAAoNioUqWKtnkztS7TrWU+n86pXsPpSDlWs2ZN3XXXXU7HAIACw0USARSaZ8eM0duh4fo6NFy71q1TaTwLy1qrtLQ0p2Pk2vwvv9QNLrdGRpTRzW6P5rNmNAAAAIqR9u3b6+b77tOwwAAdbt5c/534qtORAAAnUKAGUGgqVayk5ZkZWpeZqbjMTFWoUMHpSIVq9+7dql+7tsqEh6tDmzZKSUlxOlKOtW7bVh/L6t3kJH1ofbq4XTunIwEAAKCYOXjwoG4dPFj9unfXLw5c7O/BRx/V77t364uFX5e6zyIAUJRRoAZQaKZN/0hfxdTUsAC3nn7xRdWuXdvpSIXqqUcfVbu4eG2tWFmuDRv05ptvOh0px3r16qWxkyZpS7eueuTll9W/f3+nIwEAAKCY6d+jh7I+n63GP/6krpdfrvj4eKcjAQCKANagBvLI5/Npzpw5SkxMVM+ePRUWFiZJ2rNnj+Li4lSvXj25XHwHdLK6detqyapVTsdwjM/nU7C1MpI89vjfxcn1Awbo+gEDnI4BAABQqqxdu1YDe/fWoSNH9OBjj+nOYcOcjpRnazZs0PNhEarscmlaSpL+/PNPRUVFOR0LAOAwqmdAHg277TY9NGiwpg27W5dddJEyMzP17jvvqMH556t7mzbqecUVysrKcjrmP8yePVvVK1TQOeXK6bPPPnM6Tq6tWrVKY8eO1eeff+50lDwZPWaM5oSHqd6RQzp6bi3deOONTkcCAABAEXfTNdfomoOH9I47QGNGj9bWrVudjpRnffv00a3pqbo9LUXB5cvrggsucDoSAKAI4AxqII/e/+ADfRsRqQoul2J37tSWLVv0+KhReissXA0DAtXh55+1YsUKtWzZ0umokiSv16tB11yraaFhcrvcGnT99eqWkKDAwECno+XIhg0b1CG2rfq63XrL+nRg3DjdevvtTsfKlZiYGG3etUsJCQmKjo6WMcbpSAUuOTlZP//8s2JiYnTuuec6HQcAAKDYiYuLU/2AQJ3n8aiMx1Osl8WYNHWqPunSRfHx8erfv7+CgoKcjgQAKAIoUAN5dEHt2pq260/VMkZJVqpataqioqK0cc9elTEuJXq9Klu2rNMx/+b1epWemaHzPJFyGSnT61VmZmaxKVB/++236hIUqIeDQ9UoNUVffvJJsStQS5Lb7Va5cuWcjlEoEhMTdXGTJgpJSNCOtHRN/eB9XXXVVU7HAgAAKFYeefppDR46VBFutxq2aqWmTZs6HSnPXC6X+vXr53QMAEARwxIfQB59MneuDl92qb5p3EizF8xX2bJlNfXDD/VBhfK6NjNdDz/5pOrUqeN0zL8FBwdr5AMPqH1igi49mqDh99zz97rZ//bB+++rbdOmGtS3n+Li4go56em1aNFCX6en653kJE31ZemiSy5xOhLOYt68eaqUcFSfB4fquaBgvTT2SacjAQAAFDs33HijVm3apM9/+EGzFiyQ2+12OhIAAH5lrLVOZ8iT5s2b219//dXpGECxs2PHDllrVatWrdM+vnbtWnW8+GKNCwrWV1lZyrr0En04a1bhhjyDuXPn6pN331XDFi101913Mzkv4n744QcN7NZNk4NC9GlmhlLaX6YPZs50OhYASJKMMSustc2dzlGcMP8GAABAXmU3/2aJD6CUiYmJyfbx7du3q05wsC4PClFIepqe3bSpcILlQNeuXdW1a1enYyCH2rZtqztHj9a9kybpvIb1NXXyZKcjAQAAAACAIoYlPgD8wyWXXKK9wcEanJ6qe9PTdMuwYU5HQjE2YvRobfrzT8355htVqlTJ6TgAAABAiTV9+nQNGTBAb735porrr+UBlE6cQQ3gHyIjI/XL2rX66quvFBMTo1atWjkdCQAAAACQjS+++EIPDBmi29wePT37C7ncbg0aNMjpWACQI5xBDeAUUVFR6t+/P8VpAAAAACgGlvz4o/oYlwaHhet6Y7Ts+8VORwKAHKNADTjM5/Pp008/1dSpU5WYmOh0HAAAAABAMdO5Sxe958vSuGOJmuLL0hVXXel0JADIMZb4ABw29JZbtOTTmarsMnpl3PNavnaNAgMDnY4FAAAAACgmLr30Us2YO1fffPON3oqNVceOHZ2OBAA5RoEacNhH06fr6/AyquRy6ZL9+/X777+rQYMGTscCAAAAABQj7dq1U7t27ZyOAQC5RoEacFj9unX1+tatqi2jROtT9erVnY4EAAAAAAAAFArWoAYc9vGcOfJ27aplrVppztdfq2zZsk5HAgAAAAAAAAoFZ1CjVFq+fLm++eYbtWrVSu3bt3c0S+XKlTXtgw8czQAAAAAAAAA4gTOoUeosW7ZM3dq3187nntOAK6/SZ5995nQkAAAAAMAJL/33v6pWvrxa1q+vzZs3Ox0HAFDAKFCj1Jk/f76ucbn1SFiEhno8mvPJJ05HAgAAAABIWrt2rZ4f87jecXnUefce3Xr99U5HAgAUMArUKHVatmyp2dbqw+RkfWB9ahEb63QkAAAAAICkuLg4RQd4dL7Ho0aeAB05csTpSACAAsYa1Ch1unbtqmdem6y5M2fqjssu02233+50JAAAAACApNatW6vShRfqsg0bFJ+ZqVdfHu90JABAAaNAjVLpuuuv13X8VAwAAABAIUlJSdFzTz2l/Xv26P/uuUeNGzd2OlKRFBAQoAWLF2vNmjWqUKGCqlev7nQkAEABo0ANAAAAAEABGzJgoI5++60aWauOM2dq3ZYtqlSpktOxiiSPx6OmTZs6HQMAUEhYgxoAAAAAgAL289IleiAwSHeGR6hWYKA2bdrkdCQAAIoECtQAAAAAABSwLt27a2RGmh5OStQeSQ0bNnQ6EgAARQJLfAAAAAAAUMAmvPaa3mzVSvv27dOSQYMUFRXldCQAAIoECtQAAAAAABQwt9utIUOGOB0DAIAihyU+AAAAAAAAAACOoEANAAAAAAAAAHAEBWoAAAAAAAD41R9//KHeXbqoc2ysfvrpJ6fjACjCWIMaAAAAAAAAftW7Sxd1OHBQ1YzRVV266I/du1WmTBmnYwEogjiDGgAAAAAAAH61eccODQoOUa+QUAVZq4MHDzodCUARRYEaAAAAAAAAfnXjoEG6Ni1V16SlqnbduqpVq5bTkQAUUSzxAQAAAAAAAL96ZcoUzevZU8nJyerRo4fcbrfTkQAUURSoAQAAAAAA4FfGGHXt2tXpGACKAZb4AAAAAAAAAAA4ggI1UERZa7Vx40bt3bvX6SgAAAAAAABAgaBADRRBPp9P/a+6Sh1btlS9887T22+95XQkAAAAAAAAwO8oUANF0Jo1a7T8u+/0Q0Sk3g+L0GMjRzodCQAAAAAAAPA7CtRAERQREaGkrCzt9Hr1uzdTkWXKOB0JKDSpqam6vndvxVSspFsGDVJmZqbTkQAAAFBCWWv12IMPqlalSupyySU6ePCg05EAoNShQA0UQbVr19ZjTz2l/hlpeqNspKZ99JHTkYBC88Lzz+vwN9/qXWO0afZsTZkyxelIAAAAKKG+/vprfThxoqZZo6qr12jEXXc5HQkASh0K1EARddc99+hAQoI2bN+uZs2aOR0HKDQH9+5VA2t1ridAF1pp/759TkcCAABACXXw4EHFeDyqExCgpsal/Xv2OB0JAEodCtQAgCLltrvu0juyuio9VXM8bt10881ORwIAAEAJ1aNHD+0pW1ZdU5P1aGa67nv0UacjAUCp43E6AAAAJ6tXr542bNumjRs3qn79+oqKinI6EgAAAEqoyMhI/bJ2rX777TfFxMSoWrVqTkcCgFKHAjUAoMgpX7682rZt63QMAAAAlAKhoaGKjY11OgYAlFos8QEAAAAAAAAAcAQFagAAAAAAAACAIyhQAwAAAAAAAAAcQYEaAAAAAAAAAOAICtQAAAAAAAAAAEdQoAYAAAAAAAAAOIICNQAAAAAAAADAERSoAQAAAAAAAACOoEANAAAAlBDGmL7GmPXGGJ8xpnk27XYYY9YaY1YZY34tzIwAAADAyTxOBwAAAADgN+sk9ZL0eg7aXmatPVzAeQAAAIBsUaAGAAAASghr7UZJMsY4HQUAAADIEZb4AAAAAEofK+krY8wKY8ytTocBAABA6cUZ1AAAAEAxYoxZKKnyaR56yFr7eQ67ibXW7jHGVJT0tTFmk7V28Wm2daukWyWpRo0aec4MAAAAnAkFagAAAKAYsdZ28EMfe07896Ax5jNJLSWdUqC21k6RNEWSmjdvbvO7XQAAAODfWOIDAAAAKEWMMWHGmIi//i2pk45fXBEAAAAodBSoAQAAgBLCGNPTGLNb0sWSvjTGLDhxf1VjzNwTzSpJ+tEYs1rScklfWmvnO5MYAAAApR1LfAAAAAAlhLX2M0mfneb+vZK6nvj3H5IaFXI0AAAA4LQ4gxoAAAAAAAAA4AgK1AAAAAAAAAAAR1CgBgAAAAAAAAA4ggI1AAAAAAAAAMARFKgBAAAAAAAAAI6gQA0AAAAAAAAAcISx1jqdIU+MMYck7SzgzZSXdLiAt1FSMFY5x1jlDOOUc4xVzjFWOcdY5RxjlXNFaaxqWmsrOB2iOCmE+XdR2j+KM8bRPxhH/2Es/YNx9A/G0T8YR/8pTWN5xvl3sS1QFwZjzK/W2uZO5ygOGKucY6xyhnHKOcYq5xirnGOsco6xyjnGCtlh//APxtE/GEf/YSz9g3H0D8bRPxhH/2Esj2OJDwAAAAAAAACAIyhQAwAAAAAAAAAcQYE6e1OcDlCMMFY5x1jlDOOUc4xVzjFWOcdY5RxjlXOMFbLD/uEfjKN/MI7+w1j6B+PoH4yjfzCO/sNYijWoAQAAAAAAAAAO4QxqAAAAAAAAAIAjKFADAAAAAAAAABxBgfokxpihxphfjTHpxpi3ztL2BmNMljEm6aTbpYUStAjIzVidaH+vMWa/MSbRGDPNGBNUCDEdZ4yJNsZ8ZoxJNsbsNMZcl03bMcaYzH/tU+cWZt7CltPxMcc9Z4w5cuL2nDHGFHZeJ+VirErdfnSyXB7HS+Vx6S85HSve70yQMWbqif/vjhljVhljumTTvtTuV7kZq9K+X4F5tz8xL/cP5u15x5zeP5jv+wefB/yDzwr+wWeJnKNA/U97JT0paVoO2y+11oafdPuu4KIVOTkeK2NMZ0mjJF0uqaakcyU9XqDpio6JkjIkVZJ0vaTJxph62bSf/q996o9CSemcnI7PrZKultRIUkNJPSTdVkgZi4rc7EulbT86WY6OTaX8uPSX3Lznleb3O4+kPyVdIilS0sOSPjbGxPy7IftVzsfqhNK8X4F5tz8xL/cP5u15x5zeP5jv+wefB/yDzwr+wWeJHKJAfRJr7Uxr7SxJR5zOUtTlcqwGS5pqrV1vrY2XNFbSDQUYr0gwxoRJ6i3pEWttkrX2R0mzJQ10NlnRkMvxGSzpBWvtbmvtHkkvqBTsQ39hX8q5XBybSuVx6WS85+WMtTbZWjvGWrvDWuuz1s6RtF1Ss9M0L9X7VS7HCqUcxyD/YV6ef8y18o45vX+wD/oPnwf8g/dp/+CzRM5RoM6fJsaYw8aYzcaYR4wxHqcDFVH1JK0+6e/VkioZY8o5lKew1JHktdZuPum+1To+HmfSwxgTZ4xZb4z5v4KN57jcjM/p9qHsxrGkye2+VJr2o7wqrcelvOL97gRjTCUd/39y/WkeZr86yVnGSmK/Qu6wv/gHx6nTY96ed8zp/YP5fuHjeOg/vEfnEJ8lzoydJu8WS6ovaaeO70TTJXklPeNkqCIqXNLRk/7+698RKtnfxoVLSvzXfUd1/HWfzseSpkg6IKmVpE+NMQnW2g8LLqKjcjM+p9uHwo0xxlprCyhfUZKbsSpt+1FeldbjUl7wfneCMSZA0vuS3rbWbjpNE/arE3IwVuxXyA32F//hOHV6zNvzjjm9fzDfL3wcD/2D9+gc4rNE9krNGdTGmO+MMfYMtx9z25+19g9r7fYTp+ivlfSEpD7+T174/D1WkpIklTnp77/+fSz/aZ2Tg3H69+vWib9P+7qttRustXuttVnW2iWSJqiE7FNnkJvxOd0+lFSKJrI5HqtSuB/lVYk8LhWEkvx+lxvGGJekd3V8bcihZ2jGfqWcjRX7VcnGvNt/mJf7B/P2AsWc3j+Y7xe+Unk89LfS/B6dG3yWOLtSU6C21l5qrTVnuMX6YxOSSsQViAtgrNbr+IUw/tJI0gFrbbH+BigH47RZkscYc/5JT2ukM//U+ZRNqITsU2eQm/E53T6U03EsCfKzL5X0/SivSuRxqZCUun3KGGMkTdXxixb1ttZmnqFpqd+vcjFW/1bq9quSjHm3/zAv9w/m7QWKOb1/MN8vfKXyeFgI2B//hc8SOVNqCtQ5YYzxGGOCJbkluY0xwWdaO8cY0+XE2jEyxtSV9IikzwsvrbNyM1aS3pF0szHmP8aYsjp+1dK3Ciepc6y1yZJmSnrCGBNmjGkj6Sod/9bsFMaYq4wxUea4lpKGqQTvU7kcn3ckDTfGnGOMqSrpPpWCfegvuRmr0rYf/Vsujk2l8rh0spyOVWl/vzthsqQLJfWw1qZm067U71fK4VixX4F5t/8wL88/5u15x5zeP5jv+w+fB/yDzwp+xWeJnLDWcjtxkzRGx7/tOfk25sRjNXT8dPsaJ/7+r46v+ZQs6Q8d/xlDgNOvoSiO1Yn7hp8Yr0RJb0oKcvo1FNI4RUuadWI/2SXpupMea6vjP2n76+8PdXxdoSRJmyQNczq/U+NzmrExksZJijtxGyfJOJ2/iI5VqduP/jVOpz02cVzK+1jxfqeaJ8Ym7cS4/HW7nv0q72NV2vcrbsy7nRrLE/eV2uPUWcaRebufx+4041bq5/R+Gkf2v+zH8bTHRI6HBTOOvEefdRz5LJHDmzkxAAAAAAAAAAAAFCqW+AAAAAAAAAAAOIICNQAAAAAAAADAERSoAQAAAAAAAACOoEANAAAAAAAAAHAEBWoAAAAAAAAAgCMoUAMAAAAAAAAAHEGBGgAAAAAAAADgCArUAFDMGWPGGWNmnfT388aYb4wxgQ7GAgAAAEos5uAA4D/GWut0BgBAPhhjykn6Q9KlklpJulNSrLX2qJO5AAAAgJKKOTgA+A8FagAoAYwxYyT1khSp4xPjP0/c/5yk1pJ2SLrJWpvpVEYAAACgJGEODgD+wRIfAFAyrJTUQNLokybGjSSdY61tK2mTpD4O5gMAAABKGubgAOAHFKgBoJgzxjSQNFnS25JuOumh1pK+OvHv+ZLaFHI0AAAAoERiDg4A/kOBGgCKMWPMOZK+kHS7pDskNTDGXHri4ShJiSf+fVRSdGHnAwAAAEoa5uAA4F8UqAGgmDLGlJE0V9KL1trZ1toUSc9LeupEkwRJZU78O1JSXKGHBAAAAEoQ5uAA4H9cJBEASihjTGNJw621g4wxD0rabq390OFYAAAAQInFHBwAco8zqAGghLLWrpJ0wBjzg6R6kj51NhEAAABQsjEHB4Dc4wxqAAAAAAAAAIAjOIMaAAAAAAAAAOAICtQAAAAAAAAAAEdQoAYAAAAAAAAAOIICNQAAAAAAAADAERSoAQAAAAAAAACOoEANAAAAAAAAAHAEBWoAAAAAAAAAgCMoUAMAAAAAAAAAHOFxOgAAAACQEytWrAj0eDxvSIqV5HY6D/LEZ4zZ7/V6H2/atOkCp8MAAADAecZa63QGAAAA4KxWrlx5d9myZe+qWbPmUZfLxSS2GPL5fCY1NTV4x44dgenp6UMpUgMAAIAlPgAAAFAsuN3uG6tWrZpMcbr4crlcNiwsLDUmJibD4/E85nQeAAAAOI8CNQAAAIoFa21kYGBgptM5kH8hISFp1trKTucAAACA8yhQAwAAoLgwxhinM8APTpwFz2cRAAAAMCkEAAAAAAAAADiDAjUAAAAAAAAAwBEUqAEAAACHVK5cueFPP/0UkpN2P/zwQ2hBbgMAAABwAgVqAAAAwAGHDh1yHz582NO0adO07NodPnzYfejQoYDGjRtn2y4/2wAAAACcQoEaAAAAcMCvv/4aEhMTkx4SEmLP1q5y5coZERERvoLaBgAAAOAUCtQAAADAGRw9etTldrub7dy5M+Cv+3755ZfgChUqNIyPj8/XXHrlypUhdevWTZWkPXv2eNq3b39euXLlGoWFhTVp3779eXFxcS5JWrVqVUjNmjXTr7/++hqRkZGNa9asWX/BggXhJ/f1wgsvlK9du3a9iIiIxu3atTt/z549nn9vQ5I2bNgQeOmll54XFRXVKDw8vEnr1q3Pz89rAAAAAPKLAjUAAABwBpGRkb5atWqlLV269O/1nx944IFq99xzz/6oqKhcn9F8snXr1oXWr18/RZLi4+Pdd91118Hdu3ev+eOPP9bExcV5XnrppQqStHbt2pC1a9eGdu/e/WhcXNyqPn36HPm///u/mn/1M2rUqMrTpk2r8Pnnn289dOjQ6ipVqmTcf//95/x7G5I0cODAWp07dz566NCh1QcPHlw1ZsyYvfl5DQAAAEB+UaAGAAAAstGoUaPkFStWhErSvHnzwrds2RJy3333Hcpvvxs2bAhp2LBhqiTVr18/vWfPnokhISG2UqVKWZdeemlifHy8R5I2btwYettttx249tprj7rdbg0dOvTwjh07gjMzM7Vnzx7PhAkTqnz44Yd/1K9fPz04ONjecssth1etWhX2721I0q5du4KysrKM1+s1oaGhtlOnTsn5fR0AAABAflCgBgAAALLRvHnz5FWrVoVK0qhRo6o99NBDe4KDg/+xpnPLli0vMMY0O92tWbNmF/y7T5/Ppy1btoQ0b948VZKmTZsW1bRp07rR0dGNIiIiGk+cOLFynTp10iRpy5Ytwddee238X8/dv3+/JyIiIisgIEBz5swpk5mZ6WrTps2FERERjSMiIhr37Nnz/IiIiKx/b0OSpk6duv3LL78sW6VKlYb9+vWreeDAAXdBjRsAAACQEx6nAwAAAABF2UUXXZT8yiuvVH7rrbfKpqenu2677ba4f7dZvnz577npc9OmTYEul8vWqVMnY/bs2RGPPvpotffff39b69atUySpWrVqDZs3b56yefPmwKSkJHeVKlW8fz13xowZUZdddtlRSYqLi3N37Ngxft68eX/8exsbNmz4ext/3XfllVceu/LKK4/t2bPH07lz5/MnT55cfsyYMQdykx0AAADwJ86gBgAAALJx0UUXpR4+fDjgoYceqv7EE0/sdrnyP4VesWJFaJ06dVKl4xcyrFKlSkarVq1SDx065OnXr19MXFycp2nTpmkrVqwIcbvddurUqdFZWVn66KOPIt95550KY8eO3StJLVq0SFm2bFnEjz/+GCpJcXFxrvfee6+sz+f7xzYk6e233y67du3aIJ/Pp4SEBPfRo0fdTZs2TTl9QgAAAKBwcAY1AAAAkI2QkBBbp06d1NDQUF+/fv0S/dHnmjVrQi688MJUSRoyZEjcrFmzoqOjoxufd955qZ07dz5au3bttODgYLtmzZqQXr16HVm6dGl42bJlq8bExKR//PHHWxs0aJAuSR06dEi+77779vXv3792fHy8JyIiIqtDhw4JAwYMSDh5G5L0ww8/hI8YMaJGUlKSu2LFipn33HPP/iuvvPKYP14PAAAAkFfGWnv2VgAAAIDDVq9evaNRo0aHC3u7aWlpplatWvXfe++9Py6//HIuKugnq1evLt+oUaMYp3MAAADAWSzxAQAAAGRjxIgRVZs3b55EcRoAAADwPwrUAAAAwGn8+OOPoREREY2XLFkSPmXKlD+dzgMAAACURKxBDQAAAJxGbGxsyrFjx1Y5nQMAAAAoyTiDGgAAAAAAAADgCArUAAAAAAAAAABHUKAGAAAAAAAAADiCAjUAAAAAAAAAwBEUqAEAAAAAAAAAjqBADQAAAAAAAABwBAVqAAAAAAAAAIAjKFADAAAAAAAAABxBgRoAAADwgwMHDrg7duxYOyQkpEnVqlUbvPbaa9FOZypMTz/9dIX69etfGBgY2LR3794xTucBAABA8eBxOgAAAACQF/vqN2zki48vsPmsKyrKW2XdmtU5bT9kyJAagYGBdv/+/auXLVsW2qdPn/OaN2+e0rx587SCyihJnZ/9ttHR1MwCG4fIkADvglHtzzoO55xzTubIkSP3zZ8/v0xaWhonwgAAACBHKFADAACgWCrI4nRu+09MTHTNnz8/asWKFesjIyN9nTt3Trr88suPTps2rVzz5s33FGTOgixO56b/wYMHJ0jSL7/8Erpnz57AgswEAACAkoMzGwAAAIB8Wrt2bZDH47ENGzZM/+u+hg0bpmzatCnEyVwAAABAUUeBGgAAAMinY8eOucPCwnwn3xcZGZmVlJTkdioTAAAAUBxQoAYAAADyKSIiIis5Ofkfc+vExER3eHh4llOZAAAAgOKAAjUAAACQTw0aNEj3er1m7dq1QX/dt2bNmpC6deumOpkLAAAAKOooUAMAAAD5VKZMGV/nzp0THnzwwaqJiYmur776KmzhwoVlb7rppiNOZyssmZmZSklJMVlZWSYrK8ukpKSYzMxMp2MBAACgiKNADQAAAPjB1KlTd6amproqVarUaPDgwec+//zzu5o3b57mdK7CMnLkyKphYWFNJ02aVPnzzz+PDgsLazpy5MiqTucCAABA0eZxOgAAAACQF66oKK8vPr7A5rOuqChvbtpXqlQpa+HChdsKKs+ZRIYEeI+mZhbYOESGBORoHF588cW9L7744t6CygEAAICSiQI1AAAAiqUq69asdjpDUbBgVHvGAQAAAMUWS3wAAAAAAAAAABxBgRoAAAAAAAAA4AgK1AAAAAAAAAAAR1CgBgAAQHFhrbVOZ4Af+Hw+I8nndA4AAAA4jwI1AAAAigVjzNGMjIwAp3Mg/1JTU4ONMfudzgEAAADnUaAGAABAsZCVlfXm3r17w06cfYtiyOfzmeTk5JAdO3YEer3ex53OAwAAAOcZfiYJAACA4mDFihWBHo/nDUmxktxO50Ge+Iwx+71e7+NNmzZd4HQYAAAAOI8CNQAAAAAAAADAESzxAQAAAAAAAABwBAVqAAAAAAAAAIAjKFADAAAAAAAAABxBgRoAAAAAAAAA4AgK1AAAAAAAAAAAR/w/5sKB6dWiC5wAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3gV1f728Xun90oCAQIJvRNAeg+9V6VLE5SiYEERRUARFEXBQvEoTaRKk957U3rvJZRQ0yCk73lecMxz8qdlA2ET+H6uK4eTmTVr3bN3wKz9m1ljMgzDEAAAAAAAAAAAAAAASDcbawcAAAAAAAAAAAAAACCzodgOAAAAAAAAAAAAAICFKLYDAAAAAAAAAAAAAGAhiu0AAAAAAAAAAAAAAFiIYjsAAAAAAAAAAAAAABai2A4AAAAAAAAAAAAAgIUotgMAAAAAAAAAAAAAYCGK7QAAAAAAAAAAAAAAWIhiOwAAAAAAAAAAAAAAFqLYDgAAAABIl3PnzslkMqlLly7WjmKRVatWqVKlSvLy8pLJZFLz5s2tHekeNWrUkMlksnaMTCWz/jwCAAAAAF4cFNsBAAAA4CVmMpnSfNna2ipLliwKDQ3VjBkzMmTMKVOmyGQyacqUKRnS//86d+6cmjVrprNnz6pbt24aMmSI2rZt+9zke5Y2bNggk8mkoUOHPvOxu3TpIpPJpHPnzj3zsR/Fmq8LAAAAACBzs7N2AAAAAACA9Q0ZMkSSlJSUpGPHjmnRokVav369du3ape+++87K6R7fmjVrFB8fr9GjR6t9+/bWjvNA06ZN0507d6wdAwAAAAAAWIBiOwAAAADgnrt6165dqzp16mjMmDF65513FBQUZJVcT+ry5cuSpOzZs1s5ycPlypXL2hEAAAAAAICFWEYeAAAAAHCPWrVqqVChQjIMQ//8888j24eHh6tPnz4KCgqSg4OD/Pz81LJlS+3evTtNuxo1aqhr166SpK5du6ZZwj69S4zPmTNH1apVk6enp5ydnVW8eHGNHDlSCQkJqW3+XRr83zv2a9asmTrOhg0bHth3evINHTo0tZ8ZM2aofPnycnNzS3NBwpQpU9SqVSvlyZNHzs7O8vDwUOXKlTV9+vQHjvt/n9n+v8ub79u3T40aNZKXl5dcXFxUvXp1bdu2LV2vl3R3GfeaNWtKkoYNG5bmvP7v6zFz5kzVrFlTXl5ecnJyUuHChTV8+PA0r++/Nm/erCZNmihnzpxydHRUtmzZVKFCBQ0bNiy1jclk0tSpUyVJwcHBqeOm9wKOW7du6b333lPOnDnl5OSkQoUK6bvvvpPZbL5v+xMnTmjgwIF65ZVX5OfnJ0dHR+XOnVs9e/bUxYsXLX5doqOj9c033yg0NFQ5c+ZM/flu2rSptm/fnq5zAAAAAAC8mLizHQAAAABwX4ZhSNI9ReD/6+zZs6pSpYouX76s0NBQtWvXThcuXNDcuXO1dOlSzZs3T40bN5Z0t7jp5eWlRYsWqVmzZgoJCUntx8vL65GZBg0apJEjRypLlixq37693NzctHz5cg0aNEgrV67UqlWr5ODgoKCgIA0ZMkQbNmzQxo0b1blz59Ti7sOKvJbkGz16tFavXq0mTZqoZs2aio6OTt3Xq1cvFS1aVNWqVVNAQIBu3rypZcuWqVOnTjp+/Li++OKLR57rv3bt2qVRo0apYsWKeuONNxQWFqZ58+apVq1a2rdvnwoWLPjIPpo3by5Jmjp1qqpXr64aNWqk7vvf16Nbt26aPHmycubMqVatWsnLy0s7duzQ4MGDtXbtWq1evVp2dnc/SlixYoUaNWokDw8PNW3aVDly5FBERISOHj2qcePGpV7oMGTIEC1cuFD79+9Xv379Ul/H9LzfCQkJqlWrlv755x+VLFlSHTp0UFRUlL744gtt3LjxvsfMnz9fEyZMUM2aNVWpUiU5ODjo8OHD+vXXX7V48WLt2rVLOXLkSPfrcvToUX3yySeqVq2aGjVqJG9vb4WFhemvv/7S8uXLtXjxYtWvX/+R5wIAAAAAeAEZAAAAAICXliTjflPD1atXGyaTyTCZTMa5c+cMwzCMs2fPGpKMzp07p2lbt25dQ5IxfPjwNNu3bt1q2NraGj4+PsatW7dSt0+ePNmQZEyePNmirNu2bTMkGYGBgUZ4eHjq9qSkJKNx48aGJOPLL79Mc8yQIUMMScb69evTPc6j8v3bp4uLi7Fnz577tjl16tQ92xISEozQ0FDDzs7OuHjxYpp91atXv+d9WL9+fer783+zTJgwwZBk9OrVK93n9W9/Q4YMue/+f8+7RYsWxp07d9Ls+/ecx4wZk7qtZcuWhiRj37599/R1/fr1NN937tzZkGScPXs23XkNwzC+/PJLQ5LRsmVLIyUlJXX7mTNnDG9v7/v+PF68eNGIj4+/p6+VK1caNjY2xltvvZVm+6Nel6ioqHvOxzAM48KFC0ZAQIBRqFAhi84JAAAAAPDiYBl5AAAAAICGDh2qoUOH6pNPPlHr1q1Vv359GYah/v37K3fu3A887uLFi1q1apVy5cqlDz/8MM2+SpUqqV27doqIiND8+fOfOOOkSZMkSZ9++qmyZcuWut3Ozk6jR4+WjY2Nfv311yceJ7169uypUqVK3Xdf3rx579nm4OCgPn36KDk5WWvXrk33OJUrV1aXLl3SbOvWrZvs7Oz0999/W5T5YcaOHSs7OztNmjRJzs7OafYNHjxYvr6++uOPP+457v+2laQsWbI8lUyTJ0+WjY2NRo0aJRub//8RRnBwsN555537HpMjRw45Ojres71u3boqWrSoVq5caVEGT0/P+55Pzpw51bp1ax07dkxhYWEW9QkAAAAAeDGwjDwAAAAAIPUZ2yaTSV5eXqpataq6d++ujh07PvS4vXv3SpKqVq0qe3v7e/aHhoZq+vTp2rt3r15//fUnyrhnz57UPv+vAgUKKGfOnDp79qyio6Pl6en5RGOlR7ly5R64LywsTF9//bXWrl2rsLAwxcXFpdl/6dKldI/zyiuv3LPN3t5eWbNmVWRkZOq2ffv2aeHChWnaeXl5qX///o8c486dO9q/f7+yZMmiMWPG3LeNo6Ojjh49mvp9hw4dNH/+fJUvX15t2rRRzZo1VblyZeXMmTNd5/Uot27d0qlTpxQYGHjfixdq1KiR5tnw/zIMQ3/88YemTJmi/fv3KzIyUikpKan7HRwcLM6ydetWjR07Vtu3b9e1a9eUmJiYZv+lS5eUK1cui/sFAAAAAGRuFNsBAAAAAKnPZ7fUv88pDwgIuO/+f7dHRUU9Vv+WjhUWFqaoqKhnUmz/37vr/9eZM2dUrlw5RUZGqmrVqqpbt648PT1la2urc+fOaerUqUpISEj3OA96trmdnV2aIvK+ffvuKT7nzp07XcX2yMhIGYah69ev37eAfT8tW7bUkiVLNHr0aE2aNEkTJ06UJJUpU0YjR45UnTp10tXPg/z7fmfNmvW++x/0+r/33nsaM2aMAgICVK9ePeXIkSP17vspU6bo/PnzFuVYsGCBWrduLScnJ9WpU0d58+aVq6urbGxstGHDBm3cuNGi9xMAAAAA8OKg2A4AAAAAeGz/FrWvXLly3/3h4eFp2j2tse53p/PTHCs9TCbTfbd/9913unnzpiZPnnzP8u8zZ87U1KlTMyRPly5d7hkvvf59zUqVKpW6gkB6NGrUSI0aNVJsbKx27typJUuWaPz48WrcuLH27t2rIkWKPFae/8109erV++6/38/ctWvX9MMPP6hYsWLatm2b3N3d0+yfOXOmxTkGDx4sBwcH7dq1S4ULF06z780339TGjRst7hMAAAAA8GLgme0AAAAAgMf27zPLt2zZouTk5Hv2r1+/XpJUunTp1G22traSlOaubEvG2rBhwz37Tp06pYsXLyo4OPiBd4Kn1+Pm+98sktSqVat79lmzMPuw83Jzc1PRokV1+PBhRUREWNy3q6urQkND9d1332nQoEFKTEzU8uXL0zX2g7i7uytfvny6dOmSTp8+fc/++/0cnDlzRmazWXXr1r2n0H7x4kWdOXPmnmMele3UqVMqUqTIPYV2s9msLVu2pPd0AAAAAAAvIIrtAAAAAIDHljNnTtWpU0fnzp2751nfO3fu1IwZM+Tt7a0WLVqkbvf19ZV097nmlujWrZskafjw4bp+/Xrq9pSUFH3wwQcym83q3r37Y57J//e4+f4VFBQk6d5i8MqVK/Xrr78+SbQn8qjzeu+995SYmKhu3brdd9n/yMjINHe9b9q06b4XWPx7J7qLi0u6x36Qrl27ymw266OPPpLZbE7dfvbsWf3www/3tP/3td+yZUua4vnt27fVo0eP++Z9VLagoCCdPHlSly9fTt1mGIaGDh2qI0eOWHQ+AAAAAIAXC8vIAwAAAACeyIQJE1S5cmUNGDBAq1at0iuvvKILFy5o7ty5srGx0eTJk9PcZVyxYkW5uLhozJgxunnzZuqzt99+++2HLgFfqVIlffjhhxo1apSKFSum1q1by9XVVcuXL9ehQ4dUpUoVDRgw4InP53Hz/at3796aPHmyXn31VbVu3VrZs2fXoUOHtGLFCr322muaPXv2E2d8HAULFlSOHDk0a9Ys2dvbK3fu3DKZTOrUqZNy586tbt26affu3Ro3bpzy5s2revXqKVeuXIqIiNDZs2e1adMmde3aVRMmTJAkvfPOO7p06ZIqV66soKAgOTg4aPfu3Vq3bp1y586ttm3bpo5dq1YtffPNN+rRo4datWold3d3eXl5qW/fvg/N/P7772vhwoWaN2+eSpcurXr16ikqKkpz5sxRtWrV9Ndff6Vpny1bNrVt21azZs1SSEiI6tatq+joaK1evVpOTk4KCQnRvn37LHpd3n33Xb311lsqVaqUWrVqJXt7e23dulVHjhxRkyZNtHjx4qfzBgEAAAAAMh2K7QAAAACAJ5InTx7t2rVLw4cP17Jly7RhwwZ5eHiofv36+uSTT1S2bNk07b29vTVv3jwNGzZMU6ZMUWxsrCSpY8eOjyxmf/311ypVqpR++uknTZs2TUlJScqbN6+GDx+u999/Xw4ODk98Pk+ST5JKlCih9evX69NPP9XSpUuVnJyskiVLav78+fLy8rJasd3W1lYLFizQwIEDNXfuXN26dUuGYahKlSrKnTu3JOnnn39WgwYNNGHCBK1Zs0ZRUVHy8fFRrly5NGDAAHXs2DG1v0GDBmnBggXatWuX1qxZIxsbG+XKlUuDBg1S//795e3tndq2Xr16Gj16tP7zn/9ozJgxSkxMVO7cuR9ZbHd0dNSaNWs0dOhQzZ49W2PHjlVQUJA+/fRTtWjR4p5iuyT99ttvypMnj2bPnq2ff/5Zfn5+atq0qT7//PP7Lu3/qNflzTfflKOjo8aMGaOpU6fK2dlZVatW1eTJkzVv3jyK7QAAAADwEjMZhmFYOwQAAAAAAAAAAAAAAJkJz2wHAAAAAAAAAAAAAMBCFNsBAAAAAAAAAAAAALAQxXYAAAAAAAAAAAAAACxEsR0AAAAAAAAAAAAAAAtRbAcAAAAAAAAAAAAAwEIU2wEAAAAAAAAAAAAAsBDFdgAAAAAAAAAAAAAALESxHQAAAAAAAAAAAAAAC1FsBwAAAAAAAAAAAADAQhTbAQAAAAAAAAAAAACwEMV2AAAAAAAAAAAAAAAsRLEdAABYbOjQoTKZTNqwYYO1owAAAAAAAAAAYBUU2wEAeAGcO3dOJpNJXbp0sXYUAAAAAACQwaz1OQAX3wMAkBbFdgAAYLG+ffvq6NGjKleunLWjAAAAAAAAAABgFXbWDgAAADKfLFmyKEuWLNaOAQAAAAAAAACA1XBnOwAAmdzQoUMVHBwsSZo6dapMJlPq15QpU7RhwwaZTCYNHTpUf//9txo1aiQfHx+ZTCadO3dOkrR+/Xr17NlTRYoUkYeHh5ydnVWsWDENGzZM8fHx9x3zfsvGmUwm1ahRQzdu3FDPnj0VEBAgR0dHFS1aVJMnT87olwIAAAAAgBfeoz4H+NfKlSvVsGFDZcmSRY6OjsqbN68GDBigqKioe/o8cOCA2rVrp6CgIDk6OsrPz0+lS5dW//79lZSUJEkKCgrSsGHDJEk1a9ZMMy4AAC8r7mwHACCTq1GjhqKiojR27FiVLFlSzZs3T90XEhKSOonevn27Ro4cqSpVqqhbt266ceOGHBwcJElff/21jh07pkqVKqlRo0aKj4/X1q1bNXToUG3YsEFr1qyRra1tuvJERUWpcuXKcnBwUOvWrZWQkKC5c+eqW7dusrGxUefOnZ/2SwAAAAAAwEvjUZ8DSNKwYcM0dOhQ+fj4qHHjxvL399eBAwf07bffatmyZdq+fbs8PDwk3S20ly9fXiaTSU2bNlVwcLBiYmJ06tQpjRs3TsOHD5e9vb369++vhQsXauPGjercubOCgoKe/ckDAPCcMRmGYVg7BAAAeDLnzp1TcHCwOnfunOYqdknasGGDatasKUmaMGGC3nzzzXuOP3PmjIKDg++5Gn3w4MEaPny4Zs2apTZt2qRuHzp0qIYNG6b169erRo0aqdv/Pb579+6aOHFiaoH+yJEjKlGihAoUKKAjR448jVMGAAAAAOCl9bDPAdavX6/Q0FBVrFhRy5Ytk5eXV+q+KVOmqGvXrurfv7++//57SdL777+v7777TgsXLlSzZs3S9BUZGSlPT0/Z2NxdJPdBnwcAAPCyYhl5AABeEiEhIfcttEtSnjx57rvs27vvvivp7tJz6eXi4qLvvvsuzZ3wRYoUUeXKlXX06FHdvn3bwuQAAAAAACC9fvjhB0nSf/7znzSFdknq0qWLQkJC9Mcff9xznLOz8z3bvL29UwvtAADgXiwjDwDAS6JcuXIP3BcbG6uxY8dqwYIFOnHihG7duqX/Xfzm0qVL6R4nf/78qUvR/a/AwEBJd6+Kd3NzsyA5AAAAAABIr+3bt8ve3l5z587V3Llz79mfmJio69ev6+bNm/L19VWbNm00duxYNW/eXK1bt1bt2rVVuXJl5c2b1wrpAQDIXCi2AwDwksiWLdt9tyclJSk0NFR///23ihUrpjZt2sjPz0/29vaS7j7nLSEhId3j/N+r5v9lZ3f3146UlBTLggMAAAAAgHS7efOmkpOTNWzYsIe2u337tnx9fVWuXDlt3rxZX375pf7880/9/vvvkqSCBQtqyJAhateu3bOIDQBApkSxHQCAl8T9lomXpEWLFunvv/9Wly5dNHny5DT7wsPDHzk5BwAAAAAAzw9PT0+ZzWZFRESk+5iKFStqyZIlSkhI0O7du7VixQr9+OOPat++vfz8/FS7du0MTAwAQObFw1YAAHgB/Pt89Me5a/zUqVOSpJYtW96zb+PGjU8WDAAAAAAAPHUP+xygQoUKioyM1OHDhy3u19HRUZUqVdLnn3+e+uz3RYsWpWtcAABeRhTbAQB4AXh7e8tkMiksLMziY4OCgiRJGzZsSLP9zJkz+uijj55COgAAAAAA8DQ97HOAd999V5LUo0cPXb58+Z79sbGx2rFjR+r327ZtU1xc3D3trl69KklycXFJ3ebr6ytJj/X5AwAALyKWkQcA4AXg5uam8uXLa/PmzerQoYMKFCggW1tbNW3a9JHHNmnSRPny5dN3332ngwcPqlSpUgoLC9OSJUvUqFEjJtAAAAAAADxnHvY5QK1atfTVV1/p448/Vv78+dWwYUMFBwfr9u3bOn/+vDZu3KgqVapoxYoVkqRRo0Zp3bp1qlq1qoKDg+Xm5qbDhw9r+fLl8vb2Vs+ePVPHrVmzpmxsbPTxxx/r0KFD8vb2liR9+umnVnkdAACwNortAAC8IH7//Xe9++67WrFihWbOnCnDMJQzZ87UO9cfxNXVVevWrdPAgQO1YcMGbd68WXny5NHgwYP13nvvafbs2c/mBAAAAAAAQLo96HOAEiVK6KOPPlLlypX1ww8/aMuWLVq0aJE8PT2VI0cO9ezZU+3bt0/tp3fv3vL29tbOnTu1ZcsWJScnK2fOnOrdu7fef/995c6dO7Vt4cKFNXXqVH377bcaN26c4uPjJVFsBwC8vEyGYRjWDgEAAAAAAAAAAAAAQGbCM9sBAAAAAAAAAAAAALAQxXYAAAAAAAAAAAAAACxEsR0AAAAAAAAAAAAAAAtRbAcAAAAAAAAAAAAAwEIU2wEAAAAAAAAAAAAAsBDFdgAAAAAAAAAAAAAALGRn7QDWZDabdfnyZbm7u8tkMlk7DgAAAAAgEzAMQ7du3VL27NllY8M17M8z5v0AAAAAgMeR3rn/S11sv3z5sgIDA60dAwAAAACQCV24cEE5c+a0dgw8BPN+AAAAAMCTeNTc/6Uutru7u0u6+yJ5eHhYOQ0AAAAAIDOIiYlRYGBg6pwSzy/m/QAAAACAx5Heuf9LXWz/dwk5Dw8PJt0AAAAAAIuwLPnzj3k/AAAAAOBJPGruz8PlAAAAAAAAAAAAAACwEMV2AAAAAAAAAAAAAAAsRLEdAAAAAAAAAAAAAAALUWwHAAAAAAAAAAAAAMBCFNsBAAAAAAAAAAAAALAQxXYAAAAAAAAAAAAAACxEsR0AAAAAAAAAAAAAAAtRbAcAAAAAAAAAAAAAwEIU2wEAAAAAAAAAAAAAsBDFdgAAAAAAAAAAAAAALESxHQAAAAAAAAAAAAAAC1FsBwAAAAAAAAAAAADAQhTbAQAAAAAAAAAAAACwEMV2AAAAAAAAAAAAAAAsRLEdAAAAAAAAAAAAAAALUWwHAAAAAAAAAAAAAMBCFNsBAAAAAAAAAAAAALAQxXYAAAAAAAAAAAAAACxEsR0AAAAAAAAAAAAAAAtRbAcAAAAAAAAAAAAAwEIU2wEAAAAAAAAAAAAAsBDFdgAAAAAAAAAAAAAALESxHQAAAAAAAAAAAAAAC1FsBwAAAAAAAAAAAADAQhTbAQAAAAAAAAAAAACwEMV2AAAAAAAAAAAAAAAsRLEdAAAAAAAAAAAAAAALUWwHAAAAAAAAAAAAAMBCFNsBAAAAAAAAAAAAALAQxXYAAAAAAAAAAAAAACxEsR0AAAAAAAAAAAAAAAvZWTsAAAAAno7Dhw9r9+7dCggIUK1atWRjw3WVAAAAAADAOiIiInTw4EH5+PioWLFiMplM1o6E58TZs2e1detWeXp6ql69enJwcLB2JOCxUWwHAAB4Afz666968803ZTabJUlNmzbT/PnzZGtra+VkAAAAAADgZbNp0yY1bdZM0VFRkqQ2bdrojz/+4HMKaNmyZWrZqrUS4uMkSWXLldf6dWvl6upq5WTA4+F2JwAAgEzu+vXr6tW7t3xD6umVjxcq/2ufafGSxZo2bZq1owEAAAAAgJdMcnKyWrV+VfLKpeK9JipP8w80Z+5cTZgwwdrRYGVms1kdO3WSS67iKvPhPBXp+p327tuvUaNGWTsa8NgotgMAAGRy58+fV3JSkrKWbihbeyf5FKokZ08/nThxwtrRAAAAAADASyY8PFw3rl9Ttoqt5eKXW34lass9IJ/27t1r7WiwsoiICEVGRChLybqyc3KVe2ARuWbPz2dYyNQotgMAAGRyQUFBsrO319XdS5SScEcRR7coLuqaChUqZO1oAAAAAADgJZMlSxY5ODgq4vh2GYZZd66fV9zNiwoMDLR2NFiZj4+PfHx9dWPfSiXH3VLM+UOKvXySz7CQqZkMwzCsHcJaYmJi5OnpqejoaHl4eFg7DgAAwGObNGmSevTsKXNKiiSpRcuWmjtnDs9CA4AMwFwy8+C9AgAAsI5ffvlFb731luydXJSUEK+CBQtqx/Zt8vT0tHY0WNmKFSvUomUrxcfdkSSVr1BRa9es5pnteO6kdz5JsZ1JNwAAeEEcO3ZMu3fvVkBAgGrUqCEbGxYxAoCMwFwy8+C9AgAAsJ7t27dr8+bN8vb2Vrt27eTm5mbtSHhOnD9/Xtu2bZOXl5dq1aolBwcHa0cC7kGxPR2YdAMAAAAALMVcMvPgvQIAAAAAPI70zie53QkAAAAAAAAAAAAAAAtRbAcAAAAAAAAAAAAAwEIU2wEAAAAAAAAAAAAAsBDFdgAAAAAAAAAAAAAALESxHQAAAAAAAAAAAAAAC1FsBwAAAAAAAAAAAADAQhTbAQAAAAAAAAAAAACwEMV2AAAAAAAAAAAAAAAsRLEdAAAAAABkuJEjR6ps2bJyd3eXv7+/mjdvruPHjz/0mClTpshkMqX5cnJyekaJAQAAAAB4OIrtAAAAAAAgw23cuFF9+vTRjh07tHr1aiUlJalu3bqKjY196HEeHh4KDw9P/Tp//vwzSgwAAAAAwMPZWTsAAAAAAAB48a1YsSLN91OmTJG/v792796tatWqPfA4k8mkbNmyZXQ8AAAAAAAsxp3tAAAAAADgmYuOjpYk+fj4PLTd7du3lTt3bgUGBqpZs2Y6fPjwA9smJCQoJiYmzRcAAAAAABmFYjsAAAAAAHimzGaz+vfvr8qVK6tYsWIPbFewYEFNmjRJixYt0vTp02U2m1WpUiVdvHjxvu1HjhwpT0/P1K/AwMCMOgUAAAAAAGQyDMOwdghriYmJkaenp6Kjo+Xh4WHtOAAAAACATIC55JPr1auXli9fri1btihnzpzpPi4pKUmFCxdWu3bt9MUXX9yzPyEhQQkJCanfx8TEKDAwkPcKAAAAAGCR9M79eWY7AAAAAAB4Zvr27aslS5Zo06ZNFhXaJcne3l6lSpXSqVOn7rvf0dFRjo6OTyMmAAAAAACPxDLyAAAAAAAgwxmGob59+2rBggVat26dgoODLe4jJSVFBw8eVEBAQAYkBAAAAADAMtzZDgAAAAAAMlyfPn00Y8YMLVq0SO7u7rpy5YokydPTU87OzpKk119/XTly5NDIkSMlSZ9//rkqVKigfPnyKSoqSt98843Onz+vN954w2rnAQAAAADAvyi2AwAAAACADDd+/HhJUo0aNdJsnzx5srp06SJJCgsLk43N/1+ELzIyUj169NCVK1fk7e2tMmXKaNu2bSpSpMizig0AAAAAwAOZDMMwrB3CWtL7YHsAAAAAAP7FXDLz4L0CAAAAADyO9M4neWY7AAAAAAAAAAAAAAAWotgOAAAAAAAAAAAAAICFKLYDAAAAAAAAAAAAAGAhiu0AAAAAAAAAAAAAAFiIYjsAAAAAAAAAAAAAABai2A4AAAAAAAAAAAAAgIUotgMAAAAAAAAAAAAAYCGK7QAAAAAAAAAAAAAAWIhiOwAAAAAAAAAAAAAAFqLYDgAAAAAAAAAAAACAhSi2AwAAAAAAAAAAAABgIYrtAAAAAAAAAAAAAABYiGI7AAAAAAAAAAAAAAAWotgOAAAAAAAAAAAAAICFKLYDAAAAAAAAAAAAAGAhiu0AAAAAAAAAAAAAAFiIYjsAAAAAAAAAAAAAABai2A4AAAAAAAAAAAAAgIUotgMAAAAAAAAAAAAAYCE7awcAAAAAAAAAAAD3FxERoV9++UU3btxQtWrV1LRpU2tHAgAA/0WxHQAAAAAAAACA59DNmzdV5pWyuhx+RQ5u3ho9erS++OILffrpp9aOBgAAxDLyAAAAAAAAAAA8l3766SddvnJVRXqOV7E+k5S9chsNGTJE0dHR1o4GAABEsR0AAOClYhiG1q9fr+nTp+vQoUPWjgMAAAAAeIirV6/KySurnLyzSZLcg0rIbDbr5s2bVk4GAAAkiu0AAAAvDbPZrDZt2yo0NFSdOnVSyZIlNWHCBGvHAgAAAAA8QKVKlXTrylld3jpHMecPKnzj78oWkF2BgYHWjgYAAMQz2wEAAF4as2fP1tw5c5Sv1cfyyl9OYWt+U9++fdWsWTMFBARYOx4AAAAA4P/o0KGD9uzZo++//16S5J81m/5a/Jfs7e2tnAwAAEjc2Q4AAPDSOH78uJw8fORbtLpsHZyVtUwjpaSk6OzZs9aOBgAAAAC4D5PJpO+++07h4eE6dOiQzp87q7Jly1o7FgAA+C+K7QAAII34+Hj16tVLvln8lC17Dn311VcyDMPasfAUFCxYUPExEbp5eKNSEuN1dfdS2draKjg42NrRAAAAAAAPkS1bNhUtWlROTk7WjgIAAP4Hy8gDAPCSCAsL04IFC2Q2m9WsWTPlyZPnvu369++vXydNVtZyLZQcf1sff/yx3N3d1adPn2ecGE/q+PHjunz5sgoXLqxs2bKpTZs2mr9ggf6cO1KSZGNjo59//pkl5AEAAAAAAADgMZiMl/hWtZiYGHl6eio6OloeHh7WjgMAQIbZv3+/qlWvrtg78TKZJEcHe61bu1blypW7p62Xt49ci9dXYM3OkqQTs4epqL+9Nm/a+Kxj4zEZhqF3331XY8eOlSQ5Ojrpjz+mq1WrVjIMQ+vXr9elS5dUqlQpFStWzMppASDzYS6ZefBeAQAAAAAeR3rnk9zZDgDAS+D99z+Q2dlHIW9+I5PJRif++Fjv9OuvHdu33dPW3t5eKQmxku4WbVMS7sje3vdZR8YT+OuvvzR27FjlqttTXvnL6dL6qerQsZOqV6+uLFmyKDQ01NoRAQAAAAAAACDTo9gOAMBL4Nz583LLXVJ2Tm6SJLfcIQo7u/W+bd/u20dDhgxR4q0ImeNvK+bcfvX59s8nGn/fvn2aO3eubGxs1L59exUuXPiJ+sPD7d27V04ePgqo0FKSlL1qOx08slknTpxQlixZrJwOAAAAAAAAAF4MFNsBAHiOREREaMmSJUpMTFTdunWVK1eup9Jv2VfKaOHSVfIuWEkmWztFHl6nWlUq3Lft4MGD5enpqZmzZsvR31PvfPOnWrVq9dhjr169Wg0bNZKds7sMs1nfjv5OG9avU/ny5R+7Tzxcrly5lHA7SjHnD8o9VzFFHL17YUXOnDmtnAwAAAAAAAAAXhw8s51ntwEAnhPnz59XpcpVdPnSRclkkpubm1avWqUKFe5fFLfEtWvXVKt2HR06eECSVLBQYa1ds1o5cuR44r4fpURIKYVFGyrQYbgMc4qOT/tQZfLn0Pr169K0S0pK0rRp03Tq1CkVLlxYHTt2lI2NTYbnexElJiaqdp262rJ5k+ydXJUYd1tDhw7VkCFDrB3tmYiNjdUff/yha9euqVKlSiybD+CpYy6ZefBeAQAAAAAeB89sBwAgk/noo4GKvJOkkH7TZOvoqpMzP1XPN9/Sgf37nrhvf39/7d71j/bs2SOz2awyZcrI0dHxyUOnw9WrV+Wav4ZsbO0lW3s5BxTQlatn07RJSUlR02bNtHLlSrl4+etO5FUtXbpUs2bNkslkeiY5Jen27dvasWOH7OzsVKFCBTk5OT2zsZ8mBwcHrVm9SrNnz9bly5dVpkwZ1a5d29qxnonbt2+rcpWqOnjwoByc3ZQQG61Ro0ZpwIAB1o4GAAAAAAAA4AVDsR0AgOfEydOn5ZqrhBw9/SVJngUq6czO2U+tfwcHh6dyl7ylKleqqGWrlsste0GZU5IUeXi9mnZol6bNihUrtGL5chVs97m88pfTjUPrNWfO13r77bdVpUqVZ5LzzJkzqhlaS2Hnz0mSihQtpnVr1yhr1qzPZPynzcHBQZ06dbJ2jGduwoQJOnLkqIq+8YNcsuZR2OpfNXDgQHXv3l0+Pj7WjgcAAAAAAADgBcLarAAAPCdKFCuqW6f/0e1LxxV386IiD61V0aLFrB3riU0YP17FCuXXidlDderPL1Wx3CsaPXp0mjbh4eGSJI88pSVJnnnKpNluqXXr1umrr77SlClTFB8fn65j3ujRUzduJ6pYz3Eq0u17nQm7rHffe++xxof1XLp0SU5e/nLNllcmk0neBSvIbDbrypUr1o4GAAAAAAAA4AXDne0AADwnRo0apb//2aXDv/WTJGXNFqDJk36zcqon5+/vr7937tCpU6dkY2OjvHnz3rM0/CuvvCKTyaTzKyfIL6Surv7zl2zt7FSqVCmLxxs5cqQGDRokB2c3JcXHavyEidq4Yf0jl4Q/cOCAvIvVk2u2PJIkj4KVtH//QYvHh3WVLl1at8eM0ZV//pJH7hIK3zJTnl5eCgoKsnY0AAAAAAAAAC8Yiu0AADwn/Pz8tHvXP9q8ebOSkpJUqVIleXl5WTvWU2FjY6MCBQo8cH9ISIjGjRunvm+/rWu7lsjBwVFTJk9Wvnz5LBrnypUr+uSTTxRQ+TUFhnbV7UvHtGvqAE2aNEm9e/d+6LFBQUE6efofJZdvISM5UbHn9qlshRCLxof1dezYUVu2bNEvv4yTJLl7eGj+vHlycXGxcjIAAAAAAAAALxqK7QAAPEecnJxUp04da8ewirfeekutWrVSWFiYgoODH+v52pcvX5ZhGPIpVFkmk0nuOQvLycNXFy5ceOSx48f9rNBatbTn29ckw5CPr6+++z/L3eP5ZzKZNHHiRL3//vu6du2aihYtKm9vb2vHAgAAAAAAAPACotgOAACeG35+fvLz83vs4/PmzSsXVzdd3jJTgbW6K/rMHt2JvJqu5ejLli2rQwcPatmyZbKzs1PTpk2VNWvWx84C6ypQoMBDV1MAAAAAAAAAgCdFsR0AALwwPD09NXvWTL3Wpq0OjOshSerdu7deffXVdB2fO3du9erVKyMjAgAAAAAAAABeEBTbAQDAC6Vx48Y6d/aMDh8+rICAABUqVMjakQAAAAAAAAAALyCK7QAA4IXj7+8vf39/a8cAAAAAAAAAALzAbKwdAAAAAAAAAAAAAACAzIZiOwAAAAAAAAAAAAAAFqLYDgAAAAAAAAAAAACAhSi2AwAAAJlUQkKCzpw5o9u3b1s7CgAAAAAAAPDSodgOAACAR4qIiNCrr72mLH7+KlCosObPn2/tSC+9devWKSB7duXNm1c+vr6aMGGCtSMBAAAAAAAALxWK7QAAPKaUlBQdOXJER44cUUpKirXjABnGMAy1aNFSfy1bKacidXXD8FTr1q21adMma0d7ad24cUPNW7SQ4ZVbhTqMkHfx2urdu7d27Nhh7WgAAAAAAADAS4NiOwAAjyEiIkKVKldR0aJFVbRoUZWvUFE3btywdiwgQ1y5ckWbNm1UYL1eylmjk/K/9plcfLNrzpw51o720jpw4IBuxcQoV/3e8sxbWkEN+8rOwVmbN2+2djQAAAAAAADgpWFn7QAAAGRGb7/zjvYdOqICbYfJZDLp0OLv1KdvX82eNcva0YCnzs7u7q+M5sR4SZJhTpGRkixbW9v7tj9w4IBmzJghwzD02muvqUyZMs8s68siS5YskqTbl47LOUug4q6dU1JiXOp2AAAAAAAAABmPYjsAAI9h+/ad8ilWS94FykuSfIrX1vbtO62cCsgYfn5+at6ihRYvmaDbl44p/to5Jd2OVJcuXe5pu3nzZtWuXUc2Tm4ymUz67vvvtXzZMtWuXfvZB3+BFS9eXG3bttXsOd/pxj8LdefGRRUvXkJt2rSxdjQAAAAAQAaaNWuWRn/3ve7ciVPrVi00ePDg1IvkAQDPHsvIAwDwGAICsunOpaNKSYqXOSlBsRePKCAgm7VjARlmxh9/6O0+vZQt5arKFsyptWvXqFSpUve0+3jQJ3LyD1bxvpNVrO9kueYsog8/GmiFxC82k8mk6dOna9zPP6t909oaNmSwtm7ZLBcXF2tHAwAAAABkkIULF6pdu3Y6FWnoun2Ahg//Uh9++KG1YwHAS81kGIZh7RDWEhMTI09PT0VHR8vDw8PacQAAmcj27dtVM7SWZGsvySQlJ2j16lWqWrWqtaO9kCZOnKhvR3+v+Ph4vdq6pb766is5ODhYOxbuo0DBworxKqCg+r0lSWFrJsl0frsuXQyzcjIAeHqYS2YevFcAAOBF0qhRI205dF6FOn8rk8mkC+umKGrvEt2+FSOTyWTteADwQknvfJK1RQAAeAwVK1bU3j27NWfOHBmGoVdffVVFixa1dqwX0u+//6633npLvsVqyM7bU2N/+FHx8fEaN25cho998eJFHT16VIGBgSpUqFCGj/ciqFqlkn6fOVvugUVlsrHVzf0r1KJJQ2vHAgAAAAAg0zObzTLZ2qcW1k22djKbzVZOBQAvN+5s5wp3AACeazVq1NS+C9Eq1HGkJOnC+qmK2bdEt2JiMnTc33//Xd26d1dyUpIk6cMPP9TXX3+doWO+CKKjo9WiRUutX79OklSxUmUtWfyXfHx8rJwMAJ4e5pKZB+8VAAB4kcyYMUMdOnSQb7Hqsnf10fXdS9S9W1dNnDjR2tEA4IXDne0AACDTO3nypHbs2CGHbAVkGIZMJpOMlJQMXxrt4sWL6ta9u7yKVFeOah0UcWSLRo0apdDQUNWrVy9Dx34excTEaP78+YqNjVWtWrUeepe/p6en1q5do/Pnz8tsNis4OJil7AAAAAAAeArat2+v2NhYjfp2tOKjz6lP714aNWqUtWMBwEuNYjsAAHhu9e7dR3J01a3zB3Ri1hDZu3rp+v41ev+9dzN03KNHjyo5KUk5qraXk3eAsld+VVe2ztT+/fvvKbYnJSVp8eLFunLlisqXL68yZcpkaLZn7dq1a6pQsZLOnjktG1tb2dnaadq0qbp+/bpu3bql2rVrq2zZsmmOMZlMCgoKsk5gAAAAAABeYD169FCPHj2sHQMA8F821g4AAADwIEePHZdP8VrK2+JDJcVGK/LkP/Ly8tJXX32VoePmypVLkhRxZLMkKerULiXF30nd/q/ExETVqVtPrVq1Ut+331HZsmWfybPkn6XPP/9cl6/dVMm+k1TmowVyzV1SHTp2Uv9339PQ4SNVoUIFzZgxI7V9eHi4FixYoHXr1ik5OdmKyQEAAAAAeHr27dun0mVekaubm0qGlNKuXbusHQlAJhYZGakBAwaoZcuWGjx4sGJjY60dCY+JYjsAAHhuFSiQXzEnd8g9V3Hlb/2xHJ1dVKFCednZZeziPAULFtTAgQN1Yd1k7RnVUsdnfKr6DRro1VdfTdPut99+0+bNm1Wo09cqO+gv+b/SWO/066cbN25kaL5n6cyZs3LOXlBOPtllY+cgr0KVlZKcpKJvTlDIe7PkXaSq3urVW4ZhaP369cpfoIBatmypWrVqqUbNUN25c8fapwAAAAAAwBO5fv26atWuo1NXopWlYjudu3FHtevUVXh4uLWjAciEYmNjVblKVf3w8wStP3BeX436VnXq1lNSUpK1o+ExUGwHAADPrXE//yRXU6L2je2kfT90kbu9oR9/+OGZjD1y5EitWrVKI74YplmzZmnJ4sWytbVN0+bs2bNy9vaXZ3BJmWxslaV4LaUkJ+vixYvPJOOzUKJEcd0+f0DRp/co/uYlXdu1RLYOznL2zSGTja288pfXrZho3b59W23atpO9Xz6V6j9dhTqO1M6//9Y333xj7VOApDVr1qhnz57q3bs3d18AAAAAgIU2btyoiJs3lPfVIQqo1Fr52n6u6KhIrVu3ztrRAGRCixcv1tEjh1Ww87cq2GGE8rUZqu3btmrLli3WjobHwDPbAQDAc6tQoUI6cviQ1qxZI0mqW7euvL29n9n4derUUZ06dR64v2jRorpzM1w3DqyVR3CIruxcICcnZwUHBz+zjBlt8ODB2rxlq7b9MUiS5OziKiMlUTcPb5STT3Zd27lAefLmU3Jysq5fu6p8rbrLwSOLHDyyyC1HYR0+fPiJxj948KDGjRun2NhYNWnS5J7VBdIrLCxMGzZskKurqxo0aCAXF5cnypWZzJo1S+3atZObf26ZkxP1n19/1ZrVq1W9enVrRwMAAACATMHBwUGSlBJ/W/L0U3LcrTTbAcASt27dkkwmOXkHSJKcfHL8/+3IdEyGYRjWDmEtMTEx8vT0VHR0tDw8PKwdBwAAZDJms1kdOnbUrJkzJUkODo6aPv33xy4IP6+Sk5O1Y8cOxcbGqmTJkurRs6eWLF4sSfLPmk0rli9TyZIl5Zsli2z8CypPy4GKv3FRx3//UB+8208jRox4rHH37t2rSpUqy8bZU7YuHrp16YS+//579e/f36J+NmzYoEaNm+hO7G1JUqHCRbRl8yb5+vo+Vq7MJm/+Aoqy81O+Vz+VYU7RsakDVLZgDq3970UsACzHXDLz4L0CAABPQ2xsrEqVLqML4dfllqe0Ys/tU1YfDx3Yv0/u7u7Wjgcgkzlx4oSKFy8h16CS8ilaQzf2Lpc54rxOHD+ubNmyWTse/iu980mK7Uy6AQDAEzAMQ3///beuXr2qkJAQ5cqV65mNffnyZQ0ZMkSnz5xRyRIlNHToUHl6emb4uIZh6NChQ7p165ZKlCghNzc3SXeXwGrd+lUlJiZIkoqXKKnNmzY+dqb27dvrrzVbVPiNH2Vj56hzy35S3MnNio6KkslkSnc/uXIHKcbWS/leHazE6Gs6MX2genR9XT/++ONj5cpsfLP4ybloPeWs0UmSdHrRaOW0jdDe3SwnDzwu5pKZB+8VAAB4Wq5cuaKBAwfq8JGjKlyooL766itlz57d2rEAZFJLly5V5y5ddfPGdWXPkVOzZ81UlSpVrB0L/yO980mWkQcAAHgCJpNJ5cuXf+bjRkVFqWKlyroWGSPnHEW0Zft/tGXrNm3bukX29vYZOrbJZFLx4sXv2d6kSRMdPHhAmzdvloeHhxo3bixnZ+d09xsWFqbw8HAVKFBA3t7eioqKkr1XNtnaO0mSnP1z6+a+FUpJSZGdXfp+jU1OTtaFsPMKbtxcdk5usnNyk0vOojpx4kS6c2V2tWqFatGSv+TonU3mxHhFHtmorv37WTsWAAAAAGQq2bJl05QpU6wdA8ALolGjRrp+7apu374tNzc3i24swfOFYjsA4KWQmJioS5cuKUuWLCzv9ZLYuHGjJk+eLLPZrPbt26t+/frWjvRULVy4UGHnz6nk21Pk5J1NMef2a9e0j7R9+3ZVq1bNarkKFCigAgUKPLRNZGSkFi1apPj4eNWpU0d58+bVJ598krrcvIurm+bOma06depoxYr3dWnzLDl4ZtHVrbNUrXqNdBfaJcnOzk5BwXkUcWCNvPKXU2L0dcVeOKQiDbo/0XlmJhMnTFDEq69p7aLRkqS2bdvq888/t3IqAAAAAACAl5vJZOKz6hcAxXYAwAtv8+bNatGylW7euC5bOzuN/vZb9evHXZ0vsmXLlqlJkyZyyRIo2drp999/18yZM9W2bVtrR3tq4uLiZLKxlb2blyTJ3v3u88fv3LljxVSPdunSJVWsVFkXws7LZGMrR0dHDf70bqE9Z83O8spXVpc2/q5XX2ujsPPndPbsWf38888ym82qWKmyZvwx3eIxp/8+TQ0aNtTe7ztIkkqUDNGQIUOe9qk9t7y9vbV69SpFRETIzs7umTxqAAAAAAAAAHgZ8Mx2nt0GAC+06Oho5Q4KkrwCla1yW0Wd2Kmr//ylDRs2qHr16taOhwxSsVJlHQ2PVcGOIySTjU7N+Vx+NtE6duSwtaM9NadOnVKx4iXknL2QvApV1s19K+SYFKMTx4/J29vb2vEeqFu3bpo57y8V6vKd7Fw8dXL2EJkiwxSXIoW8O1OSFHvljA790lvbtm1TxYoVFRcXp4SEBHl5eT32uOHh4dqyZYtcXV0VGhoqJyenp3RGAF5GzCUzD94rAAAAAMDjSO980uYZZgIA4Jk7fPiwoqOiFFi3l7zyllHu+r3k6OqpTZs2WTsaMlB0dIwcfbJLJpOiz+xRSkqybt64Ye1YT1W+fPm0ZPFf8kiJVNiKcQr0dtLqVSuf60K7JJ0+c0YugcXk6JVVtg5O8ipYWdHRUUq4Ha3bl45LkqJP/SPp7t9fSXJ2dn6iQrskBQQE6NVXX1XDhg0ptAMAAAAAAAB4KlhGHgDwQvPx8ZEkxV46JtdseRR3I0xJ8bHKkiWLlZMhIzWoX1djfvhRty4eU9y1s6nbx48fr169elkx2eNLSEjQwoULdePGDVWsWFGlS5dW7dq1df7cWZnNZtnYZI5rKEsUL64dv01RzPmDsnfzVsT+VcodFKRz587r8OT3ZO/iqaTbEbJ1cNTly5etHRcAAAAAAAAAHohl5FlODgBeaIZhqGvXbpo2barcA/Io7uZlBeXOpebNmur69esqXbq0evfuLVtbW2tHxVMUHx+vWrVqa9u2rcr/6qfyyl9O51f9opt7l+vixYvKli3bM81jNpsl6bEL4nFxcapRM1R/79whG1tbyTD0yy+/qHv37k8z5jMRFRWlWrXraM/uXZIkP/+smjplsho2bCivfOXkEpBXJlsHXd70uyb99pu6dOli3cAAcB/MJTMP3isAAAAAwONgGXkAACSZTCZNmvSbJk6cqHZNamvA++/KbDZrzI8/a8HaHerXv786duyol/jas+fWjRs3tHz5cm3dulUpKSkWHevk5KRatULl7Okrn8JVZGPnIP/SDZWSkqKzZ88+uoOnJCkpSb1795aLi6ucnV3UvXt3xcfHW9zPzz//rN179qhIt+/1ysd/ybdkHfXu3Ue3b9/OgNQZy8vLS9u3bdX69eu1fPlyHT92VA0aNNDQoUMVdepvXf9nkS5tmKrq1WuoQ4cO1o77UKdOnVLTZs1UpGhxtW3bVuHh4daOBAAAAADPvWvXrqlPnz6qX7++BgwYoFu3blk7EgAAj41l5AEALzwbGxv16NFDPXr00Pjx43X27FkVe3O8nLME6vr+1Zo1a7QGDx6sIkWKWDsq/mvbtm1q2KiRoqOiJEk1a4Zq6dIlcnZ2TncfhQoVUlz0Td08tEGe+cvq2q7FsrWzU548eTIo9b0+++wzTfzlPwqo0k4mG1tN/X263NzcNHbsWIv6OXv2rFx8c8g9Z2FJkm+xmrq+d6XCw8OVP3/+jIieoRwcHFSjRo0024YMGaKqVatq9+7dypEjh1599VXZ29tbJ2A63LhxQ5WrVNXtZBu5BZfWouVrtGdvTe3bu0cuLi7WjgcAAAAAz6WYmBhVrFRZl67ekHP2Qlq3YZw2bd6iLZs3PddzQAAAHoRiOwDgpRIZGSl7Rxc5+eaQJLlmy5u6Hc8HwzD06mttZHjkUMmO3yn+5kVt+vNLffPNN/rss8/S3U/btm21cNEizZ3zlSTJxtZWE8aPV9asWTMq+j0WLPxLWUrWUc7qd+/QTr4TrYWLFltcbC9evLhuT5igm4c3yi1nEV3duVDuHh7KmTNnRsS2mtDQUIWGhlo7RrosWbJE165eUal3/5CDu69iS9XTof+8rS1btqhu3brWjgcAAAAAz6VFixbpzOlTKtnnNzn55lDMuf36e9pH2rp16z0XZQMAkBlQbAcAvFSqV6+uhE8+0dmlP8o7f3ld3fGnvLx9VKxYMWtHw3/FxMTo8qWLytuyg5x8ssvJJ7vcA4vo4MGDDzzGMAxdu3ZNJpNJ/v7+ku6uaDB71iz17tVLly9fVqlSpVS4cOFndRqSJFdXF12NuZn6mILEmOvydEn/3fn/euONN7Rq9WotmDdSkuTk7KI/586x6E7//3Xr1i0lJSXJ29tbJpPpsfp42aWkpEgmk2zsHCRJNnaOkqTk5GRrxgIAAACA59qdO3dksrGVvYevJMnB8+4cPjY21pqxAAB4bDyzHQDwUqlcubImTpyo6EPrdGL2UDkl3NTSJYvl6empf/75Rx06dFDTps00ceJEnuNuJe7u7vL08lLkkS0ypyQp7sYF3blySkFBQfdtHx0drXr16itbtmzKmjWrGjVqnPosc5PJpBo1aqh9+/bPvNAuSR99OEBRJ//W0cnv6djUDxRxdIsGfjjA4n7s7Ow0788/tWPHDi1evFinTp5Qo0aN0rSJiorSxo0btXfvXpnN5vv2k5SUpJYtW8rDw0O+vr6qWq2abty48Vjn9rKrX7++PD09deKPQbq4cbpO//mFcuQMVJUqVZ5ZhpSUFH388cfy8vaRh6eX+vTpo8TExGc2PgAAAABYKjQ0VA729jo15wtd27NcZxd8LW8fX5UvX97a0QAAeCwm4yWuJMTExMjT01PR0dHy8PCwdhwAwDMUHx+vmzdvKlu2bLK1tdWuXbtUuXIV2XtmlZ27r6LP7NWnn36qL774wtpRX0oLFizQa23ayGw2ZE5JVsFChbVt6xb5+Pjc0/b1zp01e+585az7lmSYdWHlBHXt3FETJ060QvJ7LV68WL/9Nklms1mdO7+uVq1aPfUx/vnnH9Vv0FARN+8Wzhs2aqQF8+fLwcEhTbt27dpp1uw5ylXnDdk5eyhs5QSFVq+ilSuWP/VML4M9e/aoV+8+On36tIoVK6b//DJR+fPnf2bjDx8+XJ8NGaJs5VvIZGuvK9v/1Dtv99X333//zDIALyvmkpkH7xUAAM+fVatWqWu37rp86aLyFyioP6b/rrJly1o7FgAAaaR3PkmxnUk3AEBSp06dtGDlRhXp8bNs7BwUtmaSbu5apLi4O7KxYSEYazh8+LA2bNggDw8PtWjRQm5ubvdtF5grSCk5yypXnTckSedWjJN75HGdPHHM4jEPHjyoMWPGKCYmRvXq1VP37t2f+2XWDcNQ7qBgRRvOyt2ov+JuXNDZhaP0xefD9PHHH6dp5+jkLPf8FZS/1d3tl7fOUfim6UpKTLBWfDyB4iVCdMXGT3mbfSBJOr9yomwv7dbFC+etnAx48TGXzDx4rwAAeH4lJSXJ3t7e2jEAALiv9M4neWY7AAC6+2wwO1ef1OcvO3plVVJSopKSkuTo6GjldC+nokWLqmjRoo9s5+Pro7Crp2WYU2QYhuKunlFQwL13wD/KoUOHVL5CRZmcPGTvnkV//vmnzp07p+HDhz9O/GcmOjpaF8LOK1+rj+XiHyQX/yDd2L1U+/btS9MuPj5eSYkJirseJnNyoky29rpz9Yzs7Ph1MLNycnJUSlSMDMOQyWRSclyMXPj3CgAAAEAmQaEdAPAi4NNVAAAkNW7cWAsWdNf5Vb/I0TubrmyeodDQWhTaM4ERw79Q02bNdHh8DxmGWQkxNzT8V8uXRf/hhx9kcnJXkZ7jZevgpAvrpujrUaM0ZMiQ5/oDAA8PD7m5eyjy+Hb5FK6ihKirirt2RjlzhqZp5+zsrGwB2XXlynnt/7mHbB2cFXf9nBo3bmyl5HhS7/bvpw4dOujY7wNlsrNX9KldGvLjj9aOBQAAAAAAALw0KLYDACCpa9euunTpkkaM/EqJCfEKrVVbM/6Ybu1YSIdGjRpp86ZNmjFjhkwmkzp16qRy5cpZ3M+tW7dk5+YrWwcnSZKTT3YlJyUpISHhuS6229jYaOKE8er0+uvae/JvJSclKCgoSAMHDryn7V+LFqpW7Tq6FX1VklSseHHNnj37iTPExsZq3bp1SkxMVLVq1eTn55e67+zZs/rqq690/fp1VapUSf379+du+qekffv2sre318RffpHZbNbrn0xW586drR0LAAAAAF5qly9f1u7du+Xr66sKFSrweEIAeMHxzHae3QYA+B+GYSg5Ofm5Lq4iY0ydOlVdunRRQMXWcsoSqPBNvyukSAFt37bV2tHSZffu3Vq3bp08PDzUpk0beXl53bddRESEdu/eLTc3N5UrV062trZPNO7Vq1dVtVp1nTxxXJLk45tFa9esVkhIiC5evKiSIaUUl2ySY5ZARZ/dp04dO2nq1ClPNCYAWBtzycyD9woAADxLy5cvV8tWrRUfd0eS1KRpU82fN4+LzgEgE0rvfJJLqgAA+B8mk4lC+0vq9ddf17Bhw3Rz92KdXfy9ShcrpHl/zrV2rHQrU6aMBgwYoDfffPOBhXZJ8vHxUZ06dVSxYkWLC+0HDhzQ/PnzdejQodRtH330kS6EX1fxN8crpN/vSnLwUrfubyg+Pl4TJkzQ7TvxKvzGjyrYYYRy1++tadOm6vLly497mgCATGzkyJEqW7as3N3d5e/vr+bNm+v48eOPPG7u3LkqVKiQnJycVLx4cS1btuwZpAUAAA9y4sQJrV69WhcuXLB2lOdKQkKC2rZrJ+fAYgrp97vyv/qplixZqgkTJlg7GgAgA1FsBwAA0N0LLT777DPduROr2NhYbd2yWdmzZ7d2rOfGkCFDVLJkSbVq1UrFixfXiBEjJEmHjxyVW57ScskaLEdPP3kUqqwDB/bL2dlZX375pUwOzrJz8ZQkOXnffT1v3bpltfMAAFjPxo0b1adPH+3YsUOrV69WUlKS6tatq9jY2Aces23bNrVr107du3fX3r171bx5czVv3jzNhV8AAODZGTx4sAoWLKi6desqOE8eTZ482dqRnhuXLl1STHS0/Ms2k6Onn3wKV5F7tiB+bwGAFxzLyLOcHAAAwEPt3LlTFSpUUM4ar8u/TENd+XuRLm+eqb179+rbb0dr3pIVKtjxa9k6uerghLeUkhCrwFrdFXfzoq7tWiK/kLpyz11cV7fNUTZPJx09clj29vY6duyYwsLCVLhwYQUGBlr7NAEg3ZhLPh3Xr1+Xv7+/Nm7cqGrVqt23TZs2bRQbG6slS5akbqtQoYJCQkLSdZcY7xUAAE/P+vXrFRoaqpw1O8u3WA1d3jJLEQfX6vSpU8qdO7e141ndnTt35OPjK/dCVZSnybuKDT+l49M+1PAvhumjjz6ydjwAgIVe+GXkH3f5OQAAAFjmyJEjkqSASq1l7+qlgEqtU7d//fVXyubjof0/d9ee0W2VknBHfqUbKFv55gpu2FfuQSV188BanVk0WnkCfLR82VLZ29tr4MCBKly4sOrVq6c8efNq6tSp1jxFAIAVREdHS7r7iJMH2b59u2rXrp1mW7169bR9+/YMzQakx08//aSPP/5YZrPZ2lEAvOCuX7+uHj16qFLlKurSpYvVHs21b98+2do7KnuVtnLyDlCOah2UkpycOmd82bm4uGjixAmKOLhOu0Y21eHf+ikkpKTefvtta0d74f3zzz/65JNPNHToUJ06dcracQC8ZOysHeBx/bv8XNmyZZWcnKxBgwapbt26OnLkiFxdXa0dDwAA4IWRN29eSdL1favlX6aBbuxbnbo9R44c2r9vr1auXKnExESN/OprXYq4JMO4+6GzrZ29ipUooe1bt8jFxUWStHr1an399dcKDO0qn6LVdHnzTL3Ro4dCQ0O5wx0AXhJms1n9+/dX5cqVVaxYsQe2u3LlirJmzZpmW9asWXXlypX7tk9ISFBCQkLq9zExMU8nMPB/nDx5Uv369ZPZbNbp06c1depUOTs7WzsWgBdQXFycqteoqTNhl+QWXEp7FyzRxk2btX/f3me+akuuXLmUkpSgqJN/y7tAeUUc2SxJzOP+R+fOnVWyZElt27ZNvr6+at68uRwdHa0d64W2ZMkSNW/RQvYunjInJ+rb0d9p65bNKlmypLWjAXhJZNpi+4oVK9J8P2XKFPn7+2v37t0PXH4OeJlt2rRJMTExaty4sbWjAAAymapVq+rNN9/UxIk/6tzynyTDUL9+/VS+fHlJkoeHh1599VVJkrOzs1q3bq0j/+krSYq9elZD/vwztdAuSfv375edo7OyV2kjScpetb2u71ulo0eP8iENALwk+vTpo0OHDmnLli1Ptd+RI0dq2LBhT7VP4H7y58+vyZMn64033tDcuXN14cIFLVq0SP7+/taOBuAFs379eh09cljFevwo14D8ir95Sft/7q7ly5erTZs2zzRL8+bN1bhxEy2ZNUT2Ti5Kir+j995776EXzr2MQkJCFBISYu0YL41+774nj+BSyvfaEBnJiTo6+V0NHjxYf/31l7WjAXhJZNpl5P+v9Cw/l5CQoJiYmDRfwMvg+PHjaty4sVq0aKGZM2daOw4AIJMxmUwaP3681qxZo/HjxmndunUaM2bMfdu2bNlSq1atUvPaldS8diWtXLlSLVu2TNMmd+7cSk6IU9TJvyVJEUc2Sbp7lwQA4MXXt29fLVmyROvXr1fOnDkf2jZbtmy6evVqmm1Xr15VtmzZ7tv+448/VnR0dOrXhQsXnlpu4P96/fXXtWrVKnl7e2vHjh2qUKGCjh49au1YAF4w/67YYufi+d8/PdJsf5ZsbW21cOECzZkzRyO+GKYVK1Zo9OjRzzxHRjObzbp69aqSkpKsHeWlcOvWLXXs1EnePr4KzJVbEydOtOj4a1evyjWwqGxs7WTr6CLngPwKv3L10QcCwFNiMgzDsHaIJ2U2m9W0aVNFRUU99Kr4oUOH3vcK90c92B7I7JKSktStWzdNnz5dJpNJ48aN01tvvWXtWAAyIcMwdOfOHbm4uMhkMlk7zlOVkpKiyMhI+fj4yMbmhbke8bmUkpKipk2badmypbJ3dFFSwh199NFH+uqrr6wdDQDSJSYmRp6enswlLWQYht5++20tWLBAGzZsUP78+R95TJs2bXTnzh0tXrw4dVulSpVUokQJTZgw4ZHH817hWTh+/LgaNmyoM2fOyNPTU/Pnz1doaKi1YwF4Qdy4cUMFCxVWkqO3vIuFKurYZhlRF3Xk8OFHXrQGy23evFmtX31N165ekYurm36ZOEEdOnSwdqwXWouWLbV0+Ur5l2uhhKhw3TiwTnPmzEldQe9R6tarry079yhXo35KSYjVucXfq0+vNx94kwAApFd655MvxCfJ/y4/N2vWrIe24wp3vKzs7e01depU9enTR4ZhqFevXhQ0gOdAbGys+vbtq8JFiqlK1Wpav369tSM91Nq1axWQPYfc3NwUkD2H1q5da+1IT83ChQvl4+srPz8/Zc0WoHXr1lk70gvN1tZWf/216O7dEMOHadWqVen+71JERIRKhpSSnb2DnFxc1bdvX4vGNgxDcXFxj2wTERGh5ORki/rOrG7duqUzZ84oMTHR2lEAvOD69Omj6dOna8aMGXJ3d9eVK1d05cqVNP8uv/766/r4449Tv+/Xr1/qXXPHjh3T0KFDtWvXLov//QcyUsGCBbVjxw5VqlRJ0dHRqlevniZNmmTtWABeEFmyZNGa1asU7OeqqxunKoebSStXrMh0hXbDMLRs2TKNGzdOmzZtsnac+7px44YaN2miBGc/5X9tsFzylNXrnTtr79691o72XLp586Zmz56t2bNnKyIi4rH6SExM1KKFC5W9+uvKWaOT8jQbII/AIpo7d266+5g86TflzRWg4zM+1al5I1WjelV9+eWXj5UHAB5Hpi+2W7L8nKOjozw8PNJ8AS8LGxsb/fjjj/rkk08k3b34ZODAgXoBFrcAMq127dtr4n9+U4RLkA6G3VTdevW0a9cua8e6r7CwMDVp2kwJLtmUt/kAJbhkU9NmzRQWFmbtaE/s+PHjeu21NrILKKp8rT9RsnsONW3WTJcvX07Tzmw2a8SIEQrOk09BwXn1xRdfyGw2Wyl15mdra6tXX31VH3zwgerUqZPu48qVL69DR48roEpbueUtp59//lmDBw9O17EzZsyQl7e3XFxcVLBQYR04cOCeNnv27FFQcB75+vrKw8NTv/32W7qzZUZjxoyRt4+P8ubNqxw5A5/6s5MB4H+NHz9e0dHRqlGjhgICAlK/Zs+endomLCxM4eHhqd9XqlRJM2bM0C+//KKSJUvqzz//1MKFC3k2LJ47fn5+Wrt2rdq2bavk5GR1795dgwYN4vdFAE9FqVKltH/fXsXHx+nI4UOqWLGitSNZxDAMdejYUY0aNVLft99R9erVUz+jfJ7s3btXMdHRCmrUXz6FKitPsw9ksrHTxo0brR3tuXP8+HEVKVpMbdu2Vdu2bVW0WHGdPHnS4n5sbGxkY2urlIQ7dzcYZpmT4mRvb5/uPnLkyKG9e3bryJEjOnnypFatXClXV1eLswDA48q0xXbDMNS3b18tWLBA69atU3BwsLUjAc89k8mk4cOHa9SoUZKkr7/+Wr1791ZKSoqVkwEvn+vXr2vxX38psN5bCm70tgp2+loObr6aNm2ataPd15YtWxR3J1Z5Ww1SlhK1lLfVIN2Jjc00hTmz2ay9e/dqy5YtunXrVpp9mzdvVlJykvK2HCjfIlUV3OwDxd6+rb//vvs88ZSUFO3bt0/9+vXTJ598oljvAorzKaghQ4Zo5MiR1jidl1ZsbKxOnzql3HV6KEe1Dsrb4iO5ZM2TrjvHdu7cqU6dOsk+sJTyNPtA4TFJqt+goWJjY1Pb3L59Ww0aNlJksoPytR4kt4JV1KNHD23dujUjT8tq1q1bp3fffVd+ZRqrYIcvleSSVU2aNlVMTIy1owF4QRmGcd+vLl26pLbZsGGDpkyZkua4V199VcePH1dCQoIOHTqkhg0bPtvgQDo5OTnpjz/+0KeffipJGjlypNq1a/fIVXUA4EW3dOlSzZwxQ3lbfqSynyxRztAuGjFihA4dOmTtaGl4eXlJku5cOytJirt5USnJianb8f/17tNXsWZ7hfT7XSHvTNWtJJPe6dfP4n7s7Oz0Zs+eurzpD52a/7WOTRugO9fOq2fPnhb3U7hwYeXLl++Fe+whgOdfpi22p2f5OQD3N2DAAP3yyy8ymUyaMGGCOnXqpKSkJGvHAl4q/97hYmN790pdk8lGJhvb5/biF3d3d0lSfMTlNH/+u/15FhcXp3r16qt06dKqWrWq8hcomOaOZk9PT8kwFHf97l36cdfOp26PjIxUpcpVVKpUKf3000+ydXZXjmrtFdy4n7KE1NXkKc/nxRHplZSUpAEDBigwV5Dy5iugH3/88ble8cTW1laSlBx/t0BumFOUkhiXrsyrVq2SvbOb8jYfIL+StZWr4TsKv3wpzYc7R44c0bWrV5Srfh/5Fqmm4Cb95eDqqTVr1mTMCVnZ5s2b5eTupVx135RX3jIKrPumoiIjdeTIEWtHAwAg07KxsdEXX3yhKVOmyN7eXnPmzFFoaKiuXbtm7WgAYDVnz56Vja2dfIvWkMlkkl/JOqnbnydlypRRw4aNdHr+Vzo+9QMdn/KeChUqrNatW1s72nPn+IkT8shfUY6efnL0yir3fOV17NiJx+pr7NixGjLkM+VxuaNX8gdo+fLlql69+lNODAAZx87aAR7X+PHjJUk1atRIs33y5MlprooHcH89evSQh4eHOnbsqJkzZyomJkZz586Vs7OztaMBL4QTJ05o5cqVcnJyUsuWLeXr65tmv7+/v0JDa2nLqgmKux6muKunFRcZrnbt2lkp8cPVqVNHIaVK6/AfH8s1R2HFXjqqkFKlLVr+21pGjBih9Rs3Kf9rn8nRK6vOLf5Obdu115HDd4usjRs3VomSITr6+4dyyZZXsZdOqFr1Gqpatap69uypfQcPq2D74bKxc9Cp+V/p3JIfVLD9FzJSUmRj8+DrFm/cuKFff/1VkZGRqlmzpurXr/+sTvkeYWFhWr16tezt7dWkSRN5e3tLkj744AP99PM4+ZVppLi4W3rnnXfk4uKi7t27Wy3r/woLC9PgwYN19uw5hYSU1BdffKECBQroxNpJiji2VYlRV5UUG6lOH374yL7c3d2VnBivxNsRcvTwU0Lk3SWKExIS9Oprr2nXrj3y9fWRJMXdCJNbjoJKjL6m5IQ7L+xdDFmyZFHinduKv3FBzn65dPvSsdTtAADgyXTu3Fm5c+dWixYttGPHDlWoUEFLly5V4cKFrR0NAJ65okWLypySrCs75itL8VCFb/tTNjY2KlSokLWjpWFjY6MFC+ZrzJgxOnDggHLnbqoBAwbIzc3N2tGeO4ULFdL2vdsUX6aBZDYr5uQOlS5f6rH6srOz02effabPPvvsKacEgGfDZDzPty9lsJiYGHl6eio6Oprnt+OltWzZMrVq1Urx8fGqXr26/vrrL/4+AE9ozZo1aty4iZJSUmSYzQoICNCO7dsUGBiYpl1UVJR69+mjdes3KIuvr74c/oWaNWtmpdSPFhMToy+//FInTpxQgQIFNGjQoLt3hT/nGjVqrG2nbqhg22GSpGt7V+js4jFKSEiQg4ODpLvnNmrUKJ0+fVpFixbV+++/L2dnZxUrXlLXHQMV3OhtSdLFjdMVvm2uvAtU0M3DG/Xdd9/p3XffvWfMa9euqcwrZXX12nXZu3rqTsQVffvtt3r//fcfmvXgwYMaPny4rl27rmrVquqTTz5Jzfi4duzYoTp16+r27duSYShHzkBt27pFuXLlkrePr5yL1FauWt0kScdnfqYSAc7auHHDA/uLjIzUkiVLlJiYqDp16ihXrlxPlO9Bbt68qRIlQxQZmyCXHEV068xulSxeVEuXLFb+/AUUHR0te3cfJd2OUNMmTbVgwfyHXvxw/fp1hZQqrYiYO3LKGqyYs/vVoEF9nT8fplPnLsqraE3dPr9Pd66dl9mcIpPpbl/u7m46c/r0PRfMvAhu3bqlsuXK68zZc3L2ya6Y8NPq1q3bC/+ceuBpYC6ZefBewdqOHz+uhg0b6syZM/L09NT8+fMVGhpq7VgA8Mx98MEHGj16tKS7Re0xY8bo7bfftnIqPK6TJ0+qeo2aCr98SZKUI2egNm3coDx58lg5GQA8PemdT1JsZ9INaNOmTWrcuLFu3bqlV155RcuXL+euNuAJBOfNpyh5KH+boUqKi9Hxye/p1WYNNHXqVGtHeyKGYWTK51699dZbmjpjrgp1Gyt7N2+dnjdSNjdP6vq1q488tn6DBtq695gKdh4tG1s7Hf9jkBJvnFP+/PnVvWsXvfPOO/d9TT7++GN9/8M4Fe7xkxw8/BS26hdd371YMdHRcnFxue9YJ0+eVKnSZWQ4ecrRL0jRJ3bo1datNGvWrEfmvH79uubPn6/ExEQ1aNBA+fLlS91XvERJhUUlKX+74UpJiNXxqR+oWf1amjlzhnyz+MkhfzXlrttThmHo+B+fqFQuT61fv+6+41y4cEEVK1XWpYsXJJNJrq5uWr1qpSpWrPjIjJb6z3/+ozfffEsl+02Vo4efos/u07HfB+r777/Xu+++q/yvfSafQpUUcWyrTs75QmvWrFGtWrUe2uelS5c0YsQIXb58WWXKlFHNmjVVpUoVFX79a3kElVRyQqz2fPOaTLZ2yl6lrZLvROvKzoX68ccf1bdv36d+js+D6Oho/fjjj7p06ZLKli2rLl26PPSiBQB3MZfMPHiv8Dy4fv26mjdvrm3btsnOzk4TJ05Ut27drB0LAJ65ffv26dy5cypcuLAKFixo7Th4QpGRkVq/fr0kqVatWpnihgwAsER655OZdhl5AE9PtWrVtH79etWrV0+7du1S9erVtWrVKuXIkcPa0YBM6ULYeeWs3UM29o5ytPeTc84iOnvuXIaPaxiGvv/+e3319SjFxcWpWbOmmjB+/BMvdzZ37ly906+/rl+/prJly+mP6b9nqiuVP/vsMy1ZukwHfuoqW3sHmZMTNWf27HQdO+rrr1WlalXtH9tRNja2MpmTtXLlikc+O+zq1aty9AmQo6e/JMkjqKSu7FygyMjIBxbbf/vtNyXLVsW7/yBbRxdd27Ncs2eP1ZgxY5QtW7YHjnX69GlVqlxF169fl8nGRh8MGKAhn32mN954Q/7+/jp79ox8yreRnZOr7Jxc5Zq7pE6eOiVJerNnD3319ddKjotRStwtRZ/Zox5f/PHAsQYO/FgRt+MV8s5U2Tq56eSswerR800dOnjgUS+lxeLj42WytZWds7skyd7VS5J05coVSZJnntJ3/wy+u0xdeHj4I/vMkSOHfv7559Tv//777//+P9N//9ckwzCUo0pb5ah695EO8ZHhmjdv/gtbbPf09NSnn35q7RgAALzQ/Pz8tHbtWnXt2lWzZs1S9+7dderUKQ0fPpyL3AC8VEJCQhQSEmLtGM/E+fPndfnyZRUoUOCFXClNkry9vdWyZUtrxwAAq+M3egCSpDJlymjTpk3Knj27jhw5oqpVq+rMmTPWjgVkSsWLl9DNfSt059o5RZ/dp1tndimkZMkMH3fq1Kl6//33ZcpZWl5lmmnOn/P1xhtvPFGfO3bsUNu2bZXoGayctXvqwIlzqle/gRITE59S6oyXPXt27d+3Vz+MHaPhw4Zo1z//pHsyWKJECR3Yv19ffj5UQwcP0t69ex5ZaJekihUrKubicV3ZuVAx5w8pfMsM5QzM9dCieXx8vOwcXWTj4CTp/xeX4+PjHzrWxx8P0u0kKaTfNJX+YK4c/PLqk8GfqUDBgtqxY4eKFCmqyMPrFH/zkm5fOq5bp/9R8WJFJUlffPGFvvj8c2VNuaZg9xRNmzZN7du3f+BYJ0+dkmuuknL0yio7J1d5FaiUYf+tqFevnuzt7HRq9jBd+XuRzi4cpazZAtSiRQvZ2Nrq/Mrxun3puM6vnCAbW1uVKVPG4jFCQkJUtFhxnV34tcJW/6rj0wfKZDIpKTZSkmQYZpnjbsnZ2elpnx4AAHjJODk56Y8//ki9yG3kyJFq166d4uLirJwMAPC0DR48WEFBQapUqZJyBubSokWLrB0JAJCBWEae5eSANM6ePas6dero9OnTCggI0OrVq1W0aFFrxwIylcOHD6tW7Tq6euXunbZly5XX6lUrM3w5rUaNGmnr0csq1OkrSdLlbXN1ZePvio+PS/cdM4cOHdJvv/2mhIQEtWzZUhs3btToH8ar+DvTZLKxVfTZ/Tr2+0c6cOCAihcvnu5sMTExWrZsmRISElSrVi3lzJnzsc4xszCbzerdu7cmTpwoScoWkF1LlyxW6dKlH3jMunXrVKtWLfkWqy63HIV1bec85c+dQ3v37H7o+1e2XHmdS/RQ3mYfSLr7vl/aNENu2YLla5egxX8tUmit2rp29e4d4UWKFtOG9evk5+dn8Xl1795df8yZr3xthsnO2V2n/xyugjl9teufvx998GNYu3atevR8UxcvXFDRYsX0+7SpKlasmCZNmqQ333pLyUlJsrO31y8TJ6pr166PNcaVK1fUu08f7dq1R4GBOVW8WFFNnDhRXvnLKSXulm5fOqZly5apfv36T/ns7u/mzZu6du2agoKC5Ozs/EzGBGA55pKZB+8VnkdTp05Vjx49lJSUpAoVKmjRokXy9/e3diwAwFOwYsUKNWjQQDlrdJJ3wYq6tHG67pzfpwth5zPssZ179+5Vv/7v6vz5MJUqVVLjfv5Z2bNnz5CxAOBlkt75JHe2A0gjODhYmzdvVrFixRQeHq5q1arpn3/+sXYsIFMpWrSoThw/pjVr1mjLli3aumXzM3lulaOjk1ISYmWYUyRJyXduyc7ePt3PWd+9e7fKli2niZOna9qfS1SnTh0dPXpUKUnxSkm4I0lKio2QJIuKgOHh4SoZUkrt2rVTly5dVLhIEW3fvt3Cs8tcbGxsNGHCBF28eFEHDx7U2TOnH1pol6TQ0FBNmzZNdjdO6NK631QupJiWLln8yAslSoWUVMzJnYo5d0B3rp7R9b0r5ZI1WL4l6+nsmdPKnz+/jh09oiVLlmjVqlXaveufxyq0S9LXX3+tfEGBOvxbP+3/qZtcjDuaMnnSY/WVHrVq1dKZ06eUmJigvXt2q1ixYpKkbt266Up4uHbv3q0r4eGPXWiXpGzZsmn+vHkKO39WW7ds1vjx4zVu3DiVzuWuqiWCn2mhfcSIEfL391eRIkWUPUdObdiwIcPGOnbsmFq1aq3yFSqqX79+unXrVoaNBQAA0urcubNWrVolLy8v7dixQxUqVNDRo0etHQsA8BTs2rVLjq6eylGtg1yy5lGOGq8rPu5Ohv07HxYWpho1a2rfyUtKyl5Gq9ZvVWit2o9cJe9lcvnyZe3fv1+xsbHWjvLYDh48qMWLF+vUfx8LCOD5wp3tXOEO3FdERIQaNGigv//+W25ublq8eLFq1Khh7VjAMxMdHa1hw4bp6NFjypcvr4YMGZJhVyA/LWvXrlXdunXllqOQbF29FXV8mz788EN99dVX6Tq+efMWWrtjnwp1GyMbOwedXvC17G6cUEJCghJNjnLMmlcxp/5Wvbp1tGTx4nQX8bt27apZ8/9SwU7fyM7FQydnD1F2V+nokcNPcrpP3dGjRzVmzBjFxMSoTp066tq1a7rP8WkzDCPdY0dERKhW7Trat3ePJMnezUd5WnyoMwtGyUiMVcUKFfTtN6NUrly5p5ItPj5emzZtUmJioipXrixvb++n0u/j5Pjss8+0cdNm+ftl0dChQx9rKfmMZjab9f333+uvxYvl5uqqDz74QDVr1ryn3cqVK1W/fn0FVH5NXvnK6vKm6VLkeYWdP//Uf0+9cOGCSpQsqURbV7lkL6jo49tVsUJZrV+3jufGAunEXDLz4L3C8+zYsWNq1KiRzpw5I09PT82fP1+hoaHWjgUAeAKTJk3SGz16qHDnb+UeWESXt87VhbW/6dSpU8qbN+9TH+/HH3/Uu++9r5D3ZsrOyU23Lh7VkUnvatOmTapatepTHy8zMQxDAwcO1KhRoyRJ3j6+WrRwQaZ7XQYMGKBvv/1W0t2bO3766Sf16tXLyqmAlwN3tgN4Ij4+PlqzZo1CQ0N1+/Zt1a9fX0uWLLF2LOCZSEhIUM3QWvppwi/acSZS/5k8TZWrVH3ur4CtVauWli9frgpFAlUki42++eYbjRgxIt3H37h5Uw5ZcsvW3kkmk41cs+VXdHS0du7YrhYNQhUS4KCPBnygeX/+aVER+viJk3LNVVJOvjlk5+wur0JVdeb06cc5xVRRUVF677331KBBQ/Xr108RERFP1N+xY8dUtlx5TZ+7SMu3HVT37t01ePDgJ+rzSVjy+vr4+Gjnju1avHixcuYMVNLtCB2fPkjm5ARlKdVQ+05dVs3QWjp58uRTyebk5KS6deuqcePGViu0S1Lbdu303ZgfdPqOizb8c0hVqlZ7qncKnDlzRuPHj9ekSZOe6Odr4MCBGjBggA5eTdLm/adVu04dbdq06Z5227Ztk7OHrwJDu8ojd3EF1n5D0VFROnbs2JOcxn3NmjVLt+/Eq3DX75W3+QAFNx+gTRs36vDh5+sCGAAAXnSFChXSjh07VKlSJUVHR6tevXqaNCnjVg0CgPj4eL355pvy9PKWn39WDR8+XOm9Fy82NlZ9+/ZV0WIlVL1GzfvOayB16NBB5ctX0LGpA3RgTAddWPubPvjggwwptOPh/vzzT40aNUo5Q7uoSNfvZPbIoWbNW+jOnTvWjpZua9eu1bfffqvA2t1V6t0/5Femsfr27avTT/i5GoCni2I7gAdyd3fX0qVL1bRpUyUkJKhFixaaOXOmtWMBGW7Dhg3au2e38rf9QgXbDlWBTqN04vjd5zY/7+rWrauVK1Zoy+ZNev/999N9l6phGPL3y6LIo1t09Z/Funlkk679PV/VqlVTgQIFNH36dK1bu1ZffvmlnJycLMpUrGgR3T63V7GXTyoh+poiD61TwUKFHuf0JN39cKBGzVD9POE/2nkmQhN+nawqVas90WTphx9+kNnOWUV6jlehLqOVvUpbffX110pMTHzsPp8WwzC0fPlyjR07VitXrrzvByEODg5q3Lixjh49cnclA8OsfC0/Vu56b6rg66OUZDY0d+7cZ5I3Pj5eK1as0MKFC3Xjxo0MGePy5ctatHChcjfoo3wtPlShrmMkOydNmTLlqfS/ceNGFSteQn3fflvd33hDxUuUVFhY2EOPiY6O1oYNG7Rr1y6ZzWZJd+9q/+GHHxVQuY0KvPaZCnf9Ti5+uTVu3Lh7jvfz81NCbLTirp+XJMWcP5S6/WlLTEyUja2dbBzu/l22c3ZP3Q4AAJ4tPz8/rV27Vm3atFFycrK6d++uQYMGpf4+AQBPU//+/TVp8lS5lWgg26AKGjx4sH788cdHHmcYhl5r00YTf52kG065tPf0FdWuXUd79+59BqkzF0dHR21Yv04TJozXh+/21aJFi1LvrM4IzZo1k6uri47//pHCVv+qs/NGqGChwipbtmyGjZlZ7Ny5U25ZcihHlbZyDyyiHDVeV2TETZ05c8ba0dLt0KFDsrGzV0DF1nJw91VA5VdlNpvTdWF+YmKibty4ke4LagA8PortAB7KyclJf/75pzp06KDk5GR16NBBEyZMsHYsIEP9ewe7g6dfmj+f9zvbn8TgwYO1YMEC2Tm66Nzyn3XqzxEqlDdI06ZOeeK+R4wYoTy5cujQr29r39jXZZ8QqalTJj92f2vXrtX+fXuVv/2XKtB2mAp0/FpHjxzWypUrLe4rJSVFhw4d0rlz52Tv7itbRxdJknOWQKUkJysuLu6xc/6vx/2w1DAMvfHGG2rYsKHe+2CA6tevr969ez9wouTm5qZ69epJkkym//6aZzLJJJMMw9DVq1fVrn17FSpcVA0aNnzqz4y7efOmypYrrwYNGqhFixYqULCQ9uzZ81THkP5/UdjWyVWSZGNnLxt7B4uKxTExMVqyZImWLVum27dvp9nX88235OCfR6UH/KmQftMUGZugQYMGPbCvPXv2KF/+AqpZs6bKli2runXrKS4uTmazWcnJSbJ39ZIkmWxsZevkpvj4hHv66NKliwoVKqSjk/rp8ISeCls1UX369FFwcHC6z+l+Tpw4oZUrV6b5MKFJkyYykhJ0ctZQhW/7U+f+Gq28+fKrWLFiTzQWAAB4PE5OTpoxY4Y++eQTSdLIkSPVrl27p/a7KAD8a/acufIv30KBNTsrqEFveReqrFmz5zzyuKtXr2rZ0qXKVa+Xghu9rUKvj5Kdq5emTZv2DFJbn2EY+uGHH1SwcBHlL1BIX3zxxUPn+Y6OjurRo4eGDh2qpk2bZugj6nLlyqWNGzaoVP6csr+8W/VCq2jd2jUW3yjxIsqaNaviY24o7vrdi+ejz+6TJPn7+1sxlWWCg4NlTk5SxNHNMgxDNw+skyQFBQU99LixY8fKzd1dfn5+ype/gA4dOvQM0gIvLztrBwDw/LO3t9e0adPk5eWln3/+Wb169VJ0dLQ++ugja0cDMkTlypXl4emlM/NHyrdkXUUe3ihnF1dVr17d2tEyxK1btzRy5EjlqNZBOWt0Utz1MB2b+oHq1K6lrFmzPnH/WbJk0e5d/2jDhg1KSEhQ5cqVn+hu3X8venD0vDs5cvTyT7M9vaKiotSwYSNt374tdVvYmkly9s+l8A3TVOaVsvL09HzsnJK0cOFC9erdR9euXlGJkiGaOeMPFXrAXf27du3Szp075e/vr+bNm8ve3l4bN27UpEmTFNykv/xC6una7mWaMOFHderUSZUqVbpvP8WKFVOJkiE68de38i5RW7EXDslkpKhJkyYKrVVbZ8Iuy7NQZW3evV+Vq1TV4UMHFRAQ8ETn+a/Bgwfr5JlzKtp9rOxdvXR63pd6vXMXHTp44Kn0/69cuXKpzCtldXjFz4q/cVGxl44pLvKqWrZsma7jT506pRo1Q3Xp4gVJUnCevNq4Yb0CAwMlSefPnVPW6q/L1sFZtg7OcgkspjNnzz2wvzZt2ynBwUvF3/pcCZHh2jD/K40cOVKff/65GjdpomUrf1dKUrwSo64q+twBtRz2/j19uLm5afu2rZowYYLCw8P1yiuvqH379pa/OP/jyy+/1Keffirp7nPdxo4dq759+6pEiRL6669F6vv2OwrfPlNlyryiaVOnyNHR8YnGAwAAj8/GxkbDhw9Xvnz51LNnT82ZM0cXLlzQokWLMmSlGwAvJwcHByXH373Y2DAMmRNuy9HB55HHpaSkSJJs7Bwk3b2Q2GRjo8TERBmGkaHF5OfBuHHj1K9fP/kWD5WNs4OGDBmilJQUDR061NrRJEkhISHatHGDtWM8d9588039Nmmyjvz6thzdfRQbEa5PP/00UxXbGzdurFdfe01z54yQja2dzCnJGjRokIoWLfrAY1asWKH+/fsra9kmcs9dXFe2zFTDRo116uQJOTg4PMP0wMuDYjuAdLGxsdGPP/4oT09PjRgxQgMHDlRUVJRGjBjxwv9CjZdP1qxZtWL5MnXo2ElnF49RjpyBmrf4rye+w/RZO3funG7fvq0CBQo89JfpmJgYmc1muQbkkyQ5++WSk5e/oqKinloWZ2dnNWjQ4Kn0VaVKFbl7eOj0vBHyKVFLkYc2yMXVTdWqVbOon/fff1+79h1Q7vq9ZePgorAVP+vKjj9lmM16pWw5zZ/35xPl3Lt3r1q1bi23nIWVpXRpHT+7R3Xr1dexo0fk4uKSpu2ECRPUu3dvmWxsZE5JUZWq1bRm9SqdO3dOkpSleKhMJpOyFK+pc8t+1Jw5cx5YbLezs9OqlSvUq3dv7dy5XQVzZNf3M1YrKipKRw4fUpGu38k9sIiSYqO0b0yHuxcE9Or1ROf6r0OHDss1qJTcchSUJPkUr6Xja399Kn3/LxsbGy1Z/Jfad+iozZumyzCZlCt3kJKSktJ1/Jtv9VJkvFklev9HhjlFp2YP0Tv9+mnB/PmSpKLFiunEgdXyzFtGyXdu6dbpXSr5eof79hUfH69TJ08oT7P35eIfJBf/ILkHldT+/fslSVOnTFGPnj21dOlcubi4avTo0erUqdN9+/Lw8NCHH374GK/IvXbu3KlPP/1U2au2k3+pegrfsUDvvPOOatWqpcKFC6t+/fo6dfLEUxkro129elXHjx9Xrly5Hnn1PgAAmV2XLl2UO3dutWzZUtu3b1f58uW1dOlSFS5c2NrRALwA+vd7R4MGDVLSrZtKSYhVzLkDemf0/Ecelz17dlWtWk1/rxynO9fO6c6VU7oTcVXjxo3TzFmz9et/fkn3xc/WYBiGLl68KBsbG2XPnt3izzJ/mzxFPoWrKF+Lu/M1k62dfps05bkptr+oLly4oH79++vIkWMqWDC/xnz/vUWfzXl4eOjvnTv066+/6tq1a6pYsaKaNWuWgYmfPhsbG82aOVOdOnbU+fPnVaxYMdWoUeOhx6xdu1auvgHKXb+3TCaT7Jw9dez3j3T69Gl+nwAyCMV2AOlmMpn05ZdfysvLSx9++KG++uorRUVF6eeff073c6GBzKJixYo6c/qUkpKSZG9vb+04FklKStLrr7+uWbNmSZJyBwVr5YrlKliw4H3bBwQEKG++/Lq8fookKTb8lGIun1L16kOfUWLLZM+eXcuWLlXHTq/r7OIxCsyVW9OWLFauXLks6mfT5i0yGyadX3H3+dlOWXLJ2bijc2dOy8PD44lzLl26VDLZKOb8IcWcPySTrZ0u3EzWwYMHVb58+dR2kZGR6vv22/Ir00hB9Xsp4ug2bZk/QqVLl1blypUlSZc2z1TWMo105Z+/JEk7du586NhZs2bV/Hnz0mzbsGGDpLtLrkuSyc5ekin1DoWnoUCB/PpnzgLF37wkO1dPRR3drODgPE+t//+VJUsW3bx5U3Yu7vItWV9RFw6qQYOG2r171yOXQz9y9Ki8ClWVc5a7d7J7FqioQ4eOpO6fNnWKatepq4Pj35QklSpdRiNGjLhvX46OjvLxzaKo4zvkW6ymkm7dUFz4CQXWvft8PE9PT82ZPftpnLJF/i3256zeUSYbW+Wo1kFX/16kQ4cOZarJ9axZs9S5cxclJt5den/o0KEaMmSIlVMBAJCxatasqe3bt6tRo0Y6c+aMKlWqpHnz5ik0NNTa0QBkcgMHDpSHh4dmzZ4jBwc/vf39AjVv3vyRx5lMJi1cuEC9evfW+vUbdDsyQs4+AQqo2l5Rx7erTZu22r17l0qUKJHxJ2GhyMhINW/eQps2bZQk1a1XT3/OnSt3d/d092GSlOZhboZxd2Mmtm3bNi1cuFCOjo56/fXXlT9/fmtHSiMmJkZVq1XXteg78shXTms2/60qVavp0MED8vb2Tnc/Hh4eeu+99zIwacazsbFRkyZN0t3e09NTibHRSrodIQd3X8VdP5e6HUAGMV5i0dHRhiQjOjra2lGATOeXX34xTCaTIclo3769kZiYaO1IAP7rq6++Mmxs7YzgJv2Nwq9/bbj65zKKFS/x0GOOHDli5M2X35Bk2NjYGJ988olhNpufUeLH97j/9pjNZsPdw9Nw9MpmFOr0tZGn+QeGycbW8PfP+tSydejQwZBkBDd51wjp/7vhU7S6IZPJ2Lx5c5p2Bw4cMCQZRbqMNkq/N9Owd/c17F29DK/85QxbO3vDZGNj6O683pBkOPnkMEJr1bI4T2xsrBGcJ6/h4hNg5KjWwfDIWdBwc3c3zp49+8Bjjh8/bvTr18/o1q2bMXfu3EeOER4ebgTnyZua1dXN7Z7zfVoOHjxoSDIKth9ulP9shVF20F+Go6unMXTo0EceW7lKVcMtW7BR+v1ZRqn+0w3XLDmNBg0bpmkTFRVlrFy50tiwYYORkJDw0P7mzZtn2NnZG3YOTobJxtbIlTvICA8Pf6Lze1IrVqwwJBl5W35klP9shRHUoI8hydi5c6dVc1ni4sWLhr29g5GleE2jeK+JRo5qd/9OrV271trRAOaSmQjvFTKza9euGZUqVTIkGXZ2dsakSZOsHQkAjHXr1hmSjOJvTbg7F/tksWHn4GSMHj3a2tHuq23bdoaDi7uRr9XHRt4WHxr2Ti5Gz549Lepj3LhxhiTDt2h1wy+krmEymYxhw4ZlUOKMN3fuXMPGxsZw9vI3HF09DVc3d2Pfvn3WjpXGwoULDUlGid7/Mcp/tsIo+fYUQ5Ixa9Ysa0d77oWHhxtZswUYjm5ehmfuoobJZDLeeOMNa8cCMqX0zie5sx3AY+nRo4c8PDzUsWNHzZgxQ7du3dLs2bPl7Oxs7WjAS2/79u3yCCop/1L1JUlZK7TWob++U9z/Y++uA7K8/v+PP++iG0lpUETswO7u2c7udlOnUzdjbsZcqVNn9xS7g9liFyYGYmHQ0g33+f3Bxu/jdzoBUYzz+Ift5lznvK77uhGu61zX+6SkvPJn1MvLi6A7twkNDcXExCRPd3gXpvxUHbhz5w5tPmtLQnwcLs17YupaFoDnN0/iZJJZYNksLS3RGFlgXb4JAPbVOvA88Pi/Svq7uLigb2BI2Lnt6Fs5kZmSQLkRK9ExtiQ68DjBW2eiUKowLeYDQhAbdJYe3aflOY+BgQFHDh9iwMBBXLl6iOLOzizYuuaVZblv375NZZ8qZCl1UBuasWLFCn7++WfGjBnzQjutVotCoUChUGBra8uVywHs27eP1NRU6tevn+eKA7n1T0UVkZXx99dMtFmZbN+xkyVLl2NpacG0H76ndevW/9p24R8LqFO3HgG/dgHA2saWuXPmvNDG1NSUxo0b5ypLu3btuHTpIgcPHsTIyIhOnTrl6U77t6Fx48Z0+fxzNvjO4tHe38lMS2HIkCH4+PgUaq68CAwMJCMjnaJ1e6Fnbot+ne6En9vG5cuX5ZN9kiRJ0ifBysqKw4cP06dPHzZs2EDfvn0JDg7mhx9+kNXlJEkqNEZGRgCkxYRiYO1Cenw0WZkZ7+11BP8TJ7Es3wxL7zoAJD65zbHjJ/LUx+DBg9FqtSxYuAhtqpZR06czbty4txH3nfhqzFjMilXBo+NEtBlp3Fo5ku++m8r27a9fUuBd+acKn0KVfd3nnyp9BVmd72Nla2tLwKWL/PLLL0RERFC9+lAGDx5c2LEk6aMmJ9slScq3zp07Y2xsTPv27dm9ezctWrRg586d7+0f15L0qbC1tSXt2CkykmJRG5gQ/+gaRsYm6Onp/ed2SqWSokWLvqOUhSMjI4NmzVsQkZiBSteQ+IdXsa7QlMzUJNIiHlCyapMCG8vb25vM5DjiHlzFxKU0UTeO/l16bwceHh6YmpqyYMECzp07R6OGDfD76y+e3zqJStcQjaEZADqm1gB06tgB/xOn0NXT5Yd58+jVq1e+Mrm4uHDwwF+5avvLL7+QpTag5MAFqHUNeej3B5MmTWb06NEolUqeP39Oz5698PvLD319fb6ZMCGnJGGXLl3ylQ/g1q1brF27lszMTDp06PDKyeESJUpQrXoNLu3+jdh7dUh+chNtZjo37wRRpHwLHkfco23bthw7doxatWq9sG3p0qW5GXiDv/76C6VSSbNmzShSpEi+MwOUKVPmvSqZqFAoWPfnn3Tu1ClnXbZmzZoVdqw8+effo5g7Z7Cr2pb4B1fITEv56P+dkiRJkqT/paenx7p163B3d2f69OnMmDGDe/fusWrVqtf+fS9JkvQ2VKxYkYYNG3F0248YO5chJewuTk5OdOzYsbCjvZRlEUseh95Fm5UJQktKWDAeznk7/1MoFAwbNoxhw4a9pZTvVlRUJJbVGqBQqlDpGqBn405YeHhhx3pB3bp1sbax5d7GKZiWqElc0Gksi1jRsGHDwo72QbC3t+e3334r7BiS9MlQCCHE65t9nOLj4zE1NSUuLq5A1maVpE+Vv78/LVu2JCEhgcqVK7N//34sLS0LO5YkfbIePXpEpco+xCUkotYzJCU2kuXLl9O3b9/CjlbogoKC8PT0xLPbdDKT47m3/SfUhqaIzDRMDA04f+4sHh4eBTJWeno6TZo249jRIyhVarRZmegYmqLNTMfOxpoqPj5s3bYVE8eSpEY9xszYgKFDBvPd1KlYlKiBiXtFIs/vwFSTxd2gO++8ckj79u05fPk+JXr8CEDklQPc3/UbycnJ6Ovr06xZc46eOIVNjc9Jiw0j/PxOVq5cSe/evfM95vnz56lTtx6odVGo1KQnxrBj+3Zatmz50vaxsbH069efcxcuYFWkCFcuB+DW5iusyjZCaLMIXDSInh1b8ccff+Q709tw/fp1Hj16hLe3N66urkB2hQAhBCqVqpDTvV++/PJLfv/9d/SMzEhLiqNBg4bs378PtVreMywVLnku+eGQx0r6mKxatYoBAwaQmZlJ9erV2bFjB1ZWVoUdS5KkT1BKSgo//vgjV69exdHRkYkTJ2JjY1PYsV5q//79tGrdGl1jS4TQkpkUx8GDB6hTp05hRys0DRs15vSFKzg2G05mSgKP9s1j9Mgv+Omnnwp0nPT0dJ48eYKVlVW+Hs66ffs2gwYP4eatW3gWL86ihX9QqlSpAs0oSZL0X3J7Pikn2+VJtyQViEuXLtGkSROio6Px9vbmwIED2NvbF3YsSfpkPXv2jJUrV5KYmEiTJk2oW7duYUd6L4SFhWFnZ4dzk8HYVvmMmKBzBG+ZRp1aNVm9ejWOjo657icgIAALCwt8fHxeWcYzIyODtWvX0q9fP6zKNcGt9ShSY0K5vnAQ2swMHOr2oGjtrqTFRXJjYX9mTp+Go6MjQ4YOI+Z5NKVKl2HjBl9KlixZkG9DrsyfP58RI0bgUL83ehb2PD28nFLFXDh/7izp6eno6enh1HQItpWzy7TfXjOO+uXd2LYt/2XnGjVuzLnAB3j2+gWFUs3djVOw0aRw+2bgS9vPnTuXUaNG8b9/zrq2Gol1+aZoszIJXDiA3l3asmDBgnxnKkhCCMaMGZNzd7lSpWLB/PlcvXqV5ctXIBB83uVzFi9eJJdl+ZsQgj179nD16lWcnZ35/PPP5US79F6Q55IfDnmspI/N0aNHadeuHbGxsbi5ubF3715KlChR2LEkSZLea+fPn2fDhg0olUq6detG+fLlCztSoXr69CnNW7Tk2tUrALRs1YpNBbw86PHjx2nXvgPPo6NQazT89uuvjBgxosD6lyRJehfkZHsuyJNuSSpYN2/epFGjRjx79gxXV1cOHTqEm5tbYceSJOk9JYRg06ZNHD9+HEtLS4YNG4atre1bH3fAgAEsX74cE+fSpD1/ipGuiiuXA3JdmvrQoUN81rYtSYmJALRq3ZqtW7a8cv34f56mL9HjR0xdywFwdUE/MhJiUBuYUHbECkDB9d+789WIIfzwww8IIcjIyPjX+u7v0tmzZxk/fjzHjx8HoGy58uzauQMnJyeysrIwMDCkSOXPcGzQB21WBjeXDqNNw5qsW7cu32OWKVueMLUdbi2/BODJ8T9JDfyLqMiIf7W9e/cunp6e2FRpi5GjF8Gbp6Njak1mUhxFyjUiJfw+yaFBnD516r1Zp/zAgQM0adIEp0YDsPCuzbMTvkQG7EehVGJfqysKlYZn/usY2L/ve/c0viRJL5Lnkh8Oeaykj9Ht27dp3rw5Dx48wMzMjO3bt8ubayVJkqQ8ycrK4v79++jq6uLo6IhCoSiwvmNjY3FxdQVzZ+yqdyYm6CzhF3Zx/PhxateuXWDjSJIkvW25PZ98+WNYkiRJ+VCyZElOnjyJu7s7Dx48oGbNmgQGvvxpREmSpClTptClSxf+3L6fn36bS/kKFQkNDX3r4y5atIi5c+fStIoX/Xp04dLFC7meaM/IyKBT585obDwp98UqinWcyN69+/5zYtTZ2RkbWzueHFlJ/MOrPPVfT2r0U6wqNCMtNoyIAD8e7P2dlLhoGjRoAGSvB1eYE+3z58+nWrVqnDh5CoCq1apz9sxpnJycAFCpVHz11WiendrInfWTuLX8C9JiQt/4LvXatWoQE3iMqOtHeX7nDNEBe6levfpL2965cwchBHZV25H4+DY6ZjaUHrwYq/KNiQu+QMKT2yxZvPi9mWiH7PLxal197Kq1R9fECvsanUChxLJMQ4rW7oZ9jU5YVWzJzl17CjuqJEmSJEnvsRIlSnDu3DmqVatGbGwsjRs3ZtWqVYUdS5IkKUdCQgLTpk2jf//+/P7772RmZhZ2JOn/UKlUFCtWDCcnpwKdaAe4ceMGcbGxODUejKl7BZybDkHHwJgTJ04U6DiSJEnvCznZLklSgXJ1deXEiROUKlWK0NBQateuzYULFwo7liRJ75n4+HimT59O0VpdKTlwEd4DF/I8LoH58+e/9bFVKhUjRoxgw4YNzJ8/P2cCOTdCQ0OJef4cG5826JrZYuFVE2M7d65fv/7KbXR1ddm9ayfa2KfcWjOOJ8fWYFe9E0qd7PJsD/f+TnzgURYuXJjzRFJ6ejrLli1j0qRJbN26lXdZiCgqKoqRI0di49OaSt/swqvXz5w/f54VK1a80G769OnMmzePKu4WNK1ZEf/jx6lateobjf3jjz9Sv25t7m2fxd2NU/H29GDZ0iUvbftP5ZTIKwdQanTJSklEZKXj0mwYdjU6gdDSuHHjN8pT0FxcXMhMS+H57dMIIYi6fjS7ikF8JEKIv/87AkMjw8KOKkmSJEnSe87KyoojR47QuXNnMjIy6NOnDxMnTkSr1RZ2NEmSPnEpKSnUql2HqT9MZ7PfCUaOGk37Dh3kv0+fkCJFigCQ+PQ2ACmRj8hMS8l5XXr/bdmyheHDhzNlyhTCwsIKO44kvffkgoeSJBU4Ozs7jh8/TrNmzTh//jz169dn9+7dsqydJEk5YmJi0Gq1GDlkry+pY1IEXVMroqOjc7V9SkoKM2bM4PLlyzg5OTFp0iTs7OzeZmQArK2t0dPTJ/qmP6buFUkOf0BSxCNcXLr/53aVK1fmcsAlKvtUIS0Tkh9fJ+7xLcaOHcvXX3+NqalpThn6jIwMGjVuwokT/ugZW5ASF8WQIUPeWVnxp0+fkpWVhWWpeigUSkycS2NgbsODBw9eaKdQKBg+fDjDhw8vsLGNjIzw27+fR48ekZWVhaurK0pl9r2hd+/eZdmyZaSkpNC6dWsaNmzI5MmT+f777/8OpOT6osEYWLsS//AK3bp3x8HBocCyFYS2bdvyWdu27Nj0PUq1Bm1mBh06dGDLli3cWjEShUpNfEggP/+fGxskSZIkSZJeRk9Pj/Xr1+Pu7s6MGTOYPn069+7dY+XKlejp6RV2PEmSPlFbt27l6pXLlBq4AENbd6ID/dm1dQYXL158ryqPSW+Pp6cnvXr1Zs2a34m+tIeU58/w9PSkW7duhR1NyoWpU6fy3XffYWzjTFp8NEuWLuNywKV3svSjJH2o5GS7JElvhYWFRfa6xp99xpEjR2jatClbtmyhZcuWhR1NkqT3gKWlJXb2RXl6dBUolCQ+vUNC6H1q1ar12m21Wi2tWrXmmP8JjF3Kctj/NLv37OXqlctYWFi81dx6enosXryIPn378vzGMbRZmZQrX4GRI0e+dtvixYtz9cpl5s6dy/Pnz6lX72uqVavGyJEjCQsPp2KFCnh7e3PmzBn8jx/Dq+dPmLiUIezCLhYu/IOhQ4dSqlSpt7p/kP30tZ6+AWFnt6LTeBDxD66SFP3snYwN2ZP4Li4uL7x248YNqlarTpZCjUrXgHnz5rF8+XKmTp1K48aNuXLlCnN/n8fdu0EkPg5EaLVo1GqEEAVeDu9NKJVKtm7Zwu7du7l8+TL7/fzwP3mKYsU9KWpvh6mpGT1+m0r79u0LO6okSZIkSR8IpVLJ9OnT8fDwYODAgWzYsIGQkBB27NiBlZVVYceTJOkTFB0djUqjg4G1CwCG9sUAeP78eSGmkt4lhULBihXLqVmzBpcuXcLBwYERI0ZgZGRU2NGk10hISOD777/HvmYXHOv3Jj0+isAlQ5g3bx7Tp08v7HiF7vHjxyxevJj4+HgaN24s5zqkHArxLuuSvmdyu7C9JEn5l5qaSufOndm1axdqtZo1a9bw+eefF3YsSZIK0Y0bN2jarDlPnzwGhRKEFoVCwbhx45gxY8ZrJ0cvXbpEpUqVKN55Cuae1UiLi+Da/L4smD+PwYMHv1E2IQTh4eHo6upibm7+ynZXrlzh5MmTWFhY0LZtW/T19fM81qNHjyhXvjzpCj005vbEP7iC0GZlf1OpwrvvbIzsi5MaE8rVeX3466+/3llZ9G3bttG1azfS0lIB6NqtG2vXrMl5yvxdWbZsGdNn/khoaCiZQkHpIUvQMbLg/o6fEKE3iIqMAMDX15euXbvi1esXTJxLERGwnwd75nLlyhXKli37TjPnRkpKCmXKluNpVBzmpeqT+CAAbdwzrl+79q8bDSRJej/Jc8kPhzxW0qfkyJEjtG/fntjYWNzc3Ni7dy8lSpQo7FiSJH1iAgICqFy5MpZlGmDhVZvw89vJCL/LveC72NjYFHY8SZL+w+PHj3FycqJ4l6mYF68CwK1lw+ncoh5Llrx8mb9PxcOHD6lYqTJJqeloDExJjHzMnDlz+PLLLws7mvQW5fZ8Uq7ZLknSW6Wnp8eWLVvo3r07mZmZdOvWjUWLFhV2LEmSCokQgnbtOxCXqcar1y+4NBuGQqFk6tSpzJw5M1dPIScmJgKga5Z9kq4xskCp1uS8nl/h4eFUrVYdOzs7LCws6NmzFxkZGS9tW65cOYYPH07Xrl3zNdEOsHr1apLTMvHq9zsqPSM0huaUHbGKCmM2YmDtQtDGqSSF3ePJ4RXo6url+cnyp0+fcurUKcLDw/OcrV27dty9G8Tu3bs5f/48f65d+0YT7ZGRkfzyyy9MnjwZf3//XG2zefNmBgwYQIKBI5YVWqHNzODxwaUoFAoMi3oRG/M8Z82/sLAwVBpdjJ28ATBxLZ/z+pu4f/8+NWvVRt/AEHePYuzfvz9f/Wi1Ws6dO8fBgweJjo7m4sWLBN8Nwq3dNzjW60WxbjNISU1j165db5RXkiRJkqRPW/369Tl9+jSurq7cv3+fatWqcfTo0cKOJUnv1JMnT5g2bRrjx4/n+PHjhR3nk1ShQgWWL19Owu2T3PGdhCLmITu2b5MT7W9RSkoKW7ZsYeXKldy7d6+w47xzqampDBs2DPuijrh7FGfx4sWFHemDZW9vj7OLK8+OrSY2+CJPT/gS/yw4V5UoP3Y///wzyRkC7yFLKTl4CdaVWjJu3HiysrIKO5r0HpCT7ZIkvXUajYbVq1czbNgwhBAMGTKEWbNmFXYsSZIKwfnz57kbdAeT4tUwdvLGplILTF3KcP369Vz3Ub58eaxtbHm4+zcirxzg3tYZiKwMGjVq9EbZevTsxbVbQXi0n4Bz0yGsW7+emTNnvlGf/yUlJQWVjh4qXQPSYp5h6lERPXNbNAamWJasTUZiDDeWDCPx/kX+/HMt9vb2ue579uzZODk5UbNmTRwcHVm1alWe8zk6OtKyZUsqV678RqXYQ0NDKVe+AhO+ncjPcxdQp04dli9f/trtfH19MXEsiXvbcTg26INjvV5EB/oTfesUEWe3UK16jZwbAHx8fMjKSCPk4DISn97h8aFl6OrqUbp06XznTk1NpWGjxly+dQ/rmt14jilt2nzGtWvX8tTPuXPnsLWzo2q16jRu3Bg3d3du3LgBgMjK+PtrFkKrfeeVAyRJkiRJ+vh4eXlx9uxZqlWrRmxsLE2aNGH16tWFHUuS3okHDx5Qtlx5fpjxI/MWr6Ru3bqsXLmysGN9knr37s3z59E8evSI8LAwGjZsWNiRPlqxsbH4VKlKx44d6du3L97epfJ9o/iHaujQoSxZuhycqxBn4MDgwYPx9fUt7FgfJJVKxe5dOzHXyeLO+ok8ObqaMWPG0L1798KOVuiioqLQtSiKxsAUhUKBsWNJ0tJSSUpKKuxo0ntAXtGTJOmdUCqVzJs3j2+//RaA8ePHM2HCBD7hlSwk6ZOzcOFCqlevDsAz//Xc2/ETafGRpEY9wtbWNtf9mJiY8JfffuyM1dzf9RuKqLts3rTpjcuFHz92DOsq7bH0roOtTxvMilflyFt8EqhFixakxkVxb/ssQEHMnbMkhd0nNSaMmJvHKVeuHGfPnuXpk8d06NAhZzshBAEBAfz1118vfXL7woULjB49Gmufzyg9aCHm3vXoP2AAwcHBb21f/susWbOIjkuk1JBllPnyT6zKNWbEF1+SmJjI2LFjqexThebNm3P+/PkXtlOr1Wgz04Hs3xPajFQQguDNP+DhZMf6dX+i1Wr5+eefGf3VGNzcPQg/t43A5V+S/DAAX9/1ebpB4f+6fv06D+7fw6X1GOyqtadY5yko1Drs2bMn133cuXOHWrVrk6DVpUjp+ijVOiRnCL6b+j2lSpfh/tYZPPT7g6A1YzExMaZt27b5zitJkiRJkvQPa2trDh8+TKdOncjIyKB3795MmjRJnn9LH70ZM2aQkqWg1NDllBqxiiJlGjBy1Cj52S8k+vr6ODk5odFoCjvKR23GjBkEBd+j1MAFVBq/HQOnMvTo2euT+dwLIVi/3hfbml1wajQAj7bjMHEpw59//lnY0T5YpUuX5l7wXYKDg4mOjubnn39+o4cwPha1atUi/tF1Qs9uI/buBcJO+uJdqrRcqkoC5GS7JEnvkEKhYNq0afz0008A/PjjjwwdOjSnDLAkSR+vp0+fMmLECIpUaE7FcVtx+2wM0dePcm1+P8yM9Bk3blyu+nn48CF79+5FoVBw5/YtUlNTiYwIL5BJSjNzc5LDghFCkJWRSlr0YyzMLd6431epWbMmf/75J8rIOySH3kUtMrmxZChX5/VGX5vE2jWrqVKlCpaWljnbZGVl0a17dypWrEjTpk1xdXNn7969Od+/ceMGLVu1AsCpYT8MbFxxbNCXrMzMPD+RXVBCQ0PRs3JG19QKhUKJqVsFUpKT6PL558yeO4+H6SacuBJE7Tp1c574BhgwYABJYfe4vXY893b8wlP/9fTp05uHDx9y5XIAjo6OTJ48mXHjxhGcoEO01hAhBLNnzyb02dM3/kzo6uoCkJkcD0BWegrarIyc13NjzZo1oNajVP/fcf9sDC4tvyAzOZ6I8DA2b9rIZy2bYBp3l+rlS3DC35+iRYu+UWZJkiRJkqR/6Ovr4+vryzfffAPAtGnT6Nq1K6mpqYWcTJLenvDwcHSLOKMxNEOhUGLiUpb4uDjS09MLO5qUR1euXKFO3Xq4uLrTtl07nj17VtiR3lv37t3DwN4TQ1t3VDr6WJSqR3RU5BsvtfchUapUf9+snz35LrIyUSpVhZzqw6bRaHB3d8fC4u1dF/vQDB06lIEDBxJyYAl3fCdhZ6bP9m1bCzuW9J6Qk+2SJL1zY8eOZcmSJSgUChYtWkSPHj1euS6yJEkfh3v37pGVlYVt5daodQ2xKtMQjYExDerV4crlgFxNMq5evRqPYsVo2bIl5cqVY8SIEejo6BTY3bU/zpxB1PWj3Fw8mMCFA8mKj+Dbb795aduQkBC++eYbhg8fnqcnnf+vrl27EhEeRmZmJtFREezZs4ft27dz62bgS9doX7VqFRt8fXFr8xVlR6xC37EMXT7vSlJSEikpKTRt1pz4tOy2scEXs7/ezX5ivLAmcn18fIh/dIPIKwdIeHyTsDObcXJ2Ye+ePTg1HYp7mzF49f4Nodbjq6++Ii0tewcaNWrErl27KONohoM6hkkTv2Xx4sU4OzvnlFufN38BNlXaUazDN3h2/xETJ2/27tvH7du333idulKlSlGrdm0e7PiJ4O2zuL1yFMZGRtjb27NmzRoCAwNf20d6ejpKtQ5KtQ4Aal0jAAwMjShWrBi+69dz5/ZN/vLze+nxliRJkiRJehNKpZLp06ezYsUK1Go1GzZsoEGDBkRGRhZ2NEl6K6pVq0b8gytEXPYj7sEVws9spkzZcnm6YfZDkpyczJ07d0hISCjsKAXq8ePH1K1Xj4A7IaTZluevIyeo36ChvFnoFby8vEh6cov4R9dJT4gm6ooftnb2GBkZ5Wr70NBQdu3axfHjxz/ItacVCgWDBw0k7NQm7u38laD1E0l4fJNBgwb+q21ERASt23yGZRErSniVZNeuXYWQWPpQKZVKFi1aREREBPfu3ePWzUCKFStW2LGk94RCfCr1RF4iPj4eU1NT4uLiZKkHSSoEGzdupHv37mRmZtKqVSs2bdqEnp5eYceSJOktePz4MS4uLlhXbo1jg77E3DlL8NYZbNiwgc6dO792+2fPnuHs4oK5dz2K1u1BzO3TPPJbyK5du2j195PcBcHPz48dO3agp6fHgAED8Pb2/leb+/fvU6lyZZLTstAYmpIYEcLs2bMZOXJkgeV4lS+//JKVG3ZQcvASAOIfXefW6rHcvHmTlJQUKlasiFfvXwg9vZnYoPOo9Y3JTImnWvXqVK1ShWLFitGvXz90dHTeetZ/ZGZm0r17dzZu3AiArZ09gwcN5LvvvqNYx4lYeNVEaLO48ntv0uOjqF6jBkePHM5VRkMjI8wrtcOhTjcAbq/7lrj7l0EIQDBo0CAWLlyY7xsyEhMTmThxIufOX8DBoSjRUdEcPXoEyD7JWrJkCf369Xvl9qdPn6ZWrVqYeFTG2KEkoWe3kZWayLo/1/L555/nK9O7IIRg4cKF7Ny5E0NDI0aNGkmtWrUKO5YkvVfkueSHQx4rScp25MgR2rVrR1xcHG5ubuzbtw9PT8/CjiVJBSojI4MePXrknHu4urnjt38fxYsXL+RkBW/nzp10696DpMQEdHR0Wbx4Eb179y7sWAVi/vz5fDlyFOVH+6LWNybh8U1urhyNv7+/PC95icTERBo1aszZs2cAMDI2Zs/u3dSpU+e12x45coTWbdqQ9PdT8PXrN2Dv3j0f3PXZzMxMpk2bxrbtOzEw0GfMV6NfWI4PQKvVUqVqNW7cvotlhZYkP71F3IPLnDp5kqpVqxZSckmS3ne5PZ+UT7ZLklRoOnfuzM6dO9HT02P37t00a9bso7sbV5I+FkKIN1rvy9HRkdmzZxN+ficXZrQmeOsMOnTsSMeOHXO1/Z07d8jMyMCuekd0Tayw9WmDroHJC2XHC0LTpk1ZtGgRc+bMeelEO8Avv/xCapYS7yFLKTloMdaVWjJhwjfv5A5wFxcXkp+HkvjkNkJoiQ48jkqtxs7ODmNjYwDSYsIo3mkyzk0GkZWWiIOjI2fOnGHp2k0MGz6Cli1b/WdWrVbLihUrGDRoEN999x3Pnz9/o8xqtRpfX1/u3r3LpUuX6Pp5F7777juUah0e7JnL0xO+BG36gfT4KJybDuHMmdOsX78egNTUVAYPHoyZuQVW1jb88MMPL3wOO3fqRNjpTTw+sor7u+cQd+8S5sWrotIzQq+II4sXL2bt2rX5zm5kZMScOXM4c/oUzZs149jxYxTrNJlKE3ZgWa4Jg4cMISoq6pXbV69enc2bN2OaHkHkmY14OBflwF9+7/VEO8B3333HsGHDOH8/hoNnr1KvXj38/f0LLc/169dZvHgxW7Zsyal8IEmSJElS3tSvX58zZ87g6urK/fv3qVatGseOHSvsWJJUoDQaDRs2bODhw4fcuHGD27dufpQT7SEhIXTu3AVdhzKU6DEL05J16NevH1evXi3saAVGoVDAPzdNv+drRR8+fJju3bvTrVs39u3b987HNzIywt//OAcOHGDr1q3cuX07VxPtWq2WTp27oLEuRrmRa/HsOo3jJ04we/bsd5C6YKnVar777juuXb3M2TOn/zXRDtnLEl68cB7HZiNwqNONYl2momdiydatH1YZ8Hv37rF06VLWrVtHfHx8YceRJOlvcrJdkqRC1bx5c/766y+MjY05duwYDRo0IDo6urBjSdJ/2rx5MyW8SmJjZ0/3Hj0+6j9utVot3377LSampujrG9Cte3eSkpLy1dcXX3xBQEAAK1eu5ODBg2zauDGnHPjrODs7AxB94xhCCGLvnictOR5nZ2eSk5MZOnQoHsWKU9mnygtrmL8NUVFR6FgURWNggkKhwNjBi9TUFJKTk9/quACDBw+mYsWKBK4YyaUf2xJ5aS9ly5Rh4MCB3Lx5kw4dOvBwzxyCfCcRfnoTZmbmPHn8mGIdvsV76HKKd5nKwYMH2L9//yvH6Nu3L/369WfZyjV8P2063qVKExMTk/P927dvs2DBAlatWkVcXNwr+7l16xZff/01X375JceOHcPDwwNLS0t+++03HOv3odyXa9CYWPHk2FqSw+/j0WECNpVboaNvxNOnTwEYOXIky1asxLB0U1SuVZk8eTLz5s3LGWPu3LmU9vYi9MwWoq4dwrSYDx4dJ+LUqD+pUY8xsnLi4sWLBfDOQ1BQEPqmVliUqI5Ko4d1hWZkZmTw6NGj/9yuXbt2PHxwn5TkJG7dDKRhw4YFkudtEULwy6+/YVetPZ5df6Bkv9/Rt3Z54X1/l9atW0e58uUZMmQoHTt2pHaduu/kZ02SJEmSPkZeXl6cPXuWatWqERMTQ+PGjVmzZk1hx5KkAufs7Iy3t/c7rej1LgUEBJCWlopzs6GYupbFpcUXaIXg7NmzhR2tQLRu3RpDQwOC1o4n5NByHmydQXHPElSuXLmwo/3L7t27adSoETsPn2H3sQu0aNEi5+bxd0mj0dCoUSPatWuHvb19rraJiooiOioSq4ot0DWxwsyjEkb2xQv8oYb3hVqtBkCbkb0cgTYrA21mZs7rH4LDhw9TqnQZBg4aRPfu3SlfoSLh4eGFHUuSJORkuyRJ74HatWtz9OhRLC0tuXDhArVr1+bZs2eFHUuSXurw4cN06tSJCK0pavfabNq6nc5duhR2rLdmzpw5zJgxA+NSjbGq0YXNW7YxdOiwfPdXrlw5evfuTcOGDfNU2tvNzY3vv/+ep/7ruPRjG+74TqZ58xZ07tyZ7j16sHT5ShItvLgblU7r1q05ceLES/sJDg5m06ZNHD9+HK1Wm699qF27NvEPrxF6ZisxQecIO+lLqdJlcp4sf5v09fXxP36MdevW0bN7V4QQ3A1LwO/MdT777DNatWrF9Gk/UL+sC/16fs6M6dMAMHEp+/fXMkD2OmUv8+DBA1avWYtKzwibSi0wtCtGWFgoM2bMICYmhlq1a+NV0pvhI76gT58+rzyxu3z5MhUrVWbe4hUsX7+VBg0asH79ekJDQwEw9aiExtAMr+4zADC080DPwoGn/utJS4qnUqVKAGzavAWbKu1wrNcLl6ZDMS9RA98N2SUhU1NT6dy5M1evXsO6QjOKlK5P3N3zRFzcTVZKdpWUlNhw7O3tiYiIYM6cOUyfPp1Lly7l67339PQkJTaC57dOkpWWTMSlvag1GlxcXPLV37sWFBTEsGHD6N69O6tXr35lpQohBOnpaWiMLQFQKFWoDcwKZYI7JSWF/v0HYOFdh0rf7KRk39kEBFwutIl/SZIkSfoYWFtb55zTZGRk0KtXLyZNmvRGVawkSXq3ihQpAkDik1t/f70NQmBlZVWYsQqMk5MTx44epayHPeonF2hUpzpHDh96L0ubT5s+AxPXspQcMB+vfr9j7lmVH6bPeOc5EhISmDp1Kr169eKnn37KVUUwCwsLjE1Mib5xDG1mOkmhwSSH38fd3f0/txNCEBoayrNnzz6o3x2Ojo40adqUR3t/5/7u2dxZPQaRkUKPHj0KO1qu9e3XHz07TyqN20aZYct4Gh7Fd999V9ixJEkCPpzbdiRJ+qhVrFgRf39/GjVqxM2bN6lZsyaHDh3Czc2tsKNJ0gt8fX0xsnGmWOfJKBRKdC3s8Ns9h9jYWMzMzAo7XoHbtn0H5l41cWo0AACRlcn2HTtYXQhZJk2aRJ06dbhy5QoODg60adOGpKQktm/bhkvzEdhUaoHQZhG4eDBr1qz511pu69evp1fv3mRmZADQtl07Nm/ahEqlylOOoUOHcuPGDRYvXgxAseKebN/27sqO6erq0rVrV36bPQcz94oU7/oDoCB40/f8+NPP3LxxPadtcHAwao2GR35/YF2pFZFX/kKpVL7yiYArV66A0OLeZjTmntXQZqYT8FtXTp8+zWdt23Hq9BlM3SpQvPNk0uOjuLVyFFOnTuWPP/54oZ/vv/8BpVERvPrORanR4d7WmXw9bjzXr13F0MiYp8dWU7ROD2LvXgChJenBJW7cPg3A5MmTadKkCQAaHR0yU7PXjhNCoE1LQlfXjNTUVOrUrceFCxewrtwKl6ZDAMhKT+Gp/3oyU+JBocCzeDFatWpF2XLliYyKQqXRZfKUKWzcsOGlZeX+S48ePdixcyc7N2ffwKBUqVi2dCmWlpb/uV1WVhazZ8/m0KFDmJubM27cOMqVK5ensd9UUFAQlSpXJlOhi8akCOvWrePevXt8//33/2qrVCpp0aIF+/9aD1ot6QlRxN67RJuvF7/TzABhYWGkpqbgXKo+SpUGYwcvDKyduHfv3jvPIkmSJEkfE319fXx9ffHw8GDGjBlMmzaNe/fusWLFivdyMkuSpBdVr16d1m3asGfrTMKsHUmOekr1GjVp1apVYUcrMOXLl+eE//HCjvFa8fEJ6Jo7o1BkP9Ooa16UhCcX3mmG1NRUatepS+DNWxhYu7BuvS8HDx3Cb//+/7zeoVarWbliOV0+/5yLMz9DCC1lypZj7Nixr9wmPj6eDh07cvDAAQAaNGjI1q1bMDU1LfD9KmgKhYKtW7YwYcIEjp84iU0pN6b9sI6SJUsWdrRcycrKIuTRQ1xatEKlo4++pQMGDiUJDg4u7GiSJCEn2yVJeo+ULFmSkydP0qhRI+7du0fNmjU5ePDgK9dNlqTCoFKpEFlZIAQoQJuZDpDrcugfGn19PbKSniGEFoVCSUbic/T19d9phpSUFE6fPk1WVhbVq1endu3aOd/75y7q/31KXgjBpUuXOHDgAI0bNwYgNjaWvn37YeZVC+cmQ4h7cIUd22ayevVq+vbtm6c8SqWSRYsWMW3aNBITE3F0dMzzhH1BSEhIRMfMLeekXsfMlsS/nxz/h4eHB2vXrKFPn75EXT+KRkeHpUuXUrp06Zf2+c9T2jn3pgsBQmBjY8P27dsBsChZE6VaBz0LewyKevHw4b/LqEdERqJn5YJKJ/tirYF9cSIfXMLc3JzNmzbSsVNnbiwdAcC3337LqFGjCAoKomjRojg5OeX0M/KLEXzzzTdkJDwnKy2J+IdX+eKXraxevZqLFy+iNjBFZGXmtNdmZqAhkzLly1O+fHm++OIL5syZQ1xyOmWGr0RjaEbw1hkMHjI0z5PtKpWKbVu3cvToUcLCwqhQoQJeXl6v3W7EiBEsWrwYU4/KZATcZMfOGly8cP6d/m6bO3cumQpdSg5ahFrPkMdHVjFj5kwmTpz40tKaq1etok/fvuzZvQY9fT1++OEHBgwY8M7y/sPe3h4TU1MiLu7GwMaVxKd3SAx7gLd3/qtrSJIkSZKUTalUMn36dDw8PBg4cCC+vr6EhISwffv2j+bpWEn6WCmVSrZu2cLSpUsJDAzE3d2dIUOGoNFoCjvaJ6dF86bMmfs7ehZFUShVRAXspU+vd/uk9K5du7hyOYBS/edhaF+MmKBzHNowhdOnT//rIYT/q3379ly7epUTJ05gZmZGq1at/vOaz+jRoznmfxK3z8agUCjx91vAF19+yepVqwp4r94OQ0NDfv/99xdeu3PnDocPH8bAwIC2bdu+tzcOqFQqinuWIOzqAUzdKpKREEXio6uUavruz9UlSfo3OdkuSdJ7xdXVlRMnTtC4cWNu3LhB7dq18fPzey/XZZI+Tb1792b58uXcXjsOPUtHoq8foVOnTpiYmOS5r6ysLLZv386jR48oV64cDRo0eAuJ38yokSNp2bIlt1aOQqlrRNy9S/z000/vbPzQ0FDq1qtP0J3bADg5u3D0yOGcqhempqa0btOGfX5LSYl6THLkQ5KjnhCYEk+TJk348ccfGTduHA8fPiQtLRX3Sq1Q6xtjWbIWocdWcuvWrXxnK1KkSE75vncpISGBP/74A0MDPe5e9kPH1BqlUkVkwD4GD+z/r/ZdunShWbNmhISE4Ojo+J8VGMqWLUupUqW5teMXEso3ISHkBoqsdL766iu2b9+OxsiCiEv7MHYqRXpcBAkPr1D6sy/+1U+9unU4N+snIgL2ozYwIfL8DmrWrAlAs2bNePI4hKCgIOzs7HB0dASgWrVq/+pn/PjxmJiY4LthIzo6lgz/dSvt2rVjypQp6BqZYlmhJU+OriYrPRltehqxQWepUaMGp06dIiAggOUrVmBmaoaeTXF0/i6LbupeiQe3TpGRkZHni1FKpTJPP6dJSUksWrQIh/p9sa/RkayMVAIXDmThwoXMnz8/T2MLIZg2bRq/zZ5DWloabdt+xuJFizAyMnrttnFxcWhMiqDWMwRA38qZrMxMkpKSXjrZbmpqyratW9FqtSgUijwt+VCQdHV18V2/nvYdOnJ5djcAmjdvwdChQwsljyRJkiR9jPr06YOzszPt2rXj1KlTVK1alX379uHp6VnY0SRJ+g9qtZohQ4bk/L8QgpCQEHR0dLC1tS3EZJ+W6dOnExkZxdq1ywDo0KEDs2fPfqcZYmJiUCiU6Nu4AGBg65bzem54eXnl6kZygCNHj2NZtglWZRoCkBR6j2PH/PMe+j2xf/9+PvusLZlZmWizsvj+h2mcOX0KGxubwo72Uuv+XEvjJk25Oq83ABUqVpJl5CXpfSE+YXFxcQIQcXFxhR1FkqT/Izo6Wvj4+AhAGBkZiaNHjxZ2JEnKcfDgQVGjZi1R0ru0GDVqlEhJSclzH5mZmaJFi5YCEGodPQGICRMmvIW0b87Pz0+0atVaNG7cWCxbtkxotdp3NnanTp2Enoml8O7/uyg9aKEwsLQXDRo2eqFNQkKCGDBggDAztxQKlVo4NxsmfCbtF3bVOgilUiliYmJEdHS0UGs0wqpCM1H5m13Cs+s0oVSqxB9//PHKsW/duiXc3D2Err6BsLa2ETt37nzbu/taCQkJoqR3KaHW0RXGNs4CEAqFUqhUKtGtW3eRnJyc5z7T0tLEzJkzRadOncRXX30l7ty5Iz7//HPh4OgsKvtUESdOnBBCCPFZ27ZCpdYIpUZXkP3wuyhTtpxISEj4V5+pqamiY8eOOe0qVKwk5s+fL4xNTAUKhVCq1KJ5ixYiNjY2X+/Dzp07BSAc6vcRtlXaCpW+sVCqNaJ3794CEK6tRooKo32FVbnG2e+RSi08OnwjvPvNFUY2LsK7VOlX9p2amioePHggkpKS8pXtf0VGRgpAuLcdJ6pM9hM+k/YLY3sP0adPnzz3tWDBAgEIG582wqFeb6HW1Rddu3XL1barVq0SgLCv2UW4tx0n9M1tRbnyFfKcobA8fvxYbN++Xfj7+4usrKzCjiNJQgh5LvkhkcdKknLn5s2bwtXVVQDC3NxcnoNL0gckPDxc+FSpmnP+9Vnbtvm6TiHlX2pqqkhNTS2w/sLDw8WSJUvEH3/8IR48ePCfbW/cuCFUarWw9K4jineeIszcKwoDQyPx9OnTAsvzD58qVYWpS2lR+dvdovK3e4SpS1lRoWKlXG9//fp18dlnbYVPlapi1KhRIjEx8Y0z7dy5U9SoWUuUq1BRTJ06VWRkZOR6Wzv7osLco5Ko/M0uUXb4CqFrZCaGDBnyxplyKysrS/zyyy+isk8VUbNWbbF58+bXbhMZGSl27dolDh06JNLS0nI1TmJiorhy5Yp49uzZm0aWpE9Obs8n5WS7POmWpPdWfHy8qF+/vgCErq6u2L17d2FHkqQCs3HjRgGI4l2miiqT/YRD/exJwlu3bhV2tAJ34MABMXLkSPHtt9++9iTx/yru6SVsKrcWVSb7iSqT/UTRWl2Fta3dS9sOHz5cGNu65rQt0eNHAYigoCAhhBBLly4VSqUy5wKEjm72TQ66evqiVq1aL5zUxMXFCX0DQ6ExLiJsq7YTuub2QqFUiXPnzuX7fSgIf/zxh1Cq1KL04EWiymQ/4dxsqADEzZs389WfVqsVLVu1EkqVWpi6lhU6BsbCzd3jpZPgycnJYuTIkaKEl7coU6asmD9/vsjIyBDx8fFi7dq1okWLFqJZs2ZiypQpORd2wsLCxKNHj8TRo0cFCoWw8KopnJsMFhrj7Bsj2nz2Wb5zf/311znHUt/AUOzevVt89913Qq1vLOyqdxQGtu7C0L74320UOW3tizqIGzduvLRfPz8/YWpm9vfvHT2xatWqfOX735xVqlYTeiaWwrnZUGFVoZkAxJIlS0RMTEye+qpXv74wK+aT8/l2qNdL6BsY5jrHpEmThEqtFoAoV76CePjwYT72SJKkf8hzyQ+HPFaSlHvh4eGiatXsCTuNRiNWr15d2JEkScqFli1bCT1jC1Gs40Th2mqUUGl0xdixY9/Z+CkpKWLmzJmiR48eYurUqQUygSpE9nnMu7zZ/30RFBQkrKxthEKhFEqVShgaGYszZ8785zYbN24UBoZGAhAWlpbiwIEDbyXbwYMHhUqtFgbmNsLAwlao1Grh5+eXq23v378vjE1MhKGVoyhSpoFQ6+iJRo0bv9Ex3r9/vwCEqWtZYVm6vlAolaJv376iadNmws7eQVSvUVMEBAS8dNv09PScm/X/Oc8296wqmjZtlu88eTVlypTsY1aytjB1Ky8AsXXr1gId4/jx48LM3CLnmsj48eM/yZ8rScqv3J5PfpwLzEqS9FEwNjZm7969tGnT5u+SuW3x9fUt7FiSlCcRERF89dVXdO7cmVmzZpGenr3G+6NHj9DoGmBevAoAlt51AAgJCcnzGJGRkXTq3BlnFzeq16jJmTNnCm4H3tDSpUtp3LgxS9du4pc58yhXvjx3797N9fbu7q4kPrxMRmIMmSkJxN87j+vf64r/X5UqVSIh7AFh53aQ+CyI0BPrsCxilbMGeP/+/Vm4cCHu7h4olEr07Irj2mokaksnTpw6TceOHVm4cCEhISGMGTOGlOQkSnSfjnPjgZTs/TNCm8XMmTML4m3Jt8jISHQMjNC3cgbA2LEUkL0mfX5cvXqVPbt349b2a0r0mIVX37k8ePCADRs2/Kutvr4+s2fP5tbNG1y9eoVhw4bx6NEj3D2K0aNHT/YfOMyh05f4/vsf8PHxQavVYmNjg5OTE7t370bX2BKPDt9gW+UzXFt8gcjKZPfu3WRlZeU5t0KhoFevXvz+++8sXryYkEcPadmyJe7u7mSmJBJ2bjuGdh4oVP+smCS4dOkSZ8+e5W7QnZeulx4aGkq79h1QFvHAs+s0TLxq0bdvXy5fvpznfP+bc8f2bVStWJYnBxaTcvcURYpYMXDgQCwsLBg7dixCiFz1pa+nR1ZKPEJoAchIikVXVzfXOb7//nuSEhN5/vw5lwMu4ezsnO/9kiRJkiTp42Rtbc2RI9nLZGVkZNCrVy8mTZqU679XJEkqHMf9/SlSqTUWXjWxLt8Ec69aHD12/J2MnZmZSbNmzZk4eQq7jl/ih+kzqVO3HmlpafnuMysri6+//hpjExMMDI3o27cvqampBZj6/fb111+TlKWi3Kg/KT9mEyrzogweOuw/t+nUqROxMc95+vQp4WFhNGrU6K1ka9iwIWfPnGFAzy4M6NGZ06dO0aRJk1xt++eff5KWoaVEnzm4fzYWl1ajOXjgQJ6uEf1fixcvwbioJ57dZ+LR9mtsq3Zg5eo1+J+/jMKtJtfvh1Gvfn2ePHnyr201Gg3FinsSFbCP1OinxN2/TOLDa5QpUzrfefJq3vwF2Fb5jGIdvsGz2wxMXMqw4I8/Cqz/pKQk2nzWFmHmSMk+v+FQtyc//vgjO3bsyHUfoaGhnD17lqioqALL9b7LyMjg8uXLXL16NV/XrKRPk5xslyTpvaanp8fmzZvp3r07mZmZdOvWjUWLFhV2LEnKlZiYGHyqVGXB4mUcuBDEN99OpEPHjgghKFu2LBlpyTw7tZm02DCenfBFpVbnep2sf2RmZtK4SVN27TtAhn0FAkOiqd+gIXfu3Hmj7FlZWfj5+bF27Vpu376drz6EEIwZOxarco3wHrqcUkOXk67Qy9OE9ezffkNPpBIwuysBv3RGkRRJ+3Zt2bZt278mmHv27MmQIUN49NciApd9gSLuKTu2b8uZkDxx4gRDhg7lSXQCQqulWOcpWJdvSrGOE0GbhY6ZDZMmT8GzhBdLly4FQKH4+0+lv9eszszM5MyZM9SsVRs392J0696d6Ohonj9//k5O/mvUqEFqQiwhB5cR//AqTw4uwcTUNM+fm3/ExcUBoG+ZvW66rpkNah1d4uPjc9o8fvyYixcvkpCQ8MK2J06coHTpMkRGRgACbUYqmUkx6Nm4cv36dQYMGJDTVk9Pj6yMNLLSU4DsiWLIPrlVKvP+5+j8+fMpVaoUX3zxBYMGDeLbb79FCEGbNm0AgVPD/ri1GkXJXj+ja25HsWLFqFChAlWqVMHAwOClfV6+fJnkpEScm4/AzKMSri1HgkLJqVOn8pzvf9na2nL0yGFSU1Oxs7MjRWlA8S5TKVq3J7/88gurV6/OVT9ffvkliU/vcGvVV9zZMIXw8zsZPWpknrLo6upibm6ej72QJEmSJOlToa+vj6+vLxMmTABg2rRpdOvW7ZOa6JKkD41lkSIkP7uD0GaRlZFKasR9rK2KvJOxjx8/zrFjR/HoNIUSvX/Ds8csLl28wN69e/Pd56xZs/jl118xKducIlU6sPbP9YwePboAU7/f7t1/iJFzWXSMLFDrGmLiUYVHDx++djuNRoO9vT1qtfq1bd9EpUqVmDNnDnPmzMHHxyfX26Wnp6NUa1Bqsq/RqPWNcl7Pj6tXr3Ls+DFQaXKu3WSmxCOyMnHrMAnH+r0p3n0m8fEJr/w8rl/3J5rU51xd0I/bf06gUoVyTJo0KV958iMzMxOljj6QfZO8UkefzIzMAus/ODiY2JjnFK3bC2PHkhSt3RVDCzvOnj2bq+1nz56Ng4MD1apVo2hRB9avX19g2d5XoaGhVKhYiQoVKlCuXDmqVqtOdHR0YceSPgBysl2SpPeeRqNh9erVDBs2DCEEQ4YMYdasWYUdS5Jey9fXl8ePH1Oi7+949vgRtzZj2L1rFzdu3KBx48aMHTuWx4eXc+X33sQEHmXZ0qU4OjrmaYzAwECuXA7Apc1YnBoNoHj3H9GiZMuWLfnOnZGRQbNmzWnWrBk9e/akVOnSrFu3Ll/9xMfFYeRQEoVCgVrfGF1LRyIiInPdh6enJ4E3rrNs6VKmTv0OXV09vv76a9q3b0+p0mW4f/9+TluFQsEff/zBgwcPOH/+PCGPHlKzZs2c7//+++/omttj49MGgPS4yBe+KlQansfEoF+0JGWGLUeh0nB73beEHFrBrdVfg1JJq1atqN+gIdceRJBiVZot23bh5OyCpaUlRkZGTJw48Y2e/NFqtfz6669UrOxDteo1/nUi06BBA37++Wcizm/n1ppxKOJC2LljB2ZmZvkar1y5clhYFuHRvrlEBx7n/s5fyEpPpX79+gghGDt2LE5OTlSuXBlHJyeOHDkCwO3bt2nYqDGp6emYefhQYcxGPLtOAyEo4l2XonV6sHLlypxJ+759+6JRaLmxeBh3N0/j4d7fARg1ciSKv29kyK2HDx/y5ZdfYuPThlID5mNdsQVLlixh7969OX0p1TrZjRUKVBpdqlatmrN9UlISkyZNol27dnz11Vc8f/4cAAsLCwASnwUBkBx2H21WJpaWlnnKt3nzZsqWr4C7R3FGjhyZc2E6Ojqau0F3sK/TA/PiVSha63NMHDw5duxYrvpt3Lgx+/fvp1ZpV8o7GDJ//nwmTpyYp2ySJEmSJEm5oVQqmTFjBsuXL0etVuPr60vDhg2JjMz93/GSJL07P8/6kZigs9xY2J/ABf3IiA3lu+++eydj/3MTvKGNGwAG1i4vvJ4fm7duw8K7Dk4N+lK0dlesKrdm6/Ydbxb0A1KubBnigs6Q8PgmyeH3ibl+mNKl393T1m9LmzZtyEhJIHjT9zw7vZlHe+bgVdIbT0/PPPcVFhZG3Xr1SRUaEkJuELx9Fo8PryT6+mEAhDb7aWQhtCDEK687VKpUibtBd9i/fz/+/v74+x/HyMgo/zuZR5936Uz42a2EHFrB/d1ziA06R9eunxdY/zY2NgDEP7gCQHLkI1ITonNe/y/nzp1j9OjRWPt8RqmBCzApUYNevXvzMBc3fnzIBg8eQvCjp5ToPhPPrtO4dvM2I0eNKuxY0gfg7d7mJEmSVECUSiXz5s3D1NSUGTNmMH78eGJjY5kxY0aeJ2ok6V2Ji4tDraOHrqkVAHpFsifS/5mA/Omnn+jTpw8hISF4eXnllDsvbEuWLOHwkSN4fv4Dxs6lebjvd/r160+rVq0wMTHJdT86OjpUrFSZW2c2o2NchLS4cOLuB1Cr//Q85bGxsaFfv340atSYZK2GsiNWgdBy13ciI0Z8wd69e15o7+LigstLSs2fOnUahcYAyzINeXx4JTdXfYWxU2niH14FhZKMuAhEVhaWZRujb1mUEj1/5Paa8YSd3Yaurg5zZ88mLCwMoVTj2XMWSrUuMUHnyMxKx6PdcJIjHzF9+nSKFStGr1698rSP/5g+fTqTJ0/GwrsO2thkunXrBkDXrl1z2owZM4Z+/foRERGBs7Mzenp6+RoLwNTUlP379tK+Q0eCt87E0MiYNWvWULFiRbZs2cIvv/yCY4O+mLiU5enRVbRr354njx+zfft2tCgQWZlYV2yOxsAUM49KGFi7khr9GHPPagghiI+Px8TEBHd3d86fO8uIESO4fv0GTo4ODB8+PF9PJwQFBaHVatExsyFw+UiENvuu78lTpnDxwgVatGjJgSPLSYuLIDUqhOSIh3Trll0RJTMzkyZNm3Hu/AWMHL3Z+9ch9u334+KF8/j4+NC6TRt2b/uRiDObSI4MoULFSrRt2zbX2fz8/OjUqRNmxXzQtfBi/h8LiYmJZfXqVZiYmKBSqUh8GoSFV00ykmJJiw3P02R+kyZNcl2iT5IkSZIk6U317dsXZ2dn2rdvz6lTp6hatSr79u3L18SIJElvT4cOHTh+/Dhbt25Fo9HQu3fvly6d9Tb4+Pigp2/Ag92/UaRCc6KvHUaj0aFGjRr57lNfT4/M2FjE35OkGYkxGLzBee+H5qefZuHn58et1WMBMDY2YtnSJYWc6s1VqlSJbVu38uWo0USe3UhVnyqsXrUSjUaT574OHDhAbMxzKny1gee3TvLs5EaiE5/ToF49Hj1+zP3NP2BaoiYJ9y9hamZGq1atXtmXhYUFTZs2fZNdy7e5c+eiVqvZsGkzurq6/PzzzwwcOLDA+r969SqOTk48PraGqCt+ZCTFUbxYsRcqEb7KpUuXUChVODXqj0KhxLFBP6KuHeHatWsvveb2sTh/8SIWZRph6lYeAHPvupw7d6GQU0kfAvlkuyRJHwyFQsH06dNznmr/8ccfGTp0KFqttpCTSdLLNWjQgMy0ZO7v/IXowOM82juXIlbWL9yR7OXlRZMmTfI90e7t7U35ChV5uPNnHh1Yyp2141ApBB07dsx37qCgIAwt7TErVhmVjh5W5ZuRlpb60jWuXmfTxg04Wplyx3cSD/fNp3u3bnz11Vf5ynXr9h1MildHz9wWtb4xWpT8dfAgJUp652q9qfiEeJJDgwnx+wNzrxpkpSYTG3QWbXoKCC3NmjbB3NyM6GuHyExNQqFQolar+fab8aQkJ/HFF1/kPLWuQEFWaiJpMc9wbNgPy1J1cazXC1NHLw4ePJiv/QOY/8dCbCq3olj7CRT//HvM3CuycOG/l84wNzfH09OTvXv3UqZceZxd3BgyZAjJycl5HtPHx4eQRw95/vw5cbExORP858+fx9DSDvsanTAq6ol9nR7ExcZy79697NLvApQ6+kRdO4Q2I42EkECSIx6izUzn6ZEVeBQrjr29fc44pUqV4ujRo0RFRfLw4UPGjBmTrxLy7u7uADw+uAyLkrUoP3o9bm3GcDkgAF9fX9avX0fnDu3IuHsMS/GcdevW5UxQnzx5klMnT+DRaTKe3abj2esXbt+6yc6dO1EqlWzdsoW5c2bTuXldpk6ZjP/xY3m6mWHVqlUY2RejeJepuDQbin2dHqxb9ycZGRno6+vz3XffEXp6EzeXDiVw0SCM9DSMHDkyz++BJEmSJEnSu9KgQQNOnz6Ni4sL9+/fp1q1armuzCNJ0rtTq1Yt5syZw88///zOJtoBHB0d2bF9G0Tf4+7GqaQ/ucaGDb5vdFPOmK9GE3f/MrdXj+H2n98Qde0QY7/6dMrIL1q0iKjoKKwrtsCqQjMS4uPZunVrYccqEK1bt+bBvWASExI4cvhQnqs7/kOlUgGgzczAplJLPD//HrRZjBz5JcePHqFapTJEXd5HUtRjYmOeM3369DeqQvi26OrqMn/+fKIiwnn6OIQxY8YU2ENl/v7+NG/enFhhjLFLGVLjIqlUoRznzp7B2Nj4tdvb2dkhtFnE3b8MQGzwxZzXP2ZF7e1JDLlGVkYqWWnJJD8OxKGo/es3lD55crJdkqQPztdff83ixYtRKBQsWrSIHj16kJGRUdixJOlffHx8WLVqFSkPLhK8dSbm6nT279ubp6fDX0etVvOX337atGiCbthlSrtYceTwIYoXL/7KbdLT05k0aRJVq1WnefPmnD59+oXve3p6khT1NPup7bQkIgP2oaenn6+TIDc3NwJvXCc4OJjQ0FDWrFmd7/XDPD2LE3/3DKmxEdxeP4mMxBhsqrYnItMw52mb/+Lg6IS+lROJT24Rfy8Ape6La3c7FLXnzz//JPnxdS791J6bK0ahp6vDlq3bGTFiBElJSdk3MWSmc+fPCTz1Xw8oSAl/CEBmahLp8VH5LukOkJWZiVKTPbmrUChQaHTJzMp6aduDBw/SoUMHHifrkGjoyOIlS/D09GTDhg25GuvChQuUr1ARE1MzqteoSWhoaM4JK2SfQKXGR5Mc/gCAuHuXgOxKA506dUJPV42OgTHPb53iwsw23Fz1FUJkEX3jGPbmBuzZvStfk+mv4+7unr2siDYLu6rt0DGywKpsQwzMbQgMDMTExITBgwbx44zprFy+7IWqAP+sO69nUTT7q7kdCoUy53W1Ws2IESNYsmQJ33zzDYaGhnnOp3jhvxUvnNBPnDiRTZs20a1NY0aNGMKVywE4ODiwcuVKmjZtSqtWrdm3b18+3hVJkiRJkqS3p2TJkpw7d46qVasSExND48aNWbNmTWHHkiTpPdGkSRMiIyIIDQ0l5nk07dq1e6P+2rVrx65du6hZypkqHkVYvXo1w4cPL6C07781a9dhVa4JLs2G4tp8OJZlGrBmbd6X9vuYNWvWDFs7e4L+HMfD/QsI3jgZN3cP6tati42NDUFBd9Ev4oRXj1k41O3JggULaNSoERs3bnwvJ93fhqVLl6Jv5YRXr58o2fMnHOv34cKFC+jq6uZq+1atWtG4cROCfCdxbW53HuyeTe/evalUqdJbTl64Zv/2K2kRD7g2pztX53ZHmxDBzz//VNixpA+B+ITFxcUJQMTFxRV2FEmS8sHX11eo1WoBiJYtW4rk5OTCjiRJL5WZmSliYmKEVqst7ChCCCG6d+8hlCq1sCxVTxjZeQiNRkdcunQp5/vp6emiSdOmAhCAUGs0Yv369YWYONvt27dFESvrnFwe7caLKpP9hM/EvcLQ0l6MGDHiP7ffu3evUGs0Qs/EQugYmAgUSlGkXGNRafwO4dJihACEn5+fuH//vpg2bZpQqdXC2KGEsK7YXKh19ETLVq2EEEKcOHFC+FSpKhwcnYVXyZICEKaOJYS+aRFhYmoqgoKC8r2PX3zxhVCq1MK2ajthVT77GMyfP/+lbXv06CGMbF2FV6+fhEKpEnqWDsKwaAkBiLlz5/7nOI8fPxYmpqbCxMFTONTvLYysnYW1ja14/vx5TpuEhARRqnQZoVSphYGZlQDE5MmTc74fEBAgGjRoKFxd3UX16jXE2rVrRUxMjAgNDX3rn/WwsDChVKqEjU8b4TNxryjRbYZQKlVi6dKlYtSoUTmfEUCMHj06Z7vw8HBhYmoqTJ1LC/e2Xwtzz6pCR0dX3L59u0By7du3TwDCvHgVYePTRqg0uqJ79x7/uc3s2bOzP0NuFYSxg5cAxO7duwskz8fqxo0bokrVasLE1EyUr1BRXLx4sbAjSZ8geS754ZDHSpIKTnJysujYsWPO31mTJ09+b85xJEmS3pbNmzeLtm3big4dOgg/P7+3Pl6x4iVEkTINRJXJfqLKZD9hUbKWKFWm7Fsf90Nz79490ap1a1HCy1t06NBBPH78WAiRfb0DEMU7fycqjt0s9CyLCqVaR+hb2AtAjB07tpCTvxtdunQRxkWLC59J+0WVyX7CuelQoVAoREpKSq77SE9PF8uXLxcTJ04UGzZs+GR+59+6dUtMnz5dzJgxQwQHBxd2HKmQ5fZ8UiHEJ3Irz0vEx8djampKXFxcgT5lKEnSu7Nv3z7at29PamoqdevWZdeuXbkqhSNJH5OdO3cy/ptviY6Opl7dOixauBBzc/OXtv3nd59z0yHY+rRBm5lO4KKB9O7SjgULFuS0y8rK4siRIzx69AiFQoGTkxM1a9ZEX1//Xe3WC1JSUujWvTvbt23Lec2t9WisyjVGm5nOjT/6M6h3V2bPnv2f/QQEBLB161bu3bvHxo0bKT9qHTrGlgghuDijFXNm/8aIESMYNWoUi1etp9TQZSjVOkReOcD9Xb8RFhaGjY1NTn9CCNauXcuhQ4cwNTXliy++oFixYq8cPyIigmfPnuHu7v7Sf6vS09MZN24cvhs3odFo+GL4sFeWEevVqxfb/jqB2tSG9PhIvPvNRalSc3/3HMSTACIjwl+ZY+XKlfTt25eKYzej1jcmNfopVxf0Y/fu3bRs2TKnXWJiIitXriQ8PJwyZcrg6elJ0aJFKVKkyH++z3klhGDlypUcOXIEMzMzRo0alVMu/lXmzZvHF198gUKhRAgtjRo1ZtKkidSuXRunxgOxqdyK8PO7CDm4lNOnT1OtWjUATp06Recun/P0yWMsLYuwatXKF/b5TW3atIlpM2aSmJBIyxbN+Omnn/6zFL29gyOZ1t64tRqFEFpurxlHRTcrjhw5XGCZPibPnz+nhFdJUpQGmJWsQ9yd0yiTIrkZeOOFZQsk6W2T55IfDnmsJKlgabVaJk6cyMyZMwHo2rUry5cvz9PSO5IkSR+K5cuX079/f0ycvBGZ6SSGBrNjxw5at2791sacO3cuI0eOxNyrJggtMbdPM3r0aEJCQkhJSaVdu7b06dOnwMqNf6guXrzImjVr0Gq1fP7559SoUQOApKQkTM3MsKrUBo2hKU+P/0npQQvRsyzK05MbeHJkFaGhodja2hbyHrzcpUuX2L9/P/r6+nTt2jXfZdt37tzJZ599hqV3HXQt7Im8sJMWzZq8cF1NkqTXy+35ZP7quEqSJL0nmjdvzl9//UXLli05duwYDRo0YP/+/VhaWhZ2NEl6J06ePEm7du0wda+IfrHS7Nyzj/Dwdhw9cuSlJ17/LLmg0ssuj61QaVBq9EhPT3+hnUqlwtXVlT59+/H0yWMAinuW4NjRI4WyPtP48ePZvWcvri2+QKHW4eHeuTzcN5/EJ7dIjXhAZlIsPXv2fG0/FSpUoEKFCty6dYuNGzcSfmE39rW6EH3tCNqszJzy+1qtFoVShUKZXVZdqdYBsm9C+Ed0dDRff/01V65ew83VlSlTpvxrglgIwbZt27h69So3b95k27ZtCCEwNDJm4wZfWrRo8UJ7HR0dZs+e/cqbBlJSUpgyZQonT51GrVKSGP4AdXw0xs6lUKqy/6zTs7An8rb/f74PGo0me3/SU1DrG5OVnr3W+/Lly3Fzc6NkyZIAGBkZMWDAAGbMmEGPnr1IT0tFqVTy66+/Fuha4xMmTGDWrFmYOpUkPS6CP9et49LFi/854T5ixAiqVavGhQsXKFKkCC1atGDLli0AWFdsjlKlwbpiC0IOLmXr1q1cvXqVsmXLUqNGDR6HPCIpKQlDQ8MCv0DRqVMnOnXqlOv2qSkp6BtZAKBQKFEbmpOUnFygmT4m/v7+REaEU3bEKvTMbbGu0IyAXzpz+PBhevTokef+UlJSuHjxIkqlksqVK6Ojo/MWUkuSJEnSx0OpVDJjxgw8PDwYNGgQ69evJyQkhO3btxf4DZmSJEmFbfrMH7H0roN7u/GA4M6fE5j10880bNiQs2fPAlC1alUMDAz+u6M8+OKLL9BoNKxYuQqFQkGdr75i9pw5GFi5oNI3Zu/efoSHhzNhwoQCG/NDc/jwYZo2a4aOsSUolCxcuJAdO3bQqlUrDA0NmT5tGuPHj0ejZ4jawBQ9y+yl5IwdSwEQFRX1Xk62b9++nQ4dO6LRMyQrI40fZ/3E+XNncXV1zXNfbdq0YcWKFXw/bToJt2/RuWN7/vifh2wkSSpY8sl2eYe7JH0ULl26RJMmTYiOjqZkyZIcPHhQPuEmfRJGjBjBSt9teA9ZikKpIurGUe5tm8WzZ89eOikuhKBu3Xqcu3QFK5+2pETcJzrQn/3799O0adMX2tatV5+LN+7i1mEiIjOD4E3f8VnzRvj6+r6r3cvhXaoMUXqOuLb4AoBHB5cRd3U/rq5uFCliyQ/fT6V27dqv3D4oKIiNGzei1Wrp0KED3t7ezJgxg2+//TanzcCBA1m0aBEKhYLTp09Tq1YtTN0qoG9XjOiAvVSpWJ5jx46iUChIT0/Hp0pVbt+9j0mxKiSFXMdQreXG9WtYW1vn9Dl48GAWL16MjqEJ6Unx2FXrgLlXDUJPbiDtaSAPH9zHysqKpKQkpk2bxpUrV3FxcWby5Mn/On5CCFq0bMmBg4cx86xGSlgwIjkGE2NjwsPDKFqnBxpDU54dW02Lpo3YtnXrK9+PmJgYSpUuQ2xyJoYuZYm5fQZtZho6+saQkczpUycpX748sbGx1KhZi5s3AzEvXhW7Gp14HuhP2LntnDp1iurVq+f3kOZITk7G2NgYu1pdcajTncyUBAIXD2Zw3x6vrVSQkpJC33792Pj3OvWNGjfmwF9/4VCvd/aT7Rd28+ToquzGCgUIwffff8+kSZPeOPc/MjIyiIqKwsrKCrU67/ex9u/fn9Vr/8S2xudkpSUTenoTPj4+GBoZUaZ0aaZOnYqpqWmB5f3Q7d27l5YtW1J60B8Y2LiRGhPG1Xm9Wb9+PZ9//nme+goJCaF+g4bcC74LQKnSZTh86OALP8OS9CryXPLDIY+VJL09hw8fpn379sTFxeHh4cHevXtzbl6VJEn6GNjY2aNyq4VTw74A3Nv5C0UyQklPS+P+vWAAPIoV59jRIxQtWvStZGjT5jOOXLxJyb5zUChVPNz/B0m3j5EQH/dWxvsQVK9Rk8AnsXj2mIVCoSDIdzKOhplcu3olp82ePXtYtmwZO3fupGjtbhg7l+HZ8dVokiN5HPIoV5UbY2JiGD9+PJevXMXN1ZWZM2fka+I7t+zsi5Ju4ox7h2/JSk3k1oov6dS6KatWrXprY0qS9N9yez6pfIeZJEmS3pqKFSvi7++Pvb09N2/epGbNmty/f7+wY0nSW6dSqRDaLITQAqDNSM95/WUUCgXbtm2lacN6xF7chn78Q1atWvWviXaAGzduYOZdFwNrFwzti2FSvBpXr914ezvzHywszEmNfIg2KwOhzSItKgRnFxcCb1zj+LGjL0y0+/n5MXjwYEaOHMnNmzc5d+4c5cpXYNqPPzPz59+oWLES/v7+fPPNN1y6dIk1a9bg7++fM9EOUL16dbZt24atTgoZQUdp3aIp27dvy/n+uXPnuHrlMm4dJuHWejSevX8lKjKSHTt25OS4du0aixcvxrnZUGyqtEela4Bjw34YO3jh2LA/yUmJBAYGkpWVRfMWLfj519mcuBrMspWrKVuuHDExMS+8Bw8ePGD/vn24tPwSj3bj8eo7lyyUDBw4gJEjRxJ2ypeH++bToG4tli9b9p/vp7m5OadPnaRFw9rE3DiGSs+QssNXUmroMlRGRfjxxx8B+P777wm6GwxC4NR4IMYOXjg1HohKo8uhQ4fe+LjGx8dz5MgRtFotekWcAFDrG6NjbElc3OsvHIwZM4YtW7fh2Gggjg37c/jIMcqVK8eTo6u49FP7nIl2j/YT8Pl2D0Vrd2Py5MkEBQW9cXbIvuvcwrII9vb2WFlbs3///jz38fvvv9Olcyciz2wk7upeTM3MuXYrmCuh6Sxcspz6DRr+q/LEp6xu3boUK+7JXd9J3N89h6A/x+Hg6ESzZs3y3NeAgYMIjU7Au99cvHr9QvDDx3xZgBUbJEmSJOlj16BBA06fPo2LiwvBwcFUrVoVf///rrAkSZL0IWnTqiWRF3cRenoLT/3X8fzGMbIyMwl9nkCp/vPw7v87TyNjGDZ8ODdu3KBlq1aULV+BgQMHEhsbWyAZkpKTUBta5FTe0zG1IjExIee8/VMUHf0cfRs3lCo1CqUKfRt3oqKjX2jTsmVLduzYweTJk3l2Yj23145DJyWK3bt25mqiPT09nQYNG7HqT18epBqz68BRqlWvQWRk5FvZJ61WS0R4GCZuFVCq1GgMzdCz8eDxkydvZTxJkgqWnGyXJOmjUbJkSU6ePIm7uzsPHjygZs2aBAYGFnYsSXqrevbsSUZiDLdXj+XBnrk8/mshrVq3/s8nMy0tLdmxYzsJ8XE8DnlEr169XtrOzc2N+ODzZKYkkJ4QTdLDy7i7v707eP/L91O/Izn0LoELBxC4eDCxwReY/sP3/2q3fPlymjVrxrrtfixZtY6KlSozdNhw1GZFKfPFWsp8sRZdazdGfzUGyC4r36NHD2rVqvWvcuJt2rThZuANIsJC2bRxIxYWFjnf+2fyU62XXSpOpaOPQqnMKdMPEBoaCoB5MR80RuZkpaeS9Cx7kjf+wRUAbGxsuHjxIv7Hj6Nv405S6F20WVlERkTQtWvXF/KkpaVlj6lv8veYeqg0umRkZDB79mxSU1JISUlh3969mJubv/Y9dXZ2ZuPGDYAWW5826BhboNLRQ8fSIeck9fbtO+jbemRnfngVgMQnt8jKSGPGzJkcO3bsteO8yrlz53B1c6dVq1YAPNwzm8hrhwk5tJz4p0E0bNjwtX3s2befIuWbY1e1LXbV2mNZthG37wShY2CCZen6mHpUAkClY4BCqcKqXCOAArkZKyAggE6dOqPjUJrinaegKFKMdu07EBISkqd+DAwMWLtmDSnJSSxauJC42Bg8e/1C8Y4T8ej8HQGXLnLy5MnX9nP79m3WrVvHoUOH0Gq1+d2t956hoSH+x4/RvlUz7ImgVaM6nDp5AjMzszz3dfnKFcxL1ceoqCcmzqUwLVGLy5evFnxoSZIkSfqIlSxZknPnzlG1alViYmJo2LAha9euLexYklSozp07R5s2n1G7dh1++OGHF84TpQ/LnDlz6NihHU+PrSL81EYGDRxAckoKZl61MbQvhpF9cUxL1OZSwGVq1qrFsfPXCVXYsPpPX5o1a/7CUnT51aZ1a2LvniPk0HJCz27j2YkN6Fk48M033/DkPZqIzcrKYs6cOXz22Wf07duXW7duvbWxGtSvS/S1Q0Rc/ovIa4eIvryP+vXqvrTt1KlTiYyM5NatWzwOeUS1atVyNca5c+e4HHAJ9w6TcP9sDCV6/0ZEeDjbt28vuB35H0qlknLlKxB5cRcJj2/y/NZJ4u9dpIqPz1sZ70MVERHByZMn83ztRZLeNrlmuyRJHxVXV1dOnDhB48aNuXHjBrVr18bPz4/KlSsXdjRJeisqVKjAoUMHmTR5ClFRT+g8aECB3d288I8F1G/QgIBfOiOEFmsbW3779dcC6Tuv6tWrx+lTp1i1ahVarZYuXbpQp06df7Wb8M23FClTH7c2Y9FmpnFr2RfcuHED87JNUOnoAWDkVJqg635vlKdKlSo4ODpxf9tMLMo0Iv7uOXR1dV+oEODt7Y2Oji6PD6/Epko7NEYWBK4YhYG5NcnPwxg0aBBeXl4cOXIEgMQnNynWeQoWntV4dmozfn7LuXnzZs766cWKFcOrpDcP9/1OSuU2xD+6RkpcNCdPniIsLAxbW9s8lzFXKBTUrl2H02c2ozEyJyMxhtigczTokX0jQ/HixTh0zB+z4lV5sHsOT/3Xk54QhaF9cdQ6enTs1JnwsFCUyrzdv6nVamnbrj2ZhtaUav89yRH3ub/zN+7v+BmVWs3UqVNfWxL8yZMnREREoKt+klPZITUyhNSUZNzbjaNIqXoIIbi2oD9PT/hiaF+M0LPbUCqVeHp65vSTlpbGvHnzuHXrFsWKFePLL7987V3uJ0+epHGTpmRmZuD22VhUGj2MHLwI+LUL586dw8nJKU/vB2Qfi9TUVBQKJZq/13DXGFsC2eXy/8uaNWvo07cv2r8v5LRo0ZIdO7bnq6z9h8DW1pY//3zzi/jOTk4EPbhEavnGJIQEEht0llKVyxRAQkmSJEn6tFhbW3PkyBF69erF5s2b6dmzJ8HBwXz33Xf/uqFVkj52V65coXbtOuhYFEXHoignv5vKgwcPWLFixVsZLyIiguvXr2NtbU2pUqXkz9z/EEIQHR2NqakpGo0mX30YGBiwft061qxejUKhQKVScSOwLpeDLpGZ0gkhBIkPA7A10iEsJY2yA35BrW9MbInqnPWdzPXr1ylXrtwb7cfw4cPZvHkzJ05uRaFQYFa8KnZV23Nz1WhCQkJwcHDIV78hISGMGzee4Hv3KOVdklmzZr3RklrDhw9n8eLFmLqVJz3mHJu3bOVywCU8PDzy3eer/Pzzzzx+8oQ9u7OXnmvQoCEL5s9/ZXtLS0ssLS3zNEbOQxb6xgCodA1RKJVvtfLc+nV/0rhJU26uHA1kL5VXkMvgfeg2bNhAr169SU/Pfhjlhx9+YOLEiYWcSpL+Jj5hcXFxAhBxcXGFHUWSpAIWHR0tqlSpIgBhZGQkjh49WtiRJOmD9PjxY7F06VKxYsUKERERUdhxXkuj0RFOjQeJKpP9RJXJfsLcq6ZAoRQqXUNRvMtU4dl1mlAbmAhQiIcPH77RWHfu3BHVqtcQRsYmwrtUaeHv7//C91NTU8VPP/0kdHR0BCAA0bJlSzF27Fixfv16odVqhRBCxMbGCkNDI6FQaXJyl/tyjQDEoEGDxIQJE8TOnTuFEEKEhISIyj5VBAqlUGr0hIVXLaFnYiHKlC0nMjIy8rUfz549y+7z74x9+vTJ6Ss6OlqU9C6V8z1QCBufNqLyN7tEsU6TBCDCw8PzPGZYWJgARLFOk3P22dTJW3Tq1EmkpaXlqo+69eoLHQMTAQgDGzehb+WSk9O5yWBRZbKfqDxhp9Axtsx5XalUivnz5+f0kZmZKerXbyBUao0wcfAUao2uqFqt+n9mSEtLE0WsrIWBlZMARMk+v4kqk/1Eie4zBCAOHjyY5/fjH/fu3RN6+gbCzK2ccGk+XBgXLS4sLIuIqKioV27z/PlzoaOjK4qUbSgqjdsminWeIhRKpVi6dGmux83IyBBZWVn5zv2hOnv2rNDXNxAKpSrnM+Lq5p6vz7T06ZHnkh8Oeawk6d3JysoSEyZMyPm92rVrV5GamlrYsSTpnRoyZIgwsLAVlb/ZJapM9hNOjQYIQCQkJBT4WHv37hX6BoYvnMt9in/Xv0xAQIBwdnEVgNDT0xeLFi0qsL6vXLkiTM3NhUKpEgqFUpiZW4ihQ4cKpVojTN0rCesKzYRHh4kCEBcuXCiQMbds2ZJ9rttsqCj35VpRpEx9oaOjm+9zl5iYGOHg6CT0zaxFkbKNhJ6xufAq6S2Sk5Pz3R8gnBr2F1Um+4mKX28VesYWYvTo0fnqL7ciIiJEWFhYzvWVghQfHy/sizoII2tn4dSwvzB1KS30DQzF3bt3C3ys/5WcnCzOnz8vbty48Vb260P1+PFjodHoCMvS9UTpwYuEfa3PBSCv+UtvXW7PJz/Ox10kSfrkWVhYcOjQIdq0acORI0do2rQpW7ZsoWXLloUdTZIKjRCC8PBwDAwMMDExydU2Dg4O9O/f/y0nyx0/Pz9GjxlLRHg41atXZ+mSxdjY2LzQpnadOpw6uwUdY0sykmKIuX0ay1J1SIsJI2jDFAB0TKyAeJ48eYKzs3O+8xQvXpzTp15e3vv27ds0adqMkEcPAahfvwHLly/DxcXlX21NTU359ddfGDx4MM9ObcLSuw7PTm4AhYKly1egZ2zOzJkzGTx4MNeu3+D69esoVSpKdJ+OsaM3sfcucW3dt9y6dYvSpUvneT/s7Ow4d/ZM9lPiurqYmZmRnp7O3LlzuXXrFj26d8PV1ZX169ez768DWJdvCgolzwP9MTQyfqG8fm6Zm5ujp6dPbNBZzD2rkhYTRkpUCG5urdDR0clVH2dOn8a2dg/0rZyJunaYhMeBeJcqTaWKFVn75zISQm6Q9vwJioxkfH190Wg0eHt7U6JEiZw+jh07xpEjh/HsOg0zj0okhNzg7Kox7N+/nzZt2rx03CdPnhAVGUGxLlMJPeHL7bUT0Ld2JiX8PrXr1KVu3bp5fj/+4ebmxr69e+jbrz8hfn9gbWNL7Qb1Wb9+PYMGDXrpexMSEkJ6ehrWFVug0jXAwrMahhZ23Llz57XjxcTE0LNnL/bv34dGo8NXX43mhx9++GSehqlSpQruHh48iIjHo9MUslITCd4wmXHjxrFy5crCjidJkiRJHxylUsmMGTNwd3dn8ODBrF+/npCQELZv306RIkUKO54kvROpqakodQxQqLKfpFYbmgIU+NOwiYmJdO7yOXoO3hRvNIj4h1dZufJ36tWrR48ePQp0rA9NcnIyzZq3IFlphEeHb4m7H8DgwYPx9PR8o/O1f5QtW5bA69fZs2cPkL02eJfPP0doBSgUxNw5S+TVQ7i5e+TrHP1l2rVrx8CBA1my5A8e7f8DjUaHVatW5vtJ9D179vDkcQjlvliFrpktic+CCFz2Bf7+/jRp0iTP/SUlJQGga24LgErXAI2BCYmJifnKl1tWVlZvrW9jY2MOHzpI7z59uX7GFycnZxbv3/dWntT/X/r6+rJC60sEBgaSkZGOQ91e6Jnbom/lTMS57QQEBBTIz7UkvSm5ZrskSR8tIyMj9u7dS5s2bUhLS6Nt27b4+voWdixJKhRPnjyhYqXK2NnZYWpqypAhQ/K9dlhKSgqXLl3izp07CCEKLOPOnTvp2rUrvXr14sSJEy98LyAggFatWxOaokGvZGMOHj1B8xYt/7UPa9esppSnO8FbZ/DIbyEILQ51elCy9y9495sLgNrAFF09fYoXL15g2f+vjp06E50i8Or1M26tR3Ps+PEX/v3Zv38/xUt4YWJqRsNGjWnevDnjxo3j8eEVXPm9F1FX/kKhVOLdfx6lR6zBrnpHFi1ewtW7IRSp2hG9Ik7c8Z1CenwUIjP7oo1Kpcp3XoVCgY2NDWZmZmRlZdGqVWtGfzUG392HmDhpMvMX/MHy5cspUbw41xcP4dKPbYi9c4oVy5flq1S5jo4O8+fPI+rqQa782pnrCwfiYGfDmDFjct2HZZEiJD65halbeVxbjECjo4dn8eIsXbqEKZMnUdpGTePqFTh5wp8uXbrQvn37FybaAZ4/fw6AoX2x7K922V9jYmJeOa6VlRUqtZqEB5fx7D4TqwpNSQ67R/16dfnLb/8bl26vV68ewXeDaNioEREREew/fp6Ro0bTvHkLMjMz/9XeyckJjY4OkQH7yEpPJebOWZKeh+bq8927dx8OHDmGQ8MBmFdoxfTp01mwYMEb5f/Q3L9/D4vSDdAzt8PQrhhGbhUJvPn21haUJEmSpE9Bv3798PPzw9TUlJMnT1K1alWCgoIKO5YkvRPt27cnMew+93f+TOjpLTw9tIyatWpjbm5eoOM8ePCAxIR47Kp3Rs+yKNYVm2Nk5cCVK1cKdJwP0e3btwkPC8Wx6VAsS9bCtcUI9E0sc5ZwKwhFixZl0KBBDBo0iJiYGE6eOIF7u68p0fUHSg2cDwi6d+uKrq5ugYynUChYvHgxly9fZs+ePQQH36Vr16757u+fmz9UuoYAqPWMXng9r+zs7HD3KMajvxYRcdmPh/vmkxD+kObNm+c74/ugRIkSnD1zmqTERG7dDKR27dqFHemTVbRoUQBi754DIP7BFTLTU3Nel6RC906es39PyXJykvRpyMjIED169BCAUCgUYuHChYUdSZLeirS0tFeW/Kpeo6bQN7MSHh2+EU4N+wuFQiF+/fXXPI9x8+ZN4eDo9P/LordqVSClIVesWCEAYVy0uDCydhZKleqFctwTJkwQeiaWovK3u0WVyX6ieJepAhC3b99+oZ/ExEQRHBwsHj58KO7cuSNMzcyFiaOXcG35pTBxKStQKISOjo7YvHnzazM9e/ZMnDhxQjx+/DhP+5KSkiIA4dZ6dE6JdDOPSqJNmzZCCCEuX74s1BqNMHOvIBzq9xb6ZtbCq6S3SE9PF4GBgWL//v1iwIABQt/cWpi6VxRqQzOhY2IlAFFm2LLskmxjN2e/Xy5lhY6BsahWvcZrywVu375d1KtfX1SvUVPMmTPnleXIDh8+LABRvMtUUWWyn/DqOUsAYteuXSIpKUmsW7dOLFiwQFy7du1f265Zs0a4unsIyyJWomu3biIuLk7cu3dPzJgxQ0ybNk0EBga+0P706dNi+vTpYsGCBSI2NjZP77Ovr69QKBTCwNxG6BqZCUMj45dmepVHjx6JHj16CKVKJcyLVxWen38vLL1rC7VGI27duvWf2/7222/Z5QiNzYVSpRbFPUuImJiYPOX/LwcPHnzhGHh2nSYAsW/fvpe2X7lypVCq/n8p9ObNW7x2WYGsrKzsZRcaDfifz2ll0aRJkwLbjw9B6TJlhYljCVFx7GZRdsRKoW9qJbp27VbYsaQPgDyX/HDIYyVJhScwMFC4uGQv9WNubi6OHz9e2JEk6Z1YunSpsLG1E3r6BqJ58xZvZUm2qKgooVKphG2VtsJn0n7h3W+uUKk1Yvbs2QU+1ocmODg4e4moll/mLNOm1tEVv/zyy1sZ7+zZswIQ3v3miiqT/YTPxL1Cx8BYTJs27a2MVxBCQkKEsYmJMHEsIRwb9hNGtm7CytpGREdH56u/+/fvCwNDQ6HSNcg+L1UohY2tbc4SbUeOHBEDBw4UQ4YMEWfPni3IXZE+IcOGDcu5FqNQKESDBg3zvaSiJOWWLCMvSZL0N7VazapVqzAxMWHBggUMGTKEuLg4xo0bV9jRJKlAZGZmMmLECJYsWYJWq6VZ8+asX7cOMzMzADIyMjhz+hTOzYdjWTL7Ltz4h1c4cuQoffr04eTJk+jo6FC7dm309fX/c6yOnToTm6agZJ/fSIsNZ//u35g1axaTJ09+o3347vsfsCxVB/e240Foub16LDNn/kjDhg2B7J9jkZWJyMoClQZtRlrO6/9YunQpw4ePID09DXMLCzZt3Ijf/n10696D+3vmYmNrx8RZs+jRowe2trb/mWf58uUMHDQI7d9Pzrdq1Yrt27f/6+nxJ0+eMHPmTEJDQ/Hx8eGrr75CV1cXE1NT4h9eoUjZhmQmxZEW+RAbmwoA7NixA5WuIcW6TEWp0mBk78mtPydw69YtypQpQ8mSJYmOjmbpsuVkZQlsKrUkNvgC6QnRpESGoG/pQFZ6KgBG6VF07NKRX3/9FaXy/xcsCg4O5tGjR5QoUYKiRYuyY8cO2rZti4lLGVR6RowcOZL4+HgmTZr0r32PiorK7tvBK/tr0RI5rxsYGLzy7vl9+/bRs2dPDGzcEEpDNmzcRPDdYAJvBpKSmgZCMGXKFNavX0+nTp0AqFatGpUqVSI0NBSNRvOfx+T/6tKlC0WLFmXnzp3o6urSu3dvihUr9kKb+Ph4Nm3aRFxcHPXq1aNChexj8OzZMypWqkxiWhb6RZyIuXuemKCzGBga4bt+/b+egP+/Ro0aRdmyZTlx4gSWlpb07NkzV0szXL9+nR07dqDRaOjSpctLlxUAiIyMBMDYyfvvr6VeeP3/6t27N1WqVOHixYvY2NjQsGHDFz4PL6NQKNDT1yMtLgIAbVYmmYnPMTJyeu1+fEyWLllMo8aNufRzRwAcnZyZNevHQs20fft29u3bh5GREUOHDv3X51qSJEmSPhQlS5bk7NmztGnThnPnztGwYUOWL1/+yZe4lj5+/fv3f+vLsVlaWvLzzz8zevRooq/+RWZaChUrVWbQoEFvddwPgZubG127dcPXdx7Prx8mNSoEWxsbevXq9VbGK126NPZFHXi0dw5WlT8j/t5FMtOSc12OPSIigr179yKEoFmzZtjZ2b2VnP/L0dGRgwcOMGDgIO6f3YiXV0lWrtiZr2XiIPs6R3pGJuVGrUep0pDw5A6314wlICCAZ8+e0aFDBwyKOCC0WSxZupQDf/1F/fr1C3ivPjx+fn74+/tjaWlJv379cq7jSS83b948GjZsyLVr13B2dqZr165vXF1QkgrMO5n6f0/JO9wl6dOi1WrFt99+m/Pk3/jx41/5ZKckfUh++OEHoVSqhEP93sKl+QihY2AsOnTsmPN9rVYrjIxNhHWFZsJn0n5Radw2YWBpL1q2bCmsbWxzfia8Snr/5x33aWlp2XeHtxr1/5+ELeYjWrRo+cb7YG5hKYrW7pbTr2Xp+qKog4NwcHIWtvZFRZ8+fYS+gYEwsnMX1hWaCY2egahfv0HOz/DZs2eFQqEQVhWaCc9u04WZewVhZGycsz/p6em5znLnzh2BQiFQKIVCrSN0Leyzn+Jv2VKkp6eLP/74Q4wcOVLMmjVLWNvYCj0TS2HmXkEoVWrRoUMHodVqxapVq4RCoRD6pkWERs9AFLGyFg8fPhRCCDFt2jSh0TcUFb/eIqpM9hPFOk3K6X/kyJHiyZMn4sSJE9l3xvedI6pM9hOVxm8XCpVGqHUNhFWFZkLf3FbYF3V46V3nkydPzjmmao1GrFq1SjRo2FCYuJQRPpP2iyqT/YSNT2thWcTqpft///59oaOjKyy8aogS3WYIy1J1hUqtfu3T3t27dxdqfWOBQimMHLyEStdQoFQKtb6RAISRQ0mh1jcRao2OePLkiRBCiFOnTuV8BtUajWjRooXo2bOnmDFjhkhJScn1MXuZqKgo4VGsuFAolEKtoyeUKpVYt26dEEKI77//XujoG4oKo31Flcl+wrnpEAGIe/fuiXv37okFCxaIpUuXisjIyDfK8L8OHDggNBodoWNgLDR6BsLYxOSVT+LfvXtXaDQ6wrJUHeHVc5YoUrpero5BXqSnp4tevXplV0hw8BJGNi5CpVYLf3//AhvjQ/H48WOxcuVKsW7dujxXWChos2fPzj4mdm5Cz8RSGBmbFOhxlwqOPJf8cMhjJUmFLzk5WXTo0CHnb9TJkyfLc3FJKiD+/v7ip59+EqtWrXrjc6iPSWZmppgzZ47o2rWr+Oqrr0RYWNhbHe/GjRuipHcpAQgLS0uxcePGXG138+ZNUcTKOuffR3MLyzxVbHtf/Pbbb0Ktoysqfr01u0Jer58FIM6cOSNKlPQW5sV8hM+kfaLyt3uEiVNJUbNW7Re2v3Dhghg/fryYOHHivyoYfqx++uknAQgDM2uh0ugKVzd3ERUVVdixJEn6P3J7Pikn2+VJtyR9cv75YwYQgwcPfm3pZenjl5ycLC5fviwePHhQ2FHypWq16sLCu07ORLVDvV7CyNjkhTZz587NnsCxdRP6pkWEoZGx8C5VWhjZuoqyw1cI7/6/Cz1jc9G7d+9XjqPVaoW5hYWw9K4jfCbuFeVHrxf6pkXEgAEDXmi3Z88eUa16DeFdqrQYN25cTtmw/9K1Wzeh0TcULs2HC8cG/YRCoRSAsCrfVNhWaSuUKrXo0qWLaNiokfAuVUYMGjRIxMfH52z/66+/CrWOnvCZtE9Umewnyg5bLgCxbt06MWnSJPHll1++sgT3/7V48WKBQinUhmbCxK28QKEUBnbFBCAqVKwkFEqVMLJyFAqlUiiUalFu5FpRZbKfcGs9WgDi7t27Qgghjh8/Lr755hsxY8YM8fTp05z+79+/L4xNTIShtbOwKtdYqHT0BAqlMHEqKXSNzIS1ja3YvXt39g0QPWeJKpP9RIUxm4RSrREVK1YSpcuUE+3btxf379//V/ajR48KQBSt00OUHbZcWJVrLNQajahc2UeYe1bL+YwUrdVVGJuYvvI92L59uzA0Ms4uz6VvIHx9fV/7vrVr1+6FmzHKjlgp+Ps4/lOqvMJoX6HS0ReTJ08WcXFxwszcQpg4eYvinSYLjZGFUKg0wsSxhFBpdETt2nXeqBzY119/LXQMjEWZYcuEz8S9okjpesLQyFhkZmaKMWPGCAML25ybD0r0+FEAYs2aNULfwFAoVSqhUCiFrZ19gf274FXSW5i5lhOVv9klKn69VRhaO4vmLVq8sv2GDRuEnn52CT5dXT3x559//qtNSkqKuHXrVp5L/SUlJYnqNWrm/C5UqtSiVq1a4uTJk3neL6ngZGVlCX0DQ2FdqaXwmbRfVBy3VRhY2Iq+ffsWdjTpJeS55IdDHitJej9kZWWJ8ePH5/z90bVr1wJZjkqSPhYPHjwQtWrXFpZW1qJchYqf5E2wrxMeHi4OHjwoLl++/N7esJOWlpanbI0bNxGGVo6iwmhfUeGrDcLI1lXUql3n7QV8Sx48eCCMjI2Fsb2HsK3aXuiZWAjvUqVFWlqasLGzF/Y1Oudcj7Cu0EyU9C6ds+2ePXuESq0W+qaWQtfQVOgbGIoLFy68lZyhoaHi0aNHb/1acHR0tOjfv7+oULGSaN++vQgODn7h+/Hx8dnLQFRtL3wm7Rdlh68QGj1DMWXKlLeaS5KkvMvt+eR/15eUJEn6CI0dO5YlS5agUChYtGgR3bt3JyMjo7BjSYUkICAAVzd3ypcvj6urK3379kWr1eZ8XwjBrl27mDRpEgsXLiQlJaUQ076cmakJGbGhaLMyEUKQGv0EYxMTMjIyCAgIICAggKFDh7Jjxw66tGrAoD7duXTxAg8fPsDcuz56FvYY2RfHyK0SV6/fIDo6GiHEv8ZRKBTMnzePmFsnuDa3G9fn98FYT83EiRNz2hw9epRWrVpx81kCEZqi/PLrbwwePPi1+7Dwjz9o2qgBD/fN5+nRlVhZW2NeogZurUbi3GQQNj5tOHTkKAcPHOD6tSv06NGDv/76i3v37gFgYWFBVkYayeEPAEh8dgeAocOGM+vXOSxbt4XmzZszb96812a5dOkSSrWGMoMX4dV9Jq4tRpAceheAgEsXKd55Ct5DllKs42SENpOUyBAA9CwdAEhISACgdu3aTJ8+nQkTJmBvb5/Tv6urK6dOnqR+lTLYasPJSk/FsX5vvHr/RskBC4iJT+DcuXOULVee+9tm8mDffO6sGYOJsTE7d+7g2tXLbNmyBVdX139lv3z5MiqNLkVrd0XPsihFa3cjMyODihUrEHPnDA/2zefx0dWEnd1Kl86dcrYTQrBq1So6d+5Mv379cHNzIzIinODgYKKjIunSpctr37emTZsCYGjjBoCumQ0qjR4A+tYuAKgNzdAYmhIbG0tgYCCxMc9xajIEFAoyEp/j1eNHvPrMoVjn7/D3P87Ro0dfO+6rhISEYGDtir6lAwqlCjPP6iQlJhAXF0fjxo1Jfh7Gg72/E3X9CI//WoiLqxtTf5iG2tKFCmO3UO7LNcSlZjF+/IR8Z/hfoaGhGLmURanWQa1niEFRL54+C31l+86dOxMZEc6tW7eIjIygW7duL3zf398f+6IOeHl5YWVlxcyZM3Od5bfffuPc+Qt49ZxFxbGbMfWoxLXr16lSpUq+9096c+np6aQkJ2Fo54FCoUCta4jGzI7nz58XdjRJkiRJemNKpZKZM2eybNky1Go169evp2HDhjlLGEnSp+z27dt4lvDi7KXr6JVoSHBEEo2bNCEoKKiwoxWYwMBAvvrqK0aMGMGxY8fyvP1ff/2Fq5s7jRo1onz58nTr3v2FazfvCx0dHRQKRa7bB9+7j7FbJTRG5mgMzTBx9yH47+scHxIXFxeOHT1KWXd7dMMu07xRPQ4dPICOjg4NG9QnKmAvkVcOEH5xL9HXj9Co4f8vIf/VmLEYO5el1PDVlB6xGpWpLd/+z3WmgpCamkqHDh2ws7PD2dmZKlWrERYWVqBj/CMjI4OGjRqzxncTj7Ms2H/sDFWrVSc8PDynTXR0NFlZWZi6lc9e4s3CHn0L27eW6VVOnz6NT5Wq2Bd1pE2bzwgNffU1CkmS/pucbJck6ZM0YMAAfH19UavV+Pr60q5du/dyElV6u7RaLZ+1bUeyypiSfX7DpflwVq1axeLFi3PaTJgwgTZt2vDrvEUMH/EFNWvVfu8+K+PHjyc5/D43lw7l1spRRF07zOiRX1Kpsg8VK1akYsWKVKrsQ7Vq1ViyZAmzZ8/G09MTNzd34oJOkZmSQFpsGAkPr3D18mWKFCmCs4srly5d+tdYXbt25dSpU4z/aiQzp0/j2tUrODn9/zWely9fjqGNC57dZ+LWaiT2dXqyevVq0tPT/3MfTExM2LVzJ8nJyaSkpODh4YHI/P/bZGWkoVKpyMrK4vPPP6dmzZp07NiREl5erFu3jk6dOlG6TFlurxrNrWXDub/zF9zd3UnTKik1ZCneQ5ZhXbEFX389jqy/12F/FTMzM9S6hqgNstfg1rPInihX/j1xbOxcJvurS2kAnvqvJ/LaIUL2z6OogyNeXl6vO2SULl2aXbt2sWnjBgAM7bLXZNYYWaDQGDB9xgyqV6tKx89aUSTlEbUqenPyhD9FixbN6SMtLY3Dhw+zb98+YmJiAHD6f+yddXRUV9fGn3vHLcnE3T0hIUASXIO7OxSX4q5BC7TlhbYUp7gVilsoxYo7tEBxdwhOQkJmnu+PgWnz4RAItPe3FouVmSP73HNn5u6zzdsbpidpuHdqDwDg9rFtAIC2bdti2LBhwMW9ePRnEpo1aYwffvjBOtaQIUPQpEkTJO06ivnLkhCfNx9OnDiBgIAAaLXa164HAOrWrQtbOyPOrv4Bt49tx9lVY2BKT4EgynA+aTySj/yO82sn4PGdayhZsqS1FtyjqyeR8fghAEDrGpDp/2frehN+//13fPHFF2jYsCFWr16N6Oho3L94FMlHtyD15gXc2L0Ebu4eMBqNKFmyJMaPH4+Hf23G6SXfwNtRj7lzZuPM6dMwhuSDTKmB0sYROq8cOHvu3BvL8E/u3r2LS5cuWQ+A8uTJg+QDa3Dv7CHcOb4Td49tQd642FeOodfrERoaCoPBkOn1Bw8eoHKVKjDbeCCs0ddwyVsDffr0wdq1a99IthMnTkDvHggb32jINQY45iyNe3fvZvlh94IFC+DnHwAbWztUqFARN27cyNLx/22o1WrLoc/WeUg+ugVXti3E/bMHUaxYsewWTUJCQkJCIsto1qwZ1qxZA1tbW2zduhX58uX7VxkUJSTehRo1ayE97TECq/eGZ7FGCG04Ak9MwJIlSz66LKdPn0b37t3Rpk0bLF++PEvG3LNnD3LnicX4n2Zi2vwlKF68OObPn//G/VNTU1Grdm2o3EIR/eVP8K/UBfPnzcPUqVOzRL7sJDIyHPeOb8Oja2eQcuMc7h7bgqjIyNf2M5lMuHLlCtLS0j6ClG9G7ty5seX3zTh39jQW/fILXF1dAQBjf/wRRQrlx5nlo3Bu9RhUqVQhk7P4jRs3oPcKhyiTQ6ZUQ+MahGvXs1Z3HDRoEJYuXwG/Ch0RVLMfDh8/hSZNmmbpHM/YvXs3Duzfh4DqfeFfqQtCG/8Pt28nY/HixdY2Hh4ecHF1w9Utc/Dg4lFc27UU96+c/qgO8CdPnkRCyVI4fvUeBL8CWLd5GxJKlnrt+Z2EhMRL+AhR9p8sUjo5CQmJVatWUa1WEwCLFi2aKS21xL+fq1evEgCDaiVa01nZeoWxUaNGJMnz588TAD2LfcH4xCRGNh9DQZTR3cOTao2W0TljuH///mxehYXt27ezUaNGrFOnDhctWsQaNWtSbbBnaIPhDG0wnGqDMVMdd9JS59xgY2NN5QhBpH1EYQbW6EuDRzCdnF348OHDt5Kjbt26NLgHW9Nz+5RuTUEQ3jpF5OzZswmAdkGxdIgoQgAcPHgwZ8yYQUEQGFC1J3N1+5mOUSWoVKqYnJzM+/fv86uvvmKrVq04duxY1qhRg7Z+0da9DajSnQBe+znfsGEDAdAxuiT9K3elyt6dgihjUJ1BhCDSIaoEw78YScccxSnKZNRodQTAkNAwHj58+K3WmZaWRm8fX+pd/BhYow9d4ioRAB0ii1IQBI4cOfKF/ZKTkxkVndO6d07OLvzjjz946tQpxuTKRQBUPq2V3qlTp1fKsHv3bgqijAqdkU45SzFnp9nUOri/sqTAq8Zy9/C0pj5PSEigUmdLtYPlNUGUEQBv3rxJs9nMRo0aE4JAjaMXIQg0huZncO0BNAbHU6XWWOvcv441a9ZQFEXqnX1ocAsgAE6fPp3ly1fIVPtux44dmfqZTCbr/TB8+HAKMjk1jt7M0XoCwxqPpEylZf369d/qGphMJrZr1846b1h4BE+fPs2LFy8yLDzC+nr+AgXfuT747t27CYARzX9gfGIS4/qvocbWgf3793+lXM8YPHgw5UoVwxqPZO6ei2gfko82trbvlbb//7N582YKgkD70Pz0LPYF1QYj4/Pm+2TTPX4qnD9/PtNnu23btlK5m08USZf8fJD2SkLi0+TIkSP09fW11De2t+fmzZuzWyQJiWzBbDZTFC3lt0Lqf8X4xCTm7rGIolzJb7755qPKcuzYMRpsbKk2GKl3sXw+v/vuu/cet0KFCtS7+jO29zLG9V9N+9AC9Pb1eyu5ADC04ddW/d7g6sd27dq9t2xvysqVKxmdM4Yent5s0LAh79y5kyXjXrhwgX7+Adbnfy9vnxeWjPsnO3bsoIurm0XvV6o4ceLELJHlQ2I2m3nr1q0XXrfy5StQbWPP4DqDGFi9NxUqLb/88sssnT8+bz465ChmvX+8SjSlTq+nyWTirVu3slTnelbeL7LlWMYnJjFPr6WUKZT8/vvvM7XbuXMnHZ2crXvfpk2bj6ovf/3111SotMzTaynjE5MY1shSdvVDpfCXkPhceVN9Uv6BbPgSEhISnwXlypXD2rVrUaFCBWzatAklSpTAmjVr4ODgkN2iSXwEjEYjFEol7p3ZD2NIPqTfu4HU5Etwc6sEANb0SXaBeQAACoMlEvc+tXAuWBZnjmxCiYSSOH7sLzg5OWXPIp6SL18+5MuXz/p35y7dYIwsBlv/GACAMbI49uzJHKkeHx+Po0eOYN26dVixYgVWr1uPwGq9IAgilAZHHJ3WGUeOHEFcXNwby1GvXj3MmzcPpxYOgcreAzf3rUT16tWhUqneaj3169cHSfw4dhzSnzxCn//9D506dULfvn2hMbrAMYcl0tMlrjJu/WGJ7nZyckLTpk2t3tMZGRlYtGgRru1aCrWDJ65tm4/wiMjnooT/P8WKFcOUKVPQsVNn3Dq0DqJcBcjk0Dp4wr9SF5xZMRrJf6yHUqXCrJkzUadOHaSmpkKn0wGwZEz459+vQqlUYvWqlahcpSpO/TIMEES4xFeFb+lWOPEkHStXrULXrl2f69enTx8cO3UG4U1GQaG1xelFX6FylSq4cvkK0tIeAwA83JwxetRsVKpU6aXznz59GsWKFYfawRMGnxxIPrwJqcmXINc7WtPhvw2xsbG4eOE8bt68CaPRiC5dumDHoeMIbzURpscPcf/sAZxaNByPHz+GIAioWbMGZs2aifT7tyDKlLhzfCfuHNsOWzs7LPplIXx8fN5o3qFfDYPeKwKhDUcAgohTC4di6LDhOP7XURw8eBB3795FTEwMjEZjpn6iKFrvh+TkZKj1djClp+DPCU9LHwgi2rRp81bXYMKECfjxxx/hVaIp1A6eOL9+CqpWq45DBw/g4IH9OHr0KORyOcLDwyGKliRTS5cuxaxZsyCKIpo2bYqyZctmGnPbtm04fvw4goKCUKhQIev3zYMLR6B3D0bqrQtIf3T/hd9DS5cuRZu2X+L6tauIzhmDeXPnoGvXrli9Jgk7Z3QDACiUSoz98UfIZLK3Wuur+OWXX6C1d0Ngjb4QRBnUDh7Y9ctXuHz5Mjw9PbNsnn8b3t7eOHhgP65fvw6tVgsbG5vsFklCQkJCQuKDEB4ejp07d6Jy5crYtWsXEhIS8NNPP6Fhw4bZLZqExEdFEAQ4Ojnj9v0UnF78NRwii+D+2UOQiUDNmjU/qizffPMNTDINIlr8CJlKh3Orf0TvPn3Rvn17q+7yLty4eQsqJ1+ICsu5gM49GLf3/PHG/V1dXSFXKHD7ry2w8c2BlKunkZp8JVOWvQ/Jjh07UKlyZdj4REHjHY8Fi5biyuUr+O23dW+VMv5FeHl54c8/DmHLli0giYIFC77yzOL+/fsoV74CTHoXBNduiTsnd6NVq1aIiIhAgQIF3lmO/fv3Y+rUqcjIyECtWrVQvHjx13d6CwRBeOlZ65Qpk1GufAUcmD8AAJBQsiRGjBiRpfM7OzniyNk/YXryGKJciUdXjkOn08PZxRXJt27CaG+PWTNnonz58u89V548eeDl7YOzS0bAPqoU7p/aDaVCgXLlymVqFx8fj/PnzuL48eNwcHD4aPfzMwRBAEGQluyPNGdYX5eQkHgHPorp/xNF8nCXkJB4xt69e+ng4EAADA8P5+XLl7NbJImPxA8//EAA1Ng6Uq5U0cvbh9evXydJ3rlzhzq9gcagOEa2GEP7sEIEwFxd5zM+MYk5O80iAC5cuDBLZFm3bh2LFi3GnLlys2/fvkxLS3vnsfIXKEiDRzDz9FrCPL2W0OARzPwFCr60/ejRoylTKBnd7ie6xFYinkYgly5dhg8ePHiruWfNmsWgkFC6unuwWbNmbx0d/yomT55MCAJD6g5hbN+VdMpdnoBg9QTWaHVcvXo1STIjI4PNmze3vhcQGMTjx49bx5o5cyZLJCSwZKlSXLhwITMyMjhlyhR26dKFY8eO5ePHj+nr50e9ZzjV9h4UZArKdXYEwG7dur3w+WH8+PHWSPeIyByZ5nsVXbt2/TvDAED3gnWpdwtkpUqVX9g+b778mb2yE5oRgkhjSF7m7r6QoQ2GUaZQcsSIEa+cd+jQoVRodMzTczHjE5MYXHugVYZJkyZZ25nNZs6dO5eNGzeml5c3dXo9o3PGcPfu3a8c/9dff7VE6ucoRp/SramxdWRMrtxWr/Go6Jy08Y1mXL9VjOu3inqvCNoZ7Zmenv7SMe/evct27doxOCSUERERHDZsGMMjc9ApprT1ergXqE1nV7dM/ZKTk9m1a1dWrVqV/fv356NHjzK9v3LldwtnJQABAABJREFUSgKgc55K9CjaiBpHT7q4ujE1NfWVa/z/1KxZk7a+UVZZ/Kt0e2VGhZkzZxIADV5hNHiEEAB/+eUX6/vdunXLdG+0b9+eJPnll19a+jl7W6LUwyOem2P//v2UyeU0huSlb7l21Dn70NPLm48ePWJaWhrnzZvHgMAg69iFChXOsgiNrl27Um3jwNjeyxifmES/Ch0JgNeuXXuvcU+fPs0+ffqwU6dO/O2337JEVgmJd0HSJT8fpL2SkPi0SUlJYY0aNazPIwMGDJAy4Uj855g/fz4FQaCoUFGQKyhXKLl06dKPLkeVKlVoF5DLqsv4VexMAM/pRNevX2fLli1ZrHhxfvnll0xOTn7luL169aJMoaRfhY4MrNGXaoOR5cqVfyvZxo4dSwCUqzQUBIExuXK/01lDcnIye/bsyTp16nDYsGFvlIWvQ4cO1Nq7Mq7fKkvWvKo9CIBXrlx56/nfl23btmWKmo7rv5pKrYFDhw595zE3b95MhUJJrdGVOicvCoLA+fPnZ6HUrycjI4PHjx/n6dOnP8hvwN69e6nWaKm2caDOwZ2CIFChVNEuIDcDa/SxZNdTqXnq1Kksme/EiRPMX6Ag9QYDwyMiP8nsLWfOnKHeYKDBLZCu8VWo0tsxZ0yuLM14JyHxb+BN9UnJ2C4p3RISEk85cuQI3d3dCYB+fn48ffp0dosk8ZH47bff2KdPH3777be8detWpvdWr15Nnd6QydgV1XayJa18y3EEwOXLl7+3DFu2bKEok9HGO5yOUQkUZXI2bdr0ncfbuXMntTo9FSotFSottTo9d+3a9dL2ycnJ9PbxpUyhIgSRnkUb0rtUKypUWjZ8mlb/UyA5OZkQhEz7AQgMqNKd0e2n0RgUR4ONLVNSUqx9rl27xpMnT2ZSGCZMmEAAtPXPRRvfKAJgbGwcBVGk3smTokzOYsVLUKlSPTWERlLj4kcA9PHxeaFszwzLTjGl6V+5G3VOXvQPCHyl4Zgkt27dSgD0LtmCeXotoWexxgRAUSbj77///sI+DRs2pMbWiTk7zGCenotp8AglAAbXGfSPkgihbNKkySvnHjx4MJVaA2P7LGd8YhJD6w8jADZv3jyTgtumTRtLijpbZwqijEobJxo8gmhja2d1TnqmTOr0eoaGhXPjxo0kyalTp9LJ2YUKhZLFipfI5Mxk7+BI17zVrTK7xlehIMp49OjRF8qbnp7O2Lh4ypQaOkQUoUJvT0GU0dPTkzK5gt4lW9C3XDsqVFo2/kca/AcPHjAkNIxKrYF2AbkoV6pYqFDh55TIr7/+mjKZxdHEw9OL+/bte+X1exGtW7emxtaJubsvZFz/NXSJq0yVSs2MjIwXtg8JC6d9aH7G9V/DuP5raBeQm3li40j+nS7eO6E5Y/uupE8Zyz5s2bKFZrOZs2bNYocOHTh8+PAXPs9+9dVXlv3tu5LxiUmMaPodAXDnzp3csmWL9btNrrGhe6G6VGoNWfZ5P3z4MFVqDfVuAXSMKkGZQslq1aq915hHjx6lwcaGKr0ddQ6W3+tp06ZlibwSEm+LpEt+Pkh7JSHx6WMymdirVy/r8339+vXfugyVhMTnzvbt29mnTx8OGTKE58+fzxYZRo8eTUEQ6F2yBYNq9afW3tWqmzzjwYMHDAwKpkpvR/uwglRqDcwRFf1KJ+XU1FRWr17d+hmPjYt/Jyfc7du3c+TIkZwxY0Ymnf9NseqFGj3tfKMokytYukyZ16YQ79ixI7VGF8b2XWFxqK5scZa/evXqK/tduXKFp0+ffqku+C4cPXqUAOhfqQvjE5MY/eVPFGVyjh079p3HLF6iBA2eoYztu8KS5j8kHwOCgrNM5k+FI0eOsHv37uzQoQMHDBiQKZgmT68lBMAZM2Zkt5gflX379rFoseIMDAph3Xr1eOPGjewWSULik0Mytr8BktItISHx/zlz5gwDAiy1ktzc3N66/rLEv5M7d+5w165dPHLkCP38A6i2caBjVAmqDEYGh4Q+FyH7LjRu3Jh6Zx+rp7RXQjMKgvDWUbX/5OTJkxwxYgRHjBjBkydPvrb99evX6eLmTofIvyOmPQrVo9He4Z1lyGoePnz41KBdhn4VOtI+vBDVDp5WeUMbfk0Ar40oDwwKoUNkUWu9a71nGAEwsHpvyzgNLEZnURTpGF2KNr7R1HuFU+PgyTJlyrxwzK5du1q83Z/Wqw+oajkwrFmzJmfPnv1S7+yffvrJcuDwVHHP3WMRAXDgwIGZ2p0+fZpFihajndGeYeERdHJ2sdRBF0RqtDpqNFrahxVknl5LGdZ4JOUKFYcNG/bK6/Dnn39SqVTR1jcHPQrXp9rGgRE5cvDEiROcO3cu16xZwyNHjlicDMq0sTiZtBhDCCK9S7UiAFaqVIn79u2jl7cPtQ4e9CrRjDY+kZQrlAwNj2C+/AX4yy+/0Gw202QycejQofT09qG7pxddXF0pKtT0r9SFfhU7U1SqCYDbt2+n2Wzm+PHjWbhwEZZISODixYutXvyhDYYzPjGJMZ1mE4KlvmFERITVEaNylSqZorxnz55NAMzRZiLjE5MYUv8rAnihd/mDBw944cKFdz4QOXnyJG3t7KjS29HganHQeFWtRU8vH7rGV7Xew865yjI0LIIkOWfOHAJg7p6LGJ+YxNg+ywmAU6dOfSNZRo0aRZlCxZgucxmfmMSgmv0IgOvXr6fBxoZ6r3D6V+pCG/9cFBUqOkaXop9/4Dut+0Xs2rWL5cqVY57YOHbv3v29vs9Isn79+tQ6uDN3j0WM67+ajjmK0d7BMYuklZB4OyRd8vNB2isJic+HyZMnUy6XEwALFizImzdvZrdIEk8xm81cu3YtJ0+e/EonbonPm4yMDLZu3dpqFI+IzMGzZ89mavPzzz9bghDaTLI49Db7ngC4Zs2a145//fp1Xrx48YNELptMJo4ZM4YVK1Ziw4YNeejQoefaTJs2jRAEq+xBtRIJgLt27eLFixfZunVrVqpUiYMHD87k8LNnzx7KFQraeEfQJbYSFSoty5Qt+9J1pKWlsU6dOpmuY1Y5UJjNZtapU4eCKNLWK4wKtY52dkYmJCSwQ4cOr80y8CKiY3LRKWepv8+BCtenvaNTlsj7qZKUlEQADGv0Tab7ODsySki8GWazmTt27OCiRYukADmJj4pUs11CQkLiHfDz88OWLVtQqlQpHD58GIULF0ZSUhJiY2OzWzSJbMTOzs5at3zb1i3o3bs3/jp2HOHVK2PEiBHQarXvPceTJ08gKFSAYKmDJlNqQBJms/mdxwwMDETPnj3fuL2zszPCQ0Ox7/R10GwCBBFp965Bp9e/tu/evXuxb98+uLu7o1y5clla+/kZGRkZOH/+PCpVqoyVq1YBNOPRlRNIv38LDy8fh849CLePboZcobDWbX8Zjx8/htxoC8BSj0qUKwEANr7RAACDTxQASy3Jk6d2wa1IQ6Tfu4kr235GhQq9XjimwWBARupDZKTcA80mnFszBjKVFklb92PhwoU4cuQIhg0b9ly/4OBgAMCNvavgnLscbuxdCQCoUKGCtc2jR49QvEQCbj5Ig310BVw+sxdPHj7Et99+C1tbW5QsWRL79+9HnTp1sXdEFQBAvvwF0KlTp1deh8jISCQlrUGnzl1w5dhvSCicH9WrV0NkjiikP639HhUdnenaaF0DIVfrkH7/JgBg9dp1SEpai/T0NES2GAOdWxBc4ipi3zc1cOF2Gq4+TkWNGjWwdOlSHD9+HP369YNz7vIQRBmu71kBCMCZ5aMAAHKNATZGLSIiIvDtt9+iZ8+esAuOhzn9DqpVq4YBAyw13BQ6O2t7QZSBZuLIkSOW9xRKVKxQAS1btsKp06cRGRGO8PBwS91woxsAQG3vAQAvrEuv1+uhf4N7/mUEBgbiwP79GD9+PO7fv4/SpUujatWqL21fuVIFTJg0BQq9PWjOwK1D69CkW1cAQGhoKADg+q6lcImrghv7Vmd6/XXUq1cPI77+BsemdoTaNQgPzuxDiYQEJCcn48H9+4hp1hdKgwPswwpi79fV8PDiYQQE+7zz2v8/cXFxWLVqVZaNd/PmTagcvSFX6wAAes9wXDiyGSaT6YN850hISEhISEh8XJo3bw5fX19Ur14dW7duRb58+bBq1Srr87JE9mA2m1G/QQPMnzfP+trw4cPRq9eL9SKJzxeZTIbx48dj2LBhePToEdzd3Z+r1Z6amgoAUBjsM/2fkpLy2vGdnZ2zWOK/6d69O0aNGgVb/1x4cn8fFv6yCHt270JkZKS1zb179yCTKaCydwcAaJ0sus+5c+dQuUpV3H30GGpnf6xaPQS79+zB8mXLIAgC8uTJg7VJSejbrz9u3TqOKl80xMiRI19a23rEiBFYsPAX+JXvAIXBAWfWjkPdevWxbeuW916nIAiYPXs28ufPjz179uDXdXdx594D7LvwAL9vn4Zf1/2GfXv3vNU5VckSxTH6+zHQuYdAVKpwa98KVCxX+r1l/ZQpXrw48uUvgD3z+0PvHoJHV08iJldulC79717354rZbEajxo0xZ/ZsAIBcocDUn35Cw4YNs1kyCYl/8HFs/58mkoe7hITEy0hOTmZ8fDwBUK/XW9MhS0h8KJYvt0SsOkQUpkehelRodKxYqdJHlyMpKYmiKFLvFkAbr3AC4Pjx41/ZZ/To0RaP7adRxWXLlcvyGk+XL19mZI4oq2e4t48PwyNyMCYmF23tjJYodLmSgiBwwoQJrx2vc+fOFGVyuheqS7f8tSgIIkWZjA6RRRjeZBSdcpWlKIrctGkTS5cuQ0EQqFSqWL9+fY4fP57r1q17zov94sWLtHdwpMbWkSo7F8qUWsZ0nmPxDC/SgIIg8O7duy+Up1OnTplS4/fu3TvT+xs3brSminMvWIfuhepRlCv4/fffZ2p3/Phxzpgxg8uXL2daWhpJS5mEokWLMTomF3v37m19/UWkpaXRYGNL+9D8zN3jF4Y2HEFRrqBSpaJdYB6GNxlFt/y1CIAytYFKW2fm7DybKjtLlH1owxGMT0xiri7zCFGkc54KjOu/hjbeESxTpgwjckTRIUdxxicmMWfHmdS6BlCpUllTt7u6uXPHjh0kSTcPTzrnKmvNPmDrl5NRUdF0cHSi2sGTPqVb08YvJyGIFGQKRrYYwzy9l9I+JC9FmZxqWyc6RpekSm9H/4BAyhUKGoPjGVC1B219Imlja5ftKdLS09OZmJhIN3d3CoJImVzOFi1aZNqjZ+ntnv3r2bPnW81x9uxZfvHFFyyRkMBevXoxJSXF6sUf/sX/GJ+YxBytxlvSycvln/Tv3eDBgynK5PQr34HBdQZRY3RlvvwFslssif8oki75+SDtlYTE58eRI0fo6+tLALS3t/8ka93+l1i8eDEBMKBaT8b2XUn3gpaI3TfJnibx7+P8+fPU6vS09c1B33LtaOMVSls7I69fv55tMqWmplIULeXw4hOTmKf3UmqNrmzdunWmdgcPHrTo/RFFGFijL219ctDWzo6DBw+2ZATrNNuSpa5aTwJ4aXmz11EiIYHGkPzWSHGfsm0pk8lem67+bVm9erVFr2s6+qleZyl1+Msvv7zVOKmpqaxZs6ZV5yxatNg7Rci/LadPn+YPP/zAH3/8MVO5uffh7t27rFGzJjVaHR0cnfi///3vpRkIHj16xIEDB7J27drs168fHzx4kCUySGQ9c+fOtZyJVe7GXF3n0zE6gQqlMtvPdCT+G0iR7RISEhLvgb29PX777TdUrlwZGzZsQJkyZfDLL79kijSVkMhKKlasiGnTpmHQkKG4/9dfqFmtCsaPG/fR5ShdujTWrVuHyZMn48mTJ6g1cgBq1ar10vZXrlxB165d4RpfFd4lm+Puqb1I+nkg5syZg8aNG7+XLNeuXcOyZctgNpsx/+cFOHXhCkLqDYUpPRXnV4xG9ar5sHzFSlChg8bBA6nJl9GyZUu0atUq0zgkMXv2bOzcuRMuLi5o164dEhMTce7cOSStXQaZTI4uXTojV65caNasOY4etkTHT5gwAUWKFEGRIkWQlpaGfv36YeTIkZgzdy5Aonnz5pg0aZLVm93T0xP79u7B119/jbVr1+KGUgOlwQEAoHMLAkncvXsXtra2z6119OjRqFGjBk6dOoXQ0FDEx8dnel8utzyynVkxGgqdEeYnj2E2mXDz5k08fvwYarUagCVK/p+RP9u3b0fp0qWhcw+B0t4D33w7EpcvX8GMGdOfk+Ho0aPYuHEjHty/h6CypSBX62HrlxMGtwDEh3ljx86dODqtCwBAlMmhNBgRUu8rqAyOUDl4IO3eTZxcOBTGkHx4cOFPgIDK1hmCIEBQqJHxNPqY6el4fOcajvzUETSboNA7Ij35Mvr3748BAwZYI5TT09Kg1BhAErcOrUPq7Sv44+wNAICNrR3O/zrRkgmCZhg8I6FzCwIA2OcojtvHdyKw9kDoXAPw8MoJHJnSAXKFAndO7sGdE7ug1emxNmkNnJyc3u6mzGKaNGmKefPnwzYwD9SPCdmTh+jZsyeUSqW1zcCBA1G5cmUcP34cQUFByJ079wvHSklJwalTp+Do6Ah3d3fr676+vpg2bVqmtsWKFUPuPLH4Y35/6Dwj8PDSUTg4OmHliuXImzfvh1lsFtCrVy8c/esvzJ/3AwAgPCIS8+bOyWapJCQkJCQkJLKa8PBw7Ny5E5UqVcLu3buRkJCAqVOnokGDBtkt2n+SU6dOQaHSwjGyGADAKaY0rmydjzNnziAwMDCbpZP42Hh7e2PN6lVo0rQZziWNQ1BwCGb+kvRBo9ZfR1paGsxmM5R2LgAAmUINuc4ODx8+zNQuOjoac+fMQfMWLXHqyGa4urnjl5UrsX79esiVaij0RgCA2s6SEe1FmdDeBGcnJ6Qd/B0Zjx9BptLg0aW/YGe0fy5LwPvy6NEjABa9GwCUti6ZXn9T1Go1FixYgDt37iAjIwOOjo4vjdp/W5KTkzFjxgzcu3cPxYsXR5EiRQAAO3fuRImEkkhLTwfNZvTrn4htW7cgPDz8veZr1Lgxkn5dD5d8tZB27zq6du0KJyenF0ZAa7Vaa/Y8iU+bI0eOQGvnBKfoBACAa1wV3Dr0G86cOZPt5zoSElY+huX/U0XycJeQkHgdqamprFy5sjXib+7cudktkoTEB8VsNnPr1q2cPXv2C2ucXbhwgVu3brV6rY8aNYoAGNlynNVrW2PrwP79+z/X99y5cyxZqjSdXFyZJzaOO3fufKkcR48epb2DIwVRRlEmoyDK6JyrnHUOp5jSdHB0otbelXl6LWF8YhLd8lWnIFii0f9Jhw4dCIAGVz8q1Dp6eHrR3cPT6rVdqFBhqwfz3bt3uWnTJm7dujWTV/O+ffsIgF4JzRjXbxX9Kloi0X/77bcXyj9v3jwCoEehegyuM4h6Fz/6+vm/cx3wtLQ0yhVK2ocVZFy/VczVbQGVNo7WNZQtV4537tx5rl/Tpk2pc/JiXL9VjE9MoneplgTAq1evcs6cOZwyZQrPnDnDH374gcLTzAQAqLJzYe4eixjW6BuKcgVbtmzJBw8e8Pvvv2e+/PlptHegTKlmUM1EBtXsR4VKSwDUOPtS6xpAjZMlEskhsigdoxMIgNOmTeOECROeju9Kuc6Oubr9zLj+a+gSV5lKpSpTRoTWrVtTplBS/zTDgs4tiHKtLQWZggA4YsQI7t27l927d6dcqWJog+GM6TyHtk+j3XN1X8j4xCRGt5v6tH8gc7SdTN9y7QiAU6ZMeae9yCquXr1KAPQt157xiUnM3WMRVXq757IavAnbtm2jvcPf90O3bt1eWwfx3r177N69OytWrMhOnTp9lMiFrOLKlSs8derUO3+eJCSyAkmX/HyQ9kpC4vPl0aNHrF69uvUZZ8CAAR+k1rPEq1mxYoXlubV8e+buvpAucZUpiiLPnDmT3aJJZDNZHan9PsTnzUe1jQN9y7enS1wlAuC8efNe2DYjI4O3bt2yfp/s3LmToijSPrwwnfOUp9JgpL2DIx89evROshw5coQGGxuq9HbUOrgRAKdPn/7Oa3sZV65cocHGhrY+kfSr2Il2/jmp0ep47ty5LJ/rXbh69So9vbwpU6iotrEnAE6cOJEkmTtPLG08Q5mn52Lm6vYzdc7eLFO27HvN9+TJE4qiSJ/Sra1nRza+UaxSpUpWLOelbNu2jVOmTOHGjRul36iX8PjxY44bN449e/bkvHnz3vo6TZ06lYIoMqTuYMb1W0XX+CoURZFXr179QBJLSPzNm+qTkrFdUrolJCReQ3p6Ohs0aEAAFAThtSm1JSQ+V8xmM1u2bJkpZfXIkSOt7w8fPtxqkFUqVZw5cyYNNjaEINIxuiRzdZ1P/0pdCIDz58/PNHZKSgr9AwKptXelR+H6tPEMpU5veOkBTZmyZalz9maurvOZu8cial0DKNcYGNt3BfP0XEy9ix9dXd1o6xtlVaL8Kna2GFX1el64cIEkeenSJUva+YTmVsOrIJNT6+jJiOY/MLjOIMpVGnbu3Jkk+c0331AURYtx3saGa9asIUkuXLiQAJir2wJLWvN+qzIpii+6lv369bOO5evnz2+++YYNGjRgvXr1uHXr1uf6ZGRkcP78+Rw2bBiXLVuWSfkwmUwURZG+Zb+0rtcYmp8qozt9y7WnUmtg9Ro1nhuzUaNGNLgFMK7/Gss1Kt/BKg+epv5XqTUUBJEucZWZu8cv9KvQMdM9IIiWFO9NmjQhAKrt3al29MrUplChwhwxYkQmg33u3Lnp7OpGb18/fv/99zSbzTSbzZw0aRKN9vY0eIVb1xJQ1ZKm758OA6mpqWzatKnFaaFwfYtBuvtCyjU2FGRyKlVq/vnnn5w4cSK9fXys82p1Omq0Wupc/ekQWYwaezcCAoNrD7DOZ3D1Y/v27V+4dx+LM2fOEACD6wx6mip/NXUO7uzYsaO1zcaNG9m4cWM2bNiQa9eufeE4qampdHB0oo13BMObjKJX8SYv/Ax+Tpw+fZpbtmzhzZs3s1sUCYmXIumSnw/SXklIfN6YTCb27NnT+qxXv359Pn78OLvF+k/x//VEQRA4ZsyY7BZLQiITV65cYeEiRSkIAjVaHb/55pu36j9z5kzKFUpLiTqF6oXl3d6GU6dOsU+fPuzUqRPXr1//zuO8jq1bt1r1e08vb27YsOGDzfW2dO3alSqdDXN2nMm4/qvpFFOGarWG6enpdHRytur58YlJdM5TgaFh4e81n8lkokqlpnvBOtZzG72rH+vUqZNFK3qe3r17Zzobad269Vsbkq9cucJly5Zx06ZN/0qH8rS0NBYoWIiiTE6dvSsBsFmzZm91nZ48ecIyZctaz7EEQXiurKKExIdCMra/AZLSLSEh8aaYTCZ++eWX1oen4cOHf7C5MjIyOHfuXA4ZMoS//PKL5BUp8Vp+//131q5dm5UqVeb06dPf+Z55Vu/Lr3wH5um5mG75alAQBJ44cYJbtmx5GqlcnDa+0VTo7a2GZNe81awGWQAMDAyyGlZv3rzJO3fucPPmzQTAiGbfW4ymPRdRplDyu+++Y1JSEidNmsRdu3ZZZQkOCaNLbCWr4uVRuD4FUU61wUil1kCd3sB+/fpZo8f9q3SjwuBInUcIAXDmzJkkyUOHDmWqTR3Xfw0hCJk8ne0jirBwkSLWuuhu+aozvMkoGoPiqNXpefPmTf75558EQPcCtZmr28/0KtGMALhly5ZXXtN79+7xwoULHDRo0FPDtdx6nVq1amXdK5PJxMpVqlgcGbQG6/v/JDYunloHd4Y2HEHv0q0IQaRMpaPOPZhOucpSq9O9dE/twwrSo1A9ypRqqtRqylVaRn05hXl6LqbW1aKYR7efZr0mcqXGoqwX/4J5+qz4u067SkdBlFFp62z5WybjsWPHrOs4ceIEly9fzsOHDz8ny+3btzlkyBB++eWXbNSokSVTQIlmDK4ziDpHT0ZE5rC2vXPnDjdt2sT169c/rQ/Zi4HVetE7oTlV9h50iCxGla0T3dw9KAgCVXo7AmDp0qV5+fJldunSJZPCC+FZ/fjVjGwxhnKF6q0PX7KajIwMRkTmoNboSt+yX9IxqjgBcN26dSQtEUSiKFLv4kv90z36+eefnxvn6NGjBMCwRl9b90/v5MVOnTp97CW9N2azmd26dbPum0ar4/Lly7NbLAmJFyLpkp8P0l5JSPw7mDx5MmUy2VNHz0K8detWdov0n8JsNnPHjh38+eefeeTIkewWR+Jfzo0bN3j58uV3OttIS0t7p37z588nAIbUHcL4xCR6Fv+CAHj8+PG3His7SE9Pf+s+W7duZYUKFVigYCEOGTIkU6a5rKBevXq09Ym06qmBNfoSAG/evMmEkqWotnNmRLPvGdZ4JOUaA5UqFTdu3Phec3br1o2CINAYmp8Gj2CKMhl///33rFnQ/2P//v2Wc43iTRjbdyV9y7W3Or5//fXXHDJkCA8ePPjKMTZs2ECdXm/VgYsVK87U1NQPIm92MWfOnKfnciMZn5hE3/KW6/SibJqvIiMjg8uXL+eECRO4d+/eLJfz9OnTnD9/Pn/99dd/pdODxLsjGdvfAEnplpCQeBvMZjP79OljfQDq2bNnlhvCTSYTq1arZokefWo8+uKLLySD+yu4d+8ed+3axVOnTmW3KNnCxo0bKZPJqHf1o61vFAHw22+/faexRo0aRZlCZVWEcnacSQBcvnw5R44cSVEmpyDKqHUNoDEkn9XY6hBZlDnaTqJXiaaUyRUcMmQIk5OTWaxYcevnpWjRYhbjmZMP7YLzMrTRNxRlcsbExGQyij5zZKlduzbVNvYMbzqakS1+pNbBnfF587Ffv34cOHAgT548SbPZzBo1alj76j1CGdbwawLgwoULSVoi6h2dnGnjFcbQ+sPoVqAWIcpoF5iHsX2WM6bLXGqMLqxfvz6HDRtGpUZvjQKPajOJAKxp6b/++utMsvbs2TPT9bt06RKLFS9BpVJFVzd3zpo1i6RF2ZfJ5RTkStr452JEs+/pWawxAXDp0qUk/07NGFSrv0X5eJrqfM+ePdbxT506xcCgYKvxWKEz0r1QXeo9QymIcto7OJK0GKq7dOnCihUrsmvXrpwwYQKNDo6EKKPS1oW2fpZrHlC1p8WRoYjF8O2WvxZj+66wRpkrtTbWeyGy5Vjruv+/gvQm3v53795lYFAwFSoN9c6WKPTw8HDrmEHBITxx4gRJcseOHTTaO/y9rwYbigr10wgDy//G0PzUugYQAEPrD2N8YhJ9yrQlAK5evZqiKNI1vgqjvpxCx+iS1rHkKg0FQWBMrtx8+PDhO31OspLz588zf4GClpSFDo6cOnWq9b24+Ly09cvJuH6rGNd/NY3BeRn+D4eEZ9y8eZOCIFijAqK+nEK5Up0lTmHp6ekcNWoUv/jiCw4YMOCDPzMvW7bM6oSRo/UE2ofmp0ar+6xS3Ev8d5B0yc8Haa8kJP49rFu3jjY2Nk8dfAOtz48SEhL/DlJTUzOVjsiXvwBv3LiRqU16ejr79OnD8IgcjM+bj0uWLMmSuYcPH065SmPVgZ+VI3vmDP1vY8+ePVQolNS7BdI+vBAFUcaWLVtm6RyjR4+mIIr0q9iJEU2/o8E9iD6+fjSbzZbsgYJo3WulrQt1nmHU6Q28fPnyO89pMpk4cuRIFilalOXLl/+gkf4LFiywZPV7WsLuWQZEjVZLuUpDpdZAuULB1atXv1RWRydn2vnHMGenWQypN5RyhYpDhw79YDJnB//73/8oV6qtZ23R7acRwEuz92UHixcvplKpst6PCQklmZaWlt1iSXwiSMb2N0BSuiUkJN6Fb775JlN6oKysUbVmzRqL4almP8YnJllTcm/fvj3L5vg3sWXLFjrY2Vn3o0WLFp9UzbCPQYUKFah3D7LW5HbOXd5qdH3GuXPnWK1aNYZH5GD16tV5/vz5F461cuVKAqB/pS6M7bOc7gXrWAyUCoU1Pbja0YuxfVdajLSF6lEmk1OUyYin7+eJjePDhw9Zo2ZNqnQ29K/SjT5l2lIQRQpyBR2jEqh29KIgyqjR6iwHZdX7MK7fKut8p06d4tWrVxka9rcx1tfPn0lJSZw9ezYXLFhgjWRJSUlhWHgElVoDjWEFKVdqqNboWKhwYavBfefOnXR2saSqEkWRDRs2pEKhpEKtpUyhpKOjE2fOnMnu3bsTgsDI5mMyGbyPHj1qvUaHDx/mwoULuX///kzXzmQyMTpnDDW2TvQu1ZIOEYUpCAI3bNjA27dvW9fxLLI/PjGJCr2RJUqUoMlk4rhx4ygIIuP6r7bUVk9oTogy2tga2aBBAyYmJrJ58+YcPXo0x44d+zSS+RvGJyYxT++lFBUqVqxYkampqcwRFU2FWke7wFgq1FrmjMlFF1c3OuepYI3ut/XPRa1LAHN2mE4bz5BM9b4BsEDBgpbrXq4dc3aYToeIIhRFkYJM8ZyCBIB//vnnK+/TUaNGUSZXMurLKZlqxy9cuJDnzp2zeg2bzWa6e3jSxiucOVpPYGD13tZ7K7T+MMb1X0PPog2t84ryv+XJ2WEGAXDo0KGWiIR6QynX2maKku7evTunT5/OlJSUt/ugfWBe5DUdEhpG59zlrfeLW77q9PD0fmH/AQMGEAB19m6UK1UMDArOlJL/XTCZTKxQsSJFmZy2XmFUqLWMzBH1znUL34TExERqbBz+4eQxjgC4Y8eODzanhMS7IumSnw/SXklI/Ls4fPgwfZ6WELK3t+fmzZuzWySJ/xhHjhzhqFGjOG7cuOcMwRLvR7du3ShTqOhXoSMDq/emSm/HSpUz19tu2bIlRZmcTjGlaetvcSR/Vv7tXcnIyGBcXPxTx9+mjG4/jY5RCZQrFLx48eJ7jf2p0rx5c+ocPRjbdwXjE5PoVaIZBUHI0qjqJ0+esG69elad3MXVzXqWMmzYMIpyS9r+kPrDGNt3BWM6WyKgFy1alGUyZCUmk4lnzpzhlStXSP6dSdG9UF3m7vELvUu2IACqbJ2Yu/tCxvZdQWNgHvoHBL5wvJs3b2Y6A45PTKKtbw7WrVv3Yy7rg/MsU6ZbvuqMaPY97cMKUKXWWK9jdpOamkqd3kD7sALM3X0hQ+oNpSiTc/To0dktmsQnwpvqk3JISEhISLwV3bt3h52dHVq1aoUJEybg/v37mD59OhQKxXuPfenSJQCAXXDeTP8/e13ib9LT01G9ShUEPn6M2Y7O2PckHf0mT0a+fPnQpEmT7Bbvo/Hw4SMoDI4QRBkAQGXngvspKdb37927h0KFi+DWg8cwBMRi9fot2FO4CP784xBsbGwyjVWuXDl80aQJpk8bhTPLR1lfd8lXC3KtLc7/OhFyjQGizPL4INfbwWw2Yf/+/di9ezfs7e1RsWJFqFQqrF+/AY55KsEpKgGP71zD+aRxCKjcHY45isGUloKD3zdCVI4IHPjjMBwiCgMAnHKWwpWt83H27FkkJCTgwP592LlzJ44ePYoBAwaiTNlyAM0AAGcXV2zetBGhoaHY8vtmJCYmYk1SEu6kp8IQkh9/XLyPmjVr4ueff0atWrVw8cJ5XLx4EY6OjrC1tUX37t2xZs0aPHz4ED9Nm4ZGjRoBANRaHY5O6wytvSse3ryEli1bIiwszHotIiIiEBER8dw+XLhwAYcOHkBQ7QGwD8kH0ozH105h2bJlKFKkCDRaLVJTUnDvzH7oPULw6NoZPEm5j/Xr16NXr16oWrUqSDMubZwJuc4OF36bAvuIIlDaOGHO3PkQRBF6Fx88nDoNAYEBAACz6QkAgCYTSMLf3x9r1qzBn38cQmTzMdC5B+Hh5eM4+FNH2NjaQadQAwAEQYCo1CDl7EEc/OEL2BntIVMoIJMrIVOqkJ7yANWrVUNEeDgmTfoRAKBUqjBgwAAMGDAAF3+bAvvwwriybQFEuRLmjHQcOHAAkZGRL71Pb926BblGD7W9BwDA4BkOAOjduw9OnjxhbZecnIwrly8hqGY/aJ19oXX2xcX1U2F6/BC2AbkAAPbhhXFp0yzkzp0H+/btxaWNM+AQWRRXt/0MhUKJwoULQxAEnFs9BgqdHaLaTARpxvGZPXHw4CF88803L5XzTSCJCxcuYOjQodi6bQecnZ0w7KuhKFCgwDuPKZPJnnutbJnSGDN2PNQOnhBkMtzcvxpfNKz/wv4DBw5ETEwMtm/fDicnJ7Ro0QK2trbvLA8A7N27FytXrEBgjb5wCC+ElOtn8efENvjll1+sn5f3ZcuWLZg8eTIyMjJQu3ZteHh44PHDu3hw8SgMXuG4e2InAMDd3T1L5pOQkJCQkJD4/ImIiMCuXbtQqVIl7N69GwkJCZg6dSoaNGiQ3aJJ/AdISkpC5cpVYAZgNpkweMhQ7Nq5A97e3tkt2kfn9u3buHTpEnx9fZ87W3hXNmzaDGN4ITjnKgsAeJx8GZs2Lbe+bzKZMHXaNLgXrg+PQnVBmvHXTx0xdepUlClT5p3nXb58OXbv3gVjaAFcXD8VF9dPBSBg6NAh8PT0fN9lfZKkpaVBVGohiE/Pd7QGkMSTJ0+gVquzZA65XI45s2dj8KBBuHfvHsLCwqDVagEADg4OMJsyAAAKrQ1EmQKPky1nn1l1P2Ully9fRvkKFXHo4AEAQJUqVVCuXDlUrFgRK1bMw5Ut8wAAbm7ueOIUBrnGAAAw+ObEtR3zXjim0WiEwcYWyYc3wi4oDqm3LiLl2hn4+1f6OIv6SBQsWBDffvstevbsias7FkGt0WLe3Dlwc3PLbtEAAFeuXMGjhw/gmasc5BoD7ALzQO/ii7/++iu7RZP43PgYlv9PFcnDXUJC4n2YP38+5XJL/eUKFSpkSaTk3r17CYCueaszqs0kOucuR/FpTWSJzJw6dYoAONfekZfcPXnJ3ZNhGg3btGmT3aJ9VP73v/9ZUm17RVDnHkyZXMmq1apZ31+4cCEBMLrdVEuK6baTX+kpbDabuXHjRk6fPp0xuXLRGFrg79rm4YUJgM65y9MroRmVWgPLlSufqf/y5csZEhZOmVxJpcGRMV3nMbL1+Ke1zwZbU2tpbB2t6eH8yndg7u4L6RJbiaJMxnPnzlnHe/jwIR2dnC31u+xcGN1uKnN2nEmtkzeLFC2WaW43D0865y6XKXo7X778bNmyJXNE5WSZsmV54MCBTH2KFitOnaMHI1uOY3jT0VQZjMydOze7du3K2bNn02w288mTJ+zZsyedXFzp4ubOxMTE5zIoXLlyxbKWCh0t0ea9llBtMLJnz548c+YMAdDuaep9pY0TIYpU6I10zVeDSqWKJpOJw4YNy5QSP67/GvpXsdSvjmw51lLjrFovSxtRRrnGhi6xFalx9iUEkb/88gs7duyYKY1Zrq6WunOFChWiKJPTNW81OuUqSwD09vZmTEwMS5UqRZXOhjk7zmJY42+ptHWhIMo4YMAA7tu3j2vWrOGlS5f44MEDVq1a9e+ocoWKrnktZS9y587NoOBQhoaFMSpnDEuXKcNdu3aRJG/dumUtweESV4WhDYZT7xVOmUpLURQzlcl48uQJNVodHaOKM67fKkZ/+RNlCksqL++SLRjdfhodchSjXKHglStX+NVXX/2ddk6p4ty5c0mSI0aMoCDK6Ja/lvX+dc1bjb5+ASTJ69ev88cff+T//ve/TJkLXseOHTvo4ellTeVv45+LBo8QqlTq10b3vy2pqamZogCqVqv2UVPfJyUlZfruiOu3ijK5kt99912mdrt27WLefPnp7uHFihUr8dKlS280/q+//kpRJqPO2YcGD0t5hK5du1pKJQgCVU9LqfTr1+9DLE9C4r2RdMnPB2mvJCT+nTx69ChTuumBAwdK5dckPjjePr40PitJ1mk2NXZObNy4cXaL9dEZP348ZU/Pw9QarTWr3PuSULIklTaOdIwqQfdC9WgXGEtf/wDr+0+ePKFMLqd3QnOr3m/jFc5q/zgDeRd++OEHijI54/qvYVTbyQyo2oMAuGLFivdd0ifLkiVLCICO0Qn0KtGUKp0NS5RI+GjzP3jwgMEhoRRkcooKNW18oyjKlcybL/871Z//0BQvkUCNrRODag+gV0JzCqLMci4ik1GhVLF3797cs2cPO3ToQIVKy6DaAxjWeCS19m4sVLjIS8ddtGgRFQolhacp9XNERfPu3bsfb2EfkWvXrnHv3r3vnYUvq0lJSaFGq6NDZBHm6b2UYY2+pkyu4MiRI7NbNIlPBCmN/BsgKd0SEhLvy6pVq6hWW2oIFylSJEu+T/73v/9ZU3bL5HJOmjQpCyT993Hv3j3KRJEtdHpedPPgJicXauVyDhkyJLtF+6g8ePCATs4uFOVK6tyDKYgyJiSUtBqD582bRwCM6TT7aR32WQTABQsWvHbs8uXLZ0pR7xRThlqdnkZ7B6pUalauUoW3b9+2tt+xYwdFmYx2gbnpUbg+ZWo9ZUo11XbOFEQZVTYO9CrehMbgOIoyGXfs2MGWLVv+bbwVRY4dOzaTDHv27LGk4bJzoUtcZavh1L1gHbq6edBkMvHatWt8/PgxHZycMxlXjWEFabCxpUKjo1OustS7+FFvMDApKYnLly/n8ePHae/gSI8iDa19nHOXZ8T/q4vdu3dviqKMrvFV6RJXiYIgsHXr1sybLz+9ffxYo2ZNXr9+nTVr1qQok9M+vBB1Tl7U6vQ8fvw4T58+bUmXX6Mvg2oPoFv+mhSVWrrEV6VPmTYURdGqTJ45c4ZFixal3i2Qcf1X07tUK0vq9qd78KxunCCIVNo4UWFwpEyloZOTMx8+fGgxagsibfxy0r9yVxp8owlB5LRp09ipUye6uLnT3tGJAGjwyUEb32hLinWjGyOafkdBlFPrGkD78MIURBlbt25N0pKK3+Fpv2f/VAa7p2UGlNQ5+1JldKUgU9AxuiT1bgFUqTWcNm0anZxd/u4nWhRIuc6O+qf12v4/M2fOpCiKVKi1FEQZlSo15Vqbv8cQBJYpU8ba/vz589y6dSuvX7+eaZx8+fNTY3RljjYTmaPVeGqNrqxYsRLPnDlDZxdXijI55Uo1VSo1f/3119d+HpKTk2lntKeNVzgDq/e2XqOIpt9RbTCyV69erx3jXUhJSfmgqdtfxvXr16k3GGjnl5PBdQbRMaoERVHkvn37rG3OnDlDnd5Ag0cw3QrUosbWiSGhYXz8+PFrxy9atBhtvCMY128VY/utotLu7/tEEARWrFjxvdNBSkh8SCRd8vNB2isJiX8vJpOJPXv2tD5DNGjQ4I2eQyQk3gWz2UyZXE6fMm0zOaQXKVo0u0X7qOzdu5eCINA5TwWGNxlFh/BCVCpVmZzm3wWz2cwiRYoSgkCtayBFuYoQRM6YMSNTu3r161OuVNEtX3Xah1vKny1evPi95n6W5tqjUD1GtZ1Mp5ylKJPLefbs2fca91Nn4sSJdHVzp1anY+XKVZicnPxR57979y579+7NqKgoxsTEsE+fPh/VwfxtUKnU9C7ZwnJulKss5VpbRrefxtjey2gXkIueXpaSb/fv32eRokWtv0uBQcGvvY+OHj3KCRMmcP78+S8M5EpJSfnPlcx8GR/qOvz888+UKxTWfStUuEiWllSQ+LyRjO1vgKR0S0hIZAWbN2+mwWAgAMbGxlprSb8P58+f5+bNm3n58uUskPDfy8iRIwmATkollaLIsKCgLPcAffToEfv168eKFSuyXbt2zxn03oWsjLiYPXv208jncYxPTGJQbUvt5u3bt5Mkb9y4QQdHJ+pd/ehRpCH1rn50dHLmzZs3Xzv2pk2bKJPJqHfxo41PJAG8smZRly5dqDU6Ww3DQTX7WQ+91qxZw1Kly1BvsKFfQCCXLl1K0nItdu7cyYULF/Kvv/56bsxnhmqNiz9Vdq5/R7Y7ejFPnlj6+PoRABVKJQsWLESZXEH3gnXoElvJ+pAcVHsA4xOTmLvnIspVmkwGPU8vb9p4hjJ3z0XM1XU+dY6erFipUiYZvH38rPXO4xOT6BidQFGmoI1nKN3y1aDaYGTOmFx89OgR+/fvz8JFirBGjZo8dOgQSYsykC9/Aap0NnTLX5N6rwgCAvWe4RTlSubLly/TfOvWraMgCLTxjaJtYJzlHo8uyZB6Q2njl5N46vEskysIQWBwSCgnT57Mq1evcvXq1Zb31HrL/yotBVHMpNzliM5JY2h+xvVfw7j+a2gfVpCCKKPOM5Qqe/e/a7YVb0JRFPnw4UO6urnTxiuM4U1H072QJdq6XLlyrF+/PmUKpTVjgn+lLoxPTGJs72UWA7kgUu3gyZwdZjCq7WQqDQ7WqHBBJmfLli1f+HnYs2cPv/76a06cONF6oJWjzUSG1h9Gu+C8mQ60TCYTJ06cyEaNGrFr167WyOozZ87Qy9vHut++fv48f/4869WrR43RlTGd51gUY/+Yl9ZQ+//7AoBRbSdb1th3JQW5kl4lm1Nj68gePXq8sv+NGzc4Y8YMTp8+ndeuXXvtfJ8CGzZsoIODozVi5f8fdI0aNYoyhYq5ey5ifGISw7+wZNrYtm1bpna3bt3ivHnzOG/ePOtvZEzuPHSMSrBkbKhhyXzgX7kbc/dYROc8FSiTyaTfQIlPGkmX/HyQ9kpC4t/P5MmTKZPJrBmdskInl/hvk5aWxvbt29No70AnZxcOGDCAJpOJOWNyUe/iy8iW4xhSbygVKi07d+6c3eJ+VMaNG0dBlFn1/md1tp/p+O/Kvn37LMbJar0Yn5jEHK0nEILAadOmZWqXkpLC1q1b093Di0EhoZw+ffp7zfuMIUOGWHVHuUKRZeNKvD9jxoyhp7cPHZyc2aJFi2xxRndz96BDeCHG9V9NG99oGkPzW8+IfMu3pyAIzMjIIGk5o/jzzz+5d+/e93IAO3/+PGPj4q36+H850nrlypV09/CkKIrMERWd5ZkFSfLYsWOcPn06V6xYwevXr/PEiRNMS0vL8nkkPj+kmu0SEhISH4nChQtj48aNKF26NPbs2YPChQtj3bp171Vj1tvb+z9Z8+tt6dq1K6Kjo7F161Y4OjqiUaNGWVrbyWQyoVz58ti2fQf03lH4deMWrFy1GgcP7H+nesg3b95Ew0aNsX79b9DrDRg8aCDat2//XjLevXsXokwGjZPlftG5+AEA7ty5AwBwcnLCxg3r0ap1G5w4koSokBBMmjgBjo6Orx27SJEi2LRpE8aPH4+0tDRU/aoX6td/cc1owFKPy2wygaYMCKIMpiePAQDDhw+Hp6fnC2uoCYKA+Ph4xMfHv3BMf39/NGnSBNOmTYMoV+LQj00BAI5Ozjh3/jzS5AYE1eyH++f+wNaty1GxYkVs3bYOcrkcbdu2xbhx4yBTqAAAokwBQoSNbxQCqvTA1Z1LcGnnImh1ehwYWQs0Ew6Ojhj57beZZMgwZcCcnmr925SWCgIIbjACMqUatv65cHBOH5w4cQKDBw9+bg2iKGLliuX4sl07bN26HfqMJ0iRyfDo2inIVVrs2LEDY8eOReXKldGseQts3boFDo5OsFelQ6OVw6dSJaxd+ytuHloHQZTBO6EZaDbj8pY5UMlEnDh+DC1atIBao8XP8+ehffv2GDNmjEXW9MeoU7sWfHx8rPI8Tn0MhcEdgiAAABR6I/QGAx5cOgati/8/arbZwGw248qVK7h29Qr8KtXF2ZXfI/XGOQBA0tpfoddpQQKkZWyZylJ/TZDJIcpVEOVpcIgoApWdCwDALiQfbh5Iglve6niScheTJk1CXFwcmjVrluma5cmTB3ny5AEADBs+AvdO7oJzrjKQq3RIu3EaPnnLWtt26NABY8eOha1XGB7fuYrZc+Zi9qyZ+Ouvv5DYvx8cHBygUqlQuHBh6PV6nDt/AVqPMCgNDgAA26B4XN40/YX33z959plPvXURGkcvpN29BmY8wa0Da/Ek5R5q1ar10r7Hjx9HwUKFcevmDQCAvYMjft+8CREREa+dNzspVqwYrl27ihs3bliv4z95dg89uwFIc+bXYVl74SJFceP6NQCAi6sbft+8CeXLlsGw4SOgcfLG/QuHIVPr4BSdYGkTWxE39q7EqVOnpHrtEhISEhISEq+lefPm8PX1RfXq1bFlyxbky5cPq1atQlBQUHaLJvGZ0rNnT4wdNx4u8dVgzkjD4MGDodPpMGf2LCSULIXDk9oCAPLlL4BBgwZls7Tvj8lkQr9+/TDlp6kgiaZNvsCwYcMglz9vOnB2dgbNJjy4cAQ2vlG4f/4P6+vvw+3btwEAWrdAAIDG0Qtyhcr6OgCcO3cOgwcPxpUrV9C0SWP07ds3y+qL9+vXD/Xr18f58+cRHBws6SGfCLNmzUL79u3hGJ0AlZcDps2YibS0dMyYMf2jyjHy22/QoEEDpI5rhrT7t0EA984ehMrGCckH1yIkNAwymQyA5QwoMjLyveYjiYqVKuPUhWvwq9gZKddOo1u3btbfuv8SR44cQdWq1aD3jYZ3mSo4u38VSpUug+PH/oLBYMiyeUJCQhASEoJBgwahUqVKIAkXVzcsX7YUcXFxWTaPxL+Yj2H5/1SRPNwlJCSykiNHjtDd3d1St9nPj6dPn85ukSTekx07dmSqNR7dbiohCJwyZco7jVe4SFGq9Hb0LtXKWjf7fWubHTp0iDK5nA6RRRlUewDt/GOoNxh4+vRprlixgosXL/5oqcD+/PNPqlRqGtyDLWm1VBqWKVv2vSP5TSYTJ0yYwPr167NatWqcMmUKf//9dwJgWOOR1lptWqMLe/bsae335MkTRkTmoMbWiZ5FG9LWL5qAwMgWP1rqmXdbQAAcN24cx40bx4kTJ/LKlSscNGgQ7R0cqbexYbly5axlHYwh+WkbFGuJGFcomafXUsYnJjGk3lAC4L59+9irVy86ODrRaO/Azp07v7DWWLt27ag2GBnTeQ6jO8ygQme0poaXqzT0LN7UEm0uCExKSuLcuXM5cuRIBgWH0CGyGJ1iymRK5651DWBU2yk0huSlTm/grFmWUgE2PlG0C85LAPz666+t8/fu3ZuiTE73gnXoUageRZmc3bt358SJEy0126IS6Fn8Cyq1BpYqVZopKSlUKJVU2jpTYXBgcO2BtAuOpyCTE4JAiDJq3YOptHGiXGOgZ7HGtAuKIwSRWhd/apx8LGttP40KgyPVjt5WD3C7wFiWSHh1XbikpCQqlSrKlSpL3Xk3d54/f56kJdU5ntZzfxZVIVfrKAgCRZmlhmB0zhjev3/fOl779u2p0OgYUv8rRrb4kTpnb+aJjXuj+7B0mTKUyRW09YumXKWlXKFkeGQOJiUlvbJvyZKlqHPyYkznOczVZR71Lr4sUrTYa+f81Dl//jxtbG2pd/Wna3xVqg32jIjMkcn7OyGhJHVOXszZcRZzdpxFnZMXS5YsxfT0dLZo0YLi09ICABhYow9j+yyna3xViqLIixcvZuPqJCRejaRLfj5IeyUh8d/h8OHD9PGxZDayt7fn77//nt0iSXymuLi50zVvNave4hBZlDG585C0pInetGkTd+7cySdPnmSzpFnDwIEDKYgiXfNWo2ve6hRFGfv16/fCtunp6SxcpChFmZx6J08KgsBatWq9t95/69Yt2tja0tYvmsF1BtEpZymKosg9e/aQJK9evUonZxdq7JxoDMlHmULJsuXKvXTepUuXMiZXbvoHBLFt27bZEg0t8eb88ccfbNu2LZs0aZIpS0LZsmVp65fT+ln0LPYFVSp1lmaMfFM2btzITp06sXPnzswRFW3VYx0cnTKVW8sKrl69ai1H+OzMy+AWwObNm2fpPJ8DI0eOpFypZmyf5YxPTGJky7EEwM2bN2f5XEuWLCEAuhesw9AGw2jjFUonZxcppfx/HCmyXUJCQuIjEx4ejq1bt6JkyZI4ffo0ChYsiHXr1n3ykYsSL+fhw4cAAJXRDQCgtHWCTK6wvv42PHjwAL9v3gT/Sl3glLMUSCLt+mksW7YMNWrUeGcZo6KiMHvWLDRr3gInD2+Cg6MTJv30E0qWKo0zp08BAJycXbBp4waEh4e/8zxvQmRkJDZu3ID+/RNx/cYV1GzeFCNGjMgU5fouiKKIVq1aoVWrVtbXLl68CABIuXEGNj6RSL9/C+kp92FnZ2dtI5fL8evaJDRv3gI7d62GrY0N7oFIuXEOWtcAJP+5AQAQGxtrjaL+7rvvMGDAALjEVYZGrcfqNfOgdfaFc67yuPXnBqTdvwGFUgm5XIHjs3pA55UDdw6vR86YXFixYgW+/uYbuMRVgSDK8P0PY6BSqTB8+PBM67l27RrUTj5Q6O1x5KeOEEQZ/Ct3ReqNc7i6YxFUto5wL1ADR8a3QMNGjXDzxg2IMjnMZhPk6svISH0El7hK8C7ZAndP7sHJBUPw8MoxuOWvhaPTumD06O9g65cTIQ2GQxAEnF35Pb77/gf06NEDADBo0CA8fPgQP02dBoBo07oVhg4dCqVSCZIYOGgw7pzZifKlS+Gnn6ZAo9Fg1P/+h/YdOsKjSEPc2L8G988ehENEUTy8chzp926AGel48ugulAo5bu1ciLS0NPiUagkbv5w4Oq0rDox+mhFBlMEu0HKtScKcngKF3AFbtmzBoUOH4Ovri3LlykEURev1Kl26NA4ePIBVq1bhwIEDcHFxwe7du+Hl5YW7d+8CALRPMzoo9PaQqfWQ6+0R1XoCUm6cw9EZ3TB69GgkJiYCAIYOHYq9e/dhx5y+AABPL2/Mmjnjje7DZUuXYuTIkTh06BB8fEqiV69ecHBwsLYhieHDh2PchInIyMhA44YN8NVXX+HU6TMwBMRao+kNgXE4eXLHa+f81PH29sbmTZvQuUtXXLhwGIXKJmDMDz9AqVRa2xw/cRI2gfFQ2ToBAGwC43D8xH4oFApMmjQJP/74I548eYLGX3yBRb8MA2CJjP/uu+/g6emZLeuSkJCQkJCQ+DyJiIjArl27UKlSJezevRsJCQmYOnXqK7NzSUi8CKVSicePLXo/SZgeP4JSrwAAGAwGFClSJDvFy3LmzvsZjtGl4FOqJQDA/OQx5s77GUOGDHmurUKhwK9rkzBlyhScOXMGERERaNy48Xvr/Q4ODli+bBmq16iJE/MHQKVSY8qUKVZdffbs2bhz9x6i2k2DQm9E8pHNWLNoOI4dO4awsLBMY23cuBFVq1aFrX8MVA5hmDTlJ9y8eRMLFix4Lxk/JgsWLMCMGTMgCAKaN2+OKlWqZLdIH4x9+/ahQMFCkGlsIFPrMW3aNIwbNw5t2rSBXK6A+cljkIQgCDA/eQzZCzIufAyKFi2KokWLAgCePHmC7du3IzU1FXFxcbC3t8/SuXQ6HQAg7fYVAIApPQUZj+5Cr9dn6TyfAxqNBmbTE2Sk3IfSxhFPHiRbX89qtmzZAp2jB7yKfwEAEGQK/DWjO06fPi2d70u8ng9u9v+EkTzcJSQkPgRXrlxhZGSk1Zt+9+7d2S2SxDty+/Zt2js40sYzhP6Vu9I+JC8VCiUPHz781mOlpqZSFEV6Fv/CUu+5z3JqHdzZokWLLJE1PT2dV69eZUZGBuvUqUO1rSNztJ7A6PbTqXfxZXzefFy9ejWXLFnyRvXaPwRms5lHjhzh7t2739urPCMjg82aNaMgCLT1CqNKZ0N3D0/euHHjlfM3bNSIAKxRzx07dszUJl/+AjSGFbR6TauMbrT1z2X92zuhORUKJbdt28b8BQrSx9eftWrX5o0bNxgWHknH6JLWti6xFent4/ecHN9++y0FUUbv0q0JgAFVe1r76NyD6RhVgnl6L6VSb6QgyhjR7HvG9VtFp5jSVs/pHK3GWfso9Ea6F6pH1/iqlMlkjMmVm/bhhazvuxWoRXtHp+dqTZnNZm7evJkJJUsyJnce9ujR45X1xDy9fKj3DLfIXKU74xOTmKfXEsq1tnQvUJt6Zx82aNCA9+7dY1BwCJUaHW29wwlYMgMYfKNpDC9IQKB9RBHa+uUkANaqVcsS2S9a6mzWqFmTJpMp09xpaWksULAQRVFGrZ0TAbBNmzZMT0+nt48v9a5+DKrZj67xVS1eyIXqWddv6xXKpk2bZhrv7NmzHD9+PBcuXMgHDx68dM1vy//+Z6lZ7py7nCU6WyZnz549WaFCRWqMLszRegKj2kyi1sGdpUuXIWmJjNm8eTP37t373Lr/DZQuXYZaB3dGt5vK6C9/yrT2f2I2m/nrr79y6tSpPHDgwMcXVELiLZF0yc8Haa8kJP57PHr0iNWrV7c+Ow8aNChboiAlPl+ePdcbQ/LR1j8XAXDOnDnZLdYHIyJHFO3D/9aDHSKKMCQsPFtkefLkCS9evPhcJOnAgQOp0tlaa8WHNxlFANbI93/SuHFj6l18Gdd/NeMTk+hTpg0BfDbR7VOnTn2arS4HbbwjCIBz587NbrE+GDVr1qTO2ZuxvZcxrv8aOuUsRXsHR5Lk6tWrCYC2fjnpkKMYBVFk165ds1nirOPRo0fs3LkzY3LnYZmyZTOdIbdv3966do3RlXqDDXfs2MFGjRozOiYXa9SowTNnzmSj9B+Hmzdv0s3dgxpbJxrDClKu0rBQocLMyMjI8rmGDx9OuVLN6HZTGZ+YRK/iTQiAV69efW3fVatWMSg4hHobG5ZIKMkLFy5kuXwS2cOb6pOSsV1SuiUkJD4AycnJjIuLIwDq9Xpu3Lgxu0WSeEf27NlD/4BAa2qof6azesaGDRvYqVMn9urViydOnHjpWF9++SUFUaQxJC/1Lr5UKlXcv39/lsscmSOazrnK/p1mq2gjyuQK62GTvYPjRzdmPX78mOUrVLDK4OHpxcOHD3PBggUsXbo0S5UqxdmzZ792nKVLl9LF1Y2CIDBHdE7279+fjRo1Yvfu3d/o4ddsNnPVqlX84YcfuG7duufeL1asOG18oxjXfw3jE5No8M5BAHSJq0yvEs2o0OhYrXr1F44dHZOLxtD8fx9Q5CjGwKCQ59o9efKElStX/vtaFK5vMVz3XEyF3kiVvTv1Lr6UyRXUOXlZx/Mt3+FpH4FOMWWYu/tCBlTtYTFUP3UeGDVqlPVgyCWuMt0L1aUoV1ClVhMAQ8PC+fPPP3P37t3csWMHFQolDR4hdIxOoEyhZJ26dV967VavXk3hacrv4DqDLKnM+q2iQm+kQmekKJNxyJAhDAwOodHBkaFhYaxduzarV69OQZQxrt8qxvVfTfeCdQhBZERkDv7www8EQM+ijRjXfw0Da/QlAC5evDjT3M9S4z8rG/DssOTIkSM8fPiw9TMqVyio0WhpF5CLOTtMZ1DNfhRlco4aNco61tixYymTWQz7oijy+++/f+1986bkzJWbDhFFrHvmGl+Fbh6ePHfuHH18/ax77unlzdOnT/PQoUN0cnbJ9Ln4tylkp06doruHZ6Y1njp1Klvl+eKLL1i6dGkOGDDglQ4mEhKvQtIl343NmzezQoUKdHNzIwAuWbLkle03btyYqXTKs39v8pv/DGmvJCT+m5hMJvbo0cP6vdGwYUPpd1/ijTGbzRw3bhzzFyjIwkWKcN68edkt0gdl8uTJBEC7oFhLSTCA48ePz26xMrF7926KMhntwwrSr3wH6py96eXtw5SUlOfaNm7cmHpXv38Y29sSAB8+fJgNkr89oeERtA8vyLj+axjXfw2NwfGMyZU7u8X6YJRISKAxJJ9Vj/Yp3ZpyhcLqJLV06VIWKlSYufLEcujQoR/EyJodmM1mlq9QgXKlio7RJal3C6Bao+WRI0dIWn7HxowZw2rVqrFZs2Y8ePAgw8IjqDYY6RRTmlp7V7q6ufPWrVvZvJIPz4ULF9ikSRMWL1GC3bp1+2Cf5eTkZPr6+VOh1tLg4ksAb+TcsX//fsoVChoD89CreBNq7JwZFh7xwtKSEp8fkrH9DZCUbgkJiQ/J/fv3Wbx4cQKgSqXiihUrslskifcgJSXlhdEQs2bNoiAI1Dq4UW0wUq3Rsnnz5hwyZIi1rvQzMjIy+M0337BEQgJr1KjBXbt2fRBZa9SoQa3RldHtpzNX1/nUufpTlCsZ2XwMc3aYQYN7IKNzxnyQuV/GoEGDKJMrGFi9NyOafke9qx89nhrgbHyjrFHOkydPtva5du0aExMT2bZtW86bN49r166lIIrUeYTQu0wb6l186e7hmaUP2YsXL7Z6kNsFxxMAS5YsSRtbOyqVKlavUeOlzw3Tpk2zeB0H5LIeUPz4448vbFuyVGmqDA60DbTUgNd7RVBl60S5QkF3dw/mzZuPPXr0oCCKDKzWizk7TKfSxpGiXEWF3oEQ/q5zDUGkja0d4/Pm5alTp2gymThw4EA6ODpRb7ChIIg0BuejX8VO1Dj5WPva2tlRY3RlbN8VFoW2rOUA4s6dO1Y5MzIyeP78ed6+fZvt2rWzzifX2dGrRNOn6xQoyBR0dnGlIAg0BuelR+H6VOlsWKRoUf78888EwPAmo5i75yJ6Fv+CEEQa7R0YFW3Z95wdZlgVa7lSxf/973+Zrtc333xDhVprdYKIbmfx9H/mMGE2m3n9+nWmpqZy3bp11On11utTvkIFq4Jz+PBhCoJAl9iKjGozia7xVSgIAg8ePJgFdw8ZGxdPY3C8dS1OMWXo5eNLknzw4AFXrlzJlStXWu+hkNAwapx8GNlyLINrD6AgU9DR0emFB0afM3fu3OHixYu5ePFi3r17N9vkuHTpEu0dHKkxuljqPMoVrFylihTpJvFOSLrku7F69Wr27dvX+nv7psb248eP8+rVq9Z/b5MJRNorCYn/NhMnTrQ6WhYuXPg/YZSQ+PdiMpl47dq1D1Irfvr06SxUqDALFCzEn3766ZN8Rl6wYAEdnZwpCAKjc8bwr7/+emG73377jYIg0C4wN13jq1CuVLNGjRofWdp3x8fXny5xla16pXOusgwJzZ5MAx+DESNGUBBFeiU0Y0DVHlQb7JlQslR2i/XGmM3md3LmunTpEgHQv3JXSwBG76VUG+zZs2fPF7Zft24dATCi2feMT0xiTKfZBMBp06a95wok/smtW7c4ePBgtmvXjnPmzHmj78LExESq9HbW87XQBsMIgH/88cdHkFjiQyMZ298ASemWkJD40KSmplojWOVy+b867dh/FRdXNzpEFGFc/9X0r9SVAKjQ2VGh0dHOaM/jx49/dJnOnTuXKZJUrlDSNjD271TopVpSpdZ8VJnKl69Au6C/ZfCr2JkQZTQGx1sNqLaBeajV6enm7skCBQvS2cWVSo2eBleLN+k/o/O1Lv4MaTCcALh9+/YslXXp0qVMKFmSRYoW5bhx42g2m3nr1i1OnjyZY8eOfWVU7uzZs1mkaFEWKlT4lQcU9g6O9CjSkHH919CvQkeqjK5UKFWW/VJaotC//PJLVq1WLVMkn0ytp11QHKPaTmZg9d50ibN8v7jEV6Xa6Ep3D89MxvIRI0ZQodExtu9KxicmMbLFjwRAn7JfUqZUU+3gYfX296tsuX+LFSvOihUrcdKkSfTzD8g0v1dCMwZU7k5RqSEEkSqjO4Nq9WdI3cGWfXH8ezyfsl8SAHv06MGQ0DBrmngIIjVOPvQoVI9aRw8KooyOOUszpvMcepdqSQBcu3Ztpuu1YcMGS3r4gnUY2eJH2ocVpEqteWlk49WrV7l69Wru2LHDapA5cOAAS5QoQQDM03OxpZxD72UEwOnTp7/lXfJipk+fbkk3GRxP+/BCBMCvv/76hW3T09MJgH4VOlo/F3ZBFgePlStXvrDP0qVL6eXtQ6VKRV8/f3bq1OmFaRPfhl27drFYseIMCQ1n06ZNs9UY/qH56quvqFBrmavbz4xPTKJ/lW4EkK2R9hKfL5Iu+f68jbH9n79tb4u0VxISEmvXrqWNjQ0BMCgoiCdPnsxukSQk3ppNmzbR0cmZAKjTG/710fav4k2cDRYvXszonDH09Qtg69atP5sU8iTZqVMnyuQKehRpSI/C9SnK5Ozdu3d2i0XSkrXwjz/+4Llz517bNiMjg1999RVjcudh/gIFuWjRope2a9mypfXcIV/+Arx27VpWi/5BmDZtGm1sbQmAUdE53+oM8OzZs5bfpVr9rZkDtUYXdunS5YXtn6XUj2o7mfGJSczdYxEFQcwUtCKRPQwZMoRKjZ65eyxifGISg2r2I4CXOgRJfF68qT4pQkJCQkLig6FWq7Fw4UI0aNAAGRkZaNCgAcaPH5/dYkk85d69e+jSpQtKlSqFtm3b4saNG289xu3kZOg8QiEIIi5unA5jaAHEdJ6DqHbTkS6oMHjw4A8g+av5+eefcef2bQiCgNCwcJQtUxppN87g8e0ryEh9gLvHtsLf3x8AcOnSJXTu3Nl6b5rN5g8ik4eHOx5fP4P0B8mg2YT7Z/ZBJpNBrjNCEAQ8SbmHBxeOwKyyheBfELv3/4Fbd+4hvOV4hHwxGjK1DipHH+TqMg+Rzccg7d4NXNu1BACg0WiyVNbKlStj3a+/YtPGjWjTpg0uXLiAHFHRaNGyJdp36IAcUdH4/fffX9i3fv362LB+PcaM+QGhoaFISUl5yfXwwMNzB8GMdNiHFYRMrsST9HR4lWwBv6o94V6wDsaOHYu+ffpgzJgxAAC7oHiYHj/E3ZN7kHzkd5jSU3Hrj/Uw+ETBt3QrhNQfhiuXL+G3336zzqPT6WBKT8ODi4fx8PJxpCZfBAAYvMJhF1oQj5Mv49QvX+HS5jm4sPpHAMD+C/ew6cBxtGzZEldvP4BPmTYQZEro3IPhnr8mHKNLwL9SZ4BmhNQbDPvQAkh/kAwAYMYT0JSBtLvXcGnjDAgyOUaPGYfjx49BrjHAKVdZgGaENfoansUaIbDWQNBsQvKhX3FgdH1c+HUSOnfujJIlS2a6XsWKFcNXX32Fq9t+xuHJ7ZBybj/mzZ0DV1fXF15fV1dXlC1bFnnz5oUoiti9ezfy5s2HrbsPAADuHN9h+f/ETgCAKIoYMWIEhg0bhr/++uv1N8lLaNy4MaZNm4ZgexF+2sf47rvv0L17d+v7S5YsQefOnfHVV1/h3r17sLG1w53jO2E2PUHavZt4dOUEACA1NfW5sffu3Ytq1avjodoVrkW+wJXkB/h+zFjExcdj0aJF7yTv8ePHUbRYcew5dgF39P6YOfdnlCiR8MG+B7KbR48eQabUQK7WAwBUNk4A8NLPqYSExKdDzpw54ebmhpIlS2Lbtm2vbJuWlob79+9n+ichIfHfplSpUti2bRt8fHxw8uRJ5M2bF1u3bs1usSQk3pgbN26gYqVKeKJ3Q1Ct/lD75kKDhg3xxx9/ZIs8Fy5cQNOmTVEiIQE9evTAo0ePPur8crn8tW2qVq2Kgwf24+yZUxg/fjy0Wu1HkCxrGDFiBJo1bYJbu35B8p4laNO6FQYNGpTdYuHIkSMICg5BVFQUfH190ahRY5hMppe279OnD/r1748L6QYcufoQ1atXx4oVK55rJ5PJMHHiRDx8+BC3bt3Ctq1b4OLi8ly7tWvXol27dujRowdOnjyZpWt7F37//Xc0bdoUSp/c8KvYGaevJKNM2XJIT09/o/7e3t7IExuHi2vG4vKWeTi5YDAe37uJ6tWrv7B9/vz54ermjjO/DMXlrfNxcl5f6A16lCpVKiuXJfEO1K9fHyqFiGPTu+D0sv/h3PJRKFasOEJCQrJbNImPyUcy/n+SSB7uEhISHwuTycQvv/zS6qU5fPjw7BbpP09aWhpz54mlQqOjMSQ/VXo7BgQG8f79+281TpGixaixc2JQrQGEINKnTFtrlKoxtACLlyjxgVbwYubOnWut1+1bvj3VNg7MlTtPpnrReoOB27dv5+XLl+nk7EK1wUhb7wgCYOvWrT+IXBcuXKCLqxtlChVVOluKosiqVatSFGV0L1iHxpD8lnTinWY9rXdenGp7D4Y2GEaZWvd3veciDZ9e2/wURJElEhLeKJXso0eP2KZNGwYEBjF3nti3KutQp04dqm2dmLPTLObptZQ2PpF0dHbhsmXLnotcT0lJYclSpazyunt48vDhw8+NuXHjRqpUaio0OsqVaqo12v9Xj1aw1i7/7rvvKJMrmav7QjrmLG19D0+jxCNb/Mj4xCTm7GCJql64cKF1nitXrmQeW5RR5xHCPL2W0NY3B728vOnrH0CjvQNVag2dc5e3eFT3X029Zyg1Lv5UGBwo19pQrrVlrq7zGdd/DV3jq1rSxytUtAuKpSiTs1SpUpYa8J6hVNm7U6G3Z0yXuYztu5J2QfGUa2zonLt8prRnOVqNIwA2a9aMy5Yt48GDB/nHH3+wcuXKjIvPyy5dumSKQLh8+TJ37drF5OTkN94/kqxatRr1Lr7M03sZHXJYynvIVDprxgSVSk2FWkulRk+VWsPNmze/1fhvwoABAyyfPydPKtRaevv4ctSoUYQgUFSoCFFGUa6k3mDg3LlzuXLlykxR5omJiVQb7KxZCsIaff20DENOuri6vZNMAwcOpEJjYJ5eSy3e17USCYBLly7NqmV/Umzbto2iKNIhogh9y7enztGT/gGBTEtLy27RJD5DJF3y/cEbRLYfO3aMEyZM4N69e7lt2zY2adKEcrmc+/bte2mfZ9+3//+ftFcSEhJXr15lbKyljJNSqeTs2bOzWyQJiTfiWURrdPvplgxdfVdSlMk5ZsyYjy7LjRs36OrmTo2tE41hBSlXaVikaNF/TR3tF2E2m5mcnPzR9Qaz2fzJpPM3m80MDgml3sWXYY2+oW/59hREkaNGjXppe73BQLf8tZ6eMayhjXcEy5Ur907zT5482ZLVwcmLaoM9dXrDC89aPia9evWixs7Jmt0vtKFFR//zzz/feIxr166xfPkKtLUzMiAwiIsXL35l+7/++ov58hegwcaWUdE5uXPnzvddhkQW8ccff7BixYrMlSeW7dq1e+vzZYlPlzfV/V/vBiYhISEh8d6IoogxY8bAzs4OX331FXr37o27d+9i+PDhEAQhu8X7T7Jlyxbs27sHYY1HwsYnEqnJl/DH2OZYsWIF6tWr99J+ly9fxowZM/Do0SOULVsWs2fNRPkKFfHHgkGAIOLazkXQOHnjyYNk3D+9B/lr9MjU/8aNG5g3bx5SUlJQpkwZxMTEZOm6Vq1aBRvPUPiWaQMAEOUq7F82EufPn8f27duRlpaG4sWLw8vLCwMHDsS9B48Q0WYSlHp7XN25GBMmTMDAgQNf6EX8/1m0aBEmTZqEDJMJDerXxxdffPHS+9nLywt/HDqIOXPm4OHDhyhdujRy5cqF7t27Y8pPP1k9f+/8tRW3/tyI9AfJePIgGcfnD4TBOxKeRRvi3sk9uLx5FuRaGzw4dwgxOXNixfLlEMXXJ+pp2KgRlq9YBYecpZB86yIqV66MjRs3onDhwq/sd+3aNSxfsQo6/1hrFKxdcD5c+O0nVK5cGU2aNMH9Bw+wbt1vsLWzQ3SOSGzctBlBNftBaeuM8ytGo07devjzj0OZxi1atCgOHNiPZcuWQSaTwWQyoXfv3vAo0hDOucrg2q5luLp9AeRyOfz8/GDKSMfB7xrA/CTNOobR3gH3Hqbg1OLhMIYUwO2/tkCp1qBEiRLWNjNmzEB6ejoCqnSH2sETZ5aPQsrV0zj0fQOIZhOWJq1B0aJFAQAGG1so9PYAAEEQodDb4/Glv5Dx8A6C6w7BmWUjcejHppBrbZF25yocohJw5+jvsHtyE10HDkDPnj2xc+dODBw4CLv2XIbSMwrKp+PZBcXi7slduLFvFQDgyLQuMAbnw8PLf0Gm0mHq1Klo06YNMjIykC9/fpgFOVRGd+zb/yOOHD2KNatXQxAEuLu7w93d/bX7/f+5c+cOFEZ3yBQqBFTpBkEQcOuPDXCJr4rkPzdC1NkisukoiKIcx+f0QafOXbB/3943Hv/gwYOYPXs2TCYTateujbx582Z6/+7duxg8eDDcC9aBV/EvkHb3Go5Maov79+9j2tSp6Na9O24nJ8Pbyxsmk9n6HeTm7oFNGzcgODgYKpUKpifpMKenQtQY8CTlnmXfvCNwdesfMJvNb/RZ+CcmkwkkIDztJ8oUAIDx48ejcuXKbzXW50D+/Pkxe/ZstO/QEeeP/o6YXLnx8/x5UCqV2S2ahITESwgJCckUEZI/f36cPn0ao0ePxqxZs17Yp3fv3ujSpYv17/v378PLy+uDyyohIfHp4+rqik2bNqFhw4ZYvHgxGjRogNOnT6N///6SXi7xSWNnZwcASLlxFmqjKx7fugizKcP6+sdkwYIFuHHjBqI7zIDS4IA7J3Zh8/wBOHjwIHLnzv3R5fnQnDp1CpWrVMXRI4chk8sxaOBA9O3b96PM/Sl9L92/fx8njh9DQNWesPGNgo1vFO4c/R2///47XF1dkZGRgZIlS2bKPpeRYYJMqQJgWYsgVyEjI+Od5u/RsxccoxPgX6krzOmpODqlPYYNG4Y5c+ZkyfreBb1ej4zHj5CRch8KnR3S7l6zvv6muLi4YOXK56P9X0ZoaCi2b5Mys3yK5MiRA8uXL89uMSSyEcnYLiEhIfGREAQBQ4cOhZ2dHbp3746vv/4a9+7dw9ixY9/aQCLx/jxLc6aydQQAKA0OgCC8Mp3w2bNnkSc2Dg8epUCu0mD48OGYOXMmDuzfh/Pnz+P69eto2Kgxjs3qBQCoULFiJiXswoULiIvPi1vJyZDJleifmIiFCxagatWqWbYuvV6PjEd3YXryGDKFGml3r0Emk8HFxQV16tTJ1PbevXtQ6Gyh0BkBAFonX+vrrzO2//zzz6hTpw5sfKMgypXY0LQpHj16hHbt2r20j7OzMzp37pzptdGjR2P06NG4c+cO/AMCcX7tRNgGxkLr7IubB38FM9LhXaIpdG6B0HuE4vreFTi/ZizCwiPw66+/vlEK+QcPHmDxokXwLdcOLnkqgGYTjkxqg5kzZ77W2N6iRUukpacj7eRu3D9/GHKtATcPrIXOPRhO0QmYNn0slGo9nOOrIOXmBaxcuRJ6j1DYhxUEADjFVsLhld8jIyPjuVR3YWFhCAsLAwD89NNPAAD3grUhyuRwL1gLV7cvwLZt29CtWzfIFQrovHPAs0gD3DmxE1e2zkftWjUxYcIEZKQ+wPU9y2HOSMfECeOxZ88eHDpkMe6vW7cONj454BhlMcC7F6iF00u/Rd+e/VCrVi3r/ABQtWoVzPt5IUSZHBmp93Hn2HbrezcPJCHjqXFX6xoA71ItYR+SDyfSU+HvoUa/fv0AAIUKFcKSJYvh5eWFuyd34/axbVAaHHFt5xIIMjmi2kyCXGuDY3P64u6p3TAGxcG7ZAscmdgGq1evxnc/jIEJIrTOvnh0+Ti0rv5Ym5SEs2fPWksfvAslSyZgc/9EXN3+C+R6O9w5sQs2vtHwLd0K90/vg41vFOQqHQBA7xOFyyc3WftevXoViYmJOHX6NKJy5MCgQYMyHWpt2bIFCQklIdPaQBBl+GHMGPw8fz4KFSoEZ2dnCIKA27dvgyQMPjkAACo7V6jtnHHjxg0MGDAAX3zxBUiicuUqWLN+MyJbjIGoUOPE/AFo0rQZtm3dggYNGuDbkSNx5KcO0LmH4Pax7dC5h+DO0c2IyZX7nX5HqlevjiFDh+LY7D4weEfi5oG1kGls8Dgt7fWdP1Pq1q2LunXrwmQyQSaTZbc4EhIS70BcXNwr0z+rVCqoVKqPKJGEhMTnhFarxcKFC9GrVy98++23GDBgAE6dOoXJkydL3x0Snyzx8fEoXaYMfls0DDc8gpFy/RwiInNk6VnCm5KamgqZXAm51gbA07MU/DtLM5nNZlSsVBkXbt5DYPXeeHTlJPr164egoCDUqlXrnccliQsXLsBkMsHX1/ezOBPU6/XQaLS4f+4QHCKL4snD23h86wLWrTuNpUuXAgDsjPbYsP43xMTEQBAE1K1TGzNnz4UpPQ1PHt3GvTP7US9x+lvPbTabcf/eXXjGB0MQBMhUWqgcvXDz5s2sXeRb8sUXX2D0d9/jr5/aQ+Xoi/tnD6BmzZrw8fHJVrmyA5PJhFmzZuH48eMIDg5Go0aNJH1b4j+HZGyXkJCQ+Mh069YNtra2aNWqFSZMmID79+9j+vTpUCgU2S3af4r8+fPDzmiPM4tHwCG6FO78tQVqtQbFixd/aZ+hQ4ci1SQgx5dTIdcYcHrpN+jQsRPq168PPz8/+Pn54eiRwzh+/Dg0Gg38/f0zeSIPGjQI91MzENVuGuRaW5z+5Su0btM2SxXkdu3aYcbMWTg6+UsobV1w9/R+dO3a9YUHRwkJCfjuu+9wfu14GLwicW3LHPj4WtbxOkaN/g52gXkQXHcIBEHA6aXf4n+jv3ulsf1VGI1GROXIgQPnbiOk7mCL17NMiRv7VuL+uUPQuQUi5foZmNJS0LJlS4wePfqlNdfu3LmDefPmYcGCBXj4KAWhIcEAgEfXzuD63lXQuQdBgACSIIn9+/fj1q1byJkzp9XJgCS2bNmCjZs2wS6sEB7fPI+/ZnQDACgMDgit2ReCKANIeCQ0h3NMaZBE6s3zSL1xFukPkiHX2uLeqT0w2jugTZs2uH37NooVK4a2bds+p0w/u+a3/vgNTjlL49YhS931r7/+GhkZGch48gTeCc2gdfGDziMEyQeT4ObmhunTp2PBggVQKlVo06Y1Vq5ciVatWkGQKUDTE4u8Whuk3b8Jpd4ed0/thUyuQGBgIPz8/LBkyRI8ePAAhQoVwvhx42AymbDol3lQKBXo06cPwsPD0aFjJ9w+tg2exRrj2u5lkCk1sAuMRfrD23h87QS84stlWkv//v1x/+EjKPRGnFwwBAAgKjUQFWqo7S1R6Q4RRZBy7TSCavbD4+TLyHiShpMnT+JOcjJytJkIjaMXkg9vwqnFIwDgjWuevYzw8HA4Ozvhwm9TLC8IIpxiygAAVPbuuPXHetgFxkGQK3D70DokFMkPwOJ4kr9AQVy7dRdaz3Bs3zkVW7Zuw84d263R0P369YfK2Q+hjb6BIMpwfG5/1KpdBzSbkCMqGsuXLYWXlxfc3D1wZdMMiDI5Hlz6Cw+unUOBAgWsMj569Ai/bdgA+7DC0LkFAQAco0pg3y5LPXZvb2/s3LED/fr1w/oNG8CMdDy6chy+fv6YN/fdvPmjo6MRHR2NPw8fReqtC1DaOCH1xjkUe5rt4FWcPn0aHTp0xLHjJxAWGoIxY354o++OT4X3VfwPHDiA9evXw2AwoHbt2tkSVSQh8V/l4MGDcHNzy24xJCQkPmNEUcQ333yDwMBAtG3bFrNmzcL58+exePFiODg4ZLd4EhLPIYoili1diu+++w6HDx+Gr29VdOvWDTqd7qPLUrp0afTp0xenFg6BbWAcbu1fBXcPzyzP2vcpcO3aNRz76yiCavWHfWgBOEQUwcNzB7Bu3bp3NrY/fPgQ1apXx7pffwUA5ImNw+pVK+Hk5JSVomc5MpkMo0ePQuvWrfHo7H48efwQIgiTSo+cHX6EqFDj5Nx+aNW6DXbv2gkAGDduHFQqFRYtWQqNWo0ffvgBjRo1euu5RVFEvvwFsG/HL1AaHJH+4BbuntyDoo0GZ/Uy3woPDw/s2b0Lw4YNw/Xr15G3ySB07949WzISnD9/HlevXkVISAiMRuNHndtsNqN6jRpYvmwZNHbOSL17A0uXLcOSxYs/C0cSCYks40Pns/+UkersSUhIZCfz58+nXC4nAFaoUIEpKSnZLdJ/jt9//532jk4EQIONbaZa1894/PgxT506xQcPHrBs2XK0C4qz1mT3q9CRAJienv5G85UqVYrGkHx/9y/fgQBeW9ts4cKFLFq0GPMXKMgxY8a8tmbXwYMH2ahRI1aqVJk//vjjK2uajxo1igqlkgAYFBzCI0eOvNFackTnpGNUCetaXPNWo5u75xv1fRmlSpWirV9O65gehetbPyM6BzfK5ApGRee01vA+cuQI8xcoSKO9A2Pj4rl//35evHiRnl7ehCBSptLSIbIolXojRZniudqtq1evZrXq1a1/6/R6rl27lmazmXXr1s3U1r1gHXontCAAuuatxqgvp9AmIDcB0LtUy6d181ZQaetCABRkcio0OooyGTVaLTVGF9r65SQAfvnllyTJhw8fsl+/fqxevTq7d+/O+g0aWOuwA6BDVAJtA/JYa64/myey+RgKooyTJk3KdP327NlDAPQp3ZrxiUkMqNbTIosooyhTUKbWERCocfQmAMt1ero+tUbLpKQkkpnrwl28eJEVK1ak0uDA+MQkBtceYBlPoaYoU9DZxZXnzp3LJEeBgoUoKjV0yl2eOVqNY3jT0bSPKExBpmBEs+8Z3X46Nc5+hCij3iuCMpWWAYFBHDx4MGVKNeP6rbLUc28zkQDo6+vHJ0+evPN9tWbNmqe1zaNoH1GYEAR6eXlRplDS1jcH5SoN5Qql9VqIMjmnTZtGkpw5c6alNmK7qZY66Y1HEgDXr19vHT8sPNJa6z4+MYnuBetQptIxsEYfau3dmDMmF0ly7969dHVzt87TrVs3ms1mXrt2jQUKFnr6ukBRqWXOjrOYu/tCal0DqNMbnluT2Wzm0aNHuW/fPqampr7ztSHJS5cuMWdMLqtcdevWe20twtu3b9Pdw5NaB3e6xlel1t6NHp5emWrM/5uZP38+RZmMcpWGgiijr58/r1+/nt1iSXxkJF3y3Xjw4AEPHDjAAwcOEABHjRrFAwcO8Pz58yQttS8bNmxobT969GguXbqUJ0+e5J9//smOHTtSFEX+9ttvbzyntFcSEhKvYu3atbSxsbHoQ0FBPHnyZHaLJCHxybNixQq6e3hSFEVGRed849rZp0+f5po1a3js2LEPLCG5b98+du/enT169OCBAwfeaYz79+9TEAR6Fm3E+MQk5uq2gCq9Hbt16/bOcrVp04YKlZYBVXsyqFYiVXo7Vq1a7Z3HI8lbt25x6tSpnDhx4nP6eVazfv169urVi8OGDWNwaBidc5ez6sKeRRvS3sHxg8x78eJFRkXntOqtDRs2eq9zgn8TvXv3tl4XjVbHFStWfNT5f/vtN8tvaM1+jE9MYlCtRALgr7/++lHlkHg1Dx8+5OzZszlu3DgePXo0u8X5rHhTfVIytktKt4SERDayatUqqtVqAmDRokV5//797BbpP4PJZGKJEgmUKVS09c9Flc6Wfv4BmYxF69ato53RSABUKJWsWLEiRZmc/pW7MqzR19Q5eVkNaW9C7969KVeqGFSrPyOa/0C9iy9zREW/ss+CBQsIgLZ+OWkMzU8AHD58+Lsu+4Wkp6fz1q1brzXi/5OhQ4dSEEW65atBj8L1KZMr2KFDh/eSY/bs2RYjc2QRusZXoUyuYKtWrbhgwQL26NGDo0eP5sOHD0lajH3OLq7Uu/jQs2hDGtwCaWe0Z/Xq1SnKVRREGZU2jvRKaEaPIg0IQaRfhU5U6O2tSoirmzsFUcaAaj0Z3X4a7QJz09bOjg0bNrS2EeRKGsMKWu4BtZaKfxhlBVFGhd5IQZTTIUdxal0DCUGkc2xlAmC1atXYoEEDqm0cmLvHIsYnJtGrRFMC4K1bt5gvX37KlWra+cdQqdExIjIH4+LiqHH0plNMGQKCda7ChQtbnQ5EmZy5cud5zkHnl19+IQDm6vYz4xOTGNdvFQGBWpcAKpUqqh08GNZkFOMTk6h28KSoVDOy+Rjm7rmIxsA8dHJ2yXQPrF+/nlqd3rrWyJbjGJ+YROc8FS1GaVHGoUOHskePHpw9e7bVqaN+/fqUKdUEBDrnqfB0LSCEv9cj19nRKVdZyhQqRkVF8datW+zTp49l/3OUYFCt/tR7hlEQZdyzZ0+mdR45coQ//vgjZ8yYwQcPHrz2vqpcuQoNniGM67/aagxXazQcMmQI69aty8qVK1sdKoJqD6AxJC81Wh3v3r3LiRMnUhBE5um1hPGJSYxuN5UAuHLlSuv4bdq0oVyloX/lbgys3ocylY4OEUUsDg9Vumd61nz8+DH/+uuvTIbZosWKU22wp3+lLvQoXP8fTh4CBVHO4sVLvN0H6R0wmUy8cOECb9y48Ubtn30vRbefnum6LFq06ANLmv2YzWba2NrSIbwQ4/qtYnT7aVTpbNmxY8fsFk3iIyPpku/Gxo0bn3N+A8DGjRuTJBs3bswiRYpY23/99dcMCAigWq2mvb09ixYtyg0bNrzVnNJeSUhIvI4///yTPj4+lmdRBwdu2bIlu0X6JHj06BFv3LjxVnqixH+LVzn2/39+/PFHiqJo/e0fNGgQTSYTBw8ezMCgEAaHhvH777/Pkvvtt99+o1yhoMbWkRobByoUSm7cuPGdxurWrZvlTMY7gmobB9oZ7Xn27Nl3li0iMorOucpmCjJwcHJ+5/HOnj1LN3cPi94uiNTp9dy+ffs7j/c21K5dm2pbR+ZoNZ7R7adR7+LD/AUKfrD5numtN2/e/GBzfG6sXLnSEkxRrDEjW46lMTgvtTo9k5OTP5oMz87y8vRczPjEJObpvZQAOGPGjI8mg8SruX37NkPDwv8+y1QouWTJkuwW67NBMra/AZLSLSEh8SmwefNmGgwGAmBsbCxv3bqV3SL9a7l37x7Xrl3LDRs2cMuWLQTA4NoDrcYiQRA5ZcoUkuTNmzepNxhoF5CLoQ2G0Tl3eatTxDPl0NvHl7Vq1WJcfF7Wr1+fFy5ceOX8KSkpTChZ0trfw9PrtZHkhQsXoa1/DOP6r7EYOnOXp4ube5Zdk7flyZMnvHbtGtPS0tizZ0/a2NpRbzCwdevWfPz48XuPP3HiRAaFhNLL25edO3d+aYTtkiVLnhr7plk8zLvOJwAajUZCEOkSW5FOMaUJgHqvCCptnKhzD6bG2ZdRbSczvMkoinIFtc6+ViU3pP5Xf0d6O3jSIUdxGkPyUXgaFV+3bl2eOHGCZ86c4YYNG6hQKumV0JzuhepS7xFKhd6BGifLeDbuAWzVqhVbtGhBg6u/df+CavYjAM6fb5E3rNHXlmj1lmOfemc3tBql3QrUYnS7qXSJrUhRFDlq1Cj27NmTP/zwgzW6/5/89ddfFASBrvFVmbPjLHoUsTgNqAwOtLE10immjHWtKqMrbfxirH8HVO1BAFaHH7PZTBdXN9r5xzC6w3TK1LqnzgUOBECl0Y0QRIoyGXUObgTAJk2a0Gw28+zZs3R0cn76EC+nqFRTkFkyFOj1FuO91uhCpdZAo70Djx07xqNHj9LT04uiUkNRobIY5LW2BMB9+/Zl2ne5QkHx/9g77+gqqq6NPzO399z03nvvoffei/TeewepiV1UEGnSQVQQRBBFSqyIoKCiNCmC0qT3GkhI7vP9MclgXoqhi9/81nK9682dmbPnnLnD3Wfv/ezC64VHRP6jE1m3bl1aA+Ple/Wr0olarU7eGBo+fDhNLl7y5zFdJhEAf/31V/7555/UG4y0BSUwsHYfWrzD6OLqVuw9ffnyZdaqXftmZbxGKz+XnqWaUqPV3jHjPi8vj4IgMLBOX3l8a1ASIYgUVGranJz4+++/3/bcK1eucNu2bTxx4sRd7/9RUPT8Jg54X3p/9ptPALdVB/knrly5wvXr1/Pnn3/+R5WPfwOXLl0iAIY0flZeM6eQZDZp8mDVKApPH4ov+fSgrJWCgkJJOH78ONPS0qTfulotFyxY8KRNemI4HA4OGzZMDozGxSc8UHBRQWHPnj0URZEe6Q2Y2P9dOcm4c+fOFASBbkm16BJXhQA4derUBx4vJTWNtsA4po3+jGmjVtDqH8OMUqXv61oOh4Nz5sxh27Zt2a9fP/75558PZFuVKlVp8Q5j2shPmTZ6JZ1CUhgVE3vf12vevAUNdk8mDnyfKcOX0eofzdi4+AeysaQcPXqUwSGhsi/s4elVYrVEhVvJy8vjsWPH7qli/7nnnqPe6iz7pnE9phHAY0u4IMldu3ZRVKnollSTMV0n0y25NkVRLLHihcKjZ9iwYdQazIzrOYNpo1bQObIMnex2JZmuhJTUn1SaJigoKCg8YSpUqIC1a9fC1dUVP//8MypUqIBjx449abP+c+zZsweRUdGoWbMmqlSpgvYdOgKA3ENaa3ODqNbg8uXLAIBt27bhyuXL8K/VG7bgZATW6QONzog6dergzz//xObNm2GxWPDpqs+x/5oJH6/6AqXLlMX58+fvaIPBYMDn2dnYunUrfvjhB/y+Zzeio6PvanduXh5EnUnu+aTSm5B/48ZDmJF7Z8mSJXCyO8PT0xPePr6oWbMmLl44j8uXLmH69OnYuHEjJk6ciI8//hgFBQUluuahQ4fw7bff4ujRowCA7t27Y++e3Th86AAmTJgg98X+OySxceNGAIAj7zoc+Xm4/NdOAMDVa9fhkVoPgbX7ILj+IDjHVMTV4/uQd+k0ck4egFtCdRhc/WDxi4bexQ/Xzh7F1eP7QEcBzu1cBwgCIKigtbnh4h8/4+rJ/XLv8xo1aiAsLAxBQUGoXLkyYmPjcP63r+EaVwV+1brCceM6DG4BuHx4J66dOw4fHx/UqlULl0/sx6Hs6Ti99Qsc+nwG9AYjcnNzAQB6F1/pf519AEjvg7JlpH7hfpU7QO/sDd9K7eFwOODr64vXXnsN/fr1u22/+sjISEyaNAknf/oUWye1w9F170NUqWDSCmjbphXObvsSf30zH4e/movc8ydw+dAO7Hp3GC4d+g1nt30BTy9vmM1mAMDly5dx8sRxuCTUgN7JE15lWoCOAuD6ZegFEaYLJwE6ENnudcT2eQdB9QbgnXfewbZt2xAYGIidv+3ApEmTEBUZDkfedehdAxDadBRgdoeHpxe6d2iFkcMGY+lHS1CzVm1ER0fjyJG/4LiRi5guk5E8ZDF8KrQBADg7O8vr3rlLF1hD0pAyYjnie8/Gwb+O4tVXX73rM9aqVStcOrgdf34yHn99/Q6Ob/gAVapWwYQJEzB37lzodDrknD+JEz9/BkdBPs7tWg9BEODt7Y3g4GCsXrUSdlzG4c+nw8+uw5dffF6sl6fZbMbqVatw9OhRrFu3DiaDHr+/OxS75/TFiU3L8Pxzz0GtVt/WNrVaDZ3egOtnj0jP841c5F8+jaTEBLw57g3s2rkT4eHht5y3du1a+Pj6IiEhAV5eXnjhhRfuOgd3gyQ++eQTjBgxAhMnTsSVK1f+8Zxq1arB3cMT+xaNxl9fv4M/FmfC08sbVatWvaexi97L5cuXR1paGipWqiy/g/+tmM1mBAQG4dRPnyDn5AGc270Blw/tQGJi4pM2TUFBQUFBQeEB8PT0xLfffosmTZogLy8Pbdu2xQsvvACST9q0x86cOXMwbtw4eJVvg9Cmo/DnkZNo0vSZJ22WwlPMb7/9BofDAZ/yraFz8oBPhdaAIGD5JyvgllIXwfUHIrTxs3COKoc589554PFOnToNo1c4RJUGoloLo1c4Tp06fV/XEgQBXbp0wfvvv4/JkycjODj4gWx75ZWXkXfuCHa83Qm/vd0Jlw9tw7jXX8MXX3yBatWro1TpMhg7dmyJ91T+2L8f5oB46KxuUOtMsIWVwoED+x/IxpLi7e2N7du24rPPPsPy5cuxe9dOREdH48qVK1ixYgU+/vhjnD179rHYcjsuX76MXr16ITYuAdWqVcePP/74xGz5J5YtWwZnF1d4e3vD3cMDn3/++V2Pz8vLw8KFC7Fz507kXrmAK0f2AAAu7PsZAODl5fXIbS4iKioKc2bPxvnfvsHOOf1xfsdXmDVrFmJiYh6bDQp358CBAzB6hcHoHghRrYVzdAVcOH8ely5detKm/bd4DIH/fy1KhruCgsK/iV27dtHHR5J+CgoKeuBs2f9PnDx5ktOnT+ekSZPu2GMvo1Rpmt0DGNdzBqM7TaDOZKNOp6PVN5IhjYbROaos1WoNt23bRlLqew6AwQ2H3qw8FgS5l3NRT6Lozm8xIyubif3ffSQySW+99ZaUIZxWn95lW1Cl1rB3794PdYySsGPHDqrUarrEVGBY80w6BSfRbLHw+PHjJMnMzEwCoEotyazXq1e/WJXq6tWr2bt3bw4bNox//PEHSXLcuHEUCqu4VWo1Z86cWSJbBg4cKFUQq7VUGSxU6c1yJrVWp6dLQjU5q9ceUZoanZ6VK1eWeoT7RjF1+MdMHPCeJAFfWLUuqG/Kw4e3eO6mNHahfYJKwwYNGtwyJ+4enjdlcIWbknh2u53nzp3j1atXKYoiBVEl9c9yD6Jap+fgwYNpMlukiun6A2nxi6ZGq+O+ffuYnZ1NAAxtOpIZWdkMqtufALhx48YSzc8ff/zBqVOnctCgQZwwYQKPHj3KGzducODAgTSZzRTVaqo0OrrEVaHOyZMQRBqMxmKyvA6Hg65u7rSHpjJl+DJGd36LEASaBIE/unsyy2KjqNLIFftFlc1Ffd9JctmyZVQVVqADoNpkp2eZ5gTAQ4cO0eFwMCIyimb3AEa2HcuA2r0l6XSVmkaPYFnGs4ii320hjYffrCgOTmLTpk3/cU7efvtt+gUE0sXNnRUqVKAgCNTojAQEiirVzdYAhfa+8cYbt1yjpBm/+/bt48CBA9m5c2cuXrz4rseePXuWVptUwW/yiaDW5k7xNtL5f+fixYu02mx0Ck5idKcJ9Cnf+hZp+3uhSL7faPegSqNldExsieT5d+/ezUqVq9DL25dVqla7YwX+3UhJTaPJPYCxXacwotWL1OiMHDRo0P3cxmPl559/pourm/zc1KxV66Eoeyg8XSi+5NODslYKCgr3QkFBAYcNGyb/O9+uXbv/d//Ot2zZkraA2JsqWP/TGklB4V7ZvHkzATCgVm9mZGUztKnUY9rV3YPuKXVv+u9R5ZickvrA47Vp25Zao4Whz4xiaNOR1BrM7NCx40O4k4fDb7/9xhEjRnDo0KH88ccf+fXXX1MURVr9oukcU5GCKJbYL+rUqRN1ZidGd36L8b1nU+/iQwgiO3Xq9ER6mh85coRBwSHyO9TN3eOeK5xzcnL41Vdf8csvvyyRb3o7HA4Hq1atRo3OSPeUOrR4h1FvMP4rK+93795NtUZD56hyUmu70FQajCb+9ddftz3++vXrLFNWaneo0ugkZTxRpMEqKREOHz78Md+BxJkzZ7h58+YnIvO/c+dOLl68mBs3blSqtW/Dc889R7VWx4jWLzOx/3zaAuPo5e2jzFUJUWTkS4DidCsoKPzbOHDgAENCpB+lXl5eiuROCfjjjz/o5u5BUaWmSqOl3mDkunXrbjnObLHQr2oX2YlzS6zByKhoBgZJQT27s3OxfsMOh4MtW7akIIq0eodQrdUxPiFRlu9etWoVATC+zxxmZGUzZfgyCoLIWbNmPdT7czgcfOmll+ju4Um7swt79er1RDZ7pk2bRlGlYtroz4olF3z22Wfcu3ev1COqUjumZ65heMsXCIAffvghSXL69OmShLibH/UWOy1WKz/88EPpOS/9DON7z6Z7Sl2Kosg9e/bIYx49epSzZs3irFmzeOzYMZLkwYMHJQn/al2ZNGgh1UYbtVY3RneawIhWL1KtM0pB2tjKtEeWJQDOmjWLDoeD06dPp06vlwPfOoORZt9ohjQaRv8aPWgLkWQj43vPZkZWNtNGr6Sg0lDUGqmxuFAQBK5atarYvJw/f56rVq2iq5s7TZ4hjGz3mtyX/b333pMTA8KaZzF15CfMyMqmxSeCHTt25Nq1a+lkdy4WpB8yZAjz8/PZrLkUlNYaTATAbt26lehH8IkTJ7hz505eu3bttp/v2rVLsqfZGOm5HfYR1VoDR4wYIR+zc+dOrlixgnPmzKFOb5Btc3Z2YYxezyPevlzuIgUa3VPr0yWuKjUWF6pUau7du5cnTpzgjBkzqNHqaI8qx4S+8xhYu8/NgLYg8NKlSzx8+LAUPG9yM3hu8Y+l3tmHrgnVaXAPpLuHp2yXw+Ggj68fbf4xTOj3DiNavUSVRsfnn3++xM/x9evXqdcb6JZYnWmjVlClN9ManMykgQsY3vIFiio1e/ToQZLMz8/n8OHD6WR3ps3Jzp49e3LdunX85ZdfHprc+axZswhBpH/NnnSJrURbSMo/Jlb89NNPBMCYrpOZkZXN9Mw1NNhcOWbMmHse/9ixY4Xf3faS5FzPGVRptHzrrbdKdP7q1av50ksvce7cuff1XlJrNAyo1Utef+eYiqzwt17N/2YuXLjAN954g40aNWKvXr2KtTtQ+P+B4ks+PShrpaCgcD/MnDmTqsKkzAoVKjzW/rdPmp49e9Lg5MaUZ5cxIyubXqWl1kh5eXlP2jSFp5i+fftKSdhaPQGwZcuWfP755yUZ+cQadImVWva9/fbbDzTO8ePHOWjQIHp6eck+aMVKlXjhwoWHdCcPn2bNmtHsFcr0MavkPu5/b312N06fPs3YuPibSe5GK73LtqAginz99dcfg/XFad68OQ02N8b1nMHE/vNp9gxi6TJlS3z+0aNHGR4RKd9PQGAQ9+/ff8927N+/XypiaDJC7iOuMztx1KhR93ytR82cOXMIgGmjVjAjK5tJgz8ggGJ7lH9H2p9TM7rjm0zPXEPPjEYUBIGDBw/mihUrHrP1j48bN25w69at3Lp1a7E9mcmTJ8uFPADYo0cPJYj8P+Tk5LBCxZttUa02J65fv/5Jm/XUUFJ/8vaalgoKCgoKT4TAwECsX78eNWrUwG+//YYKFSogOzsbaWlpT9q0fy0jRozE1XwRCQPeg0prxL5FmejZuw92/baj2HEBAYH4a99GeKTWRUHeNVw9vB2VqlbAkiUf4urVqzAajbJUOyBJhS1YsACVKlXCtm3b4OfnV0y+u0yZMnD38MT+Za/COa4qLv7+A4wmI2rUqPFQ708QBIwZMwZjxox5qNe9V5ycnOAoKMC103/B5BmMnFMH5b8fOnQIAOASWxmCIMAengGtwYRDhw6BJIaPGAG3xBoIqj8IBbk52D2nLyZOnAgA8KvaCYKogm/lDjj1yyrs2LEDERER2L59OypWqoyLFy5I49jteGfeXAwZNgwAcOyHj6Bz9gILbsCjdFNY/CQ5fqfIsjCc3wsn1XmotSq8PmsWunbtCkEQ0LNnT9SsWRNffvkldDodrl69ij59+kBn94DGZMfF/b9AUGvw56fj4ZneEOd2fw868hHdaTyMHiHYuygTI0aNRp06dYrNS0xMDM6cPoWIVv1gC0qELSgRF3etw/fff4/sz7+EqNHj5E8rYHQPxIUTf+DysX2Ij++BlJQUFBTkwykkCb6VO+Hi/i148803Ubp0aSxetAgtmjfHn3/+iaioKNSrV6/Y8/m/kMTw4cMxbtw4AIDV5oQB/fuhVatWiIqKko8rkq9XGywAAFGrh0qjRUFBAc6fP4/Jkyfj+eefByA9e6NGjUJ4eDgsFgvOnDmD7t27Y/qVy4jXaOAmCDj1yyqIai3MPhHIyb2Kps88gyNHjuL8OUkqzqdcC+idvaF39sax7z8ESdy4cg4enl64lnMVEASc/W0djn//EXIvnoLjRh5cYsojpOEQnPh5BY58OQskIQgCzpw5g759euOll1/BtimdAACVKlXGs88+W+Ln+MyZM7h+/Rr8I8oi/9plFFy/As+0BtBaXaG1usLiE4Zr164BAF599VW8MW4cPDOaoOD6VcycNRszZswAAJQvXwGrV6+SZffvl5ycHKjUGnik1IGY0Qg5pw5ix5+/ICcn547neHh4AAAuHdwGs3c4rp06iNwrF+S/3wsnT54EAFiDkwAARvdA6C3OOHHixD+eO2bMGLzyyivQm52Qm3MJc+bOw9pvvoZOpyvx+D4+vrj0x89wT66N/OtXcO3YHvgnVf/H8w4fPoy+ffvht527EBISjMmTJhZ7zh8HK1aswLPPPguzRyAcNzZhzpy5+PbbtShT2AZCQUFBQUFB4emme/fuCAwMRLNmzfDdd9+hVKlSWL16NUJDQ5+0aY+cQYMGYeEHH2DnjO7QWlxw6ehevPzyy9BoNE/aNIWnmMmTJ6Nu3brYtWsXQkJCUL9+fQCARqPBe+8vhKgS8fyUKejVq9d9j3Hq1CmkpKbhzPmL0NncAQDdunXDzJkz7+pPP2ny8m5A1BogiCoAUvvAgoJ8OBwOiOLduwC7urrim6+/gru7O0w+kfAq1RQuMeWRc3I/vvtu/T35yyVh/fr1WLp0KdRqNTp27Ii4uLhin+/a/TssoWkwugcCAJwiy2PP9lUAgIsXL+L48ePw9/e/bWs8ABgwYAD+OnEGMV0nQxDV2L/sZfTo2QtffJ59T3YWyfCLGsk/FUQ1RJUa+fn593Sdx4GTkxMAIOfkAWlv5YTUBsBut9/2+EOHDsFgc4XFX5Jpd4mtjBM/foI2bdogOTn5sdj8uDl58iRq1qqNbVu3AACSU1LxefYaXL58GQMHDoRHekP4VGiDs7u+w8yZU1C/fn3UrVv3CVv978FgMODrr77Exo0bcenSJaSlpcHd3f1Jm/Xf4zEE/v+1KBnuCgoK/1bOnj3LjIwMqRrYbObatWuftEmPnMmTJ9Pbx5dOdme279CBV65cKdF5yalpdE2oLldG+lXtQrPFcstxGzZsoMlslqqaBYGeXt73lR37d3bs2MHklFTqDUZGRkVzw4YND3S9Ig4dOsRPPvmEmzZteuzZmFOmTKGXtw8tVhtbtW7NS5cukSSvXr3KuPgEavRG2vxjqFJrWL16Debn5/Pw4cNUqdV0S6rJxAHv079GdwLg6tWrmZeXR0EQGFi3303p79A0pqWlFauwDqovVYD/8MMPJMkKFSvR7BnE5KFLmDz0Q5rc/anTG2jyCGRg3X50Ci9FCCJFrYGWgHimjVrB5KFLaHTxYXJysnydu+FwOPj2228zKCRUloP3qdyBOruXLAtvC0mR7fYq25xe3r63XGfFihUEQKewDKaOWM7YblMpqjVMSUmhh4cXrUHJVOlMf8sgtTEvL4+//PKLVKHcZZI8htHuUazKvKQsWrRIsr9iOxq9wopVkYeHR7BZs+bcvXs3c3NzGR4RSaOzJ/2rdaVTaCqFv1XWA6B3+VZMGriAnqWaUhAEWWHD4XCwfPny8nGaQvn+2G5TmJGVzaj2bxAA9XYPqe0CBHqVbc70zDWM6jCeEETqXXypdfKk2T+GEFU0+UYTgkCzbxR9K3eg1upGjcnOyHav0eTmx9S0dO7du5epaekUVRpZBSAgMIirV6++5wrzr7/+mhqtjiqdkfbIMoRKQ+fo8kwbtYIxXSdTrdXzhRdeIElGx8TJ7xaTTyT1zj6M6TqZ4S1fuKPc+cWLF29r07Vr19irVy+6uLrRy8eX48aNo8Ph4K5du6jV6mgPS2Ng3X40egRRpzdw2rRpd/3uDxo0SJKed/GmSqNlbFz8fcnrXb58mU52O62BcXSOrkCVzkgIImvVqiW3e7gdRQoTRRXx0Z0mUBRVnD179j2Nv3r1amq1Oqp1BqrUGrp7eP7je/ny5csMCg6hwe5Bz1JNaHL3p4urG0+ePHlPYz8ofv4BdImpwPTMNUwbtYJm7zDWrl37sdqg8GRRfMmnB2WtFBQUHoQdO3bQ399fbnH0/6USbO/evezfvz87duzIDz74QKkSVHgqeOGFF6g1mJg44P1CH74ZAbB+/focN27cE5FVLwkLFy6UZPUTqtOnQhtqdEY2feaZEp177do1pqVnEIJAtcFCAPQs3ZRGZ0926NDhH8//8ccf+eKLL3LChAk8derUXY9dunQpRVGk0cWLBpsrdTr9LXsvTZs2pcHuwYR+7zB58CJavEKZnlGK06dPp1ojtfHT6fVs3bo1f/3111vGCAuPpEd6Q3mPxLt8K3p4eZdoLv5OQUEBU1LTqLfY6VOhDZ1CkqlSq+/asu1Jcf36daakplGt1dPmH02VRsvKlavccb/jgw+kyvfAuv2Y0HcenaPK0mA03Zd6w9mzZ/nuu+9y7ty5PHLkyIPeyiOjSdOm1FnsjGzzKiNav0yd2YktW7Xi559/TgBM6DdffmY0OiPHjRv3pE1W+A+hyMiXAMXpVlBQ+Ddz+fJlVqlSRfohqtP9p6WAFixYIPVySqxBnwptqNYZ2LJlyxKd261bN2qNFka1f52x3d+myc2PZcqWu+2xBw4c4PTp0zlnzpwn0kOoJCxZsoRarU4OaLZs1apE0mEPg6If7K4J1elTsR01eiMbN2kif37x4kVmZmayVatWHDhwYLGg2Lx586hS3+zPPWjQIHlDplTpMjTaPRnWPIsBNXvKcmaNmzSRnm+TlQDYuXNn+Rw//0B6lWnGmK6T6RSaRrVR6msd1XG8JGM/aGGhHLxACAJFjZ6iWlNMkv1e5MEKCgro6eVFlc5E77ItaPaLkSTYdAYGNxrK0CYjqDVa6OnlxZDQcDZp2pRHjhzha6+9JvV1LxpXpaEgqihq9LR4Bsm2OIVl0OwXXUwW7+jRo4UB8rbMyMqWgvQqNSdNmnTPa9e3b19aPAIK51fNiDav0hqUREGtpUtsJertXtRodXzuuee4cuVKhkdEUqvT02iyUK03MaTxcAbW7kNBVNGrbHNZYh4AlyxZIo9Tr149QlTRObYS3VLqEgBTRywvJnXmHFVeSnyp0kkK+Ku1UnDebCcABjccyrTRn1FjstMSmEBBrWXqCEliP6bzxGJycZs3b6a3jy91dk96l29Fg3sgVXozNQYze/XqdU9ztHXrVmo0Wlr9oumR3pCiRl+4doX/AUxKTpGD1skpqbRHlGJ65hoKopoBNXsWlzuvUFG+9q5duxgZJa2vwWDk9OnTi43dvXt3qjRaepVtTrfk2gTAmTNnkpRaUjgX9v8WtQaavSMIgBMnTrzjvTgcDi5ZsoRDhw7lm2++ed997Ehy7dq11OqkPm8ucVUoFso6AmCHDh1v6+B///33BMC4HtPkOdFbne9J0r+I3377jePGjeOUKVNKFDBfs2ZNsbGTB0uJJvPmzbvnsW/HF198wfr1G7BGjRqcOXPmHTeWzRYrfSt3lO/fJa4y0zNKPRQbFJ4OFF/y6UFZKwUFhQfl+PHjcrKwVqvlwoULn7RJCgr/Gk6fPs0lS5bw448/lpP1nxT9+/en2c1P9hPURivVBgttQYkURBVbtmr1RO27G1OmTKGXjy9tTna2adu2xHM5Y8YMiio1YzpPZEZWNn0rtZMKdywW7t69+67nLlq0iKIoUmeyUqXR0dPLm4cPH77j8SFh4bSHl2L6mFVMG/kpzV6hrF6jRrFjDh48SF8/f9mn1BsMfO211ygIAt1T6jKq/eu0haYRgkiVWs2VK1cWO79mrVo0ufkxechipgz7iBbvUJYqXaZEc/G/nDx5kg0bNqKruwejYmJvaQv4b+Ly5ct84YUX2L59e44dO/aOrQF3797N/v37MyIiQp5jnd7A5cuXl3isvXv3cuHChXz33Xfp5e1TrDDkUSYjXLx48b73Lnz9AuhVprnsf3tmNGZQcCj37dsnFY2Ua8m00SsZ0ng4AdzTfCgo/BNKsL0EKE63goLCv51r166xYcOGBECVSvWfderr129Aa2D8zer0al2o1mhKVLV69uxZJiWnyD8Off38+fvvvz80286cOcO1a9dyx44djzyb/8KFC9TrDXSJqcCkQQsZ0mgYBUHg/PnzH+m4RTRu3JhW/1h5HQJq9qQoisV68/38889yFTgA9u3bV56XAwcOcNWqVdyxY0ex6x46dKhYD7HOnTszPz+f+fn5XLx4Mdu2bcu0tHTWr19f7vNet2496qwuFNRaGj2C6JpQnYJKQ5N3GNMz19A9pS5VWiMT+s5jbI9pNHoES4HrSu2YNvoz+lbpSAD85Zdf+Ndff/Gdd97hggUL+NNPP/Gzzz67xenctm0bAdDoGUqt1ZU6uzcBMDEp6WYlt1ZHo6svPTMa0WBzY0hoGFVqjVSpP2oF43vPlnq8q3VM7P+u5OgW2hEXn8DUtHTOnDmTOTk5HDx4MOMTkxgYJNltsLpQVKmZkJh0i6qDw+FgTk7OXdfupZdeokZvpEtcFepdfKXKf4Chz4ySA+ei5mYQteg/tUZD3yrFA4Z6Zx+mZ65hQM2eBMCffvqJS5Ysoa9/AAVRRUFUU+vk8bfq/1SGNBlOp+BEqtRqGpy9mNB3HuN6zaTWZKPZYpETElwTazAjK5tpIz+l2mijtXDTI3noh8zIymZk27Fy4DQnJ0dWDYjvM6dYYNXkHcHomJjbzsWVK1d49OjRYkkqBQUFHDBgAA1WF7kPWmiTEQTAL774gjNnzuSSJUu4e/dubtiwgWfOnOF7771HALQFJVHUGmgLTpYUFAYvosHuwTZt2pAkc3Nz6R8QSLN7AEMaPysH07/88kt5fIvVRp/yrW+qO4RlsGKlSvLnlStXocU/humZq5mRlU23xBr08rlVReFeOH78OD/++GN+8cUX/9hf08XNnZ6lmlJrc6fJO5wxnScysG4/CoJw256JZ86cod5gpHNkWcb1nEG/ql0I4LEkha1evVr6TvWcIT0TQxY/tGD7559/TkEQaPGJoFNoKgHw1Vdfve2xDRs2os5kY3CjoQyo1YuiSs3Ro0c/sA0KTw+KL/n0oKyVgoLCw+Dq1ats3Lix/Dv6xRdfVKq9Ff7fs2PHDroUJg4DYGBQ8GOvjr169SrHjh3Lrl27slMnKeHbu2wLuiZUo6jWMmnQwmJqeg+icPjXX39xypQpnDRp0gMrJZaUnJycuxZgZGZm0mBzkX3N2G5TCdza73vz5s1MSk6h1ebEjFKluWPHDjrZnSW1rjGrmDRoIfVWZ/bo0eOOYznZnelbqZ08lltiDSYmp9xy3Ndff02tTkeN3kSt0UKVSk1RrZH93YR+86WEAK8wBoeEFjt3165ddHF1oyCIFEQVLVYba9euzfSMUuzWrRvPnDlzjzP432H79u00msw02Fxp9giU9+SOHTtW4mssWrRIVhgAQJ3NjYkD32fKsI9o9QlnckrqQ7f70qVLrFu3njxmixYt7phMcCfSM0rR6hfJ1BGfMHXEclp8wlmufAWS5NixY4vtc7Vq3Vr591nhoVJSf/LuTT8UFBQUFJ4oer0eH330Edq2bYuCggK0bdtW7hn8X0Kr1cCRdw2kAwBQkJsDlUpdop5azs7O+HHTRmzYsAFr167F7l07ER4eftdzSOLPP//Er7/+etfeyF9//TUCg4JQuXJlxMXFoW27dnA4HPd2c/fAgQMHcP36NXhkNIbW4gLX+Kowunhh586dtxx78eJFTJkyBc8//zzWrl37UMbXarVw5OWADqm3Vf61y1Cp1XKPsPz8fDRo2AjX1DZEdRgH/+rdMHXqVLz77rsAgMDAQNSpUwexsbHFruvv749tW7fg8OHDOHPmDObOnQuVSgWVSgVRFLFgwQL8fuIK1m0/gBYtWmDevHmYNu1tGMQCiBodoju/hZCGQxBUfwCuHtuH3xeOwZntX8LoGQy9szdMHsHwLtcCAOCRUheiSgOPFKk3U3Z2NmJiY9GpUye0bdsW6RmlUL9+fURFReHFF1/EsWPHkJ+fjyNHjgAAnEJTYfGPhT2iFES1Fh3at8fRo0fxxhtv4EZeLiI7jEdAzZ4IaZaFP//Yh4L8G3COrQhRrYXB1Q8akx0asxN0TlL/bLNPJABgyYeL8fNPP6J79+5o164dJk15G8fhhrN5GqjUarRt0QRTp0zGD99vgMlkkudu0aJFsDs7w2g0IiIyCtu3b7/t2vXu3Rvuri44u+MbXD93DJcOScdpjDYAgKg1QNToYA1MBAAkD/sI4S1fQEGBAzkn/gTpgCM/DzknD+L6uaP4+dX6OPT5DGi1OuTm5qJly5a4qveCb6X2UBss0Bid4Fm6GUAHLh3Ygj8/fh26nJOYO2cObDoB26Z2xo7pPeDt7oK133wDjUYLtcGC87s34GD2NOyaPxT51y4j79wRkMSuuQPx61tt8PsHY6DWaHDy5EkYDAb52WOB1FfN4ZD+99qZw/h9z++3fH9feeUV2Gw2+Pj4IDQsHL/99hvmz58Pm5MdkyZNQn5BAVD0Xim89htvvIF9+/bh+++/R1RUFMqVKwc//wDY7XZMnDgRlw5thyCqcPHgNvwyrjm2TGwHg1iAl156CXv37kX5ChVw+NBB+NbsDbNvNESNDqJGh3HjxoEkAECtVqMgT+oFTxKOG9eK9bzMuXYNGrMLBEGySWtxxbW7vJv+iQ0bNiA8IgJNmjRBjRo1UK58BVy5cuWOx2s0GtzIuYC8i6fgXb4VzL6R8EipC6tvJH766adbjndxccHiRR8g59AW7JjRE399PRfDhg1DvXr17tvmklKuXDn4BwTizyUv4PDX87B34UjYnV1Qu3btB772xIkTYfaJhE+VjjB6hsLsG4U3xo2/7bFz585BRmoS9n8yHoeyp6N1q1bIysp6YBsUFBQUFBQU/p0YjUYsXboUQ4cOBQBkZWWhY8eOyM3NfcKWKSg8Oq5du4auXbvC5mSHu4cnxo4dK/s4ANCtew/kqi1IHPA+4nvPxsnzlzFkyJDHZl9ubi4qV6mKzKznsWTNOrz73vsICwvH8R+W4My2r6DSGaExS32vDS6+AIBLly7d11i//fYbYuPjMXDQYAweOgxx8Qn4+eef73pOfn4+Vq5ciXfffRd79uy5p/EOHjyI1LR0GI1GmC1WTJo06bbHpaSk4NrFszj2/UfIOXkAR9ctgNFkRuXKleVjjh07hqrVquHPk5dhTWmEnQdPoErVarhw/hxsIakQRBW0Fhfo3UNw7NixO9pUsUIFnN78Gc7u+g6ntnyOczvXoXLFCrcc98KLL0Hn4o+EgQuQMGABtE4ecOTfwNVj+wAAV/6S9rhMftE4ceJ4sXOjoqLw247tmDlzBt4cPw4moxHfbtyM/ddMeO+DJahUuQquX79+T3P5X+H111+HYHBCTK/ZiO4+HW5JtfD+ggXw9PQs0flXrlxBp06dYYsoi5Rnl0Fn94YtJBU6qxvUBgus4aXx559/PnS7+/brhy++/gZB9QYgoFZvLP34E4wcOfKerjHhzfHIO3MY2ye1xbZJbZF//ijeHD8OADBixAj89NNPmDNnDr788kssXLCgRPvJCgoPnUcf9//3omS4KygoPC0UFBSwT58+cpbea6+99qRNeqh8+eWXFASBVv9YusRUpCCKHDJkyCMZKz8/n23atJXn0sPTi1u2bLnluOvXr9Pu7Eyn4CTG95rF4AaDCQisUaMGt27d+khsO3PmDFVqNd1T6zF9zCpGtnudokrNadOmFTvu3LlzDA0Lp0qtod4iSXP/r/S4w+Hg7NmzWa9efTZv3rxEvQW//fZbiqJIi18UnaMrUBBFDhgwQP68qE9zRKuX5Exmq3cou3fvft/3nJqWTqfQVKZnrmF65ho6R5dnWEQkSUkCTm9zY/qYVczIymZYi+cIgOXKlWNqaipFlZqhTUcxrucMmrzCCEGkX7WuTHl2GX0qtCEAhoVH0OITwZRhHzGx/3xqLC50iihNe0QZWTrc2cWFmZmZFAqrry3+sVTpzYQg8rPPPiNJzpo1i4IgMmXYR8zIymZcj2mFleFamn2jmNh/PiPbvirLyXuXa8mI1i/T4hNOTy9v5ubmymsMgEF1+0sV3qNW0Gj3ZL9+/YrNy8qVK9m6dWsKgkB7RGkGNxxCi1cIvbx9bql8JyUpMaPJTI3JXrhGL1Lv6kedkyf9a3SnLTSNgqiSK+2ThyxmRlY2tUZJwt/s7k+9zU2S5ZczggXWq1ePPXv2pEproEpnpNbqSveUOtI91BtAAFy1ahUvXrwoZw6fO3eOy5cv56effipL361YsYKawvYIUnW8iqmpqezatSsXLFhAs9lSKEFfjtbABFlGvag/t9biQo/0BtTaPAhBpMbsTADct2+fPAfLli0jAHqVac6wFs/R7BlEdw9PCoJA1/iq9K3UnhAEWvxj6VX6Gap0RgoqtSS3r9IQgkDfKp0Y12M67RGlaDCaOG/ePGm+hi5hXM8Z9K3cgQA4YcIEnjt3jlabjaJGR0FU0ewfS5XeQo3JSVZaKGplkJWVRUEQ6BxdgbagxFtkzYpk9bzKNqdf1c5Ua/Xs1KnTfX+vfP38aQuIY9LABYzqMI4avZEjR4687bEFBQVs1qxZoVKBIL1/Mtcwod98ao0Wjhgx4o7jnD59mt99991d+7s/Cvbv389atWrTx9efFSpW4vbt2+XPHA4Hly1bxjFjxnDGjBm8fv16ia9bsVIlee00FheKai0FUcWjR4/e9niHw8HTp0/fV288hacfxZd8elDWSkFB4WEzY8YMqlQqAmDFihV59uzZJ22SgsIjoXPnzlRrdfSp0IbuqVJl6t/3J6RK5/by/oB7cm3GxiU8Ftu++eYbqc0ZwOhOE5iRlc3wwj2DNWvW8MMPPyQgtckLaTycBjd/enh63XNFbRHVq9eg2T2AKcM+YsrwZbT4hN+1jdT169dZsVJl2b9WqdX84IMPSjRWQUEBo2NiaXT2YlD9QXQvbOF2OyUxh8PBYcOGyeMYjCZ5H6OI+fPny36tVFn+TqEypB/NHkGM6TyRoU1GUKXW8IUXXrijXadOnWLp0mXksRo0bHhbFb7QsIhifde9Sj9DjU5PUaWm3tmbgEBrYCINTh6sVLmKfN7Ro0e5ZcsWec/j3XfflRQHC5UDozu/dYuK3P8natWqRXt4hjyvgbX7UBTFEqmCkpJqAABGtX9DVjZUG22M7TaF8b1n0+wecMe2nA+Cp7dPMQl49+TajIqOvefr7Nmzh6+88gpfeeUV7t2796HbqaBwJxQZ+RKgON0KCgpPEw6Hg6NHj5Z/1I4YMeI/JYuzevVqVqlSlekZpfjqq6+W+MfivTJx4kQKosigegMY3WkCLd6hDAgMumUui/r+RLZ99WZPYlc/qjQ6ajRafvvtt4/EvrfffpuCIBT2IwcrVqosB2qLeO6556jRmxjfZw7TM9fQI70B1RpNsSDsK6+8IklgByfR7BlMlVpdooD7l19+yeo1arBU6TIcO3ZssXW4dOkSVSoVvUo/w/g+c+mWWIOCINLT05MJiYmsX78+N2/eLB//008/ceHChcX+RpLfffcdBw0axBEjRjAkNIxuSbWK9V3y8fUnSf7www8URZH28Az6Vu5AvdWZKalpLCgoYG5uLuvVr39TDt1opXNU+WLSUS+++CJ1egP9qnYuJnNmcA+kIKroHF2B4S2eo1NwshxkDm40VJY1E1VqTpkyhSR55MgR2pzstHiF0LtcSxqdvRgQGMTp06fLawVA6hv/Nxuc7M785Zdf5Hs/ceIEATCk8bNMH7OKsT2m0WD3ZM+ePeVjxo0bRwDU2z0oanTUWFyYNGghY7pOJgBu3LjxlnXr1asXDU7ujGz3uuQ8dRjPxP7zpd7zgkBRo6NTeCmKWgMFlYZO4aXonlafgiDw2WefZY8ePVijRg0CoH/1bozpOpnWgDjanV0YGBRElc5I38od6RpfTb43vd2bgqjijz/++I/PFSn1IFu/fj3Xr18vB+FzcnL4zDPNCFFFz4xGzMjKZnrmGlr8Y+nvH0CSPHz4MOPi4ymo1NTZvelXtTOdo8tTbzDy6tWr8vWL+tYXrXVE65clWTSzXZar86/ZkxBEWp3sBARGd5kkHdvqxWKbNLHd3yYAvv229L9hzTMLZe5fJQAuXbqU/fr1kxIEoitIG0+CSEGtlTcwvMu1pCCKsuzf+PHjmZ5RihUqVOT777/Pnj17Mio6lhUqVuK6dev47LPP0mA0UavVsXWbNrdNqigJV69elZ7lhkNvytaHprJBgwa3HOtwONihg5SAoXe6mWyhM9up0ugYEBjE06dP35cdT4r+/ftLm0w2VwqiiqXLlL3lHXon3nrrLUIQ6JZYk+mZq5k0cAE1RmuxpCMFhSIUX/LpQVkrBQWFR0F2djYtFilhNDw8vFgSqILCfwWzxUKfim1v+hXhxdthpWeUosUrhEmDFjKh7zzqbW6MiIziu+++e1fp8welKHisNdkICEwb/RkzsrKZNGghAfDjjz/moUOHqNXpiEJ/XdTo6OLiyvPnz9/XmKFhEXQKL8WQJsOZ0G8+vcu3ooeX9x2PnzBhAkWVmpHtXmPayE/pGleZer2hRH7e4cOHJT+0xXM3fWSPQPbq1euO5+zfv19uifa/DB8u9bH2rdSOqSM+Kebvevv4yj5+3Xr1/jFZ2eFw8K+//uLx48fveEzbdu2oNVkZ3vIFRrR5hXqLM+vVr89XXnmFPn8bLzwikocOHaLD4eDQoUPlv9udXbh+/XrOnj1bKnoYvkzap+kzV074f1rIy8vj888/z4xSpVmjZs1/3Eu82/y//vrrFESR/tW7MfSZUTTY3Fi+QsUS23Lp0iXq9Qa6xldh6ojlDGk8vNh+lpe3zy0tFx8GkdExtIdnMD1zNdPHrKI1IPaRBPUVFB4VSrC9BChOt4KCwtPIG2+8If8Q6tmz5yN1YP6LtG7dmraAm33JQ5+REhj+N6B06dIlqjWawirP1YztPo2iWkefSu1o9Ytm6TJlH5mNP//8M99++20uXbr0tr2Wu3XrRqtP2M2gYquXCIAHDx4kKTk/FqtVziROH7OKZs8QNmnS5IFtk3shCSIFlYaCSi1Vc4sqGly8qTcYuWvXLtmZK/ovMzOTJPnhhx9SEAQanT2pt9ip1mgoiir6VGxL38odqdJo2bdvX3m85cuXMzg0jDYnO+vWrccTJ07I9/j+++/TbJGC7CnPLmN65hqaA+KpNxjkhA2NVkeDqz8T+r3D2G5TqDbaaPKJJARRdsgTB74v2xnbbYo8ZzqTlS+99JJsy5YtW1imbDl6evuweo2a3L9/P2/cuMEdO3YwMzOTderUoUqjY3THN5k0ZDHtEaWo0xuKZXo7HA5WqFiJWoOZGrNdHjcxKYmXLl3itWvXqNZo6JnRmOmZa5g0cAHVBgu9Sj/D0KYjCYC//fbbLevStm1bWn0jmTZqBXVOntSYnelTvjXNPhFUqTUUVWq5Wl3v4kuzbxQBMCkpSX6HDBw4kGY3P/m5iuowTravqBI/PXMNjZ6h0saGzZ0GF282atRYvrcDBw5w//79JU4E6t27N9VaHUWNVC3x900c77/1LN+0aRO9fXxuJleoNVy0aFGxa2VmZlJrtMg9+fyqSP361FodkwYuYEZWNoMbDpGfR0FUyf3bi5x2/xo9mJGVTd9K7QiABw4cYL169SmIKursXjeTMkJCGRkVRWtw8s1s/TLNKag0f3u3jCIAdujQodh8OBwO1qhZkxqdkbaQVGrMdqpUaq5du5YOh+Mf3+nvv/8+a9euzfr1G9x2k8HhcNDN3YP20FSmjviEcT1nUGu0cPDgwbccu3nzZml96w+S1ry9lKzRtGlTTpgw4amr0vr9998L17G7VPnQ8U0KgsD58+eX6PyzZ88SAEObjJDX0RYYz+bNmz9iy++NAwcO8Icffnjq1ue/huJLPj0oa6WgoPCo2LFjB/39/QmALi4u3LBhw5M2SUHhoWJ3dimWFG0NiGWNGjXkz7du3Uq7s8tN319UUW9zpSAIbNas2SMrEHF2caVrXGXG9pCS311iKzOi9cu0h2dQbzDy8OHD0p6EKBbuX6joXb4VAXD16tX3PF5OTg7d3N3l+xRUGmpNTqxdu84dz+nduzetXsGyXxHZ7jUCKFFFbpFf4l+9GzOyspny7FLqLXYOGzbsnm1/+WUpCV1tsBKiimqjjTqLnWHhEbx69SqvXr3KH3/8kTt37nxo63X27FmmpWfI85WQmFRsL2fXrl3cunWrnBRdpELgV6UToztNoC1QSvzfs2cPTWYzbf4x9K/ejWbPYLp7ePLcuXMPxc7HQdeuXSmq1HSJrUSLTwRVavVtCyi+++47+vkHEAC9fXw5ceJErlmzhmfOnKHD4eC0adMYGRVNq+3mPlJySio3btzITZs2lfh37sKFC6lSq+VrVKlSlStXruTKlSsfmWLbkiVLCIBmj0Ca3PwoqlT8/PPPH8lYCgqPAiXYXgIUp1tBQeFpRZK0loI+rVu3vm1AtqScP3+e8+bN49tvv/2vleG5dOkSu3TpwoDAYCanpN6Xc1TEkCFDqDPZmDjgPaZnrqZbcm3qdPrbzuHUqVMLM6D1hCDQ6BnC1OEf0yO9IUNCwx7klh6IovUPrNOPsV2n0OofQ3cPT964cYOkJDmm0Whlx0yqbE1jzZo1H2jcCxcu8OzZswwLj6DJK4ypI5Yz5dmlNLgHUtQaCFFFQVQzMVGSyfar2pkpw5fJ0tubN2+mn38AnSPLMn3MKqaOWE6jmz+DgoKo0+mp1erYqVMnbty4kXHxCdRqdYyMiuYPP/xQzA6Hw8EuXbpIDqPOQLXRxqgO4+kUXqrQiZQqTOrXb0C1RkuVznjT+RdEOWBaFFgPb/mCfJ7JO5yhz4yia3w1CoLAF154gcuWLZMrsYu4du0aO3ToSJVaTZVazY4dO7JLly7FkyDaSOoCf/75p3xeTk4O+/TpQ7VWR43Zzsg2rzKs2RhqdEb27t1brnwvqqTOyMqmySuMGosLVWoN69ard1sH+P33pYQBt6RahEpDlcFKld5MldZItUZDncVOs180TV5hsiy/W1Iturl7yNd4/fXXqdbqGNdzBtMz19AltrIsi+9XpZMkez96JXXO3rRHlGba6JV0ji7P8uUr8MKFC6z0N4m8suXKl8gB9vMPpGdGY7on16ag0tC7bAu6J9cmAPbv359kocS6KFKl0VFrdiIAtmnTRpYO37p1K0uXKUtXdw9qdXpqDWYaXX0JUUWj2UKd3kBBraWgUlMQVUxJSeGOHTsoiiqpMqHRMJp9oyiI6sKqbmmM0aNHkyRv3LhB/4AAimptsefI5uREa1BSMWk8CCJ9yrdmWLMx1Dl5yHL3X3zxhXzPRVUKztEVpPHsnhTVOlqsNnkD4k4UvZNsQYm0FCZMfPLJJ7ccl52dTZ3eINsbFR1z2/VYuXKllOwx4P3CDbTVFNWaW9pSPC2sXbuWABjfe7a8Iag1WjhmzBju2rXrthKHf8fhcDAkNIxmz2BGdxzPoHoDKIgiJ0yY8Jju4CZ5eXncsmULt27dKiuMOByOYolMRpOZK1eufOy2KUgovuTTg7JWCgoKj5Ljx48zNTVVSkbVakssE62gQEpByTlz5nDq1Kn/yv2Y559/Xqo0jixDa0AcAfDTTz8tdszJkydlGfOQJiOlxOMmIwiA33333UO3qaCggKIoMrB2H2ZkZRerzrXabFy5ciUvXrxIk9lCs28kI1q9SI+0m6p49ypB7nA42LhxY4oqDSPbvc6UYR/RKSyDgqhi3759WatWLXbu3JkHDhwodt6kSZMoqtQMb/kCU4Z9RJfo8jQYTcXU2Yq4du0ahw4dypjYeGaUKs0vvviCPXr0oCAItAUn0WD3oNVmK7a3UBJOnTpFQRDoXbYF0zPXMK7HNAoqNZOSku9amf4wyM/P544dO7h9+3beuHFD/m/fvn18//33uXr1ankPa9CgQTS7+vwt8X+8XGiwYcMGRkXHUG8wMjkllTt27Hikdj9Mrl27RkEQ6Fe1i7yfYnLzu6Vl3NGjR2m2WGgLjGNwg8FSa73CvRi7swvHjBkjJXXFVKR7Sh0Koop9+vSR1fYA0ObkxG+++aZEdu3Zs4fvvfce16xZ88hURf+XL7/8kp06dWLXrl2VxDSFpw4l2F4CFKdbQUHhaWbRokVUF2Yj1qtX7x+DCLfj2LFj9A8IlGSmVSrq9IZiQaF/C7Xr1KFGb6RnRmPaghIpqlT8/vvv7+tax48fp6+fP9VaHQ1WKQN7xowZdzx+w4YNTEhMpEqrY3CjYQxtMoIag4mdO3e+39t5YAoKCtipU6diElv/G5Bu2LARtUYLA2r2pFeZZrJE2L2wb98+Dh8+nL169WKFihXl8XR6PT1LNZEdIY/0hlQbLNRa3eiR1kA+rqhqOHX4xwTABQsWUKfX069aF/lcl9jKLF2mLAsKClhQUMBTp07R7uxCi3cY/Wv0oNU/mmaLhYcPH5bt2rFjBwEwsG4/Jg3+oLDiuLACu96AYr3aUlPTqDVJVf6uCTUICKxZsyaDQ0Kp0Rlo84uiIKqoNloZ0mQE1UabFHjXaGg0mW5eNzikWN/mAQMGUKXR0q9qZ/pV7UyVRsuKFStKznSL55g0+APaI0rRYrXx0qVL/Pbbb9m8eXNabE5Sz3KVhr6VOxaTt09ITGKPHj0IQaTBzZ+R7V6jf43uUvAwPp5t2rThSy+9xMWLF9/iEDkcDr700ktUFVawF8msJfafT0FU0T2lDi0BcbRHlZPH9KvSiQajSb7GxYsXGRUdQ5VaQ73FLsmtB8bTUujoOcdUpMkrlIBA30rtGFCrFwVRxeeff56dOnWi1mBmaNNRDH1mNLVGC1u3aVPMvlWrVnHixInFntWomFg6R5Rm6shP6Z5SVw6Kt2jRgg6Hg0uXLpUyoP2iaQ1OJgC5DQAAjhkzhjZ7obx/+VY0uvjQaDJTFFW0BsTSu2wLqg0WCio1fSp1oEtsJQLgZ599xpkzZ8rXETV6AmDVqlX5wgsv3FIxrjcY5ASSuF4zaY8sKydt2CPL0i25tqT2UOgQS5X/HozvM5eCqOLUqVPlax08eFAO2HuVbsr0zDVMHPA+1XrTHfuqF+EXEEjX+GpyINkWlMhy5Svc9tg//viDc+fO5YcffnhHqcK//vqLWq2OLjEVGNNlEj0zGhO4fauCp4GTJ09SbzDSObIsY7tNpU/51lLlSWFympPd/o8bENu3b6ePr5+8jq1bt5E3gR4Xx44dY2xcvGxDalo6z549yxUrVhAAfat0ZGz3abSHl6LRZFYq3J8Qii/59KCslYKCwqPm6tWrbNy4sfxv90svvfSfavmm8Gj466+/pN+dgkBRpaZOb/jX9aJ2OBycOHEiy5Yrz6rVqt0SaC9izpw50h5AoXpcyrCPCIAffvjhI7GrdJmyNNg9GdHqRQbV7U9BVHHQoEGyBPfGjRsLE+ynyr6TSm+mm7v7Pfdsz8rKIgCavMNlXzqs+XMEBKrUWtojStHg5EY3d49iAezc3FzWqFlTfi9oNFouXbr0tmO0at2aolpDt8QaNPlEEILA2bNnc+LEiWzUqBG7dOnC33///Z7nqWjvJLrjeNl2s5vvbVXPHhXXr19np06dqFKrKYoixb/JlpevUJHXrl2TE/+LkqZ9KrQhAJ48efKh2XHs2DF2796d1apV4+DBg3np0iWeO3eO69ev565dux7JO/vy5cvF9qnSM9fQ4h3GNn/bKyFvVn4nDf6gUMlgWeH+QxdafSOpNxjpFJZ+s/1iqSa0WKW9K/8a3RnbbQqdgpPoZLffNplDQUHhwVCC7SVAcboVFBSedlauXEm9XgoSVapU6Zbq23+iW7du1FucmdBvPtNGfkqnkGT6FfZJ/rdw+vRpAmBwg8GyvLfRxZu9e/d+oGuOHz+eY8aM4dq1a//x+LNnz7JcuZv9wCtVqvyv+Ldj37593LRp023X/fz586xfvwFVajX1BiPHjBlzT87Dzp07abZYJal3g5mCqGJg7T4MbjCYKp2RokbH6E4TGNX+DaqNNgqiih7pDSTZ5ZBUAgL9a/Rg2qgV9KvWRd50giBSY3JieIvnpGupNRw+fLg87rJlyworbd8r5qS/++678jFFAaeEPnOlYP7ITykWJp4kD1ksV+gKgshx48axQsVK8tp169aNN27c4OXLl/nCCy+wffv27NmzJ602m3xM48aNmZiUTIt3KJMGLWR879nUGK2MjIxkVlYWjxw5wqDgUHqkNbiZcJBWn0EhoaxVu/bfkhIMXLhwIRMSk+S/qfRmGtyDCFFFa1Ai00Z/xpThy6h38ZUDv/bIsnLwFwB79erFXr17SwFco1S136BBw2Jy47t37+aECRPYoYOkIpDQdx4zsrIZ03kiAYEGZy96l2spVV5XaMOA2r0lNQJB5PDhw+Vn49KlS5w0aZK8WZg8ZDHTx6yid7lWUjW3zUnOsC767+OPP6ant4/ctqCoytvXL4CktEGTmJQkB6chiHIP7A8++IAAaPGJoNlLkqc3W62sVLkK9+3bx9JlytIalMT0zDXMyMqma0I1qg1WqgwWepVpLttQ1Cc9rtdMaZ5MNjnZo0i5IL73bMm59Qplhw4dSEoB6e7du7Nly5acPn16sTm9cuUKN27cyO3bt9Pd05MqvUW+v7ieMwiAPj4+jEtIZHhEFCtXlir7Ba2hMCkgiP41evB/K9sdDgeTU6Tqp/AWz8vXtHiHsUuXLnf9Xrq6e9CrbPObySpxlZmUklri7/Xt+Oijj6gvrIIXRZFvvfXWA13vSfPJJ5/QYDQVe0a9yjRjVIdxdApKpNVm+0d5vGvXrnHr1q3cv3//Y7K6OPUbNKTe6sLItmMZ0fplak1Wtm3XjllZWTRYXeT1j+0+7alOjnjaUXzJpwdlrRQUFB4HBQUFxXoOd+jQQZZIVvjv43A4uHDhQvbo0YOjR48uUdVwp06dqLe5MnHAe0wb+SltwUn/uv2YkrJ161YKgkD31HqM6TqZrgnVqFKrH1m1/sGDBxkVHSN/31q0aFFMrbCovVRRkDO+zxwKoopjx469p3Gk1nRamv1jKai1jOowjinDl0mVx7jZfip58CKqtXqOGzfulvO/+uorLl68+I5V6ZcuXSIABtTqdVNNzsmTer3hroFTh8PBvXv3cufOnXdMDr569Sqd7HY6BScxtttUOZn/cSpwDBw4kCqNlr6V2lNQa2mPLMuU4csY2e41CqKaRqOJI0aMYFh4BNUaHU3OntIeYEgIA4NCWLduvVtUA+5Gbm4uf/zxR/7444/yO/j8+fMMCAyi3uJMe2QZavRGRkVHF1ODS0pKeiRJ1jVr1aLWaKFvpfZ0jZP2DP43aWX16tVSUkTnt4r5eWHNxjC4wWBCEOkUmnYz2J7RmAajiWY3X/lv0R1vqgEoKCg8XJRgewlQnG4FBYX/At9++y0tFikAl5aWxjNnzpT43CpVq9IeWVb+cRZYpx8FQfhX9YF/FMH2+6GoH/XBgwfvKWh96tQpvv/++3zvvfcealZuScnPz7+vDN02bdrQ6OLNlOHLaPQMoVtSTfk58S7fiipNcUltjdWNqSOWM33MKlp8IhgcHFws2DVs2DB6ennTHpZOY2FQFQB9fH2LZZavWrVKykDvOkV2igFw8eLFvHz5Mhv9rWJEY3FhZPvX6VmqqRwodEuqybheM+Vq/qK+3ufPn7+ro3r27FmuXbuW27dvp8PhoNlioV/VzszIymZAzZ5S8NzJg1qjhS6ubgwNj6BTWDrTM9cwPXMN7WHpjE+U+p+vW7eOy5Yt4+HDh9m+fQfqTDZGtX+dMZ0nUufkQWtwElV6s5QJrzcXJi/oqXXyJAQp4K539afGIikvTJ8+XXK+a/eWsugLq/aLHLQvv/ySOp1e6n2uUlOl1lBrttE5piK1RgvDIyLp7uH5t/WQgt4mn0h6l21BAHzvvfeKzUeRvLjs7HWbIlcI+1XtwuQhi5k8bAnNXiF0dXMnBJEmnwimjVrBtNGf0RYYz+TCIPDIkVKveY/0hgxpNIw6uychqrhz506S5GeffcZ69epRrdFQ7+xFW2gqRY2eGq2eXt4+dImr/Le+6M0oqNS0R5Zl0qCFNx3jwj7tsd3fLkxKsDJ15CeFVQeZUrC9zxymjf6MJlcfduvW7a7P/44dO+jlfbNHfEhICAGBUR2kioCi1ggAWKp0aQ4cOFAK6pZtzvTMNYztNlVOnujVq9ct38GTJ0/SYDLT6B7EqPav0796NwLg3LlzuXLlSvbt25cjR47kwYMHi53XvXt3imotfSt3LEyeEDhmzBj58yNHjvCbb765Z3nB8+fP85dffinxO2r//v0MD4+gqNZQrdGyZq1ad6yefxKcPXuWn3/+OSMiIimoNTT5RDKq/euM7Tb1qQhOe3r50Ltcy7+phzRgeEQUZ8yYQUFUMabLpMLnsCMB3PKcKDweFF/y6UFZKwUFhcfJjBkzqFJJvwMrVqyoKND8P2HECEk23eIVTK3RQk8v738MuFesVInO0RXk33wBtXsTEPjLL788JqsfLtOnT5d7QWu02lt8zIdNfn4+//jjDx47duyWzxwOB9u370BBEGj1CaNGb2JoWPg996TOycmRfXGL383gfpGiWXSnCfI+lc7sxOeff/6e7+P8+fNSYkD9QXLhgMHNnwC4ZcuW255z+fJlVq1aTbYnJjaOR44cue2xX3/9dbHigr59+9LhcDA3N/eRKnDk5eVx3rx5dLI70xaSwoR+8wmAEa1ekp95o2co9YX3+sorr/DNN99kv379aHOy0+TmR89STWl09qR/QGCJiouOHz9eTCEsNi6ex48f57x58whBYEK/+czIymZku9ekBHmPYMb1nMGgegMIgPXr17/r/YwcOZKBQSEMj4zi9OnTSzR/58+f5zPNmtFitdHH14+zZ8++5Zjr168zKTmFWoOJTmHpFLUG6l18mTzsI9rDM2ixWAmAztHl6JZUi4IosnLlylRrdIzrMZ3pmWvoXa4lBUHg6dOn/9EmBQWFe0MJtpcAxelWUFD4r/Dzzz/TxUUKzEVHRxeTu74bgwYNokZvZGS71xjfZw4t3qGMjol9xNbeO3Xq1KVGV1xG/n9l0/+N7Nmzh27uHvIPfVc3d+7ateuer5OTk/OPP+I3btzIhg0bsVKlyhw7duwD9V3Ky8tj5cqVaQ8vxYysbFoDE2j2iWTa6JVMz1xNe0QphoZH8LvvvuOiRYvYq1cvAqBTeClafCMoCAJHjx7NMWPG8M0335Ql/9UaDQNq9mR65mom9JtPp7B0VqpcmSR55swZ7tq1iwsXLqSHpyc1ehOdYypRb3VmUHAIL168yK5du1KtMzCwTj8G1u5DQaWRg+zjxo3jzJkzKYo3q641RivNFstds+kdDgfnzZvHTp06cdiwYfJ3JzkllRbvUCYOeI+CSkP31HpMz1zD5CGLqbc6U6fTSQFrrzA5eeCDDz6Q1yknJ4ddunShqNbQPaWu7Ez6VGxLtcmJOidPCmotNRZX+lZqz4R+7zC06SjpfgwWpo76VAoMe4UxPj6hWEA5PXNNMWnykNAwOgUnMrLNq3SOrkCVVk9PT0+WL1+BvXv35rlz53jq1CnOnTuXo0ZJY4Q8M1q2yeoTJrdFKJLzL3L2NHojnUJTJYn4sDBCEOhfvZtsh87qSlGlZkDNXhRUGqqNNqpNTlSp1Kxbty4HDBjAxMRE6p195Or0Ion/+fPny+swe/ZsCoJIv2pdJScypiJd429uHhjcAmjxjyMEkSqdmUmDFtKnYjsCUhsFk6svPdIb0ODkRj//AOoNBlp8wumR1oBqnVGWwbd4h1Gt0fCnn3664zMhy/ELIq1BSQxqOISiWkOjycwidQIAhKii3sWXLjEVKao1BAR5syUjK5tGZy+2bNnyjt/dLVu20NvHt9imx1tvvSVV97v7U2ey0cnuzD/++EM+p+jzolYEokrNZ5o1I0nOmzdP3twCwJdffvnuX/T75Nq1a/QoTN5wjqkoOfVqLWvVqv1IxrsfCgoKmFGqNDVGC71KP0OzbzQFlUZOwrnXZITHTXJKKq3+MUwd+QlTh39Mi1cIK1euwmvXrjEtXeoPWdQG5Z9aDyg8OhRf8ulBWSsFBYXHTXZ2tpwQHx4eXuz3nMJ/j3PnzlEQBPpUbMeMrGwmDVxArdFSLCn2dvTv358qnYGR7V5nfK9ZNHoEU6U1MC4+ocRj5+TkcPjw4SxfvgKbN28uJzQ/Dq5cucLu3bszODSMpUqX5qZNm3jq1Clu3rz5nopAHhX5+fmcPn06u3btyqysLJ47d+6+rlO+QkXqrc4MrNOX9shyBMAXXniB/gGBNLkHMKjeALpEl6eoUvHHH3+85+tfvnyZLi6uFLV6epdvRXtEadmn+3s7vb/Tt29fqnUGhj4zihFtXqHB5sbqNWrecYwLFy5w06ZN3L9/Pw8dOsSMUtIYJrOFkydP5vr167lgwQJu27btnu2/HTdu3GD16jUoiCI1JinQ75pQg6LWQHtkGaY8u4yRbcdSUGnoV7ULnaPLM6NUaZLk+++/X2z/o0i97rPPPvvHcZs0bUq91ZlR7d9gVPs3qDM7MTomhlWrVqUgqpg28lOpqKP3bAIo1trP4BZAk8l8x2sPHjyYokpN99R6dImV2iy+8847D2W+SGmNhg4dymrVqsnJEaJKTY1Gy88++4yzZs1iTFw8wyOi+Pzzz/P8+fOMiY2jqFLLvuGj2gNQUPj/jhJsLwGK062goPBfYufOnfT29pYyYoOCigUT9u7dy549e7JFixacMWOGHPy5ePEi09IzigWD75Q5+yS5dOkSu3btyqDgUKakpnH16tVP2qQSUa16DZrc/Jg0aCGTBi2k2T2AlSpXKfH527dvZ2RUtBTIttvvKPX1yy+/UKvV0ewZTHtkWQqiyJ49e96XzdOmTaNOp5cr1gPr9KVvpfYEBOps7jS7B1AQhGK91xwOBydNmsRKlSqzSpUqxRIMrDabHNgsV74C9RYXOoVl0BIQR1FUcfTo0Xz++eflnsoQRIqFfceNRiNDQ0M5d+5ckqR/QBA9SzWRZM3LtqDKYKFGp2fz5s2LZWq7p9Zn4oD3JHl2izOHDBlyx/sdMEDKYLb6RlBnstHD04vHjh3jli1baHd2uVnZ3Hj4zeC0fywFUcWg+oPoHFWOBvdAqRrdYKTBaGKfPn3YtWtXqjQ66l18qXf2YfLQJUwdsZwmn0g5WKsxO1NlsDBp0EKpOj66PFGYLCCoNbQFJ1Nn96KLqysFQaRbcm3G95lD7/KtCIDr1q0jSWq1Orol1ZJ7vRvcAqRAqIsLNVodXVzdGBsfz2rVqlEsrLIpqppNGvwBdSYbBw8ezK5du1Kr1VGn07NHjx48ffo0n332WVarVo02Jyd5LkSVhh7pDWkPl94dZs9gWerMObqCfJzZI4AGmytFlYoqvZkpwz6SesUXthX4e8VGUaa5wSOIzoV95dMz11Br85Cq5r3CKGp01OpuyusD4HPPPcfff/+dderUZVBwKNPS0zljxgx+9dVXrFCxEsMjotihQ0cOHz6cGaVKs3bt2ly/fv0dn4cePXrIlf+AQEGlpT2iNJ3C0liuXDmq1GqqdCaqDBaqDVamjpCq54sy4a2B8YzrMV1WQxg2bNgdg+3Hjh1ju3btmJiUzLZt2/LEiRPU6w1yYkdcr9nUWZzZvXt3+Zyq1aoVU1Twq9qZOr2Bf/zxB1VqNd2SahZ7RjZs2FCCb/29sWnTJlkZoSiBwr9GdwqCUEy68UlSJBsZ1uI5SYpx1Aqq9BZZaeBx43A4ePny5RJXjnz33XfU6Q3UGszU6I00mS3cvHkzSSnZYebMmXzuuedKtOGk8OhQfMmnB2WtFBQUngTbt2+nv79Useni4vJIfpcp/DvYv3+/VLHb+uWbLaI8A//xd+fFixdpLqxYLfIPvco0o1arK9G4DoeDdevVo0qjo3NMRRpdfWm12R5LKySHw8GMUqVkNa+iwOC/cT/pQTlx4oTcmk6r1TErK4sOh4O7d++WW8a5uLrdV3/63NxcpqVnUKXVU21yKkyqlvZD7rank5ySSteE6vLz5lulIy1W2z+OV1BQwLj4BBrsHgyqN4DuybWL+dcAOGHChHu+j/9l6dKl0neizSvF/GWtzY0o2vsBaA1MYOrIT2kLSmSFihVJku+9954UbC/sX14UGF+xYsU/jusfEESv0k3lvQ6VzkRRo6OhcFxbcDID6/ajxTuMEES6JdWSfO+eMyiotbRYrXe8tpNd+n4WzblTaBorVKzIjRs38rXXXuPMmTPvubXnnbh48SLfeecdTpky5a4FO5cvX+bUqVOZlZXF7OzshzK2goLCrSjB9hKgON0KCgr/Nfbv3y/Ld3t5efG3337jvn376GSx0FurZUZhf/e/Bx/z8vL43XffMTs7+74zfRVuT0BgMD1LNS0mgV3Ux/pu/PXXX+zduzcNRhNNHkEMbjBYqp4VxdtmSnfr1o1GF2+5R7Vf1c4UBKGYPHsRe/fu5TvvvMPly5fz+vXrxT776quvpGB1Sh2GNB5OtcEiO0HBIaFs27Ytu3btyq+++uqOtrdu3YYGmxsT+s5j8tAltPpGMD4hkST58ccfUxBEaiwu1DtLEt19+vSRgr/lWzGy3es0+0ZTpTdTUKmpsbjQ7BVCAJw6dSrjEhLpFJpKz1KNKYgquqfWo3OMlFFs9omUq6LDmmfKwVqzR+AdndSiFgVFcvFJgxZSazAzKyuLpORUL1q0iD6+fjS5+TOizSuFQVSBWpNNDjRGtnu9MMhfjz7lW1NUqanXG+hdtgXjes2k2mCloFJTUGkoiKLUT1pU0R5VTkou0OiosbhKwXL3IIY1G0P3lDrShovFlRAEqgtl5//uBPfp04fNmjUjRBVFjZ6WgDimj1nF9MzVdApLp0pvon/1btRYXKjSST2s3ZJq0iO9oZQc4OJLrdFCN3cPKTlAraFX2RZ0ia1MQRQ5bNgwkmTZcuVpdPFmVIdxDGkynIKoosXmxKjoGLZp04aiSs3wFs8zechiOkeWoSCKdImrzPTMNUwd8Qn1dk8pI9vkRHOh9F758hXkdThy5AjHjx9Pi9VGUaOnc0zFYtL1oU1H3uyTLhSfgyZNmzI/P5+bN28ulhAQGBRcYoWPIvbt20dBEOmaUI2x3d+mZ0ajmxtfRhubNWtGtVpNjdlOld5MrdWN6ZmrC6Xqs6QEEdPNXuFStTvk/vR/5+LFiwwKDqHe6kyX2MrUmZ3kxJqg+oPoUtjLTUq0cZbvpX79BrT4hDN9zKpCefGGtDnZuWLFimLZ/+mZayiqVJwyZco9zcH/UlBQwOPHjzMnJ0f+2y+//CLdq0ewfP++lTtQFMVH0uPufpCD7c2zpGD7yE+pMVrYsGHDRyqVeDvWr19PH18/eRNu5cqVJTpv9+7dfOWVV/jqq68q1XD/UhRf8ulBWSsFBYUnxbFjx5iamloYpNM+1j7JCo+PGzdu0M8/gGbPYEa0epE+5VsTQImCr+3bt6fWaGFwg8FM6DefVv9oRkRGlWjcP//8szAx/FlmZGUz5dml1BotfOGFFx70loqRn5/PhQsX8uWXX+by5cvpcDh46NAhKSnaO4JxPaYztOlIQhRZqVKlhzr2v4lr167doiBYUFDAt956i1WqVmX9+g34zTff3Pbcc+fO3balRJEfV6SQVtR3e8CAAXf1W+rWq0eTewBThi9j2uiVdApNYWhYeLFjpk2bRk8vb5rMZjZp2pTnzp3jkSNHJD+p2RjZb9S7+BCFsviiVuph/qD+x+TJkymq1LK/mDRwAQGwTJkynDVrFlu0kNrZ2cIyaA2UZN+XLl1KUmq55urmTrNHAL3KNKfRxZu+fv4l+h1Xtlx5WrzDmDr8Y3pmNKJKZ2LiwPel4oaIMlIygyAwKjqG1apJSnqqQiU8iCKfffbZO17b7uwiB/IzsrJpC0lmeHg4BUGgxmCiIKoYERml7KsqKPwHUYLtJUBxuhUUFP6LHDt2jLGxsVJlq7MzW7ZsSQ+tljs9vXnE25fDLFYKgsDLly8/aVP/89StW49GZ0/G9ZrJ+N6zaXTxZs2ate56ztGjR+nmLvUGByD35k0fs4o6k5UvvfTSLec0btyYRs8QOfgb3GDwLf++nTt3js8++2wxmenUtPRifZZHjhxJo5O7fJ0iR2/16tUsKCgo0T2npqXTNaE6U0csZ2CdfrQGJ1On15Mk69WrR7NXCNNGrWB65hq6xFSkVqen0e4pOyzRHd+UAsGu/kwb+SnTM9fQLakm7c4uhcF6QZaDlp2c0DRaAuKZNmYVNVZ3qgxW+lXrKlV7F8qN5ebmcsSIEYyJjWep0mX42Wefcd++fcWyrTOysml292e/fv34/fffc8iQIRw5ciRXr17NwKCbPejjEyRZd6/SzzC85Qs0egRR0BjoVeYZuiZUo9kvmiqNVG2ekZXNxAHvU+/szeCQEO7bt4+XL1+mm5v7LRnkABjd8U3Z6S1KSjC4BTBt1AomDniP1sBEqk12+lXpdLOC3C9GkrpPqXMzsaP0MxS1BmZkZTOi9cvysYn95zM9cw1Dm46iIIqsUqUKjxw5woDAYNqjyt2USAeoN5p45coV6nR6+tfofjODO7wUTWbp+RRFkUFBQfI5Op2eoigyoGZP+Xh7ZBmWLlOGTZs2ZZkyZZiZmSk/T1u3bqXNbi/seSfIlfeu8dVoC02T5rvPHPk7IKg1NPtGM3XkJwx9RpLEb968Od09PGh09WXykMWM7z2beqsL27ZtW6Jntohly5YRAJOHLJbHkxMcBJEDBgygzmRj6ojltARIGwL2qLL0r9aVOoszk1NSOWfOHCkQ7RkqSeobpEqV/910WbRoEQEwoc9cZmRlM6brZCnQHhxCtcFCQVQxsE4/hjXPpM7iIitifP311xQEgQZXP5p9IghIUnG//vorAamXoCTV/zwB8JNPPrmnOfg7O3bsYFCwlOyiUqs5duxYktJmW3S0lDRh8Y+la0I1QhDZrl27+x7rYVNQUMDSZcpK/TIzGtPqF0WdTs8dO3Y8VjtOnDhBq81GW0AcQxoNoz08nVqtjr///vtjtUPh0aD4kk8PylopKCg8Sa5cucLGjRvLv5dfeumlx578p/Do2bZtG/0DAmUfacyYMSVa52PHjhXzNc0Wi9yG7Z/YuXNnMX82fcwqGmwuD7XNUH5+PuvVqy/5eoVy4D169JATcEOfGXXTl/aLYWRk5EMb+2lg9OjRkl8YnkGLTzhFUeTatWvlz69cucIGDRvK61u7Tp1i1c8LFkhB6JRnl0oJE8M+IgAuXLjwruNu3bqVJrOFWqOFeqszVWp1saTejz6SruOaUI2+VTpSa7SwVu3aPHfuHAHIreFShi+j2mCl3sWXYc3G0BIgtW5bvHjxA83LDz/8IO+ZxPWYRtf4KtRotDx48CBJSRlh2rRprFChIqtUrcply5YVO3/Xrl2sVLkKff0CWLNmLf755588ffo0d+zYUWwP63/5+eefaTJbqNbqKYgijZ6h8vNZlCA/a9YsOhwOOhwO9uvXj66ubnR1c+fo0aPv2o5x+PDhFERR2p+KLEMAVGs0dEuqyfTM1YzvPZsavYmZmZkPNHf/Jnbv3s0+ffqwffv2xdomKij8f6Ok/qQaCgoKCgr/Kby8vLBu3TrUrl0bP/30E5YuXQpfQYRNFAEAIWo1SOLq1aswm81P2Nr/NlOnTkGFipWwY3oPAICvnz+mTXv7rufMnj0bFy9fRXCzLOx571nknj8Os08E8q6cQ37e9VvWjCR++XULck4cxIHP3oLBLQBH1y9CZFQ0rFYrAGDv3r2oULESTp48CafwDIQ2Ho6cUwewdcFIjB8/Hs899xwAwGq14sa1y7hx+Sy0VlfknD4EAIiOjoZY+Pz8Lzdu3MD48eOxceNGeHh4wN/PF9u/+AY7ZvVF3oUTELV6FFy/jokTJ+LsufPQufhBVGsBAEaPYJzdtR438s/i2tkjMLj44vJfOwEI0Dv7QNTopOPcg/DX9q/g4uKCr7/+GrXr1AXouGmEowCOgnwc+Owt3Lh0CgDw19fzYDDoMXXqVNSrVw9du3bFO/PfhUt8VRw5cQINGjTAp59+CrPVhkOfz4CjSidc+WsXrpw6DIPBgPLly0Nvc0XBjTy8NXESYmKicfDgAejNdmzftg2pqanY8tNyHN+4FGqNFoIg4tSv2dC7+OLqsd9hMBhweks2cs+fQEHuFVw/dwxvzl2O0NBQXLp0Cb6+Pjh9WrLV7BeD/GuXcP3MEZz7/QdY/GOQd+k0Cq5fgajSwOgZDFGthc7mDltoCq4c3Q2N1QUAoLW4IrrDG9j2dlec3vIFDK7+EFRqnNy8Eo4buaCjAPk5F+WpOrtzPbzLNoOo0YEOB75dtw5ZWVkwmoz4a98vMHoEIbTxs7h+7jj2Ln4O9evXh5PdjssHt8IjrQEceddw6cAWaAxWhDbpg2tnj+DAugUYMmQISpcujdTUVHTq3AWbNi2FxuKMG5fP4cLeH1HvpRcxatSoW56ffv0HIBd62KPjATpw9ejv8HOzAtf+Qt6NPFzXG3Bo1WR4ZDTGud3fg/k34JneACqNHmafSAgqNZZ9sgKCWof8nJPYMqkD7OHpMPrFYs/ve+/4Pdu/fz8GDBiI3/fuQ1RUBCZPmgQvLy8AwIU/NsMtoRou/vkLAEJtssNx7SLsdjtIB85s/xqXD+2Ae1p9XNizERd+3wRBEPDBwgVYtWoVBFGFvEunYHQPxqWDWwEA1avXwLx5c9G+fXsAwPXr1wEAaqP0HdUYbQCAYUOHYMjQYbBGlIZHal0AQO6FU/h+7TsAgPT0dMTFx2P7tm0AACe7Mxo3bozo6Gj07t0b06ZNw/F17yMv5zLq12+A+vXrAwCWLFmC+fPnQxAEdOnSBU2aNLnj3BR9r+vUrYfzuSLCmmfi8uFdGDlyJKKiotCwYUP88MP3aNmyJTZ8/wNuXD6Gnj26Y/LkyXe95uNEFEWsWvkZ+g8YgO+/34ggPw+88cEsxMbGPlY7fvzxR1y6eBGJHYdBZ3OHc1Q5bH6tMdatW4fw8PDHaouCgoKCgoLCk8FkMmHp0qV49tln8eabbyIzMxN//PEHZs2aBa1W+6TNU3hIxMfHY/+ff+DIkSOw2+2yL347fvzxRwwbPBjHjhxBSno6vvryC/z888/Izc1FlSpV4OfnV6Ixw8PDERkVjcOrp+BaWkNcOfwbci+fl32A++Hw4cMYPnwE9v7xB+JjY1CpUiWsXPkZwlu+AHt4Bk5uXoWZM6egY8eOEFVqnN+zEc6RZZF74SSunTyAlGaN73vspw2SmPDWRHiVfgb+1buCjgLsmjsAU6dORaVKlQAAw4YNw+rsLxBUbwAgiPjqy5kYMGAA5s2bBwAoU6YMdHoD9i9/Ay4J1XF22xfQG4woU6aMPMaJEyegVqvh5uYmj52QkICtW37FwoULkZ+fj0aNGiElJUX+fNmyZbD4RiK4wRAIggC13oLs1VOQlZUFq9WKw1/OwcX9v+L62SPIv34F0Z3Gw+DqD6NHMLZN7YycnJwHmpvSpUtj3LhxePbZZ3F841JotTrMn/8OAgICAACCIKBXr17o1avXbc+PiorC2m++lv//uHHjMGLECDgcDlhtNny0ZAlq1Khxy3mpqanYvm0rPv74Y2zatAnLli3D8U3LYfIMxpFv34OgUqN79+745ZdfMGPGDEyePLnEfuwrr7wCvV6PxR9+BK1Oi9Hjx2Po0KGwR5SBIIgwuPrB6OaHI0eO3MeM/fvYvXs30tIz4FDroTE747333sPBgwcxcuTIJ22agsK/l8cQ+P/XomS4Kygo/Je5dOkSq1SpImfQ1tTpOdHJTj+tjgmxsUpG4mPi4sWLXLFiBVesWFGif28GDRpEk6sP08asplN4BgWVmraQFOosdnp5+/DUqVPFjj979qwkD55YgxqTnYJaS7XBzNKlS3PGjBncsmULK1WuQoOLdzFZ5YysbNoCYopV/548eZJe3j7UmZ1oC4yjIIps375DsfE+++wzNm3alE2bNuWKFSvYokULiio1nUJTabC50dnFhXa7MwWVhnE9ZzA9c40k36VWc9iwYRRVagbU7MmQRsOoNlppC0mhqNFTVGtpdPH5W5W3QL+qXaTjDFZZ1mzIkCE3M4oTa8gZxSqtvlCCeyDj+8yhPTSVVpuNV69eZV5eHlUqlSwXn565mmavEEZERlIQVXL1MSCwUqVKDAwOoT28FNPHrGLqiOXU26Qq9Mi2Y5mRlc3Auv0ISP2wDx8+zFatWlEQVUzoO0/qR1Z/IAGwVKlS8v24uLpx69atvH79OiOjoilqdLSFplKlM9LgHsjkZ5fKvd/NvlFSX3CdUbo/QaR/je6Fc2GhwT2Qeosz7XY7NSYnpo1aQXtkObknNQqVAQDQObpCYc83gRb/OKnSQiPNldpgoW/lDlSpNbKEWnCjoTefj+AUad4FgYIoUmeyUV0oKxfc8G/HBcSxRYsW8jNy7Ngxpqaly7Z07NjxjvLizq5uBAQa3AJo9JAq5N3cPUiSFy5cYJcuXSTZfYB6vYGCKNI9pS5TRyynNSiJaqONSYM/YHrmarrEV6Wg1lLUmSiqtWzfvv1txzx37hy9fXxpdPGmR3pDGuye9A8I5Pfffy/LwKuNUtWGymChoNKwbdt23Lt3L40mMzUmG7U2j5tqDJ3fIgBu2bJFriDwqdCGAOhdriXje82ia0J1qjUaHjhwgCR5+PBhmi0WWv2jGVCzJy0+4XR2ceWpU6f4zDPP0OTmx9QRy6X7iq1Edw9PkuSQIUOo1hkY3vIFRnd6k2q9iSqNlp5e3hw/fjw//fRTjhw5kgkJiTSZLQwMDmGvXr0ISP3krQGxJaqU2Lt3r/TMt3n1ZksGNz/279//rufdK/n5+Rw7dixLlynLGjVr8ssvv3yo138YnDt3jsuWLePy5ct54cKFezr3m2++keax3Ws3WyEAXLRo0SOyVuFxoviSTw/KWikoKPxbmD59OlWFSk6VKlW6ray0wn+bffv20WQwMEGvZw+TmW5aLZMTEu67HdPBgwdZrnwFarU6+vj68aOPPrpv286dO0dfP38anNzpmlCdOrMTPTw9KYiqm3LggxYSAD/99FO+/fbbhCBQ1OgIQaSnlzdPnz593+M/bHJzc7lmzRp+9NFH99xi7G6cOnWKCxcu5MKFC6lWa+QqccmHTmadOnXkY0PDIuiR1uBvCnRN6ecfWOx6q1evpt3ZWfLfXVy4Zs0aktJeT4UKFWW/ukHDhrx69eptbbp8+TIPHDjAvLw8kmSHDh1ocvdn2uiVctsvCAJFtYbuqfWod5HaXEVHS63M4nrOKKz+ziQAbtq06aHM1ZEjR/jDDz/cso91LxT5VF6ln2F0xzdpD02l2WLhmTNn7npeQUEBe/bsKc+f2ujE2O7TGFinLwHw119/vW+bSKl9hJu7B20BcYzrOYPBjYZSFFWcPHnybY+/dOnSXSvn/2107dqVBrsnU4d/zIysbHpmNKZOp3+q7kFB4WGhVLYrKCgo/D/HYrFg1apVaNGiBVasWIHPc6/j89zrSE1MxEfLl0MQhCdt4v8LrFbrPWWWV6tWDW+99RYOfz4dLtEVkHN0D/KO7UbH9u2QmZlZLJsZAIxGI1QqFTRmZyQPWYSrJ/fjt9n9sXHjJmzcuBEAoNZo4ZxYCzdyvsWpX9fA4heNnJMHcPXYH4iMbCVfy93dHb9s/hnjxo3DiRMnkDGwC/r27St/vnjxYrRq1QoW30gAwLJlDQAAQfUHwj2pFm5cvYDfpnVBZFgIrh87D6N7IADAKSwDJ378BB06dMDJk6fw3nszAACWgHiENH4Wf339DvjXL2jT5hn4+fkhNDQUS5YswaJF80ASOmdvxPWYhrM71+HNN9/EDz/8AIPBgEWLl0Cr02LE66/j3XffxYGTF+GeVAsA4FmmOXa/9ywOHz6M4OBgOBwOCCpN4Z0IEEQ1jhw9BvfUugio2RM3rpzHgVVTsHffH7hw4TycM8pDEFVQaQ1QmZwgXDkHa1CidD+haQCAixcvws3NDbt27YKoNUBn9wQAmDxCAACbNm2Ca0INmH0icXbLKjRo2AjTp72NPbt3Ibrjm7D4xyDn5H7smNkbl/Zvgdbqiutn/oIgqqA22ZB77hjO7/kBBoMRh7+YBQBQqdXIPXMYlatURbeuXdCqdWvsfGcwNCY7Cq5fhtkvFjqbO87u/BYaqytuXDkHg1sAck4ewOXDO2D2icT1c8fgyM+DU0QZiCoNnOOqYP+BP2Gx2nDut3VwiSqP3AsnceXY7/BIq4+C3Bxc3rMezw7uD71ej+eefx7XTh0EAOTnXsWNS6fg5FRGfk68vLzw04+bcOLECRgMBjg5Od3xeS8oKIAlMA5RbcfCUZCP3xeOxtWzB3Hp0iWUKl0Gf+4/AL3dC8jZj2bNnkHp0qXRu08fnPplFQDAGpwErdkZAGALSsLZ7V/Dv3o3HFrzNsaMGXPbMb/44gscO3oEif3nQ+fkiWup9bB9Wjc0atIEgtkdXolpuHJ0Dy4f3A6rXotWndph/PjxMBgM+G7dt2jTpi1+37sXF/dvgTUwHme2fQWVWg0/Pz94e3sDAK6dOwpBVMO3cgcIggDfyu1xZtuX+O233xAYGAg/Pz98np2Nzl264sDadxARGYl3538BNzc3jBkzBqvXlMNvb3eBSmfA1TNHMX/+fADAL7/+CmtIKuzhGfjz0/Fw5N+AV5lmyLtyDkOHDsWcOXPw+Rdf4vcDh+Ga3hQXj+7B9OkzYAmMR2S71wEA+z58HuPenIDWrVvfcV2K1uzqiT9hC0nGjSvnkHflPOx2OwBg7dq1+OWXX+Dj44NmzZpBrb4/l2Lo0KGYNHky7JFlcePwIdSsWRPffPMNKlaseF/XKyI/P/++bfo7e/fuRcVKlXHi+DEAkjrJ+u/WITAwsETnly9fHmXKlsNPHz4Ps18Mco7vRWRU9ANVGykoKCgoKCg8vfTs2RNBQUFo1qwZvv32W5QpUwarVq1CSEjIkzZN4TGxdOlSCDduYImrO0yiiEq519Fq2zZs374dycnJ93y9gIAArP9u3UOxbdWqVTjy12Ek9n8XOicPXDm2Fzvn9AcAHFn7Hlzjq+L4xqVQqdWIjY1FgwYNkJ6ejq+//ho2mw2tWrWCzWZ7KLbcDxs2bMCmTZvg6emJWrVqoVbtOvhl888AALPFglUrV6JChQoPNMauXbtQsVJlnClUqdMbDDi+/gOwIB95l8/g4v5f0WTUHPl4Z2c7Tp88BDoKAADXTh2En92p2DVr166NM6dP4/x5yd8qUhXs2asXfvxlC0IaD4cjPxer10zHyJEjMWnSpGLnT506FYMGD0b+jRtwcXXD8o+XoWfPnliwcCH2zB8Mjc0T5/dsgADAp2J7eJdtBpLYPbc/IiMjQQjYM38wDO5BuHL0d9SqXRtpaWkPNE9F+Pj4wMfH54Gu8cMPP0BrtMCvWhcIggBVta7YMaMndu3ahfLly9/xPFEUMX36dPj4+CDrueeROOBdqDQ6qI0WYPVUHD16FElJSfdtl1qtxsfLlqJegwbYMaMnAKB58+a3VOvv3bsXjZs0xa6dv0GvN+CNN15Hv3797mvM69ev4/Tp0/Dy8noo/u7duHDhArQ2d6h0RgCA0SMIJ3KvIzc3F0aj8ZGOraDw1PJYQv//UpQMdwUFhf8P5OXlsU0bqcpSEAROnz79SZuk8A+89dZb1Gp1UiV6eAR37tx51+MzM6XsY6tvJEWNjqLGQEGtZXCDwQxrNoZqg5UqnYkhjYZRVOvkzN4KFSoyJyenxHbFJSTSHp7B9Mw1TM9cQ2tAXLGqzfTM1TQ4udNslvp+B9btx7ge02gJiKPFauP169dJko2bNKHWaGHoM6MZ2mQE1ToD09PTOXz4cK5evZq5ubksKCjgtGnTCIBpoz+T+ok9K/XU/uCDD26xbdy4cVRptIztNoXpmWvokd6QKrWa58+fJ0k2b96caq2eXmWa0TmqnFR97OdP5+jyTBuzmh7pN/uoQRCo1psY3uI5BjccSohS9YlXmWaM7T6NrnGVqdFoefjwYfbr14+iSkMAdE+uzbAWz9HsE0GN9uY8A6AtJFXuDwaASYMWyj3SAMj9yZ2cnORz2rdvz127drF8hQry39zcPfjrr79y9erVcsU3BEG2AYJIQVRTbXSSs9iD6g2Q1iMoiNWqV6deL1W2aywuFNU6iloDo2NjuXLlSqpUakIQ5Or45KFL5N5mx48fJ0m+9NJLUr9u73BqLc7U6vTcvHlziZ8jUsq8b9asGQVRRfeUuozvNYs6J8+/3ac7BVHFuF4zpXuo258A5J54rgnV6RSWQQgig+oPYlSHcTS4+tPgHkj/6t0I4I5Z/wMHSsoDSQMXMCMrmwn93pHHDW/xvFx1YHAPYv369W85Pzc3l1WqVJXnXhAEzpgxQ/68UePGFFVqqX9iqxeZkZXNgNq95er3krBnzx4OGzaM/fr141dffSX/vU2bNtSYnZk4cAEFtZa+lTverKIISWb58uWl90aL5+S+jVqLC42eIUwc8B7dk2tTa3Wji4ur/H28E/369St8r0RQZ7LRw9OLx44d4/PPS/3gNTojAbBq1WpyBcW9kJ+fT41WS58KbWRbzZ7BxVQS/peDBw9yy5Ytd3xv/fjjjwwNCycA+vr5F5u7+6Fylao0ufkxod87jO8zh0ZnL9ard+szcTeuXLnC0aNHs1GjRhwyZAjPnTv3QDYp/HtQfMmnB2WtFBQU/m1s376dfn5SZamrqys3bNjwpE1SeEyMHTuWZrWav3t684i3Lxe5uBIAf/nll3u6zsqVKzlixAiOHz9e9nkflLlz50r9w4d9JPlJfefJfmmRv6TWaDhv3ryHMt7D5M0335Ts00lKbN4+vlRrDYzu+CaTBn9AW2A8fXz9HnicChUr0ewRwKRBC5nY/10a7J708vKmTm+gk92ZY8eOLaYimZ2dTVGlosnVhyY3P4qiyE8//bTYNRcuXMjQ8Ai6e3qxXfv2ck93V3cPepdvJft7bsm1GRMbX+zc7777TtqLSK3HiNYv0xYYT5uTnefPn+e3337LOnXqsGy58nzxxRcpiiL9qnWRlcssPuFs3rw5z58/z1GjRrFNmzZ8/fXXmZub+8Dz9DCZPXs2BVHF2G5TivnWe/bsISn1h88oVZq+fgFs3KSJvG9RxIYNG6RnomwLxvWcQdeEasVU5x6Uc+fOcd26ddy+ffstCqI3btxgSGgYTW5+DGk0jO4pdQmAq1evvudx3nnnHer10vPt4uLKb7755qHYfydmzJBU2XwqtmNIk+E0OLkzPaPUIx1TQeHfSkn9SSXYrjjdCgoK/w8oKChg7969ZQfptddee9Im/b/k6NGjzMrKYv/+/W9xsP6XvLw8nj17tkRy/w6Hg++99x7btWtHu4srNWZnuiZUk50y38odCqXEpfV3sjvz3XffvWepuuCQMHqk1Zev655SjxqtjiY3PwbVH0TX+KoUCgO11uBkeTxBVLFZs2bydc6cOcPSZcrelDw3GKnW6mi0e9z8m97ALl26SEGzKh2ZMuwjWZr7dnJfV65cYVJyCgVBoEYvBQEnTZpU7POuXbvS09uHYRGRfPfdd9mzZ08KooqCWktJtr4zk4cspkd6AwKCbItKq6dLbGX5b2q1RpaBDggMpkd6QwbW6UehMOCt1mgpCJLMfdKghQysIwUtRVHk9u3bKarUNPtGM7jBYFoDEwuD2zfHMxhNHDJkCD///HNZNjyi1YuM7T6Neld/mswWWqxW2sPTmdj/XZp9o6g2WBjR+mVGtH6ZGqOVEKT7CX1mFDUWF2p1Bvbt25e//vorVSoVPdIbMD1zDRP6zaeoNbBhw4Y8f/484+PjKQhSckFQg0GM6zVTkrVXa+TfSwUFBSxbVkpYUOnNFFQaxsTG8cqVKyV+ltp36EC1zkBLQBwFlYYaiwv1rn6M6jCOQfUHEYJIUa1heuYaZmRlM7a7lHhRtmxZ2gJimTRoIUOajKDe1U+eN0maP52iSs3OnTvfdtw33nhDeiZVGupdfOldvhV1zt6EqJYd8CJ5RJXORLvd+bbXuXHjBpcvX84ZM2bcsjGWk5PDAQMG0GqTEie0RqlNQe/evUs8P3fi22+/LZT2l/7zKv2MnOhi8Y1k1aqF7QAaDmFGVjZTR3xCjclGQKBKZ6TGZKctNJWiSs36DRrc9f3icDg4Z84cduzYkcOGDePRo0d54MCBQoe7LdMz1zCy7VgKgsD58+ff873k5eVRFEUG1Owpv1OsAbFs3LjxLccWFBSwc+fO8lp7eHrdMu+nTp2izW6n1S+SQfUG0Ck4iXqDkX/++ec921aEl7cvvcu1lO3zzGjMkNCwfzxv+fLlTElNY2hYBPv3789r167dtw0K/14UX/LpQVkrBQWFfyPHjh1jSkoKAVCn0yltZv6fsHfvXpqNRllG3lWjYVJ8/D355q+88goB0Gj3oEqjY0ho2ENJ6Pzrr79osVpp9YukX9UuNHsG0d3Dk+fOneOBAwf47bffPlQ59ofFqVOnKIoiPUs1YXrmGkZ3mkBBVNHg6i//jg9uOPSuCdklIS8vj57ePv/jHzRiSGj4Xc/7/vvv2bNnT/bo0YPfffddsc9Wr14tycdHlqV32RbU6I1s0LAhSTIiKpr2sHSmj1nFtFEraPGNZKVKlYud//LLL1NrtMh+c1wPyW9ev379LXa0a9eeKo2OHukNaA/PIACuWrXqluPOnj3LgQMHsk6duhw8ePA9t9J62OTk5DAxKZkqjZZmV6n1YI8ePUhK3yeD0USrbyS9yjSn3urMuPiEW5LBx44dK+9VaTRavv/++/Jnubm5HDRoED28vOnrH8DXX3/9obXdLGrPFtH6ZTnJweTqw4EDB97TdTZv3kxRFOmWWJ3hLV+gU1AiLVbrA8nz/xMOh4NDhw6lKEotHZOSU3j48OFHNp6Cwr8ZJdheAhSnW0FB4f8TDoeDo0aNkoMVI0aMUPq2PyYuXrzI9957j052O7VGC81uUoDwjTfeeOhjNWrcmKJGR6NHMFNHfsL0MavoFJ7BgMAgLlq0iIsXL75vR3zAgAFUabT0q9KJflU7U6XRskOHDoxPSJQC7DYbJ0yYUFjV3p/xfeYwovUr1BqtHDVqVLFrORwOHjhwgP369aPWYGZCv/mF/d0bE4IoV5rXqlWrWIV49+7d72hfTk4O33nnHb7xxhu3dS7/ztdff01BEGgPz6B3uZYUtQbagpOZnrmGif3fJQDOnDlTvpeMrGwmDVxAs08ka9SoIV8nJi6e9ohSTM9cw9SRn9IamCBX1sb3miU74SqdidWrV+fo0aOpUmspFlYFQ1RRV9ir3rdyR/pUbCv3pweknm32yDLydYr6xQNgZFupn7bOyVMOumZkZdOzVBM50FtU7a63uVJvcaZWq5UC2VoDjR7BjOownhafcLZr145x8QlUafWF5/0t2UAnVdCvW7eOOTk5zM7OLpyXfoUO/XRCENi2bVtWqlSZFSpU5OzZs+/6fnFxdaNX2eZSZndhoPvvfeCtQUlSUDW9ASPbvCoF5UUVU1JSqDGYZZuK7s9gNDE4OJhp6RnMysq6baV1fn4+dTo9PdIbMq7XTClQX5hs4ZpcW553vasfVToTVXozAYH16zfgJ598ctfn6Xbk5+dzwYIFfPnll/nJJ588lPftlStXqNXqaPaJpCUgngBo8omg1uZOAFy5ciXrN2hAlUZH1/hqNHsE0WA0MiEhgYJKIysqhDQeTgDcvXv3PY1fVDlRpDiQkZVNvcXOF1988b7up1HjxtQaTPSt1I5uiTUI3F65Yvr06RQEgYG1+zC60wRafMLp6+fPgoIC+ZhPPvmEAJjY/93CRIPlhCBw9uzZ92UbSVasVJlm9wAmDnyfif3fpdHFm3Xq1L3rOV9++SUFQaBTSDLdU+tRrdGxTZu2923Dw8ThcHDPnj3csmXLPyobKPwzii/59KCslYKCwr+VK1eusFGjRvLv2pdffvlf5aNfv36dkyZNYr9+/Th9+vT77iuuUJxNmzaxfJkyDPH3Z4tmzXjy5MkSn3v+/HmKokivss2l5Ok+c6nRGfjSSy8xLy+PX375JZcuXcojR47ct21x8Qk0mc1MS8/gjh077us6j5MtW7YQAKM7v3XTR3HyoKjWMLb720wZvoz2kBR6eHrd1/frq6++orePb2GhgIl6J3cm9J3H+N6zaXT2lIPj90O7du1o9gqRg+VFifpXrlzhxx9/TFEUaXLxocHJnRqNluvWrSt2/vTp0ymq1DcV4QpV7Xbt2nXLWNeuXWO/fv0YGBTCuPgELl68+JZjrl69yuiYWGqNFjqFZ1BjMDExKfmJ+A55eXn89ttvuXr1ah4+fJgTJkzg4MGDuWDBAnkdx44dS43eyNQRnzAjK5uR7V6Tkuh9fTl+/Phi633o0CGuX7+eJ06cKDbOgAEDKKrU9CzVhG7JtQmAU6dOfSj3cOLECQKQE8yThyym1mhhVlbWPV1nwoQJVGl0TB+zqpjqxBdffPFQ7LwbOTk5JS4EUlD4r6L0bFdQUFBQKIYgCHjllVdgs9kwfPhwvPbaa7hw4QLefvttuSeUwsPnjz/+QKXKVXD0yF9Q6c2I7z0LGpMdh7+YhVGjR6N///7Q6XQ4fvw4Bg4ciG3bf0NwcCDemjABERER9zzexLfewg8/bMSpUwewdVJ7iGotblw5h9kffohnnnnmge7l9ddfx6VLl/De++8DANq1bYsZM2ZAp9MhNzcXWq0WgiBg06ZNWLpsGmxhGcg9fRBaFdC5c2f5OgUFBZg/fz527tyJzZs3Q+/sBX1hv3NrUCJO/LgcXqWfwfVTB7Bt+3aIag1MPpHIv3oe7773Pvr164fY2Nhb7DMYDOjYsWOJ7mXx4sUwufkhrMVzEAQRemdv7F8xATdyLuL0ti8BABUqVIDZYsXVY3vB5NoQtXoU5JyHj09p+TqjR45A69atsfudQQAduHx0L16ZMgX9+vXD6e1fw69KR1z842cU5F5Fhw4dsHz5clj8YxDRdiwK8q5h66QOUOtMgN0LnhkN8ev4lnCJqYDAuv1w5fBO/L74Oaiv70TupdPQGG248PsmqHQmOPJzcfa3b2ENTICoNeDSwW0ouHEdIHDp4DaY9XocOngeCYlJuKT1QHiLLNy4fgXbJraH1uoK9+Q6uPDHz9izYCRYcAMqVRns2L4NKp0JgACdsw9yL5yAwdUXvhXbY99HL2Lq1KlYunQpSAKCCL1d6k9ucA+ESmvAggULYAtOgqDSoFu3brh69SoGDBhw2/k3mkw4uXMdblw6C6/STXFi08e4eGALXOOr4MbVC8g5uR8AcPLnlTj50wqojTbozDYkJydj6/YdMLgHQ2f3wrk938O7bAsUXL+C/T8uR9++fTFo0KDbjnnt2jXk5l6HySsMuedP4PqZv2AJiIfGbMeZX9cAgghRrYPRPQia4BRcOrAFeQ4H1m39A581aoQPPvgA3t7eOHLkCBISEm77DP4dlUqFNm3alOh5LCkmkwmzZs1E586d4XAQgICrR3+HxmgFAHywaBEWL1qErKwsfLd+AzzSYvD88x9h5cqV2PPnIWhMTgAAnZMHAODKlSv3NH54eDi0Wh2ObVgM34rtcH7vj7h++TwSEhLu637enT8fPXv1wmcrP4XZZMbkyZPRqlWrW4778ccfYfWNhEea1Ovcs1wr7PvwBZw8eRJeXl7y3ABA3qXT0Dl5IO/SGYCU/34/TJ/2NipWqoytE9sBALy8fTB58qS7njN//nyYPIIQ3vpl+d3ywQezMXfuHOh0uvu25UG5du0aGjdpgs+zswEAQcEh+PKLz5UesQoKCgoKCk8Qk8mEpUuXYvjw4XjzzTcxZswY7Nu3D7NmzYJWq32itt24cQO1a9TAhg0bEKjTYdr168hetQoff/qpsn/wgGRkZOC777+/r3NPnz4Nh8MBW1AiBEGA3sUHersnjhw5gkqVq+CH7zcAAExmM1Z8+imqVKlyz7Zt37YVAOBwODBu3Di0aNkaao0afXv3QteuXSEIwn3Z/qgIDg6G0WTGie+XQFO9G/6PvfMOj6Ls2vg9M9t7sum99wRIJfTeey/Se5feERBeBYFPioigNBVRuvQixUITRERAUHqTEjokkGTv749JBvMCSlPUd3/XxRXNzj7PeWZmN3Oec859bp74HlnXL8LXzw8/zuwGANDpDfh0xfKntv3EiROoUbMWdN6RCK7ZEBn7N+DWuZ+wf5q8v+Ht44uWLVrg6tWrcHV1fWrbJUkCc3MAOgBBgiPnHgC533jdunWxdetWfPrpp1CpVGjVqtVDPcabN2+OyVOm4qfZr0Jv98WtC8fQokVLREVFPTSXTqfDlClTMGXKlEfa8tNPP6FFy5Y4dPgwbOGpCK3VB5kZZ/H97N7YvHkzqlat+tTre1Zu3bqFChUrYfeunQAAF1c7GjdqCFEUkZOToxwnCEJeqpJD/oVD/nlX74t+/fpBq9Wie/fuAICAgAAEBAQ8NNfHCz6BZ2odBFRsDwDIuXsTb02YgDJlyiA2Nva51uHp6Yn27dvjgw/ew/WjO3Av4yxMei06dOjwVOO4uroiN+c+Mi+fgsEzBHcu/Kz8/s9Gr9dDr9f/6fM4cfKv4K+J/f89cWa4O3Hi5O/KnTt3+N133/H48eN/yvjvvfeeIqHUrFmzZ+q36+TJKFO2HI1ufrRFFKXRN0rJtA5rIPeevnTpEu/evcvIqGjqLHZ6ptSi0d2fdjf3hzJu8/nll1/4zTffMCMj45Gv37hxg//3f//HWrVqPVKq7HnJyclhTk7OY1+/d+8eX3vtNZYtV45NmjQp0HPe4XCwQcOGFESRJg9/CnnVxIGVOzOm9UQavcOpsbgzedAy6l29ZTnzmr2ZNmIdUwavoN5iZ9++fZ97DV26dKHB7qP0NQ+q1r1ABb0gihw3bhzfeecdAqDJI4Bak40Wq1XpDZbP559/zgYNGrBhw4bs3bs3DUaTUnEt5EluVatWnTk5ORwwYAA1eiPjOkxl8qBlckWyKFKQ1IxoMooAGN1yvHKfGN18KanUcjW6WktBUtHoGUz/wCCKoqj0Bs+vVpe0BgoqNSEInDx5Ms0Wq9LXO7rVBAJgbPspisS4IKmZkpJC/4BASloD7bGlqTa6UOvizYimo2VZfK2BVquNgEC/sq0YWncAVUYbVXozo155g15pedU40gPZd7eECgwKCVWu+W/vl+zsbDZt2pQQZKm/tBHrGFKrjzyXwUpBpaGkUjMwMIh6Vy/6lW1Ne3w5AuD69evle6JGL6r05gI97FyiSzC9WPHfve5FEpNocPWmwSuMJr9oxV7v9PqEINKYf+0ACioNY9pNZurwtbSFpdDVbn/wmiBw6tSpz30f/haHw8Fr16797mcrn++//57du8v3bHjDYfI5rNPvsZKBO3fupCiKtMeWZnDN3jR5BNLPP+Cxvc9/j4ULF1Kj0SrnolevXn96lvugQYOoMZhZuOc8pg5fS8+UWlRrNAXk2e/du8ek5BSq9Ua6RKZTa7IxLDxC6Xn4rFy+fJkLFizgwoULH/ud+1uaNWuWV52yRu4pWLkzAbx0KflBgwZRUmsZVn8wo1u9RaObr7Pn3nPi9CX/OTivlRMnTv4JTJ8+nZIkt3MqU6bMEz13/JnkqwZ9anfjWR8/znSxK2pXTl4e9+7do7uHJy0BMYxpM4kBFTsQAOvUqUOVRseoFuNYpPfHtIUUobuH53M9p48ePZqCINAtoQJdY+Q2Yu+///4LXM2L4/PPP6dOb1B8lLZt2/L27dtcvHgxZ86c+cytpebMmUMATB64VFG7A8D+/fuzZs2aynxGk5lr16596vG//PJLipJES2Ac3YtUpqRSs0WLlk81xvXr1zl69Gh27NiR7733XgH1ryfl3LlzdHG1U2/3pXtiVUp6M40+4SzS60MC4GefffbUYz4Pffv2pVpnYFSLcSzU7QMavEIpSCpavEMIgF26dCEp740ZTSaafcLplVaXKr2FRu9wpg5bTdfoEkxKTvnDuTy9feiRXEORebeGJFIQJWo02mfqrf7f5OTkcPLkyWzYsCG7du3KkydPPvUYd+7cYVx8AtVaPa1+kRREibXr1PnXVZtnZWVx7dq1XLx4Mc+fP/+yzXHiRMEpI/8EOJ1uJ06c/B3Zu3cvvT08lIf21q1bP1Hw5Wn55JNPqFLJgbqaNWu+9EDAvxW7uwd9SzVncPWeBMCACu0Z2WwMTZ5BDAuPoMPh4BdffCEHQdtNVqSlBEF8SP7Y4XCwV69ez+3QvUy2b99OAAyrN6iAzJfyTxBp9Img0c1PCeiFNRgqOz7DVtNg92avXr2e245du3ZRpVbT4h9D9yJV5J72eX2wRY1esWf+/PlcvXo1u3XrxoEDB/6uk75z5868zYjyDKs/mGafcJrMFi5YsED5DF+/fl2R3QdAjVbH4sWLUxAlQpQIQaQ9rgyTBy1jZLMxFCUV27dvT1GUqNKZqLPYKalUXLt2Lffu3cspU6Zw5syZBEBreCq9SzRmQrf3aQ2KZ3JyMvVGuae6NTSJXsUbyvLzLcYp95koqdi1a1f5/mv7dgFJsuBaveX7zCjLqVtCijyQs6/W4zfXTCBEiaLGUKC3tbePH0eMGEG9wUhJklizZi1u2LCBnl7eilS90SfyQe8yn0gajLLc/g8//MDjx48zOSVVXpvNpnweAgKDaA0uRLXJlR5J1ZT3mwPiGBwSUuD78rPPPmPFSpVYvkIFzps3jydOnGBcfAIBgdbQJMVevzItCFGiu7sH1Xn3ncbqyaT+iwrI2ofU6cfkQcvomVqboii+sJ5l+/btY3BIKAHQYDRx9uzZf/ieDz74gACYMnQl00asY1L/RQTwSDlAklywYAFdXF3lax0XXyAJ5mm4fv06Z8+ezZEjR3LXrl3PNMbTcvHiRfoHBFKl0VJvcycAvv3224+0rXfv3qxUqRK7du36zD3sjh8/zuHDh7Nv377csmXLU703v82CS3iqvOGj0bJRo0bPZMeLpEzZsnSNLqHc84FVulJSqf51GzR/JU5f8p+D81o5ceLkn8LatWtpNpsJgJGRkfzll19emi2zZs0iAB739uVZHz/u95Sf4RcvXvzSbHIis337dtrd3BV/rEePHmzYsCFtwYUfJPfXl1sIPk8vdx8/fyUImTZiHV0i05mSmvYCV/JiuXDhAjds2MD9+/fT4XDwyJEjjE8oJCfPmy3PlCjw2WefyW20Os9g2oh1jGkjt80bOlQungio2IHxnd6lS3gqTWbzMz1rrFu3jiVKlmJcfCH279//DyXbr1y5wgYNG9Ld04vRsXFcuXLlU8/530yZMoWSSs3Efp8W2KcxeofSZDbz3Llzzz3H01CxYkW6RD5op5e/n5Y6bLWSzNyiRQvevXuX3377LUuWKk2VRkutqy8T+y58qvv19ddfJwC6xpamNTRZ9vtr96VLWDL9AwKZk5Pzt9gvvXHjBkeNGsW2bdvy7bff/te19bh+/TqLJCYp32tmi4Vff/31yzbLiROSzmD7E+F0up04cfJ3Izc3l4F+fkzQ6bjCzZ1vWG0UAL7zzjt/ynyrVq2iTif3aC5btuxzVwA6eZjUtKI0+4Qxsd+ndMvrSQyAQcEhSrBrw4YNsgPXabocNBuwmIIoccaMGQXGWrx48SMcOstz/x3bs2cPFy1a9Mi+Xi+a/AqJ/N7RqcNWUxAl/uc//+G+ffs4bdo01qlThy1atOCePXuYVjSdOrML/cq0pEtkUYqi+MIq9WfMmEEPT7mXmxxkN7BQ99lMHbaa9riyhCCyevUaj33/l19+yW7durFnz57cu3cvx4wZQ43BrPTRiuswlQDo6eVNi9XGevXrMyMjg3fv3uWSJUs4Z84cZQPt8uXLfPPNN1mjRg2KeRUtAFixYiXeu3ePe/fuZZ8+ffjqq68+FOA8evTogwp3gPa4shTVcsDY6BtFz5RacjIBQKvNhRqjhe5FqtDo5kdXu5sStC3cc27e/bdEfq9PhGyLINIWlkKtq4/SC80zpeZvemvWg9EAAQAASURBVMsLyk/3IlVp8ouhIKpoMMobhV5F6zGgUieq9SZqtDpa/GMY2XQ0PVNrKTZaguRNkPx+3Tk5Obx06RJzc3N5//59JSCYm5vL1q1bUxBVyrzW8BSa/GMUG4oUKcLYuARGx8i/swQVojU0kQDYuHFjzps3j2PHjiUAuhepQp8STSiqtBTz+tV7F2/EwCpdKGkN1LkF0LdUc0IQqNIZFWc/oau8+bh58+YC1yIzM5Nt27alTm+gyWzmgAED/jBZ6vbt2/Tw9KLZJ4xh9QbRrVAFCoLAr7/+mvfu3eOmTZv4+eefc/fu3Zw4cSL/7//+j6dOneJ3331HQRDolVaH8Z1n0COxKkVJ+t0+7A6H46n67TkcDo4bN44enl60WG2sX78+vbx9lHvNw9OTK1as+FMSwv6bK1eucPz48RwyZMif2pvu8OHDtNps1BotNLh6URAEzp8//6nG+PTTTxmXUIgBgcHs3Lkz79y58ydZ++Q0b96cBlcvJvb7VK70iEynt4/vyzbrH43Tl/zn4LxWTpw4+Sfxww8/0N/fnwDo5ub20oINP/zwAyVRZGODkYvt7qypN1CrVv9p6ntOno47d+5w3759PHPmDEly8ODBVOuMjGs/lcmDltMlsihdXF2fqco5H29fP3qm1lZ8INfoEkxOSX0h9l+4cIFfffWVYv+L5t69ewwOCaXR3Z8htfrQvXDFR/pvf8Tt27cZFR1DrdFCl7we5olJyezXrx8NLp7KuYltN5kAuHfvXuW9169f53vvvccJEyZw3759L2RdDoeDxYqXoNZopU/JprSFJVGUJG7fvv25xp04cSJVGp3i7+evx9PT64UrJT4JnTp1os7swkI95jBl8ApagotQY/UoYJukUrNJkybKe15//XUKgkB7fDm6RhdXlBjOnTvHlStXcvv27Y/8POTm5nLixIk0W6xUGawMrTuAaSPWMaBKFwqCoBSBlC5T9rHqk06en759+1KtNzKmzSQW6f0xrYFxDAwKftlmOXFC0hlsfyKcTrcTJ07+bly4cEF+IHSx86yPH8/6+DFRr2fLlk8nI/U0bN26VcmeT0lJ4ZUrV/60uf4X2bt3L602m1z9C9DN3YMbN24skIV669YtBgQG0WD3oW+p5jT7hNNitT5UNTto0KA/dOiehv+ulBcEgePGjeOKFSv46aef/qFs0969ezlz5kyuXLnyiYNtp06dokajpT2mJGNaT6RHUjUKgvDYNVy8eJGFChdWKr8NRiM3bNjAu3fvsk2bNgyLiGSZsmX5zTffPNXad+/eTY1GS61ZlkO0hibTHJjwUCVAzZo1H/n+ZcuWURRFGu2+NLh4Uq3WsFevXpRUahbqIQetvYs1kDOkY0rSr0xLagxmJiYlKcHOrKwsvvfeeyxRogQ1Wi0llYp16tblnj17+OGHH3Lt2rV/KNf/zjvv0MPDkyqDheGNRjCgUidFIUAOhgvUWNzold6AGq2Wly9fZtu2bVmoSCJr167NLVu2MDomlhBEGjyDGVi5M01+0YQgUqc3sHHjxtQaLYzrOJ2iWkeNxZ0GzxDlnrGEJtEjqTrDGw6Xq8E1GgICPZKqKdLvQdV6yAH6VFluPl/GPnX4WqoMVqoMNgqiyKZNm5IkV6xYIX9mANrtbgUCqxMmyFL4nqm16VNClqIXVGqa/GMYWK0HtS4+FFRqeiRWpdEnnBBExnaYJm8OxZbOC9KD0TGxbNq0KQVRoiCpqdLoKQgibeGpyj0QULEDIQjUaHUMCAggAIbWHciUwSvolVaXoijy1KlTBa5J586dKam19CvTgt7FGlEQRY4dO/Z378Vdu3YVULZIHb6GWpONgwcPZmJS8oPPpyhRUqkpqbW02mz84YcfOGXKFIp5rQokleohNYz/5syZMxw2bBh79OjBFStW/O6xpJyQAoAeSdXpW6o5RZWGKq2BEc3GUG1+IKtfsmQp3rp16w/H+yfQvHlzGuw+TBqwmKnD19AeV4Zmi5VdunThoEGDXpiawV/N0aNH6eJqp1proM5soyhJzsq058TpS/5zcF4rJ06c/NM4f/48k5LkCj+tVqskpP7VzJkzh1qNRk6Q1eudzw5/Y27cuMFChYsUUFD7bcXzhQsXuG/fvqcqsBgyZAhFUaJHcg26FapAAJw2bdpz2zp79myq1GoCoCiKnDRp0nOP+d8cPHgwT9XtTcXHMrh4cMCAAU891pUrV9izZ09WrVqNffv25fXr1zl16lSKkoqx7acwdfha+pZsRgDKHsrFixcZHBJKQZSo0uopStILkWI/ffp0nvrfkAfqfy6e7N2793ONe/ToUer0BloD4+hXthUNrt4MCg55prZjL4ILFy4wKDhE8YMhCHSNLsGoV/5Dk38MVQYr/cq1pSAIStV5bm4ux40bx9j4BBYqksiZM2dy9erVBdoL1KxV67EV4dWqVaOo1jKy2RjGdXxH2SvyLtaIwTV6UWd2ZekyZf/K0/A/RdWq1WiLSHugZlBTVlq8d+/eyzbtibl69SqbNGlKT28fxsbFP9Gei5N/Bs5g+xPgdLqdOHHydyMrK4satZqtDEae8fblDg8v2tRqDhw48E+d99tvv6U9rx9xbGzsXy4R9W/n7NmzfP/99zl79uzHyhofO3aM5StUpLunF1PTinLPnj0PHZPv0MW1n/pIh+6/cTgc/Prrr7lgwQIeOHDgodc3btwoV8pX6sTEfp/SI6n6b6qVQYvVxp07dz5y7KlTp1IQBOXYqtWqPbGM1ZIlS6g3GAmAKrWa77333mOP/fbbb2Vp9kIVGdlsDG2hSTQYjfT183sQhJRUVKnU3Lx5M9u0acPklFQ2adL0oUDob2natCmNHgEMqd2XAOhToikFUcWw+oMZ32k6jd5yoPa/+8M7HA6+++671BuMtIYmMXXYaqYMXUmzXxSLFS/BwKBgao1W2oILEYJAvZu/0hc8vy95SGgYT506xfRixZVz6FO8MQMqdaRKo6Ovnx87duzIn3/++SG79+zZwyKJSTSZLTRbrBRFiRqLOwGB9tjSTB2+lpLGQLN/LJMHLWfhVz+kxuJOtdlOtUbLffv2sUbNmoyIjGbtOnWYnJxCvYsn/St1zAueCjQYTZw0aRIzMzO5adMmxcEMqdWXgqTOC8yHUtIYqHXxZvKg5QyrN0hOLHBzL1D94BJVjEbfKLmPe6GKecH37opcvSDKVfzlypVnVlYWjxw5QrVaQ9fIdIY3HEZbaBL1BiPPnDnDzMxMWqwuBaSwfYo3VsbI/xdSqw/TRqxjypDPqTa50iutbl6wvza1Nk/Gd55Btc7AgQMHctu2bezatSt79uzJsuXK0eQVypShq/KOr0WL1cojR44QAA3eYQXmiY2Nfej6uNrdaPSOoD22NAMqdaRLTCmGhofz7bff5ueff/5Iye7Dhw/nSdX1Y9qIdSzcaz4ltYalSpWSM7tbT2DhnnNp8A6jzu7HpP6LaPIMYsWKlUjK3y9fffXVHybHnDp1inY3d2oMZprc5WqpCRMmPPb47Oxsurm70xqW/EBuv2wrCpKKRp9I6tz8Gdd+KiObjqZaa3juDZ6/C/8tWRhUtRsB0OQRSK3RSle7G0+cOPGyzXwmzpw5wzfeeIOvvfYad+/e/bLN+cfj9CX/OTivlRMnTv6J3L59m3Xq1FGePceMGfNS2r/cuHGDhw4d+tckVv6byczM5OLFizl79uwCvuTIkSMLSDOvX7/+icbLycnhsGHDGBgUwpDQcE6aNOm570FZlU2ie5HKjO88g15F6xHAC382PXXqFAEwuEYvpYWaRm/k6NGjX8j4d+7cYWJSMgVRotYkJ4qPGjVKef3VV1+l1mhloe6zmTJ0Fe0xJWm12Z77/J09e1b2Hev0U3xevdXtoX2LZ+HLL79kXHwCbS6uLFO23EtXsbh+/Trnzp3L6dOns1+/fsreidrkwpg2kxhQqSMFQXiscpu8f2ClS3gqC/f6kGENhlIUJU6dOvWhY+fNmyfvT+nNymdFpVbTGlToISn7p1GKc/Lk9OrVixqDmfGd3mXSwCW0hRShj6/fyzbriXE4HCxTpiw1BjN9SjSRVSdE0SmF/y/BGWx/ApxOtxMnTv6OTJ0qS097abXUSxKD/P158eLFP33egwcP0sdHlgcOCQn53d7UTh7PL7/8wvHjx/Ott9564efwtw6dzvzAobtw4QKPHTtWoAra4XCwXbt2BarWJ0+eXGC8yZMnU5RUSjDYLaE8Ja2RcR3fYWKfT2jxj2FEZNRDdly4cIGSJNEztTZTh61mZNPRFETxifpM53Pz5k0eOHDgD3vIdevWTa5GFkTqPYIY3vg1ZU3BNXoxvtO7NAfGUxBVdLHbqTXZ6FaoAvU2D/r4+nHhwoWcNm2aIn126dIl7t+/n5WrVKEtNIlF+iygpDPR4B1OvUewMrakN9MWmU5JpSpQyTpw4EA5A1+lpU+JJorj5ZFYleERkTx79iz79OnDxo0bs2jRojTYfZgydCVj2kxS+n8BYHBwMAVRpME7jC6R6b/pg/4ggUGt1nD//v0kyV9//TVPJcGFRq8Q6tz88zL15f7roXVluyKbjyUEkQGVOiq22ePLKUkUKrWGehdPeqbWot7Fk4Io0b98O8Z3nkGV3kxBpaGk0VOt0XDdunUkyTfeeKNAYkV0y/FMG7GO8Z3lqmeti5dSSW+1udAzpZYyty2iKEWNntYQWcY9MTGRgiDQ4htOtc5AL2+fAsoIs2fPzqt+n0xraDJ1djmpokSJErTb3QhRpCWokHLPeiRVI0SVXNVfWa7qD6s/WMny11jcaPAOp09JuYrdq2h9po1YR5NfNG02Fx44cIAffPAB33//fS5btoySSkWjZxAtQQkEwDfeeIPbtm0jAMZ1nsGoFm8ypFZfihod1WpNgc2Sy5cvU1JrKOnMNAfEy60J1Lq8qnO5IqhJ06YPbbA4HA5Wq1aNgijRGhhPrclGP/8AlipVii5Rvwn6Vpfvj9Rhq+mZUosRkdEPfV4yMjL49ttvc+TIkQ/J/fXs2ZM6sysT+y5k6vC19EytTbVGw/v37z/yszdt2jQCAk1+0UwdvoZpI9bRq2g9CqKKgigxsEoXxTZTQBxdXe2sXLky582b94/uAz5y5EiKkorBNV9lZLMx1FjcqTG7MXX4Wib2+5Q6i509evR42WY6+Rvg9CX/OTivlRMnTv6p5OTksG/fvspzeKtWrf5RVX5OXj5r164lAPqWbMbYtm/TJSyZJrOZ165deyn25LfGy++rnTpsNSEIj03AP3v2LGvUrEUfX3+mFyvOb7/99onnatqsGQVRoi00iTqrG+1u7jx79uyLWgrv3r3LmTNnctSoUYrvnE+9evVoCymi+Ev5/vq0adOeag3/jcPhYNVq1ajS6umRVI1m30hqNFp+//33jz3+3XffZZGkZBYqksjJkyf/Y321ZcuW5akSFqFnSi1Kai2bNmv20HG5ubkcNmwYrTYXuSVeeBpThnzOtBHraPEJY6dOnR56T+HEJLpEFmXK0FWMbTeZlpAiNJktNLj5MWXwClm5ML0BtVrdc7VmuHfvHpcsWcL33nuPP/zwwzOP828kIyODUdExyt87vcHITZs2/SlzORwOvv7663Rz96DFamPHjh0VhYRn5fz584oaYv53m9Huw+7du78gq528TJ7Un1TBiRMnTpz8rejevTuio6OxZcsWuLi4oHXr1rDb7X/6vDExMfj6669RsWJFHDt2DCVKlMDGjRsRGxv7p8/9b2H37t0oX7YsHPfuAQBGjxyJzVu3Ijk5+bnGvX//PiZMmIA9e/YgNSUZTRo3QmZmJpKSkrBw4afw9vYGAMTExmHN6lUIDAzEqlWr8MEHHyC4Ri+4xpbCua0foXfv3qhZsyaCg4MBAKGhoXDk5iDjwGbY48rg1plDsIYmwugVCgBwjSuLYxtmgCQEQVDsOX36NHJzc+FeqCIEUYItPBV6ixt++eWXJ16T2WxGXFwcAODevXt47bXXsGHjJpw6dRK3b9+BTq9Hi+bNMOv992Hyi4JrbClc+X4jji+fAADQuwfCI7EqAMCnRBMc+XgormVkILbdZJh8I5F1/Vfsn9IGTZo0gSBKoCMX5cqVw5YtW0ASWp0O97KycHH35/BMqo5fdy2FIycbEES4F6kC31LNwZx72H9kB44ePQp/f3/cv38fb701Ab4lmyHr2nlc3LMKevdAOHLu4fL+TbiUm43klFSsWL4Mqamp2Lt3L9LTi2H/1La4f/MyJK0RgqQCIODEiRPQGMzQmOy4f+sKMjPO4uTad+CRXB2+JZrgyo9bcGbTB+jcuTM8PD2xYvly5dypTQJy790BBAGWQPkcWoISAAA/f/Y6JEnClX3rYA1NQs7dW7h+dCfcEsrDp0RjHJrTBzk52bh76RRsMaVx4ZtFOPPFbJzZPAdaFy8U6j4bolqLnz4eitp16+GXo0cwaNAgtGvXDh9//DF69+4Nrat8v2ltXgAEqM12eKXWwcUdi1AoIRZffrkSufcz4bifhetHd0LS6JFz8ShmzpyJtm3bYvbs2di9ezd8fHzQq1cvuLq6KmuzWq0AgJ8+HAKN2Q5rSCJy7t7AN9t3Qm1xg87uj5sn9+Pw/IGQtAZcP7oTolqHnz8bDQgSIIg4sWoy7l46iTvnjuL+zSsQ7t3GhW+OQ2Wwwj2xCq4d2YE7F36GKEpISk7B/fvy59Vqs+H9WbOwYcMG3LlzF3Vf640qVapg8+bNECUJZ76YDf/SLXDr2g9w3M8CJKnAZ2Pu3LkAgPhO06G1uuPSd2txYtVkuBeuAlt4CrKuX8DCT95HyxYtULWqfO+SRI8ePbBmzRoAQOavP6N2rZqYMmUKRo0ahV3fLURWxjmoza64enAb1GZX3Dr9I64f/hLlalUr8Jm6dOkSUtOK4uy5c1DrDBg5ciTee+89dOzYEQBw5coVaF29oTba5M+gfwwu7l6BW7du4aeffkLnLl1x8uRJJCQkYM7sD3Dw4EHoXTxx++xhHJrbH7n37yLz0imIogCHg7h+dBc8EqviyoEtuH36R5j8orDz50tY36oVbty4gR49ejzx98HficGDB+PQoUP47LO35V8IIgIrd4IgCFAbrNC6eCEjI+Ol2ujEiRMnTpw4+d9AkiRMmDABoaGh6NGjB+bNm4dTp05hyZIlBZ6hnTh5HDt37oTO7ALfMi0gCAJ8y7XBjzO74aeffkLRokX/cnt8fX0BANd/3g33wpVw/efdAAkfH5+Hjs3KykK58hVw5mIGbLFl8eOJfShbrhwO/PADgoKC/nCu+fPmoXChQtixYwc8PJIwePBgZf4XgV6vR4cOHR75WuHChbHi85W4+tM30Ln64uKuZYAoonv37gCAN954A4MGDXrqOQVBwKLPPsOAAQOwddtX8Aj3wZhPP0ChQoUeefy7776Lbt26wSW6BARBRK9evZCTk4M+ffo89dwvmzp16mDp0qV4fcxY3Lx2GI06d8T48eMfOm7ChAkYO3YsPFPrwKjR4cI3n+H0xllwS6iAu5fPKPthv+Ve1j2o9HaIkgom30jo3fwhZF7EtatXcHBWV6iNrrhx6gBGjhwJURSfyf7MzEyUK18BO3dsBwQBoihi7pw5aNGixTON92/D1dUVe/d8izVr1uDOnTsoXbr0E33On4WpU6di+PDh8EypBZPOiA/mzIUgCJgxY8Yzj5l/XzA3W/5JB+jIhSRJL8RmJ/8Q/oLA/98WZ4a7EydOnDzM+fPnGRcXJ0tCu7o6pWafghLp6Syk0/GIlw9/8vJhvE7H0iVKPNeYDoeDNWvVoiipaAtNpM7sQl8/f16+fJljx46lKKkYVK07I5qMot7Fi0XTi5Ekx48fT7XWwNA6/WkJLkKTfywBFJCMczgcfKVFiwLS2Cq9LNuU2O9TWvxjGBYe8ZBNly9fplqtoVuhCkzs9ylD6/QnAH788cfPtMYmTZpQUqnpllBB7gcuSjT6Rio2JQ9cKsuO95hDAPTz86Oo1jK+y3tyhW5KTaUivFC3D/IyxwcpVc6pw9fSr2wrAqBb4SqMaTOJtrBkqtUaqtVyxXGRxCRqdXplTp2bP72K1icA/vzzz8zKyuKHH36oSLYl9V9ES1DhB+ctr2e6xT+K7h6eSm+z3r17E4JAt0IVmDp8DQv3nEdJZ1LsdStUiRBEaqweBMDCvT5U+pkLkooWi5UqjZbBNV+lZ2ptuUpaa2BkszEEBHok12BMm0l0jSlF5Mmp169fnxqtTrFNY3FnUv9FTBuxjnr3wALXG4LIwMqdqTJY6V64kpJ571umBSGIyv1EksePH6coqWjyi2ZI7b5ytbogMqR2X/pXkFUUwsPDKalUFLUGGrxCGVS9B/3KtaXRZH6ieyEzM5O+fn4URJVic3SrtwiA9riylHQmBlbuTEtwYYp6MwGBRt9IusaWVs6pwTucapML9e6B1Jpd2KlTJ27bto2ipFLWbQ1NotbFh1oXbxbps4CJ/T6j2TuU6cWKK7Zs3ryZJrP5N+frQXW/pNKwTt26BWwfNmwYdRa7UgUe02ZSwXOd9y8+Pp7t27fn8ePHOX/+fAJgQKWOjG37Ni0BsXRz92BWVhYvXrzIkNA86XpBKCCXn1Co8EMtKfr370+NwcxCPeYydfgauhepTLVaw6lTp3Lnzp1899135bkqdmBkszE0egQwMiqahw4dolaro97Nj97FG9Ho7k9fP3+OHj2aklpD/wrtqLV5EwBdokvQGizf96IoUq3VUxClAmoDboUq0j8w6A+v9d69e1myVGkGBAazbr16fyiD/1dz5swZHjlyhFHRMTS6+zOiySj6l29LAJwxY8bLNs/J3wCnL/nPwXmtnDhx8m9g7dq1NOc9m0ZGRvKXX3552SY5+Rty9uxZ1qlblwGBwSxVugyHDh0qt6LrMI1pI9YxoGIHAnhiifDs7GwuXbqU06ZNe2yLuafB4XCwZSvZN9eZXSgIAmvWrPXIauGvvvqKABjTZhLTRqxj0oAllNQavv32289tx59NZmYmK1WuXMDv9indnClDV9KneGMC4NGjR/90O+ISCtE1ppTi57slVGDoI/Z4/k0kJiXTHldGWbN3egPFl05OSeWdO3cees+oUaMoiCK90+vTp3hjipKK/fv353fffcfWrVuzfv36/OCDD55LFWD8+PGU1BrGtJ7IlKEr6ZZQnqIk8bvvvnue5Tp5BtKLFadLVPEH7QlLNKHNxfW5x61eowZVGh09kqrT4h9DlVr9yBahTv55PKk/+WypOE6cOHHi5F+Lt7c3tm3bhtTUVFy9ehXlypXD1q1bX7ZZ/wjOnTmDdEkFoyjCJIpIl1Q4d+bMc4156NAhrPz8cwTX7ovI5v9BVNsp+PXiRXz88cf48ssvYQ1NgmdyDbhEpMEzvSF27dyB3NxchIeHI/veXRxb/pacNatSAwC+//57ZWxBEPDu9OmoWKkSBFGCoNKAJA681wXfTWgMx/WzmDd3zkM2ubm54YMP3se1g1vx3YTGOLb8LTRt1gxNmjR56vVdvXoVCxcuhH+lTgit0w+x7d6GxmyH0TscKoNc5Zx957r88/Y1AHKmclhIMH58rwv2jq+Pi9+uRPPmzeDh6YVjS8bg/PZFOLtlDgRJBdeYUhAEAW4JFQAArlHpMPvHwL9Ce2Rn38eGDeuRmZmJmzdvQucZhqT+ixDfeQayb1/DrzuXYNSoUfD29kbJUqXljGNBxJlNH+DqT9th8ApR1hHecDhco4rBr3wHXL50EUePHgUAfLtnD0DCFpYKQRChtXlC7x4IgKhZsyau7N8A0IH7Ny4BADIObAZJXPvpGzA3BxAAl5jS8ChSBVqbJwABkt4Ma2gSPJKr49KeVTg0pw+u/7wLLhFFAQhYsmQJ7mfL2bSiRg/JYEHu/Sxc+eELZF4+Bb9yrZEy5HMEVu4M0AGDVxgESYWMg1/i2tFduPT9Rpz/aiFAB3bu2I527dohNzcX3377LRy5Obh76SSOr5iIu5dOAiSOr5iIM5s+AABczDZA7x0Jx727MHgEw+ARjEt7VsLNzQ0kcezYMRw+fBg5OTmPvB90Oh2KFC4MCIAgyhnAoiTfu27xZaE2ueDU+hm4efIHODJvAQKgc/VF9t2bsIbJChJeKTWR2OcTxHd+Fyq9GQ6HA6VKlULxYsWgc/FC1CtvILzhMOTcvQ5beCo0JleoDRaYw1Kxa9cumMxm9OjRA40aN4HkFgJbRBqQp+CgsbgBgogKFcph7pyCn40KFSog62YGTqyajIyDX+L4ClmFwb9COyT2+QQ6ux8giDh9V4uPF69AckoqvvjiC5i9guBdtB5MflHwKfUKrly+hNOnT8PDwwP7vtuLjz76CLNmzsTBHw/gm2++wY4dO/Dt7l1wd3cvMP/58+ehdw+AzsULgiDCFpaC7Oz76NGjJ4oWLYqbN2+ia9euOL1xFo4sGAZPswbz581FpcpVcO9eFjKvnMWlvWvgWawJzp09g6SkJCQnJeHMpg9w/+YleKbWQkTDYYh85Q1YghKQlJSMIYMGwNfPD2qzq1Lhrza5IDMz83c/96dOnUKZsmXx/c/nkO2TiLWbtqF8hYq4l6cK8ltu3bqFgQMHombNmujVq9dfVlXu5+eHiIgIrFi+DD4uBhxd+BrOfDEbvXr1emwFixMnTpw4ceLEyZ9FlSpV8M0338Df3x9HjhxB0aJF8c0337xss5z8jcivBF+/+Wtk+yTiuyOnMXXaO4iKisLhOb3x4zttcHrjLLz66quPrO79b7Kzs1G9eg3Uq1cPPXv1QtGiRTFp0qTnslEQBMydMwefffYZBvXthfnz52PZsqWPrBZW1PXIvJ+Ogr//G6PT6bB2zRrs2bMHnTt3hqTWwL90C4iSGh5JssrZsWPH/nQ7HLkOiCqN8v+iSg1HruOFz7Nnzx5Ur14dqWlF0b9//z/0B5l/TR9BTk4ORowYgfCIKMTGJ2DmzJlPZYtWq0Vu5i1ljpzMm7C5uGDhwoX4+qsvYTAYHnrP0KFDMaB/f2T+tAW3f1yP7t26YuzYsShSpAjmzJmDxYsXo23btk9172VnZ+P48eO4ceMGAOD48eMwuvvDHBALUVLDLaE8HLm5KFW6NE6dOvVUa3TyfGg1GuRm3X5wj2Tdhkaj+YN3/TGfLlyITh3awfXuSSQEuWHTxo1ISkp67nGd/HNwysg7ceLEiZOHcHV1xaZNm1CnTh1s3rwZVapUweLFi1GjRo2XbdrfmqTUVCxdtQrl7mWBAJZl30e51NTnGvPWrVsA5IAiAGjMrlBpdLh16xY8PDxwb88B5GTdgaQ14Pa5w7DaXCBJEmrXri3/t08cwhsMBUn8vOh1fPTxAgwYMEAZv1nz5tiy9Uu4J1bF3V+P4fbZwwgKDkbXLl3QrFmzx8qstWjRAunp6di/fz+8vb2Rnp7+TE5vftBV0hoBAIKkgqjSgI5cCCo1BFGFgx+8CktwIdz4ZS8EUcLs2bPx7e5d+OSTT3DixAlcv34dHh4emDihCqZMnYaDOxbC290DJ69fxK87l8IeXxYXdiySJ3TIjuXNk/sBAD4+PtBqtThx/BgCqnSFSm+GSm+GNbgwgvSZGDFiBMaMGYN933+PmDaToDbacHB2b5xY+X+QI8ICBEGQg7AAbp8/AgBK6weDXg9RrcX5rxdC6+KFzMuncfvsIVitNsyfPx8tWrTA2g1fILTeIGT8uBVnNs/B2a3zQUcuzBYL7ty5i5v7NyEz4xzuXb8Ig08Y7p7/GWc2vQ9LcBFcObAFjnt34Mi+h2s/fQMIAkDA7BeTJz3+JTJ/PY7vJz+QJvNMrgFRpYFHcnWcWj8DWVfPQqU3IzfzNo4ufA0QRejt/giq2g2Zl09hzpzp8PPzw9uTp0CQ1BBEEYIowb9Ce5z4fCL69umNme9/AJVvAoKqdsOlvatx/+YVXDmwGVd+2ARRo0NsTAoqV6mCjRs2AABi4+Kxft3aR95f169fBwgc/nAwbKFJuLx/AyCKuHHyB2iMVtzLOAtRrYFvmZbIzbqDc18tyJPzvw9LcBGcWv8esq6ex91fj+Hu5TNKEsikSRNRukxZHF/6HwiCCGbfw42fvsGdQhUhSCpc+eELqC3usMaWxrR3pgN0ICitKU6umozgGr3gkVgVOZm3cOCdtkhLTVUk7/MpXbo03nvvPfTq9Sou71sPu90N90QJ3ukNcP/mZWRlnFXGyb57AwfeaYuzZ88i69pFZGachc7VFzeOfwdRFOHu7o67d+/i/PnzqF69Omw22x9+llJSUrDgk09wad96GDyCcO6rT6Ay2lCk98c4u3kuBg0ahFOnTmHUqFG4ceMGAgMD0b9/f/x6OQMxbf8PWqsHfl48Fme3zAUAGI1GfLltK1asWIGWrVs/+IwKArLv3sSevT/i2293w9XVjmtntuG0xR2SWodLu1egXZtWv2vr8uXLcTczC4U7j4NKZ4RLZDoOze2HvXv3olixYspx2dnZqFCxEvZ9/wOMAXHYuOVLrN+wEXu+3Q2TyfSH5+SPuHz5MoYOHYqDhw4jOipSlhv09CxwTEREBA4fOoizZ8/CYrHAxcXlued14sSJEydOnDh5FuLj47Fr1y7UrFkTe/fuRfny5TF37txnSnp28u9j9+7dOHrkJ8S2fRsmvyjkZN7CvklN0b5dW0iShPPnzyM5ORn169d/ovE++ugjbNy0EZHNx8IaUgSnN76P/v37o2nTpkoru2dBEAQ0bNgQgNwyb/Xq1bh27RrS09MRERGhHJecnIyY2DgcXzoWtujSuH3qexgNetSpU+eZ5/4rEUURSUlJuHDhAmbMmIFLe9fANbY0ft21AoIgFFjrn0XLFs0xaNAgufhClHD5+/XoOmLEC53j0KFDKFa8OByCCoKkxp49e3Dk6FF8vmLFQ8devnwZLVu2whdffAGT2YyqVSojOzsbFosFr776KuLi4jB06FBMmDARboUrISfrNjp16gStVouwsDCsXbsWBoMBrVq1euxe1au9eqJx48b46cOBENVaXP/5W0yaNAmNGzd+7BokScKbb76JN99884Wckz179qBW7Tq4cP4cRFHEa6+9hpiYGNyaOQtXf/oGJt8oXPx2JUSNAfeyHZg3bx5GvODr4uTx9OzZA/Xq1cNPHw6EpDXi2pEd+M9//vPc4xqNRkybNu0FWOjkH8ufXWL/d8YpJ+fEiRMnv09mZiZr1aoly2SrVFywYMHLNulvzYULF5gQG6tIhRWOj+fFixefa8zbt2/T08ubZu8whtTpR3tcGYqiyJ07d/Lw4cO0WK3Ummw0uvkSAN9//33lvcEhofRIrqFII3kkVmV4RJTy+uXLlwmAwTVfZdqIdUwZupIGVy927979uWx+GhwOB0uULEWtyUa/Mi3pElVMlpRzDyQgUO8ZnCcVHkW3wpXoX7EjAXDfvn08efIk3dw9qNLqqbO4UhAERcre4XDIEu6/ke8WRImCKFJncSMAdunShffv3+f48eNptlhp9Ilkkd4fM679VKp0RrZr1463b99m9erVafaLZEKXmUzoOovhjUYQADdt2sTjx48zKDiEGr2RFp9QAmC3bt2U9S1fvlyeW6X5jQS5ii1btuSOHTvy5PPLK9fIPbEqJZWarfKk9exxZehfvq0sPS+I9EiuQfekar+RNBeodfWhxuZJAPROr8/gGr2oNrlS7xFEAJw5cybnz5/PlJQUWYa/TAsmD1yqSAgaPEOoNlrlMfPk1cIaDFFsMvtG0G63U2vzYGLfhUwZupLW0GQKkopWm41nz56lRqunR2I1al28Kap11Nq8CICW0CRKag3T09Op0ugYVn8wI5uNod7mzvIVKj7ynihVqhS1Ni8afSKpNtuptXlSUqvp6e3DQoWL0GS20LdUc8U+e2xpSloDIYiU9BaqdEYKokQvb18uWrSowNhHjx7lqFGj+Nprr3Hjxo0MDQt/cH+oNAyo3ImhdQfK50IQaQ1JkqU6m43Jk/dfQ43Zje4eHmzUqBFPnTpFkvzll1+4bt06/vzzz8zOzmZGRgZXrVpFAAytO4DxnWcQAKNeeUMZx+DiwZ49ezI8IpKCJFFUaSiIEkuVKsVVq1bRYrUq98uUKVP+8LOUnZ3NJk2bPliPpGJc+6lMG7FOmf+rr74q8J7KlSvTJTJdOZfBNXoRAOPiE5iVlaUc16lTJ0pqDX1KNKE1TL6PPFNqMqzBEBo9gmg2W2g0mqjTG9i6dWuljcLjePvttympNUwasESW3G89kQC4YcMGvv766+zQoQOnT5/O9evXEwCjW46X19HlPQLgJ5988ofn44+4c+cOI6OiqTXZaI8rQ63ZhWHhEbx169Zzj+3kfwOnL/nPwXmtnDhx8m/j9u3brFOnjvLcN2bMmOeSN3by72Dr1q0EwNh2k2XZ9f6LKEoq9ujRgydPnnzq8YYNG0a91U3xFeI6vkMAL0ROnpSfx9OKpiv3sVqt4ZIlSwocc+HCBTZo2JAhoeEsU7Ycv//++xcy91+Jw+Fghw4dHvhpgvCXSeHn5uZyzJgxDAgKpl9AIEeMGMGcnJwXOkeDBg0IgObABNrjyxGCqLQqyMjIKPDdVLJUaWpNNgZU6ii3EARoCYyjwdWbeoORP/74I13tbvROr6/cd7awFPr6+RGCQJ3FTrXOQLub+++2Qli8eDHLV6jA0mXKcNasWb/7/fjtt98yMSmZLq52lihZikeOHHmu85GVlSXv4flGMrLZGKVtwKJFi1i6dBnlPhBVWoY3GkG91Y2DBg16rjmfh5MnT7J69RoMDAph+fIVeOjQoZdmy1/JsmXLWK58eZYoWYrTpk1z/g118rs8qT/pDLY7nW4nTpw4+V3u37/P5s2bK07Bu++++7JN+ltz//597t69m99++y3v37//Qsbcv38/wyPkHuYWq5UfffSR8tqxY8c4ePBg9urVixs3biQp92nr2LEjQ0JCKIgSfYo3pnexRhRFicOGDVPee/HiRSKvB3naiHVMHbaaRrsPu3bt+kLsflIuX77MOnXq0mK1Ua3VEYKo9NTSuflTUGloDUv+Tb8zgatXr2b79u2pt7ozsc8nTB22mva40jRbrKxfvz4rV66sBNvVZjeKGh09kqrR4BlKUZI4fvx45ubmsmatWhQlFQ0ewYpTiLyeaimpafT0kntV4zf9slV6Cy0WC7Ozs0mSV65c4YgRI9ipUyfOmTPnoYf0pUuXMr1YMWq1Oqq0Btoii1FrtNDm4kpRraXG4s7Cr37I5EHLaPKLYURUNMPCwqh3D1D6YIfU7vubIKqaarMbAyp3pjUslRBEiqJEk1+04pCG1OqjBOPze4DduHGDoaGhBRIQVGo1vb29WbduXVaoWFF5j0dyDaYOX8uIJqPkayEIdI0trYwfWLkzAYFjx46Ve+4JIgGBolrLQj3myH3fSzYjAKamFWVScgrdEioo7/cv35Yms5m3b9/mrFmz+MYbbyiBYF/fPEfazZ/mgDgCYEpKinI+ffz8lbFSh62m2T+GrnY7W7ZsyW7durFr165ct27dE917d+7c4ZgxYyjk2Z9/fi0hiXLQXRAJUaLG6sGg6j1oj5OdY2tYCvU2D/r5B/D111+nIAjKd+Rbb71FUt5UiYiMVM4pBJFaF28G1+xNt0IVCICbN2/mvHnz5H7oken0SK5BQZSoVmvoEpbM6Jbj6ZkqJzx9/fXXf7geh8PBI0eO8D//+Y+cSFOjF4v0WUD3wpUoqVRs3749q1atxldffZXXrl1j9+7dqTVaGN95BpMGLKE5MJ5Gk5mXL18uMG5mZiY7depEF1c7DQYjdTZP5d6MavEmAfDgwYNP7KCeOHGCZouFZp8weqfXp97qxsioaMbExlGl0dHiG05BFFmiRAk5canXfKaNWMfkQcsJQeCsWbOeaJ7fY8WKFXJiQcfpBQL5/73B58TJ43D6kv8cnNfKiRMn/0ZycnLYt+8DH6F169a8d+/eyzbLyUvgzp07vH79Ou/evcvwiEjqbe70Tm9Ao+cDH1cURU6ePPmpxl24cKGSnF+k98d0SyhHjUbLy5cvMycnhytWrOCMGTOeuSfx2LFjKam1jGk9gcmDl9M1ugRNZsu/8j52OBzcvn07P/nkEx44cOBlm/NUOBwOZmRk8Pbt2498PTQsjAavMKYOXyPvA5RqTggCBVG+9+ITCvH48eO8du0aAdAtoTxt4akEBLoVqqT4eXoXL3bo0OGhYLs1NJkQRLrGlGLqsNVM7LuQepsH27Zt+9xrO3PmDC1WKy2+EfQr05JGd3/6+Pr97jPjlStXuGPHDp49e/aRrx88eLBAwnjaiHU0uvmyT58+zMrKop9/ADUmF/qWbkF7TEkKgsDhw4dz5syZPHbs2HOv6Wm4desWA4OCqXfxond6fRo9Amh3c3/uoiEnTv5tOIPtT4DT6XbixImTJyM3N5fdunVTHPk333zzZZv0EEuWLGH9+vXZsGFDrl+//mWb86dw+/btPwxmXblyhT6+ftRZXGkLT6EgSlSpNbRYbezTp48SICZlp6l8+QrU6E30Lt6ItrAkiqKoBD3PnDnDV199lU2bNuXUqVNfeAb048jJyWFWVhbHjBnD9PR0Jes3pHY/htUbRElrYL369VmtWnXawlMfVOXWfJUAaPQMoi2v+jb/X2jdgXL1/uAVVBusHDhwIPft2ydXcdcfzNRhq2nwDiMEkTo3f3lTQhCpt/vSHFSYkt7MiCajGNH4NUpaA3U6PUeNGsXc3NwnWlN+hXtcx3eYOnwtwxsNJwBq7b7UWNweVJULIjdu3Eg/Pz9qrB5MGfI500asU6rQjf6xSuV5YOXOtMeXpUpvoU6no87myeTBy5k2Yh19SjRRgsfLli0rYEv+Z9ngHa4Ed4uXKEFSdrbGjRsnv+7iSUFS0eAdRpN/LAVJzfBGIxjTZhJ1rr4U1TpGR0dTpdHRr0xLGjxDqHXxUa5H1CtvKEHYWrVq0egRyKSBS5gydBVdwlMZFBzCuPgECqJEjd5EAJw6dSolSaJn0Xq0RRSlNTSJBu8IFk1P53/+8x/27duXnTt3VjLgjXnZ8ADoanfjzp07uXPnTs6YMYOrV69Wrs+BAwfYu3dvduvWjZs3b1bOhcPhoIenF22hyUwevJwJXWZS0hpoDkxQKsJ1bgEU1TolYO5XpgXTRqxjoR5zlLntsWUY3mgEvdLrM195ISsri4Ig0J5QnkFVuzG4Vh+Kaq2SNPPBBx+QJKtXr0FLYJwSvHZLkAPxCV1n5VXBr6Vaa+D48eOf+DPkcDjYrl27B1nzkkRfP39qDGa6RKRRozcxoVBhnj17lpFR0cpxBqORW7ZsKTDWd999x4ULF/LXX38lSY4ePZpqnYFFen/8m8QL8Pz5809sH0nu3buXJUqWYkBgMOvUrcsJEyZQEEXGd3o3L8GkHwHQZLbQGhDLkFp96BKWTK1Oz19++eWp5noUn376KQEo60jsK28m5qtjOHHyRzh9yX8OzmvlxImTfzPTp0+nJMmJwWXLluXVq1dftklO/iLu379f4Jm/bNlyPHDgAGvVqk0vbx9CEGmPL8dC3T6gV1pdCoLA/fv3P/H4DoeDrVu3LpCo/fHHH/P+/fusVKmykggvCAKnTZv21Pa3bt2aVv8oxX+MaDKKAHjmzJmnHutR3Lt3jzdv3nyuMW7fvs3Tp08X2Ef5X+LXX39lerHiyj3QqVOnh/aFihcvTrN/7G8S69sREOhdrCHD6g2iwdWb8QmFePv2bWUcS0gRal19KIgP1NgsATFs0qQJ+/fvT1GU6JFYla4xpZT3BNfopczhEpHGqlWrPff6Zs2aRQgCk/ovYtqIdUzoMpMAuGbNmgLHXb16lePGjWOtWrWoUqmVRPs33njjkecMAP3Lt2XaiHUs3HMu1Vo9x44dS5I8fvw4i6YXo6RS0c3dg+4ennnjidTpDQX2K14Ep06d4rZt2x7pr69Zs0ZOiOg8g2kj1rFInwUEwLlz575QG5w4+afjDLY/AU6n24kTJ06eHIfDwSFDhigPuoMGDfrbyOzMmSMHvSz+MTT5hFMQBC5fvvxlm8Xc3Fx+/fXXXLp06TPJtuWPMWfOHPbs2ZNvvfXWY7OJ85k2bRpFScXCvT5k6vC1DK03mACU6ub/5vvvv2fpMmXo5uHJ2PgErlixgqQs1+bp5U2tyUZrYBwFQWC7du3+0N6cnBzu3buXO3fuZGZm5tMvmPKa9+7dy23btvHGjRv08fNX5PBTh6+hNSSJOr2BpUuXpiipGFqnP2NaT6DeLgeAU4auZOrwtdTavCioZfn28IbD8qTyV1FtcmHfvn25ZcsW2bHo8h4jm75OAIxsNpapw1YzstkYOUipNVBj9aB3sUaKY+eVVocqvVmucLa5cPjw4Y9NRDh79ixbtmypKBPEd3qXrrGlC1TQuxWpSo/kGlQbLIxPKESSbN++PSEINHiG0B5bWq5elySqtAY5KOoZSggiTf6xlLRGarQ6qjVaaqweNAfGy4F5H3nO/86c9/Hxod49UMk8zw/k/1Y2fP369RwwYADVGg0NXqHKRkq+3RqrBwVJTZVKrUi6h9UbRAD0K9uK0S3H0egdTrVGy/Xr13P//v00mc3UGMzUWeyUVCq+8sorVGl0jO/0LlOHr6VnSk2q1GqGhoXLsvD550hU0WS2UK3V02iXlQYaNWrEhIQEAqBXen3GdZhKi380zWZLAVvr1a/PnTt3UqvTU291o9HNl4IgKC0xMjMzCYAhtfo8yJwPS6GYV2ER1mAoBUlNjcmWlxQBFuoxt0BwFuIDRQSjTwQBcP78+bx161aBTYHU4Wtp8Yti48aNC3x3/new3SOpel4FSW9ZrrHDVAqCwDlz5jzV58jhcHD37t1ctmwZ3333XTnZo8M0po1Yx9h2kwmAK1eu5O3bt7lo0SLOnTu3wPeUw+FgenoxZW2CKHHixIm8cOECPTy98r4bYikIAtu3b/9ENp0+fZodO3Zk9eo1+NprrxX4jhg/fjzVOoNyXyZ0naUkYAQGBcvX2tvnhSVT/frrr7TaXGjxi2Rg5c60+EfTYrXy3LlzL2R8J/9+nL7kPwfntXLixMm/nbVr19Jslv2TqKiov7w68n+V06dPc9WqVdy7d+9L2RsZNUpWIQuo2IEhtfpQa7Sydu06JMm5c+cSAFMGr8irHF5GAAVU8p6EfJ9ixYoVPHHiBEny/fffpyCKjGw2hqnDVtMztRYlSXrqatg333yTklrDqOb/YWK/T+kSWZQWq/W5FQIdDgcHDRpESaUiAKYXK/7UicEkOWXKFKrUcmDVw9OLO3bseC67/omUr1CROrMrQ+v0p3/5dhREkePGjStwTH7rSXtcWfoUbyzvE+gtin8dVl/ek/r1118p5ikvpo1Yx5Qhn1Nr86LJP4bexRoqQd7s7GwOHz6coWERtNpcqLf70ugTTp3dl9EtxzOkTj+KkoqjRo167vXl7yXmJ2DHtp9CQG5vls/q1aup1ekpSCoKecnzHsk16F28EQFw27ZtD43bp4+sNGjxllsOBgQGPaQel99eQGd2ZaHus5k8aBltIYUZFBzy3OvKZ9y4cYoKn0qtfmhPYfXq1QWC7fl7HE+y97B69WqOHDmSM2fOfKq9vzt37rBLly4MCAxmfEKhh1r/Ofljbty4wcZNmlBvMNLu5s633nrrb7M//2/FGWx/ApxOtxMnTp6EvXv3sm6dOixdogRHjBjxr5S0ehrGjx+vBF86d+78xJW9fyZh4ZG0x5Rk6vC1ecHYwiyaXuyl2pSTk8O69eo9CE5qtFy8ePEfvu/27dtK4Pa3meRmz0Cq1FoWLpL4u/2Qx40bR7XWwMjm/1GCgxDFR/YEmz17tuKA5l/PQ4cOcdu2baxbty5Fte5B9WqVrgTwu4Go69evFwjOhYSG/W4frXz27t3LQYMGcciQIdy7dy8rVqqkjOHh6cWg4GAafSKYPHhFXtWvQKNXKNU6Aw1G02+qck00+UTI2cOvfijbUHcATX7RVBks9C3ZjJbgIoQgcPbs2bx69SptLq60BMTQM7W27IDozQQEal28H4zrFUqTfyxThnzO5MHLafSJoDkwnh5J1eRe6gDNFitj4uKVIG7++QgMCqbO6kZ7fFlKOiMFSUUIIkNq92Vs+yk0eoUp0n5Wq1Vp05CZmclixR9kkGu1On700Ufs1q0b1XkJBPlB3MK95lNSa9mnTx9GRUU9CFIDfP311wuc69zcXLq6utLgGaIEd/Mrkx/lIEVGyuOF1h1I7xJN5HNkdKWg0lJUaagzGJVEiJRhq6k22R8EZyU1dS5eSvLLL7/8wpEjR3LIkCHcvXs3S5YsSZ2b/4NK+Oay9HnRokUp6UwMrTuQ/hXaEaKKkkbPwj3nMnX4WnoXa0hRlJiQkECdzVPJQg+q3pMA6FOiCVOHrWZ4w2EEwMTERJq8QpgyeAVTh6+hLSyV3j6+yndXYFAwLQExLNxzHqNbjqNKq6fVanvw2dXqGB4RwYYNG9Lm4kqTVzD9yrWm2TeCkkpNjdWDse0mM+qV/1DSGQmAX3zxBd999116e/tQUmvpV6Yl3YtUIQB+9tlnBc5xvjzjb2XkIyIiKAgCzZ5BVKm1LJKY9Id90H+Pjz76iACUc5XvRC9cuPCx7xk0SE6eCKjUibHtJtPkH0NBlHju3DmePXuWr776Kps3b85p06Y90d+BS5cu0cvbhzqLnbbwVEpqDatWq6Y4hdu3b6cgCPRIrMrIZmNoCy5Ms8XCK1eukGSBZJAXxe7duxkbF0+1WsPomNgX1n/Syf8GTl/yn4PzWjlx4uR/gf3799Pf358A6O7uzu3bt79sk/7VfPrpp9TmBWIBsE2bNn95sKNY8RIFWn35l2tDg9FIkty8ebPsx9XpX6At2datW5973sGDB9Pg4vGgl3v7qQTA3bt3P9U4mZmZLF2m7AOfV6fnqlWrntu+GTNmEAB9SzZjSO2+1FnkXtz/ze9dr/zEfM+UmoxsOpoW/xi62t2eu1L+eXA4HPziiy84Z84c7t279y+ZT1KpGFi584OK8sh0VqhYUTnmp59+IgDaIotS6+KtFCWodEYmDVgsJ5Mn16QgCBw2TPbPg6v3VILtJl9ZZU2t0XDkyJEPXZPXXnuNKo2OofUGUWvzUu6VWrVrv5C92cuXL9PTy5sGuw89kqpRZ3FlZFS04nsfPnyYKpWaRp8IehdvRLXRhWqTKwGBif0XUaXRceLEiY88d/Pnz2flypVZtGhR9urVi6NGjeLo0aMLXLuy5crRJbqEcn6DqnWnKIovZJ91x44dBEDvYo0Y3+U9pbXcb1Xibt68yYDAIBpcveldrCFNnoF0tbspqnaPY+jQoQRAndmFgigxJTXtiQPujRs3pkqjpVda3bx2AvjXqpP+WdSrX59qnYF+ZVsrxRqzZ89+2Wb9q3EG258Ap9PtxImTP+LgwYM06HSM1GpZU6enWhTZvFmzl23WS2fmzJlKdmSzZs1eWG/yZ8XLx5fe6Q2UB1T3wpUYG5/wUm2aOXMmBVFkWP0hTOzzCe0xJanTG3jr1q1HHn/y5EmmJibKTqZGwzfeeIM//vhjgaBqXIepFETxdx+ivv/+e7k3liBSZbDRHJhAo08EJZWqgDzyuXPnqFKr6V64Eov0/phB1boXCNJCECnpLb/pyyxLix88eFAZ4969ezxy5AgzMjJIkp07d6ZGb2Jk09cZ02YSDXYflipd5nfP07p166hSq6mz2Kk12ahSqSnmyZXHd5pOU560OwSRKqOtgHNWqPtsipKKQ4cO5b59+zhzpiz55Zlaiz6lmsubC/UGylnyUcUpiKoCvdd79uzJ7du309vHV/mda1yZPCdOoKjREwBFlZoQBEo6EyWtUa56bjOJ7kUqK7LgAKhz9VGqhTdu3EgPT9kZLNR9doFqYpN/zIMs7wayWoTB7kuznxzYzg+4b9iwgSq1mlqzC7UmG7U6Pbdv387169cTAGPa/p9S7a+32Dls2DA6HA5+/fXXnDdvXoHeebt27WKtWrWo1T6w1xaeRq+i9Smo1PTx8X3k9Xn9dbniP2XI57JSQp3+cnJBoCz/XrNmzbyxUmj2j1Y2SUz+MUwevIKpw1bTFprIxKTkAuNmZGTk9XATGFyzN+O7vEdLUIKSeKCxelKQNIqtevdA5ZzlqxCotAZZgt7iziJ9FiiOWqFuHyjHavQm+vsH0B5XlimDV9Al6kEySEpqGi9evMjt27fTansQXE8rms73339fToAITaRHSi1KKjXbt2/PAwcOMK1oOi1WGxOTkmk0melfrk2B7x67mztfeaUFBUGgxTeckkZHQZTo4uLKKVOmFDgP586dY1R0TF5SjESt3sDu3bszMzOTH3zwwRMrWuRz5coVvvPOO3zrrbcKSESePn2aBqOJ1uBCDK7Zm9ageJrM5sf2mSPJokWLUufq+yAZIq83+2+rYa5cucKmzZoxOCSMxYqXeGhT98SJE1y0aBG3bt3KiRMnUlJrlQSesPryvf/jjz8qx8+YMYNqjXzdXe32Fy6h58TJi8TpS/5zcF4rJ06c/K9w/vx5JiUl5SXran83sfLfys2bN9m+fXuGhUcyvVjxP+V5MiMjgzqNhrX0Bu729OJ4qwsB8JNPPnnhc/0e1atXp8k7VPHV3OLL0jvPr3M4HGzWXPaJ81t2tWjZ8oUkBOQn8obU6cfEvgvpllCeGo1WSZJ9GrKzs7lhwwZ++umnT60GeOvWLa5du5Zr164tsM9St25dWoMLPWg3V6NXgeTyc+fOsUzZclSp1XRz91Dae/2W1157jTqzi7Ifkp9QsGvXrqde44vA4XCw+SuvFNizeeutt/70eW0urnQvUpmpw9cyZfAKGj0C2KhRI+X1DRs2FNjzSBuxjmqdgTqdjnqrG02eQfLekkZPjd5EUVJRbbDQ6BuprKNIYiKvX7/+yPlv377NlNQ05Vi1Rsv333//hSa2/PLLL6xTpw7j4guxWbPmvHDhgvLamDFjqNIalHZ9+QUC+YksAAoUXPyW/OQCo5svRZWGgqiixmCmpFIprf569uxJjd7EmNYTWKjHHJp9IxgdE/tC1jV9+nQKgqgox+VLxP93m8ETJ06warVq9PMPZJmy5Qrs+T2KU6dOEQD9yrSU97navk1BlDhjxow/tClfWTA/gSN1+BqavEP5yiuvPM9S/6fIycmhpFIxoGKHB+qMwYVZo0bNl23av5on9SdVcOLEiRMnj+X999+HxeHAKlc36EUR8+/cxpAFCzB5yhTY7faXbd5Lo0OHDrBYLHjllVewYMEC3Lp1C5999hl0Ot1LsadWjeqYPXce1EYbHDn3kXFgMzoOGvhSbMnn4MGDMLr5wR5bCgDgkVIbhw99hVOnTiE2NrbAsSRRt1YtXP7pCP7P5oKD2dkYPHgwMjMzAQDmgDgAgMErDCqtHpcuXXrsvIUKFUJyUhK+/fZb6N38cO/6r8jJvAVHTg6aN2+O/3v7bcyaORPXr19HTnY2vIs1hMZsh2dyDZz5YjbMgQnwL98Gp9a/h5snvseJVVNgDSmCs9s+hJ9/AMLCwgAAu3btQq3adXDp4q8QBAEjRozA7j17YYlIhy08BQBgL1wF3+1e9Eg7jxw5gkuXLqF3n74w+cUivNnroCMXh+f2w70bl+EaVSzvvNXC7c8nIbrVW7i4ZxWuHtwGo3c4AEDr4g2NwQy1Wo3ChQujUKFCuHLlCt54803cuX0HoqTCiVWT4ZFYDfeuXwQdOfAu1gg+JRrhyv5NmDJlCmrVqoWzZ06jU6dO+HjZGpj9onHt0NeIbfc2jD4ROLN5Di58swjdunXFTz/9hC+++ALW0GRc3LMSGQe2QGWwILTuQNy9eBzntn0EnYsXJk+ejK1btyEnNwcAoDJY8n5aAQD3M87i3vWL0Fjdcf3nbwFRREzH6RBVGhxfMQEDBg1GYGAgBg0ZCqNfDCKavg7SgSPzB2DQ4CFYu2Y1PL28cWbddHgVb4wbx/Yi82YGypcvD0EQULx4cRQvXlw516tWrULt2nUg6S2gpIMg5UIQJVw/tgfCsT3w8HDHjh3bH3mdKlasiOHDh+PslnnwSKyGOxd+BgDcOvUDSpYqjc8++wzz5s3DZ4sWQatxQ/cZE9C+QyfQJwKSWitfJ7s/rmccKjDu2bNnQYcD1tBknFj5f/IvBRGeKTWhNrng7JZ50Nn9EVanP85smYcbx/bgwvbFMPpG4syWuRA1ehTp9ynu38zAjzO74oepbZCbfQ+CKOLCrmXwK/0Krv70De5n3kZaWhUsW74CR+5cx63TPyKkVh9IWgMOrJuOdu3aY+XKz3H0yBHs3LkTJpMJJUuWRN269WAJSkBks7EQBAEaoxUffvQxZs6ciR3bv8Hy5cuxb98+XLhwHjeO7YZnWm047mfh9pmDKFakED766EME1+gFj8SqyLxyBj++1wVjxryOrl27FjgPnTp3wanzlxHTegLoyMWJZW/iypUr0Ol0aNu27WM/54/i7NmzSCuajl9//RWiSo3BQ4ZgyeLFqFWrFvz9/bFm9Sq0aNkKJ1b+HwICg/DR6tXw9fV97HheXl64t+c7ZF45A53dDzeO7QUAhIfLn7/c3FxUrVYdPxz8CS5x5XDg5CGUK18B+77bi6ioKCxduhRNmzbD/fv3AAARkVEQVWqojTb5vrB5AgCaNW+OjRs2wMPDA506dcIrr7yCy5cvw8fHBxqN5qnOgRMnTpw4ceLEyf8y3t7e2LZtG5o3b44VK1agSZMmOHbsGAYPHgxBEF62eX86JFG/QQNs/fJruCZUwKWzx1CpcmXs2rkTiYmJL2yeY8eOIev+fXRxs8FHUqGZUYXJWZk4cOAAmjRp8sLm+SMGDx6MDWXL4eB7nSFpDLh14RfMmjULACAIAj768EM0qF8fR48eRWRkJGrXrv1C7oOmTZti9Zo1+GTBBACASq3G3DlznmmPTKVSoWLFik/9vpMnT6JM2XI4dfIEACA4JBRbNn8BLy8vGAwGZN+8jNzsLEhqnezP6PTQaDRwOByoUbMWDh87Bd9y7XDn/BG0a9cOvr6+qFy5sjK+q6srsjNv497V89DZfXH7wlHl9y+DFStW4OOPPkJInX6wx5TC2a0fYsCAAQgODsbMWbNwJeMqypUpjdGjR0Ov17+wece8Phrdu3dH1sVjyM28hdzMmxgwYIDyenR0NFRqNc59tQC+pZrj6qGvkJ11F+/Nno3vvvsOixcvAT2CEN16AiCK+GneANy9eAx3L/yCgIodIEgqHNgyF/369VPu3d9iNBrx9VdfYsOGDbh+/TqKFy+O4ODgF7Y+AAgNDcWyZcse+ZooivJ/kHk/HHkvSDi2YgJKlS6DBg0aPPS+jIwMjB07Fr6lX4Ff6VeQdfU8DszsBveUOrj768/o2q076tSpg9GjR+Prb7bju7n9AACudjd89Pn6F7IuX19fkA5c//lbuESk4fqRnQAAPz+/AscFBQVhzerVTzTmlStXsGHDBgCALTwVAGDyi4LObMO5c+eeaAxBEMC88wkAyD+nTp4IURShVmuQffcGAICOXORm3YZOp33JljkBAGdluzPD3YkTJ79D165dGarT8bS3L8/6+HGGiyuB35fS/l9i9erV1Ol0BMAyZcq8NEmtO3fusGmzZpQkiSq1mp06dXrp1fZTpkyhIEqMai73AHcvUoVqjeaRGbsXL16UK5pdXHnWx49nffwYp9OzadOmNJrMdAlLZnTL8fRKq0MA/PLLLx8aw+Fw8NKlS8zIyKAoikof7eSBS6k2uynVwpLWQKPJzK1btz6Q3B6+hhGNRyqV4Gkj1jG61YS8ats8mXlRVCqlMzMz6e7hSYt/NKNeeYM+JZvKFcFpRWl082Niv8+YMuRz2oILMzIq+iE7O3bs+EBqXJToGldGycj0SK5BUaVh4Z7zmDJ0lVyJLIiMbj2RyYOWUdIaafSJZESTUfRIrkEA3LJlizJ2/s/adepQb/Oga0xJuXe7Sq6Wza+qTR2+lhBETpo0iSdOnGDfvn2pNdnomVaHWpunYk9s27cJyD3vHQ4H33nnHfr6BygV8mENhirH6t2DKEhqZV0QVZS0Bpr8YhhQqSP1HkEEBKo1WkoqDdUGWWLNmCd9nzZiHf3KtpLfC9BostCnRBPlNc+UWoyIlM/nd999x4DAoLyqFZ1SDX/8+HF+9dVXvHTpknLOo2NiaQ1JZMrQVXI2unc4Tf6xBMAPP/zwd7PCt23bVlDxIK8CG4L4SGmxixcvUq3RUlBpGFi1KwOrdKUgqdmsefMCx12/fp2SSkVbVDFGtXiTolpLr9+oU9jjy9LgFZonT79GOSfIU13wK/+gmtwSGMf4+Hhu27aNM2bMoPibHuodO3bk3bt35QofUaLKYGVAhfZMHb6GfmVb02yxPnLdNWrUpNkvmh7JNalz86fG4k61RkuHw8EePXrI1fZWNwqiSFFSUVJrKanUdLW7ccECOWM8ruM7yr2mNVo5evToh+bx9vFTetaljVhHr7Q6DAuPKHBMVlYWP/zwQ7711lv86quvSJKHDh1ip06d2LRpU86bN48Oh4Pt27enzmJn4Vc/ZMrQlXSJLEpPL++H5nzS78bz589Tp5fVA/JVJVJTU5XX85U3IpqMkr9rBi+nxmDmqFGjeOfOHRqMJrpGl2Bi34UMb/waBVGkIAh0jSnJ4Jq9qXcPoEpvodZkY8VKlZ/IphfFjh072KRJE9aoUZMzZsxw9jdz8kw4fcl/Ds5r5cSJk/81cnJy2Lt3b+WZuE2bNv8T7fDOnTunVJymjVjHlKErqbd5sHfv3i90ngsXLlAURXY0mnja25ef2t0oCQJnzpz5Qud5Evbs2cOOHTuyVatW/Pzzz/+yeR0OB7dv384lS5bw2LFjf9m8+VStVo0GVy/Gd3qX8Z2mU+/iyaDgEMUXFCUV9TYPWgJkFbH89mpnzpwhAIY3HKb4akZ3f3br1q3A+NevX2doWDjVOgMtvnKLr1atWv/l6yTl/a46depQlFSK71Woh9xrXK1W0+wTRrdCFSiptaxXr94Ln3/ZsmVs3bo1u3btyh9++OGh1+fPn6/0tgfAgQMHKq9FREbTM6WW4u/6lGhCQVLRI6ma8jvv9Ab09Qt44Xa/CH7++WcajEYavULplVaHktZISaVmq1atOGvWrMd+r+bL60e1GKesU+fmT6+0Ogys2pWSJCk+6L179/jFF19w5cqVz6QO8Thyc3NZo4asRKgzyf58+/btn9n3XbBgATUarbIn4xKRxvhO0+lfrg0BcMWKFU80TtNmzSiptfRMqUlbaCIFQeCmTZueyab/VfJb/rlEFqPZL5KiKCr7ok7+HJyV7U6cOHHyAqhTpw6mT5+OHtevIUGtxntZmUhLToa3t/fLNu1vQbVq1bB+/XrUqFEDW7duRfny5bF27dq/vOrfYDBgwccfY/68eRAEAZIkAZAz2+/fv48hQ4Zg1eq1MJtNGDpkMOrWrftM85DEvHnzMP/DDyEIAjp26IDGjRs/8riMjAwIAvDTx0MBQYQAYubMmbBarQWOdTgcOHr0KARBwPEcuRL6lsOBy45cuLu7Y+mSxWjYqBEOzx8ASZLw9ttvo2TJkgXGOH78OGrWqo1DB39UskR1djlbVdIaoDG5wJGdlVdJ6ok75w6jT58+qFevHpYuXYjz33wG0AFBEKFz8QVJXDuyA4AAt/iyuHpwGxrWr4ukpCQAcib/5UsXEd2qHyyB8bCGFMHNw18iOjoKR44exQ9TWkAQJQiOXExbvaqArR9/LFcHB1XtBnNgPE5tmImrh77Elch0CBBw7cct0Os02D+tDQRRBUdONgDgyEeDYPIMgiM7CzlXT+Powteg1mgwdepUeHl5ISk5Bfu/3wdvH1/MeHc6jh79BeawVARX6w4AOLFmGi7tWYVL362DT4nGuPLDFwAdGDZ8BPr06QONVgdRFHHt4Dbcv30Nv+5eAWtwEZz/+hMYTWaEhoZCEAR07doVXbp0wbRp09CzZy/c/fUY7DElkXXzCjIzzkBlsMK3eCPcOv0jrh7+Gr4l2+D8jkU4vXEWNFYPBFbpgos7FsHHxYhTJ09C7xmKOxd+wbmvFkKlN+P8N5/BJao4TL6ROL3pfeR8vw4m30jQkYtrP25G9aaNAABFihTByRPHkZGRAavVCrVajWHDhmHs2LEAAK1Wh48//gj169fHpcuXYYquCFFSAZIKRu8w3DjxPQAgMDDwkdUNCxYswOw5c5Ts5MCq3aC3++HejUtKJfrBgweRnZ0NV1dXGAwGAMDOnTuRff8ebOGpOLV2ujyYICC9aNEC48+ePRu5OTm4fmQnrv+0HYIoIftWhpzhTAeyMs4r1/72mUOgIxcjR47EuPHjkZl1H1cPfQ1bSCLuXj6FW2cOo9X4cShVqhRKlSqFMmXKYMaMGTh16hTc3d3xzjvvYO/evXCNLgFBpcHpTe/DkZuNO+ePwO7mpth08OBBTJkyBbdu3UJISDBWrVqJ2xd+gUdiFdy9dAq3T1/Bxx9/jKlTpyKgUid4F62Lm6d+xOF5/VCjahUcP34Cd+7exfz5H8JiteHM+nfhVawxrv28C/fu3EDp0qUfOs/+/n746dR+5N7PBB0O3DrxPYJCfeBwOCCKIrKyslC2XHns3LEdKq0eOfcy0a9fP0x/dwaoMUJttuOTTz7BiRMncPr0aei8wnH96G5c/3k3sm9fxbVfLyAnJwcq1YNHfrVa/ZAdj8Lb2xsnjh9Dly5dcOHCBZQqVQrjxo176Ljf3j/53z9nzpzB3Tu3EZBcE2qjDa6R6TB5BKJYoQhs3rIVVw99Bb1HEKJbjceN4/uwZctskPxLKq527dqFUqVKQ+PqA5XRFatWdcaFCxcwcuTIP31uJ06cOHHixImTvwJJkjBp0iSEhYWhR48emDNnDk6ePIklS5bAxcXlZZv3p+FwyBWSgijl/UZ4uIryBeDl5YW33noLffv2xdzMu7jvcKB8mTJo1arVC53ncdy/fx8jR47E2vUb4GK1YvjwYShbtuxfMnc+giAgPT39L53ztxw4cBDWqJIweMpVztbIEji1ezl8S7eAxmzHuc2zYTdrUbJ4IVQdMwivvPIKAChqjPdvXwUAOLKzkHvvzkMqjVarFbt37cTbb7+N8+fPIyWlDzp06PAXrlCujj5+/Djate+AgwcPQtQacXTha/BObwA6ciEIAkSdCVGtJkJUa3HJPxZLl07GpUuX4OHh8cLsqFOnDurUqfPY11u0aIGyZcvi8OHD8Pf3R1RUlPJaWloKPluyAtfDUyFIKlzetw6S1oCsjHN5VeIC7l09Bw+L+YXZ+yIJCwvD1i1b0K//AJw6/QMqVyiD92bMeKg6/L8JCgqCh6cXzm+dC0FojVunDyLryhlIsaVxZc9KFElMUnxfjUaDEiVK4N69ezCbX9x5EEURy5cvw8KFC3H8+HHExsaibt26z+Rznzp1Cq1atYY1qji80hvi3JcLcO3Idlw7ugsAMGDAANSsWfOJxpr9wQdws9uxdt0G+LlYMGzpUpQvX/6pbfpfZuzYsfDw8MCKzz+H0RCK3nOmoUyZMi/bLCeAs7Idzgx3J06c/AHz5s2jn5cX9VotK1esWKB/jxOZPXv20G63EwBjY2NfeuX/iRMnmF6sOCVJos5gpCBK9EiqTluo3L9u/fr1zzTu9OnT5f7UYcm0BhdWKoP/m7lz5xIAvdLqMqhaD2qMViYlpzx0XGZmJitVrlygajhdp6OvRkOLycSjR4+SlDOZDx8+zGvXrj00hsPhYFx8Ag12H4Y1GEKfks0IQaTO6s6Q2v3ond5A7hMeECf3udZb5GprnzACYHBwMK2SxLetNsaoNRSEB73Kff38GBYewZ49e/Lu3bvKnBcuXCAA+pdrw5QhnzOoWneKkop9+vTh2bNnOWnSJL755puP7PXUu3dvmjz8lezemNYTCqw/KjqaeoOREESKai2Dqvegb5lWBMAGDRpw0qRJvHPnDs+cOcM7d+7w9u3b9PXzp87Fm+aAeGos7hQliRUrVqTO6sbYDtNYqMcc6u1+Bfq1A6AginQJT2VkszF0SyhHQRRZvXp1+vv7P+gVbjBy1apVD61j06ZNyjE698ACY+tcfZnQdRZVBitFjYGSzkRraJKy5sDKnalSyZnfkc3HyhX6eb3KtTYvJg1YzMK95ssZ95EPepmVKl36sb3M1q1bp/TNiu88g67RJahSq/nrr7+ybr161JqsDG84jKF1B+T1CxNZpkxZ5uTkkJSzqd955x327t2bLVu2lPuVhxSh3i2AAJjUf5FcHTLkc8Ueo8msnMehQ4eSJL/44gslgzt50HLGtp/yUB+z7777jlabC90LV2LhXh8yvPFr1LjI/e2N3uE0uAdSEAQCoMHFk4IosWSp0uzduzd1ZldGtRhHtdFFsaNWrdoFqrUHDhxIADR7h1CjN1Gt1dE1qviDvuqJVSmqNBRFkYsWLSJJHjhwgHqDkQYXL6X6AQCDqnWXKx6GrabR3Z9Vq1YlACZ0e1+phFDrjDSbLTTYfeiVVocGVy+6e3jSzd1D/syp1Zw6deojr9uOHTtoMJooqbUFqvcjIqN49OhRTps2jaKkYkybSUwdvpZeRetTEATqrO5MHrRMrgQo1pBqjYb9+/dXxrCEJFLnFkBBELhz585Hzv285OTkMDEpmVqTjd7pDWjxj6FWq+PBgwd569YtarU6uhWqwJShKxndchxFScVJkyaxQYMGNLgHKL0l3YtUpour/U+x8VE0bdqURo9ApgxdqVRS6PQGZ3W7k6fG6Uv+c3BeKydOnPwvs2bNGppMcs/uqKiol1KF/FfhcDhYpkxZagxmeqc3oC24MCWV6k97Ht6+fTsnT57Mzz77jNnZ2X/KHI+iRYuWlFRquhWqQLN/NCWVijt27PjL5n8Wbt68yU6dOjEmNp5ly5bj9u3bn2u80mXK0uQZxMS+C5nY5xPq7X5UGW2KzxdQqRNVavVDz/jr169/UJkbVZxaVx9KKhUPHz78XPa8aCZMmPBAsU0UGddhGtNGrKNv6RaKz1iyZEka7T4s1H0OLSGJlLQGQpQUH/ev5v79+w+d74yMDCYlpyg2a6weDKndl4BAvXsAjZ4hD+0XPAm3bt3ikiVLuGDBAp4/f/5FLuOFsWvXLnp4ej2kFBgYFKzs9TkcDg4ePJiSSlaUTCua/sL2Ux0OR4F9vOdh1apVBMDCr36o7IMIkoqvvvoqjx8//kLm+LNwOBxcvXo1x4wZw3nz5r10FVQn/0ye1J90BtudTrcTJ06cvBAOHjxIHx8fAmBISMhLe+DKzs5mZFQ0Da7eDKzSla7RJQgIjGk9ganD19DsE8YmTZo809hh4ZG0x5VVHi5dItKYmJT80HENGzakJTBOcfSCa/QiAN65c6fAcaNHj6ak1jC80XDGdXqXOpsnDQYjO3To8MTO3pUrV2Q58/qDlfnM3qG0u7nL8mmiJAcuRYlaF2+Kap3ygBxQsYN8jCAwSKNhaa0sCVW0aFF+8cUXvH379mMDUP369SMAShqd4jSo1BouWbLkd+2dOHEiJbWGcR2mMXX4WjkZQBAZ3mi4Erg1+ccyoGIH6lx9KUhqRrUcTwDcsGHDQ+N988038vskFTVWD+rscqDczd29gENjd3NXgp8AaLZYCYBFXv1IkRgUBFGRYz98+DC3bt1aQI49nx9//JF+fv6UtAba42S5c4gSQ2r3ZVSLN6l19aHBK4yiWvcbGwQGVu3G1GGraY8pSS9vH3p4etHiH83oluPpW/oVAqBrTEkW6j6b7oUrUVKpePz4cR45coQ///zz7wYDx44dS7XepNwDCV1nKRJuly5dYtGi6YotHp5ebNeuHb/44gveunWLOTk5rFixEkVJRZOHPwVRoktecDq6nRwsV1vcaAkuQmtEmrI5YfAMYUTjkfRKq0sAXLhwIe/fv8/09GJUa/W0hSVTYzAzMiqaN2/e5Jo1a9i5c2f5npTU9Eqr+0A2Pq4sNRY3CioNzWYzFy5cyDfeeIM9evTgjBkzeO/ePXbp0oUmz0AmD1nJqBZv0L2IHPg+ffq0ch4yMjKUpIO0EetYuNeHFCU1XWNL/0aOvybNFqvSjuHatWuMjIykqNbSGprM+E7v0jOlthxsr95DCbabPALZpEkTanV6ukaXYFzH6fQt2Uw5r4V6zGHKkM+Z0O19AuBnn33GU6dOPfS5/29++eUXNmzYUA6SBxemwTucKp2RIaFh7NevH41274faGpi8w5TfhdTqQwCynKUk0TtPjj9l6EoaPQLZtGnT353/ebh06RIbNmpEP/9ApqYVVWTuSTlRTZQeJBCULFWaWVlZ/Pbbb6nV6mhw9aLZN5wAHpuM8GdQs2YtWoMLP0h+qdKVoig6nW4nT43Tl/zn4LxWTpw4+V/n+++/p5+fn+wnubk9d6Dz78y1a9fY/JVX6OsXwEJFErl27dqXbdIL5fbt2wTAgEqd8p75V9Ho5sf27ds/0ftzcnJ4+fJl5ubm/smWPsDhcLBCxYpUaw30SKpOs08EtVodf/zxx0cen5WVxblz5/KNN97gF1988chjDhw4QBdXO5GXpK3R6miw+ygJvR6JVWlzceW9e/d48eJFZb2tW7em0TOIvqVfoSW4MI3esj/ysloiPor8ln9eRevRHl+OapPrA3+w3WQC4CeffKK0fJO0BmqsHvQr24rmgFhqdfq/NHng/PnzLF2mLAVBoNFk5oQJEwq8npOTw++++45BQcE0uPkxsulouifKvnxqairXrFnzVPP9+uuvDAuPUPxMi9XG3bt3v8glvTCysrJ46NAhXrx4kT/++CO//fZbZmZmKq+/9957BECfkk0ZUrsvdVY3Fite4rnnXbp0KV3zCqJCQsOUlpDPyt69e+Vineo9mTZiHaNe+Q8BvLTEjqehf//+cmGL0UJBEFimbDmn7+/kqXEG258Ap9PtxIkTJy+W48ePMzQ0VH5Y9PF5ZGXzo7hy5QqbNGpEfy8vJiYkPHPlOSkHSfMrhvODZGqznd7FGjJ1+FqafSPYuHHjZxrb09uHnqm1FUfHrVBFxsTGP3RcmzZtZEdv8AqlL5VKrX4o271evXq0hSYq44XWlStyb9269cQ2ZWZmUpIkpe9zUv9F1Fns7NGjB2/evMns7GyeO3eO1apVp06no9bqwdTha+UH5Bbj5ECq3kSrzYWVKlbkxIkTuWnTJnr7+BIAPb28uXHjxofmdTgcbNiwIQVJTb9yrRlQqSMtQQkUJYmBQSEcNmzYI7P7b9++zcJFEimIopx5DdC/QjuG1RuUl7UtMXnQcqaNWMf4zjPyKscDqFKreebMGZ4/f56vvvoqGzduzIkTJ3LXrl0EBBo8Q/Mc6zV0iS5OQVQxsHIXGn0iKIgqunl4ctasWVy6dCmXLVvGtWvXypXjjV8rEMT89NNPScq93Jo3b87UtKJs06aNEnT/6aefaDSZqTbbqTbLzoukM9EWnqZcx6DqPZQAe0Cljkzs9xndi1QhIFDIq2ifPXs2d+3aRXcPT8VJLFas2G8SF9ScO3fuE98H+WoK0a3eYtqIdfSv0E6uXomOISn36zp+/DiPHj3KChUqKvN4efvwnXfekT8zzcYwbcQ6qs1u9EiqzrQR62jI23wwByUoVe6QNAXmSh2+lmqznUWLFiUpZ5kPHjyYtWrVYu/evXn58mV26NBBSYqQr2kgBVFF7+KN6JVWh4BAS0iinPyh1lBSPej5NmLECJLkypUr5XOT1z8cANVaHX/66SflPPz8888FPv9pI9ZRa5ar4N0LV6JHcg0Koshhw4aRlB3/9PRilLQGuhepQp1bACWdiX7l2xEQqNLq6VW0Hm1hyRQEgVu2bOGSJUuo0+kVG/ID5Sq9RXbibHL2+uLFi5/4+r3yyitUGywURBVt4anUWNwIQeQbb7yhBP0LdZ9N16hiSp80nxJNGFKnH/U2d6amFeX9+/cpiiIDq3RV1m4NLsxatWo/sR0vmgMHDvD999/n8uXLCzi033//PTt37syWLVty6dKlf6lNs2bNytu8qs/AKl2pNVpZpUrVv9QGJ/8OnL7kPwfntXLixIkTuZ95YqL8vK3Varlw4cKXbZKTZyD/b1pwjV6KL2byCmHr1n/cT/zTTz+lyWxR/Pz85OMn4e7du+zZsycjIqOZkprGlStXPvF7T548KRcI1BskJwgMXkGdxZWDBg166NisrCymFytOQRCo0cuKDPn91v+bCxcu8IMPPuDs2bO5Zs0aajRaGuw+NPtGKP61VisnwPsHBHLv3r1s164dje7+TB22WlGdA8Dbt28/8XoeRW5uLv/v//6P6cWKs2zZcly+fPkzj9W3b18lYdwjqbpsf/m2jOswjZaQIoQgsnqNGszOzuaYMWMIgDFtJjFtxDomD15OtdbA8ePHP9d6npScnBzGJxSi1uLKoGrd6ZlSU0nE/29++uknhoaFK3509+7dnynpo02bNtSZXRnf5T0m9l1Ii18UY+Me3pf7J1C/fn1agxIeFOrUfJUAnqsi/YcffqBKpaZrVDGG1O5Hi18k7W7uj1TKfFIcDgfbt29PANRb3SiIIitWrPSHih45OTl84403WKx4CVapUoWbN29+ZhuehSNHjuR9ftrl7YG+SeDRCqVOnPwezmD7E+B0up04ceLkxXP+/HnGxcmS5Xa7/Q8zTHNzc1m8aFG6qtXsbjKzmE5HtUrFvXv3PtP8+Y5cSK0+SvBZ1Ohp9I2iS2RRAnikLPgf0bt3b6Wi16dEE3qnN6Agihw1atRDx+7bt49arY5GNz9aQ2S5+cGDBz90XK9evag1WuWK2KGraI8pSYvV+tRyxiNGjJAzev0iqbPYabXZ+Msvvzx0XH6w0qtoPUY0fo0GzxBqLO6Mbj2RALhu3TqeOXOGRpOJtpDCDKnTj7bQROoNRp48efKh8Vq0aEFVngOcL4MOgPaEChRFiQMHDnykvXfu3OE777xDb28fiio1LT5hFEQxL1FDYJHeH8tV1a3ekoOvosjJkyezdOkyFPKqog3ugRREiY0aNaLZYqU9vpzioPiVbUVRraVLVAkKkpq28FQlAJofuM3NzWW1atUpShJNXqEUJDUhiDSZLRwwYAD9AwKpt7rTLaECtSYbo2NilQ0GrdmVks5EjdWD1hC5NYHabGdiv0+ZOmw1XWNKUVKpqTXamDpsNb2LNZIDxKIk/xQkCoLImLh4fvPNN9y2bRtHjBjBkSNHcvHixdy0aRPPnDnz2Ou9adMm9uvXj6NGjeLZs2d59+5dLl26lGqNlhAEqgxy1b7ePfChZJBhw4ZRUmsZ3mg4o1u9RY3JhQaDkQAUWXKvtLqEINIeV4YQRHqm1FQSVwyeocp1DqjUMa96fD4FlYaSSvXI++Srr74qkAWd70C6RJeQkw9+I58uqDQU1Vpagoswtu3bSsV/q1ateP/+fRYvXpyS1sCoFm8yrsM0Gtz8WKx4CWZlZXHWrFkcOnQo7W7uNHmHMrLp6/Qp2ZQA+MorrzA4JIwBgcEcPny4Ip+/f/9+AmBEk1Hy98WAxRTVOqp0RqamFWX79u3pHxDE+EKFuWzZMmVNV65c4Y4dO7hr1y5OmzaNEAS6RKYzpHZfGrxCKUqPPhePo3Xr1sr3Vuqw1SzSdyFFtY6vvfYa27Ztq5wfnd7A5cuXs0OHDnmS8QK1Oj0XLFjAixcvslSpUtQYLAys0oVeResRAN9///0ntuNFcuDAATZv3pzFixdnz549X3p7kXwcDgdHjRpFvcFISZJYpUpVXrly5WWb5eQfiNOX/OfgvFZOnDhxInP79m3WqlVLebYcO3ass5XOP5DKVapQozfRt1TzPCU//GF18A8//EBJpaI9piTDGgylNSieFqv1kUpuj6JJ06aU1Fp6JNegNaQwRVHkli1bnui9x44dkxPdG41QqvH1Nnf279//oWNnzJhRoI2WT4kmBMCzZ8/+4Tx79+4tkMAOgB6JVRnecBjNvhH08PTixo0bKUoSLYFxdE+sSkmtYZMXoAQ2cuRIxce1BCUQwDMF3I8fP06D0UiV0UaTf6y812B5oNonavT0KdGYgijx7bff5rffflsg2Typ/yJKai0nTZr03Gv6IzIyMhifUEhJDs/fj7H4RrBFixaPfE9OTg6PHz/OjIyMZ543vVhx2uPLFmgZoNXqnnm8l0l+oU5+wYl3en1qNFplv+JZmDRpElUardI2Lb6LXD3/OJWIJ8XhcHDRokUcMWIEZ8+e/UTV4T169KAginSNKUmzbyQlSSqghvdns3nzZgJgQtdZyv2i0Zv4xhtv/GU2OPl34Ay2PwFOp9uJEyf/yzgcDp48eZKnT59+4Q52RkYGU1NT5YpYs5lbt2597LH5jtdMFzvP+vjxuLcv7aJEQRQZFh7xxA5cPg6Hg3Xq1qWkUtMlqjgNrt7UaHX09vFlTFz8U/eCIh88oPlXaJ/X71lLCCLbtm372IfgvXv38pVXXmHt2rX57rvvPvIcX7x4kcEhoRREiSqtnpJKpVRWP+2aP/zwQ7Zq1Yq9evX63T5848aNo5gX3NRYPRjXcToL9ZhDAFyxYgUXLlxIAEzsu1AJPj4u87NevXoEBEY2H8vU4WsUOfHCr35Ir7S69PDyJilnp/ft25cRkdFMSk5RKllv3brF//znP+zUqROnTZvGI0eOUFKpqTG70S2hAiWtgaKk4tatW+VsabOd/uXb0RaeRggivfMc7/bt21OQVAyq2o2hdQdS0pmoMrk9SAAQRKr0Zupc5Wr9fKf+8uXLsrSWIFDSGhlYpQvt8eUUR7ZQjzkFpNomTJjAtm3bUmO0UWWwKH3MfUo1l3vMa/RKoDt/XkFSEYJIr7S69EyppTjLgZU70+gdRqPRRJVaQ0FSKb3UP/vss0deu/v373Pw4MFyIN3Fkxq9iTYX1wLZ4XKQPYi2iHRCEDhmzJgCY1StWo22iDQmD14uB4VVGurdA+WgrYsXo1tNoD2utCzHJ4iEINK/QjvFMbGFp1Kt1lCT13LA4BUmJx5Y3Cmq1Jw4ceJDsvcffvhhXjB/uVLJAIAeKTWJvOSJiCajGN9pOrWuciuKuPZTlTlVBishCGzSpAmTU1LpVqii8pp/hXY0mswsXqIkRVGi3upGAErFhiiKHDFixGO/48aNk9UdoluOV3rSixo9/fz9/zA4/Oqrrz5IEpDUTBm6qoAiw9Nkba9bt06+dh7BckW93kKV1shBgwbR4XBw//793LBhAy9cuMCbN2/S28eXJs8gBlbuTGtw4QJy7UaTmaIo0mA0cfTo0S9lA3XdunWUJBUFlUZOkBElutrdnmiT7K/C4XD8pb01nfz7cPqS/xyc18qJEydOHpCTk/MgkRxgmzZteO/evZdt1kvn9OnT3LNnz99KTvxxXLt2jY2bNKGr3Y0ent6sXLkyx4wZ87sJpFOnTqUoqRSfJX8PYM2aNbx//z43bdrEFStWPDL4fufOHQJgYOXOBVpsPUk1PSknuqekplFrstGnZFPaQopQUqkeWZgxZMgQ6i2yMqFboQr0Kd6YAJ5IJvzSpUuUJImeKbXoU6IJ1UabouqXr2S3Z88erlu3jsWKl2BMbDx79+5dQNb7WXFxtdMrrY6iNmAJjGPFSpWeepy+fftSa3ZR9hr8yrZSPqv+FTswacASWcHMP4pt2rRhdnY2U1LTqDGY6V6kCo3u/rS5uPxu8v6LIjk5uYA/HN74NXmfwcWLzZo148CBA9mtWzeuXr2a58+f59ixYzl48GBu27btqec6ceIEP/zwQ65YsYKtWrWizuzC+E7vskifBbT4RTIuPuGpx3Q4HLxy5cpLlRQ/cOAA9QYjDS5etATEEABHjx79XGPOnDmTgiAq+1kRTUYRACdNmsTZs2fzhx9+eCG2OxwOHj16lD/++OMj/ers7Gyq1Gr6lm6hfG8YPYPYvHnzFzL/k3DhwgVqNFra40ozoctM+pWVixyeR03Vyf8mzmD7E+B0up04cfJXs3z5ctarV48NGjTg6tWrX5odly9fZnr6g4zfylWqPJV0+ZNw8+ZNlisnBy51Ot1jq8lPnDhBAHzXxZVnffz4i7cvXURR7g8dlEC9wfhQ8NjhcDAjI+OxUl9ZWVkcPnw4y5Uvz2bNmhWQmX4Wpk+fTkEQFUctsa8ckH4R8sfXr1/ne++9xwkTJnDfvn3PPd6TcOTIERqMRpr9oxlQsQPN3qF0c/fgwYMHOXHixAIyZLHtpzw2K3vgwIHU/KZ/WFyHaQTA2HaT6Zlai57ePiTlbF1JpaZHUnXaQpN+9+F248aNtNvdKEoqqjUapqcXU2SfI5uO/k1rADfa48oSAHfs2MHKlSsr97PW1VcOWBossiS31YNJAxbLvduSqlMQRJ49e1bZcAAeSKinDl9DSW8mAMXBzd+IAMC4uHh5Dhdv5X7Id17yA90G73AKKg39yrSkqDVSY/Wk1sWb1tAk2iLSqXcPfODwCyINXqH0LdmMGpsnJa2Bbu4eD52X8+fPMzZvbjkoG0JzYMJvguwCBZVW/pkX2Bw6dOhDySAdO3akzuJK/4odCEFkfKfpct/v2n2VsVQqFatUqaIE00WNnoGVO9O7eCMCYKVKlThnjnxObOGp9CnemAndZlNUaRgQFKSMU6JESV67do379u0jAHoXa8TCvT5UNkzy7bZFFH0QPC/fRt5IyJP5ius4nYKoojlQXntQcDD1rt5M7PMJkwcvpzUogd4+vhQEgdGtJuRltnckAG7atInXr19/7OcgIyODWq1OSRbwK9OS5oA4qlRqfvPNN9y8eTOnTp3Kt956i0uWLClQqb5gwQJ5TcUbyX3bBZGFesyV74fGIwtsCP3www9MSU2jyWxhkcSkR/ZLu3v3LtVaHdVmNwZV6057fHkC4MSJEx869osvviAAxnd6N++ctVM2vyKbjaHRzY9x8Ql/GGTPysrimTNn/pSAc0BgEC3BRZgy5HMW6bOAGqsHRUnNAQMGkJQ37M6cOfPQ/fn5558zOSWVYeGR7Nmz53PJ5zlx8mfj9CX/OTivlRMnTpw8zDvvvENRlJOTy5Yty6tXr75sk14KDoeDffs+8IWsNttTJ/y/LPIV7kzuflTrDAwMCubly5cfeez8+fNlH6LzjAI+y8aNG5mSmvab9btw586dBd6b3yc+qGo3xWc2eQWzZcuWf2jjgQMH+NZbb/HNN99k9Ro16O7pxdj4hMdW4s+ePZsQREo6E42+kQQESpLqie7PPXv2KPsRARU7UFBpWLin7KMF1+hFAI9UAHwRmMxm+pZq/iBJPSKNZcqUfepx2rdvT7N3qDJOeKPh8v6DVkf3whWZOmw14zvPoFpn4MiRI0mSV69eZbt27ZhQuAhr1KzJQ4cO/eE8OTk5T5WUfeTIEa5cuVJpFfnNN98QAL3S6jKm7f/RJTKdECVqrO7UaHU0mszUmmw0eQTkJYSbqNYZZAlyQeDs2bOfeO5169ZRpzco92hCoUIFCg7y79kVK1bw3Xff5a5du/5wzP379zM4JFQ5t9OnT39ie140P/74Izt27MimTZty/vz5z50sf+3aNQYFh1BrstEWlkJRpaGr3U05X6IoKup3Z86cYfXqNejl48u0oulPlNRCyt8JFStVUsaMjonl6dOnCxyTlZVFQRAYWLXrgySUgBg2aNDgudb3Wy5dusTu3buzatVqHDBgwCP3tRcuXKi04gPAIUOGvLD5nfzv4Ay2PwFOp9uJEyd/JfnVnWb/aJp9IwmAixYteim21G/QgFqTjeENhzG07gCqtQZ27tz5hc+TmZmpyNSpVKpHVpU7HA6WL1uWZpWKrY1GJqjVlEQV4zvPYPKgZRREiTNmzFCO//XXX5lerLicPSsI7Ny583NJLD0J69evJyD3RUsZukrJLt6/f3+B45YuXcoAHx+qVSoWS0390xy5F8H27dsZExtHnd7AIolJ7NOnj7LZIogiJbWGttAkavRGJhQq/Mhs7/yAY0itPizS+2Pa48sSgkjX2FIUBIEjRozg/fv3KUmSEjxNHb6GJu8wNmnS5LG2vfvuuwRAS1ACzX5RykNxaN0Bch+ygUsp6c3UmFzo5e3Du3fv8v79+4yNi6fGYKF7UnWKKi290urQJbIYLSGJv+mBJVdxzJgxg6NHj6YmL7AeXL0nC/ecx6Bq3eWgtSjR6BPJgIodqPcIospgZVi9QZTUGiYlyQkD7kUqM7jmq9RYPfJk6CWmDltNQa2nT6lXmDRgCQWVmhqrJ73T61Nn96Oo1lJn95Mlwoo3IkRJyU6Paz9VWet/39N16tSlzmLn/7N33uFRVG0bf6bsbG/Z3WRLeu+90HsJvfcqndB7DYgCCoqIAlIEQXrvzYZgAQEVkCYg0kF6b0n2/v6YZMIaSkCKvt/+rstLTc6cOXNmZrNPu5+IlmMQ3uJdUW5dUMC/Wjf4Vuog9j8v1kAMTnMyDB8+HIMGDULFihXRunVr/PnnnwCA06dPi8FplgXLy5GauR5pwzYiNkNMaDBbPMFyHHhFvjHLCkoQMSCGgVwuSprdu3cPEZFRUOhMsBWtB609GLxMBkGlQ2ij4QhpMBSCSovWrVvD6XTi3XfffSjATpCp9eBkAjxMJih0Hojv8TlShqyBISQVHC8mQAhaMxiOh5Armyf3sEPQGKRKaU4mh0KpQvv27SFTqKXkh9gunxaqsvynn34CESG0yVvQByWDV+rA5srhE+W1RmDys/VZDjJBQMmSpaBQKsGwPFIzNyCp/1IIek9wCg30wSlgOB4msxkHDhzAp59+Cp3eAJWnP2xF60NjC4beaMTZs2dd1nLs2DFxLY3elAxRpYcN3bt3L7DuPMdGePPRoiMnOAVav/w+b4G1+4LoyX0H58yZIzksPEzmfywp93dkgiBVvqQN2whTVGlwchXatm2LcePGgZfJQESwO7wlg/7rr78GwzAwBCbAM7k6OJn8hUg6unHzsnDbkv8d3PfKjRs3bgqyfft2xEVHg2XE77uhoaFPVEj7X2Xx4sVSsm9U2wnQB8TBYDT+4x7et2/fxi+//PJMraWehStXroBhGDhKNhVbe3WfBZlC9cg2d4AYHIuIjIKgVEPvHwOOl6FipUro06cPZAoVIlq9h/jus6HziUBgUHCB4+vUrQteroStaD0YQ0QVwy+++OKJa1y7di1kMgG8XAmW42G12XHixIknHvPOO++Ak8kR32OO2FM9vTOIqFCV2leuXIFcroApqgxiOk8FrzaAE1Ri0J5h0Lx5i5em+tW2bVtwMjnsJRpLfdY/+eSTZ54n73m0FqmLoDoDoDLZEREZhRkzZoBlWfCCAsQwiIqOea7vNRcvXkR6ehVwPA+tTocxY8Y8dU8++OADMEy+Xfzmm29i7NixYFgWKlsItL7R8K/aTUz80GhQu3ZtKI1WqeDBkpAOYlkk9JqP1Mz1MMeWh1ZXuPaJTqcTJrMFxuBkJPVfisg24yFTqNC3b1+sXLkSixYtwqlTp1ClatVcG56Rqrgfx927d0WlOFsQgusPhmdiFamYpk6dutDpDfD1D/hP9/U+f/48unbtipo1a6JatWpgWA5hTd5CyuDVsCSkg5fJcObMGYSEhkFp8IS9RGPoHKFQa7Q4duzYU+fv1asXeEGB4HqDEN5sNJQGT5QrX6HAuOo1akBQauBdthUs8WJwfuHChS/kGq9fv46g4BAxqSA0DbxciaJFiz1SqeD8+fP49ttv/9U+Wjf/btzB9kLgNrrduHHzKgmPjIIxvBhSMzcgNXMDDMHJSEpOeS1rsXhZYS/ZRAqEeCZVK9Db+UVw7do1XLp0Cc2aNZOC448yOK5fv462bdvC39sb7EMZ0/HdZ4OIMGvWLGlsufIVoNB6IKh2P/iUbwuGZTF27NjnWp/T6cTvv/+OvXv34sGDB7h48SJatGiJiMhoVE5Px2+//SaNa9eunUuwcOjQoS5z7dy5ExzLopJSiRE6PfzlcoQGBuLevXvPtbY8tm3bhrfeegsffvjhS+srLGUlF6mH6PYfwxRdGhzHo1KlSujXr99jq4NzcnLQomVLaU84joePrx8iIqMxevRo5OTk4MGDB2BZFr4V20tBRK0jFA0bNiww3+XLlzF69GjoDEapB1dq5nro/ONgNHqAF+Qwx5aHwuQNYlh4+/hi9+7d0vGzZ8+GIFeIzxrHQeXpl5sYwcC3YnuENBwGhc4MYjnIFUqEhoXnBlF5qSL84YprYjkQw4BhebAyBbxSa0HnF43g4GAx4MsLUhBWEMT/luu9xJ/xAqxptcXM6y6fis9zzzm5a5PBGFlaPC/DIrHvIqQN24jINz4AESE4JKSA4enw9oVnck1YEqtA6xsDhhNgL9FYeoct8ZWgsgUjbdhGKCx+8Pb2Bi/IYQwvBqXBExZPL5w7dw4A8Omnn0pGqGdSVYQ1GwVDYDwEuQIypQZxXWcideg6mGLLg1gOyYNWIWXIGuiCkl0cL2fPnkWdunXh5x+IyKhosLwYQFV5BSKm4yfwTKkJvd4ArU4PuUKJ0qXLoHfv3sjIyEDnzp3xzjvv4PDhw/D28RVbKQgK8DIZVq5cKfW8U9tDwQpKmOMqIDVzA5IHroDSaEVcXBzGjx+Pw4cPo379+iAiOEo1Q1iLdyH3sINlOSxduvSJz/3Zs2fBMAxsxRoiNXMDIlq9B2IYqG2hCK4/GBrvSHBKLbzSaolB6ciS8K3YHoLWQ3pW8gLe3rkV+QqTN5Se/vD19ZOSV/KeB/Hf4h7NnTsXgOjk7N27Nzp37uxSLZLUfxkUGgMGDhxYYN1ZWVlITSsCmVItBrEFBWRqIxL7LpbUGxRKFXJyclyOu3//Pr766itMmDABDMvCHFseoY1HQB8QD7VGg/Pnzz9xv56F5JRUKDzsiG73McKajgQriO9lv379QETwSq2F0MYjoHWEweLphdu3b6Nly5bQeAUgdeg60bFWuROIqEB1+86dO5GUnAIPkxmly5TFkSNHXti63bh5Fty25H8H971y48aNG1cOHjwIlUKBGLkCNRQKMLnfWS0WC3788cfXvbxXSp8+faAxOyS7KrK1qPT2T6SWd+zYAbPFU7IF2rdvX+C7+T/lyJEjLvZI2rCN0Hr5o2vXro895sqVKxg4cCCaNGmCUaNG4d69e0hPrwJjaNpDyeliq6y/B6xu3bqFdu3awdvHD1ExsY9tffYwDm8fGENSRLWrnnOh1FueKj0/YMAAqIyeUiJ1RKv3n+l+zJ8/X7J18+wzTlAiJSXlpRZp3LlzB+3bt4fB6AEvqw3vvvvucwf2R48eDVmufyE2Ll5Kgtm5cyc++OADfPbZZ8+VDHLlyhVYbTYwnFgQYAgtAqJHtwzMY9++fWAYBtYi9ZDQcy4cpZuLxQoBASCGgTm2PHQB8dJ+f/rpp6hZsyYMQUkFnqmUwavF5PCavUFEePvtt59qg169elX0kdQdKM2n949D9erVpTGzZs0CwzAIbTwCqUPXwVqkLliWfWxbuN27d4OIENl6nOSjUujN8PXzg1yth3eZlvCILAGi/w258b59+0Jttud/xrUZDyISVSSIENlmvOiDGLAMnEzAhx9++NQ5U9OKwBRT7iGFwrZQazQFxl27dg0NGjaERquFl9WGjz/++IVdV55aR56/LbyFWODxpDambtw8L4W1J3ly48aNGzevhNu3bpPcFkoMwxARkaD3pFu3jr+WtVjMZjp79jA5c7KJ4KS754+SZ4j9hc1/8+ZNat60Ka1eu5aIiOrXrUsdOnSgadOmUefOnen69es0YMAAabxOp6NPP/2UHjx4QGlFitKBLZ/TjZP76M7p/eTj60c1a9YkIiKn00lbtnxL3uXbkTm2PBER3Tq9n7788kvq16/fM63xzp07VL9uXdqwaRMREYWHhBArCPTHiTOkDy9Bp375jUqUKkX79u4lb29vmjZtGjVt2pT++OMPioqKoqJFi7rMt3btWjLwPE0zeBDPMBQlE6j+sWN08OBBio+Pf659nDNnDrVq1YoElZayH9yj994fRzt3/EQ2m+255nscu3btIpaXkW/FdsQwDPmUb0eX922h7t27U7Vq1R57HMuyNHvWLOrWtSudPXuW4uLiyN/f32XMsWPHSK3W0KlvZtGDm5fp/pWzdPPMYWrRYpzLuMuXL1NySiqdOXuOsnOyyaqzEBERw7Ak6Cxk17NUsUI5+v6HH8mzWAL16zefSpQoIb1Phw4dojZt2pJg8iazNYSuHN5Gdy6cpDsX5xAR0ckvp4vzsRwpPBxkiatI5w58SxwvI05jopy7N0llDaLQRsPo/rW/6ODs/sSr9HT/2nmyFatPRERnf1xM5ATd4Tkyx1eigGrdCTlZdGzNh+SZc4EOHzlMrKAgn/Jt6Nz25XR+x2oilqXb546S0uRNDDHS9V49sEXcQ5mCDnzWl/RBCXR537fEsBwdPXKEPEwm+nD8eGrVqhUREdlsVvpl9xfEyuSkD4gnItDdSycJgPgOXzpFcObQnklt6d7lM3SaYckruRr5Ve5El/dtoWOrx1F6ejrNmjWLevfpQ6aIEqTxjaGTX06jCz+vJ4VSSclJifTr4ZN099IpEnRm8ggrSpf3fk3OrHskU+lJYwumW0e+la7BZrPR8mXLaP/+/ZSQkEhav1gyhhWjv3atpUPzhxIRKOvmNbIWqUd6lZa2bp1PW7aIx48ZM4b69+9PRER7dv9Kixcvpq+++opOnDhJEydNoi4ZGTRjxgzq0bMXOR/cJbVd/OzkBCXJLf60Z892GjduHE2fPp0OHDhA+sBEOrN1HhHDESGHiIjqN2hIo0a+TYMHD5bW/Msvv9CKFSuI53lq1qwZvfvuuzRgwAC6uGs1ZT+4RwzLU3irMcQLSlJ5BtDeye3p/rULJOgsFFxvEDEMS3KjjY4sfotYuZIOzR1CvEpH2XeuE8PJyBJfmU5vnkUnnU4yhKaRd9nWtH9Gd9L5RpO1SF26vH8LXdrzJZ06dYrWrVtHNWvVIoXOTMjJJpbl6MSmT+j6H7vo/uVTJGOd1K5duwLvHc/z9OUXmygzM5N+/XU3matVoW82f0v7P2lHMpWObl08TR9//DGxLCsdc+3aNSpXvgL9+svPuS8vR14pNejW2cN06+xhyrl/h8qVr0CbNm4gb2/vx77zhWXunM+pdNlytO/TbuIPGJZ69OhBHMeR0mAhv8qdiGEY4pVaOvBZbzp8+LD4LDOM+E/uMUREEJODaceOHbRnzx7q3acPcXo7aaOr0K59m6lsufJ0YP8+0mq1/3jdbty4cePGjRs3/x9YuHAhyXNyaJnJQiqWpdK3b1Pf61fp4sWLVLZsWfr888+pYcOGr3uZrwSbzUb3rl+iOxeOk8rTn64f+4WIiLy8vB57TFZWFuXk5JBCoSjwu+zsbKpVuw49UHhQZJtBdPvsEZo+fTKlpqY+8rv98+Lr60tWm53Ofvs5MSxHN08dpJt/HadixYo99hij0UjvvPOOy8+Cg4No83c/5tqAFrp6YCvZHd4kk8lcxqnVapo+fXqh1weAzp09Q76VaxLLCyTozKSwh9GJkyefeFzZsmVpzJgxdGLTJ6Tzj6fz388nq81OISEhhTpvkyZN6OjRozRs2DBSGa2U8+AOKQSeZs2aRRzHFXr9z4pSqaRp06bRtGnT/vFcgwYNor59+9KdO3dIr9dLP09OTqbk5OTnmhMA1ahRky5evk7W1Fp06+zvdP3oLlJbA2n16tXUvHnzRx63f/9+AkCOko2JV2rJUbIJndkyl/48fpzsJRqTT9lWBID2z+hBWtykNm3a0LVr12jN2v50/qeVJDdY6dx3C4hhObr022ZSGK109vtFxPICjXh7FE2a/Ant2rmDHA7HI8+v1+vJbPGkS3u+IF1gIt27dIpunD5IX57/nQ4cOECRkZF07NgxUmg9yBiaRkRElrgKdH77cjp+/DjZ7QX9nHl7euficdL6RtGDm5co685NOnn9EgXW7kuW2AoEOOnApc60dOlSqlSp0nPt+fNw8eJF6tevP+357TcKCvCnsWPHUmBg4D+aMzw8nO5cOU+XD3xH+oB4urBrLQmCPN+v6MzJ/beTCHDxIzwOu81K+3/4mbLv3SZWJqdbJ38ji2fBz0y9Xk+LFy36R+t/HLdv3yZiWDq28n1yOrNJ5xeT/3M3bl4XLzno/6/GneHuxo2bV0nXrl3ByeTwKd8G3mVbg+V4qX/tq2bt2rVgOQ4qoycUOhPkcgW+//77Fzb/G61bQ83zGKM3YLTeACXHoWvXrhg8eLCU8Tpw4MBHZvpeuXIFXbp0QYkSJdG0adMCcmF6oxGWhMpIzdyAlEGroPb0fWSV9NPo168flByHyUYPLDKZ4S0I4IgQ3mKMmNXZb0mhszoBUe5MxXH4zWrDabs3phg9QCT2QHsecnJyoNHqYI4pi9Sh6xDf43PINYZHykr/UxYtWiRmxbd416Wf2c8//4zjx49j5syZWLRoEa5cuYLFixfj448/LlQfLACIiY2D0mSHPjgFvEoPhuUe2dvtrbfegkyhQly3z+CZWAUML8Cn3BtwlGwKluUeK4eXR/ny5fMr0vMq7RWiRHyZMmUQHR0NrUqUzU7ss1CsNO/xOYjl4CjVTJLDl3qshaSBk6vhmVQ1XwEiuTpYQQmZ2gCGF8QK8MwN0AcmIDomNncPx0DQmaEw+cCnfBuo7WFgWA6WhCqQG20ghoVgsEHjHSFWgHeeCn1wSq5UOgOFwRMB1XvAHFMWDMNgy5YtAMTniyi/x15eKwO1NRAqs48key7oLGLP76gy4u+9I1wUGfIk0oPrDRIl+QeugNY7HGlpaZA91MdKafGDyisQxHLwq9IFgTV7g5er0LRZswJ7/8EHH4AX5FKmekzHydJ6jGHFJIUCR+kW4OQqqff7w9UJY8eOBRHBEJoGXW5/9uXLl+PkyZPw9fOHoDUhpMFQqdqZiHKfJ1EdwFG6OZQWP3ByFaLbf4zE3gug8Y4Ay8ukKpL169eDl8mg0BohqLRQa7T49ddfsWXLFowbNw4dOoi93mMzpiN16Dqp97vSMxC8UofkgStc3g9zfDqUngFgOB4Mk1/FLqohcCCGFVUYiKRegalD14FhOYwZMwYRUdEwBCUhdeg6pAxeDY09FAEBgahcuTKaN28u9cMDgM2bN2Py5Mn48ssvH/m5eeLECQwdOhQ9evTAunXrXH538+ZNREdHgxOUiGz9PuK6zYLKGgReLX5GWRKrwL9qNyj0ZiQkJr0wacVbt27h22+/xZo1a3D58mUAwHvvvQdekEv97f3SM0BEOH78uNSuwxCSCmuRuuAFBerXrw+n04k33njD5Tn2S+8sPmudpoCIsHHjxmda29atW9GxY0d07twZ27ZteyHX6+b/H25b8r+D+165cePGjSuZmZkwyWT4w+bAabs3ZnuYQCT2bs/7vjV69OiXJrn9b+LGjRuIjIoGx8ugMojV6MOHD3/k2OzsbHTt2hU8J6pc1ahWDVevXnUZc/LkSRARwpq8JdmROkcI2rVr98LXvnPnTnhZbdI969ev3zPfswsXLiA4JFSyY+QKpYs8/L1793Do0KHH9oJ/EnHxCdB4+SO6/USENh4BXq5E3759n3rc+PHjpbZTvn7++PXXX5/53GvXrkWnTp3Qp08f/P777898/P8af/75p+gHqD8YacM2ImXIGsi0JsiUGrRq1eqxx+3YsUOyv1IzN0j2G8Ny8C7XOl9VwS8G6enp2LdvHw4dOuRiv4VHRKJatWr5Pgm5GjGdpyKh51wotMZH+rguX76MmjVrQa5QQqc3gHlINU5lC4HK7I0qVasCyPdnBdTohcTeC2CJrwiZTMBff/312Otq0aIlGJaF3i8aco0BVps99zrF/uIpg1dD5WFFRkbGP977wnLv3j1Ex8RCrjHAklAZKg8rvKy253r3HiY7Oxu1atfO96PIZJgzZw7u37+PqOgYKLQesKbVhsYaAL3BUKD3+qPYu3cvtDodBJUWCp0HOJ7HqlWr/tE6n5VJkyaBiKALTIQ5tnzu55fiH++XGzePwi0jXwjcRrcbN25eJXfv3kXLlq3A8Tx4mQzt2rXD/fv3X9t6fvrpJ/Tp0wf9+vX7RxJpf+fSpUswGwzopNbgtN0bp+3eaKlSIzIkBEB+UI2I0KlTp0fKqS1atAhanR5EBG8fX2zfvl363ccfi32ttbZgqIxekCuU+Pnnn595naWKF0ctpVJa43CdHiwRIt/4QApC8oIC48aNK9R8p06dgoxl4eA41FAoITAseF5A06ZNn3ltgGj0E+X3KU8bthGGwATUq1fvueZ7Eg8ePECZsuXAspzkYGjTpg2++eYbqNSa/ACsSg0iAsvxYBgGEydOfOycFy5cwNq1a0Wjp1YfxPeYA2NECXByNex2B44dO4ZffvkFbdu2RZMmTVCpUiVovfzFvR+0ErrABBAxEOQKdO/eHVlZWY89186dO8VnwjcaDC/At1IH+FXuBIaTgZXJpQC8JtcpEtd1Zn5QmGGhdYRC0HtC6xuNxN4LENXmQ7CCCqxM4dL6wRheHCqvAES2GQ+Gk4HhZOAV4v6MHy9KcdmKiYHkmM5TJSkuYlhRyo7lHwoU68CrDUjqtwRpwzZKAf/QXKdMauZ6KA0WDBw4ENu2bZOk0vMSBRJ6z5eC53J5fpA8rOlI6XiZVnSaeUSUhMoaDJnOLErpKVXQ2kNgL94Q5riKuetjofWLQWLfRYhsMx6sTA5BEODt7S0lMZjMFixYsKDA/n/yySdgOV7qqxfW5O3cIHUAFCZvCHoLiGHBqw3glTok9VsCItdeXVa7A56JVSQZN51/HNLSisDDZIZMoZIk6vPWYi1SD6mZGxCbMR0sL5fmN4YXl96XvL5xeYHesPAIGIISkTJkDZIHLIfGK0Ay0AHxnQsNC4dMqQGnyH/uiWHEwLmHAx5RpcHxMkRFRUky8d4+vvjll19w+PBhsBwPXqWHvXgjaLzDJQnDPKdGdDvx82vevHmPaOdR9ZHtPHr27Jm/DiJ06NCh0E40p9OJKlWrgmE5GCNKFNgbhdlHkmgMri8mQ+W1G3gROJ1OjB8/HpFRMYiIjMZbb70FP/8ACEoNdA7Rqfew43HJkiWIjomFj68/OnTogFu3bmHp0qW5zpOeSOyzEJaEymBYDgm95iGq7QQQEb766qtCr2nVqlVgWRZqszfUJjtYjnvmYL0bN4Dblvwv4b5Xbty4cePKnj17IJfJUEShRDeNFmaZDMkJCbh//37+d89cm/B1+ixeFTdu3MCECRMwePBgrFmz5rHjRo0aBZZh0E+rwyi9AXqZDA3r13cZc+vWLXA8D2taHaRmbkBct88gKDUF2tC9KO7du4eDBw/iwoULzz3HjRs3MH/+fEyfPt2lp/FPP/0Em6foH2AYBkOGDCm0HfLgwQO0bt0a3EN2XMmSpQotf3737l2cO3fuhcvv/3/l+PHjLkn3KYNXg1fpwbIsdu7c+cRju3btKvqBHrqXuoB4sLwctmINYYoRk3TsDm/p95UqV8aJEydw/PhxSb5/z549YpFD7b75kvABcY8snqlQoSLkah18yrcVe30zLIwRxRHaeARShqxxaYXpdDrRunVrlwKD2bNnP/GasrOzMWHCBDRt2hS9e/fG2bNn0bRpM3C8TOwpbw+BTCY8l6+xsKxatQrdu3fHsGHDcPbsWXzzzTegh3ySCb3mgRgGM2bM+MfnysnJwebNm7Fw4UIcPnxY+vn58+fRqFEjBIeEoXz5CtizZ0+h5zx27BhGjBiBIUOGPPUZehlUqVIFWt9oyZ9hK9YQKnVBKXs3bl4E7mB7IXAb3W7cuHkdZGdnv9ReUS+KvXv3okmTJqhcsSJGjx79xGBnHqdOnYKP3Q6eCKXlcpy0OXDc5kARhQLF0tKkcVOnTgWTGzhq2rSpSz+w3bt3g+N5mKJKIbjuQOh8ImD0MOHKlSvSmBUrVqB169bIyMh47kSBhg0aIECQY5/VjuM2ByopVVDwPJRGLzhKNYPONxJKlbrQ/YCXL18uZtlag6H3jYatWAN4RJRAiRIln2t9TqcTQcEh0NqCENXuIwTV6Q+W4zF69Ojnmu/v/P777xg4cCB69eqFLVu24P79+5g+fTqGDBmCBQsWwOl0wtfPH/qAOCQNWAZ7ycYghkVEy7FIzVwPr5Qa4DjukX3k169f7xKkl3s4IDdYIegs8EqpAYXBCxYvK2QyASqTHTqf/Opr73KtEdFyLHQ+4fD0shaq5/3ixYtzz2OHV0oNyXCzptURg+0Mi7F6Iw5Y7TByMsjURljiK0Gh84CPry80Wp0YkH+4OpllIeT2X9f5x0HnHydm1lfqCJnaCIXJB46STaEwOWAweoiZ17VqSRnXLgYSEUzRogFqK94QQXUHQKY1iX3K1QZovcNdsrzlRhsCavaBoFSjbt26YBgGglIDYlio7aHwq9wJGntobpW8l0vFb0CNnvnKDHI1iGHBsDzMcRWh8YkEEcFqtYo953MTBvKu+2GjVxeYCCJCy5YtxWrj4GTofKNARFixYoX0jH799deYMGECLJ5eUOhMMIYXB8MLUHoFwiu1NohhoA9Kgn/VrlCYfcApNPAuJxrCDxtkHiazSw96j4gS0BuMUOjNSOy7CDEZn4pV2AnpYsZ5lQzJqFJafF32L7rDZCT2XQyNdwR4mSA5hPQGI7zLtHTpcx+fmOTyLF2+fBlJSUngBAVCG49A5BsfQGG0wdvHF+XLl0fJkqUwdOhQ3Lt3D9evX8eff/4pfTauWLFCzNzP7ZuYPGglWEGZGyhnoXOEgBfkSExKxt27d1G/QQPI1XoE1x+CwNp9wcuVBTLnf/rpJ/F6K3dCauZ6BFTrDiLC2rVrsWHDBmzatAm3b99+7Lvx119/iYkofjHg1QbEdZ2J5IEroPOPhSCXQ9AYpYp934rtQUS4du3aU9+5wvLhhx9Kz78pppxUKTRkyBC0adMG06ZNe6oDbcSIEVBojdJ9y6tmN4QWhULngfCISNy9e7fQa4qJi5cUBVKHroPeLwZpRYr+00t18/8Qty3538F9r9y4ceOmIF9//TWS4uLg7WVF/bp1XapAJ06cKCWWlitXrkD19v9XShYrhuqK/IT9AVoddGp1gXHjxol93xU6E1hOBm8f30fazf9m7t69C6vFgkSFAotMZvTW6kBEWLp0aaGO79OnD1iOh2dyDehDUkFEmDBhwiPH7t+/H0nJKZDLFQgJDcM333zz1PmdTid2796NL7/88okVzC+D+/fvvzbVh99//x0TJ07EjBkzXHxkT8PpdKJs2XKQKdXwSq0FjXc4WJZ7Yr/2h4/94osvMGHCBKxatQpGDxMEg1UMuAsqEMvB7vCG0uiF8GajEVxvEHhBgT59+hSYJzgkFBprICJbv4+A6j3AsFyBApdbt26Jvo3qPaRkfF6hgVxvQVSbDxHRcgzkGgNatGjpMvdPP/2E5cuXSz3un5V79+5h0KBBSElNQ6XKlfHdd9891zxPIs93kFeEpLF4Q1Bq4Ollxbx5ou8oT80wacAyMCyHKVOmvPB1/C9QoWJF6AMTJT+Bo3RzKFUFP4/duHkRuIPthcBtdLtx48bNozl48CA0KhUC5XJUUijAMQzatGnz1OPatGkDqyBgjN4AhgiBHA8/jgfHstiwYYPL2AULFoDPlbSuUaMG7ty5A0A0THlBjpQha5E2bCNiO08DEeHrr78u9PqzsrJw48aNJ445cOAAjDodtDwPiyCAY1lMnToVlSqnw+zphYTEpEJL6+/atUtULFDqoDB5I7r9xwhrOhIyhQo9evQo9Lr/zq+//uoiC1erdu1HVhZcuHABtWvUgIdej2B/fyxatOixc968eRNr166FSq2GXGOAysMKhmEKVCxnZ2eLBk617mLgukg9CHpP6Yts5BsfgIiwe/fuAvNrtDoYQ1IRmzFdCg4SifLcacM2Iq7bLDEzWqaAoPeE2hEOfWgRSSqOiKBSqQt9z3/77TcQEWRaE3SBiUjNXI/UzPUwhKRCkSux/r7egAUmM6YZROlsjUaDxMREnDhxAidPnsS0adMwbtw4vPXWWy5Ba9/KnUAMA5kgh6AxwCulJogICb3m5V7LZyAiLFu2DPfv30f//v3By2RgWLHCmeHEZ1ztCIfKGiTtX3A9sYpYJgho0KABrFYriOVhTaudW9VPUKs14juSW3ku05pBLA+W40AsB5U1GKxMgcBafRFcf7AYOGc5GEKLQNBZIFeIgV7fiu0lCXO5hx0ajRYaayCS+i9D8oDlUFmDwfAy6ALikdR/KaLafQROroLCwwGW42FJqCwZufqAeJQqVRpOpxMtW7VyCfQnJSXBZrfjYSl/hhckefnoDpOkn6cVKYLFixdjypQp+OGHH9CpUyfwMjlM0WVyExHEfWPlGqRmrs8Nqvu5zG0ISYNvpY4uVd/Ecg9VpLOYNGkSJk+ejLQiRWEwekCu9UBY05EIrj8EMrkKnTt3dnmWDh48iJDQMJhiykr3yrdieyiUqqc+hz/++CMeVhdIHrgCrEwBLvcZ0Op06NKli1TNcenSJRQtVlxab+X0dNy8edNlzgULFoh723+ZJPdHRDDmtqkgIoSEhuHMmTOPXNP58+fFZyC9M+QeduQpA/AyGT777DOo1BqozA4YQlLBsCw6dOhQqHeusERGxbjspTmuIoJDwp5pjrlz54JhGIQ2Go7UoetgK1oPRITQ0HA0adoU58+ff6b5vH38YCtaD8kDVyK00XDog5IREBj8THO4cQO4bcn/Eu575caNGzfPzrp166DRiAnU4eHhOHbs2Ote0munapUqiJfLcdzmwCmbAw2VKji8vB45dvjw4S727dPaov3bOHDgAIgIi01mKbkgUKFAr169CnW8xcsKa5F6kh1gjCiB1LQiBcZdv34dVpsdGi9/+FbqCL1/LBRK1ROLHnJyctC0WbN834Fa80qUqk6cOIEiRYuJtrpGi48++uiln/NhvvjiCwhyBViOBzEMfHz9HmsHPorr16+jTZs2CAoOQdFixfHtt98+8xo2b94s+jE0HpL9zTAMFEolfCu0k+63KaYsihQtVuD4vXv3wuHtI927unXrFfBx3bt3DyzLwrtsa8kGVhqt0OoN0nFx8QkvRS5827ZtaN26NZo2bSoVGbwIdu/ejfAIsfjB4ukFjstXv0joNQ8KjQFdu3aF3eENtacvfMq9AZ1vJNQaDf78888Xto7/JWbPng0igjm2PGxF64GTCWjfvv3rXpab/1EKa0+y5MbNfxwAtHnzZpo2bRp99913r3s5btz8TzBt2jRSZ2fTBqOJZnqYKVOro5kzZ9LVq1efeNyJP/+kRJajZmoNLTSZyYNl6URONn2zeTOlp6e7jG3cuDGtXLmSFAoFrVmzhqpWrUo3b94knU5HOVlZ9ODaX0REdPfyaSIi0ul0hVr7uHHjSK3WkE6no9i4ePrjjz8eOS4iIoJ+3buXBrz5JnUaMIC2bd9OHTp0oE0bN9DFv87TLz/vouLFixfqnOvXryderqKw5qMp+94t2je9G/0+fyhFhIXQ22+/Xag5HkV8fDz9cfQIbd++nQ4cOEArli8nQRBcxty+fZtKlShBX61fTw2ycyjg/Hlq1KgRbdmypcB8U6dOJaPRg6pXr05OuZ5iun5G0V1mkjG8OLVp246KFitO/fv3p7t37xLHcRQcEkoXd2+i+9cvEssL9OD6Bbq45yu6f+Mi/fXTClIoVRQQEOByjuPHj9OtmzfIVrwhKc0+5JlUlXiNkYiIWF5GREQMyxExLDG8jEzRZYhhWbp+dCfl5OQQL1eSPiCespygXr370L179566T9HR0fT+++9T1s3LdOPYL7R3cgf6bWoXunZkBxnDxXvY9/o1anL5EnW8cZ1YmYI4kz/t3rOXOnXuTBaLhcqXL0/t27enqKgoIiJSW4OJiMiaWpM4QUkJ8XEUFuhHf+1cTUREyMnK/Xe2eG0sS/fv36d58+dTdlYWqaxBpPWNJuRkE6fQ0u0zh+jBjUuUfe8WERHdvXCciIiys7KoePHidP78efKv3JH8Knei8KYjSWFykIeHkbKzc0hp9iF9UBJl3bxEDMNQzRo1iJw5dO/KWTLHlCVLXAUyRZYiW5G6xBDRtcPb6cGNi3T/3l0iIrpy8Ae6c+E4EcMSJ5MTsSxp/OKIV6iJk6tIH5RI5HTSjeN76eex9Wn/p91JbrSRtXgDcgIkUxnE+8YwxKv0tPe332jKlCn0+ezPiZOrSeHhIGNYMfr5559p08aN1L59OxLkcvHmOHMo+84NIiLKunlZ3Cu5mnbs/JkaNm5MnTp1ouLFi5PJZKKiRVLp8r5vSeFhJ0tiOjGcjJz3b9P+Gb3oysHv6e7Fk6T1jaLI1uMooEYvunbkJzr5xVQihiW50UGBtfqQMbwYEREpPQOI4KSffvqJMjIyaO8fZ+m+3Ej3b12j3+cPpaNLRxGcWfTJJ59QWpGidPz4cZo+fTpFRUXRkcO/082T+ynrznVyZj+gG8d+Ibvd/tTnMDU1lQKDgujosnfoxKYpdOCz3uTMfkAav1gKrNWXSGulhYsWU1ZWFgGgHTt2UPNmTemDDz6grl27UmxMDB04cMBlzoiICCIiOvfjEsq6fY3O/bBEfH6cHMV0mkLR7T+m039dpl69ej1yTZ6enlS+fAU6v2UOGYJSSGXxI4Yhmj9vHrVu3Zp+2r6N6qaXpWIhFho7ZgxNnjz5qdf5LAAghsk3NxiWJQDPNEfjxo2pevUadHjRCNoxqjqd27aM3n//ffr994M0f9488vLyeqb5ypcvSxd/WU97Jrahw4tG0PU/dtG5c2dp9+7dzzRPHt999x3179+fhg8fTsePH3+uOdy4cePGjRs3bv5tVK1alb7//ntyOBx06NAhSktLo23btr3uZb1W+vXvT/uys6nilUtU68plWnz3Dg3KzCww7sKFC/TumLGkC0ql6A6TyFGyKQ0fPpy++uqr17Dq58NsNhMR0c4HD4iI6Hh2Np3PzpZ+/jQ4jiNn9n3p/5F9nziOKzBux44ddP7cWQqoM5BsRepQSOO36MGDB7Rp06bHzv3ZZ5/RgvnzKbBmb4rrMoPk9ghq2KgR3b1791ku8ZlwOp1Uo2Yt2nPoDwqo3oPUoSWoe/futGbNmpd2zoe5f/8+1albnxT2cErqv4ziu31GF6/dpGHDhhV6Dp1ORzNmzKCjRw7Tjz98T6VLl37mdWzcuJGIYUhpDSLvMi0pLuNTAkA6nZ5unvyN4Myh7Hu36d75o2SzWgscHxMTQz98/x2VK1eOeJmMli9fRj6+frR161ZpzLZt24jjeTq9eRYdXvw27Z/enbJuXqa1q1fRd999R9u2baOdO34is9lM9+/fp5kzZ9LIkSNpw4YNz3w9D7NlyxYqUbIkLVn3Na3Zsovq1KlD06ZN+0dzEhHduHGDKlVOpzPXHlBA9R70QOOgnJxs0vpGEcMwJGhNJDfa6MaNG/TN119RbLAPXdu1nPwMMvryiy/I39//H6/hf5EWLVrQxIkTSXPrOOH4durcsQN9/PHHL2TurKws2rJlC23cuJGuXLnyQuYsLHv37qWePXtSRkbGf+pvhptcXn7c/9+LO8P9v4/T6USnTp1cKuv+LlPjxs1/nc2bN2PAgAEYOXLkM2Wt/hM6deqEEIUCp2wOnLZ7Y0puFeXTzt+7d2+oeR7zPMz4yuKFSLkC8dHRTzxmy5Yt0Gq1ICKkpKTgzz//RFBwCORqHQyBCeB4GSqnpxeqV9fKlStBRPBKrYWg2v2gMjsQHhH50vt8vffee+Bkcui88+XQWSJMnjz5pZ73ypUrCA3PP6eMZcHlVv56ellx4sQJaez27dtBDAPPxCpQegbAI6q0S+UuMSxMMWXByeSoVr06nE4ntm/fDuGhfuCcUiv9tyBXYNmyZQXWdOnSJXAcJ2XpRrX7CMTy4ORqKDwccJRqBpVZ7OUVltufPGXw6tze6oSIVu+79LZevnx5offj/fffh0wmSBnWSs8ASUbeUboFfMq3AREj9VMPaTAURAR9boY0x/Po27evJNce0mCo2NOcCM2aNYPT6cSxY8dgszugMtnhlVoTKqMVvn7+uH79OubMmSNm1luDkTp0HdKGbYS9eCOwMjk0frFidbrGA5qHnhNiOTEznQj+VbpIFegKkwMsy0LuYUfKkDXiXCUag4hBly5doFCqwHACVLYQpAxeLcphByZBrdG5VHZzCg04hRrEctD6xYCIEBkVBV6pQ0TLMYho9T5kWhNkOkt+xXh4MQRU7wmVNQREDFheBu8yLXIrihnwchXkCiUYmQKOkk1hDM+vzl63bh0A8e9zz549wbAcZGojjBElwPACBL0nUoasRVzXmWBlCjhKNYOjdHMQEYoVKwa50SbtnV+VDJe/7w9fl1+VLuAEFQS9Z+6z9HZ+r3qNEbbiDUFE4HOfB1amAJHY0sDXV5SdN4YXg3+VLlB52BAcEgqO4+CZVBVRbSeAk6vAcDLIFGrIZEIBZY7HcenSJdSoUROeVhusNjs4XpBUOvLkz7/66is0btJErPzPlfDnZHIo9WZwPF+gT+Q777zjcv1KlRqW+MqwFqkLa5F68IgqhfCIqMeu6dq1a2jRsiUc3r6IjU/A2rVrC/1O/VPee+89Mds8rqLYa51hMGrUqGeeJycnB2vWrMGUKVOwY8eOf7Sm69evw2a3g1fpENPxE8T3mAOtLQiJScnPPFde1b3K6AlBpYXeYMDBgwf/0frc/Hdw25L/Hdz3yo0bN26enzNnziAhQVTeksvlT1RR+//A999/jxYtWqBhw4ZYvHjxI8fkVf/mKbulZm6AoNK+sJZwr4qBAweCiBCkUEDF8wj298fly5cLdWyeYpwpqjSMoWkgInz++ecFxm3dulX0A7QcK7Zh6zkXxDCYNm0azpw580gVq65du0Lr5S/5MyJajgER4dChQ//4mh/HmTNnRFWxBkOle6r18kfHjh1f2jkfpnt3UTHQv2pXF7WAcuXL/6N5L1++jFatWiMyKgaV09Of2Kbx4MGDkCuUkBu8oA9OFv0muS3xPvzwQ7AcB4XOA4JSA51ej3379hWY4/z587B4eoKIgUdkaYQ0GAqdXwx0ej3OnTuHdu3a5fu3NCYoLP5gWB4pKSku7ScBsQK+aLHiYFgWCo3o0xkyZMgTr3f79u0oW7YcwiOi0LZtW5cWapUqV4bWEYaUIWuRmrkB5thysDu8n3FHC5LXiz2m4ye57eZWgWF5qDz9EN5stNTOberUqf/4XP9lbty4gR07djx3G4AXxfXr15GSmiY9hyazBb/88ssrOfdPP/0EuVwBpcETaouoADF37txXcu6/c+fOHfzwww/YsWNHodrK/q/jrmx38/+CrVu30pQpU2i03kAnbA4aptPTuHHjaOfOna97aW7c0K+//krvvPMOffjhh/TXX3891xwzZsygsmXL0pwPP6R333yTEuPi6MSJEy94pQWpUaMGHbl3j/pcv0qzbt+iEbdvUXJCAtlstice9+abb1JCSgo1u3KJKlz8i64Z9PT5/PlPPKZUqVK0efNmMplMtHPnTqpWrRqtXLGcunRsRxUSg+jN4cNo1cqVRES0b98++uWXX+hBbnb139m4cSNpvPzJr3InMseWJ+/y7ejQwQN05syZ59qHwtKsWTMSZBzdPX2Q5nuYabeXjUrJFZQ5eDBlZ2e/8PN98cUXVLlyOkVGRdGx4ycpusMkSuq/lBQ+UUQKFQXW6kvX7+VQzVq1pSrSr7/+mhiOJ/9q3cgYmkZXD/1AF37dRFd/307nflxKOr8YCq4zgPyqdaN1a9fSyZMnKS0tjZYvW0Ysy5LCw0YaexgREdWtW5eOHjlMdevWLbA2k8lEY8eOpfM/raCfx9Sh/Z92J16pIaXZl+5dPUc396yjUB9PIiKC0yn+G07peKXZm4iIFCYHERHdvHmzUHuyZ88e6j9gAOnCilJIg6Gk9Y6gB1dOU1pyInG8jBylmhLDyYjhZaQ0iedQevoTEVGWoKOwZqPInFiN3n//ffLx9qY7fx2jI0tG0qXfviFiGAoKCqIhQ4bQli1baMu3m6l88WTSXTtMJVLjqG2bN2jWrFm57yZDvEItVu8TEa/SEXJyyBhelAhOyrp1he5eOkUMxxOn0hMBJBi8yBhWlE5+9Skd3/gJHZo3hO5dPkNOp5MEtZFYTlQEEHRmIgI9ePCAsrJzKLj+ILp74Tjt/qg1/TqhJV0/9jPVq1ubiOWIU2hJ4wijxN7zKbHXfFJbg+nBhT9owIABlJiQQNn3btHBzwfQwdl9iVdoSGHIrQ5mWLp26Ef6c+2HdPfCMdL6xZIzO4tOb5lHF37dSPbiDSmw3iC6f+8u2Ys1IO+yLSmkwRBSmn2JiCg0NFSchmFo/PjxtGrlCsq6fZXuXT5DyH5AfpU7EcvxpPCwk9xopaw718kSX4mIRHUAhmWJGCb3/3mXe+xTvi0l9JxLnklV6cSGyZTz4A5xchWxvEDH1k2gnPt3KOv2Ncq5f5fuXjxJRETZWQ8ovPk7lDxwBRnDitL9a+fp5KnTRAxDVw/9SGd/XEKWlNp09MhhysnJIa/UWqRxhFFsxnRiWJZKlyhKP/+8q4Ayx+O4ffs2Xbx0iS6cP0dXr14hpzObHty4SERE96+ek57VhQsWUFDdAZQydC15l21FOVn3yckJRJxALVu1onPnzpEz9/0YOHAg7du3j5YtW0Z79+4lHx8furjnC7py4Du6vP9bunLgOzIYHq/8odfr6fPZs+n0qRO059dfqFq1aoW6lhdBnz59aMyYMaS/c4J0N/+kUaNG0cCBA595HpZlqXr16tSxY0dKSUn5R2vS6XRkszvIEJJGKq8AkustZIgsQ7//fuipxz548MBFbaNX7z7kEVmKorvOopguMymLU9HIkSP/0frcuHHjxo0bN27+Tdjtdtq6dSvVqFGD7t+/T40aNaJ33nnnmdWK/lcoXrw4ff7557Ro0SJq0KDBI8fk+U2uHd1FRES3Th+krLu36Pz589S5c2caMGDAC1dE2r17N3Xu3JnatGlD7777LsXExpHeYKQyZcvRsWPHnmvO0aNH0+LFi6l6x440ZMQI+unnn8nDw6NQxw4ZMkS0reW3KNhA9Pnnn1OLFi0KjCtSpAglJiXTH0vfpqMrxtChWb3Jy8tKMz/7jBwOB1mtVipZqjRNnDiR1q9fT06nk3x9fenulXN0++wRApx05eD3xPE8nT17lho2bEiVK1emDz74QLKnXgQqlYqIiO7nKjDmPLhDWXdvklqtfmHneBIrV60hXm2gC79soLuXTtH1P3fT9aO7KDYm5rnnzM7OpkqV02nB0uV0SelHP/xykEqULEknT5585PhPPvmEGEFN0R0/ofCmI8m3fBu6ffoQde/enXr06EHbt22jPt0609BB/Wn3r79KqoEPM3nyZLpy9RoxHEfBdfuTR0QJCqjRi25cv05Dhw6lGTNnkm/F9hRcfwgRQ3T/yhmCM5t27txJpcuUpdu3b0tzzZkzh37avp0iWr5Hcb0XkneZljRq1KjH+kwPHTpEZcqWo12/n6Ir6gCaM38R1axVS/osu379BgkGK7EcTwzDkMLkQzdu3Hju/c0j7xm5f/0CERFl375GgJOUzjt0aN5gOvnldOrSpQu1a9fuH5/rv8r3339Pvn7+lJqaSkFBQdSpU6fX9jdm+PDhtPu3fRTRcgzFdZlBDwQDNWte8LPrZfD222+TzGin6M7TKarTVDJFlqSBg4e8knM/zLFjxygyKpqKFy9OqampVLxESbp27dorX8d/klcQ+P/X4s5w/+/z6aefgohwLLf69oBV7Ef6997Dbty8alasWAGe46CXyaDgONg8PZ+5z47T6YROo0EDlQonbQ7s9rLBKgivLHN2ypQpMBkM4FgWZUqWxOnTpwt1XFZWFrZt24avv/76mT5f9+/fD7tdfIcDAgJcshlv3LiB0mXKuPQoftR+9u/fH3KNAUn9liBt2Eb4VGgLIsKVK1cKvY7npXbt2kgU5FI/sxlGE4gI586de6Hn+fLLL0EMA7U9DLzaAENIqpTZHFCjl6gQMGQNgusNAhHh0qVLAIAxY8Rs7+j2E5EyeDXU9tD8KnxeQHz32UgbthFhTcQM9MOHD0vn3Lp1K2rVqo1y5ctj/PjxhVIK2Lp1K0aPHo2qVasiNCwCySmpWLJkCQCxSrVIkaIQVFpY02pD6wiDXKGAQqmCITABQXUHwBiSArlC6fIc/P7775g7dy42bdqE7Oxsl/NNmDABnCy/ijiu60wQEQYPHixV0Ud3mARiGHhEiRnUGu9IsR86EezFGyFl6HrINQb0798fNWvWgtHDhNDwCKQVKZJbveoFhmFQu04d5OTkYO/evdAbDOB4GTiZAJVaLfZTJ4JnYhV4l2kJVlBA4x0BmdoI4mQQDFYxS1trArE8GF6AyhoEvypdYElIB682SH3HZRpjrlJDTfhW6ij1MSci8EotUoeuQ0zHyfCIKi39fOjQoWBYDpxSC1vR/B551iJ1wXEy5Pc8F//tU6EdvMu3ya3+loMVlPAp3xYRrd4Dp1DDM7k6VNZAcHIVkgcsFxUBGg4T96xE49weamsh6L1QpEjBHnw3btyASq2BwuIHhhegtoci8o0PpOxtvypdYE2rA5Zlc5UBGOiDkmArWg+soITcKH4mMCyH1MwNSBu2EeG5lQsB1XsgbdhGxHaell/Fr9RJ+6dSqSBT6cTnutkoEBE8IkvBp3wb8EodlJ7+UHoFglflqwFYi9RFypC1kurBo6ovHkdOTg5i4+KhNHohoFp3mGLKgxgWgloHQ3AyOJkc5StUwPjx48HxgnQ9fumdxUr7iBLwTK4uPZMmswVffvllgfOEhoVD6xeLlCFrxXfZEYak5Gevyv7/TNOmzaDQmxHb5VMk9lkIrSMUcfEJjx1///59vPHGG2BZFgzDoG69erh+/To4joNflYz86pLwYihfocIrvBI3rxO3LfnfwX2v3Lhx4+afk52djZ49e0rfm9u0aVOg17KbfLp16yaqUunNYFgOfn7+ICJovfwh1xhgMBpx9OjRF3Ku7du3QxDkUHlYxWpIhoHONwreZVtDZbLDPyAQt2/ffiHnehlcvXoVGRkZKFqsOJo1a4aqVauBFxTQ+cXCEJIKesgOrlmzFq5fv46ExCQwDANergQRYcCAARAEOdSefjCEpoFhGPTo0eOFrrNDhw5gWBaG4GSoPGzQaLUufpOXSVhEJHQB8ZKPgEjsG/9Pvtvs2rULRITwZqORNmwjkvotAS/IMW7cuAJjjx49CrPFU1I8DKzVB8H1RF/Lo9QHHkdGRgYUerNY6d1piot/oUjRoi7+Lf+qXUFEiOs2C+EtxkAmV7pUrr/55ptQaI3S+JiOk0FE+OGHH7BkyRL4BwZBq9OjevUa2Lp1K0qXLg2ZUovkgStdlA5///13AMCIESPAsBx8yr0B/2rdIKi0qN+gwXPvbx7Z2dkoU6YseEEBY1gRKLQe8Pbxxfnz53H48GH89ddfhZrn+PHj+Oabb3Dy5El8++23KFa8BIJDwtC2bdv/xHfclStXokjRYoiKjsXgwYMlpYJ79+7BZLZA7xeD6HYfwy9dVDicNWvWa1lnufLlYYwo8dBz2A0Mw7x0xVQASCtSFKbostK5fcq9AbVG89LP+3dKlCwFlcmOqLYTENZsFASlBp06dXrl6/g3UVh70h1sdxvd/2l+/PFHEBEGanX4zWpDD40ocfzrr7++7qW5+X+Ow8sLlZRK/Glz4BcvG+yCgNatWz/THHfu3AERYbzBKAVwSyuUqF279j9a219//YVFixZh+fLluHHjxlPHv4ovFHkcO3YMQUFBICLYbDZJdqpbt26QyVUIaTQcES3HQuVhRekyZQsc/+eff8JgNEKpt0DvHwsiQpcuXV7J2t98802oOA6rzBYcsdpRRamCXqstlNzOiRMnUKVKVVjtDqQVKYqdO3c+dmzRYsWgsoUgNXM9rEXqghWUiGo7AYl9FkLjEwVB74W0YRvhKN0CDMNg8eLF2LFjB65cuQJOJgPDyaD0DAAxYrC1Y8eOYBgGHmFF4VOhLZR6C2Ji4woEs+/du4eFCxdi0qRJ2L17d4F1nT9/HsuXL8cXX3xRKKfL5cuX0bxFCwQFh6BEyVL48ccf8fXXX8PTyyoFGh+W7p4/fz54mUwyLCtVquwiIzZr1izRYMuTiM812H744QdUqFjJRUo879qJ5aC2h8GSWAVEBMHgBYbjEZ+QIBk8X3zxhYtcXJ5B1rhxYwQFBUPt6YukfkuQNGAZtI5QhIaGQa3RgFgODMtKQW2G4xHdcbIYXK0stj9R2UKkIDcxDORGKziVAUQMPJNrgDgZvFJqgZOrpXl8K3WAb6WOUuA4oEYvKMw+4BTi379Vq1aBGAYMy4NTahHaaDhCGg2Xrt0rpSbCmrwtStnnBnXz/jGGF4c+KEmUCqzTH6aYstD6RMEQVgwMy0Jp8YNnYhWwMoUkz2+OqwiNIwwcx2H79u2PvNd5CQ8qW6jULuDhfxiGwUcffQQAWLp0KQweJjC5AXMiUfo9LxCemrkBnolVxcSRDpMlCT9OrgbDcmA4AYbwkmBYHpGRkWJAv3InmKLLQOHhkALcQXUHgIgQWLufuC9WK2Rqw9/WxmD58uWYPn06fvjhB5drcjqduHv3rsvPTp06JT4rDTOldanM3oiJiUGtWrUwfPhwLFu2DIlJSSCGhSGsKOJ7fA5ebYDSMwCJfRaK7QJKNgErk8MQlASVWo1Tp065nMfLaoOtWEPJAPNMqg6j0QOx8QkoVbrMIwP0blw5ffo0/PwDpHutNxif+Lk7cOBAsBwPnwpt4ZfeGbxciTfeeANFixWHysOKsKYjEVizN1iOx7Bhw17hlbh5nbhtyf8O7nvlxo0bNy+OiRMngmVFO6JcuXK4evXq617SvxKn04lly5YhMzMTkydPhiDI4ZVaE6mZG5DUbwmUessLC17UrFkLGmsgUgavhm/FDmB4mRRQjGo7AUSE7777DnPnzkXRYsWRkpqGCRMmwOl0vpDzv2gUSpUYTLaFiAnVcjWUFl+ENBoOhmEwd+5c3LlzB7NmzcL777+PH374AW3btoXKZEfK4NVIG7YR3mVagOO4F5oQkp2djXHjxqFGjZpo1aoVVq5cic2bN0sFDn/n9OnTaNCgASIio1Grdm0cO3bsuc/92WefickaPhFQWXxfiLz09u3bQUSIbC228kseuBKsTI6yZcvi+PHj0rgHDx4gOCQUSg87Aqr3gCmmrOg/UeuRkJj0TM/RBx98IBYWqI1gBSU03hFgWA6V09PRtGlTqMwOJA9YjtTMDbAkVAYrU0g2vCEoCXXq1JHmWr16tVhAUL4NYjpNgUd4cSiUKqxZs0bycXmXbQ25xpDrK5CBV2qlZyS08QgQkdQGLCsrCx06dJA+36pUrfrCPt9u376NQYMGIT09HR07dnzmFqHjxo0Dk+vHYlgWHM9D5xMJr9SakCnVKFeu/L/2fQaATZs2iXZ3YDws8ZXAcjw6dOgAADhy5IiY9NF8tOTj0FoDkJGR8VrW2q5dOyi0HojrNgvJg1bCEJgAH1+/V3LuwYMHg+Nl8K/aFcH1BkGuMaBateqv5NwPo9Fq4VO+rXQ/zHEVkZyS+srX8W/CHWwvBG6j+3+DPCd+3j8jR4583Uty8/+cnJwcsCyL0XqDFCSvolCi4nP0UoqNjESwXI7FJjPe0xvBMQzefffd517b7t27YTbmZ8IG+/u/sj7wheXs2bOIjo4Wg4keHtixYwdSUtNgjq2Qn91Xvu1js/uOHj2Kzp07o2HDhpg0aVKhkgX+Hlh+Hm7evIm05GRpbwWZrFD9xu/cuYOg4BAojV6wl2gMrT0EWp3Oxbh5mMCgIOiDksTM4/7LINOZ84OWLAu51iglGuRVWRMRWrZqhTVr1rj0YG/WrDlycnKwdOlS+Pr5Q6VWo1z5CgVUDG7duoXklFQpUM2wPPQGIzp16iT18dHp9dK8ySmpz/231el04tq1ay6Gws2bN6FQKGGOKYukAcsQ1uQtsByPjz/+WBqzdu1aGD1M4AQltD6RYDgeJUuVQk5ODrp16wZOUMCaVgchDYZKwVulZwDkRhsYjhfVAmwhsBVrALnGiLj4BGRlZWHixIniNQ1ciZiOk2EITQMxLFheAMPJwMnVSOg9X+qpbvGy4uDBg7h16xacTifKlisHIgasICaLpA3biLCmI6Vgv2dSVaRmrkdMx0/EiuxcA0qm8YDC5A1iWDC82Hdc7QiX3gGv1Fr5wfLcwPSIESNw+fJlMAwDVqFxCaYzLCdWw+caqtHtPwYRoXnz5lCo1LAkpEsBYn1wMtT2UMg0HmC4/AQHpac/VF6BUu93tUMM2MtkMkyZMuWx9zQqOgb6wESkZm5A8qCV8IgoAYuXFUOGDEGdOnXw7rvvurynK1euhEwQpOdN0Fugsga5JkowLDS+UQhrOhJeKTVFI7uC2N+NFZTSmlkuvwpCpvGQDOu8bGmv5BquSQcMC5nWlFvtzuT/nPL7v82ZMweG3M/RqOgY7N+/H4sWLUL9+vXF90OmgC4gAdEdJ0Oh9UDfvn2lZ5SIoPOLhjG8mHS+vPk5pRZRbT6EvXgjcHIVEnsvABGhcuXKGD16NG7cuIG9e/eClwng5CoE1xuMoDr9wXA8GJaDOa4idL5RYDkO33333XO9fy+CrKwszJgxA0OGDMG8efOe+hnsdDpx9OhRHDx48IV8FheW69evY/HixZg7dy7Onj37xLHRMXGwJFSW3j9b8Ybwstnx559/Iiw8QrqHdevWdVd4/T/CbUv+d3DfKzdu3Lh5saxbtw4ajUYMkISHv/Yeu/92bty4ISY01+4nfZ/U+8eiQSGqZr/55huMHTsWc+bMeez3zJIlS8EjsqSkmsWwvJTIG97iXRAR3nzzTRARDMEp8IgoASL6V/aQP3nypJQwnTZsI+K7zwLDySA32pE2bCMUWiNGjBhR4LimTZtC551vL+ep/t28ebNQ57106RIWL16MpUuXuvTxfhQ5OTlo2bKVZANotNoCCc83b95EQGAQlHqLqBbnYYPN7ih0z/tHsWTJElSvXgM1a9bCqlWrnnuePO7duwe7wxsyjQccpZqJyn8sByIWKrVaSjg/cOCA+K7nVsCnZq6HTGOEw9u70AqYAHDhwgWYLZ6QPaQsxzAsMjIycP/+ffz2229QqTVQ6kzQePqJPgiLH5IHrURMx08gqLSSbQ2IdmT//v2luRRKFVauXInu3btDZbIhdeg6l4IJY0RJEDHQ+kbDXrIJZCodEpOSHllocuvWrX+8vy+Kn3/+Obf4oB5iM6ZDZQ0Cr9JLvo28QoITJ0687qU+lgYNGkBjF4uGxGSYluBlMmRnZ+PatWvgOA7WIvWQmrkBsRnTIZMrX1t85+zZs1JiPsNykCuUr6yg4d69e2jcuLH0TBctWqzQygcvkrDwCOgD4pAyaBUS+yyEymRH3br1Xvk6/k24g+2FwG10/+/wyy+/YPHixdizZ8/rXoobNwCApLg4hMgVWGP2xHSjCUqOw4ABA555noMHDyLIz0/6Q9ukceNCVUo/jpTEREQpFNjpZcNmixesgoCmTZo893wvi8uXLyM1VQzuqtVqGHQ6MERQqA0IrNUXhqAkBIWEuhxz48YN7N+/v1DV+nmsWrUKdi8vEBHioqLw22+//aN137t3DytWrMDMmTMlKaqn8e2334pBu7YTpAA6y/EYOHAgVq1ahSNHjriMb9CggRgkTKkB77KtwPBi8HzChAnYsmULOnTogFq1aoGXyWCKLouEXvMQWLM3iAjz58/H5cuXsWXLFuzfv7/Qma/vvPMOeJkcjjItQEQwxZSDrVgDcDI5WrduDT//AOh9oxDfcw78q3YFy8tQoUKFpxqphSXPuItoOTY/09XLD926dQMAzJs3D0QEXiE6fMTsdyV0ej1++OEHFC9eQkpQSBu2EbxSC1NMWaRmbkDKkDVQeQWCWE7K/s+THN+9ezeaN28uJn5ElgIrKKAwecMUUxYML0AXmAhWUMEUVRpRbT6EoDVJweCixYrj8OHDcHj7gJPJIegs0jxyo00KsoY1HSlWHLT5EEQEc1xFhDQaDo13JDi5CgqTD4hlYQgtAl6lR0Lv+UjN3ACv1FpgWQ6LFi3ChAkT0LVrV7Rv3x5jxozB+++/LwaaeTFQHhMbB4PBCIblEJsxXZTCqtYt3zmg08NapK60Px5RpUEsB06hyV2reE3Jg1Yideg6JA9aibzK77xAL8NxjzRAvvnmGzAsB0NoEYQ0zERYs1GwJFYDLwigh6T5GzduDKfTifv370Or08MjrCiMYUWhMPsiZfBqMbM9sQoYTobQJiPEc+cmITAsD7/0DEk2TukZgLiuMxHScBgYloMxrBj8qnYDw8ugtPjBFFUaxLJSIgHLCwhpmImoNh9C7mGH2h6G5EErIeg9ofGOQOrQdbCXaAIiwkcffQSGYWCKLoPAmr2h8fSDJldVR2wNwEHQWSDTWcDyAtSafGnB9PR06HwipYQHtS0ELC9HeIsxiOs2C2p7GLjcJAlrWh3JMaY0eoGTCQgOCUV6lSpQmb2h8YlySQTwrdhedHwMXQe1p+8zK6m8KLKzs5FepQoYloXKIMoMNm3W7LGfNbdu3ULFSpWk64iJjfvXJYABQLHiJaD3j0Xq0HVIzdwAj4gSCA4NAyAmFxw6dAgnTpz4V1cTPIorV65gxowZmDRp0iuTwPxfwm1L/ndw3ys3bty4efHs3r0bDoeYxGyxWLBt27bXvaR/NTGxcVCbHQhtNFxqdzdp0qQnHjNqlGiXyhQqMAyD4iVK4t69ewXGvfXWW2BYDr4V28M3vRMYloPCaIMlIR2CSouExCSkphWBIThFskU8E6vA7u3zsi73udm9ezeICJGtx0nJ4DKNEcaIEpJfY/HixQWOW7hwIYgInknV4Fe5E+QaA0qVLlOoc+7fvx8WTy/JJvHx9Xts8QMAzJgxAwzDIKBGT8R2ngZDUCL0BoOL8tmaNWvEApd6gxHR6j3EdJwCIsK8efOefVNeAj///DMqVKgIvVFMsOfVBqhswfCtJKrwqW1BiIyKBiAqMRIRAmr0RNqwjUjsuxiCUoN+/fo9k39y9uzZICIk9JqHpP5LpSKEtWvXSmMOHjyIXr16oWPHjhg+fDgEuULyR0RGRT+yReTRo0exdetWXLhwAQDQt29fKHUmJA9a6ZJ4IfpbKuUGq8Xk+icVDfxbmDlTbJGYF1z3SqkJmdootVAMrj8ERPTEZ/ZJHDp0CLNnz8a6dev+kb/5SdSrV8/FF+JboR04jpPO995774m+D50JHC9DaFj4c/sTnU4n/vzzTxw9evS5lVqvXbuGWbNm4ZNPPnktdvKlS5dw9uzZ1+Zf+OqrryCXK8DLleBkAjxMZhw6dOi1rOXfgjvYXgjcRrcbN25eFgcPHoRfruFJRKhQvvxz98i6f/8+9u3b99xfnB5Gr9FgoFYnVdw3UqmQHB//j+d9Gdy4cQNly5bNTzRQqlBVIUphcxyP9evXS2PnzZsHuVz8nUKhLJQBs2fPHsh4HhWVKryrNyBCroC31eaS+Xz8+HFUrFQZZk8vJCWn4Mcff3zh17l161bRcHjjA8lweVhCm2VZfPLJJ9L4y5cvw2AUA6dMbiV006bNXObcsWMHiAjR7T+WAqgqoycGDx78XGvs0KEDdI4QGIJToPOPk+b0LtsKTG7QOKBGLwRU7yEGbxkWPDEIDQyUJNWys7Nx6tSpQmeWP8yNGzekyvbkgSsQ1nSkS2W7t4+vWCnMsFIf8aT+S6X+bXkVxD4V2iKh51yxD1f5NvnB5chSucH2FS6V57t370atWrWgtPiBiHHpWx5Yu68U2JXOwfLwLt8OflW7QabUIDY2FoJKi/genyM1cwNsReuDiKDSaKBQKEAMC61fLGI7TxOD+TK5lH0d00k0xnmZGFCWG+1gWE7sY57b971FixbIzs5GxYqiDJfOEQJOJqBY8RLYunUrxo8fj3nz5uH333/PXR8Hlheg9MztFxgQD2uResirALcVrS/2DCdRUj6x72KxH3res5hbMS7TeIhrMnsjqf8yJPZdDIWHA76PkNaqV69ebpU943Iv8v7tW6kDguqI2eirVq2SnCRhTd6CPjARhtAi0n3yq9wJDMsjvvd8cf3+cSCGg9Y/Dn5VMqAw+4AY1qViROMdAYXJB6mZGxDSQOxnr1Spxc8Kkzj+4X5cflUyQAyL1MwN0PnHwRhWFCENhrrI3wtqPVKGrIGjdAsxOM5y0PhEIWXwalGmkWFhLykG5+fMmSPtRdly5Vx60Ck8HNCHpEj/n+c8YlgOOt9osYLDww5jeHHp3DJBDmN4caRmbkB8j8/hlVYXRAT/at0kZ5TWFowWLVo817v+KI4cOYKpU6eiXbt26NSpEz744IMCEvp5rFq1Kvf+vS1eUy3xPXncZ2e3bt3Ay5UIrjcIYU1HQqE3o1Ll9Be29hfFunXrwLIsNF4B0NpDQUSYPXv2617WP+L06dPw8fUDMQxY7tVm7P+v4LYl/zu475UbN27cvBxOnz6NhISEXDtc8cggqBuRo0ePuigiZWRkPDEQdPr0aTAMA3uJxkjN3IDI1u+DZTlMnTq1wNisrCy0bdtWmjsxKRnp6VUQl5CINm3a4PLly0hOSZWq39OGbYS1SD14Wm0v85ILxZkzZ/DOO+9g6NCh2LZtG+7cuQOjhwlqWzBCG4+ANa2OS5Jxy1atHhuA+uCDD6A3GMDxPCpVTpeCr0+jRMlS0Hj5Ib7H54jrMgNKoxW1ntC+sUuXLtBaA6S9DG8xBkTkUnCxcOFCFxuYz21Z9vnnnz/bBj2Cq1evYtmyZVi+fPkzBSS3b9+OCRMm4KOPPoJGo4XGGgjP5Org5CqorMFIHboO3mXFin17iSYQBAGjR4/Gl19+iYYNG4LleBhD06AweEoKckqVutDXlNf6L7H3AqQN2yj5GtasWfPYYw4fPozp06dj4cKFhfap7tu3D3KFEhprIMyxFcByMinRPq7rTOm+CUo1xowZU6g5Xyd5rQ2D6w0SW0aWagoiBlq/WNiKNQQnV8PDZHquwOyCBQvA8/lqhmXKlntkQs8/ZdmyZWLhTmRJ2IrWBy/I0fhvhV9ffPEFhg0bho8++ui5v7PfuHED5ctXkK4nJTWt0J8Dblw5cOAA3nvvPXz44Yf/yoKIV4072F4I3Ea3GzduXia3b9/G9u3bsWfPnlfa9/xJpCQmIlqhwM9eNmzx9ILtX1rZnseePXvyjRMifGQwwiqToVWrVtKYQ4cOgeN5mGPLIaLVezDHlAXH80/NuhszZgzUPI9jNgdO272x0SJWYebJL+fJu6uMVjhKNYPOJxwqteaFS+TdvXsXEZFRUOg8YE2rDbWnX26wrikSes2DZ3J1sBzn0t/r4sWLGDx4MN544w1Mnjy5gOzVuXPnwLJidWxq5nqENx8NhmUxffp0XL16FZs2bcKWLVtcep4/iQkTJoDleKjtoWKlb242qr1EY7C5gVNB7wmO49FYpcJJmwNbPb2gk8kwaNAg7N69G75+/rmJEhxGjRr1zPs0b948cHy+JHjFipUkGT2VWg17qWYuBkhewNxRqhmi2k6APjj5Idl1HpxCg4AavcSqAoYBEQOVNQjWInUh1xiQkJiErKwsDB06FLwghyG0CGQaDykYHtbkLWktvXv3hoeHWawCzwuKqo3QaHXQOUIkYy6vJxjH81B7+kHtFVhAwjyv8jyojigFtm3bNsyaNQsBAWJQX5abgW2zO/Dpp59izpw5UnA6bdhGRLQSM4JXrlwp7d13330HIoJfehfItGLbAVuJxkjNXI+UQWJwtFKlSjBbPKHTi06AuB6zXeYjYmAIK4qAat3FCu7cdcu0JvhX6w5jWFFodXqXe3b69GnY7fbcADKPwNp9wcnV0PpGI7z5aMlxkifrxuVJvjMsPCJK5Br6DLzLtUZgrT7glVrwGqNU0U4MKyYg5AbCxbUz4NVG+FftiuhOU6Re9UqdGZxMDofDG0SEwJq9xb5vIamQaU1I7L0AKUPWwhCSCl6pgyP3eVI7wkEsD2N4cUS1nSBWlOc+P0QEr9SasJdoDIbj4ZUi9mDkFBpYEiqLQXD/QNSsVQtHjx7FlCliAoVncnU4SjXLlfbXIDZjOpIHrYQxOBmeXlZkZmaifPnyICJYEtLBcDIE1uqD8GajIdd7geF4BNcfgvDmo6E0eMJstoBXqKDxjoCQe38fbmFx/vx5VK9eAwajB4JDw55JcnD9+vUQBLn0jig87OB4GYoULfZIGcspU6aAGEZ6TxL7iMkTy5Yte+T8CUnJMMdVfCiBpzV0ekOh1/cq+eabb9C8eXM0adLkiQ6h/wpt2rSBQmdCfPf8XnR+/gGve1n/Kdy25H8H971y48aNm8eTlZWFJUuWYMKECc/ViujmzZuoUaOGZNO88847/zm1n1dFTk4OTp48+cjq3L+T1087uv3E/AR6gwVDhw597DE3b9587Nzjx48XbZGkarAWqQeW49G7d+/nvpZHcfXqVVy6dAnbtm1DqdJlEBIajtatWz+27/Uff/wBk9kCmVwFhc4DLMti7Nix4HnZQ8nODDxMJixYsAA//vjjU58tp9P5zP43i5cVjpJN81u2pdREWHjEY8ePGTMGnEyO6A6TRNW5lJrgeN4l8N2vXz8wHI+QhsMQ03EyVJ4B4HgZzp0790xr+zuHDx+GzZ5f2OPt41uoXvATJkwQE+hzA6usTIGkActcfBuCTvSJmeMqghOUIGIgqEQVtxEjRmDkyJGoWKkSBEGAxhaMkAZDYY4tD5ZlsXPnzqeu4fz58/AwmaGxBsBevBFUJju8fXwf+/3s5s2b6NOnD8qULYtWrVo9UwHSjh07ULVqVSSnpKJLly4Ij4gEEQNzXAXEdZslqUts2LCh0HO+LpxOJxo2aiQWPORK8MuNNqhsIRD0npB7OJ74vD6OW7duPVTUshLhzUeD5XiMHz/+xV8EgM8++wzBoWGw2h3o2LHjcxekPYmOHTtCplAhsFYf2Es2Aa9Qo3qNGi/8PG7+/+EOthcCt9Htxo2b/2/8+uuvLj3bg/z8n6nH0qvm+PHjICIk5Vb3MkRQsSwyMzOlMXnBxryq5OQBy0FEmDt37hPnnjhxImQsi51eNpy2e2OmhwlEhJ9//hlAfoAyqs2H0rycTI4PP/zwhV/nuXPn0LBhQwSHhCE0LAwcL5MMvfjuotTWw5X8TyMrKwuZmZlSlSwRoUKFiti5c6eLPFpKalqh/gZeu3YNpUqVlo7TBcTDHFsBDMOgvVqDLhotmNzfzTCaJOWEJKUSzZo1g8PbB1pbEEIbvQlbMVEGf8WKFc+8T4cOHcKcOXOwYcMGlwSDKlWqQq4xQjB4QW7wQnC9QdD6RoNTaKTEgDyJcS8vq0tmPBGhbNly6N69O2Lj4hEQGIzGjRvj4sWLAMSkmYev3RBaBL4V2kGmMYIYFmq1Bjk5ObBYPMHwAoLq9Edoo+HgVXqo1WJA1rdie0S0HAutPQRKlRpqa6Ak+WVJSIdKrcaPP/6I0LBwCEo19L6RYFgOdevWlZwJ2dnZmDJlCtq3b+9iXOf1Ns/ryZcXPB81ahR2796N+/fv4/z58+B5mYtigqD3RFK/JQis1QdEhM2bNwMQ5arsDm8IWhNM0WXBKTTglVpwggqpQ9chrutMMJwM+qBkBNTsBU6hzU+IkQnS+3PhwgXY7A7wSh04hRpav1hEvvGB6DDqMEmqwuaVOvAqPRiWA6fQwrtMS3hElXKthM/7h+XEYLpKj7hus5A8cCW0fjHgBblUyaHzi4U+JOWh48R5GIZBrVq1sHKlKIGfl9QQ13UmiOXAcDw4uUoaz7IsuIcyvD0iSiI1cz3Cmo8CEQNOqYXHQxXxtmINwSu1sJdoLDkvWF6AJbEqVCY7rDY7Ll68iHfeeQcWTy9odXo0adIEQcEhuetjIZcrJGP/8uXL0Op04JU6GMOLSefxr9IFD/eSj4iMwq5du6A3GMHKFOJzzwsoU6YssrOzkZOTg6TkFCi0HvAu0wKGoCQwDIOOHTvi66+/BiD2/qtRo2aB3n9Op1Ncq49YgRNUdwDShm2U7uPChQsLvKO7du0CwzCwptVGdPuJMMdVAC+TPTZJqWq1alB7+SN5wHKkDFkLY3AyQnLl2d28XMqULetS3eRfpQtYlnU7x58Bty3538F9r9y4cePm0Tx48AAVK4hVgHKWlYLlz0p2djZ69uwpfUdt27ZtoRO73Tyay5cvQ6FUwSOiBOK6zoRfemcQEZYsWfJc8zmdTowaNQo2hzcsXlb06tXrhd2ju3fvolFuMJBIVE3T2kPglVITgkqLYsVLPDIA3rp1ayiNXkjssxCpQ9fBFFUKKrUGgkqL5IErEN9zDsKavu3ip3kZ5Fe2z0Fc15lQeTy5sv3mzZuIi08Aw7KQKUXVtAkTJriMqV69OgyPUDF7nELYb7/9huHDh+PNN9/EwYMHH3vuChUqQm32RlzXmYjrMgMqkx1Vq1Z74vVdvHgRHMfBK7UWUjPXw5KQDlZQImXQqtzKfLF9mV6vdykEiHzjA6RmbhCTyxkGZ8+exebNm0FEiOk0RWpjJpOrMHbs2Ceu4eHrLFW6DGwOb1SsVBlHjx595Ljs7GyUKlUavFwJj4gSUBossNrsz12lnJ2djVGjRrkUcDzc//3fTk5ODhYvXoxRo0YhOiYGKg8bottPROQbH0ChNaJZs+ZPPD47OxtnzpxxSZg/fPgwiAjhLd6VnlOdLRAZGRkv+3JeGpFRMTDFlofC5O3yebR///5nmicrK+ux76qb/5+4g+2FwG10u3Hj5v8j58+fx8KFC7F06dJn6m/+OnA6nahTqxZkDAM/Lj9Q2L9/f2nMxo0b8XBlb15W7qZNm54498WLF+Fts8EqCKisUEDJcShftqxkBP7www9iMKvVe5K8O8fL8NFHHwEAtmzZgrQiReEfEIRmzZsXKju9MCxfvlyq9k3N3CDJeB04cKBQx+/cuRN2R/4XSw8PD5QsWRJHjx5FdEwstLZgxGZMR0TLMZAp1ejRo8cT59uzZ49LcFej0YDheKg5Hn20Ohy3OfCmTg+WYWDU6ZAol+MLiyfaqtVgGBYms9irPLz5O1KAVWPxRs+ePf/RPl2+fBk//PAD/vjjD5w/fx4pqWmSUZhvIDKIaveR2BOqYntpH9PTq0hjLJ6eTzXcs7Oz8f3334vVxrmBWZlGTFp58803AQDBIWGwxFfKr9At0xJqrQ5du3aVzmW12VGkSBEXKXHfiu0hkwlwOp24fPkyhgwZgpYtW2LcuHGYOnUqMjIyMHr0aOld7d+/PwSlGtHtPkbSgGXQBSaAGLGne1jTkTBFl5ak/YkIOp0e7dq1Ay8ToPOPQ1L/ZYjuMAmsoJSk3/4uxbdv3z6x/yLLgRVU0AbEgeF4JPSah4AaPXOTW1aK1dm8gNBGwxHTaQq09hAEBYcAEHtusTwvSc8TMfBKqQkign/VrmICROep0v3SBcRDbhATQXwrtAcnk0On10PtCINf1a4gloPaFgK5wcslQOiXniFmqFs8oQ9KlJIrLPGVwLAcTDHlEN3uY3iliuf+8ssvIcgV0AXEI7z5O5JsPhGBV+kRHhGJixcvwmS2QO8fg+gOkxBQrTuIGARU7yE5JrS+0dAFJOT3PEyqKiUzGIyizH54yzFiwkxPMSHoUfJ6N27cwNy5czFlypQCvcC+/vprCIIAQWdBUr8lkgPKbPHEoUOH8Ntvv+HBgweYN2+ei8MjrInokNq6dSv++OMP8fOk0XAkD1oJtT0UxDCQKcVEkPr16+cmKURD5xPpEkS/ffu2mKCSq0AQ32OO5FBhOR4TJ04scD2TJk2CTqeXEgJkMsFFSv/v/Prrr1BrtBBUWih0JnA8/z9RNf53bt68iYyMDMTExqNCxYr46aefXveS0KNHD8iUaoS3GIPYjOnQ2oIRHRP7upf1n8JtS/53cN8rN27cuHk0n332GRgizPcw45TNISZRMwxOnTr1XPNNnDgRbG7Qvnz58o+taHZTOJYtWwa5Ir81WkZGxr8yMbJ3797gZHL4V+0KQ1gRcHK11C87pOEwENEjlQfLV6gAY1hRybYLqNYdxDDgBSWS+i91UYfbs2fPS1v/vn37YM5VOiQSq8X//PPPJx5z+/ZtzJgxA+++++4jFSEyMjKg0BoR3302UoashUd4cXiYzI+8f99++y3kcgXkaj3kah0UShW2bdv2yPM6vH1hK97woXYAdREQGPzEtf76668gIkS2Ge9ih2t9o+Ao1QxKvRlR0TG4efMmvvrqKzRq1Agqo6d0jqh2H4GIsHPnTmmuPEXB2C6fgmE5TJs2rcB5nU4nVq5ciVGjRmH+/PkFFBmfxM6dO0FECG08AmnDNiKh1zywHI9JkyYVeo5HcfLkSWzatKnQ/rXn5fjx4/jqq68KpTrwrPzxxx/w889vZxgVHYO//vrrseO//fZb6flWKlWSX+LWrVtQqtQwRZVGUv+lCGvyNliOL5A48l+ibNly4JVayDQeiO4wGXFdZ0Jh8kbRYsULdbzT6cTAgQPBy2S5f8cqSIU4bv5/4w62FwK30e3GjZt/Kw8ePMDUqVPRt29fTJ8+HVlZWa97Sa+Nu3fvYsiQIShTsiQiIvJ7nPn7++Ptt9/G3bt3Ublyupg97ekLluVQOT29UF/kT548ibZt26JypUoYOHCgi4zR/fv3ERMbB7nGAK+UGlBbfCFXiJXa06ZNgyDIofONFGXH1brHZms/Kzk5OaiXGwBjcxMMniQV9zB37tyBp5cVGnsoFCYfsIIKpuiyUOgt8LLawHIc/Kt0eahXeUmULVcOgNiPZ+TIkZg2bZr0d9HpdCI4JBRaWxAi24wXq6AfCuS2VqsxRKeHluVQu2ZNbNu2zUU5QRcQD3NMORARfMq3lQKPMoUKI0aMeO492rBhA9QazUNBbAf0BiMSEhPxzTff4I8//oBcoQTLy8GwnNRjnOc4vPvuu2A5HkF1+iO63cfQOkLhHxBYKKdFTk4O+vXrB4fDB75+AXjzzTel56xyejrUXgFIHrgSqUPXwRicguCQUBw4cADbt2/H+vXrsWnTJgwYIMrDcwotOIUGLC9DtWrVXc7jdDrRunVrMAwDnS0QvKBAVHQMFixYAKvVCn1gonQP8/qd5wU3eV4mBlM1HtAHJeUGzEUHTWCtPtJx+qBkhIeHY9WqVS7Xnp2djeIlSkKmUMMcWx6C3hPEsGA5HjK1ESqbWIkd03EyDKFFoA9Kzs/Wz+3PfefOHfTq1Ss3CaAoIlu/LwXa8yrWlRY/sLxc7HfuHZH7M19wCjGZg4hgsXiJ8v9EYDgZkgeugFdqTXByFSJavS/20/MMAK/Sg+VkMEWXya80L1ofDMtJ/eBSh64Dw7D45JNP8N5770nPMcNyUHg4QAwLnU6HXbt24c8//xQTeJqOlOZTWvzAy1VgGBYsL0NAdTHpIK+vOxGhe/fuOHfuHNasWYOHq+cT+y4CEWHmzJnP/Kzv3bsXWp0OglIDpcEChmEwb948lzGTJ08Gw3JIGbzaRQ1jzZo1OHHihFiVXruf2POe4xHd7mOkZm6ArVhDMTkgNBWpmRuQmrkBhpBUJCYlS3N7+/hCaRH7ehtCiyCi5Vh4JorJKrt27ZLGHThwAMEhoSCGBa/UwRRVBpxcgcrpT++/fuTIEQwfPhyDBw9+ovzgmTNnsGLFCnz99df/qb+JTqcTFSpWhEyugiWxCjS2ICiUqpfu4Hka165dy09SIoLF0wu7d+9+rWv6r+G2Jf87uO+VGzdu3Dya4cOHw1Mul5TJvrSIya8//PDDc8+5bt06aHJttYiIiJcSbPr/xLlz5/DVV189c2XmqyQmNh6WhMpiP+mSTcErdZJtkhcs//t337lz54LjeDAsh6A6/RHR6j2oLT6Iio6BVqeDxtMPnolVICg1KFq02DMFap+HixcvYtGiRViyZMkz9UF/HGfPnoWPr59oR8tV4HgeS5cufeTYpOQU6HyjkDJ4taje5ghFyVKlHzm2bLnyUHv6Ir7nHMR3nw212RvpVaq4jHE6ndi9ezc2bdqEc+fO4dq1a5JKQnyPz6Uqex8/f1i8rKhWrbpLT+YlS5aAiOBXuRNiM6bDI6woVGoNrl69CqfTiZq1aoHleOj9osELCqhUaqSkpmHkyJEudlqnTp1ARJCrRenzmjVrFdpntnr1ahDlt1FIGbwavFyJ9957r1DHA8C9e/ewatUqfP7554+toH8ZfPzxx1LSEcMwz7TmwnLr1i18/fXX2LJlyxN7rF+4cAFanQ76gDiENhouyf7nFZwsXrwYslwlUSLXdo3/RX788UewnAyeiVUealXXCgajR6GOnzhxIogI9hKNEVCtO+QaAypWqvySV/1ocnJyMHv2bPTo0QPvvfcebt68+VrW4UbEHWwvBG6j240bN/9GsrOzUbVyZXAMA3+FAizDoFaNGv+avu+vk99//12Szc4LMLZo0RIPHjzApEmT0KNHD0yaNOmFyaFduHABTZs1g59/gBiU05mg8fQVKzYVasmADGkoSrYfOXLkhZw3JycHq1evxscff4wtW7YU+ri9e/eKiQhVuuBhOaiEXvPEKl+zBYbABCQPWon47rOh0JnQpk0bjBs3Dlye3DYRTCYzzp8/L/2dDKozQPqiagiIR1paGnx8fCFwHGQchzq1auG7777D7NmzsWrVKiQkJEDlFYDUzPVIG7ZR7HNNBJ0jBHKVDja7A+fPn3+mPTl27BjKlC0Hnd4AlpNBbQ9DRMsxYAUlFGZfeJdpCY01ECazRWotEN1hEvzSM+CVWksMcLMsGjRoAH1AnHQ9wXUHgogKVF3cuXMHZ86ckYz6CxcuuCgG6PR6/P7779L4nTt3QqFUQa4xQGmwgGU5ePv4PPSsusqaWxIqw1qkHohlUbx4CSxYsEAy6g8cOAAiQkD1HrkS+J+AyTXWBJ0ZDC8gsvX7SOy9ADr/eBf5c19fXxDDIr7nHNiK1gOv1CGh93wIek9ofaOR0Hs+It/4AKxMjtatWxfY519++UUMNOcqRST2WQiWk6F3795gWBasXA1OoQEnV0GmM4NTaBDXbZaUra/V6TF9+nR07izKHMZ3n4XwZqPFyvKHpOF5hQbEiLLwxDC5knYbkNh3MXiVHj4+PujatSsYlofC7AOGkyGp3xIk9V8Khfmhfc3bF4PYHsCaVgf2kk2kKvPA2n3Fau9mo0CU38v+nXfekQxglVqDAQMGSA6GmzdvgpfJpB7ssZ2ngReUKFGiBN555x14mMxQGjyhtoWAYTnoDUZ8/PHHUtLCtWvXYLM7oLb4wFG6ObT2YOiNRhcHxrNw/PhxjBgxAgMGDMAXX3yBPXv2uPT6279/P3iZDB7hxRFUuz9UXgFQKJX47bff4HQ6UaVqVfCCAkqLHwSdRXr28+TgTTHlpJ9ZEqsgPCJKmvv777+HTBDEhIY8lYLcvb1165Z0vVabHUqTN3wqtIXGJxKsoIS9VHMwDFPA+D906BDq12+AIkWLoUePHoUyGr/++muXBJtSpUrjzp07z7WfLxKn0/nUvzfHjh0Tqz/qDhRbkgxaCbnGgMGDB7+iVT6eBw8eYOvWrdi4caO78uw5cNuS/x3c98qNGzduHs3SpUtBRHhHb8AOLyvqKlWQC8JzSzXnsXv3blEpiwgWi+WxVbpu/r0cOnQISckp4GUy+Pr5Y926dY8dW6ZMWeh8IpAyZA2iO0wSq6Z9ImEv3ghyjQGJSckuwfIDBw6A43mYostA4x0pfcf38fXD4cOHsWfPHqRXqYKY2Hi0a9fuub+n5uTkYPjw4fD29YOPrz9GjBjxj/xq58+fx9y5c7Fw4cJCreny5cuYPHkyxo4di19//fWx4+wOH5dqda/UWggOeXRrrYMHD7q0BrTa7C5+qJycHLRq1Vr6vUKpwpo1a7B8+XLI5Qrp582aN8e1a9ce2Tfb6XS6KPQpVWqsXr1a+v2DBw/Qt29fxMXFgYiB1jscHlGlwbAsunTpAkBsL0aUr2oX2mg4iMhlnsexdOlSCHIFiGGhMHnDr0oGjCEpkMkE/Pbbb089HhBt+uSUVOkaBLnilSio7du3D0yufyOu60ypjeLDierPy7Vr19CmTRuEhIajeImSj1RU+DubNm0CESGu60ypCOHv7TGPHDmC+fPn44svvnjpSS2vgooVK0KutyC++2wk9l0ErT0ESckphTq2SpWq0PpGI67LDKRmrodfegY4jnst+9KuXTsQEbSevuBlcsTGxb+UPvduCoc72F4I3Ea3Gzdu/o1s2LABRITZHmLv6+lGsZd4Xn/d/2WcTicuXrz42KrFvn37QqH1gF/lTni4b/HZs2df6roqVKwIrSMUKYNXIzVzPYxhRcFwsoeC7aI02t9loF81p0+fBhHBM6l6bvXxJ1Jwh5MJ6NKli1jxzfEghoGPrx/27dsHnmFRVJBjocmMNrl9xmvkJnio1BqY4yogNXM94nvOgVxjQPfu3aVzOp1OfPzxx2AeDqTyMiitwYjrPhuOkk2lYLtCqURaWloBWcKsrCysWLECn3zyCXbt2oWLFy9i8+bN2LdvH5xOJ+7cuYOAwCCoTHZ4l20NtT0MxPGwlRD7wiX0nCsmFfScCyJCv379xOvPldXO+3nxYsXQq1cvyNV6xHefhdSh62COLQ+VWuPy5XnChAlSUofD2we7du1CXFw8WJkiN7AtytXzMsElgPrbb7+hevXqKFasGPz9/aEweMKnvNhL3FG6BWIzpoNXG2EMy+/BbSveUApe+vkH4PTp09i6dSuICF4pNaHxjoQuMAGsTA6FyRtJ/ZeBV+mkvWYFFaxF6kr/Hx4eDpYXkDJkDSzxlaC2hSBt2EZEtHoPrCzfuCaGfaShmmeM5UnMpQxeDVYmR+3atfHNN99Ao9VJGdrh4eHQG4xgWA68oJASAh7+xxxfScxmN9rAKTSQsSyG6/RQPdyTnWHh95DigtYnCg0bNsS9e/eg1upgSagCTqGB0uIHr5QaYOVqEMPCFF0Onsk1XM5nMHpArdFCqVTlG9ZaExiGRcWKlVzu85UrV3Dw4MFHBm0nTJiQm4WvB8vxCAuPwNWrV3Hz5k2UKl1amtvbx/eRMpu///47SpUuA5PZgtS0Ivjll1+e7WV+iHPnzmHPnj3YtGkTjB4e0rlTU1Oh1emh0WpRpUoVaLVaF+UJvcGI7du34/bt2+jRo4ckNeeXnoGYzlNhDEmFTJCD5WXwLtsajtLNwXI8Bg0a5HL+Ro0aQe0VgKQBKxCbMV1K5slzMOU9MzGdp4qfNwOWgxgW+pBUcDzv8nl+6tQpGIweUJnsMMWUhUyuQukyZZ7o9MrJyYHZ4glDYAISes5FeLPR4GRyvPXWW8+9py+CcePGQZ0rtVqiZKnHJlPk9cILbfSm+E4NWQul3owBAwa84hW7edG4bcn/Du575caNGzePxul0okOHDvnfm2WyAipKz8vp06eRkJAg2oEKxXP3GnfzfOTk5GD37t346aefnrn38K1bt+Dt4wu1py/80jvDGJz8xEDn5s2bwctkUHnYpOIE/8Ag2OzeqFe/foHkjZkzZ4KIcv0rGxDZVrS95s6d+9zX+3eysrLw1ltvgWEYeCZXh2dSNTAMg1GjRj3XfLt374bRw+RiBz5Nav5hbt68+diAXb369SHXGBDW5C2ENhoOQaVFi5YtHzvXxYsXsWDBAsyZMwcfffQRRowYgdWrV8PpdGL2bFHlLKBGT8R1nQljWBGoNVrcuHEDp06dwrp167B582ZUqpwuXUurVq0fWc186NAhbN68ucD9GzVqlIsN7l22ldRKL8/+W7lypeir6T0/t53gejAs91QZ+HPnzkEuV8AjsgRCGmZCphX33OLp9cSEj78zfPhw8IICkW98gOQBy2EMKwK9wYDs7GycPHkSU6ZMwbRp0565CORpLFiwAESEpP7Lcm0/UfXueVTuHsbpdKJ0mTIQlBp4pdaEzicccrniqckHO3bsyPXH2KHwcMAUXQZEhFmzZv2j9fyb+fPPP10KZfQG41NbRwJiMsPDiSwa7wh4JlaFWqN95e07Dh486JKsEt1hEhiWw/Tp01/pOtzk4w62FwK30e3GjZt/I7NmzQIR4YjNgdN2bxyw2kFEmD9//ks/d3Z2Ns6ePftEGaKXxU8//QTf3Ox3tVKJzz77rMCYLl26QG3xQWrmBgTXGyQFlipUqPDMBmRhePDgAe7du4eEpGSY4ypIwUBH6eZgWA463yjYitaDXK1D0aLFXrr6gNPpxIoVKzBw4EB8+OGHj6wIzcjIEIOwvACFyRu+lTpCHxAHuUKJ33//HYcPH8akSZMwc+ZMXLlyBVu2bAER4UuLF07bvXHK5oCGZREYGAhANIQZhoFCawQvyGGzO1yCSqdOnQLLsvBKrYWUQaukSnEiAsML4ORqCDqzGIRX6cGwLEqVKiUF4B48eIDy5SvkBnBZKetYCiZzPFLTioCIENV2AsKbjwYnV7sYdzGdp4lfQDt9IgbVi4v90BR6T1jT6kBusEKpUuPEiRM4f/48fP38wfEyyNU6MAyD2bNnS9fz5ZdfSoHu0EbDoXWEwtPLCl6Qg+Fk0PhEIaBGL2j9YkAsh6joGDidTmRnZ6NK1ariXunEgKjaEQafiu3ByuRSb2+NI9yl17dXak3wagPius6EUm9Bs2bNceXKFQiCAGIYmKJKSzLrakeE2Muueg8xsBySBu9yb4BT6sDwcoSFR4hGLcNAH5wCc6y4r7rAJFiL1IVgsILhxd5TzZo1l6556dKlsDu8wctkiI6JBbEc5EYbfCu2hy4wEcSwaNWqFQDRafPXX39J1bzfffcd6tSpg1KlSonVCOXbImXIWvhVyZAC6ebYCkjN3ICk/sug1FtQT6lCK5UaSpUeQXUHSFXToY1HwKeCmJwwefJkAGI2Ly9Xwl6iMRRm31yJeQbWIvWk99EYUQKcUgtBEPDRRx8hOzsbV69exbp16zBo0CD069cP06dPl9Z89uxZ9OjRAw0aNMDYsWMfW5n87bff4q233sLkyZNx48YNAKIUnkyuQmCtvgiqOwCCSosmTZs+1/tcGIYOHZr/PrEcdH4xiGw9Dlq/WBDDwFa8Iewlm4DleCQmJkJQahD5xgeI7zEHOp8IBIeESnM5nU5Jyo9IrOhfvXo12rRpA0GQQy5XoHPnzgX2Y926dSAimKJKw7tMSwgqLcqXryD9fvPmzWKCRutxDyW3iIoFXbt2dZnrvffeAy8okNh3sZiolFvhsHfv3sfuwaVLl0BECK4/JF9hwz8WjRs3fkG7/OzkSSt6JleHf7VuUOjNSElNe6QRnpOTg8SkZCi0HnCUbg5DUBI4nseOHTtew8rdvEjctuR/B/e9cuPGjZsn8+uvv2Lt2rU4ceLEC5335s2bqFEjPzn23XfffaFBi7/++guZmZno1KkTPv/8839lP/PXwY0bN1CyZClp3wMCg/DHH38U+vjvv/9etL/bfSQlYMvkKowdO/axx+zYsQOdO3dG+/bt8dVXXxX4/a5duzB06FCMGDECU6dOFRPFW4zJrXp+84UVmPzxxx9IS0oCwzCQsRy0vjH5Kl7xlRAWHvlc86YVKQqtLQgJvecjrtssKI1W1K1b96nHHTlyBDGxcblJJ0qXiuI8/vrrLyQmJUv3q0iRorhy5coT571//z5KlhKryRVasZVf79690bt3b2gs3gXUzB62txo2agRBqUFA9R7wrdQBLMcXWnXr559/BpEos53Qax7sJRqDiBDd/mP4pWdIymZHjx4Fy3GwJKQjNmO6NO7HH3984vxff/01iAixXT7NDdJvAC9XISQkFF42O1LTihRoPeZ0OjFlyhQUL1ESZcqUxaJFi9C0aVPo/fPvfUgD0a7+4osvoNXpwLAcGIaF2eKJQ4cOFeraC0PeuxNQo5eLkuKXX375zHNdvHgRe/bswY0bN/LV0uoPFt/JQaug0BoLJMr/nS+++CLXJ5QAr9SaYDgZdHqDpFL3v8qVK1cwb948zJ49u9AKg2+88QZkCjVCGgxFSKPh4BQaEDEYPXr0S15tQVasWIGHC4hSMzdArtI9d7KQm3+OO9heCNxGtxs3bv6N7Nu3DxzLopFKhVVmC+orVeA5zkWy+nm5desWMjMzUa9ePQwYMMClF9W2bdvgsIpSzHJBwJQpU/7x+QrL9evX4WkyIUGhwFSjBxqoVGAYpoDcXF4FpTm2PPzSMyDkBkuJCGXLlsVff/2FTZs2ISMjA5UqVUKjRo2wffv2Z15PVlYWOnXqBI7jwDAMgoKDwfEC/Kt2RVDtfpCrdShVujRSUtPg6xeAps2a4fLlyy9qOx7LoEGDxKCrhxUcLwZG/x5wdzqdmDFjBurXrw+b3QFBLkdQcMgjDV4gP2PyXb0Bp+3e+MriBZYI5XJ7uQNiQHXYsGF4//33pazm/fv3Y8mSJZKhnFfVmjZsI3iFRuqVnth3MVIzN8AcVxEMy8EQXhzEMGjfvj0AYOrUqWBZDuHNRyNpwDIwvAB9YCJiM6ZLQWVOUIIYFiGN3gSn0EAXmIjoDpPgW0mswuCUWnF+/qEWAwwDtUaLgKBgpFep4vL+XL58GR999BFGjhxZ4BkbPHgwlAaLFAzPM07zEjsS+yxE2rCNSOq3RDrX+fPnpczt0MYj4F2mBTiFFsRyUDvCQUQIazYKacM2whRTXsyuDUqCKUqskHaUbo60YRthjquAlNQ0XLlyBRzHw1GqmST1pfL0BzEMHKWaifLcLAuW46QgLBFBLldg6tSpmDFjBrQ6fX7CQm5FOycTULVqVSkgDYhJLizHwSO8GPzSO0PlYQMxLDi5GiwvQKYWDffY2DiMGTPGpUp53bp1kMkEyJRqqc96Uv+lLhncYjZut/wgaUgqiglyRMtkMPiJxq9femc8rFRRrVp1KXHl5s2bqF2njvS7pKRk8DIBnknVpAx5rW80GF6ATG0AwzBo06ZNgec8OzsbmZmZsNod4GQCZCqxbxnL8ahfv36hHXOhYRHwSqnhokzAC3KYPb1Qv0EDXLp06alz5OTkYN68eRgyZAg+++wzlz11Op1YsGABevXqhVatWknPR2Ctvi4BbaWnPyzxlR6SGqwJhUrtopoQUK07iKhABcWhQ4ewZcsWXLx40WVNT9qDWbNmwdvXD1qdHnXr1XP5vLt37x5i4+IhV+thjqsAQWeGIFdgyJAhBc49cuRICCotUoasEd+v1u+DiDBy5MjHnjs7Oxs6vQEe4cWQMmgVottPhEyhxpAhQ5661y+LVq1aQesIkXrd+1cVZRYf93fgr7/+Qo2atWAyWxARGfVMVRlu/r24bcn/Du575cbNi2Hjxo2oWaMG0itVwowZM9yBzX8RTqfzsepwr5vs7Gz06NFD+j7ftm3bF9L27eLFi/Dx9YOg1EBrC5SCjW6AHj16QCZXIbTRm4h84wOoTHYUL1Gy0MfnSYCHNh4hJtP2ng+Ol+Gjjz56rvWsXbsWHM9DoTVCUGmh0WqRmJQMjpdBZwsEy/GonJ5eKKlmp9OJ8+fP4+zZswU+g7KyshAeEgJ/uRzv6g2opRTbYEW0HCva4tFlEBEZ/VzX4GEyw1G6hWRreSZVQ2RUzBOPyc7ORkhoGNRmbwTW7gvPZFGB8FFy5tnZ2di3bx8OHDhQqCKO2bNng2EYRLR6D2nDNsK3gig5PWTIEHC8DJFtxiM1cwOsabXBcZyLnWr0MEm+hrRhG2GOrYDEpORC7UNe5XzyoJWSiiIRwRheHDKlGjVr1ZLGzpgxAxzPS+9+YYKWef4p30odJIU+IoKg1sNesgm0jlBodTqXxKBx48aJxQihadAHimoa9erVAy/IEdFyLBL7LoYxJAVGDw8kp6RC5whFUv+lSOyzEGqLD6pWrVaoay8MTqcTbdq0EdesFFUjGzdu/Mx/L8ePHw8u19+jUmskv1tIw0zJ36LUm56qltayZUtoHmrxKPpeyC1H/giCQ8LglVrTxddj9DC98u863333HTS5qoW6gAREtHpPUrPcvHnzK12Lm3zcwfZC4Da63bhx829l5syZEGQyKfA9Z86cfzzngwcPUKJoUag4DiUUSmh5HnHR0bhz5w6uX78Os9GIJIUCMz1MaKoSK4cL0wPoRZCX/fmFxROn7d44YXNAL5M98sv4p59+Cg+TGRzHoWSp0liyZIkon0yiPF3eF/mSghwhghyCTIaffvrpmdYzfPhwMCwH77Kt4ZeeAV6hgq+fnzR3fHwC9u3bhwcPHqB79+7Q6vTQ6Q3o3bv3S3NynDlzBkT5El0xHT8Bx8semRn9LDidTtSsUQMMEYI4HgIR1AoFTp8+/dhjxo8f7yIbT8TAklAZyQOWI6hO/9yKdA66wMT8wF+NXiASpeLyDMHbt2+jf//+UHvYkDZsI2I7TxON4VyDMW3YRijMPtAHp4hB5dxgeuQbH0i/F3RmsIIKrKAEwwuIavMhkgeuhDGsKIhhMXz48GfaD7HyVo6oth8itNFweKXWFp8tk9gnPKrtBLGKvv3H0vUbPUxQqdVgGBa+FduLFa+JVcSq8IcC9UKu/LtOpwPL8WA5GQStB+K6zUR0+4mQa42oUaMGTGaLOEdSdQRU74GIVu9B5xuNwMBAsS+8Qon27dvj4sWLsHh6QesIRUiDobAkiFJw6enpUqW5o1QzpGZuQESr98GwLOrWrYuPPvoIY8aMgcXLCo7jwPKClDEb3mLMQ/dVXLugM0MflAyGYeHw9kZ6ehX07NkT3t4+UHsFwLdSBynY6CjVDEn9l0ry+Qwvh6AzI7TxCHEMw4DJndsjqjQCqveEKaYseKUOtmINQUQFpNCysrKwY8cONGgg9jtT6MX90QcnS8kMLC9HbJdP4ZcuVtT/PXv5zTffBMOyUFr8QQyHkIbDkDZsoxTELmw2e/ESJaHziUTKkDVIHboOOv84cAoNHCWbQq7Wo3iJkk80xpxOJ5o0bSoazQYLGJZFlapVJcdSr17ie6Lx9BETVtRG+FftCn2QWOngKNlUDLZb/GEISZWSQkzRpWHwMEFQ6xHTeRqSBiyDITAevn7+z/T853HixAnMmTMHK1asKFRv9EuXLqFdu3ZISU1Do0aNHyupuHv37tzPhgT4VmwPudEKTqGGXKF8osG/YsUKyGSi2gMRITYu/rV+f8/IyIDS4InYjOlQ20Ok96VLly4vXeHEzb8Hty3538F9r9y4+eesW7cODMMgQS5HqVwVqvfff/91L8sNgIkTJ0Kn14NhGBT7P/auM0qKauueSl3d1TmHyTnnRI5DGnLOOUrOkgYkiIEkohgBFREUUHJS0QcGQAFRQUBFBUwESRIEpvf3o3pq6I8BhmTsvdYs35upunXr3uqmzjn77F2xUqkWR38HPPnkk2B9tlM1a9a8Yx/uYkyZMgWCWkL6wJeRN34DQmrKBa5ff/313kz4H4xy5SvAmlJdiZlDa/WEWiOV+fw//vgDkZFRYFgOoiUIaqMNdofzjiW3Y2LjYIrOQs7YNch6cDm0jjAUFBRg5syZ6Nu3L5588skyETDOnj2LuvXqKe/eNWvm+zWQFBdqF1lsOOoJxmF3EBys7PttSagEIrpjwkCFipWgc4YhbcBLSOnzLDQmO1q2bHnTc4q7kYtJC7mF66FzhF6n/nUnmDp1KlSSXokHU/u+ACLChg0bFGVAXiV/V///nFFYRCSsiZWRW7geOWPXQB8cj5r5+dddw+v14pVXXsGQIUMwY8YM/P7774rlXXj9ATLpuP4AEMm+7q3btMGZM2dw9uxZ9OrVC/EJSShXvjzmzJmDQ4cOlfneBg6USeMag2wHRwyr2NxljVwOluMxZ84cLFmyBL169YLeYIAlsYqyxqboHGTn5KJ8hYrKs6LWSFi/fj1sDqcf0cCZ0/COCRg3gtfrxYoVK/DII49g2bJltx0fFudHXXlNkNh1Jsxx5aDWSMjMzIKoNcJdsRWMEWngBeGWdnWdOnWCznVtsb1voNh+A1SqXAX64HjkjF6JnDGrYAxPQUZm1p8+j5DQMBjDkhHVbJRiY8kwTOCd6y9GoNheBgSC7gACCODvjN9++w27d+++6yC0GMXy2K9b5cBjo90BIsLSpUvx4Ycfgoiw0VfsPuwOglkQMHny5Hty7Vvhiy++ABFhjsmCo55gfOBwQWDZm/o5XfvC+umnn0IUReVFurOkxVFPML51ByFaFNGhQ4cbjlMasnNy/YLToCrtYTJbMGXKFKXIzPE86tSpA5bj4anYGu6KrcCyHMaNG3fTOS9atAjjxo3DSy+9dFuF+V27dvkVe/PGb4BkdmLUqFG3dW+l4erVq6hUqZKyfgajCW+99VapQcGBAwfAMAyceU1hTa3pV5Qt/t+i2Q2GYcCwLMIL+iOu3RSIJpfiHx7ZeBiICLNnz1YY2VFNRiCl7/MghoErrwlyC9cjueccMLwK5viSIIlIlizLLVyv+BYVe57rguNLZMJaFYKI0KRJk9taixMnTsDhdPndj6A1I6r5WHBqLViVGqaYXHAqCeRLFrnKNYc1ubp8rN4Gc3xF6J0R4BgGJt/cCgoK8PDDD2PNmjVKMfazzz5TCutEBIfLBY0kQXJGQvBJ71/7s2TJEni9XuX8Yv+t4mcit3AdOLUOrCBCFxQHIkJyr7nIHLYEsa0ngFVJYDgerE+KnRgWvGRQzknqPluROUt54DkYItLBiRKyRixF3vgNile3aHJCUGuVdWdYHsSwYDjBb74aZwSIYSHoLH6/Fww28JKxZI0ZFsWd7cXPs9frxZkzZ/Djjz8qsntEBNHiQdbI5QjJ7w6G5cBxvFxo7z9fJgt0eAREhK+++spvXyOjYiBag/3m4a7QEkk+f8CySnq/9957EAQVNCYH1EYHiBjEtp4gS8Q1HwMiummCs/i7NqrJCFkysc1EEMndDUeOHAGRLMWfN34DXOVbymvDyAkihuV862kFMfLaG8LTYPSROurVqyfvLcOAiIFaI2Hz5s239fwDwObNmyFpdco6Jaek3lLG8HZQUFAAVhDBCiL0YSmIbCITHr755pubnrd//348//zzeOONN8pEALif2Lt3LzSS/H0g6K2Ibj4awdW7gIjw1FNP/aVzC+DPQyCW/OcgsFcBBHD3qFWzJnJFNQ77rM7aS1p4HI6/elr/eaxcuRJEBHtGXYQXDIDGZEd6RubfVnVg9erV0GplYn9iYuJtFeD+P4YMGQKtLUiJ/4pJw/v27buHM/5nomXLVpAsHmQOfx05Y1bBFJWFyKjoMp/fpUsXEMNAH5IIXqOHRtLedgPDtdAbjAiu3qWkkzqtFjKzc257nJ49e/osvYYhqskIqDQ6P2/zw4cPg4gwzWjGUU8wvnB5oOc4OF1uZGZl4+mnn77jz8bevXvlPAGZAfMLAAEAAElEQVSVSPPfithy/PhxEJV0aWcOfwOi1nhL6e/S8MEHH6BPnz544IEH8PHHHyuqj8HVOiKl9zOwJFaCqNbgl19+waVLl7Bw4ULMmDEDH3zwwXVjFXen691R0NqCwfF8qXFjz55yI4HOHgxOUCEjMwvnz59H7969ZcK7r/O6d+/eyrp6vV7UqFETglqCI7sB9EFxZfIWvxbF9okTJkzAyJFyM0dxw0Xm8DfAchwKCgrkubki5DyNoEb6oIU+Inp1pGdm4fLly9iwYQOWLFmC77//HgBQo2Y+JKsHyb3mIqnbE1AbLH+pPVlpmD59OniVWiFSpPWfr+RuW7ZqBU9QCNIzMrFp0yZcuHABP/300w0L+u+88w4YhoEpOgvO3MbgVeItSSLF8Hq9mDt3LqpUrYqa+fl466237uFd3nucPHkSBw4cwB9//HFH53/wwQcQRTVEnQlqvQWCoLqhQuj9wsWLF0FEiGw0VFGO0Iclo06dOn/qPAK4HoFiexkQCLoDCCCAfzsOHjyI+fPnY/ny5Vi8eDGICJ863TjqCcZBnxf8vHnzsG/fPhARZpjkoGSLwwmBZf+0ooHX60Xzpk3BsyzyNBqYBAHR4eG3RTSIjY8Hy8sFdwvL4kOHC0c9wSivVqNp06YAgMWLF6Nc+QrIyMrG448/fsMX0ho1a8IQkojccWtlCfSU6nD4JPZd5Zoj5YHn4MiUGdWW5GolUmKZ9RAbl3DDe2zTtq1chDTawDAMGjRoWGaW67lz52A0mWCKzEBStycQXF2WmL4XL7yvvvqqXMSu3A5B1TpBYwsFEYPQsPDrvJRXr16tBIxEhPCC/kjp/QwM4WlgVRrEtZuCjKHys1a1WjW/YrwprjxC8ruDlwwQ9DbwgoBjx44p6yIXbuUCLCuoQQwDXjLIEvKxsahUuYoimc6pZVklTq0Hy3LQsiwYjkd8h0eQOWwJjFFZIJZFYWHhba2F1+uF3eGA1h2D8IIBCKvX97oislarRVhYGKxWG2zXSHnrghOUwqjAsNhod+CIOwj9dXowDFNql8WJEyfwyiuvID8/v6QIXLFVCVt83FoEV+8KIkKtWrUwZMgQZZwDBw7Igb7PDyx94Ety4ZtILnCzHHRhyWCEEiKKaPEgte8LYHgBhvBU5IxdjexRK+QCv84MhuNhjM5GbuF6OLLqQ2VwKEFeXNvJyji29DpgOB5J3Wcjd9xauaue5WCMykJ0s1FI7jEHjuwGYFgOupAkpPZ93kdEqIDcwnXIHr0CGkc4DBHpECQ9qlSpokhiffDBBwgKlpUEBJUIUW9BXLspiGk5DqxKA0d2A+QWrofWFoTGjRuDiKAyOSG5osGJWuh0esyfP18J+M+ePQuVj4wTUrM7skevULzhJVswXG5PmTzLLl68qHSlExFMZjMEyYDYNg8hvGAA3JVag4jw008/3XCMZcuWgYiQOfx1xSKAiPD888+XEGq6PSGvd/uHQVTiy6ZYGhCBYWSVglq1a6Nmfj66d5fvx5nbGCH53cGq1IiJjcXvv/9+20z6oOAQmCLTkTViKZJ7PgWVpMeQIUNua4yb4YknngDL8YhtMxGZw1+HJaEitDr9X15Av11s377d9/kbrHwHGCPTlX9vAvj3IxBL/nMQ2KsAArh7VK5QAfXVGhz1BOOoJxhD9QaYDYa/elr/efTq1Qt6Z7jyvh7dYuwt30f/auzevRsej5yLcDgcd2T7BkCx8XJXbIW4dlOgD4qFy+3BpUuX7vGM/3k4cOAAzBYreJUIlUYHQVBh/fr1ZTq3uGAdXq+fLCE/+FUIaumufItr1a4DjdGOuHZTEN1iDHhRg4EDB5b5/DNnzmDp0qVwutywZZTE3+7yLRAUEup3bOtWrcAzLGqpNQhWqWAxGv0kx+8GJ0+exPLly7Fy5crr7PyuxcWLF/Hhhx/io48+Qo8ePcAwDIwRadAY7TBbLErht6xYvXo1WJaF1hYEyeoBy3HYsGEDCgsLS+J8tQbLly8v85hr165F586d0b179+us9YASlYDwgv6Ksh/DsnjxxRfh9XqxceNGzJkzBxs3bvQjMHz//fdyDNts1DXe4pZSm0R2796Nfv36oUePHjd8Pi9duoTEpGSoDRY4cxtD5wyDVqdXGh84tQ6RjYeDU+ug9cTCldcEDMPgscceK3W8b7/9Vsk1EDEwmy331LP9XmDhwoUywcDXzV9sr/jZZ5/5HffYY48pMv1h4RHYs2dPqeO9+eabSMvIRERkNPr27XvLrvZDhw7hgQceQHJyspz3iC0HQ3gqiAhvvvnmPbvPm2HXrl2YP38+Nm3aVCaCzIQJE5TGKIfTdcfkoC+//BJjx47F6NGjr1vvPwsutwemqExkP/gmUno/A5Wkx+DBg/+SuQRQgkCxvQwIBN0BBBDAvxkrV66EKJQUCVOTk6HXalFBrcFTJgtqaiSoVSp8/fXXsrRxmzZgGQaZGgkGQUBsZKSfJNf9xuXLlzF9+nS0a9cOI0aM8PMTLguaN28OtdEG1ic1rmcYNPd5dM2bNw/TpsleT8aobFiTqoJhmBtKjG/atEkOZpzh0AfLMtUdO3YEESFn7BqFUUtE0AUnKHJVlvgKSElLL3XMrVu3yh2tTUfKHa2tJ4CIsG7dujLf4+bNm2E0mZQ9HT169D3pWhg0aBA0Jofi7V1cHNdYPAgOCfVjhu7du1e+76B4qK0hSqCb0EnuJEjt+wIiGg4Gkewn9NNPP+HgwYOoVasWGE4Ay4swxeYphcSdO3fC6/Xi448/xltvvYVDhw4hKCgYxDDg1FoQJ4AXBBw6dAgXL17E448/jrp16yqd+DpXDGJ5AYN0elg53m/+oWFhfkHwp59+ijfffBMHDx70u//vv/8eQ4cORadOnTB69Gi/wjoRQaW3QR+ShOzRK2BLzYdKJeL06dNISUuHJaGisgbW5GqwO5wycYHjlWTkSl/3+u7duzFhwgS4g4LhdHswevRoLF68GKJafk4ZIogMA60rGkSkkD1M0TkghoUxPA2i1oiw8Aj89ttvMoGjTRswLAtdcAJYlQaC3oakHk9CYw8FK0pK97giP8UJcOU1BSuo/eTTHFn1FSJDUNWOyBq5DNaUGr7Cem1ENBwMldEJla/j3hRbzm//izvKiQj29NqyHx3DwhRbDsSwYFVqEMMipGa3kvVKqQ5dcCKM0dmoUaMGAODYsWPQ6Q0QtCaIJieI4eDMbaKcY8+sB9HshitP9nEvLjLrw1KgcUTIZBazTIwZNGgQAKB1mzaK/Hj2qBVK0E9EsNkd2L17t9/zsH79evTu3RuDBg3Cl19+qfx+4MCB4AQRobV7I6xOH58sX7GdgvzfqOjom34mv/76a3A8D3t6LST3fArO3EZgGAY7d+7EuXPnYDJbYAxPRULnabAkVgYRIWPwqyWFed9+qs1uP8WOgoICGCIz/KQii+ek1enx7LPPlum74NKlS35M6rzxG2CKyUVBQX0UFRXdE7m5P/74A7Xr1Cn5fInqvz1LvjQUFRVBrdYovm7ZD74JyeJCt27d/uqpBfAnIRBL/nMQ2KsAArh7TJ8+HQwR+mh1GKU3QOJ5dLmmozSAvwaDBw+GxmBF9oNvXvMOSH9qHH8nOHr0KNLT0+X3WrUaS5cuvaNxJk+erEjTe4KCsXPnzns8038ujh49iunTp+Phhx++YRGuNBSrDhZbu+UWrodkdmDkyJF3NZfklFTl/b9mfv5Ni9XX4siRIwgLjyghHXM+P/Jxa2GKzEBaeobf8ZcvX8bkyZNRr25ddO7c+brY/37j8OHDiImNU+abnJKKhx9+GC1atEDPnj2xYMECrFixws9D/VZIS8+AKSpTzg+MWwtjeCpy88oBkHMZH3zwwW3nz26F999/H0Sy4l3xc6CS9LckXXz77bcgutZbfA0Enfk6csW2bdugUomQzC7onOEgIixYsKDUMX/++We0atUKMbHxqFq1GtQaCfqwVES3GANTdK6cbxDUYFgORpMZ48ePvyHh/OzZs4iIjIJKa4Q5viJUGh3SMzL/ViSdS5cuIa9cebAcD51dVufr3LmLX55h1apVkJuBmiGm9QTo3FHX5e7uBIcPH4bFaoPGaAMriHBk1Vf23xCehmrVqt/t7d0Ss2bN8svHtWjZ8qYNBG+++ab8b0Dltojv8AgMIfGwO5y4ePHifZ/r/cCmTZug1kjK/SckJuHkyZN/9bT+8wgU28uAQNAdwP3CxYsX8fHHH2PHjh33zb85gABuhqtXr8JsMKC2RoODLg/W2ByQeB6dOnWCxykXA+0WC9asWeN3zpNPPonOnTtjzJgxt/Xy/3fAoUOH4HJ7riuU9u7dG6+++ioYhoUhIl1h/TtzG8Nmv7H04f/+9z+0b98erVu3xrJly7Bu3To5aGg5TpZCbzRUuYYxMhPGyIybBgivv/46iEiR5M4ZK3eIv/jii7d1n+fOncOuXbuu86QuxrZt29CrVy907doVy5cvv2Ux/vLly2jn69blJSOcOY0Q07IQrCDCHF8BRNdLck+YMMEX6PJI7jUXuYXrleKnSmvwFbvlQl+NGjVx4sQJzJ8/HwzDILrFWGSNXAZbWj54QcCBAweum9P58+fRvXt3JKekomHDhqUGyJcuXYLZYoGg0sDC8eA4Xi62+rrh1ZYg6A1GbN68GevWrUOHDh2U/WJZVik+fvfddzBbrBC1Bj+ygadia2QOf0Pxl7cky7YCiV1mgIiwfft2vPjii3LhOTobpphcEBHmzp2reIxNMBixye5AZVENnSQpbFtnTkO48pqAGAYsx8GaXBVJ3WfDmdvY79kNqdkdiV2my0XcZg/KEmIDXgLL8YrqxOXLl+WueN9664LikTFkkax8wDAghkFC5+nILVyPoMryPqttoSCGA68xILbNRES3GANWJRf8tdfIhyvr5SOwsIJa7pJnOPBaI4gYRDcbhfSBL8Mckwu9wYApU6aA5QTwklH2ix+3FmprMFheBbUtBLzWhOgWYxHRYBAYToAloRIYToDT6QIAzJkzR5a315rgyCqAymAHy4vIGPoaske9BY09DEQMeEHAtGnT4HC6YM+oqxSjtUHxMEZlK57xP/30EySfVKW8pt2QPWqF8vf/z+KfP1+WaNM5wmSpeLUGn376KQAgKjoWzpyGShHaldcUDMshsslw5BauU2TEbyWR98orr8j+4yR7b0VGRWPq1Km4evUqtmzZArPFqsyX43mYYsshvuNjsKXXVvaZ4wVMnDhRGbNZs2bQOMKRO26tr8ujORiWg8YVBXuGXNgeMmQIXnnllVtKwoeEhsEYnorMYUuQ1O0JCBot8vPz5Q4CIqSkpt1R0qpYhq5Zs2bo2rUr5s2bh9dff/2G/u7/BDz++OMgIhiCYqAx2qHV6bF3796/eloB/EkIxJL/HAT2KoAA7h5FRUUYM2YMDFot1CoVOrZvXyZloADuL/bv3w+tTg/J6oEpJhcMy6Jnz55/9bTKhHPnzqF+/frKe++jjz56R0TyM2fO4Lvvvgvk3u4RLl26hKDgEOhckYhuMQaOLHmP3n777Ruec/z48VsWe69cuYK9e/fi4MGDt7XPbdu2g8ZoR2q/F5E5dDEkZwRYQYRkcYHlOKxdu7bMY/0ZqFevABqTA4ldZyKh8zSo9Wa0adsWx48fR1JyivK8W23260jfN0JIaDjc5ZuX+IznNkJ0TOx9mf/27dvRpk0b1KpdGypRhDEqC4ldpsNdvrnSUHEzHD9+HAzLgtfo4anUBoaIdBAx6NevHxYtWoR+/fph0qRJqFOnDnTuKOSMWYXcwvWwJleDJyj4lvMrVrTIGPwqcgvXQR+aAlZQw5FVAK0rEhpJW2qOqRivvfaa0iRyrXrcpk2bbnep7isuXLiAWbNmoVq1aqhQoQJGjhzp9xkrttEozm8WNz/cbZd+YWEhVJIemcOWgJeM8FRqozx35oRKKFe+wt3e2k1x+PBhsCwLV15T5IxZpVj1LVmy5IbnDB061M9SJKGz3Gh1bePEPw2HDh3C/Pnz8cYbb9yThocA7h7/iWL7//73PzRo0AButxtEty+lGwi6A7gf+OGHHxAXFaW8QOVkZv7jipYB/PNR7A31nNmidNeW02jQtm1bxQv57+rjdjc4ceIEFixYgCeeeAJpabLPs06ng0oQYOXkolXxC5inYmuYzJYyj11UVIQmTeWCslond5d36twZr7zyCmrUrIma+fl47bXXbnj+gQMHwHIc7Om1kdzraThz5I7WsgZYt8Lp06dRoWKJ7zqn1soy6xwPi9WGp59++rpzLl26hMpVqirnqK3B4DUG8BoDdCFJ0DhkhvHPP/983bmFhYWKnzQnysXMtLQ05Ofng2FYBNfogoiGQyBqjWjQoCGuXr2Kps2alTDSfV3URISWLVvelEm8ZcsWxMbFQxTVSM/IVJj57777riKbldhlhp/UeUyr8WB5f/l3S0JlZA5dDEd2A7Acp3S0q/Vm6MNSIBjsMMXJBAN/mW8GtvQ6yHpwOTSOMKW7mFeJ6Ny5M6pUrYrKlatg3rx5iqd6+XLlSvbCd3xoeARsafklktNR2XKgOGSR4rnOMCzieN5v3kSE5F5PK/O5llH+3HPPyeSASm0Q2WgoBJ0FuuBESM5IOciVDMr1knvN9R/3Gl96uSveApXWiJYtW2Lx4sWoXbs2jOEpyC1cj5wxqxDV7EEQEUSbLLtmMBr9xuN4Hk6XG2aLBZI9FO4KrWBJqOzbBwbx7R+GLij+mnOYkuI/Efbs2QPRJ/ee3GuuLI0/6BV5bFEDlaSHpNXh7bffVp4XnV6P4GodlXu0JFSCPjQZCZ2nK4Vvq80OVqWBymD3m2+FChVw4cIFHD16FFevXgUAOJwu2FKqI7dwPbJHr4DWEYZmzZoDADKzsmGKykJu4TrkFq7zJTQ5JcDNGLJIIdx8//332LFjxw0ZyLIUIAe9J1YmHLCswva/cOEC9u7di+PHj2PVqlVQiWq/9SIi5OaV80twb968GUQEyRWlED9YUQdLclUkdpvl+7zJ5wcFh9xUSvF///sfdHq9cq1I3zuNPb02IhsPg9YegqjoGFy+fPmGY5SG4cNlb3ZjRBokixuSVvev8NR844030LVrVwwYMOA6YlIA/24EYsl/DgJ7FUAA9w7F77oB/H3w5ZdfomPHjigoqI9p06Yp77X/BFy9elUhKhPJqlW3+44ZwL3H559/jsgoWW1NJYqYM2dOqcedPXsWdevVU/avXkFBmTvWy4r0zCzYr7FuC6nRFSpRxIABA/DRRx/d02vdCzhcbngqt/UrjMfGJaBXr14QtUYkdZ+NtAEvQe+Jvq4r/1qsWLECkdEx0OkN8AQFQ1BLiGw0FBENB4MXNejdu/c9n/snn3wCQVBB6wiFKSpL3n+Vj3jPspg2bdotxyiWn9eHpUHQ2yC5oqAx2pGRITen6J3hENQSRI0EU1yFkn2t2Q2SVnvL8Yvj3vj2U5HaT25+KG6IyR71FkSt4YYKlgAwb948EJGiBpI+UPavX7Fixe0s1X2H1+tFy5Yt5W790CSoJD0iIqMUq81JkyZBUEuKCl5xk8gvv/xyV9cdNGiQUsR3ZNUHwwsIqtJeaQx54okn7sHd3RjFigqpDzyvPBui1ojJkyff8JxHHnkEvEqNtP7zle+Ie7EWfwauXr2KZ555Bj179sTEiRP/9qo0/2X8J4rt69atw9ixYxW5iECxPYC/A+rUqoVglYgVNjuWWG0wCwK6dOnyV08rgP8YioqKYLdYUFWjwW6nG0usNmg4DpMmTfrT57J//34sXboU27dv/1MTM2fPnkWNGjWUwC/fV8SzZ9SBq5zc9dm/f//bGvPq1atYtGgRJk2ahKVLl972/SxYsAC8UkhlkJaScttdnV6vF2+++SamTp2KpUuXKnJKbdu1AydKiGg4GGF1+4JYDpxGj9BaPWFPr13qv5Nz5swBw3JgWB6uvKbIG78BWSOWKn7fRIQ+ffoAkJ+pa6WbqlSpCn1YCoKrd4GnUhuYYsvB4XIjMVEu0id0nq689DMMiypVq2Hfvn147733kJmZBVFnQnTzMQit3Qssx6NJkyZKx+0rr7yC4NAw6PQG1KyZD42khTEsBaG1e0PnioTd4VSOnTFD7jTPGbNKlvcftkQuEDYZDoYTYIjMRPrAl+HMbQRiWKT2fQFpAxaAiFBQUIDw8HCojQ6wKgm6kCTleQmp2R2549YqkvjX/tgz6yGiwSCoDDYwLIdPP/0Up06dwuDBg1G7dm307dsXBqMJ1pSaSOw6E5nDX4c+OB4GowmWxEolxfZoudge2XiYzEbu+KgSyIoGG+yZBdBYg8GwHPSeGEQ3Hw1rcnUQEZo3b46rV6+iWbNmMIanKWMW+3lpdbLPNhEhrE4fpPWbB3NCJbmbXlXS6S0X3BlI7lik9n0BpphcNGjQAIDsAclLRmQOW4LcwvVw5jSUj2d5qAx2hYxx7Y/kjAQvGeTniuPlTnSGgaTVgeV4ReKdk/SIaVmIxK4zYc+qD7VGQv/+/aGS5CJvcaBUbNdQUFCAhx566LqO6rbt2kFQSwit1ROeSm0UYoQ+uEQ6bPp0ufDOXGMzEB4RienTp0PwJQ8cTheWLl0KlUpEaK2efsX7qtWqAQDeeustMAwDnSsCOncJqS60Vk9kDlsiy+5fQyIhIoiiGosXL77uc9y+fXtonSWd6EFVO4IXBKUj5+rVq0qi6vz581i3bh1mzJiByZMnY+XKlaXKw7Vt21Z+foQSeXteMkI0u6F1xyBr5DKkD3oFGrMTrVu3uen3zNGjR7FkyRKsWbNGDrgt7hLWfPupILo91vyFCxfAsiyCqnZUEiEakwN9+/Yt0/lnzpzBtm3b8PXXX5f5mm+//TbGjh2LGTNm3LKbP4AA7gSBWPKfg8BeBRBAAAH8vfHkk08qcvA1a9ZUCkq3i61bt6KgoAAVKlbCpEmTAt3udwGv14sTJ07clPzQrVs3pQgc2WgoeJUGzZs3x+7du++YNLFz50707dsXPXr0wMaNG9G+fQeoDVak9HkW6YMWQu+OQnZO7p3eFgA5t/HTTz/dc2IAAOTk5sEQHI/sB99E1oil0DnDkZ9fC+UrVITVp5aXN34DQmv3hkolljrG9u3bwXIczDG5CKnRFWqDBXpDCdG9QcOG91xZxOv1om3bttDaQ5TciqdSGwiCCnv27ClzE9mFCxdgtlhgjEhDcs85CKvTpyTHUqOrT61vAThBBMOwCKvTB1FNRkDUmdCgQcNbjn/lyhVUqVoNnCBC54kFESGu7WRZPXLMKqj1ZowbN+6G53/33XdyfikiDeEFA2AIjofJbMGxY8fKvFZ/BortGyMbD5fXrP98P4XDX375BW5PEEStAYZg2bbgdvObpWH9+vVyfiSrABENh4BXy3kci9WGhx566L7ndI8cOQKO4+DIboCskcsQ2XgYiAjLli274TknT55EeEQkBLUEvTMMRIThw4fftzmeOXMG48aNQ7t27TBlypQ7lqv3er1o1749GIaBISgGglpCfEIizp49e49nHMC9wH+i2H4tAsX2AP4ucFgsGKo3KN3EHSUt0hIT/+ppBfAfxKZNm6CTSnxeqlSsiAsXLvypc3jmmWeUoJlIlnT/MwvuFy9eRIMGDeRCGxHqiWpYeAEMy6FKlap37Wd0uzh27BiCXC7YeQGtNBqEiCJCg4JumUwoKirChAkTYDSZwfu6tXmfB3ezZs3h9XphtTugD0+DoDUrkuDFRdzcwvXQe6LRuXNnfPXVV3j66afx8ssvo1+/ftBaZen9qKYPKoGfLjgRKpUKs2bNwsWLF9G7txwICoIK3bt3x6VLl5CRmQlOXSI5rnFEQlCJfkXN4GqdYE+vDValgdYeArvDiQ8//BA6vQHBNbogrd88CHqbMoZKVMPpktVqLAkVEVy9CziV3NWrC06EKTZPkZF67LHHAAD79u0DLwiwJlVFXNvJMMXkgWF5SM4Iubjeb55fET66xVg4c+TCu9pohyFMlnJjfFLpITW6wl2xlV/BVBucACJCVlYWRHNJ0TGm1XjlRT4lNQ2cKMEcVwGcWgeG5eCpXOKJborNQ1ycHASZ48rBHF/RN6ZccNda3WBZDtk5cldyQqfHfd3oT8sFXF8XOsPxMCdUBsMwmD59Orp06QLJ6kH26BWKfDgxssz62LFj/Yvhvu5mXisrM/BaM4gIgt6K1L4vIK7dFHCCqPjxPfroo7JygVoL0VJi0cCJWqQ+8DzSBrwEYhg4sgqQPnih4hFZ7PWe1ONJ5I3foOxZbFwctFodVDoLWJUGnFoH0exWGNKdO3eG3h0FQW+F2haK4GqdoHFGgGE5fPDBB8rn4cyZM3jppZfw1FNP4ZNPPkGLli3B8TxYrqTQ7XC6sGPHDgByEPPSSy/JSY7y5TFt2jS8/fbb8nHZDRDb+iFoPbHyM6GRIOotiG4+GmF1HwDLcahTpw4effRR7N27F++88w46dOiADh06YOPGjRg6dKjf+qp96+TKa4rkHnNgTa4GQVDh+++/9/tMt2jRAobQROX5CKvXFwzD4NKlS5gxYwZEXzd7ekYmDh06VKbvl6KiIvTt29d3/SaIazsZ2qA4EMPCU6U9Qmv1hDWpKjT2MCSnppXxW0u2jVBpdMgctgR54zcgvKA/iOiGVhal4eTJk9d9zxiC49CpDF6vW7duhclsUda5e/fuN/VsA4CZM2U5QI3RCk4QEREZFVAZCuCeIxBL/nMQ2KsAAggggL8/1qxZA63P/ik+Ph7r1q3Dr7/+Wubzt2/fDl4QoPfEwJJYBQzLoXfv3nj33XdRo0ZNZGRlY+zYsX96DuDvhKKiIhw6dAiHDx++J3mZsPBIuMo1k0n7I5dDrSt5Z09JTMTRo0dva7wPPvgAgqCCZHFB5yuazZkzB1HRMcq4Vpsdn3322R3P+cCBA4iNi1dI7mPGjLmnOapt27ZB0urAq0RwggpGkwmff/45OnfuDLXBirT+85E1chmMoUmIT0jEgQMHULVaddidLlSoWAmff/45HnzwQWiMNoWYHdd2EohkC7T7EdMsWrRIUa3ThyQp8Vp4/QEgotv2M3/vvfdgNJmUPWvdurWc4+g8TRlba/UgMbGk2aFS5SqKTPovv/yCcePGoXfv3li4cOF1+3PhwgVMmjQJLVu2hNPlhtpgQVCV9jBFpEMQVLdUj9y8eTPCwiPAMAxi4+KVvMHfCR9++CGIrlE4LFwHlaTHlClTlGN++uknjBw5El27dsULL7xwz57jOXPmKJ7hSckpN5Xlvx/4/3nkjp063fLeTp48icmTJ2PAgAF47bXX7lve+eLFi0hLz4CglmAMTwEviKhWrfodEbuKCRURDYcgb/wGpDzwHBiWUywvA/h7IVBsLwWXLl3CmTNnlJ8jR44Egu4A7jkyU1ORo9bga5cHX7g8iBFF1K9X76+eVgD/URw5cgRLly7F22+//aezun/44QewPkZi5vDXlRf1VatW/anzuHz5MqpWLZFKJyIU1KlzX+XpvvjiCwwYMAA9e/bEunXr8PPPP6Nqteq+TmIGPbU6HHEHYatD7vJdunTpTccrLhxZEqvIRfRGQ+UiZrNRICKsXr0adqfTx0CtD09lucM1pGY3heErWdyoW7cuBEGlFCUdDvkcldEJ0exBTOsJiuRSsVTcyJEjwXI8gqt1kovfggqDBg1CaFg4VAYbYlpPQGjtXr61ZRDXbgpyC9f7uozl9Q6r19fPj5zheEiuaKhtoVAZnUgb8BLSBrwE0eyGyujweXlXRt74DVBbg0AMC0tSVVka3VfIZzkO27ZtAwC8/vrrkHxe47wgwGS2KAF0dPPRcjGz7gPKHIkIKq0JWSOXIW/8BgTX6KLMLa7dFJ83+3TwWhNMceURVK0zOI5DrVq1wGn0yBq5XGGjExG6dJHPT+w2S3lJlufII6RGV8XPvn///pg0aRJy88ohJzcPTz/9NK5evYqFCxfiwQcfxDPPPINmPqn9uLaTkDNmFVRGB9TWYEQ0HAJzglygT+w6E+bYPNSuXRt79uyBWiNBZXRA5yMFiCYXiGFgMplBDAtTXHm4K7ZWivhp/eeDVWnA8Co/wkTx+jAMg9atW+Phhx8GK4jwVG7rk7xnwEsmEMuD4QSlAJ8+8CUlaGYFEfqwVBDLKcmB9IEv+V0jqftspA98Ce4KLcHyAjp06ABADvKJCLa02lBbQ8BwvI84wijM5H379sETFKysr0olYtWqVWjZsiWIYWAIigWv0sBqs2HixIl+gfO5c+ewZ88e/Prrr5gwYQLUerNCnEjqPlteO6MdGqmk818limB5FQS1BJVKLNWrcNeuXZg1axaICM7cJj5p+XV+0vIrV670O2fJEpn8YU+vjeDqXaDS6NCgQUNFrcmZ2wiRjYdDsnqQkJh0y+IyIKt5xMTEgJcM190XK6hBDAt9aAo4UQutTl/mRM2RI0dgsdqgMdphisoEw7Lo2PHWRfJr4fV6kZWdA43JjoiGQ5TPxM2sNwDgjz/+gM3ugDEsBck9n1IK/fPmzbvhOb///rtsaZDbGLmF65HWfz5UGu1NOxwCCOBOECjg/nMQ2KsAAggggH8Gdu3aBavV6hc7TJw4sUznduvWDVpbMHLGrlZkqYlkqyt9SAJsqflgOR5du3a9z3dxZzh79ix27tyJI0eO3Jfxjx07hnI5OSU5kbp177o7OjMrG8aIdOSOWwtHRh1oGQYLLFZMM5rAsSxYjofd4cT69evLNF6dunWh98QoPt6WxEoIDY/AuXPnsGLFCixduvSuOpC9Xi/i4hOgtYcgplUhgqq0BxHh5ZdfvuMxS8O3336LWbNm4YknnsDhw4cByMphYeERyvrr9Hps2LABLrcHWnsIgiq3g84VAbPFiiFDZDu+YqnzqKayndu33357T+cJADt27ADLsrAmV4U9o65CHA+r2xeizoSaNfNvev65c+fw/fffX5dvLFYm+/bbb3Hx4kXYHU4YQuIR32Gqkit66623cObMGRw/flwpjv7666/wBAVDJemhd0eCiJRmgNLw888/o0HDRrA5nEhOScXGjRvLfO9libH/Kpw5cwZWmx2GkATEtCqEPb02GIbBhx9++Kdc/1qlvb8C+/btw+LFi7F169a/lXXNG2/IyovJPefIRJh2U0BEeO+99257rC1btsjEpN7P+BEqHn744Xs/8QDuGoFieymYMGHC/0soUyDoDuCeY8uWLZDUakgcBzXHwWI04osvvvirpxVAAH86ijtHi+Wg88ZvgEqjxaOPPvqnz6WoqAgdO3ZUvveL/a7vBz799FOo1RpoTHaFjR0VHQO1wYLwggFKkWm2yYwdTrnYvmTJkpuOWa58BZgTKime2cXF3pyxq0FE6NWrF1JT02CMzCxhCgfFgYiBOa4CdM5wiKIaRpMJ5rhyyBmzCql9X4BK0iM6Jkbpyi1en4EDByqBR0xsPBxZ9a/xHGsMh6/7PKLh4BIfJbMbgkav/P/igrOrXDPEtpkIIkJQ5XaIavYgGE728CaGBcOrkNR9tq8ruwVEsxvh9fqBiJAxWC5UhtburZAGVAYbeI0BkjUI3bt3V9bo0qVL+OGHH5ROBa/XqzCoeV93fMOGDfH444/D5XJBYwtV5hrTcpyPCMFCYw9DTOsJcFdoKQfBIcny79VqcD6SAqfWwhCRASIGHC8ovunFfllZDy6XWfdWK0RRDY0kKV3/RISePXuWGjAsW7ZMLnYLIjhRC3O87B9f7EefO24teK0JnoqtoLWHonXr1gCAzz77TCYxsBzC6vRBbuF6pShZ/MMKIhhOQG7helhTakBldCJz+OvIHbcW5rjyYFgOLC8gNL8HQmv3Bq8SUb58eRAxsCZXB6fRw5JQCea48mAFEc6chtD7ZPftmfWQW7he6fTn1Fpf0bwW4to/DGN0jtzJ7tuH6OZj5CL84IXgBJXi++X1etG9e3eFEKH1xCKp2xPKPfTt2xccx4ETtUjrNw85Y1bBFJMDluNBxMAUk4fMYUugMjl968GCYRi88MIL2LhxI/QGg/x7hkH9+vXBCSrl+ymivuwVWdydf/DgQTRo0BCSLQiZw1+XrxWZgdi4+FI/o0ePHlWIAkSE+A6PIG/8BkQ2kjvfS2PLz5kzB06XG1qdDi1atsTp06fRu3dv6F0RJeoJreV317J0hXTp2hUsL4DhBOW+ij9LRCVKF+mDXgEnyMoVN8LJkyfx66+/Ks/poUOH0Lt3bzRt2hTTpk27I/LWkSNHUK68/Eyr1ZoyfQ9/++23Mvmk/cMlHfHuKMXeojQcPnwYRITYNhNLzgmK9fu+CCCAe4FAAffO8L///Q8NGjSA2+0uUwwPyB1SGRkZUKlUiIqKwoIFC27rmoG9CiCAAAL4Z+DMmTMwaLXQMnI8wPneY9etW3fLc9u3bw99UKzyHq3Ya9lDFBKwbHHG/OmKf7fCu+++q3QWExEefPDBe15gata4MayCgBfMVjxpskDiePTr1++uxly7di1YjoPWGgQVJ6C9pMU+pxsiy0FldCCoagdIrmiwHI/PP//8luPl5ObBmlJDeYcPrtYJBqPpruZ4LX755RcQlXh8F6tt/VkEjNOnT2PRokWYP38+fvjhB6xYscIvZ5Yx9DUQER5//HFIWh20znDY0vLBq9SoXafOfSk6Pvzww1BJemQMfQ32jLqypSDDgmVZ1K5TV+k2Lw2PP/64kiNxuT037RDfvn07HL78F8MweOihh0o97qGHHoJKo0X6oIXyM1C9M4joP6lStn37dqXRQK3W4MUXX/yrp/Sfx/PPPw9iGMVqIWPwq2WOZ/4/Tp06BaPJDGN4CuLaToYjqz6ICFu3br33Ew/grlHWeJKn/xBGjx5NQ4cOVf7/2bNnKSQk5C+cUQD/RlSuXJl279lDq1atIo7jqEWLFoHnLIC/Ja5evUoHDhwglUpF0dHRxDDMPR0/IiKCiIiO795IwdU70W/7P6LLF89TVFTUPb1OWcCyLL388ssUEhJCU6dOpTFjxtDZs2dp6tSp1933Bx98QG+++SYJgkBdunShhISE27rW1KmPEGdwUEL32cTyIh1aMY2+3fs/imwwiOzptYmI6PejX9HTv35DT1+8SC67nWrWrHnTMTUaNRX9fIIkRwQRMXT0vZfJmduIju9aT0REZrOZwsLC6NDO/QR4iWFY0ock0ZXj31G6R03mpCwaPHgQValShSKrVSKWV5HGFkKSJ44SEzy08JVX6JdffiG3201xcXFkMpmUaxcVXaU/zhwjAEREdPnMcTp17BgRw9L5nw4S0utQ0R8XyPvHBbpy8Rz9smMVmePK088fvkHEMHR6/wf021cfEsMJdOH4D3Tmu92k0lspqdssYngVfbXwQfpuzWyKbT2efjvwMaktQUQsS0REh9bNISIiXtITERHDCcSJEunDUumPY9/Rtm3bqH379pSRkUGDBg2i0NBQZd4Mw9Brr71Gbdq0oUOHDlFiYiLVrl2bqlWvQSdOnaWrf1ygHzY+S5I7mn58fyFpHOHkvXqVLp48Ql+/PpGIiNxuNx37aT/ZWYbOX75CpNKQzhVMv/+4n84d2UucWkuhHgf98MMPRMTQwaVTyJFRh058+T4xLEdnzpwlp9tNJ0+cIF1YKoXk96SzP3xOL7zwFFWtWpXat2/vt88ffvghMSxH7nLN6Mr503Tu8JdERHTp9M+kD02iKxfOUNEfF+jYzrXEkZdGjhxJRERpaWnkCQqiE+f+IGduY2IYhtQWDxERObIbEsFLx3auIyLQkXcX0KWTP5LWE0OCZCQiIkNkBp068DHZ0muTu0ILeZ/PHqdt21cSEejkl+8REZHkiaWj786niPoDyZFVQPAW0WdzutLxXevpxGdvE7xXieFVJOisVHTpPJ34/B06sedt4tQ6cmbVp58/XkaZWdm0Z+U0OrHnbbp07BA57HZq166dsmdz586lXbt30+d795PaGkxfL3uYVHobaT3RNPeZZ0jQmklyRZHaGkRERJaEynT660+IiOj0Nzto/2vj6cq5k8SqNKR1R9PvR/dT7z4PkCiKpPYkUGLzdnTq4DZau/YNcrk9tPeF/qQyu+nCL4dIF5JEx3ZvJJ7nyWQy0a/HjpEUlKCskz4ik37c/nqpn1GHw0FERCf2bCJOraP9i8aQoDXRld9PEcvxdPr06evO6d+/P/Xv39/vd3q9nq6cP01Fl34nXqOnSyeOEhGRVqst9brXYuPGt8meWUBnvvmUvnyhP4kmF1349RA1bNSIVq9aRRpbKBVduURnf/iCGJajgwcPXjfGpUuXqFOnTrR06VIiIqparRq9uXw5RURE0LPPPqsc984779C4wvF08uRvVKN6VZoxYwbpdLqbzi84OJg+/uhDunjxIomiSKzvc34z2O124nieznzzCXFqLf2w4Vm6cOwwffzxx3Ty5EmyWq3XneN2u8nl9tAvHy4mQTLS7z8fpLM/HqS8vOG3vF4AAQRw/3H+/HlKS0ujbt26UbNmzW55/HfffUf169enPn360KJFi+jdd9+lHj16kNvtpjp16vwJMw4ggAACCODPwv79++ns+fO03Gqjub//Tu/+cYmIiKZPn05169a9ac6iRYsWtGjRIjq0cjqpbSF0bNtycrs99DupiBj5vZMTJQJARUVFf8r9lAW///47NWvenFhrJCU260THP3+HHnvsMUpKSqKOHTves+t8sHUrdRLVVE+jISKibZf/oI/+97+7GrOgoIC2btlCixYtorVr1tCnv/xKCy+cpz+8RZTc+iHSuiLJldeUdk5rSY899hi9+uqrNx2vVn5NeuzxafRLUBxxai0d/2QlFdS+ea7kdqDX64njODr/8zdkSahEVy6coctnjpHZbC7zGOfPn6ddu3aRKIqUmZlJPC+XVgDQ008/TS/OX0BERF06daRKlSqRRqOhxMREYhiGjEajEvsSEe3Zs4eIiLxXL8tjFF0lIqKgoCD68IOtVFhYSL/8eowq93uApkyZck9ydseOHaOFCxfSuXPnqHbt2qTX6+nqHxfpq5dH0NWLv5MxMoNOf7OTXDYTLVv6Bun1+lLH2bBhA40cOZJc5ZqRMSKDftq6iOo3aEjff3eIJEm67vjc3Fw6cvgHOnz4MFmt1huu+cmTJ0mlt5JotBMRkc4TR0REv/32W6mx378FXq+XGIbx2+PiNTtx4gSZzWYSBOEvnGEARHLNR+AF+vatx8iaXJ2O71xLWp2OcnNzb3ssk8lEq1etpGbNW9CBxYUkqFQ0d+5cqlSp0n2YeQB/Gv6Myv+fAboDFkmA4R5AAAH8V3H06FEkJiUrzOma+fl3LSFWGqZOnerrGJaZ6c1btLhjqaaioqJ7wuR9/PHHS6TTCgrQrl07dOzYEe+//z6WLl0KlmUhWVxQ6y1QayR8+umntzV+1WrVYE6opDClQ2v3AjEMgiq3k7uzR6+EaHJCUqtRrXJl7N2795ZjFjOeDaFJUNvD/DqWGYbBnj17sHHjRjAMA0NIotIRPXDgQAwYMACtWrXCrFmzEBIaBkNoItL6z0dc+4fBq9QYO3bsDa+7efNmZe+0QXHQBcvS7Nbkagit00dm2FqCwGn0IGJgt5X4r/OCgBkzZiAxMVGee3gaJHc0GJbz65QPqtpR6apnBTXs6bXBCSI4noek1cHucEDUmRBSsxusydV83eaJIIaFoNHBGJ4CluPRpGnTmz4fly9fRocOHZQO35Ca3X0d9gReMiJtwEswJ1SCNigeST3nQLJ6EBsbBy3PY6BOD0FQI2PIIj/5eMUDXdT4PeesoFY6uw2RWX7d6XnjN0BnC8LAgQPx6aefYt++fcq8H330UTAcD11wPOI6PoKEbrPksVgOxugcCDpZFj45ORmzZ8/26y5+9VWZUWvPqIvIJsMhmj3gRC1yxq5B3vgN8FRsDUlbIo/OcDyim49GQufpEE1OEMNCGxSPnLGrkVu4HqbYPBDLIbrFGGQ/+CYEnQWC3upTNBiidNqLJhciIyOVDoHcwnXIHLoYRAR9aIriNU9EaN+hAy5evIiJEyeiYcOG6NOnj1/H9tGjR7Fx40Z8+OGHiI2NBa/WwZpSHekDX0ZQVVniz5FVH6wgIq79w0jrNw+SOwa8ZEJ4QX+wgqjsQbG3WVz7h5Xrl8hzrYeoNWL06NHo378/RFENxucJprYEgVOp4fYEoXHjxuDVEuLaTkZi15mQrB5UrlIVAHDlyhXMnj0bnTp1wujRo3HixAmEhoVDbfVAZXKBWA7WlJqIaDgExoh0hISGKfd56dIlPP/88xg/fjxWrFjh99weOnQIRpMJGpMdxvA0EFGZO07iE5Ngjs1D5vDX4anUBoLOgsioKJw9exYOpws6V6RsMeBTcWA57jpVjaFDh4LleXiqtEdk4+EQtQa0aNnS75jt27eD43kYw1PgzG0EQZRQUFC/THO8ExTbaBDDQnJGwpnbGKLWiJzcPFy9erXUc7Zv3w6b3aHsfVl83gMI4HYRiCXvHmWJ4UeOHImkpCS/37Vu3Rp16tQp83UCexVAAAEE8M/A999/DyLCOIMRP7iD0ESj8Xufu5UV3HPPPQe3JwhanQ5NmjTF4sVyXGJNqoKgKu2h0uju63vrjXD+/Hm888472Lx583Vd9bt37waRbPdliMxU7letkbB9+/Z7NoekuDhU02iwzeHCC2YrogUV8mvUuGfjf/bZZ9CIIgTf/Ist1jKHLgb5bMpuhUuXLqFdu/bKGlStVu2edzQXFhbK+YmgGKj1ZlisVnz//fdlOnf//v0IDglV5le+fAV89dVX+OSTT/DII4+ASLb+K7b/K/7Jr1UL58+fv268c+fOITwiEhqTA86cRpCsHrjcHpw8efKe3nMxjhw5ApfbA14lQq03gWEYzJ07F1abXY6hfdLYqX1fABHhjTfeuOFYo0aNgmRyKEoSiV3lmO1Wfum3wtKlS0FE8FRqg7i2k6H3RCMoOOS+2kD+lfjll19Qo2Y+OI6D0WxW7BwD+PvizTffhN4gK5FYbXa88847dzXe5cuX8f3335f6HRHA3wcBGfkyIBB0BxBAAP9V5NeqDY3Jjrj2DyO6xRjwogaDBg26L9fatm0bnnvuOaxbt+6Oih0XLlxAp06dIQgqiGoNBgwYcNf+888//zwYX1HOyLKIVanAsiwcLjfMceWQO24tsketgM4VgQYNGtzW2JMnTwbL8Qir0wfRzUfL8vERsjeXMTIDki0YarUGn3322W2Nu2rVKtSpUwfBwSGKzDbL8XjuueeUY9avX486deqgcuUqeOihh+BwuqDWm2EMTwXDsqhXUACT2aIEfZUrV1Fe6Hbs2IE6desiIysbgwcPxvnz52UZcYZBZKOhshy9TzY8tu0k5IxeCZblEcqyqCaKqCeqwRGhSpUqWLt2LX744QcAgN3hhCOrQCnOcpIBvMaApG5PIKX3MxBNTtgdTgwbNgyJiUnQaHVgOB6O7IYwRWaAYRhUqFgJGkkLjaSFShSh1mhADIOkbk/IHmY+ef09e/bccP0eeughML6iflidPsgbvwHZo96CoLdCF5KEoKodQMQgpGZ35I3fAFe5ZjCaLZA4Dp0lLbRGOZDMGbMKcW0n+wrWAlJ6z0Vu4TrYM+uB43iER0aBGBbO3MayrNSw12VZtXLNkVu4Hsk95oDlBZjMZmUf6tarh4sXL+LUqVOwWm1+BWoiAsMLELQmpZBc/FOjRk1FNh8Ann76aXltiCBp9dAGxSG3cB1yC9fDHF8BHC+A43hodXo4fVYARATWJ+9eTBTQOiN8v9coBIG4dlN882LACiLc5VvAGCUTCUaNGiXfY15TJPeaC1tqPoiR5d4dTid69uyJd99996ZkiNdffx2qa6T2K1asCIblENV0JFL6PAutOwpEhJCa3eUivjJfscSGoEIrZY//v6zXtfue3HMOGJZTPjs7duwAkSwhnzd+A9L6zwfD8b7gqYRAEhkVjW+//VaxKGBZDsaQBPCiBF5QwWA0QRBkAoc5roKydsUS9VevXsWlS5dQrnwFMCwHjUEmL4wYMcJvLb7++mv07t0bLVq0wFNPPVXm781i/zCdKwJaRyhYllUkN3ft2gWjyQSWVyG511zkjF0Na1JVaHV65fv0p59+8vOrV1uDYYzOgcls8btO//79IVncCpGjWCr/119/ven8ioqKsG7dOjz77LO3nTjs1q0beFFC9qi35Oex7SQQ0U3lKH///Xfs3LkT33333W1dK4AAyopALHn3KEsMX7ly5eveUefPnw+DwXDDcy5duoQzZ84oP0eOHAnsVQABBBDAPwSDBsny7+FqNUSOg8ftBusjxubn5+PUqVO3Nd6CBQsQFhEJs8WKNm3a4PTp0/dn4jfA999/j4jIKOUdOzYuHj/++KPy959++kkmKoelguFViG0zEal9X4A+KB6hYeH3bB6rVq0CyzBKHqS4+eBeElLr1KkDweAAw/LgJQMc2Q0gmt1gWA7/+9//yjzO6dOnceLEifsim+71evHqq6+ie/fuGDZsGF555RX069cPw4cPx/79+296bk5uHrSOUCT3nIO49g+D5YWSuJQXYE2prsSA1uTqEM1uxLQcB14l3tB3/PDhw2jarBni4hPRoGFDfPPNN/f8novxwAMPQG2wImPIIuSOWwtbSnUYjEZZGpsI6YNl6fbo5qNBREhNS8PChQtLHWvatGngVSLSBixA3vgNCPM1YxR71JeGsuyn1+vFhAkTlM98cEjoXRfwr8Xu3bvRs2dPdOjQAUuXLr1n494JvF4vypWvALXBgrC6D8CeURdEhDfffPNPuX5RUdENyesB3BxXr17FsWPHAoT+/xD+E8X2c+fOYffu3QoLcObMmdi9e7eS4L8VAgmSAAII4N+GY8eOYcuWLTh48OBNj9PpDQiu0UUJBGxp+cjOyVWKQX8nPPDAA+AEEcE1uiCoSnuwLIcJEybc9bhBLheYYqaxqEauKILjBf91Sa2JnNy82xr38uXL6Ny5ixJ05eaVw08//YS5c+eicePG6Nix4y2DhW3btmHGjBl4+eWXcfHiReX3xcU0e3pthNTsDlFrQO3aJZ1dXq8XTz/9NOISEmGxWMGpSrqxwwsGgIjw2WefYd26ddi6datSZNu3bx/UGgk6dxRsabXAq9QoqF8fKSkpYFgO2aNWyD7sfZ6VC5DJ1ZDU40n5/gSV3HHMsmCIwBDh1VdfVeak0+sRXK2TsqbG6By5A/maoLRz584AZM8iIkJEg0FKcV5rD0HPnj0BAKtXr4YgqGTvb5aDoLcifdArSOn9DIio1ADe6/Xi5MmTyM0rB2tSVdhS88GwPKzJ1SE5I5SOZoZhwaokpD7wguxnb7BDI2mhl7QI4eXCq9IVTASO56FzR/kXo4lgdzj9Crc5Y9eA08he4ZxKAhEDjaSDZA9GYteZiG4+Bpygwrhx4/D7779Dq9PBEJGBlN5zEVb3AZkdb7GgVq3aYDkO9ow6yBm7GvEdpoLleDz55JP44osvsHv3bly+fBlFRUU4deoUGjZsKBfd3dHQh8q+87xGj7A6fWDPrKfchyEyE4ygRnTzMYhrNwWCzgyX2wOdXg+G5SCaXAiv1w+O7AYgImgkLTi1FpyoBcsLCA4JwbZt2/D444+DuZYkwLDgJSMMwXEgopsqKBw7dgyiqIY1uSrSBixQ7juvXDllPEmrg8lkAhFB0BpBDAOVKELniUPuuLW+bvxyMJktYFgWpthyiG4xBvqwVGgkLTp3lr3etFYPOF5AekamQjQp9rxP7DpT6XwX9BYYo7LBsCxGjRqFjz/+WPks7t27Vy6++zzQ0/rNA8NyMERmguNVCAkJAa+WkNB5GtIGvARDcJzi9f7iiy+CYVnlWiH53UFE9yypsmnTJnTp0gXdunXD8uXLcfDgQeVz3qFDBxjDkpRnNqbVeBARfvnlFwBAQUF9CDozwgr6gxOla551AQcOHFCu0a9fP0hWj+J9Gdl4uN84paGoqAjNmjf3I4s8+uijfsecP38ew4YNQ1658mjSpIlfIX3y5MlQSXrkjF6JvPEbEN9+qvJ9FkAAfxUCseTdoyzF9piYGEydOtXvd2vXrgUR3dBzd8KECX7fN8U/gb0KIIAAAvj7w+v14vXXX8ewYcMwY8YMnDt3DqtXr4bWp9KVmJj4jyJT1qtXAMnsQnLPOUjqPhsaox1NmzXzO2bs2LG+2CxDeVePajoSRIRz586V+Vpnz55Fnz59kJiUgpo187Ft2zblb6dPn4YoqmFJqIT0gS8jouEQENENi6l3gu7du0NjdiGm1XiwoiQToRkWTz/99D27xr3E/Pnz5RjRHgK1wQpJq7tpfKFSiQit3RvZo96CISIDRISgqh2R1ONJcKIW9vTayv7Z02tDbQtF3vgNsCRWRtVq1Uod86OPPsLjjz+O+fPn3/fO1iZNmsAUlaXMsTiO++6772AyW2AIioU9o468Jp5YGCPSQUR46qmnrhvrt99+Q3hEJFQaLQyeaBAR+vTpU+p13377bYSGhYNlWSQlp5SpeH769Gl89913d91ocy127NgBUVRDsnpgCIoFEWH27Nn3bPzbwZUrVxTSf1STEUoeQu+ORpcuXe7rta9evYqhQ4dCFNXgeB7NW7TA2bNn7+s1Awjgn47/RLH9vffeKzWILk7a3wqBBEkAfyd88803mD9/PpYuXXrDxFEA9xfHjh3De++9h6+++uqvnsodYdWqVZDUJR2qgwcPviFzNComFubobOSMXYOsB5dDsocgOjoaokounNbOz7/ncl13CqfbA3f5Fn7EgJTU9LseN8jhRH21BqJvvRwsC51OB7XBgphW4xHZaCg4QcTw4cNve+zz58/j8ccfx8CBA7Fs2bLbYmTPnTsXDMNA4uQO3eyMDEXiv02bNtAHxytSXcUds8VBWTEj2ZpcDZIzAoLOrByb0OkxEBG+/PLL6645atQoqPVmZI+Wi+ruiq0UaXdiOWgc4Qit1RNqa7A/e9v33ydMZhz1BGOe2ap0JRejXfv2EEQJofk95HGJIEgGuCu2gikmF0SEoUOH4vnnn8eePXuuK7ZLtmA0bNgQK1asgMvtgTkmFzljVyNjyCIIOgv04amydL7Fel2XwqFDh5CSKktxMywHhuVBrFw4ZzgBKlHEBx98gEuXLsnF2OK/sRwYXv4s1KpV21dEZsAKaoTX64eQGl19XeYMopqMQGq/F2EIT4NKlEkE5oRKckE/pQYkdzSIYRFSsxtMsSXF4/D6A5Rn2hxXATVr5uPLL7+UE0hdpit/E01OEDGypD/5y9FrbUFwe4KUMROTkvHjjz9i8ODBSoe3ITwdpugcX3F4eEkQ54kBwzAQdGa/pEBw9S4Q1RowDAt7Rh2Y4yoo48+dOxeff/45srNz5GNYeV2ICHa7AxMnTkTt2rVBJEvzZ41YKkvYV2oDjuNu+G/bBx98AKISmfe88RugNlhQWFiIMWPGwB0ULD+H9jDoIzLAMCxq1qyJ5cuXg2EYqK3BkBzhICK89tpreOutt6DTywQHm92BzZs3w+v1YvHixRg+fDhmzZrlZ5vxxRdfKDL68R2mKs+pI7sBDJ4o9O7d22++H374IYhKpOpzC9eBU+sQXL0zPJXawGA0ISs7R1k3s8WKTz75BAAwadIkiDqTcp/FBJatW7eW+TviZigqKsKlS5fQqlUr5frxCXJC8tFHHwXHC4ht/RDSB74MU2QGrDY7vv32WyxYsAA6vQFBVTtCH5oMyRmBzOGvI2Poa5CsQahXUOB3/yzHwRSZAXf5FhA0WtSqXfuWygVEPquBcWvhrtgKDMPg0KFDAOSkat169cCr1LCm1IDWEQadXq+QEPbt2wdRrYEhNBGeiq2h1luQmpZ+T5Mv/3R4vV4sWbIEw4cPVxLTAdxfBGLJu8f9KrYHOtsDCCCAAP592LVrFzwej/ye7nD4FZL/znAHBcNTsbXy/u/Ka4qo6JjrjmvQoAEEjQ5p/ecjZ+xqWBIqwmQ2lzmX4PV6UbNmPgS1BEdWAfSeGKg1EhYvXoy5c+di1qxZICJFHS5v/AZore4bdlzfCb766ivo9AZoDFbofcpk06ZNu2fjA7JSQLnyFaAS1bDZHZg3b94dj2WzO2BLqY7cwvXIHvUWtPYQtGrV6obHR0ZFwxSZAXNCJRDLgZdK4jpHjkx2d2QVwOEjtwdV64TMYUsgWVxo3779dePNnTtXzo+IEhiWRWpa+n0tek6ZMgUsxyOq6UgkdpsFnSsCcfEJAIBPP/0USclys4U+LBW5het8DSj5CLmBwsKJEycwfvx49OrVC/PmzSv1WT148CBEtQamyAyEF/SH3hMNm92B3377TTlm586dWLZsGfbt23fLe9i2bRteeuklfPDBB7d9/y1atIDWGY6cMauQW7ge9sx616m43Sk2bdqEIUOGoLCw8Kbd/YCcp4qLTyhpLHBFIWfsGmSPXgHJ7ETfvn3vyZxKw5YtW9CgQQMQw8BdqTVCa/WEIEpo36HDfbtmAAH8G/CfKLbfLQIJkgD+Lli3bh3UviInESEtOflPl7b6r2Pt2rXQXuMH1rt37/siWXW/8Ntvv0EnSaij0WCz3YnxPv+YGyUwV69eDY7nodaboZL0SpFwgE6PR4wmWAUB9W7DC/N+IjIqBtbkasgtXI/cwvUwRmagXPkKdzxeMVM+JTkZEsuiu1YHVXHB3eFAWnqG8hw0atz4tskvX331FYLdbvAMA4/vcz1kyJAynXvmzBkIPI+OkhaH3UFYZ3NAzXF4/PHHAQBdunSB1haMnLGrfYXRzuA4TpESL1e+Asxx5eTOzw5y56c9sx6imj0InTMcIaFh1ykXnD59Gj179oRkdiB33FqkD3oFLC9CH5aKyEZDla5oIqakAE8EjgiRvo7vL1weHPUE4zu3XPjNzc1Vxj979ixatmoFXhCgkbTo1asXkpJlGXC1WgOTSZZTZxgWklYHl0v2u2Y4AQynUoq5SpG6oH9JkTqhEogYqDUS6tWrh08++QRz5sxBv379ZL/45BSo9LJsviWhEjyV2sgy6e4YaBwRMBhNSjBbWFgIztdxb02uBmdOQ/m+GQbB1TqB4VUIqtrBTxaO9UmNFxfviwvcaf0XwFO5LSRXlDz/4uMYBqmpqVCJapjjKyB33FpkDlsCQWdBamoqjh8/DiKCu0JLWXK+19OKr/zOnTuhVmtgiMiANigOglZeN16UENtmIuI7PAK10YaCgvpygsMeJl+bYaEPlxnpxaoNOaNXQrK4ULlyZXn9bCHIfvBN5IxdA0NkJlhegKtc8xI1gshMRMfEyMx1UQ2W46ELikNIfneIZjc4Ueu3Rxp7GLSeWOX86OZjQEQ4fvx4qc/94cOHQUTwVG6L3ML1iO/4GBiWRbt27ZS9syRUAhEhrO4DcFdqA14QwPmeP4vFiurVqyM6JhZGkxm5eeWwZ8+em0oPnjp1Cnv37sXvv/+uFM95yejbJxasIMKRVR+8SryuyHPmzBlYrDboguMR2Xi4Imsf2/ohOHMbw2K14Y8//sC7776L1atX+933unXr5L2o1gnJvebCEl8Bao10w7UpxuXLl7Fjxw5s27atVPWR33//HW3atIEgqMAL8rMY0WAQ4tpOhmRxoVz5Cnj11VcRHBKi7JNOr8eMGTNKpONZDoawVAh6KzyV2ij758xtjOiYOL/rrVmzBmnpGQgOCUOnzp1LfWfxer1YtGgRevTogSpVqkBQa5UxU/u9CCLCu+++CwD49ttvZVZ/sweRN34Dsh5cDpWk91Mx2bJlC7Kyc+D2BKNJ06Y37aT/L6JYclVnCwInqJCckupHKgng3iMQS949ylJsvxMZ+f+PwF4FEMB/C/+kOD6A28ORI0eQnp7uiyXVWLZs2V89pVuiQsVK0LujkTViKTKHvw6dMwz5+bWuO+7YsWOIjIoGMQw4XgWeF7B8+fIyX+fQoUMgIkQ3Hy1bpo1eAUEyKGRyOeZm4MprgtzCdUjoPB0sx2Pu3Ln38nZx8OBBDB48GD169Ljn+/PHH38gNDwCKoMNITW7y93lDINXXnnltsfyer3gBUGxGssbvwHm+IqofhMf+02bNkHwKfvJBHsOyT1kn/PgGl3lmDY4BHaHEwzLQiXpwavUsFht1ymZnTt3DrwgwJHdALmF65Dca26psee9xB9//IEmTZsq8aAnKBhffPGF3zGZ2Tl+cvieiq1hczjv+Jpz584Fy3FKY0dxHDhlyhRs2bJFiWGKn89Zs2bdcKwxY8b45R1u1wozv1YtmGPzlHsLq9MHvCAoUuCnT5/G5MmT0bt3bzz33HN+EuGnTp3Czp07cezYsevGfe6550BE0FrdUEl6mC1WfPvtt6XO4Y8//kBUVDQEyYjQ2r0RXn8AiGGhtgVDaw+FWq25qVXa3WDq1KlK7oqIYIzMRM7YNQiq2gEGo+m+XDOAAP4tCBTby4BA0B3A3wFerxcOqxXVNRoccHmw0e6AnufvKbs0gJvj7NmzMOh0qKnW4D27E1OMslTx4sWLy3T+iRMnMGXKFAwaNAhvvPHGXxLcb9++HUSEDXYHjnqCcdQTDJcoYty4cTc859NPP8W4ceMwceJEVKtaFdVEtXLuJIMJHMv+Lfx7iru1DeGp0AfHg4huK+j8/yh+mZcsTrDX+JWJPsJBUlIStm3b5uejVhouXLiAFStWYNGiRTh69CgAuUNWrVaDJcI6m7wX43zEh+IOzpvhwIEDICK8brUpexGv0aBfv34A5H3mBQE6dxTM8RXBsCz69++vnF+ufAW/4EEflqpIe8fGxft1tf/0009yF/I1a2COyYU5viKICFkjlyFv/AZkDl3sX0i1hULjkmXCXjFbwRGhnaTF23Ynumt1ICIUFhZed29FRUV+n42jR4+iRYsW0JjsSB/4MrIeXA61RS7WCzoLGF4FrScOxLCIaTUeGYNfBafWQW0NRnLPpxDbZqJSHDdEpEGyBYHleJmJ7YpQCuG6kERo3TFKh394vX5yh23rh0BECiP6hx9+AC+oYIzOUdbPXaElWF5E3vgNYEWphPQxbq1vbgx4rQlx7aYgc/jrytiSLQSeym2hdYSC4XhIzghENBwCtS1EkdIjhgEvGcAKIlhBRHpGJgAgLi7OV/g1gBgWnFoHjhdw/PhxzJ49G0QMBJ0FnKgFw/JwZBUo8w2q2gFGk1kptgZX74KQmt3BcLws3c+wMMXkQW0NBs8L+OyzzxAaGgqG5cCpdXIBn2FALAt3hZbKuLqQJDAMC3NMDkJr9YTK6IDa4kHOmFVKId1Vrrly/xEN5M+Yp1IbRDcfA5XRAaPp5l0ZkydP9pEHZNJTteo1EJeQeJ3vncYRDnNceR8poRWimoyAoLf67kEPbVACWEENXiUqXQ7nzp3DY489hgoVKqBWrVqy37pPOUKr0+O1116DTq+HMTID0c1Hw5VXkoBIS88otUN427ZtUGskHxHFlxzwqSGMGjXqpp/zcePGlXyeJC1Wrlx50+/a48ePIyMzSzknLj4BR44c8TumU+fO4EWNbC9hcvl5xofX66d4M+pcERA0Ouh0emzduhU2hxPG8DRkjVyO8PoDQQwjqz4YHUjp8yySez0NjcmOZs2b3/SeSoMih+mJhsr3PAfX6IrM4a/DkVUfHMcprP+vvvpKvrd2UxRVC43RitGjR9/2da+F1+vFc889h+bNm6Nbt26lKnvcKebPn4/g0DAYjCa0bNXqtv1D7yW+++47EJXYV6T0nguW40uVfAzg3iEQS949ylJsHzlyJJKTk/1+17ZtW9S5DVJoYK8CCOC/gUWLFsHjdELgeVStVKnMFpMB/LNw7tw51K9fX3k3fuyxx/7WBItdu3bBaDLJ6mkMC7PFesN30tOnT2PevHl44oknbrvgdvDgQR8BeILPzmw1eMkIbVA8cgvXIbbNRGXNitXqKlWu8rezEbwZdu3aBSJCQqfHlXvkRAkul/uOxqtWvQY0RjtiWo5DeL1+YDkeEydOvOk5X3zxBTiOh6dSW2g9sWBYHoJOJsKPGDFCOe7TTz/FpEmT8Pjjj5eaW/rmm29ARIjvMLVEacARfkMp9nsFr9eL/fv3Y9u2bZg5cyY6duyIkSNH4tdffwUgx+UMy8JTqQ2Ca3QBrxLRs2dPXLp0Cd9//72fzWFZsGDBAhDDIH3gS3JsWn+gXwxNDIvg6p2ROWwJXOWagWEYPwuzffv2YfXq1XjrrbeUBoKcMasUj/gtW7aUeS7Tpk0DwzAIrt4FkY2GQq03o3adugDk75XEpGQIogYGTxQYhkHzFi3wzjvvYPbs2VCr5TwFx3F+MZbX64VWp4c9vTZyC9cjc/gb0JjsihXitbh48SIqVKx0DQGGQXi9fjDF5MJms6F169bYuXPnba1vWXH48GEwDANPpTZyg0OHqSBiENloKOzpteH2BN2X6wYQwL8FgWJ7GRAIugP4O+Ds2bMgIswxWZTiWhW1Bs3+n4dTAPcPxX69K212ZQ9C1Wq/F+Ub4eTJk4gKC4eW5xHlk3C/mTdxaXj//feRlZYGj8OBRvXr37LIWxqK5TGH6PQ44g7CSpsdHMPg2WefLdP5rVq1Qpwo4lt3EI56gtFdq4Neq/3bBK2LFy9GgwYN0ahRY6xZs+aOxylmexcXJJJ7PQ2G5TB79mzs3btXkaWLiIi4IRMVkAkWiUnJfh2iW7ZsQZMmTSBIRph5QXmWNtkdICJ89NFH141z8eJFfPLJJ/jyyy/h9Xpx4cIFmPQGVNNosNXhwhMmMxgiPP/888o5W7duRaNGjVG1WjU88sgjfkW6F1+UWcKWpCqwZ9QBw7IYPXo0Tp8+7beX33zzjSKzHVSlPWLbTIRodEBQiZB8Xa7FEtlJ3Z4oCcgZuQuaU+tBRHjWbMF0kxl8cbHR999NmzbdcO3OnTuHxj4/cSKCaLArnvAaexgkV4zc4dpkBOyZ9SC5SnzR/39gxrAs3BVaIbr5GOjD08DwItT2UOQWrlc81DWOcGjsYYq/dLFHthzYMX7BdG5eORiv8TBzlWsOhlcht3Ad9OGpcnHWEwe1NRhEDLRBCVBbgxWJtWLPs/IVKsDp9igF0pD87ko3gS01H7a0fB9JIB3B1TtDNLuRnZ0DQA6CtDq9r+hZ0jlPRDAYDIq6gCOrPkSzG2pbCLIeXI6cMaugD032yeVzcGTW85Mq5CUTQvN7wBiZCUEyoF69egAAT1AI7Bn1EFS1AzyV2kAw2OTrshycOQ1hSaoqEyA0OkVRIaHzdPkZ6TEHQVXag4iQOWwJErvMABEhrKA/PJXaKnvF8CoYTSY0bNgI77//fqnPxUcffYT4hEQYjGYkJSUjOzsHHK+CPaNOie9dRh2ZhEAEyR1zjZ/hgyXPBMfDmdMIxqhsEBHeeOMNREXHgBgWgtYMXWiS/FzYw5DQeTrMceUUeUWD0agw6uvVq4epU6fi5ZdfxtatW0v9LszJzYXK6ED6oIXIHLoYaptMXPjwww9v+PwX44cffsDHH3+MNWvWIDwiUv7eiYwqVQ6vfYcOEHUmxHd4BIldpkNjsqNevQK/Y4wmM4KqtJdJCSnVoTI6kTVyGXIL18GaXA3EcoodR+bw1yHqzDBbrAo5ooSgk4aQkBAYfYoTRISo6BiFUFRWnD17FizLKnPKHLoYvEZXkuBjWb9/n65cuYKk5BRoTHaE5HeHOa4cWI67a3nQkSNlr0tjeBokixuSVoe9e/fe1ZiAbNtCRLAmV0VwtY5QSXrUqVv3rse9U2zbtk3+TPaco1hFaAxWjB8//i+b038BgVjyznDu3Dns3r0bu3fvBhFh5syZ2L17t1IUGzVqFDp27Kgcf+jQIUiShBEjRuCrr77C008/DY7jsGHDhjJfM7BXAQTw78eWLVvAMAwaaCRMNBgRpFIhJTHxb0EeD+De4+rVqxgwYIDybtmjRw9cvnz5r55Wqbh48SL69OmDkLBwJCQmYsWKFfflOkVFRcjKzoFaL8cFxsgMEDGIbjGmxKpLb0bPnj0xe/ZsLFmy5K7W7IcffsDu3bv9fMavXLlyU3Wxu0Wx7VqMj1CQNWIpWF4Ex/O3PdZHH32EhMQkcLygxK0dOnRU1uTkyZP49NNPS1Ug69+/P1iWgyWpCtQWN4gIEydOvK37/u2338CwHAwR6Ujt+4KSS+jUqdNt38udoFOnzmAYBsbQRKgkPUJCw3DixAlcvXoVw4YNg0bSQqUS0alTZyxbtgx6XxOJRiPhtddeK/N1Tp06BavNDl4ywOKz25OcEUjt9yLiOz4KVhBhS6uFvPEbkDFkkZybXbkSRUVFGDFihF8+5NqmkJyxq0FEePHFF6+7ptfrxfbt2/Hmm29i0KBBaNKkCYYOHYpjx46hX79+YFl5vytXqaqQDJ577jkwLIeUPs/Klo0NB/s3ndhDkdR9Npw5jcAwjGITd/HiRRARIhsNVT5npqgsNGnS5Lp5Pfnkk2A5HoldpiO3cB0c2Q3AsBw0JkeZLZHvFKVZ9/Eag8+28K/zrg8ggH8KAsX2MiAQdAfwd4DX60WQy4Xyag12Ot1YZrVD4vnbLtgGcOf49ddfwbIsHtDpcMQdhDU2BwSWxZNPPnnLc6dMmQKJ5/Ghw4WjnmAM8xUwy+p3vm/fPmhEETlqNQbp9HCpVEhNSrqjoOehh+ROXYugAsswqJCXV2aW8rZt26ASBESJIvJ8pIH7KV/1/7F69Wr0798fBQUFGDBgAFauXHnTYxNjY2EzmdCofv3bkhL++OOP/QrJuYXroTZYFKniQ4cOISpK9hZzu903ZJwPGDAAKkmP5J5PIXP46zCGpSA8IhK5eeVg8El2D9UbsMbmQDVRhF6r9fOkAuQu9rDwCOXlvXadOrhw4QI2bNgAnSQpv2/Xpk2pSSKv14vPPvsMGzduxM8//wxATjp06tQJFqsVdrsThYWFpZ7bqlVr8KIEjSMC6YMWwlOpDYw+//QDBw4gKTkFKkkPU0wuWJUanFoHYliIJhdyxqyCaHZDUOvBMQyyRTUkhgFLBI09HHqDoVRprWL07NkTEsfjUaMJjxpNEImBOa48Qmr1BLEcWJXkY+Q/hJAaXcHwKiR2m4WcsWtgS60BUVTjnXfewZYtW0BEsGfUVQrXxmi5wBpWry9yxqzyC47U1mBYU2qAGBa81oTY1hNgS6sFlmWxfft2AMDChQtBRDDHVYA9o47S9S85I6F1RYPIVwBnWJjiKiC+wyMg3/yDqrSHStKjevUaSpC9f/9+XwFYAKfWwZZaE3njNyCu3RRZ5t3XUU4Mi1GjRuHo0aOYOXMmTGZZ+p4XBMUb3hidDU6jBzGs0rWc3PMpMLwKrCAq4+gYFjGCCGNkpmK9YI6vAE4tF8uTe82FoJYU9YH2HTpApdEhsslwRDQcAmI5BFXtCHfFVhAtHh+xggHDq5A5/A3kjd+AmFbj5TWPylZ87p3lmiJn3Drow9N8RAj597zW5FvT8tB5YsBx3HX+5AcPHoRG0sIQEg9PxdYQtCawgqiM5chuAEd2A3kvfOoJgt6KrAeXy9J2lUsK+6H5PZTPts4djcTERLAc7+chH5rfA0SExG6zlOenatWqqF27Dlq1aoU9e/Zg/PjxSjc4EaFT587XJU9i4xLgzGlUoixQuR1YXgWrzX5Lv+yLFy/irbfegkaSYAxPQUT9gTCGJUNvMFxHuIqLT7zuOo7/173hcnsUYkLKA8+B4Xjwai0ki0u5j+jmJYk2lc4MXqODyuiALjgBGYNfRWK3WVBpdBg8eDDOnj2LdevWYcOGDXckRV5MACvurMkbvwEGTzQaN26MZcuWYf/+/aWeU6NmPiStFuERkbfsdr0VLl26BI7jlIJ/9qi3IJmd96RbpGPHjtB7ohXFjGI1h/vpsXgznD59GgajEabIDCR2nSl/Joiwbt26v2Q+/xUEYsk7w3vvvXdd4pSIlCRj586dUbVq1evOSU9Ph0qlQmRkJBYsWHBb1wzsVQAB/PsxfPhwBIkiDvvI46/4SIUHDx78q6cWwH3E7NmzlcJZfn7+39KOsVWrVuAEFWxptaAPioVKJWLXrl335Vq//vorGjduApvDiZi4eLAcB3t6bWQMfU15X70blUBALur37NlT+ffb7nBix44deOGFF2TlLyKEhoXfl3ssKiqCqFbLBdrUfKitQWAFOX91Ozm07777DlqdHoaQBATX6AKtPQQut0d5T3j55Zch+CwBOZ7Hc88953f+lStXMGnSJGTn5KJatep39M69d+9eOU9xjVWfjuMwYMCA2x7rdlFs4RVefwDyxm9A+sCXwatETJ8+XTnG6/WiqKgIP/zwA0S1BubYcohrNwXW5GrgeP6mBOYPP/wQcfEJEAQVUlLTYHM4IJpcSnwfUX/gNdL9FcCJEnLHrUVw9c4gIixcuBBWm13JpYTW6QNrSk0QyXZs2aPeQmgt+Rls3Lgx/ve//ynXvnLlip9UPjEstO4YqCQ94hMS8fvvv+PixYvXvRNOnToVKkmvxHcpfZ6ViedNRyK4WkcQEeI7PorccWvBsJyf/UJaega0tmDEtZuC8AKZiDFt2rTr1mXIkCHQmOyIajICyT3mKM0KOr3er5v/fuDYsWNQqURYU6ojfeDLCKvXF0SE7OwcvPrqq/f12gEE8G9AoNheBgSC7gD+Lnjvvfdg0JZ43pbPzb1loj6Ae4tHH31U7n4TBLAMg7zs7DJ5dQ8aNAhRao3Sxfy61QYiKrWQUBoefvhhGHgeX/uSAsXn36l00MaNGzFlyhTMmzfvtuXAduzYgY4dO6J58+Z4+eWXy8TKXbp0Kdq2bYuuXbtix44ddzTnhx9+GEQED8dBJILKVxi61qv32jlyLIuqag2G6w2wCyrkZGb6eSndDKdOnYJOr4cpOguJ3WYhqLLsCb1+/XrlmJ9++gnJyXLXusViKfW+atWqBXNcBSR0ehxBVTvKnaNEGDhwIHhR4/MSlz/PAsf5jV+MzKxsaO0hSOw6E9EtxoITREUy+ddff8WmTZuwa9euUvehqKgInTt3KSkkaySsWrUK7dq3B8Mw0DlCwfECcvPKlfoc5OaVg8YeBlaUwEtG8Bq9IuE+adIk/Pbbb2jqC1AsSVWRNXI5jJGZ0AUnyN2voSlQGZ0IrtEF1pTq0AbJ8v4mswWbN2++6R5EhYaig6TFUqsdWxxOdNPqwPnuwxCeBoMvAGNVGniqdJALzCR7urMch4ULFypjVahYCSyvgikmVwmKrCk1oDLY5e5xhoGgEpV14n1yeUnFZItxa8Gp1Gjfvr2yzg8//DCI5aAy2BBUtYPPQ4tBeno6nnvuOYwbNw7hEZHQWIOQOWwJIhoOBatSgxdUyMjMRLdu3TBjxgxcvHgRXq8XNWrUkPfIEgRbak2E1u4NIoLKYFek3RmGxdChQ5Vg0BiZiahmD8prwbBwlW+pFFGJYWEIT7vmfmvK50TJXfSdJS2e8xXrJVc0tEFxvnEZpSs+KTlFefc5ffo08vNrlayRT0o/t3A9MkcshdoaAsFgB7EcRJMT1uTqYHgVVCqxRGVAKUrL/2X/n4d7sf937ri10Lki0KZNG2UPjx07hszMTLCCqCgcJHSephTDXRVaKt36Nrtd8TxnOB6sSuNTGSC4KrQEEeNfbPfEICwsDCqdGRqf4kHe+A2I9VkIMLxKJivwIogYqK3BECS93zMjuWMUibr/n5hq1rw5RIMNKX2eRVq/eVBbg6D1xIKIbvp9+P333yM6Jla5RjEJIHPYEhARXn/9db/ja9WqDZ0zAlkjlyF71AoYQhORmZXtd8wTT8gKFPrQZAg+gkNsbCz69++PzZs3IyExCVp7CGJaT5CTGAwDa1JVJHabJRM1fHNJz8i8J3LoRUVFiIyKhs4RhtjWE5Tv2kWLFt312GXFqVOn5ARJkxElBf+QeLRv3/6ux+7WrRu09hDkjF2jEDgYhinTe8P9wrvvvgujyeT7vmQwadKkv2wu/xUEYsl/DgJ7FUAA/36MGzcOZkHAPpcHRz3BmOFT6Sm2rAng34vVq1dD68unJSYm4rvvvvurp6Tg5MmTclGzQC5q5oxZBcns9LOCu59YsGABOL5ELa1Hjx533XX+wgsvyAT3On2Q2HUm9EFxsPryWPb02ohuMQZ6TwycLvcdkXZvhUaNGoFT66ANioM5viJsabUhiuoy54QA4JlnngHDcgp5u7iwunHjRhw4cAAcz8OWlo+k7rPhyCoAy7LYs2fPPb2PU6dOgec4tJEkLLbY8KTJDBXLYubMmaUe/9FHH+GJJ57A4sWL8ccff9zVtXfu3KnE24oqltFaqg3l8uXLQUTIHLpYeYaJ5OacPn36oHnz5pg5c6bS5PHDDz/4iPSJCKvTB3pPDBiWg7tCK+SN3wCG5WCMzEDO6JVIG/ASBI1BUUgkIgwdOhRGsxn6kCTEtBwHa3J1EMMivuOj1xE1GY6HaLCBZVmFqD1nzhywLIfo5mOQNuAlGKOywGv0SOr5FIhubBda3MzhzGmIuPYPQx+WAk6UkDViKXIL14PlRYTW6qnM480331TO/frrr/3i+06dOuPKlSt+43u9XuTn5/vNX20LgSCo8MUXX9zVfpYVixcvhiColOs/8MADfxs10wAC+LsjUGwvAwJBdwB/J/z4449Yvnw5Nm3a9LeVv/q3Y/PmzXjkkUcwf/78MvsQvfHGGyAiDNcb8LrVhgy1Gh6n85aF7h9//BErV65Er169oOU4fOVLChQz8D/77LN7cUv3FXPmzAERIUOtRqQoQiUIZZJPvhZnz54Fx7Loo5VVBbY5XDAwDHJ9L4CjR4/GyZMnleNHjhwJl0qF73zkhPm+9fr666/LfM1NmzZBbzDctCBx8uRJ5ObKnd46nQ7vvfee398HDBig+IXzkiztLahEHDlyBPm1SgqX4RGRpXbHFxUVgWVZhBf0v4bRWxE1atYs0z288sorMiO44WCk9Z+vSGETlchXJXabBSJCakoKqlaqhOnTpysBaL9+/SCoJTCcCrzGgMxhS5BbuB6uvCYQVCpcvnxZCaoyBr/q17npzG0EV/nmIIaBaHZDHybLqzdr1qxM311R4eFgr5GCd3OczJROqOjXic341jQiMgrDhw/HM888owS4X3/9NRISk2Rvco6HISL9Gsn0JmBYDqKohtlihSEsGbqQRD9mc2jdB5A3fgNSH3heKRR36NgRXq8XXq9XkVQzBMVAUEuIi0/w61jdv38/rDY7GIYFw3JgWQ4alawooXeGgeMFVKxUGZcvX8a+fftkIkJMnnJ9Z24j5Baul33oRS0qVKggk3180udZI5crct9EBGd2QyUILi6YGyIyYLmG1FH8M0Crw1FPMKb4ZN6ICLa02git3QuCRo/o6Bg/qT8A+OWXXxAaFi4TGngVin3hr5Wx1zjCZfKI1gyGF33BrYCkbk8gZ+waOQgmBsQwss+8rwufiBDmW++88RtgDE9VJNUuXryIxKRk8KIGLC8q9y0rBhDiOkyF1hOnzIHlBXTv3h2RkbL6RHEXAydqIQUlyHNieThzG8EUnaN8xovPd2Q3RGST4VD5pNIYXgWVwQZnTkOojE5lbYlh4cish7i2k8BLRlgSq4ATtddJ+h0+fFhh3MsEChuCqnQAEeGbb7654Wcgv1ZtaMwyWYWIkNxrrqxU0EP+Tl21apXf8Z999hk0khYsrwKnUkMjSdd913q9Xjz//PPQ6Q3g1TqYYstBpdEhPSMTly5dwsGDBxEbF6+sSXJyMkS9Gal9X0Bq3xcg2UIQFBx8Tz0b9+3bJ0v4kywbP3bs2D89mM/OyYXGZEdEwyFwlWsGIronzP2PP/4YHM/LycXk6mA5Ht26dbsHM747/P777/j8888VOcQA7i8CseQ/B4G9CiCAfz++/fZbGHU6RIgi6qs1ULEsmjdt+ldPK4A/Cbt27VIs4RwOx11bEd0r/PrrrzL5s+lIXzy3Dlp7yH335b4W33zzDd566y188skn9+RdvHv37jAExSrxXbEXvKgzKfZqSd1n35KAfDN88sknqF+/PnLzymHEiBF++bnt27dDEFSQ7KEwRsiqgqU1atwML774IohhkDFkkZw76ToTRITNmzdjyZIlfoTo4uJy27Zt77ktRXFOTeLkOPRGTT+zZsm5HY6X82SVKle5ady2Y8cOdOnSBa1bty5V8v38+fNwOF3QB8UiplUhHFn1QUR49913rzu2WJEots1Ev7XS6fTQGG0wRWaAYVl06dIFXq8XFStW9Fu/9IEvy3kzUYPIRkMh6ixgGAasL/ZmWA6GyExFca64ESr1gecVwj4riDDHyTmTJk2ayLkok1PJUUjOCCQkJQOQlRQNQSWWc8X2gikPPAeGYf0sGv8/nnrqKVldsDgnkNXAbwxRZwLLcqhRo+Z1xfQrV67g4MGD+Omnn0ode/PmzQpJJXvUW4od36xZs244n/uBw4cPY926dfecPFIMr9eL9957D/Pnz1cUJAMI4N+AQLG9DAgE3QEEEMDdwuv1YvTo0SWFQ4fjlgHFpk2b/GTCBY5DvEpEZ0kLsyAgLzv7b+EtV9xdvXv37lKDMofVijaShCPuIBxyByFRFNGkcePbusb3338PIsIrFquiDpDEC6glykU0NcchOjxckWAfM2YMrIIKB33khKdMcgfv7bLXz507h88+++ymEvRnz55VupJFUcTq1auVvx05cgQMw8CR3QC5heuR2vcF8KKE8ePHw+v1Yv/+/fj8889vWnx2utywxJVHztg1yBy2BBqzs8z+XEOHDoXOFqQEEMUBDxEhbcBLSiDPcDxCOB711BowRBgzZgwAuZs5L68ciAjaoHhlnOjm8rN88uRJ/Pzzz9AbDDCGJSOy0VAYIzPA8wIkrQ4cxyGvXDnUr18f1apVw+zZs28auJ87dw5erxeLFy+W5cUZFpIrGu5KbUBEMFuscGTVV+bhyKqP8IgoALK0f/v27VGpchUMHjwYv/76K3R6A1RGB0Jr9YQxMhNEDKwpNeGp1AYsx6Nr165KF4EhPA2cKCG29QQkdHoMKr0VxMpSYqxKA409FOEFst9fsV/21atX8eyzz6JXr16YOHEiTpw4gXPnzuHRRx9F37598cILL2Dy5MnKmqcIAnprddCzHIyhSYjv+BiICDVq1ECbNm1Qs2ZNv+JwTMtx13TaJiInJwcMy4HzdYQndZ8t76tPVowVJYTX66cEwcUFZlZQgxgGy5Ytw6lTpxQrCZcoQmBZpCYloVPnziXzTE3Da6+9hgYNGqBOnTqYOnUqLl++jIEDB0LUGpHWfz5yxq6GKbY8iOWg9cQiqceTiKg/UC6kEwPR5ILGIdsfSK4oxVtNcsu+6FpPLHJGr0TOmFXQBSf4ZO7VCKnZXZGCf/nllwGUBJzRLceBEyVIzkg4cxuD1+jBcAJURic4tQ7RzccgouEQMJwAm93ul7CKbCQrAuiCE+AqJ6sxaCQdiOUhaM2KbcC1hASGE8BwchBd7FmWPki2ELBn1IU9s55c7G87Ce4KrZTzWY67jgh15MgROF1u8CoRencUiGFQo0YNbNu27YafCYvVhqCqHZE9egU0jnBwai3McRXAqSQEBYf4JVi8Xi+6d+8uF/MlPRiGRXp6RqnJlWLyV7HPXPH3QrGvcVFREY4cOYIzZ87g559/VgrhRLJlQXxCIpo1a1ZmZZayoKioCEePHv3L5NWPHj2KcuUr+L7H1Zg8efIdJxnPnz+PYcOGoXyFimjRoiVeeukl1K5TB7l55TB+/PgAUfI/iEAs+c9BYK8CCOC/gb1796JNmzaoUa0aCgsL7ymJMIC/P44cOYL0dLn4qlarsWzZsr96SvB6vahStRpErRHB1TrCEl8RDMPcUg3u74yxY8dCpdEhbcBLPsJ+UzAsC04QkT7wZb8Y7U5sHPbt2we1RoLOFQlbak1wgojG/8//eseOHWjXrh0aNmyE559//rbf748dOwanyw3J4oY9ow5EnQlJySm4dOkS3n//fTlG9VlwFZMJiGHQpk2bMl1r79696NGjB1q1anXL+X300UeYMWMGXnnllVKbfo4dOwaWZeHKa4rcwnVI6DwdxLAIj4jExo0brzv+448/hkoQECmKyPJZRM6YMeO643bu3ImQ0DA5zlSJeOqpp0qd39WrV1G7Th2wHA9jcCx4QURQcAgEjQ6Zw5Ygb/wGRZL8mWeeKclL9ZsnEy96PCn//7R05W/6a5Rd9e4YZD/4JnLGrgERYdy4cfL6t5DXP7XvCyhW0CMipGdkyDmHsWvkRo2ESuA1Brg8QQBkpUJeJSK55xzkjlsLW1otMBwPU3QWVCrxlnLt586dw6FDhzBgwAAlBicipKSkKk0gd6Is8Oyzz4IYBrnj1vo1VixduvS2x/q7wuv1okePHn65l4ceeuivnlYAAdwTBIrtZUAg6A4ggADuBX777TcMHjwYDRo0wJQpU2764nXlyhVYTSZU1Wiww+nCSxYrBJZFTHQ0kmJj0aVzZ79O7r8KZfENV6tUGGswKkXyumo1alSrdlvXuXLlCkI8HqSoRCy12jHO140byXGwsCzetTsh8bziH//VV19BUquRKKrRVtJC4njUqVXLL3jxer3YunUrFi5ceNcKARcvXkSjRo3kYhTPK6zgH374QSnGFXcc693R6N69e5nHXr58OTieh6g1gFeJsNkdOHToUJnOnT17NliOR2K3WUpHOsuyUKs1MMeVQ2KX6XDmyPNeabXjqCcYD+h00EmSslZXrlzBgw8+CCLZ5zqu7WRI9hBotXpkpaVh7Nix2Lx5sxKAOV1ubNq0CV6vF1evXoXX68ULL7yAFi1aoFu3bqVKX+3cuRMRvi5krU4HlmVhjMpGaO3eEC0eiBYPeMmE6OhosBwPT6U28FRsDZbjMXr0aPzyyy+wO5zQmJ2wJlWFIEqIiIwEESGxywyZaT52NViVxieTziI5JUXp3A4NkwuZ9vTaSnE7uEYXRSbcXbE1skYsRdaIpSC6Xr579+7dSEhMkhM2ggA1yyJeIxMXWJaFxhkJGy/gkE9p4VmffHt4g0Eg8nV4i1KJ3DoRRI0GOlck4js+psiTBwcHgxgWKqMDotkDVlDDEJ4GXqXxeZT7gkufDzonauXCPMPCaDLhyJEjypzXrFmDcePGYc6cOfjkk0+QlZ0DlSgiPCISeXl5KPZf532d5y1btkSjRo1gispS1ii0Tm8/9nre+A2QnFFgeBWyR72FpG5P+ObDIbplITSOcAhaM3itCa68pso57vItZKl8H2tdbzRh2rRpyjO4ceNGpTic3PMpXxGfAc/zMJlMIGLgrtRWGc+eXhs6vRzs5oxZJftwP/imr/j+IJJ6Pi0X0xkGKoMDRAwSu86U78kn3y8YbL4ufHk/Uvu96CfhHtl4OHIL10NldMjebkY7iBhYEqtAJekxefLk657z48ePo6CgAHqDsaQ7nkr3eQeAlLR06IITkD1qBdL6zwen1inEiaCgYL/v2s8//1x+pnx+esUF9FdeeQVFRUVYt24d5s2bh927d2PBggUgIkUOMWPwqyC6sS/juXPnsGTJEkRFx0DQ6GBLqwXJFgSzxYqjR4/e6mvornH58uXbknu8G5w/f/6uSGxerxe1atcGr1LDmlwdki0YRpMJ33///Q3POXXqFDZt2oStW7de1/kQwL8DgVjyn4PAXgUQQAAB/Ddw9uxZ1K9fQlB+7LHH7kk395EjRzBkyBB06NABzz777G29w544cQLNmjeH2WJFRFT0DWWs/yk4fvw4wsIjwKtESCYHiAgTJ05ESGgYRK0RxvAUsCxX5sL0/8eIESOgNliRPVq2GItoOAREdMOO4TvFt99+i+bNmyM9MwudO3fBsWPHAMhk4WbNZSU/QWcBMSxMMbmIaDgYRIR9+/bddNx9+/ZBq9NDMrtgDEsBESl2gTfD+++/j5kzZ2LJkiV+scOuXbtkQn63J5S4WGWwQ2WwgWFZJUdTjObNmiFBFPGtL0fRQdLCYjSWes2ioiL88ssvtyQm/fHHH5g5cyZ69OiBRx55BP3794fW6lFs2uLay9aQXbt2BbEcGE4ALxllf3dRi4jIKFy8eBG//fYbzp49i0uXLmHpUjkHw0smqK0h0IXKVo7bt29Hw0aNwHI8dMEJYAW1nL/QWcAwLKJjYmFLzVfWIqhKezAsj/YdOgCQY9z0jEyZLO+zESQiWG12rFmz5pb7UAyv14u1a9fikUcewWuvvXbX8dy7774LIkJYvb7IGb1S8YG/Xx3mfwU2bNgAIkJEg0HIGbsaQVVl1b/S1D4DCOCfhkCxvQwIBN0BBBDA3eLcuXOIT0iESqOVgwqOR9169ZTg69ChQ1i8eDE2btyIK1eu4McffwQRYcE1ndxZGgmdO3f+a2/kGly4cAEmvR7VNBpsdbgwy2QGQ3Sd3FLjBg1gFgQ8ZjRhpN4AlmHw6KOPApBfTOfNm4cePXpgzJgxN5W03blzJ4KcTj/2o54Iy3xF4gi1GkOHDlWO37FjB+rWro2stDT069cP586dU/52bRdo8c/06dPvaj0uX76MDh06KEW8Z555BpcvX4bD6YIhNAmRTUYona8aSXsdM/Xy5cuYM2cOHnjgAUyfPt2Prfzpp59i0qRJmD59+m0FjxcvXkReufJycKKS2cpPPPGE7FenK/E4j+J55TkbozdCVKn8EgNFRUXo06dPSccvyyFZUKGFRoLAsujatatyvf+PsWPHgohgDE+BZHFDI2n9XqLPnDkDm90BfVAsopqOhMYRBk4lIWfsar+u7eJCcr16BdAZDNAbDBg4cCAuX76MJ598EhwvIGPoa3IQ13aSMteY1hMURjDDCTDFlkNwtU5gWE6RkduyZYtMaLB4kDVyGXLGrIIpMh1h4XJntiuvKVL6PAt7Zj2wHOfX0Xvq1Cl5/p5oWFNrgiHCRrsDRz3BmO7zgNSFJsPGcUog+4yv2M4KaujDUpAzZhWyR62Qi8gsB1f5lkqgV3wfLMtB64qEJbEyiGFhS8uHu0JLmfWcmwuWCBaOQ4jPWkFyRYEYFmprMFx5TSHozIiMilb88IqKivDQQw/B4XKD5QVI9lCE1u4le5szDFiVGq68JtAFJ8oqAyR7dXGCiNg2E2VJcXcM6BrlhrT+88GpNFDpzAq5pPiY4vuIbT0BtrR8cGodYloVIqb1BHBqHSyJVSDozDCaTMpz9Ntvv6F9+/aw2uxgOQG8xgBLUjX5M2QPVzrniZGJAe4KLZH14JuQXJHIypal9t3lmyOt/3y48prIhIXqnaHSyfuiD0+VC9gqjZIAkBnxhNg2DyFv/AaE1O4NYlmIZjeCqrSHxh4KVqVGxtDXfJ0YDDhRC4YTwIkSkno+BV7U4LHHHrvuszB7tiyTaI6vIKsCEMGWKqsZLFmyBD///DOaNmuG4JAwlCtfAc8++yxYjgfr84znNHoYIjKU/bhWRn7RokVyJ0D/+craC6KExx57DA0bNir57PosMTSSFqbIdEQ0GARjaBIMRhN+/vnnUr9HvF6v4tcX126K8nlieQFVqlS5oRT+unXrULduXVStVg1PPfXUbSfRTp8+LSdQWBYqlYgRI0b8aUX3O8X+/ftxbYdL1oilUGm0mDJlSqnHf/bZZ7A7Sv5dyytX/i/r7g/g/iEQS/5zENirAAII4N+Kn376Cb1790bdOnUwcuTI++KR/U/DlStXlK5UIkLPnj3vSoHoxx9/hN3hhKgzwRiaqMRP/2WcPHkS06ZNw6hRo5Tu6l9++QVDhw5FdnY2QkPluOell1667bEHDRoEyeJSOoBjWhWCiG5Kcr3XuHr1Kpo1awZOUCGiwSDkjlureH5v3br1huddvHgRvXv3hsbkQPaDb8rF4MrtwHHcTQvaxap5vK8pID+/lvLMnj59GmqNBEtCJaQPfFkhHzjzmijxo9Plxvvvvw8AqFWzJmqp1UoeaLzBCIHn76mdV3FR1ZFZD5FNhkNrD0FkVDTatWsHYlgk9ZwDe3ptOQdBhNi4eAwcONDvPeyll16SY+i4CrClyV7mNX22ipcvX8a0adOgNxggmlzIHLYEOWNXwxCSiOCQEHC8gLA6fRDRcAhYlQZOlwunT59Wxr5w4QJeffVVzJ49G5988omitPhXwuv1ol+/fn65yn9b1/dTTz0FluOUHEzG0NdARFixYsVfPbUAArhrBIrtZUAg6A4ggADuFi+99BKIYZDywHN+gcD27duxcuVKqFUq5UWqRtWqOHPmDHSShMYaCYfcQVhvc0DiuHv6krV161akJyfDYjSiRtWq+Pbbb2/r/AMHDshdvlab8oIer9GgX79+fsedOHECtYrlsVkW/fr1UzoH+/fvL3esajQwCgLCgoNx/PjxG17z0qVL+PLLL/HRRx/BajYjTRTxutWGIb7C8Y06M/8/Vq9eDSLC40YzDrg86KPVgWGY2/J0Lw1FRUV+L8ZTp07F8uXLodcbZEl0dzSimoyAJaESOJ5XOuqLiopQUFAfLMdD744ExwuoULHSPZEbvnTpEhYuXIgZM2b4+TefO3cOe/fuxZNPynJdHSQthusN0PI82rZu7TfG1atXkZ9fCwzLgVfrEM5y+N5XOB5nMIJhmFIL7ZcvXwbHy53oeeM3IHvUCkgWF3r27Kkcs2XLFvkZ6C37UYfU7AaGF5A5/HXfZ2W8XFx1RkIfmoy6deted53HH38cvKhRupiLPa2JYcAKIqzJ1aEyOsAKasVb3ppSA5nZOcoY77zzDjSSFryogUrSQxBU2LhxI5544gmwrNxxzvE8XnzxRQDAtm3bUK9ePcTGyx7gyb3mIqRmd0gsh8O+tXnfXuz5rQZDhCyViJ5aHbQMA9ZHWgiq3M5PFr84EGY4Do888gj27t2L9u3bQ7J6lPsLzZclt5K6PwliGGRlZSGS53HQ5cFhdxAaajQQfONkDl2MzGFLYIyWJeizsnPw5Zdf4rHHHgPDMIpHvNoaDJYXwWkMcrGw2SjFe07wFadFtQbR10iKcxo9XOWbywG/Rg+OF+BwuuRAPrcxIhoMgtpgQ3BICPLz5cA4stFQZI1YCl1wgjKO2haCyEbDwKo0sNkdeOKJJ/DNN9/AYLxG1r24659hoQtJRGL3J5D14JswxeSCE2VVAmJkWUKVqFZk9oq92BmGhUYjKc9F8TNZTMzwVGqD5B5zYIotB2IY2LNlu4KY1hPkc1gOnFqnEGYMEelgWB7m+ArIHbcWGUNfg6CzgBMlmMxmHD58+LrnNDY+AdaU6sp+WxKrQHJGQmO0YcyYMUhOSYXaYIG7Qkvog+IgaXWYNWuW7FUnShBN8toKWnk/nn32WQAyKcHl9oAYFua48kjq9gTcvn0ZM2YMGIZBTOsJyBm7Gs6cRuA4DkuXLkVwSKjMKI+Mus7bHZCTIyGhYeA4TpGST+w2S3kuWEENXpRgNJmu++5ct24dGIaBISQRplj5GZs0aVKp31E3QvMWLaDS6BBWpw88lduCYZhSpQ3/TtizZw+ICPEdH/UpaqyBWm9GYWFhqccnJadA745G6gPPI77DIxDUkh9pLIB/BwKx5D8Hgb0KIIAA/o347bffEB4SArtKhTpqNSSOR+UKFQKKOj7Mnj1bifdq1arlV4y7HUyYMAEqjU4hgIfW6gkiumlDwX8VM2fO9JGQK8IUkys3mixYcFtjbNmyBQzDwBxXHiE1uoKXjPAEBeOdd975UwumW7duBRHBnlkPwTW7gf0/9q4zOoqybd/TZ3tNstlN770XOoQqvfcivTeBUEIREZWiCFIV8QVRAQHpxa6vYhcrYEGRqoCIgJSQZK/vx+xOWBMwCBbeb69zOEfZKc88M7vM/dxX4ZVGuN5gxPPPP++z7cmTJ1GvoL5KphcNNrXhGN12PIjous+f1zXRWasL8qbuQkKPB8EwjA9RYePGjRAlqbzODghXBAexeYhpNxGmyHToDQacOHFCqZWJMMZgxGyTGVZBQIumTW/7/CxevFitw5NTUvH1119jzpw5YAUJuZO3IWvsWvA6MwSDDbaUehA0OlSvXv77VKNmLZhjc9UaOiivNQKCHD7nCAp2wlmzc/m6Sk4LxCckomfPXupc1Cuor8ZO3gl46623sHLlSp/40QMHDmDkyJHo168fNm3a9M8N7hbx8ssvg4gQftdQZE/YCGfNziD6YzcIP/y4E1DVepInP/zwww8//jTOnTtHHCeQxhZCRETawEgiIjp9+jT16tGD6nIcPexw0hdXr1Lvt96ixx9/nJavWEE9e/SgbT+dIDdA2ekZNHbsWJ/jnjp1ir777jsKCwsjl8tV5fF89913dFfjxpQIUH9BpOffe48a1a9PX+zfTyUlJfTJJ5+QXq+nrKwsYlm20mM4HA4SeJ52Xr5M1UWJviwpoR+uXqWwsDCf7Ww2G730yit08eJFEgSBRFEkIqIff/yRFi1aRFONJhqkN9Cx0lKq/9NPtHz5cpo0aVKl55QkiaxWKxUWjqerZW7a5wZ1PvMzMQxDU6dOpbZt21bp+r/55hvSchx10+mIiKi3Tk/LLv5G3377LcXExFR1GiuAZVlauHAhmc1meuCBB6ioqMjn8+g2haQNCCdrcl36ZG4HevXVVyk9PZ3eeust2rlzB8V2vpes8dXp/OEv6Z1V42jevHn022+/kUajoV69epHL5SKGYW5qTJIkUY8ePSr8vV6vp6SkJEpMTKTi4mJ6ZPZsunzlCrXr3JmWLFvms+2bb75Jr7zyMsV3vZ9+/vJ10nz1NnGez9wKIY8aNmpMaakpNHPmTLJarUREdOXKFSorLSXZpjybnCgTr7fShQsX1GMbDAYiIrp85jhpg6LIEJZKKCuj/U+OJJ0rgX75+l3S2MMoqc8j9O3a6QSgwrU0a9aMJk+ZQt+snU7m2Dw69dE20ukNdPG3C+QuKaYz+94kgpvMcfkkGGwEdxmVnDtFxqgA9RgNGjSgA/v30dq1a6mkpIRat25NpaWl9Oqrr9LgwYMpLy+PmjRpQg6Hgz7//HOqW7ceCdYQkgPCiWG/ocMvLqXQgt501F1GHX4+TeE8T9+UlZLI83S1rJjsGY3p4OnD9NXFX6lUL1NWQhRdOH+evvt4O+lDEsldWkw/f/Ea2dMbkiYgnI689DhpNBo6cuQIvffee8TwEjGcQEREvNZIRET7V40jhuXoh+++pxq8QFrPdzVDEGnH5ctERFTmLqOvny2ikgtnKSCrKR04/BnVql2brBabZ+wsETHESVoKKehFpz55kcounyfyfu8ZRplzhiPW7KSDBw8SJ+vIXXqVCESmyAw6++VrFBpkoxEjRlCvXr3oiSeeoHun30cnL1+i6jVq0jOrn6bXXnuNjh07Tt/sXEjnvt9LJRfPERFDxAukCYyi77c+QobwVCrTGGn06NG0aPFiugKeeK2JGJYjbWAEnfv+EyK46bej+2n/itHEa4xkjMwgXmukqFZjSLIE04k3n6H33v+QMjMzKTc3l3777Td65ZVX6KuvvqKfz5whhmEJcJNkcRARkTk2j0RjAJ14ey2deHstsYJMpuhcOv3xbhL1djr54WZKz8gkh8NBL+7e5XlaGDp/6FNl/+gcYliORL2V9M544s8epMGDB9O6devorrvuopSUFPUZKy0pJU4rq//PiTKVXrlIV8+foQMHDtCXX3xOCT1nkykyncquXqZPH+1GJSUltHnzZmrdujWVsRxZE2sRrzPTqY+2U1ZWFhERbd++nX768QRFthhFh196gs5+/S4REfXv359YliXZaCNrfHUiIgrIbEInP9xKGzdupFo1a1BOzkgaNWqU8m9Rr7tp34EDlBAXRwMHDqBWrVqTNjSFQho3p5/27iBOEOmHzXPIltmMfv3uQwLcFNf9ITq08QGaP38+LVq0SL22xx57jAwhiZTQ+2FiGJZ+2L2UHp2/gKZOnVrh+3s9bN++g4JqdiVHfhvlN+LUYdq2fTuNGTOmysf4u5GYmEhx8Ql0ZMd8sme3pAuHP6eSyxeoVatWFbZ1u920f9+XFN50GGkCwkgTEEb6yCz69LPP/oGR++GHH3744Ycf/6vYuHEjHTl2jPYEBFEoz9MbV65Qj3feoQ8//JCqV6/+Tw/vH8fIkSMpKiqKunTpQi+//DLVqFGDduzYQRERETd1nF9//ZVEvZkEnYWIytd8zp07R4GBgbd1zPv376e9e/dScHAwFRQUXHfN5t+KxxYuJnt6I4puraxvfbPuPlq4aDH17t3bZ7uysjJ688036ZdffqHc3FwKDw9XPzObzcQyDF05+CFd+vYDkojop+PnqGHDhjRgwAB6/PHHb3rt5M+gVq1a9Pjjj9OIESPpakkJ6V3x5MhvQ2cPvE1du3Wj+Ph4SktLIyKiLl270XsffUKRLUZR8dmf6MSedfTVs5PJnlpAP765mrJzcslkMlV6niNHjhARkS2lHjEMQ6aoLJL0Zjp8+LC6Tbt27ahL58709NNPk6C30ZWfjxIBFNOhiDhBJkNYCn0yvwe9//77NHr0aPrwww9p/rp15AYoPTWVVq5efdvnZ+jQoTR48GC6dOkS6fV6IiJq2rQpTZ48hQ4+fz8xooZKL1+gzFFPk2iw0a8HP6J3n5tCe/fupby8PAJADMupx2NYnuB2+5yjfkE92rh5G2kCw8ldWkK/fP4KdejflxYvXkxLliymsrKy687rvxW1atWiWrVqqf+/b98+ysuvRuBl4rVGWrFiBS1YsIBGjhz5D47yz6FBgwY0fPhwWrRoER3evYSIiGbNmkWJiYn/8Mj88ONvxN/Q+P/Xws9w98MPP24Vn3zyCViOgy2lLmI7ToEpIhVGkwmffPIJiAirrrGLT9do0LdvXwDAF198gaVLl2Lt2rUVlMNPP/00REFQFeM3o/ibP38+JJbF1w4njjlDsNOuZGgtX74cQXa7yv5s3LBhpYrlK1eu4OGHH0b16h6LcoYBEQOL2Yy33367SmP48ssvQURY77GBPxrsQpgsY+zYsdfdp7S0FOkZmZCNNoTU6wVzdDY4nscrr7xS5WsHgK1bt4KI8IjZgm+DXRimN4BhGHzzzTc3dZwbISszU53HDM998lqapw9/CgzDqpb7GzduVFTIY9eq+eLksXyWjVbwkgyJF8BzHAKs1gpW/bcbxcXF+OSTT7Bv3z6UlZXh+eefV8cX1+U+EBGayxoM0enBshwErVHJqtYZkZKa5vPM5FerDtlkR2TLexBcvQOIyId9XVZWhruaNgXHCzBHZ0HSmxHsdKF9+/YIdjoVm/KsprAm1QIRYcSIEZgxYwbWrVunWkqfO3cOgUEOMJwAYlgwvAAiBqGNBiJn0haENiyPDDCGJkEXFAmGYbBixYrrzsErr7wCQRChMdogG20QRQlvvvkmAMWyTmMOVJXmEc0V+0GDR+3MsBw4WaeekxUUS3bF3nsnDCGJaNasGb766ivIXrU1EQzhqcgevxFZ49aBiDBy5EhF1W9RFM221PoIbdAPnKwHsRx4vRVEDFhBBkcMZpnMeMJig41lwZBivc9wvGrjborORvrIVWA5zxglLQSDDUSEiGbDkT9tNzJGP6MoxEWtorAOS1HPwQoSzHHVkDNpC5J6P6KqvMMjInHo0CGf+SsrK8OVK1dw4cIFZGXngGFYyAbFPp/nlfvEihr12gWDHTEdpyC67QTYMxqD4wXoQ5MVNwKPOiQgo4lyviaDkdxvAfShySCWQ0BWU1U9wnEcSkpK4Ha70bZdOzAsB409DAzHK/PmUakLOhMimo+Ao5qiAJctTiT1m4+AzLvK1fQsByIGb731FoqLi6HRaKEJikL68KeQMWo1GF6EbHUhqc88xLQvAssL0BkMYDkevKSBIIjYsWOHOifTpk0Dw7IIymuNoNyW5c8Hx6v/7VVEZ0/YCF7SYM6cOQCAVatWQfBEBLAsi0cffVQ97pNPPqk4HIzfgOzxG1U3iG3btqn28tFtJyC7cD0CMpuAGAai1ghTRCoYlkWHjh0RExsH2WhVbPxMdlhtdrC8oD7jqYOXKcr2lBQQw0I02JHQ40HkT9sNU1gyunXr5nP/69UrgDkuX1UXhNTrBZ1ef1O/Q1abHYHZisNA3pQd0Dtj0aJFy5s6xj+BH374AbXr1IUkaxAWHnFD1UFoWDjM0VnInbQFGSNXQTZa0a9fv79vsH78LfDXkncO/PfKDz/8+F/EggULILGsGmn1usd96+WXX/6nh/avwt69e+F0OkFECAwMxPvvv39T+3vd8xz5bRDToQj6oAiER0TeFre6a7F8+XJViU9EaNuuneoceKcgJDQcQXmt1FrBllqA1LQMn22Ki4vRqFFj9TolSfaJ0ZozZw60HIfvPc/1iwHKmtYgnV59vktLS3Hy5Mm/ZX62b98OIkLasCdVhytOkDB//nz1ehiGUevu/Gm7Fbc0T62elp6BN99887pjPXnyJERRgi21ABkjVyL8riEgIp9a47vvvlPr5fxpuxHqccRLGai4CCb0nAUiwquvvqpG6WntoTC44kFEWLRo0W2dk+PHj2PKlCkYNmxYBRfKrVu3ItjpUt3rzHHVEFy9AxLvngsiUtdeHn/8cRAp8WtBuS3BshwKCwt9jnX27FkUeBwDiAgtWrb8n4vK6NWrF7Q2J3ImvIC8qbsQmN0MeoNRdXE4deoUtm3bhtdee+22/+b8VXj33Xfx3HPPqY6fR44cwUsvvYSvv/76Hx7ZzcPtduPMmTP/+tg7P/56+G3kqwB/0e2HH37cDjz33HPQel78A4Mc+O9//4srV67AoNOhuUaLbxxObLAFQPLYR98I3333HXiOQ0etFi8FBKoFxXvvvVelsSxatAgCy+KzoGAcc4ZgvU3Jhg51OpEmy3g5IAhPWmyQWFbNtfaitLQUjRo2hMCySNdowXpsmc1x1aALDIMka/DZZ59VOOfx48exefNmvPHGGygtLcWVK1fgcjiQJstYZbWp17Bt27brjvvAgQMgIsR3vf8ai14rioqKqnTdXrjdbvS+++7yphpRpRnLt4LIkBDUESVP05OgYRgQy8EcnQ1JZ0JEZBTOnj0LQGnOSJIMa0JNJPR4yJNFxcAYmYncydthCIxEAMtihtGMjlqlObtz587rnrukpARPPfUUioqKsHr16pt64fvhhx+QEFtuFV6vTh3s27cPkqyBJb4a4rveD50rHjzDQK9RmqVpQ5cjf9puJPdbUGFsx48fR/UaNUFEEEUJ06dPr2DrduXKFdx///1o164dRo4ciZ9++gmAUpCOGzcOEZHRiE9MUnO4ZYNio92te3e43W6sXbsWRIT0YSsUG/kBio280owmSJZgEBEGDhyoWPpfU7Dv2rWr0nnIys6BKSIVuZO3IbdoK4yhSaheoyYAYOjQodAFhCBv6k7kT9uNmPaTlO9PaCh4SYv0Ef9B3tSdSuOWYeGs0w1EBHNcPnSueDAMgyeffBKRUdE+z6Crbg9kjn4GjmrtFKtzpwuy1YXAnJYIzG0JhhfBsBws8dXhqne3aq0e320mbMl11eNYTSbUq1cAhmVhS60PfUiCh4QgIiCjCRiGhWgKQvb4DcibsgPWxFrgdWalqTpoqec4DBiWAzEsrMn1ENpAISyE1u8DnTNOPZdOb8CxY8cqncNdu3ZBo1VIBwwvIrrteNVOkVgeWkcMEro/CEd+u3KbeCKwvAiO48HLegg6izrPlvgakK0udXEiocdDnka9DdogJX6hS9euAID3338fROV2+Mn9lbgEa6JC2mBYDkQEjuNRv75SmOtDlWzFsMYDkdhrjpIJzyjbxXviAiKaDlPPb4rO9jTklXHb7XbIJjsy73kWuUVbYYnJQWhYOADg+++/x7PPPouEhAQwLAeG46F1RINYDsaIdGSNWQPZFgJeY4CjWjsYnLHQ6Q0+8R4nT57Enj17cPz4cZ95PnLkCAxGI4yhCQht0A96RyQCgxz45ZdfUFZWhi5duqhjZFgWLMcjY9Rq5E/bjcgWo9TPUgcvU3Lrhz2pLnp4t0vo/iCICHv27EFaega0NidiOkxGUH4bZQEnJRWzZs1S7f4WLVKyCoPyWiGkXk/woowePXtW9WcIAPDwww8rBJmINOgdkeA4Dq+//vpNHePfjhdffBGSJCuEC4ZBaFh4hfvrx50Pfy1558B/r/zww4//Rezfvx+SIKC+RoM5JgtSZRmOgAC1Fr3TUVxcjOXLl2PKlCnYsGHDLVmIHz16FOnp6UrNKcvYsGHDTe3/8MMPQ/BEBMbExmHfvn1/eiyV4eTJk+B4HoFZTZEzcRNiOkwGwzBYtWrVbT3PX42JEyeC5Xg4qrVDUG5LMAyjkoy9mDdvHliOR3zXGcgauxbW+OowGE1qpvnixYshsCw+CHLgmDME/7EqJPLt9gAwRBg2bBjMFmXdwGQ2+zTqf4+SkhIcOnTolmzG33vvPRAR4jwCi7Shy0EMg6eeegqAQkaXZQ0c1dqpsVw6ewg6d+7sQypIz8jEiRMn1OMWFxfj+PHjKCkpwXPPPacSsMlzjdc+794xpAxYpBC4J24CywvgJQ3MUZngRQk1atZCSUkJmjdvDr0zFrmTtyNv6i4EZDRG4O/s2W8FR48eRUBgEEStAfqgcBARHnjgAZ9tiouLkZySCpYXYYzKBCtqwAoynC4XLly4AEBZu1uwYAGiY+MQHhGFiRMnoqSkBL/99hu2bNmCDRs24PTp03C73fjxxx9x6tQpn3O43W4cO3YMhw4d+kcaoaWlpZgyZQoCHcEICAzC+PHj/1SER4sWLWCKzlbXIiKajwDDMLh69Sref/999VknIuTlV8P58+f/gqv56/DUU0+B48tFCEOGDMFnn312RxAH3nrrLSXWjwhGkwnr16//p4fkxz8If7O9CvAX3X744cftQklJCU6dOuXzkrdhwwZVoU5EqFW9Oi5dunTD42zatAlEhL2eZvmRYBc4hsGSJUuqNI4TJ04gwGpFlCShm1YHqyAgIzUVRIT5Zouqsi+QNWjdurXPvq+99hqIFDX+Nw7lhSK0QT+lYJi0BVqLA0OGDPHZ5+WXX4ZeW67gbVBQgMuXL2Pv3r0IcylsVo5lMWvWrBuO+9tvv1UK1/ZFngzwTZB0RkybNq1K130t3G433njjDaxatQoff/zxTe//R8jNykI1WcZjZgt4z3XLsoxWrVph1KhRFbLbNm/eDJ0ne16SZIX13HQYMu9RlKnLLFbVASBWljFo0KBKz1taWopmzZqDYVlozQq7u0uXLlVedCioUwchoojnbXY8YbFBJEJCQgKmT58OvUEZn0arw7p167By5UoQEbIL1yuq6FGrQUR44YUXKhz34sWLt8Qof+mll5R730G599FtClXG86pVq0BEyBr3vDKOkcr/yzYXIpqPUBTQDAuHwwFBo0fqoKXImbgZlthc2AMCsWzZMiQlpyImNh5Tp05FSUkJQkLDEVyjo1rMOPLbIDomFoDyHWAYBtbEmggp6A1Jb0aNmrXQs2dPmMKS1H1iO01VmphDlyP8riEQDXawHI8dO3YgKzsHOnuIxymAgSEi3afx7m2M8lojZJtLbQZrAiORN3UXbCkFaqM3vttMpaAf/hQYXsTkyZPBsixC6/dRVcGyLQSsIIHhRSXbO7GWOk6FFc/AmlIAXmMAMSyiWo9F3tRdCCnoXd6kZjmwoga81oS4LvchtuMU8JLWR4n71Vdf4ZlnnsGzzz4LjVYLc0wO4rver4yXYcsz0ImQ0HO2kqmW1RScrNyXrLFroXPFw2A0wWZTXDZsqQWIajUGvMYIhheRNnQ58qbugiVBIXFI5iBIlmAwDKPm4u3cuRNEhIyRK9U5YDgBtlQv452BMSoTWpsLoiSBYVkQw0EbFKXOS5xnrNFtxkNrc0KUNdAEhCF18DIk9HgQrFCecW8wmkAMA2tS7WvmdSgYhkHdunV9FkWICEm9H0HOxM0gIkS1GYf8abuRNXYtBL0VOr0BtevUxYcffljl78e7776L1LR06PR65Obl48svv1Q/c7vd+O9//4u1a9diyJAh0BhtKoEhqc88dUwZo1er4yAimC1WReWeVBuCrFWz877//nukpKapDXlBZ4EpKgsMy6JLly7qOWfMmAGL1QadXo8ePXtWqi4oKSnBd999h9OnT1f4zO12Y9WqVWjTpg26dOmCt956q8rzcSfhq6++wsKFC7FixYo7KkfQj6rDX0veOfDfKz/88ON/FTt27IDLobhlJcXFYe/evf/0kG4Lrl69itp16oJlOWhMSu0wdOjQWzrm+fPn0axZM/Udec6cORVq6RvV1sXFxWrz73bDSyj2NlPzp+2G1hyIyZMn3/Zz/ZUoKSlBYWEhAoIccDhdmD59eoVGaP/+/WF0xarXGd9tJogIP/zwAwDg9OnTCHU6ESgIaCLLkIlQTRQxzUOuF0UJltg8xHaaCmt8NYiSjIMHD1YYy759+3xI8IMHD8bmzZtvqDKvDGVlZWjUuDE4QYQ5MgOi1oDYuHifpufUqcr6gGx2QDYFQJJkdOvWDbwoI7rtBMR1uQ8akx1N7lKy09esWaOS1602G15++WUcPXoUu3btwueff64e9+rVq3jsscfQp08fyBotTJEZSLx7LoJrdAIRoXPnzujQoQOmTZuGixcvAgBq164D6zVrAqH1+0Cr01X9Jv4Bxo4dC0lvVl3qgqt3AMfzPmudu3btUmtjhUw/S/0OV+aw6cWJEycQE1suALDZAyoV/Fy8eBEtW7VSt8vOyVWFHX8XZs6cCYZhEJTXGo5q7cCy3E1/X8+cOYMozzMa2qAfYtoXQWMOQM1atQEAUdExMIYmIGPkSiT2mgNB1lZQ//9VuHr16p8iD1yLQ4cOgeN5BGTehZRBSyFZneo9i4tPwAcffICePXshKycX3bp1x9GjR2/T6G8dp06dgtFkgik8FTHtixQhCy/giy+++KeH5sc/BH+zvQrwF91++OHHX42vv/4aq1atwtatW6vE3PMWWQ97GuOrrUphuXnz5iqf86uvvkKbVq2QlZaG3r174/Tp07BbLGiq0eJQsAvvBjpgEwQMHz7cZ78NGzaAiPBpUDC+8DTbo9sUeiyyd8HgjEHv3r3V7UtLSxFgtaKOrMGHQcF42mqDyLLo0aMH5s2bh927d+PIkSMqc/VGcLvdaNCgIQRJi4DMJtA7IqHV6f+0/bvXbvqvwMsvvwyB5+EQRZivYWjWq1fvuizTS5cu4ZtvvsFvv/2G3Lx86OwuteF3n9GEY84QfONwwiGKuOeee3D06FG88847Po2qHTt2eBjV05WmdNsJICLMmzcPbrcbhw4dwtNPP41NmzZVWsDotVpMvuZcgddY1NktFmzbtk1lkx85cgQ6vR6m8BSE3zUUxpB4mC1WHyLBxYsXcfjw4VtmpP7nP/8BEam21tkTFOv95557DseOHfMoexMR1mgAdI4oEMMibcgTSvPQY8tORNAGRSGy5WjI9lDwWpP69+a4fARmNQXLchg/fjy6dusGSWdEbMcpiOlQBFGjx93XPNdr1qxBeGQUDEYTWrRshePHj6NRo0ZgWB6SJRih9fvCEBIPluMh6c0wBEUoZJb587F+/XqlYE6qi/RhK0BEiO00DalDHkdE85HgJB0YjgevNSF7/EbkTd0Fe3ojjzpdgmRRvnd6vR6cKIPXGBCU2wqawAgQw6pKba8KO2/qLuiCYxUbdYZRjsNyiGo1BvHdZkI0BoAYFrzODNkeBmJY5E3d5bGVX63OUWPP4oGzVhe1KA/MaYGExGQAwLPPPuvDRiYiZI5+RnWhIIaFNihKafgTwRiVDZ0zDpykgz4ksbxJ3XQoWI7DmTNnMHToUMiy4qDAcjyI5cCwvGJhz7Awhqchb8oO5E3ZAXN0FkLDwjF79myMGTMGxLAwRWcjoceDCMjwqAU4Xmm0R2QohJ1JmyGbFFKKo1pbcLIeGaNWI2/qLjjy24JhOeRM2ozI5iNVoon32lhBhsbiBC+IMDhjYU9rAFaQEd91BlIGLIRsc4GTdaobgWLvzqgNdp0zXrG31xiRPGAhkvvOhyBrMX78eLjdbsyfPx/Va9REQUH9G1qR3wxef/11EBECMpsgpn0RDMHRCAxywGqzwxAcg9AG/WBwxcFktuCjjz5Cnz59UK+gAPfcc4/P79aHH36ozIGoUeMvvCr5w4cPV2ksBw4cQFR0jDqfw4cPr7LaoLS0FA8//DCaNWuOnj173nbVkB9+3E74a8k7B/575Ycffvyv41abIv82eCOTEu+eq5JdiciHePpnUFJSguHDh6vvqQMHDkRxcTHuv/9+GE1mSJKMzp07/+XqUbfbjS1btmDWrFnYsGEDfvzxR0XZnt0MORM3I7bjlDtS2V4VzJo1C5wgIqn3w8gt2gpbSl1otDqfNYyjR4+if//+iLvGmY+IVLKEl4zvXTt4+umnfc5RVlaGqOgY6IMiEN91BuwZjX0c1+rXb3DDpu/vceXKFcycOROdOnVCYWEhzpw5o3524cIFpGdkghgGnCCDiDBhwgRk5eTCnt6wPH6rfm8YjCZ8/vnn4HgetpR6iOs8HeboLGh1eh/Vu/caWrRU7NWNzmgl0uya+LHruWY+9NBDYFgWIfV6IaL5CIhaA9q2bYc9e/YgLzsbIUEOtG7RQnXdulnhRO/evWEMia8gRPjxxx/VbdS4wjFrkDpoqRpTR0RISU3Dzz//XOmxe/ToCdloRergZcgYtRqG4Gjk5OZV2G7MmDHgRQlRrccittM0yAYrmjVrflPXcatITEqBPb2Rz/pJRGQ0fvnlF0yZMgV9+vTBwoULbzi/HTt1gqg1wBiVpc5PYFAQjh07hqtXr4KIENlytHoOS1w+7vIQNrz46aefMHfuXEyfPh3vvvvuLV/X1q1bERYWDoZhwHIcBg4c+KfX/LwRDBmjViuEBEFCTIciJPScDY0lEBqdHrLRCnt6I2hMAQgLj8Cvv/56y9dwO+AVeaSP+I8aCcpy/G2PZPDjzoG/2V4F+ItuP/zw498Gt9uNPn36gIgQJClW5c2aNLnlLKoNGzaA5zhoOQ48wyAyLMznZRgADh8+DI0koZFGi1UWK6wcD15jRHiTwUoe8O+UzT/99BOICE9abKoK3+LJKOYECUSEMWPGVHmMFy5cwNChQ5GemYW7mjb9U6r0EydOoKBOHTAMA6Ne75N/fDvx8ccfo7CwEIWFhXjyySdh8CjDc3Nzr1s4eHHw4EFEx5QXjSwRmsgaREsSdBoN7rnnHjXfSxBF9WXuyScVC+jcyduUwrJwvXqMFi1a+GSEp2dkVvi3LSosDHUkCd8Hu9Bfp4dEhGesdrwZGIQMWUZ8dLTP9m+99RZiYuPA8TwSk5J91LhLly5VbfTsAYFq7tafwaeffgqGYeDIb4PUIY8jMKcFWJZVm2yvvvqq0pT12PVfy/hPGbhEmUNeAOMpnq1JdRSb92tswG0p9eDIbwuL1Ybjx4+jRs1a6md16ta94Qv90KFDwXIKG9cUla00ZjVavPDCCxgyZIiSgc3x4D0uFoLequSJB0WCWB6SKRChDfuD4UVwGoPK5g2/a6hiE9ZMyYUfNmwYBg8ejB07dqjFqWR1geEEsKIG5rjqELQGSLJiweaq0x22lHogIsS0nwTBYAMradWmr1edzAoS8qbuQnhTZYEqrNEAZI55DkF5rUDEqN+RlNQ0mCLSkFu0FTkTN8PgjEVBQX2cP38esqyBPbUAORNeQGiDviqJ4NqIAe/cy7YQdc6NkZnKORsPROaY56BzxiHK4yIAAA888ACICDpnPIjlPY13DkaTxSfrz1GtndKIlzQghoUhLBWc7GmOMwyMUVnQBISDGBahjQaoRARtUJSHNDQBoikQrCBDNCoEJlfdHsibuhO2tAaQZA3Onj2L2bNnw+UKgSjJyMrOUQlHORM3wRCeql4nJ+uQ0EOxX4/vNhOm6Bxog+MgGuwgloPOGQdXne4K2cFDasnIzMK5c+cwY8YMEBEsCTVhjEi7aTLVjfD444+rBIaIyCh8+umn+PTTTxULPw+hQZLlGxaIS5YsARED0RigquS9GYBVaXy73W7ExSdAFxiG+K73I7ShElOwbNmyKl3DwIEDwbAszDG50Nqc0OkNd2S2mx//P+CvJe8c+O+VH3744cedhblz54KXNCpROH34UyAivPTSS7fl+PPnz1dr7sREJVbKkd8GoQ36QpC16Nip0205T2Vwu93o31/J3BY0Sk3TsVMnPP744z6Z7W3atr3jMturgkuXLqlxdEQEnhewdu3a627/2WefYc2aNfjggw9UxXRirzmKm1fvR0BEFazkT5w4odSsne9F3tSd4HVmGCPSkTFqNeK73g9OECtYn98sLl68iEOHDuGBBx4AJ0hIGbAIeVN3IjCnBXhBQOMmTaAPikTOxE3Im7IDltg8RMXEYsmSJWBYDrmTt/u4CP4+dvHtt99WrqHjFB/nskcfffSGa06lpaXo3Lmzsn5CBIvVho0bN0Kn0SBLljFCb0CwKCImMhJJySnKWkyw84axj9dixQpFVBBavw/iu94PfVAEomNifcjVx44dU8QbkemQLMHQBIQjffhTSO47H5LOhAEDBlR67MzsHARkNC5X5TfoC73B4LPNK6+8AmdIqC+RoaA3jCZzlcZ/u5CWkenjIGBLLUBUdCxi4+IhyFqYQhNUh7jrCYECghxw1u6qiAUmvAB7an0kJqWonwc7XTBHZyNn0makDXsSks6EYcOGqZ8fPnwYgUEO8KIESW8Gy7JYtGgRCgsL0atXLyxZsuSmLPYfeeQREMOBYTnIthA4qrUHw3I3He/pxeeff66uQRlCk2FLKVDny+4RTaQOWqL8xnvEKuvWrftT57rd2LNnD4gIcV3uU2IZhzxeKbHHj/8/8DfbqwB/0e2HH35UBS+++CIGDBiAoUOH3lZbtpKSEmzatAnLli3DJ598ov692+3GunXrMG3aNKxcufK2sdQ//fRTzJ07F8uWLbuupe327dth9jSOtbKM1LR0cDwPs8VaoUFTUlICo16P5hotvgt24V6DoiaO6TAZeVN3qRnOn3766W0Z/x/B7XajWm4uHKKIB01m9PQoVW82j+3P4KOPPoLNpmSJJSUlqSxht9uNZ599FuPGjcP8+fNVa6/i4mJ8+umn2L9/P2bOnInGDRuic+fOauHirNkZKQOXwJpUB8Qw6N27Nz7++GPFpiq3JVIGLIQ9vREYloOrTncQEQyueGSP34jk/o9BkLWYMGGCzxg3b94MhggmhgFLhGxBwMeeuIJHzEoO1JUrV1BaWor169dj7ty52L17d4XCwFv0BWY3Q3zX+2GKSIPJbL4lm+THHntMXVjgOA5LlizBt99+i2+//RYNGzaEhmGwzmbHKwFBkFgOnKiFJaEGOI0Bgie/Xa/XwxCarLgwhCZDNAUivusMRLYYBYblwcnKc80wDBITE9GrVy8UFhbC6QqBJMmoW68AR44c8RlXWVkZJEmGq26PciW5J9f88ccfR0hoGHitSbVx88YupAxYpDLnozzsc9FoV9XsgVlNwfAiYjpNg8YShPxq1bFo0SIkJSXDFRKC1q1bo7CwECynFDpRrceB5aXyJjrLgVgOvM6MyBajkDdlByRLMAIy7wLDi7CnNYQ5Ll+5Xo5HxsiVsKUUKAp4VRnAgGU5jBgxAvfccw+WLFkCQRAhGyyQdCbIGi3ee+897Nu3z0dVkjd1JzhJA4ZlYXDGghMkhWHvaZYTwyK4evtyR4ywlHICAMNi7Nix6vw6nC7FMp5hYY6rjohmwyFbndAbjOAlDSKbj0Rky9FgeQmW+OrIHq+4b0S3m4CEnrNBREjo/oBCPhm/EQwngJe0iGg6DAFZzXyuVWMLBsOwYFlWcRfQGCCZFcvNkNCwCs+k2+2GXm+ANbEW8qbsQPrwp8BJWg9RYghyi7aCFTWwJtWGPiQR1qQ6sKXUUxTzE15QnoP+C0FEaNq0KV577TUAgNVmh84VD01gJDSBkRBNgSioX/9Pf3d+j5KSEpw5c0b93paUlCAmNg46ewiiWo9DQFZTEBF2795d6f4bN25U582e1hBRrcZAsgTD6QpBcXHxH57/559/9hBAitRC2hSWjO7du//hvmfPnlWLce+Cg2y03RRpyw8//k74a8k7B/575YcffvhxZ+GNN95Q6uJaXZAycDFsSbUhSXIF9e+tYMuWLdB6IvFYUYOMkas8Db5+kCQZbrcbly5dwsSJE1G3Xj106dIFBw4cuOXzvvPOO4pitflI5E/bjZj2k9T38y+//BJPP/00Xn755X8kh/rvQnFxMTZv3owVK1bgiy++wKJFi9C7d29MmjSp0hgqL65evYrqNWqCFyWYwlPAizLy8quhuLgYly5dwpgxY5CZnYMGDRuCZTkE1+ykRml5m9b503bDFJ6Cbt263dSYv/32W9x7770oKipCUVERRFGpzyVJgj4oQj22l6i8efNmaHV6SDoTNCY7WI7D5s2bsWbNGh8Bgdfx8O233/Y53/333w9iWIhGO2zJdZFxz7NgGBZLly694TiPHj0Ko8kEvTMWzlpdoQsIhdFkgo7j8Y3D6XHQtIEYFvqgSEQ2HwlLXD4EQaySRbbb7cY999yj1owRkVGVkrJff/11Je+aYdT6TmlK10d+teqVHrtr127QmAKQPvwpZI1dC4MrDplZ2ernXrI+ywnQBIQjZ9JmhcgQVw2R0TF/OPaq4uLFi7jnnnuQk5uHFi1aVCoEWr58OYgI5tg8WOKrg4jQqVMnsByPtKHLkT9tN6JajbkhaT0+MQmW2FzkTdmB3KKtMIYkoE7deurnM2bMAOdx8CMixMTG+WTXDxw4EBqTHZn3PIu8KTtgS6kLluMhag0whSaCYRj079+/Stf8ww8/gON5aB3RcNXpDskSDMkSDHtqfaSkpt/U/F2L0aNHK+tSLAfJ7EB24XrkTt4OXbDihJcx6mmfyLtnnnnmT5/rdqK0tBQNGzYCJ4gwRaZD1OiRkJhUaYSeH/8/4G+2VwH+otsPP/z4I6xerbBM42QZoZIEURAqvAT/GRQXF6NBPUWVyhCBZVg8/vjjt2HEt47i4mIcPnxYtRS/UZG3fv16CDwPhsqzqL3sc28m+e9Zxn8VvE2ehebyDPQUWfaxvv8z2L9/P6pVrwGD0YT0jEy8//77lW63b98+OJ2KajkyMhLfffcdBgxQCAcRsgyRZZGXnY1ff/0VAwcOhE6jgV6rxahRo1RCxbx588CLihI5fcRKGCPSwbAciFFy7xcvXqwylBmOR1TrsWo+dGB2c7WAMUdnoW3bthXGOGjQIPWZIyJwRJhuNKGhRoMgux2vv/46qldXCgXB01i8tjkKAA8++CBEjV5VvaYOXgYiwoMPPuiTL/Z7FBcXY/Xq1ZgzZw7eeOONCp8fPXoU//3vf7Fv3z4fpjtDDJrIMo45Q3DMGaJmtTHX2MCNHz8eLVu2hCEkAblTdoAYVrVaz5+2G+a4aiCGQ0SzEQhr2B/Ecp7GKQNDaDLCGg+ExhyI5JRUH/VAWVkZRFFCSEHv8uZxaDIEvRVxCYoCIrbTVCT3ne9TMOdP2w1Bp5BPXrIHokCSYYrKVD/z2nITKTZqI0Yo6nZTdA60jigQMdDpDUpGOyeA5UVYEmoiddASuOr2UBvXnKyHq053mGNyld+pbvcr1u2hyepzodcbIEgacKIMQ1gKUgYuQVzne1WShsYcBI05EDwvICUlBaGhoWjQoIFq0Xj+/HlIkgx7Wn3kTHgB8V1n4Fr1vEarVXPLGUEGwwlw1elevpARkwNtUBSiWo8DwwmYP3++Or/2wCDoQ5PAa4wqs9/L2K9Tt275M8BysCbVRsqgZRAMNmgdMYhqPU4ht3hy4LLHbwQniAgNDSsnJHga7cSwsNnsWLhwIaKiY2CKyoazVlcE5bWGNiAM9eoVVHgeDx06BEmSFFKCKCvkCZZTiledERHNRyjPlY+TgHKurHHrPEqLh5Xvmcfp49FHHwXHCyCGhWwPVcbIsLBYrH9Z7MW3334LIkWBrxJG7C6MHj260u2vXr2KuvUKwHgiCYiUjPcvvviiSmMsLi6GIIpw5LdF3tRdyBq7FrLBglGjRv3hvsePH/dZCMubugsaeyiio6Px3//+92Yv3Q8//nL4a8k7B/575Ycffvhx5+GBBx5Q1eeyrLkpEn1xcTEeffRR9O/fHw899JBKev89Pv74Y887P0HQmZHcbwEc+W1hMBpRVlaGZs2bgxMkWJNqQ2tzwmyxVDla6XpYt06JQssuXK+8805R4uKWL19+S8e9E+F2u9GzZy8wLAtTaCJEjR4RkVE3JPJfvHgRM2bMQPfu3TF9+nS1+dWqdWvwogR7eiMYnDGeJiVBH6g4oFkSaiK3aCtSBiyCIGsxZcqUKo9z79690OkNkHRGiFplPSIgqyniu82Exh6qkOxbjUHasCdhjs6GyWzG5cuX8fXXX2PKlCmYMGEC3nvvPQDA5cuXkZGZBUHSwBSWqKjc8/KwadMmNXf8s88+gyCK0IckIbhGJ/AaI3idGQzL4rPPPsP58+dRrZqSV6/T6dW4MkBpAjMMqz5fXkWuluOw39Nsn2ZU1iq8quLcoq3gJQ0eeeQRdYyVWYdfvHgRX3/9NS5cuIAzZ87g+++/v6E4yO12Iz4hEcawJGSP34iMkSshGW0oKKivrjdei6NHjyI8IlKtr01mi9ro/umnn8AwDJw1OyOp33wwvAheY4RsCgDLsti4cWOV7+eN4Ha70bRZM+VZSmsIXVAEtDp9pW5rTz31FKrXqIlq1Wtg2bJlmDlzJiStsXytbNCSSokUXmzatAksy0Jnc0JjDoQgiKpr5JQpU5TfPqMNDMshPCKyQi598+YtYI7NVddevM39tGFPeeI3hoCIqpSFrqw1ssgev7FcQEJKXGP1GjX/xEwqcLvd2LVrF8aOHQutTgdBo4NssIDlOBhMJhiCoxHaoB+MrjiYzObbSqi62XH+8MMP2Ldvn/rsX758GTNnzkTnzp0xYcKEWxIY+XHnw99srwL8RbcffvjxR4gMDUULjRZHg134LtiFVElCs7vuuqljXLp0CdOnT0f79u1RWFiIX375BYsXLwbPslhrs+OHYBd6aHUQeN4n++lOwf79+/H444/j3nsVRm5Iwd3IGPU0gnJbgmVZfPvtt3/LOH777TcwDIOJBqOaS+4UJR+bpZvF2bNn4Qh2QhcYjpD6vWEMSYDBaKyggPbi+++/R3R0tFJ8BQSAiPCAyYxjzhBstweCZRg0bNgQIstijMGIUXoDOIbB1KlTAUBlOcd2vg+SOQiiKQjB1TtAtroga7Q4efIkUpOTQURwVGuHzDHPwVm7q1JEuuKRNXYtkvrMgyBrMWnSpArjO3DgAFiGQVetDi8FBKK3TlH/8xyHKM+4iQi81oS0IU+o7gTXMpyXLl0KhmGROuRxnxd6758JEybg119/xaxZszBq1Cg8++yzuHz5smrd7m3iz5o1q9I57N6jh5Kp3mkqotuOBxHBwnHYE+jAt8Eu1JYk6DUaHD58GLt378b+/fsBKNlSRARzdDZYQYItpR7ypu5E9viNEE2B0ASUs81tKfWgCYyEzpUAfWgy8qftRnzX+0FEFYqoPn36gOF4OPLbwpqoXIMxIl3NpI5seQ+yx28AJ2lhjMpCcr8FCMprrZIadAyDLF4AEYOwxgMR61GzZ2Xn4PDhw5g9e7bS9A9L8ViWb4bWEQOG5VG/fn3Vrt/Ljs6bugusqAGxHCwJNcFrTRA92eQ6Z7xKxjBGZqj/HRIahrqe5nVQXiuENR4ETtKBFTUKi3ryNuhc8eAkHSwJNcEwjI+a+NlnnwXHldvyS5ZgpI/4DyRL8DWNZhbWxFqKap8TEFyjo5qnbo6r5hkbi5dfflk97siRI5WmLi+q+eAxHYpU9neXrl0VS/G4apAswWAFGbqgaLUJ7M2jD67eATpHNPQGg6KCYTloHTGI7/4AXLW7KXOjN6jXQkTQO6Kgs4eA4zhs374dY8aMQU5uHpo1b46PPvoIS5YsActxSLx7LkIb9lO/Z6LODIdDUcSLooThw4djxYoVSElJ8RADeEgWp2IfqDFAMNqRM2kLgvJaq+4N3sZ3QvcH1flr1qwZnnzyydvedPfGfXhjC7LGrYOoNai/OZWhuLgYS5cuxdixYzFr1ixUr1EDDMNAbzBi4cKFf3jOOXPmeBa2wiBqDbAHBF73N/NauN1upGdkQmMORETzEaoKXzYHgeM4vP766zdz6ZXi/Pnz+PDDD6s0Hj/8+CP4a8k7B/575cedgLNnz2Ljxo144YUXcPbs2X96OH74cUtwu9145plnMGTIEEybNs1HjXkzOHbsGN57772bWicpKytD87vuAs+ySNVoIHMcquXmVtrcA8prcG99QUSYPn26SlqNbjtBjXETNDrcf//9f+pavNi/fz9YlkVQbiukD38KwTUVl7QPPvjglo57u+BV9P8d+Oabb5SausUoxUp6xH/ACaIPQbsq+PHHH9WGd/603cidtAUakx0tW7bE0KFD0b59e/DXRM+lpWfc1DtBs+bNoQuKQM6EFxDSoC9YXipvqA59wmc9RKc3/GHcwfnz5zF9+nR0794dUVHl6zAGoxFvvPEGioqKIBssyC3aquSie9Tvs2fPhtvtRlR0NBiWhyWxlrIWwLCYOXMmAKUBTAyDzHueVWLf+j+m1GYaDRJECa1lDfTeurTrDMXKfvRqsByPuXPnonFjJUKS43mMGTNGFd9s2rQJWp3ilCdJMlatWlWluduzZw/0BoO6NuH9jmVkZlUa53fu3DmsW7cOzzzzjE/jde/evSAiJPedj/xpu5E25AkIsg65ubm3RRDlxQ8//KB879sUKm5rEzdB0psxefJkAMq927RpE9avX1/BhcHrAhmQ1RRxnafDEJIEvcGoXufOnTuRk5uH6JhYDB48GL/99hveeustDB8+HKNGjVKJBceOHQMRwVW3p6fxvRAsx1eoxe+77z5wvIDothOQ1GcetAFhYHlRFUAl3j23wnre9bBs2TIwDKuuy3hFEESELVu2qNudOXMGe/fu/cP4zOvN7QMPPIBp06bhww8/xKefforsnFzo9HqkZ2T6RFf+nbh69So6duyoXm9UdMzfto7tx50Df7O9CvAX3X744ccfwWwwYLyneXvMGYJ2Gi2q5+ZWef+SkhIU1KkDmeNQS6OBkeeRHB+PESNGIFLWqMfdYlcas5999tlfeDV/PbwWQV5F6fWymP4qDBs2DAwRCmQZUZIErSyrCt0/gx07dvg0OrPHbwAxDJ588snr7nPixAm18UZE6KLRoqEso7WsgY7jYDYa0U+nV+99Z60WUWGKjfXVq1dRq3YddV9vQztzzHMgIqxatUq1q7r2T1JSklr4EBGyc3Jx/vz5CmNbvHgxiAhfehjN3wW7QETIycmBqDUg8e65SB28DBp7GPSuBDU/bMeOHeoxFi1aBIblwAoytI5oEDGQbSHIGP0MQhso+cx2iwUsw0LjadAWFBSA5Xgk9pqDvKm7EFyjExiGqZS1GhYeCUe19mpjnNMYwHuaqxwpFvjXPlf79+9H48ZNEBUdi9y8PKRnZMLpUnLDtbZgiDojiGFhispC7pSdCK7e3odUwPAiYjtOUZXSv1cqXL58GTk5OUpmuNYEY1QWGJbFvffei9CwMDAsD1tqgVrkegtIQW+FMSJdbbpfe78iIqNQs1YtxMXHq3/HCrJSYIcmQxscU34szx+v9ZpXLc1wgspWV9TmBIYXFLt5j6V7YHZzRLYcDa3VgeSUVERFRanHZTglYz64ZifkTd0Fe3ojyNYQT0Z6e7Ash/DIKNSoWQvvvvsuIqOiIWgVBnzmmLUIqdcLDC8iocdDyBqzBsbITDAsj8TeD8OaVBsMJyhWYRYneK0Z2uBYEBFWrlypzu2vv/6Krl27gmE5iAYbLAk1wQkSGjdpglOnTvk0ibMnbFRiAwQB69atQ0BgIGSLAzpXgmKPz7CYP38+vvrqKxAREnrOUp8hyRIMm82unnfXrl3o3bs3+vfvjz179qB5ixYeFURD6B2R0Gh1mDFjBhiGReaY53yKTdkWAlmjVe/LuHHj4Ha70atXL4VYEF8dktkBxnMP4jrf6yl0Hy7/fnrY4jkTN6m/lVp7iHq8a1FaWoqPP/4Ye/bsua4i5/c4cuQIVq9ejfXr1+O3335TCCMsC3NUJkSdWbFCM1vQoGEjHDp06LrHKSsrQ1p6BrSWIJ/md1XcSrZs2YLhw4djypQpOHbsWJXGDShqBi8xh+EFhDcdirwpO6ALjkFKSiqGDBmCOXPmVHkursVrr70Gk9ms3ocxY8b8ZY4Cfvz/gL+WvHPgv1d+/Nvx7bffIiS4nMQY5nLhu++++6eH5Ycffxrjxim1VaJGAwPPIyI09Ib24LcT//3vf0FEWGGx+ay1rF+//rr7bN26FYGBCoGZYRjMnj1bzRtO6PGQqkCXjVY0bdoUS5curZJa1Au3243169dj+vTpWL16NRYuXAjWUyt7z/dvwHPPPae+L8fFJ/zl61Pvv/++0kDt/5hKLJcNFtx77703dZwjR46ASIk09N4rrS3Yx11r3759WLZsGdauXXvTZIJrs8QVsQGjqsK9AoF169bh1VdfvS6x5PLlyxUIH9OnTwcnSIjv/gAyRj0NU2Q6ghzBKCoqgqQ3I3fSFqXZ3lFROX/zzTf47rvvlIZgm3EqCYQVNQgJDQUAnD59GoFBDmhtTgRmN4dstCI+IREbNmyAxhO1SKSoxjlBgiWhBmSjDU5XCBo3bgLJ4+LmqtMdDMPgkUcewQ8//ABJkmFNqImEnrNhT28IluNu6Gx4LQ4fPgyL1QqNPQRpQ59Ect/5EGQtevbsiQsXLlTpGOfOnYNOb4AlLh+pQx5XHAuJ0KJFC6xatQrnz5/H008/jccee+yWoiy9BBBvVnfelB3QmAMwfvx4HDt2DJHXkCPsAYEVGtmFhYXXuFEK6jre22+/DZbjlHuc1wq8pEGr1q0rHcNHH33k873In7YbWktgBUHNlStX0LJVK5/xECkCi9hOU2EIjkaw04XLly//4XX/+OOPsNrs0NhcCMptCV5jhCBKPo4iK1euVMUgvCDgqaeeuvkJ/hdi5syZYDkeUa3GIKHnLOjsIcjKzvmnh+XHvwz+ZnsV4C+6/fDDjz9Cu9atYRUELDBbcL/JDJ4IMTExVbZG9xZ6z1jtOOYMwWsBQSBPs5AhwmKLFZ8EBaOVRguNJFXK7LxTUFZWhtysLNgEAR01GtSSJLAs68MyLSkp+VNNkpsZw6OPPormzZqhe/fuVX7JLi4uxtChQ2E2GGA3m1FUVITS0lK89NJL6ktu3tRdiPDYf/fs2fOG13HmzBlkZWWVs5uDY6CxKnlVQXY7WnqIFkeDXSiQZPAMg48++giAJ4fMY+WuNts9lvyrVq2C2+3GggULEOZ0IsBiQe/evVFcXIyjR49i3bp12Llz53WzldMzMkFEeMxjtf+kxaYW0va0Bsgc8xyi202APa0BGF5EQFZTcDzv05AbPnw49AGhcNXtAWOUcryMUavV4th7zeaYHBjD08ob254mr94Wgug2SkHqveZrkZdfDcawZOQWbUVu0VbogqMhSrJ6nJYtW6lWZd6CQBcYBkd+W2jMAYiOicXFixfx6quv4p577oHZbIFoUDLpBYNdZQjHdpwCyRwEhleKBZbj0bJVq0qbbyUlJRg3bhysNjts9gBMmDABpaWl+OCDD2A0GtUmbGzHqbCnNQQn69VGuNcdwFVwN1iWxfPPP6/knYcmQjQqCz/B1Tsgb+oupaHLsCBiYIxIR3bheiT1fRSMxwKP15mVzxkWjCBDtochIPMu1eZctodBNAeBiAGvNauM5thOU8uL6lgly90QkQZNoGLRJugs6ucBGY0hGAPAyXo4qrWHwRWvNpe96u7QBv1gTa6rugJcuwDg/WO1KXMd3/V+n+y67du3A/BEJgiehr/ThebNm6N+gwaYNGkSLl26pC6YxHaapj5bWrsLffv2xYEDB3wa6nlTd0Fnc2LMmDFqkz6k4G6FpT9yJVhevG4mn/c83sWKnImbIenNGDlyJAICgyCZAhGQeZdi3ae3Ks+wMw6JvWYjpH5vEBGeffZZZOfkwhiZgZyJm5A/bTeCq3cAsUp0QfqwFbDE5kGn14PnBViTaiOhx0OwJtdViCuiFgHZzRQCA8OoCzTnz59H7WvIN6Fh4ZXa112Lt99+W1EOePaJi0/Ajz/+iHnz5qFx48bgeAHGsGSE1OsJrdWBqOiY6y42VWbrbgiKwKBBg244htsBSdb4xDcIBhuIYWAIjgIniMjJzbuuOqky/PbbbzBbLDBHZiC5/2MqMej555//C6/Cj/91+GvJOwf+e+XHvx1NGjVCpCTh7UAH3gp0IEKS0Pwm3dT8+Pvgdrvx008/VUpu9kMhQxMRRuoNOOYMwXuBDuh4/pYV4VXFpk0KofWjoGAcc4bg+2AXGCIsW7bshvuVlJRg2LBh6nt0//79ERMbB601GOFNBsOaUAPkIX9zDAOL0YhPPvnkhsf8+eef8fbbb6N9e4XwbRdFMERo1aIFvv/+e7zyyiv/GmLNBx98AJZlYUuug6jWY6F3RCHY6fpLM4ovXLgAmz0AxtAExHW+F4HZzUFEN+1o5Xa7kV+tOiS9GSH1esISVw0sy962KKoRI0aAlzSIaT8JsR2nguVFsLwIkysWDMuiY8eO1yXxXrhwAW3btVPWHFgWffr0UddrOnbsCFNkulpTx7SfBCLCnj17IMkaGEMT4MhvA1FrQK1atVFWVoYvv/yyAgmE15nhCglRz3nw4EG0at0aySlp6NK1K3788UfUqFkLWpsTib1mI6ZDkRJfmJeHxo0bo3///jhy5AhEUfLJV7fEV0ODhg2xceNGEBGyxqxRnAMmbwMR4YknnqjS/F25ckWpuT3OA2o0HhGMJhNeeeWVKh1nx44d5SITT+yZ3q4ISMxmZU2D5QWwHIfnnnuuSsf8PUpLSxW3NZMdofX7wBKXD5bj8O6776Jz587QmAKQNuQJZIx6GnpHJKpVr+Gz/1133QVdcDTSR/wHuZO3w5ZUG6Fh4Rg0aBB09hDkTdmhRAs2HwkiqtTJ5ty5c9AbjLDE5CBlwCKENugLIsILL7xQYVu3240DBw7gww8/xKVLl/Doo4+qDfHwiMibIh4cOHAAzZo1R0JSMjp37uxjW3/gwAGwHIeAjMZI7rcAARmNwXLcdfPo7yQ0bdoM5ti8CrGPlUUp/BlcuHAB69evx+rVq29KiODHvwv+ZnsV4C+6/fDDjz/Czz//jHq1a5c3olgWWaL0h8xoL7Zv3w4iwruBDlVJzDEMFi9ejI7tyxW2oketeSfDy7D1MsgPB7vgkiSMHTsWbrcb9913H0TP3FWvURPHjx+/4fFef/11DB48GMOGDfvL7YRGjRoFkWUxUm/AQJ0eDCkZ5JcuXUJiUjJkgwWawAjPM8BBYFnkZmXdkBF99uxZNWOO4QTEdpwKjc2lNuFrSBJyPfMhaAwYP368uu/58+cRGOSAbA5EcPX20AWEwR4QiJMnT/qco6yszCdj/HooKyvDL7/8AlGUoHMoTFwbL4Ahgt1qQ+fOXSAZrODk8iadkk/NYcWKFT7HmjNnDnhBQkr/hUgZuFhtvuZN3YWYdhPBsBzsaQ3VJpk5OgfEsKgnSZhjsiBJlMBzPGSNttLC4vXXX4coSpD0ZnCiQtiYNGkSPv/8c/zwww8+2z755JMghlGtrry5Ul7bttOnT6sMd01QFIhhoHPGVShmNfYQJCcn35Dxe/z4cbRq0QJhTifysrPx8MMPQxAltflNDANeY4TWEQ3JEqw2uuM6T1cIF4ERSE5JRZcuXSDqLZCsTrAeS/3kfgvKs94NCgEiuu149e8MEengOB68rIcxOkfNm+e1JpUtTbwEVpDUZj0r61UFtbfh730WA7Obq4U5J+vA68yIaV+EsMaDVBZ2fPcHVPW1oNHBYDRBH5oEwRRQ/oxwApL7LUDOpM1KfjnLIioqGlOmTMG5c+fQsGEjsBwPozMaHC8gNzcP9913H7p27ephXLdGbOd7YXDGwhHsVOf/6NGjGDRoEIwmMySjHRFNh8Ge3hBEhN27d6s2gWGNBypklNHPQJC16gLe+PEKmUNrDwEnyggMclxXSXPw4EGlKe1RoOdN2QGtJRDjxo3DwYMH0aTJXZC9CgAPYUS2hSJ9uJKDZnBEoFmzZuB4hRDB8CKiWo+FPaOxmmVPRNDq9Ni5cycaN26szjErSIhpPwmmmFyY4/IR22maQswICcU333yD0aNHQ5C0iOtyH5L7LYAuIBS5efk3/K5Hx8TCFJ6C7ML1SB28DJLejMGDBwMAHnnkEfCihJyJmxVLwb7zQXT9DLmzZ88q8+xZcMmZ8AJko80nYuCvQvsOHSBq9AhvMhj29EbK97j9JJ9xr1mzpsrH8yqTkno/on6v9HYXxo4d+xdehR//6/DXkncO/PfKj387IlwuDNGXO18N0ukR7XG+8uPfhSNHjiA7PUN572MYDB8+XLVZ9gNYsmQJeI9iWyDCQg/JO0qWfVTGfyWOHj0KrSyjoUaD1VY72mq14Fi2SlbKbrcb8+fPV+v42rVrIy+/GnhBgCRrEMwL+DwoGF86nEiSZdStVeu6x9q8ebOPI1YDScYxZwj+Y1XqvW3btt3Oy75lzJw5E6LWoDYDk/stUNay3n33Lz3v+++/j2Cn0jAVRBGLFy/+U8c5deoUWrZqDZPZgqiYWB9F7q3iwoULaNS4sXovk5JTUFhYiAEDBmDx4sU3XJPp3acPBFmL8LuGIqxhf7AcjwkTJgAAJkyYAFGjQ+qgJcgt2gprfHWYzGaUlZXh7bffRs1atREdE4ted9+trp1cvXoVNnsARGMAwu8aCktCTRDRH7oBiKKEsMaDyqP1kuuiZq3aPtuYLVYEZjdTG+p6RxTatm2HN99800OEn+pjT15Z8/d6cLpCYI7KREx7JTbOVbsbkvrMgzk6C0aTqVLh0d69e1FUVIRp06appPPTp0+reeZJfeYpzdGWoz31YhHypuyALaUetDr9n26WnjhxAo2b3AW90YjI6Bhs2rQJly9fRlhYBAzhqUgf8R/kT9uNkHq9YLZYffbNy68GW2qBOs8hBXfDYDRh4MCB0AWEljfbPWO+Xg747t27fUj0hYWFVXZlu3LlCn766afb+m/TM888AyJCzoQXVJECEeHpp5++bef4p9CnTx9ozIHIGrcOeVN3wp5aALPFeltc8H788UdEx8Sq99FgNP7lv6l+/DXwN9urAH/R7YcfflQFbrcbUWFhaH6NGrmuLKNG/o2bHgBw8uRJmA0G5MsaLDJb0USjhSgI2L9/P9xuN95++21s3LgR33///d9wJX8tjh49CiLCo2aLmpluF0VMnDgRq1atglfBG9nyHmhMAcivVv26x1q/fj0YhkG0JCNUkiDwfJXYzUePHsWLL75YpUL6WoQ4HOij1WG9LQCbbAFoI2uQnZ4OQLmH7dopxIgigwnHnCHYaQ8Ez7I3ZMdfvnxZabIFKephhuWgsYegaVPFilkXFAVzTA6i202EbLSpBZcXhw4dQrNmzREWHokGDRqq2eSAwrofPnw4RFECLwjo1r37dZX2hYWFEL2NQIaFPlTJBg+u0QGiwYp27drj0KFDEEQJ2qAoZI1Zg7ShyyEZrGjTtm2F4/3222/IzMoGwzDgJU15E5f1KK5ZHo5q7dTiwp7WAAzL4btgF445Q/C6x93hvvvuu+7cvfTSS9Dq9BA0BhiCo0BElWZML1++XMmVGve8kpc2aAmICC+++CIAxbFAEEUE5rQAMSwM4akQ9FZVdR5coyMYloMuKAI9e/a87ng2bNgAzqsuZ1g4OA4My4GT9dA545A9fiOyxq6FZHao8xGY0wJRrcao9vJ6vQHvvfeeGjEQkNkEtvSGIIaBJb460oc/hYhmI9RnxRiZgezC9UjuO19pohOD6OgYuELDULNWbRiNJgg6C2yp9RHZ4h5wsg4ajQaSJKmNYcFghyEiHURMeYOcYX0Uw8QwCL9riHq/zHHVQMQgofuDahElavRo1apVheOI3nMRgWW5CrltxcXFmDdvHgYNGoSxY8dCbzBCkHUQtEYQMYhRi3XFYj0sPAKDBw+Gw+mEbLDCGJ6m5LMzDMwWK5YuXYqRI0fCZLZAkpVnzxiSAElnQrDTpTKv3W431qxZgy5duiAuLh4paekYMmRIpe97ZWVlyMzKhmy0IaR+b0UFwXF455131G1ee+01haCSUoCQgt6K5T8neO4tA9aTK5/Qc5baGL42BiA0LBz79u3DCy+8ACICpzFCExSJlIGLEd9tJhhehCW+BiSLE5LZAa09BDm5eahWvQZsyXXVexPeZDAEQbzuc+p2u8GyLCKaDlP3sSbWQr2CAgDAggULwAmi+n3xug2899571z3mgAEDFAv6mFxobU7o9IY/VNffCMXFxZgzZw66d++OSZMmXXdx4ddff0Wr1krOPe/5/coY9bRKiKgss+5G8GbXu2p3U34rBi8DL0h4+OGHb/oafv31V3zxxRf++sEPfy15B8F/r/z4t6Nh/fqIliR8EOTA+4EOREkS7mrc+J8elh+VoGZ+PpyiiGUWKyYajGCI8Nhjj/3Tw/pXYO/evWAYBndrddhuD0RbjQY8Ee72EFdvpjF3q9ixYwfMBsWBTCNJeOaZZ25q/y1btkCr9RCjk5Pxww8/ICYiAgOuiYMbpjcg3OmsdP/Tp09D1mhhTaiJ1EFLEFJwt9KYstpwuIpK+78b8+fPByeIyBi92oeYfrNrK38GpaWlOHHiRJXsrn+Po0ePonnzFggKdiIvv9oNa5tbgdvtxsGDB3HgwIEqCR68CHQEI7hmJ7U+C8hsgpTUdAAKuTkpOUVdqxEEEZs2bfrDYx48eBBhEREghoEgShg6dGiFbX766SesWbMGGzduxPnz5xEaFg5LXD5yJ29HduF6aG1OdO7c2WefRx55RKmxw5KgCwgFLwjYs2cPysrK0KJFS7AsB4MjEhwvoGat2jh79izWrl2LFStW/OGa5quvvqra2PNaoypOSBmwEESE999/32f73bt3gxcEyAYLJJ0RGq1OdUb0ksi9x0gf8R8fwYCXxH6tMvtWcO7cOWRkljtXMryIyFZjIBlsCAgIwMyZM1UHiMmTJ4PleIQ3GYyo1uMg6oxo06Yt3nzzTWXdIDoLjmrtIEhaNG/R4obnPXv2LN57770KopN/Ai+//LKHcDHNIyq512ft7U7GwYMHYbHaIGr00JoDwTBMhbUtL3755Rc13rMq96Vfv36QDBakDXkCWeOehzEsCfGJSbf7Evz4G+BvtlcB/qLbDz8qx6FDh9CgXj1YjEakJCTg1Vdf/aeH9I8jxOHAoGsKq44aLTJTUqq071tvvaVm8FlNJmzevPkvHu0/A7fbjdYtW0LmOLTXaJEgSdBpNDhw4AC6du0KY1iSWmBEtR4LIrqu9V5ibCwayhocCXbh+2AXsiQZ9evWveH516xZA9FjS01EGD58eJWZiGHBThiY8kaikWGQm5mpfv7uu+8qiumAQPUZsHFchQb571FQvwFEnQk6ZzmTsWfPnigoqA9Bo0NQbksYQhIgSXKV864A4N577wXLcnDV7YHQBv3AixIGDhxYYbsHHnhAYU96GsUs71XS6yHpTNAbjOp5dXo9Qhv0Ky8CMxojKye30vNfunQJK1euxNy5c7Fnzx68/PLLcLpCIBlt0Icmg2E5uGp38+SjK/PqdXdYbVXsxd955x18//33GDhwINq2bYu5c+eq9vCFhYWQ9GbVpsxZqwtYlq1gYXf8+HGYLBbF4q5mJ8XiLyLSJ/fr0UcfVRvY9rQG4DUG8FqT6lQgW50goutal3333XcQBBGWhBqI7zYT1sSaqjKZk7Rw1e2hzllgTgtERscoTU1Pg5DTGNSmrNVmh81mhzk2X7Ub53UWn8Ysr7NAMAao94qIIJqCINtCIMoa9TsjSjJ4T4b6tfu3a9ce27dvx733KsWPoLeC5UVEtRoDW0o9pTksKPZwwTU7gRgW9vSGyJu6CzkTN0O2hYKT9eA1BgRX7wBjSAJkjRZOpxNEDKJajUHKwMXQuRJADIv+/ftj4MCBf7io0bZtO2hsLmSP34DcydthiskBK2qQN2UHwpsMVprZHmIGywvIHP1MhUWewsJCsByP4JqdlGeLYZCamorCwkKcOHHC53yHDh2CwWiELjBcscaXtahTt26l7O4ff/wRdzVtBoPRhIio6AoLgT169ICgtyB7wguQLMEQjAGQrIr6gtcobHNrch3kTd2F3MnbQSwHQ2hSBXX51KlToTHZkNxvQfm9u+b+aQIjkD78KYQ3HQqWZSGIIgSDHVlj1iC3aCssMTkIj4j0GZvb7cb777+PTZs24eDBg4iLT4AxNBGZ9zyLlP4LIemMGDZsGADg2LFjMFus0AWEIjCrKSSdCZlZ2Tdk/JeWluLhhx9G8+Yt0KtXr1uyiSsrK0OLli0Vt4OwJIgaHeLiE25owVpSUoKjR49C1mhhictDQo+HEJDRBMQwN50R5/1OaM0BYHkBMbFxlbpr3Aj/+c9/VFs+WdbclLrej/89+GvJOwf+e+XHvx1fffUVgj150UQEZ1AQvvnmm396WH78Dl4y9RyTRa0Ja8sy2rRp808P7V+BJ554AkSEHzwk68+CglUHgJvN4L4duHLlCg4dOnTT+dxefPTRRwj2rOMEBQWhoF49BIsittsDscseiBBRQoumTSvd96233gIRIXXwMrVW5GUdemt1GOSxwf7ggw9u5fJuO06fPg2nKwSywQpzTA44XkDzFi1ui7rzj1BWVoa1a9di2rRpWLlypbou8Ee4fPky4uIToDEHwlmrCwyueOj0+j9tze92u/Hiiy9i/vz52LZt22259pi4eFgTayJv6i7kTdkBU0QaatQsd0S4ePEinnvuOSxbtgwHDhxQx/Hkk0+iWvUaqFa9BpYvX17pWK43vr1798LicVAgIkRGReOpp54Cx/OQ9GYIkhZmiwVfffVVhX2fe+45dOrUCb169fJpgJeUlGDx4sUYOnQo5s2bh2PHjiE+IVE9h6zR4uWXX77hXCxfvhysR6SRMlDJvPdmr/++cZmYnAJzVCZyJ29DzsRN0AdHo5GHhLZnzx4QERz5bZDUZx4s8dVBDIPIlvcgfcRKmCLTYQ8IvG024JMmTYIgaxVXvwkvwBiVrTocGl1x4EUJWdk5uHz5MoqLi9GjR091XurVK8DPP/8MQCHxpGdkIiw8Ev369bujokjKysrQsmUrMCwLnS0YDMuiRYuW/zPOLkeOHMGMGTMwYcIEvPnmm5Vuc/jwYbhCQj1rOAx0egP27Nlzw+PWrFW7goCCF4S/4hL8+Ivhb7ZXAf6i2w8/KuLy5cuIi4pCqChhgsGI6rIGsij6qGr/P2Lo0KGQOQ6FBiNG6g3gbrJgdLvd+PXXX/+WQuWfxKVLlzB27Fjk5+SgZfPmKvN04MCB0FocaoPRWasLOJ6/7suvw27HKE/G2zFnCLpqdchITr7ueU+ePAlJFNFGo8U7gQ7cZ1QaWVUlNsRFRyOE47DLHoj1tgAYGQZ169RRP//ll18gCwLqSRJ22gMx1sOSr33NNl5cuHABy5Ytw8yZM7FlyxY0bNQYDMOozVciwvTp0zFgwADEJySidp2617Vxvh7SMjJhT2+ovrAF1+iEQEdwhe0CgxSlNcfxSBmwCHlTdyIotyUYlkVhYSEOHjyobpuVnQODMwaZo59B6uBlkI029OhxfbX3tfjmm28UJnHXGcgt2orA7OZgWE6xWSeCpLPAwvFoJMuQiBAZHo7vv/8eVpsdGlMAzNFZYFgWvXrdDQDo27cvjK7Y8jxwD2u2suiBTz/9FLVq14HTFYomTe7yyZf3YteuXepCiSYwEqyo8Sz8cNAbTOB4HharrVKl7LPPPgsiQvb4DaqVNhFBNNrBSTpIlmCkDFyCpL6PQtCZ0LVbN5w5c0ZRNDfqr6rDBb0Vgjdz3dOkTbx7LjitCbqQBDhqdER89wcR1mgAWEFGcK3OIJZDbMcpyC3aipSBimr/jTfegNvthiBKkK0uaALCIJqCEN/1fkQ2HwmW4/DAAw+ottmSJRgBWU0R00GxawvMbg6dM04hDFxDMJFtIUpjXpAR22k6iBNALAtOEFCvXj0QEXTB5ffEy2T2/rHZA26oesjIzIIttb66f2jDfoo63qQsLAdkNUX+tN0wRmWBk7SV2heGhkUgKK9VuWtCeiNIshY//vhjhfM9+OCDEGStaqXvZbf/mWZxbGwsWFGDmA6TFQV+kyEgIsR1uU8hD7UaAyJCUt9HkXj3HBARIpoNL8+6S6yFgvr18cQTT4BlOST1fhhZ455XyA9EaNmyJWRTADLHrEHu5O2wxOaD5XgYXPHgNUYwHA9WkMCyCsHHq/hwu93o27eveg84nseUKVNgMpvVv0tOScWZM2fUa9m/fz+at2iBlNR09O7dWy38/w589NFHHpKKTsnXC0kCEVMhqqIy7NixQ3UzIIaFaLSB4/nrFsLXw4YNGxAVFaXOT3pGZgWixvXwxRdfqDl1Sb0fhi2lHnhB8Pkd9eP/F/y15J0D/73y407Azz//jDVr1mDt2rU+/3b78e9BWVkZdBoN7tbqcDTYha8cToSKEvr06fNPD+1fga1bt4KI8IzVjmPOECwyW0FE2LVr1z89tD+NI0eOIC0tzUO0lOHy1JREhJiISBw+fLjS/bwRe6EN+iJ/2m4k9ZmnktBZlsUjjzzyN19J5XC73ZgzZw5i4xIQG5eAoqIiDB48GK1atcKMGTNw5cqVv2UMPXv1Ump1kx0Mw6B58xZVUo97m65eO/GcCS+AFyXMmzdP3Wb16tWIjoiAyPMIc7luaC8/YsQIT12lkGu79+hxy2t4q1evVgQQzljogyLBsix27tx5w32WLFFqf0t8NVjiq4GIMHjwYOzatatK5BF1beeeZ5E2dDlkkx3du/fAhx9+iHvvvRcPPfQQjhw5ckvXNXLkSEg6I1IHL0POhBdgjs5CsNN13e2vXr0Ko8kES2weNIGRYDgBolERYowePbrC9jZ7gK+wIaup6ggAKKIKzhNZodXp1LhGIoJOp0NsXDwYhkFgkKNKEaA3QseOHWGKzFDH4qrb00fl7V2zWLt2rbrPuXPncObMmf+pNeCSkhKsWLEC48ePx5NPPlllUsz/Crp27QaNOQAZI1che/xGGMOSkJySesN9Bg4cCElvRsqARcgc/QyMIfFISq6acM+Pfxf8zfYqwF90++FHRbz33ntKk9IegGPOEHwb7IKe5zF79ux/emj/KC5fvoy+fftCFkXoNBrcc889Pi8Wv/32W4VCZMWKFcjLzkZ2ejrmzZt3x71knTp1CsOHD0fTps1QWFh4S6zLL7/8EhqtDlprMEzhqSAiFBUVXXf7rp07wywImG+2YJbJDJnjKn0B98LLHH8lIEht0NtF8YZW5dfCajJhvMGo7ttNq0NWWprPNgkJieBYTn2BN4SnwmA0+Wzz66+/IjEpGSzHQ9IpDfkFCxagpKQEZWVlKCoqUvefOHHiTT0TbrcbBw4cwAcffID8atVhisxA3tSdyJu6C9bkutDq9Pjss898r8ujItfZXGphkNBzNoioghX0J598AqvNro4vOia2yk2oH374QdmnTaFa5Eo6E9q1awdiWGgCwtWClYiQnJCg5JNpDcgatw7503YjotlwtaH+9NNPg4jgqtsDcZ2nQxcYjuiY2D/Nmj169CjS09MhmgJhSaoNe3oj2NMagYiBqDMhrPFABGQ2ARFh48aNPvvu3r0bRISEHg/6zF/4XUPAa4w+qvKExCT89NNPOH78uLIA06FItWuX7aEwxeQpf99xKgzhqUpD+5r9WUGGYLRDNAZAGxgJYljVxi++6wxVAfHLL7945ns8iBhENBuB/Gm7kV24HsbIDDRp0gRlZWWoWas2GI6HLjgW9vSG0AZFqc9BdPuJICJMmDAB27dvh9PpBCeICK7VWWmAs+XkEGIYsKIWrCAjfdgK5E3diYCspiCGAaezQtBbwXA8OJ5H//79K7X/69ChAxhOQEz7SUjo8SBEUyAYjgfD8hAMduR6mutBea2V5n1yHUS1GqO4FjhdeOWVVyBKGhDLQuuIRnL/hTDHVQPLi+jVq1eF8913332QdEbkFm31sUz/9NNPcfXqVcydOxfdunXDxIkT1QXt4uJiPPLII8jLy0f1GjWxYMECuN1upGdkguFF8Fqlie2s1QVEjEoIyBq7tpyAwQuQtboK6vJWrVph4MCBCHYqTgqiRlG03HfffTh48CBs9gDwogxJZwLrWTRI6DkLmWOeU9jPmvK8tsysbFy4cAHr169XlAotRiFrzBoEZDQGLwj47LPPsH79emzfvv1PK3luBVevXsWMGTNQt149tG3bDh9++CEAJQeSiGBPa6hY4uutYFi+ylbuVpsd1qQ6yJm4CbmTt0PvjEWLP7De+z1Gjx4NXpQR3XYC4rrcB9loQ9Omzaq074oVK0BE6jOVXajM/7p1625qDH7878BfS9458N8rP/zw43bBa7OcLGvgEEUYdLr/98IEL0pLS9GkUSNwDINQWQZDhC6dOt1x6yC/x/nz59GsWTN4VfoDBw7Eyy+/fN0YNy/Gjx+vNOkNFjAsi5zcPLz66qs4evToXzbW7777DkuXLsVTTz1VJdLO3LlK9rY9vaEah/VXrP0dOHAAW7ZsqZT47HURjGo1RiF1d7kPRFXLtPfum3j3XPX9nBNEzJ8/H4CSic4RIZjlcK/RhEayDI5lK3Vl+/DDD9U6P2/qLkS3Ve7f7bDJ3rZtG7p164YePXpUKR4xMSkF1mvUsNbkukq8mmfN4eTJkzfcX28wqESPP3It/LNo2rQZzHH56jkiW94DIkJxcXGl23vXSOI634uciZsQ1nggRIMVdevWrfQ3okWLlpCNVsR3nYGYDpMhyFoMGjTIZ5uff/4Zn332Gc6fP4+ysjK8++672LJlC1whYdAFhCKi2QhYE2qC5Ti1Jv1z19oUDCcg8e65yBq7FppAhbztXavJnbwdDMthyZIlVT7mb7/9hpUrV+LRRx/Fxx9//KfHVlVcuHABP/300y3/Hh86dAiffPLJP7LO8E8jNy8f9rRy0VNYw/7QaHU33Of06dNISExS13LMFustPYt+/HPwN9urAH/R7YcfFfHxxx/7sJG/cDih4bh/DfP2n4bb7fZ5Ofnll1/QrEkTlaE8ePBglJSU4KmnngIRoYmsQWuNosZ78MEH/8GR3xzOnz+PmNg4SDoTzHH5ECQt8vKr4erVqygrK/Ox6a4KSktL0alTJ/UFIz429oYFwi+//IIG9eur27dv2/aGL3PeZu8ovQFHg11Ya7ODIcLKlSurNL6MlBTkyDK+djjxaVAwIiUJbVq18tmmcZMm0DtjkdR3PjJGPQ17WgM4XSE+29x3333gBAmpg5chb+ouBOW1AsfzPkSF2bNnq9c1ePDgKjWQi4uL0a5Nm3IVscWiKo31oclK885ghd5g9LFMGzx4MBjPPlGtxiBt2JMwRWXBaDJXOp+nTp3C888/j02bNlV6j7dv3474hESYzBY0bnIXjh07BkD5XjRv0QK8KMGWWh+6wDDo9AY0bNgI2oAw8BwPF8thiz0Az1rtMPI8UlNTobMFqzlbCd0fVEkAbrcbEydOBONRXkdFx1R5EcvtdmPhwoWoXbsOGjRsiNmzZ6vZYERKvhanKbfwlizByB6/AXlTd8HgjFUbt1evXsU777yD1157DUaTGQzLQRscoyj29VakDFyC4OodPN99Hh07dsSpU6dQVFSE1q1bw2gygRVkBGY1hS1VeZYtibVBDIvsCRuR1FtZqONlHVIGLkH2+A0whKeC4Xho9QbodHqwHA9BZ4YloSY4QULt2nVQWlqKq1evguN5yPZQsLwEa0oBAnOaq9dkNJlx8OBBnDt3Dq1aKVZfrCCB15pUpbc3N3DBggUYOHAgJk6ciIL6DRRbNyKwogYp/Rcie8JGGKMywbAceJ0ZxHLgJCW/MKSgNywJNUFEcFRrD1ed7uAEEUOGDKlwX7755hsw7DXEAo+6WVk0YKAPS4Yjvy0YzhMF4SEhJCQm4aWXXoLeYIAhNAnhTQZDGxQFxkPe0IcmIyc3r8L5PvvsMwiCCHNUJkIKekNjDkRiUjKKi4uVLHCOhyk8BaJGj9i4eLzzzjswmUweIk2ael39+vXD+PHjwfICdK4EMJwATmP0XHM7pA5aioCMxiBikJycjEceeQRvvPEGjKbyZywkNEz5vgaEQmMKgCCIGDZsmE90wfHjxzF37lzcd999eO2118CyLIKrd0De1F1IG/IEGF6Eq14vpPRfCF6UMWPGDNx3332QDRa12EsdvAxEhP/+978AlN/RBx54AKNGjcLatWtvWFi///77eOCBB/DYY4/dstq9d+/eYFgOlsRa0AVFQJI1+Oyzz9CrVy/IthD1O++NCKjqApas0fosGlnia6BuvXo3NbbM7BzY0xupxwgp6A2jyVylfbdv3678+6VmAU4FEVVpwcyP/034a8k7B/575YcfftxObNiwAf369cOoUaMqtWH+/4yrV6/iiSeewIQJE7Bq1ar/GYvhkpISDBs2TH2/Hzhw4B9aVLvdbmzbtg3Tp0/H8uXL/3KV+BtvvAGNVqcQdxkGTlfIH6qX4xOSfJpH9vSGiItPvK3jmjVrVjmJmwhNmzZFv379MHPmTFy4cAEbN24EESFr7FqFqD5lB4hhqpRpX1xcjNS0dMgGC4LyWkEfFAmT2YwjR47g22+/Vc+5xqasb/4Q7IKdFyoVfniJzFnjni8fBxGeeOIJdRu3240vv/wSr7zyyh82vP8sysrKEBjogGwPQ0hBb2RP2IiArKaKo96AhZANVtUR8Hq4VtmeOuRxyEYbmjRpgr1799627+S4ceMgyFok9X4YGaNXwxiWVCHy7Fqoyvb4asgevwGJvWaDFyQ88MADlW7/448/+uSk16tXUCUB0MqVK0FU7naQN2UHJJ2pykKc3+PUqVNgOWUNqPw5ZsALIiyxuYjvej/safXBclwF8cv18OuvvyI5JVURLwgSWJa9bkb4raKsrAyjR49W19bS0jP+VAZ8aWkpevfurc5BkCMYe/fu/QtG/O9F3759IenNSO47H+nDVkDviKx0Ler3uHjxIrZt24b169fjp59++htG6sdfAX+zvQrwF91++FERpaWlqJGfDxMvoItWi2hJgtVk+kvZt3cyOrRrB7MgYJbJjIkGIziGwf3334+87Gw0kTWqUrq7VoeIkJA/PuA/hH379qFbt25o1KABZsyYob6gpg1djvxpu5HYS2kQjxkzBnqt0mhLSUiocgN01qxZYBkGEw1GzDNbYBMENLvrrhvu43a7cerUqRsysk+fPo277+6NtIxMJHrYglqPKrRh/fpVzmh66623oNdqIbEseIZBoM1WQfn92muvgeM46ALDYQhJABFh6dKl6uclJSVwuUIg20PLVeSeBvLvbYYff/xx9WW3W7dufzjOBx54AALLYoHZgqE6PSSOBy8ozUZtcCxi2k9C9viNEDV63H///ep+ly9fRvfu3X2KW41Wh5deegmff/45mrdogYysbAwZMuSG/xZ++eWXiIlVcucFnQWyPRSCRo+k5BSUlJTgxIkTKCwsRFpaGmJi49C6dWt8+umnaNWqNYxhyRB4EROvcQ7orNUi1GPBF5DZBFGtxkAXEIromFifuTh37hyOHj1aJQs5Lx58UJlzS3x1GCPSQCwHbXAssgvXI2PkKsUqXdQgddASJPScBU7UIjCnBXKLtkJrDUbfvn0xcuRIGHXlDXq9wQhOlGBNrA1LYi14LQCJCCH1esIclYl27dohOycXvKQBJ+lALHtNpjoDTlKUzEF5rX2sx3zZ4KNBRAgNC4fGHABrUh1wggitVodRo0apmfXr1q0DEYHTGJVzecYS1rA/4jpPh9bmRFp6hjonn376KXr37q1Yz5sDYYpM9zSyE8EwDIyuWAiSRlXmExGMkZnlKngPq1/UmyEaA9Qmd97UXRD0Fp8MquAanWAPDPK5J8XFxXj66afRtm1b9bknIthSChBcvQMYjgcxLFhOgKA1IbrdRATmtgQRYffu3fjPf/4DonIr/4yRqzwKjEaqJR6guDNs2rRJzTh98cUXEZ+QCKPJjIaNGuPo0aN4+eWXQURw1umGvCk7kDbsSRDDghckEMPAEJ6qNoODcluBYTls3rxZcWm4pri+1oKfiIEkyz753ydOnMDzzz+Pbdu2welywZZcB3lTdyJ30hboHZFo9Tsyz+/hXZSSjVaF4GG0I6rNeMR2nAKjKxa9e/fG6tWrwTAM4rrch7ypO5W5ZBgcOXIEv/zyC6JjYsGLMvQBSq7Y+PHjK5ynrKwM06dPB8MwEDQ6cLyA0LDwSq35r4fPPvsM999/P2bNmoUvvvhCeRYbD1JY/pO2QGMOxLBhwzBy5EjIRjtyJm5WmOCNB4KI8Ouvv1bpPO3at4eoNSC86VC46nQHwzCYO3dulccJAM2aN4c+KBI5Ezchb8oOWGLzEB0bV6V9S0pK0LBhI7AcD31gKBiWRctWrf5nFpH9uHn4a8k7B/575Ycffvjhx63C7XZj/vz5aj3TuHHjKr/H/h2Ii0+AKSIVORM3IWPUamjMAejRo8cN91Ga7Q3Km+1pDRGXcPua7Z988olSe9XsjIzRqyFbXRVyrvft2weO5xGQ0Ripg5bAkd8WRFRl9efJkyfRpWtXxMYloGHDRmrDc8uWLWq9tshsxTFnCPY5nNCzLGbMmFHhOPv27QPDMHBUa4eM0avVev2dd94BoNz//v37q8fUaTRVUt/fDK6NCZNtIR53NWVNwWupHpDRGJnZOTc8zieffOKT2e5dOyIi1K1XT11XuBWcO3cO2Tm5PoT/a/Ord+3ahTZt2qJ58xZ45plnAChRE5Ikq/vUqFnrhqKa0tJS7N+/H998802VFNnvvPOOGt8Y075IdaHjRfmm60YvvFFoSX3mIb7bTMR0KILGHKBYy3vi22SNVr3GquDee++FIGuROmgp8qbsgD29IWRZ85cQchYvXqwKJWI6TIbG4qhSg/j3WLRoERhGcVVM6jMPBmcswsIj/l/VwqdPn1ZIEp7nNzDIccMoRT/+t+BvtlcB/qLbDz8qx9mzZzFgwADkZGSgdcuWflu0G8Co02HCNU3EVrIGtapXR05mJlpd02zvq9Mj1OG46eNv2rQJPXr0QL9+/fDBBx8AUF7AV61ahe7du2Po0KEVmsJVwdtvv42uXbuibdu2mDNnDox6PSIlCU1kGTzLIj8vDwzDImfSZk9za6X6QtFZq8N8swWxkoSosLDr2kRdiwYFBWgsSdhkC8AyixXDdHpIolilF+a9e/dixowZmD17tg/p48qVK0hNS4ekNyMg8y5obU6YzBZMmTIFa9euven8oIMHD2LBggVYvHjxdRtNb7/9Nnr06IFOnTpVyH1as2aN2niLbDEKqYOWwhCeCpPZUulL85o1a8B7CgFZ1kAUJdSqXacCy/Ty5cto3rw56sgy5psVRbstuS6CcluCGBaWhJoe66ptkPRm3HvvvTh37hx27NiB3bt346WXXoJOr1fvX3xCIj755BMYjEboAsMRkNEYgqxFnbp1K31RvnDhAoKdLnCyDiwRIgQRNa4pkN544w04gp2QtEZoLEEghkGw04U5c+Zg7VrFXptnGOSLIr4NduHzoGCEcxysFguWLVsGnd6gMmy9TdLrwe12Y/bs2XA4XbDZAzB48OAKluWBQQ4E5rRQ7duJ5RDaoJ+PhZpoClT/35ZaAF5rVBS4koz6BQUQGAZtNVrECiI4ToBssvuo44lhIVudSOzzCBK6PwhelNC1a1e1mc5wAlIHLUHe1F1w1VHIDgoTmgERA9mk2PXn5+dD1OiR3G8BssasgSk8FfbAIBAR0oc/hfxpu9Wsdm8hf/bsWQiiBCJSVOAMC4YXYQhPVa8pqs04EFEFd4IDBw6gf//+6NChA6ZMmQIiQmTL0YoqesjjYDkeS5cuRUZGBlheRFLvR5A1dq0SmWAyQZJksLygsrp5rUlZLIlIVxvUARmNERIWrp6zuLgYtevUVZu5RARJkmEIT7tGXXy32rz2WgDmTd0FrSUI48ePx3PPPeczJ8n9H1PvRURkFI4ePYpRo0apf8eybKUWbl61h7ogEJGOnAkvgGE5sKIGOmccLPHV1XE5a3cFwynN53nz5uH111/H999/D7PFClNUFuK7zURQbmsYo3Og0Wqv+9xqtDqfZ9CWXBfVa9QEoBB9GjVWbP0mTpzo81vx4osvoqioCJIsgxXKv3PEcigsLERpaSmaN2+hPAseJwDvIsKsWbPAi7I6ZyEFCgv92t+2q1evokWLluXzJmoQ3WY8JL0ZI0eOvOF30Yvdu3dDEESIWgN4SQODUVH9R7ebUB6hYAuBJElYsWIFZI0WuoAwWOKrg2E59O3bt0rnAZRnv3nzFsqzJIoYM2bMTRf3H3/8MTRaHSS9GRpzAFiOw5YtW6q8f3FxMRYvXozRo0fj8ccf/3+XU+eHL/y15J0D/73yww8//texe/dupCcnw2G3o03Lln713F+ILVu2QOsRICQnJ/8plehfAUmSVcKrt8711hyV4bfffsPw4UqUmy21PuxpDUFEmDNnzm0b0zPPPAMiQs6EFzy59YTYTlN9arq1a9di5cqVEDwNYZZl8eijj97yub0ka0NIAkSWRWuNBmEcB4nncejQoUr3uZZMQUSYPn26+tmzzz4LIsJDJjP+GxiERhoNDDrdLcUt/h67du1SalxPTFzq4GUghgUn6ZA1di0yRq6CxhKEzp27+Oz33nvvYf78+XjuuefU9bmTJ09i3bp1iIqKhtYeguR+CxDX+V7wkgbjxo37w7EUFxfj3XffxTvvvFNpTJx3m5deegmbNm3y+c3Ztm0bGIaBwRWvEv0XLVoEAPj+++/x7LPPYufOnbh69SpOnTqFIUOGoGHDhhg1apQPgR0AXn31VVSrXgMxsfEYOHDgDV0227dvD11QJEzR2WB4EZaEGhD0VtgDAqsckfh7nDlzBqIowZ5WH1lj1yK67QQwDINVq1ahuLgYhw8fvu78XA933303TKGJ6nc1rvN0EJHqHHk70aFDB5gi0svXilqNARHdNOGiZ8+eMIUlqceJ7aisJ/1/+7fm8uXLeOmll7B9+3b88ssv//Rw/Pgb4W+2VwH+otsPP/y4VYQ4HOig0eJosAuHgl1IlyQ0u+suPProoyAidNXq0EenB8cwmDhx4k0d+/HHHwcRIVWWESlJEHgeb7/9NqZNmwYiQpasgVMUYdTrb8q+7s033wTPcUiQJFSTlQaOhedxwOHEMWcIHjIp7ExRlGCJyUFky3tgDE2EJMkIFkUcDXbhmDME6zz53l9++eUfnrNtmzYwXWMhzRBBI8t/aEe/detW8BwHiyBAy/GwWywqueDNN99UGKa9H/FYtreBV3HcsGEjnD59uspzcjvw8MMPgxNlNevM25QdPnw4/vvf/+Ljjz+uoGD3Zv4RKXbmGksgEhKTcPXqVbjdbhQWFqq23jzLIVWUYIrKLlcR1+wEhuUQUtAb5ugs8ILgyagKVY8riBJM4anIGvc8UgYuhqg1oHr16hBkrWopHttJeaYqy1DzzjPDCQjjOBz03P9hegMYIgwaNAii1oDIVvd4GpgZSqYYw2DKlClYvnw5eIYBRwQtESQiaIhBdHg4AEVZ+0d5d14sXbpUYZBmN4OzZmcwHA9J1qBZs+Zq8WQyW+Cs3VWdI1aQIdtDkT78KcWCW2MAr7MgZ9JmZN7zLESjHQGBgejQoQN27twJIsLDZguOOUPwjcMJKy9AH5YCg9GE559/HsuXL8eUKVN8mrZ16tTFggULQETQBEZCNAep5/cuKnCSFubYPLCCBGJYtGjRAmfPnkVaeobP8+K9d14bPa+Ke82aNTh69Cjy8/PB8iISejykFpFEDASdBdmF65XvQm4rSJJ8Q0eAt956S/l9GbRUbYpKWiNmzpyJQ4cOwer5fnuZ2u3bt4dssKjjCq7REYznOogIxvBUmGMUZnvPnj0xceJELF26FEuXLgXDski8e64P+UDnSlAb9M5aXVTb+PC7hijXPWo1eEmDBx98EOfOnUNEZBRkow22lAKIOiNCQsPwzDPP4Ny5c3jxxRfhVVNnjnkOQbktwbKsT6SC2+1GYJADpsh0ZIxajYTuDyqW8B5nAENYCsKbDlWer5wWcNbqAoYTINtCwbAcOEECLwjYtGkTmjRpAoNH2Z8/bTeCq3eAwWi67lw3bdoMssGKmPaTENF0GFiOx8SJE/H++++DFwQYXHGwpzUExwvo2q1bhf2rVa8O0WhH+rAVSB+xErLViXoFBQAUtv/WrVuxdOlSn+zBsWPHQm93qc9h4t0PV/i9fvTRR8FyHGI7TkHGyJUwRWWB1xhhisxA+/btq/SdjI2Lhzk6C7lFW5FduB5aewjMFgsErQlhjQaoEQo6RxT0BgNeffVVdOrUCQ0aNsSDDz74p5rVxcXFN+V28Xt89dVXmDx5MiZMmFBpXqMfflQV/lryzoH/Xvnhhx//y/j4448h8DxqyhqM1hsQIIrIycy8pfclP26Mjz76CMEep7agoCBVGPFPIis7B3pHJNKGLkdS74chag0YPHhwpdvu27cPTleIWu9pdXrExiVg7ty5t5zpfC327NmjNI+bDkNs53tBRMgY5ZtzvXjxYgBKc3jPnj04fvz4bTn3mTNnwHEcAjKbwFG9PfQB4SAiTJs27Yb7ffvtt9i2bRv279+Po0eP4qOPPsK5c+cwbtw4hMuyKqjZYlcc3z799NPbMt5Lly7BZldq8JSBS9QaXdAaIEmSeq9cIaE4fPiwut/ChQuV9QZPzFr1GjXV5q/b7QbH8wi/a2h5/ntS7T+M4jp58iRS09LVc8bFJ9xUI7hO3XowRqQhb+pO1THhWkK+FxcuXFDiK/VmWBJqQNTokZ6RqRLQP/zwQ/CCAGN4CoJyW0GQtLiradPrPqONGzeGOTYPuZO2wFmri+IOwDAVnCZvFs8++yx4QSgXIHXufEuK7nnz5oHleMR0KEL68KdgikyHzW5Xa+P33nsPixcvxubNm2/5d3zAgAHQWILUtb+gvNZ/uFZUGQoLCyHpjMgY9TTypu5CYE4LiKJUJfGVH378L8DfbK8C/EW3H37cebh48SJ+/vnn21oA3AqWLVMyctNlGVGehvibb76JsrIyTJkyBRGuEIQFB2PixIk33VRwBgaqjfzvg11IkSQ0b9YMPMdhuN6AY84QHHA44RQrz0i+Hlq3aoVUScIPnqZpAs/DxXE44vn//3jsplauXAlHsFNRv0ZFY9CgQdDzPD4JCsYxZwhmeZry177oX4sjR46gb9++aNSgAWrVqgUiwnyzBV84gtFZqwVDhPCQkBsywSNDQ9FAo8GhYBe+cAQjXJTQuXNnAOVK8tRBSxDRTGFkO2t2RkSzEZD0ZjRq3ATPPfcc8rKzkZ6UhGnTpt30PTh79iz69OmDuPhE1KlbT7UQqwyvv/66Moba3RDbeTqMkUoTlfU2UomQkZrqoywtKiqCqDWCFTVKU9MWojbElixRFM2uuj0Q3aYQgs6iqIgjM3yafLwgwmgyIy4+ATt37kS9gvrQ2UOQNuQJlS0e2WLUNTnH1REdHQNJZ0Ru0VbF7r7nrEoLxX379vkohvNEUS0uvfe/f//+MDgiYIrOgSEsBXlTdyG3aCuMEekQRRGpSUnq/iaGQX1JgsyyGDFixB/Ov9vtxptvvok1a9bgq6++Qp06dX1s1521u4IVJMhGG9LSM1BSUoIBAwaAEyS4andDUF4rVQmsEj08GeEMq1iXMyyHxMQkXLlyBT/88AOICE9abDjmDMHhYBecgghBb4Uka3Hs2DHEJySqxzKbLVi1ahU2b94Mnd4AVpCV+0SE0Ib9kNJ/IYwR6SCGRWLfeYjpMBmB2eXZ6mvWrFEt4fUhSbAk1VbV6rysh7NWV+gdUdDqdKodGhFBMNjB8KKSI++Igc4Vr+yjMUCyKt/ZwsLCCvN58eJFzJo1C3fffTcGDhwInd4AY0Qa4rreD0N4KogYZGZlwe5ZOCAiWG02vP322+jVq5cP+zqmw2QQEU6ePIlNmzahcePGKCioj9q1ayukA3MgGIaFIMlgeRGuOt2RN2UHnLW7qcc2RmZ6FBQMmjZtiv79+4NhGJhCEyHpjHC6QtQsvBMnTqB3796oUbMWBg4c6JMr/sgjj4AXJc+CxE4k9FRiL7Zv365u88svv4Co3E4uf9puGMJSwWsMnueBQ0yHyZADwlSlu96VAGJYBGQ1Q+7kbbAm1IDNZsfmzZuV5zkyA7aUemD+gEx18uRJ5Ferrl53kMOhLIhwPHhZjxzP9zD8LqXZ/3s7yuiYODjy25Q/97W6wOF03fC788ILLyi/H3W6I7HXbOhcCWA55d8nL/r27QtTSLx63PiuM9TvyPWy834PvcHok6NuT28Ejhc80QAMBL0VkS1HI32EEgWwe/fuKh3XDz/uBPhryTsH/nvlhx9+/C9j8uTJCBBFfO+p51d56nl/nryCkpISrF69GjNnzsT27dtv21rSkSNHkJaWptQ+Gg02btx4w+0PHz6Mrl26IC87G3379r3t4oAvvvgCQY7g8rWHzKzrKi/TMzKhDwxHcv/HFLWzKFcaOXWrcLvdGDJkiKfGYEEMC1N09k3nXH/zzTfYuXPnHzrh/R5PPPGEcl7PnDRo0LDKUYNFRUXqfgajEUOHDoXAsthqD8DRYBcG6fRgWRanTp26qTFVhl9//RXpGZkqAd8QloKEHg/Ckd8GRITnn38e//nPf7B69Wqfe3rmzBlwPI+g3FbIm7oTSX2UJu6CBQvUbUJCw2CJzUPu5G3IHPMcNJYg9OzZE7/99humTp2Kjh07oqioyEeh36VrV8gGCxLvnoukPvOgMQegefMWVb6erJxc2FIKfOpXmz2gwnZeJ0RvfGVS30d9asZRo0ZBawlC7uRtPqrs36upvY1vrwDCWasLIpoNh6Qz3tS4b4SDBw9iw4YNePvtt2/5N+Tq1ato2aqVz/P1+uuvAwDmzp17zboVoWmzZrfkpvbVV1/BYDRCNtpgCI4G0Z9zr/jpp58QEhoGXpSg8Tg1Lly48E+Pyw8/7jT4m+1VgL/o9sOPOwdlZWUYOXKkaumUn5NTJcbrb7/9hqKiIrRo0QLDhw9XGze3Ey+88AK6deuGPn364L333sO+ffsQH628xIiCgHnz5v2p4+q1Wky6xqK+haxBjWrVQER4zJM5dcwZghxZg65du1b5uA0KCtDkGkZuV4+1c1uNFjNNZrhEEekpKSrT0ctUPHHiBBwBAQgURdSSNeAYBj26d6/0HKdOnYLL4YBDFNFU1oAlgpVl1XO+FBAIIkIAL6Bls2bXHassiphuNKn7jcHR8gABAABJREFUtdZoUKdmTRw9ehSBdjtYloNkdkC2hcIYlaW+zHubVkSEupKEzhotOIbB6NGjASgvt88//zwee+wxvPvuu5Weu6ysDLVr14Go0SMotxUMrjjIGu0NYxVmzJhxjUqZQTDLwsKweNZqxzqbHYGCgPZt2/psL2r0SOg5C7zGqO67Z88etG3bFqbIjPI87xblTW9LfHUEZDYBw7AVmqr2wCC46nRH/rTdSBvyBBhehD4kEVlj1yKl/0KIWgO6d+8OQRBhjspESEFvaMyBSExK9ik8t27dCs6Tpe0t+ogIg3R6PGQyw8ywiAwPVwskyeyAKSYXuUVboQ9NArGsoionBsssVjxjtSOAZcESoWP79rh06RKKi4uxe/dubNy4US2YSktLUVJSgrKyMnTu3Fm9ZpbjkJiU5GFIK2SDwNxWyjlsoSCGxaJFi3Dp0iUMGDAABqMJvCBC64hCbOfpkG0hYCUteF5hJAfX6IiI5iMQ52kw7tq1C2VlZcjNyoKN4zDJYEQTr10+pzS627RpC9lgRcqAhUgftgL6oHDExsUpxRAvIapNIZL7PQadM/6a54D13LMaSoNV0pZ/RgReECDpTUjo4cmaT6iJ0AZ9wWuN4HgB0TGxICI48tv6PAMBWU3hqtMdrCDDmlIPrKTzkDWU38hWrVr7PBdXrlxBTm4eWE5QiAae44jXRAKYY3LVsVsTayOp9yPQ2pxo2qwZVqxYASIl6yuuy33QBYYhPiHRp9D8/PPPQaTY3nnHakuui4CspiCGQWB2M7CiFraUAsR0mAx9aDI4SYvg4GB89tlnOHXqFJYsWYJevXqhsLCwguX5m2++iRdffLGCtdymTZsUUkmre5Rnz3M9ISGhePDBB/HVV1+hrKwMJrMZ1oQayC3aitRBS5Rz1+yE6LYT1HlT/pT/t2Cwq6SUqNZjQUS4fPkyNm7ciJq1aiMrJxcPPfTQDZntbrcbDz74IIwmM1iOA8uLCGs0CME1Oirz1Xyk8h1vqbhDdO/eHTNnzlSdP5o3bwGtzYn0ESuRMXo19IHhqFuvwOccr776KuLiE6DV6VC9Rk18/fXX6NGjh3odnMYAbWA47AGB6nFnzJgBXpSRMmAR8qbsgC2tAYhh0LRZs+sy1H/55Rds3boVu3btwsWLF1GvoD60VgcS756LuM73ghM14AQJ4U2HgahclRHTQVms+jeofvzw43bBX0veOfDfKz/88ON/GVOnToVVEPCNx6lumUWJfPr222//6aH94ygpKUHjhg3BEMHiUabec889t+3458+fR7NmzZR6kGGuqww/c+YMQp2KUKKjRgubICAtOfkP7adLS0tvKsf5119/xe7du/H6669f932+rKwMLMsioumwckJ+Qk3Ub9Cgyue5Gbjdbrz00kt47LHHMHPmTJgtCjld1mixevXqP9x/9uzZ5cR5hrnpRuEnn3yCJ554Alu2bKly03Lr1q1KPVmvF5L7PwZzTDb0BgNys7PBEMHgIcL/2Rzw32PgwIEQNDr8H3tXHV5V/f8/p8+5XdvNdXdvdI6OUUrD6O6OASrSpYCoKKCggEg3JhZIiSiIGLQFiCJKDO7r98e592zXDRil8v3d1/PseXSc+JzceX/er4hp/SRC6vYqVq9TqH+b+TJv/R2fP1O5lpoAFwYPHqwss3HjRrAcB05Sg+F4BARacfToUWTnlAPLizCEpYITVUhLz1Dux6joWFiz88pM9i4sLMSePXuwe/duXL16FRMnTgRF03BUbo2gml3A8iK6dOlSYr1FixaBEIKMEasVdztCCLRaHcIjo1CnTh2oTDZkj92MnHHbENFkGAghiqvhwYMHEZ+QCIqi4AoKxtatWzF8+HBwPA+KolCnTl1cuHBBcY78L+HmzZvYs2cPtm/frhA2Tp8+DYqiYC/fAtkFWxDT+ilQFIUlS5aUebsrVqxAu3bt0KNHDxw6dAiATFYZOHAgunTpUiIO825w7tw5TJ8+HaNHj8bbb799z9vxw49HEf5mexngL7r98OPRwZw5c0ARghFaHeYaTLDzPKpWqnTbdQoLC1G1UiWoGAY1RBFmjkNkaFgJ1eCDxPXr1xEWHIwYQcTzRhPy1XIje/PmzT7L7dixA5lpaQhzudC+bdtSGcdNGzeGkeMwXW/EaK0eDEXhqaeeQmZqGly8gLkGE/p78q4XLVpU5jHOnDkTFCEYoNHiKb0BepZDRno6As1mMDSNKhUr4tSpU6Wue/LkSfTq1QvNmzfH9OnTb1mszJs3DxxNY6/VjgVGIygiW8cvMplx3O5EZ7UGDCFoIIgwGwxYtmwZ/vrrrxLbqVSuHEIFAWvMAVhoNEPFMBg8eDBGjBgBE8dhnTkA2YIEmlAQTU6lKWbLaQpCCDJ5QbG976fRQqNS4erVq6hRtarcaPSwnEvLBDt27BgIIYh6bCxyxm1D5qh1ENR6FBQU3Pb8fvjhh2jatCnUNIMIhkUXtUYhC/TRaBFstyvLnjhxAnqDASqLC/qITKWIDAsLQ/PmzaEyO5A5cl3RMVE07JVagddbQdEMsrOzsXLlSoV4cvnyZWRmZUNjj0BijwXgBRWsNAO2GJs7ISkJv/76K7Zv346Y2Djo9Abk1qqN06dPK+Nyu90wGE1KJnxM66fkZjFFgfI0Ijmaxq5du+B2u1FQUFDEyg2WFdLxnWZBZ4tAS0mlHP8IrQ4GrRaAPBGQnlF0zFqdHo0aNQLDsmAYBhUqyM3piGYjkDH8TQSk1QXNyOxeXVgqTPGVFVKDObE6tMFykVVcOVutWnVoHJGQAsOUZVUe+3evjVbaIDl77c033wQA/Pjjj4gICwNDCARRDXNyLmyepmhCUjIC0usVyxrPB82wYNVGH/U8p5XVJCq112pePmeRLWRVdainERn1+HgYo3NAKBqWlFoQTA7Fas2rHO/RowfUJjuyC7Yie+xmUCwPXTESRlDNzqAYDhQnenK75X0xLIe33npLORdeUgQjqqELS0Vy74UyM5yiIKnUsGY1VpThXqU8pzUjML0+Am125OU1QVhYmJKtrtXpUa1qVTz77LNKo9lr557SbzE0rngYoovyz205TUDRDCiaUcggOeO2wZxYHUyxfL5Jkyb5PE+nTp3CvHnzEB4RWUQ0CLTi4MGD+Pjjj9G4cR6qVK2KpORkEEKBEVSIajlebvwKalA0A0EQsWPHDqxbt07OAvQcg8oahozhq5Hce6EPAUKtVoPQLBhJD0IziGo5AUm9XoDOGY2IyCif8W3btg35+flo06YNnn322VLJOC+++CIIIbBmNUZQjU6geQmm+Mqyuj4kCZzGBEeVdqBZDhRNQ+eMBssLSE1Lx19//YVvv/0WdofT5/iL7+fo0aMQRAn6sBQE5XaBOiAIwSGhGDFiBASNAUm9XkTW6A1I6CIz/ffu3QtAnhz0KiholgNNM5g0aRLcbjcKCwvx4YcfYtu2bbhw4QIA4MiRIz5qmeiYWOzZswfRMbE+Y9MFxSJz1DqobBGgOQEqawRohkHjvLwy2+391yZD/PCjNPhryUcH/mvlhx9+/C/jq6++gkoUkSiIaK9SQ8uyqFG1qv97CkVueK+bLDjjcGGcTg9CSo9P+/333/HVV1/ddZZxYWEh+vTpo3wP9+jRo4R6esmSJSCE4NNAG844XNjgcRIrXq8Vh9vtxsiRI8F7CAK1atZ8oEp4h9MFY7RH7TzoNUiGAOTn5z+w7d8Od5NzfeDAAQ9R/nGkDngV9gqPgxCCAwcOPNQxjhkzBipDgFKzJnaVrdo//PBDLFmyBFOnTsX777//wPaXlpGJgNTayv6c1drLczEm821FRpcuXYJKrYEptgJS+7+C8LwhoCgKixcv9lnu888/x5QpUzBnzhz89NNPSjZ8XMcZyBm3TakT161bBwCoWTMXGmsYMoa/icwRa6B1xiA7p1ypYzh37hzS0jN8asTjx49j8ODBECUVOI5Hm7ZtS40OPH78OCSVGvqwFIQ26Ae1IxoUzcBWrjlMsRWUOQJDeBrsFR4DL2lQs2Yu3G43Ll68CEtAILSOSITW7wdDRAYEQcTRo0cVksq3336rzDkZjMa7alr/G/joo49ASFHUX864bZB0ZowfP75M63tV8TpXLFQmG0RJdVcxB7/++iuaNGkKQZRgtgSUOk/6/xFbtmzBE088gRdeeKFM7y0//jfhb7aXAf6i249HFZ988gnioqLAMgwSY2P/XyjFGjVsiKrF1NhT9AZQFHXbfBjvh8oyT2H1UaBNbvjeRWP6bnH06FEQQrDcLO/ztN2JEFH0YU/v27cPHMuinCiih1oDPcuhWpUqJYrhkydPIjszU2Hwdu/eHYWFhTh58iQyPDnPDE1j9OjRd1VI37x5U87b4XnQNI3Gnuzoa9eu3Vfu0OHDh/Hss89i0aJFePLJJ6FmWXxvd8JB07BSFGoWU9ASQlBHEEERAtbz/2nJyT7WVQDw3XffISosXFmnZo0auHz5Mrp164YESVLuhwKdHoRQUFlc0AYnyueMEFTgBWWZIVodVKKI559/HgxF4Q2zBafsTnTz2H/93YrKey2jW06QM8VGb4CoNWLMmDGlHn9xizRCCBhCEMEwSOQ4HLU5cMzmQLogonxWls96+/btQ5MmTVGxUmV0795dbmgSgoCAAAiiBJXRCp0r1tME1Pg0tbz/rVKrUadOnaJmr0eJLRCCL2x27LPa0duzblkyiv/66y9lW5kj1iBn3DZkDH8ThBAEWm2oVLmK8t65efMmNmzYAK1WDykgBIygBs0JyC7YCmNkFiI5HkdtDhy3O1FVkuCwWhEaHgFRlMDwEuLzZyJt4DJoXXFK/nxwblfQLA+GF4sK3O7zQQjBpEmTkJ6R4VGMUwgs1iTWOmPQtJhzwNatW0EoCgwvwZKcqyiJOV6AISwVYY0GQhccD41Wp7CjAbkY1Wh1ELUm6EOTQAhBnz590Lx5c0hGK1IHLEXGsFXQOmTVOcWwYFV6hDUaBEfl1iCEKJle3n0SQimM7PQhKxQihzdLm+FFsGoDMkfJ5IqwBv1BCJFZ7oKE1AGvImfcNggmJ1T2KKUpb6/4uE+j35rVGLHtp0Ifng6NVqtMysybN0+x0IttO6mI+W4NA8vxcFXroPzOEF0OmqAEsGoDKIaVM8tFDTSuOOW9E8bzqCrKz7SXOf/DDz9AECWY4ipBsobDEF1O2aY1Ow9GkxnNmjUHJ6oQUrc3XNU7glAURIOsjPZOnmzfvh0AsGvXLmh1suMDzYmI6zAVyb0XQmuPRHhklKwS5yXQnABC0RAlNWw5TZV92ss3h2CwwRCRjtCwcADyZGSbNrKVvSmuMqIeGwuNK062PqdoCBpZaaENSYI+KsvnnWW2BGDfvn3KfeKdvFNbQyEYi5rQvXr18nkn16tXD4aIDGVcwbW6gWI4uSFtcUGt0UCj1fmQexK7yRM6r732GgC58F25ciWWL19eYqJt1qxZYHkBWaPW+0wG9e3bFwzHI6XvIpnkUb8fCCE+WfZ//fUXli1bhrlz5+Kzzz4DIJN2KlaqrByP0WTG3r17UaFiJWisIUjp8zISu82DqDOhbdt2uHbtGvbv349Dhw4p8RdBNTohstkocCodDAYDZs+eXSbLxq+++grpGZlgGAauoGCfKAA//PivwV9LPjrwXys//PDjfx179uxBrZo1kRwXj27duj3U993333+PrVu3PhI29dOnT4eaZRUC/seBcpzTjh07fJZ7+eWXwfG8p7bWYO3atXe1H7fbLQtEPKTe2rVr+4g8XnzxRdAUhSMe94Gdnlr+76IML+bPl2vf/hotpugNMHMc6tWpc9fHXxp27tyJpKRkUBQtu1KxHKw2+y3jAf9NvPrqq/KchKdGzhwlx3mVRRF/P5g3bx5ohkVit3kyyb5GPgghtxSl3C8aN24MtcWFjGGr5Ei+kGQYjKbbRi56sX79egiipNRubdq2veO8njfKLn3ICvm8jpAjyF555RUAsmJcp9eD4QSwvACVWnPLeaT27TtAUOsR224y4vNnQjIEom7degDk5+JOY3nvvfcQEhomPzs0A0fl1sr8jiYwBLVr10ZKahqcrmC0a99ecbnzEv29FvRZo9aDZljMmzcPgCyECo+IhGi0I6zhAJiTaoCiqAdKknjQ+Pnnn8FxPCwpuUgb9JriFvjGG2/ccV232w2VWqOIKDJHrYPa4kK7du3KvP969euDV2kRVLOL7E5ICF5//fX7OaRHHuPGjQMhBKLWCIpmkJmVXapQzI//ffib7WWAv+j241HE6dOnoVNrkClKeFJnQJoowqTXl2gU/q+hffv2CBUEfG1z4LTdiY4qNTQq1W2bzNu2bQMhBB8EWnHG4cJ3did4msazzz770Mb5448/ghCiWJ/vt9qhZVk88cQTyjJDhgyBnReUTLXnPDZvxYubgwcPwmEtaqbWq1PHxz7M7Xbj119/vStLsb/j5s2buH79Oj7++GNEhITIDRK7/Zbs6tth/fr14DkOPE3LWexOFxiaRgVBhEgIIlgWJ20OvGIyo7WkUprhTSUJJ+xObA8IhOpv58mLq1ev4u2330bHjh3RvHlzTJw4UWGGD9BoschkRrQgIsjhQJUqVUAIgT4yC9bsPBBC0FiU0E2tAUdR6Nq1K0aOHAmnUETc2GyRLe2LN9G85ycjMwuCxgBHpVbQhyaD43iFGfrXX39h8uTJ6Ny5M6ZNm4aXXnpJufabLYHI4QXQnqa7RFFQ0zRUoohly5ahaqVKsFksCDSblWvcqmVL/PXXX/jhhx+QkJAgs28NBjRr1gzt2rXDa6+9hsuXL2P//v3o27cvOEFCXIdpSBv0GgR9IBjPvqfrjdCzLCRBgIqi8K3nPltrltnztyPnXL16FYMGDUJEZBRYj9o4tv1UOdfdY3O+detWn3PUpKnsIuC1SzcnVVfY5+FNhoGhaKgpChaOA+tRppviK0EwOWCIKspf91poZ43ZJCuhyzUHRTOIenwcskZvgDWrERiGwRdffKFYqxNCQLG8wsjWhSajYcNGytjq1qsHQiiIliBQNAttcBK0zmhUrFgRjMdOntAMIqOicfLkSbz77rsYN24ceEFQSC4xMTGoUqUKunXrhqVLl/oojDVaLXSe7PrQBv2UY9GFpsCrME8duBShnsa5o1IrpPRdhMDMhiAUhaTeL8Ka1Qg0zUASBFllbgmGObG6nNFFUWA5DmZLADhJA50zumjfrjiY4irJ5AGNrKyXSQ5yE96r1o5PSEDFSpXx9NNPywUsRSMwowGyC7YgqcdzYHkRKampYAUJrur5iitEcO0eYEQNGEGFgLQ6EEwOsCo9zEnVwdAMvvHcV0O0OtA0rbyLXnrpJdBM0bmlGE5W+lMUxowZg99//x2N8/JAURRoD0kgocsznoJ6K0SdSWFuJyQmQRcUB21woqIEL+4M4M2zc1ZpC05jAqEZaF2xyBq1Xo4zcMVD44pDSN3eYFgWgKzOFkQJktkJyjNO2nMvRLccD21wInTh6UpUQUBaHQTa7HjnnXfw1VdfYcuWLdi/fz/cbjcio2NgjK2A7IItyB67GZqgeIgmZ4mCuFmzZtA4ohSyhb18C1A0A5XZCZ4XsG/fPmzevFm+X/q/Ip+LsZtBM2yZctC8k0Hpg5f7PKs7duxAUHCI7L4gyi4LZSm2R40aBZYXEdP2aaT0eRk6VwwiIqOgNxjhqt5RuQ4B6fWQlJLqs67b7caAAUVxB9ExsWXOVrx8+TKcriCoA4MRUre37PZBURgxYkSZ1vfDj38a/lry0YH/Wvnhhx9+lMTNmzfvmmw/f/580MVc0yZMmAAA+OOPP3D27Fm8+eab6NChA7p37/7Q1cdlwdtvvw1CCIZqdXg/wIpmkgo8x/m4uh08eBA0TSMgrQ7iOkyDKa4iBEG8p+bz+vXroVLJ8x2JiYlKs/TEiRPQqtXIECWM0ekRI4hwWK0l4rG8aFC/vo/Y5EmdAQxNK1F/t8KBAwfQs2dPdOrUCRs3bizx7/v27QPH8dC6YmGMKQ+KZpCamvpQ4hYfBHbu3AlCCMIaDfKZM4iJjUNEZBR69+5dqmL6fnH58mWkpKaBZliojPJ8UWmZ9sePH0fz5s2RlJyKtm3b+cSg3Q0OHz4Mg9EIlhfBSWrwvHBXNt1nz57Fli1bsG/fvjIJcU6dOgVJpYYhIh2RzUfBGJUNQZR8SNknT57E7NmzMWvWLJ/f/x1x8YkIzGxYpMqv0haWQGuZx+7FhQsXQAhBSL3ecvN8zEaozA707Nmz1OU//PBDeb6q3WTZgr7/KyAUhZdffhmALKAoLjTILtgCTmNChw4d8MILL2D58uUP9N75888/8eqrr+LZZ5+9KzX53/Hqq68qwg1CCDp37lyma3r9+nVQFIXQ+n2LRBQRGWXOrL9y5Yo8r1UsXkIXnIAWLVrc87E86jhz5gwIIXBWbac4QNAMi/nz5//bQ/PjX4C/2V4G+ItuPx5FLF0qZ9h84WHE7rPKarr7yV35r8HtdmPmzJlIS0pCZmoqnn/+eXz++edQSxIcPI8kD2tzxowZt93OhQsXYDEakSaKmGUwIleSwHNcqZZhDxLdu3cHRQgyJQlmjoc9MNBHNTt06FDYeF5pts8zlGy2x0ZGIkEUsdUSiOeNJvA0jSeffPKBj/XHH3+EQatFlihhhsGIypIElSji+++/v+16q1atQrDTCbUgICE2FkadDrUkFb6zO/FhoA0ahgHnaazSno/ExqKEUVodDBQFjSRfwyUms1JApkkqdOrUqcS+fv/9d0SHh8PAcagoSuBpGnVq1cKYMWOUQj86PBxHjhxBz549obWFKR+HgZmNwBICjqLQtk0bXL16Fa+9JtuGzzAYscdqQ2NJBUkQSrXy/+WXX9CseXPYHE6kpKUrBc/169dRIScHIsMgRVKBp2kEO52IKlYQrzRb5CZ6q1Zo06YNnn76aXzyySfQqdUIZ1kM1GgRwbDQURRGaXUQGQZ9+/YFAJw/fx7Z2dmywlarLcG+bdasGQzhacpxqgxWtChm1z5Yq4NBowFL0yjPCxil1SGI5xETEXFbgkbHjvlgOB7WrEbQR8rqcYpmIFnDQNEMKlWu4hMd8MYbb8hq3McLkF2wBc7KbXyUwIQQCKKE1q1bY+zYsWjYsCE0tnBkF2yFNbsxGFGDpJ7PI3PEGuhCU5RmcXbBVpjiKipqX+/P/PnzUaNGDbCSFsm9FyJj+GpoguLBSjpYknNBCMGyZcsAFBVfkS3GIGfcNsR1lC21OEkDq80GjTUEid3mI67jDHCSGmpPJIP3h1XpYIyXm9mCzgRNYDAIIXjhhRfw6quvYuHChUhKTgbDiSAUpSiqs0ath2CwgeYEuTg3OWDLaQpO1BTbPuVp8spN/ZSUFFAUBZaiQPMSKIZDYEYDZAxfDUNklqK6NprMqFmzptLI5nWBCM7tiuyCLdCFpoIQCond5/tMROhCU6CPkG3dWrZsCcaTL0dzAiiKRmJSMn744Qe0adtWtnlnWASk1YGjajsP2WKKosanGE4eD80o99psg1H5lnK73QpBhWZ5qO1RcFXrAMFog05v8JlMunr1quIeEVKnJ3LGbUNSjwU+xYukUiO4VjcEpNYGpzEhtf8ryBy1DobwNHA8D5qXFDV3bHs5y4/leHCSFoyoAcWwCG88BBpbOFLT0gEAEydOBK/SInPUOmSP3axkiRMiuzioHTEwJ1QtUsdXeAwBVlupioEAqw2OSq2Kms9pdaCyRUBlDMTo0aOVY3333XdB0zS0zmgYonLkCaKYGLRv314h+fz4449QqTUwRGYgpvVTsKTkgqZpDB06FE8++SR27dp1y+f2xx9/hCUgECqzA5aUXPCSBplZ2Th37hyCgkPAqXTQR2aC4XhUr1HzjpN09es3gCEqWzmu8MaDZSJAWjq0zmikD30DqQOWQjLa0Lx581K3cfHiRZw8efKO+yqOjz/+WCZfdH1WcROhOfGR/Mb56aef0Kx5cwSHhKF8hYplchTx49GDv5Z8dOC/Vn744YcfRSgsLES/fv0g8jx4jkPHDh3KpNT7+uuvQdM0rFmNkNp/CZyeeiE/P7+oAU8xiOJ5hAgCBJ5/YN9AX331FVq2bIkqFSti2LBhd9UkKx55xnOc4hzlxfPPPw9CUQrp2xszdrfqdi/27dsHu12ep7NarQrZ/ZNPPkFyfDy0KhVyMjNx+PBhfPjhh6hUvjwiQ0PRvm1bJb6pZcuWiBYEfOeZM+qi1kCrVpdouhUnS+zatQsCzyNYEBDvcSBbuHChz/J9+vSBymRD1piNPs5Xpc2F/BfgdrvRpUsXuc7jBc89RkEflgprVmOwvHDLZuDly5fRs2dPRERGITMrG1u2bLmrfV++fBnPPvssRo0ahbVr15Y49xcuXIDd4YTKZENAej2IOhOiomPuuYF76tQpTJ8+HZMnT8aXX355T9u4G7z11lswe+IMTGbzbc/PqVOn8MYbb2D79u0l3Mrq1K0LjTUUGcNWIW3QckgBQQiPiCzhWlkWtGrVSs6VT60NXVAcWI67pViksLAQ5cqVByeqYIytCFFnQlBwiHIve2P0whoNlOczhr4ByhOd5o2Vi09IfCD3/m+//YaExCSFyE8zzH0pwr///nusW7cOe/fuvWWj/cSJE1i8eDFWrFiBP/74AwBQpWo1iDozwvOGwlWtPQgheOaZZ3Djxg189dVX+Pbbb2+5vcLCQrAcpzSWs8Zsgjow5K6U8f9r2Lt3r0yc6jq32Nxr4C3dTv3434a/2V4G+ItuPx5FrFq1CoQQvBcgq7W3Bcgsy9JYq48qpkyZAkIImkgS6nuaG88//zwOHz6MPn36ID8/v8wT73v37kV0uGxDbrVYsGHDhoc8erngmT9/Ptq2bYuBAwf6sKYBmW3McxyyRRFd1RroWBY1q1dXPnr+/PNPEEIwx2BUGlpVRRF5eXkPfKxr1sh2UXuscnbYUZsDhMhW+ydPnsTq1auxc+dOnyLujTfeAEsIQhkGw7U6JHEcaEIw3qPm/yDQCpoQNBQlvGayoIGkAu1putOEQK/RYP/+/bAYjagsSvgk0IYXjWawNI1Zs2aVGOPChQtBU5TiULDQKKvB9+zZg0uXLuH06dPK+EaOHAlBrVPssFzVZbuvnTt3+lyf/I4di5rBHFcmWyYv3G438vJk1fyb5gCccbiwzCQ31gWaxnsBVpy2O9FLI9vTF/9479atGwgpymrbY5Vt7BYYTeioUiM2IkJZ9tKlS6hRowYIIRBF0cdOefjw4eAlNRK7zUPmyHXgJR2SOQ7H7U6ctjvRUFIhIiQEO3bsQFxUFPQaDWpUrYrjx4+Xekw3btzAkiVLQFE0gmp2UVTGGkckwsLC0KhRI0yZMqVEPtGUKVPACirlwzOl7yIQQjBgwAAcPHgQ+/fv97HP69q1K9QWF7LGbEL60DdkNbLnOnAeZbzaHgltkGxXbiuWDx0SGiY39ykKprhKJVTOzqBgxTIMKLq30wa/rhQLhFCQVCoIooSgGp0R2WIMQur2AiNplZx1W05TxLSZCLUzFqzaAELRCK7VHdkFW2CKq4jQcPkaffrpp0rT3PujccWC1weCULRi+ZVTrhwiIqPQOC9PabrayrdARNPhCK7dHVJACJo2bYqEmBgQQiAFBMMQXVLxH1KnJ9TWMBCKhsYVD8FohyYoAVmjNyBz5DpItggwggoUw0GyBMn3o9EhZ70XbIUhKlt2H/CcZ5qmUb9+faUwA2RGvdMV5HNMXtV55sh1oFgelCeiIIBl4eB4aBgGlcqXB1DE/A1IqwtC0cgYvlppohNC4HAFoVy5cmjUqBGeeuopXLt2Db1795bPXUAQGE5AQmKSMqa09AxobOGI7zRLuT4UzUAQJdSoUQM0yyv7iGn9JAghWL16NYYPHw6ns8iBwGZ3KBMWTz/9NFhBQtTj45DSbwmCanZWCBCW5FzZdYDI5AlH5dZgOB7du3eXs/BiyiO1/xIlC698hQrgRDXCGg5ASJ2eoBgO5sTqoBkWzz33nM+z8s4776BRo8aoUbMmnn322VKL3B07dsBgNHpIKiKMRhMYjoeglt0DXn311VKfXwD45ptv0KLFY8jKzkHPnj1x8eJFvPjii6AoGin9liBn3DZEt3pCfv98+ukttwPIk3CCxoCUvouQNXoDjNHZCLTasG/fPsXJgRACh9N1y3fKvWD//v0yearVE/JE5+DXQTEsBH0A2rdv/8D287Bx/fp1JCWnQNSaYC/fAlpnNFRqDb755pt/e2h+PGD4a8lHB/5r5YcffjyquHnzJubOnYsWLVqgR48e+Pbbb+97m+PGjQNDURik0WKkh/R9K/VocXjrq+hWTyCkTk9ENh+t1EOOyq0R1XI8JLMLwRyPb2wOxAkCmjZpcsftHjlyBBs3bsTXX39d6r+fPHkSJr0eoYKAPEmCxDCoW7v2XUXpffvtt3jvvfd8RBBerF69GoQU5Vd7ybgfffRRmbf/d5w6dQrJyclyfSdJWLNmTYllvvzyS4g8j3RRRDe1BkaOQ8Vy5XDz5k3s2bMHPMchQhCQ42mcT5o0SVn3q6++QmpaOmiaht3hxLp169C4USPEexr0p+1ONJNUcFp9FcY9evSAOiBIcUMLbzIUhBD88ssvpR7Hb7/9hueffx5Tp07F3r177/l8lAWbN2/GsGHDMGnSJJ/xuN1ubNq0CTNnzkRoaChEk1NxDAupJ9eSxWtaL5o0bQqWF2HNbgx9WApohrmva/p3eC3uUwcs9YkBK+4E+F+H1zHzdg4X27dvh6RSKzVgxUqVfQgFn3/+OfQGAxiOl935is3flMUGvziuXLmCYcOGISUtHdWr18B777132+UvXbqEwYMHo2ZuLrp27eqTb79lyxZl/sAQlQNOZwGhaBijc5A1aj2SeiwAL2kwbNiwuxpjaSgoKAAnqpDUYwGyx26GJak6VGpNmWLU7gXvv/8+VMUiJqOiY/Dzzz/jhx9+QPkKFZX5nkGDBuHMmTNI9sSQEkKQW6tWqc8LAAwaNAgURcEYWwEaRxQYlsUnn3zyUI7hUcDFixehUmtgjM5BUo8FCM7tCkJIqe9zP/734W+2lwH+otuPRxF//PEHYiIiYOF4NBYlmDgOiXFx/1OZIRHBwWitUiuN5nqihMzU1DuveBtcuXLlroqxh413330XFXJyEB0Whvz8fJ+GpNvthkmvRyNJhRN2Jz4NtMHC8ejTpw/efPNNtG7dGvn5+Q+EJe7NOVrraRq/EyBb1w8fPly2tfZ8kGWkpiI2PgEOZxDUavlD+10P4eOwzQGKEASxLD4ItKKH56PvqMd94bCngT9x4kTs2bMH165dAyBbumnVRR/tDevXL/VjdObMmZAYBsc9rO73PGMszVbr9OnTsAQEQtAYoC1muZ0YG4vPP//c5xzv27cPmzZtuuvcLW8mMSEE33iO8QtPU9hpt4OnaVg9527y5Mk+68Z77OG9xIEPPZlxzxlMqCRKyM7I8Fn+ypUraNy4sczkZlm8/vrr+Oabb7BlyxbExccXNao5Ts7RLsZi9+Zt3Qk3b95EXsOGRQ20Km0R2WIMoh4rgCowDE6bDY7AQGSmpuKDDz7wWXfmzJlyIVW3N9IGv47AjPoghNwyB2vXrl1gWBbaoDhYUnJBKApmmsZUvQELDCZwNI2kpCQ0b94c2dnZkPQBSOg8Bwmd50DSByA8IhKsqAYjapDQ5RmkDlwKlT0S4RGRJfZ14sQJcDwPY2xFxHWYBktqbZnE06QJomNiwXtstVmKAqEo6MJSwWnNin14QpdnlHMS2Xy0TN6o1h4GowmA7FBBKAoRTYYhsefzin24yhqOuPwZCGs0EIQQHDlyxGdcrVu3AUUzoHm5MU4oGgzDonqNGmBZDhQrgOYExLR9Gsm9F0Jli4BociJn3DaYk2TyBcXyHlY/DVqQzwfF8ohoOhJSQDCMJjP0BiOs2U2Upr05sTpoXgVW0iGs4QA4KrUCIcTHMePy5cv49NNPsW3bNuzfvx+hYeFQmR1w1ciHxhUPQtHKPcxIOggG+f712nyfO3cOhHiiBChaITrEd54tj5vhwKr0MERmgmZY5DVpgps3b+K1117DwIEDMW3aNB8G/Oeffw6Lh1BGCIHd4cCUKVNw7NgxfP/997IdvCUIgZkNwYpqZGRkKkrqwsJCfPzxx3jnnXd8vvP69etXjExQjCxRjIhAKAoUw4LjBfTs2VNpAsfnzyzKug8MQu/evVG/fgNlG14iQrnyFe454uPatWs4efIkevfuDUFjQOqAV5WCXaPV3ZXVp5Ll7lGuJPV8HoQQvPPOO7dd7+eff0ZYeIRcpDMseF5QyD5nzpzB4sWLsXTpUkV586Bw48YNVKpcBRTLwxRfGbwuAJzGBMkQgB49etzXtt9++22EhUeAYVmkpKbh0KFDD2jUJbFv3z4QUuQKkTlyLThRhSlTpjy0ffrx78BfSz468F8rP/zw41FFz549QRGCCqIIO8/DpNffN9kxNSEBjxdzReup1sBlteGDDz7AmDFjMHny5FLtsL3fOEoNRWQyvWiwKt/I0S3HgxCZzF9XFFGjWrXbjuWJJ54o+pamKMycObPEMhMnToSWZfGlp/Ze4Inhu1Vz/m5x/fp1VKxUGQzLQWsNBUXTSp1yP7h06RLq1aunHNv06dN95qQKCgpg5jglnuslj6jg6NGjAIA9e/agQ4cOaN68OZYsWeIjznAFBUMdGILQ+n1hjCkHluWQnpKCRqKkXNfRWj3UkuQzpnfffVdupsWUg7NKW/AqLapXr1HqXNm5c+cQHhEJimbAiSrQNP3QstKnT5dd6NQmuxxvFhRcwtre66onWorIAl5l/t9V1BcvXgQhBGEN+isRXWqLq8yW3GXBokWy0CBj2CpZeNDnZRDyvyWEunnzJsxmCwyRGUgfsgKx7aeA5YUS8Y8nT55EbGwcRKMNSb1eQFLP56Ey2ZSIv38DFy5cgNFkBq81QwoIBaeWSe0RzUYU2ayHp93Sqe1u0L59e2hdccp2ozzvwYcV9xoaFg59aDIyhq9Gcq8XIWgMPvXyxYsXFaFM3Xr1IektiGn9FCKbjwYrSIqj5t9x48YNTJs2DdWqVUejRo1LzP/9f8TmzZt9iA2DBw/+T/UW/Pjn4G+2lwH+otuPRxU///wzunXrhqqVKqFHjx44d+7cvz2kB4owlwsdizXb8yQJ6cnJ//aw/lEsX74cDE1Dx7KKRfnkyZNl5qwgIkIQwLFsqR8/N27cwJQpU1CtShU0atjwth9I165dQ1Z6OjQsi1xRhJHjEBsVBZ1ajdqShM+sdiwymUF7FLe2cs2VnGNvg94bZaDxZJN5f1aYLTjjcOE1j+p7+/btyviWLl2KuOho6DUaJMTG4vXXX79lMfvZZ5+BoWk0lFSYbzQhXRRhMRoxadIkdOjQAaNGjcL58+eV5U+dOoUOHTqAoijEcxym6PSIF+VMtAfxvm/evDnSeB48kdX7r5jMyBVEiDyPQ4cO4dlnn0VBQQG2bdtWYt1q1auDYzjYWQ75ajXsNAOBEETwAiiKwvr160usc/36dbRt29bn3BJCoBJFjBw5EosWLcI333yD3bt3o2vXrsjPz8fKlSvRv39/ZGVloXbt2rdloXuzohd5joMUYyMzhMDKcRigkaMGVKKoFP8AMHfuXMWCS2leehqWiUnJ+Oqrr0rs791330WNGjWRlpGJvLw8JcedEIKK5copxKHgkDDYy7cosvMu3wI6gxGCxgApMMynSVoae3zHjh3geaFofBQNY1xlEELQvHlzUJ579LTdCT3DgjdYQTEcUvouklnydXsr64XU6YmIJsMgqPVo5inGOnToALU9smhiyaMaZngROqecKZ+amoaUtHTklCuPFStWAAAaNGgoLxMms4vtFR5DcK1u4CQ16tSpi8io6KKmLyEgNI3oVk8ozf+Qur2QM24bIpqOUJahORGMpPFZLywsDDTDwF6+BaxZjZXGclBuF6T0WwK1I9oz8UNjzpw5sqpaq1Umg5566il89913qFK1GnR6A+ITk7Bp0yYIogqs2gBzUg2wKj1YlQ5WuwOA3IhNT88AoWnQnABeb0Vgej2wkg6c1gyK5ZE26DXP+If7TCbdCufPn8f69euxdevWEqSyzz77DLVq10ZcXAIaNGiAHTt2KGSe0vD+++/LpJiq7ZHSdxEC0uvJBIJOs6ALSwPNS0jsNg/pw1ZB64xBy5YtAciFOsOysGY1RnbBFsR3mgWaYTFnzhwA8kTasmXL0LJlS/Tq1avMRfWxY8fQunVrVKpcBYMHD8bly5eVf2vevLlPVIT3fN2NHd+hQ4fAchxMsRUQnjcEOmc0LAGBt8yGLI7ffvsNixcvxty5c3HkyBHcuHEDEyZMQHBIGELDIjB58uS7moB84403kJ1TDkkpqXjyySdvaS9/+fJlpKamglAUeK0FktkJQRDvKvfu448/RocOHdCqVSusXr0ax44dgyBKMISnIqRuL2hsYQi02nxIbg8SSrPdkx+YOWINOEGFqVOnPpT9+fHvwV9LPjrwXys//PDjUYQ3w7jA4yD3hc0BM8cpRNd7RcVy5VBZFHHao4DOk1SwBgSAoihYeQEqhoUtIKBEZvmZM2dAEYJeGg1O251YbraA8tQ/6YOXK3nNhBAM0ehAeRoTt8Lu3bvlb/MqbZE2cBns5VuAEIIvvvjCZ7mCggJYeB4nPE1pb1xbcTI9IBPq16xZg6effhorV668q2/VK1euYPbs2ejbty8WLFjgE512PygsLFScvAgh6NGjh7LtsWPHwszz+NZzXItM5jLVR7t27QIhRQ5kWWM2gpc0yM3NBUvTKNDpMcdghJnj0LhBgxLrr1y5EhFR0TBbAvDY44/f0kZ72LBh4FVapPRdJJN/k2tApdbcVUxUWfDnn3+CYVnYcpoiu2ArUge8CkGlw6hRo3yWGzBgAERDIAihoI/IgC2nKSiWR25urRLb/PXXX+WauOEAD+l4AWhOFkRodXosXrz4vsd95swZ6PSyyMNZtR14jQkqtRoLFiy44733+++/49NPP71r5fc/jV9++QWEEEQ9NlapS/WhSWjdunWJZV1BIbBXeFx21hu7GbZyzRESGg63240zZ848tMbz7bB//37ExsWDoii4goJhMlugD01G6oCliG03CSwvYty4cfe9n3bt2oFQtOKepw1JBs2w92SlfyfcvHnTk83eT7kmxtiKqFGzZqnL6w1GuKp3LIq+S62N1PSMUpf1o3RcuHABH330Eb777rt/eyh+/IvwN9vLAH/R7cf/B7jdbsyfPx91atVCs6ZN/3PMtHfffRdt27ZF69atFQZoQUEBaIpCR5UarTwN3NLsxf/XsXfvXkyaNAlz587F+fPn4QgMxGOSCqftThy3O5EsCGhYSvHUr18/0BSFeqKERE9T/nZ5v7///juGDBmC+vXqoV+/fkqj4HWTRSE8RLMczCm50AclKIUiTwjyRAlOhoFGknDs2DFs374dO3fuRLXKlcHTNBIkCRxNo2b16igsLMSff/6p2BoV347ZYPBpmP8dK1asgN7TCDTp9UhPSwNNUUiXJOhYDlHh4bh48SLOnTuHqVOnokaNGhBoGt97CtcdHnXsrRTXZcGVK1dw/PhxdOzYEUG8gDkGI9SeRi5Dypbptn79evmYJR0EXgJFCOLi4tCxY8fbWmTdvHkTdevWVc5ZN7UGtSQJGpXKp3Hmdrvx888/IzUtHYwgZ1cxogYUzdyyoHzxxRdBCMEJuxOpggiVJRipA1712AISrPKQKr6xOaBlWR+1vtdyL6RubxhiyoMQAsFoh6tGJ6gDQxAcElrCev7vOHLkCF566SWsXbvWp1FauUpVaO0RyBi2ChnDVkFrj0BWdg5Uag1UAcHQBieBphk0bNiwxDavX78Oo8kEQ0QGknovREjdnrIdfO3u4CQtUlJSYON55f6e6rHGpmgGNCdACgyVFcrlyqFp06bKea9arZqi5h03bpxsFdbrBWQXbJFzxTke/fv3R0pKClwul6zcT6oBQ2QmCJHdBgghst07zfrYxQfV6ARBlOB2u/HTTz/hrbfewptvvgmH0wVRZ1aa4+lD31DY+YQQVKhQASzHgxE1YFU6RD02FuF5Q0FzPFJTU6E3mnzs3ChOhGB0QDDaENZokNxwJgSSKKKqKGGdJQD9PPn1fyeMLF++HIQQhZCQ2FW2ytPpDfjqq69gNJlBszxohgVF03LWPMOB11thK9ccrEqvWP7Fd5oFQoiSWQ7IOe47duzA+vXrS7UyLCwsLKEYP3v2LOLii95LSckptyzkn3jiCVA0o7gXpA1cBkIIOJ0FwbV7gBACa1ZjmONlUkZx8svcufKxMp5Jmpxy5ZV7+7PPPoPBWBSJ4AoKvuPEydmzZ2EyW6Ay2WFOqAqaFcCwHNIzMnHw4EFMnjwZNMMioulwJHR9Flp7RKkODl543Tq2bt3qY4+5du1amD0TkhGRUdi/f/9tx3UrTJgwAYSiEJBWV44JIATTp08v07rr1q0DIQSGiAxYknNBebLob4UbN25g+vTpqF27Nh5//HGfe+ROeP/998GwLNSBIdC6YkEIQatWrUAzLDJHrUPOuG1I7iW/83bs2FHm7d4Nrl+/juSUVAhaI2zlmvtt5P+H4a8lHx34r5UffvjxKOLEiRMghGCxyYwzDhdO252IEkX07t37vrarxG0JAnIE2RVNJYhoJqlwyu7EAasdVp4vYS3vbfLuCAhU6igrz8sxXWq9UkMRQkARAo6iSihgi+Oll14CIUTJSs8Y/qZM2veQlL3Ys2cPGJpGLUmF8To9ggUBsVFRPrWj2+1Gp06d5G9OThYHPN6ixX2r0x8E3G43Zs+eDcozd1CnTh38/vvv+OKLLyDwPLJEET3VGpg4DuWzs+845oMHD8oN0JbjleglhuMxc+ZMdO7cWbkG1atUuS9hTqtWrWAITVbqVa+9/oN2t/JGkUW3nICs0RuQXbAVOlcMOnfu7LPcxIkTwQkSQuv3hcoeCVbSyfMYt6i7GjZqBE5QwZrdBDQvQjQ7EZ43BJbkGqAo6oHMje7duxepaelgOR4URUNlloUoHTp0vKX69Z133oFOr1eu04ABA+5KKXvt2jVs3LgRy5Ytu6PLxblz57B161Z89NFH90SSuHHjBvQGA4wx5ZA5ci0SOs8BJ0goKCgosWzVatUh6MxgJS0IocDwIrJzyqFipcrKsTbOy7vnTPv7gffYd+7cCa1OVyT2+Jsl/r1i4MCBYHipSAzh+e+/E4ceFKJjYqELikXqgKWI7zwbvEqLfv36Kf9+9epV7Nq1C7t370ZkdAyMkZnIGrMJmSPXQmMLQ7369R/KuPzw438Z/mZ7GeAvuv34/4CCggL5Q1sUkSAIYBnmP9Nw37RpEyiKQpwgINlT5C1duhQ3btxAQUEBwlwuRIaEYMqUKf8Jm5YbN27g5MmTPsWFl8zQqGFDtGnTpkQjw+1248CBA/dkV/53aFQqjNTqlMK2oSihSsWKPstcv34dDE1jqGe543YnIgUBHTt2LPN+/vzzT0iCgKYqFb63O7HWHACWEKidMVDRDBabzHjDbEEgTYPxFNLDhw/32caVK1cwY8YMdO/eHTNnzlQaZGPHjgXtsVoeoNFimcmCeJYDQwhef/31W47pxo0baNRAtmsWaVm9W1MQlYx4jqYxadIkuIKCwfIieI3Rw6jX4ozDhSWmopz3suL8+fP47rvvUFhYiHXr1kGnka2DVKIIURBg53kkeu7bp556qszbXbt2LapVq45y5Stg1qxZty2mT506hRUrVmDz5s0YMWIE1MVU4I9LKp9j+uSTTxDsyammCYGrmsxeTe69EIQQsCxXKmvdS67oqtZAw7AK6zWx2zwQQrDMQ7o4YnNAxTA+6szCwkLk5tZSxqQJSgCnNYMRNYhsPgqEEBw4cKDM56Y4PvvsM+gNBtAMC5phodPrsW7dOqxbtw5NmjRFxUqVMWbMmFLtuk+dOgVCCGJaP6lMDqgd0dBHZPoQPabqDdhjtSFPUoHnOHTq1Aksyyn/Hh0TC62H8MOzLF544QVlHxcvXpRZ0h5bPYqiMG3aNAQEWiGo9aAYDrZyzeXGeMFW6EJTEBklK96t2XkQzS6obJFK89ma1Qhanb7EsZw5cwbt27dXGua2nCZIHfCqohqZN2+eUtA5qrQpYiyn1UVSSip69+4NVlAhPn8GUvq8DMHsko/Nk4udXbAVKovLZ+LstN0JC89jwoQJPmNZuFC+l0RLMDSueMUqv1GjRmjSpAnUFhfSh65E1qj10IelQBAlaFxx8vkzynESpoSqCG88GBprKFxBwYpa/eLFi0hNS1fOvcFowt69e+F2uzFjxgyZNOB5d9StV08hmTRunAdJb0FcxxmI6zANotaExx5/HICsOPc6TWzdulUhrHgnprwNdtHklN0BWA6WQCvCI6OwZMkSn2PfvXs3MjOzYLM7kJub60MOysrOgdYeifTBy5HSbzFURhtatGhx2/t7xowZYHkB6UNWyFZzj4+T3y+WIJjMFpw5cwZ5TZoo58Nqs+Ozzz4rdVs3btxAq9atlWVFSaXYvgPy36H7jZoxFCNtaFzxMMRWQHxiUpnWrVevHnTBCQrJwV7xcWi02ofyd71u3brQOmOQNWYTsgu2wpJcUx47RSt5inEdpoIQ8lC/hX744Qekp6dDrdHCFRT00Br7Xhw7dgyrVq3CRx999J/4XrpfXLlyBUePHr2l0uq/An8t+ejAf6388MOPRxE3btxAfEwMQgWZ6N3Rk5tcmhva3WLz5s1okpeHxo0aKdnTsw1GZa6hqighLy/PZ51z585B4Hk0kVTYY7VhioewvGDBAuTn54MQgp5qDQ5b7fjCaoee425bJ7/99tsghCA8bwiyC7Yq+dulxeWtXbsWoS4XBJ5HlYoVSzQZP/74YxBCMMNzDM97iLCluc39W1i3bh1UntoyMTERJ0+exM6dO1EuMxNhLhdat2x5WwGCFzdv3kSNGjXB8iKMsRUhGQIQaLUphOPLly8/kG+oqVOngmZYRDYfhaSez0PrioXVZr8jmf5ucePGDdjsdjC8fG68CvSFCxf6LHfhwgWEhUeAEyRoAuT6dcyYMbfc7qVLl9ClSxfY7HIdGtdxhqf+3QJJb77tul643W5cuHDhtsfsJaTH58vbD288GISQUknOly9fhsFohCE8DYnd5iK4VjcQQrBy5co7juW9995D+/btYbEEKHWfIErYsmVLqcvv2rULeqNRWbZater3VBNu2LBBdgz0bCc9IxO7d+9Galo6OI5HVHQM3n//fSxZskSp90Mb9IOgt0Kl1oBX6RDZfBTCGw8Gywvo37//XY/hQeLHH3/E+vXr8d577z0wB4tp06aB4XhENBuJmDYTYfO4dDwMNf/PP/+MZs2a+cxbpaSmKc/82bNnERtXFDkZGhYOmmEg6swQ1Dqo1Jq7mqP7448/0KZtW0gqNQxGEyZOnPg/UW/64cfdwt9sLwP8Rbcf/+twu91QSxJ6qjU443DhhN2JOEHA455GxL+NSuXLo7wo4qTHvqyuKCEuKurfHlap+O677xAfE6N8sPTq1Qs3b97EiBGylXNVUUSkIEDkeeXDxe12o0uXLso6PMdh+fLl9zyG5k2bwsBxmKI3YIRWB5qi8PTTT/ss89dff4EQgsl6g9I0S+OFUtW/t8OyZcvA0DQoUmQnznMiWqmKst2Ga3XQUxRyRBGtWrXCjRs38Msvv9y2edywYUPw+kCE8oKyneUe1eX8+fNvuZ43n2uJh9U/UiuzUd8PsOKU3Qkjx6Fy5crgVVo547hgK6xZjUAIhVxegMQwqFG1apnYvG63GwMGDFCuW7DTCYHjUEdSYZnJgsaSChzDoG3btujYsWMJ5v2Dwttvv+2TDRQSGgbG4/hQvGF86tQpnD9/Hia9HlmiiPlGE+qJImiKRlKPBcgcsQZeC/HiBd+JEyfw5Zdf4tq1a5gzZw5oWs6slgJCkDboNST3XgiWYaGjaXRUqREniNBpNPj+++99xunN6Q6q2VlWJAxbBVZtgN6j5j527Ngtj/Hrr7/GY489jvIVKmLQoEE+NtqA3DSfN28epk2bhsysLOWYy5evcFtG/ZUrVyBJKliSaiBrzCYkdpurxB9QDAtzSm2fc+h9NsMjIqELikVK30WIaDoSNCGoLUp4w2xBG5UaNEX7nMM//vgDCxcuxNSpU7F7926MGjUKglonqwtEDRyVWxflgUVmgWE5GGMrIGfcNsS2nwpCUVBZw6ALTwMhspK+NHgLV1tOEx+reKfTCa2uiBXPqvTIHLkWWaPWQ22PQG6tWqhStSpMCVWVcbhqyIqPkDo9levFq+TnabzHonJ7QCBYmsaCBQt8xtGseXNQNIvA9HrQhiTL504Q8cMPPyAtIxMBqbV9lPq8IIJmWAhGOwihoAtNVfLmbXYHDh8+rGy7f//+4FVaxHeahdT+S6BzxSA6JhZjxowBIQSWlFwEZjYEoSjQLK/Y+TtdwbBXeFzZry2nKcIjovDbb78hNi4eDMtB0puVc8SIWp9JHFtOU0WhP3HixFLP/+HDhyGIErSOSASm1wMnqJBbq5ZSZBpNZriqdVDGEJhRH3HxCbe8PwFZmcGrtEqeulfp740jeOONN+B2u3H48GHs3r27xLNRHAsXLgRFUQjPG4rU/ktgjC4HjVaHQ4cO4cknn8S4ceNu2aj3Yt26dbckAXknkGw5TRHWaCB4nQWsSoeEpLLFu9SpUwf6Ypb4zqrtIanUD6RIP3LkCMpXqAid3oC09AwkJif73u/VO0Kj1cLpCoKkD4ApoSp4SYPMrGxcv379vvdfGtxuNzp2zAdFUdC7YsBLGoRHRJbJvv9esGTJEjAsq9zjrVq3/k+ouO4VH374IcyeSUTaQ6T7r8JfSz468F8rP/zw41HFt99+i/Rk+btbEgTMnj37oewnKS4O0YKI1eYAzDIYwdK0j6OZF8uXLwfPFTV5unbtCrfbjRs3biAzLQ1mjkNPtQZpolgiguzvcLvd6Ohp0tOextGtsoTvhJUrV4IQouS6H7fLJPSXXnrpnrb3sLBv3z7YbDb529pmuysxQHH8+eefGDFiBGrUrIn8/PyHYkd+7do1NGrcWLnWXuKtSq0pU3O4rCgsLERwSCgEgxVhjQbCkpILQopiCIvjwoULmDRpEgYOHIg333yz1HrCez968e2338qkjsaDFScAVpBKvb+L4+TJk8hMlet0hqYxcuTIUvc3Z84cMCyv5Min9pfd7Eprgh86dMjTmJ+p1CsaixNDhgy57VjWr18PiqLAa82gOREUzcAQXQ6GyEwYTaYS3/5utxtBwSHQBcUjpe8ixLR+EgwnYPz48bfdz63wzTffYPHixVi7di1+/PFHBARaobGFI6ROT+hDkyCp1OjevTskQ4ByHmLbTZLvl8AwmBOrIbh2D1hS6yApOfWexvAgcOPGDXz22WfYt2/fbePn7ha//fYbomNiwXAC1B53g7KQOW4Ht9td4n77/fffER4RCUFjgDGmAlhBheiYWB+7+kaNGkPSByA+3ytGMKJ27doYPXo0xo0bd9v5udLQpm1bsIIEV/WOsGY3VghWfvjx/w3+ZnsZ4C+6/fhfx40bN8AyDCZ4GihnHC5UFsVSrcf/DSTHx6N1sWz2XhoNXFbbvz2sUpGenIxQQcBikxkFOj0oQvDMM8+AY1kM8Kinv7U7ESYI6NSpE4Cigm+KRz3bRFJB5Pl7tvL69ddfUb9OHWUCunfv3ti1axfq1q6NtMRE9OrVC5cuXULdWrWgZ1mM0uoUG35REPDRRx/d1f6++OILvPjii1i9ejU2bNgAk9GIcJbFEZsD39mdqMgLiGBZmDkeDRo0gMHTAA80m/HOO++Uus0+ffqA4UVININPA21K054QclsLrOnTp0PFMMq98kmgXKAO0mjRSqUGRVGoVq0aNI4opWiJelx2dWCJbLVdVnsor3q3m0qNHmoNTJ6i8pDVLtupewr3RYsW3XIbN2/exG+//XbPzSS3241Aqw2G8DSkD12J+E6zwAkqOOx20BTlo3Bv06YNNm3aJCs1A60443Dhe7sTLCEwxVeBLjQFFMOCpmn88ssvuH79Olq1alVEJggJxdGjR3H27FksWbLExw7b4XShRfPmSIiORq3c3FIbdl7bt6jHxylKadESDEJRaNK06S3PwenTp6HTG8AIEhheBYphkZ6eoRSKCxYsgMPpgk5vQGhYGDhJg6jHCxD1+Djwah1at2lz23O4dOlS2arP05zmdQEKwzi0Xh/lGJcuXYqTJ0/i2rVrPkV4dMsJIIRgj1W+T0/anWApCvPmzSu18JEbbB2hsYbKDdfMhqAYFrZyzWFJkdX/FMtDG5yoKHwN0eVAKAba4ETwGiMqV66MXr16YcqUKfjjjz+UbS9atAiEEKQNfh0pfRcpFn6CKEEfkoSUvosQ3Uq2SKd5CaxKD14QsGvXLnTq1AmizoyUfkuQOXItdCFJnnNCQReWJmep0zQaNmwoN+FFETxNIy05GX/88Qfef/99rFmzBseOHQNFUQiu1U2xsZcswWjg+XvSvXt38CotYto+jfjOs6EyO1C5ShV07twZFMPCmtVIuT+McZUR+Ld3ffUaNWGMq6Q8v6H1+8rXiKJhKvZ7a3ZjMKIWPC/A7XajXPkK0DqjkTliDTKGr4bWHokqVath0iQ5gy2514vILtgKe4XHQAiF9CErYE6sBuJpTmcXbFUiE7xxJV988QUKCgpQUFCAw4cPY9SoURC1RsWGPKLZCJ93VvkKFaEKCEZq/yVI6vk8OLURKrX6tu/6gwcPguU4GKKyEFKnJwSTA4LRjgSPo0RZYikWL14Mh9MFlmUhmZ3KOYrrOF2e2FCpwEsaCBoDOI7H1q1bS2zj1KlTePLJJ0EIgS40Gaa4SiCE+GTXdejQwefdGtFUPv5p06bdcmyff/45nnrqKUydOhWzZ88GIQTmpBqwl28OhuPRrVu3Ox7fnXDx4kXY7A6oA0Pgqp4PnSsGvCCAohm4auQjtEE/8CotWjz2GE6fPo38/HxUqVoV/fv3f2h57YA8GUUIQViD/sgZtw0pfReBYTk888wzD3xfv/zyCziOR0BqLaQPfQMRTYaBEILXXnvtge/rn8ClS5dgMJqgD01CbPupsFd4HISQUu/d/wL8teSjA/+18sMPPx51/PHHHw88K7s4jhw5gtCgIKVGeqxFi1sSE0+dOoVNmzbhwIEDPjXRL7/8gpaPPYYwlwsVcnLw8ccf33G/brcbmzdvxjPPPIMdO3bcc/381VdfgfaQxHcGWtHDQ1q/mziifwonT55EUlKSTKCQJKxZs+bfHtIt4Xa7sW3bNvCCCGNUNqJbPQFzQlWwHIcjR448kH0cO3YMhBDEtJmo1Itqsx2DBw++67FOnjwZao0WDMOgdp26OHfuHNxuNx577DHQDAtDRAYkvQUBgVaf6K3SkJ2eDifPY67BhIGemLW/q+0B2WHQS4yP7zwb+shMcBxf6v3/888/g6IoBKTXh7NKOwRmNADNcpg5c+Ztx5KWngG1PUKu2cLT5FgvmoEuXHaG+7sjwqVLl0AIQUTT4UXk/4h0NGvWrAxn8vbYsmULCCFI7vMScsZtQ+bItaBoBo0aNQIvaZTYO6/CnxZU0AYnglA0WJUONWrI2eJXrlzBzp07sXPnzntS3H///fd4//338eOPPyq/O3fuHMaPH49evXrh1Vdf9XmfXLhwAZlZ2co7LjYuHmfOnFH+/ebNm5g+fTqSU9OQnpFZZqLOyZMnkdekCcLCIxEbF4euXbuWqZa/FW7evImxY8dCo9VCEES0at1amRtaunQpCCFI6fOyT91ffP7V4QyCo2LLYmKEJoiIvHdRmyBKcFXPL7qPorJQMzf3nrfnhx+PKvzN9jLAX3T78f8BTRo1gp7jUKDTo4un4CjtA/HfwIgRI8DTNMbo9HhSZ4CKZdGlS5d/e1gl8Mcff4AQgjnFbNXKi6KS5TxdX/T7LFFUnAPGjh0Lu1Ck4N7uyQ0vzRbtbvDnn3/i2rVrOHr0KNSShHhBRGuVGmqWRW7Nmrhw4QJCXC4whMBM0xij1SFLlJAQE3Nf+z106BD0Wi3UDAMNRYEmBAJNI9BiAccwqCep8ILRhMqSBK1ajbNnz5bYxk8//QRXUDAYQqCiKER41Hh/z4MDZDVp27ZtUadOHSV/bbRWj12BNrRSqRTVPceyMBTLvNLYoxDXYRq01nA4WA42ji9hc387dOzYEcEcB9qjBpd/KCw2mnDG4cKbZllxdyv7vjfeeEPJ4AoKDsHGjRvx3XffYcOGDahbuzaqV62qNGxvBe/fp4imI4o+asPTkJeXh4ULF+LJJ5/EyJEjwXrOX6VKcoPMq/x/P8BaNHYPWWDevHkAoGRBhzUcgNj2UyEY7VBrtPjpp5/w3HPPoXbt2qhQoQImT56sNKR+/PFHfPLJJz6FjBc3b95EXHwCVGYHIpoMk9XXRM5Jvh1b+OmnnwZFs+A0JtgrPg61IwaEopGQmKTEX1iSc+Gs2h60J2fcey7s5ZsjOCTsttfRmwFIKAquah2ROWqdrIymGahskeDUsqXawYMHlXUCrTYYo7KQNWq90oCd77nu6zxKy2bNmhUVPq1a4Y8//sC5c+dQuUpV5ZxLgWGIaDoSnEoLmuFAszycVdvB6zCgDU6UG+2E+P5QFHT2cDCcgNS0dKXoPHv2LDiehyYoAeF5Q6ELS1O2Fdl8tHJedCHJMJlM6NOnj5IPdubMGQSHyPmJFEVDlCRP47M6jDHlYUmpBV5twPDhw7Fy5Urk5eWhUqVKGDx4MKpVq6aMjeNlRXpI3d7KJIjGHoG2bdsCkBufOTlFxxQeEam4IJgDAhGYUV8ZpzG2IgjN+EzQdO/eHaLWiOQ+LyFzxBpoQ5JAszwkSzCMMeWLVOOZDcEIKhCawZgxY/Dpp59CrdGC5UWwvACtTof9+/ejX79+0FpDlPVi28vW4cm9FyJ96EpQLA9W0kIfni7fh577YcaMGeB5AYLGAEGthyBKaN26NSRDgJInGdFijEK4+e2337Bz504fxwHBYAUriLdUynuxceNGuIKCQVE0aE6AKa4SBJ0ZZksA5syZc1v3Bu8khzmxGgxR2SAUjdCGA5DSf4lM9KBo8FozQur3QUq/JTCEpyEmLr7EMyIroilogops3m05TWEwmgDI0STZ2dmgWR6WpJpI6bcYzqrtQVHULQlMW7ZsAcfx4FVasIIEg9GIgoIChIZHwOZwok+fPg/EftJLMvJO9GQMWwVCCKpVqyY7dRCCevXrPzRF+a3w6aefghCChK7PFhGQtMZ7VpLcDrt37wYhBInd5yv3usoQgLFjxz7wff0T2Lt3r3zuujyjnDtJb7lvZcjDgr+WfHTgv1Z++OGHH3fGlStXcPDgQXz77bePpE3wggULwHi+ASmKwowZM/7tId0Sv//+uxJx5R3rf/Wcv/nmmyCEIH3wcuSM24as0RtAyINzDTh79qxMiG/Qr5jzmtaH/FsWvPKKrCi3ZuchpG4vCBoDatSUm4LXr19H3759kZaWhoYNG97RCcDbrC4+B5gjSmjZsmWpyz/zzDNgigkivD+lqee7dOkCQlFgBBUYQQWKpu8YdxAaFgHB5IDaEaUox13VO4JQ9C2V7UaTCabYCsgasxHJvReCV2nvmsBQGt555x0QUmSb71Xyz5w5EwajCZLRCmN0DiiGAUUzSB3wKnLGbUNYQ9k9cuXKlTh79ixiYuOU8xQVHYPTp0+XeQzjxo1T1uV5Aa+//jrOnz+PkNAw8JIaWns4CCEYNGiQsk7HjvkQ1DrEtJmIuA5TIekD0KBBkQPo008/DUII1M5YaENkMszEiROxe/duHyFEcfzxxx8IDQuHZLTCliPH6gVabfcssAJkpwRCCOzlmyOoZmewgoS27doBAF544QVQFI3MkbIIIKWf7IC4ceNGZf2ccuWhc8V4xAhvQmMLR3UPweFeoNMbYMtpioxhqxD1eAEksxN169a95+3dCX/99dcj7dLmx/8u/M32MsBfdPvx/wEXL15EsyZNwHMc9BrNfyZf5fTp09i4cSOaNGmiTIq3aNbstla5/xZu3LgBSRDQUaXGabsT7wZYYWJZtGzZEtWrVIGF4/C03qCQGV599VUAciODpigsN1tw2u5ET7UGFEWV2oS+F4wdOxZmjscxj1XaAo8i+bvvvkOF7Gw0k4os38fp9JAE4b7253a78eGHH2Lw4MHo2LEjOnfujMmTJ2PGjBmgCMG3difOOFzYa7XfVpl58eJFzJo1C7Vr10bLli3x2muvlbgnv/nmG2i0OqjMDhhjyoFmWCQkJCgf1CzD4KWXXsKQIUNACIGJpsESAgfNgPYso2ZYlBdE0DSNTz75pMzH2bt3bxBCISC1NjJHrkVUy/EghAJDUUiSJAgMg8oVKpTK9D948CAYloU5vjLC84aAl7TKmBlCkMILqC3eOefd7XbDEhAIY2QmMoavRkKXZ8CJKowYMcJnuU2bNkH0bE+jVoMlBOV5HmqKgkGrxcsvv4wFCxb4MPobN24MfUSG0pjxMo5DPA1ZfXga1AHB4HkB+/bt85m0YBnGJ7fci++++w4pHos1nhd8ct1vhR495LzsuA5TPYzodaBZAZxGbnpqnLFK8y+kbi8QQpAxYjWyRm+ANigeWdk5t9z2iRMnwDAMLKm1obLJDHCvjTwhBKykg9oRBYPR6PPO2bJlC3hBVCzyOJYFTQiiRAk8TSM8VD5HtnJy4cOJKrRp2xblypcHYVhQnAjRHKQ0wglNg6IoqG0RiG4zEYQQBNfuCX14OrQhyaB5CdacpnBUlvO2nR4r8sRu80BRlE9u+Lvvvgu9QT43kkqNF198EVqdHub4ynIB3etF8JKmVGLJxYsX8corr+CFF17A+++/D0IIwhoNgq1cc5jiq4AV1Rg0aBCmTJkin3trCDhJA0LTCGs4EGmDX5cbuoQCzQmwl28BU0x5EOJrj1dYWIi9e/di165dPux070SSOamGopwmRFarXrx4EdevX8dPP/2E8IhIhXRAKBrWrDzFhcAYVwmW5FxlXV1YGliOQ2FhIb777jvMnDkTM2fOVNTm3uzJkDo9kdD1WZlNTzPQR+XAmpVXRIywhsFVrT0yR62HxhoGs9kCXXACskZvQNao9dC6YpGckgqGZWGISIetfAvF5pIQ2UYxJTVVLogrtkR0y/HIHLkWmgAXBg4ceMfnAJAJEa1bt0F4RCQoivbcqxRYloPJEoCwiEjMnz/f5z3ZtWtXaKyhyC7YiqgWY3ya/YQQ0MVsxRlRg8D0+koDHZCfWZphEJBWFxpXHDRBCYh6bCyS+7wEZ9V2Sqa6rAJhZIWGxgTKc+xDhw695fFEREbBEJGBrDEbkTFsFVQWF5o2vX8Vxd+xbds2udHcda480TNAZvq/8soruHbt2n3n1N8r/vjjD5gtAdAFxSG61RMyyYcQvPfeew98Xz/++CMYhoE1uzGyxmySHS4oCosXL8aVK1cwbdo0dOvWDTNnzsTVq1cf+P4fNE6cOOF5T3ZHzrhtSO69EAzHY86cOf/20EqFv5Z8dOC/Vn744ceDwLvvvov58+dj+/bt/4k5FT9K4vTp03jvvfceiq36g8CVK1fwwQcf4KOPPsLly5c9cw/yN3vPnj0fWIb0g8S7774LQghiWj/pE3/1IBX5bdu2k63RI7MgGa0wGE04efLkXW2jRYsW0IUkKvMcYQ36gxCCv/76CzNnzvSpldq2a3fbZ/j69evgPZEIZxwufGVzwMkL6N69+y3XWbVKJv4GZjZESp+X4ajYEoSUFNtUqFgJWmcMMketQ9ao9dAFxSM7p/Q4OS969OgBiqJ95kiCanYBIRQ2bdoEQJ5DWrZsGXr06IExY8Zg0aJFYDkONMMqDe2/K+ABubm5Zs0avPrqq2V6bq5du4bUtHTwKi3MCVUh6i1wBQXj119/xTfffIOOHTuiTp06qFKlCkStSSEHeO+b/fv3o2mzZpD0FsR3no2ELs9AMgSgUaPGd9w3UNTsd1Zth+ReL8KSVB0cx2PkyJHgBAkp/ZYUOz9EEYzExSciMLNhUbRZlbYIKOa2p9Fqfe4RwehQauyAQKtPnKAXXvJ3Us/n5YiCgctAiOyeeK+oUrUqjDEVimLRqrWHWqMBIEciCKIEQ3gawhr0h84VA6PJ7NPc3717N1RqjY8Y4U6RcrfDE0/IMXfeGD5CZAfMBzWv7cX333+PjMwsZb7rYbjC+eHH/cDfbC8D/EW3H/+fcPPmzf9MQbh06VJwxRoBAwcOLPOk+JUrVzBw4EAkxMSgYrly/5i16KxZ8oehjeOUZi4hcqZYbo0aoGkaaknCpEmTlPN8/fp15NaoITcgPc3K6dOnP7AxjRw5Elaex3FPk/sVk5xL/PXXX6Nbt24wcRzWWwLwQaAV8aKIzLS0Mm9727ZtiImIgFalQvUqVXD06FE0a9JEOe6EmBjlQ9xrl78tIBDH7U7kezLFO3bseM/qxREjRkDQGJAxYrVsKe1puH344YfYtm0bTp48iR9//FG+fzw2/jsCAiEQggRWJpZIgoBQlwurVq0qsf3r169j7dq1ePHFF3Ho0CGff9u6dat8jJ3nKB+4osGK6tWro2vXrpg6deot79dZs2aB5QVkjdkER6VWYCkK0/VGLDKZEUjTqOTJqu+k1iDAaLztOdi+fTsEQVTOudFkQrNmzZCbm4tnnnkGL730Evr3749OnTophBVCCChCkMRyEGkavXr1KrHdbt26gdeYkD5kBbILtsCSnKvkaHvtprJGb4Da4kLjxo1B0zQ6qNTYERCI9io1aJrGl19+ibNnz+LAgQM++VC///57mScIXn/9dRBCENtuksxgH7FaVoBX6wCaEyBagpA9drOnwOggEx4kHViVDoSibuvQ4W3CpfRbgqzRGxDRZBhohvMhbBiMRp/m1y+//ILDhw/jwIEDiI2NBUUz0DqiQDMsAgIDMW3aNFSqXNlHZe2q1gG8ICjuAYQQ0LwIWpBt8UPr95NV3IRACggBIcTTFNuokDjC84YiY/hqucFUq7tHzbkFLC+WUGPs3r0bdoccY6DR6jBgwACwbFEBHRMbh19//fW25/3mzZvIysoGxbBgRA20QQkgFI2q1aqBYVnYyjVDzrhtSB+yAqykgy2nCXLGbUOMhyxAUQwYlgfD8UhOTimVgX7o0CG8/PLL2LhxIwoLC7Fjxw6ZvKA1QwoIgcYVB5phEBkdLTeDWRZjxozBpUuX0Lp1a0UVQLMCzJ4GO6+3glXpwGkt8r1apS0IIbdUV7vdbp/JK0LREIx2UKwAQtEYPNhDMqnbS7HF1wSGQKVSw17hsRIZ8Js3b0ZcQiIEUQQraRCfPxPJvV6EaHaBVelAcyIYQYXolhPgqCTHNLz66qtYv349Nm/erIzz66+/xlNPPYVevXphxYoVuHbtGv788088+eST4HgegtGO9KErYU6qAYpmYMtpCnOS/HekOPmiT58+UBltSBu4DDQnwhBdDond58NVrb1CKEnt/4rc7LZHgWZ5pKWl48knn8Srr76KNWvWgBCC1IHLoA1JLjaxQIGiZZcZb+MzrNEg5Z5geAkNGza87feEWqNBUG4X5RxaknNvS44pjl27dqFc+QoICg5F02bNSnXT8OKvv/5CbFw8RK0JAWl1IRltsDuct3UE+Kewe/du2OwO+b7necydO/eh7Wvu3LlyZIbnGtav3wB//fUXKlaqDIbjoXPK77GaNXMfqv3sg0KfPvLfe601BCwvIjom9j9bq/lryUcH/mvlhx9+3C8GDhwof596/uZ6s8r9ePTx008/oW7t2hB5Ho7AQLz88ssPZT+nT59GbGSk8s2WFB+PH374AbNmzVK+5erUqYPff/8dly9fRvfu3RHmciE1MRGrV69+KGMqC27cuIHc3FpgWA56V4w835Gdc1si508//YTmTZsixOFA+awsH/HDjRs3sGLFCkyaNAkbNmyA2+1GYWEhJk+ejIYNG6Fz58745ptv7nqcHTp0gNriQtboDcgZt02ej+E4JQ7NVq45skatR3iToWUiC3ijttJECQ6eh06jwVdffXXL5b1K7fShK5X6khAKL7zwAm7cuIF9+/bho48+QkhYOGw5TYu59rWAKyjktmO5fPkysnNy5Hmh2IqwlWsOmuV9CM0jRshRX1p7OHiVFnaHE++//z7mzp2LJUuW+MzbePHrr78iMamoFpRUarz99tu3P9Ge9Xr37o2KlSqjY8eOpc4JeEn+AWl1EdliNLSOSNjsDvz1118IDYtQ5h1yxm2DvcLjdzwHXkyfPh2coFJIByn9FoMQghYtWkBtLnJDjOswDYQQfPnllwCAWrVrQ2MLQ8bw1cgctQ76kESkpqUDkGtQQgiCc7sia9R6BOV2UeYvEro+C60zGiGhYSXe+Rs2yC4Pyb0XyvXy4OUK+fteUbduXWhdcQpJITCzIcyWAOXf33rrLQQFy3NL0TGx2Lt3b4ltfPfdd5gxYwZmzZp138Qjt9uN8IgISBYXUvouQlKP5yDqzGjVqvV9bbc4bt68ifiERKhMdoQ3HozAjAYghGDDhg0PbB9++HG/8DfbywB/0e2HH/88zp49C57j0EJS4ZNAGwp0st12cXXk7dC6VSuIDIN2KjXKibJq+cMPPyzz/r/66issW7YMb7/99l1b0yxatAgsTaOJJOGDQCtGebLGt2zZguvXr5dabBcWFmLVqlV45plnypRZdjfYu3cvWIZBVUnCEK0OgTyPjNRU3LhxA+fPn0dKYqLy0WwPDMTs2bNRUFCAF1544baF0aFDh8BzHKqIEkZr9QgWBFiMRnAUhdkGI14zWRDEC6hSoQIAueGRlpwMFcNAT1GgCIHF0/w1G413baFUWFiI/Px8qC1O5QM6uuV4EEJ8PhQPHjwIQgjWWwIUBX8Qw8DEMGiSl3fL7V+5cgVVKxWpaxmaxoIFC5DfqROCQ8KQlJwChmURkFILmSPWIOrxcaBoukw2aS+99BIoikZKn5ehD0pAY1HycRcQKQrvBFjRSJSgFsXbbuvnn3+GJSAQgs4MY0x5kGKqfe9PpCSBpijQvAhGUHsalDyCWR7d1BqEuVwA5PzkuXPnYunSpThy5Ah4QQTNCeB1cuNSEyQ3ob0ZwznjtkEfkoSsLJlZ6nVP+MrjWhAYGKiMQafX46233irbxS2GwsJChEdEgpW0sOU0gRQYCpqXkNJ3EXi1/F7QOmJgTqgKQigY4yrDUakV7BXk3PXFixeXeOauXr2KY8eOYc+ePSCEwFU9H9kFW5X7580338SZM2dw4MABHyuw8ePHKxMcOr1BLlxaPYGccduQ0OUZEEKwatUq1KtXD1pXrE/hQzMceH0goluOR3CtbvCq2gWjvYisYXaBEAo6z/OhFLPWcGSN2Yjg2rLKX+2IQWy7yQjMaACKorBr1y6cPHkSM2fOxIQJEyBKKqidMYhsPhrmhKqgGQYrV67E3Llz8corr9zS3uzvmDJlCiiaUVjf3pxnQnxt6dWOaOjD05E1ZiPMidWVprXGFQ9nlbaQDAGIjYv3iQt4+eWXfcgfubm1cP36dYwaNaqIkMAwCLTaIBhsiGg2ArZyzUAIQevWrWX2OM2CYooIWYRmkNJ/iZJ/TQgBp9KiUuUqdzzWnTt3ykSpcs3A6733LYWmTZuiVatWYDgB1qxG0IengqIoVKteHYLGgOiWExDVcjx4lRbt2rdXtpeVnQNLcq5yjoJzu4LmJaWYlwkJFLp27YpAq035XXRMLBYuXOixbS8iAARarYiIjATN8jIJgRXA662geQnOym2KnseIdJ9stIMHD8p29wY5MsLLps8u2ApW1EBljywihdTIV9waRK0RFEWhfPkK8rOcUd9DOuiN9CErYM1qDIqi8NVXX+HLL7+UCTHtpygkEJUhsITDxt9RpWo1qEx2xHWcgaiW48EJKvTr1++O1+qbb76BSq2B1hkDe4XHIOpMSEpOuWVeKCBP5LVr1x7JqWlo0aKFEl3wX8CNGzdw5syZf0Rhv3//fixcuBCbNm3CjRs3lImfuA7TfMgy9/Ku/qfhdruxdOlS9OvXD5MmTVLiTP6L8NeSjw7818oPP/6bOHDgABo3aoTyWVkYOnTov+ZKcyd4a4sJOj1O252Yppfdpt59991/e2j/CezYsQPDhg3DU089dccc7P8a3G43KuTkIIDnUaDTo4mkAiHkoYg6GtWvDwfPY70lAGvNAQjkeTzeogUAYN26dVCp5H0nJSWhXp06ULEsuqs1qC5KoCjqrr7j3G43XnnlFTRo0BDNmjW772/Aq1evYvr06ejcuTOefvrpWxKeAVnYkJKYiECeR2+NFmmiCJUo4uuvv8bNmzeR5xFx8CpZSVyaQOBesHHjRrAsC9EQCL0ny3zEiBF46623ZCJ+30VKfcRLakyZMuW22/Mqxdu3b48+ffrg6NGjt11eEGTlr9cOP+qxscocRJWqxSLnVGrwah2iW05AdKsnIGgMePwW9vR/x4IFCxAZHQOnKxi9evVS3pkXLlyQ5z88TnlpA5eBlzR3tOIfNGgQeJUWid3mIWP4mzCEp8HucJZpLGXBCy+8AFGUY+xCw8KVCL9q1WvIje9hq5Ax/E1o7ZFlqu1v3ryJdu3ayXNFIUlI7DrXMwdDMHfuXJmUX7ElYto+Da0zBlabXREAffbZZ9DqdOAEFThJDUGUsHPnTgBFEQSZo9YprouEyM58OeO2KRGDfxc2/Pbbb3C6gqC2OOGo1AoaWxhMZgt++umnez5n27dvB0VR0DpjYIjMBCGk1Hv1nyRRG4wm5d7KGbcNgen1kJiU8sC2f/LkSXnOpOX4oshCawh69+79wPbhhx/3C3+zvQzwF91++PHPw2v580GgVWlCqikKKlG8o8X95cuXQQjBU3oDzjhcOGF3IkIQSs15//3330s0lBcvXqzYYRNC0DQv764+ULz2WTuLjV3PcZg0aVLZT8ADxpYtW5AQE4MAoxGNGzTwUQFevXoVb7/9NjZv3ozu3bvLDSdBAENRqFyhwi3ztCdOnAg9x+E7j2J+jSejvAJflD//pM4AlmGU6/X777/jscceAyEEy0wWnHG4MMtjed2gQYMyH8+nn34Kp62oQWVJronQ+n0hGa1ITErG2bNn0a5tW6QlJaFJXh70Gg0qiSK2WgIxxkPc4FlWYXf++uuv6NKlC1ISEhASEoL4hEQkJSWDpShM0RvwlM6AChwHimbAiWrYyjWHITwNFEWBLqZWbtSocZkU27///jsiIqPAq7TgVHqEMSyO2hw4ZXeivihC8smBJ6hduza2bNlSKvFj9uzZoFkOaYNeQ/rQlWAYFjUEERstgeirkQvT5SYzkng56zmp1wvgtGZl2xV5Hsnx8Xj99ddBM4yifg4NC4fkKQRpXoJokpXSUdHREDQGhNbrA1tOUxBCMGyY3IR93mjCCbsTyRzv0yh0Vm0HQ0Q6dHr9Pf0t/eWXX9CqdWuoNHK2uSW1tmJPThOCAIZBkGefYQ0Hypby9fqCEAo0w0Cl1mDChAlwu9147733YPS4OzAMg9xcWRHNeOyu8po0KfU8r1+/HoQQOCu3QVzH6dAFJ4JQNJL7vlyUSUdRePHFF0stfAghCG88uCg3PUy2FNdHZCrrqywu5d3TRlKhu1oNnWL7XXRPeB0GCEWB53n06tULLMuComlQtHz9knq9oDDlGU4oNYvw2rVrKCgoQJWqVdGsWfMStmETJ04Er9IqzgGJ3eYpYxFMDsS0flKxXfNea0IIREswaE5E1qj1Mlu843R5wkCthtFkRoMGDcByHAJSayNr9AbEtH0aNMPiueeeAyCTnbZv365kWkd5iqmccdsgWoLAMAwYQQ1tSBIEow3JvV5EUs/nwWnNEIw2xHWYCn1EBghFIzs7BwcOHCjxDn/33XfRv39/DB8+HEePHlUyoFmVHmpHFKJbjoc1qxEIIdi8eTP69u2LyKgYZGZlY/369Th37hyysnOUYy9fvoJPUV2vfn2IhkCkDlyKzBFroAmKhxQYqpAAFJIARUOyBCGl7yIkdp8PQWsEy3EwxlVE5qh1iM+fCYphwXqiJvSRmcgu2KqQOwhFKwr77IKt0IUmo3bt2j7Hunv3bgQEyASCoJqykjwuf6aH0MAhpE5PJPd5GerAEBCKRki93j6N1+L3nfc6pPaXc9+2bduG69evIzwiEmqLC2ENB8CSVB0UReH999+/7XN9/PhxREZFK9uvXKVKqUqKv2Pq1KngBBUyR65FzrhtiG0vxxoUj8Hwo2xYsmSJz4SRN89+xYoV//bQ/qfgryUfHfivlR9+/Pfw9ddfQ6NSIUYQ0FxSQWQYNKxf/z+pFl+xYgUIITjsISAft8v10+2ctv6LcLvdeO6559CsWTPk5+fjiy++uO9tzp8/X27yCSI0LAt7YCBOnTp1X2PcuXMnXn755QcuVigNXre8+UYTzjhcOG13IkoU0aNHjwe+ryCbDX09rnxnHC50VWsQEx6u/Pu+fftgKzYX0stjYX7K7kSsIKJjx45l3pc391kXmgKtIwoURf1jrpD79+8HIQQrzfK80DGbA1qWVZTsxevAkHqyE1lpFt13g02bNkHwNHUJITBbLJg9ezbcbjeOHz8OmqZhy2mKzJFrlRi9devW3fexnjp1Ci1btkJqegY4jlei67xCCEIo9OnTB6wgIbrVE0jsOhdqiwtqTZFleUZm1n1lfAOykpkQgpg2E5W6TmsNRZ8+fW67XsOGDWGIyioRMXivDpWlobCwEOfPn/d5tx88eBB6gwE0w4JmWOj0ehw4cOCO2+rXrx8oioIhMguCySHHzxGixLc99dRTCvHfZneUUH1///33mDJlCiZNmoQjR44ov9+9e7enpu6MzJFrEVSjk3yfPjYO2QVbEJBaC5JKXer88TfffIMaNXNhczhRqXKVB/Je3b59Oxo3zkOdOnXw4osvKufO7Xbj7NmzOHny5D/6tzIzKxtaRyTSh6xAav9XIBmtaNbswcXEecki3iixjOFvQtAYSo1I9MOPfwv+ZnsZ4C+6/fDj4eHixYul5q9/8803chNPq8NpuxPLTLKytqqn+edtypSGS5cuyaw+T7PdW3Tk5+cry5w9exYVPPZKDE1jxIgRcLvdOH/+PHiOQ0uVCkdtDrxoNIOmKCxatAg3b97E5MmTkRwXj/TkZLz44oul7v/YsWMyO1arwxmHCyvMFlDk/vJ4/gl8/fXXIIRgvE6PMw4X1poDQBFfS+LimDZtGlQMiwNWOwZrdYj0NDvNDIPDNgdO2p1oIKngsFp91nvuuedAEYKTnib9AY8KOiw4uEzjvHz5MqwWC9JEEa+YzKjEy3bPFEWjQsVK+PrrrxEfEwMLx+FxSYUgXoDFZIJeo1EKlbS0NOXjtrCwEOWysqBnWVgYFgwvIiC1NkSTXWmkF1cZexum2WM3Q2V2oE2bNli2bBneeuutu3JBOHfuHIYMGYLc3FyIHAczxyFIEJR92cu3QPrQNxQGrkxIaOjTzH/22WfB8fIzoXHFI7KZrAp+L8CqTAJoKArDtDq0U6nBiBok9ViAhK7zfLLJJ0+eDJVaA3NiVWSN2YSkHs+BZgUEMyzmG41I81zbwYMH45dffkFubi3QNA1RUiE1JQVGnQ5qz7OpoWgQQiHqsbHIGP4mLMk1QbG80hArzb6qrPjtt9/Qpm1bWAKtiIyOwYoVKzB58uQSSn5WUIEQCqyoRnDtHooietasWdDp9dCHpSC23WSFLDBz5kzMnj0ba9asueU1HDFiBNQmG9KHrEBsu8kIbzochBBogxMQ3eoJmBOqgmU5HD58GICs3PAWPs8//zxESYXAjAbILtiKjGGrwGlMECW50NeHpkBlcUEQRKxevVphdRNCPIxqLaKiopCVlQVWUCFz1Hok937Jk/FMgRAKutAUcBqT0pSNemysrPDu8zIIRaF69eolCq1WrVqBZliY4itDHRAMSaX2sbzbtWsXKIqCJSUXkS1GQ2WLBM2JsOY09VGUmy0BYCUNzInVwamNoHkJFCsgY/hqn6atxiVb0XuL3fj8mUrBrglwYdCgQTh//jymT5+O0aNHKxbmrhr5st3a0DfASjrPtuLA6wOVSAOvlbt3XDq9Hp06dVIU4q6gYGVyZulSObNbbXZA1JqgUmuwa9cuGDzEn/hOs5TmtagzY8yYMT7n7dq1a3C73bh58ya++uorHD16VLlvXnjhBajUGiVP3tsQp2gGtvLNobJFgOZEEELBVT0fNCfAVT1fOQZTQjUQUuSY4HUOsKTUQmiDfiBEtp/zsuhZtQGEyNfIS+z4u33kn3/+CYPJDJUtwrOOURkbzRdFUBiMJhBCkDpgqXL83tx5m8cpIrL5aGQXbIHTY8//9ddfA5D/7qWkpsn3s8GAxYsXl+mZvnr1Kvbt24dDhw6V+f2pNNtHrJGb7e0m+Zvt94ijR4+C5TiYE6oips1EmGIrgueF/5Ty/38B/lry0YH/Wvnhx38Po0ePhpnj8LWngT3H8712tznN/wQ+//xzEELQR6PFZ1Y7hnkc7opbYz8K8BKpK4oiQngBaklSapx7QWFhISRBQDuVGqftThyw2hHA82VyNCoNbrcbffv29an/Hnaz5ddffwUhBE/q5Dmmb2wOOHgB/fv3f+D7qliuHJJFEUdsDnxhcyBWEFGzenWfZU6ePKlEn3GE4CWjGSftTkT/bd7rTrDZHQhIq6O4U+mCE3xcsh4mDhw4AEIIXveIMI7aHFCzLCZPnox58+aBohnFKS5t0Gv33fi+fv06dHo9jNE5SB+yAjFtJoJmWBhNZsQlJGLRokWYM2eOT+xSx/z8+25WXrx4EUHBIZAMAQhIrQ2a5SCYgxDdcgKCanSCvYIsRilXvjxMcZWUGjCkXm8lmu/w4cMPRKF8/fp1uIKCobFHIKb1k3BUbg1CCN54441Sl3/rrbcwe/Zs5OXlgZPUiO88G+mDl0MfmgynK+i+x1MWnD59GvPmzcO8efPKRNC5cuUKaJqGq3pHWdQwaj1EgxV16tSB2+3G1atX8c4772D16tU4ePAgjh07hnHjxmHYsGH44IMP7rj94cOH+7x7tDodGI6HoNaD8swd/5v4888/0aBhQ2V85cqVxy+//PKP7PvAgQOQVGpl3wzHY+PGjQ90H927d5eJFOFpkIxW6PR6fPfddw9s+99++y26deuGJk2aYMaMGY9EvNq/gevXr+Pbb7/9T0Tz/dfgb7aXAf6i2w8/HjwuXLiAmtWqKX+E8zt2LGEBO3asbKckeJapLog4YXeipiAit0aN226/ccOGULMsemk0yC3FTqtyhQqw8TzmGIwY4GGLLliwQGHXbrIEFlmOiyJGjBiBCRMmgCIELSQV6nuaYbfK6fJaIWs9jZ7cGjXKnFH9b+G9994DIQTvF2vU3k6Rf+rUKZj0emhpBhRFw5RQFSprOAhFQcOycAgCKIrC8uXLfdbz2ut1VWuwLSAQzSUJNCHIrVmzTOPct28fCCHY4LGFP213wiYIGDVqFABg1apVPs1XI0WBIQSdOnXCnj17SkzMeLf3lM7gw/JNH/oGKIZFNs/jpN2JBQaTT7M9a8wmqEz227KAb9y4gTVr1mD+/PnYvXv3LZc7duwYRo0ahUGDBuGpp56SCQGDX1caXoSiEZBWD4Si0KpVK6xfvx4FBQVKw4xieTCiBpxGHuMTHsLERksgKCKz3VupVEXNP0LAsBzUavlD2GiUJ62iHh9XrMEXg2qC4PMcFJ/EuH79Olo+/jjULIvBWp28fUIgSRIEXYCynfhOs0AIgTUrD4SQu1Yw7N27FxMmTMDUqVNx5syZUpfZt28fevTogUGDBmH27NmYMmUKaIZBcO0eRfba4ekoX15Wwyf1eE45t4Jaj6eeegrbtm3D0KFD8dRTT5Wa/zxz5kyZUe1RwBcvrgghUKk1WLly5S2P45lnZCWyZHaClbTgBRF79+7FSy+9hGbNmqFDhw745JNPMG7cONSuXVtR3xOKBs1woBkGFC03qhO7Pwdrdp4yhtD6/ZTsL0ZQgRHUcpZ8SLJ8X6hLWlj+/PPPPutmjlwLUWvCsGHDfMa9ePFipWCiaAaOym1ACAVOYwLN8pA81z2h8xyfLDRCURDNLgRmNAAjqMAbZPWFyh4F0RIsn7uQJGQMW4Wox8aComlMmzYNwSGhYHkBkkF2yrBaZftzTVACOK0ZFMNBq9WCEAqiJQhSQDDSh6xA2qDXIJldqF6jJo4ePYp16+RmtC2nCaJbToDWGQ2b3YErV64g0GqDKb4Ksgu2IHPkWqgDgtC8eQtlndD6fT3HssTHFeDs2bOoWKmyfB1VakybNs3nXHkVGJbkXATX6gZWpQehaKhdcYqbBMVwYNUG6MLTIRjtIBQNlTUc6UPfQGr/V8BrjKBpBlJgGFL6v4LYtpNAMSyCanZBUs/nZeJA9Q4wxpQHxXAIqiW7kQTabMjKzsHrr79e4t5r0rQpKJoBb7AhrPFgGKLl5yC65QTZ4t4TT7Bq1SqwHAdLSi6Ser2gZMpTNA1Lam3owtI895w8AfXkk0+W2JeXiPAw8e2330Kt0UDriIKtXDOIWiNSUtP+839j/6t44403lGdco9Vh7dq1//aQ/ufgryUfHfivlR9+/PcwdOhQOARBIWov8Xwj30tW8z+BKVOm+NQKBQUFZV732rVrOHny5G2j3B42rly5AoamMdgjHDhmc8DJC+jZs+c9b/PixYsghGCewaTUluVFCS3LaIn9d3jjn57SG3Dc7lSc6+6F1L1//34sW7bstrW6Fx07dABL02goSogRBEiC8EDUqX/H3r17oVNrINA0eJqGUafD559/XmK533//HfZiCvcwlgVFUXjvvffKvC+d3gBn1XZFxN/4KihfoeIDPJpbo7CwEBmpqTBzHLqqNUgURGhUKnz77bf4+OOPQQiBo3JrpPR5GYHp9UAzDL799tt73t+pU6dKkJpV1giIliCY4uT4wOXLl+PQoUNYtmwZdu7c+UDqmuXL5Xxurz19UM3OIITAXuFxRLYYA8HoAMUwqFu3LiRDANIGvYas0RtgjMqGK6hsgpS7weeff47gkFCZeE3TGDduXKnHOXToUKV+JYRA9EQnyDWDVrFWf1DwqrHPnDlzX+f9t99+k+ft8oYUub85o9GuXTv88ssvPtnzAYFWqDUa8CotVMZAUBSF11577Y77+PTTT7Fs2TLs2bMHFy5cwJw5c/DEE08oLhtutxsffPABVq5ciWPHjgGQG9FjxozB+PHjld89DPTv3x8sLyI8b4h8f2kMaNKk6UPbX3F4383a4CRYs/OgsUfAZDKjXbt2aNasGRYsWHDfz9SNGzcwZ84cNGnSBF27dn2g5/LEiRMwGE2QDAEwRKSDoum7Ii/9f8HBgwfhdAXJ7weKwqhRo/6TbkP/FvzN9jLAX3T74ceDR7O8PBg5DrMMRozX6cF6PvL+jrfffhuSIKCGIOCE3YlTdifSBAEN72A5funSJeR37Iggmw2RYWFISUpCZEgI8ho2VBTc0/RGpdirIIpo1qwZzp8/D45l0Vqlxjc2B172KNtffvllBNls6KhSK+vUEkVUyM4udf9Xr15FnTp1wNA0GIZB586db2nH/jDhdrtx9OhR7N+//44WTz///DNUooh6kgrbAwIx0ENCuF1ul5ecEFyrm6cBvREqkx3p6ekYPnw4du7cifHjx8NiNEKnVqNr167466+/0L9/f+UDlyIEGpXqltlWFy5cwKhRo9CuXTvMmDFDcQ6Y6HEu+CjQBpFhMHPmTABAxfLloaEoVBdE0B5yRA2P6rq0ZuiuXbtACMFUTwZ3fOfZiq03zQnoVOyaCzQDhhdhy2kCfaic2X6rwrywsBB1atWSG9sedvTIkSPRtGlTpKZnoGvXriWynADg0KFDnoZaPrLHblYsuozR5UAIAe/ZFkUzUNujENliNCzJNRW1sDcDzErTYAgB57HHYhkGM2bMwOrVq7Fs2TKcPn0aFy5cQHZ2tnItJGsYUvotQdTj40AoGpV4AaftTmwLCARP05gzZ44yzhs3boBlGIz1NPbPOFwoL4hyc5SiENP6SWSN3oCA1NrK2O5WcbB69WrQDANBrQcrSDCZLXecWHv77bfhsFrlnOvMRohp+zRi2k6C2hqKunXr+jSY5eYlBb1enqBRm+zgRBWsNnuJxv7p06dBMwwMkVlI7vOSojJesmQJzpw5g2vXruGPP/7Axx9/jM8//7zUj82NGzeid+/eGDFihI9y9Nq1azhz5gxq1KwJhhNgiMwCJ2nkRq09CrZyzcGI8v/zRgcIw4IQCtasxiCkeFb2VnBaC4jHkYHmJbAqPYJrdwehKDz//PPKPr15V1GPFyhKBrXFWarCpLCwEC+99JJ8LwsqmJOqI7tgC9KHrADnUdKn9FssW3mNWC03YykaHM/DYDKDEVQQDN4G91Zkj90MTVCCD/lD65kkY3gJqf2XILtgK6zZjcGyHMxmSzGSCIvWrVtD47XUK7YNUVIpE14jRoyAymhFdsFWj5X9DGUSjqJpxXrMO6lUoWIlAEB+fj4IRUHnigWv0iI4JBQXLlyA2+2Gw+UCqzYgrEF/5dwXt9vu3Lkz1NZQZZ8RHveD8LyhCkFHNAeB5kXQnAjR5ERowwGg+SInA0IIWF5UziEhBLw+ENFtJsrRA4oiXUJogwHQBSfCarPfsrg5d+6c/D6p1kEhXcjvD1YZZ+pAWem/adMmLF26FFyxGIinn34aixYtUn7HsCw6dOjwj9h13g579uxBpcpVEBYeicdbtsTPP//8r47nUceVK1fw/fffP1ArSD+K4K8lHx34r5Uffvz38Mknn4CmadSSJIzS6mDleaSnpPyn1WaHDx/GmjVrSm2Q3gobNmyAXit/32pUKqxateohjvDW8DbGnzEUzZWkiRLatWt3z9t0u92Ii4pCjCBipdmCSXoDaIryqS3vBi+//DIIITjuIWAcsTmURundYMKECT7f4IMHD77t8tevX8cTTzyBalWqoFnTpg/VVen48eN45plnMHfu3NuS1S9duoTExETlGOrVq3dXBNR27duDE1UIyu0CR6VWoCgKU6dOfRCHUCacO3cObVq1QnRYGKpXqeJDmJg4caJPDfjSSy+Vebsffvghunbtii5duijkg6tXr0Kt0cKcUAVZozcgvtMsUAwnz7sUbIUuNAV16tR50IeIV199FYQQpA9ZUUROpyiFwCyaXVAFBKFa9eqw2uxgWE52t3sIqmAvCgsLceLEiVt+73jnpIJzuyK7YKuSK5+RkYGVK1fi7Nmz9z2GDz/8EN26dUO3bt2wefNm1K5TR7ne1avXwMWLF+952xUrVYaoNSGkbm8EZjQAIbJ6Pz8/H4LGgPhOs5DU6wVIZhdoXkTG8DeRPXYzzAlVEGi1lXk/ly9fLvG36MaNG2jhic703rtDhw4Fy3EQtUYIah1Uas1De38kp6YpbhU547bBWbUdTGbLQ9nX3zF+/HiIWqPiSBHRbCQIRUEy2aEPS7mnOcF/EmPGjIGg1iFj2Cqf+Iqffvrp3x7afwaFhYVwBQVDa49ATNun4azaHoSQUkUf/1/hb7aXAf6i2w8/7g+vv/46alSrhmqVK+Pll1+G2+2GXqNRbNbPOFzIkyRULFeu1PWfeOIJEEJQSxCR7lFLb9u2rUz7/umnnxBoNiNSENBdrYGT5xEeEgKB59Hdk211zOZAiCCgU6dOAOTijS6W2d64oWzd7bRa0cWzzhmHC/VECeUyMwHImdLTpk3D+PHjsW/fPnTr1g0sIRAJBRNFg6UoDBky5LZjXbt2LfLz89GrV687FuZut/uOzLGrV68ir1GjIqZzcLCPRfStxqASi2yFJ0yYcNvlFdao11q9YCu09gglJ2zWLFnV3EWtwSCNFiLDoFu3bgDkiZOBAwdiypQp+OGHH0rd/qVLlxAXFQUtyyJTksDSNJrm5aFr164ghCBZUkHLsogMDVUa1zq1GsO1OhhpGj081+u03YmKt3BEuHLlCmIiIuDieRgYFoI+EEE1O0MflgpCUcgVRHxmtSuWhdWrV0dEZBSysnNuex8uWrQINEVhmcmCU3Yn2kmyslxldiAgtTZ4lRbpGZklHB2AIlcH748+QraH9trWeYkQid2fK8rlFmSm8fPPP4/XX38dQ4YMwdy5c3H+/HkcOXLklsXKpUuXlAZ98R+vYlmgaVCEICEuzifywe12QxIE9PfkyZ20O5EkCAgLCwPvsz0KsbGxmDBhwl1PijmcLphiyiN77GakD1kBlcl224meHTt2gKEoVOAFVOJ5n0YsRTPYsGEDOnfurBS1hKaVIpfmJcR3moW0Qa+BV+vRtWtXLFiwAM899xxOnz6t2EJ6Lca91udDhw4FILM7HR4VNiEEDevXL5MqZfny5bLtuKdx7KzWQbZEz84DzUtKlnJMa9nxQB+ZqViNB9fpAcFoh2gOQniToTKxgchKZEIIAlJrwxhbURlTcWX7zZs3kZaeAUlvQXCtbkrGuSBKSEpOwZ49e3zGefXqVWRkZvk873L2fBo4XoAUGIrg2j2gDUoAzasgWVxo3749PvjgA9A0DZoV4KjUSlnPkpILTmMCx/MwmszQ2COgCYqHyhapLBPdcjwIkXMu4xMSQTMs9KFJ4CU1IqOjERQUBEIzMMZVgjGuEiiaQcOGDVGrVi0YzRZZEZ7bVS6U6vQEIXKcB6FocFozoh4fh7AG/UEoGk2aNFHOy3PPPYf8/HyMHDlSsVxbuHAhCCGIaDrcRwmRl5ennKPevXtDNAQqWfXeCAhOZ0FEk2Gw5TQBIQQ2hzwhGNagv2yLOHAZpMBwUDSNgJRayB67GUm9XgDNCYoinhACQjMwJdXw2NDLv9Pp9fjwww+xbNky2OwO8LyAatVrKGQRr4NBRJNhSB+yAmENB4KV5PvNWbU9UvouQkBaHTAsi+PHjwOQ/25++OGHOHHihHJs58+fx/79+/02YQ8A7733Hvr3749hw4bdlyWrH48O/LXkowP/tfLDj/8mVq9ejcjQUOjUatSpVeuBNHr+Szh+/DhEnkcdScIrJjMaSirwHKfE9dwtLl++fFfxZn9H+aws2Hke0/VGdPPUKWVRe94Ohw8fRlhQkPINm9+x4z0TJryq5zE6PY7YHBjisesvS5azF5999pnyPZw5Yo1MTiakTDbSly9f/leEFMXhVc4uX74cR44cwcyZMxX787p165b579gff/yBVq1ayY1ASYVhw4b9p4gs3333Hd555x2cPn26zOts3rwZNE1DHRAEdaDsqFa7dm0MGzYM8+fPB8sVxelxGhPUzlhQLA+al5Cenv7Aj+GHH36AVqcDp9JBNLvAqQ2gaAbOqu2QPmQFsgu2wpxUA1nZOfj5558xd+5cTJ06FYcOHXrgYykrvI5vaQOXKfN8FM2A4/gHomDdtGlT0TUKCAKhKLCChIgmwxDRdAR4SYN27dvf8/Z/+ukn1MytBYZhoNPrMWvWLABAWkYmAlJrK/V8UM3OoBiuyLq/bm8wDONzjMeOHcNzzz2HxYsXK3Nqx48fR3qGPEcnihKmT5+uLL9kyRJQFIXIZiORMWwVLCm5oCgaupAkZI3ZiMyRa6GxR6BW7dr3fHy3Q26tWtA6opA1aj2yx26GMSobUTGxD2Vff8esWbPAcAJS+7+CnHHboA1JAqc1I3OkPKflrNIWDMP8q+4tt8OAAQOgtjgVUYI3DvF+HDX+1/D999+DkCJH2Jxx26C1haFXr17/9tD+M/A328sAf9Hthx/3jldeeQWEEFQRRNQQ5AbB3LlzEexwIE9S4bTdie89TboG9eqVug2324158+ahZvXqaFC/PrZv317m/S9eLFsaf2a144zDhR0BgSCEoEOHDjK7VJTg8uSQFf+Y/fLLL/HKK69g+/btSqE6atQoMBSFDio1WngslJ577jkcO3bMp0FNEQKBZWGmaYzU6lBHFEERgmCH45bjnD9/PgghSBBFuDyWZKXZoF2+fBnt2rSBJAgwaLUYN27cLQvpCRMmgKHkZr+WoqCjGSTFx9/xnF24cAG7d+/2YVB7c5KeffZZnwYMAFSvXgOCWg9XjXyYk6qDEKIwcCuWK4cGoqQQFPprtLAYDHccgxcLFy4ETVGKtf18T6bw/v378eKLL6Jr164oKCjA+fPnlXW895aeotDP0wg+43ChuiCiRrVqpe7nxIkTyK1RAwatFmq1BpJKjZjYOIwaNQocW5RN3a5NmzJPXBQUFMBWzIa9r0YDQjMKo9mbYb5r165S1//oo4/QsWNHRRVOCMEhz3283SLfxxHNRhRjR9NgCYHDai3z+f3iiy+wdetWaHV6iCan0vCVAkMRECgr1LWuePAaA0xmSwlW/dChQ0ERgkaihExBvs/VFI2avACeEDCeRr3CtK9Tp8zFu9vtBsMwCKnbu0iBHFcJ6enpiItPAMfxSEhMUp6Tq1evwmSWG5OHbQ5kCCIkkwNJPZ9HfKdZ4NV65Ofn4+bNmyhXrhwYUbZNtuU0RUybidA4Y8GqDXLx44rz2LYzoBkGeoMB77zzDmiahq1cc2SN3YKYNk+Domi0adMGhw8fRkxEBBJEEVvMAZhtMIKjqFJttr14++23ERsXD4pmwesDEZ43FLrQZLnIH7wcjkqtfJvtng99tSMaWnskJJUavKSBNbuJkmNOsbxs807R0IWlFlnoR2TA4XSWKIzPnj2LGjVzwXE8aIaF2hqO4Nyu0LlioNPrS0xk/vnnn7DZnZAsLsR1nI7wvCGgGRa9evUCw8nkBsFoh6NyK1A0jeeeew4HDhxARFSUbIfP8gip2wtBNTqBohmobBHQeRwlknos8LgFUAip1xvxnWZBbY/0yT33Zrd77dT1BhPsFR5TjrO4i4I5qToMHjcI0SjbK/bo0QPr16+XySSBoT7kkhdeeOG296PXFcHlIUNkjlwHTmtGdjF3k88//xyCIEIKCJZJDt5n13MMLMcp1vMGo1FW+nuIJKJOvnejW44vinJwxsIQXQ40J4LmVZ7rTCEoKBgrVqzAli1b8Msvv+C9994DRVEwx1dGcO3ukPQBSE5Jxc2bN+F2u1G9eg3wKi0clVrBGJUNiqLkd0sxtv3AgQOxZs0anDt3rkzPpx/3huXLl4OiKKjNDog6M0RJhf379//bw/LjIcNfSz468F8rP/zw49/AihUrQAjBFza7IgYgRHbQuhscOnQIcVFRMiFTo7nr9b34P/auM7yKquue6TO395reK0lIA0Lvvfeu9N57tYIIAqIo6IuKAhZ6t2NDFF67SBNpiiIgIEVS7vp+zNxJrgkQMIC8313Pk0fJnXLOnJmb2XuvvdaJEydQXbHfkgQBjz76aIUU2K5evYrvv//+pgqn18LffZMfeOCBm9r/tddeAyFE7WDMmbpFJfleC7///jvq160rvz/TNEaOHPmPSA03Cz8puF27doiJilLnTtM0nnvuOaxbtw6SJCtmpaamlrLPu9Gx76QMcH5+PpYvX46HH34YW7ZsqdBjZ2XnwBiZjpypWxBSR455JFsYBJ0JJrMFb731FpYtW4ZGjRqB0AwEsxthDQfAEJUBiqYhShLsDuctKy/8HSdPnoTFagOnM8MUmwOKZmC12SDoTIhpOxERTYeBYTlMnDixQs73T+HPlxBC4MhqjvQRLyOkbm+5EUMUK+Q+yczKVtfI3zjizGmlxsHuqu0QEhr+j89TWFgYMN727TtAY3EhY+QryJywBlpPPCiaQVTL0Yjv+jB4gx1VqlZTt3/77bchiBJoRlYODAuPwIkTJ5CckgqNxY2oVmPgzJEV79asWQMAmDhxIrQWlzqX5L5Pyo0QlZuov3NUboKU1LR/PL+y8Omnn8o5CYMVGosLNE3fMZuw06dPIzQsHILWAGO4rLih88Sp845qLVsTnDt37o6M52axfft2ea0yGiOq5WhobF7ExsUH7epK4I8//gBFUfDW7CarJI54GbykuynLnP91BIvt5UAw6A4iiFtHVkYGGooSjisSX20lDeKjo7Fs2TK5S1QUES4I4DkOH330UYWf33+er5Ui5bt2ufN0y5YtWL58Obp27Yr+/fuXy2uroKAAU6dORXRYGOKjozF//nz4fD4kJyWBJ7Jn2CNGk+ox/5zZqnb8emgGDtu1pXtsZjM6aWTywUG3F3GCgA4dOpTarmf37tCwLCbqDeivsMyvFQSkVZK9iDpJGozU6SFRFChCyuykvh6+/vprWIxGcIpnmFEXKHl05swZtG7dBlqdDh5vSIC8V93atVFVENX176HRwnsTxeDHH38cGoZRPfreV9avZIfu3+GXlbMwDBgie8O3VcgRy5Ytu6m5A3IXYo8ePTB48OCb8gb0J00eN5rxX6cblTgOFMOqxVP/S/eDDz6IRx99FGvXri0VuEyYMEHugFXY1321OnzudGGUTvasJhQNXWgyGEEDiqbRR6MF+zcmrh9Xr17F888/j+nTp2P16tUYNmxYMUGEpsFwIrTu2ICkhc6bAH/nN0szGDlyZMAxCwsLMXv2bORVqYJURb7OT4x4zmwFRQhS2GLmOEWIqiBRHmTn5EJrC0FS77mIaT8ZNMtDEEUYQhMR3mggDCHxMJrNWLlyJfr06aOeJ44XwNIMQuveV1yIzWiESmnpAICBAweCFbVysVRhrSb3kT3VXVXby3OmGVQe+zoyx70BnTsaedVrYO7cucr1YgKKqP5O8gFaHayKpxlPM6hevXrAfH7++WccPnwYX3zxBTiOhyEsBZ68TmA1Rmi9CarfuSu3DYyRGaqMvLtqO7CSXj2f2+PFRx99hA4dO8peyzQDV5W2yJm2FTnTtoERtNCFJqtzN8XmoHr1GgCAy5cvY+jQoYiOiUVmVjY2btyItWvXghCiMpArj30dhBAsX7681Jrs2bMHRnOxHHmr1q2Rn5+Pd999FzpF+pIQgk6dOuHEiRMwmc3Qe2LhqdFNJTgQQoFXOrZHjBghr1nnB5AzbSusKbVL3JcMQuv3RdqQ/0AXmgxWa0LOtK3InrIZNMvB5nDCmlRDlqafthX68EqgWB7O7BaoPHoVjFGVQSgKNCNLzxcVFeH06dOw2uzQuaLhqdEFOm8cdHr9DZNRHUpIwZX0Wy8pg+bz+fD555+jTZs28IaEyM9ui9FIH/4iTNFZ0Or0qjrEypUrQdM0RIMFnKCB2WKFxWaDMSIVlQYtRXTbCTLxxR4B0RqKzAlrkD1lM0wxWeB4ETVq1sJnn30GABg5ciS0Vrcq1+ZXBPBbFZw9exadO3eBxWqDzW5H9+7dceTIERw4cABr165FXFy8OjezxXrLxd8//vgDgwcPRpWq1dC1a1e1Uz6IYoSEhcOSmIecaVuRNXE9dM5ItGzZ8m4PK4jbjGAsee8guFZBBBHE3cBbb70FQghWWGw44QnBaqsdhBBs3Lix3Me4fPkyQj0eJAoiFprMaKvRgKKoG1r/vPfee+jSpQvat2+P1atXB3x25cqVCikmnzp1Cm+99RZ2795doQXd3bt3Y9WqVTfV0e7HF198IRNp6/RG9uSNCG8sywXv2LEjYDufz4dPP/0Ua9euRZ1atWDhOMwxmjFWbwBFCObOnVtR07khRo0aBUIIYpXcwJMmC753edBNyQGcPHkSu3fvhkvxcXe5XLdV6v5WkZ+fj3p16oAiBGZlLuPGjauw40fHxMGZ0xLZUzaDYji4qrSV7c7GvQHJaMOQIUMAyDLmhBAk378gwEbQEJkBe4ZMtH7llVf+8Xgef/xxsLyIjNErFWltOceTUTkzIHb+t3T7+lUWmRJ5ITn3QWHo0KHlOsaNlDijomPhzGmp5is4vQ26kCRkT9mE7CmbYYxMQ0blzIqakorDhw/D5faAUBQoigahaejDUkvMkcbWrVvV7cPCI2CKykDWpPVIG/YiRIMFXbp0kZ/DDlOL1T1dUaqC53PPPQdCUTBGZ8GR2RT68EoghAIn6RDX+UHEdpgKTtRgwIABFT4/P7799luMHTsWI0eOvOP2b7/++ivGjBmDrl27olu3biCEwJnTGhHNR0Ay2pGTW7ai7b8FzzzzDLSKkmh6RuVgV3sZ8H9H6Jzh4CUtPN6QoK1fCQSL7eVAMOgOIohbR1pSEjpKGrW7936tDpEhIQBkeafevXujf//+ZXZxVwROnjwJm9mMeEHEYJ0eYYKAyLAwXLhwocLOYdRo0Ftb7OvdVSnszlN8zg66PLDQNJo3b17m/j6fDyzDYGYJ7+tGooQG9eqV2lav0WBsCfn9RqKI2jVrlnncsNBQVOV5ddupBiMoQm5aFqxenTpIEER86/Jgr8uDVFFE9apVS2139uxZ/PLLLwEv1evWrQMhBLmCgPpK9//s2bPLfe7du3eDpmm0lzR43mxFjijBYjSW6XVeEps2bUK3bt2QkpICt92OuKgoLFq06KaD+88++ww6jQZaloWGYSAJApYvX16ua+jz+WT/Z+XFnWUYcLwAY3gqrMm1wTEsOIUAYVC653v37KmO8cyZMyCEqOvtD+j9x5s2bRpycnJAEYJIhsXDeiNCBQE1ylib/Px81MjLA0UINAorlxCCmQYjdjlcaCVKalH97z+T9AYsMJlhpmlEhIZec75Lly4FRQgOuDxKsd2iHmOi3oBdDhd6aLSgKQo//vhjua7/wYMHERFZzNpPTZUDIb86QMaoFepnkskuB000A2tqXdC8CK0nHpkT1sjS8AY7WI7HmTNn8P3334NhOVA0i7ShywL8mAgh0DijQLFCMbM6ryO8IWE4fPgweF6AMToLMe0mwRBVGTQnwpxYHTQhoCka5qjKiG49DvqwFHC8gJ9//hlXrlxB6zZt1OM7XW4IWiOyJ29UiqOyX2BEkyHqNharFVOmTIHZYgXFsOB4AaNHj8bXX38d4Kt89uxZ6A0GaF3RCK3XB84s2TqComg4spqrxev//Oc/AICOHTuCZjnwRqdcwCdE9cPz2xKkDZVJSoMHD8aaNWtw6dIlALJ6QOXMLLC8CJ0nBgzHo0rVaiqB5/fff8c777yDr776Cj6fT5ZsL7Fe6cNlpZMqVaqgWbPmePHFF3Hp0iXoDUZQDAdzfFWwGgM4XkCdOnVgCE1S18DvExfZYiSsyTXBsCweekiW1teHJkLripafM0kPZ24b6EOTwWnNCG80EPYM2f/Nz+j+6quvkJ5RGYIgIiExCZ988gmuXLmCp59+GhMmTMCrr75a6rvim2++AaEYUCwH3mADxQoQRAmnTp3C119/LasUUBQkrVYl5+gdYer4E3s9DkII9u7dC0BOiH7wwQeYOnUqZs2ahRMnTuDDDz+E0WRS7wFGkMBojLBVqh8odcfy0HtiodHqsGvXLnTv3h28xoCsCWuRO307IpvLBIaS9hzbt28Hx/EQtAZwogYGoxFffvkl+vfvD0FrRHLfJ5E+/CVoXdEICQ276e/K/Px8ZGXngJd0sKbWgWR2wulyqzL89xJ+/PFHjBs3DgMHDsSGDRsq9NgarRah9fqo62lNqRPQPRHE/yaCseS9g+BaBRHE3cHp06fx4Ycf4sCBA3d7KHcFBQUFqFe7NniaRpqkgcgwqF616k2R5Pfs2QNCCDbY7Crh38rzmDFjxjX32bZtG2iaRqIgoLKiQrh06dIKmFEx3n//fRh1OvX9tk2rVjdN/r9dmDJlSkDcO2zYsIDPi4qK0LN79wDi+IwSOZuGolhmzuZ24OLFi6AoCuP1BozS6WGnaXUcbysNCR9//DEA4OjRo6qPu0ajwfr16+/IGMsLf4z4mlUml0zWG0EIuWXbhL9j0KBBYHkRoYqll18NMHf6dhjDU9ClSxcAxYSLuM4PyITzMa+ColnV1swQnoK2bdv+4/HMnDkTgs6EnKlbkDt9O5Luk60Wd+/ejZMnTwaoNN5tFBYWQqPRyrLnnngwLA+aZkAIjW7dut3w2S0qKsLEiROhNxggShLatm1bZhFu4MCBYHkREU2HIbLZcDCcAJqmIZkcEA02UBSF2rVrY/HixRWuHvH777/jP//5D1q3bg2WF1F5zKtIH/EyQuvJzRv+BpuioiJQFIWIpkPV+8ecWB01a9UCIQSh9e6XSRzjV0PUWzB69GgAspIZIQSC2Q2al8rMsdWuXed/7l3z4sWLmDlzJrp164aHHnoIly9fxp9//olKldJkxT+KhsfrLaWW+W+Ez+fD5cuX7/Yw/rXw+Xx47bXXMGTIEMyYMSPoaf83BIvt5UAw6A4iiFvHQw89BJqi0F+rw2CdHixNVyhrtTz4z3/+A7vVCq0gICkhodyFvvIixO1GHi/gqNuLY24vagsCOJqGQNNoJ2kQx3EQOe663qwN69eHneex0GTGZL0RNEWVWZS2WyzopZEL+8fcXmQKAho3alTmMRs3boxkjsMxpSt8uE4PgeNuuogSFxmJviW86ofq9Ahzu9XPCwoKVB9sQgiyK1cOkJ9ev349GjVogLq1a+OZZ5656fO/9NJLqky/x+lUg8g7gZp5eagkinjL5kBYiSJ1zby8chE2/J2u69evx08//YQdO3YgPFyWr24gihih08NAUagpCJinyGn7FR4OHToks6mVDocTnhBECAKaNm2KOXPmYNq0aXjhhRdQp1YtEIoGRTPQ6fRlKkQsXboUDCEQCUFIiXm8q3Shf+CQA3RvrR7InrIZ7ryO6jZDdHocd3sx02C8Zte8f7wsTaM6L+BxoxnJHA9CCDhCVGWDz50yy/5aUnGfffYZunfvjtatW2PWrFn45JNP8Ntvv+G///0v9u7dizfeeEMuug9aIhcwe8uBqqtKO7UbO6LJEPmznnNkT3ZK9mWnOdlH3ul0YtGiRdBIEliaAc3y0Nhk/0Ca14DTWeSiPcMivPEQpPRdBMnsRNOmzbB8+XIQQpA5fk1AB7i3ZnESJmviOpkIMHolCCFYvXo1Jk6cCIbjEdliFGI7zQCvt4BmeVXlwF9IpmgGjRo3xsWLF/HTTz/hgQcewMSJE8u8530+H3bv3o2lS5fCYrUVJ4FoBtOmTcOkSZMQERmNuIREPP300/D5fLh48aKyHQWdNwHm+GoqiSEuPgGC3ix7qWsNxd37hCApOQVnzpxRyTN+9n9iz8dACMH27dvVcb355pt45JFH8MILL+CVV14BIQRpw14IkH+PVTqpNVodBg6UvdStqXVhjM6COV6WrKxbty5YQULqoCXImboF1pTaqoKATm/A66+/DgBYu3Yt2rdvj9q1ZVKBLiRRVQCIbj2umG3ujkHv3r3LvO/++usv5FapKkvpW+R7dODAgSgoKMD+/fsxadIk6A0GMCwLrU4Pg9GE9PR0HDx4EOfOnYPd4YRkD0dE06EwRGWAUBQiIiNBMyyS71+AnGlb4chqDpbjcOTIETRr1ly+32haPQ8g23Vs374d69atw6RJkxATEwudTgeGExDTbjLiuz0CTm+FMaoysiauA8MJYErYXHBaIyxJNcCwHNq3bx8wx7j4BJiiMpA9eaOcELB6QSgKDMvBmlK72Keu0UAQQmHChAllXqtr4eOPPwYhBAk9HlOJMBTN3FCe/3binXfewcKFC7Fp06Zy/93Zv38/DEYjBJ0Jeqf8XV1REpIA0KhxE4gGC2I7TEVk8xFgWA6TJk2qsOMH8e9EMJa8dxBcqyCCuPPYsmULdBpNQMHzTspZ/1tw5coVzJkzB/fffz9mzZp104n+/fv3y+8tCuF/t9MNiWGu23ldp2ZN5Ioijrq9OO72orWkQVRY2D+dioqCggI4rFbkiRI+dDjxjNkChqIwf/78CjtHefHJJ5+gXr36SK2UjuHDh6tk4l27duHFF18sM4ZeuVKO554wmfGV0w2RUOim5GJ+dHuRKAho167dHRn/b7/9BkIInjVb8KRJJrUvMVvwo9uL+7Q6MDQdkIM5f/68LJNOCCiKwrx58/41z9WsWbNg5Dg1x/Ghkot49913K+T4ly5dQtt27eTvFIqGaHYhtuN0VQr92WefBSAXlp0uN2hOgDWlDgSTC4ygUeN9nStSLcz/E+zatQs0TcOaXBORLUZC5whHaFj4v7KY5+/291ubpfSX7S5pQnDixIkb7v/YY4+Boii4q7ZHSO2eoBgOFEXjmWeeCdju4sWLAc0ILVq2xIcffog+ffpA0mgh6C2qDPngwYNvy1x//vlnWG12SCY7zHG5YFgOLVq2DHhOkpJToPfEoNKQ55HY8zFwkhYjR47E0KFDQQiBMTINkskBg9GodkDHxMXDHF9FVbIMrXsfsqdsUps7li9fjqKiojtqQXG7cfXqVWTn5ILlRRjDk8FwAqrlVUf3Hj3AChJC6/WBJ68TqGvkuW8VZ86cwb59+wKaUYII4m4jWGwvB4JBdxBB3DoKCwsxefJk2M1mWI0mjBgx4o4ymXfs2AGGppEmCGioFGwrOrG9evVqubDDsIhRCh+PPfYYxo0bh9ysLDRv2hSff/75dY/x66+/oka1aurL5oABA8rsnp41a5bMhBREZAgCKIrCtm3byjzmW2+9BYqikM0LaClKoAjBmDFjbjifEydOYNOmTdi1axd8Ph86tGsHJ89jvc2OjTY7PDyPBnXrYtmyZVi+fDmmTp0KhqIw02DEs2YL3DyPurVqlevalRf5+fn49ddfS72Q/vTTTxg9ejTuv/9+rFy5ssIDyOiwMAzQ6pDL83DRDNpJEtqKIkSaRps2bXDq1ClcuXIFX3zxBQ4cOHDN83/55Zdo3LAh0pKSEB8fj2hBUEkQ802yJPcnSpC5cuVKdc7hISFIEkS8ZLFihCJlVFXxz3IKcvGY43jo3NHwVO8MyexEZFS0mjzwo3HjxhAIwYcOubg+TDnWCKWQPlove347s1oWd4yX8IrvrtGikyTBZjajsLAQe/fuxaeffopevXohLSkJLZo1w969e7F06VKwyn5ciWLt82Yrjru9mGqQWetl2Tbs2rULHMdDsnjkgreyr9lgwJAhQzBo0CBMmTIFGq0OrKSHNaU2OKUzO77rw6g8WmYQR7eZoBRYt4I32MHpbbI/N83CEJUBRtSpxdg8ngevFHAZpSgv2cPgyGymFucJzcDjDcHRo0exfv36gGJzUm9ZVl4fngpOIRek9H9a6WSWP3vzzTdRtVpeQEEztH4fEIqG3hsPZ05LsKIWBqMRqamp6N27NzZs2ACT2Qxe0kEyysxui9WG6Ng4LF68GIWFhehWosuCUDTCGvRDSr9FEI02dOrUqdT1PXfuHP773/+CEAKtO1aVHHdVaQeO43Hy5En07t0bWdk50Gh1MEamIXP8aqT0Xwxeo8eIESPw4osvBhAKKo+RrRKWLFkCn8+HadOmySxujQEURSErOwdmiwWsqIUxOguC3gJeEKGxuBDZYiQcmU3VOVQe+5rMDJ+wppg4oEjyUwwLmmGwYsUKnD59+prKEjNnzgxgjPs7iLMnbYDG7LxmoO6fly40CRpnFLQemQwQGhauHsuZ0wphDfuD1+jRtGkzdd933nkngACSPXmjOu5kpaOE4eTv6sWLF6NDx47gJR0img5FSN3eoGgGDz74oKouQIjs7U4IgcbiBstLEMRiRrxgdiN95MuoNFiWp7Om1kHqgGfgyeskExvS0jB16tRSMoR6gxHOnFbw1uwGb63uMCfkgTc5IZjcYDUGVBryvGyZEJIEojy7N9Nl8e6778rXYcAzsqf9pPVgOB5PPvlkuY9RkRg9erScGGLkv8ldunYt19+Hvn37QjI7kTl+NXKmbYMjqzkkjbbCkiEnT55EVnaOup7t27f/10hGBnH7EIwl7x0E1yqIIO4szp8/D71Wi/qihHftTsxUYgU/qfL/O1asWIEQlwsCz6Ne7drX9Tr3+Xxo16YNWJpGTVGCnecR4nZfV9o1KyMD7UqoEI7Q6eGwWCps/MePHwchBC9arOo5MiTNNQmwtwtfffUVeF6A1hkBY3QWGI5Hi3LY+EydOhVuQVDHPkCx8UvnOISzLDiWxaeffnoHZiCvb0alSgjhBcw1mhBRgkBPURQWLVpUap+CggKV2EwIwaBBg/4V3sN+X+QJegN22J1oJWkg8HyAKldF4Pz58/jiiy8Qn5CoXqeRI0fi+++/x9atW/HTTz+hW7du4DQG6MOSYU2uBW/tHnJc6I4FzTD48MMPK2Qsq1atgtki26ilpFZS1c7+bdi0aZN8jyv2ctlTNsu5husoHJZEdk4uLMm11LyHp3pn0JwIiqJUC7SSOHfuHP744w9s374dderUhdvtAStqVWW8sPp9bzouvRkcPnwY999/Pxo3boyZM2fi6tWrAZ9/+eWXsNkd6jOUnZOL8+fPo7CwEDNmzEDjxo3Rt2/fAFUGq90Bb42uiGk3WSZujHtDzk9N3QJCCBo2bAhR0oDlOHTs2BF//vnnbZnbncSGDRvkJo37nkDu9O1I6CE3ZWh1etXbO3f6dliSal5T1c3n8+H06dPlLpw//PDDoJVcntVquy22tEEEcSsIFtvLgWDQHUQQ9y7at2+PZEHAEaWwOVinh0YUK7wo+95776FVq1Zo2rQpNm3adMvHOXPmjOrpWxZ8Ph+WLFmChvXro0Xz5njzzTeve7xt27ahft26qJaTg1mzZt1Q/nzjxo2QlCIuIQQd27fH8ePHkZKYqP4uIjQUphLezBqeR/UScvUPGU1gaPq2MzUPHz4Mq8kEG8cjRSlGzZw5s9R2Z8+eveUX2Ab16sFM02CJLBvnpGhwJYp5GlGEw2pV/92hXbtSZJLDhw/DoNMhQRDQQ6MFT9PwMiwOK/fko0pHe1eNFhRF4bvvvlP3/frrrxERqnRd0zS6KwXWZ8wW2bJAowGhaPUFPqXfolKs8GeeeQZajQYRDKOu0aslOqElJVCvWbOmXDh2RYLX6GGx2sCWCOIJIXjooYeQmZ6u/punKHSUNIgWBFhNJpw4cQIHDx7EhAkTMHr0aLz77ruoX7cuCCEQlRfhsWPHlnmtO3bsCI09FJzeCk5ngTEmGxTNgKXk7nS9OwqEokFzAiRHJBhRC5phYLHaYAhNRGLveRDMHjCiDiF1esOckCef1xEJQoo9tdKHvwiKZqBxRYNQFCzxVRHbYSoMEWkgFI3othNBs7JXW2TzEdB54mAyW3Dq1ClVRp0TNDBEyP7ghKLBsCxeeuklxCckghM1MEVnghUkZOfk4urVq2jVqjW0jnBkTVyHnKlbYEnIg8PlRo2atRAbl4A05ZpqXdEQjXZQNA3J4kbmuDeQM3ULzIl5oHkNrCl1QAhB//79QQhBVMvRSB/5MixJNUBzAjLHr4YzuwUSEpPV6+rz+dTCI1GupTEqM0CWnON49TsxPz8fhMhy7apcWlwuGjdugkOHDoEXRJjjqyCm/RTFE11e16oKWchbqwdypm1DQo/ZyvkosEqHQEJCgrwWnWYgtsNUOLJagNMYQTMMTNGZiGk3GaaYbFAUDWtKbWSOX42whv3BChp07NixXM/s4cOH8cEHH6BXr16gaBqmuFwIRjtYlsPixYvL/O6fNGkSKJqBaA2FI7MZWMkAQjPQWL3QhSRCH16puPO78WDQNK0+52pHd/dH5ftrxHL1mrz55ptYsWIFFixYgF27dgGQi94htXuWkBGvjcSkZBBC4KneGSn9F8OSVAMUzSB95Aqkj3gZrKhF//79EZ+QAEFnhrtaR0iKGoM/EZIzbRsYlr9mp1BGhrxWrGRQCSfmhDzEdJgmK0AQv3S9BjQnE9NuRsrxwoUL8HhDoHOGI6xhfxgj0yCIUoXJQd4MvvzySxBCENagH3KmbVN9EUv6710Lbdq0gTEqXV2fqJbys1ORnSdFRUU4evQoTp48WWHHDOLfjWAsee8guFZBBHFn4SeCbrY51DglRBQxceLEuz20W4bP58NHH32El19++Za8xP3YsWMHKIpCM0nCDIMRHp5HemrqdeP5/Px8zJo1C23atMGQIUNu2Ik6Y8YMMIo0+UyDEVqWRa8ePW55zH/HX3/9BUkQ0EGjwVG3F2/bndCw7HWl7W8HRo0aBVbUFhenlf+ePHkSBQUF2Lt3Lw4ePFgqTli2bBloisJyixVH3V70VYrtEQwDI83AqNMFdJOXhM/nK0WA/zsuXbqE7777Dr///rv6u+PHj6NPnz5o2KABxo8fH5AbOnr0KHIzZZ9vgedx//33Y9myZfjqq6+ueQ6fz4d58+aBUgjxjRs3/lf8jZs8eXIxmZjn8eqrr962cxUVFeH48eM4d+5cgHUAzTAYMUK23zLHVYG7WkcwvAiL1YamTZvivffeq9Bx+Hy+UsXcfxtOnjwJrVYHY2Q6YjtOhyWpJiiKKnchs2atWjBEVELOtG3Inb4d9oxGsp0fL+CJJ54AAPzwww+y/RgvIDomFnPnzgVN0zCEJUO0eiGYXer+8V1k27jDhw+jqKgIH3/8MTZv3lymbPWVK1duKs/77bff4vXXX7+hpenZs2exbds2fPDBB8jPz8e5c+dQS1HV8xfgSz7DHTt1Aq/Rw1unp5wfqdkNmePXIEyxNSCEwJPXCWH1+4ITNeh+C9+5p06dQvsOHeANCUNWdg527Nhx08eoSLz00ksBTRkZSiOM3mCEPaOR2gxjCEtB3TKsN44cOYL0jMpyPoJhMHHixOuu5ZYtMnHBndcRCT0egzE8FWaL9X+CuBDEvY9gsb0cCAbdQQRx76J5s2aoLohq8D5dkcK+Wd/y/w+4ePEi9FotGkkSPne68JTJApqisHTpUvz111/46KOP8MEHHyA3KwspoohvnG587nQhhGWhpWnsd3lw3O1FR40GNrMZgOy/9/DDD2PEiBF4/fXXr/vC9Oeff+L555/H3Llzb/jCCwDDhw+Hg+fxreIRPkSnB8swKhPy9OnTqKMUkAkhuO+++8pUVfD5fHjppZfQvXt3DBkyRC0O+Xw+hHo8kAgBQwjaShKeMMpd6LONJnzgcKKuIIIlBKssNsw3mcHSNGbNmhVw/FmzZkHHsnjGZEFljodTKWyl8Tw6azRqIZ+haTz11FOlxldQUIAjR47g/Pnzqiz3fmXODxqMIBSldgUn91kIQgjee+89FBQUoH379qAJgUEJrqcYjFhvsyOD42A2GLBixQo88cQTeO+99+Dz+fDqq69i4MCBmDJlCn755Rd8/fXXqF+/vhqcu5xO2DgOL1mseM5shZ6i0EWjxbcuN3iKQm5uLmbPnh3ARi0qKsLatWvxxBNP4K233rrmejZp0gSiLRQUyyNj5CvInb5dZQNHthyjeJvPACEEiT3nIGviOrC8gOHDh8NqsxcTAIwOuSudZmBJKl7/1AGLVXY2zUvQR8gF7uxJGwL8303x1UAoGlkT16vFeUIINm7cCEAuKk6ePBnt27dH9+7d8eKLL+LQoUOYM2dOADGB5wU0aNAAuVWqIi8vD6IkQdSbobG4QFGUmlAoKCgAy7JghOIEEKFoGKIzAwq8FM0gZ9o2GKMz4XZ7oLW41c/96x7f/VFobSFo1ry5el2XLl0KQggMkZVBs4LK1ndkNUdInV5geQmd/yaPFx4RCWN4CjJGr0Ty/QvASzqMGjUKgMx2N5nl54CiGThz2yK6zXhwkg6EUEgdsBjpw1+EKa4KCEUhqfc85EzbBm/Nbur8jDFZMhHCFgpG0EAQJZjMspqB2SL/N6rVWHV+pphMtG7d+tpfBmWgsLAQs2fPhjckREmmyB3Offv2LfU9NHToUFA0g8pjX5fvs84PymNoPRbWlNqQ7OHInrIZudO3w53XEYIgqmSigoICpFZKA80JsCRWB6c1g2Z5mC1W/PHHH6XG5fGGwFapHnKmbUPO1C3QhyQgLi4OnKBRkwppQ5fJBfxucgFf44xEr1698Ouvv6Jtu3bwhoQhJTVVTvYptgkJ3R8FIdfuBEtOSYU+NBnZkzcia+J6aFzR0IenImPkKyAUDckRAU/1TnBUbiKvjSjedDLohx9+QHZOLgRRQmxcfIUnqMqLtWvXghCCyqNXqYE9RTN4+umnb7jvggULQFEUwhr0Q2ynGdBY3MjMyr4Dow7ifxnBWPLeQXCtggjizuKXX34BRVEYrqhtbbY5wNE0nnzyyXsyXvf5fOjXr19ATPDYY4/d0rFGjRqFkBJqaC8qXbF+qeLy4NKlS/jyyy9x5MiRMj8vKCiQ/a0ZBjRNo33bthVerHjxxRdlL2aGAUUIKiUn49y5cxV6jhuhY0fZIm2oTo9PHC70UYrmr776KtIUJSpCCBrWrx8w/4KCAjT1S7Er2wxU7PW+dblBU1SZlknbtm2Dyy7Hp2Feb5mFyh07dsBqkkn3FEXhwQcfxOnTpxHm9cLJ82gsitCwLGrXrFnqWbh48eJNPx/r1q2DJMkNCqmpqTh69OhN7X87cOjQIezYseOOEVDff/99EEIQUqc3kvsshCEyHYSiMGDAAMTExsHl8aJX797lsgv8X8a7776r5ldESYOsrCwkJCajXbt2N/Tb9isBar0JMETJxVNnriwX//LLL+PPP/+ExxsCrSMcYQ0HwBSVAZqmoXVGIWfqFjXf48xphZi2E6G1hyI6JhYXL15EQ+VZJIRAp9erDSb79+9HpbR0tbj7n//854ZznDt3bsD39MiRI9XP8vPzsW/fvmsSafr06QNe0iGm/RTEdpoBQWdC+w4d1M/Pnj2LunXrBRzf/+P2eGFJrK7mOby1ekBvMJZjVYpRWFiIyplZEPVmuPM6whCWDEEQA5p27jQOHToEnhdgjq+CqNbj5OaFEvM2RqZD740DRVFlWkpWzsyCZHYhuu0ENW/03HPPXfN8kydPhmSyq/kTfz7sv//97+2cZhBBlAvBYns5EAy67y5+//13dO3cGfFRUahTsyb27Nlzt4cUxD2EZcvkokUvjRYT9QboWRbt2rS55vYFBQWYN28eOnbsiBEjRlzzBetW8ddff+Hzzz/Hf//733+FhFdJ7N27F4QQvGG1q+SEWEnC8OHDA7ZzWCwYrTeo2/TUaMFTFJw8j1hFqn/JkiXYvn079DodGIqCW5FFnjx5cpnnPnv2LOITEkFRNBheVKXQCgoKsGjRInTs2BGZmZlo1qwZ5s+fj8LCQvTo0QMZkqSO4xmlWOdnlbZq3hxWjsN8k1kmWdA0Jk2aVKrjfsYM+YU+Q5Tg5nkYdDrs378ff/zxBwgheELpPJ9rMqOvVocohlXPuc4qByF+7/NaolSqKPjwww9DyzCgCUEeL6CXRguOEOi1Wmh5HlpBQK2aNfHNN9/ccI2+++470DSNHhot3rI70F6S5EKZNQTO7JZgJD0IRWPJkiUYPHgwKELQQpRQiWXVBAEhBDazGe+99x769u0LtycEcQmJeOWVVwCgTELE5s2bISprG8Iw2KcU+3tqtEhgORxwecATAsFoB8PxqF6j5k3bRTz11FNKZ60WOVO3BLw0J/aaEyBbHtthKjLHvQGGkzt5L126hHr16sEQmoTc6dsR0WKk2gUvmN0gFA2NMwpRrcfCklgDhKKh9cpS4Sn9Fsms6W6PyMkORQK80pDnA+Tg33nnnWuOfefOnXLwVLU9UgcshjW1ntrdrAtNgc4dA5bl0Lt3b4waNQoffPCBuu+lS5dAaAaiLQwJPWYjqtVYtSPcFF8VCd0eBW90QBeaJHuPh1eSPeVpGok9H0POtK1w5rRS19bucOLAgQPq8bt27QpjWDKcOS0h2cOQM20bQuveB0aU75UWLVqWSqp99NFH0BuKA6S09IyAwnFRURFiYuNhr9y0WCIurxMoRpHqFzSgaBasxqh+7vd7E6xe+VpV66B62/MaA8aMGYOzZ8+iqKgIcfEJ0LujEdVyNGxpDUDRNB544IGbup8A2ZvRX5DOmbYNkc3lzoXNmzcDkJVEli5ditatW4NiOJWJndT7CRCKgqNyEyTe9wQomoVkD1NJAn//Hrtw4QKaNWumyr+HhoVf811lyZIlciLAGw+tIxwMy6qdHYk95yjkikFysb/lKJUBP3369FLH8stCigYLKIpC/foNrvl3xeXxwlO9s7oezuyWYAQttPZQWX5NuV8JRUMfXgk0zdyzzPB9+/aBoii4clsjY+Qrqj9jyefuWigqKgqQ20xKTsFPP/10+wcdxP80grHkvYPgWgURxJ3HQw/JnYsWjgdNUQgPCYFeowVD02hYv/51ZdD/bdi6datcYDeacMDlwRDFuutWlH4mTZoEK8fhByXuelwhfZfHNxkA9uzZA7ejWP64b9++11SeKygouK0dt3v27MH8+fPx4osvXlfF73ZhwgRZ5civLPe9yyPHOJUqwc3zeMViwzNmCzQMUyr3UVhYiA0bNmD48OEghGC73XHdYvvBgwch8jzqSBIWmMzIFSUYdbqAgvKFCxdgMRpRTRSxxmrHcOU+GTJkCFiKwudOF054QvCSQrAoS377VrB79264XC6ZRO9y/b/LrS5cuBA0yyG576LAYiBFg6IoLFy48G4P8V+DwsJC/PDDD/B4Q6CxuGRrLZMD4RGRNyQjbNq0CR6PB4SiIBpsYFgelTOzcOXKFZXwkNJ/sWr3Riga+pBEtXBqiqsCQuRmj4TEJOzbtw+PPfYYGJZDXKcZSB/+EkxRGbDa7Lh8+TIio6KhtYcquYP6IITg/fffv+b4/LGiu2p7ZI57A2ENB8g5vXffxb59+xAZFa3eG7169S5FbImLT4Qzu2WAVL7L4w3Yxufz4ffff8fZs2fx5ZdfYtWqVfj888/RoGFDGEKT1HyXPaMxnC73Ta3N999/LzdadHlQtbETtMY7rhjyd2zcuBFGhUBE8xLiOj+AhJ5zwGuMsNpsaN26TZnNN/5376jWxc0WxvAUdO7c+Zrnmj9/PhiOR6XBz8l2A0rO5N9AIgoiiGCxvRwIBt13DwUFBcjKyICV49BHq0OKKEKv1d4UmzeI8uHChQs4c+ZMhcur3234fD7Mnj0bNrMZGlFEx/btr/ks+3w+dO3cGQxFoaoowcpxN/Q5uxkcO3YMibGx6otbblYWzpw5U+a2586dQ8/u3RHmdiMtORnr1q2rkDFcD+fOnQPHsuim0eKo24v1Njt4mlblnvyoU7MmogUBHziceNPugIvn0bRJE4waNQoDBgzAli1b8Pbbb4OhKIQzDOIVH/tmitT7oUOH8MYbb+C1115TvZemTJkCVpBQadBS5EzdAmuleqAoGg3q1QNDUYhjWXCEwKh0WPfv318lUozS6bHEbEGkICA5Ph5ff/01Tp48CZ1Gg0kKKeAtu0Pt7jbodHjppZcAAFevXgXHshis0+OEJwR7XR54eB6DBg1CYWEhtKKItpKEZJZDFMOip1Io32Jz4Ljbi35aHShC8I3TjT1ONxzKviXhL5BHMSyOKgH+gwb5JbSeKGKkTg8Tx6F+vXrlev6WLFmiyruzDIOGDRuCEAp0CY90mqZBK5KAJzwh+MntRQzDIJKmIbAsJk2ahGrVqoHlRbirdYAlQZYAtxhl5Yda1auXYi3v2LFD9USqxHH4zOFCIsshgmGQwXFgGQ5pQ5ep/kxlMVavB5/Ph169eoEQCpbE6ohsMQqiLRSEomFJroXotpNkqXdCwVapPnTOSBhNJnWc8+bNA0XTiGg6FBHNhskFzbAUWJJrQeuOK5bKpoolswlFy13uYSmgGBaiPRzW9IagWB6MqIM5vio4UYOs7JyABNS+ffswefJkjB07Fjt37sSiRYtAM4zqg+7vkhfMblhT6iB78kZoLK5S9wagFNsVkgEhcme+xhMn/9s/VpqGJbEGTLGy17PGFQVekMkP/o7tzp07Y9myZTh16lTA8YcNGwbRYEV4k6Fyd0XDAUjusxDGiFRYbfZSftEFBQXYs2cPNmzYgFdeeQVbtmwp01O6eo2aMIQmIXvKJmRP2QzJEQ6NRgtCKPAGO6Jaj1PO1x+VBj8Hc4KsGJA68FmZMNFxmhpMaVzRaF6iG/+bb76BQfHs9F+D2nXq3nQS0K8EkTVhrRqIEkIgaTRYu3YtQkLDQNEMGI4HoShI9lCE1O4BjdkFi5Lc4g122S6AyF333pBQtGnTpsz3EJ/Ph61btyIuPgGSRovcKlWxb9++UtutXbsWnTt3Rs+ePfHJJ58gPz8fNWvVBkXTEPRyIpVmi+08CCFlEr98Ph/WrFmDmTNn4oUXXkB+fj4uXryIhQsXYuLEiVizZo36ndKmbVuIejPiuzyI2E4zwIpahISEomvXrmjdujVEox2m2FzYMxojQiEl3Khzoby4WUm/isDChQtVRQ5CCKZMmaJ+dvToUSxbtgwrV668ZrLozJkzOHbs2G23Qwni/weCseS9g+BaBRHEncWvv/6KDz74AMuXL8dDDz2kdoX31mrxkFG2C6tbq9bdHma5sWDBAgg0rRKzP3fKhc3Vq1eXa//Tp09j69at+PDDD/HDDz9Ar9UiWhDQXJTAURTyqlUrl59tYWEhwrxepIki1tvseNhoAkUInn322X86xXsSb7/9NgghWGSSrdhmK2R6nUaDCSWaCDpKGmRXrlzmMS5duoTYyCh4eR4DtTokCCKsJlOpd/Tnn38ehBAcUEgS/nugZD5n9+7dcrys2Cccd3vhFgTUr18fGobBj0rO4C3FK/pGEtG//fYb1q9fj3feeeeGhPejR48iVVHI0mg0WL9+ffku4g3w559/YtSoUaiWVx2dOnUKIH//W+DvuhYtXmhc0ag8ehXShi4Dp7dBtIaAoqh/ZP1wu+Dz+bBv3z589tlnt4UM7fP5MGvWLDhdbpgtVgwcOBBXrlzBqlWyFHj68BeRO307Kg2SFfPKc88UFhZiyZIlGDJkCObMmaNaKvibFPwWbBmjVoBS8jS21Drw1ugKTtCgdZs2OHv2rBpD9ujRA8bwZDV/EKt0wO/YsUM+Xo/HVEUzjdmBCRMmXHNs/vsgY9QK1Y6Nohk89dRTSE5JhdYeioTujyKiyRBQNI158+YF7F+jZi3ovfHInrQB2VM2wRiRhrT0jHJd6+3bt8ud/K5oaN1ybnju3Lnl2tcPf5NUXKeZyJ2+HVmT1kPQGsq01CwL+fn52Lx5M15++eUKr60UFhYiJbUS7OkN1bUKqdMbBqOpzO19Ph8WL14MiqLVZozMCWsgmRwYOHDgNc9z/vx5xMUngOVF6J3hIIRg2LBhFTqXIIK4VQSL7eVAMOi+e/jiiy9ACMFKiw0nPCHY5/JAy7KYPXv23R7a/wzy8/Nx3333qQnp2jVqBPjN/H/Cjz/+CEIIHjeaccITgt1ONzQMc8vSb39H44YN4eF5rLHascJig5njcN9995XazufzoXGDBjAoReBaogSapvHhhx9WyDiuhyVLloCiKHDKC29elSqlvGr379+PULdbvWfio6NLBZm1a9RAJi/giNuLY24vGokivEqB2FOCYe+y27F371706NEDWk98qZdnQgieVfzJN9vk/doq8mdnzpzBxIkT1QJwZFgYzCW6cfVaLVqLEvY6XLDSNBJYFk+aLGir0YCiKOzcuRPnzp0DIQQLTWY1yM4SJXTs2BEvvfQS2rdvD0IItISAVY7LEFlGTqeQCAghsPM8NAwDj9OJ48ePl7qujRo1QgzLqjKAfp/2H5xunPCEYL5JLrD5yQdAsbx9jx49MHTo0ICA9ddff8Wnn36KX3/9Ff379wdDMzCEJCGp91yE1OmljmuW0lXRTpLAKGMnhEDUyyoAhgjZmzihx2wQQtBKkvCgwQQvLyAtJaUUi9fffU4IAU0IGIqCVhTBEIL4rg/JL/sTZAnnl19++ZbuwVWrVqmS4naHC5EREQFFR0LRMFusaNCgIb7++mt1v8LCQvTsWTx3k3JN/T+PPvoo9u7di6SkJJgtFtU/3JyQB0tyLXB62ceeYuXu5PDwCDRs2BCjR49W//6fOHFC9vzjOPCSHpLJAZqmMX78ePlZ6PowcqdvR2QzufOBM9hgT2+InGnboHNGoE+fPqXmu3//ftlHPToL0a3HQR+WAkIzMMVVVYOG6OhoMKIOWk88otuMR2SLkSCEYNWqVVi0aJHqB14WDh8+DLPFAl5rBKcpfj5MZkspScM//vgDOblV1G0io6Lx448/lnnc999/HyzHQWN2gRNlKUZ9SILswc4KSBv2Ily5rdVjsRwPmuVQafBzEK1eiLZQxHd9WO06zszMBAAcOHBA9ety5rRCzrStSOgxGzTNlCnTeD34vbs9eZ2QMWoFvDW6ys+zOxqCKEI0WJE+YjmyJ2+EKSYLnCDCarOjXv0GaNOmDXiNEfb0RnBVaQeaE8FKetgzGkNjccPpcpf6W3ngwAEIogRjZBo8NbpANDvh9njLlRS5evUqnn/+eUycOBFh4eEgFA1BJ39PTJs2rVzzvXjxIiqlpYNhOWgtcmJv3LhxAOQkXEblTHU9rDY7jGYLYuMTkKl4P2q98eB0ZlAMC5fb84/lW7/44gvExMbJRB6rtdyJ5orCgQMHsHHjRnz77bfq7z788ENodTr1OkRFxwS904O47QjGkvcOgmsVRBB3Dq+88gp4RRWIEIIHH3wQnTp1QqZYbAHn7+a+G93QtwK/j+zjRjMOur0YpnQsayUJGzZsuO6+n332GWzm4vilRrVq2LVrF+rUrq3G5oQQVE5LK9OqqCROnDgBQghesFjVa5kuacrMPfwT5OfnY8OGDXjhhRfwww8/VOixKxI+nw/dunSR10KJ4fv164f46GjUliT85PZin8uDeEFAi2bNrnmcY8eOoWXz5ogKDUXdWrXKVKZ79VVZie0dRfnuDUUJ7+2331a3OXr0qPyObzDihCcE79qd4GkaEydOBM9xqCdpMNtoQpIgwuN0Xvdv0s6dOwNyIFWys2/YeXz+/Hk08svjUxTmzZv3j4ixRUVFqF27DlhBgjWlNjRWD8wWa7lVGO4UioqK0LZdOxCKRkjd3mruyZ7RGBpXDAgh5ZIgv5MoKChQbRDk/IizwqWy/TkeR1ZzeKp3BsPxGDBgAFaskBsIMkavlK3Ohsn2emvWrLnlcxUUFCAntwo4SQtrSh1IZiecLjfmzp2LkLBwmC1WdO/Ro9Q9PG3aNHCiBin9FyN7ymZYU2pBo9Xh4MGDct6ixUhVCZGXtHjooYeuOYZvv/0WhBCE1O6JnKlbENVyNAghqhVZyQ5rU1QG2rVrF7D/J598AkGUIOhMEA1WsBx3XbvEv+M///kPJE2xhWDt2nWwf/9+9OvXD40aNcKkSZNUckJZKCoqQpUqVSFoDXDltobeGw9R0pTrO/jy5cuollddPTfPCxXe2NW8RQto7WHIHPcGsidvhDEyDYlJyWVu67/3RFuo/F9HBBhBA47n8dprr133POfOncOjjz6KYcOG4ZVXXvmfaxwM4t5FsNheDgSD7ruH//73vyCE4DWrXGw/4PJAz7KlPJGDuHU88MADYGkaMwxGLDCZYeU4tLxOgPG/DH9hZp0io37M7YWTFwI64v4JnFZrgPx6D40WaUlJpbb7/fffQQjBE0oB+KjbizCWRV5e3h15gdizZw8WLVqEV1999ZqdpOfOncOmTZuwbdu2Ml8EM1JS0FmjUec6XKeHSFGQeB5hgoCPHS585nAhVhBRp2ZNPP744yAUjZh2k1Bp8HMwhCaBUzq1/TJqR9xesISgqyS/mB4/fhznz5/HgAEDkJaSApqikMxyWGu1Y7y+OOAUFQmqTQpz/KjbCyvPq7LUWekZCOEFLDJZMEJJiMTHxIAiBAal8BodHY2UlBS0adMGO3bswAsvvIDHHnsMH374IT766CNMmzYNjz32GH799dcyr9c777wDiqJQV5QwQKuDRNPQ0LQqZfeIUnw/d+4c/vzzT0yfPh3JyckghCCR46GhaHAMg6lTp5YqgCUrPnOJveaqQQFvdMDldMLIcUhhOYiEwgS9Af0Vf7qwhgMQWu9+EEKQNuxFOHNawc0wKhngBaWrt6xC65o1a6DXy9cpNDQUO3bsAM8LsCTkIb7Lg7AkVgfPCzh48CAA4OOPP0ajxo2RnZOLyZMnl9klDcjdApcuXUJ+fj58Ph/++usv+Hw+cApJI6xBPyT1ngetOxaCIF6TtX/8+HHs3bsXV69exQ8//ICNGzdi7969OHPmDCSNVu5YT6wOmteAKJ2vnK44sUUxHCilW7wkYWD//v0wW6ygWQ40J4JQtNyF7opCRFQ0GjZsBEIosJJ8bRjlv47MZrAmy97x27ZtKzXe5557DoSikDVJ8Ygf+bK8X3ZLEEJQKS0NY8eOBcuLiO/6MCoNfg56bxxi4+LLnH9Z2LdvH/r164f77rsPixcvxp49e8osAA8YMAC8pEN814eRdP98aKwe1KhZ65rH3bNnDwYMGABCKITU7ikHuGNfAyPqYIqrgoTus8DrzEhLz8CBAwcQExsHhhNk2b4SCgOC1QuKpvHdd98hPCISoskJQgiS+z5Z3P1udiI1NRV169XD+PHjrxuAlsTs2bMDSBchdXohvstDIISCOSFPPX5Es2GgKErtZM6tUhXW1LoBZJSk++cXKxdQFJ5//nlcvXoVu3btwmeffYZ58+aB4Xi484oTIoSiAwiCFy9eRN++feFwuREVE4tly5aVGvPFixexaNEiTJ06FZs2bSrXPAE5WKUZFin9n0bu9O3qM+6XUyssLMR3332HqKho9fpTjNy1763ZTWaSj3sDrMaIbt26lfu8ZeH8+fOw2uzgtCawkkGxFqDx1Vdf/aPj/lPExMbBGJ6KzPFrUGnI8xD1ljJJMEEEUZEIxpL3DoJrFUQQdwbHjh0Dz3FoK2nwnt2pxmBNmjRBhCDgkBKTjNLpwdD0TdtT3S34fD707ds34N2zq0aLRpIGIs+XScr2IyYiAhmiiI8cLqy02KBhWUycOBGRoaGoIkr4yunGJpsDBpbD6NGjrzuOy5cvg2NZ3KfV4bjbi08dLhg5DpMmTbrpORUVFeHJJ59Eu3bt0L9/fzXGu3z5MmpUq6bOk2PZGxZH7iZ8Ph/WrVuHOXPmYNOmTfD5fNi8eTNYhoGd52HiOOi1Wnz55Zf/6DyXLl1CSmIijByH2qIEDcuiak5OqXvYL0sfJUoQGQYpiYm4cOECNm/ejBCXCxRFoVJS0g2t5qLDw5ElivjM4cJqqx1alsX48eNvOM6CgoIA66RBgwbdss3hN998A0IIYjtOV+NBlhfx+OOP39LxyouioiIsWrQITZs2Q+fOnbF79+5y7RMTGweNIwLpI5YjdeCz4PRW6MPk3Mv27dtvehw//PADatWuA4fLjRo1a+H777+/lemUCVm9j0FUqzFI7rMQem8cwsIjKjQvmFe9Bszx1Ypl0Wt0gdFkxm+//QaL1QadKxLemt2gc4TD4XRdU52zvDh//jyGDRuGannV0a1bt3JZdp0/fx6pldJACAHNMGBYFq+++ioAoHPnzqAZFqaYLEhGO6w2+w2JHtOmTQv4nu7VW5aLlzRa2DMaI2faNlQe8ypEg7VMdcLvvvsOkydPxqRJk25aDSE9ozJ0jnAk930ScZ1mguVFaHU6iAYrzPFVwfIC6tSpe12FtTNnzqB7jx6IjolF9Ro18emnn5br3I888ghYTkBizznInLAGloQ86PSGCrUR+e6772A0mcAKEnhJB54XAshGJZGQlAxrSm3kTNuGsAZ9QdEsaFaAoDOBpmm8+uqr/zr71SCCuBGCxfZyIBh03z3k5+cjLSUFDp7HEJ0eGaIIjSjekudVEGWjZl4eWojFvteT9UZoJQkAsGLFCjRu2BBNGjfGG2+8cZdHevtx+fJlhLrdSBJEPGWyoJPCNvT7/Xz++ed48skn1SL0hQsX8O677+KTTz4p1wtARmoqckQJB10efO/yIF4Q0bRx41LbnTlzBoQQzFE67H9ye9Wu8FvxLS4sLMTOnTvx5ptv/uMX4/Ji7NixEGgGDxiMmGM0Q0NR0IgiIkNCcL9Wp95vI3R6eB1O5Ofnw6QUnAkhkGgGPE2DZ1nUFSWssNjQQdKAIgROjkOl5GTk5+ejRrVq0LMs2kkaeBkGRorCHqVbPIzjEBYWBq1SUPV3r3/udEFkGFUe/+jRo8hMS5cLpDSNpk2bgqYorLHacdztxSgl+XMj/5/CwkKcPn36mi/Fq1evRlpyMiK8XrRq2RIswyBDENFJo4FA0+jcqRP++usv5GZlQcOyyOR4CIRAIgQGQlCZ40ERgu7duqnB1eHDh4uLiLV7yPJeg59TfceTExPBEIIxJUgejUQRxrBkVc7bFFcFglGW2fd7Avql9X755Zcy57Jr1y6Ylc4Lq9WKRYsWQacQHLQ6PdauXQtAJkxxHA+dJxbW1LpgWA5duwYW8S5duoQOHToohUkKhKJQt149VQ5d4DhorCFq8Of3Vi9JBHj77bfRuGFDVMvNRc+ePfHGG2+UutcHDx4MQghi2k+BUKLDmylR9KUYDs6cljDGZCtzs+Hw4cMoKipCu3btobF6UHnsa8ievBGGyHRV+l0UJRQUFOD5559HlSpVoNfrIYoiaIYFRTPQ6fTXZMn7ux9SBz6rFHZlGX6i+GhTNIMZM2agevUa6jitNvsNGe3vvvsusnNy4XS6wQuCylx+7rnnrrlP5azsAMmv0Hr3Q6c3qJ+fPHkSffr0QfXqNTBgwAD8/vvvaueMP7mSO307RFtYieCVQtu2bdG3b1/MmzcPjz76KKxWmcxRafBSZI57A5njV4MQgkcekdc2vMkQEIqCJakmMkatQFSrMXIST6OHOSEPLC+ibt166rN29OhRvP3223jggQcwaNAgzJs3LyDAHjJkCBiOR1znB5AzbRscWc1B0zQ4QYP4bo8gdeCz0LtjkJySqu7Trl07MKIWyfcvUNnu/jXKnLAGFC2rniQmJatz9XhDVAKHt1YPpPRdBGNMFkRJUu/HTp06gRMkuPM6qiSMf9IdUBJTp06FZLSp65DSd5FMWPr8c3Wbjz76CISiYIzJRky7SdCFpajPhX8/gzeuXJ1Phw8fRt++fdGyZUvMmjUrIInol/SjGA6uKu1gTa0DQsh1vdfuBBiWRXjjwepcLcm1UPMekqcN4t5EMJa8dxBcqyCCuDPYtm0bCCHY5XCpMtoSw2D06NEQeR6xgoA6omyZNGbMmLs93JuCz+fDyJEjQRGCzTZ7gJT4xo0by9znr7/+CiDbn/CEoJ4oomnTpiCEYG6J39cXRTRt0uSG45g/f778fioIkBgGkWFhpeymyoNBgwaBIgTVRBEenodJr8eECRPgtNnAEYI3rHYcdHnQUtJAK0nlkrm/Vfz666+YMWMGhg4dWmGKSXv27MGUKVMwc+bMckkq+3y+G+Z+zpw5g9GjR6NVq1aYNGlSmSRnn8+HlStXYtSoUZgzZ06pvzvlUZjy3zfz/nbfNGvaFO+99x6iY2LBchzS0jMCFOFKjmHevHmq9VLjxo1v6e/f559/LhOTe8+TrbumbAKv0ePhhx++6WPdDPzqcqaYLGgdYeB5oVxd39988w2sNntADoAQgjZt2960hdSZM2fgdLmhdYTBU6MLdI5w2OyOaz5rX331FWbOnIn+/fvjueeeu6EKQZcuXWCMSFVjl5j2k0FIoCLiP0WdunVhiEhTPdOd2S1hszsAyNeqarU8WO0O1KhZ664qWFy6dAkrVqzA008/HUBCyc/Px6xZs9CyZUv069cPhw8fLtfxPvnkEyxduhRvv/22ml9bvHixnNOyuMFLOlhtdhw5cqTC5uDz+UDTNCKaDFHX1JxYHYSikT7yZeRO3444ReWzohUMAKB3794whiaq547r/IDayATIantr1qzBs88++49I8kePHsWcOXPwyCOP4LvvvrvmdjGx8bBnNEbu9O2wVaoPXm9D5TGvImfqFmicUaBoBhRFIa96jX+dUkYQQVwLwWJ7ORAMuu8uTp48ibatWiHM7UbV7Gzs3Lnztp7vzz//xLfffouzZ8/e1vP8W9CyRQskKezx424v2kgahLhccrclIaguiKiieAOvWLHiro71ypUrWLRoEcaOHYvly5ffFi/Vb775BnFRUSCEQCOKWLp0KQAoPjIUeEXCrXJ6Orwul/qCXjUnB+fOnbvusT/44ANIggAdy0LDMDDp9ddkKrdp1QoCRaGnRotsjgdLCFqIEuxm803N5/Lly6hXu3Zxkc5kwmeffXZTx7gV/PXXX6pUGyEEtWrUwG+//YZWLVogVBDw0d862wGZAem02dR9alSrhjfeeAMmpYuaVn5fJSsLR44cwbvvvgtCCF5S5PG+drrBE4KZBiM+dDjBUxQcVit6aTRoIkpgCUF1XoCJphHq8QRIQPt8Ppw9exZ//fUXpk+fDgcvqAGr3yutZ8+e6NKlC8LCI5GTWwUffPCBuv8bb7wBveIx7XC6Aj47c+YMnn76acyePTvghfn9999HvTp1kKl0Ll+5ckX1j9qgJGZet8rXY75CvJijSCn6OwpGjpTlxEMVFQDeYAPNcIjkZIISIQRaQUBPjVZVa6jM8dCHJMIcXwUMyyEuPhFp6enQiCKiBAFNRAmcUvwvC88++ywkjRY0L6od4FqtFjt37sTRo0fVjvRvvvkGrVu3hmRyIHvyRuRO347wxnLBu+SzMnjwYNV33FWlLSKaDAGnMaBe/QYAgDp16oDmBKQNXYacadvgrtYRFEWrx3j//fdB0zQyBAHNRAmUcp+4HY6AYNBvCWAITUIEx+MLpxtfOt2IZjkIOrn4G9agX7HXlzNKvRdTUishPaMybJXqFRei6/cBzUvQeuKg0Whw8uRJ/PTTTzKLV5T91t15HeGpLjOtx48fjwMHDmD79u348ccfcfr0aYwcORJNmjSRO4AlHQxRGXKwr6ynp3oXVbqsoKAAn3zyCd56661Sf5+Kiorw6quv4qGHHsLq1auxZ88eMCwL3mADoRkYoyojodujsGc0BkVR12T9t2nTBlpbiEwomLQBxsg0xCckAgAuXLiA6JhYiHoLrMm1IGiNSExKxsWLF6HR6iCY3YhpNxnuqvJ1plgBib3ngWI4MLwEnTsahFCoVi0Pq1fLxXW/7L7fNsLvH8hqTGpXeEnGeZxiVRBbIgAt2T1E0QwYRdKeommV4PDHH38gPiERNMNC0MpEi3nz5gVIqDmcroAk1MiRI0GzXIljsxAsHoTU7Q1DaCJ0ej0aNmwE0WBFYq/HkdjzMQh6MxiWBSsZ1PskdYAcsO/cuRP5+fmgaRphDfur/nD60MRS0nS3ik2bNqmF/uQ+C2GKzoTeYAh43hYsWABCCLImrlO69FfKkvUmJ2LaTVK78l955ZXrnuv48eOwWG2QjHaYYrJA0Qw6d+mCjRs3YsSIEfK6UJRKAsqdvh2GiDQklaHmcieRlJwCrT0MofX6ILzRIPAafZndCkEEUZEIxpL3DoJrFUQQdwb+TtgHFBntlRY55nnttdewe/dudO7cGc2aNsXChQtvS8x/u/H666+DkGLFvKcVi6xrdR/6fD647HbUkzQ45PbiQ4cTFsVyjqdpVOF5fOfyYLvdAR1FYejQoeUax5tvvonJkyfj8ccfv6Xi3NmzZ0EIwVRlnb5zeaBR4pRIhkESy6kx88vKGpanS/VWcPLkSYR6ZKXLGFG2lSuvR/HfsWnTJkyePBkLFy4stwf2+fPnMX/+fFXqP7ty5TKL81999RWqZmfDYbGgZl4e9u7de0tjLC+8LhdqSRIOuDx4z+6EmePQq1cviJIGxsg0hDceBJ0rCnaH85o5znXr1kFSrPoiIiLQr18/PPLII+UmZ1y5cgWRUdHQWD0IazgA5thssBz3j1UCrof8/HywHAdPjS5ygX/yRmhsXvTu3btc+//+++94/fXXMXbsWEyePBkrVqy4JQstf1ybNuzFAJW6lStXltp20aJFKjHb32gQFxV13Wdz9OjRELQGpA9/CTnTtsKe3hCSpKnQbt81a9aAEAJjZDrMCXkgRLb1+P+Kt956C2PGjMHMmTNvS4HX4w2BOS4H2VM2IWPUCggGKyiaQfaUTTJhvv/TIITcFhvRRx99FAzHI6HHbGSOewOW+KrQG4zIz8/HlStXivMjFAWapvHCCy9U+BhK4oEHHgBF03DmtARvdKgKC37Cgb1yE0Q0HQbJZEflzKygVHwQ9wSCxfZyIBh0///Bxo0bodfKnYosw+Cpp56620O67di1axcEnkeoICBRYY8///zzSIqLQ0tJUpnmDUQJWenpd22cV69eRfWqVcHRNCKUcfbu1eu2/LH1+Xz4448/1Jfts2fPgqFpVOd5rLRYsdZiA0sIYngeb9kdeNVqg55lMWzYsBse+4cffsDs2bPx+OOPX5cheenSJYR4PDBSFHJ4HqusNozWG2DQam9qLtOnT4fIMHjJYsWHDifSOA4Sx92SPNat4M8//wz47jx8+DBCPR41wHA7HAEB6J9//okPPvgAH330Ee677z5wLAuWYdC+fXucOXNGZcqfP38eIW5PQGH6kNsLiaJgoijwhEAvSahVvTpSBBFv2exoLUrQUxTsVmspj/mSWLduHQghmG4w4gOHE01EUfZrp2hwkg6uKu1gCE2CIIhYsWIFBg0aBJqmYUmqjpj2U2CMqAS9wYDffvtNTgqEhYNmWHCSFjTDXFde76WXXgIhBPuUDvNvnG4QQvCUwlbfqDCw/cVSu8WCnhotjru9eNZkgZ2mEc2w2Ovy4EOHLMXtLz7XEgSklfBF9Bcyu3TpohIazEYjqlWpgpkzZ5YpJeXvkGAlPTJGr0Tlsa+D1cqFUb1ejx07dqCgoKC4U50QUAyLxF6PI3f6dkS1HgtCCD744AOMGDECAwcOhNPlhmB2Qx9ezNiOaDoMhBD89ddf+P3332GzO0CzHASjPP9HHnlEHVPHjh2RJAg4qshNjtDpwROCaJ5XiRwA8OKLL8rS7wyLASXUFQbr9OBYvsxiu9YTh7hOMyGZHHB7POBEDeI6P4Ck+55Qx6xxRYNmWISEhmHs2LHgNXqI1hCVoSuzw1vAbCkmktA0DafLBV6jhyk2B6wgwelyIS8vDxRFgdWZEdF0KCoNfQGC1oiRI0eWeb9s2bIFTRo3htMuXxde6dhPTk4BzQkgioWCP/jPmboFDCdgwYIFZR5v3759MFusYDgBnKCBIIh45513ABQnDSsNfk4OAvvJXdObN29GTk6u2uVP0Qx0oSlgJT28tXuA0LS6T2TzESCEoEOHDqhfvwEomoZgcoFQNCR7BFhRB4tiYUAIQUr/xYjrNAOJ982Tkz/NhiN3+nYk931S7b6gKArhjQcjqfc8aNwx4I1OSI5ImQVNM+jdu7eqRPLMM8/g4YcfVgPXgoIC7Ny5E++++24pstTkyZMh6EyI6/Ig4jo/gJC6fUAoGjq9AZXS0vHpp58iJDQc7mod1HV25baB2WwBRdFI7rNQUQfoA0IIDh8+jIKCAjAsi5A6vdX7TOeOQadrEFtuBSUl8fQGQynJNr8XnV+iP7HnHHXd5P0osBx3QxnGBx98EJykReUxrwasLSEEWpsXjCCBUDQ81TurxAJdSBJESYNx48ZVqFTdzcBPUPL/GI2mAOJVEEHcDgRjyXsHwbUKIog7h6FDh8pkcF5W72pYv/7/jFysP3fB0zRiJQk0RaF927bXzV1s3rwZAseBVYpxcVFRmDt3LmhCoClRoGPItTvkKxrHjh0DIQRPmszordWiliCAIQRtJQnTDEZwhOBliw3futxoJGlg0OmuaRn2TzFlyhSYOE61mBuu04Om6Zv+vp4xQy7iuAUBPE2jUnLydbuLfT4fpk+frnZ/t5QkzDaaECkIiI+ODlB2OnnyJGxmM5JFEWP0BsQqnuu3s5HnzTffhCQIasyfFBeHxx9/HBTNIGvielX5jpCyLc382L17t2oVR1E0WF5ESGgYfvvtt3KN49ChQ6haLQ+CICI8IvKmrLBuBZcuXZJJH81HFBN7w5LRsWPH23rev8MfW1Ua8nyAr/nfLRt+/vlnOQeQ0xLZkzcitsNUEEIgMQzGjRt3zeP/+uuvCA0LB8PxEHQmUIqVWUVjzZo1qFW7NqpUrYYFCxb8a4ualy5dwrp167Bq1apSKoxr1qzBwIEDMX78+GvmWn/44Qfs2LGjQpUBbhYbN24Ey3HgRA0YloPVZgfDsrDEV0Fk8xHQuaLgcntuqHpwK7h8+TKq16ip/j0RBFH9e/LEE0+AYTkk9pqL7CmbYU9vCJ4Xbss4/CgsLMSUKVPg8nih1elBMxyi206AKTYHoi1UVVuIaScrOlzLtvN24d/6HATx78a/otheVFSEl1566Xae4h8hGHT//8DPP/8MSRDQSJKw1mpHL0VCfNeuXXd7aLcdn332GfLy8hAfH4/77rsPly9fRlRoaIDcdxeNFsnx5fcIrmisWLEigB3+uNLhe7P+OLeCyZMnByTnWyrdszMVhvcJTwhaSRJq5uVV6HmfflpmNPbSaDFKKSDGx8XdlDRb69atUauETcBCk1klk9yJa/d3/PLLL8jJzFSLwH369CmzW2HkyJEQGAYT9QZM1BsgMExAwfE///kPCCEIYRhEMCymGYzI4wXQhECiaDAMg23btuHzzz+HwHFqVzwhBLk5OdftkPD5fBgxorhwJFIUHjLIBeXYTjNU5jSvlTvZtYrct5+J6g+wli5diq5du4LXGmUm8tQtsCbVgMlsvuZL26FDhyDyPBpIGiwxW1BTkOfUWpSw1GxFMsvBabPh4sWLAAC9RoNxf5OIj2QY7HK40EGUQBMCjhBYKQrRDAuLUmB3VWuPymNfhzm+KgghaC9pMNdkRpQgIC4qCnv37sX48eMxbNgwvPXWW+p10Wu1iGQYGEOKpaeiWo4pvlaiiH79+oGiaIQ3GYyU/ouhC0kCzQnw1uoOQWtE5cqZ4AURkskBnT1UThqJOogWr9oB787rCJ4XsGfPHpw4cQJnzpzBnDlzMH78+FKBe6uWLVFFENVrMMNgBEMIhmt1cNlsAevavXt30ITARdN4x+7Ee3YnvAwLmhDEJySAYlhZRj46C4QUd16HNx4EmmECOqEZUQddSBIIIYhqNRYMy6Fu3brQmJ3QuGJgiquCsIb9IVq9YAQNCKEwVKvDpw4X+mh1Sgdyd2SMWoEYJdgeMGAA+vbtC4qmwYoa0AyL8IjIMpMc/i7mTF5AXUUmPrTufarkOSGyUgAhBNFtJwQUyEt60f8dP//8MwYNGoTIyEh4PB7Uq1cPH330EZYvXy6fb9wbckf0yFdACMHq1avVz0xxVWDPaCyTGvRy0Z4RdWqQlNLvKXVsW7ZsASEEnN6GiGbDkDN1C8KbDAZFUWCUjvKo1mORO307otvIEoEaVzQimg6FaAtVrimBwRun3ov+jndCCBxZzeGu2h40w16TrHA9fPPNN+B5AYawJLiqtIOgNaBqtbyA746q1fKg98Yha8JaZI5fA707BnnVayAzKxs0w0JjkkkQY8eOVffp378/aIaFLa0BjBGVZGLP9OmYNGkSnnzyyXJ70V8Pv/zyC7744osyA+MrV66gUlo6GF6EPjwVNMtDECXoI9Jgr9xUJWgYjCZ8/fXX1/yuGj9+PDRmB3KmbZXtD7rPAiEEttR6yJm2DRmjVoBmeRCKgi2tPgxRleXidox8bcrbkVWROHLkCCiKgqtKO2RP2aQG7a+//vodH0sQ/7/wvxpL/ttj+FvB/+paBRHEvxE+nw8bNmzAQw89hOXLl//PFNr9uHLlCubPn4/hw4djyZIl5eqa3bdvH55++mm89NJLuHDhAhYvXgyWovCO3YEnTRbMUJTU/GTY242ioiIkxcdDpCgYKQqNRBFaioKVpvG9y4OaSgxCCIHI81i/fv1tG0v//v2RJBXnNV5SCLo3snoriV9//RWEEIzU6XHCE4J37E6IDIN58+Zdc5/XXntNjoE4Hi6axjGF4P2qokBX0p/bHxN9pdjafeyQlRDXrVv3T6Z+Qxw6dAjPPfccVq1ahYsXL+KFF14AoSikD39JJtf2mgtCiu0RS8KvznbhwgXQDANWksnbNMuD5UW1aHzp0iV8/vnn2Lt37y0XoIqKivDrr7+W8q+/VdSpWw+CzoTwxoPhzGl5wzi3LHz22Wfo3r072rZtixdeeOGm53b+/HmEhoVDMNrhzGkJwWAHr0hfl7zen3zyCQghSB3wTLH1msaAEIa9IUHgzJkzWLBgAWbOnImPPvroutuePHkSO3fuxMmTJ29qHvcCTp06hfiERPU7x2A0qvn6xx6Trfj0rkgIOhNMZkuAnLzP50P//v2LyeE6fYU1IP3yyy+YPn06hg0bptop3ghff/01Zs+ejSeffBK//fYb1q9fD4diN5KUnHJNBdSKQEFBAbZt24aVK1cGXKMhQ4ZA74pQ70+/veG+fftu21hK4sqVK2jWvLm6RpzWpKrxhdXve0ffz48dO4YaNWuB5Tg4Xe4bqv4FEURJ/CuK7X/99Rdomr6dp/hHCAbd/z+wdetWubiu+IYdc3sh0DQWLlx4t4d2W1FYWIgmDRuCpWkkSxIEhkH1qlUxYsQI8DSNUTo9hun0YCgKU6dOvWvjfOKJJyAyDI4rwc2nSuByPXZuReDEiRNgaBr3aXU46PJgsSIBRxOCPEHEQbcXu51ueHgePXr0qNBz+3w+NG/eHAwhEAlBMstBoGn079+/3McYOXIkTCyLDx1OHHZ70UgUYaFpWDkOU6ZMqdDxlgf1ateGk+fxpMmCiXoDKCLLOa9btw6zZ8/G2rVr4fP5EBcZid5arRpM99ZqERcZqR5nwYIFEGga79udyOV5SBQFhhBUrVoVI0eOVP2F/vjjDwgchxaihD1ONxaYzKAIwdChQ+Hz+fDUU0+hWm4uaubllbJJiI+ORjWex5dOt9olrhbbJ20AK+oQx7KYrxA//H7O0e0mBRT3eV5CxuiVcmG6ldzZfb2C2qZNm2AxyokUUelE9zPV7RZLgBR9965doWVZTNIbMFAp4Pp/WIZR/3+zzaF2/4uEgrdWd9UfylEiabBKSRpoNBoIOhO0Ni8IkdUurl69Coqi0EqR7QtvNBAJ3WdBsoUiOiYWLVu2VJjwlCqPRvMaeKrLdgI6vQFt2rRFo0aNoHNFIXvSBuRM2wpLUk25y56iIVq9MERmyPvSxRLiKamp1/wb/PLLslRbG0lCPUEETwgyWQ4xgoDqVaqU2v6DDz6A1+ksfokvcZ64uDiEhIXDaDKD11uQOWENcqZthTWlNuwOJwoLC/HZZ5+hcWO5oCw5IhHbYSpypm6BoDGgTx+5i1nnTVCPaatUH87sliAUjX5aHY67veipkLkIkT3iaE4EIVSJ7mIChuUQHR19zYCtYf36yBFEde16abQQNUZkjntDPUZ020mwJNVQOsfDQbMcMipn4vLly9e8//zsfEII9KHJkGxhoGkaq1atAi+I0HkTEN54EPTeOJjMFpUIsHTpUiQmpyAqJhaNGjVC/fr14bTbwRICyR6G2PZToAtNUmXeH330URBCINnCVKKKO68jWEX60D8GmhNLyclrXDGI7/YICEWDFbWKrN42OclCUTAnVC/uNq/SDg6XG/v27UPVannQ6Q1ISa2Ejz/++JrXoOS9klulKsIjotC1WzfVd92P9957DxqtFgwnqEXrnTt34vLly1i8eDGmTJmCdevWBSRt8vPzMWXKFKRWSke1vOpo3bq1PCezEzTDIqNyZoUU3K+H8+fPY/LkyejQoQOmT58Ok9kCU2yOQgDpgeg248FpzSAUjbT0jDKTmO+99558f6fVR1TL0dDaQkBoGjHtJhV3l4QkIC0tDXqDEYyoQ0z7ycidvl32M9Trb+scy8L7778PQorVGXKnb4egNQQoZQQRxO3A/2os+W+P4W8F/6trFUQQQdybOHr0KAxaHdJEEaN0eoQLAqLCw1Xi9Z3AU0/JZNm37c4ApbWagoB2SlzYs2fP2yYf74c/5huvN2CFxYZkUUREaOhNkTT89gXrFWW8E54QRIhiADH27xgyZAjiJAlj9AYYKArfuuRC+jyliaFkB+3KlSsDcorv2OWY82a7vIuKijBt2jRYTSYYtFr06dPnuvHb33H27FmEhIZBNNpgTa4FXqNHRuXMAGWpq1evonPnzmp8lZCYpMSPE2FUSLKEEOTm5uLbb7+Fxxui/q5Fy5Y3rVL1ySefwKPE4BpRxIsvvnhT+5eFU6dOoX6DhmAYBlqdHg899BBmzJiBpk2boW/fvjf02t61axc4jofWHqaSoB999NGbHsehQ4dA0TTMLIcGooSP7E4kCgI6d+6sbnPy5EkwLAtH5SbIHL9aJZMzFFVhsciSJUvAsLI9H8MweOaZZyrkuP8Ev/32G3788cdbkuj/O/r37w9BZ0JK/8WoPHoVDKGJiE9IRH5+Pjiehyu3DXKnb0flsa9DNFgxZMgQdd9XXpEbBSKaDEHqoCUwx2ZDbzCU20biWvj555/hdMn+7jpH2C3fQ37cTdLZ4sWLQdMMYjtMRcbolbAk5EGj1d323ERJ+Hw+7N+/H2vXroVGq4XG5oUpJhsURWHAgAF3ZAyFhYVITkmFZHYivNFAWJNrgqKoAKvQIIK4Hu5Ysf2BBx645s/UqVP/1YF6MOj+/4E9e/aAEIIFilzzBiWIKMtr538J/uTzC4rv9RqrXe30GjhwIHQaDfQaDUaMGHFX//Dv3LkThBD01eqwwWZHY0mCJAjXlQOvCHz44YcghOBdJbg84QmBkaIQGREBkech0DQYioLX5bopVvXfsWPHDiTExEDgeWSlp+Pbb78FANSoVg2NxeKu3eE6PSxGY7mP+/vvvyMyNBQUIeCJ3OX8tMkMM8dh+vTptzze68Hvf+5/cT1y5AhmzZqFGTNmgKYoPGw0qfOpI4oIUWTldUpxmKVpmHQ6NBAlHHd7cdztRX1RQnxMDD799FP89ddf+Oabb8CxLBpLGiw0mZEhirBbLKUk2r744gs5wFWKzSc8IfAwDDSShDlzZPnkJqKE2oJYigm9cOFCEELQSpLQRpQlkRlBq8jIy4zaXI5HD40WXpYDw4nQh6WAomloaRpLzVa8bLHBStPQu2OQ0n8x9J5YRERGYebMmRg+fPg1C6mnT5/GqlWr8NZbb+HNN9/E8uXL8cknn5RiWv/555/o0qkTBJ6HXqvFlClT8PXXX2Pr1q34+uuv1YDY72v/pdMNlhBYkmoipf/TEIwOaCkKr1psaCJKiFa80wnDgRAKvMkJQ2Q6LFa5Q7xmXh5cHIdqfHEXg9lixffff4/8/Hy14E6I7K9kjKosy+9zvKrIULVaHqwptYu9z+v1gSBKaNKkCSIiIpCVlQWapkHRDMIa9kdEs2GgORFNmjS95j03ffp02fedpkGxPPzduQ6Xq0wFhwsXLmDLli1o2LAhJIbBw0YTZhqMEGgaI0eOxLfffgudXi8TDqzy/Vmye+/PP/+Ew+mC3hOD6DbjYUutA5qmsWvXLjRv3hwUzYJQNMzxVQOKvjqGxYuWYn/4tKHLFLIBBUN0Jji9FakDn0X68Jcg2cPACFrQNI1333231Bxq5uWhUYnvhlE6PThOhCOrOWiaRkREJDitCWEN+0PrjQchBL169VKTc+fOnUPr1q0RGhaOqlWr4rvvvgMApKRWAs3ycFRuokrPa90x8Hi8ctGbZuTrSzOYOHGiOp5PPvkE06dPx5w5c/Dee+9B4HmkCyJ6aLQQCQWKEDCiHhpnFMwWq1qsJTQDyR4OY7SseGG12RAWHgHJHQPeLEvMm2JzkdR7Hly5rRWCAqveZzq9ASwvQtD75ecpGKOz1G56R+UmcHu88IaEQusIQ2i9+2EIS4JGqwtgcpeFL7/8Ek2bNUN65UwMGTJE7RQvLCzEgAEDAggAFCOveXxCQrnlM3/66ScQQhBav4+qPEAzLJ555hlcunQJY8aMQZWq1dC2bTt1fW4HmjZtBprlYYhIU+9Xvyy8aHIgOye3zP3+85//QK90WKWmpSMkNAw6ZyQSuj+KsAb9QAjBkiVL0LBhQxgi0tQ18eR1uivF9mPHjoFmGDizWyBz/GpVBWLNmjV3fCxB/P/CvRxL3ssx/K3gXl6rIIII4n8Tn3/+OXIyM+Gy2dCgXr0bvr9WNPw2Z98rNmf/VWzOPA4HEmNiMHfu3Dsitevz+TBu3Dj13Ts8JARff/31TR3j4sWLsBiNyBMlbLY5MFlvVHNfgBwf/T2fMG3aNBhYDptsDphpGh6aQX1BBEfTpawBzp49i1C3G6G8gJ4aLdw8j9jIqJsu6D3++OMghKCfVodROj1EhrmphgsAOH78OHr16oUaNWpiyJAh+OOPPwI+nzFjBmiGRUSzYYjtNAOCwQZeEKH3xCKh+6wA8rjZbIbWEYHk+xcgus0E0AyLhx56qNxjOXv2LKwmE7JFEc+ZrWgvaUDTND7//PObmtO1UFhYiKKiIrRo2RIMy8EUmwPJaIfd4bxuh3fHjh2hdUaoxG9Xbmtodfqbup9/++03bNu2DRRFqcqXx91eZAoi2rdvH7Dtc889B7oEuZ4QCo0aNKgQ64Xvv/8eNE3DkdkUqQMWqzkBf17xVnH16lUcO3bspskVhYWF6Nu3rzrX2Lh4HDx48B+NpWatWrAk11Lj1fDGg8GwLM6ePasQRSaonxnDUwLIDmPGjIHW5lU/T+ot29T90w7ycePGQdAakTFqhdw8ULU9GJa9owXqikJBQQFalMjnCYJ421U5rodvv/0W3bt3R9OmzTB37twKIWyUBwcPHpQbcTo/UGwxaXFhzJgxd+T8Qdz7uGPFdo7j0KVLFwwcOLDUT79+/f7VgXow6P7/AZ/Ph25duoAiBNGiBI6mkVelyl3zFb1TWL16NQgplrr60S13sj733HN3e2ilsGDBAjBKF6pWkm6rTJkfP//8MxiaRi+NFvtcHiwyyZ3tq1atwr59+7BgwQI8++yzN+X5+veX9x9//BFaSUIVUcJMgxGJggi3w4E//vgD9erUQVVBVDv6e2m0AdLY5cG5c+eQEBcHnqbRXJSQLIrQStJtkQM6ffo06taqpb6gtWrZEia9HjqWhYllwRCCHorH+EGXB1G87JU9XyG5LFAY4hplnTMEAekl5OkIIUiOj8eJEyewdu1aWE2yvHtUWFiZwdqpU6dAEYLeWi2Our14zWoDoxwnIiQEnTUaNSCqK4qolpOj7uvz+bBw4UKEe71gCUEUw8DLMKBoFm63BxxNQ09RCC/RQR4REQGvw4FumuKu/NF6g+z5TgisNjucNhv0LItopRPg74Hq999/r7K+CSFIS0m54f3l8/lK3Vc+nw89evRQff5aSRLcNANJueaEyFLRBq0WDCGIZlk0V6TnaU6ANbUedKHJoBgWNE2jqKgIGzduhE4U5W0IQdOmTQOCQ3+3sv/HU0Puaq9du7a6zZQpU+TAvskQxLSbBFFvRtOmzdTPt23bBkIzsKc3VIMhT/XO0BmM15z//fffD9FoQ8bIV5A9ZZPsg64xQu+JhdvjxdWrV3H69GksXLgQjzzyiHqvhHs8GKB0mx9xe9FDo0VyXBwA+SV70qRJ6NGjB7p3745JkyYFqArs3LkTLrdbLfj6paW2bdsGQgg4gw3GmOxi3/aclqBoBhxFgRG16u9TBy1RirVcgM97SN3eslS9JxZt27YtNecFCxaAEII+Wh3G6g0QlGvOMAyeffZZ/PLLL6hbrz4YloXVZsfSpUvVfQsLCxEaGhawVhzP4+jRo/CGhoFiOITWvU8dizmhGghFgdOZS1zjXGh0OgCyZCJFURD1ZrC8CI1WCwfP45DyveW3ryCEwGZ3qF3lgwYNUn/PaoywJFaHZHGDVp4pTivvlzZ0mer7TbEcRGso4rs8CEtSTTAMizFjxmDixIlITEoCp5OL7sboLJgTq6vPJSHF6hNZE9aCZhgsXry41HU9c+YMOnXuDLvDCZrlIJqcsKc3BCdoULduPfh8PsUHkUZo/T4wxmSDEArWlDrQh6WAEKIGYvn5+Xj77bexevXqMolhn376KQghSOn/tDo/0WDBtGnT0LBRI7C8CGtKHWhtITAYjaWSq7/88guGDx+OvLw8NG/eHBs3brylZOcvv/wCs9kC3mBXpdpcua1BcwI8NbqCEKKSNC5duoQNGzbgtddew8mTJ+Hz+VQizXfffYew8Ah1TQcPHoyioiJVftMcXxX2yk1A0QxGjBgBQO6M/eqrr3Dw4ME7kqiVGfvFSgk9e/UKerEFcdtxL8eS93IMfyu4l9cqiCCCCOJ24MiRI9BpNKgqSnjMaEKWKMKk15fyS75TOH36NA4ePFimFLnP58OyZcvQonlzdOjQocxOxPfffx9mg0F9FxwzZgwuXbqETh06qL9r3KABzp07B0CWng9xu2HiZOU0QgiiIiPx4IMPlpkrPHz4MNq2bo3UxER06tABJ06cuOk5Vs3ORvMSVoDDdHroRBGnTp266WNdC3Xq1oU5sVgNLLzRQBBCwVQibqtWrZrqVS85IpA1YS1yp2+HKSYLLVu2LPe5/A0+7ykNLEfdXmhZFnPmzKmw+ezbt08uuLaRC66VR68Cy4tlnuP1119H06ZNYbfboXFFB1wDhmHKXdTbtGkTNKJYHE9TFEZodWgnaQJIHCXxww8/4LnnnsP8+fPx2WefXdfe8Gbg79z2r1HWpPWlGgaAm/OgXr9+vUqs1ukN5ZZIB4D58+eDoiiENxqI+C4PQmsLQaW09Gtu7/P5cOzYMRw8ePCa19/f2Z46YDEqj3kVhrAkxCckwufzITklFVpbCOI6zUBovftBCMGzzz4bMB6G5ZDSdxFypm2T7eZo+oZ5tt9++w3jx49Hjx49sHDhwlJju++++2AIiS+2tes4HYSQO/r9mJ+fj8OHD1eIt3pRURE++ugjrF279h81k93LOH78OAghiGwxCrnTtyNzwhoIWuNdUYYN4t7EHSu2V65c+ZrSOVeuXAFFUf/0FLcNwaD7/w+KioqwbNkyjBo1CgsWLLgpb+x7FUeOHIHI82gkabDSYkMbjQYsw9zWLrp/gt9//x1ff/31bX0eT548iXfffRc//PADAOCZZ54JSM537dz5ll6KV65cCY/TCY5lUbtGDfXlZfHixWAoCvsVtvj7NgcIIZgxYwaeffZZEEJQRRDRSHmRvxWZqfPnz6N///5IS0pCw/r1sXv37ps+Rkn4fD6cOnWqlKxym5YtYeE4zDeZMdNgBE0IojgO37s8+NHtRZQii54qivDyAgTl3weUuR9UyB69FZntpk2bIjQkBHqGwetWG9Za7XDzPFo2a6aO48CBA/jqq69w6dIl/PLLL2jSqBFMej1iIyOxdu1aNGzYUC5CKuuno2ikJCYixOlCP61ODWJbSRKyMjIC5vPUU09B4jhwhKC5KOF7lwfdNVroNBq4OR7futw47vaim0arHr9SSgoSBQH7XR4cdntRXZQQGxmJjz76CKNHj4aJ47DMbMVMgxENBBE0RQWw3atmZyNOELHD7sQGmx0WjkOfPn0Crv25c+euew++++67cDvk+0gnSXC5XHA7HGjWrBkOHTqEffv24ZNPPsG5c+dw//33w86wOOjy4AunG7YS9zrLyOsTFhaG48ePw6DVIkUQMEVvQLIowmG1BgQoDz30kFxQrdQgoJDbu3dvdZurV6+ic5cu6mdVqlbDzz//jJMnT6KgoEBWGaFoVa7c4I6FIOqgNxivGRzWr18f5oRqapAT0XQYCKEQ300u/r/88svQG4ygGBacpFNl0VMTE5HIcjAwLChCoGdYVK5UST3uZ599BlHSyP7pLA+KYdGgYUO88cYbcNpsAZ0VP/74o7rfnDlz1MSEOb4qbJXqg6IodOzYEZ06dQKhKCT0eAw507YhpHaP4gBdb0Xa0GWoPOZVaNwx0HriYYyqjCZNmpR6/g4cOIDBgwfDajRCp9GgQ/v22L59O06cOIEvv/wS1WvUhDckDE2aNC0VKK1btw6EEHhrdkP2lM2qvcH999+P++67DxTDghE0CG88CN4aXeFXCijZqR/ZbDgIISgoKIDBaIQttQ5ypm5BxqgVYHgRLpbFT0qx/VnFfuOdd94JSEr5fD50794dnEaP7CmbZW+wno+DUDSsleohpd/TSqAzUmag3z9fvt6NB8t2DpM3ghDZ5gAAHnnkEVA0A1tqPYi2MFAsD5rXgNfL50/qPU/2mx+1AhRFBxAQ/OPJq14DgtYAT14nGCLSQNEMkvssREx72d/7wIEDaNKkCUyx2ciZthUUy8Nbs1sx69kVjeTkZFy6dAlVq+Wpa0vRDExmCyZPnowrV67g0KFD+Omnn6DT62GKyUJyn4Xw1uoOQgiWLl0KQogqyZ45fjV4SRdAzDl16hTcHi9oTibPUIrPff/+/W+pePz1119DkjTgDVZoXDEqAcQ//qlTp+LYsWMwmy2y3QFFQ6PVqj55fuTn52P//v2qvYAfL730EiqlZyAuPhGTJ0/GkiVLUDkzC6KSjCKEoFXr1v+Y4Hj06FE8//zzWL58udrBs3//fkybNg0TJ07E7t278f333+PVV1/Fxx9/HCy0B3FHcC/HkvdyDH8ruJfXKogggrg3cPXqVUyZMgXVcnLQrGlTfPrpp3d7SDfEjh07EBkaKr+fRkTgk08+udtDKhOzZ88GIQR5oohEQQBD02X6lF+4cAF79uzBsWPHAMjWeyLD4FGjCfNMZhhYFt27dlW3P3nyJKZMmYIBAwbglVdeue3vj7Vr1kS1Eg0XXTVacIQgIjT0ppo8roeOHTtCsnqRNWGtbO2WXBs0J0Cn1+PLL79UicJr1qxR39UlRySS+z4J0WDBwIEDy32uL7/8EoQQPG224IQnBB84nGAoqlQs9k/w3//+V4737ntCVWcT9SbMmDEjYLsXX3xRbjoIT1WJ0qa4XEQ0HQZBZ0Ljxk3KPsHfcP78eei1WjSQJHzocGKWUW4C0Wk0iAgJCSj03gn4VeP88WNM+ylq/O3z+TB79mzZKo8X0LpNm1JKB3/Hjz/+CJ4XYEmohrjOD8CSmAeeF8rdnd62bVuYojLU3IE/31CWBcbly5cDOqorpaWXSVIpy7Pd//158OBBxMUXqzEMGzYs4Dm9dOkSMipngqJp8Bo9CCE3JHucOXMG4RGREDQGGMOTQdE0unbtFnDcZcuWgRCC0Hr3I77bI9C5IhEZFV1hJIobYdeuXXC63GrTxWOPPXZHzvu/jvbt24NhOVgSq0NjC4FOb8ChQ4fu9rCCuEdwx4rtzzzzDDZs2FDmZ4WFhZg5c+Y/PcVtQzDoDuJ/HRs2bIBBJ/voSoJQyrv6/xPeeOMNiCU6f0eOHAmfz4fvvvsOr7zyCt5///1bCq4++OADUBSF5pIGDxiM8PI8UpOSUFhYiGXLloEiBJ85XDjm9qJOiU5ujmUxYsQI1K9bFzXz8rBo0aK7Why4fPky1q9fj8rp6eoY27dtq3qIGbRaTNQb1AK2labRSdKo/56oN0AjiujVqxcGDx6M1atXg6Io9NPq8JHDhQGK7/hQ5X78/fffkRgTg/tKFMWH6fQIcbrg8/kwcuTI4o5ZsxnxMTFw8b5KzVYAAQAASURBVDwm6g2oK4igCAHLcnDY7ep2IS4XvvvuO4wYMQIMRWGgVodeSnF/7ty5AOTu8nr16oEQgo6SBhP0BhgpCvUFEf20OoiCgOol2ObzFQZ4E1GC2+GATqOBieNg5XhwLIs333wTANC3b1+4FYIB45fCpuiAoEWn0WCKIkF2whOC9pIGuVlZAICPPvoIbo9MSDCZzWXKOp04cQJ6jQbVJQlPmy2oI0kQeb7Ml8NDhw6hZcuWCBcEHHd70UWjhZWm8aHDib0uD7I4Hgwh4BhG9SknhMDMsFikzLnkGI4ePQqaYWX/amNxd37dunVLBRxnzpzByZMnsXnzZpjMZpUxvXLlStSuWVPdt6kooaEi8+8PWn0+H5566ikkpaQiPiEJNWrUAMMJiOv8AFL6PQXJHg6NKxqhde+TrzXLgpX0SB/xMnKmboE1uSaMJhMmTpwo3ztp9RHRdBg4vRURkVHqWOvVqw/J6gEhFIwx2TIDmhPU4jMhBA0FEaEch0YNGgTM788//8ScOXOQnlEZKalpePTRR1FUVIT8/HykpMqecLJXu1z0tmc0ViTai73KzUk1ZIJP166w2R2K3H5T1K1bT90uITEpoJh+/PhxGE0m6NzRcOd1hMbsQlR0TICU2fz5ctE6fcTLxR3jNIvq1atj4sSJoCi6eI4Uhbp164LlOBCagSOruZxksYUiPCISly9fBiEEUa3GqMG0zpsAihBU5wUM1+lhoGkwRJax/+CDD/DWW2+p71SPPfYYWEFC5bGvyYmBdpPkAnuz4ciZtg22NJm4wRudqlR7bMfpcvH9vidACFFZ9gUFBejVq7d6bUSLFxmjViB9xMuyqoBGD3t6Q2gsbjicLrU75MKFC+jeowdMFisoZY6507cje8pm8AY7XFXaIr7rwyCE4Pvvv0e3bt2gsYUgc/xq2e6gfl/1OupDk1G1alXMmDEDLC8iocdjyBi1AoaINNC8rGbh7xCgKApdu3aFVqdXx9y/f3+8/vrr8tp2f1Qdh6i3IDc3F5XSM1C3bj0MHjwYtFJgj2o9ViaZNBsGQgh27txZ5vf3jbB371506dIFLMuCUBSM0ZkyCaBmN/k5sdtBMRycOS1hiMqQEwth4Td9Hr/3pyk2R7UPsGc0Bs2wePDBB29p7IBsZaDT60EUoktIaBg2b94MSaOFoDVCMlrBsCw2b958y+cIIohbwb0cS97LMfyt4F5eqyCCCOLeQJMmTcAS2d5NS1HgWBZffvnl3R5WuXA3bQXLA4vRiF6KwtwRtxepgoBW5ejATktKQtcSynTDdHp4HI47MOKysXbtWhBCkM3zqKvkhobp9NCybIX5e3/zzTdgOR6spIdglot1rtw2IITg+PHjAds++OCDAUR6q81WapvrwefzoU2rVmBpGlmSBD3LIiE2tkI6cf24cuUKQsPCoXWEI7LFSFiTa4Gm6VJklqSUVFgSqiFn2jbkTNsGc1xVUAwLiqLQoGEjnD59ulzn8xMINtjs6n0TLooYN25chc3pZuDz+dBeUWeQjDZQFIW27dqhqKgIL7zwAgghcGa3RFj9vuA1erRocf3nYsWKFSCEIHP8alUZzt/E4MfWrVsxefJkPPHEE6oShB8DBgyAZLSj8tjXkTNtGxyZTSFJmjKL0OPHjwfDCYhqNRZxnR+AZLSjXv0GpbYD5KL5unXrsGrVqlLKcUVFRTh27Ng1iQSXL1/G888/j0cffRTvvffedecPKN3wHI+0YS/KzQYtRqrkez/+npMMC4/4x9L95cWlS5dgtdll7/quD8NVpR0IIdi2bdsdOf+1cPXq1Xue0P7XX39h6tSpqF27Djp27PivbUYM4t+JO1Zsv5cRDLqD+P+AK1eu4Mcff/zXessUFBRg1qxZqFenDtq2aYPPPvusws9x6tQpiDyP5pIGHzqcmK4URCpCrn7s2LHwCgKOKezk5Ypv84EDB3DmzBmEeb1w8zyylELsPJMZXzjdaCdpIPD8DRnMf/75521XYvjll1+QFB8PihDoKAoLTGbMNpogMgxGjhwJAAjzeNBK0uC424sf3V5YaBoaisYyixWvW23w8jzq160LQGafbt26VZYVp4qLl0ksB46m0bVzZ3z11VeIi42Fm2Wxy+HCfpcHGaKIKllZagAwWW/EepsdqQpJwu9PfsTthZ1hoQtNBs1y6Nq1K3bu3Kmyae+//35QFA2O5cEpHZxvvPEGvvvuO+g0Gkg0jXSOUxnljyhsZYaiULt2bdCKL9dLFisiGBapHIeJegOMOh0OHDiA6dOnY9CgQdi8ebP6sukvMjlzWiJn2lYk3fcEKJrBggUL1OtcKSkJWaKIH1wefO50wcvz6NK5M06dOgWD0QRjeCpi2k6EJSEPHMdj7969AevkL9R9qVhD7HPJnuMvvvhiwHYzZ85UrzlFCDI4HhEMgxYlSAQPGU1gCUEzRV7eFJeL2I7TYIpIg6gUhrds2aIe8+rVq5g4cWKAEoT/p1GjRgFyf0VFRRg8eDAIRcMYk4XYjtNhis0FoSgMHjwYNpMJ7UoQNZqJEjJSUwHIyX9CCKzJtWBPb6gWhdX50Awkq0xKiIqOBiNoYIiqXIpZ7XK5IVk8qpd0bKcZIISoxeuk5FSI1lCItjDkTNsa4GWdPvIVhDeWZdBNNA2P3V7qmdm6dStmzpyJ+fPnY+fOnWrw/tNPP4GiaIhWr1pQDa17H1iWw5IlS1ClalVIkgSL1YZu3eRCpz29IULr9wHD8qBZDjFtJyKh26OQzE7UrlNXPeczzzwDimaQOe4N1QecEBLg+/7999/L86/SDpnjVyOiyZDitaJoGKIykDFqJZL7LgIryJ3Hxsh0mGJz1O2MJrMadCQmJUPnikTSfU8guvU40AyL2NhYcAwLUWOAJTYXnprdA+4Hl9uD77//HsePH4fZYoXG4oYluRZYXoDBaILG6kF8l4cQ3mSouraCNRSMqAOhaOg9sWA5ATm5pe1e/FL+SfcvUDvgWV5CVlY2Kmdlo337DgFKBC1btQInauCp0QUWRXo+rtMMZE/eCE5rgi40GaLRhpTUSigoKMA333wDSaOFaLCCYjhQLA9P9c6wptYFIQQrV65Ehw4dYIws9kD3kwhoXoLGGYWEbo+qRezly5fjnXfeQWqlNPX6CKIGotGGsPp9YY7LBUVRoBkO9vSG0HvjQdM0WFFeG78qQOZ4ufNk1apVpe7FG6GgoABHjhzB+fPn8eqrr4IQgpT+i+XkyuSNaud8eONBxd0itjBQFHVTwfTRo0chShpYU+oE2BRo3DEwxeagSZOmNz12QP77HRoWDkNoEjLHr0H68BchmexwezzQuaKQNXEdsqdshikmE/EJibd0jiCCuFUEY8l7B8G1CiKIIG4n9u/fD4YQpHAcphiMSGU5sERWl7pdWLt2LTp27IiuXbuW2eX9vwSR5zFZX0xabyCKau7heqhVvTqyBBE/ub045vaivighSbEWu1t46qmnQBGCVI7DbKMJx91eRIgiRo0aVWHnGDNmDCiahjmhGmI7Toc5vgoMRmOZEv1r166FQ1HOkyTpmkS8ayE/Px9z585V7dnOnj1bUdNQ8cMPP6jxlNlixcqVK0ttExUdC2d2CzUOcWQ1R3Rs3E37pp86dQo0TauWdBttdnA0jSeffLJC5vLbb7/h4MGDN0VwKSoqwooVKzBt2jQsXrwY3bp3R2xcAmw2O3Se2AC5fJqmr2tL4I+nE7rPQu707Ujs+VhA7sdvHyiZ7GA4HrFx8QFF7h9//BFmiwWC1gCtTc7LLFq0qMxzValaLSA2DK3fBxzH3zGP7mthxowZEPVmNQ+U3GchCCFl2lf+/vvvOHToUJnPzu2Cn/ChqjlM2waNyYFJkybdsTGUxKFDh1A5MwuEyKoDfvXBIK6PH374AXnVa8BssSI7JxdffPHF3R5SEP8Qt63YPnr06Fse1L8NwaA7iCDuPgYOHAiaotBYFJEgCBB4vsL/CH388ccghOBtxUvqhCcEdl6okK6dqVOnwsJx2KvIpc9TuoL90mXHjh1Djx49EBoSAgfLqud/0y4HNH+X6vXj7NmzaFi/vtol2a9fv1tinF+5cgWLFi3C2LFj8fLLL5fJOO3UoQOcPA8LTWOETq+OsYtGi4yUFABQWbOJoogwQQDHssioVKm4kB4fj2PHjsmex0oBjaIoTJgwAc888wwaNmiAmnl5GDVqFCLDw9VCMCEELCGQaBo6jQaffvophg8fjhipuDDs77ReZJLlyfa7PDAyLDzVO8OV2wYhoeHqXIqKisDzAkJq91RfTA1hKWjRoiX69OmDMEFAK1FCbAkp7LF6AyhCMHbsWFy5cgV9+vRR5+WkaUzXG2HlOLRq3hyHDh0K8MRu1LgxLly4gN27dwe8EOdO3w6t1aN6PAPyfajXalUCQojbjZ9++gmbN28GIURl1mZP3giKpmExGmE1GtGjWzdcuHAB27dvByEEq60yy3qrYktQ0mNrx44dIIRgtN6ADx1OdNBoZB92moaeprHRZscuhwtpHIcElsM6q6wMkNz3SeRO3470kS/LXa1er6pqcOHCBWTn5KpzZiQ9EnvNRUTz4ervWrRooZJC5syZo/7eXxj2M6YJIXDb7ehRosOgg6RBilIky8zKhjkhT72GjKiDKSEPyX2fREyHqeD0Vng8XixfvhxZ2bmQnFGgGBYx7SYhpe8iSI4IMJIerKQDI+mROX6NHHg2HgxCCI4cOQJA9gWjGAaCxYOcqVvk7mGlMJ05YQ1ypm0FIZTscW+1BTwv06fLfl2cqFWLxQzL4plnngEADB8+XGGYt0BI7Z5geBFdSsgV7t69G6NGjUJ8fDy0jnCVECBYPAHBaFj9vqAZBhqtFmnpGXK3PkUjY/SrAUFhdGwsqlSthtdeew2A/J30d0JEmDL/yOYj1OOzGgOM0Znq+e3pDeF0ewKsDx544AFwgqh25rdu3RrdunUDKxV3bItWWXoyrvMDSB20BDpnBDKzsgEABw4cQJcuXVCjRk2MGzcO3333XYBEXNdu3bBkyRLUrVcPDRo0QO/evXH//ffjkUceKUUQy8/Px8yZM+ViuNmFsAb9YIrKgCCIpYgpANTO/IgmQ4qDVGc0BIsHem88KIqGIIqIi4/H6tWr1f327t2LyMgo0JwAyREJmhVUL/IrV64gMzMTNCcgpd8iZE1cD1NsLhhBG5C0yJ2+HYLJhYSEBLRt2w6CzoT4bo8gocdsCHoLbHYHJI0WoWHyd2Fks+Hqsy/oiv0UPdU7I334i3BVaQuKom6aTf/ll18iRPm+oun/Y+86w6Oo2uidPrO9ZHt67yGd3nvvvfcqIEgHERSQJqI0QVABFaVLExEVxYIooCICCioIgjSlk2TP92Nmh6xJqEHEL+d58ijJzsyduvPec95zaFWdH1S9mzwJlV4fPqcDn4V/1thNEAOCYTAY7ng7Xq9XznSnaGicEUgdvFy9psSAYEgmm19kxp3is88+g9FkBqFoBNfooR7bgOTq0Oj0sKXWUn8XWLkjzBbrXW+jBCW4HzxKteR/qYa/FzxK56oEJXgU4PV6ceTIEXz77bf3HRXzb8H169fx5JNPoka1amjXrh1++OGHO17WFxH3lSKK3u2QO4qrVav2QMa6aNEiEEKQKsi26jRNP/Sux3vF+fPn8dlnn/kJZv+O5k2bwsCyGG8wop/iHJVf1F4Utm3bBpZhECoIiBQEUBRVaN72P4lr167B43QiWRSx1BKg7k9xNIL4cPXqVVSsVDmf2FcqMjoGAC5cuKBG9FEUhVmzZv0rO1hv1Vk7dOhQ0AwLT8V28FRsB5phMXz48HvazrRp02TCmZEjtjheQJmy5e6rCzY3Nxfdu3dXz0lkVLTaSe31eu/oOZqbm4uMzCwIWiMcWQ2hcYSBohkk912E7HFb4CrXEoSi4HJ7iryfcnJyUKFiJTAcD2NgDBiOR7nyFXDjxg2cP38eNE3DVbYFssZuRnLfheAECU8//bTfOn755ReMHj0ajz32GDZt2lTkeBs1agwpIEiONBizEeaYMqBo5r4cz4oDH330EQghsKfVQVTLsdB7YhBgs/vNg7zzzjsYNGgQxo8fj5MnT952nV6vFx9//DHefvvtO7bkLwq//PKLXJ/X6o3scVuQ0n8xGE5Q3Tr/SeTk5CAqOgbaAA/C6g9EQEr1Ag0fJSiIc+fOweF0QWcPQWDlDtC7I2E0m3HixImHPbQS3AceGNnOcRwaN26sTsIXBt9k9r8dJUV3CUrwcHH58mVQFIWRij35jy4PggUBPXv2LNbt/PzzzyCEYLBOj2MuD9622kBTFF5++eX7XvdPP/0Eo06HMF5AXVECT9No1qRJgc/NmDEDFCFYZgnAry4PemjlfOmivmybN20KE8dhqtGMETqZDC5TpgzmzJlzxxMa169fR/kyZcDRNEKUXPjOnToVKFCiQkMRyjAQCYGZovCWJQBHXB6kCSKqVqqkfm7jxo3o0qULevXqhc8++wxbtmzBrFmz1LzmvXv3ghCC3lodPrc71cLxq6++AiC/gEZHRoIiBAE0DTNFQ0NR0NE0ypUrp76UPvPMM9AwDD6yO3DM5cEArQ60Uuy0kDSIYjmwnICkvgthia+A6HzdjHl5eRAEEYGVO6gEm9YZgbJly6JBgwYoLYpYG2ADSwiSOQ71RQkUIYiMjESbNm3Ul8Zjx46hYf36ajFUsVw5/PjjjzAqNvisKiigwTEMKIoCRzMwRmag1GOvILzh4yCkYNf50aNHMX/+fCxevBhnz54FAOzYsQOEEMS0fRrZ47Ygqc8CEEKQwfEYrNNDx7Jo2rgxbty4gbLZ2dCwLMpLEnSK4CH/9/Fzzz0HkWHUrv0v7E4QQrBixQrERkWp+2OgKLwTYEN7jRYUIYjrOBXZ47Ygpo2czZ5f0T5ixAhwogZxnaZBcoT5EVzW5Ju251WqVMFff/2FrOzS0Ck5aXEdn5VtwTtPVxTSdmRkZICmKHRRbP4pQtChQwd4vV6kpWfAEldeXT/NiWpudva4LQhIqY5SaekAgIEDByr29/k731kQSrFsp2jwRofcta3Y5H/44YcA5O//1NQ0EEKgD06EPb0eKIaFZAtB5sh1CK3bH4QQWJOrgeMFVaRy/PhxmUjPagSKZmFNrIyErrNgz6gPiqLw9ddf48MPPwRNMzJBTdFgGFa1M3vvvffAchw0ZjsEg1XZfhJEiwc0L4HTW5E+bCWyxmyEKTITNCcgqHo3aGxBoJV4AopmYAhLBaOQ/abobJgUy24fafztt99ixYoV6NmzJ0SdCdnjtkCyBUPjikRyv0WIbT8ZFMPBHFMWUS3GIKbt03BkNYHD5VbPuy+nzBxbFmalK3z48OFo2bIlKJpBSJ2+iGgyHIyoA8UJiG71JEzR2RADgsFxPN59911UqlwZyaVSUaNGDXTt2hWTJk3ChQsXcPjwYb9n39WrVzF58mSUK1cOqamp6NevnypY8qFjx07KvpcCzYugKBrBoWHYunVroc+/a9eugRACjTMClrjyCG80BKI1EAaDEeXKl1ct/zmlw3/y5MkAgCNHjvgJE7LGboLOHoJu3bqhe/fuoFkOjGS4KWagGWgcEbKARhH5lHrsVdCcAIYXwYsSnNmN1WvYVa4l3J4gAHJOJCEEEU2Gq13l2oBAVKpUSbb3913XFIXnnnuu0P304cqVK37P9uvXr8PtCYTeHYmYNhPgLtdKFcYQQqAx20EIBUN4GizxFUBzApzZTWAMl++Lu+neGDBAtrnXOMLBCBowgga21DqyYIXlYA2w4ejRo3e8Ph/CwiNgCIqDxhEGyR6KlP6LkdDteQg6E+Li48EJGkQ2G4no1k9BNFhRt269u95GCUpwP3iUasn/Ug1/L3iUzlUJSvBvx40bN9CyeXP1PSUiJAQHDx582MO6L3i9XjRv2hQ8TaO2KCKEF2DS63HkyJE7Wn7lypUghOADRdy/3SbHbo0bN+6BjDciJER1nfvF5UGWIKJKxYoPZFsPEu+99x70hpvv1X/PY/bhwoULaNq4MViGgUYUMWrUqDvOTv7888/Rq1cv9OjR419DEH311VcIcrtVQezEiROLfRs5OTl499138eabb97Re/iNGzfQq1cv9Vz069fvXx8vkB/Xr19Hnz59IEoaiJIGffv2va9u5HXr1kGr00NjD4GnYjvoHKGw2R1+dvS5ubmYPXs22rVrh6FDh96SlJ01axYoikJIrd6Iafs0tLYgJCYlY/Xq1XAEBMiNG9HR2Lt3b4Fljx8/jsmTJ6NHjx5+80YZw1eD5gRwOovqVGdPrweNxYWGjRoVOZarV69iypQp6NKlCyZPnqy+Gx46dKiAgFzvDEW/fv3u6Rju3bsXNM2AEfXgDTbZaS80BVHRsfe0vuLEvHnzICiRhoFBwfjyyy/Vv/nEFtoADzhJC5PZgmrVqqFWrVp45ZVXCjyjcnNz0bJlS/XeYTkOy5Ytu6/x9ekjOy3yOhNohoXb43kgrhG3w8GDB+Vrrt0z6tyI1uLyayoqQUGsW7dObqjqvxjZ47YgbeiKQueHS/Bo4YGR7e+99x7MZjPS09MLfJH8/PPP6NGjBwRBuNvVPhSUFN0lKMHDxfnz50EIwXMmM467A3HM5UGiKKJjx47Fvq0nn5RtpPWsTFhVqVix2FT43333HRo3boxyZcpg9OjRhVpVVa9aFaKvC1Z5CatevXqR6zRotRiuN+BXlwe1RTmjPJhlwdI0qletekeFj8+Ofa2SNzXVKHdM5n+Bz8nJgUmvh4Wm0V+nRxrHgyYENppWM8lfffVVTJ8+HZ9++ikOHz6MBvXrQy9J6sukSa/Hzp07sXSp3BV9UOnyP+ySbaVeffVVALKClCUElQUBP7s8OOh0I4ZlEUDTaNCggTqm8+fPIyYiAiLDwKNkmY0ePRqDBw9GVHg4KEKgdYTBEJIEQkgB0UTPnj1B0QwEs0fJqJbHySnnfqBOj35aHUSKgkYRIfi6AiiK8sv9PXfuHH7//Xd4vV6MGzcOIkVhq82Ooy4PSnGyvX0vrQ6TjSaYlfxqVtleu/bt72gSIDc3F5UrVwHDCTCFp4IVNBAZFgeVzoinDEbQNI3r169jzZo1KFOmDBISEjBgwIAC319vv/02CCF4TbHcH69EJnzzzTdo1aoVeL0FGqUTmVA0KJqBKGnACiJMIYlgOB5Vq1bzs/Zq1KgRTBEZSkdpNbBaExJ7zkXKgFegc4QhJi4eGo1MWCYnJ6NsuXLQhyRBFxgHimGh88SCZgVoXVHgRC1Gjx6N4cOHQ8PzYAkBy8vn4PHHH1ft+K1JVWFLqwNC0WAFDcLqD0RwzZ6gGVa1z5o1a5ac891qPOK7PgeDQhIGpNZCbIcp0AbGyQVdWCk5N50Q7Ny5U90vr9eLxYsXo1RqGqJj45CdfbN731eoGsJSQdGMml/vczAIqia7H6QNeVMlSQlFYc6cOdAZDBADgpA+bCUyRqyB1hWF2Ng4vP7664iMiobGHoq4zjOQPnwVaF4DVtLDWbopNI4wWTkvaMBKsqhDsochtN4AsJIBWlcUIpuNgimmjCoeIISAEXWI7zoLhtBkVP9bvvyyZctAURRi2kxAQvcX1GxxQggCbHa/9RCK9us+zi5dBubobITW7Q9K6WynKBqRkVGwJt3swA+s0lntfNcFxkOv3JcURUEflKAW1lpnBFheQEZmlt8z0qeup5SIAq0nBpzGiACbHatWrcJrr72G999/X1Z31+mrTiyIessts/M++eQTUDQN0eKBLjBeHdOOHTuwYMECEIqGYHaBYnlwOgsIIfj222/VbvPQuv39CPDu3btDECUEVu4A3uiAYPHAHFcBgsUjizzIzTx5mpcgmByIbT8ZhKKhc0UgY/hqZIxYC0NQHLKyS6vXYMWKlSBoDfBUbAdzdGlQFIUPPvgAubm52L17NzZt2oQff/yxyP385ptvEBsn75/JbFZtFX2Fcf7JEp0tCAMGDMCqVaswcuRIVKxYEaLeguR+i2BPqwtG0IJmOLz00ktFbu/vOHv2rDxJUaUTssdtQerg5fJ1RlFwOp145plnCuTu3QmuX78uix4aDEZSr3nqOSKEICExCUePHkX1GjXU35VKTbujroMSlKA48SjVkv+lGv5e8CidqxKU4N+OZ555BixNY4bJjLesAYgQBDUS6lGFr5NwhjIvsd/phonj7pgsv3jxIsJDQhCgiMMtNA2X3b9Tsjhht1j8HOmaSxpklCp1R8vm5OTg+++/x5EjR/7x7uW8vDyV2Lt06RIMRiNMEWlI7DkHwTV7ghCCN998s8jlc3Jy/pExe71erF69GhMmTMBrr732QEjnnJwcHD169F/1veT1ev2cCuvUqVOs+ev/BLxeb7FcIytWyORYqUFLZTH1wNdACPFzRujUsSNoikKmpIGZ4xDs8RQZE9m8eXO/KLLwxnL8HcswqCVpMN1kRoIowmW3+10TP/74IyzWAHCCBrxG71ffZYxcC07UgmEYCGYXQmr1RtbYTXBkNkBMbPxd7/O1a9cQYLPDEJyAhK6z1Hvytddeu/sDqCA8IhKSLQSuMs0Q33kGrImVERufcM/rK05cv34dp06d8puzu3btGliOgy2tLmI7PIu4TtPAiFpwOgsMYaVUIUr+++LVV18FRVGIaDocaUNXICC5GnheUJtr7gWfffYZOF4ApzGA15nBMOwtXQQeFHzNJj4nvrShb4HX6B+YkOy/go0bN4KQm/F9vufH/YowSvBw8UAz2w8cOICIiAgEBgZiz549fgW6KIro27fvPQ36n0ZJ0V2CEjx8VK5QAVaOwziDEa0kmbDLb4tdnNi2bRumTJmCpUuXFlvmzuXLl9GkUSN1wr9S+fJ+alcfNKKIUXoDFpmteMZoQkVBQIWyZeH1erF//37s3LnT74UtyOVCE0mDtyyyynWBWbZQf135961swHyYMWMGpHxdzp8qXc7vvvuu+plvvvlG/tK3BKgEuY6ikJCQgI8//hiZaWmgCIGGkck0o06HYI5DW40WFppGFMsiXRARGhSEGort/VSj2c9S/4MPPsCXX34JgePAEIIRipPBcXcgWkoacAqZ7sPKlStRqUIFhIeGokaNGgVyw9auXYv69RugXr16hRbjV65cgcNmA0UIghgGKUqHaBTDgmUYsMq+lMnMRHhwMOrn6wooLYqoWK4czp49i0GDBqFBgwYYPnw4Ll68iA4dOqAUx6tjT+d4ZOb797NK9nsWL0DkC2au3wpXrlzB+PHj0bx5c8TFxSGa5/GLct6e0BvAMgymT5e7wzUWJzhRA5fbU8AZITc3F/Vqy8SySdnvxx57DABQq1YtmKKykNx/MWhehGQPhatMc4jGAFgDbGjdujUmTZqk2sH78Pjjj4MVNDLB3n8xaF6jXu9mixUVy5f3I6kDFGW23hMrd18TAk5rAifp4HS5cfLkSVWY4et8D64hq7QPHDiAWbNmITo2DhGR0Rg5ciRq16mjrrtjx06qSGbgwIHQ2YPVgjWuk3x8EnvNQ/a4LUjuJ9srGiPSwWv0SEvPuO19P3jwYHm8vARRYwJNKHA0rXYVX7hwAVqdHvog2Qo9oqnckRzbTs42mzx5MiiahSOroTouY0TGTWI833HSu6KUYnmSSiCzgoSUFDmPTuuOVgs6QgiSes+X3QSSqoLVmpDS72WkDV0BrTsGGmcETJGZqPK37MKcnBzUrVtPIdMpv/NEsxx0gbFIHbQM8Z1ngOZEOJ0u9RhlZmVDH1oKhFCwZ9RHQtdZsCTIpLjGFozMUeuRNXYTLPEVQDEsDOFpyBq7GVljN8OaUAk0JyKuoxwpENXqST/r+/yTFJs2bVLH5LM3TxvyJhhOlMUAikMAIbLTQHyXmbJjhS0I/fr1w759+/DVV1+ptoIvvPACyleoCJvNBq0jHJmj31Fz+3R62Rq9f39ZQKALjENwzZ7QOCNAKBodO3aUHQQoChTDwZ5RH/rgRNA0jS1btkDSaOEq2wKEEIQ3fFw9x6aoTLAsC0YRM7jKtkDakDeR0l92BxBECZyoASdpIUoaP9HH2bNn0ax5c1gDbIiIir4ra8tLly7B5fZA5wxHeMPH5eNO0/jiiy9w+vRpmQSv2lkp8JaCEzV46qmnAMjRICazGRTNgGI4CFoDaJrG8uXLi9xeTk4O5s+fj8ceewzPP/88rl27hp9++gmE3OywyB63BaLFA47j7sp+tTA4XW6YIzOQMXIt4rvOAito0KhRI/UZ5fV68dNPP+HgwYMPPfuvBP+feNRqyf9KDX8veNTOVQlK8G9GgwYNUEUU1RpoulLz3W028r8JP/zwg19N/KvLA48g3FLY+XecOHECHTt2RHZGBjp27PhA7WI7degALcviKYMRI/QGsDSNsWPH3na5X375BQmxseq7d8P69dX3qitXrjzQXOLnn38eWkWwn52ertYA+WPYdAEeDB069IGN4U7h6/AW9WZQFIU6dev+X71rrlq1CpJyrpKTkws4jv0/wNfE4OtM9c0t+JzkfG5oU4wm1VFQYhhMnTq10PX17t0bkjEAaUNXIGvsZtjT64FlOWjzxRtuVaImP/roI3W5Tp06QTI7kDbkTWSMXAdG1IPVGuEu3xqG4HgIooT0jExo7cFIGbAEyX1egmSyo0nTpve035988gnMFqv6jOjXr999iRd8zRTm2HIwx5YDIQQvvvjiPa/vQePUqVOySJ+96TLHak0wxVeA1nPz2en2BOLAgQMAgOHDh0NrcarPMd+ch8/h815QrVp16N1RyBi5FpmjN8AUnor4hMTi2s27Qtu27UDRDEyRmZDMDpjMFvzyyy8PZSyPCi5duoTIqGhIxgDY0+tCY3HC7Ql8KO4EJSg+PFCyHZAnB0uXLg2tVgtBEKDRaDBo0KBHKn+gpOguQQkePk6fPo26tWtD4HnYrVbMmTPnHx/DwYMHMXbsWIwYMQK7du0q8Pevv/4a8+bNw8qVKwsUoAMHDoTEMJhmNGOO2QILx6Fu7dro27cvWrVqhXnz5iEvLw/BbjfqShp843BhjskMF8uifr16aNGs2c1OWqtV3f7ChQtBCEGwQph+65S7nI8o3eJ3YoG/c+dOEELQQ6vDugAbakkSJEHwe05/9913IITgVaUT+qDTDSPLYuLEiZg2bRoEhsGmADt+dXlQhudBEYKvlY7rdQFy3ndvrRY0IdDRNBKUl1LeR555PMjJyUGLFi0QLQgIYhgE0DRetVjxoskCgRA47HY1n9lX1JQTRNRSus6fffZZfP3116hcoQIigoPRrEmTW37XfP755zLBx7L4USlcOmq0EBW78R07dqjPfbfdjn75ugJaSRqkJCQgITYWJo5DFVGElmVROjMTkyZNAktRWGS24lO7EzaaRjDDqNvor9ODJwQ/ON3QKOT4veD9998HRVFI53k0kTRgKAo9e/YEx/NwZDVE1tjNKDVoKQStsdDJiJycHLz++uuYPHkyNmzYoBZHffv2BSEUzLHlQDEs0oetlIuBrrMKFHX5ce7cOThdbvU6pRgehlCZEB41ahRYmsbLZitWWwMgKMfY4XCgcuXKqFa9Orp3744ePXpg1KhRajfdlClTwElaNS/cV7wWZe33119/FcjwnjNnDiiaQUybCcgYsRYBydVAKApxnabJanHFyj82PgHdu3e/oxfbI0eOgKYoJLIc2mu06KSRxQLbtm1TP7Nx40ZIGi189vWiyQ5CUWB5AbRy/TOSAXEdpyKq1ZMqWa0xOZHA8Xjf5sArFit4hfyO7TBFJttHrAEnahAWFgZjaAoimgyHLjAOjKhXiP0RyB63BRpnBAKSq6vFnKdCWxClK3zRokUF9ik3NxczZ84Er9ikEULUTv+wBoPzEcZZfufAVxgTQqm59mmPvyEXnCwLjdkBnV3OA3e53bCVqnlzXdGlFVeBVBBCkDpoGTJGrkVUi7EghPKbhPAJLwghiGkzUc4le+w1UDQDjTMCgZU7QDC7QGgGFCuAEAo6pdA1mUw3l42Nw7Bhw+RiPqYsWEkPU1S2OqbgGj3A8wK8Xq9yLxCkP/G2Yvv+CgghqFq1Kggh8FTpBEdWI4gBwaBYXo4FIAQGgxGEokDzEgzhacgYsQZJveeD1+jRuXNntGjRAizHQeeORlC1btA5w2F3OLF7925MnjwZEyZMwLp16+65k+jKlSuYOnUqevbsiVmzZuHjjz8GIQQJ3Z5Xu/AFrUG1ohwyZIg8blcEeI0ensAgnDp1Cu+9954sjEmqgsCqXcBJOtgdDj8RwN+Rl5eHho0agaJp6O3BoBkWFStVxtWrVxESGgadIwzRrZ6UswLJ3dnQF4XNmzdDEETVoSQyKrrIbpESlOBh4FGsJf8LNfy94FE8VyUowb8V3bt3h4vnsc/hwq8uD5pKGpgNhoeS8VxcBGhOTg7iY2IQxAt42mhCQ0kDiqKKrI8eNv766y80a9IEFEWBoWn07NnzjojyyhUqIJAXsNwSgFkmMwSaxsCBA1FTEc2zDIPHH3/8ji3ai0JOTg4++ugjbNiwAadPn1YtdTtqtJhuMiOIFxAfEyOTVuVbI2vsZiT2nAuG4zFz5szbrv/777/HoEGD0LNnTz9XuuLA119/DUJuulz5YtYeVEPIg8Dvv/+OXr16oXr16hg8ePA9ffft2rULDocch+Byue6LOHwUceHCBQQFh0AyO+HIbACN2Ymg4BD1WO7ZsweE3HSRPObywCkIGDVqVKHrO3LkCMwWK3iNHtoAeU6vRYsWYCkKX9idOO4OxGKF5N69e7e6XM2aNWGOKXPTVa5aV9lBzOVGWnoGduzYgQMHDsDucKp1cUho2B2TodevX8fixYsxYcIE9V66dOkSvvrqq2IhVL1eL+bNm4eMzCxkZGZh/vz5D+W74k5x9uxZUDQDc0wZJPddiOCaivDGFgxG1CG2w7NI6jUPOkcIMrOyAchztxRNI6bNRGSO3gB7Rn0wLHtfdWt8QhLs6XVvzvlUbIcAu6O4dvOukJOTg8mTJ6Nevfro2rXrLV33SnATv/32G1q3bo3EpBQ0bdr0jmNpSvDvxQMl23/99Vf069cPoiiCoijQNI25c+fe00AfJkqK7hL8v2PNmjWoWb06qlSsiHnz5j3Ul56Hte0tW7ZAEgSYOQ4OngfLMH4F20svvSQXsQoxVql8eT/VfmpiIlprNCpZO0inB0dRcPI8skVZDTxgwAC88cYbCgl9s7vUZDCAoSjMMpmxxWZHqijC43Ri165d+PPPP7F27Vo0atQIDE2jkaTBGqsNrTVa0DSNb7755o7277nnngOtEHE6jQZr1671+3tubi7KZGXBzHHoqtUhSRShlSQcOnQIAwYMQLQkqfvWXasDQwgOKDbx7ylZdLEKwTjLZMYxlweLzVZYKBrJim37unXrULN6ddQUReyyO+FRiCtCCCLDw3Hq1Cl1PJXKl0cFUVS78dtptHDabDDqdIgXRPTS6uDgeSTGxRXZPbF9+3ZQhKCqIKhjf8pgBK1sM78yu2vXrtCwLMbn6wpo3LixTLAqmXsrrbKoYNOmTaiXr8uaZ1kwFIUQhkFZXra7f0ynxz6HCzxNY9y4cXjhhRcwb968u7I37tSxo9wNS252Qjtt8hiiWoy52TEdFIcOHTrc8XoXLVqkjp3QjEo0xnd97pZkOyAT2yIvRwz4uneHDh2Kvn37IjbfNfKC0tlCCIHb7cb+/fsLXd/WrVvlrtvKHZDUez6sCZUgCOJdHacbN26gZs1a6vYYlkVwcAhYToDeGQaKotC2XbsCz5ZXXnkFZcqWQ3bpMnjxxRfx+++/+03ULViwAAx90159+PDhBbZ9+vRp7NixA1OnTkVzJbPSFJUFV9mWoDlBtVX3/SR0fwGEEMxUrCmPuwNRRRDAMCwEvQWusi2g98RA0miRkJQMXVACCCEwRmbKIgJCyfnsocmgGRasZEBizzkIqdNPva595yQ/PvnkE6SmpYNhOWjsYYhtNwmBVTopogkOhtAUZAxfjaTe88FIMqlvDbBhyZIl8Hq9aNVKzvn2dd9HNBkOQuSsqf79+6Nnz55YuXIlOnToAIqm4a7QRibaCYHGEQbeEABC0dCHpIA32tVxGk1m7NmzBwBw+PBhcBwPmpfAG2xwlWkh7z9FqYKQpD4LQAhBdJsJSryA/ByV7KFK1n0ARKMNvCDCkdkA2eO2IEhxS/BUbIfQuv0haA1o0KAhAOD1118HITc7FRKV8zNw4EBZ2NBkmJJJthmSLQSCyYmIpsOhc0dBo9EiOCREJuCVccTExmHfvn2oWas2jGYLJI0WoiQhMysb3377LQBg//79qkU9IQQtW7a8pSXlnj17MHHiREydOhXHjx/HjRs3ULZceTAcD4M7EjTDomw5uTsgUhFilBq0FAzHq04MXq8Xr732Gnr16oXRo0fj999/ByCLxLRWN7LGbkL2uC2IbjUehJBbFoAfffSR3zMotsOz8gTT2rX47rvvEBYu59YzDIMJEyYUuZ67xaFDh/DSSy9h+fLlj5yNZQn++3jUasn/Sg1/L3jUzlUJSvBvxtGjR2G3WqFjWbiUGK78OaRXr17FuHHjULdOHXTv3h0///xzsY/hyJEjKJOZCYqiEGA2q7Fl94OjR4+ifJkyYGgaTpvtkbB7vXbtWpEk+86dOzF27FhMmTJFFVTxHIfxBqNajzQQJQSYzbBwHKYYTRis04Mi5I4I76Jw+fJlVMrnfGY2GNC4cWNE56vxF5mtau1CCIFosIBmWCSnlMKlS5duuf59+/ZBp9HAyfOIUcT58+fPv+fx/h3r169XxcK+eoBm2GIRkv4T+PPPPxEWHgFRb4Y5tiw4SYv0jMx7ilD8+eefkZAg16UajaaA4+Cd4Ny5c9i5cycOHz5818s+bPz8889o3KQJYuMS0KBBQ8yZMwevvPIKjh49iitXrsDjdCJRFLHAbEF7RaRfVPPAyZMnkZVdWq2XOnbsiDNnziDE44GN51FNFCEyDKpXq4a8vDx4vV78+OOP6NWrF2iGRUSTYYjrOBVaWxDS0jMKrP/s2bNYtWoV1q5de8c10/Xr11GufAU5ek1vKnLu405x4sQJ7N27t0CTxD+Bq1ev4uzZs+rcz4kTJ7Bt27Yi56OKwhdffAFCCBJ7vKjOu7FaE2heA2tS1ZtC/po9IYgSAHleqlat2uozj6IozJs37772p3fv3uBEDSKbjUR0qych6s1o1Kjxfa3z/xF5eXlYuXIlJk+ejNWrV/+rhR4l+PfjgZHt3bp1U63mBgwYgF9++QU9evQAwzCYPHnyPQ/4YaCk6C7B/zNWrVoFQgiyBRE1hJsdxPeDS5cu4d1338W777572yLp34Bly5aBoShEsSwOOt046vKgkighLioKgJwdzrEs2mq0+NnlwUqrDRxN+xVaFcuXR7Ig4EfFhryqKIKnKHyrENIj9AYQQnD+/HmkJCYiguPwid2JbTYHRJpGBn+TEF5gvplJa9TpsHXrVgDAm2++CUnJLuc5DosXL1a3/8cff6Bpo0awGo2IDg9Xba3y448//sDevXvVZ93hw4exbt067Nu3D4D8Yt6pQwfERkSgSsWK+OKLLwDI5CylEIQf250oIwhgCEGaKGKY3oBghvGzxX5WsdA64vLARdPI5ORO+AkTJuDZZ58FTVEYqTfgab0BXL7losPDVZKnTGYm6os3ydu+Oj10Gg0Emsb3yjFdo5DfRXVh/vnnnzDodKAIwRC9AdNNZhgpCjQhqoWyD5cuXULL5s3VroDu3btj/vz5IITgkLK9XYpKeM2aNcjLy8OiRYtgUTpqKYUQN1AURELQQpQQyDAw6fXQShI4mgZLUbBZLHdkqXzs2DEQQkATAgtFwUhRYAiBiWYgMCy0znDEdZqGkNp9QFHUXU2S+7pgneVbghE0io18M4iGAETHxOLQoUMYPXo0+vfvjzVr1mD37t3YtWuX6rJQSRBQXXlWMIRAr9EiMTERPE3jLWsAfnJ50EzSQOB5xMXJNutWqxVffvlloeMZO3aseg0Igoi33noL586dw/PPP4+nnnqqgHr+k08+QcMGDVC5YkVMmjQJOTk5OHbsGDLT0yHxAoJcLixduhRTpkxBr169MGnSJL9C77XXXkOM0kFhisqCObasun2D0egnRDly5AjWrFmDkSNHYujQoVi+fDmOHTuGCuXKQWRYMITA4XDi/fffR4cOHSAGBKvEZWi9AQr5z8FgNIIQAntmQwiSHjVECUdcHnxqd8LKcejcuTOaNmuGwKAQpKSmon79+vKxoyjoQ5LVzn9XmWYQJQ1atWqFunXrylbnyvXXUJSww+7AKL28rY0bNwKQSUpR0kDnipQJYaVrPHvcFogBckd6/sx2mpdAsTzMsWVUkUxiUjJolgehaDl7nRDUrFkTHTt1gtliRYDdAVG6mQPPsCwomkFAcjVkjd2MzFHrZZKdosBKeiT2nItSA5dC745ESmqaerzffvttMOzN3HPfT+rg5X5WbLHtJyGmzQSVRM8etwUpA5aAZgUYI9JB0Qw8FdoqE2ObIJjdoCgaFEWhVu3aam7an3/+idCwcAgGK6xJVSBojYhPSMSlS5fgCQwEKxkQUqs3bKVq+hHMiT3ngBCCTz75BD/++CMWLVqEN998E2fOnIHHEwhW0sESXwH6oDiIkgYHDx5U9zEuPgE6ewjiOk1DWIPBoGimyO/c9evXg+U48Bo9WF6E2WLF3LlzQQhBXKfpMkHe+ikQQlC6dGkwLAdTZAZEvQUutwenT5++5bNgxIgREHQmpA9bJV+zdeVr1kfGF4aVK1eCEIK0IW8ie9wWZI7eAEIIFi5cCEAuZI8fP35X3/1erxevvvoq2rdvj379+uHQoUN3vGwJSvBvwKNUS/6Xavh7waN0rkpQgkcBx48fxzPPPIORI0f6CXa9Xi/q160LgWZQQxTh5Hm47PZbvmPcLXJychAfHY0QQcBkowmNlS70Dz74oFjWf79d3bfDxx9/jCaNG6NGtWqYNWvWA9nesmXLQFEUbDwPDcPCabPh559/RpDLhdqShF9cHux3uhHEMKAIwZP5CPjqooia1avf87bHjRsHiWGwzBKAT+1OZIoiTDodrByH/Up9PdYg1y3nzp3D5s2b8eSTT2Lu3Ll39B7Zpk0bhPMCDjndOObyoJVGC6vJdM/j/TuOHj0KluMQkFIdSX0WwF2ulfr+/yjA5xrmExX7otaKIoFvhwsXLqBmzZoqiThr1iw/wury5ctFfrdu27YNeoNBre369OnzSJJdZ86cQWxcvLofkkaL7du3Y8+ePQgLlutqgedvaY9ernwFiAYLwuo9BmfppqqA/cSJE+jduzfq1a2LMWPG4MqVK7h69Srq1a+vbk+rv3kMw8Ijiq1mWrx4MSiaRnxnub4MqtYVhJC77lz2er2qwxwhBBZrAD7++ONiGeOdbtvXYJSalo758+dDyOfq179//zu+7nwZ5Z4KbZE1djPiu8yU5xNoGpzeitTBy5Exci2MYSmIio5Rl8vNzcU777yDl156SW0quB/89ttvCA4Ohs9NMTmllF+TUgluD6/Xi9Zt2sjz6Bq5saRjp06P5DOoBP8OPDCyXRRF9O/fH7/99pvf76dOnQqGYdC5c+cHmvNTnCgpukvw/4wqFSuinHBTXdxeo0Wg03nP6/vll18QGRqqvtBEhob+q3Ncjh07BpZhoKcoNMiXOfeE3gCr0QjgpsX6KqtN/XuEJGHgwIEAgNWrV4PnOFCEwEbTCFL+35Mvx/tlRbV97Ngx2MxmDMmXVx7PctDTND6xO/Gry4MWkgY8IXjHakMlUYJRp1OfT3/++Se+/fZbnD9/Xt0Hr9eL8mXKwMpxGKo3oIYkgaZp7Nixo9B9Pnv2LFJTUsAQAlY5T+3atSvS3igvLw/tlJcTQuTO+JkzZyItORkWoxHxMTFo2lQuFGqLIgRC0F7SIJaVyUhe+dGKInbu3Ik+ffqo62IJQQrLoTzPw86yqFqpEgBg5syZIISgi1aHx3R6CAyD8uXL+5HtaxX7+lsVvHv37kWA1QpK2Z7L4ShUiODD9evX1e+uH3/8EZIgoJIk4TmTGVmiBJNej5MnT+LSpUtwBAQgTRTxmsWK7lodCCGwsSzcivggLCwMCbGxSBVF/OB0Y5/DhWCGQUhQ8C07WQFZweo7RjwhmGY0IZpl4VCKh/z2YN27d7+ryRmv14t+/frdJDMpGiwnIDw8Au+99x5sFgvMHIdQRVShFneiiIrCzXukqaSBW+ncZjV6CNzNPCuKouDyBCImLh6hyvNAr9cXOfl15MgRfPzxxzh16hROnDgBvcEIQtFydzhFqV0Ku3btAs9xSBAE1BUl0BSFPn36ICM1FQ6ex0i9AbUkDWglr1BUXCX0BiM2bNiAl156SR4fJ0AQNNBZPHCVawlrclVweissMWXAcbxauF69ehWlMzPB0TRClI4Jk8EAG03jMZ0epXgBNEWBF0Q0bdoUgsWtWq2H1JLPYZkyZZCRmQWtO0YtkijlvNIUhfCQELWT//Dhw9AbDJDMDtl6naJgjEj3s4oXJQ2MBgMIxYDTW2GKqwhCCD5QHBiOuwNhYllVjT516lRwggalBi0HIRT0IUlwZDVESJ3+oAWtahvvGxst6mCKyoIlviIEow31lQI/pu3TCK03AI7sxmA4AYlJSWAFCZ4KbRGQIltOBlXvjshmo0DRDDiOR1C1burYLXHloTcY/azvg2v0gKTRqtfBSy+9BIqmEdF0OFIHLZNz7mkavNEOe3pdsJIBnCEACT1egD44EYSi1biArLGbwRsCIBjtMJnMYDgBngpt4chsCEIIZs2aVagLxm+//YZOnTqhTNly6NGjh/oc/P3331GxUiUwDAuNVgeKolHqsVeQPmwlgpVu+b87i7Rv314+vywvXyvRpcHwIqZNm4b9+/ejVGoaCEWB01sR2+FZ2Wo/PBVNi8jSCw4JhTkqC5mjNyBt6ApoLC5kZcnnK3PUejXXnhCC119/HRMmTEDDhg3Rp08fHD9+/LbPgsOHD0OnN0BjdcMcUwY0w6Jt23a3XObo0aPgeQHW+AqI6zQNtlI1QdO0Ktq6F/gEN4agWEhGG/QGQwnhXoJHCo9SLflfquHvBY/SuSpBCR4FHDp0CLNnz8aCBQv8asn9+/eDEIK5ZguOuwPxlcMFiWEwY8aMYtt2Ufnq/4as79vh008/BcswiOd5VFdqjPvpJC0MXq8XFqMRjSQNfnF5sMfhgovn0aNHD7z11lugaRpOnoeOosASAolQ6KDRqqL5OEFAs2bN7nn7TZo0QcV88yvPK85nRp0OHp5HBVEERQh69ep1T+uvVaMGauZb/9NGExiaLlbRwmuvvQaO49X69p8Wpd24cQPvvfceVq9efVfOb4Ds0kZRNDJGrFWFyYSQ+7Lbv3HjhppjT4ic43358mV07txZ/V3NWrX85qouX74Mo8kEU3gqknrNVWvk5cuX3/M4HhYGDBgAQWtAUu/5SB++CqbwUggMCgYg32+nT5++5TvUxYsXQQhBeMPH1XrYEJyAVq1aFfr5UaNGgeF4RDQZhtj2k6GxuJCano69e/cW6e54L5g4cSIErVEdk89Nrqj5RECuoXv16oW6depg1KhRuHz5Mt566y0QQhBYtTPiu8yEMSQJFmsArly5UmxjLQoLFshj9lRqj4imwyGZ7KAZFtb4Ckjpv1i97u4mBmLChAkqQUtRFMqULYcDBw7A4XSBohkwHA9R0mD79u0PZJ9ycnJQpmw5cIIG5tiyEPQWBAWHlOR93yW2bdsGQggimgz3i5m81fVdghLcCg+MbP97gZ4fa9asgVarRcWKFe92tQ8FJUV3Cf6fUTYrC/XydRAP0OlhM5vveX0N6tZFIC9gq82OrTY7PDyPRvXrF+OI7w1er7eAci03NxdVKlW62dFJCHpqdXjVYoWNZVGvTh0A8kuxVpJQV9LgK4cLc8wW0BSFhQsX4o8//oAkCKgrabDQbEEWz6vkNSEE3bU6zDZZECYISIiJQV5eHspkZiJeFLHX4cJndifcPA+9RgOOpmFgZPJyumIzvTHArq4vOiIC0WFh6NOnj5/a26e6nKdMZvzi8sDDsOjcuXOhx6Jc6dLQUxSG6Q1IYjmViOYYBkuXLi3y+O3ZswfvvfdeoUpKXy58FseDU8hEmhCEMwy+c7rxg9ONFEFAmcxM5OTkoE6tm7bfSRyHYEVNzzIM8vLykJeXh6eeegoOqxVWoxG9e/fGwYMHYdTpkCiK6KPTwcnziI+JUQuNy5cv48KFC4WO/8qVK7h48eLtL5S/4d1334VbySgLCwpSif2vvvoKhBCsy5/NxfNISkpC/Xr1MGPGDOTm5sJmNmNoPmFFB40WLCGYMmVKkdt8//33QQjBUL0BH9kdaKaILxqJEqxKB/KJEyfw3Xff+RFqXq8XX3/9Nd59993bdo14vV6sW7cOASYTnByHRpIEAyt3O9g4DvscLjSTJJgoGm9YA7DSaoONYeChGXVfOmu1flEANCHo1KkTGjRoAEJRsJWqCUuCTAT7OskFQcDAgQPx5ptvFmlrVqFCBTCiDikDXkHWmI2wxJUHy/Hwer3o2rUrwgUBRxRxUBNRki3tCUFrjQa/Ks4SgTwPQlEISK6GmHbPwBxTGqKkQVR0DHSBcs53NUFEO40WDEVBsoVCMDmRMXItCCGqa8Qrr7wCihCsV87zJKPsZDDLKN+fh5xuSMox6KjY/uuDE2FPrwtKzRYnSEhMhM4ZjviuzyGswWBIjjCYLRa89NJLfpMRQ4YMgai3qJ3Glnj5+AUkV5OV7xQNimbA660ISK4ORtJDssmW5MOU62yFNUC+lzgO69atw4wZM8DyAlL6LwYj6UFzgpx9TghoQYOU/otBCIFoccsTSTQLweyCLkhW7fssA2PaPi1nyg9fDVaQBT3B1burRbk+JEnNkTOGJCAwKBiC1oiwBoMRVK0raJpBqVKlIBkDkNxvEdKGroAhMBZJySnq/j/22GPQ24PVdcZ1mgZCCDTOCDCizr8DnxPASDpo3dGIaTNR7QxgWQ4bNmxA9+7dYTCaEGCzY+LEifesXM7Ly8O5c+cQHBIKVpBUy3iG5fyKdZ8oyycwiGr1pDxOhsWkSZPgdLmhc4QiuGYv6IOTQHMC4rrMgGiwoG/fvgW2e/36dTAMC0NoCsIbPo6sMRthTaiEtLQ0MCyLgKQqiGn3DCwxZSAI4j1bs+7fvx/t2rVDjRo1MHHixDsi2VauXAlJsUjkecHPZeVuce3aNTAMA3f51sgetwXpw1ZBMtrQr1+/e15nCUrwT+NRqiX/SzX8veBROlclKMG/Hdu3b4ckCOBpGgxFweN04ujRowBkgWz+WulnlwcWjivWiBmfE9hU5b38O6cbJo7DuHHjim0bDwpVq1aFqDiXJbAc2iiuYMVJFF+/ft1vXuG4OxDVRBF1atfGrl27sGTJElUo+pLZgnFKl3kaxyGM48BzHD799FPs378fb7zxBnbu3HlX79NDhgyBkePwgc2Bn1we1JQ0CDCbceDAAXTr1g2NGze+r47+yZMng6EojDcYMd9sgYvnVeF+ceLkyZPYsWPHP95AcvHiRWSXLqPWPnqD4a7IoR9//BGCKMEUnorQegNgCIyB2WK9r/xoQJ5HmDZtGiilJoqIiABFMwiu0QNh9QeC1+jRomVL9fO+GsnnypU9bgt0tkAMHjz4vsbxMFC7dh2Yokur+xHWYBAIIXcsUrxx4wYYllXrnoyRa6GxutGtW7dCP1+pcmVY4sqr2wup1RssxxV7R+6mTZtkkrxKZyT1ng9LXHkIolRkB/WZM2cQEhgImyIWEhkG1apWxeDBg6EL8OSr5WU3he+++w6AXPdNmjQJ7dq1w5gxY4r1XaxFixYwhiap2/YRqvFdnrvp6mewoEePHrdtfMmPbdu2YdKkSXjllVfUecfTp09jwYIFmD17Nj766CM0adoUMbHxaNCwIX766adi26dPPvkEhBDEtpOj/Eo99ioIRWHRokXFto3/ByxZssSvWSF9+Cq1WaEEJbgXPNDM9lth9+7dcLvdxb3aB4KSorsE/8/wdRB30+owUKeHyDD3rC4GgLDAQPTW6tSCrpdWh4jg4GIc8d3h6tWr6NatGyRBgFbpRve9XL388sugCMHzJjN2OZyoLYpq7nFYSAg+//xzPPHEE+jVqxeGDx8OUSHSCSFo0awZcnNzVZL5vXxdpQE8j/Hjx+PZZ58Fr3T7RoSGquT8nj17YFXsxwkhCHK7sXfvXrz44ouoV68eGIrCFpsdx92BaCVp/LKYLTQNiabRpFEjdR9///13EEIwTZlo+NHlQQBNQ+A49OnTx6+gOn/+PAiRLeE3B9hBEYLOWi02B9jRXNKAY9m7tovyoVKlSqAIQX+dHqP0RgiEIIpl/YQcgQ4nXnrpJTAUBTNFo4WkwTGXB0dcHiQqme9t2rRBekoKzAYDymVn++UrffXVV6hYrhzCAgPRqEEDHD9+HDk5OejZs6da8FWtVAmnT5/G999/j127dt2RkvbatWs4c+ZMoYXLhg0b0KdPH4waNQpHjx7FvHnzUK9ePRBC8JhWj+PuQHxid0IspFujaqVK8DAMNgfYsdpqg4lhwesDUKNGjSLHMn36dGgYRnWb2GmXu9h9LgQURRXIWsvNzfVzH9BKEjZt2nTLffZd/1/YnTjuDsTbii1/HC87MkSzLDprter5e0ynB6sISHprdWAIgZ2moaEoPGs0wUbTCPZ44HR74MhsqBY15hi5s7ts2Zt27YQQhEdEFioKcDgcMISVUpePaPwECJEjGNq2bYsUJefPl/FXlhdQT+lgH6zT45DTDatiRZ45+h1kj9uC1MHLQQiB0+WGYLAhnRfU4ztYpwdNCFxlW6o25T4SdcqUKdCzrPrZHXZZeDHWIBPb3zvdEBS3gbj4eIhmJ3SBceCN8ucIzYJQNDheAC+IkAxWaKwu0DSNt956q8C+9+rVC3pHqGobH1K3v3zuNUbwBhsEs0yIlxq0FNnjtiC+s1zAGsPTZFKaokARAoMnFubobGi0Onz33XcwGI3gtCbQnIhSj70id8lX6gBCCOzpcue6zhUFweSEYHYjc+Q6ZI/bAmd2YwiihLT0DAhaIxxZjaB3R0LSaMHzgp9Vu8YZCXNsOST1WQBO1GDQoEHIyspWz3fPnj3xyy+/IDQsXP2dwWjCrl271P2fNWsWaIZFfOcZyBqzEfa0OiCEQmi9gQit0w80w6JTJzlrPqh6DyR0ex6c3qreF7Vq1VKz0e8VixcvRlJyCqKiYzFmzBj1++Ldd98FIRTs6XUR12k6LLHlIAgijh07BgDYuHGjfG4GvqZ22lMMC0EQ1Wz4pN7z1YkVimZAsxzsDid+/fVXvzHk5OSgcpWqoChaybinoAtKAMMJGDJkCJYvXw5R0sjnTW/wiz74p3Dx4kXs37//vt+dz507J39HNh2u3vPGoDi0a3frDvtHBV6vF5MnT4bT7UGAzY7+/fsXaydKCf4d+C/Vko9SDX8v+C+dqxKU4GEjJiICZUQJh51u7Ha44OF5tG3bFoAsdA4JDES0IGKq0Yx6kgYMTfu99xUHWrVsCY6mUVMUEcTzMBsMDyQbvjhx+PBhsDSNMryAiUYT4lkOBooqtMa7X5RKTESUIGK11YbnTWY11sz3Lp6akgJCCF61WHHcHYgpBhNoikJWVhZ27dqFF198Ua2xCSHo2rXrHRN9Z8+eRVx0tCxSpSjwihC4uJCTk4Nu3bqpY8tMS7uloOxe8dNPP2Hp0qV455131POTm5uL8+fPP1Ab4pEjR4IVJMR1nCo7foUmw+0JvKttvvfeewgKDgFFUYiJjSsy1u1esGrVKkhKjBgj6tT61FOpA0xmi/q5M2fOgKZpuMq2QNbYzUjsORcMx2P69OnFNhYfvF4vdu/efUfNB/eCwYMHg5d0iO/6HFIHL4cxOAGhYeF3tY6RI0fK9XtYKWgCPBBFCXv37i30s23atIHG4kb6E2/LTQix5eBye4pjVwpg1KhR6r0kiNItO8Dnzp0LlqLUeaTFFrkeHzBgAFheQHLfhcq1IIt5Tp06hdzcXFSvXgMMy8EYkghO1CA6JhaTJ0/G9OnT73kO0ocePXpAY3YiY/hqeR6jdDMQQsFVvhWyxm5WRPzysyw9IxNnzpy5r+0BwF9//YXQsHBIJjscmQ2hsbjgcnvUyLrb4cyZM+jSpQuSS6WicePGftFzgHz/EkKQ3OclOb5t1HrQLOcXZ/ogcOHChf+Uy9XXX38NQghcZZohpd/LcGY3BkVR9z1vVIL/Xzw0sh3AHVlY/htQUnSXoLhw9uxZbNu2Dbt3737gGV/Fhby8PIwfPx42sxkmvR49evTA1atX73l91SpXRowgYp/DhX0OF2IEEdWqVCnGEd8d+vfvD4Fh8ITegIE6PRiKwpNPPglAflmOyNfV78sAL5WSgu+++w4WoxFWjkeMYu02evRorF27Fp9++qla5Pz8889qF/IxlwerrDbQ+dSG586dQ2ZamvriajXJ5NLJkyfx2muv4fXXX/ezAbp06RLSUlLA0TTcio13aV7A90433rM5YKJolFVI//zLBXk84AhBK0mDRJZTs9BNLIu4qCi1q9tnXTXeYMSzSpfuzwqR+I1D7na9lc36rVCudGk0yHc8Bynk7NtWG9YF2GCnadSrUwdDhgxBqChCS1EYka/ru74owaiQhcm8gBF6A6IFEW6Hw29fjx8/jkrly4MQAo5lYTYaQROCUXojZpjMMLMsXHa7n5jBp6b9O65evYqBAweCUQjT5Ph4vxf955+XydcIUYSZ4yAKcqdyaVGEk2VBE4JIQYCeZREZGlbA0umnn34CR9/sxtUFBEM0uxASEoKhQ4cWqhZ+803ZFnq5Yok4Nl82l1GZ7GhQr57fM2bhwoWgCMEskxmf2J2oJkkw6vV+WeV/x5w5c8BQlJpJ/6HNoW5nrMGIRJZDNMvie6cbh5xupIkiPE4nTDqdSvxryM2OlWeU68nudMGR1egm2R5bFqFh4bBYrGBFnbINCqygQY8ePQqMKzExERTNIKrFGCT1mgutMwI0w8Lr9ap50a0kDcIZFtk8rxLh3bQ6SBSFSJaFoJDt8V1m+nUZd+zYERQhyMpHtg/VG0ATAn1QPDhBJpavXbsGr9erWqH10uqwLsCGqoIsyNFTFDprtYhiOTCEQlBwCMIjotT95vRWmKKykDlqPUo99ipYjQG1a9fGwIEDMXDgQOzYsQPnzp1Dh44dERYeiTJly+LDDz/EunXrFAK8HsIaDIKglyfDEru/gOxxW2BLqwtC0cgYscbP4o1mOJgtFvAaAyIaP4HM0RsQ30UWUm3fvh2J8XKXumB2qecltv3km/dIYKB8P+mtMISlqp8JrdsfFEXh5MmTaNe+PSKjYlCpchXs3r0bgwcPBkXTsCZWhiE4UR4Hy4Eokzlt8ok/DEYTPvzwQwDyO9eKFSuwdOlSdULs+++/x4oVK/DBBx+gTNlyyj4xoCgKkZFR6npat2mD69evo1HjxuBEDVxlmsMUmQlCCNavX1/ktX6n8JHilrhysKfVAU0zGDJkiHq/UDSjxgSUGrTUb7tHjx4FTdOwp9VBqcdeRVDVLvKzIzISO3bskAUZHWXr+NRBy0AoCk2aNCnUEnL16tUghCC2wxRZcNJkOAghSEtLV11Nrly5giNHjtzX9/W/AV6vFymlUqGxOBHRdDjc5VuDEDm78L+A2bNnq/e0q2xLMCyH/v37P+xhlaCY8V+rJR+VGv5e8F87VyUowcOEyPN+Gd9NJA3Klymj/v37779HqUT5HdFmsWDFihXFPoYbN25gwoQJqF2rFjp27FiArPg3Ys6cOWApCof/VoNlZ2QU+7YOHDiAsKAg9V3aYbUiWBCwxmrDqxYr9CyLAIsFWoZBE0mDEF6AzWLBb7/9hl9++QU0TaOLVof9TjemGWUb+DVr1tzx9i9evIilS5fi+eef9xPQFyfOnz+PkydPPhDi+5133vFruCibnY0XXngBGmV+KCYi4oERNo0bN4YpX5yYT4B+J3n2f0dubu4DGKES8aYcH05nQUL3F2BNqITg0DC/z02eLNedot4EmmGRlJxyT66Dt0Jubi5atGihniuNVoctW7YU6zYuXLggx4KpNa4RO3fuvKt1eL1ezJ8/H02aNEGnTp2KJNoBOSrDaDKBl3SQjFbQNF3gOXr9+nUMGDAAFmsAbA4nnnzyyVvORZ84cQLbt2/H4cOHC/zNF+13O/eDadOmQcuyqtvgVps897Zx40ZEx8SC4QRorfLc4tixYwEAH3/8MQghiG79lHw9Nx0JQtFgOB6sIEGj1eGzzz4rcpu3E7gcOHAAWp0ekskGQ6DsqlitWjVZDMLL96vGEYHo1k9B0BrRrn37W+7jnWD9+vWyoL7Pgpud5+TOOqavX7+OUqlpELRG2FJrQxPggTXA5jc3cP78edjsDuhdkQitNwDmyAzwvIADBw7c99gLw5EjR5BSKlVu9uC4+3IH/LdhxowZqnCMpmm88MILD3tIJXiE8VDJ9kcFJUV3CYoDn3zyCcyGm6RYg3r1il2Z/Cjg22+/hdVkAkVkK/EAs7lIorO4cfHixQKWQMEuF3rm67RvJWmQEh8PQCZSOZrGaqsNv7o86KTRgqFpTJ48GaGhoTDRNL5zunHM5UEXrQ6iIBRaqPjyZk1KVnvFcuVw7do15ObmIj09HSJF4S1rAHbanUgVRcRERNxyPy5duoQXX3wRw4YNAyE3rfGOuwNRUxQRoxCJLVu2RIcOHbB+/XpYjEYwhEBHUaAJQZhiy75ZsaH3vZT/+eefaNSwIRhCkK0URq8pSvbZJpnYu9uCwYfqVasiSxDxq/LS3VqjgUBudjLzDINjx45h9uzZoCkK6RwPk9IVPUJvUMdPCMG3yuSDr5P4nXfeASAXJxmpqXBwHIwUBTfNyCR+PpK/oiCAJQQvmixYH2BDrCAiMTa2wHg//PBDGHUy+UsTguaSRrX793q9yM3NhSQI6KjR4pjLgy+Usfjsur93umFjWSQmJqJbt26oUrky0pKT0a9fP7/i8bnnngMhBJLFBU5nBqEoJAiCnIseFFRAVZuTk4Oa1auDIgRG5VwTQvCs0eSnHPYdE0DOD4uWbh4DX5f6rV7Ef/zxR7A0jdI8jwkGE+KUrgqS75yxFAWJYaBlWWhEUb02WrZsCUIIghkGB5V7pI1GC5oQdO7cGZRCOlqTqoAozwLftWCMSFfXHx5eUAn+2Wefgc5nT08oGoMGDVL/PmfOHDgDAsDSNGrky5AfqNODIwQcIWjcuDGyS5cBywkweKJAMyzq1K2L69evyzb3hKC2KKKLVgeeppGRkYG2bdti3LhxuHjxIvbt24eo6Bi/Y0EIAcOw4LVGGPR6BJhMCLBY0Lx5c5w6dQpt27UDpzEguvVTIIQgrP5AdXLEFF1avgY0Wrz11ltynETZcuA1ejizm0DrjgahKNStWxfTpk2DRitfl2np6dDpDTCFpyK+y0yVbJcc4QhIqgbeaAPNsHjiiScwbdo0uSu8y0xkjd0MZ3ZjMAyDOjVrwsbz6Kms01OpPWLbT4beEw2zxYrvv/9eJrAbNQLHy2ISd4U2CGswCKLejCpVqxV6/eTm5uKZZ55BZlY2qlSpilmzZmHGjBlYuHAh0tPT1WOQ1GsejGEpsFgDCu3onTdvHuh8gpROnTphxYoVmDNnDnbv3g2v14tTp075CVkuXryIrl27whMYjITEJLz99tsF1uv1erF48WLUr98ALVq0UMn+W6FqtWowhqeqzgKusi1gMJoAQBVexHeerkwQyAT4559/ri5fqVIl+BTzhBD1vP/6669Iz8gEr9HDmlgFkskGl9tTpKJ+3rx5oChaJfZTH5dFAKtWrbrtPjyKOHr0qFrYMwyDMWPGPPKF/fXr13HkyBFkZmXDHFtWfRa4yrWExRrwsIdXgmJGSS356KDkXJWgBMWHrPR0RAsittrsWGENgIFlC43GuZ8OuWvXruHAgQPF0oX4T+HQoUNo1KABkuLi0KZ16wLCSp+72Od/cxe72yztM2fOYNSoUejcuTNmz55dJKF69epV7NmzB4cOHYJRp8PIfGL3lpIGjK/OIQSZGRkqCefLud1hv+ngZ2C5u8ot379/PxJj5Qgvs8GA11577a72sTBcv34dq1evRteuXdGjR497nru4HXJzc2E2GFBD0uCA043VVhtEpWZprdFgjtmCOEFEsMfzQMSvQ4YMAa/RI6nXXGSMWAtzVCYCbPZ/3TvyG2+8ka9up4oUzW7duhVPPfUU5s2bd0+Cgdth3rx5oGgaEU2GIWXAEpgjM2A0me7o3OTk5OCzzz7DBx98UGTUnQ/Xrl3D5s2bsXLlykJF08WNn3/+GRMmTMCoUaPw6aefFvj7oEGDQNEMBIsbNCeAohl06dIFV65cQbdu3WA0mWEwmlChQgV07twZHHdTPDJ69Oh7GtPevXvBMgxqSRKmGc1IEEW47Hb8+eefuHDhAqZNm4Zhw4b5CXPeeecdEEJQ6rFX5az6sFKQbCFIH7YKGSPWwBAYi8ys7EK3t2jRIjXCLCw8okiBwvvvvw9PYBBYjofD6cbGjRvx/vvvy/Mp0aWROXoDssdtgSOzIaJj4u5p3/NjzZo18pxWo6EIqdUb4Y2GgBBSZDRnfvgs4uM6TkX2uC1IG/ImaIbBnDlz/D63d+9exCckgqIoeAKDsHnz5vsed2Hwer1ITEqGxuJCRJNhcJVpfsfCgUcFR48exbZt2/717jcl+PejhGy/A5QU3SW4X+Tl5cHtcCBLlPCR3YH5Zgs4msazzz77sIf2UHDixAksWrQIixYt+kdeQH/99VdkK+QO/zcFXkxEBBpJGjVXu5IookxmJgC58KygWFtzNA2KohDk8YClKAQohdQAnWwTPsskK7mLevl+99138cwzz+CVV15RRRbPPPMMKEL8CEGfIrywSQev14tXX30VtWrUQL26dVG5cmUwhCCd4/GVw4X1ATbolGw3ihDECSLiBFHNR/9AsbL3day3VgpDQgiWLFmCN998E5LSmc3QNNxOJwxamSD1CLLas23r1n4F3E8//YQuXbqgTu3aGD9+/C3tbzdu3AiKopAiCCinrI8mBBJFgaYoLF++HO3btlV/n/+/hBCIRO6UJuSmtblPLLB69Wrk5OTg5MmTIISgnUa219/tcKGWKCKO5fCTy4NjLg9cNIPKgqAe85nKuctfaF24cAFmgwGlBQFvWAPQTSEiH9fJgpmTJ0/i0qVLIETuFj/uDsQepfN/vtmirjtRlNC0aVNoRBEJgog2Gi00DINa1av7Hcf169erBPXjOnmC4/MirOcBueBbtmwZnn76aVStWhWEEOx1uHDcHYhfXB45/uD559XPT5s2DQLDYEOAXRWOsAxTZIa9D9WqVYNIUeAIQRLLoY4owaTX4/Tp0/jpp59w+PBhTJ06FVOmTPHrFLlx4wYqVqwImshW8rH5RAEHDx7EuHHjEB4RBZPFCg3N4FObA0ddHtQWJXC8BGtydfXzI0aM8DtWZ86cQffu3REcHIzY2Fi8/PLLfmO+ceMGfvvtN7z44ovKtaBFf50eAiFoq9HAzTAYOHAgLl++jGeffRY9e/bErFmz/O65JUuWICkuDhHBwRg0aJDfdf3hhx+CZTkwog6RzUbJRRPDwpJQERnDVyO2/SQQQgqIiP744w9E+LqwaQaSPQxJvecjps0EUCwPS0IlWBMqgeN4bN26FYQQRLUcK1uCjVwHVjKAohl069YNXq9XvV63bdsGY77YiRTF7tH307ZNGwDy86x0Gfl5xiqk+axZs2AxGvGE4rwxQKdXl3O63Ni9e7ffPni9XgwfPhyMcj4rVKxUZFZbUfDFBYgBN7PXY9vJx+zvGWa//vorGIaBI7MB0p94W829u5uOmaIwdepUWdwRVgo6VwRohsH27dtvuUzVatVgCEtVSW5XuZYq2X79+nWULVceNMNCbw8GRdNo0aKF37X72GOPQdBbEd3qSST3eQmhSgzA2bNncf78efTt2xdly5VHu3btblnkff3116AoCvb0eojvMhPWhErgeeGRKwz37duHvn37okuXLre1DfV6vTh79ux/wmL9/fffh1kRRVE0DSkgSBVw2DPqw+5wPuwhlqCYUVJLPjooOVclKEHx4fvvv0eQy6W+W2ZnZOD8+fPFtv7PPvsMTptMRFMUpXZIFoXvvvsO77zzDg4dOlRsY7hbHD58GFaTCcE8j44aLew8j/iYGL9Ys3PnziEkMBBOnkcDUYKBZZGWkoI33ngD69atuyMi8sKFC4gOD4eB5ZAmSaApqkAdXxjioqJQXpLwo8uDb51uhDAMkjgO3zrdaKfUjz7nqSNHjoCiKPTW6nDE5cEcsyzML0zkWhiuXr2KkMBAxAgCZprMaCRJoAjBsmXL7mh5ANi8eTN69+6NwYMH4/vvv8eMGTPAMbIoW6QoBHIcGJrGu+++e8frvFP4ovoWmq1q7Z8uCBBpWnVIW6UIJfbt21fs2z937hziExLV+0sQpfsi2tatW4fevXvjiSeeKNZcaUC2u3a73eq9OmvWrH9cFNC7d28YXBH5XNzk+rOwDu78+Ouvv1RnNV+N/E81CxUH7E4XOJ0FnM6MwModYQyX50VLlSoFmuXgqdAW9vR66v5Zk6oiud8iBFaRo9nee++9e9rumjVr4AgIACEECTExt+zQB4CTJ09Cp9fDFFYKUS3GgBF1fm6I7vKt4XIHFljO5xBnK1UTkU1HQO+KgNPlLuDgeP36dcTExkEyOxBUrStMEelgOQ579uxBekYmDEHxyBi5FunDV0HnDEfVIhoK7gbnzp2DRqtVaj55/oQXxDuaA//www9BCEFiD9nBMGPEGjAc7zfHlx8Pyp3Ch1OnToEQgsjmo9VzYvBEoUuXLg90uyUowaOIErL9DlBSdJfgfnH69GkQQvBSvhfxbElSM8v+qzh06BCqVqoEh9WKsllZ2LNnzz8+Bq/Xi4xSqfDwPJ4zmdFLIU2XL18OAJg/fz4IISgriMhQCOD8WcnXr1/HihUrMHv2bAwZMgQcTat56UMV++7pRhOCOR5pycm3HEteXh4mT56MhJgYpCQkICQ4GKEMAwtNY4fdgcNONyoIAgKdrkKX95GHFQURmQopTohsWe37f5YQ6CUJlUUJv7o8+NXlQUVBhEBRatHns3HqpdGirChBp9Fgx44d4DkOjSQN1gbY0FajBU3T2L17N15++WV07twZZcuWRcMGDfDSSy/B6/Xi+PHjsFks8PA8aooieJpG08aNb1k4bd26FU0aN0b9evUwe/ZszJw5E5MmTcLXX3+NJ554AjxN4ymDEc8aTGqns8/yviIvYJHZAg1FwUkzaKPRwsJy0CrHQuB5PPmkbAdeWxTBEYJDTjfWBdjAEQIPzSBOyX230DR2O1z4xeVBQ0kDi9HoN+6dO3eCEIKtyrk+5vLATNMoywugKQo9e/ZEhw4dEBIYiHBBwKsWK55Uuu89HIfnTGZ0V661Jk2awMrxqh37i4pDwNGjR/2Oze7du0EIwQKzBW01WtQSRGgZxk9RnJeXhyVLlmDQoEGYOXMmrly5gsOHD4OmKLTRaPGBzYE+Sje+LSAAPXv2xNatW3Hp0iVkZ2SAEAJJmYD4uyq2MHzzzTfQShJcPI84xQ6vMEulv1uRnT17Fl9//TUiQkNlRwJFnNK9e3e/zzVs2BCV87kO+EQrhBA4nTcn53r27ImFCxdi+PDh8Dgc0LMsUpWJo/Zt26rnbs2aNTAo+2/U69GpUycINAOOEGRyPOoKIiiKwgcffIDz58/jqaeeQs+ePbFgwQLk5eXh/fffx4ABAzB06FB8//33hR6TsKAgcDQLT8V2aqFhS6sDyR7qZ+ldWK7Y9evXUUURRxDqZre2PjgRGSPk4o4QghkzZshke6sn1fwtVmuCLigeVpu9wHp93fa+oqyvTo99DhdG6Y1yx8mOHer2ly9fjpkzZ6pdHjEREaguSvjZ6cZkgwl6ioLb5Spy/wFZ7PH3AvbgwYOYMWMGZs+ejRMnThS63Oeffw5CCEyRmaA5EUm95yNr7GY4shqCYVn89ddfOHjwIF577TVs2rTpZg5Zv0XqsRY0BkyaNKnIsd0pzBYr7Bn15fz0MRuh90Sjfv0GRX4+Ly9Pdj2gKBCKgmB2gqJl4QYg2yQuW7YMI0aMwMCBA7Fw4cICRe/evXshCCJ0rghYk6qCYTm0bt36nsY/b948VfQgipLf99ajgN27d0MQJWjMDuhdESCEYO7cuQ97WA8cf/zxB/QG2Y0ipu3TsKfVASEEOk8MLHFy/MnEiRMf9jBLUMwoqSUfHZScqxL8v+D06dNo06oVIkNDUblChWLPSvfhr7/+wvvvv49PPvmkWDNer169CkdAANJFESusARikCEaLyhH2Oc35yL6iCIsHiTfeeAO88u7GEoLJRhM2KsLxvxNax44dQ+fOnVGlYkW0bt0alnzC2tioqNvmTb/44ovglDmG/OLyW73fA3KDgMBxMLAsRJoGS24K9rcrdva+ugKQBd35Rb5tWrW647jEr776CoQQrFUix35xeWCiKAg8f0dxJYsWLZLJH1GEk+chKK58XbU6zDdbEMOyCGIYZAoCKpQti3379qFm9epIiI5G+7Ztb2uFfTv4OturSxL2O91YabVBoGlwNI0vFRG8r8nh448/RqdOnVC1WjUMGzbsllFud4PLly/jrbfewssvv3xfmdazZs2S30cdoRD1ZhiMxmKPXLhx4wZ69uypXiv9+vUr4Dr5IDFlyhQwnIDEHi8ga+wm2NPqgOP5W9rVf/vtt6hfvz5YXkRMu2eQ1GsudM4wpKSm/WPjPnPmDD755JN7Pr9OtweE3LRnzxqzETQvgVA0PJXaqzW2MSoLhKKQ0n+x/Lmxm8EJGkydOvW+xn83bq7bt29HgDJXybAceK0JsR2eRXzn6ZCMtkJr9XHjxkE0WJA1dhOyx21BfFfZNfLvTQN79+6Vn58d5Ni2zNHvQNAaMX78eHz88ccQRAmcpAUnaKDT6/H111/f137n32Zw9e7IGrsZkc1GgpA7cym5dOkSQkLDoA3wILBKZxiDEyBptPedXX+vuHTpEmiahqdSB2SP24L0YSshGqx+DpOPEtavX4+09AyER0Shd+/exfZMLkEJgBKy/Y5QUnSX4H6Rk5MDnUaDJhoNfnZ58KHNAQPLYcSIEQ97aA8MFy5cQKDLhXBBwGCdHgmiCIvRqCqh/ymcOXMGhMiW4T5CL1WU0LFjR/Uzr7/+OurWqYP69eph7dq16u+9Xi8+/fRTxEdHg6IomI1GODlOXc+GgJu53y6b7bYK4KeffhoUIWghadBQlEAIQSDDIJyRi25a+UlLTcXTTz9dYEIiPDgYzfJ14Zfn5cz2RqKE8QYj6ipkaJDTia75rPG7aHXgCEFnrRbLLAHIFkQ1JzwsKAgffPAB3n77bVl1rRSGR13yS/nChQvlrC2OQ6QgoJyyjSeffBLPPPMMdCyrLuMjSidPnozt27f7kderV69Gx44d0bNnzwIvrr7PpSUno5Wyfz7bbwtNI55hYcknKJAEARXKl0dacjKsJhOCeB6zTGb00Or8in2WEGRwPMYYjHArhKvvbwwh4CkKFo4DTdOq+MKHgwcPyvuiWLO/b3OoFno8x8HF80hVzqHdYlHX27p1a2SmyTldoiBgypQpGDZsGJw8j6OK2MFn8/53FfXly5dht1rB0AwErRnG8FQQikLNmjVx9epVeL1edGjXDhQhiJAk8DSN0pmZuHbtGsJCQvxcAMwUrQoLCCHo27cvrly5gqVLl2LmzJl+1tZ/x7lz57Bz5051fN9//z0ee+wxdO/e3e/+AORugsCgYFAUhYTEJOzduxejRo1S844cAQGw2W9mvSenlPKbHHryySch0DReNluxzeZAsiDC7XBg8+bNuHr1KhYsWKCuixACLU2DIQQfK84G05Vr7ocffsDhw4chcBxqSxossVhRXZIgCQI+/fRTVKpQARzLwmW347XXXsNff/2FmNg4cKIGBnckKIpCuXIy0aUN8EA0WCFptAWu1ZycHFnIwHIwR6Qja8xGZI5aD40zAjQvwpJQCQwnoE7dukWKTvLy8jBmzBj5+GTIlvUxbZ5G9rgtiGn7NAgh2Lx5M7KzS4MVdXCVaQ5dUAIohoMpKgsOlxvVq9dAfEISevbsqb6bHDt2DIMHDwYhBN/8zeVg1KhRWLRoETZs2FCAAF69ejVomoZeEWFo3dEQDVYYTaY77mr44IMPwAsCGE4AxbAwmsyFTtD4Ms9LDVwKyR4KQtGgeQ0IIZg9ezbeeustsNzN67Z06TLy87VsC2SO3oDI5qNACCmWTE9R0iCoahd1gsEcUwaVq1QBIJ+j5cuXY9y4cVi2bBny8vLUSShXuZYIrtkLDC8hJjYO169fR79+/fwmcGfNmlXkdj/77DPUrVsX2aXLYOTIkXfdqe31enHkyBEcOnQIf/zxB/bu3Xtbh4p/I5o3bw6tPQSZI9cha+xm2ErV/L+wT/dZrib3XahMZG0Cw4sIDQ1DVnZpPPfcc/86+88S3D9Kasl7x4svvoiQkBAIgoCsrCx88cUXRX52yZIlfu+BhBAIgnBX2ys5VyX4f0BOTg7SS5WClePQQ6tDkihCp9HctsPz34TvvvsOhBCstNrU2jFUFDFkyJACn/VlAQ/TG/Clw4UeWh0oinpgubaF4aeffgLHsmgsabA+wIaOGi0oQjBfEWHfKjs6PSUFiaKIXQ4nttrssPE8OnfufMvtTZw4EWaOU+Pb3lUIrMJspv+Ob7/9FpMmTUJbxXHuJbMVP7s86KXVgaZp/Prrr36f94nzt27delfvML562+cS95XDBYHIDn0TJky47fKOgAA0kzQ45vLgkNMNI8MgiOXUBoM3rHJXbSNRQnREBEx6PWIFEZ00Wlg5DmkpKfctANmwYYPqDEgIQVZ6OlwOB6wchzKiLAxv1rQp7A4nJJMN5rjyYHkRVatWu2NRwoNGXl4eREkDe0Z9ZI3djPRhKyGZHQVE8sUBr9frJ9CoW7fubW3ZiwuXLl1Caprc1c3yAiiKwoIFC4r8/MSJE/3eJwIryyRjSJ2+YFj2H3lf37hxoxofRwjBoEGD7nq7I0fKBG9E0+FKh/RaUDQLmhXgzG6iEuu6oAQQQiG4enc/57k33nijwDovXLiA5557DmPGjPF7dv38889o2KgRIqNiUK9e/XtySMjLy8OpU6ewa9cuROeL7YuNiy9UhDN9+nSwvIBSA5cie9wWhDd8HISQAg4m+/fvl5sZFOfA9GErwYkaVcT/ww8/YPLkyZgyZUqxOTusXbsWhBCkPv66epwpmsGLL754R8v/+OOPqFipMowmM5KSU/Dxxx8Xy7juFU888YTc1BKSAMlog8FofGjk//3gww8/BE3TMEWkwZHVCCwvolmzZg97WCX4D6GEbL8DlBTdJSgOLFu2DAxNQ1KysuOjo/0yZh9VXL16FXv37i3QpbthwwYQQvCRoqb+VulSXbx4cYF15OXl4Y8//nggBceVK1dA0zQGK3bvPzjdcPM8+vXrV+QyXq8XkydPhk4jk0BGmsYovQExSn7RCL0BmwLsqCQIavf1Bx98cNuxhAUGor1Gq04I1BUlMIQggecRrFwXHpZFLVECQ1Ho2KGD3/Juux2985HoTSUNWKUg9b2EtmjRAvXq1QNLUWgqajBOb4DEMEgtVQqsQqbZrVbs2LHDj3Tz2S/5LNB9xem6devQrl07RAoCflIK115aHSRBwMiRI2Hnefyi/P4tZRnfj8/u2teRnySKCBYE8CyLuJgY2K1W6EQRHMuicoUKKJudjXRBxFGlI7+2KCKCZTHeYFSJ5Hbt2qm21SdOnPAb83F3IGI5Di6GwSi9AckcB47IueKMQrB30mjxg9ONpw1G9XjNnz8fa9eu9Zs48Hq96Nq1q/xCznEQCAWBYZCSkgIXx+F7pUu9r04PlmFw8OBBnD59Wl3+0qVL+Ouvv3DgwAFs374dLMOgkihhiN4AG88jMy2t0Ou9Z8+eYHgJaUNXIHvcFoTWHaAezwCzTCzPUCYk5iqTMxnp6YgMD0c6xyOZ5ZDIcvhZscxvIEqwKsKKO8mre++999Sceh9JX1RBd+DAAfC8AHNkBkLrDoDOFQGjQn4P0RvwhjUAJoYBK+oQ0+4ZxLafBF5rQnpGhnrtXb16FTWr37SMdwQE4KuvvvLbzoABN49BBMPCSAhmGc2wMgwEpTt869atePXVV0EIwUHl3PieOW+++aZ6Tn2YO3cuaIZFcp+XkD1uC8LqDwShGVgSKiJr7CZkjFgLrT0EjRs38RvLlStXYDYaoVUEAKLOAk5rAs0wqFq1KipUqIjhw4erVpDffvstqlevjsjISISGhqJ0mbKYPn06Ll26hNi4eAg6Ezi9FUSxkqYZFtWr10Bubi7OnDmDChUqgqIZMIIGGkcYCCHgOB46ZwTs6XVBcyLMFiuWLl0Kbb7zNkpvxC8ujypGyP9Tv06dAl0E27Ztk3O+lG799CfeviulcnBIKHRBCcgYuRZpQ96EYHKgQoWKBT63b98+EELgLtcKyf0XwxSVLd9jUdG4cuUKJI0W1oSKyBixBrHtJ4NhOdSvX99v/M1btCiW74rmLVqAk7QIrtkTrnJyhIOP6GyhRDpIBlkY07RZM1SpUhWm6NIqOR9UrSsEUcKWLVtACEFI7b5If+JtOLObgKKoBzJhffHiRVSvUUM9Fqlp6bftbPq3omq1ajDH3MwqD67ZCyzH/eeJ5j179sjPssZPIHvcFiT1mgtCUYW+G5Xgv4OSWvLe8Oabb4LneSxevBj79+9Hjx49YDKZiowvWbJkCQwGA06ePKn+3O0zsuRcleD/AV9//bVMolgDcNwdiINON3QsiylTpgCQ3zeGDBmCalWqoEuXLjh27NhDHnFB+Cy8hyv54h/bndAojmB79+7161adN28eaIpSied9SvTXqlWr/rHxrlolu1f5Yr9+VgSxASyLkMDAWxKOWknCGINRrXebSxpkZ2Tccns+gUE7jRaLLVakiyJsFstdPdtyc3PRtHFjv/fwmTNn3vHyt4PX60Xp7GwwhKCyIMBB07DRNCRCUKtWrdsuyynzBL7jEsmy0NI0vlKO8ZNKvS/QNCpUqACJYbBfqRNXKPMWX3zxBY4cOYJ33323SNLos88+Q706dVAmMxOjRo0qIJQ9cuQIXn/9dWzatAk3btzACy+8AKvRCK0gICsjA5MmTQLD8UgdvBzZ47YgquU4+Vq4ja32veDy5cu3fZc+deoUduzYoRKKly9fBiEE4Q0fV9/LTeGpaNKkyS3Xcz9YuXIlRKWJIzk5+R97xviaD5577rlbivd8rgueCm2RNuRNeCq2AyEE8V1mwBSRjuCQ0Ac+1gsXLkCr08McnY2k3vMRXKPHPT238vLyEBcfD5oTYCtVE5ItBISioQ9JBiEE5rjy0AcnyfeKSW6S4DWyU0iNGjULzBucO3cOkVHRYDgeklG+j5599llcuHABQcEh0FiccGQ1gsbqhsvtues579zcXHTs2El95tgdTixfvrxIgfoff/wBT2AQBJ0JxrAUUDSDVq1aFbgP8vLyULlyFXCCBgEp1aG1BcFgNBaYx/Z6vTh16tR9O18AsqCIpmk4shqi1KClCKzSWZ4j/+ij+143IF8j/2RHttfrxaJFi9CmTRv07dv3kRLo5UfXrl2hs4eo0YChdeTGiX9K+FOC/z5KyPY7QEnRXYLiwldffYUZM2bg5ZdfvqVd0b8R33//PZ566ilMmDABP/zwAwCZOMmfw9axQweVRNu8ebNMgik23F8qRe2rr77qt9533nkHFqNcCNkslgeSpzVs2DAQQlBalBAoCNBrteo+FIalS5eCENmC7GmjCVaaRgVewPcOl1+x6SOAfRMTt0NoYCA65iPbG4gSosPD0bRpU0RERCCAZfGDUgA+rViO5X/J69unD1iFyOyr04MmBMEMA5amYTEaMWbMGFVtaKBpNavdZDCoY06Ii8Px48fxzTff4Pnnn8crr7yCixcvIi8vD00bNwZNUQgXJbA0jWpVqiAnJweNGjZEOfFmrvwzRhMoisKHH34IiqLQSNJgitGEYMUS/wenG1OV7PktW7bAZrGglUZWnf/o8iCKZaGnKFCEoJ4o4SmDER6eR3hIiExwURQ0Cpk53WhCBs9DJ4qYPn26H8nmO69PKJMs3zvdsNI0nDSNZ4wmHHV50EiSkJGWBlGxlduu2OAddwfCwnGIiY5Wj40kCFi/fr26/hs3biAsNBQCTSOD45EkCOAYBon8zbz35xUy09dZ+ttvv6FenTow6fWqewDHsujbty8SYmJgM5vRqH79Iid/hwwZAo3Fqeb3+hTFI/UG2JT1fWJ3YofdAR1FwUUzKJdPTW+gKDTN5w4wWKeHTjmW48ePV7dz6tQpbNq0CZ9++ql6TC9dugSTXo9KkoStNjueUiYoXn/99ULH+vzzz4PheGSOWi+TRn0WyEQqx6vbt3O8qpjOHrcFrrItQdEMmjdtqhZAeXl52L17Nz788MNCO3SnT58OgaZVYYvv3uMIBafiChESEoL169eDEILVSofLm8okiu+Z4vV68ddff8Hr9WLixIkQtAb1OMuEF43gGj3UsVoSKqFc+Qo4cuQI5s6diwULFqBc+QqgWQ6GsFJgeA0IRSPAYilUZbx3714wLAdG0kPriQUhBKxWvl5Gjx6N06dPo1OnTnA4XaBpGjTDIDQ0FD/++CPGjRuHShUqoGmTJpg7dy6aNm2KBg0aomnTpuA1BmSMWCtP1rSQO+QpmgGrMUAMCIZglItknwiHpih0lDQ44vLgFYsVdD5i7/Dhw1i1ahU2btwIQggim4+6mcEVGFOga8br9eKDDz7AkiVL/KzZGJZDYNUuiG71FMwxZcBqjGBYtlCrSuPfBAAaRwTCwiNx4MABEEIQ227SzTG4I9CrVy98+eWXWLRoEbZs2XLfZOzFixfxxx9/4MKFC2jcpAkYloUoaTBixAjk5eVh+/bt8rFoOgLZ47ao3fSlS5eGzh2lFmX2jPowmS147rnnwHCCOuZSA+Xvj40bN97XOAtD3759wQkaRDYdgehW4yHqLahXv8EdFdmfffYZmjRpiqrVqhV4lj4MTJ48GRRNI7h6d0Q0GQZRb0H1GjUf6pj+CXi9XrRs2RIUTcPgiQLLi0hMSr6j/NUSPLooqSXvDVlZWX7i2Ly8PLjdbkyePLnQzy9ZsgRGo/G+tllyrkrw/wAfkbRCIdsPKWT75MmTkZOTgwply0LLsqgrSnDyPILcbpw5c+ZhD7sAfHVvhCRBw7KwmsyqI5ZRr1drAN+8xAsmC465PBiv1Dh/F/g+SHzyyScg5Kbb3usWuU5JSki4LWFRKjERpUQJ+xwufGR3wMHzfi59RWH+/PmqtbrH6cRnn3121+POy8vDpk2bsHDhQnz55Zd3vfztsGvXLhBCkM7xaK/R4gu7Ay6GQbdu3W67bLUqVeDkecw3WzDBYAJNCAxauWs9lb9ZH7ds3hyTJk2ChmFUUfYaJUt94MCB6jVDURSmTZvmt409e/ZA4HkkCAKaSBrwNI22t4iA2rRpEwghqC1K6K/TQ8eyiI+LAydpkTn6HWSP24KEbs+DkDtzGbhT7N69G+ERkSCEwGK1Fhmn8Pbbb6vzIr6aFADS0jOgsbgQ1epJBNfocVunruLAF198AYdDrltdLtc/ej/eDr75QF/NnTlynVxXMyx4XrilE4UP77//PiqWK4fE2FgMGDDgrknRL7/8Up6/6z5brTMlow3Dhw+/6/25dOkSBgwYgKDgEBBCwRiZAYoTYYrKBqsxyjFphIBmGPTv3x+TJ0/GsmXLCrX5nzBhAjhBQnK/RcgauxmuMs3AMIx6zFL6vSzXxI+94tf4cKeYNWsWKJpGaN3+iOs4FTpHGKKiY245B3DixAkMGjQILVu2xPTp04uMJ7h48SIGDBiAjMwsNGrUCN99953f38+fP49q1W42gjRs1Oi+yewXX3wRNE0XuOfuB2fPnkXVqtXUdXbr1q1YY1oeFLxeL5YsWYI+ffpgwoQJOH/+PABZjNajRw8MHjz4HyHwu3btCm1+sr1u/xKyvQTFihKy/Q5QUnSX4P8dH3/8MSRBgInjYOI4aEQRO3fuRGRoGOIFEautNkwxmkDneym/dOkSYiIi4OR5dNJoESoIcDsc+OOPP7Bnzx5MnToVTz31FESeR3VJwnyzBZUkCRpRxC+//FKs4/d6vViwYAFatGiBHj163NYyrkWLFsgUbpLLvqwtX9b5iy++iG3btuGDDz4oMpu4MDz55JOgKQptNVo0k+SueV9eXI8ePRDGC6rt2SKz3FGZv9v6ypUrYBkGPJFz2ntpdUjheTRu1AgAcOjQIRAid7XmV2wbGAYrrAF40xqAAI5DmdKl5fUoL33xMTE4d+4ccnNzsXDhQgwePBhz5sxR85VeeuklEELQS6vDM0YTTCyL9LQ07N+/H8uXL4fNYgGldI+vUYjOYy4PGIrC7NmzwXMcnsynOq8linDTDDwMo3YYvKpYq9OEoJVGg0r5M+m12kLJTLPBgGTFKj2b5+GgadCEwKXkyyWwHESaxtChQ7Fy5UpQhKCbVocfXR7MNVtUQvIlsxW7HS7UlCQYdDq/rmRCCF61WNWJKIPiDjBQp8ccswWBvICMUqkAZHI+OSEBNo4DTwiqCiLesgagg0YLiqJU9fSiRYuQlpyMxNhYTJw4EUeOHEH//v3RqlUr1Y46IKUGwhs+DsHkRCDH4xtF6METghqCiHqiBBtN44AyYTBCLwsqjEbZBWC0wYgpRhO0FOVnLz9x4kRs374dBq1W/V29OnVw/fp1dX/X5LNjDBOlQu0YAWDhwoWgKBqlBr7mJwyQGAafKzbvgSwHjSMMGSPWIGPEWujd0QhVHCLuVNH7wQcfgBCCZpKkijDyk+rDlH3fs2cPymZnQ2IYpEsSBIZB5QoVkJOTgxUrVsCoZB2GhoVjwQJZGODIbIiYtk/DGJoEluchGqyIajEGofUGgGE5OfNdFNUClBCCmDYTkD1uC5L7Lbql2CY9PR00L6q2YcE15Yw6e3o96A0GeL1ejBs3DoSiQdEsDKEpYAQNBF4AR9NoIEqIEgRoJUklrUePHg1W0iOq5ViUeuwVxLSZoIyLgmB2w55RH6zWBJoTkZiYiBdeeAGEEGwKsKvn1COIGDVqFBYvXgxauZ4JITCZLdBY3YhsNhLucq1ACMGSJUtw/vx5eL1eeL1edO7SxY8o9xEeHC+A5sSboo/wVPCGAOj0+gIWbnEJiTCElUJUi7FwlmmuHlubwwFBlGCNr4D0YasQ0+4Z0AxbbB00ubm5aNasmTrG7IwMnDx5Erm5uX7F+7Jly+TJleGr/SZXBgwYAEJRkOyh0Icmq+feJ/KIaDIMWWM2qp0PD8KaNCm5FGxpdfIJQiqD9glOQsOKnETdtWuX4ogQBnNMaVAUVSz5aufPn8fRo0eRk5ODs2fPYuHChZg9e/YtxWw+5OTkoEePHur5yMzKxs6dO9Xn738Zubm5mDt3Lnr27Imnn366pLD/P0BJLXn3uH79OhiGwZo1a/x+37FjRzRs2LDQZZYsWQKGYRAcHIzAwEA0bNiwwETq33Ht2jX8+eef6s+xY8dKzlUJ/vO4ceMGSiUlwcbx6KPTIVUUoZUkHDp0CJ9//jkIIVhmkYn4XQ4nGIrC/PnzH/awC8Dr9eKNN97AwIED0bmz3DE4QKfHugAbKolyXXfu3Dl4vV60VyzRffXv4MGD//GxtmrRAhQhCBZFMBSF6lWrqqTQ+fPncerUqUIJpS+//BLmfOJ5jSTh8ccfx9WrV2+73WvXruHEiRMFYqT+Lbhx4wZCPIEIZzm8aLKgg0auUefNm4cnnngCjz/+eJHxZydOnFDj2wgh6NSxI44ePYrHH38c7du3x8yZM1Uy59ChQ9BKEtJEEQN1erh5HhGhoSCEoKdWh512J/ooLmH5Sd8BAwbAwwv4UZmzeEaZFyqqW7d9+/ZIEEV1TmeS8nmapiFaPTDHloUmIBCBQcHF1pF6/vx5WANsMATGILzRUFhiy4FlOXzzzTd+n/v9998h8jwaSBpstznUGnrLli04evQo4hMS1WPZu3fvf0SY+/PPPyMhIUG+rjUav8aHh4mdO3fK9VWdvsgau0kl4wYMGFComPzv2LVrFziWRYYoor1GC4lh0LRx47saw/Hjx2WhTMV2SB+xBobwNFUU0qFDR1y9ehWXL1/GpEmT0K1bN0yfPv228WS+OKuQ2n1gia8IQtEgFIU2bdrgq6++uq2oyuv1olWrVtA5QtV6NLb9JHWOlBCClAGvIHvcFqQOkmvqwmzob4VWrVrBGJqkrj+y6QgQQtR7+UGiTdu24DV6hDceirD6A8HyIvr373/f6/3xxx+xYcMG7N+/vxhGCTRu3ASC1ojwho8juEYP0AyLp556qljWnR++OaDiQu/eveW5Ilc4OFGDyKhoPP20HKOod4ZDNFihNxgeeMTL9u3bQVEUTBHpcGY3AcuLaNK06QPdZgn+v1BCtt8BSiZISvD/jjKZmUgXRRx2eXDY6UYpUUTpzEwQ4m/hnS1JaNOmjbrcb7/9hpbNmyMhJgaNGjTA4cOHsXLlSrAMAy3LqiSgr5vbRyjerfqxuNG5c2eECTeLqoE6PSiFtHY7nXf0gl0YcnNz8dRTTyE6LAyxkZGYOXMmvF4vvv76a5iV7v6mkoSJRpOcCZ6cXKDI8XVz1xdEZAkiKIpSVfu+jkyfdf8xlwdaikI2f7PTuLtGC5ai0EDS4KjLgw9sDhhY7pYK2StXrqBt27bgFGKOyUc8+nKjfERtP50e3zvdmGCQC8tt27ahTq1aCOB4PGcyY6TeAIoQlOF5mGlatWP32V13VTr/j7k8SOcFpCQn4+effy50TJIgYIhOjylGE8ooCu1nDHLG+lKlWyA9NVUtZJ9//nm//O/I8HDE5evY91nn+9SUvn0aqjOgl1aHwTo9DCyLChUqgFEmatJSUtTx7d27F4QQlfj+TCGcf3V5IDIMZs2apVqd1xEltJI0oAiBRquDqLfAGJp8k9RV7NEJReMFkxlf2J3y8dbpoVc+E8Oy6tjnKeIBThEQ+LqaMxVi+01LAAbpZDswi9GI8pKET+1OLDJbwdE0pk2bhtOnT4OiKPTT6XHM5cG7NjsEhsGMGTMAAG+88QZCwsJhMJrQuHETHDp0CIFBwRANFphjy4ETNMjMykJIYCB0LIsoSc60Z1gONCeA40QINK2em7vJ3fa9hOf/iWFZ7Ha4sC5A7kzYsWMHLl++jKeffhodO3bEpEmTcPXqVXz99degGQbW+AqIaDIMek8URFGCJcAGipaJSmuADatXr0Z6Rqa6/latWsHhcoNSyEzfT0r/xTIJO/odUDSDihUL2qUDQHBwMHijo4BLgT2zEURJA6/XC7cnEIQQRLUYo3Q6yLngk40mVeBh53kMHToUXq8XrVu3vjkWigbDa8Dp5eOZNuRNZI/bgvguM9Xxf/TRR6ApCs0lDb51uvGiyQKKELzwwgtgOQ621FpIG/Kmmm0WpLhL0AyD8uXLg1Kuc1HSoGdPWSwQ3vBxZI5aD3d5eSzVq9fwOz6+nLf04asg6Mx4/PHH/Y6Lj8yWbMEghMCZ3RgxbSbCEBQPnd4Alr2Z2V61arW7zjQvCq1ayQICipafYyzNoFKFCgU+t3//ftA0DXt6PST1mgt7Rn1QFIXs0qXBS3o5094aBEIIpk6dio0bN6JsuXJ+x+B2OZNXr17Fpk2bsHr1ar/4iduhRs2a0LkikDFiLRJ7zQOhaJiiMhHeaCgMwfEwms2FWt516dIF2oBA1YXCU6kDGIa5ZwW81+vFiBEj1Oep2xMIh9MFiqJBsxwEQbxjl5qLFy9ixowZYDn5vOsNhgfiClCCEjxMlNSSd4/ffvsNhBTs/HviiSeQlZVV6DKffvopXn31VezZswcffvgh6tevD4PBcEt72ieffLLA+0XJuSrBo4R9+/Zh9erVd12f/v7772jetClCPR6Uy85WBXs+ket7ihvYjy4PJIbBc8899wBGX3wYP348rDyvkpw+kbwvRsvr9WLDhg14/vnnsW3btocyxtzcXCxZsgRPPPEE5s+fjxs3buD69eto16aN+uypWK5coe9y3377LQJMJgSwLKqKEgSaRt3atQvMFVy5cgUrVqzASy+9dE9zFl6vFy+88ALKlymDqpUr/yNW+wcOHEC84jYnCQIGDx4MQRAhGazQmB2gGQYbNmwocrwnTpy4I6vqnTt3IjMtDWa9Hi6HAxkZGX5zUT+6PCCE4JVXXlGX6dWrFyIFUW0QeEGJcSsqzqRz586IEgQ1Zm+c4qJACIGZkp3aBJbF9u3b7+1gFYL3338fhBAk9Vmg1qgsLxQQLPvubd9c0XF3IEwcp2ZW5+Xl4dixY/941OWFCxdQQ4nJ8nXU+wg+r9eLY8eO4bfffnsgUVNerxc7d+7EG2+84UeEer1etQmCUuZl+vTpc8dj6Nu3L4IFAUeV62CKIro4e/bsXY1v/Pjx8nwKJ4BiOITU6o3gGj3AcDwee+wxZJcuA5YTYAyMkePoatQoUlhz4sQJTJ8+HRn55jsIIXjiiSfuaCxerxfdunVTlwup1RsJ3Z6HISQRATY7Tp48CYfTBa0tCO7yraFzhCDAZr9rO/bHHnsMot6M1MHLkTV2M+xpdSCKUpHd6sUJh8sNd7lWKtFvT6+HuPjEB77du4VWp0Ng1c5+joxlypYrtvVfvXoV3bt3hyhpoNXp8Pjjj9/38T969Kh63fgaVxiOB8txcGQ2QNbYzUgftgoasxPdu3cvpj0pGmvXrkVKahpCQsPRq1evEpe5EhQrSsj2O0DJBEkJ/t8RFhiIPrqbWeE9tTpEhIRAFAS002hxzOXBLocTVo67pUrc6/XCZrGgtkL0TlVeOtcFyB2qbyt2Xndiy/Qg8dVXX0HgeUQJAiopWVK+/HZCCESeL9bCMzo8HEmiKJO5ir16WHBIoZODubm5ePbZZ1GudGlUr1rVj5Q4efIkBJ5HI0mDD/KplcM5DgedbvzgdCNO6RjPL5IoI0loXYQd2pkzZxAdGQlG2XeKECRyHHbanWoO2jvvvAMAePbZZ/1e3AcMGACv14vTp0+jcoUKagFFURRSeB48kW3w64oSWCJ3tQ/V6VWyvYwgol7dugXGdPz4ccRGRYEQudN7oE6PcopVnC+H7bBSLC9ZssRv2b179+KVV17Be++9h2effRYCw2BtgA1HXR600GggCoL6opWbm4tAj7weQR8AmuVB0Qw++ugjXL16FWfPnvUruHzkvM+a8HklW/2dAHmyZ9myZYiJjEQV4aYNfSrHg+YlpD3+BrLHbUFI7T4ghCCh+4tIHvAKOIaDRFGowgvgKAoRLIt5ZgsqKOKCzlotphnNcNI0nDSDChwPhhB85XDhkNONjcq2V1gD8LlC2BNCsFjp1j/uDkS6JKFTp04AgEmTZELYyvNgaRqpybK9sU8FbYkth8DKHSHoTChfoSKOHz+O7t27o1r16hgyZIhq0f3UU09hwIABeO6559BYyfoLYxjMN1vQXNKAZZgCHc+3w6+//oqdO3eiV69e6n44aRqlOA4ixxUZzTFx4kSwvKTaRBkjM0ExLBxZjWCKlItNn8AnLy8Pv/76qzqBQtEMNI5wpA1dgdjO0+V8M08MIpoMgyWmNChCwel04siRIwW227RpUxBC4MhqiMhmoyBaA0ExLBhOQAfF+tHtCfKbHEkZINutLVDuz19dHoQJsqL6zTfflMn69HpI7D0fttRaIBQFRpBA0QzSh69C9rgtSOwhq8qXLl0Ka4ANotHuJzJp1LAhduzYIW+393xkj9uCrLGbwYoauFwuOBwOhITInR6O7CaIaDIMvMEGQtGgGS6fXfprSvHPIyDlJuHuEw5kjd0M0RqIrl27Fjg2a9euRWxsLHitSRUj+CwVV69ejeXLl2PLli3FVlRfuXJFFlwkVUXWmI1I7P4CaIYDTVGFdm0sWLAADCuLLBiGUe3f7Bn1EVbvMcR3mQlTVCYsVqu63zTDoEePHre16Dxz5gwSEpPU5Uxmi58l/62wa9cuSBotBJ0JnKgFoWiVQE/pvxiEEGzatKnAcq1bt4YhKE49d2H1B4IQcs8dNT7BhKdSe8S0mQhW0oHTmlBq4GvIHLkOpoi0O84y/PLLL0FRFOxpdRDb4VmYo7MgabQ4evQoFixYgNGjR2PVqlX/+Sz3Evy3UVJL3j3uhWz/O27cuIGIiAiMGTOmyM+UdLaX4FHGyJEj1fcJiqIwffr0+17nn3/+CbfDgThBxCSjCZUlCQLHFVtH3oPC/PnzwdI0tigRdr46tagc7n8KV65cwfDhw1GlUiW0adMGBw8e9Pv76NGjwdM0njaaMNtkgZXj0LhBgwLrmT17Nniaxi6HLOaerwit9+3bp37mr7/+QlpKilqzcyx713MWzzzzDAghqC2KKCfI8yArV668t52/S/z555/Izc1FpcpVoPfEIHPUemSN2QhTRDriE5OKZRs+AXdpUYRbEXpOV2r2WYr4Pz8RvnXrVhBCUF/SYLjeACvHoWK5ckW+l+7YsQMMTSNbFNFKo1HnOJpKEn51efCVwwUbx6FPnz53PXav14uZM2fC7nBCpzegbbt2+Ouvv/DFF1+AEILoVuOVenIJKIrGwoUL/Zb/uwvi21YbKFIw5vFh4MaNG6qwmxCC/v3749SpU6hYsZL6u9p16hRrFOffyWOKovDiiy/6/X3btm2YM2cO1q9ff1ed/r1790Z4PtGF79rKL7L+448/sH79emzduvWW4vItW7bAaLb4RfPZ0+vB5ZbnqeK7zET2uC2q411hQo6ffvoJdqsVEsPAwLJgaBp9+/bFjh077nifXn/9dZksrdsf1qQqfrWsT9T0ww8/oHKVqnC43KhYqfI9fW8cP34cDqcLnKiBxizPZc2dO/eu13MviEtIhCkyA1ljNiJz9DswBMejfIXCGyseJlxuDwKSqiBr7GZkjn4HOlck6tWrV2zr79evHxiOR2DlDnCXbw2Kpu+7c3737t3yPGe359W5IskoN42EN3xcvbZN4aloWtJlXoJHHCVk+x2gZIKkBP/vaNWiBawch9csVrxqscLCcWjXpg3mzp0LQghcggANwyDI7b6lrfrVq1dBCMFMpaD5yeWBiaIgUhRKSxIkhkH5MmX+FXkzu3btQps2bVC/Xj20b98eFCGYZTJjl8OJepIGGlEslmfC5cuXQZR1+8jPioKIxndpM+XDihUr1Gw2Qgg6deoEnUYDLctCwzDQaTSwW63IFiXssDuw2GKFQNN45pln1HUcP34cTzzxBLp27YqKFSuCI3IX8XyzBa01cje2haKRwHLQsywmTpwIr9frR4IyhKBFixZ+Rcn58+dx5coVvPvuu0hNTgZFCDwMgzSOR3mFLGeIbOXWQJS7oguznWrSsCFcPI+3rQGoKYhgCYHIsqApCk00Gqy22tBSowFD0wVe8NeuXYuomFiYLVbUq18fGYr1HE1RYGjaT8l+9epVsCwHZ3ZjZI3djFKDloLX6ItU/+bm5qJc6dIwMCzCGEYWTbAsBJpG6cxMbNiwAQwhqJGvmz6J5cAbbDe7nxUbLl1gvKpSJYQgMSEBHTp0UHPtaZpG9erVIQk3jxsvSGBYmWyPZln00elgp2nYaBpfOpzoptWBoihoRBGNFcHLVpsdWpbFuHHj1P3YunUrJkyYgPnz56tkXO/evaG1BSFr7CZkj9uCiCbDQQgpMnsekMUHeq0Wdp5HeL5rUuB5LF269DZXstzx2q1bN3gcDsRERGDZsmUA5MK3QYMGfsKOBQsWFLqO8ePHy0QzRSFlwBJkjloPQigE1+ylvORvgmSXieVatWsXuKcpmkFg5Q43CWleBKt0RgvKfzlJD4fTVaBD+eLFiwppreQA0gw0Gg26dOmiHld5QouCYHbBmlQF2sA4MITAznEYZzCioRI38c4770CfrzOC1RgR1WIsCCFITUuDRquDPjAGnkrtIZmdCA4JVQvilP5LYE2qqromxMXFY9++faBpGs7SzZA1ZiOsiZXl6y4oATQv+W0nvutziGx2czI3rN5jyBi+Gq4yzUFoBrZSNVWinGI48EY7wuoPhD29LgghRXZCyVnnvJrrFlpH7h4oTLhwv9iwYQOI73zpzIhuNR5aRxgEjitymZMnT2Lnzp04efIk8vLy1M5r3w+nMYBQFGLbTULG8NWwxFcCw7A4evToLcfSu3dv8FoDErrPRqmBS2HwRMPlcsPl9kCnN6BOnTqoV68+kpJLoUOHjgU6Zw4cOIDRo0ejXr16IIQgud8ieYKlnTw5WtikiSrUSKuD4Bo9IGiNqFateqHjy83NxZQpU1ClalU0btykUPFAz549YXBF3MwPdITBElde/XdonX6gafqOCPLnn38eNMupYhhfvl9cfIJ8z5hsqnirBCV4VFFSS9497sVGvjA0b968SEFpYSg5VyV4VOATTo7QG7DH4UJvrWyBXRyk+LfffovUpCTQNI0Qj6dQId+/DZcvX0ZaSgp4mkaIIpYvDvvf+4HX60Xd2rUhMgzqixKCeQFWk8kvJq5sVhaaSBq1NhyuN8Co0xVY16RJk2BgOfyskHebA/w79wFg7Nix0LIsNv+PvesOr6L6tmf6zO29pveEFJKQhJrQe+9Vem8qvQQRASkqSBFFRBRQEVGkW/iBggICIgIiIiKCooiogPTc9f6YuZNck0Aoij7v+j4+f+/dmTNn5sxMZu+99lo2B752e9FA0sCo198WedVtt6NrEaW5KoKImtWr392FKCP8eYOkcilwZDZUvys91TrA7nTd9fg+nw86jQa9tHITydcuD4yKipdOIdk+0Llzse/XZcuWITI0FEadDk0bN8bHH3+M48ePl/qdu2nTJuRVrYq4qCg1brjbXM8333yj2i/Z0urIKlWcgJSUFDz33HPIy6sOhhNgiqkAQWdCRGRUibLbI0aMkAn0HAeKENTIzf1H5N4AeX1mzpypXjO32w1eo0dMqzGIaj4cnKBBv379bmvMvXv3YtGiRdiwYUOxYvnbb8tWYTOMZhxyedBdqwNN0wGqitu2bUOoxwNCCOwWi9pkcits3boVFEWhpiRhkE4PI8ehdq1a6j3z6aefwqKoKhJCkFY+/aaKAknJKTDHVUR2/kZk52+AITIdOqWxxk+8zhj2WqnkmM6dOyOE5/GZ041v3F7UkiSEe71lOhc/Ro0aBa3VrT6XsW1lZaCS7B7vFj/++COmTJmCUaNG4b333rvn45eGt956CzRNQ2vzQmN2geW4e6pCca+waJFsZ6h3x0Br9YDjeGzfvv22xti+fTseeOABtG/fHm+++WbAb25PCFwVW6lrbUurjZTU8nc1Z7mZgYMuJBEJnabCVVG294uOiZWtFE0uCBaZQDJnzpy7OlYQ/zwUFBSoNrX/BQSL7WVAMOgO4r+OM2fOBPhh5VSooPr5bN68GWPGjMH06dNLldMqioSYGCSLIt61O7DILBd6c3Nz0b59e0ycOPGeeVfdSwwbNgwRRQqkftnqokzyO4XP54PFaEQjSYNv3V7scLhg5fi7Sg788MMPGDBgACpkZKBOrVpYuHAhpk+fjunTp+PYsWPYvn17gO8bTWTf7sOHD6Nx48bgKAocIbAW8XNeYbXhO7cXmRwPE0Wp3eQUIZg4cSJeffVVEEIw3mDEepsDlXi56Fu0iF8UW7duBSEEW+2FMmZGpUBtpCiYlMLgnxnZgKy00E+rwzG3F62kQsWB5KQklWgg8HxA4RyQ5UVpmoY5NgvevC4QdCZkZedgxYoVWLBgQbH19HdvxrbNVz80jaGJ6Nq1K37//XesWbMGa9asCfjb8Ouvv6JHjx5ITkhAucREtG/fHk888QT++OMPDBkyBLxOVnNoKWnQVaNV5d4dFRojuuUoSPYwcFqZ+RzdcgxoTkBmZibOnTuHDRs2YOPGjTh69KjK6r5y5QoYloMxOhNZ49Yic8RKcDoL9BQFnhCYiqwzRVGYNGkSnn/+eTA0DU5JLqQlJ9/y79vgwYMhmRzIGrsGGcNeg6eqLHd4M1+vTp06IVIQ8KXLg+9cHlQXBEiCUGLA4vP58MYbb+DBBx/E5MmTcfbsWbRu2RISzaC/Toe6SmfF5MmT1X0+/fRTxMTEgBACq9WK3bt3B4y5atUq9dpSivQaI8kF66LFdo0zClpvPGhORHhYeIB/st3hhGDxIHXgIiT3mQ9G0oOlKLWATgiBOb4SCEWX6GV5/fp1bNmyBa+//nqJsnEFBQVITpG7nClWvndzciqiTq1aEHkeXqcTL730EsaOHQua5RHf4TGkDngeWk8cWE1hx87OnTuRWSELVrsDNWrWwrFjx+QCMyFwZjcHoWiE1OiGyCYPgtcY0KhRYzz11FOFxWOKgrtSK8WPjkJk46FI7j0XupBEcHqbIhlPyf71RQrOrMYEjSsaWWPXwBiVAUKz0LpjA86nqBSgH9988w0ef/xx2OwOcKIGBq+8T8+ePYtdo5UrVyI+IREOlxvt2rXHU089hUceeaTMid9ff/0VNrsDGmcUIps8BGNstiIlT6FVq1ZlGsN/LaOaD5d92fO6gBAC0ego4lf3uMzWTk65aedDtWq5sJTLKwxey9dVEme14a7cFhTNQDA5Zck8vRnlklNK7HY4f/48YmLjIGgNMMVUAMuLqFq1WqkJ1VmzZsFktoDjeDRs2KjUZ3fAgAGgaBrmhMrQuaLA80KxzvsxY8aA1+iR/tBy5EzYBK0nHjQnIKHzVKT0fw46VxTKJafg8OHDt5SiXL58eQDL3U/kIRSFpG5PImfCJoTVlYlcZfGCDyKIfyKCseSdITs7O+B7uKCgAF6vF48//niZ9r9x4wbi4+Nvy5s5uFZB/Fvw7LPPgiJElbf227Hdyy7kv8Oz+V7i4sWLmD17NkaMGIEVK1bcd1WcL7/8EoQQzFcUqw643NCxrCrbDQCNGjRAOcW+7ju3F40lDSJCQoqNtWfPHjA0jcaSBk+ZzEgSRXidroBO344dOyJbktTYeqFZVmAqS47GD5vJhMGK0twpTwgaiBKqVqp0dxfiFti/fz/SypUDTdOICAlB48aNwQoSopuPQGyb8RC0RrRu0+auj3Pjxg3QNI3HFLsuufAtoEKFCpgxYwbeeuutm94zJ06cQEpSkhoHNWvSBJcvXy51+507d4IQglCGQTzLYrXNjtkmMxiKwoQJEzB69Gi0adMGEydOxKVLl0od55133lEJ9oQQ6B0RCKsrd4FrKAoMRSEpPh4jR45Es2bNMHjw4FLX3G+n8Nhjj2HJkiX/mEJ7UaxatQqSYkfHak0o/+BSuZu7QmMkJJYr8zizZ88OiFubNm0WILE+bdo06IvY8m1TVAD9xd0ff/wRRp0OOaKIOSYLaisqH39WpygNb775JlISE+F1ONG5Y8cA8kO55BToPbFIG/wikro/BV6jx8CBA0sdy0+c1jijoLHLzRccRYGiaFiT8xDf4TGY4ytCECWcOHGi2P41cnPRWCx8N0wymMAyzG29I+fPnw+aYZHU7Ulk52+Eu1Ir0DR90+aLfyM+/PBDDBgwAIMGDSqWX/onYc2aNejatSt69+592/PcvHkzGIaB1hEOvTcehBAsXLhQ/T0yOga2lBpqw4kxOhOpaXdebPfn5fThKaB5Uc1NTp8+HXnVq4NmedgzGkDjjALDsvj888/v+FhB/LPg8/kwbtw4CIoFbr169W+aQ/7/gmCxvQwIBt1BlAafz3ffg7i/Czdu3MCBAwdw8ODBUn2AyoJ9+/bBZberH711a9e+aZDyZ/h8Phw/fvymbOJ7jXnz5oGhKAzR6bHIbEFnpWv6dv5InDt3DsuWLcOLL75YTB5+xYoVYGgaOpYFS1GIDA3F6dOnb2uO7733HmbPno01a9Zg3LhxIET2Bff7um/cuDFg+0GDBoGlKPTUaDHFYITEMGCV4mtnjRYDdHpwhCBZ8U9+1GDEdiUAWWSWJci/cXthYxgMHz4cDz/8MLwMo37Av6lYAlTIzCxxvv5i+wi9ASfdXrxmtYEiBPWEQlJDDUFErRo1iu1bvVo1JIkiemt14AjBJIMJs01mmDkOzZo0wYEDB/Dbb78V2++hhx6CxuxUOyhj24wHIUTtRPX5fFi+fDn69euHnj17gqYoiDQDrT0ciQ9MR3i9fiAKgSAiNFS9h8O9Xhw7duyWa9S7d28wog6htXtCZ/FAlGQP9XLlyqke7ZI9DJ4q7dSxq1Sthp07d8JZhPmcGBcXcH8IgoiwOr3V4p01pQYyBFG1B/jkk08wZ84cRCtd8RRFoUuXLpgzZw6WLl2KP/74Az6fD0ePHsWRI0dw7tw59OnTB+Xi4lC9WjV8+OGH2LdvH3heAK+3qPMQb8H0rV+vHmqLIk66vWhXhBRBiOx1XRT5+XKXts4eClaQEBomz9WfDDnp9iKBZUFRVEA3yNmzZ5GdnS3vq9Nhy5Yt6m9Dhw6FxuIGI+nBCBrYy9cFb3SAZlgwHA9ndlMYo2WvvvhOU+Cu3BY0zaJThw7qGHv37oVYZO5arQ7ekFAIFg8SukxDZKMhIBQNimbw9NNP3/IeKIrdu3erPmyRTR5CzoRNqnf65s2bcfDgQdSqVRuRUTFwOp0wxWapa+zfzmK1ljr+H3/8gbj4BNAsB3N8ZXXfsDq9wfMCAFnBY/78+SCEIKLRYNjL14XWE6duG9f+0YB1q1K1KliNAaa4ivDkdoIuJAEURUMyOaAxu0BoGqykg8YtkyBYUe6yGjZsmDqvXbt2QavTg+F40AwLQRTRqlUrPP/888WSups3bwZFUTDHVYSnanswvASKomFXSDWPPPLILa/ze++9B0IIUvsvlH0Mx64BRbMICwsrc4Jp9uzZcve1okBR/sGlSkGYRnzHycgctQqWpFyVYHCzJEzPnj0h6i1IHbgImSPfAKcxQOuJR3b+RkXenUL6w68gZ8ImJPWYBUJKlgMEZPnBoUOHolmzZhg3blyZyGo3+7t5+fJl0DStesBljV0DjdVTzDfthx9+gN3hBCNoIFpDZMKLrfAdZbJYoFeIPgzD4Mknnyz1mFeuXEFWdg4YjofeFQmKppGSkgJeo1evd+qA5296HYII4p+OYCx5Z3jttdcgCAKWLFmCL774An369IHJZFITu126dMHo0aPV7R999FG88847OHbsGPbu3Yv27dtDFMXb6vQNrlUQ9xPvvfcexo4di5kzZ94yzvTLWz9lMuM7txf5igLSp59++jfNNohb4bPPPgMhBK9bbTjlCcG3bi9sPB+gKLZjxw4IPA8vLyBGIReXpgC2YsUKWE0ycTspLq4YUXzKlCkQGAZLLTbsdrpRTZJgt1huW/5aYBgM1unRVaMFIeS2Y5zbwW+//Qa3w4EkUbYtyJMkiDyPKlWrqt+VlSpVvmfJ+fp168LKcZhqNGGQTo7F58+fX6Z9q1erBjfHoYOkQU1BAEtRAX+D/ozr168jKyMDOoaBroilV/169VAuOQW8pIUxMg0sL6BatdwSCbM+nw8uux15koQvXR5ssjugUUjDnTRafOf24n27ExqWvWuZ538Sdu3aBVZRG+D0ViT1mAVDaCKq5eaVaf9Tp07JKm45LZA1bh1i204ARVEBz5a/ADjfbME3bi8G6PSgKEpVWfN3vu9yuFSbQpqiAoqSdwKfzweGYRBef0Ch53ZSLnLzbn5u9erVg5am0UyU8KrVht5a+fn0W58ZjEasW7euxH2HDx8ODcNgkdmKt212RAkCskvJ05WGK1euoHIV+blklYLpvbAuuVv89NNPePLJJ/Hoo49i586d93s6/wrUqVsX+pAEZI9fj+z8jbCl1IA3NEz9fcGCBfI9FVkeuhCZYEQzjKo0ebto2rQZDGHlVNl7V8WWYFkO3377LQghiG4xUs49jHkbot6CUaNG3atTDeI+Q1VDrtIWEQ0GQtAaUb9+g/s9rb8cwWJ7GRAMuoP4M3w+Hx599FEYdToIPI+2rVsH74/bwO+//44PPvgAe/fuva3g77fffkPNvELfptwqVW7ZNXcvsG7dOrUQTYgs2T1z5swy73/ixAmEh4QUFiL0enzyyScB2+zduxf9+vVDZFgYvE4nWjZrVuaC+0MPPQRCCHhljgLLoq8ij/ad24sMQUC9evUC9klPTkY7TaFknYOmoaco1CvSwT9Y8ZAnRPZ9S1IK788o7PyjSsJgzJgxmDlzJjhC8L7diZNuL4YowWud2sWlipctWwZOCQoIIdAUmXevIrJ1OYKIenXqFNt/3759MOn1YIncIe6f7wi9AWaDodTrNHLkSIgGK7LGvC0XLJsPByFEJT+MHDlSLmaLEnQ0A44QvGKxwsUWyke3a9cOjRs0QCgvYIvdia12J0I5Dm6nE6NGjVKL/N988w1mzpyJGTNm4OjRowCApLg40BQNyeRSu6EzMjKRnJAgF4udUYrcNy0X3FJT8emnn8Ko1SKMYbDF7sRGmwMOjkNmejoGDBiAOXPmoGq1XGgsbiQ+MAOxbcaDZXlUFwSwNI0ZM2bg6tWrsNts0FAUUlgOHZXisT9Q/Pjjj6HXFBaUWUIgEIKuGi3SRRECz2P//v2qrNtQnR5vWe2oKkowGwylvvumTZsGhqLQQTneUyYzjvoDWUKwfv16AMAvv/wCiqLgze2k+pazgrzPeL0Bb1jtmGsyI4yR75kHH3ww4Djnz59HzZo1ZQKAKKpB5mOPPaZKhyd0mabKq1E0g9zcPIgaLRhBi5hWY5E9fj3M0RVgZbli0o2//vorXnnlFaxYsQI///wzCCGIajZMDY4NkemgKKrMLHeg8Jn1/6swejVyJmxChTGrQQhBx44dYbZYoXWEw1WxJRheBCvqkDZoMbLGroEpNhsUTRcj0fwZP/74I8LCwiA5ImTfw/yNsKfXg9VmD9iueo2a4DRGmGKyQPMS0gYtRnb+RjgqNAahKERERmLt2rXo3Lmz/A5UiugUzeDRRx9FlSpVUL58eYwaNQp5eXmgaBrevM7IHr8eobV6gBCCU6dOwefzISs7B4aQeGSOWoXMESuhc4SjTt26Jc6/d+/e0DnCVfsCP8nggNONB5V3zM2sSwD5/iaEIL7DY+r9RVH0bSVK/Ant8Hr9kDH8dbgqtpTv2ZBC0g3FcHDltAAhstrA6tWrMW7cOMyfPz+gW+X06dOIio4pfN5YFlp7GLLHr0dEw8EgFI3MUauQM2ETUvrKge67775b4rwuXbqkytzfDS5cuIAnn3wSQ4YMCSB/ZOdvhN4bh86dOwdsf/36dcQnJIIVNNB6E6B1R4NQFBYtWoRVq1ZBp9fDFJWOxAdmqNekKBHmz/jjjz8wc+ZMDBo0CM8++yw2bdoEQgg81Togufc8WBKqQJQ0t9WZdb+xc+dOzJkzB6+//vo/smsoiL8XwVjyzjF37lyEhYWB53lkZ2cHJFLz8vLQtWtX9f9+8MEH1W2dTicaNmx424XH4FoFcb8wa5ZMsHMLAiSGQWRYWDGLoqLw+Xzo1rWrnARX4rXhw4f/jTMO4la4evUq4qKiECEImGQwoZ4kgaHpYnmAffv2YdCgQejTpw/eeeedm47p8/lKbVS4fPlyQK5Er9Hg/fffv605X7lyBf3794fNZILbbseUKVNuu8HhyJEjWLduXZkUid5//32ZUKmo3X3t9kKgaTz99NM4efIkvv3223vaYPHzzz+jbu3aoCgKAs9j7NixZR6f5zg4aRoCIQhTFADDSlAhAORu/cRYWbmL5zhEhYWhVs2aeOedd1RFwJS+z8jqWJ2mlvqtfOHCBZnwUESGvppiv7fUYiu0ppMk9O7d+24uzT8OixcvDoiXWZbFBx98UKZ9t2/fLl/jfs+qMbtosGDixInqNgUFBejQrl3AMYo2BPzvf/8DIQSvKWSZzXYnCCnZ5vB2ER0TC2NECjJHrULaoMUQ9Rb06NHjpvv07t0b0YoP/HKL3Kgi2cOhD00EITeX3v7jjz9Qq0ahz3pkWBi++uqr25731atXsXz5cjz55JNllo+/cOECVq5ciWXLluH777+/7WPeDCdPnoTL7QHDCRC0RtA0jeXLl9/TY9wKZ8+exZw5czBlypRi7/Z/KrJzKsKaXF19NkKqd4HBaArYRratoKBxxSCq2XDYUmuB54U7yr83b94C+tBElUgfUr0LeF7A119/DUIKlUSzx6+HxuwIaNQI4t+Nhg0bwhSdqd5r4fX6gWGYu2rg/DcgWGwvA4JBdxB/hr8TsLdWh7F6I3Qsi3b3QNoqiJujW9euMLAsFpgteNZsgYnj0Lljx7/0mD6fD26HA7mihEMuD9bbHNDSNAYMGFCm/QsKCpCakgInw2CHw4UDLg/SRREZqakB2x0+fBiSICBTFDFIp4eD51E+JaUYw3nz5s1ITkiA2WBArerVVXnjCQYjTrq9mGs0gyYEo/QGNfjKEwQwFBXga51XtSqyRRHfur046faCIwSRDIOqvICTihxhN60WAqEQHhKCSpUqgRACichyZV01WqTysiz4wYMHcf78eXicTrCEwKYUzymKKhY0/vzzzxB4Hi0lDT51utFX8RccNGgQxowZA4oQNJMkVFWY/X/26vTju+++Q1JCAlJ4HseUc2gsaRAVFlbi9oDsPyiIEnTuGNjT64HhBFStVg0+nw9nz54FIQQjlev2idMFDUVhsE6PY24vJijdIkePHkV0WJhKZjjlCUF/nQ4SRYGnKGh5Hh07doRBq4WGYaFlWWglCVu2bFHHby5JyOIFSDQDXpRAMywaCCJSeQEURSOGYTHRYESoIMBsNIIjBMOKrGcXjRYcIYgXRbA0jbxq1RATF18YKCoJtwqZmXjppZcQHRUFWrmuqRwHjhAkCgLat2+P06dPQytJoIjcRb7cYkM4wyCEZtSEh5PnMWLECIwfPx4uQcBxlwcP6vSIZBgwhOCxxx4r8Xpfv34d3bt3l4kUhKjz36EoJFAUhWeffRZfffWVXBDv/Lj6Eaa1eRWSBxUQABOaKTEQvXz5Mpo2baoG4q+88gqOHTum7pfca65czB69GjTLY9asWXjnnXfkRIvJCa3ZA4oQVOF5eBwOAMDXX3+NLl26oE6tWhg3bhwuX76MgoICaHV62NLqIDt/AzKGvQZWK3eYjBw5stR7z4/Tp09j6NChciGxanskdpUJDO5KrVF+yBK4K7cBIQTVqlUDRdHIGPaakoSZIpMwKAo0w4JmGFSoUAG1atTA6NGji0kPXrt2TU0c7dixAxzHQ2vzwhASXywYP3/+PI4dO4Zcf3KOZkDRjOxJTgjmzZsHAHjjjTfkpFLdPvKcukwDIQQOpwsML0CyyPKllSpVCvBzS+z6hMqGFiUNtDo9PNU6qL87s5siLj6xxOvVt29faK0eZI1bF+Dr/oXLg7WKV+XevXtves1v3LiB3Nw8sLwIc1wOOK0RgiihYcNGZbYC8fl8aiHa/2/s2LF47bXXwHI8RJMTlnJ54EQN0jMy0aWLLDOvMdlBMwxCw8LxyCOPqL6a58+fx2uvvYYlS5Zg1apVYBgGem88jDHZIBQNnTceITW6QmsPRUhoWIC1gX8+jz76KGiFTBITG4cvvvgCW7duRVK5ZOgNRlTLzcPXX399y3O7cOECklNSwXA8tFYPCEWD0+gRVqc37On1QAjBqlWrAvb54osvZAJDx8kyC33cOkhGK8aMGaN6yPqTW9n5GyFoDQEWEGXBpEmT1GstSppS/xb8E/H0008r97xMEMrNq/6f8igLojiCseS/B8G1CuJ+4NKlS+BYFt20WpxUbMWMHIcxY8bcdD+fz4dNmzZh/vz52Lp169802yBuB8eOHUOVnBywDINQt7vYN9W9ht/C6q233rrnha2yYMaMGaCKdHHfyvbjo48+kguYSkFzl8MFmqJKtJK7l7hy5cptJ/uNej34IsSAkYpn9p+JvxcvXoTX5UKSIGKWyYymkgZ0EZLFc889B0JRqtd2+aGyYtbbb79d7Jg+nw8hbjcqiRI+dbqxymqHRFGgKQoVeR7/szsxyyTnf/wxW0ljTJw4ERajEVpJwgOdO+PixYu3de73GqdOncKIESPQrVs3LFq0qFTCw/vvv4+wsDD5u1ohYZQFp0+fBsOysKfXR+aIlYhqJjdZrFixImA7n8+Hd999Fy+88EIxKe7r16+jWuXK0DAMckUJBpZFcmJiqdfuzJkzaNGiJax2B+ITk27q775161ZotDo1bxMRGXVLAvkHH3wAmqaRK0rwsCx03iKdyWm14QkJven+BQUF2L9/P3bt2nVT24J7idOnTyM6JlZ9HxiMxnvafd6vXz+IBgvSH1qO7PHrYU3Og9Fk+tsUUH/44Qd4Q0LBsBx4jR40Td8TMsZfjYkTJ4KiGYTU7IaIhoPASzq0bdcuYJuRI0cG5HTK9ZTj2ztRz1mzZg0IITDFZMGR0QA0w6Jv374oKChAdk5FCDoTvLmdYIrJBM0w2LFjx7061SDuM9q1awetMwJZ49YiZ8ImuHJaQKvT/79XiA4W28uAYNAdxJ9Rt3Zt1Coidz1Wb4TI8//vXxj3G3GRkehZpMjZT6tDZCls4nuF0tjEWo2mWAGkJMyYMQMMIWhXpAN7jN4Ag1YbsN3kyZNhYFkcdXlwyhOCVxXZ8H379gGQu383b94MgeNQSZQwWm9AmCDA7ZQZtvucbrWTnSIEIk3jIZ0enRX5txxFdnngwIGYO3cuVq5cCYamESMISBJEMIQgROk2r8YLaCTKPlkWkwkHDx5ESmIimkgSDrs86KTRwkRRMGi1+PjjjwHIH5otW7SAQa8Hz/PweDzFpMKBQu+yd+wO9XrYGQbdunVDQUEBpk+fjuzMTORWqXJLz8Ft27aBZ1mECQLixZvL7vm3b9KkCTiOA0UzYJRA9dVXX8XRo0fVQP+Y24vXrTY4aBommkYHjRZalkWtmjXh8/lQt3ZtRAsCdjvd2Ot0I5phQROCGjyPOKUALRIKI/UGfOl0I10UUSk7GzqNBm0kDQ453QjlePB6K7y5nWS/Y4pGG1GCl2FU78WlFhsYQmCnaaRyHA66PNjjdMNLM8jieJzyhGCJRfbi27hxI7oq3S2CxQPB6AgoDOYbjKr0fyjDqF7x/mRIZV5Q12O2SfaM/8rlwXG3Fx5ewLBhwzBnzhzwNI1Wkka+pzWyhB4hN/eHfOWVV0AIwUyjGUdcHvTV6kARghaiBJZhcOLECThdbhhCEpDQZTpCanQNmHt0i1HIHPkG7BkNQAiFF198scTjXLt2DZ06dVLPy1/wYjUGCGY3Qmt2hy40CQxb6LXm93Iz0TQSOVnBYPbs2Th16hTsFgtCeB4NRAkCTaNxw4bw+XyYN28eCCHgdGbQnAhC0RAtHhBCVF/29957D1OmTMHixYvV7pMvv/wSFqsNlFLMpnkJSd2fgie3UyChgBD06dNHLrYPfx05EzYhuY8sv/Twww9j0qRJMBuNCOF5NBQliAyDBvXqwefz4aeffkLNWnK3hqTRYurUqfD5fNizZw969uyJTp06YeXKlQBkhnvr1q3VYzZp2hQ///wzfv75Zzz99NOYMGECGjRoAIfTCb1CNiGEIG3QYrWISjMcaJZX/3/eIufiqdoeCZ0fh84brwRz3WWLBIqGYLSjXI/ZSOr2BES9Be3bty9xTXfu3AmGZWEIS4I9owEohkUix+EduwPVRQlGna5M7+GLFy9i1KhRsNvtqh+51hEGrU6vKk/4UVBQgA0bNmDhwoXFki67d+/Gq6++ijp16qrnaXc4kZNTEdGxcZCKWA6E1uwur12vuSAUDYYTQCnd33/G//73P9SvXx+VKldBv379kFY+HWaLFdVy80rsOli0aJFM0qjcFrFtxkOyhsAbEgJR0sAYkYLQmt2hsXoQERl1S2n5uXPngmZYtbvGk9sJhKLA8TzMFitGjRpVLCHjZ6HHtByNnAmbkDlqFXiNHo888ggOHz4sJ40aDla6858BRTMBZK+y4uTJk9i1a5f6XP0bcObMGTAMA1dOc2Tnb0DiA9NB0QwWLFhwv6cWxH1EMJb89yC4VkHcD3z//fcghGCxxap+j5eXJHTr1u1+Ty2Ie4Q/54kKCgpw9OhRHDt27P9NDmnfvn0ghGCATo9PnC4MVlSo9uzZU+o+169fR5WKFaFjWTQUJTh5HuEhIf/Ib78mTZrARdPqM/q2TbbN++yzzwK227FjBwghWG9zqPYBJo5TiadffvklOI6HJb4SYlqNgTEyDTq9vlRVw61bt8KgSIYTQpCdmQmdRgO+SOxIEYIlS5aUuL8/Ju6l1WGk3gANw6Brly63ff47d+7EsmXLbukP/dtvv2Hq1KkYNGgQXnrppWL39+nTp+F0uSFojSoRvFevXqUqdV27dg19+vRRz3Xw4MFlIkosWrQItKJAQAhBp86db/tZu3jxIsaPH48WLVpg2LBhpXb1llY0vFlh+fjx41i0aBGWLVtW5m+ONWvWoEL58hBFCdZyeWoh1JvbCUaT+bbO7e9A9+7dZfu0/guRMXwFDKEJSCqXfM/Gb9q0KUwxFQqt9poNAyHktmxK7wYDBw6EqDej/NCX5WJ/udy/tdh/p7h+/Tr69u0LWmmSatiwUTEbzueeew4UTSO+wyRkjVsLR2ZDsBx3x5YeK1asQEZmBcQnJGH06NEqEf3MmTNo3rwFrDb7LUkqQfz7sHPnTrnxxxEOY0QqCCm9Wev/E4LF9jIgGHQH8Wc0bdIEaYqEzylPCHpqdTeVrw7i3qBKxYqoIIo45vbiG7cXFUURFdIz/tJj+nw+2MxmVOIF7He6sdpmh1YpUP6ZGVsSUhITEc4wsNE0Ntoc+MjhQgzLgqMoTJo0Sf0Qmzp1KvQsiy+VYvvLShH1008/DQguOEJhq8KmXq0EeDRFoadWh0+cLpVhnVWhAhgid5mPMxgx32gGRQh0DAOephHm9WL16tXo3r07unTpgnnz5sFhlY9JEwKtKKJZs2ZITkxEuMcDo06H9kUIAx01WiTGxACQuzESY2Ph5Hl002oRzjBglfkW9aQD5KI8TdPordXhO7cXyxQJLI5lcfDgwTKvy6+//oqG9eqp1yUmJqbED7Pr16/j66+/xrJly0DTNAyKZ9qHDie+dXvRVNJAr9Xi8uXLCPN4kCAIiCgSlIkch8TYWPTv318t6n355ZdwWK2giSy5zhECL0UjjmVBKcFuqDJGX60OLSQJXocDCXFxAQXVcj1mK93Wb4FiOFCEQE9ROKTcA08oRW8Xy0JPUWqBnCGyXP8pTwgOuOQi76uvvgqNRguGZqChGegYBjQhaKSQEJ5QyCIn3V4ksixYQiDqbYrENwU7TWO/042Tbi86abSgCcEgrQ5VeAEsw+CTTz7BhQsXkFquHBhCMFinD5D7b1C/Pnw+H/bt24f//e9/+OWXX3D58mXMnz8fI0eORI0ismWEyEoM79plQsDHH3+M3bt3w+lyq7937NhRJg5ojGrwlNJXLjj7u4NLQkFBAQYMGKCOk5WVJXfqak2gGBYUzRaTD9+yZQvatGmDOnXqqAXBxx9/HFqWxecKiWWeSfaqP3LkCBYvXgyKELSVNBihN+Axg0k93tdff6125AoaAyiaRnZORezbtw8Oux08zcIUlYmU/s9B642Hxh1TjFzQo0cPnDp1CkazGTpXFNxV2kJjcSEiMgoXL17EtGnTwFE0DAwLDc2goiIlePjwYeTmVYeoNyOi4SBVvvvll18u8VoNHDgQLC8gosFARDQaDE7QoGfPnurvtWrVUtn2hBCls56BpVweUvo9qxbWBZNLXaOELtNBCIHDUYTsQdOwZzRStzFGZULSFCaMklNSVf9dQH7nPvHEE4iJjUd0TCy6deuGarl5KJecgoyMjEJmvFaHTZs2lfmdcfz4cYW8IXuCVRj1JgStAfn5+eo2N27cQPPmLQLWo6iKyfr165GcnAyKphHVbDiSesyCzhWFuPgEJCQmQe+OQXRz2Y4iuc989Zw5nQWeah1hL18Xoijdtax4dHQ0RGtIYWKh+Qj53cAJqDBmdQD7/FYSf+PHj4dktKmybsm95oIQgrp1C9+vOsX65MaNGxgzZgysdgc4QQRFM7Cm1ITWEQ6tTo+vv/4aPp8PPXv2BCEEemc4GE5ASmpamfzk/z9g79698vu959OFSh1Wd9B77j+OYCz570FwrYK4H7hx4wbCvF6kiSLettkx2WgCRQieffbZ+z21IP4CnDlzBhWzstTvrFo1avy/eOcsXSp3aB9RYtmjblmp7KWXXrrpfufPn8fDDz+M2jVromfPnjh16tTfNOPbw5tvvglCCIbrDVhts6OSKMJqMhXrdD5w4AAIKbTe+8TpUqXx/Vi9ejVMZjnWdzhdt1Sm+P7777Fy5Ups2rQJn332mUzOMVvxutWG9+xORIsihg4dWuK+1XNzA6wCh5XQ+HErDB8+PCA+Kho/FcX58+eRkJgElhehd0aAEIJ+/foFbPPII4+Al3RIf2g5Qmp0VZXsosLDS80H+Xw+1dKOEIJGjRqViXB95MgRvP7669i+fftfWgD1x5mxbcb/LXLYkydPVm3bwuv1Aydq0OlPtl//BFSqXAXW5BpqTBRWty94XrgnY//xxx/IyMgARTOIbjFKjsudkUhITLon45cFzZs3D5DI9iso/Fvi3qtXr5aqcnDt2jXUq19ffeZo+vZs+IIIwo+dO3eiU6dOaN68OV544YV/PBnlXiBYbC8DgkF3EH/G5s2bQdM0UgUB1RW560mTJt3vaf2/x9atWyFwHBw8DxfPg+e42/YhuxNMnDgRdJHgIkXpgP1zEWv16tXo1KkTunfvrkrfpCUlob4oIlYpvjKEgCcE1ZROc39x7+jRo9BpNEgWRPTQ6mDhOGRnZuKJJ54ARQgeMRjxgtkKN80gjePUzmdCCEaMGKGyEgkhGD9+PHbv3g1CCGYbzTjp9sJIUWigyMZ/4nTBzvPo379/wPzPnj2LpUuXYvz48Rg/frwc/IsS+mp10NA0GCIz1fvrdGAoSi2k+73W1ins7X1ONyhCUEd5Nv4cMOfn56vXghCCXEGAleMwevToMq9Jh3btYGBZzDCaMdFgBE/TxfY/ePAgohTZMUIIvAyDhoKISjyvBpsLzHIR9ZdffsG+ffug02hhoCi8ZbVjs92JWEFElZycgHF9Ph8qZmXBxDAYqtMjT+nupoksE/+owQgtRYErcs8IDAMzy2Km0YyOij964gMz5K7QEStBsxzq168PrSginOdRXxTB0TQa1KsHu8UCShnffx+2ECWssNpUBQKt0i0ezTD40uXBUbcXFTge4QyDXEGAkZI77Zsp248zyKSMhE5TYSmXB4YQ6CgKHkWW2khRYAmBx+nEhg0b1HO/cOECRI7Dg0qx/ZQnBFUFEXVq1UKTxo0DSArxsbFgaRohSsHfXygdrzfgK5cHD2i0YBkG7777Lnbv3o1ffvkFhw8fxpkzZ1BQUIC0VJn5GNs2H1lj18CZ1RQ0w+DTTz+9qSSzz+fD2LFj1bnk5uaiarVqaNq0marEUBRffvkl4qKi1O0feugh5Ofnw8bz+FYhVL1hLexcmDlzJiSaVslWHzhkdQmb3YFvv/0WhMhe09n5G1Gux2xQNAODVotIlkUfrQ5OloPG5ISnWnvVU37IkCFYs2YN9uzZo3587t+/H1Wr5cIbEoYGDRri22+/BQA0aNAAhBA4s5vBm9cFDCu/j/zedJFNHiz0kw8rh7Zt25Z4nWLjEuDMaqJu66rYCiGh4QBkWX5C0TAnVkWFMauR1O1JUAwLTm8FxXDqtdLr5Y6VkBrdkNh1JnQhiaB5CYSi4a7UGqkDFoEWtHBkNlITD3pvPOrVq4cPP/wQ27dvL7aWfrUBW1od2NPrg1KISX5888032LFjB3799ddS74GScOTIERBS6N2ePX49JJM9oAjqV2GIbTMe2ePXw12pFQgheO211xTfMgJG1MIQWV69btFKodt/7TNHrATNa2CMroDkXnMRUl2WlI9r/yhi28rvvrv1HtfpDWBELTIefhXxHR5T14SimULrgc6PgxByS6k+vxWJt1pHJHV/CqaodAiiBELToHkRutByILRsASBLztFw5bSAu1JrUBQNt9uDpk2bBnT1FBQUYMmSJRgyZAimT5+OCxcu3NX5/pvw66+/yt0mSdVQ/sGliGr6MAi5uepKEP//EYwl/z0IrlUQ9wt79uyBuwhZsUePHqV2egbx70brli1h5Ti8YLZigdkCPcv+v/Db3rZtGwghmGY04aTbi5lGuZj8/8Xi4M8xptVkKtFD3OfzoUmjRuBpGtVFCXaeR6jHg59//jlgu4KCApw7d+62Cw+//PILaJpGX60OJ91evGt3QGSYElUFAaB+3bqoIIiqel5XjRYOi6XMx/PHmOMNRhxxedTmjpIUC+bMmQOG5ZDaf6Hqz0sIwTfffKNuM2TIEOjsoYhpLeeb+ut0WGS2Il4QEBUWVsxGsSjeeOMNSJKcz0hLS8PJkyfLfB5/Jb777rsAUnfWmLchGqxlspm7E1y/fh2DBw8Gy3GgaRotW7UqkXzw/fffY8WKFVi3bt3f1u1dFL169YKgMyG5zzNIf2g5DN44JKek3nrHMqBr125gOB6iNUR9Jk1mCw4cOHBPxgfkYvRHH32ErVu3BpBqfD4fDh48iN69e4NmWMS0Govk3nOhd0cjNi7+nh3/fuPGjRtYt24dXnjhhTLb7wURRBDBYnuZEAy6gygJmzdvRvNmzVC/bl0sWLDgP8HO+Sfgs88+w8iRIzFy5Mg78ou5E5w5cwYmvR4uhkE7SUJ5QYRRp1OLyNevX8djjz0mF+IFAVE8D4am8e6772LuXLlLMJSmQROClpIGWRyvdikTQtC6ZUtcvHgRu3fvRs28PESHh6NSxYqYO3cu6tevj7wiTGR/0NpakmBkOVTOycGNGzdw9OhRrF27FocOHcLVq1flDz+lG9qgFOKfKiKFX0MU0aRJk4DzPHr0KEI9nsICMUXhY6WD+nGj3L1rNhhgNZkwfPhwNRB69913QQhBbUFEU1HCLJMZDCEYpEjH/VlqzC+tlsnxmGow4WuXB25ewIgRI0pdgwMHDmDWrFl48skncejQITgsloCCb1tJg7TkZCxZsgQvvvgiTp06hdjISCQIIpZZbBijBIUOmgZHCBaardhqdyJTFBHq8ajPb1Z6OtoW6eAfqzcWY36fPHkygK3+rdsLUVlb/35DdXpwhGCtzYHVNjvMFI1kViZJfOF0Q6IZsJIOjgqNoXWEw2Q24+TJkzh8+DA6deqEOrVqYeLEibh69Sr69esHPcNgvN6AbQ4X2kgatehOE7mTXlSK+1qKwkcOlzoHnlB4ymiCSyFLeGkGT5jM2Kn4pse2GQ9jZHm43B4kJCQgIiIC8bGxiAwLQ0JCArp06YIvvvgCV65cwYABA+CwWKCVJHCKmkIzRTa7Y8eOoAnBXJMFW+xOZPM8GEKwVLlGjyn3T/26hfLbRZ8BP6t/z549+PDDD9GqVSuEhoSA/MmznVGsDiSNFq+88spNn9vp06er+/Xr16/EhKXP50NibCxiBAFLLFaMVu6TMWPGgKZpNJQ0mGo0IVIQEBMRgStXrmDXrl2gKArtNRq8bLGiIs+DpShs3bpVJbmU6zVHLcYyotzF7bd68Hf08zoz4hMSb9qp/+e5njt3DuXLp8McX6lQNi6vM2iGxe+//w6GZWErXxdZY9cga+waaGxedO/evcTxsrJzYIxMU7zeNsAcm4WU1DQAUEkDce0fVY+jcceAN9hhz2wEQgjatWsHq9UKQrPqdea0ZujDU0FoRvXsDq0tdzkbItKgc0eDpumbkqSSU9JgTa6uHteR0QARkdFlukY3w9atW8GwHDidGaG1e8IUl1PME+yxxx4DI2jVY6f2XyiTUhISQCgahqgMOCo0Aas1If3BZcjO3wBbak3o9AbY7A6Y4ysia9xaRDUbDoouVMgwxVVEcp9nYAhNhMcbctfJ85TUNFAsD0bSg6JZGKMrIKn7U2AEDQSTE/b0euA1emRWyFLf02fPnsUnn3xSYqF/4sSJ6lyNJhOSkpLkv2fKGsa2nSD/HQuLgL183cK1qdD4nqxNQUEBFi1ahH79+mHSpEm3TaT4p2HlypXgFcUJQmTZymDB5L+NYCz570FwrYK4n/jjjz+wb98+lWAZxP9PeBwODCkSx3bVaFEu/t9foPH5fKoin6DkH3r27Pn/Lk92+vRp7N+//6a+51euXMGkSZPQrFkzDBgw4J5368+YMUMu+PM8WJpGWnJyqZ3e69evB0VRyBAE1FKaIaZMmaL+fqv1Wbx4MQghOKYU6w8rynrLly8vtu2ECRMgGizFFLN27dqlbvPWW2+BEAKNKxoRXGETxDKlkeTYsWM3nc+uXbtUFTWPx/O35QRvBp/Ph3r164MVJDgyGkDviYMgiDhw4ADOnj2Lffv2Bch0//rrr2jTti2MJjNCw8KxePHiOzrujRs3SlVM27ZtG/RKgwUhBGnl0//2GOvMmTOIT0gMKIbfzFbidqDRahFSvQuy8zcitf9C6EITkZuXd0/Gvnr1KoYNGwatks8khCA8IhLHjh3D1atX0bhJk8ImkyI2ck6Xu5itRBBBBPHfQ7DYXgYEg+4ggvjvwufzBchmMUSWuPIXaI4dO4bE2FiwhKC5KOGk24vjbi9SOA5GvR6//fYbnn76aVBE7no+5QnBCbcXsSyLFJbDZKMJGoZBnz59cOnSJaxevRpmg0EtREqiiBCexxcuD066veis0YJjGGSmpaFPnz4lfjCPGjUKHE1jlN6AcQYjeIqCKAiI5Hi8ZbXjObMFAk3jkUceCdivTq1aiBIEfOhwYqvdCQ/NoK4gF/onKVLZJQWVa9eulbuqWRZpSte/QAgqiyIMOl1AYHH48GHYzGZVfp0nBB6GAU1R2LJlS4lr8MQTTwQUXAkhMBuNaChJeN5sQSLLQSQUmCLFLYNS3H3eXOh9mMJx0Ckd20UZ6UW7ndu1bYsQnscepxtfujzIEiWkJgVKUf3www8ghGCWQl742u2FQAgqcDxOuL046faiuSjBSAgOKjJ6PbQ6WCgauxWPd//xeUFEbl7eTSX0BwwYgGhRVO+tmcZC2XJZJUHAMbcX+5xuuGkGlXger1ptsLMsjDqdXNimKPAsi4o8j8eNJqRwHBiKhmCR5f3CvF6IPI+M1FTk5eUFFPNFQUCH9u0hMAwG6PTooAQUdpMJibGxeO6551C3bl2VTFDUS/5RvewVv9Uud39v3rwZ77//PlwuN1jJAEJRiGw8FOV6Pg2dJxZ2pxM0RUGnEEWG6fToqkqOUzBElkdcu4mwlssDw7LYsmULVqxYgdWrV5d4bz799NOqL33Hjh2LBaM///wzCCF4ViEFnPKEIEOS0LlzZ+Tm5qnqCyLHY926dep+zz//PARFncJqMuH999/H22+/jYaNGoFQFDTuWKT2X6iy+Qkh2K8U299XroXD4bxlMsGP48ePI618urKWNHQhScjO34CcCZvgzGoCo9mMylWqqseieQmSxQ1BEEtNQKxfvx40TUPnCIPOGQ6KovDmm28CkGXDOF6AKTYbGcNXIKHT1MLiMVWookEoSr1XtCGJ0Eekye9JhoE1pQbSBi9BWN2+IISgQlYWWrduXepz7kdKWnlYinjQ2dPr3XVB1+fzweMNgd6bAH1YMmhOAEWzaNWqVcB2K1euBCEEkU0eQsbw1+HIbAhCUbA7HGB4Cfb0ekh/cBl4gw0Uy4MV5QC8VatWaNu2LRiGAStIoBkWHm8I1qxZg0aNGhW+b2z2Yp3mx44dw+TJk/HII4+UOTjfsmULOI4Hraga+FUyUgcuAito4HC60KtXL9VX8OWXXwan3K8Mw+CZZ54pNuaPP/6oJg5r1qwJimaQPX49ciZsQtogOckWGRUNc0JldW2syTUQG59wh6tSCL/svMEdDU6QEBef8K//5v7uu++wdu1a7N69+/9dkjmI20cwlvz3ILhWQQQRxF+N8snJqCyK+MbtxVGXB2miiJr3qEh0v+Hz+bBx40bMmjUL69evh8/nw9WrV3H8+PGbFqf/K9i0aRNat26N5s2aYeXKlXc11vvvv49Jkybh2WefveW13bBhAxo1bIjaNWvimWeegc/nw/bt2xETGweGYRCfkBhQEC8Kv2LBRIMRX7u9ahNDSd7t/iYMd6VWSOgyDcaIVJjM5mJEgKlTp4KiKGgpCnuVGNlPei+LJ/Tx48dVcrBWq8WaNWtuuc9fjQsXLmDAgAFITklDzZq18PHHH2P+/Plqs4AoSnj99dcBAPXq1wev0cOb1wXWcnkghNzSq/ry5cvo3bs3DEYTbHZHgCVlSQiPiIQxPAUZD7+Kcj2fBi/p8NBDD5XpXH7//Xe0adsWkkYLq82OJ5544o7jmT/++ANr1qzBypUrA6zj7hZGkxmunBayYl3+RhhCk1C/fv17MvYDD8g2fxTDwZ7RAPEdJ0OyeJCbV10m57McoluOknNYrihEREbho48++kepuV29ehWff/45vvrqq2As+h/D1atXMW3aNHTs2BFjxoxRc0JB/H0IFtvLgGDQHUQQ/128+uqrIIRgtN6AN612VBBFOG02VYYpOzMT4YIAkcj+Xf6CXTNJAqd0yF69ehUUReFRg1H1uU7nODQWJZzyhKCPVgeTVqsWRmklmNnrdCOE48AzDGw8j1hFjnvOnDk3nXO5+Hh01GjVufTR6tQCs7942KBevWJSUmFuNwYVYdn31uqgoyg8oNFCZBi0K0WOum7t2kgXBHyrFJpbSBJYQqDXarFx40YcPHgQEyZMwCOPPIIaeXmIEgR87nTjiMuD8hwHlshdzgkxMcWCqyNHjoCiKPTV6nDI5cGUIoVmtfBOUarsuT4kARnDXoPWEQ6KEPTT6nDKE4K9TjfMNI0eWi0kQhAeFoZ169bhl19+CTjeN998A4/TCYoQsBQFnUaD7du3B2zj8/lQpVIlCISgk0aLFF4ApRQg41gWaSwbML9sQUQUy4EmBGaahp2msdHmwHt2J8I4DnVr177pevqD1kyWg1BkHWNoGrxyrxS97/zFz7TkZHz//fc4ffo0Ll68KAcGyrX20gxylc5LgWWRLUqYaDAiSRBkSXmagZXlEaV0JXAMgxyOw2i9AR86nKgniqick6P6UbVr1w4iofA/uxMn3F60lbSgCEEez2OtzYG6kgSNKOKnn37CTz/9BEII9GHJ0IUkqYW72DaylBxFCMophIQHdXpQRFZNIISg/NCXZWm2cetAKDrA+zsuPkEN4I4ePYqUVLnwyynyaoQQNGnSJOC+P3LkCGiaRhtJfhb3O92wcTxyc3NB0TQiGg1GwgMzoHNFITomNiBQuXTpEk6cOIHt27ejalW50K0LSYAuJCFg/eMYFhaaRjzLYqBODy/Dwu1wlDnY9Pl8SElNg8biRnSLUbAkVpOvX2gSTHE5IIQgJycHnKRFXPtHkdTtSQhGBxxOF/bu3XvTsT/88EP07NkTPXr0wObNmwN+W7VqlSpRTwiB1xsCUdJA44xCSt8FiG07ATTNFlps0DQIRaF9+/Z49dVXwXG8uu/gwYPh8/nUfzfDvHnz5MJ0cnXYUmuDEIKpU6eW6VqVhgsXLoCQQmm/nAmbYIrORPPmzfHJJ59g4sSJmD59Ok6dOoWw8IgAMgEhBG63GxTLgVA0Qqp3gadaRxCKRlJSEnR6AzhRA1FnAk0z6Nq1KxYsWKC+W3w+Hw4dOoSPPvqo2Hfk/v37odPrwUlaCFojOI7HO++8U6Zz+vzzzzF8+HDQNA1nVlNk529AuV5zwHA8nnjiCXW7o0ePyooHabWR3GsuHBUag6Io7Nu3r9SxZWsQCpZyeYhtmw9daDmIkgZPPy37wJtiKsAUmw1CCObPn3/7C1IER48eBSEEEQ0HyYSBAc+DZljMnTv3rsYNIoh/EoKx5L8HwbUKIoj/Jq5du4Z9+/bhwIEDd6xG8/7776NihQqIiYhA927dSn2PbNq0CRzLwsHzsHI8JEEo0erqdvHhhx8iPjoaLMMgNSnplnHA34GtW7fCbpFt23iOK5Hw+V/B22+/DYqikCoIyFJi2+eff/6+zOXkyZPQ6fUwhpVDeIMBMIQmwGgy4fTp0yVuP2DAgID49mb2f9OnT1djb4vVVqLUPgB8/fXXcNpssHAc0hRp+LIWgwG5O7x2bTlWpGkaTz/9dJn3/TuwZ88eUBQFZ1YTJPWYBWu5XPC8gEOHDskk5sZD1UKx3h2DBx544Kbj9enTBywnwFOtA5xZTUEIKfWcr127phDIC+3lzHE5qF+/QZnm3qx5c3CSFiE1u8nkc0Lw0ksv3fY1+Cvht6Y0J1SBITwZhJCA5og7xfnz59X7nJX0oDkRrNYEV8VWMJrMaNas2Z982oeBEFKq9/n9wLFjxxATG6eeR8NGje6LjUAQfz8KCgrQoGFD0AwLY0QKeEmLhMSkfxQR5L+AYLG9DAgG3UEEcWe4dOkSevXqBbPBAJfNhilTpvzrWHVDhgxBtFKIO+UJwetWWd7q8OHDuH79OiiKwjSjCTqFmTvNaMJYvREMIQhhGLRu3RoA0KpFC2hZFkN1ejRXfLOfNVnwnduLGoIAlhDUEkWssNrQQaMFTQg22BzoptWCJQSZmZno169fmVi7ORUqIE/phD7p9qK+KMJNM1hncyBFEOB1uXDjxo1i+9XMy0OcIGKv041PnC5E8DwsRiOSYmMxePDgUj8gK2VloVmRazRMb4BBq8W5c+fwwQcfQOR5WDgOZo4DT1HoXIQIMFxvgJWm8aHDCRPHYfjw4QFjr127FoQQfOKUpdFPuDyFxT1CwCrFzAE6vSqVnv7QcniqtlcL4OEMAwNFwUnT2OFwwcbxyM/PL/FcPvnkE7Rs2RJpaWlo3759qZ3Hfp9jndkNU3gqErpMC5CNJhSN8Hr9ENVsGBheA57nMWPGDBgkCT0UAsApTwiG6PQw6/W3XNP69euragcumkY6x8td5xSFCIbBepsDL1msEJXi4FNPPVXM72zXrl0ghOBJowmnPCFYodzLFCE4rHTgb1fk5XmDHYLJHdDFTNEMNIRAIhT0ReTde/TogWZNm6qFfFHZh2EKr4dOo1HZ2pcuXQLDMNB64sGIOpQfsgTZ+RvgyGgAQihEsyyOu72oI4gQlf1fVjrl49o9IkvS9Z4HQtPQeWKR/tBypPRdAFFvRo8ePXDjxg3ExsVDawtBRMNBMMVXks9J6eytVKkS1q5di5kzZ6pMc0IIzAwLM8fBYbWiSZMmMEakqEFUTKsxIIQUY4V+/PHH4FgWAsPCFJuN7PyNyM7fCHN8JdC8BIrIRJ337E5U5gVoKQoOqzXAt+5W8D8DMS1Hq/ORrCHweLyoXr0G5s+fjwpZ2bCl1VZ/D63VE7oy3Fe3wrfffovXX38d7733Hh544AEQQhDVbLh6HGNUJiRCweFwYNq0aVi2bBm2b9+Oixcv4uTJk3jnnXdw8OBB+Hw+TJgwAXqjEYIooWOnTqV+8Pt8PsyZMwdJySlITErG9OnT71qC2+fzwWqzwRyXjawxbyOl37PgNXo0adIENMNA0JnAChKsNjv27duH3Lw80AwDluNACAXJ7FKUGGjI1gYU4uLi0Lp1a2isHmSOWIns8ethia8Ib0homefVsFEj6JwRyBy1Clnj1sIUlY74xKRb76hg27ZtqFOnjvy8cTJ5JrNClkqCAYDXX38dhBBkDH+9kKhSSnLvf//7HyZPnoznnnsOTz/9tCqFbjJb1ETZyy+/jNzcPFSpWg2LFi2667/pO3fuBCEEyb3nqQknUW/GxIkT72i83377DS+++CLmzZuHL7/88q7mFkQQ9wrBWPLfg+BaBRHEfwc+nw9ffvkl3n33XZRLKCTL5lapEqDMVhbs2bMHHMuioiiit1YHA8uids2a2L9/P957771iJNu9e/di9OjRGDt2LA4dOnTX5/Ltt99Cr9UiSxBRRxBhZhhoJOm+elqfO3cOZoMBlUQRSy02dFFI0n8msv9T4fP58Ntvv5WYN7kTVKtcGVVE2Tv9pNuLZpIGsZGRt9zv6tWrAd/29wJLly4NiA/SH1oOQkiJ3fb79u2DW5FtJ4SgauXKuHr16k3HP3fuHI4cOXLLAt+pU6cwcuRIdO/eHYsXL77tuOLatWvo1auXOrdBgwbd1PP978T8+fMDlML819gfm4XV6a3GZlpbCHr27HnT8UxmCzxV2xcWzxOqoFLlKqVuHxIaBmNkGjJHrERyn/ngNXoMHTr0lvO+fv06GIZBWN2+6rEMEalo2rTZbV6BO8P169fLVBguKCjArFmzULlKVdSqXfuu1Q3OnDmDd955RyadUzTMiVWQPX49Moa9Bt5gB6sxIiU1Df3794eot8iWcuPXw5qcB6PJ9I/Kc1esVBkaqwcJXaYjuuUoMJyAMWPG3O9pBfE3wJ/zjW2bj5wJm5DS/zkQisKSJUvu99T+UwgW28uAYNAdRBB3hp49e0JiGAwtIgU9b968+z2t28KUKVOgYVl86HCqPtgUReHs2bNyAcdkQktJg5Ai8uQUIagjiOAJUYu658+fR9cuXWA3m+G22+UuS5ZFAsuqRdRditf2CbcXHCHor9PBSdOIU7aZNm1amea8atUqubNZEJCuFBhnK5LnC8wys/zPHd0AcOjQIThtNjVYcdntyMvLQ2JiItq2bVuiPNn69euRkJAAihA0ESVMMZqgZ1l0aNcOgNz5nyWK+FqRybPQNEw0jZVWO9bbHAhhGGRxPGoIIkRCQa/RoF+/fvjwww8BAF988YXa4fyN0jVPEYJxBiOeN1vhphmkcrJ8+RqbfF1taXUhml0wMyyeNVtgpmjoCIWBWh2qSxI4li2R6b9nzx4IPI8YQUA1RUVg3LhxJV7jY8eOgWFZ8EYH7OXrQhuSCJpmoKVpRHI8bKm11OAkpHoX6AxG5OfnQ+B56AlBR0mDijwPI0VBYNmbruf69etBCEF3rQ7Pmi2IZ1l4lcJ+7dq1YS7ixRXm9RbrUPbD5/Ohc8eOIIQgVBTBUBSSlMTSDuXeW221gSIEDKHgpBkwvISEzlOR3GsuNCYX0gURaRwHnhA8aTIj32AErRT4h2h1cDLK/UzReP7553H69Gns3bsXv/32G3755RfMnj0b7du3R2pqqkpKoBgWrCTLcbtcLmQq3m2HXB5EKwX7qQYj8kQJNE1D444BxfKgaBphdfsUSlqn1EDFSpXxzTffgBCCkOoPgOYLPbTCIyIgCIU+yoQQ2NProfzQlxFWpzcIkX3IT548iaFDh0LQyb7csW0fgWgNBcMwxeT+W7VqhURBQDgvwFGhsToXZ3ZTCBYPJLMHIqEwQm9Q34HPPfccADlAvFVQ9u233yrd+xS81ToiZ8ImZI5cBdFow+DBg9XtWrRoAY0tBJkjViJr7BqYotIRG3dvvR+1Oh1oToQ5sSqyxq1D+SFLwIo69VpGx8So/9vjDcEXX3yh7uvviHZVbImQmt3AChI6de58T+Z16dIlDB8+HDkVK6Fp06alyuavW7cOvCCq3eqJSeVgdzhhSSgMpCWzU+0quHHjBkLDI2BJqIzs8etRYfRqSLYwWK02TJ48GTdu3EC13NwAyfvwev3AcXyZ556WngF7er3Cd0WNrjCazMW2u3btGubOnYv+/fvjySefxOXLl7F06VJQFAXJaAUraKDR6jBz5sxiyQm/9GN0y1HImbAJ8R0mlcj899t1CFoDKJpBSmoafv31V5w5c+Yv8xt/+eWXERIaBqJYI8R3mgJXTnMQQoq9x3799Ve0b98BdqcL8QmJeOONN4qN9+OPPyIyKlrucGEY8LyA9evX/yVzDyKI20Ewlvz3ILhWQQTx38DFixdRz98VSwgcDIMVVhsWW6zQsyz69u17W+M9/PDD8AoCvlF8reeaLAExh1aS7knXZWl44YUXQAhBFsdDIARpinpccmJiqZ7OfzU++OADEELwvl3Oo3zn9sLAsnetWPV34MCBA4iPjlbXbuHChXc9ZkZqKtpKGpV0P0Cnh8fhKHX7GzduYODAgSqBvU6duiXmcIri+vXr2Lx5M9544w189913pW73xhtvgBCClH7PKkR22Vu9JCnzuKgoJIsiNtocWGC2gKdpTJ48uewn/hfD5/Nh+vTp6rPWqFGjf0QXpz8nl9BlOnImbEJ08xEghGDnzp3o3r07aIaFNaUm9CEJYFi2mNXYn+FwutR8Q3b+RhgiUlG9Ro1St9+yZQs02sJYPalc8i3vH0DOUQiCqBb2s8evh84VhbalqFzeKxQUFGDYsGEK2Z2gfoMGf5v89f/+9z/o9PqAd3ZkoyGFinhxFUHRNLZt24ZTp07B7fGC4QQIWiNomsby5cv/lnn6cfHiRTzQtSsMRhOcLjeeeuopNa/k8/nAsCzC6w9Q529JrHrTeyWI/z/wq6KmDXxBfX4ZTsDs2bPv99T+UwgW28uAYNAdRBB3BpNej4eKyJLXFUVUr1btfk/rtvDLL7/A43RCoGh4lQ+/ol7nL774Iggh0DMMKCL7kBcWPkNK9c/Kzc2FlabRWtLgMcUP/RnFN/oNq72wgMWy2ON0o6EoIbdKcebqjRs3kJ+fj1C3Gx6HA6kpKUiIiUFqcjJq1qyJmJgY6BgGOx0ufOf2op1GC5Hn0aFDB7Rt21b1aPbjzJkzWLp0KRYuXAi9RgMdRaEaL4AjBG6nMyBYf+mll+Q/5ByPHL5QMrpp48ZqN0C4x4MBRe6BThotNEW2lQiBl2HgoRk8qNOjPMepneuzZs0CADz22GMBH76VeUEd70mTGYQQHHV7sdpWeN30BiMIkbuKpxhNkCgKPMMgPjq61ERHly5dECUI+FpJkgzU6cFzHF588UVs3rw5oDA6ePBg8FRhdzdFCBiKQleNFrmiCL0rBlnj1iI7fyNMCVXA0QxEhkE1QVB94+sIIlw0DZaisGPHDmzevBknTpwoNq+HHnoIoRyPk8q8XrUWEiKaN2+OCxcuYPv27dizZ88tmfcFBQVYunQpRo0ahWeffRY//fQTIkJD4eJ5tJA00Crn9LTJjDRBDOyWrt0TGprBIJ0eJorCKU8IDrg8SGBkKfHvlPntU7rji95bp0+fRkRoKDiKgl7xYyeEILzhQITU7A6tR5a54pRnrKNGizF6A7QUhVCv7CsvFrkHGjVqhISkcjAotgEp/Z+DqLege/fuqg87zQkwRmcipd+ziGgwUN2XZgvvv6TuT6nnxwkazJw5E4DMsne5PaontmgNgaC3QKPV4cCBA+p51atTB7UEEf20OtA0g5DqXRBSoysohoUrpwXclduAYznoNRrYLRY8/vjjuHDhAtp36ACW4yBKGgwfPhw3btzAtWvXijHxFy1aBEJRcFVqCUIIdCGJ4LQmaLRaHD16VN3u8OHDMJktYHkRvKQDzwsYOnQoGjZshNatW6vklbuByWyBKTYHFM2A5iW5y5tiZOUMhgHN8ohrNxHJveZC5whH+fQMdd/cvDyY4ysFElBK6Ly/evUq5s+fjwcffBDPPffcLTsTfD4fGjVuDIYTYE2pCa0jHBqtDkeOHClx+6+++goLFy7Eq6++ivPnz4OmaVW+XO4QqIzaRWwdNFotQmv1DCB05FSspP4+cuRIsLyAmFZjkPjAdGisHlSqXAU+nw+vvPIKRo8ejWeffbbU7o/+/fuDEzWIbTsBCZ0fh2Syo269QK+5olJgencUGJZD5SpVYbZYYU3OKyQKmBzo3r17ideoXbt2oCgKGrMDFE2jQcOGAe+Kc+fOgWEYuCq2Qnb+RiT3eQYsJ2DGjBk3vf53gzVr1oAQAnNCZViTa4D4lUEoCnans9g51KpVG7xGD0+1DjDH5YCiKGzZsiVguwEDBkDQmZA2aDGyxq6BOTYLTpf7LzuHIIIoK4Kx5L8HwbUKIoj/BoYNGwYNw+BZswUGSibG+uPLDhotMlJTb2u8hx56CF5BwHElHpqnFNvHKBZcdSQJeq22mHf1vcLy5cvV+GaF1RagYrZhw4a/5Ji3wsGDB0EUgvYpTwg2251gKEolHv9TcfnyZYR6PEgURMwzWdBOIUxv3br1rsbNz88HS9MYpjdgnMEIiaZRLikJEydOxJkzZ4ptP23aNFA0jZAaXRHZaAgErQHNmjW/6bxrVa+u3gcaUSx17S9evIjYuHgIOhMsSdXAaw1IKpdcTMnw4sWLam7A/3zkiiJatGhR4rjXr1/Hu+++i9dff73EvMZfiZUrV0JUGibKly9/X1Qdrl69igULFmDEiBFYvHgx8qpXB82w0No8oCgK7Tt0gM/nw7Vr15Cfn4+s7BzUqVu3WExTEqZMmSLHTvGVYIhILZZvKQknTpzA0qVL8eabb96WOsKIESNAURTM8ZWh98aBZphS7QBuF2fPnsWhQ4eKzeeJJ54ARVHw5nZCRMNB4DX6v6Wb/vr167BYbTBFpSNt0GLEtBoLimYgWjxI6vYEoluOAsWwGDhwoLrPmTNnMGvWLEyaNOmWJIm/Au07dAArSPDmdoI9owEIIXjxxRfV390er9pQkDliJTRWDzp27Pi3zzOIvx8///wzDEYjjBEpiG0zHtbk6qAZ5qYWgkHcewSL7WVAMOgOIog7g8NiQXdFMvuk24scQbylP/XfjQsXLuDEiROlFnVGjRoFQgisLAuWouCyO4oxQjdv3oyHHnoIFStWhEmvh1GnQ9u2bW/q2/PKK6+AENnze4zOAF4pQDo4Ti1EagjBW1YbvnV7UV4Q0LBBcY+lSZMmgaYodNVo4KJp6CgK3bU6pIgitJKEjz76CBGhoRBoGlaeB0UIKIpCoiAgXfEKe+GFF4qN++CDD8pBpd2J16w2GBUPbVHSoG/fvvjqq69g1OlQhRdUufpmooQwjzdgnHZt2sDKcXjJYsViixUmjkOnDh3w0UcfYf78+TBo5eB1tc2OU54QfOXyQKIoZPM8GJrGTz/9hMOHD6NOnTqwMgzyeAFehsEhlwcn3V50VST3zYSCSAjClILN8uXLMXDgQFBK8TgrI6OYlNn169cxZ84c9OrVC5MnT0bTpk1RURTVQPLxP/nDd+rQQe3wzMjIACEEc00WHHR50E6jAUUI4ngByyxWMBQF3mCHZAtV919qkRMfHzicIERWG9jvdIMlhcVnmqYDPJCvX7+Oli1bQkvT+NTpxilPCCYqRAL/PpGRkQFdxLeLU6dO4YEHHkDVSpVQsWJFuevV5kAjSYJkdCBj2GvIGvM2jOEpcLM8rDQND0WjZxG/dD+x4VOnG321OlAUhcOHDwfcTxaOw06HCyfcXrSUNKAJQXb+Btmnuf9C+f4yOZCamgqn1QqNKKJ1y5Y4d+4c1q5di4kTJ2LIkCFo2bIlGjdugpEjR8JQZI2iY2Lx8ccf48iRI2jdurVcTO/2hFooFc1uEELJ8u7K/cyIOqQNehFx7SaCEFnWzY8ff/wRvCDCnl4f2fkbUWHUm5AsbnTp0kXdxt+xPUirQzbPK13TFCR7ODzVOoDlhWKScA907QpWkBBauydclVqr604IAUXR6Nmrl1qcXbZsGQghSB34AqKaPgxjdCYIIVi8eHGxddyxYwc8CjHBf98bozKgc0eDYZi7LriPHz8eFEXBEJUJwewGIQTDdHrstDvB0TTMiVXVax3RYCBomlafl3r16sEQmqSut6NCY1ht9oDxr1+/jlq1aoNmWOgcoaBoGk2aNi21q/rLL7/E4sWLQUihtH2F0W9B0JkwduzYMp1TRmYFaO2hSOr2BGJajQXD8Rg7dixWr16Nli1bghdEsBojYttOQGSTh8BwPEaNGqXu/8cff6BuvXrqPRgTG4djx46hW7du8jvc7ARFM8jNq15iV9Hvv/+O3Ly8gI6DU6dOBWyzZcsWEFJooZD4wIwSGffmuBw0aNCwxPMsKCjAyy+/jDFjxmDRokXF/t75FUQSu85Ux9M7wsokNXinaN++PfTeOGTnb0TOhE2quoS7chuYLdaAbf0EGv86Z49fD609FP369QvYrn79BjDH5ajnENlE/jt2vzq6ggjCj2As+e9BcK2CCOK/gaqVKqG5YoMWz7KozAs45vbiC5cHcYKAxg1L/qYqDbt371Zl5PtqddDRNDQ0rZKl31ZI4fv37/9Lzuf3339XFer89mCHXR41Lr4f8Pl86NShA2iKQrIkQcOySE5MLFPX8eXLl/8yZaU/Y+HChXDb7ZAEAY0aNMDmzZtlkoDRjBfMVnxgd8LJ86Uq3pUV165dw8CBAyHwPGgl9xMtiNCzLMJDQvDTTz8FbJ+blwdzQpUAmzBR0pQ6/vTp08HTNJZabNjndKOmJMFsMJT4Hbx161bYzGYlDmWQl5eHs2fPFtvO5/PBpDegqaTBt24vdjpcsHJ8gMKaH5cuXUL1atUCiv0bN268gyt159i5cycciuS9x+MpVfHsr8C1a9eQm6cU161yrNyufXvMnz8fI0aMwJIlS+7qnvb5fJg3bx6qVstFzVq18NZbb927yf8JBQUFePLJJ5FXvToaNWqE//3vf/dk3Mcff1zNe5jM5gAlsxo1awaQ88Nq94IgiLc1/q5du/D4449j/vz5+PXXX8u0z3fffSfH2u0fVY+tc0ZCp+TcCCFo1Lgxrly5cltzuRfw+Xx477338Mwzz6jNPz6fDzwvILRWjyLWfuloUCRXvHLlStA0DdFgASdqYDJbSm1GCOL/H7Zt2wanS34HabQ6vPLKK/d7Sv85BIvtZUAw6A4iiDvDpEmyXG09UUSOUthdvXq1+vvrr7+OULcbPMcht0oVfPvtt3/r/KZNmwZG+dgL83qLSYv/9NNPIISoTPftDhc0LIspU6bck+PPmjULDqWomJOVhcqVK4MQgh5aHV60WFGO5SBSFOKUwnNJH7lJsbFop9Hgf3a5gLvEYsVJtxfTjSbwNI06derg+PHjmDVrFiZOnIj0tDRkiyJOKAXyKrwAk8GAadOmBXjJtWvXDgwh2OZwQqQZGCPSENV8OPThKaAoGpLiM19UCq2fVgeTTgcAOHLkCBYsWIB58+Yhs3z5wq70nJwAsoJf5sbPwD/o8kAgRO2Ud9oLu9VzeAEfOpwwUhSsNI0opWDqpmn01upgpCiEKDJrn3zyCQCZTHHs2DE0bthQLUJ26tQJV65cQasWLcBQFGIFATxFqcfqo9VhitEkj0czOOr2qlKAfh+zKlWqwEbT6rlvsstBnUYQoGMYCMqcm4oShutkmfftilT7MbcXLCGYYjRhrZJ46afV4UOHE920WlCEoE+fPvj+++/RUCnksYTASFFIV8gY8YrXeKLyX71Wi7fffrtEVrwfa9euRY8ePdCoUSOMGzcO7du3R51atTBq1CiVWXzx4kVYjEYkchwe0RvB04zcyczyqvx2qMerrskYvQEvWaww0UW83SlKVSXwo2nTpqgkFCoSzFfsDCKbPIissWtk6WiKhjEmC7l5eSXOf8+ePeB5AVp7GIxR6SCEYMiQIXjllVewdOlSVK1aGNynpKaBoii4Kymdur3ngaIZCBYvQmp2A6czgxTxnSeEoEmTpgHdvteuXQMhBBENBxcGMjEVEBEZqQbKBQUFGDFiBHilI79u7doYMWIETGYLtDodevToUYx0YzSZ4c3thJwJm2BPqwuaUGBYDmF1+yC0ZndQDKN6av3++++IiIyCaLBAH1keFMNCp9cHSIUBciCWmlYektmFqGbDQbE8XDnNC6Xf3NFo2bJlqfdGWVBQUICZM2ciKzsHsXHxMgmJ5yEyDLQaDUSjHekPLUfWuLUwx2XD4w1R9924cSMoioI+JB6mmCwQQopJSPq96RM6TUXOhE2IbTO+1G6cadOmBaydPzjOHr8ektGOxo0bY8uWLbdMaBw5cgThEZHqOPUbNFD/bhGKhsYdC95Q+A5q3KRJMZl2n8+HI0eOYP/+/bh69Sr27t0r39uNhyrFcVnWcMWKFaVe10OHDmH//v0lJsNWrlwJQggyhr0m+/qNlTvCw8IjoLWFIPGB6YhqNgw0w2LSpEk3Pd/ScOnSJRhNJpiiM5DSdwEiGg4CIQQvvfTSHY1XFnTs2BE6V5TqYxhaqycIRUHQW9CwYaOAbX/55ZcAckHWuLXQWFwBHQaAojQgSEjoNBWpAxfBEBKPmNi4v+wcggiirAjGkv8eBNcqiCD+G2jTujUieQEHXR68bLGCIQQ6ioKOZWHU6dSi+MWLF0tVqvsz3n33XWRnZiI6LAw52dlgKQprbHacdHvRR6sDTdP4+eefi+138OBBLFmyBJs2bSqTP/i1a9dKfEd9/PHHYGka9UQRL1msqC9pIHAcvv766zLN/25RUFCAkydPBsSjN27cwIIFC9C7d288+uijqvpdafj++++RW6UKCCGQBAFTpkz5S72Q/fFHK0mD8QYjrByHrMzMgDiDJgQcRWH69On35Jhnz54FIbJN3ilPCHY5XNCzbIB6IgA0adIEOne0qpZnL18Xdoez5EEBdO3aFRlFcjMvWqwghBQj8v7yyy8w6fWoJEp42WJFR40WFEXh448/LnHcV155BTRNw8Cy4Gga4SEhOH36dLHtxo0bB4Fh8KrVhv1Ksd9iNP7tHurjx49XC7o0zdxVPHPt2jXMnz8fQ4YMwbx5825K4PXHbIkPyLLxUc2GgRCCXbt23fHx/z/Bn/dzV26DxK4zYYpKh8FoVIvizZo1V+73dTI5P7OhSsD2+Xy4cOHCTd8FS5cuDbhPo8PDb5ob8+Py5csQRQm2tNrIHr8eKX2fASdIyM/Px6effoovv/zyvvix+3w+9O3bV23I8Oe+fD4fNFod3FXaKpYCG6D3xhdTvdi5cyfGjx+PyZMn39RSIoj/nygoKMCZM2f+9vdvEDKCxfYyIBh0BxHEncHn82HOnDmonJMDh9UKmqKgEUXk5+fj448/Bk3TqC9pMNFgRKggICk+PuAD9vr165gwYQISY2KQVq5ciR3Yd4p169aBEIK+Wh1esliRKorwOl0BhRR/t9/rSiH4lCcEkYKI6tWrI7dKFdSpVQtr1qy5q3lcu3YNtWvWVAM5exEG/FuKnHzFihVL7UpNTUxCU1HC+0qxfanFhk5Kx3E4w4CnKKQlJ6tJggrly6O1pMFJtxcNRUkumNE0JJqGx+lUg7Hly5eDIgTJiox25oiVyJmwCRnDV8gFV6XIyyiB4mi9ARwhqFChAjZs2ACB48AoxdnYqChs27YNX3zxBS5fvowPP/wQ77//Ps6fP49r166hQno6TAyLBzRaRDEsGOVa0IQgguOwwmpDA4WsMVinxxi9ARoiS/aLhOCI043HjCYkKd72FXNyAj6IO3fsCB3DYJrRhAkGIxhCkJubC0IIOmo0qmw9IQQelwuSIICmKNCEYI3ScX/KEwITx6lEi+eeew4UIVhsseIbpcOeoWlUVQgT/n+fOt0YqzeAJQTpHIc5JgvqCCJoQjBUp0cyJ5MK/P5+h5QOBIYXYbZY1DXd7XSjokJAqCuISGRYOGkaLn9HtHI8lmFKlObz+zGHMAw0FAVGKeDn8gIkhkGtmjXVwuS+ffsQExEhkwckCZ07d8aMGTPw5ptvYs+ePbh27RqqV6+OdEXOf7bJDJ2y1k6HA3Pnzg24/ufOnYPZZAJDCOaYLNhoc6AcL4Cl2SLXioIlsSpopniiwY8HHngAWlsIssauQc6ETfBUaQeO53Hjxg306dMHnKRFTOtxiGv/KES9BW6PfC1pXgIhFCiaRbpSsEzoNFU+P43s6a7X64tJgP38888gFA1Ob0VM67FK5618nv379w/Y9saNG2VmO7u9IbCXr4ucCZvACxpoGRbuym3Ugr69fF2US07F6dOn0bZ1a0SFhcFhtYIQChpHuFqsHj16tDqmP2kT03I0svM3gGI4hNXpXegzFpOFevXqlWl+ZcW2bdswceJEzJo1C/v27YPT5QbDcuBEDViOK+b5t2nTJjRu3AS169TBs88+G+ArNmvWLLgVEod/fTNHKAmLpCTs2LEDrVq1QpMmsqIBIQSDdHrscDhhY1iwWhNCa/WAKTYn4Plr0bLlLZOWly9fxt69e/HFF1/gjz/+AMOy0IengmJ5VBizGtn5G1Tlg7KoA6xfvx6EEJQf+rLqqUez3B37ZB0/fhw8L8CSWAUJnR+HLbUWaIbB+vXrVX9yQghatGhRqlx9WfD+++9DbzCo4/Xu3btMiYX9+/cjI7MCNFotUlLTypxQ2rx5MyiKgjEiFfb0erItASFIK5+OH374odj2rVq1AssLsGc0gCE0CSzHYffu3QHbXLhwAZUqV1HPwWK1FdsmiCDuB4Kx5L8HwbUKIoj/Br744guYDQboWBZWhdjesWNHTJ06FcePH8cff/yBNq1aqd8UrVq0wHfffYfdu3cX60AuCZcuXUKl7GxQhECrxM1PPvlkse1eeOEFlfxPCEGj+vWLJcf379+P+nXqIDkhAeXT0sAq5PIK5dOLSXWvXr0aBp3s02zU6wMaHf5K/PDDD8hSlN8IIejYocMdfZdWqVgRLp7HDKMZvRW/6WXLlv0FM5bRvXt3JIqimn+ZrVjUEUKQbzBir9ON7lodqHtYND127Jh8XpbCHFO8JGHAgAEB223fvh0sx0FrD4U+JAGEEMybN6/YeD/88AN27NiB0aNHQ2IYvG2z46jbi0aSBnqtttg6+FWz/md34pQnBN+5vdCxLKZNm1bqnHfv3o2pU6di7ty5xVQeCwoKMGiQTNQtz3HqOb1glov9JRXmb4UPPvgAs2bNwsqVK8tEQPHD70VvS6sD0RqiruXTTz9923O4ceMG6jdoAJpmoHeEgWZY1KlTt9T5zJ07FzTDqEpu6Q/KCnV3my/8/4KJEydC1JtVVbPkPs+AEIIdO3YAkHML8v0eBkNYORBC8NRTT+Hjjz9GaFg4CCEwWywlvtNu3LgBvVaLFhoNTri9+Mjhgoll0aBBA0yePBlvv/32TePaJUuWgKZpMJwAQgiSU1L/MsuPsuKDDz6QGz8aDUZ2/kaE1+sHQgh27tyJUaNGgaLk/JkhrBwoisI777xzX+cbRBBBFCJYbC8DgkF3EEHcGj6fDz///HOJ0unNmzSBieMw0WBEfyX4q1u3Lpw8jxN/8qE+dOgQfvvtN4wePRrx8fGgCYWOGq1aGH755Zfvap7Xrl3DsWPHMGjQIIQKhYGV3ye9qB/z5cuX4bLbkS6KWGG14WF9YSGifpFu/dv9gP7111/x6aef4ueff8bzzz8PhqLwmtWGsXoDBEKwQ+mAfkyRyBZ4PkCSuyjmz5+vFmBNFAWDUgycYjThlCcE79mdYGkaCxYsAFDoFVabF0ATuTP9O7cXe5xuWBgmQBKsS5cuaiG6XM+nkTNhE5J6zJLPXxCh4TgIiv+4vzgeFRYGnSShhijhqNuLDx1OWDkOgwYNwi+//IKMtDT1GjqsVhw+fBhnz57FA126QOI4iITgVasNR1weZHI8QhlGtSGwFElEpLAsIlgWeorGUJ1evgaiiHSOB0VR2LBhA7777jt89913sBiMGFrEN76NpAHjL04T2R/8qNuLF8xW0IRg0aJF+Prrr0HTNGoIIlpLGuQJ8of3qlWrAMgf9E0aNVLnQ1EUunbtCooQvGix4lOHC1qKglOZszEmC7wgF3Z5QmBWCktWk7zGz5gtOOUJwRNKgB/TJh80y0EoQr7YqXihEyJbDNgpGpxSaG8jabDe5kBnjRY0TePzzz9X1/Hq1avgOQ49tDqcdHvxqdMNK01DT1FoIEpYpATCn332mbqPz+fD77//Xmpn8IMPPggbx2Ox2QqKEFTheUhFPOybNWmiEmeeeeYZMISo19BP0iCEoFWrVrDbHWrxPympXKndI61atYIxPKVQIrrREJnQ8OmnSExKhiOzkfqbN7eTWrwTzG5ovXKCwpndLKBresGCBfAoRXmdThfgxefvpmVEnTrvzhotxivvgZI6UwA54bFr164SpfgAYPbs2fI9EZkGjmagZzhYEqsiO38jsvM3wBCRiuyciiiXkAAnz6OXVodYjgND0Ugb/KJKNOB5QV2fS5cugaZpeKt1lIvrcTmgeQlhdfvCrUjVP/PMMyXOpyRs2bIF5ZJTYDSZUb1GTRw/fvyW+/z000+YO3cupk+ffkuJzPfeew/Vq9dAWnoGatWqpT4jhBDoI8vDUaEx9GHJ6hoSioJgdsMQma6uxVFFIvNDmwOEUOCUdxEj6pAxYiViWo8DRVElSu6XhtOnT4MQAnt6fVA0q3aTJ3SRu9NL6/jw48iRI6heowYoioYlqRrK9ZoDV8WWZdr3ZnjrrbegURKOgiBi6dKlAORn+/PPP8exY8fuCeP+3Llz2LZtW5ll5s6ePQub3QGdKwqhtXvCEJIAg9FYrIOmNKxbtw7JKakwmi0ICw/HhAkTSmVfX7p0CUOHDkVyShpy86qXKmd4/fp1bNu2DZs2bSqWDAwiiPuFYCz570FwrYIIomS89tpr6NixI3r27FlmaWafz4fjx4/jyJEjt1Uw+7vw7bffYsqUKZgwYQL27NkT8NvAgQMhMQwmG02YoijGsUpcx9B0mYp3V65cwcsvv4yZM2di27ZtxX7/5ZdfwLEs2mk0OOryYIlFbk5YuHChus2JEydg0usRLwjoqtHCoMSXTxlNCOEFZKalFfsGvHr1Kk6ePHlXJMzbRZ1ateDieTxntmCq0QSOpkslUJcG//t3dhF/8HRR/Eu9hvv3749QQcDXSrw9QZGOLhqDf+KUY/B169bdk2Neu3YNYV4vUkQRr1hsGKbElq+++mqxbXft2oXu3bujQ4cOqsJeUcyePVvt4uY5DtGRhYpdHMuWuM/+/fsDrvNmuxM0ReH5558HIH9zHz58uMwy3AsWLAAhBNV4ASKh5GK/y4P6ogSeYdClS5cyqStcuHABffv2hd0q5yZopemjfoMGZe7O7Nq1K/SeGGTnb0TWuHXQh6eo12Pw4MG39R7yd2L7FdTiOzwGQkip0viffPKJkm9oinI9ZsNaLhc8L9yVd/0PP/yAQ4cO3RcJ83uN+fPng2ZYpPRdgJwJm9TicdF7Y8eOHejcuTNat26NZcuW4ezZszCazTCEJSG6xUhYEiqB43gcOnQoYOxff/0VhBDMV3JqJ9xemBgWhFDgtfLz9WdFtD9jz549mD17Nl566aXb8rf/q+C3y1MbEUatAiGyLYhfcbBS5SqoXadOiUqAQQQRxP1DsNheBgSD7iCCuDmOHTuG1HLl1OBz7NixatBXUFAAjmUxwWBUg6bqgoiY6BgYWBYHlYLJHEWm+9ChQyifkgI9y0IgFPopnu+nPCHIE0TUrF4df/zxB95//31s3rz5tj6E9u3bh3BvoQS2RNMlapHpAAEAAElEQVTYqRS2/YHV999/r25/5coVDBo0CJIoqvtoRRE9ivjQZwsi6tWpU+Y5vPLKKxCVDmWWYVC/fn14FHntAy437DQNLUUhRZGlbidpYOQ4PPbYYyWO5/P58Nxzz6FSVhYy09IQFxMDQgjetTvUOVp5Xt3/2rVr6NOnj1pEn2uyqNe3Is+jTZs2AGTJvBs3buCNN94AxwugORHGqAywnAC3Im/v8XigKVJATeQ4hCrB3pNFguSagoisrCz07t0bQpGCOSEEbmehFFp2ZibaFJE+G603gCEEaRyHLI4P6ED3/2+eZcESgq4arcrMzhAE2JSucEIIRI5DXYVY8a3biwqc7F3v77xfb3Oox7TTNDIyMpCYmAiDXi7iRzMMLDQNgePw5ZdfqvMtKCjAhg0b8OCDD6JJkybIyMiAnmHwjNmC0XoDBmrl/bXuWGTnb0S53vOgccXKxXKaRqsWLeDz+dC+bVt5O2U+9rQ6yM7fCNEoE0CG6Q340OFEW0lT6O1e5FoQQnBIeY6+dsv3d9ECo7/r+Vlz4VpX4HhEMAySOQ7rbI5ixcArV66gb9++MGi1sBiNGDNmTEBweuLECTisVog0DStFwUbTqKTI/D9jtoAtIiU/ffp06FgWx10evGtzYJhCjli1ahU2btwIQghyRREdNFpwNI2+ffuWeK+/+OKLIITAldMCEQ0GghV14GkGGlFEhaxs6D2xqDBmNbLGrYUxsjwIRSk+4TJ72l25LSiagb18XTC8qHYFC3qz6nEuiqKaSPnjjz8QnyAX6Q0Uhb0Omf3/kiLJ98033xSb44wZM9SxBEEM8IAv+sy+/PLLaNy4CZKTkwvfLZ44SI5IUBSFqVPlzvu3FWWFAy4PGEIQ3mCA6olOCMHBgwfVcUePHi0XrcPLQTRYwXIcGIaFpNEiPz+/zMXYL7/8EoIowRiRgpAaXaGxuBEVHVNMPv1O8dFHH4FmGBhCk2BLqwOKZmBNqYHs/I3QhZZTkivyO1LjkteINzqQNeZtZAx7DZbk6iCE4DG9MUCho71Gg04a2YYhpPoDyJmwCVqLGyNHjgw4/p9VCH755Rf06dMH2TkV0b5DB4iSBoLFC0bUQTC7YU+vB0bQwGZ33FQ68MyZM3A4XdDaQmTiAOWXL6Tx1FNP3fV1u3TpEo4ePVpmKdO/A2+99RYIIUgbvERRPnkdhBAsWbKkTPt/9NFHcgeDMwLGKNlupKgU/rfffoudO3eWOdkXRBD/VARjyX8PgmsVRBDF8dRTT4EQgnRRRIQgQOB51bKrNFy6dCmAmFw+JaXMZLx/AuKjotBdifl3OFxgCEFzScIGmwM9FALkra7BrbBv3z4QEqikFi6KGD58uLrNE088AYlh1FjvFYtNjV/nKfmTfwK5UOA49NHq8KbVji9dHjQWJVTPzb2tMa5cuQKGplV59a9cHoTwQqmx4b3AZ599BpHnkSgIaCRKYCgKtWvXlknZZgtOur0YpRTDi8Zdd4t9+/YhTCF8UxSFMWPG3DZx1l/c7aXV4R27A60lDTiWxZNPPolp06YFkO+LwufzoV3btqApCqmSBhqWRXJiIi5cuIB3330XZkXpiqHpYtZwJaFjx47IkiR85fIgXVHtI0RuCCjP8QjhBdjMZpw8ebLUMXw+HxrWrw9JUW3wVuuI7PyNiO84GRRFlVndYMCAAZBMDlQYs1om4NfoGpAzady4MS5cuFCmsZYvXw5CCDJHrULOhE2oMHo1CLl588+cOXPAKOcgiCKeeOKJO4pjCgoK0L9//8KcmceLffv23fY49wrvvvsumjZthvr162Px4sV3RPK+cOECklNSwXICdPZQEFJcLfDP8OeK0gYtVu3UaIYtpvDg8/kQGRaG8qKId+0OVRUjvuNkubBfX76WZSWK/ROwa9cuEEIQUr0LMoa9Bk/V9iCE3Nf7IIgggigbgsX2MiAYdAcRROnw+Xwon5KCcEHAArNF7TL2J9t9Ph8MWh16KsHqcbcXSYKA+vXrw2wwIFIQ0ESUIDIMmjRqhNdee00tFptpGv11uoAifeWKFREbGaV+eMZHRxf7cD958iSee+45LFy4UJWt8jOIkwURyyw29NNqwRACPcMgWZKLNf369cO+fftw/PhxXL9+HbWqVwdP00iTJAg0g5ysLOg1GjyseLif8oSgriiiRhkDyWPHjoFjWTSXNFhrc6CLUhgihGCG0YxPnC5U4eXidS4vYJrRhC8cLkg0jfr162P16tXqh21prNxz587BqNOhqijhdasNfZUPzc2bNwdsV6VSJegpCgkshzetdsw0mkETWZo6PSUloKDLEoIUlgNfJFBx0XJXdSrHoZYgwE5RsFMUDBQFjhCYKQqrrHassNogKt32YSGylNdkownH3V6MVwgOfnZwz549Yebk+Wy2O2GgaLBE7tour3iVGygKFpoGU6RYTojsZ+4nGNQSRHAUhflmC+abLdDRNChCUI7lEMOy6nm57Ha5K1yU8IXTjWlGk+zJRuTO8waiBA1FoTzHYZ/TDU+RYP/q1as4c+YMli5dCkIIkkQRkTyvrqdUJMjU2EJQrvc8MAyHcJZDdUEARWSyRbVq1fD777/j1VdfhcFghGh2IbbdRLgrtZEJDImJ6jkyhGCW0Yw3rXawFAWrxaIy2RcohXS/N1tRxrXP50N8dDSiWQ7LLTaVWKJRPODjBBHhXq9KXLl27RoyMjLAEdlioIpCDvmzx/bJkyeRm5urdrS/aLEWdiFIErp16wYA2Lt3LxiaRk1BhLPImjVq2BAtWrRAeUFQOwdG6A3gOa7E+9vn82Hy5MmgaDmArSpK2OlwIlEQUKVyZblIqjNBNFhBMwwIoWCMTC/sds/rIhdAlf0JkSXmsvM3IHXQCyp7nmVZvPzyy6hUuQoYToAuJAEUw8LBsphtNCNKEBAfHV1sjtu3b5eD4cptkNx7Hqzl8sByPI4ePVrqO8Hn82HhwoVIS02F2+VCXl4e3nvvPbz00ksghGCdQgT5wuUBSwj04SkIq9sHjKgDw0tIz8gMGGvRokXo0KED+vfvr3YR3W4wPHPmTLCCpCYpkro/VYyMcTfo3r07tPYw1aub01thS62FxK4zQQhBVNOHZZ+7pg8XEhG8CUjs+gQYQVuYMFE62Vki+yz6770OGi20Jifi2j8KiqaxaNEi9fqMHz8egiCCoijUrl0Hp06dQlr5dPBaA2yptSCZHBAlDUgRiwOaE0EoOuBal4QlS5bIieiHlsvXrZts3fDCCy/gnXfewXvvvVei8su/GQsXLpTfv9GZiGzyEFIHvgBCCF555ZUy7d+mTRvoXJGqN58rpwW0Oj0KCgowfPhwdQ10ej02bdr0F59NEEH8dQjGkv8eBNcqiCAC4fP5YDYY0EUhNn/t9iJOEFSCdmkYPnw4JIbB0yYzXrJY4eZ51KlV62+a9d2jQno6qokiTri9WGSWi9p7nW61a5KhKMyfP/+ujnHu3DkIPI/WkgZfuDx43ix3tvu/XQGgU6dOEClKVXR6U1HjW2OzY6hOD4am7xkh9k5x+fJlSHxhkdVB0wjjOLRq2fK2xxo1ahQIIagiigjnBWgl6Z4WuUvCzp070bxZM1TPzcWkSZNw9epVlQzvzzeMGzfunh/32rVrOHr06B2TJRYsWACKEFUpcp/TrRbvCSEIcbuLKTb4cePGDcybNw+9evXCxIkT8dtvv+Hnn3+GQatFnihhpdWOnkoe6VY2WoMHD4aD57Hf6cbXLo+aOxin5Mw+d7qhY1nVjq8k/PDDDyCEYJCigpnaf6EawwtaIyZPnlyma3LgwAGIkgYaqxeixSuTum129O7dG6LSQFO+fPkyEX+OHDkCluNgS6mBxK4zYUutBYZlS1Wc9OPMmTOYOnUqBEUFk+P521JaA4Dnn39ezp/V7YPEB2ZA74lBWHjEfVEI2bhxIyiKgt4bD2OUbBUxc+bMOxrr/PnzmDlzJh588EEsW7ZMzVN8/vnnaN68BXIqVsKwYcPUvNSbb74JQtGgGA68wY6wOn1ACMFLL71UbOzdu3cr1ntKHo5m1aaL8kPlnN2tutv/aXjkkUcCyCJ/zscFEUQQ/0wEi+1lQDDoDiKI0uHvmn2mSNdsuiShS5cu6jaTJ08GIQTVRBGJggCWYVQP73bt2qF6bi5Gjx6Ny5cv4/nnnwdFCI66veij1YEhBF00WjRWCuLpaWnw8jw22hzYYHPAwwto3rSpeqxPP/0UZoMBjOK5bTYYcPjwYdUba3kRb6woUURmZiZ69eqFCRMmwO1wqB8ydevWBSGFXlqrlMC2Vq1akBgGD+r06Kp4o48aNQqtW7dGrRo1MGXKlFJlrvweUvuVQP240oVcuYjPN8eyiImMhIXj0FOjhUVhxmqV/1arUgV2iwUURaFSVhaOHTtW7DibN29W5ckZmi7xY3jZsmVqwdV/7JTkZMRHRyOSFzDbZEYX5fySWRYiReEDuxMSRSFXELFKkf1/x+5AT60OJqU4L1EU6osibEpBnBCCChyPBIaFpKzhcSUg/ELxJy+flqbeS+mpqQEflBMVRYTjbi/CGAZtJQ2+dnuRzvFgiExSWG2zI55lYaFpdFPmXEXxEz/lCUFvrQ5apRBuZBgwFIVa1avjgQceUOXv/UVyUfnvNkXxwG8vsMJqQyVRQtu2bTFv3jwIShApsiwaShJOur047vYineMKu+79xTqaAasxwMUwaqJkpN6gHjMmOhqAzKz3+1H55+UVClUVFhV5xsJYDg899BAKCgrQumVLUMq2NEWhSaNGxeTfDx06hLAiqg6EEPAMA4qikJmWhi+++ELd9uGHHwZDCLpptWgpydL36RyPCuXLF7uPTp48CZtZJmq0lmSPrPftTmjZQO/1p59+Gqy/cEpRaC9pwNM04uPjUaGIncM4gxEsw9w0kDRotRhRxBaghSjBbrWiVatWqF69OoYNG4bt27cjRDlfW2ptuCu1BsWw4CkaW+1ONRkR3XKUGsgbI9MQFhYWkKRIfGAGciZsUgvBhBCkJiXhq6++KjavWbNmgeGEwqBuiFwwt9rsmDdv3k2Z1F988QWqV6sGl82G3CpVULt2bVk9gmYwSKdHEsvJzxPNgqJZmOIqIqxuXxBCbtptfSfwn0fG8NcD/O3vtnvHjy5dukCyemFOqAJ9eIrqp+fvaq8wWi7yVxizWi2qE0LACBrow5JRfshLiO84GQzLo1q1atAKIppJUoBNhP9ea9iwkfo+fvbZZxUyRFtENBwMQWdCRmYFmSzT7cmAQJyiaFAsD1Zrgiw/Z0KbNm1vel5+5YWM4SuQM2ETUvvLhWi706neO7Fx8QHqKf9mfPXVV9DpDeB0Fmi98TJRRZAQFh6B3377rUxjNGjQAKboTPUZDK/XDwzLqn8rQ2v1QHLveTDHVIBObwh+hwfxr0Uwlvz3ILhWQQQRiIKCArAMo8ZkpzwhqC3eWtmtcnY2WhYhQ44zGKHXaP6mWd8ahw8fxsKFC7FixYoSyZBr1qwBRVGIE0SEKd26sxTlNr/93ZtvvgkAOHr0KMaPH4+RI0eq/sM3w+XLl9GnTx/oNRroJEmNOwghaN60qRoHHThwALRCLs3keDyk08NB0xAoCplKjDhmzJh7e2HuABMnTgRP03jObME7dgcSWQ4cRd1RF6nP58MzzzyDFi1aoFu3bre0pvqr4PP5sG7dOsybNw8ffPBBiducP38eQ4YMQdVKldCubdubEqz/Crz99tsghOBlhfD+lGJHV4UXsMxiQ5oowuN0llmC3N9FvEXxcj/p9sLAcnj88cdvut/x48dht1hg5jhEsoWE5detNpWc4uD5mxIWTp06JRcTDSawFAVbai2UH/qy2pE8ceLEMhPIP/vsM6SkpIAQCra0OrAkVVOfFYeS7/N6y9Yp/sorr0BUVNSKWnndDEePHlWL9EndnoS9fF3QDBNgV3krdO/eHYaQeDVGimsnF13vRxxZrVo16EOTVC96R2ZDOJyuezb+sWPHoNMboLWHwZpSAywvoF79+rh+/TrKJaeA11sRVrcPzAlyzjQkNLRUP/Xff/8d27Ztw6xZsvWlt1pHpA54Hra02iAUhdatW9+zef9d+Pzzz/Hmm2/+5aSjIIII4t4hWGwvA4JBdxBBlI7Lly+DoWkMVopfB10eOHk+wPvb5/Ph+eefR5PGjdG2bVts37691PGOHDkCgeNQT9JgnsmMEIYFT1FIjI3FwoULERkSEtDt3lerQ0x4uLp/1UqVkMTxOOjyYL/TjQiGgdftxrlz50BRFIYpDNtPnC4YOA6PPPIICgoKEBkaihRRxGqbHY8rXumEEBxwyYXxo0pheOHChejRowdMej2cViuGDBkCSRAQJwioL4pgKAq9evUq8dy2bdsGQgjmKdLtyxUZuNWrV2PPnj1Yu3YtTpw4gbNnz6JJ48YwKRJeM4xyYD9bCaAq8wKmGk0IVzpsSyq2+b22zp07V+q1fvnll5GTmYmkhASMGTMGR48elZmiFitOuL14zGCEjqKQrHT8TjEYwRMKg3R6rLbaQSvFekcRafjFSrC3x+kGRwh6aHQ47vYim+ehVYrtY/VGHHJ58LAiyabXatU5Xb16FVu2bJFZrEXO/aTbi3iWRVsladNHq4OWotT7YIHScWAxGuH1eJAjCPjG7cU3bi9yRBE5FSrg6aefxoABAzBr1iwcOXIEOq1cmO+j1WG8wQiWyEx8mhB8pRTFP1J80lsrcx8yRPYJ76LR4jmzBTwhAX7wbSUN4lgWX7o8qMYLshc5TUOn06Mcx6nb+dfyQUUJwq/OcOPGDSxatAiEECxViB4zlI77BqKIT5wuzDFZQBG5Y9a/z0svvYTRo0dj8eLFpZI9rl27hk8//RSvvfYa3n33XYwbNw42kwkGrRY9e/ZUE012sznAvqG2IMJM0ahSsWKJ4x47dgxVq1YFRQhERUUgJSlJLbhdu3YN8dHRCGUYzDSa0Vop4GdzPFIVGfVGkoS+Wh0khkGXTp3Usa9fv45Ro0bB7Q1BSFg4pk6diob168PKslhotmKG0QRGISYkCyIkhkFWRgYuX76M3377DY0bN4beYITBaEZEZCSqKZYNJ91e2FgOkj0cSd2fQlTTh0HRDKZNm4YBAwao97M3r5PskTVylfr8lwY/gcVVsSVS+i5ARKPBcgFSa1Ylxfv27VvM+uLs2bNw2e2IFUQ8qNMjXhAhsCxqCyLqCCK8DINwhgFNURCNdqQPexXZ+RtgS6kBk9l8T7y6i+LUqVMwmS3Q2kJgT68PXqNHhazsYvfVb7/9hg8//BCfffbZbc3hueeeA6FoiNYQWJJyQdEMaF5Sr5G7UiukDV6ies0bjCZQjPwOimk5ugg5ojw4jgPLy8nGpqKE5spz2rZtW2zcuDGAtNGkSVMYowqVDsIbDFCTm/7uiQqj3gRFM+jVqxdYlpOL7jQNu8N5S6/BH374ASazBTpXFDzVOkBr8yqdFR6k9F2A5F5zIRptt+wE+7tx+PBhLF68GGvWrLkt4sagQYMgGe3IHClLK3qrdQRFUbeVaHzmmWeUNW+N8Pr9wWv0aNSoMcaMGQON2aGuVbmeT4MQUmp3ThBB/NMRjCX/PQiuVRBBFEf9unVh5Tg8YTJjuEIYfvLJJ2+6T/NmzRArCPjS5cG3bi/qShKiwsL+phnfHG+++SZ4RTWNEIL01NQSn/ktW7age/fu6Nq1K2rXqiXHBkq8X6dWLVy/fh2fffYZ9FotzCwLG8eBpiisWrXqpscfMGAABIW830+rA0UI2rVrh82bNwcQpvPz81UCKUMIBCXmsdts0Gu1KJeYGFCA+fXXX7Fjxw4cP378nl2rsqBZs2aoLhYSX2cpcW5pik7nz59Hjx49EBEejqSkpBK9yv8KFBQU4Lfffrtl3HL9+nX88ssvN93uxo0byK1SBTqWRQtJgzBegMNqxQ8//HCvp10iLl68iMOHDyNXicFtSj7GRdMQCMEOhwuvK6QQv7/1lStXsG/fPhw9ejTg3H788UfUyM2VCceEoLqiOveO3VFMaaE0fPfdd6rsubtKO2jMLoRxPB43mtBYkkDTND766KNS9/f5fKiRmwsjy6KWIIIihQQU/78O7doVaygoDW5vCBwVGquxhDm+ErKyc/DNN9+oyoFarRZr16695Vjnz5/HoUOHyvxd4FfqzByxUpU+J4TcVnf76NGjwWv0KD90KbLzN8KV0wIMy/7tXuJTp04FoWiYE6sGqAXqDcZ7doyJEyeC1+jVmDK6haxu8f7774MQgvgOk5AzYROyx6+HYLCVqTv90qVLqgIkIQQUw4LlRYwaNeqezTuIIIIIojQEi+1lQDDoDiKImyM/P1/uUJYkOHkeZoPhloWJm+Htt9+GxShLXbvsdmzZskX9rUZuLpJEEQdcHhxwuZEgiqhVvbr6u8VgwJAixc8eWh1YQvDOO+9gzJgx8gebJMHAcQj1ePDTTz/hxx9/BCEEz5sLZbDLCQJYmkZdScJLFisaKx5YRT27Abng4OEFHFU6c/0S3SWxLX0+H9q2bg2KEIQpgXrd2rWLdfG+//77kARB7ZA+rBR+jymd8E8aTQGebUW7ksuKTZs2oUnjxqhbuzYWLlwIn8+Hn376CYQQPKI3oKWkAU1kmXgdRYEhBDqGgcjzMLIsElkWeorCCL0BzRS2LyEEGxTZ62/cXkgUhao8j7ZKcTUqIgKR4eEBQVM4wyBe6ez+MxrUrQsDy+JBnR4NlGM8qNPjebMVOooCT/6PvesMr6Lqumf6zO29pieQDgRIoffee+9dpArSe0cQpIoKiEoXRUFARSyoKE1EQaU3pYiIID256/sxcye5JIEEsH3vXc+T530lM2fOzJyZzN577bUIdjtdOOP2oo1GC0kQcO/ePWzfvh0cy8LDC/DwAjiWzSWj37t3bwgUhapCdge8/zx4hRE+3WhCor+jmBAMGjQIw4cPh5Pn0VurQxVBAEsINIRghtGE8UrBvp0iszhbSTTk/Omo0WKK0QQHTSOV57FMkX3PKUe2ZMkSUITgS4cTHTVaVBUENfj1j1O9WjV13dy8ebNAf58yMzPRo0cPJCQkIDpa9sLuptVhkE4PkWFUkojTakWPHMX2SspaXLt2bZ7jLl68GOFeL4xaHUqXKoVFixYF+Er/+OOPIIRglUIeOOP2IoRhYKAZtGnTBr1794bNYoHVaETPnj0DEjPDhw8HTTNwpTeGo2QdEEIwYcIEiDlY8zmf3fcU//m8kjajR4+GhmGwymLDlw4XEngejEIk8Rdo7927B5/PF+CRZo4vB3PRdAiCmKeShP8eZJQpm2NOcoLAXrIOQqp2gUDR0CjqFCzLqbKTZ86cQaJCOPhKUVPYo3TdCzSNF0xmrLLYEMILSC1VCmaLFbykhcbkAEVRBfbGLiwOHz6MBg0aoHhKSXTr1i0Xaefrr7+GRUngEELQsFEjtVB7584dzJs3TyW23N9NMXToUPA6E0oPfxvpY7chsv4A+V3v9sg2AVTu5IpGpwPHC3KiZOS7SO79IlhBA1aQUHLIOoTX7gNB0oOjaMyePTvP5Fjbtm2htYchdeS7smR5RlMIogSX2wOdMwJhNXrAGJ4EjVaHEydO4MiRI5g7dy4WLVqEixcvFui6ffvttyhbrjwcLjeqVqsOq90Bb4W2anLCmdYQRWPjH/GuyPjtt9/Qpm1bhIZFIDUtHTt27HjksVavXg0mx7NUvkLFAkuRdujQAYaQOPXcYpoOByGF8w31+XwYM2YMRFFOwtWtWw+//fYb5s+fD5phkdRjfrYFBPlnujmCCOJJIBhL/ncQvFdBBJEbly5dUotxDE1jwIABDy16qUVojoObF8DQ9EOL0H8HMjMzYdIbUFtRS3vf7oCWZR8qE56VlYU33ngDI0aMwEsvvaR+9zZu1AgRPI8IJtumSiuKD7QO8jgcAcTmJpImTwWxotHRiGRY7LA7sdFmh0khplpYFt20OhQRRNjMZvzyyy/48MMPYVQkuAkhGDBgwBMn5OaHvn37wsbx+Nrhwim3F/UkDawmU57Hz8zMRKmUFIgUhfqiBLuihve4kvwPw1tvvaV6kYd6PPk2fyxevBiSEntHh0fgwIEDeW63f/9+tUnhnCcE3zrdEArocf64WLVqlTpHnpNj2V5aHRaaLTioxJHzTRaMUBobLly4gB9++AFh4RHq+mjatCnu3LkDAKhWuTLsPI/njGbVEtLOcRAZBiWLFy+wDZZf8TK0WlcUf3oZ9I5IubFCo8nTYmr//v3o27cvevbsiQ8++ABXrlxBuzZtEOpyoUikvG9rSYNTbi8WKo0VfjWJh8Hl8cKZ1jC72B5XDqVT0wDIpJRqCnmGpmnMmzevgFe+YPj4449BCEGRFqORPnYbYtvKKp+bN28u8BgXLlyANyQUnKiB1iLf00eVbn9UfPHFFzLxPaIECKHgLtsCodW6ghUktM+hYvq4GDFiBCSjVbWY818vf7HdbzFXatgGCFojRo8eXaBxZ8+eLedU9BawvAhvSCguXLjwxOYdRBBBBJEfgsX2AiAYdAcRxIPh8/kwZ84c1K9fH3369MGhQ4fw7rvvYuXKlTh9+vQjjZmVlYUrV67kCtK+/fZbWIxGWSaeomA1mXDw4EH1926HAx6awQd2B96zOeBUOm1HjRoFn8+H1atX46mnnsLYsWNx8eJFvPPOO4iOiACtFELPur34yuGCgWGQkZEBo14OOHQaDdavX59rnt26dUOcmC2DPd8kBwK//vprnueVmZmJV199FUOHDsWSJUsCOgl9Ph+WL18OnSiijCDgPavsKd5Tq8OXDheeUoKftYokl18q7NSpU4W6tlu2bAFFUUgRBFRWJOimT58OAOjevbsahD2ndJV/7nCBJQQVK1bEt99+iwqK7H1A1znHQWBZRDMsphlNCiNZLlxrleLZsmXLsH//fgg8r7L0KUJQqVIl1KtXD3Xq1MGaNWvUeV69ehVtWrWC3WxGVFhYQKGeJrIvukBkX3FCCF588UV1371792Lw4MEYPHhwnt2QjRs3hpWmkcxxqs9ZV41WLaz7/zc6IgLbtm1TyRNTp04Fp5xTdUGEnqLU8/Pv10HSYI/TjVIcD7PyuxqCiLEGIwRluxCawTSjCeEMA6NOF0C42LZtm5yooSjYaRoVeLnYbbVYUKNGDaxYsQI+nw+ZmZno06ePWpysWqlSvusOgCKnRlCUZaGlKGgoCt8olgYDdHpYjUYAwKhRo2Qve0mDmoq3WZ06dXD58mV1na5YsQJPP/00WrduDUJkz+yBOj20LIvm9/nznT17Vl5jCknkO5cbWoqCwHFo2LAhCCEQDbI1QsOGjQKSd25vCJxpjdRA2ZJYCSVKloLNZEInjVbtnNjtlAvVp9xe2ds+j0THjRs3ULFcOfVeWYxGfPzxx9i3b18uhj8AdO7cWd2W43ls3Lgx32v73HPPgeF4JHSehdRRm2ArVh0UwyLlmbUwhCaCpmkYQhMQ22YiHKXrgxCCHTt2IC4+AbxWJuh86nCqzxshBKVKllSPnxAbi1OnTuHMmTOYOHEihg0blq+k4ZPE7du3sXDhQgwZMgQrVqxAVlYWfD4fvCGhMITGIbnXYsQ0HQ6aYTFz5kxkZmaiZq1aoBkWelckaIZF5SpVA7ri+/fvD63Nq0rRFWk5FoQQNel1/PhxZJQpA9FgQ7GnXkbxp5dBaw9FUnIxcBwPipaTmXqDEYbwZHVtRDV6BoSQfBn/e/bsAc8L0NpDYYwoDkIIJk6ciO+//x6lSqdClDSIjYvP05fwt99+w4cffojdu3cXuKMCANIzykDviUGpoetRcvBqaO2hqFO3biHvQjaysrJQpmw5CFoD3GWawRieBI7jH0li88aNGxAlDaxJlZE64h3Ed5wJhuUKnMh5/XVZct9dtiWiGw+FZHaheImUAid2L1++jNOnT6trKucauXHjBkqklATNsJCMMqljzJgxhT7HIIL4tyAYS/53ELxXQQSRP65fv64W6AqCo0ePYsyYMQWWV/878Ouvv8pxYw57rgxJQuvWrR9pvDKpqbDTNMIZBuutdixWlM+effbZfPeJDA1FC0Wt7azbi0qiiPJlyuTaTq/RYKQ+W76/pWKV9I7VrhZ4aYrCCy+8AJNej0qihG12B8Yo5P9169Y90jkVFr/88gvCQ0LA0TT0LAuGpvMlaX/99dcgJFvBbY/TDYYEKt09aXz//ffgWBZ1JA0Wmi1IEyWYDQZcunQpYDt/kbSNRovFZgsSRREhLneexeZdu3aBEIJ3bXa1KULHsmpOpTA4duwYalSrBq/DiYrlyj3wu/7w4cNgGQaNJQ3WWG0ozctF97eUNeG3PgxVLO8GDhwIAEhKLgatIxzxnWYhqtEQ0AyLyZMn4+7du6AoCtOUOP2cJwQVBBFRkZGYOXMmrl+/XqhzGTBAJlEbQ+Mg6EywO5x5kmW/+OIL8ByHEEFAESXf8MYbb6i//+CDD0AIwRcKGf2cJwQ6Vo43C4JRo0aBomk4StWDrZhcWF+0aJH6+7t376Jbt25qrN2vX78n5oeelZWFBg0bgqJp6OwhoGgG1avXKPT4ly5dwpQpUzBkyBC89957T2RuhcGCBQtA0QxSR2+Gp1wrRYmOQsWKFQMaKx4XX3/9NWiGgbloOsKqd4dkciAhMQl3795Fo8aNwXA8LAkVobGFQKfXF6qpa+vWrXj22Wcxbdq0XM97EEEEEcRfhWCxvQAIBt1BBJE/fD4fevfurX6oOqxWxBUpov63TqPBhg0b8OWXXz5y4f1+nDt3Di+++CKWLFmS6+O9a9euaqGUEAKnUojNy19p9+7dYGgaVSUJNZSis5WmwRMCQSlgzp49G6dPn87X62rTpk0ghKCFRoPxBiPsHI9yGRmFZpJnZmZiwoQJaiF5khLwjFeCZbWYS9MI5QXUVIrZAsvCbDCgX79+BUp+/PTTT0hLTUVpQcAZpcjcUaOF02pV5zFw4EAQInepf+lwoa9WB56iEB0djTJlyqBp06Zy8SOHn3o4yyEkJASMUkB30TRaShowhCAmMlKVzbp9+zZcdjuSeB4rLFb0URj4ki0UhgjZrz0/qbKsrCxUKF8ebpqGl6ax3+HCaIMRdZUA7WHr69atWzh58iRu3ryJGTNmqF7tiSyHSgo7nKFpLFu2DKdPn85TUtnvJfymEtB+bJf9mGcbzdjtdIHLca94QqChabCEYJCitnDW7YWNotQudZvZHEAWAWQyBFGIBPuUYri/S/748eO4du0a3nzzTbRp0wY0RWG43oDZJjOsHIf6devixo0b6NevH4onJKBqpUr47LPP1MTGszlsFDQUpc6rg0YLj8OBPXv2oErlyiCEgFV+/OfjJ7b06iV7hReVJDCEoBTPq2ST8QYjGJrOde3atmkDhqJQVRThYlloRVH10I5qNCSg6LplyxZ1v9CwCNhL1skhAZeB1LR0PPXUU+AoCh0UBYZKgoAVFiuaSRIohRyQF3755RdMnjwZEyZMwJkzZx64XgBZ5tpPZmjbtm2+Mtt9+vSBwR2tzjOu/TSZTMLyqkJFcq9FsgTamK0QtAb07dtXZr23HAeNwQ4Xy6GTRgsvyyHM68WVK1dw/PhxHDp0KN/j+nw+/Pbbb3kWmN977z2ULVceScnFMXz48EIlRwE5CVG+QkXQDAudTVbVaNuuHU6fPq2w3IsjrHp3pI58F8aIZLRu3VolihRtPUG5DrLfe84EwY4dO+T1lFgRYTV6QDTaUCKlZEARO6ZIbADJwlO+NZxuDw4fPozFixdj5cqVmD59OiiKQljNXijaegI0Vg+Kl0h54Dnt2bMHHTp0QNOmTbF06dICvad37doFk9JNQQhBzVq1MWrUKOj0evCihKTkZJw7dy7Pffft2wejyQSKokEoCja7I5c6Sn7w+XyqvYifUOW3+ijScowqSygaLPn6dd66dQtfffUV9u/fnyvBc/z4cRBCENduqnqdDZ4Y9OrVq8DzGz9+PFiloyalZKkCEb8yMzPRs2dP9XrGJyTixIkTAXMeOXIkypUvj1KlSqF3796F6gR5GC5cuIC1a9fi7bffLnQCMYggHhXBWPK/g+C9CiKI/9/IysqC02ZDeUnCHqcbKy02iAyDSZMmPdJ4Q4YMAUUIJuTwtG8gSqhcsWK++7zwgmyPU0kQka7EoHkVxoslJKC0KOJHlwd7nG54FDWibXaHat/HUBRGjRoFQgjeUQq/5zwhCBNFDB069JHOqSC4evUq+vfvj8oVK6Jz58747rvvsGDBAkyfPv2Btj+ffPIJCCH4QDmHY24vBEJAUVRALHDz5k0MGDAAJZKSUK1y5TzJsAXFggULwNE0Tijxqt8mLmfMCcgFWicvqHHtRptcuM7L2/vmzZuICg9HlCBgnMGISpIEgeMK5csNyH9zwkNCECEI6K/TI0EUYTWZ8pWjX758OQghqqrifoWsINI00iUJEsMgzOtFjx498Nprr8Hn8+HWrVsBHcLpY7fBFFMaDRo0gM/ng0YUVVW7o24vogQB7du3ByArlr3//vt48803C6Qw5fP58Morr6BTp0545pln8o2R6tSqhWRBwHG3F2fcXtS9z2bi5MmToGkaXbQ6fO/yYLpi81gQ2XdAjjfGjh2LyKgYxBSJxdy5c3PFfT6fD9OnT1djkvr16z92bHDy5El069YNtWvXQYMGDdC/f38sXLiwUFZdgEw87t27N8LCIxEWHoEuXbpg586djzW327dv48yZMwXOCWzcuDEgrg+vI+cu9u3b91jzyAtvvfUWwiMiodFqUaVqNTVP448LK1SoiObNWxT6+Qrifw/r1q1D586d8fTTTweohwYRxN+JYLG9AAgG3UEEkT+WLVsGQgjGG4zYaLOjhNK1/LbVju9cHsTzPJgcnkvjxo0r1PjXrl3DDz/8UOAP319//RX6HBJqhBAUiYnJsxtxxIgRcPA8TirBynBFaquLRou9DhcaiRI0ovjQTsYXX3wRDqsVHMuiZvXqAfJE/gJvfsV6ADhx4gQSYmOzi5oUjXiWxcd2J9ZZbdAQgnClm3PGjBno0KEDzCZTwDnSFKUyl/NCTmlsmhBU4HkM0RswWG9AJ40WOklSt7127RocVivieR5aioJWKUqHMQxic0gOM4SgsSQhieVAEyKrDRCCZ7Q6/OTyYLRCFPjyyy/VsQ8dOiQnFJTu/LNuL7wMC1dGU6SN2QpLQgXExiXkex6TJ08GRQjsNK0Gmf7u5gcFgCtWrACjqBywhMCg0QR0DlOEQOA4dOrUKc9gKDMzE4cPH0Zq6dIghOBrhWV9xOUBRQjK8DyiGFaW289xXzilsM4RCv10erTVyD7xS5cuzdcL7quvvgJRztFPiHhLYam///77iFY6/GlCUFsU1aTKGIMRIs+jYf360DAM2mq0KKbINlapUgWEEKxUugjOeUIQzjBw0DSqK2SF+vXrq/MebTBirdWGOJaFh2bwpd2JcIaBTiNbAsSzLKoIIuJYFkVoGs/qDYjhRVhZDgxNq12qPp8P06ZNg8VoBMcw8LhcaN++PY4dO4Z169bJHdx+P7NRm0EIwcsvv6xei2nT5KK1JbESzLEZ6rX7888/wTIMRGW+OqUgLlEUwhgGXq8313Xdu3cvbOZsaf8SyckFkrxevXo1WGXdN2jQIE+Z7fnz54OiGRRpOQYpg1fBHFsGFBModR/ZYCDSx25DsadeBs2wGDtWJhcUaTEaJQa8BnORNHAUjYT4+AJ5LZ4/f16VrqcoCk8//bT6rtqxYwdomoYxohjsKXKneZcuXR46Zk747098p+cCOscTk5JBMSw0rmhQNAtdaCI4SYdnnnkGxYuXkO/ps2/KHugj5CD9frn7N954A26PF4Igolr1Grme3Xr16kNj9aBE/xVIGbQSOmcEKlSsFLBNZmZmgBJH0di4x7IvyQtqF39YAoo99TKKtBwLmuVACAVOb4W9RE2wkgEWqy3fjvpz587hpZdewiuvvFJgOXqfz4cuXbpkv0c4HqtXr84utiuyhKkj34WoN2PkyJG5xjhx4gSiY7KJb2XKlMXVq1fV39+8eRNanR6W+HIoOWQdYttMBM2whZa/vHv3Li5fvowRI0YgPCIKMUViMW/evHyJDHPmzJFJEjV6oGircdBYPUhMSkbjxo2RlFwMISGhoFkOloQK0Fi9MBiNAcX4x8HevXthzPEOiClSNCgnGMTfgmAs+d9B8F4FEUT+eOmll1A0KgohThf69OlTYHnpfxt27NgBvVarfg9UqVhwG537cfPmTWgFAdUFEafcXnznciOc59GmTZt89/H5fFi2bBmqV62K2jVr5iuN/fnnn0On0YBR4kmP04kwjxehgoB+Oj0SRREmvR779+8HRVEYoNOrXtv8XyhpfvfuXaSXLg09y6KBKMHF8wjzegsUV127dg0mnQ4xLIspRpNqV1bqPhn9Jo0aQWIYtNFokSKI4DkO+/fvL/Acv/32W/To0QNt27ZVG0PWW2zoqtUhTen6/uSTTwL2mTlzJjQMoyqmzVAKvPl9hx49ehTl0tMhCQJiIiKwdevWAs/Pj/feew+EEOywywpnfhl4f6PC9evXcezYMTWX5G/08CsdrlAs6Tp27Ii2bdti/Pjxakzi8/nw1Vdf4c0334TeYIAtuQrSxmxByuBVkIw29OzZEwAwZcoUEEKQKoqIEASIPI99+/bh+vXrKJOWpj4neq021zV7VKSXLo2mirrDOU8IntUbYDYYArZZsGBBgL1Yz549/xJrhPXr10NU8iElSpTIlyDwMPz888+w2uyQTHaYi6aDZlg0atz4kebcokULMJwA3iQ3dlC0nFd4FOUEAFi7di00WjlHajAaC0RkzszMRP36DeQmEJ2c1+vdu/cjHT+IIP4OzJo1S17jnhhIRju0Oj0OHTr0T08riP9BBIvtBUAw6A4iiPzRs2dPJEqS+qH8uuIjvsvhwjdON3hCUEcU8YHdgcFKMfuDDz4o0NivvfYaRCUY0kpSnjLueeH8+fNo3bo10tLS0Ldv3wB52pwYN24cTByHvQ4XXjZb0U35AF1utsKbw3etT58+BfpI9m9z69Yt+Hw+rFmzBlpJ9gE36vV4991389wvtWRJhCuduZOMJlCEwHCfNLnI85g8eTJ8Ph8+/fRTECJ3ln/n8uBpRV7eYbHmO7fVq1eDEIKJBhOaixJoQqCnKBiVAjnHMAHvuK+//hoaSYKbZpDB80jhOJx0e3HW7UV9UYJNmR9DCEpwHNZb7Vidw8PZ/zN06FDcuHEDgwcPRnrp0qhVs6ZazD3nCcHXDhdEikJIlc6yj3J6Y4SGReR7Hnfv3kXd2rVBE4IElkNrjQYiw6BBvXq57tHOnTsxfPjwAIkwmhC0lDSqkkFycrLaecwr/2s2GDB37lz88ccf+Pbbb1EsIQEURYGjKNiVAm8Kx2G2yYyKggiaENgoClUEAcOUNU6ILEF3xu3FR3YnJJqGwHFw2+14/vnnH7iesrKyUF6RO28mSZhrMiOGZRHm9aJlixZw8zw+dThRRRBQlGVxXLkvrSQN7Ba5A3e2yYxDLg9iWBYsIbAxDBhCEMuyWGGxop+yZqKjolC1cmVMmzYNNE1Dsocjgc8u4C9XAvg9Tjf66HTglPteguNQUenE8P/YiteANbESCCFYvHgxrly5gv79+4MQgs5aLUbqjTCwLJo2bgxA9nKnGQb2lNpI7rUYrvTGoCgK+/btg8/nw/Xr15GVlYU5c+agRMlSSE1LVxMPfk+4BUYTGEJQVRCw3e7AKosNHKHg9XqxZ8+eAKJMcnw8iosivnK48K7NDjPH4amnngKAh8q6bd68WQ3CWZaFy+MN8He7e/cu6tXLJivQrICircbBmlQFsXHxSEtLB6EoGLxFwYkaFI2Nw1tvvQVRkkCzPGzFq0NjD4XBaCxQoR0AKlepCtFgRXTjoQip2hkUReH5558HALRr1w46V6TqfRZarRtoms6XyZ6ZmZmL0DRv3jzQDKvKvZcY8Lp6fgmdZ8meam0mye83oxE6xXKD0AyMMamI6zAd1sTKYBim0Kzio0ePwu3xZq8tuyPfQOnXX3/FiRMnAu7hkSNH8Nprr2Hz5s2F7iTIid9//10uyjYbkd39HS4rcBTv9yrSx25DUo8FIIQ8UXm/NWvWyASN+gOQMvANWJOrQBBEXLp0CWXLlQev0cOV3gSG0ATwvJBLHQMAKlaqDI3FjYQuzyO2zSTwki5XguTtt98Gz2c/xzVq1Cy0AgIADB06FDTNwJnaANbkqiCEYMmSJXlu26RJE5iiUrLl/xsOlokyFjccJeuAlfTgDXakjnwXpZ59E7xGX2iSXn5ILl4Cem9RpAxaieTeL0LUW9C5c+cnMnYQQTwIwVjyv4PgvQoiiLzhjyUbSRr01uogMgw6d+r0T0/rkfHLL79g48aN+Pjjj/PNFRQUGzZsAEPTsHIcdCwLq8mEn3766YnM88SJE1i8eDGWLl2KX3/9FadOnUKdWrUQ6nKhQpkyagHar5DnEASwNI2UYsWemNSzPy7zx6/+XIS/4Pu1wwWK5K9Odz+++eYbWI1GNZcQERoaoFB36dIlEJJtWXfc7YVXENC/f/8Cjy8JAkJ5ASlK/GazWMARAjNFowwvgCEELZo1C4jJL126hFCPB1aOQ4YkgaYotG/XrhBXqvDYunWrnB9TOv33KcX25cuXY8mSJaonu8VoxHPPPYd27drB5XCAo2nESxJYmkbtGrklyn0+H7p27ap+41MUBUJRkAxWsIIEu8OpXnOfz4fXXnsNrVq1QteuXdVO/pEjR0LDsnjTasd+pxtlRQkhbvcTKXiPGDECPE1jstGEeSYLLByHpo0a5dru8OHDWLduHXbt2vVEjuvz+fDSSy+hWvXqqFu3rhq/7dq1Cw6HA4QQeL3ePNUMHoZp06aBEzUo+cwaOcZpPASEEBw9erRQ49y8eROEEFiTqoBQNOLaT0XamK3wlGsFiqJw9uzZQo33ww8/gOU4WBMrIbbNRJiLpkMQpQKpjmZmZmLlypWYPHkyNm7c+JeQHYII4kkgKysLoqSBM7Wh3PQx7C1oLO5CN5wEEcSTQLDYXgAEg+4ggsgfY8eOhZ5l8bnDhbNuL3ppdaAIwRqLFcsU6V2/F/FZtxdGjsPUqVMfOu73338PhqbRXNJgndWGBpIGPMfh+PHj6jZ3797FL7/88sgB8rFjx6CTNBDvK2wblELuWqsNo5TubH+R70E4ceIEUpVuaY0ogqYoNJI0eN1iQ01JgsjzuWR2b9++DUKy/dHPeUJQSRAQqnRhd+3aVS06+rF48WJQhKhdz98qQZndmn+xfejQoXDyvCxTTdNIYDn85PLgmNuLVJ4HQwI70AGgbt26qCqKKM5xaJ6DeTxIp4eZotVr9pPLo0rZESKrF7zxxhv4+uuv4fP5ULd2bUgMg2aSBkUFAZzSJZwkSdArRWBe0IBjedAUVSDG7DvvvIPyZcsiJTkZ/fv3z9VVOmjQoFyFf5oQ1BJEvGGxYoPFhhil87iFpMEckxmRDAMrTSORlTvUXXY77BYLEgQR0xXmPU8IFpjMcCn2BJJCBvF7n59xe9Xi/QqLVb1mxSUNunXrhh9++AGvvvoqNm3a9MAi4L1799CmTRsIyrVKKFoUhw4dQukSJdBaI9+Ld212sIQghGFQTEkk9OjRQy5Cmyx4Vm+ARFH4xO7EF3YnKvLZkuaEENSsWVM93pdffimvoRI1oWdY7HZmP88MIdhudyKU4yHozNDTjLr22mi0oGgGjtL1s33V48ohITEJbiVgTWQ57FGuzziDESzDqAmBpUuXqjLUNE2jUqVKSEpIgFY5H7fDkSc5x+fzITwkBCmiiFJc4HkFnGOtWir5haFp1Z7BL/GYEBcHq80OiqKQmpb+wM7oqtWqqeOykkyqyGlPkZWVBZvDAX14Mor3fw1po9+DISwRVatWQ2ZmJhYtWoTu3btj3Lhx+Oqrr8DzAoyRxaEPTwbDSxAEscB+lnfu3AFN0wiv81QOOcBURMfEoG/fvtBotdA4o5E2ZivSx25DWC25o2P48OF46aWXApQ25s2bB41yvYsnJuLIkSMAsj0VnWkNkdB1DqwJFdQO/9QR7yB97DaUfEYuChOKgjWxEiLq9oNgcqm+6oSiHlnC8sqVK1i9ejVWrlxZKI+1N998U01MEUJQsVy5QnUrnT17Fvv378evv/6Ke/fuQW8wwppYEamjNqNY31fACLK6Q8kh65A+dhuK95PlHN95551HOc08MWrUKGhMdvXe+gv6X3/9Na5cuYIOHTsiMioGGWXK5iurqdMbEFq1izqGrXgNlCydmmu7EydOYO3atdi+ffsjexXa7A64MpoF2D2UKVsuz227desGyeRAqaHrkTZmKxyl6oFQFOI6ywoKiV3nghCCuA4zkDb6PUgmO4YNG/ZI87ofoqRBWI0e2dekWDWkZ+T2SA0iiCeNYCz530HwXgXxb8QPP/yAhQsXYsWKFbh27do/MocG9esjQxBVie3hegN4jnuoAlxe8Pl8mDt3LhJjY5FQpAimTZv2SOP8m7B7926MHTsWU6ZMKXRx7Ulhy5YtGDt2LBYuXJir0H79+nX8+uuvhS6Wbd++XY3p3A4Htm/fjvfffx+EEHysdGMfdXnA0TQWLFhQqLHPnTuHo0eP5vr+/OWXX0AIwXyTBec8ITjt9iJSEFWS9MPQvn17RAkCjio5iq5aHQSWBU8otWvdr4znj3tyHnvQoEFo3bo15syZ88R8vPPDn3/+iSKRUfDwPLpqdYgSBLjsdmzduhUURaGtRotVFhsqijLBX+sIg84dDUIIqlevjhdeeCFPoqzf+u45oxkHnG600WjBMAwGDhyI6dOn5ytTnxNNmjRBJTG7qWaeSc7tPQkbptu3b6Nt69ZqvFa5QgVcvnz5scd9GGbOnCkTxWNKQx+aAEKypelPnDiB+Ph4lVxfr149fP311wUee/To0RANFpXsHt/pORBCcODAgULN0V9sN0aXAqczq3FLcq/FIHnk7B6GV155RY7fR74bEL+/+eabhRqnoLh37x527NiBt956q0DWA0EE8STgt8uIrD9AfWaMUSlorDT6BBHE34lgsb0ACAbdQTwMq1atQkxEBKxGI5o3bVogCa3/L7h8+TJiIiIgMgw8Sqer1+MJKHKOVbqY37LaQRGCFStWPHRcvzz9MSWg/84lF5TXrl0LQJY49su/WU0mvP/++3mOc+jQIYwbNw7jxo3LszOyVs2acDIMPrE7sdvpQizHgSEEy3MUSpMlCd26dXvgfDMzM5EUH48wQcAskxntFLnwl83WgIL4/d35Pp8PBp0OrTUanHV78b3LAxfNQOB5DBs2LM8A78MPPwQhBDOMJpxye1X5+0GDBuU7P7/ccjjDQCIUOmm06vkN0OnBEpKLgT99+nQwFIVKggBWuY8zjCboKQohDAOOZcGxLOqIIlZYrKildHlXKFdODeRPnDgRECz/6PLAxLJo2LAhevbsiVatWoEQWQ69r1YHnlDgGAYumw2zZ88uUELg3r172LRpE5YtW4ZDhw6pnueEEITXeQqpI96BrVh1tQjL5FibAiE4rBSC1yqd+WU5mXzAE1le/iMlkeD3lBunN6CFpAko7nbUaLHf6cYI5V4wNA0DRcFKUdArZI5y5cqpRAN/UPmwIqDP5wtIljRv1gwunscOuxN7nG5E8jzsNhs6dOiADRs2oE+fPtBQFEwUheIchyiGxTiDUfWIJ4SgYcOGGD9+PBYvXqwWMS9cuKAynkWdGRJFB6g7EEIgaoxgJR1CGUZdOwN1elBKR6tabE+oAK1ODzOdvT9LUZhnsqCPTgetJAXc1wsXLmDnzp0om54OiWHAE4IyvIAXTGZUUqwc8ur2/vrrr9VOfkIIeEEAw3IQTE4k934RRVqOBcPxmDBhAgCgSGQkwlgWjUQJnTVaaBTChCWhIiLqPg2N1YOYIkXzJEFkZWWB5Tg4UxuqhXaaE1C9eo2A7fw+9IbQBOhckaBpOs930wsvvACG49WgN7m3vN9HH330wPUAyDJwRp0ehKLhKFUPaWO2ovSIjRDMbtAsD4pmwevltWyOKwt3uZYgCjlGMtpA0QzKV6iIO3fuqNKFHTRazDWZESUIiI2OVglM8+fPB6OsA1HS4IUXXsjBjJ8Ec2wGGIaFZLKrHfBx7WSfdkNkCmiGKXCn/pPA7du3oddqUVfS4EeXB2utNggMgxkzZjx0X5/PhwEDBmSveYoGL4jo3LkzGJYFw/EghAIniCCEgsYdg9BqXSHawqDR6Qv9dz8rKyvfjqNXXnkFFO3vZNgCV0Yz0DSNX375BVeuXMHgwYPRsGFDDB8+PN+ke2xcPExRJZA68l2UHLIOWlvIXxZs2p0uuNIbBxA/ypWvkOe2R44cgdFkgqAzQWMNyfGOoRBeq7f6LDhK1YMlvhxomsbnn3/+ROaZXLwEDN6iKDl4NZL7LIFoCHa2B/H3IBhL/ncQvFdB/NuwefNmCBwHVoknikZFFYqE+KTQqGFDpAjZftYDdXpIgvBInY7z5s0DIQRNJQ1aShpQhGDKlCl/waz/Oly8eBE//vhjQKFz7dq1qmVVcnz8v8JfODMzE7169VK/t8qkpeH8+fMF2vf06dPQShIqShLmmSyoKEnQShIOHjwIt8OBBEHEJKMJ5SUJkiDkKlw/Knw+HypXqAAzx2GgTo/qkgSapvHpp58WaP+GDRqgYg6rtWmKcqCV41TC+DuKH/uD/OX/Lpw9exbNmjRBXHQ06tWujZ9++gmzZ8+GhskmuH/mkOXEY9tOlq334soiNj5/672JEyfCyvPqNdhhl/fPj6SbF4YOHQo9y2Kb3YGfXB5UliQ4bTacPXsWXbt2RdXKlTFw4MAC/b28du0aevfujYTEZFSrVh1fffUVAFlF7NKlS39bx7TD6YKjVF2kj92GtDFbYAhPQrXq1dXf+9XF1DwPReHDDz8s0NhffPEFKIWAHll/ALT2UIRHRD7QTjInfv31V7Ro1gwhThesJpNKXo+o+zRKDHgNtuQq4Hmh0O//t956S27e6PJ8gDJdQfIOhcXNmzdRsVJl9fpptLo8r5/P5/t/3SX/JEg6t27dwqBBg1A0Nh6paen5qqQGkY2MMmUhmeyIaTocIVU6y3no+fP/6WkF8T+IYLG9AAgG3UE8CB988AEIIagjafCM3gAzx6FKxYo4d+7cI8mx/p24cOECunTpgnIZGejSpUuBA6/7ceXKFTz33HMYPnw4tm7ditu3b2PTpk1YtWoVuisS3nZe7lquWK5cga7Lu+++C0II1ijyZMsUOesdO3bg8OHD4FgW9SUNlpqtqKQEfvf7K+3cuROSIMDMcTBzHCRBwM6dOwO2SUlKQrschedn9QYwhKC3Voezbi92O10wcRyGDx/+wPmeOnUKJEeR/qzbi3CGQR1BDPDT2rFjB+7evYtTp06pPneLF8ss1ShRhIXjYDYY8Pnnn+Pjjz/O0yPM5/OpHcz+H45hMGHCBJw5cyZPf+DE2FhUEgScdnvRQtJAR1FYZrHiDYsNFppGeGio+sG7a9cuNGjQADVr1oTH7Q44jr+4zLMs1q5di3bt2qlFbANFobcixX/48GEAslQ4Idld3qfcXrgUIgEgdznGiiLOuL1oIErQUhSG6g0qWSEvYsbevXuxcuVK7NmzB7dv30bVSpXUuTE0DZ1GA1Yp3qSN2YK0MVsgSHqU5QUU4zhEMAzetdnxqsUKkaLQVqPB9y4PxisqBjpC8IzegAaibAHwjM4QIJEXpxTM++r0mGI0waBI8ee8RgaaBkMILBSNRso4NCFoKEo4qhQBOYrGrFmzHriu/vjjD9y7dw9Xr15F7Ro11HH8x7FbLCpb+syZM6hduzZcLId6oqQW+Qkh6KnVYafDhe7K/aFZFjTDwuF0qWusWbNmICR7Hw2hMECrBZ9DxYBX5Pef0ukxXG+ASCi4aRqEULCXrKNKSPtJBaHVuqH408tgTa6qeq4NHDgQI0aMQJcuXbB48WJkZWXh22+/BVGeO0IIDigEiMOKWkLRorE4c+ZMntdn586d+O6773Dt2jUQQhDd5Nnsol90KTRt2hRZWVlIT88AoWlo3UVAsTwIRYORDCr7PK697A///fff5/nMiZIGnvKtkdxnCTi9/DxrNJoAtQ1A9n1r0aIF2rRpgx07duCzzz7D22+/HTD/JUuWgKIZlBj4unJsuUD9MKb6N998A4am0UDSoJkoEz40zkjweisomkF00+EghCC+40xENRoC0RoKQjMqwYQXdQipKnuBv/766+jfvz+ixOwuJb8NSM5z+vXXX3HgwAH1Gyin55veYETbtm3BSzqUGro+QBacYdlcXu1/Nfzv4ddykKWKFYAsBQArV64EIQRh1bsjoesc6EMTQXPyep8zZw5Cw8LAcDxMRdLBSjpQjPwMhYSG4dtvvy3UPBctWgRJecclJRfLRXS6e/cuqlWrLj+rigLH7NmzcePGDSQkJoHX6GGKKQ1O0KB0alqef1M//PBDCIIITtSA5QWYzJZCy/kXFKNHjwZF07AVrwFzXNl8391+HD9+HO3atQMhBNbkqkgZ+AZc6U1kQojJCUGUwLIc3B6vSrB7EtizZ0+AZ3t0TJFH/u4JIojCIBhL/ncQvFdB/Jvg8/ngtNlQTdLgmNuLzxxOWDgO/fr1+9vnsnnzZhBCUEEU0UKSfcQfdR4pyclolMOGro1Gi5jw8Cc74b8I95Mzw7xeHDhwALt37wZD06gvaTDLZEa8ICLU7X5iUu6PipkzZ4KmKIwyGDHfZIGD51G9atWAbe7evZsnAdz/bfyd0iH+nRKXrVq1CgcPHkRKcjJYhkFMRAS2b9/+ROf922+/oWXz5nBarUgoWrRQXbjz588HIQSD9QbMMZnh4HmULFECFEWhhUaDBSZZuS7E5c6ljvdvwauvvgqKEGxT5OVfUDrxk3osQPrYbXCXbQG3JyTf/d944w1QhGCZxYrTbi96a3WgKCrPeDo//P777yielKSudUkQsHbtWlhNJtgYBvVECVqGQZm0tAcq9vl8PlStWg2cqIGjVF3oPTEQJY2aL/o7oTcYYU2qgrDq3VGkxWiY4sqhbLnyAORcStHoaKTyAlrlaKxwO50PLJ5+9tlnWLp0KT7//HOsXLkSZiXvV7xECn788ccCzSsrKwsZqamwchz66fTIUFQytUrMTQgBx/FYtWrVQ8c6ePAgqlWrjsioGDRt1gwnT55EekYZMJwAY0gsGJZDtWrV/xLVhkmTJoHlBMS2m4KUQSthii4Jq82mKpdkZWVh2LBh0Gh14HkB7dq3/9c+g4+CH3/8ESVSZKVTm93xWHFs+/YdwHA8HKXqwRglv7/+CoLE/yecPXsWJUuVBiGydcaAAQP+86o5Qfw3ESy2FwDBoDuIB6Fnz56I5gW8YbFiptGMwYoXMiGylHhOmeF/E65fv47Y6GjYeR5NJQ1sHIfY6OgnHhD6fD5s3LgR48aNwyuvvJJvof3bb79Fx44d0ahRI8yfPx937txB1UqVwNE0ikoSGIpC/bp1kZWVhZdeegkUITiuFIj2Kl3jb7/9dsCY5TIyUFIUcdTtxVG3FyVFEeUyMgK2admiBTw8j88cTux1upEgiggPCVGK3xJ0LItQj+ehCXm/h/R4pYv/kMsDE02DoSgkSxI4mkbN6tXx4YcfwqDTgSZyt2/z5s2RlZWFrVu3on///hg5ciRmz54d0AE9ceJE9ThZWVl47bXXMGzYMMTFxoIhBA6KhlEpZGoEATRFgSIETpsNP/30EzZs2ABJEBHPsnjVbMVHdgecdHYB1Wmzq1Ji69atA0NRsNM04pU5SBSF9VYbfnS50UkJPPxy2yNHjoSBovCFw4kTbi/etMoscb9/XGZmJkokJ8PN8xihN6C6JIGhaVUuu3fv3nBxHNI4DhSRfej9iZeygogG9esHrKWnnnoqoKhdvXp1cDSNNVYbjrm9aC5pQBOC500mEEIQXrsPivdfIRfMTLK/dzzLYoBOjyMuD+qJYkCnO0UIphhMKmEijmXBUBRqCQIMDANGuc4VuGym+ASDETRFYeXKleBYFh0Ur/ZlFgsEQlBPFJHByXLzqyw2db8iLIsmTZrkuZ6OHDmCYgmytJkoCChapAi0NI3yvABOmWdoSIhqS7Bp0yYIOaSzi3E8WiudIoQQHFWelZ+UJElkg0FIGbQSktmJVq1a4/Tp0yBE7tB/0WTBeL1MPJhiNKGdcs9btGghX3NBgKAU/VlC8KZSoHV7Q1AkNg5z5syBy+EAw4tq0bt436Xws8MjQkNh5DikKON27twZu3fvBiEEoxVlgI02O855QvCeTZYt5LVGJCUXe2BQ6PP5YDSZYE2ogNRRm1G833IIWiMGDBigyuQXaTlWluXuuVAuCDOcKgce1Uj2VcuL4AIAzzzzDCiahjWxEnSeotkBuNudZ4H+7t27aFCvXkCCws9Ivnz5MjzeEIhGGywJFcCJGpQpU/ahlhizZs2ChmFwSrmffoIITdNwlWmm+qpH1Omryo8zhCCN47HAZEE1UQJDs2B5ETNnzsSoUaNg5jgcVMgN/vFyEnXywu3bt3H69GncuXMHp0+fhslshsbigjm2DGiGRUWFcPZ34/bt2zDodKgtSTjk8mC11QaepjFmzBjs27cPV69ezXff/v37Q+cIU9dsXIcZ8jvV4kajRo0UEsOMAOn4gqi03A+/9Ka9ZB1ENR4CrT0UUdExuZJU9+7dw+uvv45BgwZh1apV8Pl8WLduHQghSO61COljtyGh8ywQQh6o7DJ9+nTMnj270P5+hUFmZiYmTZqEhMRkFCuRUiDPzkWLFoGiaFURwS9pGJ+Q8MQ6o/LC+fPnsXr1amzYsOGJyGAGEURBEIwl/zsI3qsg/k3wy6LOMWXbjVUVJTRo0OAfmc+GDRtQLiMDKUlJGDt27CNbud1fbG/7Hyq2L18ufwOO1BuxxmpDoigiMjQUEydOhInj1G/0zUoM4+/g/adQq0YN1MjR5T3RYALLMMjKysKxY8eQkZEBWolvG9SrhyNHjmDRokWYM2cOFi1aBEII3lXisneVbnC/7DaAfLtTr169ijfffBPr1q37W+TBcyIrKwtDhgwBo+Q7KpQti/Pnz2PZsmXQaeT4s2hUVKHJsn8nbt68iZLFi0NiGCRKEmgljg6t3h3htZ8CKzyYTJyZmYlG9eur+Q1CCJ577rlHmsebb76J5cuX4/jx42jQoAEoQvC1wxWgDHh/Q0tOHD9+HIQQxDQbKXspj9gIUWfCqFGjCj2fx0WiP7+iNBNQhGDWrFmYNm2a2hhAUxTmG82qeiQhBPXr188zbujXr19Abmro0KHw+XwPJB/khSNHjoAo5IhznhAcd3th53mMHDkSBw4cwHvvvVcgosS5c+dgMpuhc0bAld4EktGGorFx+O233zBlyhR07doVzz33XIG77QuLNm3awBiRrMbTRVqMBiFE7cafMWMGKIqCu1xLhFbtApYX/994at+6dQvhEZHQOsIQWa8/rAkVQDNMoawI/Ni1axcIRSGsZk9ZhWH0e9C5ItG+ffu/YOb/v+Dz+XDp0qV/nOgWxP82gsX2AiAYdAfxIPTp0wfaHIVL/88CkxlNNRowNK0WHv9N8MsJbVcksj9SpKXeeuutv30u3333HTSiiEhBQEXFO/iZZ57B7du38cILL+Dpp5/GwoUL1Y9Wf8HhPZvM9H1NYY9+/PHHAeNGh4Whl1anBpe9tDpEh4UFbHPmzBlEhYWp981useDbb7/Fxo0bMWjQIEycOBEXL17EnTt3sH//fnz//fe4d+8eDh48iN27dwewwLt37y5374sivDwPk8GAoUOHonv37pg9ezZ+/vln1Ru5LM+jgSiBUoqNfpw6dQocy6KFpMEndicGKuSNTz75BD6fD21atQJFCLyCCEopdpZgOfTR6SAQ2Wv+e5cH3zjdiBIEJCts5GI8jwiGUYMthhBU5gVEsixSS5ZUj280GBDCMKoPe2ulS1zDsohU5j5mzBh1+8GDB4MiBDUEERMNJoQqHuw5/ZnOnTuHmtWrw6DVIiYiIoAUsX79etCEIJFhwRGCp3V61ZstSRDQvHlzAHLhqabS2U0IgYumUZ2XbQtsLIsfXB58YneivtJF/pzRhC45mMAUITBRFCSKQllegEaRWdcQAi1FYbbJjClGE1hCkKFIrp10exHJ80hKSoLTLicXtIqktomicEJJpnTX6qDTaNSC9QqLFXNNZjA5glujcq/qiCK+c3nwmsUKhhDUrl071/OQmZmJ2OhoRAkC5pks6KR0wBZlZC/5QUpXOU9R6NOnD86cOaNKS9LKD0MINDwPvfJuekFJ0vn96eI7PRfgWbxz504Qki2Zf84TApMyJkVRmD17Nvr164coUURyjqI+QwiSOQ46jSZA0mz8+PEghCC23RSkjdmqyjglJSZCZBhMNxgRoqwVihDUq1sXUWHhCOd52CkaLCGIZVhIFA29IxIxzUY9sBDux7p160AzDBheAKFoRERG4eLFi6pceon+ryJtzFYkP/UKCKEgEAqSwa4WiZs0aZJv0igzMxNTp05FWnoGqlSpimXLlsGurAuGYTB16tSA7efPnw+GovCK2Yr9TjdqSRIMOp36zti9ezciwsOhF0VEhIVh9+7dDzy3M2fOoGPHjqAJwU4lwfGyWX73pZQsBY3Zhbj206CPKAZCCPShCWBFee34/QmPur3qmtyxYwfOnDkDm9kMF8+jrCi/U7p37/7AeeSFI0eOoGPHjqhVqxbGjx9fKFWX06dP4+DBg08s6H/77bcDiCfRkZHq/9drtdi8eXOe+02dOhUsL6LYUy8jbcxWeMq1AiEUeK0BzZs3ByEExfsuVZNEFM1g8eLFhZ7f4MGDobW6kTZma4Ds/v3d7Xv37oVdkYwkhKBZs2aqCkrp4W8jfew2pAySO442bNjwSNfqn8TWrVvl+9PkWaSN2YqwGrJay759+/7pqQURxBNHMJb87yB4r4L4tyE6PBwlRQmfO1xYbbVBw7IYMWLEPz2tx8ILL7wAQmQZ+VYKOXjy5Mn/9LQKhO7duyMpB1FguZKHGDduHESGwR6FwLrYLFtd5UXI/TvRqlUrxCj+5WfdXrTWaGA1mfDdd99B5GUyeB+tDpMMRmhpGqKkkWMpTgAviCgaHQ0dy6KS0oRQOiXlod/sJ06cQLjXm01MdjjULubdu3dj2LBhGDVqVIG7fvPDZ599hnIZGYiJiEDH9u1x5cqVgN/fuXMn17s8KysLf/zxx2NLWGdlZeGFF15A3Tp10KpVK+zZs+exxssL169fx9SpU9GrVy/MmzcP7dt3UAvCTZs1e2gxKSsrC5s2bcKLL774SAW/++Hz+SDyPFhC8K3TjTcsNswwyA0OH3zwQb77+QvJRVuNR/rYbUgdtQmS0aoqHf5dOHDgAAjJbo55SYmjp06VYzFPuVZI7rUY1qQqYCgKow1GCDStWqqlpKQEkMk/++wzECI3d6SO2oTQ6rKi58Ni+rxw9OhREEKwxGxRY3YrzxeakLBo0SLQDINSQ9cjddQmNQezdOnSQs/pUTB69GhwogZJ3ecjdcQ7sMSVg95gVBsm0jPKwJJQUS3Geyu0hcls+Vvm9jAsX74cLrcHgiihZq3auHDhQqH237t3LwghSOg8Wy2Qi3oTxo0bV6hx/DYr/rXltzzQuaPRrl27Qo0VRBBB/DMIFtsLgGDQHcSDMHPmTKW4bsFJtxdPK8XRzx0unHJ7IdA05s6d+8jj+3w+LF26FHXr1EGTxo2fmHTM6tWrQQjBfiUg3K90h69evfqJjO/H3bt38f333+PYsWP5BjW9e/dGiCDgiFLgfUZvAE3T+fpZ37p1C6VTUiDRNEpJEniaRrWqVXN1vbZt3RoWjsOrFitetVhh4Ti0bd0613h//PEH1q9fj9WrV+fZ0Xnq1CnEFSmifvRYlK5pQgiiw2XZtO3bt+PkyZN4/vnn0ahRI3Tr1i1X8WT79u2gCEEqx6uyzb20OmhEUd3GXxT0s4XPur3glTX0xRdfgBCCeYr/uV/y+UXlv80UjYFKsfqcJwSdNFoIDIvmkuwHf9LtRTLHIZnjYKZoVBdEDNcbYNTpAMjFREIIKvCCOsYMo3yuEyZMwKBBg3IVdQYPHgwnx8PLMOAIQQjNgCYEUWFhGDx48EOD8QkTJsDIsjji8qCPTgeKENQRJRTnONAUhR07dgAAnnvuOTBKUfwdmx02hY3spGlwhMBB09BQFKw0jTAlIOqn0yOcYSASguZKEX6LQtDwd+AzhGCATq/ejzYaLVgl+VOc48EyjPqMv2K2BnT/emkG6UqSYvLkybh37x5cdjtKCQJ4QtBc0uCk24u3rXaZsEACJeBZQjBt2rRc18TP/l5xnyWBRAhaSZoA8kioy4VixYpBS1H4yO7EMbcXNQQRLCGoVKkSBI5Tvck1SnDOiVok9liIuA7TwUk6dOnSBRcuXADPcWgqafC1w4XJyn1PSUnBxo0bAQBz5swBTWS7gHdsduxyuJDAcuBpGlu2bAk4h3v37qGiIu9PczIponjx4nj22WdhUhQTKELQX6fHSL0REk2jRbNmiAwPl/dh5evK6a1IGbwaEfVk1vjDFCa2bdsGo04mWfAsqxZDL1y4AK1OD2NkCehDE7KfZYpGLMuCEFlloiAF35UrV6Jq5crwuN2gCYE1B9lq8uTJuHz5Mm7evCn70uVIxq1WmP9Hjx7FjRs3EBsdDTfPo7tWhyKCCJvZnO/5ffXVV9AbDOqa1VM0yovyu69OrVo4ceIEYuPi1XnExcejZcuWijUAwWrFjuNDhVTVqlUrdewTJ06gT58+aN68OebOnfuXSMrlhczMTHTu3FmdszckFAcPHnwiYx8/fhwrV67EtGnT1HfBZpsDNRTLkV9//TXXPr///juKxsaBZlhwWpmUwopaGE0m7N+/H1abHXpvUUTU6wdTdEkIovRIHdjjxo0Dr9Gj5DNrkD52G8LryGodS5YsUTt/fD4fwsIjoPcWRVKP+YhuPBQ0wyItLQ2EomCMKomoRkOgC00ERTPYtm3bY1+zvxs+nw9tFSl5mpXJEYMGDfqnpxVEEH8JgrHkfwfBexXEvw1fffUVrDlizwply/7nO7Z8Ph/mzJmDxNhYxMfEYOrUqf8ZqdcRI0bAxHHY7XThrNuLPjodGJrGyZMn4XW54OB5VBVF8DSNenXq/OO+xPv374ckCHAxDIoqMVjr1q3RpHFj8Dli01CGQQTDgNfbkDJoJVJHvANTVAoio6IxbNgwNGnSBMOGDSvQu7FRgwYI5QXsdLjwlcOFIoKIKhUr4t133wVD03DxPMwsC5HnsWbNmjyv0a5duzBnzhysXLkyz/js4MGDEHgepUQRPbQ6mDgOFcuV+9uu99ChQ0EIQRVRRFFBgMDzfwth9Pbt2/nmyP5qZGVlgWNZsERuVlBzGhSl2trlt1+p0qkQ9WZ4K7aDKSoFLMdh7969f+PsgXfeeQeEEOxV8p9n3V6wFIVmzZqBYXmVCF1iwGvqudWrUwcfffSRSrD3KrYRALBs2TIQQpA6ahPSx25DqWEbQAgpkNT7/fD5fKhcsSIMLIvOWi1KiCIkQcChQ4fUbf7880+sW7cOr776qqpueD8WLlwImmGRMmgldCFKzoOiQNO0au92+fJldOvWDSVLp6JFi5Y4ceIE7ty5g7lz56J3796YPXv2I5Pgr127huIlUtTrx3F8QKNNlSpVYQhPUpXN7Cm14Pbmb4fwd2Hbtm0ghMCaVBlhNXpA1FuQnlGmUO+TH374AYQQxDQdrqq2cYKEmTNnFniMn3/+GTRNw5nWCOb48qBZAa6MZjAXTQchBFu3bn2U0wsiiCD+ZgSL7QVAMOgO4kGYOXMmtAyjFlS+cLjkjyyLDduVwsajSM36MWOGLGVbURBRTBBA0/QDmaMFxfnz52ExGlFClDDOYEQJUYTFaHyi/qUnT55EfI4idf26dVWf8pxo3749SojZRam5Svft77//nue4hw8fRvGkJFCEQCdJ6NixY54fhJcvX0ZGaqp6/IzU1EeSMataqRJCeAHrrXa8YpZ9vqsKIt622hHOcaoMOUPTeOmll/Ic49atW6hTqxYoQlBFyC5mP6M3QOJ5dTu/d/UEhXHrL6hPmDABb775JojCJPb7nxNCMFHZNpnlEMIw2G534j2bA06eB88wGKY3qMdrIEpIYDkM1RtgIAQelkWIx6MGhyaloDdMb8ACkwV2xXs8vXTpPNmdK1bIEu2zTGY8bzQra1VAR40WAsMEdO1/8sknaNGiBRo2aIBXX30VPp8P48ePh5FhcNTtxRm3F60VGXiaEBj1ejXx0rJlS5RRJPAOKMSQQQqx4GO7EzQhiFA68s+6vWgiSmAIAc8wCGUYTFNY1/6O/W+UMYx6PTSEAkMIUjgOCSwHWineU0RWepg3bx5YilIL8n7bgtIcpxRqCWrWrImsrCzs2LEDOkku7K+xZkvGx7AsKOW8kjkOkiL1z7Es0lJT8fPPP2PgwIEokZiIcmXKgBCCscp9Peh0w0DJc6zACzjr9uKs24uGkgZFo6Kg1+lQLgdBYoHJohauvv32W/Tv3x+1atVC9+7dsWDBAni8IeozQRTSwqhRo/DGG2+Az9ERzEk6iAYbREmDffv24datWzAZDKif41mdbDSBoek8A5F79+5h9erVmDlzpvrO+vDDD+VCuFI0DmcYvGGxYYBOD4tBJtm4MpohbcxWJHR5HoRmIDkiQTMsWrdp88Dn9JdffoFOo0FlScLrFhuaSbKyiD8g/uijj6DRyOtrtsmMDVY7ohS1gD59+hQomPJLR1bkBTBE9gL80eVBWYV04f+haRpVq1aFwDB422rHScXiQBIE/Pnnn9i+fXsA+WOvwwWKEEyfPj3P4yYXLwFDaBxKDV0vS8MLGoSEhGDSpEnqu+/u3bv47rvvcOTIEfVc7t27h4rlykFiGJQXJehZFnFFivwrvNHmzZsHiqYRUfdpxHd6DjpXFKKiY55okmzKlCkwcZz67O5Q/iZ/+umneW5/9epVzJo1C9WrV0eZMmXQvXt3taC+b98+xMUngKIoOJwuTJ48OUDNoaA4e/YsLFYbJKMNxqgSIDmSVRarDYcOHcKVK1fkYF2RW0wfuw2miGLQG00wFkkDp5OfcUbQgmJ4eLwhhZYr/DfA5/Nh06ZNeOGFF56412cQQfybEIwl/zsI3qsg/o349ddfsWXLFnz22WePLN3+v447d+7g9ddfx8yZM1Uy96Pg/PnzCPV4oGNZRCmqb1OmTAEgf+P16tUL9evVw/jx4/8yqebCwOfzISk+HhqaRgrHqzFLiEe2Fuum1WGp2YoklgND0bAmV1G/PcNq9oIgSoU+ZnxMDLrmUBccoNPD63AiLiYGlSUJb1ntMDHZlnlNmzUL+I5dsGABCCEQFQJ92fT0XDmkkSNHwsbzOKZ84y9RlAQ+//xzNGnYEBFeLyqWK/fEC7o+nw+7d+8GQ2c3ORxzexEpCP+oHPaPP/6IiuXKwWYyIbVkyb+k0x4AWjZvDpbIDQ8f2B34yO5EKMehds2aD9zv4sWLaNy4CWwOJxKTkv+RouGxY8fA0DQ6aLT40uHCEEUmfuLEiTJZvd1UpI/dhog6fUEICXhPnDhxAvHxMrFdp9PhvffeUxthQqt1Q6lnNyCkcgcQ8ugqXVevXkW3bt2QUKQIKleogC+//FL93a+//oqisXHqM6PR6vDJJ5/kGuPMmTMwGI0Q9FZQDIuELs8jddRm2IpXhyCI+O2331CseAkIWiNsxWtAMjvhdLlRuXIV0AwLgzsaDMuhYqXKjxxb3rp1C+vXr8fLL7+cS71i8+bNoCgK+pA4GKNkb/M5c+Y80nGeJHr16gWdI0wlXMQ0G1GgRo+c8Pl8qFuvHhiOhzm2DCSTAza7Q7XrLAj8ayq512KUHr4RjpJ1QLMc7A5noZvibty4gZ07d+Lrr78OfjcEEcTfjGCxvQAIBt1BPAjvvvsuCCGYbjThe5cHXRXp6iRBhJZlUSwx8bHY5w6LBR01WlVaO0UQULdOnScy9z179qB4YiIkQUDxxMRHkjx6ECqWLYtQXsAaqw3zTRaIDIPhw4fn2m7VqlUghKCrVofpRpMsaZyenueYf/75J8I8HhQVREwzmlBD0oBj2XzZtFlZWTh8+DAOHz78yIx5vUaDkfpsL/HmkgYlFc/u8QYjGCLLOrfTaMHQNI4ePZprjMGDB4NRCqyEELTRaNFPpwdHCDq0b48bN27g1KlT+P3339WPaL+Mt4ai0KlTJxw/fhwcy6KZpMF7NocqLx7FMCjBceCJ3C3t399usaB+vXowshymG00Ypjdks9dpWaqbIgQahgFD03jjjTfw3nvvqf5mhBAIhGCM3gg7x6N+3bp5Xt9OHTuq2yewHM4oQe9IvREMTePu3bvYsWMHGJpGgiCgjCCqgc3y5cvB0DRKchz66vSw0TTClcCaEKJ2oA4YMABWjsdupwsfKh54G6x29Z5IFIU6OYrA4w1G0IRA5DgwCmGAEIJ0XvauLssLEHkeNEWhliBisjFbAl9HCMzKtf/5559VibDBegM+999nQvCFQ+5o8F/TuXPnokxamlxsJQQ1BRH7nW68bLaCJgQmoxH9+vVDUlISGCJ3iCcoHZ1ajQYiw6CtRouSgqh6w2eIEqw0DYEQlFIK+8U5DmlKouT5559HiMcDnhC8YbFhl8OFVJ4HS1H5+lNfvnwZFpMJRXgez+j0SFXGeu2113D69GkYjCaYYlKRNmYrSo/YCK0jDM2ayXL+Xbt2hY1lsdPhwo8uD8qIEopERhb4Wfrzzz8hsCwiGAbD9QaU43gIhKCWIMKlMMYTu85VkzyiyYGw8HBMnDjxoQHfpk2bQEi2KsQptxcMkbs3SpYqjeIpJZGUlIRKOXwL/cSeghafSxUvjlqihDNuLwSFlHLW7cVRl0d9XglFwxxbFoQQFImOBlGeM4am0bZtW0yZMkX1QPzA7sAOuxNuNpvk0KlT51zd5Tq9HqHVuqrXxV6iJlJKlc41v7t37+L06dMB53Pjxg2MGTMGzZo1w9ChQ3NJLP5TaNOmDYzhSeo5xTQbCUIIfvvttyd2jKVLl4KmKGxSSA0TFFWK+1VHCoobN26gQoWK6r0yGE344osvCj3OyZMn0bt3b3i9XtCsoJJeCCGIjIxCZmYmJI0WtuLVkTb6PZTo/yoErREOpxvGmNJIHb0FpYa/DXNsGQhmmfxz/PjxRzqn/PDtt99i7ty5WLZsGa5du/ZExw4iiP81BGPJ/w6C9yqIIP67+P7779G4USOkly6Nfv36qd8vt2/fRqXy5eVCmRJPPY5s/cWLFzF+/HgMGDBAVQD7t+KXX34BIQQvKvLUZ91eFBFF2Gw2OGlaJaT6Vd9YQYO4dlOR1HMhdI5wpKblnZM5dOgQNmzYkKfveaMGDRAmCPjc4cJuZ3Znu8VoxBCdHk6Wg8FTFEk9FyG6ybOgaAazZs0CAFy5cgUsw6CzVoszbi/esdnB03SugtyIESNgz1Fs91trxURGwsXz6KPTIUkUYdDq8u0CLizu3LmDhooPOiEEM41mNaYsLYoBymF/J65evYoQlxsxgoChegOKiyJMen2A5PmTwh9//AGTVovuOcgUT+v0CHW5nvix/gosWbIkINc1duxY3Lt3DzVq1ARFURANMmmjd+/eufb9/fffUa1aNZVYv2DBAgwbNiyAcO92OlEuIwNr1qx5YnPOzMxEpUqVQLM8XBlNkTJoFYyRxREekTsHc/XqVUydOhVGoxGSLUyNs+Pay1L5b7zxhpyzU6TOUwatVInfRVtPkLftMB2EEGzatOmJnUNObN26FQ0aNETt2rWxfPnyf1z9A5BzjZLRjtIjNsrKc7Vl5bnC5k1u3bqFMWPGoFatWujSpQtOnjxZqP3Pnz8PhmVhL1kHpYauR3RjWUGjsIX2I0eOICw8IrvpLKNMvrnBIIII4skjWGwvAIJBdxAPgs/nQ48ePdQ/ZBRFoXHjxujUqRPGjBnz2H/UdBoNns3RmVxLlIOV/wJ4jlM9kfxd1ZUrVMi1nc/nw4wZM6BVOoIrlS+fLwPwyy+/BCHZfu0n3F7oWTbfjtAHwefz4cyZMzh+/PgDC/Gx0dGoJEk44fbie5cH4QyDaoKAE24vKgsCQhVlA3+3dE6pJD+S4uLgpmnUEgSMMRjhYRjoKAo0RWHBggUQlIKnzSwX/0rm6DAmRJbgBoA33nhD3ZahaQwZMgQhHg9oQtBBo0VDRS7doXw0v/feeyhdsqRa8Ouo0WKoYnWgp2l85nDilNuLxpIGOo0GmZmZ+OKLL2DQ62GhKEwyGHHW7cVwvQEmvT7f63jgwAFUqlQJxQVBDdrHGIyglWJ7zRo1UJwXcEr5XXuNVvUZJwpJwEHTqC2KqMTLMuwaUVSLjr/88gtCPR5IDAOT0uWdxvN4x2bHcIWVTBOCKUYTXjJbYadpRChFe4oQpPI8zFR20Z2lKJQpUwY2nlfn5E8yeGkGcUoixq9K4fcg949XRxBx2u1VPdC1NI3SpUtDYBi8Y7PjZbMlgPhQumRJlTiQlJQELUWpEmbPKvMfrterazpUEFCiRAkY9HowOYgRolJsT+Y4CIQgPS0NGzduVM+LELljfPz48QCgFqhPnTqF5cuXY82aNaqfVHNJI5+vYgFgM5tx9epVcByPsJo91eDMHF8elStXASAHADEREep10EpSnqzq/OD3hk9WisuUMl9CCEaMGAGNVgdLXFkUf3oZIuv1ByEEqfmoKtwP/7vhJUXu/z2FlEEIgSW+HCyJsqy9nWWx3+nGGaXb3KDTFTjIS4qLU6X8KwgCWGXdWZRiqWj1qwZQEM0utGrVChs2bMCUKVNgtlhk/0ONHjTDwO1wIITnYWJYSNYQxHWYgYi6T4MQChGRkQEej2npGdA5IxDTdAQMESXAMCzS0tID5r1z507Y7PI5sxyHBQsWFPi+/BMYNGgQBJ0JKQPfQNqYrXCUqgtBEAOY1/fu3cOZM2dyySVeu3YNP/30U55KKTlx69YtZKSmgqNphCjdR3379n3kOY8dOxYsLyC27WQU7/cqjOFJ8IaEPnKSICo6BoRQcKY2QLGnXoYrvQkIIfjmm2+wfPlyUBQFQWsAw3IIC4/AK6+8IhOw3DHQemNBCIE5tgwoispXCeZRsH79ejAsC4YTQCgKMUWKPpIqzJNEVlYWFi1ahObNm6NHjx6P7fMZRBB/J4Kx5H8HwXsVRBD/TZw6dQpmgwHRgoAWkgZalkXVypWRlZWFl156CQxFYYPVjrNuL/rr9KAo6pGKkVevXkXjhg3B0DQkQcDw4cP/1RL4frUkf07mJ5cHTp5HRkYGRIpSScp+m7QSKdkS0N6QUPzwww+5xpw+fXpAnmL06NEBvz9x4gTCcni2u+x2HD58GPXq1IFNyXEUaTFajTWN4UmqF/H3338PQgjeykGqj5YkDBw4MOAYBw4cAM9xSBNF9NbqYOY4FEtMlHMxyr6HXR6IDPNYlo5+bN26FdWqVQNLUVhktiCF42GiaEwymtBZq1ULmf8ENm/eDEIIPnU4cc4Tgu9dHlDkr/PprlWjBqIFAfudbhx0uhEviqhUvvzfZkX2uDh58iQ2b96M6dOno1u3bhgxYgQOHTqEV199FePHj8eGDRvyje3u3r2Lbt26qWt7wIAB+Oqrr9C4cWMQQtBYklBZiTnXr1//2HP1+Xxo0aIFCEVBtIWCYjhoPbFqMTjnNT937hzCIyKzn02KQpEWo5EyaCXMsRnQ6Q1qc0Jy7xeRPnYbSg97CxQt58xKDV0v/9uIjSCEYPny5Y89//8KvvvuO4iiBJ0zApaEiqAZFh06dPxH5vLKK6+AztF81LZdu0L/jSlTthy0thAkdp+H2HZTwEs6PPXUU3/RjIP4O3Dr1i0sWLAAQ4cOxcqVK/8VJJUg8kew2F4ABIPuIB4Gn8+HXbt2Ye3atQG+Ok8CbVu3ho5lMdpgRB/Fi/jfILVTEIR5PKglaXBKKVJHCsIDGb9ZWVkPlVv75ptvQAjBMsXPep/TDYGm8cILLxRqbjdu3ED9unXVj5jUkiXzlQnasmULOJaFmeOgZRiwFAWRpmFUpMH7aeUi6RTF5zovubLyZcrAQtMoyrI4qsiAt5A0MBsMoCgKbTVavG6xoZwogVc+rnprddjvdGOoUoz1d1D+9ttv2LNnDy5evIilS5dCYFmE0AwWK4z1KoKgdlu/+OKLmDt3LjiKwnFFQn23U7Y6yMjR4fuiIr129OhRRIaFQUvTqkR6J40WtSQJMRER+V5Pn8+H2bNngxCCcrwiI0/TaN+2Lfbt2weBZVErx/GG6w1gCcHHdidmm8xqx7+/aE4Tguj7OqYvXbqEWbNmQeB5VOR5WHKwkgkhSOOypbwZpZBLCMFEgwnnPCHY73Sr/mI65XcSReGgUvReqFyDFpIGHTRalOZ4FI2KUo9/9OhR1c+J5BjfqXTOp6SkIDGHR/cCpRC/Zs2agA/kuLg4RDKsut0bilXAMEWK7rTbi0ieD/B3N1CyN30vrQ5H3V68YbGhpiDCqNMBAD799FM0aNAANWvWxFtvvYUPP/wQoYo8YIjbDUkQ1LGKREap8x+gHPMTuxMCTWPGjBmoXqMmRIMFMc1GIrx2H9AMi4kTJ6rz/+OPP7By5UpMmjQJCxYsyKWI8fbbb6NobCy83hB07do1oCN99+7dqs/5HJMZw/QGUEQmW1SuUAHvvPMOOD57rvEsBxvHIaVYsYfKX2VlZaFh/fpgKApxggiBpiFptLDEl1eTOZaECuAZBhqGhZMXQFEUli1b9sBxc2LChAmgKQrNJNmmoLIgYJLRhEhWlqN3pjeBo3R2x0NGRgYAoHPnzpBMdqQMXoXUUZthic2A3e5A9apVQQhBdNNh6hz14clgBQ3sDqda4Dx06BDMZgsoQlCUZVFZUYcYOXIkAJlpbzSbYQhPgiW+Aiha9qGvXKXKX9qVfPbsWezbtw/Xr18v1H537txB+/btQdEMKJYHr5efvYULF6rb7NixA3aL/O+SIKgB/9KlS8Era4TnBZQvXx5Dhw7NtyP+5s2bmD9/PoYPH461a9c+VmDStGlTmKJLqvcquonczVDQa/zdd99h69atOHPmDAAgVbE5KfXsBqSP3YbUke8GJDe+/PJLTJo0CfPmzVPPb9WqVZAkCRTNQDTI746xY8c+8jndj6ysLBiMRlgTKiB11GYU6/sKeI0ezzzzzBM7xqNg8ODBIITAGFEcktkJvcGgSvw/DrKysjBjxgykpWegcuUqf1kXRxD/2wjGkv8dBO9VEEH8NzF16lToWBaHlHjX3+n8/fffo1SpUrDRtBp7va+QU7/++utCH6d506YwsCzGG4x4WiGwP4li7l+FY8eOITo6WlZdE0VE8QK0koQvvvgC4V4vjCyL4gpZv2fPnrh37x527dqFTz75JM/ve7/l3dM6PQ443SppPKfkNSDHJuvWrcPatWtVwvn58+dRsoRsoWQrJqs3FX96GXiNHs8++ywA4Pr169BrtagpSdjlcGGOkifIK177+OOPkVaqFCJDQlCvbl20b98ehBAsMMkd54dcHgg0/dj3Z9KkSSCEQKBppPOyuuG3TjcSWQ4UIdBrtZgxY8Y/Vvzw5ye2Ks0oe5QGEL9H95PGDz/8AIfVquYTJEEAy7JgGQbt27Z9KBn6r8YXX3yBLl26oEOHDnl+19+5cweVK1QIsPKiGQbr1q0r0Pg+nw/Tpk1T923QoAGsJhN6Kt3+Z91elBVEVK9a9bHPZc+ePXKuoMmzSB+7DYndXpBjY6sX0TFFArbt2LEjRKMNxZ9ehpLPrAErGdQ5CqKETZs24Y8//oDb44XWEYbQat1gDEuEpNGA43hY4ssjrv1U2JKrgGW5PIk2/5+xd+9eNG7cBBUrVsK4ceOemEWbz+fDr7/+mqt54EH48ccfsWbNGuzcufOR3iuSRouwGj3UnIWtWDWkZ5Qp9Dh+ZGVl4cqVK8EC7z+EO3fuoEzZcqAZFlqr/H7v2rVr8H78ixEsthcAwaA7iL8Dv/32G9auXYu1a9cGFA2uXbuGVi1agOc46DQajBw58l/Nns6JN998EzRNw8kLMLAczAbDY3+0ZWVloVrVqtAwDOqIEjw8D4/TiYsXLxZqnMGDB0NiGMw1mbHMYoWD51HvAfL8Bw4cwIQJEzBt2jTs3r0bs2bNwqRJk1C1cmUQQqBXfMf69OmT5/5btmzJDkgIBatSKG7atCm0LKtKr3/qcKofxd8pyQK/N/v9fvDz588HIbIHfFml+DTPZEElQYCgjPHBBx+o/tBjDEbsd7rRRasDRVHgaBovmi3YYXeilCgi1OPBtGnToGEYfGx34jOHU+0apygqX3ZuVlYWOirBbc4iNCEE9erUQVR4OFwMIxMTdHqMNxihoSiUUYJVv6c5TQh0FIXiLIfagojEokXzPF7//v3B0jTaShpUVIrINCHw0AxiGRYzjCZ00mjUOfi908+6vXDTDEorFgAvmixgCEEIx6GuKIFTivR2ikKMQjTQazS5jt+wfn1INI06goB0zq9IYMG0adPAUBReMluxx+lGDUmCUa/P9WE9depUNUnxqsWKoiwLnqahZxgM0OlRXUl4RNAMPrI7scxihaDMrQTHoSib7XHH0zS+++67gPGPHz8OjSiioiThOaMZKRwPnhB8bnfiY7sTVo5DXJzs+fVmjq6BSFHEoEGDcP78eaSmpavH6NixU65gY8GCBaByBKh+z/NNmzaBUeaqVbq9K1WqpO539+5d0IRgQg7Fi+qCiEiGAcswGDduHIhSfO8oabDd5sAqhYyQn1VETvz6668oGhOjzkun1cKckF1sd5SuD29IKKZNm4ZRo0bl692dHzIzMzF8+HBoJQkaisIJ5bndnKOLXu+NBStI6n8PHz4cVatVgzmurDqPiLpPq6oPoijBUbIO0sZsRcrgVeC0ZtiK1wAhJCDob9asGYrwPE4qx+yr00PkeWRlZamKAa6MZiCEgqdcK4TV6AGWl9CmbdtCnWNB4PP51OInIQQmswWfffZZgfcfNmwYaIaFu2wLGKNKgaJpNGrUSP39pUuXYNTpUE6UsMJiRUuNBjRN4/XXXwdN07CVqAmtuwgohoU+LBm8pEPR2LhCF/3vx2+//Ya9e/fmKxk3ePBg8Bo9ivV5Cakj34UltgzMFstDAx2fz4f+/fur14vlOLz++utYt24dCCGIajQkwB/uww8/fOB4ly5dwsSJE9G/f3+8+eabBT6/gwcPokzZcrDaHShXvkKe5MCrV6+CEIKYpsOz/eKjUtC8efMCH+dJ488//wRFUQip0gnpY7eh1LANkIw2DBgw4LHHHjZsGCiKgiWxEgzhySCEYMuWLY8/6SCCyIFgLPnfQfBeBRHEfxPjx4+HhePUb/O1Vjl+mDBhgvr9NdFgwk6HC3VFERpRfCTrIpHnA+zlaohPpqhWGPh8Ply8ePGBCoo///yzTEDQaOBkWcSxrOy17XDgm2++AQBcuHABw4cPR5cuXbBkyZIC5ZjWrFkjkxiUPMVJJU/x8ssvF2jumZmZmD59OiiKAi/pQDMsoqJjAhSUNm3aBI3SHUwIQbs2bR44tx07dkDgOLkxQlHAaypKSFCI6adPny7Q3PLCpUuXQFEU+uv06KnVwUhR+NzhwukcyoCF8UN+6aWXYNLpIDIMwrzeXHH8/fj222/Rpk0b1K5VCzNmzMize/zGjRuIL1IEDp5He40WYYIAr8v1RFWp7ty5E2BTdvHiRSxbtgz16tUDQ1EYojdglMEIiWHQq1evJ3bcwuKjjz4CyzCIFgQkKmvo/g7tZcuWgSKyFHxcu6koPewtWBIqQpQ0hSIKrFu3DoKSi2JoGt0U689znhBUEx5PjfS9995DxUqVER1TBIQQFO/3KtLHbkPamC2gaBaCKGHXrl0B+2SUKQtrclU1fgut0QMcz2Pjxo04e/asut2PP/6IjDJlodPrkZiUjM8//xwbNmyARrFDFSUNVq1a9chzDyIbx44dQ2KSHF8yDIOxY8f+LQXSIkVjYYosgdSR76LkM2ugsXrQokXLRxpr48aNMCnqq06Xu1CqlkE8Gaj2D12eR/rYbaoCaF42Lv+fsXHjRtSpUwfVa9T411hQ5Idgsb0ACAbdQfzVOHLkCLxKtzEhBF6nK1fHVlZW1r/6ZZIfdu3ahZEjR2LixImF9qzJDzdu3MCwYcNQo1o1dO7c+ZECqNSSJdFCkYM+5wnBML0BZoOh0ONkZmaiadOmEDgOLMOgWdOm+OOPP5CVlYXXXnsNgwYNwvPPP49r166hdMmSYCkK8RwHjqKQGBeHl156CTRF4UO7LPv1gtINTYgs93bW7cXzyr/dX4ApEhGBZso5nHV7UVUQYFEKoBQhKFq0qLpmnnnmmWzmrsLwztnZbzObsWvXLgwdOhRWloNeGYdTfv8gZvSqVatACMEckxkHnG40kySwhGCM3gCNQiqYqigziIpvPU0IijIMKgsCGklyobsIy6K3VgdR+b2/a/d+3L17F8OGDUNMRAQSY+MwfPhwtcDvLx6fdXsRwjAwKIXzRWaL6nE/3WhS77uRZVG8eHFEhIWBIrKX/U8uD84qEuMcTec6/pUrV1C3du0A6fZwrxeHDx8O8HFjaRqRoaEYMWIE7ty5EzBGly5d1DlLXLakusAwiA4Pl7skTNk+cFVydKabKArv2RzY6XAhjheQVqpUwNgvv/wyKELwk5IE+dIuEzhmmeTzri2KqFqlCow6HVIFAe/Y7BihkCr8/mI+nw/nz5/Ps+h44sQJ0DSNLlodDjrdqqLDli1bkJiYCF2OJERzSQOaZHui+3w+mPQGtNNocdbtxTG3F0VYFh6GUbuYeSLL5RsoCgIhKuFj1apV2LFjxwPlsjt36gQDy2Kh2YJFZgv0CsnDXrIOHKXrg6JodO7cuVDM4rwwd+5cCDSN/YoqwnKLzO6fNGkSOnbsiH79+mHo0KHqPUtJSQHD8SjSYjQSu86F1hGOEiklAQALFy6UnzWdBTQvgdNZENdxBggheOutt9RjNm7UCGVyqENMMprUgv2hQ4fk4NgaAnNcOdWDzRxbBoIo4sSJEzhy5Aj+/PPPxzpvP/yJttBq3ZDYdS6MEcVgtlgLnKCIjUuAo2QdNRngSm+C0LBs5YwPPvgAhBDsVKQtT7u9kBgGzZo1A80wSOgsq2gUbTUe6WO3odhTLxe6g+PatWtqwiozMxNt27VT7xehaLRv3z5XYu+3335DbFy8/LzSDDiOxzvvvPPQY/kl+8Jq9kKJ/itgK14dHMfj559/RqvWreV1r5HXeYuWLf+Sv/UXL16ExWqDzhUFb6X20DnD4XDmTsT5fD54Q0JhCEtAsb6voGir8WA4PkDd4u/GxYsXZQJA85HqmjF4YtC1a9fHGtfn80Gr08FdtqWawNKHxKFBg4ZPaOZBBCEjGEv+dxC8V0E8Cv7880/s2bMHx44d+6en8j+Lb775BhzLopIkYaTeiBBeQEJsLHr16oU4UVTjQD9JO6eaUmFgNZnQSSmqnXJ7kSwIaNSwYN8NPp8PCxcuRNm0NJQvUwavvfZaoY9/4cIFlMvIUM+lS5cuuUjRhw8fhs1sBqMUnrUUhU02h9rtf/DgwTzH/vHHH7Fu3Tp8+eWX+X6L+jttxxmMOOP2YoYSB+7YsaNQ5/HVV19h6tSpWLRoUZ6kgV9++QXbtm3Dvn37HvpdXLJYMWSIEo65vfjR5UEcx0GrWC/u37+/UPO6HwcPHgQhsjT9t043IhhZzUxD06BpWpWO37t3L+bNm4dVq1blq9S4detWMErO4ymdHiaKAssw6NmzZ572SIcPH4ZWkhAlCKghiqApCt27d89z7PPnz6Nd27YokZiIpo0b4/jx4wU6v0OHDqFF8+aoULYshgwZosbsn376KYoUjQXPC7A5nKCV3FDlihXRr18/tGzZElOmTEGx+HjVYu2cJwS9tTqEOP85//bqVauipCDilKIk2VDSIDo8PGCb8ePHQ6Rp6PPwNC/sO3zXrl2w2+3q89hclNBKseq7v1GmoNi+fTsoioIhPBnmuHIgFA1TTCriOkyHo2QdUBSFrVu35tqve/fuEHQmJHafh+L9XoXeHYPiJVJw6tQptG3bFukZZdC7d+98SeU3b97E0aNHA0gVhcGhQ4fQo0cPtGrVCq+88sp/Mnf9JOHz+ZCQmASN1YOYZiPhKS/H/K+//vpffuwPP/wQgiCCFSQwLAeb3YGjR48WepwffvhBVj2ILYOYZiNgjCwOnV6fryJsEH8NZs2aBZYXkTZmK9LHbkPxp5epjXX/K3jzzTdBCIEhLBHGaNkmd968ef/0tPJFsNheAASD7iD+atSsXh1RgoCvHC585XAhShBQu2bNf2w+WVlZeO+997BkyZJcEtGPgszMzEIxfv8O1KtTB/GCgCMuD065vaguSShyn2w5ILN4f/zxR1SuUAFmgwEpyTL704958+aBEFnyfYzBCD3LomWLFqqXU7QoQWAYtdv2dYstwB983bp1KJaYCA3LopikAU1RaNWiBQYMGCAzIJXApnOnTrk+WMPcbnRX5KrOeULk4jAhaCBKqCWIoCgqgPF64MABbNy4ET/99BMA+T7v378fH3/8Ma5cuYKffvoJnTt3Bk0Iaggi1lptaCVpQBGSizmbE6NHj4ZbEHJJ871rs6OXVgeWEFTgBRx1efCZ3QkjoaAhFLQUhVqiCD1FgSME+3N4xlGEqImrmTNnYsmSJQHv4KNHj+L999/HRx99hEqVKqmF70lKIX230wUNRaGBKILP0YFNCEERhsUHNodaYHZYrap3eArLBRQzqfsKnn707NkTRpbFGqsNW2wOhLEsNIKASpUqqR0UVppGKMOAoSj06NEj1xjXr1/HqFGjQCsEgLVWG2IEAcUSE2HS61FbFHHS7cWXDpfsU09RiA4PDyCJjDIYobuv+95PfvjE7sTXDhfCc3g+6Yh8rbt06YKdO3fCajKpvxs8eDCuXbuGzz//HAcOHMCtW7fQt29fGLRamPSyjPS9e/ewePFiMITAQdOoKAjY6XBBpCjMnDkT4eHhKJ1DscBvT+CXzQaA5s2bgxCCRJaDh2ZUuXw/aSJGkYA85vYig5e78s2GbBk0u8WS73spJiIi4JnopdXBZjQiJDQsQJ7e7XA8VpfDhQsX4LLb4eV51BclaBgWVSpWzFWcXbJkiaoA4HRlE6ocTleAysfbb78Nvd4ATtTBWqw6JJMD4RGR+O233zB9+nQ0bNgQFStWBCEEXbU6jDMYYeY41KtdG4AczLVp2xaEoqD1FEVSz4XgRR0ohcTBKnMQBBE9evTA4MGDsWDBgofaduSHQYMGQWcPURMU8Z2eAyFE7ZTOysrCpEmTEBkVg6joIpg+fXrA+6tkqdIwxaQibcxWpI3ZCkt8OcQlJKq/37t3LwghqjXGh3YnKELw1FNPqUVrQgiK910qy6+P2gya5Qr0wf3DDz8gPkH2dJQkDRYtWoTnn38ehKIQVqMHirQcA95gB6HpPC1brl+/jtdffx2LFi3C4cOHC3S9pkyZAkFrUK+XnxzwySefwOfzYf369Zg0aRLWrl37lynX+N8LKYNWIn3sNpTov0ImKOXRGb9r1y6YlGeXEILqNWo8NkHlceDz+VCseAlozC5ENXpG9bZfu3btY48rCCJCqnbO9g2NSkFt5bkKIognhWAs+d9B8F4FUVjs2bMHrhzFlk4dO/5nvIv/v2HLli0oGhUFvUaDapUr4/Tp05g4cSK0LIvPHE58ZHOgvlK0fFBX+IMwc+ZMEEJQVhARLwhgaLrAnX6zZs0CIQR1RAlVla7bwkp916pRA3aexwKTBeMNRjAUhUmTJgVsU7d2bcQIAg463fjB5UFxjkMKx+Mdm7xO84qjXn75ZdA5LNryyj34MWjQIJUoTghBjx49/tHCmttuV63RznlC0EmjRWJs7BMZ+88//4TZYEAFUcI2u0OVzW/bti327NkDQCG6K6qBhBCkly6dZ8GyRo0aoAjBQacbI/VGEEIQz7Jwchz0Wm0uxakBAwbAzfM4ohDoxxiMT/Tv08mTJ2E2GBAlCGgsSZAYBnVq1cLx48chabQwRiQjvFZvSPZwaBgGI/QG8BQFHU2jjCSBp2mYjUaUFwSccXvxkskCB01DK4p4+eWXc62JO3fuFCqeuH37dqHt0FJLlkTzHLmSwXoDbCZTwDYbN25UiNM0YttNUTvbpUJ2tvtx4sQJxMbGymNSFJw2G55//vlHfiZatmwJnTsaaWO2IH3sNliTqoIoioEcz2PJkiV57vfZZ58hJDQsu5nG7sDHH38Ml9sDyeyENbkqeI0eKSVLPTGJdD8OHz4MrU4PjdkFY3gSCCEYNWrUEz1GQbBz507EJyRCo9UiNS39iVu8FgbZZPFR2WTxkFh07twZgJwv2b59O1avXv1IhfAHwefzYceOHRg3bhzmzZv3yMXxJUuWgFAUUke8I+cPBrwOQkiBmg1+//13tGnbFg6XG3EJiXnmVIMoGHKqWCZ2ewGWuHIQJc3/FOmhTNlyMEaVVAkHtuLVERaRu37zb0Gw2F4ABIPuIP5qRIbILNCcBaLosLB/ZC6ZmZlo2rhxQHHyueeee6Sx7ty5gx49eoBTPJw6tGv3j3s4+bFnzx5oRBE2nodXEEDTdMAHwNWrV9Gofn1QSie2gWEwVKdHKVGCTqNR2cLVqlZF9fu8yEWeD+ig3mJzqMHody65E/aoIrm2fPly/PHHH5g4cSJ69OiBBQsWqAmajz76CAsWLMDWrVvz/FgfNGgQOJpGP50evbRyYa2lElyccnthoel8Ze3vx+bNmyFwnDrPPUrH7im3FwxFPZD9v2zZMtAUhdcsVpx2e9FdqwNNCPY6XKgsiNAQAlFh1hOlqE0IwWbFV8xfnH9JKayN0BvA0DSWL18OmqahZVkwFIXY6Ghcvnw5wCMrp6+5WblXJTgOhhzH00oSbGYzXByHaoIINkdygGdZRDEsJhtNqCIIoAhBH60OS8wWOGkaEk2jYcOGsJhM4FgWCXFxOHXqFNJKlVKvtb/ozRECDUWBY+QCchTDoqQiM09TVJ6EkyZNmqBCjvUzV1ExaNSoEShC1C5/jVIsrVe3Ljw8j10OF753eVBSlFA8MTFgzOvXryMuJgYWjoOVpuGkaaywWDHLZFbPXafRYN++fTh//jwWLFiAlStX4quvvoLL7VGvp16vB0tRGKDTo69OD4aikJCQAInnUYRl0V+nRwTDwKIkFp599ll07NgRFJHtDD6wO1BM6Szwr98bN26A5zhU5AU0kSTUFyUIFIVOnTrh559/BkdRaJtDgm2o3gCOpsFTNF4xW7HD7kSKKCIqn/djmdRUpAoijru9OOH2Io0XUKpECVSvVg0misJ6qx3v2Oxw0jTiHzMJc/LkSXTo0AFVKlXCM888k2/X+OrVq8HmkP73/0yfPj1gu1OnTqFp06aIT0hCs2bNcPr0abRr2xYMRaGSKMLN89BJ8vuHY1k0rFcvQP7yo48+glaxT+A4ETEsh4NONw443YhiWeicURANdlCEIFIQwdI0qlaq9EhEqBkzZoDlBRTr8xLSx26Dt0JbUBSlejJOnjwZFEXBXrIO7CVq5vo74pdP14fEwhCaAEIIVqxYof7e5/OhSaNGYCgKKZIGGpZF8aQk/Pbbb0jPKAOa5UAxLHQh8YhpNhLWhAqgGQapqWlIKVUao0aNyqUmAciqGBGRUdA6whDd5FnYS9aRk2Lp6TBEpaiBcGR9mexUv379Ql+bvPDGG2+AoijEtp2MtDFb4a0k224UtOvkSWDt2rUyQaHf8oCC/9tvv53n9pcvX8YHH3yALVu24Omnn0bDhg0xevToR+52eFycPn0apVPTVNLI/c/Po6J9hw5geRGeCm1gT6ml/l0OIogniWAs+d9B8F4FURhkZWUhzOtFiihik82B6QpRd8GCBf/01IJQcOXKFcRGR0OgabgVpbDH+Ybw+Xx49dVXkZ6ejpiYGLRp06bA3bDRYWFopcmOH2uIUi6FsodB4HmMzWHHVVeUULVy5YBtEmNj1e77c54QDNLpYaAoRAkCosLDAwqey5cvR1J8PChC0F6jxXcuD2Yr8eiDrIo+/vhjLF68GHPmzEHtmjWRkZqa7/f3X41G9evDwfNYabFhmcUKI8uhS5cuT2z87du3w6TXqzFc//791dj2+vXr4DkObTRanHZ7scnmgMgwmDlzZq5x/MX2bxSiejcl//ejy4MwQcil2NSjRw/EiSLOKtYIixQi7IULF57IeU2aNAkGlsMhpZi/UBl/4sSJoCgapYe9JXdR9l0qkyqUfNMniiLjUkUpgRCCcCXWzeB5VBVkIsncuXMByDnBrl27gqZpUBSF5k2bPtD6KysrC4MHD1a76T0uF4YNG1agv8ujRo0CR9MYbTBiutEEA8uiTatWAdv4fD6ZwJ2jIYNh2QJ7tueF33//HVWrVpXzPjT9WH8DmjZtCkNoglpUCqvRAzRN4/Dhw/mSD6ZMmRKQZ2jdujUuX76sEEFolBjwGsJq9oLGGQVCKMyYMeOR55cXevXqBcnsVNeMp3xrMCz7t74PTpw4AY1WB2NYIsKqd4fOGQ63x/vIxKrHxY0bN0DTNLwV2so2aEPXQzRYMXDgQNy9exd1cqiMshynKkw+Li5duoT0jDLq2I2bNHlk0vzq1atBCEFyr0WyAkQ7WQHi448/fuB+Pp8P1apVB6/Rw1O+NcxF0kDTdKEtHIPIxqxZs1RCnKTRYuPGjf/0lP5WlChZCtbkKmq+zl22BRwu9z89rXwRLLYXAMGgO4i/GrVq1ECUIOBLhwtfOFyIFATUqVXrH5mLv/vtZbNcOO2t+Hs/ShfosGHDwNE0huXwcCpo8ffvwOHDhzF8+HAMGTIEX375ZcDvWrVoAQPLYpLRhMF6A2giy1n/5PKAp2nMnz8fABATHY0klsNpJQjqrNXCoNWqncV+SXMtw4BjGNSSNHjdYkNDSS6Y5SUZVhDcunULV69ehdvpBEcIJCVYmGuUpce/d3mgoSh07NhR3X7BggV49tlnsXr16oDivc/ng8NqRTVJg3WKv92LSuHbz4C/P/jI2X1579491KlVK4DhbmUYRLGc+pHXSJRgURi5rPJv3ygF/e9ccoE3hmHRRqMFQwiqVK4MnUaDppIGp91efOZwwshx6NixIwgh6KvRwkBRqC6IOOr2YpvdAS0hqMgLYAiBk6YxxWDCcL0BDEVBpGn1ePNMciBZuXJlEEKwRSn6n3B71etICEFRVpaJYwmBoBTPCSGwmExo2qQJwnkBB5xuHHV5kMHziGVZbFK8u2NZVvUMbKuc082bNzF27FgUT0hAWqlSmD9/PjIyMmBnWRxwunHW7UUNUQRP0zBqteAoCj21Okw3mvCcItH32WefITwkRJ2jQavDl19+iRdffBG1a9VC40aN8NFHH+HixYtIS0sDRWR/wpwJmQyeRwLPo3RKCkLcbnUsieMh2cKQ1GM+irQYDZYQdMlBAmql0ajX54ByLT9RJOppQlCuXDmwShe9nwSh4YUAWcFTp06BkGyFh3OeECRLktr5X7lSJWgpCissVrxptcPNsnDZ7agoSjjr9mKq0YRwhgGrJMruJ6HMmjVLlo2naThoGhQhKF+2LIxaLTprs5NOA3R68BQVsO+XX36Jtm3bonGjRli6dOkT7dAYPny4ep0zeB49lffqg4qtZ8+eDSDtHHS6YWA5jB8/Plf3888//wyDVosyooSntXrwhKBvjg6PnlodRJ2cOFuoPNt+L8tHYRlfvXoVsXHxYDgeGrO85sePH6/+Piq6COwptdWPYVuxaohPSAoYY9OmTWjatCkaNWqc5xzu3r2LuXPnokuXLhg/frz6DXbz5k3MmjULTZs2hVFJBmq0OtA0DUNoAmzFqoNm2DyTbIcPHwYhBHHtpymy4VuhsbiQmJgI3mBDqWc3IG3MVlmij2ZU5vnj4t69e6hVq7b8/lMUFnJer0fB77//jiFDhqBx48YYMWLEQ/3qf//9d4SEhkEyu+AoXV9VT3hQx8jVq1cRGRUNQWeCKSYVLC+gcuUq/2jH3p9//vlEj3/jxg107doVZosVbm8I5syZ8z8vexjEk0cwlvzvIHivgigMzp8/D0IIlpqt6jdXKUlCp06d/umpBZEDV69exfPPP4+RI0di27Ztjz2e3wIqRiHuG/X6AsX0YW63WmA95wlBY1FCyWLF8t3+559/xqlTpwK++112O5pJGpx1e3HU7UWsIKBpkyYB+7Vt3Rp2nsfbVju22BzwKEpr6aVKqQp3QHbeJ1VpFNih5C7OeUJg5flcHfP3Y9++feA5DsmCgLqiBIai0KRx4zy3vXXrFhYuXIhhw4Zh7dq1Bf7WOnfuHNq0bo2SxYqhdatWAd7Tfpw/fx4pxYqpsVb5MmUeaDv2KLh69Sq++uornDhxIuDfjxw5AkII1lizY9t4ScJTTz2Vawy/jHwELcfLs3JYxpUXJTRt2jRg+3fffReEELTSaDDZaIKL55FWqlSBr92JEyfw/vvvq2SQu3fvBuw7evRo2Hkep5ScxRolNpw8eTIIISjRfwXSx25DQpfnQQhBR40WHCE4qWz/mcOpbm+3WFBREFRiQEtJg8jQUAByTpCnaYwyGDHRYIKGYR9oBfXCCy+AEFkFjyKy7L5IUUiKj39ovOMv7PuV5erXrZtvsfXgwYOYNm0aFixYkMvC81HgP7Z/HQ4YMOCRYhY/Kd2aXAWe8q3BChJatszfb3v//v0yKaFCG5R8Zo1K6t69ezcWLFgAmmHhLtdKbk6JKwtdSDwoisKWLVse53QD0KZNGxjCEtTYP6rxkL/9W2rx4sWgaEYt+Cf3WQJCyBN55z8qRo4cKefsQuIgGqwwmc04fvw4Fi5cCJpmULTVeJR69k1YkypDlDQFUnL44osvUDQ2DizHISExSVXY8KN+g4YQ9WbENB+FyAYDwXAChg4d+kjzv3HjBhKTksFLWpgiS4DlBVSs+PBmjUuXLoEQgqhGQ+Scy+j3oLWF/KtqAf9FXLx4Efv37//HCCT/JKZMmQKKpuEu2wLeSh3AcHyef2f/LQgW2wuAYNAdxJPEli1bUDYtDQlFiuDpp5/GjRs3cPToUXhzSAyHuN3/mOfbpEmTYOGypbQ/VoppBZVHy4mkuLiALtVeWh3CPZ6/YNYPxoNkknw+H+bPn49qVaqgXt26eP/99wEAeo0Gw/QGde71RAnpPI9vnG4wFIXFixfj3LlzaoE5WenWJYSgQoUKkEQR5UQRb1nt6KnVgRCCKVOmwKCT/7+/6zouJqZQXmK3bt1Ch3bt1ABC5DikcxzClcIiTwjqi5IsX05kafDBgwejaHQ0OJpGqCJZ17t3b3XM69evyyxtnR77HC7UESW1M5ulKKSVLq2yUhctWgSryQSGpuF1uZCakoLOnTvj3LlzeOedd7B48WK8/PLLiIyIAE9RSGZYsMr5RjMsphlNqCqIoAhBAstiptGMNJ4HQwhCaBqxDINQhlGfhyVKYfCcJwQZkgZpaXJno0EJUhfn/D3PQ1LYfi/m+HcvzcBIUSoh4i1Fwt+gFIYbihLOeUKwz+kGTwg6KN3BDKGg1cpBpZ84MV6Rb+vUqRO0ogiGZHuMr7XasN3uBE0IauXoVh9jMIKlaQwcOBAMRaGVRoPKCuPbf200FAWr0o0fx3Hor9PDwzAQKAq1BBECTaN61arw+Xy4cuUKXn/9dSxduhRnzpxRA+LKgohkRaVh4MCBIET26KsvSjjj9uKwy4MIhkUjSUIfrQ5sDqnASIaBhaKgcxdRgySeE9FQklTCSHVBhEVZd3uVYvuHyvvB/1NLFDFUr4eRZVGpQoVcfzfv3r0Lh9WKMqKI7XYnZpvMoAjBokWLAMgFwVIlSqjjxRctim7dusHCcRiik2X76okSGkkSCCG5uga6dOmCMI5HL60OvbQ69FWeN6vJhGiWxXcuD35U5BQ5mlb3+/LLL8GxLIoKAsoqz8jkyZORmZmJ1atXY9q0aVixYgUGDRqE9u3bY+HChYWS+54+fTo0DAOdcv3iFSLK9u3b893nhx9+ACEEq5XkzRm3F15BwJAhQ3Jt6/cw2qfcl0qCADfN4EO7E+/bHXAyLHTuogEkl1NuLyhC8OKLLxb4PHLijz/+wPPPP48RI0bg3XffDfhdTJFY2IrXUNeSNbESEpNzJxNPnTqFXbt25ekd55dX79+/PyZMmIBLly7luc3vv/8uP4+OMKSNfk/tAKAoKheL2//OjqjTF+ljt6Hk4NXgJC369esHQZTASHqIFll1hBfEAJn4xy3A3rt3D+vWrcPzzz//UDb4w5Ad+Opgii4FVpCQmpb+0O6BkydPonGTJqp6Qk57h7zwyiuvgKJoFH96GdLHbkNsm4kg5MG2IkEEEURuBGPJ/w6C9yqIwuD27dsQeB4dNVqcVayfjByH4cOH/9NTC+Ivgs/ng0GnQxvlnh9yeRDKCwXqpB46dChYmkZPjRYlOA40IWBoGg3q1g1Qq7p58yYaN2yoxkPppUur3cwvvywrE8WKIjy8AEkQsHfv3oDjXLhwAcUSE9X9YyIichWJAaBalSqoIIj42iHHr720Opxye1Vv91WrVj3wfPr06YMwQcB8kwVCjnjw/vV/+/ZtWZmKYaG1yDF+QYou165dQ3R4BNw8j2aSBhaWhdNux7lz53Jte+/ePRw8eBDff//9X2bJlBdu3rwJo16PapKErxwuLDRbQFOUGtvej8mTJ6tkfidNY6HZokrT59UNvXDhQpgNsupflYoV8fPPPxdoXvPmzVO7ICmKglch2FtNJrz22msAgN27d4OhadSQNBhrMCKEF5AQG4tLly4hNCwcktEOa1IVMIIGPM0ghmFAKbmmF80WpIkSzAYDLl++jNIpKWis5A383u0ehwMAUDwhAa1zKDo8pdPD63TmO/e6deqoBJAZCun8I7sTLEVj8eLFBTr/mzdvPrQw/1fA5/Nh6tSp6rPQoEGDR5rHkiVLEBYRCavNjs5duuSroAfICmqEELXInDpSJmksX74cx44dgyhpQDEcXBlNFbL5FuhD4lGvXr2AeX/wwQeYM2cONm7cWOhn6NVXXwUhBO6yLRHV6BlIJjtS09ILfd6Pg6VLl4JQFEoMfF0miXSeLZOIcjR+/N3wK6F07NgR/fv3Vxst+vfvD70zPF9Lvvxw9uxZ6PR6GMISEF67DwwhsTCZLbh48aK6jcFoQkiVTjmaHqqjZOnURz6H33//HcOGDUOLFi0wfvz4AinVXr58Wc4x1h+gWP5tgsbiQt++fR95HkH8byMzMxPDhg2D3mCApNGie/fu/6jN4cMQLLYXAMGgO4gnhZ07d4KmaZQRRXTSaCExDFo2bw5Aljhbv3491q9fn2fh4e/Chg0b5CKW0YxvnW6002jBMkyBP+xzIqN0aVRSCn1n3V7UlaQn5p9VELz77rtwO+Suy4SiRfHNN9/k2mb8+PEghKCGKCJFEEBRFD744AO47XZV5u2U24tinOwvHSEIsFutmDlzpuofPMVgkr3XBBF6KruA6e/ypmkas2fPBgB8/fXXclAjSnjeZEaSKMJltxf4/TJo0CAINI1xBiMmGU0QFen0JqIEh1LI83cVh4aEgKVpWBR5+HdsdpzzhGCy0iV98OBBXLlyBfXr11fnzBGC3lotWELgoWkINI30tDRUrVwZVosFDCEIZRgM1OlhpWnYaBo2lkPRqKiAQMJqNOEZvQFpPI8KSrC0NUcHuYaisrufBQHlFfa9wx8UEgKTwYDSooiP7E4sNlvA0jRq15a7Q83x5cHzEsryAvY63VhjtYEnBPHx8RB5HnVECSfdXnxsd0JUxqsvSphpNCOCYWCiKIzTG9BFUSGoKohw0wycNI29DhcYQtCsWTOUL18eNppWWdrvWmUZbpoQhCmkAYoQlGA51FOKtP75D9EbZPkymka9OnWg02jQX+k2Puv2ojTHI0EpulbgeeiVe/m9IuX2gSKv7/9hGBbxCYlqEDRlyhSsWrUKZoMBXTRajNQb4aEZCISCJEmoIAiYp3T+umgaBoqClqKw0GSBjqZBE4JpRhNWWKwIYRi4aAYCLyF11GaUGPA6GF4mHVQQBJRR7qG/gB/OMOiq1cGhjMPn8IXXUhTaSVpIgpDnGv70008DPNhbtWyJrl27wuNwoGhUFF555RUcOHAAO3bswOzZs/Hss8/C63KBVe6hP1BvKWlQNCoqYOyuXbuiiCCqxAr/Wh8wYAAYZX0LCsGhetWq6n4tWrRAvCCoagTdtDoYtFrUV+S99CwLQtHgJD2MYYmgKArdunV74LPq8/mwZs0a9OnTBy1atAAhBP20OuhzqCfk5z0PyMSEIpFRiBIEzDaZ0VIhgXz00Ue5tn3//fdBCEE1QUQTSYOndTqV0OMn92isHtDKNdxos6O9RguaogtF9iko/H6W/8feeYc5Ua9f/Dt9Jj2bTbLZbIGl9957UXoRQUCQIl1AEEFEiooFFVBRsPfu5dqlKDZs2FERxUa3XVEUC3Xz+f2RybArxV2KqL+c5+G53t3MzHdKsnnfc95zQjXaEKrWCiEECxYsKHZtzjvvPGd9XrebZcuWsXPnTlavXs3nn3/OzJkzk89TZg6qYZGTm3dQwh1g4MCBeLPLO3Z7ZbqMRwhx0MbE4MFDkGSZQNnamL4QmeEIX331FZ9//jk9evSgSpUq9OjRw5n8ufrqqwkEM9A0na5du7Ft27Zjfr1Ki8WLFyOEoPrIRcUK9JRY7Fjh2muvRVF1Gkx/qpj1/IoVK47pcdJI49+OdC35z0H6XqVRWixcuBAhBBHdwFQUCvLzD/l9JY1/Pnbv3l2MBNyanUMr06RbCaKH9uzZw7nnnuuI74e7PVzk8xPUNLp26uS8bvLkyZiKwvxAkFuDIcK6TtfOnZ3fL1myhBEjRjB+/HjWrFlz0GPt2rWLlStX8uKLLx4yAqht69a0MpIC8Vm2oDz1r1fPnn9KuA0fPpxyhoEhkuL158JRzvF4DxAU33nnnUiSRNUzr6HRrOXkdxyDEIJPPvnksPt/9NFHEUJwf0aIeJFaMyszk40bNx52278SS5cuxVWkD9C7V69DTjRPnTqVkKbzYjhKLW2/C+CoUaMOe71LMyH90UcfJWtVt4fXIlmMte/JeLeHnpYLSZIcO+fHHnuMsrm5WIZB6xYtnOu6ZcsWBg0aRNNmzalbty5CCPIVhZqq5vRwcmIxXn31VSApLJdswcZEjxdDURg3bhwAzZs0oYmZrM8/jGZRU9OIRaPFCMKi6N+/P3H72qwo4hQZ1DQuvfTSEl+HE4Xt27fTolkz596WK1fuiHqpJcXrr7+evD8dx9Bw5lLKdE7Wwal7/OKLLyLJSjECNlC+Ae3at3f2cc455yR7BlpyeKhv376lEponEgkuvPBCVPu+NWjY6KAuFMcT27Ztc/LpM2u1x3D7qVmrNrt27fpL11ESXH/99ciKSqUBl9Fg2hPJ9Rrmn373vOeeexBCUG/KYhrNWk6diUmhRdHIj7LlypNRqQkNZyyhwbQn8MTK0bHI35e/Cj1POQVVN4jU64wvryqqph0whZ9GGv9WpMn2EiBddKdxrJAqSDb+gQgqiV3MX4VEIlHM/kiRZW699dZS7WPv3r0sWLCAVq2SJEtVXaeunZFWNJf3eGLNmjVoqspJlou5/iSpHc3MLGa5kkgk8Hs8DLft3DbF4tTSdbp368b111+f/KJomFQyDGRJokxuLie1b0+l8uVRJImg/WWyrKrxZGaYKbYq2WeTaXU0DVWWefvtt0kkEk7euFtVHfutFKFaUueAapUqMbCIW8Botwe/JCUnX7OyKa+oVKtWjSuvvBIhBItDYaZ5fXgkiY9tUnqhTcAaRQs8t4cbAxnUtMnfaqrKZ1nZnGdb6PskCa8kcZrlIk9RiMgyV9jP7yP2pPgjjzzirLNC2bJ0sCx6mpZDoN+ZkbRYfCcaQ7OP+/jjj3PeeedhyDIeSaKBpnN3RogzXEkS3GMTjEIIenTrRuVKlVAtLw1nLKHyGVeiKPvPwVvktYoQ6PZ9iMsKV/mDTrZ4ysZeFcmp9BQ5HpNlrrdJTVmWef/99x2V7lkeLw+HMqlsW8mnJucftO3WUsKKcR4vT4fClLGV30II8nJyqF+3LookcW4Rt4SmukFYljEkmYp2trsk9lu0L7Et6avaGWi+/JoEK+8v3AxX8nlTZZkO9qR8BVUlJivOPUtOJ2TgKrJGIQQu06S9sX/6/nI7Y1ISAklREUJCVg0yqrVClpKuCZpN1L4cidpT7jK6otCxY0cCsszKSJRPbEt9nyQRyQgd8jn+8ccfWblyJR999BH9TjsNl6JwlsdLN3ti/Y477qAgPx9dlgnZRH+G308va78qfqDLTfn8/GL7femll5BlmeamxRB3UtDU59RTKSwsZMyYMWiKgiRJ1KhWjTo1alC9cmUuvvhiOnboQOsi1+Minx/Ffl7uzghxnseLrOjUmXhfsSbR1q1b+eGHH3j44Yd56KGHihGxKbK4smnhV1Xc9rkV/efz+Q5rJf/ZZ59Rp0aN5Gs9nkN+Fq9cuRJJljECUdxZ5RFCEItGeeKJJ1iyZAlz585lzJgxDBo0yGkGaarKzTffXKLPnRT27t3Lli1b/lRFmkgkmD9/PlWr16BajZpcd911xQr2xx9/HCGS0RzPhCO0tSxclkU8J7fI9ZGQTdsJxPSg6iazZs1y9vHjjz/y1FNPsXz5cmeyP1StJfGWA9AtD126HLzpuW/fPq6++mp69+7NWWedddiIlJS9ZqReZ/JOGoHh9tO+/UmlumbHA3fccQdCCOqf/1iy0D7n/gMK7WOBNWvWoGoaGZWaUNBjMr6cymSEMk+oIDCNNP6JSNeS/xyk71UaR4IXXniBmTNncvXVVxebUE7j34kmDRqQaxjcHgxxkc+PLEnMmzevxNt379aN5kXqjkv8AWRZdqx5G9WvT+8iNc/5Xh8Br/eYn8fdd9+drLEtF4NdbhRJom3btixduvSgxO8fybfly5c739tfjuwnRT2qWiwTes6cOeiWxxHFpsSbBxMQF8XDDz+MEIImukEZRWVlJMoL4ShxTaNHCcQNxwvPPfccbVq2pG7NmkydOpVdu3bx9ddfs2TJEt58883DkpRnn302ZQzTGUZZYPdlNmzYcMzWl8pZTmWxr48lXbvmBYJsjsWJGUap3DfatWlD2yLP6wS3B6/LVew8CwsLueCCC8jw+/F7PIwaNcohOZ9++mlkWaacrmOI/aLzSCjERx99dMDx3n33XQxNQxWCRrrOAxmZDEnFNB6B2+ZfiUQiQbvWrfGrGr0sl9PzikQivP/++0e837Vr1zJo0CC6dunC3LlzDxBfjBs3LtlLsgd/Ro8eXez+DDzjDFTdJN7qDCL1k4M2KXe71atXJ3tWJ42g4cxllD91GkIIlixZUup17tmz55j0tn///XeeeeYZlixZUirL7A0bNtC3bz8aNGzEsGHD/hYi+YNh9+7dtGvX3nkvyIriOE4cDqmIgZpn3UqjWcupPiLZs3766aed1yxevBhJknBnxrH8mRiGyRtvvHE8T+eg+O233xg/fjxVq9WgeYuWf/p5fzTHufHGG7nwwgtPaGRAGmkURZpsLwHSRXcaxwqpqcvNNtGaIiuP1bP1xRdfcFqfPjSuX58xY8YccVZVIpHgjTfe4L///W+p84sSiQSn9+uHLEnUt5Ikk9flolu3bjz22GNHtJ4jwdVXX42lKM6k6vO23XVRG6F9+/ahSBLnFyFA2xgG9erWBZKFSu/evenatSs5sWzny5ApyTwXjrIlFqfXHwi0lI3gYJfbIXVvvPFGatlWbrI9vbzKVunebtu0/dH+7VBo2rAhzWxl8Gbb2jsiy876mxkmXTp3ZsGCBeiyzOZY3MlhLzpRqwhBZ9Oin8uFLAQLA0EUkcx+l0TS1uyDaBa9LZdjC/cf2856dTSGKgSdbdKus030zp49G0gSckOHDkUIQaade66I5ERxR9MkKsv47bWcf/75vPXWWzRr2hQhBM+GI45ldmq9siQxcuRICgsLcRkGimpQ99yHqHfeI1j+/TbmfknmP6FMnsgME9d1KlesiCRJjLLFFO/aE+tBSeb1SBafx+K00A1Uex2pKQNd0zj99NOpWrEiFcuWpVGjRs4xUvf0A5sQ32AXr8K+dqkJ+FSGmVRkuxxZQROCEW4PPcz9z403rzqBio2d+1JOUTnT7SEqy0knAVnBl1/DaVBEG3ZHMdw0mrWcin0vQrK38wkJSwh6FIkR8EkS5ezpc5cQtDUMYpqGrmnkaTofZ2U7z3FyH0lL/Jp2gSsLgWK4sFwuLF2nVZEstoGuZK585YoV6Vxk4nyO/bl29dVX/+nzvHfvXhRZZpbP7zRo6hkmFStWJKBpvBbJYnMsTn+XG82eaOjvcjPI5UYSB7cgfPLJJ2lQty6VCgo466yzik1zFBYWOlZrJ5sWfS0XsiTRvn17R1RxiT9AUNOoXqUKhiwzzx/AsGML3PFK1Bp/J1UGJcUsS5cuJR7dHwGSHY3y6aef8vPPPyPLMhNsJ4N3ojE8ioKQJKINe1Bt2AJUKzllkJGRcdBGQ1Hs3LnzkI2bzz77jHLlyqNaPir0vZCGM5cRrtOBUGb4oK//+eefHVeL0uDll18mK5wU1piGwW233Vaq7YtixowZxAzDeWaWZUYQkoI7kkfVIfMo6HFu0knAl0m5nlMIVmqKkCQnr27t2rVEilz3ylWqct1111GmoBwZoUz6n376McmyOu200/Dl7s+fS03Ml8Q+7Xjiiy++wDAtguXrU67nFPxla+Hxeg87NfH777/z/fffl9oO//HHHydk/w0pW1AurUhPI40jQLqW/Ocgfa/SSCONP8PGjRuL2bQPGzasVJPH/fr1o5JhOOL7MR4PlmE439G6dOpEFcPg86xsNsXidLAsypcpc1zO5aabbqJapUqUz89n6tSpB43fW7p0KWVzc1EVhfp16hSLWZozZw5CCC60a7lU3+G+++5zXvPCCy8khcDNTqPasAUEKjRCSDJ9evc+7DT3//73P8IZGZiSxDi7ptqancMIt4eKZcse2wtRQrz22msoskx9w6Sv5UKXZQadcUaJt3/uuecQQnCK5eISf4BsXad2jRp8+eWXLFmy5E9rwpIgNemccl+4LpCBEMlosg+jMbyqyiWXXFLi/XU46SQaFekBjHR7yPD7AXjjjTd46KGH+PDDDw+7jxdeeIGc7GzyVJW3olm8F41RyTBp3aLFQV+/evVqunTpgmWL7lVFKeaSdqyxc+dOli5dyiOPPHLIifuS4Ouvv0YIwXWB5GDGy+Eoqt3T8ng8R0Rgf/rpp/g8HvJ1gzamiSxJjBgxothrEokEzz//PIsWLWLFihUH1Hu//vorgwYPxuP1kRmOMGfOHOc1jz32GEII6kx6wLGZl2SFRYsWHfF1OBp8++23VK5S1fl8zYpl/6kLxj8Re/fuZcmSJdx1111/ah+fwo4dOyhXvgKmN4NQtVYYbj9VqlY7oDexcuVKzj77bCZNmnRI95N/A3799Vdq1a6DrKiY3qRwqTSfbWmkcbyQJttLgHTRncaxwvPPP48kSbQxLUa5PbhVlR7duh2TfX/77bdEMzPJ0w16Wy78qkaj+vUdhfRfhXXr1jnK2a3ZObweycKQZa699tq/dB0333wziiSxKpLF1uwc7s5Iktpvvvmm85pNmzYhiWRe9lSvj6F2trplGFSpUIHbb78dgBpVqlDOMLg/I5OGmk45RWVrdg6PhMLoNonttYnRlFX7HfbxhBBUKCgg3zBYFMxwbLw8ikIb08RUFE5u355du3bx8MMPc8011zh2XADff/89l19+OZMnT+app55ylMGVDIOqNsmtSRJnebycarmc4nbVqlXJ4t/t4anMCG5JokBRWRGO8nAoE7ckMdjldsh+lyTRzbTYGIvzciSKR5KI2ORmRft/n7GJ8M+ysh2VrhCC8qqaJHdlGb/H4xDMKZK+oEwZJkyYQCgjIzkhXcTuPpVVN2/ePIQQzPUnn5uXwlEUIehjuRhiT7mff/75ZAaDyJKE6vJj+KO4JIn7MjIpoygMLjLxP9HjJSsz04kJqGJZBDUNQ9PoVIQYTgleTF3n3Xff5bPPPuPqq69GCEEvy8XpLrdjlZY6Z0UIuhkmj4XC9LdJX8MWKTwaSt7/2b5AMRGGZp9rY13fT2ILga5b5LYfTsOZSwlUSObR19N0Kqgqbez7KwlBsFITh/CLtzgdxXTbxdAyhJAcIloIQUCSuTMYQrdJ/tT678tIiiXWZGVjyDKWYZChaeTZRWxTW/DwtG33n3rPBIMZTJgwgZtuugkhBK0Mgy62WEBzeXFZFh5J4onMMG9GktZwepE89MNh3759aKrKebbgZXMsTnXDID8/n/pFct9usZ9TIUnomoFpedDcfqJZscNmmAF8+OGH1KlRA1VRKJObSywri6iscLHPz8ZYnFF2w2D69OmYuo4sy3Tp2JEnn3zSuaahGm0o2+VsdH8U3RfGzMgmEAhSp1Ytyug6b0SyeDOSRYFhcFK7dmzatAkhklPxqXPIta9zKkes9sT7Eba6PyMjg7feeotly5YxcOBABg0aVCLl/kcffYTP4yFDVihjOyCU6TyevPbDMQyzRPegJPjhhx8I+nw0MU3uygjRz+VGkqQjzu5etGgRqiyzxH7WJtqfiwU9znWec19BHXxlazs5X5KscobdzGrYqDGeaBlqjbuD6sOvx/AGGTx4yDE73xQGDx6MOzPHsVGPtxqIoqrH9e/qSy+9RP/+/enTp89hJ9WXLVtGpu2MEsuOH/J5SSQSTJ8+HcX+jKhWvcZh3RQOtY8TLTBII41/MtK15D8H6XuVRhpplASFhYVs2rSpxJOTv/zyC6+99hrvv/8+r776KpqqUtkwaGWL12fMmOG89u2338ZlmkR0nVzDQJZlFi9efLxO5bD46KOP0DWNVpbFJf4AFQ2T3OzsYvFxEyZMSIrsdR1JCDKDQapUqED/vn355ptvAJg+ffr+wQVZZpg9qfzggw8e9vgffPABAY+HcqrKe9EYb0djFBgGHU8++bDbrV27lpEjR9KvXz/uvPPOUotND4Vhw4ZRUMSp8iLbfv9QVv0Hw5133kkkFEKRZVo1b87IkSOd3oAQgnPPPfeI17dx40ZGjBhBfl5eUihu14eKLbrP1nXCGRmlsvhOOZI11g1y5aSg3+/xOC6WqX9/5u5QqaCAYfYQxNbsHMZ7vORmZR12m927d/Pll18eNyfQZ555htGjRxO1BeVCJN30ivYMS4Nvv/0WIQTX2L3Q9bE4MV0nJycn2f+SZRYuXFiqfU6aNImIrvOJ7VSQinw40sGqP+LTTz9FlmWiDbtTe8K95LQZjBCCl19++Zjsv7QYOPAMTG8G1YZfR82zbsUTyadJ02YnZC1/R3z77bcMGzaM5s1bMGrUqL/t9P5fgWuuuQZF1ag+chENZy4ju3k/JEni22+/PdFLS+P/OdJkewmQLrrTOJZ45JFHqFWtGvnZ2Zx55pnFCpWjwaJFi9BkmdX2xO1Dtqr4SMmQI8Ubb7yBEMIhUTbH4oR0nYsuuuiI9nXttdfywAMPsHv37lJt++OPP1ImN5ewrnOSaeJSFNq0bFlMdf7dd98lyS9NwyVJmCKZIz7c5aarPbGesldbYH9hnutPKuau8AeoqmrU1XQ+j8X5PCub6qpGgaLwRGaY6qqGIgSnn346Quy3Hd+anUNN06Ry5cp069aNmTNn8tNPP9GudevkVLVtXV2vXj2efPJJ8nNycKkqeXYhfsUVV/Diiy8yaNAgBg4cyBNPPMGoUaOIhcOUy89n0aJFfP7558yZM4c8u8hKEbYX2Yrzrdk59LQsLCFopxsU2FO7i4qssYmuEwwGOfXUU5GFwC9JlFVUpvv8NNB1VFm27cuTKucNsTi1NQ2vfbyUkvpa2xqtYYMGdOncmZNPPhkhBM11nfFuD7oQZNrE7+n9+yMJQVVNx5IkIrLMHcEgHpucL5pBnZrUPtW22GtrmJRTVNZkZfNpVja1NI1wMMi+fft46KGHGD16NNOmTWPEiBF4VJWHQ5m8HIlSXdWoqKqEVJUuXbqwfft2GtarV2xSO+VSUEPTuNAublIEtiJJeBWFmwNBh9jOtO+hEIKLfX6eC0dpZRjIQtDf2m9130I36GaT1vFWA4k17YMiBB5b+JApy+QpCnn2/iL1uya/QCoqZiiHmmfdSnbzfs56rg0EeT4cpZGukynLuEUywzt13R63hSCf2/Z+5513HtOmTWPixImsWLGCW265BUkIvrSbB+9EY8mCU1UxZIUqFSsmhRnBGL7siuR3GJ20tvf5CEn7z9klSShC8O6775bovTpq1ChUWeY0y0VT00SSJMaMGYMsScwPBFmSGaG2aZLh86GZbupMeoiMCg2RpOT7dejQoYdsoPz000/EIhGqmiYzfX68koQukpEBkhCcZJiMdXsI+nxAsnG2Z88e9uzZw+TJk9FVFc0bouHMpTSatZxKp19a7D0lhKCMojgZ8WM8HsrE4+zbt4+C/HyqGCb3ZIQ417s/oz6n9SAazlxK+V7nJ8Us9nU17fe4N1YOT7QMsiwXswQ7GAYOHEgZw2Cd7VDQ1+VCVXV0l4+uXY9OyLV7927H/u/FF19ECMGLtiPHZvsZuuqqq45o37///jsN7GgFrx3NICsqmTXa0nDmUupMegDV5cdfvj6NZi2n1tjbEUJyBFAer4/cdmc6xHy49slUq1GDuXPncvnllx+TqRCAt956C03T8WQVEKzUGEmSOOecc47Jvg+G5cuXI8synqyyeHOrIITglltuOeTrE4kEv/zyy2EbiKm/Ydkt+lO+9wW4QtlUr1HzmDUd00gjjT9Hupb85yB9r9JII41jjQ8//LCYE1anDh144YUXOO200+jSuTM33HDDAd/L1q5dy5QpU5g4cSKvvPLKMV9TIpHgvffe48UXXzwsaTd37lxciuLUh8vsmLOia0okEjzxxBNMnjwZr8tFecNgiNtNWNOpUbUqu3btcgYBFgaCfGyThlmGUUxkcCh89NFHREL7BxlikQiffvrpIV+/du1aPC4XcV2nvl1fFY2iOhoMHjyYqqbpTHlfWcJYyDVr1rBgwQLuuOMO5+9LYWFh0vLZ7kf1tCynx1A0876k+Prrr8kKh4lqGi1t4YMiywwZMoTZs2fTpXNnzjzzzFKLbiHZwwyHQrgkiXM8XlroyYjI2b4Aa7OyGe32IEnSYe9Lz+7dydENXghHeTkSpcAwaN+2banXcqyQGiQwA1EUw4VHUXgklEkd06RqxYpHtM9EIkHXzp1xKSqDXW4amCaaqrJq1SrH+VEIwcSJE0vshjFq1CgqFnnmbg4mnQqOZQ78okWLkIv0sGbOnHnM9l1a1Kxdh3Cdjk6dn9NmCD5/4IStJ43i2LdvHy+++CKPPPIImzdvPqFrmTJlCu5QzHlWqg5NDk0dTWRDGmkcC6TJ9hIgXXSn8U/ANddcg6UofG5/CVtuT7ytXLnyL13HL7/8QjQzk9qmyS3BEP3tqeTSKiNTmemG/aWveZMmf5oT/Ed8/fXXjB49ms6dOjFt2rSDKo4HnH46qixzsk2GTrUnbLfE4jQyTLp26YJlGJxh28OvjmRhFcn+PquIpdkwt8eZfva53cydO5dff/0VWZaZaL/uo6xsIrrOxIkTnTXceuutyJLEw6FMtsTijLHtzIVIToGXVRTKKgp1NQ1Zkg4r0HjppZew7HORbeIzNeHcRNf5PCubt6MxorJMeUUlbmeLG0JQS9N4IRzllmAIVQgkSeL9999n0qRJeFxJmzRDValWqRIvvfQS4WDQOa+t2TmcZrnIsacnU8rbL22b9fKqSkPDRBKCFjZBP8y9/zwlkbQdv/baazEMw/m5IQSNNJ2epkWGLPN8OMqarBh1teSEeLai8H40xtLMCLpITpDrImmFLoRwyLkUfv75Z+rUquXsP1OWeTozTMi+p2Vyc6lTsyYdi5Dtg1xuMiSZcqpKvn29NDU5ZSuERF1Np7Kq0VDTmO0LMMLtIVOWMYVw9vF4ZlItbckyAa+X5sb+gmmo24OmGUiKSlYsVozM72NZzPB4kSUJnz9AIJhBq1atUWyVekqYUbvIFHhqIl0XgoGuZAxAWVkhR1GY6vXR2DQxdb2YBSAkGxOaqtLNcnFnRoiWhoEuBG9HY7wQjmIqCmXKFqBZHkzLi6qoyELQqlUrJJF0IehrubCEwC3LjBs3rkTv05UrV5ITi2GpKqFAgDvuuIO9e/fSv18/5xz9Hg9nnHEGiqoRKFsbr6Jysc/PKPsZuvHGGw+672effRYhBC+Eo8y3hR+aJCOlIhWkpMX+2WefXWy7yZMnI0sSYVlGUlSqDb+ORrOWk9t+GEIkowA2xeLclRFCEoLpXh/LMiPkKAodTkpmeq9Zs4b83Fzns6JMXh4DBw5MPu+2OKFb9+78/PPPtG3b1l6PRIW+F9FwxhL8ZWvRuEnTw167zp060c7cn6GXsvBv3brNEaucd+3axZDBg5Hl5HXq26eP0yBLWeK9EI6iSNIhM+RLgt9//51TTjkl+XlZpiaGLykQM7wZqIaFbpjIqk6gXF10t49y5Ss438Nq1qqNL7cy9aYspvaEezB8ITTdQNVNdMuDrhtH1KQ6GF577TVOOaUX7dq3Z968eYe1uzxatGnTFl9eNRrOWELDmcvIrNGG3Pyjsw0dNGgQvpzKThFa/tQLEELw/fffH6NV//PwzTffsHnz5rTgII2/DOla8p+D9L1KI400jjWqVapEVdNkWWaEW4IhDFk+ZuTvkWD37t1079p1fz0cDB4y0/f6669Hk2XetQc67rHrzIPFCt1www2oksSH9mtT9e/KlSv5+uuvkWWZ4XYNdY9dQ915550lWvN3333HPffcw7333vun32FHjBhBjm7wqd2PGOvxoqnqQS3yS4tly5YhhKCz5WKCx4tP1ejaufNht3nkkUfQVBXDFntXKlfOOYd27dpRVlGdSfnzbYH2kQiaJ0+ejCVJzvDNNXbtK4Tg0UcfPaLzTWHPnj3IsuwMb1zs86MK4fQz3rZF+k899dQh97Fx40bKFhkGyY3FSh1ZeayQSCRwe7yE63Sg4cxl1J38HyxPBv1cLi7zB5Bl+YjrhF9++YXRo0dTtUIFWjRt6mRVJxIJLr/8cuf8u3fvXqLBq5Tb3ukuN1f4A8R1nTo1j71wOhVl8Mce0V+NU089FVdGFrUn3ku9KYvx5VSidp26J3RNpUUikeDxxx/n0ksv5YEHHihVzMjfGbt27aJ9+5OcZ9i0XCxduvSErefhhx9GCEHeSSOoPnIRgXL18Pn9x2ygMY00jhRpsr0ESBfdafwTsG7dOizDoIlpMcPnp8AwKJOb+6cWy8cDb7/9Nvm2VZJpGNx8882l2v6HH35AVRSGuN1sjsV5PDOMJstcd911Jdr+p59+4n//+1+JvoDu2bOH2bNn065NG1RZZlIRsr2eYdCje3eH+M/TdTyShCoEHTt0oFWLFoQ0jXsyQtyVESKoafQ65RTee++9YsT++ecnJ1jLahqGJKFJEt3sKWo4ML/4GVsoEbUJ4FMtFwOL2Jlv3ryZb775hocffpgnnnii2LGqVqxIBU1Hscn1L2Jx1mTFiNg295pNbEdkmTciWay0s8VNexo59cWplU1433333Ye8dq1atMAtScwLBJntC6CKZF64JAQj3R5WRbIYZ9tDL8mMsCUWJyTL1NF07rJtwS/y+XkrmkVflwtNVRkxYgSGLHOlP8D1gQx8kkR9TaepPQWeukaX+gPOZLNaRFTgsm25s2WZPMNwSNTvv/+egaefTuVy5WjdogU+rxe3EIxye2iuGyhC0NEwsSSJ2rVrJwsgO9NbEoJJXh//De23F7vuuuuQFQVPTlVHFHC+/exszc5JThgLwfJw8rxT8QHdu3WjSaNGdChCkI7zeJNkrD3hO8Lt4Y6MkHMPQva9GTNmjPNMf/XVV7z44ousX7+esWPH4lYUXgxH2RyLc7ptbd9Q1ZJOAarKbcEMJwO+TG7uIfPC/vOf/+BxJafvFSGY5d3vhpCjaXTo0CE5kWGanO/1kWFn96VeLwtBN9OiQDcYNWrUn77/Pv/8c9yWRV3TZILHS7auU61yZXbt2sWuXbto0qiRc82FEPj8gWIuDZtjcfJVFd20CAQzGDNmjDONDcmccSEED4cymenzI8kKgbK1qX/+49QaezuK6aFcuXIHNF+C/qSDQb6i4JckFCHhyauOZLtArLAnvLdm5xAsogIXQtC7d2/HZvy0Pn0wZJm+Lhd1jKSyfdCgQUhFtpkzZw47d+7EsCcvJFmhXK+pROp2okrV6oe9fldeeSWyJDHd66ObaWFKErGsLP73v//96bU/FM4991x0WWaGz89FPj8uRWHEiBH0OfVUFEmitmXhtkU3R1vIBIIZROp3ta3in8YKxalYsSJXXHEF69ev58ILL+SUU05h4sSJxRprb775Jl6fD2GLJkzLwhXOpd6UxTS44En8ZWtRpWq1o1rbiUC9+g0I1Wi7PzKi5QAyQplHtc+zzz4b0xei3pTFNJq1nOzm/VAUpdTitX8Dfv/9d3r07Om89xo2anxUuYxppFFSpGvJfw7S9yqNNNI4lti1axdCCObbLnlbs3NoZyYF/UXx4Ycfcv7553PeeeeV2B3sSHHFFVegyTI3BjN4Phylrpm0hj9Y7+R///sf2dEo2bpONzNZA7Rs1uyg5NHChQvRZNmZXF9qT8G/+OKLAFx77bWOyF4IQecOHY5LNFPfvn1pUKTWTpHOR2JFvmXLFsaMGUOPHj245JJL2L17N/fddx8VCwqIhkIM6N+fH374gVWrVrFixYoDXAISiQQZfj+dLBfr7bi+oKYxadIkADp37kx1VXNI65Rw+oEHHij1WqPhMBmyzGZ7X6neRTldZ+jQoaXeX1Hs27cPXdOcXlmql3N1IMiGWJxJtkjgcETthx9+SFlbiC7LMhdeeOFRrelosHPnToQQFHSf5NRd/oK6tDVMGpsWFcqWPW7Hfuihh5zhkrp165ZoQn3hwoX4PEn3gGaNG5/wieLjifXr1xPLjjuDCD6/n7feeutEL6vESCQSjBo1KtkjdCffF926dT+ugv2/CldddRWKqlGp/yXUnfQgwYoN8QcCx0TIdCRIJBKcffbZTm3v9flYsWLFCVlLGmkURZpsLwHSRXca/xQ8//zzVKlQAY/LRbNGjQ5r43S8UVhYyHfffXdEf3g//PBDhBA8Zudfb83OocC0nKLkUNi9ezcDBwzYTxg3b16q6b2zzjoLVZbp53LR2rb3fvLJJwGYNm0aQggqqSpDXW5cqkqP7t1pULeuc7wmDRvyww8/HLDfRCLBlClTkrbVNqkY0DTat2tHIpFg0aJFSdLNH+CNSBY9LAtDCEKSXCxffKjbg6EorFq1iqBvvy111UqVHHLN43LRzbRQ/kj+Wi5yZNmxLU+Rha9EkpZ28XjyC+25Hh9LMyPcbttT3XvvvXz55Zd8+umnTJkyhbPOOotly5YBsHjxYkcAkCJbs2WZaqpWjHxsqOnOOlKWY7mKgkeSnJ+/bJP+FQoK6OtyOT+f5PVhSRIDXW78ksSyzAjvRGPU0jRUm2hPCQiEEFhC4myPh6qKiiqStvt79+6lQd26hDSNM90eqpkmqiQRl2VUIciQkv8blWVCtuJ8woQJ6LKMJgRj3R42x+IssAv1MWPGcP/99ycLpPP+iytagCIEcTtC4L6MTHyShFdIjmuAEMJxM0jd79Ndbka7PahCMMTtdibSp9vFalSWMexzHGTbz5ctW5b8vDw6derExo0bGTZsWDGi22NP3letXJlmjRvTo0cPFJvYVVLT3EIQzcw8ZBbZ7t27HRK8oabzRGbYUdlnZWVRYJhOEX+j/ZzUr1OHgKoy0eOlox3BUJLJ4pQ1YWry4BG7KfDSSy9x4403okgSD4Yy2RiLc4bLjSxJ6KrKCDvvbYY3SYpHG3Qnu1lfJFmhZs2aDB48mHvuuYfdu3fTuEEDfKpKcy2ZmV626wSnqA5WakKbg9jX6bJMD8PkpXCEleEoeYqCLMvUqVMHRZbpa7n4IBrjavuZkHWLgp6TyWs/HEmWufzyy/npp58QQnCJz8+mWJz1sTh5uoGQJMJ1OyVjAJr1RQjB66+/zpAhQxwyP0W6/1lm3969exkyZAiy/T5oYRgEVI0KZQuO+DtLtUqVGOByO+/BUW4P+dnZ7N27l+uuu46hQ4cya9YsfvrppyPafwqJRALDMMltP2z//ajYiHbt25do+y1btnDHHXdwzz33UKNmLcK1Ty5mN+dye45qfUeDDz/8kGeeeYatW7c6P0skEjzwwANMnTqVRYsWHZTsvuiii5BkhZw2g8nvMBrNdDHQzqk/Unz55Zf4AwEsXwhfTiWEOLHWgCcSkydPRtEMynY7hwp9ZmB6g0cdt5BGGiVBupb85yB9r9JII41jiUQiQTgjg86Wi42xOG9FswjrejFR8iuvvIKp64R1naiuo6kqzz777HFbU9++fWlSxBXtJrueO1gfA2DDhg2cccYZtGnVinPOOeeQYtuNGzfic3uoZfc7cg2DCmULig0GvP3229x444088cQTx23a8/bbb0cIwTiPl2sDQbJ1nSYNGpR6P//73/+IZyXvVyvTRJNlenTrVkyU8Oijj+K2BdMpl4CiYokdO3YghOD6wP64vpamxamnnupsL4TgFNPiXK8PlyQRi0ZLTcyl6k5JCHqaFvMDQSqoKjmKQkzTGTt2LJCsHefMmUPHDh0YMGAAa9euLfExxo8fjyxJ9LAs6umG039J/bv44osPut2vv/7Kyy+/TDwapYphclsw5LjTPfHEE6U6zz9i9+7dR0z01albD3dmnEr9LyG/01kIe2jD63Yf97zy119/nczMpKtbTk5OiWyvE4lEqaM1/6nYtm0bd911F7fddhtbtmw50cspFd555x2EEJTpPI5Gs5ZTse+Fx+RZ/ztg6NCh+HP3O+ZV7HcxQogTfo/Wr1/PqlWrDhuJkkYafyXSZHsJkC660/j/hj179vDoo49yyy238OGHH/7lx9+xYwcel4sOlsUbkSyuCQRLZDM2ffp0NFnmEn+A6wIZhDSNnt0ObKS/88471K9Th6DPR7NGjZwiY8+ePUyfPp3qlSvTsF49Hn74YWebXr16Ub+I9feFPj+KLLNr1y4++ugj1q5d6xRF33//PRMmTKBbt25MmzaNX3/9lREjRlC+CEmZUlg3atAAQ1aKTZVrQnCqZaEKUWwCerDLjWFnpXslict8AR7MCBHSNEaOHAlA04YNydd1NJv8fTwzzL0ZmbgliaAsY9nTzYoQVFU1yug68awk4V5BTdqC59qEbWrCWQiBJstkahrl7GLypptu4rfffqNy+fKEFIWT7elwYZO+RYsvWQgme32c7fGiSBL9+vWjapVkHvHdGSG2FFFDN23ShNqGyZexOJticU4yk9chtebUPv2SRBVVxSUED2SEiP9hujhF6r/++uusXr0aIQT3Z2SyNTuHdVnZWJJEBVUlLMu4JYkmus76WJwvYnFqaZozre2XJGKyQnvDTNrWZ2WRSCR4/vnnEUJQ/tRpSJLMSLeHAmW/tbthr9co8t+52dksXbqUsrm5SJKEpaoYikIZReGuYIj6tiOBIgS9TYvNsTjvRmNk2iIA8Yfrauq6I9J4IjOTAlXFZVm89NJLxZ73r776ilo1azrbVVZVshWFzIyMw04TNKhf3xEKCCForOvIskxM1524ipT6PujzcVK7doT8fsrl5zNgwAD69OnD+PHjixGOf8T8+fMxZZm1Ntn+UChZdHbp3JnJkyeTX+T5f8K2IhwzZkzyHpsmlqKSUbVFMtd7/J3ImoHq8jmk4owZM/jpp584++yzadGsGablwpVVnlrj76TKoKtQDdcBhHYikUASgnCRZyrb/u9ypollvz8cUlwIctsP308YV25Km7Zt+fbbbx2RgyJJdLVcFNiEf91JD9Jw5jLK9ZqKEIJOnTrxxRdf0NO2VU/9u/TSSw/7mQfwxhtvIITgroyQI6CRxIERCiVFkwYNaG4mP6u2xOJ0sCyqV67s/H7JkiV069adTp06cd999x3RMVI4pVcvdJeX/I5jyG6ejA249tprS72fLl26IOsmlfrPpuqQeei+TGRF/cunlosq2YUQGIbJ4sWLSSQSjBgxAiEE7lAMWVFp0rTZAQ2TvXv3MmbMGBRVRZIkTunV64imcP6IL774ggkTJjgilP+v9ul16zcgs1b7IqKMwekMwFJi165dXHTRRXTq1Jlhw4axcePGE72kfwTSteQ/B+l7lUYaaRxrLF68GEWW8akauiyTm51drD5q2awZdUyTL2xxblPTpF6tWsdtPVOmTMGvabwcibIxFqen5cLjch0T8vutt96iSYMGZEcidDjppL/se8LWrVsd17dEIsGMGTNQ7Xi7xg0aHBEZNH/+fExF4W3bln1hIClKSE1vf/DBB8iShCEE92SEeDEcpbqmUbGgwNlHIpGgTG4u9UyLlyNR7s4IYSoKF110kfOaW265hazMMG7TpEWzZvz444+lXuuePXvQNY1WuuHU724hiCkKLtNkzZo1AAwZPBhFkmhvmuSpGoaqctlll5WoNti3bx+XXXYZTRo04KR27Vi+fDnPPfcct912mxNDUFhYyJ133smkSZO4/vrreeedd5xekxCCB+x+zJZYnALTZMKECaU+V0gS+H379kWWZRRFYfjw4aUiol944QU6dOiA23YfFELQsmUrbr/9djZt2lTi/dx0003k5pchlBlm8JAhpXIV/fLLL6lcuTJCCDwezwm1407j2OHxxx9HCEGdSQ/QaNZyGs5ciiQrLFq06EQv7ahx6aWXouoGVc+8hgYXPEmoWitcbs//GxFIGmmUFGmyvQT4JxTd/59Ubv8f8fvvv7Nhw4Zi9sjHCzt37qRV8+b7p5Vl+bBW4scLTzzxBFaR7O6Bp5/+pwrfpg0b0rOISvt8rw+/p/h041dffUXQ56OmaTLV66OSYRKLRPjhhx/45ZdfDnmN+/TpQzXdcMjyKV4fmqoeUJTu2LGDyuXLE9Q02pgmLlWleZMmjBo1inzDYL29/eU2SVlN1YgXmWbVbLJVEoJ69tR8N9PiNNvOvEBVucDrJ9MmzXUhaKDrtGzWDEjGCeTZU+pFyWmPy0X16tWRRTJnfpLXhyYEeTk5vPTSSwghuCOYwVx/kNFuDxmyXGxqPa4ofJKVzZZYnL4uN0Gfj0QiwUcffYQsSYRkmZa6wWn2VH01NWmvf5ZdwOiqisflYuLEiezdu5d9+/bRrUuX5O9sIrNfv36sXLkSQ9PI1g3KGiaSJDFv3jwWLVpEJBiko2FyUzCD96IxznR7MOxroAnh5MW3tjPrhRDUqVmT2bNnI0TSSnxrdg6fZWXjsV+bstYf4/EUcxAol5eHoes00vVi17FqlSrs27ePwsLCYsTolf4AX8TiPBkKU1FVUSWJWprGZ1nZfJyV7QgZFEmiuWkx1esjqihodva6JAR1NZ0eVtKGv5W+P1agmS0c0ISgtz1Rfa0t1ggoivO6FFH9+eefO8/je++9R5MmTZCFYLzHyyX+AIbYnwl/3nnnHfL91KN7d6rrOkszw7wTjTHK7cFtWViGQSVN4xTLhS6S9vv5mk7lihVZsWIF/fv2RZEkmpkWmVpSzPHtt98e9BgbNmxAlWXKKAr1NQ1LkghLEoamcdtttyEJwcJABqujMbqZFrqqsmDBAmbNmkW9evWQJAlXrAINZy4j2rAHqst/gF321q1bOaldu+R1liT0Ip8rDRo2OujfdrdhkKso3JeRyRX+gHO9bgpm8G40hk9V6dmzJw899BCKqpFZ6yQazlxGgwuexB0tQ69epyafO0ki3nIAee2HI6u6c9wynceT3aJ/UjQRiqNZHmLZcb755ht+++03zjvvPOe1559//mEbICtWrEAIwUu2W8X6WBxDlo+ItN67dy9333138lk3TGoaSXHN/fffD8Bjjz2WVPznVMFfNhm3cDSF4/bt2+natRuyLGMYJlOnTj0ii7VZs2YhKfsdNYxgMjcwZVv5V2Hx4sXJ+9tpLLXG30WoWktM0+LVV1917nujWcupOvRqhEg6hxwMe/fuPeLvdP+WTLjjgY6dOuGJlaPBtCdoOGMJwUqNKVuu/Ile1j8GiUSCrt26oagagYqNsPxhwpEo33zzzYle2t8e/4RaMo0k0vcqjTT+/fjpp5/4/fff/9Jjvvvuu8yZM4frr7/+AOe9KuXLM9S9vxYd6/GS4fVSp3p16tepc8QC2kNh27ZtVCwoQJEk3KqKLMtHLaA9kbjtttscYl2SJObMmQMkCeij+Sy/+OKLydA0Ntn9m6dsW/yUpfUll1yCJkm0N/aLw+fbNXrR7/GrVq0iFAg4dUq7tm2PS5zTFVdckewPFOktqZLEySefzC+//ML333+PEILZvgBbs3P4JCuboJTsw6Si944GiUSC0/v1QxKCsqaFKst4LIsqusGDGck+xXQ7Cu6daAyvqhYTHZQGI0aMQNVN8k4eSW7bociKyrRp00q07YoVK5BlmeqG4fRZjsT166GHHkIIQWbNtmS36I9qWPTt27dU+/jxxx9p27ZtckBFlv8VhOz/d3zxxRcoqkq4TocDnAz/6fj1119p0HB/zKOqasUG1NJII40k0mR7CfB3L7offfRRorYFTbVKlfjggw9O9JLSOIa4//77cdnTxAGv95BZy8cKV199Nbos899QmPWxOKe5XJi6fkym60qLr776iqVLl/LOO++USG3bpXNnqhkGX9gTmd0sF/nxeLHX3HXXXQghWJOVVCi/Ztuo16xe3fmSO3bs2GKExb59+2jWpAlCCBrqOqdaLmSRnLD9I+69916EEKyMRIsRoDfddBOaqlLXMOnncqFLEi5ZZoTbgylJXB/I4P6MTLJkmbiskGWrohcsWECtatUIBwK4JYkN9gTwXbbleBs9SSwPHDjQWcMvv/xCy+bN8SkKY1wehrk9KJJEPBqll7Xfon2020M8EmXfvn2UL1OGiobJ7cEQw9zJfHiXJFFP0ymjKLQrUkTOsfPS9+7dy/vvv48Qgqv8Aa7wB7jcFyhGbG+JxSljmEycOPGAe7hv3z569+7tFIJCCHr17Mm7777L2WefzVlnnVVsSnvIoEF4VZVrA0HmB4K4bUJbFYLnbaJxus/vTG+7JIl29nsnJxYjrGqM83ipa5jFLNUlIfBKEjcFM7ghmIFLkmjapEkyl90m71+LZHFtIIgsSdx8883O+m+66SaCfj8+O+O6v8uNEAKXrjPB43Wu2RC3G80muV/MjBCWZSxJwiclreazZdkp5M/xeJGF4OGMTOb6g8hC4LVtzZ4JR5x9ZtqCiOfDUbbE4gx3e1Bk2flb9fTTT6OpKn57et8vSTwXjnKWx0u2rDDW40USgqlTp/L4448Xuz+//fYbPbp3RxMCrxCEJQlVCGLhMFdeeSVu0yQmy4zzeJlURBGeup5X2UX8O9EYLlXliiuuOOh79oYbbrAbIzKyqqOoBoqUtPKvVbsO3bp2LdYsKHqMosc0fGF0XxhXVjlnarV87wsQQtC5Y0eCmsZcf5BpXh+KJDFw4EBeeOGFg9rOpbIV5/r3Zyu2tgn6e+zp8eqWxbBhwzjrrLOcZ8kVKYPmDaFqGm+99Rb1GzQkVL2Ns57sFv3xeH3FJp/jLQfQaNZy6ky8D93lZfr06UCSbC2aPzV69OhDktA//vgjmcEgdUyTBYEgHS0Xmqo6EwwlxYMPPuio+/2BIO3ataN///489dRT/PzzzyQSCRo3aYruy8QKl8GbVx1f2TrklfnzTLvly5cze/Zsbr311oM2l/bs2XNUOWapz/WCbudQbfh15LY7EyHEMY9S+fHHH7nmmmuYNWsWL7zwwgG/nz59Oq5A2Lnn1UcsRAjB9ddfjxCCWuPusBXuy9AMF3Pnzj1ma7v33nsJZYaRZZmGjRqzfv36Y7bvfwvefPNNDNPC8oVwh7KRJInFixef6GX9Y/DJJ58ghKBcr6k0mrWcupMeRNVNrrrqqhO9tL89/u61ZBr7kb5XaaTx78W3335Ly2bNnJp//PjxpRYp3nLLLVStWJFyeXlMmTLlmGTVDhs2DK+qckMwg1uCIQKKgiwEvSwXHewIuLvuuuuoj1MUP/30E7fccgtz587l7bffPur97du374Ba/5lnnuHcc89l9uzZfP3110d9jIPhiy++QJFlTne5WRmJMt6uZY4FsbVq1SpkWaaH5eKaQJAqhkluLObY4l955ZWo9tDB65EsvozFaWe74d1zzz3F9rVt2zaeffZZVq1adVyEsYWFhbzxxht069YtSR77/DwWClPb7pW0adWKDRs2IITgtmBo/3S5olLPdl77+uuvefjhh1mwYMERXb8333wTIQTXBoLFMuN7mRbPZUYoqySHD0KyTEBViWdlHbFgMys7TqxpH6fmCtc+mWrVa5Zo286dOlHHMJzeyxkuN5GMjFKvoWfPU/DlVafhzGU0mrWcvJNGoKjqYZ0DD4bdu3czdOhQp+6fOHFiWjz9D8ftt9+Oou53vUwJgI4nnn/+ea644gruvvvu4zqIuWvXLh555BFuu+02x+UjjTTSKI402V4C/J2L7tWrV6MqCh0sF/MCQaoaJtnR6AkhRtM49lizZg2KLHOKy8W9GZm0tyxcpnlcM1HGjh1LpSLT4Q/bZPG6deuO2zGPFV5//XUMXSfHMKhgk6x/LHRSWdtvRLLYmp3Ds+GkQtmrKMwLBJnq9SXJwiLN40ceeQQhBBM8XproBnFbOb169eoD1pDKmU7ZbL9uk/lPP/00L774Im1btaJujRrUrl2bPF2ngT3NnLreM31+LEliqa2cTuVed+zYEZ8kOdnWqcnme23S/Y8Tkn6Ph/OKZLb3sCwCHg8tzf1W+L0tF+Xy8wFYu3YtFcoWONPefklisMtNBVV18sAv9vm5LRgiKstkR6NAcjJVSSnJixCh0zzJY78RycKtqo4d9s6dO1m1ahXvvPMOa9asQQjBFK+PLbE4twaT5/Lf//73oPf3559/plWLFs6X1vaGyUiXm0xZ3m81bhd1pkhmnl/q81NZUZHsc0hZ0gshGGnnpbtEcReAqCyTH4/z6aefFhMObM3OobJlOZln+/bto03LlhiShNcmXFPXQBZJG/JHQmEeCmXit0l1IQRdTItsRWF1NMbGWJxOpokhhHOMi2zBgEPIyvuv7zC3h42xOHdnhJCEIBoOo0oyIdtS/uqrr3auV8WCAlqZFhticdZmZVNeUelgmHQwTSqqKs+Fo0mS2L5/w4YNc5okPbt3x6UoDHa5CUoSuhAMcrlpZbsNNG3cmLhucJud8TfB42VDLO48l9PsZ29zLE6WYXDBBRcc9J62adUKRZKxImWoN/UR6p//OK5YBVTLhxUI06hxE1577bWkel2SeCAjk/WxOP1cLlQh+CAa4wI7tz1gOyRkN+9H+d4X4AplU616DdyW5axna3YOXU3LcYI4GBKJBH6vl96Wiy2xOGuysonaThJ3BEOcZ0ce3H333QR9PsZ7vNweDHGa5SIuK9SvWxeAVq1b48uvQcOZS2k0azmZtdqTk5dPIpHglltuQQhBpf6XOE0Cb6yA0aNH891331GzWrViz4AQgtNOO+2QDb0333yTgrw8hBCEAgEeffTRQ57fwfDBBx+gqCqhaq2ocNpM/GVr4fX5eOCBBwjZ9v1ZsWzcHg+SqhGp1wVvbjWEJBP4k+bEhRcmc8oMTwBJVmjQsNExn+bYvXs3zZq3QJJlTF/ymTznnHOO6TG+//57ypQtQNF0LF/IIdGL4pZbbkGWFaoMuoqGM5cRa3YakiSxevVqDNMio3Izqg1bQKxJUmS0cuXKY7K2lStXIkkSoeqtKNN5HK5QNhUqVjomDeB/G9asWcO5557LhAkTjnse478NqQzCqkOvTopGZizB9Aa48MILT/TS/vb4O9eSaRRH+l6lkca/Fye1a0dY17mmSM0/b968Yq/Zs2cPl1xyCZ06dmTQoEHFhJspUX13y0oKqWWZcePGHfW6fv75Z9q1aeN85zc1jb5FBPLtTJPmTZoc9XGOB37++Wd69+qFqii4LYsLLriAwsJCFi5MCk5zDROvqpIVDrN58+YS7XPv3r3MmzeP0047jbPPPpvbbruNCmXLEvB66dyxYzGCNuW6tdq2et8ci6NIEjfccEOpzmPHjh3JqLvKlenatavjFHf//fcT9PmcwaaiYubNmzcT8Hox7Dpfs3sNTezotXfeeadUazhS7Nmzh57duzvPTzlVdZ6d++2JciEEa9asoU7NmmSpKpf7A/SxkpGB53mS59e4QYNkzWbX1EX7CiVBqmf2VjTZZ5vt8zv9D1UIsmSZHpaFIUmUzc/nq6++OuJzLl+xEhlVmtNw5jIazlyKv2wtmjQ9dH1fFK1btqRjkai6qV4fXper1Gvo06cPnlh5p9aPtxqIputHRJQnEgkuv/xy51517969VJb0aZxYbN68mfvuu4/HH3/ccU356quveOmll9iwYcNxP/4ll1yCEALNciNJEs2at/hLXHHTSCONgyNNtpcAf+ei+6qrrsKtqmywybNnbOIw3UD8d+Dmm29GliTHevzdaNIa97HHHjtux1y0aBGKJHFLMMTqaIxOdoZXSsH7d8fq1asZO3YsI0aM4Jlnnjng9z/++CN58ThxXae/y01E11ElifOLkHEdTJP2bds621xzzTWYiuKQ1G9FkwR6ymUgkUjw8ccf88Ybb/Dee+9haBptLYtrAkHqmRYZfj//+9//iq3j5ZdfRpZlwraF9sdZ2WyMxTnJMMlTFJbb7+UVK1YAcMEFFyALQXlVpZflwrDJ5rFuD0IIOp58crH958Zi9LTJwvWxODUNgzq1k7bPDQ2TlrY9dFGyqLCwkHPOOacYwfxRVjaqEGQUmSrOkGQ8psnu3bvZsGEDkhCM9XjZVIQwF0JQ1bLwqRplcnP5/vvv2bBhAxUKCvZPI9tqz1W28GFrdg4uReGKK67gzjvvZPbs2Tz11FPFVPJ79+6lID+ffF3nxmAGHe3zGOxyU8HOTE9lpbe3fycJwSmWi1ciWUyzidIMWSYqy3QwTTbE4rwVySJTkuhmJq9p0Otlx44daKrKQJebzbE4SzIjmIriCDFee+01hBDU0ZL21SnCvbGu81BGZrG88+qqRn1bWW4IQYciBd4VdqRAb9NikteHJUnoqkp1223hVNMiq0h+eKpozcvJYfv27dxwww3Mnj2b559/vtgz4HO7i5HMfSwXbnuNs31+TrUsVLs5cZU/6EwBbNu2DSEEV/mDrMvKThLy9nZhWSZH0+jTpw/ly5R11vRmkXuoSxIRReX6QAZ97Un/Lp07Ew2FKMjL46abbnLWGA2HUWSVrEY990+AN+uL7gtTtusEhBDs2rWLc845h3LmflHKY7ao4rlwlLX2GlMiB2G7AFSrXoMvvviC7EjEIc7Xx+JUNww6dexI/9NPx7RcWG4PnTp1Klbw33bbbQghiKkqHltsECpyP88991wSiQThYJARtu3jllicpsb+z44lS5YgSRKe7PL48pP38rLLLnOe49y8fDyxclQ6/VLirQYihKBRo0aUyc8nKCs8kJHJAxmZzj1LFd6HI6p//fXXI8rjvv7665EVlQbTn6bRrOXUGp+cFNc0nWCFhpQ7ZSr+srUQkkxuuzNpNGs5DaY/je4LU7Vq1UPud+vWrUnBSMsBNJy5jGpnXousqKVqgP3444+89tprxeIRDobdu3dz2223cdFFF/HEE08c81zyadOmoVseao2/k4YzlxGp3xVN14vdj927d9OyVetkU0k3iynZH3/8cSz7/SDL8jGdBj7vvPOwAhGn2VN5QLJZ88knnxyzY6SRxs6dO8nNy8cdyads1wmEqrVElmVWrVp1opf2t8ffuZZMozjS9yqNNP6dKCwsRJFlx0J7a3YO7U2Tjh06FHtdv759UWWZk0yTXN0g6PM5ZMlJ7drRsojb29ke7wGRdUeKRCLBhg0b+PLLL8nw+6msqvRzuXg4lEkn06JJgwbH5DjHCh988AGXXHIJtWrUwKuqzPT5nfi4q6++GsswGOhysyUWZ3U0RljXHWFCIpFg3rx5lM3JJR6Ncs455ziTmIlEgv79+qFIEk1NC5+iIAlBezuGLaLrNKhb13HEevvtt5Pft/3J+3qHPYjw5JNPlvhc9u3bR1YkUqye9LrdTm2YSCQOGTvwySef0LhxY4QQnO3x8nw4ysZYHJeiMH/+/KO5xCXGggULUGyXvuFuD5Yk8Wokiy2xOGfZjnlCJAdFNm/eTFU7J9wSEme43FQ2TDIzMlAkif+EMtkSizPS7UGW5UNGwf0R27dvp2a1ashC0Mk0ucyfFMMPcrm5OyNEXU0nKMl8kpXNTbZY/0jqlI0bN7JixQquuuqqZP8lpzKeWDkkSSrxPZ8/fz6SSEYrzvT58agqp/frV+q1PPfcc0iShC+/BqEabZFlhfHjx5dqH++//z6du3Shdt16nHXWWdx5550YtqNe3bp1j0qQkMZfgxdffBGX3ZMVQlCjZi1+/PHHv+z4qX5LdvN+NJy5jKpD5iHJiuPGmUYaafz1SJPtJcDfuehetGgRmiw76sHbbaLr3XffPdFLS+MYIJX/+kRmuFjxcDzFFHv37qWHbT8lRDJre86cOUdl8ft3w6ZNmzitTx/q1arFwAEDCAUC9LeLwS9jcaoYBr1OOcV5/fPPP48QgvO9PlZFshjgcqPIMuvXr2fPnj307tXLuV7Z0SjXXXcdWeEkGZjh9xMJhciPx5k9e3ax6/jYY49RrkyZZPa6JKHZ+2ip6+ToBuXLlHUUrevWrUNXVUKyjGq/zrT/t5GmU5Cby+bNm/nPf/7DM888w80335wkeU2TsoaBpqq8/PLLPPbYY3Tu1ImT27fnrrvuOoCQSmVGpZ65T7OyMWyCd3lmhJXhKJXsonfZsmW88MILyWfSts3fmp1DQNPo3bs3o0aNYubMmY7QoF3r1uQZBk9khrk/IxOPTSIOdLl5Oxpjlj3RXbN69WQOvD2tPXny5GJrXLduHVUrVnSIZ69dFOcqClf4A3Q3k7nnj4TC9LaSE9BF15e6bkIks9ZTPz/ZMClQFHQhqGYTiNdee23yfWCT3Q3q1nXuyTPPPOPs527bXjw1lf5sOEJlRaGlYfB0ZoQNsTgX+fzIQlBVVdGE4IZgBo9nhilQku4BGVLy3spCUENVcSkKFcuXp1bVquTE46hCMNbj4QKvjy62peB33313yOe8XZs2xHWDh0KZ3BzMwBQS8h+s2K+2rdI/sgnrhx9+2MlzuyYQZGlmGEkIOhgmNwUzaKrrqELQr18/fv31V+644w4kIRjl9rA2K5s5tnAgEgo5zQpD07BkhT6WizL2FP15553n2LXX0nUMy0vlgZdTZdCVqK4AwUpNiNTvisvtcSbBZbuJ8GE0RnfTQrNJ/nPsxk5Ra/nsaNSZnrjpppuSz5X9XtA1jbZt26LqFjltBhNtkPy887rdfPHFF871e+6556hevTpRVeXNSBYbY3Hm2ueXcheZMWMGkhD0tCxa2+KOlMvEzz//TPfu3Z0MQSEEQZ+PN998E0g2qXLz8pO/s+9LXd3AkiRGFcltHOX24BbJDEIhBG3atDnm7jWpSZ0ao26k0azlVOh7obPm+uc/nrS6n/QAQgii9bs5U61WRpwzzzzzkPt96623kp9Dw693xBSuQNixy/8zPPfcc3jtaRIhktEdx5pELymGDBmCP7eycx4V7Wv0xybInj17eOCBB5g/f/4Bk+s//fQT7777bokbVyXFhRdeiO7yUm/KYhrNWk5B90kIIdi4ceMxPU4aaXzyySfUrJUU7mWEMnnwwQdP9JL+Efg715JpFEf6XqXxb8GTTz5JmZwcDF2nWaNGxb7j/n9EIpEg6PM5BPDnsTgVDKNYxvKWLVscwfHW7BzWZGUT0DRmzZpFYWEhJ7VrRzNjv0vcWI+XgNd7TNeZEuvmKwoFyn4b4p49ex6XnO8jwbJly9A1jYCmIds9kqJDCyknuoWBDOfnTaz9edapGLG+Lhcj3R4029IfkrbwQgjm2VbkA11uIrLMRvuap/qdl19+OTfeeCMbNmxwIrqCtgC+Z/fupepdzZkzxznmu9EYvaxkL2H27Nkl2j5F+N8UTJ7vC+EokhDccccdJdo+kUiwbdu2I55EHT58ODVtJ4Q1WTEyZRldCEes71cUKleoUMxa+tJLL3Vq1AplCxg2bBjxIkKSJbbLYkmn88eNG4df1ZjiSQ4OpAYRtvxhKOyJzDD/sZ0z33///VKd58KFC5Htc5IkiUGDBtGnTx/69evnDKgcCjt37uTjjz/mu+++o7CwkGnTpuG2LDRV5bTevY+4tl6yZAmtWremXv0GXHzxxaWykP/iiy/weL14omUI1z4ZzXDRunUbXnvtNTLtmNicnJxSX6c0/lrEc3Lxl61FvSmLqT7ienTLc8wd9g6HN954I9lvGbGwWL9lxowZf9ka0kgjjeJIk+0lwN+56N62bRt58ThhXae9aWIqCu3btftXEaP/n7Fr1y4aN2iAqSjUsCxUWaZzhw7H/f4WFhYyf/58TJvsFELQvWvXf60l7XXXXYcQgtpFyLg33nij2GsuuOCCYmpnVVGoWrEio0ePRpVlFgSCPJ0ZobppUqFsWQoLC5k6dSqyJDHU7WGQy40kxAHZ1YlEgg4nn4wqSbQzTCKKgibLtGvd+gCi5JlnnqEgLw9ZCGKKwhSvj7szQlQzTapXqYJlq2CFELRs1ozFixdzxhlnMGzYMIfg+zOccsopKEKQrShM9Hipp+nINpGpi+RUdoqs/s9//sOWLVtQFYWBLjfvR2POlPbjjz9ebL/79u3D63IVK8b7uVzk2sR9at2tWyenQheHwsUy2D/77LNi+/vxxx8RQlBeUR1r+IEu137rcjuTfJDLjSoEkzxebguGGOfeT8wqIukUsDQzwm3BkCN2UITgggsuYMuWLY61vhCCzGCQjz76yFnDDz/8kCzShGBLLM6GWJy+lgtFCCxJIsPOSn84lMlz4SjllCTJXkPVHIV56nhFn63OhsmmWJzrA0nVd6MGDRg1ahT5RabhH7etvT/44IND3stNmzYVcxIor6hUNwwCPh+zZ89GiKSi++VIlMEuN7Is8/HHHyefyfbt8akqrQwDSQi+sAvlNyNJ6/lu3brxzDPPsHr1avyBgHMMIQRDBg8m6PNRyzC4zOtDFoIzXMnM+nxFoaLtaHDHHXdg6Dpnut1U1fc/u5Ks4I4kSejURMDevXs5pUcP5zVqkUl/YT+XfkmimW5wimURVpRizbPHHnuMgQMHMmzYMN566y103SC33TCnIPEX1MOQZQYOHFjsGs6YMQOvqjrTAYNdbjRVdaYbCgsLady4MaoQaKqOJCvUrlOXH3/8kdp16iLJChmywkvhKB9EY9QxTWoWmQTfu3cv69evJxoK0dd+futrOjU0jc+ysvk0K5uamoZPlpOTI97k89ugQQO2bdtWovd0SfDbb79RrXoNNNONP78asqJSs1atZOE2chGNZi2nyqDkBIGqm8SanUawQkMkSeKll1465H63b9+Oy+0hWLExNUbfRF774QghSmRz/9tvv+EPBAiUq0uNUTeQ33EMQgjuv//+Y3bepcGiRYuQJIkyXcZTbdgCfDmViWXH/xaZehs3biQQDOLKyCJYqQmyonLqqaeeMGHCX4Ht27fz008/nehl/L/Fv/X74PHC37mWTKM40vcqjROFRCJxzD5b33vvPVRFoZ1lcZHPT1nDoELZgv/3trIpEXUt0yTXMDB1vRiZuG7dOoQQ3JeR6dSUOYZBvXr1MHUdRZaRhKCdYdLf5UaRJCZNmnTE63nnnXe4//77i9XpjevXp6mZrAU3x+K0Mgw8koShKLRq3vxv8fe3cvnytDQtvozFCUoyg11utmbnsCkWp7Zh0KVzZ6pWrEhFw+ThUCaX+gPIksS1114LQPMmTYq5vJ3l8RIOBoHksyuE4HFb+D/W7SEgSXz2hyg9IQSKJOFzu1m1ahWPP/44l112GQ8++OBBv5s//vjjnHnmmYwdO7ZYPQ8wePBgfJLEHH+AJzPDjsPgmDFjSnQ9CgsL6d61K6osU9+y8Kgq1SpV4pdffjnkNo888ggDBgygd+/elMtP1r2aqjouaKXBpZdeiqUoLM2MsDEWp4dlocgyAZ8P0zBo07LlQQW4v//+O99++y2FhYVO1OJcf5C3oll0s1xYhnHYCd1XXnmFm2++mRUrVtCqZUu62S50n2Rl01I3UIRgpT3wkHLRG+v2kGcYVCpXrlS50h9//DGSJDHE7ebVSBZjbbH9W2+99afbvvnmm8SKOBecf/75JBIJEonECa3jZs+ejW55qDf1kaTYvc8MhEjGd3755ZdUth0IPB4PS5cuPWHrTOPQSA2PFHSf5PSVAhUa0qVL179sDT/88AOm5SKjSjNqjr2N/A6jEeLQ0ZxppJHG8UeabC8B/u5F91dffcWoUaPo0rkz06dPP6TFURr/TPz222/MmTOH4cOHc8011/wlBdaePXsIBQK0Mi3eiGRxSzCEKstcc801x/3Yxxs7d+7kiy++OKD4Wbx4MQMGDGDYsGGHVPCuWrWKgM9Hed3gIp+fhqaFpijU0w2nWFxoE6Q//fQT5fLyGGQXn1uzczjVclGzSnHL5ZR6+1pbvf1+NIZbVRk6dCiTJk1i1qxZB+SbvfvuuwS8XnRZRpdlXKbpENYBSWKmz4elKCVWYxfFK6+8ghCCMopCRJYprygoIjk13t/lxi9JeCQJj8vF1q1bgWROsVKE/BwxYkQxkmfPnj106dgRVQgaajqfx+KsyYpRoKh0ME1a6jphe3u3ZeEvkjO20iZ3X3zxxWLrXL9+PbJ9vhf6/Ayy7ZmvCyQnn92SRF1Nd0j1ooR26v9f4fMTKDLpnRIV5GZn891339G6VSssSSKuKJxkmOTrOu3atCm2jtTUdAvdoLluIIukhdwEuwD843FrqNp+UrnI7xUhqKkoaCJpQ7/JzmUXQhDRNArsIvwin59nwxFaGgY+t5s33niDerVqoWsaFQsKeOGFF5y1/fLLL9Qokv3dVjd41lapP/3001x55ZXOtLQiyyxatAhITnX06NYtmUFnTwg8G46wNTvHse1X7O00TUORVVTLhxGKI4Rg0qTkVO2bkSw2x+IY9vNUS9NYH4uzJRanq2lRNjeXGTOSRWVzwyBH01AVhT59+nDmmWfyyCOPFLvWhYWFrFy5ksWLF/Pll1/yzjvvcP311+PzeJAkGUU1CFZohGF68CgqkYyMgxbQiUQCj9dLrMmpzoS2J6s8UVmhTatWxV67bds2ypcpiyHLhG3x0XXXXef8/rPPPkMIQX6H0TSatZzqI65HkhXGjh2bLI7D+fQqkrk4y+fH1PUD1uQpIkR5IjOMKpLW/ZYkJWMRNI3XXnuNt99+m5DtGlCtWrVjai33008/MX36dAYOHMgVV1zB9u3bqVGzFrrlJlBQB82wqN+gIacPGEAsO4cq1aqXiDR/+umni1mrnXPOOSUigT/66COEEFQZPM8pXj3hnBIrxXft2sWrr77KK6+8ckwmgfbt28fgwUP2i2/CkRI1eP4qfPrpp5xxxhmcfPLJXHzxxaVqYP0dsXfvXq688ko6derEGWec4TRGf/nlF7oWcd/p0bNnOtMwjb89/u61ZBr7kb5XafzVSCQSXHbZZbgtC1mWObl9+wPix0qL2bNnE9A0J2rwUTt+6a/KkP474z//+Q9nnHEGI0eOdCZGU4MMe/fupUqFCuQbBnP8AU5xuZyabaLHywyfH0uWyQwGqVapEjNnzizVJGtRzJo1q5hweMqUKQBUKV/eIa9TDld5isLD9jRwKsbuaPDpp59y7733snTp0iNaf9Gosgu8SWF8M92gmmEgyzLPP/88H3/8MQV5efvF2EOGOHVZ6xYtaGXudwgY6vYQDgaZOHEi/fv3J+jzUcUwWBTMoJNpIQtBFd2gj+XCkCTcssy7kSw+ycqmjmlSv3btw643lR9f1TTJ1g1cpsnq1auB5Pf72jVrOvdZ2P0KIcQBEW2QfFYO9vdhz549zJs3jzPOOIPp06ezffv2Q64nNdlf0zTJVVRkIZji9TLKrpcWL15c8ptB8rtx/Tp1krW5LCPLMnfddVep9pFIJBgyZH+dY2ias4533nmH/v3706VzZxYsWOAMlRR9fitWrEhU13k9ksWnWdk0NExMVcWjqtS0nQI8LheGptGyWTPWr19fqvU9/PDDCCFYY4suNsaSfYdbb731sNvt2rWLWCRCXdPkP6FMptiRgg899FCJjvvzzz/z6quv8uGHHx5zEfOsWbMwPQEaTH+qWAzYmjVrgORwSZs2bZJ9qiK9mjT+XsjJzcNfthZ1z32IasMWoFueoxJhHQkeffRRDNv5UgjBuHHj/tWi+zTS+LsjTbaXAOmiO43/b9i0aRNC7LfG3pqdQy3LxbBhw0700o4IX331Fd27dCEzEEC37bJ0TeOWW24p1X6efPJJhBC8Gsni81icM11uFCFQheDeYIhNsTin2hn3hYWFVCoooE8Roq2zaVG3Zs1i+/zggw+SykN7kntTLE7YJmTzDBO/ppEZDPLll18W227Tpk1cd911TJw4ESGSeVgPZGTSXDfwSRJ1TZP+/fsf0fUaPTqphsyUZWSbCH4/GmNrdg6L7WbNggULnNd///33XHzxxQwdOpSLLrqIWbNmMXHiRO69915+//13Fi1ahCJJnOf1YYjk1LcmkhPyLWwCs5Ki4hLCmfie4vXxfDhKN8uFqet88803SVvvypXxWhaaTfZeUcQGvq6mE7Wz2BV7/2e5PfSxLPxCcKplUV3V8EsSkhDcG8ygmqIQkCSGuz10MpKihUcffZRFixYhC0EtTWOErajPlmVi4XCxa3XhhUkradPOCc+WFTbE4qyMRFGFoLVucLbHS3m7kK5VJFe+pqo6WehCCDIkiZtstf4gl4uoLFND07jR/pnL2v8FWhVJYUKG308lXedin58mpoXLNJ1s6xEjRmDKMsNdHqb7fHhs9wQhkhEAN954I+PHj+fSSy9l06ZNQLJYr1C2LNm6zmCXi1xNcwrl6rZzwmxfgC2xOFf690+0B6XkNdcUlZNOOgkhBI/Zz3Qvy0IRohjpPNnrI+jzkUgkuOmmm+jRvTsDBgzg7bffLvXzes899yCEoPIZV9Jo1nJqjr3NWVeLpk0PaguXIvmDlZrgyU5GEhiy7DS6imL79u1ce+21XHjhhdx6663069ePk9u3Z86cObz44osIIagx+qYkcT9zGYbbT+/evRFCEKrRhqCi8mw4wtvRGFU1DU2SWbduXbFj9O7VC7+qcZk/wGSvD0kImjRpQqtWrRgzZkyxCYy1a9eSnZ20/S8oKCh1s+KP5/bcc8/x+uuvH1SY8NNPPzF16lROPfVUZsyYccSk5rZt23jllVdKZWG6bds2ZFkm1rQPDWcuo/rIG1A0nXnz5v3ptt988w1Vq1V3noNKlas44qCS4pNPPmHWrFnMmDGjmIPEF198wdtvv50meI8zhg0bhiTLBCo0xBXKxu3x8umnnzJ8+HA0w0XZLmdTpst4VN1k9OjRJ3q5aaRxWKRryX8O0vcqjb8ad955J0IIhrs9XOoPENK0A8S9pcVVV12FS1H40K7fbrGtt/840fv/Hc8//zwFeXlIkkTVihV55513WL9+PY3r10eSJEKBAGXz8+lhWU4NM6HIFPaR4t1333Xq3XVZ2cywndxee+01xo4di0tRuNwf4Ap/ALck0d/lZp0d+XXfffcd1bEffvhhNHW/PX271q1L7XjQtlUrcg2D/4bC3B7MwJBlyuTn07t372KOV7t37+bjjz8+4Dv4gw8+iBCCNqZJD7u+9VgWGYpCHbs34LfdvNyWxYwZM+jSqRMN69UjHArRt0hNOcXrIzMQKLb/H3/8kXvvvZc777yTLVu2EPT56OdysSUW55NoDL+iYGoaGX6/Q2bebvdyUrnzRR3SUrj11lvx2AKMyuXLO6RoaZGVmclplmt/hKGqOZP+VUyLUaNGlWg/999/P5nBILIkEY1GGTt2LNdddx3vvffeEa0rkUjw7rvvsmTJEicybfXq1Zi6TnnDoLWZ7COcccYZCCGY5vWxKRZnrj21npoelyUJt2XxxBNPMGvWLIYNG8YNN9zAvn37eP311xkxYgRnnnkmzz77bInXtmrVqmK9nxvs3PdnnnnmsNul3CoeDmU6z0w5y2LChAl/esy3336bqG3nLkQynuBYDj699957qJpGoFxdctoMxvKHqVa9RjEBzO7duxk6dGgx0fqJnMbfvXs3DzzwAFdffTWvvfbaCVvH3wkvvfQSbs/+wYKatWofVmxzvPDtt986Qqc00kjjxCJNtpcA6aI7jf9v2LlzJ5ZhcKrlYmMszrLMCC5F4ZJLLjnRSys1du/eTfUqVYhoGroQtDIMHgxlcrrLjSRJpZpMfPbZZxFC8Hgok5MME1NI9LJcFKhJItWvqkiS5CiJ58+fjxCCLqZFB1tpePPNNxfb565duyiXn085w+Aqf5AeVrKAa2vnwX0YjZGt64wcOfKga7ryyivxqiqbbWX4i+GoQxzOmjXriK/b8OHDnS+MmhB8aquIl9mT0S7LYu7cuWzevJmcWAxFktBtEjtFBgshqFurFmPGjKGC3aR4MRzlDHsKXbPz51OvTQkXgkUIaMswWLx4MR999BGGptHUNDnP6yMiksc6x+Nla3YO62NxyiiKMyHv93iYaP+uoabhswn+HpZFGUVxSH1FCC72+R2rwDzDoH///kiShF+S+Ny+rnfYU+b1iijn169fjxCCSV4fW2JxHgxlIgnBNf4gl/sCyGK//fqqSFay+BTCEXyYQlBJVVkZibI4FMYtSU4Wu2w/q+9GY1xsN2CEEDyQEeLxzDArMiPOtX4xnLRn+ywrG1WSuOGGGwAI+vdvp0gSLXQDXSRz5xvUrYsqy0Rs+/bp06fzzDPPcPrppyeLaJcbjz1VLQlBhw4daNy4MUIIPrafhS9tRXnqWV0RjqIJgaqqVK1UCa+adC4IKgqmkbSSu9DnZ14giFeW6dq5858+h4WFhbz99tu88MILBy1a9uzZQ8MGDRBCUGv8XTSatZz60x5HSBI+ScKU5YMScYlEghkzZmAWUQC3b9uW33777ZBr+fjjj3FbFgW6wcmmiSJJDBgwALfHS7B8faoOeVXPagABAABJREFUvZpYs9OcRpiuG3jyqmF69tsd6oYLxbA47bTTuPDCC7nnnnvYu3cv27dvp2vnzsn3jqIwfvz4wxbS69evp8COCMjOzmbt2rV/ei3/iNWrVxdrILRq3rwYgbx9+3a2bNlyQmNpUhmKpjeArKjUqFnrsJaMKZzauzemL0TVIfOpOvRqrECYbt26O7//9ddfGTZsGLFwmAply3L77bcX237VqlW4TJMMTSOk6RiadtDpljSOD3744Yek4OzkUcn39NRHMX0hzj33XPLyy5LVuJfjdhBt2J1y5Suc6CWnkcZhka4l/zlI36s0/mr07t2bxkUstVORXEfjyrN161bCGRnk6wY9LAuXotCubdt01GARfPnll7hMk2amxRx/gFqmSWYwyPfffw/gEF5tW7WikWE6tXZvy0WZnJyjOvYDDzxw0Jrq9ttv57fffqN3r17O9/OorHBzMIPOVnIqOCWqPhL89ttvuEyT7paLT7OyeTCUiXYE7oUbN26kcoUKxWqI0mZe33fffTSqX5+6tWrRvHlzPJLEalsckoqR+/zzzw+oh84YOJBMTeOJzDArwlEKDIPWLVrwyiuv0KRBA3KysnDbpLAQgoDXiyLLzPYlSdqJHi+yEIzxeBjr8SKJZLZ46v2X6qX8MSbrpZdeSpLwLjfXBzKoYpjkxeNH9D61DIPpdv9ha3YOnUyLJrrBh9EYIU3jvPPO+9N9rFy5EmHX6WUUhXK2gKKkE9tFkUgkWL16Nc8++yzffvttsd8NGzaMfN1wehrneLxObvoH9v3aFIsjiWT82913383NN998wKAIwHPPPYeqKBQYBpXse1TS9SYSCac/5bXPtd9pp/3p9O62bduQJIlJthPDq5EsXKrKpZde+qfHK5uXRy3T5JlwhIWBDFRZ5sorryzRekuKpUuXUqlyFXz+ACd36HhQcXjK/ST1THfv3v2EiL537txJ02bNk70lLdlDuvrqq//ydfwdsWXLFh588EGeeuqpY+KodyRYt24d9957L8uXL/9LBBmbN2/mzjvv5IEHHkhHu6WRxh+QJttLgHTRncb/R9xzzz0osoxmf5muV6t2iUiOvxveeusthBDMsC3OXotkOcSqLkmUL1eO0aNHO4X14bBr1y5q16iBz/6Cv8C2fl+XlU1AUWnVqpWj8Pzggw/o27cvlStWJJ6dTcN69bjlllucguD111+ndYsWVClfnlNOOYWatt23KknIQtDaMNhoFzUtTZOePXsedE233XYbsiQ5Nt9X21PQVStXZt68ecm8tLJlmTVrVom/dL355ptIksQZLjcLAkFUIair6Uz1+shRFEKyzABb1d2qVStius5b0Sy+iMVpoRuoNon8WGYmlqLQ1c4wuz8jk89jcXpbLkzDYP369YQyMhyyfbDLzQyfH58kEZNldEVxJoAvu+wyfKrK2qxsTrNcDlmeys2rqKooQlBR18kMBuncsSNhXeeujBAV7WnylFX/J1nZeCWJZrpOeVUlU5bZFIuzNhojpKj4fD5Mm/Qf4HKTIcn4bQHArbfeytq1a9m9e7dTdKfI7q3ZOXgliVxFoYJ9zJfs3z1oW/81sG3ZU0T5JUUm87uZFqYkEQ5m4LYsyuoGJ9mkbmpafIW9v9Fuj2NBn3JFeDOShSSSWeiPPfYYQghy2g6h9tl3Ea7bCUlIeD0eqlevjiQEU+2iM2WnJoQgpGnO2oa5PVxs34+a1as7LgzjPF7ejWTR3SaquxqWk6OXoyiEFIWMQIBgcD/JrNn3xxFRSBKtWrQ47HO4c+dOOtrnLYQgnJFxgDjmuuuuQxYCQ5KxMrLJ73gW/oK6iCKCDV1VCQeDuC2LPqeeWoy0//3333nrrbf48MMP/7QBOWHCBLJ03TnXi+xG0COPPILXl7yGkiRx+eWXA9CmTRskJXm/Zd0iu+UAap19N4rtXBHWkzEH3Tp3dt6bO3fuLLGd49dff001+3MjFAr9qSvArl27ihV/1SpVooZp8kI4yr0ZmbgUhfPPP5/CwkLGjRvnXL8aVaoctGHyV2HRokUUlCtHNJbNgAED+OGHH/50m7IF5YsRsrFmp5GTm+/8vn/fvrhUlbEeL91tgVPR2II2LVtS0zD5PCubL2NxGpsm9WrVOg5nd+Lw9ddf89prr/HNN9+c6KUcgK1btyKEoEKfGY5jhCeaz+jRo6lVuw6BcvVoOGMJDWcswV+2NvUbNDzRS04jjcMiXUv+c5C+V2n81Rg8eDAFxn4ya7zHi65pR90s/+yzz+jXrx+tmjfn3HPPTTvy/AG33norktgvKH/dFkY/+eSTxV63ZMkSJEmihmHQyHYIO1o757ffftuZDP4yFneE1a+88orzmh07dnD//ffjsycmvW53ieKbDofPP/8cIQQPFpnyrWpZJc4mB3jjjTc4pWdPWrdsyfjx41m9enWpRRy//vqrIyiQJIlIOEyeoji28vdmJOvmg+VUf/fdd9SoWtWpU/Jzcli6dCmWYVDXNBnj8RCUZKqoKu9Hs6hpmvg9HiK6zsJABhFZpn8Rm/7WtvD8Cn+A1dEY/V1uZEk6IKrrggsuIKobjugiFc2QiiIoDXp07UqGpjEvEGSa7WiWrapE7D7GwfLV/4hJkyZhSRINdZ2NsTibY3HaGiYVCwpKtZbCwkIGDRzoXE+3ZRWLKujXrx91i4iB5gX21/djPV7WZMUcZ4aVK1ce9litW7SgvmGywV7vyaZFlQolF8wmEgmefPJJrrzySv773/+W+LmbPn06QggKTAuXqlK+TBm2bNlyWKJ++/btCCG4IZjhnHsTMymY/yMKCwv/EoL1oYcewrCdBv1+Pz179jwiV8AjxcKFC5EVlapD5tFw5jKyGp2CLMtHHXvyT8CGDRuYMGECAwcO5NZbb/3bWbTff//9KEUcS07u0OG4xs++/vrreGz3ESEE+WXKltpFMI00/s1Ik+0lQLroTuPfiMLCQlatWsXSpUsPULCmsHr1ahYuXMj999/P77///hev8NggVczOsacErg9kFJvQrq1peBSFUEYGF1100SFJ9x9//JGhQ4dSrWJFYtGk4jlls78xFiemG44Ked26dXhcLgp0gw6mhSJJNGzQgOeeew5ITshahkFt02So24Nf1ShrZ3IPdrkY6fYgC0E30+JyfwBZkpg7d+5B1/Xrr79Sq3p1XIpCFTu7vWWLFk42WU/LYoBdNF5wwQUlumbXXHMNpqw4xeQNgQwn57yCqvKqLVioY5pkRSJ0Nfdb613qD6CI5GT2Vf4g1Q2TM888k/Zt2+6fspZl2rVrR4O6dTF1HUMIGum6s4/Zvv325CnV8ZVXXolLURjgcqPZawlKEpZIihM0m8DOjkZ59dVX+e6772hQt66zHyEE99j3a1MsTliWkYSgv0205f9h2t2yz0EVgpFuD6far0v9K5OTw0svvYSh65xiuXgtksWFdqGZbQtUgvZ0fCvDwBCCTEkmZJPAqbz2prrB51nZvBHJIiTLWHaG3Jo1azj99NPpcPLJzJkzh02bNpGfk0NYVSmjKChCUEfVqK0lbfF7WBZhWSYnK4v7778fTVWRFJWGM5fRaNZyak+4x1l7bV2ngW3Rd5U/6LwXett2ds10o9j9uMwfQJIkdu3a5Uwap/5FbHeCcqrKBTZp38FuRBUoKhVVNZnRJkn0tJKk/Me2XaLbsg77HF588cUYssJtwRAvhKPUMU0K8vKKFTdDhgzBbV/v1L0TInndn86McK4nuabTXW7O9/rwqSo9unYt0fvgjxg5ciSViuQL3mTb133zzTf88ssvfPDBB8WKzdGjR2P4MrEiZVFcfmLNTsMKJ9/n82zhx122Y8IfG3slxbZt22jYsGGyCef1HjCFAUmSfdCgwUj2s9e7d2+ngXCVP+jc55NNk04dO7Jw4UIkIbjA6+e2YIh8wzhhRPMXX3yB2+PFEytHtEE3dJeXnNxc6jdoSMuWrYo1HROJBK+//jqPPvooDRs1xpNVQL3z/ku98x7Bm12Bps2aA0k3BEWWmWVPlGyJxalrGJx66qnOvqpWqMAQ9/5G3HiPl5xo1l9+/scLCxcuRLEdNhRVdSJV/i6Ng8LCQmrWqo0ViFCm83jCdToghODpp5/miSeeQJZl3OFc3OFcZFnm6aefPtFLTiONwyJdS/5zkL5XafzVeOeddzBsm+aW9rTntGnTTvSy/vW47777kgS3XdemyNNUvV4UK1asoHfv3vTo3p0HHnjgmBz//PPPL1ZTHcrWeteuXWzatKnUVu8Hw2+//YbbsuhmufgkK5v7MjJRhKBypUq8/PLLf7r9u+++i6HrVDEMOpomsiSViqhPYdiwYbhUlUv8AWb5/E4NPtzt4aZgBuVtkfarr7560O137tzJCy+8wLPPPsuOHTuYPXs2AU1zHOlSZP2KcJSpXh9+j4cmdr2kCkHHIvVcF8PEVeQ+SELQsWPHA455xRVX4FJV3rGnuVPW6UciSN62bRvtbPt6SZJo3aoV/fv35+yzz2bDhg0l2scFF1yAIUkMLCIcOMvjPSDy7s9w5513JqfSA0FejWTR3rTweTyOOCflwjDE7eZSf4BMTaNNy5ZcddVVxZ7fg0Wx/RG1q1Wjn8tVrL4q6Xo///xzJk2axIgRI0otOkkkEvz3v//lnHPOYdy4cZQrUybZq/H5DjlZv2/fPjwuF71cLjbF4rweySKoaQdkcc+dOxeX/bndtFEjx37/eGHw4MH7n1VZQVU13nnnneN6zBSmTJmCOxRzxOzVzrwWIQSrV6/+S45/orBp0yaCGSFMbwb+vKTQ56/OZD8cduzYgWlaZNZsS/2pj1Kp/2xkRT1qUdjhUKVqNXx5Vak3ZTG1xt2B6c9k0KBBx+14aaTxT0OabC8B0kV3Gv827Nmzx7EsFkLgc7v/tRa5e/bsoV7t2gRVlbJKkviroKroQlBRVZ2p3pisYCkK+Tk5fPfdd8X2sW/fPpo0bEhA0zjD5aaSbqDJMlmaznSfn5MtC1mWef3114Gk0jiq645Svih5PHXqVGbOnElI0/jc/v2twRCqKJ5pPdTt2T/xPWjQYaddd+zYwWWXXcbo0aO5+eab2bdvH00bNqRDERJ8mNtDPBpl7969rF27li+//PKQxMq9996bJDYyk9Py19oKZlmSONeehv40K5uAouD1enHZU+vPhiNUUlWqq5pDriqSxHXXXcfevXtZsmQJt99+O7Vr1sSnqpxquchWFDT7XmwoMtEh28Wurml88803yS+5Ph+WJBGRZRrpOutjcb6IxamjaTTQ9KQ9vE0otmjalM2bN/Ppp58ybdo0VCGI2gRbB8NEFoK8FNlkX+exbg9X+gMEJRnd/nnKpn5rdg4tdYPyqsrDoUwqGyaxSIR69eqhFJmiFkJQzibu3UJQzc6IF0LgEoLGus79GZn0dyWn81MiBkkINEli1apVB9yPq666CsUmlFUhka0oVFc1TEniPxmZDHS5Cckymqry4osvoskylW1la8W+F9Jo1nJy2w9D2AT9llicLbE43UyLiCzjtu3/yytJS/u2honbtp2f5vVxltuDoevs2bOHgbbNvBCC8+1n4dlwxLmGQ1xuIrJMU91gk61ab2OYuIVEWUVhXVY2m2JxOpTAgrFVq1a0MPYr6a8PJMntog4bjRo1wiNJ/DcU5vlwlHKqiioEZ9n3rZNpUV/bLxy4xB9AlmV279592GMfDE8//TRCCE5zubjEHyBL12lQt+5B30evvfYatapXR5MkVFVDtTxIskLQzsxc/QfbvRtvvLHU60lhx44dTt6gaZo8/fTTrFmzhnq1aqGpKgG/H1nRyDtpBPkdx6AZFsOHDyc7GqWdZfFlLM6qSBaZmsbo0aPp3bs3TYpMMKTe/yfC2WTOnDlopov6Ux+l0azlZFRtiRCCjGqt8JetjRCCJ554gsLCQvr1779fdKGqWJaFomoomo7X53OU/3v37kVTVc6zn9/NsTjVDKNYNuPQoUPxqxq3BkPcnREiU9Pp3avXcT/f3bt3s27dugP+Bh1LfPDBB0iSRLRBd2qMupFI3U7Iskx2PAdZlqlarfoRZz0eS2zevJmmzZojSRI+v9+Jx4CkdeaIESMYMWJEsSmwNNL4uyJdS/5zkL5XaZwIvP3225x++ul069qVG2644W8jfvs34+eff6Z8mbJkahqdTQufqlK/Tp0jqhGOFKtWreLOO+88JKl8PHDllVc65LYQgixZpoZuoKnqn07JDh8+nDKGwZd2zX6+14ckSaWe6s3NyuJU0+K6QAZPZoZpY0+Xp9ZlSRLZWVklHvaYPXs2fk3js6xs3opmcbIt/B7qclNBN2jeuDGJRILvv/+eG264IdkrMAxaFjluU90gLMu4LYtPP/30gGN89913xLOyyNR0mtnDFP379Tuq9+qOHTtKde0KCwu55ZZbGDZsGGPGjEG1+yiX+ANc6Q/gkmWGDBpEIpHg1ltvpWG9etSvU4frrrvukOucMGEC5az9PaNHbNFJ0Yiyq666Cq/bjSzLnNSunVOnrFmzhsWLF/Puu++WaP3nnnsuhixziT/AXH8Qr6pyxoABf7rdunXr8Hu9RHSdKjaxPW/evBIdsyh27NhBLBKhumlybSBIV8uFIsuHJKvvvvtuZFnGr2loskxBfn6xGm3x4sXJ58ztYa4/SLZuHLI3cCywb98+dN0gXLczZign+R6WJNq1a3dcjvdHpHqEZbtOoNb4u8io0gzL5f7XW4hPnToVwxOg7uSHaTRrOTlthiBJ0t/mvNeuXYsQgiqD5zpCCG8k75ACrmMBw7TIO3mkc7xQjbY0btL0uB0vjTT+aUiT7SVAuuhO49+G+fPno8oytwRDvB7JorllEc7IKLF98d8diUSC+fPnUyYnh+xIhJEjR9K/b18qlytH5YoVnUnQF8IRVCEY5fawJRbnzUgWfk07YAL8/fffLzYZ/XFWNpaiULF8ebwuFwV5ecUsiMeMGUP5Iorpm+0J2HHupA3cqFGjyNR1p1C9KyOEIgQnFyHH+1gu8rKzeeutt47IAqhpw4acXIQwG+J2k5WZSdVKlZziuluXLgct8Hbu3EnDevXQZZmKtmq9f79+nHPOOUhC0No08duT4U0MA7MI2Zwhy3QtkoPdrGnTYs9Vytb//oykfd370ZgzCZ8jKw4BPtjlJtf+75Qt95o1a3AbBm5JcsjUrdk5nOn2EJZl2hkmOYrClf4AEUWlepUqJBIJtm/fTtm8PBQh0IUgR1G4KZhBD8uiuqoRsc+luqbxUVa2EzmgFCFtt8TiNNR1WhsGW7NzuNG+pw0Mg7K6jiLLPPDAAzz44INUrlyZTEWhr+WinKpSpYilU8ruf0ssjkcUmcjPyjqoVd4zzzyTfGbcHsbZNoJvRLJYl5VNhSL71TWNxx57jA627fqDGSFOtqfxZTU5xe4Wgr5FBB2jbEFHK8PgYp+fMopKpp1tX1ZROMkwHUv5adOm8eCDDyaVvJ6kZdQSW4yxNTuHiC0GyNR1VPv+pX430u3Ba9/joKaRbRjIssyUKVO44oorDmoDd9FFFyWFQJLEq5EsNsTidLFcBH2+YgVso/r1i4lUUtMRlVSVj7Ky6WRalFdVJ5Jh4lFac950001kBoNJd4bWrQ+wGAR477330FWVbFWlj+UiJCt43W6mTZvGJ598gmo/GyvCUUbZnwl/tMcvLXbu3En37t2TggxVJeDzUcUwudjnx1I0InU77bdUb9Kb7HguTz/9NLqmYdoilbK5uXz99deMGjWKbF3no6xstsTiDLXFFhdeeCHRUIiQ38+A009nyZIlbNq0qdg6EokE999/P5MnT2bBggVH7Yhy6aWXoru8NJj2BI1mLUfRXWQ1PtWxFvflVaNjx47cc889SJJEuZ5TqDvpQUI12qAbBnPmzGHBggUH2DGOGjUKVZY5zXLR1DSRJIlnn33W+f327dtp2ayZ8/5qULfucbfIW716NfGcXOeY55xzznFp1tx5553Jc7rgSRrNWk698x5JNjbDeZTpNBZvdgVCmeES2fX/Fdi7d2+adEjjH490LfnPQfpepXG88L///Y/JkyfTr18/rrrqquNq8ZpGyfDtt98ycuRI2rdty4QJEw5JnhQWFnLJJZdQpXx5qlWqfFjy8u+KPXv2sGzZMjICAcrasWZnuFxsjMVZH4uTq2mMGjXqsPsYOHAgNYv0OObbgtzSfl6GQ6FiQvXUP9UWgNerVYtPPvmkxPtbt24dLtOkit0nCEgyte1zdFtWMeIYkpbLufGk4LmyqlJf05IOfhUq8OGHHx7yOFu2bGHcuHH07t2buXPn/uW9s5EjRyKEoKZl4bL7JGqR61ejWjV27NjBzTffjBCCDqbl9GUO5ZJ49dVXo8syT2VG2GzXfaqi8OOPPxZ7XSKROOrz3blzJ/379XPW27ljxxIRlsOHDyeu63xs16ZD3G4swyh1fMErr7yCEIJn7H7Mxlgcr6pyxRVXHHKbN954g8svv5yFCxcecE2GDh1K9SL9u0V2f+h41Yy7du1CCEGZLuOpN2UxvjK1HHeEoqLk44XCwkKGDBni3D/DtHjssceO+3FPNEaNGoU3q6zTS6nYN9mn2rx584leGpAUkRiGSWaNNs5kuyQrx3WyvVbtOnhj5ak1/i6qDb8OwxNg+PDhx+14aaTxT0OabC8B0kV3Gv82DB48mLpFCKo7bSvjgxFHfzfs2LGD8ePHJ0m2U045oHgCmDdvHkII+rlcjHJ70GWZsWPHOr//6quv8Hs81LRVz3fZJPrW7BxqWhZ16tQh6PPhtiyGDBnCq6++ihCC/9j5Zp/H4nhkmW7duh1QaP/8889MmjQJIQS9TIuxbi8ZkkR1VeXNSNJ+fuHChRiaRmPTZJzHS0jTKLDtrNqaJh1txa5mk6mhQKAYEQTJgvlwTZrbbrsNIQRdLYu+lgtJCPJyc8nRDeb4AjTQdGQhOOmkk5xCJZFI8PDDDzNy5EhikaS1uKXrjBgxgn379lFYWMiCBQs42SZ0p9mToWuiMTyyXMyG3SfLhAKBA4qS1LVMEbUfRGOoYv90eY6ioAtBFVWlkb3G888/39l+zpw5SDYJe2swxE3BDDxFyP6ZtjV0ago6ZQX4ww8/UKViRfyKwrWBIBf6/KgiObl+pttDnqLgkySGutxkywqGTThLImmv3trOx5rrD7AlFmewy40qhNOgqGwYTobX/PnzMRXFsSVMZXsLIbjSzmh/IRxFFoLceJzPPvvMOb9EIsFVV11FhTJlKJeXR/PmzfErCsszw1xtRyF8YE9FPx9OPk9jx451su2rVKiALJJ56xuzspnp86HY1zN1byZ6vJzv9aHbxPoXtsPCU7adfESWHdeFmfbaf/75Z2bNmkXUMPgkKxu/Pfn+VGaEybY7RM2aNbnwwgvpdcopWIrCbF+Ay/wBTJG8P1OmTGHGjBlMnjyZLl26JMl0O7+8f9++znvp9ddfRxYCv5DQbTGCIQSKJPGf//yn2PN0+umnk63rvB2N8VlWNo1ME1NRMO3mQ8o1oLqm0cm0kMSxsf06VHG/fft2YpEIkhCOY4Ap7be5b9KkKTfeeCO63QCSZZn58+cDyanmlStXsmLFCnbs2FHqNe3Zs4cBAwbsJ2ttoUgt3cSbXzOZcT1zGRmVmlCpSlUgqYS+9tprufXWW5336ueff07Q5yNT16lsN2i6du3qKPfHe7xOY0dWlGJT+akmkCczjqJq1G/Q8Kgy7D7++GMMw8SXV43sFv0Rsky81RlOsRso34C27doxdepU3BlZzs8r9JmJEIKLLrrooE2cPXv2MGPGDOrUqEGLpk156qmnDnhNYWEh69at45NPPjnq3NQ/w759+8jJzcMbK0flgXPIbXcmQgjuvvvuY36slIAnlYde7pSpCCGodPqlNJq1nFrj7kAIkbZmPwr8/vvvbNq0KU2kpOEgXUv+c5C+V2kcD2zfvp1y+WUIaBqNLQtVlunVs+c/jrD9/4qLLroIye4tnGKLmf8KcutY4aeffqJR/fpOjZByXbvGjrXaEotTXlVp3LjxYffzyCNJgWZfy8VMn5+QptG2VatSreW9996zawo3V9h15nSfn0dDYeqaJlnh8BG5C6xatYrcnBy8ksT7dq18gS2g37ZtW7HXzp0715loT5H85cqV47777iv1cf8qbNq0CSEEs30Bx3GvkqryRSzOJ9EYPUzLsWSvV6sWnYuQwH0tFxXKlDnofn///XcaN2iAEMIh8K+//vrjei47duxg+/btJX59r169aFbkfK62RR6//fZbqY67evVqhBDcZOewvxHJQpNlFi5cyMqVK2nbth01a9dh0qRJJRKMjx8/npius87um0y1nR5SFvzHA23btcfwBCjTaSzRhj2LiVUmTZp03GvWRCLB6tWrWb58+T+id3wskHIwiDU5lfKnXoA7nEv5ChWP+7UuDQ7IbD/5+Ga2r169mlBm2Dle1WrVDxnHmkYa/x+RJttLgHTRncbfDSkS4OOPPz6iP/IXXnghLlXl2XCEjbE4p7hcuEzziLPA1q5dyyOPPHLcrWcLCwtp07IlblWlt+WiwDAI+nzFpiv/+9//oklysanu8R4vIb+/2L5ef/11KpcvjyIE1TSN/4bCTua2EMmc7sleH5aiMHTIEKpXqUJM0znH46W+Pb0rhKBq1aq0adWKyZMns2HDBsrll3H2UdSizStJdDBMFFlm/fr1PP/889SvXZvcrCz6nHoq3333HSNGjCASCpEZDCJJEr1Mi7szQrQyLTwuF6tWreLNN99k4IABKLKMLMucMWDAAcVAIpHgoYceolOnTuRlZ1O1QkUuueQSNFVljNuDJUmUVVSaa8mJ52goRO3q1WlkT/xrIqnyvjYQpItlIUsS55xzDmvXrmXv3r2MHj0aRQhMIXGGy80XWdlUNS3at29PLJz80lW9cmXee+89vvnmm2Kfnb/99htl8/Ioo+vM8PkJ2ZbtQggutIny58LRYirt559/nnfffZfBgwfjcbsPuLZNdJ2AJKEKwcd2cZ2KB+jXr59z7G3bttG0USNnu56mxRuRLAoUlXaGSQfTxG3/7q6MEJticWf6O0XaWpJEjk28dyryjLUyTTp36gQkG2oVyhbgUVWqWkmyMk9WOM0WPVRSVQxJomqlSgdYc19zzTVOE6OnaTkiBCEEdTUdyybOp3h9VDQMYpFIMUHDKT16ELALZbckodhE8zL7y7AhSSiShKaqmHZue1CSuTMj5OSHVzYMZ2JhYWC/Qvvuu+9GEoI7MkLclxHCLLK23Jwcp7D8/fff6Xfaafu/fFepUiyT/LXXXrOFC8FiKvCUoKR9u3aUV1U+zcpmTTRGFdsavkePHgd8JmzYsAG/14dqP7e6ptGieXPCmsZIt4dRbg9+RSEWjdK6ZUuuvPLK41oYzZo1C5cs80I4yqZYnNMsF7KQqD5yEZUHXo5mupg0aRLffvstr776Klu3bgWSYpB6tWvvv56xmCOggKQSf9KkSZx//vmHnfQoLCykZ8/9hfcFXj/zA0mRhjtSBm92eYQQf5o3+eWXXzJ58mRGjRrFo48+SpMGDehapMlxlseLYXqI1O+KLMusW7fOsTAr02lsMsdt2AIkSeKOO+44qmu6cuVKcnLzkBUNIUlIikZ2s75Ojvett97KLbfcgiwrVBpwGZUHXo6kqAi7kZhfpixff/31Ua3hWOP999+nZavW5JcpoEfPno7jR8V+FzuCAV92eUaMGHHMj11YWMgpvXohSRKWLzVZJFFz7O00mrWcKoOTYrUXXnjhmB/7/wNuvvlmdNuWNDMcYeXKlSd6SWn8DZCuJf85SN+rNI4HFi1ahCbLvGoLcVOi4DVr1pzopaVRAuTH48Vcu7qYFvXr1Dkux9q7dy+bN28+KrHqHzFx4kS8qsriUJiXI1GqqRpeScIvSUz2+uhsC/1r16r1p/tauHAh0VAIU9fp2qlTqQiWn3/+mRpVqzp1SkiWqaiqznV9MJTMWv/888+P6DzHjRtXzF3wOpuUXbFihfOaLVu2IEkSo90eNsfi3J0RQhLCmfY/3kTzkSLltPhYKMzW7Bya6HoxQn2Gz49lGADUrl69mPPbYJebgtzcQ+57586d3HvvvcyfP9+JRdy7dy+bNm06rAD8999/59xzz6VR/fp069KlxHbypcX111+PEMkIu5uDGeQaBo3q1Sv1fgoLC+nSqRO6LNPKtAhpOmVyc3n++efRNB1vTmXCdTqgaAa9e/f+0/2tW7cOr9tNnm7Qwn4PHU/rbkg6pLRvfxKSJGFaLi6++GIuvfRS5z3Vo0eP40r2/3/FZZddhmp/RlSuUvWgURMnGuvWrePee+/lmWee+UuEANu2bePxxx9n2bJlR+1mmEYa/zakyfYSIF10p/F3wo8//kizxo2dL1QN69UrtYrs559/pnaNGggh0GUZRZa59957j2g98+fPRyoyWTx58uQj2s8fcbDJ0TVr1iCE4PZgchL9o6xsXIriWD+9/PLLSJKELAQt9P2E4TC3h4w/kO0pzJ07F7etUBdCkBWN0rlITvQEm6jfunUreTk56EKiqqqxOBRmgseLJARdDBNTlskIBBwSOGSv45pAkOfCURpoOooQh7TzueSSSxBCUN80CaoqihCO9fWbkaxiqlXNVoDP9PkxFYVx48Y5+0kkEgwblsznjhkGsiTRrnVr9uzZQ24sRo6ikqsofJ6VzXRbXHCK5aK7PcHawiYJlhex17Ls46qyTO/evVEkibEeL+d4vGhi/9T0o48+CiSnNDdt2kSdmjWdNY8dO9a5p5988gmVK1RwLMrH2FbayzL3W6xn2LbkCxYs4JVXXkHXNLIU1bGZF0JwtsfDa5EsXsyMoNlW8HmK4pxDTFHo2bOnc22+/PJLZsyYkVRuF7memf/H3nmHR1G2XfyZPrO9ZDdbEjokEHogoUqVohSRaqOLoCCKIFIVO2LB3rF+r4q9o2JvKHYELKA0wVesWKjZ3/fHzg6J9Cb6uue6cl1KdmaemWdmM/dzzn2OLDMnGMIoR+Jn7MW+iicdUrmxrmPoOmeccQYlxcWENI2L/AFOs23Vy8/tDz/8wIwZMxg5cqTTbdzPtGih60hCULt2bfLicXRNo1Xz5nz11VcANK5fn552blozXSdPUXgsJ8KdoTCW/Zx5bPI/4PGwZMmSCvfRsmXLsOxCQAjBsZbF29EYJ7jcSELQoX17Pv74Y4I+H8V2XlkHw0yLJ2SZuvYCSH/LxQyfn6iu06K0lFQqxbZt2+hpdzhnfvr27ctjjz22U1u53377bafFXsaOfrGtAv8qnkw/17ffDkBpcTF9yi0QnONNd+dfd911O+xr9uzZ6cLSsjjGFjb06tWLosJCZ4xFhYV/mfJ68ODBNCy38JERMDQ6415Kp88jWNiSDh077rDd8OHDCWoaD4cjvBDJpYZh0LK0FEirqWVZJmkY5Og6bsvarbBp8+bNxGPbvzPcskxOKETfvn053rZ/31e0adWKI8otXp3ocmN5QjQe/wBCCB566CFeeuklhBDUP/VWx+Zdtzxccskl+3y88pg7dy5CCKKNu5LXYSiyqqPpBom8fK644gpSqRRbtmyhY8e044aQFbyV69HknMdoMOYOTG/osNuaPfjgg3To2JG2bdsxc+ZM/P4Anlg1Ys16Y/kj1KhZC1mWibfsR+n0eTQcew+6y7tDpMnBwrZt27j33nuZPn06t912G4lkHprbT6h2K1TTTePiJn9pZun/Ct566y0kSSLSuCsFx52Pv0p9/IHA38aSP4vDh2wt+c9Bdq6yOBS4+OKL8WsaK+33qOcjaTep119//XAP7V+H+fPnM2TIEIYOHbrXgri/imx/6aWXiITSQgzLMLjjjjsOyn47tGtXgZi92B9AstcUNJF2lstXVXp0784ff/zBjTfeyLRp03bq/HQgOOWUU/DYcW53hsK4JAnLjgxbHU8y2uNFluV96nouj0cffRQhBCe7PZzs9lQQ559xxhmkUinHSnx+JNe5HjmyzDivj/6Wi0Q0elDP+WDhjz/+IB6N0tA0uTMUpth2AJzm8zM7ECSsaRxtC/8vu+wyJCE4yeVmiNuDIklMnTp1p/v96KOPaN28OYlolI7t27Ns2TI+/PBDKuelM8EVWeaCCy7YYbtUKkX3o4/GVBR6Wy4KDAOPy1VBLH6wUFZWxujRo525bFivnhMRtmHDBlavXr3X5OJzzz1H/fr1ycvL4+ijj2bdunWMHj0aVzBG0ylPUjp9HlWOHoMQYq/e3xcvXsyQIUM45phjuPbaa/fZ2n5/sWXLlgrOKPfddx+G3RBSXFz8txOa/y9g06ZNrF+/PutIk0UWWewRWbJ9L5AturP4O2HQSScR0DRuD4a5KxQmrGn079t3n/fz+++/c88993DNNdfw4Ycf7tdYli5diiRJnOL28HFunKk2efvKK6/s1/4AHnvsMZK5MSRJonH9+hXIxPfffz9N7NiK3q/iSQKaxvnnnw/A0KFDCSsKmv0i3sYw6GmlraNPOumkHY41c+ZMhBAUmCYhTSPk99OiWTNKje2k0gkuN8ncXAD69+9Pk3LdzLP8abX0ENd2sj5jca4JQR1Vcz57l026zZw5c4dxbNu2DVPXGeH2pK2xbLvwawJB3s2NcWswve1pbi/5ilKh2B/m9lC9UiUgLcRo07o1Qggute3KH7AV4g888IBDWtXX0uOqrqoVMrx7mBZVbTI7Y6/1cCinQpe5IgR9yhXrI9weNEniyiuvrHBOzZs2JU83uCkYYpLXh2Sfe+9evVBkGUPXUe1j9bNc+CWJlrrBw+EIo23yOtMR26F9exoaJsvjSVbGkxxpmI79XTVVxaWqFNaoQZPGjdMd46pKK7tr++abbwbgnXfewet2YykKhi2EqK4oFYrwDMnslyRqqiqnuT34bCtwRaRtzLt168YLL7zAkR06EPCmxRamrjN58mSef/557rrrLhYtWsS2bdu44oor6NWrF8OHD2fixIlUr1yZKskkgwYNQpFlOlsW5/n85GkaPo+Hrl27Eo9GScgyVRXVEVVkrnUfy1VhLmQhaNa0KWG/n2ZNmvDRRx/x9ddfpxcZXG5a2KIDIQSyJHHrrbeyadMmx8I9012zPJ5EFYKWLVuydOlSrr/+enKCQVRFoWP79qxbt86Z17KyMp5++mluvfXWnarXf/rpJ6699louuOAC3njjjZ0+44sXL0aSJIa4PbwejTHKzqJ/7733ADjrrLMwZZnZgSB3hMKE7YiCnZHtdQtr06vcPdzbvkbH9urFG2+8wRtvvLHfjh37g6uvvhpFkrg2EOKVSC4luo4qqzSZ+AgNT78L0xdi2LBhO2xXUlxM33LnMcXnx+tyAVCtUiU6WxYr40k+jyUoNAx6dO++23H89NNPtGjRwpn/k0466YCK/8x3R0vDoLOt3M/vMNRZjJg5cyZNS0qRFZVAzRLqDLmSePM+CCF4+eWX9/u4ACeccAK+vAJKpj1L6fR5VO1+JkKIHTottm7dyqOPPookSU53fen0eYRqt6Jd+/YHNIYDwQMPpAUJvir1CdRM2zRKikLxhAfTDgBD04KRoUPT1vGeSB6a6SKRzOPbb7895OP79NNPsSwXim6hmOlnsXx0RxZ7j0svvRTNclMy7RlKp8+j3qibD/idKIv/DWRryX8OsnOVxaHA22+/jSRJ9LFc3BQM0cg0iYbD2fvsL8ZDDz2EJEkUGCY1DRNZlvdKhHruuec6NvIZcW+rVq0Oqpj3u+++w+/x0NJ2tuvrciHLslMfHQiGDx9ORNN5Mxrji1iCloaJZdfKJbpBHcNAkWWeffZZSho3RpVlcm3ibtKkSQfh7NKoX7sOJ5ZbxxhpO8gZkkS+XV/sjNjdF8ycORPVrvG7mxavRXOZbq9RPf7446xbtw7NXgP5MDfOZfZ6zs3BEGd7ffjc7oN0tgcfCxcuJD+RcEjw0nKOfW1bt3aywsvKyrjggguonExSKR5n8uTJOyWjv/nmG0J+P3VMk7EeL1UNg0rJJMlYjLqmyV2hsNNUkGmqyGDVqlUIIZhtRxF8HksQ1vSDer/8Gb/88gtr164llUqRSqWYNm0ast2gUaNKFT799NPdbv/MM88gyzKe3Kp4E7UQIh3ZNXLkSNyRfOf9vfoxExBC8N///veQncuhwJtvvklOTnrtLz8/n48//vhwDymLLLLI4l+JLNm+F8gW3Vn8nVBQrRpDbVI2Y+dbOZE4LGN55JFHEELwoW3dvSqeRJakXXZv7wkffvghqqJwpOXiEn+AWoZJpWTSyWPavHkzhTVrkm8YTPb6aWNZ6JrGRx99BKS7SvPtrvBiTaOGouK1idU/d/9v2bIFXdM42b6Wi2JxcnWdjh07pokRSSZmv7xfdtllANxzzz1pUsTt4SJ/AK+QsOw8arckka8oNNF0lsWTDHe5sSSJlyO5rIonOcHlRhZpW/PNmzczduxY8nJjVMuvxKWXXpomrGyC/J5QTgX7cEkIgpLEqniSBppGW8NgVTzJ6niSjqZFw7p1AejRrRsue8yPhHNYbX/GkGWuuuoqIJ05lzmHiCxzvF3w3hAMEZFlDJHuDldtsYIuBPmKwn3hHGb5g8hCUFVRHTFCL8tFzWrVnOv6ww8/OJlil9vF15pEHq1Mi/xkEq+qcp7P77gCZM7RL0mOnbwQglGjRrFixQqGDh2K1+OhrqrypX3MMz1egkIiV1UxdB1JkvC53Zx//vl0bN8+baul60yfPt1RnrYoLaWBafJZLMGSWIJCTcfrctGsaVOmTp1Ky5YtaWwYjo19TJJRhKCepnGhP0CxpqMJQUBV0SSJarrO8S43HrsbvO0RR2wntmWZFi1aIEsSrU2TXEVFlSSi4TBXXXUVU6dOJaxprIgneTGSS1jenumtCIFfpBX5lkgLEJbHk3ySGydfUYjKMm9FY1zsC6AIQYGuc7bXRx3TJBIKOe4PM+1s+QdDOfhUlYEDB7J+/XpOPfVUVFuo8H+hHNYk8ngtmltBcNC6RQu+//77XZKz3377Leeffz5nnnlmBXv49evXU6NKFXRZxmMLKTp06MCbb765wz6uu+46pziWJIlZs2YB6c78CRMmEI1sz4Cqqaj0tSwUWd5hUauoVq0KJHV/l4u4nD52ecvAPSGVSjF79mxq16lLYe0iZs6cuV/k9NatW+ndq5czdt1e7FHt74n8SpUd6/gMtm3bRlFREZYkUVvVuNQfoMS0qFtYCIDX5WKS1+ec47GWi8KaNfdqPDfffLPjPHLCCSccUHbXQw89RPu2bYmG0+IfzUxHOnTunLZz91dtiLdyfYSdUS/L8k7FRfuKYcOG4QonaDr5CUqnzyOv3SBkWd6liKJOUV28iZo0GD2H2oMuR7c8nH766Qc8jv1Fs+YtCFQvdsQC7mQhkqxQfPZDjt1+hpB95JFHGDt2LDNmzPjLFniGDx+OKxSjyTmPUjp9HvEWfdF0faduFVnsHrfccguSrFBv5E2UTp9HtZ7jEULwySefHO6hZXGYka0l/znIzlUWhwp33nknbpuorZyXx7vvvnu4h/SvQ4OiItqbFqtsAXcL06R506Z73K6srIzzzz8fn8uFJgS1VJUcTaNSMrlDHvj+4rnnnku7Hdhi6JXxJKaiODX8gWDt2rVUq1w5XWtKEi7T5IUXXmDOnDl079aNvn378uqrr3LDDTegyjJP225zE+1YtvKRfQeCjh06UNcw+SKW4Kt4kpaGSdX8fC677DImTJhQoa48EGTctl4s372u606Dxp133umI/oVd71/g8+NTVfrthX344cS2bdtYvXq1sz7222+/VYiU2xfMmTMHSQg+sdfyXopsXxO4P5zjXLtqprmDPfqyZcsQQnBHKOzcr0nD4KyzzjrQU9wr3H///QghGOvxckcoTKFhUr1y5d12uLds1Rpf5XqUTH2akmnPEqrTiuo1a/HSSy8hSRLBgmYkjzgBw+2jbdt2/8gO5mXLllFQUIAQAq/Xy7PPPnu4h5RFFllk8a9DlmzfC2SL7iz+TmjTqhUNTZMvYwmWxZOUmBZNGzc+LGP5+OOP04pnr49V8SRX2blY8+bN26/9XXLJJXhVla9tUvWpnLTFXiY7CtIZzS2aNUPXNIKBQAWL4hdeeAEhBEWqhmEXCoZI5zj/GT/99BNCCK4LhJxCosS08Ho85KgqvS0XYUUhFok4HZSpVIqhQ4c63dCqEFRTVC4PBOlupjvoe9vE34e5cSfnO0MiW7LM2LFjGT16NJosM8Ltob/dFV+zRg1ydZ1L/AEsIdFCN3gyJ8o5dpHrkWXezY1xs53xV0fVKFLTduH3338/ZWVlKLJMUt5eONbXNIa40oRYpss4lUpx8cUXo9gEnCQErewO6CPKOQFkrl15EcCaRB7tbZV7U12ntZFWoPfo0YOJEyfSsUMH59iqJNHfcrE6nmRpLEFS1TBUlYnlSMOjTIumms4TORFMScLv9dKvXz8WLFjAggUL0G079Fw5TXzHZZkr/EFHQGGoKiGbDB9on+fcuXPZtGmTQ5S+//77nHjiiXhMk9M8XufYw90ealWt6twPQ4YMoaqRJrbXJPLobtvqv5sbcyILhBCc5/OjC8EEr49ncyK4ykUomELwZDhCHzuW4HxfwBFy+CXJma/u3bvjkiQWxRLkyQo1VJXnI1HuDoUxhHCysW8NhpCEwCVJGPY1uCqQ3udNds55Znzv5cYRQnDffffRv18/dFmmu2lRXdfRyi0mGKrKEJeb5rqBJUm0MQy8dt79Jf4A4zxedEnCVBRyQiEGDhxYoYBfu3YtefE4HlWlit2BMHPmTDZu3MioUaNwKwoR+zxlWSEoyciyzGOPPbbDM7hixQpeeOEFx0J/8eLF+DwewppG0p77aT4/q2xRghA72m1m3CkGuFwcZ1vln2U/M3fdddduv29+//13rr76as4++2wGDx6MEIJw3Xbk1E8LbvbX/jyVSvHBBx9Qu6CAsKZxjtdHZ/v74amnntrh8xMnTkSWJPq7XHS2nylD03jttdcAaN2yJWFZ5vZgmCsDQXSR7mb4+uuv92o89913H6od9dCjR48DzoAsKyvjwQcf5NJLL+WJJ56gS5cu+CoVOWRybmkvXG63011xoHj//ffRdQNPbhWCBc2QJKlCdMaf8cEHHxDO2S7WaFzcZL/tKA8GGjYuJlyvndNpH23cFUlW8MarE2/RFysQoWatgsOWdda3b198les646vWYxxCiGze337g119/pbB2HTTThS9ZC0mW6d+//z9ysS6Lg4tsLfnPQXausjiU2Lp1K99//33278JhQpVkklPKNS0Mcrmps5cC1nfeeQchBA01jZNcbp7MiaDJ8n43GUD6frj22msZOnQoJ598MkIIbrDd5TJRA3uqZ/YWP//8M3fddRc33njjLjPRp02bRswWn69J5DHPHsM777yz08+XlZVx0UUXUadWLWI5OdSuXZvhw4fvICzO4N1338VlOwpGdB1NVfd73Wh3yDi9jfP6WB1PMjecgyxJFWz5ly9fzsMPP0y/fv1QZBlJkujZrRs///zzQR/P3xXjx6dFoR/YZHvmnsus761J5PFubgyPqjpChQzKyspo3KABubrOOV4fR1oWsizvVGR/KHDKKadQu5zbYsZFMmMvvzPUq9+QSMNOTs2TaNmfaCwOpF3catQqIByJ0rdfv0MSAbV161aeeOIJbr/99j124R8IfvzxR9q2bZsW1ygKN9xwwyE7VhZZZJFFFjsiS7bvBbJFdxZ/J7z11ltYhkFQ0whrGoauH1aL0kmTJjmkrRCCwQMH7vcCwuzZszFkmfftF/7bbPv0TOc6wOrVq4lHo7hVlYRN/GaswiFtOawKgU8IGqoafkXhmJ1YLqdSKerVrk01w2BOKMwkm6Arr4LOEHzlbbMaFBXRwjB52LZnfywn4qh5A5KMKSTuDIW5PRh2yPYcWSZiZ4rfeeedhP0BRpcjfo80TJo1bUqr5s2dMTyeE2F1PJkmdyUJVZJQhCDHJnfrqRoBu4M6cz66ouCTJG4JhrkpGMJtW6D/ubt0/fr1CCG4yh/gLK8Pl03ul8+4z1jxK0LQy0p3ACyKxcmVZTwZG/Zq1fC63bgVhaDdpdzfcnFtIITP/kzGUl8VAq9lOZ30K+wu/fZG2pa/WNOpVq0adeys7Uxn/3m2jfpTOVHnHitQVcdOPWNdtjqepIFp0r59e+666y6WLl3Khx9+iKnrVDMMcmSZHFnmkXCEB8MRIrrOgH79nGuycOFCdE2jlqbT0SY8hRCOsv9l+164IRAiIEkUqxpBSaa2qnF3KMwAm2D3SRK32aKTu22l9+p4ksqKwjC3h+aGSYP69VGEIGLP5cXlxAxHmxb17PiBz2MJDJHOd588eTKSSHdSXB0IMtmTvl9fse/VTHd6LBLhjTfeYNq0abQ94ggKCwvRJJnzfQFmB4L4JIk8WeHLWILTPV7Csoxui0uej0TRhaCR7fjglSR0SaJp48ZOR/TZZ59NUNN4NzedrXey24Nsd0iku9Rl3PEaVO1+JsHqTdAkmRLdoKigYI/P/4ABA6iqGyyNJVgVT9LdtAhIEl/EEgx2u5EliXvuuYdexxxDm1atmDZtGhs3bmTs2LFp1wFJYqjLwyCXC0mSdmud9scff9C0cWN0WU7bFsoK4aI2TvEdadiJqtVq7HHMu0LG3eFme8FsZTxJJcPYoSsAICcQcBb+VseTtDYMWjRr5vz+yiuvrOB00c7+3ps7d+5ej+epp57CtOeoXbt2O1iwHwg6Hnkk/uqNnWuX1/YkLNf+WTD++OOP3HrrrcyePbtChMg777xDnz596NCxI7NmzdpjLt8PP/zAU089xUsvvXTYs8cvueQSJEki1uxYEq2PQ1E1+vfvT+sj2pBfqQo9evRk9erVh218t912G0IIEq0GUK3neCx/hGbNWxy28fzT8fPPP3PeeecxbNgwrrvuur3OkMzifxvZWvKfg+xcZZHF/y6GDRuGW1W51B/gAn8AS1EYM2bMHrdLpVK0btUKRQjaGga5skyuLONSFMcBb1+RSqXo27s3iiTRwHJhKQp+rxdFkmhouXCpKg3q1nU6mP8KPP744wghmOj1MS8Spb1l4XW7dylaPe+885BEOhKuhy1U9yrKbjv+ly5dyrRp05g0adJOI8n2BzfddBM1KlcmHolwyimn8Mcff3DuueemGxZswXGHtm136fC1detWNm3axMqVK7ntttu4++6797tb/J+CiRMnOs0jlRSFIW4PCV2nVrVqjBmTjgkrsiz8mkZ+IrFTx621a9fStXNnfG431StX5uGHHz6oY1y4cCG9jjmGtq1bM2PGjArzN2nSJAKa5ggFxnl9SJK0W7HEpEmTkBWV/I7DqNzlVDTDxaDBgw/qmHeFTZs20bZde6eelxXloAlpdobNmzczaNAg53jjxo3L1iRZZJFFFn8RsmT7XiBbdGfxd8OSJUs499xzmTZtGosWLTrcw+G1117jxhtv5Lnnnttnon3p0qVcccUVXHvttcydO5eg309EVelimliKQscOHSrYOY8ePZqIrvN+bpzV8SQDXG5cpum8PG7bto3Ro0ej2ORvp44dd6lM/fLLL6lds6bzEtq1SxeEEA7Z/0G5buEMcsNhzvB4edUmN6+1O+M/yI2jlxMdCCHwud00trulv44naWmaNK5fn9xwmGEVyDWT9m3bAvDFF18g7O7c2TZpO8Dl4gyPF0MIIrLMXNsivqlhckzPnqRSKb7//ntCPh+jPNvV+sPcHvJiMe6//36aNGxInZo1mThxIr/88guSrfZek8ijiabTqVwW/RiPF0vTePDBB52O35icJvJ9NkGsSRJNmjQhqWl8khtnZTzJ0aZFRJZZk8hjgteHJgRhWWasx0szXXeuTalhUKCqSEJwWzDE7EAQSZKRZBVJUdFlGfNPwofV8SReSSIkyZxkE9uSJHG2fQ5fxhKEbUGDYv+uVatWVDUMvowneS83jqdcF7qhKLz44otAWpn97bff8vrrr9OnTx9KmzalW7duVM7LI6hpdDctgnaswDGmVWGO/xPK4RJ/oMK/RW1hRL6icFUgyPF21/3doTB1DYNWrVohRLpTX7fJ0+XxJAtz40Tsfxvl8dDANHFbFgsXLqRGlaq4ZIWqiuocx9J0chWVE1xucmWZsCxTRVbQZdlRSzdv2rRCpvlErw9FCEp1ndY2+VqvqIiGhslIt4ewLLPMFl3cbHfPC7HdXWLIkCE0tLaryM/z+ZGEoJfLxXg7063B6DmUTp9H08lPIEsy7Q2D3HB4j98FHdq1o2s5hfoMe9+i3I8sBHmqSnfTQpNljh8wAEgvsmTsACUhiMbilJQ222knOaTtnhVJ4hlbTBFRNPw1mlBv1M2UTHuGSKMuB0S2r1u3DiEEs/xB5/6M6jrjx4/f4bMhv7+C60I7w6RdmzbO7x977DGEEFwfCPFubsxR7mfu373FK6+8gtebnqOSkpKDZnt5xx13IIQgp8GRxFv0Q9EMhg4dus/7Wbt2LfmVKiNJMoqmo+vGXuVoHkz897//5aSTBlK/YSN69+7tuC4cCMrKypg8eTKBYAiPz8fIkSN3aYG/M2zYsIHRo0fTpGkJPXv2POidEKlUismTJ6PYi5Elpc122ZGURRZZ7B+yteQ/B9m5yiKL/138+uuvHNOjh1NX9O/bd6+chT777DOEEFxti7zfy41jCIEsSXz44Yf7NIaVK1dy7DHHUL1yZSQhmG7XsvMjuelc+AEDGDp0KDNmzPhLvodSqRSXXnopVfPyqBSP06xZM+f6eN3u3dpQV0okGFQug72LaVJX01Al6S/rpv3Pf/6DEIJelotTPV4sRWHgSScBMH/+fGbOnMm99967xyitt99+G5/b7dSelZLJg2affyiQSqV4+OGHmTx5Mtddd90+OWQtWbLE6V5/LZpLQ01DFYJmpaWsXr2aVCrFXXfdxYgRI5g8eTLffvvtITyTnePjjz/G1HUKDYOjTQtVlhlcjhj/5ptviEejBDWNIjue45xzztntPjdv3szQoUOR7LUaU1UJ+Xw0bdy4guvBocA111yDrKgUnngJTSc/QU6Djui6cVAF8H9GKpXiwgsvdJ7nnj17Zp3Lssgiiyz+AmTJ9r1AtujO4u+Ahx9+mGZNmlC3sJBzzjnnsHfrHQy89NJLmLqOy841Lk+q1ahenXPOOWcHNXefPn1oUY6Qu9a2Vf/z87l58+a9UoKXlZWxcuVKfvrpJ7799ltCfj/1TZNpPj8NTJNwIMC6deuczx/TvTsRTefOYMgpTNobJrmaRsDr5bHHHmPJkiUsXbqUwho1GOzeXoCe6vFSKR5n2rRpSEJwjGXR1u5S7dq1qyMqmDp1KkIITFmmpb7dym2S14csBCeaFklFQROCGlWrErEzlHU53UW8PJ5kWTxJI90gHAgghKClYXCiy40my4wcOZJ69eqliRVdx2+T0Me53Ix0e5yu8TPPPJPnn3/e+d04r48F0VwsSUJXVVq1bEnnciR9hnT+Opags2GiCsFddnf3crvzX5ckJ0M60z0vJAkznEfxhAdpMvERPPGaeBUVRQg6GCZP5kQ53SZyW9qW9zWrV6djx45IdodBQpaRhaC2qtHTslBtYrbYtsK7PRhCFoIcSaZE01GEwG2azJ8/n0RuWjjhtizuvvvuCvdn0O9HLieicEsSVwSCRG0xx2j7eg10uVkRT3JvKAfZPnYVm/xVRdpivolhIssyzz77LI0bNMCwXQI0IbDsok8RgualpVRJJmnZrBkLFixg5syZWIrCG3aG32SvPy0YsO8/TQiONi3ezY3xrB29UNyoEQBHdelCXV1neTzJ6niSbqaFJSRMVaVN69bMnTuXN954A0PTsIQgKMmOlf4ttrOEEMJxz7j11lsRIm3v/kA4h5gtmvgqnuThcNq6u/DEiymdPo8Go+ekr5mi0OfYY/f4LJ577rlosswsf5C7QmGSuk7I78ew75dMHINPklgVT3KJP31vZ+zK165dS/v2HVA0nWiTbvirNkSWZV599dUdjnX++ecT0jRW2yKHHHs+hRAY7vR+L7zwwj2OeXfo3asXhizT23JR2zBwmSaLFy/e4XNjx45NLyC43fS0hSTlC/4tW7ZwRMuWGIpCkZUWGXQ+8sj9UqcvXLiQsP19UVRUxDfffHMgpwikC/mrr76a/MpViOTGGDly5H5Z1Y8YMQLTG6Lh6XfSdPITBGs2JZ5IHvD4IN2xcu+993LBBRfwyCOP7FQU9scff1C7ThGGN0ikURdcoRixeOKgiRL2B2VlZbRp2xbNdJHT4EjckXx8fv9uLRL3F1u2bDmkCz5/BVasWMHVV1/NNddcw6pVqw73cLLIwkG2lvznIDtXe8Yvv/zCKaecQsOiIrp06sR77713uIeUxf8QtmzZwsSJE6lZpQr1atfmtttuO+jH2LBhA7/++utef/69995DiLTzXMaxyi/L9OnTp0JTQHn88ccfO7xv/vLLL1SrVImkrjPY7SYhK0RlmU9tVy+3qjJr1qwDOrd9xVVXXYUQguNdboa6PSiSxKhRo1iwYMEeY5jy4/EKax1HmRYNNA2XonD55Zfv8dgvv/wyU6dO5Yorrtgv2+7NmzdTs0YNSnXdGcM5Xh+6pu1yXnaFBkVFFJsWi2MJFkRjJHSd42xR998R48alY5+ShokmyzRt3HivCfd58+al681gmAfDEZbEEns9Z38VRo8eTUJPN01kBP5CiAqd62vWrOGcc87h5JNP5t57792rpp9Vq1YR8Hop0nVO93hJKgpue63h9ttvP2TnM2bMGLy5lR0nuNoDL0MIUcHJ7VDhvvvuw7DXHIuLi1m7du0hP+avv/7KrbfeysyZM1mwYMEhP14WWWSRxd8JWbJ9L5AturM43HjmmWcQQtDGNDnOJkxPOeWUwz2sA0adWrVoblqc4fGmO1ZlhbO9Pk53exCion18BldccQWKJDHTH+ChcIRCw6T2XmatQdrC6YUXXuDJJ5/caVH33nvv0ahePdyWRaN69XZYQPr0008pLNcNX6VyZTp37szJJ5+8g/r55JNPxqOqXBMIcWMwREDTOH7AAMrKyqicn48lSVRXVI60bcsLCgqYNGkSmzZt4vHHH6dq1arU0zRW2UXGaR4vik3ehmWZ4W4P1VUVXaTztpvpBpIQRDSNsE2CJmxr+ZAs83Y0xlleH6aus2zZMnyedEGtl+tWtySJ7qbFRNtW/+abb8ZlmnSyLB7PiTDCnpvrrruOadOmoUkSVweCzA3nUElRMIWgUjni8ia78/+LWIKAJDHG46WFaRL0evGrKj5JwqWo5Jb0cIqPZOvjCakauk1aZ/Z1qu0GcIxlUa92bYoKCihUNdobBj5JIrdcV/b5vsD2TnM771wTgvvDOaxJ5DmuAbqm4ZMk6qgarQwDWZZZuHAhP/30E7k5OdQzTS7zB2lrGChCMD8nykuRXAxZoUWLFs4xnrQ7pNck8ojJMpUVxelonmWTwtWqVuXiiy8G0nbZxx9/PJosE1dUaqkqshD07dNnh3ty/PjxVConangolI4wCMsyk7w+dCF4z3ZjmGR3rquSRPs2bZg7dy6KLBOXFaqV64qXhKigUp8xY4bTOV6s6Zzi9uCz74cqeXn89ttvbNy4kZkzZ9KgQQNnP+Fg0Dn/FfEk1TUdSdUJ1CxBMT0ISaZZ06asX79+j8/m5s2b6denj7Pv+kVFFNaqlVaqe32siiWYYgsNZvoDTud9xoL7t99+QwhB5S6nUjp9HiVTn8YdrbTTLuuMiGSMx0sTTScqy9wfzuH2YBiXJJGXl3fAgqaNGzcyYcIESps0odtRR/Huu+/u9HOZRcXqlSpRu2ZNbrjhhh0WCzZu3MisWbMYMWIEV1111QGNbfHixSQSifQ9Wa0aX331Fb/++ivnnXceJ510EhdddNEB57rvDzp16kSwoLnzPVC121iEEGzduvWA9rtt2za6H310+n7VdYQQO/37+cILL6RFCMOupnT6PBqdce8OwodDhVQqtdMFok8//TQtLuo3ndLp8yie8CCa4eKSSy455GP6p2HhwoV4vF4UTUdRNfyBwG6jJDJIpVKsXbv2X5XRmcVfj2wt+c9Bdq52j1QqRbsjjsCjpp2VahsGHpeLzz///HAPLYv/EYwZMwZVlhnocnO0bU1+7733Aul3uilTphDLySE3HObss88+4PfEvcEff/xBpWSSQsPkqkCQYyxX2k1NltE1jVGjRjmd0wsXLqRm1aoIIYiEQjz66KPOfh599NG0iNl2bnsrGnNq3AEuN5Ik/eXEVJNGjehRrpFhmNtDfiy2x+22bdvGySefjCxJnOBy09sWDBdqGpqq8sknn+x2+9mzZyOEICDJaELg93j2WQR83IABSELQ0BZQr0nkMdbjxTKMnb5Xb9myhSlTplC3sJCmjRtXiOTyulxMsePrbguGqaaoxKJRli1btk9j+ivw1VdfIYRwxvt0ThRFkipEK+4OX3zxRYWIsoz73y233HKIR773GD58OAWm6cxrpsEmI7LfX9x0000oksSnsQRrEnk8Z+fUN9V0ihs0ODiD3wluuOEGZFmhZv9zaTx+LuGiI7Bc7n0S/RwI3njjDXJy0mtI+fn5e1Uj7S9++ukn6hYWIksSHlVFkqRDIprKIosssvi7Iku27wWyRXcWhxu9e/emobE9U/tsrw9NVf/xuTtel4tj7cKstW44BfUYu4v5/vvv32GbrVu3cuIJJ2wnu/PydtotujP88MMPNKpf39k2Nydnp4T+rnD//fdj2mRNpvP7z4Xcpk2bnGJ7w4YNdOrY0fl8m1at+OGHH9i4cSNCCC7zB1kUS5CvKAQkiVa6gSoENapVo6ysjAcffNDpPu9u25dniPGMsn5RLI4q0rnfX8eTaZK1fXtkSaK3bff9SW6cqCwz1O3hbK8PQ9cpKytj3bp1DBs2jERuLm7bUvyRcMQptitpOmPGjOGJJ57A40rPkyzLXH755Tz88MPMmDHDIUOFEHjtsZUv3lSRznGvo2q4JIlXo7mM9XiJRyJ06tgRVQjiioJheak98DLqDL0KzRvGpSgosszMmTPJzcmhWzmy+VjLRd3C2lTNy6OP5eLmYIjaqkpVRXWekdl+m0xXFIpUjWk+P3VVjYAk8UFunAfCOQ7p3NOyKNZ0ZCEw7PPLEG8v2Yshy+PJ9EKA3Ymem5PDL7/8wqxZs5AliV6Wi49z41wbCCHZRes70Rhfx5N0NkwUIQjbNs3Dhg3j7rvvZtGiRXz88cfUqFHD6Zz3ezw888wzACxbtoyRI0c6pP5ot4dTyjkPuCSJB0M55Mppi/s2uoEsBI01nbO9PqoYBtUrV+aEE05AFumO8HO9fq4NhFCF4NxzzwXgiSeeQJIkClSVKrKCIoQjdCioWZMvvviCr7/+moBtQZ6Z41NPPZVffvmFkuJiLEWhgeVClSSqVqlC16OOYvDgwXzwwQf7HC3xzTffsGzZMrZt28aRRx6JEIK3I7n0sr8rMsf3qyolxcXO/n/99df0d8JRY9Jk+7Rn8ORWqWA5Vx4XXnghkiShCsF428JxTSKP413utFuBbUF4uJBKpfi///s/zjzzTC677LKD2nX81VdfUa1aNYQQJBIJ6hTVRdVN/JWLUDSdI9q0/UsWL8vj7LPPRjUsCo6/kHqjbsabqEFh7ToHvN+MDf+dtsvGxbb45Z577qnQsZMRtdU/9dY0sX32Q0iSzK233nrAY9gVtmzZwujRo3G53VguNyNHjqwgpPjggw8QQlB74EwnmsFw+zj//PMP2Zj+qWjeoiXeRE2Kz36Y4gkP4olVpX37DrvdZtWqVTRs1Nj5Xhk5cuQ//r0qi78nsrXkPwfZudo9Pv/887QYN5gW034eSxDQNOedMossDhR+j4cx5eKVWhsmR3ZI/z0///zzkSWJYW4PI+wu7MmTJ/8l4/r000+pW1iIEAJT09AkicleP+O9PlRZZurUqfz0009EQiEamiazA0E6Wy40VXVi/x5++GGEELxlu5W9Z0fWCSEwdP2QvnPuCs2aNKFzObL9BJebKnl5u93ml19+obVdn8p2va/Z6wDxaJQnnniCTZs2ce2113LmmWdy++23V3i/2rRpE6osc6LLzep4kreiMdySRElJyV6P+7vvvkMIwSA7rq2lbtDbciELwdixY3e6zWmnnYYqywxwuWhnrzs9/vjjAJQUF1NomIz2pBsLaqgqYUXB7/Xy2Wef7fW4/gq89dZbCCF4PhJ14vYius555523V9tfeOGFaJLEzcEQL0RyKVJttzxV5YknntjpNitXrmTRokX7FIV1IMjUZb0sF1N9fnI0jVbNm+/zusKfcfPNN6NIEh/bjQpP2a6AbXSDerVrH6TR74itW7dy9NHdnOdd03QefPDBQ3a8neHLL78kLy8vvY7kcvHwww8fkuNMnz4dj6ryUiSXVXbsp2kYh0XMn0UWWWRxOJAl2/cC/6ai++eff+a1117j448/PuAXmSwOHo499liKje3KzsleP6qi/OVkyMFG6+bNcUkSLfXtQoJBLreTC15eCf5nrFixYp9f+EeOHElQ03g8J8Lr0RhFpkmjevX2uN2rr75Kg6IipztaiHR2uhBpe+0//viDSZMmEY/FHAJ38ODBbN26lVQqxerVq1m5ciWpVIoFCxZwRMuW6JJENUVhsp1tvsAuum+0u3UznYtdu3ZFFgK/LONVFIf0ftrupF4cS6AKwYX+AC9F0nboN9xwA0IIrrcXwtYk8misaVRTVAxFYdiwYdx+++3khsPIIt0hfZy937H24saLkVw0Iaicn8+PP/7I5ZdfzqhRo3jrrbcYeOKJaSW6piGEoLSkhEYNGlC/dm2iOTkEJJm7QmFuDYZx22SmJtLdyXeEwgRlmd69egHpgkcIgatc17VpuTj22GOdnPCLL74YSQj6u1z0tQnXK664grZt2zrbZH6aaWlCvTzp/4FdTH1gL2h0NAwitu38OPt8V8aTFNpk+G233eYUsfeE0p3w19md8HFZpo6qEvT7+e6773jhhRfSBau6ffxNNZ2k3U1vCglJCM7z+VkRS1DdtpbPCBf69++PEIIJXh/XBUJEZRldVnjttdcI+f3EdZ0Wplkhu7yP5eLaQIhatjPAeV4fLvs660Lwha3UftouHjNdFJn88DWJPDqaJkcfdRSQznVvZVqssq3mO9kRAJdccgmpVIoJEyY4wonrgyGeyIlQU1VRJYlffvmF3377jYsuuog2bdpg2GKUqvn5LFy40Hl+OrZvT3GDBowfP36fCq2FCxciCUELXUcSgtmBIO/mxpzstszix/fff8/QoUPxB0NIikqkUWcCNUuQJIn58+fvcv/ffvst1SpXprmRjl9YGktQoKoU2PP53//+d6/Hui/YsmULDz74INdff71znf6M0aNHp7sNovmomkFR3XoHVf1+880343JtFzBU6X4mpdPnUXjCxQghdnvdDgV+++03WrRs5YwnJxLd5xzMneG4445DEcJxCBllu3MIIbBcbmeR7eeffyaeSOKOViKv3WB8eYV4fb5Dakc+adIkZEUl2fp4kkecgKyojBs3zvn95s2bqVVQiCsYI7/DUALVG6Nq2j6JxP4tSCTzibfs5zgjxEp7Ua367l1vmjVvgRWIUqPPFCp1HI4kSVx55ZV/0Yiz+Dfh31RL/tORnavdY/HixRXej7+KJ8nRdaZOnXq4h/a3x9KlSylt0gSXaVJYowYvv/zy4R4SCxcu5LbbbmPevHmHZe1n69atvPfee7z77ruO2DDg9TLars9Wx5O0Mkw6dewIQFFBAf1dLqeeGehyU6NKlb90zBs3biQZzWWk7bi2JpFHf8tFw6Ii5s+fjxCCl22x9lfxJKaicNVVVwFp4X8iN5eahskZHi+Fhkk0FOLDDz/cKwvwVCrFkiVLWLBgwUGrCebMScd+dTYtetrZ1xkntg0bNnDWWWfRuVMnRo4c6biijR49GreikJBl8pS0M2GJbmDqOkuWLGHLli20bd0aTZapZjcM9O/b17nH1q1bl17v8AWY4PUx1uOllqri93r3etyrV69GCMFNwRC3BcOU6Doum7Df2RpZKpXCMgzG2QLr1fEkTQyTHt27A2kxRSwSQbYJ/NXxJEtiCZK6zvDhw1mzZg1Dhw6lfdu2nHHGGYf0b8SWLVs4++yzqZJMUqtaNa655poKz+ePP/6I1+2mvWXxdE6UcbYjYUawvyf07t2b1uUEFtfYXeNtTZNEbm6Fz27bto2BJ520vV7Mz+fTTz89qOe7K9x+++0kolFMXadxgwY89NBD+xwP8GesW7eOSChENU1jqNtDRJYJSul1vYsuumi/9rl582bOOuss8itVoUbNAm688cadfp+WlZXx0ksvMXfuXJYvX35A57GvSKVSDB06dIe1s6qVK7NmzZqDeqwhQ4bQyNr+PX1XKB1hd7CPk0UWWWTxd8W/hmy/7rrrqFy5MoZhUFJSwjvvvLPX2/5biu4FCxYQCYWcP7y9evZ0OnSzOLzIqKCPsixGuD2YinLYuy4PBr788ktchlEh93u0x+t07gohGD58+AG/VGfQukULeloWK8tlP+mattttlixZgmUYFNk5320Ng5n+gKMAPv/88+nQti2aEE6Od4bo/XNH7eeff47bsqhvmgx3ubFsNbhbklhhjyljZdXLJqPLysq49tpr6dOnDyNHjmTx4sXUqlaNpK4z2uOljqahCEFjw8CrqiRiMfKTSQxFwS3L3BIMMckuwCKhEGPHjnU6PY+xLCZ7/YRlmdqqSmU5TQTHZBldCCrbxLDbLrwz6nUhBFcF0sTt9bY4IEPMhf1+Ti/XjTDI5cYSUgU7eEUIxo8fz3HHHccpp5zCFVdcQedOnWhWWsoFF1ywAxlbVlbGxRdfTGH16hTWqEHfvn3p378/siQxyOXm49y4060qC0EzXWeWP+jYpme601+0xQjlz+U4y8XjORG+jCVoqGl4PR42bNjAtm3baNOqFS5Vpb4tKqiqKFRWlHQmuyThsrOvhBAc1aUL//nPf2jUoAGSEHjta+eSJBKyzJpEHlcHgkj2osCXsQQDbSV+c91wrtdldkd+69atCWsai2zifJqdUxYuFyvweE5kO2loj1ERwlFqz7W790uaNiUUCNDdvvc/yI0T0TQqV65CvQYNCfh89ClXEJ1Szj7wzjvvRAhBdUWlnbF9nFfY4oOMReA777yDLMscY7m4Ppju6MjNyeHVV19F1zQaGib9LReGLNO/X789Pqtbt25l8uTJ1KpalaQtYonLinP8zLl/9NFHbN68mfoNGmK4/UQadsLwR1FUjYLadXjooYdIpVJ8/fXXfPXVV2zatKnC/bVmzRqiOTlIIt3577V/ZtjXe1fZ2D/99NN+K/s3bdpE29at0/MlSUiSxIUXXsicOXP4v//7P37++WfHHrBSpxGUTp9HvVNuRFZUrrvuuv065p+Rcc3wVq6XtvsXAklRqT3wMhqfdT9CiL9cbQ/peX/rrbd44YUX9pgTuTd46KGHnGdktMfLFfbzlWg1gLrDryVU2ALTcjmiis8++4yWrVrjDwRp2KhxhXfFDRs2MHXqVPr378+5557Lb7/9dsDjq1VQm2jjrg5BnNu0B1WqVq/wmZUrV9KufQc8Xi81axXw7LPPHvBx/xfRrVt3rECEOkOvos7gKzB9Ifr07bvLz2/evDn9vX706c71D9RoQrdu3f/CUWfxb8G/pZb8X0B2rnaPbdu20ah+fXJ1nXFeH60sC01V+eCDDw730P7W2LBhA/nxODUNk+k+P81NC5dp8uWXXx62Mc2aNatCXdRvN/njhwLfffcdxQ0bOsevX1TE2rVrGTt2LIptTd7F7j7+z3/+A0CjevU4qhxJeIxl7TZO7uuvv2batGmMGzeOF1988aCNvVa1anS3LFbHk6yKJ2ltmrRs1owFCxYgxHY3pTejMeQ/WSgvXbqUtq1bE49EOKJlS+655x5uueUW5s+fz3//+1+efPJJXn755R3W4bZs2UKfY491rlc8Gj1oz92cOXMoLS6mScOGXHnllaRSKbZs2ULzkhI8qkpn0ySsadSoUoVffvmFFiUltLPr4EdtV7wv40k8qsqll17qvH8/aP8uYwH+9ttvA+naXrOF76oQGPY5RUKhvR5zKpWipLiYXF1nms9PD1uQvyuxcCqVwtTT7m8Zsr3UMOnerZvzmW+++SYt6g9sF6i3Mi26detG5bw8cnWdo00Lj6rSfBek/t7gvffeo6S4mEgwSNvWrXeI4Rg7diyqLDPE7XHs+f/sevDss8/iKycgnj59+l4f/4wzziCkabwZjbEinqS7aeGXJC6169/y53XllVciSxKX+APMDec4EY5/lTjngQceQLXXOYQQHH10twNuOFq8eDGdjzySSDCIpevkhsNMmzZtv7//TjvtNGRFJbekJ+G67dLfAXfeeUBjPNjICIEy91Ptco0iiXj8oDp7XX311Sh21ORLkVya2+tC//RGsSwOLzLOrzNnzuTJJ5/MNodm8bfGv4Jsv//++9F1nTlz5rB48WJOPvlkAoHAXnes/RuK7lQqRX4iQSPT5PlIlOsCIVRZZtasWYd7aFnYuPPOO6lTqxaVEwlGjRq1V+rnXeHVV1/liiuu4L777jvsgoorr7wSIQQnutycahPtAVnm6ZwoF9kE6u23335QjtWlSxfHhr2KolCoqvhcLt5///1dbnPRRRfhUzUm+/wYQrDcJjozxO3AgQMRQjDY5UYS6Szp5yNRSnQdQ1UrWAJfeOGF+FSVz3Pj9LNfdH1SuvO5u2lxdSBIXZvEnzhx4g5jSaVSLF68mKeffpqjOnemUjxOy2bNOPXUUxkwYADdunVDEoImms5xthV2piN67NixzgvJsGHDKCyXgXW1TZxmfk52e5jh8/N+dHun/hWBIK9EcimwCeylNgm8LJ5EiO25xo3q16dUT3cJfxFLUKRqyEIww+vn9WiMh8IRp6AuNk2Suo7H5dprhfSpp56KEILKdtH1hu0IsCaRh27vd7E9tjciuShCkCPL9LZcBO1MuLtDOdwfysG074XMPAghmDNnDn/88Qdr1qzhl19+YeLEibh0nfaGyap4kq/jSYpt4UVL3eC1aC7XBELIksT111/P5s2bGTx4MEIIopKMYV+//paL410uwjbxviaRx/O2sCIhK3xuj3mo24MsBKWlpdQoN0d32opgU1FYaJPpV9rzNmLECFKpFGvWrCESClFZVTne5cYvSVRSFCxZ5sgjj0SWZcK6jiXLyIqKGYwRadzVyVY/2+PlPJ8fQ5I4bsAAAE488UTqqBonutxEZZn3cuOstItyRZIcwvGSSy7Bp2qOkCVzbsceeyx5dtd4eQvvH3/8cbfzPG7cOBRJ4iSXm2622EO2F21WxZMMdrtRZJnvv/+eV199FSEEdQZfns7aPvP/kCSZW265hV9++YUO5RwQMm4Hxx5zDL/++isjRowgquucbUdXFKkq471ekrpOg7p1dyi6V69eTWlxcXpfsszkyZP3+UX/uuuuQ5VlHgxHWBlPMtD+7siMsVrlyjz11FMIIah78rW2Jf6zWL7wPi2k7A5t2rbFX7UhJdOepcnER9C8YYdw9yRqYrnc+9TRnUqluPLKK6lTVI/adepyxRVX/C0KoL59++LNr01e+yEIkX7GZc2kZNqzlE6fR/1Tb00Lcl56abf72bRpE00bN8alqjS3LFyKQstmzQ7472eDRo0J1iqlZNqzlEx7llCdVhTWKTqgff5bsXr1amrWKnCeo9p1ili3bt0uP59KpXB7vESLj3KeA1c4waBBg/66QWfxr8G/oZb8X0F2rvaMdevW0ePoo4mGQtSrXZvnnnvucA/pb48XX3wRIbbbPn8RS6DLMtdcc81hGc/XX3+NJEmMdHv4Op7kJls8XT7D+lDj+AEDCGsa94dzeDAcIabrHNO9O1u3bmXKlCnUrlGDRvXqVSCtbr01/d7W3jA50o5Au/baa3e6/88//5yQ309A08izieE5c+YclLHffvvtCCFoapg0yJDOjz7Ktm3b6NC2LZai0M4mqKtXrsLPP/+80/1Mnz69Qg1ulYura9msWYXu9ZkzZ6LKMlcHgjydE6WeaVKjShX+85//0LpFC0qKi7nyyisPmmDi5ZdfTt8T4bSLxev2usDdd99N3z59iKnpWjzjcrEolsBSFC6//HKuv/56FEly6sKMXX7GTer333/H0nV8kkQX08QvSfgkieg+kO2Q/i7qfOSRWIZBXizGXXfdtdvPDx06FENRGO72OPXlAw88UOEzpcXF5BsGtwTDTPb6kYRggJ0Nn3EivN8WtL/xxhsVtt24ceMexdhr1qwh6PNRzzQ5y+ujmmGQn0hU+JsTCQYZ5dnunNDRNGnTqtUO+/r5559ZuHDhPncM//e//6Va5cookoQlpZsiJnl91DHNHazU+/XrR/NyApfrbOHEru7pg4kNGzZgWi7CddtQPOFBavY/F1lWuPHGGw/5sfcFXp+fRKsBjnjXX72Y9h12H2X1V+OWW25JN4iYJs1tV9Gz7YYcIQTdunU7KEJySIvn+/bu7ew76PPx2muvHZR9H0qkUimeeOIJZs2axRNPPPG3WMv4t+Oee+6hR4+e9O3blyOOOAIhBLqVblgaNWrU4R5eFlnsEv8Ksr2kpITTTjvN+f+ysjISiYRj07wn/BuK7vXr1yNEuuMy8yJValkcd9xxh3toWRxkXHxx2iLYsjtv27dpU4EQ/quRSqW49NJLyYvFyAmmycM7gmHnPqxjWZxyyikHfJxVq1bhsSya6jqX+gM0sjvCk6qKx+Xiiy++2Ol2l156KR5VZYbPj1yuyLonlC6yLrvsMoQQ9DQt6qiaM+577d9/9dVXzr4yZPuD9u8ut1XTo2yCVYi03Xo8Gt1BDPT777/TuVz+e40qVXbohqhWrRqVFcXpkj/flyY2V69eDaQL0rPPPptKlSqRUDWWlevwF0LwfDiCJgTtDIPbg2E6GWn78pqq6pzX5TZZOtjt5tVoLiPcHiRJcuye58+fj65phFQVv6Jg2KR4Rtm+Op4kV5ZpoGlO1mO+YTB8+PA9zmEmJ3K6z88bdsF/usfLynKLROUXsp6wu58LVJWArZ7P5Nj3t1z4JYn7wjk8nhMhrigUFRZy/fXXo9tjTuTm8vbbb5OMRh07w0yWnSoE99qLC2sSedS1LIYMGcLVV1+NoWn0sVwcaZgOSVx+IeXGYIjPYwlOdLmRbQI4KsvUtRctNFXlxhtvTAsSNI3upkVS19OOBrEYOZpOK5vs7tmjR4VC4LPPPsPUdWKyTH+Xi0WxOCe43DSoU4fXX3+d1q1b4/d4EJJEo3H/oXT6POoMudIZmyQElizTu3dvJkyYQM2aNfFJEvNyosRkBV0IvLYw4eyzz3aOe/3116NKEm/az8cN9nz06dOH6rZQYU0ij9m2QOC7777b7VyH/H5OLXfNW2m6I9LIOF9cccUVALzwwgsIIah3yo2UTp9Hk3MeRVZUrr/+eoYNG4ZXVbkxGOKWYBi/JFFf03CrKoMHDqRL585OTuEsfxC3fW6tmjVnxYoVXHLJJVROJknm5jJ+/HhKGjcmoetcHQgy1iboy3er7A3GjRtH1XKLFo/Z9+mj4QhvRGPk6jrHHXcc/kCAQNWG1B50OYmW6biBefPm7dOxdoXmLVoSLGy53XK7eW+HjBZi52Kf3SEjmgrXa0e4Xvv099vllx+UsR4IjjvuODyxqpRMfZqGp9+Ft1LdtDBjyJWUTp9H5S6j0uKhpUt3u5+MG8jjOenvsQfDkYMyH/fcc09a7FO5Lr4q9Q/qQvC/ERs3buS1117j9ddf3yvniauvvhohBN5YVUxfGLfHy+LFi/+CkWbxb8O/oZb8X0F2rrI4FHjjjTcqEJfv5caRJYmbb775sIznpZdeQgjBa9Fc5300oGmOffhfgcLq1RlWzop9tMdLpXh8j9vdcccdtG7RglbNm3PLLbfwzDPPMHbsWKZMmcLKlSudzw0cOJB83eDTWIJV8STHWi4CPh/PPPPMQbFwfvDBBzmmZ0969+5dwb77jz/+YNq0afTo0YMxY8bsssFn0aJFCCEY7/WxIp4kIss01DTeisZ4IJyDS1U555xznM/369ePFuXqh+vL1b5tTJPutgvAjBkzDvjcAJ5++ukKwvYvYwkUSeLGG2/k888/J+j3o4q0Q98Al4tquk7I72fVqlW8//77SLZo+tFwhKMtF6auO/PzyCOPVKjZM9FnshBs2LDhoIx/Z9i0aRNjxoyhSjJJnVq1dtrQsWLFChrUretc21NPPZWrr74aTZb50q5nX7abLm6++Wauu+46rr/+eroffXT6HGSZIUOG7HJ97bbbbkMSwnGvy+zr6aefdj4TDYU4udyz0cYwaXvEEQf1Wvz444/Mnj2b6lWrOueayM3l448/rvC5MWPGENF13s+Nszqe5HiXG8swDmon9K6QiS2pPWiWU7N6o5U4/fTTD/mx9wU+f4B4i36OQN5ftSEd7OiLvwvefPPN9HqJppGvbG/06FDOqbG4uJi1a9celOOlUik+/vhjXn75ZX744YeDss9DiVQqxSC7YUY10t+lgwYPzhLuhxFXXXVVep2kSn3csWoIIUgecTyl0+dR5ah03OKu4hizyOJw43+ebN+8eTOKouyQ/Txw4EB69Oix0202bdrEL7/84vxk8oD+l4vurVu34rYs+lguVsaTvBGNEdA0JkyYcLiH9j+NX375hQ8//JD169f/JcdbvXo1kiQx2uNldTzJ3HDODtZmBxO//vrrPhVMGzZsQFUUBrrcvBuN8UokiltVD0rRmCE1PrVfLDP53bMDQYKatsuO0eXLl+Nze6ilG/gkiZAs09k0sWSZVi1asG7dOoI+HwlFwZIkXo7ksrpc5215Rfpnn32GyzSpapO5H9odyivt7vDWrVszY8aMnRKRZ599NpaicFMwxCPhCFUNg+ZNm1b4TDwWo4aqsiqe5M1ojCGutLXYTz/9xIoVKwj504IByf4pVDV6mBayEPS1bcRnB4IOOeySJPJtgvW5SJRV8SSD7C5cxbbMl2XZyaHL4OOPP2bq1KlMnz6djz/+mHg0Si1V5eZgiMHutBJxRLkCstgwaNWqFc888wy//fYbzz//PM2bN8cy0tlvTYqLqVNQQNCbJjfnhnJ4PzdOSTn1f+YnT1bwSxIdDROzHNGdEwzSvFkzqhkGn+TGqa2qnOByO2M4y+tLk9BCcJLLzR2hMMWmSSQUYkC/fnhkmcsDQS7yB5xu9eNdblbFkzwfiWIpCrmRCKpN1p5oZ2HfEQqzKp7kVJuYLf8jC8EZHi8X+tNiB0PTqFG1Km+++SYLFy7E1HVMScIUEqos89BDD/HNN98wZswY+vTpw8yZM53O2q+++orjjz+eVs2bEwoEaGmYfB1P8mU8SX3DpEP79k63eBNNR5Jkiic+bFuU34AQ6fiA5fEkbQ0TVVXJ0XVitijFL0kV8uYNw3BEHJC2Va9euTJ+VaVQ01EliZ7duzN//nwkSaKzZXGmx0tQ02jfps0eC5eQ319B0d9aN2im6dwUDHGKbZmXsSLcsGEDybx83JF88jsMxV+pCJfbw1dffUXtGjUYUu5eO9XjJakojPF4ieXkpJ0LFIW7QmFeiORSZJoUFRQAMHv2bIQQnOByc7Lbg2rf87PLWQuWmhb9+/ffYfypVIpPP/2Ud955ZwcXkjlz5iAJwTWBEO/lxjnKNNHFdreIYyyL0qZN6dmzJ6qWvsclSdrvHLmd4ZprrkEIQbRJNxIt+6OoGiNGjOBY255SkiRuuummvd5fYe0icup3cBZCcup3pFZh7T1veIjx8ssvI8syvkpFaRGAJJMbiyErKq5gemGvvBhzV7jrrrsQQvCZPUef2H8/7r///gMe40MPPUTXrl3p0qXLQdlfFvuGxx9/nBEjRnDmmWfuYOOZRRYHC1kC95+D7FxlcSiwZcsWSoqL8asqvS0XebpBIjf3L1sD+DNWrVqFIssMcrlZFEswy47Z+fOa2aFE+zZtKDJNlsYSfBFLOyz+ubadP38+J554IieeeOJOHRSuv/56hBBUNU2CmkY4EGDZsmUAdO3ShY7lououtQXjmfp1Vx3xfxUyQs73c+OOU9yV5WqM9qZJ9+7bo23OOOMMwprGO9EYK+NJ+lguVFmmld2luiaRx2C3m3gkssdjb9q0iddff51XXnmF33//fYffb968mfXr15MTDNLQNLnUH6CNZWEZBkuWLGHYsGHOtfS43RRUr06Pbt0qCBZvuukmNNuq2m1ZPPzww87v7r33XkQ5wjmzLiMJ8bdwyigrK+Obb75xurczYvYjTIuL/AEKVDUdKycEmu1SqArB2V4fU31+NFlm/PjxXHrppfTp04fTTz/dITEzEW0Zp7pnbKFB+fOePHkysiTR13LRyRZR3HvvvYfkXLdt28a7777LK6+8stN1u9WrVxOPptfkkjYx+1d1lv/yyy/oukFOg440nfwEhSdcjKyou312586dS/OmTWlYty7nnXfeX2JdPmHCBCRZJtKwE8FapQixo2PC3wFTp0511qBiskxjez6HDRtGOJx2ucvPz3diAv9NyDglVusxjtLp86jWYxxCCF599dXDPbR/LaK5aRfO0unzKJn6NO5ELfw1mlA6fZ4Te/jII48c7mFmkcVO8T9Ptmdyd956660K/z5hwgRKSkp2us255567Aynybyi677zzzvSitKqhShI1qlQ9bAXgvwGPPfaYk4Wt7ISwPBR4++23K6iI1yTyiBkG06ZN26f9lJWVcc899zBlyhTmzJnDli1buP766+napQt9+vThpZdeol+fPs6zc0yPHhVIZ0irvseNG0fj+vXp0L49r7/+OqlUinbt2jnbqUJQrVKlg5Ldm8m9f8HO784UNrcFQ0R0ncmTJ7NhwwYWLFjA8OHDOaJlSwYPHsw333zDBx98wJEdO1KzajWCgQCGqqJrGoWFhYwcOZLbbruNaDiMYr+8Zjp/hRDccsstPP300wwaNIhhw4Zx3XXX0ahePSSb4H4+EmWETR6+++67O4z7119/5bzzziM3N5cCVXUU1Rf4A6iKUoG0POGEE9Jdm3YBmBnD+PHjGT58OLoQHKEbfBlLcFMwhG6T0EIIpnh9fJgbZ3i57K+nwhFeiUQx7eLXss9rwoQJrFq1ipdeeomVK1eydevW3ZKn119/ParYbuEthCAgScwOBDnJ5a7w77Foel4qKQoRWXZ+18O0OM4m+nMkibAs45Mkiuxu8KgsIwmBS5appaqOpXxElnFJEooQXHTRRYT8fhR7LFUVhUWxBF/GEjQ1TGLRKGFNdxYsMvfI/PnzidoFiBCCjoaJL0M629cm6PNhyjIvRnKpo2r4hURQ2m4Z/5KtWj9C1wn40pZdUUl29qmItC1fxvqvTatWFBgGPUyLYk0nrCgUN2xIj6OPxtB1ouEwM2bM4K233mLp0qXEo1ESmsYxloXLtoOLazoRXcfUdd566y38Hg+neby8HY3hkhXc8ZrktRuEKxjDkhXyZZkpXh+SSDss9DItx15fCIFun2tAklCFxJlnnllhnidOnOh8VhKCmTNnAukol1rVqhEJBunXp89eqZvPOussJ6/xKHuR4QKfn3O8Pqor6fs709kOadeDFi1b4fH6KKpbz7H1O6JlSxqZJsviSb6KJ2mu69TTNLpZLmpWrcpvv/1GO9uSSoi0q8RHH30EQElxMd3KdZCMcHtQhXA67j+LJcgzDEaMGFFh7H/88QddO3d29lklL69C5/S2bdsY0K/f9rmXJPI1jbejMZ7KiRLUNIKBACFNo7Nh4lNVCmrU2Oli2M6Qybvs27dvBUFGeaRSKS666CJyY3FC4RxOPfVUNm3aRFlZmRPVIITg0ksv3atjFhTWIadBR4dsjzTsRM1ahXvcbv369UydOpXhw4dz2223HZD15YoVK5gyZQpjx46tsGA1b9482rVrT3GTppx33nn8+uuv3HDDDUyePJm5c+c631133nkniWQeLrebo4/uVkH0tHz5ckxdp6NlcVMwRBvLwm1Z+2S1n0UWWfx7kSVw/znIzlUWhwo//vgjI0eOpEVJCccNGFDB/exw4MYbb0SWt9ciQ4cOJZVKsW7dOrp27ozX5aJqfv4hI43ef/99fG4PLkXFraq4LavCmt2jjz6KJEnUNkzq2G5hDz74oPP7srIyPC4Xx7vcrI4nWRSLk9B15738wgsvRJVlLvUHuCeUQ1JWSMgKC6IxhtnObEuWLNnncf/3v/9l3rx5vPvuuwfU9bh06VIkSWKUx8MnuXF8kkQbw+DLeJJXo7kENa1CB++6deuonJeHIcuENA1JkqhZvTqdywkKTvN4iQSDexx/+c7tGlWq8vXXXwOwZMkSGhQVOUL1Cy+8kNo1a6Zr80SC5557jgsvvBBFkpju83NNIL2O0qVTp50e68cff2TRokU7kLirVq3C0nWaamnHwcaa7jiXvfjii/t9TQ8lnnvuOWfdJCErhCSZI+z5ejsaI0eWOd4W8rfRdTRVRRKCOrpOWNOolEzy/fffs379ehK5uVQ2DE5yucnVdWrXrFlBnL1t2zYuvPBCGtSpQ5NGjfY5/zuVSvHggw8yceJErr766r2uIXeFdevWcdFFFzFx4kTmz59/QPvaV9x1113I5QT/7dt32KVrQEbA0sY06We50qRybi5Tpkw5pE6e27Zt47zzzqNOUT0aFzfh7rvvPmTHOlB8/PHHzJ49m379+nH88cdz9913k0qlWLZsGQUF6Tgur9fLs88+e7iHukds2rSJCy64gGOPPZYzzjhjj86Ju8Pdd9+NEIIm5zyWdkqclL6X/s5z+b8Oj9dLXrtBzvpSsHYrdH+UBqPnEG3SDVmWs0L5LP62yJLtO8G/sbM9gwULFnDJJZdwww03HBSCM4ud45tvvsEyDLpYFo/nRByC88033zykx12/fj2mrtPDcvFWNMaFtsK7fOG6O6xcuZJXX32VY3r2TBcahoEsSdSqUQMhBG0Nk9qGgSJJ6LLMhf4Al/oDuBR1B5vw3r16YSoK/V0uGhomuqZx3nnnIYTgLK+P24Nhqmk6BTVq7FMh+/7779OoXj1cpknDunUda5nff/+dosJCQppGF9PEI0nkyjKtTRNVUZg0aZJjH64IQTNdJ6Kq5ASDjl37+PHjUW0yVxaCFrqBu9wihSxJ6JLEUJebuaGcdG66XRzU0HVcNnHpMk0GDhzoHE+WZa688sodzmXz5s00a9oUl6LQ2DDQRDqP/ctYgk6WRf6frPY2b95Mfl4ekhCc6HLzbm6MKbZFfEnTpgghKFRV6qgaA1wuOhgGHTt0YOBJJ1UQFrXSdSxJIiTJzPD5aWEY6e7kzp157LHHnOOtWLGCFiUlSJJE0Ofj1ltvrTCeJ554gmQshiwEbls8EZZlcm1iXAiBKklU0zRei+byfCSKLkl0Ny1WxZN8GUvgliSONLYvIgx1e1Bs4v+daIzXormcZnekz5w5k5EjR1KnoABVkuhh72dRLE5cVtBVlQcffBAhBP0tC48915pNeA4ZMgRdlnndtsu7zO7yGDlyJC1btkQWgmleHwF7Ho+1LE7zeGhld9jn6wZP5UTJt+dcEYLBLjcf5Mbp73KhCcEYtwe3ZVFaWopLkrgjFObBcIRc2+a+VrVqLFmyhKp5eXgliYSi0Mty4ZUkNEkiqKpM9fmpY3cKCJHuiJeF4PVILj0tC1WkRR+5ubkMGTKEZ555hlQqhc/t5nSbKH48J4JbUZFkBbe8vYBNW9ordDJMVCFopGl8mBvnfJ/fsXFvommEJAmPZTmZyO+88w5CCMZ6vLybG3O6z19++WW++uqrfbaa27p1K1OnTqWwenXqFBTg83jwygqSEHQzTZrYHd9PPPHEbvfz+uuvY+g6EU0jbF/javZzd8cddwDpAvmdd97h5ZdfrvB3vmWzZrQvt4B1ostNwL7XGpsWCd3A63bvsFA3ZcoUTNuF4vGcCDUNk+IGDSp8JpVK8fbbb/P444/zzDPPVBBzVMnPT3c42KKo5yNp0cdjjz1GWVkZzz33HHfccccONn8A33//PXn5lTA8AQLVGiIrKr17996n79BUKsXkyZOd8Zxzzjl73H7mzJlpcUvDTkQadkIIsceonh9++IHKVaqiW258yfRC3p+FC3uLL774gpDfT1DTqGJneO6p62L58uX06d2b4gYN6NChA0IIwnXbkN9hGLrbT0Fh7QrCkKeeeoqQ7UIRCYX+Fp03WWSRxT8DWQL3n4PsXGXxb8KSJUt44IEHeOutt0ilUpSVlVFSXExU15nk9dHFspAk6ZB19y1fvpzLLruMmTNn7hDp1qRRI9rYtdyqeJL2pkWjevUqjF0IQTVFZZDLzZJYgtamRa9evYC0m8DxAwZUqHFet0X3i2LxfVoDyWD+/Pn4bJc2IQS9evY8oM7ZWbNmVajBNUVBsevMwpo1d2h8+f7775k9ezbnn38+b731Ftdddx1CpN3WRro96LLM6NGjd3vME447jhxN4yyPl06GiUdWaNWiBRs3bqRKXh61DJNZ/iDdLReyLLNgwYIK59i+bVu6lhMjn+vzo2vaPgsPHn/8cXR7HcUrSQTsSLeNGzfu037+SgwYMIASOx5NEoJL/QHnOnQ1LY7QDW6z7f0LVJX6ds15ns+PIcvMnj0bgGXLltGrZ0/q167D8QMGsHr1ai6//HK6dunCcccd58Tz7Q67EyifccYZCCHIM010Waa4QUOHcN+8eTPXXnstZ555JrfccotTo//222+cfPLJ5OXGqF2z5t+KZPz000+ZM2cOTz311G6ft6OPOoqmxnanhzEeL5q93nTiCSf8hSP+Z+KHH36gTZs26e9LRfnLHAz2B2VlZXTu0gVF1QhUa4Th9lOlarX95jA+/PDDdONF8940GHMn8ebpxrG9eRazODQYMGAAmumiUqcRJFoNoHzkoaIo++TCmEUWfzX+58n2/bGR/zOyRXcWBxvPPvtsWgRik3qr40ksRdkp4ZrBtm3buPXWWznjjDO4+uqr97sQeeCBBzDK2W+PGjVqr4qjSy65BMku/jJk7ppEHneG0iTRUTYp9XU8SQ1VpYqiOMXHKW4PVZJJZ1/r169Pd03aBcryeJKkblBYWEhDa3vxdrNdrOwq6+zP+O9//0s4EKC+aTLN56eBaRLy+x1C8Pvvv+e0007jiNatqVypEkGfjzq1anHllVciSRInutw8EM6hvWHgkiQet3N5Az4fq1atIj8Wo6fdZdvHspxzH+n28FwkSiVFoa62Pbf9zlAYVQiONi1qqSqVFIXLA0GOd6WL9P/7v//jzTff5Jtvvtnp+fw5J/iBcDrr3asoqIqyg21OxpJNiO3Z8pl764gjjkARghqqyokuN35JQhWCM844g3Xr1jnb5coyHkmikU3gyiKtZH/qqacqHGvbtm3ULyoi3zC41B+gr22b/vzzzwNp0YOqKLQ3Tc71+bGEoEjV+DKeZEU8SWvDwNI0cgIBzvL6nGumCcFUn9/5/7As06kc2T7M7UESaeurhnYBK8T2HO+A1+sIHMoXwB3tjoh33nkHwyaLTSEcFXqurBAOBKhepQpeVaWhZaUt4WSZkKqRq+vI5bq8hRB8bRdyn8YSzr+5JYmGmsYVgSBtDcNxGFCEoL/lIqRpHNO9O00aNqS/y+WMb6LXh1uSqGWY1KxalSbFxUhC8G5urEJG9Ci3h3tD6ftgvNfH85Eone0ogKNME5ckMcXnZ7TH6wgahEi7S4waNQpNlhnsdtPddtVwFnckib59+2IpCh/amWyyEFxU7hrWtBX6QgjisoIpy07n82233Vbhmnxs2wFmfuoXFbFixYq9eo53hmXLlmGoKi103bHq12WFli1a7HHbjz/+mIkTJ3LcccfRtWtXBgwYwOOPP77H7TIK5w7lchAvvPBC7r77bk444QRGjRq106zvzp06VegyudQfQJKk3QoO1q9fz+OPP868efMcy/KPbHvBzLW899576WULnTI/48aNq/C34KqrrkLRdBqOvTttgXbMeITYcyb5zpAh0DOCk90t6qRSKS699FJq1Cygeo1aXHLJJXvsUp81axaqbtBgzB3p/PTOIxFCVMjb3FsMGzaMhK6zKJZgdTzJAJcLr9u9y79tq1atwuN2Y8oKVRUVXZIww0lKpj1L6fR5VO+VdmmIRHMrLP6WlZXx/fffH1AHfhZZZPHvQ7aW/OcgO1dZ/JuxYsUKhBDcGgw7UWeVDIOxY8f+5WMpqFaNQeUiv4a7PVSvVAmA7777jkRuLjFF4RjLwitJVFLSotzyzleQbnK4/fbbEUJwXSDEmkSe03CwM1e5XWHLli2EAwFamxZvRGPcEAyhSBJXX331AZ3nokWLeOCBB3j33Xf5/PPPuemmm7j33nv3Koov8/5dKZEgHokwZsyYPXbwFhUU0MiuoYvUtBhZlSRn3eHhcA5vR2N8mhsnrOucd955FbbvfeyxFNgd3avjSfq6XOSGw/t83qtXr2by5MnUKSykoHp1jhswwFmz+bti7Nix5Gjp/PICu4HhlUgu94dzsCSJHEXBLUm00A1W2deni2lSU1UJaRrnn3/+Tvd76qmnItk1Z3XDwGWaLFq0aKefXbZsGaXFxciyTG5ODv/5z3/47rvvGDx4ME0aNuSorl0R5dZTns2JosoyN954I1u3bqWh7bDotpsfevfqRSqVYkC/frgUhVEeD0fZ6wR7Uy//ndC1Sxdalls3Gu/1YUkSM7xpsXQmFiCLXWPz5s0MHDjQWQM466yz9rlp4q/Ae++9hxCCmn2nUjp9Hg1Gz0GSFW6++eb93ufll1++fb1bkrj88ssP4oiz2Ff88ssv9O7TB0VRMAyT8ePH8/nnn/PCCy/s13pRFln8lfifJ9sBSkpKKig8y8rKSCaTe+y6yiBbdGdxsPHBBx8ghGCWP53L9ahNpP3f//3fTj+fSqXo37cvkhBUtyw0WeaIli13ag+8N1izZg3z5s3b6zyeN954AyEEoz1eXozk0tuy0ITg7WiMr+2MsZ7lFM4tdIOQLLPSVqK3My0a1q3r7C9D7l5rF7wr40mqGSb169cnR9P5xCaZRnu8KLK8Q+bxrvDAAw8ghOA9e/sPbZLqP//5z263u+qqqzAVhVU2UfhWNIYQgltsst+nKAwfPpy83BhmOaLLK0loQjjq2bO8aYJzdiDI/EgupaaJZne6CyG4MxR2CPDqpsno0aP56aefeO211/jkk092IIYymV6f/yknuG/fvrz33ns7nEenjh1pbHf8nuP1sTqe5LZgWhBwwgknoIu0HfuRhsnxNjn++uuvA3Deeec5We4v2ar/G+zzf//993nttddo3rQplRIJunTu7NwTd5Q7p6qmyamnnsqiRYsYP348IU1zyNeqiupYq61J5HGGx4sqBPmJBHVNk09y47ybG8Mly4TtruCL/QGHrO5pWRzvciNLEo0bN05bt0syNwVDhGSZGqrKLH+Qo8w0SR6RZPIVhfvDOVwRCKa7vWXZWWzJdIbPt8/1DXvOhw0bxtSpUxkyZAi1Cwupoxt8EUvwdTzJEaZF3La5F0JwQzB9/2ZyDlu2bJm+prbQYVk8iSpJFBYWOtt0aNuW77//nh7dulHDMFgcS7A8nqSZphOSJIrtxY9x48ahCsEX9txnbOj7Wy4meH07tajXhGBcOeHC0aZFoaoyOxBEl2WmTJnChAkTqF6pErotqngqJ8q8SJS4rKBKEiFVY4U9Z3mKQmP7eZxmW9+P8Xi5KxSmrqqhC4lJkyYB8PzzzyOEoIGmcbzloqWuO2T9HaEwebpBy9LSvXqOd4WMSCi3pCc1+05D94aRZJmxY8fuUpBTVlbGrFmzaN2iBV06dXLEIOXxxRdf8OSTT+7USvKuu+6iRWkp9WrXpkqVqkRyY7Rt1363llVDhgwhoet8kBtnRTxJF8tFPBrd6/P85ptv8Hs8NDEtLvYHaGpa+D0eZs+enbbn9weoUs5Or7BmTWdxasaMGRhuPyVTn6Z0+jyKhl3tiEz2BzfffLNTdB5//PH7/TdnZzjnnHNwBaKUTHuWxuMfINkm7bDx2muv7fO+evToQZtyAofLA+lncmeitFQqRd269ZAUlWBhCyxvCF2S0Dwhmk56PE38dxmFEAJXKEHHI3dujZlFFllksbfI1pL/HGTnKot/M9auXVthjeKLWIKIrjNhwoS/fCynn346pqJwrs/PDJ8fS1EYNWoUkLbAVyXJqfnvtwXpRx999E6JoVQq5XS5u+x36NNOO22fxrNy5UqEENxt175rEnkUaRpt2rQ5GKfr4O2332bSpEnMmDGDFStW8M0339C1c2fCfj9FBQUHbO/cpVMnJCE4xe1xROMRReH4449HCEHIjjnL5JHPmjWrwvYLFy7EMgySukFt200q02G4adMmTjvtNBLRKFXz85k9e/ZOha+ffvopIb8fU1FwKQou03QiwA4UP/74IyedcAJV8/Jo2rgxL7zwwkHZL2zPL/eoKrmaXiEKr05BAX379iXs91dY8xjp9uCRJCRJ2sFtFdId5ZIkMcmu4b+MJUjqxk7vz82bN1OrWjWqGgYX+wNp9wFJokbVqoQ0jf4uF1E7Yi8TG7k6niSi65x77rlMmjQpLYLXNJqWa7556aWXkGWZ82yCfnU8SUPDoF+/fgft2u0JqVSKW265hTatWtGhXbv9iq/INJ4cY1mc4vZgCMFxLjez7brw+++/PwQj/99DKpXiggsu2N60ccwx/Pbbb4d7WBXw0ksvIYSg3sibKJ0+j6ZTnkI1rAMmyJcvX85zzz3HsmXLDtJIszhQbN26NdvokMU/Dv8Ksv3+++/HMAzuvPNOlixZwogRIwgEAnz77bd7tX226M7iYCOVSjF40CCEEFQx0+R5q+bNd6lEXrBgQQVy+mGbnN9X67P9xTXXXIMmSQ6pvNAmfWf4/Ay2rdQ8qsp5Pr9jiS9JEjUMgwLDRJIkHnrooQrn37Z1a4KaxpkeL0faXcQFNWti2blWRbai9s9q6t0ho8jOEKgZEvLhhx/e7XaZF/Onc9JFyTWBkK32VvFIEq0Mg65dulCjalVqqCof58b5MDdONTs7+lJ/gBXxJBf5/BW6iUN+Px3at8drE7sz7ALm01iCsKZx0kkn4bWvnywEDRs0YMuWLXz00Ud0aNuWSskkiizT2bK4LRimvWXhMs1dKvk6dexIS8NktD0Hmdzy3r16MXbsWBQhqKwotDEMZ5zXX389a9euBeDEE0/ElCRW2vP8ajR9/W6//XYMTSNajuDT7f++0O58XhJLEFRVXOU6pl2yzKJYehGknWFg2EKEm22CPCbLlJaUONbMQghikQiN6td3/t8vBJ0Mg6SsoAnBkUceybZt2wh4PJzu8fJ4TvpZeMqeuxXxJD5JYojL7dj2C1tEcM0113BEy5a0MU1usec44wCQEWYYikLDunV5+umnaVhUVKFYHuf1kRMI4Pd4CNm2d277GCeccAKvvvoqQgjuC+ewJpHHa/b1a9WiBd9++20FNfWiRYsIeL1Ydoe9ItL57w00DVUIqlWpgss0aW6anOfzU2iYeF0uJPu+lITgMdvxIBMVoNoF5ZpEHqviSYo1nTaGwZpEHp1Ni04dOwLpF1ZNCIbbiywZmzXVvk5HWS4u9QeIyXKFRYRK5dwq7rMXtTJClrFjxyKEoFTXnZiADuWU5ZfY3d27s35LpVLcfvvttG7dmg4dOnDLLbdUWKCpX78+mjtI06nPEK7dCllINNF0/IpCPBplypQp3HLLLRVy6UaMGJE+J9Oika4jy3KFLMCMq0XmHHf2ffPtt98SCufgiVUl2fp43JF84onkLm3Kvv76a2KRCJai4Le7bKpXrbpPeXtvvfUWBdWrI8syBdWr8+abbzJ16lTihkEHwyRPUXg6J8rjOREimkb/vn2d7SRJIqd+B6ofOxFvoga5sfgBFcj33Xcfqv0d1r1794Nm7zhv3jyEEOTU64BuuJw5yI8nnOzIvcVll12GLElc6A9wVyhMFcOgScOGO/3s4sWLEUJQo/dkSqfPo/FZ9yMrKkKSsCKVCRW1QZIVcup3JN6iL/mVqhyEs80iiyz+zcjWkv8cZOcqi387evfqhSHL9LJcFNpdtvuTbZ7BqlWrOOmkk2jVvDmjRo3ixx9/3OVn16xZQ78+fSgqKKDbUUfRo1s35z19QP/+zjv+7NmzMRWFL+2aNRO59PLLL+9y36lUiscee4wrrriCZ599dp9tz//44w9Mw6Cv5WJlPMnzkagTsZWx3F6zZg3Lly/fK2Lgp59+YurUqQwcOJArrriCLVu2MHfu3HTHsq7jU1UCXi+1a9YkputM8PpobVpoqsoHH3ywT2Mvj7fffrvCutKaRB5NTJN+/frhMgyKVI17QjmM9ngRQjBnzpwd9vHJJ59w2mmnMWzYMJ588knn30eMGIGhKJzi9tDXcjnrCH/G0V27UtMwWBRL8HlunAaGUSEiYH+RWWPyqxqnuD00N000VeX9998/4H1nsHbtWi644ALGjx/PQw89xHPPPcfrr7/u1Lhnn302uiwzyetL28eLdNRgy5YtueOOO3a4777//vsK87E6nqSuaTJ48OAdjr1o0SKEEDxgrzWsjCeJ2kL9jBPiS5FcZCFoa5o8kRNhrD2PzzzzDDWqVqVlua77bmY6fu6BBx5AscecWUeoYxgcd9xxB+267QlXXXUVQgg6miatbEfCnTUibdq0iSlTptCmVSt6H3vsDjbfN954I3mxGKoQVFFUxnm8hDSNdkccsc/P/L8d//nPf9BtUUaTJk2cNcO/A3766SdC4Rx8eYVU7zWRcJ3WyIpyQN+NWWSRRRYHC/8Ksh3g2muvpVKlSui6TklJCQsWLNjrbbNFdxaHAmVlZdx9991MmDCBa6+9drcExhNPPIEQgoW2entlPIkiSVx//fWHdIzvv/8+t912G1OnTkUIwT2h9Iv9xbb1WobE7NChAz26dUNTVXxuNxdccAGvvPIKQ4cOZciQIcyfP3+Hff/www/069OHaCiE17IwZJljLIukpmMZBscffzz33XffPr0U//bbbxTWqEFE0+ltuYjqOrWqVePXX3/d7XYbN26kpLgYQ1EoME0km/zOl2XGe70YsszUqVOpFI9zmp15vSaRx8luj2NfbtgLAcOGDeOTTz7h1Vdf5ccff+Snn37iqM6dnWvV2jBJ6jpBnw+PTZ420DQ62crw1q1bE/B6qWOYnOz24FdVNJvYDfn9u1Wz33///Qgh6GxadDDS59GtWzfKyso44YQTiMgyn9s2y0217WpmQ9e5//77WbhwIbIs09flYk4oTHPTJOjzMX78eNw2uT7F5+fRcISGmuZkhXcwTBKKgiwEHiG4JRDiVDtbvZKm0dOy0O1rmjlmQ00jpmoMHDiQb775hjvuuIO7776b77//nlQq5ZzLY+EIDcrbxSsKd999N5WSSZobBs/kpBdXbrK7zN/LjaMJwVC3m5sD6Y7Vxo0bO0ryFiUlHGVaLIrFicgytVSViV4ftdU0yT3E5aa1aaLIMsceeyyWotBA06ikpG3Tu3TqxDvvvEPDunWxDIP8ZNJR7W/dupXWLVrgUhQ6GCYBO/ferSh0O+qoHebrs88+o0b16gibbG+m68yP5PJ/tk38WWedRWGNGliGQdPGjfnkk0+YOXMmbY44As3OH8+x7w0hBLpNiLbQ0wslQgjuCoZZFIuTp+ucdNJJQHohQpEkaqgqn+TG+TSWoFBVcQkJr8tFwJsuyhOywsU+P9U1DUPX8SiqY2s/0ZvudF+/fj0bNmxAkiTGe7y8HY3xUW4cQ5LIVzWW2PdbH8tFyO/f5fOcSqXo1asXskhb1JfY92emcx7goosuQlI0Ck+8GGELN9Yk8ng7mi6oLVlGkSQaN2jAb7/9xurVq5FFuhs/871ZR9Po3bs3kM7mynR2vJsbY5x9TrNnz65A2Gfs5BuPuy9tU3Za2h3hscce2+WzuG7dOjp27IgQgvaGQWfbhv6ee+7ZzTfRjii/WHfPPfc4jg6nl/seGur2ULtGDedzd955Jy5bcFO1WvWDkjX21FNPYdrfUe3atXOsLX/66ScmTpxI3759mTFjxl67kGRw+eWXo0gS1ex7641ojHzd4Ji9jPnJYOvWrQwePNh5FmrXrMny5ct3+tmM7VydIVdSOn0eJVOfRjHcuCyLnJwIim6S27Qn9U+7DXck/3+6sz2VSnHPPfcwbtw4rrrqqgr3fRZZZHHwkK0l/znIzlUW/3Zs3LiRiRMn0qKkhB7du+/UTW1v8cMPP1ApmSSh6xxjWQQ0jeKGDXfaYPDbb79Rq1o14rrOIJebyoZBIjeXNWvW7LBO8tlnn2HqOi1Ni/N8fmoZJvnx+F5Zr5fHL7/8wvz583n99df3yr0p45CmZUThkoQlBEG/n2N69HDeQxs3aLDLmDiAX3/9laKCAjyqSrFlocoyx/ToQX48ThebzP80liBp18D/Z6/BfBVPEtZ0pk2btk/n+d1333F01664TJN4JEJeLEYlTeOWYJgJdv0zY8aMCkTumkQeVQyTM844Y6+P43O7OaNcjdLWMOnQrt0On6tXuzYDXW7eiMYotGtWSQjGjBnDKaecQu/evbnyyit3cCn48ssvd2shnHEfyLjPfRVPEtcNxo8fv0/X60CwefNmhg4diiLLyJKEoWlENI1Gdi1YvraF9Lt485IScnWdi/wBTrQdEXfWLLJs2bIKNfCiWByPvUaTcSZcGksgC4HLMHYQkxdUr14hxm6k24MmJL7++muGDRuGJssc53LT0kw3y+xsDe9QoVqlSvSzXI7goJ1p0rxpUyDtVnDhhRcyevRompWWossy3U2LGoaBx+Xis88+22F/d999N1Xz8wl4vRzbs2eFrvb33nuPm266iccff/xvaZH+d8Ibb7xBOJx2yszPz99rZ9SDgZdffpmePY+hU6dOXHfddTusI7377rtUqlwFIQQ+v5/777//LxtbFllkkcXu8K8h2w8E2aI7i8ONVatWYeo6XS0Xj4QjnOhyI0nSARW/e0JGXZr5MTUNyS4qhRD0tVzcGAihlcsqKysr22fF6CeffJJWPdvZcJ/kxrFkmU6dOjF48GCuvPLKfbIuXrduHYMHD6Z506YMGjRorxWYv/32GzNnzuS0007j3HPPJT++PXO6a+fObNy4kS6dOlHZMJgfyeX5SJRcWaappvN/oRyCSjo/elfn/9NPP3HxxRfTs2dPhg4dSpsjjrC75zWnk/wUtwdVltGExGLbPjzjYjBs2DCqV6pEpUSC5s2bc0SrVvTt23eHF94777yTmtWqEQmH6dq1q9N9O2TIEOoYJqvjSSdrfprPz+vRGD0tF4au8+2333LnnXdi2cVZbk4Or776KtOnT8eQZWqqqlOcZez6PDbpG5VlTna5icoyharGx7lxQqpKNBqlaePGFBUVOdfTJ6R0rlkwuEuLpg0bNpCfSBBQFKdDv0jViNrHy7gBBCUJXaS7utsbJlFNc7ruhRC0KC2t0FF+9dVpW+0TXW76WWk1t2aT3Z1Nk2dzoqyIJ4krKq1atcLSNPIUhZNcbkKSTPUqVXZLSP3666/Uq1cPtywzyOXmo9w4M21xSvm/IU8//TSWaSILgSVJ9LVcVFdU/JLE03a3fo8/EY6bNm3i2Wef5aKLLkLY5PxJLje3BkNENI2xY8fi9XiQhXA6LUKyjEdRyQkG+fLLL519nXTSSSj2NZQz52+Y+D0exo4dS7Vyltxz7blORKP4NY3a9mJBZuEiEwuROaZPkojKMqos45dl8uz5OPnkk3d6ze69916KatdGEoKYrDixCWM9XlRFcRbkvv/+eyyXG1lN35/P2G4Gq+JJ/JLEWR4vz0WimIrCrFmz0uS8fZ9nzqW5rlOlShVuvPFGahcUIIRgkX28FXYkhhCCWgWFzndHxvmi4dh7KJ0+j3ojb0IIUaGTY2eIRyIMK+ce0NYwadOq1W632R3Kysro37cvihDUsYUMi2Jxahkm9erWJS8Ww9R1imrXZuHChfz8888Vvo/uvfde6tWuTdW8PE477bR97lB/5ZVX8NpCjKZNm7Jy5UrqFNVFt9wEqjZE0QzatG27W/eCnSEeSXddZK7TELeHOjVrVvjMDz/8wAcffMAPP/yw2319++23LFu2bLcLJxs3bqRS5Sq4cvKoctQYggXNEZLEgw8+yBdffEE8sf0+iMUTu40M+CcjlUoxfPjw9Pd4JA9F1Shu0vSgORdkkUUW25GtJf85yM5VRWzdupX77ruPWbNmVXAGyiKLvcGcOXOQhOAd20ksU9furAP96aefRojt9tfv5sYqdI3/GS+++CIF1atj6jolxcX73H2/ePFikrGY885X2qTJHjOdt23bhmwLnc/x+vgynnTiAHVZ5opAkDtCYeK6zpEdOuxyP7fffjuyJO0Q3abZToGZd+J2errmudkmjz+LJfCrGmeeeSabNm3aYb9//PEHy5cvr/Aul0qlaN2iBWFNY4rPTy+747xKfn6a5JYkxo0bx7fffosQgjM8Xt6MxngjkotbVbnwwgudfS1atIgmjRphGQa1a9bcIfop6PM59vSr40lKDYPahYU8+eSTFQTEgwYOJKSqVFYUKisKNwZDjLE7sH2KQkvTQpYkhgwZQllZGZ988gkjR4505kqRZce6vjwyZPv19vVaHk8S0/W/lGzPYMuWLZx++ulEdN2pNc/0eJFleQfHsbVr19KhbVtkWSbg9TJ79uyd7jOVSnFMjx7oskxn0yRfNwj5/cSjUWoaJpO8PopNC6/bzaJFi/jggw+cqDGAKVOmoEgS470+pvj86EJwpO18t3nzZs455xwa1KlDy2bNeOKJJw7dxdkJ8mIxRpSrm3tZLoobNOCnn36ioHp1XKpKNVv4PdN2Vvw8liBH15k4ceJeH+faa69FkiTH5bFLp077XLsebGS69Y9o04a+ffuyaNGiQ3q8DRs2MGnSJHr16sWECRP2+L23bNkyCux1E6/Xy7x58w7aWLZs2cLbb7/NG2+8UUG0/+qrr6IoCp54DQI1myKEYPr06Ttsn0ql2LBhQ9a1IIsssvhbIUu27wWyRXcWfwc8+uijuG2Lbk1Vd1pgHCysWrUKWZYZ4fbwdTzJLXbutyzSVtJCCKopCqYkUbtmzQN6NhYuXIgQgkfDaeurxbE4uiRhyTINLQtVkuh+9NF/eU7L77//zoIFC1i0aJHz8vbVV19RtVIlp9ALSJLT6TvC7aFyIrlbYUAqlaKsrIw777zTtgPXOEI3nKJiim1DrwrBUrsoe8wmXoUQ9LNcDHOnydRqikp1w8DrdvPFF184x7j22mvTY9M0VFmmqLCQ5557jjPPPBMhBINcbo40THyS5Bz3ZdtuP+T3c80117B582bWrl3rEFaffvopqqJgSRKvR2OsjiedgriRqhGSZb6yBQMZe3GfLcqQhMAyDF588UWefPJJRo4cyXHHHcdFF13E0qVLmT59OlXz84nl5DB06NAKxefSpUvxe73oQnCSy83qeJIvYgny7XvwfJ+fvuVs64UQmIbBE088wYIFC3j//fd3IN1SqRTdu3dHkyRUm2TOFFuZzPpzfX4i9kKKJATvRWOM9/ocS/XqVaqwfPly/vjjD84++2xKmzalWbNm3HrrrWzdupXhw4dTzTCc7PMLbLI947CwevVqLMPAZe/vVltosjiWwC1JVLVdAjJdBgA///wzTRo12r7IYIsENCEY4fagSTLFxcUIITje5eL+UA69bGu46tWr79ABkEql6Gw7LoQkiaNNE1NRGDZsGJdccgmmLHOhz89D4RzGuD1IksTSpUuZOnUqp5xyCvfee6/zXCxevBhZCHqYFveEcjjSMO3xy+iSRFvdoLluoMjyDjZ+GSK7nWGSkBUaappzX2by1cp/vzRo0ABJCEwhqKdp3BgM0cdyVbDVr25ZjB07ljPOOANDknDbiwrH250CbkVBkSTnGp/vC7A6nnSOV+Wo0zB9YQYMGACkSf5YPIErnCC3pAdWIEqVqtV22j2TSqVYv349GzduJBoKMbLcokFn06RV8+Y7/W5Yvnw5Q4cO5aiuXZkxY8YuI0VSqRQ33XQTLsNI38OShM/jQRKCrqbJFJ+fsCyjKwofffSRs10mYqOzaTHc7cFUFAbaTgf7goULFzrq9ry8PIQQ1DvlRkqnz6Pg+AsRQvDqq6/u0z7btm5NTcNkQTTGa9Fc8o2Kne1z5sxBs50ONF3nrrvu2udx/xmfffYZjRoXI0kS0dxYhUiWH3/8kblz5zJ37tw9kvv/ZGTs9KscNYbS6fMoGn4NkiTt1C40iyyyODBka8n9x3XXXUflypUxDIOSkhLeeeed3X5+7ty5FBQUYBgGde1YoH1Bdq62Y8uWLRzZoQNCbM+53tlidxZZ7Ao33HADiiQ5QtpX7JpzZ2TNk08+iRCC16JpAvpjO+JrX2KY9gVNGjWiwDCZH8nlgXAOPlXdqxz3I2zB/Gf2Ob2bG0MRgp6W5bzzT/X5cZnmLvdx+eWX41KUHaLb6hcVka8b3BfO4ZpACEOWqVKpEh5VZYDLRS19e0540OercB3nzp3rrBV53W6nM3r9+vUIIbja7oZeHU9SaJoMHTqUtWvXVqhnWrZs6dSaqhDEo1HWr18PpBsH4tEoVTSd+ppGUJYxNK2Ck9Q555yDJAS9LBdH2FbgmXqrb+/eznrO999/T31biJ9xp1uTyKNI1ehhWhXq5+YlJc6YwrLMQ+EIJ7ncSEKQF4tVyGRftGgRHsvCJUkMd3toYhjomnZQXL7K47fffuP000+nScOGjuvdjz/+yJNPPsm8efMc0nDIkCHUL3dfZNbUyhPg5bFt27bdkoYLFy6kZ48eVKlUiRrVqnHCCSfw5ZdfsnTpUlqWluL3eGhQVMSbb7650+23bNnCyJEj0VUVVVHo17cvGzZs4Nxzz6VOzZo0rFuXW2+99cAv0H7gjDPOQJNlRnu8DHena9tLLrmEyy+/HFNReC2ay9vRtDjmNnvtZFU8SWXDZOzYsXt1jG+//RZFlhnq9rAinuSeUA6yJO006uCvRO/evVFUjVCd1rhz8vB4vYcsM3zz5s2UNmmCW1VpY1p4VZWG9ert0Z3uhx9+oE2bNul1KEU5KGvR69evp3GDBtubHcqtWfXu3RtPvDolU5+mdPo8Ys164/Z4sqR6Fllk8Y9AlmzfC2SL7iz+Lvj111/59NNPd5kVvDf4/fffGTZsGCG/n0Q0ymWXXbbDS8trr72GENvtqNYk8gjrOgW1ajkvQ36fj3Hjxh3QWCDdZVijShWqGAbn+vzUtu3SnrNV7TfbSu833njjgI6zJ2zYsIGZM2cyduzYCkTizj738MMPo0gSdVWVL2IJPo8lKFLTlurJWIxHHnmEVatWOfsoKyvjnHPOwW2lc9ZqFxQQNwyn43mQy805Xh+WJJEnK3gkibqaxmkeL7mahsey6Fyu0/gUt4eILPNZLEFY0znnnHOA9P2hKgqD3Wli+sVILmY5m3FJkjDt3CVJpG3iVseTjLft47rZauH77ruvwjm/8847tGvXDl2W0YUgbtuVayLdOe2VJJbEErwTjTHNuz1/3WMT7mFJJhIM4re7YuP2fWfZx+thWoz2eHGpKu3bteOSSy7htttu4/fff2fEiBEIIbjEVjCvSeTRxjCwhOBkt4cTXS68ksQTORHejMaoa5q7zXzLdE2c6HIzOxCkkqKgCMG9oTAr4kkG2cV7efJ9lj9Nwo7yeLg+GKKyrlO3dm26du6MVo60FULQtLiYefPmocgypabJCS43pqLQtk0bWjVvTt3CQrp36+YQ5kJst+v7ys6bl0RazHK6LWh4//33KSkpQZck6msaNwRClOg6+YpCHXsuKsmyE2WQGb8pBEW2I8WwYcO47777KG3ShIZFRcyYMYOtW7dy2WWXkReLEQkGOeWUU9i4cSNz585FKZdjLoSgZcuWu7RmzFgqLrMXjDKLY7EWfZ0OlRXxJC5F4fLLL6+wbavmzWlnmhXI7pFuD+O9PkwhCAYCzJ07F0h/V0i2GKH89ZOFoEDVeDGSyyX2M3X11VcTDqb3l5BlLNsBwSVJLIsleCQcScc62B0jmTiISP0OlEx7lmiTbtSuU9cZ57Jlyzj66G7UKqhNr2OPZdWqVTtchy+++IIiW/WtKgrNmzdHlWWGlMstvPnmm3fYbs2aNUTDYRK6TkfTRJNlevfqtdticsWKFVx33XVcf/31DBs2jKSqssq+/rfaCznNyhH7vXv3ppHtbLEmkcdkrx9VUfZLyb948WISiYRzb9Q/9RZKp8+j4el3IcSeO/7/jCVLlhCPRp39Vc7LczLbFy9ejKwoRBp1pmjobCINj0RR1Z3aBe4P/s3WgS+99JI9f7em7fSnPYtmubn00ksP99CyyOJ/Dtlacv9w//33o+s6c+bMYfHixZx88skEAgH++9//7vTzb775JoqicNlll7FkyRKmTp2Kpmn71CWWnavtuPvuu5GE4D67XjjLrhd2FdOSRRZ/xvLly3FbFs1su/fahkk8Gt3p+sHPP/9MXjxOdcPgTI+XItMk5PcfspxgQ9crdJEfY1m0btFij9t99tln6KpKS91glj9IsWGiqyo1dYPPYglWxpN0tVxUTiZ3uY8do9ssgj4fH3zwAXXsWkIIQbejjuK7775j1KhR1KlVC1kIjjRN7g3l0Nay8LhcrF27ls8//xxNVeluufi/UA5HWS50TWPZsmXOd1rmXJfFk+QZBqeeemqFMWXEDqd6vPxfKIdGukE0HHZIuGeffRYh0k5m1VWVVnYNdVS5qLRt27Zx8cUXU7d2bRQhONq0WBVPOus5Dz30kPPZn3/+GVmSHHerRbEEIVlmmNvNmkSeE6vmVVXmhMI8FI6Qryi00g0+tGvN2no6fnDp0qUsXLiQeG4uNTSd5rpOUJJQhGDmzJn7emvsFqlUim5HHYVLUejvclHHMDF1nUgo5MxbUWEh3333nSMqH+PxclMwRFXDoG5h4X4RhosWLcIyDAoMg6PNdPTA4EGD9usctm3b5tRAEydORJEkjnO5Odp2rzsYwuZ9xebNmxk9ejQhv59oKMTUqVOdNbSkYbA6nmRVPEkNVSVHlpnu89PNciFJkuOUkbn/mjVvwZGdOvH8889XOMa7776LEIJnbXe8NYk8kobJ5MmT//LzzWD16tUIIaja/UxKp8+jeOLDGG4/U6ZMOSTHyzzHj9iNTs/akYyPPPLIHrfdvHkzAwcOdO7zs84664AaogYNHEhY05gbzuHxnAh5ukHnI48EoGvXrgSqF1M6fR6l0+dR6ciTUTXtL2/AyiKLLLLYH2TJ9r1AtujO4n8JgwcNwlIUxnq8nGB3et5yyy0VPvPNN9+gKgonutwsiiW4yibB5s6dy5dffsnHH3+8y87L/cGyZcto3bw5lmGQEwyiCuF0Bb9lK1gHDx580I73Z/z666/Uq1MHS1GobivC/1yAlseSJUtsMlPCK0l47GKuoarhKkdS9urZk40bN3LllVciCcFpHi/TfH7cioIkBB11g4SioJYjdp8KR3g6J0qJrqNLErULCiht2pS2xnayfYjbQ64ssyqepJJhOFlqo0ePRgjBf0Lbs9ZqqirNdZ1PYwkGudzIksRnn31Gh3btECJtYS6EcArdpoZJnz59nHN97bXXUBWFPE2jgU3cZs6vpqoSsMftK3feihCODVjGsl4IwVGmxU3BEM1NC0Wk1enFmu4QgJ1tBbxbktPdy5pGy5YtUWWZoCRxvs/PMPue1YSgl2URk+UKnQTn+fzomrbLuTv99NOpZm4nHe+2x/embW/4hO0kIAtBB7t7ICDJ1FG3d1xnFgzKk7RCCCyxXdTQt29fWrdoQb3atenXr18F8t2wrfB7mCa1VJWkojDJ66OVbiAJwSDLxZexBB/ZCwnt2rZFlST6Wy6a2mMabRPxLpF2PJjpD6CIdKZfRjQgC0GhqjpuFEII2pkm/SxX2kLOttT7448/ePHFF5k/fz4//PADAa+XdqZJNUXFJ0m0MwxcskzzkhI+//xzjuzQgVhODqVNmvDuu+/y6KOPVija7rKvaeUuo9Lka06U16K5KJK0w3dNo/r1+X/2rjO6iqqL3unl9d6SEHrvJfTeq/TeRYpAkCIgRREQxIICIqACIihNpQgCoqDSFEWpAqETVJo0lZq3vx9z3+Q9SCCBIOL39lquJcnM3DtzZyZzztln73KiiK1UMaEU7WBmCYGX41CEEjJef/11XL58GYQQvGKxYrXTjcU2B/KLEqpVqwYz9SgnlFgwatQomHkBkyxWeFjtftKuj0Pv6jAwDOpJMqZabVAYFpLVgxKDF6P4gPlQHX40btIkw++QlJQU5M+dGzkkCTNsdvSh69O4cWNkj4lB7vh4vPHGG2kmV8aPHw8jz2Onx4dkf4z+vs1oMrtDhw6wsSwO0g6bSZQcEhObTd+mZcuWKEoTFcn+GAwzmSHw/H0Xm48cOYLYkPwkLyKuVg9Y4ovAZDbj999/z/Txzp07h8WLF2Pp0qURUnbvv68V8EsNW6YnIAghWLBgwX3N+3HAn3/+iSFDhqBylSpo165dhP1DVuLMmTNQDUbYcpdBgS6vwVu2OQjJvDLBvbB06VI8+eSTeOaZZx7auUQRxb8d0Vjy/lCmTJmITtOUlBT4/X5MmDAhze1btWqFBg0aRPwsISEBPXv2zPCY0bVKxbhx42AXRP37N9SVvHHjxkc9tSgeI2zcuBH5cuWCLIooVazYXckvBw4cQLXKleFxOFC+TJks70gOR54cOVBeVpDk9WO7xwe/KKJDhw4Z2nf9+vWIo8TTXPHxmDdvHoyqCocgIkaSwDDMPf2D33//fag0zvG6XLok+40bN7Bnzx4cOnQoIm6YOnUqBJbVcyTbaI7k448/xrx580AI0RUE9nq1uX344YcAgC5duoBnWTSUFeSXJMiiGKGABQDPPvssYsKIuZ9QefydO3cCSCVpxnMcDvkCWOdyo6qkKZfdbkG0Zs0aEEKwhcbXyf4YqNTmKxzPPfccCCEoLitwCYKmECAreMNqQ05JgkEUdR/vZH8MhpvMMDMMxlFy9adOF3iGQY5s2fQ4MI7jsN3jw0lfADGSjCFDhmRoTTOKEydOgJBU3/Qkrx8SwyCPIOJbtxernG44BQFdunRBMBjE888/D442PxTKl+++v4X79esHvyghia7PC2atweFeEuDp4YcffsCrr74Ki8GgS/+HbM+qVq58X8d8GPjss89AaB5tocOJQrygWwDyDBNB5B8wYAAYloW9QGWYYvODZdkIy4pz585BEkW0UFT87PHpRP/58+c/gjPTkJSUBEII8rQZo5GfR66CavNg0KBBD2W8xYsXgxCCn2jeYT99V2SUYBEMBjF27NjUfGfTpne1WLwbCuXLh06qQb/3njGa4HE4AACzZs3S3o0JTyC2ZneIihFNmzW7r3GiiCKKKP5pRIvtGUA06I7ivwSDomCwyZzqBSbJaXqKzZo1S/ckI4Sgc8eOD1W2JxgMIhgM4scffwRDCJorCubaHagsSRAJQZVKlR7a2KHgdT3t5A8FL0eOHElz+8uXL0MWRdSRZAwymdFaUcERgpwcDx/L4X27A69bbZBYFs899xyqVKqEumGd6c+azOAYBhIhaKmoyMHzkEURDMOgm8GIJF9A925buHAhPvjgAxBCUFtW0IxKZlcRJTQKY/P+9NNPtFDNoJwo4guXB5MsNjAk1dcqlCTbsGEDbty4gXnz5oFlWTSnQewxXwB5JAnt27cHoJEurLQbnRBNNt/AMJhhs+NdmwMmhoGdkg0YQvCc2YxlThcK8gK8LIvjvgBO+gIQaPE0JDUfkgArzAsoyAs44Qtgr9cPlhB0NxhxkgbwIt3PGlbQDhW4Q13NDMPAxfPY5PZin9ePMrKC/Lf5PYdjxIgRsAkCdnu1AGMMXevxZit2eHxooii6R/xcuwPdDFqnu41ldb+1gSazXryN5zisc7mxyOGEkWFQQRQxkHb+TJ8+HQDQvXt35AqTlX/RrCUI8nI8vnV7UEnU7nGBEhbGWqw44PUj0Zh67UfTboRjvgBycTzcLAs3fT4nWqzoYzQhhuPwg8eHYfSeJISghiSjuqR1HsRynJ5AedpogsVoxKlTp5Avd+6IrmJCCJ42aGN/SZ+JpTTh4rBaEcPzGGA0oYgkw2ww4uDBg6hQtixElkU+ngdHCETFDE42gRAGZQQBJpZF7hw5IhICCxcuhBBGBIin8vkcyyIbxyHJ68dJXwCdVAPMVDasWuXKcAgCnjdbdFn4JUuW4Ny5c1ixYgXq1q6NGI8XHocDPkHQz3eaxQaWENRXFKx1uTEg7NoSollzqAYjCF0Dj9eXKfm25ORkEJIqa5fsj0EBWUnXpz4czz33HDyiqEtJLqZWDLt27brnvtOmTdPJCbl4Hk8oiiYvL4h4omlTfbvVq1eDEIIqsowOqgECy6J79+4ZPr+08OuvvyIuzFbD7nBkaaE2JSVF92fM0/p5JIxeg9ytRoEQgvXr12fZOFmBOXPmIE++/AjExKFv37737XuekpKC6tVrgBdl2AtUhmr3wu5w4tSpU1k8Yw2ff/45jPR9xbLsHcoTD4rx48eDEAKTLydkswMmsxkHDhzI0jGiiOJxQDSWzDyuX78OjuPw6aefRvy8U6dOaBxmNRKO2NhYTJ48OeJno0ePRpEiRdId59q1a7h06ZL+X6jLLLpWqZ2uz5st2Oz2opmiQhLFdCWQo/hvYPv27Rg7dixef/31dFUk/gtYv349FEmCyLJgGQYBrxfHjh3L1DHC7eMOHDiA4cOHY+DAgXd4maeHcOu2kydPYunSpVi/fn2aylMLFiwAIQSraVfuDJoryJ83L1555RUQkqqWFuoKD/nd37hxA2PGjEGVihXRpHFjbNu27Y55tGjRAjzDYDy11xpFY+TQN+j169dhtVhQWhTxqtUWoexWpWLFCA/5Y8eOgWNZdFIN2OHx6fH26tWrI8YNBoN4//330alTJyQmJmLMmDE6AaFw/vyoWaMGckoS9nj9OOwLoIIoQQjlplQDtrm9Gumf4zDP7sBihxNelkUNScaPHh+Mt3nOZwWOHDkSEfMd8wXAE4LnTKkqCa0VFaWKF9f3uXr1Ks6ePftAubQePXogT1jDwDSrtv7384zOnz8fLMtCYlnwhEQU26tLMqpUrHjf83wYGDduHFgao1sZFsudLhz0+qFSJRtA62oXBBGByu31orXRmwOtW7eOONYHH3wAgSoDEkLQvm3bLOuWPnbsGNq0bo3SJUqgS5cuOHPmzD33uXXrFgoVLgLF6kZc7Z5wFKgEhmGynPwcQnJyMkwGAyrICqZY7aiqKFBlOd28Z3r48MMPIVLFzFKlSt3Xd0GDevWQW5KwmyqFlpQVlCpWDID2bhg3bhzMFgtEUUKz5s3vm1jyOOHGjRuYOXMmBg8erFtUpoXjx49j+/bt6SpPRhFFFI8W0WJ7BhBNkETxX4LNbNY/qE/6Aiglyahfr16a2+7fvx+LFi3Cpk2bHlqhPfQhZTWZNKZps2YwKIreMWxjWPgEAW3bts3ScS9evIgFCxbgvffeQ2JiIpxhhbmQnFJ6hYfdu3ejS5cuEV3eZQQREk1IhQpmOTgecbGxqFqlCopLkl5M66AawBGC6dSj7BevH1ZBQL169cCEdYi3btlS//ifO3cuSpcogUL58iFn9uwQBQEBj0dn4s6ZMweEEMy222G5TQJ8utWGo74AetLu33C/y8TERBBCUE4UUVAUwXOcLtnftHFjuDgOnzhcWOpwQSYEXai023y7AxwhKCGI6GkwwsQwSBC1LvU5tLP5E4dLl5wkhOALWrgNdT7XlWQwhKAsJS4QQrDYkdqVn4Pj9Y5/hhC0V1UscjiRQxCQL3duHD9+HElJSRFsdpPBgG+//TbddT9+/DgcVit8oojydHwx7FqJhKARlVDb6fFiiFErrEtUpj2eFocLUduAUWHygy0UFSVpB1AFWUZTWuzs0qUL8smyLvM9kbLxWUqOUKgyQmJiIrp27RqxdqH/JlLCxElfAHnDAkSeEPg5Dt1VbW3NlBDhoIX4CRYtYVJBlGBlGH2uAwxGSKKImEAACsviDYsNa11uxIoSBJZFcUEEQ4jeLf29x6uPuYZaPOzz+iEwDN566y38/fffmDhxInLkyEGfW+2c3CyL4rxmDfH555/r65CcnAxJENBEUfGly4NnaPGbJZo1QVVJ0uc63mIFy7K4efMmzpw5o8n38zwcVivefPNNAFqRsnxCAhyCgH5Gk762zWQFs2wO5OJ5yIKgJ3AIIXjhhRfwww8/4LPPPsOJEyeQnJyMd999F3PnztX9CTOKS5cugWEYDKFEpl0eHxyCkKFuik2bNoFhGDShCgU5JAm54uPvqR5y7tw5cDwPT+nGyN1mDFg+1ccxZ67cSE5Ojth+yZIlKF2iBArkzo3BgwdnSp3k9OnTmD59OiZPnhwh4X7+/HmUoV6KJpMpS7vdRowYoREhjHYQhoFocoJhWDRu0uRfJSG3dOlSjWxQoCK8CU3BCeJ9K7Hs3r0bhBDkbjkSCaPXoMSgheBF+Y5OoPvB0aNHMXPmTMydOzfCi/7KlSvYvXs3zp0798BjhGPz5s0gDAtPmSaaKsGzH0OxeTJEQIkiiv8aorFk5nHq1CkQQrBly5aInw8ZMgRlypRJcx9BEPROzhDeeustuN3udMd5/vnn0/zuiq6VFqMNGDAg9Rs5jesbxX8LixYtAseysAoCZI5DwOtN0zrpv4KDBw9iypQpmDVrVprf/jdu3MCCBQvw8ssvR3iDZzXWrl2r+62Hite3eyhfvXoVRQsVgkgICvBaF3g5UQTHMJqKGo1jC9LOX5ZEyraHkJKSgsOHD+P48eMIBoO4ceMGqlepAjYsfrTReLdfv34R+06ZMgWEaITz1oqKo74AFjmcEFgWU6ZM0bcLBoN48cUX9QJp6Fj3yiedPXsWtWvW1K3vevfuDZvZDJXjYBEECBwHp9MJhWVRX5LhEUWogoCOYd2xA01myAwDpyDC53bftQj422+/4fnnn0e/fv0yJKMdun4JpUrBJYoYbDKjOs1bFZdk7KW2en5RRJvbirwPihBxuqmiYpTZApcoonxCQqZzdDdv3oRRVVFHlqGyHESjHSwh6Kga0IDmYypUqIAJEybc08f7n8T69etBiGb9F8pDhFvU3bhxAyzLIq52T1163BxXCE2bNsWtW7ciipaHDh3Cxx9/jC1btmRZjvP8+fOI9fsRoGoMDkFA4QIFMkTAPnHiBKpUrQZBEOH1+R/639kNGzYg4NVyO16XC2vXrr2v42zatAkOh5bXi4uLy5RlDwDs2bMHdosFEstC4TgYFAWbN2+O2CbUkPX/gFu3bqFe/fpgWQ5GZwAMy6JR48YReY9gMKjnbwkhsNpsUbWhKKL4FyJabM8AogmSKP5LGDlyJAjRPLQS6Af1Z5999sjmE5II6m4wYqTZAjPPo2Tx4lqXrSTBJQgwqmqmP97uhlOnTkUUaBXa+fu00YSlDhcq0E7jXNmz37HvRx99BJ7j9OCRJwQ2wsBINA+zerKMybSj3MdysLAcDLJW+CvAC6hA/c20YEErLB/1BeAWRTz33HP4+eef8f7772P9+vUIBoNYvHgxqlaujAply+LNN9+842MzJSUF/fr10485wGjC924vuobJrd+eQDx48CAA7WOtZ8+e+s8lno/oCIoPBNCHysu/bbNDIQzsLItJFitEWhQ9TAvIIWn1TS4PuhmMEUQEkcrCGRgGBWjnc+j3Tvo7oyxDErTr85XLo/vZlxZE5OF5CDSBsNPj02W2Q5JV4cSJ2zsSLl++jMWLF2P+/Pk6M3/fvn1o0qQJqlWrhhYtWsDrdOoJimysllyIYVmUEkSw9Bp2NRhRld4n3VQDTvoCkAlBgigiyevHDo8PAY5DE0XBAa8f2UQJXbt2BQCsW7cOhBDUUhT0MZpg5Hk0btgQVSpVgsKy6GEwopIsg2EYWE0myCwLA012sLRgrTIM+htNqEeLxQohqCNp7H5TWCLDzbL42ePDcV8AjWUFNpbFSV8A1SUJLCF4QlZQnxaiCdHIEtk4DiLR5N77Gk1wWCxg6NiVJAmTrTaUkRXwdJzlTpfuzc4SgmeeeQbBYFDv7g4pZ6x2uiEQgsG0kB7ezRC6JpuovGBI1l1hGN2uYKjJjDetNrgFAdWrVIlY19ufg0OHDoEQgndol8ERX0BPGIVIFAyd6+bNmx9K4nDIkCHaNVUUuEQRTpsNx48fz9C+8+fPh8Oq3fMlixa9o/v3119/Rbdu3dCgQQO88847AKCrWRToNhkJo9eg9PDlkM12tG7dOsPJkWAwiGnTpqFqtWqoV69eBCEihMOHD8PndoNnGMgcB0WS8OWXX+q/v3z5MqpXrw5CCGRZzpK/J8FgEKrBCF+5FigzchXiG/SHYLChRIkS/zqf9caNm8AcVwhlRn2OhNFrEFO9CwRBvC9CwPbt27U17fKatqYjPoNkMGPs2LEPNMdvv/0WBqMRDKM9E4GY2IeaPL927RqcLo20lqPJoNSkV3yRCJuSKKL4f0E0lsw8/qlie7Sz/d7Yu3cv1q1bh5MnTz7qqUTxEBEMBuGy29FAUXHMF8APHh88ooinnnrqUU/toeL69evYunUrtmzZEtGdfePGDd12zUSJzqNGjcry8W/dugWnzYYqioIdHh8+cjghsSyGDx9+x7Zff/21Tlh/0WzFMV8APklC8+aaFVAHVUV71YBmsprm+/P06dNIKFVKj4+qVq6MypUrRxDeQwps48ePvyPeCgaDePrpp0GI1g29lFqI5VIU9O/fHwBw4cIFVKlYUR8jX548+OqrrzJ0LWrXrAmHIOAlixW9jRqRfMKECXj55Zcxbtw47Nq1C5cuXcKAAQNQo1o1dO/eHdWqVEE+ScY+rx9JvgDKSDIcFgv69+9/13fWr7/+ioDXCzMvICcl2o8bNw7Xr1/H0qVLMWPGDF1C/3acPn0aTRo2hMNiQb5cuTBp0iRYjKn5jzi/P8MxYGbw3nvvwedyQRZF1K1dO8K6a/369RgzZgymT5+OP//8M91jnD17FoQQPVdUYtBC+Cu2gWp2afkQhkFxRYHEcahSsWKEesOjxI0bN1CiaFE4BAFdDUYUkGRYjEYcPXpU36Zps2YQZBWBKh3hLFoLhBDUrFEDAs+DY1m0bdPmviXP74W5c+eCEILvPVpuYyVt3nmYJJ0HQTAYxJUrVx64kJ2UlIQ8efJoTR9mc6YL9ydPnsSbb76J11577f/ebuzzzz8HIamWAiFFv/C8y0cffaS9Y2o+iYJPToElvihsdse/ihgTRRRRRIvtGUI0QRLFfwkpKSl49dVXUaFsWdSoVg3Lly9/pPOpX68eqoRJrI8yWyDwPFatWoU+ffpg0KBBEZ2UWYHOnTvDI4rY5PZir9eP0rICgfqoE6JJhtcSJaiyrHeBX7hwAZcuXYJBUdBEUXHEF8BnTjckovlFmSkDnKHF2cayghO+APZ5/YjleQgMg5KCiPyUie52OOATRQwzmVFNUcBzHLZv3x4xzyVLloAQgoqSjHo0CBw/fnzENm+//TYIIRhuMqNpGCOeEIIitKO4nCihqaLAwwsomC+fzuwNydO/aLZincuNirICu8Wif6xVLFcORWQZbagkeUFegIf6jTsYBi6WxSFabA9J2bkEbcyBAwdi8ODBmDBhApYtWwZCCPLTREWokzwuEMCgQYMwZcoU/P333+jZs2eEJF15UcQJXwD7vX69W/9jhxMtVRWyKGLOnDn4/fffcejQoTRZw7/++ityxcfrx7OZzVi2bBny0O5rQghKlyiB8+fP4/fff0e2uDiIDIviggA5bB4htYITvgDy8TyayJpHfKi7PSR3zxGCvDyvX6NmzZrhzz//xPnz57Fo0SIUyJMHDqsV1apVw86dO0FIqsT/cV8ARpZFLM9jl8en+7W/YLbgF68fTWRN3p4nmk97KMkxhUrIyZKE4sWLo2bYsxTy7m5K75127drBbDBE3CMjzBYc9gWQh+dRR5ZRQJKgiKLGLmZZvVM6e2wsVEmCm2XhYll0Vg3IxnH67/v27YuBAweCJwR5eF7vqPeyLGI5HiaDIaKzYO/evfr5JftjsIhKp5cQBBTnhQjCRpFChfDrr7/e9ZkOSfq9TdUiknwBWKnP/SiTJeK+atKw4V0LtikpKVi3bh0++OAD/PLLL3cdNxzBYBDvvfeeLoUYHvxndP+0EhrHjx+HrKhgeRGCwaav5cWLFyErKhwFKqH4gPnI8cRgMAyTYc81AHjxxRc1VnTuBJhi8oNhmDsK7m1at0aMKGKHx4ckrx/lZQX5cuWK2Obq1ato3LixRkDi+Qdm5KekpIAXBMTVfFIv1FpylEC9dFRYHiWeeKIpTDH59GJ7oEpHiKJ0X8X2q1evIj57DqjOALLV6QVbnjLgeB47dux4oDnmy18AlmyFUGroJyiWOA+K1aXbhTwM/PLLL9p7yRkLyepBrhYjEFO9CwgheOuttx7auFFE8W9FNJbMPP4pGfnbEV2rKP5fcf36dRBC8IrFpscSNWUZDerXf9RTe2g4ffo0ihYqpMcIBfLm1ZWh3n//fTBEk2Y/6QtgMFVrO3z48D2Pm5KSgrNnz2aIIHr69OkIwnCyPwYlBBGyJGHv3r0R2168eBEmgwHVqS3WMDqnpUuXonqVKuBZFtllBQzRFPJuL6Q1bdwYTkHEuzYHpljtkBkGIsNAJoyu8LeZ2r2tW7fujrkGg0F079YtIpasLclgGQYzZswAAHTp1AkWXsAsmwPv2hywCwLatWlzz+tw48YNMAyD8RYrvnN7UV2SoTAMHFbrHTmScPz888+wGI1QOQ5mnociSRE+3elh6NChsAkCtlPv6t5GI1iGQULp0npOh2PZDMVVKSkpOH78ON577z3MmzcPf/zxxz33yUq8/PLLIITAIYrgWRZFCxVKV146GAwixudDTpqzKdxrBhJGr0G2Oj0jSBeh2Px26f97YcOGDWjWtCnq1a2LmTNnplnM/fXXX7Fq1Sps27YtU8Xes2fPokO7dsifKxdqVq+On376KeL3ly9fRrv27WEyW+DzB1CnTh3wLItnTWaMMlugctxDU9h65513wBCCfVQV8Bu3Zt+4atWqhzLevwnnz5/XSTscx+nvgigyhxBho9TwZUgYvQZF+2n/fvfdd/VtnnnmGRhdMXp+JH/nV0EIwZ49ex7hzKOIIorbES22ZwDRoDuKKB4emjdvjoJhftY9DUaYDIYskwu6efPmHcFGpfLl8YSi6AHtC2YLeJaFxLBoqagoJYgRQaSfyiyFutnft6cGw4UEATzPo3fv3li1ahW+/vprsAyDcbSImuyPQR1ZRg6O1//dRFFQukQJ1K5ZExajEXly5MCKFSvumHu1ypVRUUr15uqsGuC/rTunTZs2KCOnnstQozli7hUrVoTNTKXQOQ4moxE1qlXDgQMHkJiYiJxh12EJ9eXet28fAOD777+HJGgF5c5Unu2g149YjkNenodICEoJInoYjDAwjNYFzvMYOXJkxBxv3bqF8gkJIISgj9GEk1RyjmUYNG3aFKNGjcLGjRthUlXkZjnkpMSFeTTpcDSsS9lJf8fRtQiticVkuiOY6dSpEzyiiG/cHuzy+FBclmExGBArSVjudGGhwwmbIKBr1674448/QAjB61YtwVREEFCLqhDcXmx3sSz6Gk0wEAJFjLxXQvYHVUQRLMOAo/POkzNnhJqCzaytU0ge/pgvAJVh9PvyJ1psDxWPT/oCyM3zkInmwz6Set9NoV3+dosF3bp1g8CyeMNqwxKHC/G0Y11kGBQuWFCXu37LZscPbi86U0b7FrcX1SQJDD0fM89ju8eHk74AuhqMEHge165dQ4N69eAQBOTnefCUWPCVy613QBBC0ERR0IAW92tT5QyTwZAmq7t///5aoZdhwBCCYoIAAyFQWRb1ZAUKy6JCuXJ6omrfvn0oX6YMTKqKogULRsiMBYNB1KhWDSaeRxeDAUVFrZN/ssUGnhC0Vw1I8gXwns0BlmEwe/bsNN8Xx44dg9/nA0+TLCzHZap4/TBQu3ZtcLIRxZ9ZgDKjPoe7RD0QhsGpU6ewZMkSiGFqGW3btctwkffGjRuQZBmSyQFb3vIo+OSbMMXkR/3bkqrly5RBM0XV3xOjzRaospzm8dq3b68lqMKSbveL5i1aQJBVxFTvAk/pRloiknb1/5vw2WefafdxzpJwFa8LltP+HtwvkpKSkFC2HHhBQGxctiwhxMmKirhaPfTA3FmkBhLKlnvg46aHUNeMJ6EpVE8qual8+fL/KguAKP7dOHnyJLZu3ZrlFgePAtFY8v5QpkwZ9O3bV/93SkoKAoEAJkyYkOb2rVq1QsOGDSN+Vq5cOfTs2TPDY0bXKor/Z+TPkwdmlkU+nkeCKEJgGIwePfofncOiRYvwRJMmaN68OdasWfNQx2rTqhVcooilDheWOV3wCAIa03fI2LFjYRcE/ft3g0srnt3LS3n9+vVwU2llm9l81++48+fP4+OPP9ZlvZO8fqx0uqEyDBy0s/h2fP755zCFkaefffZZBINBXL9+HW+99RYGDhyI2bNnp1nod9lsGEgVyJL9MWirGnSLtP5GE9a53GisaKT2kCJcODZs2KDHr8d9AT0erVqlik7mz5M9O54M8wDvbTQie0zMXa8ZoL3fFUlCN9WA7ByPGI5Df6MJhUQRZqPxDvW6cBw9elTvfh81ahRKlyiB0iVKYMaMGenmlLp3747CYXmQ2dTmTmJZfOpw4agvoBH8JSmiUzwYDGLZsmV49dVX8cknn6Bly5bgGQYCw8DrdGao0B+OM2fOYP369dixY8d95b/Onz8PlmXRy2DESV8AX7g8UDgOL7/8crr7bNmyBXaLBYRhwclG2PNXBEfj9l9osXiv1w9CCBYsWJDhuWzYsAEcy6KQJKEKVeO7XZ3r888/j7BMaPbEE+n6Uj8oihUqhNZhMWxvoxEBj+ehjHX8+HGYDQaUkGU8Z7IgryTD7/HgwoULD2W8fxuuXbuGjh076us6ePDgaMyXSezduxcsx8FVrDZ8FVqBUEU6UZKxcOFCAMCkSZPACRIK95qBMqM+h79iGzAMk2kLxCiiiOLhIlpszwCiQXcUUTw8fP311+BYFoUlCdXpR35WBfWTJk2CTKW/SxYtiiNHjgAAnnrqKdgFASudbmxxe1FIlpE9Lg58mOz082YLkrx+nTE+2GhCX4MRLCGoLEnY7vFhjt2heaIxDKZNm6aPW6lcOcSIEubZHXjFYgNHCHLxAo77Ajjg9SOPJOGJJk3uOf+K5cqhXlgh/WmjCS6bLWKbPn36wC0I2O3ViqPdaXH0o48+wpYtW7BlyxbwHIcCPI+GsgKWEJhZFn6PBy+88AJkjsMXLg9O+gLoZTCCZVmcP38eP/30E/r27QuRdqO/ZLZgo8uD1U43KggiLCyLd2x25OE0iXcPy+JNiw0NFBUCz+sF+xA2btyoseSp33eyPwYOloXAMHCIol6UXuNy45gvgPw8DydlIleihWCv1wtREFBOlLDK6QJLCFopKj5yOFFdkiFyXARpoVzp0mgeFmCNMlvAEU3mPLS2OTkefo9HLw6NoYX1ooKgF6slEikjH8eysDIsGELw3nvvwaSq+n2Tn+dRV5Kg0H8/qRow3WaHiWVhZ1msdWn3XG4qja8Qgm4GI8rRgqmB4zDH7sCnDidkQuBkWYwxW9CKqgu0UBSYGQZf0YSPj2Vho0QHQlItEQghetd5tcqVcfbsWUycOBFGjtNVEgjROvIb0ueuTp06KFGiBHKKok5+mWXTEg+nT5/G77//jrKU7U8IQRINxg96/eDpWoSudUNZ86/r3bt3ut7gwWAQkydPjgi4C+XPj3bt2qFWjRoYMmSInty4ePEiAh4v8khaAFtSVmAyGCISL5cuXUL37t1RME8eVCpfHlaTCQ4apKx2pt53AUnGsGHD7pjPlStX4HE64WJZdFINCPAiBF4ELwiPNFAuUKAATLEF9EJprubDQUiqLN3x48exYsUKfPfdd5lK0nTu1Elbf1lBLkEExwkwZSuMatWrR2zXu3dvmHkeHzmcWONyI6ckoXw6Er4pKSno06ePvp53S/TcC5cuXUKr1q0hKypsdgcmTpz4r/VsW7JkCUqVLoP8BQrhueee+9dILoZQomQpGL3ZUaTPOyjQ9XVIBstDl4V97rnntHeaMwBelJEtPvs/3ukTxeOLkOoGIQSyrGTYS/XfimgseX9YuHAhJEnC3LlzsW/fPjz11FOwWq26dG7Hjh0j/p5v3rwZPM/j1VdfxS+//ILnn38egiBkyooqulZR/BeREd/bP//8E9ljY2FnNfK5g2VhVBScOXPmH5ql1h1KCEEZSUZRGtNMmjQJ3bt3R8eOHbFy5UqkpKTgnXfewVNPPYUXXnjhgb4t8ubIEVEY7ms0wShJuHnzpk6mHGm24Bu3B00UFZIoRkh3347k5GQYVRWVZQUzbHbUURRIgnCHPRQA7Ny5Ex6nU/9bF27BVlQQ0NtghM/lSnOcCxcuYOvWrXctQKeFGJ8PTpZFQ1nBPJsD+XkBlUUJz5pSyfqyKGLJkiVp7h9an6M0TtxDC7IfffSRvk3FcuVQQpZxyBfAYV8ACbKM0iVKZGh+L7zwgj6PVTR22+f1Q2TZiFxLepg8eTII0ewSQ/FueopKc+bMASEEw0xmfGh3ooAkw2Q0okBYAf4j2t0dkrcOBoPoSInFKiUpsITAzTAYYDShhCBC4LgMqzJ++eWXMBuM+jm3btnynmoIFy5cwCuvvIJnn30WK1as0NWkllBJ/2R/DHLJMhITE+96nD/++AMff/wxmjdvjqpVq6F9+/aQBAF1FBVz7Q7UURTIopghJYcQnmjSBIXDmmi6G4ywmkwAgN27d2PVqlUwG4yoJivY5vbibZsd3G15tPvBxYsXsWfPnjv+blcsVw4VZBknfAGc9AXQSFGRN2fOBxrrbti6dSuKFSoEk6qiXOnSdyhT/NcRDAYjvt+bNm360GT7/6uYM2cOeJp/dZWohwJdX4ejUBUIgogjR47g0qVLyF+gIDhegGrVGqVefPHFRz3tKKKI4jZEi+0ZQDTojuJxw+rVq/HCCy9gxowZj8UHzoYNG/BEkyaoU6sWpk2bliUFlY8//hiEaF7wb1htyCZJKJw/P1JSUnDu3LkIyTiX3Q6TwYBaiooXKEP7CA0S9tEg8i3aYZyHdnqH9q0sSVBYFq+//ro+9rFjx1Aof359m7K0qztWkuAURRgUJUOywFOmTAEhBJ1UA/oaTRBZFn369NF/P3XqVL24KjEM4mmXdXiBq3PnzsgpinpQPNRk1uf//vvvo0jBguAYRu/IVmUZY8aMgSSK8NMO/5wcFyGrzhECiUqPhYLMWpKMb9weHPIFwBCCWbNmRZzL2bNnIYsimigqvnN7MYF6sr9uteGoL4Cy9DxC13mFQ/MNE1gWHqcT48aNw7lz50AIwQybHeMsVvCE6MHcd+5U9YGQV1SXLl3gFASsc7nxvceLwrIMoyyjpCShhCBAIpo0Pk8Y1KpZE+3btQPPMGihqAjQALqSKKKrwYjsHI9Y+rPQf/369UPN6tURw/NY43JjudMFF8vqkvfa/hL2ef3IwXForaYWo4eZzBoJg+ORneXgZllkCwRQlUpwha6rgWhd33aWxUtmK2pJMgIcp0n2EYLsdE4VRBEBloPCMBAFAevXr8f58+cjElDLly/X7hWiSUROs9phYhhwhKBevXq6SgAhBDk4Xk885MyWTX8mg8EgVq5cCUIIBpnM2OXxYaDJDJ4QdKDqB8n+GDRTVBTInSdDz+q5c+ewcuVKfPHFFxFeieEIeVhtcHmQ7I/BL14/WIbBzJkz0z3usWPHULZMGU1KUVXxi9ePGTY7GEIwd+7cO7YPJdW+oGOE7ilCSLqefXfDrVu3suRdpnWLM4iv3w/5O78C1RkHhuXumuy7F0JKDi+arbrsvpveS7cnpS5cuBBBssgWE3PXJFIwGNQLrYQQDBs27F9bJH+cEAwGce7cuXSfkbth9+7d8Hh9+poUKVrsoXcLB4NBLFmyBM888wxeeumlaKE9igxj/fr1IIQgUKkdCj01Hfb8FSHJygO98x41orHk/WPq1KmIi4uDKIooU6YMtm3bpv+uSpUq6Ny5c8T2ixcvRp48eSCKIgoWLJhpCdfoWkXxX8K1a9fw5JNPQpEkGKivdnpdpJ9++ikIIfiSfgdvpMTepUuX/mPzzRUfjyaKipO+AE74AqggyeAIgU8Q4KUFiIoVK4IhBAUVBQaeR96cOXHx4sX7Gq9i+fLIw/PY6/Vjv9ePIoJm9zZv3jwEg0EMHDhQ/3aSRFHvLkwPofzDDipNnkTzCO+9994d25YqXhwFZBmb3V587nRDIARWlsVYswXfuDzILcmoVrnyfZ1XWpg1axYIISguCMhHryVDY/jXrTbEiSJi/f67Wndt3rxZL1Dv9vqQaDRFxElXr17FW2+9BZHn4RAEuEQRoiBk2LM9GAxiyJAhIIRguVMrHu/2+sAzTIZsiPLnyhVBtG8sKyhasGC6Yz3zzDP6+sbHxGD48OHgGAazbA786PGhtqLAbDTqdnWh75M3qRLeRJrPeCkUT3n9UBkGEydOvOdcr1+/DofVikqygm/cHrxptYFlGEyfPj3dff744w/kzZkTMschhpLlR44cCbvFggqShHUuN8bSOT377LP3nMPtWLZsGSwmbU0tJtNdVRkuXbqEnTt34vz58/rPatesiepSqqXdCLMFoiCgR48eEfmNQUaTvk1BRUGvXr0yPdcQ5syZA4nmwBRJinhGly9fDoZhUFiSUJJer7SexazArVu3cOrUqTStDf/fMH/+fIh0TUqXLh1hJRjFvREiDZUe8RkSRq9BiUELI/4WX758GW+++SZGjBjxf2FTEEUUjyOixfYMIBp0R/E4IcQIdlHPplLFiz8WBfesRo8ePZA/rCv8HdqhG5JEu3r1KtauXYvly5fjp59+AiEE8+wOfEql1EebLTjo9WMoZXp/7nRjv9ePGFGEqihwcByycRwsVCr89mLcrVu3kJSUpPu+ff311xgwYACGDh2abqHq5s2bSE5Oxg8//IAKCQlwWq3IFhsLt90Ol82GPn366IWWVatWgRCCjqpBIxMIAmxmM955550IyaY2bdqgqCTpUvShoJAQgsWLF+P8+fN6wd5BvcY5QhDP8zjkC6AgL8BMtGL8NKsdc20OmBgGEstCEgRIDIMmioJYjoOdZfE+vc6LFy++4/wWLlwIkRbpWaJ1dRfgeZQWROTnebCEgGcYlBUlWFgWLrsd58+fx44dO9CuXTvUr1cPVpMJCbKikyJWUtZ7yDO+gCiicMGCmDRpEl577TXkzZlTP1+nzYZ3331Xn8MyGsS/T2XjQkmmbByHyqKIorwAmTBY6nDhe48XCbICr9OJ6dOn46uvvkIwGITH4YiQ4+usGiASgjesNrxhscJEfcML8DzcLIstbi92eXwoIgh68X64yazL2aekpKBv377afInWkS0RApVhIJPUbnWeZeFmOXRVDTAQrUheX1bQy2CERAjKlyuHCxcuYPPmzTh48CAALangstnQNqwoPsBogttuhyxJaK6oOEQl/kPjxPn9aRaawzsPCCGoVq0aWIZBJ9WAtlSe/pVXXtG3/+abb/D888/j9ddfjwjKM4pQciOUePneoxXCZ8+ejQsXLuCTTz7BsmXL7vg7PWzYMKhh3vKhey+tTvUQGeFbtxfJ/hjs9KQWJ0OqGBnBpUuX0LRZM3A8D0lWMHTo0EzLqJ0/fx6LFi3C4sWLcfr0aWSLS7UgYFgOL7zwAgDN827mzJmYMWMGTp48meHj//bbbxHklpO+ALLzPEqVKpVmYfzmzZvYunUrNm7ciCtXrmRojEmTJulz7tWr1z8iJXf9+nXMmjULI0eOxNKlS/8zRf4DBw4gX/4C2rMvCOlKKN8NFy5cwOrVq/Hll1/eV8E+iij+KUycOBGCYkCZUZ8jYfQaFHn6Xa0A9OWXj3pq941oLPn4ILpWUfyX0K9fP0gch8EmMxKNJnB3kYVftGgRCCH4gRaKQ5ZWH3744T82X7/bjT5hhbiWiqoTvoWwb/kJ1IbrG7cHIstiypQp9zXe7NmzwVIisswwMDIMzDwf0Sm4f/9+rF+/Pk1Z9dsRilcWUt/r1U53uoQFo6piJFVUS/bHoL4kR9iT+dzuO5TibsehQ4ewdOlSbNq06Z7fvDni4vAEJTIc9wVQRpSQPVs2XZK+eOHCesx4NwwbNiwiBnzppZcAaFLuuXOkWgf5vV4MGDAAP//8M/766y+cO3cuQ9/lV69eRaH8+eEWRXQzGJFHkuGwWjN0/fNkz452YXFuK0VFwbx577rP2bNnkZSUhBs3buDGjRto3LChfg6KJGHlypX6tu+99x4IITh8W1NGX4NJl16XGCYiBr548SJ27Nhxh0LEkSNHQAjBfLsz1Z5QUe6qPDV+/HioPI9v3BohJtFoAsMw6NSpU0Ss6+c42C2W+5Jnv3HjBpKTk++q0rV06VKoVCae5zi8/fbbAIBp06aBEIKnDEaMNFtg4nkkUML2BIsV37g9qC3JEAjBbo8Pq5xuyByXblyTkpJy13tmz5494FgWrVQVnzhcaEIVFg8dOqRvs3btWrRq1QrNmzfHxx9/nOnrkRFs3boVfo9HJ+XcjTDx/4CrV6/iq6++goPaacTFxWVKYej/HaGcVL72L1FVQ62J4dtvv33UU4siiigyiGixPQOIBt1RPGr89NNPqFC2LPxuN2pWrx7xARmOX3/9FYQQDKBB6mqnGwLLYurUqf/wjB89Bg0aBKcgYg+Vug7JwafFfL969SoMioImtNjYJEzWOvRfCVmBX5RgMhgwc+ZM8CyL7ByPBrICnmHQtk2bB5rvF198AafNphcDfTyPYoKgFVl5/o5ER//+/ZFDTvVzb6mouvxcnhw5sGfPHgCavDEhBC0VFcNMZpgYBgaWRYzPhz/++AMtW7YEIZq0erI/Bp853WCJJguf7I/B124PREJQU5Jx1BdAYUGAnWHRWTUgB8fDwDD43qMVkCVCIDAMShYrprN6b968iRdffBHly5RBnVq1UKtWLbBE6yjvbjDCzDCwMyxycJwucW+kkvJz587Frl27oEgScogSqtKgLpSI4GjiJS/PgyMEdWUZCbxWSDdwHFiGQf48efDhhx9i6dKlepA7ePBgEEL0e+NnmkyaP38+CEnt9t3j8UEJ6/a2mkx3fOSWLlECxWUZv3j92OnxIZ7jYGc0yXieEMSynC4pb6DzJ4RApPMPrVmhAgVw/vx5nDlzBhZjqpxcdUlCe1Vb2yaKgsqUlT1x4kSYwu7T4oKg3wujzBYwhETI2z/11FNISUlBtthYFBEEHKaJlpqyglzx8SCEYJEjNdjPKyto27btXYtyO3fuxNKlS7Fz507cunULo0ePRvaYGOSMi8NLL72kF1dDnRQOUYTEssgeG4vTp09n6vm4du0aihYqBIcgoJWiIiCKiPH58N133yEmrGM3PiYGR48e1ffr0aMHCigKNro8mGq16zKJJ06cuGOMCxcuwKQoiOc4DDSZkY/eV4QQXL58OcNzbd2mDQTFgLjaT8FfoTUYholQvrgX9u/frwfshBDYLRa88cYbmDdvHiZMmICffvoJgObr5bTZwDEMOIaB1WTKkGIGoBEvyickwCWKGGW24AlqU/D5559neJ4ZwcyZM8HQZ6hdu3YPVV79+vXrqFipMliWg2LRZB/DlUAeV9y6dQu58+SFwRWLXM2Hw1u2GQghDy1hFEUUjxrz5s0DwzDI3/lVJIxeg7jaPUEIwS+//PKop3bfiMaSjw+iaxXFfwnZ/H70CJNJb62qKJw/f5rbnj59Gk6bDYVlGSPNFhSVZdgtln+0K/HJJ5+EynEYYbZgUJga20izBSd9AQyh3/Ehe6iTvgBcoojnn3/+vsb7/fffIfA8igoCBhhNGEy7ej/99NP7Ot7NmzdRpWJFSCyLMpIMleNQrHDhNLtdixYsiOKyjN1ePza7vfCJIlq1bImPP/4YS5YsuSc5ef78+RBohzohBG1bt74rsdVtt6N/GJGhuaKiVPHiCAaD+PvvvzN1njt27MCSJUuwa9cu/Wc1qlVDrCRhudOFhQ4nbIKAbl27om/fvnosUK5Mmbt2zofw22+/oU2rVsifKxfq1Kql5zXuhRdeeAEsw6CzakBH1QAmjAyQUaSkpOCbb77B008/jaZNm6J///56bLl9+3atuG40Yavbi6eoBLyBEHRWDcjF8zAqii7v/8knn+hFafY2JcQ///wToiCgnWrACV8A61xuqByHcePGpTu3/v37I1eYzP0iKnP/xBNPoKgsY5nThW/dXsyhjQShpo+sxLFjxyAJAhoqKpY5Xdp1Zhj88MMPCAaDeP7552EyGCAKAlo0a4bExETEyqnd7ispAYWn90SZkiV127gQ/v77b3Tp0gWyKEKVZQwYMCBN4sDs2bNBCMEhmgPZTckPixYtytJzPnfuHLp07oyiBQqgQb16EffjpUuX4LLbUVKWMcfuQAfadPDNN99k6RweB1y6dAlPNG6s5elYFu3atUPu3LlBCIHZbNbVJ6O4O27evIkaNWqC5XgYXTFgWBbNmjf/zzQRRBHF/wOixfYMIBp0R/EocerUKdgtFhSQZCQaTYiXJGSLiUmz+PPjjz9GdPvezZ/4v47Dhw/DZjbDL4ooRz27+vXrl+72CxcuBB8mE164QAG88847+O677/D++++jXbt26Nq1K1asWIHExES4RBEHaLE21C2e2QJiCL/99htMBgMqywrm2h1oIitgaCG5uighG8eBIQQbNmzAuXPncP36dYwYMQI26tX+Lu0m72kwYobVjlhBgMvh0Bmk06dPh9fphMhxMCkKalWvjoMHD+L555/Xz/dzZ6SXOkMIxlusmGq1Q2QYuDkutWudFmV3e/0QCcELZguO+AIwMgx4jsOmTZuwa9cuNGnUCG6X5q3eRFFQnHqvy4To1y7UVf6Zw0W9slUc9wVQRVZQokgR9OzZEzGipPuDh5IsjRs3hsjzYAgBTwiaKgq6U8JBa0U7xlcuD4w8H9HB8e2330IIW+fyoogqogRZFHH8+HG0a9MGEsuirWpAGVkGSwulS5cuTTPZtG3bNpgMBvBUjl2gRIHWqooxZgscLAuJ4zFjxgxs2rQJhBBdZj4k3U8IgUnRJHKbNGwIK8tiqtWOsRYrOLpdyE/wpC+A8pKMmtWrIzExEQrLQiQEBXgBJ2igOcxkBkMIcvI81rncGEfvz379+unj+lgOMfQ6BLxal7iBYfC21Y7ZdkeW+KcBwJkzZyBLEtrQRMJWtxc2QcDgwYPT3efChQs4ffr0HQHF2bNn0bVrV5QuUQKtW7XC0aNHUbN6deSQJHzr9uJrtwexkoTGDRvq+yxYsACEEDxjNGGu3YG8koxc8fFp+uF9/fXXaNOmjX7NQx00nTp2zNQ5K6oBMdW66B7rtrzlUaVq1QzvX7N6deSUJGxze7HF7UUMJaKUT0iISIbVqVULuSUZuzw+7PH6UVCWUalcuQyP8/vvv6Nu7dpQJAkBjyfTsno///wz5s6di3Xr1t01uffRRx/p3mONGjV6aPJ6IbJM/s6vIGH0GmSr2xuEkMfeL+/48eMaiar1C/o9ZfLEP5DkYhRR/Jtx/fp1VKhYKYI4c7fvt8cB0Vjy8UF0raL4LyFfrlxorCg4ST2Lq8kyEkqVSnf7HTt2oGTRojCqKkoUKYIffvjhH5wt8Ndff6FDu3bgOQ6SKCJXrlwgJFWW/RePDxwhKCVJ+MDuRDda7HwQ5ZMPPvggomjdq1evBypqrFu3TldRI4QgLhBIs+i5bdu2CIJ1fGxshlWqzp8/D0kU0VxRscvjw1SrZpP1/vvvp7tPl86doXI8njdbMMRkBscw901SSAsOi3bcUD6hnWpArM8Hhmiy81OsdrgFATE+H/r37x9RqM8qhMjf2fx+ZAsEMGbMmPtS1gpJ2ZdQFLhFEQ6rVVc5mzhxor5mLMuidevWiAkEYDMaUbJ4cV0RLjk5GbIoor6iYqXTjR70Xt2yZYs+ToiUrNJcT7HChe9K8P7www9BCMFzJgs+dbhQWta6/p966ikoLIvVTjeO+AJorKgwqiquX7+e6XO/F5YtWwZCCH6kz+RxXwDcbfL3wWBQv+7Tpk0Dz7JY5nThpC+AngYjWIbB+PHj8eGHH6YZF/bq1Qsyx2FomCJHSNUtHCELuAVUHSCkZJlR24KM4MaNGyhdogTsgoCOqgG5JQl2iwVr165FsUKFwLEsOEIwgTZrnPAFYBeE/0sf7batW8PE8xhnseJZ+o4ZNmwYKlObRI7j7moBGEUqrl+/junTp2PQoEF4991308xdRRFFFP9eRIvtGUA06I7iUWLWrFlgCMFur/ZB+yX1T1u9evUd2166dAlmoxHVZAXrXG6MpFLb/6TX2r8JSUlJ6NWrF1q1aoXp06ffM9jat28f3n33XXzyySd3BCdvv/22HoiLPA+3kFrcDBW7jx8/nqF57d27F6tWrcLhw4cBpAYK26h89VFfABzRuqIJIZCpTHjIJ10UBAwfPhwOqxV+UYSH4xDHcTjq9aN2WPc0z3GYN29emnMIl4ATiNZBvc7lxnBazC4T5tGcUKoUXHY7RFpIDkl5H6DF9tqSjGqSBIEQ5BBFlCpeHBajEblEEQwheJYG3sd8AeTkePCEIIleuwV2LZG+zunW/cf9LIsSgoCAx4MOHTqgaBgbuq/RCJbOubAg4Ae3F5VESVcEIIRgrt2BJK8f61xuFJQkdO3aVT9vj8sFnhDk43mUoL58DCGwms04e/Ysrl69ikGDBqFogQKoVL486terB1kUIYsievXqhSNHjugS5NevX8fq1avhdjpTg26GQW6e17vMp1k1efuzZ88C0BQXCCUclBVF/OL14xu3B1aGRffu3WE2GDAsLFHRRFHAERLRiVBTllG1cmWcPXsWueLj9e74iqKEtqpBLxI3lhUcofPIrSgoWbIkXIKI8qIIL8shB5VXLyRKmGixopIk6dewYf36me5C/u6771CmZEl4HA7UrFYNrVu31q/LDJsdJ30B7PL4UFKW0a5duzv2v3HjBjp17KjvU6l8+Tsk925HrNeLvmHX5kmDEXmyZ9d/HwwGMXToUP2YDpsNP/744x3HefPNNzXSAy1sO1lW74gYM2ZMpq6Dw+mCu2R9JIxegzIjV8EUyIv69etneP84nw9Ph51TD4MRAY6DxHERsoR5c+RA97BupX5GE2K93kzN9X4xbdo0vUuFEIJmzZvfNQj87LPPINN3U7Vq1TKlFJBRTJo0CYKk6tLTRftq3Q5ffPFFlo/1T+LChQsghCC2elfNt23wIkgGy/8liS6K/x9cu3YNs2bNwujRo/HJJ5889t0c0Vjy8UF0raL4L2HmzJkauViSUZrahmV11+fDwK1bt5CSkoI9e/aAIQTdDUb84PHpSnUOq1WPdSdPnvzA4x07dgyfffaZrh71IMibMycSZBn7vX5sdXvhFUV06dIlzW1PnjyJOXPmYMGCBZnynQ91WK8Kb7CQ795gceXKFbRu2RIcy0LgefTp0+e+ZMbTQ9GCBVFGVpDk9WO314d4nofVbEa1sDj+JUoA9wkiFEnC9u3bs2z8rMLly5fBMIyu+rfb64OVYcFzHDq2b48///wTSUlJWLNmjZ7LSQurV68GIQRbaX7npC8AiWXxxhtvRGy3bds2TJo0CU899RQSExMxderUdInJwWAQAwcO1OMvKYwkYqSKdyxtfgj3Ls9KbNmyBYRo9oLJ/hgspt316SluXb16FRXKltWI/XS+kyZNuusYAbcHvcJi3JaKRv65HTdv3kTN6tXBsyxyKgo4hkHjhg2z1Lrsu+++096bYc0mEsvCYjCigCxjrMWKsqIIkWhWdN+4Pf+3yqI2sxmDbstjlS9TBteuXUOHDh30e3XIkCH/iL1cFFFEEcWjQrTYngFEg+4oHhUuXryIvFR6J8ToXuPSpJfSk+FZs2aN7r1FCMEzzzzzr0tSrly5EqWKFUOubNnQo0ePDHsAPyps374dDMOgo2rAJw4X6soKWEJQW5bxgtkCnyiiZLFiGfpoHDlyZAQbevr06di8eTMIIXjX5ohYY0IIXrfakOyPwcs0OB1sMuFJyoyeMWMGevbsCVVRYGAYjDRZwBKC92wO/OL1o4WiQhLFO/ypL168CEIIrLRY1kRWIJLULutGjRohGAzijz/+0DuMf/31V4wZMwYCy8LLckg0mlBUEMDSInc2jsP7dgcSjSaYDAaYeV73+htHffVO+gL6PqUEEX2NJtgYFn6WRRMqjy4QratYZRiwhMDrcoEjBJVECYlGE3hCkJcX4GYYJNKC5AlfALl4rYjPEwIHw8ASdj7VqlXTGdah+VaRJPhYDgr1o2cJuaMAPGDAAIgsiyEmLXAI90Lr1KkTCuXPD0IIXCyLrW4v9nn9MDAM3Cyrd+KPooSX0D1+9epVEFrgH0+vS7I/Bg1lBVUqV0a2QACNqJ/eIV8A+XgeNoaFQAh6GYxoTaXhQ6zgCxcu4LXXXoPJYIBMJfnD51mIF/CxwwWF41ClShWwRJPdb0DVEwgh+Jr6viX5AuAZBv379890AHTs2DGYDQYUk2UMNJkRS4kMgWqdIalm5OF55A5LCFStWvWO99Lo0aMhsCx6GowoL0qQGAalSpa867jVq1RBbknGdo8P37m9yC5JaFC3rv77YDCIVi1aaCQIWYbIsqhYrlwEmebSpUvgOQ5dDUacpDJ+MsNgmMmMlkr6cpvp4dVXXwUhBJbsxWD05QTLspnquAl1tm91e7HJ7UU2jkNNSUZ+RYmQRW/ZvDm8oojPnG6sdbkRK0moV6dOpuZ6Pzh16hQ4joOnTGOUfm4FcrfU3mkLFiy4634bN26Eicpzli5dGufOncvSeW3YsEEj61Rsg0JPvQV7gYqQJDlDcpX/dgwYMEC7p+IKQjbZYXc4M0zuiiKKKB49orHk44PoWkXxX8OHH36I+vXqoWGDBli2bFnE73766Sc8/fTT6NGjB9atW/eIZnh3TJkyBWwYwXP48OG4ceMGjh49muU5hP379+O5557DkCFDsHXr1kzvf/PmTXAsizFhXuxNFAWVypd/4Lnt2rULFcuVg9tuR7nSZXS59GO+AD6wO8EyDN555517HufGjRsPpUty48aNEHkeEtHs0iS6XvGCgINeP076AuioGmBiGBz0+pFPkvBEkyZZPo974a+//sKBAwfSvXdOnToFQgjeoXmZZH8M8vE8iggCVI5Dl06dMjTOjh07QAjBE1S5cAltMPjoo48itgsGg+jSpYtWjHb6wXI8ypWvcNeu9FOnTqFK5cpQGAatFBWvWmxwCgLKJSRgxowZD9UfOxgMonXLlmAIQXZZAc+yqFa58l1J+teuXcMHH3yAV155BV9//fU9x8idPTueUFQ9f1RZllGhbNk0t71+/TqmTZuGxMREzJgxI0sJJAD0PF2o2eQgLbaH51AOev3gCEGMIMDE88iTI0emyDP/FcT5/WhO81jHfAGUkCTUqVULgHbfjBkzJpWo36wZ/vrrr0c84yiiiCKKh4NosT0DiAbdUTwq9OjRAwaOg5VhEE+LQW6OQ96cOe/6cfLHH39gy5YtutxVRrBo0SLkzZkTHocDbVu3vqNAezuuXLmCVatW4bPPPsvUs/HNN9+AZVlUkhU8aTBC5Xg80bhxhvd/FJg2bRp4hsFx2iX8vUeT3bZbLBAFATWqVcuQJ9bGjRtBCMFQkxnfe7zoYtA8rn7++WfUr1MHPMOgMPVpN9AP0cN0zP3Ug2qqVesQziUrePrpp/X3k4VhIBOCAMfpgeFypwuEEPz8888R83jllVe0IruioAifKnNHiObtfTesXbsWJlXVZLZZFvny5IFPFLHG5cZ6lwfxkoTs8fFwiCKO+AKoI8swMgwGmcxoRn2hO6kqigsinCyrd1LzRPMdd7Msvvd4cdQXQB1JhsIwqE4L8UzYPD2sVqRfTr3CCCHoqBrQ3aB1vnupXFmoA2LRokV49913QQjBRFrk3uXxwcAwEAjRZQjDuz1yxsWhaxiruoNqgJ/lMJJ6ops5Ti9cP2kwoo4sw0zPJTfPo44sg6XzDk9qVKtWTeso5wVsc3ux3OmCkWGQkJCA999/H4QQ5OAFeFgWEiH42OFEPp6HyLKIj4nBa6+9dkeh+tixYyiQLx8EhoFICBrIMj6yO2FhGDCEoEjBgujWrRs8HKerCjgZLVBcSJnaW9xeMIRg9uzZaa59cnIyli9fjk2bNt1RjH/rrbcgsCx+oSSDtZQwkq/jRBTqMRU8w8LNsnjLZtetAN5+++2IY1QqXx4VKTM8G8ehAL03Z82ale79uHfvXnjClAWsJhO+//57/ffbtm2LYN9/6tCeicWLF+vbHDx4MIKxnuyPQV6eR2fVgNqSjEL582dKhi8YDGLOnDlo1KgxWrZsiQ0bNmR4XwA4cOAAfO5Uwo2XZTHWrBFpOnXqhClTpmDXrl04deoU8lMyFiEEObPF6x6B94tTp07hySefRK0aNTBw4EBs3LgRS5cuxf79+/VtQnYIhXu+rcuay2Z7hqQot2/fDodDUwIpWLAgTp06BUAjAI0ePRpdunTB5MmT79vbfdy4cfr1kGXlP6PqEgwGMWvWLLRv3z7COzKKKKJ4PBCNJR8fRNcqiv8XbN68GZIoIkaSkJuqD6WniPaocfDgQaxYseKhFhF//PFHGFUVDkGEX5LAsWymvdtfeukl8IQgPy/gW7cXy5wumFgWvXv3fqC5nTlzBm6HA/kljdScV5IjJOgJIahXu/Z9fz9nFXxuN0oIIl4wW/C924uSogieZeEXJeSjcd3zlIjQWFZQuUKFf3R+S5cuhYF2gCuShPnz59+xTUpKCgrkyYMckoS3bXb0ptd5us2OgSYzrCZThsYaPXq01lxB14cjmmrb7THlzz//DEIIsjdMRMLoNSjQ9XUQQtKcWwjff/89eIaByjAwMQwUhkFTRUF8IJC5C3KfuHXrFmbPno2BAwdi2rRpuHbtmv7z8ePHo1SxYqhYrhyWLFlyX8efMWMGCCEoJ8koQRU50uucf9i4evUq8ubMiRhRwiCTGaVlRVebXOLQCvDb3FpusEKFChgxYgTOnz//SOb6qBFat+KSjDz0Hbp+/fqIbebPnw9RFHXyfVo2jVFEEUUUjzuixfYMIBp0R/GoUDh/fnRUDfjG7UFNSYaTZaGIYoYKu5nBF198AUII6igKEo0mWHgBtWrWTLcj/vjx48iRLZse3GWLibmrjFY4evTogRySpBeuQx3b9yruP0osXrwYhBB8Qj+op1Bp8G3btunbBINB7Ny5E1999ZUuGX47pk6dCp5hcNIXwAlfAO3VVAWCapUro2fPniCEoKGsYL5dG6Ov0YRtbi960mLwOpcbP3t8sAoCRowYgWvXroGl3cAVBE22fYTJjN0eH1qrBoiCgD/++CNiHhXLl0cNKVXSrRnt1B87dmyGr8mlS5eQkpKC5ORk5MmZUz+P+NhYrFixAgLPo6qi4BmjCSrLQmAYSNSPTCQE5UUJRoaBnzKDc3I8qksyaobN6xWLDYQQbHd5wBKCtqoBv3j9mG7TfOlMYYX6ppT9nOyPQReDAR6W1f+dQ1bwzDPPYMSIERqjnBZVT/gC8LAsCgsCkv0xKCwr6NixI86dO4dgMIjC+fOjXpjPYQ1JRhG6bQVRQk6OR0tFhUjJDlUlSWfz15ZkVBYlFOB5mA0GAJpNQY2qVRHr9cJijuyUd9Hr8N5772Ht2rWoVasWCCEoIoi6NcCECRPSXY+3334bhBB0UA3obzRBIpp3fUGeh6oo6NevHzp06IC8sqyzjQkhiOc4GBkGdWUZdrpOJlVFpXLlcPDgQf34q1atghpmUdC4YcOIhM6MGTPAMQx2UgWOENEjT5sx8FdqB0IIXqMqDcn+GJSXZTRv3jziHMqXKweOEOTneRyh17yZokAVRQwePDjdDoSxY8dqhXaeh8yyyB4Xp8vPr1y5EoQQfO/x6r5y/G1+9FevXoXDakVFWcGXLo/+ToplU1UCjKqqEzGCwSCOHz+OgwcP3tEZ8t577yF/7tzI5vfj6aefvm9/8vPnz2Po0KEQw9QArDTZI7KalOHixYvx999/48svv8T69evx559/3tdYIfzxxx+Ij42FWxRRT1aghJFhWJbFW2+9BQD47bffwPE83CUboOTQj5Gz6dA0OzXSw969e+H3a+ShHDlyYM+ePShcoAAMPI8i1MogV44c97QQSA/JycnYtm3b/22iI4ooovj3IRpLPj6IrlUU/y+oX7cuCkkSDtNv7oaKiviYmEc9rUeGhvXrI58k4YDXj2O+AGoqCnKHWVNlBLVr1kQ5UdTjulCR9UHVnEJe3T/QOCtU3Js0aRJmzZqFFStW/Cs8fX0uF3qGEdUbygoKFyyIp59+GgG/H2aex3SbHeMsVggsi9GjRz/wmLdu3cLOnTuxffv2u3Y1HzlyBJIgoIGiYpHDiWaKCp7jsG/fvju2TUpKQmGqYMcQgkFGk96Z73U69e12796NN998E3PmzImwyNq/fz8IIRhkMuOkL4CZNi2vk5a0+9q1a0EIQdF+czQLslGfgxdlvPbaa+meS5WKFVFQEHDA68dBrx/FBAFmlkX5MmUyetkeCoYNGwaWYdBMUVGF5g1uV9PIKD788EM0bNAATRo3xmeffZbFM80cjh07hto1a8Jtt6NEkSLYsGEDypQsCTPPo5GswCOKiI+NvSPn9v+IpUuXonXr1ujQoQO+/fbbNLf59ttvdfJ9XFzcQyVRRRFFFFE8CkSL7RlANOiO4lGhVs2aKCDJOOD147AvgPKygmKFCmX5OE8++SRyy7LuQR4qNjVr1gwjRoy4495/onFjBEQR610efOXyIJskoW7t2hka63Estl+/fh2VypeHwLLISeW3W7dsqZMRbt26hQb16+v+3wLDpOlFFSr8zbDZ8Tztjh5oMmOSxQaHIKBenTpo2qQJeJZFSUXRPdLDu7pLKQpcogi3w4GtW7di3bp16Nq1KwghMIdJ7HFE8+yaM2cOli9fjldffRUrVqxAMBhE5QoVUE2S8IbVho6qAcUFAUZZvm+7gb/++gsrV67E6tWr9UDzs88+Q96cOWExGlGmZEkwDIM6ioIRZgucLAuZEJTkBSgsi0IFC2rsZVGERDTZts+dbuTleeTjBayghds1rlRfOvW2c60bVqRvraiwM1qx/Wu3BwrHYeLEidiwYQM4WmB+zWpDS9pp/4bFiv1eP9xhhc3yCQl44403QAhBgiSjpCBSZQEb9nn98HEcVELQhRImNrg0GbFF1LfMQBjEUA/6ypUr49ixYzDIMrLzPPoaTYin7P72qgEL7E4c9gVQQZKRJ08evPTSS5gwYQJyZ88Oq9GIXDlyYNq0aQgGg/j777+xbds27Ny5M6K7vHrVqqgZ5ok3wGiCQAv/lSQJVkFALC1wNlNUjDJbwBOCOpKMHlS2XSYEdpbFcJMZOSQJ8TExuHLlCq5duwaryYSaioLvPV7MsjnAsyzefPNNffzffvsNNrMZcRyHzqoBTpYFTwgIJ4Cha/QkTb7s9/oRI4ro3r27vn9SUhJkUYSFYdBIVvTzGG4yQyAEKsehfEICtmzZgg0bNujvpL///hsCz6OLwYCTvgC2ur2wCAKGDx8OQCu8KpKEOoqCpQ4XOqiamsQPP/wQcQ9/+eWXER0iRlUFzzCoKsuYY3egsaJC4Hns2LEDjZs00bcrVLgITp48CSCVlNNQUfCUwQiZ49C1a9f7eqZCOHnyJJYvX44OHTrAzAv4yuXBUZoQtZhMWZpYe/fdd8GQVG/Bj+i9nKfNGHhKNwbDMPjqq6/w22+/YebMmWDD3k9t2rbNlPXAkSNHkJOSdKzUd3M9fYbeogmpbDExD8XbPYoooojin0Y0lnx8EF2rKO6GTZs2oVzp0ogPBNCqRYv7Jgb+G1CudOkIsvLQTHTt/hdRpmRJtAy7HsPu43q0bdsWOUQJ29xezLU5UFmS4LBaH3huoRhjE/1G3+jygBCS6c77B8GtW7fu+a2fmJgIgWXRy2BEJxojT548GQBw+vRp3bubEIIO7dtnSjksLZw7dw45s2fXydEGWU5XpnzRokUghGC316fbpxGSvqJbMBjEwoULaaeuhKpUae/ll18GoBUVBao8RwhBvly5dFLFmjVrQMJiqmR/DFSOx6uvvnrHOL/++iskWYE9X3kU7PYGvGWbaWu9aVO6550rPh49wkgNvY1GCAyDzZs3Z/YSZimsJhN6G426/HuCJKFemL3bo8CRI0cwfPhw9O/fH2vWrLmvY9y8eRObN2/G+vXr9W+Dixcvol+/fqhWpQq6du2a5c1Q/3UkJSUhN1XoM5vN/1obkyiiiCKK+0G02J4BRIPuKP4JHDlyBD/++GOEPPwPP/wAg6LAKghwCAJEQcAXX3yR5WP36tUL2SQJR30BHPcFkJPT/K8TFAUGnkfxIkXw999/69vnvu0D/2mjCXE+X4bGul8Z+eTkZMyZMwcdOnRA+/btsXz58vs+3/vB1atX8eabb2LAgAF49913I4pcb7zxBjhCkJPn8YLZgvKi1p25c+fOiGOkpKSgRbNmeoG4uiTp1/AFswU8x+HatWt4/fXX0blzZ4waNQrbt29Hv3790K5dOzzxxBNo1aoVEhMTMW7cOHBhxS6/zwcry2KJw4XlThd8vIAqlSqhS6dOILRYSQhB9+7dMXfuXH2/3DwPhWFgt1jS7ARNSUnB0aNH8cknn6B44cJw2+2oW7s2kpKSEAwG8f333yN39uwghMDndqfJPB44cCACkoRjXj9esdhQnEpvcRyHJo0b48yZM7BbbRFSa6Fr1EJR8ISigiEEnVQDDvkCeMmsFed6Gow47AugraIF87UkGQ1lJfWaCAJkjkO+3Ll136zExEQ9IA+N5WY5+HkeLCFIEATUlmRYeR7Vq1TBkiVL0KhhQxQqVAiEEOSVFdg5LqIrnSFEl2YPdRo0khV0VQ2wchwGDBiA0qVK6XNe5nThW9qt34f6zh/xBZCD5yFQr3pCCKqHnc/kyZOxf/9+ZI+N1cetWLEiVq5cia+++gqlS5ZEGUnCSTqP7gYjOELwgd0ZkZQpWLAgeHptPQwLhhDYWBYK7eL+0umOkIHfsGEDjhw5AkIIFthTZdYLKcodlgPTpk0DQ++ppoqKhXaNsTzUZNbl/AvwAp95wGEAAQAASURBVNwcD5PBENFJMG3aNAgsi0SjCRwhGGm24DWrDVaGQQ6Ogxp2XQgh8Lpc6NGjBxo1agRCCN622fW5FVMUdOnSRT/28uXLYTJo94jA87rf/e04f/48evXqpY8R3kFy2BcAQwjq1KkDTpCQo8lg5G37IhSrC1WrVQcANG7UCAmSrK/BUJMZkihmqgidHlq3bo1yYSSEGbQgnZXd21OnToXAsjhE57+B3jP52r+EfB0mRtzz3bp1w65du/Dhhx9i48aN90XU+fXXX/XnihCClVQ55Gu3R//Zv1XONIoooogiM4jGko8PomsVRXrYt28fFElCCVlGb6MRTkFEqeLFcevWLQSDQZw/fz4iXv6347nnnoPIshhrseJNq0b8bvovt3Z7mBg4cCAUjsObVhvm2h3wiCLq1amTqWPs3r0bRlWFWxSRi3b23s0OKyM4cuQIShYrBo4QeFkOnVQD/KKIHNmyPdT3VEpKCtauXYtZs2ahccOGEHgekiji6aefTreD/Pr160hMTITH4UDA48G4ceMiYoRgMIjff/89yzqA69auDYYQNJAVvGq1IRfPw6goadotfvnllyCEYK7dEUGQX7ly5V3HWLNmDRo1bIjaNWvinXfeQTAYREpKCmxmM+opKo74Avja7YFVEDBo0CAAwNGjR8GxLDqrBuzw+PCC2QJCCD7//PM0xxg6dCgYJjWv06pVq7vOqW3r1nAIAhbYnVjocMLB87o39qOEUVUx0GTW49UqkoxaNWrcc78TJ05g9uzZWLBgQZZ6nR84cAA2sxl2QUB2+jzOmDEjU8e4dOkSyickpOaXPJ5oJ3YW4dy5c6hcubKeF0wvRxNFFFFE8bghWmzPAKJBdxQPE7du3UKXLl0iikjbt2/Xf3/gwAGMGTMGo0aNusN7OzM4e/YsXnnlFYwcORIbN26M+N33338PgedRQpJRjfoihYp0a2jRLdzLuk6tWsgpSfjR48PPHh/ySjKqVa6c4bmsXLkSpYoXR674eDz11FPpykMDWlA2dOhQ/foIhCA7Lda+9957mb8QDwGNGzcGIQRraed1ki8AkRAUL14ckydP1lnbZ86cQeECBfRzycXzuid7W0WFJAgoUaQIGtSrhx07diAYDKJC+fIghMDEcRBYFsWLFMHPP/8MlgZwm9xe9DeawBMS4S+eaDTBSVUDJlP57pAse7169UAIwSjqmbbZ7YXKcTpTO4Tk5GSULFpMn6+D5dBVNUCmXeUhP3KJEMiEwMtxEHkev/zyi36Mixcvonbt2rBxPPoZTXoHe3aOA0sIVFnGxIkTwRDNM3uDy42BdDuWaN7ssRx3h7c8IQTfhrHFRUIQYDWfb4VlUadOHTz77LN49dVXI4K2W7duweN0IifPY67VjpctVjCEQFEUCESTpDeEjRGeTFi2bBmqVq0KQggqiSK+93gxmioUVKdKASUFERwhKCOI8LMcOIbBF198AY4e20o91IfS4jMhBFVkGblpsZ8QTVJeZRg4WBZb3F40V1Rkj41F6RIlkFOSsMLpQn+jKVXiO2y+5UQJDcIIB5vpNTrsC+jFUoFhdHJASFmicuXK4AjBT7S4vJgmIDZt2oS//voLiiShhaLiqC+AFU4XZI67Q9b+4MGD+n25ld6XhBC8ZLZghNmCAjwPkWhyYeEe4ADwzjvvgGUYbHV70S7MXsHLaoSAPkYTBpvMEAlBPUmGgfrTlVMUSAwDE8NiqcOJcXQ9bw+k//zzT+zbt++uAfzhw4fBMAx6G4340K6d//s0IfOZU3sP5smbD45CVXWv8tiaT0IUJezfvx9NGjdGiTDCw0CTGXIWFdvHjx8PkWUx2+7AJrcXCbKMgNd732oUaWH//v2QRRFVFAUTLVbk53mIkooSgxdBVi3IxnFYYHdirMUKlmH0TpUHwfnz51GQKlvwhGCYyYxyogQzJVdMnz79wU8siiiiiOIRIxpLPj6IrlUU6eHFF1+EVRD0b+j59Fvxiy++QNnSpbVvcpbFwIEDs+Tb72Hj+vXr6NC+vf7NXbVSpQeWO3+c8ddff6EBjZEJIShZrBh+/fXXTB9n//79GDRoEPr06ZNucTWjuHXrFgrmzYtskoRhJjNiOA48IahcsSJOnDjxQMe+G27evImG9evr10IkBM+ZLBhoMoNjmCyRf88KOKxWmBkGx+gzGVLD++677+7YNiUlBfXr1AHPssinKBBYFtUqV76r9Hw4rl+/jh9++AE//fQTzp07B0IIpllTyd4VFQUtWrTQt3/77bcjVMASExPTjNuOHz8OSRRRS1bwqsWGZooKhmHSPIcQzpw5g1LFi+vHLl6kCH7//fcMncfDRI8ePSCxHHoZjLqC4Jw5c+66z+bNm2E2pMb+OeLicOrUqSyZT9euXREjStjj9eOkL4DWqgEWkylT8XNiYiKMPI+PHE6sd3mQX5JRvHDhiG3mz5+PnNmywWGxoFWLFllGJvntt98wcuRI9OnTBwsXLszSuP/fgmvXrqFDhw76+g8ZMiTNv58XLlzAkiVLsHDhwnQtO6OIIooo/i2IFtszgGjQHcXDxPTp08EQggkWK5Y7XSgmy4gLBLI0SP/1118RFwhA4Ti4RU0O+3bm4IYNG1CjalXdiz3kcXyIdnSGb79//354nE79o8hltz80hufSpUtBaBFmhdOFCqIEK8Oggaw8Ul+5S5cuoUePHiiYNy8CXq2b+UNKUPjR4wNHCHyCAIFlUbdWLZ1U4RAELHe6MN1qB0sIsvE8SlCfYpVl0VpVkU+SYFRV3cM9QRRRkBf04nafPn1ACNH9sY/7AmCJ1lG8x+vHAa8fRQQBLur7HkoKHfD6I4rVIQ/6k74AYmUZQ4YMiTjHGtWqwSeKeM/mwESLFQIhcDIsAhyHVyw2lKP3UnvVgGdNZphogSzkh33+/HnkzZkTPP05RwieooSAw74AcvM8JJZFlSpVoHKcbmPwDe1stXI83rDaMMNmx0Ja/B05ciR8bjcYQtDdYMR+rx+v0a74SRYr2qkGOFgWefLkSdMv+9SpU1rgR4uoyf4YFKYS8XIYocNLg+MxY8YgKSkJ+/btw9WrV+FxaUH8Enrtkv0xcIck0wmBnWHxpGpEHUnWr0fFihUhEYKakoz2qoq6kgyOEKiShNdeew31aWJHJpr3/AlfADs9PvhYDm1UFe1VA4ySBI52n+z3+mFkGFQRJciEQT1ZxjduD9ooqn6dJVq8jGE5vGmxoY6sjelmNB/un+nz/QFNFK5btw5WkwkBlkNrRdXn/tZbbyEYDGLevHngWBYsJVqULV06za6B6dOnRyQWcufMCZGOWV2SEMdxkEXxDn+8s2fPIuD1IiCKaKaoMFH1AAvDREhc9jGaYKFzWEm78Jc4XBH3dbdu3dJ9f54+fRrPPvssOnbsiKlTp0YoVHzxxRcawcDtxXFfAHl4TeGjiCBAote1ZMmSMLjiUHLoxyg5ZAkEg1UfNyYmRrNvIAQ2hgHHMHj66acz/W5JC9euXUOdmjX1sWxmc7o+aA+CNWvWIFsgAIZhYDObI67rG5S0k+yPQQU5MqF0O1JSUrBu3TrMmzcPe/fuveuYly9fRp48efRxFEJQQpQgCcIdpIwooogiiscR0Vjy8UF0raJID2PHjoVFEHDQ60eyPwbvUwWnEkWLwieKmGq1Ywgl006dOvVRTzfDuHDhAs6cOfOfK+SkpKTg7NmzmcqpBINBHDt2DElJSZm2avr777+xaNEizJw5M00f8PvBoUOHIsi/J30BZJNkDBgwIEuOnx7efvttMITgJYsVbkpEDsUALRUVJYoUeajjZxQ5s2eHSFKVyEJWVLfHHlu2bMH8+fPx/fffY8qUKejSpQtKliiBYoUKoVXLljh27Bi++uorTJ48GR9//DEOHDiAWjVqIOD2oGK5cli7dm1Ew0TpkiUR8HpRisbgc+0OSCyLF198MWLcpKQkLFu2DD/99FO65/Dpp5+CEIIfPT6c9AWQaDTp9oE1qlXD6dOn09zv5s2b2LFjB3bs2BFBGDh48CA++eSTOyzT/glcvXoVffr0gd/tRo64OEyZMuWe75UCefKgtKxgr9ePTW4vvKKIzp07Z8l8GjVsiKphNnuTaONJZuwLqlWpgoZh6nLjLFZwLKufV8gyoIGiYJDJDKsgoGYGuvkvXbqE33//Pd3r89tvvyHG54NFEJBX0RopRo0aleF5P04IBoMYM2aM/nw1a9YsIs909OhRBGJS1R2dLvc98wtRRBFFFI8S0WJ7BhANuqN4mOjSpQtKhBWTZtPA/X6Y1Olh4MCBsAsCvnN7ccIXQFvVAEWS0mTy/vrrrzAZDKioKJhps6OeokIUhIhuZUBj1M6dOxdz5sx5qEzaZ599FnFhH8nLKWO5o2qA3Wx5aOPeDcFgEDWqV4eR59FZNaCIKGnFU4bBE4oCD8vCzrL42ePTEzFfffUVShUvjtZq6lp3UQ0QeB71KXN8BpXC3u/1wyoIUGUZrei9cdwXQClBBM8w6Nu3LwghGG+xRkhKKwxDu8wZcISgZcuWIETrCt7q9qKnQfOk9gsCrAyD3ByP2TYHelOv6ttl1CRRxPO0+z3ZH4OGsgKWELxr0wL+WpKMcqKo/z7kQx/yPhsxYgRMPI9v3B6scDjBEIJxdM7J/hhUEiUYWBYNGzYEwzDoqBqw0OFEFVmBJIoRHdsKw8DnduOvv/7CkSNHkD0uLqIQqBKta9zFsqghyRAIQcECBZCSkoJLly5h7dq12LBhAy5evAhRENBJ1Ty+v3V7oTIMmisqJtKuaJ1ZzXER/85NPaYZSjA47gtgmdMFnhDEx8WhVIkSkAmDHgYjKlMCRawowmbTArvSogg/x0GhxeJu3brh8OHDAIASRYtSwoBW0FzldMPGMBBpkVcWRcT5/aipKFhFu6zbUsb4Cmdq4V+hxd4uBgNa0d8TQmBjWMRxHPJQX/rsoojWqgoLL6B8QgJu3bqFQvnzw81yKCYIqCJKkEiqXNqGDRuwc+dOTJ8+HYsWLcK1a9fSfT6OHDmCzz//HPv378exY8e04JDeRwe8fnhFEYmJiXfsd+zYMbRr1w4VypZF7969sXjxYiiCgApiard4S0WFnV6/kAJAzTAPvWPHjqU7r3PnziE+NhZWQUBJRQHLMOjUsaP++6NHj4JlWXQ3GLHP64ebYZCf59FSUTHIaEIVSUbBfPlgNJkgGSzgRAUMx0Mx2iHJBnCEoKAgYIzZghKCCJHjcOjQocy8Wu6KlJQUbN26FWPHjkXRQoWQIzYWXTp3fijfJikpKQgGg5gxYwbiYmLAEoIO9JnZ5fHBK4ro1atXmvvevHkTTRo21O89jmXx7rvv3nW8q1evokKFCvo+ZpMpTUuKKKKIIorHEdFY8vFBdK2iSA/79++HKssoKsvoYTDCLggoXbKk9g0aHt/IMp544olHPd3/a6xatQoOq0aIddpsD9xhfi9cvnxZj+UYotlWzZ49G926dUOp4sXRskWL+4oJfvvtt4iYf4/XD5sgYMSIEQ/hLDRcuHABcYFAGAmWQR1qk3XCF0AFWUal8uUf2viZwerVq8FTNbhqkgSeEFQoX14vYAaDQTz99NMROYMxY8YgX+7ccIsi2qoGBEQRZpOmxiZT2z2DLCObKCLRaEIBWYbE8/CKIhY7nJhvd8ImCKhftx7sFot+3Jo1aqRJ9L8XNm3aBEIIptvsejG4l8GIiRYrnIKAGlWrZvhYM2fOjLAZ7NOnT5aTaDZv3ox33333njZiGS1oy6KIF8LyTU0VFRXLlcuSuU6aNAksw2CsxYr37Q7ESRLKlCyZqWN07twZXqpomOQLoKIkwW236+fevXt35JVTbeRep00g6XW3p6SkoHfv3voalSxaDCdPnrxjuxEjRsAiCNhOiSQDjCawLPuf/jaZP38+RNrMU7p0afz2228AgCZPPAHV7kXRvrNRbMAHMHqyoVLlKo92slFEEUUUd0G02J4BRIPuKB4mhg0bBosgYKvbi5O+ADqrBoiCcF8f6+mhbdu2SFDu9PtNTyruyy+/1DvXLSYTPvnkk0yNd+PGDWzcuBGrV69+YE/h119/HRLHYb3Lg2R/DAbRjgEjx6HNPfysHhZCHtbTaXE8yReAnReQLVs2uBxacX0jne9Ojw+EECxevBgtW7RArChhu8eHX7x+FBclGGUZjanvdEi6/4gvAJcoQuC4CN+rRrICjmjS3iFvaSMtnqqShOy8gMaygry8AI5lsWPHDrzyyitgaHGSYRjUqFFD78ImtJBLCEkzaA94PGhEO60PeP3IzmljjaYBUR1ZRn6ex3EaXPQzmsAxjC7V3aVLFxQPu+8K8QIsDIOXLFb0oRLjOkO8VCkI9FzsFgviY2JQXJKwy+PDVy4PbCyLpk2b6nNbunQp8ubJo+/DEq0jPRSQhO7xJk2aIMbr08cpXqQIXn75ZRBC4BAE8ESTxtvgcoOnJI6DXj9m2Ox6of1lixUf2J2w07Fc9HqGrh1PCJYtW4azZ89CFkUYGQb5eB7dqCQawzBIpN7sv3j9cFNp9FAhMk+OHKhQrhwknkccx+Etqw0qw6AgL2CgyYxYjoNKi5sM7TgPJyJ4WBZ7PT586tAK/z3C7ATqyQpUQuBjNE92leNQvWpVPNG4MUoVL46nnnoKFy5cAADkzZkTnVQDvnF79E78t2x2lKdJhmKFC6NTp04ZIgIFg0EkJydj9+7d2rNiteFFsxVxHAeJYVCgQIE73nErVqxAwwYNUK9uXcybNw/jx49PDUQFEZVESV9rQghaqyqGU0UFgWXTlFPcuXMnShQrBkWWwVHywjYqrT+RSuiHCA8AMGXKFP154YmmnhC6lq1VFYXz50dSUhJGjhwJlZJX6smKXvAPHXsvVZFonMXel1u3bgXHsqggK+hpMMLE86hbq9ZD6Ua6fPkyYnw+5JFk1Kc+dwGOg5nn4bLbcfTo0TT3mz17NliGwXs2B5K8frSlpKJ7SZPeuHED7amcKcMwmfbUiyKKKKL4tyIaSz4+iK5VFHfDtm3bULlCBeSKj0eHdu1w5swZqLKMbvR78YDXj3hJQpcuXR71VO8L69evR+NGjVC7Zk28/fbbj2W3+5EjR6BIEmooKmbY7KimKFBlOd3v1qzA6NGjofI8Pne6cdgXQD1Zkym3UNU6P8fD7XDgzJkzmT52p44dwTEMqssyYkUJNrP5oZ5L165dYeI4vGNzYI7dARtVKCsliChK7QaXLVv20MbPLDZu3IjSpUsjT5486Nu3bwQhfP369SBEI/vv9/p1izNCUu3/FlKVt2dNZpz0BTCHNkqE8h27vT7whOixfLI/Bp1VAwrmyYNz585h7dq12Lp1a6aVEEIIBoNo3rQpWIaBgWWRENbIEIpVM5IXPH78ODiWRUfVgJ88Poyj+2YleXnYsGER+Zu0ivlr167Vcy+54uOxdevWux6zeOHCKCTL2OL2YqXTDbsg4KmnnnqgeV68eBGjRo1C+/btUZISogghKJg3L44cOZKpY504cQJWk6Y2ELIcJIToRPJevXohmyThCM2HjTFrBIzLly+nebzJkyeDIZotwwybHX5RRKU0yAW9evVCgbA8WqiB526NBf8G/PHHH/jmm2+wd+/e+/r78c0338BB86lxcXHYvXs38uTND0/pxrqNX6BSO7i9vocw+yiiiCKKrEG02J4BRIPuKB4mzpw5g+xxcZA5Dl4awEyZMiVLx5g8eTJYhsEkiw3LnS4UkmXkzJbtrh9AKSkpOHPmTKYDh8uXL6NcmTL6R63Lbs+UjNW1a9fw2Wef4cMPP8SJEydw+fJlFClYECLLwkOLnYQQNKhXTy8SPgzcvHkTn376KVq3bo3WrVtj6tSpuhJASNIt1OF9xBeARxQxdOhQ7Nu3DzzHoYmiYoHdiTqKClkUcfToURw5ckSXnGfox3oNSYJLEKCKIryiiCEmMyrLil6MlQmD580WDKCSYo0aNQKgBWYrV67Eyy+/jGHDhkEWRb34a5BlLF26VD+XpKQkrFmzBocOHUKdWrXgZFksd7qwwumCm2XhcbvTvAYffPABGIZBNkmGUxAgUAlwQggqCCIcjMacLiIIqCvLYAiJkM2eOnUqWIbBa1Yb1rrcKCpJkAVBP3+GEDSXFYy1WCGyLJ555hkkJSXh6tWrEGmHcCjAaKIoOot+0aJFEYHeezYHhtKia8izLeSxzRKCPJKMJXYnigoCGEpM6NGjBxRZhpGyv3vTwmko8E72x8BJf7eB/uwZowkCw8BL78NakoznTGZUk2SYDAb88ccf+OKLLyJ8x1q3agVCCKaGeboVEQQUETRiBE8IWigqikkyeI7TSS4MIdhDZSrXuzz68UqJEgRCUIH6j33mdENlGPB0H4kQdFYN+ljVJQmGUPGY59GyefM0fcu3bNkCVdHmU5cWjpPo+D9Qwkh5UYRbFJEnZ05cuXIFgPaeePLJJ+HzepEtWzbMmDEDp0+fRvmEBH3ODqsVFtop0EJR0ctghMiyePLJJ/XxQ3YRpSQZFen4hBBUl2T0MhhhY1kIHIe2bduiWLFiKB7W7T6BJhP+/vvviHPauXMnRI6DQAkVLCFwsqy+X8jX78cff4zYb8+ePfjoo4/QulUr7b40mnQiSbhHIc/zKCmIOOkLYB4NgFdRafuQFQLDMJgwYQLatWuHIUOGPLDHWN++fREnSfp9/gZlzz8MdZENGzaAEIJ19P5/z+YAxzCoXbt2mgz8EIYOHYqYMDWS0LN4+3VOCykpKbpNBiGaWkEUUUQRxeOOaCz5+CC6VlFkFpMmTdLiIVmGX9SswB6WvdrDxPr168GyLIpKEqpRkuXYsWMf9bQyjdmzZ4MQgn00jtlDCbALFix4aGO2b98epcOUCocYteaAkGXbjx4fGELw5ptvZvrYN2/exIQJE9CwQQN06dIFBw4ceAhnkIr8uXKhiyE1luxrNIEnBAXy50eunDlRt25drFy5EikpKRg7dix8LhdcNhv69u2bKXnufwLTpk0DxzBY7XRhstWGmZSMT4hmG5bsj8EMq/azzfTfyf4YyITBk5RAs4PaA5aUJCR5/fjF60cBSUatmjWzbJ63bt3C9OnTYbfZIBEGsRyHEWYLehkMkEQxQ/m4cDu00HmYeD7LYqkff/wRhBAMN5lxxBfAeBp/b9iwQd8mKSkJiiShiqLgVasNJWUFdovlriSTn376CW5aXCWEoGihQg8UL//1118oWqgQDDyPUopGeqlRvfp9WUOE4HW5UF4U8aLZiq/dHtSSZZRPSAAAbN++HQLPo5gko4WiQmRZdOzQId1jNW7UCFXC4uQQoeL2Z2fBggUghGCQyYwP7E4UkGTEx8amqUz6b8HGjRthNaUSWjp26HBf1qgHDx5E7ty5QQiB2WxGufLlodi8KPr0eyiWOA9Gd7SzPYooovh3I1pszwCiQXcUDxvnz5/Hq6++ipEjR2L9+vVZfvybN2+ifbt2+odPwOu9q3dUOG7cuIHVq1dj/vz5GZI/GzRoEIw8j0UOJ75xe1BUlpE/d+4MjXX58mWUCWOfGlUVX3zxBa5cuYI33ngDw4cPx5IlS/Dnn39m6Hj3i2vXrqF6lSr6PEJe6U80boyUlBSkpKSgXJkycAgC+htNqCArEHheLyZ99NFHUGmSwmw0RrC/z507p3uxf0wD8HUurRhVumRJOCwWmFUVPp7HBpdb90VnCEGPHj3uCBIuX74Mk8GAWoqCb9wejKNs2vnz599xXr///jskltV900Me2AIh6XrLffXVV0hMTMTQoUOxf/9+PPfcc7o8WajDmCEEDqsNkyZNivigvnXrFtq2aaNfR6fNho0bN2L37t2wmUx4Jowh3lJRUap4cX3fwvnzo5gs4wePD2tdGsu5R48eAIAKZcvCQCW+JUJw0hfAaqcbHCGoK8t4xWJDbp7Xi8wjTGYUF0R4WBYvmq1oSeXVBZbFLo8X7VWDfh4d0uhsH2u24KgvgCqKgmwxMfB6PLCzrD73V2mQ1LZtW+zatQsHDx7Ep59+il27duHbb7+FyHLwsCzesNrQixbiX6b7hGTTjvoCyC5J6NatG8aMGQOGEOygXfqhYmVDWcZBmjAK98+uQovT2XkBeTkeDCFopqioQ3/+qsUKkTBo27YtkpOT71jjv//+G26HAyUkCTUkWV/XEPFgkUMjACx0OPXCf+ierlOnDgghKMALyElJCLlz5oTAMBAYhpIqGMiiiMqipM95oMkMo6rqc6hYrhwqUQm2vV4/bEyqBJ7MMBhL7+vvvvsOnTp1Qi5JwlFacB5sMoMhBIokoWH9+nqAXqlCBWTneOz2+nHA60duqszQUTXgHZsDRWRZtyYIISUlBc8//zycLjcsVhsKFCwIg6LAZDDgmWeeiQhwRUqaOOkL4JAvAA/LwswwaKIoGomFPiccwyBBUWAVBOSKj38gklC/fv0QG3buIam69Pz8HgRbt24FIQQfOZw66YJnGLz99tt33W/27NlgCMEsmwP7vX60zmBnewjBYBDPPfecvv7Dhw9/7DqrDh06hBpVq8Jls6FU8eLYtm3bo55SFFFE8QgRjSUfH0TXKor7waJFi9CpUyf06dMny/y6/2k0btQIRSVJVyzrbjDCZjY/6mllCsFgEAmU9L+M2mx94tDItatWrcry8b799lt07doVJUqUgMiymGd3YLvHh4K8Ri7/gird7ff6wRGCnj17ZtnYf/zxB5588kmUKlYMTZs0wf79+x/4mCkpKSiXkICikowkrx+HfQEkSDJyZ88Og6LAJ4rIR3McLVq0AKEk76eNJogsi379+mXBmWUOFy5cwPjx49GvXz/Mnz8/ImZYt25dBEE/9J+qKHByPJ4yGJFPksAQgraqAd97vBhFY047z6ObwYgckgSbxQJZkmDieRh4HmajETt27MjS80hMTITAsuhhMKKNmmoFF070vhuSkpJAiNaBf8IXwCybVsBesmRJlswv1OwQagY45tOsBt555x19m1mzZoEhBAfpNtvcWpPJihUr7nrsc+fOYfny5VizZs0Dq3t+8MEHd5DFCSFITExEmZIlUaFsWXzwwQdp7rtnzx5USEiAw2JBmZIl9Xyp3+2OULurIysoV7q0vt/XX3+N2jVronSJEhg2bNhd7fY6d+6MbKKE/V4/TvoC6KgaYDIY7oh1g8Eghg0bpivuxcfGYufOnQ90bR4mrl+/DpfdjvKygvUuD16x2MAQgpkzZ97X8c6dO4fKlStruRSOgzWMKOP2eB/bv7NRRBHF/weixfYMIBp0R/FfQDAYxOHDh/Hjjz/e0QGaHq5evYoqFSvqHzaSINwhGxYMBvHOO++gRrVqqFOrFooVLYo6YWzNUFExI0zS4cOHw8DzWOZ0YbfXh8qKAq/L9Y8XWt544w3wDIMFdif2e/1ooii6f/WWLVsAAGfPnkXL5s0RcHtQvHBhrFmzJuIYf//9N44cOZJmwDBv3jwQQrCLFlO30EDk008/BQDEBwLobTSib5jUGUsIfG73Hczgn3/+GYQQLA/z7Y6XFQwePPiOcSdMmACBEOTjeezx+rHX60d+ngdHCBYuXHjP6zJz5kytC9xoRBlRhEjZzc8YTWAJQd++fe/YJxgMYt++fdi8eTM+/fRT2Mwa058nDOrJCk74AjjiC6CYJKNK5cp45pln0Lx5c3Tp0gW2MB+0Annz6udeqlgxyITRi+bDTGZsc3tRSZT07n4bDUxEnkdxWnQOyf6f9AWQWxTBMwz2eP1INJqQN0w1IfRfBSpbrrAszLf5t3OE4DOnWy/KBzgOHkEEH+aTVrtGDcT4fCgiScjJ8frcOELQmwbRr9Ki+UlfAPllGV27dsWzzz4LjhBk4zh0Vg1wspoE/EtmK454/bAzLPLxAja5PFjudMHI82jVqhVqVKuG0iVKoEqVKhBp4bebwYAWigomRBphGLz++usRa7Rnzx4QQrCUkj8OeP2QqZRdOUmCSDTZtL4GI76jHduLFy/G9evXwROCerRIftwXQGFBAEcIvCyLijR5wYkyOJZFgpTajd7baITFaNTnULJoUTSnHSG9DEYYGAZrXG4c8Po15QC6nkePHsXWrVvBcxwKSxLqUxWIXByPEWYLHIKAqpUqAQByx8ejlaJggd2JNS43Eg1GGBlGX4f42Ng7uq1DtgueMk3gr9gGHC+kmzgqUawYGKKpT1jDyAGxHIcKooQ4ei3eoD6Lm9xeCCyLt956657PWnrYtm0beI5DWVlGd4MRMschf758mDt3bgRpICtw8+ZNlCtTBiaeRxNFgV8U4fd47imBeevWLTRt0iT1WWFZzJ49O9Pjh+weCCHo3bv3fTHjHwWuXLmC+NhYxEsSBpnMKC7LMBsM/3rZvyiiiOLhIRpLPj74r6/V9evXMW/ePLz88sv48ssvH/V0ovgXoVaNGqghpcbww0xmKJL0WBEeT5w4oX3jcxwUhkGCKEIiBDE+X5Z3Xa9ZswYcyyKXJCGfKEVYfAk03svJ8RhuMqOUIIJ9gMLT7bh58yYSSpWCVRDQRlWRQ5LgtNlw6tSp+z7m0aNHUaRgQT3vYOU4OEURoiCgWrVqyCFKOEgLhK1VA0SOQ0M5Vea6t9EIr9OZJeeXUVy8eBH5cuWCynHIrSgghKB///767w8ePAiGEPQxmpDkC2i+14TAwHJQaUwYGwhgxIgR4KkKGyEEPZ96Ci2aNUP+XLlQv25d7N+/H7/88gteeuklvPzyy5mWIs8IPA4HeoUVdOvKMnJlz5Gp52/s2LHa+tG4uUWzZlkWP4VyTs8YTdjr9WMkJSV8++23+jahbuyQneISSnS53781N27cwOTJk9GtWzeMGzdOV9a7G6ZOnQqBZXVi+laaZ9MaFxRUp2SRefPmRex37tw5eF0u5JVkPGsyo6Asw2G14rfffsPw4cPBMgw6qgY0pfmne5HP08OePXtgMhjgFUUUkLV79o033kh3+z/++ANHjhz5V3e0A8Dhw4dBCMECaouZ7I9BAUVBr1697vuY165dQ4cOHfT1a9y4MRYuXJhhAn8UUUQRxaNCtNieAfzXg+4ookgPEydOhMRxWORwYp/XjzqKCrPRGBGsTp48GYQQVJNklKVFTRPHYZPbiyTaDRzn92dovObNm6NSWNA2jcp6/dPPXu/evZFXSu3CDXX2EkKwcuXKBz7+qVOnYDObUVSWMdxkRgFZhsfp1D8c69SqBTeVWx9mMmOjy4NGsgKWkDs8AM+cOQOWZdHTYMRJXwArnC4ILBshU/f333/j888/R/PmzeHgeVgYBgJNBIQSA5s3b77nvBs3aoSKlEjhYVn0NqYGhC0VFRajEYXy5UO50qWxbNkyXLlyBcnJybh16xbOnDkDk8GAKrKCRQ6n7r+dW5IQJ0ngOQ4BrxdWnkdZKokv8jwKFCiAggUKRLCEJ0yYAJYQmBkG1cMkxxmi+cmFgqsWiopsfj8MNPgeYjThbZsdU6w2WFkWLMPATn2868oyvLSozRKCnBwHkRDw1F+cEALltmI7SzR58lqSjOO+AJJ8AeTjeeTjeUy22mCiQfsbVhviOA45OR4vWayoLcm6jL6BYTDQZEYDGmw1atRIH6OGJCMfL6ABXXsHwyBbWCIgVDQuVbz4Hc9Ir1699N/LDIPBVNKrER3n+++/17f9/ffftetjMusS6ArLwu1ygWMYVBQldKPd/z6eh9Nmw+nTp3HlyhXwhKBfmEJBPp6HlWGwlzLaR5tTCROEEFSSZDRVVLAMg2effVafw4svvgiWYdDXaEJunkfFsC74KfQ9EFI2ADQGeaOGDeHzeODmeRyj44Vk1f/44w9UrVpVvwaEEKiEgZMmH8aOHZtm8iFX7jxwFKyie4L5yrWAy+NN83moVqUKDAyDRKNJVxFo1KgRWEq4iI+NBSGpCgHHfQFYBAHjx4+/57N2N6xduxZlS5WC2+HQiv10vGKFC6frD3e/uHTpEvr374/KFSqgQ4cOGS4Yp6SkYP369Zg/f/4DMc9nzpypM/rbtWuHGzduYMOGDejVqxeefvppbN++/b6P/bAQ8ocMdVT84vWDZ5gHIllEEUUUjzeiseTjg//yWl27dg2VK1QAQwhMlGQ6bty4Rz2tKP4leOutt0AIwZMGI4abzDDyPNq0avWop5UphKzeZtjseMZoQmNZgYnjIgqwWYXKFSogQZZxzBfASV8AVakd4JMGA9Y73bAxDFTCQCYECsPA43Rm2Xvlu+++AyGp6lM7PT6ILPtAVoSlihVHnCRhls2BJ2ncV7duXfz888+oXbMmaoc1U4y1WMEQgsphROr2qgGxvn/WR/m1116DzHH42q0Vd0Nd6SdOnAAAfP755yCEYCuVVi8jiijECzhAVc8K8hoxulrlyti/fz9WrVr1yCwg/G63Lt9/0hdAFUlG5QoVMn2czZs3Y/r06fjss8+ynKgcKuaH/hsyZEjE769cuYJ8uXLBLgioKcsw8DzKli6NGzduZHqslJQUNKxfHzzLoqiiQuE4lCpe/J6d7zt37gTHsmiiqHjP5kBFRYHAMOgQZrNXQ5ZRoWzZiP0+/vjjiHvlZ2qjN3/+fNy8eROjRo1Crvh45M+dG2+++eYDkZD279+PxMREdO/eHZ988sl9H+ffhCtXrkDgeXRWDTjpC+BLlwcqxz2wFUkwGMQLL7yg33PNmjXL8gaDKKKIIoqsRrTYngH8l4PuKKK4G7p27YpiSmrx+33qSxzu1xsfE4PWtCP1pC+AypIMlQabPKPJR9/e9Z0eevfuDSPHYYXThb1eP6ooCjxO5yPpbBdYFh/YnfjF60cj6q0tiaIevD0otm/fjpJFi8JiNCKhVCns2rVL/92hQ4dgNplgZBj92m+k8t2lS5W641htqFS7QmW7c8bH48CBA5g2bRpefvll5MmZMyIwekJW0FpR4WJZsISgQ4cOGbrG7dq1Q25RwmFfANk5Hk1kBSd9AZzwBVBelMATgnaqAeUFKn1Pi2S54uPxzjvvUKazVoA64QtAYlmUKVMGvXr1wtChQ8EzjO6XNp1KRfF0zjwhqE290VJSUtC7d++IQmo5UYRKCFqG+eU1VVQUzJsPr7zySkRxOvz/OUIw0KgVmTfRa1yTem71N5rgoMnI8RarLkM2yWLDdo8PZQWNFPAsLVKHCvwCIYjneNSXZPAMg/L0eQjJGR7zBWBiGDSUZTSSFd1z3UrXLzSvkMR8SAbOxjBQGQaLqUVDQUlCfGxsmlJlb7/9NjhCsMLhwiFfAHPps9tZNYAnBH63G6+99pq+7kOHDgUhBE5egMgwyBEXB1WS0FU1YI3LjaO+AGrLMixGY4QFhc/jgcIwGG+xYpTZAoZo3SShxMu7NkfEvccRguyxsRg/fjx27tyJYcOGYfDgwdiyZYtmQaGq4FgWMsNgqcOFHz0+lBRFWG4j+YTQs2dPxEnaPZnsj8FIk6ac0KBBA/A8jzKCiM1uL163alJmfq8XM2fOTPN+HzNmDAjDwpKjBMqM+hwJo9fAVbwuArFxd2x78eJFEELwisWm38/5JE2Z4PLlyzh16hQuXLgAt8OB4rKMmTY7WqoqGIbB1q1b7/ms3Qt///03ZElCK1XFcV8Aa11uqByHF1988YGOe/ToUTz99NNo3bo1pk2b9q/oJv/oo4/A0+ewVKlSIITA4IqFaveCFwRs3LjxUU8xAhs3bgQhqWojP3t8YBkmy7qZoogiiscP0Vjy8cF/ea1mzpwJjmHwicOFk74AEqmCVloWQ1H8/yFU1LCaTJBFEW1atcpyEuft450/f/6BZaPDkZKSgpJFi8ErihhuMqOOooBlWWzatCnLxgihaIECaBtWwHvKYAQhBGNo/LbW6YbCMLAajahbu/Zd7fhOnDiBDRs2ZDjPsGnTJq0JwKnF1UleP1SOw2uvvXZf53LlyhWdIB46n7KyjFaUbPHSSy+BYxg8b7bgbZsdXlFEofz5dSJ1HdotPHHixPsa/34xfPhwBMIK/sudWid1SOL90KFDYBgGPVQDXjRbIBOCiqKEI3T7ngYjvCwLkWXvUH77pzFmzBgQQtBESe2+XrBgQYb3T0lJwY8//ogNGzbg4sWLCAaDOHHiBH7//fcsnedPP/2Ejz76KIK4H46zZ8+iX79+qF+vHoYMGXLf75DNmzeDEIJ3bA4k+2OwmtrqffTRR/fc98MPP4SRqgi6HQ44rdYIG8VGsoIyJUtG7LN8+XKtC5925YfyQm+88ca/Ih5+HDB16lQQQmARBHAMg8L582fZt9T8+fMhUnvN0qVL47fffsuS40YRRRRRPAxEi+0ZwH856I7iv4FgMIjJkyfD53LBYjSifdu2WRIch3e2/+L1o24ane0WgyGiw/kJRUGJokUxd+5cTJ8+HQcOHLjnOCkpKbqPeUQnqixj7dq1D3wemcX169dRs3r1iI7p0P/nio/H3r17H9rYW7ZsQfHChWGQZU2C2qpJUA+nRcSuXbtGbL9582bwRJNBC+9UV2Wt0MvRQvVkiw39jCaoYQVdl82G119/PcNkhtWrV4MlBNk5Djloh3UZUUQR2oXfjKoSTKPdxf2NJsy2OxAjCBBo962RYTDb5sBQej4DBw4EoHWrGzlO9wl8ixZH68kyXrPakI/K3R88eBCAJp+nylqX9D6PD1vdXih0jGaKqkt8lSpZUr+vcnA8vvd4scntRYDjUE4UUVQQYGYY1JVklKMf8JUoq/+kLwA/PbefPD40V1SYwggQ37g9YAmBnWUxw2bHKxYbBEJQVhRRTdLkBL1ut74mM6iM/U8eH0RCMIomY76kwdwihxNFBQElBBH5KdM+wLKaFDshcDIsGoQpP7xEuwqyxedA3Xr1kJSUpK/V+fPnkS0mBi5BQC1JhvQ/9s47PIrya8Pv9JntLcnuJvTee++9KYjSRARsIGIHBBQEVFA/FMWCvaKo2BVEFOyIgoiIIl2aFbABUrP398fODom0AJHib+/ryiWYmXfeKTvsec85zyOE0xXfw3LRzb4+qYWFhQsXOs+cLAQhvx89Txd9eVWlsq5zRqdOzjFmz55NRijknF/ez8n5Ljd3BILEFBVFSJRWVZZkRjnP5UZVFN58800swyBD14npSWWDl19+mTq1azvnK/7xU6FsWRYtWpRPRu3LL7/E0HUqGAadbEl5IQQNDJOitjrBLHshqrRpcdVVV+V7phOJBL/++is//PADkv0cCCHwF69GoGz9ZHHF//3fAZ+F1KLUTb7k5/P7WDYlDYOLL74433aff/452dGkfJ2mqlx//fUF+qwdiXXr1iGE4OlQ2HkeqlquA45/NKxfv55IMEiWrlPfvpbHI/1WmMyYMQPTXnhSLR+1rnuJOje8ia9IBZo1b3Gyp5ePnTt3UqViRSKaxvkuNyUNg6xIpNAXu9KkSXP6kI4lTx/+y/dq1KhRxPIod83OSCYvPv/885M9tTRH4Pvvv+f666/nqquu+tdj40Qi8a8Xuq9fv57a1WskYzRZZsSIEYV2zB9//JH2bdvidbkoWbQoL730UqGM+0+GDBmCoSiM9fm5zR/Ao6qUKlkSTZbpYllUMgwMXc9XpHww7rnnHkcVS/6HOt2h+PvvvyldvDjFDYMRXh/1TQvLMAq07nIw9u3bh6FpXGwnJL+NxslSFPr06cP27dtp2qhRvpisSsWK/PDDD7zwwgs0b9qUxg0acN999xXqc5Obm8utt95K2RIlKFuiBBMmTDgg6TljxgyEEFzu8fJCOEJd0yQjFGL79u3ONhMnTnQU5YooCrIQVNU0ng2Fidj36njlro+G3377jZ7duxP2+ylVrJjjH56bm8vEiROpXaMGDerUOUDm/HDs2rWLju3bO/cnEgxSxVbmEyIpJ1+YRS0ngjfffBMhBAuyok6sfTRKYXv27OGnn35i3759DBkyBFWWGeD20MdWbbjrrrvybb9t2zbKlChJVNfpbrkw7aYRIQSNGzTgt99++xfO8r/HRx99xPjx43nooYcKJPt/tGOHQsmGnGLFivHNN98U6vhp0qRJU1ikk+0F4L8cdKf5bzB16lSEEJzrcjPUln3rfs45xz3u33//fYBne8pXHJKJYWEnea/2eBno9iAJwfDhw4/qOI8//riTuHo5nEEpTSPg8zmJ1ZPBnj17qFalCor9RXuY18dToTDlDIMyJUoescI1Va1/NP5K69atw+t2U9O0GOH1UdxOMHvs6x+LRg94DzVt2pSYrLA4K8bqWLbjW15R1VgWjbM0GqOkomIIgSEERe0Ear9+/Q4aED/yyCO0adOG7t2789133+X73YgRI/AoCh1Mi/amSWW729Rnz+9GO3ncx+WmjKqyKZ7Dgqwopkj6nz8QDNHSMJ3krNu+tkOGDGHhwoXIkkQX0+L+YIioLOOSJEcSfpZdzTx9+nQgmdC65pprkIQgpGnoskzxIkUYN24clctXoEqFCrRu3RpVkhjr8xOw5b5TC4wXuD2UVVVHrSElG++VJEoqyfOqqGpOErmW3a2fSpqvi2Vzmd0RVMXeTghBPV1nte1D75MkevbsSYUyZfBLEoZIytX77fOuqGo8EgzR05Xshv/STujX0HTutzv7L3S7qaJq5MTjhIJBwrLMp5lRVkXjNNINVFkhWv9s3JFsorE4W7duZc+ePYwfP542bdpQvnx5olnJZL4hSfR05e/8r1qhIgAN69alimnybTTOkqwYPlnGK8s8HQrzQjjiqCC8++67fPPNNzzxxBMYmkYTw+RWfwC//R5IFVmYQspXPLPQDpTfswsLatesSVXDZFUsm+9j2TQzLTJDIVT7utzo9ROxj3mbP8A4nx/Dvm5uy+KJJ55wnsvPPvuMs7p0oVnjxmiK4vjdrY5lU0xROMeyeDOSeUDXwvLly6lQpkwygWt/Lp4PR3gwGKKBYWIpKs2bNz/kwlGf885Dl2V6ulzUMkxURTmga33jxo1kR6OYikJY15Ek6agWTw7F7t27iQSDNDEtPsmMMiUYQpGkAi3QHYwdO3ZQs1YtFEWlrG7wUDDkWABs3rz5uOdbGHzwwQeOWoY7XpaaQ6eTUaM9latUO9lTO4BffvmFPuedR7WKFel8xhnHvPiZJk2a/wbpWPL04b98r1566SWn8/ajzCw6WhYu02Tr1q0ne2ppDsOKFSsI+nyENI3iduHh6a6WU6dmTXJ0g3sDIUdh4dFHHz0hx54/fz7NGjembIkS9Ond+5j9f3ft2sX5efyEu5x5Jlu2bGH06NE0ql+fMzp25NNPPz3sGF9//TWSJHGh28OHmVlc5PYgSRJfffXVEY+/Zs0aWjRtStDno0qFCset9FTJ7lSvoGpEZBlVCFo1b86wYcNwKcmY+dVwhDK6QbVKlY7rWAXhtttuQwhBL5eLXnaX8sE652+55RanWMFtmpQoWpRG9eszY8YMAN5///18HdLPhPbbA1ZUNe4NBFFl+bC+2YVJm9atCWha0kbOtrqbNWvWcY158803o8syDwfDzMnIoqqmowvBA4Eg/+cPYshyPvu204Eff/wRj8tFc8viqVCYc2z1uyVLlhz1WHv27GHIkCHEMzMpGo8zYcKEg8b3P/zwA+f26kUoEMAryzwUDPFwMExA0+jTu3dhnFah8Mwzz9CqdWtat2nDCy+8cLKnc0JZuXIlZez1G5/Px7vvvnuyp5QmTZo0B5BOtheA/3LQnea/Qeczz6SBsd9H60afH1VR2Ldv33GPvWfPHt566y2eeeaZA+TP7rnnHscDyStJThLx9ddfP+R4n3zyCSNGjGDcuHGO/+/AgQOpmEeuPhUErV279rjnf6x8/fXXyUpW3aCKpjlzS8li//DDD4fcd8mSJZQuXhwhBJZh8MADDxTomA888ACKJPGd7T+d6nhu2bIlEyZMOKiMdvUqVeiaRzr9Rp//AB/ti9weVCG43Z/swh3vDyCEOCCZ3r9//2RSX1bwSxKKJDke9Rs3biTg9xOUJAa6PbwZyeSmf/hxmyL5u5KKgleS+DIrxoN20virrBib4jmsjMYRQnCJnRAdZY/x7bff8sgjj6Daz5Bq/6SqmVNS6osWLeLXX3+laqVKznE9bjcjRow4YLGwbq1anG1fmwa6QSlV5bOMLEZ4fbgkiRKKQg8r6Yfe3+UiIsvOPFOFI5qqUk/TkIWgr+XiDNvzPO+PYQf4QggetgP5b6Jx3IrCrbfeStcuXchRVC52uylhJ/Lr6Dpl7WIFIQQ9LRdjfH40+96dYyXl5V8IRfCqKs2aNXMS5kIku89lIYhUbU2oUjPCVVoghOCJJ56g29lno8oyzU2TmK6TGQ7z4IMPkhEMHjLZHsvIyFeMEJFl+uWRRrza4yXs9zNo0CBnzrIQ3BdIFh48Y99nSQha6QYeu4Chj8uNR5IoraisicaT11WSqFi2LOf9Y3zTvh4f21YCzQyDFobBd9E4EVmmmqbx4GHk2Hft2pVciLGf803xHOrrulPcUb9OHf7++28g2cFRrlQpShsGDwZDDPIkpR9LahqvhDMcJYlp06Yd8vO6a9currvuOmpWrUqLpk2ZM2fOAdtcdtllZOg6C7NirI9l09Xlwu/1HlPnx3vvvUfdWrUokZND7169eOWVV/C53c79OPuss46quCcvPXv2RFZ1ovXOIlAqqQYx1Os96e/hf9K2bVuEXciheULIqs7VV199sqeVJk2aNIclHUuePvyX71UikWDw4MHO9wbLMP4zfrH/ZS644AJydJ1vonE2xrLp6XIf83fJk0UikeDpp59mwIABDB06FCHyS5bXNS169er1r89j+fLluEyTaqbJxW4PIU2jfp06x7VmsmPHjgM6OP/++29uvfVWLrjgAm6//fZDdhWnGiZW2rH/KjtOLozC3KOlZJEitDFMznW5GeD2cK7lomSRIrRs3pzams69gRCfZEa51R9AkqR/XVq7Ytmy9MizxtHDclGhdOmDbvvbb7/RpXNndFnmPJebhqaJLMu8//77PP/88wghWGpf49WxbEdFIPUubNu69UHXWQqb33//HSEEd9rP/sZYNhVMkwsvvPC4xj377LNpkkf97t5AMi5fHo2zIZZNB8OkZrVqhXMSBWDBggWMHj2a8ePHs379+mMeZ/bs2YT8fuffq5QKwL9N6eLFnbWq1LpQySJFTsixj8TDDz+MEAJ/yRr4ilc7ae+Lk8mWLVto0qRJcs1QVXnkkUdO9pTSpEmTJh/pZHsB+C8H3Wn+G3Tr1o1KhuFIcF/p8WIZxr8eBKU6JJ4LR9gUz+F2O4k7ceJEGtWvT82qVRk7dqyTAJo2bRqSJBHVDXyqSsjvZ/ny5YwdOxaPqvJxZpSNsWwGuD2oinJcUvgrVqzg7bff5vvvv8/3/2fPnk21SpWIRiKc3aULv/zyi/O7b775hiFDhnDFFVfw4IMPIkTS3zwoy3xpJ2Ev93hRZDmfPFledu7cSTQjg/KaxgPBEOfZUlXvvffeEef86KOPIgnBF/axUr5jc+fOPeQ+l19+OS7bX35GJJMisowiBFmyzMxIJq9HMsiUZTQhGG57i6e6iz/88ENnnF9++QVVCM4wLTbEslkejVNMUVAVhXXr1lGlUiVHMj3L7jiWhCBLVihpS62XV1WyFYUMW77eJ0nk2IHsdPsZmWl3qDfWdTJkmbic7CiePXs2CxcupE3r1sSzsihbtiweyyIky7Q0DDRJonnTpuTm5nLBBRcQ0jTejGTyUWYW5Q2Tegfxsm/Xpg3VDJO1sWxu9fnzSZNXVDW89jyrqhrnWC5qaroTVKWKBIQQ3GI/15MDQTbEsrne68MSEpamUa1KFcaOHcvChQtp1bIlLkXhbMtFScMg6POxfv16VqxYgWZ3CKhCOAnv9bFsaugGoUDAOZYiBME8SXghBHVq1sRlmrQ1TFz/SPQLIahtmGQqqnN+skjKuKf8oj2qyoQJE5wOge6Wi3NsGfmUhFrb1q0pZhi8k5HJm5FMTEminKbxXTTOqlg2dU2LzHCy4KGtafJOJJOOpokmBAFJdo6bSrgbQvCtvajxdCi/b/udd97JoEGDcKsq9wZCPBIME9Y04rbc+qvhpNd1R9Miaj/bQghmZ2Q61y2gaYwfP/6Ae96qRQsimsZt/oCTQO/RowdTp07N522/fv16hBA8mUeGvZxhYtkdQ0IkFReOdyGza9euNMuz+HG3bbFwqPfHP8nNzeWZZ56hf//+qIpCXdPkUreHoKbRqH59fvrpJ95++20WLlx4zHPduXMnQgiKtbuUeje+Td3Rb+HOLI5HlilXqlShFG0VFr///jv16tVz7pHb7WbZsmUne1pp0qRJc1jSseTpw//CvVq2bBlz5sxJe56eJpzRqRMtzP1F9f/nT36XPBHJwcJiyJAhyfjLspJ+vkLQz46HvovGies6AwcO/NfncdNNNxHQNCe5nVI4K0w54j179tCkYUNMRaG6ZWEoCs2bNDloQWyq63qynXxNJUkPF/v/W7Rs1owKhsnSaJyl0TgVDJNmjRs7dlhCCHQhqKLrFInF/vX5VCpXjnPyJNvPsVxULFv2oNv+8ccfTjH/ulg262PZlDNM+vbty+rVq9FUlbMsF6+GM+jpcqPIMm+99RbPPfcc7777br5YZ9++fUycOJGOHTrQp0+fQn02UjZk42w1wLWxbIobBgMGDDiuca+++mpCmsa8zCjrYtl0Mi10IZiXkUn5POsKF1544b8e17388ssoskxE1/HkWe87Vnbv3s369etPqAx+o3r1qG2arI5lsyaWTV3TpP5B1ppOBuUqVCRUqakds88iWK4B1WrUPNnTOuHs2rWLPnmURYYPH/6vr32nSZMmTUFJJ9sLwP9C0J3m9Oa9995DlmVq5vEtHjp06L9+3L1799K6ZUtkSSJmGAghaNOmDUIImpgm3SwXiiQ5nYexzEw6WS7Wx7JZGo1TTDc477zz2Lp1K2VLlsRUFGeciRMn5jvW1q1bmTNnDgsWLDjiF6lx48btT17KstNZvmjRIjRVpZFpcZXHS0TTqFOzJrm5uSxcuBDLMMjSdYobZrIoICOTHF3HK0l4JYlSdrAybty4Qx773XffzZcw3BjLJiLLjjf54fj111+JZWZS1DA41+UmqCjkxGKHfff8+eefNGrQIF+yU7MT7qlrUNyWyG6mG7wazqC5aeF1u/PJ5i1cuBBJCMbawd+meA6dTAtNCIYNG+b4m6VkvxvpBi5JYnUsmw12UKcKgddOrsckmXMtF+UUBUUIXIpCA8vCZf/dEMkO7pR3+MiRI3GZJhUMg26WC1NRaNu6NQMHDuSMTp0YPXq0E2TVrVWL7nmC7xt8fjwu1wHX5qOPPkJTVYoZBgFFIWp3hV/vTZ7jwqwYLklCFoJ2tlf3CNsuoLRhUL50aerWrEkRw6CoolBMlhnm8aIJQR1N51qvj5iuEw4E6NSpE2PGjOGKK66gYd26nHP22fmSgFUrVqSMqmEJiWF20cOmeA5nmBaNGzTgzz//ZP369dx1112MGzeOWbNmMXPmTN5//31+++03hF3o0FA3+DorxkvhDLv72Od464VlmWb2O0AWgrcimWyIZRM1DK6//npyc3O57bbbqFi2LJXKlePOO+90ErRr166lZNGizjNTolgxvC4XblXFp6qo9n0tpSYtCapoGo8Hk37tTQ2DJ0JhOpsWiiRxwQUX4FEUVtnFPy/ac73gggt47bXXgORiQ3v7XSGEoEHduixatAhL03BLEi10A80uPvDaz+89gaTn/bzMKJosc9999x1wz3/55RdaplQAdJ3Ro0cfNAn9+++/I0mSU4CyJCtGSNMYOnQoS5cu5ccffzzi57UgjB8/HlWSmRwI8nokgwqGSYUyZQq0byKRcNQmfIpCUJJZY1/TR2ylh1WrVh33HHfu3IkkSRRtO9BJtlsZxU66lcehSCQSLFy4kOK2ekg8Hufbb7892dNKkyZNmkOSjiVPH9L3Ks2pxm233YYiSYz3B3gqFKaYYVCn5olJrvzwww+c07UrZYoXp3XLlnz99ddHPcavv/7qxFgpizG3HVfUMC1iuo7P4zlAce3fYNy4cQTteHZTPMcp6F26dOlh90skErz77rs88cQTR/RgT3lNv2ivBTwfTh7j7bffPui4fXr3RghB0C5e792r10lRLViyZAkhvx/FVrcL+f1ce+216LLMtFCEb6Nx2ptJO7gToYhx5513JhsfLIuu9nrBnXfeecB2GzdupLwtKy2EoJqm8XVWlEqmSZ8+fbjnnnswDcNZJ9FVNZ8d2T+55JJLkCWJlqZJccPA63YfV7L4n5zfpw+6LHOO5aK6YaCpKp9//vlxjfnLL79QqlhxFEnCpSjI9pqHS5KIyQqPh8KM8/mRJemANbbCpmg8TjvLYp293lfcME6IakVh8sEHH2BoGhm6Tqauo2sa77///smeFgDFipckq86Z1Lvxberd+DYZNdpTrnzFkz2tk0IikWDs2LHOZ79bt26OimGaNGnSnEzSyfYCkA6605wOvPPOO7Rv25YmDRty++23n7BuxD179vDoo48yatQonn/+eTp37kxNw2CjHcRe5fHiMk1yc3NRZJlb8kg8dzAtWrdsCSSTX5MmTeKGG25g9uzZ+Y4xf/58wnm6fzu0a5evSzUvn3zyCUIIrvF4+TQzSj+XG1mWWblyJddffz2Zus5ae25P2tXsK1asoPOZZ1LBMFiVktuyXBSJxWjasCGmrhP0++nYsSMvvPDCYQPgO+64AyH2S1kvyIpiCEHfvn0LdD1Xr15NTjxuJ64VVEmiRdOm7Nmz55D77N27l2qVK5OhadziD3C+a7+0dIbdUZ0djTp+x36vN1/A/+mnn9KpY0cUIciUZZ4MhZnoD6ILgV+SaNeuHbptF5C6d1d5vLglyfn7CK8Pl2Hgdrkoo6rO/b/D7uQdNGgQHTt2ZOTIkSiSxMg8CecGhkHpUqXI0HVW2Z0Gd9r7/fDDD3z00Uc8/vjjfPLJJ8yePZvixYphyTK3+Pwsi8apZVqOd9zs2bNp2qgRVStW5Nprr+WTTz5h4MCBlC9f3vEUTykxbIxlU0RRiNgd7nm7r8uWLMl3333HunXrqGZL1qe2cUmSs0gz3V5AqaXrqLJMzx49Drg/v/zyC+edd16yE1eScEkS43x+rvF4kSXpoP5z/6R65coIIZhkdz4szoohRNI/PnUdK6kaPV0u1sWycUkSnUyLs22Pu4svvpjx48cfNnm6fft23n33Xd577z127tzJ2rVrufXWW7n88svzHXtWJBNJJBUBhNgv9b82lo0sSYwZMwZT16mrGwzx+shSFLQ8Un0DBgwgNzeXRCLB+vXrWbNmjVNA8/3331OjRg2kf9yPzIwMVEmivmUR1DRKFSvO77//7sx97dq1fP75586/0zt37mTfvn1s376dL7744qBS6KkumxqWRURLyu1v2LDhiPfinyQSCbZt23bQ98Lu3bs5+6yznPMoEosVeKHyyy+/TBYe+YNc4fESlmVW28/dQ7byQmEk2wF6nXsuimaQVaczgVK1kCTplPJA27dvH3fddRe9evXi6quv5scff+THH3+ksv25CIfDLFy48GRPs9BIJBJ8/PHHTJ06lS+//PJkTydNmjTHSTqWPH1I36s0pxp79+6lX9++znfJSuXKnRCLn507d1KhbFmius4lbg/lDJNwIHBYK7WDsWLFinzx16Z4DqVMi7Zt23L++eczePBgVqxY8S+dRX6+/fZbTF2nlmlymcdLWNOoXaNGvnWTmTNn0rhBA6pVrMjw4cPZuXMnPbt3d66/JEmH9fd+6qmnkusLdkz7jS0N/9xzzx10+9zcXF588UXGjx/Piy++eFK7Mzdt2sQDDzzAAw88wKZNm7j44oupksfqL1Wc8E/lwH+DRCLBXXfdRdWKFalasSKTJk06INaaO3cu5cqWJaAoPB+K8Fw4gl+SiNuF2mPGjEEIQR+Xm3E+P5mqSpVKlQ55jVMy7zfazQfLo3Eydb1ATRMFZffu3Vx//fXUqVmTtq1b51MaPB5+//13HnzwQSZOnMiXX37pNIDcnmftrblpckanTgfd/6OPPuLhhx/m/fffP65iD13T8jVvnGlaNGvS5Ij77dmzhxUrVpwyiitLlixh5MiRjBgxgq+++upkT8dh2LBhyIpKvHEvYo16IMsKo0ePPtnTOqlMnToVXdcRQlC3bl1+/vnnkz2lNGnS/I+TTrYXgHTQneZE8eeff3LxxRdTqWxZWjRtyrx58072lI6aTh075vOPH+71Yeo6ubm5NKxbl6KGwXPhCHcHguiyzKhRow47XiKRoGh2NrVMkw8ysngkGEaX5YNKSAPcf//9yJLEBjsplUpKvvrqq4waNYqwpjkJ3QfzJKwa1q2bz/t8pNeH9yDd0kfi2WefdbrM6+k6QbvLvKAeU/PmzUMIwf12EjWVzH355ZcPuU+q83lyHv+viqpGcUWhhl0lP378eDZv3szSpUvz+cotXLgQTVUpp2o00/WDdsSnuoRNIXFPIMTDwXDS010IbvYHuDcQIqxp+NxuAvY+V3m83B0IkqWq+G05byEEjRs0wDIMxx98QyybGoZBqVKlyMljhZDq3L3A7uxN/chCkKMoVLXPSwiBz+3m008/5ZNPPkGRZeqZJr1dbgxZ5rxzzyU3N5cqFSsSliSCkkw5VeWxYJhL3cl5pRK7qiTx4IMPsm7dunyLLlu2bMHndlPfMOhpubAkiWX/kEh/JyOTibasY3ZWFtlZWQwZMoT169eTHY3iVhRi9pxDgQCyJKFrGldffXWBCmNWr16NqarU13WWRmPMCGegCUGOqjE5EGSgfS5TgiHmZ0ad++ixXOiqildR8MgKLsNgwYIFBXoWU6SC9Y8ys5x7ZuS5Jykp9lm2RcDUqVMpXrQohiThliTcIimff5svwE2+pO/a448/fsjjVa5Y0enafywYpriiYGka//d//8e5557L0KFD+fXXX4ED/UdDfj8ffPABAJ999pkjfS+E4KKLLmLr1q089dRTPPTQQ6xZs4bHHnuMvn37cs011xyTp9xrr71GJJi878WLFDnARz41x+XLl7Nw4cKjqraeNWsWQgjmZ0Z5NyMLQwiqaxqXuD0ENI2mjRoVWufL33//zRVXXEGp0mWoWas2r776aqGMW1j06XM+kizjL14FwxMgFs/ml19+YevWrdStWxchBF6v17n3pzOJRIJLLrkk33vv9ttvP9nTSpMmzXGQjiVPH9L3Ks2pys8//8yaNWtOWEF9SuL8jUiyQ3tpNIYiSUyZMuWoxtm9ezdF43EqmyZPhcJc4fEeMbY9FhKJBJs3b85XjHswPv74Y+rXrk2xeJwe3bo5MQXsVwtsYCa9y3VZpkXz5k6MtTqWzcVuD7IsH7JAd+XKleiaRgfLxVOhMO0sC1PXWbNmzXGf444dO3j99deZPn16oSSUdu7cycyZM5k+ffpBk5z/93//h6EovBCOsDwap5PlwuNynVBJ70Nxyy23OEXwkr3usiaWTT+XG7euM23aNAYOHEg503SaAB621xcOVTDyww8/5Ctm3xjLpqxpnhCLg8ImkUjg93rp5XKxMZbNsmicIrpB//79D9g2VYCe+hk8ePAxx5iNGzSgmGEwPRxhSjCEqShcd911h93nu+++o7StWJZqEkhLgh+cPXv2cOmll2JZFpbLxRVXXHFQi4rTgUQiwQMPPECZcuUpWqwE11133WEbjA7Hhx9+SCiUXNstVqxYWvUuTZo0J5V0sr0ApIPu/y67du3iySef5NZbby2Qp/a/SSKRoGWzZnhVlX4uN9UME8swCtUn6kQwbdo0W/LLxaVuD6aiOF/q165dS4U8Ml9du3Q5ZId6ilQieUqeDt6GpkWPg3QQA8yYMSNfkHSTL9kR/+WXX7Js2TJcpkllw+R8lxuPqtKyeXMSiQQjRoxAl2Vu9wd4KBgiQ9fp2L59gc5579693HHHHZxzzjn06dOHaEYGAUWhuKLglmVKFi1aYI/mV199FSEEi2zf9nV2t3BKCv9g/P3330iS5MjzrYrGicsKfe1O9JamSTgUoknDhkyZMiVf8NS3b1+KKIojT32xy+XIrMlCcLXHy0eZWcQ0DY/dJZ36nWJ3ygshqFm9OkIIupsWrjwJbMX+ucHr46FgiICmUb5cOWRJoqvloqHtkX3HHXcgyzJtLYsRXh8Zuk6FsmURIulrtiaWTQVVo6SiOt2957vcuE2TdevWAXDhhRdSyjBYZ/9+rJ3YXbZsGUIIHg2GeTcjC589b1kIzjBNJ0gXQiAfRJ78pZdeQgjB3Iws5mdG8UkSpVWV811uvJJELU1nfSybF+zCiE6mxSVuD4okEYvF8MsyC7NibLQXAGS7+OFoAqP58+czfPhwLNtmQQhBxfLlnY73lORfU9MirGmUKFqUn376iTo1a1JdSyoGrIjGqahqlClZ8rDHys3N5aabbqJ4Tg7FsrNp164dqiTR1DB4IRyhbx7lBEVIqCJpMWDKMrWqV2fOnDlOJ/wEf4ASeYo2GukG5UyTQYMGHfL4oUCAyqrKNLtD4R5b5WDz5s0HbDt16lSESNofzIpk0sC0iASD/PXXX2RHo9Q0Td6MZDLen3wPhO0gTJYk3JZ1VMnZnTt3MnDgQII+H5mhEJdddhm6ptHWspgcCFLbtAj5/Qed57GwadMmTF2no+XizUgmZ5gWihAUjcXod/75/Pbbb4VynFOdtWvXIoSgRKcrqXfj21S/eiqqbjoJ6L/++ouWLVsihMA0TWbMmHGSZ3x8vPXWW8nzPeMqao94jVijHskOqRPU9ZUmTZrCJx1Lnj6k71WaNEnee+89hBDMjGQ6llWqJHH//fcf9ViLFy+mWE6OE2sdzpLtWNi6datjIyWEoGePHseUEO7Tpw8V8hR/3+DzI0kSQVVz1iHez8hCCOHEEH/99Rd33nknQ4cO5cUXXySRSPDKK6/gs4vN/V4vr7/++nGf46+//krFcuXyFRgfj6rTb7/9RvUqVZzxAl4vn376ab5tdu7cSfMmTZxtdE3jpZdeOt5TOW42bdqEEIIrPV42xrJ5JZyBIgRjfH4qGCbtWrcG4NprryVT1/nOLpIfba8NHKogI5FIUKtadeK6zq3+AOfaMe8bb7xxAs+u8HjggQcQQlDKNAlrOn6v9wBJ/AULFiCEYLTPz7pYNrfYMfNbb711TMdcu3Yt5UuXdp6ZDu3a5Ss2X7JkCVdccQUDBgzg7bffJpFIUKlcOUobBs+GIozz+ZGE4N577z2uc/+v8sMPP+R7D5QrVYqNGzee7GkdE08++WRyfaZyc7LqdEZWVK688spjHm/lypWUtp89n893Sqn0pUmT5n+LdLK9AKSD7v8mO3fupGG9ekhC4LPlkCdMmHDS5rNmzZp8SeJVsWzCms71119/0uZ0rDz44IOUKVGC7MwsBg0alO8L9p49e/j222/5/vvvC1Qxm5ubi9/r5UwrKY/9UWYWfttb+VDb9+jWLVnpbCf5rrjiCuf3n3/+Oa1atqRKhQoMGDAgn+x093POcb641q9T56AV47m5uXz77bcsWbKEPXv2kEgk6NmjB5LYLzOuShJ169ShWsWK9OrZkx9++IFEIlGgToR169ZhaBpnWC5eDWfQx+VGluQjSglffvnlSELQ3DAopihoQvBOJJPl0Tg5ikKmLNMuT2I7RatWraisaQfIvpt2ov2zzCi3+wM01JLSTEFJ4tlQhM8ysiirqpQoUoSff/6Zzz77zLl2/VxuLnG5UYXgfJebCqpKLU1nUzyHgW4PJXJyuPnmm6lTsybNGjd2AtgXX3yR0sWLE/B66dShA5MmTUII4cj+N9YNWhiGs9gxzudHVRTnuvbv358KhumoGtxmB4urVq1KdofaMmpFZZnelstROLjE7cEnSXySGeUCtwdJkhg6dCilihajWDxOkSJFnORxsio+6VWeZXdNn2la3BEIUlxV8UoSa2PZPBIMI4tkR3cNbf8CTUpNQQiRzy8ukUjw22+/HbSa95/V5meeeSavv/66s4j0559/sn37dm6++Wa6du3KlVde6Ty7YZ+PwbaKwKZ4Dhe7PWiHWWQAmDBhAkIIyqgqMVv+PSrLmHkKLW72+fkoMwuXEAQCARo3bszYsWPZtm0bH374Yb6ijIgs82wowkPBEG5JQpUkbrrppkMeP6/kvxBJr3pJiIMuml111VWUziNvmPKHnzt3LkIInrK77jfFc6io61iyzKeZUZZH4zQwLcoeofAgL5dddhmGonClx8uFtpKAKklOoconmVGEEMyaNavAYx6JV155BbdlOYuTkyZNKrSxC8rOnTtPindkisWLFyeLS/rfaXvKz8LyR/L927hz5046d+6cvCeqyrRp007afI+Xu+++G0XVHS++6lcnC0pO9yKCNGn+l0nHkqcP6XuVJk2SHTt2ULZkSbJ1ncs9XiqbJgGv95gslyBZnL5+/Xr++uuvQp4p9OjWjaCmcbdd6GvIMsOGDTvqcc4991yqGvs7oVNF+0II7g4E+S4ap5/LjSLLbNy4kb/++osqFStiyArF7Dg7ddzdu3ezYcMGdu/eXSjnePHFFxPWNGZnZLIwK0Y106RqxWP3ar7iiivwqxozIpksyopR+xBx0d69e5k5cyZPP/10PjuyRCJxxKaJf4vUusPbGZlOnBeRZVRJIuD1OrLfK1euxOfxUFQ3aGaaSEIcsUt948aNNGnYEEmS8Hu9BxThn27MnDmTwYMHc91117F69WqWLl1Kx/btqVKhAv369uXSSy9NNifY6yJrYtkIIShdsuQxd0zv3r2bJUuWsGLFinwx5IIFCzB1nWzDoIz9eZkyZQpCCO4N7G+sqW9a9OzZs7AuwX+Kc7p2JarrvBHJYEYkk7iu0/kQ1gCnOs2btyBQurYT88Yb9cTnDxzXmFu2bKFx48bOmsAjjzxSSLNNkyZNmoKTTrYXgHTQ/d9kypQpqLLM65EMNsayudzjRZKkk+YTtHLlSoQQPBYMO/7HmbrOiBEjTsp8jpatW7dSu3ZtXKZJOBgs1GrU559/HkWWsRQFWZIoV6oUW7ZsOeT2ubm5vPzyy0ycOJG33nrrqBJFP//8Mxs2bDjoPn/++SctmjZ1gu7KFSo4iUVZCHpYLqaGIjTRDUxd5+effyaRSDBu3Dg8LheKLHNmp05H7Eh96aWXcNkBiKaqPPTQQ/l+v3HjRq666ip69+7NfffdR25uLrt27cIyDMKyTEVVRQhBUVnBbxcBPBgIsjaWTS+Xi+I5Oc5YY8eORQhBL5eLUT4/QUlGFsnO9Lii4JYkp9NdFYLO5v7E5givD01RCAeSCxGa3f2c+v0At4eYrDDE6yMsy6yJZVPXNKlXq1aB7kVKUv8Gn5/vonFaGAaSEAzz+rgzECSoKLS1K9dhv+x2O8vico8Xj6rS+YwzgOQijC7LdDYtXEKirq7zfSyb72PZ1NV1yqlqPl89IQQ9XS4ucHuQhcBj3+MKqoZhX9Pvv/+exx9/nIA3KYfotSwa6Mmigqis0NYwnersW/wBXgxnUEHVKK6oNNCSHu9Dhw5l2bJlVLIrlHVbLv2f12C0z8+qaJyRXh9CiAJ3MpQuWZKQLDMtFGFqKEJASiauv/vuu0PuU6FMGQKSRMi+XkEpmWifYXfuT8zj/VZT06ldu3a+/R966CGEEFzr9RGQZIbZigub4jn0crlwG8Zhk/2NGzYkrii8k5HJW5FMIrJMkZwcxowZw5QpU/KpRNx2221YisJ7GVlsjGVzmcfrSDtqqsqFbg8bY9l8nBnFJcmUte9zagFNU9UCXUeAzFAoX+FCddsW4ENbXj/lY/jJJ58UeMyC8Mcff7B48eJ8Mpcngu+++46qtqR/wOvjySefPKHHT7Fz507i2Tl4YqUofc71ZNTsgBDiADWaPXv2cN555yFE0k/zwQcfPCnzPV5mzpyZ7Gw/82rqjHydeONeCCEO6ERJkybN6UM6ljx9SN+rNGn2s379es7o0IFi8ThNGjY8YvH3ySIjGOSaPN/Re1oualevftTjvPnmm8luXMviMo8Xl6Jyztlnc779/TJV/JqS0r/77rvRZZk5GVlObCyE+Fc6TZs0bMhZlsXGWDYPBkM0N4x8RedHS9s2bWhv7rf+u80fQJKkAo337LPPEvInu8SrVarEsmXLjmkOx8rWrVtxmSYdLBcfZWYxzu5Y79u3r6N4l2LZsmX079+fM888k0mTJhX4eu3du/ekFhvnJZFIsGXLFv7444/jGmfDhg0EfT7KGAbnu9z4VNVR97vG42VpNO48w0IIPv/880I6gyRdOnemgmGwKpbNxlg2XSwXObEYpmHQ1+VmQzTO+xlZRDSNyy+/vFCP/V+hdLFiDHB7nM/tZR4vxbOzT/a0jomWrVrhL1mDuqNnUe/Gt4k1OIdAMHTc4+7atctZExBCMHz48LQtQZo0aU4o6WR7AUgH3f9NRowYQXYeb/EZtt/wF198cVLmk5ubS/06dQhrGld6vDQ0TTRVPWWD2rzs27ePeFbSU7iVYRKUkj7lzzzzzFGP9fXXXzNp0iQefvjhfAm5xYsXM2nSJB599NGT9lkcNGgQHlXl0WCY58MR4rpOfdsvWBPCkZz71O5wfeutt3j44YcRQjDA7WGsz09A0wpUffrXX3+xdOnSA5KSP/74I7HMTCK6Tl3LQhJJX6sNGzYghKCxbtDf5aa03dWfSpQnu9UlissK0UiGM96uXbsI+HyodjLdZe8zaNAgdFmmppaUXvs8M0qmLGOJZAf4V1kxSigKshC0t1xMDgSppunoQvB4KMxToTBnWy5iskxxRcGUJDJ1HV3TmDt3boGv+bBhw/J1def9qVmtGr/88gsAq1atonL58k5RgN/lpu/55zvdE7t372bUqFE0ql8fl33dorJCxB6rh11EcJs/gCKSUvCpd8NFdjd4XJZpZySLICKhkBOApyr7U1JYLXQdSQjG+wNsiGXTy9ovv++TJMqqKh5JItNOfGeEQpQyDO4PhrjI7ph+7bXXgGQ3tWrPtbvl4gv72Xr22WcLdP3uvvtuR3FBCIFfkvF7PIf1Di9ud/LPtrsF3rPlElPPki4EE/1B7gskO/w75Xmed+3a5cgmLo/GKaeqNNEN1sayWR6NU1bXademzWHnnJ2VxZV5FswudHtQhSCi66iSTPUqVdi2bRuQ/Pe5coUKaLJMpp6U2L/11lsBHGWELN3AVBSCXi8+VeXVcAYfZ0apZJpUr1y5QNcRICca5TzbmmFjLJv6uoHHNAloGs1MC0tRaN606Qnz0vw32bVrFyWKFKGMYTIpEKSry4UkSXz00UcnZT5LliyhRMlSyfeYaR3SViM3N5fLLrvMed5vu+22EzzT4yeRSHDxxRfne9elnuk0adKcnqRjydOH9L1Kk+b0o2zJkrSzLDbEslkby6a6YdKmVatjGmvq1KlUKFOGnKwoF15wAdu2bSORSPDhhx8ybdq0fBZ/I0eOJDtPofmb9nrSokWLCuvUHC688EIiqkZ7OxYN2nHkWZ07H1Mi6bLLLiOkabybkcU3tuJXqWLFjrjfp59+iizLdLFc3BEIUtYwKV6kyHH5uCcSCT799FOmT59e4OLSV155JZ+9WpUqVXjzzTePeQ6nKlu3bqVV8+bOefbu1euYFQXuuusuTEXhG7uLvZ/LjSYETXUjX9zRy7YO/PDDDw86zoYNG2jfti0ZwSDVK1fm/fffL9DxmzRsmK9x43qvH7dlMXnyZIQQuGxFPSEEZ3TseNj1iv9VWjVvTnnDZGk0zrfROJVMk2aNG5/saR0TKfvRYLkGZFRvi3SMiiQHI5FIMGbMGOd56tatW/p5SpMmzQkjnWwvAOmg+7/J9OnTEUJwky/Ah5lZtLMs3JZ13BWjx8Mvv/xC5zPOIDszkxpVqjB79uyTNpej4ZNPPkEIwdO2ZPOnmVEkIahxlBXlr7zyCpqqOh3spYoVc5KphcHxyp3Vrl6dni6XEyAM9/oIeL0EfL58UmYpqfDPP/+cMzp1okmeqvFxPj+KLB+zLNe4cePwqipf2p7uqUruiy66KBloahoBKemjXU/X8UgSj4fCTA9HiMoyuhBEMzLyHT+elUUJRaGaptHRNKmm65QqUQLZ7qhOzf0cy4WVJxCThECXZEfmfVYkI19yP5XktQyDFi1acM0117B48eICn+uPP/7ImDFjaNSoEbqqUkbTGOvzU0lVkYWgUYMG/PbbbyQSCapUqEAJw+DhYJghdkX2Y489dtBx//jjDy6++GIyMzMdqXclz3x9bjet8xTinO9y45EkKqnJayuEYPLkyQeM++CDDyY7UhUFlxAUVRRei2Tkk44XQtDFsmhhLw5UUZIqBEM9Xhbbvu6lDZPBgwfz7rvvIoSgtWEy2OPFI0mUsbfv06cPQ4cOPeJizr59++iTp7LX43LxzjvvHHaf1LO0yH7GlkZjCJG0KHghHKGhbjjXSpGkfAVK3333nXOs0T4/TwbDKELglyR8qorX7T7iM9C4QQMqmSbfRON8lRWjmKJQTFHYGMvmnYxMTEXJZ4Xw119/ce+993LjjTfy9ttv5xvr3XffZdSoUUyaNIm1a9dSq3p1Z35ZkQhfffUVW7du5dprr6Vz586MGDHCSeT/k9tvvx0hBG1Nkwb2Qtejjz7KNddcQ9euXRk9ejQ7duw47LlBsmumVYsWNKxbl//7v/87JSutv/rqK4QQvBzOYFM8hw2xbLJ0g+HDhzNs2DBqVq1Ki6ZNmTNnzgmbUyKRYOvWrUd8dyYSCa6//nrnPo8YMeKU6UwpKKlF3aeffvpfWbBNkybNiSUdS54+pO9VmjSnH88//zxCCEobJkUMA13TDpkoPBqWLVvG4MGD6devH9OnTz/g96+//rrTFfxqOIOGpknI7z9kLHE8/PTTTxSJJxXY7rStzR4NJi3NZs6cedTjbd68OZ/3s9ftLtA1u/HGGwnrutNk8Kpt4XWsDSKJRIL+/frlUw54+OGHC7TvvHnz8LrdhDSNUrYq4MFi9NOZvBYJt/gD6LLM8OHDj2msiRMn4lIUVtrJ9is8XiR7DU8TgvKKykC3h9K6QdF4/KDP8a5du6hQtixxXWeI10d908LU9QKpG9x4441osszN/gD3BUJENI1OHToA0LxpU7yywl2BILf6A5iKks8KMk2SJUuWEPL7USUJTZYJeL2nRXPWoXjyySepVqMm5StUYuzYsYXetPD000+j2WqEdevWPahNaJo0adIUNulkewFIB93/TRKJBIMGDXK+2LtM0/GOPhksWrTI6Sg1DcORJysMfvrpJ2bMmMGnn376ryR2Zs+ejRCC920JtTWxbDQhqFq1aoHHSCQSRIJB2lsuvo9lMy8zSljTCu1L9pQpU5yO23q1arF27doC7/vNN9/QqkUL3KZJKVVjWTTOmlg2TSyLimXLMn/+fFx6squ7gqqhSBJdu3RJ+rn37El5w+B7OyAd6PbgtqxjSv5s2LCBZs2akZPHY/15W9pbCMFwW657cVYMnyQRleUDigM8drI4ryxYJBDgKruTeE0s2/Fnj8ky5VWVjzKzeD2SgU+SCEgSjXQDNU/C/ePMKJviOXQyTQwheD4c4dPMKNU1DV0IslNd9kfhOb127VrCwaBzHCEEi+3k7+P2woImBLVq1nQSvA8E93t91bQs2rVrR4d27ahXuzYjR47MV2ixdu1aFJHs1m6sGwz3+siUZXxuN167mrudadLV7kqPywrz7a7yiuXLH9RbfcCAAVSy/cO7WhZ6nrmnflLXZ2Msmya6gZHnd25JYkogiFeSyI7H8Xo8lFY1x4P+dtuDXpFlYrpBTDfQVDVfwvObb77h9ddfZ/ny5YwfP96p+HebJnXr1CmQxPmPP/6Ix7Koqunc5AtQQ9dRhGBBZpTFWTHuCySLBwI+P1OmTGHSpEn06NGDZk2a0LFDByRJoqYd1KR+srOzGTduHKtWrTrgeHv37uWzzz7jgw8+4K+//uLLL78k6PMhSxKSXQRxjz/o3NuSpsW1115boOfon+zevZu5c+cyc+ZMtm7dyvbt26lcoQJ+TaO5aeJWVRrUrXvQ+5tIJJgyZQrNGjemdcuWvPzyywc9xldffUWTBg3IzsqibevWrFmzxvndrFmzkCSJeobJmWZSYeFYF0z+TVavXo0QgrvsxbzFWTFcikqN6tUxFIWeLhe1TRNVUZg/f/7Jnu5BSRVHCCG49NJLT8mihjRp0vxvkI4lTx/S9ypNmtOTOXPmMGDAAC677LJCUSpcunQpHpeLuK5TxU7k5rX6SnHjjTc63zdDfn+Bu3wPxqG+q27bto3ly5fzyCOPIITgazsmXmf7axc0Of1Ptm/fzksvvcTTTz/N+vXrC7TP//3f/+FSFKfw/x47LlyxYsUxzeGll15yCgiWRuP0cblRFYUffvjhkPssWLCAKhUqoMgyhiQxLZSMrfu43Lgti9zcXF555RXKlChBwOulY/v2J80q8niJBAJcm8eSrbvlonaNGsc01sqVK3GZJnVMi2u9PmKahqlpBDWNypqOKgSyJFGnZs1DJs8XLFiQryB7VSwbr6oWSIVr9+7dnN+nj/N5adyggdNYE41EnPWoTfEcznW5UYWgY7t2R7Rg/DdIqSLWr1OH9m3bnjR1t4OxadMm7r//fu6//342bNhwsqdzyvPhhx8SCiXfU8WKFePbb7892VNKkybNf5x0sr0ApIPu/zbLli3jvffeK9QO6qNlx44dxDIzqWqaPBwMc57LnUxeH0ewluKdd97B63Y7X2rP7NTpoImk4+H333/HbZpUUjXuCARpZZhIQnDfffcVeIwdO3YghODuwP6kWnPTokuXLsc9v5SXdy+Xi//zBylqGFSuUKFAlZM///wzGaEQZQ2THpaVlFqXJIKahqaqTiftX3/9xQ033MDFF1/M5MmTne7LefPmoakqFQyDZnagPmbMmALPPZFI8Oyzz9KnTx8sw0Czk+X9XG4eCIYoZ5iOZ/hTtrLApngOJRWVHEWhjKryrV0c0Fg3CNge7LIk0bJZc1599VW6dOmCLgQhSXY60g1J4t1IJll55LwiwSCSnTzvabnobJqoQhC0ZbRlIWiRpyP8rkAwGXxH47Sx7QWEEAWSkb/ggguwJImSiuokmedmZHGD3cmvpTqr7Q5lVVG4zA7QlkZjBFUVRZapYhicbbnQZZnzzj3XGf+VV15B2B3Xa+xk9gt24YIiBE10g2qaRhVNo4KqUk1VmWlLAx6sKGffvn20a9cORZLoaFo01XUaaDrD7C77sT4/72Rk0kQ38EsSK6Nx2pkmihBMDgSZlxmlhZHsGNfsIgaPkPBJEkvsxYybbYn7uqbJWlsmsZ5pUt/2TM+72CPZP04XtyxTRFEI+ny8+OKLfPnll4dNPi5YsIDK5cujKgrxrCwUSWKQ2+soF0h2AtMyDAxJQhFJm4KytoS+EIJMXUeTJHJisUN6tP/11180adjQmWdOLMa3337Lpk2beOihh7j//vvxezw0MS1mZ2Qy1r7/06ZNO+IzVBBeeOEFhBC8axcKvWR3Z7z77rvHNN4PP/xAyO+nomFypcdLMcOgeJEijp1B5zPPpIZhOAUUgzwevG73Kdd5nUgk6Hb22WiyTHPTJKrrZISTRS43+QJsiufwfSybkobBJZdccrKne0geeughJPud2bt370L/ty9NmjRpCkI6ljx9SN+rNGnSAPTr14/ihsEKuwv4gsMUzP/8888sWbKE7du3H9Oxvv76a6pXrowsyxTLzmbWrFnO71544QVc9hqCoWnIkkRvl5u5GVkMsO3HFi5ceMznebT89NNPxDIziek6rUwTXZY5q3PnY45lbr75ZsK67qwfvG/blx2qy/6nn34i6PNRwzQZ5/NTTdPwSxKLsmJMstce3n//fWRZprVpJQvqdZ3aNWqQm5vLokWLuO666xgxYgRLly49nktx1Hz11VeMGTOGW265JV8x9uEoU6IE7f9hkdC2dWvn93v27DmqbuCPP/6YmlWrkhUO065NGxYvXsw111zD2WefzdixY49oB/Dll18ihGBqKMKmeA7fRuO4FPWghSiH4vfff+eXX37J98xUKFOGNnnOs4amUUpRCWga3c4+u8BjFxb9+/VDk2W6Wi6qGUl7zwULFpzweaQpHFasWEHp0qWTKpY+3zGv9aRJkyZNQUgn2wtAOuhO82/zxRdfIITg9UiG4wecqRuMHj36uMbds2cP4UCAZpbFZ5lRHg6GUY+iu/ho+OyzzwgHkklRQ1UL5Lfz888/069fP+rVrk2fPn0IB4JUUjXey8jiiVAYQ5a58cYb8+3z448/8vrrr/P+++8XWIr98ssvp5RpOt3gT4SSSaPvv//+iPs+8cQTCCH4yk54PhNKJmTPO+88Fi9ezOzZs+nWrRtndelyUHk5SCbce/ToQaeOHXnwwQdJJBIkEgnWrl3Lt99+e9gE0FVXXYUQghKahiEEJRWVoV6fI+NdrlQpShQp4niBPxwMM8ju4PcqCqqdBPXaCVEhBJe4PdziD+C3E++pBHN1TePOQJCmhoksBPcFQnwbjdPHShZrpLzdNsVzeDwUpqMd+Ldt25azzjqLunXrEtQ0PszMYlUsmxaGQaYsszGWzXVeH35JIqSqjBs3Dkgm9KZPn87QoUO5884780mVtW/XDo8kcanbw8ponNKq6ki4D/J42BjLZno4giwEliThsRP/mapKWNPQNY24qtLfloBPdZD/+uuvQDKZLNmFE8vsRZTH7I75koqCIgT93W562l3uVTWNsKZRpWLFg/o99e/f3+mSz5RlFDsh3cIwKKYozgJCSmqvvX3tMlWVjbaf+fP2c1lEVtCFoJFu4JIk3JJEbS2pmOAyDC62fcM3xXMY4PZQqmhRPvzwQ4QQDPH6+CIrxkB78WVqKMyzoQimJDHQ7cG0r6EQgvZt2hTIX2/btm2ULlECIQQXuz28FcnkLCtZXFHTMFgVjbM4K0ZRRaGTaVHZMKhfvz7Dhg3j9ttvP2SiHeDaa6/Frao8E4rwTkYm5QyTWtWq5dtm7ty5+O1nWgjB4MGDCy05/dhjjyGEcOT0FmYlJfNfeeWVYxrv0UcfRRKCpdHk+2KOvWCUKspp364dTfMUpIzw+jB1/ZRLtkOyon/8+PF07tyZAQMG8PXXXyOEYKKtMrAhlk150+SCCy442VM9LM899xyqmrRfOPPMM4/LUzJNmjRpjoV0LHn6cDrcqx9//JHXXnvtqGKhNGnSHB1dunShaR4ruFTx95Es6TZt2sRll11Gly5duPnmm4+4/Z9//kk8K4uKhskEf3LdxtA0li1bxqpVq9BUlS6Wi+nhCF1dLmRJQv2HatyqVau49dZbGT9+fIE9z4+Wv//+m88++4wlS5awdu1aLrnkEs7o1Ilx48axe/fuYx435dv8cDDMulg2A90eJEk6ZKd9yjIgZXf2lR27DXR7yFYUSpcowZAhQ8g2DNbZaz+P2zH2E088gaaqZOk6GbqOrmkMHjyY++67719vvJk1axa6qhLWdHyqhs/j4auvvjrifqnrU8bcb5Hw0Ucf8eeff3L2WWchyzK6pnH11VcXugT3wdi3bx/169TBr6qc53JT1jAIeL2sW7fuuMadPn06kiRRXFXJVhQ0IZgejjDC68PrchXS7A/N1q1b2bRpE7m5uWzfvj3ZIGPbKa6NZVPcMBgwYMC/Po80/x6bN2+mcePGCCFQVZVHHnnkZE8pTZo0/1HSyfYCcDoE3WlOb1KSvf9nJzE+y4xiKgp33nnncY27YcMGhBAM83odiffqlosLL7ywkGZ+IAUNtrZv3075MmXI0HW6Wy4yNQ1FCFx5unEVIfjmm2+cfd577z18ebr0WzZrdtDE5z8ZMWIEYU3juVCEOwJBLrCVA1KJ18ORSranJMxTybOZM2fyxhtvIEkSVQ2DOraH85Fk3GbPnk3L5s2dwgQhBJamMXr06AMSbhs3bkQIwSj7i/4HGVkYQtDH5aKmqmHqOhs2bKBMiRJ0MExK2n7eshAEfD6GDh3KJZdcQrdu3ciJxzE0jXq64Swa3OoPIAlBH1sq/TNbDn5lNO50RsdsGfLLLruMZ599FmEfXwhBWVUlIsu4TJMlS5awefNmytsVoymJ9gtdHh4MhgjLMo1sr+9BgwYBcM011yTlnOyq+FhWFsVzcigai9GwYUMUISimKMzLjPJGJMNJmL+dkemcQ6bded/BtOhhuZCFwO9LdpOnvOuv9Hi5yuNFEYL69eszduxYvvzyS2rXro1sFzD0dLmw7OKD//P5udzjJUdRcEsSHo+HSDCIpihkhsPcf//9TJo0iWgkgqlpVCxfPl/H79JoHJ8kk5OTk/wyLwTvZGSyMZbN5R6v8/9cloVmy/0LITDtayaE4Fm7Wnyu/bwJIciw768uSdwXCDIlGMIjy2SEw456RWpRYWk06en3oC2t38wwaGuYeCWJfi43DweTxSxjx4494mcA4M4770SRJKcje5G9sNHd2m9T0N1yUVPTaWaadLT9145Ei2bNOMO0nDFu8QdQZPmAhOjvv//O/PnzC9wFcDASiQRffPEFs2fPdhZUVq9ejWUYNLcs7g4EqWdaBLzefFKDGzdupG/fvjRu0IABAwawZcuWQx7jscceQ8rzvng7I6mGMHv2bGD/+6SXy8VVHi8uRaFvnz7HfE4nmo7t2uFTVa7yeGlvWfnO7VRmxowZmHaBS4sWLRylgTRp0qQ5EaRjydOHU/1evffee/kUy1o2a/afLyK77777yAyHMXSdMzt2ZPPmzSd7Smn+B7jnnnsQQnCd18e9gRBxXadJw4bMnj2bmlWrUiQapVePHvnigl9//ZWcWIwMPRkP6bJM5zPOOGxR7XvvvYcQgjn2Ws3qWDamonD33Xc7idZv7aLglXZ8N3nyZD7++GM2btzIwoUL8bhceFQVr6riMs0C2YYdDcuXL3fsDoUQtG7Vih07dhTK2Pv27ePss85yxhZCHHYN7LXXXkPYsXXetZnU+oMQgu7duxPWdKeY+m674z2akUED3WBtLJvHQ2FHzU+TZeJZWQVqxDgW5s6di6EoNLKP/V00TjnD4IyOHQu0/7vvvssll1zCoEGDHIuE3r164VVVxvn8XOPxIksSEyZM+Ffm/09+//13LrroIqpXqkSnDh0KTSFg7ty5FC1ShLAs81o4g42xbHq4XMQzMwtl/IOxd+9e+vfv7zxDtapV59tvv00+h7bi5sZYNhVOgwLzNEdm165d9O7d27nfw4cPT1vNpUmTptBJJ9sLwKkedKc5/UkkEpzfp0/SI8lyEdQ0ihcpctikTkF44okn8klJn21aWLLMTTfdVEgzP3beeOONfIHSR5nJQOkOf4AXwhGesSuQU77Iubm5ZEUiNDItFmRFeSYUwVQUbr755sMe58cff2TChAlodqIy9VO2bNkCdZP+/PPPZIbDlDFMBro9FDEMShYt6shfNzRNNsSy2RjLprNpUbJoUT744APef//9AwoB5s6diyzLRO1q3bsDQaaFImTbndT/lN1PyXTlVTzw2Z3JcUVJJlpDIUqXKoUkBD0ti852AqxkyZIHeJ316dOHUobhyKYP9nhRheA6OwH8ou29lZJvu/jiixk1ahQvvfQSiUSCffv20b5tW/tYLjbGslkZjVPSMOjduzeQlAWfOnUqkydPpmXz5s71dksSlhBYQsLn8TBq1CiEENxgFxIMtufQy+XiQrcHVZYpWqSIEzQLkZSL11WVM82kUsNtdodBJVV1krUXuj2oQjDUmzy33nm6wPu73ehCEFRVVEXhscceo169elimScDjoVKlSuh28v3ZUITxdjFC8aJFCWoaI70+etqFCbIQVFY1rvf6icvJ7oLb/AFW289CEUWhVatWfPnll5QrXTpZBJD6Uu/1OXLlmixTXdO4NxByut3zFj6siWUjC8HF7uR5TLBl1FM/piSRLctOkcpdgSAbY9mMs7d7NZzBBxlZ+CSJuKw4if8vsmIUVVSKFSvGM888k++z8PfffzNkyBDq1a7NGR07snDhQl5++WWESPrN57UIiGsasyKZvBCO4JUkytsdxJdccgnPPffcEYth+vXrR0zX+TgzyrfRODUMA8Pu1ohnZeWTUTwe9u7dyzlduzrXzVBV6tSuzc0338yMGTOIZSaT4sVycvj444+d/X7//XdKFClCVNfparkIaRrVKlc+5ML2L7/8QlYkQinD4CK3h7iuU65UKWdBKpFIMGnSJIrEYoT9fi688MJCW6w6Efzxxx+cd+65RCMRypcuXWhy/ieCDz74ALedoChSpAiLFi062VNKkybN/wjpWPL04VS+V6lYqLF1dLHQ6UzKz7mny8Von5+wptGqRYuTPa00/wPk5uZy9dVXO3ZE9WrXZtasWWiqSkPT5HKPl5Cm0ah+fSeOuuuuuzBkmQVZyTju/mDSJ/hwHsHz58/PV2i9ICuKIkk89NBDvPPOOwix3yruWVth76233nL2b9G0KZUNk+XROKuicWrmsRg7FhKJBFOmTKFSuXKULl6ckSNHUqt6dUobBs+HwjTRDXQhUTQn55iT+rm5uUycOJHqlStTq1o1pkyZwsyZM3nkkUeOKIm/Y8cOKpYrR0hV6WJZRGSZEorC0/baURlVo17durgtiwqGQXfLhaUolCpRAkUILrdt54opCk10g9WxbBZlxcjWdfocoQA6Nzf3sIm5n3/+md69elG5fHnO7NSJFStWsHHjRjwuF4aQuC6P9/q5LvcBam5Hg9/jYWie8c4wLRo3aHDM450qfPjhh6iKQinDoIa9NnL//fcDyUait956iyVLlhTa8SZMmIAiSYzz+XkomCyqad6kCW1atyaoaQzz+uhsr//k/dylOXns27ePdevWsXXr1mPaP5FI5LNf7NatW4EauNKkSZOmoKST7QXgVA660/x32LdvH5MnT6ZPnz4MGzbsuKWsfvrpJ3RN42zLxbzMKDfaybfSJUrkk+s+WaQWT1LB6BK7U3aA28P0cIQO9pfrDz74AIAtW7YghKCTaeKXJExJIkNR6Nat2yGPsWTJknwd5Nd6fayNZfN//mSisH379qxevfqIc122bBmtW7akZJEinNmxoyOTVbNqVbpbLu4IBInIMrIQqHlkusuVKsWGDRuccbp3705lw6ChbtDOMHkoGGJyIMgQjw9ZCGrXqJHvuNu3bycSDFLPNHkhHOFytwfZTiBvjGWzJCtGVNdxWxb1dZ0SsuIk44UQmLrOSy+9BCQlyBo3aoQiSZTRdBrryY711PaKSMqxtzQMAppGhTJlDnhObrvtNhS7CzsoycyKJAslWpkmHdq3d7ZLJBLceuut5MSS97SNYdLXcjHU46OYrFDcTqYKIZhpj1FT0+iUp8P5EreH7MxMPvvsM26//XamTZvG77//zvTp09E1zdlfEoI2xv5u/YFuD4YksSmeQ1FFoY2RtA/YGMumvZF8dlIS77JIdpin/l69atV810QIgdsuXrjNH3AKHqrax//a7l4+w9ifJPdKEq3tv19yySX89NNPtGzWDNk+bi+7E/xbuzNBCMFHmVmORJlmz6eOrnN/MERbw0QSgvczMrnNH8Btzy0jmHyGP8nIopyq0s/loocdCKr2uHIemwBVktAkiTq6wWeZUSKynEyO6zpCCEaMGOHcu7M6d8aQZRrrBtmqimkYPPPMM1SrUgVFksi2z++sLl0oZnfvp47htiw0dX9hi9swDrto8u2332LZ6gmp+1ld17kzEKSZaWLqOsuXL2f06NEEvF5cpsn555131J6I9957L4okcV8gxMeZURrrBoYQKELi3F69SCQSB016T506FSEEn9rFD69HkkUS77zzziGPtXz5cjq0bUv5UqXodvbZbNq06ZDb/vXXX1x00UWUKFmaOnXrHXbcNMfH559/nu9ZkyW50Io50qRJk+ZwpGPJ04dT+V5t3rwZIfarFm2K51DfsujVq9fJntq/xnnnnUe1PFZgd9jFnmmFmv8miUSCbdu2nVL2Sjt27GDLli0kEgmuu+46orrOWvt5fNi2IEspb918880ENY319u9nRJLFvJ999tkhx9+7dy9NGjbErap0NC2iuk7R7Gy2bNnCvn37aNemDaosU86y0GSZ1i1b5rOPKFeyJBe5Pc474XKPl6Kx2DGfb0qFq4tl0dflRhYCSZK4xeensW7glST6u91U1XRMXT+mruYJEyYghKCr5aKTmYy1j6QOmJdff/2VPn36YKgqPkniYpebkopKTFboaJrUq12bL774gjM6dqRurVpcc801mLpOWVUlKMs8HEx2tadU6TbFc+hsWjRv2vSgx9uzZw+DBg3C0HU0VaVf374HJOd27txJpfLlydR1+rrclDQMMkIhalSrhiqSinthSea5cIRHg2HcisKll1561NcuRXZWFj1Mi+fDEe7yBymvabRv2/aYxzuVmD9/Pv379+fcc8/lxRdfBODZZ59F03Qnjhs0aBBff/01CxYsOK5Eabs2bWibxy4ipbK3efNmup19NkGfjxJFivDkk08W1unl45tvvuH2229n8uTJ/Pzzz//KMf5LrFy50lHSFCJpL3isnelPPfUUmr2uV69evfT1T5MmTaGRTrYXgFM56E6T5lC8//77yWS1LUm2KZ6DX1ULLBv9b/Prr78SCQapbJqM8vmpbpoYeZN0koQkBIaiMGTIEHbv3u0kSga4PYzw+jCEoErlyoc8RvMmTahgmNSyv0R9aSdHN9rdwn5FIeT3H9Fjatu2bSxevJgff/wx3/+/8cYbnWTm2ZbFOJ+fDFmmtKryRjiDuC13mKJL587UM0zam6YjiS6EQBcCQwgqlS/P559/ns/b7eOPPyYjFMrXzXy3LWm1KZ5DI9MiFAxSwzSZbC9AjfcHmJcZ5QzLhWUY3HnnnQghaGCYlLOvhS4EN3h9bIjG6etyOwoIlmnSunXrAyQaZ8yYgRBJP7SnQmEqqRpBSWaE14csSUycONHZdvLkyQghqGEHRKoQ9LAlxhUheC2SQUfTRJNlGpsWr0UyyJZlWuXxsj7f5SYnGj2o99jGjRt55ZVXeOKJJxg5cqR9/V30c7lRJAlFkngpnMEddlFFPV2noV1coIlkN/0Ynx/dPueBbg9jfH7ckkROPO7Ic5YrVYrFixcjyzLD7crxtbFsitrFAh9nJruKhEj6yL8QjlDXPkchBF988QWNGzQgU9e5yRfgPNu+YJDbQ2vbj08IwZN2t8JHmVlIQlBEURxpecMuCjjTLj7pabm4KxCkuKqi2An/ZoZBOVXlm6wYDwdD5KgqZUuXZtmyZUyZMoWpU6eybds2pk+fjqooaJKER5Icr7shXh+SJPHHH3+wadMmhBCOJYEQ+6XtU8lwIZI2BW+88Qbbt2/ngw8+4Morr8Tv8Tj2A+P9AaaHI5RWVSLB4CEXzfr364dbUbnFH2C0z48iBOfbagSLM6NIQnDGGWc492m414dLUejfr99hP7P/5OKLL6aKtb+YI3XfhnuTigqHSoinPNi/s2UIP8mMIoTgzTffPKrjH4xEIkHbdu3QTBfRemfhL14FRVVZsGCBs82ePXtYtmzZIX0L/6ts3ryZMWPGcOmllzJ16tRCWXRt3KAB1UyTGZEMx37CNE3Wrl1bCDNOkyZNmkOTjiVPH07le7Vv3z4CXh/tLRerY9nMzsjErarccMMNJ3tq/xoXXXQRxfOoco3w+pAPYjeU5vRn5syZZIaTyeucWIwPP/zwZE/pAEaMGEGGrrPafh6n2J3rKfnxzz//HFmW6WzHaxUNk5xo7IhFwtu2bWPIkCG0btmSiy66KF9csmfPHu69914GDx7M5MmTD7Ds69O7N2FN45lQhOfDETJ1nbPPOuuYzi+RSFCxfHla6AavRTJ4IBiip+VCkyQa28XWD9jFPqtj2WToulOwfTSULFIkn/pcB9M6oOmgICxdupRYVhaaEJRQFPq43AeVU1+3bh2qLHOtx0sdu9BcEYKSqsrbGZlMDUXwqCpXX301APPmzeOMjh1p3KABY8aMYeTIkaiyzBCvj5FeH6aiOLZ4KebOnZuMEe1GgsVZMSQh8CoKgz1eqmqaUxAvhKByxYrH9e/M5MmT8ylYCiG49tprj3m8U4k9e/bw3nvvMWPGDDZv3szPP/+MpulEqrak+pVPUaTNgHzrEyWKFGH58uXHdKxzzz2XkrrB8mjcka2PBIOFfEYHZ9asWeiahltVMWSZaEbGcVnmHWz8zmeeSYf27Xn88cdPqSKmYyGRSFC1YkVKGgZPhsJc7002kz3wwAPHPOYHH3xA0G5iKV68+GFVSNKkSZOmoKST7QXgVA6606Q5FCkf+CFeHxtj2UwLRZCEYOrUqf/6sbds2cI999zDhAkTDtvVunjxYmpXr47bsqhRpQqzZs1CliQGuj1sjGUzM5KJZifvbr75ZipXrEi7PJWnQ70+vC7XIccvGosx2OOlsp3UHOzxsiwa5yZfstv9kWCYkKZx/fXXH3KM9957j6DtAS6EyLft3r17qVy5MkUVxem4SFW4L8iK0tflJhqJ8McffwA4nudFZAW/JDEnI4ul0Ti18iRohRBUKFuWjRs3OsfZuXMn3333HVu3bqVapUqUMgyeDUW4xR9AliSuuOKKZEexJJEhy871SflFF4nFOMvuqN4YyyYiy/m82+8JJBcKSqsajeyk7j+D1KFDh1LE2N9ZkpJBF0IwcODAfEnxerVr01w3kIRggNvNQLeHooqCLJLy7impszIlS+a7tkII2pomXexuciEEhq4f1rctkUhwzz33UL50aUoXK8awYcNoVL++s78iy1SvWpWiRYqgCUGfPIH9QLcHt90Fvymew40+P5JIyufnrZC+7LLLkCWJjqZFUVVFtRPQphCUVhRCsuxcl5l2B8O4ceP47bff8hVHbIxlU0FNPotBn49x48ZRv25dTEWhqWkRsMc+27LYGMtmWTTORZbLeTYyJMk5znPhZLK4iqYxyJbO14XApSi4LYt58+Yd9Hp9+eWX1K9fn3J57v9TtuzeunXrWLt2bTIJKSReCEd4NhRBFYIsWXYk4s+yLFqZyWKBZcuW8dxzzyHsJHklVaOOpjtjp+QTf/vtt4POJ5aR4cj5bYrn0NPloqSiMC0UwZNHYaB0HquAa70+/B4PjzzyCE0bNaJZ48Y8/fTTh3xGAMaOHYspyzwfjrA+lk0vy4UhBLfa74JDdZysW7cOr9tNXdNirM9PJdMkKxI5ZtmyvPz000/JwoYuQ6l349vUuWEGZiCTDh068Pvvv7N69WpKlynrXIMePXqwZ8+e4z7uqc6WLVsoUbQoXlWlgv0uuOaaa4573OLZ2VxmP2ufZkb3W3LE46dlYP3BBx/QpctZtGrdmnvvvfe0X0BJk+a/TDqWPH041e/VK6+8gq5pTpKlepUqp+xcC4MvvvgCXdOoYBi0N01kSeKyyy472dNKU8isWrUKU9dpZbm4JxCigWnh93j46aefTvbU8rF06VJMXaeGadLP5carqrRq0SLfd7Bp06Y58W3FsmX5+uuv/9U5bd68mTo1azrxQvUqVY75ut14441IQjhF36lCa1PXUe1i80eCYacAPaobDB8+/KiPUzQWo5tpOQoAnU3rmCXVt2/fTp/evdE1DZdpMnTo0HzrEvPmzcPnTjYWGEJwtdtDJ3u9I2In2YQQNGnYkL/++otFixahaxqVDYMuloUqy0QCAXq6XPnWEIpEo/nmkZL8f9dudPk2GkcWgkts1YEV0TimkFAliQrlyh23jdiTTz6JJAQPBUOsiMY51+VGU9UDGiZON/766y/q16nj3BdL16lpP99VLn2Qeje+TaxRD3T73F+PZFDaMI6pWAPg66+/xut2k6nrlLafi4ceeqiQz+rglCpWjGaWxZpYNouzYuToumPNeLzMmDEDSZKoYRg0sQtlJk2aVChjnyx+//13hBDcF9iv7lPXPH51nxUrVlDa7pb3+/28++67hTTjNGnS/K+STrYXgFM96E7zv0kikThi4mX06NEIOwEnhKBN69b5ZMf+DX788UeKZmejyzI+VUWRZZ5//nnn93v27OHrr79m+fLlByQHlixZghDJzufUF6hiikJZVaVaxYq0b9uWWobBBjsw6+dykxkKHXIu7du2JUPTqKZqaP+o/M2QZTZE45Q0Ta688sqD7r9t2zaCPh+NLYvXIxkM9SYD59dff93ZZsiQIWTqOivsztebbR/xc10u51h+j8eRh7733nuxdJ2OeSTTJ9je4GE7CPQrCu3atDnonFasWEGZEiWdsfv378++fftYuXIlXbt2dbq6N8ayGezxIkkS0XCES+1Ab3UsmzKKgiQE43x+nglFKKFquCSJ7+3reoHbQ8DrzXfcW2+9FZeqOl7iN+bxDn/77beBpFpB/3798Lvd+O1E1nx7+03xHAwhqKpqTjL9vvvuY/v27SxZsoSff/6ZJ554grq1amHmUThI3bfXXnvtgGuxcOFCRo0axU033ZSvO3XPnj289tprPPbYYyxbtgxIBm5Br5fGevL52RjLpq1h4pIk1tnnfYnbg2kfL+/7ft++fUyYMIGa1asjCUEr0+JGn5+YnLyOqhC8ZwfWY+3r8v3337Njxw4kSWKE3RW/KhonRzeoXbs2in19ZCGIRaN06dKFoN9P1PZVv8rj5VqPN18RhioE020/v1vt56yorKALQcxeFBk5ciQrV6485GcCcJLjZ5kWI70+SikKihAMHz6c3NxcgoEADe1kfBfLoqSissqu9j7Plby3q6JxNFnmvvvuo1evXtS0i2AudHsIyTKLsmJsjGXTx+VGleVDvnfKlSpFB7u4YH0smzq6jmrf96aGweuRDK70JLvPp9oKAH1dbkd9oI1p0sIOjB9//PGDHuPbb7+leJEiB3Tql8nTve+2LN54442D7v/JJ59QsWxZTF2nVrVqheYT5yTbz9qfbNe8ycKHotnZVK5aDXckm/LnTaDEmVcjKyq33HJLoRy7IGzdupVXXnmF11577YTKtU6YMAGXqjrvjlTV+vFKu53dpQtZus5L4QxeCEcIaRp+ezE0HA4f0SPyVOKjjz5CURQ8sdIEytRFCMGoUaNO9rTSpElzCNKx5OnD6XCvvvvuOx566CFeeOGF/wmf0fnz59P1rLNo1aIFt91220FVr9Kc3jz66KMIIVhlx9MLspJKUq+++urJntoBfPLJJzRv0oSKZcpw8cUXH/RdkUgkTuhnc+/evSxevJgvv/zymAtz//77bxRZpqpdGH5HIMg3tgKeLEnMmjWLYjk5BBWVyz1eGpommqqyaNGiAh8jkUgwdOjQ/UppkkQHOxF49913H9O8U+Tm5h608LRi2bLUNk0WZEZpb5qoQuC1LCZPnsy2bdv46KOPWLBggfNeufTSSymaR03jRlt5ram535ruDMuifOnS+Y7z119/UbxIEUoYBtd6fVQ1TGQhuN8uul8WjWNKEi1atHAaMY6HkSNHkp3HSu8tu+D/dIpnDsaQIUPwqCrTwxHmZUapommOjZ6vRA3qjp6FO1qKDv9YS5Nl+ZjlxJcvX86QIUMYNGhQoViMJRIJnnzySc455xz69u3LF198cdDtDF1nrM/vnEcXy6Jpo0bHfXyA1i1bUs8wnXXTc23VyNOZPXv2YOg6F9mNWV9nxcjSdS6//PLjHnvz5s00btw4ueamqjz66KOFMOM0adL8r5JOtheA0yHoTvO/QyKRYMKECbgtC0mSaNWixWGTEHPmzGHixIk899xz/3qiHZJdwBFNZ0FWlHWxbM6wXIT8fhKJBBs3bqRKxYpOgqtVy5b5fMG3bduGz+OhhWHyfkYW4+2EYmVNo3aNGsyaNcup0GxpB2aWYXDOWWexZcuWfPNIJBL0Oe+8fAn2vMm2iCTRPk9w99hjjzF37tx8QdqiRYsQQvBGnuR/tmFw1VVXMWvWLObPn8+yZcswdZ3iqko7MxlUpQLIkV4fsyKZNDMt/F6vk7AaPHgwQU3jrUgmi7Ji1NA0smzP99QcTU07QCYuxZ49e5gxYwZ9+vThvPPO49lnnyWRSLB7926aN2mSr8Ditttu49JLL03Knbk9hPNUqqd+vJZFgzzdyKN9fnRNc67Fn3/+yZVXXollB6jl7CRlf5ebMobBJZdcwq5du6hWuTJhTaOXy0VMTiZw+7ncrIzGHY/FotnZVK1Y8YBOzFSA/OabbyKEoK/LzavhDDqYZlJa/Pzz812D119/HVVRiOg6PlXF7/Uyfvx47r77bhYtWsSff/7JpEmTGDlyJDNmzADg5ZdfRpIkKhkG1fJ4N5dXVZraMvNn2L5xB/tMjR49moiuO0UJL9jd5aWKF8dSFErZY15yySXOPoMHD0YSgtamSWnDwLSl6xrpOmN8fkfVYNCgQeiaxmivjwvdHizbb10VginBEG9FMimvquh2EjrlM5+hKJRWVVRJolOHDgXqbv36669x5Tl/S0j0sf3eV6xYweWXX45blpmdkUlT3aBlnkD+Fn8ARQg+zMhCCMGTTz7JBRdcQAl7UWJhVgyvJGEKiSz7WRs/fvwh55LyRK9smJSz5xSxA+p3MjIdRYCAJBFTFFrYn9mscJiu1v4Og/amRc2qVQ8YP5FIUL50acoZJtNCEcbYxRCSJKEJQY6scKs/QDvLwm1ZhdKxXlD+/PNPatepg2qYZNXrirdYFRRJ4pFgiBz7OSnR6Urq3fg29W58m2DZenTo0PHIAxcCy5YtI5aZ6TwjpYoVY8OGDSfk2Ndeey3F8yiYvGiraBxv9/mPP/6Y79+f6lWq8N1331G3bjJZ7fV6+eCDDwrpLP5dunfvjidakrqjZiY7PBp0w3K5093tadKcoqRjydOH9L1Kk+bE88ILL+T77p+KsebMmXOyp/Y/w6+//ooQgs6mhT+P8tsHdsw3Z84cNm/eTM/u3SkSjVKzalVmz559VMd4/PHHEUIwzOvjiVCYEqqKpWncfvvt/9p3WE1VGXcUCc0LLriAiuZ+Nb+7Avu732sYBnXtWDSVjHvmmWfIiUaxDIPGDRvSuGFDssJh6tasSdnSpYloGpe4PVQyTXxuz3HbV33zzTc8/fTTDBs2DEkIHg6GWRmN09vlRlWUY+psnzFjBjWqVKFoLEbfPn0KpRjgWGnXtm0+JcvbU40sttqfoiXXC6KKwuKsGN/HsmlnWWRnZfHLL7/wxRdfHFJR71iYNm0aZ3XpQvfu3Qv8PpowYQJCCOqZJiUNA0PX+fzzzw/Yrn7t2pQyDGZEMnkqFMadx8rgeGlUvz5n5ilIuNrjJez3F8rYJ5OJEycihKCsaRHSNCLBoGPjcbzs2rWL3r17O5/3ESNGHHMBR5o0af63SSfbC0A66E5zKvH0008jhOAit4cJ/gAZuk7zJk1O9rQcunTpQvM8X+xSAcrff/9Nm1atiOs6z4UjPBQM4VbVA7rKZ82a5SQkhRDE5GTSOCUT/fbbb1O/fn0kOwk/xOMlpGm0aNo0X5A2Z84chBBM8AdYE8tmmN2VXkZVudkXoJKqoUoS7du3z5d47t+3rzNOyr865df9bkYWmiznm19lO3kTkWWnmztLkojmkXN/0640TlV+b926laqVKu3vqpUkFCHo7XLzvS35rwjBlClTDnqNv/76a9yWRY5uUMNODqdk3/fs2cO0adO44447+Oijj4BkpXr/fv1QpWQC9LVIsrMzoKp06dyZu+66CyEEl3m8jPP58asaZ3XuzPz583nhhReoWqkSblWliWliCgmvJHGbP8DqaJyorHDOOefw3nvvIYTgdbsw4QvbpyzvtW3btu0BX1j/+usvenTrhq5peN1uWrZsiSwEn2ZmMTcji3mZyQC/a9eu+fYrXbw4rSyL72PZfBuNU9zuhk95oamShC5JxO0E7k033QQkJd569epFz549ufDCC8mMJBdz4rJMZ9MiLEnosnxQn8BbbrkFr6ryjd118YAtkT59+nQ8dqe1EIKSRYs6icl9+/YxceJE2rdrR69evWjXrl2+63K2neSuXLEitapVo6Jp8mFmFi+HIqiSRJM8ie677c9SWAinA18IQUxRUCSJZo0bF6iboVa1apTTdd7LyGJ6OIJPkjjbVhuYO3cuv//+O9WrVHHGl+zCkXsCIcKyTERKPuua7fP+xRdfYOg65Q2D1naXedGiRalcuTIDBgw4wEPtt99+o1evXlSqUIFOnTpx991307t3b/r27cuoUaMcmcIx9sLI2xmZqJJElcqVadu6NQ8//DClihalXx5LgJ6Wi8rlyx9wrlu2bEGI/f6Cm+I51NSTxQoXuD00sP+cek/Nnz//iNevMFi8eHG+ZLYsSWQoKs/YygV9LReKqhGp0oK6o9+i5tDpWMEs+vfvf0Lm16xxY8oYJp9mRnk/I4u4rtP9nHNOyLFfe+01hBBc7vHyTChCddMknpVVKP6su3fv5vPPP+fzzz93Pit//fUXLVu2TBY5mSZvvvnmcR/n36ZTpzPwl6zhFGIUbTsARVXT3X5p0pyipGPJ04f0vUqT5sSzY8cOqlSsiF/TaGZauFSVRvXrn3L2SQsXLmTMmDHcdttt+XzV/wskEgkqly9Pph1TPxgM8X0sm4FuD0II6taufdzfxfv160cNa/860UN2LH0k9aoZM2YwePBghg8fftSJtaoVK1LNNFmQFeWtSCYhTWPgwIGHPZYQgrMsFyO9PkKaRstmzZg5cyZnn302XTp35sUXXwRw1j/OsFyM9vmJ6jq1a9Rw1jt++eUXevXoQdkSJWjRtOkhO5wLysMPP4ycp3EiOxp1/qzIMo888shRjzlv3jwUWaapaTHI48GvabRq2fKkFfAOGjSIsKbxUWYWq6JxmhoG2YrCDT4/hqZx1113cd9995EVjmApCgFNQ1UULrzwQufaWIbB9OnTj3su9913n5M0r2wYyLJ8xM73RCKBx+XiIltVck0smzKGcVCp8xUrVuRT32vaqFGhqcndfvvtSPb63givD5einLB1hH+bV199lcsuu4wRI0awfv36Qh07kUgwZswY55507979f0JBKE2aNIVLOtleANJBd5pTiZ49e1I7T7VnqmN4+/btJ3tqAIwbNw5dlnkwGOLtjEwqmaYjs+X3eBxJ7U3xHLpbLurWqnXAGL/++ivDhw+nbu3atGrRgueeey7f7wcMGEAZc78s0mT7GuSt5H3ggQeQhHC2WZIVQwjBvbbHz0d2ElcIwZUeL2tj2U4yM2+yZfjw4QghyDFNDEXBUBTqGibzMqM8GgyjCEFlVXM6cJvqBkWVpLT3bLs6f4id6P/hhx+ccXfs2MGIESPw+3yON/XreeXzDYMhQ4Yc9Br369eP4obBSjvpe7Hbg2UYh6283Lt3L27D4Oo8/tj9XG4qlStHIpHg+uuvxzIMFFnmzE6d6NGtW75EeV1d53Z/gNfsToP6uk4lVUMWgto1azJ79uxkstaWU//O9imrVaOGk/wWIunvnjd469WjBx5VZZTP7wTzeZPRGXbQVLF8+Xyd/h6Xi1F5qtTPtly4hKCIotDGMDGE4P2MLDbGsrnCltNPqR/s3r2bdu3aOUUSQiTl+1Od5BFZJjMcPkBZYN26dQR9PkraHm6WLfffuH59yhkm8/MkJnt063bAPfjpp59QFYWulsX8zKgjOS+EwOPxUK9uXSKBwP5zj0QIqSoLsqKsj2XT2bQc9YPUNZpkS9Olun8LElgerMI/U5bRNc1ZOPr777958cUXeeSRRzi3Vy9nTnFZpolu0NhWAujRowelixWjdPHi1K5dm3Zt2nDTTTdRoUyZZBJZCBRJIicapVnjxrz55pv43G4UITjTtCilqliGka9r+fvvv3fuT7amockyNatVy+dtN2LECFRZ5lK3h4vdHmRJ4uabbz7gXHfv3o2uaVxoy419mRUjIEk0tmXy18WyKaYoVNeSkomFHbAdivKlS1PJNHk7I5MHgyFUIRFWkjYNH9jPUO1atZAkCVcwE93yEAiGWLVq1XEd9+WXX6Z3795ccMEFh/SpB8gKh7nmIO+KE8VNN93kLJjkxGL/uiTizp07OfPMM5PvKlVl2rRp/+rxjpeU3GpW3c4UaX0RuuWhy1lnnexppUmT5hCkY8nTh/S9SpPm5PDbb78xdOhQunbtyg033HDKrG2kePnll1FkmbCm4VJUIsHgcX8vP15S6wlt27ThwgsvPGQcs2PHjgIlT1etWkXFsmUPKJjv53KjyzJ33XXXYff/6aefePXVV5kzZ85BCyWuueYawprOV1kxNsVzuMzjRVWUwyaz7rnnHoQQlDJNwppG0Oc7omVaXr744gvCeeLrKhUrHqCI+E8ee+wxisRieF0uzjrzTLZs2cKXX37J8OHDGT58uGMpdsUVV1A8j1T3o8FwoceTe/fu5ccff+SHH35AVRTOs1UDU4UK1113HU8//fQxK4BdfvnlFDUMx1bvnkBy3J9++qnQzuFo+OWXXxzLREkkreUucLkJaBpdO3d2tvvxxx+58847ufnmm3nyyScRQnCx28OMSCZnWi4MTTtuVbai8TjdbSW99bFs6hgmrVu2POw+e/fuRZZlbvYHnDi6mWlyRqdOB91+x44dzJs3j0WLFhVq0XRubi4jRozA43Jh6Dp9evc+5d6ppzJPPfUUmr0+VK9eveO2s0uTJs3/FulkewFIB91pTiUuvPBCiukGq+wvxFfZQcqpUvm9a9cuOnXosD85l5XFV199BST9mZtZFmtj2SyLxiljGHQ580xn36VLlzJu3DhuvvnmwwavgwcPJiePl1ZKbv733393tnn//fcRQjDW5+e7aJyrbN/np23f5+ftpLEQgs/z+IpbisKkSZOccRKJBK+88grXXXcdl1xyCUIIHgmG93fJajplFNX5+zmWi4qqSmVVQxXCkW0fPXp0vjEvuOAChBAE7S9xskjKti3JivFAMIQsSYf0CuratSuN86gH/J8/WSSwa9euQ16zyZMnowpBDU1jRTTON9E4pVQ1nzd8bm4ue/fuZdq0aQiR9A1XRFINoImdXB1sX8eSikIrw6SjaVKpbFn+/PNPisRilDYMRnh91DItLLvL+VZ/gI2xbG6z79PHH3/sHNNlmozw+liYFeOdjExKKQqyENzuD/BCOEIJRcUrSUhC5LserZo3J9tWSXggGMKw7+UzoQgXuT2UynNPptv3etmyZSQSCc4+6ywUIWiiG4RkGUsIvsqKsSGWzVUeL5ZdGDBlypQDurKXLVtG927daNygAUOHDmXHjh2EfD4qqRrNDYMhXh+9LRdVKlRg4cKFjBw5khtvvJE77riDWFYWqkiqNYzz+dkYy8Znn1sHw6C6kfS+u/fee3n//fdZt24dAa8XVQh8tqx8X1eygz5qP1cLspLP7oZYNposc++99x5w7/fu3UsikeDzzz+nUb16GIpCA91gVTTOgqwoGbKMLEk888wzh3x+OnTogCEEL4YiLMyKUU9Pyt+rkkR/t5uOdmf8sGHDGDRoEAFNY04kkxqajk+SuNjtoZphotnzvtUOQFdG40QUhWuvvdY51tatWylTogSKJGHa299xxx0HnNOQIUPIDIXICoe5/vrrDxmg3nnnnQghKGGa+FQVRQhG28UG62PZFLE76U+U5/Xff/+NEIK77UKJVBBu5FHMKGnLtn/wwQdcd911jBs37rgXbh544AGEEPhyyuHOKIKqaY76xT9p3KABFQyTL7NizM+MUkQ36Nqly3Ed/2j5448/WLt27Qn7t23Pnj2cZ1uPSJLEAw88cEKOeywkEgnGjx+Pz+9H1w26nn32SZV8TJMmzeFJx5KnD+l7lSZNmoORE43SzrJYZ3sFF9ENzjvvvJM2n9zcXNq0bo2lKLQ3TWK6TtyW0t63bx833HAD4UAA3Y6lohkZBfKjTiQSfPDBBwghuNTtYWYk2TxQ1rK44oorDrnfRx99hN/jcWKZRvXr57MLBFi/fj2Z4TAhTaOCrc6XUp/bsWMHd955J1dffTVPPvkkubm55Obm4rYs+rjcbIxl8000TrZucPHFFx/Vtfrll194+eWXmTlz5lF1qa5bt4758+fz6quvomsaWbpOpq5jaBoffvghw4YNI0PXWWE3QKQkzwsrMTdr1ixC/mRxvseOtWfZ92NTPIe4YXDDDTcc1zGuvPJKcgyDtfa62iS7+eRkJhf//PNPnnzySVq3bo2qKEiSRKf27R15+JkzZ9K9e3e6d+/Om2++yT333IMmy07Rw4Ks6AENNMdC2O/PV3zexbJoUKfOEfdr16YNYU3jNn+AK+y1s/vuu++45nKsJBKJtM3YMfLBBx8QDCY/D8WLFz9uS7s0adL875BOtheAdNCd5lRi8eLFmLpOScOgqZ3MHD58+MmeVj4SiQRLlixh3rx5+YKsmTNnoqkqYdtn2+fx8PXXXwMwd+5cDE0jqGn4VBWv231Iqa1FixahaxpVDZNulgtdljn3INJMV199db6q7FAgQFjTaGuauFWVmtWrI0kSA90elkXjTjL4vvvu48knn2TOnDnOl9MtW7YQ8vtR7aT497Fs5mRk4bK91od4fQz2eJGEwCNJ5NiBbZcuXZwv+jt37mT37t3Mnz8fIQQT/clk28N2FbRiJ3mFEJzTteshk4dTpkxBCME1Hi93B4JEdf2w3mOQ7IYvp+u4JAlLkjCEQBGCq666infffdc5z08++YQGDRrgsZPp5VTV8Sgf4Pag2oUBt/sCPBgM4VNVLrroIgCWL19OkwYNCHi9VK9cmdGjRyOEcDrwV0XjyYIH2xIAIOT3U8GWq0sVHTTSD5RO9wnBgAEDnP3Wr19P5QoV8u0nRFIO/D67InuUz88bkQzqGSaRYJCdO3eyfPnyfInOL7Ji6EIwylZcGOzxoud5ZuRDJLDzzkNXFGKyQmvDRBMClyTToH59VEUhU9fxK6rTNX+p20MPWzp+gNuDJASdDNORGcvWddq1a8ekSZP44IMPuPbaax31hTcjmayLZSOEwGVXe7cxTN6IZHChrQqQ1w9s8+bNtG/bFlmWcZum/ZkxOMu0kolye4zMcJgFCxbkO68lS5bQ5cwzqVurFldeeSVvvfWWc42FSPq8S/YzmFJ1qK/rSEKgaxpNTZM5tn3Ck3aBy8po3FFxeNCWdd9gJ7vPP/9859ijR4/Go6p8lJlUJujncqNrWr7O9oOxY8eOfAU3eXnzzTe5+uqrGTNmDK1atMCjqgxwe2hsmEiSxMSJEw879qFYu3Ytc+bMKVAi/Nlnn6Vho8bUqVsPt2VxhuViXSybzzOjRDSdiy66iJdeeolXX3210CTk8pIVjRGp1pq6o2dR54YZeOJl6HSIKvuvv/6aSHC/R6HP46FDhw5cd911h7zGR0tubi733nsv3bp1Y+DAgaxevbpQxj3eOQ0aNMg579tuu+1kT+mIpBdQ0qQ59UnHkqcP6XuVJs1/n61bt/Lhhx86hdhHIpFIoPyjW7WTadGyefMTMNuD89VXXyGE4FG7CeCLrBiGLDN58mRuvvlmJJFUbquj69wdCNLMNLEMo0Dft7dv347H5aK9ZfFFnkaABx988KDbJxIJisTj1DctFmRFmR6O4FJVrr/++gO23bBhAyNGjGDgwIGOItvOnTupW6sWuixTyk7C9+/fnx07duRTctsUz6GJaR1gL1fYJBIJhg0bllyfsdcZwrLMkqwYq2PZ1DJNalarxsiRIzE0jTK6QWfTQpdlenTvXihz2LBhAy7TpIVl8XgoTEfLhSQEZ5iW09kuCcFTTz11XMdZuHAhmqpSxzTp53LjUlQ6dehQKOdQGOzduzdfQ8kzzzyDEILKukF12y7wyiuvTCr8hZN2bHfa60cFke3/+++/efTRRxk/fjzvv/9+vt/17dMHt6pyoy+ZdJcliVtuueWIY27evJnWtkWZrmmMGDEiHa+dpqxYsYLSpUsjhMDv9/Puu++e7CmlSZPmNCCdbC8A6aA7zanGokWL6NOnD53PPJP777+fRYsW0alDB2pXr87ll19+QBXxv81nn33G+eefT/fu3Q/bHQvJuY8ePZqbbrqJNWvWOP+/RpUq1DdNVseyWR6NU9EwadO69SHH+eSTT2jfti11a9VixIgRh+zq/uyzz3j22WdZvHgxP//8M4MGDaJD+/YMGzaMbdu2MWnSJKQ8Se5GjRrlS9D36tGD3NxcZs2ahRBJH2lFCCchmx2N0r17dxSRlLmqpWlEZRlVVXn22WeBpCfw2Wed5SRvW7VqhRCCpdGYI2UthMAjy5TVkt2th6vYTiQSDB06FMVO6DeoWzefRP3BuOGGG/CqKtNCYUZ5fdSwO+pTMnGXXnop06ZNQ5IksjQNtyShimT3dyq4HevzIwlB+bJlnevTomlTfvvtN66//nq8loUmSXjdbu644w5GjBjhJIpfCmcQlxUkISgSjzN79mwAunfv7iTGXw1nEJZlwrLMYrvTvIflQstzPxrUqeNIne/Zs4elS5fyzTff0MH2QleFoINhOkndVJB87rnnAsmAUoj9kv3rY9n4JYniisI5eWTahUhK5/dxuZFl+ZBKC+PGjcOrqs69TAV3xXJyaGYXZayIximjqpRUlP2dzIaBZAfvY+1E/5poHLeUvKcuu9v6iiuuQBJJWbT5mVFHoSHvPFN/7t27d75npHyZsvhlmZt8fi60O+In+JKLRPfb8xwxYgRbt27Nd05r1qzB7/FQxjDobrlwKQptWrXimmuuyffZ0FWVq/Ik2+vpOg10gwxFwZAkutqLJSk1iVWxbLz2cxWWZUb5/Jxhb+PzeJyE9UUXXUTVPH5+T4WSxSiHkoLbt28fgwcPdj7HjRs0OGw1/qpVq6hUqRJuyyInHue111477GfnUEycONE5pizL3H///YfcNrUwEChdm2CFxs59c8syqiRRLDubH3/88ZjmURByc3MxTIuclv0dn+9QxSY0atzkkPv8/PPPPPXUU5QtVx5VNwiUrIFuualUucoRCx8KwmWXXYYkBA1Mk7iuE/L7Wbt27XGPe7wkEglGjhzpPOfpBZI0adIcL+lY8vQhfa/SpPlvM2fOHHzu/R3YF1xwwWGt2FI0qFOHEobBS+EMHgiGMBXlpDY8XHPNNahCEJRkznW5WRaN4VVVrrvuOsqUKEFDO9ZPqaCttIveD6Wc909effVVzDyqW+d07crevXsPuu22bdsQQjA5n2qXxVkFtDh69NFHkYRwuuhTHeJff/01tatXp5hh8EQo7KxF5FUhPFYSiQTz5s1j6tSpLF68ON/vXnvtNee8+7vdXO/145YkOtnKghe5PWiShGkr8rlMi3p16jBq1KgDbOiOlZdeegkhBIttyf1V9nqRVMDmjKNh7ty5SVWz0qW59NJLT/haYkF56aWXUO31L1NI3BMI0ta0qFqxIi2bNUta19nNSP369j1i/LZ9+3Zq16iBLEn47c9L3gL8bdu20aNbNxRZxtB1rr766qO63jt37ixUafg0J4fNmzfTuHFy/UZVVR555JGTPaU0adKc4qST7QUgHXSnOZVZuXIlXreb8oZBTzsx1rZ16xOWHJg3bx6aqlLKMKhjf7n9p+RzQYhlZBzgJ165fPl/YcYHsnTpUp577jlee+01JEniQreHVbFsptheWM8//zwff/wxQiRlyt/JyHSSng899BCQvA6lixdHCEGJIkXyVcb27dMHt6Jwsz/ASK8PWQhkSeI8l5v3M7Icr/Jn7aRkysv7l19+Oey8d+3aVWDp4K1bt1KuVClUScJvd5J3sSw2xrK51Q5oI8EgnSwX622ZtkDKZ93t4SZfgKCmcUbHjuTm5rJy5UpWr15NIpHglltuQQjBWZbFRS63k/xVJMlJ6itCUFxRGOvz09S0MDSNZcuWMWjQIMoY+xP6k/1BFCGwJMnxaxdCcIXdxR/XdRrWrXvA+aW6Ud0iKbcuCcHlbg9vRTIY5vU5Afvff/9NkXicCobJ3YEgZ9nJ3oxwGI/LhS5JTPQHuScQwi9JtLOf6RkzZhz0ug4fPpyYYTiyZSl7Ar/Hw3V2En1TPIeeLhdZsuwkpuvaXeAuITAkiWs8XippGpIQPB+OsNGWtBdCoOXp/BdCUKtmTXQhuM0f4I5AEI8kEVQULrzwQmdeEyZMQAhBJ9PEa0vQ+yWJpnbxxEu2x/v8+fPznc/OnTu54YYb8Kkqy2xFggftz8GKFSuYN28ejz32GB9//DGXX345qixznstNGyN5nUopCtl2UYUQArckEZFlLvN4qaXpyEIQ8PuR7eKUmKwwwe8npGlO98MDDzyAZJ/frEgmtU2TeFbWIRd4Jk6ciCQEI7w+7g4EydR12rRqddBtN2/eTNHsbMKaRgPTQpEkevXsedTvyy+++AIhBIM8Hj7KzKK/O1mU8U95seeff56KZctiaRqGN0yt616m7qiZmN7kc+Kz7+05Xbv+a+/svXv30vmMMxBCQtFdlDjjKnJa9keSZcaPH3/YfefOnYsQgvJ9bqXejW9TeUBSVeOFF144rjn99ttvTpHNpngO30TjhDWd66677rjGLUxuv/125zN36aWXFmghNk2aNGkORjqWPH1I36s0af67/P3334T8yVh0bkaWo2r3+OOPH3Hf1atXO17SQgg6tGt3VJLkhcnUqVMRQtDdcnGFx4shBNmKgpwnEeu2//xiOFlgPicj66i/w2/YsIHXXnuNefPmHTZOSSQSZEUitLSSXdfvZmThU1WGDBly2PF/+eUXWjVvjrBj/412PP1RZnKuc+fOZc2aNVQqV845r0suueS4E5iJRCKfkpUQgltvvdX5/ahRozBlmSa6weuRDCqoGoZIFvXf4PXhliRiisKaWDafZUbJ1HUuueSS45rTP5kzZ469PpTs1n4jkozd77rrLqZOncqcOXP+p2KTNWvWoGsanUyLF8IRzrZcqEJwtuWiVNGi7N69mwcffJARI0bwzDPPFOjaTJo0CUNRmBXJZGMsm4FuD7Iss2XLlnzb7d2793/qWqc5kF27dtG7d+98xfjpZyJNmjSHIp1sLwDpoDvNqcyYMWMIahrL7cRYKkF8oiR5z+7alQp5fJ7Od7kJBwJHPU6XM84gS9eZForwRCiMX9XyJQ9PBB9++CFCCN7LyHKSpGFd56abbmLv3r00b9IEl6LQwjQJaRplS5Y84L1wsIRg2O93OoA3xXPoZrkwVBXV7l6WhCCkqk6AOTUU+Vfu4R9//MH9999PzZo1EUJwpmkxM5LJartSWhaCuKxwnsvNsmicDoZJOBTC1HUUWeaMDh0O6ILesmWL4yEmhKCmptPTcmHaf58ZyeQe21P+LbtafXUsG5eicMcdd3DTTTfhVlU+zoyyMZbteML3dbm4xO2hvKriEpJz7VI+Ytu3b3fmsGbNmnyJu9kZmchCMN7++xdZMYQQvPHGG0CyuKKi3Z3v93od+bUqFSpwnsvtHOtKjxePfR4LFy486DX98MMPkSSJLpaL2/wBShgG5UqVol2bNmTpOk+HwkzJ4yl/lmXR1JY8cwlBeztJHQkE0DWNgLT/XFOLIudYFpe6PRiyTLdu3ahQpgx988xzkMeDLqR8icrSxYo5RQ99XW7Od7nR7UUCVSRlBcuVKeNU36e6w2W7wMGQJBbZnRDT7Ofxm2++yXfue/bsYeDAgRh5kuttDJMu9vOQLSt4hKCVYZKjKGTJMoqi8NlnnyGE4Cm7uGRjLJtSpsnll18OJLuw+/Xt6zxTGaEQM2bMYO3atQddXGnfrh2tTdO5Hjf5AqiKctAA6M4778RUFKfLI6VEsHLlyiN+fvLy6KOPIoRw3nvf2t0izz//vLPN7NmzEULQ1rQY7PFiSRKhMvUo23OMU7izKZ7DZHsOn3766VHNoaBMmTIFRZK4yx+kgf28CZFUzzhUAUOKV199FSEE1a+eSr0b36bOyNcRknTcFd0bNmxILm7meQbKmRaDBg06rnELm4ceesjpIOndu/cJ848/Fvbu3cv1119PkaLFKVGqNJMmTUp35KdJc4qQjiVPH9L3Kk2a/y4pO7EXbLnpgniR52XXrl0sXryY77777qR+x+rUsSONjP2xzwi7mF8RSau0Z0IRsmQZQyQ7gJsZBl5FoXKFCvli6MLkrbfeytcJX6ViRcdj+1C0bNaMDF3nUrvx4GK3h1fCGbS0LDwul9N4sG/fPtatW3dAEvRoSSQS7Nu3z4nRJvgDrIjGHV/tZcuWAcnYSRKCMoqKV5KopemM8vkpo6oo9trNWHudYVM8h3amSbu2bY9rbv9k7969tGzWDENRqGVZuBSFurVqHVLN8b/O888/jxCCpSl7Qnv9SpUkZw1h27ZtPPnkk9x9990HqBX8k5kzZ1K6dGlcsuzY271iNyMsXbr0BJxRmtONRCLBmDFjnHdc9+7dT1rBVZo0aU5tChpPyiJNmjSnJHv37hWaJAlDkoQQQnjs/+7du/eEHH/bX3+JHEkSun3c4qoqtu3YIQBnm4ULF4rmTZqIMsWLi3N79hS//vrrAeM88PDDIlaunOj92xZxwW9bReXatcSdd955Qs4hRalSpYQiy+KpHdvF9kRCvPL332Lrnj2ifPnyQlVVMfPtt8U1I0YIX7t2os+gQWLe558Ln8+XbwxVVQ8YV5IksXbfPgGIXBDr9+0Te/ftE2+8+ab48MMPxeNPPCF+27dPjPrzD/HK33+LMTu2iXKlSolgMCjuu+8+MXbsWPHuu+8e1bns27dP3HHHHeL/2Tvv6Cqqro3v6eX23kIIoffem0jvvUkHFRBBFJQOCiogiAgiCCjwYUMFRVCQIvVVuihdOgGVLtJDcp/vjzt3SEiAAKHp/NZioWTmzJl2c/fZez9P/fr1qUuXLnT8+HGy2Wx0+PBh2rJlC5UVJdpx7Ro1PnWCXjp7hlgiysEL9KQs07eXL1GDkydoWeJV6v7cc3TpyhW6cvUqLfj+e3I6namO80LPnsRdvUoznC6a6XTRweQk+jnxKjFExBDRjIsXyMNzRER0OhwmIqJ/wmG6BpAsy9SjRw8KZomlaiePU4njf9KkC+cpF8/Tm3YnDbPZqZVqoksEOp+cTERE+5KSSBQEkiRJn8P27duJiKiC9m/5eIGsDEuLrlymP5OT6b0L/xDDMJQ9e3YiIipQoADt2LOHLly4QGfPnaP27dsTEZHb46FdycmUCFBSOExfX75EF7Rj1KpendasWZPmOleqVIlmzZpF/5MlGvDPOXLly0/f/fADfTRzJoXy5qX2Z07Tc2fPkNPnIyKi5Veu0F/JyVROFOkyEZlYlkRBoHqNGlE4KYn+BuijCxcoISmJ3jv/D3FENNRqp8E2O3VVTbRq+XJyud20OzmJrmnP085r14jlOerdu7c+r3A4TFaGobw8T80VlT69dJHKShK9YLGSlWUpTER/nz1LV69eJSKisWPH0uT336dXTGYaa3eQTEQ1T56g987/Q30v/EMF8+Wj3Llzpzp3hmFoxdKlFOJ5iuM4qibJNMPlpkkOF7VVTQQisnMc/e/qVboK0PFwmMaOHUslSpSgPDly0GsXL9DcSxdp8Lm/af+VK1SzZk0iImJZlmbMnEm///47rV27lqpWr0716tWj+Ph4Kla4MB05ciTVPGx2Ox0G6HKkMJD2JF0ji8lELJv2q8u5c+fIzHHkZyPPZA7tff3nn3/SbHsrYmNjiYho0ZXLRET0/eXI31myZNG3+eyzzyivJNN0h5MGWG00zGqjM3vX05/rvyaGrj+vlSWZiIj+/PPPO5pDRtm1axdll2VqbjLRly43zXa6iYioT58+6X5epaR06dJktljo4PyxdHr7Sto3bySJgkiVKlW6pzmFQiHKnzs3Db94gb66dJGG/PM37blyWX8GHhWeffZZ+vTTT4nnefr000+padOmdOXKlYc9rXQZNGgQjRo1mhJ9Bem8ORu99NJLNHny5Ic9LQMDAwMDAwODRwKfz0ccy9KSK1fos4sXqPqJv+jg5St04MCBVGsXN0OSJCpSpAjlyZOHGG3t40Gzbt062rhxI10IJ1NYm/NFgFiWpdqSTM1UEz0hy9TdbKEkhiF3KEgHfT6S7Ha6cP48DRgw4L58l61duzatXL2a6tatS1WqVKFnu3cnm8120+2vXLlCP65aRX0VlQbb7PSq1UYfXrxATU6fpM08T1989RV5vV4iIuI4jrJmzUoul+uu5/fBBx+Qx+kkURSp53PPEUdE7VQTmViWOprMRES0d+9eIiLq2LEj5c6Vi/YmJ9EFgGa73NTNbKGPnG5KJqIsMTH0ZeJV2nPtGq28coXWXEuiQoUL3/Xc0iO69vTq669T/ubNqd/QofTjqlWp1kD+S3g8HiIi2pwYWbvYov1dqUoVGjNmDP39999UpmRJ6tSxI/V76SUqXqwY9ejRQ18nSsm8efOobt26ZD6SQPk4nrqdPUPv/vMPjb9wniwmk36su+HEiRP0xRdf0DfffEMXLly4/Q6PIImJiTRkyBAqV6oU1alVK901sP8iDMPQq6++SrNmzSJBEOjLL7+kKlWq0PHjxzP9WJcvX6Z33nmHevXqRVOnTqVkbS30v8Lx48epV69e1KhRI3rttdce2fUXA4N75gEk/h9ZjAp3g0eZjRs3guc4VJYV9LNY4RdFFC1U6IH5A40bNw4MEXqbLRhpi0iNN6hbV//5vn37YFZVFJJlPGsywy2IKFa4cLodldeuXcOvv/6K7du3PzRZnkmTJundvUSENq1b4++//8asWbPw3nvvpZGJzgjNmjUDEaGwICA3z+sdx5s3b9a3effdd6FoHc+F8uXDpk2bkC93bogsC49WJZ7SQ+pWhMNhNKxfH1wKaTRVFLFnzx7wHIfuZnPEIzwQQpzWXW/mOF0d4UNHxCO7apUqaaqnz507h+effx6lS5RA0yZNkCUQQFeTWa/s7moyg9eOWU4Q9f9mNXm4hoqCGFFEwOvVq9XPnDmD4cOHI5smw29iGMx0uFCcvy5BLxAhTpPcfvXVV1PNafv27WCJUEmTeovKr0f/MBSRtG/RvPktr9uKFSsg8DxiJAlu7Vj9LVbMd3tQVpbhdjjSVK8mJSXpnQ03PtNJSUnYtWuXLre/du1aeF0u/Xpk147RqVMnCCmeuZTzzsELukR9C0VF1lAIS5YsAceyiBVFxGnS8zNmzEh17EGDBoGI4GNZPGMyw8eyOKiN85Hz+hzmz58PAKhapQpqpugOH2q1gSUGVpMJ1atWRUJCQprrtXfvXhARZjvdKCIIqC9f91l/2mSGl2WxxedHfkGAwPP47rvvUu1bOH/+iGygJOGdd95J95688cYb4BgGb9jsmOF0IUaUUKFs2VTbbN68GYokIYskoaAm+//uu++mO97q1atBRGipmvC+w4n8soyQz3/HHuThcBitW7bUpOAjz2mXLl1Sdbl07twZ2SUJh7TrHrWHsNkdYIjQyWTG924vmigqBJ7H/v3772gOGWX8+PEQWBZzXG4cCITQUjVBEkX8888/Gdp/5cqV8Pkj6hAOp1NXiLhX9u/fj2KFCunPwNtvv50p494PFi5cCFl7tqpUqZLha/cg8foD8JdujNJDF6P00MVw5CmPkqVKP+xpGRgYwIglHyeMe2Vg8O9m5MiReqxVM4Ui16hRox721G7Lb7/9BlmL/4gIZUQRjRQFLMMgd+7ciJck7PQHcTgQQi1FQZZAAAsWLIioj8kKOpvMkDkOHdq3z/S5nT59GvFZs8LKCyisqLrk+81ISkqCJIrooan/7QuEECuKaNCgQaZ333/33XcgIrRQVbxus8MvCOCIMNJqw2/+AEoIot6peuzYMQARy4GaNWuCiLDOG1FEW+D2gojw/vvvw+/x6M9RpfLl79rn/NSpU5g0aRJGjx59227sR53k5GT8+OOP+PTTT7Fnz55MHTspKQl1atYEz7LIoygQWBZPVKqkr78MHDgQFp7HMrcXjVOoLjIMg/feey/VWGVLlkQlWUZCIISEQAj1ZCWi/qepmfGaAuOdsmXLFrgdDv3YOePj8ccff2TK+T9IOnboAIFl0VhRUUiSIArCTVUe/6usXLkSDu1ex8XF3dUa8c24evUqypQtB44XYPHFgWFZNG3W7D+jWHfmzBnEZ80KlyCgsixDYlnUrFbNkO03eKwwZOQzgBF0GzzqLFiwAHly5IDDakWtGjX0IOFBkJycjD59+ui+0jWrV08lNT5q1CiYeF5P5H6meVqnTDRn5BjRAObixYt47bXX0Lp1awwePPi+JD22b9+Ojz/+GCtXrsSJEyeQJ0eOyBdvinitN2zYMMMSXsnJyahZvToYIlgYBtk5HiaWRYmiRdNNzkbP5/XXX4fK81jp8ekeUhzLZsijfdu2bXqSmk/xt0dL9I602fWkaFktke8UBOzXkoJR2fBff/01zfwqlS8PM8+jmaIiXpIgchzySxL2+oPYGwihiCDAJMvIkS0b4kUJ+VL4jbtcLlQsVw7NmjXD1q1b9THHjh2LunXqoF27dliyZAmKFCwIlkiXos/HCzAxDHgi5M6VK00AHg6HUbhgwVTFBYxWQDDZ7sQarx9vaVL2Nwt4Zs6cqQdHfq8XefPmRdYUXvJzNVmxqJT6mTNn0LBePfAcB7Oq4rXXXkM4HMb69etRv149lC9TBoMHD9Zl2lM+D0uXLkXbtm3RpEkTfPDBB8idPTsKCSLWe/34xu2BiQhulkVMMAiGYVBYEFFOjBRitGzZEgDw888/o1u3bnj66afRpk0b5M2RA0UKFMDMmTMxY8YMmLQgk6GIV7udYfC79g6+Z3fq16lHjx4AgMaNGiGvJGG/FnS2UlV4nM5bPmd//fUXiAivWW16Ivkp1YQuJrN+LxSOA8eyePvtt7F48eI0cu3//PPPLQuDatWsieopigDetNnBsmyafX799Vd069YNHTp0wFdffXXLeU+fPh2qljjNERd31wsbycnJ+OqrrzBy5Eh88803aQKgtWvXgtU8/XLxPASGQZvWrQEA7733HrioZL8o4uOPP76rOWSEK1euoEqlSvo951gWM2fOvKMxwuEwzp49e1+CvPPnzz+w4rB7YeXKlbBYIoU8JUuWvGcpy8zGHwzBV7K+nmy35yqN0mXK3n5HAwOD+44RSz4+GPfKwODfyfHjx1G5QgU9PsrKcXpBc2vVhPgssQ97irelT58+8Isi9gZC+MjpQg5N1rx///749ddfYTObYRcEBCQJLMtizpw5aN68OYpIkm5XN8hqA8eyuHbtGsLhMA4fPoyDBw/e83f8MWPGQOE4/KQlpkfY7CAiHD58+Kb7DBkyBESE8rKMeEmCLIrYsmXLPc0jPbp164acWnL1aDAGUxzXY2GWCCIRqkkyPKKIrDEx+lrWmTNnkDUmBkFRRDNFhUsQUCh/fly+fBl///03li9fjp9++um2tlw34+jRo4gNhSCwLMyaxeDcuXMz89TviYMHD+Lrr7/GTz/9dNvnIykpCY0bNtSvK89x+L//+79MnU9iYiImTpyI5557Du+8806q9bg2bdqglKLo93a83YHd/iA6mkzgWDZV40ChvPnQUlVTNYuIDItisoz/c7rwtGZr8MMPP9zR/IoXLoyCsoxNvgCWe3zwiSLa34fClvvJ+fPnI80tmk3CgUAIWSUJXbt2fdhTe+TYvXs3smfPHmmmsNmwdOnSTBl3zpw5kTXQTuNQeuhiZG/SL1L0s25dpoz/qDNlyhRwDKP/LpmuNYJt2rTprsY7d+4cli1bhrVr1z7SloAG/y6MZHsGMIJuA4Pbc+3aNVy+fDnNv48aNQpmnsceLdH3+R0m2z/++GPYtARHjrg4FCtSBArHoYyiQOV5lChaNN3jZhYvvvgibDyPVV4f9gdCqCHJ4IjQ5qmnMrT/N998AyLCEIsNFUUJXpYFQ4QVK1YgHA7ftEKvR48eyKNc7xSOXrcuXbpg+PDht6ySXbt2rR7oPGMyo5/FCkkLJi0MA5vWKdxVCyRsFgtEQUA5WUEfTR2hcIECeuD4xx9/oFevXqhWrRqICDM1n+Vt/iAUlgXHsrDyPBw8D0WSsGbNGuzatQsmWYaVYTDG5oh4yTEMcmte6USEJo0aoXPnzmAZBlVkGVlFCRaTCb/++itYhoGTYVFGKwZorqjoZbZAYhi0Tefanz17Fq1atEDA40GhfPnQqFEjxEqSvojyoRZ4payy/uWXX/Dcc8+hTp06ICI01nzXs0oSvG43ZI7DCo8PR4MxeFHrlv/jjz9w4MAB1KpZE3ZBwKtWG57VruPQoUMhiyLyShIaKgp4hkGFcuXw+eefp5uYW7NmDVpq3dH1ZQVTHa5IJ4IsgyHC2LFjERcbC4VlkYfnUVq7FosXL9bH6N27NziGQRvVhJqyoi8amBgGJoYBS4QY7ZkzMQy8LAuRCBVFCQwRnnvuOQCR5L0kioiTJBTWEtETJ04EAPz555/YsmVLuoUtXbp0AUOEspIEM8dBZFkEvV707t0b06ZNw7hx4/DKK6+kUot48803b/rs3kjbtm2RVYx0aRzxB1FKECFLEsaMGXNPhTZJSUk4c+bMfa0Q3rVrF8yqChvLIotWdDJp0iT958ePH8fGjRtTFSfdLxITE/HNN99g2rRp+O233+778f6tbNy4ES6taCl//vwPtLDtdrz66qtgGAaugk/CkacciNIqXhgYGDwcjFjy8cG4VwaPMkePHkX//v3RtWtXfP755/+ZTrfMoEa1anALAt6xO/CKxQqGCEO1hFInkxlZg8GHPcXb0qtXL8RKEg7fkDQ+cuQIAODAgQMYNmwY+vXrh//9738AgObNm6OwdD3RPECLydesWYNqVavq8VnFcuXuKCb59ddfMXDgQLRp0wYF8+WD3WKBl+f148x3RwrVb1XUHA6H8cEHH6Bx48Zo167dHTVj3AkvvvgifKKor0dFi8TfeeedVGsb671+cAyDKVOm6PseOXIEbZ56CqVLlEDnzp1x4sSJdI/x22+/YdCgQRg0aFCGPb+7du0Kryhig8+Pg4EQaikqvC7XI/Fef/755xA1BQUiQuuWLW/ZWfrhhx+CZRh84HBihz+I5qoKSRRx5swZfZs//vgDy5Ytw65du+5oLufPn8fatWvxyy+/3HQOo0ePhsCyaCgrsDOMvoa20uMDaWtvUQYNGgSeZdHHYsUAixWStk4x3+3B0WAMEgIh+CUJAwcOvKN5WlQVg7TPlKgqYanixe9ojIfNmTNnQEQYZ3fo1yKPLKNz584Pe2qPJCdPnkT58uUjBSY8j+nTp9/zmO+99x5YjkOpwd+h9NDFKPLCbBARFixYkAkzfvQZM2YMVI7TVTmXpfMOZ5Tt27fDHwjqn2MlS5XOUPOagcG9YiTbM4ARdBsY3D179+6FSVFQRJbRzWSGR5O5z0hV2fr168GyLBopKibYnbpk2hyXO5WU17x58+7b/Bs3boyK0vXO2gkpuoIzIj09YcIECCyL9V4flnt8+NnrjySamzSBSVEgCgJat2yZRnpsxowZICKMsNmxyO1FKUkCR4SQKMLM8/B7PHpgHWXmzJkoUqAAcmbLBo4olSx4X4sVHBF+9QWQTZOOZ4nAsizismSBx+GA226Hx+FA3dq19STSqVOnkDUUilRya93V81weXYbepMltERGKFimSKrhUZTlVwFFHViBoyfdRNjsULbAZom2z2x+EVxTx4osvQhYEWBgGsRyHcuL1DvMBFitEQbitjNCKFSvAMAzqKSp6mMyQtHlKooi3334b69atgyQICAkCcmrP1Rit4/8TrbM/R7ZskFgWMVryuWvXrojLkkXviHg1xblVkmVki4tDUJSwNxDCT14/HCmujd/jwc6dO/X5rVy5EjzHwa3dC116XxRhJwYWlkVurVI2ugCQEAghXpbRs2dPfRyb2YznNfm9hEAINoZBYUHAXn8Qe/xB5OMjMvNEhIaKgiqaVUF2jgNLlKoCd/PmzXjqqaeQI0cOFMiXDz169MCAAQPAaOdhNZuxaNGiVNc5KSkJ48ePR7NmzdC9e3fs2rULv/76K/bv349wOIwdO3aAYRg8bTLjZ69fl/hfv349gEgSePbs2XjzzTfTjA0AO3fuhM1shksQYNWuVZwoQuY4FMqf/64l++6VaAHCrb4XVK1aFW6WRTlRQklBREFBgN1ieSQWUAzunh07diAYjARt8fHxOHDgwMOeEoCI0sLo0aNRoGBhFC1WHB9++OHDnpKBgYGGEUs+Phj3yuBRJSEhAX6PBw5BQD5NwWrYsGEPe1qPBUlJSeBYFsOt19XdqkgSgiyHTiYzOIa548Ta7fj666/RunVrdOjQAT/99FOmjLlmzRqwLItqWoG8SxBQvkyZW8YWUQn1KrKMDqoJPBEkJlIsb+I4THI4McXhhENbk8gIq1atgiSKcAsCHCwLjgilNSn2LiYzZjpdKCLL8Hs8d2zVtXfvXnTp0gWtW7fOtDWe3bt3w6xGVPmqyzI4hkHnzp2xYsUKEBGWasX1BwIhqBx3x9ZW0evhEiJ/ZFHEqlWrbrtf3Tp1UC3Fes1Ye0Rl70ZlvAfN2bNnIYsiGioqtvgCmGB3giHCrFmzbrrPyy+/jNgU5/KtVmwRVSqYM2cOJK1xgIjQu3fvDMXE27ZtQ8jv1/erWa1aGls/ICK9Xbd2bX279+xO7A2E8LTJDJZlU62bJSYmonv37pBEEQLPo2mTJvq629FgDNZ6/ZDv4jkoVqgQCskytvgCWKl1trdr2/aOxngUqFqlChyCgFcsVjTQLCG+//77hz2tR5bLly+jdevW+rPXv3//e5I837RpExiGgbdYbeRt/xacuctCkhUcPXo0E2f96PLLL7+A5zjUUVSMtztQSJbhc7vvKkletFhxmP3ZULDbFORpNwqCYsLzzz9/H2ZtYJAaI9meAYyg28Dg3li3bh0qlC2LGL8foUAABfPmRZcuXW5bPf3GG2/AJgh69fZAizVSIe0L4GgwBr/7IwmPjz766L7NfejQoRAZBv/ndGGN148SgginliTOSKLvxx9/1L94ERGsDKMnP583WzDQYoPK8ejQrl2q/cLhMJ599tnr0s9EqKFVpW/xBeARxVRJ188//xxEhFqygnaqCSwRigui3tndQTVBIMJXLo/e5d2+fXswDIOqsoLnzBaYeR7169ZNNY/x48dDYlms9/qxPxCCj2URZDkMtNhQXowUAMxwOjFak4pLKRfm93jQQlWREAjhQCCEvLyAOI7Tg7DmWif2Bw6nnizOJUkwm0wRn3Xt3AsJ133LXzBboMpyhoKzTz75BCGfDzzDIBvPY5LDic5aF3qxIkWQmxewT5NNbyQrcLEsjgZjdMn5nTt3Yty4cejfvz++/vprxMfGIq8k4/8cLohEulf9wUAIeSUJsbGxMLEs7Jpsu4dl8ZPXjw0+P3KIEp6oWBFbt27FihUrULNGDeTWAs7eZgsSAiHM0rzUvQyLgRarnuR+XQv8dviDcAkC+vfvr5+jzWxGzxTJdpVh9OT70WAMupjM4InQQTXp21TWCjc6duyY6nr9888/yJktHm5BQD1Zgap1xOfkeIyw2lBFVmAxmfDtt9+icP78cNvtqF61qi4PuGvXLmTTihGICM2aNsUrr7wCIsJ2rZPgUCAEIsK0adOQmJiIqlWqgCGCXSt46NevX5r7uG/fPnTr1i2iHqAVOCzz+CCwrN59n1HOnDmDzp07o0j+/KhTq1a6Vgm3Y8SIEbcsQAAiihzRoozigoh6sqK/93crNfiocOrUKQwfPhzPP/88Pv300/9k8cCBAwcQHx8PIkIwGMxUnzYDA4N/H0Ys+fhg3CuDR5WXX34ZLkHQ4+BeZgtYls10f+t/I+FwGHaLBe20eGhfIITsggCToiA2EMCAAQMy9fv51KlTQUQoLMvIIUngOQ4//vhjpow9d+5c5MmRA267HY0bNLhpp3VKvvjiC1hVFSaGQWeTGTv8QZgZBh1NJj1m7GG2IIvfn6E5lCtVCiVkGfsCIewLhFBSEFFcENFCUfV4J0sweEuf52XLluGdd97B119/rSemFi1aBIFlIRDBp623pIx774SdO3fiq6++0pO9v/32G5566inUrFEDo0aNwrVr13Du3Dn4PR7kl2WMsTlQXVEh8Pwdq4CVLVky1fUoIcsoV6pUutuGw2GcO3cOycnJGDx4MGSOw3SHCz94vMgnyciXOzfGjh2LJk2aoHv37jh06NBdnf+9sGXLlkgnrdurPx+xsoyXX375pvtMnToVLMNgltOFfYEQWqsmCDyP06dP4/jx45BFEQ0UFau9PgzVlAW+/fbb286lYN68yCvJ+N7txTSHCzLHYdCgQelum5ycjJ9//hlPpLBPYxgG77777k23jz570XW3gooCC88jR1y2VF35GWHz5s1w2e36sXPExT1SKmgZ5fTp02jWpAnsFgviYmLu2H7uv0g4HMYLL7yg3/vmzZunWxSSUaZOnQpBWys0mS0Zelf+TXz55Zf6u5QzW7a7lpDnBQFZa3bTbfZc+SujQoWKmTxbA4O0GMn2DGAE3QYG986xY8fgdjgQL0lorZrgEASULFbslh3uEyZMgMiyWKf5tbxus4MlQiVZwQcOJ2oqKiRBSOMDnZlcvHgRRQoV0r84KQwDhePQoF69DO0/btw4sEQYZbPjC5cb8RwPRUtmRoOXF80WOKzWdPffv38/li9frlfo6l7rsqL7dwNArRo1UD6FRFweTba6qCDgSa2bOfpHZRjExcSgc+fOyCnJeiI7mjBPWTU4fPhwOFMUPHzkcIHTEuEcEYZZrnd3x8sKXnrpJX3f999/PxK0SBKyiiJYIhQRRRwOhHAoEEJpLVnvY1mMstnxlGoCESGvIGKUzY6CogRWm3MZUUQjRQHLMChVqhSaNGmCfv363bbCcd++fSAizHa69WRzdlmGWVFQP8U9GGixgSVCdVkGz7Jo2aJFqnEOHz4MIsIsrcs8KitfSZKRV1tEcdntyMJxeMViRRFBgEiE/2nPbi+zBeYU90HkOP0erfL69HnYGAbPm8yoqCjIliULOnboAI5h8KSsIIsowm6xYP/+/fq8evbsCZ5l0UE1oZ4SSei6WBafudyY7XTDyjAQGAbdtMKAo8EY1JJl5MqePc21+uyzz0BEWO31YbxWWV9QEJBX644frgXGkiCgtCzjZYsVMaKEPDlz4sqVKyiULx9yShK+cnkwwmrTiyWICCO1goGJmjLEkiVLMHv27FRKFf21Ypr03uf169dHqqq1oD8hEIJPkjBkyJBb3v+UJCUloWypUrALAtqqJuSWJNgtFhw6dAgbNmxA3pw5I53zMTFYtmxZumMsWbIERIReZgu+dXvwpBIpQLixcChvzpwwMwzy8tffnRfMFnAMc0+Vzg+L48ePY82aNdi6dSuyZ80KM88jl9ZVdauFl38zx44dQ/78+UFEcLlct1xQNDAw+G9jxJKPD8a9MnhU6dKlCwqmsBj7UPMxfRyTOQ+DqGR4EVlBVs0f/G4X8G9HbDCIxkqk4PxgIISikoRaNWroP7927RomTZqEHj164O2338bly5dx7Ngx/Pjjj9i3b999mVOOuDg8kyIeDLEsCgsi9mlF8eVlBcUKFcrQWNljY/FsirG6mszIynGYpj2Tq1evvmUB88svvxyJKbWEeu6cObFo0aKItR0RVt5g43b8+PE7Otdx48bphdFEhD59+tx0261btyJ/7twgIgS8XnzzzTd3dCwgcj263nA9ssfGptnut99+05XrzKqKSZMmoaZm00dECPl8qF+vHliGQQVZgU8U4XO7H/g7fvLkSXDa+sLhQAifu9xp5PVv5Nq1a6hbq5Z+LizL6pLaq1evBhFhuef6modLFDF8+PBbzuPo0aMgIoyxOfT9qssy6tSufcv9wuEwli1bhpkzZ2Lr1q0ZOufk5GRMnDgRDRs2RPfu3XHy5MkM7Xcjf/31Fz799FN89dVX92R5Z/B4MWfOHEgpbBeICGXKlLnjz66UnDt3Drt27frPFtSFw+E7Vka5kfjsOWDPVgQlBnyDIr1nQ7F70O6GJjcDg/uBkWzPAEbQbfA4k5ycjOHDhyNbTAziQiEMGzYsQ92bmU00cf6bVo0f9SBft27dTfc5ffo04rJkgUsQUVFWILAsypYpA48zkrBzWK2YP3/+Hc0jHA5jzJgxCHq9cNps6NSp021/iSclJeHVV19FbCgEv9uDju3bZ/jLc7NmzVBOTitDX0y87ifeWjUh5PPdcs55c+ZEbknGHJcbb9jsYBkG48eP17epWb16qmR7L5MZAsfBajJDYFmoDIPFLjfmuTywsSwaNWyILl26IE4QcEjb5w0t2R79rPvjjz/0YLWJomKi3Ym8vAA3y2KdxweWIp7wCYEQFri9EFkW77zzjj6nixcvIn/evNcLFSQJDMMguyQhmxTxDI/neZQURDB0XUo96qf2P01yf8iQIXiiUiWULFYMMcEgVI5DJVmBmedRrHBhXL58+abX7sSJE3pH9AafH+NsDpg5DhaTCRxFpODftTvgYCISeLVr1cLrr7+OxMREfPHFF4iPjYXVZEL1atXAMgxe0LrGN3r9UFgWObJnR/PmzTFhwgQQERZ7IsngPf4geCK8YLbgZ68fcRwHjggT7E6s8PhQSooUEnBEaKmo2ODzY7g1cv1Z7VotXboU165dw+jRo1G3Th106NABu3fv1s/tr7/+Qo1q1cCzLESWQ9Dvx+DBg5E3V67rQbvfj86dOulKB0W0IEDgeb3SP8pHH30U6ej3B5GT51FbjjxPRwIhlBMlxGoy7iaOw15tYWaeJrm/cuVKEF339+qgmmBhGHzr8qCplpSVtUWPNq1bIxwO480334RNEPR3Y5U34seUXufHuXPn4LBaUV5WMM/lQU9t8SW9Tvib8csvv6QqvNjhD0LleAwdOhQuux1FZBmjbHaUlxWospyqqCHK8OHD4RJF/T1bqnlIrV27NtV2Ia8PcRyH0qKon99Qqw08xz2Uz9974ZNPPoGoWUgQw0DQFBuOBmPQTyuQuJdA8nHm1KlTKFmyJIgIFosFK1eufNhTMjAweAQxYsnHB+NeGTyq/N///V8kcWixYqbThVySjFzx8Y9lEefDYs6cOWjVqhVatmypW1qlR3JyMo4fP37Xct52iwV9LVY9BmioKHqnc3JyMhrWrw+OYZBHUSCyLPLkzAlei7OI7o89QLs2bWAXBEx3uPCR0wULx4FjWXhFEQExUji+ePHiOxprqsOFaQ4XLAyDnBwPuyCgQtmyt3wmt23bBiLCIKsNCYGQnqCP/smaQgVvrisiRb59+/YMn+euXbvAMAy6msz41RfAEK1Y/HbKAhmxOLwZbZ96Cg5BwIcOFz50uOAQBLR96qlU21y6dAlZgkHklWRMtDvRQo3Ic69YsQJbtmzBmjVrsGvXrlRF6lt9AVh4/rZJ6fvBe++9B4ZhwGrxe9UqVW77PiQlJeH777/HjBkzUlkLHjx4EESElyxWJARCmONygyHCjBkzbjrW+PHjwWoWBTUlGQcDIWzw+eETRTzzzDOZdZo6GzZsgM/t1p/DVi1bPvZqdAYPhtOnT0ORJDTU1vS6aUqaRIRs2bKlspI0eLAsW7YMkqyA5QUwDItAMKSrchoY3E+MZHsGMIJug8eZkSNHgiFCO9WEDqoJLMM8lC/sb7/9NlSOw14tkbpQ81u/MUl1I3/++Sd69eqFpk2b4o033sDVq1eRnJyMkydP3lXSavr06ZGEn2pCb7MFKsehQ/v2d3taqUhvPj169IBHFLHFF0CCJqkla5JAhSQJ5aWIH/iYMWPw3XffoUmTJqhQrhzat2+fSjZs586diI+N1b+4dezYMdXxol3JdWQl4sfGsrofjd1iQUlBhJ/lEMNxKCwIKFaoENq0aQOGCKVEEe1UE0Qi5MmdGwDw7bffQknZia11YcsMgx+0hHJHrRPdxHFgiFC6RIlUckl9+/aFzHH4xOnGOq8fZWQFXpcLTz/9NLp27YpssbG6nN/BQAhVtYTeaq3TOxpgL1++HMB1z7mvNc/477Rn6Ouvv77lfenevTsoRTKfiOD3eiGn+H8rwyK/du4AMGPGDK0oQkQ/swVeUUQwEIhU3ysKbIKAkN+PP//8E0DEQ4+IMFeb21ZfIFVnt8AwyCtd956foUnGc9q1i24niSKaNWt2W7WGcDiM8mXKwCOKGGq1oanmpxX9kz9vXvTr1w8zZszAe++9p50jA1H7O4sgoP0Nz/2hQ4dgVlWUkRXYGRbdzdcr9FupKngiVKxYERLLIi8fSdqbtQB848aNsFksaKqoOKLJCUaVAxICIbRTTWAYBvPmzdNlxxctWgQiQn+LFau8PjRUVEiiqF/TG1mxYgXMWuKeiBDLRZ7JW/nHpWTjxo0gilgpHA3GYG8gBAvPo127diAi/KwlkPf4g2AoInV/I1OnTgXHMHqH/avaAs6yZcuwb98+/dw6deyod2u0VFX0sVihsixaNGuWobk+Khw+fBiCIMJd6EkU7DYFwfItQUSYp13DL7SiqcchiFy7di369euHV199FQcPHsy0cf/55x888cQTkc9HWcbChQszbWwDA4N/B0Ys+fhg3CuDR5VwOIx+/frpHbs5jUX8O+aDDz6AqBUeO202LF26NM02W7ZsQTYt5pZEEZMmTbrj47Rq0QJWnsdImx39LVZwDINXX30VAHSf8KmOiFraV1q8W04UsdrrQx+tkDWzZOejnD59GuXLlNHjqLKlSmHVqlV45ZVX0Ldv3ztSaDpz5gwqliunj2Uzm5EtJgbt27a9pfT2tm3b0L9/fxARNvj8epwoEiGbFtdFY8P5bg9KiiJMsoxLly7psu+345tvvgERYYvW4JEQCIFjmDu2HrsTbry25cuUSaN6FpVmj65jHAmE4BVFDB48GAAwbdo0ZA1F7Naiqm8JgRBCkvTQVMQ2bdqEyZMnY968efeceB46dGhk7UBbU3qycuWbFjisW7cORISnTWYMtFjBUkSZUWRZxAQCSEhIuKe53EhycjJiQyEUlWUscnsxzu5I09jyX+PkyZOYPn06Jk+enKlx87+R6BrT9ylsF7yiCLsmg26z2fT1TIMHz549ezBhwgRMnToVp06detjTMfiPYCTbM4ARdBs8zuTPnRstFFX/xd9aNSF3fPwDn8eePXugyjJKyQr6WazIKknIEZftnrxs7oYa1aqhsnS90/wVizXDHuA3Y9OmTcindRPHBoP44Ycf9J8dOXIEfo8HZp5HSEuye10uVK5YEbVr1ULdOnXw3nvvoUjBgmCJIBOD+rKCgCAg6POl8mG7evUqdu7ciaNHj6Y7j48++giF8uVDrmzZ0K9fPz2A8bgi0u/Pmsy6VHvhggWRJ3t2VJUklBJF5OZ55OV5ZI+Nxfnz52FWVdRUFPzs9eMdTVK8Q4cOICIMt9qxxONFLv56UMwwDMaMGQMgUhnerm3bSLApXk8wv6d19Uc/S3v27AmF4/CmzY6xdgcUinR6O1gOteWIX1bJYsX0KuqoL/0EuwOfudzY6oskv1P6xKfHpUuXoMoyqsoyNvkC+FCTwiciPdFtM5v1Dodp06alSoBXk2RM0eY+ceJEdO3aFRUrVkT5smXRokULbNu2DVevXkXRQoXgEgQ8pZqQhef1Y9gsFrRv3x4mnscKjw9HAiG0VE2QJQkXLlxAndq1IbEs2ioqWmpJ84kTJ94yqD1+/DiIrlsLJARCyM7xKCdKGGKxpios4BkG9WQFhwMhbPIF4GNZ+DgOjRo1SjPu6tWrkSs+HoxWWPGq1YYBFit4hkHDhg2xd+9eCCyLOI7DGJsDjWRFr8qPFij4JQk8w8DBsljl9WGHP4jSsoKc2bJh5MiRyBoKIeTzoW/fvrqMYHRB6/PPP7/lvcydPTuqSDJ+1YpXasgKShQpcst9oly9ehX5c+dGUJTQx2JFGVmBIkl6AU40gbxa67D/5JNP0n2WShYrBpFlkUWOFMpEizCICBXLlcOZM2dw/vx5NG7YUC/ykAUBrVu1euzk5KIFLkVe+D+UHroYpYYsAsPyqCRK+NzlRlFZRsDrxZUrVx72VG/JZ599BoZhEJAk2AQBDqsVu3btyrTxL126hPr160fuN8/j008/zbSx75Rr165hx44dqYo/DAwMHi5GLPn4YNyrfx/Xrl37V3V///333zhy5Mhjp5R0vzh58iQaNGgAi6JA5HkULVQoVVdtlHXr1oFhGLRRTfjU6UZlOWIFlTLWvnTpEoI+HwrKMqY6XGinxc13mij5+++/Ua9OHRBF5LS7du2Ka9euYdeuXfB7PKmSwQcDITBagjka0ykch3Hjxt3ztbmR5ORk7NmzB7t3777ndyIcDmPv3r3Yu3dvhsYaPXr09XUDIrRXTdjg86O/2aLbxikp4leiiO3a999/j7feeguSto5StGDBdNXHovz22296wv5IIKRbo33//ff3dL63I3pt9+zZk+71iFrbjdVU4Db6AlA4DgMGDMCcOXNARKgvK7AzDLJxHMbbHWilPX83sze7FZcuXcLKlSuxYsWKB7reduDAAUydOhWzZs3C2bNnU/179erVkTNHDjRo0OCWv2MnTJgAgWV1FcjZWpNC165dU72vmUV0XSVaAHM0GIMSioK2bdtm+rEeB/bv34+gzweGCBzDwGIy4X//+9/DntYjy19//QWWZfGMyYwjmnIDxzAYO3YsymlFSTzP48MPP3zYUzUwMHhAGMn2DGAE3QaPM4Xy5UPDFP5uTRQVeXPmfChzWbVqFQrlywenzYYnK1fGgQMHHvgc6tWti2LSdQn3riYzbGbzXSclTp8+DY/TicKaBHVlJZLAS9mZ/Mcff+CZZ54Bz7KI4Tg8bTLDK4rIkzMnGjdsCFVWYNK6FKIS15t8AfAMk+Fq+nXr1mHkyJGYPHlyGh9zl82WykesjqygaKFCKFqwIGrKChICISQEQqglKyiYN6/utf6F060nNbPLCnr37o1u3bqlCpRbqiqWeLx4WpNL2rRpE4YPHw6eZVFBlGBhGCz3+LAvEEINRYXVZML777+PX3/9FZcuXULzpk318YoLIl632sAzDGKzZEHv3r1TncuiRYvAp/BfszIMFEm6bbXtgQMHQET4WLu2UU/7CqKE+nLEBz4qm3fq1CkIPI+nVBP2BkKY6XSBJUILLQl+7NgxtGzRAgLLoo6sIJsowqyq2LNnD5YuXYqiRYogSyCAGtWrY8aMGViwYAFOnz6Ns2fPIn/u3OAYBmaeB8MwmD59OpKSksBzHIZYbTgajMEUh1NPlDtttpvK+f39998gisjgHw3GYK8/CD/LopPJrBdP/OoL4CdNij8a2B8NxuBJTbHg/fffv+k1O3/+PFo0axaRj2NZdO7cGVevXtW907/QKu6PBEJwsSx8Hg92796NVatWYeDAgRgwYADis2bV75XFZELPnj1BFFGVeMZkBs+y6Nu3L/bu3Ytly5Zh8ODBqPbkk2jSuHEqe4lwOIzly5dj8uTJCHq96JTiWW6pqiiQJ8/tXg+dhIQE1KpRA16nE0UKFMCKFStw9epVlCxWDBaeRy1ZhksQkCs+/qaJ8YsXL2LChAno168fKlWsCBvPY6rDhakOF+yCgHZt2qTa9lY2B486W7duBREhrnYPlB66GLnbvJFqESzo82HDhg0Pe5q3Jejzoa6i4nAghO3+ILKKIlq3bp2px0hMTESbNm304qNb+RreLw4fPow8efPp96dW7dr37HVmYGBw7xix5OODca/+PZw6dQq1a9YEy7JQZRlDhw41itD+ZVy+fBl5c+cGR4TCgoCBFhty8gK8LleazuKoyl50DSBaXLtkyRJ9m2j38Xy3R098+0QJgwYNuqv5Xbx4US8aj9rCxYkSRCLU0uzhmisqGCJ00+KbjzWLri+++OLuL8wjxo4dO0BEeM5swTZ/EHVlJVVhOxHhQy3RGbVV69GjB/766y/MnTsXRIQuJjPetTsQJ0nInzv3LRP8AwcOTFVU36Fdu4f+7ofDYbRq2RIcw6C8rMCpWcwREexmCwpoNmUrPT74NHU0k6LcVTxx7NixVLZyubNnz/Ru8PRYvXo1zKqqS8/HZcmCo0eP4o8//oDP7UZQFFFLliFzHGrVqHHTe/LFF1+kWm94WyuY2LRp023nkJiYeMeFSFevXoUiSWilmnAkEMJarx82Qbgju7p/E82bNUMWUcJGXwC7/EEUlxUUzp//YU/rkWbcuHGRAiHt3a36xBO4evUqLl++jNatW+vv4oABA/5VxX8GBgbpYyTbM4ARdBs8Kly4cAFTpkzBa6+9lq7sWXpEJaTryArqa12oKX21/0usWbMGtWvXBhGhlCTpgd7dBtDA9c7PNZoE9V5/EBzDYPLkyfo2+/btgyLL4ImwTZPR/1qTjLNyHAIshyc0CfWoRPu+QAgqx+Htt9++7RxmzJgBhmFg5QXwDIO4LFnQq1cvvPjii1i7di1i/H601+TaEwIhPCHJqFC2rO79V1qSUFqTs4/R5MuISA8AQxwHXpPS2rdvHziWRUGtq/1XrSr/UCCy3wcffICqVaqgtqxguz+I3Np2DJEeeLEMA45l9Y50WRTxSgpfu0aKgorlyqU5z8L58yO/JGGt149v3B6YGQb169e/7fW5dOkSFElCE0XFgUAI890eSEQYYLHiUCAEgUjv8t68eTOICAtSyEAF2Ugw3LhhQxw7dgxEhNE2O96zO2DVzkmOeqEzDDiGgdvpTGUDcPnyZQwbNgylS5dGtWrVsHz5cixZsgR9+vQBz3F4WjXhR48PAhHqygpmOF14QlFgUpSbKhm0b98eDBHcLAsTw4AlwgKXB2oKb/mjwRi4WBY5eB7z3R68Z48k8ytUqJChRYerV6+mkngbMWIEiK57s//qC0BhGNg4DtmzZk3l5fbPP//g888/x8yZM3H48GGULFZMl5Y/GozBMyYzQl4fAOD5558HyzCoKcvII0mQRBGbNm1COBzGc889l2rBhGcY9DRb0M1kBscwmeJr+Pfff6N3796oXrUqunXrlmEP8hxZs+LZFMn/riYzQj7fPfn+PWpEC2xkiwMMw6BGjZo4ceIE9u7de9delg+ScDgMnuMw3GpPVXD05BNPZPqxkpOTddsKIsLo0aMz/Ri3ovITVaA4fMjT5k1kb9IPvCihb9++D3QOBgYGaTFiyccH4179e6hTqxacgoARNrvuoZoyPjN4/Fm6dKn+nWu7FmOv1QqNv/3221Tbzpw5EwwRFmux9rtaAm/Lli36NtEC7VGaZ/Y6rx8Kx+nqbffCqVOnIs+gw4npDpduxcWxLKpXrx5JumrxpMflQoWyZTF69Oh/hYJBNGG+VVs3OKKtG+TOnVtfc0jQiiA2a8p10fvXtWtX5NGaA44GY/Ch5vF+u+TxmjVrMGXKFPzwww8PPdEe5dq1axgzZgyKFi0KIkJPswUfOV2I5XmYGEYvBOlrsULg+buOJ5s2bgy/KOJbtwcL3V4ERREN6tbN5LNJS54cOVBaVrDLH8RPXj/8oogOHTpg7NixUDgOv2j3f4ojohi4ffv2dMdJTEzEk5Urg2MYXUnudgUT//zzD5o2bgyWZSEKAnr16nVH787UqVMjzQ6CAJFlkT1rHE6ePHnH1+DfQImiRdFSva6MOsBihc1sftjTeuT5+eefMWHCBHzxxRep3t1wOIwhQ4bov6tatGjxwNVdDQwMHixGsj0DGEG3waPA+fPnUaRgQfAsC5cmozVq1Kjb7hcOh/H++++jRNGiKFGkCCZOnPjIBBwPkgULFoBlWcRLEnw8D5YI+fPkwdixY++punDlypUguu6tFQ3wU/pI9+rVCxaOg0iEndpCwLdujy5x1lBREGRZ+FkWOXkeI2x2VJIkSIKAHTt24MyZMxg9ejT69u2LOXPmYPXq1fjpp5+QmJiIxMREqLKM5mqka3ON1w8Tw0BhWcRIEliW1aspG8gKntQClo8//hhnzpxBo0aNEAgEkD17dsTFxcHGcRhiifhQP20yY4rDiRw8D1UU8c8//2DevHkgIszUAt13tKTrTE3eK3eOHHjiiScQL0rY4w9ijy+AEoIIWRQhsizmuz04GAihmaJCkSRcvHgR8bGxeFJRcCAQwjZ/AHGShBbNm6e51jcmzBrICipXrJih+zR79mywKRK2OTgee/1BrPJGJLJ4nse1a9dw+vRpiIKA5qqKHf4gpjicYIhQu3ZtXL58Gfv37wcRoa/ZAo4IJQUR79odeEKSwBKhqCAgRqtUb9q0KYBIYP1k5cqQOA4lFQUqzyNLKCZS3CBJUFkWHBHy8jwYIuy/YbHhRk/63377DW+99RaKFi0KTiukycpxYIlgIgJLhKwchxUeH5Z4vHAyDExaNzsRoW7t2nct+z1s2DDILAuBCE9KMvxaIcLLZguICDt27LjpvuVKlUI1+bqFQ1vVhNhgEFeuXAHLsuinFVzsD4QQJ0l4+umnsWbNGhARXrfZcSQQwjDt2bSoKpw2G15++eXbesiFw2EcPXr0vsjOlStVCiVkGfsCIewPhFBMEMFRxKvvwoUL6e5z9OhRfPfdd9i8efMdfRaHw2F88skneOqpp/DMM8/g119/zazTuO1x582bh9deew2zZs26Z8++h0HFsmWRRZTwqdON8XYHRJa9pyKrWxEOhzFgwIBUFewP6neuJCuIrf4MSg9djNJDF8NVoArKliv/QI5tYGBwc4xY8vHBuFf/Dq5duwaOZVPFDZVkGfUeQMLJ4MGxcOFC/fvWz1rh+/duL4gIixYtSrXtpUuXUKxwYSgch/xKRNmsZfPmab6jddCKmUsoChyCgKwxMZni83r16lWIgoCnTWYkBEL42euHnRfQvXt3hMNhLFy4EE8//TRYhkHRFE0Bffr0uedjP2yiSln9tUL3MTaHrioQTcS/aLZgjdePNqoJHMti3759AICXX34ZLkHUGxYGaJ72Nyr5PU40b94cZVPExNHCj9KShBaKCp5l8dxzz931+DcWgz9ntiAuFMrEM0gfURB01b2jwRg01Boohg8fDocg4JC2xjFfWwfbuHHjTce6evUqJk+ejH79+mH27Nm3Xa9r07o1zDyPV602vGSxgmUYvPHGG3c0/zVr1mD48OGYMGECzpw5c0f7PmrMnTsXTZs2RYsWLVJZXGaEjh07wiUImO/2YLnHhxyShPKlS9+nmf53mDlzJgStoKpMmTIZbu4wMDB4/DCS7RnACLoNHgXGjh0LieWwxONFQiCE7mYzWJbNlODvv0CJIkVQUfOtPhQIoZwso1Tx4vc8bmJiIsqWKgUzz6OmLMMtiMgRF5cqAGzfvj3yaZLqBQUBz5st8GoJ1ol2B4ZZbJBTdJMzRAh6vVi0aBHOnDmDnNnioXIcYlMkTIkIxYsUwe7duyMd5Q6nHtgUF0Q00M61uqIgR1wc3n77bZQsVgzlSpfG7NmzceHCBRTImxdWQUA5WYHIMOCI0ECW0cVkRjaO1yvIP9Xk7H7//Xe9k7+aKKGKNh8Hw4IhQhzHoYQkQeB5qLIMjygiXuuYr1y5MvKnsDP4RBtz//79WLBgAQSeh0MQoHI8XHY7du/eneZa54qPRxlZwW5/EP/z+uEVRXTu3DnNdmvWrEHdOnVQoWxZjBgxAteuXdOvExEhO8dDIEJZUYSJYSBo/x4NqmbNmgWe4/TtmzRqpFdGJyUloUjBghC1n23wXVc0YIgwxubAbn8QXpZFbGwsAODHH3+MFDhoMvYLXB4wRGirmpAQCGGLLwAHw+rPwEKtq/7/tAKG+vXr6xKHCxcuhCgIMHEceCLYGAY/e/3Y7Q/CybJwMSysxCCUYv4cEUJ+v/7/pUuUuOsAcvHixSDt2pUURPgYBiIRKmvKDCm7+W8kqqRQTZbRQFPZePPNN/HPP/+A6LrUfUIghMKyjLZt22LWrFkgIuzVnsXf/UGQtvBUomhRZI+NRadOnW76+/n48eMoX6bM9UriZs0yVdZ95cqVkAQBTpaFUytCGGa1QeV5DBgwIM32c+fOhawVSxEROnbocNvFg+TkZJw6dQojR44EEaGoLCNWkqBIEn755Zd095k1axby586NuFAIPXr0eKyl7DODgwcPppJTbNSgwX33mU/pTdm9e/cHIhkXmzUOjtxlUGrwdyj+ylyY3DFo0qTpfT+ugYHBrTFiyccH4179OwiHwzApip5wOhAIIbckoWXLlg97agaZyJkzZ+BzuyEzDPwsixaKCgfLIlf27Ol2Dp4/fx4jR45Et27dMHny5HQ7X5OSkjBx4kS0bdsWL7/8Mv76669Mm++YMWMisaiswC4I8LndOHz4sP7zli1bIp8k4bAW97xgtkASxX+F7HBU2j36J1++fHrh8Guvvab/O89xmDZtmr7fgQMH4LBa4eU4lBQiMVSO7NkzbJN07tw5dOrYETmyZkWZEiUyrA55P+nWrRsCYqSAICEQQieTGSLPo0LZsihWqBCGDBlyTyppVatUQW5JwjZ/EDv8QeSTZFSuUCETzyB9ihYsiHySjDVeP+a7PbALArp164ZNmzaBY1nUVFSMtNmRQ5KQLUuWdN/RnTt3oknjxihVvDi6d++e4aIKh9WKl1IoJTaQFZT7jyaIZ8yYASJCMUlGQUkGwzCYP39+hvc/ceIEChcooL+TWQIB7Nq16z7O+L/DihUr4HBEimuyZcuGnTt3PuwpGRgY3AeMZHsGMIJug0eBF198EdlTSDDP1WTIbya/9LiRnJyM7777DlOmTEnl15xZZI+NxTMpKnw7m8zIlS3bPY+7fPly5M2ZE4oowu1w4KmnnkoTlEcThi0VFTk4HhLDwGY2o0Tx4hA0CblsHIeCXERy/cUXXwQQ6coYNmwYVJ7XZepfMFvAEOEjhxNOQUD7du2QJRhEMVnGEo8XE+1OcES6B3g/ixV2i0Wfy/nz5zFz5ky0a9cORIRlHl+qxK6NYdBBUSFQRJ7cwbAowAt69bHP7YbCsrAxTCqvtY6qCYcDIewLhOAWRXTt2hV9+/bF888/jyVLluDdd98Fz7KY5nBhoy+AaooCu8WiJ7x++eUXDB8+HKNHj76pLNzKlSthVlX9uPFZs+LYsWOptlm3bh0EnkchKeLHzjEMnn32Wd1rnIjwutWG/hYrnpQkMEQoxgtgiDB48GCcOnUKjRs0gFlV4XY40L9//zQLHAkJCTArkWRx1EtsmSfi+9fNZEYOnodIBLPJhIkTJ2LQoEEgImzSpNO2aB3r79mvF0iU4AVUFkQU4HkoDINCggCeCBIRgloF7JQpU5A1FEIVRcH+QAibfQEEWA7NFBVHAqFUCfbRNjsm252oonXcB0URc10ezHa6YeN5dOnS5a6f+REjRoCJSh9qxSEOJuJP9cILL9xy31mzZqFsyZIoWawY3nnnHb2b5MnKleESBAyz2tBaNYGI8OWXX2LDhg0gIrxkseJXXwAvah30LMOgnCzjWZMZZp5H7Zo10+0eblC3LtyCiMkOJ0bZ7JBYNlP915KSkvDVV1+BiFBViryDR4MxqCLLaNCgQapt//77b6iyjLqKinVeP8ZqXQyzZ8++6fgrVqyA3+PRr3XUr36vP4h4SULbtm3T7BNVn6itKHjGZIbMcejQvr3+80WLFqFyhQooWrAgBgwY8ECk4M+ePYuO7dsjR1wcypUqhRUrVtz3Y95IYmIidu7ciYMHDz6wTvMpU6bo70qbNm3uu73AvHnzwHIcZKsLomqB1Wb713xHMDB4nDFiyccH4179e4gm8CrIMnJpxcA///zzw56WwS1ITk7GX3/9dUffl7Zt24ZCBQqAY1mYZRl169R5pDsG58+fj549e2Lw4MFprMIaNWyI0tL1judXrTZwLHvfVKV+/PFHtGjRAo0bN8ann356X46Rkv79+4OIkEuSEBQjhcPR7ua9e/di6dKlOHLkSJr9GjdsCIFhUFgQ0EhWILMsevbsedvjhcNhVKtaFRaexzMmM8rIMgSe172///zzT6xdu/aB+JmnZN++fXDabHAJAnJpBehjx47NtPGHDBkCTosdOSIoopjKLuF+sXXrVvjcbn09omihQjh9+jSASMF50OcDy7IooTWM3EhCQgJcdjviJQnNFRUWrQAhI3LwWQIBNFdUJARCOBwIobgko0a1ajfdfu7cuXjyiSdQoWxZvPvuu4+k8ufevXvRoUMH1KxRA0OHDs1woXju7NlRX7sWRwIhlJcjFpJ3wpUrV/Djjz/ihx9+ML4PZTK7d+9GfHx8ZO3VZsPy5csf9pQMDAwyGSPZngGMoNvgUeDjjz8GEWG41Y4lHi8qyQocVmuGq3ofZZKTk9GsSRMQXZf5Hjly5D2POXv2bPTt2xcTJkxAx44dYeJ5jLE5MNpmh8rx6Nq1a6p9rl27hldeeQVBrxcxfj9effXVW1aS79y5E7IooqysoL/FilhJQs74+DRdpOFwGIMHDwbHRhKShfLnx549e/BExYrgiJCTj3RaV5YktFNUhHw+9O/fH4Lmdx7HC3rQPccVCWBWe31oq5ogMAzq1K4Nt1YhSUTgiTDGZsd0hwseQUTd2rUBAKdPn0a+qDea5vEdlSz/WZO/92lzZIhQQZTwnNkCE8MgJhhEp06dEBRF/OIL4HAghLqKoiedpzpcute8WxQxcODAVNcgMTER9evW1eeoyjK+++67O76vBw4cwLRp0zB79ux0K507d+6MeEnCQe28BlisYBgGp06dgt/jgZONdOHn5QWoDIPsPI+d/iA6qCbEBgKoUqkSnIKAfhYrGihqujKEAPDCCy+AJ4LCMKgsSTAxDHjtuj0hSWggK2BTFCNw2rE+sDtRW1bAMwxySRLmuNx42mQGl6ILPV5LmjtZFvm1Qgcigsiy4FgWI2zXJTHryQqycRwaaPfhnXfeQfNmzfR9WJaFVVXRJ0WldxvVhCL589/xtU/JX3/9hT59+oAhwlcuD44GYzDMGpF4nzNnDgYOHIjXXnsNBw8ezNB4J0+eRJ1atcBzHCSeR2wohM6dO2PYsGGoWbNmqk6I0qVLI1aSdCm6d7SkdXoLazazWZenPxqMQVNFRekSJe7p3KMcPHgQBfLm1efl5zjs8gex0uODQxDSFB5s2bIFRIQFmnLB0WAMYmUZr7zySrrj//XXX7CaTCgnK5ikneObKe59ZVlGg/r10+zXuHFjFJckXZligMUKnuOQlJSElStXgmVZlJZktFRUCCybrjpEZhIOh1GlUiVYeR5Pm8woKcsQBeGmXfn/Nj799FPw2md5gwYN7rvKwPr16/X378CBA/f1WAYGBhnDiCUfH4x79e8hHA5j6tSpaFC/Plq3bm0k2h9xVq1apReYmhQFH3/88QM79rVr1zBixAiULlECVatUSTf2exBE13taqSpetlhh5nk0a9Ik3W0vXbqEN954A23atMHQoUPxzz//3NGxfvjhB7Asi3yShFKaEt17772XGadxUwIeD5poScC9gRByiCJqVK9+22KCGJ8fPcwWPQZqp5qQP3fu2x7v6NGjICJM0ArcDwRCCIoSXnzxRXz00Uf6WgvLshg3bhyAyOfG7t27sXbtWhw9ehRffvklZs6ceUv1trth+/btaNGiBerrERGXAAEAAElEQVTVq4c5c+bc01jhcBi7du3Cli1bsGvXLnAsiyaygr5mK2po9/bHH3/MpJnfmtOnT2PhwoVYtmxZusnhW62tjR07FirHYZs/0qAwS2sGyUjMOGnSJBARSkoy8mpWilFlwBuJFqaXk2TU0iwWR4wYkeFzfBAkJCTA7XAgRhRRU1YgsiwaNWiQoaKAkM+H7ubrTUYtFRVFChR4ALM2yCgnTpxAuXLlImu3PI8PP/zwgR7/zJkzd/w7w8DAIOMYyfYMYATdBo8C4XAY3bp10xM7NrMZy5Yte9jTyhTmzJkDoogU+uFACM+bLWAYBvv377/tvlu3bkWfPn3Qu3dv/PTTTwAi16pTp04gImSVZQgsi9IlSqBOrVr69WtYvz4uXLiACxcuYPbs2Xjvvffw9NNPg2MYPGMyo4NqAkOEUaNG3fTYo0ePhpnndYnrqP/UzTrzL126hJMnTyIcDuP7778HEeFTTVo82lleV5JhVSNJ3l5mC55SIl2+AyxWzHN5UFQQ4GFZbPL6kY3jkZPjIXMcOnfujNWrV2PDhg1oUK+efp6lihfXO+1feeUVWHkh4uXt9oIlQk1JxvsOJ0qJIiQiDDBHfNBiOE5PZk6wO0FEeLJKFVRP4S822maPJIGJYGUYPGsyo6ggQOA4/Pbbb2nOPzk5GWvXrsU333yTppI/s2jbti0KybKeaHxL84Q7f/48Nm/ejJhAQL82OTge2zX/tzaqCVn8kZ+NTyFnnkuS0+0Cv3jxImpWr66P5XI64Xa54GFZ7PYHYWIY1JFl7PYHMcflBq9txxDBajZj/PjxyJYli55gLy1K+NzlxjMmM4gIHrcbWTgODpbFFy43Frq9CHIc7GYzckoyvnd7McvpgqyNKRChaOHCACLP/6pVq/Dpp59i586dKJQ/P0pKEvYGQtjuDyKneL0A424Ih8NISkrCqFGjYOGv2w2s9vr0rnOvKMImCLBbLLeUx7p69Speeukl5MiaFXFZsoAhQllZRjNFBUsEiWUhsSz8Hg+mTZuG3377Dc8//zxiUxRUjLtFsj0+Nha1FAVHtEWdfJKEunXq3PW5p6RsyZLIIkqY5XThTZsdbIpiobw5c6ax+Dhx4gRYlsXTJjOOBEL4yuUBz7J4//330x3/22+/BRFhvaZqUVaU4GRZjLM78JLmVzhx4sQ0+zVt2hRFUiTbX7FYIfA8kpKS0K5dO+ROIU850GIDy7L3VVL94MGDICJM1qwu9gdC8IniTYsM/o0sWLAAsraYU6VKFSO4NTD4j2HEko8Pxr0yMHjwnDx5EnaLBWVlGdMcLjRSVHAs+0C6cQGgV69e4BgGjRQFpSQZLMs+tG7Dd999F0GvFzazGU+1apXuZ9G1a9dQpVIlSByHkooCledRomjROyrorF61KkpIsh4TNFdUZAkEMvNU0iCLIoZYbTgcCKGVtt5BRMiTIwf27t170/1yZMuGXLyAifaIXVspWUbFcuVue7xosn2ilmw/GAghJEno2LEjOJZFK1XFMo9Pj7/Xr1+vryFFC92j/21W1UxT5tq/f7++DkBEyJ09+12vjVy+fBl1a9e+XvytFaxEre4SAiFILIvx48dnytzvJ2+++SYsPI992jP5jba2tn79+gzt//nnn6Np06Zo1aoVVq5cedPtqlapgrLS9fWiDqoJfrf7nub+888/o27t2ihbsiQGDBhwz7H1G2+8ATPP4zdNGXG8tt6xb9++2+77zDPPQOU4DLHa8IrFCp5l0zTCGDx8Ll++jNatW+vv7oABA+67Zcjp06fx5JNV9WO2bdvugagcGhj81zCS7RnACLoNHiV+//13/O9//7trz+VbceXKFQwcOBDly5RBg/r1dVmv+83IkSNhE653b0eTdrcrJli7di0kUYRfFBEjSeBYFvPnz8dvv/0GIsIorQs0mgSfPXs2zpw5o1+706dPI7/W6c1r3t0dVJM+jyaKessO4HHjxkFJUX37seZDHpUmuxVR/+o9WrJ3p+ZFzVDEq6ysJOkBUsruZk5LrApa5/MKjw9dTWbE+Pz62OFwGEePHsXBgweRnJyMDRs2oEyJEjBJkWTdz1ryrqvJrHdfO202qFp3NBEhxHE4cEMys127dhBZFhPtTsxzeZBDksARYbjVhmaKijiOh5VlUaVKlQzd9+XLl6N3794YNGhQpnVgfv311yAiNFVU9LdYYRcE1KxeHUBE/jx6fpImzV5bVtBIO+/GjRuDiPCaJsG/PxBCkOPQrVu3dI8VDodx4MAB7N69G0lJSRgwYABcgoAf3V4QXfdoPxqMQUFBQBnNZ650yZJo1LAhli5dijfeeANEhB80+fGEQAgOXkDFihXBE6FNiufxZYsVNrMZsaGQfh5lRBG7fQEMsdogiWK61c516tQBSwQTw0AiAkuESZMmZfiaXrlyBdOnT8ewYcPQsGFDcCwLjgheb+Q8XzRbsMTjRV0lIttfVpJwQPOIi5ckNG/W7KZjd+3aFSLLoqPJBD/HIR8v4Ij23PW1WCES4WevD25RxPPPPw8gYhXAcxzKyjKeTiEjH2XdunX48MMP8eOPP+LTTz8FwzDIJskIiBJkUcwUm4rExEQwDKN/xhwNxqCqLKNA/vz4+OOPcf78+XT3Gz9+vK4+QUSwmUw3/ZxdtWoViAj/54yoRnzucl1XQGBZ9OnTJ92A7LvvvgMRobIs4ynVBIFl8cwzzwAAWrdujUIpFhdGaAUz97PbOppsn5Ii2e7/jyXbgYglgNkcWcwrVapUmmIMAwODfy9GLPn4YNwrA4MHzw8//AAi0m3TDgVCkDnugSQIk5OTIYkiXtQ6pw8HQsgvSWjRosV9P/bdsnz5chARPtFizYVa7PnVV19leIxypUqhQQqLwpcsVtjN5kyd55UrV7By5UosW7YM58+fR60aNeARRTSRI0XVw612/J/ThXhJQtGCBdMdY9asWWAZRo+BFIYBx7K39F5PSkrC0KFDEZ8lC8yyDDPHoavJjLKajPzo0aNBRHoi81AgpK91RNeQGioKrAyDpR4fdvqDKCcriIuJyZTrUqNaNWSVJCz1+LDY40VAFG+qYHA7Bg0aBIllMcnhxFyXBzHaGscgqw0JgRCmOyINHU8//TQmT56cxu7wUWL79u2QBAEVFAUDNNXIXOmoRt4rFcuVQ80UDSS9zBY4bba7Hm/r1q2QRBEFJAlNFBUiy6J1q1b3NMeBAwfCK4p6MUxU3TK9hpYbuXjxIp5q1Qocy0LgI2qe99vKzODuCIfDGDJkiL6216JFC1y6dOm+Ha9ps2aQTFbEN+yDrDW7geV4DBo06L4dz8Dgv4qRbM8ARtBt8F+hVcuWEYkiRUFeKeKj9SD8XufPn68HNr/6AmivmsCxbLqeXSmp+sQTKCLJ2BcI4VAghCcUBQXy5MGSJUtSBewJgRBUjkvjhfXyyy/Dygv40ePDgUAIFoZBc0XVv3jXlBWUKFLkpsc/evQoXHY7sokiWqoqrDyPsqVKZchXas+ePRB4Hg0VFXNcbtTXZMfrSTIYIni0qt5o93gsx8EtCDArKoKBAOJ5Hhu9fiQEQmioqMgVH5/ucQ4dOgSryYzCsowXzBYEWA5+lsUSjxelZQVBnw+nT59GOBxGYmIi9u7dC4vJBJYIJQQRHVQTJCLIDINihQun6prPFhsLnuPwvLY4sdcfRFZJypAf+EcffRQ5L0mCU+uA3rFjR4aksaZNm4aAxwNFklCnVi2cOHEi1c8/+OADxPj9sJpMaNq4Mc6cOYPJkyfragGL3F7UVBRIgoBC+fKhaIECGDt2LNq3bw8ny0EgQiNFQX7Ny3358uXYs2cPalSrhrhQCDWqVcPvv/+eZl67du2CKsvII0oQiVBblrHTH8RnLjdEIhTXku3VZBkFJAms5uVMRHhDS9ou9/jAMyyeffZZMNp9/80XwB5/EEUFAdliY3HhwgVUqlgRcYKA3/1BJARCaK2a4HE608wpKSkJAs/jadWE/hYrBlmsyCeKaNq06W2vMxDpPK9UvjxYhoFLk9qzaJ0fMsNA0bp1iQiiIOid3X6WwzduDxoqCiqVL5/u2OFwGIok4SVN5r2WJKO4IOqJ4KFWGzgiHAqEUElW0CTFIsTixYtRqnhx5MiaFV26dNE7hV999VV9PkSELl26YPny5ejRowdefPHFDAWo6XH27Fn06NEDFcuVQ7t27XDo0CE4bZEik4RACDv8QWQRJXTo0OGW4xw7dgwWVUWIj3gO5pUk+NxunDx5Ms22SUlJqPrEE5A5DmUVBWaeR+ECBfDnn3/etgL5q6++QqnixZE/d270799f3z7aLV9XUdDTbIGJ59GkUaO7uiYZJRwOo3KFCrDxPLqazCitLXQ9qG6lR4mNGzfC5YosehUoUAB//PHHw56SgYHBA8CIJR8fjHtlYPDgWb9+PYiu25It90QK72fOnHnfj33t2jVwLIuhWrF1QiCEUpKMxvf5+/G9MHfuXBARtmjJ4r1asnj69OkZHuP1118HyzB40WzBq1YbFIYBQ4S33norU+Z44sQJFMqf//q6QZYsWLduHcqXKQMiQjlR0tdcopZgN9ojXrx4EYokobmq4lAghIVuL0SGQffu3W957MGDB4NlGLRTTWgkK2CI4HU4UKp4cSxZsgQ//fQTiAjjNDW7jzSFwTp16iCvEilAeEKSUCNFQjaqlnc7yfuMEPL50CuFLH5nkxl5sme/q7GqV62KWinm+aa2dkREUDRrOoHjILIseIaBz+2+pYrAgyA5ORkffPAB2rVrhxdffBEJCQn6z5YsWYK8OXPCajKhSqVKt7WkS0xMxBtvvIH69evj6aefzlADx8SJE0FEaK+a0MtsgcRxePbZZ+/6fHr27ImgKOkd+W9o9yDqV383/PTTT2BZFvUVFSNtER/7nNni76gLOTExMVOeV4P7z8yZMyFohTJlypRJV7ExM7DZHYh5oh1KD12M0kMXw12oKkqULHVfjmVg8F/GSLZnACPoNvgvcOLEiVTd4Hv9QfhFES+99NJ9P3Y4HMazzz6rBwYsy2LKlCm33a9wvnypOn9fMFvgd7vx559/QpVl1FQUzHd78KwmDbZmzZpU+zdv3hzlU1R0N9U8umvLCqpqScRbBa27du1C/jx5Ip3SPI9q1arh7NmzGT7vzz//XO+wFogQw3IIaslelmGQVRAgEukJvV3+ILJJEipVqgQiQlFJQhnNh2vq1KnpHuO9996DwLLYqXXQf69VvhMRHFYr1q5dm2af5cuX6xXkotYJbaWIz3o4HMaePXuwZcsWXL58GYMGDQJRRPo7qyhCEkXMnj37loFAOByG2+FAE0XFkUAIP3v9MDEsOIaB1WTCiBEj9KR7OBxOFSQsXLgQRIQmiorBVhtcgoCK5crdMkn/5ZdfgmEYmBhGT+Su0tQTUvqX1a9fHyrDoIwoooggIBvHgWEYJCQkwG61QmUYxHIcvDwPVRShSBJig0F89tln+hgbN25EnVq1kD0uDlyKZHp+ngdHpPvNHQqEkJPnUVIQUVt71rLzPFSOQ4G8eXXPPpumuBDtSI9Wnv78888QBSHSCaDt/+677wIANmzYgCIFCsCsqiheuDA4lkVZUcQLZgtWerwoKkk3TbafPn0an3/+OT777DOcOnUKM2fOBEOEeZov+yDNl32114cZ2sLEnDlz0LVrVzBEaKyomOpwoYQgwswwkFj2ph3M4XAYqizrnSSTNbuChoqC580WSESoJEmYYHdCYFm8+eabN73HQKQanojwksWKA4EQxmoLN4sXL77lfrcjMTERpUuUgJXn0VBREBRF2CwWcJq0YAzHw8FHCkZ27959y7GiihbRTop1Xj+ICPPmzUt3+8uXL2PEiBFo1aoVBgwYgL///vuezgWIBHO54uMR8HjQsX37ByJpfubMGbRv2xbxWbKgVPHiD02a81Fgx44dCAYjSiahUAjjxo3LFLUFAwODRxcjlnx8MO6VgcGDJzk5GfXq1IHAsiipqDDzPArkzXtTpajMpmXz5jDxPHqbLWimrQd8/vnnD+TYUZKTk7Ft2zZs2rTpthLUR48ehVlVUVlRMM3hQm1FhSgI2LVrV4aPl5SUhJYtW4LRYsxqUkQxLKPds7ejXdu2cAkCvnF7sMTjRTZJwpOVKyMcDqNdu3bwiyK2+QNICITQRjXBpChpFLsOHDiQRi2ugKLoil03IzYQQEfT9TWierKCEkWL6j8Ph8PooHWxe0QRDBEa1quH4cOHQ+U4LPf48LTJBDPDYL7bg82+AIoJIjitkPteE5gVy5ZFPlnGNn8Av/gCyC5JqF2jxl2N1b59e4REEb/6AjgUCKG2oiLg9WLp0qUYN24c4rJkQSlZwe/+IH7xBZBVlNAsg0X394MffvgBIc3Wr4gkwSUI8Hs8OHbs2F2N16plS/AsiyqyjKAowuN03laSPxwO4/XXX0fA44HLZkPXrl3vqXu+a9euyC7JujrfRG1N415VBD799FP43G4wDIOSxYo99CIJg/vLihUr4HBE1q+yZct2SyvGuyU2Lhtc+Sqi1JBFKDloASyhXKiRQiHSwMAgczCS7RnACLoN/gtEPa2iUr9HAiFkk2T06NHjgRw/HA5j/fr1+Oqrr7Bnz54M7fP8889D5XmMtzswxeGEUxDQXAsevv32W5g1LzCWZfH222+n2f+1116DxLKY5XThf14/SkkS7FYrypQsifJlymDGjBk3PfalS5cQlyULckoyRtnsqKV5y92J9H44HEb1qlUhEqG5oiIXz2vS4SpUjkNWzcP6zRRS1dVlGbVq1sTChQvRqGFD1K9X75aLAe+//z54htGTe1Hvq7Fjx6bbTRtFlSTUkGQcDISw0ReAm2XhdDjSPYepU6eibt26cNmvV1IXyp8ff/75Z7pjJyUlgWEY/bxqyTLMDIOhVpse5GfLlg3t27eH3WIBwzCoVL48EhIS0LlzZ+RJ4cn+rpZQvZkkczgchtflQkEhEkh/444kjV/VksbRRYk333wTRAQ3w4LVFh2ICH369NEl5SpLEkqJon6OTRUVtRUVDMNg5cqVGDVqFGL8fnidTnTv3h07duxA586dwWtV5QwRXtW6JiIe3CJqypHArLkmZf/666/j3LlzOHnyJNwOB7IIAkqLIoIcB4vJlCoQ3bhxIzp37oynnnoKX3zxBYBI57TdYkFRWcZgqw2xWre5k2Vh1xL3RIT58+fr42zYsAFffvklFi1ahKDPp59fwOtF7969YRcE/Xqv0DpNvnR5dHuGPDlzRgpOiHSps+h2pUuWTCOFFfUitJpMiNWe8SDLIYfWOR/0euFxOGBKYWvQuGHD21ZyRxUyNmvPekIgFLE5GD78lvvdjjVr1kSKClyRhZ6xWrV6F5MZvcwW2DkODpstXbWDG/nss89ARFirqW4s8USKXxYsWHBPczR4vDhw4IAeTFOKzxoDA4N/J0Ys+fhg3CuDfwN///03du3alaZT+FHm6tWreOutt9C2bVsMGjTojgrY75Xz58+jQ7t2cNvtyBoK4f33339gx44e/wmtmJ6IkDM+/rYdukuWLIFb+y5ps1huWrh7K6ZNmwYiwl6tKH+7Zms3Z86cuz0VncL58qFtiqaIvhYrPNpawv79++F2OGAXBGTTisbTszi7cuUKHFYrnlQUbPD5MdXhAscweoH5zYgLhdAuxbFrygpKFS+eaptwOIwvvvgCw4YNw+zZs5GUlIRz586hQN684FkWdq1QPnpPVIZBJ9UEjmFuWwB+O3755Rc4bTYw2vqAz+2+o0KJlOzfvx9elwsqx8MliuBYFl9++aX+c5vZjP6aitzRYAxaasX4gwcPRsOGDfHCCy+kUQm8X6xevRqM1owwWFsT2eILwCYIGDp06B2Pd+jQIRARxtgiCgW/+gKw8DxGjBhxH2Z/c5YuXaorx/W3WDPUDHInZEQ10+Dfwe7duxEfHx/5XLfZMr1BIdr4YfZng+oKghcErF69OlOPYWBgYCTbM4QRdBv8FwiHwyhbqhQ8oogBFivqaknER7kD8cKFC6hbu7YeBGWNicHUqVP1quhz585h69atNw0gLl26hKpVqqTq9L6x+/1mbNiwIZK01JK3hwIhOAThjr7cJyQkgIjwjiZhttcfhIdl8ZzZonsp586ZE36exzSHC8OtdnAMgxdeeCHDxzh27BjcDgdySjI6mczwiiIK5st3y4r5a9eugYgwOmWSX5JRtkwZnD17Fm+++SZ69eqFTz/9VA8iSpUsCZFhUE6UMNxqg08U0bRxY+zYsQMLFizA3r17EQ6HsXv3bmzatAllSpZEFlHCDIcTHBHaKyretNnxidONCsL1hHZr1YSRNjuCoojihYuge/fuiJGuy3QN05LmKbtzk5OT9U6IxMREEBHetNpRSoxUpHu0juRoVfy5c+fAsiw6qCb4WRZelkUVSQLPMKhZvTpknkcLzV4gIRBCRVECqxWmHA6EkEWS8OSTT4KI0E41RbqyU3i9nz9/HmPGjAFLBDPDYJDVhg6qCUSEIVYbDgZCqKlVoc+dOxeVypdH0YKF4HI69etgkiQsWrQozb0Kh8MYNWoUChYogJIlSqBnz56pOqezczzKixIOBkL43R9EXkFAoQIF9H27d+9+XVGCCHGCiPVePzb4/MguSShetCiICH0tViz1+FBblsEToa/ZgliOgyJJUDgOvcwWsERY5fVFutQdkblv3rw51Xw/+eQTEBFaqSq6mEzgiBDL8aguy2CJULFiRX3bCxcuYP369di5c2eGgtVdu3aBKKIesMMf1N+hLKHQPVWrRwPoZZ7IubVXTYjlOL0A4WNnxENt3759tx3r77//RrbYWARFES0VFR5BRN6cOW+6GHrkyBG0atkSJYoUQds2bQzZ8X8Jv/zyC4gIvBr5/GIFKV31FQMDg38HRiz5+GDcK4PHncmTJ0PQClhtFgu+++67hz0lg9vQpUsXyAyD6Q4X5ro8CHEcypUufdv9kpKScPz48bvutF62bFmkCN/uQEIgpBejb9iw4a7GS0nD+vWRTZLwiy+AXf4gispyKnu+w4cPY/DgwXjhhRfSjXGjLFq0KFUBdoN69W7rPz1ixAgwWmF8XVm5pQrgjZw/fx6TJ0/GiBEjsHjxYnAsi+aKqhdz15QVVK9aNWMX4RYcO3YM06ZNw4cffnjPktHHjh3D6NGjMWzYMKxfvz7VzypXqIB4ScJijxdfujxwCAICPh8UjsMTsgILx8Esy4iLiUGzJk3um6f7hQsXUL58eTi1JoRPNLWChEAI8bKMXr163fGYUVW7aEH8kUAIAUlCv3797sMZ3JqPP/4Y2bJkgd1iQaP69W/Z1GJgcCtOnjyJcuXKRdYKeB4fffRRpo6/aNEidOnSBV27dr2jRjEDA4OMYyTbM4ARdBv8V/jrr79Qt3ZtmFUVWUMhfPLJJw97Srfl2rVrqFGtGogIXq3ruO1TT902OXfx4kV07NgRdosFLrsdXbp0uaNAJ/rlPqoE8IsvACUdX/hbEZVGm6750x0OhBDiODxrMmOgxab7Xysp5MijfyZOnJjh4+zYsQO1a9RAvpw50apFiwwFUYXy5UMeScYitxfTHS5ILIs+ffogT44cUDkOObSgt3fv3hg/fjyICKVEEXl5ARwR6ssy7FarPl+GYVCoYEH9/0N+P3JoVZvRqnFe+9vOMDARIZ7j9YTmFC15u3TpUsiiiLyShLqaz32J4sX1Lvrp06fDYooksvPlyoXt27ejQN68yCkI+NrlwVOqCpYIPDHIFR+Pc+fOYf/+/ZHnRvOn36gF09GEsUCE7mazXnjQSFEgEGGK3YGXLVaYOQ6xoRBqpvBL62W2wGY2o0iBAhAFASZJQlFBRB1ZhkQEmQg8w4BnGJh5HgLPo3///iAiVJBkNFQi/nJNFBVfujzwiqKu2pCSbt26paq6j3bkf+FyIyEQgoNhdU/0o8EYtFFNKKol27/77jsQRfzif/MFYGcYdDVdP8/uZjPiQiEMHjw41ficNvfscXFo3LgxiikKdvuDyMHzsDAMigkieIZBw/r107yHjRs3Rmkpcp26msxwsyx2a90Uw632W6oUZIS6deumek/qaQssP/30012Pee7cOYT8fuSRZLxqtSGG42FiGPyiPSdDtIWpjHYFJCQk4KnWrVGyWDG0b9/+pgoQZ8+eRVyWLAiKIpoqCkxaB/306dPvqFL+jz/+QN++fdG2bVtMmjQpjUSjwYPn888/BxGh8PMfwRTMrT+vffv2fdhTMzAwuA8YseTjg3GvDB5n1q9fD0bzqv7C5UY1RYFJUW76XfNGEhMTMX/+fHz44YfYvn37fZ6tQRS33Y4mWmF3NLYQOO6+HzccDqNz586ReFxbb7ibpGd67NmzB15XpBNdYFlYTCb8/PPPdzXWsWPHsGDBAvz0008ZimOSk5MxatQoFMqbD8UKFcLkyZPvusvY43SihRqx9NvrDyKnJKF58+Z3NdbDYO/evYjLkkWPNaKKdLOdbvzP64fKMMjHC+imNWXEhkJ4/vnnMX78+HsqVk/J2bNnUSBvXn29hyFCgGUxxeHUVQ1Tqu5llKtXryJHXBziJQlj7Q40TaE4aGDwOHP58mW0atVKf28HDhxorOEYGDxGGMn2DGAE3QYGjy5RD+9pDie+cLnRVfvCnp4XORCpAF++fDkqVqgAmWXR22xBG63L+Fb+7DcSDodRu2ZNyByHmnLEx9nv8aS7mLFjxw506tQJjRo1woQJE/QvSsnJyShVvDg8ooh+FiuelGQwRHhSlCBo3devWm34QPN9Gm61YZc/iE4mM1iWxeHDh+/uomWAbdu2IcYf0L/gVataFaNGjYLMcXr3ctS/2+t0orUm1XY4EEIRQYCqBex9zRZ85/agiBBJwk+wO/GN24Pckoxc2bND4HlUlCSMstlRgBdg1fbLyrJwpUjEvmi2RCTHBg/G7NmzUbRIEbBEMHEcFI5D0OfDl19+CSJCc1XFu3YHcksyssbEoFWrVnoin4hQRZKx1OMFyzCYPn06EhMTEfT5EOB52BgGh7QE/0LN397FspAo4gXezWTWiyBSFkI4rFaUk67L27dWTeAZBgXlSIK2mChCJMIGnx8JgRA6m8zIEghg4sSJGD16NLZu3YpaNWqgtCTpY3Q1mWFjGBwNxqCprMCsqqhRrRpGjx6ty4mJLIuigoi1Xj8+cbohpZibl2UhMQycLIuZThfedzhh4nlUqVIFL7/8Mpo0aQKV4/SFnXKihBiOwxqvH2u9fmSTJNSsXh1fffUViCJ+7O/YItc1e9asuHbtGsaMGQOBZfGR04WlHi+y8DxEQcCoUaPS7Tpo1aoV8koSDgVC6KCakC1FQcVUR8QDPiEh4a6f23feeQciy+ItmwPfuj2Y44p0nd9Y5X+nbN++HSWKFIEkisgWGwunzQa3KKKEVnTy3HPP3dP46RGVnF/q8SIfL0AiQqzWDRBVTbgdJ06cQJZgEE5BQHGtgKNz586ZPleDO2Pz5s0gIsQ82RHF+nwOyRmR7RRFEQsXLnzY0zMwMMhkjFjy8cG4VwaPM++88w5kjtO9g3/y+kFEWLx48W33vXz5Mp6oWFGPIziWxccff/wAZn3n/PHHH2jVsiUK5MmLRg0aZEhd6lFGEgRk5Ths8wdxIBBCZUmCIggP5NjhcBjffvstSpYooRfIt2ndGhs3bsQbb7yBMWPG4MiRIzh//jwGDBiARo0a4aWXXsKZM2duO/Zff/2FKVOmYNKkSTh48OD9P5lM5vz582jSpAmICEFBQEAQocpyGuU2ILJ2Mnv2bCxbtizT5MMziwsXLmDFihVYu3YtFixYACLCaq8Pg602KAyjr7d8ocXNMVJkLapC2bK3tXHLCAMHDoSZ57HM48PBQAj1ZUVvFmAZBm+99dZdj71t2zZkCUbiKEWW8eGHH97zfA0MHgWSk5NTNb20bNkyjT2jgYHBo4mRbM8ARtBtYPDocPHiRbz88suoUqkSnnrqKbz++uuRDkFBuL44QJRuh/nVq1dRq3p1fTueCNO0rvLKkoxCBQveUUBx6dIlDBo0CDVr1ECnTp3SDSJ3794Ni8mEWFFCRTmSTH/++ef1n0fVBBxWK0J+P/LlyYNihQqhffv2ICIs8XjR32LVk65HgzFY7Y34Yd8vif+EhAR8//33WLt2LdasWYNffvkFycnJ6N+/P0IpksFRz25VlvFKiu7pOrICnmHApEgOMkR4QpL0bd7WvNZ5htEl4aM+36R1fnNEyMLzKCNK4IggMQzsggCB56FIEpqrKo4EQtjsC8AjiihevDh8oqgvMM11ReYXHxuLJ8WITPNHTicSAiF84/JA0BYUssfFoXjRouC0edaVFbxtdyCPJMNmNkNmGNSUZagMA1GbGxGhupZc/0wLTIkIFWVZl6sjIqzTvLl3aB54T4gSepgtEFgWL7/8cqrrXrVKFVSRrnfHv2i2wMQwmO/ygCNCPM+jhiyDZRg8++yzuHjxIogI4zUbgshzLKGQIGCKwwkLyyJrbCyKpFAU8Hki1ySrJttORHhfk8PvqJpSdcnHBALYu3cvevTogZwpuvb/zxlJih84cCDNO2VWVSxZsuSmz9aqVavAsSyKShJKaXYBzRQVr6ewCriXqt0jR47AYbUilyShvWqKJJmLFLmt3ODdHKd3795o06YNpkyZcl8qjaOeWoMsVvDaZ8HRYAxe04pcMrKwOHLkSKg8jw2+yHP4uiatf+TIkUyfr8GdMWjQoFQqDNmyZYt8JvI8Pv3004c9PQMDg0zEiCUfH4x7ZfA48/HHH4OIsNAd+c74rhZvbdq06bb7jhs3DiLLYo7LjX2BEJoqKhRJwoULFx7AzDPOxYsXkSdHDvhEEe1VE7JKEoI+32Mr23z16lUILAuRIr7gdoYBS4QswWCabQ8ePIhly5bh0KFDmXLsxMREbNq0Ca1atoTMcRhqtWGo1QaJZcGxLKw8D5Xj4LBaUbRQIag8j8qyApsgoGC+fDe1wfo3cOHCBRQpWBAyxyFeiqwjFMifH9u2bUuz7ZQpU8BqjRJEhOZNmz6yXainTp2Cy25HMVlGA1mBTJQm2b7Q7cXX2jpK7969MXfu3Hv6nfjUU0+hlKLoawnRAvuGDRrc03t77do1VK1SBRzDIE5bZ2vRrNkjV+xgYHAvzJw5E4K21l22bNkMqykaGBg8PIxkewYwgm4Dg0eDcDiMmtWqQeE41JcVxIoSHJpUuYVh8JXLg1VeH3LzPPLlzp1m//Hjx4NnWcxyurDNH0BtWYaJYfC7P4gi2heYCmXL3pNk1tmzZ7FmzRrs2rUL4XAYvXr1gl8U9SCmv8UKhmF0T/FbjWMzm1FRktHXHDnH9+xO7AuE0NVkBsMwmRZop+TLL7+ElKJwoVOnTnrAEq2E7mm2YI7LjVKyDLfDgWZNmsDC83jVasMLZktE/rxJE3BEyMcL+NDhQh6eh4tlscUXwOFACA3kSJctQ4SftYR0yqQ1Q4T8efKgdOnSICIEWA6/+gI4EAjhSSVSDf1uiiRzBVlB/vz5ofK87qk2Vltg8rhcyMbzsBODEoKI0TY7JCIUEgS8YbOjpJbM76iakEuTwSciFMiTB+vWrUOh/Pn1eUlEqKgF3B9qFgJHgzFwCAJat26NJypWRLlSpfDMM8+kWuxao3WWmBQFTpsNPXv2TJMAnjZtWqRqVVXxnNkCQStG4BgGXpbFXu0ZGpzCp16VJFSVZOwPhLDa64OVYdBFk4LvbjYji9+Pdm3bwqKqsFsi6gDva9dtpsOZqkufiDBo0CDMmzcPc+fOxdmzZwEAgwcPhk0QsEW7rv0skecx2tGQlJSE1atX49tvv8WxY8dSndPFixcxaNAg1K9fHz179sSJEyewdOlS1K5ZExXLlUOTJk3gdjjAsSyeqFjxll3tly9fxrvvvovevXtj2rRpenc/EAm2jx07hqtXr2Lbtm2oXbMmCuTJg/bt2uHkyZM4dOgQRowYgUGDBmWKD+GD4I8//oDDaoWP5+FgWL3I5QdPRHEhI9L4/fr1S1UgEy1A+e233x7AGRjcjnXr1mHmzJlYu3YtEhMT0aZNG72raMqUKQ97egYGBpmEEUs+Phj3yuBx5vLlyyhdogQkjkMuTdGodcuWGUo+Pffcc8iTIiEWVYf6/fffH8DMM87ixYsj3fpaEepGX0SJbdasWQ97anfFvHnz9GYBPsWfJk2apNru7bffBqMpqrEsiwkTJtzTcY8fP46ihQqBKGKZ1imFlVgnkxlmrSB+mz+IgLY28IXmjb1UK5CfM2fOPc3hUWbKlCngGEYvdn5DK1jes2dPqu3++usv8ByHdqoJv/uDuvXdo6oKAUTij/jY2MhzxzAoKEnoajLDybLIxfM4GAhhidubqgg/PmvWu1afGzlyJESWxYcOF/7n9aOsLCPg9d5zQcI333wDIsJn2nP5nqYGeTOFSwODx5UVK1bAbrfrBfq7du162FMyMDC4BUayPQMYQbeBwaNB1Cf9Ay3J+ZsvAJXj4HY60TDF4sBwqx0Cz6fZv1u3bsifYrtocrcgL4AhwlCrDcJtgtcLFy7glVdeQY3q1fH000/j6NGj+s9WrFihJ/+JCB07dkSnTp2QX1b0ZFfUB/x2/vBJSUkoWby4HuTcmBQdN27c3V/Im3DmzBkokoT6ior1Xj/eskWS1Z988om+zfDhw/VA3+ty4bPPPsPWrVvRuGFDcCwLSRTRp08fbNu2LRKEa8HPOq8PvJasdrEsWCLk5nmILAsXz6OWLEOmSCV/r169cO7cOVy8eBEmRYGbZdFAvn7fXrVG/OyzczzmujwYa3eAYxgMGTIEQZ8PHlFEBc3PnSVCrCiCIYKJiXQNRK/hJi15vE3rOq8mRTr0s4kiWrRogVo1asDjcKBg3ryoXLkyOK1LX+R58ByHJoqKtV6/7tn93Xff6dfp8uXLyBEfD4VhUEIU4WQYiAwDh812Uxm9cDiMd955B3ExMfC73Wjbpg1GjhyJUqVKIW8KifqJWiB58uRJfPnll+BYVn9OVIbBBp8fBwIhlJVluBwOqByHlyxWtNfsEoZabTgajMH+QEivWP/ggw9S+eht2bIF33zzDfbt24djx44h4PXCKQgorMmm9+nT57bPU1JSEqpUqgSF41BFluEUBOSIy4a///47zba3C7YTExNRuUIFCCyL7IoClmH0yvVly5bB7XDoxQwpn1cA2LlzJxxWKyw8D48ogmNZzJs3DwDw888/Y/LkyVi4cOEj2YGwcuVKxAQii4jPmkz4yuVBBVmBzWzWiyFuxZIlS0BE6KCaMNXhQn5ZRkwgkGkefAaZS3JyMrp3765/Ro0ePfphT8nAwCATMGLJxwfjXhk87ly8eBFjx45Fz549MXXq1FTFqbdi4sSJ4DVrqN98AdRRVJhV9ZHrXo5ayK30+LQ4LgCG6LGUj541axZYhoGZYcATwcEwaKuokFkWr7/+ur7dli1bQEToajJjtdeHLlrhfXpd1hmlRbNm8IgiPne5kZ3j8YQk4UgghCOBEJ6QJNgYBoe12LO8GFEjiypl/a7Fzndiwfe4MWLECDgFQY+/owUGNyZyf/rpJ12NMLpW4ZMkDB069CHNPONcvHgR69evR6Xy5ZE1FILAsnhCljHX5YGPZZFDU0db5fUhKIpo2aLFXR3nypUrqZTw7BYLVq1adc/znzJlChgi3QJwq1Z4M3fu3Hse28DgUWPXrl2Ij4+PvEN2+31TOTUwMLh3jGR7BjCCbgODR4NNmzaBiDDP5cHRYAwOBkJwCgKKFCkCnyBgndeP3/1BlJMV5MyWLc3+Y8eO1eXx9gZCaKSoYIlQiOcxyxmRk88mKzdNJCYlJaFyhQpQeR41ZRleUURsKITTp0/jypUrcDscKCfLWOrxYbTNDoYIAZ8PLBGcDIuuJrMulX27DoMffvgBRISpDieWeXyYqFVT9+nTB1u2bMmU63kjGzdujCSN3deDRS/LwmI2Y+XKlThz5gx+//13/PHHH/jpp59QomhRPWiqWqUKTpw4oS/I/PHHHyAiDNMSuxt8frBEiOd4vGi2YL7bg/Fa53mnTp1QrmxZNGjQAP/73//0+ezZswdEhHqyAoVhMN3hwjduD2I5Dj6WhSeFXFvL5s1x7do1JCQkoEePHihVqhSICF86I8n+6LHq1KmDAQMGgIjwvXaeP2rBs5UIqlbdb7daERBF9LFYEaMl2YOCGJGSy5oVH3zwAcQUCgAvvfRSqns6bdo0MJoMIFHEP32x2wO3VoxwJ0SrtlupKoZb7fCKIooXKaKrI+zcuROTJk3CgAEDIPI8fKKIgCiB5ziIPI9nUnQqVJEk+FgW37o9aKOawLIsfv31V/1Y4XAYPXv21M+LY1lMmzYNR48excsvv4xOnTphxowZGeqQ+d///gciwv9p79Zarx8MESZMmIA333wTL774IubOnZuhsaK+8V9p7360cv27776DxWRCRUXBDKcLjRQV3A3n1LxZM8RLErb7gzgUCKGGoiIuJgYjR45MVcjStHHjRyrhvmvXLj3RHu14ISI4bTYsX74c+/btQ9MmTVCsUCF0aN/+ppJi7777rv6sxmfNiq1btz7gMzG4E8LhsP4ZRUQYMGCAIYdoYPCYY8SSjw/GvTL4r5KYmIi6tWtfV/MShEcyafX3338jSyCA7JKElyxWFJBlOKzWNOpajzrJycmwmExorKo4HAhhndcPm1bQXqRgQfzzzz/6tjNmzAAR6dZru7Rk940FxndCjqxZ0dVkxoFACAM11bI8HI+8/PX4tpokY5bTBRPHQRYElJEVvGt34ElFgSJJ2Lt3b2ZcikeS5cuX6wUOX7k8qKQVO9/oVf84drbfjG+++QZmVQVRRF2hbwqbwLaqCUXy57/rsZOTk/Hzzz9j0aJFt206yShbtmwBwzBop5ow3+1BQ0WFKAg4cOBApoxvYPCoceLECZQrVy7yjvI8Pvroo4c9JQMDg3Qwku0ZwAi6DQweDa5cuYIccXHIJkkYbrWjuqKC5zh89913yBoTE/nSwTBQZRk//vhjmv0vX76MyhUq6AEkz3GQRBE1FQU/ef267PjNZOjWrVuXKnm43usHp8n97tu3L5WM1dFgDHLwAqwsi4EWG0qKIlgiFC1cOEN+yVHPvaj8/G4tqJ49e/Y9X8eb8ddff4FlI0UBCYEQvtS9wgXIoqh3tPs9HjxRqRLcgogZThfetzsgMAxY7ee1a9TAmTNn9A7NIooChyDAYjJB5TjMcbmxzutHcVFCyOe76XwuXLigddorKKd5rhMRRCKs8fqxLxDCCK2r/EZJ/QkTJkBkWd2/fYMvIuO+cOFCXLp0CYXy54dDEFBPVmBnGJgYBuYU40e78nf7g+C0QDshEMJarx9mnsfgwYMxY8YMZIuNBcMwsJhMGDhwIIDI7wxRENBaNeFQIIR5mj98NUlGjCCgU6dOd3xvJk2aBJfdDp7jYJJlPRE+YsSIVNtt3boVr7zyCurVqweR5/Vr1tNswZFACEVFCZx2nwSex9SpU1Pt/91334GI8JrVhs2+ANqqJvAch8OHD9/xnKMFI6u9Pr2TXmQYeF0uqByHbNp5ZKTy//333weXosNik1a5PmTIEBAR1mlWBAcDIfAMg/fee0/ft2K5cqmUL4ZZbXryOXpdpmnecV988cUdn+f9omzJksgpyVjm8eErlwd2nkeLFi1w8eJFnDhxAgGvF1klCa1VE1yCgEL58+PKlSvpjnXlyhUcP37cSNo+RowePVp/f7t37/5IFYIYGBjcGUYs+fhg3CuD/zLJyclYsWIFvvjii0c6YbVnzx5UqVQJXqcTZUqUwObNmx/2lO6Y6GfNRPt1W7JykowSJUqkURNYtmxZqm3HaWsWq1evvuvjVypfHnkkCdm56/EiS4TqkoSPnW68qsXYRBGbvUWLFiE2FFFF87nd+P777+/1EjzyjBkzRvdid1itWLZsWbrbZdSz/erVq/jzzz8zrDbxMDh//jx27NiBUsWLI58sY5MvgNVaZ3uL5s0f9vTSMGXKFPBaY4QiSfj8888f9pQMDO4rly9fRqtWrfTPm4EDBxrrBAYGjxhGsj0DGEG3gcGjw969e1G2ZEkIPI/YYBBff/01gIgE+owZMzB58mTs27fvpvsnJibi22+/xUcffYSdO3di/vz5UKTridwO7dvf9MvKjz/+CCLCMs/15KHCcXjnnXdw7tw58ByHTlpSdpnHB5EiPuBRuTWZ4zB+/PgMnefu3bt1qfK5Lg+aaIUFu3fvvuNrdie8/fbbkUSsdj3KiRI2aH7jtWUZn7vcKCHLEBgGz2kd04M1WfeXLFaMtNlhFwQ0btAAycnJmDp1Kjp16oRXXnkF+/btg0vzGooeQxbFW3oOffLJJ3oARZpSgJXjsNEXwF5/EPVkGQzDpPETXL9+PYgIHU0mfOP2oLaiQhZF3Wvs1KlTeO6551C5UiV97KaKinftDuTmeXBEmOZw4ift3Gc7rxdR5JUV2KxWsESQtcpvtxZgP/3009i5c2ekq17rwj4ajEEcx4HXjlO0cOG7CrITExMR8vuRhRfwmtWG58yWNFJp3377LapXqwaOYVBfUbDC48MrWrdCLkEAwzCYM2cOfvnlF5w6dSrV+OFwGI0aNYLKsPq812rnv3Tp0jue7+nTp+F2OFBUlvGO3YEaWte5ieOwVkuO9zZbwBClmcuNbN68GQzDoK1qwjyXB3W0+/n1119HZAwdrlR+5ik7PZ599lkIDIOuJjNmO13IIkkoVKBAqkKAo8EY2AQBI0eOvOPzvF+YFAVDNGWIo8EYNFNUlC1ZEgAwffp0METYrFkhzHdHvNjTKzIyeHz54IMP9CKnNm3aIDEx8WFPycDA4C4wYsnHB+NeGRgYPAjC4TByxMWhoCzje7cXE+1O8CybbiwSDofRpnXriBKb1nnesUOHeyqiXb9+PUSWhZ9l8YXLjekOFxSGQSdt7WKWM1KIvGDBAj1uDYfDuHDhQqYU74bDYbz++utw2mxQZRmtW7bUu/mTkpIwevRo1KxeHS1btsQvv/xyz8e7W06fPo2dO3fe1k5h27ZtmD17NpYtW5bu9fnoo4/0Naegz5dKze9RZPPmzbCZzfo6SbYsWTLUMPIwOHXqFH755Zd0reoMDP6NJCcnY/DgwddVPlu2xKVLlx72tAwMDDSMZHsGMIJuA4PHi40bN+Kll15C3759MxSc/fHHH1i8eDG2bNlyy+Dx3LlzCHi9yCfLGGWz40lFgSgI2L59OwBg/PjxICLYBQEcw4AjwgzNX/4XXwA8w+D999/P8Hl88sknkLWgTBZFDBgwABXKlkW+nDnRtWtXXUY8JZs2bcJHH32E5cuX33Ug/MYbb0Tkiy1WHAyE8LUrksj7Py2h+Y2W2CsqSjgQCKGcKKKmLOtJwUFWG2RRTDPuwYMHQUToZbJghtOFnz0+uARB7wi/GTt37sSMGTOwYMEC/Pbbb7BaLBAYJpX/usNqxfr16/V9kpKS0Lt3b3BaEtykKJg3bx527tyJ1atXp5KA87rdsDPXu+CjiUuZCK0VFSIRCgkCvnZ5MEyr8reynF4wEPVoe0lLau/btw9mVUUtRcFGXwDvO5xgiTDKZsdspxtElKrq+urVqzhw4AAuXLhwy+swevRoXfKciNDFZEZ2SUbPnj0BAHPnztWT6kSEVSkSyWaWRc4cOVL5yt/Iq6++qo89zeFCQiCEF7WEfkZkAmfOnImSxYqhWKFCeOutt5CcnIwNGzYgR1wciAhelwv16tVDdknS5zXHFbke0XO4FR988AEErVs/ej+Tk5NRp1YtCCyL4ooCledRtFAhPdj44YcfoGod9EQRKfbcOXLgp59+AseyaKeasNUXwEjNpmH+/Pm3nceDIl+uXCgtK/jdH8QmXwAxoohWLVsCACZPngyOYbBLU75YrlkhLFmy5CHP2iCz+eyzz8Brz32DBg1w+fLlhz0lAwODO8SIJR8fjHtlYGDwoNiyZQsCXq8epzRu2DDdwsqkpCTMnj0bLVq0QOvWrTNsw3U7zKqKASmkwpsrKrwsi3fsDmSTJOTJmfO+dWFPnjwZRITOJjP6W6ww8Txaa3FO165dwTIMqssysksSVFnW11seR9avXw+GYdBCVfGhw4VSsgKnzZZGkv5R4erVq7oapKgV/Q4bNuxhT8vAwOAGZsyYAUFb+ytbtuxNbQUNDAweLEayPQMYQbeBwePDDz/8AJ7jEBQlBEQJoiBgxYoVmTb+r7/+ioJ584KIEOMPYMGCBal+vmrVKrz++uuYNGkSihUuDLsgoIWiIlaU4HO78ddff6UZc9q0aciXKxeyxcTghRdeSCUFfe7cOezYsQMrV66EwPMoIcvooJqgsCwK5s+PZcuW6b5Xo0aN0oN1IkKHdu3SDcRvFzRfunQJhQsUgJUXUFmWobIseCI0lxVUk2SUFkVdht8nihAZBnl5Hge1ZHUb1QS3w4HDhw+nOpe9e/eCiDBDk+E/FAghIEp45ZVXbjqXhQsXolypUsifKxe6deuG+NhYKByHkCZ51141YYsvgKKyjAJ58gCISGZXr1ZNvw6KLGPevHlo366d/m92iwUrVqzAhQsX0LFjRwhE2Kh1CUf93a1mM2SGgULX/bKjf55VIn5mQZbTFyi+1ZL0q1atQp8+fVLJuFeRJF0C3czzeOuttwAAK1asgNsROZ4oCDctxjh27BgEnkdLRcUGn1+X9lNYTg9+K5Qti4qyjFVad/dAS6Qr+guXGwwR/u///u+m1zkcDsNqMuEZ1YTasqJLCRIRXnvtNX27bdu24cnKlRGfJQsa1Kuny8vPmjULRIQasoLGigrmhv0uXbqEcDiMzz77DESEfhYrvnR5UFQQYWIYOKzWWz6TUc6ePYv/Z++8w6OoujB+ps9sTbLJZktoIXSk9ypVOkivQYo0KR9NiigIKiBVKdIVUZQiiiIivSoCSu9IS+g9QEjd9/tjJ0MiIWwwIYDze548SnbuvWfKbvbcc857Dh06lCLRJDY2FhMmTEDHjh0xcuRIrSrC4/EgODAQVRUFhx0u/BgYBBPP480330TN6tURYLGkuK/du3d/rmTWN2/eDKOiQGBZsAwDV3Awzpw5AwA4e/YszEYjissyhpgtyC1JyO52699TXlJWrVoFWU0aqVatWoo+njo6Os8/ui/54qDfKx0dnWfJ3bt38fvvv+Pw4cOp+iGJiYlo2qQJiAiBqg/eoV27DPFZ8uXOjaqKgtNONw45XAgVRPBqonqJIkUytSd77Zo1US1Zsv4wswWyKCIqKgpEhHdUda+TDhdcooTevXsD8FZcT506FV9++eULU8k5fvx4mHhe2wtISpLevHlzVpuWKrNnzwbHMFhuC0KE0423TGYwDIMLFy5ktWk6Ojr/YNOmTfBT1UNz5cqFI0eOZLVJOjr/efRguw/oTreOzotDyaJFUUGWccbpxt9ON0rJMiqVL5/h6/iS5X3z5k28+eabKFOyJFo0b56qvP3ixYtBRGigKOhiNEFgGLRo3vyR4/r16we35K0kT96rLennzTffBBGht8mMv51uLWD8448/anMcPnwYxVT5bKfdrknwp8atW7cwaNAgNG7cGL1794YiCDAwDKpJEgxq3+0dO3Zg6NChCA8Ph8BxyCNJKC15A0KSuhlgNho1mfPExESUKl4cdlHEYLMF1RQFHMti586dqdqwadMmsCyLirKM9gYjOIaBgWXxmypB3keVIB9psWCU2Qqe4wB4HVqRZbEwwIbdwU5UVRSYDN7g+GiLH9YHBaOCLMNqMiEgmay9wrKoJEngWRbNmzZFREQEGtSt63X4zRasDbJjp90BiQgWIq3KfJjZgtWBdlQSJbDqtU2ak+d5sAyD5oqC7XYH2qt2dO/eHSdPnoTVZEJFWcHXAYHoYDCCiDRZuQsXLmDt2rU4dOiQ1sIguey5iWFgkGVcunQJAFCqWDE0UwyIdIWgpyr7ZmYYMESo8eqraUpQJyYmQhQEjLBYcd7pxoIAG/LwPMqWKaMdc/HiRQT6+yNUlFBRFGHlOOQMyYZ79+6hUvnyqJ5sw6SjwQh3cPAj63g8HuTInl27Pna1utwgy4+1Lcm+AwcO4I8//vB5Y+X27dsgIkxP1guxvCzDpCjIJUnoZzIjvyTBYjI9t30HT506henTp2POnDm4du1aitd+//13lChSBAFWK6pWqoTjx49nkZU6z4LNmzfDbPYqTZQpUwY3btzIapN0dHR8RPclXxz0e6Wjo/M88csvv2iqY8mTwrdt2/av5169ejVEQYC/IMDI8/C3WHDw4MEnSqZnBI0aNkTRZMnobxpN8DObcfXqVRA97E8f4XSjoCyjc+fO+OKLL8CyLCQ1IaB4kSIvRAJqUvA6SXVuml8AiAj79u3LatNSZfjw4XAlU6JboybyJ1cRfF7xeDx6/2qd/xxHjx5FaGiot6jIz09vLaijk8XowXYf0J1uHZ0XhxwuF3qaTJpz0MloQv7cuTNk7hMnTmDx4sVYt25dhkmq1a1TBxUkCRGqoznA7O0F/k/nq0+fPsgmSTirHvep6qTN9g/AEFW+nIjwuxqIjnSFwMBxmDhxIgDg3r17yOZyIb/klcB/TVHAc5xPMvs//fSTt2dboFcufXWg1+EqVKAA1qxZA8Ab+OvQoQPq1q0LnuNQRzFgYYANdRUDREHQMuMvXbqE+nXrIsBqRf6wsDRlu8PDw5FfkjUnvLQgIjfHa+e3WJVkZ4jgz7LIHxamjSupKNpxc/wDUiQm1JBkzPDzB0eEcrKMlYFB2jUsW7Ysxo4dqwWmo6OjQUQYY/VDpCsE551uGBkGZobB1/425E9WvW5SkwEsHIcNQcE46XChmqLAz2xO0Xfej+MgcxzsgV77NwYFP5ybZTFy5EgsXbpUS1ggInRQq/L7m8yIcLq1Pnosw2jZq2PGjAHLMOhtMmOw2QKBZVG6dGksXLhQO58tW7agZcuWaNSwIRYuXJiiKqJFs2Yw8zzesVjR1egN1n/22Wfa63PnzvVW/KsS/qJa/T59+nSUL10adeWH17yb0QRnUFCq93XGjBleqUTFgAEmMww8j/Zt2z72Obh//z5qJ1MqyJktG44dO/bE59bj8cARFIQqsoKDDid+CAzSNmc2q9d8X7ATRIQvvvjiifM9L3g8Hvz888+YNm3ac1sRoZM57N69Gzab971fuHBhXLx4MatN0tHR8QHdl3xx0O+Vjo7O88T8+fNBRJqC3CGHC0SEmjVqwBEYiJwhIfj000+futJ93759GD16NMaOHasplj2JmJgYHDt27JFE4H8SHx+Pfv36wWwwwGQwoEePHoiNjQUArFu3DizLorgkoaaq3jRq1Ch4PB6UL1MGwaKIMVY/tFGT0ZcuXQpFktDCYMA5pxu/Btlh4DiMHj36qc77WRIVFYX8YWEw8zxKKgo4hkHTJk2eK0W15CxduhREhA+tfthhd6CBYoAiSc91oq/H48G7774Li9EIURDQqkWLFyIRQ0cno7h69SoqVKigFfx8/vnnWW2Sjs5/Fj3Y7gO6062j8+LQvm1b+AkCZvoHYJpfAEw8jy5duvzreb/55hutXzQRoW7t2ti6dSt+/fVXXL9+/annrVe3LkqLohZs72cygyNCeHh4iuN27NgBTq287mUyw8gweEUQtHFhqpPa3WjCUYcL49Ue1KtWrdLGExFWqwHzM043zDyPcePG+XTuRIT9qsz6QdXJzy0IYFkWW7du1Y5NCqS2Mxgxyz8AR9Rg5ldffZXua9OhQwcUlGTtHJur0u3DzBYstwWhmCDAwXL4xOrN8E+qwn7//fdh4DisDrTjtNONMJ4HT4RRFivGW/1gZhiEqEHX721BWoA4hyxj0KBBj9jRvGlTGHge3Y0m1JIVcERoqVaQR7pC8JbRDIUI09VKg1elhxXeSdUHffr0gSyKaK4YcN7pxq5gB6zq8zTZzx+RrhCsCwoGQ4QQlwuyKKKRYsB2uwPvq5LxlZJ6p6nPYHVJBkOEWbNmAfCqLQwaNAgmg9ch7tSpU4oq8I0bN4JjWRSQJJRXFQgmTJigvX7nzh20aNYMkijCajJh9OjRKTYB5s6dC5YI+XgehxwuHHW4UJAXUCh/AUyfPh1EhFaKAZ2MJvAsm+q1jI6OxqpVq9CmTRsEWCwwKgrat22bQhb+nwwZMgQKx2GOvw0rA4MQJkkoVby4T8/QunXrYFQU7X2bLywMRIR1arB9t/p8LliwwKf5shqPx4N2bdqAiMCpPfSGDBnyr+c9cuQI+vfvj549e+KXX37JAEt1MovDhw/D5fJ+BoeGhuL06dNZbZKOjs4T0H3JFwf9XunoZCxXrlzBhAkT8N5772H79u1Zbc4Lx59//gkiQlejCeuDgtHOYARDBIll8ZbJjJaqf/ysEod37doFV3Cw5lsNGzbssUHjESNGgGMY9DWZ0d9khsAwqF2rFiIiIgAAa9euRcMGDVCzenVMnz5dm+fSpUuoUa0aOJZFgNWK6dOn49y5cyAiLFTb0UW6QlBUMTx2n+fYsWP49NNPMXfuXJ97o1+4cAEDBw5EeHg4Zs2alaEV0jdu3MDw4cMRHh6OyZMnIz4+PsPmzkji4+Ph8XjQvXt37R7Loojly5dntWlp8umnn2p7Ye9YrDDxPNq0apXVZunoPFMePHiAVq1aae/dd955R1d60NHJAvRguw/oTreOzovDzZs38WrlytoXjNo1az7xvfvgwQP06NED9oAAZHe5MHny5BROY1RUFBRJQmPFgMMOF+b4B6To9Wzz83usFPo/iY6Oxueff46PP/4Y27dvx5IlS9TAqYTWBgM4Ijg5Dk2aNHlk7IoVK6CIIgS1mruqKKKxouB1RYFIhJCQEDBqAC5JWj7pPPbu3QsiwjxVgm5PsBMSy+KTTz55os0REREwG40oLyvoYjQigGHBEeEjqxV5JAlvvPEGAO9mit1mg8IwyK32VG+mBjp//vlnLFmyBPXq1kXZsmUxaNAgnD9/Ps1116xZAyJCLVlBd6MJEsPCFvCwSt3OslgVaMeuYIf2u+vXr+Pu3bsoVby4VvnNq0HgJMc8KaGBiDDQbEGkKwSbgoIhc1yK4HMS9+7dw5tvvokcLhdeKVAA5cqWRTZRwp/BThx3uFBSELX5wnLnhoHjsdQWiF3BDpQUvPfLola2J5c0ryDJsAUEgCFCQd4r058zWQV8UkA40hUCuyShY8eOaiKDAbP9A7Ba7RH/7bffarZ6PB5ERESkWmnQsEEDFE2mjtDBYERQQMAjx3k8nlQ3TS5evAiJZdHV+FA5orfJjGwOBzweDyZOnIjc2XMgh8uFt99++xHZ+mvXruGVggW18wv098eff/6Z5jMAADWrV0e9ZFXzbxiMYIlQtXJlTJ48+YkOxLlz5/DNN9/g559/xo0bNxCWMydcgojORhOycxw4IpQpWfKFyH5ftWqV9hxFON0YpioyHDhw4Knn3LdvH4yKAocoakk78+fPz0CrdTKa06dPa1JxLpcLhw8fzmqTdHR00kD3JV8c9Hulo5NxREZGwu1wQOE4BIoiGIbJUjWpxMRETJ8+HY0bN0aHDh2eWxnvJG7evIlWLVrAYjCAV/0njmUh8jwGqz5spCsElSUZdWrXztC1U/MHY2Nj4QoORnFZxhJbIAapfsjSpUtTnaNQvnxoYzBqdnY2miAQwc9sxq5du55oQ3IfLy4uDoH+/qgsK9hhd+Az/wBwDIOpU6c+Mm7NmjWQRREiy4JlGOQICUFkZGSaa12+fBluhwM2QUAJdf+iR48eT7TxZWHbtm3InSOHt6AiRw5s3boVBw8exK+//vpCKGnVqFYNtZIVPAw1W57Ypk5H52UkMTER77zzjrbn1qpVKzx48CCrzdLR+U+hB9t9QHe6X27WrVuHsJw5wXMcShQp8q+CFjrPBx6PB+fOnUNERIRP8lxdunSBzHF4y2RGa7Wn9ty5c7XXjxw5AiLCcrUK+n8mM0Q1s3qrPRglZQW5smV74jr37t1DqeLFwRDBqFY1jx07Fm6nEwIRghkWZVXp8BkzZjwyvn///hAZBk61KpuIUEIQEcR6g98iw6B58+ZYvHgxduzYkeLcExMTUatGDSgch9dkGQ5RhNvhwNWrV3Hjxg2ULVMGslrRPGrUqEfW3rx5M2z+3irtooKAkoLXTrcgoH379gDgle7iefyhStn3M3n7C1csVw7z5s0DEcHKPLRd4nk0aNAA3bt3x6ZNm1K9ZkuWLMErBQrAGRQEWRBh5nnYBAEMESqLIpbZglBHlrVq7yRH+sGDB1iyZAlmz56N0iVLIp8gYqZfALYFBaOurCC7y6V9Cc0my5A5DoXy5fPpc/7vv/+G024HyzAQWBYGScKIESOwbt063LlzBxXKltXOkSfCQn8bGkmyt587y2Go2YKPrX7gWRaNGzcGS4TWigF9TWZ0VaXyiAj9VMn4pbZAsAyDuXPnoka1apA4DmUVBUaeR7FXXtGq1y9duoRypUtr49u1aaNJ9QFA9VdfxauShEUBgVgdaMcQkzndTuhrtWrBxnFYYQvCysAgOEURDevV82lst27dECAIWB1oxx92B4rIMooWKvTEceHh4XCJIvYGO/GlKp9fXBBRRw0Mv/POO+k6h/Pnz8PPbIaBYVBOFDHJ6g8jz2PAgAHpmicrmDZtGniG0dQe/lQr89Nqx/AkWrZsiTBJwgmHCxFON5oqBgQHBmag1TqZwcWLF1GoUCFvwpfNht27d2e1STo6Oo9B9yXTz40bN9C2bVuYzWZYrVZ07tw5TRUcAKhatar2HSjpp3v37ulaV79XOjoZx1tvvYUgUcTuYCfOO91ophhgMZmyrNJu0KBBICJUkWXkkiQYZBkHDx7MEluehMfjQfWqVeEnCPifyYxasgKGYbB06VKYjUa8ZTJrPc1LShIa1K+fIevGxcWhT58+MKnS77169UJsbCzu3buH1atXexO9bYFaUDO3rKBv376pzlWqWDHUkhXNb2koK8jN8ygmKyhVrFi6bVu/fj0sxoe+cpNGjR5J7gaAnCEhqKooOOl04w+7A8GiiM6dO6c59+jRo2HieexRlfxGqspyly5dSredj+Pw4cPo1asXOnbsiGXLlmXYvE/LsmXLULFcObxSsCBkUURZWcF4qx/KyQosRqOmQPAi0KB+fRSTJK394BtGIwL9/bPaLB2dLOPzzz8Hr+45V6hQAVevXs1qk3R0/jPowXYf0J3ul5cTJ05AkSRUlBWMtvihgCTDabfj9u3bWW2azjPEbDBgQLLs8GqSjJrVq2uvR0VFQZYkNFUMOOlwoZQgorIoaccn9U+/d+9emutMnDgRkipvHuF0o6ViSFEhz6mV2IMGDUo1SaBowYJoYzDikMMFlrz9uyNdITjicCGYZVFUEBCUhlMRHR2N4cOH47XatdGlSxecP38eHo8HudUKycqihGKC8Ii8eBKlihVDNVXWPcLpRm1RAkuEZs2aYdq0aXjzzTeRP1kF8iK1p/rRo0fxSoECyMPzkIjwjS0Q+4KdqCpJ4IkQKkpgGAYrVqx4rO3NmzVDqCThsMOFM043asiyluEvEcHK8yhbqtQj1y0hIQFVq1TRrjGr/jdJ1v7777/H22+/jUmTJqXrM/7q1auYM2cOpk+fjr///jvFa3FxcdiwYQPy5M6NBrKCOf7eALHwj3tdq2ZNHD16FAZZRnFRglF9TUhmp1GtdK9etSri4uLw4MEDfPjhh2jTpg1GjBiRwuY6tWvDLoqY5R+AD61+EFgW7777rvZ6586dtXlJTc5o0azZI+fm8XgeK2136dKlFNXp+fPk8dkRr1KxIhorD5+P9y1WiILwxHGnT59GcGAgFI6DwDAoLAg4rzrSPYwmGGXZp6Saq1evokePHqj+6qsgIoxI9p6vJysp3vPPKxs3bgQRYbjZij3BTnQxmsCyLE6cOPHUc9aoVg115IeVAKMsVgg8/9z2EdR5yPXr11GmTBkQEcxmMzZv3pzVJuno6KSC7kumnzp16qBo0aLYuXMntm3bhrCwMLRp0ybNMVWrVsWbb76JS5cuaT/pveb6vdLRyTiaNm2Kysl8w0/U9lpPSpzJDGJiYsCxrObzn3S4kE2S0K1bt2duiy9cuXIFRIRP1HZj551u5JZl9OjRA2+//TZYhkETRUFFNfn4p59+ypB1hw0bBp5l0c9kxv9MZghqcrhJLUhgiFBb9Rt22B0w8jzGjBmT6lxfffUViAhlRREVRQlEhI+t/njbbIHNan0q+65cuYI1a9Zg165dqfoqiYmJYBgGH1n9tOeuvg9+3oABA5BDfti+bont4T5GevB4PBg7dixsfn5QJAmtWrTAnTt3sH//fhgVBS5RwivqPZs0aVK65s5Ivv/+exARqsoySqtFFEktAw+oydyLFy/OMvvSy/r168GyLIpIEqqq7fI++uijrDZLRydL2bBhA/z8vO1FQ0ND0/15pqOj83TowXYf0J3ul5dp06ZBYFmcdLgQ6QrBxiBv/6m1a9dmtWk6mcjOnTvRrl07NG3aFAsXLoS/xYLuqjR2hNONMpKMOq+9lmLMokWLwCeT+LawLLbag3Ha6cZrigE2P78nBqf69u2LsGTBxvKiCAfLYrvdgb+CnSgoyShXuvRjx1etVAmlJRl/qrLpn/k/lCQvKgjIxfGwWa3pUmeIjIwET6RJvJ13ulFaFJE9JOSRYwuEhaG9elyE0428aqZkdlmGwLJaP+zBZgsWBwSisCQju9uN+Ph4hOXIgVCOQ2lR1Gyepwah99gdqK4oKJw//2PtrFS+PJoku3bvWqwQeR52mw2SIKB2zZopMs9XrVqFzp07o1q1amBU2e0DwU40VRSwDIMrV674fI3Sy5EjR9C3b18ULFgQEsuiqayAJ0I1ScZxhwtrguwwMAxatmwJANi0aRNMiqIFwuvJMjqo/fhcLhe+/vrrVLP2/4kiSRhhsWrXqJGsoErFigC8qgpmoxG1ZBm/2x2Y6ufvvS7Tp6eY49NPP4XVZALDMKhQrhy2bt2KBw8e4OzZs9r1jYmJwfbt27Ft2zafJKn+/vtvtG/fHk6HA4Ecj632YBxyuFBaVlAwb16frum5c+fQq1cvuFwuVEiW6DLMbAGjKkSkxoULF9CjRw/UqVMHgQEBCOB51JcVmBkGZobBIYdLq3h4XM+/54233377YfIIy2LatGn/ar4xY8aAZ1mMsfphln8AHKKIGtWqZZC1OplNVFQUqlWrBiKCLMtYtWpVVpuko6PzD3RfMn0kKUolV+z45ZdfwDAMLly48NhxVatWRb9+/f7V2vq90tHJOMaOHQueZTHVzx8rA4NQQJJRIE+efzWnx+PBRx99BJfdjiB/f/Ts2RMxMTFPHJf03p6qBq8jXSEoLito27btv7Ins7hx4waICOPUoPFppxvZJAlvvfUWEhIS8OGHH6J0iRKoWqlSmgnr6aVAWBjaJZN+byZ7fdR6igHLbEGaCmCIKMLI88idIweuX7/+2PmWL18Ot9MJiWEw2GTBpqBghEmS5qOmRXR0NLZu3YrffvvNJ184iSIFC6KgLGNjUDC+sQXCxPPo379/mmN+/vlnEBG6GE2Y429DAUlGzpCQFCpxvpCk5tfRYMRQswUmnkfzpk3RoUMH5EqmJNbRYITZaMyy5Oa6deqgrCQhwunGAlU57pdAOyJdIVgTZAcR4YcffsgS256WDRs24PUmTVC3Th3MmTNHTxzX0QFw9OhR5MqVC0QEPz+/xyqK6ujoZBx6sN0HdKf75WXu3LlgGQa7gh0pMlgrli+PYJsNxQoXxvr167PaTJ10smjRIuQPC4PLbscbHTumyJ7/7bffIPA88kgSyqpZxUkB2Ubyw+zw1JyLI0eOYPLkyQgPD4fd5nVKRJaFwPP4/vvvn2jXnDlztIzurfZgWBkWHZI5s4PMljQr09etWwee45BTFGFgGLhYDtP8AtBLlWtPHoCbM2eOT9fq0qVL4IjwP7VKPkniLTAgADNnzsS6des0R+Xtt9+GwLIYbLagsyp3nrQBsFLtH96gQQPNjmwuF/bu3QvAmy3OEkEmwo+BQTjpcOE1SYaFYXDW6UZvkxlue/Bj7RwwYAAMHIdZ/gFYYgtENklCtcqVHznu/PnzKFKoEHgiGBkGBoaBg2W1c1sVaNcynT0eD65du4b79+/7dK184cCBAzAZDHCKIgqoz1LSz7Rk/doriRJKlCihXducISFgiFBRlLSM+j4mMySe93ntEIcDjRQDzjvdOOlwIZ8k4fUmTQAAhw4dAhFhhdoKIdIVgtyKgv/973/a+KQM93YGIz6y+iGIZb33TFU7ICK0aNbMpw2tJC5duoTgwEC4RRE1pYdqBEQEi9GIHTt2PHGOmzdvonSJEilUARrKCgabLTAQIZeaBHPu3LkU427cuIEcISEIEkVUl2QIRCgtiDjvdGO1+hzwDONzL7/niQMHDmDlypWPrWiPjY3FiRMncOvWrSfOFRcXh47h4dr1LV2ixAvRm0/nIQ8ePEDDhg29zzTPv1CVKDo6/wV0XzJ9zJ8/H35+fil+Fx8fD47j0gwqVa1aFYGBgbDZbChUqBCGDh36xO94MTExuHPnjvYTERGh3ysdnQwiLi4OzZs2fegbOp3/Wrb9008/BREh3GBEb5MZEsehZ8+ePo2tWK4cgkUR46x+6GI0gYjw9ddf/yt7MpMWzZpB5ji0MhhQXJIhCgL27NmTqWsWf+UV1Fal3yOcbpRQW9z9pVY9n3W6wRChevXq+OCDD9IMtCdx+fJlFMqfP8VzcOzYsTTHnDlzBnlyhWpjShQtimvXrvl0Dvv374fTbtfGVixXDlFRUU8cN3HiRAhqMUFYzpxP9azWq1sXVZL1Dn9XVQxr0KABqiZTEhtn9QPDMOlKIshIatWogaqqnSedbthZFiaGwWuyDD9BQJFChbRWdTo6Oi82V69eRfny5b0qmoKAL774IqtN0tF5qdGD7T6gb5C8vNy4cQPZ3W44RRGNZAUmjoNJUeAQRfQ3mVFeliEJgt7H/QVi1apVICLUVRT0Nplh5Hm83rix9nrz5s1RQJJwOlk/J4vRiHHjxqFsqVKoWqkSvvvuu1TnPnToEAKsVsgcB4VlIfI8+vXrh0OHDqVp09WrV1GzenUwDAMhWXW8wHFwCAI2BgXjd7sD+SQZlcqXT3Ou33//Hd26dUPLli2RR5V/Z1VJtw6qzH17gxE8x/nkkHo8HmRzuyERYajZkiJwz9DDfpcejwexsbHo1q0bREHQqvy3qf3ZI5xuGDgOEydOxPXr13HixIkUzuPNmzdRs2bNFDLmLBGK8gKm+PnDwvNon0Zlwb179/BazZra2AJ58uDs2bMpjomJiUGBPHkQzHLobzKjlCBqkuyLAgJxxulGuFox/r///Q8lihbVkhMeJ92fXtq3b49ckoTjatZ6W4MRZoMBiiiirCBgsNmCqpKktQ/o2rUrPB4PatWoAe4fwfbeJjMUUfR57YULF4KIkFuW4RBFGGRZ25C5efMmeI5DR4MR551urAwMgsiymDJlija+c+fOKJhMPm+GfwBYIthYFnP9bfjY6g+RZTFs2DCfbZo0aRJkjsNedYNmutpyYcyYMTh//rxPc/Tq1QtWXsByWxA2BQUjryCAJ2/7gKTniSPCjBkzUoybMWMGBJbFH+ozOldVUlgTZNd6nb/xxhuYO3cubty44fM5PY+cOnUK3bp1Q9OmTdGvXz84goK0Z/uDDz7waY4bN27gwoULehXAC0pcXBzatWvn/exmGMyaNSurTdLR0VHRfcn08eGHHyJvKso3QUFBmDlz5mPHzZ49G2vWrMGBAwfw1Vdfwe124/XXX09zrZEjR6ZIjEz60e+Vjk7G4PF4cOLECfz5558ZEryrXKFCivZHvU1mBP4jOedxXLx4Ea9WrgyGYWBUlMcqYz0vREdHY8CAAShRpAhqVK+OLVu2ZPqaX375JYgI5SQZFaSHieOzVEW95Tavj/G4/ZLHER0djbVr12L16tU+fb7WqlED2UQJPwXascwWBJsgILxDB5/Xu337NtatW4cdO3Y8tj1aasTExODKlStP7Q81bdoUhZP1Du9hNMGoKJgyZQoYIgwxWzDNz6sk9moqhQNPg8fjwfLlyzF8+HDMnDnTJ+W5zz//HESE5ooB3Y0miCyLQoUKoc5rr6Fv374vvG+so6OTkujoaLRq1Ur7TB8xYoS+76Ojk0nowXYf0DdIXm7Onz+Pjh074tUqVdC2bVtvf6KAQES6QnDK6Ya/IGDUqFFZbaaOj7Rr1w6vJAsYfmD19qhJcu7rvPYaqv+jPzHPcUhMTHzi3PXq1EEeScIhhwsnHC6UkmWULFr0ieNqVKsGmyDgQ6sf3lSz6AcPHoy9e/cid46c2hcep93+xMD9P7l9+zYGDx4Md7IM6p/Vqt3k8ptpceXKFeTLmxccw4BjGBARRlmsOO90Y5x6/TZv3ozExERcunQJ9+7dQ2RkJAyyjNcUBT8GBqG7el5bt259ZP4LFy4gb+jDzHQjw2CAyYyOanU8EcHm748qlSph0aJFj7XT4/Hg+PHjOHDgQKpZ4Dt37gQR4Xu1evuEwwWFCGb1nJInEDiCghAiipjpH4CBZguICLNnz/b9wj+G+vXqpXi+PrL6gWVZrF27FhzLgiFCUUGAiWEQyLIgItSuXRv169eHLHl72dWRZLQ3GMER4a233krX+uvWrUOvXr3Qv39/HD58OMVr06dP90pNq4kS5cuWxZw5c9C+fXv07t0b4eHhcIoijqttNYabrWCJ8E4yafrGipJmQshff/2FVytXRq6QELzeqBHefvttWHheS25JUkD4448/fD6nyhUqpGghMMpi1e5nZ6MJXwUEopQowt9qTfF3evz48TDxPM6oa/+qSuK9aTShpKzA32JJ0XrgReXs2bOw+fnBJYooL8ngiFBClPCNLRBvqckzurT4f4PExET07NlTe3+MHz8+q03S0dGB7ksmMWTIkFQD28l/jh49+tTB9n+yYcMGEBFOnTr12GP0ynYdnaxj//79+O6779JV2FC9alVUlB76+h0NRjiDgtK1bmxs7AsRZEhMTMQXX3yBwYMHY9asWc+sCnrZsmWoW6cO6tapg8WLF+P1xo3BMgzyKAoElkXFcuUwZ84cTJ48GX/++ecj4z0eD06dOoWTJ0/6tMeSGvYAr4+e5P+FG4woWrDgvz21TGfTpk1gWRZFJQm11GSFd955B4mJiejTpw8YdV+iXOnSabZFSQ99+/YFEcEtyeBZFuXLlHliwN3j8eDTTz9F7uw54LYH46233vIpSK+jo/PikpiYiOHDh2vfuVu3bq2/73V0MgE92O4D+gbJf4fDhw+DiLAgwIZIVwiOOVyw8LzPlYE6WU+HDh2QL1k28QiLFQzDaNLXSdJzfUxmfGT1g78goEHduj7N/UqBAghPJvs+wGxBsM2W5pgHDx6kkFuPdIWgrCyjWbNmALz9dn/44QcsX77cJxm21Pjiiy/AqBnnRxwutDIYIQpCuufzeDz4+uuvQUQ4ogZc/3a6tUrkfLlze6uIWRZjxozBypUrYVL7trEsi4kTJ6Y6b5vWreEQRawLCsYOuwN5eR5lRVGrLiYiVJVkVFUd0rlz5z7Vddi1axeICN/avMkyhxwuSKls5LpUebjkPfvKy4rWQ/3fMHHiRLAMg3csVsz0D4BTzVpP6j86WV1zu92hSaoXFEUUVs/91VdfhTMoCNldLgwbNgxxcXE4ePAgJkyYgOnTp+Pq1av/yr6dO3di6tSp+Prrr7Xe3yVkr5qHxWiEQZaRQxBQTZLAEMHCMKgryzjvdOOEKk3fJJlSRHLOnTsHP7MZBSUZPYwmOEURodlzgOc41FQUjLH6IbckIVf27OmqbOnQoQOcgohdwQ6ccLhQTpIg8jysDKNttCX1lvv999+1cXv37gXPcairGDDJzx8FJQkSx4FhGOQPC0txbGbx888/o0uXLujVq5fWUiGjGT58OAIEAQcdLi2hYGVgkKY44ZZkDB069LHjPR4PJkyYAHdwMGxWKzp37pyhrRV0ni0ejwfDhg3TPu+GDRv2Qmwo6+i8zOi+pJerV6/i6NGjaf7ExsY+tYz8P7l3755X0WbNGp/H6PdKR+fZMGrUqBT+2ZgxY3wat2zZMhARKkky6skKiChdezUJCQm4du3aUweBnxUejwetW7YEQ4TssgyOYVCzevV0VWlnFPHx8Zg1axb69OmDDz/8EPnDwsAyDAwcB45l8dVXX2nH3r59G9WqVNHua/kyZXyWf09OyaJFUVJWcNzhwkGHE2GShAb16mXkaWUaGzZsQMMGDVCjWjV88sknKb6H379/Hzdu3Hjid/O7d+9i/vz5mDRpUpqtA06cOAEiwkg1Of7HwCCwDIP58+dn2Pno6Oi8XCxYsAC8uidaoUKFf73HqKOjkxI92O4DutP93yExMRGVK1SAhefRwWBEAUmG2WhMsyJC5/liy5YtYFkWZWUZrQ0GiCyLNzp21F5PTEzEkCFDIAoCGIZBndq1fQ5KdwwPR4AgYIktECsDgxAiSnitVq00xyQkJEAUBPRWe6KfcroRKkkIDw9P1zn16tULffv2xV9//ZXqGsn74fEcp/Xh2bRpEyZMmICvv/4ae/fuxZQpUzBnzpzH9nJeuXIliAh9TWbsC3ZisFr1nc3pRF5Jxhx/myY1v3TpUty5cwd79+5N8wtasUKF0C5ZksJgswX+DIs+JjN4ItSXH1Yt15MVFHnKrPX4+HiULlEC/oKAjgYjcnM8OCK0aNECP//8M4gIH1v9cdbphkCE7kYTIl0hOOpwwS2K6Nat21OtGxsbi0mTJqFLly4YM2YMunTpot2L0iVKIDIyEr/99psmYR7pCsF5pxsiEapIEs6rPfFqyAqKFS6cYu5Vq1ZBFAQYOA4Cy8LtcDzSm/xpiI6OBsuy6Kc+l4ccLthFEW3btkXTpk2hSBIkloVd/RKeTRAQJIowKkqqFQwAMG3aNIgsi8NqokZSFftHH32E7C4XOJZF6RIlcPz48XTZ+sknn4BTVQk49YfI2299c1AwIl0hGKsqMPyzh/ny5csRFOCVri+YNy/27duXKYHH+/fvY//+/Sl6nc+bNw9EhPyyjBBJgiSK2LlzZ4av3adPH4Sqah67gh0gIryrbrhstQdDVts7PI45c+aAiNDOYEQ/kxkKx+GNN97IcDt1ni3jxo3TPod69uz53G8q6+i8zOi+ZPpISlBMHmD49ddfwTBMuioBt2/fDiLC/v37fR6j3ysdncwnKUF6oNmC/cFO/E/1LR/nY/yTZcuWoVqVKqhYrhymTp3q83f7ZcuWwWo2aypnmzZt+hdn4RvR0dEYOXIkmjZtiv79+/sceN6xYweICNP8vPLt39gCvQpu33+fuQYn4/79+49c26FDh8LM89gcFIyzTjeaKAaYDAYtCaBLly6w8Dxm+wdgvr8NNkFAqxYt0r32jh07YFQUyBwHkWVh8/N7RLXtZeXWrVsolC8fGCIoHAeWZfHll1+meuzWrVtBRNio+sQRTjcCBNGnBBSPx4Nly5bh/fffx9dff42EhISMPhWd/xhxcXHYu3cvDhw4oD9PzzkbNmyA1epVjAwNDcWxY8ey2iQdnZcGPdjuA7rT/d/i9u3b6NKlC14pUACv1azps9On8/ywevVqVKlYEcULF8aQIUMQGxv7yDEJCQlatbuvXL9+HaWKF9cCGPnDwnwKfL7zzjsgIlSWZYSpQbe0MpSTs3z5cjAMg1ySDLckQRSEVKXaPR4PNm3ahMWLF2tflD744AMQEQyqbDjPMJBYFizDIFf27I9IaJ87dw4BViusyfrKE5EmTbZQVXyIdIUgv6KgZ8+ePp1D86ZNESKK+N3uwL5gJwrwvBYwFYjQPlkgvp3BiPy5cwMAfvjhB3Tr1g0DBgzAyZMn01zj8OHDaN6sGcqWLo1CBQuiYN68qFm9uhbc/PXXX0FE2KH2735bTSJ4RZLgFEVYTCYcPXrUp/NJTkJCAurWrg2BZVFUMUDhOJQrXRrXrl1L0e8tKioKdpsNxUUJ8/xtaK0YIBChY7Jz72I0IXf27CnmD3E4ECYI6GUyY6qfP5yimCGB0KtXr4KI8Jnafy/SFYKisoKOamLKlStX8P7776Nv374YPXo0+vXrh7fffhtHjhx57JxJwfZD/wi2d+jQ4anlGu/evQtFkpCb46AQYajZgm12B3oaTeDUZ7ug4q1q6dSpU6pzeDyeTJXH2rZtGwL9/bX3y5AhQ+DxeOCy2/G6YkCE041TTjcKSBIaN2qU4esnJZK0Nxgxxc8fFvX9m1dRYOB55A0NfWxyDeDtifhqsjYUg80WGBUlw+3UefbMmjVLk6ts167dM5Mf1dHRSYnuS6afOnXqoHjx4vjjjz+wfft25MmTB23atNFej4yMRL58+bS2NKdOncLo0aOxZ88enDlzBitXrkRoaCiqVKmSrnX1e6Wjk/l88cUXICKcVBWqjjtcIKI024n9Ww4fPgyB51FPMWCWfwDKywqsJhMuX76caWsmJCSgRrVqkDkOVWQFfoKAfLlzIyoq6oljV6xYASLCWKsfPvHzxy67w6tkN2tWptmbxL59+zRFO3+LBd988432Wtu2bVEmWXuvOf42r4+9YwdqVq8OhefxhvGhf9vbZEY2h+Op7Dh16hSmTJmCTz/9FJGRkQC8ft2CBQvQrFkzdOzY8aXcq3vnnXdg4nlsVBMamhoMMMhyqt/jr127BqOioJaiYHWgHf3UxJW1a9emuYbH48Eb4eEgIthEEUSE1xs31pNzdZ6aixcvolDhV7Q9kbJly+HmzZtZbZZOGhw5cgS5cuXyftb7+z+TBDQdnf8CerDdB3SnW0dHJ4m4uDj88ccf+O2333wO4Hk8Hnz22Wdo1LAh2rVr53OgHQAK5MmDmrKCc043/na6UUySUaNatSeOO3/+vFahHuF0Y6ktEIzqsP9md8AmCOjVq1eKMWPGjIGZ53HQ4cKGoGB0Vnuq7927FwzDYIjaN21fsBN+PI9hw4b5dA5nz55Fdrdb++ItEsFPDbSTWqncy2RGT5MJLBGGDh2KqVOnalXBdlGE1WR6bKD3zJkz8DObESpJaKIoUDgOdWrXThHcvXjxIhRJwmuKgpWBQeiqnlu9evXQp08fn6utExMTERERoakhbNmyBUSEz9VEhKQA8/Llyx8Z+8cffyCby7uZJAoCKlaoAIll8a7FipEWKxSOS9Gj/datW+DU6xSs9nfPy/M+3f8n4fF4ULRQIWQXRTRXDAhTK9g/+eQTAN6Kk86dO6Nt27b47rvvfJrz/Pnzqoy8hO5GE4JYFn4MA55hHhsIfxJHjx4FEaGmJKMAL2gbNwsDvBs7AwYMQPfu3TFv3rws2Ry4f/8+Av39UU5W8ENgkJbEsWzZMhhkGcPND/vdN5QVVKlYMVPs+PTTT2GQva0Iir/yCiZNmoTevXtjzJgxT3Ry69Wti1LJel92N5rgZzZnip06z57FixdrMnENGzbU+7Lp6GQBui+Zfm7cuIE2bdrAZDLBYrGgU6dOuHv3rvb6mTNnQETaxuD58+dRpUoVBAQEQJIkhIWFYfDgwem+5vq90tHJfLZt2wYiwodWP5x3ujHa4lWo+u233zJtzZkzZ4JjGJxWv+/utHvVoH766adMWzOpOj0pYX2LPRhEpCnQpcW2bdu0lmNEBJmYdFX/Py13796FKzgYhWQZU/380UgxgGNZ7Nq1CwAwfvx4CCyL2f4B2GIPRhlZgdNuh91mQ5gkIYTj8Iog4KTTjdNON8rLMkoWLZph9o0ePdobyJNlhKaziOFFoX379iiVLKFhnprQ8M9CiSR++uknrbUfEeH9999/4hpJqnuT1BZ3SWv8/PPPGX06/xnOnDmDBnXrIjRbNtSoVu0/o8SQRIMGDaFYA5G//VjkazMaosGsq+W9AFy5cgXly5f3FkIJgk9/n3R0dNJGD7b7gO506+joZBX2gAD8T5X6jnSFoLXBgOL/kBpPjSQHaq0qWx7pCkEQy2pz1ZRl1P9H37Phw4cjWBS1fvdLVLm6gwcPonXr1iAiFBYE+DEMuHRWH9y8eRNffvklatasCaNaicwxDAI5Dl2MJvgxLAwMA5ZhEB0dDZPBgHCDERFON446XMgmSo8N2I4ZMwYWXtDky2f6B6QqKf7PHvOTJ0/22X7AW0WVXNkgvEMHfPPNNyAihHAcQjke75i9UkxdunRJVeo0MTERly9fRmxsLB48eIAO7duDYRgwDIO2rVun6GU+duxYSAyDTUHBiHC60VvNVE8KyP/5558YPXo0Pv74Y1y4cAG//vorhg8fjkmTJqVZyZzE6dOnEeDnB4YIZUURNp6HIygIP/zwAwSeR6gkoagawJ0xYwYAYP/+/ejcuTNatGiB+fPnP1KtvnfvXrgcDigMgzqyjD3BTrxr8V6T9PRpTyKpsr2k4M24728yY2GADflEEbmyZ8+SvoUejwd79+7FL7/8gg0bNoCIsMIWpL3PcsoyBg4ciAZ168ImCPjEzx8jLVbwLOvT5sfTkpiYqPVaT0hIwNy5c/G///0Pn3zySZoB1lWrVoGIUE6S0UBWwBBhxIgRKY65d+8edu/ejZMnT+r9v19AVq1aBVl9L1erVs2niiodHZ2MQ/clXxz0e6Wjk/l4PB706tULRN42UUSEPn36ZOqaX3/9dQrfOClxd9u2bZm25po1a7xrqMpqp51uiCyLadOmPXFsq5Yt4RQE7FCV4QryAnJly5ZptiaRlCDwS6D3Op11umEVBHz00UcAvO3TGtavr/nD/hYL3nvvPW/rj2AnfggMgkQEP4ZBkCBAFASsW7cuQ2xLTEyEQZbRTW0Fd8rpRm5JQrt27TJk/ueFiRMngmdZzPIPwFZ7MMrJChxBQWnKct+6dQu7d+/WFACexLJly7z7PA6ndp+JCHPmzMmo09C4ffs2tm/fjiNHjry0fmRUVBRCs2dHNlFCD6MJeSUZdpstU5UznjeCgh1wV26Lsu+tQdn31sBeqgHyFyiU1Wbp+EB0dDRatmypfa6PGDHipX2v6ug8C/Rguw/oTreOjk5GEx8fj0GDBiHI3x/2gAAMGzYsVQeqZfPm8BcETPMLwHirH2SOQ79+/Z44/7Vr1yCLIhopBuywOzBG7Wk9ymLFwgAbDByH4cOHpxizY8cOsCyL+ooBH1j9kEOSkD8sDHFxcahSsSLsHAcrw0AggoVhUDBvXty6dQvt2raFy27HKwUK4IcffvDp/K9cuYKlS5eCY1kUkSTUU4N8/fr1Q0xMDIgIE6z+WgCzqqygcePGqc41YsQIBIkizqpJAt8mSxL4J3fu3MG+fft87peXnOpVq8Ipipjjb8MHVj/wLIuyZcuCVeXgWygPM8qJCFaTCSNHjkSrVq3QqVOnx2bdx8bGptrSoG/fvsgtP5T3Xqqe159//okffvgBPMfBX+3nblaTCJySBJnjkCdXqFZ9/zgiIyO1qpJIVwj2Bjth5nnky5cPhSUJp9Ve8i0VA5xBQThw4AAMsowckoSyauBu5MiRj8zboUMHFJIfVkqPV5+9u3fv4tdff8Xo0aMxZ84cn4Pv3377Lfh/tDbImS0bDhw44NP4q1evYvv27Th79myqr9++fRtnzpzxKXCfmJiIN95446FKg+S9DgNV1YfNQcFQOA4ff/wxrl69iqqVKmnHvvHGG89Extvj8aBVixZgiJBbUSCwLKpUrJjm2j/++CNqVKuGiuXKYeLEiSlUAvbs2QOn3a6dR4f27Z9ZDzaPx4MjR45g165dWiKBztOxefNmmNU+paVLl37i54OOjk7GofuSLw76vdLReTZ4PB5s2LABn332GTZu3JjpG/v3799HkUKFYOJ5lFMUSByHmjVqZOp32uvXryPAakUpWcY0vwDUUQwQeD5VH/WflChSBG2StRsbYrbA32LRXv/tt98wePBgvPPOOz4rtPnC/v37U7Qa+8PugMiy+PTTT7VjEhMTsWfPHqxfvx7Xr1/XEhl2B3sDt1+oiQzNmzfHX3/9lWG2xcbGehPUDQZUlSRUFiXk4Xk0atgww9Z4HoiLi0OjBg1SJDSk1kbw33D8+HFwLIu2BiM2BAWjm9HkvYe7d2foOjt27IDNz087l9KlSmH16tUvXSAvqa3bhqBgbV+FiPD5559ntWnPjKLFS8Ca4xWUHrYSJYd8B5MjFDVr1spqs/5T7N+/H8WKl4AkychXoCC2b9/u89jExEQMHz5ce6+2bt1aV8TT0XlK9GC7D+hOt46OTkYzfPhwcAyD7kYTuhlNYBkGo0aNeuS4Gzdu4NXKlbUvPU2bNPE5SPn+++9DSBakVNQAKRGhWpUqqQavvv32WzjtdnAsizIlSuD777/HpUuXEJYjBwQilBFFDDVbkIPjILIsihQuDBPDoLfJjFclGSzDPNEZXLx4sVbdbjYaUaZ0aVStVAnjxo3TNjzKly6NEFHCHH8bRlisYIgwZcqUR+aKjo7GuHHjwDIMaioK3rNYESJKKJgvn0+BzaioKPz8889YvXp1CnnSf+LxeMBzHN63PJQFryPLkEURXdTs+khXCOrKCkJYDvuDnXCx3mtfQhSRS5W5S+ot6gtfffUViAjvWaz4KdCOspKMoIAAPHjwANldLtRSDDjjdGN/sBNOlkMYxyPC6cY2uwMmnseAAQPSrHA/cuQIiAhLbIGIdIUgwulGNklGiNuNevJD6bphag/vzp07I4ck4aSqINDLZIYoCI9sUiVVSjdUDOhvMsPC86hfpw7GjBmj9YXjGAalS5RIM4C6e/dufPXVV/jjjz9w4sQJfP311/j+++9x6tQpnyvaly5dClntQ0dEKd5jHo8HI0aM0Hpa58yWDfv3709zvkWLFoGIkKtBPxTt8wUCClQEzwsgImSXZcgchwJ58uD27dvaGtevX3+mlcQ7d+4EEWGan3eT7DtbkCZtn14SExORIyQERWUZPwXa8bHVHyzDpNhwyyxiYmJSbDRlc7lw6NChTF/3ZWb37t2w2bwboIUKFUpVfUNHRyfj0X3JFwf9XunovLzcvn0bw4cPR5s2bfDhhx9meiDh+vXr6NatG8wmkxY0XbFihU9j27Vti2BRxNogO363O5BfklG+dGkAwHfffQeWZeGSJNgEASaDAXv37vVp3mvXrmHTpk2Plbj2eDxoUK8eRJZFVVlBoCgiu9udZpLmtWvX4LTbEaq2EssuScgREpIpn6OFCxUCEaG8KOJVSQIRoVWrVhm+TlaTlNCwbt26TEuQnTdvnpbQ/jSqf08iPj4eTrsdpWUZa4PsmOjnrylZdO/e/aUKuOvBdm9ityTJEA1mCIoRRpM509te6Dzkxo0bCAyyw+zMjey1u8GavRCMJtNjC04ex4IFC7QWdBUqVMDVq1czyWIdnZcXPdjuA7rTraOjk9GE5cyJ8GTZ6q0NBhTKmzfVYz0eDy5dupSuauz+/funqARu3749bt26hfXr1+P3339/Yhb/smXLoKgOLMMwyKEG20+ogdY1QQ8rXaeqvb7OOd3IxnFp9mY6ePAgOJZFE8WAhQE2VFcUGBXlEcmzc+fOodgrr2hr9OjR45Ge3Ldv305xDM8wkAQBr1au7NOXyjNnziBX9uza+NAcOXDu3LnHHm+32fC6YkCE043jDhdySxIUWUbHZPexpiSjlCAiwumGwjDaa3873cgrST5vBly9ehU9e/ZE9mzZNPssRiMcQUGQBAEsEUZb/LR1G8gKCibraZ5PELRxXbt2TfV+x8bGIjR7duSVZEz3C0B7tY99eHg4WIbBULMFH1v94S8IaNKwIVq0aIFyySrtJ1j9QUSpBsy/+OIL5M6RA4F+fmjTqhWOHz8OhmHQz2RGhNON1YF2CP+okkjOu+++m+L5HTRokE/XLTkXL16EJIpoqBiwLigY/1Nl+Dds2ADAm1hCRPifyYwvA2woKMnImS1bmoH8wYMHw2hzavJohTpPBRFh8uTJGDx4MCZMmPDY7wrHjx/HV199hV9//TVTq2h+/PHHFNUl55xucAyjtQJID1euXAERYa6/TbvvpRQFHTp0yATLUzJ69GiILIvpfgH4MTAI+SUZhfPnz/R1X3YOHz4Ml8vl/cwLDcXp06ez2iQdnZce3Zd8cdDvlc6Lzs8//4zC+fMj2GZD08aNceXKlaw26T/JtWvXkCt7dhh5HrnVhPd/qsqlxcWLF5E3NFTzhRxBQVpFfGj27KitKDin+qT5JAmNGzV64py//PJLit7eXbt2TTXgGRMTgzFjxqBJkybo3bs3Ll68+MS5jx8/jtdq1ULu7NnRoG5dn75fXrx4Ea1atECBsDDUrV3bpx7XpUuUQFVJ0hTUmisGhOXI8cRxOqlz8eJFbNu2DRERERk+d0REBIgIXwQ89COLCAJKqe3hMrOFw7NGl5H3cvjwYYwZMwYfffQRTp06ldXm/Kf46aefQEQo2nsByr63BiWHfAdiGMybNy/dc23YsAFWq1XbLzh27FgmWKyj8/Liqz/Jk46Ojo5OhiGKIt2BR/t3lAckSlKqxzIMQw6Hw+e5d+7cSVOmTKGRFiu9YTTRl/fv0civvqKePXtSjRo1njj+woUL1KFdO6rBcdQr0E4/Poim2efOEUtE9wEyENH6BzHEERFDRD8+eECNFQOBiBJAdP369cfOvWPHDgJAk/38SWQYKiSIVOrKJfrzzz/J7XZrx2XPnp3+3LePLl++TAaDgfz8/B6Za+zYsfT30aO0JshOoRxPPe/cpv2yRBu3bCGGYZ54nm/17EmJV67QhqBgAhG9ceky9XnrLVr5009ERLR+/XpatWoVGY1G6tq1K439+GPq0qULHYCH7no8FM3z1DE8nGbPmkX3AYoGaH1sDA00m+lKYiLFABTKe/98SgxDIQxDUXfuaOsnJCTQgwcPyGw2p7Dr3r17VKViRbp69iyV5ji6wXEU5HbT+YgIKusBVVAM9HFCFM27f49eEQS66kmktTEx5Mex9GdcLO2Li6Pj8fHUwWCkUJ6nMfPnU968eWnw4MEp1hFFkVatWUPNmzSh3idOkCJJ1K9fP/ry88/JA9C4u1FERFSrZk2a/8UX9MMPP1CXZctobNQdysXzNPHBfapSsSIZDIZHrm3Hjh2pY8eO2r/37t1LAKiGLBPDMFREFMkhinThwoVHxv755580ZswYGmy2UBejib6Kvk8fTJxIr7/+OlWoUOGJ9zWJI0eOUGxcHL1tD6BcPE/5eQvNi3lAe/bsoerVq9OWLVson6zQIIuViIgYYqhDRARFRERQrly5Up0zZ86c9OD2Nbp7/hCZshWiG4e3EMuy1L59ewoKCnqsLYsXL6aO4eGUkJhIRER1a9emlatWkSAIPp+PrxQrVoxkUaT3ou7QmwYjrXgQTR4iKlu2bLrn8vPzI0kUaUtsDNWRZYpMTKRTCQlU3enMcLv/ye7du6miKFIT9fnqpiTQgGPHKCYmhmRZzvT1X1YKFixI27dvp5o1a9Lp06epUqVKtG7dOipYsGBWm6ajo6Ojo/NS4/F4aM2aNRQREUHFihV7qu9mabF7925q3KgRVRBEqsXztGj1L9Sofn367Y8/iGXZDF1LJ20+++wzunbxIq0PCKRsPE9T7kbR2LFjacCAAWSz2Z443ul00l8HDtDGjRspISGBqlSpoo27dv06teIF4hiGjAxDhViOLl26lOZ89+/fp9YtW1IZgN4LCqbf42Jp2Lx5VLVqVWrfvn2KYyVJohEjRqTrfPPmzUtr1q71+fiYmBiqVb06XTt9mhoIIm2NiKCqlSrRgcOHyZmGn5GYkEA2ltN8fRvLUkxMbLps1XmI0+lM83r/G2w2G4mCQOtjYqi6JNOZxAQ6nZBAHQ1G2hMfR2fOnKFKlSplytrPGrPZTBu2bKE+vXrR2kOHKDRPHvp+2jQKDg7OatOeKQULFtR9yixCUveSE6KjiAJclPjgLhGg/T49VK9enX7//XeqX78+nT59msqXL08rVqygV199NYOt1tH5b6N/M9fR0XkhuXPnDk2ePJmGDh1KP/74Y1abo9H7f/+jlQ8eUMcb16nDzeu0OuYBvdWvX4bMferUKSIiamswksAw1NZoSvH7J3Hw4EGKiYujEWYrFRVFGmGxksxxZDAaqfGtG9TmxjWaeC+KKkgSNTcYaHNsDL127Qq1uH6NLnsSqX79+o+dOyAggDwAHYmP964VH0dERP7+/o8cy7IsuVyuVAPtSedTVBCosCCSgWXpdUmm67duUVRUlE/neeTgQaovCJRPECi/IFB9QaDDBw4QEdGCBQuoVq1a9MOs2TRrwgQqXrQoVahQgZYsWUIxAQF0NS6OHsTEkMFgoA8/+ohO5spJF3KHkjM4mCbdvUulrl4mgYg+uXeXFt+/TxOj7tDGmBh6rU4dIiL6+OOPyWQ0ksVioVLFitGZM2c0u1atWkXHTp6kFX4BND8gkCZbrHT+/HliADoUG0ObYmKotCDQhcQEev3GNep+6yYVL12KYLVS4+vXaGTUHSojivSh1Y/eNJmpmiTR5k2bUr0GBQoUoMPHj9OdO3fofGQkLVywgArFxdMSWyB1NhiJiGjY8OEUEBBAnTp1onfffZfmxsbQoNu3KG+pUvTtsmVpXuMLFy7Q2rVrKT4+niwmE029f4+OxsfT3Ht3KSImhkqUKPHImBMnThARUWejiUwsS53U5/fYsWNERASAjh49Srt27aL79+8/dm2Xy0VEROtjHhAR0e9xsXQvIYEmT5xIP//8M9lsNrqcmECX1AD43vg4Yhgm1WcxiS5dulD58uXpyBeD6M9xTejyH9/TpEmT0gy03717l7p27kwNRYmOOVy0MMBG69avpzlz5qR16Z6abNmy0TdLltBWAjW9cY2WxMXSZ599RiVLlkz1eI/HQ1evXqXY2Ec3qkRRpClTp9JX0fepxI1r9Or1q+TvdNLAgQMzxfbkuFwuOuLx0OXEREoEaHNsLAVYrU/lMOqkJFeuXLR9+3YqVKgQXbx4kapUqUJ79uzJarN0dHR0dHReWjweD7Vu2ZLq169PPXv0oHLlytG4ceMydI3ly5dTEMfTQv8AGmix0niTmf7YsyeFn6HzbLh27Ro5BYGyqYnXpUWRANDNmzd9nsNoNFLDhg3p9ddfTxGgr1CxIn0eG0PrYx7Q8uj7tDoulipWrZrmXGfOnKE7d+9SH4OJwgSBOhhNlEuWae/evU93gv+SnTt30uFjx2iexUqjrX60wi+Abt2+TStXrkxzXLNWreiHmAf0wZ3bNDHqDn3+IJpeb9niGVmtkx4URaGpn3xCX0Xfp0KXL1L1q1cokGUpXn29UKFCWWpfRpMzZ076afVq+vv8eVq3YYMedNZ5plSuXJleKVKUTi0ZSae+H0/HFg6ibNlzUIMGDZ5qvgIFCtDOnTupfPnydOvWLapduzYtXLgwg63W0fmP8wyq7J9bdDk5HZ0Xk9u3b6NgvnyQOQ4hqnzbyJEjfR4fGxuLBQsWYNSoUVi5cmWG9pXyeDyYP38+qlaqhKqVKmHhwoUZNveePXu80ttmCw45XBhitoCIfO4Xvm/fPhARxlm9MuXL1Z7PkydPRrOmTeFntaKoKGrybQPNFrBE4IlQuGDBNHulx8TEoEzJklA4DkUVAwSWRd3atR+RiPeFd999FwaOwzJbEP4KdqKirMBpt/t8n2q8+irySjL2BTuxN9iJMElCrRo14PF4EGC1opkqGX/Y4YKL5SAIAuw2GwJ4HhOs/uivypJPmjRJm/P+/ft4//33wTAM8gkCbAwLIgLHsBg4cCASExOxbNkyr3Sf0YSpfv7ILkkoUqiQdg3mz58PIsIxhwsnHS6EcBzsDAt/tbd4cUFAAMuCJcLcuXNx6NAheDwe3Lt3D3v27IHFaERrw0O5+1yShPbt26d6DQ4dOoSvvvoK//vf/1C3bl0QEb6zBWk93AMEAWPGjEkxJj4+Ps1e61u3bsWwYcPQqlUrCGq/JyJCw4YNYTYatX/36dMn1Xu1e/duEBGGmS045XRjlMWqSc3FxcWhaZMm3vYGRJAFAW+//fZjn5++fft6eySyLBgi5OQ4VJFlCDyPtWvXIsTphFUQkF9WvGsOG/bE5yY2NhaLFy/GlClTsGPHjicef/jwYRARlqvXNdIVgjyKgr59+z5x7L/h7t27OHToEG7duvXYY/bt24fQHDlARBAFAVOnTk31uM2bN+O9997D5MmTcePGjUyyOCXnz5+H2+GAzHEIEASwLIvFixc/k7X/K1y/fh1lypQBEcFsNmPz5s1ZbZKOzkuJ7ku+OOj3SiezWLp0KYgIs/wDcM7pRm/Vj/j7778zbI1hw4YhUBRxUm37Nd0vAESEM2fOZNgaOr6xZMkSEBEGmi341haIYrIMt8OB2NhYn+e4ePEi6r72GqwmE8Jy5sR3330HALhw4QJKFC360MeqXx/R0dFpznX9+nWwLIvuRpPW0ktkWUyZMuXfnOZTs2HDBhARfgm0I9IVgsMOF3gf2l4lJCRgyJAh8LdYYDEa0b17d8TExDwjq3Wehm3btqFWrVopWsR99NFHWW2Wjs5Lx/Xr19G9e3eUK18B4eHhj7TqfBqio6PRsmVL7b07YsSIDN0X19F5GdF7tvuA7nTr6LyYjB8/HgrHYXNQMCJdIfifyQyGYXD16lUA3oD34sWL0adPH3zwwQcpgkhxcXGoVqUKWIZBoOjtK9W/f/9Ms9Xj8eDkyZPYt29fhjiMI0eOTOHQvPvuu/B4PPjrr7+wcePGNANmHo8HXbp0ARHBLcvgGAavVq6sBdEbN2qEMpKsBduHmS1gGQbDhg3DvXv3nmjbvXv38MEHH6Bz586YNGlSujYd/jlPxXLltHM0G43YuHFjimNiYmLw22+/4bfffntknR07dkAWRXBqooDZaMSRI0cQHx8PhmEw1uqXohc7pwZ4xyT7/auSBDYVh3HdunVo1LAhatesiU8++STF2l27dkVBWdHmmONvAxFp/fBOnz4NgyyjkqKgu9EEIoKS9OXWYkWkKwR7g50wsyxGjBjxyHWZOXMmiAj5ZBnBogiTwaD1+EvOjBkzwKgBfCJCAMtBIUIQy+Kww4W1QXbwLItZs2Y9MjYyMhILFy7EN998g9u3b2P58uXo2LEjqlevDoZh4BBFKAwDhRgstwXifTVgvmjRImzfvv2JPbyGDh2a4vn93//+BwAYO3YsOIYBQ4SSgojX1CSa9957L9V5PB4PJk+eDCJCD6MJp51unFaTCEaNGoVLly5hxIgR6NGjBxYvXpwpjkNUVBRkSUJTxYBjDhcWBtjAsyymT5+e4WulhwcPHiCb04lCsow5/jZ0NHgTIX799dcstSs5V65cwaRJk/D+++9j586dWW3OS0lUVBSqVasGIoIsy1i1alVWm6Sj89Kh+5IvDvq90sksxo4dCwsvaN//t9qDQURYv359qsd7PB5MnToVBfPmRb7QULz//vtISEhIc43Dhw9DkSQUlmS0NRhh5HnUrllT3xjPAjweD4YPH675Wm6HA7t37/Z5fGJiIkoVL45gUcRQswW1FAUsy2qJvgkJCTh58iTOnTvn8/2dMGECiAgWXgDLMChdokSaCdSZyb179xCWMyeySRL6mcx4RZZhNZlw7ty5Z7J+TEzMf/J9cevWLYwfPx4DBw7E8uXLn+k1OHr0KH788UccOXLkma2po6Pz70lMTMTw4cO1vbnWrVvjwYMHWW2Wjs5zix5s9wHd6dbRyXxu3LiB5cuXY8WKFbh9+3aGzNm/f3/kkmVtUyOpQvvw4cMAgEGDBoGIkEdRYOB55MkVips3bwIAFi1aBIYIy9Rq1HfVYOGxY8cyxLbkxMbGatW6RITQ7NkzZJ29e/fi22+/xV9//YW4uDi83rjxw8Cq1Yrt27c/dqzH48E333yDYcOGYdasWSmCxUmVGQ3UYLDMcegYHv6v7X0a4uLisHbtWnz33Xe4cOFCitcuXryIwgUKaOf8SsGCuHTpkvZ6rZo1YeV5vG22oIliABHhxx9/BABUKFMGbkHAwgAbxlr9wBKhqRpwf8NoRKQrBKecbuTmeOTmvNXby5Yt88nmAQMGIEgUcVitOhlqtoBhmBR/YzZs2ICcISGa7UlV7VOs/vjI6ofxVj/kEEX06dMn1TV+/PFHdOvWDf3790/1WYqIiADHsuhoMOKIw4Upfv4gIoyx+IEnQpAgeNUHChd+JIHijz/+gNVk0myzqP9fSJLAE6GJrOC80419wU44WBatDQZEukIQKIp4//33fbpGAPD777/j888/T/GcNm3aFDaWRXFBxHk12aOb0QSryfTYeZIqy+f42xDpCsEhhwsmnv/XGfUejwerV6/GzJkz03wvAcDXX38NnuO0a/ZarVppKkA8Cw4cOPCIkoFbkjBkyJAstUvn2fPgwQM0atQIRASe53UFAR2dDEb3JV8c9Hulk1msXLlSUw47EOxEuMEIjmVx/vz5VI+fPn06iAhNFQPaGIxgiDBq1KgnrvPHH3+gVs2aKFaoEHr16oW7d+9m9KnopIPr16/j+PHj6U4uP3XqFIgICwK8/stZ9Xv6wIED0zWPx+NJERTZvHkzxo4di/nz5z+xGv5p+Ouvv9CiRQvUqFYNY8aMQXx8/GOPPXv2LOrUrg23PRgVypTBnj17Mtyef7J7927kDQ0FEcFpt/+nkkxv3bqF/GFhUDgOOdSE9XfeeSerzdLR0XlBWLBgAXhVubJixYpaEZuOjk5K9GC7D+hOt45O5nL06FG4goO1QFTOkBCcPXv2qee7du0amjZuDLPBoMlRrwwMQjlZRlBAAKKjo3Hp0iUQEYaaLYh0hWCb3QEDx2HcuHEAgHHjxsHM81r1dlL1wYYNGzLqtDVGjx4NgWUx1c8f39mCECZJKP7KKxm6xqRJk8CzLGb4B2BTUDDKyjKcdvtTybcD3i9a+cPCkN3pRK9evTLFWf+3NHv9dThEEStsQVhhC0KwKKJ506YAHn6uT7D6a4HGwrKMcDVp4MyZM3A7HNozKRGhhiQhkPXKwhfnBfipAfDOBiNCRRHdunXzya5Tp07Bz2yGS5RQXpUvT6rc/if379+H0WBAdpaFk2XBE4EjAqv+97PPPnuqa7Np0yYQkab6EOkKgR/DYrDJggCeR9myZTFu3DhERUU9MrZooULIL4ratfBW3jP4y+5IcU0jXSGoLkkoJ4joq0plfv75509lbxK9e/eGyDB4VZK0NYaYLVAk6bGZ+YmJiahRrRoMHIdmigGhkgR/i+VfVU4kJiaiTatWmpw9ESFH9uxpVuwfO3YMixYtwq+//vrEyqRnwfnz50FE+EBVatgV7ICB5zF27NisNk0nC4iLi0O7du28zzTDpKpooaOj83TovuSLg36vdDILj8eDbt26ad+d2ceoRyVRqnhx1E+mhBVuMCKn2/0MLdbJSpK+p0/18/pVxx0u2ATRp5ZXScyaNUtr4VWiaFGcPHkyEy32JjgbZBl5JAl1VHW8Tp06Zeqa6eHGjRsICghAMVnGJD9/1FAUSILwn6m0HjduHESWRUVRQlVJQk3JG3C/cuVKVpumo6PzgrBhwwZYrd5CtNy5c2dKMZqOzouOr/4kSzo6OjqZxFs9epDh9m36ze6grfZgSrx2jf7Xt+9TzQWAXm/UiLasXk1vshzl4HkaezeKGl+/RqcUhVasXEmKotD169eJiKi0KBERUS6epyBB0H5fsmRJupuQQFPu3aVj8fH08d27JIsiFSxYMGNOOhl/7NxJVUSRmhuMVFaSqLtsoL0HD1JcXFyGrbFv3z4qJknUWDFQHkGgboqRLl29Sm+99RZ9+eWX5PF40jVf7dq1qWSZMmQPDqY7t2/TrVu3iMh7/T/88EPK5nSSMyiI+vfvT/Hx8Rl2Hmlx69YtunLlCgEgIqK/du+mJoJIZSSJykgSNRFE2rtnDxERCYJARERR8J53PBFFAySKIhER5cyZk/YdPEjZXC4ysSzFEtGB+HiqLsk01epPFzyJdBeg3BxPX0Tfp7NxcfTNV1/R7t27U9i0YMECKla4MBUIC6Phw4dTfHw85c6dm3b9+Sc17PQGZWvUkGbOnEmTJk0iAHT9+nW6f/++Nt5gMNC7771H5z0eigGooCDQIYeL/gx2Uogg0K+//PLE63L48GFq3LAhlSpalLp160a3b9+m0NBQYlmWvo6+T7EArXwQTbfhoZ1xsXQzIYHGjx9PQ4YMIbPZ/Mh8p06fpqiERLKzHG21B9N3tiDiGKJP7t2lwoJAM+5F0W+xMbQk+j5tio2lnfFx9Om9u0REtHXLFu3+PA3Dhg0jo8VCm2NjafjtWzTlbhR9ev8eNW/enBiGSXUMy7L0w48/0pu9e9PFwoWoWL16tG7jRpo3bx61bNmShg8fTlFRUemyY9WqVfTNkiU0wz+AzjndNNBsoXPnz9OrVapQdHR0qmPy5ctH7du3p9q1axPHcek+94wmW7Zs1LlzZ3r3zm1qfOsG1bl5g2x2O3Xu3DnV40+ePEkN69enAmFh1Oz11ykiIuIZW6yTmQiCQF9++SX16tWLAFCPHj3o448/zmqzdHR0dHR0XgoYhqFZs2bRH3/8QcuXL6ejR49S9+7d0xyT/BuzxztJZpqo8xwREhJCjRo0oGF3o6jfrZvU+NYNiuE5Cg8P92n82rVrqUePHlQfRJP8/OnWsWPUsG5dSkhIyDSbZ8+eTVaPh1b722heQCC9a7bQ559/Trdv3860NdPD7t276drNm/SpxUqtDEaa7RdAnsRE2rBhQ1ab9kzYvXs3xXs8dA8e4oih9bExRER07dq1LLZMR0fnRaF69er0+++/U65cuejvv/+m8uXL0+bNm7PaLB2dF5NMD/s/x+gZ7jo6mYvbHox+JrOWud/ZaEKBsLDHHv/gwYPHSpJFRkaCiPCZfwAiXSE453QjRJTQunXrFHLY0dHRCA4MRElZxhJbIPqplbfff/+9dsx7772nVR/Ioohly5YhMjIS3377LVatWpUhvdUBbw9vpyhiX7AT55xuNFYMCLBa0+yh5fF48NFHHyG7ywWX3Y6BAwfi6NGjGDJkCHr37o3Vq1enOH748OEw8zw2BwXjnNON5ooBLBFySBKICB3atfO5Z1dUVBRy58gJhyiilcEAhygiLGcuREVFaf2xww1GdDeawLMsBg0a9K+uz+P4/vvv0alTJ/To0QP169XT7lWl8uVx9epVVK1UCYVlGUccLhxxuFBIlvFq5cra+M6dO4NnWTRWFBSRJAg8jz/++CPFGpcvX0bfvn1RrFgxsAwDiQi91D7qS2yBiHSF4PMAb8/1MEGAIyhI63339ddfg4hQT1bQ3mAEz7Lo379/iuscFxeHo0ePYvfu3ShbqpRWVdq7d+8UqgN9+/YFT4RBqhJDpCsE7Q1GvFKgALp164YCYWGoWK7cI8oL586dg7/FgjBJQmuDARaeR4WyZZGQkIApU6ak6IvOEIFjmCfer1LFioElwvtq//hIVwgaKwrsLIuuigFcsjmJCJ2MJhx2uDBRlapP/h57Gq5evYoGDRrAbDDApCjo2KHDI1L3j+P27ds4e/YsypcpAwPHoaKswMTzKFG0aLr6Tk2ePBkSw2jn/4f9oQrCtm3bnvbUnjmJiYmYMWMGOnTogEGDBqVos5Cca9euwRUcjFyShM5GE1yiiNw5curSpC8hST1Gk57nYcOG/Sd7WuroZCS6L/nioN8rneeFmTNngojQWFHQSjGAIUpXOyadF5/o6GgMGjQIZUuVQsP69fHnn3/6NO7gwYN4/fXX4ZYkTaVvUUAgiChTq9u7deuGvLKsrTnTPwBEhMuXL2famulh+/btICJ8HRCoKRtSBiivvSiULFECRQQB59T709loAs8wz1yhcNOmTShSsCBsVitq1ajxr9TmdHR0soYrV66gXLlyICIIgoCFCxdmtUk6Os8Nuoy8D+hOt45O5vJq5crIK8nYFezAb3YHckgSGjVo8MhxN27cQJ3atb19ZTkO/fv3f0QG/fLlyymkrE853XCKEvr37//IfDt37oTTbtcCnMn74N24cQPXr1/H6dOnsX37dly9ehWbN2/WpNiICKWKF/9X/eX/+usvLF26FKtXr0ZwYCCMPA+7KIJhGCxatCjNsUmB0vYGI7qpjpIkCLAJInKrPbiSS4zfvHkTBfPlA8swUFT57z5Gb4LDZDUI+s8+affv309VZv67775LIUG+Kcgrsb9ixQqULlECjZJJHr5pNMFtD37qa/Q4kvoYFpRlmFgOHBE+tPphhn8AAgURDerVw549e2AxGiFzHGSOg9VkSrFJERcXh1GjRqFCmTKoV6cOtm7dmuaaN2/eRNXKlbX7f0p1VA86nCAiDDJ7Ezb27dsHAKhZvToqS7J2Ld4ymSGwLDiWRb7cubF48WLkyeXtGccRwc7xmO4X4O3hToQpU6akWL961aoIlSSsCwrGysAgBAoC3C4XjDyPN4xGlJFlCDyP3bt3a2MmTJgAA8dhmz0Ya4PsmK1uejRu1AgWoxF+ZjPKly8PlmHgFARkE0VwLPtIskZy9u3bB5HlUEYQcdzhwk67A0HJJOWJCCMsFnyqPldb7Q+l6q2CgLFjxyI2NhY7d+7Ezp07093D8GlITExEr169Uti4TO1V/nOgXXt+feXXX38FEWGUxYp9wU50NprAqvP+/vvvmXgmWcOiRYtARNgd7ESkKwTr1ff8Tz/9lNWm6WQS48eP194rPXv2fOqWIzo6Orov+SKh3yud5wWPx4Pp06fjlQIFUChvXnz00Uf632KdNHmkVUEyGfoPrX4goscm1mYEP//8M4gIzRUDRlmsCBZFlCtd+rlJ2oyPj0fVSpVg4DjUkGXYBAFhOXP9q/2cF4ka1aujRrK9iaFmC2RRfKY2HDlyBLIoopysYLDZghBRQr7cuTOsiEVHR+fZER0djZYtW2p/c959993n5vNeRycr0YPtPqA73To6mcvhw4cRHBio/ZHO5nLh77//fuS4Jg0bwl8QMNbqhwFqQHLixImPHNe0SRPIHIdWigGvSDJkUcT+/ftTXTsmJgbHjx/HjRs3AHgDzK83bqzZUrd2be29n93lQnlZwf5gJ34MDIKZ5zF48OCnOudhw4alCPwNHjwYY8eOxYgRI7B9+/Ynji9dogQaJgtqdzOaIBKDww4XIpxubxWzyaRVWQPeivS5c+eicePGEBgG59VgcVJV7s8//wwAOHnyJEoUKQIiglFRMH36dMTHx2P16tX48ssvter1P9XA2+5gb7C5QoUKCA4MRPVkTlxbgxE5MqC/4KlTpzBkyBD06dMHa9asQYDVitYGAyKcbpQURDRWHl6LYWYLTAYD6tetC4HnYTQY0LRpU5w9e/Zf2+HxeLB69WrwLItmigFLbIFoICsQibS+5OfPnwfwaLC9t8kMQe2RnVsQwBJBYRj0NZnAEGGc2js70hWCqrKMhv9IODl58iRyZsumPTMF8uZN0cvvtNMNtyShX79+2pixY8dCYlktEGxQ+8zLLIcBZgu6Gk3giFBOknDG6cZZpxsVZQWlihdP8zr88MMP4BhGmzeE49BMVrT38ad+AfjN7gBDhB5GE0473ZihBvrnzJmDIoUKaedRpFAhnzd+fvrpJ/Tu3RvDhw9P1/385JNPwBDhHYsV3VRlgn3q83vc4QIR4YsvvvB5Po/Hgy5duqRQBVBYFmVKlkRcXJzP87woLFy4EESEveo122r3Btt//PHHrDZNJxOZPXs2GPUzo127di/ls62j8yzQfckXB/1e6bwIHD16FCtWrNASfF9UtmzZgnp166JS+fIYPXr0Y5XrdHzj22+/BRHhI6sfttsdqCvL4IhQQZLBMgw6hodnug1z585FsM0GgedRq0aNTA3uPw337t3DsGHD0KB+fbz11lv/qX7lM2bMABHhTaMJw8wWGHkebVu3fqY2jBs3Diaex0l1H+p7WxCI6BF1QR0dnReDxMTEFHvbbdq0SZdipI7Oy4gebPcB3enW0Xk8t2/fxrp167Bt27Z/tRF/7do1fPPNN1iyZAlu3ryZ6jGyKOKdZNLVr8kyalSrluKYu3fv4sqVKxgwYABKFSuG12rVwm+//eazHb169YKB4/Cx1R+T/fxh5nm8ER6O6OhoEBGmqIHNSFcIqskyGjZsmO5z/e2330BEGGq24KDDpUnY79271+c5KpQti+ryw0Bue4MRhmSy1s0URQuEFitcGMePH9fG7ty5U5P3XhkYhLqKAbIoIjIyEvHx8cgfFoZQScIUP3+0M3gr+YsVLap9gRI4DiaDAYVlGcPMFrh4HkSEopIMh/r/1SQZ9WUFRAR/iwXNmzZ9agm5I0eOwGoywSaICFWr9lmGwWiLNzhdS5KRj+dxyunGeacbDRUDjJIEmyDgPYs3KE9EWL58+VOtnxpfffUVZFHUqgayqf/fo0ePFMckych3MBjBEqGNwYgJVm/FdzlRRGnBO04iQkeDERFON447XMgpSejQocMj60ZFRWHt2rVYsGABli5dCiLCJ1Z/fGsLxAy/ADhFEX379tWO//LLLzWnemVgEGpKMlgidDUYtWfFwjDoYjRp/+5uNCE0W7YnXoMSRYuiMC9gip8/DjlceMtkhj0gALVr1oSJ59HJaEKI+jxoX75btULzpk1hF0UstwVhuS0IdlFE86ZNn7je1KlTQUTILcvwFwTY/PxSTcpJjSZNmqCy+n7ZFeyATISKooSZ/gGoLnsTck6dOuXTXMlZsWIFypYti8IFCqBr166P/ex60bl8+TKCAgKQX5LR12RGqCQhm8v1n6kE+S/zzTffgFffx40aNdKdZx2dp0D3JV8c9Hul87wzefJkLRGOiPD2229ntUlPxc6dOyHwPIpIEhrJCjiGQffu3bParBeaYcOGwZ1sf2C1qt5VpUoVTJgwAQkJCT7P5fF4MGHCBAQFBMAgy2jVokW6Phf16sbnD4/Hg1GjRsHPbIYsimjTqhWioqKeqQ2TJk2CwnE46HAh0hWCr9T2Br62SHjWnD17Fn369EHr1q0xY8YMXV1ER+cxzJ8/X9szqFixIq5du5bVJunoZBl6sN0HdKdbRyd1Dh48CFdwsObsly9TJlPfJ0EBAWinBglPO90oKElo0rgxAK+ETasWLTRbmjRq9FT9hAvmyYOOyQKRPU0m5HC54PF4EOJ0opKi4JDDhdWBdlh4AQMGDMA777wDf4sFZoMBXbt2fWIwYt68eSAinFEzeg+rlbXffPONz3YmBVGryzIaqEFtIsIosxWDzRYQEVoqBkz280eoJCFPrlwpkiE+/fRTcKr0t1FRtD7ap06dAhHhywAbIl0hiHC6kUMUwZK3v9lxhwtN1OB88SJFYDWZoAgCGiveKvOzTjdy8gKsJhMElkUIz6On0YQg9finScjo0KEDcogSjqhV+y0MBkiq5P40vwC8YfQGsh2CgDA1GE9EmKQmRkQ43Sgqy2jfvn2q8+/duxfvvvsu3n///XT1sbt79y527tyJoUOHolu3bpg/f36KjYUvvvjCG0hnGAiqTT/agpCX59FAVhDhdCPC6UYNSYJLvRcFRREuUYRRUXDgwIFH1kxISEDb1q21cxQ5DgI93HBj/6H2kCQjn9Q7L6k3XU214j7C6Yad5WBgWEz288fUpASTjh2feP5Jwe+OBiN6m8wQWRa9evVCVFQU3nzzTRQIC0PlChUwa9YszJ8/H2vXroXH40Hu7NnRPZ3B/YSEBCiSpCUkHHQ44RTFFMkNadG5c2eEiKL2DNWWZPDqNePov9Or799w4MABVK1UCSHBDtSsXh0nTpzIapN0nhGrVq2CrH62VqtW7ZlvzOnovOjovuSLg36vdJ5njh49CoZh0N1owt5gJ4abrSAibN68OatNSzedOnVCqKqslaRMxrKsntT3L/jss8/AsyxW2IIQ4XSjl8kMhmGeqro8yY/tYDBiqNkCM8+jaZMmmWC1TlaQVckQ58+fR4DVijBJQhuDEVaeR7nSpZ9LVYuIiAjYbTbYRRFl1P22nj17ZrVZOjrPLevXr4fV6v1ekjt37hQFXzo6/yX0YLsP6E63jk7qFH/lFRSQZGwICsa3tkCYeT6FhHVGkyRfXkqWESZJEHhek1zv27cvZI7DB1Y/jLP6wcjz6NKlS7rXqFiuHMrKMs443TjndONVWUGxwoUBABs2bIBReRjYLvbKKxg5ciQYInQ3mjDAbIHMcU8MAG7evFmTeDvrdONdi/cLya5du9Jl66JFi1CyWDEYRSlFsJWI4EgWYP3G5s0YPnr0aIrx169fx/79+1N8tiX1vE+qGj/ocMLCcbDxvBYcXaLOd+zYMQCAzWpFf5NZe/11xYDsbjdMPI8Tatbyt+qYv/76K13nCAB169RBzWRZ+mPVnnPly5TRzrt58+bo06cPevTogVWrVoFhGAw1WxDpCsHfTjdyShK6du36yNxr1qyBKAiwiSKsvACz0fhUNv4Tj8cDq9mMpooB551u7LA7IDEMrBwH8z8qydsajBDUe/faa6/hrbfewuHDh1Odd9q0aWAZBpP9/LE2yI4QngdPhEUBgdgf7EQNWYGf2YK///4bS5cuxeDBg0FEWBno7U8+Xr12SQH3MpI3gFaqRAnt96/VrOnT3zuPx4MxY8bAGRSEQD8/9OzZ06d+a1UrVUJhWcZRhwtHHS68IsuoUrHiY48/ceIEihQsmEIyP9IVggqygubNmz9xPQA4duwYrCYTAnkeYWrG7UizBSvU5zI96hc6/56TJ0/i9caNUaxQIXRo3/4/JeH4orJ582aYzV4VltKlS+P69etZbZKOzguD7ku+OOj3Sud55vvvv0/R1ifC6QbHMJgxY0ZWm5Zu2rVrhyKyrPmrST7KvXv3stq0F5aYmBhUqVjR2zqM40BEGD9+/FPN1bBBA1RI1g5tpMUKnuPSVR2vkzrffvstWrZsifDwcPz+++9Zbc4z5/Dhw2jUoAFKFCmCrl274tatW1ltUqqMGDECfoKgtZ5L2rPTK3Z1dB7P4cOHkTNnTq/Cqb//C5kMqKPzb9GD7T6gO906Oo/i8XjAsSzGJOsz3VBWUK1q1Uxdd/HixZpzsnPnTu33BfPkQXiyivTuRm9FenpZu3YteI5DDklCqCSBZVn88MMP2utnz57FokWL8P333yM6OhplSpZM0S/8LZMZwTZbmmt4PB706NEjhbz2wIED020rAFQoWw45RBHf24Iw398GA8ehePHisPAC9quOwTh18yIiIsKnOTt37gyWYVBZVuASRZgUr7TflwE2HHG40FgxwCDL2mZIuzZtYOZ5fGj1w1CzBRzDoEaNGjDxPI6rwfavA3wLtkdFRaFzp07I6XajWOHC+P777zF27FhwDIMPrH74PMCGEFFCxXLl4PF4cO3atVQVDHr16gWWYfCaLCO/JEESxUfkyTweD/KEhqKiJOO0041jDhcKSDLqvvaaj1f/8dy/f//R4LAkI1euXAi02cATYaDZgn4mM7hkz8GTnM1OnTqheLLnrZIooRAvaP9eGGADEYFXN1iICFajEQLLIqdamdq5UyfMnDkT1V99FXVq18aPP/4Ij8eDK1eu4PLly5me6b5nzx6YjUYYOA4GjoPZaMTu3btTPTYuLg55Q0MRKklwsxxycBwWBtgw0mIFQ4RPPvnE53VPnDiBxo0be5MzFAM2BgWjrvos/5cCh2fOnMGPP/6IPXv2ZElVw5UrV+AICkJOSUI7gxGBgoBXChbUK5leAHbv3g2bzfsZU6hQIVy4cCGrTdLReSHQfckXB/1e6TzP7Nu3D0SE4WYrzjvdmOrnbU31yy+/ZLVp6SYpcaCZYsAQswV+goC6tWtntVkvPLGxsfjqq68wYcIEbNmy5annadGiBQpKEs6qyRC9TWYokvTCysNHRkaic+fOqFGtGgYOHPhUCogZwSeffAIiQgnpYfHItm3bssQWnbTp06cPcidLCPpS3WfxtY2djs5/lStXrqBcuXLeFqSCgC+//DKrTdLReabowXYf0J1uHZ3UyZ0jByorCk463dgV7IBDFPHGG288s/UTEhK0AE350qVRXpZxTu3bXV1WULRQoaea9/fff0fPnj3Ro0cPbN26Nc1jq1SsiErSwy/hrQ0G5HC7n7iGx+PBxo0bMXv27Ceu8Tju378PjmEwMlkf+yaKgtIlSiAowNu/u6raA69lixYYMGAAGjRogEGDBqXZazkhIQGTJ09G06ZN0a1bNxw5cgS1a9Z8KF0uCFiyZIl2/J07d9C4YUNvZT3LamNMBgNekWW8aTTBJggoVby4JhF24cIFDBw4EOHh4Zg9e7bW/6pBvXow8jy6G014VVbAMAzWr1+P8A4dtPWLFCqEs2fPpnltEhISMH78eNSoVg1NX39dS8zYt28f5s2bh5UrV6JD+/bgiTBIrYBPqjIvrioZJD+/Pn36oErFimjfvj3OnDnz2HWjo6MxcOBAlC1VCmajETkFbyLEFD9/8CyLsWPH4tNPPwURQWEYGBgGbRVvT/nUerT/kxEjRsDM89hiD8Z5pxtFBQECEb63BeGk040GigGsKo1eUhChMAw4tWJ+0KBBWLRo0WM3STweD6ZNm4aa1aujQf36WLdu3RPteVpOnz6NiRMnYuLEiTh9+vRjjzt27BhIbWGwze5AGPewB3y3bt3S3TfN4/Fg4MCB2hyKJGktFP4LfPXVVxD4h9ewS5cuz3zTbO7cuWAZBn+pyUArA4NARNi4ceMztUPn6Th8+DBcLm/rk9DQ0DTfvzo6Ol50X/LFQb9XOs87b7/9trcNktq3Pbx9+6f6Lnf//n2cO3fuqVp8ZRSzZ89GiMMBi9GI5k2b4ubNm1lmi05KtmzZAo5lUVSS8JqasD1kyJCsNuupuHHjBrK73QgWRdSTFRh5HpXKl/dZuvzBgwd49913UbdOHXTu3PmJ+xBpYQ+woY1aIHLG6UZhSULjRo2eej6dzOPHH38EEaGT0YQZ/gEIkyTkyRX6XEre6+g8b0RHR6NFsjav77333gubrKWjk170YLsP6E63jk7qrF27FrIoQmRZsAyDbC6Xz9XT/waPx4MRI0ZAFARvD9kqVfD111+DZVmESRLySTIYhsHy5csz3ZbvvvsORIQykoxXVUnuyZMnZ/q6ADB69GgIRHhVknDa6caBYCfcHIeWLVvi9OnT6NatG5o0aYIPPvgARQoVgoXnUV2WYeZ5lChaNF2VpAkJCVi7di2+/vrrx/Y1f/DgAWJjYwF4FQCqVq4MkyzDohjQqEEDXL16FQBw6dIluB0O2AQBJVRZ/l69euHWrVsgInxs9VaDn3O6ESbJmvz7lStXcObMmaeWr2vXrh2YZFXkLBEKcDyCWRZfBQRijr8NJp5H9+7dtTHx8fGoWK4czDyPxoq30t8VHKydS3I8Hg8aNWgAhePQTDEgnyhpG2FEhBbNmiEuLg7btm0DEWGwyYxddgfeNJrAEPOIzH9q3Lx5E/nDwsAzDPzU599pt2trcGrv9y8DbIh0heDnQO9rFdOQaU9i1KhRICLUkmUUV1Ud1q9fn76LnMFERkZqLRciXSHYa3fAzPMYPHjwv5r35MmT2LJlS6r38WXl6tWrkEQRzRUD9gQ7NbnOZcuWPVM7PvvsM3AMg6Oq6sW6oGAQEdauXftM7dB5ek6fPo3Q0FAQEVwu12PbXujo6HjRfckXB/1e6bwIbN68GTNmzMAvv/zyVJvXM2fO1Pzo4MBAvbJWJ1U2bNiABvXro1rVqpg0aVK6k5yfF+bMmQOOYbAr2IFIVwgWB/jeRszj8aBBvXqQWBa1ZRlOUYQjKAiXLl16KlsUScI7yQol6sgyqr/66lPN9ay5efMm/vzzz/+U/zxp0iRIouhV9cqXT2ujqKOj82QSExMxbNgwba+ybdu2PrWd1NF50dGD7T6gO906Oo/n2LFjmDZtGubOnfvMpJhnz54NIkJvkxkfW/0RJIqo8eqr2LJlCzp37oxOnTo90yDhypUrUee111CzenXMmzcvXZsecXFx/yp4nEeUIBDByjCQyVvFvGPHjhTHJcn0/RJoR6QrBD+pAdh8uXMjwGpFpXLlMjRYcufOHeTMlg0hooTORhNySBJCnE6tWuH999+HmeexR61sfU/tf3XixAkQEcaqgdWzTjdCJQndunXzee0lS5agYN68cNntCG/fXvvcnj9/PhgitDcYcdrpxpcBNrBEeMdsRWF1s4mIUKZUqRSf9b///juICIsDAhHpCsGeYCd4hsFnn332yNrnz59PIR1/wuGCTRDQqVMnnDx5UnsuFi9ejCJFimhrMgyDqVOnIj4+HkOHDkWukBDkDQ3FlClTUn2W7ty5g5kzZ+LDDz/E0KFDQUTIzQvIlqxiOena/u10gyFC/fr107xuHo8HVpMJb6q95M853Sj6nGTah3foAJZhUEXd4Aj098f58+ez2qwXjh07dniD2kF2bYMnSBQxcuTIZ2rH2bNnYTEaUVyWMdhsQagkIUdICKKiop6pHTr/josXL6JQoUIgIthstse2gtDR0dF9yRcJ/V7pvOwkJf12MBjxZYAN5WQFAVbrc9s3WUfn3/LJJ59AYlmcUpUIN6iJvhs2bHji2MOHD4OIMNM/wJv4HeyEwnGYOHHiU9nyeqNG8BMEjLX6YaDZAoYI48ePf6q5niXffPMNZDXozLEspk+fntUmPTPi4uJw8+ZNvSpXR+cpmTdvHnh1r7JSpUq4du1aVpuko5Op+OpP8qSjo6OTCvny5aN8+fI90zV/+eUXqijLNNRiJSIiD4GGbt5MP5ctS1WqVMn09fft20f/69OHzp05Q68UK0YzPvuMflmzJl1z3L17lzq/8Qat+OEH4jmOer31Fk2cOJE4jvN5jrx589KKxAQaZ/Wn84kJtDomhq7KEpUtWzbFcX/99RcREX0bfZ84hkgmIo6ImIgIqsvz9Ptfe6lW9ep06OhR8vf3T3Wty5cvU+9evejPXbvInS0bTZo69ZF1kti4cSOdjYigLfZgys0L9GZCApW/dIl+/fVXat26Nd2+fZtsPE/BLEtERAUFgYiIPB4PNW3ShEb/9BMdi4+n455EOhcfT+Hh4T5dj3Xr1lGrVq2otqxQdZ6nhd9+Szdv3qSffv6Zvv32WwIRtTIYSWQYqi4rFMxydDg+jn6yBdGAO7doZUwMrV6zhiwWizZnTEwMERHZOK+tVpYlnmW13ycnLi6OiIgs6nlJDEMyy1JAQACFhYUREVG9evXol19+0cYE+PnR+o0bye12U61atWjrli1UR5LIyLDUv39/UhSFunfvnmIdi8VCPXv2JCKi/GFh1FBRaKZfAIGI2t68QX/ExVL/2zepgaTQigfRREQ0atSoJ16/2Lg4CpRkIiLiGIYCGIZiHjx44rjMZv6CBfRKkSK0Y8cOami309ChQylbtmxZbdYLR44cOYhhGFoRHU35LQJtjY2l63FxlCtXrmdux9oNG6h3jx70+dmzVLhMGZq7YAGZzeZnaofOv8PpdNKWLVuoXr16tGvXLqpevTr99NNPVLVq1aw2TUdHR0dHR+cxbN26lfwEgT60+hHLMOTkeKp17QodOnSIKlWqlNXm6byE3Lp1iziOS+FjP0tq1apFxHHU5dZNek2SaFHMA3La7VSyZMknjo2O9vrSbnWPxp9lSWFZun///lPZMv+LL6ht69Y0bO1a4jmO+vbrRwMHDnyquZ4VZ8+epY7h4VSPF6hroB8tf3Cf+vTpQ+XKlfPpGr7oCILw2D0yHR2dJ9OlSxfKmTMnNWvWjLZv307lypWj1atXU968ebPaNB2drOUZBf+fS/QMdx2d54sOHTogVJK07OTuRhMUSXom0mYRERHwt1hQUJLRy2SGSxSRNzQU0dHRPs/h8XjQrGlTmHgeoyxW9DeZwTIMPvroo3TZcu/ePVQoW1arZpZFET/99FOKY3744QewDAMnyyGIZSEQwc1xmow6EYFX/7ty5cpU14mLi0ORQoVgF0X0NJlQTJZhVJTHysknSevvsHul2nbaHSAihDgcKFKwIHr16gUiQlejCXP8bSggycgZEoK4uDjcv38fb731FgqEhaFCmTL45ZdffL4enTt3Rj5Jxnn1ufjY6g8iwu3bt9G8eXOwRGimKDjocOIz/wBNUt6gXo+pU6c+Mufdu3eRzelEXknG+xYrKisKZFFMVfI9MTERpYoXR7AoYqjZglqKApZlNaWBX375xSsfb7bgd7sDHQxGbzV9mTKQOA48EUQiMET41C8Ar8kyKpYrl+q5JskvhQQ70MNowhGHC6ecbrRSDAjLmROK2luP1Pl8yZhv3bIljDyPoWYLOhtNICLMmjXL5+uv8/wzYcIE73tebW9Qp3Ztve+czr8iKioK1apV8/4NkmWsWrUqq03S0Xnu0H3JFwf9Xum87Hz22WfgGRabgoIR6QrBJD+vv6S3hNF5GtatW4ea1aujdIkSeO+99xAXF6e9dvv2bdSpVUvzSVu1bJmuNnYZyYIFCyCpPj9HhKKvvILbt28/cVx0dDRyhoQgjyRhvNUP9RUDOJbFrl27/pU90dHRKa7V80ySSuJeVTnvnNMN9jFKfzo6OjqP4/Dhw8iZMyeICP7+/tiyZUtWm6SjkynoMvI+oDvdOv9FPB4PPvvsMzRp0gTh4eHYu3dvVpuk8ddff0EWRYRKEsqqQcX333//mayd1G/4kNpveKZfADgiCByHPLlyPVG+/sqVK6hcoQI4Igw0WzQ550ay8tjAalrExsbip59+wqJFi/D3338/8nrBvHlRXVFwzunGKacbhXkBvOpodjaasDbIjjYGIxgizJ49O9U1du/eDSLCUptXSv24wwUjzz82gHvz5k0E2wJhYVnk53kYGRYMEVoZDGgke3u0N2/eHIIqJRSWMycOHjyojd+0aRNKlyiBHC4XWrVo8USZofj4eJw/fx6dOnVCqCThrBpsH23x9qS+e/cutm7dCoZhtAQDIkJorlz44osvMHHixEek95Nz5MgRlC5RAqIgICxnzjR7S1+6dAn16tSB1WRCWM6c+O6777TXRo4cCY4IEap9e4KdDzcfDAZ0N5ogEiEXx8HKMKgmSahcoUKK+WfPno0APz+tV3uNGjW0ZAlG/enWrRsYhkFnownb7Q68ZTKDiB6Reb57926KTYaoqCi0adUKBllGgNWKDz74QJdLewn57bffMH36dKxYseKpW1jo6CTnwYMHaNiwoTeRg+exePHirDZJR+e5QvclXxz0e6XzshMVFYWC+fLByPMoohi8bbbattW/8+ukm23btoFjWZSUZDRVDOBZNkX7tw7t2sHC85jo548PrX6QOQ7/+9//ssTWqpUqIack4QdbIL4KCISZ59GrVy+fxh49ehTFX3kFRAS7zYalS5dmsrXPF0lt9T5RW+V9Y/P2vP/++++z2jQdnWdCXFwcxowZg1o1aqBVq1Y4cOBAVpv0wnL58mWUVQvGBEHAl19+mdUm6ehkOHqw3Qd0p1vnv8iwYcO8PVVkGaGSBEWSsG/fvqw2S+Ovv/7CG2+8gebNm2P+/PnPbIMgKdh+0OHEUYcLgSyLMJ7H+xYrKsoKFEnC8ePHHzu+Xp06CBRE+DMsWioGLTu4pCShds2aGW5vsM2G/iazFtRvazDC7fQGeU+rQd9DDheI6LFfdPbs2QMiwhI12H7M4YKB4/Dxxx+nevzJkydhMRoRxHEoIgjgifCG0ajZ8JqsoHzp0njw4AGuXLmSQpHgwIEDkAQBZWSvcoBNEFCudOnHqhZs2rQJdpsNRARREMAyDEpLMtoYjJBYFm1bt9aOXbduHSqWL4+8uXOjc+fOzzybfNmyZSAizPW3IdIVgpEWK1gi1JJk7dr0MZlhVKuOiQgLFy7Uxk+ePBlEBBPDgFP/yxMhkOMw1c8fg80WEBHCw8O9FSpqQsgZpxtEhPnz5wPwBsbatm6trVG/bl3971sGs3HjRgwZMgQffPABLl68+NTzHD16FGVKltQSPX799dcMtFJHJ+OIi4tDu3btvIk/DKOrYujoJEP3JV8c9Hul81/g1q1bGDVqFLp27YqZM2fqyZc6T0V4eDjyJkt0H2q2gGVZxMbGAgBcdjv6/GMfomjBglliq9lgwHCzVbOlpiQjR/bsWLx4sc/V9s9aDczj8SAqKirLE2E8Hg/atm4NhgjZZBkcw6BWjRq6OppOlhAbG4s9e/bgr7/+embPYHiHDuBZFq+pe+NmozHNPV+dtImOjkaLFi20/cj33nsvyz/ndHQyEj3Y7gO6063zXyMuLg48x6Gf6hyddLqRQ5LQpUuXrDYty4mMjESA1Yr8koz6alX9elWG76TDBZFl8emnnz52vCJJGGGxYozVW51cShCRXxDAsmyaFdNPS/OmTWETBHzmH4DJfv4wcJxWgThfDfp+osoHbtu2LdU54uLiULxIEQQKAroZTSgsyzAbjalW0gNAnz594BBFLdhrYRh0Mpo057aOLKNcqVIpxty9exeXL1/GO++8A5sgai0CPg/wBtKPHTv2yDrXrl2D1WRCRVnBwgAbWhmMYIhBiWLFULRgQQwYMCDLpOpSIzExEcWKFAERQVK/WHIMg4qSpFW7d1Gr242ShAULFmhjY2NjIQkCWikGnHe6sdUeDLMalP/I6qdd26qyjIoVKoCI8LHVm30+wz8ARKQ9XwMGDIDEshhj9cPHVn+YeR4d2rXLqsuSZURERGDdunUZ7ijNmTMHRASXJMHE83AEBeHcuXPpnufu3bvI7nIhjyRjpNmC/IIAjmXx9ttv4+7duxlqs45ORpCYmIiePXtqjrMv7St0dP4L6L7ki4N+r3R0dJ4FCxYsQLlSpVCqeHFMmTLlhQw0tGnTBkUlWfNjP1T3N5La6xXMmxe1FAXnnW6ccbpRSpJRtVKlLLG1QJ48qCgrOOV0Y4zFCoYIPHl96dIlSuDevXtZYtfj2L17N3LnyOGVW7ZYsGTJkiy1JzExEV9++SWGDBmC2bNnvzAS+DovF5GRkShcoIDma5YtVQo3btzI1DWvXbsGIsIH6p7bMYcLQaKIwYMHZ+q6LzuJiYkYOnSodi/btm2rtcrU0XnR8dWfZJ/Y1F1HR+elIS4ujhISEyk7zxMRkcIwZGcYunfvXhZblvW43W7avG0bucuXo31WKxER3fAkEhHRbYASAJJl+bHj/a1WOhIfT28YjDTZz5+OJSbQXbud1q9fT7Vq1cpwez+bPZsKlCpFPW/dpAG3b1GNOnVo8eLF1LhBA+p66waVvHGN+t2+RaVLlqRR771HjRo2pA0bNqSYQxAEWrNuHdV8/XXaGBRIgaVL08bNmyk0NDTVNW/fvk1OliMr6/3TUUGS6Iv79+jt27eo960btCYmht7o2pWIiDweDw0cOJAsFgs5HA5aMHcuJcJDUOdKVP+HYZhH1tm3bx/duXePxlosVENW6GOrHykcS+3Dw2nf4cM0adKkNO/Fs+SXX36hYcOG0ZkzZygnx1MxUSSRiBIB2hEbS+1vXqe3bt2gBffvkWwy0c49e6hTp05E9PAaxcbHU21ZIZZhKJQXKEx9fx6PjyciogceD0V4QDlz5aKuXbvS23duUYGrl+mtWzepQf36lDt3bgJAG3/9lZrKCnUymqit0UhvyAptWLcuqy7NM+Pq1au0adMmOnr0KC1cuJBCc+WiWrVqUb58+ejdd9/NkDU8Hg8N+N//qJXBSH8EBNI2WxB57tyh8ePHp3uuP//8k85fvEjTLBa66PHQsfh4CiaGpk6YQJXKl9c/j3WeO1iWpRkzZtCwYcOIiGjIkCE0fPhwAvCEkTo6Ojo6Ojo6/w0+//xz6ty5M1kOHSLX0WPUv3//p/IVsppWrVrR/tgY6nP7Fk2+G0Xj7t+jxg0bkqIoREQ06oMPaH1MDNW4dYOq3bxO+xLiacTIkc/MPo/HQ9OmTaNWrVpRWP78tDsxgYpcvUwjo+5QM8VAp5wu+jnQTof276dPPvkk3fNv27aNJk+eTN988w3Fq/54RnDlyhWqWqkSGS5epE/9AqhCfDy1bdOG9u7dm2FrpBeWZalDhw40btw46tatGwmCkGW26Px36dGtG934+29aagukrwIC6cT+/TRwwIBMXfPBgwdERBTMckREZGQYMjMsRUdHZ+q6Lzssy9LYsWNp3rx5xPM8LV68mGrWrEnXr1/PatN0dJ4dzyT0/5yiZ7jr/BepWqkS7KKIcVY/dDOaHpG01vFWfJcrXRoWnkdjRYFLFBHidOL69euPHTNv3jwQEfLLMtyiBFkU8ccf/2fvrqOjOh6/j7/XJa4kBIq7OxQJxd0pLsUKLZSWUqxQtBSnFCjuxYqX4lAILqU4xV1CiG9sszLPH6R5vvwKNECSTWBe53A42dw787l7Q9i5YyfSNKfdbhf37t17bjlrq9Uqli9fLr777jvRokULAYhaer0oodMJpVIp9u3b98b1LVu2TACin7OLmO3hKbJrtcLP11fkz51bFClQQMycOTN59P6cOXMEIL5xcRVzk47VKBSilF4vujs5C3eNRlSpVOmFy8ifPn1aAGK2h6d4kDWb2OOTRShALFmy5I2zp4VJkyYJQATodEILwlOhFBoQjZJm5BfTaIRaoRAF8+YV/fr1+9es5ZkzZwpAGECU1mjEbh9f8aO7h1CCcHFyEoAopTeI7DqdMOr14uzZs8Jut4stW7aIb7/9VuRKGhUPiLq1a4sC+fKJstpnS/7d8w8QdQ0GUTh/fge9O+ljy5Ytwpi0EgUglAqFaGMwisO+fmJQ0vL7b/Mz/w+TySQA8WPSnnYPsmYTVfQG0bJly9cu6/jx48/Kcnu28sRwV7fkn3ONUilmzpz51nklKa1MmDAh+d9bnz59XroViCS9D2RbMvOQ90qSpLRWoWxZUUevf2559ZzZsqVZfXa7XTx8+FA8ePDgtWbQ2+12cfXqVXH+/PmXzmReuHChyJU9u/B2dxcd2rX71+/OvXv3ih49eohevXqJY8eOvdV1vK5evXoJBYhKeoPw02qFh6ur+OyzzwQgfvH0Tn7/ixoMomfPnikq02KxiEWLFonq1asLQOiVSgGIj6pVS14+/201adLkudUTb/sHCINSKSZPnpwq5UtSZuXv45O8+uqDrNlEF6OTKFKgQJrWabPZRJkSJUVWrVaMcXUXLQxGAcjt/VLRnj17hJubmwBE3rx55RL9UqYnl5FPAdnolt5Hjx8/Fh9Vq/ask0+nE+PGjcuUy5ulJovFIg4dOiR27NiRvFxRZGSk6Nu3r6hWubLo1KlTipaL/v3330WPHj3E559/Ls6ePZvWsV/JbrcLFycn8WnSMu93/QNEMZ1ONG/W7K3KHD58uFAlNT5LFismbt269cJjW7duLSr9z8OGH5OWtK9csaIokDu36NKpkwgPD39pPS2aNRMqhUKUNBiFUa0WxYsUyVDLwMXExAi1SiV6OjmL+/4B4qivX/Ke7NeTltm/4OcvgJcuD1evbl3hrVQKFQhNUucVIPLlzSuCg4PFmjVrRMeOHcWnn34qzp8//9y59evWFX5arVjm6SVmuXsKQ9I9UYFQJu37Dog1a9akx9vhEBEREcLZaBR1DQYR5JtFdDI+G6Bw3NdPPMiaTdz3DxBGlUpMmzYtVeorWrCgyK/Ti1+9vMUEN3ehUije6OGIxWIRlStWFAaVSgBiu7dvct4sOp0YPnx4quSVpLQyd+5coUj6HdOhQwe55KT03pJtycxD3itJktJa2ZIlRRO9Ibn9283JWWT380uTuqKiosRHgYHJ7ceaH30kIiMj//O8mJgYUbdWreTzChco8EbbYjlKSEiIAMSopMHK57P4Cw+NRgwePFh4uLqKjwwGccLXT8z18BQqhULMmDHjP8u02WyiSaNGQqlQiCxKpVCAqK/Xi7We3kKlUIgFCxakON/Tp0/F5s2bxY4dO/617Z1P0hZwC5K2/Dvi6yeUIObOnfva74MkvUvKliwpyun14rpfVnHZL6sopNOLurVqpXm9Dx48EB9VqybUKpXw9fISixYtSvM63zeXLl0SOXPmFIDw9PQUQUFBjo4kSW9MdrangGx0S++zhIQEOSNNPGtwVqtcObnB6e3hIU6ePOnoWG/NZrMJrUYjvk1qiD7Imk0E6vSifr16b112fHy8CA0NfeUgjV69eomsWq24nNTx3NPJWei0WmG1WlNUh8ViETNmzBDdunUTo0ePznC/p69fvy4AkUelFtV0OvGrl7cooFYLQGzw8hEPsmYTKz29BSD27NnzwjKqJQ16WebpJS77ZRUjXZ+N+ty6det/1u/h6ioGu7gm39tqWp0ARHO9QYxydRPeSqXw9/V9pwfSnDp1SgBiW1Jn9T6fLAIQI5J+5pd5eglArFu3LlXqu3z5ssj1wQfJvys6tG8vLBbLG5UVFRUlPv30U6FVqURlnU5s9n42mhsQ27ZtS5W8kpSWVq1aJdRJv/MaN278rweKkvQ+kG3JzEPeK0mS0tr06dOftRGMTqK7k7NQKRRi8ODBaVJX40aNhFGhEDPcPcRMd0/hrFSKTh07/ud5AwYMEEaVSsz18BRrvLxFNq1O1AgMTJOMaeHGjRsCEMs9vZIHK+fR60W/fv3Ezp07hZPBkNxWa9q4cYoGhO7atUsAYlFSJ/i8pE7xtV7ewv81BkL/9ddfwsfTM7n+EkWLPrcyYp4cOYSfUil0IKpqdcJNoRBOOp2IiIh407dDkt4JBw8eFAadTrio1cKoUgk3Z+d0nbz0Lj8zywiCg4NFhQoVBCA0Go1Yvny5oyNJ0huRe7ZLkvRKOp0OpVL+Chg3bhx/njjBKk9vDvpmIXt8PB3btnV0rLemVCpp1rQpM+JimWWKZkRUJEHmBJo1b/7WZev1ery8vF643/o/Pv74Y0JtNqqGBFM7NIQFsTGMGj0alUqVojrUajVffPEFixYt4rvvvsPV1TX5e3/++Sfjxo1j2rRpPHny5K2v502MHTsWFVBSq8Vkt9MuLJSrViu+3t60jwijUUQYn0SGU7N6dapXr/7CMmrVqgVAGa0OV6WSjkYnAMLCwv6zfl8fH05aLViEINZu55wlkZwqFT95eNLD2YVxbu48Dgnh8ePHqXXJGU5AQAAKhYLt8XEIIYgRdhTA2OgoCoUE0yU8jEb169M8FX7mAQoVKsTf165x8eJF7t69yy8rV6JWq9+oLFdXV+bOncuO3bu5rNPRLPQpP8XGMGrUKBo0aJAqeSUpLbVr147Nmzej1+vZunUrDRo0wGQyOTqWJEmSJEmSQ/Tv35/x48dzxNOD3S7ODBw0iHHjxqV6PUII9u7cSXujEy2NTjQ3GmlvMLJj69b/PPfE0aPU1epoZDBSRaenq17PiZMnUz1jWsmRIwcF8uRhVGwMG+PiGB4Vyc2EBOrUqUPdunW5fvMmv//+O8eOHWPj5s0p2oM8ODgYgGp6/bO/dc/+3hAXx2OzmeLFi6coW7fOnckSF8dRXz+2evty/+pVvv322+TvDxwyhGC7HV+VmgtWC1FCMHPOHNzd3V/zXXg3XLhwgbq1a1M4Xz7at23rsOc6bysmJobOHTvi4uSEj6cnP/zwA0IIR8fKVKpWrcpfZ88ybOxYRo4fz5nz5ylRokS61f+q55rS28uSJQv79++nVatWWCwWOnfuzMiRI+W/E+mdpRDv8U93dHQ0bm5uREVFPdeRI0nS+6NRw4Yk7PuDZV7eAKyNi+XryAgSEhLQ6XQOTvd2TCYTvXr0YMuWLRgNBgZ88w1Dhw5Nsw+Te/fuZc6cOZhMJg4FBZGQmAiAAvD08ODOvXs4Ozu/VR3r16+nbZs2uKhUJNjteHh5cfzUKT744IPkY2JiYjhy5AhKpZLKlStjNBrfqs7/Ky4uDicnJ0a6utHT2QWLEASGBHPPZmPIkCG4ublx/fp1ChYsyBdffPHSn6ObN29SqGBB6qo1dHJyYk1cHFsTzVy4eJGCBQu+MsPWrVtp3qwZPmoNZmEn0mLBU6nkmK8fRqWSpbExDI+KJDQ0FC8vr1S9/ozi119/5dPu3YmKiUGjUJAoBJUrVmTQ0KFcuXKFHDly0KpVqxQP8HCU2NhYbt68iZ+fH76+vo6OI0mvJSgoiMaNG2MymShXrhw7dux4Z3/nSNL/JduSmYe8V5IkZXYmk4lvv/2WIwcPcu7cOcpotazx8kEBtA17yk0nJ56Gh7+yjFYtW3Jm2za2enhhVCjoERnOHV9fbty5k+p54+PjmTZtGlevXiV//vwMGDAgVdrl169fp1WzZpy/fBm9TseEiRPp37//G5d38eJFSpQoQVu9gQ5GJ5bHxvBrfBwC6NWrF3Pnzk3R8xOdVsswg5Eezi4AfB4RRnipUhw8ciT5mFWrVrHyl19Qq9X07NWLRo0avXHuzOzBgweUKFoUnwQzldVqtloS8c+Xj1N//YVWq3V0vNfSoV07tqxfz2cGIyE2G8viYpk3bx69evVydDRJylDsdjvDhg1j4sSJAHTo0IFFixZl+ufu0vsjpe1J2dkuG92S9F7r168fq+fNY7OHF/4qFb0iw/nbxYVHmXRkraPs2rWL+vXrU0yrJdhiJcRuY5ybO8U0GkZGRXLBYmH9pk00a9bsrerx9/WlZEwsc909CLPbaRQRRoNOnVi4cCEAt2/fplb16ty6dw+AAnnysPfAAbJly/a2l5jMZDLh6urKJDcP2js5IYSg7tMQEoRAmS2A66/xsGLdunV80qULsfHxGHQ6Fi5eTPv27VN07smTJ9m0aRNqtRpnZ2e+HTKEHCo1BTUadpkTaN+hA8tXrHjhuVu3buXnWbOwWCy0btOGXr16ZaoRvceOHaNKlSrU1empqNGwID4O4enFlRvX33pAhyRJr+fPP/+kXr16hIWFUaRIEXbv3k3WrFkdHUuS0pxsS2Ye8l5JkpSZ2e12ateowYkjR6iv1rAxIR4AP6UKFPDYZqN5ixZs2LDhleVcunSJKpUqYY9PQKtUEGmzsWHjRpo0aZKqeS0WCzWrV+fUiRMU0Wq5nJhI6XLl+CMoKNU6U00mE0ajMVUGVi9cuJDP+vTBYrWiVavp+8UXdOnSJcWz2gEK58+P8/0HLHX3INxup2VkOA3at2fJkiVvne9dM3PmTAZ++SV/+frhrlRy0mymRdhTDh8+TOXKlR0dL8WEEDgZDPTX6ujr8uyzRaewULTVqrJz924Hp5OkjGnhwoX06dMHq9VK1apV2bRpkxysL2UKKW1Pvtn6p5IkSe+IESNGsGvbdqrevoVaoUClVrNh8WJHx3orISEhzJgxg5CQECpVqsQnn3yS5h2p06ZMoYxWx0ZPLz4Oe4qXXUlXp2ednl+6uNI1PIynT5++VR1Wq5Xgp0+p7uaOWqEgi0pFMaWShw8eJB/T59NPsT55wh6fLNgQdLt/ny+/+IL1Gze+Vd3/y8XFhfp16jBmz16C7TauWyxctlr4UKsj/DWXFW/dujUNGjTg4cOHBAQE4OTklOJzy5cvT/ny5ZO/DgwMZOTIkUTHxPBd3boMHTqUo0ePsn//ftzd3enYsSNubm5s2bKFZs2aUV6nxwXovX8/0dHRfPPNN6+V3ZG2bt2Kj1rNXHcPVAoF+TUa2j0J5t69exQuXNjR8STpvVK2bFkOHjxI7dq1uXTpElWrVmXv3r3kypXL0dEkSZIkSZIyvStXrvBHUBALPLyobzBQITaWb6IieGK3YQeyZc3KvHnz/rOcIkWKcOb8eVauXInZbKZJkyaULVs21fPu3buXQ0eP8quXNx/q9Jwwm2l5/Dh79uyhYcOGqVKHi4tLqpQD0KNHD5o1a8adO3fIlSvXG3X8LFiyhPp161Ik+BEAeXLk4Pvvv0+1jO8SIQQK4J9hEmrF/389s9FqNETY7QDYhSASQfakLQkkSfq3Hj16kDNnTlq2bMmhQ4eoWLEi27ZtI3/+/I6OJkmpQna2S5KUaR06dIgJ48cTFRlJnfr1GTp0aIr25fpfvr6+/Hn2DJs2bSImJoaaNWv+5xLeGVloaCjly5Qh8skTPlCrWbhwIWfOnGHmzJlpVueBAwe4eeMGhRQKlAoFRTVaVsXFctdq5QOVioNmMwqgfv36b1WPWq2mVLFiLL52ncIaDY9sNg4kJvLN/zwguHzhAs00Wgol/RzU12g5fO7cW9X7IqvWrqVO7drM+PNPDAoFxTUajiaamd637yvPi4iIYNSoUVz5+2/y5c/P6NGj8fLySpUPlhUrVmTXrl3JXy9cuJBevXrhplYTa7MxY+o0jp06yU8//kglnZ5fPb1QKBQMiYxgxtSpmaqzXa/XE2+3YxICd4WCEJst+XVJktJf4cKFOXz4MLVq1eLWrVtUqVKFPXv2yMEvkiRJkiRJb8lisQDgqnzWK9nSaGRsrImKNWrQqlUrPv74Y9zc3FJUVs6cOZ/bSzwtREZGAlBYo036+1nbPCIiIk3rfRve3t54e3u/8fmVK1fm4uXL7Nu3D71eT8OGDeVKKi/RuHFjhg8bRrvIcALVGtYnmimQJ0+aDPxISwqFgv4DBjBmzBju2Kw8FYKziYlM7NfP0dEkKUOrVasWR48epWHDhty4cYNKlSqxadMmqlWr5uhokvTW5DLycjk5ScqUTp48SZXKlSmkUpFLqWSb2UyXTz5JXk7cUWw2m0P3iB4/fjzfjxzJfk9vAtRq5sWYGBsdxaNHj/D390/1+gYPHsykSZNQAgLo5+yCGvgpxoQCcFMqCbXbGTRoUPLePG/j77//pkZgIMFJs+QVQLOmTfl1/XrUajWBVaoQevo0a909sApoHRlO3mrVWLdxI0+ePCFbtmyptieQEIKFCxeyeP58bHY7Xbp147PPPnvpKgIJCQlUKl+e239foaJaxUmbjax58nDizz9fa0Z7SiQmJuLu6kpTlZpJbu7ctdloGB7GZwO/5tCBA7ifPcc8z2cj9idHR/GLSklo0kORzODu3buUKl4cN7OZIgolexPN1G3QgM2//ZaplsNPa3a7nePHjxMaGkqZMmUICAhwdCTpHff48ePkGe5eXl7s3Lkz0z04k6SUkm3JzEPeK0n6/7NG5WflzMdisVCyWDGibt+ms07PUauFoxYLJ0+domTJko6O9y+3b9+mcMGCVFWpaas38GtCHEE2G5f+/pvcuXM7Op6UAZw8eZIv+/bl/r37FC9Vkrnz55M9e3ZHx3ptQghmzpzJ5o0b0RsM9P/yS+rWrevoWJKUKTx58oSmTZty4sQJNBoNixcvpmPHjo6OJUkvlNL2pDIdM0mSJKWaBQsWkE2lYrOnN7M9vBji7MLixYuJj493SJ6goCDy5MiBWq0mf+7cHDt2zCE5wsPD8VaryZrU4V88aTR5eHh4qtd1/vx5Jk2axFAXV277ZaWGTs+sGBM/xcfRuGlTRn3/Pd0GDqRe3bqsXr6cwvnzv/WeZQUKFMAUE/Pca5u3bGHGjBkA/DR7NsE6HcWDH1P6yWOinZ2pWLkyXp6e5M2bl6xZsrBnz56Xln/16lVqBAbi5+1NlYoVOfeKWfEKhYKePXty7NQpTp4+zeeff/7Kh1f79u3j7IULrHT3YJGnN2vdPbh05cpzs9H/r1OnTlGqWDGcjUbKlCjBX3/99dJj/1dERATxZjM1dXqUCgW51GryadQ8fPiQFq1bsy0hntFRkUw3RTM/Po7mrVunqNyMIkeOHBw9cYJKLVoQX7ECXw8Zwtp16+TDw/9hsVho3rQplStXpmnTpuTPm5ft27c7Opb0jvP39ycoKIjy5csTFhZGjRo1CAoKcnQsSZIkSXpvmc1mevbsibPRiKuzM/3798dqtTo6lvQaNBoNO/fsoVCVKsy22wjOmpUtv/2WITvaAXLlysW6DRv4U6Ome0QYJzQa1q5bJzvapWTly5fn6MmT3A9+zLYdOzJlRzs8eyb0xRdf8MeBA2zfsUN2tEvSa8iSJQv79++nVatWWCwWOnXqxMiRIzPllhKS9A+5jLwkSZlSYmIiTgoF/ywa765UIoRwyIODe/fu0bhBA4raBb3c3Fn/OJgGdevy97Vr+Pn5pUodQgjCwsIwGAyvnAVdvXp1pk6dyrjoKD7U6ZgSF0s2P3/y5s2bKjn+1507dwBoZXRCpVQy292Dwk8e8+VXX3H04EFmTJ1GdIwJe2Iinzg58yAyim7duuHm5kaLFi3eqM5ffvmF2Ph4fnT3oIHewGRTNAtjYwgKCuLrr7+mRIkSXLh8me3bt6NQKPD396dRo0a0Nxhp5OrG3NhYWjZvzs3bt/Hx8Xmu7MjISGoGVkcfGUF7jZZd585Rs3p1Lv79d6rcx3+WzftnIERW1bP/guPi4l54/OPHj6lbqxY5EhMZoNWx+do16taqxaUrV/D19X1lXT4+PmTz92dORAQfqFVctlg4m5BApzJl6NevH1FRUcyaMQOLxULbzp356aef3vr60lvBggVZtWqVo2NkWHPnzmXbtm3M9/CilFbLkOhI2rdtS3BIiFxuX0pTXl5e7N27l6ZNm7J//37q1avHunXraNSokaOjSZIkSdJ7Z9CgQaxYsoR+RicsQjBr5kzc3d0ZPXq0o6NJryF79uzs2bfP0TFSrFGjRoSEhfH06VN8fHxQqzPW4+eQkBDWrVuH2Wymfv36FCpUyNGRJEmS3jsGg4G1a9cybNgwJk6cyJgxY7h58yaLFi1KtVVJJSk9yZntkiRlSi1btuRiQgL9IiOYaYrm+9gYateqhYuLyyvPe/r0Kffu3cNut6dalgMHDmCKi2OBuwcdnZyZ6+ZOpMnE4cOHU6X8R48eUbFcOXx8fHBxcaFv374vzd+oUSMmTJjAwvg4uoSHEeXlxW/bt6XJh5RChQqhVCqZEB1F3ZAnFHzyGDswa8YMTOfP09ZsxpyYyEAXN0a4uTPXw5MyWh2/rFjxxnU+fPgQo0JBK6MTRqWSzk7OCJ7fqztr1qz06NGD7t27c+XKFQxKJT+4uVNVp2esqyum2FjOnj37r7IPHjzIwyfBLHXz4GtXN1a7eRAWGcnu3bvfOO//OnDgACqgZ3gYK2Nj6BYWik6jITAw8IXH79+/n4joaJa6efCpswuL3TwIjYhI0SxRpVLJ+k2buG80UvdpCF9FRtCqdWs+//xzlEolo0ePJiwykujYWBYvXozBYEiVa5QyjosXL1JQr6eBwYC/SkU3gxNRJhOPHj1ydDTpPeDi4sL27dtp0qQJCQkJNG/enNWrVzs6liRJkiS9d7asX09nvYEvXVz5xtWNVnoDm9atc3SsDOWvv/5iwYIFbN26FZvN5ug47wy1Wo2/v3+G62i/ffs2JYsV46svvmDEoEGULlnylavfSe8Xq9XK7Nmz+fTTTxk/fjwx/2dlRUmSUpdSqWTChAksWLAAtVrNypUrqV27NmFhYY6OJkmvTXa2S5KUKTVp0oQFCxbwl4c7c+w2ajZuzNpff33hsUIIpk+fjrebG1l9fcmRIwelS5Tg/v37qZLln5nmwUkN88dJfxuNxlQpv32bNty/cIFZ7p4Mdnbh59mzXzkTefDgwURFR3P//n1u3b1LqVKlUiXH/5UvXz5+/PFHNsbHEW6386O7B1W1OswWC6vdPfna1Q01YOHZEkACSBR2lG+xp33BggWJE4L1cbHE2+2siH3W8Bk8ePALj/fy8iLeZuOy1QLAmcREALy9vf91rCoplzlpySJzUm7Va+S9fPkyCxYsYP369ZjN5ue+d2DPHqpoddy1WhkcFcnflkT8fH1fumRaZNIe6pFJAyv++TulAycqVKjAjdu3OXLkCJcuXWL1mjUZ7kGHlHZy587NzcRE/ko0YxGCTfFx6HW6VFttQ5L+i16vZ/369XTo0AGr1UqHDh2YN2+eo2NJkiRJ0nvFYDQSktSOEEIQIuwYX7FS2vtm9uzZlC1bll69etGkSROaNGwol9l/iYcPH7Jt2zb+/PPPTL3M7/Dhw1FFRnHCJwvnff0op1Lx+aefOjqWlAEIIWjXpg1f9OvH0RUrGPfddwRWqZKi7Srv37/P4cOHCQ4OToekkvTu6dGjBzt27MDV1ZVDhw5RsWJFrl275uhYkvR6xHssKipKACIqKsrRUSRJSkVRUVGiU4cOws/bWxTIk0d88sknAhDNDUbRzugklCCclUpR9cMPhRBCWCwW8eeff4pjx46J+Pj4164vJiZGFClQQHhqNKKuXi/cNBpRqnjxNyrr/0pMTBQKhUJMcHMXD7JmEw+yZhPV9QbRuFGjty47NQQHBwtAzPXwFA+yZhOT3TyEAsQJXz/xi6e3KK3RCCWItkajqKLVCUDs2LHjjeuz2+2ic8eOgmd990IBok+fPuLcuXMiPj5e9O3bV3i4ugpPNzcxaNAgYTKZROkSJYRBpRJFDAahVChE248/Fna7/V9lm0wmkS9XbuGv1YouRieRQ6cTAX5+IiwsLEXZ1q5dKzRqtVAkZStfpoyIiYlJ/n72gAChTPoeILyUSlG6ePEXljVu3DgBCFXSca0MRuGj0YqC+fIll3n58mXx448/igULFojw8PA3eDeld1lsbKyoWK7cs58jhUKolEqxbNkyR8eS3kM2m0189tlnyb/7Jk6c6OhIkpQqZFsy85D3SnrX3L17V2zYsEEEBQUJm832ymPnz58vAFFZpxfldXoBiLVr16ZT0owtODhYqJRK0dXJSdzxDxDLPb2EUqEQixYtcnS0DGfTpk1Cr9Umf55r37btf/7sZVRVP/xQNDMYkp+vjHJ1E3qt1tGxpAzg1KlTAhCz3J8939rp4ysAsXz58leeN3nyZKFQKAQgNGq1WLJkSfoElqR30MWLF0WOHDkEIDw9PUVQUJCjI0lSituTcma7JEnvnPZt27J57Vo+TjCT69Ejli9ZQgO9gZkenkx296CT0QmtgCPHjxMWFkZglSqULVuWSpUqUbxwEW7fvv1a9Tk5OXHg8GHa9eqFqFqVLn36sO/AgVTZF1mtVuNsNHLZYkEIQZzdzl1hx93D463LfpFjx45RtGBBdFotJYsW5fTp06883snJCYVCwa2k0f8VtVpUQPWnT+gYHspflmfz2jfHx3Pcksj3339PvXr1XivT/fv3WbJkCatWrSI6Opqly5ezf/9+Jk6ciL+fH3PmzKFEiRIUyJ+feT//TEe7oI3NxpTJk5k2bRpBhw/z3bhxVO3Shdk//8wvq1ahUCj+VY+zszP7Dx2kapMmnP4gO6Xq1uXgkSN4enr+Z8bExES6f/IJ9TRabvgHsNXbl4tnzzJ9+nTi4+P55JNPePjwIU30Bq75ZWWVpzeRdjvFSpVi+/btTJgwgTVr1mCz2Th8+DDDhw+nv7MLaz29cVYo2JwQT2DTJhw4dAgnJye2b99OqRIlGDRgAJ/27EmenDmpWL481SpXZs6cOQ6faWC327l9+zb37t37zyx2u5179+4RGhqaTuneD0ajkQOHDrF27Vpmzp7N6b/+onPnzo6OJb2HlEols2bNYtiwYcCzlUiGDh3q8N9TkiRJkpQZ/fbbbxTIl4+WLVsSGBhI08aNsVgsLz2+Z8+erFy5EtePquNTswabNm3i448/Tr/AGdi9e/ew2e20MTihViiooTfgr9Vx48YNR0fLUEwmE506dKC6SsUJXz9+dPdg9Zo1LFu2zNHR3kjJMmXYZ7EQlJDARUsiv5gTKF6smKNjSRlAeHg4ACW1WgAKqTXoVapXPqs4efIk33zzDZ8andjnk4UWWi09e/Tg5s2b6ZJZkt41RYoU4cSJE1SoUIHw8HBq1arFirfYjlSS0lU6dPxnWHKEuyS9e/75dz0xaSb4ff8A4aRQiPr6/z9yubPRSbgoFMLL3V306tVLuKk14hdPb7HF20fk0OnER9WqOfoynjNt2jQBiKJ6g8iq1Qong0GcP38+1eu5f/++cHN2FmX0BjHK1U0U1+uFt4eHCAkJeeV5AwYMEIBwViiEOmkWrR7EJi8fcTqLvyiv1Qk3Jydx6tSpV5YTHR0tTpw4IW7cuJH82tGjR4Wrk1PyCPpcH3wgHjx4IIQQolzp0iKPTid+8/YRCz28hAZENyfn5Pv8scEoihUq9PZvTAo8ePBAAGKpp1dy/aUNRtGlSxfRtWtXoVMqn80i8fJO/n4+nU6UKFFCAMJVrRGAaFS/vpg+fbrQKpXivn+AeJA1mziZxU8A4vfff0+uL5ufv/hIrxc3/APEcV8/4aFQCn+lUtTVP5utMm3atHS57hcJDQ0VlStWTL5ntWvWFNHR0S889t69e6JksWLJx3bt0kVYLJZ0TixJUnqZOHFi8r/33r17Z9oZUZIkhGxLZibyXknviri4OOHi5CTqGoziTBZ/scjDS6iVSvHTTz85Olqm9PTpU6HVaEQrg1Gcz+IvfnL3FIBYsWJFqtd19OhRUbp4ceHt7i5qBAY+1+bN6M6fPy9Iat//05bNrTeIAQMGODraG4mKihIfVqiQ/Jk0R0CA+Pvvvx0dK00kJCSISZMmia5du4oxY8YIk8nk6EgZ2pMnT4SLk5MI1BvESk9v0c7oJBQKhTh58uRLz5kzZ45QKhTibtLzmzNZ/AUgNm7cmI7JJendExcXJ1q1apX8u3rkyJEvXKVUktKDnNkuSdJ76Z/9tROSZszZAINKxY6EeD6PCOPriHBWxMViEoIJkyfz16lT1NNqqK7XU0aro51Wx5kzZxx4Bf/21VdfsX79esq1a0uLXr04dfo0xZJGXt+8eZMJEyYwfvx4rl69is1mY926dUydOpU//vjjter5448/iIqJYam7Bz2cXVjo5k5oRASHDh165Xlt27ZFpVRSRqvjaxdXPJVKdAoFpbVasqhUtDMaiYqNpWjSTPkffviBmTNnEhYWllzG0aNHyZ0jBxUqVCBv3rz06NEDu91Or27dyGezc8kvK0d8/YgPDmbYsGEIIfjr7Fm66g2YBfwWH4cSCLfbgGd7bUUIgS4VVhdICV9fXzzd3FgWH8cTm419CfFcNCdQuHBhfl2zht5GJwwKBaviYom229mXEM/txETOnTvHSFc3LvtmYZmnF7/v2MGDBw9ItNs5kLTn++6EBAACAgIAsNlsPAh+TD2dHr1CQTa1mvI6Lfk1GhZ5evOxwcjsH2eky3W/yOd9+vD36dPM8/Bklrsnx4KCGDhw4AuP7dCmDSFXr7LQw4sxru6sWL6cKVOmpHNiSZLSy6BBg5g3bx4KhYK5c+fSqVOnV87GkyRJkiTp/3v06BGm2Fi6Go34qFTUNRgooNNx+fJlR0fLlLy9vVm0eDFbLIkUf/KYLyLDad+2Le3bt0/Vem7fvk3d2rXh2nU+sdm5dfw4dWrUIDY2NlXrSSsBAQGoVSo2x8dhF4JTZjP3E83kyJHD0dHeiKurK0GHD3PixAmCgoK4eOUKBQsWdHSsVGez2WjWuDHfDhnC+bW/MmH0aGoEBpKQ9HxB+jdfX182bNrEBZ2WDuGhbLRamD9/PuXKlXvpOQEBAdiFYL/52fu65/88v5Ek6c0YDAbWrl3L4MGDARg9ejSdO3fGnPSsVJIypPTo+c+o5Ah3SXo3dWzfXmiVStHGaBRldXqhVCjEgAEDRMG8eYWPh4eoWLFi8r7hzZs2Fbl1OnE+i7+47h8gKukNokiBAg6+gpQ5deqUcHFyEs5qtXBVa4RBpxOVypcXgDCqVAIQI0aMSD4+PDxcdO3SRRTOl0/UrF79XzPN165dKwAR5JtFPMiaTezwfrY/1bZt216ZY+jQoSKLVituJ43kXe7pJQCxyMNTXPHLKqoZDCLAz0+sXbtWqJRK4apWC61SKT4ICBAPHz4UiYmJws/HR5TT68U2b1/xvZu7AMSCBQuEQacT37m6JY+gb2Ewig8rVBBCCJHd31+U1mqFEkRhtUbkSLrm6jqdqJK0H+F/7a2Vmnbs2CGcDIbkUZe1atYU8fHxwtXJSfRxdhZzPDyF5n/2bC9bqpQAREuDUZTXakULg0HolEoxdepU0aBuXaEA4ZW0L16fPn2eqyt71qyikFoj9vtkESs9vYUeheidNKu/u5Oz+MDf/6U503okaIBvFtHP2SX5nnUxOoki+fP/6zir1SqUSqUYn7QKxYOs2UQtvV7Uq1v3teu8ceOGqF2zpgjwzSKqVKokzpw5kwpXIklSWlm9erVQq9UCEI0bNxbx8fGOjiRJr022JTMPea+kd0VMTIww6HSipcEobvkHiI1ePkKnUonJkyc7OlqmduPGDbF+/Xpx5MiRNGkrzZw5U2iUSnHFL+tz+0D/8ccfqV5XWpk9e7ZQKBRCk7RiW9UPP5Sf39JIZGSkOHbsmLh169ZblXPw4MHnVt/blvR8Z+3atS88PiQkRHzyySeifJkyon27duLevXtvVX9mZjabxa1bt0RMTMx/Hmu1WkWTRo2EAoR30vObbt26yRm4kpSKFixYIFRJz3yrVq0qQkNDHR1Jes+ktD2pTrdefUmSpHSycPFi/AMC2LtjB+6enuwaMYJatWoxderUfx07fsIEqgQFUT40BJVCgU2pZNvPPzsg9esbPHAgH1htbPD2RQXUCXvKsZMnWeHpTXWdjp9iTIwdO5bOnTuTK1cuGtarx99nztBMq+XUvft8FBjImXPnyJs3LwD169cnX67ctH74gEoqFYetVooWKsRHH330yhwajYZEITALgUahICZpVYHuEc/2uzLq9Wxevpx2H39MfZ2eWe4ehNht1H38mJw5cpDzgw8IfvqUKZ7elNBqKaHVsirRzKlTpyhcsCAbrl6lntVAhN1OkNVCi+LFAZg1dy7NmzalmEbDb96+KIGWYU85brdTpWpV1vTqRZs2bdLs/f+/6tWrx5Vr1zh16hQeHh5UrVoVlUrFZ/36MXHCBJoYDBTVaDljSWTYsGEUKFCAbl26sDshnpp6PUfMZqx2O3ny5OGL339nzZo13L17l6JFi9KkSZPn6po8bRod2rblo6dPAFACMUIwLiqSZfFxfNmn97/ynTlzhi4dOnDp6lVyBASwYMkSatasmervg4+vD3/duIlFCGzAeZsNnyxZ/nWcUqnE3cWFM5ZEOglBjBDcEIIqPj4pruvevXtcvHiR3j16oAoPp5VGy54zZ6hZvToXLl8ma9asycfa7XY2bNjArVu3KFy4MI0aNUKhUKTGJUuS9Jratm2Li4sLrVq1YuvWrTRo0IAtW7bg4uLi6GiSJEmSlGE5OTkxf+FCunbpwobHDwGoUqkSn3/+uYOTZW558uQhT548aVa+Wq1GCEGCEDgDcXaR/Hpm8dlnn1G2bFlOnDiBr68vzZs3R5u0r7WUevbt20fLZs2IiokBoF+/fsyYMeON2q0REREAFNEk7T+u0aBUKJJf/1/x8fHUCAzk8Y0b1FBrOHDhAlUPHuTMhQt4eHi8xRVlTlqtlly5cqXoWJVKxcbNm1m9ejW3bt2iSJEitGjRQj5rkKRU1KNHD3LkyEGrVq04dOgQlSpVYtu2beTLl8/R0STpOQohknpF3kPR0dG4ubkRFRWFq6uro+NIkuQgDx8+ZN26dVgsFho1akShQoUcHSlFCufLR6XHwYxxcwegdWgI5y0Wrvo/W67qltVCtZAn7Nu3Dx8fH4oXL84yTy9q6g3E2u2UDQ1h8KhRfPvtt1y/fp1unTtz5tw5dBoNAdmzU/HDDxk/fjze3t6vzHH9+nVKlyxJNpuNEkoVWxMTqVStKp/26UNsbCyBgYH4+flhNBqZ7u5Ba6MTAB3CnvLIZsNDpeaUOYFPnJwZ7erGbZuV+uFhfDN8OM2aNaNOzZqEJC05X6xwYf4ICkrOVLpkSbJevcY8Ty8AZpiimS/sRJpMafGWvxG73c7kyZPZtH49BoOBug0aMHnCBMKjogBY5+VDJZ2ORzYrFZ4Es3DRIrp16/af5Q4bNowffvgh+WsXgwGDwUD7zp2ZNGkSGo0m+Xvh4eEUyp8f39hY2uv0bDObOYPg/MWLqf5gaceOHTRp3BgflRobgihg7759VKlS5V/Hzp8/n08//ZQ8ej1RdjuJWi3HTpygcOHC/1nPjBkzGDBgAHa7HYC9PlkoqNEQYbdRPPgxCxYupHv37sCze9CmdWvWb9yIq1pDtNVCnz59+DmTDKyRpHdVUFAQjRs3xmQyUa5cOXbs2IGXl5ejY0lSisi2ZOYh75X0rrl48SLHjh3D29ubhg0byk7PDC44OJgSRYviHBPDhyo1OyyJZC9YkBN//invnZQsNjaW7FmzUjTRwnAXF46azYyOjmLNmjVvNIng0aNHFMiXj7JC0NVgZFN8PNsSzZw9d44iRYo8d+zu3bupW7cu27x9KaHV8sBqpWJIMCtWrKBjx46pdYmSJElv5dKlSzRs2JC7d+/i6enJ5s2bqVq1qqNjSe+BlLYnM88wSkmSpDQSEBDAl19+6egYL3XkyBEmTZxIVEQEdRs04JtvvkGtVlO2QgU2//orHyUkoFHAJYuFWCGYF2Oigd7ATyYTGrWaggUL8vTpUwA0PBtdq1QoUCkU2O12YmNjqVOjBsqnT/lKp2dfYiJnb9xg/caN/9nRDpAvXz4OHj7Md8OHc/PxY3pUrcr48eNxcnJ67rhC+fKx8P59Cqo13LVZOWo284WLK72dnCn85DGLY2PYakkkymolV65cfPHFF3h4eHD56lWOHDmCTqejWrVqGAyG5DLbtGvH0CFDmBwdhYdSydz4OBq3apWK7/7bUyqVDB48mMGDB2Oz2cieNSt5zGYGu7kzOCoSL6USAHeFEpVCkeI91MaPH8/HH3/MlStXyJMnz0v3EVu2bBlffP450bGxeKnVVHPV08pgpNCTx+zZsyfVO9vr16/PsePHWbt2LUqlko4dO1KsWLEXHturVy8++OADfv/9d4xGIz179kzRyNRz587x1Vdf0d3oREG1moFRkVh5NnbQIp6t069Mel/h2QCA9Rs3Mt/DiwYGA8tjYxg2Zw7dunWjbNmyqXLdkiS9vsDAQP744w/q1avHqVOnCAwMZPfu3c+tSiFJkiRJ0vOKFi1K0aJFHR1DSiE/Pz8OHjnC4G++4eKtWzQsXZopU6dmqI72Bw8esGbNGsxmM40bN6Z40mpyUvq5desWEdHRDPDyoYhGSxGNlmVJK/69SWd71qxZ2bBpE+3btKFreBhOBgO/rFz5r452gMTERABck9rQLkoliv95XZIkKSMoUqQIx48fp0mTJpw6dYpatWqxePFiOnTo4OhokgTIme1yhLskSRnaqVOnqPzhhxRQqfhAoWSnOYFen37KnDlzCAsLo0Hdupw8fRqALAoFtQ1GfomLBZ51qC9dtoxOnTphtVopV7o0j65epa1WxzGrhQt2O6fPnCE0NJTAwEB2+vhSVKMl3m6n+NMnjJ8yJVUHIZw/f576derw6Mmzpc9LaTSs9/bFZLdT7ukTPv3sMzw9PfHy8qJLly64ubn9Z5k2m41BgwYxe9YsrFYrzZo2ZfHSpQ79nW6z2VAqlS9cNuzx48dkzZqVRR5eVNLp+CgkGFelkg5GJ7bHx3MOwaW//061DvCgoCCqV69Oc4ORilotP8eYUCsULPHwotrTJyxbtozOnTunSl3pafny5XTp0oXr/gEgBHWehhAj7DQ2GDlgtRDn6sr5S5fwSVqSfs6cOfT9/HPu+GVFqVAQarNR8sljvvjiC0wmE56envTv35/s2bM7+Mok6f10+fJlateuzaNHj8idOzd79+5N8dKNkuQosi2Zech7JUnSu+by5csM/uYb7t6+TZny5Zkydeobrw509epVKlesSLzJhEapJB7YvGUL9evXT93Q0is9ffqULFmy0NfJmUEurvxttdA4PIzxkyYxYMCA1y5v48aN7Nq1C2dnZ1q2bEnZsmVfOsAjIiKCwgUK4GEy0UKrY0diIjfVKi5cvizbyJIkZThxcXF06tSJjRs3AjBq1Ci+++47uX2DlGZS2p5UvvQ7kiRJksPNnTuX7CoVv3l6M9/Ti0HOLsyfPx+z2YyXlxdHjh/nzJkzFM6fHy+tln7OLsz38MRNpaZFy5Z06tQJeLYf3I7du6lcrx4bjEZEoULs3L2bwoULJze4opKW444RAqsQbz3SfsWKFdSvW5eGSXvxFi9enKs3bhAUFESxwoW5abczLDKCZpHheHh48O233zJ69Gi++OKLFHW0w7P9saZOnUpcfDwJZvOzZcId9BA1JCSEOrVqodVqcXd1ZerUqf86xsvLC4NOxw5zPE4KBRPcPLhjtTIuOorTlkSGfvttqs4037ZtGwE6HTPcPejg5MwEdw9uWq00iwwn9wcf/Gsv+MwiW7ZsAOyKj8egVNLFyYlQu50/3N0o+NFHHDh0KLmjHaBkyZLYhWCKKZrbVitTTdEoFQp++uknTq9Zw9KfZlK2VCnu37/vqEuSpPda4cKFOXz4MHny5OHWrVtUqVKFy5cvOzqWJEmSJElShvPw4UOqVa7MlX37KHn3Hr+tWkXdWrWwWCxvVN6I4cNxiY/nhI8vZ7x9qaRW0//zz1M59fvj2LFjLF26lKNHj77WeT4+PowZM4aZMSZKhz2lQVgohQoXplevXq+dYcqUKbRs2ZKDy5ezfNYsGtWvz7179156vIeHB3v++AOXIkWYYbVgzZ2LnXv2yI52SZIyJKPRyLp16/jmm2+AZ53tnTt3xmw2OziZ9L6TM9vlCHdJkjKwDh06cGnjRn738EKhULAqNpZBURGYTCacnZ2Tjzt37hy1a9TgaXg4AAXz5ePAoUNkyZLlP+uwWCxU/fBDrpw9Sx2NlhM2K3FOThw7eZK8efO+Ue6ff/6Zzz//nKo6PWbgpDmB5cuXJ3f+R0REMGTIEM6ePs0HOXMy/ocfUrR8eEb2UbVqXDx+nP5GJ25YLCyLi2X16tW0bdv2ueOWLl1K927d0AEJQmBQKLArFJQoXZqgw4fR6XSplmn06NFMGzeOI94+eChVrI6N5ZuoCNq2bcu0adPw9/dPtbrSkxCCju3bs2rNGjw0GiIsFjp16MCyFSteOpJ1/PjxfPvttwColEpsdjsDXFwZ4OJKqM1GzfBQun/1FRMnTkzPS5Ek6X88fvyYOnXqcPHiRby8vNi5c6fc6kHKsGRbMvOQ90qSMi8hhJyp9n/89NNPDPrqK/70zYKHUsURcwJtwkI5fvw4FSpUeO3yqlSqRJZz5/nJwxOAeTEmpiaaiY2PT+3oGUZYWBhz5szh6dOnVK5cmdatW6fKz9ngwYOZNGlS8tdfffUV06ZNe60ydu3axbFjx/D19aVLly7/2p7vv1itVlycnWmv1jDa1Y0oIagTHkqTbt2YM2fOa5UlSZKU0c2fP5/PPvsMm81GtWrV2Lhx4xuv9CJJL5PS9qTsbJeNbkmSMrCNGzfSsmVLPjYYyaNWMzchnrKBgezes+dfx4aGhhIUFIRWq6VGjRqv1SiLjIxk6NCh7Ny2jbv37yMAZ6ORlatXv9Hs53y5clH8SQg/eXgihKB9WChHE82MGjuW4cOHv3Z5GZ3JZMLV1ZWp7h60MT573xuHh1KoRQtWrlz5r+NPnTrF3r17OXPmDHq9noIFC9K/f//Xbkj/l/v371OqeHH0cXEUUio5kJhIy1atWLN2barW4wh2u50NGzZw7do1ChYsSIsWLf7zAcnNmze5ffs2rq6uVKhQgUUeXtQ1GACoExFG5Y4dmT9/fnrElyTpJcLDw6lfvz4nT57ExcWFrVu3EhgY6OhYkvQvsi2Zech7JUmZixCCyZMnM+H774mNj6dBvXosXrYMDw8PR0fLEKZNm8bwQYM455MFo1LJ6UQzTUOfcvjwYSpXrvza5fXv359FP//MTFc3PBRKvoyJJkeZMgQdOZIG6R0vLCyMCmXKEPzwIf4aDTfi4xkyZAg//PDDW5V78uRJKlSowDAXN7o5O7MiNobR0VFvfF/e1D/PJn5096BV0rOJ1uGhZGvcmF9//TXdckiSJKWX3bt307p1a6Kjo8mXLx/btm3L9BO6pIxFdrangGx0S5KUGcyZM4exI0cSHRNDndq1WbhkCZ6enqlez+HDh6latSqfOjnT0GBgdmwsh4Sdm7dv4+fn91plZffzp2FMDCPc3AH4MiKcQ+YEntjtrF+/nsaNGzN+/HgOHjiAp5cXw0eMoGTJkql+TenFbDbjZDTypZMzX7m4kiAENcNDqd2pEwsWLEj3POHh4URERPDBBx9w9+5dxo8fT8iTJ1T68EMGDRqERqNJ90wZid1up3D+/NgePGCw0ZnzlkRmxpheuBKBJP2vhw8fMnPmTMLDw6lWrRodOnSQs63SgMlkolmzZvzxxx/o9XrWr19Pw4YNHR1Lkp4j25KZh7xXkpQx/P333+zevRuDwUCrVq1e2qZdvnw5Xbp0oYvRiQ/UambGx1GlVi22bt+ezokzphs3blCyeHEKCUE1jZZfzWacsmfj7MWL6PX61y7PZDLRpFEjDhw8CEC+XLnZuXcPuXPnTu3oGcL48eP5fuRI9nh6k0Ot5kdTNFNM0YSEhDy3FdnrWrlyJR07duSKX1aclUoShCDv44csWbKErl27pt4FvMD/XQGiTMmShF25wgijMzetFn4wRTN79mw+++yzNM0hSZLkKBcvXqRRo0bcvXsXT09PNm/eTNWqVR0dS3pHyD3bJUmS3hF9+vThUUgIMXFxbNyyJU062gFOnDiBUaViuKsbpbU6Rri4EpeQwIULF167rKatWrI0Po7ppmh+iI5iY3wcnZycyas3cODAAbp17cr4sWMxnjjJuW3bqPLhh1y5ciUNrirtxMbGMm3aNAYOHMiGDRvo98UXTDNF0yk8lPrhoTwRgs/Tea87IQRDhgzBy8uLvHnzkjdXLmJjY1m8eDG/b9vGt99+m+Yd7VFRUXz//fd89tlnLF68GLvdnqb1vQmlUsmWbdtQZ89Oz4gwfo6L5bvvvqNNmzaOjiZlYI8ePaJc6dLMnzaNo7/8QqdOnZK3JpBSl4uLC9u2baNJkyYkJCTQrFkzVq9e7ehYkiRJkiS9oR07dlCqRAmGfP01n/XuTanixXn48OELj928eTMV9Xq+d/fgU2cXvjY6sX3XLhITE9M5dcaUN29edu3ZgyhQgF80agpXq8quffveqKMdnn3u2rd/P+fPn+fUqVOcv3zplR3tT548oVnjxvh6elK0YEG2bdv2ppfiEE+fPsVPrSaHWg1AOa0WeDbj/W0UKFAAgCWxMcTY7SyOiXnu9bRw6dIlypYsiVajIfcHH7Bz504A1m3ciGvu3PSICOMHUzT9+vWjd+/eaZZDkiTJ0YoWLcrx48cpV64c4eHh1KpV64UrjUpSWpIz2+UId0mS3mFWq5UNGzZw7949SpUqRa1atV567C9JnUdbvH0oo9XxS2wMQ6IiOXfuHMWLF3+tehMSEujVqxcrV6xACzQxGPFRKlkYH0enbt1YuHAh493c6ezkTJzdTtXwUDr268eUKVPe8orTR1xcHFU//JBLFy+SVaPhdkICvXv3pmDBguzetQtXNzcGDhxImTJl0jXXqlWr6NChA9+4uFJSo2V8XAyx3t5cv30bWPKp4gAAeqFJREFUddLDhFcJCwvj6NGj6PV6qlWr9tr7x5tMJiqVK8ftmzfJodHwd3w83bt3Z+HChW96SWnKbrcTEhKCq6srRqPR0XGkDO7bb7/l58mT2efpTRaVimmmaKbHmIiIiMDNzc3R8d5JFouFTz75hJUrV6JQKJgzZw6ffvqpo2NJEiDbkpmJvFeS5Hg5AgLIHRHBQndPwmw2mkSG07hz5xeuAtahQwf+3LCBXZ7eaBQKJkZHMT/RTFx8PEqlnDPkSHa7nYrlynHnwkU66/X8abFwxJLI0WPHKFeunKPjpciGDRto1aoVA1xcqaDVMiE2hidubty6e/e59u/OnTuZO2cOVquVtu3a0bFjx/8se8SIEYwbNy7560GDBjFx4sQ0uQ6TyUSh/PlxiYikg17P3kQzx61Wzpw7R6FChbDb7Tx+/BhnZ2fZVpEk6b0RFxdHp06d2LhxIwCjRo3iu+++kysSSm8lpe3J/37yLkmSJGVKVquVxg0bsnP3bpzUamKtVoYNG8b333//wuNbt27N3NmzaXXyJFm1Wu4mJNCtWzeKFSv22nXr9XqWL1+Oj48P06ZNY0N8HNqkDza/Js1O9Faqnh2rUOCkUJKQkPCGV5r+VqxYwbnz59nu7UMRjZbFMTF8N3cu165do3///g7LNWfOHPKq1fR3efYfvw1B5wcPePDgATlz5nzluWfOnKFe7dqEJI3oL12iBHv373+tvRFXrFjBtevX2eXlQ36NhuXaGIYtWsTgwYMz5H5JSqXytbdISE2PHz/m1KlTuLu7U7lyZVQqlcOyZEQmk4lFixbx5MkTKlasSNOmTR2aJywsDH+VmixJ96mERoMQgsjISPkAK41oNBqWL1+Om5sbP//8M7179yYqKopBgwY5OpokSZIkSSlkt9u5//gxfVzd0CsUBKjVlFaquHv79guP79u3L9XWrqVheChZFQr2JiQwePBg2dGeAdy8eZNTf/3FEk8vausNWISgUlgoGzZsyDSd7S1atGD48OHJneL+vr5s2br1uY72rVu30qRJE0rpdBhR0Gn7diIiIujXr98ryx47dixNmzbl6tWr5MuXj/Lly6fZdZw+fZqHwcHs9vGlsEZLO6MTxUKC2bVrF4UKFUKpVBIQEJBm9UuSJGVERqORdevWMWTIECZPnsyoUaO4ceMGCxcufO0JRZL0uuQnVUmSpHfUunXr2Ll7N794enPFJwuDXVwZP348165de+HxOp2Ovfv3M23GDD7u149ffvmFhQsXvtXovylTpvBBQACldTrO+2XldBZ/slituLu68l2siQUxJvpFRnDLnODwjrTXERISgrtGQ2H1syXZKyV9YAsJCXFYprt373L48GGCbTYe2awAnE5MRKlQpKjDvGvHjmSJjeWIrx9bvH24dfkyI0aMeK0MoaGhuKrV5EuaRV8maUm+0NDQ17yad9++ffsokC8fTZs2JTAwkLq1a2eqASdpzWQyUbliRQZ//TUrpv9Is2bNGD58uEMzVa9enb8T4pkcHcWehHjGx8aQJ0cOsmXL5tBc7zqlUsmsWbMYOnQoAIMHD2bo0KG8x4tzSZIkSVKmolQqKVaoECvMCVyxWDiQkECQJZESpUq98PhKlSqx/8ABCjZogLJKFX788UfGjx+fzqnfPWfPnuX333/nzp07b1zGP6ulxSV9DrMIgQWRolXUMgqFQsHYsWMJDQ3l6tWr3L53718DBaZNnkwlvZ4tnt6s9fKmtcHI1BTOUC9btiwdOnRI0452IHnbgKe2Z9u2RdjtJNrtb7ydgPTfLl26RLdu3WjZsiVz586V7RFJyqCUSiWTJk1i3rx5qFQqfvnlF+rUqfPW24VI0n/JPJ+GJEmSpNdy7949XNRqqic1thoZjEw0RXP//n3y58//wnP0ej19+/ZNtQwKhYK42FgCtToMCgUGhYLyKjVn/f3xDwjgh0OH8PbwYOmcn6ldu/Yry4qPj2fSpEmcP3+enDlzMmzYMLy8vFIt6+uoVKkS3yUm8oMpmto6PT/GxuDq5EzhwoUdkgdIHkThpFBQM+QJfioV161WatasmaJZt5evXmWksws51GpyoKaaSs2lCxdeK0PVqlUZmZjIqOgoaun1zIiNwdPNzaHvS0Zks9lo36YNJex2pmXx44rFQs+DB5k+fXpyh+L7buHChVy7epXtXj4U1GiYborm+++/5/PPP8ff398hmdq0acPly5f5/vvvsceYyJszJ1t+/12uSJAOFAoF48ePx83NjSFDhjBhwgQiIyOZPXu2nOUmSZIkSZnAitWrqVe7NrVCngBQ9cMPGTly5EuPr1KlClWqVEmveO80IQT9+vVj9uzZAKhVKhYsXEjXrl1fu6ycOXNSt1Ytvtm/n8NmM+dsNuKVyhQtsZ7ReHl5vfR5QlxcHP4KBcqkiQf+KhXx8fHpGe8/lS1blsoVK/Lpn3/yUZyGP+02/P38aNWqlaOjvZMuX75MxfLl8bTayKZU0GfjRm7dusWkSZMcHU2SpJfo1asXOXPmpHXr1hw8eJBKlSqxbdu2DLnypvRukE+nJEmS3lElSpTAZLUyJ8bEXauVGaZotBoNBQsWTNccpcuWZU2imVNmM0EJCWyzJFKhcmX27NuHOTGRh0+e0KVLl1eWYbPZaNyoERPGjuXp9h0snjmTyhUqYDKZ0ukqnlerVi1++OEH5sTG0DzsKec0atZv2vhaS66ntly5cgHQWG+gu5MzAUkdgH369EnR+blz5GC72YzJbueO1cpxu43cefO+VoaPPvqIadOmsSwhnnZhodw0Gtm8datcYvv/CAsLIyQsjC56I1lVamroDZTQarl48aKjo2UYwcHBZNFoKKh5tnpEtQyweoRCoWDMmDFERkZy7949rty4QZEiRRyW5300ePBg5s6di0KhYO7cuXTq1AmLxeLoWJIkSZIk/YfixYtz5fp19u3bx7Fjx/gjKAhnZ2dHx3ov/P7778yePZsxru6cyuJPS52OXj178ujRo9cuS6FQsH7TJj7p3ZurefPwQWA1gg4dSpNnDFeuXGHo0KF8/fXXHD16NNXL/7+EEJw7d469e/dSs04dtiYkMCE6ilmmaBbEx9G4efM0z/A61Go1O3bvpme/fsRUKE+ddu04cvw43t7ejo72Tpo1axZuVht7PL341dObAS6uTJ06Va5OJ0kZXJ06dThy5Ag5cuTg+vXrVKxYkUOHDjk6lvSOUoj3eM2TlG5sL0mSlFkNHjw4eaStRq1m8ZIl6T7q/N69e9StVYsr168DUKFsWXbs3p2ijmmz2cyhQ4c4c+YMgwYNYpmnFzX1Bm5aLQSGPGHJkiVvNCI/tYSGhhIcHEyuXLlwcnJyWI5/jB8/nm+//Tb56zatW7NqzZoUzfwMCgqiUYMGxMbFIYA8OXJw6NixN5pFbDKZCAkJIXv27GiTlpKX/j+r1YqXhwdVbHZmuntw3WqhZUQ4A4YOZcyYMY6OlyFs2LCBVq1aMcTFlQ91OibGxPC3Tsu9hw8zxL81ybFWr15N586dsVqtNG7cmF9//VUumSmlO9mWzDzkvZIk6X02fvx4Jo8axUWfLADJben9+/dTvXp1x4Z7idOnTxNYtSoGmw2dQsFji4V169bRokWLNKnPbrfTtXNnVqxcCYCTwUC9Bg3YuX07VpuNNh9/zJx58zAajWlSv/RiwcHBLF26FJPJRJ06dQgMDHRYlk6dOnFp/Qa2ej5bDWFjXBxfRIYTERGBu7u7w3JJkpQywcHBNGnShFOnTqHValm8eDEdOnRwdCwpk0hpe1J2tstGtyRJ77grV65w//59ChUqlK57Cwshkvd7N5vNnDt3DpVKRYkSJVK0p1tkZCS1PvqI02fPAqAC5np4Ut9gJFEICj55zJQff6Rfv35peBWZz4kTJzh37hwffPABdevWTb4HKXHnzh327duHXq+ncePG8v/GNLR+/Xrat2uHzWbDLgSlihfnwKFD8j1PIoRg6NChTEzaG9HD1ZWNW7Zk2AeCUvr7/fffad26NQkJCXz00Uds2bIFFxcXR8eS3iOyLZl5yHslSdL7bPXq1bRv355lnl7U0OmZYopmRoyJmzdvkjt37nTJYLFYCA4OxsfHJ0UDJBs3bMjNffvY4uGFTqGgR2Q4t7Nk4frt22mSb/HixfTo3p0p7h6U02oZGR3NGY2aB48fYzAY5LZFDnD//n0qlC1LVFg4rmoVwWYzCxcupHv37g7Js2rVKjp06EAPJ2cKqDVMj48le/HiHD91yiF5JEl6fXFxcXTq1ImNGzcCMHr0aEaMGPFaz02l95PsbE8B2eiWJElKfRs3bqT/55/zOCSEMqVK8cvq1W+0H07//v1Z+vPPLHPzwE+lomdEGLetVia4ebDNnMA+SyJ/nTlD0aJF0+AqpLTw+PFjQkJCyJs3r5ydzLN93w4dOoS7uztNmjTBYDA4OlKG8/DhQ0JCQsiXL59calT6lwMHDtC4cWNiYmIoV64cO3bseOnem5KU2mRbMvOQ90qSpPeZzWajeZMmbN2+Ha1SSaLdzpgxYxgxYkS61L93717affwxoRERGPV65s6fT6dOnV55ToWyZfng8t/86OEJwCxTNHMRRERHp0nGL774gp0LF7Lf49nnyGNmM63DnvL333+n+zZ80jN9+/Zl3YIF7PDwwkepZGBUBNuBKJPJIYMfhBBMmDCBsaNHE282U6VSJdasW0dAQEC6Z5Ek6c3Z7XaGDBnC5MmTgWerVixYsABd0taFkvQiKW1PyqF5kiRJb8FisRAbG+voGBnG6dOn+bh1a4pERTHaxZXQixepX7v2G+1jdenCBaqoNZTT6ciuVtPe6EScEPSLDOekVsOatWtlR3smIYRgyJAhZM2alZIlS5IjWzYOHjzo6FgOV7hwYT799FPatGkjO9pfIiAggFKlSsmOdumFqlevzh9//IGnpyenTp0iMDDwjfYflSRJkiRJyixCQ0N58uQJKZ07pVKp2PTbb2zcuJEpP/7IwYMH062j/cmTJ7Ro1ozC8Qks8/SivkLJJ127cjZp9bqXqVq9OtsSzayPi2VXfDxLzAl8WLlymuX84IMPuJeYyLnEROxCsC0hDrVKhZ+fX5rVKb1acHAwBZQqsqhUKBUKKmt1xMTFERcX55A8CoWCoUOHJmc4dPSo7GiXpExIqVQyadIk5s2bh0qlYsWKFdSpU4fw8HBHR5PeAbKzXZIk6Q0IIRg2bBhGgwFnZ2eqV61KcHCwo2OlKyEEd+7c4fLly1gsFuDZsr6uShXz3D3p6uTMVGdXbt69y6VLl167/Dz58nHSZuWW1UKM3c7vZjO5PviA6OhoQiMi0my/Nin1bdy4kYkTJzLYxZUt3j7kTzDTomlTOVBFkqS3Vq5cOQ4ePIi/vz+XLl2iatWq3E6jJUYlSZIkSXr33b59m02bNnH8+PEUd2inh/j4eFo0a4aPjw9+fn7U+ugjIiIiUnSuSqWiefPm9OvXj6pVq6Zx0v/v9OnTmGJjmejqRk29ganuHiiBw4cPv/K8sWPHUrt+fb6MjKB7RBgfFC3KoiVL0iznZ599RvESJWgYGkKBJ49ZGhvL9B9/lHtxO1CFChU4ak5gdWwsJ8xmfo6Pp3D+/A4fhK1UKuVAeUl6B/Tq1Yvt27fj4uLCwYMHqVixIjdu3HB0LCmTk53tkiRJb2DevHn88MMPfG4wMtXdg79PnqRD27aOjpVuEhMTadO6Nbly5aJIkSIULViQq1evsmH9euKsFqLsdgCe2G0Ab9QYGTNmDO4B2agW8oRCwY84p4CFS5fi4uIi99PJZE6cOMEHej39XFwpo9Ux2NmZsMhIbt686eho0v/466+/mDp1KgsXLiQ6jZZolKS0UKRIEQ4fPkzu3Lm5desWVapU4fLly46OJUmSJElSJrNy5UoK5M9PixYtqFSpEl06dcKe1LZ1tKFDh7Lz99+Z6ObODHcP/jp6lM9693Z0rFfy9Hy2DPx5SyIAV6wWLHZ78usvYzAY2Pzbb9y7d4+bN29y/NSpNJ1lbjQa+fLrr3HS64m32/Hx9KRkyZKpUvbGjRvp0KED3bt355Tc3zvFvvrqKz5u04ZvoiJoGfaUBB9vfk3aZ1mSJCk11KlTh6NHj/LBBx9w/fp1Klas+J+DwSTpVeSe7XLvNkmS3kDz5s0J3bmTNZ7eAPwSG8PQ6CgSEhLQarUOTpf2xo4dy9hRo5jg6kaASsXQGBNWHx8ePniAs0KBi1JJCY2WPQnxfFSrFjt3736jDvLo6Gh+//134uLiqFmzJrly5UqDq5HS2tSpUxk+eDDbPb3Jr9HwoymaKaZoHj9+LJfmyyBWr15Np44d0SkUJNjt5MudmyMnTsj9r6VM5dGjR9SpU4dLly7h5eXFzp07KVu2rKNjSe8o2ZbMPOS9kiQpJcLCwgjImpWGKjUjXN0IMifwZWQEK1eupH379o6OR8kiRShy5y6T3D0AmBwdxa8GPY9CQhyc7OXsdjvNmzZl+/btFNXpuZZopmDRohw+dixDzQ6+ePEipUuVorZGSyO9nmXx8VzTarh64wY+Pj5vXO7PP//M559/Tgm9HpMQ3LfZ2H/gAJXTcEn8d8k/qymaTCYKFCgg91SWJClNBAcH07hxY/7880+0Wi1LlizJEP/vSxmH3LNdkqT33uLFi8nm54eTwUCjBg14+vRpqpXt6urKIyGITxqvdMtqRa/VolarU62OjOzY0aNU12ppY3Siik7Pp3oD9x88oJTBwHafLFTU6rhjtWIB5s6f/8Yz0V1dXWnfvj09evSQHe2ZWM+ePcmTLx8NwkOpFB7KFFM0w4YNkx3tGYTNZuPTnj1ppNNz2dePAz6+BN+7x8SJEx0dTZJeS9asWQkKCqJcuXKEhYVRo0YNgoKCHB1LkiRJkqRM4ObNm5gTE+np5IyPSkUroxNZdbo32hItLXh6e/O3zUaiENiE4KLNioeHh6NjvZJSqWT9xo1MmjKF0u3aMvi77zhw6FCG6mgHOHDgANjtzHL3oInByFRXNyKiozl9+nSKzhdCcOHCBQ4dOkRUVFTy62NHjqSNwcjvHl7s9fQmv0rFJNnGSjGFQkGuXLkoXry47GiXJCnN+Pn5ERQURPPmzUlMTKRDhw6MGTMmQ20lI2UOmbaz/fvvv+fDDz/EaDTKPXQkSfqXHTt20L17d8pHm/hKq+P43r20at481f6j/Oqrr3gM1AoPpXl4KPNjY/h2xAiUykz7a/VfXvVeZfHz47LdToTdhl0IjicmYtDruWaxYBWCae4eFNNqMeh0BAQEpGNqKSNydXXl6IkTfD9pEu2++IJNmzbx/fffOySL3W7n4cOHzz0EeV88ffqUP//8k9DQ0Odej4qKwhQbS329HrVCQW61hsJqNffv33dQUkl6c15eXuzbt4/q1atjMpmoV68e27Ztc3QsSZIkSZIyuBw5cqBSKlkXH4dNCA4kJBCcmEju3LkdHQ2AkWPGcNFmpVp4KNXDw9hvNjP2hx8cHes/aTQavvrqKxYtWsR3332Hi4uLoyORkJDAZ599RnZ/fwrkycNff/2FxW7njtUKwE2rBSBFq6FYLBZat2xJ8eLFqVatGnlz5eLEiRMARMfEkEetQaFQoFUoyKFQEv0etkMlSZIyOqPRyPr16xk4cCAAI0eOpEuXLpjNZgcnkzKTTNsrlJiYSOvWrenTp4+jo0iSlAFt3LiRAno9P7l70MfZhZFOLhw8coSwsLBUKb9kyZIcO3GCWh07krtpU5YtW8awYcNSpWxHu3btGuXLlEGtVpPdPyubN2/+1zHffvstCUYjlUNDqRgeypaEeKZNn062XLmoGRpCkadP+DU+jtlz5rwXy+pL/83V1ZUBAwYwceJEmjVr5pAMt2/fpmTRomTLlg13d3f69euXYfZgTGvz5s0jq78/5cqVIyBrVpYtW5b8PQ8PD7JnzcrC+DiuWSxsi4/jT7OZEiVKODCxJL05FxcXtm/fTuPGjUlISKBZs2asWbPG0bEkSZIkScrAsmTJwrTp01kcG0Ou4Ed0DA+ldq1adO7c2dHRAAgMDOTY8eM079WLet0+Yf/+/bRo0cLRsTKlzz77jCXz59PQFEOhx8EsWbKEbP7+NIsI5+PwMHpFRlKzRg0qVKjwn2X99NNPbN68mZnunuz28eWD+Hhat2iBEII6tWszNyGOVbGxzDJFs9OcQJ169dLhCiVJkqTXpVQqmTx5MnPnzkWlUrFixQrq1KlDeHi4o6NJmUSm37N96dKlfPnll0RGRr72uXLvNkl6d/Xt25fNCxYS5OWNXqFgYYyJUdFR8t/7f4iPj6dIwYIonzzhE72Bg4mJ/JFo5sTJk5QuXfq5Y+/fv8/SpUuJjY2lQYMGVKtWDZPJxJo1a4iIiCAwMDBFjVNHOn/+PAO+/JKrV66QPWdO5syZIzsYMwG73c7WrVu5c+cOJUqUoHr16ik6r2zJkoReucIIozM3rRZ+MEUzY8YMfH19efr0KZUqVUre3/nChQucOHECHx8fGjRogEajScMrSlsXLlygZMmStNcbaG90YmlcDBvNZi5dvkz+/PkBOH78OI3q1ycs6fNUowYN2LBpkxwsI2VqFouFrl27smrVKhQKBXPnzqVXr16OjiW9I2RbMvOQ90qS3i/x8fEMHTqUfbt24e7hwfCRI6lbt26Kzz916hSnT5/G39+fRo0aoVKp0jCtlN7sdjtOBgP9dXr6ubgihKB1eBhugdUoUbIkd+7coVixYgwcOBC9Xv+f5XXs2JHrGzey0cMLgG3xcXwaEU5ISAhKpZK2bdqwd98+lEolvXr1YtasWfJnSpIkKYPbtWsXrVu3xmQykS9fPrZv307evHkdHUtykJS2J9+PzYWTmM3m55Z+iI6OdmAaSZLSUs+ePVm0YAGNw0PJq1CyI9FM165d5QO2/3Dx4kVu37vHFm8fymh1dDAKSoWGsH379n91tmfPnp0RI0Y895qLiws9e/ZMz8hv7M6dO1SuWBFzfDwATx4/pmzp0gQdOsSHH36Y6vX9M7YtJfvXR0REMHXqVO7du0fp0qXp27cvavV79V/2S9ntdj5u1epZR7BSSaLdzrfffsu4ceNeeV5MTAynz53jR3cP6hkMgIEDFgtjRo8mLDwcrVKJRQjmzp2LVqule/fuybPeP6pWjR27d6fZPnEWi4WHDx/i6+uL0WhM9fL//PNP7HY7o93c0SkUjFS782vwI/7666/kzvaKFSty/dYtzpw5g5ubG6VKlXqntsWQ3k8ajYYVK1bg5ubGnDlz+PTTT4mMjGTQoEGOjiZJkiRJUhrp9sknbF6/nlY6Pdfv3KFhgwYcfI02Xrly5ShXrlwap5QcRaFQoFQqSfifuWeJCHQ6HRPfYD/1bNmy8bvVym2rlQ9UKvaaEzDq9Xh4eKBWq9mzdy8xMTFoNBq577gkSVImUbduXY4ePUrDhg25fv06FStWZPPmzVSpUsXR0aQM7L16ivrDDz/g5uaW/Cd79uyOjiRJUhopUaIEQYcOkb9uXaLLlmH4d98xf/58R8dKE0IIoqOjU2U57H9Gbj+xPSsrym7HbLenSQego61ZswZzQgI51Gr+8vPngl9WCqtU9O7RI1XrSUxMpHfv3hj1eox6Pb169SIxMfGlx0dHR1O5QgV+mjiRy+vXM3DAANq1aUMmX4gm1WzZsoUNmzaxwMOLm1n8Geziyvfff8/ff//9yvMMBgN6nY7zFgtCCCLtdm5bLUSEh7PF24frWfzpYDDy+Wef0btXL1rrDdzyD2CtlzeHDx9m7ty5aXI9QUFBBPj5kStXLjzc3Zk3b16q1+Hv7w/AQXPCc3//8/o/PDw8qFGjBmXKlJEd7dI7Q6lUMnv2bIYOHQrApEmTCAkJcXAqSZIkSZLSgslkYs3atQx3dmGCuwdrPbzIodGwZMkSR0eTMgiFQkGPXr2YFRvDgIhwOkaE8ZfZTM83XP1o4MCB+GbPzkdPn1DsaQjr4+OZPWfOc4PlnZ2dZUe7JElSJlO0aFFOnDhBuXLlCAsLo2bNmqxevdrRsaQMLEM9SR0yZAgKheKVf65cufLG5Q8dOpSoqKjkP/fv30/F9JIkZTTly5dn85YtHDh0iJEjR2bqZaBf5vTp0+TLlQs3Nzc83d1ZtWrVW5VXpEgR6tSqRf/oSHqFh9EwIgxXDw/atWv3wuMjIyOZOHEiAwcOZOPGjc91CNtsNk6ePElQUBAmk+mtcqUFq9WKEqis1eGhVOGsVFJTpyc4ODhV6xkxYgSLFyzgc52evjo9yxYtSu70eZE1a9Zw7cYNtnp4scXDix/dPFi/cSMXLlxI1VyZ1e3btzGoVNQ3GFAoFDQ3PBsIcvfu3Veep1KpGDtuHItjY6gTEU718FCilEqy63SU0epQKRQ0NRix2myYLRZaGYxoFQoq6/Tk1Om4efNmql9LeHg4zRo3Jl9cHCs8vWmt0dK7d2+OHj2aqvXUqVOHxg0b0j0inArhoXwWEU7rli2pVq1aqtYjSRmVQqFg/PjxTJ06lZ07d+Lr6+voSJIkSZIkpYF/2qP/tPyVgBpFqgxMl94dU6dOZfh333Etdy4sxYuzfv16GjVq9EZleXt7c+qvv5j5888MHTuGY8eO0bVr19QNLEmSJDmEn58fBw4coHnz5iQmJtK+fXvGjh0rJ0RJL5Sh1qT9+uuv//MDSe7cud+4fJ1OJ0cSSpL0zoiOjqZhvXr4xcQwy92TPeYEOnfqRP78+ZP3nX5dSqWSTVu2MGbMGP48eZIa2bIxatSof82AhWdLnVcsW5YHd+/iq9E8a7AOH87YsWOJiYmhYb16HDxyBICALH7s2reXIkWKvNU1p6ZmzZox6rvv+C0+nsYGIzqFgjXxcZSq+FGq1vPbhg201Rv4yuXZFgZPbTZ+27iRqVOnvvD4yMhIDCoVuZJGwhdOGiQSERGRqrkyq2LFihFvszE3xkQTg4HZMSZUSiUFCxb8z3MHDhxI7ty52b17Ny4uLnh4eDBi+HA2xcVRXqtlQVwMzkYjQgiWxsWST63mZGIitxISKFSoUKpfy/nz54k0mRjnk4X8Gg2BOh2/JZo5lMpbGSiVSjZu3szy5cu5fv06hQoVokOHDina0kCS3iUDBgxwdARJkiRJktKQq6srjRs2ZOyuXdy12bhmtXI90czP7ds7Oto7xW63Z+qVsNRqNaNGjWLUqFGpUp6bmxu9e/dOlbIkSZKkjMVoNLJ+/XoGDx7MlClT+O6777hx4wYLFixAq9U6Op6UgWSoznYfHx98fHwcHUOSJClTOHfuHE9CQ1nh40thjZZGBgN/PH3Cvn373rizHZ59iJgwYcJ/Hjd37lwe3L3LTi9vcqs1TDNFM27cOL744gsmTpzI6RMnWOHpTRaVkv6RkXRq146/zp9/rgwhBAsXLuSXZctQKpX07N2b9un0IKRo0aKsXbeOLh060CrsKQC5c+Rg/sKFqVqPwWgk2G5PHvUYbLfj5OT00uMDAwMZYrPxTVQEdXUG5sXH4eXuTvHixVM1V2ZVu3Ztvv76a8ZNncq46ChUSiVz5s4lZ86cKTq/RYsWtGjRAni2+sL5s2fpt24dAEa9nrW//orZbKZDu3Zse/IYgKaNG9OzZ89UvxYvLy8AzlkSya/RcM1qJdZmS349NanVarp165bq5UqSJEmSJElSRrJy9Wq+6NuXrbt34+7hwdrRo6lZs6ajY70T7ty5Q6d27Th68iS+Xl5M/fHHdGu/S5IkSZKjKJVKJk+eTN68efn8889Zvnw5d+/eZePGjXh6ejo6npRBZKjO9tdx7949wsPDuXfvHjabjbNnzwKQN29enJ2dHRtOkiQpHbi6PpspfctqpbBGyyObjXibLfn1tBYSEoK/Rktu9bOZ15W0z1YOCQ0N5exff1FdreGjpD3gO+n1jLh0CSHEc7NpZ86cSf/+/amt15MooMOhQ1itVjp37pwu19CyZUsaN27Mn3/+ic1mo2zZshgMhlStY+CQIXTo0IEW4WEogJPmBJYPHvzS4ytUqMCiRYv4vE8ffo0Iw9/Xly0bN+Lh4ZGquTKzKVOm0KVLF+7du0ehQoXeeNUblUrF6rVrGTBwIKGhoZQoUYKAgAAAyly7xunTp/Hx8aFKlSppMnOjaNGitGvblq/XrmWROYFbFgtFChWibdu2qV6XJEmSJEmSJL0PXFxcWLJsmaNjvHOsVisN69Yl5u5dxri4cjImlo4dO5I9e3aqVq3q6HiSJEmSlOY+/fRTcubMSevWrQkKCqJSpUps27aNvHnzOjqalAEoRCbdYKBr164se8GH5/3791O9evUUlREdHY2bmxtRUVHp1jklSZKUWoQQNG3cmF07dlBep+Oy1Yp71qz8eeZMunTM/vrrr7Rp04ZvXFypoNUxIdbEfWdn7ty/z2effcbOlSv5zcMLT6WSHpHh3PL05M6DB8+VkT9XLko8CeFHj2ejALuFhxFRuBAnT59O8/zpadOmTSxdsgQhBF26dqVly5b/eU5iYiLh4eH4+PigUqnSIaXkCDabjfnz53PmzBmyZ89O//795WcSSZKkTEC2JTMPea8kSZLe3tWrVylYsCArPb0J1OuxC0Gl8FA69O/PxIkTHR1PkiRJktLNxYsXadiwIffu3cPLy4stW7ZQuXJlR8eS0khK25OZdmb70qVLWbp0qaNjSJIkOYxCoWD9xo1MmTKFM2fOUCYggKFDh6bbDOjWrVtz5syZ5CXns3h7s+m339Dr9YwePZo9O3dSKTgYrVKJTalk04IF/yrDYrHg+j8zhl0VCkLM5nTJnxpMJhN37twhICDglcsGNW/enObNm79W2VqtFj8/v7eNmGqEEMyZM4dfV69Go9XS5/PPk5djl96cSqWiT58+jo4hSZIkSZIkSVImdPnyZVatWoXdbqd169aUKlUqTer5ZwW4J3YbANFCEGu3p/rKcJmNEII1a9Zw/vx5cuTIwSeffIJOp3N0LEmSJCkNFS1alBMnTtCkSRNOnTpFjRo1WLp0Ke3atXN0NMmBMu3M9tQgR7hLkiS92po1a5j3889YrVbadexInz59nlsGHuDJkyeEhoaSJ08e9EnLxsOz5eTXr19PfHw8devWpXDhwv8qf9CgQUyfOpWeRiOJAhbHxjDu++8ZNmxYml/b29qyZQsd27cnJi4OlVLJjzNm0LdvX0fHSjOTJk1i8ODB1NXriRZwzJzAhg0bXtrhbrFYCAsLkzPzJUmSpHeSbEtmHvJeSZL0rjp+/Dg1qlfHKARKIEoItm3fTq1atVK9LiEErVu2ZOuWLdTQavnbLojW6/jr3Dly5syZ6vVlBkIIevToweLFi8mm1/PYbKZK5crs+eMPNBqNo+NJkiRJaSwuLo6OHTuyadMmAMaOHcu33377r2fnUuaW0vak7GyXjW5JkqQXWrVqFR06dKCaTo9BAbsSEpg0aRLffPNNqtVhsVgYNGgQK5ctQ6lU0rNPH0aPHp0m+2OnpocPH5IvTx4ClUp6OzmzOT6OpbGxHD9+nAoVKjg6XprI5ufHR6YYJrh7IISgbXgY2grl+SMo6F/Hrlu3ju6ffIIpNhYfT09W//orNWvWdEBqSZIkSUobsi2Zech7JUnSu6pGYCDhJ0+y3sMLFdAhIhxz/nycPncuTeozm82MHz+eY0eO4Ovnx4gRIyhQoECa1JUZnDt3jpIlSzLBzZ2OTs4cN5tpFfaU1atX07ZtW0fHkyRJktKB3W5n8ODBTJkyBYAuXbowf/58tFqtg5NJqeWdX0ZekiTpTVy6dInVq1djt9v5+OOPKVmypKMjZVg/z5zJR3o9yz28UCgUfBMZwewZM1K1s12j0TB9+nSmT5+eamWmh3PnzhFvNjPa148AtZrSGi2r4uM5ceLEO9vZnpiYiHvSIAiFQoG7QkFEQsK/jrt8+TId2renrkZLMw8vlsfF0bxpU65ev46/v396x5YkSZIkSZIkSXqnPHz4kHPnznH3zh2qKlUYkmbQlVWr2fTkSZrVq9PpGD16dJqVn9k8fvwYgEDdsxX+Kmi16JWq5NclSZKkd59SqWTy5MnkyZOHvn37smzZMu7evcuGDRteueWo9O6Rne2SJL03jh49Sq0aNTDaBUoFTJ0yhe07dsgZty9hNpvxViiSl75xVSiwWCwOTpUx+Pr6AnA00UxrtZrTiYkk2u3Jr7+LWrZpw4L5C1ABJiHYlhDP9BfsRXTo0CFsNhszfDzQKRQU12oo/ySYU6dO0aRJk/QPLkmSJEmSJEmS9I7YsmUL7dq0Id5sBiBEqaRSvA6tQsEqcwI16tZxcML3R7FixdBrtYwzRfGZkwu/xceRYLdRvnx5R0eTJEmS0lnv3r3JlSsXrVu35sCBA1SqVInt27eTJ08eR0eT0knGXqdXkiQpFX07ZAgFUHDc24cTXj6UUakY/PXXjo6VYbXt0IEt8fEMj4pgfHQUi+PjaP2CztX3UZkyZejQrh0DIiOoFh7GxxFhVKlU6aX7l2cE165dY8OGDZw8eZI32UFm+vTpdOnRnRVKJb/rtIwaNYr+/fv/6zh3d3fsQnAtaWDG30l/e3h4vN0FSJIkSZIkSZKUJhYvXkylcuUoX6YMM2fOfKP2gpT2TCYTHdu3p5pSxQlfP35wcyfObqd3RDjdwsPIW6IEs+fMcXTM90ZAQAArV69mvxA0DA1hQXwcU6ZMoXLlyo6O9lJRUVFcv34dc9JgDUmSJCn11K1blyNHjpA9e3auXbtGxYoVOXLkiKNjSelE7tku926TpPdG4Xz5qPg4mLFu7gBMiI5ii7MT9+QSXy9kt9sZN24cc2fNwmq10q5TJyZPnoxWq+Xx48eMGjWKO7dvU6x4cUaNGoWzs7OjI6cru93O8uXLuXDhAjlz5qRnz57o9XpHx3qh+fPn06dPH+x2OwA9e/Zk3rx5yasWpKb4+HiqVKrElUuXKKzRcN5sJrBGDXbs3IlKpUr1+iRJkiTJEWRbMvOQ90qSXm3RokX06NGDOno9WhT8nhDP5MmTGThwoKOjSf/HxYsXKVasGJu8fCin0wFQLSyUwPbtGDJkCHnz5kWplPOq0ltkZCQ3b94kW7ZsZMmSxdFxXmrq1KkMHjQIm92Oj6cn6zZuJDAw0NGxJEmS3jmPHz+mcePGnD59Gp1Ox5IlS2gnJ7BlWiltT8rOdtnolqT3Rvfu3Vm/fDmTXFzRoGBQTDS1mjVjza+/OjpaphIZGUmZEiUwBQdTWqnksNVKybJlOXDoEGq13J0ko7l//z65cuakvd7ANy6u7EiIZ3BUJJs3b6Zp06ZpUqfJZGLKlCncunWLIkWK8NVXX6FLehgkSZIkSe8C2ZZ8fd9//z3btm3j7NmzaLVaIiMj//McIQQjR45kwYIFREZGUrlyZebMmUO+fPlSXK+8V5L0auVKl8b77yss9PQC4OuIcE77+nD9zh3HBpP+JTw8nCy+vnTQ6Rnr5s5flkRah4cxZfp0vvjiC0fHe++cOXOGJUuWYLFYaN26NTVq1HB0pJfat28ftWrVoqeTMzX1embExnJFq+H2vXu4ubk5Op4kSdI7JzY2lo4dO7J582YAxo0bx7Bhw9Jk4pOUtlLanpTDHSVJem9MmzaNMh9+SO+IcLpHhJG/VClm/fyzo2NlOps2beL2vXtscfdkkac3C93cOXL8OMePH3d0NOkFrl27hs1up6ezM54qFR2cnHHXaLh8+TKbNm2iRJEifODvT9fOnYmOjk6VOl1cXBg9ejQrVqxgyJAhL+xoj4uL4+uvv6ZiuXI0bdyYM2fOpErdkiRJkiRlTImJibRu3Zo+ffqk+JxJkybx008/MXfuXE6cOIGTkxN169YlISEhDZNK0vvFZrWi/5/nvnqFAqvV6rhA0kt5enry44wZLIuLJe+TxzQLfUqFChXo1q0bly9f5saNG3ILgHRy5MgRKlWsyMZ589mzZCm1atVizZo1jo71UocPH8ZLq+U7Vzeq6PSMcnEhIjqay5cvOzqaJEnSO8nJyYn169fzddIWtsOHD+eTTz4hMTHRwcmktCKnIEqS9N5wc3Nj34ED3Lp1C7vdTp48eeQSa28gNjYWtVKJb9KS4FmT/o6Li3NkLOkFbDYbM2fMAGBtXByDXFzZmRBPpMVCQkICLVu2pLpOTxW1mhWrVxMSEsL2nTvTPJcQgjatW7Nv1y4aanVcuHCBan/8wekzZ8ifP3+a1y9JkiRJUvobPXo0AEuXLk3R8UIIfvzxR4YPH568Gs/y5cvJkiULmzdvpm3btmkVVZLeK+07d+abb77BWRGBVqHgl/g4Bn/Z39GxpJf4/PPPKVeuHMePH8fX15fy5ctTuWJFzl+6BEC92rVZv2kTTk5ODk76bhs7ejQFFEo2eXqhAXpFhvPdsGEZ9v8mHx8foq1Wrlut5Ndo+DOps8fHx8fBySRJkt5dKpWKKVOmkDdvXvr27cuyZcu4e/cuGzZswNPT09HxpFQmO9sl6R0QHx/P7NmzuXXrFkWLFqVXr15yOe+XUCgU5MmTx9ExMrXatWujUqvpHhlOfa2OleYEsnh7U65cOUdHk/6PBQsW8NvWrTTUG5gdY2J2jAmAFs2a8fjxY3JrdSz18ESlUJBHrebrXbsIDw9P8w989+7d4/ft25nh7kFLoxOxdjsVnj6hRYsWdO3alf79+6PRaNI0gyRJkiRJGdvt27cJDg6mVq1aya+5ublRoUIFjh079tIODbPZjNlsTv46tVbukaR31YABA0hISGDh3LnYbTa+6dc3eXCMlDGVL1+e8uXLA1CnVi1Cr1/nF09vooWdgX/8wfDhw5k+fbqDU77bwkJDKaBUoktaDrioWsOp8HAHp3q5Tp06MWfWLBpdu0Z2rZar8fH06NGDvHnzOjqaJEnSO693797kzJmTjz/+mAMHDlCpUiW2b98u+yjeMXJKpyRlcmazmZrVqzN8yBAOLF3KF3378nGrVtjtdkdHk95RBQoUYPNvv3Hbw4MhUZHYc+Rgx+7deHh4ODqa9H+cOXOGIgYD8zy9+M3bh25GZwAmT52KSqXChuCf3xSWpOUG02O1h3+WTHJLqkunUKARgvArVxk6eDBtWreWyx9KkiRJ0nsuODgYgCxZsjz3epYsWZK/9yI//PADbm5uyX+yZ8+epjklKbNTKpUMHz6cOw8ecO/xY3744Qc5eD8TOXH8OF10eqrr9TQxGGmg1XH88GFHx3rnfVSrFr+ZE1geG8PGuDgWJ8TzUc2ajo71Ui4uLhw5fpzhY8dSq1s3lixZwvz58x0dS5Ik6b1Rr149jhw5Qvbs2QkJCZHLyb+DZGe7JGVyW7Zs4djJk/zq4ckeDy9mu3uwacsWTpw44eho0jusbt263H34EKvVysUrVyhVqpSjI0kvkC1bNm5ZLFy1WCip0WJFoNVoyJIlC126dOGB1UqbiDCGRkYwOsZEy+bNcXd3T/NcuXPnpnSJEgyJMTHLFE338DDC7Hbmengw3dWdTVu2cPHixTTPIUmSJEnS2xkyZAgKheKVf65cuZKumYYOHUpUVFTyn/v376dr/ZIkSekpi68vJ6wWLEJgsts5Z7eRJWtWR8d6540ZM4ZmrVoxLCqSLyLDKV6xInMzeOe1q6srQ4cOZdasWXTt2hVF0qx8SZIkKX0UK1aMEydOsH37dgoVKuToOFIqk0NVJSmTCw0NRaVQUEKjBaC0Vpv8uiSlNSEEf/zxB5GRkZQvX55s2bI5OpL0P/r378+vq1dT58oVnFRqoq0W6tatS+/evSlZsiRbf/+d8WPH8ldYGD3q1GHChAnpkkulUrF1+3a6de3KjKAgrIkW5nh4Ukarw6B4NrIzKioqXbJIkiRJkvTmvv76a7p27frKY3Lnzv1GZfv5+QHw5MkT/P39k19/8uQJJUuWfOl5Op0OnU73RnVKkiRlNlN+/JGWLVpQPuwpiUIgdDrWjx3r6FjvPL1ez5q1a/l5zhysVis+Pj6y81qSJEn6T/7+/s+1baR3h+xsl6RM7sMPP0QoFAyOiqS5wcCiuFiMej2lS5d2dDTpHZeQkEDDevX4IygIACeDgU1btlC7dm0HJ3vGYrEwdepUTp48SZEiRRg5cuR7txyiq6srx06eZPXq1Tx69IhlixdzdN8+Cmg0rFm1ikaNGhF0+LBDHgpkzZqVnbt3c+LECSpVqsTuhAQEMC8+Dl8vL4oVK5bumSRJkiRJej0+Pj74+PikSdm5cuXCz8+Pffv2JXeuR0dHc+LECfr06ZMmdUqSJGU2TZo04djx42zatAmtVkunTp3eeJCT9Po8PT0dHUGSJEmSpAxALiMvSZlcyZIlWbhwIZutFtqGhXJCpeLX9esJCAhwdLR31qFDh+jatSsdO3Zk27Ztjo7jMNOnT+fI4cOs9PTmryz+lAXat2mDzWZzdDQsFgtlSpVi2NChbNq0iXHjxpE7Z07MZrOjo6U7Z2dnevbsSbZs2bh7/z6/eXix2cOLn9zc2fzbb5w9e9ah+SpUqMCSJUvYiaB3RDjh3t78vmMHbm5uDs0lSZIkSVLqunfvHmfPnuXevXvYbDbOnj3L2bNniYmJST6mYMGCbNq0CQCFQsGXX37JuHHj+O2337hw4QKdO3cma9asNGvWzEFXIUmSlPGULVuW77//npEjR8qOdkmSJEmSJAd4v6b4SdI76pNPPqF169YEBwcTEBCAwWBwdKR31u7du2lQvz65NRq0CgUrV65k+fLldOrUydHR0t3ly5cpptUSqNcD0ElvpEdEGE+fPk1e9jOlbt68SVBQEC4uLjRs2BCj0QhAXFwcp06dQq1WU65cObRJ2yT8l9WrV3Pp0iUa6PVMdvfkr8REujx8yIgRI5g0adLrXeg7IjIyEr1SSe6k2f2F1RoAIiIiHBkLgC5dutChQweioqLw9PR84Ux7q9VKcHAwPj4+cmlYSZIkScqEvvvuO5YtW5b8dalSpQDYv38/1atXB+Dq1avPbSUzaNAgYmNj6dWrF5GRkVSpUoWdO3eiT/r8KUmS9K45dOgQV65cIV++fAQGBsqlySVJkiRJkjIBObNdkt4Rzs7O5M2bV3a0p7Efxo2jjFbLHk9vdnp40cBgYNyoUY6O5RB58uThssXC2cREEoRgY0I8bi4ueHt7v1Y5O3bsoGjhwnTv3p2PP/6YSuXLExkZyZ07dyhRpAjVq1enSpUqVChblqdPn6aozCtXrmAHOhidcVUqqa7Xk1ut5vTp06xbt46dO3eSmJj4BledeQUGBpIgBAMiI9gZH89gUxSebm6v3PM0PanVary8vF74MGnv3r34+/qSPXt2vDw8WLVqlQMSSpIkSZL0NpYuXYoQ4l9//uloBxBCPLcHvEKhYMyYMQQHB5OQkMDevXvJnz9/+oeXJElKBwMHDqRatWr06tWLjz76iH79+iGEcHQsSZIkSZIk6T/IznZJkqTXEB0VRS6FErVCgUKhIK9KTXR0tKNjOcTAgQMpXKwYjUJDyPv4IXutFhYvXfpa+6ILIfikc2cqqVRc88vKbh9f7ly9xvfff0+vHj1IfPyYbd6+bPDy4f6VK3w9YECKyv3oo49QAqviYomx2zlkTuC21crhgwf5+OOPqV+/PtUqV8ZkMr3h1Wc+ZcuWZcmSJewQdnpEhHHP1ZUtv/+e4feYCw4OpkWzZhRJSGCppxd1FAo6d+rEuXPnHB1NkiRJkiRJkqRUYLfbmT17Nh06dGDAgAE8evTI0ZHS3alTp5g6dSojXN244x/AODd3Zs+ezaFDhxwdTZIkSZIkSfoPsrNdkiTpNdRp0IBN5gTmxZhYHhvD4oR46tSr5+hYDuHs7Myho0dZv349Cxcu5Nz587Ro0eK1yoiNjeVJaCjNdQaMSiWFNVpKqdXcvHmTc2fO0Eqro4RWSwWdjoYaLWdPn05RubVr1+bjtm3ZlhBPweBHtAsLRalSUVql5kwWfzZ5+XDx7Fl++OGHN7n0TKtz585ERkcTHBzM/UePqFKliqMj/afTp09jio1lkosbtfQGprl5oBCCI0eOODqaJEmSJEmSJEmpoFevXvTr25frmzaxfNYsypcpw5MnTxwdK13duHEDgHZGJ9QKBe2MTsCzLdcyO6vVypYtW1i4cCEXLlxwdBxJkiRJkqRUJ/dslyRJeg2jR48mODiYccuWIYSgaePGzJw929GxHEav19OyZcs3Pt/JyYls/v6sjojkQ52O21Yrp6wWvixUiPt37rD/77/pZbeTKARHbFYK5cqV4rJXr15Nnz592Lt3L7lz5+aTTz6hnYsrPioVPioVZdUa/v777zfOnllpNBqyZMni6Bgp5uHhAcAFi4UAtZorFgtWIZJflyRJkiRJkiQp83rw4AGLFi1irJs7nzg5E2yzERj6lEWLFjFs2DBHx0s3hQoVAmB+jInuzi6sjI157vXMymw2U79OHfYfPAiAUqlk0aJFz20ZIknSy9ntdoQQqFQqR0eRJEmSXkHObJckSXoNWq2WJUuWEBcXR0xMDJt/+w1XV1dHx8q0FAoFK9es4ZJKSdknj2kd9pQSpUszdOhQZv78MzdUKoqHBFM6JJgoo5FJU6a8VvnVqlVjzJgxdOnSBT8fHzaaEzDZ7ZxPTOQvq4V8+fKl0ZW9H3bu3Em7du1o164d27dvT5M6KlasSMP69ekTFUHjiHBaRoRRukQJmjVrlib1SZIkSZIkSZKUfqKiogAokLQdWRalEneVisjISAemSn8lS5ZkzJgx/BhjoljwIyaYohk2bBgVK1Z0dLS3Mm/ePA4fPsxaL29u+QfQWm+g96efvrfb8UlSStntdoYMGYKz0Yhep6N1y5by340kSVIGphBCCEeHcJTo6Gjc3NyIioqSnWWSJEkO9PjxY44fP46LiwuBgYFoNBoAbt++zdatW1Gr1TRv3hx/f/83rmP37t00b9qUuIQEAEoVL87+gwdxc3NLlWt432zYsIFWrVpRTKcHBBfMZtauXcvHH3+c6nUlJiYya9YsLl68SK5cufjqq69wdnZO9XokSZIkKaVkWzLzkPdKkjI2s9lMgTx5MIaG0d9o5JjZzLK4WHbt2kWdOnUcHS/dnTt3jqtXr5IvXz5KlSrl6DhvrX///uxYsID9Hl4AHDebaRX2lMuXL2f6WfuSlJamTp3KNwMH0tfZBU+lkmlxsTRs0YLVa9c6OpokSdJ7JaXtSdnZLhvdkiRJ743bt29z6NAhXFxcqFevHgaDwdGRMq2yJUvicvUayz08UQBdI8IJz5eXv86fT7M6f//9d6ZOmkRMTAyNmjbl22+/Ra1++Y44drudixcvkpCQQPHixdHr9WmWTZIkSXq/yLZk5iHvlSRlfBcvXqRFk6Zcv30LnVbL5ClT6Nevn6NjSalg7ty5fP7ZZ8xx96CCVsfw6Cj2IwgOCXnlAOqrV6/y8OFDChUq9FaD7iUps/ooMBD9yZMs9PQGYKYpmtk2K6bYWAcnkyRJer+ktD0p92yXJEmSXunKlSvs378fFxcXmjVrlqlnFOfKlYtcr7Hvu/RyMSYTRZVKlAoFADlUKu6m4ZJme/fupUmTJlTQ6sihVDL27GjCwsL46aefXnh8bGwsTRs1Yt+BAwDkyZGDHXv2yK0DJEmSJEmSJCmDKVq0KFdv3iA8PBxXV9fklc6kzK9Hjx7s2rGDT3/7DQCdRsPK1atf+lxBCMHXX3/N9OnTnx2v1f6/9u47Poo6/+P4e3eT7KaQhJBACB0JIEU6HEo9USJIVLp0pXo2PAtwVkAED0/vFPWkCIgFAQELondUlaNJUeCkKEFaKOmJ6bvz+8Mzv+MAzSbZTLL7ej4eefDY7+7MvDfffGf5zmdnRm8tW+aRK6gBFVlQcLASDUNOw5DNYtEZp1PBnDACABUWxXYAwFV98sknGtC/v5yFhXIahq6NjdWX27erWrVqZkeDyeL69dPfX5mnOlmZskh6NzdH4/r189j23njjDbUICNCKiGqyWiyql5mhV994Q3/9619ltVove/3TTz+t7V9+pYVVqynKZtVD585p9PDh+teuXR7LCAAAAKBkLBYL80wv5Ofnpw/WrNG2bdt04cIFtWvXTvXr17/q69etW6eXXnpJT4SG6WaHQy9kZmr0yJHq0aOHqlevXn7BAZP98eGHdfPnn6tPSpLCZNG/8nL1wozpZscCAFwFxXYAwBUZhqGxY8aom5+f/h5ZXacLC3X7iROaNWuWXnzxRbPjwWRz5sxRakqKnnvnHUnS8GHD9Oc//9lj2yssKFCgLLL853GQxSKn06mr3Q3n65071cvfX3H/+eb3aLtDs/bv91g+AAAAAPA2TqdTR48elZ+fnxo1aiSLxfLbC/0Pq9Wqrl27Fuu1+/btU7WAAE0KqSJJmhxSRR9dPK8jR45QbIdPufHGG7Vx40a99tprysvN1ZIBAzRq1CizYwEAruLyU8EAAJCUnZ2tC8nJutXukMNiUSN/f7Wy2ZSQkGB2NFQADodDS996Szk5OcrJydFby5Yp0IOXNBt6553alZerB9JS9XxGul78KUuDBw2SzWa74utr1a2rfS6nkp1O5RuGthbkK6ZGDY/lAwAAAABPKyws1MMPP6yIsDBFhIVp8uTJKigoKJN1f/HFF3rwwQf1yCOP6NChQ0pMTFSHtm3VrFkzNW7cWDf16qWsrKwy2dbV1K1bVyn5+dqWlyvDMPRpbo4kqXbt2h7dLlAR9ejRQytWrNCHH32k0aNHl+jLLgCA8sGZ7QCAKwoODlaDOnX09sWL6hhg14nCQu0uKNAfW7QwOxoqkICAgHLZzpAhQ5SWlqY/P/ec/vXTTxo6eNBV79cuSTNmzFDnzz7T75IuKMBqVbZhaPXrr5dLVgAAAAAVS2Jioo4dO6Z69eqpXr16ZscpsenTp+tvL72kicEhskh69ZVXFBgYqNmzZ5dqvStXrtSQIUNUN8CuPMOl1+bNU7u2bZV4+LCWRUTqJ8Olh7/4QlOmTNGrr75aNm/mCoYNG6ZlS5ZoyJYtquLnp8zCQj355JNq0KCBx7YJAABQWhbjatdf9QEZGRkKCwtTenq6QkNDzY4DABXO9u3bdesttyglPV2S1O2GG7T+H/9QUFCQycmA33b27FktX75cubm56tOnj1q3bm12JACAl2AuWXnQVwCWLFmiCePHq6CwUBaLRbNnz9aUKVPMjlUizWJj1fZsop4PrypJ+lNaqnbUqK4jx4+Xar2xDRromvPnNT88QvmSbktJ1nFnoe4PDNKDVX7edz6SlqJjsbH62sO35yooKNCKFSt0+vRptWvXTr169fLo9gAAAK6muPNJzmwHAFxV586ddfjYMe3evVshISG6/vrr5efHRwcqh5iYGP3xj38ss/UVFBToyJEjcjgcuuaaa7iEGwAAAFDBHT9+XOPHjdNAu10Tq1bTqpxsTZ06Vd27d9fvfvc7s+O5ze5wKMXlkmEYslgsSjFcsjscpV5vUnKyBvj5y2axKFDStVarTlr8tKuwQPmGoXzD0DdOpxrUrFn6N/Eb/P39NXz4cI9vBwAAoKxwz3YAwK+KiopSnz591K1bt8sK7S6XSy+//LIGDRqke+65R8dL+W16oKJKSEjQdc2aqWXLloqNjdVt/fopNzfX7FgAAAAAfsWBAwdU6HTqsSphivX315QqobJZLNq7d6/Z0UrkgT/+UetzczQsJVnDkpP0SU6O7n/ooVKvt2vXrlqUm6N1Odl676ef9Elernr37at/FRSoU/JF/S75ok7ZbHr2uefK4F0AAAB4F05PBACU2B/+8AfNf+MNdXY4tM3l0srly7Vn//5KfQ+8yuz48ePavXu3IiMj1aNHD9lsNrMjeY1Rw4cr+9QpLa8WqQtOlx5dv14zZszQcxxsAgAAACqsWrVqSZL+kZujEcEh2pSXK6dhqHbt2iYnK5m77rpLdrtdixctkiQtu+sujRgxotTrXbh4sW7v108Td+2SJPW//Xa9/fbbOnTokNasWSM/Pz8NHz5csbGxpd4WAACAt+Ge7dy7DQBKJCkpSVFRUXoqNEwTQqoo1eVU9+QkTXr0Uc2aNcvseD5n9erVunPoUOUXFEiSbu7VSx+vW6eAgACTk1V+hmEowN9fTwaHaGxIFUnSpJRk/dSpozZt2WJuOACAKZhLVh70FeDbDMPQxIkTtWDBAlULCFByfr7ib71Vaz78UFYrF/z8b4Zh6PTp0/L391d0dLTZcQAAAExX3Pkk/6sEAJRIZmamJOma/1xaPtxiVVWbTRkZGWbG8kk5OTkaPXKkevn560B0jJZGVNOmTZv0+uuvmx3NK1gsFkVHRWl7Qb4KDUOpLpcOuFyqUQ73KwQAAABQchaLRW+88YZWr16tyU8+qbffflur166l0H4FFotFderUodAOAADgJi4jDwAokbp16+ra2FhNP3lSaS6X9ubn64fcXPXu3dvsaD7nzJkzysrO1shqkapqtepGR6Aa27N1+PBhs6N5jRdffllDhw5Vx+SLynG55B8crGeeecbsWAAAAAB+g8Vi0R133KE77rjD7CgAAADwQhTbAQAlYrPZ9NGnn2pQ//568MABBdrteumll3TrrbeaHc3nxMTEKMjh0PLsbLX3D9Degnx9n5ensdxPr8wMGjRIderU0SeffCKHw6FRo0apbt26ZscCAAAAAAAAAJiIe7Zz7zYAKLWsrCwFBgbKZrOZHcVnLV++XKNGjlRBYaEkqUfXrlr/j3/I4XCYnAwAAO/DXLLyoK8AAAAAACVR3PkkZ7YDAEotJCTE7Ag+b+jQoWrdurV27NihyMhIxcXFyc+Pj3kAAAAAAAAAADyFo/AAAHiJpk2bqmnTpmbHAAAAAACUkz179mjLli0KDw/X4MGDVaVKFbMjAQAA+BSr2QEAAKX39ddf66ZevdTy2ms1fvx4paenmx0JAAAAAAB40Ntvv62OHTvqqSlTNGH8eHVq106pqalmxwIqnMzMTCUlJcmH76gLAPAgiu0AUMkdPXpUPbp1U+JX29Tm5CmtWLJEt916q1wul9nR4CEbNmxQ+9atVS8mRsOGDlVycrLZkQAAAAAA5aiwsFCTJkzQbQ6HvqserU2R1XU6IUFz5841OxpQYRQWFmr8+PEKDQ1VVFSUunTurPPnz5sdCwDgZSi2A0Al99577ymgsFBrqkZodnhV/aVKmLZ+9ZWOHTtmdjR4wN69e9XnllsUcOSo+mVm6fPVq/lyBQAAAAD4mJSUFP2Uk6Nb7IGyWSxq5O+va/39dfLkSbOjARXG3LlztXjRIj0ZGqZXwiN0bN8+jR450uxYAAAvwz3bAaCSczqdslosslkskiTHf/51Op1mxoKHrFixQhFWq96pGqEAi0WtcwI0fscOnThxQg0bNjQ7HgAAAACgHERGRiqmRg0tTM9QYz8/HS4s0N68PA1q3drsaECFsWnDBvWy2zUxpIokKdnl1KzNm2UYhiz/OX4GAEBpcWY7AFRyAwYMUKZhaERqiuZmpOvhrAy1bdVKTZo0MTsaPMBiscgl6Zfz2AtlFLUDAAAAAHyD1WrVig8+0Pf2APW4eF6TUlPUp08fPfjgg2ZHAyqM8IgIHTcM5RiGDMPQvwsLVDUsjGMoAIAyRbEdACq5Vq1a6dP165Ub20grAh26vndvffr557LZbGZHgwcMGzZMmZIGpSbryfQ0TcnMUM9u3VS/fn2zowEAAACAz9i4caOGDh2qgQMHavXq1aZkuOGGG3Ts+HFt3LhRe/bs0ZoPP5S/v78pWYCKaNq0aTotqUdyknqnJmtFdrZmzJpldiwAgJexGIZhmB3CLBkZGQoLC1N6erpCQ0PNjgMAQLF89dVXenzqVF08f16du3XTiy++qLCwsHLN4HK5tGHDBp07d07t27dXs2bNynX7AACYiblk5UFfAfCEdevWqV+/fmoWYJdd0t68XC1atEh333232dEA/I8DBw7ojTfeUG5urm677Tb169fP7EgAgEqiuPNJiu1MugHAZ7hcLh05ckSGYahJkyac/V9ChYWF6n/77fp43TpJks1q1YKFC3XXXXeZnAwAgPLBXLLyoK8AeEL3Ll2U//UerYioJouke9NS9F10tI4eP252NKDCMgxD58+fl5+fnyIjI82OAwDAbyrufJLLyAMAfEJKSoq6Xn+9mjVrpubNm+v6Tp2UlJRkdiyPS0hI0Jw5c/Tss8/q0KFDZbLOJUuWaN2nn+rNiGo6Gh2jQQ6HJk2cqJSUlDJZPwAAAABUZFmZmaprtcpqschisaiuzU9ZWVlmxwIqrJSUFN3Yo4dq1qypqKgoDbjjDuXk5JgdCwCAMkGxHQDgEx568EF9t3evFkdU09KIavr+22913x/+YHYsj/rmm2/U5rrrNOvJJ/XCjBlq16aNNm3aVOr1Hjt2TLXtdt3sCFSQ1arhQSHKLyjQjz/+WAapAQAAAPyazMxMTZw4Uc0bN1b3Ll20detWsyP5nD7x8Vqdl6uXMzO0ICtTb+bmKK5vX7NjARXWPRMnav/27Xo5PEJ/Dquq9R9/rGnTppkdCwCAMuFndgAAAMrDjm3bNCDArpscgZKkIfl5Wv+vf5mcyrOmTZmi6IICrYmsrgCLRSNTk/XHBx7Q/oMHS7Xexo0b63Rentbn5KiL3a63s39SgL+/6tWrV0bJAQAAAFyJYRgaPGCAvty8WQMD7Dpw8pRuvukm7di5U23atDE7ns946qmnlJSUpBcXLJDLMDRowAC9Mm+e2bGACmvr5s0abXeof1CQJGlfQb62btxocioAAMoGZ7YDAHxCdEyMvnYWKsflUo5haHdhoaJr1jQ7lkclnj6tDjY/hVqtclgsut4/QGfPni31ekePHq34fv00PjVZ1547q1W5OZq/YIEiIiLKIDUAAACAqzl79qw+++c/NTskVLPCq2plRDVVs1j1zjvvmB3Np/j7++v1119XTm6ucnNztXzFCgUHB5sdC6iwIiIidKCwUE7DUJ5h6LDTqWrctx0A4CU4sx0A4BPmzJ2rXr//vTomX5RFUrbFos//8hezY3lUu9/9TquOHNVNuTlyWCx6Ly9X7a/vWer1+vn56YM1a7R582adP39ebdu2VdOmTcsgMQAAAIBf43K5JEl+lp8fWyVZLf/fjvLl58ehVaA4Zs6ercGDB6tHSrLyZeiiy6UNM2aYHQsAgDJhMQzDMDuEWTIyMhQWFqb09HSFhoaaHQcA4GGHDx/W8uXLf7704uDBat68udmRPCotLU233nKLtu3YIUlqce21+uyf/1StWrUk/XwJynPnzsnhcKhq1apmRgUAoFJhLll50FfwNoZh6Pfdu2v/jh0abnfom8JCbc/P07Z//UudOnUyNdvRo0e1du1a2Ww2DRgwQPXr1zc1D4CK5YsvvtD7778vPz8/jR49Wm3btjU7EgAAv6q480mK7Uy6AQBezOl06tChQ3I6nWrRooX8/f0lSefOnVP/227T9l27JEmjRo7UwkWLip4HAABXx1yy8qCv4I1SU1N13x/+oC+3bFFkVJRmPf+8brnlFlMzbdu2TTf36iVLYaEMw5B/YKC2fvWVWrVqZWouAAAAoKQothcDk24Avubzzz/X0qVLZRiGRo4cqT59+pgdCSaJu/lm7du6Vc8EhyjZ5dL0zAw98dRTevrpp82OBgBAhcdcsvKgr4Dy0bFdO7n+/Z3eC6+qQkkDUlNUu2sX/eOf/zQ7GgAAAFAixZ1PWssxEwDARKtXr1ZcXJwOrF6jQ2vWqm/fvlqxYoXZsWCSrVu3apIjUPGBQborOERxAXZt3bSpTLdx4sQJffzxx9q7d2+ZrhcAAABAxXLm9Gl18fNTkNWqUKtVnfxsOvPjj2bHAgAAADyOYjsA+IjZzz6r7g6HPo2opk8jqulGR6Bmz5xpdiyYJCI8XN8WFMgwDOW4XDpmuFS1WrUyW/+yZcvUODZW8fHxateunSZOnCgfvpgOAAAA4NXatmunlfl52pmXpy/zcvVxfr7adexodiwAAADA4yi2A4CPyMrIUH2rTVaLRRaLRfVtNmVmZJgdCyZ5ds4crc3JVs/UZHVLSdIpi0V/evzxMln3+fPnNW7sWN0eEKDdNWpqdli45s+fr7Vr15bJ+gEAAABULH9fsEBVGzbUgOSLujM5SQ1atNCLf/2r2bEAAAAAj/MzOwAAoHzE9eun119+RXWyMmWT9E5ujsb262d2LJjkrrvuUkxMjNauXSuHw6Fx48apefPmZbLuo0ePKr+gQJPCI1TTZtPI4BC9kJOtgwcP6o477iiTbQAAAACoOGrVqqW933yj/fv3y2azqVWrVvLz47AjAAAAvB//6wUAHzF79mylJCfruXfekWEYGjZ0qObOnWt2LJiod+/e6t27d5mvt169erJYLFqdk62pfqHanJerlPx81a9fv8y3BQAAAKBiCAgIUEcuHQ8AAAAfYzF8+AaqGRkZCgsLU3p6ukJDQ82OAwDlIj8/X9LPB0IAT5kzZ46mTZsmf6tVBS6X+sbFae3HH3N2CwDAKzCXrDzoKwAAAABASRR3PskRbwDwMRTZUR6mTp2qrl27at++fapVq5bi4+Nls9nMjgUAAAAAAAAAQJmh2A4AqNRcLpckyWq1mpwE/+uGG27QDTfcYHYMAAAAAAAAAAA8gsoEAKBSysvL09ixYxUUGKjgwEBNmjSp6BL5AAAAAAAAAAAAnsaZ7QCASmnKlCl6Z+lSPRgULJekvy1YoKpVq2r27NlmRwMAAAAAAAAAAD6AM9sBAJXSx6tXa7gjUA9UCdXkKqEa4gjURx98YHYsAAAAAAAAAADgIyi2AwAqpeCQEJ11OmUYhgzD0FmXS0HBwWbHAgAAAAAAAAAAPoJiOwCgUnpk6lR9lpuj/inJuj0lSZtyc/TI1KlmxwIAAAAAAAAAAD6Ce7YDACqlUaNGKSQkREuXLJHFYtFTY8cqPj7e7FgAAAAAAAAAAMBHUGwHAFRa/fv3V//+/c2OAQAAAAAAAAAAfBCXkQcAAAAAAAAAAAAAwE0U2wEAAAAAAAAAAAAAcBPFdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAQAAAAAAAAAAAABwE8V2AAAAAAAAAAAAAADcRLEdAAAAAAAAAAAAAAA3UWwHAAAAAAAAAAAAAMBNFNsBAAAAAAAAAAAAAHCTn9kBAABla/PmzXr33XdltVo1ZswYde7c2exIAAAAAAAAKKGsrCz95S9/0ffff69mzZrpoYceksPhMDsWAAAQxXYA8CoffPCBBg0apEZ2uwoNQ4sWLtSn69fr5ptvNjsaAAAAAAAA3JSbm6vfd++uQ99+q2b+/lr53nva8Pnn+nzDBvn5cXgfAACzcRl5APAizzzxhH5vd2hj1WraHBGp9gEBenb6dLNjAQAAAAAAoATWrVun3Xv3akV4hNZWraZFYVW1aetWffHFF2ZHAwAAotgOAF4lLTVNTf38ZLVY5GexqLHVptSUFLNjAQAAAAAAoATS0tIkSU38/SVJzf7z7y/tAADAXFxnBgC8yI0336S33ntP9W1+ypehlXm5msAl5AEAAAAAACqlLl26KMDfXw+kpWqAI1DLcrMVHBiojh07mh0NAACIM9sBwKu8PG+eut98sx5NT9Xj6WmKv+MOzZkzx+xYAAAAAAAAKIEmTZroveXLtc1m1bjUZB1yOLR67VrVrl3b7GgAAECSxTAMw+wQZsnIyFBYWJjS09MVGhpqdhwAKDNpaWmyWq3s2wAAADyAuWTlQV8BALxFYWGhkpOTFRkZKZvNZnYcAAC8XnHnk1xGHgC8UHh4uNkRAAAAAAAAUEb8/PxUo0YNs2MAAID/wWXkAQAAAAAAAAAAAABwE8V2AAAAAAAAAAAAAADcRLEdAAAAAAAAAAAAAAA3UWwHAAAAAAAAAAAAAMBNFNsBAAAAAAAAAAAAAHATxXYAAAAAAAAAAAAAANxEsR0AAAAAAAAAAAAAADdRbAcAAAAAAAAAAAAAwE0U2wEAAAAAAAAAAAAAcBPFdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAQAAAACAR82aNUvXX3+9goKCFB4eXqxlxowZI4vFcslPXFycZ4MCAAAAAOAGP7MDAAAAAAAA75afn69Bgwapc+fOWrRoUbGXi4uL0+LFi4se2+12T8QDAAAAAKBEKLYDAAAAAACPmj59uiRpyZIlbi1nt9sVHR3tgUQAAAAAAJQel5EHAAAAAAAV0pYtW1S9enU1adJE99xzj5KTk3/19Xl5ecrIyLjkBwAAAAAAT6HYDgAAAAAAKpy4uDi99dZb2rhxo55//nlt3bpVt9xyi5xO51WXmT17tsLCwop+6tSpU46JAQAAAAC+hmI7AAAAAABw29SpU2WxWH715/DhwyVe/9ChQxUfH6+WLVvq9ttv1yeffKLdu3dry5YtV11m2rRpSk9PL/o5depUibcPAAAAAMBv4Z7tAAAAAADAbQ8//LDGjBnzq69p2LBhmW2vYcOGioyM1Pfff68bb7zxiq+x2+2y2+1ltk0AAAAAAH4NxXYAAAAAAOC2qKgoRUVFldv2Tp8+reTkZNWsWbPctgkAAAAAwK/hMvIAAAAAAMCjTp48qf379+vkyZNyOp3av3+/9u/fr6ysrKLXNG3aVGvWrJEkZWVl6dFHH9WOHTt04sQJbdy4UbfddpsaNWqk3r17m/U2AAAAAAC4BGe2AwAAAAAAj3rqqae0dOnSosdt2rSRJG3evFk9evSQJB05ckTp6emSJJvNpm+//VZLly5VWlqaYmJidPPNN2vmzJlcJh4AAAAAUGFYDMMwzA5hloyMDIWFhSk9PV2hoaFmxwEAAAAAVALMJSsP+goAAAAAUBLFnU9yGXkAAAAAAAAAAAAAANxEsR0AAAAAAAAAAAAAADdRbAcAAAAAAAAAAAAAwE0U2wEAAAAAAAAAAAAAcBPFdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAQAAAAAAAAAAAABwk5/ZAcxkGIYkKSMjw+QkAAAAAIDK4pc55C9zSlRczPsBAAAAACVR3Lm/TxfbMzMzJUl16tQxOQkAAAAAoLLJzMxUWFiY2THwK5j3AwAAAABK47fm/hbDh7+K73K5dPbsWVWpUkUWi8XsOIBHZWRkqE6dOjp16pRCQ0PNjgOUO8YAfB1jAL6OMYCyZBiGMjMzFRMTI6uVu7NVZJVp3s9+qvKhzyof+qzyoc8qJ/qt8qHPKh/6rPKhzyqf4s79ffrMdqvVqtq1a5sdAyhXoaGh7Mjh0xgD8HWMAfg6xgDKCme0Vw6Vcd7Pfqryoc8qH/qs8qHPKif6rfKhzyof+qzyoc8ql+LM/fkKPgAAAAAAAAAAAAAAbqLYDgAAAAAAAAAAAACAmyi2Az7Cbrfr6aeflt1uNzsKYArGAHwdYwC+jjEAoKJjP1X50GeVD31W+dBnlRP9VvnQZ5UPfVb50Gfey2IYhmF2CAAAAAAAAAAAAAAAKhPObAcAAAAAAAAAAAAAwE0U2wEAAAAAAAAAAAAAcBPFdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAR+VmJioqVOnqmfPnqpSpYosFou2bNlidiygzOXl5WnKlCmKiYlRYGCgOnXqpH/+859mxwLKRVZWlp5++mnFxcUpIiJCFotFS5YsMTsWUG52796t++67T82bN1dwcLDq1q2rwYMH6+jRo2ZHA4BSz8meeeYZWSyWy34cDofnQvu4sphHnzlzRoMHD1Z4eLhCQ0N122236fjx454JDElSWlqaJkyYoKioKAUHB6tnz57au3dvsZYdM2bMFcdZ06ZNPZza+5Vmrs44Mk9J+43PLHOU9phAafafKLnS9NuSJUuuONYsFovOnTvn2eA+qrTHHRhn3sHP7AAAzHHkyBE9//zzio2NVcuWLbV9+3azIwEeMWbMGK1atUqTJ09WbGyslixZoj59+mjz5s3q0qWL2fEAj0pKStKMGTNUt25dtWrVii9Vwec8//zz2rZtmwYNGqTrrrtO586d07x589S2bVvt2LFDLVq0MDsiAB9WVnOy119/XSEhIUWPbTZbWUXE/yhtn2VlZalnz55KT0/Xn/70J/n7++ull15S9+7dtX//flWrVs1DyX2Xy+VS37599c033+jRRx9VZGSkXnvtNfXo0UN79uxRbGzsb67Dbrdr4cKFl7SFhYV5KrLPKOlcnXFkrtIeY+Ezq3yV5phAWew/UTJlcSxnxowZatCgwSVt4eHhZRMQlyjNcQfGmRcxAPikjIwMIzk52TAMw1i5cqUhydi8ebO5oYAytnPnTkOSMXfu3KK2nJwc45prrjE6d+5sYjKgfOTm5hqJiYmGYRjG7t27DUnG4sWLzQ0FlKNt27YZeXl5l7QdPXrUsNvtxvDhw01KBQA/K+2c7OmnnzYkGRcvXvRQQvyv0vbZ888/b0gydu3aVdT23XffGTabzZg2bVpZx4VhGO+//74hyVi5cmVR24ULF4zw8HDjzjvv/M3lR48ebQQHB3syok8qzVydcWSe0vQbn1nmKM0xgdLuP1Fypem3xYsXG5KM3bt3ezAh/ltpjjswzrwHl5EHfFSVKlUUERFhdgzAo1atWiWbzaYJEyYUtTkcDo0dO1bbt2/XqVOnTEwHeJ7dbld0dLTZMQDTXH/99QoICLikLTY2Vs2bN9d3331nUioA+FlZzckMw1BGRoYMwyiDVPg1pe2zVatWqUOHDurQoUNRW9OmTXXjjTdqxYoVZRER/2PVqlWqUaOG+vfvX9QWFRWlwYMH68MPP1ReXl6x1uN0OpWRkeGpmD6nNHN1xpF5yuIYC59Z5as0xwTKav8J95XVsZzMzEw5nc4ySIRfU5rjDowz70GxHQDgtfbt26fGjRsrNDT0kvaOHTtKkvbv329CKgCAmQzD0Pnz5xUZGWl2FAAoEw0bNlRYWJiqVKmiESNG6Pz582ZHwhW4XC59++23at++/WXPdezYUT/88IMyMzNNSObd9u3bp7Zt28pqvfQQaMeOHZWdnV2s+6lmZ2crNDRUYWFhioiI0L333qusrCxPRfYJJZ2rM47MVRbHWPjMqjzKYv8J8/Ts2VOhoaEKCgpSfHy8jh07ZnYkn1Lc4w6MM+9BsR0A4LUSExNVs2bNy9p/aTt79mx5RwIAmOydd97RmTNnNGTIELOjAECpVK1aVffdd5/eeOMNrVq1SuPGjdP777+vrl27cgZuBZSSkqK8vDzmJ+WstHPCmjVr6rHHHtPixYv13nvvKT4+Xq+99pri4uJUWFjokcy+oKT9wjgyV2nGE59ZlQ/H1CqnoKAgjRkzRq+++qrWrFmjxx57TBs3btT111/PFT7LUXGPOzDOvIef2QEAlJ7L5VJ+fn6xXmu322WxWDycCKgYcnJyZLfbL2t3OBxFzwMAfMfhw4d17733qnPnzho9erTZcQB4ETPmZA8++OAljwcMGKCOHTtq+PDheu211zR16tRSb8OblXef/TL3YH5SciXps9LOCWfPnn3J46FDh6px48Z6/PHHtWrVKg0dOrSY6fHfStovjCNzlWY88ZlV+XBMrXIaPHiwBg8eXPT49ttvV+/evdWtWzfNmjVLf//7301M5xvcOe7AOPMenNkOeIEvvvhCgYGBxfo5cuSI2XGBchMYGHjFe9vk5uYWPQ8A8A3nzp1T3759FRYWVnS/SQAoKxVlTjZs2DBFR0drw4YNHtuGtyjvPvtl7sH8pORK0meemBM+9NBDslqtjLNSKGm/MI7MVdbjic+sio1jat6jS5cu6tSpE2OtHLh73IFx5j04sx3wAk2bNtXixYuL9dorXZYE8FY1a9bUmTNnLmtPTEyUJMXExJR3JACACdLT03XLLbcoLS1NX375Jft/AGWuIs3J6tSpo5SUFI9uwxuUd59FRETIbrcXzUX+G/OT4ilJn9WsWbPMf+eBgYGqVq0a46wUSjpXZxyZyxPHWPjMqrg8sf+EeerUqcNJeB5WkuMOjDPvQbEd8ALR0dEaM2aM2TGACqd169bavHmzMjIyFBoaWtS+c+fOoucBAN4tNzdX/fr109GjR7VhwwY1a9bM7EgAvFBFmZMZhqETJ06oTZs2Zkep8Mq7z6xWq1q2bKmvv/76sud27typhg0bqkqVKuWWpzIqSZ+1bt1aX375pVwul6zW/7/A586dOxUUFKTGjRu7nSMzM1NJSUmKiopye1n8rKRzdcaRucr6GAufWRWbJ/afMM/x48f53PKgkh53YJx5Dy4jDwDwWgMHDpTT6dT8+fOL2vLy8rR48WJ16tRJderUMTEdAMDTnE6nhgwZou3bt2vlypXq3Lmz2ZEAoEROnjypw4cPX9J28eLFy173+uuv6+LFi4qLiyuvaLiKK/XZwIEDtXv37ksKhUeOHNGmTZs0aNCg8o7oEwYOHKjz589r9erVRW1JSUlauXKl+vXrd8l9Un/44Qf98MMPRY9zc3OVmZl52TpnzpwpwzAYZ6VQ3Lk646hiKU2/8ZlVsSUmJurw4cMqKCgoanNn/wlzXKnfrjTWPv30U+3Zs4ex5iHFPe7AOPNuFsMwDLNDADDHs88+K0k6dOiQli9frrvvvlsNGjSQJD3xxBNmRgPKzODBg7VmzRo99NBDatSokZYuXapdu3Zp48aN6tatm9nxAI+bN2+e0tLSdPbsWb3++uvq379/0ZkD999/v8LCwkxOCHjO5MmT9be//U39+vXT4MGDL3t+xIgRJqQCgP9X3DlZjx49tHXrVv33IZygoCANGTJELVu2lMPh0FdffaXly5erVatW2rZtm4KCgsr3zfiI0vRZZmam2rRpo8zMTD3yyCPy9/fXiy++KKfTqf3793PGmQc4nU516dJFBw8e1KOPPqrIyEi99tprOnnypHbv3q0mTZoUvbZ+/fqSpBMnThT926ZNG915551q2rSpJOnzzz/Xp59+qri4OK1bt+6Ss9DgnuLM1RlHFU9J+43PLPMU55jAmDFjtHTpUiUkJBTtC93Zf6LslbTfYmNj1aZNG7Vv315hYWHau3ev3nzzTdWsWVO7d+9WjRo1THxX3qm4xx0YZ17OAOCzJF31B/AWOTk5xiOPPGJER0cbdrvd6NChg/HZZ5+ZHQsoN/Xq1bvqvj4hIcHseIBHde/enf/vAKjQiruP+mV/9t/GjRtnNGvWzKhSpYrh7+9vNGrUyJgyZYqRkZFRnm/B55SmzwzDME6dOmUMHDjQCA0NNUJCQoxbb73VOHbsWHnF90kpKSnG2LFjjWrVqhlBQUFG9+7djd27d1/2unr16hn16tUrepyammqMGDHCaNSokREUFGTY7XajefPmxnPPPWfk5+eX4zvwTsWZqzOOKp6S9hufWeYpzjGB0aNHX/EYQXH3nyh7Je23xx9/3GjdurURFhZm+Pv7G3Xr1jXuuece49y5c+a8ER9Q3OMOjDPvxpntAAAAAAAAAAAAAAC4iWsdAQAAAAAAAAAAAADgJortAAAAAAAAAAAAAAC4iWI7AAAAAAAAAAAAAABuotgOAAAAAAAAAAAAAICbKLYDAAAAAAAAAAAAAOAmiu0AAAAAAAAAAAAAALiJYjsAAAAAAAAAAAAAAG6i2A4AAAAAAAAAAAAAgJsotgMAAAAAAAAAAAAA4CaK7QAAAAAAAAAAAAAAuIliOwAAAAAAAAAAAAAAbqLYDgCADztz5owcDofuvvvuS9o3bNggf39/PfTQQyYlAwAAAAAApcW8HwAAz7IYhmGYHQIAAJjnvvvu0/z583Xs2DHVq1dPhw8fVufOndW1a1etXbtWVivfzQMAAAAAoLJi3g8AgOdQbAcAwMedOXNG11xzje6++27NnDlTnTp1UpUqVfTVV18pODjY7HgAAAAAAKAUmPcDAOA5fmYHAAAA5qpVq5bGjx+vBQsWaO/evcrJydHWrVuZcAMAAAAA4AWY9wMA4DlcHwYAAOiRRx5RXl6evv32W3300UeqVavWJc9fvHhRffv2VXBwsJo0aaKNGzealBQAAAAAALiLeT8AAJ7Bme0AAECzZs2SJBUWFioiIuKy5++9915FR0fr4sWL2rBhgwYPHqxjx45d8bUAAAAAAKBiYd4PAIBncGY7AAA+bu7cuVq4cKHmzZsnPz+/ogn4L7KysrR27VpNnz5dQUFBio+PV8uWLfXhhx+alBgAAAAAABQX834AADyHYjsAAD5s7dq1mjp1qmbOnKl7771XEyZM0FtvvaWEhISi1xw7dkwhISGqXbt2UVvLli116NAhMyIDAAAAAIBiYt4PAIBnUWwHAMBH7dmzR8OHD9fw4cP1+OOPS5Iee+wxWa3WS77lnpWVpdDQ0EuWDQ0NVVZWVrnmBQAAAAAAxce8HwAAz6PYDgCADzp9+rT69eunNm3aaMGCBUXtMTExuvvuuy/5lntISIgyMjIuWT4jI0MhISHlmhkAAAAAABQP834AAMqHxTAMw+wQAACg4srKylJERIQSEhJUq1YtSVLPnj01atQo3XXXXSanAwAAAAAApcG8HwCAkqPYDgAAftOgQYMUFhamV155RRs3btTo0aN17NgxRUREmB0NAAAAAACUEvN+AABKxs/sAAAAoOJ77bXXNHr0aFWrVk21a9fW+++/z4QbAAAAAAAvwbwfAICS4cx2AAAAAAAAAAAAAADcZDU7AAAAAAAAAAAAAAAAlQ3FdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAQAAAAAAAAAAAABwE8V2AAAAAAAAAAAAAADcRLEdAAAAAAAAAAAAAAA3UWwHAAAAAAAAAAAAAMBNfmYHAAAAAACgLDmdThUUFJgdAz7E399fNpvN7BgAAAAAgHJGsR0AAAAA4BUMw9C5c+eUnp4uwzDMjgMfYrFYFBYWpujoaFksFrPjAAAAAADKCcV2AAAAAIBXSE9PV1pamqKiohQcHEzRE+XCMAz99NNPunjxogIDAxUeHm52JAAAAABAOaHYDgAAAACo9AzD0IULFxQaGqrIyEiz48DHBAYGKi8vTxcuXFBYWBhf9AAAAAAAH2E1OwAAAAAAAKXldDrldDoVGhpqdhT4qNDQ0KK/QwAAAACAb6DYDgAAAACo9AoLCyVJfn5cwA3m+OVv75e/RQAAAACA96PYDgAAAADwGly+G2bhbw8AAAAAfA/FdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN1FsBwAAAAAAAAAAAADATRTbAQAAAADwEVlZWbJarXrppZfcXjYnJ0c2m03PPfdchcgDAAAAAIDZKLYDAAAAAOAjDh48KMMw1LJlS7eX/fe//y2Xy6UWLVpUiDwAAAAAAJiNYjsAAAAAAD7iwIEDklSi4vYvyzZv3rxC5AEAAAAAwGwU2wEAAAAA8BEHDhxQVFSUatSoUaJlg4KC1LBhwwqRBwAAAAAAs1FsBwAAAACgHPXp00f169e/rN0wDLVt21Zdu3b12LYPHDhw2Vnk3333nSZNmqQmTZooKChI0dHRGj58uBITEy9b9tprr9WOHTvUo0cPBQcHq2nTpnrvvfeuuK0tW7aoT58+Cg8PV0REhG699Vb98MMPv5rn5MmTGjdunBo2bCiHw6Ho6Gj16dNH33//fRn9BgAAAAAAKDsU2wEAAAAAKEcdOnTQjz/+qNTU1Evaly9frn379mnOnDke2/aViu1vvvmmEhISNHLkSL388ssaPHiwVq1apZEjR162bFZWloYMGaIbb7xRc+bMkcVi0bBhw7Rz585LXrtkyRLdeOONcrlcevbZZzV16lR988036tWrl3Jycq6Y5/z582rfvr22bdum8ePH69VXX9WkSZN05swZ+fn5eeg3AgAAAABAyTFbBQAAAACgHLVv316StG/fPv3+97+XJBUUFOjJJ59Uv379dMMNN3hku4mJiUpOTlaLFi0uaZ8+fbqCgoIuaQsLC9Nzzz2n3NxcORwOJSUl6dy5c8rPz9eePXuKzsy//fbb1ahRI7355pvq1KmTJOngwYOaOHGipk+frieeeKJonXFxcWrVqpXWr1+v/v37X5bn7bffVmZmpr7//nuFhoYWLffMM8944LcBAAAAAEDpUWwHAAAAAKAcdejQQZK0d+/eomL7/PnzlZCQoLVr115xGZfLpfz8/GKt3263y2KxXNb+7bffStJlZ7b/d6E9LS1NhYWFqlq1qlwulwoLCyX9XECXpMcff/ySS+DXqVNHTZo0UUJCQlHbjBkzVLduXU2cOFFJSUlF7TExMfL399fx48evmCctLU0FBQXau3evevToUaz3CgAAAACAmSi2AwAAAABQjqKjo1WrVi3t27dPkvTTTz9p5syZGjFixGVnnf/iiy++UM+ePYu1/u+++05Nmza9rP3AgQOyWCxq3rx5UZvT6dTSpUs1b948HT58+JJLvEdGRiokJKRoWUkaMWLEZeu1Wq1FBfu8vDytW7dO2dnZql69+hXzValS5Yp5Ro0apUWLFqlnz55q27athg4dqhEjRqhmzZrFet8AAAAAAJQ3iu0AAAAAAJSzDh06FBXbX3zxRaWmpmrGjBlXfX3Tpk21ePHiYq37asXpAwcOqEGDBkUFdOnnAveKFSs0evRoTZ48WZGRkQoICNADDzxwyXoOHDigmJiYywro2dnZOnz4sOLj4yVJx48fV3Z2tmbOnKnf/e53V8zRqlWrK+aJjY3V0aNHtXr1an388cd68sknNWPGDH322Wceu7Q+AAAAAAClQbEdAAAAAIBy1qFDB3300Uc6efKkXnjhBd1zzz2qV6/eVV8fHR2tMWPGlGqbBw4cuOQS8v/+97/17rvv6qWXXtLkyZOL2hMTE3X06FHFxcVdsqzNZrtsnYsXL1ZeXp769+8vScrMzJQkXXvtterVq5dbeSQpJCREo0aN0qhRo3TkyBG1bNlSK1asoNgOAAAAAKiQrGYHAAAAAADA17Rv314ul0vDhg2TYRh6/PHHPbo9p9Op77777pLi9unTpyVJjRo1KmorKCjQuHHj5HQ6dd1110mSDMPQwYMHdebMGf3www9Fr7148aLmzJmj+Ph4tW7dWpJUv359WSwWffDBB5dlKCwsVGpq6hXz/Pe93X8RGBgop9OpmJiYUr57AAAAAAA8gzPbAQAAAAAoZ+3bt5ckbdu2Tc8884yioqI8ur1jx44pNzf3kmJ769atFRQUpAcffFAJCQnKycnRsmXLis5g/+Vy7ydOnFBWVpbatWunvn376oEHHlB2drbmzZsnq9Wq+fPnF62zevXquvPOO/Xuu+8qIyNDt9xyi5xOp77//nutXr1ay5cvV5cuXS7Lc//99+vgwYOKj49XgwYNlJiYqPnz56t27doaP368R383AAAAAACUFMV2AAAAAADKWUREhOrXr6+ffvpJDz/8sMe3d+DAAUlSixYtitqqV6+uFStW6JFHHtFjjz2mxo0b6+GHH9aPP/6oQ4cOqVmzZpcsu3DhQi1cuFB/+tOfZLFYFB8frzlz5qhGjRqXbOvNN99UixYt9Pbbb+vRRx9VUFCQGjZsqHHjxqlt27ZXzHPTTTfpwoULWrBggTIyMlSnTh31799fTzzxhCIiIjz7ywEAAAAAoIQshmEYZocAAAAAAKA0cnNzlZCQoAYNGsjhcJgd5zcdP35cjRs31osvvqgHHnjA7DgoA5XtbxAAAAAAUHrcsx0AAAAAgHI2bdo01a9fX5MmTTI7CgAAAAAAKCEuIw8AAAAAQDlIS0vT+vXrtWXLFq1cuVLr169XQECA2bEAAAAAAEAJUWwHAAAAAKAcbNy4UcOGDVPt2rX1xhtvqHfv3mZHAgAAAAAApUCxHQAAAACAcjBgwAAZhmF2DAAAAAAAUEa4ZzsAAAAAAAAAAAAAAG6i2A4AAAAAAAAAAAAAgJsotgMAAAAAAAAAAAAA4CaK7QAAAAAAAAAAAAAAuIliOwAAAAAAAAAAAAAAbqLYDgAAAAAAAAAAAACAmyi2AwAAAAAAAAAAAADgJortAAAAAAAAAAAAAAC4iWI7AAAAAAAAAAAAAABuotgOAAAAAAAAAAAAAICbKLYDAAAAAAAAAAAAAOAmP7MDAAAAAADgaYVnzsiVkmJqBmtEhPxq1Srx8nl5eXrqqae0bNkypaam6rrrrtOzzz6rm266qQxTls65tBylZReYHUPhQf6KDg8s0bJZWVmaO3eudu7cqV27dik1NVWLFy/WmDFjyjYkAAAAAKDSo9gOAAAAAPBqhWfO6HzX7lJenrlB7HbV+HJriQvuY8aM0apVqzR58mTFxsZqyZIl6tOnjzZv3qwuXbqUcVj3nUvL0eBXvlJ+ocvsKArws2rF/V1KVHBPSkrSjBkzVLduXbVq1Upbtmwp+4AAAAAAAK/AZeQBAAAAAF7NlZJifqFdkvLySnx2/a5du7R8+XLNnj1bc+fO1YQJE7Rp0ybVq1dPjz32WBkHLZm07IIKUWiXpPxCV4nPsK9Zs6YSExP1448/au7cuWWcDAAAAADgTSi2AwAAAABQwa1atUo2m00TJkwoanM4HBo7dqy2b9+uU6dOmZjOu9jtdkVHR5sdAwAAAABQCVBsBwAAAACggtu3b58aN26s0NDQS9o7duwoSdq/f78JqQAAAAAA8G0U2wEAAAAAqOASExNVs2bNy9p/aTt79mx5RwIAAAAAwOdRbAcAAAAAoILLycmR3W6/rN3hcBQ9DwAAAAAAyhfFdgAAAAAAKrjAwEDl5eVd1p6bm1v0PAAAAAAAKF8U2wEAAAAAqOBq1qypxMTEy9p/aYuJiSnvSAAAAAAA+DyK7QAAAAAAVHCtW7fW0aNHlZGRcUn7zp07i54HAAAAAADli2I7AAAAAAAV3MCBA+V0OjV//vyitry8PC1evFidOnVSnTp1TEwHAAAAAIBv8jM7AAAAAAAA+HWdOnXSoEGDNG3aNF24cEGNGjXS0qVLdeLECS1atMjseF5n3rx5SktL09mzZyVJH3/8sU6fPi1Juv/++xUWFmZmPAAAAABABUGxHQAAAADg1awREZLdLuXlmRvEbv85Swm99dZbevLJJ7Vs2TKlpqbquuuu0yeffKJu3bqVYciSCw/yV4CfVfmFLrOjKMDPqvAg/xIv/8ILL+jHH38serx69WqtXr1akjRixAiK7QAAAAAASZLFMAzD7BAAAAAAAJRGbm6uEhIS1KBBAzkcjsueLzxzRq6UFBOS/T9rRIT8atUyNYOnnUvLUVp2gdkxFB7kr+jwwHLd5m/9DQIAAAAAvA9ntgMAAAAAvJ5frVqSlxe6K4Lo8MByL3IDAAAAAGAWq9kBAAAAAAAAAAAAAACobCi2AwAAAAAAAAAAAADgJortAAAAAAAAAAAAAAC4iWI7AAAAAAAAAAAAAABuotgOAAAAAAAAAAAAAICbKLYDAAAAALyGYRhmR4CP4m8PAAAAAHwPxXYAAAAAQKXn7+8vScrOzjY5CXzVL397v/wtAgAAAAC8n5/ZAQAAAAAAKC2bzabw8HBduHBBkhQUFCSLxWJyKvgCwzCUnZ2tCxcuKDw8XDabzexIAAAAAIByYjG4zhkAAAAAwAsYhqFz584pLS3N7CjwQeHh4YqOjuZLHgAAAADgQyi2AwAAAAC8itPpVEFBgdkx4EP8/f05ox0AAAAAfBDFdgAAAAAAAAAAAAAA3GQ1OwAAAAAAAAAAAAAAAJUNxXYAAAAAAAAAAAAAANxEsR0AAAAAAAAAAAAAADdRbAcAAAAAAAAAAAAAwE0U2wEAAAAAAAAAAAAAcBPFdgAAAAAAAAAAAAAA3ESxHQAAAAAAAAAAAAAAN/0f7Z94hMTuEBAAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
- "plot_dataset(\n",
+ "plot_gaussian_blobs(\n",
" train_data,\n",
" test_data,\n",
" xlabel=\"$x_0$\",\n",
@@ -235,6 +248,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "dce9b1d3",
"metadata": {},
@@ -243,6 +257,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "3d6bbcac",
"metadata": {},
@@ -262,36 +277,53 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Model fitting: 100%|██████████| 50/50 [00:03<00:00, 14.92it/s]\n"
+ "Model fitting: 0%| | 0/50 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Model fitting: 100%|██████████| 50/50 [00:02<00:00, 19.41it/s]\n"
]
}
],
"source": [
- "model = TorchBinaryLogisticRegression(num_features)\n",
+ "model = TorchLogisticRegression(num_features)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"model.to(device)\n",
"\n",
"num_epochs = 50\n",
"lr = 0.05\n",
"weight_decay = 0.05\n",
- "batch_size = 128\n",
+ "batch_size = 256\n",
+ "\n",
+ "train_data_loader = DataLoader(\n",
+ " list(zip(train_data[0], train_data[1].astype(float))),\n",
+ " batch_size=batch_size,\n",
+ " shuffle=True,\n",
+ ")\n",
+ "val_data_loader = DataLoader(\n",
+ " list(zip(val_data[0], val_data[1].astype(float))),\n",
+ " batch_size=batch_size,\n",
+ " shuffle=True,\n",
+ ")\n",
"\n",
"optimizer = AdamW(params=model.parameters(), lr=lr, weight_decay=weight_decay)\n",
"scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)\n",
- "train_loss, val_loss = model.fit(\n",
- " x_train=train_data[0],\n",
- " y_train=train_data[1].astype(float),\n",
- " x_val=val_data[0],\n",
- " y_val=val_data[1].astype(float),\n",
+ "losses = fit_torch_model(\n",
+ " model=model,\n",
+ " training_data=train_data_loader,\n",
+ " val_data=val_data_loader,\n",
" loss=F.binary_cross_entropy,\n",
" optimizer=optimizer,\n",
" scheduler=scheduler,\n",
" num_epochs=num_epochs,\n",
- " batch_size=batch_size,\n",
")"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "1b424023",
"metadata": {},
@@ -307,26 +339,21 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHVCAYAAAD8YtYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABP6ElEQVR4nO3deXzlZX33//d11uQsWSYnk2S2ZEC2YZFlEAUreos3oAhW1KK0Umu1LlQt7W31Z2srrXfV4tYWUWotKlWkaBEr6t2quEBBZgSBGRgYYJbMmkwyM9nPdv3+uL5nSeacTJaTc06S1/PxOI/vek6uzHzReZ/PtRhrrQAAAAAAqDVfrRsAAAAAAIBEQAUAAAAA1AkCKgAAAACgLhBQAQAAAAB1gYAKAAAAAKgLBFQAAAAAQF0I1LoBUyUSCdvT01PrZgAAAAAAFsDmzZv7rbXtpa7VXUDt6enRpk2bat0MAAAAAMACMMbsLHeNLr4AAAAAgLpAQAUAAAAA1AUCKgAAAACgLhBQAQAAAAB1oe4mSQIAAACAxSCVSqm3t1fj4+O1bkrdaWho0Jo1axQMBmf1PgIqAAAAAMxBb2+v4vG4enp6ZIypdXPqhrVWhw4dUm9vr9avXz+r99LFFwAAAADmYHx8XG1tbYTTKYwxamtrm1NlmYAKAAAAAHNEOC1trn8uBFQAAAAAQF0goAIAAAAASrr88sv11a9+tWo/j0mSAAAAAGAJicVi+f3R0VGFw2H5/X5J0pe+9CVde+21M/6sH/zgBxVv33QIqAAAAACwhAwPD+f3e3p69OUvf1mXXHLJMfel02kFAvUVCeniCwAAAADLwH333ac1a9bok5/8pDo7O/W2t71Ng4ODuuKKK9Te3q7W1lZdccUV6u3tzb/n5S9/ub785S9Lkm677Ta99KUv1Z/92Z+ptbVV69evr3iFlYAKAAAAAMvE/v37NTAwoJ07d+rWW29VNpvV2972Nu3cuVO7du1SY2Ojrr/++rLvf+ihh3TKKaeov79fH/zgB/X2t79d1tqKta++6rkAAAAAsEh97HtbtHXv0QX9GRtWNemvXnv6nN/v8/n0sY99TOFwWJLU2Nioq6++On/9Ix/5iF7xileUfX93d7fe8Y53SJKuu+46vec979GBAwfU2dk55zYVI6ACAAAAwDLR3t6uhoaG/PHo6Kj+5E/+RD/84Q81ODgoSRoaGlImk8lPrFSsOIhGIhFJk8e8zhcBdZaS6axGk2m1REK1bgoAAACAOjKfyma1GGMmHX/605/Wtm3b9NBDD6mzs1OPPvqozjnnnIp2250NxqDO0nVf+ZX+8Kubat0MAAAAAJi3oaEhNTY2qqWlRQMDA/rYxz5W0/YQUGepPR5W3/BErZsBAAAAAPP2gQ98QGNjY0okEnrxi1+syy67rKbtMbUq3ZazceNGu2lT/VYob/zeVn3r4V3acmNt/+IAAAAA1NaTTz6p0047rdbNqFvl/nyMMZuttRtLvYcK6iwl4iGNJDMaS2Zq3RQAAAAAWFIIqLOUiLnpmPvp5gsAAAAAFUVAnaV2L6AyDhUAAAAAKouAOkv5CuoQARUAAAAAKomAOkvtcSqoAAAAALAQCKiz1BYLSZL6h5I1bgkAAAAALC0E1FkK+n1qiQSZJAkAAAAAKoyAOgeJWJiACgAAAAAVRkCdg0QsREAFAAAAsOQYY7R9+/aa/XwC6hy4CipjUAEAAADUn8suu0wf/ehHjzn/3e9+V52dnUqn0zVo1cwQUOegPR5WH8vMAAAAAKhD1113nW6//XZZayed//rXv65rr71WgUCgRi07PgLqHCRiYQ1PpDWeytS6KQAAAAAwyete9zodOnRIv/jFL/LnBgcH9Z//+Z+68sor9ZKXvEQtLS3q6urS9ddfr2SyfnqHElDnoD3mrYVKFRUAAABAnWlsbNSb3vQmfe1rX8ufu/POO3XqqacqFovps5/9rPr7+/U///M/+vGPf6wvfOELNWztZPVb261jibi3FurwhNauiNS4NQAAAADqwg8+JO1/fGF/RueZ0uWfOO5t1113na644gr90z/9kxoaGvS1r31N1113nc4777z8PT09PfqjP/oj/exnP9MHPvCBBWz0zBFQ5yDhVVCZKAkAAABAPXrpS1+qRCKhu+++W+eff75+9atf6Tvf+Y6efvpp3XDDDdq0aZNGR0eVTqcnhdZaI6DOQSGg0sUXAAAAgGcGlc1qeutb36qvfe1r2rZtmy699FJ1dHToLW95i8455xx985vfVDwe1+c+9zndddddtW5qHmNQ56At5nXxZQwqAAAAgDr11re+Vf/93/+tf/7nf9Z1110nSRoaGlJTU5NisZieeuop3XLLLTVu5WQE1DkIB/xqbgyqjwoqAAAAgDrV09OjCy+8UCMjI7ryyislSTfddJO+8Y1vKB6P6x3veId+53d+p8atnIwuvnOUiIXo4gsAAACgrt13332Tjl/2spfpqaeemnTuxhtvzO9PXTu12qigzlEiFlb/EJMkAQAAAEClEFDnKBEPU0EFAAAAgAoioM5ReyzMGFQAAAAAqCAC6hwlYiENjac1nsrUuikAAAAAsCQQUOeoPc5aqAAAAMByV+tJherVXP9cCKhzlIjlAioTJQEAAADLkd/vVyqVqnUz6lIqlVIgMPtFYwioc5QPqENUUAEAAIDlqKWlRQcOHFA2m611U+pKNpvVgQMH1NzcPOv3zijSGmMuk/R5SX5JX7bWfqLMfVdLukvS+dbaTd65D0t6u6SMpPdZa38061bWoQRdfAEAAIBlLZFIqLe3V9u2bat1U+pONBpVIpGY9fuOG1CNMX5JN0t6laReSQ8bY+6x1m6dcl9c0vslPVR0boOkaySdLmmVpP82xpxsrV30Mwu1RUOSCKgAAADAcuXz+bRu3bpaN2NJmUkX3xdJ2m6tfc5am5R0h6SrStz3N5I+KWm86NxVku6w1k5Ya5+XtN37vEWvIehXvCHAGFQAAAAAqJCZBNTVknYXHfd65/KMMedKWmut/f5s3+u9/53GmE3GmE19fX0zang9aI+H1ccYVAAAAACoiHlPkmSM8Un6jKQ/netnWGtvtdZutNZubG9vn2+TqiYRC6uPLr4AAAAAUBEzCah7JK0tOl7jncuJSzpD0n3GmB2SXizpHmPMxhm8d1Frj4UZgwoAAAAAFTKTgPqwpJOMMeuNMSG5SY/uyV201h6x1iastT3W2h5JD0q60pvF9x5J1xhjwsaY9ZJOkvSriv8WNZKIhVhmBgAAAAAq5Liz+Fpr08aY6yX9SG6Zma9Ya7cYY26UtMlae880791ijLlT0lZJaUnvXQoz+OYkYmEdHU9rIp1ROOCvdXMAAAAAYFGb0Tqo1tp7Jd075dxHy9z78inHH5f08Tm2r67l1kI9NJzUqpbGGrcGAAAAABa3eU+StJy1x1xAZSZfAAAAAJg/Auo85CqoTJQEAAAAAPNHQJ2HRCwkiYAKAAAAAJVAQJ2HRCxXQU3WuCUAAAAAsPgRUOehIehXPBxgDCoAAAAAVAABdZ4S8TBdfAEAAACgAgio85SIhQioAAAAAFABBNR5ao+H6eILAAAAABVAQJ2nRCzMJEkAAAAAUAEE1HlKxMI6MpZSMp2tdVMAAAAAYFEjoM5TbqmZQyN08wUAAACA+SCgzlMiFpIk9Q/RzRcAAAAA5oOAOk+JuKugMpMvAAAAAMwPAXWe2r0uvszkCwAAAADzQ0Cdp3avgtpHBRUAAAAA5oWAOk8NQb9i4QBdfAEAAABgngioFZCIhVgLFQAAAADmiYBaAYlYWP2MQQUAAACAeSGgVkAiFqaLLwAAAADMEwG1AtrjYSZJAgAAAIB5IqBWQCIW1uHRlFKZbK2bAgAAAACLFgG1AhLxkCTpEBMlAQAAAMCcEVArIBFza6EyDhUAAAAA5o6AWgG5gMo4VAAAAACYOwJqBbTnKqgsNQMAAAAAc0ZArYDcGNR+xqACAAAAwJwRUCsgEgooGvKrjwoqAAAAAMwZAbVCEvEwkyQBAAAAwDwQUCskESOgAgAAAMB8EFArJBELEVABAAAAYB4IqBXiKqhMkgQAAAAAc0VArZBELKzB0aRSmWytmwIAAAAAixIBtULa42FZKw2MUEUFAAAAgLkgoFZIIhaWJJaaAQAAAIA5IqBWSHs8JElMlAQAAAAAc0RArZBcBZWJkgAAAABgbgioFVIIqFRQAQAAAGAuCKgVEg0H1Bj0q58xqAAAAAAwJwTUCmqPh9VHBRUAAAAA5oSAWkGJWIguvgAAAAAwRwTUCkrEwuofYpIkAAAAAJgLAmoFJeJhKqgAAAAAMEcE1ApKxMIaGE0qncnWuikAAAAAsOgQUCuoPRaStdLAKN18AQAAAGC2CKgV1B731kJlHCoAAAAAzBoBtYISMRdQWWoGAAAAAGaPgFpBuYDaP0RABQAAAIDZIqBWUCLXxZcKKgAAAADMGgG1gqIhvxqCPgIqAAAAAMwBAbWCjDFKxMLqH2aSJAAAAACYLQJqhbmASgUVAAAAAGaLgFph7fGw+pgkCQAAAABmjYBaYVRQAQAAAGBuCKiz9V9/Jd37f8pebo+FNDCSVCZrq9goAAAAAFj8CKizNfCs9PzPy15OxMPKWmlghImSAAAAAGA2CKizFeuUhvaVvZyIsRYqAAAAAMwFAXW24p3S+BEpNVbyMgEVAAAAAOaGgDpb8U63Hdpf8nJ73AVUZvIFAAAAgNkhoM5WLqAOHyh5ORELSaKCCgAAAACzRUCdrXiX25YZhxoLBxQO+NQ/zCRJAAAAADAbBNTZiuW6+JauoBpj3FqodPEFAAAAgFmZUUA1xlxmjNlmjNlujPlQievvMsY8box51BjzS2PMBu98jzFmzDv/qDHmi5X+BaouskLyBaefyTceVh9dfAEAAABgVgLHu8EY45d0s6RXSeqV9LAx5h5r7dai275hrf2id/+Vkj4j6TLv2rPW2rMr2upaMsaNQy0zSZIktcdC2nN4vIqNAgAAAIDFbyYV1BdJ2m6tfc5am5R0h6Srim+w1h4tOoxKspVrYh2Kd0rD0wTUeJhJkgAAAABglmYSUFdL2l103Oudm8QY815jzLOSPiXpfUWX1htjHjHG/MwY81vzam29iHVMW0FNxMI6NDyhTHZp53QAAAAAqKSKTZJkrb3ZWnuipD+X9Bfe6X2S1llrz5F0g6RvGGOapr7XGPNOY8wmY8ymvr6+SjVp4cS7jhtQs1YaHGUmXwAAAACYqZkE1D2S1hYdr/HOlXOHpNdJkrV2wlp7yNvfLOlZSSdPfYO19lZr7UZr7cb29vYZNr2G4h3S+GEpNVbyciIWlsRaqAAAAAAwGzMJqA9LOskYs94YE5J0jaR7im8wxpxUdPgaSc9459u9SZZkjDlB0kmSnqtEw2sqtxbqcOmlZhKxkCSpf4gKKgAAAADM1HFn8bXWpo0x10v6kSS/pK9Ya7cYY26UtMlae4+k640xl0hKSRqUdJ339pdJutEYk5KUlfQua+3AQvwiVRXPrYW6X2rtOeZyIk4FFQAAAABm67gBVZKstfdKunfKuY8W7b+/zPu+Lenb82lgXYoVBdQS6OILAAAAALNXsUmSlpVcF98yAbWpIaBQwKe+IQIqAAAAAMwUAXUuIiskX1Aa2lfysjFG7bGw+qigAgAAAMCMEVDnwhg3DrXMJEmSmyipf5hJkgAAAABgpgiocxXrKFtBldw41H66+AIAAADAjBFQ5yreKQ1NV0ENM0kSAAAAAMwCAXWu4p3TV1DjIR0aSSqbtVVsFAAAAAAsXgTUuYp3SuOHpdR4ycvtsbAyWavBUcahAgAAAMBMEFDnKrfUzHCZtVDjubVQCagAAAAAMBME1LmKdbptmXGoiVguoDIOFQAAAABmgoA6V/FcQC09DpWACgAAAACzQ0Cdq3xALd3Ft90LqH0sNQMAAAAAM0JAnavGFZIvWHYMalNjQCG/jzGoAAAAADBDBNS58vmkWEfZCqoxRolYiAoqAAAAAMwQAXU+4p1lA6rkZvJlDCoAAAAAzAwBdT6OF1BjBFQAAAAAmCkC6nzEO8uOQZWkRCxEQAUAAACAGSKgzke8UxoblFLjJS8nYmEdGk4qm7VVbhgAAAAALD4E1PmIeUvNDB8oeTkRCyudtToylqpiowAAAABgcSKgzke8y23LrYUad2uh0s0XAAAAAI6PgDof8Q63HdpX8nIi5gIqS80AAAAAwPERUOcjV0Et08W3PR6SJPVRQQUAAACA4yKgzkfjCskXOG4FtX84Wc1WAQAAAMCiRECdD5/PTZQ0VLqC2twYVNBvGIMKAAAAADNAQJ2veEfZCqoxRm3RsPoZgwoAAAAAx0VAna94V9kxqJKUiIeooAIAAADADBBQ5yveWbaCKkntsTCTJAEAAADADBBQ5yvWKY0NSqnxkpcTsbD6h5gkCQAAAACOh4A6X/FOty3TzTcRD+vQyISstVVsFAAAAAAsPgTU+coF1KH9JS8nYmGlMlZHxlJVbBQAAAAALD4E1PnKV1DLBdSQJDFREgAAAAAcBwF1vmLTV1DbY2FJUh/jUAEAAABgWgTU+Yq0Sb5A+YAa9wIqFVQAAAAAmBYBdb58PinWMe0YVEnqHyKgAgAAAMB0CKiVEO8sOwa1uTGogM8wBhUAAAAAjoOAWgnxrrIVVJ/PqC0WIqACAAAAwHEQUCsh1iEN7St7ORELq3+YSZIAAAAAYDoE1EqId0ljg1K6dJXUBVQqqAAAAAAwHQJqJcQ73HaamXyZJAkAAAAApkdArYR4l9sOHyh5OdfF11pbxUYBAAAAwOJCQK2EWK6CWnocaiIWUjKT1dGxdBUbBQAAAACLCwG1EnIV1KHSFdT2uFsLtY9xqAAAAABQFgG1EiJtki8wTQXVBVQmSgIAAACA8gioleDzuW6+04xBlQioAAAAADAdAmqlTLMWaiIWkiRm8gUAAACAaRBQKyXeVXaZmdZISH6fYQwqAAAAAEyDgFop8c6yAdXnM2qLhtQ/lKxyowAAAABg8SCgVkq8UxobkNKlq6RuLVQqqAAAAABQDgG1UuKdbltuoqQ4ARUAAAAApkNArZSYF1DLdPNNxELqH6aLLwAAAACUQ0CtlPj0AbU9Flbf8ISstVVsFAAAAAAsHgTUSjleQI2HlUxndXQ8XcVGAQAAAMDiQUCtlEhCMn5puFwX37AkMQ4VAAAAAMogoFaKzyfFOqYZg+oF1CECKgAAAACUQkCtpHinNLSv5KVEPCRJTJQEAAAAAGUQUCsp3iUNlVlmhi6+AAAAADAtAmolxTvKVlBbIyH5DAEVAAAAAMohoFZSvEsaG5DSx4ZQv8+oLRYmoAIAAABAGQTUSop1uO1w+W6+fUySBAAAAAAlEVArKd7ltmXHoYbUxyRJAAAAAFASAbWS4l4Ftcw41PZYmGVmAAAAAKAMAmol5Sqo5br4xt0YVGttFRsFAAAAAIvDjAKqMeYyY8w2Y8x2Y8yHSlx/lzHmcWPMo8aYXxpjNhRd+7D3vm3GmEsr2fi6E0lIxl9+LdRYSBPprIYn0lVuGAAAAADUv+MGVGOMX9LNki6XtEHSm4sDqOcb1tozrbVnS/qUpM94790g6RpJp0u6TNIXvM9bmnw+N1HS0P6Sl9vjubVQGYcKAAAAAFPNpIL6IknbrbXPWWuTku6QdFXxDdbao0WHUUm5PqxXSbrDWjthrX1e0nbv85aueGfZgJqIuYDKTL4AAAAAcKzADO5ZLWl30XGvpAum3mSMea+kGySFJP2vovc+OOW9q+fU0sUi3ikN7ix5KRdQWQsVAAAAAI5VsUmSrLU3W2tPlPTnkv5iNu81xrzTGLPJGLOpr6+vUk2qjXinNDx9BZWACgAAAADHmklA3SNpbdHxGu9cOXdIet1s3mutvdVau9Fau7G9vX0GTapjsU5p9JCUPnac6YpoSD4jlpoBAAAAgBJmElAflnSSMWa9MSYkN+nRPcU3GGNOKjp8jaRnvP17JF1jjAkbY9ZLOknSr+bf7DoW73TbEkvN+H1GK6Ih9TFJEgAAAAAc47hjUK21aWPM9ZJ+JMkv6SvW2i3GmBslbbLW3iPpemPMJZJSkgYlXee9d4sx5k5JWyWlJb3XWptZoN+lPuQC6tB+qWXtMZcTsTBdfAEAAACghJlMkiRr7b2S7p1y7qNF+++f5r0fl/TxuTZw0clXUMsvNcMsvgAAAABwrIpNkgRPrKiCWgIVVAAAAAAojYBaadGEZPzS0L6SlxOxkPqHJ2StLXkdAAAAAJYrAmql+fxSrEMaOnaSJMlVUMdTWY0kl/ZQXAAAAACYLQLqQoh3TFNB9dZCZRwqAAAAAExCQF0I8a6Sy8xIUiLuBVTGoQIAAADAJATUhRArX0Ft9yqozOQLAAAAAJMRUBdCvEsaPSSlk8dcWt3SKEnaPTha7VYBAAAAQF0joC6EeIfblujm2xwJqjUS1I5DBFQAAAAAKEZAXQjxLrctsxZqd1tUOw+NVLFBAAAAAFD/CKgLIZaroJYOqD1tEe3op4IKAAAAAMUIqAthBhXUvUfGNJFmLVQAAAAAyCGgLoRoQjL+sgF1fSIqa6XdA2NVbhgAAAAA1C8C6kLw+aXYymkqqBFJYhwqAAAAABQhoC6UeOc0Y1CjksRMvgAAAABQhIC6UGKdZSuoLZGgmhoCVFABAAAAoAgBdaHEywdUY4x6ElEqqAAAAABQhIC6UOKd0mi/lE6WvMxaqAAAAAAwGQF1ocQ73Xb4QMnLPW0R9Q6OKZXJVrFRAAAAAFC/CKgLJTZ9QO1uiyqTtdozyFIzAAAAACARUBdOroI6tK/k5R5vqZkddPMFAAAAAEkE1IUT73LbsmuhuqVmdjJREgAAAABIIqAunGhCMr6yATURCyka8lNBBQAAAAAPAXWh+PxSrEMaLr/UTHdbVDv6CagAAAAAIBFQF1aso2wFVZJ6EhG6+AIAAACAh4C6kOJd0lDpWXwlNw519+Co0iw1AwAAAAAE1AUV7yg7i6/kZvJNZaz2HRmvYqMAAAAAoD4RUBdSvEsa7ZfSyZKXczP5MlESAAAAABBQF1asw21HDpa83JMPqIxDBQAAAAAC6kI6zlqoK+NhNQR92slMvgAAAABAQF1Q8U63LRNQfT6j7hVRKqgAAAAAIALqwsoH1PITJXW3RbSTMagAAAAAQEBdUNF2yfik4fJLzfQkoto5MKps1laxYQAAAABQfwioC8nnl6Irj7PUTFTJdFb7j7LUDAAAAIDljYC60OKd0tA0FdS2iCSWmgEAAAAAAupCi3eWnSRJkroTbqmZnUyUBAAAAGCZI6AutHjntF18u5oaFAr4qKACAAAAWPYIqAst1imN9kuZVMnLPp/RuhUR7eynggoAAABgeSOgLrTcUjPTzeTbFqGCCgAAAGDZI6AutPxaqOUDandbVDsPjcpalpoBAAAAsHwRUBdaPqBOt9RMRGOpjPqGJqrUKAAAAACoPwTUhRbvctvhaWbybXMz+e5gJl8AAAAAyxgBdaFF2yXjm3apmZ58QGUcKgAAAIDli4C60Hx+Kbpy2oC6qqVBAZ/Rjn4CKgAAAIDli4BaDfGOaQNqwO/T2hUR7aSLLwAAAIBljIBaDfGuaQOqJHWz1AwAAACAZY6AWg2xjmknSZLcOFSWmgEAAACwnBFQqyHeJY30SZlU2Vu62yIankjr0Eiyig0DAAAAgPpBQK2GeIfbDh8se0tuJt+ddPMFAAAAsEwRUKshtxbqNONQu9sikqQd/UyUBAAAAGB5IqBWQ7zTbacZh7qmNSKfoYIKAAAAYPkioFZDzAuoQ/vK3hIK+LS6tVE7WGoGAAAAwDJFQK2GaLtkfMddasbN5EsFFQAAAMDyRECtBn/AhdQZrYVKBRUAAADA8kRArZZ454wqqEfGUjo8ylIzAAAAAJYfAmq1xDqnnSRJKiw1QxUVAAAAwHJEQK2WmVRQE26pGcahAgAAAFiOCKjVEu+URvqlTKrsLWtaIzKGtVABAAAALE8E1GqJd0qy0vDBsrc0BP1a1dxIBRUAAADAskRArZZ4l9seZxyqm8mXgAoAAABg+SGgVkusw22Pu9RMVDuZJAkAAADAMkRArZZcBXVo37S39bRFdGgkqaPj5ceqAgAAAMBSNKOAaoy5zBizzRiz3RjzoRLXbzDGbDXGPGaM+bExprvoWsYY86j3uqeSjV9Uou2SjDR0YNrbur2lZnYyURIAAACAZea4AdUY45d0s6TLJW2Q9GZjzIYptz0iaaO19ixJd0n6VNG1MWvt2d7rygq1e/HxB6TYyuNXUL2lZhiHCgAAAGC5mUkF9UWStltrn7PWJiXdIemq4hustT+11uZKfg9KWlPZZi4RsQ5pePoK6roVrIUKAAAAYHmaSUBdLWl30XGvd66ct0v6QdFxgzFmkzHmQWPM62bfxCUk3nXcCmokFFBHU1g7mCgJAAAAwDITqOSHGWN+V9JGSRcXne621u4xxpwg6SfGmMettc9Oed87Jb1TktatW1fJJtWXeIe095Hj3uZm8qWCCgAAAGB5mUkFdY+ktUXHa7xzkxhjLpH0EUlXWmsncuettXu87XOS7pN0ztT3WmtvtdZutNZubG9vn9UvsKjEu6SRPimTnva2nrYIFVQAAAAAy85MAurDkk4yxqw3xoQkXSNp0my8xphzJH1JLpweLDrfaowJe/sJSRdJ2lqpxi868U5JVho5OO1t3W1R9Q1NaGRi+iALAAAAAEvJcQOqtTYt6XpJP5L0pKQ7rbVbjDE3GmNys/L+vaSYpH+fspzMaZI2GWN+I+mnkj5hrV2+ATXW6bbHXQvVW2qGKioAAACAZWRGY1CttfdKunfKuY8W7V9S5n0PSDpzPg1cUuK5gLp/2tu62woz+W5Y1bTQrQIAAACAujCTLr6olFkGVMahAgAAAFhOCKjVFF0pyRw3oMYbgkrEQszkCwAAAGBZIaBWkz8gRdul4ekDquQmStpBQAUAAACwjBBQqy3eedwKquS6+TJJEgAAAIDlhIBabTMMqD1tUe07Mq7xVKYKjQIAAACA2iOgVttMA2rCLTWza4AqKgAAAIDlgYBabfEuaaRPyqSnva0nN5NvP+NQAQAAACwPBNRqi3VIstLIwWlv617hKqiMQwUAAACwXBBQqy3e5bZD+6a9rTkSVGskyEy+AAAAAJYNAmq1xTvcdnDncW/tbotSQQUAAACwbBBQq23lBqlpjXTf30mp8Wlv7WmL6HnGoAIAAABYJgio1RZslK78vNT/tPSzT0x7a3dbVHuPjGkizVIzAAAAAJY+AmotvOAS6Zzfk+7/vLRnc9nbehIRWSvtHhirYuMAAAAAoDYIqLVy6cfdhEl3v0dKT5S8pbstN5Mv3XwBAAAALH0E1FppaJZe+3mp7ynpZ58qeUuPF1B3MFESAAAAgGWAgFpLJ71KOvta6ZeflfY+cszl1khQ8YYAFVQAAAAAywIBtdYu/bgUWynd/V4pnZx0yRijnrYoFVQAAAAAywIBtdYaW6UrPicd3CL94qZjLne3RaigAgAAAFgWCKj14JTLpLOukX7xaWnfbyZd6mmLqndwTKlMtkaNAwAAAIDqIKDWi8v+Toq0HdPVt7stokzWas8gS80AAAAAWNoIqPUiskK64rPSgcfdpEmenkRuJl+6+QIAAABY2gio9eTU10hnvlH6+aek/Y9LchVUSdrJREkAAAAAljgCar25/FNu4qS73yNlUmqPhRUJ+amgAgAAAFjyCKj1JrJCes1npP2PSfd/TsYYdbdFqaACAAAAWPIIqPVow5XS6a+X7vukdGCretoiVFABAAAALHkE1Hr16r+XGpqlu9+tnhVh7R4YVSZra90qAAAAAFgwBNR6FU1Ir7lJ2veoLjtyp1IZq72HWWoGAAAAwNJFQK1np/+2tOEqnfnMLXqB6WUcKgAAAIAljYBa7179aSkU003BL2ln35FatwYAAAAAFgwBtd7F2qVX/73O9j2rjq3/UuvWAAAAAMCCIaAuAr4zr9YvAy/RxXtulfqernVzAAAAAGBBEFAXA2N096obNKYG6bvvlbKZWrcIAAAAACqOgLpIrOhcq4+lr5N6fyU9eEutmwMAAAAAFUdAXSS62yL6duolGjvhUuknfyP1b691kwAAAACgogioi0RPW1SS0RPn/LUUCEvfe59kba2bBQAAAAAVQ0BdJLrbIpKk7WMx6X/9pbTzfvcCAAAAgCWCgLpIdDU3KuT3acehEemc35UiCen+z9e6WQAAAABQMQTURcLvM1q7olE7+0elYKN0wbukZ/6fdGBLrZsGAAAAABVBQF1EetqiroIqSee/XQpGpAf+sbaNAgAAAIAKIaAuIt1tUe08NCprrRRZIZ17nfT4v0tHemvdNAAAAACYNwLqItKTiGgslVHf0IQ78ZL3uJl8WRcVAAAAwBJAQF1EutuikqQdh0bdiZZ10hlXS5tvk8YGa9cwAAAAAKgAAuoi0uMtNZMfhypJF71PSg5Lm75So1YBAAAAQGUQUBeR1S2NCviMdhYH1M4zpRNfKT34RSk1XrvGAQAAAMA8EVAXkYDfpzWtjYUuvjkXvV8aOSg9dkdtGgYAAAAAFUBAXWTcTL4jk0+uf5nUdbZbciabqUm7AAAAAGC+CKiLTE9bRDv7vaVmcoyRXvoB6dB2adu9NWsbAAAAAMwHAXWR6W6LamgirYGR5OQLp10ptfZIv/ycW3oGAAAAABYZAuoisz6RW2pmSjdfn1+68I+lPZuknQ/UoGUAAAAAMD8E1EWmO7fUTP/osRfPvlaKJKT7P1/lVgEAAADA/BFQF5k1rRH5jI6dKEmSgo3SBX8kPfMj6cDW6jcOAAAAAOaBgLrIhAI+rS611EzO+X8oBSNuRl8AAAAAWEQIqItQT6mlZnIiK6Rz3yo9fqd0ZE91GwYAAAAA80BAXYRO7ojryX1DevrAUOkbXvweN5Pvg1+obsMAAAAAYB4IqIvQuy4+UfGGgP7kW48qmc4ee0Nrt3TG66XNt0ljh6vdPAAAAACYEwLqItQeD+vjv32mtuw9qn/8yTOlb7rwfVJyWNr0leo2DgAAAADmiIC6SF12RqeuPneNbv7pdv161+CxN3SdJZ34v6SHviilxqvfQAAAAACYJQLqIvZXV25QV3OjbvjWoxpNpo+94aL3S8MHpMe+Vf3GAQAAAMAsEVAXsaaGoG564wu1c2BU//feJ4+9Yf3FUtcLpQf+QcqWGKsKAAAAAHWEgLrIveTENr39ovW6/cFd+tnTfZMvGuOqqIe2S9vurU0DAQAAAGCGCKhLwJ9deopO7ojp//z7b3R4NDn54mlXSS3d0v2fc0vPAAAAAECdIqAuAQ1Bvz7zprM1MJLUX9z9xOSL/oB04R9LvQ9Lux6sTQMBAAAAYAZmFFCNMZcZY7YZY7YbYz5U4voNxpitxpjHjDE/NsZ0F127zhjzjPe6rpKNR8EZq5v1gUtO0n8+tk/ffXTP5ItnXys1rpDu/3xtGgcAAAAAM3DcgGqM8Uu6WdLlkjZIerMxZsOU2x6RtNFae5akuyR9ynvvCkl/JekCSS+S9FfGmNbKNR/F3nXxiTpnXYv+8u4ntO/IWOFCKCJd8EfS0z+QDj5VuwYCAAAAwDRmUkF9kaTt1trnrLVJSXdIuqr4BmvtT621o97hg5LWePuXSvova+2AtXZQ0n9JuqwyTcdUAb9Pn33T2UplrD5412OyxWNOz3+HFGh0M/oCAAAAQB2aSUBdLWl30XGvd66ct0v6wWzea4x5pzFmkzFmU19f39TLmIWeRFQfec1p+sUz/fr6gzsLF6Jt0rm/Jz12p3RkT/kPAAAAAIAaqegkScaY35W0UdLfz+Z91tpbrbUbrbUb29vbK9mkZenaC9bp4pPb9X/vfVLP9g0XLrzkvZLNSA/dUrvGAQAAAEAZMwmoeyStLTpe452bxBhziaSPSLrSWjsxm/eisowx+tQbzlJD0K8b7vyN0pmsu9DaI53+29Km26SxwzVsIQAAAAAcayYB9WFJJxlj1htjQpKukXRP8Q3GmHMkfUkunB4suvQjSf/bGNPqTY70v71zWGAdTQ3629edod/sPqybf/ps4cJF75eSQ9Lmf61d4wAAAACghOMGVGttWtL1csHySUl3Wmu3GGNuNMZc6d3295Jikv7dGPOoMeYe770Dkv5GLuQ+LOlG7xyq4IqzVumqs1fpH3/yjB7rPexOdr1QOuEV0oO3SOmJad8PAAAAANVkJs30Wgc2btxoN23aVOtmLBlHRlO69HM/VzTs1/ff91tqCPqlZ38qff110vqLpTOulk6+TIp31LqpAAAAAJYBY8xma+3GUtcqOkkS6k9zJKib3vhCPds3ok/+0FsD9YSXSy//sDTwvPS990mfPln651dKP79JOrBVqrMvLQAAAAAsD1RQl4m/vmeLbntgh/7tDy/QRS9IuJPWSge3Stvulbb9QNqz2Z1v6ZZOudy9ui+S/MHaNRwAAADAkjJdBZWAukyMJTN6zT/+QmPJjH74gZepubFE6BzaLz39QxdWn7tPSo9L4WbppEukU14tveASqbGl2k0HAAAAsIQQUCFJ+s3uw3r9LQ/oqheu0md+5+zpb06OuJC67V5p2w+l0X7JF5C6L3Rh9ZTL3bI1AAAAADALBFTkffa/ntbnf/yMbrn2XF1+ZtfM3pTNuO6/ua7Afd5Y1lXnSm/4F2nFCQvXYAAAAABLCgEVealMVlff8oB2D4zqRx94mVY2Ncz+Qw4964LqL26SjE+65pvSugsq31gAAAAASw6z+CIv6PfpM286W2OpjD7wrUeVyc7hC4q2E6ULr5fe/t9SQ7P01ddKj99V+cYCAAAAWFYIqMvQC1bG9DdXnaEHnj2kz/zXtrl/UOIFLqSuPlf69tuln/89S9QAAAAAmDMC6jL1xo1rdc35a3XzT5/Vj588MPcPirZJb/2udOabpJ/8rfTd90rpZOUaCgAAAGDZIKAuY3995ek6fVWT/uRbj2r3wOjcPygQll5/q3Txh6RH/026/fXS2GDlGgoAAABgWSCgLmMNQb9uufY8SdK7/22zxlOZuX+YMdIrPiz99pekXQ9K//K/pYHnK9RSAAAAAMsBAXWZW9cW0WfedLae2HNUH/ve1vl/4Auvkd56tzR8UPryK6VdD83/MwEAAAAsCwRU6JINHXr3y0/UN3+1S9/e3Dv/D+x5qfSHPy7M8PvEt+f/mQAAAACWPAIqJEl/+qqT9ZIT2vSRux/Xk/uOzv8DczP8rjpHuusPpJ/fxAy/AAAAAKZFQIUkKeD36R/efI6aGoJ69+2bdXQ8Nf8Pzc/w+0bpJ38jffd6ZvgFAAAAUBYBFXnt8bBuvvZc7R4c0wf//THZSlQ8gw3S6/9ZuvjPpUdvl/7tamb4BQAAAFASARWTnN+zQh++/FT9cMt+ffkXFZqF1xjpFf+f9LovSjv/hxl+AQAAAJREQMUx3v7S9br8jE594odP6VfPD1Tug89+c9EMv5dIu39Vuc8GAAAAsOgRUHEMY4w+9YaztG5FRNd/49c6ODReuQ/vean0h/8thePSbVdIP/hzafNX3dqpoxUMwwAAAAAWHVORcYYVtHHjRrtp06ZaNwOSntp/VK+7+X6dvbZFt7/9AgX8Ffw+Y+SQdPe7ped/JqWLAnB0pdR+inslTinsxzpcV2EAAAAAi5oxZrO1dmPJawRUTOfbm3v1p//+G7375Sfqzy87tfI/IJuRDu+S+p+W+p6S+p6W+rdJfdukiaLlbhqavcB6stR+aiG8Nq+VfHQEAAAAABaL6QJqoNqNweJy9XlrtGnnoG6571mdu65Vr9rQUdkf4PNLK9a718mXFs5bKw3td6G1/2kXWPu2SU//SHrk9sJ94SbptNdKZ/2O1PNbhFUAAABgEaOCiuMaT2X0xi/+j3YcGtH3//i3tK4tUtsGjQ64sNq/Tdr9sLT1u1JySGpa7dZcfeE10srTattGAAAAACXRxRfztntgVFf84y+1uqVR33nPhWoI+mvdpILUmLTtXuk3d0jbfyzZjNT1Qumsa6Qz3yDFVta6hQAAAAA8BFRUxE+eOqA/uG2TfmfjWn3yDWfVujmlDR+Unvi2C6v7HpWMX3rBK10X4FNfIwUba91CAAAAYFkjoKJibvrRNv3TT7frU284S2/auLbWzZnewaekx+6QHrtTOrpHCsWl069yldXuixivCgAAANQAARUVk8lavfUrD2nTjkF95z0X6vRVzbVu0vFls9LOX7qq6tbvSslhN/tvbrxq+ym1biEAAACwbBBQUVH9wxO64h9+Kb/P6B/efI7O626tdZNmLjnqjVf9pvTsTySblVp73NI17acULWFzshSO17q1AAAAwJJDQEXF/Wb3Yb3r9s3af3Rc116wTh+87FQ1NQRr3azZGTrgxqvufsjNCnxou5RNFa43rXahNbfmai7ARlbUrs0AAADAIkdAxYIYnkjr0/9vm776wA4lYmH99ZWn6/IzOmWMqXXT5iaTlgaf99Zcza2/+pTU/4yUGi3cF0kUVVxPkRInuTAbbZcaW6XF+vsDAAAAVUBAxYJ6rPewPvydx7Vl71G98tSVuvF1Z2h1yxKaLTeblY7sLgTWvm2FdVjHj0y+1xd0y9rEVkqxDhdaYx2Fc9GVheNwnDALAACAZYeAigWXzmR12wM79On/97SMkW541cn6/Qt7FPAv4ZlyrZWGD7gK6/ABt8TN8AFppK/o+KA7tplj3x9oKITW1m5pzfnSmhdJnWdKgVD1fx8AAACgCgioqJrdA6P66Hef0E+39emM1U36xOvP0hmrF8FMvwspm5XGBqaE1oOTQ23/M24pHEnyh6VVZ7vAuvZFLrQ2ddX0VwAAAAAqhYCKqrLW6vuP79PHvrdVh4Yn9LaL1uuGV52saDhQ66bVtyN7pN6H3Wv3r6R9j0qZpLvWtEZa61VY1+aqrOH5/bz0hDQ64MLz6CHJ+KXV50nBhnn/KgAAAEA5BFTUxJGxlD75w6f0jYd2aXVLo2686nS98rSOWjdr8UhPSPsfd2G191fS7oelo73umj8sdb3Qq7CeL60+V5IphM3RAWlssLA/esi7NlAIpcnhY3+mPyytu0Baf7F0wsulrrMlP18sAAAAoHIIqKipzTsH9OHvPK6nDwzr1Wd26q9fe7pWNlGlm5OjewsV1t5N0t5HpMzE9O8JN7ulcSIrpMYVUqStaL/ofGpUev4X0vM/kw48UXhvz0VeYL3YzV7MxE4AAACYBwIqai6Zzuqff/GcPv/jZxT2+/TBy0/VtS9aJ5+PsDMv6aSrsu57xM0gHPECaC58NrZK/jmsTzvcJ+34ufTcz1xgHdzhzsc6CmF1/cVSy9qK/joAAABY+gioqBs7+kf0kbsf1/3bD+ncdS366GtP19lrW2rdLBzP4I5CWH3+525mYklacUIhsPa8zAXi5LCUHHHbiaHC8cSwlBzytlOu587ZrJR4gbRyQ+EVa6/prw4AAIDKIqCirlhr9R+P7NHffv9JDYwkde66Fr3tovW67IxOBZfysjRLhbXSwa2FwLrjfhc8ZysYlcIxKRSVQjG3Lqy1bq3ZsYHCfZGE1JELrKcVtuF45X4nAAAAVA0BFXVpeCKtuzbt1m0P7NCOQ6Pqam7Q772kW28+f51ao6wDumhk0tLeX0s7fukmdgrlgmf82AAayh1HJZ+/9OdZ6yq0B7ZIB590YfjgVungU1JqpHBf8zoXVIvDa+Lk+c9uDAAAgAVFQEVdy2atfrrtoP71/h365fZ+NQR9+u1zVuttF63XyR1UyeDJZqUju1xozYfXJ6X+p6Vsyt1j/FJD07HvLfu/cyXOG5/rqhxJSNF2KdpWtJ9wY3yj3nEkIQX4MgUAAGA2CKhYNLbtH9JtDzyv7/x6jybSWb30BQm97aIeveKUlUyohNLSSWngWa/K+qQ0fqTMjSWen1IzEmczrovxSL97jXpbmyn9seEmL7gmvOCacNVjn8+FXeN3W5+/aL/UNV/h5fNL/pD3Crrlf/xBdxwo2i97PlT92ZbTE9LwAWnogDS8Xxra72aGXnGi1H6K1Lq+NksWWcvM0wAA1BkCKhadwZGkvvnwLn3tgZ3af3RcPW0RXXdhj964ca1iYdblRJVls9L4Ybee7Ei/64I82i+NHCra7/eu97kJn7IZN+mTzW2z1W1zoEFqaJEaW1xFuNR+g3ec3/e2xVXh5IgLm8MHpKF9RQF0ynZscPr2+ENeWD1ZSpziQmv7KVLbC6Rg49x/z2zW/fzBHVNeO912pM9N5tWxQVp5eqFLeOt690UBAACoOgIqFq1UJqsfPrFf/3r/8/r1rsOKhwN648a1+v0Le7SuLVLr5gEzZ6338gLr1ACbzRaOsxnXbTmdlDK5V8qteZvbT09455LHvtJJV70cP+yC49hhb997HW9Sq2BUamj2Zlkuca8/5JYcinVI8U73inVK8Y7J20BYOvSs1L9N6vNe/dtccMwHdiO1dnuh9WS31m5uv6HZ3TIxVAicudfhnYUgWrwWsPFJTaul1h73uZE214aDW6WB55Xv1h2MuJ81KbiezqzRAABUAQEVS8Kjuw/rX+9/Xt9/bJ8y1uqVp3boDy7q0YtPaKP7LzAbmZTrCp0ProMl9o+4Sa6OCaGdruo6n26zqXHXLbvvKanvaS/APi0desYF7JxYp5RNuwp1sXCzC5+tPce+mteWHxecHHGTbR3cIh3YWtgWf3603VVYO073thtc9+30uJQam7xNj7vfJT02/TaTdF3BI61exdpbozi3VnHuOMSXbnVndEDqf8aNdc+9juxxz1/u+Vh5uqvS16ILOwAsUgRULCkHjo7r9gd36t8e2qWBkaTWrmjU689Zo6vPXUNVFVjMMmlXGc1VWvufceNqp4bQxtbK/tzhg97EW1sLwfXgUy5gzkWgUQo2FLb+kKsCjw5M/5mBBi+w5kJrSyHEBqNedT3tVdjTXuW9+DjjKvH5/dw1r0rvD7qqdqChaNsw5djbBkuc94eLxkv7vbHU/injq6eMuZ56LZN0XxSkRqXkqNvm90dc+J/uejbtTVTWXvrV2Dr7rtvZjHRkt3ve+rZ5QdQLpcVfXvjDrkt682pXvT+0vdATINDguqznqvEdp3sV+ZWVGQOdHHHP6Uif244NuO74zaulpjXud6fLOuYqNe7+tzeScBMDAlVAQMWSNJ7K6AdP7NO3N+/R/c/2y1rpRT0r9Ibz1ujyMzsVbwjWuokAFqtsxoWQA1tcNTnYWBTcGstvA+HpA0lqzKtSD7rAOjZQtD/oHR+efDw6MHmmap9f8gWK9ouPAy6oTD02fhfu8lXfcddNPD1e+Ox65A+57tihqNv6Am6s92h/6XHdxl+YZTuakKIrC/sxb39iqKgi+owLmunxwmdE2tySVYmTXHfz3H7LusnLY6XGXKA9uLXoC44tbrx28Wet3CB1nFGotq481f0uyeHJoXPkoDTc520PTj5XvMRWKb6g1NTlwmrzaqlp1bH70QQThtWSte6/5aO90tG90hFve3SP+7uOJtwz1tLttq3d7u+tUjPFW+vmEzj0jPcFzDOF/cO7lB/+EEm44Q+5IRftp7htrIPnBxVFQMWSt/fwmP7jkT369uZePdc/ooagT5ed3qmrz1ujC09MyE8XYACLlbUuMPv8C/MPxGymEFbTU8Jrbpsad2N9i8dPZzOFMdP58dNF46injrfOZlwVNxc2Q1EX/IsDaLCxaD9SvttsNuvNtt1XFPC8CcxGivZz56cGPONzQSAXPtu9INp20vwrSCOHvO7jWwrB9eCTrhLsfrj7sqNcNb1xhTfGu90F7Fywjq30jtvdPWODhYBTHHZy+1O/ePCHJ4fYxhVelT3ltpkS+xnvOJsuve8LTP5yJvdFzqQqfIN3Plz0ZY738oeO7Rkw6ZWZcr7EPfm/U+P+XmW8/06845L7U+4p2d6GyV9KFf9+wcbJs6Xnw+eewuvInsLfyVFvv/iLEMn9+cVXub/TkX73dzdpxnjjvmAoDq3FIbZp9bH/jaTG3Lj7Q89I/dvdFzG5/eI5BYIR1yMgcZJ77lec4L786XvKmzNgyqz4Dc1FE9ydWgixTWvmV73PZlybU2PuvxF/0FszPUavgCWOgIplw1qrR3Yf1rc39+p7v9mro+NpdTU36LfPWa2rz1ujE9tjtW4iAKDakiNeYO1zY31XnOiCR7Vks9Lg84Uq68TQsaEzutJV0fwV6P2Tzboq85HeQjiatL/HBVx/wFVf/UGvEp/bD7iXP+jO+fxF+wHvfQEXEFNFX2ykxrwvNXLjsL394rHllZDvHeCXW0LMm4RO1vuypMR+xZlCgM2NOS+WC59NqyZXsvPHq93feXEIy6Slob1u8rfDu7yXtz+40/39Ff8uxu8+q6XbBeZDz0iHd0++p2mN1xvAC6K5/fiq6QOgte4Lnr6nXMjNB9en3H9LOcFoodravMb9nRcHzknbEueKJ7mbKhdUw3E3J0I47pZxm3Qcc2P8c8fBRm+oQ9EXLJnUsceZZPlrxnj/LQTcn2tu35dbyi1Y+O/DH5r830ru2ny/TMykJg9vyA15mDQEYur5scnnLv24tPEP5teOBURAxbI0nsrox08e1F2bd+vnz/Qrk7U6e22Lrj5vja48a5WaI3QBBgBgwU2t0ucmGsskC2E4FzgnHQe88ctT7pnLP/5tcYgtDrDZKV3fSwXtsULwmjpBWnrChZTmNZNDaGzl5C7hlZBOupBaHFpzQTY9VgigbS/wegSc6HokVNrIocmzs+fC69Ber0reWOgRMWn/eOcaXTBLDrsvcSaGpYmj3rF3Lumdyx1XYohCPlh6QdTayeG1uFJfa7lhD8GI+7KtuAdKKOK+MMidP+1Kad0FtW5xWQRULHsHh8b13Uf26q7Nvdp2YEghv0+XbFipq89do5ed3K6gn24kAAAAc2Zt9ceppie8MOu9UmNFVf7g5GpnqeOZfOFh7eRK6zFV12TRuXSFQnOgRPiMVKaHRZ0goAIea6227D2quzb36p7f7NXASFKhgE+ndsa1oatJG1Y1aUNXk07talIszJIBAAAAQKURUIESkumsfvZ0nx7eMaCte49qy94jGhwtfOvV0xbRhlVNOn1Vcz68royHZZjFDgAAAJiz6QIqJSIsW6GAT6/a0KFXbeiQ5Kqr+4+Oa+veo+6176i27D2qex/fn39PWzSUr7LmtusTUQXoIgwAAADMGwEV8Bhj1NXcqK7mRr3ytI78+aHxlJ7aPzQpuP7r/TuUzLg1+BqCPp25ulnndrfq3HXu1R4P1+rXAAAAABYtuvgCc5DKZPVs37C27j2qJ/Yc1SO7B/XEniNKZdx/T+tWRHTuuhad192qc9a16tTOOFVWAAAAQIxBBapiPJXRlr1HtHnnoH6987A27xpU35Bb3ysS8uuFa1p0brcXWte2qjUaqnGLAQAAgOpjDCpQBQ1Bv87rXqHzuldIcmNaewfH9Otdg/r1zkH9etdhffFnzymTdV8KnZCI5rsFn7G6SWtaI2qNBJmECQAAAMsWFVSgikaTaT3We2RSaB0YSeavR0J+rWlt1OqWRq1pjbj91sJ+WzREgAUAAMCiRgUVqBORUEAvPqFNLz6hTZKrsu44NKpt+4e05/CY9gyOqXdw1Ku8HtaRscmLPTcEfVrd0qjVXmAtDrOrWxrVHg/L7yPAAgAAYHEioAI1ZIzR+kRU6xPRktePjqe0Z7AQXPccHlPvoHs9sefIpOqrJAV8Rp3NDVrV3KhVLQ1a1dKorpZGrW5pUFdzo1a1NKqpIUAVFgAAAHVpRgHVGHOZpM9L8kv6srX2E1Ouv0zS5ySdJekaa+1dRdcykh73DndZa6+sQLuBZaGpIaimrqBO62oqeX1kIp2vvO45PKa9h8e078i49hwe0+Zdg/rPx/YpnZ3cjT8WDqir2YXXVS2NWtWcC7Iu2HY2N6gh6K/GrwcAAABMctyAaozxS7pZ0qsk9Up62Bhzj7V2a9FtuyT9vqQ/K/ERY9bas+ffVABTRcMBndwR18kd8ZLXM1mr/uEJ7T08pr2Hx932SCHIbtl7RP3DyWPe1xoJqrO5UV3NDV5FtmHScVdzgyIhOmAAAACgsmbyL8wXSdpurX1Okowxd0i6SlI+oFprd3jXsgvQRgBz5PcZdTQ1qKOpQeesK33PeCqj/UfG86F1/9Fx7Tsy5p0b16O7Dx/TlViSmhoCWtXSmA+snU2NaouF1BIJqrkxqJZGbz8SVDxMt2IAAAAc30wC6mpJu4uOeyVdMIuf0WCM2SQpLekT1tq7Z/FeAAusIehXTyKqnjLjYCUXYg8cHde+Iy687jsyrv1HCsdP7Cldic3x+4yaG4P5V0skqJbGoFoiITU15vbdqzUS0opoyF1jvCwAAMCyUo0+et3W2j3GmBMk/cQY87i19tniG4wx75T0Tklat65MmQdAzTQE/epui6q7rXyInUhndGQ0pcNjKR0eTenwaFJHxlI6kjseS+rwqDseGEnqub4RHR5N6uh4uuxnBnxGLZGQWiNBtUZDWhEJqTXqjldEQ0Vh1juOhqjWAgAALGIzCah7JK0tOl7jnZsRa+0eb/ucMeY+SedIenbKPbdKulVy66DO9LMB1I9wwK+VTX6tbGqY1fsyWauhcRdiB0ddiB0YSWpw1L0GRlIaHElqYDSp5/qHNbDT3ZfJlv6fCmOkaCigWDigaNivWDigWEOg6Jw7joUDiob8ijUEFQv7FfWuxSddD8jHsj0AAABVM5OA+rCkk4wx6+WC6TWS3jKTDzfGtEoatdZOGGMSki6S9Km5NhbA0uP3qqQtkZB6VL5CW8xaq6PjaR0eTRbC7IgLtkPjKQ1PZDQ8kdLIREbDE2mNTKR1aHg0vz88kVYqM7PvwlyIdYE1VhReY2EXbN1x0Nv6FQsHFQ35FQ76FA741ZDfunMNAb+CfkOVFwAAoITjBlRrbdoYc72kH8ktM/MVa+0WY8yNkjZZa+8xxpwv6T8ktUp6rTHmY9ba0yWdJulL3uRJPrkxqFvL/CgAmBFjCmNap+t2PJ2JdEYjExmNTKQ1NJ7WSNIF1+HxQogdGk/nQ+2Qd214Iq3+IRd2c69y1dxyfMZVnHOBtWFKmA0HfYqGvIpug6sER8OFqm7hfGBS9TcaCshPxRcAACxixtr66lG7ceNGu2nTplo3AwBmxFqr8VRWQxMpL9xmNJJMayKd1XgqM2k7MeV4PJXRRCqr8fTk7Vgqo9FkOl8Bnk0IjoS8wBryF0Jv0FVwGwI+tw3mtn6FvXPhQOFcQ67SG/Ap4DPy+4yCfiO/zx0H/MZtfT7vmtsWrvny91ApBgAAUxljNltrN5a6xkKGADAPxhg1hvxqDPm1svRytPNmrdVEOjupi/JwvurrqsDDRdXeES/cjqcyGveC8JHRpA56++NeGM7tLxRjpFjIVXvjDUFv6/Zj3n5T8fmw248VnQ/4fbLWKmtVfiu3zWatbPGxtTKSYmH3MxuCPgIzAAB1joAKAHXOGJOvbiZi4Yp+di785iq8xeE1lbFKZ7LKZK3SWat0Nqt0JrdvlclmlcpYdz2T9c5Z75z7zKHxtPdKaWg8rf7hpJ7vH8mfT2aqt3x2wGfywTgXhuMNQTU1TA3Rk8N0Q9BViH3GyGfc34ffuGNjJJ8vd+yu+YwbW53b9xlXZWbsMQAAx0dABYBlrDj8qjFY9Z8/nsrkx/rmQuzQeEpHvQCbzVqZouCXC4WTjlU4P3VrrfLjiYs/PxeQewdH8+eGJ9Ka5XDiWQv4CmHVbX0KBrx9X5l9736fMV6Xa9fV2ucz+S7YuW1h3ye/T/l7c920g36fAt7nhbzPDuT2A96xzyhUat9rg9/7s50a2gEAqAQCKgCgZnLhuD1e2crwXFhrNZLMHBOUJ1LZfHfirLWFV7b4WIVttnDOWpuvQCfTWaW8SnN+P2OVymSVzBSOc/vjqayGx9NKevdk85XrwmdmstlJx1lrZzxDdSXlvizw+bwKsldhzh97FeVSgbo4ROe3JQK53xvXHA54k4kFfPnZst05X3627MK53HHhnCSlvep/7s871wMglcnmew6kvJ4BxedyvQdys3vH8zN4u4p7rjt5yPs5AIDZI6ACACBXBcwtJ9TVXOvWzE+2KLCmi7pgpzJZpdJeKMsW7XshLBeWSwXnVCabD96ZrPWCuJSxNh/E80E9a73z3r1ekM8Uhex01iqTmdzOjNeNfCKVnRTGM14X81TGhfuJdGGisYWues9FKOCbtKZyLrjmQmzQ73Nd5L0/g5T3e2e8v6NM1uYDcu7vL9d9Pu19KRH0+8qG8HCw+HwhwIeDhf2Q31fUG8HrieBzx6V6JRh5vRZ87rrJn598j/tM735f4ZybYLzoM6VJ75GKP7vos9zbJh3nelDkfkbA5ytsqegDix4BFQCAJcbnMwotkyWH0plsYRy1NxP2RFGIdceFQCtJAb9PoaIZp4NF3Z2Dk84Z1yXaZyZ1cx5NZvKTleVm8M51VS8sUeUq8e6etPYeHst3ZU9l7KTZsPP7/sJM2X6f+7kBv1EkFJg8e7bfFH7vlJtA7dBw0e9cNGv4RLp647zrxXEr9f7CdZ8xhe7qxT0Aiqr/PlPozp7rDeDucWFb0jFfxmSnHmfLfJnjfZETDvjchHvBgBpDfkWC/vwEfMX7jUG/IiG/GkOB/H5D0K+AzxRmhC+aIK8wY7ybY2Ai7c01kMoUzSDvnpdQwC1xFgn780uaRcN+RUJuZviIt7SZOy7cN9sJ6Kz3O2ftsV9kSZO/gJj0hUfR8A6+hFjaCKgAAGDRCnjjaqNV7CUeDQfqolv6TFjrquRTw3oync3Pep0LC7aoq7qU66ZeCFKymhys3G1u5uysZFWYXVv5z538M1ybCj8v957cZ+U+t7ht1ntT/ry3n+tGn6/KZ1zgyWSzkyr0+S7wRV3ji89PDY35YJl1X4BkpnTfz3gzhmeK/lxygTYXZv2+QsW5eOx2wO9TODA5DEvSRNotMTYwMqZxb6mx0WRhwrpKMkb5NbgbgoXu8KlMViPJtEa95dJm2jvBZ6RoKKBw0DepF8WkYRFThkRUyqTQ6krtk/4echX5XHXeVfsLVf3CPYUvHPI9BCTv80pU9ovPFQVo5d5X5Jhfd8oSn+X+ONzPL/7Zx/6uxe0q7rEgSW99SY9etaFjTn+utUZABQAAWKKMMV43X7/UUOvWYC5SmWw+rI4mMxpLZjSWShftZ5TO2Pw61uFA8XrXhe7ebj1s/4xmFM+t8V0cWHPrc7vlzArrdee24+lMPnTnuo77fYVQOGnfTA7wubAoFX+hUfQlhZ18Lut9W+G+qCi6lv8ioxCQc+8vfm9xFTf3RYwtquiW/OJkypcmtsS9uc+e+uc79U976h9/qVBb/NnKH0/+QslKslnJKiubmfwFT6qKs+RXGgEVAAAAqFNBv0/NjT41V3Gm9eI1vhWr2o8FJElMMwcAAAAAqAsEVAAAAABAXSCgAgAAAADqAgEVAAAAAFAXCKgAAAAAgLpAQAUAAAAA1AUCKgAAAACgLhBQAQAAAAB1gYAKAAAAAKgLBFQAAAAAQF0goAIAAAAA6gIBFQAAAABQFwioAAAAAIC6QEAFAAAAANQFAioAAAAAoC4QUAEAAAAAdYGACgAAAACoCwRUAAAAAEBdMNbaWrdhEmNMn6SdtW7HcSQk9de6EcAUPJeoNzyTqEc8l6hHPJeoNwv9THZba9tLXai7gLoYGGM2WWs31rodQDGeS9QbnknUI55L1COeS9SbWj6TdPEFAAAAANQFAioAAAAAoC4QUOfm1lo3ACiB5xL1hmcS9YjnEvWI5xL1pmbPJGNQAQAAAAB1gQoqAAAAAKAuEFABAAAAAHWBgDoLxpgVxpj/MMaMGGN2GmPeUus2YXkxxlxvjNlkjJkwxtw25dorjTFPGWNGjTE/NcZ016iZWGaMMWFjzL94/7s4ZIx51BhzedF1nk1UnTHmdmPMPmPMUWPM08aYPyy6xjOJmjLGnGSMGTfG3F507i3e/46OGGPuNsasqGUbsXwYY+7znsdh77Wt6FrVn0sC6uzcLCkpqUPStZJuMcacXtsmYZnZK+lvJX2l+KQxJiHpO5L+UtIKSZskfavqrcNyFZC0W9LFkpol/YWkO40xPTybqKG/k9RjrW2SdKWkvzXGnMcziTpxs6SHcwfevye/JOn35P6dOSrpC7VpGpap6621Me91ilS755JJkmbIGBOVNCjpDGvt0965r0vaY639UE0bh2XHGPO3ktZYa3/fO36npN+31l7oHUcl9Us6x1r7VM0aimXLGPOYpI9JahPPJmrMGHOKpPskvV9Si3gmUUPGmGskvV7SVkkvsNb+rjHm/8p9ofIW754TJT0pqc1aO1S71mI5MMbcJ+l2a+2Xp5yvyXNJBXXmTpaUzoVTz28kUUFFPThd7nmUJFlrRyQ9K55P1IAxpkPufzO3iGcTNWSM+YIxZlTSU5L2SbpXPJOoIWNMk6QbJd0w5dLU5/JZuV57J1evdVjm/s4Y02+Mud8Y83LvXE2eSwLqzMUkHZ1y7oikeA3aAkwVk3sei/F8ouqMMUFJ/ybpq141imcTNWOtfY/cs/Zbct16J8Qzidr6G0n/Yq3tnXKe5xK19OeSTpC0Wm790+951dKaPJcE1JkbltQ05VyTJLpdoB7wfKLmjDE+SV+X+3b1eu80zyZqylqbsdb+UtIaSe8WzyRqxBhztqRLJH22xGWeS9SMtfYha+2QtXbCWvtVSfdLerVq9FwGFvLDl5inJQWMMSdZa5/xzr1QrgsbUGtbJF2XO/DGVJ0onk9UiTHGSPoXuUkUXm2tTXmXeDZRLwIqPHs8k6iFl0vqkbTL/U+mYpL8xpgNkn4o9+9KSZIx5gRJYbl/fwLVZiUZuf9drPpzSQV1hrwxKt+RdKMxJmqMuUjSVXLVAqAqjDEBY0yDJL/c/6k1GGMCkv5D0hnGmKu96x+V9BgTfqCKbpF0mqTXWmvHis7zbKLqjDErjTHXGGNixhi/MeZSSW+W9GPxTKJ2bpX7MuRs7/VFSd+XdKnc0IjXGmN+y/vS5EZJ32GCJCw0Y0yLMebS3L8pjTHXSnqZ3JcmNXkuCaiz8x5JjZIOSvqmpHdba/nGFdX0F5LGJH1I0u96+39hre2TdLWkj8vNNn2BpGtq1UgsL94akn8k9w+u/UXrqF3Ls4kasXLdeXvlnrubJH3AWnsPzyRqxVo7aq3dn3vJdZ8ct9b2ef+efJdcIDgoN8bvPTVsLpaPoNwShn1yM5r/saTXWWufrtVzyTIzAAAAAIC6QAUVAAAAAFAXCKgAAAAAgLpAQAUAAAAA1AUCKgAAAACgLhBQAQAAAAB1gYAKAAAAAKgLBFQAAAAAQF0goAIAAAAA6gIBFQAAAABQF/5/QQ1mkPZAbTcAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKvCAYAAACRY9qRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIkUlEQVR4nOzdeZhcZZ33/8+pvXqp6i29JOnsQBICCTsB2TQQEFTEmUFFcKKCw6jjY8YZRQR8cMERxvFxwB/CgCDKMjIojguIEQQkEEyABBK27Esv6U66q7faz++PU1W9d1elu6uqq96v6zrXOXXOfSrfTiIzfLjv+2uYpmkKAAAAAAAAAKaYLdcFAAAAAAAAACgOhJEAAAAAAAAAsoIwEgAAAAAAAEBWEEYCAAAAAAAAyArCSAAAAAAAAABZQRgJAAAAAAAAICsIIwEAAAAAAABkBWEkAAAAAAAAgKxw5LqAXIvH4zpw4IDKy8tlGEauywEAAAAAAACmFdM01dXVpZkzZ8pmG3vuY9GHkQcOHFBjY2OuywAAAAAAAACmtb1792r27Nljjin6MLK8vFyS9Zvl8/lyXA0AAAAAAAAwvQQCATU2NqZytrEUfRiZXJrt8/kIIwEAAAAAAIAjlM4WiDSwAQAAAAAAAJAVhJEAAAAAAAAAsoIwEgAAAAAAAEBWEEYCAAAAAAAAyIq8a2Bzxx136NZbb1Vzc7OWL1+u//zP/9Spp5466viOjg5df/31euyxx3To0CHNnTtXP/jBD/T+978/i1UDAAAAAABgKsRiMUUikVyXUbScTqfsdvukfV9ehZGPPPKI1q5dqzvvvFOnnXaafvCDH2j16tV66623VFtbO2x8OBzW+eefr9raWj366KOaNWuWdu/erYqKiuwXDwAAAAAAgEljmqaam5vV0dGR61KKXkVFherr69Pqlj0ewzRNcxJqmhSnnXaaTjnlFN1+++2SpHg8rsbGRn3hC1/QV7/61WHj77zzTt16661688035XQ6j+jXDAQC8vv96uzslM/nm1D9AAAAAAAAmBxNTU3q6OhQbW2tSkpKJiUIQ2ZM01Rvb69aW1tVUVGhhoaGEcdlkq/lzczIcDisjRs36rrrrkvds9lsWrVqldavXz/iO7/+9a+1cuVKfe5zn9Pjjz+uGTNm6OMf/7i+8pWvjDp9NBQKKRQKpT4HAoHJ/UEAAAAAAAAwIbFYLBVEVldX57qcoub1eiVJra2tqq2tnfCS7bxpYNPW1qZYLKa6urpB9+vq6tTc3DziOzt27NCjjz6qWCym3/3ud7rhhhv07//+7/rWt7416q9zyy23yO/3p47GxsZJ/TkAAAAAAAAwMck9IktKSnJcCaT+P4fJ2Lszb8LIIxGPx1VbW6u77rpLJ510ki6//HJdf/31uvPOO0d957rrrlNnZ2fq2Lt3bxYrBgAAAAAAQLpYmp0fJvPPIW+WadfU1Mhut6ulpWXQ/ZaWFtXX14/4TkNDw7COPkuWLFFzc7PC4bBcLtewd9xut9xu9+QWDwAAAAAAAGBceTMz0uVy6aSTTtK6detS9+LxuNatW6eVK1eO+M6ZZ56pd999V/F4PHXv7bffVkNDw4hBJAAAAAAAAIDcyZswUpLWrl2ru+++W/fff7+2bduma6+9Vj09PVqzZo0k6aqrrhrU4Obaa6/VoUOH9MUvflFvv/22fvvb3+o73/mOPve5z+XqRwAAAAAAAABy6u///u81b968XJcxorxZpi1Jl19+uQ4ePKgbb7xRzc3NWrFihZ544olUU5s9e/bIZuvPTxsbG/Xkk0/qS1/6ko4//njNmjVLX/ziF/WVr3wlVz8CAAAAAAAAMKJ09158+umnde65505tMTlimKZp5rqIXAoEAvL7/ers7JTP58t1OQAAAAAAAEUvGAxq586dmj9/vjweT67LmTQ/+9nPBn3+6U9/qqeeekoPPPDAoPvnn39+anLekYhEIorH45PWN2W8P49M8rW8mhkJAAAAAAAAFKpPfOITgz6/+OKLeuqpp4bdH6q3t1clJSVp/zpOp/OI6suGvNozEgAAAAAAAChm5557rpYtW6aNGzfq7LPPVklJib72ta9Jkh5//HFdfPHFmjlzptxutxYuXKhvfvObisVig75j6J6Ru3btkmEYuu2223TXXXdp4cKFcrvdOuWUU/Tyyy9n88djZiQAAAAAAACQT9rb23XRRRfpox/9qD7xiU+klmzfd999Kisr09q1a1VWVqY//elPuvHGGxUIBHTrrbeO+70PPvigurq69NnPflaGYeh73/ueLrvsMu3YsSNrsykJIwEAAAAAADAtmKapvkhs/IFZ4nXa025Kk4nm5mbdeeed+uxnPzvo/oMPPiiv15v6/A//8A/6h3/4B/3oRz/St771rXH3iNyzZ4/eeecdVVZWSpKOOeYYfehDH9KTTz6pSy65ZNJ/jpEQRgIAAAAAAGBa6IvEtPTGJ3NdRsrWm1erxDX58Zrb7daaNWuG3R8YRHZ1dSkUCumss87Sj3/8Y7355ptavnz5mN97+eWXp4JISTrrrLMkSTt27JikysdHGAkAAAAAAADkkVmzZsnlcg27/8Ybb+jrX/+6/vSnPykQCAx61tnZOe73zpkzZ9DnZDB5+PDhCVSbGcJIAAAAAAAATAtep11bb16d6zJSvE771HzvgBmQSR0dHTrnnHPk8/l08803a+HChfJ4PNq0aZO+8pWvKB6Pj/u9dvvI9ZqmOeGa00UYCQAAAAAAgGnBMIwpWRY9HTzzzDNqb2/XY489prPPPjt1f+fOnTmsKnPF+adXRPZ39On1/Z2qKnXplHlVuS4HAAAAAAAARyA5q3HgLMZwOKwf/ehHuSrpiBBGFrg/vNGs//u/W3XxcQ2EkQAAAAAAANPUGWecocrKSn3yk5/UP/3TP8kwDD3wwANZXWI9GWy5LgBTq97nkSQ1dfbluBIAAAAAAAAcqerqav3mN79RQ0ODvv71r+u2227T+eefr+9973u5Li0jhjnd4tNJFggE5Pf71dnZKZ/Pl+tyJt0rew7rwz96QbMqvPrLV9+b63IAAAAAAADGFQwGtXPnTs2fP18ejyfX5RS98f48MsnXmBlZ4Or91l+QlkBQ8XhR584AAAAAAADIMcLIAjejzC2bIUXjptp6QrkuBwAAAAAAAEWMMLLAOew2zSh3S5KaO4M5rgYAAAAAAADFjDCyCNT7vZKkJsJIAAAAAAAA5BBhZBFo8PXvGwkAAAAAAADkCmFkEUg2sWFmJAAAAAAAAHKJMLIIpDpqE0YCAAAAAAAghwgji0C9j5mRAAAAAAAAyD3CyCKQmhnJnpEAAAAAAADIIcLIIjBwZqRpmjmuBgAAAAAAAMWKMLIIJGdG9kViCvRFc1wNAAAAAAAAihVhZBHwOO2qKHFKkppZqg0AAAAAAFAwdu3aJcMwdN999+W6lLQQRhaJ/qXafTmuBAAAAAAAoHh98IMfVElJibq6ukYdc8UVV8jlcqm9vT2LlWUHYWSRaKCJDQAAAAAAQM5dccUV6uvr0y9/+csRn/f29urxxx/XhRdeqOrq6ixXN/UII4tEct/Ipk7CSAAAAAAAgFz54Ac/qPLycj344IMjPn/88cfV09OjK664IsuVZQdhZJGo93klMTMSAAAAAAAgl7xery677DKtW7dOra2tw54/+OCDKi8v13ve8x59+ctf1nHHHaeysjL5fD5ddNFFeu2113JQ9eQhjCwS9X63JGZGAgAAAAAA5NoVV1yhaDSq//7v/x50/9ChQ3ryySf14Q9/WE1NTfrVr36lSy65RN///vf1L//yL9qyZYvOOeccHThwIEeVT5wj1wUgO+r91szIZsJIAAAAAAAwXZmmFOnNdRX9nCWSYWT82nvf+141NDTowQcf1Oc///nU/V/84heKRCK64oordNxxx+ntt9+WzdY/l/DKK6/U4sWLdc899+iGG26YlB8h2wgji0Sym3Yzy7QBAAAAAMB0FemVvjMz11X0+9oByVWa8Wt2u10f/ehH9R//8R/atWuX5s2bJ8laol1XV6f3ve99stvtqfGxWEwdHR0qKyvTMccco02bNk3WT5B1LNMuEskGNh29EQUjsRxXAwAAAAAAUNySDWqSjWz27dun5557Th/96Edlt9sVj8f1H//xHzrqqKPkdrtVU1OjGTNmaPPmzers7Mxl6RPCzMgi4fM45HXa1ReJqbkzqHk1maf2AAAAAAAAOeUssWYj5gtnyRG/etJJJ2nx4sV66KGH9LWvfU0PPfSQTNNMhZTf+c53dMMNN+hTn/qUvvnNb6qqqko2m03/5//8H8Xj8cn6CbKOMLJIGIahBr9HO9p61EQYCQAAAAAApiPDOKJl0fnqiiuu0A033KDNmzfrwQcf1FFHHaVTTjlFkvToo4/qvPPO0z333DPonY6ODtXU1OSi3EnBMu0iklyq3cK+kQAAAAAAADmXnAV544036tVXX019lqx9JU3THDT+F7/4hfbv35/VGicbMyOLSLKJTRMdtQEAAAAAAHJu/vz5OuOMM/T4449L0qAw8pJLLtHNN9+sNWvW6IwzztCWLVv085//XAsWLMhVuZOCmZFFhJmRAAAAAAAA+SUZQJ566qlatGhR6v7XvvY1/fM//7OefPJJffGLX9SmTZv029/+Vo2NjbkqdVIY5tD5nkUmEAjI7/ers7NTPp8v1+VMqZ+u36UbH39Dq4+t04+vPDnX5QAAAAAAAIwoGAxq586dmj9/vjweT67LKXrj/Xlkkq8xM7KIJJdpNwdCOa4EAAAAAAAAxYgwsogkl2k3d/bluBIAAAAAAAAUI8LIIpIMIw92hRSNxXNcDQAAAAAAAIoNYWQRqSl1y2EzFDelg90s1QYAAAAAAEB2EUYWEZvNUF1i38imTjpqAwAAAAAAILsII4tMcql2C2EkAAAAAAAAsowwssjUMzMSAAAAAABME6Zp5roEaHL/HAgji0xqZmSAMBIAAAAAAOQnh8MhSYpGozmuBFL/n0Pyz2UiCCOLDDMjAQAAAABAvrPb7bLb7QoEArkuBZICgUDqz2SiJh5nYlpJzoxsJowEAAAAAAB5yjAM1dbWqqmpSW63W6WlpTIMI9dlFR3TNNXT06NAIKCGhoZJ+TMgjCwyqTCSZdoAAAAAACCP+f1+9fX1qa2tTQcPHsx1OUXLMAxVVFTI7/dPyvcRRhaZ5DLt5kBQpmnyXxUAAAAAAEBeMgxDDQ0Nqq2tVSQSyXU5RcvpdE7K8uwkwsgiU5cII8PRuA73RlRV6spxRQAAAAAAAKObrL0KkR9oYFNkXA6basqsALKpsy/H1QAAAAAAAKCYEEYWoeS+kS3sGwkAAAAAAIAsIowsQsl9I5voqA0AAAAAAIAsIowsQqmZkYSRAAAAAAAAyCLCyCLEzEgAAAAAAADkAmFkEar3eyVJzewZCQAAAAAAgCwijCxCyZmRzcyMBAAAAAAAQBYRRhah5J6RhJEAAAAAAADIJsLIIpQMI7tCUXWHojmuBgAAAAAAAMWCMLIIlbkdKnc7JDE7EgAAAAAAANlDGFmkkrMjW2hiAwAAAAAAgCwhjCxSyTCyiZmRAAAAAAAAyBLCyCKV7KjNzEgAAAAAAABkC2FkkeqfGdmX40oAAAAAAABQLAgji1QyjKSBDQAAAAAAALKFMLJIJZdpN7NMGwAAAAAAAFlCGFmkmBkJAAAAAACAbCOMLFLJmZFt3WGFo/EcVwMAAAAAAIBiQBhZpKpKXXLZrT9+OmoDAAAAAAAgGwgji5RhGKml2oSRAAAAAAAAyAbCyCKWXKrdxL6RAAAAAAAAyALCyCJGExsAAAAAAABkE2FkEUuFkSzTBgAAAAAAQBYQRhax5DJtZkYCAAAAAAAgGwgjixgzIwEAAAAAAJBNhJFFjD0jAQAAAAAAkE2EkUUsuUy7JRBUPG7muBoAAAAAAAAUOsLIIjaj3C2bIUXjptp6QrkuBwAAAAAAAAWOMLKIOe02zSh3S5JaOgkjAQAAAAAAMLUII4tccql2U2dfjisBAAAAAABAoSOMLHJ01AYAAAAAAEC2EEYWueTMSDpqAwAAAAAAYKoRRha5er9XEmEkAAAAAAAAph5hZJGr91sNbFimDQAAAAAAgKlGGFnk6n3MjAQAAAAAAEB2EEYWuYENbEzTzHE1AAAAAAAAKGSEkUUu2cCmNxxTIBjNcTUAAAAAAAAoZISRRc7rsquixClJamHfSAAAAAAAAEwhwkikZkc2sW8kAAAAAAAAphBhJPr3jezsy3ElAAAAAAAAKGSEkUjNjGzuDOW4EgAAAAAAABQywkgM6KjNzEgAAAAAAABMHcJIDJgZyZ6RAAAAAAAAmDqEkUjNjKSBDQAAAAAAAKYSYSRSYWRLgDASAAAAAAAAU4cwEmrweSVJh3sjCkZiOa4GAAAAAAAAhYowEvJ5HfI67ZLYNxIAAAAAAABThzASMgxjQEdtwkgAAAAAAABMDcJISKKjNgAAAAAAAKYeYSQkiZmRAAAAAAAAmHKEkZA0IIxkZiQAAAAAAACmCGEkJLFMGwAAAAAAAFOPMBKS+mdGNrFMGwAAAAAAAFOEMBKS+mdGtjAzEgAAAAAAAFOEMBKSpIbEzMjWrqCisXiOqwEAAAAAAEAhIoyEJKm6zC2HzVDclA52h3JdDgAAAAAAAAoQYSQkSXabodpytySa2AAAAAAAAGBqEEYiJdnEhjASAAAAAAAAU4EwEimpMJKO2gAAAAAAAJgChJFIqfd5JTEzEgAAAAAAAFODMBIp9f7EnpHMjAQAAAAAAMAUIIxESr3fmhnZxMxIAAAAAAAATAHCSKTU+2hgAwAAAAAAgKlDGImUhgENbEzTzHE1AAAAAAAAKDR5GUbecccdmjdvnjwej0477TRt2LBh1LH33XefDMMYdHg8nixWWzhqfdaekeFoXId7IzmuBgAAAAAAAIUm78LIRx55RGvXrtVNN92kTZs2afny5Vq9erVaW1tHfcfn86mpqSl17N69O4sVFw63w67qUpcklmoDAAAAAABg8uVdGPn9739fV199tdasWaOlS5fqzjvvVElJie69995R3zEMQ/X19amjrq4uixUXlvrUUu2+HFcCAAAAAACAQpNXYWQ4HNbGjRu1atWq1D2bzaZVq1Zp/fr1o77X3d2tuXPnqrGxUR/60If0xhtvjDo2FAopEAgMOtCvv4lNKMeVAAAAAAAAoNDkVRjZ1tamWCw2bGZjXV2dmpubR3znmGOO0b333qvHH39cP/vZzxSPx3XGGWdo3759I46/5ZZb5Pf7U0djY+Ok/xzTWWpmZCczIwEAAAAAADC58iqMPBIrV67UVVddpRUrVuicc87RY489phkzZujHP/7xiOOvu+46dXZ2po69e/dmueL8lpoZGWDPSAAAAAAAAEwuR64LGKimpkZ2u10tLS2D7re0tKi+vj6t73A6nTrhhBP07rvvjvjc7XbL7XZPuNZClZwZ2UQDGwAAAAAAAEyyvJoZ6XK5dNJJJ2ndunWpe/F4XOvWrdPKlSvT+o5YLKYtW7aooaFhqsosaP3LtAkjAQAAAAAAMLnyamakJK1du1af/OQndfLJJ+vUU0/VD37wA/X09GjNmjWSpKuuukqzZs3SLbfcIkm6+eabdfrpp2vRokXq6OjQrbfeqt27d+szn/lMLn+MaavBzzJtAAAAAAAATI28CyMvv/xyHTx4UDfeeKOam5u1YsUKPfHEE6mmNnv27JHN1j+h8/Dhw7r66qvV3NysyspKnXTSSXrhhRe0dOnSXP0I01q93ytJ6gpG1ROKqtSdd39FAAAAAAAAME0ZpmmauS4ilwKBgPx+vzo7O+Xz+XJdTl5YdtOT6g5Fte6fz9HCGWW5LgcAAAAAAAB5LJN8La/2jER+YN9IAAAAAAAATAXCSAxT7yOMBAAAAAAAwOQjjMQw9TSxAQAAAAAAwBQgjMQwzIwEAAAAAADAVCCMxDDJmZFNhJEAAAAAAACYRISRGCY1MzLQl+NKAAAAAAAAUEgIIzFMfzftUI4rAQAAAAAAQCEhjMQwDYkwsq07pHA0nuNqAAAAAAAAUCgIIzFMValLLrv1V6O1i30jAQAAAAAAMDkIIzGMYRiq87sl0VEbAAAAAAAAk4cwEiPqb2JDGAkAAAAAAIDJQRiJEdX7vZKYGQkAAAAAAIDJQxiJEdX7rGXaTYSRAAAAAAAAmCSEkRhRamYky7QBAAAAAAAwSQgjMaLUnpHMjAQAAAAAAMAkIYzEiOr9hJEAAAAAAACYXISRGFFDIoxsCQQVj5s5rgYAAAAAAACFgDASI5pR7pZhSNG4qfaecK7LAQAAAAAAQAEgjMSInHabZpRZHbVZqg0AAAAAAIDJQBiJUaX2jaSjNgAAAAAAACYBYSRG1d9Ruy/HlQAAAAAAAKAQEEZiVMmZkU0s0wYAAAAAAMAkIIzEqFimDQAAAAAAgMlEGIlR9S/TJowEAAAAAADAxBFGYlTMjAQAAAAAAMBkIozEqBr8XknWzEjTNHNcDQAAAAAAAKY7wkiMKrlMuzccU1comuNqAAAAAAAAMN0RRmJUXpddfq9TEvtGAgAAAAAAYOIIIzEmmtgAAAAAAABgshBGYkypJjaEkQAAAAAAAJggwkiMKTkzsokwEgAAAAAAABNEGIkxpWZGBggjAQAAAAAAMDGEkRhT/zLtvhxXAgAAAAAAgOmOMBJj6p8ZGcpxJQAAAAAAAJjuCCMxpgZmRgIAAAAAAGCSEEZiTMkGNod7IwpGYjmuBgAAAAAAANMZYSTG5Pc65XFaf01aaGIDAAAAAACACSCMxJgMw0jNjmzqJIwEAAAAAADAkSOMxLiSTWyYGQkAAAAAAICJIIzEuJgZCQAAAAAAgMlAGIlx1fu9kqRmwkgAAAAAAABMAGEkxlXvc0sijAQAAAAAAMDEEEZiXKmZkewZCQAAAAAAgAkgjMS4GhINbJgZCQAAAAAAgIkgjMS4kt20D3aHFI3Fc1wNAAAAAAAApivCSIyrpswtu81QLG6qrTuc63IAAAAAAAAwTRFGYlx2m6HacquJTVNnX46rAQAAAAAAwHRFGIm0JJdqt9DEBgAAAAAAAEeIMBJpqfdZYWQTTWwAAAAAAABwhAgjkZbkzMhmZkYCAAAAAADgCBFGIi0NyTCSmZEAAAAAAAA4QoSRSEudjzASAAAAAAAAE0MYibQ0+L2SWKYNAAAAAACAI0cYibTUD5gZaZpmjqsBAAAAAADAdEQYibTU+tySpFA0ro7eSI6rAQAAAAAAwHREGIm0eJx2VZW6JElN7BsJAAAAAACAI0AYibQll2q3sG8kAAAAAAAAjgBhJNJW77fCSGZGAgAAAAAA4EgQRiJtyTCSjtoAAAAAAAA4EoSRSFtDqqN2X44rAQAAAAAAwHREGIm01aVmRoZyXAkAAAAAAACmI8JIpK3Bz8xIAAAAAAAAHDnCSKQt2U2bBjYAAAAAAAA4EoSRSFuygU1XMKqeUDTH1QAAAAAAAGC6IYxE2so9TpW67JLoqA0AAAAAAIDMEUYiI8nZkS0s1QYAAAAAAECGCCORkWQYyb6RAAAAAAAAyBRhZKGLBKVnb5WaNk/K19X7vJJYpg0AAAAAAIDMEUYWuj/eJP3pW9LvvyKZ5oS/riExM7KZmZEAAAAAAADIEGFkoTvjC5LDK+15QXrjsQl/XV0yjGRmJAAAAAAAADJEGFno/LOls/7Zuv7DDVK4Z0Jf1+BjZiQAAAAAAACODGFkMTjj81LFHCmwX3r+BxP6KhrYAAAAAAAA4EgRRhYDp1e64NvW9Qs/lA7vPuKvSoaR7T0hhaPxyagOAAAAAAAARYIwslgs+YA0/2wpGpT+8PUj/pqqEpecdkOmKbV2MTsSAAAAAAAA6SOMLBaGIV34b5Jhl7b9Wtr57BF9jc1mqC6xb2QLTWwAAAAAAACQAcLIYlK3VDrl09b1778ixaJH9DX1PvaNBAAAAAAAQOYII4vNuddJ3iqpdau08SdH9BXJfSPpqA0AAAAAAIBMEEYWm5Iq6b3XW9d/+pbUeyjjr2ggjAQAAAAAAMARIIwsRietkeqWScEO6elvZ/x6cs/IZvaMBAAAAAAAQAYII4uRzS5d9G/W9V/vlZpfz+j1Br9XEjMjAQAAAAAAkBnCyGI17z3S0kslMy498VXJNNN+td7vlkQDGwAAAAAAAGSGMLKYXfBNyeGRdj0nbf1V2q/VJ2ZGtnYFFY+nH2ICAAAAAACguBFGFrOKOdKZ/8e6/sMNUrg3rddqy90yDCkSM9XeE566+gAAAAAAAFBQCCOL3ZlflHyzpc690gs/TOsVp92mmjJrqXYLTWwAAAAAAACQJsLIYucqsZZrS9LzP5A69qb1Wn2iozb7RgIAAAAAACBdhJGQjv2wNPc9UrRPeuqGtF6p91thZDMzIwEAAAAAAJAmwkhIhiFd9F3JsElv/FLa9fy4rzQkw8jOvqmuDgAAAAAAAAWCMBKW+uOkk9ZY17//qhSPjTm8jmXaAAAAAAAAyBBhJPq99+uSp0Jq2SJtvG/MocmZkTSwAQAAAAAAQLoII9GvpEo673rr+k/fkvoOjzqUBjYAAAAAAADIFGEkBjv5U1LtUqnvkPT0LaMOSzWw6QzKNM1sVQcAAAAAAIBpjDASg9kd0oXfta5f/i+pZeuIw5JhZG84pq5QNFvVAQAAAAAAYBojjMRwC86RlnxAMmPSE1+VRpj5WOJyyOdxSJJaWKoNAAAAAACANBBGYmQXfEuyu6Wdf5a2/e+IQ5KzI9k3EgAAAAAAAOkgjMTIKudJZ/6Tdf2H66VI37Ah9X6vJKmZjtoAAAAAAABIA2EkRveeL0m+WVLHHumF24c9bvD1N7EBAAAAAAAAxkMYidG5SqXzb7aun/++1Ll/0OM6lmkDAAAAAAAgA4SRGNuyj0hzVkqRXumpGwc9mlNVIkl67p2DCkVjuagOAAAAAAAA0whhJMZmGNJF/ybJkF5/VNq9PvXoomX1qi13a9/hPt33l105KxEAAAAAAADTA2EkxtewXDrxKuv69/8qxa1ZkKVuh/5l9TGSpNv/9K7au0O5qhAAAAAAAADTAGEk0vO+GyW3X2reLL3yQOr2R06crWNn+tQViuoHf3wnhwUCAAAAAAAg3xFGIj2lNdK5X7Wu190s9XVIkmw2Q1+/eKkk6cENe/ROS1eOCgQAAAAAAEC+I4xE+k69Wqo5Ruptl/78b6nbKxdW64KldYrFTX37d9tyWCAAAAAAAADyGWEk0md3Shd917recJd08K3Uo+vev0QOm6Fn3jqoP799MEcFAgAAAAAAIJ8RRiIzC98rHXOxFI9KT3xVMk1J0vyaUl21cp4k6du/3apoLJ7DIgEAAAAAAJCPCCORudXfkuwuafufpLd+l7r9xfcdpYoSp95u6dYjf92bwwIBAAAAAACQjwgjkbmqBdLKz1vXT35NigQlSf4Sp774vqMkSd//w9vqCkZyVSEAAAAAAADyEGEkjsxZ/yyVN0iHd0kv3Zm6/YnT52pBTanae8K64+ntuasPAAAAAAAAeYcwEkfGXSade511veUXqdtOu01fe/8SSdK9z+/U3kO9uagOAAAAAAAAeYgwEkfumPdb55bXpe7+DtrvW1KrMxZWKxyL69+eeDNHxQEAAAAAACDfEEbiyJXNkGqPta53PZu6bRiGrr94iQxD+s3mJm3cfThHBQIAAAAAACCfEEZiYhacY513/HnQ7WNn+vV3JzVKkr75m62Kx81sVwYAAAAAAIA8QxiJiZmfCCN3/nnYo3++4GiVuOx6dW+H/nfzgSwXBgAAAAAAgHxDGImJmXuGZNitrtqHdw96VOvz6NpzFkqSvvfEWwpGYjkoEAAAAAAAAPmCMBIT4/FJs06yrkeYHXn12Qs00+/R/o4+3fP8ziwXBwAAAAAAgHySl2HkHXfcoXnz5snj8ei0007Thg0b0nrv4YcflmEYuvTSS6e2QAw2yr6RkuRx2vWvFy6WJP3o6XfV2hXMZmUAAAAAAADII3kXRj7yyCNau3atbrrpJm3atEnLly/X6tWr1draOuZ7u3bt0pe//GWdddZZWaoUKal9I5+VzOGNaj64fKaWz/arJxzTfzz1dpaLAwAAAAAAQL7IuzDy+9//vq6++mqtWbNGS5cu1Z133qmSkhLde++9o74Ti8V0xRVX6P/+3/+rBQsWZLFaSJIaT5UcXqmnVWrdNuyxzWbohkuWSpIeeXmvtjUFsl0hAAAAAAAA8kBehZHhcFgbN27UqlWrUvdsNptWrVql9evXj/rezTffrNraWn3605/ORpkYyuGW5pxuXe98dsQhJ8+r0sXHNShuSt/67VaZI8ygBAAAAAAAQGHLqzCyra1NsVhMdXV1g+7X1dWpubl5xHeef/553XPPPbr77rvT+jVCoZACgcCgA5MguW/kCE1skr5y4WK57Db95d12Pf3W2MvuAQAAAAAAUHjyKozMVFdXl6688krdfffdqqmpSeudW265RX6/P3U0NjZOcZVFIrlv5K7npVh0xCFzqku05j3zJEnf+u02RWLxLBUHAAAAAACAfJBXYWRNTY3sdrtaWloG3W9paVF9ff2w8du3b9euXbv0gQ98QA6HQw6HQz/96U/161//Wg6HQ9u3bx/2znXXXafOzs7UsXfv3in7eYpKw3LJ45dCAanp1VGHfe68RaoudWnHwR49+NKe7NUHAAAAAACAnMurMNLlcumkk07SunXrUvfi8bjWrVunlStXDhu/ePFibdmyRa+++mrq+OAHP6jzzjtPr7766oizHt1ut3w+36ADk8Bml+YlOpnveGbUYT6PU186/2hJ0g/++LY6eyNZKA4AAAAAAAD5IK/CSElau3at7r77bt1///3atm2brr32WvX09GjNmjWSpKuuukrXXXedJMnj8WjZsmWDjoqKCpWXl2vZsmVyuVy5/FGKz4JzrfMY+0ZK0kdPadRRtWU63BvR7U+/M/V1AQAAAAAAIC/kXRh5+eWX67bbbtONN96oFStW6NVXX9UTTzyRamqzZ88eNTU15bhKjCi5b+Sel6RI36jDHHabrr94iSTpvhd2aVdbTzaqAwAAAAAAQI4ZpmmauS4ilwKBgPx+vzo7O1myPVGmKX1/idTVJF31eP9MyVF88t4N+vPbB3XhsfW688qTslMjAAAAAAAAJlUm+VrezYzENGYY0vyzresdYy/VlqTrL14imyE98UazXtrRPsXFAQAAAAAAINcIIzG5kku1x9k3UpKOrivXx06dI0n61m+3KR4v6km6AAAAAAAABY8wEpNrQSKMPPCK1Ncx7vAvnX+0yt0ObdnfqV++sn9qawMAAAAAAEBOEUZicvlnS1ULJTMu7f7LuMNrytz63HsXSZJuffIt9YajU10hAAAAAAAAcoQwEpMvOTsyjX0jJenvz5in2ZVeNQeCuuvZHVNYGAAAAAAAAHKJMBKTL4N9IyXJ47TruouWSJJ+/Ocdau4MTlVlAAAAAAAAyCHCSEy++WdLMqSDb0pdzWm98v7j6nXS3Er1RWK67Q9vTW19AAAAAAAAyAnCSEy+kiqp/jjreuezab1iGIZuuGSpJOl/Nu3T6/s7p6o6AAAAAAAA5AhhJKZGhvtGStKKxgpdumKmTFP65m+2yjTNKSoOAAAAAAAAuUAYiakx/1zrvPPPUgah4r9cuFhuh00v7TykP2xtmZLSAAAAAAAAkBuEkZgac1dKNqfUuVc6vDPt12ZVeHX1WQskSbf8bpvC0fhUVQgAAAAAAIAsI4zE1HCVSrNPsa4zWKotSdeeu1Azyt3a1d6rn724ewqKAwAAAAAAQC4QRmLqJPeN3JlZGFnqdujz5y2SJP3+9abJrgoAAAAAAAA5QhiJqTM/GUY+K8UzW2592oIqSdKbTV00sgEAAAAAACgQhJGYOrNOkpylUm+71PpGRq8unFEml92mrlBU+w73TVGBAAAAAAAAyCbCSEwdh0uae4Z1neG+kU67TUfVlUmStjYFJrsyAAAAAAAA5ABhJKbWEe4bKUlLGnySpG2EkQAAAAAAAAWBMBJTK7lv5O4XpFgko1eTYeTWA4SRAAAAAAAAhYAwElOrbplUUi2Fu6X9GzN6dUlDuSRpWzNhJAAAAAAAQCEgjMTUstmkeWdZ1xnuG7k0MTNy76E+dQUzm1UJAAAAAACA/EMYiak3/2zrnOG+kRUlLjX4PZKkN5u7JrsqAAAAAAAAZBlhJKbegnOt894NUrgno1dpYgMAAAAAAFA4CCMx9aoWSL7ZUjwi7Vmf0aupfSMJIwEAAAAAAKa9CYWRe/bs0fPPPz/o3muvvaarrrpKl19+uX71q19N5OtRKAxDWpDoqp3hvpGpjtpNLNMGAAAAAACY7hwTefmf/umf1N3drT/+8Y+SpJaWFp133nkKh8MqLy/Xo48+ql/84he67LLLJqVYTGPzz5Fe/XnG+0Ymw8i3mgOKxU3ZbcZUVAcAAAAAAIAsmNDMyA0bNuj8889Pff7pT3+qvr4+vfbaa9q/f7/e97736bbbbptwkSgAySY2TZul3kNpvzavulQep03BSFy72jPbbxIAAAAAAAD5ZUJh5KFDh1RbW5v6/Jvf/EbnnHOOFi5cKJvNpssuu0xvvvnmhItEAfA1SDXHSDKlXc+l/ZrdZuiYeprYAAAAAAAAFIIJhZEzZszQ7t27JUkdHR168cUXtXr16tTzaDSqaDQ6sQpROJL7Ru58NqPXltLEBgAAAAAAoCBMaM/IVatW6Yc//KF8Pp+eeeYZxeNxXXrppannW7duVWNj40RrRKGYf4604a4jbmKzjSY2AAAAAAAA09qEwsjvfve7evvtt/XlL39ZLpdLt912m+bPny9JCoVC+u///m99/OMfn5RCUQDmvUcybFL7O1LggOSbmdZr/WEkMyMBAAAAAACmswmFkXV1dfrLX/6izs5Oeb1euVyu1LN4PK5169YxMxL9vBVSwwrpwCZrduSKj6X12uJ6a5l2U2dQHb1hVZS4xnkDAAAAAAAA+WhCe0Ym+f3+QUGkJHm9Xi1fvlxVVVWT8UugUKT2jUx/qXa5x6k5VSWSpK3MjgQAAAAAAJi2JhRGrlu3Trfeeuuge/fee6/mzJmjuro6felLX1IsFptQgSgw8xNh5I4/S6aZ9mtLEk1sth4gjAQAAAAAAJiuJhRGfuMb39Brr72W+rxlyxZ99rOf1YwZM3Tuuefqhz/8oW677bYJF4kCMud0ye6Wug5I7e+m/RpNbAAAAAAAAKa/CYWR27Zt08knn5z6/MADD8jn8+m5557TI488oquvvlo//elPJ1wkCojTKzWeal3veCbt12hiAwAAAAAAMP1NKIzs6emRz+dLfX7iiSd04YUXqqTE2t/vlFNO0e7duydWIQrPEewbuTQRRr7b2q1ILD4VVQEAAAAAAGCKTSiMbGxs1MsvvyxJevfdd/X666/rggsuSD0/dOiQ3G73xCpE4Zl/rnXe+ZwUT29P0dmVXpW7HQrH4tp+sHvKSgMAAAAAAMDUmVAYecUVV+iuu+7SBz/4Qa1evVqVlZX60Ic+lHq+ceNGHX300RMuEgVm5gmS2ycFO6TmzWm9YhiGFiea2LBUGwAAAAAAYHqaUBh5/fXX66tf/ar27t2rOXPm6Fe/+pUqKiokWbMin3nmGX3wgx+cjDpRSOwOae6Z1vWO9Jdq08QGAAAAAABgenNM6GWHQ9/+9rf17W9/e9izqqoqNTc3T+TrUcgWnCO9/Xtr38j3/J+0XqGJDQAAAAAAwPQ2oTByoO7ubu3du1eStZdkWVnZZH01CtH8s63z7vVSNCQ5xt9blDASAAAAAABgepvQMm1Jevnll3XeeeepsrJSy5Yt07Jly1RZWan3vve9+utf/zoZNaIQ1S6VSmdI0T5p38tpvXJMXblshtTWHVZrV3CKCwQAAAAAAMBkm9DMyJdeeknnnnuuXC6XPvOZz2jJkiWSpG3btumhhx7S2WefrWeeeUannnrqpBSLAmIY1uzI1//H2jdy3nvGfcXrsmteTal2HOzRtqYu1ZZ7slAoAAAAAAAAJsuEwsjrr79es2bN0vPPP6/6+vpBz77xjW/ozDPP1PXXX6+nnnpqQkWiQM0/xwojd/5Z0vVpvbKkwZcIIwM65+gZU1sfAAAAAAAAJtWElmm/9NJL+uxnPzssiJSkuro6XXPNNXrxxRcn8kugkC04xzrv3yiF0uuQvZR9IwEAAAAAAKatCYWRNptN0Wh01OexWEw224S3pUShqpwnVcyV4lGrkU0aljSUSyKMBAAAAAAAmI4mlBSeccYZuuOOO7R79+5hz/bs2aMf/ehHOvPMMyfyS6DQJWdH7vxzWsOXNvglSdsP9igYiU1VVQAAAAAAAJgCE9oz8jvf+Y7OPvtsLV68WB/+8Id19NFHS5LeeustPf7447Lb7brlllsmpVAUqPnnSJt+ajWxSUOdz63KEqcO90b0Tku3jpvtn+ICAQAAAAAAMFkmFEaecMIJeumll3T99dfr17/+tXp7eyVJJSUluvDCC/WNb3xDNTU1k1IoCtT8xMzIli1ST5tUOvbfF8MwtKTBpxe2t2tbU4AwEgAAAAAAYBqZ8IaOS5cu1S9/+UsFAgE1NTWpqalJgUBAjz32mP73f/9XjY2Nk1EnClXZDKn2WOt657NpvbIk0cRmK/tGAgAAAAAATCuT1l3GZrOprq5OdXV1NK1BZjLcN3IJHbUBAAAAAACmJVJD5F5yqXaa+0YO7KhtmuZUVQUAAAAAAIBJRhiJ3Jt7hmTYpcM7pY494w5fVFsmh81QIBjVgc5gFgoEAAAAAADAZCCMRO55fNKsk6zrNGZHuh12LaotkyRtO8BSbQAAAAAAgOki427amzZtSnvsgQMHMv16FKsF50j7Nlj7Rp545bjDlzT49GZzl7Y1BbRqaV0WCgQAAAAAAMBEZRxGnnzyyTIMI62xpmmmPRZFbv450rO3Wh21TVMa5+/NkoZy/fIVaVszMyMBAAAAAACmi4zDyJ/85CdTUQeKXeOpksMrdbdIB9+UapeMOby/o3ZXNqoDAAAAAADAJMg4jPzkJz85FXWg2Dnc0pzTpR1PW/tGphlG7mrvUW84qhJXxn+VAQAAAAAAkGU0sEH+WHCOdd45fhObmjK3ZpS7ZZrSm83MjgQAAAAAAJgOCCORP+Ynwshdz0ux6LjD+5dqs28kAAAAAADAdEAYifzRsFzy+KVQQGp6ddzhSxrKJRFGAgAAAAAATBeEkcgfNrs07yzrescz4w5fShMbAAAAAACAaYUwEvkluVR757PjDl06YJl2PG5OZVUAAAAAAACYBISRyC/JJjZ7X5IiwTGHzq8plcthU284pj2HerNQHAAAAAAAACaCMBL5peZoqaxeigatQHIMDrtNx9SxbyQAAAAAAMB0QRiJ/GIY/bMjd/553OE0sQEAAAAAAJg+CCORf5L7Ru5IJ4y09o3cShMbAAAAAACAvEcYifyTnBl5YJMU7Bxz6JIBTWwAAAAAAACQ3wgjkX/8s6WqhZIZl3b9ZcyhS+qtMHJ/R586+yLZqA4AAAAAAABHiDAS+SnNfSP9JU7NqvBKkt5kdiQAAAAAAEBeI4xEfpr3Huu8d8O4Q2liAwAAAAAAMD0QRiI/zTzBOre8IUXDYw7t3zeSJjYAAAAAAAD5jDAS+alyvuTxS7GQdHDbmENTYWQzMyMBAAAAAADyGWEk8pNhSA3LresDr445NBlGvtXcpWgsPsWFAQAAAAAA4EgRRiJ/Naywzk2vjjlsblWJSlx2haJx7WrvmfKyAAAAAAAAcGQII5G/Zq6wzuPMjLTZDB1TbzWx2cq+kQAAAAAAAHmLMBL5KzkzsuUNKRYZc2h/Exv2jQQAAAAAAMhXhJHIX1ULJHeiiU3r2E1slhJGAgAAAAAA5D3CSOQvw5BmJprYjLNvZHJm5NYDhJEAAAAAAAD5ijAS+S25VHucfSMX15fLMKTWrpDau0NTXhYAAAAAAAAyRxiJ/JZqYvPKmMNK3Q7NrSqRJG2jiQ0AAAAAAEBeIoxEfqOJDQAAAAAAQMEgjER+y6CJDWEkAAAAAABAfiOMRH4zDKnheOs63SY2hJEAAAAAAAB5iTAS+S+1b+SrYw5b0lAuSdp+sFvhaHxqawIAAAAAAEDGCCOR/2aeYJ3HmRk5q8Irn8ehSMzUu63dU18XAAAAAAAAMkIYifyXbGLT/PqYTWwMw9Bi9o0EAAAAAADIW4SRyH8ZNLFZShgJAAAAAACQtwgjkf8yamJj7Ru5rZkwEgAAAAAAIN8QRmJ6SLuJTXJmZJdM05zamgAAAAAAAJARwkhMD8l9I8eZGXl0XblshnSoJ6zWrtCUlwUAAAAAAID0EUZiekh21B6niY3HadeCGWWSpK3sGwkAAAAAAJBXCCMxPVTOl9w+q4nNwTfHHLqEJjYAAAAAAAB5iTAS04PNJjUst67H2Tcy2VF76wHCSAAAAAAAgHxCGInpI9nEJt2O2syMBAAAAAAAyCuEkZg+kk1sDrwy5rDkzMidbT0KRmJTXBQAAAAAAADSRRiJ6SPNJjYzyt2qLnUpbkpvNXdlqTgAAAAAAACMhzAS00eaTWwMw6CJDQAAAAAAQB4ijMT0kUETG/aNBAAAAAAAyD+EkZhekmHkuE1skjMjWaYNAAAAAACQLwgjMb0k940cd2ZkIoxsDsg0zSkuCgAAAAAAAOkgjMT0kgwjW16XYtFRhy2cUSan3VBXMKp9h/uyVBwAAAAAAADGQhiJ6SXZxCYaHLOJjcth06Ja9o0EAAAAAADIJ4SRmF4GNbF5Zcyh/U1s2DcSAAAAAAAgHxBGYvpJs4nN0lQTG2ZGAgAAAAAA5APCSEw/R9DEBgAAAAAAALlHGInpp2GFdR6niU0yjNzd3qvu0OjjAAAAAAAAkB2EkZh+qhZIrvJxm9hUlbpU53NLkt5idiQAAAAAAEDOEUZi+rHZpJkrrOs0943ceoAwEgAAAAAAINcIIzE9pTpqvzrmsORS7a101AYAAAAAAMg5wkhMT6kmNq+MOWwJHbUBAAAAAADyBmEkpqcMm9i81dylWNzMQmEAAAAAAAAYDWEkpqc0m9jMrymVx2lTXySm3e09WSwQAAAAAAAAQxFGYnqy2fr3jRyjiY3dZuiYunJJ0jb2jQQAAAAAAMgpwkhMX8mO2mk2sWHfSAAAAAAAgNwijMT0ldw3coyZkRJhJAAAAAAAQL7IyzDyjjvu0Lx58+TxeHTaaadpw4YNo4597LHHdPLJJ6uiokKlpaVasWKFHnjggSxWi5xJdtRuTq+JDWEkAAAAAABAbuVdGPnII49o7dq1uummm7Rp0yYtX75cq1evVmtr64jjq6qqdP3112v9+vXavHmz1qxZozVr1ujJJ5/McuXIulQTmz6p7a1Rhy1usPaMPNAZVEdvOFvVAQAAAAAAYIi8CyO///3v6+qrr9aaNWu0dOlS3XnnnSopKdG999474vhzzz1XH/7wh7VkyRItXLhQX/ziF3X88cfr+eefz3LlyLqBTWwOvDLqMJ/HqdmVXkk0sQEAAAAAAMilvAojw+GwNm7cqFWrVqXu2Ww2rVq1SuvXrx/3fdM0tW7dOr311ls6++yzRxwTCoUUCAQGHZjGaGIDAAAAAAAwbeRVGNnW1qZYLKa6urpB9+vq6tTc3Dzqe52dnSorK5PL5dLFF1+s//zP/9T5558/4thbbrlFfr8/dTQ2Nk7qz4Aso4kNAAAAAADAtJFXYeSRKi8v16uvvqqXX35Z3/72t7V27Vo988wzI4697rrr1NnZmTr27t2b3WIxuZIzI8dpYrM0sW/ktmbCSAAAAAAAgFxx5LqAgWpqamS329XS0jLofktLi+rr60d9z2azadGiRZKkFStWaNu2bbrlllt07rnnDhvrdrvldrsntW7kUNVCq4lNuMtqYlN37IjDkjMj327pViQWl9NeEDk8AAAAAADAtJJXiYzL5dJJJ52kdevWpe7F43GtW7dOK1euTPt74vG4QqHQVJSIfGOzSQ3HW9dj7BvZWFmiUpdd4WhcOw72ZKc2AAAAAAAADJJXYaQkrV27Vnfffbfuv/9+bdu2Tddee616enq0Zs0aSdJVV12l6667LjX+lltu0VNPPaUdO3Zo27Zt+vd//3c98MAD+sQnPpGrHwHZNvME6zzGvpE2m8G+kQAAAAAAADmWV8u0Jenyyy/XwYMHdeONN6q5uVkrVqzQE088kWpqs2fPHtls/RlqT0+P/vEf/1H79u2T1+vV4sWL9bOf/UyXX355rn4EZFuyiU0aHbX/uvuwtjUFdOkJs6a8LAAAAAAAAAxmmKZp5rqIXAoEAvL7/ers7JTP58t1OTgSbe9It58sObzSdfsk+8gZ+4Mv7dHXfrlFZx1Vowc+fVqWiwQAAAAAAChMmeRrebdMG8hYsolNtM9qYjOKJcmO2k1d2aoMAAAAAAAAAxBGYvpLs4nNMfXlMgyprTukg100OAIAAAAAAMg2wkgUhuS+kWM0sSlxOTS/ulQSTWwAAAAAAABygTAShWHmCuucRhMbiTASAAAAAAAgFwgjURhmnmCdm7dIseiow/r3jSSMBAAAAAAAyDbCSBSGQU1s3h51WP/MSJrYAAAAAAAAZBthJArDoCY2r4w6LBlGbj/YrVA0lo3KAAAAAAAAkEAYicKRRhObBr9Hfq9T0bipd1q6s1IWAAAAAAAALISRKBxpNLExDIN9IwEAAAAAAHKEMBKFIzkzctwmNuwbCQAAAAAAkAuEkSgc1YskV9m4TWyOm+WXJL24oz1blQEAAAAAAECEkSgkNptUn2hiM8a+kecdUyuHzdDWpoB2HGTfSAAAAAAAgGwhjERhmXmCdR5j38jKUpfOXFQjSfrt5qYsFAUAAAAAAACJMBKFJtnEZoyZkZJ08fENkqTfEEYCAAAAAABkDWEkCkuyiU3T5jGb2KxeWi+n3dBbLV16p4VGNgAAAAAAANlAGInCkmYTG3+JU2cdNUMSsyMBAAAAAACyhTAShSXNJjaSdElqqfYBmaY5xYUBAAAAAACAMBKFJ7lv5BhNbCTp/KV1cjls2n6wR2+xVBsAAAAAAGDKEUai8KT2jXx1zGHlHqfOOTqxVPs1lmoDAAAAAABMNcJIFJ7kzMjmLVI8NuZQlmoDAAAAAABkD2EkCk+yiU2kd8wmNpK0akmd3A6bdrX36o0DgSwVCAAAAAAAUJwII1F4bPb+Jjbj7BtZ6nbovYtrJdFVGwAAAAAAYKoRRqIwpZrYvDLu0EuOnymJpdoAAAAAAABTjTAShSnNJjaS9N7FtfI67dp3uE+b93VOaVkAAAAAAADFjDAShSmDJjZel13vW5Jcqn1gigsDAAAAAAAoXoSRKEzViyRnaVpNbKT+pdq/3dzEUm0AAAAAAIApQhiJwmSzSw3pNbGRpHOPmaFSl10HOoPatKdjSksDAAAAAAAoVoSRKFwZ7Bvpcdp1/tI6SSzVBgAAAAAAmCqEkShcM0+wzmnMjJT6l2r/bkuT4nGWagMAAAAAAEw2wkgUrlQTm83jNrGRpLOOrlG5x6GWQEh/3X14amsDAAAAAAAoQoSRKFwZNrFxO+y6YGm9JJZqAwAAAAAATAXCSBSuDJvYSNIlyxskSb/b0qwYS7UBAAAAAAAmFWEkClsGTWwk6cyFNfJ7nWrrDumlne1TVhYAAAAAAEAxIoxEYUvuG5nmzEiXw6YLj00u1W6ampoAAAAAAACKFGEkCltyZmSaTWyk/qXaT7zerGgsPkWFAQAAAAAAFB/CSBS2mqMGNLF5J61XVi6oVlWpS4d6wlq/g6XaAAAAAAAAk4UwEoVtYBObNPeNdNhtunBZYqn2ayzVBgAAAAAAmCyEkSh8yaXaB15J+5VLjk8s1X6jWRGWagMAAAAAAEwKwkgUvgyb2EjSafOrVVPmVmdfRM+/2zYlZQEAAAAAABQbwkgUviNoYmO3GXr/cSzVBgAAAAAAmEyEkSh8R9DERpIuOX6mJOkPW5sViqYXYgIAAAAAAGB0hJEofDa7VH+cdZ1mExtJOnlupep8bnUFo3rubZZqAwAAAAAATBRhJIrDEewbabMZev9xViOb32w+MPk1AQAAAAAAFBnCSBSHmSdY5wxmRkr9XbWf2tqiYISl2gAAAAAAABNBGInikGxi05R+ExtJOqGxUjP9HvWEY3rmrYNTUxsAAAAAAECRIIxEcUg1senJqImNzWbo4uNZqg0AAAAAADAZCCNRHI6wiY0kXZzoqr1uW6v6wizVBgAAAAAAOFKEkSgeR9DERpKWz/arscqrvkhMf3qzddLLAgAAAAAAKBaEkSgeqX0jX83oNcMwdPFx1uxIlmoDAAAAAAAcOcJIFI/kzMgMm9hI/V21//Rmq3pC0UkuDAAAAAAAoDgQRqJ41BwtOUusJjbt72b06rEzfZpXXaJQNK4/bmuZogIBAAAAAAAKG2EkiofNLtUfb11nuG+kYRi6JNHI5rebmya5MAAAAAAAgOJAGInikmpi80rGr16cWKr9zNsH1RWMTGJRAAAAAAAAxYEwEsXlCJvYSNLi+nItnFGqcDSup7ayVBsAAAAAACBThJEoLhNoYsNSbQAAAAAAgIkhjERxmUATG6m/q/az7xxUZy9LtQEAAAAAADJBGIniYrNL9cdZ1xk2sZGko+rKdUxduSIxU09ubZ7c2gAAAAAAAAocYSSKT3LfyP0bj+j1ZCMblmoDAAAAAABkhjASxWfuSuu88SfSrr9k/HpyqfZf3m3T4Z7wZFYGAAAAAABQ0AgjUXyWfFBa8gEpFpYe/ph08K2MXl8wo0xLG3yKxk098QZLtQEAAAAAANJFGIniY7NLl90tzT5FCnZKP/8bqaslo69gqTYAAAAAAEDmCCNRnJxe6WMPS1ULpI490oN/J4V70n79A8fPlCS9sL1Nbd2hqaoSAAAAAACgoBBGoniV1khXPCqVVEtNr0qPfkqKRdN6dU51iY6f7VfclH7/Oku1AQAAAAAA0kEYieJWvdCaIenwSG8/If3+XyXTTOvVi49LLtU+MJUVAgAAAAAAFAzCSKDxVGsPSRnSX++RXvhhWq8l9418aechtQaCU1ggAAAAAABAYSCMBCRp6Qel1d+xrp+6UXr9f8Z9ZXZliU6YUyHTlH63hUY2AAAAAAAA4yGMBJJW/qN02rXW9S//Qdr9wrivpJZqE0YCAAAAAACMizASGGj1t6XFl0ixsPTQx6SDb485PLlU++Vdh9XU2ZeNCgEAAAAAAKYtwkhgIJvd2j9y9ilSsEP6+Uek7tZRhzf4vTplXqUk6bebmR0JAAAAAAAwFsJIYChXidVhu3K+1LFHevDvpHDPqMNZqg0AAAAAAJAewkhgJKU10if+R/JWSQdekR79tBSPjTj0/cc1yDCkV/Z0aN/h3iwXCgAAAAAAMH0QRgKjqV4offwRyeGR3v699Pt/lUxz2LBan0enzquSxFJtAAAAAACAsRBGAmNpPFW67C5JhvTyf0kv/OeIwy5ZPlMSS7UBAAAAAADGQhgJjGfph6wu25L01A3S648NG3LRsnrZDGnzvk7tbh99f0kAAAAAAIBiRhgJpOP0f5RO+wfr+peflXa/MOhxTZlbKxdWS2J2JAAAAAAAwGgII4F0GIa0+jvS4kukWFh66GNS2zuDhlxyvLVU+zevEUYCAAAAAACMhDASSJfNLl12tzTrZCnYIf3sI1J3a+rxhcfWy24ztLUpoB0Hu3NXJwAAAAAAQJ4ijAQy4SqxOmxXzpc6dksPXi6FrT0iK0tdOnNRjSTpjqe3q7MvkstKAQAAAAAA8g5hJJCp0hrpikclb5V0YJP0P5+R4jFJ0t+cNFuS9D+b9mnlLet00+Ova1cbDW0AAAAAAAAkwkjgyNQskj72sGR3S2/9Tvr9VyTT1AeOb9C//+1yHV1Xpt5wTPev363z/v0Zfeb+v+qF7W0yTTPXlQMAAAAAAOSMYRZ5OhIIBOT3+9XZ2Smfz5frcjDdbH1c+u9PSjKlC74lnfEFSZJpmvrLu+265/kdevqtg6nhSxt8+tR75usDyxvkdthzVDQAAAAAAMDkySRfI4wkjMREvXC79Ifrreu/vU869sODHr/b2q37XtipRzfuUzASlyTVlLl15elzdcXpc1RT5s5ywQAAAAAAAJOHMDIDhJGYMNO0lmlv+LG1bPuqx6W5K4cN6+gN66ENe3X/C7vUHAhKklwOmy5dMVOfes98La7n7x8AAAAAAJh+CCMzQBiJSRGPSY9cKb31W8lbKb3/Nql6kVQ5T/JWDBoaicX1uy1Nuvf5nXptX2fq/nsW1ehT75mnc4+ulc1mZLd+AAAAAACAI0QYmQHCSEyacK90/yXS/o2D73sqrFByyGFWztOmzhLd88I+PfF6s+KJ/yUumFGqNWfO10dOnKUSlyOrPwIAAAAAAECmCCMzQBiJSdXTJj39Hal5i3R4l9TTOvZ4wy75ZytYPkfbglX6c2up3o1Ua49Zqw73LL3/1KX65Jnz1OD3ZqV8AAAAAACATBFGZoAwElMq3CMd3m0Fkx2J88AjGhzz9YDp1V6zVhHfXM2cv1i1c5dISy+VSqqmvHQAAAAAAIB0EEZmgDASOROPWzMnhwaUh3fJPLxLRlfTiK/1ls6R97NPyvDNzGKxAAAAAAAAI8skX2NDOiBXbDapvN465pw+6JEhSZE+qWOPdr37hl557VV17H9b59te1uyePdrzg/P17vsf0bknHkuzGwAAAAAAMG0wM5KZkZgmWruCemzdC/rQK59Rg9GuN+ONurHiFq05/2StPraeUBIAAAAAAOQEy7QzQBiJ6aZz35uy33+xyiJtej0+Tx8PX6+Z9fX6wnuP0kXLCCUBAAAAAEB2ZZKv2bJUE4BJ4p+9WGXX/E7xkhots+3SA+7vaV9ziz734CZd+P+e1W82H1A8XtT/jQEAAAAAAOQpwkhgOppxjGxXPS55K7XceEdP1t6uWk9Ub7d06/MPvqLVP3hWv37tgGKEkgAAAAAAII8QRgLTVf0y6cpfSm6/ZgVe1Qtz79Y/n9con8ehd1q79U8PvaIL/uPPevzV/YSSAAAAAAAgL7BnJHtGYrrb+7L0wKVSuFtatEqBS+/XfS816Z7nd6qzLyJJWjCjVF947yJ94PiZctj5bxAAAAAAAGDy0MAmA4SRKAi7X5B+9hEp0isd837p736qroh0/wu79F/P71RHrxVKzq8p1efPW6QPrSCUBAAAAAAAk4MwMgOEkSgYO56Rfv53UiwkLb1U+sg9kt2h7lDUCiWf26HDiVByXnWJPnfeIn34hFmEkgAAAAAAYEIIIzNAGImC8s5T0kMfk+IR6fjLpUv/P8lmlyR1h6J6YP1u3f3cDh3qCUuS5lSV6PPnLdKHT5wlJ6EkAAAAAAA4AoSRGSCMRMF587fSf18lxaPSiVdJl/w/ydYfNPaEonrgxd26+9kdak+Eko1VXn3u3EX6yEmzCSUBAAAAAEBGCCMzQBiJgvT6Y9L/fFoy49IpV0vvv1UyjEFDesNR/ezF3brr2R1q67ZCyZULqnXP35+sEpcjF1UDAAAAAIBpKJN8jSlQQCFadpl06Z2SDOnlu6U/fF0a8t8dSlwOXXP2Qj33r+/V1y9eojK3Q+t3tOvvf/KyekLR3NQNAAAAAAAKGmEkUKiWXy594P9Z1+tvl/70rRGHeV12feasBfrpp09VuduhDTsPac1PXlY3gSQAAAAAAJhkhJFAITvpk9L7b7Oun7tN+vOtow49cU6lHvjMaSr3OLRh1yH9/b0b1BWMZKlQAAAAAABQDAgjgUJ36tXSBd+2rp/+lvSX/zfq0BWNFfr5Z06Tz+PQX3cf1icJJAEAAAAAwCQijASKwRmfl977dev6qRull3486tDjZ1fowatPl9/r1KY9Hbrq3g0KEEgCAAAAAIBJQBgJFIuz/8U6JOn3/yr99SejDl02y6+ff+Y0VZQ49cqeDl15zwZ19hFIAgAAAACAiSGMBIrJeddLZ3zBuv7Nl6RXHxx16LJZfj34mdNVWeLUa3s7dOU9L6mzl0ASAAAAAAAcOcJIoJgYhnT+N6VTr5FkSo9/Ttry6KjDl8706cGrT1dVqUub93XqinteVEdvOHv1AgAAAACAgkIYCRQbw5Au/DfpxE9KZlx67Bpp2/+OOnxJg08PXX26qktden1/QB+/+yUd7iGQBAAAAAAAmSOMBIqRzSZd8gPp+I9KZkz6xRrp7SdHHX5MfbkeuuZ01ZS5tLUpoI//10s6RCAJAAAAAAAyRBgJFCubTfrQHdKxl0nxiPTIldI7fxx1+NF15Xr4mtNVU+bWtqaAPn73i2rvDmWxYAAAAAAAMN0RRgLFzO6QLrtLWnyJFAtJD10uvfLzUYcvqrUCydpyt95s7tLH735JbQSSAAAAAAAgTYSRQLGzO6W/+Ym07G+keFR6/B+lp2+RTHPE4Ytqy/TwNaerzufWWy1d+thdL+pgF4EkAAAAAAAYH2EkAMnhki67W3rPWuvzn78r/eofpejI+0IumFGmh69ZqXqfR++0dutjd7+o1q5gFgsGAAAAAADTEWEkAIvNJq26yWpsY9il1x6Ufv4RKdg54vD5NaV6+JrT1eD36N3Wbn3srhfVGiCQBAAAAAAAo8vLMPKOO+7QvHnz5PF4dNppp2nDhg2jjr377rt11llnqbKyUpWVlVq1atWY4wGM4+Q10scfkZyl0s5npXsvlDr3jTh0Xk2pHrlmpWZVeLX9YI8+eteLaiGQBAAAAAAAo8i7MPKRRx7R2rVrddNNN2nTpk1avny5Vq9erdbW1hHHP/PMM/rYxz6mp59+WuvXr1djY6MuuOAC7d+/P8uVAwXkqPOlT/1eKquXWrdKd79PanptxKFzqkv08DWna1aFVzvarECyuZNAEgAAAAAADGeY5ihdKnLktNNO0ymnnKLbb79dkhSPx9XY2KgvfOEL+upXvzru+7FYTJWVlbr99tt11VVXjTs+EAjI7/ers7NTPp9vwvUDBaVjr/Tzv5UObpNcZdLf3mcFlSPYe6hXH7v7Re073Ke51SV66OrTNbPCm916AQAAAABA1mWSr+XVzMhwOKyNGzdq1apVqXs2m02rVq3S+vXr0/qO3t5eRSIRVVVVjfg8FAopEAgMOgCMoqJR+tQT0vyzpXC39ODl0sb7RhzaWGXNkGys8mp3e68+eteL2t/Rl916AQAAAABAXsurMLKtrU2xWEx1dXWD7tfV1am5uTmt7/jKV76imTNnDgo0B7rlllvk9/tTR2Nj44TrBgqat0K64n+k5R+TzJj0v1+U1t0sjTCpenZliR65ZqXmVpdoz6FeffSu9dp3uDf7NQMAAAAAgLyUV2HkRH33u9/Vww8/rF/+8pfyeDwjjrnuuuvU2dmZOvbu3ZvlKoFpyOGSLv3/pHMSWyU89+/SY1dL0dCwoTMrvHr4mtM1r7pEew/16fIfv6i9hwgkAQAAAABAnoWRNTU1stvtamlpGXS/paVF9fX1Y75722236bvf/a7+8Ic/6Pjjjx91nNvtls/nG3QASINhSOddJ33oDsnmkLb8QnrgMqnv8LChDX6vHr5mpRbUlGp/R58+eteL2n6wOwdFAwAAAACAfJJXYaTL5dJJJ52kdevWpe7F43GtW7dOK1euHPW9733ve/rmN7+pJ554QieffHI2SgWK1wmfkK54VHKVS7ufl+65QDq8a9iwer9HD19zuhbMsALJ1f/xrL7+qy1qCdBpGwAAAACAYpVXYaQkrV27Vnfffbfuv/9+bdu2Tddee616enq0Zs0aSdJVV12l6667LjX+3/7t33TDDTfo3nvv1bx589Tc3Kzm5mZ1dzMLC5gyC8+TPv2k5Jsltb0t/dcqaf+mYcNqfVYgefbRMxSNm/rZi3t09vee1i2/26bDPeEcFA4AAAAAAHLJMM0RulDk2O23365bb71Vzc3NWrFihX74wx/qtNNOkySde+65mjdvnu677z5J0rx587R79+5h33HTTTfpG9/4xri/ViatxwEMETgg/fzvpJYtkrNE+pt7pWMuGnHo+u3tuu0Pb2njbmtZd7nboc+ctUCfPmu+ytyObFYNAAAAAAAmUSb5Wl6GkdlEGAlMUDAg/eLvpe3rJMMmXfQ96dSrRxxqmqaeeeugvvfkW9rWFJAkVZW69I/nLtQnTp8rj9OexcIBAAAAAMBkIIzMAGEkMAliEek3X5JeecD6fMYXpFU3S7aRd4KIx0397vUmff8Pb2tHW48kqd7n0T+97yj97cmz5bTn3Q4SAAAAAABgFISRGSCMBCaJaUrP3Sb96VvW56WXSh/+seT0jPpKNBbXY5v26wd/fFsHOq3GNnOrS7T2/KP1geNnymYzslA4AAAAAACYCMLIDBBGApPstUekxz8nxSNS42nSRx+SSqvHfCUYiemhDXt0+5/eVXuisc3i+nJ9+YJj9L4ltTIMQkkAAAAAAPIVYWQGCCOBKbDzWenhT0ihTqlqofSJR6WqBeO+1hOK6id/2akfP7tDXcGoJOmEORX6l9XH6IyFNVNdNQAAAAAAOAKEkRkgjASmSOub0s//VurcI5VUS6f/o1QxR/LPto7yBsnuHPHVjt6wfvzsDv3kLzsVjMQlSe9ZVKMvrz5GKxorsvhDAAAAAACA8RBGZoAwEphCXS3Sg38rNb02/Jlhk8rq+8PJoYdvtlpjJbrj6e16cMMeRWLWP6ouWFqnf77gGB1TX57lHwYAAAAAAIyEMDIDhJHAFAt1Sy/fbc2UDOyXOvdKnfutPSXH4/BK/tkKljTota4yrW/zar9ZrQNmjY5dvFSfWL1Sc+rSX74disYU6IsqEIyoKxhVoC8yxnVUPaGoTpxbqY+fOkeNVSUT+E0AAAAAAKBwEUZmgDASyIF4XOo5KHXus8LJwP7+687EdU9rWl/V7ahQb9lctbvnqNnVqH222dqpmdoZr9XhoBQIRhToi6orGFEoGj+icg1DOu+YWn3i9Dk65+ha2enyDQAAAABACmFkBggjgTwVCUpdBxIh5b5ESLlX6tynYPseqXOvPGZw1Nejpk17zFrtMBu0w5ypHWaDtsetc9hTJZ/HpXKPQz6vUz6PUz6vwzon7pV7HDJk6NevHdDz77alvnd2pVdXnDZXf3fybFWXubPxOwEAAAAAQF4jjMwAYSQwTZmmNr61S3944WVVh/ZqrrlfM6P7VBveq6q+XXLGekd/1+OXao6Wqo+Sahb1X1fNlxzDA8YdB7v185f26Bd/3atAosu3y27T+4+r15Ur5+rEOZUyDGZLAgAAAACKE2FkBggjgQJkmlJXs9T+jtT2ttT2rnVuf0fq2CtplH/sGTapYq4VTtYcZR2Lzpf8syRJfeGY/nfzAf3sxd3avK8z9dri+nJduXKuLl0xS6VuRxZ+QAAAAAAA8gdhZAYII4EiE+mT2rcngsoBIWXbu1K4a/h4m0Na9hFp5eelhuNTt1/b26Gfvbhbv37tQGovyjK3Q5edOEufOH2ujq6j2zcAAAAAoDgQRmaAMBKApCGzKRPH/o3Svg39YxacK53xBWnh+6yuNpI6esN6dOM+/fylPdrZ1pMaeur8Kl15+lytPrZeLoctyz8MAAAAAADZQxiZAcJIAGPav0laf7v0xq8kM2bdq11qhZLL/kZyuCRJ8bipF7a364EXd+mP21oVi1v/aK0pc+ujpzTqY6fN0awKb45+CAAAAAAApg5hZAYIIwGk5fBu6aU7pY33S5HEDMjyBunUa6ST10jeytTQps4+PbRhrx7esEetXSFJks2Q3ru4TleunKuzFtXIZqPhDQAAAACgMBBGZoAwEkBG+g5LG++TXvqx1NVk3XOWSideJZ1+rVQ5NzU0Eovrqa0t+tmLu/XC9vbU/bnVJbritDn68AmzNaN8ePduAAAAAACmE8LIDBBGAjgi0bD0+v9IL/yn1PqGdc+wSUsvlc74vDTrpEHD323t1s9f2q1HN+5TVzBqDTekU+ZW6cJl9bpwWb1msowbAAAAADANEUZmgDASwISYprT9T1YouePp/vtzz7T2lTxqtWTrb2DTG47q168e0EMv79VrezsGfdXy2X5duKxBFy2r17ya0iz9AAAAAAAATAxhZAYIIwFMmuYt0vo7pC2/kOLW7EdVH2XNlDz+o5LTM2j4/o4+Pfl6s554vVkv7z6kgf80XlxfrouWNejCZfU6uq5MhsEekwAAAACA/EQYmQHCSACTrnO/tOHH0l9/IoUC1r3SGYlmN5+WSquHvdLaFdQf3mjRE683a/2O9lQ3bklaUFOqC5fV66JlDVo2y0cwCQAAAADIK4SRGSCMBDBlggHplQekF/8/qXOvdc/hlVZ8XFr5Oal64YivHe4J64/brGDyuXfaFI7FU89mV3p14bHWHpMnzqmkKzcAAAAAIOcIIzNAGAlgysWi0tZfSS/8UGp6LXHTkGafbO0tOfdMac7pkmf4P4O6ghH96c1WPfF6s55566D6IrHUs9pyt1YfW6+LltXr1PlVcthtw94HAAAAAGCqEUZmgDASQNaYprTreavZzTtPDn5m2KT646V575HmniHNWSmVVA0a0heO6c9vH9QTrzdp3bZWdYWiqWdVpS6dv6ROFy6r1xmLquV22LPxEwEAAAAAQBiZCcJIADnRsVfa9Zy0+y/Srr9Ih3cOGWBIdcdawWRy9mTZjNTTUDSmF95t1+9fb9JTW1t0uDeSelbudmheTal8XofK3U75vA75PE75vE75PA6VD7j2ea3rco9DZS4Hy74BAAAAABkjjMwAYSSAvBA4YIWSuxNH29vDx9QcbYWSydmTvpmSpGgsrg07D+n3rzfryTea1doVOqISDMMKMq2g0gook9fJQLPc41CJyyGvyyaPwy6Pyy6Pwy6vyy6P0yav0y6v0y534uy0GzTcAQAAAIACRxiZAcJIAHmpu1Xa/UL/zMnWN4aPqZwvzTtTmpsIJyvnKh43tbUpoINdIQWCEQX6IgoEo/3nAfe6Bjwb2CRnMtkMyeu0y5M6bFZwmQgw3ckg02FTicuuo+vLtXJBtebXlBJiAgAAAMA0QRiZAcJIANNC7yFpz/r+2ZPNmyVzSIDob0ws6T5D8s+W3OWSqzRxlFlnh8eaAjlEMBJLBJVRdQUHBpjWvUAwYt3vi6o3HFMoGlNfOKZg8hyJKxiJKRiJqS8SU3yC/5elzufWygXVOmNhjVYurFZjVcnEvhAAAAAAMGUIIzNAGAlgWgp2SnteknY/b82gPPCKFI+O/55h7w8mXaWSu2zwZ1ep5Cof/HlQqFkuVS8c1lxnINM0FYmZ6ovEFEqEk8FIXH2R/gAzmAoy46kAsysY1St7DuuVPR3DZmrOqvDqjIXVWpk4Gvzeif4OAgAAAAAmCWFkBggjARSEULe0b4MVTO59yZpJGe6Wwj3WEemd3F+vcr4060Rp1knWUX+85Jqc2YvBSEwbdx/W+u3tWr+jXa/t7VB0yFTLedUlWpmYNblyQbVmlLsn5dcGAAAAAGSOMDIDhJEAikI81h9MhnsGBJXdg0PL5HWoe8i4xHWwU+rcO/z7DbtUu1SadYIVTs48UapdItmdEy69JxTVy7sOaf2Odr24vV1b9ncOWwa+qLbMmjm5oFqnL6hWZalrwr8uAAAAACA9hJEZIIwEgAz1HbaWhe/fKO1PnLubh49zeKWG4/vDyVknSlULRtyzMhOBYEQbdljh5Prt7draFBg2ZkmDTysXWEu6T51fJb934qEoAAAAAGBkhJEZIIwEgEkQOJAIJzdK+zdZYWVoeEgoT4UVSs5MLvE+USqvn9AvfbgnrJd2WsHkC9vb9U5r96DnNkNaNsuvE+dUanmjX8fPrtD86lLZbHTrBgAAAIDJQBiZAcJIAJgC8bh0aHt/OLl/o9UBPBYePtY3S5qZWN7dsNw6SmuO+Jc+2BXSizvaU8u6d7T1DBtT7nHouFlWMLl8tl/HN1Zopt8jY4KzNgEAAACgGBFGZoAwEgCyJBqWWt8YvLz74JuSRvg/Q+UNVlOc+uOspd71x0kV8ySbLeNftrkzqBd3tOvVvR3avK9DbxwIKBSNDxtXU+bqDygTMyhrymiMAwAAAADjIYzMAGEkAORQqEtqeq1/BmXzZunQjpHHun1S3bLBAeWMxZIjs8AwEovrnZZubd7Xodf2dWrzvg691dw1rGO3JM2q8Or42f0zKJfN9svnmZr9J2NxU93BqALBiLqCUXUFI+oJR1Vd6taCGaUqn6JfFwAAAAAmijAyA4SRAJBnQl1SyxtS02YrnGzeIrVuHXmJt81pBZIDA8q6ZZK3IqNfMhiJaWtTQJv3dmjzvk5t3t+p7Qe7NdL/hVwwo1THD5hBeexMv1x2m7rD0VSImDwH+hLn4OBnAwPHrsSz7lB0zBrrfG4tqi3Twhn9x6LaMtX53CwvBwAAAJBThJEZIIwEgGkgFpHa3raCyVRIuVkKdo48vmJuIqBcbp3rj5NKaiS7K+2l3l3BiF7fH9DmfVZA+dq+Du073DdsnM2wFppP1v81dTtsKvc45fM4VOK2q7kzpLbu0KjjS112LUyFlKWpwHJudalcjsyXtQMAAABApggjM0AYCQDTlGlKnXsHBJRbrKNzz9jvGXZrabfdaYWT9oHXLsmRONudiWeJa4dbwbhd7UFTrb1SS09M+7ti6ggZ6lKJOswyddvKFXH5FfVUyfRUyOb1q8zjVrnHoXKPU+Ueh3zexHnAvWT4WO5xjhggdvZGtL2tW9tbu7X9YI/ebe3WjoPd2n2oV7ERlpdLkt1maE5ViRVS1pb2z6acUSZ/CUu+AQAAAEwewsgMEEYCQIHpPSS1vD44pDz4pmTGclCMYS0Z91ZJ3kqpJHEe9rly8Ge3T0pj6XU4GteeQz16t7VH2w8mw0orsBxr2XdNmVsLZ5Sqwe9RValb1WUuVZVaR3WpS9VlblWVuuTzOFgCDgAAAGBchJEZIIwEgCIQi0iRPuscC0uxUP91NDTy/Vgk8SxxHQuNfD8alEIBqe+wFYT2dUh9h6Rw95HXa9j7w8mKOVLN0VLNUVL1UdZ1We2YYaVpmmrtCundZDiZmFG5/WC3mjqDaZfhtBuqLEmElGUuK7hMBJZVZYlzqTsVYvq9TtlshJcAAABAsSGMzABhJABgSkTDVkDZd9gKJ1Nh5UifD/d/jg7fl3IYt98KJ1PH0VZQWbXAWmY+hu5QVDsOdmvHwR61dgXV3hPWoe6wDvWEreuesNq7Q+oJZz6T1G6zwsvqUpdqfW7V+Tyq87lV7/OozudRvd+jep9H1WVu2QktAQAAgIJBGJkBwkgAQF6J9PWHkz1t0uGdUts7ieNtqWO3ZMZHftewS5XzBoeUyaCytDqjMoKRmA71DAwpQ2rvDqfCy+S95POu4NjdwAey2wzVlrtV6/OoPhlWJoLKep/Huu/3qMztyKjmiTBNU7G4KbvNYGk6AAAAkCHCyAwQRgIAppVIUDq0Q2pPhJPJkLLtXSncNfp73qpEOLmoP6T0z5bK6qWS6rS7jI8mFI3pcE9E7YnQsrUrpJZAUM2dQbUErKM5ENTBrpBG6bkzTJnbYc2s9HsSsyytsNJmMxSOxvuPWEyhSFzhWP+90IBra0xcoWhshHv916Ypuew2VZY6VVniso5SpypKXKoqcamixKmq0uR9lypLrGfsrQkAAIBiRxiZAcJIAEBBME2pqzkRTL4ttb/bH1Z27h37XZtDKq2VyuukssRRXj/gXN//zD6xTtzRWFxt3WE1BwaElJ3B1OfmzqBaAyF1jdGAJ984bIYqSgYHmJUlLivEHBBmJoPNyhJrf02WqgMAAKBQEEZmgDASAFDwwj2JcHLAcu/2d6RAk9Tbltl3lVQPCCfrRw8wDZvV3Ccats7JZkHRkNUMaNiz4KDn4VBQPb096uvtVbCvV6FQn6KhPkXCIfXaytTlmqFuV616PLXq89Yr6K2V6aqQy2mXy2GTy26Ty5G4dtjkTp7tttS9/nH91z3hmA73hHW4N6zDvZH+657E597kZ+u69wj21pSs/kM+j1OVJc7ELEvXgECzP7RMXleVWs89TvsR/XoAAADAVCKMzABhJACgqMUiUner1N0sdbWMfO5ulbpbpHiez1Z0eCXfzP6jvEHyzUp8TlyXzpBskxfoBSMxdSRDykRgeag3rI6esHXujehQKtwMq6MnMqFZn16nvT+sTM20dMpuGIrETcVipiLxuGJxU9GYqWg8rmjMtJ7F44rEzMSzuKKJMSONjw4YY7cZqbDW7Rwc9LqHhLn9z/uP4WPsqTEep10lLru8Lru8w64dzB4FAACYJggjM0AYCQBAGuJxqwt4V/PYwWVXy5CO4IbkcFuH3S05PFbHb4dHsrvG+ezufzf5vt1pNfcJHLCOrsS5tz29n8PmsGZ0DgwoBwaXFXOs6wnuoTmWSCyujt6IOnoHzLZMBJkdvf2zMjuGnGPpbrZZQFwO2wghpV1el0Nep00lLkcq0Cxx2Qddl7gcKvM4VO52qNTtUFny8DjktE/dn+9YorG4ekIxBYIRdQWj6kqeQ9a5OxSVz+PUnKoSNVaVaFaFVy5HbmoFAADIRCb5WvbaVAIAgOnLZpNKa6xDy0YfZ5pSuNu6ToaH2WjuEglKXU3DQ8qBR3ezNbszsM86RmN3SRVzrc7kA4+q+dZ9d9mESnXabZpR7taMcnfa75imqUAwOijA7EgsF+/oDStuSg67IafdJrvNkCN52G2ps9NuJJ4l7yWu7Ubi2ZD7Nmt83DStpkDJpj9DmgWFY/2NgZJjBn0e0CRo8PfEFIzG1ReOqi8SU184pt5wTH2RmJL/qTz5bmdfZEK/50O5HbZUMFk6NLT09AeXpW7rfplncKAZjsZTAeKgUDEVLo58P9Nl/YYhNfg8ml1VosbKkkRI6VVjlXU9o8wtG7NHAQDANMPMSGZGAgBQHGJRqafV2iszsH+E0HK/1Llv/OXopTOGB5XJo3zmlM6qLAamaSoUjaeCyb6wFeL1hWPqjcQUTISWg6+jg+73hWPqCVkzDZPnrmBUoWg81z+eJCsMLfc45fM4VO5xqNzjTIWfHb1h7T3cq72H+tQXGTu8dDlsml3ptULKSiuonFNVotmV1sxKv3diDacAAADSxTLtDBBGAgCAlFjUCiUP7xr56Ds09vujzaqsnCu5yyXDbu1ZaditJj+2gWf7kDMz3iZbJBZPhZPdoai6g/3XPYnAcmiA2T8+pu5QRN3BqFyJMLE8MYvSl7hOBouDzw6Vuwc/T2fptWmaautOBpPJo097D/dqz6FeNXUGx1267/M4NKc6GVRa4aTbYe3b6U40dnI77HI7B1w7bPI4+6+Tz112G7MwAQDAqAgjM0AYCQAA0hbsHD2o7Ngz+U1+hgWUdmvmpTEkxHS4rAY+Ts+Ac+IYdM9r7b/p9CaeDTy7R/4Ou8vaa9PulGxOgtI8EY3F1dQZ1N5DVjiZnE2551Cv9h3uVVt3eNJ/TZc9EVoOCCtdiXDTnvgrYST+biT/hiT/qhhKXYz53DCG34ubpnXEreuYaSpuSvG41ZAp9TxxLzUmOT6eeJYYF4ubMk0pFjflsBtyO+yJALY/fPUMCGk9zv5gdlBQ6xzrmX1QA6aB/4sZ+D8fY8CT0f5nNez3UJLXZVeZ2wq4Pc7Ja8oFAMCRIozMAGEkAACYFOPNqoz0SWZMises83Rmc/aHk3bHgM+OAcHlgABz2OfEOyVViWZCsxJNhBKd0J3eXP+E015vOGrNpBwQVPaEogpFYwol9u4MRWMKRQZcR+OJz9Z1MBJTEfZNmnZcdpu17+mAmbjJz77EFgADZ+uWeRyJLQL6n5W6HMx8nabicVNNgaB2HuzRzrZu7Wjr0Y6DPdrd3qNyj1PLZvm0bJZfy2b6dUx9OeE1gClDGJkBwkgAAJATptkfTCbPZjxxHR/yLJ64jo8wPipFw1I0aB2RvsHnaNBq8BPtG3Ie6dkI36Ec/L+K3srhnc6TQWXycPuYoZkF0Vh83PDSCi3N1N+U/n+7MAd9HvrcHOH50H81MU3rj9lmWA2VbIYhm6H+a1vis2HISI1R4r6RuN8/3m6zZm/aDetzNB5XcEAAmwxhrZ8tNvjzgHvJ34vgkN+T5HcFI3HFzcE/31ADf1Zz0P0B1xr+HaakYDimrtDkzcQ2DFnBpNuhihKXqstcqi51qarUPeA6ed+tqjKXyt2O1ExYTL2O3rB2tPVo58Ee7Wjr1s5E6LirvUfBSHr74Tpsho6qK9dxyYByll9L6n3yuggoAUwcYWQGCCMBAABGkQxM4xEpFrGCz3g0cR2xZoOmng39PNbYqBQLSz0HBzcUChywgtF0uMoGz6ZMHuUzJV+DtdQ8GeKa8f4jPuB6zGdjPLc7rdmbTm9iSfvAo6R/iTzNjDCF4nFT3WFr79Ph3dyt6+4B9wPBqLpH6AIfPcLpry67TVWDQsqRwku3dZ2n4WU0FlcgGFVHb1iHeyPq7AurozdiHX0RdfaG1dEXkc0wUk2mytz2AdfWTNPU9YD79iOYaRqMxLS7vVc7DlozHHcmjh0Hu3W4NzLqe067oTlVJZpfU6YFM0o1v6ZU86pL1dEb1pb9ndqyv1Ov7+8c8TtshnRUbbmOneXTcYmAcmmDT6VuR8b1AyhuhJEZIIwEAADIE6YpBTsSweRoXc8PWGOmg9R+nEMCS4fHCi2dnv7wMvnZ7rL25bQNWPZusw9fAj/wXnIvz9TnxHP7kO+wuyS7O7E/qNv6nGfhELIr2b0+ELSaMwWCUR3uDetQd1iHesJq6wkNuA7rUOJzTzjzrSZcdltqj0uvyy6v0zo8Lru8Tpv12WW3nicP10hjBzxzWuM9TptC0bg6BgSKh3sj6ugNq7OvP1zs6E2EjYkxXcFJ3ud3AK/TrtLkMni3XaWu5LV1lLsdKnE5dKgnlFpafaCzb9SZtJLU4Pdofk1pInAs04IaK3icXemVwz72f/wwTVMHOoN6PRFMvr6/U1v2B9TWHRo21jCkBTWlqXBy2Sy/ls70yedxTvS35YjF49ZesLHEXrHRuKl48mwO/hwbepimYvG4YnHr98FIzJg2lPxH4MDPRuq+kbivIZ8HXQ/4DrvNkMNmyGE35LDZ5LRb95x2mxw26zrfAnlgMhFGZoAwEgAAYJoJ90pdQ2ZUJo9kcBmLDO5YPtox6LnR3xxo1Oc267sjfYnl7IlzJChFeq3Zn9OJ3dXfqCgZUDo8VlOkQcGle4R7iXccniFB6dDgdOBn55CgNI3Pyd/35FnjfOZf9qdcMBJTe48VWg4OLCcvvMymcrdD/hKnKkqcqvC6rHPi2u91ypSp7mBU3aGYekJRdSeOka4jsYn967XP49CCGf1B4/wZpVpQU6Z5NSUqcU3+bMWWQFBb9nXq9QPJkDKg5kBwxLHza0p17ExriXdViUvhWFzhaFyRmHWEY+agz5FYXOGoqXAsrkg0OWbgO2ZijHV/4L2hYWKhpBYDw0rrPOQ6EVwODTQdNltqywpb4mwMuLYltqAY/HyM8Ub/+Kn8R6bdZshlt5qduRy2QdfuIZ+T126Hvf/5kDEOAt28RhiZAcJIAAAATJpYdMj+nH0jBJd9A/bl7O0PMqNBa/l6PJpYHj9wqfuAz6nnkSGfxxqfWBofm/wu2/kpzQDTXSZ5q6SSSqmkOnFdNeS6qv8623uVxuNSpEcKDzgivZKr1NqmwFs1LbYDSIaXPaGo+sIx9UWsIzjgui8cUzASU2/iXjBxz3oeH3Fs8nPy32h9HmvPSytMdKnCmwwVnfIP/Jwc43XK53XKOc6swkyEojF1B6PqCcXGDC27g1H1hKPyeZ1aOGB5dVWpK+dhy8GukBVOpkLKgPZ3pLmFRg7YE7MO7YYV6Nls/Wd7Yi/Z5GFo4P61ZmKvWmt/VtMcsIftSM+UfD7wc/+45MzMaDw+4VAaIzMMpcJJn8epmjKXasrc1lFuXVeXuVVT5tKMxH2/10mDriwhjMwAYSQAAACKRjyeCCVDVuOjWEiKJo7kvWQoGg0Nvo4lGyWN8F5yT9BBYehon5MBaRqfzfQac2SNzdEfTA4LK6sH35ekcHciROztv470Ju51J+73DA8ck8d4e6jaHFJZvVReZ4WTZYlz8nN5vfW8pHpahJZHIrnU3Gm3HdE+jUjPoZ6wNXPyQKfeOBBQXzgmp92Qy2G3znabnImQyGm3yWU3UtdOu01Oh01uu01Oh5G6l5z1Zn3uH5+cLWizadDZbhiy2wcHjMkZfvnGNE3FTSkSi1tLx2OmIvG4ojErrEyd46aiA2aDRmLWbNDk2Fgi2IybiSMuq2GYqcS95Of+67iZ/PUHPrfC0qHjY1MYB5mmFIv3z3wNRRPX0f4ZskOvQwM+h6IxhaNxHeG2tikOm5FqvlVTPjioTAWYpdZ1dal73H+OxOMD/yxNRZN/donr5J9pdMiYaCKslqRzjp4xsR8qTxFGZoAwEgAAAMhTyaZBMhONhMyRPydDy7HGDHvHlEIBqe+Q1Js4+g5Jve1Drg9b15He3P0+yLCaNrlKrH1HQ91Sb1v6r9sciaCyfuTQMvm5gENLANNTNDZyYNnZF1FbV0jtPWG1dYXU1h1SW3dYB7ut6/Zua8/YTBiGVFXiktthGxYuJkPiiSZopS673rj5wol9SZ7KJF+jRRYAAACA/GSzScqTcCzSN0pgeWjIdbt1bdgkZ6m1pNpVagWJrjLr2jngOnnfWZL4nAgdk9fORAA5dPZXNCz1tEpdLdYeql1NUnfyukXqapa6m62u9fFoYo/V/WP/jDaH1XAp9WslOnQo0bVj1PN4YxLPk3uMDmzgNGJXeu+Q5k7eUcYnvsfhlewj/KvtaKnBqGlCuinDgD8LY5RrAJPCYbfJYbepxJX5u+FoXO09IbV1hRNhpRVY9l9boWVbtxVqmqbU3pP5dibJmbpO24CmRQP2BrWeWbO3S932zH+QAkQYCQAAAADjcXol/yzryAcOl+SfbR1jiUWk7tb+cLKrybpOHt2Jc0+bFVqGu7JTf9EZJbRMBq6pIHpIcD0svB56jBBkO0vGD0ZN09o+wYxLZqx/hnF8wPWgzwPHxK3vH9hoyu4Y0ITKkWj+RTiL3HI5bGrwe9Xg9447NhY3reZb3SFFY2YiVBzcVCgVKtqtsyOxbQB7UmaOMBIAAAAACpXdmV6Imgwto4lOyqnZg8muHkdyHvJ+LJxo4DSgcdNIzZ0G3UuO7etv9JR6b+Suz/lpwKzLgTMzI73Wkcmy+3EZVjhp2PtDxEEhY5a6myeDSbvTCidtzsHXqWeOwdd2lxXSOtwDDk//edBzT5pjPFaAb3f1h6XAAHaboRnlbs0od+e6lKJAGAkAAAAAxS4ZWk4n8XginOwbvdnRqLPzRrmfzozCwTfSfz7Ss2iwv5FRuHtIg6MhzY/GanaUfJb83nD32D9Hugx7ohO9LTHbMXFtxvsbVI0WbsYj1jFeI6acMIaHoUOD03Q+2+z93+FwJ7YQ8AzYZsA7eGuCgVsSJJ8PHONw58eM0likP/AfdA4l/kNBcOxzNGSNt9mHbE8xwlYUQ2f/OkvYu7YIEEYCAAAAAKYfmy0RapTkupL8EI9bQVAyzDRNK9gaMVBMLKMedm/guDRDMdPsDybj0f5j4OfUdcSapTnwcyw64DpxRIPWTNpoMBGAJc+hEe6NNjZo7a0aDVrfPbjo/rA0rxiJYHJIoDlwJue4gfjQ7xwrME/MWE6Gh6lwP0uzZ0eTDC5H2l83FVjarb9L8Wh/OB6PjnAv1n82Y6OMSd5LjDFsVshsdyfOLisoHvWea8j9xCzcgUdyrMMjHXNRbn9/8wBhJAAAAAAA053N1r+XpGqz9+sm94+0O7P3a2YqHkuElpEB4VQiEB0Yhg76PEp4mnx/aNgaCw2YIdg35DoZ9PUOnkWY3JIgHk0UaiZmFvZJfYdz+luWklzmPnA2Z+o8YDZo6jzgWTw+ZDZv94CZwCPM9E0Gp8ntCwqRwyt9vTnXVeQcYSQAAAAAAChcNnsipM1TQ5dFp/ZNTQSYQ2dDDpu0OuTGsFmtYzy3OYeEiQPO2Vw2bprWzz3ilgVDtjIIdUsyrdm8tuSRWGo/4Xs2q5ZYODFrNNx/PfBI3Q8lwuh0xobzO7TPIsJIAAAAAACAXEnNLPXlupLcMYwB2y7MyHU1mGLsCgoAAAAAAAAgKwgjAQAAAAAAAGQFYSQAAAAAAACArCCMBAAAAAAAAJAVhJEAAAAAAAAAsoIwEgAAAAAAAEBWEEYCAAAAAAAAyArCSAAAAAAAAABZQRgJAAAAAAAAICsIIwEAAAAAAABkBWEkAAAAAAAAgKwgjAQAAAAAAACQFYSRAAAAAAAAALKCMBIAAAAAAABAVhBGAgAAAAAAAMgKwkgAAADg/2/v7oOiOs83jl+LkeVNEIQmQCASEEOkRpsERypglTTie4xiZ0rVjB2Ik2CtNnXsqKSktWNRQxInjWY68SVmWiE1TZwmSKImMSJq1RaNFhIDVV6q2MCCCEQ4vz/6Y8fNEkxTOQvL9zOzM+7zPLvnPuo1wM1zzgIAAMAUNCMBAAAAAAAAmIJmJAAAAAAAAABT0IwEAAAAAAAAYAqakQAAAAAAAABMQTMSAAAAAAAAgCloRgIAAAAAAAAwBc1IAAAAAAAAAKagGQkAAAAAAADAFDQjAQAAAAAAAJjiNlcX4GqGYUiSbDabiysBAAAAAAAA+p+uvlpXn60nA74Z2dTUJEmKiIhwcSUAAAAAAABA/9XU1KSAgIAe11iMr9OydGOdnZ2qqanRkCFDZLFYXF1Or7DZbIqIiNCFCxfk7+/v6nIAiFwCfRG5BPoecgn0PeQS6Hv6Qi4Nw1BTU5PCwsLk4dHzXSEH/M5IDw8P3Xnnna4uwxT+/v58sQD6GHIJ9D3kEuh7yCXQ95BLoO9xdS5vtiOyCx9gAwAAAAAAAMAUNCMBAAAAAAAAmIJm5ABgtVqVk5Mjq9Xq6lIA/D9yCfQ95BLoe8gl0PeQS6Dv6W+5HPAfYAMAAAAAAADAHOyMBAAAAAAAAGAKmpEAAAAAAAAATEEzEgAAAAAAAIApaEYCAAAAAAAAMAXNSDfW1tamlStXKiwsTN7e3ho3bpyKi4tdXRYwIDQ3NysnJ0dTpkxRUFCQLBaLtm3b1u3as2fPasqUKfLz81NQUJB+9KMf6fLly+YWDLi5Y8eO6cknn9SoUaPk6+uryMhIpaenq7y83GktmQTMc+bMGc2bN0933323fHx8FBwcrOTkZL311ltOa8km4Bq//vWvZbFYFB8f7zR3+PBhTZgwQT4+Prrjjju0dOlSNTc3u6BKwL0dPHhQFoul28eRI0cc1vaHXN7m6gLQexYtWqTCwkItW7ZMI0aM0LZt2zR16lQdOHBAEyZMcHV5gFurr69Xbm6uIiMjdd999+ngwYPdrrt48aKSk5MVEBCgdevWqbm5WRs2bFBZWZmOHj0qT09PcwsH3NT69ev10Ucfad68eRo9erTq6uq0efNmfec739GRI0fsP2CRScBcVVVVampq0sKFCxUWFqaWlha9/vrrmjlzprZs2aLMzExJZBNwlYsXL2rdunXy9fV1mjt16pQmT56suLg4bdq0SRcvXtSGDRtUUVGht99+2wXVAu5v6dKlevDBBx3GYmJi7H/uN7k04JZKS0sNSUZeXp597Nq1a0Z0dLQxfvx4F1YGDAytra1GbW2tYRiGcezYMUOS8corrzitW7JkieHt7W1UVVXZx4qLiw1JxpYtW8wqF3B7H330kdHW1uYwVl5eblitVuOHP/yhfYxMAq53/fp147777jNGjhxpHyObgGvMnz/fmDRpkpGSkmKMGjXKYS4tLc0IDQ01Ghsb7WMvv/yyIckoKioyu1TArR04cMCQZBQUFPS4rr/kksu03VRhYaEGDRpk/22yJHl5eWnx4sUqKSnRhQsXXFgd4P6sVqvuuOOOm657/fXXNX36dEVGRtrHUlNTFRsbq927d/dmicCAkpiY6LRzasSIERo1apTOnj1rHyOTgOsNGjRIERERamhosI+RTcB8H3zwgQoLC5Wfn+80Z7PZVFxcrIyMDPn7+9vHFyxYID8/P3IJ9KKmpiZdv37dabw/5ZJmpJs6efKkYmNjHf4DSlJCQoKk/2zdBeBa1dXVunTpkh544AGnuYSEBJ08edIFVQEDh2EY+te//qXg4GBJZBJwpatXr6q+vl6ffvqpnn32Wb399tuaPHmyJLIJuEJHR4eys7P14x//WN/+9red5svKynT9+nWnXHp6emrMmDHkEugljz32mPz9/eXl5aXvfe97On78uH2uP+WSe0a6qdraWoWGhjqNd43V1NSYXRKAL6mtrZWkr8zqv//9b7W1tclqtZpdGjAg7Nq1S9XV1crNzZVEJgFXWrFihbZs2SJJ8vDw0Jw5c7R582ZJZBNwhZdeeklVVVV69913u52/WS4//PDDXq0PGGg8PT316KOPaurUqQoODtbHH3+sDRs2KCkpSYcPH9bYsWP7VS5pRrqpa9eudfsNmZeXl30egGt15fBmWeWHK+DWO3funJ544gmNHz9eCxculEQmAVdatmyZ5s6dq5qaGu3evVsdHR1qb2+XRDYBs125ckVr167VmjVrFBIS0u2am+WSnzeBWysxMVGJiYn25zNnztTcuXM1evRorVq1Su+8806/yiWXabspb29vtbW1OY23trba5wG4VlcOySpgrrq6Ok2bNk0BAQH2eyxLZBJwpXvuuUepqalasGCB9u7dq+bmZs2YMUOGYZBNwGSrV69WUFCQsrOzv3LNzXJJJoHeFxMTo1mzZunAgQPq6OjoV7lkZ6SbCg0NVXV1tdN417bdsLAws0sC8CVd2+e7cnmj2tpaBQUFscsDuMUaGxuVlpamhoYGffjhhw5fD8kk0HfMnTtXWVlZKi8vJ5uAiSoqKrR161bl5+c73NqrtbVVX3zxhSorK+Xv73/TXPLzJmCOiIgItbe36+rVq/0ql+yMdFNjxoxReXm5bDabw3hpaal9HoBrhYeHKyQkxOGmw12OHj1KToFbrLW1VTNmzFB5ebn27t2re++912GeTAJ9R9elZI2NjWQTMFF1dbU6Ozu1dOlSRUVF2R+lpaUqLy9XVFSUcnNzFR8fr9tuu80pl+3t7Tp16hS5BExy/vx5eXl5yc/Pr1/lkmakm5o7d646Ojq0detW+1hbW5teeeUVjRs3ThERES6sDkCXRx99VHv37tWFCxfsY++9957Ky8s1b948F1YGuJeOjg7Nnz9fJSUlKigo0Pjx47tdRyYBc126dMlp7IsvvtCOHTvk7e1t/6UB2QTMER8frz179jg9Ro0apcjISO3Zs0eLFy9WQECAUlNT9eqrr6qpqcn++p07d6q5uZlcArfY5cuXncb+9re/6c0339T3v/99eXh49KtcWgzDMFxdBHpHenq69uzZo5/+9KeKiYnR9u3bdfToUb333ntKTk52dXmA29u8ebMaGhpUU1Oj3/3ud5ozZ47Gjh0rScrOzlZAQIAuXLigsWPHaujQofrJT36i5uZm5eXl6c4779SxY8e47Ay4RZYtW6bnnntOM2bMUHp6utN8RkaGJJFJwGSPPPKIbDabkpOTFR4errq6Ou3atUvnzp3Txo0btXz5cklkE3C1iRMnqr6+XqdPn7aPnThxQomJibr33nuVmZmpixcvauPGjUpOTlZRUZELqwXcz6RJk+Tt7a3ExER961vf0scff6ytW7dq8ODBKikpUVxcnKT+k0uakW6stbVVa9as0auvvqrPP/9co0eP1jPPPKOHH37Y1aUBA8Lw4cNVVVXV7dxnn32m4cOHS5LOnDmj5cuX69ChQ/L09NS0adO0ceNG3X777SZWC7i3iRMn6v333//K+Ru/HSKTgHn+8Ic/6Pe//73Kysp05coVDRkyRPfff7+ys7M1c+ZMh7VkE3Cd7pqRknTo0CGtXLlSJ06c0JAhQ5Senq7f/OY3GjJkiIsqBdzT888/r127dumTTz6RzWZTSEiIJk+erJycHMXExDis7Q+5pBkJAAAAAAAAwBTcMxIAAAAAAACAKWhGAgAAAAAAADAFzUgAAAAAAAAApqAZCQAAAAAAAMAUNCMBAAAAAAAAmIJmJAAAAAAAAABT0IwEAAAAAAAAYAqakQAAAAAAAABMQTMSAAAAt8yiRYs0fPhwV5dhmm3btslisej48eOuLgUAAKBfoBkJAAAwAFgslq/1OHjwoKtLBQAAgBu7zdUFAAAAoPft3LnT4fmOHTtUXFzsNB4XF/c/Hefll19WZ2fn//QeAAAAcF80IwEAAAaAjIwMh+dHjhxRcXGx0/iXtbS0yMfH52sfZ/Dgwd+oPgAAAAwMXKYNAAAASdLEiRMVHx+vv/71r0pOTpaPj49+8YtfSJL+/Oc/a9q0aQoLC5PValV0dLSeeeYZdXR0OLzHl+8ZWVlZKYvFog0bNmjr1q2Kjo6W1WrVgw8+qGPHjn2tuhoaGrRs2TJFRETIarUqJiZG69evd9iBeeNxnn32Wd11113y9vZWSkqKTp8+7fSe+/fvV1JSknx9fTV06FDNmjVLZ8+edVpXXV2txYsX2887KipKS5YsUXt7u8O6trY2LV++XCEhIfL19dUjjzyiy5cvf63zAwAAGEjYGQkAAAC7K1euKC0tTT/4wQ+UkZGh22+/XdJ/PqjFz89Py5cvl5+fn/bv36+1a9fKZrMpLy/vpu/72muvqampSVlZWbJYLPrtb3+rOXPm6Pz58z3upmxpaVFKSoqqq6uVlZWlyMhIHT58WKtWrVJtba3y8/Md1u/YsUNNTU164okn1Nraqueee06TJk1SWVmZ/VzeffddpaWl6e6779bTTz+ta9eu6YUXXtB3v/tdnThxwt5MrampUUJCghoaGpSZmal77rlH1dXVKiwsVEtLizw9Pe3Hzc7OVmBgoHJyclRZWan8/Hw9+eST+uMf//hf/gsAAAC4N5qRAAAAsKurq9NLL72krKwsh/HXXntN3t7e9uePP/64Hn/8cb344ov61a9+JavV2uP7/vOf/1RFRYUCAwMlSSNHjtSsWbNUVFSk6dOnf+XrNm3apE8//VQnT57UiBEjJElZWVkKCwtTXl6eVqxYoYiICPv6Tz75RBUVFQoPD5ckTZkyRePGjdP69eu1adMmSdJTTz2loKAglZSUKCgoSJI0e/ZsjR07Vjk5Odq+fbskadWqVaqrq1NpaakeeOAB+zFyc3NlGIZDncOGDdO+fftksVgkSZ2dnXr++efV2NiogICAHv9uAAAABhIu0wYAAICd1WrVY4895jR+YyOyqalJ9fX1SkpKUktLi86dO3fT950/f769ESlJSUlJkqTz58/3+LqCggIlJSUpMDBQ9fX19kdqaqo6Ojr0wQcfOKyfPXu2vREpSQkJCRo3bpz+8pe/SJJqa2t16tQpLVq0yN6IlKTRo0froYcesq/r7OzUG2+8oRkzZjg0Irt0NR27ZGZmOowlJSWpo6NDVVVVPZ4fAADAQMPOSAAAANiFh4c7XH7c5cyZM1q9erX2798vm83mMNfY2HjT942MjHR43tWY/Pzzz3t8XUVFhf7+978rJCSk2/lLly45PO/aPXmj2NhY7d69W5LszcGRI0c6rYuLi1NRUZGuXr2q5uZm2Ww2xcfH91hfl296fgAAAAMNzUgAAADY3bgDsktDQ4NSUlLk7++v3NxcRUdHy8vLSydOnNDKlSsdPkjmqwwaNKjb8S9f7vxlnZ2deuihh/Tzn/+82/nY2NibHtsM3/T8AAAABhqakQAAAOjRwYMHdeXKFf3pT39ScnKyffyzzz7r9WNHR0erublZqampX2t9RUWF01h5ebn9Q2nuuusuSdI//vEPp3Xnzp1TcHCwfH195e3tLX9//24/iRsAAADfHPeMBAAAQI+6dv3duMuvvb1dL774Yq8fOz09XSUlJSoqKnKaa2ho0PXr1x3G3njjDVVXV9ufHz16VKWlpUpLS5MkhYaGasyYMdq+fbsaGhrs606fPq19+/Zp6tSpkiQPDw/Nnj1bb731lo4fP+50bHY8AgAAfDPsjAQAAECPEhMTFRgYqIULF2rp0qWyWCzauXOnKQ25p556Sm+++aamT5+uRYsW6f7779fVq1dVVlamwsJCVVZWKjg42L4+JiZGEyZM0JIlS9TW1qb8/HwNGzbM4TLvvLw8paWlafz48Vq8eLGuXbumF154QQEBAXr66aft69atW6d9+/YpJSVFmZmZiouLU21trQoKCnTo0CENHTq0188fAADA3dCMBAAAQI+GDRumvXv3asWKFVq9erUCAwOVkZGhyZMn6+GHH+7VY/v4+Oj999/XunXrVFBQoB07dsjf31+xsbH65S9/qYCAAIf1CxYskIeHh/Lz83Xp0iUlJCRo8+bNCg0Nta9JTU3VO++8o5ycHK1du1aDBw9WSkqK1q9fr6ioKPu68PBwlZaWas2aNdq1a5dsNpvCw8OVlpYmHx+fXj1vAAAAd2UxuMYEAAAA/VxlZaWioqKUl5enn/3sZ64uBwAAAF+Be0YCAAAAAAAAMAXNSAAAAAAAAACmoBkJAAAAAAAAwBTcMxIAAAAAAACAKdgZCQAAAAAAAMAUNCMBAAAAAAAAmIJmJAAAAAAAAABT0IwEAAAAAAAAYAqakQAAAAAAAABMQTMSAAAAAAAAgCloRgIAAAAAAAAwBc1IAAAAAAAAAKagGQkAAAAAAADAFP8HtRjZ6I9oMZsAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
- "_, ax = plt.subplots()\n",
- "ax.plot(train_loss, label=\"Train\")\n",
- "ax.plot(val_loss, label=\"Val\")\n",
- "ax.legend()\n",
- "plt.show()"
+ "plot_losses(losses)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "779b9394",
"metadata": {},
@@ -342,37 +369,27 @@
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAKvCAYAAABwPbCoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFg0lEQVR4nO3deZhcZZk3/m91ts7WnRCykkDCpiAgAhIjiKIZIkFfHBDeOEGDMsBPAUEGFZVFUUFREUFM3F5ARZ1xARRZDMg6xCCbyo6yBUMWlqQhkK2rfn/EtLQJmEq6qk93fz7Xda6hzzlVz109Jum7v89znlKlUqkEAACgkzV0dgEAAACJ5gQAACgIzQkAAFAImhMAAKAQNCcAAEAhaE4AAIBC0JwAAACFoDkBAAAKoXdnF9CRyuVy5s+fn8GDB6dUKnV2OQAAPV6lUsnzzz+fMWPGpKGhZ/1efPny5Vm5cmWnjN23b980NjZ2ytibols1J/Pnz8+4ceM6uwwAAP7JvHnzMnbs2M4uo26WL1+eCVsNyoJFrZ0y/qhRo/Loo492uQalWzUngwcPTpL8+faRGTyoZ3XmQPdz+Gv37OwSADbZ6qzKLbmy7ee0nmLlypVZsKg1j98xPk2D6/tzacvz5Wy1+2NZuXKl5qQzrZ3KNXhQQ93/RwDQ0XqX+nR2CQCbrrLm//TUKfeDBpcyaHB9P3s5Xfd77Sd4AACgEDQnAABAIXSraV0AAFAkrZVyWiv1H7OrkpwAAACFIDkBAIAaKaeScuobndR7vI4kOQEAAApBcgIAADVSTjn1XgFS/xE7juQEAAAoBM0JAABQCKZ1AQBAjbRWKmmt1HeBer3H60iSEwAAoBAkJwAAUCMeJVwdyQkAAFAImhMAAKAQTOsCAIAaKaeSVtO6NpjkBAAAKATJCQAA1IgF8dWRnAAAAIUgOQEAgBqxCWN1JCcAAEAhaE4AAIBCMK0LAABqpPz3o95jdlWSEwAAoBAkJwAAUCOtnbAJY73H60iSEwAAoBA0JwAAQCGY1gUAADXSWllz1HvMrkpyAgAAFILkBAAAasSjhKsjOQEAAApBcgIAADVSTimtKdV9zK5KcgIAABSC5gQAACgE07oAAKBGypU1R73H7KokJwAAQCFITgAAoEZaO2FBfL3H60iSEwAAoBA0JwAAQCGY1gUAADViWld1JCcAAEAhSE4AAKBGypVSypU67xBf5/E6kuQEAAAoBMkJAADUiDUn1ZGcAAAAhaA5AQAACsG0LgAAqJHWNKS1znlAa11H61iSEwAAoBAkJwAAUCOVTniUcMWjhAEAADaN5gQAACgE07oAAKBG7HNSHckJAABQCJITAACokdZKQ1ordX6UcKWuw3UoyQkAAFAIkhMAAKiRckop1zkPKKfrRieSEwAAoBA0JwAAQCGY1gUAADXiUcLVkZwAAACFIDkBAIAa6ZxHCVsQDwAAsEk0JwAAQCGY1gUAADWyZp+T+i5Qr/d4HUlyAgAAFILkBAAAaqSchrTaIX6DSU4AAIBC0JwAAACFYFoXAADUiH1OqiM5AQAACkFyAgAANVJOQ8oWxG8wyQkAAFAIkhMAAKiR1koprZX6bopY7/E6kuQEAAAoBM0JAABQCKZ1AQBAjbR2wg7xrRbEAwAAbBrJCQAA1Ei50pBynTdhLNuEEQAAYNNoTgAAgEIwrQsAAGrEgvjqSE4AAIBCkJwAAECNlFP/HdvLdR2tY0lOAACAQpCcAABAjZTTkHKd84B6j9eRum7lAABAt6I5AQAACsG0LgAAqJHWSkNa67xDfL3H60hdt3IAAKBbkZwAAECNlFNKOfV+lHB9x+tIkhMAAKAQNCcAAEAhmNYFAAA1YkF8dbpu5QAAQLciOQEAgBppTUNa65wH1Hu8jtR1KwcAALoVyQkAANRIuVJKuVLnRwnXebyOJDkBAAAKQXMCAAAUgmldAABQI+VOWBBf7sL5Q9etHAAA2GStra059dRTM2HChPTv3z/bbLNNPv/5z6dSqbTdU6lUctppp2X06NHp379/Jk+enIcffrjd+zz77LOZPn16mpqaMmTIkBxxxBF54YUXqqpFcwIAADVSrjR0ylGNL3/5y5k5c2a++c1v5v7778+Xv/zlnH322Tn//PPb7jn77LNz3nnnZdasWZk7d24GDhyYKVOmZPny5W33TJ8+Pffee29mz56dK664IjfddFOOOuqoqmoxrQsAAHqwW2+9NQceeGAOOOCAJMn48ePzk5/8JLfddluSNanJueeem1NOOSUHHnhgkuQHP/hBRo4cmcsuuyzTpk3L/fffn6uvvjp/+MMfssceeyRJzj///EydOjVf/epXM2bMmA2qRXICAAA92Jvf/OZcd911eeihh5Ikf/zjH3PLLbdk//33T5I8+uijWbBgQSZPntz2mubm5kycODFz5sxJksyZMydDhgxpa0ySZPLkyWloaMjcuXM3uBbJCQAA1EhrSmlNffcdWTteS0tLu/P9+vVLv3791rn/5JNPTktLS1772temV69eaW1tzRe/+MVMnz49SbJgwYIkyciRI9u9buTIkW3XFixYkBEjRrS73rt372y22WZt92wIyQkAAHRD48aNS3Nzc9tx1llnrfe+//mf/8kll1ySH//4x7nzzjtz8cUX56tf/WouvvjiOlcsOQEAgJrZmAXqHTFmksybNy9NTU1t59eXmiTJxz/+8Zx88smZNm1akmTnnXfO448/nrPOOiszZszIqFGjkiQLFy7M6NGj2163cOHC7LrrrkmSUaNGZdGiRe3ed/Xq1Xn22WfbXr8hJCcAANANNTU1tTteqTl58cUX09DQvi3o1atXyuVykmTChAkZNWpUrrvuurbrLS0tmTt3biZNmpQkmTRpUpYsWZI77rij7Z7f/e53KZfLmThx4gbXLDkBAIAaaU06Yc1Jdd797nfni1/8Yrbccsu87nWvy1133ZVzzjknH/rQh5IkpVIpJ5xwQr7whS9ku+22y4QJE3LqqadmzJgxec973pMk2WGHHfLOd74zRx55ZGbNmpVVq1bl2GOPzbRp0zb4SV2J5gQAAHq0888/P6eeemo+8pGPZNGiRRkzZkyOPvronHbaaW33fOITn8iyZcty1FFHZcmSJdl7771z9dVXp7Gxse2eSy65JMcee2ze8Y53pKGhIQcffHDOO++8qmopVV6+9WMX19LSkubm5jz2wOg0DTZjDejaDh07qbNLANhkqyurckMuz9KlS9utf+ju1v5cetrcyWkc1KeuYy9/YVXOmHhtl/yeS04AAKBGOnNBfFfUdSsHAAC6FckJAADUSGulIa11TjLqPV5H6rqVAwAA3YrmBAAAKATTugAAoEYqKaVc531OKnUeryNJTgAAgEKQnAAAQI1YEF+drls5AADQrUhOAACgRsqVUsqV+q4Bqfd4HUlyAgAAFILmBAAAKATTugAAoEZa05DWOucB9R6vI3XdygEAgG5FcgIAADViQXx1JCcAAEAhaE4AAIBCMK0LAABqpJyGlOucB9R7vI7UdSsHAAC6FckJAADUSGullNY6L1Cv93gdSXICAAAUguQEAABqxKOEqyM5AQAACkFzAgAAFIJpXQAAUCOVSkPKlfrmAZU6j9eRum7lAABAtyI5AQCAGmlNKa2p86OE6zxeR5KcAAAAhaA5AQAACsG0LgAAqJFypf77jpQrdR2uQ0lOAACAQpCcAABAjZQ74VHC9R6vI3XdygEAgG5FckKP9sifBuYnX94yD90xKJVKKdvv/nwO+8zjGf+6F9vd98vzt8gdvx2aBY83ZvmyXhk2ekV2e8eSHPTRJ9M0bHXbfYvm9cuxk3Zb71jHX/BQ9jrwmZp+HoCX22XSC/nKL/663mvHv2vbPHDnwCTJ2T//S17/5mXr3HP79YPzmelb17RGgJfTnNBjPfLngTn133fK5mNW5L0fezKVcinX/GBkTn/v63LWFX/OmG2W/+PePw3MVq9bljcf+HT6Dyznyb/0z3U/HpE7rxuSs3/7pzQOKLd7770OfDpvePtz7c5tv/vzdflcAP/s0u9tnofuHtDu3PzH+rX7evH8Pvl/Z45ud+6ZhX5MgE1VTinlOu87Uu/xOpK/deix/vsr49K3sZwv/OqeDB66Jv14y0GLc/w+b8iPv7RlTvruQ233vvy/19p+t+dzztGvyR2zh66TiEzY+YXsc/DTtf0AABvonrkDc8tvhrzqPctaeuV3vxxan4IAXkEh15xccMEFGT9+fBobGzNx4sTcdtttnV0S3dADtw3Ozm9Z0taYJMnQkauy45tacud1Q7N82av/8RgxbkWSZFnL+nv85S82ZPXKrvubC6B76T+wNQ29Xv35og29Kmkc0FqniqBnaK2UOuXoqgqXnPz3f/93TjzxxMyaNSsTJ07MueeemylTpuTBBx/MiBEjOrs8upFVKxvSt7G8zvm+/VuzemVDnnhgQLbf/YW285VK8vxzvVNeXcpTjzbmx2dtmYZelbxu0tJ13uPnXx+XH31hfEqlSrbeZVmmfeKJvP6t694HUA//9fV5GTConNbVa1KU735+TB7+U/tpXltsvSKX/+XP6duvkmcX9c5Vl2yWS74+Kq2ru+4POUDXU7jm5JxzzsmRRx6ZD37wg0mSWbNm5Te/+U3+3//7fzn55JM7uTq6kzFbv5SH7xyccmvS0GvNudUrS/nLXYOTJM8u6Nvu/qWL++So3fZo+3rY6BX56Dcfzhbb/mNtSkNDJa9/65K88Z3PZrNRK7Po8X654rtjcub7d8gnL3wgu71jSc0/F8Baq1eVcvMVzbntd4PT8mzvbLn98rz3/1ucr136l3zswG3z13vWNChPPd4vf7x1UB67vzGNA8p5y7uWZvrHFmXsNity5v83vnM/BHRxHiVcnUI1JytXrswdd9yRT33qU23nGhoaMnny5MyZM6cTK6M72m/GwnzvU1tn5knb5MAPz0+5nPzyvLF5blGfJMnK5e3/YA8asjqn/OS+rFpRyqP3DMxtVw1bZ+rX5luszGcuub/duX0Ofjofe/vr84Mzxme3d9xd088E8HL33T4w990+sO3r3/+2ObdcMSQzr3swH/rUgrYncX39v8a1e911v9gsx589L1MPeza//M6ytqd6AdRaoZqTp59+Oq2trRk5cmS78yNHjswDDzywzv0rVqzIihUr2r5uaWmpeY10H/u9f2Gemd83v5o1Jjf+bM2UwW1e/0IO/PD8/PK8sWkc2H7ede++lezyljVTs3afvCQ77700p75n5zRvviq7T17yiuMMGro6+x66OJddsEWemd83w8asrNlnAvhX5j/WL3Ouac5e+y9NQ0Ml5fL6p2394tvDM/WwZ/OGt7ygOQHqplDNSbXOOuusfO5zn+vsMujC3vfJeXn30fPz5EMDMmBwa7bc4cX8+EtrfoM4Zuvlr/ra1+zxQoaOXJmbLx3+qs1Jkgwbs6aJfmFJb80J0OkWz++Tvv0qaRxQzosv9HqFe9ZMbR08ZPV6rwMbppxSynVeoN6VHyVcqAlpm2++eXr16pWFCxe2O79w4cKMGjVqnfs/9alPZenSpW3HvHnz6lUq3cigIa157Z7PZ8sd1my8+Oebh2TY6BUZs+1L//K1K5c35KWW9f/D/nILn2hMkjQNW7VpxQJ0gNFbrsyKl0p56VWeSjhqyzW/VFn6TJf+PSbQxRSqOenbt2923333XHfddW3nyuVyrrvuukyaNGmd+/v165empqZ2B2yKW381LH/946BM/c+n0vD3Px3LX2zIipfW/aPy+99slmVLe2frXf6xq3LLev4Rf/apvrn+pyOy1Q7LMnSk5gSon+bN1k09tt7xpbxpv5bcedPgVCqlDBjUmj59//nJhZX8xwmLkiR33Di4DpVC91X5+yaM9TwqXTg5KdyvQ0488cTMmDEje+yxR/bcc8+ce+65WbZsWdvTu6Cj3Pf7wfnFuWOzyz5LM3jo6jx056Dc8D8jsuvbnsvUI55qu2/Bo435/LQdM+n/PJMttnkppYZKHvnToNz8y80zfNzyTP3Pf9z7oy9ulYWPN2anvZZm6MiVWfxkv1z7o5FZ8VJDDv/cY53wKYGe7NOzHs+K5aXcf/vALHl6zdO6ph72bFa8VMr3v7hmN/htd34pJ3/r8dxw2ZDMf6xf+jWW8+b9l2anPV/Mb364Wf7y5wH/YhSAjlO45uT//t//m8WLF+e0007LggULsuuuu+bqq69eZ5E8bKrNRq1MQ6/kV7PGZPmyXhkxbnmmffyJvOuop9LrZX8yNhu9MhOnPpt7/7cpN/5seFpXlzJ8ixWZcviCHPTRv7XbxHGXfZZk9g9H5ZqLR2XZ0l4Z0NSaHSa25KDj/5atd162nioAaufWa5ry9n9fkoOOWpwBg1uz9JneueXK5lxyzsjMf6xfkmThk31y79yB2Wv/lgwdviqVSilPPNwv3/jE2Fz5o806+RMAPU2pUqm8+naxXUhLS0uam5vz2AOj0zS4UDPWAKp26Nh1p7MCdDWrK6tyQy7P0qVLe9QU/LU/lx587Yz0Gdj3X7+gA61atjK/mHxxl/ye+wkeAAAohMJN6wIAgO7CDvHV6bqVAwAA3YrkBAAAaqRc6YRNGOs8XkeSnAAAAIWgOQEAAArBtC4AAKiRtbu213vMrkpyAgAAFILkBAAAasSC+OpITgAAgELQnAAAAIVgWhcAANSIaV3VkZwAAACFIDkBAIAakZxUR3ICAAAUguQEAABqRHJSHckJAABQCJoTAACgEEzrAgCAGqkkKae+06wqdR2tY0lOAACAQpCcAABAjVgQXx3JCQAAUAiaEwAAoBBM6wIAgBoxras6khMAAKAQJCcAAFAjkpPqSE4AAIBCkJwAAECNSE6qIzkBAAAKQXMCAAAUgmldAABQI5VKKZU6T7Oq93gdSXICAAAUguQEAABqpJxSyqnzgvg6j9eRJCcAAEAhaE4AAIBCMK0LAABqxD4n1ZGcAAAAhSA5AQCAGvEo4epITgAAgEKQnAAAQI1Yc1IdyQkAAFAImhMAAKAQTOsCAIAasSC+OpITAACgECQnAABQI5VOWBAvOQEAANhEmhMAAKAQTOsCAIAaqSSpVOo/ZlclOQEAAApBcgIAADVSTiml1HmH+DqP15EkJwAAQCFITgAAoEZswlgdyQkAAFAImhMAAKAQTOsCAIAaKVdKKdV5mlW9d6TvSJITAACgECQnAABQI5VKJ2zC2IV3YZScAAAAhaA5AQAACsG0LgAAqBH7nFRHcgIAABSC5AQAAGpEclIdyQkAAFAImhMAAKAQTOsCAIAasUN8dSQnAABAIUhOAACgRuwQXx3JCQAAUAiSEwAAqJE1yUm9HyVc1+E6lOQEAAAoBM0JAABQCKZ1AQBAjdghvjqSEwAAoBAkJwAAUCOVvx/1HrOrkpwAAACFoDkBAAAKwbQuAACoEQviqyM5AQAACkFyAgAAtWJFfFUkJwAA0MP97W9/y2GHHZZhw4alf//+2XnnnXP77be3Xa9UKjnttNMyevTo9O/fP5MnT87DDz/c7j2effbZTJ8+PU1NTRkyZEiOOOKIvPDCC1XVoTkBAIBa+fuak3oeqXLNyXPPPZe99torffr0yVVXXZX77rsvX/va1zJ06NC2e84+++ycd955mTVrVubOnZuBAwdmypQpWb58eds906dPz7333pvZs2fniiuuyE033ZSjjjqqqlpM6wIAgB7sy1/+csaNG5cLL7yw7dyECRPa/rtSqeTcc8/NKaeckgMPPDBJ8oMf/CAjR47MZZddlmnTpuX+++/P1VdfnT/84Q/ZY489kiTnn39+pk6dmq9+9asZM2bMBtUiOQEAgG6opaWl3bFixYr13verX/0qe+yxRw455JCMGDEib3jDG/Ld73637fqjjz6aBQsWZPLkyW3nmpubM3HixMyZMydJMmfOnAwZMqStMUmSyZMnp6GhIXPnzt3gmjUnAABQI5VK5xxJMm7cuDQ3N7cdZ5111nprfOSRRzJz5sxst912ueaaa/LhD384H/3oR3PxxRcnSRYsWJAkGTlyZLvXjRw5su3aggULMmLEiHbXe/func0226ztng1hWhcAAHRD8+bNS1NTU9vX/fr1W+995XI5e+yxR84888wkyRve8Ibcc889mTVrVmbMmFGXWteSnAAAQI3UezH8yzd9bGpqane8UnMyevTo7Ljjju3O7bDDDnniiSeSJKNGjUqSLFy4sN09CxcubLs2atSoLFq0qN311atX59lnn227Z0NoTgAAoAfba6+98uCDD7Y799BDD2WrrbZKsmZx/KhRo3Lddde1XW9pacncuXMzadKkJMmkSZOyZMmS3HHHHW33/O53v0u5XM7EiRM3uBbTugAAoAf72Mc+lje/+c0588wzc+ihh+a2227Ld77znXznO99JkpRKpZxwwgn5whe+kO222y4TJkzIqaeemjFjxuQ973lPkjVJyzvf+c4ceeSRmTVrVlatWpVjjz0206ZN2+AndSWaEwAAqJ2N2HekQ8aswhvf+MZceuml+dSnPpUzzjgjEyZMyLnnnpvp06e33fOJT3wiy5Yty1FHHZUlS5Zk7733ztVXX53Gxsa2ey655JIce+yxecc73pGGhoYcfPDBOe+886qqpVSprF3P3/W1tLSkubk5jz0wOk2DzVgDurZDx07q7BIANtnqyqrckMuzdOnSdouzu7u1P5eO//6paRjQ+K9f0IHKLy7PY0d8vkt+zyUnAABQIy9/tG89x+yqxAsAAEAhSE4AAKBWKn8/6j1mFyU5AQAACkFzAgAAFIJpXQAAUCMv37G9nmN2VZITAACgECQnAABQS114gXq9SU4AAIBC0JwAAACFYFoXAADUiAXx1ZGcAAAAhSA5AQCAWrFDfFUkJwAAQCFITgAAoGZKfz/qPWbXJDkBAAAKQXMCAAAUgmldAABQKxbEV0VyAgAAFMIGJSc33XTTRr35Pvvss1GvAwCAbkFyUpUNak7e9ra3pVTa8FX/lUolpVIpra2tG10YAADQs2xQc3L99dfXug4AAKCH26Dm5K1vfWut6wAAgO6nUlpz1HvMLmqTF8Q/9dRT+eMf/5hly5Z1RD0AAEAPtdHNyeWXX57Xvva1GTt2bHbbbbfMnTs3SfL000/nDW94Qy677LKOqhEAALqkSqVzjq5qo5qTX//61znooIOy+eab5/TTT0/lZd+BzTffPFtssUUuvPDCDisSAADo/jaqOTnjjDOyzz775JZbbskxxxyzzvVJkyblrrvu2uTiAACgS6t00tFFbVRzcs899+TQQw99xesjR47MokWLNrooAACg59mo5mTAgAGvugD+kUceybBhwza6KAAAoOfZqOZk3333zcUXX5zVq1evc23BggX57ne/m/3222+TiwMAgC5t7aOE6310URvVnHzxi1/Mk08+mTe+8Y359re/nVKplGuuuSannHJKdt5551QqlZx++ukdXSsAANCNbVRz8prXvCa33HJLhg0bllNPPTWVSiVf+cpXcuaZZ2bnnXfOzTffnPHjx3dwqQAA0LWUKp1zdFUbtEP8+rzuda/Ltddem+eeey5/+ctfUi6Xs/XWW2f48OEdWR8AANBDbHRzstbQoUPzxje+sSNqAQAAerCN3iF+8eLFOemkk7LjjjtmwIABGTBgQHbcccecdNJJWbhwYUfWCAAAXZN9TqqyUc3Jvffem5133jnnnHNOmpubc8ghh+SQQw5Jc3NzzjnnnOyyyy655557OrpWAACgG9uoaV3HHHNMWltbM3fu3HWmdN12222ZOnVqjjvuuFx//fUdUiQAAHRJnfFo3572KOHbbrstxx9//HrXmuy55545/vjjM3fu3E0uDgAA6Dk2KjkZMWJEGhsbX/F6Y2NjRowYsdFFAQBAt9AZa0B62pqTE044ITNnzsyCBQvWuTZ//vzMnDkzJ5xwwqbWBgAA9CAblJycc84565wbNGhQtt122/z7v/97tt122yTJww8/nMsuuyzbbrttKpUu3LIBAAB1V6psQBfR0FB9wFIqldLa2rpRRW2slpaWNDc357EHRqdp8EY/JRmgEA4dO6mzSwDYZKsrq3JDLs/SpUvT1NTU2eXUzdqfS8d97fNp6P/KyyFqofzS8sz7r1O75Pd8g5KTRx99tNZ1AAAAPdwGNSdbbbVVresAAIDux4L4qpj7BAAAFMJGPUo4Sf70pz/l/PPPz5133pmlS5emXC63u14qlfLXv/51kwsEAAB6ho1KTm644YbsueeeueKKKzJmzJg88sgj2XrrrTNmzJg8/vjjGTRoUPbZZ5+OrhUAALqWtTvE1/voojaqOTnttNOy9dZb58EHH8yFF16YJPn0pz+dW265JbfeemuefPLJHHrooR1aKAAA0L1tVHNy55135ogjjkhTU1N69eqVJG2PDZ44cWKOPvronHrqqR1XJQAAdEGlSuccXdVGNSe9e/fO4MGDkyRDhgxJnz59smjRorbrW2+9de67776OqRAAAOgRNqo52XbbbfPwww8nWbPw/bWvfW0uvfTStuu/+c1vMmrUqI6pEAAA6BE2qjmZOnVqfvKTn2T16tVJkhNPPDG//OUvs91222W77bbLr371qxx99NEdWigAAHQ5lU46uqiNepTwqaeemuOPP75tvcmMGTPSq1ev/OIXv0ivXr3ymc98JocffnhH1gkAAHRzG9Wc9OnTJ8OGDWt37rDDDsthhx3WIUUBAAA9jx3iAQCAQtig5OTtb3971W9cKpVy3XXXVf06AADoLkqp/6N9u+4WjBvYnJTL5ZRK1X3MSqULr8QBAADqboOakxtuuKHGZXSsw1+7Z3qX+nR2GQCb5Jr5d3d2CQCbrOX5coZu39lV0FVs1IJ4AABgA1RKa456j9lFWRAPAAAUguQEAABqpTM2RezCS78lJwAAQCFoTgAAgEIwrQsAAGrFtK6qbFJz8re//S033XRTFi1alIMPPjhjx45Na2trli5dmubm5vTq1auj6gQAALq5jZrWValUcuKJJ2bChAmZPn16TjzxxDz00ENJkhdeeCHjx4/P+eef36GFAgBAV1OqdM7RVW1Uc/KVr3wl3/jGN3LSSSdl9uzZ7XaDb25uzkEHHZRf/OIXHVYkAADQ/W3UtK7vfve7+cAHPpAzzzwzzzzzzDrXd9lll1x11VWbXBwAAHRp1pxUZaOSk3nz5uXNb37zK14fOHBgWlpaNrooAACg59mo5mTEiBGZN2/eK16/4447suWWW250UQAAQM+zUc3JQQcdlFmzZuWRRx5pO1cqlZIkv/3tb3PRRRflkEMO6ZgKAQCgq6p00tFFbVRz8rnPfS6jR4/Orrvumg984AMplUr58pe/nL333jv7779/dtlll3z605/u6FoBAIBubKOak+bm5vz+97/PJz7xifztb39LY2NjbrzxxixZsiSnn356br755gwYMKCjawUAgC7Fo4Srs9GbMPbv3z+nnHJKTjnllI6sBwAA6KE2KjkBAADoaBuVnHzoQx/6l/eUSqV8//vf35i3BwCA7qFSWnPUe8wuaqOak9/97ndtT+daq7W1NU899VRaW1szfPjwDBw4sEMKBAAAeoaNak4ee+yx9Z5ftWpVvv3tb+fcc8/N7NmzN6UuAADo+uwQX5UOXXPSp0+fHHvssdlvv/1y7LHHduRbAwAA3VxNFsS//vWvz0033VSLtwYAgC7Do4SrU5PmZPbs2fY5AQAAqrJRa07OOOOM9Z5fsmRJbrrpptx55505+eSTN6kwAACgZ9mo5uSzn/3ses8PHTo022yzTWbNmpUjjzxyU+oCAICuz4L4qmxUc1Iulzu6DgAAoIeres3JSy+9lBNPPDG//vWva1EPAAB0H52xGL4LJydVNyf9+/fPt7/97SxcuLAW9QAAAD3URj2ta/fdd88999zT0bUAAAA92EY1J+eee25++tOf5nvf+15Wr17d0TUBAED3UOmko4va4AXxN910U3bYYYcMHz48M2bMSENDQ44++uh89KMfzRZbbJH+/fu3u79UKuWPf/xjhxcMAAB0TxvcnOy777750Y9+lPe9730ZNmxYNt9887zmNa+pZW0AANC1eZRwVTa4OalUKqlU1nzSG264oVb1AAAAPdRG7XMCAAD8a22P963zmF1VVQviS6VSreoAAAB6uKqak8MOOyy9evXaoKN3b6EMAACw4arqICZPnpztt9++VrUAAAA9WFXNyYwZM/If//EftaoFAADowcy9AgCAWvEo4aps1A7xAAAAHU1zAgAAFMIGT+sql8u1rAMAALod+5xUR3ICAAAUggXxAABQS104yag3yQkAAFAIkhMAAKgVjxKuiuQEAAAoBM0JAABQCKZ1AQBAjXiUcHUkJwAAQCFITgAAoFYsiK+K5AQAACgEzQkAAFAIpnUBAECNWBBfHckJAABQCJITAACoFQviqyI5AQAACkFyAgAAtSI5qYrkBAAAKATNCQAAUAimdQEAQI14lHB1JCcAAEAhSE4AAKBWLIiviuQEAAAoBM0JAABQCKZ1AQBArZjWVRXJCQAAUAiaEwAAqJG1jxKu97GxvvSlL6VUKuWEE05oO7d8+fIcc8wxGTZsWAYNGpSDDz44CxcubPe6J554IgcccEAGDBiQESNG5OMf/3hWr15d9fiaEwAAIH/4wx/y7W9/O7vssku78x/72Mfy61//Oj/72c9y4403Zv78+TnooIParre2tuaAAw7IypUrc+utt+biiy/ORRddlNNOO63qGjQnAADQw73wwguZPn16vvvd72bo0KFt55cuXZrvf//7Oeecc/L2t789u+++ey688MLceuut+f3vf58k+e1vf5v77rsvP/rRj7Lrrrtm//33z+c///lccMEFWblyZVV1aE4AAKBWKp10JGlpaWl3rFix4hXLPOaYY3LAAQdk8uTJ7c7fcccdWbVqVbvzr33ta7Pllltmzpw5SZI5c+Zk5513zsiRI9vumTJlSlpaWnLvvfdW9e3SnAAAQDc0bty4NDc3tx1nnXXWeu/76U9/mjvvvHO91xcsWJC+fftmyJAh7c6PHDkyCxYsaLvn5Y3J2utrr1XDo4QBAKBGNnWB+saOmSTz5s1LU1NT2/l+/fqtc++8efNy/PHHZ/bs2WlsbKxXia9IcgIAAN1QU1NTu2N9zckdd9yRRYsWZbfddkvv3r3Tu3fv3HjjjTnvvPPSu3fvjBw5MitXrsySJUvavW7hwoUZNWpUkmTUqFHrPL1r7ddr79lQmhMAAKiVTlxzsiHe8Y535M9//nPuvvvutmOPPfbI9OnT2/67T58+ue6669pe8+CDD+aJJ57IpEmTkiSTJk3Kn//85yxatKjtntmzZ6epqSk77rhjNd8t07oAAKCnGjx4cHbaaad25wYOHJhhw4a1nT/iiCNy4oknZrPNNktTU1OOO+64TJo0KW9605uSJPvtt1923HHHvP/978/ZZ5+dBQsW5JRTTskxxxyz3rTm1WhOAACAV/T1r389DQ0NOfjgg7NixYpMmTIl3/rWt9qu9+rVK1dccUU+/OEPZ9KkSRk4cGBmzJiRM844o+qxNCcAAFArVU6z6rAxN8ENN9zQ7uvGxsZccMEFueCCC17xNVtttVWuvPLKTRs41pwAAAAFITkBAIAaKf39qPeYXZXkBAAAKATNCQAAUAimdQEAQK10wQXxnUlyAgAAFILkBAAAaqRUWXPUe8yuSnICAAAUguQEAABqxZqTqkhOAACAQtCcAAAAhWBaFwAA1FIXnmZVb5ITAACgECQnAABQIx4lXB3JCQAAUAiaEwAAoBBM6wIAgFqxz0lVJCcAAEAhSE4AAKBGLIivjuQEAAAoBMkJAADUijUnVZGcAAAAhaA5AQAACsG0LgAAqBEL4qsjOQEAAApBcgIAALViQXxVJCcAAEAhaE4AAIBCMK0LAABqxbSuqkhOAACAQpCcAABAjXiUcHUkJwAAQCFITgAAoFasOamK5AQAACgEzQkAAFAIpnUBAECNlCqVlCr1nWdV7/E6kuQEAAAoBMkJAADUigXxVZGcAAAAhaA5AQAACsG0LgAAqBE7xFdHcgIAABSC5AQAAGrFgviqSE4AAIBCkJwAAECNWHNSHckJAABQCJoTAACgEEzrAgCAWrEgviqSEwAAoBAkJwAAUCMWxFdHcgIAABSC5gQAACgE07oAAKBWLIiviuQEAAAoBMkJAADUUFdeoF5vkhMAAKAQJCcAAFArlcqao95jdlGSEwAAoBA0JwAAQCGY1gUAADVih/jqSE4AAIBCkJwAAECt2ISxKpITAACgEDQnAABAIZjWBQAANVIqrznqPWZXJTkBAAAKQXICAAC1YkF8VSQnAABAIUhO4J/sMumFfOUXf13vtePftW0euHNgkmTacQvzpv1aMnr8igwYWM7i+X1y23VN+ck3Rmbps/5oAfX18J/658Ivjc79tw9MpZLssPuy/OcpT2WbnV5qd9/HD942f5ozaJ3X7/62lpz540favv7qCVtm9v9s9orjXXLHvdl89KqO+wAA0ZzAK7r0e5vnobsHtDs3/7F+bf+93S4v5ZF7++fGy4fkxWUN2XK7Fdn/P57Jnu9oyYf/bfuseKlXvUsGeqiH/9Q/J75nuwwfszLTT1yQSjn59cWb56SDt815v3ko47Zd0e7+zUevzIc+/VS7c8NGtm80ph72dN7wlufbnatUkvM+OTYjx63UmMAGskN8dTQn8ArumTswt/xmyCte//yR49c5d//tA3Lq9x7Pm/ZryY2XD61dcQAv84OvjErfxnLO/dXDadqsNUny9oOfyxF775ALvzQ6p33vsXb3D2xqzTsOfu5V33PHPV7Mjnu82O7cPXMHZsVLvfL2g179tQAbq1BrTm666aa8+93vzpgxY1IqlXLZZZd1dkn0cP0Htqah14b/+mHBvL5JkkFNrbUqCWAd98wdlDe85fm2xiRJho1cnZ0nvZDbrm3KS8vW/ee+dXXWe/7VXH/Z0JRKlez770s2tWToOSqVzjm6qEIlJ8uWLcvrX//6fOhDH8pBBx3U2eXQw/3X1+dlwKByWlev+W3hdz8/Jg//acA/3VVJ02at6dWrki0mrMiHPvNUWldnvfO5AWpl1cpS+jWu+8NIv/7lrFrZkMceaMwOu/8jBfnbI/1y4La7ZNXKhgwdvir7T38m0z+2IL37vPIYq1clN/1qSHbcY1lGjVtZi48BUKzmZP/998/+++/f2WXQw61eVcrNVzTntt8NTsuzvbPl9svz3v9vcb526V/ysQO3zV/v+UeDMnT46vz0j/e1fb14fp986ZitMu8vjZ1ROtBDjd1mRR64Y0BaW5Nef1/utmplKQ/+/QEeTy/4R9cxeqsVef2bn8/4HZZn+YsNufmKIfnxuaPy5F/75TPffvwVx7j9hqa0PNc7+5rSBVWx5qQ6hWpOoAjuu31g7rt9YNvXv/9tc265YkhmXvdgPvSpBfnM9K3brj2/pFdO/r9bp2+/SrbZ6aXsNXVJGgea0gXU17tmPJ3zTx6Xr//XljnkIwtTKZfy43NH5tlFa/6ZX7n8H9O3TjxnXrvXTn7vczn342Nz1SWb56CjFrdLWF7u+kuHpnefct767iU1+xwAXbo5WbFiRVas+McTSFpaWjqxGrqz+Y/1y5xrmrPX/kvT0FBJuVxKkqxe1ZC7bh6cJJl7bVPuvmVQvv6rv2Tp030y99qmziwZ6EHe9YFnsnh+n/x85oi2x/9u//oXc8hHFuUn3xiV/gPKr/r6g49enKsu2Tx33Tx4vc3JS8saMueapuz+1vbrWgA6WqEWxFfrrLPOSnNzc9sxbty4zi6Jbmzx/D7p26+Sxlf5R/6+2wfmmQWmPQD198GTF+Snf7w3X7v04cy67oGcf9VDbb9I2WKb5a/62uFj1qwheX7J+h+BfuvVzZ7SBRur0klHF9Wlm5NPfepTWbp0adsxb968f/0i2Eijt1yZFS+V/uXTbfr2q2TgYL9ZBOpv8JDW7DRxWSbssKYZuevmQdl89Mp19jn5ZwueWLOHU/Ow1eu9/rtfDk3/ga15035LO7ZggH/Spad19evXL/369fvXN0IVmjdbvc4O71vv+FLetF9Lbr9+cCqVUvr1b01SyoqX2jcqe09dksFDW9fzVC+A+rrh8iF56O6BOfK0v6Xh739VLXu+IX36VtK33z9+rVqpJD8+d2SSZPe3Pr/O+yx5plfuunlw3vae59I4oAv/OhY6iQXx1SlUc/LCCy/kL3/5S9vXjz76aO6+++5sttlm2XLLLTuxMnqST896PCuWl3L/7QOz5Ok1T+uaetizWfFSKd//4ugkyRZbr8yX/vuvufFXQzLvL/1SKZey/etfzNsPei4LnuibS7+3eSd/CqAn+fPvB+ZH54xasyZk6Orcf+fA/Pa/N8se+7bk3/9zcdt9f/nzgHzpI1vlbe95LmPGr8iK5Q259arm3PuHQZl62NPZbpeX1nnvGy8fmtbVJVO6gLooVHNy++23Z9999237+sQTT0ySzJgxIxdddFEnVUVPc+s1TXn7vy/JQUctzoDBrVn6TO/ccmVzLjlnZOY/tiape/qpPrnlN83Zda8X8m+HPJdevStZ9GSf/OrCzfOT80bm+ecK9UcL6OaGjVqVXr0q+fnMEXlxWUNGjVuZwz/xVA46enF6veyvo5FjV+Z1E1/I/17VnOcW90mpVMmW263IR788L1MPe2a97339pUMzZPNVecNb1k1VADpaqVLpwltI/pOWlpY0NzfnbTkwvUuvspMUQBdwzfy7O7sEgE3W8nw5Q7d/JEuXLk1TU895kuXan0vfNPWM9O5T3/3PVq9ant9feVqX/J536QXxAABA92HuCQAA1IgF8dWRnAAAAIUgOQEAgFrpjE0RJScAAACbRnMCAAAUgmldAABQIxbEV0dyAgAAFILkBAAAaqVcWXPUe8wuSnICAAAUguYEAAAoBNO6AACgVuxzUhXJCQAAUAiSEwAAqJFSOuFRwvUdrkNJTgAAgEKQnAAAQK1UKmuOeo/ZRUlOAACAQtCcAAAAhWBaFwAA1Eip0gkL4rvurC7JCQAAUAySEwAAqBWbMFZFcgIAABSC5gQAACgE07oAAKBGSpVKSnXed6Te43UkyQkAAFAIkhMAAKiV8t+Peo/ZRUlOAACAQpCcAABAjVhzUh3JCQAAUAiaEwAAoBBM6wIAgFqxQ3xVJCcAAEAhSE4AAKBWKpU1R73H7KIkJwAAQCFoTgAAgEIwrQsAAGqkVFlz1HvMrkpyAgAAFILkBAAAasWC+KpITgAAgEKQnAAAQI2UymuOeo/ZVUlOAACAQtCcAAAAhWBaFwAA1IoF8VWRnAAAQA921lln5Y1vfGMGDx6cESNG5D3veU8efPDBdvcsX748xxxzTIYNG5ZBgwbl4IMPzsKFC9vd88QTT+SAAw7IgAEDMmLEiHz84x/P6tWrq6pFcwIAALVS6aSjCjfeeGOOOeaY/P73v8/s2bOzatWq7Lffflm2bFnbPR/72Mfy61//Oj/72c9y4403Zv78+TnooIParre2tuaAAw7IypUrc+utt+biiy/ORRddlNNOO62qWkqVShfOff5JS0tLmpub87YcmN6lPp1dDsAmuWb+3Z1dAsAma3m+nKHbP5KlS5emqamps8upm7afS9/4mfTu3VjXsVevXp4b/vDFjf6eL168OCNGjMiNN96YffbZJ0uXLs3w4cPz4x//OO9973uTJA888EB22GGHzJkzJ29605ty1VVX5V3velfmz5+fkSNHJklmzZqVT37yk1m8eHH69u27QWNLTgAAgDZLly5Nkmy22WZJkjvuuCOrVq3K5MmT2+557Wtfmy233DJz5sxJksyZMyc777xzW2OSJFOmTElLS0vuvffeDR7bgngAAKiRUqWSUp0nKq0dr6Wlpd35fv36pV+/fq/62nK5nBNOOCF77bVXdtpppyTJggUL0rdv3wwZMqTdvSNHjsyCBQva7nl5Y7L2+tprG0pyAgAA3dC4cePS3Nzcdpx11ln/8jXHHHNM7rnnnvz0pz+tQ4XrkpwAAECtdOKjhOfNm9duzcm/Sk2OPfbYXHHFFbnpppsyduzYtvOjRo3KypUrs2TJknbpycKFCzNq1Ki2e2677bZ277f2aV5r79kQkhMAAOiGmpqa2h2v1JxUKpUce+yxufTSS/O73/0uEyZMaHd99913T58+fXLddde1nXvwwQfzxBNPZNKkSUmSSZMm5c9//nMWLVrUds/s2bPT1NSUHXfccYNrlpwAAECtVJKUO2HMKhxzzDH58Y9/nMsvvzyDBw9uWyPS3Nyc/v37p7m5OUcccUROPPHEbLbZZmlqaspxxx2XSZMm5U1velOSZL/99suOO+6Y97///Tn77LOzYMGCnHLKKTnmmGP+ZWLzcpoTAADowWbOnJkkedvb3tbu/IUXXpjDDz88SfL1r389DQ0NOfjgg7NixYpMmTIl3/rWt9ru7dWrV6644op8+MMfzqRJkzJw4MDMmDEjZ5xxRlW1aE4AAKAH25BtDxsbG3PBBRfkggsueMV7ttpqq1x55ZWbVIvmBAAAaqQzHyXcFVkQDwAAFILkBAAAaqWSTniUcH2H60iSEwAAoBA0JwAAQCGY1gUAALXSiTvEd0WSEwAAoBAkJwAAUCvlJKVOGLOLkpwAAACFoDkBAAAKwbQuAACoETvEV0dyAgAAFILkBAAAasWjhKsiOQEAAApBcgIAALUiOamK5AQAACgEzQkAAFAIpnUBAECtmNZVFckJAABQCJITAAColXKSUieM2UVJTgAAgELQnAAAAIVgWhcAANRIqVJJqc4L1Os9XkeSnAAAAIUgOQEAgFrxKOGqSE4AAIBCkJwAAECtlCtJqc5JRllyAgAAsEk0JwAAQCGY1gUAALViQXxVJCcAAEAhSE4AAKBmOiE5ieQEAABgk2hOAACAQjCtCwAAasWC+KpITgAAgEKQnAAAQK2UK6n7AnU7xAMAAGwayQkAANRKpbzmqPeYXZTkBAAAKATNCQAAUAimdQEAQK14lHBVJCcAAEAhSE4AAKBWPEq4KpITAACgEDQnAABAIZjWBQAAtWJBfFUkJwAAQCFITgAAoFYq6YTkpL7DdSTJCQAAUAiSEwAAqBVrTqoiOQEAAApBcwIAABSCaV0AAFAr5XKScieM2TVJTgAAgEKQnAAAQK1YEF8VyQkAAFAImhMAAKAQTOsCAIBaMa2rKpITAACgECQnAABQK+VKkjonGWXJCQAAwCaRnAAAQI1UKuVUKvXdFLHe43UkyQkAAFAImhMAAKAQTOsCAIBaqVTqv0Ddo4QBAAA2jeQEAABqpdIJjxKWnAAAAGwazQkAAFAIpnUBAECtlMtJqc77jtjnBAAAYNNITgAAoFYsiK+K5AQAACgEyQkAANRIpVxOpc5rTirWnAAAAGwazQkAAFAIpnUBAECtWBBfFckJAABQCJITAAColXIlKUlONpTkBAAAKATNCQAAUAimdQEAQK1UKknqvO+IaV0AAACbRnICAAA1UilXUqnzgviK5AQAAGDTaE4AAIBCMK0LAABqpVJO/RfE13m8DiQ5AQAACkFyAgAANWJBfHUkJwAAQCFITgAAoFasOamK5AQAACiEbpWcrJ1ftzqrkq471Q4gSdLyfNf9zRfAWi0vrPm7rCuvg9gUnfFz6eqsqu+AHahbNSfPP/98kuSWXNnJlQBsuqHbd3YFAB3n+eefT3Nzc2eXUTd9+/bNqFGjcsuCzvm5dNSoUenbt2+njL0pSpVu1MaWy+XMnz8/gwcPTqlU6uxy6KZaWloybty4zJs3L01NTZ1dDsBG8/cZ9VCpVPL8889nzJgxaWjoWSsKli9fnpUrV3bK2H379k1jY2OnjL0pulVy0tDQkLFjx3Z2GfQQTU1N/jEHugV/n1FrPSkxebnGxsYu2SB0pp7VvgIAAIWlOQEAAApBcwJV6tevX04//fT069evs0sB2CT+PgOKplstiAcAALouyQkAAFAImhMAAKAQNCcAAEAhaE4AAIBC0JzABlqxYkU++clPZsyYMenfv38mTpyY2bNnd3ZZAFV74YUXcvrpp+ed73xnNttss5RKpVx00UWdXRaA5gQ21OGHH55zzjkn06dPzze+8Y306tUrU6dOzS233NLZpQFU5emnn84ZZ5yR+++/P69//es7uxyANh4lDBvgtttuy8SJE/OVr3wlJ510UpJk+fLl2WmnnTJixIjceuutnVwhwIZbsWJFnnvuuYwaNSq333573vjGN+bCCy/M4Ycf3tmlAT2c5AQ2wM9//vP06tUrRx11VNu5xsbGHHHEEZkzZ07mzZvXidUBVKdfv34ZNWpUZ5cBsA7NCWyAu+66K9tvv32amprand9zzz2TJHfffXcnVAUA0L1oTmADPPXUUxk9evQ659eemz9/fr1LAgDodjQnsAFeeuml9OvXb53zjY2NbdcBANg0mhPYAP3798+KFSvWOb98+fK26wAAbBrNCWyA0aNH56mnnlrn/NpzY8aMqXdJAADdjuYENsCuu+6ahx56KC0tLe3Oz507t+06AACbRnMCG+C9731vWltb853vfKft3IoVK3LhhRdm4sSJGTduXCdWBwDQPfTu7AKgK5g4cWIOOeSQfOpTn8qiRYuy7bbb5uKLL85jjz2W73//+51dHkDVvvnNb2bJkiVtTxv89a9/nSeffDJJctxxx6W5ubkzywN6KDvEwwZavnx5Tj311PzoRz/Kc889l1122SWf//znM2XKlM4uDaBq48ePz+OPP77ea48++mjGjx9f34IAojkBAAAKwpoTAACgEDQnAABAIWhOAACAQtCcAAAAhaA5AQAACkFzAgAAFILmBAAAKATNCQAAUAiaE4ANNH78+Bx++OFtX99www0plUq54YYbOq2mf/bPNb6SUqmUz372s1W//0UXXZRSqZTbb7+9+uJewWc/+9mUSqUOez8Aui7NCdAlrP2heO3R2NiY7bffPscee2wWLlzY2eVV5corr9yoxgAAurvenV0AQDXOOOOMTJgwIcuXL88tt9ySmTNn5sorr8w999yTAQMG1LWWffbZJy+99FL69u1b1euuvPLKXHDBBRoUAPgnmhOgS9l///2zxx57JEn+8z//M8OGDcs555yTyy+/PO973/vW+5ply5Zl4MCBHV5LQ0NDGhsbO/x9AaCnMq0L6NLe/va3J0keffTRJMnhhx+eQYMG5a9//WumTp2awYMHZ/r06UmScrmcc889N6973evS2NiYkSNH5uijj85zzz3X7j0rlUq+8IUvZOzYsRkwYED23Xff3HvvveuM/UprTubOnZupU6dm6NChGThwYHbZZZd84xvfaKvvggsuSJJ209TW6ugaN9Tjjz+ej3zkI3nNa16T/v37Z9iwYTnkkEPy2GOPrff+F198MUcffXSGDRuWpqamfOADH1inxiS56qqr8pa3vCUDBw7M4MGDc8ABB2xSnQB0b5IToEv761//miQZNmxY27nVq1dnypQp2XvvvfPVr361bbrX0UcfnYsuuigf/OAH89GPfjSPPvpovvnNb+auu+7K//7v/6ZPnz5JktNOOy1f+MIXMnXq1EydOjV33nln9ttvv6xcufJf1jN79uy8613vyujRo3P88cdn1KhRuf/++3PFFVfk+OOPz9FHH5358+dn9uzZ+eEPf7jO6+tR4/r84Q9/yK233ppp06Zl7NixeeyxxzJz5sy87W1vy3333bfOlLljjz02Q4YMyWc/+9k8+OCDmTlzZh5//PG2hi1JfvjDH2bGjBmZMmVKvvzlL+fFF1/MzJkzs/fee+euu+7K+PHjN6pWALqxCkAXcOGFF1aSVK699trK4sWLK/Pmzav89Kc/rQwbNqzSv3//ypNPPlmpVCqVGTNmVJJUTj755Havv/nmmytJKpdcckm781dffXW784sWLar07du3csABB1TK5XLbfZ/+9KcrSSozZsxoO3f99ddXklSuv/76SqVSqaxevboyYcKEylZbbVV57rnn2o3z8vc65phjKuv767cWNb6SJJXTTz+97esXX3xxnXvmzJlTSVL5wQ9+0HZu7f8fdt9998rKlSvbzp999tmVJJXLL7+8UqlUKs8//3xlyJAhlSOPPLLdey5YsKDS3Nzc7vzpp5++3u8HAD2PaV1AlzJ58uQMHz4848aNy7Rp0zJo0KBceuml2WKLLdrd9+EPf7jd1z/72c/S3Nycf/u3f8vTTz/dduy+++4ZNGhQrr/++iTJtddem5UrV+a4445rN93qhBNO+Je13XXXXXn00UdzwgknZMiQIe2ubcijcutR4yvp379/23+vWrUqzzzzTLbddtsMGTIkd9555zr3H3XUUW0pTrLm+927d+9ceeWVSdYkSEuWLMn73ve+dp+lV69emThxYttnAYCXM60L6FIuuOCCbL/99undu3dGjhyZ17zmNWloaP97lt69e2fs2LHtzj388MNZunRpRowYsd73XbRoUZI1ay+SZLvttmt3ffjw4Rk6dOir1rZ2itlOO+204R+ozjW+kpdeeilnnXVWLrzwwvztb39LpVJpu7Z06dJ17v/nsQcNGpTRo0e3rVF5+OGHk/xjTdA/a2pq2qg6AejeNCdAl7Lnnnu2Pa3rlfTr12+dhqVcLmfEiBG55JJL1vua4cOHd1iNG6szazzuuONy4YUX5oQTTsikSZPS3NycUqmUadOmpVwuV/1+a1/zwx/+MKNGjVrneu/e/vkBYF3+dQB6hG222SbXXntt9tprr3ZTmP7ZVlttlWTNb/633nrrtvOLFy9e79Oo/nmMJLnnnnsyefLkV7zvlaZ41aPGV/Lzn/88M2bMyNe+9rW2c8uXL8+SJUvWe//DDz+cfffdt+3rF154IU899VSmTp3a9lmSZMSIEa/6vQCAl7PmBOgRDj300LS2tubzn//8OtdWr17d9kP45MmT06dPn5x//vntpjade+65/3KM3XbbLRMmTMi55567zg/1L3+vtXuu/PM99ajxlfTq1avdeyXJ+eefn9bW1vXe/53vfCerVq1q+3rmzJlZvXp19t9//yTJlClT0tTUlDPPPLPdfWstXrx4o2sFoPuSnAA9wlvf+tYcffTROeuss3L33Xdnv/32S58+ffLwww/nZz/7Wb7xjW/kve99b4YPH56TTjopZ511Vt71rndl6tSpueuuu3LVVVdl8803f9UxGhoaMnPmzLz73e/Orrvumg9+8IMZPXp0Hnjggdx777255pprkiS77757kuSjH/1opkyZkl69emXatGl1qfGVvOtd78oPf/jDNDc3Z8cdd8ycOXNy7bXXtntE88utXLky73jHO3LooYfmwQcfzLe+9a3svffe+T//5/8kWbOmZObMmXn/+9+f3XbbLdOmTcvw4cPzxBNP5De/+U322muvfPOb39yoWgHovjQnQI8xa9as7L777vn2t7+dT3/60+ndu3fGjx+fww47LHvttVfbfV/4whfS2NiYWbNm5frrr8/EiRPz29/+NgcccMC/HGPKlCm5/vrr87nPfS5f+9rXUi6Xs8022+TII49su+eggw7Kcccdl5/+9Kf50Y9+lEqlkmnTptWtxvX5xje+kV69euWSSy7J8uXLs9dee+Xaa6/NlClT1nv/N7/5zVxyySU57bTTsmrVqrzvfe/Leeed127K2n/8x39kzJgx+dKXvpSvfOUrWbFiRbbYYou85S1vyQc/+MGNqhOA7q1U+eccHwAAoBNYcwIAABSC5gQAACgEzQkAAFAImhMAAKAQNCcAAEAhaE4AAIBC0JwAAACFoDkBAAAKQXMCAAAUguYEAAAoBM0JAABQCJoTAACgEDQnAABAIfz/jshTKo+d8dMAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 12,
"metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHmCAYAAACVnk83AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkxklEQVR4nO3deZhcdZ3v8fc3nY2sEIIQkkgimwRUwLB4GUFARdxQ7+jgKCKizDig4lwXdFBERdDrFZxxRYIwXAVluQMzKo6C64yyiQiGJSEYkpAAIYGEkLX7e/+oQ1UT0p0Oqe7q+uX9ep7zpM6pU+d8qx86fPP5/c45kZlIkiSVakirC5AkSepPNjuSJKloNjuSJKloNjuSJKloNjuSJKloNjuSJKloQ1tdQE8mTujIaVOHtboMqVj3/WlUq0uQiraGVazLtdHqOrbEMUeOzseWdTb9uLf9ae1PM/M1TT9wHw3aZmfa1GHc/NOprS5DKtYxu+7f6hKkot2UN7S6hC322LJObv7p85t+3I5JcyY2/aBbYNA2O5IkaWAl0EVXq8toOpsdSZJUSTqzvGbHCcqSJKloJjuSJAl4ehirvGdmmuxIkqSimexIkqQ6JyhLkqRiJUlnOowlSZLUVkx2JElSnROUJUmS2ozJjiRJAmqXnnea7EiSJLUXkx1JklRX4pwdmx1JkgRUw1heei5JktReTHYkSVJdefdPNtmRJEmFM9mRJElA9bgIJyhLkqRiJXSW1+s4jCVJkspmsiNJkoDapedOUJYkSWozJjuSJKkSdBKtLqLpbHYkSRJQDWM5QVmSJKm9mOxIkqS6EoexTHYkSVLRTHYkSRJQPfW8wGTHZkeSJNV1ZXnNjsNYkiSpaCY7kiQJKHcYy2RHkiQVzWRHkiQBkASdBeYg5X0jSZKkbkx2JElSXYlXY9nsSJIkwAnKkiRJbclkR5IkVYLOLC8HKe8bSZIkdWOyI0mSgNqcna4CcxCbHUmSVOcEZUmSpDZjsiNJkgDIdIKyJElS2zHZkSRJdV0Fztmx2ZEkScDTd1Aub9CnvG8kSZLUjcmOJEmqOEFZkiSp7ZjsSJIkoNw7KJf3jSRJkrox2ZEkSXWd6aXnkiSpUEl46bkkSVK7MdmRJEl1XV56LkmS1F5MdiRJElDu4yJsdiRJElBNUC7waqzy2jdJkqRuTHYkSVKdd1CWJElqMyY7kiQJgEyKfOq5zY4kSaoEXThBWZIkqa2Y7EiSJKC6z06Bw1jlfSNJkqRuTHYkSVJdiXdQLu8bSZIkdWOyI0mSgNrjIrp8XIQkSSpZJ0OavmxORHw4Iv4cEXdFxOURMTIipkfETRExNyJ+EBHDq31HVOtzq/enbe74NjuSJKllImIy8EFgZmbuB3QAxwNfBM7PzD2A5cDJ1UdOBpZX28+v9uuVzY4kSQJql5535ZCmL30wFNguIoYCo4DFwFHAVdX7lwJvql4fV61TvX90RPQ69mazI0mSWiYzFwFfBh6k1uQ8AdwGPJ6ZG6rdFgKTq9eTgQXVZzdU++/Y2zmcoCxJkipBZ/88LmJiRNzabf3CzLwQICJ2oJbWTAceB64EXtPMk9vsSJIkoDGM1Q+WZubMHt57JfBAZj4KEBHXAIcB20fE0Cq9mQIsqvZfBEwFFlbDXuOBx3o7ucNYkiSplR4EDo2IUdXcm6OB2cAvgL+u9jkRuLZ6fV21TvX+jZmZvZ3AZEeSJNX10zBWjzLzpoi4CvgDsAG4HbgQ+BFwRUR8vto2q/rILOCyiJgLLKN25VavbHYkSVJLZeZZwFkbbZ4HHLyJfdcAb92S49vsSJIkADKjv+bstJTNjiRJqusssNkp7xtJkiR1Y7IjSZKA6tLzAZ6gPBBMdiRJUtFMdiRJUiWcsyNJktRuTHYkSRLw9OMiypuzY7MjSZLqOgsc9CnvG0mSJHVjsiNJkgBIoshhLJMdSZJUNJMdSZJU11VgDmKzI0mSAMiEToexJEmS2ovJjiRJqnOCsiRJUpsx2ZEkScDTl56Xl4PY7EiSpLpOHMaSJElqKyY7kiQJKPdBoCY7kiSpaCY7kiSp4gRlbaMenDOCr31yCnP+NIrxO27gfZ96iMOOfYIlC4Zz4iEzGDmqs77v2059hHd8+OH6+h9+PYZZn9+VBfePYOz2nZxy1kMc8cbHW/AtpPbxpavmss+BT9HZWRtOWLpkGO99+QsBOPLNyznpE4sZP6GTP/x6DF/5x6msfNy/yqXe+BuiXnVugM+cNJ3XnfAY515xP3f+bgyfPnE63/jP+xg6PAG45p476djEf0nz7xvBeafuxke/+iAHHr6SVSs6eHJFxwB/A6k9ff3MyVz//R2fsW23vdbwwS8u5FMnTGfundtx+v9eyGnnLuLc9+/WoipVoi6vxnruIuI1EXFvRMyNiDMG6rzaOgvmjuSxJcN4yymP0tEB+//Vk+x70CpuuHqHzX72+xfswutOeIyDjlpJx1AYN6GTXaetG4CqpTId9Zbl3PSzcdx10xjWPNXBpV/ahcOOfYLtRndu/sNSHzz9bKxmL602IM1ORHQAXweOBWYAb4+IGQNxbjVfZvCXe0bW1084eAbveOkMvnz6VJ54rJHc3POHUQD83VF78/b99+WLpz2fFctNdqS+OOkTi/nhXXfxlWvn8OKXPQnAbnuvYd7s7er7LJ4/gg3rg8kvWNuqMqW2MFDJzsHA3Mycl5nrgCuA4wbo3NoKU3Zfw/YTN3DlN57HhvVw2y/HcufvR7N29RDGT9jAv/zkXi67eTZfu/4+Vq/q4IunNeL0pYuHccNVE/jUd/7Cxf91N2vXDOEbZ05u4beR2sOscybx7kP34R0HzuDH/3dHzr70ASbttpaRo7pYteKZf22vWjGEUWO6WlSpStSVQ5q+tNpAVTAZWNBtfWG1TYPc0GFw1sUPcPMN4zh+//24+ts7cfgbHmfipPVsN7qLvV6ymo6hsMNOGzj1nIXc9qtxPPVk7T+r4SOTV//NY0zZfS3bje7i7R98mFtuHNfibyQNfvfePprVqzpYv24IP79yArNvGc1BR69gzVNDGDX2mY3NqLFd9d85SZs2qCYoR8QpwCkAz588qErbpr1gxhq+fM3c+vrpb9iTV71t2bP2i2pYNqu/i6fvs5oC57lJAy6z9vs1/96RvGDG6vr2XZ6/lmHDk0XzRrSwOpWk9mys8v7iHqh/DiwCpnZbn1Jte4bMvDAzZ2bmzJ12dG7HYDFv9kjWrQnWPBVc+c2dWPbIUF71tmXc84dRLJg7gq4uWLGsg2+cOZkX/4+VjB5X63aO+Ztl/OcPJrB4/nDWPBX84OvP45BXrmjxt5EGt9HjOnnpESsYNqKLIR3JkW9ezosOXcWtvxjHjdfswCGvWsF+Bz/JiO06eddHl/BfPxnP6lX+fanm6SKavrTaQMUntwB7RsR0ak3O8cDfDtC5tZVuuGoC118+gQ3rg/0OWcW5V9zP8BHJ4vnD+e55k3h86VBGj+3igMNX8olvzK9/7pi3L+PhhcP50Ov2AmDmkSt4/+ee1eNK6mbo0OTEjy9h6h5r6eqsXRF59num1dObfzljCh//+oOM26GT238zhv/z4ambOaKkyMyBOVHEa4ELgA7g4sw8p7f9Z75kZN78U3+Jpf5yzK77t7oEqWg35Q2syGWtjzW2wIR9dspjvvvmph/3ipd957bMnNn0A/fRgE2MycwfAz8eqPNJkiTBIJugLEmSWmswXCrebDY7kiSpJr0aS5Ikqe2Y7EiSJAASHwQqSZLUdkx2JElSnXN2JEmS2ozJjiRJAqo5OwUmOzY7kiSprsRmx2EsSZJUNJMdSZIEQOJNBSVJktqOyY4kSaor8aaCNjuSJKkmnaAsSZLUdkx2JEkSUO59dkx2JElS0Ux2JElSXYnJjs2OJEkCvM+OJElSWzLZkSRJdWmyI0mS1F5MdiRJUl2Jd1A22ZEkSUUz2ZEkSQBkoY+LsNmRJEl1TlCWJElqMyY7kiSp4k0FJUmS2o7JjiRJqitxzo7NjiRJAiAp82osh7EkSVLRTHYkSVJN1u61UxqTHUmSVDSTHUmSVFfis7FsdiRJElCboFzi1VgOY0mSpKKZ7EiSpIp3UJYkSWo7JjuSJKnOS88lSZLajMmOJEmqK/FqLJsdSZIE1IawSmx2HMaSJElFM9mRJEl1XnouSZLUZkx2JElSXYmXntvsSJKkOicoS5IktRmTHUmSBEASJjuSJEntxmRHkiTVFTg/2WZHkiRVvIOyJElS/4iI7SPiqoi4JyLujoiXRcSEiPhZRMyp/tyh2jci4p8jYm5E/CkiDuzt2DY7kiSpIfth6ZuvAtdn5guBlwB3A2cAN2TmnsAN1TrAscCe1XIK8M3eDmyzI0mSWioixgOHA7MAMnNdZj4OHAdcWu12KfCm6vVxwL9mze+B7SNiUk/Ht9mRJEl1mdH0pQ+mA48C342I2yPioogYDeycmYurfZYAO1evJwMLun1+YbVtk2x2JElSXWbzF2BiRNzabTllo9MOBQ4EvpmZBwCraAxZVXXllg2KbXRwSZKk/rQ0M2f28v5CYGFm3lStX0Wt2Xk4IiZl5uJqmOqR6v1FwNRun59Sbdskkx1JkgRU84lbMIyVmUuABRGxd7XpaGA2cB1wYrXtRODa6vV1wLuqq7IOBZ7oNtz1LCY7kiRpMPgA8L2IGA7MA06iFsr8MCJOBuYDb6v2/THwWmAu8FS1b49sdiRJUk0CLbqpYGb+EdjUUNfRm9g3gVP7emyHsSRJUtFMdiRJUl0W+HAsmx1JktRQYLPjMJYkSSqayY4kSar0+Y7HbcVkR5IkFc1kR5IkNRQ4Z8dmR5Ik1SQOY0mSJLUbkx1JktRQ4DCWyY4kSSqayY4kSeqmvDk7NjuSJKnBYSxJkqT20mOyExGX0Yf+LjPf1dSKJElS6xSY7PQ2jDV3wKqQJEnqJz02O5l59kAWIkmSWiyBbfmmghHxqoiYFRH/Xq3PjIij+q80SZKkrdenZiciPgB8E5gDHF5tXg18vp/qkiRJLZDZ/KXV+prsnA68MjPPA7qqbfcAe/dHUZIkqUWyH5YW62uzMxZYUL1+uuxhwLqmVyRJktREfW12fg2csdG2DwK/aG45kiSppTKav7RYX++g/AHg3yPifcDYiLgXWAm8vt8qkyRJaoI+NTuZuTgiDgIOAnajNqR1c2Z29f5JSZLUTmIQzLFpti15NtYQavN0ADoo8UlhkiRtywbJhOJm61OzExEvBv4NGAEsAqYAayLizZl5R/+VJ0mStHX6OkH5YuDrwJTMPBiYDHyt2i5JkorQD5OTB8EE5b42O3sBF2TWbg1U/flVYM/+KkySJKkZ+trs/Bh440bb3gD8qLnlSJKklirwpoI9ztmJiMtolNgBXBERt1G7Emsq8FLg2n6vUJIkDZxB0Jw0W28TlOdutH5Xt9ezgZ82vxxJkqTm6rHZycyzB7IQSZI0CGxjyc4zRMRwag/+nEi3e+xk5o39UJckSVJT9PU+O38FXEntPjvjgBU0Hg76gn6rTpIkDZxkUFwq3mx9vRrrfOBLmTkBWFn9+TngG/1WmSRJUhP0dRhrL2r31enuPOAB4MtNrUiSJLXMtvxsrCeoDV89DiyOiBnAY8CYfqpLkiS1QoHNTl+Hsa4BXlu9vhj4BXAbcFV/FCVJktQsfUp2MvP0bq+/HBE3UUt1vNeOJEka1Pp86Xl3mfmbZhciSZLUH3p7XMRv6MPIXWYe3tSKJElSy2xrE5QvGrAqNuG+P43imMkHtLIEqWhXL/xdq0uQinbEsU+2uoTnpsD77PT2uIhLB7IQSZKk/vCc5uxIkqQCJdv0peeSJEltyWRHkiQ1FJjs2OxIkqS6Eq/G6tMwVkSMiIhzImJeRDxRbXt1RJzWv+VJkiRtnS156vl+wDtoBFx/Bt7fH0VJkqQWyX5YWqyvw1hvBvbIzFUR0QWQmYsiYnL/lSZJkrT1+trsrNt434jYidqTzyVJUikGQRLTbH0dxroSuDQipgNExCTga8AV/VWYJElSM/S12fkk8ABwJ7A9MAd4CDi7f8qSJEkDLbJ/llbr0zBWZq4DPgx8uBq+WpqZg6B8SZLUVNvSs7G6i4gXbLRpbETth5GZ85pdlCRJUrP0dYLyXGpTlrq3e08nOx1NrUiSJLVOgeM2fR3GesbcnojYBTgL+E1/FCVJktQsz+lxEZm5JCJOB+4Dvt/UiiRJUssMhgnFzbY1z8baGxjVrEIkSdIgsK02OxHxG5759UcB+wKf7Y+iJEmSmqWvyc5FG62vAu7IzDlNrkeSJLXKILkvTrNtttmJiA7gKOCUzFzb/yVJkiQ1z2abnczsjIhXA10DUI8kSWqlApOdvj4u4nzg7IgY1p/FSJKkFst+WFqs12YnIt5evfwA8FFgZUQsiIgHn176vUJJkqStsLlhrG8DlwPvHIBaJElSi22LE5QDIDN/NQC1SJIkNd3mmp2OiDiSZz4T6xky88bmliRJktQ8m2t2RgCz6LnZSWDjJ6JLkiQNGptrdlZlps2MJEnbim1wzo4kSdpWFHoH5c3dZ6fHuTqSJEntoNdkJzPHDlQhkiRpENgGkx1JkqS25pwdSZLUUGCyY7MjSZKA2kTdbXGCsiRJUlsz2ZEkSQ0mO5IkSe3FZEeSJNUUelNBmx1JktRQYLPjMJYkSSqayY4kSWow2ZEkSWovJjuSJKmuxAnKJjuSJKloJjuSJKnBZEeSJBUr+2npg4joiIjbI+I/qvXpEXFTRMyNiB9ExPBq+4hqfW71/rTNHdtmR5IkDQYfAu7utv5F4PzM3ANYDpxcbT8ZWF5tP7/ar1c2O5IkqS6y+ctmzxkxBXgdcFG1HsBRwFXVLpcCb6peH1etU71/dLV/j2x2JElSq10AfAzoqtZ3BB7PzA3V+kJgcvV6MrAAoHr/iWr/HtnsSJKkhv6ZszMxIm7ttpzy9Oki4vXAI5l5W399Ja/GkiRJdf10n52lmTmzh/cOA94YEa8FRgLjgK8C20fE0Cq9mQIsqvZfBEwFFkbEUGA88FhvJzfZkSRJLZOZn8jMKZk5DTgeuDEz3wH8AvjrarcTgWur19dV61Tv35iZvbZoNjuSJKmhRZeeb8LHgX+MiLnU5uTMqrbPAnastv8jcMbmDuQwliRJGhQy85fAL6vX84CDN7HPGuCtW3Jcmx1JklSzdUnMoGWzI0mSAIhqKY1zdiRJUtFMdiRJUkOBw1gmO5IkqWgmO5Ikqa6fbirYUiY7kiSpaCY7kiSpocBkx2ZHkiQ1FNjsOIwlSZKKZrIjSZJq0gnKkiRJbcdkR5IkNRSY7NjsSJKkOoexJEmS2ozJjiRJajDZkSRJai8mO5Ikqa7EOTs2O5IkqSZxGEuSJKndmOxIkqQGkx1JkqT2YrIjSZIACMqcoGyyI0mSimayI0mSGgpMdmx2JElSXWR53Y7DWJIkqWgmO5IkqcabCkqSJLUfkx1JklRX4qXnNjuSJKmhwGbHYSxJklQ0kx1JklRX4jCWyY4kSSqayY4kSWooMNmx2ZEkSTXpMJYkSVLbMdmRJEkNJjuSJEntxWRHkiQBEJQ5Z8dmR5IkNWR53Y7DWJIkqWgmO5Ikqa7EYSyTHUmSVDSTHUmSVJN46bkkSVK7MdmRJEl10dXqCprPZkeSJDU4jCVJktReTHa0xb505Rz2OfApOjsDgKVLhvHew/cBYPyEDbz/sws5+OgVdHUFt9w4ji9+YLdWlisNegvnjOQ7/zSdeXeOZtyEDbzrzPkccuxyFty3Hf9y+u4smT8SgBe8aBUnf/YvTN1rNQDr1wYXnzWNm67fgc71Q9j7oJX83bnz2HHS+lZ+HbW5Ei89H5BmJyIuBl4PPJKZ+w3EOdW/vn7mFK6/fMdnbf/0RQ9w7x2jeOfB+7J29RCm7b26BdVJ7aNzA5z3nr159QkP8+nL72b278dx7rv35ss/vZMJO6/jI9+ew05T1tLVBddfsgtf+Yc9OP/ndwLwo1m7cO9tY/jKz+5k1NgNfOvjL2DWp6bzsYvua/G3kgaXgRrGugR4zQCdSy1y4OErmLjrOi763K48tbKDzg3B/X8e1eqypEFt0dztWP7wcN7wviV0dMCLDlvBCw9aya+unsjo8Z08b+paIoCEIR3Jkr+MrH/24QUj2f+IJ9h+p/UMH5kc9sbHWHDfdq37Mmp/Se1xEc1eWmxAkp3M/HVETBuIc2lgnPSJh3jPJx9i4f0jueSLu/Cn341lnwOfYuH9I/nIBQ9y0FErWDx/ON/53GTu/P2YVpcrtZVMePCexj8UTpgxkzWrOsguOP4jC+vbjz7+ES4+axrLlgxj9PhOfn3NRA448vEWVKySlDiM5QRlbbFZX9iVd79sBu946b78+Hs7cvYlDzBpt7VMnLSema9YyR3/PYbj99+Pq7/9PD5z8TzG7bCh1SVLg9auu69h3MT1XPvNSWxYH/zxV+OZ/ftxrF3T+Ov5stm3ctndt/Dez/+F6futqm+fNH0NE3ddy/tmvpR3vvAgFs3djreevnBTp5G2aYOq2YmIUyLi1oi4dT1rW12OenDv7aNZvaqD9euG8PMrJzD7ltEcdNQK1q4Jljw4nJ9esSOdG4JfXbcDjz40nH0PWrX5g0rbqKHDko9fdB+33bADJx9wINddOIn/8frH2HGXdc/Yb+SoLl59wsP884d254mltVD+on+axvq1Q7jkzlv4/n03c8ixyzjnhH1a8TVUkuyHpcUGVbOTmRdm5szMnDmMEa0uR32UCRHwwN3bPWtodhAM1UqD3rQZT/G5q2dz6V238env3cPDD45kzwOefNZ+2QXrVnfw2JLhADwwezRHvu1Rxu7QybARyWtPWsKcP45hxTIvtJW6G1TNjga/0eM28NIjVjBsRBdDOpIj37yMFx26ilt/OZb/vn48Y8Z38sq3LmPIkOSvXvc4O01az59vGd3qsqVB7S+zR7FuTbB29RCu/dYklj8yjCPf+ih3/Ho88+4aRWcnPLWyg0vO3o3R229gyh61qxz3eMmT/PKqiaxa0cGG9cH1/7ozE3Zex7gJDh3ruQlqc3aavbTaQF16fjnwCmBiRCwEzsrMWQNxbjXX0KFw4scWM3WPtXR1woL7R3L2e6azaF7tCpHPnDSd076wkNPOWciCuSP4zHums2K5/8qUevOrqydywxXPo3N9sM/BK/n09+9m2Ihk1YoOLvrUNJYtHs7wkV3ssf+TnHnZPQwfWfu/x4mfepBZn5rGaS/fnw3rg+fv/RQfu+jeFn8btbVBcvVUs0UO0i81LibkIUNe2eoypGJdveB3rS5BKtoRxz7M7Xesi1bXsSXGbj8l93/Fh5p+3N9e+7HbMnNm0w/cR/6TW5Ik1Q2GYadmc86OJEkqmsmOJElqMNmRJElqLyY7kiSprsQ5OzY7kiSpJoGu8rodh7EkSVLRTHYkSVJDecGOyY4kSSqbyY4kSapzgrIkSSrbIH2M1NZwGEuSJBXNZEeSJNWVOIxlsiNJkopmsiNJkmqSIi89t9mRJEkABBBOUJYkSWovJjuSJKmhq9UFNJ/JjiRJKprJjiRJqnPOjiRJUpsx2ZEkSTVeei5JksqWPhtLkiSp3ZjsSJKkOp+NJUmS1GZMdiRJUkOBc3ZsdiRJUk1CeAdlSZKk5oqIqRHxi4iYHRF/jogPVdsnRMTPImJO9ecO1faIiH+OiLkR8aeIOLC349vsSJKkhszmL5u3AfhfmTkDOBQ4NSJmAGcAN2TmnsAN1TrAscCe1XIK8M3eDm6zI0mSWiozF2fmH6rXK4G7gcnAccCl1W6XAm+qXh8H/GvW/B7YPiIm9XR8mx1JktSQ/bBsgYiYBhwA3ATsnJmLq7eWADtXrycDC7p9bGG1bZOcoCxJkur66UGgEyPi1m7rF2bmhc86d8QY4Grg9MxcERH19zIzI57bXYBsdiRJUn9bmpkze9shIoZRa3S+l5nXVJsfjohJmbm4GqZ6pNq+CJja7eNTqm2b5DCWJElqaMEE5ahFOLOAuzPzK93eug44sXp9InBtt+3vqq7KOhR4ottw17OY7EiSpFY7DDgBuDMi/lht+yRwHvDDiDgZmA+8rXrvx8BrgbnAU8BJvR3cZkeSJNUk0IKbCmbmb4Ho4e2jN7F/Aqf29fgOY0mSpKKZ7EiSJACC7K+rsVrKZkeSJDUU2Ow4jCVJkopmsiNJkhpMdiRJktqLyY4kSapp0aXn/c1mR5Ik1ZV4NZbDWJIkqWgmO5IkqcFkR5Ikqb2Y7EiSpErfnlLebmx2JElSTVJks+MwliRJKprJjiRJaijwPjsmO5IkqWgmO5Ikqc6bCkqSJLUZkx1JktRQYLJjsyNJkmoS6Cqv2XEYS5IkFc1kR5IkVcq8g7LJjiRJKprJjiRJaigw2bHZkSRJDQU2Ow5jSZKkopnsSJKkGi89lyRJaj8mO5IkqZKQ5T323GZHkiQ1OEFZkiSpvZjsSJKkGicoS5IktR+THUmS1OCcHUmSpPZisiNJkhoKTHZsdiRJUiWLbHYcxpIkSUUz2ZEkSTUJdJV3B2WTHUmSVDSTHUmS1FDgnB2bHUmS1FBgs+MwliRJKprJjiRJqqTPxpIkSWo3JjuSJKkmIbO8S89tdiRJUoPDWJIkSe3FZEeSJDV46bkkSVJ7MdmRJEk1mT4bS5Ikqd2Y7EiSpIYC5+zY7EiSpLp0GEuSJKm9mOxIkqRKFjmMZbIjSZKKZrIjSZJqkiIfF2GzI0mSGgp8EKjDWJIkqWgmO5IkCaiNYmWBw1gmO5IkqWgmO5IkqSazyDk7NjuSJKnOYSxJkqQ2Y7IjSZIaChzGMtmRJElFixykz8CIiEeB+a2uQ302EVja6iKkwvl71l52y8ydWl3EloiI66n9d9ZsSzPzNf1w3D4ZtM2O2ktE3JqZM1tdh1Qyf8+k58ZhLEmSVDSbHUmSVDSbHTXLha0uQNoG+HsmPQfO2ZEkSUUz2ZEkSUWz2ZEkSUWz2dFWiYgJEfH/ImJVRMyPiL9tdU1SSSLitIi4NSLWRsQlra5Hakc+LkJb6+vAOmBnYH/gRxFxR2b+uaVVSeV4CPg8cAywXYtrkdqSE5T1nEXEaGA5sF9m3ldtuwxYlJlntLQ4qTAR8XlgSma+u9W1SO3GYSxtjb2ADU83OpU7gH1bVI8kSc9is6OtMQZYsdG2J4CxLahFkqRNstnR1ngSGLfRtnHAyhbUIknSJtnsaGvcBwyNiD27bXsJ4ORkSdKgYbOj5ywzVwHXAJ+NiNERcRhwHHBZayuTyhERQyNiJNABdETEyIjwSlppC9jsaGv9A7XLYR8BLgfe72XnUlOdCawGzgDeWb0+s6UVSW3GS88lSVLRTHYkSVLRbHYkSVLRbHYkSVLRbHYkSVLRbHYkSVLRbHYkSVLRbHakNhARl1RPvSYiXh4R9w7QeTMi9ujhvV9GxHv7eJy/RMQrn2MNz/mzkgQ2O1LTVP9TXh0RT0bEw1WDMqbZ58nM32Tm3n2o590R8dtmn1+S2o3NjtRcb8jMMcCBwEw2cadbb/UvSQPLZkfqB5m5CPgJsB/Uh4NOjYg5wJxq2+sj4o8R8XhE/HdEvPjpz0fEARHxh4hYGRE/AEZ2e+8VEbGw2/rUiLgmIh6NiMci4msRsQ/wLeBlVdL0eLXviIj4ckQ8WKVP34qI7bod66MRsTgiHoqI9/T1+0bE7hFxY3X+pRHxvYjYfqPdDoqI2RGxPCK+Wz3v6enP9/izkKStZbMj9YOImAq8Fri92+Y3AYcAMyLiAOBi4O+AHYFvA9dVzchw4N+oPVB1AnAl8D97OE8H8B/AfGAaMBm4IjPvBv4e+F1mjsnM7auPnAfsBewP7FHt/+nqWK8BPgK8CtgT2JJ5MgGcC+wK7ANMBT6z0T7vAI4Bdq9qOLM6b48/iy04vyT1yGZHaq5/q1KU3wK/Ar7Q7b1zM3NZZq4GTgG+nZk3ZWZnZl4KrAUOrZZhwAWZuT4zrwJu6eF8B1NrMD6amasyc01mbnKeTkREdd4PV3WsrOo7vtrlbcB3M/Ou6on2n+nrl87MuZn5s8xcm5mPAl8Bjthot69l5oLMXAacA7y92t7bz0KStppzB6TmelNm/ryH9xZ0e70bcGJEfKDbtuHUGpcEFuUzn9I7v4djTgXmZ+aGPtS2EzAKuK3W9wC1RKajer0rcFsfzvksEbEz8FXg5cBYav+QWr7Rbt2///zqfND7z0KStprJjjRwujcvC4BzMnP7bsuozLwcWAxMjm4dCfD8Ho65AHh+D5Oec6P1pcBqYN9u5xxfTaimOu/UPpxzU75Qne9FmTkOeCe1Rqq7jY/9ULfv0NPPQpK2ms2O1BrfAf4+Ig6JmtER8bqIGAv8DtgAfDAihkXEW6gNV23KzdSalPOqY4yMiMOq9x4GplRzgMjMruq850fE8wAiYnJEHFPt/0Pg3RExIyJGAWdtwfcZCzwJPBERk4GPbmKfUyNiSkRMAP4J+EEffhaStNVsdqQWyMxbgfcBX6M23DMXeHf13jrgLdX6MuBvgGt6OE4n8AZqk40fBBZW+wPcCPwZWBIRS6ttH6/O9fuIWAH8HNi7OtZPgAuqz82t/uyrs6ldbv8E8KMe6v0+8J/APOB+4POb+1lIUjPEM6cFSJIklcVkR5IkFc1mR5IkFc1mR5IkFc1mR5IkFc1mR5IkFc1mR5IkFc1mR5IkFc1mR5IkFc1mR5IkFe3/A6rOeMQcbD6tAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
"output_type": "display_data"
}
],
"source": [
+ "model.eval()\n",
"pred_probabilities = model(test_data[0]).detach()\n",
"pred_y_test = [1 if prob > 0.5 else 0 for prob in pred_probabilities]\n",
"\n",
"cm = confusion_matrix(test_data[1], pred_y_test)\n",
"disp = ConfusionMatrixDisplay(confusion_matrix=cm)\n",
- "disp.plot()"
+ "disp.plot();"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "ab0b0cf8",
"metadata": {},
@@ -381,6 +398,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "416eb518",
"metadata": {},
@@ -398,6 +416,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "62564ecc",
"metadata": {},
@@ -417,6 +436,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "0bc2b6ff",
"metadata": {},
@@ -431,19 +451,22 @@
"metadata": {},
"outputs": [],
"source": [
+ "train_data_loader = DataLoader(list(zip(x, y.astype(float))), batch_size=batch_size)\n",
+ "test_data_loader = DataLoader(\n",
+ " list(zip(test_data[0], test_data[1].astype(float))), batch_size=batch_size\n",
+ ")\n",
+ "\n",
"influence_values = compute_influences(\n",
- " model=model,\n",
- " loss=F.binary_cross_entropy,\n",
- " x=x,\n",
- " y=y.astype(float),\n",
- " x_test=test_data[0],\n",
- " y_test=test_data[1].astype(float),\n",
+ " differentiable_model=TorchTwiceDifferentiable(model, F.binary_cross_entropy),\n",
+ " training_data=train_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"up\",\n",
" inversion_method=\"direct\", # use 'cg' for big models\n",
")"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "d1e98dc2",
"metadata": {},
@@ -463,10 +486,11 @@
"metadata": {},
"outputs": [],
"source": [
- "mean_train_influences = np.mean(influence_values, axis=0)"
+ "mean_train_influences = np.mean(influence_values.numpy(), axis=0)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "f22020de",
"metadata": {},
@@ -482,24 +506,12 @@
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAL/CAYAAACqBkp7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVd/G8Xt200MavVcRhIQQegeRpiiC5UEsNEVFEXxQECw0C6JYHwtWQBRFiqAoiPTeCZBIkV4TagohdXfeP5C8RpJAAtlJ+X645oLMnJ25Z7Ihu789c45hmqYpAAAAAAAAADliszoAAAAAAAAAUBBRWAMAAAAAAABygcIaAAAAAAAAkAsU1gAAAAAAAIBcoLAGAAAAAAAA5AKFNQAAAAAAACAXKKwBAAAAAAAAuUBhDQAAAAAAAMgFCmsAAAAAAABALlBYAwAAhVpcXJwGDx6sqlWrys3NTYZhKDw8XMuXL5dhGBozZozVEYusqKgo9enTRxUrVpTdbpdhGIqJicn2MYZhqF27di7JV9hxLQEAuH5uVgcAAAD4N8MwJEmmaV73voYPH67PPvtMd955px555BHZ7XaVLVv2qgUc5L2+fftq0aJF6tWrl2666SYZhiEvLy+rY90wy5cv16233qrRo0cX6gJuu3bttGLFihvy8woAQEFDYQ0AABRq8+fP180336xffvklw/rdu3dblAiSlJKSoj/++EMdOnTQd999d82P27Vrl3x8fPIwWdHBtQQA4PpRWAMAAIXaiRMn1KZNG6tj4F+ioqLkdDpVvnz5HD2udu3aeZSo6OFaAgBw/RhjDQAAFAiHDh2SYRjq27evDh06pAceeEAlS5aUl5eXGjVqpPnz52do365dOxmGIdM0tWLFChmGcU1jSlWtWlVVq1bNdNuYMWNkGIaWL19+xbbdu3erb9++qlSpkjw8PFSmTBk9+OCD2rNnzxVt+/btK8MwdOjQIX322WcKCQmRl5eXypQpo8cff1yxsbGZHv/YsWMaPHiwatasKW9vbxUvXlxNmjTRq6++mmnbQYMGqXr16vL09FSJEiXUrVs3bdq06Yq28fHxevXVVxUcHCx/f3/5+fmpRo0a6tmzp7Zs2ZLt9fqnv/76S71791aFChXk4eGh8uXLq3fv3vrrr78ytKtataqqVKkiSZo6dWr696Zv375XPUZm38N/fl9mzZqlJk2ayMfHR8WLF9cDDzyg48ePX7Gfy8+P5ORkvfzyy6pWrZo8PT1Vo0YNjR07VikpKRna//P5l5nL+7usb9++uvXWWyVJY8eOTT/HrJ4/WZ3niRMn9Mgjj6h06dLy9vZWw4YNNX369Ewf43Q6NWnSJDVu3FjFihWTr6+vGjdurE8//VROpzPLY/xTTq7l5WuyYsWK9P1l9nO2Y8cO9erVS1WrVpWnp6dKlSqlBg0a6Nlnn1VqaupVrwUAAPkZPdYAAECBcvjwYTVp0kTVq1fXI488onPnzmnGjBm6++67tXjx4vRiRt++fdWuXTuNHTtWVapUSS+IZFU0ux4LFy7UPffco9TUVN1111266aabdOzYMc2ZM0e//vqrli1bpgYNGlzxuOHDh+v333/XXXfdpU6dOmnZsmX64osvtG/fPi1dujRD282bN6tz5846d+6c2rRpo3vuuUcXL17Un3/+qTFjxuiVV15Jb7t161Z16tRJ586dU+fOnXXPPffozJkzmjt3rlq1aqWffvpJd9xxh6RL49h16dJFa9euVfPmzfXYY4/Jzc1Nx44d07Jly9S6dWs1bNjwqtdg06ZN6tChg+Lj49WtWzfVqVNHu3fv1rfffqt58+Zp8eLFaty4sSTp2Wef1aFDh/TBBx8oNDRU3bt3lyTVr18/l9+BSz755BP9/PPP6tatm9q2basNGzZoxowZ2r59u8LDw+Xp6XnFY/7zn/9o06ZNuu++++Tu7q558+ZpzJgx2rx5s37++ecMxbKcuHxOU6dOVdu2bTMUmq71OXj+/Hm1aNFCgYGB6tevn2JiYvTjjz/qoYce0vHjxzVs2LAM7R955BFNnz5dlSpV0mOPPSbDMPTTTz/pqaee0urVq3N0y+21XMvAwECNHj1aU6ZM0eHDhzV69OgrznHHjh1q2rSpDMNQt27dVK1aNcXFxWnfvn365JNP9Nprr8nd3f2acwEAkO+YAAAA+Ywk898vUw4ePJi+fsyYMRm2LVy40JRk3n777Znuq23btlesX7ZsmSnJHD16dIb1VapUMatUqZJprtGjR5uSzGXLlqWvO3funBkYGGiWKFHCjIyMzNB+586dpq+vrxkWFpZhfZ8+fUxJZqVKlczDhw+nr09NTTVbt25tSjI3bNiQvj45OdmsWrWqKcn87rvvrsh19OjRDPuoUaOG6enpaS5fvjxDu+PHj5vly5c3y5YtayYlJZmmaZo7duwwJZndu3e/Yr8Oh8M8d+5cptfin5xOp1m7dm1Tkvntt99m2PbDDz+YksxatWqZDocjff3l72efPn2uuv9/yuz7efn74ufnZ+7YsSPDtl69epmSzBkzZmRY37ZtW1OSWbNmzQznmJiYaDZr1syUZH7zzTfXnPfy/v4pq+fYtZ6nJPP+++/PcN0OHDhgBgUFme7u7ub+/fvT10+fPt2UZIaFhZnx8fHp6y9cuGA2bNgw0+fOjb6WmRk6dKgpyZw7d+4V286dO5fh3AAAKIi4FRQAABQoVapU0csvv5xhXefOnVW5cmVt3LjR5Xm++eYbxcTEaOzYsapTp06GbcHBwRowYIC2bdumP//884rHjho1SpUrV07/2s3NTf369ZOkDOfyyy+/6NChQ+rWrZsefPDBK/ZTsWLF9H//+uuv2r9/v5555hm1bds2Q7vy5ctr+PDhioqK0pIlSzJs8/b2vmK/NptNQUFB2Z2+JGnt2rXavXu3mjdvroceeijDtp49e6pVq1bas2ePVq9efdV9XY/BgwcrJCQkw7oBAwZIUpbPjVdeeSXDOXp5eWn8+PGSpK+//jqPkl4bu92uCRMmyGb7/5fs1apV0+DBg5Wamqpp06alr7+c9c0331SxYsXS1/v6+mrChAmSpC+//PKaj52ba5mdzJ5fQUFBGc4NAICCiFtBAQBAgVK/fn3Z7fYr1leqVEnr1q1zeZ7Lx9y+fbvGjBlzxfa9e/dKujQD478Lb40aNbqifaVKlSRdug3wsvXr10uSbr/99mvOc/jw4UzzXB7vbNeuXbrjjjtUp04d1a9fX99//70OHz6su+++W61atVKjRo3k4eFx1eNJl249laT27dtnur19+/ZavXq1tm3blqcTSVzr9fynfxcfJalVq1ay2+3atm3bjQ2YQ5UrV1a1atWuWH/5Fud/5tu6datsNlumYwi2bds2x+eTm2uZmZ49e+qDDz5Q9+7ddd9996lDhw5q2bKlatSocc37AAAgP6OwBgAACpTAwMBM17u5uWU6QHteO3v2rCTpiy++yLbdhQsXrliX2bm4uV16eeZwONLXxcTESJIqVKhwzXlmzpx5TXnsdruWLl2qcePGadasWXrhhRckSX5+furTp4/Gjx+foQdUZi5PtlCuXLlMt19ef/k88sq1Xs9/KlOmTKaPKVmypE6dOnVD8+VUZtkkqWzZspKUYZKL2NhYFS9ePNNiaG7OJzfXMjNNmjTRqlWr9Prrr2vWrFnpvexq1aql0aNHq1evXte8LwAA8iP6XgMAAPyDzWZTWlpaptsyKwwFBARIutRjzTTNLJc+ffrkOtPlIkdms1tmlWfevHnZ5vnnQPNBQUF67733dPToUf3111/68ssvVbt2bX300UcaOHDgNR8zKioq0+0nT57M0C4/iY6OvmJdWlqazpw5I39///R1l29ZzMlzIy+ySf9/nf95PQMCAnTu3LlMZ9nM7HxcqXnz5po/f77Onz+vNWvW6JVXXlF0dLQefPBBLV682JJMAADcKBTWAAAA/iEoKEjR0dGZFig2b958xbpmzZpJklatWpVnmS4fY8GCBdfcNrd5brrpJj366KNasWKFihUrpnnz5l31MWFhYZKk5cuXZ7p92bJlkpTpzKhWW7FixRXrVq9eLYfDkX5ektLHYTt69OgV7ePi4tJv+f2ny7cs56SH1z8dOXJEhw4dumL95ev8z3xhYWFyOp1auXLlFe1Xrlwph8ORZ9f/Ws/T09NTLVq00Lhx4/Thhx9K0jU9vwAAyM8orAEAAPxDkyZNlJaWpsmTJ2dYP2XKFK1Zs+aK9v369VNgYKDGjh2b6aDuTqczy4LTtbrrrrtUtWpV/fzzz/r++++v2H7s2LH0f999992qUaOGPv74Y/3222+Z7m/dunW6ePGiJOngwYM6cODAFW3Onz+v5OTkTAed/7eWLVuqVq1aWr16tWbNmpVh26xZs7Rq1SrdfPPNatWq1VX35WqvvvpqhjHDkpKSNHLkSElKn0hCunRrbO3atbVmzZoME1E4HA4NHTpUiYmJV+y7RIkSki4VyHLD4XDohRdeyHCL88GDB/Xhhx/Kzc1NDz/8cPr6/v37S5JGjhyZ/r2VpIsXL2rEiBGSpEcffTRXOa4mu/Ncu3Ztptfmcm88Hx+fPMkEAICrMMYaAADAPzzzzDOaPHmyBg4cqCVLlqhSpUoKDw/XunXrdOedd2r+/PkZ2pcoUUKzZs1Sjx491KxZM912222qW7euDMPQ0aNHtW7dOp09e1ZJSUm5zuTh4aGZM2eqU6dOevDBB/XZZ5+pWbNmSkpK0q5du7RkyZL0WxTd3d01Z84cde7cWV27dlWLFi1Uv359+fj46OjRo9q0aZMOHDigkydPysfHR9u3b9c999yjxo0b65ZbblH58uV1+vRpzZs3T6mpqeljrmXHMAxNnTpVHTt2VM+ePXX33Xerdu3a2rNnj+bOnSs/Pz998803+XIGyFtuuUV169bVfffdJ3d3d82bN0/79+9X165d9cgjj2RoO2zYMD366KNq2bKl7r//fnl5eWnZsmVKTU1VaGiotm/fnqF9rVq1VKFCBf3www9yd3dXlSpVZBiGHnnkEVWpUuWq2erVq6cNGzaoYcOG6tSpk2JiYvTjjz8qJiZGb731VoYJAB588EHNmzdPP/74o+rWravu3bvLMAzNnTtXBw8eVM+ePa+YsfVGue222zRz5kzdc889uuOOO+Tt7a0qVarokUce0VtvvaWlS5eqdevWqlatmooVK6bIyEgtWLBAQUFBevzxx/MkEwAArkJhDQAA4B/q1KmjxYsX68UXX9Qvv/wiNzc3tW7dWuvWrdOcOXOuKKxJlwoLO3bs0MSJE/X7779r1apV8vDwUPny5dW+fXvde++9152rUaNGCg8P15tvvqkFCxZo7dq18vPz00033aRx48ZlaFuvXj1t375d7777rubPn6/JkyfLZrOpXLlyCgsL09ixY1WyZMn0/Y4YMUIrVqzQwoULdf78eZUqVUoNGzbU4MGDr2kmUklq2rSpNm3apNdee02LFy/WL7/8opIlS6pXr1565ZVXVKtWreu+Bnnhxx9/1KuvvqrvvvtOJ06cUIUKFTRmzBiNGDFChmFkaNu/f3+Zpql3331XU6dOVVBQkO6++2698cYbmX6P7Xa7fvrpJ40YMUIzZ85UfHy8TNNUq1atrqmwFhQUpAULFmj48OGaPHmy4uLiVKdOHT3//PN68MEHr2j//fffq23btvr666/12WefSbpUOHzuueeuaay83Hrsscd0+PBh/fDDD3rrrbeUlpamtm3b6pFHHtFTTz2loKAgbdiwQatXr1ZaWpoqVqyop556Ss8999w1XQcAAPIzwzRN0+oQAAAAgCu1a9dOK1asUH59KWwYhtq2bXvdtxEDAIC8lf/64wMAAAAAAAAFAIU1AAAAAAAAIBcorAEAAAAAAAC5wBhrAAAAAAAAQC7QYw0AAAAAAADIBQprAAAAAAAAQC5QWAMAAAAAAABygcIaAAAAAAAAkAsU1gAAAAAAAIBcoLAGAAAAAAAA5AKFNQAAAAAAACAXKKwBAAAAAAAAuUBhDQAAAAAAAMgFCmsAAAAAAABALlBYAwAAAAAAAHKBwhoAAAAAAACQCxTWAAAAAAAAgFygsAYAAAAAAADkAoU1AAAAAAAAIBcorAEAAAAAAAC5QGENAAAAAAAAyAUKawAAAAAAAEAuUFgDAAAAAAAAcoHCGgAAAAAAAJALFNYAAAAAAACAXKCwBgAAAAAAAOQChTUAAAAAAAAgFyisAQAAAAAAALlAYQ0AAAAAAADIBQprAAAAAAAAQC5QWAMAAAAAAABygcIaAAAAAAAAkAsU1gAAAAAAAIBcoLAGAAAAAAAA5AKFNQAAAAAAACAXKKwBAAAAAAAAuUBhDQAAAAAAAMgFCmsAAAAAAABALlBYAwAAAAAAAHKBwhoAAAAAAACQCxTWAAAAAAAAgFygsAYAAAAAAADkAoU1AAAAAAAAIBcorAEAAAAAAAC5QGENAAAAAAAAyAUKawAAAAAAAEAuUFgDAAAAAAAAcoHCGgAAAAAAAJALFNYAAAAAAACAXKCwBgAAAAAAAOQChTUAAAAAAAAgFyisAQAAAAAAALlAYQ0AAAAAAADIBQprAAAAAAAAQC5QWAMAAAAAAABygcIaAAAAAAAAkAsU1gAAAAAAAIBcoLAGAAAAAAAA5AKFNQAAAAAAACAXKKwBAAAAAAAAuUBhDQAAAAAAAMgFCmsAAAAAAABALlBYAwAAAAAAAHLBzeoABY3T6dSJEyfk5+cnwzCsjgMAAAAAQKFkmqbi4+NVvnx52WxFq19QUlKSUlJSLDm2h4eHvLy8LDl2QURhLYdOnDihSpUqWR0DAAAAAIAi4ejRo6pYsaLVMVwmKSlJ1aoUU9QphyXHL1u2rA4ePEhx7RpRWMshPz8/SZd+sP39/S1OAwAAAABA4RQXF6dKlSqlvw8vKlJSUhR1yqHDW6rK38+1PfXi4p2q0vCQUlJSKKxdIwprOXT59k9/f38KawAAAAAA5LGiOgxTMT9Dxfxce+5OFc1rfT2K1k3KAAAAAAAAwA1CYQ0AAAAAAADIBW4FBQAAAAAAyGccplMO0/XHRM7QYw0AAAAAAADIBXqsAQAAAAAA5DNOmXLKtV3WXH28woAeawAAAAAAAEAu0GMNAAAAAAAgn3HKKVePeOb6IxZ89FgDAAAAAAAAcoHCGgAAAAAAAJAL3AoKAAAAAACQzzhMUw7TtZMJuPp4hQE91gAAAAAAAIBcoMcaAAAAAABAPuOUKadc24PM1ccrDOixBgAAAAAAAOQChTUAAAAAAAAgF7gVFAAAAAAAIJ9xypSDW0HzPXqsAQAAAAAAALlAjzUAAAAAAIB8hskLCgZ6rAEAAAAAAAC5QI81AAAAAACAfMZhmnKYru1B5urjFQb0WAMAAAAAAAByocAW1saPH6/GjRvLz89PpUuXVvfu3bVnz56rPm7mzJmqXbu2vLy8FBISot9++80FaQEAAAAAAFDYFNjC2ooVK/T0009r/fr1+uOPP5SamqpOnTopISEhy8esXbtWvXr10qOPPqpt27ape/fu6t69uyIiIlyYHAAAAAAAIHtOixbkjGGaheMG2tOnT6t06dJasWKF2rRpk2mbnj17KiEhQfPnz09f16xZM9WvX1+TJk26puPExcUpICBAsbGx8vf3vyHZAQAAAABARkX1/ffl8969q4z8/FzbHyo+3qnat0QXuWt+PQpsj7V/i42NlSQVL148yzbr1q1Thw4dMqzr3Lmz1q1bl6fZrPbtt99q48aNVscAAAAAAADXyCHTkgU5UygKa06nU88++6xatmyp4ODgLNtFRUWpTJkyGdaVKVNGUVFRWT4mOTlZcXFxGZaCZM+ePRowYIBatGihl156ScnJyVZHAgAAAAAAKBQKRWHt6aefVkREhH744Ycbvu/x48crICAgfalUqdINP0ZeKlWqlO655x45HA698cYbatKkicLDw62OBQAAAAAAUOAV+MLaoEGDNH/+fC1btkwVK1bMtm3ZsmUVHR2dYV10dLTKli2b5WNGjhyp2NjY9OXo0aM3JLerFC9eXN99951mzZqlUqVKaceOHWrcuLFeffVVpaamWh0PAAAAAABkwmFasyBnCmxhzTRNDRo0SD/99JOWLl2qatWqXfUxzZs315IlSzKs++OPP9S8efMsH+Pp6Sl/f/8MS0F07733KiIiQvfcc4/S0tI0atQoNW/eXJGRkVZHAwAAAAAAKJAKbGHt6aef1rfffqvp06fLz89PUVFRioqKUmJiYnqb3r17a+TIkelfDxkyRAsXLtQ777yj3bt3a8yYMdq8ebMGDRpkxSm4XOnSpTVr1ix99913CgoK0pYtW9SgQQO99dZbcjgcVscDAAAAAAB/c1q0IGcKbGHt008/VWxsrNq1a6dy5cqlLzNmzEhvc+TIEZ08eTL96xYtWmj69On6/PPPFRoaqlmzZmnu3LnZTnhQ2BiGoQcffFARERHq2rWrUlJS9MILL6h169bau3ev1fEAAAAAAAAKDMM0Te6gzYG4uDgFBAQoNja2wN4WeplpmpoyZYqeffZZxcXFydvbW+PHj9czzzwjm63A1lwBAAAAAIVAYXr/nROXz3vrn2VUzM+1780vxDvVoE50kbvm14PqSRFmGIb69eunnTt3qkOHDkpMTNSzzz6r9u3b6+DBg1bHAwAA+YTTdOpIwgntiz+khLSLVscBAADIN9ysDgDrVa5cWYsWLdKkSZM0bNgwrVixQiEhIZo4caKeeOIJGYZhdUQAAGAB0zS15NRazTq2QKeTz0mS3Ay72pRsokeq9pC/ezGLEwIAAFiLHmuQdKn32sCBA7Vjxw61adNGCQkJGjhwoLp06aKjR49aHQ8AAFhg5rEF+nT/d+lFNUlKMx1afnqDXto5URfovQYAQJ5xmtYsyBkKa8igevXqWrZsmd5//315eXlp0aJFCg4O1pQpU8RwfAAAFB3RSWc04+j8TLc55VRU0hnNO/6Hi1MBAADkLxTWcAWbzaYhQ4YoPDxczZo1U1xcnPr166du3bplmGUVAAAUXktPrZMtm5eKTjm1KHo1H7wBAJBHHDIsWZAzFNaQpVq1amn16tV688035eHhofnz56tu3bqaPn06L6IBACjkopPOSMr+9/2FtAQlOZNdEwgAACAforCGbNntdr3wwgvasmWLGjRooPPnz+uhhx7S/fffr1OnTlkdDwAA5BFfN5+rTmBkN+zysLm7KBEAAED+Q2EN1yQ4OFjr16/X2LFj5ebmptmzZys4OFizZ8+2OhoAAMgDrUo2lMN0ZrndJptalmgou2F3YSoAAIoObgUtGCis4Zq5u7tr1KhR2rhxo0JCQnT69Gndd999euihh3Tu3Lmr7wAAAFgmPjVBv55Yov/9NUWT9n+nTee2Z1s4q+1XQ6EBt8iWyQtsQ4bcbHb1qNgpLyMDAADkexTWkGNhYWHatGmTXnzxRdlsNk2fPl3BwcH69ddfrY4GAAAysf7sVj2xeYSmHpqt1ac3afmptXpr9yQN3TZOp5POZvoYwzA0rPYANSkeeulrGemTGQR5BGh0ncGq7FPeZecAAEBR4zQNSxbkjGEyCn2OxMXFKSAgQLGxsfL397c6juU2btyoPn36aPfu3ZKkfv366b333lNAQIDFyQAAgCT9FX9IL+98S85MJiKwyaYyXiX1bv1RcrNlfUvnicRT2nx+p1KdqariU0FhQXVlN/h8FgCQt4rq++/L5706oryK+bn29+2FeKdaBZ8octf8evCKCNelSZMm2rp1q5577jkZhqHJkycrJCREf/zxh9XRAACApJ9PLJKyGC/FKadOJp3SpnPh2e6jvHdpdSt/m+6t2EWNiodQVAMAwAUYY61g4FURrpu3t7cmTpyolStXqkaNGjp69Kg6deqkp556ShcuXLA6HgAARZZpmtp0boecyn4Sgk3ndrgwFQAAQOFBYQ03TKtWrbR9+3YNGjRIkvTpp58qNDRUK1eutDgZAABFk1OmHKbjKm2cSnGmuCgRAABA4UJhDTeUr6+v/ve//2nx4sWqXLmyDhw4oHbt2um///2vEhMTrY4HAECRYjdsKu9VJts2Nhmq7FPBRYlwmdN0Kj41QckOipoAgMw5ZLNkQc5wxZAnbrvtNu3cuVOPPfaYTNPU+++/r/r162v9+vVWRwMAoEi5vVy7q7QwdFuZlq6IAknJjhTNOrZAAza/qL6bhunBDc9qTMQH2hm7x+poAAAgFyisIc/4+/vriy++0G+//aby5ctr7969atmypUaMGKHk5GSr4wEAUCR0KNNa9QPryvjXYMS2v18GDqjRSyU8g6yIVuQkO1I07s//6Ycj8xWTGpe+PjJur8ZEfqBlp/gAEgDw/0zTkNPFi2kyeUFOUVhDnrv99tsVERGhRx55RE6nUxMmTFDDhg21ZcsWq6MBAFDoudnseqH2QPWueq9KeZZIX1834Ga9UmewOpRpZWG6omX+yaXaE39ApswM651/f/3p/u8UmxpvRTQAAJBLblYHQNEQFBSkb775Rvfee68ef/xxRUZGqmnTpnrppZf00ksvycPDw+qIAAAUWm42u+4sf5u6lmuvJGey7IZdHjZ3q2MVKaZpasHJFVcU1f7JaTq17NR6da/Q0YXJAADA9aDHGlzq7rvvVmRkpO6//345HA6NGzdOzZo1086dO62OBgBAoWcYhrztXhTVLJDoSNL51Nhs2xgydPTiCRclAgDkdw4ZlizIGQprcLmSJUvqxx9/1IwZM1SiRAlt27ZNDRs21Pjx45WWlmZ1PAAAgBvO3Xb1G0UMSR42evEDAFCQUFiDZf7zn/8oIiJC3bp1U2pqql588UW1bNlSu3fvtjoaAADADeVuc1dYYJ30SSMy45BTTYqHujAVACA/c5g2S5ac+vjjj1W1alV5eXmpadOm2rhxY5ZtIyMjde+996pq1aoyDEPvv//+dVyh/IHCGixVtmxZzZ07V1OnTlVAQIA2btyosLAwvfvuu3I4HFbHAwAAuGHuqdglyzHWbLKpmk9FhQbWdnEqAAByb8aMGRo6dKhGjx6trVu3KjQ0VJ07d9apU6cybX/x4kVVr15db775psqWLevitHmDwhosZxiGevfurYiICHXu3FlJSUl67rnn1K5dO+3bt8/qeAAAADdEHf+b9OzN/eRuuMmQIZtssv/9cryqbwW9XGeQbAYvzwEAlzhlyCmbi5ecjbH27rvvasCAAerXr5/q1KmjSZMmycfHR19//XWm7Rs3bqy3335bDzzwgDw9PW/EZbIcs4Ii36hYsaIWLFigL7/8UkOHDtXq1asVGhqqt956SwMHDpTNxgtNAABQsLUq2Uj1A+to+an1OnzxuDxsHmpSPFT1AmrJMBgwGgCQP8TFxWX42tPT84pCWEpKirZs2aKRI0emr7PZbOrQoYPWrVvnkpz5AZUK5CuGYWjAgAHauXOnbr31Vl28eFGDBg1Sx44ddfjwYavjAQAAXLdibj66s3x7PX3TIxpQvadCA2tTVAMA5CuVKlVSQEBA+jJ+/Pgr2pw5c0YOh0NlypTJsL5MmTKKiopyVVTLUVhDvlS1alUtXrxYH374oby9vbV06VKFhIToyy+/lGlmPjYJAAAAAACFhUOGJYskHT16VLGxsenLP3ulISMKa8i3bDabnnnmGW3fvl0tWrRQfHy8BgwYoK5du+r48eNWxwMAAAAAoFDy9/fPsGQ2HlrJkiVlt9sVHR2dYX10dHShmZjgWlBYQ75Xs2ZNrVy5Um+//bY8PT21YMECBQcHa9q0afReAwAAAAAUSg7TZslyrTw8PNSwYUMtWbIkfZ3T6dSSJUvUvHnzvLgk+RKFNRQIdrtdzz//vLZu3arGjRsrJiZGvXv3Vo8ePa6ojgMAAAAAgLw3dOhQffHFF5o6dap27dqlgQMHKiEhQf369ZMk9e7dO8NtpCkpKQoPD1d4eLhSUlJ0/PhxhYeHa9++fVadwnWjsIYCpU6dOlq7dq1ee+01ubu7a968eapbt65mzpxpdTQAAAAAAIqUnj17auLEiRo1apTq16+v8PBwLVy4MH1CgyNHjujkyZPp7U+cOKGwsDCFhYXp5MmTmjhxosLCwvTYY49ZdQrXzTC5ly5H4uLiFBAQoNjYWPn7+1sdp0jbvn27+vTpo+3bt0u69AP90UcfqWTJkhYnAwAAAABcr6L6/vvyec/efrN8/ewuPXZCvEP3hu4tctf8etBjDQVWaGioNm7cqFdeeUV2u10zZsxQcHCw5s2bZ3U0AAAAAABQBFBYQ4Hm4eGhcePGaf369apTp46io6PVvXt39enTRzExMVbHAwAAAAAgV5yyyeHixUmZKMe4YigUGjVqpC1btmj48OGy2Wz65ptvFBwcrIULF1odDQAAAAAAFFIU1lBoeHl5acKECVq9erVq1qyp48eP6/bbb9fjjz+u+Ph4q+MBAAAAAIBChsIaCp3mzZsrPDxcgwcPliR98cUXCgkJ0bJlyyxOBgAAAADAtXGYNksW5AxXDIWSj4+PPvjgAy1btkxVq1bV4cOH1b59ez3zzDNKSEiwOh4AAAAAACgEKKyhUGvXrp127NihJ554QpL00UcfqX79+lqzZo3FyQAAAAAAyJrz78kEXL0gZ7hiKPT8/Pw0adIk/f7776pYsaL27dun1q1ba9iwYUpKSrI6HgAAAAAAKKAorKHI6NSpk3bu3Km+ffvKNE1NnDhRDRo00KZNm6yOBgAAAABABg7TsGRBzlBYQ5ESGBioyZMn6+eff1bZsmW1a9cuNW/eXC+//LJSUlKsjgcAAAAAAAoQCmsoku666y5FRESoV69ecjgcev3119W4cWNt377d6mgAAAAAAKCAoLCGIqtEiRKaPn26Zs6cqZIlS2rHjh1q1KiRXn31VaWmplodDwAAAABQhDlks2RBznDFUOTdd999ioyMVI8ePZSWlqZRo0apefPmioyMtDoaAAAAAADIxyisAZJKly6t2bNn69tvv1VgYKC2bNmiBg0a6O2335bD4bA6HgAAAACgiHGaNksW5AxXDPibYRh66KGHFBkZqTvuuEMpKSkaPny42rRpo7/++svqeAAAAAAAIJ+hsAb8S/ny5TV//nx99dVX8vPz09q1axUaGqoPP/xQTqfT6ngAAAAAACCfoLAGZMIwDPXv318RERHq0KGDEhMTNWTIELVv314HDx60Oh4AAAAAoJBj8oKCgSsGZKNy5cpatGiRPvnkE/n4+GjFihUKCQnRZ599JtM0rY4HAAAAAAAsRGENuArDMDRw4EDt2LFDrVu3VkJCgp588kl16dJFR48etToeAAAAAKAQckpymIZLFwY/yjkKa8A1qlGjhpYvX653331XXl5eWrRokYKDgzVlyhR6rwEAAAAAUARRWANywGaz6b///a+2bdumpk2bKi4uTv369VO3bt108uRJq+MBAAAAAAoJp2yWLMgZrhiQC7Vr19bq1as1fvx4eXh4aP78+QoODtb3339P7zUAAAAAAIoICmtALrm5uWnEiBHasmWLwsLCdO7cOT344IP6z3/+o9OnT1sdDwAAAAAA5DEKa8B1Cg4O1oYNGzRmzBi5ublp1qxZqlu3rn766SerowEAAAAACiiHabNkQc5wxYAbwN3dXaNHj9aGDRsUHBys06dP65577tHDDz+s8+fPWx0PAAAAAADkAQprwA3UoEEDbd68WSNHjpTNZtN3332nunXr6rfffrM6GgAAAACgAHHKsGRBzlBYA24wT09PvfHGG1q7dq1q1aqlkydPqmvXrnr00UcVGxtrdTwAAAAAAHCDUFgD8kjTpk21bds2/fe//5VhGPr6668VEhKixYsXWx0NAAAAAADcABTWgDzk7e2td999VytWrFD16tV19OhRdezYUU899ZQuXLhgdTwAAAAAQD7F5AUFA1cMcIHWrVtr+/bteuqppyRJn376qUJDQ7Vy5UqLkwEAAAAAgNyisAa4SLFixfTxxx9r8eLFqly5sg4cOKB27dpp6NChSkxMtDoeAAAAACAfcchmyYKc4YoBLnbbbbdp586deuyxx2Sapt577z2FhYVpw4YNVkcDAAAAAAA5QGENsIC/v7+++OIL/frrrypfvrz27NmjFi1aaOTIkUpOTrY6HgAAAADAYk7TsGRBzlBYAyx0xx13KCIiQg8//LCcTqfefPNNNWrUSFu3brU6GgAAAAAAuAoKa4DFgoKCNG3aNM2ZM0elS5dWRESEmjZtqjFjxig1NdXqeAAAAAAAIAsU1oB8okePHoqIiNB9992ntLQ0jR07Vk2bNtXOnTutjgYAAAAAcDGnBRMXOCkT5RhXDMhHSpUqpR9//FHff/+9ihcvrm3btqlRo0YaP3680tLSrI4HAAAAAAD+gcIakM8YhqEHHnhAkZGRuuuuu5SSkqIXX3xRrVq10p49e6yOBwAAAABwAadps2RBznDFgHyqbNmymjdvnqZMmaKAgABt2LBB9evX13vvvSen02l1PAA3gGmaSnOmyTRNq6MAAAAAyAUKa0A+ZhiG+vTpo4iICHXq1ElJSUkaOnSo2rVrp/3791sdD0AunUk+q28OTdeAzYPUb9OTGrhliH44MktxqfFWRwMAAACQAxTWgAKgYsWKWrhwoT777DMVK1ZMq1atUr169fTJJ5/Qew0oYI4nntDLEeO0JHq5kp3JkqQEx0UtOLlIr0S8qnMp5y1OCAAAgPzAIcOSBTlDYQ0oIAzD0OOPP64dO3aoXbt2unjxop5++ml16tRJR44csToegGv06b4vlZiWKKcyFsWdciomJUZTDn5rUTIAAAAAOUVhDShgqlWrpiVLluiDDz6Qt7e3lixZouDgYH399deM0wTkcwcuHNLhi0euKKpd5pRT4TE7dDb5nIuTAQAAIL9h8oKCgSsGFEA2m02DBw9WeHi4mjdvrvj4eD366KO68847deLECavjAcjCkYtX711qytTRxGMuSAMAAADgelFYAwqwm2++WatWrdJbb70lT09P/fbbbwoODtZ3331H7zUgH3Iz3K+pnfs1toNrJKRd1LmU80pzplkdBQAAFCEOWTHOGnLKzeoAAK6P3W7XsGHD1LVrV/Xp00ebN2/Www8/rNmzZ2vSpEkqXbq01REB/C0ksI5ssmV5K6gkedu9VdOvhgtTISt/xu7RnOPzFRm3R5LkbffSraVb654KXeXr5mNxOgAAAOQH9FgDCok6depo7dq1evXVV+Xu7q6ffvpJdevW1axZs6yOBuBvAe4BaluqlYxsZlu6vWwnedg8XJgKmVl/drNe2/WudsX9lb4u0ZGkhSeXaFTEm7qQlmBhOgAAAOQXFNaAQsTd3V0vv/yyNm3apHr16unMmTO6//771atXL509e9bqeAAkPVK1lxoE1Zck2WSTIUO2v38d31qqje6u0NXCdJAuFdAm7Z8iU2ams7dGJZ3SnGPzLUoHAACKCiYvKBi4YkAhFBoaqk2bNunll1+W3W7XDz/8oODgYP3yyy9WRwOKPHebu4bUfEqj6ozUraXbqFFQA3Us216vBY9W/+q9ZTP41Wy1tWc2KtmZkuV2p5xadmq1UpypLkwFAACA/KhAv3pfuXKl7rrrLpUvX16GYWju3LnZtl++fLkMw7hiiYqKck1gwIU8PDz06quvat26dbrlllsUFRWlbt26qW/fvoqJibE6HlCkGYahmn411Lfawxp880A9XOUBVfGtZHUs/O144knZDXu2bZKcyYpJiXVRIgAAUBQ5TJslC3KmQF+xhIQEhYaG6uOPP87R4/bs2aOTJ0+mLwzujsKscePG2rp1q4YNGybDMDR16lSFhITo999/tzoaAORLnnbPa5pZ2dPOWHgAAABFXYEurN1+++167bXX1KNHjxw9rnTp0ipbtmz6YrMV6MsAXJWXl5feeustrVq1SjfddJOOHTumLl266IknnlB8fLzV8QAgX2lSPCzbmVsNGbq5WA0FuPu7MBUAAADyoyJZUapfv77KlSunjh07as2aNdm2TU5OVlxcXIYFKKhatmyp8PBwPfPMM5Kkzz//XPXq1dOyZcssTgYA+Uc13yoKDaibPqnEv5kydU/FO12cCgAAFDWmDDldvJjZzF6PzBWpwlq5cuU0adIkzZ49W7Nnz1alSpXUrl07bd26NcvHjB8/XgEBAelLpUqMgYOCzdfXVx9++KGWLl2qKlWq6NChQ2rfvr0GDx6sixcvWh0PuCFOJkZp3vFfNP3wD1ocvVQJaQlWR0IBM7jm4woOqC1Jsssmu2GXIUNuhpuerNFXoYF1LU4IAACA/MAwr2UQkQLAMAz99NNP6t69e44e17ZtW1WuXFnTpk3LdHtycrKSk5PTv46Li1OlSpUUGxsrf39uAUHBFh8fr+eff16ff/65JKlmzZqaMmWKWrRoYXEyIHdSnan66uAUrTu7XjbZZBiGHKZDboabHqnyoNqVbmt1RBQw+y8c0sZzW5XoSFJ577JqVbKpirn5Wh0LAIAiIS4uTgEBAUXu/ffl8x62tqs8i7m79NjJF1L1dotfi9w1vx5FqsdaZpo0aaJ9+/Zlud3T01P+/v4ZFqCw8PPz02effaYFCxaoQoUK+uuvv9S6dWsNHz5cSUlJVscDcmzqoWlaf3aDJMkppxymQ5KUZqZp8qFvtPncFivjoQCqUayqelW+R/2rPaguZdtTVAMAAEAGRb6wFh4ernLlylkdA7BUly5dFBERod69e8vpdOrtt99Ww4YNtXnzZqujAdfsdPIZrTqzRqYy74htyNDsY3OvabZHAAAAwGpO07BkQc4U6MLahQsXFB4ervDwcEnSwYMHFR4eriNHjkiSRo4cqd69e6e3f//99zVv3jzt27dPERERevbZZ7V06VI9/fTTVsQH8pXAwEBNnTpV8+bNU5kyZfTnn3+qWbNmeuWVV5SSkmJ1POCqtpzfKiObwVZNmTqRdELRyadcmAoAAABAYVagC2ubN29WWFiYwsLCJElDhw5VWFiYRo0aJUk6efJkepFNklJSUvTcc88pJCREbdu21fbt27V48WLddtttluQH8qNu3bopMjJSPXv2lMPh0GuvvaYmTZpo+/btVkcDspXkSMpyFsd/twMAAACAG6HQTF7gKkV18EQUTTNnztTAgQN19uxZubu7a/To0XrhhRfk5uZmdTTgChvObtQn+z/Lto3dsOnDsPdUzK2Yi1IBAAAgt4rq++/L5/3smm6WTF7wfsufi9w1vx4FuscagLx1//33KzIyUt27d1dqaqpefvlltWjRQrt27bI6GnCFBkFh8rVnPbC8TTY1DmpMUQ0AAADADUNhDUC2ypQpozlz5mjatGkKDAzUpk2bFBYWpokTJ8rhcFgdD0jnbnPXgOr9Zfv7zz/ZZJO/u796Vr7fonQAAABAzjB5QcFAYQ3AVRmGoYcfflgRERG6/fbblZycrGHDhqlNmzb666+/rI4HpAsLqq8RtwxTLb+b09e5GW5qVbKFxtR9WcU9gixMBwAAAKCwYaAkANesQoUK+vXXX/X111/rv//9r9auXavQ0FBNmDBBTz/9tGw2avWwXi2/mzXilmGKT43XRUeiAt0D5Gn3tDrWDROXGqelp5ZqzZk1SnAkqKRHSd1a+la1KtlK7jbXjsEBXA+n6dT2mEgtO7VO51LOq7hHoNqWbq6wwGDZDH6fAACAgoHJC3KoqA6eCPzb4cOH9eijj2rJkiWSpFtvvVVff/21qlatam0woBCLSorS+F3jFZ8WL1OXfn0bMmTKVA3fGhpWa1ihKiKi8EpxpOjtPZO0I/ZP2WSTU870v4P9a2l47aflafewOiYAwGJF9f335fMetLqHJZMXfNTqpyJ3za8HHwcCyJUqVapo0aJF+vjjj+Xj46Nly5YpJCREn3/+uajXAzeeaZr6ZN8nupB2Ib2oJin93wcSDmjmsZlWxQNyZOqhmdoZe2kiHKecGf6OjNuryYdmWJYNAAAgJyisAcg1m82mp556Sjt27FDr1q114cIFPfHEE+rSpYuOHj1qdTygUNl3YZ+OJh5NLz78mylTq06vUqIj0cXJgJyJT72gZafXZigQ/5MpUytPr1NsapyLkwEAkL84TMOSBTlDYQ3AdatRo4aWLVumd955R15eXlq0aJFCQkI0depUeq8BN8j+hP0ylP0LnRQzRccTj7soEZA7u+L+ksPMflZph+nUrjgmxwEAAPkfhTUAN4TdbtfQoUO1bds2NWnSRLGxserbt6/uvvtuRUVFWR0PKPBs1/gr+1rbAVbJqtflvznMa2sHAEBh5TQNSxbkDK++AdxQtWvX1po1a/TGG2/I3d1dv/zyi+rWrasZMxgvB7gedQPqZnnr3GW+dl9V8qnkokRA7tQoVvWa2t10je0AAACsRGENwA3n5uamkSNHasuWLQoLC9O5c+f0wAMP6D//+Y9Onz5tdTygQKrgXUF1/etm2yOtY5mOcre5duYoIKdKeZZQw6CQLJ/LNtlUP7CuyniVcnEyAACAnKOwBiDPhISEaMOGDRo9erTc3Nw0c+ZMBQcHa+7cuVZHAwqkJ6o/oQreFSQpfby1y8WJZsWb6a7yd1mWDciJx6s/ojJeJa8YN9CQoZKexTWwRm+LkgEAkH+Ypk1OFy+mSZkopwyTkcVzJC4uTgEBAYqNjZW/v7/VcYACY8uWLerTp48iIyMlSQ8//LA+/PBDBQUFWZwMKFjSnGnafH6z1p1dp/i0eJX2LK02pdroFr9bZBiMiYGC42JaohZHr9LSU6t1PiVWgR7+al+6lTqUaS1fNx+r4wEA8oGi+v778nk/vuJ+eRRz7d0IKRdS9XnbmUXuml8PCms5VFR/sIEbITk5WaNHj9bbb78tp9Op8uXL68svv9Ttt99udTQAAAAA+UxRff99+bwfXfEfSwprX7X9schd8+tBHz8ALuPp6ak333xTa9as0c0336wTJ07ojjvu0GOPPaa4uDir4wEAAAAAkCMU1gC4XLNmzbRt2zY9++yzMgxDX331lUJCQrRkyRKrowEAAAAAcM0orAGwhI+Pj9577z0tX75c1apV05EjR9ShQwcNGjRICQkJVscDgALnQlqCVpxaq19P/qFN57YpzZlmdSQAAHAdnKbkNA0XL1afdcHjZnUAAEVbmzZttGPHDg0fPlyffvqpPv74Yy1YsEBTpkxR69atrY4HAPme03Rq9rFf9POJ35VmpskmQ06ZKubmqwHVH1GT4g2sjggAAFBo0WMNgOWKFSumTz75RH/88YcqVaqkAwcOqG3btnruueeUmJhodTwAyNdmHvtZc47/qjTzUg81py591HwhLUHv7/1M4TERVsYDAAC55DRtlizIGa4YgHyjQ4cO2rlzp/r37y/TNPXuu+8qLCxMGzZssDoaAORL8akX9MuJ37Nt88ORn1yUBgAAoOihsAYgXwkICNBXX32l+fPnq1y5ctqzZ49atGihF198UcnJyVbHA4B8ZeO5bXKYjiy3mzJ1+OJRnUyMdmEqAACAooPCGoB8qWvXroqIiNBDDz0kp9Op8ePHq3Hjxtq2bZvV0QAg34hPuyDbNbyci0+74II0AADgRnLKsGRBzlBYA5BvFS9eXN9++63mzJmjUqVKaefOnWrSpInGjh2r1NRUq+MBgOVKeZaQU86rtivpWdwFaVzrYlqi/ozdq11xfynJQY9mAABgDWYFBZDv9ejRQ61atdLAgQM1e/ZsjRkzRj///LOmTp2q4OBgq+MBgGUaF68vb7u3Eh2ZT/Rik03BAbVV3CPIxcnyTpIjWd8enq3lp9Yq9e8JGzxtHupUtq0eqHS33Gy8vAUAFA4O05DDdG0PMlcfrzCgxxqAAqFUqVKaOXOmpk+frqCgIG3dulUNGzbUm2++qbS0NKvjAYAlPGwe6le1V6bbbLLJw+auh6vc7+JUeSfVmarXd32gJdGr0otqkpTsTNH8E4v1zp7P5DSv3oMPAIoKp+nU0lPrNGz7eP1n3TN6aP1/9f7eyTpw4ajV0YBCg8IagALDMAz16tVLkZGRuvPOO5WSkqKRI0eqVatW2rNnj9XxABQSpmlq34UD+vrgN3p79/v6bP9X2hkbmW8LNq1LNdPQmweqnFeZDOtv8b9ZY4NfUCWfChYlu/FWnd6ovfEH5JR5xTZTprbG7NS2mAgLkgFA/uMwnXpv79f6eN80HUw4JofpUJIzWWvObNELOyZow9lwqyPiKpymzZIFOUNfeQAFTrly5dJvBR0yZIg2bNig+vXr64033tCQIUNks/HLAEDuOE2nvjgwRavPrJVNNjnllE02rT6zTnX9b9GzNw+Sl93T6phXaFw8TI2C6uto4nFdSE1QKa+SKuVZwupYN9ySU6tkyJCZSWFNutRLb2n0ajUMqufiZACQ/yyOXq21Z7dKUob/Ny+Pzfne3q/1RaPx8nP3tSQfUFjw7hNAgWQYhvr27auIiAh17NhRSUlJGjp0qNq1a6f9+/dbHQ9AAfXT8V+0+sxaSf//xuPy33/G7dbkg9Msy3Y1hmGosk9F1QmoVSiLapJ0KvlslkU16dL3KjrpjAsTAUD+9evJZdnO75hmOrTs9HqX5QEKKwprAAq0SpUq6ffff9ekSZPk6+urVatWKTQ0VJ988omczvx52xZgJdM0FZMSo3Mp5/LtrY1WSXYka2HUH1luN2Vq3dkNOpd8zoWp8E/+bsWy3W7IUIC7n4vSAED+lepM1fHE6Gw+irhk34XDLsmD3HHKkNN08ZJtORaZobAGoMAzDENPPPGEduzYobZt2yohIUFPP/20OnfurCNHjlgdD8gXTNPU6jOr9ErkSD2/41kN3zFUw3cM1YKTv8phOqyOly8cSDioJEdStm1MmdoZ+6eLEuHf2pZqLiObF/ymTLUp3dyFiQAgf7IZV3+rb8iQu2F3QRqgcKOwBqDQqF69upYuXar3339f3t7eWrx4sUJCQvT111/LNK/2eR1QuM06NkNTDn2lqKSo9HUxqTGac3yWPt33Eb3XJKU5r63AmGYyE7FVbivTSiU8g2TL5CWsTTZV9qmg5iUaWpAMAPIXu2FXvYDamf5/eZlTTjUIquvCVMgpU5d6kLlyMemxlmMU1gAUKjabTUOGDFF4eLiaNWumuLg4Pfroo7rzzjt14sQJq+MBljhw4YB+j16Y6TZTpsJjt2njOcZYqeRTMds3IJdV862a92GQKV83H42t+7xq+lWTpAwv/UMCauuVOs/Kw+ZuTTgAyGe6V+iUPk7ov9lkUynP4mpSvL5rQwGFEIU1AIXSzTffrNWrV2vChAny8PDQb7/9puDgYH333Xf0XkORs+L0smwLRoYMLTu11IWJ8qdAjwA1Kt4gy2tlk01VfaqoerGqrg2GDEp6Fte44GGaUO8l9av2gB6t1kvv1h+jF+sMlj/jqwFAutDA2nq8+gMyZKT/brt8O32Qh79G1XlG7jY3KyMChQI/RQAKLbvdruHDh6tr167q06ePtmzZoocfflizZ8/WpEmTVLp0aasjAi5xIul4lp9YS5d6rZ1IokenJPWp+pCOXDyq6KRTGWaftMkmXzdfPXXTAAvT4Z+q+lZSVd9KVscAgHytc9k2qh9YR39Er9ahhGNyt7mrcfF6almioTztHlbHw1VcnlDA1cdEzlBYA1Do1a1bV+vWrdObb76pcePG6aefftKqVas0adIk3XvvvVbHA/Kcl81LhowMhaJ/87R5ujBR/uXv7qcxdV/SH9FLtezUCp1PiVExN1+1LtVSXcp2VJBHoNURAQDIkTJeJfVwle5WxwAKLQprAIoEd3d3vfLKK7rrrrvUp08f7dixQ/fdd5969eqljz76SMWLF7c6IpBnGhVvol3xWc9kaZNNTYs3dWGi/M3XzUfdK9yp7hXutDoKAAAowpymTU7TtSN4ufp4hQFXDECRUr9+fW3atEkvvfSS7Ha7vv/+e9WtW1fz58+3OhqQZ5oVb67iHiWynEnRw+ah9qU7WJAMAAAAKNgorAEocjw8PPTaa69p7dq1ql27tqKionTXXXepX79+io2NtToecMN52j01rNYLKu1VRpJkk112wy5JKuZWTENvHqYSniWtjAgAAIB/uTzGmquXnPr4449VtWpVeXl5qWnTptq4cWO27WfOnKnatWvLy8tLISEh+u2333J7ifIFCmsAiqwmTZpo69ateu6552QYhqZMmaLg4GAtWrTI6mjADVfKs7TG1X1dz9Z8Th3KdNStpdrriepP6a1676p6sRpWxwMAAEABNGPGDA0dOlSjR4/W1q1bFRoaqs6dO+vUqVOZtl+7dq169eqlRx99VNu2bVP37t3VvXt3RUREuDj5jWOYppn1SMa4QlxcnAICAhQbGyt/f3+r4wC4QVavXq2+fftq//79kqQnnnhCb7/9tvz8/CxOBgAAABRNRfX99+XzvntRf7n7unb21tSEFM3r9PU1X/OmTZuqcePG+uijjyRJTqdTlSpV0jPPPKMRI0Zc0b5nz55KSEjIMBRPs2bNVL9+fU2aNOnGnYgL0WMNACS1atVK27dv16BBgyRJn332mUJDQ7VixQqLkwEozGJTY/VH9BL9dGyeVp1erSRHktWRAABAPuGUYckiXSru/XNJTk6+Il9KSoq2bNmiDh3+f6xem82mDh06aN26dZme07p16zK0l6TOnTtn2b4gYFZQAPibr6+v/ve//6lHjx7q37+/Dh48qHbt2mnIkCF644035OPjY3VE4LpcTEvQ2rOrtTNmu1LNVFX3vUltSrVLH3sNruM0nZp5bLYWnlwkU6Zshk0O06Fph6froSq91LZUa6sjAijAUp1p2nguXJvO7VSKM0VVfSvqttItVMIzyOpoAAqISpUqZfh69OjRGjNmTIZ1Z86ckcPhUJkyGV9LlilTRrt37850v1FRUZm2j4qKuv7QFqGwBgD/0r59e+3YsUPPP/+8vvjiC33wwQf67bffNHXqVDVv3tzqeECuHEo4qPf3vqVER6JMXRoF4sCFffojeoEertJXrUu1szZgETPn2Fz9dnJh+tcO0yFJSnYm6+uDU+Rl81LTEo2tiocb6FTSGR1PPClPm6du9qsuNxsvv5G3opPOaGzkh4pOPiObDDllatO5HZp5dIGeqNFLHcq0tDoigGuU28kErveYknT06NEMt4J6enq6NEdBwm92AMiEv7+/Pv/8c91zzz167LHH9Ndff6lVq1Z6/vnnNXbsWHl5eVkdEbhmiY5Evb/3bSU6ktKLapLklFOSNO3wZJXzKq+b/G62KmKRciH1ghZELcy2zaxjc9SkeCMZhmtfTOPGiU46rS8PfK8dsX+mryvm5qseFW5X13K38b1FnnCYDo378386nXxOkuT8+//8S3+b+nT/dyrjVVIhAbUsTAmgIPD397/qGGslS5aU3W5XdHR0hvXR0dEqW7Zspo8pW7ZsjtoXBIyxBgDZ6NKli3bu3KnevXvL6XTqrbfeUsOGDbVlyxarowHXbP3ZNbroSJD5dyHt32yy6Y/o7As9uHG2xYQr7e8ealk5lXxKRy4edVEia8Snxut08lmlOlOtjnLDnU0+r5d3TlBEbMbbYC6kJWja4Vn6/shca4Kh0Nt0boeikk6nf3DybzbZNPc4s58DuDE8PDzUsGFDLVmyJH2d0+nUkiVLsrzTp3nz5hnaS9Iff/xRoO8MoscaAFxFUFCQpk6dqnvuuUdPPPGE/vzzTzVt2lQvvviiXn75ZXl4uHamHiCnImN3ZrvdKacirtIGN06C46IMGRl6D2bmouOiixK51o6YSP10fL72XtgnSfKyeenW0q3Uo8Jd8nUrHGNZzjn+my6kXcyyuDHvxO/qUKa1SnuVdHEyFHZbzkfIJluWzz2nnAqP2aU0p0NuNruL0wHIKStvBb1WQ4cOVZ8+fdSoUSM1adJE77//vhISEtSvXz9JUu/evVWhQgWNHz9ekjRkyBC1bdtW77zzjrp27aoffvhBmzdv1ueff37Dz8VV6LEGANfo7rvvVkREhHr27CmHw6FXX31VTZs21Y4dO6yOBmTLaWb+BitDmyzehOHGK+1Z+qpFNUkq5Vn4ii6rTq/ThD3v668L+9PXJTmT9HvUUo39800lpBX8YmKaM00rTq/P9mfKJptWnF7vwlQoKlKdadI1/P/iuEqvWQC4Vj179tTEiRM1atQo1a9fX+Hh4Vq4cGH6BAVHjhzRyZMn09u3aNFC06dP1+eff67Q0FDNmjVLc+fOVXBwsFWncN0orAFADpQsWVI//PCDZsyYoRIlSig8PFyNGjXS66+/rrS0NKvjAZmqXqyGDGX96aMhQ9V8q7swUdFWLyBY/m5+WW63yaa6/nVUspAV1hLSEvTlwW8k6YrColNOnUyM1rwTv1oR7YZKcFy86u2thiGdTTnvokQoSqr7Vsq2rGZIKutVSp52etsDBcHlHmuuXnJq0KBBOnz4sJKTk7VhwwY1bdo0fdvy5cs1ZcqUDO3vv/9+7dmzR8nJyYqIiNAdd9xxvZfKUhTWACAX/vOf/ygyMlJ33323UlNT9fLLL6tFixbatWuX1dGAK7Qq2VY2I+tf+aZM3VamkwsTFW1uNjc9Wq2fjL///JNNNnnaPfRQlV4Wpcs7q8+sz7aXjFNOLT21SmnOgv0hhbfdW/Zsft4kyTSlAPesi6tAbt1aupncjOxv8exarp1rwgBAEUFhDQByqUyZMvrpp580bdo0BQYGatOmTQoLC9PEiRPlcHCLBfKPQI8gPVrtSdn+/nPZ5X+3L91RDQIbWRWvSKofFKoXaj+vGsX+v6egIUP1AkM0qs7LquBd3sJ0eeNEYlS2BV7p0gy2cWnxLkqUNzxs7mpWomGGn7V/c8qp1iWbuDAVigo/92IaXLOvbDIyPAcvl/AbBoWoc9k21oQDkGMFpcdaUcfkBQBwHQzD0MMPP6xbb71Vjz32mBYuXKhhw4Zp7ty5mjx5smrWrGl1RECS1Kh4E5XxKqPF0Yu0I2ab0kyHqvlWU/vSnRQaGCbD4EWUq93iX1uv1HlRZ5LPKD7tgkp4FJe/e/bT2hdkXnZPXcvYT542z7wPk8furdhVm89tV6oz7Yqx1gxJbUo1V0Wfwlc8Rf7QomQDlfIsrrkn/tCmczvkMB0q711Wd5Rrp45lWsp+lR5tAICcMUzTvPorHKSLi4tTQECAYmNj5e9feF/8Asg50zT11VdfaejQoYqPj5e3t7cmTJigp59+WjYbHYQBFG37LxzUqMg3stxuk021/WrqpTrPuzBV3jlw4bA+2jdZxxOj0tfZDbs6l2mnh6rcw4yMcAnTNOWUedXbk4H8qqi+/7583h1/e0Luvq4dEzE1IUV/3PFZkbvm14MeawBwgxiGoccee0wdO3ZU//79tXTpUg0ePFg//fSTvv76a1WtWtXqiABgmeq+VRXsf4v+jNuT6YyZpkx1r3CnBcnyRvViVfRO6GjtvXBAxy6ekIfNQ/UD68rPvZjV0VCEGIYhezaT1wDI30xJThf/DNPzKuf46AIAbrAqVarojz/+0EcffSQfHx8tW7ZMISEh+vzzz0UnYSDvxKfG6WzymQI/+H1hZRiGhtQcqLr+tSVd6qF2+ZY0D5uHnr7pMdUNqG1lxOuW5kzL8PwzDEO1/GrotjKt1bpUU4pqAAAUQtwKmkNFtSsqgNzZt2+f+vXrp9WrV0uSOnfurC+//FIVK1a0OBlQeOyM2a75J+fpYMJ+SZKXzUttSt2qruXvlrfd2+J0yMzBhMPaeG6LkhzJquhdXs1LNJGPW8H9Xm08t1XzTyzSXxcOSJKq+VZW13Id1aJEE8YvBIDrUFTff18+7/a/Pik3X9eOPZqWkKylXScVuWt+PSis5VBR/cEGkHsOh0MffPCBXnzxRSUnJysgIEAffvihHnnkEd5wXUWqM00bz0UqKvGMirl5q1mJEAV4+FkdC/nI6tMr9M3hr2XIkPmPmxdssqmcdwUNr/0SxTXkqVlHf9bs4/MzPAcv/7tL2fbqXaUn/9cDQC4V1fffFNYKFm4FBYA8ZrfbNXToUG3btk2NGzdWbGys+vTpo+7duysqKurqOyii1p3Zod7rX9Ebf36lKQd/0Yd//aBHNryirw/Mk8O8cnwmFD3xqfH67shUScpQVJMkp5w6kXhcC0/+akU0XIXTdBaKW+P3XTio2cfnS8r4HLz874VRS7Uz9k9LsgEAANegsAYALnLLLbdo7dq1ev311+Xu7q6ff/5ZwcHBmjFjhtXR8p3w83v0+p9fKS4tQZLSBzp3mE7NPrZEUw7+bGU85BPrzq6WM5siqymnVp5emm0buI7TdGr5qdUasWOsHtn4hHpvfFJv7f5Af8btsTpari2KWiZbNi+nbbLp96hlLkwEAChMnKZhyYKcobAGAC7k5uamF198UZs3b1b9+vV19uxZPfDAA/rPf/6jM2fOWB0v35h66Jdst889tkznUuJclAb5VVTSSRlXmSkrwZGghLQLcppO/RW/R+vOrtHO2O1McOBiTtOpT/d/rS8OTtWxxOOX1smpnbF/6vVdE7Xs1CqLE+bOwYTDmc5weplTTh1MOOLCRJlkMJ2KS43Xhb8/qAAAADeWm9UBAKAoqlevnjZs2KDXX39dr7/+umbOnKkVK1bos88+U/fu3a2OZ6moxLPaG5/9G1FT0prT4bqrQhvXhEK+5GnzlK5hCvr9F/7Sj0e/15mU0+nrfO3FdE/F+9W6VLu8C4h0a85s0NqzGyRlvGXyclHqq4PTFBxwi0p5lrQkX2552DyuoY27C5JcyWE6tODkMv12conOppyXJFXzraS7K3RR8xINb9hxLqYlavP57YpLvaASnkFqGFTPsnMGgMLGih5k9FjLOXqsAYBFPDw8NHbsWK1fv1516tTRqVOn1KNHD/Xu3Vvnz5+3Op5l4q+hV4XNMK6pHQq3BkGN5ZQjy+022VTVp7om7f9IZ1My9ghNcFzQtMOTtfzUkryOCUmLopdk27vQkFEge601Lh6W7XnZZFOT4g1cmOgSp+nUu3s+17TDs9KLapJ0KOGY3t/7hWYf++26j2Gapn4+vkhPbBmuj/dN0beHZ+v9vV/oic3DtfL0+uvePwAABQWFNQCwWKNGjbRlyxa98MILstlsmjZtmoKDg7VgwQKro1milGfQVW/vc5hOlfEq4aJEyK9uKlZTNYvVymKMq0uzMiakXZD595/MzD72o5IdyXkbFDp88ViW3wPp8i2Th12Y6MZoX7q1vO1emf6fZciQu81NHcu2c3muVac3aPP57Vesv/w9+PHozzpy8fh1HePXk0v03ZE5SnGmZtj3RUeiPt43RevObrmu/QMAGGOtoKCwBgD5gJeXl958802tXr1aNWvW1IkTJ3THHXdowIABiosrWmOJBXr4qUnx4GwHBPeyeaplyVAXpkJ+ZBiGnr5piGr61ZJ0qXeQ3bBLkjxtHrq/Ui+dTjmVbUEn2ZmkHbHhrohbpLn9/X3JyqUilOtuH3SYDkUlnVJ00qnrmtzC391PL97yXxVz85V06Tlo+7vI5m330gu1B6uUp+s/BFgYtfyqPekWR+e+h2CSI1kzj2Y/Fub0w3OYOAQAUCQwxhoA5CPNmzdXeHi4XnrpJb3//vv68ssvtWjRIk2ePFnt27e3Op7LPFr9bkXE7lOiIznDwOCGLo2vNvCm++Rl97QsH/IPHzdfPVdrhA4lHNC281uU4kxRee8Kaly8mQ4lHLjq4w0Zik2NyfugRVyDoPracHZzlgP9mzLVIDDvi+VO06lfTy7Sgqg/FJt66UOLIPdA3V6uo24v20E2I+efOdcoVlX/CxuvtWc3KTJuj2SaquV3k1qVaiZvu9eNPoVrcizx5FV7CB5JyH2PtW0xEUpyZt/T81TyWR24cFg3+VXL9XEAACgIKKwBQD7j4+Oj9957T927d1e/fv108OBB3XbbbXr66ac1YcIE+fr6Wh0xz1XwKa13w4bq8/1ztOX8rvT15b1Lq0+1u+ithitU9a2uqr7VM6wLcA+86uNMmQq8hna4Pl3LddKGs5sz3WaTTQHu/mpeonGeZnCaTn287wutP5cxx/nUGE0/MlOHE45oYI1HZRg5vwXG0+6pW0u30q2lW92ouNfF0+auFGdKltsNGdf14cSF1Gsb4zI+7UKujwEAkEzTkOniWzNdfbzCgFtBASCfatu2rXbs2KEnn3xSkvTxxx8rNDRUa9assTiZa1T0KaNxIQM1telYvRU6RB83HKHPGr1EUQ3XrJx3eVX2qZrtLXFeNi/VCwxzYaqiqZpvFQ266XG5GW4y/v5z+ZbJAHd/jbxlqDzzuBfqtpgdVxTV/mnN2Q3aHhuRpxlcpVmJhtneTm/KVNMSuZ9UoaRn8WtqZ8VtsAAAuBqFNQDIx4oVK6ZPP/1Uv//+uypWrKj9+/erdevWev7555WYmGh1PJco6RmkugE1VNW3fK56kqBo61npwb9LOJk/d+6v1EseNg8XpyqampZoqP+FvaWelXqoUVCYmpZorIE1HtW79d9QBe9yeX78JdErsi022WTTkugVeZ7DFe4od5vshj3T571NNpX0LK4WJRrlev/1Am9RoLt/ltsNGarhW0UVfcrn+hgAAMkpw5IFOUNhDQAKgE6dOmnnzp3q27evTNPUO++8owYNGmjjxo1WRwPytZp+tfTszcNUxqtshvX+bgHqV3WAWpdqZ02wIsrf3U93lb9dz948UINuGqBWJZvJw0WTFhxPPJHlGG/SpXHHjieecEmWvFbeu4xG3jJIPnZvSZLdsMn+9/hxZbxKalSd/8rTnvuCst2wa0D1h9J7H/6TTYbshl39qz2Q+xMAAKAAYYw1ACggAgMDNXnyZN17770aMGCAdu/erebNm2vEiBEaNWqUPD0ZzB/ITG3/WzS27ngdSjigsylnVMzNXzX9bk6fQRRFg7fdR9K5bNv4uPm4JowL1A2opU8bvqm1Zzdr/4VDshk21Q+sq/qBdXM1ScO/NSoeqhG3DNJ3h+foyMX/nwihpl919a56v24qVvW6jwEAQEFgmKaZ9ZRBuEJcXJwCAgIUGxsrf/+su8ADRYHpOCnz4ndS0u+SmSS515Hh85Dk0Zpb9vLY2bNnNXjwYE2fPl2SFBISom+++Ub169e3NhgA5FM/n1igH4/+lOVsmYYMPVj5Pt1RrpOLkxVspmnqeOJJxabGq4RncZX1KmV1JACFSFF9/335vJvOHSw3X9d+eJ6WkKwN3T8sctf8enArKIBcMVO2yjxzu5TwpeQ4LDmjpeSVMs8/JjNurKjZ560SJUrou+++06xZs1SyZEnt3LlTjRs31rhx45Sammp1PADId24t1Vp+bsUyHWft8sykbUu1tCBZwWYYhir6lFfdgFoU1QAARRKFNQA5ZpqJMs8/camXWobxahyX/kqcLiX+ZEW0Iufee+9VZGSk7rnnHqWlpWn06NFq3ry5IiMjrY4GAPmKn3sxvVJnmEp5lpQk2fXPccdK6ZU6w+Tr5mtlRAAAMjBNw5IFOcMYawByLnG+ZMZm08CQefFrGT73uCxSUVa6dGnNmjVL33//vQYNGqQtW7aoQYMGGjdunJ5//nnZ7YwjBQCSVN67nCaGvqqI2D+1K36vDBm6xb+W6vrXviHjjgEAgKKHVxAAcsxM3SIpu2KNKaXtlem86KpIRZ5hGHrwwQcVERGhrl27KiUlRSNGjFCrVq20d+9eq+MBQL5hM2yqFxisnpXu0X8q9VBIQB2KagCAfMlpGpYsyBleRQDIhWv8z5YJDFyufPny+uWXXzR58mT5+/tr/fr1Cg0N1fvvvy+n03n1HQAAAAAArhmFNQA5Zng0Vfp4apmySW51ZRjeroqEfzAMQ3379lVERIQ6duyopKQk/fe//9Wtt96qAwcOWB0PAAAAAAoNCmsAcs7rdslWQln/F+KU4fuYKxMhE5UqVdLvv/+uSZMmydfXVytXrlS9evU0adIkZm0FAAAA8jkmLygYKKwByDHD8JQR9JVk+CnjbaF/j7vm+4TkdYcV0fAvhmHoiSee0I4dO9S2bVslJCRo4MCB6tSpk44cOWJ1PAAAAAAo0CisAcgVw72OjFK/yyg2VHILluw3SV5dZRSfIZvfczIYXy1fqV69upYuXar3339f3t7eWrx4sUJCQjR58mR6rwEAAAD5kGnBxAX0WMs5CmsAcs2wFZdR7AnZSs6RrdRvsgVOlOERZnUsZMFms2nIkCEKDw9X8+bNFRcXp/79+6tbt246efKk1fEAAAAAoMAp0IW1lStX6q677lL58uVlGIbmzp171ccsX75cDRo0kKenp2666SZNmTIlz3MCQH5y8803a9WqVZowYYI8PDw0f/581a1bV9OnT6f3GgAAAADkQIEurCUkJCg0NFQff/zxNbU/ePCgunbtqltvvVXh4eF69tln9dhjj+n333/P46QAkL/Y7XYNHz5cW7duVcOGDXX+/Hk99NBDuu+++3Tq1Cmr4wEAAABFninJNF28WH3SBVCBLqzdfvvteu2119SjR49raj9p0iRVq1ZN77zzjm655RYNGjRI9913n9577708TgoA+VPdunW1bt06jR07Vm5ubpozZ46Cg4M1e/Zsq6MB+ZZpmoo7F6+EuItWRwEAAIDFCnRhLafWrVunDh06ZFjXuXNnrVu3LsvHJCcnKy4uLsMCAIWJu7u7Ro0apY0bNyokJESnT5/WfffdpwcffFDnzp2zOh6uk8N0KDxms74/MlXTD0/W+rOrlepMsTpWgeRIc2j2e/P1cPWndW/J/uoe2EeDmo7UqjkbrI4GAAAKIacMSxbkTJEqrEVFRalMmTIZ1pUpU0ZxcXFKTEzM9DHjx49XQEBA+lKpUiVXRAUAlwsLC9OmTZv04osvymaz6fvvv1fdunU1f/58q6Mhl6KTTmpUxDBN2v+BVp9epjVnVmjKoc80YscQ7b+w1+p4BYrD4dC4/7yjz56fqlOHT6ev/2vLfo27b6J+ePMnC9MBAADAKkWqsJYbI0eOVGxsbPpy9OhRqyMBQJ7x9PTU66+/rnXr1ql27dqKiorSXXfdpf79+ys2NtbqeMiBJEei3t07XudTzkqSHH//kaSLjgR98NdbOpN8Ortd4B8WT1uptXM36d/zezidl1Z89eJ0Hf6T1wgAAODGMU3DkgU5U6QKa2XLllV0dHSGddHR0fL395e3t3emj/H09JS/v3+GBQAKuyZNmmjr1q167rnnZBiGJk+erJCQEP3xxx9WR8M1Wn92jWJTz8sp5xXbTJlKc6Zq+Wm+n9dq3scLZdiyfqFpd7Pp188XuzARAAAA8oMiVVhr3ry5lixZkmHdH3/8oebNm1uUCADyL29vb02cOFErV65UjRo1dPToUXXq1EkDBw7UhQsXrI6Hq9gWsynb7U45teUcY4Ndq8ORR2U6s54ny5Hm1MGdR1yYCJJ0PuW8NpzdqHVnN+g0PTABAIAF3KwOcD0uXLigffv2pX998OBBhYeHq3jx4qpcubJGjhyp48eP65tvvpEkPfnkk/roo480fPhw9e/fX0uXLtWPP/6oX3/91apTAIB8r1WrVtq+fbtGjBihjz76SJMmTdLvv/+uyZMnq23btlbHQxaSHJmPHfpPyc4kFyQpHDy8PZSSlJrldsMw5FXM04WJirZER6KmHpqm9Wc3ytT/FzxDA+rpser95O/OHQYAgILPaRoyXHxrppNbQXOsQPdY27x5s8LCwhQWFiZJGjp0qMLCwjRq1ChJ0smTJ3XkyP9/elytWjX9+uuv+uOPPxQaGqp33nlHX375pTp37mxJfgAoKHx9ffW///1PixcvVuXKlXXw4EHdeuutevbZZ3Xx4kWr4yETFb0ry5bNr3lDhip45/2EPGnOVG05t0bzjn+nX0/8qEMJf8n890BlBUDb+5rL7pb19TRNU616NHVhoqIrzZmmiXve04azmzIU1SRpZ2yEXt81QYnXUFgGAAC4EQyzIL66tVBcXJwCAgIUGxvLeGsAiqS4uDg999xz+vLLLyVJN998s6ZOnapmzZpZnAz/dDjhgMbvHp1tm8eqDVKj4nlXDPorPlKTD76vBMcF2WWXKVNOOVXN92Y9Vu05FStAvYqO7D6uJxsMU1pK2hW3hNrdbCpZoYS++vM9eXrTay2vbTi7SZ/sn5TldkOGHqzcU53KdnRhKgBAXiiq778vn3fdGcNk93HtawvHxWRF9ny7yF3z61Gge6wBAFzP399fX3zxhX777TeVL19ee/fuVcuWLTVixAglJydbHQ9/q+JbXV3K3iXpUqHh3xoGNVWDoMZ5dvyTiUc1af8EXXQkSLo0K+nliRQOJ+zTp/vHy2leObFCflW5dgW99stI+fhdmuzI7maX3c0uSSpbrYzeXjKaopqLrD6zJtPn9GWmTK04vcqFiQAAQFFWoMdYAwBY5/bbb1dERISGDBmiadOmacKECZo/f76mTp2qhg0bWh0Pku4uf7/KeVXQouhfdTzxqCSphEdJ3Vami9qV6iibkXefry09NV9O03HFrXrSpYkTjiUe0p9x4QoOaJBnGW60BreF6Ptjn2nZ92u0Z+Nfsru7qXGX+mpyR5jsdrvV8YqM8ynnM31e/VNMaqyL0gAAgKKOwhoAINeCgoL0zTff6N5779Xjjz+uyMhINW3aVC+99JJeeukleXh4WB2xSDMMQ01LtFST4i100ZEgp+lUMTc/GUbeDkprmqa2nV+X3kMtMzbZFB6zvkAV1iTJ29dLdzx2m+547DaroxRZxT2K63jiiWyfX0HuQS5MBABA3jBNQ6aLJxNw9fEKA24FBQBct7vvvluRkZG6//775XA4NG7cODVt2lQ7d+60Ohp0qcDm61ZMfu7+eV5Uky7dipdqZj2DpnSp19q1zFwK/FubUq2yLapJUrvSbVyUBgAAFHUU1gAAN0TJkiX1448/6ocfflDx4sUVHh6uhg0b6o033lBaWprV8eBCNsOm4h6lsm8jm0p7lndRIhQmYUH1VduvVqbjrNlkU0XvCmpdsqUFyQAAuLEu91hz9YKcobAGALihevbsqcjISHXr1k2pqal66aWX1LJlS+3evdvqaHChViU7ZjvAvFNOtSjZ3oWJUFjYDbuG3jxEbUq1kt34/7HtDBlqGBSmkbWHy9PORBIAAMA1GGMNAHDDlS1bVnPnztW0adM0ePBgbdy4UWFhYXr99dc1ZMgQBnovAlqX6qztMRt15OL+fw00b0gy1bVcT5X0LGNVPBRwnnZP9a/WV/dXvFd/Xdgnp2mqerFqKu7B2GoAAMC16LEGAMgThmGod+/eioiIUOfOnZWUlKTnnntO7dq10/79+62OhzzmYfPQ0ze9pNvK3CVvu0/6+rJeFfRIlUHqVLa7deFQaPi5+6lBUJgaFW9AUQ0AUOg4TcOSBTlDjzUAQJ6qWLGiFixYoC+//FJDhw7V6tWrVa9ePb311lsaOHCgbDY+4ymsPO1euqt8L91e9j6dTz0rN8Ndge7FXTKBAgAAAOAKvJsBAOQ5wzA0YMAA7dy5U7feeqsuXryoQYMGqWPHjjp8+LDV8ZDH3GzuKuVZVkEeJSiqAQAAXCPTtGZBzlBYAwC4TNWqVbV48WJ99NFH8vHx0dKlSxUSEqIvv/xSJr/FAQAAABQwFNYAAC5ls9n09NNPa/v27WrZsqXi4+M1YMAAde3aVcePH7c6HgBJRy4e0tcHP9Wz2wboma399fbucdp8bgMFcAAAXOhSDzLDxYvVZ13wUFgDAFjipptu0ooVKzRx4kR5enpqwYIFCg4O1rRp03jzDlho87kNenPXaG0+t15JziSlmqk6kLBfXx78SN8e/oqfTxdwmk6dT4lRbGos1xsAgHyOwhoAwDJ2u13PPfectm3bpsaNGysmJka9e/dWjx49FB0dbXU8oMiJTY3R5EOfyvn3n8vMv/+95uwKbTq/zqp4hZ7TdGrByUX6b/gLGrzteQ3a+pxe2PGKVpxaTYENAIB8isIaAMByt9xyi9auXavXX39d7u7umjdvnurWrasff/zR6mhAkbLmzAo5TWeW2w0ZWhr9uwsTFR1O06mP932u6Ud+1LmU8+nrTyZF6cuDU/T9kZkWpgMAWMH1t4FeWpAzFNYAAPmCm5ubXnzxRW3atEmhoaE6e/asevbsqZ49e+rMmTNWxwOKhEMJ+2Uq655RpkwdvnjwunpPnUqK1qyjM/Tungn631/vauXpZUpyJOV6f4XFpnNbtPHc5iy3L4hapH3x+12YCAAAXAsKawCAfCU0NFQbN27UK6+8Irvdrh9//FHBwcGaN2+e1dGAQs9u2GUo+0+qbYZdhpG7T7OXn1qiVyJe0OLohdod/6ciYnfo28NT9PLO4TqRWLQnL/kjelm2194mm5acWu66QAAAy5kWLcgZCmsAgHzHw8ND48aN0/r161WnTh1FR0ere/fu6tOnj2JiYqyOBxRadQNCs+2xZpNNwf71crXvP+MiNf3INzJlpo/fdvlYF9Li9f7et5XqTM3VvguD44knsr32Tjl19GLRLj4CAJAfUVgDAORbjRo10pYtWzR8+HDZbDZ98803Cg4O1sKFC62OBhRKjYOayc/NT7YsXiI65VSHMnfkat+Lon7Ldr8xqee15fzGXO27MPCyeV61jbfdywVJAABATlBYAwDka15eXpowYYJWr16tmjVr6vjx47r99tv1+OOPKz4+3up4QKHiaffSkJoj5OPmm2G9TTYZMvRIlUdV069WjvfrNJ3aFRf5j5lGL91sYsgpQ05JpmwyFBm787rPoaBqWqJxloXHf7YBABQdTF5QMFBYAwAUCM2bN1d4eLiGDBkiSfriiy8UEhKiZcuWWZwMKFwq+lTWa8HvqFflPgr2r6/afnXVsewdejV4olqWbJerfZp//7n8lfH3cpnNMGXKUaQnMehYpr087R6ZjrNmk01B7oFqWbK5BckAAEB2KKwBAAoMHx8fvf/++1q+fLmqVaumw4cPq3379nrmmWeUkJBgdTyg0PCye6ttqQ4aVPM5PXvzCPWo0FMlPUvnen92w64K3hVl6FIRzTCUYbnseNLhHM04GpNyXpGxO7U7bpdSnCm5zpcflPAsrhG1n5O/u5+kS9fM/vdL9VKeJfVinWHcCgoARQ2zFxQIblYHAAAgp9q2bavt27dr2LBh+uyzz/TRRx9p4cKFmjJlilq2bGl1PACZuK1MZ0079IVMM2Mx7TLDkM6lnNH+hL90U7Gbs91XbGqMph/+RuExW9N7wnnbvdWxTBfdUa6bbEbB/Oy4erFqer/+W9p8fqv2xu+TzbAp2L+O6gUGF9hzAgCgsOM3NACgQPLz89OkSZP0+++/q2LFitq3b59at26tYcOGKSmp6N5OBuRXIf71ruih9m822bUjZmu2+7mQdkETdr2m7THbMsyimehI1M8nftK3h6fcoMTWcLO5qVmJJupd9UE9XOUB1Q+qR1ENAIoqK8ZXY4y1HOO3NACgQOvUqZN27typvn37yjRNTZw4UWFhYdq4sejOLgjkRw6lXbWNYUipZmq2bZZE/66zKWf/MRFCRqvPrNDhhEO5iQgAAJBjFNYAAAVeYGCgJk+erJ9//llly5bV7t271aJFC7300ktKSSnY4y4BhUWAe6B87L7ZtnGYDlX0rpxtm5Wnl8vMoqgmXRrof+3ZVbnKCAAACp8jR45o9erVGdZt375dvXv3Vs+ePTV37tzr2j+FNQBAoXHXXXcpIiJCvXr1ksPh0BtvvKHGjRsrPDzc6mhAkWc33NSm1G2ZznopSYYMedm81CioaZb7cJpOxafFZXscp5w6l3LuurICAJAfmKY1S2EzePBgjRkzJv3r6Oho3XrrrZozZ45Wrlype++9V3PmzMn1/imsAQAKlRIlSmj69OmaOXOmSpYsqR07dqhx48Z69dVXlZqa/S1mAPLW7WXvUhXf6lcU12yyyZBNj1Z/Wp7ZzHxpM2zytntnewybbPJ387sheQEAQMG3ceNGdezYMf3rb775RomJidq+fbuOHz+u2267TRMnTsz1/imsAcAN5HDGKPbCVzpz/iWdi31TySl/Wh2pyLrvvvsUGRmpHj16KC0tTaNGjVLz5s0VGRlpdTSgyPK0e2nozSN1d/n7FOAeKOlSISw0sKFeqD1KIQH1r7qPFiVay5bNS1innGpaosUNSgwAgHVcPXFB+gQGhcy5c+dUunTp9K/nz5+vtm3bqkaNGrLZbLrnnnu0e/fuXO/f7UaEBABIcQnTdeb8SEmpkuySTMXEfyAfry4qXfxj2Ww+FicsekqXLq3Zs2dr+vTpGjRokLZs2aIGDRrotdde09ChQ2W3262OCBQ5HjZPdSnXTZ3L3qVUM0VuhnuOZr3sWLaL1p9do0RH4hUTGBgyVNc/RDWL1brRsQEAQAFVqlQpHT58WJIUExOj9evX680330zfnpaWprS0q0+ylBV6rAHADZCQuEhnzj8nKUWSKSlNkkOSdDFpkU6fH2JhuqLNMAw99NBDioyM1B133KGUlBQNHz5cbdq00V9//WV1PKDIMgxDHjbPHBXVJKm4RwkNr/2yKvhUyrDeJpual2ilJ296RoZR+D5tBwAAudOhQwd9+OGHevfdd9W7d285nU517949ffuff/6pSpUqZb2Dq6DHGgDkgmk6lZQaKYfzgjzdqup83ERd+qwis5nqnEpInK+U1L3ycL/ZxUlxWfny5TV//nxNnjxZzz77rNauXavQ0FC9+eabGjRokGw2PmsCCopy3uX1Sp1xOpRwUIcvHpK74aY6/iEK9Ai0OhoAADeOaVxaXH3MQubNN9/U3r179fzzz8vDw0MTJ05UtWrVJEnJycn68ccf9eCDD+Z6/xTWACCHzifMUnTsRKU6jv29xpBdTnnIKVuWv4fsSkj8jcKaxQzDUP/+/dWhQwc9+uijWrx4sYYMGaI5c+Zo8uTJ6b9gARQMVX2rqaovP7fA9Th28aQWRa/Q7rh9shs21Q8MVocyrVXCM8jqaABwQ5QpU0Zr1qxRbGysvL295eHhkb7N6XRqyZIl19VjjY/nASAHzsR/qWPnnv1HUU2STDkkJcomZ5bTU9tkmgl5HxDXpHLlylq0aJE++eQT+fr6asWKFQoJCdGkSZNkFsY5xgEAyMSS6NV6fvs4/RG1UocvHtOBhCOae3yBhoSP0o4YJmACrGaa1iyFVUBAQIaimiR5e3srNDRUxYsXz/V+KawBwDVKc5zTyZjXs9h6qatairLqspYqd7eaeZILuWMYhgYOHKgdO3aoTZs2SkhI0MCBA9WlSxcdPXrU6ngAAOSpffEH9fmBb2XKzDARiFOm0pxpenvPpzqfEmthQgC4cY4cOaInn3xStWrVUlBQkFauXClJOnPmjAYPHqxt27blet8U1gDgGsVc/EmXJiXIiiGHjEw+5TFkGH7y9b4z78Ih16pXr65ly5bpvffek5eXlxYtWqTg4GBNmTKF3msAgELrt5NLZcvi7aApU6nONC09tdrFqQBkYFq0FDJ//vmnwsLCNGPGDFWrVk1xcXHps4CWLFlSq1ev1kcffZTr/VNYA4BrlJp2XFcfmtL41+8iuyRDpYu/L5vNJ6+i4TrZbDY9++yzCg8PV7NmzRQXF6d+/fqpW7duOnnypNXxAAC44XbE/pmhp9q/mTK1I2aXCxMBQN4YPny4AgMDtXfvXn377bdXfHjetWtXrVq1Ktf7p7AGANfIbg+S5LhqO5vhlf5vL88WKldqlny978jDZLhRatWqpVWrVmn8+PHy8PDQ/PnzVbduXX3//ff0XgMAFCrOa+iWYhbGrisAipyVK1dq4MCBKlWqlAzjyqF7KleurOPHj+d6/xTWAOAaBfp0U/Z9o+0q5tVWVSvsUuWym1Sl/C6VL/WjvD2buyoibgA3NzeNGDFCW7ZsUYMGDXT+/Hk9+OCDuv/++3X69Gmr4wEAcEPc4lczy1tBJckmQ7f4Mz4sYCXTNCxZChun0ykfn6zvHjp9+rQ8PT1zvX8KawBwjTzcqqi470NSphMUGJJsKuP/nGyGl9zcKspuC3RtQNxQwcHBWr9+vcaOHSs3NzfNnj1bdevW1Zw5c6yOBgDAdbujXPtsbwU1DEMdyrR2YSIAyBsNGjTQr7/+mum2tLQ0/fDDD2rWrFmu909hDQByoHzQaypRrL/+f6y1S/+NutnLqFqpafLxbGBZNtx47u7uGjVqlDZs2KDg4GCdPn1a9957rx566CGdO3fO6ngAAORa3YBa6lW5uyRl6Llm+/vPMzUfVSnPEhalA5COiQuu28iRI7Vw4UINHDhQERERkqTo6GgtXrxYnTp10q5duzRixIhc798wGTQmR+Li4hQQEKDY2Fj5+/tbHQeARdIcZxSXuEhOM0EebtXl59VOhmG3OhbyUHJyssaOHasJEybI6XSqXLly+uKLL9S1a1ero6GQcTpNbdmwX+tW7lVqSpqq31xGHe8IVTE/r6s/GAByaHfcPi2MWqZdcftkN2wKCwpWl7K3qpJPeaujAUX2/ffl8678+SjZvF37+9+ZmKQjj48rdNd82rRpGjJkiGJjY2WapgzDkGma8vf316effqpevXrlet8U1nKoqP5gAwAu2bBhg/r06aM9e/ZIkvr37693331XAQEBFidDYXD2dLxeHPKdDu47Jbv9Ug8Sp9Mpdw83jRjXQ61uvcXihAAAuE5Rff9NYS1vJCQkaNGiRdq3b5+cTqdq1Kihzp07y8/P77r2S2Eth4rqDzYA4P8lJibq5Zdf1nvvvSfTNFWpUiV9/fXX6tChg9XRUIA50px68qHPdPTIWTkdGcc9MoxL4x29/1V/1a5bwaKEAEzT1NHE40pyJKu0Z0kFevChCpCXiur778vnXemz0ZYU1o4+MbbIXfPr4Xb1JgAA4J+8vb31zjvvqHv37urXr5/279+vjh07auDAgXrrrbdUrFgxqyOiANqw5i8dPpj5zLOmKRk2acbUNRr91n9cnAyAJK09s1E/Hp2n6ORLP6eGDDUMqqfeVXqqlFdJi9MBALJy5MiRa2pXuXLlXO2fwhoAALnUunVrbd++XS+88II+/vhjffrpp/r99981efJktWnTxup4KGDWrtgtu92Qw5H5zQROh6l1K/fI6TRls2U2OzGAvPJH1HJ9fWh6hnWmTG09v1N74w/otZAXGegfwI1nxYQChfCexqpVq8owrv7ayeFw5Gr/FNYAALgOvr6++uijj9SjRw/1799fBw4cULt27TRkyBC98cYb8vb2tjoiCojkpFQ5ndm3cTpNpaU55OHBSzjAVS6kJeibwz9mus0ppy6kJejHo3P19E2PujgZAOBafP3111cU1hwOhw4dOqRvvvlGpUuX1tNPP53r/fOqDACAG+C2227Tzp07NXToUH311Vd6//339dtvv2nq1Klq1qyZ1fFQAFSpUVrG0l3KbvTbsuUDKaoBLrb2zCY5zKx7MTjl1Lqzm9Wv6oPycePDFAA3kvH34upjFi59+/bNctsLL7ygpk2bKjY2Ntf7t+X6kQAAIAN/f399+eWX+vXXX1W+fHnt3btXLVu21IgRI5ScnGx1PORzt3cLy3a7YRjqdn9jF6UBcNnp5DOyGdm/bXKYDsWk5v5NGQDAGr6+vurXr5/ee++9XO+DwhoAADfYHXfcoYiICD388MNyOp2aMGGCGjZsqC1btlgdDflYiVJ+GjyiqyRdMYaaYRiq16AKhTXAAr5uvjKz60qa3s7HBWkAADea0+lUVFRUrh9PYQ0AgDwQFBSkadOmac6cOSpdurQiIyPVtGlTjRkzRqmpqVbHQz51R/cGeuPDhxQc9v+zUpUo5ad+T92q1z94kNtAAQs0L9FITmU9AKJNhur611aAu78LUwEoEkyLliIiLi5O8+fP19tvv62wsOzvHMgOr84AAMhDPXr0UKtWrfT0009r5syZGjt2rH7++WdNnTpVISEhVsdDPtSoWQ01alZDSUmpSk1JUzE/r2uayQpA3ijjVUrtS7fWslOrZf7rHafx9/hH91fqZk04AMBV2Wy2LF9LmaapypUr65NPPsn1/imsAQCQx0qVKqUff/xRM2bM0FNPPaVt27apYcOGGjt2rIYNGyY3N34d40peXu7y8nK3OgbygVRnimJSY+Rp85S/e4DVcYqkflV7yc2wa3H0SplyypBNTjnl51ZMA2v0VS2/m6yOCKAwsqIHWSHssTZq1KgrCmuGYSgoKEg1atRQp06druv1uGFey4ABSBcXF6eAgADFxsbK35/u3gCAnImKitLjjz+uX375RZLUtGlTTZkyRbVr17Y4GYD85mJagn45MVerz6xQsvPSBChVfarrzvJ3q15gfWvDFVHnU2K0+fx2JToSVc6rjMICQ+Rm48MRIK8U1fffl8+70idjZPP2cumxnYlJOvrUmDy55ufOndMzzzyjX375RTabTffee68++OADFStWLMvHfP7555o+fbq2bt2q+Ph4nT9/XoGBgTc01/VijDUAAFyobNmymjdvnqZMmaKAgABt2LBBYWFheu+99+R0Zj2GD4Ci5WJagibsfk3LTi1OL6pJ0uGLB/XRvve0+vQKC9MVXUEegepYpq26le+ixsXDKKoBQA489NBDioyM1B9//KH58+dr5cqVevzxx7N9zMWLF9WlSxe9+OKLLkqZc/RYy6GiWjEHANx4x44d06OPPqpFixZJklq3bq3JkyerRo0aFicDYLVZR2docfTCLAfNtxt2vR36oYq5Zf0pPwAUdEX1/Xd6j7WPx1rTY+3p0Tf8mu/atUt16tTRpk2b1KhRI0nSwoULdccdd+jYsWMqX758to9fvny5br311mvqsda/f/8c5zMMQ1999VWOHycxxhoAAJapWLGiFi5cqC+++ELPPfecVq1apXr16untt9/Wk08+KZuNjuVAUZTmTNOqM8uynYnSaTq17sxqdSzbxYXJAABFRVxcXIavPT095enpmev9rVu3ToGBgelFNUnq0KGDbDabNmzYoB49euR63/+2dOnSHE/8dD0TRVFYAwDAQoZh6PHHH1enTp3Ur18/LV++XE8//bTmzJmjr7/+WpUrV7Y6IgAXS3BcUKIjMds2NtkUnRzlokQAACuY5qXF1ceUpEqVKmVYP3r0aI0ZMybX+42KilLp0qUzrHNzc1Px4sUVFXVjf58dOnTohu7vavgoHACAfKBq1apasmSJPvzwQ3l7e2vJkiUKDg7WV199JUZtAIoWT9vVewSYMuVlc+3tQQCAouPo0aOKjY1NX0aOHJlpuxEjRsgwjGyX3bt3uzi9a9FjDQCAfMJms+mZZ55Rly5d1LdvX61du1aPPfaY5syZoy+++OKqY08AKBy87N6q4x+s3XF/Znk7qFNONQxq7OJkAACXMv9eXH1MSf7+/tc0xtpzzz2nvn37ZtumevXqKlu2rE6dOpVhfVpams6dO6eyZcvmNm2+QI81AADymZo1a2rlypV6++235enpqd9++01169bVt99+S+81oIjoWu5umVm8m7LJplv86qqqb3UXpwIAIKNSpUqpdu3a2S4eHh5q3ry5YmJitGXLlvTHLl26VE6nU02bNs3znAsWLFDHjh1VokQJubm5yW63X7HkFoU1AADyIbvdrueff15bt25V48aNFRMTo0ceeUT33HOPoqOjrY4HII/V9LtZT9QYlH5bqN2wy/b3S/db/OvqyZueua6BlgEAcKVbbrlFXbp00YABA7Rx40atWbNGgwYN0gMPPJB+V8bx48dVu3Ztbdy4Mf1xUVFRCg8P1759+yRJO3fuVHh4uM6dO3fNx549e7buvPNORUdH64EHHpDT6VSvXr30wAMPyNvbW/Xq1dOoUaNyfW7cCgoAQD5Wp04drV27VhMmTNDYsWM1d+5crV69Wp988onuv/9+q+MVehfT4hWTekbedl8FeZS++gOAG6hBUCPV9Q/RpnPrdSLpuDxtngoLaqTKPlWsjgYAcAXTuLS4+ph55LvvvtOgQYN02223yWaz6d5779WHH36Yvj01NVV79uzRxYsX09dNmjRJY8eOTf+6TZs2kqTJkydf9RbUy8aPH68mTZpo9erVOn/+vD799FP1799f7du316FDh9SsWTNVq1Yt1+dlmNxTkiNxcXEKCAhQbGzsNd1vDADAjbJ9+3b16dNH27dvlyT17NlTH3/8sUqUKGFxssLnfMopLTz5jSJj18v8e4yrCt411LHsg6rpF2ZxOgAAioai+v778nlX/HCcbN6unajGmZikY4NHFapr7uPjo/Hjx2vIkCGKiYlR8eLFtWDBAnXu3FmSNG7cOM2YMUORkZG52j+3ggIAUECEhoZq48aNeuWVV2S32zVjxgzVrVtXP//8s9XRCpXzKaf06V/D9ec/imqSdCLxgKYcfFU7YlZbmA4AABQVhmnNUtj4+PjIw8NDkhQYGChPT0+dPHkyfXuZMmV08ODBXO+fwhoAAAWIh4eHxo0bp/Xr1+uWW25RdHS07r77bvXp00cxMTFWxysUFp78RomOC1fMxnh5IPm5xz5VqjPZimgAAADIoVq1aunPP/9M/7p+/fqaNm2a0tLSlJSUpOnTp6ty5cq53j+FNQAACqBGjRpp69atGj58uAzD0DfffKPg4GD9/vvvVkcr0C6mxSsydv0VRbV/SnYmKjJ2vQtTAQAAILd69OihefPmKTn50gejL730kpYvX67AwECVKlVKq1at0ogRI3K9fwprAAAUUF5eXpowYYJWr16tm266ScePH1eXLl30+OOPKz4+3up4BdL5lFMZbv/MjE12nU2JclEiAABQZJkWLYXM888/ryNHjsjT89JM23feeaeWL1+uAQMG6IknntCSJUv+j737jquy/P84/rrPYSNDRHHvnIBb09yamWVmfs2mZq6GWWlLM7NMbWhDrUzL0d5mwzTTHLlyKzhyi1sUQTacc//+MPllCgjCuRnvZ4/rYZz7Ovf9PicD7s+5xlVvhHAlKqyJiIgUcq1atWLr1q0MGzYMgJkzZxIeHs4ff/xhcbLCx9vum20fEydeNh8XpBERERGR/NCmTRveeustJk2aRIcOHa7pXCqsiYiIFAE+Pj688847/PHHH1StWpWDBw/SsWNHhg0bRkJCgtXxCo0gz7KU86qGQdZbzYcGtHRRIhERESm2TMOaVsTceeedzJs3L2MqaF5TYU1ERKQIad++Pdu2bWPw4MEATJ06lYYNG7Jq1SqLkxUeN5a9J2OjgssZNAvqQoBHsEsziYiIiEjurFq1il69elGmTBnuv/9+fv75Z9LS0vLs/Cqsicg1cZgOdsWtY9mpL1l1+ntOpxyxOpJIsefn58cHH3zAwoULqVChAnv37qVNmzY8/fTTJCcnWx2vwKvt34Q7Kz2Bh80LuLCmmvHPP82DunBrhQGXPWfP+Y18cnAsr+64h9d33se8I29zPGm/q6OLiIhIUaI11vLEkSNHWLZsGffddx+LFy/mtttuIyQkhAEDBvDbb7/hcDiu6fyGaZpF8G3LP3FxcQQEBBAbG4u/v7/VcUQsdSghkm+i3iA+PQYbdkxMTJzU9mvOHRWfxNOuNYhErHbu3DmeeOIJ5s6dC0DdunWZO3cuzZo1szhZwZfqTCYydg1nUk7ibfelfkBLAq8wUm3xibmsiv4eA1vGxgc2bJhAr0rDCQ1o4+LkIiIiRUNxvf+++LorvTkOm7eXS6/tTEomavgLRfY9dzqd/PHHH3z99dfMmzeP6OhoSpUqRa9evZg+fXquzqkRayKSKyeTD/HJwRdJSD8HgBNHxg3l3+c38OXhiahuL2K9wMBA5syZw/z58wkJCWHnzp20bNmS0aNHk5qaanW8As3D5kWjkh3oXPYubijd/YpFtd1x61kV/T3AJbuJOnFi4uT7qLeITT3tsswiIiIikjmbzUanTp344IMPOH78OB988AGpqanMnDkz9+fMw3wiUoz8efo7nKbjiusQmTg5kLCNw4k7LEgmIldy2223ERkZyV133YXD4WD8+PE0a9aMrVu3Wh2tUFt75ieMLH6dMjHZGPObCxOJiIhIkaGpoPni+PHjTJkyhbZt2/LQQw8RHx9Pq1atcn0+FdZEJMecpoPI2FU4/zU6479s2ImIXenCVCKSnVKlSvHFF1/w9ddfExwczLZt22jatCnjxo3L0wVci5MjibsuGan2XyZOohJ3ujCRiIiIiPzXqVOneO+992jXrh2VKlXiiSeewOFwMGnSJA4fPszKlbm/d3XLw5wiUkykOVNxkp5lHxOTZEeCixK5hsNM52D8SvbE/kaS4xz+7uWoE3Ar5X0aYRhFb1tqKbp69+5N27Ztefjhh5k3bx5jxozhxx9/ZO7cudSrV8/qeIWKYdiy/WTXZujXLREREckFK0aQFcERa506dWLFihU4HA4aNmzI+PHj6dOnD1WrVs2T8+s3PRHJMQ+bFz52fxIdcVn2K+lR1kWJ8l+yI45fokYQnfJ3xgLlp5N3s/f8Emr4daBjudG6eZZCJSQkhO+++47PPvuMxx57jA0bNtC4cWPGjRvH8OHDsdvtVkcsFGqWaMSuuLVZjOA1qFGikUszFUSxZ+JZvySS5KQUKl9XlrCW1+kDCREREXGJU6dO8eKLL9KnTx+uu+66PD+/7gJFJMcMw6BpUFdWnv420ylQJk4alezs4mT554/jEziTshf4/wXKTS5sy7zv/DICPCrTLPhBq+KJ5IphGNx333106NCBQYMG8euvv/LMM8/www8/MGfOnHz5xaOoaRl8OzviVl/xmIGBh82bhoEdXZyq4HCkO/hw3Dx+nr2C9DQHhgGmCeWqBvP01H7UbVrd6ogiIiJSxG3fvj1fz6811kQkV1oF304pz/KZLtrdocw9lPQIcXGq/HEuNYrDCWuyWEfJJCLmW9KdKS7NJZJXKlSowC+//MKHH36In58fq1evpkGDBkyZMgWnM/P1wwQq+dSmR4XHMDAu+X54sah2X9UX8XHzszChtaY++wXzZ/5BetqFDyIubhZ98vAZnus9hQM7j1qYTkREpIAzDWua5EihL6y9++67VK1aFS8vL1q0aMFff/2Vad85c+ZgGMYlzcvLy4VpRYoOL7svD1Z7lcYlb8TNcM94vKR7CD0qPEa7Mn0sTJe3jiRsALL+AZPqTCA6ZY9rAonkA8MwGDBgANu3b6dTp04kJSXx+OOP06lTJw4ePGh1vAKtUcnOPHbd+7QMvo1KPnWo4hNK55C+DKv1AZV86lgdzzJH9p5k0edrMopp/+Z0mqSnOfj8zQWuDyYiIiKShwr1VNCvvvqK4cOHM336dFq0aMHbb7/NTTfdxO7duylTpswVn+Pv78/u3bszvtb6HiK55+PmR/cKj3Bj2QeIST2Bm+FOKc8K2IxCX7O/xMUpn9lxmlfXT6Qgq1KlCr/99hvTp0/n6aefZtmyZYSFhTF58mQGDRqkn5uZCPIsR5ey/a2OUaD8MW89NrsNp+PKox6dDierf91GUkIy3r76oFNEROS/DPNCc/U1JWcK9d3vm2++yaBBg+jfvz/16tVj+vTp+Pj4MGvWrEyfYxgGZcuWzWghIUVjqpqIlbzsPpTzrk5pr0pFrqgGEOJVn+y2x7EZ7pTy1FpBUjTYbDYeeeQRtm3bRuvWrYmPj2fIkCHcfPPNHDlyxOp4UkjEnonPthDrdDiJj01yUSIRERGRvJevd8BOp5OPP/44X86dmprKxo0b6dz5/xdHt9lsdO7cmTVr1mT6vPj4eKpUqUKlSpXo0aMHkZGR+ZJPJDtJjiSWnlrExJ0v8kLECKbtmcTWc5twmlrPqKAp7VWHYM9aGFx5l0QDG7X8u+JpL77rKEnRVKNGDZYtW8abb76Jl5cXixYtIjQ0lLlz52JeaX6fyL+UqRCEmc0afe4ebviX9HVRIhEREZG8l6+FtbS0NPr3z59pEdHR0TgcjstGnIWEhHDixIkrPqd27drMmjWL+fPn8+mnn+J0OmnVqlWWn76npKQQFxd3SRO5VtEppxm3YyRfR33GocT9nE45xY647by/7y1m7p+GQ1MKCxTDMOhc/kW87AFX2KzBoJTndbQs/bAl2UTym91u58knn2Tz5s20aNGC2NhYHnjgAXr06JHpz1sRgI7/a57lWF+b3UaHXs3w9PZwWSYREZFCxbSoFVEpKSmsWbOG+fPnEx0dnWfnveY11l5++eVMj6WlpV3r6fNUy5YtadmyZcbXrVq1om7dunzwwQeMGzfuis+ZOHEiL730kqsiSjFgmibT973NudQY/v1dy/nPjpNbzm1g4YmfuKXc7dYElCsK8KhI76qziTz3A3/H/kqyMw4/t7LUDexOnYBbcLN5Wh1RJF/VqVOHP//8k0mTJvHiiy/y008/Ub9+fd5991369OmjtdfkMsHlArl3+M18OunyDQpsdhslAny4d3g3C5KJiIhIcTNlyhTGjh1LbGwsAIsXL6Zjx45ER0dTp04dXn/9dR588MFcnfuaR6y98sor7Nq1i+PHj1/WTp48ea2nz1RwcDB2u/2ya5w8eZKyZcte1Tnc3d1p1KgRe/fuzbTPyJEjiY2NzWhRUVHXlFtkX8LfHEk6nFFI+y8Tk6UnF5HuTHdxMsmOt1sgTYMf4J4aX/Hgdb/Su9psQkveoaKaFBtubm4899xzbNy4kUaNGnH27Fnuvvtu7rzzTk6fPm11PCmA7hnejUcm3Elg6X9NlTegUds6vPXLU5SpGHTZc04mH+CXY1N5b88g3tszmIXH3yc6Rb9/iYiISO7Mnj2bJ554gq5du/LRRx9dsqRJcHAwHTt25Msvv8z1+a95xFpYWBj33HMPt95662XHkpOT+fDDD6/1Elfk4eFBkyZNWLJkCbfffjtwYU23JUuWMHTo0Ks6h8PhYPv27XTrlvmnpZ6ennh66qZZ8s7f53dhw5ZpYQ0gwRHPyZTjVPCu5MJkIiJXJzQ0lHXr1jFhwgReeeUVvv32W1asWMH06dPp2bOn1fGkADEMg+7929Ht/tbs2nSQ5IQUKtYMIaRSqSv23xyziAXHpv3zc/LCsgibzp5g09lfub3iU9QLaOvK+CIiIlIETJ48mR49evD5559z5syZy443adKEKVOm5Pr81zxibdCgQTgzWZjW3d2dF1988Vovkanhw4czc+ZM5s6dy86dO3n44YdJSEjIWNetb9++jBw5MqP/yy+/zG+//cb+/fvZtGkT9913H4cOHWLgwIH5llHkclc3aV0Lg4tIQXbxZ/y6desIDQ3l1KlT3HHHHdx3333ExMRYHU8KGLubnfrNa9CkQ71Mi2onkvax4Ng0wMwoqvHPVyZO5h+ZxNmUYy5KLCIiYj0DMEwXN6tfdD7Yu3cvN998c6bHg4KCrlhwu1rXXFh76KGHuO222654zG6352thrU+fPkyaNIkxY8bQsGFDtmzZwsKFCzM2NDh8+DDHjx/P6B8TE8OgQYOoW7cu3bp1Iy4ujtWrV1OvXr18yyjyX9eVqJPlaDUAH7svIV7lXJRIRCT3GjduzIYNGxg5ciQ2m43PPvuM+vXrs2DB5etqiWRl/dmfsGXxq6kJbIz5xXWBREREpEgIDAzMcrOCHTt2XPWSYleS48LaiBEjcn2x/DB06FAOHTpESkoK69ato0WLFhnHli1bxpw5czK+fuuttzL6njhxgl9++YVGjRpZkFqKs5olalPBq1KmNw8GBh3KdMHd5u7iZCIiuePp6cmECRNYvXo1tWvX5vjx49xyyy0MGDBAu2nLVTsYv+WSkWr/ZeLkYPxWFyYSERGRoqBbt27MmDGDc+fOXXYsMjKSmTNnZjpg7GrkuLA2depUevbsSVJSUqZ9Dh06lOtAIkWdYRg8VPMJ/N0DMP410PZioS0soBHdyuX+f2oREau0aNGCzZs38+STT2IYBrNmzSIsLIwlS5bk6nwnk8+w7NQGlp3ayOlkTS8t8q5qZ9miOEFFREQkE6ZhTStiXnnlFRwOB6GhoYwePRrDMJg7dy733XcfTZs2pUyZMowZMybX589xYW3BggUsX76cNm3acOLEiUuOHTp0iMGDB1O7du1cBxIpDkp7lmFMvYncUfEuKnpXJsijFLX86jK4+jAeqvE4duOa9xUREbGEt7c3b775JsuXL6d69eocPnyYzp0788gjjxAfH39V54hLS2Bc5Ewe/Osl3tj1MW/smkv/v8YyYccs4tMT8/kViFWq+jbAyOJXUwMb1Uo0cGEiERERKQrKly/Pxo0b6dq1K1999RWmafLJJ5/w008/cffdd7N27VqCg4NzfX7DzMUK6bt27eLWW28lJSWFn376iZIlSzJ+/Hg+/vhjDMPgwQcf5N133811qIIsLi6OgIAAYmNj8ff3tzqOiIhIgRUfH8+zzz7Le++9B0D16tWZM2cObdq0yfQ5yY5Uhm+eTFTiycvWo7Rho3qJCkxq+ISmyxdBJ5L28dH+J8hskx8bNobUnE6QZ3mX5hIREesU1/vvi6+7ysTx2Ly8XHptZ3Iyh0Y+X6Tf89OnT+N0OildujQ22zVvPZC7zQvq1KnDX3/9RcWKFWndujW1a9fms88+4+GHH2b//v1FtqgmIiIiV69EiRK8++67LF68mEqVKrF//37atWvH8OHDM11SYunJvziUePyKm7w4cbI3PoqVpzfnd3SxQFnvGtxS/jEujE37/19RL3xl4/aKz6ioJiIiItesdOnShISE5ElRDXJZWIuKimLMmDFs2bKFxMRE0tLSmDRpEm+99RblymknQxEREfl/nTt3Zvv27Tz44IOYpslbb71Fo0aNWLdu3WV9fzuxNstVtAwMfjuxNv/CiqUaluzCoBpTaVCyC0Ee5QnyqECToFsYXPM96ga0tjqeiIiIFEKjR4+mYcOGmR5v1KgRL730Uq7Pn+PC2sCBA7nuuuv46KOPGDRoEAcPHmTAgAE89thjvPrqq7kOIiIiIkVXQEAAH330ET///DPlypVj9+7dtGrVipEjR5KSkpLR72xqXCYTAS8wMTmTGpv/gcUyZbyq0q38UB6+bgYPX/cBN5UbQinPilbHEhERcT3TolbEfPvtt9x8882ZHu/WrRtfffVVrs+f48LaZ599xqBBg9i3bx9TpkyhcuXKzJgxg4kTJzJ69Gj69+9PWlpargOJiMj/i0s7SVTCFk4l7yEXS2KKFDi33HILERER3HvvvTidTl599VWaNm3Kpk2bAAj2vHTH5P+yYVDas6Sr4oqIiIhIIXf48GFq1KiR6fFq1apx6NChXJ8/x1sP7tu3j/LlL1/f4umnn+a6667jvvvuY//+/SxfvjzXoUREiruzKYdYfvJdDiduyngswL08rUr3p5Z/BwuTiVy7oKAgPv30U3r16sWQIUOIiIigRYsWPP/883R6sCO7z2f+i40Tky5lW7owrYiIiIg1DPNCc/U1i5oSJUpkWTg7cOAAXtewSUSOR6xdqah20e23387y5cvZu3dvrgOJiBR3MSlRfHVoGFGJWy55PDbtGL8eG0/EuQXWBBPJYz179iQyMpL//e9/pKen89JLLzH69scJPO6G7Qqj1mwY1PWvRuvghq4PKyIiIiKFUvv27fnggw84evToZceioqKYMWMGHTrkfvCCYebD3KKjR49SoUKFvD5tgVBct/sVEdf56cgYDsSvxbzCrogAboYng2p+g4fdx8XJJK+lOmI5fP57jsX/hsNMwM+jFlX976SUVzMMI6sl/IsW0zT56quvePTRRzl79iweHh50fPQ2bLeWBbcL74PdsNGhTFMeqtkbb7unxYlFRETEFYrr/ffF1131lfHYrmEkVW44k5M5OPr5IvWe7969m+bNm2MYBgMGDKB+/foAREREMGvWLEzTZO3atdStWzdX58/xVNCrUVSLaiIi+S0xPYb98WvIatXQdDOFPedXUD+wa8ZjKY54dsQuYn/8GhzOVEK8axMaeCulPKu4ILXkxvnUvaw+NoBU5zku/vdOSIvieMJvVPW/i9BSI4tNcc0wDO666y7atWvHkCFD+Omnn1j41rc0WdWUp955gSo1q1LXvxqBHn5WRxURERGRQqZ27dqsXLmSxx57jLfeeuuSY23btmXKlCm5LqpBPhXWREQkd+LTo8luKx4bduLSTmZ8fTp5L99HPUOy43zGc08k72ZLzDzalnmERkF35GNiyQ2nmc66E4+S5ozj3/+9TRwAHIz7En+P2lTx72VRQmuUK1eO+fPn8/HHHzNs2DA2/rWB/h36MGHCBFo8/rjV8URERESkkAoPD2f58uVER0ezf/9+AKpXr05wcPA1nzvHa6yJiEj+8bJnP9zaiRPvf/qlOZOZF/UcKY54rlSgWXHqPQ4lbMiXrJJ7JxOXkZR+POO/0+UM9sXOLZY7wRqGQb9+/YiIiODGG28kOTmZ4cOH0759e/bt22d1PBERERHXMS1qRVhwcDDNmzenefPmeVJUA41YExEpUPzdQyjrVY+TyTsxM/mpZmBwnX87AHbH/UGS41ym5zOwsenMN1TxbZofcSWXziRtwMANk/RMepgkpB0k1XkWT3spl2YrKCpVqsSiRYuYMWMGI0aMYOXKlTRo0IDXX3+dhx56CJtNnw2KiIiIyNVxOBwsWrSI/fv3ExMTc9kH2IZh8MILL+Tq3CqsiYgUMDeUfpDvo57556vLi2uNgnrh6xYEwOGEDRjYMt3owMRJVOJmTNOJYagQUVBkVjS9QsdizTAMhgwZQpcuXejfvz/Lly/n0UcfZd68eXz00UdUrlzZ6ogiIiIi+cYwLzRXX7Oo2bBhA7169eLIkSOZzgi5lsKa7rJERAqYir4N6V7xZXzsgcCFUWcANtxoWupuWpcelNHXxJltkcb85x8pOIK8GmUxWg3AwMetEh72IJdlKsiqVavG0qVLeeedd/D29ub3338nLCwsYxcnEREREZHMPPLIIyQlJfHDDz9w9uxZnE7nZc3hyGyJluypsCYiUgBVK3E9A2p+SfcK42hTZgg3ln2agdd9xQ2lB1wy8qycV72sT2TaCPSoRHTKAZxm7n9YSN4q59sJT3vpjKLp5UxqBNxfbHYFvZLE9PMcSdzH6eSjmKaJzWZj2LBhbNmyhZYtWxIXF8eAAQO49dZbOXbsmNVxRURERKSA2rZtG88++yzdu3cnMDAwz8+vqaAiIgWUzbBT3a9lln3qBnZhTfRs0s00Ltm8wAQTAzA5m3KEzw48go+9JM2C+9CoZM9iXbApCGyGOy3KTmP18YGkOxPgn6m8BnZMHFQq0YMq/ndaG9IisWlnWHDsE7bHrsb5z/tS2rMCN4b0ITywFbVq1WLlypW8+eabjB49mgULFhAaGsrUqVO555579HdbREREig7TuNBcfc0ipmLFivk6y0Ej1kRECjFvewA3VxiDDTsGduBiUe3it/f//8GY6Ihh+cnpLD853YKk8l8BnnXpUPEHagUOpoR7NbzsIQR7t6R5yFQalH65WK6JF5cWw7t7Rl5SVAM4nXKMzw+/ydoziwCw2+08/fTTbNq0iSZNmhATE8N9991Hr169OHXqlFXxRURERKQAevbZZ5k5cyZxcXH5cn6NWBMRKeSql7iee6p9wJaYeew7/ycpjkTSzXT+XVT7t80x86gf2IXSXjVcG1Qu4+VWmtpBj1A76BGroxQIv5/8mvj0c5cU1S648AnjT8dmExbQCl83PwDq16/PmjVrePXVV3n55ZeZN28eK1eu5P333+d///ufi9NLQZLsOM+2mB+JjP2VxPQYfNxKUj/gZsJL3oaX3c/qeCIiIlfHxPWbWRXB5WvPnz9PiRIlqFmzJnfddReVKlXCbrdf0scwDJ588slcnd8wtepvjsTFxREQEEBsbCz+/v5WxxERucyHe+7lfPrpTI8b2GlQ8lY6lH3UhalEspbqTOHlyAf+mdZ8ZQYGt5Z/gBuCb7ns2JYtW+jXrx/btm0D4O6772bq1KmUKlUq3zJLwRSfFs03h5/gfNqpS3ZMNrDh516GO6u8g6+b/l6IiBQGxfX+++LrrjZ2AjYvL5de25mczIGxo4rUe26zZT8TxDCMXG9gUPzmmYiIFGGmaXI+PTrrPjiITT3uokQiVyc+/VyWRTUAm2HjbOqVp3o2bNiQ9evX8/zzz2O32/niiy8IDQ3l559/zo+4UoD9fmLyZUU1uLCL8vm00yw+PsmiZCIiIjljmNa0oubAgQPZtv379+f6/JoKKiJShBiGgafNhxRnQuZ9sOHlVjQ+fZKiw8vmk20f0zSz7Ofh4cErr7xCjx496NevHzt37qR79+488MADvP322wQEBORlZCmAYlOPcShhfabHTRwcSlhPbOoxAjzKuzCZiIiIWKVKlSr5en6NWBMRKWLqBHTCyOLbu4mT2v7tXRdI5Cr4uPlRs0R4ln93nThpENg623M1a9aMTZs28dRTT2EYBnPmzCE0NJTffvstLyNLAXQy+e887SciIiJFx9GjR/niiy945513OHLkCAAOh4OzZ8/mehooqLAmIlLkNAnqhbvN64oFCgMb5bzrUdW3qQXJRLJ2Y8id/2y5cfnGGwYGDQJbU8arwlWdy8vLizfeeIOVK1dSs2ZNjhw5wk033cRDDz3E+fPn8zS3FBw2w559pxz0ExERsZRpUStiTNNk+PDhVKtWjXvvvZfhw4fz998XPmSLj4+natWqTJ06NdfnV2FNRKSICfAoR+8qk/F3DwEuFNOMfwoVVUs0o2el8RiGvv1LwVPFtw59qz6Hj70EADbsGX93G5VsR++KOd9w44YbbmDLli089thjAHzwwQeEh4ezbNmyPMstBUcF73Bs2ax0YsONCj7hLkokIiIiVnvjjTd45513eOqpp1i8eDH/3sMzICCAO+64g++++y7X59caayIiRVAZrxr0rzGbw4lbOJW0B7vhRtUSzQjyrGx1NJEs1fFvzKi6M9gRt57TKUfxsHlRP6AFQR5lcn1OX19fpkyZQs+ePenfvz8HDx6kQ4cOPPbYY7z66qv4+GS/vpsUDt5uAdQP6EpE7C+YV/jI3cCgfkBXvO1ab09ERAoBKzYTKIIj1mbOnEnfvn2ZMGECZ86cuex4eHg4v/76a67PryELIiJFlGHYqOLbmGbBfWhcqpeKalJouNncCQ9sRaeQ3rQp3f2aimr/1qFDB7Zv387gwYMBmDp1Kg0bNmT16tV5cn4pGNqGPELlf6a7X5wSb3Bh6mdl36a0DXnEsmwiIiLielFRUbRq1SrT476+vsTFxeX6/CqsiYiISLHh5+fHBx98wMKFC6lQoQJ79uyhTZs2PPPMMyQnJ1sdT/KAm82DHhXHc3ul16jl157y3mHU8mvH7ZVeo0fF8bjZPKyOKCIiIi5UpkwZoqKiMj2+ceNGKlfO/SAEFdZERESk2LnpppuIiIigX79+OJ1O3njjDZo0acKGDRusjiZ54MKI3SZ0rTCK3lXeomuFUVTxbaL1JUVEpHDR5gV54o477mD69Ons378/4zHDuLCO72+//cacOXPo3bt3rs+v3y5ERESkWAoMDGTOnDnMnz+fkJAQduzYwfXXX88LL7xAamqq1fFEREREJA+89NJLlCtXjoYNG9K3b18Mw+C1116jdevW3HzzzYSHhzNq1Khcn1+FNRERESnWbrvtNiIjI+nTpw8Oh4NXXnmF5s2bs3XrVqujiYiISHGmEWt5IiAggLVr1/LMM89w9OhRvLy8WL58OefOnePFF19k5cqV17SZlQprIiIiUuyVKlWKL7/8kq+//ppSpUqxdetWmjVrxvjx40lPT7c6noiIiIhcA29vb0aPHs2WLVtISEggKSmJiIgIxowZg7e39zWdW4U1ERERkX/07t2byMhIbr/9dtLS0hg9ejStWrVi586dVkcTERGRYsYwrWmSM25WBxAREREpSEJCQvj+++/57LPPeOyxx1i/fj2NGjXilVde4cknn8Rut1sdUURERESu0oMPPphtH8Mw+Oijj3J1fhXWRERERP7DMAzuu+8+OnTowMCBA1m4cCFPP/00P/zwA7Nnz+a6666zOqKIiIiIXIWlS5dm7AJ6kcPh4Pjx4zgcDkqXLo2vr2+uz6+poCIiIiKZqFChAgsWLGDmzJn4+fmxatUqGjRowNSpU3E6nVbHExEREZFsHDx4kAMHDlzSDh8+TGJiIlOmTMHPz48lS5bk+vwqrImIiIhkwTAMBg4cyPbt2+nYsSNJSUkMGzaMzp07c/DgQavjiYiIiEguuLu7M3ToULp06cLQoUNzfR4V1kRERESuQpUqVVi8eDHTpk3Dx8eHP/74g7CwMGbMmIFpaqVfERERyWOmRa2YadCgAStWrMj181VYExEREblKNpuNRx99lK1bt9K6dWvi4+MZMmQIN998M0eOHLE6noiIiIjk0OLFi/Hx8cn187V5gYhIAZTmTCEh/Txedl+87N5WxxGR/6hZsybLli3jnXfeYdSoUSxatIjQ0FCmTJnC/ffff9kCuSIiIiJijZdffvmKj587d44VK1awadMmnnvuuVyf3zA1dyFH4uLiCAgIIDY2Fn9/f6vjiEgRcy71DItPfs3mmJWkm2kYGNT1b0LnkN5U9KludTwRuYJdu3bRr18//vrrLwBuu+02PvjgA8qWLWtxMhERkcKtuN5/X3zdNZ+bgN3Ly6XXdiQns/fVUUXqPbfZrjxZs2TJktSoUYOBAwcyaNCgXH8wqhFrIiIFREzqaabuGUli+nmcXNht0MRkZ9wmdp/fwsDqo6lRor7FKYsv0zQ5nrSFyHM/cDZlP+6GN9X92lMn8Ba87AFWxxML1alTh1WrVvH6668zduxYfvzxR/7880/ee+89+vTpY3U8ERERkWItv3dy1xprIiIFxI9HZ19SVLvIxInTdPDl4ak4TUeW5zifFsOiE58zYedgXth+L5N3P86f0b+Q6kzJz+hFnmmarD41lZ+inuDA+ZWcSz3M6ZTdrIuewVcH7udsyn6rI4rF3NzcGDVqFBs2bKBhw4acPXuWu+66izvvvJPo6Gir44mIiEhhpY0LCjyNWBMRKQDi0mLYEbcBM5OfZiYmsWln+Pv8Nur4N7pin9PJR5m+7wUSHfGY/xTnTqcc5edjc9h0dhmDa7yElz33i3IWZ7vjFhBx7jsATP5d3DRJcZxnwZFnubv6F9gN/Vgt7sLDw1m3bh3jx49n/PjxfPPNNyxfvpwPPviA22+/3ep4IiIiIkXe4cOHc/W8ypUr5+p5ugMQESkAolOOZ1pUu8jAxqmUI9Th8sKaaZp8dvhNkv5VVPvXUY4nH+KXY3PpVenhPExdPJimydazXwIGV/oYz8RJQvopDsWvorpfO5fnk4LHw8ODl156idtuu41+/foRGRlJz549uf/++3nnnXcoWbKk1RFFRESkMLBiFFkRGLVWtWrVXK2X5nBkPTsoMyqsiYgUAB627BclNXFm2u9w4m5OJB/K8rmbzi2nW/m+eNt9c52zOEp2xHIuNetPvQzsHEvcrMKaXKJJkyZs2LCBsWPH8sYbb/DJJ5+wZMkSPvroI7p27Wp1PBEREZEiafbs2S69ngprIiIFQHnvKgS4lyI27UymfQxs1PNvesVjUYl7MTCyHPXmMNM5mXyYqr51rzmvXOrCWLYi8PGe5DkvLy9effVVevTowQMPPMDff//NzTffzMCBA5k8eXKR2W1LREREpKAoWbIkTZs2pXz58i65njYvEBEpAGyGnS4hd2Z63MCgRanO+LtfeQqZzbBfVVnHhj2XCYsvL3sA/u7luVA+uzInDsp5h7sulBQ6LVu2ZPPmzTzxxBMAfPjhh4SFhbF06VJrg4mIiEiBZZjWtMKuZ8+eLFu2LOPr6tWr8+OPP+bb9VRYExEpIJqV6ki3cvdhw4aBgQ07tn++TTcu2Zbbyj+Q6XOvKxFOdgsieNt9Ke9d7ZoyOs383aq6IDIMg/CSfcjs/TWw4W0PoppfW9cGk0LHx8eHt956i2XLllGtWjUOHz5Mp06dGDp0KAkJCVbHExERESkS/Pz8OHfuXMbXBw8eJD4+Pt+up6mgIiIFSPsyPWhSsi0bY1YQk3oaH7cSNApsQxmvClk+r7RXBer4NWb3+S1X2LzggtbBt+Jmc89xppjUU6w8PZ8tMctIcSbh51aS5qVuolXwLXgVk/Xa6gXexunkXeyO+xUDe8bOoAY23G0+3FzxNexGzt9bKZ7atWvHtm3bePrpp5k+fTrvvvsuCxcuZM6cObRu3drqeCIiIlJQaPOCXGnevDnjx4/n5MmTBAQEALBgwQJOnDiR6XMMw+DJJ5/M1fUM0zSLwNvmOnFxcQQEBBAbG6t1UUSkQElMj2fWgXEcSdqHgQ0TJzZsOHHSKLAtvSs9is3I2VTQ40kHmLnvBdKcyTj/VbAzsBHsWY7BNSbg4+aX1y+lQDJNk8MJa4g89wNnU/bjZnhRw78j9QJ74OtWyup4UkgtXryYAQMGEBUVlfEL3SuvvIK3t7fV0URERCxXXO+/L77u656egN0z+03O8pIjJZk9b4wq1O/53r176du3L2vXrgUuFM2yK30ZhpHrXUFVWMuh4vo/tkhBtDNuB0tOLuZA4n7cDDcaBjamY5lOhHiVtTqaZRymg51xG9gcs4KE9FhKeZalWVAnqvjUyfGW06Zp8tbuxzibeuKKo+AMbDQMbMv/Kg/Lq/gixVJsbCzDhw9n1qxZANSpU4c5c+bQokULi5OJiIhYq7jef6uwljeSk5M5deoUVatW5e2336ZHjx5Z9q9SpUqurqOpoCJS6JimyXdHv2HhiQUZI7IA/ji1hOWn/2BozWGEBhTPheTthp3QgBaEBlz7DfmBhEjOpB7L9LiJk63nVtKtfP9iM2pNJD8EBATw0UcfcccddzBo0CB27dpFq1atePbZZ3nxxRfx9PS0OqKIiIhYwIrNBIrC5gUXeXl5UblyZV588UU6duyY68JZdrR5gYgUOlvObWLhiQUAl0xPdOLEYTp4b980zqedtypekXEsaT9GNj8mnDg4lXLERYlEirZbbrmFiIgI7r33XpxOJxMnTqRZs2Zs3rzZ6mgiIiIihdaLL75IaGhovp1fI9ZEpND57eQiDAzMK6ysaWKS5kxj9Zk/uanszRakKzrshtsV3+P/cjP0o0QkrwQFBfHpp59yxx138NBDD7F9+3aaN2/O6NGjGTVqFO7u2iRDRESk2NDmBXlm586dzJ49m/379xMTE3PZmmuGYbBkyZJcnVsj1kSkUDFNk33xe7Ms+JiY7Dn/twtTFU21/BqT3U9WX3sA5byruSaQSDFyxx13EBkZSa9evUhPT2fs2LFcf/31REREWB1NREREpFD55JNPCAsLY+rUqezduxen04lpmpc0p/PyNaWvloYZiBQgcWnn+f3kClZGr+F8WjylPYPpHNKOtqWvx92mUQoXGYaRZb3HwMAw9LnBtSrlWZb6/i3ZEbfuipsXALQtczt2jVgTyRelS5fmm2++4csvv+TRRx9l06ZNNGnShJdffpmnnnoKuz1nu/yKiIhIIaMRa3li7NixNGrUiF9//ZXg4OA8P7/uPEUKiJPJp3l228t8e+RHTiSfIsGRyKHEKD488Amv7HiTZEeK1RELBMMwqONXF1sW375MTOr613VhqqKrV6WhVPOtB5Dxnl/88/pS3bgh+DbLsokUB4ZhcPfddxMZGcmtt95Kamoqzz33HK1bt2b37t1WxxMREREp8I4dO8aDDz6YL0U1UGFNpEAwTZO3/55OXNr5S6Y4Xvz3vfH7+eLw91bFK3C6hHS9ZNOCfzMw8LZ7c31QKxenKpo87d48WP0lHqw2loYl21PHvxktSt3MY9e9SfcKAy+MHpRcM00nhxM28Vf0Z2w48yWnk/daHUkKqHLlyvHjjz8ya9Ys/P39Wbt2LQ0bNuTtt9++pqkLIiIiIkVdeHg4x44dy7fzG+Z/V2yTLMXFxREQEEBsbCz+/v5Wx5EiYu/5/bwQ+WqWfTxs7rzfeBI+bt4uSlWwLTrxK98c+Qobtowim4GBp82TJ2qNoGaJ6yxOKJK16JQD/HJkLOfSjmJg50Ip3UkF7wZ0qzAaH7eSVkeUAioqKooBAwawePFiANq2bcvs2bOpXr26xclERETyVnG9/774ums/OQG7p5dLr+1ISWb3W6OK1Hu+atUqevfuzbfffkurVnk/AEML44gUAH/H78t0l8uLUp1pRCUdpbZfTRcmK7huKnszdf3rsezUUvYl7MPdcKdhYCPalG5HgHuA1fFEshSfFs23h4aT6kwAwMSRcexY0na+j3qGu6u+h93Q2opyuUqVKrFo0SI++OADnnrqKVasWEF4eDhvvPEGDz30kEaSioiIiPzLa6+9RkBAAG3atKFevXpUrlz5srVqDcNg/vz5uTq/CmsiBUBW64Xlpl9xUdmnCn2r9rc6hkiObYmZR6oz4YqbQpg4OZNygH3nV1HLv73rw0mhYBgGDz30EF26dOHBBx9k+fLlPPLII3z//fd89NFHVK5c2eqIIiIicq20eUGe2LZtG4ZhULlyZeLj49mxY8dlfa7lg0kV1kQKgPoBdbMcrQbgY/emim8lFyWS3EhyJLHh7DqiU6LxdfOlaVBzgjxKWR1LCqBdsb9nutMqgIGN3XFLVViTbFWvXp2lS5cydepUnnvuOX7//XfCwsJ466236N+/v0aviYiISLF38ODBfD2/hr+IFACVfMoT6p/5TpcGBl3LdsLDpmlhBdXK08t4asswPjk0m99OLuC7I18xctsIPj/0MQ7Tkf0JpFhJccZnedzESbIjzkVppLCz2Ww8/vjjbN26leuvv564uDgGDBhA9+7dOX78uNXxRERERIo0jVgTKSAeu24gr+x4k6ikoxnrrV1cmL9FUGPuqHiL1RElExvO/sUnh2ZnfP3vQtqy00uwG3b6VL7XimhSQAW4l+NM6iEyG2tvYCfQo6JrQ0mhV6tWLf78808mT57MCy+8wC+//EL9+vWZNm0ad999t0avicskpp9lR+wCjiRswMSknHcY9QO74+ceYnU0EZHCRVNBc+Xw4cMAGUtjXPw6O7ldSkO7guZQcd2VRFwjzZnG2jMb+TN6LXFp5wnxKkPHMq0J9a+LAwduhptujAoY0zR5IeJZTqWczLSPDRuvN3gbf22qIP/YGjOfZSenkdVvLndWmUI573quCyVFSmRkJP369WPjxo0A3HHHHbz//vuUKVPG4mRS1EUlbOTXo8/jMFMzlrkwsGFgcGP5F6jh187ihCJSmBTX+++MXUEft2hX0HcK966gNpsNwzBISkrCw8Mj4+vsOBy5m2mkEWsiBYi7zZ02pa+nTenrAYhLO88vxxczde+HxKcn4GXzpG3pltxa/iZKexbPtbvOpZ7jUGIUboadmiVq4Gn3tDTPseSjWRbVAJw42XxuE+1Kd3BRKino6gfczK7YJZxM3nXFtdZCA26hrFddC5JJUVG/fn3WrFnDxIkTGTduHN9//z0rV67k/fffp1evXlbHkyIqPu00C46OwmGm8e8PDkycmMBvx8bRp2plgjyrWZZRRKQwMcwLzdXXLOxmzZqFYRi4u7tf8nV+UWFNpIA6mxrDmIhXiUmNxfnPjXeyM4XfT65gVfRfvFj/GSr5lLc4pevEpcXx8cHP2BCzMeMTcE+bJ13KdqZnhR7YDXs2Z8gfSemJ2faxYbuqflJ8uNk8uKPya6w5PYeIcwtIM5MA8LGXpEnQnTQK6qXRqXLN3N3dGTNmDN27d6dfv35s376d//3vf9x9991MmzaNoKAgqyNKEbMj9mecZjpZjcbdFjOP9mWHuy6UiIgUOw888ECWX+c1bV4gUkDNOvD5JUW1i5w4SXIk8+7eDykuM7kT0hN5ZcdENsZsumT31BRnCj8d+4WZ+2dZ9l4Ee5bBIOsCiBMnIV5aV0Yu5W7zpm3Iwwy67hvurvo+91SdwYCaX9K4VG8MQz+eJe80atSIDRs2MGrUKGw2G1988QX169fn559/tjraFUUn72JP3K8cPL+MVEeC1XEkBw7Fr81yx2MTB4cT1rowkYiIFCRnz57l3nvvxd/fn8DAQAYMGEB8fOabep09e5bHHnuM2rVr4+3tTeXKlRk2bBixsbEuTJ09/eYuUgCdSYlhU8y2y4pqFzlxcijxCPsTDrk4mTV+P7mEUymnM30/1pxZy76E/S5OdUGgRyBhAQ0y3dEVoISbH2EBDV0XSgoVd5sXZbyuo7RXdWwWjbyUos/Dw4Px48ezZs0a6tSpw4kTJ+jevTsPPvhggfnl9EzKHn441J8fDw9k5YnxLD0+mi/238aG6A9wanflQsFJ9v+d9N9SRCQHTItaPrn33nuJjIxk8eLF/Pzzz6xYsYLBgwdn2v/YsWMcO3aMSZMmERERwZw5c1i4cCEDBgzIv5C5oMKaSAEUlXT0kpFZmTmYcHW7mxR2y04vz/L9sGFjxek/XZjoUndWugdvu/dlxTUDAxs2+lUdgJtNM+9FxHrNmzdn06ZNjBgxAsMwmD17NqGhofz222+W5opNPcyCw48Sk7LvkscdZgrbzn7C2lPvWJRMcqK8dzgGmX9AYGCnnHeYCxOJiEhBsXPnThYuXMiHH35IixYtaN26NVOnTuXLL7/k2LFjV3xOaGgo3333Hd27d6dGjRp07NiR8ePH89NPP5Genu7iV5A5FdZECiB34+qKMO4293xOUjCcS816NIUTJ2dSz7gozeXKeIUwqt5YGpdseklxrUaJ63iy9rM0CGxkWTYRkf/y9vZm0qRJrFixgho1anDkyBFuuukmHn744SynY+SnLWfmkG6mZDqNcFfs98SlHnFxKsmp+oE9sp0KGlbyDhcmEhEp3C5uXuDqBhd2Jv13S0lJuabXsmbNGgIDA2natGnGY507d8Zms7Fu3bqrPs/F3Urd3ArOwAUV1kQKoOv8auBt986yjw0b4QH1XZTIWr5uvlket2EjwC3ARWmurLRnGQbXeJTJDacypt4rvBb+Fs/UeZ7afnUszSUikpnWrVuzdetWhg4dCsD06dMJDw9n+fLlLs2R7kxh//klmFlMIzSwszdukQtTSW4EeVahXciTAJeMXLv47y2CB1DeJ9ySbCIikjOVKlUiICAgo02cOPGaznfixAnKlClzyWNubm4EBQVx4sSJqzpHdHQ048aNy3L6qBVUWBMpgDxs7txa7sZMjxsYtC9zA4Ee/i5MZZ22pVtnuYaZEyc3BLd0YaLM+bqVoKJPJUp6aLc9ESn4fH19mTp1Kr///juVK1fmwIEDtG/fnieeeILERNfsZpzqPJ9lUe2iJId1I5Pl6tUP7M4dld+lhl9bPG1+eNhKUMW3BbdVnEyTUvdZHU9EpHCxcI21qKgoYmNjM9rIkSOvGPG5557DMIws265du675rYiLi+OWW26hXr16jB079prPl5cKztg5EbnE7RW6cTb1HEtOrcBm2DBNE5th4DCdNCkZTr+qd1kd0WW6hHRm5ek/iU9PuGwDAwODuv51qOuvkWEiIrnVqVMntm/fzogRI/jwww955513+PXXX5kzZw4tW+bvBxceNj9suOMkLYteJj5upfM1h+Sdst71KOs9xuoYIiJyDfz9/fH3z34gx4gRI3jggQey7FO9enXKli3LqVOnLnk8PT2ds2fPUrZs2Syff/78ebp27Yqfnx/z5s3D3b1gLYmkwppIAWUzbAysfh9dyrZn+anVRKeexd/dj7bBLalZohqGYVgd0WUCPQIZXW8k0/fNZH/CgYzHDQxalbqeflXvx2ZoAK6IyLXw9/dn5syZ3HHHHQwcOJC///6b1q1b8/TTT/PSSy/h6emZL9d1s3lSw/9G9sYtynTkmomTmv435cv1RUREJPdKly5N6dLZf/jVsmVLzp07x8aNG2nSpAkAS5cuxel00qJFi0yfFxcXx0033YSnpyc//vgjXl5eeZY9rximaebjZqpFT1xcHAEBARkL5omIax1KOMSBhIO4GW7UC6hHkEdJqyOJiBQ5MTExPPHEE3z88ccA1K9fn7lz52b8IpzXzqcdY/6hAaQ5E69YXAsteRfNSw/Nl2uLiEjBVVzvvy++7rqPTMDu6dpCkiMlmZ3vjcqX9/zmm2/m5MmTTJ8+nbS0NPr370/Tpk35/PPPATh69CidOnXi448/pnnz5sTFxdGlSxcSExOZN28evr7/v/Z26dKlsdsz34nalTTEQ0QKlSq+VWhfph2tS9+gopqISD4pWbIkc+fO5YcffiAkJITIyEhatGjBiy++SGpqap5fz8+9PLdWnk4Z79BLHne3+dIkeAjNgh/N82uKiIiIa3322WfUqVOHTp060a1bN1q3bs2MGTMyjqelpbF79+6MdV43bdrEunXr2L59OzVr1qRcuXIZLSoqyqqXcRmNWMuh4loxFxERkeIpOjqaoUOH8tVXXwHQsGFDPv74Y8LCwvLleudSD3Eu5SBuNi/KejfEzZY/U1BFRKTgK6733xdfdz2LRqztyKcRa0WVRqyJiIiISKaCg4P58ssv+frrrylVqhRbtmyhSZMmTJgwgfT09Dy/XqBHFar6taOibwsV1URERKTAK/SFtXfffZeqVavi5eVFixYt+Ouvv7Ls/80331CnTh28vLwICwtjwYIFLkoqIiIiUnj17t2byMhIevToQVpaGs8//zw33HADO3futDqaiIiIiGUKdWHtq6++Yvjw4bz44ots2rSJBg0acNNNN122hetFq1ev5u6772bAgAFs3ryZ22+/ndtvv52IiAgXJ5fi7mzqOVZFr2fl6XWcSD5tdRwREZGrEhISwrx58/j4448JCAjgr7/+olGjRkyePBmH48o7eoqIiEgumRY1yZFCvcZaixYtaNasGdOmTQPA6XRSqVIlHnvsMZ577rnL+vfp04eEhAR+/vnnjMeuv/56GjZsyPTp06/qmsV1jrfkjSRHMh/u/4xV0Rsw//Udq2FgfR6u0Y9AD/2dEhGRwuHo0aMMHDiQhQsXAnDDDTcwZ84catasaXEyEREpKorr/XfGGmsPW7TG2vtaYy0nCu2ItdTUVDZu3Ejnzp0zHrPZbHTu3Jk1a9Zc8Tlr1qy5pD/ATTfdlGl/gJSUFOLi4i5pIrnhMB1M2DmF1f8pqgFsO7eTsZGTSExPsiiduNrplNMcSjhEfHq81VFERHKlQoUKLFiwgJkzZ1KiRAlWrVpFeHg406ZNw+l0Wh1PRESk0DNMa5rkTKEtrEVHR+NwOAgJCbnk8ZCQEE6cOHHF55w4cSJH/QEmTpxIQEBARqtUqdK1h5diaf3ZLfx9fj/OK4ytdeLkRPJp/ji1yoJk4krbY7czNnIsz2x7hrE7xvL45sd5b+97RKdEuzxLsiOZE8nHOZca4/Jri0jRYBgGAwcOJCIigo4dO5KUlMRjjz1G586dOXjwoNXxRERERPJdoS2sucrIkSOJjY3NaFFRUVZHkkJq+ak12DAyPW5islSFtSJt3Zl1vPn3mxxOPJzxmBMnG2M28vKOl11WXItLi+XTQx/x1NZHGBv5DM9tH8arO18kMnabS64vIkVPlSpVWLx4MdOmTcPHx4c//viDsLAwZs6cSSFedURERMRaWmOtUCi0hbXg4GDsdjsnT5685PGTJ09StmzZKz6nbNmyOeoP4Onpib+//yVNJDfOpp674mi1fzuXpqnGRVWKI4U5B+cAXDYV2ImThPQEvo76+pLH8+NmNC4tltd2jWV19ArSzbSMxw8lHmDq3jdYe+bPPL+myL+Zpsm+82v59vDzTN9zDx/tG8Cfp+cSn3bG6mhyjWw2G48++ihbt27lhhtuID4+nsGDB9OtWzeOHj1qdTwRERGRfFFoC2seHh40adKEJUuWZDzmdDpZsmQJLVu2vOJzWrZseUl/gMWLF2faXyQvlfIMwpbN/3JBHoGuCSMutzFmI8nO5EyPXxy5FpcWx8rTK3kx8kUGbBjA4A2DeXfvu+yL35cnOX469j0xqWdxcun6RxeLfZ8dmk2SQ2v9Sf4wTScLj09i3pEXOZSwifj0M8SkHmFd9JfM3j+Ik0l7rI4oeaBmzZosX76cSZMm4enpycKFCwkNDeWTTz7R6DUREREpcgptYQ1g+PDhzJw5k7lz57Jz504efvhhEhIS6N+/PwB9+/Zl5MiRGf0ff/xxFi5cyOTJk9m1axdjx45lw4YNDB061KqXIMVIhzKtLitm/FfHMq1dlEZc7VTKKeyGPcs+TpzM3D+TWQdnEZUYhYlJmpnGpphNjN85nnVn1l1ThlRnCmvPrMzy72Gamcr6s5lv6CJyLbbE/EJk7O8AmP/6e2jiJNWZxPdRL+D410hKKbzsdjsjRoxg8+bNNGvWjHPnztG3b1969ux52ewBERERyYKmgRZ4hbqw1qdPHyZNmsSYMWNo2LAhW7ZsYeHChRkbFBw+fJjjx49n9G/VqhWff/45M2bMoEGDBnz77bf88MMPhIaGWvUSpBhpUjKcUP/aGFdYZ82GjYre5elQppUFyYoO0zRJdiST7ky3OsplfOw+OM3sd8mLiIsALp0u6sSJicnMAzOJTYvNdYZzqedIy6ZoYTfsnErOfEMXkdwyTZMNZ7/N/DhOEhwx7DmvtSaLkrp167J69WrGjx+Pu7s78+fPp379+nz99dfZP1lERESkEDBMjcnPkbi4OAICAoiNjdV6a5JjKY5UPj74DctOrybddABgYNCiVGMGVrsbP/cSFicsnFIcKfx64ncWn/yDc2mxGBg0KdmA28p3o0aJalbHA+BMyhme3vb0ZeurXWRg4Ga4kW6mZ9nnjgp3cGv5W3OVIS4tlme2ZT1C14aNbuV6cGv5O3J1DZHMJKSf4/09fbLsY8NOeMludC6rkeRF0bZt2+jXrx9btmwB4M477+Tdd98lODjY2mAiIlJgFdf774uvO3TwBOweXi69tiM1mYgZo4rde34t3KwOIFKceNo9GFTjXu6q3IPd5/fhNJ3U9KumtdWuQbIjhQk7J7E/4VBGQcrEZFPMNjbFbOOJWg/TpGRDa0MCpTxL0b50e5adXnbFwtnFaZ9ZMTE5mHgw1xn83QOo4VuL/Ql7Mi3eOXHSuGSLXF9DJDOZ74n8335X21MKm/DwcNatW8f48eMZP348X3/9NcuWLWPGjBn06NHD6ngiIiIiuVKop4KKFFZ+7iVoGtSA5qUaqah2jX48tuCSotpFzn/+eW/vhyQ7Mt80wJXuqXwP7Uu3x/jnn4trrnnZvBhcbXC2m1tcHNV2LbpnMRLNwKBxYDPKe1e4pmuIXIm3PYCSHhXJqsTmxEElnwauCyUu5+HhwUsvvcTatWupV68ep06d4vbbb6dv377ExMRYHU9EREQkx1RYE5FCy2E6WHJqeaajrwCSnSmsObPehaky52Zzo2/VvrwR/gZ3VbqLW8vdyqBqg3i74du0DG5JWEBYlsU1E5PwgPBrylDHvz4Dqj2Cp80TuLCm2sVrNgpsxgPVHrqm84tkxjAMmpfqTWar4hrY8HMrQ00/7dRdHDRt2pSNGzfyzDPPYLPZ+OSTTwgNDWXhwoVWRxMRESk4XL1xgTYwyBVNBRWRQutcaizx6QlZ9rEbdg4nRrko0dUp5VmKLmW7XPZ4t3Ld2Bq79YrPsWEjwD2AZkHNcn3dw4mH2BSzgWRHMt3L98HNgLOpZ/Cye9EosBnlNFJN8llowE2cSt7P5pj5GNgxcfxzxMDL7kevyuOwZbN7rhQdXl5evPbaa9x+++3069ePPXv2cPPNNzNw4EAmT56sdV1ERESkUFBhTUQKLQ+bR/adTBP3q+lXANTyq8WAagOYfWA25j//GBiYmAS4B/B07adxt7nn+LzJjiSm73uPiLjt2LBhGAYO04GHzYMHqg6geZDWVBPXMAyDjiEPU8uvNVtifuZ0yn48bN7U9m9HaGAXvO0qpBRHLVu2ZMuWLYwaNYp33nmHDz/8kMWLFzNr1iw6duxodTwRERHLGOaF5uprSs6osCYihZafewlq+FZjf8LBTKeDOnAWiM0Lrlbr4NbU86/H8tPLOZxwGDebGw0CG9AiqEWuimoA7+97l51xO4ALa89dfKtSnanM3D8dfzd/6vjXzauXIJIlwzCo5BtOJd9rm9YsRYuPjw9vv/02PXv2pH///hw4cIBOnToxdOhQXn31VXx9fa2OKCIiInJFWmNNRAq12yvckmlRzYaN60rUoFaJGi5OdW2CPILoWaEnj9d6nEdrPkrr4Na5LqodTDhAZFzEhYJaJn4+/mNuo4qI5Kl27dqxdetWhgwZAsC0adNo2LAhq1atsjiZiIiIBbTGWqGgwpqIFGqNSzagf9V7sV2Y5IgNG/Z/vrVV9a3MiFqPYhiZ70JY1G2M2ZDthgi7zu8kMZu16kREXMXPz4/p06ezaNEiKlasyN69e2nTpg1PPfUUyckFY5dnERERkYs0FVRECr3OIe1pUrIhy0+v4ljScTztnjQPakJ9/zrYjIL5+UGKI4Ulp/5g6ak/iE45g4/dm1bBLbmpbBdKewbn2XWSHckXCovZfPKU7EzBB021EpGCo0uXLmzfvp0nn3ySOXPmMHnyZH755Rc+/vhjmjXL/UYuIiIiInlJhTURKRJKegRye4VbrI5xVZIcSUzY+RpRiUcyprEmOBJZcvIP/oxezcg6T1PFt0qeXKucdzmcZubTQAG8bF74u2nReBEpeAIDA5k9eza9evVi0KBB7Nq1i5YtW/Lss88yZswYPD09rY4oIiKSb7R5QeFQMIdyiIgUEg7TgWnm7KfPN1HfcSTx6GVrwzlxkuJIYere97Mthl2t64Na4mZk/hmKDRttSrfDzabPWUSk4Lr11luJiIjg7rvvxuFwMGHCBJo1a8aWLVusjiYiIiLFnAprIiI5lOpM5ZdjC3li87M88NcQHlz/MO/v/ZCoxKPZPjfJkcSK039mupmAEyenU04T+c8untfKx82X+6s8AIDBpWvN2bBRxiuEW8vdlifXEhHJT6VKleLzzz/n22+/JTg4mO3bt9OsWTPGjRtHWlqa1fFERETynjYvKBRUWBMRyYFkRwoTdkziq6jvOJN6BoB0M521Z/5iTMQ4ImN3Zvn8E0knSTOzvgG0YeNgwqE8y9wq+AaeuG4ENUrUzHjM0+ZJxzKdGFlnNL5uWltNRAqPXr16ERkZyR133EF6ejpjxoyhZcuWREZGWh1NREREiiHN/RERyYH5R39mf8KBK07jNE2TqXumM6XxJDxs7ld8vt1mz/YaJiZ2I/t+OREaEEZoQBjn0+JIdqYQ6B6Au80jT68hUpyYpkmiIxYw8LH7F+vdh61QpkwZvv32W7744guGDh3Kxo0bady4MePGjWPEiBHY7Xn7PVREREQkMxqxJiJyldKd6Sw9tfyyotpFJiYJjgTWn92Y6TkqeJcnwD0gy+uYmIQHhF1T1sz4uftT2rO0imoiuWSaTtaf+YVpfw9m8q6+TN51P+/teYTNZ3/L8XqLcm0Mw+Cee+4hIiKCW265hdTUVJ599llat27N33//bXU8ERGRa6epoIWCCmsiIlfpbGoMiY7ELPvYDTuHEg5nefzWcjdnetyGjbCAUCr6VMh1ThHJH6ZpMv/oFH49/gExaSczHj+Teoyfjk1j4fEZKq5ZoHz58vz000/MmjULf39/1q5dS4MGDXjnnXdwOvNmIxgRERGRzKiwJiJyla5m50zTNHHPpt+NIZ25MaQzcKGQ9u8/q/pW4eEag68xqYjkh7/Pr2fbuaVXOHKhmLb+7C8cStQ6X1YwDIP+/fuzfft2brzxRpKTk3niiSfo2LEj+/fvtzqeiIhIrhimNU1yRoU1EZGrVNI9kIreFS7bXfPfnDhpFNggy/MYhsF9Ve7m5fov0qFMe8ICQmlRqhlP1hrGC/VGaTMBkQJqw9kFGFn86mTDzoYzC1yYSP6rcuXKLFq0iPfffx9fX1+WL19OeHg406dP12hCERERyRcqrImIXCXDMOhR4ZZM11izYeO6EjWpUaL6VZ2vim9l+la9l6dqP8lDNQbTMLABNkPflkUKqlPJBzHJfGqhEwenkg+6LpBckWEYPPTQQ2zbto22bduSkJDAww8/zE033URUVJTV8URERK6e1lgrFHQHJyKSA9eXak6fSr2Ay6dxVvKpyBO1HtXugCJ5zGk6rI4AgIfNO/s+dh8XJJGrUb16df744w/efvttvLy8WLx4MaGhocyePVuj10RERCTPZL9gkIiIXOLW8jfTPKgpy06v5HjSCbzsXrQIakp4YKhGnEm2YtNiOJK4H5tho6pPLbw19feKzqedZXX0D2yO+Z1kZwLe9hI0LtmFlsE9KOEWaEmmegGt+fP0N5mOWjMwqB9wg4tTSVZsNhuPP/44Xbt25YEHHmDt2rU8+OCDfP/998yYMYNy5cpZHVFEREQKORXWRERyoYxXae6sdIfVMaQQSUg/z7dHZrH13LqMwoyb4U7LUp3oXv4e3G0eFicsOM6mnuCj/c+SmB6X8V4lOeJZHf0D284tZ0D11wj0KO3yXE2DbuavMz+T6ky6rLhmYMPb7kfDwM4uzyXZq127Nn/++SeTJk1izJgx/Pzzz9SvX593332Xu+66SyONRUSkQDJME8PFo6xdfb2iQEMrRERy6FjScbadi+RgwmFNJyqAnGbma2BZJcWRzLS9L7HtX0U1gHQzjT+jFzH7wJsFMrdVfjjyNkn/KqpdZOIkPj2GH49OsySXn3sQfau9gq9bAHBhswIbdgD83UvRt9p4vN38LMkm2bPb7Tz77LNs3LiRxo0bExMTwz333EPv3r05ffq01fFERESkkNKINRGRq7Tn/D4+PvQl+xMOZjxWziuEeyr3pnHJrHcCLU6iEqM4kHAAm2Gjvn99SnqUzPdrxqXF8fvJhaw8vZwERzw+dl9uCG7DjSE3E+gRmO/Xz87aM0s5mXz0ihtfmJjsPL+F3ee3Ute/kQXpCpZTyYc5nLgz0+MmTvYnbOFsynGCPF0/ja+cdw0er/Uhu86v5XBCJGBQ1TeM2v4tsBl2l+eRnAsNDWXt2rVMnDiRcePG8d1337FixQqmT5/OHXdoJLKIiBQgVmwmoHEDOabCmojIVdhzfh+v7HwDx39GFR1PPsnkv6cxrOZDtCjVxKJ0BcOp5FPM2D+DfQn7Mh4zMGgR1IIHqj6Ap90zX657JuUMr+0aR1xaLM5/RjglOhJYcvI31p1ZzbN1X6C0Z5l8ufbVWnNmSaa7ycKFDTDWnVmmwhpwInn/VfY7YElhDcBuc6d+QBvqB7Sx5Ppy7dzd3RkzZgzdu3enb9++RERE0KtXL+655x6mTp1KUFCQ1RFFRESkkNBUUBGRq/DxoS9xmM5MiyOzD35GujPdxakKjri0OCbsmsCBhAOXPG5isu7sOt7e83a+TXX85NCsS4pqFzlxEp8ez+wDM/PlujkRmxaT5XEnTs6mRrsoTe4dTzrIppjlbD+3hsT0+Hy5ht1wz9N+Illp1KgRGzZsYOTIkdhsNj7//HNCQ0P55ZdfrI4mIiIihYQKayIi2TiadJz9CQezHHF0Pv0822IjXZiqYFl8cjHn085fVtyCC8W1Xed3ERmX9+/P6ZRT7IiLuOJ14ULBam/83xxLOprn184JP3f/LI8b2AhwD3RNmFw4lXyUd/c8xzt7nuLrqKl8dngy43cO5Jdjc3GYeVtQruYbht3IekC9m+FBFd/6eXpdKb48PT2ZMGECq1evpnbt2hw/fpxbb72VBx98kNjYWKvjiYhIMWaY1jTJGRXWRESycSblzFX1i045m89JCq4/o//MtLgFF6Y6ro5enefXPZx46Cr7Hczza+dE86AOGGS+66CJk2ZB7VyY6OqdSz3N9H3PcyTp0imaDjOdldE/813U+3l6PR83f5qU7JrF+2XQotSteNl98vS6Ii1atGDz5s0MHz4cwzCYPXs2YWFh/P7771ZHExERkQJMhTURkWz4uV/dLn/+7iXyOUnBFZ/NtEAnTmLT8n7kh/tVTgd0s3ja4A2lOlPSIxjbFX7sGtio5lub+gEFc42+Zad/INmReNkOnReYbDq3nGNJB/P0ml3KPkBd/5YAGbtuXvwzPKAtHUPuy9PriVzk7e3N5MmTWb58OTVq1CAqKoobb7yRRx55hPj4/Jn+LCIikinToiY5osKaiEg2qvpUJiSbxe89bZ40DAx3UaKCJzCbaYw2bJTyLJXn173OrzbuhkeWfeyGG3X96+X5tXPC282Xx2q+RI0Sl+YwMGgUeD2Dqz+HvQDuKOk0nWw8+0c2oxHtbIpZlqfXdbO507vSMwys/jqNg26kjl8LmgR1YVCNSdxRaXiBfK+kaGnTpg1bt27l0UcfBeD999+nQYMGrFixwuJkIiIiUtBoV1ARkWwYhsE9lXvz1p53M+3Tu2IPvPJp18vCoF3pdnx/9PtM16Fz4qRNcN7voOht96ZjSGcWnfiVK328ZmDQNrg9vm7WjyYM9AjikZqjOZV8jIMJf2Mz7NQsUZ9Aj4K7+2CaM4U0MzXLPiYm59PP5fm1DcOgok9tKvrUzvNzi1wNX19fpk2bRs+ePXnwwQfZv38/7du35/HHH2fChAl4e3tbHVFERIo4K9Y80xprOacRayIiV6FpUEOG1hxMCTdfgIz1nzxtntxX+U66lu1sZTzLdSzTkRCvkEymOho0K9mM60pcly/X7lG+Fy2CrgfIuP7FPxsGNqZ3pbvz5bq5VcarPM1LtadpUJsCXVQDcLd54mHzyrKPAQS4FezXIXItOnXqxPbt2xk4cCCmafL222/TsGFD1q5da3U0ERERKQAM0zRVj8yBuLg4AgICiI2Nxd8/613eRKToSXemszU2gjMpZ/Fz96NRYHiRGKkWlXiU6JRoSriVoEaJatiMnH/uEpcWx6eHPmVjzMaMqYOeNk86lelEzwo9cbPl3yBp0zQ5mLCfNWdWEZMWQ4B7AC1Ltaa6bw0MI/NNAyR7Px79iLVnFmU5HfTJWm8R4lXJhalErPHrr78ycOBAjh07hs1m45lnnmHs2LF4ehb+nwMiIgVRcb3/vvi6G989HrtH1h9y5jVHajKbvni+2L3n10KFtRwqrv9ji+TEkcRjHE48hqfNg3oBtfC2u/aHgVy9vfH7mXvgMw7+a3fNUh5B9Kn8P1qWap6rc55LPcfhxMPYDTs1StTAS//9C7XYtDNM3fMMiennr1hcax7UmTsqPmRBMhFrxMTEMGzYMD799FMA6tevz9y5c2nSpGBuQCIiUpgV1/vvjMLaXRYV1r5UYS0ntMaaiOSZY0knmb7vY3af35fxmIfNg1vKdeLOSt1zNQpK8s/++AOM3/E6DtNxyeNnUs/y3t4ZpDlTaVu6dY7PG+gRSKBHYB6lFKsFuJfi4RoT+O7I++xPiMh43MPmSevg7nQO6W1hOhHXK1myJJ988gm9evViyJAhREZG0qJFC0aPHs3zzz+Pu7u1uxCLiIiIa2nEWg4V14q5SHZOp5zhuW0TSExPuuKols5l2jCoxr05Pu/e8wdYemoVJ5JP4edWghuCm9EkKFy7AuaBlyNfZW/8vkw3HPC2ezOt8WQ8bFnvuinFR3TKcU4kH8LN8KB6iXrZrr8mUtRFR0fzyCOP8M033wDQqFEj5s6dS1hYmMXJRESKhuJ6/33xdTfpY82ItY1facRaTmj4iIjkiR+OLsy0qAbw+6mVHEk8ftXnc5pOZu77jOcjXuOPU6uJjPubv85uYfLfH/D89teIT0vIq+jF0snkU+yJ35tpUQ0gyZHEppgtrgslBV6wZzlCA66njn9jFdVEgODgYL7++mu+/PJLgoKC2Lx5M02aNGHixImkp6dbHU9ERERcQIU1EblmDtPBitNrs1zc3IaNFaevfge1X47/zu+nVgJknPfin4cSjvDOno+uIbHEpJ7Lto8NG2dSY/I/TCFkmiYa8C0iF/Xp04fIyEhuu+020tLSGDVqFDfccAO7du2yOpqIiIjkMxXWROSaJTmSSXWmZdsvJi32qs6X7nTw47HFmR534mRb7A6iEo9ddUa5lL+7X7Z9nDgJcMu+X3Fhmibrzqxhwo6xPLSxP49sGsDUPW+y+7xunEUEypYtyw8//MDcuXMJCAjgr7/+olGjRrz55ps4HI7sTyAiIvJfpkVNckSFNRG5Zt52L9xt2S/WXNI94KrOF5V0lLi081n2MTDYem7HVZ1PLlfeuxyVfSphYGTax8PmTpOSjVyYquAyTZNPD83howPTOZR4EBMTh+kgMnY7k3dPZPnpP6yOKCIFgGEY9O3bl4iICG666SaSk5MZMWIE7du3Z9++fdmfQERERAodFdZE5JrZDTttg6/HlsW3FCdO2pa+/qrO5zAzn1J6kYFx2W6WkjP3VL4TINPi2h0VeuDt5u3KSAXWpnMbWBm9DOCSdekuTk/+/NBcTiWftCKaiBRAFStW5Ndff2XGjBmUKFGCP//8k/DwcN59912czux/xomIiFxkmK5tknMqrIlInuhZsSs+bt6ZFtc6lWlNRZ9yV3WuCt5lcTeyHgHnxEmNElVynFP+X/2Augyv9RiB/xlJ6GXz4p7Kd9Kt3E0WJSt4lp5cnOXoPgODFaeXuS6QiBR4hmEwaNAgtm/fTocOHUhMTGTo0KHceOONHDp0yOp4IiIikkdUWBORPFHasxTjQp+mZomqlzzuYfOgZ4WuDKx+z1Wfy9vuRccyrbBlUsiwYaOcVxnq+9e+lsgCNCwZztuNXueZ2k/Sv9r9DLvuYaY1nszN5bpgGJkXkoqbi9M/M+PEycGE/S5MlL3olFMcTjxAfHrW06pFJH9VrVqV33//nalTp+Lj48PSpUsJCwvjww8/1CYoIiKSNdO0pkmOuFkdQESKjvLeZRkX9gyHE48SlXgMD5s7oQF18LZ75fhcd1fpyZ74AxxIOHxJOcOGDW+7F8NrDVHhJ4/YDBthgfWtjlGg2Q17tn2uZp1BV4iM3cLPx77hSNJBAAxsNAhsSo8KdxPsWcbacCLFlM1mY+jQoXTt2pUHHniAVatWMWjQIL7//ntmzpxJhQoVrI4oIiIiuaQRayKS5yr7VOCG4GY0C2qYq6IaXBi1Nrb+U9xftTflvEJwM9wIcPfjlnKdeKPBC1T21U2IuE7DwEZZriEIEB7Y0DVhsrDh7Gqm73uDo0n/P83MxMm2cxuYtOsFolNOWZhORGrWrMny5cuZNGkSnp6e/Prrr4SGhvLJJ59o9JqIiEghpcKaiBRYnnYPbinXibcbvcRn109jRtM3uK9qL0p5lrQ6mhQznUO6ZnrMho0Sbn5cX+oGFya6XKozhS8PfwRw2bRVJ06SHInMP/qFFdFE5F/sdjsjRoxg8+bNNGvWjHPnztG3b1969uzJyZPaBEVERP6fqzcu0AYGuaPCmoiISDYq+VRmcI1HcTPcMjYxuPinr5svT9Z6Gm+7tTuobon5ixRncqbHnTjZem6D1lwTKSDq1q3L6tWreeWVV3B3d2f+/PnUr1+fb775xupoIiIikgMqrImIiFyFxiWb8mr4W9xeoRcNAhvTqGQT7q/Snwlhk6nkY/0OtdEpp7CT9VpwJk5iUs+4KJGIZMfNzY3nn3+e9evX06BBA86cOcOdd97JXXfdRXR0tNXxRETEaqZFTXJEhTUREZGr5O/uz83luvNozcd5qMZjtCndHk+7p9WxAPBx88WJM9t+3nYfF6QRkZxo0KABf/31Fy+88AJ2u52vvvqK0NBQfvzxR6ujiYiISDZUWBMRESkCGgQ2y/K4gUEl76raGVSkgPLw8ODll19m7dq11K1bl5MnT9KjRw/69evHuXPnrI4nIiIimVBhTUREpAgo6VGK1sGd4J+13/7LxOSW8r1dG0pEcqxp06Zs2rSJp59+GsMw+PjjjwkNDWXRokVWRxMRERcznNY0yRkV1kSKmZPJ0cw/+htfHJ7PslNrSHGkWh1JRPJIr0p9aRPcCeOff2zGhTXXvGzePFB1KPUDGlobUESuipeXF6+//jp//vkn1113HUePHqVr164MHjyY8+e1AYmIiEhBYpimqaXpciAuLo6AgABiY2Px9/e3Oo7IVUtzpjNj3+csO73mnxtuGw7TgZfdk4dq3McNwU2tjigieeRc6lm2nPuLREcCpT3L0iCwGR42D6tjiUguJCYmMnLkSKZMmQJA1apVmTVrFh06dLA4mYhI/iuu998XX3ez21/Bzd3LpddOT0tm/Q+ji917fi00Yk2kmJix73OWn14LXJgS5jAdACQ7Unjn71lsPbfDyngikocCPYJoX6Yr3cr1olnQDSqqiRRiPj4+vPPOO/zxxx9UrVqVgwcP0rFjR4YNG0ZCQoLV8URERIo9FdZEioETyadZdnoNZhZ7J395+CcXJrqc03RyLjWOuLR4NJBWRETkUu3bt2fbtm0MGTIEgKlTp9KwYUNWr15tcTIREZHizc3qACKS/9ZGb8KGgTOTwpqJyd74g5xJiaGUZ0mXZnOYDn45tpQFx5dyJvUcAFV8KnB7hZtoXTrrXQ5FRESKEz8/P6ZPn84dd9zBgAED2Lt3L61bt2bEiBGMGzcOLy/XThcSEZH8ZZgXmquvKTmjEWsixUCiIwnDyP5/90RHkgvS/D+H6WTy7pl8cuj7jKIawOHEY7yzZ5blo+hEREQKoi5durB9+3b69euHaZpMmjSJxo0bs379equjiYiIFDsqrIkUA+W8ymSsqZYZu2EnyMO1o9X+PL2e9We3Xvb4xSmr3x1ZwIGEKJdmEhERKQwCAwOZM2cO8+fPJyQkhJ07d9KyZUtGjx5Naqp2/BYRKRJM05omOaLCmkgxcH1wYzyzWLzcho0bgpvi6+btwlSw8MQyDIxMj9uwsfjEShcmEhERKVxuu+02IiMjueuuu3A4HIwfP55mzZqxdevlH1yJiIhI3lNhTaQY8LZ7MaTGvQCXFbJs2Ahw9+Oeyj1cnutI4vEsN1Rw4uRw4lEXJhIRESl8SpUqxRdffMHXX39NcHAw27Zto2nTpowbN460tDSr44mISC5dXGPN1U1yRoU1kWKiTenmjKz7KNV8K2U8Zjds3BDchInhz7p80wIAT3vmo+jgQhHQy66FmEVERK5G7969iYiIoGfPnqSnpzNmzBhatWrFjh07rI4mIiJSZGlXUJFipHHJUBqXDOV08hkSHckEe5bE183HsjytSjVh0YkVOHFe8biJSctSjV2cSkREpPAKCQnhu+++4/PPP2fo0KFs2LCBxo0bM27cOIYPH47dbrc6ooiISJGiEWsixVBpr1JU8a1gaVENoFv5jrjb3K64zpoNG8EeQbQObmZBMhERkcLLMAzuvfdeIiMj6datGykpKTzzzDO0bduWPXv2WB1PRESulmlRkxxRYU1ELFPWqzTP13sso8BnN+zYjQvflkK8ghkb+kS200VFRETkysqXL8/PP//MRx99hJ+fH6tXr6ZBgwZMmTIFp/PKo8VFREQkZwzT1F6qOREXF0dAQACxsbH4+/tbHUekSEh1prEmehN74vdjM+w0CKhLw5L1M4psIiIicm0OHz7MgAED+P333wFo3749s2bNolq1ahYnExHJXHG9/774uq+/ZRxu7q5dczo9LZm1v7xQ7N7za6G7VhGxnIfNnXZlWjCw+t08WO1OmgSFqagmIiKShypXrsxvv/3Ge++9h6+vL8uWLSM8PJwPPvgAfc4uIiKSe7pzFREREREpBgzD4OGHH2bbtm20bduW+Ph4HnroIbp27UpUVJTV8URERAolFdZERERERIqR6tWr88cff/DWW2/h5eXFb7/9RmhoKHPmzNHoNRGRgsQ0rWmSIyqsiYiIiIgUMzabjSeeeIItW7bQokUL4uLi6N+/Pz169OD48eNWxxMRESk0VFgTERERESmmateuzZ9//snEiRPx8PDgp59+IjQ0lC+++EKj10RELGaY1jTJGRXWRIRjSSf5+OB3TNgxjTd3z2RV9HrSnOlWxxIREREXcHNz47nnnmPjxo00atSIs2fPcs8999C7d29Onz5tdTwREZECTYU1kWJu/tHfeHzzWH45tpTN5yJZe2Yzb/89ixFbxnEmJcbqeCIiIuIioaGhrFu3jrFjx+Lm5sZ3331H/fr1+f77762OJiJSPJkWNckRFdZEirE10Zv49NA8AJw4ATD/+U56MjmaCTvfxWk6LcsnIiIiruXu7s6LL77IunXrCA0N5fTp0/Tq1Yv77ruPs2fPWh1PRESkwFFhTaQYm3d0IQbGFY85cXI48SjbY3e7OJWIiIhYrXHjxmzYsIGRI0dis9n47LPPCA0N5ZdffrE6moiISIGiwppIMXU+LZ4DCVEZI9SuxG7Y2BwT4cJUIiIiUlB4enoyYcIEVq9eTe3atTl+/Di33norAwYMIDY21up4IiJFnjYvKBxUWBMpptJNx1X20yYGIiIixVmLFi3YvHkzTz75JIZhMGvWLMLCwvj999+tjiYiImI5FdZEiil/dz8C3f2z7OMwndTwreKiRCIiIlJQeXt78+abb7J8+XKqV69OVFQUN954I4888gjx8fFWxxMRKZqcpjVNckSFNZFiym7Y6FqufaZrrBkY+Ni9aRXc1MXJREREpKBq06YNW7du5ZFHHgHg/fffp0GDBqxYscLiZCIiItZQYU2kGLut/I2EBdS57HEbNuyGnadqD8bT7mFBMhERESmoSpQowbvvvsvixYupXLky+/fvp3379gwfPpykpCSr44mIiLiUCmsixZi7zY2RdR9lYPW7qOhdFhs2vGyetCvdgtcbjCIs8PKim4iIiAhA586d2b59OwMGDMA0Td566y0aNWrEunXrrI4mIlI0mBY1yZFCW1g7e/Ys9957L/7+/gQGBjJgwIBs13do3749hmFc0h566CEXJRYpmNxsdm4q2463Gr3IV63e5ZPr3+aR6/pSyaec1dFERESkgPP39+fDDz/k559/ply5cuzevZtWrVoxcuRIUlJSrI4nIiKS7wptYe3ee+8lMjKSxYsX8/PPP7NixQoGDx6c7fMGDRrE8ePHM9rrr7/ugrQiIlfHYTpYf3YLU/fM4o1d7/Hpwe84lnTS6lgiIiJZuuWWW4iIiODee+/F6XTy6quv0rRpUzZt2mR1NBGRQssADNPFzeoXXQi5WR0gN3bu3MnChQtZv349TZteWFh96tSpdOvWjUmTJlG+fPlMn+vj40PZsmVdFVVE5KrFpsUxfscUDiUewYYNJ05s2Pjp+GJ6V+zO/yrdYnVEERGRTAUFBfHpp5/Sq1cvhgwZQkREBC1atOD555/n+eefx93d3eqIIiIiea5Qjlhbs2YNgYGBGUU1uLDGg81my3ZNh88++4zg4GBCQ0MZOXIkiYmJWfZPSUkhLi7ukiYiktdM02Ty7g+ISjwGgBPnJX9+c+QnVpxea1k+ERGRq9WzZ08iIyPp1asX6enpvPTSS7Ro0YLt27dbHU1EpHAxTWua5EihLKydOHGCMmXKXPKYm5sbQUFBnDhxItPn3XPPPXz66af88ccfjBw5kk8++YT77rsvy2tNnDiRgICAjFapUqU8eQ0iIv+2J/4Au8/vyyikXcm8Iwsx9YNOREQKgdKlS/PNN9/wxRdfEBQUxObNm2natCkTJ04kPT3d6ngiImKB3KyVP2TIEGrUqIG3tzelS5emR48e7Nq1y0WJr06BKqw999xzl20u8N92LW/g4MGDuemmmwgLC+Pee+/l448/Zt68eezbty/T54wcOZLY2NiMFhUVlevri4hkZnNMBLZsviUfSz7BmdQYFyUSERG5NoZhcNdddxEREUH37t1JTU1l1KhRtG7dusDdFImISP7LzVr5TZo0Yfbs2ezcuZNFixZhmiZdunTB4XC4KHX2CtQaayNGjOCBBx7Isk/16tUpW7Ysp06duuTx9PR0zp49m6P101q0aAHA3r17qVGjxhX7eHp64unpedXnFBHJjXQzHcMwst3eOs2Z5ppAUqA4TSe7z//NmdSz+Ln5Ud+/Lm62AvUjXEQkU+XKlWP+/Pl8/PHHDBs2jHXr1tGoUSMmTJjA448/js1WoD7rFxEpMC5uKODqa+aH3K6V/+/CW9WqVXnllVdo0KABBw8ezLSO42oF6rfy0qVLU7p06Wz7tWzZknPnzrFx40aaNGkCwNKlS3E6nRnFsquxZcsW4MIPexERK1X3rYzDzPpTFx+7N8GeQS5KVHSlOdNYf3YTe+MPYDMMQgPqER5QH5tRMG/stp7bxtyDn3Am9WzGYyXcStC7Yi/al2lrYTIRkatnGAb9+vWjY8eODBw4kN9++43hw4czb948Zs+eXWBujkREJH9kt1Z+z549sz1HQkICs2fPplq1agVqma6CeReRjbp169K1a1cGDRrEX3/9xapVqxg6dCh33XVXRpXz6NGj1KlTh7/++guAffv2MW7cODZu3MjBgwf58ccf6du3L23btiU8PNzKlyMiQrOghvi7lcDIZINrGwY3hrTF3aYd1a7FnvP7GLb5Wd7d9yG/n1rGbyeX8sbuKTyzbQynkk9bHe8y22MjeOvvKZcU1QDi0+OZfXAuf5xaZk0wEZFcqlSpEgsXLmT69On4+vqycuVKwsPDee+993A6M19nVESkWDItanDZJo4pKSnX9FJyu1Y+wHvvvUeJEiUoUaIEv/76K4sXL8bDw+Oa8uSlQllYgwu7e9apU4dOnTrRrVs3WrduzYwZMzKOp6WlsXv37oxdPz08PPj999/p0qULderUYcSIEfTq1YuffvrJqpcgIpLBzebGk7WH4GZzu2ytNQODGiWq0qviLRalKxpOp0Tz6q63OJ9+YYFUh+nAYV64iTuZfJrxOyeT7Li2XxjykmmafH7oqyz7fBX1LanOVBclEhHJG4ZhMGTIELZv30779u1JTEzk0UcfpUuXLhw+fNjqeCIiwoUPQv69kePEiROv2C+/18qHC2uzbd68meXLl1OrVi3uvPNOkpOTr+mcealATQXNiaCgID7//PNMj1etWvWS3fMqVarE8uXLXRFNRCRX6vlfx2vhz/PzscWsil5PijOVEM9gupRtT5eQtnjYC86nMoXRohNLSXWmYV5hITsnTqJTz7D2zF+0L9PGgnSXi0o6wrHkY1n2SXIksfXcNpoFNc2yn4hIQVStWjWWLFnCtGnTeO6551iyZAmhoaG8/fbb9O/f/8LaoyIiYomoqCj8/f0zvs5s7XlXrJV/sbh33XXXcf3111OyZEnmzZvH3XfffXUvJp8V2sKaiEhRVMG7LENq3M+QGvdjmqZuKvLQ2jPrcZL5NCMDgzVnNhSYwlpsWmy2fQwMzl1FPxGRgspmszFs2DC6du3KAw88wJo1axgwYADfffcdM2fOzHQxaxGR4sAwTQzz8g+F8/uaAP7+/pcU1jLj6rXyTdPENM1rnpqalwrtVFARkaJORbW8lezM+oeviUmSI8lFabJX0j0w2z4mJiXdS+Z/GBGRfFarVi1WrlzJ66+/jqenJwsWLCA0NJTPPvvsklkoIiJSOOVmrfz9+/czceJENm7cyOHDh1m9ejW9e/fG29ubbt26WflyLqHCmoiIFAsVvMtlujkEgA0blX0qujBR1ip4V6Cyd6UsM/vafWgQGObCVCIi+cdut/P000+zadMmmjZtSkxMDPfddx+9evXi5MmTVscTEXE9p0Utn+R0rXwvLy9WrlxJt27dqFmzJn369MHPz4/Vq1dfthGClTQVVEREioUbQzqwN35/psedOOkU0s6FibJmGAb3Vrmb13ZNArji2nD3VL5LO8WKSJFTr1491qxZw6uvvsrLL7/MvHnzWLlyJe+99x69e/e2Op6IiORSTtfKL1++PAsWLHBFtGuiEWsiIlIstCrVnCaBDS8bAXbx6+7lulLNt4oV0TJVx782T9cZTlmvkEseL+keyEPVB9G69A0WJRMRyV9ubm6MHj2a9evXEx4eTnR0NHfeeSd33303Z86csTqeiIhLXFxjzdVNcsYwtWhBjsTFxREQEEBsbOxVLeQnIiIFh8N0sOD4YhadWEJM2jkAynuVo3v5rrQJbllg17UzTZMDCQc5k3oGPzc/avldh83QZ2MiUjykpqYybtw4Jk6ciMPhoGzZssyYMYPu3btbHU1E8llxvf+++LrbthmDm5uXS6+dnp7MipUvF7v3/FqosJZDxfV/bBGRosRpOjmXFovdsOPv5ldgC2oiIvL/1q9fT79+/di5cycAffv25Z133iEwMNDaYCKSb4rr/bcKa4WLPu4WEZFix2bYCPIoSYC7v4pqIiKFRLNmzdi0aRNPP/00hmHw8ccfExoayqJFi6yOJiKSP0yLmuSICmsiIiIiIlIoeHl58frrr/Pnn39Ss2ZNjh49SteuXRkyZAjnz5+3Op6IiBRDKqyJiIiIiEih0qpVK7Zu3cqwYcMAmDFjBuHh4SxbtszaYCIieck0rWmSIyqsiYiIiIhIoePj48M777zD0qVLqVKlCgcPHqRDhw4MGzaMxMREq+OJiEgxocKaiIiIiIgUWh06dGD79u0MHjwYgKlTp9KgQQNWr15tcTIRESkOVFgTEREREZFCzc/Pjw8++IBff/2VChUqsHfvXlq3bs0zzzxDcnKy1fFERHLFMK1pkjMqrImIiIiISJHQtWtXIiIi6Nu3L6Zp8sYbb9CkSRM2bNhgdTQRESmiVFgTERGxQKozjTVn/mL+0V/4/eQyYtPirI4kIlIkBAYGMnfuXObPn09ISAg7duzg+uuv54UXXiA1NdXqeCIiV0+bFxQKKqyJiIi42Joz63l00wim7Z3Jt0d+ZM7Bzxm66Wk+O/QNTtNpdTwRkSLhtttuIzIykj59+uBwOHjllVdo3rw5W7dutTqaiIgUISqsiYiIuNCWc9uZtncGiY4kAJw4MTFx4mTBid/44vC3FicUESk6SpUqxZdffsnXX39NqVKl2Lp1K82aNeOVV14hPT3d6ngiIlkynNY0yRkV1kRERFzENE2+Ovw9BkamfRaeWKJpoSIieax3795ERkZy++23k5aWxgsvvEDLli3ZsWOH1dFERKSQU2FNRETERU6mnOJw0hFMMl+7wsTkr7MbXZhKRKR4CAkJ4fvvv+eTTz4hMDCQDRs20LhxYyZNmoTD4bA6noiIFFIqrImIiLhIQnpitn0MDOLTE1yQRkSk+DEMg/vuu4+IiAhuvvlmUlJSePrpp2nbti179uyxOp6IyKW0eUGhoMKaiBQb6U4HSY5kTP2wEIuU8gjKchooXFhzrYxnaRclEhEpnipUqMAvv/zChx9+iJ+fH6tXr6ZBgwZMnToVp1MLDImIyNVTYU1EirxdcfuYuPNd7ln7GH3XPcnDG0cx78giUp1pVkeTYibQI4BGgeHYsvjx6233pllQIxemEhEpngzDYMCAAWzfvp2OHTuSlJTEsGHD6Ny5MwcPHrQ6nogImBY1yREV1kSkSFsdvZExEZPZErMjY12rM6nn+OLwfF6JnKLimrjcvVV642X3vKy4dnEk24NV78XD5mFFNBGRYqlKlSosXryYadOm4ePjwx9//EFYWBgzZszQKHcREcmWCmsiUmTFpycwbc8cTEycXDqtw8Rk1/l9/Hzsd4vSSXFV1iuEl+uPokFg6CXTQit6l+epWo/RKriFhelERIonm83Go48+ytatW2ndujXx8fEMGTKEm2++mSNHjlgdT0RECjA3qwOIiOSX5afWkW5mvsuXicnC48u5vcJN2Ax9ziCuU867LE/VfoyY1HOcST2Lr92Hsl4hGEbW66/JBUmOJFZFryEiNhKn6aSmXw3alW5DgHuA1dFEpJCrWbMmy5Yt45133mHUqFEsWrSI0NBQpkyZwv3336/v0yLiUoZpYrh45Kyrr1cU6E5SRIqsQ4lHs10oPiYtloT0JBclErlUSY9AapaoTjnvsrpZu0r74w8wYsuzfHLoM7ac28rW2G18f+QHhm95ho0xm6yOJyJFgN1uZ/jw4WzZsoXmzZsTGxtLv379uP322zlx4oTV8UREpIBRYU1EiiwPmztXU6twt2nwrkhhEJ8ezxu7J5PoSATIWDfRxCTdTOfdve9zJFFTtkQkb9SpU4dVq1Yxfvx43N3d+fHHH6lfvz5fffWV1dFEpLgwTWua5IgKayJSZDULaoDDdGZ63IZBWEAdvOyeLkwlIrm18vQqkhzJGQW1/zJN+O3kEhenEpGizM3NjVGjRrFx40YaNWrE2bNnueuuu7jzzjuJjo62Op6IiBQAKqyJSJEVFlCbqj4VL9t98SInJj0r3OTiVCKSW1vObc20qAbgxMmmmM0uTCQixUVYWBjr1q3jxRdfxM3NjW+++Yb69evzww8/WB1NRIoyE3C6uGnAWo6psCYiRZbNsDGq3lAq+ZQHwI4NGwYGBnbDxiM17icssI7FKUXkaqU507Lt4zDTXZBERIojd3d3xo4dy7p166hfvz6nTp2iZ8+e3H///cTExFgdT0RELKLCmogUaSU9Ani9wUhG1X2UDiGtuKF0M+6p3IPpTSbSIaSV1fFEJAdqlKie6QhUABs2qvtWc2EiESmOGjduzMaNG3nuueew2Wx8+umnhIaG8uuvv1odTURELKDCmogUeTbDRqOSoQypcS/DruvP7RVvItDD3+pYIpJDHcq0x0nm6yY6cdI5pJMLE4lIceXp6cnEiRNZtWoVtWrV4tixY3Tr1o2BAwcSFxdndTwRKSIM07SkSc6osCYiIiKFQnnvcvStch/AJSPXDC5s/9slpDMNAxtYkk1Eiqfrr7+ezZs38+STT2IYBh999BFhYWEsWaKNVEREigsV1kRERKTQ6BTSgZF1niE8MAx3wx27YadmiRoMrfkw91S+C8MwrI4oIsWMj48Pb775JsuWLaNatWocPnyYzp078+ijjxIfH291PBEpzEwubHvu0mb1iy583KwOICIiIpITdfxrU8e/ttUxREQu0bZtW7Zt28YzzzzD+++/z3vvvcfChQuZM2cObdq0sTqeiIjkE41YExERERERyQMlSpTgvffeY/HixVSqVIn9+/fTrl07RowYQVJSktXxREQkH6iwJiIiIiIikoc6d+7M9u3befDBBzFNkzfffJNGjRqxbt06q6OJSGHi8mmg/zTJERXWRERERERE8lhAQAAfffQRP//8M+XKlWP37t20atWKUaNGkZKSYnU8ERHJIyqsiYiIiIiI5JNbbrmFiIgI7r33XpxOJxMnTqRZs2Zs3rzZ6mgiUtA5LWqSIyqsiYiIiIiI5KOgoCA+/fRTvvvuO0qXLs327dtp3rw5L730EmlpaVbHExGRa6DCmoiIiIiIiAvccccdREZG0qtXL9LT0xk7dizXX389ERERVkcTEZFcUmFNRERERETERUqXLs0333zD559/TsmSJdm0aRNNmjTh1VdfJT093ep4IlKAGKZpSZOcUWFNRERERETEhQzD4O677yYyMpJbb72V1NRURo4cSevWrdm9e7fV8UREJAdUWBMREREREbFAuXLl+PHHH5k9ezb+/v6sW7eOhg0b8vbbb+N0agVxkWLPNK1pkiMqrImIiIiIiFjEMAweeOABIiIiuPHGG0lOTubJJ5+kQ4cO7N+/3+p4IiKSDRXWRP6xN/4Q7+39lBFbxjNy2xv8cPQ3zqfFWx1LRERERIqBSpUqsWjRIqZPn46vry8rVqwgPDyc999/H1MjSESKJ41YKxRUWBMBvolawLPbXuOPU2s5mHiUv+MP8Omh+QzdPJb98VFWxxMRERGRYsAwDIYMGcK2bdto164dCQkJPPLII3Tp0oXDhw9bHU9ERK5AhTUp9tad2cKXUT8D4OT/17IwMUlMT+KVndNIcaRaFU9EREREipnq1auzdOlS3n77bby8vPj9998JCwtj1qxZGr0mIlLAqLAmxd78Y79jYFzxmBOT2LTzrDqz0cWpRERERKQ4s9lsPP7442zdupXrr7+euLg4BgwYQPfu3Tl27JjV8UTEFTQVtFBQYU2KtXSng93n92OS+TcPGzYiYrXtuYiIiIi4Xq1atfjzzz957bXX8PDw4JdffiE0NJTPP/9co9dERAoAFdakWDO5mm3MTf3SIiIiIiKWsdvtPPPMM2zatIkmTZoQExPDvffey//+9z9OnTpldTwRyS9Oi5rkiAprUqy529yp5lMx06mgcGE6aG3/Gi5MJSIiIiJyufr167NmzRpeeukl3Nzc+P7776lfvz7fffed1dFERIotFdak2Lu1fKdMp4IaGHjbvWhXurmLU4mIiIiIXM7d3Z0xY8awfv16wsPDiY6O5n//+x/33HMPZ8+etTqeiEixo8KaFHvtSjfnppC2wIX11C6yYcPd5sZzdR7C2+5lVTwRERERkcs0bNiQ9evX8/zzz2O32/niiy+oX78+P//8s9XRRCSPGKZpSZOcUWFNij3DMBhUvQ+j6jxMg8A6BLj7UdoziFvKdeCthi8QGlDL6ogiIiIiIpfx8PDglVdeYc2aNdStW5cTJ07QvXt3+vfvT2xsrNXxRESKBTerA4gUBIZh0CQojCZBYVZHERERERHJkWbNmrFp0yZeeOEFJk+ezJw5c1iyZAkfffQRN954o9XxRCS3TPNCc/U1JUc0Yk1ERERERKSQ8/Ly4o033mDlypXUrFmTqKgounTpwsMPP0x8fLzV8UREiiwV1kRERERERIqIG264gS1btvDYY48BMH36dMLDw1m+fLnFyUQkx5ymNU1yRIU1ERERERGRIsTX15cpU6awdOlSqlSpwoEDB2jfvj1PPPEEiYmJVscTESlSVFgTEREREREpgjp06MD27dsZNGgQAO+88w4NGzZkzZo1FicTESk6VFgTEREREREpovz8/JgxYwa//vorFSpUYM+ePbRu3Zpnn32W5ORkq+OJSFYubl7g6iY5osKaiIiIiIhIEde1a1ciIiLo27cvTqeT119/nSZNmrBhwwaro4mIFGoqrImIiIiIiBQDgYGBzJ07lx9++IGQkBB27NjB9ddfz5gxY0hNTbU6nohcxorRahqxllMqrImIiIiIiBQjPXr0ICIigj59+uBwOBg3bhwtWrRg27ZtVkcTESl0VFgTEREREREpZoKDg/nyyy/56quvKFWqFFu2bKFp06aMHz+e9PR0q+OJiBQaKqyJiIiIiIgUU3feeSeRkZH06NGDtLQ0Ro8eTatWrdi5c6fV0UREmxcUCiqsiYiIiIiIFGMhISHMmzePTz75hMDAQNavX0+jRo2YPHkyDofD6ngiIgWaCmsiIiIiIiLFnGEY3HfffURERNC1a1dSUlJ46qmnaNeuHXv37rU6nkjx5DStaZIjKqyJiIiIiIgIABUqVGDBggXMnDkTPz8/Vq1aRYMGDZg2bRpOp9PqeCIiBY4KayIiIiIiIpLBMAwGDhzI9u3b6dixI4mJiTz22GN07tyZgwcPWh1PpPgwndY0yREV1kREREREROQyVapUYfHixUybNg0fHx/++OMPwsLCmDlzJqYWOBcRAVRYExERERERkUzYbDYeffRRtm7dyg033EB8fDyDBw+mW7duHDlyxOp4IiKWU2FNREREREREslSzZk2WL1/OpEmT8PT0ZOHChYSGhvLxxx9r9JpIfjFNa5rkiAprIiIiIiIiki273c6IESPYvHkzzZo1IzY2ln79+tGzZ09OnDhhdTwREUuosCYiIiIiIiJXrW7duqxevZrx48fj7u7O/PnzCQ0N5euvv7Y6mkjR4jStaZIjKqyJiIiIiIhIjri5uTFq1Cg2bNhAw4YNOXPmDH369KFPnz5ER0dbHU9ExGVUWBMREREREZFcCQ8PZ926dYwZMwa73c7XX39N/fr1mT9/vtXRRERcQoU1ERERERERyTUPDw9eeukl1q5dS7169Th16hS33347ffv2JSYmxup4IoWXNi8oFFRYExERERERkWvWtGlTNm7cyLPPPovNZuOTTz4hLCyMhQsXWh1NRCTfqLAmIiIiIiIiecLLy4tXX32VP//8k1q1anH06FFuvvlmBg8ezPnz562OJ1K4mFgwYs3qF134FNrC2vjx42nVqhU+Pj4EBgZe1XNM02TMmDGUK1cOb29vOnfuzJ49e/I3qIiIiIiISDHTsmVLNm/ezOOPPw7AzJkzCQsLY+nSpRYnExHJW4W2sJaamkrv3r15+OGHr/o5r7/+OlOmTGH69OmsW7cOX19fbrrpJpKTk/MxqYiIiIiISPHj4+PD22+/zbJly6hWrRqHDh2iU6dODB06lISEBKvjiRR8WmOtUCi0hbWXXnqJJ598krCwsKvqb5omb7/9NqNHj6ZHjx6Eh4fz8ccfc+zYMX744Yf8DSsiIiIiIlJMtWvXjm3btvHQQw8B8O6779KgQQP+/PNPi5OJiFy7QltYy6kDBw5w4sQJOnfunPFYQEAALVq0YM2aNRYmExERERERKdpKlCjB+++/z2+//UbFihXZt28fbdu25amnniIpKcnqeCIiuVZsCmsnTpwAICQk5JLHQ0JCMo5dSUpKCnFxcZc0ERERERERybkbb7yRiIgI+vfvj2maTJ48mREjRlgdS6RgcjqtaZIjBaqw9txzz2EYRpZt165dLs00ceJEAgICMlqlSpVcen0REREREZGiJCAggFmzZvHTTz9Rr149Ro8ebXUkEZFcc7M6wL+NGDGCBx54IMs+1atXz9W5y5YtC8DJkycpV65cxuMnT56kYcOGmT5v5MiRDB8+POPruLg4Fdfk/9q7/9io6nSP458ZKNOWdgYLXaeVgiCFrmyVskBTAgLB3EUQJAIFhUhFbLIBsxAR2WWz7IquIe6u64rgrwiY6MrSCLKR4JUfukjYWoGuruFHgxiwtFgWYVppS+l87x/3duJcOqU983v6fiUTMt853znPMA/PoU+/5xwAAAAAQbr33ns1depU2e0xtd4DiB3RuJkANy/osphqrGVmZiozMzMs7z1o0CC53W7t3bvX10jzeDwqLy/v8M6iDodDDocjLDEBAAAAQHdGUw1AvIvbKnbmzBlVVlbqzJkzam1tVWVlpSorK9XQ0ODbJi8vT9u3b5ck2Ww2LVu2TE8//bR27typL774Qg899JCys7M1c+bMKH0KAAAAAAAAxKuYWrHWFb/5zW+0ZcsW3/OCggJJ0v79+zVx4kRJ0okTJ3T58mXfNitXrtT333+v0tJSXbp0SePGjdPu3buVnJwc0dgBAAAAAAA6xKmgccFmDH9rXeHxeORyuXT58mU5nc5ohwMAAAAAQELqrj9/t33uu/stUk97r4ju+5r3qvZceKPb/Z0HI25XrAGxrMXbou+uepTcwyFnUlq0wwEAAAAAxBuvkRThtVBe1l51FY01IIS+v9aobWd3ac+3B9XY2iRJGpo2SMU5U1Vw0/AoRwcAAAAAAEIpbm9eAMSa7681avUXf9D7Nft9TTVJqmr4Wk8fe0n7vj0UxegAAAAAAPHEGG9UHugaGmtAiLxb/YGqG8/LK/9CZP5v6e4rp95Wfcv30QgNAAAAAACEAY01IARaTav+u/bAdU01/228+riuPIJRAQAAAACAcOIaa0AIeFoadKW1scNt7DabqhtrIxQRAAAAACCuGRP5mwkYbl7QVaxYA0LA0ZlbIBspuYcj/MEAAAAAAICIoLEGhEBqzxTd4cqTvYN/Uq3yqqjvyAhGeRb/jgAAEuVJREFUBQAAAACIW8ZE54EuobEGhMjs/vf4blTw/9llV75rmHLTbo1sUAAAAAAAIGxorAEhMtyVq8eHPuI7LbSHrYdvBVu+a6ieGFYqm80WzRABAAAAAEAIcfMCIISK+o3UiJtu14G6z/RNY40c9l4q7DtCQ9IGRjs0AAAAAEA88Xolmzey+zTh29/Fixf12GOP6e9//7vsdrtmzZqlF154QWlpaTcOyxhNnTpVu3fv1vbt2zVz5sywxdlVNNaAEEvpkaz/co+LdhgAAAAAAMSM+fPnq6amRh9++KFaWlr08MMPq7S0VG+//fYN5/75z3+O2TPAaKwBAAAAAADEGmOkANfxDu8+Q+/YsWPavXu3KioqNGrUKEnSiy++qKlTp+oPf/iDsrOzA86trKzUH//4R3322WfKysoKS3zB4BprAAAAAAAA8PF4PH6P5ubmoN7v0KFD6tOnj6+pJkl333237Ha7ysvLA867cuWKHnzwQb300ktyu91BxRAuNNYAAAAAAABijPF6o/KQpJycHLlcLt/j2WefDeqz1NbW6kc/+pHfWM+ePZWRkaHa2tqA85YvX66xY8fqvvvuC2r/4cSpoAAAAAAAAPA5e/asnE6n77nD4Wh3u1WrVmndunUdvtexY8csxbBz507t27dPR48etTQ/UmisAQAAAAAAwMfpdPo11gJ5/PHHVVJS0uE2gwcPltvt1rfffus3fu3aNV28eDHgKZ779u3TqVOn1KdPH7/xWbNmafz48froo49uGF8k0FgDAAAAAACINXFw84LMzExlZmbecLuioiJdunRJhw8f1k9/+lNJ/9s483q9KiwsbHfOqlWrtHjxYr+x/Px8Pf/885o+fXqX4gwnGmsAAAAAAAAImx//+MeaMmWKHn30Ub388stqaWnR0qVLNW/ePN8dQaurqzV58mS9+eabGjNmjNxud7ur2QYMGKBBgwZF+iMERGMNAAAAAAAg1niNZIvtFWtd8dZbb2np0qWaPHmy7Ha7Zs2apb/85S++11taWnTixAlduXIlbDGEA401AAAAAAAAhFVGRobefvvtgK/feuutMjdo7N3o9WiwRzsAAAAAAAAAIB6xYg0AAAAAACDWGCPJG4V9oitYsQYAAAAAAABYwIo1AAAAAACAGGO8RibCNy+IxWuYxTpWrAEAAAAAAAAW0FgDAAAAAAAALOBUUAAAAAAAgFhjvIr8zQsivL8EwIo1AAAAAAAAwAJWrAEAAAAAAMQYbl4QH1ixBgAAAAAAAFjAijUAAAAAAIBYwzXW4gIr1gAAAAAAAAALWLHWRW3nG3s8nihHAgAAAABA4mr7ubu7XvfrmlqkCH/0a2qJ7A4TAI21Lqqvr5ck5eTkRDkSAAAAAAASX319vVwuV7TDiJhevXrJ7Xbrk9pdUdm/2+1Wr169orLveGQz3bX1a5HX69W5c+eUnp4um80W7XA6xePxKCcnR2fPnpXT6Yx2OIgh5AYCITcQCLmBQMgNBEJuIBByA4G05caZM2dks9mUnZ0tu717XcmqqalJV69ejcq+e/XqpeTk5KjsOx6xYq2L7Ha7+vfvH+0wLHE6nRyw0C5yA4GQGwiE3EAg5AYCITcQCLmBQFwuV7fNjeTkZJpbcaJ7tXwBAAAAAACAEKGxBgAAAAAAAFhAY60bcDgcWrNmjRwOR7RDQYwhNxAIuYFAyA0EQm4gEHIDgZAbCITcQDzh5gUAAAAAAACABaxYAwAAAAAAACygsQYAAAAAAABYQGMNAAAAAAAAsIDGGgAAAAAAAGABjbUEVFNTo1WrVmnSpElKT0+XzWbTRx991KX3qK6uVnFxsfr06SOn06n77rtPX331VXgCRkRdunRJpaWlyszMVO/evTVp0iQdOXKkU3NLSkpks9mue+Tl5YU5aoRKc3OznnzySWVnZyslJUWFhYX68MMPOzWXupDYrObGb3/723brQnJycgSiRiQ0NDRozZo1mjJlijIyMmSz2bR58+ZOzw/muIPYFkxubN68ud3aYbPZVFtbG97AEVYVFRVaunSphg8frt69e2vAgAEqLi7WyZMnOzWfmpG4gskNagZiWc9oB4DQO3HihNatW6fc3Fzl5+fr0KFDXZrf0NCgSZMm6fLly/rVr36lpKQkPf/885owYYIqKyvVt2/fMEWOcPN6vZo2bZr+9a9/6YknnlC/fv20YcMGTZw4UYcPH1Zubu4N38PhcOj111/3G3O5XOEKGSFWUlKisrIyLVu2TLm5udq8ebOmTp2q/fv3a9y4cQHnURcSn9XcaLNx40alpaX5nvfo0SOc4SKCLly4oKeeekoDBgzQnXfe2aVf1oXiuIPYFUxutHnqqac0aNAgv7E+ffqEJkBExbp163Tw4EHNmTNHd9xxh2pra7V+/XqNHDlS//znP/WTn/wk4FxqRmILJjfaUDMQkwwSjsfjMf/5z3+MMcZs27bNSDL79+/v9Px169YZSebTTz/1jR07dsz06NHD/PKXvwx1uIigrVu3Gklm27ZtvrFvv/3W9OnTxzzwwAM3nL9w4ULTu3fvcIaIMCovLzeSzHPPPecba2xsNLfddpspKirqcC51IbEFkxtr1qwxkkxdXV24w0SUNDU1mZqaGmOMMRUVFUaS2bRpU6fmBnvcQWwLJjc2bdpkJJmKioowRohoOHjwoGlubvYbO3nypHE4HGb+/PkdzqVmJLZgcoOagVjGqaAJKD09XRkZGZbnl5WVafTo0Ro9erRvLC8vT5MnT9bf/va3UISIKCkrK9PNN9+s+++/3zeWmZmp4uJivffee2pubu7U+7S2tsrj8YQrTIRJWVmZevToodLSUt9YcnKyHnnkER06dEhnz57tcC51IXEFkxttjDHyeDwyxoQzVESBw+GQ2+22NDdUxx3EpmBy44fq6+vV2toagogQC8aOHatevXr5jeXm5mr48OE6duxYh3OpGYktmNz4IWoGYg2NNfjxer36/PPPNWrUqOteGzNmjE6dOqX6+vooRIZQOHr0qEaOHCm73f+f/pgxY3TlypVOXd/gypUrcjqdcrlcysjI0JIlS9TQ0BCukBFCR48e1dChQ+V0Ov3Gx4wZI0mqrKxsdx51IfFZzY0fGjx4sFwul9LT07VgwQKdP38+HKEizoTiuIPENmnSJDmdTqWmpmrGjBmqqqqKdkgIA2OMzp8/r379+nW4HTWj++lsbrShZiAW0ViDn4sXL6q5uVlZWVnXvdY2du7cuUiHhRCpqakJ6rvNysrSypUrtWnTJv31r3/VjBkztGHDBk2ZMkXXrl0LS8wIHavfP3Uh8QVTG2666SYtXbpUr7zyisrKyrR48WJt3bpV48ePZ2Urgj7uIHGlpqaqpKREL730krZv366VK1dq7969Gjt2bKdWySK+vPXWW6qurtbcuXM73I6a0f10NjeoGYhl3Lwgxnm9Xl29erVT2zocDtlstqD219jY6Huv/6/tDm9t2yC6rORGY2NjUN/ts88+6/d83rx5Gjp0qFavXq2ysjLNmzevk9EjGqx+/9SFxBdMbfjFL37h93zWrFkaM2aM5s+frw0bNmjVqlWhDRZxJdjjDhJXcXGxiouLfc9nzpypn/3sZ7rrrrv0zDPP6OWXX45idAil48ePa8mSJSoqKtLChQs73Jaa0b10JTeoGYhlrFiLcf/4xz+UkpLSqceJEyeC3l9KSooktXv9gqamJr9tEF1WciMlJSXk3+3y5ctlt9u1Z8+e4D4Qws7q909dSHyhrg0PPvig3G43dQFhOe4gcY0bN06FhYXUjgRSW1uradOmyeVy+a7n2RFqRvfR1dxoDzUDsYIVazEuLy9PmzZt6tS27S2b7qqMjAw5HA7V1NRc91rbWHZ2dtD7QfCs5EZWVlbIv9uUlBT17dtXFy9e7PJcRFZWVpaqq6uvG7/R909dSHxWc6MjOTk51AWE5biDxJaTkxOSXxYj+i5fvqx77rlHly5d0oEDBzr1752a0T1YyY1AqBmIBTTWYpzb7VZJSUnE9me325Wfn6/PPvvsutfKy8s1ePBgpaenRyweBGYlN0aMGKEDBw7I6/X6XRS2vLxcqampGjp0aJfjqK+v14ULF5SZmdnluYisESNGaP/+/fJ4PH4XqS8vL/e93h7qQuKzmhuBGGP09ddfq6CgIJRhIg6F47iDxPbVV1/xf4oE0NTUpOnTp+vkyZPas2ePbr/99k7No2YkPqu5EQg1A7GAU0G7uTNnzuj48eN+Y7Nnz1ZFRYXfD9EnTpzQvn37NGfOnEiHiBCaPXu2zp8/r3fffdc3duHCBW3btk3Tp0/3u6bFqVOndOrUKd/zpqamdu/8uHbtWhljNGXKlPAGj6DNnj1bra2tevXVV31jzc3N2rRpkwoLC5WTkyOJutAdBZMbdXV1173fxo0bVVdXR13oZmpqanT8+HG1tLT4xrpy3EHiai832qsdu3bt0uHDh6kdca61tVVz587VoUOHtG3bNhUVFbW7HTWj+wkmN6gZiGU2Y4yJdhAIvaefflqS9OWXX+qdd97RokWLNGjQIEnSr3/9a992EydO1Mcff6wfpkF9fb0KCgpUX1+vFStWKCkpSX/605/U2tqqyspKfiMQx1pbWzVu3Dj9+9//1hNPPKF+/fppw4YNOnPmjCoqKjRs2DDftrfeeqsk6euvv/b9WVBQoAceeEB5eXmSpA8++EC7du3SlClT9P777193a3TEnuLiYm3fvl3Lly/XkCFDtGXLFn366afau3ev7rrrLknUhe7Kam6kpqZq7ty5ys/PV3Jysj755BO98847uvPOO3Xw4EGlpqZG6yMhhNavX69Lly7p3Llz2rhxo+6//37fisTHHntMLpdLJSUl2rJli06fPu07hnTluIP4ZDU3cnNzVVBQoFGjRsnlcunIkSN64403lJWVpYqKCt18881R/FQIxrJly/TCCy9o+vTpfhebb7NgwQJJomZ0Q8HkBjUDMc0gIUkK+PihCRMmXDdmjDFnz541s2fPNk6n06SlpZl7773XVFVVRSp8hNHFixfNI488Yvr27WtSU1PNhAkTTEVFxXXbDRw40AwcOND3/LvvvjMLFiwwQ4YMMampqcbhcJjhw4eb3//+9+bq1asR/AQIRmNjo1mxYoVxu93G4XCY0aNHm927d/ttQ13onqzmxuLFi83tt99u0tPTTVJSkhkyZIh58sknjcfjiWT4CLOBAwcG/H/F6dOnjTHGLFy40O95m84edxCfrObG6tWrzYgRI4zL5TJJSUlmwIAB5uc//7mpra2NzgdByLQdK270swg1o/sJJjeoGYhlrFgDAAAAAAAALOC8LQAAAAAAAMACGmsAAAAAAACABTTWAAAAAAAAAAtorAEAAAAAAAAW0FgDAAAAAAAALKCxBgAAAAAAAFhAYw0AAAAAAACwgMYaAAAAAAAAYAGNNQAAAAAAAMACGmsAAAAAAACABTTWAAAAAAAAAAtorAEAgIRQXV2t5ORkLVq0yG98z549SkpK0vLly6MUGQAAABKVzRhjoh0EAABAKCxdulSvvvqqqqqqNHDgQB0/flxFRUUaP368duzYIbud3ykCAAAgdGisAQCAhFFdXa3bbrtNixYt0tq1a1VYWKj09HR98skn6t27d7TDAwAAQILpGe0AAAAAQuWWW27Ro48+qtdee01HjhxRY2OjPv74Y5pqAAAACAvOhwAAAAllxYoVam5u1ueff66dO3fqlltu8Xu9rq5O06ZNU+/evTVs2DDt3bs3SpECAAAg3rFiDQAAJJRnnnlGknTt2jVlZGRc9/qSJUvkdrtVV1enPXv2qLi4WFVVVe1uCwAAAHSEFWsAACBhPPfcc3r99de1fv169ezZ09dka9PQ0KAdO3bod7/7nVJTUzVjxgzl5+frvffei1LEAAAAiGc01gAAQELYsWOHVq1apbVr12rJkiUqLS3Vm2++qdOnT/u2qaqqUlpamvr37+8by8/P15dffhmNkAEAABDnaKwBAIC4d/jwYc2fP1/z58/X6tWrJUkrV66U3W73W7XW0NAgp9PpN9fpdKqhoSGi8QIAACAx0FgDAABx7ZtvvtH06dNVUFCg1157zTeenZ2tRYsW+a1aS0tLk8fj8Zvv8XiUlpYW0ZgBAACQGGzGGBPtIAAAACKhoaFBGRkZOn36tO9uoZMmTdJDDz2khx9+OMrRAQAAIN7QWAMAAN3KnDlz5HK59OKLL2rv3r1auHAhdwUFAACAJT2jHQAAAEAkbdiwQQsXLlTfvn3Vv39/bd26laYaAAAALGHFGgAAAAAAAGABNy8AAAAAAAAALKCxBgAAAAAAAFhAYw0AAAAAAACwgMYaAAAAAAAAYAGNNQAAAAAAAMACGmsAAAAAAACABTTWAAAAAAAAAAtorAEAAAAAAAAW0FgDAAAAAAAALKCxBgAAAAAAAFhAYw0AAAAAAACw4H8AVe/n7PB+3IkAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 16,
"metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4EAAAIfCAYAAADOsdlLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACxaklEQVR4nOzddZxU1f/H8ddnYpPuLsFdSpBSDOwODOzAblFUVAxMDCzs+NktxlexULGwBaRhF0npzq2Z2Tm/P3ZEYBdZZHbv7s77+XjcBzPn1ntmdXc+c889x5xziIiIiIiISGLweR1AREREREREyo+KQBERERERkQSiIlBERERERCSBqAgUERERERFJICoCRUREREREEoiKQBERERERkQSiIlBERMqcmZ1kZrPNrNDMXjaz/c3MmVkzr7NVJLH3ZaqZhc3su21sc7uZzSrnaJ4ws1ax/0728TqLiEhVoiJQRERKLVbAjd7BffzAi8AIoAVwVVlkqyKeBv4A2gAnbGObB4E9yy3RZsxsn1hR1qqcTrkAaAz8tiM7mVnEzM4pk0QiIlVAwOsAIiJS5TUGqgGfOecWAZiZt4kqrnbAPc65BdvawDm3EdhYfpG845wrBJZ6nUNEpKrRlUAREfnP/r4yaGYXmdl8M1tvZiPNrGFs/TkUXc0BGBO7irR/CccpsXvo1ld0zKxh7JwrzGyDmf1kZn1KOM4hZjbGzHLNbLqZHbHVcRuY2UtmtszM8s0s28zO22x9WzN738zWmtkaM/vSzDpvtr5GbP+lZlZgZgvM7OHtvFcZZvapmW2MLR+bWdvNcwN+4NXYazhnG8fZojvo38/NrK+ZZZlZjpl9Z2btNtvmnNh7ebCZTYu95t/MrOvW22x1rmZ//8xiV/9+iK2aG2v/7l9erzOzq2LvY46ZLTKzq7baprGZvR17n/NiuXtstn6L7qCbPT/ZzD6J/XznbPXfyLzY+/hSbFsXa9/hn5mISFWlIlBERHZWT+AA4CjgMKAzRV0WAd4BesUe96XoquDP/+UkZpYKfAtUB44Adgc+A74ys/Zbbf4gcA/QhaKuhO+YWe3NjvN9bN0ZQAfgSiA3tr4h8COwHNiXoq6X2cB3ZlY/dvy7gW6x19QOOAWYsZ3sXwIpwH6xpRowysySYu9J49jmV8Qev7MDb09j4NLY69mLovfoxa228QHDgMso+pmsAD6NZSuNBRS9XmL7N2bbXVb/dhvwHUU/q2HAQ2bWF8CKLgd/CGQCR8eOuYyin2e97Rz3PuBVYDfgbeB5M9s1tq4nUAhcHcv49/u6Qz8zEZGqTN1BRURkZxUA5zjnCgDM7BmKPoDjnMszsxWx7VY755bGtvkv5zkFqAGc4pz7+4rVUDM7CLj473PG3OGcGxU7143AORQVGV8ApwOtgbbOuYWx7edstu+lwDzn3KV/N5jZAOBIioqs4UBLYIJz7u971f7i34vb04H6QHfn3MrYMU8F5gGnOudeBZbG3pd1f79POyAZOMs5tyJ27GHAW2aW4pzL//tlAIOcc9/HtjmLosLudOCF7Z3AOVdoZqtjT1eUMuOnzrnHY49nmtkewHXAR8CBFP1MOjrnpscynU3Re3IZcOe/HPcJ59yI2D63UlTEHwDMdM6t2Mb7uKM/MxGRKktFoIiI7KysvwvAmMVAwzI4T0+gEbB2qyIyGcjbatuJfz9wzi0zs8LNMnUHpm9WAJZ0nu5mtvV9d6kUXUECeAp4P9Z18WtgFPCFcy66jWN2jJ1z5Va5smPrdtbivwvAv59TVPQ1oKjY+dsvm51/jZnNiNP5t+WXrZ7/BNwVe9wRWPV3ARjLVGBmv5Ui08TN9ik0s+Vs/7+5Hf2ZiYhUWSoCRURkZ4W2eu4oKkB2xN8fxDftZ0Wjim5+24KPou57x5ewf+52Mv29f2n4KCoSrihh3ToA59wXZtaCou6v+wOvA1PM7KDYYCblraSfAezYbR8lFUPB/xanzJX0ev/1tVbAn5mIiGd0T6CIiFQEy2P/NtmsrStbFpPjKJo6Yb1zbtZWy+IdONd4oINte47CcRRdiVpYwnk2XW1zzq12zr3lnLuYovsh96Po/sKSTIudc9O9brF7DzOAqTuQfWdtmlrCzGoB7YG/r8QtB/yxXH/rttX+fxdf/h09X8xem51vGlDXzDa9Z2aWDOzBzr8noZIy7uDPTESkylIRKCIiFcEsYD5wu5llxkaDfIR/rmgBvAHMpWgwk0NjI0XuYWaDzey4HTjXW7FzjYyNltnazA4ys1Ni65+gqID4yMz2jZ1nHzMbamZ7AcQen2BFI362o+hewY1s2fVyc29SNBDLO2bWzcy6UzSgySJ2bACYneGAYWbWx4pGOn0V2BDLBvB77Pl9ZtbOzA4Hhmx1jPkUXTE80opGWK25nXMebWZXxI53JUX3dT4UW/dN7JxvmtneZtYplimFovkSd8Zc4AAza/J34f0ffmYiIlWWikAREfFcbKCXUyi6h20C8CRwM5t1UYwNcLIfRVfqXgJmAh9QNLjI/B04V27sOFMpKsRmxM6XGlu/DOgNrIwdP5uiArQlsCR2mHyKBi4ZH8uzG3CEc27dNs6ZBxxK0SA6YyganTQHONw5V1LX1bIQBW4CnqUocyPgqNj7gXNuNXAaRVfvJgO3AtdvfoDYezMYuJGi9+Kj7ZzzTuBgYFLs3Nc75/4XO5YDjgOygE+BsbFMh2x+7+R/dC1F937Oo6j4hh38mYmIVGVW9DtYREREqqrYPHrPO+fKbSyA2Px8ZznnXi+vc4qISOnoSqCIiIiIiEgCUREoIiIiIiKSQNQdVEREREREJIHoSqCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQFQEioiIiIiIJBAVgSIiIiIiIglERaCIiIiIiEgCUREoIiIiIiKSQAJeByhr9erVc61atfI6hoiIiIhIhTJ+/PiVzrn6XucorcMOSHerVhfG/bjjJxd84Zw7PO4HrsCqfBHYqlUrxo0b53UMEREREZEKxczme51hR6xaXcjvX7SI+3H9jf+sF/eDVnBVvggUEREREZHKzwFRol7HqBJUBIqIiIiISCXgKHQqAuNBA8OIiIiIiIgkEF0JFBERERGRCq+oO6jzOkaVoCuBIiIiIiIiCURXAkVEREREpFLQwDDxoSJQREREREQqPIej0Kk7aDyoO6iIiIiIiEgC0ZVAERERERGpFDQwTHzoSqCIiIiIiEgC0ZVAERERERGp8BxQqCuBcaEiUEREREREKgV1B40PdQcVERERERH5F2Z2uJllm9ksM7uxhPV9zOwPM4uYWb+t1vU3sz9jS//yS71tuhIoIiIiIiIVngNPpogwMz/wJHAIsBAYa2YjnXPTN9vsL+Ac4Lqt9q0D3Ab0oOgljI/tu6Y8sm+LrgSKiIiIiIhsWy9glnNujnMuBLwN9N18A+fcPOfcZCg2m/1hwFfOudWxwu8r4PDyCP1vKkQRaGbNzexbM5tuZtPM7KoStjEzeyx2CXaymXXzIquIiIiIiHgjWgYLUM/Mxm22XLTVaZsCCzZ7vjDWVho7s2+ZqSjdQSPAtc65P8ysOkWXSb/a6hLrEUC72LIH8HTs3worOzubunXrUq9ePa+jiIiIiIhIyVY653p4HaI8VYgrgc65Jc65P2KPNwAzKF4h9wVedUV+BWqZWeNyjlpqzjnOPvtsMjIyeP7554lGt74yLCIiIiIipeVwFJbBUgqLgOabPW8WayvrfctMhSgCN2dmrYDdgd+2WlXqS6lmdtHfl3NXrFhRJjm3x8x44YUX6NixIxdeeCF77703EydO9CSLiIiIiEil56CwDJZSGAu0M7PWZpYEnAqMLGXqL4BDzay2mdUGDo21eapCFYFmVg14H7jaObf+vx7HOfecc66Hc65H/fr14xdwB3Xq1Invv/+eV155hdmzZ9O9e3euvvpq1q//zy9NRERERETKkXMuAlxBUfE2AxjhnJtmZnea2bEAZtbTzBYCJwHPmtm02L6rgbsoKiTHAnfG2jxVYYpAMwtSVAC+4Zz7oIRNKuSl1O0xM84++2yys7O5+OKLeeyxx8jMzOTtt9/GeTDErYiIiIhIZeQos4Fhtn9u5z5zzu3qnNvFOTc01jbEOTcy9nisc66Zcy7dOVfXOddxs31fdM61jS0v7dy7EB8Vogg0MwNeAGY45x7exmYjgbNjo4TuCaxzzi0pt5A7qXbt2jz11FP89ttvNGnShNNOO41DDjmE7Oxsr6OJiIiIiEgCqRBFILA3cBZwoJlNjC1HmtklZnZJbJvPgDnALOD/gMs8yrpTevbsyW+//cYTTzzBuHHj6Ny5M7fccgu5ubleRxMRERERqcCMwjJYEpFV9S6JPXr0cOPGjfM6RomWLVvGoEGDeO2112jVqhWPPfYYxxxzjNexRERERCQBmNn4yjQ1Qqfdktz7n8Z/6rXMFksq1fsQDxXlSmBCatiwIa+++irfffcdaWlpHHvssfTt25d58+Z5HU1ERERERKooFYEVwH777cfEiRMZNmwYo0ePpkOHDtx7772EQiGvo4mIiIiIVBjqDhofKgIriGAwyKBBg5gxYwZHHHEEN910E126dOGbb77xOpqIiIiIiFQhKgIrmBYtWvD+++/z6aefEgqFOOiggzj99NNZsqTSDIQqIiIiIhJ3Dl0JjBcVgRXUkUceydSpUxkyZAjvv/8+mZmZPPbYY0QiEa+jiYiIiIh4Iuos7ksiUhFYgaWmpnLHHXcwdepU9txzT6666ip69uzJr7/+6nU0ERERERGppFQEVgLt2rVj1KhRjBgxghUrVtC7d28uuugiVq1a5XU0EREREZFyoe6g8aMisJIwM0466SRmzJjBtddey4svvkhGRgYvvvgi0WjU63giIiIiIlJJqAisZKpXr86DDz7IhAkTyMzM5Pzzz2ffffdl0qRJXkcTERERESkzDqMQX9yXRJSYr7oK6Ny5M2PGjOGll15i5syZdO/enWuuuYb169d7HU1EREREpExoYJj4UBFYifl8Ps455xyys7O58MILGT58OJmZmbzzzjs457yOJyIiIiIiFZCKwCqgTp06PP300/z66680btyYU089lUMPPZSZM2d6HU1EREREJC40MEz8qAisQnr16sXvv//OE088wdixY+ncuTO33norubm5XkcTEREREZEKQkVgFeP3+7n88svJysri5JNP5u6776Zjx4588sknXkcTEREREdkJRqHzxX1JRIn5qhNAo0aNeO211/j2229JTU3lmGOO4bjjjmP+/PleRxORUih0hXy6+D1umHQRA/44iwezbmN+zmyvY4mIiEgVoCKwitt///2ZOHEi999/P1999RXt27fnvvvuIxQKeR1NRP7FW/Of5+tln5JbmIMjyvzcWTz251CW5S/2OpqIiIgnHBDFF/clESXmq04wSUlJXH/99cyYMYPDDz+cwYMH06VLF7799luvo4lICTaE1zF+zS+E3ZZf1kSiYb5a9rFHqURERLyngWHiQ0VgAmnRogUffPABn3zyCQUFBRx44IGceeaZLF261OtoIrKZFQXLCFigWHuUKIty1aVbREREdo6KwAR01FFHMW3aNIYMGcK7775LRkYGTzzxBIWFhV5HExGgXnJDIi5SrN2Hj6apLT1IJCIi4j3nNDBMvCTmqxZSU1O54447mDp1KnvuuSdXXnklPXv25LfffvM6mkjCqxGsSbfaexC0pC3aA74gBzc6xqNUIiIiUlWoCExw7dq1Y9SoUYwYMYJly5bRu3dvLr74YlavXu11NJGEdnrLC9m/weGk+FMxjBZprbmy3U00SmnidTQRERHPRLG4L4nInHNeZyhTPXr0cOPGjfM6RqWwYcMGbr/9dh599FFq167NsGHD6N+/Pz6fvisQ8ZJzDrPE/CMlIiJlx8zGO+d6eJ2jtNp1TnWPjtwl7sc9qs20SvU+xIM+3csm1atX56GHHmLChAlkZGRw3nnn0adPHyZPnux1NJGEpgJQRERE4klFoBTTuXNnxowZw0svvUR2djbdunXj2muvZcOGDV5HExEREZGEpYFh4iUxX7Vsl8/n45xzziE7O5vzzz+fRx55hMzMTEaMGEFV70IsIiIiIlKVqQiUf1WnTh2effZZfvnlFxo2bMgpp5zCYYcdxsyZM72OJiIiIiIJxAFRfHFfElFivmrZYXvssQdjx47lscce47fffqNz584MGTKEvLw8r6OJiIiISIIodBb3JRGpCJRS8/v9XHnllWRnZ3PSSSdx11130bFjRz799FOvo4mIiIiISCmpCJQd1qhRI15//XW++eYbkpOTOfroozn++OP566+/vI4mIiIiIlWUwyjEF/clESXmq5a4OOCAA5g0aRL33XcfX375Je3bt+f+++8nFAp5HU1ERERERLZBRaDslKSkJG644QamT5/OoYceyo033kjXrl357rvvvI4mIiIiIlVM1PniviSixHzVEnctW7bkf//7Hx9//DF5eXkccMABnHnmmSxdutTraCIiIiIishkVgRJXRx99NNOnT+fWW2/l3XffJSMjgyeeeILCwkKvo4mIiIhIJeZA9wTGSWK+ailTqamp3HnnnUyZMoVevXpx5ZVX0qtXL3777Tevo4mIiIhIJeWI//QQmiJCJM523XVXvvzyS95++22WLFlC7969ueSSS1i9erXX0UREREREEpaKQClTZsYpp5xCVlYWV199Nc8//zwZGRm8/PLLRKNRr+OJiIiISCUSxRf3JREl5quWclejRg0efvhhxo8fz6677sq5557Lfvvtx5QpU7yOJiIiIiKSUFQESrnq0qULP/zwAy+88AIzZsxg991359prr2XDhg1eRxMRERGRCsw5KHS+uC+JKDFftXjK5/Nx3nnnkZ2dzfnnn8/DDz9MZmYm7777Ls45r+OJiGySX1jAV0u/YVjWI/zf7JeYlzPf60giIgnMiJbBUqozmx1uZtlmNsvMbixhfbKZvRNb/5uZtYq1tzKzPDObGFueie978t+oCBTP1K1bl2effZZffvmFBg0acPLJJ3P44Yfz559/eh1NRCqoeTnz+Hb5t0xaO4lCV7ZTz+QV5jNk6l28veA9pqybxg8rf+au6ffz44pfyvS8IiJSsZiZH3gSOALoAJxmZh222ux8YI1zri3wCHD/ZutmO+e6xpZLyiX0dqgIFM/tueeejB07lscee4xff/2VTp06MWTIEPLy8ryOJiIVRCQa4eGZD3Nv1r289ddbPDP7Ga6ffD2rClaV2TlHL/uGlQWrCEVDADgcoWiIV+a9TigaLrPziohIyRyedQftBcxyzs1xzoWAt4G+W23TF3gl9vg94CAzq7DzT6gIlAohEAhw5ZVXkpWVRb9+/bjrrrvo2LEjn332mdfRRKQCGLV0FFnrswhFQ4RdmPxoPmtDa3l2zrNlds5xq/8g7IoXe4YxP+evMjuviIiUu3pmNm6z5aKt1jcFFmz2fGGsrcRtnHMRYB1QN7autZlNMLPvzWzfMsi/w1QESoXSuHFj3njjDb7++muSk5M56qijOOGEE/jrL33gEklkY1aOKVaQRYkyN2cuGyMby+Sc6YH0EtsLiZLmTy2Tc4qIyL8rxBf3BVjpnOux2fJcHCMvAVo453YHrgHeNLMacTz+f6IiUCqkAw88kEmTJnHPPfcwatQo2rdvz7BhwwiFQl5HExEPRKKRba4rq3sDD210EMm+pC3aDKN+cj2apDYuk3OKiMi2OYyoi/9SCouA5ps9bxZrK3EbMwsANYFVzrkC59wqAOfceGA2sOtOvhU7TUWgVFhJSUkMHjyY6dOnc8ghh3DDDTew++678/3333sdTUTKWc86PQlYoFh7/eT61AzWLJNzdq21G0c2PoygBUn1p5DsS6Z+cj2uzRhABb7NQ0RE4m8s0M7MWptZEnAqMHKrbUYC/WOP+wHfOOecmdWPDSyDmbUB2gFzyin3NhX/iypSwbRq1YoPP/yQjz/+mAEDBrD//vtz5pln8uCDD9KwYUOv44lIOejbpC+T1k5ibXgtBdECghbEb34uarP1bRvxdUKzvhzS8EBmbZxD9WB1dklvrQKwilpVsJZfVo0nFA3RrXZnWqU38zqSiJSg0INrWM65iJldAXwB+IEXnXPTzOxOYJxzbiTwAvCamc0CVlNUKAL0Ae40szAQBS5xzq0u9xexFavq87L16NHDjRs3zusYEie5ubncc889DBs2jLS0NIYOHcoll1yC3+/3OpqIlLFwNMy4NeP4c8Of1E+uz9719qZG0PPbKqQK+GnFWJ6a/RrOOQpdlIDPz8EN9+GcViep6JcqzczGO+d6eJ2jtFp0quGufa9X3I97dfuvK9X7EA/qDiqVSlpaGnfffTdTpkyhR48eXHHFFeyxxx6MHTvW62giUsaCviC96/bm7FZnc0TjI1QASlzkRHJ5avZrhKJhwi5ClCihaJivl/1E1oZZXscTkc04IOp8cV8SUWK+aqn0MjIy+Oqrr3j77bdZvHgxe+yxB5deeilr1qzxOpqIiFQiE9dOw2fFe5MUREP8sEJfMIpI1aQiUCotM+OUU04hKyuLq666iueee46MjAxeeeUVqno3ZxERiRejpA6fhulviUiFYxSWwZKIVARKpVejRg0eeeQRxo8fT9u2bTnnnHPYb7/9mDp1qtfRRESkgutaq2OJ04w4HKOX/8hF427k2+W/eJBMRLam7qDxk5ivWqqkrl278uOPP/L8888zbdo0unbtyqBBg9i4sWwmkhYRkcovPZDKFW37k+QLkmRBfFtdFVgTWscLc97m++W/epRQRCT+VARKleLz+Tj//PPJzs7m3HPP5cEHHyQzM5P33ntP3XpEJO4i0QizN87hr9wF+h1TifWu150nut3Fma2OJ9mfXGx9QTTEOws+9iCZiGxN3UHjQ0WgVEn16tXj//7v//j555+pV68eJ510EkcccQSzZmmkNxGJj4lrJ3HlhIEMy3qIu6ffy6DJN7Iwd6HXseQ/qp1Uk8Mb7U9eYX6J61cVaOAxEak6VARKlda7d2/GjRvH8OHD+fnnn+nUqRO33347eXl5XkcTkUpsRcEKnpz1DLmFueRH8ymIFrCiYCX3ZT1IJBrxOp78R2ZGveQ6Ja6rn1K3nNOIyNacM90TGCeJ+aoloQQCAa666iqys7M54YQTuOOOO+jcuTOff/6519FEpJIas+LHEgcTCUfDTF6nQakqs9Nb9CXJF9yiLckX5IwWx3uUSEQ2V+h8cV8SUYV51Wb2opktN7MS/3qa2f5mts7MJsaWIeWdUSq3xo0b8+abbzJ69GgCgQBHHnkkJ554IgsWLPA6mohUMmvD67YxomSUjZENHiSSeNm3fi8ub9ufRin18ZuPxikNuLLdOfSu183raCIicRPwOsBmXgaeAF79l21+cM4dXT5xpKo66KCDmDRpEg8//DB33XUXX3zxBbfddhtXX301wWBw+wcQkYTXuWZHflv1OwXRgi3ao86xa/VdPUol8bJXve7sVa+71zGkEnLOYZaYA42UBwdEE3Qgl3irMFcCnXNjgNVe55DEkJyczODBg5k+fToHHXQQ119/PbvvvjtjxozxOpqIVALda3ejaWpTkixpU1uyL5l96u1Fo5SGHiYTkfIWdVH+t3AU5/5+LSf/chlX/XE7E9dM9zqWyL+qMEVgKfU2s0lm9rmZddzWRmZ2kZmNM7NxK1asKM98Usm0atWKjz76iI8++oiNGzey33770b9/f5YvX+51NJFKa1n+Aqas/ZWl+VW3q7Xf/Axufz0nN+/HLultaF89kwvanEv/Vmd5HU1Eytnbf43k/YWfszGSC8Di/GU8kP0MM9ZrRPL4M90TGCdWkeY1MrNWwCfOuU4lrKsBRJ1zG83sSOBR51y77R2zR48ebty4cfEPK1VObm4uQ4cO5YEHHiA9PZ177rmHiy66CL/f73U0kUohHC3g5bnDmJeThc/8RF0hLdMzOLThKUxZ/zuRaITdau1Bm/T26i4lIlVCQWGI88cOoiAaKrauU40Mbut0dfmH2gFmNt4518PrHKXVuGNtd95bB8T9uPd0+V+leh/iodKUvs659c65jbHHnwFBM6vncSypQtLS0hg6dCiTJ0+mW7duXHbZZey5557oSwSR0vl0yevMzZlB2IUoiOYRdiHmbJzGU7NvY8yKT/lp1ShemHMf7y38P02sLiJVwrrwtgeCWpS3tByTiOyYSlMEmlkji311bGa9KMq+yttUUhVlZmYyevRo3njjDRYuXEivXr247LLLWLNGEwWL/Jtxq78j4sJbtEWJ4ijEUVT0hVwBf6z5kfm5M72IKCISV7WSamxzXfO0xuWYJHEU4ov7kogqzKs2s7eAX4AMM1toZueb2SVmdklsk37AVDObBDwGnOr0VbKUETPj9NNPJysriyuvvJJnn32WjIwMXn31VV3BENmGSAndof7xz/83YVfAlHW/l30gEZEyluQLcmyTQ0j2JW3VnsTJLY7xKJXI9lWYItA5d5pzrrFzLuica+ace8E594xz7pnY+ieccx2dc12cc3s65372OrNUfTVr1uTRRx9l3Lhx7LLLLvTv35/999+fqVM1GbTI1tpU6/Ava/+5B9CHn6Al/cu2IiKVx0nNj+K0Fn2pFayBDx8t05oyuP1lZFRv43W0KsdhRF38l0RUkeYJFKmwdt99d3766SdefPFFbrjhBnbffXcGDhzIkCFDqFatmtfxROIiHC1g6tpvmJMzjuqBenSrcxT1kluUev/jml7AE3/eRMSFibgwfgtQ6CK4reZ08pufbrX3iXd8KUfOOaatzyZr/UxqBGuwV72eVAukex1LxBNmxlFNDuSoJgd6HUWk1CrU6KBlQaODSrytXLmSG2+8kRdeeIFmzZoxfPhwTjjhBI12KJVaQWEur8wdyPrwcsKuAMOH34Ic23QQGTX2KvVxNoTX8MvKL1mUP5emKa2pk9SQ9xe9gM98OBxRF+WYJmexd73DyvDVSFmKRCMMy3qcmRvnUBAtIMmXhA9jcPur2bX6Ll7HE5EdUNlGB23UsY47881D4n7ch7qOqFTvQzzoSqDIDqpXrx7PP/885513Hpdddhn9+vXj8MMP5/HHH6dt27ZexxP5T8av+Zh14WVEXNF9fY4oEVfAp4uH07Z6L/xWuj8X1YO1ObTxKVu0dazVixnrx1PoCsms3pXqwVrxji/l6NvlP5K9cTah2D2gf//7yMxneLLb/fiswtxpIiJVjHNQmKDdN+NNv6lF/qO99tqLcePGMXz4cH766Sc6derE7bffTn5+vtfRRHbYjHU/bCoAN+coZHn+3J06dqo/jW6196Vnnf3LvABcmDuPV+Y+xYNZQ/ho0VusD68t0/Mlou9X/Lyp8NtcfmE+f+Uu8iCRiIjsKBWBIjshEAhw1VVXkZWVxQknnMAdd9xBp06dGDVqlNfRRHZIsj+txPaoi5LkSy3nNP/N1HUTeDj7Dsav+Zn5ubP5dvko7pl+A6sLVngdrUrZVtd3Bxj6hl5EypYGhokPFYEicdCkSRPefPNNRo8eTSAQ4IgjjqBfv34sWLDA62gipdKjzrEELWWLNsOondSIusnNPEpVelEX5a2/nifsQpvmJCx0EXILc/l0yfsep6taDmiwT7Hh8AHSA2m0SGvqQSIREdlRKgJF4uiggw5i0qRJ3H333Xz66ae0b9+eBx98kHA4vP2dRTyUUX1vdq99BH4LkuRLJcmXSo1gffo1v83raKWyPryWvEhOsXZHlKz1kz1IVHXtV38vOtbIJNmXhB8fyb5kUv0pXLPrpRogS0TKVNEUEb64L4lIA8OIxFlycjI333wzp59+OldddRWDBg3i5Zdf5umnn2bffff1Op5IicyMgxpdSK+6x7Mwbwbp/lo0T+uIVZJBPpL9KUQpebTrtICmcYknv/m5LuNy/tw4h6z1f1IjWJ096nYn1Z+y/Z1FRHZSobqdx0Xl+OsuUgm1bt2akSNH8tFHH7Fx40b69OnDOeecw/Lly72OJrJN1YP1aF9jX1qkd640BSAUDT7TsUbXYqOYJvmSOaDBkR6lqrrMjF2r78KxTQ9n/wZ7qwAUEalkKs9feJFK6thjj2X69OncdNNNvPnmm2RkZPDMM89QWFjodTSRKuXMVhfTJn1XgpZEii+VgAXZu96B9K67n9fRREQkDhwaGCZe1B1UpBykpaUxdOhQzjrrLC6//HIuvfRSXnzxRZ5++mm6d+/udTyRKiHVn8aAXW9mRcEy1oRW0iS1BdUC1b2OJSIiUuHoSqBIOcrMzGT06NG8+eabLFiwgJ49e3L55Zezdu1ar6OJVBn1kxuya/WOKgBFRKocDQwTL4n5qkU8ZGacdtppZGVlMWDAAJ555hkyMjJ47bXXcK7kgS1EREREBKJY3JdEpCJQxCM1a9Zk+PDhjB8/njZt2nD22Wez//77M23aNK+jiYiIiEgVpiJQxGNdu3blp59+4v/+7/+YOnUqXbt25YYbbmDjxo1eRxMRERGpMJyDQmdxXxKRikCRCsDn83HBBReQnZ1N//79GTZsGO3bt+eDDz5QF1ERERERiSsVgSIVSL169Xj++ef56aefqFOnDieeeCJHHXUUs2fP9jqaiIiIiOc0MEx8JOarFqng9tprL8aPH8/w4cP58ccf6dixI3feeSf5+fleRxMRKXczN8zm2dmv8Oifz/H76j+IuqjXkUREKjUVgSIVVCAQ4KqrriIrK4vjjz+e2267jc6dO/PFF194HU1EpNx8uOgzhs54hO9X/Myvq8bx1KwXeTD7SRWCIgnIEf+J4hN1sngVgSIVXJMmTXjrrbf46quv8Pl8HH744Zx00kksXLjQ62giInGzOrSWT5d8xbsLRvLnhjk451gdWssHCz8hFA3hKLo/uiAaYvr6mUxcO9XjxCLiBU0RER8qAkUqiYMPPpjJkydz991388knn5CZmclDDz1EOBz2OpqIyE4Zu2oCAyfezDt//Y//LfqEoTMe5qnZLzJ17Qz85i+2fUG0gLGrJ3iQVESkalARKFKJJCcnc/PNNzN9+nQOOOAArrvuOrp168aPP/7odTQRkf+koLCAJ2e/SCgaJuwiOIqu9o1dPZHF+UuxEr6l92Gk+VPLP6yIeMqBuoPGiYpAkUqodevWjBw5kg8//JD169ez7777cu6557JixQqvo4mI7JBp67PxWfEPYQXRAhbnLYUS1gV8AfZvsHd5xBMRqZJUBIpUUmZG3759mT59OoMHD+aNN94gIyODZ599lmhUAyaICERdlMlrJzNiwQi+WvYVG8IbvI5UjO9f7scJ+PzckHklaf5UUv0ppPpSCFqQs1ueQvO0puWYUkQqCq+miDCzw80s28xmmdmNJaxPNrN3Yut/M7NWm60bHGvPNrPD4vdu/HcBrwOIyM5JT0/nnnvu4ayzzuLyyy/nkksu4cUXX+Spp56ie/fuXscTEY+Eo2EeyH6Av3L/oiBaQNCCvL/wfa7d9VraVW/ndbxNOtTMxLni7cm+JPrU34uM6m15pvuDTFuXRciF6VAjg2qB9PIPKiLe86j7ppn5gSeBQ4CFwFgzG+mcm77ZZucDa5xzbc3sVOB+4BQz6wCcCnQEmgCjzWxX51xh+b6KLelKoEgV0b59e77++mtef/115s+fT69evbjyyitZu3at19FExAPfLP+G+TnzKYgWABB2YQqiBTw9+2lcSVWXR5J8QQbuejFJviSSfUn4zU+SL4l96/emS82OAAR9QbrW7kyvOt1UAIqIF3oBs5xzc5xzIeBtoO9W2/QFXok9fg84yMws1v62c67AOTcXmBU7nqdUBIpUIWbGGWecQXZ2NpdffjlPPfUUmZmZvP766xXqQ5+IlL2fV/5MyIWKtecW5rI4f7EHibZtt1odebLb/ZzV8mRObX48d3cazPmtz8BKuB9QRBKXo8ymiKhnZuM2Wy7a6tRNgQWbPV8YaytxG+dcBFgH1C3lvuVORaBIFVSzZk0ee+wxxo4dS8uWLTnrrLM44IADmD59+vZ3FpEqwWcl/4l3OHwV8M9/tUA6BzXsw9FNDtX9fiJS3lY653pstjzndaCyVvH+CohI3HTr1o1ffvmF5557jsmTJ9OlSxduvPFGcnJyvI4mInGwqmAlKwtWlHilv0/9PiT5koq11wzWpFFKo/KIJyISdx5NEbEIaL7Z82axthK3MbMAUBNYVcp9y52KQJEqzufzceGFF5Kdnc3ZZ5/N/fffT/v27fnf//6nLqIildTivIXcNnUwQ6beyG3TbuKWqTcwP2feFtv0qd+HDjU6kBS7zy7Fl0K6P50r216pbpYiUil5OE/gWKCdmbU2sySKBnoZudU2I4H+scf9gG9c0QetkcCpsdFDWwPtgN/j8X7sDBWBIgmifv36vPDCC/z444/UqlWLE044gaOPPpo5c+Z4HU1EdkBBYQEPZN3LkvzFhF2YcDTEioJlPJR9H7mRf67y+83PVe2u4oaMGzip2Umc3epsHuryEM3Tir6QXh1azRdLv2Dk4pHM26qAFBGRf8Tu8bsC+AKYAYxwzk0zszvN7NjYZi8Adc1sFnANcGNs32nACGA6MAq43OuRQUFTRIgknL333ps//viDxx9/nCFDhtCxY0cGDx7M9ddfT0pKitfxRGQ7JqwdR8SFi7VHKWTsmt/Zr/4BW7S3qdaGNtXabNH2+6rfeX7u8zgcha6QT5d8yt519+aslmfpKqGIVGheTBEB4Jz7DPhsq7Yhmz3OB07axr5DgaFlGnAH6UqgSAIKBAIMHDiQrKws+vbty2233cZuu+3Gl19+6XU0EdmOtaG1hKPFi8BQNMSa0Ort7p8byeWFeS8QdmEiLoLDEYqG+GnVT8zYMKMsIouISAWjIlAkgTVt2pS33357U/F32GGHccopp7Bokef3K4vINuxSrS1BX7BYe7IvmV2qtd3u/tPWTytxdNBQNMSvq36NS0YRkbLgiP/9gF5dWfSaikAR4ZBDDmHKlCncddddjBw5kszMTB555BEikYjX0URkK22r7Urr9F0I2j8jfwYtSNPUZnSs0Xm7+xvb/sDzb+tERKTqUBEoIgAkJydzyy23MG3aNPr06cM111xDt27d+Omnn7yOJiKbMTMGtLuWvk1PoHFKExomN+aoxn25JuPGbc4NuLmONTsSJVqsPcmXRO+6vcsisohI3JTRZPEJRwPDiMgW2rRpwyeffMJHH33EgAED2GeffTj33HO5//77qV+/vtfxRAQI+AIc2ugIDm10xA7vm+pP5eLWF/PMnGcwjEIK8eFj//r7k1E9owzSJq5ItJDRy8bw7fKfAcf+DfbikIZ9CPj08UvkP3HeDQxT1VhVnyesR48ebty4cV7HEKmUcnJyuOuuu3jooYeoXr069913HxdccAE+nzoRiFR268PrGbdmHAWFBexWazeapjb1OlKV4pzjnhmPkbVhNqFoCCi62rprtdbc0uFqjcIqFYKZjXfO9fA6R2nVzGjo9nzutLgf98v9H61U70M86JOciGxTeno69913H5MmTaJLly5cfPHF9O7dmz/++MPraCIV0vL8RfyxZgyzN04j6op3uaxIagRrcGCDAzmi8REqAMvAjA2zyN4wZ1MBCEWD7/y5cR7T1s/0MJlI5eXhZPFVjopAEdmuDh068M033/D6668zf/58evbsyZVXXsm6deu8jiZSIURdIW/Mf4RHZ17PBwv/j5fm3seDWVezLrz9KRukaspeP4vwZgXg3wqiBWRvmOVBIhGRf6gIFJFSMTPOOOMMsrKyuOyyy3jqqafIyMjgjTfeoKp3KxfZnp9WjmL6uvGEXYhQNJ9QNJ9VoWW8OX+419HEI7WSamxjKo8kagVrALAobynfLPuJP9ZModAVlndEkUpJVwLjQ0WgiOyQWrVq8fjjjzN27FhatmzJmWeeyYEHHsiMGZpkWhLXr6u+JOwKtmhzRPkr909yIus9SiVe2qNOtxJHa/WZjz3qdOPJWS9z4+ShvDzvHR6d+QKXjR/M4rxlHiQVqTw0T2D8qAgUkf+kW7du/PLLLzz77LNMmjSJ3XbbjcGDB5OTk+N1NJFyF44WlNhuWIldAqXqSwukMqTDQOon1yXZl0SyL4l6SXW4pcPVjFszid9W/UEoGqYgGiI/ms+68AYeyn7G69gikiBUBIrIf+bz+bjooovIzs7mrLPO4r777qNDhw58+OGH6iIqCaVTzT3wW/Fh/6sHa1MzWNeDRFIRtKnWksd3v5t7Og/mns438vjud1MzWJ3Pl3xLwVZfDjgcywtWsjRvuUdpRSoH5yzuSyJSESgiO61+/fq8+OKL/PDDD9SsWZPjjz+eY445hjlz5ngdTaRcHNSwHzUCdQhaMgB+C5DkS+bU5ldoKoAEZ2bUSqrBX7mLuGrizVw3aQjzcxeUuK0PH6FouJwTikgi0mylIhI3++yzD+PHj+eJJ55gyJAhdOzYkZtvvplBgwaRnJzsdTyRMpMeqM61GQ8xfs0Y5uRMp15SI/aoezC1kup5HU08FIqGeHb2K/y+egIRF9nUXtRPovj38Mn+JJqlNS63fCKVURR9sRYPuhIoInEVDAYZOHAgM2bM4JhjjuHWW29lt912Y/To0V5HkwpuUc4YvvjrDD6YcyDfLLyIFXmTvI60Q5L8KfSudyhntLyawxqfqgJQeG72q4xdPXGLAhCIfYT9p8t8wAIk+5K4st35JQ4mIyJFnNPooPGi3zQiUiaaNWvGiBEjGDVqFNFolEMOOYRTTz2VxYsXex1NKqD56z/nl6U3szY0k3B0AyvyJ/D94stZkTfB62gi/0luJJffV/9B2BXv3mkGhiNoPjKr78JxTQ/j4a6307lmpgdJRSQRqQgUkTJ12GGHMWXKFO644w4+/PBDMjMzGT58OJFIZPs7S0JwzjFx1aMUuvwt2gtdAZNWPuZRKpGdsyGy8V+v6pmB32dc0OYMTmp+DPWS65RjOpHKSwPDxIeKQBEpcykpKQwZMoRp06axzz77MHDgQLp3787PP//sdTSpACIul4LCtSWuWxeaXb5hJCGMXzORu6Y/wPWTb+Ptv95nQ3hD3M9RN6kOfvNvc32SL4kutTrRPK1J3M8tIrI9KgJFpNzssssufPrpp3zwwQesWbOGvffem/PPP5+VK1d6HU085LcU/JZS4rrUQP1yTiNV3YeLPuXJWf9H1oaZLMpbzOdLR3PT1LvYGInvHKcBX4AzWvQjyZe0qc0omjuyQVI9Tm1+PFe1uyiu5xSp+jRZfLxodFARKVdmxvHHH88hhxzCXXfdxcMPP8yHH37Ifffdx/nnn4/Pp++mEo3P/GTUOp2sta9t0SXUbyl0rK0PyduyNH8hIxe9ztycbNIC1Tig/tHsXe9QTUnxL3IiuXy46NMt7tOLuAgbwhv5aum3HN/s6Lie78CG+1InuTYfLvyMVaHVZNRoR79mx9AopUFczyMisqP0aUtEPFGtWjXuv/9+Jk6cSOfOnbnooovYa6+9mDBBA4Ekoo51LiCj1hkELBWfJZHkq0HXelfRssZhXkerkFYWLGX4zFuYsWEi+dE8VodWMHLxm3y8+A2vo1Vo83LmE/AV//477MJMWje1TM7ZtVYnbu90PY93u48r2p6vAlBkJ+mewPhQESginurYsSPffvstr732GnPnzqVHjx4MGDCAdevWeR1NypGZj851L+H4Nt9wTKtP6Nv6S9rW7Od1rArr62UjCUdDW7SFXQE/rPyCvDh3a6xKagZrUugKi7UbRt0kDcwiUtE5NEVEvKgIFBHPmRlnnnkm2dnZXHrppTzxxBNkZmby5ptv4pzb/gGkyvBZgBR/bXz/MqCGwPzcP4kSLdYesCDLC5Z4kKhyaJbWhKYpjfFv9fEn6AtyROODPUolIlL+VASKSIVRq1YtnnjiCcaOHUvz5s0544wzOOigg5gxY4bX0UQqlAbJTTGKf3sdcWFql/Mk9ZXti5pBmQNoU601QQuS4ksh1Z/Kea3OpG21Nl5HE5HtcUUTxsd7SUQaGEZEKpzu3bvzyy+/8H//938MHjyYLl26cN1113HzzTeTnp7udTwRzx3U8Fimr/+DsPunS2jQgnSo0Z0awVrlkmFR3gLenP8yc3L+JOgLslfdPpzQ7LQtRsOsiGoGa3B7xxtZWbCKjZEcmqU2KfE+QRGRqqzCXAk0sxfNbLmZlXhnthV5zMxmmdlkM+tW3hlFpPz4/X4uueQSsrOzOeOMM7j33nvp0KEDH330UaW78iASb83T2nBe62upk9QAv/kJWJAedfpwRsvLyuX8a0KreSDrTmbnzMThCEVD/Ljye56d/Wi5nD8e6iXXpVV6CxWAIpVMFIv7kogqTBEIvAwc/i/rjwDaxZaLgKfLIZOIeKxBgwa89NJLjBkzhho1anDcccdx7LHHMnfuXK+jiXgqs0YXbmn/KHd1fI57O7/Eyc0vJFhOV+G+W/4VYRfZoi3iwszcMINl+bonUUTKhkOjg8ZLhSkCnXNjgNX/sklf4FVX5Feglpk1Lp90IuK1fffdlz/++IMHH3yQ7777jg4dOnD33XdTUFDgdTQRz5gZqYH0cr+a9VfuPAq3KgIB/BZgqYpAEZEKr8IUgaXQFFiw2fOFsbZizOwiMxtnZuNWrFhRLuFEpOwFg0GuvfZaZsyYwTHHHMOtt97KbrvtxldffeV1NJGE0jK9NQErXngWugiNUpp4kEhEEkP8p4fQFBFViHPuOedcD+dcj/r163sdR0TirFmzZowYMYJRo0YRjUY59NBDOfXUU1m8eLHX0UQSwv71DyFgwS3aghYks0ZHGqY08ihVyf7KXcCYFT8wbd10oq74tBoiIomoMt0NvQhovtnzZrE2EUlQhx12GFOmTGHYsGHcc889fPbZZ9x5551cccUVBAKV6ddbYnEuyqqNI1ix8RWiLodaqUfSsOYlBHy1vI4mpVQrqTbXZ97GiAWvMXNDFkm+JPautz/HNe3ndbRNItEIj//5JNM3ZGGA4aNGsAY3tb+e2km1vY4nIv+RxoaLj8p0JXAkcHZslNA9gXXOOd14IJLgUlJSGDJkCNOmTWPvvfdm4MCBdO/enZ9//tnraLINf62+kYVrbyMvPI2CyDyWb3ierCVHUxjN9Tqa7IAmqU25etcbear7ywzf/TlOan56uQ1MA1DoClmQu4BVBatKXP/5ki+Yvj6LUDREQTREfjSflQUreW728+WWUUTiTwPDxEeFKQLN7C3gFyDDzBaa2flmdomZXRLb5DNgDjAL+D+gfMbBFpFKYZddduGzzz7j/fffZ/Xq1ey9995ccMEFrFy50utospmCyF+szvkfUZe3qc0RIhJdweqc9z1MJpXJ2FVjuWrCVdwz4x4GTxnM3dPvZm1o7RbbfLdiDKHN5lEEiBJl5sZZ5ET0hYOIJLYKUwQ6505zzjV2zgWdc82ccy84555xzj0TW++cc5c753ZxznV2zo3zOrOIVCxmxgknnMCMGTMYNGgQr7zyChkZGTz//PNEo7oXqCLIKZiIlTCgSNTlsT7/Rw8S/TerC+by18ZfyYmUfBVKys78nPk8P+95cgpzyI/mE3Zh5ubM5eGZD28xh2jYhbd5jJJGNhWRis85XQmMlwpTBIqIxEu1atUYNmwYEyZMoGPHjlx44YXsvffeTJgwwetoCS/J33Aba4IkB5pvY13FkV+4nv/Nv4z/zb+Y0Uvu5K05p/DjskdwGnCk3IxeNppwdMsCL0qUZQXLWJD3zyDiPWt3J2D+Yvs3SK5PjWCNMs8pIlKRqQgUkSqrU6dOfP/997z66qvMmTOHHj16cNVVV7Fu3TqvoyWs9OSeBP31gS0/nPssQP1qZ3oTagd8u2QoK/OzibgCwtEcCl2Y7HWjmLH2U6+jJYxVoVU4io8M4cfPuvA//28f1/RYagVrk+xLBopGL03xpXBRmwvKLauIxJ+miIgPFYFVxOyNc3jyz+e4c9p9fLjwY3IiOV5HEqkQzIyzzjqLrKwsLrnkEh5//HEyMzN56623tug6JuXDzEe7Bu+QlrQbRjI+SyPga0Cbev9HcrCV1/H+VUHhBhbmjCfKll0JIy6fKWvf9ShV4ulUsxPBraanAIi4CC3TWm56Xj1YnXs638kZLU9jn3p7cWzTo7l/t3toXa1VOaYVEamYVARWAT+t+IV7ZjzIb6vH8ufGWYxc/BmDJ9/GhvAGr6OJVBi1a9fmySef5Pfff6dZs2acfvrpHHTQQcyYMcPraAknKdCYzEYf0bHJD2Q2+ozOTX+nRmofr2NtVziah1nJ3xiHCjeWc5rEtX/9/akerL7FZPXJvmQObXhosW6eyf5k9qu/Lxe2OZ9jmxxNraSa5R1XROKs6L7A+C6JSEVgJReJRnhl/puEoqFN3WPCLsyGyAY+XfKFx+lEKp4ePXrw66+/8vTTTzNhwgS6dOnCTTfdRG6uRgssb0mBRqQE22BWOf4UpQfqk+IvXkQYflpU6+1BosSUFkjjjo53cGjDQ2mc0pi26W05v/X5nNjsRK+jVTm5kTxWFKwiqntepQLRwDDxodmUK7lFeUtK7NIWcYVMXDuJU1tUnIl7RSoKv9/PJZdcwgknnMD111/Pvffey5tvvsmjjz5K3759vY4nFZSZsV+jG/hy0S0UuhCOKH5LIuhLo0fdc7a7fyQa4teVLzNt7edEXIgW6d3o0+BSaiY1KfvwVUy1QDVOan4SJzU/yesoVVJ+YQHPzH6Vsasn4TMfyb4kzmt9KnvV6+F1NBGJk8rx9atsU3ogjUJXWOK6aoHq5ZxGpHJp0KABL7/8Mt9//z3VqlXjuOOO49hjj2Xu3LleR5MKqnl6T05o+SyZNY+iSerudK1zBie3eoX0YP3t7vvJotuYuOZD8qMbiLgC5m78lbfnXUFeRAMVScXy+J8vMG71JCIuQigaYkNkI0/PfpWs9bO8jiYJzhH/q4CJeiVQRWAlVy+5Lq3SW+Db6keZ5EviiEaHeJRKpHLp06cPEyZM4IEHHuCbb76hY8eO3HPPPRQUFHgdzXMuuhZX8BMuPEMD6cTUTm5Fn0bXcUyL4fSodw6pgVrb3WdVwXwW5U6mcLPJyx2OsMtnikYWlQpkTWgdk9ZOJ7zVXIqhaIiPFuk2E5GtmVkdM/vKzP6M/Vt7G9v1j23zp5n136z9OzPLNrOJsaVBeeRWEVgFXLXrZbRIa06SL4lUfypBC3J04yPoXmd3r6OJVBrBYJDrrruOrKwsjjrqKG6++Wa6dOnC119/7XU0z0Q3PoVbvg9u7ZW41afiVh2LK1zmdaxKaVXBXIzic9YVuhDL8rM9SCRSsjWhtQR8Jd8ttLxgZTmnESnOlcGyk24EvnbOtQO+jj3fgpnVAW4D9gB6AbdtVSye4ZzrGluW73yk7dM9gVVAzWBN7up8K4tyF7M2vI5W6S1ID6R7HUukUmrWrBnvvvsuo0aN4oorruDggw/m1FNP5eGHH6Zx48Zexys3Lv9byHkWCMHfV68is3BrLsXqfeBptsqoVlJTHMW77vstSL3k1h4kkqosvzCfn1aOZUHuIlqlN6d33R4k+5NLtW+T1IYl3mbix0f7Gu3iHVVkxzgqYvfNvsD+scevAN8BN2y1zWHAV8651QBm9hVwOPBW+UQsTlcCq5CmaU3oWLO9CkCRODj88MOZOnUqt99+O//73//IyMjg0UcfJRKJbH/nKsDlvgQub6vWwqJCMPKXJ5kqswYp7aif0hb/VvPb+SzIbrWP8SiVVEUr8ldy1YSbeW3+O3yx7Btenvc2AyfeyurQ2lLtn+JP4fimR5DsS9rUZhjJ/mT6Nj2sjFKLeK6emY3bbLloB/Zt6JxbEnu8FGhYwjZNgQWbPV8Ya/vbS7GuoLfatuYiijMVgSIi25CSksJtt93G1KlT2Wuvvbj66qvp0aMHv/zyi9fRyl50bcntFgCngUz+i77N7qFd9f3xWxDDaJTSnpNaDCc9UNfraFKFPD/3dTZENlIQLbqCXxAtYF14Pa/Oe6fUxzih2ZFcssvZtExrRq1gTfau14P7druJ+sn6b1UqgLLpD7rSOddjs+W5zU9pZqPNbGoJyxZDiruim+d3tIfpGc65zsC+seWsHdz/P1F3UBGR7Wjbti2ff/45H3zwAVdddRV77bUXF1xwAffddx9161bRD0XJB0FkDhDaaoWDQIYXiSq9ZH86hzW5gUPdIKJE8Zv+BEt8RV2UqetmbJo3eFM7Uf5YM3mHjrVXvR6aEkIkxjl38LbWmdkyM2vsnFtiZo2Bku7pW8Q/XUYBmlHUbRTn3KLYvxvM7E2K7hl8NU7Rt0lXAkVESsHMOPHEE5kxYwbXXXcdL730ErvuuivPP/880WjVm0jZ0s8BX33g7/uIDEiB6rdhlrTtHWW7zHwqAKXMmJX80c6/jXaRyqYCThExEvh7tM/+wEclbPMFcKiZ1Y4NCHMo8IWZBcysHoCZBYGjganbO6GZHWBmrWOPG5vZK2b2kpk1Km1o/UYQEdkB1atX54EHHmDixIl07NiRCy+8kL333puJEyd6HS2uzFcTqzcSql0JwZ6QcjRW5zV8acd5HU1EtsFnPnrW3h2/bTkSbcD89K7X06NUIvHlXPyXnXQfcIiZ/QkcHHuOmfUws+eLMrvVwF3A2NhyZ6wtmaJicDIwkaIrhv9XinM+BZtGG3sICAJR4Llt7rEVfRUpIvIfdOrUie+//55XX32VQYMG0b17d6688kruvPNOatSo4XW8uDBfdazaRVBtR+6PF6laCl0hE9ZMYOLaiVQLVGO/+vvROLXijhR8buvT+Ct3IatDayh0hfjNT8OUBpzZop/X0USqJOfcKuCgEtrHARds9vxF4MWttskBuv+H0zZ1zv1lZgGKRh5tSdH9G4tLewAVgSIi/5GZ0b9/f4499lhuvvlmHnvsMUaMGMHDDz/MKaecQjkN8CUiZSQSjfBg9oPMy51HQbQAHz6+Xf4t57Q6h971ensdr0Q1gtV5oMvtTF03g8V5S2mW1pSONTL0+0iqBEeFnCLCC+vNrCHQCZjunNtoRfdqBLez3ybqDioispNq167NU089xW+//UaTJk047bTTOPjgg8nKyvI6mojshF9X/7qpAISiAVZCLsTL81+moLDA43Tb5jMfu9XqyOGND6JTzUwVgCJVz+MUdSt9A3gy1rY3UOoPHioCRUTipGfPnvz222889dRTjB8/nt12242bb76Z3Nxcr6OJyH/w26rfNhWAm/Pj58+Nf3qQSCTBOcBZ/JdKxjl3P0X3H+7tnHs71ryIzbqfbo+KQBGROPL7/Vx66aVkZ2dz2mmncc8999ChQwc+/vhjr6OJyA5K9iWX2O5wJPk0Sq6IFyrgwDBemQs0MbNTYs8XAXNKu7OKQBGRMtCwYUNeeeUVvvvuO9LT0zn22GPp27cv8+bN8zqaJLAN4ZX8vupDfl7xDsvz53odp8Lbv8H+JRZ7Sb4k2lZr60EiEREws87ATIpGEn0h1rwfWw08829UBIqIlKH99tuPiRMnMmzYMEaPHk2HDh249957CYW2noRdpGxNX/c9z8y6gO+Wv8SYFa/zytxr+Grps7hK/DV4WetUsxOHNDyEgAVI9iWT4ksh3Z/OwF0H4tO8eyLecGWwVD5PA0Occ5lAONb2PbBPaQ+g32AiImUsGAwyaNAgZsyYweGHH85NN91Ely5d+Oabb7yOJgkiv3Ajny5+hIgLUejCOAqJuAImrfmChbnTvI5XofVr1o/7Ot/HWS3P4uJdLmZ41+G0Sm/ldSwRSWwdgddjjx1smm4itbQHUBEoIlJOWrRowQcffMCnn35KKBTioIMO4owzzmDJkiVeR5Mqbs7G8fi2mkAcIOwKmLruWw8SVS51k+uyd7296VqrKwGfZtcS8Y7hXPyXSmgeW80vaGa9gFmlPYCKQBGRcnbkkUcydepUhgwZwnvvvUdmZiaPPfYYkUjE62giIiJS8d0KfGpmdwBJZjYYeBe4pbQHUBEoIuKB1NRU7rjjDqZOncqee+7JVVddRc+ePfn111+9jiZVUJtqPYi6wmLtQUuiU60DPUgk5SEUDbMsfxn5hfleRxGJH90TiHPuE+BwoD5F9wK2BE5wzn1Z2mOoCBQR8VC7du0YNWoU7777LitWrKB3795cdNFFrFq1yutoUoWk+NM5usm1BCyJgCXhw0/Akti99pE0T+vodTyJM+ccIxd9ymXjr+bmKXdy2fiBvDLvDQpL+CJApFJxqDtojHNugnPuMufcUc65S5xz43dkf3VsFxHxmJnRr18/DjvsMO644w6GDx/OBx98wP3338+5556Lz6fv62Tnta+5L83TOpK14UfC0QLaVutJ/ZRWXscqM5FohCjRhJzP7/sVP/LR4k8JRf8ZhXjMip9I9iVzaot+HiYTkXgwszu3tc45N6Q0x9AnCxGRCqJ69eo8+OCDTJgwgfbt23PBBRewzz77MGnSJK+jSRVRLViHHnWOpXe9k6psAZgT2cjzc4Zz3aTzGDTxfB7IupVFuX95Hatcfbz4sy0KQIBQNMToZd8QdVGPUonEibqDAjTfaukJXAfsUtoDqAgUEalgOnfuzJgxY3j55Zf5888/6datGwMHDmT9+vVeRxPx1OyNM3hp7sM8OnMIo5d9RH5h7hbrnXM8/uc9TF37B4WukChR/sqdw/CZd7IhvM6j1OVvfbjk3xURF6EgqjlKRSo759y5Wy1HACcApR5hTkWgiEgFZGb079+f7OxsLrroIh599FEyMzN55513NLm3JKQfVnzBs7PvY/K635mXO5Mvl77Pg9k3blEIzs35k5UFSylky3vfCl2En1d9V86JvdMqvWWJ7TWDNUnxJZdzGpF4szJYqoQvgeNKu7GKQBGRCqxOnTo8/fTT/PrrrzRu3JhTTz2VQw89lJkzZ3odTaTcFBTm8/HiNwi7gk1tYRdifXgNP678alPbioJlJe4fdmGW5C0o85wVxWktTip2L2SSL4kzW5yKWZX5wCuJSt1BMbM2Wy2dgLuBUv+iUxEoIlIJ9OrVi99//50nnniCsWPH0rlzZ2699Vby8vK8jiZS5hbmzcVf4mT3YaatG7fpedOU5sXuhQMwjBZpbco0Y0XSplprhnQYTLdaXamTVJv21TO4LmMAPet23/7OIlIZzAL+jP07C/gV2BfoX9oDaHRQESkmN5LD2DU/s7JgBW3S27JbrW74Tb8uvOb3+7n88ss58cQTGTRoEHfffTdvvPEGjz32GEcffbTX8crFxrU5PHvtK3w34mdc1LHnMT24bPg51GlU2+toUobS/NWIUvKAJtWDtTY9DvN3Aej4p4uXw1HUFTKRtExvzsCMK7yOIRJ/lfDKXbw553b6Qp6uBIpUMetCa/h40QiemjWMTxaPYF14zQ7tvyB3PrdOG8gHC9/i6+Wf8er857h3xq3kF+qKU0XRqFEjXnvtNb799ltSUlI45phjOP7445k/f77X0cpUNBplYJ9bGf3GD+TnFFCQF+LHD37lij0GE8rXYBdVWaOUZtRNaoBt9bElaEn0qXf4pufzcmbh39Tb8Z9+XkaUhXnzyiWriEhloCJQpApZkreQu6cP4pvlnzFj/SS+XvYZd08fxJK8haU+xkvzniSvMJewK/pQXRDNZ3nBUr5Y+nFZxZb/aP/992fixIncf//9fPnll7Rv35777ruPUKhqFkR/jJ7CsvkriIT+GfysMBJl45ocvn/3l3LPE3UFLFj7GOMX7sPYhXsyd/WdRAoTZwTK8mRmXNjmBhqmNCXJl0yKL5WgJXF0k9NoW/2fye5rBWsT9AXxmdtiSfIlUTupnoevQETiwgHO4r9UAma2wMz+2t5S2uOpf5dIFTJiwUvkR/+5YhdxYSKFYd5d8AoDdr15u/uvC69hZcHyYu0RF2bsmp/p2/TkuOaVnZeUlMT111/PqaeeytVXX83gwYN55ZVXeOqppzjggAO8jhdX86ctIFxQfPTrvI35zJ1SvldBnXPMWH4+G/LHE6VosJKlG95gTd53dG3yOT7TCIzxVjupHtdnDGNp/kJyIutpltaGFH/qFtt0qtmdAAFCm/UXc4DP/HSvvXc5JxaRspDAA2SfGc+D6UqgSBUye2PJI0bO3phVqv19//Ir4d/WifdatGjBBx98wCeffEJBQQEHHnggZ5xxBkuXLvU6Wtw027UxweTi312mpKfQon3zcs2yMTSJDQUTNhWAAI4wocLlrMr5vFyzJBIzo3Fqc9pW71isAISigq96UnXMDDMwA5/BfvUPJT1QrfwDi4jEiXPu+9IspT2ePtWJVCFBX3Ab7Ukltm+terAmTVKbY1vNmRO0JPaqt99O55Oyd9RRRzFt2jRuvfVW3nvvPTIyMnj88ceJREo9f2yF1ePwrtRpVBt/4J9RIn1+H6nVUtjv5N7lmmVjaAq44gOVRF0uGwr+KNcs8o9fV33DmtBKth454vsVn1FQmO9NKBGJL00RAYCZdTWzK83sDjO78++ltPurCBSpQvasux8B27IQDFiQPeuWvoA7v/UVVA/UINmXgt8CJPmSaZ3eloMaHBnvuFJGUlNTufPOO5k6dSp77LEHAwYMoFevXvz2229eR9spfr+f4T/exV59e+AP+PH5fXQ/eDce//UeUtNTyjVLsr8plDBirs9SSAm0Ktcs8o8p637fdD/z5vzmZ37unx4kEhGJPzO7CPgJOBC4AegMXAu0Le0xdE+gSBXSt+lprMhfyqyNWfjNT6ErpG21TI5temqpj1E/uSF3d3qUKev+YE14NS3T2tAmvZ0mGK6E2rVrxxdffMF7773H1VdfTe/evbnwwgu55557qFu3rtfx/pNa9Wsy5N3rcM7hnMPn8+a7zNqpfQj6asauLhVuajcC1K92vCeZBFL96SW2R3Gk+NPKOY2IlIlKMpBLGbseONw594OZrXHOHW9mRwCl/sCnIlCkCknyJXFZuxtYmr+YZfmLaJjSlEYpTXb4OAFfgN1r9yqDhFLezIyTTjqJww8/nNtvv51HH32U999/n2HDhnHOOed4VkTtrKJ7vrz7IGAWoFOjEfy58ho2FEwAIDXYhnb1HiLo15yFXtm33mFkr59MyP1zr6ZhVA/UoHlq4kwWLyJVXgPn3A+xx1Ez8znnPjezN0p7gMr5119E/lWjlCZ0qdXzPxWAUjVVr16dhx56iAkTJpCZmcn555/Pvvvuy+TJk72OVmklB5rQqdHb9Gz2Oz2a/UzXJp+TntTB61gJrV31ThzS6HgCFiTFl0qyL4WawTpc1OZG9WYQqSLMxX+phBaaWavY45lAXzPbFyj1HFG6EigikkA6d+7MmDFjePXVVxk0aBDdunVjwIAB3H777dSoUcPreJVSwF/T6wiymYMbHseedQ9kXs5M0vzVaJW+Kz7Td94iVUIlHsglzoYB7YF5wJ3Ae0ASMKC0B9BvRRGRBOPz+TjnnHPIzs7mggsuYPjw4bRv354RI0bgEngCJqk6qgVq0KlmD9pUy1QBKCJVjnPuZefc57HHnwO1gdrOuadLewz9ZhQRSVB16tThmWee4ZdffqFhw4accsopHHroocycWfJ8kyIiIt6yooFh4r1UMmY23Mx6/v3cORdyzm3ckWOoCBQRqQDWhpbx9dLneXv+Lfyw/A1yImvL7dx77LEHY8eO5YknnmDs2LF07tyZW2+9lby8vHLLICIiIqVmwEdm9mdsnsCMHT2AikAREY8tzsvm+dmXMm71SObm/MEvq0bw3KyLWRNaUm4Z/H4/l19+OVlZWZx88sncfffddOzYkU8//bTcMoiIiGyXJovHOXcV0Ay4DGgO/Gpm483smtIeQ0WgiIjHPlv8KGGXT5QIAIUuTEE0h2+WvVDuWRo1asRrr73GN998Q0pKCkcffTTHH388f/31V7lnERERKUZFIADOuahz7ivn3HlAJ2AV8EBp91cRKCLioVA0n5UFxQssR5R5ORM8SFTkgAMOYOLEidx33318+eWXtG/fnvvvv59QqNSjT4uIiEgZMbN0MzvTzD6laJqICNC/tPurCBQR8ZDfAtscvTDoSy3nNFtKSkrihhtuYPr06RxyyCHceOONdO3ale+++87TXCIiksB0JRAzexdYBlwEfAK0dM4d6Zx7vbTHUBEoUgqL8hbx7fKv+X31b4SiuhIi8eO3AJnV98FvwS3aA5ZMt9pHeZRqSy1btuTDDz/k448/Ji8vjwMOOICzzjqLpUuXeh1NREQkEY0FOjjn+jjnnnbOrdzRA6gIFPkXzjlemvsCd0+/nREL3ubVeS9x3aSrmZczz+toUoUc1vgKmqRmELBkkn1pBCyJdtV60bveSV5H28LRRx/NtGnTuOWWWxgxYgSZmZk88cQTFBYWeh0tYTnnWLTxc8YsPI2v/zqSqSvvpSCyyutYIiJlw6EpIgDn3DDn3E7drG9VfWLgHj16uHHjxnkdQyqpsat/5+V5L1AQLdiivVawFsN2e1iTEEtcrcifz9rwEuont6JWUiOv4/yrmTNncvnllzN69Gi6devG008/Ta9evbyOlXBmrHqUuevfpNAVTedhBEjy12L/Zh+Q5K/lbTgRqfDMbLxzrofXOUoruUVz1+T6q+N+3HlXXlep3od40CdYkX8xZsV3xQpAgLzCPP7Kne9BIqnK6qe0pF31PSt8AQiw66678uWXX/LOO++wdOlS9txzTy655BJWr17tdbSEESpcy5x1r20qAAEcEcKF65m77i0Pk4mISEWnIlDkX0RcpMR2wyh06gInEI6G+XTxh9w0ZSA3TL6SEQteJzeS43WscmFmnHzyycyYMYOrr76a559/noyMDF566SWi0ajX8aq8daEsfJZUrD1KiJV5v3qQSESkHGhgmLjYqSLQzM6OVxCRimjPOnuR5Cv+IctnPlqmtSr/QFKhOOd4ctZDjFo6ktWhlawLr2XMiq+5L+t2wtGw1/HKTY0aNXj44YcZP348u+66K+eddx59+vRh8uTJXker0lL8DXCU9EWVj9Rgk3LPIyIi5cfM6prZWWZ2fex5EzNrVtr9S1UEmlmHEpaOwMX/MXdJ5zjczLLNbJaZ3VjC+nPMbIWZTYwtF8Tr3CLbsne9fWid3oZkXzIAAQuQ5EviojaXEPAFPE4nXpuXO4c5ObMIu38KvoiLsC68hj/W/O5hMm906dKFH374gRdeeIGsrCy6devGtddey4YNG7yOViVVT2pD9aR2GFv+LvJbEm1qnuVRKhGRxGJmdczsKzP7M/Zv7W1sN8rM1prZJ1u1tzaz32I10DtmJXTxKH6s/YBs4Azg1lhzO+Dp0uYu7ZXAX4HrgEGbLdcBLUt7on9jZn7gSeAIoANwmpl1KGHTd5xzXWPL8/E4t8i/CfgCXLvr9Vzc5lIOanAIxzTpy92d7qNTzd28jiYVwPycuThXvNtjQbSAOTl/epDIez6fj/POO4/s7GzOP/98HnnkETIzM3n33XepjAORORdmbe7HLFp9A8vWDSccWex1pC30avQEdVO647Mk/JZKkq8WXesPpVZySX9CRUSkDNwIfO2cawd8HXtekgeAkr6hux94xDnXFlgDnF+Kcw4HTnHOHQ6buoT8BpR6hLbSXsqYAQxyzm0x7nRshvp46AXMcs7NiR33baAvMD1Oxxf5z3zmY7daXdmtVlevo0gFUze5Hn7zb3ElECBoSdRPbuhRqoqhbt26PPvss5x77rlcdtllnHzyyRx66KE88cQTtGvXzut4pRKN5jF7+fGEInOIulyMJFZseJJW9V6mWsreXscDINlfm95N/o+CyCrC0fWkB1tQ9L2qiEjVZBXv+8S+wP6xx68A3wE3bL2Rc+5rM9t/8zYzM+BA4PTN9r+d7V/Ra+Wc+/rvQ8f+DVH62u7frwSa2d8HOgRYu/V651y8ZjJuCizY7PnCWNvWTjSzyWb2npk139bBzOwiMxtnZuNWrFgRp4giIlvqUKMzqf50fFv9KvWbnz3r7uNRqoplzz335Pfff+exxx7j119/pVOnTtx2223k5eVtf2ePrdz4IgXhWURdLgCOEM7l8deqy0u8Auyl5EBdqiW1VgEoIlVf2cwTWO/v2iG2XLQDiRo655bEHi8FduRb4LrAWuc2jUS4rRpoa9PN7LCt2g4GppT2xNvrDvq5mVVzzq13zvOhED+mqOrdDfiKokq5RM6555xzPZxzPerXr19uAUUksfjNz6DMW2id3ha/BQhYgCYpTbkm4yaqBap7Ha/cFboo3y3N5uFpX/HmnN9ZGyoqngKBAFdeeSVZWVn069ePO++8k06dOvHZZ595nPjfrcv9EEd+sXbn8igIZ3uQSEREysjKv2uH2PLc5ivNbLSZTS1h6bv5dq7ovofyuFZ5LfCGmb0CpJrZs8DLFN2yVyrbu2Q4EfjJzI5wzi0GMLM+wFDn3L7/KXLJFgGbX9lrFmvbZKuuqM8Dw+J4fhGR/6ROUj0GZd5KTmQjha6QGsGaXkfyRF4kRP8fX2bOhpXkFoZI8Qd4ZPrXvLT32XSqXfSlZuPGjXnjjTc4//zzufzyyznqqKM4/vjjGT58OC1atPD4FRRnJJfY7ohiVvK6qiTqCpmzfiSz171P1IVoUf0wMmqdTsCX6nU0EUlUHk3p4Jw7eFvrzGyZmTV2zi0xs8bA8h049CqglpkFYlcDi9VA28jzq5ntBpwJvEhRj8pezrmFpT3xv14JdM4NoqhP6k9mdqqZfQWMAD4s7QlKaSzQLjY6ThJwKjBy8w1ib+rfjqXoPkURkQohPVAtYQtAgFdm/8qf65eTWxgCIL8wQk6kgGvHvldsQJgDDzyQSZMmcc899zBq1Cjat2/PsGHDCIVCXkTfpjrVzsIsbatWI+hvQlKgtSeZytOvy25l4sqHWRvKZn14LtNXv8TXC88nuo35U0VEEtRIoH/scX/go9LuGLty+C3Qb0f2t6JvIlc454Y55y53zt0HLLMd+IayNKOD/gKsB96gqMps7Zx7qLQnKI1Y5XsF8AVFxd0I59w0M7vTzI6NbTbAzKaZ2SRgAHBOPDOIiMh/9/GCSRREixcHKwo2sDB3TbH2pKQkBg8ezPTp0znkkEO44YYb2H333fn+++/LI26p1E4/iZqph2OWglkqPqtGwFePVvVepOhe/qprbcEsFueModD90x02SgEbwwtZuPEbD5OJSMKreJPF3wccYmZ/UnRf3n0AZtbDzDbNZmBmPwDvAgeZ2cLN7um7AbjGzGZRdI/gC6U451dA963aulNUS5XKv3YHNbP/UTTazSPAEOApikawideooJs45z4DPtuqbchmjwcDg+N9XhER2Xk+K/k7RefAv411AK1ateLDDz/k448/ZsCAAey///6ceeaZPPjggzRs6O0Iq2Y+mtd9jPrhK8gt+J2AvwHVUw7ALOhprvKwKn8yULzQjbg8luWNo0X1Q8s/lIgIFW900NgtaweV0D4OuGCz5yXeShebHaHUUzvEdKZoSojN/Q50Ke0BtnclcCawi3PuTufcR8DhwBNmdvkOxRQRkSrtxJa7k+Lb8ntFA5qn16ZJWq3t7n/MMccwbdo0br75Zt555x0yMjJ48sknKSz0ekwySAnuSp1qZ1Ij9dCEKAABUgL1sBI+IvhIIi2Q2NOfiIhUAOsoPgppQyCntAfY3j2BNzjnVm/2fAqwD3DhDoQUkQSSF8khvzDX6xhSzk5v04tudVuS6g8SND9p/iRqJaXxSK+TS32MtLQ07r77bqZMmUKPHj244oor2GOPPfj999/LMLmUpHHaXrEBYLa8Gmjmp02NY0veSUSkPFS87qBeeB9408w6mVmamXUGXqVo7JZSKfWEgn9zzi0ys3iODCoiVcDS/IW8Mf8pluTNB4PWaRmc3vIyaifV8zqalIMkX4D/2+tMJq5ewMTVC2mYWp2DGmeS7N/xK2cZGRl89dVXjBgxgoEDB7Lnnnty8cUXM3ToUOrUqVMG6WVrPgtwYNPn+Gnp9WwMLwR8JPmqsWeju0gNaOolERGP3Qw8RFEX0GQgH3gJuKm0B7CtR22ranr06OHGjRvndQyRKi2vMJe7pl9JXuE/vRB8+KgRrM0tHR7Fbzv8fZMIAOvXr+e2227jscceo06dOjzwwAP079+/yg/MUpFsDC8i6kJUD7bE/uX+ThGpfMxsvHOuh9c5Siu5eXPX7KqBcT/unEHXVqr34W9W9MewHkXzHO5QUaff5iKy08av/pFINLxFW5QoeYU5zFg/0ZtQUiXUqFGDRx55hD/++IN27dpx7rnn0qdPH6ZMmeJ1tIRRLdiUGkmtVQCKiOfMlc1SGZlZTaAnRYPEHGBmB5rZgaXdX7/RJaHNz1nAb6vGsShvsddRKrWVoaWEXfE53gpdhFWhHZkz1RtRV8iG8GrC0Yo1T538o0uXLvz444+88MILzJgxg913351BgwaxceNGr6OJiIiUKzM7B1gMfEzRlBJ/L8//y25bUB8tSUh5hfk8lP0oc3Pm48dHIYVkVs/gql0vJ8mXGKP/xVOLtLYk+1IoiOZv0e4zP81SK/ak2hPWfMuoJS8RihYA0L32QRzR5Dx1Ya2AfD4f5513Hn379mXw4ME8+OCDvPXWWzz66KOccMIJ6iIqIpIInH7XA0OBfs65z//rAXQlUBLSa/PeYvbGuYSiIfKi+YSiYWasz+b9BR96Ha1S2q1mL2oEa21ROAUsSNPUlrRJz/Qw2b/7c8MffLzoWXILNxBxISIuxB9rvubTxaX+Ik08ULduXZ577jl+/vln6tWrR79+/TjiiCOYNWuW19FERETKQwD4cmcOoCJQEk7URfll1W9EXGSL9rAL8/2KHzxKtX2haIj5OfNYE1q9/Y3LWcAX4Op2d9O77oFUC9SgRqA2+9U/ikt2uaVCX535dtk7hF3BFm1hF2LCmm8oKMzzKJWUVu/evRk3bhyPPvooP//8M506deL2228nPz9/+zuLiEjlpCkiAO4HbrGduFlb/Z0k4Tgcha7kCahDWw1uUlF8s+wr/rfoXQyj0BXSttquXLTL5aQH0ss9y+qCFURx1E2qv0WBlxaoxonNzuPEZueVe6b/am14RYntho/cwg0k+1PLOZHsqEAgwIABA+jXrx/XXXcdd9xxB6+//jqPP/44RxxxhNfxREREysJAoBFwvZmt2nyFc65FaQ6gK4GScPzmZ5dqxe9TM4xONdt7kOjfTVs3hQ8WjaAgWkB+NJ+wC/Pnxmyem/1kueZYkreQodOv5+7pg7hn+g3cOf1aFuTOK9cM8dY0tR1bT4YN4DMfNYKaj64yadKkCW+++SajR48mEAhw5JFH0q9fPxYsWOB1NBERiSONDgrAmcDBwJHAWVstpaIiUBLSua3PItWfQjB2D1vQgqT50zij5akeJyvui6WfEdpq1MqIi/DnxpmsDa0plwyhaAGPzryLpfmLCLswYRdiZcEyHvtzKHmFueWSoSwc1Oh0knzJbF4IBi2ZgxqeUaEGhlldsJgxy9/hm2WvsThP9739m4MOOohJkyZxzz338Nlnn9G+fXseeOABwuGKeZVfRER2kLqD4pz7fltLaY+hIlASUou05gzb7W6ObHw43Wp1pW/ToxjW5W4apjTwOloxa8MlF3oB87Mhsr5cMkxaO67YPZRQNLXC+NW/lEuGstAopSUXtLmHdtV3J81fnYYprTix+VX0rneU19E2Gb/6C56ZNYAxy9/mxxXv8cqcwYxa/JzXsSq05ORkBg8ezPTp0znwwAO5/vrr2X333RkzZozX0URERHaamSWb2VAzm2Nm62Jth5rZFaU9RsX5qluknNVKqkW/5sd5HWO7OtToxIr85RSy5X2MDmiU0rhcMqwLrSZcwv2SoWgBa8MVb6CaHdE4tTVnt7rV6xgl2hhZwxdLniPi/nnvw66ACWu+omOtPjRPq7gjr1YErVq1YuTIkYwcOZIBAwaw3377cfbZZzNs2DAaNmzodTwREdlRlbf7Zrw9AjQFzgD+niZiWqz9idIcQFcCRSq4wxsdTWogDT/+TW1JviT6NTuFoC+pXDK0qtaOgK/4d0bJvhRap7crlwyJaNaG8dhmP/e/hV2I6esq7ki2Fc2xxx7L9OnTuemmm3jrrbfIyMjgqaeeorCw5AGiREREKrjjgdOdc78AUQDn3CKKCsNSUREoUsHVSqrFkA53s3+Dg2ic0pQONTpxWdur2a/BgeWWYZf0DFqltyVo/xSdQQvSOKUZ7WvsVm45Eo3hK2HYmqI7GH0lFIdV3fL8VfywYhyT12ZT6KI7tG9aWhpDhw5l8uTJdO/encsvv5w99tiDsWPHllFaEREpE7onECDEVj06zaw+sKrkzYtTd1CRSqBWUi1OaXGGZ+c3My7d5Xq+X/EFv6z6Huei9Kq7Lwc0OALff5+iRrZj1+o9+ZSnirUHLIlOtfbzIJE3nHM8P2cEXy37Gb/5MSA9kMqdna6mcWr9HTpWZmYmo0eP5p133mHgwIHsscceXHLJJQwdOpTatWuXzQsQEZH4qZxFW7y9C7xiZgMBzKwxMBx4u7QH0Kc3ESmVgC/AQQ2P4pYOw7i144Mc1qgvSeXUHTVRpQaqc1yzgQQsiaAl47cgAQuyT/2TaJy6i9fxys2PK8fz9fJfCbsI+dEC8qIFrAqt496sZ//T8cyMU089laysLAYMGMCzzz5LRkYGr776Ks7p04WIiFR4NwFzgSlALeBPYDFwR2kPoCJQRASIRMNkrx/LxDXfsS680us4m3SouTdXZbzAoY3P55BG53JpuyfZt8HJXscqV58vGUPBVtOkOBzL81exKG/Zfz5uzZo1GT58OOPHj2eXXXahf//+7L///kydOnVnI4uISBnRPIHgnAs55wY656oBDYHqseeh7e37N3UHFZGEtyRvLi/NvY2oi+BwRF0he9U7lkManel1NADSAzXpXudwr2N4Jq8wv8R2nxkFhaX+e7dNXbt25aeffuLFF1/khhtuYPfdd2fgwIEMGTKEatWq7fTxpWqLRMMURHNJ81fH1D1eRMqBmbXZqqm6WdEoAs65OaU5hn5biUhCi7pCXp13J3mFGyiI5hGK5hNxYX5Z+QmzNkz0Op4Ae9frRpIFi7X7zU/L9CZxOYfP5+OCCy4gOzubs88+mwceeID27dvz/vvvq4uolKgwGubzxU/xUNYpPD7zHB6d2Z/p6370OpaIJIZZFHUBnbXZ8mdsKRUVgSJSZU1fP47HZl7H7VP788ysW5iXk1VsmwW5MwlFC4q1h10BY1d/UR4xZTuOarI/DVPrkRy7B9WPjyRfkAHtzsZv8R0ltV69erzwwgv89NNP1KlTh379+nHkkUcya9asuJ5HKr/PljzJ5LWjibgQhS5MTmQNHy96hPk5k72OJlK1aXRQnHM+55w/9q8PaAI8B5xV2mOoCBSRKmnCmjG8Nf9hFufPIz+aw7zcLF6Ycydzc6ZvsV04WoCVOBEDFBTmlUdU2Y5UfwoPdrmBC9uczN51u3FUk/15pOtN9KzTuczOuddeezF+/HgeeeQRfvrpJzp16sQdd9xBfn7JXVMlseQXbmTauu+JbHX7TcQV8OOKdzxKJSKJyjm3FLgauLe0+6gIFJEqxznHZ0teJbzVB7SwC/HZ4te2aGuR3p6oKz5peNCS2a3WvmWaU0ovyRfkoIa9uS7zfM5tfSJNUhuU+TkDgQBXX301WVlZHH/88dx+++106tSJUaNGlfm5pWLbGFmD30oeVmFNaGk5pxFJIGUwKExlHBhmGzKAtNJurCJQRDzhnGN5/lLWhEo9r2mphaL55EQ2lLhuWcGCLZ4n+ZLp2/RSApaEL/YrMclSaJK6C7vV6hP3bFL5NGnShLfeeouvvvoKv9/PEUccQb9+/ViwYMH2d5YqqWawQYn3iho+mqTu6kEiEUkkZvaDmY3ZbBkH/AY8XNpjaHRQESl3f26Yzqvznia3MIeoi9I4pRnnt7mKusk7NvH3tgR9SQR9SRREi3fnrBGsU6ytS+39aJzahvFrRpMTWUf7GnuQWaNX3O83k8rt4IMPZvLkyTz00EPcddddjBo1ittvv52rrrqKYLD4wDVSdQV9yexT/xR+XPE2Yff3PcVGwJLo0+B0T7OJVHlV58rdznh+q+c5wCTnXKkHhrGqPupZjx493Lhx47yOISIxq0MrGTr9+i0GYzGMWkl1uL3jcHxxGmJ99LIRfL/8o80+oBV18Tyx2aV0rb1PXM4hFc+kNfN5YfZ3LMxdTZdaLThvl/1pnl437ueZO3cuAwYM4JNPPqFjx448/fTT7Luvug8nEucc09Z9x08rRrAxsoamaZkc2PAcGqS08jqaSKmZ2XjnXA+vc5RWSpPmrtVF18T9uNl3XFOp3od40JVAESlXP6/8jsKt7sFzOHIjOczcMJ3MGp3icp4DG/TDOccPKz8m6gpJ8iVzaKPTVABWYd8uncYtk94lPxoGYGHOKkYvncqre11G62rxucr8t9atW/Pxxx8zcuRIBgwYQJ8+fTZNLdGgQdnfryjeMzM61TqATrUO8DqKSGKp2tevtsnM7izNds65IaXZTkWgiJSr1aEVFLpICWsc68Kr43Yen/k4pNEpHNjwRPIKc0jzV8On7p1VVtRFuW/6x5sKQIBCHHmFYZ7I/oKHup9ZJuc99thjOfjggxk6dCgPPPAAI0eO5J577uGiiy7C79d/byIi8WRUqYFcdlTzUmxT6ndHA8OISLnatXoHknzJxdqjLkqr9LZxP5/fAlQL1FQBWMWtCeWyPlz8HlCHY8Ka+WV67rS0NIYOHcrkyZPp1q0bl112GXvuuSe6FUFEROJovHPuXOfcucDQvx9vtZxX2oOpCBSJg1A0xKvz3uaCcVdy9u+XcH/WcJbmL/M6VoXUvXZvagXrELB/BtJI8iXRpVYvGqY08TCZVGbpgeJfLPytTlJ6uWTIzMxk9OjRvPnmmyxcuJBevXpx+eWXs2bNmnI5v4hIQkjcyeKHbvb4j509mIpAke0odIWMXzORz5d8xfT12SUOC/5w9pN8s3wMeYX5FLpCpqybzpCp97A+XPI0BYks6Eviusw7ObDBkdRPbkjT1BYc3/RMzmp1idfRpBJL8Qc5vPFuJPsCxdr7tym/qT7MjNNOO42srCyuvPJKnnnmGTIyMnj11VdL/N0hIiJSSnPM7CEzOw8Imtl5JS2lPZjuCRT5F6sKVnPH9PvJieQScRH85qdZahNuan8tKf6iKw8LcheRvXEWYffPvUgORyga5pvlYziu6VFexa+wUv1pHNP0ZI5perLXUaQKubHjseQXhvlu+QyCPj+RaJT+rffl6Ka7l3uWmjVr8uijj3LOOedw2WWX0b9/f1544QWeeuopOnbsWO55RESqhKo1ufuOOgW4HjgNCAJnlbCNA14szcFUBIr8i2fnvMya0Bqisb4CERfhr9wFvL9wJGe0PAmARXmLN00yvrmwCzMnZ155xhVJaMn+IPfufiprCnJYXrCO5ml1SfuXbqLlYffdd+enn37ihRde4MYbb6Rr164MHDiQIUOGUK1aNU+ziYhUSglaBDrnZgIXAJjZ1865g3bmeOoOKrINBYUFZG3I3lQA/i3sIvy48pdNz5ukNiZKtNj+QQvQMq00AzmJSDzVTk4no0YTzwvAv/l8Pi688EKys7Pp378/DzzwAO3bt+eDDz5QF1EREdlhmxeAZubbfCntMVQEimyDw7Gtz2ebF30t0prRJr0lQdvywnrAF+TghvuXYUIRqUzq1avH888/z08//USdOnU48cQTOeqoo5g9e7bX0UREKo/EHRhmEzPrZma/mFkOEI4tkdi/paIiUGQbUvwptKnWCsO2aA+Ynz3qdN+ibVDGAPap15ugBTGMzOq7cnuHG6gZrFGekUWkEthrr70YP348jzzyCD/88AMdO3bkzjvvJD8/3+toIiJSObwCfAv0ANrEltaxf0vFqnpXlB49ejjN1ST/1eK8pdw+7T4iLkxBNESKL5mawZrc0XEw1YPF7+dxzuFw+Ep/NV5EEtiiRYu49tpreeedd2jbti1PPPEEhx12mNexRCRBmNl451wPr3OUVmrj5q7NOdfE/bjT77umUr0PZrYeqOl2opDTJ1WRf9EktRHDu97LmS1P4chGh3JBm7O5f7fbSywAoWh4eBWAIlJaTZs25e233+bLL7/EzDj88MM56aSTWLhwodfRREQqJnUHBfgfcOjOHECjg4psR1oglQMblN88Y9uzLH85a0NraZ7WjLRAmtdxRCQODjnkEKZMmcIDDzzA0KFD+fzzz7njjjsYMGAAwWDQ63giIlKxpAD/M7MfgaWbr3DOnV2aA6gIFKkkciI5PDLzCeZsnEfAFyASjXBMkyM4vtmxXkcTkThITk7mlltu4YwzzuDKK6/kuuuu4+WXX+bpp59mn3328TqeiIj3Ku+Vu3ibHlv+MxWBIpXEk7OeY/bGOURcIeHCosGfPl0yiqapTehVt9J0YxfxxOL16/nf9Omszs2jT+tW7NuqFT6z7e/ogdatW/Pxxx8zcuRIBgwYwL777ss555zD/fffT4MGDbyOJyIimzGzOsA7QCtgHnCyc25NCduNAvYEfnTOHb1Z+8vAfsC6WNM5zrmJ/3ZO59wdO5tbNy+JVALrwuuZsT6biCvcor0gGuLTJV94lKrqW5a/kC+XjmDUkrdYlDvX6zjyH30zew6HvPgyj//8Ky//MYErRn7Cue99QCRafH7PisLM6Nu3L9OnT+fGG2/kjTfeICMjg2eeeYbCwsLtH0BEpIoyF/9lJ90IfO2cawd8HXtekgeAs7axbpBzrmtsmVji6zbrs9njA7e1lDa0ikCRSiA3kovf/CWu2xDZUM5pEsOY5R/z2Mwb+GbZ+3y7/H88NesWPl38utexZAcVRCIM/PQz8iMRwrGiLzccZvziRXw0fYbH6bYvPT2de++9l0mTJrH77rtz6aWX0rt3b8aPH+91NBERKdKXoikbiP17XEkbOee+BnbmQ9tTmz1+YRvL86U9mIpA2WRdeAOjlnzH+ws+488Nc6nq04dUJg1S6hOw4r23/fjZrWYnDxJVbWtCKxi19C3CLkSUKA5H2IX4eeXnLM7TFcHKZOKSJSW254UjfFgJisC/tW/fnq+//po33niDv/76i549e3LFFVewdu1ar6OJiJSvshkdtJ6ZjdtsuWgHEjV0zv39x2Yp0PA/vKqhZjbZzB4xs+SSNnDOddrscettLKWeJ1BFoAAwae0MLh9/C6/N/4B3FnzCHdOG8+jMF4m6ittdKpH4zc85rc4gyZe0qS1gAdICafRtevS/7Cn/xYz14zGK3y8WcWEmr/3Ng0TyXwV8/m2OIZDkL/nqekVlZpx++ulkZ2dzxRVX8PTTT5ORkcHrr7+uL+1EJGGUUXfQlc65Hpstz21xTrPRZja1hKXv5tvF5u3b0V/Ig4FMoCdQB7jhP785O0BFoBCORng4+/8oiIYIRcM4HAXREOPWTOG3VRO9jicxe9brxeD219GrTndap7fiiMaHcO9ut1M7qZbX0aoc3za63ho+/JoHslLp2rgRKYHiV9FTg0FO2a2zB4l2Xs2aNXnssccYO3YsrVq14qyzzuKAAw5g+vSdGihORES2wTl3sHOuUwnLR8AyM2sMEPt3+Q4ee4krUgC8BPSK/ysoTp9mhOwNs3ElfGlREC3guxW/eJBItqVttTZc2e5S7ux0Cyc3P5GawZpeR6qSOtboWeL/Ez7z06XW3iXuE3WFZK3/g88Wv8oPKz5hY2RdidtJ+fL7fPzf8X2pnpREelKQlECAlECA49pnckjbXbyOt1O6devGL7/8wrPPPsvkyZPp0qULN954Izk5OV5HExEpOxVvsviRQP/Y4/7ARzuy82YFpFF0P+HUnU5UCpoiQv5VSV3ipHwty1/Oq/PfZuq6GQQtwL719+LU5ieQ7C+xy3hcRaIRZm2cjc987FKtzTYHp6lqqgdr0a/ZJby38BkMX6wgdBzR6DQapDQttn0kGub/5tzBkvx5hKL5BCyJr5a9zbmtb6J1eofyfwGyhS6NG/PLpRczevZs1uXl07tFC3apW8frWHHh8/m46KKLOP7447n++uu5//77efPNN3nsscfo27cvVkGnwRARqULuA0aY2fnAfOBkADPrAVzinLsg9vwHirp9VjOzhcD5zrkvgDfMrD5gwETgkvIIbVX9PoIePXq4cePGeR2jQgtHI1w49npyCvO2aE/2JXFFu/7sWbebR8lkYySHayfdTE4kd9OVqaAFaVutDbd0uK5Mzz157RSemv0suKIzB3wBrmp3BbtWb1em561INoTXMm39WKIuSoca3amVVK/E7X5c8QlfLH2TsAtt0V49UJvB7Z/FF4cupMvy57EhvJrGqW1ID9Ta6eNJ1fTjjz9y2WWXMWXKFI488kgef/xx2rQp9TgBIpJgzGy8c67STDac2rC5a3vGNXE/7tRHrqlU70M8qDuoEPQFuDbjIpJ9SST5gvjwkexLoledLvSq09XreAntu+U/UFAY2qJrYtiFmZ0zl3k5f5XZedeG1vL4rKfIK8wjL5pPfjSfjZGNPJQ9nLytviyoKvILc5mfM5v14bWb2qoHa7Fn3UPYq95h2ywAAf5Y832xAhCgIJrH8vwFO5UrJ7KW/5s1kBdnD+L9BcMYnn0+Xy15qUIPBJITXsEvy5/kf/Mv5dsl97K6YI7XkRLGPvvsw/jx43n44YcZM2YMHTt25K677qKgoMDraCIiO83KaElE6g4qAHSulcnT3Yfyy6o/yInkslut9uxSraXXsRLenJx5hF24WLsPY1HeYlqltyiT8/6y6jdcCSPDOhzjV//BPvVLvi+uMnLO8emSd/hu+Wf4LUDERehYY3fObHX5FqOx/pttDSTjnNvmutJ6f8EDLMufR5TCTfctjFv9GY1S29C51n47deyysC60kA/mX0wkmk+UCCvys5iz4TsOazqUZukJ9SWrZ4LBIAMHDuTkk0/mmmuuYciQIbz22ms88cQTHHrooV7HExGRCkBXAmWT6sFqHNqoD8c3O1wFYAXRMq05QQsWa3c4mqQ2LrPzboxsJOwixdoLXSEbC6vWoBO/rvqW71eMIuzC5EfziLgw09dP4L0FL5b6GL3qHEywhGl9qgdrUj+5+D2EpbUxvIYFuVlFBeBmwq6AX1fu0H3n5ea3Fc8SjuYQpei/H0eUiMvnh2UPVeirl1VR06ZNeeedd/jiiy8AOOywwzj55JNZtGiRx8lERHZCxRsYplJSEShSgR3QoA9B35YX7AMWoEVaM1qnl12h3qlmR5J9xYsan/noUKN9mZ3XC18v/4RQdMuucmEXZvyanwlHi3fxLEmPOgewa/UuBC0JvwVJ8qWQ6k/nzJbX79TAHPnRHHyUfCUxv3Djfz5uWVqcO6HEkVU3hpdTEN3gQSI59NBDmTJlCnfddRcff/wxmZmZPPzww4TDxXsZiIhIYlARKFKB1QhW5/aOg8msviuGEbAAe9XtxfUZV5fpeTOrZ9ChRibJm3WHTPYls0ednrRIa16m5y5vOZFtFSaOgsL8Uh3DZ37OanU9F+9yF0c0OoMTml7CTe2fo0lqq53KViepMcESuqT6CLBrjXKZRmiHJfmqlbzCjEAJV0ulfCQnJ3PLLbcwbdo0+vTpw7XXXkv37t358ccfvY4mIrJDymiy+ISjewJFKrimqY25tcMgoi6KYeUy5LuZMaDdFfy66nd+WvkzPvPRp/4+9KjdvczPXd52qZbJ1HXji129qhaoQXqg+g4dq1naLjRLi9/ccz7zc3TTK/jfgoeIuDCOKAFLIsVfjX3q94vbeeKpc+1+/L7yOSLun6urfkuidbX9CJRwdVnKV5s2bfjkk0/46KOPGDBgAPvuuy/nnHMOw4YNo379+l7HExHZvgQt2uJNVwJFKgmf+cp1zi+f+dir3p4MyryGazOupmedHlVyzrFjmpxKsi8F32a/DoOWxEnNz6sQrzezxp6c22YYu9U6gJZpndm3/slc2u6JCjtNRKfaJ5BR8wj8lkSSLx2/JdEktSt9GsV/SG/5b8yM4447jhkzZnDDDTfw+uuvk5GRwXPPPUc0WnxAKBERqXoqzDyBZnY48CjgB553zt231fpk4FWgO7AKOMU5N297x9U8gSKyPasKlvPVso+YmzOTBsmNObjhsbRMb+t1rEotL7KGNaF5VAs0okZS2Q1iJDtv+vTpXH755Xz33Xf06tWLp59+mm7dND+sSCKobPMEpjVs7tqdEv8vFSc/rnkCPWFmfuBJ4AigA3CamXXYarPzgTXOubbAI8D95ZtSRKqquskNOLXFhQxu/wDnt7lGBWAcpAZq0yRtdxWAlUCHDh345ptveP3115k/fz49e/ZkwIABrFu3zutoIiJSRirKPYG9gFnOuTkAZvY20BeYvtk2fYHbY4/fA54wM3MV5VKmVEkrClbx3fKfWRNaR5daHehRpwv+/zjv29L85by38GOy1v9JnaTaHNf0CLrV3i3Oib0xZ+NcRix4j79y/6JOUh2Oa9qXHnV0JUGksjAzzjjjDI466ihuvfVWnnzySUaMGMFDDz3E6aefXiG6RouIkMADucRbhbgSCDQFFmz2fGGsrcRtnHMRYB1Qt6SDmdlFZjbOzMatWLGiDOJKIpi4ZhrXTryDDxeN4uvlP/LkrFcYMvVBQtEdH1Z9Wf5ybppyN7+sHMuq0Gr+3Dibx/58ji+XflsGycvXnI1zuTdrGDM2ZJFTmMuCvIU8O+f/+G75957m+nNDFkOn38Jl4/szaNLlfLXsM6JO9zv9f3v3HR9Vlb9x/POdSSP0ZqiyFkwoEZCIqIiuoGIBRUWx/MReUERRWFFARKzYsK/iiujasAACFkQUVxGMUgOJIIIivUhNn/P7g3E3QIKETOZmMs/b13ll5t6bOw9zvZl8c869R2R/atWqxTPPPMOcOXNo1qwZl19+OaeeeipLlizxOpqIiIRQRSkCQ8o595JzLs05l6a7ncnBKHSFPL3sFXIDeRS43RN15wZy+XXXKqav+7rU+3tv1WRyCnMJ8L8iJDeQx1u/fkj+QRSVFcl7q94nb6/59PICeYz/7f0DKrrW5qxlxc4VFAT2nZz+YK3c+QvPLBvFb9krCRBge8E2Plr9ARN/Hx+y1xCpzNq3b8+sWbN48cUXmT9/Pm3atGHw4MHs3LnT62giEu00WXxIVJQi8Heg6ORjTYLLit3GzGKAmuy+QYxIyP2y87di75KXF8jnPxvmlHp/WduXFjuBNjg25Eb2/8Yrdv5a7PLcQC47Ckqe0Hxj7kaGLhrKvRn38kjmI/Sf15/vN38fkkyT13xQTGGayxfrPzvguf9Eop3P5+OGG24gKyuLyy+/nIcffpiWLVsyYcIEdCWGiHhF8wSGRkUpAr8HmpvZYWYWB/QGJu21zSSgT/DxhcAXuh5QykusxRAo4U9Dcf7YUu+vblztYpfnBwqoEVu6uegqmrrxdYpdbuYj0Z9Y7DrnHKOyRvF79u/kBfLICeSwq3AXY34Zw6pdq8qc6fddvxW73Gc+tuRvKfP+JfT047ziql+/Pv/617/4+uuvqVGjBj179qR79+4sX77c62giInKQKkQRGLzG7xbgU2AJ8K5zLsPMRphZj+BmrwB1zWwZMAC4y5u0Eg0OTWxMjdhq+yyP98XRNalzqfd3buOziPPF7bM8QICPVn8a0b8An9e4xz7/tjhfHF0O+TsxvuLvPbVsxzK25W/bp3c0P5DPF+u/KHOmhlX2vqR4t4ArpFZs8QW5eGN99mImrLyOV5aezNilpzN7w3MUusgeIl1ZderUiR9//JHHH3+cr776ilatWjFy5Ehyc3O9jiYi0UTDQUOiQhSBAM65qc65o5xzRzjnHgguG+acmxR8nOOc6+WcO9I51+HPO4mKlAczY1BKX6rHVCPBl0C8L45Yi+XEesdyQt3STyPTtlZr+jS7GD973lnU4fh07Rd8teHbUEUPu/a1j+H/ml1KtZhqxFjMfwvAi5peWOL3bCvYVuxyh2Nz3uYyZzqnUU/ibN/C9OT6XUjwJ5R5/xIaW/N+Zeqq/mzMzQQcBS6bxX98yFdrH/A6mpQgNjaWAQMGsGTJErp3787QoUNJTU1l2rRpXkcTEZFSqChTRIhUOIcmNubF9g8z949FbMvfQYsazWlUJemg93dCvQ68uuKtff7ilBvIY/LqTznlkBPLmNg7neufRKd6J7KjYCeJ/iol9gD+6YiqR1Dg9r0RTJwvjqNrln3ajMOqHknfIwfwzm+vsybndxL9iXRNOpNuDXr89TdL2Mzf/BaFbs9rNwtdLit3fM3Ogo1UjannUTL5K02aNOHdd9/ls88+4+abb+b000/n4osv5vHHH6dx4+J74kVEQiFar+ELNRWBIvsR44vh2DptQ7Kv7MJsjOLn2tq+nxuoRAqf+Q74+sZacbU4Lek0vlj/BbmB3UPJYi2WOrF1OLFeaIrhlBqtuLfVwwRcAJ9VmEEPUsTm3GU49r0Bk99i2Za3SkVgBDj99NNZuHAho0aN4sEHH2TKlCmMGDGCfv36EROjXzFEJMSiePhmqOk3I5EwqRVbk2oxVfdZbhgta6R4kMhbvZr04trDriW5ejKHVjmU7o26M6zVMOL98WXed6ErZN4fc5m8ehI/bEmP+Gk4Kqt6CUdhew2RBih0+dSMa1rMd0hFlJCQwNChQ8nIyKBz584MGDCA9u3b880333gdTURESqA/04mEiZlxzeGX8fTSl8kP5ONw+PET74+j96HneR0v7MyMtDpppNUp/TWW+7OzYCcPZz7AlrzN5AZyifPFU8VfhbtbDKFOXN2QvpaUTWrtS1i2bRoFLvu/y/wWz2HV/k5ijI5VpDn88MOZPHkyEyZMoH///nTq1Imrr76aRx55hHr11KsrIiGinsCQUE+gSBi1r92GYS3v5Ng67WiW2IQuSZ159Oh7SUo4xOtolcb7q95lfe46cgI5OBy5gRy25v/Bayte9Tqa7KVmXBPOafoMSQmpGH7ifNVJrd2bzg3+4XU0OUhmRs+ePVm8eDGDBg1i3LhxJCcn8/LLLxc796qIiHjDIvnW9AciLS3Npaenex1DRMKk39ybyC7M3me5Dx/PH/PSX960RkRCJyMjg5tvvpmvvvqKjh078vzzz9OuXTuvY4lIkJn94JwL7ZCcclS1flOX0nNAyPf748sDIup9CAX1BIqIiEi5aNWqFTNmzOD1119n+fLlpKWl0b9/f7Zu3ep1NBGJVJonMCRUBIpIpdK+9rH4bc+bjfjwkVKjhXoBRTxgZlx++eVkZWVx00038cwzz5CSksKbb75JZR+NJCJSUakIFJFK5cImF1E/rj4Jvt2Twsf7EqgRW4M+za72OJlIdKtVqxbPPvssc+bMoWnTplx22WV06dKFJUuWeB1NRCKIORfyFo30Z3ERqVSqxVTjvtYPsOCPeazKXsUh8YdwTO32xPri9vt92/O3E+uLIcFfJUxJRaJTWloas2bN4uWXX2bw4MG0adOGO++8kyFDhpCYmOh1PBGRqKAiUEQqHb/5aVe7Pe1qt//LbX/esYxXV4xhY+5GHI4W1VtxzWHXUj22RhiSikQnv9/PjTfeyPnnn8+gQYN46KGHePPNN3n66afp0aOH1/FEpKKK4mv4Qk3DQUUqiYJAAWuy17GjYKfXUSLG5rxNPPHTKNbmrKXAFVDoClmyLYPHf3pU1yqJhMEhhxzC2LFjmTlzJtWrV+fcc8+le/fu/PLLL15HE5EKylzoWzRST6BIJTB93Uz+/ev7OBegwBWSVrstNx7Rh3h/vNfRSiW7MIdJv09h1qbZ+MxH53qdOKvRGcT5Ysvl9b5cP4NCV7jHskIK2ZC7geU7f+aIakeWy+uKyJ5OOukkfvzxR55++mnuvfdeWrZsyZAhQ7jzzjuJj4+sn2MiIpFAPYEiEW7eH4sYt/JdsguzyQnkUuAK+GHLPF74eazX0Uql0BVyf8ZDfLJ2GpvyNrMhdyOTVk/hscynyq1Xbm3OGgpcQTFrjE15m8rlNUWkeLGxsdxxxx1kZmZyzjnnMGTIEI4++mg+//xzr6OJSEWiKSJCQkWgSISb+PtU8gJ5eyzLdwX8sGU+2/N3eJSq9H7cMo/1uRv3KMryXT7Ld65g6Y5l5fKazasfRVwxN4wJuEIOTWxWLq8pIvvXpEkTxo8fzyeffEIgEOC0006jd+/erF692utoIiKVhopAkQi3Ke+PYpfHmJ9tBdvDG6YMlm1fTm4gd5/lha6An3eUz/VBJ9Y9iSr+RHxFfhTGWRxH12pDg4QG5fKaInJgzjjjDBYuXMh9993HhAkTSElJ4amnnqKgoLjeexGJFromMDRUBIpEuBbVm+PDilljHBJfL+x5Dlb9hHrF9srFWCx14+qUy2smxiQyrOVwTqjXieox1akbV48ejc/j+sNvKpfXE5HSSUhIYNiwYWRkZNCpUyduv/122rdvz7fffut1NBGRiKYiUCTCnd/kHOL9CXsUgvG+OC45tCex5XRDlfJwfN3jiDH/HssMI94fxzG125bb69aMrcWVf7uaJ9s+wyNHP0a3Bmfh3yuHiHjriCOOYMqUKXzwwQds3ryZE088kWuuuYaNGzd6HU1Ewk3XBIaEikCRCJeUUJ+HUu/hxHrHUS+uDkdVO4Jbm1/P6Q3+7nW0Uqkak8jdLQbRuEojYiyGGIvhb1WbMbTlXcT4dCNjkWhnZvTs2ZMlS5YwcOBAxo0bR3JyMmPGjCEQCHgdT0TCoRyGgkbrcFCr7HNhpaWlufT0dK9jiEgp/JH3B2Y+amrCdhEpQUZGBn379mXmzJl07NiRF154gbZt23odSySimNkPzrk0r3McqKp1m7rWZ98e8v3Oef2OiHofQkE9gSL7sT5nE1NWT2fK6i/YkKMpA8KlVlwtFYAisl+tWrXiyy+/ZNy4cSxfvpz27dtz2223sW3bNq+jiUh50nDQkFARKFKCqau/4La59/HvlRP498oP6T/3Pj5e86XXsUREJMjM+L//+z8yMzO58cYbefrpp0lOTuatt94qt/lFRUQqAxWBIsVYm7OBN1ZOIN/lk+8Kgi2f11d8wHr1CIqIVCi1a9fmueeeY86cOTRp0oRLL72Url27kpmZ6XU0EQkhQ9cEhoqKQJFizN40F8e+NxpwOGZvnutBIhER+StpaWl89913PP/88/z4448cffTR3HPPPezatcvraCISKs6FvkUhFYEiJSj+R4KL2rHjIiKRwO/3c9NNN5GVlcWll17Kgw8+SMuWLfnoo4+8jiYiUmGoCBQpxrF12uC3fU8Pn/k4tm4bDxKJiEhpHHLIIYwdO5avvvqKatWq0aNHD3r06MGKFSu8jiYiZVDRhoOaWR0zm2ZmS4NfaxezTVszm2VmGWa2wMwuLrLuMDObbWbLzOwdM4srW6IDoyJQpBiNqiRxYZOzifPF4g/+F+eL5eKm59Agob7X8URE5AB17tyZuXPnMmrUKL744gtatmzJgw8+SG5urtfRRKRyuAuY7pxrDkwPPt/bLuAK51wroBvwlJnVCq57BHjSOXcksAW4pvwja55Akf36PXstczbNA+C4uu1oVCXJ20AiInLQVq1axe233857771HcnIyzz33HF26dPE6lohnIm2ewGp1mrrUM24L+X6/e/vOg34fzCwLOMU5t8bMGgJfOueS/+J75gMXAsuADUAD51yBmR0PDHfOnXEwWUpDPYEi+9G4SgN6NulGzybdVACKiES4Jk2aMH78eD7++GMKCgro2rUrl1xyCatXr/Y6mogcIAuEvpVRknNuTfDxWmC/vzCaWQcgDvgZqAv84ZwrCK5eBTQuc6IDoCJQREREokq3bt1YtGgRw4cP58MPPyQlJYXRo0dTUFDw198sIpVRPTNLL9KuL7rSzD43s0XFtHOLbud2D7EscZhlsKfwdeAq51zZy88yUBEoIiIiUSchIYF7772XRYsWceKJJ3LbbbeRlpbGrFmzvI4mIvvjyqHBRudcWpH20h4v6VxX51zrYtpEYF2wuPuzyFtfXGwzqwFMAe5xzn0XXLwJqGVmMcHnTYDfy/T+HCAVgSIiIhK1jjzySKZOncr777/Ppk2bOOGEE7juuuvYtGmT19FEJDJMAvoEH/cBJu69QfCOnx8C45xz7/25PNhzOIPd1weW+P3lQUWgiIiIRDUz4/zzz2fJkiUMHDiQsWPHkpyczCuvvEIg4OmILRHZS0WbIgJ4GDjNzJYCXYPPMbM0MxsT3OYioDNwpZnNC7a2wXX/AAaY2TJ2XyP4SpkTHQAVgSIiIiJAtWrVePTRR5k7dy4tWrTg2muvpVOnTsyfP9/raCJSQTnnNjnnujjnmgeHjW4OLk93zl0bfPyGcy7WOde2SJsXXLfcOdfBOXekc66Xcy4s89eoCBQREREponXr1sycOZOxY8eybNkyjjnmGG6//Xa2bdvmdTSR6OYA50LfopCKQBGRSqYgUMDW/C0UOt3pUORgmRl9+vQhKyuLG264gdGjR5OSksLbb79NZZ9jWaQiq4DDQSOSikARkUrCOcfUNR8ycMENDFs0gIHzb+TTtZP0C6tIGdSuXZvnn3+e2bNn06hRIy655BJOO+00srKyvI4mInLQVASKiFQS09d/zGfrJpMbyCXf5ZMTyOHjtROYufFzr6OJRLxjjz2W2bNn89xzz5Genk5qaipDhgxh165dXkcTiS7lM0VE1FERKCJSSXy6dhJ5gT2vJ88L5PHJ2kkeJRKpXPx+P3379iUrK4vevXvzwAMP0KpVKz766COvo4mIlIqKQBGRSsA5x87CHcWu256/NcxppLzkFW5m+Zan+WHNZSzZeDc78n7yOlJUSkpKYty4cXz55ZckJibSo0cPzj33XFasWOF1NJFKzdA1gaGiIlBEpBIwM+rHJxW7rkFCozCnkfKQW7CO2b+fzcqtY9iam86aHR+SvqYXm3Z95XW0qHXyySczb948Hn30UT7//HNatmzJQw89RF5entfRRCqn8rgzaJReN68iUESkkriwyeXEWtwey2ItjguaXOZRIgml5X88TX5gK44/h/wGCLgclmwagnOa0NwrsbGxDBw4kMzMTM466yzuvvtu2rRpwxdffOF1NBGREqkIFBGpJFJrtqPvkXdweNXmVPVX44iqR3HLkYNoUSPV62gSApuzZwKF+ywvCGwjt3Bt+APJHpo2bcp7773H1KlTycvLo0uXLlx22WWsWbPG62gilYqGg4ZGjNcBREQkdJKrtyI5uZXXMaQcxPhqkFu4fp/lzgXwW1UPEklxzjzzTBYtWsQjjzzCQw89xOTJk7n//vvp27cvMTH6tUtEKgb1BIqIiESAJtWvxGdV9lhmxFKnygnE+mt6lEqKU6VKFYYPH86iRYvo2LEj/fv359hjj+W7777zOppI5NMUESGhIlBE5CDlFOby1fr/8PqKt5ixfiY5hTleR5JKrFH1C2lUrRc+4vBbNXyWQI34VFrWe9TraFKC5s2b88knnzB+/Hg2bNjA8ccfz/XXX8+mTZu8jiYSsTQcNDTMVfI74qSlpbn09HSvY4hIJbM5dzP3ZjxAdmEOuYFc4n3xxPviua/1PdSLr+t1PKnE8go3sj0vkwR/Q6rGHeF1HDlA27dvZ/jw4YwePZpatWrxyCOPcNVVV+Hz6e/x4h0z+8E5l+Z1jgNVvVYTd8xJ/UO+35mTB0XU+xAK+skjEgIBF2Da2q8ZMPd++v4whNd+eY/t+cXP2SaVw7iVb7Etfxu5wcnZcwO5bC/Yzr2LRjJh1WS25m/zOKFUVnH+etSt0kkFYISpXr06jz/+OHPnziUlJYVrr72WTp06MX/+fK+jiUQOBwRc6FsUUhEoEgIvLHuD11a8x2/Zq9mQu4lP1n7JPxY8RLaGB1Za8/9YSGCvCwkcjm0F25n4+2QGzR/CmmzdsVFE9pSamsrMmTN59dVXWbp0Ke3bt+f2229n2zb94UhEwkdFoEgZrcvZyDcbvyc38L/JgQtcIdvyd/DVet0EoLLyWck/PgsoILswm3Er3wxjIhGJFD6fjyuvvJKsrCyuu+46Ro8eTUpKCu+88w6V/TIdkTLTjWFCQkWgSBn9vGMlMbbvbb9zA3ks3JrlQSIJh+PqHIvf/CWudzgWb80MYyIRiTR16tThhRde4LvvvqNhw4b07t2b008/nawsfXaISPlSEShSRnXiauGK+TOSHz9JCfU8SCThcFmzi2mU0JAEX3yJ28T6YsOYSEQiVYcOHZgzZw7PPvss33//PampqQwZMoRdu3Z5HU2kwtHdQUNDRaBIGSVXP5w6cbXw7XU6xfj8nNGgs0eppLxVjUlkZOowbjvqFppXOxL/Xsc/1mI5qd4JHqUTkUjj9/u5+eabycrKonfv3jzwwAO0atWKyZMnex1NpGJxLvQtCqkIFCkjM+Pe1rdxVPXDiLEY4nyx1ImrxT9SbiIpob7X8aQc+cxHq5otGJRyO0dVb06cL44EXwJxvjiaVz+C3ode6HVEEYkwSUlJjBs3jhkzZpCYmEj37t0577zzWLlypdfRRKQS0TyBIiH0R97uKQMOia+HmXkdR8Ls112/sTp7DY2rNKJpYhOv44hIhMvLy+Opp57ivvvuwznHsGHDGDBgAHFxcV5Hk0oi4uYJrNnEpXXsF/L9fvnZXRH1PoSCegJFQqhWXA2SEuqrAIxShyY2pWPdDioARSQk4uLiGDRoEEuWLKFbt24MHjyYNm3aMGPGDK+jiUiEUxEoIiKlsi5nDc8ufYxb517DwPk3M3n1BxS6Aq9jiVRahx56KB988AGTJ08mNzeXU089lcsvv5y1azUXqUSZ8pgeonIPiiyR50WgmdUxs2lmtjT4tXYJ2xWa2bxgmxTunCIiAn/kbeHhzOFkbFtAXiCP7QXb+HTtFF795Z9eRxOp9M4++2wyMjIYOnQo48ePJzk5mWeeeYbCwkKvo4mEhQHmXMhbNPK8CATuAqY755oD04PPi5PtnGsbbD3CF09ERP40Y/1n5Afy9pgWJd/lMe+PH9iUu9HDZCLRoUqVKowYMYJFixZx3HHHceutt3Lssccye/Zsr6OJSASpCEXgucBrwcevAed5F0VEpGILuADz/1jAO7+O55M1n7Itf1tYX/+XnT9TUMzQz1hfDKtzVoU1i0g0a968OZ9++invvvsu69at4/jjj+eGG25g8+bNXkcTKV+BcmhRqCIUgUnOuTXBx2uBpBK2SzCzdDP7zszO298Ozez64LbpGzZsCGVWERHP5AfyeShzFM8te5Gpaz/hvVUfcuf8u8jclhW2DI2rNMWPf5/lBYECDolvELYcIrJ7iqJevXqRmZnJ7bffziuvvEJycjKvvvoqgUCU/mYrIgckLEWgmX1uZouKaecW3c7tnq+ipIG5zYK3br0UeMrMjijp9ZxzLznn0pxzafXra542EakcZqz/ihU7VpAbyAUg3+WTG8jl+Z9fJODC8wvfqUlnEOOL2WNZjMVyZPUUkhJUBIp4oXr16jz++OP8+OOPJCcnc/XVV3PSSSexYMECr6OJhJyuCQyNsBSBzrmuzrnWxbSJwDozawgQ/Lq+hH38Hvy6HPgSaBeO7CIiFcU3G78lz+Xtszy3MJdV2b+HJUP9+EO47ajBNK3SDMOIsVg61DmBm47oH5bXF5GSHX300cycOZN//etf/PTTTxxzzDEMGDCA7du3ex1NJDR0d9CQqQjDQScBfYKP+wAT997AzGqbWXzwcT3gRGBx2BKKiFQAftt3GCZAAIcvjD/OD6t6BPe0HMnT7V7h6XZjuOJv1xLniw/b64tIyXw+H1dddRVZWVlce+21PPXUU6SkpPDuu+/iorTHQ0T2VRGKwIeB08xsKdA1+BwzSzOzMcFtWgDpZjYfmAE87JxTESgiUeWUQzoXW+zlB/KpHlM97HlifbH4rCJ8jIjI3urUqcOLL77IrFmzSEpK4uKLL+aMM87gp59+8jqaSBk4cOXQopDnn97OuU3OuS7OuebBYaObg8vTnXPXBh9/65xLdc61CX59xdvUIiLh16J6yh5TM/zJj58Z678MfyARqfCOO+44vv/+e5555hlmz55NamoqQ4cOJTs72+toIuIhz4tAERE5MKuyfyfBn7DP8gIK+GnHUg8SiUgk8Pv93HLLLWRlZdGrVy9GjhxJq1atmDJlitfRRErNXOhbNFIRKCJSREGggMXbssjavoxCV+h1nD3Uj69XbCY/fhpVaehBIhGJJA0aNOCNN95gxowZJCQkcM4559CzZ09WrlzpdTQRCbOYv95ERCQ6zN2ykGeWvQzsvkQg1hfDnck3c1T1EmekCasmiU1olngov+xcsceE7TG+GE5L6uJhMhGJJKeccgrz5s3jySefZMSIEbRo0YJhw4YxYMAA4uLivI4nsn9Reg1fqKknUEQE2Jz3B08tfZHswhyyC3PICeSwvWAHD2eOJrswx+t4/zXgqP60rdWGGIvBb36S4pO4I/k2khKSvI4mIhEkLi6Of/zjHyxZsoRu3boxePBg2rRpw4wZM7yOJlIyBxYIfYtG6gkUEQG+2TibQDF/XXTOkb55LifVP96DVPtKjEmkX/O+5Bbmku/yqeqvipl5HUtEItShhx7KBx98wJQpU+jXrx+nnnoql112GY899hgNGjTwOp6IlBP1BIqIANvzd+wxxPJPBa6QHQW7PEi0f/H+eKrFVFMBKCIhcfbZZ5ORkcHQoUMZP348ycnJPPvssxQWVqxro0U0RURoqAgUEQGOrtWS+GImPPeZ0bpmigeJRETCq0qVKowYMYKFCxfSoUMH+vXrR4cOHZgzZ47X0UQkxFQEiogArWqk0LLGUcT7/ndThHhfHCfU7UDTxMYeJhMRCa+jjjqKzz77jHfeeYc1a9bQsWNHbrzxRjZv3ux1NBFw5dCikIpAERHAzLgz+WauOexyUmu2pF2tVPoeeTXXH36F19FERMLOzLjooovIzMykf//+jBkzhuTkZMaOHUsgEKV30pAKwZwLeYtG5ir5PzwtLc2lp6d7HUNESmHOprlMWj2NrfnbaFurJT0bn0md+NpexxIRiVrz58+nb9++fPvtt3Tq1Innn3+e1NRUr2NJGZnZD865NK9zHKga1Rq7jqk3hny/074bFlHvQyioJ1BEKpQPV33Ms8teZemO5azP3cj0dd8waMED/JG31etoUgkEXIDvNn3JE1lDGZV5N1+un0pBIN/rWCIVXps2bfj666955ZVXWLJkCe3ateOOO+5g+/btXkeTaFPBbgxjZnXMbJqZLQ1+3eev1mbW1sxmmVmGmS0ws4uLrBtrZr+Y2bxga1umQAdIRaCIVBjZhTl88PtUcgN5/11WSCHZhdl8tHqah8mksnhtxTO8/9tYVu5axqrsX5i8+h2eXTaSgNPwNpG/4vP5uPrqq8nKyuKaa67hiSeeICUlhfHjx1PZR5aJ7MddwHTnXHNgevD53nYBVzjnWgHdgKfMrFaR9QOdc22DbV55BwYVgSJSgfy2azV+8++zvMAVsmhrlgeJpDJZtWsFGVt/JM/l/ndZvstjdfavLN42z7tgIhGmbt26/POf/2TWrFkkJSVx0UUXccYZZ/DTTz95HU0qOwcEyqGVzbnAa8HHrwHn7RPbuZ+cc0uDj1cD64H6ZX7lMlARKCIVRq3YGhQEip+Tql58nTCnkcpm+c5MXDGf9rmBHJZuz/AgkUhk69ixI3PmzOHpp59m9uzZpKamMmzYMLKzs72OJpWUEfqbwgRvDFPPzNKLtOtLESvJObcm+HgtkLTff4NZByAO+LnI4geCw0SfNLN956sqByoCRaTCOCShHkdVP5wYi9ljeZwvju6NTvMolVQW1WJq4t/r/y2AGIulZqxuPCRyMGJiYujXrx+ZmZn06tWL+++/n1atWjF16lSvo4mUxkbnXFqR9lLRlWb2uZktKqadW3Q7t3tcdIljo82sIfA6cJVz/70OYTCQAhwL1AH+Ecp/WElUBIpIhXJH8g20rplMrMWQ4Iunqj+R6w6/lJQaR3odTSJc65rtiy0CfeYjrU4nDxKJVB4NGzbkjTfe4IsvviA+Pp6zzz6b888/n19//dXraFLZeHBjGOdcV+dc62LaRGBdsLj7s8hbX9w+zKwGMAW4xzn3XZF9r3G75QKvAh1C8C79pX0/DUVEPFQ1JpHBLfqxNX8b2/N30iDhEGJ8+14nKFJacb44bmk+hFeWP8H2gq0YRpwvniv/dis1Ymt5HU+kUvj73//O/PnzeeKJJxgxYgQtWrTg3nvv5bbbbiMuLs7reCLlYRLQB3g4+HXi3huYWRzwITDOOffeXusaOufWmJmx+3rCReWeGM0TKCIiUcY5x7qc3yl0hTSs0hSfaVCMSHlYuXIl/fv3Z+LEibRs2ZLnn3+ek08+2etYUkSkzRNYs2oj1zHlupDv97MfRxz0+2BmdYF3gUOBlcBFzrnNZpYG3Oicu9bMLmd3L1/RC9CvdM7NM7Mv2H2TGAPmBb9nRxn+OQdEn3wiIhJVzIwGVZrQOLGZCkCRctSsWTMmTJjApEmT2LVrF6eccgpXXHEF69at8zqaSMg45zY557o455oHh41uDi5Pd85dG3z8hnMutsg0EP+dCsI5d6pzLjU4vPTycBSAoCJQRERERMpR9+7dycjI4J577uHtt98mOTmZ5557jsLC4u8GLVKiijlFRERSESgiIiIi5SoxMZGRI0eycOFC0tLSuOWWWzjuuOOYM2eO19EkwpTTFBFRR0WgiIiIiIRFcnIy06ZN4+2332b16tV07NiRm266iS1btngdTSSqqAgUERERkbAxMy6++GIyMzPp378/L730EsnJyYwdO5bKfsNCCQEPpoiojFQEioiIiEjY1ahRgyeffJIffviBI488kquuuorOnTuzcOFCr6OJVHoqAkVERETEM23btuU///kPY8aMYcmSJbRr144777yT7du3ex1NKpxy6AVUT6CIiIiISPj5fD6uueYasrKyuPrqq3n88cdp0aIF7733noaIyv84VASGiIpAEREREakQ6taty0svvcSsWbOoX78+vXr14swzz2Tp0qVeRxOpVFQEioiIiEiF0rFjR77//ntGjx7NrFmzaN26Nffeey/Z2dleRxOvaZ7AkFARKCIiIiIVTkxMDLfeeiuZmZlccMEFjBgxgtTUVD7++GOvo4lEPBWBIiIiIlJhNWzYkDfffJPp06cTExPDWWedxQUXXMBvv/3mdTTxgCaLDw0VgSIiIiJS4Z166qnMnz+fBx98kI8//pgWLVowatQo8vPzvY4m4aQbw4SEikARERERiQjx8fEMHjyYxYsX06VLFwYNGkS7du2YOXOm19FEIoqKQBERERGJKH/729+YOHEiEydOZMeOHZx88sn06dOHdevWeR1NypMDAi70LQqpCBQRERGRiNSjRw8WL17M3XffzVtvvUVKSgovvPAChYWFXkcTqdBUBIqIiIhIxEpMTOSBBx5gwYIFHHPMMfTt2/e/U0xIZVMO1wPqmkARERERkciUkpLC559/zltvvcWqVas47rjj6Nu3L1u2bPE6mkiFoyJQRERERCoFM6N3795kZmbSr18//vnPf5KcnMy4ceNwUdrjU+moJzAkVASKiIiISKVSs2ZNRo8ezQ8//MARRxxBnz59OPnkk1m0aJHX0aSsVASGhIpAEREREamU2rZtyzfffMOYMWPIyMigbdu2DBw4kB07dngdTcRTKgJFREREpNLy+Xxcc801ZGVlcdVVV/HYY4/RokUL3n//fQ0RjTSaIiJkVASKiIiISKVXr149Xn75Zb799lvq1q3LhRdeyFlnncWyZcu8jiYSdioCRURERCRqHH/88aSnp/PUU0/xzTff0Lp1a+677z5ycnK8jiZ/yYELhL5FIRWBIiIiIhJVYmJi6N+/P5mZmfTs2ZPhw4fTunVrPvnkE6+jyV/RjWFCQkWgiIiIiESlRo0a8dZbbzFt2jT8fj9nnnkmvXr1YtWqVV5HEylXKgJFREREJKp17dqVBQsWMHLkSCZPnkxKSgqPPfYY+fn5XkeTonRjmJBRESgiIiIiUS8+Pp577rmHxYsX8/e//52BAwfSrl07vv76a6+jiYScikARERERkaDDDjuMjz76iIkTJ7J9+3Y6d+7MlVdeyfr1672OJqBrAkNERaCIiIiIyF569OjB4sWLGTx4MG+++SbJycm88MILFBYWeh0tuqkIDAkVgSIiIiIixahatSoPPvggCxYsoF27dvTt25eOHTuSnp7udTSRMlERKCIiIiKyHykpKUyfPp1///vfrFq1ig4dOnDzzTezZcsWr6NFmXLoBVRPoIiIiIiIFMfMuPTSS8nMzKRfv368+OKLpKSk8Prrr+OitJCQyKUiUERERETkANWsWZPRo0eTnp7OYYcdxhVXXMEpp5xCRkaG19EqPwcEAqFvUUhFoIiIiIhIKbVr145vv/2Wl156iUWLFtG2bVsGDRrEjh07vI4m8pdUBIqIiIiIHASfz8d1111HVlYWffr0YdSoUbRo0YIPPvhAQ0TLi64JDAkVgSIiIiIiZVCvXj3GjBnDN998Q506dbjgggs4++yz+fnnn72OVvmoCAwJFYEiIiIiIiFwwgkn8MMPP/Dkk0/y9ddf06pVK+677z5ycnK8jiayBxWBIiIiIiIhEhMTw2233UZWVhbnnXcew4cPp3Xr1nz66adeR6sEHATKoUUhz4tAM+tlZhlmFjCztP1s183MssxsmZndFc6MIiIiIiKl0ahRI95++22mTZuG3++nW7du9OrVi1WrVnkdTcT7IhBYBJwPzCxpAzPzA88BZwItgUvMrGV44omIiIiIHJyuXbuyYMECRo4cyeTJk2nRogVPPPEE+fn5XkeLPA6cC4S8RSPPi0Dn3BLnXNZfbNYBWOacW+6cywPeBs4t/3QiIiIiImUTHx/PPffcw+LFizn55JO54447OOaYY1i5cqXX0SKPhoOGhOdF4AFqDPxW5Pmq4LJimdn1ZpZuZukbNmwo93AiIiIiIn/lsMMO46OPPmLChAk0adKEhg0beh1JysjM6pjZNDNbGvxau5htmpnZj2Y2L3gZ3I1F1rU3s4XBS96eNjMLR+6wFIFm9rmZLSqmlUtvnnPuJedcmnMurX79+uXxEiIiIiIipWZmnHvuuXz88cfExcV5HSfyVLwpIu4CpjvnmgPTg8/3tgY43jnXFjgOuMvMGgXXvQBcBzQPtm5lDXQgYsLxIs65rmXcxe9A0yLPmwSXiYiIiIiIeOVc4JTg49eAL4F/FN0geDnbn+IJdsSZWUOghnPuu+DzccB5wMflGRgiZzjo90BzMzvMzOKA3sAkjzOJiIiIiEi4OAeBQOgb1PvzUrJgu74UqZKcc2uCj9cCScVtZGZNzWwBuy9xe8Q5t5rdl7cVvV3sfi95C6Ww9ATuj5n1BJ4B6gNTzGyec+6MYBfpGOfcWc65AjO7BfgU8AP/cs5leBhbRERERETCrezDN4uz0Tm3v6nqPgcaFLPqnqJPnHPOzIoN6Jz7DTg6WONMMLP3yhK4rDwvAp1zHwIfFrN8NXBWkedTgalhjCYiIiIiIlFuf5e2mdk6M2vonFsTHN65/i/2tdrMFgEnAd+w+zK3P4XtkrdIGQ4qIiIiIiJRzgUCIW9lNAnoE3zcB5i49wZm1sTMqgQf1wY6AVnBYaTbzKxj8K6gVxT3/eVBRaCIiIiIiMjBeRg4zcyWAl2DzzGzNDMbE9ymBTDbzOYDXwGPOecWBtf1BcYAy4CfCcNNYaACDAcVERERERH5ayGZ0iGknHObgC7FLE8Hrg0+ngYcXcL3pwOtyzNjcdQTKCIiIiIiEkXUEygiIiIiIhWfAwIVqycwUqkIFBERERGRyODKfCMXQcNBRUREREREoop6AkVEREREpMJzgNNw0JBQT6CIiIiIiEgUUU+giIiIiIhUfM7pmsAQUREoIiIiIiIRQcNBQ0PDQUVERERERKKIegJFRERERCQyaDhoSKgnUEREREREJIqYc5V7XK2ZbQBWehihHrDRw9eX0tHxiiw6XpFHxyyy6HhFFh2vyFIRjlcz51x9jzMcMDP7hN3vW6htdM51K4f9VliVvgj0mpmlO+fSvM4hB0bHK7LoeEUeHbPIouMVWXS8IouOl3hJw0FFRERERESiiIpAERERERGRKKIisPy95HUAKRUdr8ii4xV5dMwii45XZNHxiiw6XuIZXRMoIiIiIiISRdQTKCIiIiIiEkVUBIqIiIiIiEQRFYEiIiIiIiJRREVgiJnZLWaWbma5Zjb2ALa/3czWmtk2M/uXmcWHIaYEmVkdM/vQzHaa2Uozu3Q/2w43s3wz21GkHR7OvNHoQI+R7faImW0KtkfMzMKdN9qV4njpfKoASvOZpc8r7x3o8TKzK82scK/z65SwBRUAzCzezF4J/izcbmbzzOzM/Wyvc0zCRkVg6K0GRgL/+qsNzewM4C6gC9AMOBy4r1zTyd6eA/KAJOAy4AUza7Wf7d9xzlUr0paHJWV0O9BjdD1wHtAGOBroDtwQpozyP6U5p3Q+ee+APrP0eVVhHPDvGMCsvc6vL8s3mhQjBvgNOBmoCQwB3jWzv+29oc4xCTcVgSHmnPvAOTcB2HQAm/cBXnHOZTjntgD3A1eWYzwpwsyqAhcAQ51zO5xz/wEmAf/nbTL5UymPUR/gcefcKufc78Dj6HwKK51TkacUn1n6vKoASvk7hnjMObfTOTfcObfCORdwzk0GfgHaF7O5zjEJKxWB3moFzC/yfD6QZGZ1PcoTbY4CCpxzPxVZNp/dx6Uk3c1ss5llmNlN5RtPKN0xKu582t+xlNAr7Tml8yly6PMq8rQzs41m9pOZDTWzGK8DRTszS2L3z8mMYlbrHJOwUhHorWrA1iLP/3xc3YMs0agasG2vZVsp+f1/F2gB1AeuA4aZ2SXlF08o3TEq7nyqpusCw6o0x0vnU2TR51VkmQm0Bg5hd+/8JcBATxNFOTOLBf4NvOacyyxmE51jElYqAkvBzL40M1dC+89B7HIHUKPI8z8fby97WjmA47X3+0/webHvv3NusXNutXOu0Dn3LTAauLB8/xVRrzTHqLjzaYdzzpVTNtnXAR8vnU8RR59XEcQ5t9w590twCOJCYAQ6vzxjZj7gdXZfL31LCZvpHJOwUhFYCs65U5xzVkLrdBC7zGD3TSz+1AZY55zTWP8QOIDj9RMQY2bNi3xbG4ofplHsSwDqZSpfpTlGxZ1PB3osJTTKck7pfKrY9HkV2XR+eSQ4GuUVdt8s6wLnXH4Jm+ock7BSERhiZhZjZgmAH/CbWcJ+xuGPA64xs5ZmVovdd40aG56k4pzbCXwAjDCzqmZ2InAuu/9atw8zO9fMagenIugA3ApMDF/i6FPKYzQOGGBmjc2sEXAHOp/CqjTHS+dTxVCKzyx9XlUAB3q8zOzM4PVnmFkKMBSdX155gd1D37s757L3s53OMQkv55xaCBswnN1/cSvahgfXHcru7v5Di2w/AFjH7utoXgXivf43RFMD6gATgJ3Ar8ClRdadxO7hhH8+f4vdd2TbAWQCt3qdPxpaSceomONjwKPA5mB7FDCv80dbK8Xx0vlUAVpJn1n6vKqY7UCPF/BY8FjtBJazezhorNf5o62xe6oHB+QEj8+f7TKdY2peN3NOl8uIiIiIiIhECw0HFRERERERiSIqAkVERERERKKIikAREREREZEooiJQREREREQkiqgIFBERERERiSIqAkVERERERKKIikAREREREZEooiJQRETKhZk9amYTijwfZWbTzSzOw1giIiJRT5PFi4hIuTCzusBy4BTgOOBmoJNzbquXuURERKKdikARESk3ZjYcOB+oye4C8Lfg8keAE4AVwNXOuXyvMoqIiEQbDQcVEZHyNBdIBQYXKQDbAI2dcycBmcCFHuYTERGJOioCRUSkXJhZKvAC8BpwdZFVJwCfBR9/ApwY5mgiIiJRTUWgiIiEnJk1Bj4CbgT6AqlmdkpwdW1gW/DxVqBOuPOJiIhEMxWBIiISUmZWA5gKPOGcm+Sc2wWMAh4IbvIHUCP4uCawOewhRUREophuDCMiImFlZm2BAc65K8zsbuAX59xbHscSERGJGuoJFBGRsHLOzQPWmdnXQCvgfW8TiYiIRBf1BIqIiIiIiEQR9QSKiIiIiIhEERWBIiIiIiIiUURFoIiIiIiISBRRESgiIiIiIhJFVASKiIiIiIhEERWBIiIiIiIiUURFoIiIiIiISBRRESgiIiIiIhJF/h9k6OnTBAoI/gAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
"output_type": "display_data"
}
],
@@ -513,10 +525,11 @@
" suptitle=\"Influences of input points\",\n",
" legend_title=\"influence values\",\n",
" # colorbar_limits=(-0.3,),\n",
- ")"
+ ");"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "2d262071",
"metadata": {},
@@ -525,6 +538,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "8989f90c",
"metadata": {},
@@ -542,18 +556,19 @@
"y_corrupted = np.copy(y)\n",
"y_corrupted[:10] = [1 - yi for yi in y[:10]]\n",
"\n",
+ "train_corrupted_data_loader = DataLoader(\n",
+ " list(zip(x, y_corrupted.astype(float))), batch_size=batch_size\n",
+ ")\n",
+ "\n",
"influence_values = compute_influences(\n",
- " model=model,\n",
- " loss=F.binary_cross_entropy,\n",
- " x=x,\n",
- " y=y_corrupted.astype(float),\n",
- " x_test=test_data[0],\n",
- " y_test=test_data[1].astype(float),\n",
+ " differentiable_model=TorchTwiceDifferentiable(model, F.binary_cross_entropy),\n",
+ " training_data=train_corrupted_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"up\",\n",
" inversion_method=\"direct\",\n",
")\n",
"\n",
- "mean_train_influences = np.mean(influence_values, axis=0)"
+ "mean_train_influences = np.mean(influence_values.numpy(), axis=0)"
]
},
{
@@ -566,8 +581,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Average mislabelled data influence: -1.046369442947661\n",
- "Average correct data influence: 0.01503900857368328\n"
+ "Average mislabelled data influence: -0.8225848370029777\n",
+ "Average correct data influence: 0.011277048916970962\n"
]
}
],
@@ -584,24 +599,12 @@
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAL/CAYAAACqBkp7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVd/G8e/spvcESEKvSgtdOggC0pQiqKgooNhFQX1EsQBWLNh7BSxYQAFFQKUI0muAICAo0kMLpNfdef8I5CWSTrKTcn+ua55HZs7O3DO7SXZ/e+YcwzRNExERERERERERESkUm9UBREREREREREREyiIV1kRERERERERERIpAhTUREREREREREZEiUGFNRERERERERESkCFRYExERERERERERKQIV1kRERERERERERIpAhTUREREREREREZEiUGFNRERERERERESkCFRYExERERERERERKQIV1kRERIpBXFwcDzzwAHXq1MHNzQ3DMIiMjOT333/HMAwmT55sdcQKKzo6mpEjR1KjRg3sdjuGYXDmzJk8H2MYBt27d3dJvvKuIl3L7t27YxhGoR4zffp0DMNg+vTpJRNKStSoUaMwDIN///33ovc1efJkDMPg999/v+h9iYiI66iwJiIiFZZhGIX+EJyb8ePH8/bbb9OsWTMmTJjApEmTCA8PL5Z9y8UZNWoUX3zxBd26dePJJ59k0qRJeHl5WR2r2FSU4m1RilalQUV5fkqLf//9F8MwGDVqlNVRLFOcxT4REcmfm9UBREREyoP58+dz6aWX8tNPP2Vbv2vXLosSCUBaWhq//fYbvXr14quvvirw43bu3ImPj08JJqs4KtK1/Pzzz0lKSrI6hoiIiLiQCmsiIiLF4MiRI1x++eVWx5D/iI6Oxul0Uq1atUI9rlGjRiWUqOKpSNeyVq1aVkcQERERF9OtoCIiIuc5/zaif//9lxtuuIHKlSvj5eXFZZddxvz587O1P3d7mmmaLF++POv20vzGlKpTpw516tTJcVte4+zs2rWLUaNGUbNmTTw8PAgLC+Omm25i9+7dF7Q9/3agDz/8kGbNmuHl5UVYWBh33nknsbGxOR7/0KFDPPDAA1xyySV4e3sTEhJCu3btePbZZ3NsO2bMGOrVq4enpyeVKlVi4MCBbNiw4YK28fHxPPvss0RERBAQEIC/vz/169dn2LBhbNq0Kc/rdb49e/YwYsQIqlevjoeHB9WqVWPEiBHs2bMnW7s6depQu3ZtAGbMmJH13BTkFrGcnsPzn5fZs2fTrl07fHx8CAkJ4YYbbuDw4cMX7Ofc6yM1NZUnn3ySunXr4unpSf369Xn66adJS0vL1j6/29j+ezvkqFGjuOKKKwB4+umns86xoOM0nTvPI0eOcMsttxAaGoq3tzdt2rRh5syZOT7G6XTywQcf0LZtW/z8/PD19aVt27a8//77OJ3OXI9xvsJcy3PXZPny5Vn7y+nnbNu2bdx4443UqVMHT09PqlSpQuvWrRk3bhzp6el5XoeEhAQ8PDzo3LlztvXJycl4eXlhGAZffPFFtm3vv/8+hmHw2WefZa272Odn2bJldO/eHX9/fwICArjqqqvYuXNnntlz8uuvvzJgwABCQ0Px9PSkZs2aDBo0iMWLF2drV9TnMjo6mttvv53q1atjt9uzxofLb3tet/PmNtbcud+VsbGxjBkzhurVq+Pl5UWTJk146623ME0zq+3kyZOpW7cukP1nPqf9/vLLL/Tv35/KlStn/Uw+8sgjuY6/uHjxYrp27Yqvry8hISEMHjy4yD2SN23aRN++fbOe5169erFmzZpc28+dO5ebb76ZSy+9FF9fX3x9fWnTpg1vvfXWBc+TYRjMmDEDgLp162ad//l/bzZt2sTYsWNp0aIFISEheHl5cckll/Dwww9z+vTpIp2TiEhFph5rIiIiOdi/fz/t2rWjXr163HLLLcTExPDtt99mfTg992F51KhRdO/enaeffpratWtnFURyK5pdjEWLFjFkyBDS09MZMGAADRo04NChQ/zwww/8/PPPLFu2jNatW1/wuPHjx/PLL78wYMAAevfuzbJly/j444/Zu3cvS5cuzdZ248aN9OnTh5iYGC6//HKGDBlCUlISf/75J5MnT+app57Kart582Z69+5NTEwMffr0YciQIZw8eZK5c+fSpUsX5syZQ//+/QEwTZO+ffuyevVqOnbsyO23346bmxuHDh1i2bJldO3alTZt2uR7DTZs2ECvXr2Ij49n4MCBNGnShF27dvHll18yb948Fi9eTNu2bQEYN24c//77L2+++SYtWrRg8ODBALRs2bKIz0Cm9957jx9//JGBAwfSrVs31q1bx7fffsvWrVuJjIzE09Pzgsdcf/31bNiwgWuvvRZ3d3fmzZvH5MmT2bhxIz/++GORxw47d04zZsygW7du2QpNBX0Nnj59mk6dOhEUFMStt97KmTNn+O677xg+fDiHDx/mkUceydb+lltuYebMmdSsWZPbb78dwzCYM2cO9957LytXrizULbcFuZZBQUFMmjSJ6dOns3//fiZNmnTBOW7bto327dtjGAYDBw6kbt26xMXFsXfvXt577z2ee+453N3dc83h5+dHu3btWLduHfHx8fj7+wOwatUqUlNTAViyZAm33HJL1mOWLFkCQM+ePXPdb2Gen/nz5zNv3jz69evH3XffzZ9//smCBQvYsGEDf/75J5UrV873egJMmjSJZ555Bj8/PwYPHkzNmjU5cuQIq1ev5ssvv6RXr15ZbYvyXMbExNChQwf8/PwYMmQINpuNsLCwAm8virS0NHr16sWZM2e44YYbSEtL4/vvv2fs2LHs3r2bd999F8gs3J05c+aCn3nI/nP/9NNPM3nyZEJCQrj66qsJDQ1l27ZtTJ06lQULFrBmzRoCAgKy2s+ePZthw4bh4eHBsGHDqFq1KitXrqRjx440b968UOeyevVqevXqRVpaGkOGDKFBgwZERkbSvXt3evTokeNjHnvsMWw2G+3bt6d69erExsaydOlSxo4dy4YNG7IVfSdNmsTcuXPZunUrY8eOJSgoCCDr/wE+/vhj5syZQ7du3ejVqxdOp5NNmzbx2muvsXDhQtatW5f1MyAiIgVgioiIVFCA+d8/hfv27ctaP3ny5GzbFi1aZAJmv379ctxXt27dLli/bNkyEzAnTZqUbX3t2rXN2rVr55hr0qRJJmAuW7Ysa11MTIwZFBRkVqpUydyxY0e29tu3bzd9fX3NVq1aZVs/cuRIEzBr1qxp7t+/P2t9enq62bVrVxMw161bl7U+NTXVrFOnjgmYX3311QW5Dh48mG0f9evXNz09Pc3ff/89W7vDhw+b1apVM8PDw82UlBTTNE1z27ZtJmAOHjz4gv06HA4zJiYmx2txPqfTaTZq1MgEzC+//DLbtm+++cYEzIYNG5oOhyNr/bnnc+TIkfnu/3w5PZ/nnhd/f39z27Zt2bbdeOONJmB+++232dZ369bNBMxLLrkk2zkmJyebHTp0MAHz888/L3Dec/s7X26vsYKeJ2Bed9112a7bP//8YwYHB5vu7u7m33//nbV+5syZJmC2atXKjI+Pz1qfkJBgtmnTJsfXTnFfy5w89NBDJmDOnTv3gm0xMTHZzi03Tz31lAmY8+fPz1r32GOPmXa73ezRo4dZo0aNrPUOh8MMCQkx69Wrl2/G/J6fadOmmYBpt9vNxYsXZ9v22GOPmYD50ksv5ZvfNE3zl19+MQGzbt265qFDhy7Yfv7PcFGfS8C85ZZbzPT09Av2n9/2vJ7Dc9dh2rRp2dbXrl3bBMzOnTtn/T4xTdM8deqUWa9ePRMwly9fnrU+v5+hpUuXmoDZsWNH8/Tp0zlmGDduXNa6+Ph4MyQkxHRzczM3bNiQrf24ceOyznnfvn05Hu98TqfTbNiwYY6v1TfeeCNrX+f/7jdN09y7d+8F+3I4HOaIESNMwFy7dm22bed+9+eW6d9//zUzMjIuWP/JJ5+YgPniiy/mey4iIvL/dCuoiIhIDmrXrs2TTz6ZbV2fPn2oVasW69evd3mezz//nDNnzvD000/TpEmTbNsiIiK444472LJlC3/++ecFj504cWK2sZ/c3Ny49dZbAbKdy08//cS///7LwIEDuemmmy7YT40aNbL+++eff+bvv//m/vvvp1u3btnaVatWjfHjxxMdHZ3Vq+ccb2/vC/Zrs9kIDg7O6/SBzJ4eu3btomPHjgwfPjzbtmHDhtGlSxd2797NypUr893XxXjggQdo1qxZtnV33HEHQK6vjaeeeirbOXp5eTFlyhSAbLcSWsFut/PSSy9hs/3/28K6devywAMPkJ6enq03zLmsL774In5+flnrfX19eemllwD45JNPCnzsolzLvOT0+goODs52brk51/Ps/NfskiVLaNOmDUOGDOHQoUP89ddfAERGRhITE5Nnb7XCuuGGGy7Y35133gkU/Fq8/fbbALz66qtUr179gu3n/wwX9bn08PBg6tSpuLnlfONLftuLasqUKdl6g4aEhGT1oJ02bVqB9/PWW28Bmb22zu/FBZk9kFu2bJmtp968efOIiYnhpptu4rLLLsvWfvLkyQQGBhb42KtXr2b37t1cfvnlDBo0KNu2MWPGUL9+/Rwfl9N6m83G2LFjgczbWgujdu3a2O32C9bfdtttBAQEFHp/IiIVnW4FFRERyUHLli1z/OBRs2bNPMfCKSnnjrl161YmT558wfZzH/h37tx5QeHtvx8GIfM8gGzj6axduxaAfv36FTjP/v37c8xzbryznTt30r9/f5o0aULLli35+uuv2b9/P4MGDaJLly5cdtlleHh45Hs8yLz1FMj1dqkePXqwcuVKtmzZUqITSRT0ep7vv8VHgC5dumC329myZUvxBiykWrVqZY1Ldb5ztzifn2/z5s3YbLYcxxDs1q1boc+nKNcyJ8OGDePNN99k8ODBXHvttfTq1YvOnTvnWqjISceOHfH29s4qrMXGxrJ582bGjx+f9ZpbsmQJl156adYt1Lm9FouiOK7F2rVrMQyDvn375tu2qM9lnTp1CA0NzXW/+W0vCjc3Nzp16nTB+nPZC/OaW7NmDe7u7syaNYtZs2ZdsD0tLY0TJ05w6tQpKlWqlPV7J6ef4cDAQFq2bJk1/l9+8tqX3W6nS5cu/P333xdsO3XqFK+88goLFizgn3/+ITExMdv2nMZ3zEt6ejoffvgh33zzDX/++SexsbHZxmor7P5ERCo6FdZERERy8N+eDOe4ubnlOKh3STt16hSQ2csiLwkJCResy+lczvUmcTgcWevODdqdU0+X3PLk9ME0pzx2u52lS5fyzDPPMHv2bB599FEA/P39GTlyJFOmTMnWayYn5yZbqFq1ao7bz63PbfDx4lLQ63m+nMaYcnNzo3Llyhw/frxY8xVWbuNfhYeHA2Sb5CI2NpaQkJAci6FFOZ+iXMuctGvXjj/++IPnn3+e2bNnZ/Wya9iwIZMmTeLGG2/Mdx8eHh506dKFxYsXc+LECVavXo3D4aBnz540btyYqlWrsmTJEu655x6WLFmCYRjFWlgrjmtx5swZgoODc+y5919FfS7PvS5yk9/2oqhcuXKOX3Tk9BrNz6lTp8jIyODpp5/Os11CQgKVKlXK2nd+PycFUZR9nTlzhrZt27Jv3z7atWvHiBEjCAkJwc3NLWs8uXPjABbUsGHDmDNnDvXq1WPQoEGEh4dn9QZ84403Cr0/EZGKToU1ERERC9hstgtmhDwnp8LQuduNtm7dWujBsgvq3Af7gvRWOJdn3rx5DBw4sED7Dw4O5vXXX+f1119n7969LF++nA8//JB33nmHM2fOXDDrYm7HjI6OznH70aNHs7UrTY4dO5btdlyAjIwMTp48mW2Q9HO3LGZkZOS4n5IoGh47dizH9eeu8/nXMzAwkJiYGNLT0y+YDCCn83Gljh07Mn/+fFJTU9m0aROLFi3i7bff5qabbqJKlSrZBu3PTY8ePfjtt99YsmQJq1evxsvLK2um0B49erBw4UJSU1P5448/aNq0abH3zLpYQUFBnDp1iuTk5HyLa0V9LvObaCOv7ee/vv97q2her+2TJ0/icDguKK7l9BrNT2BgIE6nk5iYmAK3h/x/TkpqX5988gn79u1j0qRJF/QOXrNmDW+++WaBjw+ZE9TMmTOHXr16sXDhwmzPg9Pp5OWXXy7U/kREBDTGmoiIiAWCg4M5duwY6enpF2zbuHHjBes6dOgAwB9//FFimc4dY+HChQVuW9Q8DRo0YPTo0Sxfvhw/Pz/mzZuX72NatWoFwO+//57j9mXLlgHkODOq1XK6VWzlypU4HI6s8wKyxmE7ePDgBe3j4uKybvk937liQ2F6eJ3vwIED/PvvvxesP3edz8/XqlUrnE4nK1asuKD9ihUrcDgcJXb9C3qenp6edOrUiWeeeSZrPK2CvL4g+zhrS5cupVOnTnh5eWVti4mJ4f333ycxMbHA46td7PNTGB06dMA0TRYtWpRvWyuey7xe3zn93jsnIyOD1atXX7A+p9dofte7Q4cOnD59mh07dhQo87lrkNPPcGxsLJGRkQXaT377cjgcOY4PuXfvXgCGDh16wbbcbkHN6xqc29/AgQMvKG6uX7+e5OTkvE5BRERyoMKaiIiIBdq1a0dGRsYFg25Pnz6dVatWXdD+1ltvJSgoiKeffjrHgcydTmeuBaeCGjBgAHXq1OHHH3/k66+/vmD7oUOHsv570KBB1K9fn3fffZcFCxbkuL81a9aQlJQEwL59+/jnn38uaHP69GlSU1MLdOta586dadiwIStXrmT27NnZts2ePZs//viDSy+9lC5duuS7L1d79tlns42TlZKSwoQJEwCyJpKAzFtjGzVqxKpVq7JNROFwOHjooYdy/NBbqVIlILNAVhQOh4NHH3002y3O+/bt46233sLNzY2bb745a/1tt90GwIQJE7KeW4CkpCQee+wxAEaPHl2kHPnJ6zxXr16d47U51zPIx8enQMdo3bo1gYGBzJs3jx07dmQrnp277fPcpBMFvQ30Yp+fwrj//vsBePjhh3PseXr+Oiuey3bt2gEX3tK+ZMmSHH/nnG/ChAnZblGMiYnhueeeA7L/DAUHB2MYRq7X+8EHHwQyJ8k4cuTIBdsTExOzxpuEzN91wcHBzJw584Li3+TJkwt1G2qnTp1o2LAhK1asuKDY+8477+Q4vlqdOnWAC79Q2LJlS9Zr8b/yes3ltr/jx49z3333FeAsRETkv3QrqIiIiAXuv/9+pk2bljVeU82aNYmMjGTNmjVcffXVzJ8/P1v7SpUqMXv2bK655ho6dOhAz549adq0KYZhcPDgQdasWcOpU6dISUkpciYPDw9mzZpF7969uemmm/jwww/p0KEDKSkp7Ny5kyVLlmTdouju7s4PP/xAnz59uOqqq+jUqRMtW7bEx8eHgwcPsmHDBv755x+OHj2Kj48PW7duZciQIbRt25bGjRtTrVo1Tpw4wbx580hPT88acy0vhmEwY8YMrrzySoYNG8agQYNo1KgRu3fvZu7cufj7+/P5558XaAZIV2vcuDFNmzbl2muvxd3dnXnz5vH3339z1VVXccstt2Rr+8gjjzB69Gg6d+7Mddddh5eXF8uWLSM9PZ0WLVqwdevWbO0bNmxI9erV+eabb3B3d6d27doYhsEtt9xC7dq1883WvHlz1q1bR5s2bejduzdnzpzhu+++48yZM7z88svZJgC46aabmDdvHt999x1NmzZl8ODBGIbB3Llz2bdvH8OGDbtgxtbi0rNnT2bNmsWQIUPo378/3t7e1K5dm1tuuYWXX36ZpUuX0rVrV+rWrYufnx87duxg4cKFBAcHZ82umR+73U737t2zih7nF9Zq165N/fr1+fvvv7Hb7TkOQJ+Ti31+CqN37948+eSTPPfcczRu3JjBgwdTs2ZNjh07xsqVK+nQoQPTp08HrHkub731Vl555RWmTJnC1q1badKkCX/99RcLFy7kmmuu4fvvv8/xcVWrViU1NZWIiAgGDhxIeno6s2fP5ujRo9x7773ZJivx8/Ojffv2/PHHHwwfPpxLL70Uu93OwIEDad68OT179uTFF19kwoQJXHLJJfTv35+6deuSkJDA/v37Wb58OV26dMnq9efn58dHH33EsGHD6Nq1K8OGDaNq1aqsXLmSqKgoLr/88hx7/eXEMAw+/fRTrrzySoYOHcqQIUNo0KABkZGRLFmyhL59+17Q23DEiBG88sorjBs3jmXLlnHJJZewZ88e5s+fz5AhQ/j2228vOE7Pnj155ZVXuOOOOxg6dCj+/v4EBQUxZswY2rZtS+fOnfnhhx/o1KkTXbp04dixYyxcuJCGDRtSrVq1gj6dIiJyjikiIlJBAeZ//xTu27fPBMyRI0fm+Jhu3bpd8Jhz++rWrdsF65ctW2YC5qRJky7Y9scff5hdu3Y1vb29TX9/f7N///7m1q1bzUmTJpmAuWzZsgses2/fPvO+++4zGzRoYHp6epr+/v5mw4YNzZtvvtmcM2dOtrYjR440AXPfvn2FyrV//37znnvuMevUqWO6u7ubISEhZrt27cznn3/+grbHjh0zH330UbNp06amt7e36evrazZo0MAcOnSo+cUXX5jp6emmaZrmwYMHzQkTJpidOnUyw8LCTA8PD7N69epm3759zQULFlyw37zs2rXLvPnmm83w8HDTzc3NDA8PN4cPH27u2rUrx+uV1/OZm5yez/yel5yOc+71kpKSYj7xxBNmnTp1TA8PD7Nu3brm5MmTzZSUlByP/8knn5hNmjQxPTw8zLCwMPPOO+80T548mevrb/369WaPHj3MgIAA0zCMXHPmdp6HDx82hw8fblapUsX09PQ0W7VqZX711Vc5PsbhcJjvvvuu2aZNG9Pb29v09vY2W7dubb7zzjumw+HI9RjnK8q1zMjIMCdMmGDWrVvXdHNzy7bfX375xRw1apTZuHFjMyAgwPTx8TEvvfRS8/777zf//ffffK/D+d566y0TMAMCAsyMjIxs2+68804TMNu1a5fjY4vy/EybNs0EzGnTpuW4z9x+t+Tl559/Nvv06WMGBwebHh4eZo0aNczBgwebS5YsydauOJ7LwmaNiooy+/XrZ/r5+Zm+vr5mt27dzN9//z3X61C7dm2zdu3a5pkzZ8x7773XrFatmunh4WE2atTIfPPNN02n03nBMfbs2WNeffXVZkhISNb1/u9+//jjD/O6664zq1atarq7u5uVK1c2W7RoYT744IPmhg0bLtjnr7/+anbu3Nn09vY2g4KCzIEDB5o7d+7M8/dsbjZu3Gj26dPH9PPzM/38/MyePXuaq1evzvXnYseOHeaAAQPMKlWqmD4+Pmbr1q3Njz/+OM/fb6+++qrZqFEj08PDwwTM2rVrZ207deqUec8995i1a9c2PT09zXr16pkTJkwwExMTs663iIgUnGGaplnCtTsRERGRCql79+4sX76c0vp2yzAMunXrdtG3EYuUlHO3LuY0DqCIiEhpUPrulRARERERERERESkDVFgTEREREREREREpAhXWREREREREREREikBjrImIiIiIiIiIiBSBeqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBG4WR2grHE6nRw5cgR/f38Mw7A6joiIiIiIiEi5ZJom8fHxVKtWDZutYvULSklJIS0tzZJje3h44OXlZcmxyyIV1grpyJEj1KxZ0+oYIiIiIiIiIhXCwYMHqVGjhtUxXCYlJYW6tf2IPu6w5Pjh4eHs27dPxbUCUmGtkPz9/YHMH+yAgACL04iIiIiIiIiUT3FxcdSsWTPrc3hFkZaWRvRxB/s31SHA37U99eLindRu8y9paWkqrBWQCmuFdO72z4CAABXWREREREREREpYRR2Gyc/fwM/ftefupGJe64tRsW5SFhERERERERERKSYqrImIiIiIiIiIiBSBbgUVERERERERESllHKYTh+n6Y0rhqMeaiIiIiIiIiIhIEajHmoiIiIiIiIhIKePExIlru6y5+njlgXqsiYiIiIiIiIiIFIF6rImIiIiIiIiIlDJOnLh6xDPXH7HsU481ERERERERERGRIlBhTUREREREREREpAh0K6iIiIiIiIiISCnjME0cpmsnE3D18coD9VgTEREREREREREpAvVYExEREREREREpZZyYOHFtDzJXH688UI81ERERERERERGRIlBhTUREREREREREpAh0K6iIiIiIiIiISCnjxMShW0FLPfVYExERERERERERKQL1WBMRERERERERKWU0eUHZoB5rIiIiIiIiIiIiRaAeayIiIiIiIiIipYzDNHGYru1B5urjlQfqsSYiIiIiIiIiIlIEZbawNmXKFNq2bYu/vz+hoaEMHjyY3bt35/u4WbNm0ahRI7y8vGjWrBkLFixwQVoRERERERERESlvymxhbfny5dx3332sXbuW3377jfT0dHr37k1iYmKuj1m9ejU33ngjo0ePZsuWLQwePJjBgwcTFRXlwuQiIiIiIiIiInlzWrRI4RimWT5uoD1x4gShoaEsX76cyy+/PMc2w4YNIzExkfnz52et69ChAy1btuSDDz4o0HHi4uIIDAwkNjaWgICAYskuIiIiIiIiItlV1M/f5857184w/P1d2x8qPt5Jo8bHKtw1vxhltsfaf8XGxgIQEhKSa5s1a9bQq1evbOv69OnDmjVrSjSb1b788kvWr19vdQwRERERERERKSAHpiWLFE65KKw5nU7GjRtH586diYiIyLVddHQ0YWFh2daFhYURHR2d62NSU1OJi4vLtpQlu3fv5o477qBTp0488cQTpKamWh1JRERERERERKRcKBeFtfvuu4+oqCi++eabYt/3lClTCAwMzFpq1qxZ7McoSVWqVGHIkCE4HA5eeOEF2rVrR2RkpNWxRERERERERETKvDJfWBszZgzz589n2bJl1KhRI8+24eHhHDt2LNu6Y8eOER4enutjJkyYQGxsbNZy8ODBYsntKiEhIXz11VfMnj2bKlWqsG3bNtq2bcuzzz5Lenq61fFEREREREREJAcO05pFCqfMFtZM02TMmDHMmTOHpUuXUrdu3Xwf07FjR5YsWZJt3W+//UbHjh1zfYynpycBAQHZlrJo6NChREVFMWTIEDIyMpg4cSIdO3Zkx44dVkcTERERERERESmTymxh7b777uPLL79k5syZ+Pv7Ex0dTXR0NMnJyVltRowYwYQJE7L+PXbsWBYtWsSrr77Krl27mDx5Mhs3bmTMmDFWnILLhYaGMnv2bL766iuCg4PZtGkTrVu35uWXX8bhcFgdT0RERERERETOclq0SOGU2cLa+++/T2xsLN27d6dq1apZy7fffpvV5sCBAxw9ejTr3506dWLmzJl89NFHtGjRgtmzZzN37tw8JzwobwzD4KabbiIqKoqrrrqKtLQ0Hn30Ubp27cpff/1ldTwRERERERERkTLDME1Td9AWQlxcHIGBgcTGxpbZ20LPMU2T6dOnM27cOOLi4vD29mbKlCncf//92GxltuYqIiIiIiIi5UB5+vxdGOfOe/OfYfj5u/azeUK8k9ZNjlW4a34xVD2pwAzD4NZbb2X79u306tWL5ORkxo0bR48ePdi3b5/V8URERKSUME0nCWl/EZu6nXRHnNVxREREREoNFdaEWrVq8euvv/Lee+/h6+vL8uXLadasGR988AHq0CgiIlJxmabJofhZrDx4JWsOD2L9ketZfqALO048QZrjtNXxRERERCynwpoAmb3X7rnnHrZt28bll19OYmIi99xzD3379uXgwYNWxxMREREL/HPmPXaenEiK40jWOpN0jibMY8ORm0h3xFqYTkREpHxzmtYsUjgqrEk29erVY9myZbzxxht4eXnx66+/EhERwfTp09V7TUREpAJJTj/EP2fezXGbiYOkjAPsj53m4lQiIiIipYsKa3IBm83G2LFjiYyMpEOHDsTFxXHrrbcycODAbLOsioiISPl1OOF7wMijhZND8d/oizcREZES4sCwZJHCUWFNctWwYUNWrlzJiy++iIeHB/Pnz6dp06bMnDlTb6JFRETKueT0Q/m2SXfG4jCTXJBGREREpHRSYU3yZLfbefTRR9m0aROtW7fm9OnTDB8+nOuuu47jx49bHU9EREQKwjRh3Tq4/34YOhRuuAGeew7y6InubgvAyOdbawM3bIZncacVERERKTNUWJMCiYiIYO3atTz99NO4ubnx/fffExERwffff291NBEREcnLxo1w2WXQoQP8+CMkJMDx4zBlCtSqBbfcAnFxFzwszK8/Jo5cd2tgJ8y3PzbDrSTTi4iIVFi6FbRsUGFNCszd3Z2JEyeyfv16mjVrxokTJ7j22msZPnw4MTExVscTERGR/1q5Erp1A8Mg6bvvmfPMl7zS5g7e7PYA679ZhvOVqfDTT9C9O8Rmn+EzyLM1lbw6k/PbRRuG4UbdoNtdcRYiIiIipZYKa1JorVq1YsOGDTz++OPYbDZmzpxJREQEP//8s9XRRERE5JwzZ2DQIGjXjtWTPmDYS9v46LVfWLZwG7/O3czEJ37kzqUmp2bPh3/+gbvuyvZwwzBoHvYmoT69zq6xYWAHwNNehTbhn+HncYlrz0lERKQCcZqGJYsUjmFqFPpCiYuLIzAwkNjYWAICAqyOY7n169czcuRIdu3aBcCtt97K66+/TmBgoMXJREREKrg334RHHmHvojU88NBcnKYJ/3nXZ7PbCK8ezMf9PLE/cD/s25d5e+h/JKb/y8mk33Gaqfh5XEpl78sxDLuLTkRERCqqivr5+9x5r4yqhp+/a/tDJcQ76RJxpMJd84uhHmtyUdq1a8fmzZt5+OGHMQyDadOm0axZM3777Tero4mIiFRs778PQ4fyzc9/gWFcUFQDcDqcHDlwijU1LgNfX/j44xx35eteh9qBo6gbdBdVfK5QUU1ERMQFNMZa2aDCmlw0b29vpk6dyooVK6hfvz4HDx6kd+/e3HvvvSQkJFgdT0REpOJJSYHduzH79GHtsl04Hc5cm9rsBqvW7ofLL4etW10YUkRERKTsU2FNik2XLl3YunUrY8aMAeD999+nRYsWrFixwuJkIiIiFUxaGgCmhwcZGbnP7AlgOk3SUtLB0zPrcSIiIiJSMCqsSbHy9fXl7bffZvHixdSqVYt//vmH7t278+CDD5KcnGx1PBERkYrB3x98fLDt2UONOpXJ664OwzCo0yAUdu2C8HDXZazgTNNJuuMMDqfeH4mISM4c2CxZpHB0xaRE9OzZk+3bt3P77bdjmiZvvPEGLVu2ZO3atVZHExERKf8MA268ET79lEHDLst3tJSrazrgzz/hpptcEq8iczhT+OfMB6w42I3fD3Rk6f7WbDx6KzHJeo8kIiJSFqmwJiUmICCAjz/+mAULFlCtWjX++usvOnfuzGOPPUZqaqrV8URERMq3e++Fgwfpf3IzbTpfgvGf6prNlrnigcf6E/zGS9CgAfTqZUHQisPhTGFz9Gj+Pv02aY6TWetPp6xnU/RtHImfa104EREpdUzTwOnixTQ1eUFhqbAmJa5fv35ERUVxyy234HQ6eemll2jTpg2bNm2yOpqIiEj51bo13H8/9oce5OnG8dzxUG/CqgVlbW7eth4vvjaUvt+9An/8AR9+CDa9NSxJB+JmcCY1EvjvZBJOwOTPk0+R5ohxfTAREREpMjerA0jFEBwczOeff87QoUO588472bFjB+3bt+eJJ57giSeewMPDw+qIIiIi5c/rr4NpYn/gfobUrcs1t99OWoNW2JwZuC9bCoMyJxxizhzo0cParOWcaZocjJvJhUW189rg4Ej8HOoEjXZdMBEREbko+lpSXGrQoEHs2LGD6667DofDwTPPPEOHDh3Yvn271dFERETKH7sd3n4b1q6Frl0xnnkGz2HX4n7jDTB/Pjz6KOzdC1dfbXXScs9hJpLqOJ5PKxsJ6XtckkdEREo/B4YlixSOCmvicpUrV+a7777j22+/pVKlSmzZsoU2bdowZcoUMjIyrI4nIiJS/rRvDzNmQFwcHD0Kp07BwYMwcSJUrWp1ugrBZniQ5/SsZ7faDS+X5BEREZHiocKaWOb6668nKiqKgQMHkp6ezuOPP07nzp3ZtWuX1dFERETKJw8PCA+HkBCNp+ZiNsODSt5dAHuubUwcVPHRBBIiIpLJYdosWaRwdMXEUuHh4cydO5cZM2YQGBjI+vXradWqFa+99hoOh8PqeCIiIiLFpm7QnYBJTj3XDOz4ezSmkncnl+cSERGRolNhTSxnGAYjRowgKiqKPn36kJKSwsMPP0z37t3Zu3ev1fFEREREikWw12U0q/Jy1m2hBnaMs3OJ+Xk0pFX4RxiG3p6LiEgmJwZObC5eNMZaYekvt5QaNWrUYOHChXz00Uf4+fmxcuVKWrRowbvvvovTmfsMWiIiIiJlRbjfVVxeczkNQx6jqt8gavhfT+vwT2lfbTae9spWxxMREZFCUmFNShXDMLjjjjvYvn07V1xxBUlJSYwZM4Yrr7yS/fv3Wx1PRERE5KK52wOpFTiCplWep1Hlp6jk3QnDUA8BEREpm959913q1KmDl5cX7du3Z/369Xm2nzVrFo0aNcLLy4tmzZqxYMECFyUtGSqsSalUp04dFi9ezFtvvYW3tzdLly6lWbNmfPLJJ5imaXU8ERERERERkRLlwLBkKYxvv/2Whx56iEmTJrF582ZatGhBnz59OH78eI7tV69ezY033sjo0aPZsmULgwcPZvDgwURFRRXHJbOEYapKUShxcXEEBgYSGxtLQECA1XEqhD179jBq1ChWr14NQL9+/fj444+pXr26xclERERERESkpFTUz9/nzvvHbfXx9c99NumSkBjvYGDzvwt8zdu3b0/btm155513AHA6ndSsWZP777+fxx577IL2w4YNIzExkfnz52et69ChAy1btuSDDz4ovhNxIfVYk1LvkksuYcWKFbzyyit4enqycOFCIiIi+OKLL9R7TURERERERMolh2mzZCmotLQ0Nm3aRK9evbLW2Ww2evXqxZo1a3J8zJo1a7K1B+jTp0+u7csCFdakTLDb7fzvf/9j8+bNtG3bljNnzjBixAiuueYajh07ZnU8ERERERERkXIjLi4u25KamnpBm5MnT+JwOAgLC8u2PiwsjOjo6Bz3Gx0dXaj2ZYEKa1KmNGnShNWrV/Pcc8/h7u7OvHnzaNq0KbNmzbI6moiIiIiIiEi5ULNmTQIDA7OWKVOmWB2p1FJhTcocNzc3nnjiCTZs2ECLFi04deoU119/PTfccAMnT560Op6IiIiIiIjIRXNiWLIAHDx4kNjY2KxlwoQJF+SrXLkydrv9grvIjh07Rnh4eI7nFB4eXqj2ZYEKa1JmtWjRgvXr1/PUU09ht9v59ttviYiIYN68eVZHExERERERESmzAgICsi2enp4XtPHw8KBNmzYsWbIka53T6WTJkiV07Ngxx/127NgxW3uA3377Ldf2ZYEKa1KmeXh48Mwzz7B27VqaNGnCsWPHGDx4MCNHjuTMmTNWxxMREREREREpEic2HC5enIUsEz300EN8/PHHzJgxg507d3LPPfeQmJjIrbfeCsCIESOy9XYbO3YsixYt4tVXX2XXrl1MnjyZjRs3MmbMmGK9dq6kwpqUC5dddhmbNm1i/Pjx2Gw2Pv/8cyIiIli0aJHV0URERERERETKpWHDhjF16lQmTpxIy5YtiYyMZNGiRVkTFBw4cICjR49mte/UqRMzZ87ko48+okWLFsyePZu5c+cSERFh1SlcNMM0TdPqEGVJXFwcgYGBxMbGEhAQYHUcycGaNWsYOXIke/bsAeCOO+7g1Vdfxd/f3+JkIiIiIiIiUlAV9fP3ufOetbURPv52lx47Kd7BdS12VbhrfjHUY03KnY4dOxIZGckDDzwAwMcff0yzZs1YtmyZxclERERERERECsZh2ixZpHB0xaRc8vHx4c0332TZsmXUqVOH/fv306NHD+6//34SExOtjiciIiIiIiIi5YAKa1Kude/enW3btnHXXXcB8M4779CyZUtWrVplcTIRERERERGR3DnPTibg6kUKR1dMyj1/f38++OADfvnlF2rUqMHevXvp2rUrjzzyCCkpKVbHExEREREREZEySoU1qTB69+7N9u3bGTVqFKZpMnXqVFq3bs2GDRusjiYiIiIiIiKSjcM0LFmkcFRYkwolKCiIadOm8eOPPxIeHs7OnTvp2LEjTz75JGlpaVbHExEREREREZEyRIU1qZAGDBhAVFQUN954Iw6Hg+eff562bduydetWq6OJiIiIiIiISBmhwppUWJUqVWLmzJnMmjWLypUrs23bNi677DKeffZZ0tPTrY4nIiIiIiIiFZgDmyWLFI6umFR41157LTt27OCaa64hIyODiRMn0rFjR3bs2GF1NBEREREREREpxVRYEwFCQ0P5/vvv+fLLLwkKCmLTpk20bt2aV155BYfDYXU8ERERERERqWCcps2SRQpHV0zkLMMwGD58ODt27KB///6kpaUxfvx4Lr/8cvbs2WN1PBEREREREREpZVRYE/mPatWqMX/+fD799FP8/f1ZvXo1LVq04K233sLpdFodT0RERERERERKCRXWRHJgGAa33XYbUVFR9OrVi+TkZMaOHUuPHj3Yt2+f1fFERERERESknNPkBWWDrphIHmrVqsWvv/7Ke++9h4+PD8uXL6dZs2Z8+OGHmKZpdTwRERERERERsZAKayL5MAyDe+65h23bttG1a1cSExO5++676du3LwcPHrQ6noiIiIiIiJRDTsBhGi5dNPhR4amwJlJA9evX5/fff+e1117Dy8uLX3/9lYiICKZPn67eayIiIiIiIiIVkAprIoVgs9l48MEH2bJlC+3btycuLo5bb72VgQMHcvToUavjiYiIiIiISDnhxGbJIoWjKyZSBI0aNWLlypVMmTIFDw8P5s+fT0REBF9//bV6r4mIiIiIiIhUECqsiRSRm5sbjz32GJs2baJVq1bExMRw0003cf3113PixAmr44mIiIiIiIhICVNhTeQiRUREsG7dOiZPnoybmxuzZ8+madOmzJkzx+poIiIiIiIiUkY5TJslixSOrphIMXB3d2fSpEmsW7eOiIgITpw4wZAhQ7j55ps5ffq01fFEREREREREpASosCZSjFq3bs3GjRuZMGECNpuNr776iqZNm7JgwQKro4mIiIiIiEgZ4sSwZJHCUWFNpJh5enrywgsvsHr1aho2bMjRo0e56qqrGD16NLGxsVbHExEREREREZFiosKaSAlp3749W7Zs4cEHH8QwDD777DOaNWvG4sWLrY4mIiIiIiIiIsVAhTWREuTt7c1rr73G8uXLqVevHgcPHuTKK6/k3nvvJSEhwep4IiIiIiIiUkpp8oKyQVdMxAW6du3K1q1buffeewF4//33adGiBStWrLA4mYiIiIiIiIgUlQprIi7i5+fHu+++y+LFi6lVqxb//PMP3bt356GHHiI5OdnqeCIiIiIiIlKKOLBZskjh6IqJuFjPnj3Zvn07t99+O6Zp8vrrr9OqVSvWrVtndTQRERERERERKQQV1kQsEBAQwMcff8zPP/9MtWrV2L17N506dWLChAmkpqZaHU9EREREREQs5jQNSxYpHBXWRCzUv39/oqKiuPnmm3E6nbz44otcdtllbN682epoIiIiIiIiIpIPFdZELBYcHMwXX3zBDz/8QGhoKFFRUbRv357JkyeTnp5udTwRERERERERyYUKayKlxDXXXENUVBTXXnstGRkZPP3007Rv357t27dbHU1ERERERERczGnBxAVOlYkKTVdMpBSpUqUK3333HV9//TUhISFs2bKFyy67jClTppCRkWF1PBERERERERE5jwprIqWMYRjccMMN7NixgwEDBpCWlsbjjz9Oly5d2L17t9XxRERERERExAWcps2SRQpHV0yklAoPD2fevHlMnz6dwMBA1q1bR8uWLXn99ddxOp1WxxORYmCaJk4zDdM0rY4iIiIiIiJFoMKaSClmGAYjR44kKiqK3r17k5KSwkMPPUT37t35+++/rY4nIkWUknGEPaeeYdWBVvyxP4LVB9vxT8wrpDlirI4mIiIiIiKFoMKaSBlQo0YNFi1axIcffoifnx9//PEHzZs357333lPvNZEyJjFtL5uODOZI/Nc4zCQAMpyxHIz7jM1HriE1I9rihCIiIiJSGjgwLFmkcFRYEykjDMPgzjvvZNu2bXTv3p2kpCTuu+8+evfuzYEDB6yOJyIFtOvk/8hwxgOO/2xxkOY4zp5Tky1IJSIiIiIiRaHCmkgZU7duXZYsWcKbb76Jt7c3S5YsISIigs8++0zjNImUcvGp20lI+5MLi2qZTBycSl5GSsZR1wYTERERkVJHkxeUDbpiImWQzWbjgQceIDIyko4dOxIfH8/o0aO5+uqrOXLkiNXxRCQXCWk7C9DKJDFNMwCLiIiIiJQFKqyJlGGXXnopf/zxBy+//DKenp4sWLCAiIgIvvrqK/VeEymFbIZHAdt5lnASKYx0RxypGcdwmmlWRxEREZEKxIEV46xJYamwJlLG2e12HnnkETZv3sxll13G6dOnufnmmxk6dCjHjx+3Op6InCfYuwsG9jzb2A0/AjxbuSiR5OV08jo2R4/gj4NtWXXocv440IE9MS+S7oizOpqIiIiIlBIqrImUE02aNGH16tU8++yzuLu7M2fOHJo2bcrs2bOtjiYiZ3nYKxPudy15/fmtEXgbdpuX60JJjo4nLmTLsZGcSdmQtc5hJnIw7nM2RQ8j3RFrYToRERERKS1UWBMpR9zd3XnyySfZsGEDzZs35+TJk1x33XXceOONnDp1yup4IgI0qPQUlXx6AJztvWZk9WIL9xtG7cB7LUwnABnOBP48OeHsv5z/2eogKX0//8a+6+pYIiIiUsFo8oKyQVdMpBxq0aIFGzZs4Mknn8Rut/PNN98QERHBTz/9ZHU0kQrPZnjQtMq7tAz/lqr+w6js05tq/jfTpto8GlZ+FsPQn2arHUv8GaeZAuQ2VqWDI/GzcDhTXRlLREREREqhMv3ufcWKFQwYMIBq1aphGAZz587Ns/3vv/+OYRgXLNHR0a4JLOJCHh4ePPvss6xZs4bGjRsTHR3NwIEDGTVqFGfOnLE6nkiFZhgGgV6tuKTSZJqGvk2DSk/g59HY6lhyVlL63/mOhecwk0hzaBxLERERKTkO02bJIoVTpq9YYmIiLVq04N13C3c7xu7duzl69GjWEhoaWkIJRazXtm1bNm/ezCOPPIJhGMyYMYNmzZrxyy+/WB1NRKRUshne5N5b7f/ZbT4lH0ZERERESrUyXVjr168fzz33HNdcc02hHhcaGkp4eHjWYrOV6csgki8vLy9efvll/vjjDxo0aMChQ4fo27cvd911F/Hx8VbHExEpVUJ9emPmOdm8jQDPVnjYK7ksk4iIiIiUThWyotSyZUuqVq3KlVdeyapVq/Jsm5qaSlxcXLZFpKzq3LkzkZGR3H///QB89NFHNG/enGXLllmcTESk9PD3bEqIV1dyf5tkUjfoPldGEhERkQrIxMDp4sXEsPq0y5wKVVirWrUqH3zwAd9//z3ff/89NWvWpHv37mzevDnXx0yZMoXAwMCspWbNmi5MLFL8fH19eeutt1i6dCm1a9fm33//pUePHjzwwAMkJSVZHU+kWCSl/8P+M++yN+YFDsd9Sboj1upIUsZEhL5BiFdHIHP2VgM3Mmdw9aBx5SlU8u5qbUARERERKRUM0zTzH0SkDDAMgzlz5jB48OBCPa5bt27UqlWLL774IsftqamppKb+/6xfcXFx1KxZk9jYWAICAi4msojl4uPj+d///sdHH30EwCWXXML06dPp1KmTxclEisZpprH75OMcT/wRsGNgYOLAwJ1LKj1FVf9hVkeUMiYudRvHE3/FYSbi416PcN+BuNsDrY4lIiJSIcTFxREYGFjhPn+fO+9HVl+Fp5+7S4+dmpDOK51+rnDX/GJUqB5rOWnXrh179+7NdbunpycBAQHZFpHywt/fnw8//JCFCxdSvXp19uzZQ9euXRk/fjwpKSlWxxMptL9OTuR44vyz/3JgkgGYmKTx16mnOJGoSTukcAI8m9Mg5H80rDSJmgG3qKgmIiIiItlU+MJaZGQkVatWtTqGiKX69u1LVFQUI0aMwOl08sorr9CmTRs2btxodTSRAktJP8SxxDmAM5cWBv+eeZNy0lFbRERERMo5p2lYskjhlOnCWkJCApGRkURGRgKwb98+IiMjOXDgAAATJkxgxIgRWe3feOMN5s2bx969e4mKimLcuHEsXbqU++7TAMQiQUFBzJgxg3nz5hEWFsaff/5Jhw4deOqpp0hLS7M6nki+Tib9BnkOtmqSlL6X5Iz9rookIiIiIiLlXJkurG3cuJFWrVrRqlUrAB566CFatWrFxIkTATh69GhWkQ0gLS2Nhx9+mGbNmtGtWze2bt3K4sWL6dmzpyX5RUqjgQMHsmPHDoYNG4bD4eC5556jXbt2bN261epoInnKMBMxCvBnzeFMdEEaERERERGpCMrN5AWuUlEHT5SKadasWdxzzz2cOnUKd3d3Jk2axKOPPoqbm5vV0UQucDzxZ3aeeDDPNgZudKy5Gnd7kGtCiYiIiEiRVdTP3+fOe9yqgZZMXvBG5x8r3DW/GGW6x5qIlKzrrruOHTt2MHjwYNLT03nyySfp1KkTO3futDqayAUq+1yJmy2Q3G4HNbBTxbefimoiIiIiIlJsVFgTkTyFhYXxww8/8MUXXxAUFMSGDRto1aoVU6dOxeFwWB1PJIvN8KBh5ZfILKxl//NmYMfdXol6wY9Ykk1EcnD8OEyZAt27Q+vW0K0bPP88HDtmdTIREZFSQZMXlA0qrIlIvgzD4OabbyYqKop+/fqRmprKI488wuWXX86ePXusjieSpbJPD1qEf0GQV7usdQYehPldQ+uq3+PpFm5hOhEBwOGA8eOhRg145hmoXBk6dIDQ0MzCWs2a8PDDme1ERERESjkNlCQiBVa9enV+/vlnPvvsMx588EFWr15NixYteOmll7jvvvuw2VSrF+sFebUlKPxz0h0xZDgT8LBXxm7zsTpWsUlzxHAk/iui438gwxmHl1t1qvnfSLjfEGw2T6vjieTNNOG22+DLL3FOmsSmzlfz04aDnDgVT+Wa/lx99wTarlmIbfIkiI6GL74A/W0RERGRUkyTFxRSRR08UeS/9u/fz+jRo1myZAkAV1xxBZ999hl16tSxNphIOZaU/i+RR28i3RkDOM+uNQATf8+WtAibXq6KiFIOffYZjB5N+ozPeexvLzZs+RebzcDpNLP+v3XzWrzcxInHzcPhgw/gzjutTi0iIhapqJ+/z533mJXXWDJ5wTtd5lS4a34x9BWgiBRJ7dq1+fXXX3n33Xfx8fFh2bJlNGvWjI8++gjV60WKn2ma/Hn8AdKdp/n/ohpA5s9bfOo2/jk91ZJsIgVimvDmmzBgAG8mhLEpcj8ATqeZ7f8jtx/k9VPBMHgwvP125uNERERESikV1kSkyGw2G/feey/btm2ja9euJCQkcNddd9G3b18OHjxodTyRciUudQuJ6buA3MadchKdMJsMZ4IrY4kU3MaNsG0biaNGs+C37ThzKZg5TZNFS3cQP+I2iIqCNWtcHFRERKR0cJiGJYsUjgprInLR6tevz7Jly3j11Vfx8vLi119/pVmzZsyYMUO910SKSVzqFvL7s+00U0hM04QiUkrt2gXAlpC6ZDiceTZ1OJxsDq6T+Y/du0s4mIiIiEjRqbAmIsXCbrfz0EMPsWXLFtq1a0dsbCyjRo1i0KBBREdHWx1PpMwzsBesnVGwdiIu58wspjko2DfhGedqb5odVEREKiinaViySOGosCYixapRo0asWrWKF154AXd3d3766SeaNm3Kt99+a3U0kTIt2Lsz2cdWu5CbLRA/j0auCSRSWDVrAhCRfLxAzZunn8r8j1q1SiqRiIiIyEVTYU1Eip2bmxsTJkxg06ZNtGrVipiYGG644Qauv/56Tpw4YXU8kTLJ1+MSgr06Q6491wyqB4zEZni4MpZIwXXrBrVrU+m7L+nUtj52W87fiNttBu1b16XKrC+hRg3o0cPFQUVEREQKToU1ESkxzZo1Y926dUyaNAk3NzdmzZpFREQEc+fOtTqaSJnUuMqr+Lo3OPuvc3/CMwttob5XUzvwHktyiRSI3Q533w0zZ/J4uyCqhgdhGNmLa4ZhEBYawBNdq8AXX8Bdd4Gbm0WBRURErGWaNpwuXkxTZaLC0hUTkRLl7u7O5MmTWbt2LU2bNuX48eNcc8013HLLLZw+fdrqeCJlirs9hNbVvqdx5dcI8e6Kv0czqvj0o3nYDBpVnqrx1aT0GzcO2rUj4Ppr+LRbAHff0oUa1YLx9nKnetUg7ry5M5/1DCHo2sHQujU8/LDViUVERETyZJiasq9Q4uLiCAwMJDY2loCAAKvjiJQpqampTJo0iVdeeQWn00m1atX45JNP6Nevn9XRRETEVeLjYdgwWLgQGjSA4cOhShU4cQJmzoQ9e6B3b/juOwgMtDqtiIhYqKJ+/j533qOXX4+Hn7tLj52WkM6n3b6rcNf8YqjHmoi4jKenJy+++CKrVq3i0ksv5ciRI/Tv35/bb7+duLg4q+OJiIgr+PvDzz/DypXQrh28/XZmT7a334Y2beCPP2DRIhXVREREpExQYU1EXK5Dhw5s2bKFcePGYRgGn376Kc2aNWPJkiVWRxMREVcwDOjcGb76Ck6dgvT0zP//+mvo0iVzu4iIiJQrMTExDB8+nICAAIKCghg9ejQJCQl5tr///vtp2LAh3t7e1KpViwceeIDY2FgXps6fCmsiYgkfHx9ef/11fv/9d+rWrcuBAwfo1asXY8aMITEx0ep4IiJlTrojlqPxP3AgdhonEn/DaaZZHUlEREQugtMEp2m4eCm58xk+fDg7duzgt99+Y/78+axYsYI777wz1/ZHjhzhyJEjTJ06laioKKZPn86iRYsYPXp0yYUsAo2xVkgV9R5vkZKUkJDA+PHjef/99wGoV68e06dPp2vXrhYnExEp/UzTyb4zb7M/9hNM0sj83tSJuy2IhpWeJdS3t9URRUREiqSifv4+d963/n49Hn4eLj12WkIa07oX/xhrO3fupEmTJmzYsIHLLrsMgEWLFtG/f38OHTpEtWrVCrSfWbNmcfPNN5OYmIhbKZk5XD3WRMRyfn5+vPfee/z222/UrFmTf/75h27duvHwww+TnJxsdTwRkVLtnzNv8m/se2eLagBOANKdsUSdeIBTSSusCyciIiJF5jRtliyQWdw7f0lNTb2oc1mzZg1BQUFZRTWAXr16YbPZWLduXYH3c67gV1qKaqDCmoiUIr169WL79u3cdtttmKbJa6+9RqtWrQr1i1ZEpCJJd5zmQOwnuWzNvCnh79OvuS6QiIiIlAs1a9YkMDAwa5kyZcpF7S86OprQ0NBs69zc3AgJCSE6OrpA+zh58iTPPvtsnrePWkGFNREpVQIDA/n000+ZP38+VatWZffu3XTq1InHH3/8or8lEREpb44n/YaJI48WJgnpO0lK3+eyTCIiIlL2HTx4kNjY2KxlwoQJObZ77LHHMAwjz2XXrl0XnScuLo6rrrqKJk2aMHny5IveX3EqPX3nRETOc9VVVxEVFcUDDzzAV199xZQpU5g/fz4zZsygVatWVscTESkV0h2nMbDlU1yDdMcZcHdNJhERESkeTgycuHam7HPHCwgIKNAYaw8//DCjRo3Ks029evUIDw/n+PHj2dZnZGQQExNDeHh4no+Pj4+nb9+++Pv7M2fOHNzdS9ebGhXWRKTUCgkJ4csvv2To0KHcddddbN++nXbt2vHkk0/y+OOPl7pfqCIirublVj3fohoYeLkVbEDgsiTDGU982k4MbPh7NMFu87E6koiISIVTpUoVqlSpkm+7jh07cubMGTZt2kSbNm0AWLp0KU6nk/bt2+f6uLi4OPr06YOnpyc//vgjXl5exZa9uOhWUBEp9a655hp27NjB0KFDycjIYPLkyXTo0IGoqCiro4mIWKqKTy/shl8eLeyEeHXG0y3MZZlKmsOZxO5Tk1l5oBNbom9hc/Rw/jjYib0xL+M00/LfgYiISBnhMA1LlpLQuHFj+vbtyx133MH69etZtWoVY8aM4YYbbsiaEfTw4cM0atSI9evXA5lFtd69e5OYmMinn35KXFwc0dHRREdH43Dk98Wi66iwJiJlQpUqVZg1axYzZ84kODiYzZs306ZNG1588UUyMjKsjiciYgm7zYuGlSae/dd/3wjbsRueNAh51NWxSozTTGPLsds4HP8tTtLOW5/MgbjP2H78fkzTaWFCEZHSxTSdHImfw9rDQ1m8rxlL/23D9uPjiUv90+poUgF99dVXNGrUiJ49e9K/f3+6dOnCRx99lLU9PT2d3bt3k5SUBMDmzZtZt24d27dvp0GDBlStWjVrOXjwoFWncQHDNE3T6hBlSVxcHIGBgVlTvIqI6x09epQ777yT+fPnA9C+fXtmzJhBw4YNLU4mIuWBaZrEp20jOn42KRlH8bCHEOo3iGCvjhhG6fxO8kTiYv4+PZWkjP+fpCDYqwOXhDyOn0f5+d14JH4Wu049mWeb5qEfUNnnChclEhEpvUzTwfYT/+NY4iIyv3zJ/OhvYAegeegbhPr2si5gAVTUz9/nzvuGJTfj4efh0mOnJaTxTc8vK9w1vxgaY01EypyqVavy448/MmPGDMaOHcu6deto2bIlL7zwAmPHjsVmK50ffEWk9DNNB7tPPs6xxDkY2DFxYGDnWOJcgrw6ERH6Xqkcy6uKby8q+/QkMf0v0h1n8HKvgbdbdatjFbsj8d9x/ofDC9k5Ev+dCmsiIsCh+Flni2pw/u/NzLE5Dbaf+B+Xe/2Ouz3Iingi5YY+fYpImWQYBqNGjSIqKoorr7ySlJQUHnroIbp3787ff/9tdTwRKaP2n3mHY4lzALImBTj3/2dS1vLXqYm5PtZqhmHg59GQYO/25bKoBpCccZjci2oADpIzSs+tISIiVjoQ9zkXDhNwjonTTONIwlwXJhIpn1RYE5EyrWbNmvzyyy988MEH+Pr68scff9CiRQvee+89nE6NsyPyX6ZpkpZxnNSMo5hm6Rn0tTRwOJM5FDc9jxZOjifOJzUj2lWR5D887MH5tLDhYa/kkiwiIqWZ00wjKX0feX8ZYRCbut1VkaQInBg4TRcvuRZjJTcqrIlImWcYBnfddRfbtm2jW7duJCYmct9999GnTx8OHDhgdTyRUsE0TaLjZ7PpcB/WHerE+kNdWX+oKwdjP8Q0NQEIQHzqNhxmYj6tnMQkr3RJHrlQuN815N77AsB5to2ISEVnI+/flwAGNsPdFWFEyjUV1kSk3KhXrx5Lly7ljTfewNvbm8WLF9OsWTM+++wzNE+LVHT7Tr/EnlOPkXze4PZpjuP8e3oqfx4fo95rgJP0ArUzzYK1k+JXze96vOxV4ezA29nZ8XW/lFCffq6OJSJS6tgMN0K8OmZNVJAzB5W9L3dZJik8k8weZK5cTPVYKzQV1kSkXLHZbIwdO5bIyEg6dOhAXFwco0eP5uqrr+bIkSNWxxOxRHzqVg7HfXL2X/8tMpvEJC/mROJ8V8cqdfzcG1KQt0b+nhElH0Zy5G4PoHXVmQR6tji7xuBcj4wQr460Cp+B3eZpWT4RkdKkTtDorHFCL2THy61aqZ8VVKQsUGFNRMqlSy+9lJUrV/LSSy/h4eHBggULiIiI4KuvvlLvNalwjsZ9nc831jaOxH/psjyllYdbFar49CHn3lAAdvw8muLv2cyVseQ/vNyq0qbq17StOpdLQ57i0pCJtK+2gJbhn+JhD7E6nohIqVHJuxONKk0i8wuIc3/bMr+M8LRXoXX4J9gMD6viiZQbblYHEBEpKXa7nfHjx3PVVVcxcuRINm3axM0338z333/PBx98QGhoqNURRVwiMf2vPL6xBnCSlLbXZXlKswaVJpGQtpPkjAPA+ROg2HG3BdK4ymtWRZP/8PdsjL9nY6tjiIiUajUDbqCydxcOxX9HfNpObIYXoT49CPPth93mZXU8yce5CQVcfUwpHPVYE5Fyr2nTpqxZs4ZnnnkGNzc35syZQ9OmTfn++++tjibiEm42P/IbwNhu83FNmFLOwx5C66qzqRP0AJ72cMCGmy2YGgG30qbaPHzc61odUUREpFC83WtwSchDtA7/mJZhb1PN/xoV1USKkQprIlIhuLu789RTT7FhwwaaN2/OyZMnufbaa7npppuIiYmxOp5Iiars258Lx1Y7n50qvgNcFafUc7MHUDvoXjrUXEG3OrvoXGsd9UPG4+kWZnU0ERERqUCcps2SRQpHV0xEKpSWLVuyYcMGnnjiCex2O19//TVNmzZl/nwN3C7lV6jvQDzt1XIZZ82G3fCiWsAtLs8lIiIiIlLWqbAmIhWOh4cHzz33HKtXr6ZRo0ZER0czYMAAbr31VmJjY62OJ1Ls7DYfmoV/iZd7HQAM3DDODrPqbgshInwGXm7VLUwoIiIiIv91bow1Vy9SOJq8QEQqrHbt2rF582aeeuopXnvtNaZPn87ixYv59NNP6d27t9XxRIqVt3st2lRbyJmUlZxOXoVpOgjwakUlnys1I5hVTBN+/x2WL4fERAgOhgEDoJlmHRUREREpK9RjTUQqNG9vb6ZOncqKFSuoX78+hw4dok+fPtx9993Ex8dbHU+kWBmGjWDvy6kXMoH6lZ6kiu9VKqpZ5euvoWlT6NED3nsP5s6Fl16C5s3h8sth5UqrE4qIiIhIAaiwJiICdOnSha1btzJmzBgAPvzwQ1q0aMHy5cstTiYi5c5zz8FNN8GllxK7YAGfL/yFN6d9zg/LlpMycyakpmYW3ObMsTqpiIiIWMiJYckihaNbQUVEzvL19eXtt9/mmmuu4bbbbmPfvn10796dsWPH8sILL+Dj42N1RJGLkuGI41jC98QkL8NpphHg2Ypw/xvwdq9tdbSKY9YseOopnE8/zdSu3fl042ac5i7sNhsZTieT3N2Z+N4HXPfyi3DjjbBxI0REWJ1aRMoYp5nG8cTFnEhahtNMwc+jEdX9h+LlFm51NBGRcscwTdO0OkRZEhcXR2BgILGxsQQEBFgdR0RKSFxcHP/73//4+OOPAbjkkkuYMWMGHTt2tDiZSNHEp24n6thIMpzxwLk//XbA5JJKzxLuP8zCdBWEaULr1hAezquPPcH76zbk2vTtvr3oN+Bq6NULPv3UhSGluCWnHyIx/W/sNm8CPVvq9mspccnph9gUfRvJGQfJvEHJhLM9UJpUfprq/tdaGU+kUCrq5+9z533VL7fj7uvavxvpiWn83OeTCnfNL4ZuBRURyUFAQAAfffQRCxcupHr16uzZs4cuXbrw6KOPkpKSYnU8kULJcMYTdWwUGc4E/r+oBuAAnOw59SSxKZssSleBrF0LkZHE3303n2zI/XobwNS1GzHvugtmzoTTp12XUYpNcvpBIqNHs+ZwL7Ydv5Mt0bew6mBXDsROQ99rS0lxmhlsih5NSsaRc2vI/L3vBJz8eXIiMclrrQsoIlIOqbAmIpKHvn37sn37dkaMGIHT6eTll1+mTZs2bNqkIoSUHccT5pLhjCPzg9WFDGwcjlOvqBK3ejX4+vJrnXqkO3N+LiDzI/D+M2f4u/sVkJICkZEui+hKaY4YkjMO4zTTrI5S7FIyotl49HpiUtZwfjE73XmGvadf5J8zr1kXTsq1E0lLSc44gIkjx+0GNv4984mLU4mIlG8qrImI5CM4OJgZM2Ywd+5cwsLC+PPPP2nfvj0TJ04kLa38fSCU8ud0ct4zTJo4OJ28wkVpKrCkJPD1JTYtHZuR/8DAse7u//+4cuRU8ko2Hb2JlQc7suZQD/440IE9MVNId8RZHa3Y/HvmPTKcsZBLcWN/7Mckpx9ybSipEE4mLcfAnut2EwenUlbjNNNdmEpEisppGpYsUjgqrImIFNCgQYOIiopi2LBhOBwOnn32Wdq3b8+2bdusjiaSJ5MMst8CmkMbM+cCgBSjSpXg9GnqutlxFuBWwJpxZwtNISElHMx1jibMZeux24lN3ZK1zmEmcjDuczZF31guimtOM43oxLm59hjKZCM6ca6rIkkF4jTTMPP5fQ+mfueLiBQjFdZERAqhcuXKfPPNN3z77bdUqlSJyMhILrvsMp5//nkyMjKsjieSI3/PluT9J9+Gv2cLF6WpwAYMAIeDy9esopKPd66T2dsNg861axH63bdQvTq0bevSmCUl3RHLrpNP8f/jPZ3PSVL6PvbHvm9BsuKV4YzHaabm2cbAICXjqIsSSUXi79mEvL9IMfB2q4Xd5uWqSCJyEdRjrWxQYU1EpAiuv/56duzYwaBBg0hPT+fJJ5+kU6dO7Ny50+poIhcI97v+7K1Bub1RclI9YJQLE1VQNWvCwIHY33yTl7t2xjCMC24JtRsG3u7uTK5fB778Eu66C9zcrMlbzKITf8Qkr9vPHByO/67M36JmN/wwyO85M/GwV3JJHqlYqvkNxoY7uf++h1oBt7gukIhIBaDCmohIEYWFhTFnzhy++OILgoKC2LBhA61atWLq1Kk4HLrFQkoPT7cwGlZ5lcwPWuePvZP531X9R1DJp48V0SqeZ5+Fo0fpNu4BvuzTixZVw7M2GUC3enWZ16UDdW8YBtWqwX33WZe1mCWl/5Pn2E8ADjOBdEeMixKVDLvNk1DffvmOcxXuO9CFqaSi8LAHExH6Epn9Is9/DWYW2ip7d6dGwA2WZBORwlOPtbJBhTURkYtgGAY333wzUVFR9O3bl9TUVB555BG6devGnj17rI4nkqWKb39aVZ1LqO8g3GyB2A1fAr3a0ST0feqHPIVRgMH0pRhERMDPP0NkJO26dWXW5vWsbt2cBR3bsrHJpXw073tqd+4ENhv8+mu5Gl/NbviQ31h/ADbDu+TDlLA6gfdgGB7k/FbbINz3Gnw9Grg6llQQYb59aVfta6r49MzqPenrXpdGlSbSIuwtbEb56AUrIlJaGKZZgNFzJUtcXByBgYHExsYSEBBgdRwRKUVM0+TTTz/loYceIj4+Hm9vb1566SXuu+8+bDZ9jyEi5zl4EN55Bz79FE6d+v/19erBPffAHXdAYKB1+UpAXOo2Nh69Lo8WNoK82tI6/HOXZSpJcalR/HlyPEnpf2etM3Cjuv9wGoQ8gs1wtzCdVBSZH/WcGEbevUVFSquK+vn73HlfueAu3H09XHrs9MQ0fuv/YYW75hdDhbVCqqg/2CJScPv37+e2225j6dKlAFxxxRV89tln1KlTx9pgIlL6pKTAn39CQgIEB0PTppm91coh0zSJPHYbp1PWwQUzZmb2mGwVNp1g7w4uz1ZSTNMkLnULCel7sRteVPLuirs92OpYIiJlRkX9/H3uvHstuAs3X0+XHjsjMZXFKqwVSvl85yYiYqHatWvz22+/8c477+Dj48OyZcto1qwZH330EfouQ6TkpDlOkZJxGKeZZnWUgvPygtat4fLLoVmzcltUg8xb55uFvk2IV2bhzMB+9jY1A5vhSdPKr5b5oprTTM/2+jMMg0Cv1lT3v55wv4EqqomIiJRDusFeRKQE2Gw27rvvPvr06cOtt97KypUrueuuu/jhhx/45JNPqFGjhtURRcqNmKTfORD7DvGpkUDmrIzh/jdQK+g+3Gz+1oaTbNxsfrQM/4y41ChOJP2Kw5mEr0cDwnyvxs3mZ3W8Ijue+CsH4j4l7uxr0N+jKTUDbiXM92qNXygiIkVmxWQCmryg8Mrv16IiIqVAgwYN+P3333n11Vfx9PTkl19+ISIigs8//1y91wrAaaYTnfgb/5z5jIPxs0kt47MFSvGLjv+OHcdvJz51W9Y6h5nA4bjP2Hr0BjKc8Ramk9wEeEZQP/ghLq30JNX9byjTRbV/Tr9N1In7iTvvNRiftpM/T/6PPTEv6He9iIhIOafCmohICbPb7Tz00ENs2bKFtm3bEhsby8iRIxk8eDDR0dFWxyu1jiUuZcmBK9h8/EF2n36T7SefZumBHuyKeQ3T/O/4TFIRpTti2Htq0tl/Of+z1UlS+h4OxX7k6lhSAKbpKBcFp7jUbfwb+87Zf53/Gsz870PxnxOTssrluURERMR1VFgTEXGRxo0bs3r1ap5//nnc3d358ccfiYiI4Ntvv7U6WqlzMnktm46PI90ZC4CJAzAxyeCf2M/Ydfp1awNKqXAs4QdMMvJo4eRo/NcqxJYSpunkaPxsNh4ewIr9jVmxvwnbj93OmeR1VkcrskNxX2GQ12yLdg7FfemyPCIiUr6cuxXU1YsUjgprIiIu5ObmxuOPP87GjRtp2bIlp06d4oYbbuD666/n5MmTVscrNXbHvHH2v3Lu0bIv9nNSM3S9Krrk9H8w8nkrk+E8Q7rzDKbpJDZlA8cS5hCTtLxsTXBQDpimk10nH+GvU4+TmP7X2bUOYpJXsfXYCI7Gf2dpvqKKT4s6W/jPjYP4tB0uy5MT03SS5ogh3RFraQ4REZHySoU1ERELNG/enHXr1jFx4kTsdjuzZs2iadOmzJ071+polktKP0RsWhQX3tp3PpOjSb+6KpKUUjabD5Dft6oG8alb2HC4B9uib+Svk4+w4/ho1h3sxNH4b1wRU4DjiT9yPPGns/86v2Ce2Rv1r1MTSUk/ZEGyi2MzvPJtYy9Am5LgNDM4EDuN1Yd6sPJgR/442I71R67heOLCYj1OhjOBowlzORA7jeOJC3E4U4t1/yIiFZl6rJUNKqyJiFjEw8ODp59+mrVr19KkSROOHz/ONddcw4gRIzh9+rTV8Sxz7vbPvBjYSXecKfkwUqpV9umbz62gdvw8mvHn8XtJzTicbUuG8wx7Tz3JEd2m5xKH4r4g77edBkcTyl6vtSo+V5L3edmp4tPbVXGymKaDqOMPsPf0S6Q6jmatT0jbRdSJcew7814xHMNkf+wnrDzYmZ0nH2Xv6ZeJOjGOVQc7czRh7kXvX0REpKxQYU1ExGKXXXYZmzZt4tFHH8Vms/HFF18QERHBwoXF26ugrPByCye/XkgmGXi7VXdNICm1AjzbEODZFnIc48oATDKybn/L+bbif0+/gsOZXEIJ5ZzEtJ3k3QvVQXyqtbdMFkU1/+txs/mS81tqGzbDg+oBN7k6FtGJP3IyeQkXvu4zn4N9Z94kIe2vCx5XGAfjpvP36VdwminZ9p1hxrPz5KPF3jNORKQiUo+1skGFNRGRUsDLy4sXX3yRlStXcskll3DkyBH69+/PHXfcQVxcnNXxXMrTXolQn+55DghuN3wI973ShamkNDIMg6ahHxLo1Tbz39gxcAPAZnhTN/hxUhz7yaug4zATiUle6oq4FZphuOfXApvh6ZIskHmbZFL6fpLSD1zU5BYe9hBahk3D3RZ4do2dc2+v7YYvLcI+tuRLgMwJE3J/m29g50h80SfOcTiT2HfmrTzb7D09FdPMq5gqIiJSPrhZHUBERP5fx44diYyM5IknnuCNN97gk08+4ddff2XatGn06NHD6ngu0yjkYWJSNuJwJv1nYPDMXkhNKz2Bm83HqnhSirjZA2ge/iXxqds4lfQrDmcKPh4NCPUdQHzqtgLswUZaxvESz1nRVfLuyYmkhZDrQP8mlXxK/necaTo4EPcZB+Omk+bInADFwx5KrYBbqRkwEsPIa4bPnAV4NqNTjWUcS/yZ0ylrAZNAzzaE+w3EzeZXzGdQMInpe8mroGziICFtd5H3fyp5OQ4zKc82KRmHiE+LIsCzeZGPIyIiUhaosCYiUsr4+Pjw+uuvM3jwYG699Vb27dtHz549ue+++3jppZfw9fW1OmKJ83OvQ6eqM/kz5iVOJq/i3O1Mvm61aRgyVr3V5AL+ns3x/88HeA97aAEe6cTDrSDt5GLUDBzNiaQFnCuOZ2fHw16JUN+rSjSDaTrZceJhjictypYhzXGcvadfIj7tT5pUfgXDKPwtMHabN9X8r6Wa/7XFmLjo7Ib3ebdo5sTAfhFfThR0jMs0R8UdL1REpDiYpoHp4lszXX288kC3goqIlFLdunVj27Zt3H333QC8++67tGjRglWrVlmczDX8POrSLvwDrqj5Gx2qfk7X6nO4vMZPKqpJgfl41MfXoyl5vd2xG36EePd0XagKyt+zKU2qvHH2Vl3j7JL5vHjYK9M8bDp2m3eJZjiZvIzjSQvJbby9Y4k/EZO8okQzuEqob988b6cHkyo+fYq8fy+3agVqp7EwRUSkIlBhTUSkFPPz8+P999/nl19+oUaNGvz999907dqV//3vfyQnV4wB173dwgnxao2/xyVF6kkiFVv9kCcxsJHbhBh1Qx7DbvNybagKqopvXzrU/IO6wQ9T2ac3ob79aVT5FdpXX4yvR4MSP/7huG/IeaKLc+wcjv+mxHO4QuZtrW7k9FbfwI6XvRphvv2LvP9g78542CuT+0QzNvw9mrnkeRURKc+cGJYsUjgqrImIlAG9e/dm+/btjBo1CtM0efXVV2ndujXr16+3OppIqRbo1ZaIsGl4u9XNtt7dXoVLK79CVf8bLEpWMXnYQ6gVeCdNQ9+mcZXXCPMbhM3mmkkLMscdy2uiAsfZNmWfj3tdWoR+nDXGm4Fb1sQeXm41aRX++UX1ELQZbjSs9MzZf/33A5gNAzcaVppY5P2LiIiUJRpjTUSkjAgKCmLatGkMHTqUO+64g127dtGxY0cee+wxJk6ciKen62bUEylLgrw70qb6LySkbSMl4xDuthACvdqe7dEjFYWbzZ/UfCYAdbP5uyaMCwR7t6dzjRUcS1xAfNo2DNwI8e5KJe+uRZqk4b+q+PSkRdjH7I15mcT0v7LWB3q25JKQCZq0QEREKgy9oxSRIjMdRzGTvoKUX8BMAfcmGD7DwaOrbtkrQVdffTVRUVE88MADzJw5kxdeeIGffvqJzz//nJYtW1odT6RUMgwDf88W+Hu2sDqKWCTM92r+ObOH3GfLNAjzHeDKSCUuc1KFocDQEtl/Je+uhFTrQlL636Q5TuHpVhUf91olciwRkYrIaRo4XTyZgKuPVx7oVlARKRIzbTPmyX6Q+Ak49oPzGKSuwDx9O2bc05hmzoNDS/GoVKkSX331FbNnz6Zy5cps376dtm3b8swzz5Cenm51PBGRUqe6/3W424JzGdTfjoe9MlX9hrg8V1lnGAa+Hg0I9m6vopqIiFRIKqyJSKGZZjLm6bsye6ll++b/7D02yTMheY4V0SqcoUOHsmPHDoYMGUJGRgaTJk2iY8eO7Nixw+poIiKlirs9mNbhX+B1dqbK88cd83GrRevwL3G3B1oZUUREJBvTNCxZpHBUWBORwkueD2Ysed1OYyZ95spEFVpoaCizZ8/mq6++Ijg4mE2bNtG6dWteeuklHI58BhQSEalAfD3q06H6L7QI+4RagaOpFXg7LcM+o331Bfi417E6noiIiJRBKqyJSKGZ6Zsgx1tpslpAxl+YziRXRarwDMPgpptuIioqiquuuoq0tDQee+wxunTpwl9//ZX/DkREKgjDsFHJuyv1gx+ifvCDhHh3xjD0llhEREqfc2OsuXqRwtG7CBEpggL+stUEBi5XrVo1fvrpJ6ZNm0ZAQABr166lRYsWvPHGGzidufUwFBERERERkaJQYU1ECs3waE/WeGo5soFbUwzD21WR5DyGYTBq1CiioqK48sorSUlJ4cEHH+SKK67gn3/+sTqeiIiIiIhIuaHCmogUnlc/sFUi918hTgzf212ZSHJQs2ZNfvnlFz744AN8fX1ZsWIFzZs354MPPtCsrSIiIiIipZwmLygbVFgTkUIzDE+M4E/B8Cf7baFnx13zvQu8+lsRTf7DMAzuuusutm3bRrdu3UhMTOSee+6hd+/eHDhwwOp4IiIiIiIiZZoKayJSJIZ7E4wqv2D4PQRuEWBvAF5XYYR8i83/YQyNr1aq1KtXj6VLl/LGG2/g7e3N4sWLadasGdOmTVPvNRERERGRUsi0YOIC9VgrPBXWRKTIDFsIht9d2Cr/gK3KAmxBUzE8WlkdS3Jhs9kYO3YskZGRdOzYkbi4OG677TYGDhzI0aNHrY4nIiIiIiJS5pTpwtqKFSsYMGAA1apVwzAM5s6dm+9jfv/9d1q3bo2npycNGjRg+vTpJZ5TRKQ0ufTSS/njjz946aWX8PDwYP78+TRt2pSZM2eq95qIiIiIiEghlOnCWmJiIi1atODdd98tUPt9+/Zx1VVXccUVVxAZGcm4ceO4/fbb+eWXX0o4qYhI6WK32xk/fjybN2+mTZs2nD59muHDh3Pttddy/Phxq+OJiIiIiFR4JmCaLl6sPukyqEwX1vr168dzzz3HNddcU6D2H3zwAXXr1uXVV1+lcePGjBkzhmuvvZbXX3+9hJOKiJROTZs2Zc2aNTz99NO4ubnxww8/EBERwffff291NJFSyzRNzqQlk5CeanUUEREREbGYm9UBXGnNmjX06tUr27o+ffowbty4XB+TmppKaur/v3GOi4srqXgiIpZwd3dn4sSJDBgwgJEjR7J9+3auvfZabrzxRt555x1CQkKsjigXwTQziEleSmzKKkzTgb9nGyr79sdmeFodrczJcDr58u/1zPh7HUeSYgFoFlyNOy/tTO/qjS1OJyIiIuWNEwMD104m4HTx8cqDMt1jrbCio6MJCwvLti4sLIy4uDiSk5NzfMyUKVMIDAzMWmrWrOmKqCIiLteqVSs2bNjA448/js1m4+uvv6Zp06bMnz/f6mhSRMnp/7D5cE92n7ibY/FfczzhO/aeepiNhzoRl7LJ6nhlisN0MnbdLF7c/mtWUQ1gx+mj3L9uFh/tXmlhOhERERGxSoUqrBXFhAkTiI2NzVoOHjxodSQRkRLj6enJ888/z5o1a2jUqBHR0dEMGDCA2267jdjY2Px3IKWGw5nAjmPDSXUcAcAkA5MMADKcsfx5fCQpGYesjFimzDuwjcVHd18w7ojz7JpXdyxlb9wJ1wcTERGRcss0DUsWKZwKVVgLDw/n2LFj2dYdO3aMgIAAvL29c3yMp6cnAQEB2RYRkfKuXbt2bN68mYcffhjDMJg2bRrNmjXjt99+szqaFNDxxDmkOY4Djhy2OnGaqUTHf+7qWGXWl39vwJbHrRF2w8a3+za7MJGIiIiIlAYVqrDWsWNHlixZkm3db7/9RseOHS1KJCJSenl7ezN16lRWrFhB/fr1OXjwIL179+aee+4hISHB6niSj1OJi/Jp4eBkom7zLai9cSeyeqflxGE6+SvuWK7bpWSkZhzjeOLPHE+YT3K67ioQERER1yvThbWEhAQiIyOJjIwEYN++fURGRnLgwAEg8zbOESNGZLW/++67+eeffxg/fjy7du3ivffe47vvvuPBBx+0Ir6ISJnQpUsXtm7dypgxY4DMGZabN2/O8uXLLU4meXGYieQ3YbrDTHJNmHLA0573fE8G4G33cE0YIcOZwM4TD7P2UDd2nniQnScfYv3hXmw/didpjlNWxxMRESkWTtOwZJHCKdOFtY0bN9KqVStatWoFwEMPPUSrVq2YOHEiAEePHs0qsgHUrVuXn3/+md9++40WLVrw6quv8sknn9CnTx9L8ouIlBW+vr68/fbbLF68mFq1arFv3z6uuOIKxo0bR1KSijOlka97I8CeRwsbvu4NSzyH00zlZOKPHDj9AgfPvEp86hZMM++CX2nUr3oT7Ebub5tMoHf1Rq4LVIE5zXS2HxvN8cSfAed5W0xikv8g8uhNZDjVq1ZERERcwzDL4rtbC8XFxREYGEhsbKzGWxORCikuLo6HH36YTz75BIBLL72UGTNm0KFDB4uTyfkSUrexLXpwnm0urfw2lX2vKrEMsSlr2HviPjKcpzFww8QEHPh5tuHSKh/ibq9UYscubn/Hn2Twkg9JdzrPnsf/sxs2wrz9WXjlvXjZ3S1KWHEcT1zAzhPj8mhhUD/kcWoEjHRVJBERKSEV9fP3ufNu+u0j2H08XXpsR1IqO4a9UuGu+cUo0z3WRETE9QICAvj4449ZsGAB1apV46+//qJz58489thjpKamWh1PzvLzbE71gHvO/uv8Lv0GYFDJ5yoq+fQrseMnpf3F7mO3kuHMnE02c0bSzIkUElIj2XVsJKaZ08QKpVN9/8p81OlG/Nwyb/d0M2y4ne3BVsMniM+7jlBRzUWOJfxAfm9ho+NnuSaMiIiIVHgqrImISJH069ePqKgobrnlFpxOJy+99BJt2rRh06ZNVkeTs2oF/Y9LKr2Gj/ulWes87dWpG/wUl1Z+AyOPWxsv1tG4j84W05w5bHWQlL6DM8m/l9jxS0LH0Hqs6P8gz7W6miG1W3J93da833EYC3vfS03fYKvjVRipGcfI+XV1jkma44Sr4oiIiEgFl/dIvCIiInkIDg7m888/Z+jQodx5553s2LGD9u3b88QTT/DEE0/g4aHB3K1kGAZV/AZT2XfQ2Z5jDtxsIRhGyQ5Ka5omp5Lmc66HWs7sxCQtINinZ4lmKW4+bh5cV7c119VtbXWUCsvTrSqJ6XvJ/fVl4GEPc2UkERGREmGaBqaLJxNw9fHKA/VYExGRizZo0CB27NjBddddh8Ph4JlnnqF9+/Zs377d6mhCZoHN3R6Eu71SiRfVMpmYZn63BTtxaIB5KYJwv6HkXbSFqv7XuyaMiIiIVHgqrImISLGoXLky3333Hd988w0hISFERkbSpk0bXnjhBTIyMqyOJy5kGDY87DXyaWXDy72eS/JI+VLZpyeBnu3J+W2sHV/3Swj3G+LqWCIiIsXuXI81Vy9SOCqsiYhIsRo2bBg7duxg4MCBpKen88QTT9C5c2d27dpldTRxoTD/m8k+acJ/OQn1u8FVcaQcMQw3moV9RLjfUIxso5rYqOxzJS3Cv8Bu87Esn4iIiFQsKqyJiEixCw8PZ+7cucyYMYPAwEDWr19Pq1ateO2113A4ys5MkFJ04f4j8fVowYVvNTKLbTWCHsbLvbbLc0n5YLd507Dy83SsuZKmoe/RtMo7dKjxO01D38LdrokkRERESqOYmBiGDx9OQEAAQUFBjB49moSEgg0NYpom/fr1wzAM5s6dW7JBC0mFNRERKRGGYTBixAiioqLo06cPKSkpPPzww3Tv3p2///7b6nhSwmw2LxqHfUXVgLuwG/5Z673dG1C/8htUD7zPwnRSXrjbQ6js04vKvr3xdAu3Oo6IiEixcpqGJUtJGT58ODt27OC3335j/vz5rFixgjvvvLNAj33jjTdcNFZw4amwJiIiJapGjRosXLiQjz76CD8/P1auXEnz5s159913cTqdVseTEmS3+VAreDyta26gRbVltKy+imZVf6Gy7yCro4mIiIiIC+3cuZNFixbxySef0L59e7p06cLbb7/NN998w5EjR/J8bGRkJK+++iqfffaZi9IWjgprIiJS4gzD4I477mD79u1cccUVJCUlMWbMGK688kr2799vdTwpYTbDEy/3Oni6VSu13zSKiIiIlDamac0CEBcXl21JTc1vxve8rVmzhqCgIC677LKsdb169cJms7Fu3bpcH5eUlMRNN93Eu+++S3h46eydrsKaiIi4TJ06dVi8eDHvvPMOPj4+LF26lGbNmvHJJ59gnvsrLiIiIiIilqpZsyaBgYFZy5QpUy5qf9HR0YSGhmZb5+bmRkhICNHR0bk+7sEHH6RTp04MGlR673hQYU1ERFzKZrNx3333sXXrVjp37kx8fDx33HEHV111FYcPH7Y6nogACalR/HXiQdYdaM7aA43ZHn0dJxN/VgFcRETEhTJ7kBkuXjKPffDgQWJjY7OWCRMm5JjxsccewzCMPJddu3YV6fx//PFHli5dyhtvvFHEK+gabvk3ERERKX4NGjRg+fLlvPHGGzzxxBMsXLiQiIgI3nrrLW6++WbdMihikZOJP/PXybFkzuCaOYtvfOoW4lM3Eeq7kvqVXtDPZwkzTSdpjhMYhh13WyVdbxERcbmAgAACAgLybffwww8zatSoPNvUq1eP8PBwjh8/nm19RkYGMTExud7iuXTpUv7++2+CgoKyrR86dChdu3bl999/zzefKximvnoslLi4OAIDA4mNjS3Qi0xERPK3c+dORo4cyYYNGwAYNGgQH374IWFhYRYnE6lY0hwn2HSoCyYZQM5vES+p/DpVNAFFiTBNB4fiZnA4bgapjqMAeLvVpWbgHYT7DVWBTUQqnIr6+fvceV/y5WPYfbxcemxHUgp7bn6x2K/5zp07adKkCRs3bqRNmzYA/Prrr/Tt25dDhw5RrVq1Cx4THR3NyZMns61r1qwZb775JgMGDKBu3brFlu9i6FZQERGxXOPGjVm9ejXPP/887u7uzJs3j6ZNm/Ldd99ZHU2kQjme8B0mDnIrqoGNo3HTXBmpwjBNJ3+eeIh/Tr+UVVQDSM74l79OPc4/p1+yMJ2IiFjB9beBZi4loXHjxvTt25c77riD9evXs2rVKsaMGcMNN9yQVVQ7fPgwjRo1Yv369QCEh4cTERGRbQGoVatWqSmqgQprIiJSSri5ufH444+zYcMGWrRowalTpxg2bBjDhg274JsqESkZ8albAWceLZwkpEVd1Fhryen/8u/pF9lx7GZ2HhtNdPzXOJyJRd5feXEiaREnkxZyYVEz89+H4j4jLiXS1bFERESKzVdffUWjRo3o2bMn/fv3p0uXLnz00UdZ29PT09m9ezdJSUkWpiw8jbEmIiKlSosWLVi/fj3PPfccL7zwAt999x3Lly/nww8/LNWzAYmUB4ZhJ3NstdwLZwb2It+SeDT+C/bFTCbzu10HYHA6ZRkHz7xB07Av8fG4pEj7LQ+OxH1F5nXJubBpYOdI/EwCvFq6MpaIiFjIJK+/yCV3zJISEhLCzJkzc91ep06dfL+8K42jmanHmoiIlDoeHh4888wzrF27liZNmnDs2DEGDx7MyJEjOXPmjNXxRMqtYK/u5P2W2k6Qd/ci7ftM8kr2xUw6u3/H2bWZx0p3xvDn8ZE4zdQi7bs8SEzfQ169BU0cJKb/5bpAIiIiUiAqrImISKl12WWXsWnTJsaPH4/NZuPzzz8nIiKCRYsWWR1NpFyq7DsAN1slwJ5LCyfVA0YXad+H4z7KY78O0hzRnEpcWKR9lwd2wzefFgZ2w88lWURERKTgVFgTEZFSzcvLi5deeomVK1dyySWXcPjwYfr168edd95JfHy81fFEyhW7zYemYZ/jZgs6u+bcLZ92wEb9kBcI8GpX6P2appPYlFX8f0+1nBicTlle6H2XF6G+/cm98Jipim8/14QREZFSoTxNXlCeqbAmIiJlQseOHYmMjGTs2LEAfPzxxzRr1oxly5ZZnEykfPH1aEyb6suoF/IMwV7dCfTqRPWAO2hdbRlh/sOKuFcn+Y/aYlboSQyqBdyM3fAm57fndjzsoYT5aZxJERGR0kaFNRERKTN8fHx44403+P3336lbty779++nR48e3H///SQmVtwP5CLFzW7zI9z/ZhqHfUrTsC+pHTweL/eaRd6fYbjh494w33ZJaTsLNShxasYxTiev4EzyGhzOlCLnKw283KrSPHw67rYQAAzcMM7OM+blVoMW4V/gZtOtoCIiFYpp0SKFosKaiIiUOd26dWPr1q3cddddALzzzju0bNmSVatWWZxMRHJTNeDWfNukOg4Tn7op33ZpGSf48/h9rD/Ulahjt7H92C2sO9iB/WfexjTzut20dAvwbE6Hmr/TuMrrVPO/kWoBNxMR+iHtqi/Cx72O1fFEREQkByqsiYhImeTv788HH3zAL7/8Qo0aNdi7dy9du3blkUceISWlbPdcESmPgr2uyLeNgRsxyYvzbJPuOE1k9HWcSlrM+bNoOswEDpx5kz2nnrrYqJayGR6E+l5Fg0pP0SDkcSr5XIFh5D32moiIlFNWjK+mMdYKTYU1EREp03r37s327dsZNWoUpmkydepUWrVqxfr1662OJiLnMUkrWDsz73aH46aTmnGE3CZCOJbwHQmpUYWNJyIiIlIkKqyJiEiZFxQUxLRp0/jxxx8JDw9n165ddOrUiSeeeIK0tIJ9mBeRkuVuD8XNFphnG5MMfDwa5dkmOv4bzu+p9l8GdqITvi9KRBERESmHDhw4wMqVK7Ot27p1KyNGjGDYsGHMnTv3ovavwpqIiJQbAwYMICoqihtvvBGHw8ELL7xA27ZtiYyMtDqaSIVnM9wJ8xtO7m8/DeyGL5V9rs51H6bpIN15Ks/jmDhIyzha9KAiIiKlhGlas5Q3DzzwAJMnT87697Fjx7jiiiv44YcfWLFiBUOHDuWHH34o8v5VWBMRkXKlUqVKzJw5k1mzZlG5cmW2bdtG27ZtefbZZ0lPT7c6nkiFViPwXvw8mnHhW1A7BnYuqfwmdptPro83DDt2wz/PYxjYcbdXuviwIiIiUi6sX7+eK6+8Muvfn3/+OcnJyWzdupXDhw/Ts2dPpk6dWuT9q7AmIlKMTOcZ0hKmkRw7kZS4V3Ck77Q6UoV17bXXsmPHDq655hoyMjKYOHEiHTt2ZMeOHVZHE6mw7DYfmobNpFbQQ7jbQ8+tpZJPb5qFzybEp0e++wjzGwrkPpi/iYNQv0HFE1hERMRCrp64IGsCg3ImJiaG0NDQrH/Pnz+fbt26Ub9+fWw2G0OGDGHXrl1F3r8KayIixSQt8Rvioy8jJW4y6YlfkpbwHokn+pAUczumM9nqeBVSaGgo33//PV9++SVBQUFs2rSJ1q1b88orr+Bw5DzwuYiULLvNmxqB93JZ9TW0r7mDjrV20bDKu/h5Ni/Q42sE3oabzZ+ci2s2gr27EeDZtlgzi4iISNlVpUoV9u/fD8CZM2dYu3Ytffr0ydqekZFBRkZGkfevwpqISDFIT/mNlNjxQBpgAhmcm7EuI2UxyWcetDBdxWYYBsOHD2fHjh3079+ftLQ0xo8fz+WXX86ePXusjidSYRmGgd3mjWHk3vssJ55u1WgR/i2+Hg3/s8VGmO81NK7yLoZR/r5tFxERkaLp1asXb731Fq+99hojRozA6XQyePDgrO1//vknNWvWLPL+3Yoho4hIhWOaThzpO8BMwOZWh9T418n8riKnmeqcZKQswJG+B7v7JS5OKudUq1aN+fPnM23aNMaNG8fq1atp0aIFL774ImPGjMFm03dNImWFj0d9Wlf7kfjU7SSkRWHDg2Dvrni4heb/YBERkbLCNDIXVx+znHnxxRf566+/+N///oeHhwdTp06lbt26AKSmpvLdd99x0003FXn/KqyJiBRSWtJskuOnYjoOn11jACYGYJDbHyI7GSmLVFizmGEY3HbbbfTq1YvRo0ezePFixo4dyw8//MC0adOy/sCKSNng79kMf89mVscQKdMS0/7mcPxMzqRsxDDsVPK+nGr+N+DlFm51NBGRYhEWFsaqVauIjY3F29sbDw+PrG1Op5MlS5ZcVI81fT0vIlIIqQmfknTmwfOKapB562fm/5rkNj+1DdNMLOl4UkC1atXi119/5b333sPX15fly5fTrFkzPvjgA8zyOMe4iIhIDo7Ez2Ldkas4FP81Cem7iE/bwb+xH7L2cG9ikldZHU+kwjNNa5byKjAwMFtRDcDb25sWLVoQEhJS5P2qsCYiUkBORwzJcc/n2Sb3v0Pp2NwaFHckuQiGYXDPPfewbds2Lr/8chITE7nnnnvo27cvBw8etDqeiIhIiYpL3cauU0+R+e7l/Al9nDjNNLYdv4fUjOMWpRMRKV4HDhzg7rvvpmHDhgQHB7NixQoATp48yQMPPMCWLVuKvG8V1kRECig9eS6ZkxLk7cJeawYYfrh7XVUSseQi1atXj2XLlvH666/j5eXFr7/+SkREBNOnT1fvNRERKbcOxs7AyPXjoInTTOdIwiyXZhKR/zAtWsqZP//8k1atWvHtt99St25d4uLismYBrVy5MitXruSdd94p8v5VWBMRKSCn4xCFH5rSDhh4B72GYfMugVRSHGw2G+PGjSMyMpIOHToQFxfHrbfeysCBAzl69KjV8URERIpdTMpKzGw91f7LSUzyapflEREpKePHjycoKIi//vqLL7/88oIvz6+66ir++D/27js8imoP4/h3dje9NxI6UgQkNEEQRAVBQESlWFCUXhQ76BUUQey9gAULKGIBe0UUUAGp0jtKk5YEQiC97e7cPyIokoQQkp2U93OfebyZPXPmnQU2u789c87ixcXuX4U1EZEiMmxhUOgb0OP+KaDZvdvhHzEbL7/upZZLSk7Dhg1ZvHgxTz31FN7e3nz33Xc0adKEjz/+WKPXRESkQil4Xth/y2+1cxGR8mXRokXcdtttREVFYRinLjZXq1YtDhw4kM+RRaPCmohIEXn5XU3hY6PtOHwuJbjqBgKrLCMoZgMBkR/h8GnrqYhSAhwOB2PHjmX16tWcf/75HD16lJtuuonrrruOw4cPWx1PRESkRIT6tMbAXkgLG6G+F3gsj4icyjQNS7aKxu124+/vX+Djhw8fxsfHp9j9q7AmIlJEdkdtvP37A/n9sjEAG75BYzAMX2yO6hi2UM8GlBIVGxvL8uXLmTRpEg6Hg88//5wmTZrwxRdfWB1NRETkrNUMHljoraAGNqoF3eDBRCIipeP888/n+++/z/cxp9PJrFmzuPDCC4vdvwprIiJnwC/kMbwDhvDPXGt5L6OGLZqAiPdxeLe0LJuUPC8vLyZMmMCKFSuIjY3l8OHD9O3bl/79+5OUlGR1PBERkWIL82tL3dAxACeNXMv7/zaaRD2Pn6O6RelE5AQtXHDWxo0bx9y5c7ntttvYtGkTAAkJCcyfP5+uXbuydetWxo4dW+z+DVOTxpyRlJQUQkJCSE5OJjg42Oo4ImIRtyuR3Kx5mGYadkc9HD6XYhiF3U4h5V12djaTJk3imWeewe12U7VqVd5++22uvFKrvUrJcptuVh75k98ObyHX7aR+UDW6Vz2fIC8tgCIiJe9Y1ir2p3zAsexVGNiJ8LuUGsG3EOjdwOpoIpX28/fx66711gRsfr4ePbc7M4u9Ix6tcM/5zJkzufvuu0lOTsY0TQzDwDRNgoODeeONN7jxxhuL3bcKa2eosv7DFhGRPCtWrGDgwIFs374dgCFDhvDiiy8SEhJicTKpCA5npTBm7TR2psVjN/JGxLpNN942BxNib6RjdKzFCUVERDynsn7+VmGtdKSnp/PTTz+xY8cO3G439erVo1u3bgQFBZ1VvyqsnaHK+g9bRET+kZmZyfjx43nppZcwTZOaNWsyffp0unTpYnU0KcecbhcDl7/MvoxEXObJK/EZgIHBm21u57yQmtYEFBFM0yQ99w9c7nR8HTXxcURZHUmkQqusn7+PX3fNNydaUljbN3JSpXvOz4bj9E1ERETk3/z8/HjhhRfo1asXgwcPZufOnVx++eXcdtttPPvsswQGBlodUcqhZYnb2JN+KN/HTMCGwQe7f+HJFgM8G0xEAEhI+55dx14m07n37z02Iv060SD8Qfy8aliaTURECrZ3797TNwJq1apVrP5VWBMRESmmiy++mPXr1/PAAw/w2muv8cYbb/Djjz/y7rvvcskll1gdT8qZRYc3Yzdsp4xWO86Fm8WHt+A23dgMrT8l4kn7Uz7ij6RJnLwyuJvEzF9JjltL62qfaaJ/ESl5ViwoUAHvaaxTpw6GYZy2nctV8ErJhVFhTURE5CwEBATw6quv0rt3b4YMGcKuXbvo2LEjd999N08++SR+fppwXoomy5WL+zQzdLgxcZpuvFVYE/GYXFcyfyY99fdP//036sLpTmbX0ZdpEvWcp6OJiEgRTJ8+/ZTCmsvlYs+ePbz//vtUqVKF22+/vdj9q7AmIiJSAjp37szGjRsZPXo006ZN4+WXX2bOnDnMmDGDCy+80Op4Ug7UDYzm14SNhX5RXNU3DG+b3r6JeFJC+neY5Bb4uImLQ+lzaBgxEYdNUwGISEkyOHmkrKfOWbEMGjSowMceeOAB2rZtS3JycrH719edIiIiJSQ4OJh33nmH77//nmrVqvHHH39w0UUXMXbsWLKzs62OJ2Vcz2ptCn3cwODaWu09lEZEjsty7sfAXmgbEyfZrvznSBQRkbIrICCAwYMH89JLLxW7DxXWRERESliPHj3YtGkTN998M263m2eeeYZWrVqxevVqq6NJGRblG8z9jXsDeQsV/JuBQcuwuvSpqcKaiKc5bKGY5D/34b952UI8kEZEREqa2+0mPj6+2MersCYiIlIKwsLCmDlzJl988QVVqlRh8+bNtG3blkceeYTc3IJvKZLK7eoabXnx/KE0DzvnxL4on2BG1u/GC+cP0W2gIhaIDuhB4bN52wjzvRBve4SnIolIZWFatFUSKSkpfPfddzz33HO0bNmy2P3o3ZmIiEgp6t27Nx06dOD222/n008/ZdKkSXzzzTfMmDGDpk2bWh1PyqC2EefSNuJcslw55LidBDn8irSSlYiUDj+vmlQLvI6DaZ9y6idOAwODc0LvsiKaiIgUgc1mK/C9lGma1KpVi9dff73Y/auwJiIiUsqioqL45JNPmD17NqNGjWLt2rW0atWKSZMmcf/99+Nw6NexnMrX7o2v3dvqGFIGuN3ZZLsSsNv88bZHWh2nUjo3YgKG4cWB1I/JK67ZABdetnDOi3yKUN9WFicUkQrJihFkFXDE2oQJE04prBmGQVhYGPXq1aNr165n9X7cMM3TrOsuJ0lJSSEkJITk5GSCg4OtjiMiIuVMfHw8I0aM4NtvvwWgbdu2vPfeezRq1MjiZCJS1jhdKfx1bDLxaZ/gNjMACPRuRu3QOwn372Rxusop23mIxIwFOM00/B3nEOF/KTbDy+pYIhVWZf38ffy6a77+CDY/X4+e252Zxb5Rj1S65/xsaI41ERERD4qJieHrr7/mvffeIyQkhBUrVtCyZUteeukl3O7TT44tIpWD05XCuvjrOZg680RRDSAtZxObDw0nPvUTC9NVXj6OKlQPvpHaIcOJCuiiopqIiOhWUBEREU8zDIOBAwfSuXNnhg4dyk8//cTo0aP58ssveffdd6lXr57VEUXEYvuS3yAzdzfg+s8jeQX4HUcmEuF/OV72MI9nExERDzGNvM3T5yznhgwZcsbHGIbBtGnTinU+FdZEREQsUqNGDebOncvbb7/NmDFjWLx4Mc2aNeO5557j1ltvxWbTwHKRysht5hKXOotTi2r/MHFyKO1Lqoec+YcHERGRiuznn38+44WfzmahKBXWRERELGQYBiNGjKBr164MHjyYX3/9ldtvv50vvviC6dOnU6tWLasjioiHOV3HcJmphbYxsJORu9tDiURExAqmmbd5+pzl3Z49ezx6Pn0VLiIiUgbUqVOHBQsWMHnyZPz8/FiwYAGxsbFMmzYNrTMkUrnYbH5FaGVitwWUehYREREpnAprIiIiZYTNZuPOO+9k/fr1tG/fntTUVIYNG0bPnj05ePCg1fFExEMctkBCfTsA9gLbmLiICrjCc6FERMTzTIs2OSMqrImIiJQxDRo0YNGiRTz33HP4+PgwZ84cmjRpwgcffKDRa55kmrBtGyxZAmvXQmam1YmkEqkVegd5n27ym/PFTqjvRQR6N/NwKhERkfLphx9+4PLLLyciIgKHw4Hdbj9lKy4V1kRERMogu93Offfdx5o1a7jgggs4duwYt9xyC3369CEhIcHqeBVbejpMmQJNmkDjxtChA5x/PlSvDmPGwG7NayWlL8S3NY2jpmAz8m4LNXBwfARbmO9FNK7y6llNtCwiIlJZfP755/Ts2ZOEhAT69euH2+3mxhtvpF+/fvj5+dGsWTMmTJhQ7P5VWBMRESnDzjvvPJYuXcrjjz+Ol5cXX331FbGxsXz66adWR6uY4uLgoovg3nuhSROyvv2MQ6t/JGXR9zBsGLz3HjRrBvPmWZ1UKoHIgG5cWHM5DSKepFrwLdQMuZWWVb8mNmY6DluQ1fFERKS0mYY1WwXz1FNP0aZNG9auXcukSZMAGDJkCB9++CGbNm0iLi6Oc845p9j9q7AmIiJSxjkcDh566CF+//13mjdvTmJiItdffz39+vXjyJEjVserONLT4YorIDGR5JXz+fj5tjxe62NecUzlmZB3eH24yY5N38DFF8M118CqVVYnlkrAbvMnJuh66oY/RJ2wewn0aWJ1JBERkXJly5Yt9OvXD7vdjsPhACA3NxfIW0Bs1KhRPPPMM8XuX4U1ERGRcqJ58+asXLmShx9+GLvdzuzZs2nSpAnffPON1dEqhmnTYPNmkr/9kNd83mNL8nJM3CcePpi5i3cPv8DGaWPg3HNh3DgLw4qIiEhFZ5jWbBWNv78/3t7eAISGhuLj40NcXNyJx6Ojo9l9FlN9qLAmIiJSjnh7e/Poo4+yfPlyGjduTEJCAtdccw0DBw7k2LFjVscrv0wTXn8d+vRhTvjvZLrScP+rqAZg/r1M1pdHpuMcfTfMnw/bt1uRVkRERESKqGHDhmzZsuXEzy1atGDmzJk4nU6ysrL46KOPqFWrVrH7V2FNRESkHGrdujVr1qzhf//7H4Zh8P777xMbG8uPP/5odbTyaetW2L6drIH92Jy8/JSi2r9luzPZ3LUGBAXBl196MKSIiIiInKnevXvz9ddfk52dDcBDDz3Er7/+SmhoKFFRUSxevJixY8cWu38V1kRERMopX19fnnnmGX777Tfq16/PgQMH6N69OyNGjCA1NdXqeOXL33PVJVcNOOn2z/zYsJNoJEFMzInjREREREqcadFWwdx3333s3bsXHx8fAHr27Mmvv/7K8OHDGTlyJAsWLGDQoEHF7l+FNRERkXKuffv2rF+/nrvuuguAt99+m2bNmvHLL79YnKwc8fcHwDej8KIagIkbX8MPUlNPHCciIiIi5cfFF1/MSy+9xPPPP0+nTp3Oqi8V1kRERCoAf39/XnnlFX755Rfq1KnDnj17uOyyy7jrrrtIT0+3Ol7Z17gxhIQQ8t1Cqvqeg0HhS8033+YF8fHQrp2HAoqIiEilYxrWbBXM9ddfz5dffnniVtCSpsKaiIhIBdKxY0c2bNjAiBEjAJgyZQotWrRgyZIlFicr4/z9YdAgeOcdugb1PrFQwakMLgjvSuAb70O9etC1qydTioiIiMgZWrJkCX379qVKlSrccsstfPfdd+Tm5pZY/yqsichZMU0nxzJ+Ii75ZRJSppKVu8PqSCKVXlBQEG+++SZz586levXq7Nixg4svvpj777+frKwsq+OVXXfeCZmZnDviGW6Iug1vmy+QN6ea8ff/2oR35aovs2DWLHjgAbDlvZVKyfyFXYduZuO+Jmza34y9ifeSmbPZyqsRERGR8k5zrJWI/fv38+uvv3LzzTczb948rr76aqKjoxk6dCg//fQTLpfrrPo3TNOsgE9b6UlJSSEkJITk5GSCg4OtjiNiqbSsFexOvJ1c9yHAAbgBNyF+l1Mn4hXstkCLE4rIsWPHuOeee5gxYwYAjRs3ZsaMGVxwwQUWJyuj5s6F3r2hcWOcY+5mU5eqJJpJ+Nn8abbdm6A33oePP4bRo+H558EwOHjsKQ6nvA7YgeNvzOyASa2IKYQFXG3d9YiIiJRjlfXz9/HrrvniY9j8fD16bndmFvtGP1xhn3O3280vv/zCJ598wpdffkliYiIRERH07duXqVOnFqtPFdbOUGX9hy3yX5k529kW3xOTXDhlBT07QT4XUr/KRxhGxbtHX6Q8+uabbxgxYgQJCQnY7XbGjh3LhAkT8Pb2tjpa2bNiBYwbB7/8AsHBULVq3kIFBw9C3bowdiwMGwaGQUrmfHYfHlxIZw4aV1uCt6Oax+KLiIhUFJX187cKa57hcrmYPn069913H2lpacUeuaZbQUWkWOJTXsfEyalFNQAXqdlLSM9e6elYIlKAq6++ms2bN9OvXz9cLhdPPPEEF1xwAevXr7c6WtnTti38/DNs3gz/+x9ceSUMGQJz5sCff8Lw4fD3lwaHU6aRNzqtIG6OpH3okdgiIiJSwehW0FIRFxfH5MmTueSSS7j11ltJS0ujffv2xe7PUYLZRKSSME0XxzK+459bnvLjICnjWwJ923oqloicRkREBB9//DF9+vRh1KhRbNiwgdatWzNhwgTGjh2Ll5eX1RHLlvPOy9sKkZGzmsJfC91kZK8q0VgiIiIicmYOHTrEZ599xuzZs1myZAlut5s2bdrw/PPPc/3111O9evVi960RayJyxtxm1t+3gBbaCpc7xSN5PMU0c0nN+Jb9hwfxV0JPDiaOIj3rN3RHvZQ31113HZs2baJ37944nU4mTJhA+/bt2bJli9XRyqHCRqvlMQwVLEVERKQYNGKtRHTu3Jnq1atzxx13kJqayhNPPMGuXbtYvnw5995771kV1UCFNREpBpvhj90WfppWBj6O2h7J4wku11H+SriKg0dGkp41n6ycNaRmfsv+w9cTd+Q2TNNpdUSRMxIdHc3nn3/OzJkzCQ0NZdWqVZx//vk899xzZ70yUmUS5HsphRfXDIJ8L/FUnDLraHY63+xbx+w9K/k9cbe+kBARERGPOXToEBMnTmT79u2sWbOGBx54gDp16pRY/7oVVETOmGEYRAXeTHzKq+Q/xxqAm4jA6z0Zq1TFJd1Ndu7mv386fs15xYfUzG/xTqlHZMj9lmQTKS7DMLj55pvp1KkTw4cP54cffuB///sfX331Fe+99x4NGjSwOmKZFxU8guTMOQU8asNm+BMWcJ1HM5UlTreLF7f8xKw9K3Cabgzyvgiv6R/Oky370Dy8ltURRUREpILbuHFjqfavEWsiUizRwSPwcZxDQSM1qoaMxsdR07OhSklO7k7Ss+ZT8DxKJkdT38HtzvRkLJESU716db7//nveeecdgoKCWLp0Kc2bN2fy5Mm43QUVzwUgwOd8aoY/R95bqn+/HhrYDH/qVvkAhz3MonTWe2zDt3y4exlOM+/v0fFxagcyjjJs2Xv8kZJgXTgREZGyzjSs2eSMlPvC2muvvUadOnXw9fWlbdu2rFxZ8CqE7733HoZhnLT5+np26VqRisJuC6Zh9JdEBt6Agc+J/d72WtQOf56qIXdbmK5kpWctAgr/BeM2U8nO3eSZQCKlwDAMhg4dysaNG+ncuTOZmZncfffddO7cmT179lgdr0wLD7yBRlUXEhU0DH/v1gT4XEjV0AdpXG0JAT6trI5nmd1piXy5b02+U7W4MXGabt784xeP5xIREREpSeX6VtDZs2czevRopk6dStu2bXn55Zfp1q0b27dvp0qVKvkeExwczPbt20/8bBiqxooUl8MeSq3wp6ke+hDZzr8wDB98HfUwjHJfs/+Pos03ZZqal0rKv9q1a/PTTz8xdepU7r//fn799VeaNm3KCy+8wPDhw/V7swA+XnWoFjbe6hhlypwDG7AbNlxm/qMeXaabBfFbyXBm4+/wybeNiIhIZWaYeZunzylnplx/+n3xxRcZPnw4gwcP5rzzzmPq1Kn4+/szffr0Ao8xDIOYmJgTW3R0tAcTi1RMdlsQ/t6x+Hk1qIBFNfD1bs3plscx8MbHu7FnAomUMpvNxqhRo9iwYQMdOnQgLS2NkSNHcsUVV7B//36r40k5cTQ7/TRjfcFtmqTkZnkkj4iIiEhpKNVPwG63m/fff79U+s7JyWH16tV06dLlxD6bzUaXLl1YtmxZgcelpaVRu3ZtatasyTXXXMPmzZsLbCtSmpzuVOJS3mNDXC/WHOjEloQhJGXMxyzgm32xjq93c3y8mlLwyn92ggOuw24L8WQskVJXr149fv31V1588UV8fX358ccfiY2NZcaMGVrVUU6rql8I7tP8PfG22Qn19vdQIhEREZGSV6qFtdzcXAYPHlwqfScmJuJyuU4ZcRYdHU18fHy+xzRs2JDp06fz9ddf88EHH+B2u2nfvn2h375nZ2eTkpJy0iZytrKc+1l38Ap2H32MtJyNZDn/4ljWYrYdHsH2xDswTafVEeVfDMOgWsRU7LYITn7ZNAADH68mRIVOsCidSOmy2+3ce++9rF27lrZt25KcnMygQYO45pprCvx9KwLQs0aLQh+3GzaurN4cX7vXPzszM+G99+DSS6FWLahdG7p0gVmzICenVPOKiIiUOaZFWwWVnZ3NsmXL+Prrr0lMTCyxfs96jrVHH320wMdyc3PPtvsS1a5dO9q1a3fi5/bt29O4cWPefPNNHnvssXyPeeqpp5g0aZKnIkolYJom2w7dSo4rgZNftfLm50rK+JH9yW9QM/ROS/JJ/ry9zqFOzAKOpb1HcvonuN3HcDiqExpwMyEBN2Kz+VkdUaRUNWrUiN9++43nn3+eiRMn8u2339KkSRNee+01brjhBs29JqeI9gtm5LkdeSOfBQrsho1gL19uPbfjPzt/+gluugmOHIFu3WDgQDBNWLIEbrwRqlaFTz+Fiy7y3EWIiIhIhTB58mQeeeQRkpOTAZg3bx6XXXYZiYmJNGrUiGeffZYhQ4YUq++zHrH2+OOPs23bNuLi4k7ZEhJKbwn1yMhI7Hb7KedISEggJiamSH14eXnRsmVLduzYUWCbcePGkZycfGLbt2/fWeUWSc1eRUbuFgqeEN8kLvU93Ka+mS9rHPYIIkPGUK/aChrU2M45MT8TFjRERTWpNBwOB2PHjmX16tW0bNmSpKQkbrzxRq6//noOHz5sdTwpg249tyMPxl5JhHfAiX0GcGFkXT7oMIKq/qF5O3/8Ea68Etq0YdeapUx8ehRXXBpJj45VePyV+9i3cjE0aJA3em3pUkuuRURERMqnd999l3vuuYfu3bszbdq0k6Y0iYyM5LLLLmPWrFnF7v+sR6w1bdqUm266iZ49e57yWFZWFu+8887ZniJf3t7etGrVigULFtCrVy8gb063BQsWcMcddxSpD5fLxcaNG+nRo0eBbXx8fPDx0UpVUnJSsleSN1dXwStIOt1HyczdRYB3I4/lEhEpqtjYWFasWMGTTz7J448/zmeffcaiRYuYOnUqvXv3tjqelCGGYdDvnLZcW7s1G4/tJ8OZwzmBUVQ7XlADyMjIG6nWtSufT57AxE0/YPvXaqL79xzlEwyem/4i3YaMhhtugF27wMsr/5OKiIiI/MsLL7zANddcw0cffcSRI0dOebxVq1ZMnjy52P2f9Yi14cOH43bnP9m6l5cXEydOPNtTFGj06NG8/fbbzJgxg61bt3LbbbeRnp5+Yl63AQMGMG7cuBPtH330UX766Sd27drFmjVruPnmm/nrr78YNmxYqWUU+a+iT/hdgW9uF5Fy7/jv+BUrVhAbG8uhQ4fo06cPN998M0ePHrU6npQxDpudluG1uahKg5OLagAffwxHj7LjqYlM3PQDJpwoqgG4TBOX6eb+zd9z8OlHYf9++PZbj+YXERGxggEYpoe3UryepKQk+vfvT3BwMKGhoQwdOpS0tLTTHrds2TIuu+wyAgICCA4O5pJLLiEzM7PI592xYwdXXHFFgY+Hh4fnW3ArqrMurN16661cffXV+T5mt9tLtbB2ww038PzzzzNhwgRatGjBunXrmDt37okFDfbu3UtcXNyJ9kePHmX48OE0btyYHj16kJKSwtKlSznvvPNKLaPIfwX7tqGw0WoADlsIfl51PRNIROQsnH/++axatYpx48Zhs9n48MMPadKkCXPmzLE6mpQX06ZBjx686zyIzSjsranJzKDMvDnWpk3zWDwREREpGf3792fz5s3MmzeP7777jkWLFjFixIhCj1m2bBndu3ena9eurFy5kt9//5077rgDm63o5azQ0NBCFyvYsmVLkacUy49hFn34DABjxozhhRdeKPYJy7uUlBRCQkJITk4mODjY6jhSDpmmyfq4HmTk7iD/AptBjZA7qRV6j4eTiYicnRUrVjBw4EC2b98OwJAhQ3jppZf0+1IKFx0Nd95J5wv8ic8qfPX1c4Oj+fK7HTBnDmzd6qGAIiJilcr6+fv4ddd+5nFsvr4ePbc7K4u/Hhhf4s/51q1bOe+88/j9999p3bo1AHPnzqVHjx7s37+fatWq5XvchRdeyOWXX17ggpNFMWTIEH7++WfWrVuHy+UiKiqK+fPnc9lll7F582batm3LkCFDin076BmPWJsyZQq9e/cudNjdX3/9VawwIpWBYRg0inoTb3sUJw+0zfvnGObXmRoht1uSTUTkbLRt25a1a9dy7733YhgG06dPp2nTpixYsKBY/WXmHuBg2nfEpX1PpjPu9AdI+aaFZUVERE5mGtZs5BX3/r1lZ2ef1aUsW7aM0NDQE0U1gC5dumCz2VixYkW+xxw6dIgVK1ZQpUoV2rdvT3R0NJdeeim//fbbGZ378ccfx+VyERsby/jx4zEMgxkzZnDzzTfTunVrqlSpwoQJE4p9bWdcWJszZw4LFy7k4osvJj4+/qTH/vrrL0aMGEHDhg2LHUikMvD1qkWLanOpHTYOf6/GeNurEeLbjoaRr9Eo6g1shiZkFpHyyc/PjxdffJGFCxdSt25d9u7dS5cuXRg1alSR5tAAyHEdY23CHSza35WNh//HhsP3s2hfF9Yl3EOuq/ARTVIO1asHy5ZxYWRd7IXcCmo3DNpF1YXly6GupksQEREpTTVr1iQkJOTE9tRTT51Vf/Hx8VSpUuWkfQ6Hg/Dw8FNqS8ft2rULgEceeYThw4czd+5czj//fDp37syff/5Z5HNXq1aN1atX0717d2bPno1pmsycOZNvv/2WG2+8keXLlxMZGVnsazvjwlqXLl1YunQpx44d44ILLmDdunUnFdRmzpzJ0KFDix1IpLJw2IKpHjyMFtW+p3WN32gSPZOIgCswDLvV0UREztrFF1/M+vXrGTVqFABvvPEGzZs3Z/HixYUe53Jn8nvcQA5lLOTkRVxMEjIWsCp+KG4zp/SCi+cNHQo//MBge1XcZv4LYuUxuDnFB5YuzTtGRESkojMt2oB9+/aRnJx8Yvv3wpD/NnbsWAzDKHTbtm1bsS7/+EKZI0eOZPDgwbRs2ZKXXnqJhg0bMn369DPqq0qVKrzzzjskJSWRkJBAXFwcR48eZfr06acU/M5UsRYvaNSoEStXrqRGjRp06NCBhg0b8uGHH3Lbbbexa9cuXnvttbMKJSIiIuVfYGAgr732GvPmzaNmzZrs2rWLSy+9lNGjRxc4pcTBtK9Jy/2T/OegdJGSs5n4tLmlmls87MYbISyM+uMm8ViTKzDgpJFrdsPAbth4oUlPqo2dADVqQAELZ4mIiEjJCA4OPmnz8fHJt92YMWPYunVroVvdunWJiYnh0KFDJx3rdDpJSkoqcOGAqlWrApyy4GTjxo3Zu3dvsa8tKiqK6OjoM1oAoTDF6mXfvn1MmDCBdevWkZGRQW5uLs8//zwvvfTSiQsXERERgbzR7hs3bmTIkCGYpslLL71Ey5Yt851PY3/qFxQ+2ZaN/WlflFpWsYC/P3z8McybR+87H+Hbml3pW7sltQMiqBMYQb86FzAnuhOXD74Hfv8dPvkEHA6rU4uIiAh5RapGjRoVunl7e9OuXTuOHTvG6tWrTxz7888/43a7adu2bb5916lTh2rVqp1YGOu4P/74g9q1axc54/jx42nRokWBj7ds2ZJJkyYVub//OuPC2rBhw2jQoAHTpk1j+PDh7Nmzh6FDh3LnnXfy9NNPFzuIiIiIVFwhISFMmzaN7777jqpVq7J9+3bat2/PuHHjTpoMN9t1mJNvAf0vN9nOhFLPKx7WtWveSp+rVnFOq4uYeN9k5vwcx/fzD/Lgnc9Q48JLYOdO+PlnaNfO6rQiIiKeYeGtoCWtcePGdO/eneHDh7Ny5UqWLFnCHXfcQb9+/U6sCHrgwIETd0hC3sJ/999/P5MnT+azzz5jx44dPPzww2zbtu2MpiD77LPPuOKKKwp8vEePHsyePbvY13bGhbUPP/yQ4cOHs3PnTiZPnkytWrV46623eOqppxg/fjyDBw8mNze32IFEROQfOc79pGctITNnE6ZZSr/lRDzoyiuvZNOmTfTv3x+3283TTz9N69atWbNmDQC+jmhON2LN16HR8RXS5ZfDvn3w/vvgdMJHH8GsWeDtDbNnw+7dKqqJiIiUYx9++CGNGjWic+fO9OjRgw4dOvDWW2+deDw3N5ft27eTkZFxYt8999zDuHHjuPfee2nevDkLFixg3rx51KtXr8jn3bt3b6HtzznnHP7666/iXRRwxuPod+7ceaKa+G/3338/DRo04Oabb2bXrl0sXLiw2KFERCq77Nw/iT/6MOnZ/0z07mWvTZXQBwjxv8bCZCJnLzw8nA8++IC+ffsycuRINm3aRNu2bXnooYcYeFcvkrM3FHK0mxpBfT2WVTzM1xduuSVvExERqeQMM2/z9DlLS3h4OB999FGBj9epUyffwQRjx45l7NixxT5vYGBgoYWz3bt34+vrW+z+z3jEWn5FteN69erFwoUL2bFjR7EDiYhUdtm5O9idcBXp2UtP2p/r+osDR0ZxNC2fX0a//563Sl7btnD++dCzZ95IjxytnihlV+/evdm8eTPXXnstTqeTSZMm0bfLMxzeWZ3836LYCPVpSXRAV09HFREREZFyqmPHjrz55pscOHDglMf27dvHW2+9RadOnYrdv2GWwr1FBw4coHr16iXdbZmQkpJCSEgIycnJBAcHWx1HRCqgvYcHk5a1gPxXRQTD8OPcauuw2wJh/37o1w+WLIHataFzZ/Dygi1bYPFiiI6Gt9+Gq67y7EVIkbjcR0lP/5iMzG8wzXS8HI0JDByIj3d7DKOw2yErFtM0mT17NrfffjtJSUl4e3tz631t6TboCHZH3tsUAwdVA3vSOOIhHLYAixOLiIiIJ1TWz9/Hr7vO409gO4uRVMXhzspiz/iHKtRzvn37dtq0aYNhGAwdOpQmTZoAsGnTJqZPn45pmixfvpzGjRsXq/9SKaxVZJX1H7aIeIbTlcgfB1twullDq4W9SGhyB2jfHoCMF1/kk5q1mL9nD9kuJ02jYxjo60Ptp5+G77/Pm5/o2mtL/wKkyHJzt3MosS9udxL//HnbARcBAYMJC3miUhXXAOLi4hg5ciTffvstAG3atOLFqbfT4NxahPi2wMceYXFCERER8aTK+vlbhbWSt2HDBu68804WL1580v5LLrmEyZMn06xZs2L3rbXKRUTKkFxXPKdfisdBjmsfDB4Mbjd/fPstNy1ZyrE9f504cn1cPO+bJuMffphBAQF58xV16AAxMaV8BVIUpunk8JH+uN3HOPnPO2+UYnr6u3h7NSEwoL8V8SxTtWpVvv76a95//33uuusuVq5cTZf2o3jyySe5++7iD88XERERkcqtWbNmLFy4kMTERHbt2gVA3bp1iYyMPOu+z3iONRERKT0OW1gRWrnw/jML5s0j58kn6b90GSnZ2SeXZ0wTE3hs0WKWjhsHhgHvvFNKqeVMZWb9iMt1gIJu9wWD1LQ3KuVKsIZhMHDgQDZt2sTll19OVlYWo0ePpmPHjuzcudPqeCIiIiKeY1q0VWCRkZG0adOGNm3alEhRDTRiTUSkTPFyVMfPuxWZOWsBdwGtbAR/sB+qVOGb884j6deCV2G2GwZv/vEn7fv3h7fegvHjSyW3nJns7GXk/Qp2FtDCxOncidt9BLu9ZH7hlzc1a9bkxx9/5K233mLMmDEsXryY5s2b8+yzz3Lrrbdis+m7QREREREpGpfLxY8//siuXbs4evToKV9gG4bBww8/XKy+VVgTESljqoSM5a/D/QCD/L4yiggaju3P5XDhhSw8GIfNMHAXMLLJZZos3bsX98UXY3vnHcjMBD+/0r0AKYKifhVYwb8yPA3DMBg5ciRdu3Zl8ODBLFy4kNtvv50vv/ySadOmUatWLasjioiIiJQaw8zbPH3OimbVqlX07duX/fv3F3hHyNkU1vR1r4hIGRPg256akdOx246PVMp7qTbwIiLoDqqEPARuN9jtuE3ztLcLmqYJx0f3uAq69VA8yce7DQWPVgMwsNvrYLNVztFq/3XOOefw888/88orr+Dn58f8+fNp2rTpiVWcREREREQKMmrUKDIzM/nqq69ISkrC7XafsrnO4nOSCmsiImVQkF8Xzq22ipqR7xIdOoFq4S/SoNoaokPHYRg2qFUL1q2jZUx0of0EeuXQvX42rjULMMPCICDAQ1cghfHzuwKbLZq8VUDzYxIUOLLSrQr6b07XMdJzNpKZuxPTNLHZbNx1112sW7eOdu3akZKSwtChQ+nZsycHDx60Oq6IiIiIlFEbNmzggQce4KqrriI0NLTE+1dhTUSkjDIMB0F+XYkIGk5owA047OH/PDhoEOzezQ1xcXg7HPy3/BLglcXtrX5ixtWvc/t5UzDencHR6xwcSXtHI3zKAMPwJipiJoYRwMm/ivMKbf5+NxAYMMCSbFbLccazM/Eu1h5oxZb4q9gU15lNcV1IyvgegHPPPZfFixfz7LPP4u3tzZw5c4iNjeXDDz/U320RERGpWEzDmq2CqVGjRqm+T1RhTUSkPLrwQmjZkqBHHuGNTp2w22zY/x7d5OvI4elOs7n8nE14211EvZKKPdkkqb9BwrFHSDg20eLwAuDt3ZSq0YsIDroXh6M+dltVfH0uJTL8fcLDXsobmVjJ5LgOsSWh199FtH+G42c5d7Ez8XYOpc4EwG63c//997NmzRpatWrF0aNHufnmm+nbty+HDh2yKL2IiIiIlEUPPPAAb7/9NikpKaXSvxYvEBEpjwwD3n0XLr6YS0cM58dXXuGdlFR++vNPutddRa2QIzjSXEROTiXyzXQSHgwm55y8l/yktGmEBtyAr3cTiy9C7PZoQoLvIyT4PqujlAkHk18i13WYfxfV8uR9w7j36KOE+/fEYQ8DoEmTJixbtoynn36aRx99lC+//JLFixfzxhtvcO2113o2vJQpLvcxktJmcCztY5zuwzhsUYQG3kh44EDstlCr44mIiBSNiefXsqqANwCkpqYSGBhI/fr16devHzVr1sRuP3lKFsMwuPfee4vVv2HqvokzkpKSQkhICMnJyQQHB1sdR0Qqu1Wr4Jpr4OBBuPxy6NqVQ5lT8NqWSMhXmRjZJgkPBpM0LCCvGAeAnfDAgcSEPWZpdJF/c7kzWbu/BSbZhbQyqBU2geigwac8sm7dOgYOHMiGDRsAuPHGG5kyZQoRERGllFjKqlxXPHsSepPr2g+4//WIDS97DepEf4WXvfD5KUVEpGyorJ+/j1/3OY88ic3X16PndmdlsfuRByvUc26znf5OEMMwir2AgUasiYiUZ61bw44d8Omn8OabmI89RmR2Cs5oO0eGB3D0pgCcVf87Qb6LHOdflsQVKYjTnXiaohoY2Ml27s33sRYtWvD777/z6KOP8vTTT/Pxxx/zyy+/8Pbbb9OzZ8/SiCxl1MGk+8h1HeDkohqAm1zXAQ4mjaF21AdWRBMRETkjhpm3efqcFc3u3btLtX8V1kREyjs/PxgwAAYMwAC272+M2yxs/gC7boWSMsduBJ22jYmJ3Sj4m1Nvb28ef/xxrrnmGgYOHMjWrVu56qqrGDRoEC+//DIhISElGVnKoBznX6Rn/VJICxfpWb+S4/wLb0dtj+USERER69SuXbq/8yvfzMgiIhVcSEAfjq8umT8Xwf69PJRGpGgc9lCCfTpwur+74QFXnbavCy64gDVr1nDfffdhGAbvvfcesbGx/PTTTyWWV8qmzJz1RWhlFrGdiIiIVCQHDhzg448/5pVXXmH//v0AuFwukpKSin0bKKiwJiJS4UQEjcRm+JN/gcKOn3drAn07ejiVyOlVCz0+YWx+y7zbCPe/Gj+v+kXqy9fXl+eee47FixdTv3599u/fT7du3bj11ltJTU0tscxSthhFvBmjqO1EREQsZVq0VTCmaTJ69GjOOecc+vfvz+jRo/njjz8ASEtLo06dOkyZMqXY/auwJiJSwXg7alGnymd42Wv8vcfO8Zf7QN9O1IqaiWHo5V/KniCfVjSIegfHiVuVHeT93TWICOjDORHPnXGfF110EevWrePOO+8E4M0336RZs2b8+uuvJZRayhJ/nwsBr9O08vq7nYiIiFQGzz33HK+88gr33Xcf8+bN499reIaEhNCnTx8+//zzYvevr+tERCogX+9Y6lf9jfTs38jK2YhheBHoexk+RRztI2KVUL9ONK++gmOZ88jK3YnN8CfMvxs+jprF7jMgIIDJkyfTu3dvBg8ezJ49e+jUqRN33nknTz/9NP7+/iV4BWIlhz2c0IAbOJb+EacuXgBgIzSgHw57uKejiYiInDkLFi+oiCPW3n77bQYMGMCTTz7JkSNHTnm8WbNm/PDDD8XuX0MWREQqKMOwEeh7CZHBtxMRNEJFNSk3bIY34f5XUi3kLmKCh51VUe3fOnXqxMaNGxkxYgQAU6ZMoUWLFixdurRE+peyISZsEgG+l/79k/2k/wb4XkpM2CNWxBIRERGL7Nu3j/bt2xf4eEBAACkphS3+VjgV1kRERKTSCAoK4s0332Tu3LlUr16dP//8k4svvpj//e9/ZGVlWR1PSoDN8KVW5PvUivqYYL+r8PduS7DfVdSK+phake9jM3ytjigiIiIeVKVKFfbt21fg46tXr6ZWrVrF7l+FNREREal0unXrxqZNmxg4cCBut5vnnnuOVq1asWrVKqujSQk4PmK3RuRr1In+ghqRrxHoe4nmlxQRkfJFixeUiD59+jB16lR27dp1Yp9h5C2W9dNPP/Hee+9x3XXXFbt/vbsQERGRSik0NJT33nuPr7/+mujoaLZs2cKFF17Iww8/TE5OjtXxRERERKQETJo0iapVq9KiRQsGDBiAYRg888wzdOjQgSuuuIJmzZrx4IMPFrt/FdZERESkUrv66qvZvHkzN9xwAy6Xi8cff5w2bdqwfv16q6OJiIhIZaYRayUiJCSE5cuX87///Y8DBw7g6+vLwoULOXbsGBMnTmTx4sVntZiVCmsiIiJS6UVERDBr1iw++eQTIiIiWL9+PRdccAFPPPEETqfT6ngiIiIichb8/PwYP34869atIz09nczMTDZt2sSECRPw8/M7q75VWBMRERH523XXXcfmzZvp1asXubm5jB8/nvbt27N161aro4mIiEglY5jWbHJmHFYHEBERESlLoqOj+eKLL/jwww+58847+f3332nZsiWPP/449957L3a73eqIIiIiIlJEQ4YMOW0bwzCYNm1asfpXYU1ERETkPwzD4Oabb6ZTp04MGzaMuXPncv/99/PVV1/x7rvv0qBBA6sjioiIiEgR/PzzzydWAT3O5XIRFxeHy+UiKiqKgICAYvevW0FFREREClC9enXmzJnD22+/TVBQEEuWLKF58+ZMmTIFt9ttdTwREREROY09e/awe/fuk7a9e/eSkZHB5MmTCQoKYsGCBcXuX4U1ERERkUIYhsGwYcPYuHEjl112GZmZmdx111106dKFPXv2WB1PRERERIrBy8uLO+64g65du3LHHXcUux8V1kRERESKoHbt2sybN49XX30Vf39/fvnlF5o2bcpbb72FaWqmXxERESlhpkVbJdO8eXMWLVpU7ONVWBMREREpIpvNxu2338769evp0KEDaWlpjBw5kiuuuIL9+/dbHU9EREREztC8efPw9/cv9vFavEBEpAxyu7PIdSfhsAVjtwVaHUdE/qN+/fr8+uuvvPLKKzz44IP8+OOPxMbGMnnyZG655ZZTJsgVEREREWs8+uij+e4/duwYixYtYs2aNYwdO7bY/Rum7l04IykpKYSEhJCcnExwcLDVcUSkgslxxnEg+WWOpH+FSTZgEOLXmeoh9xDgHWt1PBHJx7Zt2xg4cCArV64E4Oqrr+bNN98kJibG4mQiIiLlW2X9/H38uuuPfRK7r69Hz+3KymLH0w9WqOfcZsv/Zs2wsDDq1avHsGHDGD58eLG/GNWtoCIiZUS28wCb468iMf2zv4tqACbJmb+wNb4PKVnLLc1X2ZmmSUbWUuKOjGRP/CXsTbiCpNTXcLmSrI4mFmvUqBFLlizhiSeewMvLi2+++YYmTZowe/Zsq6OJiIiIVHputzvf7ciRI6xcuZIRI0ac1d0GKqyJiJQRe48+gtN9FHD95xEXJk52H7kX0/zvYyfLdR3iwLFn2XigDev2NWTzwcs4lDINtzuz1HJXBqZpcvjYBA4kXkta5hxynTvIzl3PkeQn+SvhErJzt1kdUSzmcDh48MEHWbVqFS1atCApKYl+/fpx/fXXk5iYaHU8ERERKa+0cEGZpznWRETKgBzXIY5lzqfg32ZuclxxJGctItSvU74tsnJ38kfCtTjdxzhenMt27mT/sUc5kv4550bPxm4LKo34FV5KxiyS06f9/dO/i5smLncyBxNvpk7MMgzDy4p4UoY0a9aMFStW8MQTT/DEE0/w6aefsnDhQt5880169epldTwRERGRCm/v3r3FOq5WrVrFOk6FNRGRMiA7dzen/4rIRlbuTsinsGaaJrsTR51UVPv7EQAyc7ey/+jj1I54poQSVx6maXI09Q3AIP8/IxdO10HSMn8iyP9KD6eTssjb25tJkyZx9dVXM3DgQDZv3kzv3r255ZZbeOWVVwgLC7M6ooiIiJQHVowiqwCj1urUqVOsWztdrsLvDiqICmsiImWAzRZQhFYmNlv+y0Cn56wmM3drIce6SEr/nOphD+KwhRQrY2XldieR69xxmlYOMrOXqLAmJ2nVqhWrVq3ikUce4bnnnmPmzJksWLCAadOm0b17d6vjiYiIiFRI7777rkfPp8KaiEgZ4O/VGC97VXJdcYW0Mgj165LvIxnZ68ibNtNd4NEmOWTlbCfQt83ZRK10iv6lXQX4ek9KnK+vL08//TTXXHMNgwYN4o8//uCKK65g2LBhvPDCCxVmtS0RERGRsiIsLIzWrVtTrVo1j5xPixeIiJQBhmGnesi9hbUgKvAmvO1VCnjYQVEKO4ah71POlN0Wjpe9Nnm3ghbEiZ9PW09FknKoXbt2rF27lnvuuQeAd955h6ZNm/Lzzz9bG0xERETKLMO0Zivvevfuza+//nri57p16/LNN9+U2vlUWBMRKSOiAq+nRuhYwA7YMHD8/f8hwr8PtcImFHhssO/FnK6wZreF4Ofd5KwymmbBI+IqKsMwCA26lYKfXzt2WxUC/Xp4MpaUQ/7+/rz00kv8+uuvnHPOOezdu5fOnTtzxx13kJ6ebnU8ERERkQohKCiIY8eOnfh5z549pKWlldr5NHRBRKQMqRp8K5EBfUhM/5Ic534ctjDCA67Gz6t+ocf5etUj2LczKVm/cvLiBf+oEjQMm+Fzxpmynfs4lPIWR9I/x22m4WWPJjKwP1WChmC3VY7b2EICbiErZx2pGbPJK3Yef45t2IwAqkW+j2F4W5hQypNLL72UDRs2cP/99zN16lRee+015s6dy3vvvUeHDh2sjiciIiJlhRYvKJY2bdrwxBNPkJCQQEhI3vzSc+bMIT4+vsBjDMPg3nsLu4OoYIZpmhXgafOclJQUQkJCSE5O1rwoIlKmON3H2HHoFjJy1vPPfGt5RaBw/z7UjngBw7CfUZ8ZOVv4I+E63GYGJxfsbPg4zqFh9Bc47JVjhUPTNEnPmk9y+gyyc7diM/wJ8ruakMABOOzRVseTcmrevHkMHTqUffv2nXhD9/jjj+Pn52d1NBEREctV1s/fx6+7wf1PYvfx9ei5XdlZ/Pncg+X6Od+xYwcDBgxg+fLlQF7R7HSlL8Mwir0qqAprZ6iy/sMWKYuOZi7lYMr7pOWsx8CbCP8uVAu+BT+vOlZHs4xpOknOnE9S+pfkuhLxcdQhMvAGAnwuOOMlp03TZEtcR7Kde8l/FJydcP9e1Il8qUSyi1RWycnJjB49munTpwPQqFEj3nvvPdq21bx9IiJSuVXWz98qrJWMrKwsDh06RJ06dXj55Ze55pprCm1fu3btYp1Ht4KKSLljmiZ7jj7H/pS3+PdteQdTPyAu9WPOq/IG4f6XWprRKobhINS/O6H+3c+6r7Ts5WQ7dxfSwsXRjK+p4ZqIwx561ucTqaxCQkKYNm0affr0Yfjw4Wzbto327dvzwAMPMHHiRHx8zvwWbhERESn/rFhMoCIsXnCcr68vtWrVYuLEiVx22WXFLpydjhYvEJFy50jG/L+LanDySCoXJrlsPXw7ua4kK6JVKBk5mzjdrwkTJ1m5f3gmkEgFd+WVV7Jp0yb69++P2+3mqaee4oILLmDt2rVWRxMREREptyZOnEhsbGyp9a8RayJS7hxImcY/c4j9l4nbzCYh7QtqhAzzcLKKxTC8KMrspUYxFkQQkfyFh4fzwQcf0KdPH2699VY2btxImzZtGD9+PA8++CBeXl5WRxQRERFP0eIFJWbr1q28++677Nq1i6NHj54y55phGCxYsKBYfWvEmoiUK6Zpkpq9lvyLaidakZy1ylORKqwQ346nbeOwReDvfV7phxGpZPr06cPmzZvp27cvTqeTRx55hAsvvJBNmzZZHU1ERESkXJk5cyZNmzZlypQp7NixA7fbjWmaJ21ud2GfLwunEWsiZUiOK4kDqbOIT/uKXPcx/BzVqRZ0I1UDe2EzvK2OV4bYyH8y/eMMDEPfG5wtH686hPpdwbHMuRRUyIwOvu3vkW0iUtKioqL49NNPmTVrFrfffjtr1qyhVatWPProo9x3333Y7We2yq+IiIiUMxqxViIeeeQRWrZsyQ8//EBkZGSJ969PniJlRGbuPlYevJrdx6aQ6fwLpzuZ1JytbD/yMGviB+ByZ1gdsUwwDINQ3wvJW7SgYHlt5GzVjnieQJ/jz6X9pP9GBQ6iStBwS3KJVBaGYXDjjTeyefNmevbsSU5ODmPHjqVDhw5s377d6ngiIiIiZd7BgwcZMmRIqRTVQIU1kTLBNE02Hr7r7wn3/z0yKO/rgpTs9ew8+oIl2cqi6iFDKXjEmg27EUiVwN6ejFRh2W2BNKjyMfWrfEREQF9C/C4nKnAAjWJ+pGb4oxiGYXXEcs003aRlLeZwyiskprxGVo5u85P8Va1alW+++Ybp06cTHBzM8uXLadGiBS+//PJZ3bogIiIiUtE1a9aMgwcPllr/KqyJlAEpORtIy9mCWWCxyM3BtM9wutM8mqusCvPrwDlhY//+6d8j12zYDT9io6fhsAVZEa1CMgyDYN8O1I54nnpR06gZPgl/78ZWxyr3snK2sTP+EvYe7sfh5Bc4lPwMuxK6sefQtThdiVbHkzLIMAwGDx7Mpk2buPzyy8nKyuLee++lU6dO7Nq1y+p4IiIiUsIM05qtonnxxReZNm0aS5cuLZX+NceaSBmQnLWWgle5zOM2s0jL2U6obyuP5SrLaoQMI9S3PXGpH5KSvQ6b4U2Efxdigm7A2146Q3xFSkquM449h/riNlP/3vNPUT0jeyV/He5H3eg5GJpbUfJRs2ZNfvzxR958803uu+8+Fi1aRLNmzXjuuee49dZbNZJURERE5F+eeeYZQkJCuPjiiznvvPOoVavWKXPVGobB119/Xaz+VVgTKQPyJto//VcDxmnmFatsAn3Oo4HPE1bHEDljSWnv/l1Uy2+Uqovs3K2kZM4lxP9qT0eTcsIwDG699Va6du3KkCFDWLhwIaNGjeKLL75g2rRp1KpVy+qIIiIicra0eEGJ2LBhA4ZhUKtWLdLS0tiyZcspbc7mi0kV1kTKgDDfdpzuFcxhBBGo2+/KNKc7lSPpc8hy7sNhDyXSvwc+jmpWx5IyKDn9Mwpf2dZGcvpXKqzJadWtW5eff/6ZKVOmMHbsWObPn0/Tpk156aWXGDx4sEaviYiISKW3Z8+eUu1fc6yJlAGB3g0I821PQStdGrlQy9UXe65nc0nRJaTOZtX+tuxMepCDKW/x19GnWX3gYnYdmYhpOq2OJ2WMy0w5TQs3LvdRj2SR8s9ms3H33Xezfv16LrzwQlJSUhg6dChXXXUVcXFxVscTERERqdBUWBMpI5pEvUCAV72/f7KByyRyXgbNB+6nY8M/qFPvQfD1hQ4d4KOPIDvb0rzyj8T0OexMGofbzAJMTJzkzZdnEp/2AXuOPmVxQilrvO21gMJGEtnxdpzjqThSQZx77rn89ttvPPPMM3h7e/P999/TpEkTPvroI0yzAt7XIWWW03WYIymvsPdQX/Ym9ObwsafJde63OpaISPljWrSVc3v37mXv3r2n/Hy6rbgMU++0zkhKSgohISEkJycTHBxsdRypYNxmDofSf+Dwvk+pPXguwSuOkNu6MfYBt+GKjMKRmoIxaxb88gvExsL334Pm0bGUaZqsPdiZLOdfFPxbyE7rGkvxtkd5MpqUYUmp7xF/bDyFvXOpU+Vr/H1aey6UVCibN29m4MCBrF69GoA+ffrwxhtvUKVKFYuTSUWXnrWIA4mDMc1s/lmUyQ4YVIt4nSD/nhamE5HyprJ+/j5+3Q3vfhK7j69Hz+3KzmL7Kw+W6+fcZrNhGAaZmZl4e3uf+Pl0XK7CpmopmOZYEylDbIY3MbbLiRn0JOyEtC++YdaKZOZMWkBqUhp+gb5cPuAmbrpvPBG3D4XOnWHZMoisPKtgZjsPkZazFZvhRbBPC+w2f0vzZOT+QZZzz2lauUnKmEdM0E2eiCTlQGhgP5IzviAzZy35rQYcGtAfP2+tACzF16RJE5YtW8ZTTz3FY489xhdffMHixYt544036Nu3r9XxpILKdcZxIHHQ30W1f39x4AIMDh65jTpeDfDxamhRQhGR8sUw8zZPn7O8mz59OoZh4OXlddLPpUWFNZGy5rXXYN06jn41h9tv/ZQjB4/iduV98M5My+K7t+bx88d+TPlwJjVuuhoefRQmT7Y4dOnLcR1hx5FJHM74ieOFCJvhT43ggdQJvRPDsOblzOVOLUIrWxHbSWVhM3ypHTWLQ8nPcjT9Q0wzAwC7LYrIoFsJDxqhSeflrHl5eTFhwgSuuuoqBg4cyMaNG7n22mu58cYbefXVVwkPD7c6olQwyekfYJo55D8aN2/f0dTpxIQ/49FcIiJSuQwaNKjQn0ua5lgTKUtcLnjjDbjhBl56cxVJcf8U1Y5zO91kpGTy+LivMEeOhBkzIC3NosCe4XSlsDauH4cz5vHv0T1uM4O9yVPZlviAZfMH+TpON1cWgAtfrzoeSCPlic3mT0zYIzSstoFzoudSN3oe51ZbRUTwrRiGfj1LyWnZsiWrVq3iwQcfxGaz8fHHH9OkSRO+++47q6PlKytnAynpn5Ka8b2+lChn0jIXkN8o3H+4SM9a4Kk4IiIiHqF37iJlyfLlsHs3R3v3Y/m3q3E5839z6na52bn+L3a16w4pKVBGPxyVlAOpH5Dl3EferST/ZXIo/VtSs9d7OhYA3o4qhPl1oqAVXcHAYQsnzO8yT8aScsRm88PPuym+3udZNvJSKj5vb2+eeOIJli1bRqNGjYiPj+eqq65iyJAhJCcnWx0PgOyczexNuJx9h7qTcPRu4pOGszuuOYnJT2OaxZvzRDzt9H9OWilbROQMaPGCckGFNZGyJC4OgN3OgCKNwNoWnwP+/ieOq6jiUmdR2DfgBnbi0z7zXKD/OCfsYRy2IE4trtkAg/oRz2AzvCxIJiJysjZt2rBmzRrGjBmDYRi8++67xMbG8tNPP1maKyd3J/sO9yY7d9tJ+00zi6OpUzh87GGLksmZ8PNpS8FfNAHY8fNp46k4IiIiHqHCmkhZ8vfkit62on1N4O3jBbm54O1dmqksl+06XOjjJi6ynAc9lOZUvl61aRbzFRH+3fn3y2qQz/k0if6QcP/OlmUTEfkvPz8/nn/+eRYtWkS9evXYv38/3bp147bbbiPNoqkFklJewjQzKWhkcnL6e+Q4d3s6lpyh0MCBnO5W0LCgoZ6KIyJS7h1fvMDTm5wZFdZEypLYWAAaJe8mIKTw1S5tDhsXBqbmFdaaNvVEOst42UILfdzAjrfd2pVRfb1q0TBqChfUWEXzqnNoVX0pTWM+IcS3raW5REQK0qFDB9avX88dd9wBwNSpU2nWrBkLFy70aA63mUlq5jcUfhuhndR060YmS9H4eDUgOuwZ8uYe/ffItbz/HxkyFn8f/V4UEZGKRYU1kbKkXj24/HIcb73Jtff2LLCZYTPoNqgTQR/PgPPOg4sv9mBIz4sJ7ENht5aYuIgOvMZzgQrhZQ8lwLsRPo4Yq6OIiJxWQEAAU6ZMYf78+dSqVYvdu3fTsWNH7rnnHjIyMjySwe1OAU4375aB01346GUpG0IDb6ZWlW8I8rsSmy0UmxFMgG9nakR9QkTwXVbHExEpXzTHWrmgwppIWXPvvbBiBTc5/qTnyMsBsDvsGIaB3ZFXXGp3VWvuausNn38O99wDxulWpSzfqgcP/HvUWn7FNRuhvu0J9W3n4VQiIhVH586d2bhxI8OGDQPglVdeoWXLlixbtqzUz22zhQCnm4fSxGHXFxblhZ9PK6pFTqVB9S00qLGNGlHvEeDbwepYIiIipUKFNZGy5oorYOJEbA89xN25K5n+9Sh63dGdDn3a0GNYZ1778g4eqXcIx/BhMHQo/P0hqCLzcVShZdVZBHk3+c8jNqIDria2yusYhl7ORETORnBwMG+//TZz5syhWrVq/PHHH3To0IGxY8eSnZ1daue1Gb4E+Rc+MhncBPtfW2oZRERERIrLMIuy9KCckJKSQkhICMnJyQQHB1sdRyqy11+HiRMhMREuvBBiYiApCX77DQIC4L77YPx4sFWuglJq9hbScjZiGF6E+bbXLZciIqXg6NGj3HPPPbz//vsANGnShBkzZtCqVatSOV+ucy97E7rhNtPIb6610MCRRIVOLJVzi4hI2VVZP38fv+7Go57E7uPr0XO7srPY+vqDle45PxuV6xO5SHkyahTs2wczZ0KdOpCVBdHR8NprcPAgTJhQ6YpqAEE+51E16AZiAvuoqCYiUkrCwsKYMWMGX331FdHR0WzevJm2bdsyceJEcnJySvx8Xo5a1KzyDb7erU/abzOCiAgeR2TIhBI/p4iIiEhJqHyfykXKE19fuPlm+Phj+OEH+OQTuPVWCAy0OpmIiFQC11xzDZs2beKGG27A5XLx6KOP0rZtWzZu3Fji5/L2akDNKl9SO3ohVSPeoVrkR5xTbR3hwXdiVPC5REVERPJjWLSVlqSkJPr3709wcDChoaEMHTqUtLS0Qo+Jj4/nlltuISYmhoCAAM4//3w+//zzUkx55lRYExEREZECRUZGMmvWLD755BMiIiJYt24drVq14sknn8TpPN1qnmfO26sBgX49CPDtiM3wK/H+RURExBr9+/dn8+bNzJs3j++++45FixYxYsSIQo8ZMGAA27dv55tvvmHjxo306dOH66+/nrVr13oo9emV+8Laa6+9Rp06dfD19aVt27asXLmy0PaffvopjRo1wtfXl6ZNmzJnzhwPJRUREREpv6677jo2b97MNddcQ25uLg899BAXXXQRW7dutTqaiIiIlHFbt25l7ty5vPPOO7Rt25YOHTowZcoUZs2axcGDBws8bunSpdx55520adOGunXrMn78eEJDQ1m9erUH0xeuXBfWZs+ezejRo5k4cSJr1qyhefPmdOvWjUOHDuXbfunSpdx4440MHTqUtWvX0qtXL3r16sWmTZs8nFwqu2xnAvFp3xGf9g0ZuXutjiMiIlIk0dHRfPnll7z//vuEhISwcuVKWrZsyQsvvIDLdeqiAyIiInIWTIs28hZQ+Pd2tiuEL1u2jNDQUFq3/mc+1S5dumCz2VixYkWBx7Vv357Zs2eTlJSE2+1m1qxZZGVl0bFjx7PKU5LKdWHtxRdfZPjw4QwePJjzzjuPqVOn4u/vz/Tp0/Nt/8orr9C9e3fuv/9+GjduzGOPPcb555/Pq6++6uHkUlk53WlsPnwfS/Z3ZEviGLYk3s/yA5ezLn44Oa5Eq+OJiIiclmEY3HLLLWzevJnu3buTnZ3Nfffdx6WXXsqOHTusjiciIiIloGbNmoSEhJzYnnrqqbPqLz4+nipVqpy0z+FwEB4eTnx8fIHHffLJJ+Tm5hIREYGPjw8jR47kyy+/pH79+meVpySV28JaTk4Oq1evpkuXLif22Ww2unTpwrJly/I9ZtmyZSe1B+jWrVuB7QGys7NPqdSKFIfbdLIuYRgJ6d8D7pMeO5q1hNVx/XG6C5+4USqOrNx9pGVvJtd11OooIiLFUr16debMmcPbb79NYGAgS5YsoVmzZrz66qu43e7TdyAiIiKFMkxrNoB9+/aRnJx8Yhs3bly+GceOHYthGIVu27ZtK/Zz8PDDD3Ps2DHmz5/PqlWrGD16NNdff32pLKRUXA6rAxRXYmIiLpeL6Ojok/ZHR0cX+IcWHx+fb/vCqqNPPfUUkyZNOvvAUuklZswnJTv/CRZNXGQ6/+Jg6mfUChnk2WDiUUkZC9lz7EXSczb/vcdGpH83zgl7AF+vGh7N4nKnk+NKwG4E4O2IPv0BIiL/YRgGw4YN4/LLL2fIkCH8/PPP3HnnnXzxxRdMnz6dOnXqWB1RREREiiE4OJjg4ODTthszZgyDBg0qtE3dunWJiYk5Zdoup9NJUlISMTEx+R63c+dOXn31VTZt2kSTJk0AaN68OYsXL+a1115j6tSpRbuYUlZuR6x5yrhx406q0u7bt8/qSFJOxaV9yen+ycWlfeqZMGKJw+nfs/nQMNJztvxrr5vEjJ9YG9eHrNz9HsmR40pk55EHWbmvFWsPdmHVgXZsiOvF0cyFHjm/iFQ8tWvXZt68ebz66qv4+/vzyy+/0LRpU95++21M07Q6noiISPlk4RxrRRUVFUWjRo0K3by9vWnXrh3Hjh07adGBn3/+GbfbTdu2bfPtOyMjA8i7O/Hf7HZ7mRodX24La5GRkdjtdhISEk7an5CQUGC1MyYm5ozaA/j4+Jyo1Ba1YiuSn2xnAv+9BfRkJtmuw56KIx7mcmfyZ+JDf//0399WLpzuZHYffeakvaXxYTTHlcjGuD4kpH2KSc6J/Wk5m9h6aAiH0r4s8XOK/JtpmqRkzmP34ZvZeqA12+MuISH5OXJdCac/WMo0m83G7bffzvr167noootIS0tjxIgR9OjRgwMHDlgdT0RERCzUuHFjunfvzvDhw1m5ciVLlizhjjvuoF+/flSrVg2AAwcO0KhRI1auXAlAo0aNqF+/PiNHjmTlypXs3LmTF154gXnz5tGrVy8Lr+Zk5baw5u3tTatWrViwYMGJfW63mwULFtCuXbt8j2nXrt1J7QHmzZtXYHuRkuTjiAHshbQw8LEXXOSV8u1Ixo+4zDQK/grIRWLGj+Q4jxCf+hlrDlzFb3815Le/mrD10B2kZK8rkRz7jr1EtisO+O/qfW7AZFfSQzjdqSVyLpH/Mk03+5NG81fiYNKyFuN0x5Pj3MWhlCn8EdeJzJyyM1eGFF/9+vVZuHAhzz//PD4+PsydO5fY2Fhmzpyp0WsiIiKV2IcffkijRo3o3LkzPXr0oEOHDrz11lsnHs/NzWX79u0nRqp5eXkxZ84coqKiuOqqq2jWrBnvv/8+M2bMoEePHlZdxinK7RxrAKNHj2bgwIG0bt2aNm3a8PLLL5Oens7gwYMBGDBgANWrVz+xesXdd9/NpZdeygsvvMCVV17JrFmzWLVq1Ul/kCKlpVrgtRzJ/KXwNkHXeSiNeFpm7l8YODBxFtLKzR+J93E0azF533u4Mc1sEjPmkZjxEw0jX6RKYM9iZ3C5Mzmc/gWnFtX+lcDMJjH9W2KCbir2eUQKkpQ2k2MZx295//ffQzduM509hwfSsNpybIa3FfGkBNntdsaMGUOPHj0YOHAgv//+OwMGDODzzz/nzTffPGXOWxERESlABfpOKjw8nI8++qjAx+vUqXPKl3ANGjTg888/L+1oZ6XcjlgDuOGGG3j++eeZMGECLVq0YN26dcydO/fEm7W9e/cSFxd3on379u356KOPeOutt2jevDmfffYZX331FbGxsVZdglQikf6dCPO9kPz/2dkJ8KpPtcC+no5VoZimicudjtvMtTrKKRy2YMxCbwXOk1dUg5NvG3aRV3S7nxxn8W8XznEl4DazC21j4CAzd3exzyFSENM0SUx9EzAKaOHC6T5ESuZcT8aSUta4cWOWLl3KE088gZeXF19//TVNmjThk08+sTqaiIiISIkwTI3JPyMpKSmEhISQnJys+dbkjLncmfyZ9BRxaV9gcrz4YyPKvxuNIibiZQ+zNF955XJnsj/lPQ6mfkCO6zBgI8L/MmqFjCTYp7nV8QDIdh5k5f5LKfgrJwMD77/nPSuojY3aofdQK3RUsTLkuBJZtb/NaVrZqRlyBzVD7y7WOUQK4nQlsvVgi9O0chAe2J/qYU94IpJ42IYNGxg4cCDr1q0D4Prrr+e1114jMjLS2mAiIlJmVdbP38evO3bEk9i9fT16bldOFpveerDSPedno1yPWBMpb+w2PxpFPkqHmotpWuV1mka9ykU1fqVplZdVVCsmlzuD9fG3sOfYK38X1QDcHMn4hXVx/UjMWFDo8Z7i46hG1cAbyX+0jgGYmGRT+Fhvk7SczcXO4G2PJMinNYW/9LuI8C878xVIRVLQSLX/tipaOyl/mjVrxooVK5gwYQJ2u51PPvmEJk2a8PXXX1sdTURERKTYVFgTsYCXPYwo/85EBVyOj0PzzJyNvclvkpqziVNXXHVh4mbb4TG43OlWRDtF3YiH/1Vcs2H8Pc2l3fDn3IgXMQpd3ALAwGZ4nVWGmiF3k1e8y694YSPc/wr8vRuc1TlE8mO3hePtqEfhBTYnAT7tPRVJLODt7c2kSZNYvnw55513HocOHaJXr14MGDCAo0ePWh1PRERE5IypsCYi5ZZpOjmY+hGnFtVOtMBlZnAo/XtPxiqQzfCifuSjtKmxkLph46gZchvnRj5H25rLiQ66mjC/Syh85Vg34X4dzypDqN9FnBv5CjbDDwADrxPnjPDvToOIF86qf5GCGIZBVNCtFDwq046XvTrBfl09GUss0rp1a1avXs3//vc/bDYbM2fOJDY2lrlzNceeiIjICaZFm5yRcr0qqIhUbjmuRJzu5ELbGDhIy9nmoURF4+OoRvWQwafsrxEygqTMXws4yo63PYpI/yuKfd607M0kZvyEy51OzdD7sWEj23UAuxFIREB3/L3qF7tvkaIIC+hHVu5WjqRNJ6+ge3xlUAO7LZQ6Ue9jGHprUln4+vryzDPP0KtXLwYOHMiff/7JFVdcwbBhw3jhhRc0r4uIiIiUCxqxJiLlls3wKWI7z074WVwhvhdwbsTT5BUcjr885/3X2x5F05j3sdmKds3/5nSnsSl+CGvjrmF/8lTiUj9gV9Lj7Dr6LAHeTakZeoeKauIRhmFQNXQS50R9SohfD3wc9fHzbk5MyHjOjfkVX6+GVkcUC7Rr145169Zx9915i6a88847NGvWjJ9//tniZCIiItYyTGs2OTP6WlhEyi0vexhB3s1JzdlIQbeDmjiJ9O/s2WBnITqoL6F+7YlPnU1azhZshjfh/pcR5X9lsYpqAFsP3cmxrCUAmCdGCIHbzGLb4XvwsoUT6teuRPKLnI5hGAT6tiPQV3/n5B/+/v68/PLL9O7dm8GDB7N79246d+7MHXfcwdNPP01AQIDVEUVERETypRFrIlKu1Qq9jYLnWLMT7NOSYJ/zPRnprPk4qlI77B6aRL9F4yqvEh3Yp9hFtdTsjRzLWkz+z1HeIgZ7k187m7giIiXm0ksvZf369YwcORKAV199lRYtWrBkyRKLk4mIiFhAc6yVCyqsiUi5Ful/GQ3CHyHv5SxvO77aZpB3E2KrvIFhFLYKYcWWmDH3NKuNuknOWo7TleKxTCIihQkKCmLq1Kn8+OOP1KhRgx07dnDxxRdz3333kZWVZXU8ERERkZOosCYi5V614Ju4sMYi6oTeTZWAnsQEXkvT6HdpWfUTvOzhpXditxtSUiAn54wPdbkz2Jf8Div2d2bhnkYs2XsBO448Rlbu/hKN6HKnA6cvLLrM9BI9r4jI2eratSsbN25k0KBBmKbJCy+8QMuWLfn999+tjiYiIiJyggprIlIh+DiqUDv0NhpHPc+5kY8S7ncRhlEKL3GmCUuWQP/+4O8PISHg4wMtWsCbb0Ja2mm7cLrTWBt3I7uOPkeWcx/gxulO5kDqR6w6eDWp2VtKLK6/V92T5lXLj90IxMseUWLnFBEpKaGhobz77rt8++23xMTEsG3bNtq1a8dDDz1Edna21fFERERKlRYvKB9UWBMRKarsbBgwADp0gJUr4ZFHcH/0Mea0aVCnDowaBQ0bwrp1hXaz++jzpOdu59QJDFy4zEy2HL4T0yxo3rgzUyWgF4bhXUgLOzFB12MrtI2IiLV69uzJpk2buPHGG3G5XDz55JNccMEFrDvN662IiIhIaVNhTUSkKNxuGDgQPvmE3GnT+eThd7l5uR/dX/mDnu/G8UyLgexbsBxiYqBzZ9i+Pd9unO404tM+p+AFF1xkOfdxNGtpicR22INpEPE4ebeD/vcl346fVx1qhtxeIucSESlNERERfPTRR3z22WdERkayceNGLrjgAh577DFyc3OtjiciIlLytHhBuaDCmohIUXz3HcyeTfa7Mxiz1M20N37hUHwyALm5Ln6dt5lbH/6JDc9Ng4gIuOeefLvJzN2N2zzd7Ut2UrM3llj06MDexEZPI8in5Yl9NsOfakG30DzmE7zsISV2LhGR0ta3b182b95Mnz59cDqdTJgwgXbt2rF582aro4mIiEglpMKaiEhRvP46tGnDB8ei+GPLQUzz5K9yXC43TqebSU//hPP+B2DuXNi585RuDMOrCCczS/zWzDC/S2hRdTZta67gguq/0K7m79SLGK+imkgxmaZJrisRp+vIKa8HUvqqVKnCZ599xocffkhYWBirV6/m/PPP59lnn8XlKnxeSREREZGSpMKaiMjpHD4MP/6Ic9hwvv9yNW53/h+iTdMkNSWLxVWa5S1q8OGHp7QJ8KqPtz3qNCd0E+53SQkEP5W3PQJfr5rYbD6l0r9IRWeabhJT32PbwQ5sOdCSzQdasD2uE0fSZqnA5mGGYXDTTTexadMmrrzySnJycnjggQfo0KEDf/zxh9XxREREzp5uBS0XVFgTETmd+HgAjsXUJi01q9CmDoeNP/86CnXrwsGDpzxuGA5qhowopAc7Yb4XE+Dd4GwSi0gpME2TfUfGcODow+S49p3Yn+3cxf6k+zlwdIKKaxaoVq0a3377LdOnTyc4OJjly5fTvHlzXnnlFdzuklkIRkRERKQgKqyJiJyOV97tmw7z9LcXmSZ4eTkgNxe887+ds3rQAKoHDQDAwP733rz/BnnH0jjqxbPPLCIlLiVzPkczPvv7p38X0PL+/5G090jPXu7xXJI3em3w4MFs3LiRyy+/nKysLO655x4uu+wydu3aZXU8ERGRYjFMazY5MyqsiYicTq1aEBREyO9LqFM3CsMouKnL5aZDg0DYsgWaNs23jWEY1I8YT6uqX1E1qB9hvhdTJaAHsVXepGXVWZr3TKSMOpI2A04Uw/NjJzFtpqfiSD5q1arFjz/+yBtvvEFAQAALFy6kWbNmTJ06VaMJRUREpFSosCYicjr+/jBgAMbbb9P/5nYU9NnMZjc4r1lN6v/yNQQEwI03FtptoM95NIiYSLOYaTSOeoEI/04YRmEf2kXESpm524HCRq66yMrZ6qk4UgDDMLj11lvZsGEDl1xyCenp6dx2221069aNffv2nb4DERGRskJzrJULKqyJiBTF7bfDkSNc+uVrDL21ExhgsxkYRl5BDaBu/Wge61Ud48UXYfhwCAy0OLRIxWAW4TZsT7Ab/qdtY7Pp331ZUbduXX755RdefvllfH19mTdvHrGxsbz77rsavSYiIiIlxmF1ABGRcqFxY5g2DQYN4oZDh7hs4r18u9vF/r+O4OfvQ6cLqnH+poXYru0FF14ITz5pdWIpo3Kch0jP2Yhh2An0OR+HLdjqSGVSriuBwylvkpT2CS4zGbstlPCAG4kKHoGXPdKSTKH+V5GQMgUoaEJ8g1D/np6MJKdhs9m4++676d69O4MGDWL58uUMGTKEL774grfeeouqVataHVFERETKOcPUV3ZnJCUlhZCQEJKTkwkO1ochkUrnq6/grrtg3z5o2TJv9c/0dFi4EJxOGDgQpkwBX1+rk1ojMxPmzMl7fhyOvIJkp05g0wDpXNdR9iQ9TFLGDxwvzBh4UyXwJmqFj8Vm+FgbsAzJdv7FjvjeON1JnHzrpR2HPYoG0V/h7aju8Vy5rgS2HbwMt5nOqbeE2rHbQmlU9Rcc9jCPZ5PTc7lcPP/880yYMIGcnBzCwsJ47bXX6NevH0Zhk2eKiIhlKuvn7+PX3eKWJ7B7e/ZzhSsni3UzH6p0z/nZ0CcdEZEz0asX6dvmkTL7SXIbVsdMTQUfHxg/Pq+Y9PbblbOolpwM//sf1KgB114LDz4IY8ZAly7QsGFesdFd0CifkmWanjnPmXC509ma0I+kjLn8e7STSQ4Jae/zx6GRZTK3VfYm3ptPUQ3AhdN1mH1H7rciFl72aOpFz8Jhi/h7j4Pjg/+97DHUrzJbRbUyzG6388ADD7B69WrOP/98jh49yk033cR1113H4cOHrY4nIiIi5ZRuBRURKaLkrHX8kfQ4qTkboQ3QBvwd51A//C4i/S+zOp51Dh3KK6Dt2QMjRrDnmutY7/bHbjO4KC2OsJnvwt13w2+/wYcf5o1kK2E5rkTiUqaRkPYJTvdRHLYQqgReR7WgYXg7qpT4+c7UobTZZOb+Sf6zwbpJzlpIctYiQv06ejhZ2ZOV+wcZOb8X0sJFWvZisnP34ONVx1OxTvD3bkrj6stIzphLevZKwCDQtz0hfpdjGHpbVR7ExsayfPlynnrqKR577DE+//xzFi1axNSpU+nTp4/V8URERP5hxWICuqfxjOkdoIhIESRnrWNN/M2Y/xlBk+Hcw4ZDo4iNepkqAd0tSmchtxuuuQYOHSLh+5948NfdbJy25MTDNsOg66U381Cv3vjcdGPeiLYXXijRCNnOA2yMv44c12GOj3ByupM5mPIuh9O+omnMZ/h61SrRc56pQ6kfn6aFncNpn6iwBmTmbC5au9wtlhTWAGyGN2EBVxMWcLUl55ez5+XlxYQJE7jqqqsYMGAAmzZtom/fvtx0001MmTKF8PBwqyOKiIhIOaFbQUVEiuCPpMf/Lqr993a9vK+Rth+ZhNvMtSCZxX78EZYvJ2Xaewz6bB1bdsef9LDbNPlp+Xbu2WXifuQRePVVKOFbrnYcefCkoto/XOS6j/KnRbcN/luuK4HCv/5zke084Kk4xZaRs5XE9C9IypiD051cKucwDO8itbMVsZ1IYVq2bMmqVasYN24cNpuNjz76iNjYWL7//nuro4mIiEg5ocKaiMhppOfszLv9s8CVACHXnURS5mLPhSorXn8dWrbkw8xAjqZm4nKfWjxymyart+1n9SU9wDDyVlctIVm5e0nOWsypRbXjXKRm/05Gzp8lds7i8LJHnKaFHS+79besFiQzdwdb4nuxOf4Kdh8Zzc7EUazbfwF7jz5e4gXlQJ/2GHgV2sYwfAnwaVui55XKy8fHhyeffJKlS5fSsGFD4uLi6NmzJ0OGDCE5uXQKyCIiIkVhmNZscmZUWBMROY0s18EitDLIcsaVepYyZ8EC6NePb3/bjDufotpxdpvBN1vioVs3+PnnEjt9ehFvGyxqu9ISFXg9hf/KdREVeK2n4pyRbOcBtiZcS3rOxpP2m+SQkDqNPUceKNHzOexhhAfeDBS0SqNBZOBg7LagEj2vSNu2bVm7di2jR4/GMAzeffddmjZtyvz5862OJiIiImWYCmsiIqfhZSvKKn8mXpVtNUCXCzIzITyc5LTMwpu6TY4kp0N4OKSmlliEot42WNR2paVKUH+87dUAez6P2gj0aU2YX2dPxyqSuJQ3cLlTyX9UoMmRjC/IyNlSouesFjaeEL8ef/9kP+m/of69qRr6vxI9n8hxfn5+vPDCCyxcuJB69eqxb98+Lr/8ckaNGkVaWprV8UREpLIxLdrkjKiwJiJyGkHeTfBz1KLgETRgN/yJrGwTz9vtEBgI8fFEhQYW3tRmUDUyGOLjITS0xCIE+7bBZvgW2sbAixDf9iV2zuJw2IJpEvMpwb7/vX3RRrh/TxpVebdMrihpmm6OpH9GwbfaAjhITP+8RM9rM7ypHfkG9aO/ISLwRoL9uhER2J8G0d9RO/KVMvlcScVy8cUXs379em6//XYA3njjDZo3b86iRYssTiYiIiJljQprIiKnYRgG9cOP3+6Wf3HtnNC7sdv8PReqrLjySpg5k16XNsVmFFx4dLlNejWIgHnz8o4pIQ5bEDFBAyjstsHowBvxsoeW2DmLy9sRQ+PoD2lWbT51I56jXsSLtKy+hAZRr2C3FV6YtIrbzMRtZp2uFbmukl2QAvL+3QX4tKRG+FOcE/UONcKfwN+neYmfR6QgAQEBvPrqq8yfP59atWqxa9cuOnbsyL333ktmZuGjdEVEREqC5lgrH1RYExEpgij/LjSJehEvW8jfe/IKOXbDn/ph46gZPNC6cFYaNQr++IMbMvZSIzoUu+3UApdhQOcLziX264/B1xduuaVEI9QKHUOk/9V//3TybYPhfl2pE/5giZ7vbPl51SMq8FoiA3vj7YixOk6hbIYfNuN0BWMDb3vZvg6Rs9G5c2c2btzIsGHDME2Tl19+mRYtWrB8+XKro4mIiEgZoMKaiEgRRQf04KKai2la5XXODR9Pk6iX6FBzCbVCBmEUMlqrPEjP+YMjGb+QnLUW0yx49dNTXHwx9OiB3/ChTO9Uk46tGmD7V3HNz8eLAT0u4HH3HowXX4QHH4SQkEI6PHM2w4sGkS/SNOZLYgJvJNzvcqIDr6dpzGc0jHodm8Xzq5VnhmEjMuB68p8b7jgXkQFlc+EFkZISHBzM22+/zZw5c6hWrRp//PEHF110EePGjSM7O9vqeCIiImIhwzRNDfQ7AykpKYSEhJCcnExwcLDVcUTKpPScHaTl/oHd8CXUtw2OMnqbm0BK9nr+PPIIaf9aNdPHXpW6YfdTJbBn0TpJTYWrr4bffoO+fUm+eSDbQqviZbppsmcrPu+8BYsWwd13w0sv5Q1hk3IjxxnP5vgrcbqPkd9ca5EBN3JOxFMezyVilaNHj3LXXXfxwQcfANCkSRNmzJhBq1atLE4mIlLxVNbP38ev+/x+T2D3Lnw+4ZLmyslizayHKt1zfjY0+6+IlJiM3N1sTXyQ5Ow1J/bZDF9qBg+ibuhdGEZho17E01KyN7Aurj8mzpP2Z7vi2Jo4GreZTUxQ39N3FBQEc+fC1Knw+uuEzJ7NSVP0X3IJfP459OlTovnFM7wdMTSO+ZI9Rx4gNXvZif02w5+YoGFUC7nbwnQinhcWFsbMmTPp27cvI0eOZPPmzbRt25bx48fz0EMP4eXlZXVEERER8SCNWDtDlbViLnI6mc4D/H6wD053KvmNaqkW2I9GkZPOuN+U7A0cTP2UjNy/8LKHERPQkwj/Tti0KuBZWxvXj5TsdUD+t37ajUDa1VyK3XYG35KZJqxYAfv3g8MBjRrlbVIhZOXuJiN3OzbDhyCftpVzwQ6Rf0lMTGTUqFF8+umnALRs2ZIZM2bQtGlTi5OJiFQMlfXz9/HrbnWDNSPWVs/WiLUzoU+mIlIi/jr2Jq4CimoAB9NmUTN4AAHe9YrUn2m62X5kEgfTZmFgx8QF2DicMZcg7ya0iJ5eJlZ6LK8yc/eS8q+RhflxmWkcyVxAlYAzWMXTMODCC88ynZRVvl7n4Ot1jtUxRMqMyMhIPvnkE2bPns2oUaNYu3YtrVq1YtKkSdx///04HHqrLSIiUtFp8QIROWtu00l8+ld/F7/yZ2AnLu3LIve5L+VdDqbNAvhXv3kjq1JztrH58Ohi5xXIdiUUoZWNbGd8qWcpj0zTRAO+ReS4G264gc2bN3P11VeTm5vLgw8+yEUXXcS2bdusjiYiIiKlTIU1ETlrLnc6brPwVdFMIMd1uEj9uc1c/kqeVtgZScpaQlrOn0UPKSfxtoUXoZUbL3tR2lUOpmlyKO0b1h7sw29/NWTJX+exKWE4x7JWWB1NRMqAmJgYvvrqK2bMmEFISAgrV66kZcuWvPjii7hcBX/xJCIiUiDTok3OiAprInLW7LYAbIZPoW0MwNseVaT+0nP+JNd95DStbCRl/la0gHIKf+96BHg1Ju9PJn82w5dI/8s9F6oMM02THUceZnviaNJyNgFuTHI5mrmIjfE3E5f6sdURRaQMMAyDAQMGsGnTJrp160ZWVhZjxoyhY8eO7Ny50+p4IiIiUgpUWBORs2YzHMQE9MKg4FU/TVxUDexdpP7+u0pl/gxMcouYUPJTL/wB8gpr+RfX6oTehcMW6NFMZdWRjB+J//vW5JMXe3ABJjuOTCAzd4/ng4lImVSjRg1++OEH3nrrLQIDA/ntt99o1qwZr732Gm53/gvGiIiI5McwPbvJmVNhTURKRO3QkdhtQVBAca1a4PVFXrjA36vuaUfAgYsgb626djbC/NoTW+UNvO1VTtpvNwKoFzaOGsFDLUpW9hxImUHhvzJtxKfO9lQcESkHDMNg+PDhbNy4kU6dOpGRkcEdd9zB5Zdfzl9//WV1PBERESkhKqyJSInwc1SnVdWPCfZpdtJ+m+FL7ZBbaRjxSJH7ctgCqRp4LQW/RNnxc9QhzFerT56tCP9OXFjjV5pGT6dBxKOcFzWFdjWXUiNkMIZR8G2ilc3x2z8L5iI1e4On4hRJVu5e0rI3kutKsjqKSKVWp04d5s+fz5QpU/D39+fnn3+madOmvPPOO1oERURECmea1mxyRrQGuIiUmACvurSuOou0nD9Iz/kTm82HMN8Li3U7Yb2w0aRkryc1Z/Pfe46/wNtx2AJpWmWyCj8lxDDshPt1sDpGmWYYXmBmFtYCm+HtsTyFOZr5C3uPvkh67vF/OzYi/LtRO3Qsvl41Lc0mUlnZbDbuuOMOunfvzqBBg1iyZAnDhw/niy++4O2336Z69epWRxQREZFi0og1ESlxgd7nEh14JVH+XYo9R5fDFsj5MR/QIGws/o46GHjjZYugVvBA2lT7hkDvhiWcWqRgEX6dKeg25+PC/S/zTJhCHE7/hq2HhpGeu+Vfe90cyfiJDfG9yMrdZ1k2EYH69euzcOFCnn/+eXx8fPjhhx+IjY1l5syZGr0mIiJSTqmwJiJllt3mR82QQVxYYy6d6mzk4lpLqR/+AL6OGKujSSVTPWTI3/8vv1GSdhy2UKoE9vJgolO53JnsOvIQ+a+T7sLpTuGvY09bkExE/s1utzNmzBjWrl3LBRdcwLFjxxgwYAC9e/cmISHB6ngiIlKGeHrhAi1gUDwqrImIiJxGoHdjGkdNxsBB3q/Of1ZT9bKF0DR6Bg5bkJUROZIxF5eZXkgLF0cyftScayJlROPGjVm6dCmPP/44Xl5efP311zRp0oRPP/3U6mgiIiJyBlRYExERKYLIgG60qfkbdULvJcKvMxH+XWkQ8QQX1PiVQJ/zrI5HlvOvvwt/hXGT7YrzSB4ROT2Hw8FDDz3E77//TvPmzTly5AjXX389/fr1IzEx0ep4IiJiNdOiTc6ICmsiIiJF5G2PoGbobZwXPZXzqrxGTNAN2G3+VscCwGELwSx05dK/2xnBHkgjImeiefPmrFy5kocffhi73c7s2bOJjY3lm2++sTqaiIiInIYKayIiIhVAhH/307QwCPCK1cqgImWUt7c3jz76KMuXL6dx48YkJCRwzTXXMHDgQI4dO2Z1PBERESmACmsiIiIVgI+jKtGBN5H/Agt5+2qFjfZoJhE5c61bt2bNmjXcf//9GIbB+++/T2xsLD/++KPV0URExMMMtzWbnBkV1kQqmczc/ew5No0dSS9zMPUrXO5MqyOJSAmpGz6B6MD+5P16t52Yc81uBHBu5MuE+XW0Mp6IFJGvry/PPvssv/32Gw0aNODAgQN0796dESNGkJqaanU8ERER+RfDNE1NTXcGUlJSCAkJITk5meBgzVMj5YfbzGFr4iMcTPsKMDCwYeLEbgRwXuSjxAT2sDqiiJSQbGc8SRlzcbqT8XXUJty/O3abr9WxRKQYMjIyGDduHJMnTwagTp06TJ8+nU6dOlmcTESk9FXWz9/Hr/uCXo/j8PLsezhnbha/fzW+0j3nZ0Mj1kQqiX+KaibgxsQJgMvMYOPh+ziSscTKeCJSgnwcMVQNHkTN0LuJCuyloppIOebv788rr7zCL7/8Qp06ddizZw+XXXYZd911F+np6VbHExERqfRUWBOpBDJy9/6rqPZfJmCw49hkz4b6bwrTTbYrkRzXUTSQVkRE5GQdO3Zkw4YNjBw5EoApU6bQokULli5danEyERGRyk2FNZFKICH9R/Kf0Pw4NynZG8hyxnsq0j9nNp3sSZ7O4n2XsWjvxSzc257lB3oTl/a9x7OIiIiUZUFBQUydOpUff/yRGjVqsGPHDjp06MD9999PVlaW1fFERKSEGaY1m5wZFdZEKgGnOw2jCP/cnW7PTohsmi42HLqHP5OeJ9uVcGJ/Wu4fbDp8HzuOWjuKTkREpCzq2rUrGzduZODAgZimyfPPP8/555/P77//bnU0ERGRSkeFNZFKwN+r9ok51Qpi4MDHEeOhRHni0r7jcMYCTr1FNe/n3cfeIDV7q0cziYiIlAehoaG89957fP3110RHR7N161batWvH+PHjycnJsTqeiIiUBNO0ZpMzosKaSCUQHdANu+FX4OMGdmICeuBlC/JgKtiX8hGFvQwZ2NmfOttzgURERMqZq6++ms2bN9OvXz9cLhdPPPEEF1xwAevXr7c6moiISKWgwppIJeCwBdA48lHy5lk7ea41Azte9nDqh9/r8VzpuTsAd4GPm7hIzfnDc4FERETKoYiICD7++GM++eQTIiMj2bBhA61bt+axxx4jNzfX6ngiIlJMmmOtfFBhTaSSqBrYkxbRbxDkfd6JfQYOogN60LbaJ/h6+DZQoNBRdHkMHLYAj2QREREp76677jo2bdpE7969cTqdTJgwgfbt27Nlyxaro4mIiFRYKqyJVCJR/pdyYfXP6FBjPhdW/5pLay2haZVnLSmqAUQHXoGBvZAWJtEB3TyWR0REpLyLjo7m888/54MPPiA0NJRVq1Zx/vnn89xzz+FyuayOJyIiUuGosCZSCfl5VSfI+1y87MGW5qgVfAuG4UV+L0UGdnztVYkJuNLzwURERMoxwzDo378/mzdvpkePHmRnZ/O///2PSy65hD///NPqeCIiUlSmRZucERXWRMQy/l61OD/mHbxseQU+AwcGDgD8HDVpVXUGdtvpbhcVERGR/FSrVo3vvvuOadOmERQUxNKlS2nevDmTJ0/G7S54jlMREREpOhXWRMRSYb6tuLjmrzSJfJrqQddRI/hGWkS/Qfsa3+HvVdPqeCIiIuWaYRgMGTKETZs20aVLFzIzM7n77rvp3Lkzu3fvtjqeiIgUQosXlA8qrImI5ew2H6oFXUPjyAk0iniQKP+OGEZhc6+JiIjImahVqxY//fQTr7/+OgEBAfz66680a9aMN998E9PUpygREZHiUmFNRERERKQSMAyD2267jQ0bNnDJJZeQlpbGrbfeSvfu3dm3b5/V8URERMolFdZERERERCqRunXr8ssvv/DSSy/h6+vLTz/9RGxsLO+9955Gr4mIlCWmac0mZ0SFNRERERGRSsZms3HPPfewbt062rZtS0pKCoMHD+aaa64hLi7O6ngiIiLlhgprIiIiIiKVVMOGDfntt9946qmn8Pb25ttvvyU2NpaPP/5Yo9dERCxW0RYveOKJJ2jfvj3+/v6EhoYW6RjTNJkwYQJVq1bFz8+PLl268Oeff5ZeyGJQYU1ESM/dzR9Jz7EmfgQbDt1LfNr3uM0cq2OJiIiIBzgcDsaOHcvq1atp2bIlSUlJ3HTTTVx33XUcPnzY6ngiIlJB5OTkcN1113HbbbcV+Zhnn32WyZMnM3XqVFasWEFAQADdunUjKyurFJOeGRXWRCq5PcfeYen+HuxNnsGRzMUkpP/ExsP3sWz/NWQ5462OJyIiIh4SGxvLihUreOSRR3A4HHz++ec0adKEL774wupoIiKVk2nRVkomTZrEvffeS9OmTYvU3jRNXn75ZcaPH88111xDs2bNeP/99zl48CBfffVV6QU9QyqsiVRiCek/8ufRFwAwcf291w1ApnMfa+NHYppui9KJiIiIp3l5eTFx4kRWrFhBbGwshw8fpm/fvtx8880kJSVZHU9ERDwkJSXlpC07O9vjGXbv3k18fDxdunQ5sS8kJIS2bduybNkyj+cpiAprIpXY7mNvUtDLgImLtNw/SMoqOy9YIiIi4hnnn38+q1atYty4cdhsNj788ENiY2P5/vvvrY4mIiIeULNmTUJCQk5sTz31lMczxMfn3UEVHR190v7o6OgTj5UFKqyJVFI5rqOk5mzl+Ai1/Bg4SMxY5LlQIiIiUmb4+Pjw5JNPsnTpUho2bEhcXBw9e/Zk6NChJCcnWx1PRKTCs3Lxgn379pGcnHxiGzduXL4Zx44di2EYhW7btm3z4LPmeSqsiVRSpplbpHbuIrYTERGRiqlt27asXbuWe++9F8MwmD59Ok2bNmX+/PlWRxMRkVISHBx80ubj45NvuzFjxrB169ZCt7p16xYrQ0xMDAAJCQkn7U9ISDjxWFngsDqAiFjD2x6Btz2SHFdigW1MnAT7xHowlYiIiJRFfn5+vPjii/Tu3ZtBgwaxa9cuLr/8cm677TaeffZZAgMDrY4oIlLxuM28zdPnPANRUVFERUWVSpRzzjmHmJgYFixYQIsWLYC8ud9WrFhxRiuLljaNWBOppAzDTs3g/oBRUAscRhAxAVd4MpaIiIiUYRdffDHr169n1KhRALzxxhs0b96cRYs0dYSIiBRu7969rFu3jr179+JyuVi3bh3r1q0jLS3tRJtGjRrx5ZdfAmAYBvfccw+PP/4433zzDRs3bmTAgAFUq1aNXr16WXQVp1JhTaQSqxMyhHDfdn//9E+BzcCOgRfNol/BbvOzJpyIiIiUSYGBgbz22mvMmzePWrVqsWvXLjp27Mjo0aPJzMy0Op6IiJRREyZMoGXLlkycOJG0tDRatmxJy5YtWbVq1Yk227dvP2kez//973/ceeedjBgxggsuuIC0tDTmzp2Lr6+vFZeQL8M0TQ+PKyzfUlJSCAkJITk5meDgYKvjiJw1t5nLgdTP2JfyIem5u7EbfkQHdKN2yGACvetbHU9ERETKsJSUFEaPHs20adMAaNiwITNmzKBt27YWJxORiqCyfv4+ft3tu0zC4eXZApIzN4ul8ydWuuf8bJTbEWtJSUn079+f4OBgQkNDGTp06EnDB/PTsWPHU1anuPXWWz2UWKRsshle1Ay+kfY1vuPyczZzWZ1VNIl6QkU1EREROa3g4GDeeecdvvvuO6pWrcr27dtp374948aNIzs72+p4IiIipa7cFtb69+/P5s2bmTdvHt999x2LFi1ixIgRpz1u+PDhxMXFndieffZZD6QVESkat+nkcMZ8Nh++jw0Jt7Ej6RkycndbHUtERKRQV155JZs2baJ///643W6efvppWrduzZo1a6yOJiJSbhmAYXp4s/qiy6FyWVjbunUrc+fO5Z133qFt27Z06NCBKVOmMGvWLA4ePFjosf7+/sTExJzYNLRRRMqKHNcRVh3sy8ZDt5OQPofEzJ/ZmzKD5Qe6s/vYq1bHExERKVR4eDgffPABX3zxBVFRUWzatIm2bdvyyCOPkJuba3U8ERGRUlEuC2vLli0jNDSU1q1bn9jXpUsXbDYbK1asKPTYDz/8kMjISGJjYxk3bhwZGRmFts/OziYlJeWkTUSkpJmmycZDd5Ce++ffe1wn/Xf3sSnEpX1lRTQREZEz0rt3bzZv3kzfvn1xOp1MmjSJtm3bsnHjRqujiYiUL6ZpzSZnpFwW1uLj46lSpcpJ+xwOB+Hh4cTHxxd43E033cQHH3zAL7/8wrhx45g5cyY333xzoed66qmnCAkJObHVrFmzRK5BROTfUrLXk5y9BvNEQe2/DP469iZab0ZERMqDqKgoPv30Uz7++GPCw8NZu3YtrVu35qmnnsLpdFodT0REpMSUqcLa2LFjT1lc4L/btm3bit3/iBEj6NatG02bNqV///68//77fPnll+zcubPAY8aNG0dycvKJbd++fcU+v4hIQY5k/oqBvZAWJhnOXWS74jyWSURE5GwYhkG/fv3YtGkTV111FTk5OTz44IN06NDhrN7Ti4iIlCUOqwP825gxYxg0aFChberWrUtMTAyHDh06ab/T6SQpKYmYmJgin+/4MuA7duygXr16+bbx8fHBx8enyH2KiBSH28ylKFOFus2c0g8jZY5puknO+p0s10G8bOGE+bXDZnhbHUtEpEiqVq3K119/zfvvv89dd93FihUraNmyJU8++SR33303NluZ+q5fRKTMOL6ggKfPKWemTBXWoqKiiIqKOm27du3acezYMVavXk2rVq0A+Pnnn3G73SeKZUWxbt06IO+XvYiIlYJ8mmBS+K0xDiMIX0c1DyWquNxmDofSfyIlex2GYSfctz3hfhdjGGXzg92RjF/588jEk0YrOmyh1A27j6pB11uYTESk6AzDYODAgVx22WUMGzaMn376idGjR/Pll1/y7rvvFvglt4iISFlXNj9FnEbjxo3p3r07w4cPZ+XKlSxZsoQ77riDfv36Ua1a3ofOAwcO0KhRI1auXAnAzp07eeyxx1i9ejV79uzhm2++YcCAAVxyySU0a9bMyssRESHKvwtetnAKflm2US2on0YpnaXkrHUs2XcpWxLHcCD1Y/anfMD6QyNYcaAHmbll71b/pMzf2HToVrJdJ88f6nQf448j4zmYOsuiZCIixVOzZk3mzp3L1KlTCQgIYPHixTRr1ozXX38dt9ttdTwRkbLFtGiTM1IuC2uQt7pno0aN6Ny5Mz169KBDhw689dZbJx7Pzc1l+/btJ1b99Pb2Zv78+XTt2pVGjRoxZswY+vbty7fffmvVJYiInGAzvImtMhmb4fWfudYMwCDYpxnnhN5uVbwKITN3P+sSBpPrPgaAifPEKMFM517Wxg/A5S58pWhPMk2TnUlPUtg7nF1Jz+JyZ3k0l4jI2TIMg5EjR7Jx40Y6duxIRkYGt99+O127dmXv3r1WxxMRETkjhqkl5s5ISkoKISEhJCcnExwcbHUcEalg0nN2sjflXRLSv8NtZuHnqEH1oP5UD7oRu83X6njl2p9JT7M/5f1CVl6FRhGPUy3oOg+mKlhazjZWH7z6tO3Oi5pMVEB3DyQSESl5brebV199lbFjx5KZmUlQUBAvv/wygwcPxjBOP/eoiFRslfXz9/Hr7tDpERwOz34GcDqz+O2XRyrdc342yu2INRGRiijAux6NIx+nY+11dKq9lXY15lMrZLCKaiUgIf37QotqYJCQ/oPH8pxOjiuxCK0MclyHSz2LiEhpsdls3HXXXaxbt4527dqRmprK0KFD6dmzJwcPHrQ6noiIpQzTtGSTM6PCmsj/27vv+Kiq/P/j75teSCYGsiFUQWAREkiUvghGUbFQViGIsICIsCwWWBAQUURgXetaEBQLiOKCoJRd21JdQIyBECAoiBRDC4JACpA69/eHS37mC4nJJDM3M/N6Ph7noXPn3rnvISdnkk/OvQeoofhLffX67cs8TRXbc12SpSICfX9Xgb1MBfpGOz0LADhbixYttHHjRj377LMKDAzUp59+qtjYWC1atEhcYAMAqMkorAEAvEJoQDOV97FnyFehAS1cF+g3hPg3V6h/S5WX2c/HpsiQ612WCQCcydfXV4888ohSU1PVrl07nTlzRoMHD9Zdd92lEydOWB0PAFzPblFDpVBYAwB4hQZh96i8nxRMFat+2N2uC/QbDMNQs9pTZfxvAYvLuSryUVaKBeBxWrVqpS1btmjGjBny9/fX8uXLFRsbq6VLl1odDQCAS1BYAwB4hejQO1Qn+EZdWqT65XGj8PsVHhjr8lzliQjqoLjodxTs16TU9gDfaLWs84Lq1rrTomQA4Fx+fn6aOnWqUlJS1KZNG506dUpJSUkaOHCgfv75Z6vjAYBLcI8190BhDQDgFQzDV7G/e0VXXTFeAb+6f1mIf1NdXefvuuqK8RamK9sVwZ3Vvv5nSohZplZRr6ht3UXq1GCDomv1sjoaADhd27ZtlZKSoqlTp8rX11eLFy9WbGys/vWvf1kdDQAASZJhcjfQSvHW5X4BwJOYpl0FxSdlGL7y96nNQhEA4AZSUlI0dOhQfffdd5KkIUOG6OWXX1ZERIS1wQA4JmVySAAAKQVJREFUjbf+/n3xfXe77gn5+QW59NxFRXn678anvO7fvCqYsQYA8DqG4aNAv2gF+NahqAYAbqJ9+/ZKTU3VI488IsMwtHDhQsXGxuqLL76wOhoAOIdpUUOlUFgDAAAA4BaCgoL07LPPatOmTWrWrJmOHj2qnj17atSoUcrJybE6HgDAC1FYAwAAAOBWunTpoh07duihhx6SJM2bN09t2rTRhg0brA0GANXJNK1pqBQKawAAAADcTkhIiF5++WWtW7dOjRs31qFDh5SYmKiHHnpI58+ftzoeAMBLUFgDAAAA4LYSExO1a9cujRw5UpL06quvqm3btvrqq68sTgYA8AYU1gAAsMK+fdLzz0tTpkgzZ0obNjD1HgAcFBYWpjfeeEOfffaZ6tevrx9++EFdu3bVxIkTlZeXZ3U8AHCIYVrTUDkU1gAAcKWtW6VbbpFatJCmTZM++ED6xz+kxEQpNlZatMjqhADgtnr27Kn09HQNGTJEpmnqueee07XXXqutW7daHQ0A4KEorAEA4Cr/+Y/UrZuUmanCt9/Rmk82a8ErS/TR4rXKWvWJ1Ly5NHjwLwU3AIBDIiIi9O6772rlypWKjo7Wt99+q06dOunxxx9XQUGB1fEAoOJYvMAtUFgDAMAV9u+X7rpLSkzU2pcXqmfyeT329jrN+2iLnntvnW5dtlevJI2T/W9/k556Snr/fasTA4Bb6927t3bv3q0BAwaouLhYM2fOVIcOHbRjxw6rowEAPAiFNQAAXOGVV6TgYH39+LOa8vZanTufL0kqtttlmlKx3dSiz7bp1UadpT59pL/9jb8YAkAV1a5dW4sXL9aHH36o2rVra8eOHWrfvr1mzpypoqIiq+MBQLkMuzUNlUNhDQAAZzt3TlqwQOZ99+nVVdtkGFJZJbMl/9murOH3S999J335pUtjAoCn6t+/v3bv3q2+ffuqsLBQjz/+uDp37qxvv/3W6mgAADdHYQ0AAGdLT5eys5WZeIt+OHyq3IlodtPU6uB6UmSktGmT6zICgIeLjo7Wxx9/rPfee08RERHaunWrrrnmGj3//PMqLi62Oh4AwE1RWAMAwNnOnZMk5foG/OauPoaPss/lS+HhJccBAKqHYRgaPHiw0tPTdeuttyo/P1+PPPKIunXrpn379lkdDwBKY/ECt0BhDYDXsJuFKrKfk8mHBVwtMlKS9LsLWTKM8nctttvV0BYknTxZchwAoHrVr19fn3zyid566y2FhYXpq6++Utu2bfXqq6/KbucGQwCAiqOwBsDjnc1L1fbMP2vtobZa/2M7bTycqINn31SxPd/qaPAWcXFSkyayLV2srvFN5etz+eqaISk0OEDdD23/ZbZanz6uzQkAXsQwDN13333atWuXbrjhBl24cEEPPfSQevTooUOHDlkdDwB+uSmvFQ2VQmENgEfLzP1MKcf/pFMXNunip0R+8Qn9cOYfSs28j+IaXMPXV/rzn6UlS/TXTg0UHBRwSXHt4oIGj95znQJeekm66SapRQtL4gKAN2ncuLFWr16t2bNnKyQkROvXr1dcXJzmzZvHLHcAwG+isAbAYxUWZ2n3qUf1S7ni/96U2NTZ/O3KyF7g+mDwTqNGSVdeqXqDk/TekI7q3KZJqctCr2pQR//4y8266fnHpH37pFmzrMsKAF7Gx8dHY8aM0Y4dO9S1a1fl5uZq1KhRuvXWW3XkyBGr4wEAajAKawA81vHclbKbBSp7PrNdGdmLZJrcSwUuYLNJX3whBQSo3o1d9cKOj/VF0tV6b1hnrfjTtXpfe9Sl743Shg3Sxx9L7dtbnbjGKrLn6mj2+0o/MVq7TozSj2fnqqD4lNWxAHiAZs2aacOGDXrhhRcUGBioL774QrGxsVq4cCGz1wC4nGGaljRUDoU1AB4rp2CvjN8Y5gqKT6rInu2iRPB6jRtLycnSU09JmzbJ1us2tejRRTG3XC/jtdekAQOktDSpZ0+rk9ZY2fk7lXwkUT+cnqGfL6zT6Qvrdejsy/r6cHedOrfa6ngAPICvr6/++te/Ki0tTR06dFBWVpaGDh2qvn37KjMz0+p4AIAahsIaAI/lawTpl9vBl8/HCHB+GOAim02aOFH64Qdp+3Zp7Vppyxbp6FHplVekZs2sTlhjFRaf1c4T96rInqPSd9e1y1SRvj35sM4VfG9hQgCepGXLltq8ebNmzZolf39/rVq1Sq1bt9aSJUusjgbAW5imNQ2VQmENgMeKCr1BporK2cNHkUGd5esT4rJMQAkfHyk+XrrhBqlTJ6lWLasT1XiZuR+p2J4r6XKXb5syZepI9kJXxwLgwfz8/DRlyhRt27ZNCQkJOn36tO6++24lJSXp1CkuQQcAUFgD4MEigzorLOBqGfItYw9TV0bc79JMABz38/n1Kn8N+GL9fH6Nq+IA8CJxcXFKTk7WtGnT5Ofnp6VLl6p169ZasWKF1dEAeDJTv/w90ZWNCWuVRmENgMcyDB8lRL+h0IDmvzyWr34Z9nxkyE+t6sxU7eDOlmYEUHGmWVCBfQpdkASAN/L399eTTz6p5ORktW7dWj/99JP++Mc/6k9/+pPOnDljdTwAgEUorAHwaIF+UepU7yMlRL+hemF3KSb0djW7Yqyua7Re9cPutDoegEoIC2wrlTkDVZJ8FRbYxlVxAHipa665Rtu2bdPkyZPl4+Oj999/X7Gxsfrss8+sjgYAsACFNQAezzB8VCekm1rVma7Y3z2rJhH3K9C3jtWxAFRSvbC7dfn7q11UrHrhf3JVHABeLDAwUE8//bQ2b96sFi1a6NixY7rttts0YsQIZWez2jiA6mGYpiUNlUNhDQAAuIWQgKvUPHLa/x79eubaLz/O1A8bqtrBiS7PBcB7derUSdu3b9e4ceNkGIbefvttxcXFae3atVZHAwC4CIU1AADgNuqF36O2dd9XZHA3GQqQIT+FByaoVdSruipyigzDsDoiAC8TEhKiF198URs2bFCTJk2UkZGhHj16aMyYMcrNzbU6HgB3ZkoyTRc3q9+0+6GwBgAA3EpEUAfFRb+hblemq9uV3yoh5p+KCr2FohoAS3Xr1k07d+7U6NGjJUlz5sxR27ZttXHjRouTAQCcicIaAAAAAFSDWrVqac6cOVq9erUaNmyoAwcOqHv37ho/frwuXLhgdTwAgBNQWAMAAACAatSjRw/t2rVLw4cPl2maevHFF5WQkKDk5GSrowFwJy6/DPR/DZVCYQ0AAAAAqpnNZtPbb7+tf//734qJidHevXvVpUsXTZkyRfn5+VbHAwBUEwprAAAAAOAkt99+u9LT0zVo0CDZ7XY9/fTTat++vbZv3251NAA1nd2ihkqhsAYAAAAAThQZGan3339fH330kaKiorRr1y516NBB06dPV2FhodXxAABVQGENAAAAAFzgzjvv1O7du3XXXXepqKhITz75pDp16qT09HSrowEAHERhDQAAAABcJCoqSkuXLtUHH3ygK664Qqmpqbr22mv197//XUVFRVbHA1CDGKZpSUPlUFgDAAAAABcyDEMDBw7U7t27dccdd6igoECPPvqounbtqr1791odDwBQCRTWAAAAAMACMTExWrVqlebPn6/w8HAlJycrPj5eL730kux27iAOeD3TtKahUiisAQAAAIBFDMPQsGHDlJ6erptuukl5eXkaN26cEhMTdeDAAavjAQB+A4U14H+y8tO1++RUbTnSV98cu1uHzr6lguIzVscCAACAF2jYsKG++OILvf766woNDdV///tftWnTRnPnzpXJDBLAOzFjzS1QWAMkHTgzR98c66/juSuUW7hXWfk7tO/Mi9p85FZl539rdTwAAAB4AcMwNGrUKO3cuVPdu3fXuXPn9Je//EU333yzMjIyrI4HALgMCmvwej+dW6P9Z1+VJJkq/tUzporsOdqeOVLF9jxrwgEAAMDrNG3aVOvWrdNLL72koKAgrVmzRnFxcXrnnXeYvQYANQyFNXi9Q1nvqOxvBbsK7D/rxLnPXBkJAAAAXs7Hx0cPP/ywduzYoU6dOik7O1v33XefevXqpWPHjlkdD4ArcCmoW6CwBq9mNwuVlb9dUnmrLvnqdN7XrooEAAAAlGjRooU2bdqkZ555RgEBAfrkk08UGxurDz74gNlrAFADUFiDl6vIDyMmP7QAAADAMr6+vpo4caJSU1N17bXX6syZMxo0aJD69eunn376yep4AJzFblFDpVBYg1fzMQIUFtBS5X8r2BURlOCqSAAAAMBltW7dWlu2bNH06dPl5+enjz/+WK1bt9ZHH31kdTQA8FoU1uD1GoUPU9lleR/5GrUUU6u3CxMBAAAAl+fv768nnnhCKSkpatOmjU6dOqV+/frpnnvu0enTp62OBwBeh8IavF5Mrd5qEDZQkmTI91fP+MrHCFB89Gvy8wm1JhwAAABwGfHx8UpJSdFjjz0mX19f/fOf/1Tr1q3173//2+poAKqJYZqWNFQOhTV4PcMw1LL244qPnqvI4C4K8KmtIL96ahT+J3Wuv0qRwR2sjggAAABcIiAgQDNnztSWLVt09dVXKzMzU7169dK9996rrKwsq+MBgFegsAbol+JaVMj1uqbuPHVvvEnXNVyr39eepBD/hlZHAwAAAMrVvn17paamasKECTIMQwsWLFBcXJxWr15tdTQAVWGa1jRUCoU1AAAAAHBzQUFBeu6557Rx40Y1a9ZMhw8f1s0336zRo0crNzfX6ngA4LEorAEAAACAh/jDH/6gtLQ0Pfjgg5Kk119/XW3atNGXX35pcTIAlWY3rWmoFAprAAAAAOBBQkND9corr2jdunVq3LixDh48qOuvv15jx47V+fPnrY4HAB6FwhoAAAAAeKDExETt2rVL999/vyTp5ZdfVnx8vLZs2WJxMgDwHBTWAAAAAMBDhYWFad68efrss89Uv3597du3T127dtWkSZOUl5dndTwA5fGwxQtmzZqlLl26KCQkRBEREb+5f2FhoSZNmqS4uDiFhoaqXr16GjJkiI4dO+a0jI6gsAYAAAAAHq5nz55KT0/XkCFDZLfb9eyzz+raa6/V1q1brY4GwEsUFBSof//+Gj16dIX2P3/+vFJTU/X4448rNTVVH3/8sfbu3avevXs7OWnl+FkdAAAAAADgfBEREXr33Xd15513atSoUfr222/VqVMnTZkyRVOnTlVAQIDVEQGU4twZZGWe00mmT58uSVqwYEGF9rfZbFq9enWpbbNnz1aHDh2UkZGhRo0aVXdEhzBjDQAAAAC8SJ8+fZSenq4BAwaouLhYM2bMUMeOHbVz506rowGoIbKzs0u1/Px8qyNJkrKysmQYRoUuJXUVCmsAAAAA4GXq1KmjxYsXa8mSJapdu7bS0tLUrl07zZo1S0VFRVbHA2Cxhg0bymazlbSnn37a6kjKy8vTpEmTNHDgQIWHh1sdpwSFNQAAAADwUklJSdq9e7f69OmjwsJCTZ06VV26dNF3331ndTQAFi5ecPjwYWVlZZW0Rx999LIRJ0+eLMMwym179uyp8j9FYWGhkpKSZJqm5s6dW+XXq07cYw0AAAAAvFh0dLSWL1+uRYsW6cEHH1RKSooSEhI0a9YsjR07Vr6+vlZHBOBi4eHhFZoVNn78eA0bNqzcfZo2bVqlLBeLaj/++KPWrVtXo2arSRTWAAAAAMDrGYahwYMHKzExUSNGjNDnn3+uCRMmaPny5VqwYIGaNWtmdUTA+9hNOXMxgbLPWXFRUVGKiopyUpj/X1Tbt2+f1q9fr9q1azvtXI7iUlAAAAAAgCSpfv36+vTTT/Xmm28qLCxMmzdvVtu2bTV79mzZ7Xar4wFwYxkZGUpLS1NGRoaKi4uVlpamtLQ05ebmluzTsmVLLV++XNIvRbV+/fpp69atWrRokYqLi5WZmanMzEwVFBRY9TYuQWENAAAAAFDCMAyNGDFCu3bt0g033KDz58/rwQcfVI8ePXTo0CGr4wHew7Rb05zkiSeeUEJCgqZNm6bc3FwlJCQoISFBW7duLdln7969ysrKkiQdPXpUq1at0pEjRxQfH6+YmJiS9tVXXzktZ2UZpmm6eF6he8vOzpbNZlNWVlaNu64XAAAAAKqT3W7X3LlzNXHiRJ0/f161atXSiy++qBEjRsgwDKvjwcN56+/fF993j0Z/kZ9PoEvPXWTP15qMOV73b14VzFgDAAAAAFyWj4+PxowZox07dugPf/iDcnNzNXLkSN122206cuSI1fEAwHIU1gAAAAAA5WrWrJm+/PJLPf/88woMDNTnn3+u2NhYLVy4UFwEBTiJaVrTUCkU1gAAAAAAv8nX11fjx4/X9u3b1b59e2VlZWno0KH64x//qMzMTKvjAYAlKKwBAAAAACrs6quv1ldffaVZs2bJ399fK1euVGxsrD788EOrowGexW5a01ApFNYAAAAAAJXi5+enKVOmaOvWrYqPj9fPP/+sAQMGaMCAATp16pTV8QDAZSisAQAAAAAc0qZNGyUnJ+uJJ56Qr6+vPvzwQ7Vu3VorV660OhoAuASFNQAAAACAwwICAjR9+nR9/fXXatWqlX766Sf17dtXQ4YM0ZkzZ6yOB7gvFi9wCxTWAAAAAABV1q5dO23btk2TJk2Sj4+P3nvvPcXFxenzzz+3OhoAOA2FNQAAAABAtQgKCtLf//53bdq0SS1atNDRo0d16623auTIkcrJybE6HuBeTFkwY83qN+1+3LawNmvWLHXp0kUhISGKiIio0DGmaeqJJ55QTEyMgoOD1aNHD+3bt8+5QQEAAADAy3Tu3Fnbt2/Xww8/LEl68803FRcXp3Xr1lmcDACql9sW1goKCtS/f3+NHj26wsc8++yzeuWVV/T6668rOTlZoaGhuuWWW5SXl+fEpAAAAADgfUJCQvTSSy9pw4YNatKkiX788UfdeOONeuCBB3Tu3Dmr4wE1H/dYcwtuW1ibPn26xo0bp7i4uArtb5qmXnrpJU2dOlV9+vRRmzZttHDhQh07dkwrVqxwblgAAAAA8FLdu3fXzp079ec//1mS9Nprr6lt27batGmTxckAoOrctrBWWQcPHlRmZqZ69OhRss1ms6ljx47asmWLhckAAAAAwLPVqlVLc+fO1X/+8x81aNBA+/fvV7du3TRhwgRduHDB6ngA4DCvKaxlZmZKkqKjo0ttj46OLnnucvLz85WdnV2qAQAAAAAq76abblJ6erruvfdemaapF154QePHj7c6FlAz2e3WNFRKjSqsTZ48WYZhlNv27Nnj0kxPP/20bDZbSWvYsKFLzw8AAAAAnsRms+mdd97Rv/71L7Vq1UpTp061OhIAOMzP6gC/Nn78eA0bNqzcfZo2berQa9etW1eSdOLECcXExJRsP3HihOLj48s87tFHH9Vf//rXksfZ2dkU1wAAAACgiu644w7ddttt8vGpUfM9gJrDisUEWLyg0mpUYS0qKkpRUVFOee0mTZqobt26Wrt2bUkhLTs7W8nJyeWuLBoYGKjAwECnZAIAAAAAb0ZRDYC7c9tRLCMjQ2lpacrIyFBxcbHS0tKUlpam3Nzckn1atmyp5cuXS5IMw9DYsWM1c+ZMrVq1Srt27dKQIUNUr1499e3b16J3AQAAAAAAAHdVo2asVcYTTzyhd999t+RxQkKCJGn9+vW6/vrrJUl79+5VVlZWyT4TJ07UuXPnNHLkSJ09e1Zdu3bV559/rqCgIJdmBwAAAAAAKBeXgroFwzT5V6uM7Oxs2Ww2ZWVlKTw83Oo4AAAAAAB4JG/9/fvi++5RZ7j8fAJceu4ie4HWnHrH6/7Nq8JtZ6wBNZndLFB+0Un5+oQowPcKq+MAAAAAANyN3ZTk4rlQduZeVRaFNaAaFdpzdODMHB3NWapi85wkyRYYr6YRf1GdkOssTgcAAAAAAKoThTWgmhTac5RybJDOFR6QVFyyPSt/p7afGKXWdWapXtgfrQsIAAAAAHAbpmmXadpdfk5UjtuuCgrUNIfOztO5wv36dVHtF3ZJpr49NU2FxWddHwwAAAAAADgFhTWgGtjNIh3JWaJfimiXZ6pIx3NXuS4UAAAAAABwKi4FBapBYfEZFdlzyt3HkK9yCw+4KBEAAAAAwK2ZpusXEzBZvKCymLEGVANfn+AK7GXKzwhxehYAAAAAAOAaFNaAauDnU0uRQV1U3reUqWL9LvRm14UCAAAAALgv07SmoVIorAHVpGnEn//3f8ZlnvVVZFAn2QLbujISAAAAAABwIgprQDW5Iri92vzuRfkYQZIkQ34y5CtJigzqqDbRr8gwLld0AwAAAAAA7ojFC4BqFB16i2oHd1Vm7ic6V/iDfIxg/S70JtkCY62OBgAAAABwJ3a7ZNhde07TxefzABTWgGrm5xOqBuFJVscAAAAAAABORmENAAAAAACgpjFNSS5eTIDFCyqNe6wBAAAAAAAADmDGGgAAAAAAQA1j2u0yXXyPNZN7rFUaM9YAAAAAAAAAB1BYAwAAAAAAABzApaAAAAAAAAA1DYsXuAVmrAEAAAAAAAAOYMYaAAAAAABATWM3JYMZazUdM9YAAAAAAAAAB1BYAwAAAAAAABzApaAAAAAAAAA1jWlKsltwTlQGM9YAAAAAAAAABzBjDQAAAAAAoIYx7aZMFy9eYDJjrdKYsQYAAAAAAAA4gMIaAAAAAAAA4AAuBQUAAAAAAKhpTLtcv3iBi8/nAZixBgAAAAAAADiAGWsAAAAAAAA1DIsXuAdmrAEAAAAAAAAOYMYaAAAAAABATcM91twCM9YAAAAAAAAABzBjrZIuXm+cnZ1tcRIAAAAAADzXxd+7vfW+X0UqlFz81otU6NoTegAKa5WUk5MjSWrYsKHFSQAAAAAA8Hw5OTmy2WxWx3CZgIAA1a1bV5syP7Xk/HXr1lVAQIAl53ZHhumtpV8H2e12HTt2TGFhYTIMw+o4FZKdna2GDRvq8OHDCg8PtzoOahD6BspC30BZ6BsoC30DZaFvoCz0DZTlYt/IyMiQYRiqV6+efHy8605WeXl5KigosOTcAQEBCgoKsuTc7ogZa5Xk4+OjBg0aWB3DIeHh4Xxg4bLoGygLfQNloW+gLPQNlIW+gbLQN1AWm83mtX0jKCiI4pab8K6SLwAAAAAAAFBNKKwBAAAAAAAADqCw5gUCAwM1bdo0BQYGWh0FNQx9A2Whb6As9A2Uhb6BstA3UBb6BspC34A7YfECAAAAAAAAwAHMWAMAAAAAAAAcQGENAAAAAAAAcACFNQAAAAAAAMABFNYAAAAAAAAAB1BY80DHjx/X5MmTlZiYqLCwMBmGoQ0bNlTqNY4ePaqkpCRFREQoPDxcffr00YEDB5wTGC519uxZjRw5UlFRUQoNDVViYqJSU1MrdOywYcNkGMYlrWXLlk5OjeqSn5+vSZMmqV69egoODlbHjh21evXqCh3LuODZHO0bTz755GXHhaCgIBekhivk5uZq2rRp6tmzpyIjI2UYhhYsWFDh46vyuYOarSp9Y8GCBZcdOwzDUGZmpnODw6lSUlL0wAMPqHXr1goNDVWjRo2UlJSk77//vkLHM2Z4rqr0DcYM1GR+VgdA9du7d6+eeeYZNW/eXHFxcdqyZUuljs/NzVViYqKysrI0ZcoU+fv76x//+Ie6d++utLQ01a5d20nJ4Wx2u1233367duzYoUceeUR16tTRnDlzdP3112vbtm1q3rz5b75GYGCg3nrrrVLbbDabsyKjmg0bNkzLli3T2LFj1bx5cy1YsEC33Xab1q9fr65du5Z5HOOC53O0b1w0d+5c1apVq+Sxr6+vM+PChU6dOqWnnnpKjRo1Utu2bSv1x7rq+NxBzVWVvnHRU089pSZNmpTaFhERUT0BYYlnnnlGmzdvVv/+/dWmTRtlZmZq9uzZuuaaa/T1118rNja2zGMZMzxbVfrGRYwZqJFMeJzs7Gzz559/Nk3TNJcuXWpKMtevX1/h45955hlTkvnNN9+UbPvuu+9MX19f89FHH63uuHChJUuWmJLMpUuXlmz76aefzIiICHPgwIG/efzQoUPN0NBQZ0aEEyUnJ5uSzOeee65k24ULF8yrrrrK7Ny5c7nHMi54tqr0jWnTppmSzJMnTzo7JiySl5dnHj9+3DRN00xJSTElmfPnz6/QsVX93EHNVpW+MX/+fFOSmZKS4sSEsMLmzZvN/Pz8Utu+//57MzAw0Bw0aFC5xzJmeLaq9A3GDNRkXArqgcLCwhQZGenw8cuWLVP79u3Vvn37km0tW7bUjTfeqA8//LA6IsIiy5YtU3R0tO68886SbVFRUUpKStLKlSuVn59fodcpLi5Wdna2s2LCSZYtWyZfX1+NHDmyZFtQUJDuu+8+bdmyRYcPHy73WMYFz1WVvnGRaZrKzs6WaZrOjAoLBAYGqm7dug4dW12fO6iZqtI3fi0nJ0fFxcXVkAg1QZcuXRQQEFBqW/PmzdW6dWt999135R7LmOHZqtI3fo0xAzUNhTWUYrfbtXPnTrVr1+6S5zp06KD9+/crJyfHgmSoDtu3b9c111wjH5/S3/odOnTQ+fPnK3R/g/Pnzys8PFw2m02RkZEaM2aMcnNznRUZ1Wj79u1q0aKFwsPDS23v0KGDJCktLe2yxzEueD5H+8avNW3aVDabTWFhYRo8eLBOnDjhjKhwM9XxuQPPlpiYqPDwcIWEhKh3797at2+f1ZHgBKZp6sSJE6pTp065+zFmeJ+K9o2LGDNQE1FYQymnT59Wfn6+YmJiLnnu4rZjx465OhaqyfHjx6v0tY2JidHEiRM1f/58/fOf/1Tv3r01Z84c9ezZU0VFRU7JjOrj6NefccHzVWVsuOKKK/TAAw/ojTfe0LJlyzRixAgtWbJE1113HTNbUeXPHXiukJAQDRs2TK+99pqWL1+uiRMnau3aterSpUuFZsnCvSxatEhHjx7VgAEDyt2PMcP7VLRvMGagJmPxghrObreroKCgQvsGBgbKMIwqne/ChQslr/V/XVzh7eI+sJYjfePChQtV+to+/fTTpR7ffffdatGihR577DEtW7ZMd999dwXTwwqOfv0ZFzxfVcaGhx9+uNTju+66Sx06dNCgQYM0Z84cTZ48uXrDwq1U9XMHnispKUlJSUklj/v27atbbrlF3bp106xZs/T6669bmA7Vac+ePRozZow6d+6soUOHlrsvY4Z3qUzfYMxATcaMtRruv//9r4KDgyvU9u7dW+XzBQcHS9Jl71+Ql5dXah9Yy5G+ERwcXO1f23HjxsnHx0dr1qyp2huC0zn69Wdc8HzVPTbcc889qlu3LuMCnPK5A8/VtWtXdezYkbHDg2RmZur222+XzWYruZ9neRgzvEdl+8blMGagpmDGWg3XsmVLzZ8/v0L7Xm7adGVFRkYqMDBQx48fv+S5i9vq1atX5fOg6hzpGzExMdX+tQ0ODlbt2rV1+vTpSh8L14qJidHRo0cv2f5bX3/GBc/naN8oT8OGDRkX4JTPHXi2hg0bVssfi2G9rKws3XrrrTp79qw2btxYoe93xgzv4EjfKAtjBmoCCms1XN26dTVs2DCXnc/Hx0dxcXHaunXrJc8lJyeradOmCgsLc1kelM2RvhEfH6+NGzfKbreXuilscnKyQkJC1KJFi0rnyMnJ0alTpxQVFVXpY+Fa8fHxWr9+vbKzs0vdpD45Obnk+cthXPB8jvaNspimqUOHDikhIaE6Y8INOeNzB57twIED/EzhAfLy8tSrVy99//33WrNmjVq1alWh4xgzPJ+jfaMsjBmoCbgU1MtlZGRoz549pbb169dPKSkppX6J3rt3r9atW6f+/fu7OiKqUb9+/XTixAl9/PHHJdtOnTqlpUuXqlevXqXuabF//37t37+/5HFeXt5lV36cMWOGTNNUz549nRseVdavXz8VFxdr3rx5Jdvy8/M1f/58dezYUQ0bNpTEuOCNqtI3Tp48ecnrzZ07VydPnmRc8DLHjx/Xnj17VFhYWLKtMp878FyX6xuXGzs+/fRTbdu2jbHDzRUXF2vAgAHasmWLli5dqs6dO192P8YM71OVvsGYgZrMME3TtDoEqt/MmTMlSbt379bixYs1fPhwNWnSRJI0derUkv2uv/56ffnll/p1N8jJyVFCQoJycnI0YcIE+fv768UXX1RxcbHS0tL4i4AbKy4uVteuXZWenq5HHnlEderU0Zw5c5SRkaGUlBT9/ve/L9n3yiuvlCQdOnSo5L8JCQkaOHCgWrZsKUn64osv9Omnn6pnz5765JNPLlkaHTVPUlKSli9frnHjxqlZs2Z699139c0332jt2rXq1q2bJMYFb+Vo3wgJCdGAAQMUFxenoKAgbdq0SYsXL1bbtm21efNmhYSEWPWWUI1mz56ts2fP6tixY5o7d67uvPPOkhmJDz74oGw2m4YNG6Z3331XBw8eLPkMqcznDtyTo32jefPmSkhIULt27WSz2ZSamqp33nlHMTExSklJUXR0tIXvClUxduxYvfzyy+rVq1epm81fNHjwYElizPBCVekbjBmo0Ux4JElltl/r3r37JdtM0zQPHz5s9uvXzwwPDzdr1apl3nHHHea+fftcFR9OdPr0afO+++4za9eubYaEhJjdu3c3U1JSLtmvcePGZuPGjUsenzlzxhw8eLDZrFkzMyQkxAwMDDRbt25t/u1vfzMLCgpc+A5QFRcuXDAnTJhg1q1b1wwMDDTbt29vfv7556X2YVzwTo72jREjRpitWrUyw8LCTH9/f7NZs2bmpEmTzOzsbFfGh5M1bty4zJ8rDh48aJqmaQ4dOrTU44sq+rkD9+Ro33jsscfM+Ph402azmf7+/majRo3M0aNHm5mZmda8EVSbi58Vv/W7CGOG96lK32DMQE3GjDUAAAAAAADAAVy3BQAAAAAAADiAwhoAAAAAAADgAAprAAAAAAAAgAMorAEAAAAAAAAOoLAGAAAAAAAAOIDCGgAAAAAAAOAACmsAAAAAAACAAyisAQAAAAAAAA6gsAYAAAAAAAA4gMIaAAAAAAAA4AAKawAAAAAAAIADKKwBAACPcPToUQUFBWn48OGltq9Zs0b+/v4aN26cRckAAADgqQzTNE2rQwAAAFSHBx54QPPmzdO+ffvUuHFj7dmzR507d9Z1112nFStWyMeHvykCAACg+lBYAwAAHuPo0aO66qqrNHz4cM2YMUMdO3ZUWFiYNm3apNDQUKvjAQAAwMP4WR0AAACgutSvX1/333+/3nzzTaWmpurChQv68ssvKaoBAADAKbgeAgAAeJQJEyYoPz9fO3fu1KpVq1S/fv1Sz588eVK33367QkND9fvf/15r1661KCkAAADcHTPWAACAR5k1a5YkqaioSJGRkZc8P2bMGNWtW1cnT57UmjVrlJSUpH379l12XwAAAKA8zFgDAAAe47nnntNbb72l2bNny8/Pr6TIdlFubq5WrFih6dOnKyQkRL1791ZcXJxWrlxpUWIAAAC4MwprAADAI6xYsUKTJ0/WjBkzNGbMGI0cOVILFy7UwYMHS/bZt2+fatWqpQYNGpRsi4uL0+7du62IDAAAADdHYQ0AALi9bdu2adCgQRo0aJAee+wxSdLEiRPl4+NTatZabm6uwsPDSx0bHh6u3Nxcl+YFAACAZ6CwBgAA3NqRI0fUq1cvJSQk6M033yzZXq9ePQ0fPrzUrLVatWopOzu71PHZ2dmqVauWSzMDAADAMximaZpWhwAAAHCF3NxcRUZG6uDBgyWrhSYmJmrIkCG69957LU4HAAAAd0NhDQAAeJX+/fvLZrPp1Vdf1dq1azV06FBWBQUAAIBD/KwOAAAA4Epz5szR0KFDVbt2bTVo0EBLliyhqAYAAACHMGMNAAAAAAAAcACLFwAAAAAAAAAOoLAGAAAAAAAAOIDCGgAAAAAAAOAACmsAAAAAAACAAyisAQAAAAAAAA6gsAYAAAAAAAA4gMIaAAAAAAAA4AAKawAAAAAAAIADKKwBAAAAAAAADqCwBgAAAAAAADiAwhoAAAAAAADggP8HRugmfRisJPIAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 19,
"metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAIfCAYAAADJ38UbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACz2ElEQVR4nOzdd3gU1dvG8e+zu+kJNXSkqJjQpAgoVuxdLNgLKoq9/+yK3dcuInbsYq/Ye0VRQKUT7PRQ0/vuef/YRUNIIIEkk2zuz3XNxe7M7Jl7N5uwz86Zc8w5h4iIiIiIiEQXn9cBREREREREpPap2BMREREREYlCKvZERERERESikIo9ERERERGRKKRiT0REREREJAqp2BMREREREYlCKvZERLaQmR1tZn+YWdDMnjGzYWbmzKyz19kaksjrMtvMSs3sqyr2udHMfq/naJ4ws26R98muXmfZlOq+pyPv/8/qK1e0MbO/zey6Gj6m0byPRKT+qdgTEYnYnA+qZuYHngJeBboAF9VFtijxCPAzsDVwZBX73APsVG+JyjGzXSMfmrvV0yEXAR2AH2vyIDMrM7NT6yRR1b4nnHVpJEN9v1YNkplNqOqLi4bMzK4zs7+9ziEidU/FnojIlukAJAMfOOeWOOeyvQ7UgPUAPnXOLXLOralsB+dcnnNuVT3n8oRzLuicW+6cK/U6y6Y450oiWUNeZ6kuM4upzjoRkWimYk9EpArrzvSZ2Wgz+8fMcsxskpm1i2w/lfDZGYBvImc6hlXSTqVd4CqeoTGzdpFjrjSzXDObbGa7V9LOvmb2jZkVmNlcMzuwQrttzexpM8s0syIzyzCz08tt39bM3jCzLDNba2afmFnfctubRR6/3MyKzWyRmd23idcqzczeN7O8yPKumW1bPjfgB56LPIdTq2hnvW6c6+6b2XAzm29m+Wb2lZn1KLfPqZHXch8zmxN5zj+aWf+K+1Q4Vud1P7PIGapvI5v+iqz/aiPP15nZRZHXMd/MlpjZRRX26WBmL0de58JI7kHltq/X/a7c/WPM7L3Iz/fPCu+RvyOv49ORfV1kfY1+Zmb2vJlNLHf/tEh7Z5RbN9HMXorc/vc9XJ3XqqrfmY3kCZjZDRbuDl0ceT0frMFruS7fwWb2nZkVAWfYf7/DF0Reu2IzS4g8fkKFDOud7Sr32EsieQrM7DUzaxXZfiMwCthj3c9i3c/KzJLN7IFyj/vFzI6scLx+ZvZ95Pn+ZmbHbOw1Kve4YyK/E0Vm9j2wfYXtZmZPRF7Lwsh76HYzi4tsPxW4BehaLveNkW0nWPh3J9vMVln4d3q76uQSkYZJxZ6IyMYNBvYEDgb2B/oS7moI8AowJHJ7OOGzfN9vzkHMLAH4EkgBDgQGAB8An5pZzwq73wPcDvQj3AXwFTNrWa6dryPbTgR6ARcABZHt7YDvgBXAboS7TGYAX5lZm0j7twIDI8+pB3AsMG8T2T8B4oE9Iksy8JGZxfJfF0CA8yO3X6nBy9MBOCfyfHYm/Bo9VWEfH3AXcC7hn8lK4P1ItupYRPj5Enl8B6ruarrODcBXhH9WdwH3mtlwCH/gBt4G0oFDIm1mEv55pm6i3TuA5wh/iH8ZmFDuA/dgIAhcHMm47nWt0c+M8Httz3L39yL8mu1Vbt2ewBeVPHZTr9XGfmeq8iRwHnAj4ffsUcCfUOPX8l7gTqAn8G65jHtFMvcDSjaRpbwhkedyAHAQ0D+SlchzehH4gf9+Fq9E8r4bOdaxQB/CXZhfNrO9I88pgfDvd1bkGKcAlwNtNxbGzAYALwGvRdq/B3ig4m6Ef79PIPw6XAycBlwT2f4K4ddocbnc634+cfz3XtqX8Hvt/cjvsYg0Rs45LVq0aNHiHMAzwGcV7q8A4sqtuxJYVu5+N8ABu5ZbNyyyrnNl98vtVwacGrl9KuEPX4EK+3wBjK3QzpHltreLrNs/cn8UUFTxWOX2vxGYUmGdAX8AF0fuvwM8U4PXbRThYjK1Qq5C4JRy6xxw0ibauhH4vcL9MqBNuXXHAiEgvtxr54C9y+3TEsgDRpXbp6zCsTpHHjcscn/XyP1u1XjODni+wroXgW8jt/eO7NOr3PY4YBkwprL3Trn7l5Z7jB/IBc6q7H1Tbl1Nf2bdyueLvPcuI/LeJlwkOGCbKt7Tlb5WVON3ppIs20baGlHF9uq8luvynVxJniwgucL6r4AJFdZdB/xd4bF5QPNy6/aLHGfbyP0JwFcV2hlG+HeweYX1TwFvR26fEWm7ZbntfSJtX7eR1+oFYHKFdedT4W9QJY+7BPitque6kce1irS9S3XfW1q0aGlYSwAREdmY+c654nL3lxIuZGrbYKA9kBU+MfCvOMJFU3m/rrvhnMs0s2C5TDsAc51zizdynB3MLK/C+gTCZ4QAHgbeiHST+xz4CPjYVX29Vu/IMf+91i6SKyOybUstdc6tLH+fcIHaFlhYbv0P5Y6/1szm1dLxq/JDhfuTCXePI3Lc1c65ueUyFZvZj9XI9Gu5xwTNbAWbfs/V6GfmnPs70mVxr8j7p0WkjTFm1ovw2ayFzrk/NnHcytT0d2Zg5N9Pqthek9fyp0oeP885V/H9Xl1z3frX4U6O/NsLqGrU2MFALLCkwu9yLPBbucfPc86tXbfROTfbzDZ1zW8vwj/f8r6ruJOZnUm4oOwGJAEBqtGby8Jdn28gfAYzlfDvGUBX/nvuItKIqNgTEdm4il2+HP99AKqudR+4/32chUfxLP/hy0e4290RlTy+YBOZ1j2+OnyEPyyeX8m2bADn3Mdm1oVwF7xhhM8mzDKzvZ1zwWoepzZV9jOAml2KUFnR01AH66js+W70uW7mz+wLwmfNgsB3zrlCM/uGcJfHqrpwbm7+mv7ObK78aq4LsWGm2no/+Aj/Lg2uZFtNupBuFjM7GngIuIpwl+4c4Gjgtk08LpFwwf0d4W6fmZFNcwgXqiLSCOmaPRGRurci8m/Hcuv6s/6HzWmEpyTIcc79XmFZWoNjTQd6WdXzoU0jfDZkcSXH+ffsmXNujXPuJefcWYSvvdqD8FmFysyJHPPf66ci1wamAbNrkH1L/Ttlg5m1INwVcd3ZoBWAv8JAIQNZ37oP4v6aHi9i53LHmwO0jpwlW5cpDtiRLX9NSirLWMOfGYSv29sD2If/zhatKwCHsfFir6av1cb8HPl3vyq218VruYL1fx9hw/cDQE8za1bu/s6Rf9f9nCv7WUwjfKY0vpLfsYXlHt8z8j4FwMx6A803kXtuuQzr7FLh/u7AL865+5xz051zvxE+w1deZbl7Am2Aa51zXznn5hHuDl1fhbqI1AEVeyIide934B/gRjNLt/Doi/fz3xkqgInAX4QHQ9jPwiMz7mhmV5vZ4TU41kuRY02y8OiU3c1sbzM7NrJ9POEPee+Y2W6R4+xqZreZ2c4AkdtHWniEzR6EB0bJY/0uk+W9SHhwj1fMbKCZ7UB4YJEl1Gwgli3hgLvMbHcLjyz6HOFr3V6MbP8pcv8OM+thZgcAYyq08Q/hMz4HWXhE00198D7EzM6PtHcB4WsJ741s+yJyzBfNbBcz6xPJFE94sI4t8Rewp5l1XFdgb8bPbF3GlsBh/FfYfUF4EJRWbLzYq+lrVSXn3O+E3/8Pm9lJZraNmQ22/0Y3rYvX8jNgHzM72sKj015FeMCiDeIRHkG2j4VHxn0ImBTJDOGfRbqZ9Taz1EgR+kWk/TfN7HAz29rMdrDwiKBnRh73IuH34wsWHpVzJ8LX9FXssl3R/cDQyM97OzM7gvC1luVlAH0tPILtNpHXseJgQ38B7c1saCR3IuGfaTFwQeRxexMe/MUhIo2Wij0RkTrmnCsjXAi0BX4h/IHxWsp1LXTOFRE+yzINeBpYALxJeKS+f2pwrIJIO7MJF1zzIsdLiGzPBIYCqyLtZxD+oN2V8IAXEB5c4mbCZwmnER4V8kBXxRyCzrlCwmdlioFvCHcdywcOcM7Vebe1iBDh0QYfI5y5PXBw5PXAhef1O57w2biZwPXAFeUbiLw2VxPu/raM8KAnG3Mz4bNiMyLHvsI591akLQccDswH3gemRjLt67Z8HsHLCF+b+TfhIhtq+DOLZFxK+H2WS/h9CeHXJgtY4JxbspHH1vS12pTTCP/sbiX8nn0L6B45Vl28ls8S/r14iPDrtRUwrpL9fiLcrfFTwtdBzgJOL7f9yUie7wn/LI6P5D2M8O/X/eVyH0x4IKR1v6cHAa0jx5gY2XcFG+Gcm054lM3jIlmuIjz4SnmPAc8T/jvyC+EzoDdW2OdtwiN6vh/JfUXktTyJ8CiccwiP0Pk/Ku8CLSKNhIX/JomIiDROFp43bIJzrt6uQ7fw/HYnO+deqK9jSv0ys2cIjz66j9dZREQ2l87siYiIiIiIRCEVeyIiIiIiIlFI3ThFRERERESikM7siYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlEo4HWAupaamuq6devmdQwRERERkQZl+vTpq5xzbbzOUV3775nkVq8J1nq702cWf+ycO6DWG24Aor7Y69atG9OmTfM6hoiIiIhIg2Jm/3idoSZWrwny08ddar1df4ffUmu90QYi6os9ERERERFp/BwQIuR1jEZFxZ6IiIiIiDQCjqBTsVcTGqBFREREREQkCunMnoiIiIiINHjhbpzO6xiNis7siYiIiIiIRCGd2RMRERERkUZBA7TUjIo9ERERERFp8ByOoFM3zppQN04REREREZEopDN7IiIiIiLSKGiAlprRmT0REREREZEopDN7IiIiIiLS4DkgqDN7NaJiT0REREREGgV146wZdeMUERERERGJQjqzJyIiIiIiDZ4DTb1QQzqzJyIiIiIiEoUaRLFnZluZ2ZdmNtfM5pjZRZXsY2Y2zsx+N7OZZjbQi6wiIiIiIuKNUB0s0axBFHtAGXCZc64XsBNwnpn1qrDPgUCPyDIaeKR+I9ZcRkYGq1at8jqGiIiIiIg0QQ2i2HPOLXPO/Ry5nQvMAzpV2G048JwLmwK0MLMO9Ry12pxznHLKKaSlpTFhwgRCoWj/3kBEREREpO44HME6WKJZgyj2yjOzbsAA4McKmzoBi8rdX8yGBeG6Nkab2TQzm7Zy5co6ybkpZsaTTz5J7969OfPMM9lll1349ddfPckiIiIiItLoOQjWwRLNGlSxZ2bJwBvAxc65nM1txzn3uHNukHNuUJs2bWovYA316dOHr7/+mmeffZY//viDHXbYgYsvvpicnM1+aiIiIiIiItXSYIo9M4shXOhNdM69WckuS4Ctyt3vHFnXoJkZp5xyChkZGZx11lmMGzeO9PR0Xn75ZZyGjhURERERqRaHBmipqQZR7JmZAU8C85xz91Wx2yTglMionDsB2c65ZfUWcgu1bNmShx9+mB9//JGOHTty/PHHs++++5KRkeF1NBERERERiUINotgDdgFOBvYys18jy0FmdraZnR3Z5wPgT+B34AngXI+ybpHBgwfz448/Mn78eKZNm0bfvn257rrrKCgo8DqaiIiIiEgDZgTrYIlmFu1dCQcNGuSmTZvmdYxKZWZmcvnll/P888/TrVs3xo0bx6GHHup1LBERERFpAsxsunNukNc5qqvP9rHujfdTa73d9C7LGtXrUBMN5cxek9SuXTuee+45vvrqKxITEznssMMYPnw4f//9t9fRRERERESkkVOx1wDsscce/Prrr9x111189tln9OrVi//7v/+jpKTE62giIiIiIg2GunHWjIq9BiImJobLL7+cefPmceCBB3LNNdfQr18/vvjiC6+jiYiIiIg0aWZ2gJllmNnvZnZVJdvjzOyVyPYfI3OHe07FXgPTpUsX3njjDd5//31KSkrYe++9OeGEE1i2rNEMPCoiIiIiUusc3pzZMzM/8BBwINALON7MelXYbRSw1jm3LXA/cGftPvvNo2KvgTrooIOYPXs2Y8aM4Y033iA9PZ1x48ZRVlbmdTQREREREU+EnNX6Ug1DgN+dc38650qAl4HhFfYZDjwbuf06sHdkejlPqdhrwBISErjpppuYPXs2O+20ExdddBGDBw9mypQpXkcTEREREYkWqWY2rdwyusL2TsCicvcXR9ZVuo9zrgzIBlrXVeDqUrHXCPTo0YOPPvqIV199lZUrVzJ06FBGjx7N6tWrvY4mIiIiIlIv6rAb5yrn3KByy+MeP9Vao2KvkTAzjj76aObNm8dll13GU089RVpaGk899RShUMjreCIiIiIi0WoJsFW5+50j6yrdx8wCQHPA8zMzKvYamZSUFO655x5++eUX0tPTGTVqFLvtthszZszwOpqIiIiISJ1xGEF8tb5Uw1Sgh5l1N7NY4DhgUoV9JgEjI7dHAF8451ytPfnNpGKvkerbty/ffPMNTz/9NAsWLGCHHXbg0ksvJScnx+toIiIiIiJ1wosBWiLX4J0PfAzMA151zs0xs5vN7LDIbk8Crc3sd+BSYIPpGbygYq8R8/l8nHrqqWRkZHDmmWcyduxY0tPTeeWVV2gAXySIiIiIiEQF59wHzrntnHPbOOdui6wb45ybFLld5Jw72jm3rXNuiHPuT28Th6nYiwKtWrXikUceYcqUKXTo0IHjjjuO/fbbjwULFngdTURERESkVng1z15jpmIvigwZMoSffvqJ8ePHM3XqVPr27cv1119PQUGB19FERERERKSeqdiLMn6/n/POO4/58+dzzDHHcOutt9K7d2/ee+89r6OJiIiIiGwBI+h8tb5Es+h+dk1Y+/btef755/nyyy9JSEjg0EMP5fDDD+eff/7xOpqIVINzZazMuovfFvckY1Fn/sk8hMLiX72OJSIiIo2Iir0oN2zYMH799VfuvPNOPv30U3r27Mkdd9xBSUmJ19FEZCOWr7mctXmPEXLZQIiikp9ZtHIEJaW/ex1NRETEEw4I4av1JZpF97MTAGJjY7niiiuYN28eBxxwAFdffTX9+vXjyy+/9DqaiFSiLLiK3IK3ca5wvfXOFbM65yGPUomIiHhPA7TUjIq9JqRLly68+eabvPfeexQXF7PXXntx0kknsXz5cq+jiUg5pWV/EZ6ztaIgxaVz6j2PiIiINE4q9pqggw8+mDlz5jBmzBhee+010tLSGD9+PMFg0OtoIgLEBLrhXGVdrf3ExfSq9zwiIiINgXMaoKWmovvZSZUSEhK46aabmD17NjvttBMXXHABgwcP5scff/Q6mkiTF/C3ISXxMMwS1ltvFkurZud5lEpEREQaGxV7TVyPHj346KOPePXVV8nMzGTo0KGcddZZrFmzxutoIk1a+1b30DL5DHyWAhhxMf3Yqs1rxMX08DqaiIiIZ0JYrS/RTMWeYGYcffTRzJ8/n0suuYQnn3yStLQ0nn76aUKhkNfxRJoksxjatLiaHp0z2K7zYrq1/5CEuIFexxIREfGMA4L4an2JZtH97KRGUlJSuPfee/nll19IS0vj9NNPZ/fdd2fmzJleRxNp0syi+1tHERERqRsq9mQDffv25ZtvvuHpp58mIyODgQMHctlll5Gbm+t1NBERERFpsjRAS01F97OTzebz+Tj11FPJyMhg1KhR3H///aSnp/Pqq6/inPM6noiIiIiIbIKKPdmoVq1a8dhjj/HDDz/Qrl07jj32WPbff38WLFjgdTQRERERaUIcEMJX60s0i+5nJ7Vmxx13ZOrUqYwbN44ff/yRvn37MmbMGAoLC72OJiIiIiJNRNBZrS/RTMWeVJvf7+eCCy4gIyODo48+mltuuYXevXvz/vvvex1NREREREQqULEnNda+fXteeOEFvvjiC+Li4jjkkEM44ogjWLhwodfRRERERCRKOUxTL9RQdD87qVN77rknM2bM4I477uCTTz6hZ8+e3HnnnZSUlHgdTURERESkyVOxJ1skNjaWK6+8krlz57Lffvtx1VVX0b9/f7766iuvo4mIiIhIlAk5X60v0Sy6n53Um65du/LWW2/x7rvvUlhYyJ577slJJ53E8uXLvY4mIiIiItIkqdiTWnXIIYcwd+5crr/+el577TXS0tIYP348wWDQ62giIiIi0og50DV7NRTdz048kZCQwM0338ysWbMYMmQIF1xwAUOGDOHHH3/0OpqIiIiINFKO2p92QVMviGym7bbbjk8++YSXX36ZZcuWMXToUM4++2zWrFnjdTQRERERkainYk/qlJlx7LHHMn/+fC6++GImTJhAWloazzzzDKFQyOt4IiIiItKIhPDV+hLNovvZSYPRrFkz7rvvPqZPn852223Haaedxh577MGsWbO8jiYiIiIiEpVU7Em96tevH99++y1PPvkk8+bNY8CAAVx22WXk5uZ6HU1EREREGjDnIOh8tb5Es+h+dtIg+Xw+Tj/9dDIyMhg1ahT33Xcf6enpvPbaazjnvI4nIvKvUKiAVbnP8NfKk1i8+jIKS9QbQUTEO0aoDpZopmJPPNO6dWsee+wxfvjhB9q2bcsxxxzDAQccwG+//eZ1NBFpoApLZrIm7zlyCz/HubI6PVYwlMdvmQeyPOs28oq+Ym3Ba/yx4kjW5r9Rp8cVERGpLSr2xHM77bQTU6dOZdy4cUyZMoU+ffowZswYCgsLvY4mIg2EcyX8s/Ik/l5xJJlrb2LJ6nP5bdlQSsuW1NkxV+c9S2nZYhzr/haFcK6QpWuvIeSK6uy4IiJSOYe6cdZUdD87aTQCgQAXXHAB8+fPZ8SIEdxyyy307t2bDz74wOtoItIArM59jIKiH3CuEEcRIZdHWTCTxavPq7Nj5hR8iKO4ki1GYcmcOjuuiIhIbVGxJw1Khw4dmDhxIp9//jlxcXEcfPDBHHnkkSxcuNDraCLiobV5L+KoeDYtSFHJDMqCdTN3p9/XvNL1jiB+X0qdHFNERDYuiK/Wl2gW3c9OGq299tqLGTNmcPvtt/PRRx/Rs2dP7rrrLkpKSryOJiIecJRWscWAurl2r3XK6ZglVljrI9a/FXGBHnVyTBERqZrDCLnaX6KZij1psGJjY7n66quZO3cu++67L1deeSUDBgzg66+/9jqaiNSzZgmHYMRusD4msBUBf9s6OubetEk5GyMOn6XgsyRiA1vRrc2zmEX3hwMREYkOKvakwevWrRtvv/02kyZNoqCggGHDhnHyySeTmZnpdTQRqSdtml9CTKDTv2fajHh8lkyn1g/W6XHbNb+U9I5T2ar1g3Rv8xLbtf+O2MBWdXpM8UZp2TJW5jxBZvaDFJbM9TqOiFRB3ThrJrqfnUSVQw89lDlz5nDttdfyyiuvkJaWxkMPPUQwGPQ6mojUMb+vOVu3/5yOLe+kZdLJtGl+Odt2+J6E2O3r/NgBfyuaJexDYtxAndGLUmvzJzFv2e4sy7qT5dn38lvmcJasuUFzv4pIo6diTxqVxMREbr31VmbNmsWgQYM4//zz2XHHHZk6darX0USkjvksjuZJR9Kh1R2kNjubgL+115EkCgRD2SxacxnOFUVGXw3iXBFr8l8mv/gnr+OJSDkOCDlfrS/RLLqfnUSttLQ0Pv30U15++WWWLl3KjjvuyDnnnMPatWu9jiYiIo1ITuFXGIEN1odcIVkFb3mQSESk9qjYk0bLzDj22GOZP38+F110EY8//jhpaWk8++yz6nojIiLVVHXXXP1fItLQGME6WKKZij1p9Jo1a8b999/P9OnT2XbbbTn11FPZY489mD17ttfRRESkgWuWMAxX6fQdjjX5LzJnySDW5L1W77lEZEPqxllz0f3spEnp378/3333HRMmTGDOnDn079+fyy+/nLy8PK+jiUg0WrYMbr0VDjsMjjwSHn0UcnO9TiU15Pc1Y6tW92MWjxEP+NfbXhbMZPHaa1mT94Y3AUVEtoCKPYkqPp+PUaNGkZGRwWmnncY999xDeno6r7/+urrjiEjteeEF6N2b0MKFLN79IDKH7o377DPo0QOmTPE6ndRQy6RD6NnxOzq0vAafJWyw3blClmff40EyEalI3ThrRsWeRKXU1FSeeOIJvv/+e1JTUzn66KM58MAD+f33372OJiKN3bffwuWXM/OOCRzzcSwXjp3JWffP5rQFW5N5w50wfHj4rJ80KjH+dqQmn0rIVd4bpDS4tJ4TiYhsORV7EtWGDh3KtGnTGDt2LN9//z19+vThxhtvpLCw0OtoItJY3XMP2RdezvVjPiEvq4CC3CKK8otZ/s8qLrznZ4KHHwGPP+51StkMZkaMv1Ol22IDW9VzGhGpyDnTNXs1FN3PTgQIBAJcdNFFZGRkcOSRR3LTTTfRt29fPvzwQ6+jiUhjU1ICH33E+0UdCAaDG2wuLS5lbtpQePNND8JJbejQ4irM4tdbZxZPh+ZXe5RIRMoLOl+tL1vCzFqZ2adm9lvk35aV7NPfzH4wszlmNtPMjt2ig9ZAgyn2zOwpM1thZpUOoWhmw8ws28x+jSxj6jujNG4dOnTgxRdf5LPPPiMQCHDQQQdx1FFHsWjRIq+jiUhjUVwMMTFkri6irGTDYi8UDJFVFgMFBR6Ek9rQMulwtmp1H7GBbkCA2EB3urR+gBZJB3sdTUQapquAz51zPYDPI/crKgBOcc71Bg4AxppZi/oI12CKPeAZwk9+Y751zvWPLDfXQyaJQnvvvTczZszg9ttv58MPP6Rnz57cfffdlJaWeh1NRBq65GRo2ZLdt44lPilug82hkKMPKyE93YNwUltaJh1Kz47f0q/LX/Ts+A0tEg/yOpI0EhoMrm45IITV+rKFhgPPRm4/Cxy+QW7nFjjnfovcXgqsANps6YGro8EUe865b4A1XueQpiEuLo6rr76auXPnsvfee3PFFVcwYMAAvvnmG6+jiUhDZgajRzNgyjt0Te9IXELsv5vik+LY/+hBtHzhSTjrLA9Dikh9ci5EZvZDzF7cl5mLujB/6TByCr/yOpbUTKqZTSu3jK7BY9s559aNyrUcaLexnc1sCBAL/LGZWWukwRR71TTUzGaY2Ydm1ruqncxs9Lof1sqVK+sznzQy3bp145133uGdd94hLy+PPfbYg5EjR7JixQqvo4k0WsWlC8gteJ/i0gyvo9SNSy7B9+ef3Nf1L869eA/SB21Nv93Tue6K3Tl33svQty8cpDNBIk3F8uy7ycx5gGAoC4Disj/4e9Vo8op+8jZYVLK6umZvlXNuULllvVG2zOwzM5tdyTK8/H4ufGq3ytO7ZtYBeB44zTkXqoMXaMNjNqTTzWbWDXjPOdenkm3NgJBzLs/MDgIeiPSN3ahBgwa5adOm1X5YiToFBQXcdttt3H333SQlJXH77bczevRo/H7/ph8sIoRcIctWnUZhyVTCE1OXER87iFbNLie/8AOcKyUl8RDiY3fErJHPa5STA9deCxMnQteu4Wv5srPh/PPhiitAfzdEmoRQqJDZS/rh3IajfCfH7cw27V7xIFX1mdl059wgr3NUV4feLd3pL+1Z6+3e3u+tzX4dzCwDGOacWxYp5r5yzqVVsl8z4Cvgdufc61sUuAYazZk951yOc+HJb5xzHwAxZpbqcSyJIomJidx2223MnDmTgQMHcu6557LTTjuhLwtEqmdV1m0UFP+Ic4U4l4dzRRQW/8CSlUeSlfcE2flPs2TVSazIuqLxX9fSrBk8+CAsXAgTJsBLL8Hff8PVV6vQE2lCykKrqtxWVKq5fZuIScDIyO2RwDsVdzCzWOAt4Ln6LPSgERV7ZtbeIl8FR/q6+oDV3qaSaJSens5nn33GxIkTWbx4MUOGDOHcc89l7dq1XkcTadByCl4BiiusDUaWEOBwroDcgjcpKomSL1GSk2GHHaBfP4iJ8TqNiNSzgL8NVsUAH/ExG5zckVoQxFfryxa6A9jXzH4D9oncx8wGmdmEyD7HALsDp5abWaD/lh64OhpMsWdmLwE/AGlmttjMRpnZ2WZ2dmSXEcBsM5sBjAOOc43+q2FpqMyME044gfnz53PBBRfw2GOPkZaWxnPPPdf4z0iI1BHniqq9X17hB3WcRkSk7vksnjYpZ2GWsN56swTat7jMo1RSn5xzq51zezvnejjn9nHOrYmsn+acOyNy+wXnXEy5WQX6O+d+rY98DabYc84d75zrEHkhOjvnnnTOPeqcezSyfbxzrrdzrp9zbifn3PdeZ5bo17x5cx544AGmTZvGNttsw8iRIxk2bBizZ1c6HaRIk5YQNxSqNYS1f4MPRiIijVW75pfQofmVBHxtAT/xMb3Yus0zJMXt4HW0qOMwQq72l2jWYIo9kYZswIABTJ48mSeeeILZs2czYMAArrjiCvLy8ryOJlJrQq6QnLwXyFx1OqvXXktJDUfTbNviNnyWgrFu/rnYSvczC9As8YgtTCtecs6RVzSZzOx7WZ37LGVBdXOXpsvMaNNsFL07T6dfl79J6/AxyfE7ex1LBFCxJ1JtPp+PM844g4yMDEaOHMndd99Nz549eeONN9S1Uxq9UCiPZZn7szZ7DIVFH5Kb/yzLVhxIfkH1u1vGxvSga/tvaJFyLonx+9Ay5TzathiLWQJmSZglYsSR2nwMsTGbHExZGijnSvl75Qn8veo0VuTcz7LsW8lYthP5xVFyHaaINGghfLW+RLPofnYidSA1NZUJEyYwefJkWrduzYgRIzjooIP4/XeNuiWNV07eU5SWLSo3fHgQ5wpZvfZSnCutdjsBf1tSm19Op9TnSG1+Oc2Tj6F7h19o2/JO2ra4jW4dfqJF8ql18hykfqzJe4n8kmk4VwCAc4WEXD4LV51FPU0bJSJNlHMQdFbrSzRTsSeymXbeeWemTZvG2LFjmTx5Mn369OHGG2+kqKh6g1SINCT5hZOADd+7jiAlpXO3qG2/rxnNEo+kWdKxBPxttqitTSkqmc3S1RfwT+bBrMi6lbLgijo9XlO0Nv/VSucUC7k8ikrneZBIRESqomJPZAsEAgEuuugi5s+fz5FHHslNN91Enz59+Oijj7yOJlIjPkupYksQnyXVa5bNlVf4GQtXDCe34C2KSn5hbe4E/lq+J6Vli72OFl2sqo8OjuoN0CMisvk0QEvNqNgTqQUdO3bkxRdf5LPPPiMQCHDggQcyYsQIFi1a5HU0kWppljwKs8QKa30E/F2JidnWk0w14VyI5Wsuj5xxWteVsIRQKIdV2Xd5GS3qtEo6rtLRVH2+5sTH9PQgkYiIVEXFnkgt2nvvvZkxYwa33nor77//Pj179uSee+6htLT61zyJeCEx4WBSkk4G4jBLxiwZv78jbVOf9TpatZQFMwmFsivZEiS/6Jt6zxPNWiYdQ3LcrpEvB/yYJeKzFLq2fgKz6P6GXES8FZ56wVfrSzSL7mcn4oG4uDiuvfZa5s6dy1577cXll1/OgAED+Pbbb72OJlIlM6NVixvp3OEHUlveR7vU5+jc/kdiAl28jlYtPl8y/53RW5/f16Jes0Q7swBdU5+ie5uXaN/8Cjq2uIX0jlNJjOvvdTQRaQKCWK0v0UzFnkgd6d69O5MmTeKdd94hLy+P3XffnVNPPZUVKzRghDRcAX8HkhIPJT5uKFbltVkNj9+XQlL8XlSc288sgZYpZ3kTKoqZGUlxO9Cm2Xm0Sj4Wvy/Z60giIlKJxvM/uUgjddhhhzF37lyuueYaXnzxRdLS0nj00UcJBoNeRxOJKu1bjyUxbjBm8fisGUYcLZJOoXnScV5HExGRWuDQAC01pWJPpB4kJiZy2223MXPmTAYOHMg555zD0KFDmT59utfRRKKG39eMrdq+Rrf2X9Ap9Um27jiNti1v0HVkIiLSZKnYE6lH6enpfPbZZ7z44ossWrSIwYMHc95555GVleV1NJGoERvoRmL8LgT8rb2OIiIitUoDtNRUdD87kQbIzDj++OOZP38+F154IY8++ihpaWk8//zzOOe8jiciIiLSYIWwWl+imYo9EY80b96csWPHMn36dLbeemtOOeUUhg0bxpw5c7yOJiIiIiJRQMWeiMf69+/P5MmTeeKJJ5g9ezb9+/fnyiuvJC8vz+toIiIiIg2GcxB0VutLNFOxJ9IA+Hw+zjjjDDIyMhg5ciR33XUXPXv25M0331TXThERERHZLCr2RBqQ1NRUJkyYwOTJk2nVqhVHHXUUBx98MH/88YfX0UREREQ8pwFaaia6n51II7Xzzjszffp0xo4dy3fffUfv3r25+eabKSoq8jqaiEi9yy+exuLVl7Fw1TlkF3yAc5qnVESkOlTsiTRQgUCAiy66iPnz53PEEUdwww030LdvXz7++GOvo4mI1JsVOQ/y18rjWVvwKtmF77JozcX8s+p0nAt5HU1E6pmj9idU16TqIuKpjh078tJLL/Hpp5/i8/k44IADOProo1m8eLHX0UREak1pcDkrcx9neda9FBRPxzlHaXA5K7LH4lwhEL5+2bkC8ot/ILfoS28Di4gnNPVCzajYE2kk9tlnH2bOnMmtt97Ke++9R3p6Ovfeey+lpaVeRxMR2SLZBR+RsWxXMrPuZGXuWP5ceRyL11xEbuF3mAU22D/kCsgp+MCDpCIijYuKPZFGJC4ujmuvvZa5c+ey55578r///Y+BAwfy3XffeR1NRGSzhEKFLF5zIc4V4SgGHM4Vkl34ESVlv0Ol37r78fua1XNSEfGaA3XjrCEVeyKNUPfu3Zk0aRJvv/02OTk57Lbbbpx22mmsXLnS62giIjWSV/w94N9gvXMFFJVWXuyZxdAy6di6Dyci0sip2BNppMyM4cOHM3fuXK6++momTpxIWloajz32GKGQBi4QEXAuRG7hF2Rm3cbq3CcpC67xOtIGbCPXy/gslm5tnsNnzfBZCj5LxoijQ4ubiI9Nr8eUItJQaOqFmonuZyfSBCQlJXH77bczY8YM+vfvz9lnn83QoUOZPn2619FExEMhV8zfK45k8eqzWZ37MCuybuf3ZTtRUDzV62jrSYrfmXWDr5RnlkjLpKNJihtMz06/0KX1Q3RudR89O02ndfKJ9R9URLxXB1041Y1TRBqFnj178vnnn/PCCy/wzz//MGTIEC644AKysrK8jiYiHlib+wxFpbNxLh8ARxEhl8/i1Wfj3IbFlVd8Fk+X1McwS8AsEYjBLIGWiSNIjh8W2SeOlIS9aJ54EH5fCy/jiog0Kir2RKKImXHiiSeSkZHBeeedx8MPP0x6ejovvPBCg/pwJyJ1L6vgjciUBesLhnIoLlvgQaKqpcTvQXqHn+jYYgztm1/Jtm3fpVOr2zGL7m/cRaRmHJp6oaZU7IlEoebNmzNu3DimTp1K165dOfnkk9lzzz2ZO3eu19FEpDYUFcHzz8OoUXD66fDUU1BQsN4uVsmgJ2FuI9u8E/C3pFXySbRpdrauxxMRqSUq9kSi2MCBA/nhhx94/PHHmTlzJv369eOqq64iPz/f62gisrmmTIGtt4aJE8lJ60tWr364t96C7t3h66//3a1F0gmYJWzw8ICvLbGBbeozsYhIrdE1ezWjYk8kyvl8Ps4880wyMjI45ZRTuPPOO+nZsydvvfWWunaKNDb//APDh5N5yz2c1u4Ijv28hBM+LWZks4NYdNdDcPTRsCDcRbNl8vEkxe0WKfhi8VkSPmvOVqkT1D1SRBolzbNXcyr2RJqINm3a8OSTT/Ldd9/RokULjjzySA455BD+/PNPr6OJSHWNH0/ZCSdx9juZLFq4mpLiMoqLy1iyZC3nvfoPJaNGw9ixAJgF6NLmabq1eZ12La6iQ8s72a7jdOJjewFQWraU1bmPsTJ7LIUlszx8UiIiUldU7Ik0Mbvssgs///wz9913H9988w29e/fm5ptvpqioyOtoIrIpr73GT712p7S0jIon5oPBEN9sOxReeWW99Qlx/WmdchbNk47A5wt368zOf5ffl+/Giqw7WZlzH3+vOIJla67S2X4RafB0Zq9mVOyJNEGBQIBLLrmE+fPnM3z4cG644Qa23357PvnkE6+jicjGZGez3MVRUhLcYFNRUSmLS2MhJ2ejTQRDOSxdezHOFeEoBoI4V0hWwRsUFE+uo+AiIuIFFXsiTVinTp14+eWX/y3y9t9/f4499liWLFnicTIRqdS229I/tIqY2A1H00xIiGWwPwu23XajTeQXfVPpaJzOFZCd/1ZtJRURqXUOTapeUyr2RIR9992XWbNmccsttzBp0iTS09O5//77KSsr8zqaiJR35pl0f/M5eqW3Jy4u8O/q2NgA3bql0uv9F2H06E00YpGlkvUauKX25eXBd9+Fl9xcr9OISBOjYk9EAIiLi+O6665jzpw57L777lx66aUMHDiQyZPVrUukwTjlFKywkDtXfcrZR/ama9fWbLVVa844ojcPlH2PLV60yWIvKX4PHBt2AzVLoHniUXWVvOkpKICLL4YuXeB//wsvXbvChReCpr8R2WyaVL1mVOyJyHq23npr3nvvPd566y2ysrLYddddOf3001m5cqXX0UQkPh4+/BBfSjKHXXUST/3zEs8seYWjrjkJfygIn38OSUkbbcLvS6ZTq/GYxWMWD8RgFk/LpBNJjNupfp5HtCsuhoMOIpSZyceXPsA5pbtzdslufHjJWEKrV8MBB4AGxRKpOacBWmrKon3krUGDBrlp06Z5HUOkUcrPz+eWW27h3nvvJSUlhTvuuIMzzjgDn0/fE4l4LisLpk0D52DgQGjdukYPLwuuIqfgPUKukOSEvYiPSaubnE3R44/jXnuNa3y7MWvyAooLigGIS4yl947bckfMj9hhh8G553ocVJo6M5vunBvkdY7qap7Wzu30+PG13u4nwx5oVK9DTegTm4hUKSkpiTvuuIMZM2bQr18/zjrrLIYOHcrPP//sdTSRBqmk9Hdy8t+goPgHnAvV7cFatIB99oF9961xoQcQ8KfSKuVUUpudo0Kvtj32GH8dcCyzv/+v0AMoLihh7k9/8se+R8Pjj3sYUKRx0qTqNadiT0Q2qVevXnzxxRe88MIL/PPPPwwePJgLLriA7Oxsr6OJNAjOBVm2+hwWrtiPFVlXsXTVKfyTuRtlweVeRxMvLFjAtOx4SopKN9hUVFDE1Kw4WLDAg2Ai0tSo2BORajEzTjzxRObPn8+5557Lww8/TFpaGhMnTtREzNLkZeU9TX7hJ+G561w+zuVTWraQ5avVTa9JSkmhXSLExsdssCkuIY72ieF9ikp/Z03eS+QUfo5zGv1YpDp0Zq9mVOyJSI20aNGCBx98kKlTp9K1a1dOOukk9tprL+bNm+d1NBHPZOc/i6OwwtoghSU/Ewyu9iSTeGjECIaumY0/sOF8hv6Aj12yZpN7SHt+zzyApVljWLT6POYvHUJx6Z8ehBVpPDTPXs2p2BORzTJw4EB++OEHHnvsMWbMmMH222/P1VdfTb6GFJcmyLmKhV6Y4SPkNOpik3PhhcQ+8xQP3rEv7bq1IT4pjvikONp2SeXBO/cn8NQjLDslO3ImuJCQy6MstJJ/Vo3yOrmIRBkVeyKy2Xw+H6NHjyYjI4OTTz6ZO+64g169evH222+ra6c0KcnxBwEbdtnz+9sQ8Hes/0DirW23hVdfZavrL+X5/st5+tpBPH3tIF4YmMlW113I0od7ULx1xW6bjpLgYopL//Ikskhj4ZzV+rIlzKyVmX1qZr9F/m25kX2bmdliMxu/RQetARV7IrLF2rRpw1NPPcW3335L8+bNOeKIIzj00EP58091SZKmoVWziwn422OWGFkTi1ki7VuNwyy6uwhJFYYNgz//xPbfn1YzvqPZ9DdZPvgX5n3bnLU7VT5wj+HD6UywSGNzFfC5c64H8HnkflVuAb6pl1QRgfo8mIhEt1133ZXp06czfvx4xowZQ+/evbn22mu5/PLLiYuL8zqeSJ3x+1vRtd2X5BS8TmHxD8QEutM86URiAp28jiYeCiX6WTxiJjkH/YyjZJP7myUQp2kwRDYqRIP7Am04MCxy+1ngK+DKijuZ2Q5AO+AjoN7m9NOZPRGpVTExMVxyySXMmzePQw89lOuvv57tt9+ezz77zOto0sAVF33CmhX7sWpZL9auOpLS4qleR6oRny+RFsmn0KH1I6Q2v0KFnrB47RXkFH5UjUIvFrMEurQej5k+molUxbk6G40z1cymlVtG1yBWO+fcssjt5YQLuvVY+Bf7XuB/W/wi1JD+oohInejcuTOvvvoqH330EaFQiH333ZfjjjuOpUuXeh1NGqCigjfJWXMuwbI5OJdNWcmPZK0+jpLiH72OJrJZgqEccgo+wLnijewVQ2LsYNo0O4/t2n9Ncvyu9ZZPRNazyjk3qNzyePmNZvaZmc2uZBlefj8XHrCgskELzgU+cM4trsPnUCkVeyJSp/bff39mzZrFTTfdxNtvv016ejpjx46lrExzSkmYc478nFtgg6kLisjPudWLSCJbrCy0BmzDqRfKM/PTqdUdtG9+GbEBDeQjUh1eDNDinNvHOdenkuUdINPMOgBE/l1RSRNDgfPN7G/gHuAUM7uj9l6VqqnYE5E6Fx8fz5gxY5gzZw677rorl1xyCTvssAPff/+919GkAXAun1BoTaXbysrm13MaaQpyCj/hz8wRLFi2F8uybqcsWPn7b0vE+jthGxkawSyBlPg9idc1eiKN3SRgZOT2SOCdijs45050znVxznUj3JXzOefcxgZyqTUq9kSk3myzzTa8//77vPnmm6xdu5ZddtmFUaNGsWrVKq+jiYfMEjCLr3Sb39e+ntNItFuR/QALV59PfskUissWsDp3Ar9l7k9ZcG2tHscshg4trsMsofxawIjxd6F986vo0vqRWj2mSPRrkJOq3wHsa2a/AftE7mNmg8xswpY2vqVU7IlIvTIzjjjiCObOncsVV1zBc889R1paGk888QShUMjreOIBMz8JSaOBhAobEkhMucyTTI1BcekClqw6mT+WpPHXsh3Jyn1a81tuQjCUzYqccThX8O86RwnB4BrW5D1X68drlXwCXVs/TmLsYGL8nWiReDjbtf+G9I7fk5oyCjMNii7S2DnnVjvn9nbO9Yh091wTWT/NOXdGJfs/45w7v77yqdgTEU8kJydz55138uuvv9K3b19Gjx7NzjvvzC+//OJ1NPFAYsolJCafBZYExGHWguRm1xOfeLjX0RqkkrK/WbTiEAqKviDkcikLLmJVzq2syr7F62gNWmHJbMxiN1jvKCa36Ms6OWZKwp5s0+4t0jv+yFatHyQupnudHEekqWhok6o3dCr2RMRTvXv35ssvv+T555/nr7/+YtCgQVx44YVkZ2d7HU3qkZmPpGaXk9p+Dq3bTaV1+5kkJI3c9AObqLW543GukPKDvjlXSHbe0wRD+t2pSsDfBkdlg0MZMX4NkCLS0DnqbOqFqKViT0Q8Z2acdNJJZGRkcM455zB+/HjS09N58cUX1S2tiTGLwedvjW1iFMOmrqj4ZyC4wXqzWErL/qz/QI1EfMx2xAV6QIWBU8ziSU3ZoLeViEijp2JPRBqMFi1aMH78eKZOncpWW23FiSeeyN577828efO8jibSoMTGbEt4sI/1OVdCwF+/k7k3ti9kurV5lsTY/hhx+CwZn6XQqeUdJMYN9DqaiGyKC0+sXttLNFOxJyINzg477MAPP/zAI488wi+//EK/fv245ppryM/P9zqaSIPQMuX8DUYwNeJJStiXgL9tvWQoLpnHwszDWbC4MwsWb0Pm2msJhSrOldjwxPjbsE27t9muwzds3fYNenaaQcuko7yOJSJSJxpMsWdmT5nZCjObXcV2M7NxZva7mc00M30FJxLF/H4/Z599NhkZGZx44on83//9H7169eKdd95pdGcSRGpbfOz2dGj9JAF/FyAGI46UpBG0azWuXo5fWraUhSuGU1jyE+Ai1wu+yJLVjacrZGygEwmxvfFVMmCLiDRcIazWl2jWYIo94BnggI1sPxDoEVlGA5qcRqQJaNu2LU8//TTffPMNzZo14/DDD+ewww7jr7/+8jqaiKeS4ofRrf0PbN1xJtt0yqBdy7vwVTFfYW3LynuakCtZb52jmMLiHygp/aNeMohI0+PQaJw11WCKPefcN8CajewynPBs8845NwVoYWYd6iediHhtt9124+eff+aee+7hq6++olevXtx6660UFxd7HU3EM2aG39e80ukE6lJRyWygZIP1RgwlZb/XaxYREalagyn2qqETsKjc/cWRdRsws9FmNs3Mpq1cubJewolI3YuJieGyyy5j3rx5HHrooVx//fVsv/32fPrpp15HE2lS4mO3ByqZr86VEhvoUf+BKlNaCi+/DPvuCz16wJAhcP/9kJXldTIR2Wy1P+2Cpl5ohJxzjzvnBjnnBrVp08brOCJSyzp37syrr77KRx99RCgUYr/99uO4445j6dKlXkcTaRJappyGz+IoPyKoEU9i/K7ExmztXbB18vNh//3hwQdZftgxfHPlPSw4/WLcjz/BgAHwu84+ikjT0JiKvSXAVuXud46sE5Emav/992fWrFncdNNNvP3226SnpzN27FjKyiqbNFkaCudClOS/TN6KA8nN3J2inDtwoSyvY0kNBPzt6dLuXRLjdgEC+CyFFskj6Zj6eP0EyMyE//s/OOEEOP10ePttKP97f8klhDp05No9LuS0j7O5453fueSD5ZwSN4y8cy6Aww+HUKh+sopIrdLUCzXTmIq9ScApkVE5dwKynXPLvA4lIt6Kj49nzJgxzJkzh1122YVLLrmEHXbYge+//97raFKFouyrKMq5gVDZHFzwb0ryJpC38hBcqMDraFIDcTHbsVXbV0nbaiE9OmfQtuUN9TNAzOOPQ3o6oT//JHPIbuSk9Ya774a+feHPP2HVKnj1Vd7c40R+nrmI4uIyiopKKSwsYdnyLG5Y0R4CAfjss7rPKiK1TgO01EyDKfbM7CXgByDNzBab2SgzO9vMzo7s8gHwJ/A78ARwrkdRRaQB2mabbfjggw944403WLNmDbvssgtnnHEGq1at8jqalBMqW0hpwVvgys/HVoILrqSk4A3Pckkj8d57cNtt/PDoKxyavz2nfF/MkVONc3Y5l7yRo2C//cJF3C678OY3f1NcvP5Z/lDIMWvOEoqHHwkff+zRkxARqT8Npthzzh3vnOvgnItxznV2zj3pnHvUOfdoZLtzzp3nnNvGOdfXOTfN68wi0rCYGUceeSTz5s3j8ssv59lnnyUtLY0JEyYQUpetBiFY+itYoJIthQRLvqvvOJuttDSDoqIvCAYzvY7StNx+O0uuvpkxr80hN6+IwqJSSkqCzF+wjAuWpuJ69IBvv4W4OEpKK+/ObQbBmNj1u32KSKMQ7napM3s10WCKPRGR2pKcnMxdd93FL7/8Qu/evTnzzDPZZZdd+OWXX7yO1uSZr10VW2Lw+beqYlvDEQqtZeWKQ1m18iDWrjmHzOU7kZV1Nc7py4Q6t2QJLFjA84WtKS0LrrcpGHIsWZZF5sFHwrx58O237DmkG4HAhh9zOnZoQeI3X4RH5xQRiXIq9kQkavXp04evv/6a5557jj///JNBgwZx0UUXkZ2d7XW0JssfOxjztQH862+wALFJJ3mSqSbWrrmI0tKZOFeIc7lAMYUFr1GQ/6LX0aJfbi60bs3y1fmEQhuOqOD3G2tjkiAYhCFDGJX9M6mpKcTHxwAQG+snMSGWm/ZoBTNnwogR9f0MRKQWaOqFmlGxFyUKin9h4erz+CPzCDKzxxLUyHYiQLhr58knn8z8+fM5++yzefDBB0lPT+ell17CRfsQXA2QmY+k1FfwxWwPxIElYr62JLZ8Al+gm9fxNioUyqa4+GugdL31zhWQn/+EN6Gakk6dIDOTXbduRlzshl2BS0uDdMv8Mzyn3qOPEv/8MzyXMofLj0hn/337Murwvrw6pJgul50NEydCXJwHT0JEpH6p2IsCa/Pf5M+Vx5BdMImCkqmszHmQBcv3oSy4xutoIg1Gy5Yteeihh/jpp5/o3LkzJ5xwAnvvvTfz5s3zOlqT4/N3ILnNOyS3+5akNh+Q3O4nAvG7ex1rk5zLZ4MzkhGhUE79hmmKUlLgqKM4dO6XNG+WQEzMfz+L+LgYTtivFwlPTYAzz4SttoIpUwgkJbDnFSO58tbjOfqiI0mcPwc+/xz23tvDJyIiW0JTL9SMir1GLuRKWLr2WpwrBMLvVkcxweBqVuY+4m04kQZo0KBBTJkyhUceeYRffvmFfv36cc0111BQoGH/65vP3x5/YGvMGsd/RT5fB3y+lpVsCRAfr+KhXtx8M3GvvcILHZdy4r7pdOncij7pHbn10G047flb4YADYMcdw/u2axeekiEzExYuhOxseOEF2H57b59DIxIM5VJSthjngpveWaSeaICWmmkc/8NKlYpLfwc2HBjAUUpuoeYQEqmM3+/n7LPPJiMjgxNOOIH/+7//o1evXrzzzjteR5MGzMxo0fJezBL47wxfHD5fc1KaXbbJxztXRFb2LSxZ2ovFS7qzcvWplJX9U6eZo06nTvDtt8TPn8vpV5/IC3Of5+FP72HIVWdhhx0GDz+84WP8fmjRAmJi6j1uYxUKFbBw1TnMW9KPBcv3ZN7SAWTlT/I6lohshsrGv5ZGxO9rjnOVDx/t97Wq5zQijUvbtm155plnOP300zn33HM5/PDDOfTQQ3nggQfo3r271/GkAYqPH0Zqmw/Jz3uCsrK/iY0bSlLSSPz+1pt87KrVp1NU/ANQBEBR0adklvxE+7bfVuvxEtGlC7z+OixbBvPnQ3w8DBqkYq4WLVx9PnlFX+MoAQdBV8jitZcRE2hPUpxGMRXvOKL/TFxt05m9Ri420ImE2L5UrNvNEmjTbLQ3oUQamd13351ffvmFu+++my+++ILevXtz++23U1xc7HU0z7lQFq54Mq50nga0iYiJ2Y4WLe8mtc1rNGt2abUKtdLSDIpL/iv0wkKEQoXk5b9QZ1mjWocOsOeeMHSoCr1aVBrMjBR66//9c66QlTkPeZRKRDaXir0o0CX1CeJjemGWgM9SMOJok3IezRL29zqaSKMRExPD//73P+bPn8/BBx/MtddeS79+/fj888+9juaZUN7DuBW74rIuwK05Drf6MJwmEd8spaUZVN6ZpojS0l/rOY1I1cqCmZjFVrqtpGxRPacR2ZCrgyWaqdiLAjH+NvRo/wHbtnufrqkT6NlpOu2aX+x1LJFGqXPnzrz22mt8+OGHlJWVsc8++3D88cezbNkyr6PVK1f0JeQ/BpSAywNXCGW/49ae43W0RikQ6A5UNshFHDExPes7jkS5YCifNXkTWbp2DGvyXiEUKqz2Y2MD2+AqTC8SFiApbsfaCymyOZwGaKkpFXtRJD5mO5Ljd8Hva+F1FJFG74ADDmD27NnceOONvPXWW6SlpfHAAw9QVlb5NbLRxhU8HS7w1hMMF3xlCz3J1JjFxvYlJqYPsP4ZE7MYkpNGehNKolJJ2SIylu3M0qybWJ33FMuyridj+W6UBpdX6/F+XxJtUy6IDES0jg+fJdKm2Xl1E1pE6oyKPRGRKsTHx3PDDTcwe/Zsdt55Zy6++GIGDRrEDz/84HW0uhfKqny9BcBl12uUaNGm9UQSE4YTLvh8xMbsQNs27+D3t/M6mkSRJWuvIhhai3Ph6WRCroCy4EqWrr2x2m20bX4RnVvdS3xMbwK+tjRPHE6P9h8SG+hcR6lFakD9OGtExZ6IyCZsu+22fPjhh7z++uusWrWKnXfemTPPPJPVq1d7Ha3uxO1NxbNQYQ4CafWdJir4fCm0bjWOzh3/onPHv2nX9j1iY3p5HUuiiHMh8oq+ZcMpmYLkFn5ao7ZaJB5Gj/Yf07PTz3Rp/SCxga61llNE6o+KPRGRajAzjjrqKObNm8f//vc/nn76abbbbjsmTJhAKLThXJeNnSWdCr42QNy6NUA8pNxQ5eANUj1mPsw0eqTUlco/2plpti2JDk3pmj0z29PMukdudzCzZ83saTNrX902VOyJiNRASkoKd999N7/++iu9e/fmzDPPZJddduHXX3/1OlqtMl9zLHUSJF8AMYMh/hCs1fP4Eg/3OpqIVMHMR/OEA4H1v0wwYmieeJg3oURqmXO1vzRgD/Pf6F73Ev7lDgGPV7cBFXsiIpuhT58+fP311zzzzDP88ccf7LDDDlx88cXk5OR4Ha3WmC8FX/JofK0n4mtxLxbbz+tIIvXOuTJyCj5gyeqLWb72ZopLf/c60kZ1bHkbcYGu+CwJIw6fJREXsx0dWlzvdTQRqblOzrmFFj41vz8wGjgH2Lm6DajYExHZTGbGyJEjycjI4KyzzmLcuHGkp6fz8ssvawJykSjgXCn/rDiWJWsuIrvgNdbkTeDPzP3Jyn/T62hVCvhb0aP9F3RJfZz2La6ha+pTbNvuI/y+Zl5HE9lijqbVjRPIMbN2wB7AXOdcXmR9ta8FULEnIrKFWrZsycMPP8yPP/5Ix44dOf7449lnn32YP3++19FEZAtkF7xFYemMf0e2hCDOFbFs7RWEQgUbfayXzHykxO9BasookuN3waxBf5gVkao9CEwFJgIPRdbtAlT7A4aKPRGRWjJ48GB+/PFHHn74YaZPn87222/PtddeS0FBw/1QKCJVy85/G7fBfJNgBCgomepBIpEmzgHOan9poJxzdwL7ALs4516OrF4CnFHdNlTsiYjUIr/fzznnnENGRgbHH388t99+O7169eLdd9/1OpqI1JDPl1jFFodvvUnHRaS+NLEBWgD+Ajqa2bGR+0uAP6v7YBV7IiJ1oF27djz77LN89dVXJCUlcdhhhzF8+HD+/vtvr6NJE1YWXEZ27uNk5TxASclcr+M0eC2TT8Zsw4LPLIGE2B08SCQiTYmZ9QUWAE8AT0ZW7wE8Vd02VOyJiNShPfbYg19//ZW77rqLzz77jF69evF///d/lJSUeB1Nmpi8/LdZsmxn1mbfTlbO3SxbeTCrs67XYEIbkRy/B62TR0VGtUzEZ8n4fS3o0uZ5zPxexxNpmlwdLA3XI8AY51w6UBpZ9zWwa3UbULEnIlLHYmJiuPzyy5k3bx4HHHAA11xzDf369eOLL77wOpo0EcFQNqvXXoKjCChm3UAjefkvUlzyo9fxGrS2La5i2w7f0r7l7XRq/SDbdfyFhNi+XscSkaahN/BC5LYDcM7lA9XuR65iT0SknnTp0oU333yT999/n5KSEvbee29OPPFEli1b5nU0iXKFRV+CBTZY71wheQUNdxqBhiIm0IkWSUeTkrAfZrFexxFpwmp/2oUGPvXC38B6fcbNbAhQ7Qk/VeyJiNSzgw46iNmzZzNmzBhef/110tPTGTduHGVlZV5HkyhlNOgPM1IX/voLbrwRRo2CK6+EWbO8TiQiNXc98L6Z3QTEmtnVwGvAddVtQMWeiIgHEhISuOmmm5g9ezY77bQTF110EYMHD2bKlCleR5MolBC/J7gNv0wwSyA58SgPEkmdCYXgsstg8GDK1qxlbXpfSvHBgQfCccdBUZHXCUW2TBO6Zs859x5wANCG8LV6XYEjnXOfVLcNFXsiIh7q0aMHH330Ea+99horV65k6NChjB49mtWrV3sdTaKIz9eM1q3GYcQDcUAAI56UpJOJj9vR63hSm265BffDD7xy14scsqQbx09xHLSgDQ9e/hihkhIYPdrrhCKbz9HUunHinPvFOXeuc+5g59zZzrnpNXn8hh34RUSkXpkZI0aMYP/99+emm25i7NixvPnmm9x5552cdtpp+Hz6Xk62XHLiocTHDaGg8D1cqJCEhH2IjUn3Oladca4E54L4fE1oPrzcXHjgAb4Y9zJPvTmbouL/zua++3UGCfuO5owxJ8Off8LWW3sYVESqw8xurmqbc25MddrQJwgRkQYiJSWFe+65h19++YWePXtyxhlnsOuuuzJjxgyvo0mUCPjb0Sx5FM2bnR+1hV4wuJYlq85kweIe/LZkO/5efiBFTWVOwY8/hp12YsKXf69X6AEUF5fx2qfzCB1zDLz2mkcBRWpBE+rGCWxVYRkM/A/YproNqNgTEWlg+vbtyzfffMMzzzzDb7/9xsCBA7nkkkvIycnxOpqIpwqLp7B01RksWnEYa3LGEwzlrrfdOceilceQV/gJ4SmpghSXzmDRiiMoC67yJHO9ysqC9u1Zm51f6ebSsiBlbdpCdnb95hKRzeKcO63CciBwJFDtEd1U7ImINEBmxsiRI8nIyGD06NE88MADpKen88orr2gSbGmSsvKeZsmqE8kv+oCikmmsyb2PRZn7rVfwFZVMo6TsL/6bezjMuRKy816s58Qe2Hpr+Plnttu6XaWbW7dMImbWTHXhlEbO6mBpVD4BDq/uzir2REQasFatWvHII48wZcoUOnTowHHHHcd+++3HggULvI4mUm9CoXxWZd+Cc4X/rnOuiLJgJtl5z/67rqTsbyr74OYoprhsfj0k9diwYZCXx2W9/MTHBbByL0VcXIArDuiOffklHHusZxFFtlgD68ZpZq3M7FMz+y3yb8sq9utiZp+Y2Twzm2tm3arR9tYVlj7ArcCi6uZTsSci0ggMGTKEn376ifHjxzN16lT69u3L9ddfT2Fh4aYfLNLIFZfOAmI2WO8oIr/o43/vxwV6rlcQ/seIj+lfZ/kaDJ8Pxo+n65UX8vSBbdhl0Na0SU2hf5/OjB/elcHXnAP/93+QkuJ1UpFochXwuXOuB/B55H5lngPuds71BIYAK6rR9u/Ab5F/fwemALsBI6sbTqNxisgGgqEscvLfojS4iITYHUhO2A+zDT9oSf3y+/2cd955HHXUUVx++eXceuutTJw4kXHjxnHIIYd4Ha9e5JcV8Pzfr/P96uk4QuzQcntO7XYMLWKbex1N6pDP14KqLlHx+9r8e9tR1RxyjoC/TRXboswBB8DEiXT83/+4LTcXevaEn/+BNwrhttvghBO8TiiyZRrelQzDgWGR288CXwFXlt/BzHoBAefcpwDOubzqNOyc2+ITcyr2RKJMWXA5a3Ofoah0FvGx29My+VQC/sqv36hMUclsFq0YgaMU5wrJsiRiAl3o2vYdfL7kOkwu1dW+fXuef/55Ro0axbnnnsuhhx7K4YcfztixY+natavX8epMyIW4YfY9LCvKpMwFAfhx9S8syP2TsQNuJtanLySiVWwgjRh/V0rKfgOC/643S6BF8hn/3i8s+RnwA6EN2igqnU0zjqj7sA3BPvvAL7/Ar7/C4sXQujXstFP4zJ+IVCbVzKaVu/+4c+7xaj62nXNuWeT2cqCyD13bAVlm9ibQHfgMuMo5F6xk31qlYk8kihSXZrAw8zBCrgQopqDoe7Jyn6JLu3eJi9muWm0sW30eIfffqI/O5VNa+iercx6kTYur6yi5bI5hw4bx66+/MnbsWG666SZ69uzJmDFjuPTSS4mNjfU6Xq2blT2flcWr/y30AEKEyC8rYMrq6ezeZqd6zeNcMUV5j1BS8DK4UmLiDyG+2SWRs1BSm8yMjqnPs3TVSZQGF2H4cZTSutnVJMbv/O9+AX97zGJxrrTC4+OJ8Xeq79jeMoMBA8KLSLRwQN1Mgr7KOTeoqo1m9hnQvpJN15a/45xzZlbZuccA4e6XA4CFwCvAqcCTlRxrEdU4f+mc67KpfdYdWESiRObaawi58kORFxNyJWSuvYYubV/f5OPLgpmUli3cYL2jmJyCt1TsNUCxsbFcccUVHHfccVx88cVcffXVPPvsszz88MPsueeeXserVYsLllLmNuzKVxQqZmH+EqjHXnrOOfJXn0pZyTSIdB0sKXiesuIvSWn7KWZx9RemiYgJdKJLuy8oKcsgGFxDfOz2G/Q2SE7YDyMOR/6/w7Q4wAjQLLGJnNUTiXJeDEjtnNunqm1mlmlmHZxzy8ysA5Vfi7cY+NU592fkMW8DO1FJsQecVAuR/6Xz+SJRpLD4x0rWuirWV8ZPVV8mGf7NjSX1oEuXLrz55pu89957FBcXs9dee3HiiSeyfPlyr6PVmg4J7QjYht9Rxvni6JTYoV6zBEt/pax0Oqx3jVgpoVAmpYUf1GuWpsTMiItJJzF+5yq6lTtiAi3xmYVHojTwmdEy+XT8/koHyBMR2VKT+G/AlJHAO5XsMxVoYWbrvpbcC5hbWWPOua+rs1Q3nIo9kShiFl+j9RUF/KnExvSk4p8GI57mScdvaTypBwcffDBz5szh+uuv5/XXXyctLY0HH3yQsrJqz7/aYPVv0ZsWsc3xl/viwYePeH8cQ1vvUK9ZgqUzK/962RVEzvaJF7LzXqKsbCnrvrQKn91zZOU/QShU4GEyEak1DWzqBeAOYF8z+w3YJ3IfMxtkZhMAItfm/Q/43MxmEf7z9ER1Gjez/mZ2gZndZGY3r1uqG07FnkgUaZ50LLB+9zEjjuZJx1W7jY6pj+D3tcZnyUAsZonEx+1Ay2Zn1W5YqTMJCQncfPPNzJ49mx133JELL7yQIUOG8OOP1T3D2zD5zMctfS5nUKvt8ZsPH0bfFunc1vdK4v31223S5+8MVtnZ7nh8ge71mkX+k1/4Po4Np14wAhSVTPcgkYhEO+fcaufc3s65Hs65fZxzayLrpznnzii336fOue2dc32dc6c650o21baZjQYmEz4TeCXQF7gM2La6+XTNnkgUadP8OkrK/qKweApGDI5SEuJ2ok3za6rdRmygG9t0nEpe4aeUBpcSH9uPhNjBmNXJBdFSh3r06MHHH3/M66+/zsUXX8zQoUM588wzuf3222ndurXX8TZLs5gULk07C+ccDofPvPnOMhC3B+ZrgQsWUX50SCyG2MSjPMkkVDk4jiOEz9esfsOISN2omwFaGqorgAOcc9+a2Vrn3BFmdiBQ7W/xdWZPJIr4fAls1eZFurb7mPatxtK13cds1eZFfL6EGrVjFktK4sG0SjmTxLghKvQaMTPj6KOPZv78+VxyySU8+eSTpKWl8dRTTxEKbTg8fWNhZp4VeuHjB0hJfRN/7CDCk33H4gukkZz6Gj6frg3zSovk0zCr+PfO8PtaExezvSeZRES2QFvn3LeR2yEz8znnPgQOrW4DKvZEolBcTA9SEg8kLqaH11GkgUhJSeHee+/ll19+IT09nVGjRrHbbrsxc+ZMr6M1Wj5/R1JSX6dZ+59p1u4nmrX9jEBMb69jNWmJ8bvSKuVijDjMUjBLJuDvQKfUifrSSiRKmKv9pQFbbGbdIrcXAMPNbDdgk11A11GxJyLShPTt25dvvvmGp59+mgULFjBw4EAuvfRScnJyNv1gqZTP1wKfv3F2i41GrZpdQPcO02jfahydUp+nW/ufiI3ZxutYIlIb6mJwloZd7N0F9Izcvhl4AfgCuKm6DajYExFpYnw+H6eeeioZGRmcccYZjB07lp49e/Lqq6/ivJjASKSW+f2tSU7Yn4S4HTEPu/uKiGwJ59wzkW6bRP5tCbR0zj1S3Tb0F1BEpIlq1aoVjz76KD/88APt2rXj2GOPZb/99mPBggVeRxMREamEhQdoqe2lgTKzsWY2eN1951yJcy6vJm2o2BMRaQBKyxaxJusmlq88jrXZ9xAMrqq3Y++4445MnTqV8ePHM3XqVPr27cv1119PYeGGQ9iLiIhIvTHgHTP7LTLPXlpNG1CxJyLiseKSX1iauSc5eU9SVPw12bnjWbJ8N0rL/qm3DH6/n/POO4/58+dzzDHHcOutt9K7d2/ef//9essgIiKySU3omj3n3EVAZ+BcYCtgiplNN7NLq9uGij0REY+tWnMZzuUDpZE1xYRcDmuzbq73LO3bt+f555/niy++ID4+nkMOOYQjjjiChQsX1nsWERGRDTShYg/AOReKTMh+OtAHWA3cXd3Hq9gTEfFQKFRAaVll18iFKCz+pt7zrLPnnnvy66+/cscdd/DJJ5/Qs2dP7rzzTkpKqj3as4iIiGwhM0sys5PM7H3C0y+UASOr+3gVeyIiHjKLoao/xT5LrN8wFcTGxnLllVcyd+5c9t13X6666ir69+/PV1995WkuERFpwprQmT0zew3IBEYD7wFdnXMHOedeqG4bKvZEqqGoNIM1uc+QXfAOoZAGrZDaYxZDUsKhQGyF9fGkJFf7i7s61bVrV95++23effddCgsL2XPPPTn55JNZvny519FERESi2VSgl3Nud+fcI865Go/epmJPZCOccyxZfSl/ZR5EZtYtLF1zOQuW7kBhyUyvo0kUad3yDuJiB2KWgFkKRhwJ8fvRPOUCr6Ot55BDDmHOnDlcd911vPrqq6SnpzN+/HiCwaDX0Zos5xzFhe+QtfJg1mbuTH7W9YSCK72OJSJSNxxNauoF59xdzrktumhexZ7IRuQUvktO4bs4V4SjCOfyCblsFq08DedCXseTKOHzpdCh7Vt0aPshbVo9SMf239C29WORLp4NS2JiIrfccguzZs1i8ODBXHDBBQwZMoSffvrJ62hNUkHOneRl/Y9g6QxCwYUUFbxA1sr9CIXWeh1NRKROmKv9JZqp2BPZiKy8iThXsMH6kMulqHSWB4kkmsXGpJGYsD8xgS5eR9mk7bbbjk8++YRXXnmF5cuXs9NOO3H22WezZs0ar6M1GaHQWorynwBXvmt5KS6UQ1He057lEhGRhkPFnshGOFfVyIOGc6VVbJOmJOSKWZ19P38sHcIfSwawYu0NBEPZXseqF2bGMcccw7x587j44ouZMGECaWlpPP3004RCOvNd14Klc8BiK9lSTGnxt/WeR0SkXjShAVpqwxYVe2Z2Sm0FEWmImiUehVlCJVv8JMT2q/c80rA451iyciSrcx6kLLiYslAma/Oe5Z/Mgwm5Yq/j1ZtmzZpx3333MX36dLbbbjtOP/10dt99d2bO1LWtdcl87cCVVbLFhy+wVb3nERGR2mdmrc3sZDO7InK/o5l1ru7jq1XsmVmvSpbewFmbmbuyYxxgZhlm9ruZXVXJ9lPNbKWZ/RpZzqitY4tUpWXysSTEDsAiQ+AbsZgl0Ln1Qw3yeiqpX0Ulv1JYMhVHUbm1JZQFl5NX8L5nubzSr18/vv32W5588knmz5/PwIEDueyyy8jNzfU6WlQKxPTAH5MOBNbfYHEkJJ3pSSYREak9ZrYHkAGcCFwfWd0DeKS6bQQ2vQsAU4DXgYrD1XSt7oE2xsz8wEPAvsBiYKqZTXLOza2w6yvOufNr45gi1WEWQ9c2r5BX9AX5Rd/i97WmRdIIYgIdvY4mDUBRyQxwG/b/cK6AwuJpNEs60oNU3vL5fJx++ukMHz6ca665hvvvv5+XX36ZsWPHMmLECMwa7qhnlXGulGDRxwSLJ2P+9gQSj8Hn7+B1rH81a/UsuWvPoaxkGpgfsziSmt1JILav19FERGTLjQWOdc59bmbrRt76ERhS3QaqW+zNAy53zq0uvzIyk3ttGAL87pz7M9Luy8BwoGKxJ1LvzHykJOxDSsI+XkeRBiYm0BmzwAb1nlk8MYFunmRqKFq3bs1jjz3GaaedxrnnnssxxxzDfvvtx/jx4+nRo4fX8arFuUKKVo0gFPwTXAEQS2n+I8S3fBJ/3C5exwPA529F89RXCAVX4lwOPn83wt+fiohEp2gfPbOCbs65zyO31z3zEqpfw228G6eZrWtoXyCr4nbn3MHVPdAmdAIWlbu/OLKuoqPMbKaZvW5mVV6QYGajzWyamU1buVLzDYlI3UiKH4bP1xxY/8O1EUPzpBHehGpgdtppJ3766SfGjRvHlClT6NOnDzfccAOFhYWbfrDHSvOfJlT2e6TQAygBV0hR1oUNbuoVn78N/sA2KvREJPo1oXn2gLlmtn+FdfsA1R4SflPX7H1oZsnOuRznnNez5r5LuLrdHvgUeLaqHZ1zjzvnBjnnBrVp06beAopI02IWoEvbt0iI3QGIwYglNpDGVm1fx+9v5XW8eudckFUFX/L7mntZnDOR0mAWAIFAgAsuuID58+czYsQIbr75Zvr06cMHH3zgbeBNKCucBOtdjxnhCnBlC+o9j4iINDmXARPN7FkgwcweA54BLq9uA5sq9n4FJpvZvxcomdnuZlbbYzovAcqfqescWfcv59xq5/4d3m4CsEMtZxARqbGYQGe6tHubbTv+ytYdp9G9w5fEN8HrpYKhQqYtO5Y5Ky9lYc7j/L72Lr5fvBc5xf99+dihQwcmTpzI559/TmxsLAcffDBHHnkkCxcu9DB51azSaQ0IX6dZ1bYo4lyQwvwXWLtyf9asGEZ+7lhcaMN5R0VE6k1dTLvQgLuFOuemANsDc4CngL+AIc65qdVtY6PFnnPucsKjvUw2s+PM7FPgVeDtzQ1dhalADzPrbuH/XY8DJpXfwczKXxF/GOHrCEVEGgS/vyUBf6rXMTyzMOcZ8ksWEIx0eQy5IoIun9krL8FVuKhxr732YsaMGdx+++189NFH9OzZk7vuuouSkqrmtfRGIPEk2GDqFcP8HTB/d08y1afctReQl30jZaWzCZb9RkHuONauGq45RkVE6omZxQErnXN3OefOc87dAWRG1ldLdaZe+AHIASYSvq6uu3Pu3s1KXAXnXBlwPvAx4SLuVefcHDO72cwOi+x2oZnNMbMZwIXAqbWZQURENl9m3juE2HBuwZLgSorKFm+wPjY2lquvvpq5c+ey7777cuWVVzJgwAC+/vrr+ohbLYGEEfjjDgDigQSwZPC1Jr7VhEY3qmhNlZXOp7joY6D8tZXFBIP/UFzUsLvfikiUa0Jn9ghfulaxN+MOhGumatnUAC1vAV8BbwBHAvsDe9UoYjU55z5wzm3nnNvGOXdbZN0Y59ykyO2rnXO9nXP9nHN7Oufm10UOERHZDFUODOI2OmhIt27dePvtt5k0aRIFBQUMGzaMk08+mczMzLrJWQNmPuJbjiUh9V1im48hrsVYEttOwRfYxutoda60ZBobzrYEuHxKiyfXex4RkXXM1f7SgPUlPNVCeT8B/arbwKbO7C0AtnHO3eycewc4ABhvZufVKKaIiES1jskj8Fl8hbVGQmAr4qsxL+Whhx7KnDlzuPbaa3nllVdIS0vjoYceIhj0emww8MVsR0ziCQTi98Usxus49cLnb1tFAR+Lz1/ZYNkiIlIHsoF2Fda1A/Kr28Cmrtm70jm3ptz9WcCuwJk1CCkiTUgwlE0wlOt1DKlnnZudSPO4HfBZAkYMfksixteCPm3GVbuNxMREbr31VmbNmsWgQYM4//zz2XHHHfnpp5/qMLlUJjZuT8wS2eDsngWITzzWk0wiIkBT68b5BvCimfUxs0Qz6ws8R3gMlWqpzjV763HOLQF2q+njRCS6FZcuYGHmAfy5tC9/Lu3D4hUjKC1bsukHSlTwWSz92z3JgHZPsU3LS0lvfQs7d/6apNiad3lMS0vj008/5eWXX2bp0qXstNNOnHPOOaxZs2bTD5ZaYRZDi9Q38Ae2A+LBEvH52tG81XP4/e29jici0lRcS3g8k5+AXGAKkAFcU90GrOIoadFm0KBBbtq0aV7HEIlqwVAOfy/bkZDL4b+vyPwE/O3o1v6HJtP1TWpfTk4ON9xwA+PGjaNVq1bcfffdjBw5MuoHSGlIgmULca44Mml7jb8jFpEGzMymO+cGeZ2juuK22sp1vuiSWm/3z8sva9Cvg4X/00sFVrkaFm/6qy0iWyw3/00cJazfFyJIMJRNftEXXsWqnlWrYOxYuPBCuOEGmDvX60RSTrNmzbj//vv5+eef6dGjB6eddhq77747s2bN2vSDpVb4A10IxPRQoScinquLwVka+AAtmFlzYDDhwVr2NLO9zKzaA2bqL7c0aYUlc8kueI+i0t+8jtKolQb/xrnCDdY7V0pp2SIPElXTvfdCjx64X36msGt7ggV5sPfecMwxUKDJoxuSfv368d133/Hkk08yb948BgwYwOWXX05eXp7X0UREROqEmZ0KLAXeBZ4st0yobhsq9qRJCoby+CPzSP5YMZzFa/7H75kH8tfKkwm5Iq+jNUrxsf0xS9pgvVmA+Ni+HiSqhieegCeeYMY3T3D9/+IYs888rj5pJW9+dxOhgB9OOcXrhFKBz+fj9NNPJyMjg9NPP5177rmH9PR03njjjQ0mbhcRkSjlrPaXhus2YIRzrp1zrnu5ZevqNqBiT5qkpWvHUFjyK84VEnJ5OFdEftH3ZGbd43W0Rik54SAC/nZA+Wvz4oiL6U187BCvYlWtrAxuvpk/n7iRiaFJ5AdzKXOllLoSpuR9x5u37AE//ggzZ3qdVCrRunVrHn/8cb7//ntSU1MZMWIEBx54IL///rvX0URERGpTAPhkSxpQsSdNjnMhsgvejlxjVm49xazNf8mjVJsWChVSWDKL0rKl3gQoKoLnn4czzoBRo+Cpp/7t6mgWy1Zt36N50kn4fan4fe1omTKaTm1ebpgDaUyeDO3aMandHErd+u+DUlfCj3mTKTv5RHip4b4fBIYOHcq0adN44IEH+P777+nTpw833ngjRUU6Qy8iErWa1tQLdwLX2RZcNK1iT5qgEI6yyrc00G6ca3KfImPp9vyzYgS/L9uVf1YcRzCUVX8BpkyBrbeGiRPJ2r4Xawf0wb35JnTvDl9/DYDf14K2LW9j644z2brjL6Q2vxqfJdRfxppYvRo6d2ZtycpKN/vMR3HH1qCh/hu8QCDAhRdeyPz58znyyCO56aab6NOnDx9++KHX0URERLbUJcB1QK6ZLSy/VLcBFXvS5JgFSIjtX8kWH8nxDW8KybzCr8jMvh3nCsJdTikmv/hHFq86p34C/PMPDB/O0gfu4oirDmK/bXPZf+scDr10b/55YhwcfTQsWFA/WWpLt24waxZd4rtXutmHj4Q5f0DXrvWbSzZbx44defHFF/nss88IBAIcdNBBjBgxgkWLGvAAQSIiUmNNbDTOk4B9gIOAkyss1aJiT5qkTi3vwGfJGLEAGPH4fc3o0PJGb4NVYlXuw5WMdFlCQfGPlAaX132A8eMpPelEjmu2kL/yVlIcKqM4VMaigjWcEPsbxWeNDk9d0JgMGADNmnHEz62J9cWttynGF8dhgf3xvfIqjBzpUcD1lZb9RVbO/azNvoPikhlex2nQ9t57b2bMmMHtt9/OBx98QM+ePbn77rspLS31OpqIiNSGJtSN0zn3dVVLddtQsSdNUkJsL7br8DWpzc4hJX4/2ja7kO3af01coJvX0TZQFsysdL1ZDMHgqroP8OqrfH/IbpSGghv8PSxzIT47YAi8+mrd56hNZnD//bQ6/xquWLA7PZP7keRPoWN8F04vPpihJ94J558PnTp5nZScvBdYunwvsnLuIzv3QZavPILVa6/zOlaDFhcXx9VXX83cuXPZa6+9uOKKKxgwYADffPON19FERESqzczizOw2M/vTzLIj6/Yzs/Or20ag7uKJNGwx/na0b3651zE2KSl+d0ry/gEqnplwxMZsW/cBsrNZnBJLccGG1zkWBUv5JyUA2dl1n6O2DRsGL79M64suYnRJCfTvD0vnw4Jn4cor4ZJLvE5IMLiSNVnXAcX/rnOukLyCl0hKPJz4uEHehWsEunXrxqRJk5g0aRIXXnghe+yxB6eccgp33XUX7dq18zqeiIjUVMPvdlnb7gc6AScC6y5GnxNZP746DejMnkgDl9rsfPy+FMpPa2CWQNvm1+Oz+LoPsO22DPlnDbG+Db8bSvTHssvCbNi2HorOurDXXuHpFZ57Dg4/HK65BhYuhEsvDZ/981hB0eeY+TdY71wh+QXveJCocTrssMOYO3cu11xzDS+99BJpaWk8/PDDBINBr6OJiIhszBHACc65H4AQgHNuCeECsFpU7Ik0cDH+dmzd/jNaJZ9KbGA7kuJ2Z6vUp2iVUu1rc7fM6NFs+/gLbN+sI/G+/wrOOF+AbZPbsP2Tr8Do0fWTpS6YwY47wvHHw4EHQlzcph9TTwwfUFnRaZg1vY4ZJWWLWZv/NrlFk3GuZoVaYmIit912GzNnzmSHHXbgvPPOY8cdd2Tq1Kl1lFZEROpEE7pmDyihQk9MM2sDrK5uAyr2RBqBGH872re8kW07fEnXti+RHL97/R38lFOwggIeffxrLm3dn62T29AtKZXzW/fn6Rd+xhYtbtzFXgOWkLAvVFLUmMWRlHikB4m84Zxj8ZrrmL90GIvXXMXfK89g3tKdKS79u8Ztpaen89lnn/HSSy+xZMkSdtxxR84991zWrl1b+8FFRKT2Na1i7zXgWTPrDmBmHQh333y5ug2o2BORjYuPhw8/xJeUzLEHjOStm97inVve4ZQDTiVQFoTPP4ekJK9TRiW/ryWtWz2IEY9ZAhCHEUfzlAuJi+3rdbx6k1UwibX5r+EoJuTyCbk8SoPL+WvVqM1qz8w47rjjmD9/PhdeeCGPPfYYaWlpPPfcczjXsP/XFxGRJuUa4C9gFtAC+A1YCtxU3QYs2v9jGzRokJs2bZrXMUSiQ1YWTJ0KzsEOO0Dr1l4nqjXOlVBQ9DWhUBYJcbsQCHT0OtK/gsFVFBR+iKOEhPh9iQl08TpSvfo980jyizfsbmmWQFr7j4iL2XqL2v/1118555xzmDJlCrvvvjsPPfQQffr02aI2RUQaAzOb7pxrNKN9xXfaynU9+9Jab3fBmEs3+3Uws1bAK0A34G/gGOfcBt1FzOwu4GDCJ9s+BS5yNSjEIt03V9XkMaAzeyJSEy1awL77wn77RVWhV1wym3+W9WfFmnNZlXU1i5bvzJrs//M61r/8/lRSkk+mWfKoJlfoAQRD+ZWuN3wEXcEWt9+/f38mT57ME088wezZsxkwYABXXHEFeXl5W9y2RD/nigkGV+FcyOsoIuKNq4DPnXM9gM8j99djZjsDuwDbA32AwcAem2rYzLZetwApQPdy96tFxZ6INGnOBVm+6kRCobU4l4dz+TiKyc6bQEHRV17HE6BF4iEYGw6cYxZDQkx6rRzD5/NxxhlnkJGRwSmnnMLdd99Nz549eeONN9S1UyrlXAmr1l7FwiXpLFq2A4uXDSCv4F2vY4lI/RsOPBu5/SxweCX7OCAeiAXiCA+xXvlEyuv7nXDXzd/LLb9FlmpRsSciUSu/8BMWZ+7L30vSWLricIqKf9pgn+KS6YQqOTvkXAE5ec/XR0zZhNSU04mN6YpZYmRNALN4urS+v9ZHJU1NTeXJJ59k8uTJtGrVihEjRnDQQQfx+++/1+pxpPFbvfYK8vNfwVEElBAMrWD12osoLPre62gi0a1uBmhJNbNp5ZaajDzXzjm3LHJ7ObDBRK6RqRO+BJZFlo+dc/M2+VSd8znn/JF/fUBH4HGg2kOyq9gTkaiUm/8mK9acTUnpbEIuh6KSH1m26lgKi6est1/IFVL59AbgnLrxNQR+XxLbtX+fzi1vpnnCoaSmnE5a+09olrBPnR1z5513Zvr06dx///1MnjyZPn36cNNNN1FUVFRnx5TGIxjKJq/g7Uih9x/nCsnOHetNKBHZEqucc4PKLY+X32hmn5nZ7EqW4eX3i1xPt0F3EDPbFugJdCY8R95eZrZbTUM655YDFwPVvtZExZ6IRB3nHGuyb8K5wgrri1iTdct66+JjBwNlG7Rhlkhy4hF1GVNqwGfxtEo+lm5tHqZTy+uJi+le58cMBAJcfPHFzJ8/nyOOOIIbb7yRPn368NFHH9X5saVhCwYzqzyrXFb2d/2GEWlKHFgdLJs8rHP7OOf6VLK8A2RGpkRYNzXCikqaOAKY4pzLc+Fvkj8Ehm7mq5AGJG5yrwgVeyLiCeccJaV/Ulq2tA7azicYWlPptpKy+evd9/kSSW1xD2bxgB8IF3pxMduT3ITmspOqdezYkZdeeolPP/0Uv9/PgQceyIgRI1i0aJHX0cQjgcBWVD45l4/Y2AH1HUdEvDUJGBm5PRJ4p5J9FgJ7mFnAzGIID86yyW6cZvatmX1TbpkG/AjcV91wtXuxg4hINRQUfc+yNRcQDGWBCxEbk0an1CeICWxVK+2bJWAWX2k3zIC/wwbrUpKOJC62Dzn5LxIKrSYxfn+SEg6o9evBpHHbZ599mDlzJvfeey+33HILH330ETfeeCMXXXQRMTExXseTeuSzBJqnXEx27ljcv9f8GmbxtGh2mafZRKJewxsz6w7gVTMbBfwDHANgZoOAs51zZwCvA3sRni/PAR8556ozotOECvfzgRnOuWoP0KJ59kSkXpWWLeav5cPKfUAC8BHwd2DrDlMw89fKcdZk30t23kPrdeU0SyC1xb2kJKl7ZrTKKfqZhdkPU1T6D83iBrJVi3NJiOla68f566+/uPDCC3nvvffo3bs3jzzyCLvtVuPLL6QRc86RX/gm2TkPEAyuJC5uB1o2v5bYmJ5eRxOptkY3z17HrVy30bU/z17GTZs/z15Dp6+tRaReZeW/hHMVr5ELEQplU1A8maT43WvlOC2bXQKEyM57DFwZ5kukZbMrVehFsVX5n5Cx6lJCLjxoRmHZQlYVfET/Dm+SGLtNrR6re/fuvPvuu0yaNIkLL7yQ3Xff/d8pG9q2bVurx5KGycxITjyK5MSjvI4i0rRE93kqzOzm6uznnBtTnf10zZ6I1KuyskVAyQbrHY6y4PJaO46Zj1bNL6dbx3l06TCNrh1m0Tx55KYfKI2ScyH+WHPjv4VeWJCgK+DvtXfX2XEPO+ww5s6dyzXXXMNLL71EWloajzzyCMFgsM6OKSLSVBneDNBSz7aqxtK5uo2p2BORepUYv0u5+dLKC5IQO7DWj2cWg9+fWmvdQ6VhKg2toTSUXckWR3Zx3XblT0xM5LbbbmPmzJkMHDiQc889l5122gldQiAiIpthunPuNOfcacBt625XWE6vbmMq9kRqQShUyNK1Y5izuCezF3Xnr5UnUVz6p9exGqSUxOEE/B0wYv9dZ5ZAcsJBxMZs62Eyacz8llzlthh/63rJkJ6ezmeffcaLL77I4sWLGTJkCOeddx5r166tl+OLiDQJdTOpekNyW7nbP29pYyr2RDbBuTJyCj9hVe4T5BV9T2WDGv2zahRr8iYScrk4Sskr+po/Mg+lLLjag8QNm8/i6drufVqmnE1MoDtxMb1o0/xGOrR6wOto0oj5ffG0SToEI2699T5LoHOzs+oth5lx/PHHM3/+fC644AIeffRR0tLSeO655yr92yEiIlLBn2Z2r5mdDsSY2emVLdVtTMWeyEaUli0lY9kuLFp9Icuy/o9/Vp3KHysOIxT6byTJopL55JdMxVFc7pGOkCtidd4L9R+6EfD7mtGmxVVs3WEy3dp/RsuUk9XNUrZYj1Y30zpxH4xY/JaMz+Lp3Gw07ZLrf1Ce5s2b88ADDzBt2jS22WYbRo4cybBhw5gzZ069ZxERiRoeTapez44FmgPHAzHAyZUsJ1W3MY3GKbIRi9ZcSmlwORAebCHkSigqmUtm9r10aHk9AEVlv2H4N+gF4CimqHRm/QYWacJ8vjh6tn2AkuBqSsoySYjpit+X5GmmAQMGMHnyZJ588kmuuuoq+vfvzyWXXMKYMWNITq6666mIiFSh4RVntco5twA4A8DMPnfO7b0l7enMnkgVQqFC8ounsK7QW8dRzNqCN/69HxfYBseGI+8ZccTH9K7rmCJSQay/NclxvTwv9Nbx+XyceeaZZGRkMHLkSO6++2569uzJm2++qa6dIiJSpfKFnpn5yi/VbUPFnkgVHKGNbP2vuEuI7UVCzPbrDTgChlksrZJPrrN8ItK4pKamMmHCBCZPnkyrVq046qijOPjgg/njjz+8jiYi0nhE/wAt/zKzgWb2g5nlA6WRpSzyb7Wo2BOpgt+XREJsX8KzupQXQ/OEg9db063Nc7RIGhEZHMJIjNuRbdq9TYy/TX3FFZFGYuedd2b69Oncf//9fPvtt/Tu3Zubb76ZoqKiTT9YRESakmeBL4FBwNaRpXvk32pRsSeyEVu1Govf1xwjPC+cz5KIDXSiXfMr19vP70uic6u76N35d/p0/odt2r5OfEyaF5FFpBEIBAJcfPHFzJ8/n8MPP5wbbriBvn378vHHH3sdTUSkQWsCA7SU1xW41jk3zzn3T/mlug2o2BPZiLiYbUjr8AMdW44hNeUsOrW6ix7tPyfgb1np/mZGDbpRi0gT16lTJ15++WU++eQTzIwDDjiAo48+msWLF3sdTUSkYWpC3TiBt4D9tqQBfSoV2QS/L4VWySfRocX1tEgcjs/iNv2gOlRc9jf5xT8SDOV4mkNEas++++7LrFmzuOWWW3jvvfdIT0/n3nvvpbS02pdliIhI9IkH3jKzT8zsufJLdRtQsSfSSARDWfyReRS/Ld+Hv1eeyrwlA8jMvt/rWCJSS+Li4rjuuuuYO3cuw4YN43//+x8DBw7ku+++8zqaiEjDUBdn9Rr2mb25wJ3AZOCPCku1aJ49kUZi4erzKCj5GSjFER7IYWXuw8TH9KB54iHehhNp4PJLl/NHzocUB7PomLQTHRN3bLBdrrt37867777LpEmTuPDCC9ltt9049dRTufPOO2nbtq3X8UREpJ44527a0jYa5v90IrKesuAq8ot+oOJIu84VsjL3UW9CNQElpb+xOvteVmXfSVHJLK/jyGZanPcd7/xzLLPWPMX87Ff4Ztk1fL70YkKuzOtoVTIzhg8fzty5c7nqqquYOHEiaWlpPProowSDG87rKSLSVET7AC1mtnu523tVtVS3PRV7Io1AMJSNWeUn4suCa+o5TdOwJvdRFmbuz5rcsazNfZDFKw9nVdZtXseSGgqGSvgu8waCrphQ5MuSMlfIisKZ/JXb8Ee+TEpK4v/+7/+YMWMGAwYM4JxzzmHo0KFMnz7d62giIlI3Hi53+8kqlgnVbUzFnvyrLLiaVbnPkJn9APnFv+BcA/uqowmLDXTFLLaSLQFS4ofVd5yoV1q2mDXZd0a6ywaBEM4VkpX/FMUls72OJzWwqmh2pddjBF0Rf+Z8VP+BNlPPnj35/PPPmThxIgsXLmTw4MGcf/75ZGVleR1NRKR+Rfk1e865PuVud69i0Tx7UjO5hd8wd+lQlmbdxvLs+/hjxXEsXH0+zoW8jiaAWYCOLW7HLIF1k7wbsfh9zWnb/EJvw0Wh/KJPWfc6l+dcMbmF79d/INlsZgFcFf+T+y2mntNsGTPjhBNOICMjg/PPP59HHnmEtLQ0XnjhBX05JyJNRrR346xtKvaEkCvh71Xn4FwhzhURPotRQE7hZ2QXfuh1PIlokXQYW7d5hWYJB5EQ04/UlDPp0f4zYvztvY4WdYwA2IbFHlh4mzQaqfG9Cfg2nC4lYAls23y4B4m2XPPmzRk3bhxTp06lW7dunHzyyey5557MnTvX62giItLAqNgTCoqnARuewQu5AtbkvVr/gaRKiXED6Zr6GNu2f5/2La4mxt/G60hRKSnhAKjkrLYRQ0riYZU+xrkgBYWfszrrFrJyHycYXFXXMaUafOZnz473EONLImCJ+C0Ov8XRPWV/tkrafdMNNGADBw7khx9+4LHHHmPmzJn069ePq666ivz8fK+jiYjUnSjvxlnbVOzJxlV6dkPqU3HZ3/y9ciSzF23NnMXpLF07hlCosF6O7VwJ+UU/UFD8E64Bj1xY2wL+NrRteQ9GHGYJGPEYcbRufjWxMT022N+5YpauPILMNWeRnfcwa7P/j4XLd6SweIoH6aWi1PjejOj+Pju1u5odUi/g4C7PslO7q7Ao+Pvm8/kYPXo0GRkZnHTSSdx555307NmTt99+W107RURE/ZEEEuMGYZXU/T5LpFXSMR4kknXKgmv5I/NQgqFswt1rS1iTN5Gi0nls3fa1Oj12XuGXLF59Duu+8jKLYavUp0mMG1ynx20omiUdRWL87uQXfoyjjKT4fYkJdKp03+y85ygpmY0jXIQ7isDBitVn06XDz7Uyn1tJ6TyCweXExvTF70/d4vaamoAvnu4p+3odo860adOGp59+mlGjRnHuuedyxBFHcNBBB/Hggw+y9dbVvo5fRKRhawJn4mqbzuwJPoula5vH8FliZAAQP2YJNEvYn+YJB3gdr0lbm/9y5Czef10KHcUUlPxKYcmcOjtuaTCTRavPJORyCbk8Qi6PYGgtC1eeSDCUW2fH9VIwlEtRya+UBVf8uy7gb0Pz5JNokXxqlYUeQF7Bq/8WeuWFXB6lZRlbliu4iqWZ+7NsxcGsWH0Wi5YNYk3WzQ36rE0wuIzsrJtYueIQ1q65mNLS+V5HajJ23XVXpk+fzn333cc333xD7969ueWWWyguLvY6mojIFrM6WqKZij0BICV+V3p2nELHFtfTvvn/2Lbta3RNHVcrZyRk8xWUzIgM/78+w0dR6ZYVERuTk/9WpdesOSA3ygbtcc6xKvsO/lrajyUrj+XvZTuybPWZhFxNuspW1UnCAf4tyrdy9VmUlM6NDKCUCxSTm/8s/9/efcdHVeVvHP98Z9ITEnpooqiY0EQEEQTLKoqKgqi4WFbXshZWRLAtdl0sa8e+KC4/1oJiFws2FAuCKCIliYIL0qWTkJ45vz8SdxESyJjM3JnJ897XeTlz52buk9y9TL45556zvei1Or1vqJSX/4df1v2B7dufoazsW4qKXmHD+kGUFM/0OlqDER8fz+jRo8nNzWXw4MHcfPPNdOvWjffff9/raCIiEmb6TV7+K87fhOaN/kRmxuWkJHb3Oo4AyfFdMJJ22e5wJMXvH7Ljlge24Ni1J8C5MioCW0J2XC9s2/4CWwqewlFMwOXjKGF70Uf8svn6Wr9HeurZmKXsst3va0583K73+NVWecUvFJd+A/z2fknnCtmWP+F3v28obdt6J84VQNUC5lBRuUbhlusiujcyFrVt25YXX3yR6dMrF48fOHAgZ5xxBqtWrfI4mYhIHWiClqCo2BOJYE3TzqpaTP1/gwyMBJLiO5GccGDIjpuWdHi1xYuZn9TE/iE7rhc2FzyO26kXz1FMQeHrBNyuvarVaZR6JsmJR1YNg07ALBWfNSaz2TN1mgTEBbZhVn3PYCBCi+6Sks+pbnbfiorVOLcl7HkEjjvuOBYsWMDf//533nrrLbKzs3nggQcoKyvb8xeLiEhUU7EnEsHi/M3YL/MNUhIPBXwYCWSknEKHFs+G9LgpiYeRmtjvNwWfWQrpyYNJSugc0mOHW0XFpmq3OxyBQO2msDfz06r5M7Rp8RrNMm6gRZN7ad/mWxITutQpW1xch6oCcmfxJCcPrNN7h4rPl17DK1bD9yLhkJiYyI033siiRYs44ogjuOqqq+jZsyeff/6519FERIKiRdWDo2JPJMIlxXdkv5Yv07XdMrq0W8pezR7A72sU0mOaGXs1n0ibJv8gNfFI0pKOpm3Th2jT9P6QHtcLyYmHUt3t2X5/M/y+pkG9V2JCdzIaXUxaylB89VDYmPlp1uTeqiKp8p9rIwm/rymNG42s8/uHQmraxbDL955IcvLJmO06JFnCa99992XatGm89tprbNmyhcMPP5zzzz+f9evXex1NRKR2NIwzKCr2RKKEmS+s64KZ+clIPZW9Wz5P+xb/Jj1lUEysS7az5hnX47NU/jeRSmUPVMvGd0XE95uafAKtW7xFasowkhIOIyN9FG1afRKxyy+kpp5PSsoZQCJm6UASiYmHkdH4bq+jSRUz45RTTiEnJ4frrruOZ599lqysLCZMmEAgsOsQXBERiV4RU+yZ2fFmlmdmS8zsb9W8nmhmL1a9PtvM9vEgpojEmIT4jrTP/JD01OEkxGWRmnQ87Vq8TFrycV5H+6+EhC60aPoQrVq+QuP0K/H7GnsdqUZmPho3vovMVl/TtNkztMz8hGbNn8PnS/U6muwkNTWVu+++m/nz59O9e3cuueQS+vbty7fffut1NBGRmqlnLygRUexZ5QwEjwEnAJ2BM81s5xuDLgQ2O+f2Bx4E/hHelCISq+Lj2pPZ5F72bjWDNs0nkpTQw+tIUc/vb05i4mHExbX3OorsQefOnfn444959tlnWb58OYcccghXXHEFW7du9TqaiIjUUUQUe0BvYIlz7ifnXCkwBRiy0z5DgP+revwycIxFwhgriWml5StZu/V+Vm26jq2Fb+Nc+Z6/qAYlZf9hxcaR5K7uzdJ1Q9hW9GE9JvVWUcl3LPvlDHJXdmbp2gFsK4yttfhEYp2ZcfbZZ5Obm8uIESN47LHHyMrK4rnnntOSGSISOUIwOYsmaAmPtsCKHZ6vrNpW7T6u8jfurUCz6t7MzC42s7lmNlc3ncvvlV80gx/W/oH12x5j0/bnWLFpNEt/GVrr6fh3VFK+jCXrTmBL4ZuUVaymsPQbft54GRvz/2/PXxzhikq+Y9n60yks+YKA20pJWQ6rNo1kc8FznuYqLP6KZWuPI2/FXixZdSCbtj2Jq2aheBH5n8aNG/PII48wZ84c9t57b8455xyOPvpocnJyvI4mIiK/Q6QUe/XKOTfBOdfLOderRYsWXseRKORcOSs2jqxaf620alshxWW5bCp4Puj3+2XrgwRcIVCxwzGKWLv1LgJu18XLo8kvW+/edZ06V8QvW+/CuYoavup/Ssp+oqj0eyo79etHcen3rNxwNiVlC4EKKgIb2LDtXjZsvavejiESy3r27MmsWbN48skn/3tP39ixY9m+vXbLkYiIhIzu2QtKpBR7q4C9dnjermpbtfuYWRyQAWwMSzppcIpKF+LYdcimc0Vs2f5q0O+3vWQO1S00DY6y8pXBB4wgxWULqt0eCBRSEdhc49eVlq9g6Zpj+GndcSz/ZRh5q7qzdfu0esm0Yet9uJ16YJ0rYnPBRAKBwno5hkis8/l8XHLJJeTl5XHOOedw991307lzZ15//XUN7RQRz2gYZ3Aipdj7GuhoZh3MLAEYDry50z5vAudVPT4d+Njp00ZCpPL/htUP+fs966fF+1tXuz3gSoNeyy3SxPl3HnFdxXz4a1hg2znH8vV/pKT8B5wrIuAKCLhtrN58JcWluXXOVFKWQ/V/qvNTXrG6zu8v9U//nEeuFi1a8Mwzz/DZZ5+Rnp7O0KFDOfnkk/npp5+8jiYiInsQEcVe1T14lwPTgRzgJefcIjO73cwGV+02EWhmZkuAMcAuyzOI1Jek+E74fbveEmqWQtNG5wT9fi3TR1YtjL2zCtbnPxnVv+i2SB+zy/dmlkyTtPOqiuZdFZXOpaJiAzsX1M6Vsrmg7vcxJsQfUP0LroK4Ggpv8UZp6TzW/3ICa1a3Y83qjmzd8vd6HdIr9ad///58++233H///Xz66ad06dKFcePGUVIS3UPRRSTKaBhnUCKi2ANwzr3jnDvAObefc+6Oqm03O+ferHpc7Jwb5pzb3znX2zmnPylKyJgZ+zT/F35fU3yWhlkyRhKNU4aQkTx4z2+wk0bJf6BN49uAuJ1eCbCx4Bk2b3+pXnJ7IT3leFo1Hoff1xQj8b+FXmbG9TV+TXnFBqC6yXQrKKuHnrfm6VdVW4A2TjtX671FkPKypWzcMIyysvmAw7ntbN/+LzZvvtLraFKD+Ph4xowZQ05ODieffDI33XQT3bp144MPPvA6moiIVCNiij2RSJOUkE12m7ns1Ww8bRrfRsdW79Ou6b383hU/GqecglVzyTlXxIb8J+oa11NN0oZzQJvv6Njma7LbLqZV45uoXD6zesmJB+Nc2S7bzZJJSzqmznmSEw+mbfNJJMRV9vD5LIOmjUbSovHNdX5vqT8FBY/jdpmgqJjionepqFjrSSapnXbt2vHSSy8xffp0nHMcd9xxDB8+nFWrdr7dXkSkfumeveCo2BPZDZ8lkJ48kKZpZ5EYv2+d3qvC5VN9bxaU72Yik2hh5ifO36zGoZs7ivdn0rTRBZil/O/rSSTe35rGqcPqJU9q0uF0aP0JB7RbScd2OTTPuBIz/ZMXScrKFrPjDLW/MkukvHxZ2PNI8I477jgWLFjA7bffzhtvvEF2djYPPvgg5eW/f01SEZEahWIIp4o9EakPcb6W+P2Nq3nFR1riYeGO47mWGTfQtul4UhL6khjfhebpo+iQ+Q4+X/AT4OzMuXLyi95n/bbxbCuaFvXLW8Sq+PhuwK49wM6VEBdXtz+uSPgkJSVx0003sWjRIo444gjGjBlDz549+eKLL7yOJiLS4KnYEwkTM6Ntk7ur7iX7tYcvHp+lkdn4Oi+jecLMSE85kX0yX2a/Vu/TImMUfl+jOr9vRWALS9cOYOXGy1m/9T7WbLqaJWsOo6xcw8siTVqjyzBL2mlrMsnJg/H7W3qSSX6/fffdl2nTpvHqq6+yefNm+vfvz4UXXsiGDRu8jiYisUQ9e0FRsScSRunJx7Jvy5dJTz6BpPjONE07h46tPiQxbh+vo8WMdVvupLR8Gc5tBwIE3HbKK9azevM1XkeTncTFdaBZ81eIT+gNxGHWmLRGl9C4yf1eR5PfycwYOnQoixcv5tprr2Xy5MlkZWXx1FNPEQhUv5yNiIiEjoo9kTBLSejO3s0n0LHV+7Rt8ncS4tp4HSmmbCt8C9h58pcKthd/rin9I1BCwoG0aPE6bdr+TOs2i0lPvxaznWetlWiTlpbGP/7xD7777ju6devGxRdfTL9+/Zg3b57X0UQkihmRN0GLmQ0zs0VmFjCzXrvZ73gzyzOzJWYWtiXkVOyJSIyJ8fEYIlGkS5cuzJgxg3//+9/89NNP9OrVi1GjRrF161avo4lItIq8YZwLgVOBmTXtYJVTlD8GnAB0Bs40s851PnItqNgTkZiSnnwSEL/TVj+pif1qNVOoiNQvM+Occ84hLy+Pyy67jEceeYTs7Gyef/55nNMfZ0QkujnncpxzeXvYrTewxDn3k6scZjQFGBL6dCr2RCTGZDa+gYS49viscvF0s1TifM1p0/Q+j5OJNGyNGzfm0UcfZc6cOey1116cffbZHHPMMeTk5HgdTUSiiDlX7w1obmZzd2gX13PstsCKHZ6vrNoWcroxQkRiit/fhP1afUx+0YeUlOWQELcPjVJOwLfLrI+/VV6xCbME/L60MCUVaZh69erFrFmzeOqppxg7dizdu3fn6quv5sYbbyQlJWXPbyAiUv82OOd2d7/dh0Cral66wTn3Ruhi1Z2KPZFYsGoVTJoES5ZAejqccQYcdhhY9Yu4xzqzONJTjgeO3+O+hSXfsHrTaMrKVwCOlKT+tG06njh/s5DnFGmo/H4/l156KaeeeirXXnstd911F88//zwPP/wwgwcP9jqeiEQqj5ZKcM4NqONbrAL22uF5u6ptIadhnCLRzDm4807o1o2KFSvZ1PVgSho3g/PPh2OOgc2bvU4Y0crKV7F8/XBKy5fiKMVRxvbiz1i+/o+6l0gkDFq2bMmkSZOYOXMmjRo1YsiQIZx88sn85z//8TqaiESoSJuNs5a+BjqaWQernEBgOPBmOA6sYk8kmj31FDz3HNMffYmTtnbizDkVnLgojVsvuIfy7E5w2mmVBWGUqAgUsG7Lnfy4ujc/ru7L+q0PEXDFITvepoJ/41z5TlvLKS1fTlHptyE7roj81uGHH863337Lfffdx4wZM+jcuTN33HEHJSUlXkcTEdktMxtqZiuBvsDbZja9ansbM3sHwFX+snE5MB3IAV5yzi0KRz4VeyLRqqICxo1jwfV3cf/rC9heWEJRcRllZRV8Pvcn/t5+QOXwzi+/9DpprThXzrJfTmFT/tOUVayirOJnNmx7hJ/X/ylkvWyl5UuB6tbeM8oqVobkmCJSvfj4eK666ipyc3M56aSTuPHGGznwwAP58MMPvY4mIpEkwpZecM695pxr55xLdM5lOucGVm1f7Zw7cYf93nHOHeCc2885d0fdjlp7KvZEotXs2dCkCf9cuJ3ikt/2TpWWVfD53P9QfOY58OKLHgUMTn7R+5SV/4zjf3/JdxRTVPodRaVzQ3LMlIRDMUve9QVXQVJ815AcU0R2r127dkydOpX33nuPQCDAsccey/Dhw1m9erXX0UREoo6KPZFotXUrtGrF+o351b4c5/dRkN6kcr8oUFT6DQG3fZftzpVTVDovJMdsnHYGfksH/P/dZpZMWvIxJMbvF5JjikjtDBw4kAULFnDbbbfx+uuvk52dzUMPPUR5+c5Dr0WkIYnSe/Y8o2JPJFrttx8sWECPrFb4fLvOumlmNFmaU7lfFIj371VtL5vPEoj3twnJMf2+dPZt9R6NU87A72tGvL8dLdLH0K7Z4yE5nogEJykpiZtvvplFixbRv39/Ro8eTc+ePfkySoani4h4TcWeSLQ64ADo2JFL4laSnJTwm4IvKTGOK07ugn/KFLjgAg9D1l5G6lCM+J22+jBLoVHycSE7bpy/JW2a3UdW2+/p2GY2zdNHYKZVaUQiyX777cfbb7/Nq6++yqZNm+jXrx8XXnghGzZs8DqaiIRbhN2zF+lU7IlEswcfpMm4W3j+UD8D+3cks0U6XbPbcu+Q/TnxH2Ng1Cho187rlLXi92WwT8uXSYg7ACMRI4Gk+G50yHyNylmKRaQhMzOGDh1KTk4O11xzDZMnTyYrK4unn36aQCDgdTwRCYcQDOGM9WGcFutrSfXq1cvNnRuayR1EIsI338CYMfDjj9C9O6xbB+vXw9ixcNllUbmwelnFOgw/cf7mXkcRkQi1aNEiRowYwcyZM+nTpw9PPPEEBx10kNexRKKKmX3jnOvldY7aSm22l+s6aHS9v++cf18VVT+HYGiskshulJavYGvhdMDISBlIQlwE9pL17Amffgq5ubB0KaSnQ9++EBe9l3e8P9PrCCIS4bp06cInn3zCs88+y9VXX03Pnj0ZOXIkt99+O+np6V7HE5FQie1+qnqnYZwiNVi/7RlyV/+BNVvuZs2Wu8hdfRQb8id5Hatm2dkwaBAcfnhUF3oiIrVlZvzpT38iNzeXSy+9lIcffpisrCxeeOGFkK3PKSISTVTsiVSjpGwZa7beiaPkN2315nGUlq/wOp6IiOygSZMmPPbYY8yZM4d27dpx1llnMWDAAHJzc72OJiL1yNA9e8FSsSdSja1F7+FcdTf8O7YWvhv2PCIisme9evXiq6++4vHHH+fbb7/lwAMP5IYbbqCwsNDraCJSX5yr/xbDVOyJVKv6C99V/U9ERCKT3+/nsssuIy8vj7POOos777yTzp0789Zbb3kdTUQk7FTsiVQjI3kgZv5dtpv5yUge6EEiEREJRsuWLZk0aRKffvopaWlpDB48mMGDB7Ns2TKvo4lIHWgYZ3BU7IlUIzF+XzLTr8QsicpJa+MwS6JVxlUkxu/jcToREamtI444gnnz5nHvvffy8ccf07lzZ+68805KSkq8jiYiEnIq9kRqkJnxVw5o9R6tMq6iVcZVZLWaTsv0S72OJSIiQYqPj+fqq68mNzeXQYMGccMNN9C9e3c++ugjr6OJSDBciFoMU7EnshtJ8fuRmXE5mRmXkxi/r9dxRESkDtq1a8fUqVN59913KS8vZ8CAAZx55pmsXr3a62giUksWqP8Wy1TsiYiISINy/PHHs3DhQm699VZee+01srOzGT9+POXl5V5HExGpVyr2REREpMFJSkrilltuYeHChfTr148rr7ySXr16MWvWLK+jicjuaBhnUFTsiYiISIO1//7788477/DKK6+wceNGDjvsMP7yl7+wceNGr6OJiNSZij0RERFp0MyMU089lZycHK655homTZpEVlYWEydOJBCI8Rt6RKKMll4Ijoo9ERERESAtLY177rmHefPm0alTJy666CL69+/P/PnzvY4mIvK7qNgTERER2UHXrl2ZOXMmkyZNYsmSJRx88MGMHj2abdu2eR1NpGFzgHP132KYij0RkRjjXCnlFetwrszrKCJRy8w477zzyMvL45JLLmH8+PFkZ2czZcoUXIz/cigSyTSMMzgq9kREYoRzjg1bH+DHVV34aXVflqzqwsZtj+oXU5E6aNKkCY8//jizZ8+mTZs2nHnmmRx77LHk5eV5HU1EZI9U7ImIxIjN+f9kU/5jOLcdRzEBV8DGbQ+ypWCS19FEot4hhxzC7Nmzeeyxx5g7dy7dunXjxhtvpLCw0OtoIg2Lll4Iioo9EZEYsSn/UZwr+s0254rYuO1hjxKJxBa/38+IESPIy8tj+PDh3HHHHXTp0oW33nrL62giItVSsSciEgOcc1QENlX7WkVgQ5jTSKgEKjZStO1+8jecxvYtV1NRlut1pAYpMzOTyZMn88knn5CSksLgwYMZMmQIy5Yt8zqaSEwzdM9esFTsiYjEADMjPq5Dta8lxHcMcxoJhUDFGvLXH0NJwRNUlM6hrPBl8jcMpqx4htfRGqwjjzyS7777jnvuuYcPP/yQzp07c9ddd1FaWup1NJHYFIqZOGP8vnYVeyIiMaJl49swS/rNNrNkWja+xaNEUp+K8h/ABbYAJVVbKsAVUbjlGpzTwt9eiY+P55prriE3N5cTTzyR66+/nu7du/Pxxx97HU1ERMWeiEisSEseQNvmk0lK6IXP14TkhN60a/4cqUlHeh1N6kF58SdAxS7bXWArrmJN2PPIb+211168/PLLvPPOO5SWlnLMMcdw9tlns2aNzo1IfdIwzuCo2BMRiSGpSf3ZO/NNOrZdRPvM10lJ6uN1JKkn5kuv4ZUA+FLDmkVqdsIJJ7Bw4UJuueUWXn75ZbKzs3n44YcpLy/3OpqINEAq9kRERKJAYupFYMk7bY0nLvFwfL7GXkSSGiQnJ3PrrbeycOFC+vTpw6hRozjkkEP46quvvI4mEv209EJQVOyJiPxOgUAhmwqmsHrzzWwqeI6KwHavI0kMS0gZTkLKmUAiWCMgGX98d1KaPORxMqlJx44dee+995g6dSrr16+nb9++XHzxxWzcuNHraCJRS8M4g6NiT0TkdygrX03emv6s2XIzGwueYfWW28hb04/S8pVeR5MYZWakZNxGeuYsUps8QaMWb9OoxWvq1YtwZsbpp59OTk4OY8aM4ZlnniErK4uJEycSCGhiHREJLRV7IvXAuQAb8p8lb80AFq/qy6rNt1NesdnrWBJCqzbfTHlgIwFXCIBzhVQENrJ03Ums2/oQ5RVa205Cw+dvQXzSkfi1pEZUadSoEffffz/z5s0jOzubiy66iP79+zN//nyvo4lEDwcEXP23GKZiT6QerNh0Dau33E5xWR5lFSvZmD+JH9aeqGF9Mayg+GN2nRnRUR7YwC/bHiZvzRGUlC31IpqIRLBu3boxc+ZM/vWvf/Hjjz/Ss2dPRo8ezbZt27yOJiIxSMWeSB2VlP/Mlu1v4FzRf7c5yigPbGRTwcseJpOQMv9uXiwl4PJZvfnGsMURkejh8/n485//TF5eHn/5y18YP3482dnZvPjii7gYX+BZpM40QUtQVOyJ1FFRyXzM4nfZ7lwRBSWfe5BIwiEj+WRg1/P+P46Cki/DFUdEolDTpk154okn+Oqrr2jdujXDhw/nuOOOIy8vz+toIhIjVOyJ1FF8XCuq/7NQPAlxe4c7joRJmya3kBS/Pz6reX0znyWFMZGIRKvevXszZ84cHn30Ub7++mu6devGjTfeSGFhodfRRCKOZuMMjoo9kTpKSehFvL8V8NthfWZxNG/0J29CScj5fRnsnzmdvZtPJCWhFzv38hmJNE493ZtwIhJ1/H4/f/3rX8nLy2P48OHccccddOnShWnTpnkdTSSyOFf/LYap2BOpIzNjv5ZTSE08GCMBs2Ti/a3o0OIZEtWzF9PMfKQl9adDi+dJTeyFWTI+S8MsmZTEXrTO0D17IhKczMxMJk+ezIwZM0hJSeHkk0/mlFNOYfny5V5HE5EoFOd1AJFYEB/Xiv0zX6WsYj0BV0iCvz1m5nUsCROfL4V9W06lqHQxJeVLSIrrSFJCJ69jiUgUO+qoo5g3bx4PPfQQt912G506deLmm29mzJgxJCQkeB1PxDOxPuyyvqlnT6QexftbkBi3twq9Bio5oTONUwar0BORepGQkMC1115LTk4Oxx9/PGPHjqV79+7MmDHD62giEiVU7ImISFBKy5aycv2f+GHlfixZ1Y0NW+/HuTKvY4nErPbt2/Pqq68ybdo0SkpKOProoznnnHNYu3at19FEwisUyy7EeE+h58WemTU1sw/M7Meq/zapYb8KM/uuqr0Z7pwiIgLlFWtZvm4Q24s/xrkiKgIb2ZT/GGs2XeF1NJGYN2jQIBYtWsRNN93E1KlTycrK4pFHHqGiosLraCJhYYA5V+8tlnle7AF/Az5yznUEPqp6Xp0i59xBVW1w+OKJiMivNudPJOCK2fFPoc4VU1D4HmXlK70LJtJAJCcnc/vtt7Nw4UIOPfRQrrjiCg455BBmz57tdTSRBsnMhpnZIjMLmFmvGvbZy8xmmNniqn1HhStfJBR7Q4D/q3r8f8Ap3kUREYlszgXIL/qIdVvGsWHbBMorNoT1+EWl84DSXbabJVBSpoWgRcKlY8eOTJ8+nZdeeol169bRt29fLrnkEjZt2uR1NJHQCoSg1c1C4FRg5m72KQeucs51BvoAfzWzznU+ci1EQrGX6ZxbU/V4LZBZw35JZjbXzL4ys1N294ZmdnHVvnPXr19fn1lFRDwTcCUs++V0Vm68jI35T7B+6938uKYv24u/CluGxPhOVDeRs6OMhLgOYcshIpVL/wwbNozc3FxGjx7NxIkTycrK4l//+heBQN1/gxWRPXPO5TjndvvXTufcGufct1WP84EcoG048oWl2DOzD81sYTVtyI77Oed2d5vk3s65XsBZwENmtl9Nx3POTXDO9XLO9WrRokX9fSMiIh7aXPAcxWXzcW47AI4SnCtk5cZLcS48v9g1aXQRZr+d9t1IJDnhUBLi9w1LBhH5rUaNGnH//ffz7bffkpWVxQUXXMDhhx/O999/73U0kXoXonv2mv/aUVTVLg5ZfrN9gB5AWMZeh6XYc84NcM51raa9Aawzs9YAVf/9pYb3WFX135+AT6j8IYmINBhbt0/FueJdtgdcISVlOWHJkBC3N3u1mEpifFfAh5FIesqptG0+MSzHF5GaHXjggcycOZNnnnmGH374gYMPPpgxY8aQn5/vdTSR+hG62Tg3/NpRVNUm7HjY2nZc7YmZpQGvAFc657b9nh9BsCJhGOebwHlVj88D3th5BzNrYmaJVY+bA/2AxWFLKCISAcx2HT5ZqQJqfK3+JSf2YJ9W79Ox3VI6tltCq2b34/OlhO34IlIzn8/H+eefT15eHhdddBEPPfQQ2dnZvPTSS7gYn3VQJFT20HFVK2YWT2Wh95xz7tXQpf2tSCj27gaONbMfgQFVzzGzXmb2dNU+nYC5ZjYfmAHc7ZxTsSciDUrj1LMB/y7bnSvFb83CnsdniZjtmkdEvNe0aVOefPJJZs2aRWZmJn/84x8ZOHAgP/zwg9fRROrAgQtBCzEzM2AikOOceyDkB9yB58Wec26jc+4Y51zHqqp5U9X2uc65i6oef+mc6+ac6171X40XEpEGJzXxMKq/rdnPlu2Twx1HRKLAoYceytdff80jjzzC7Nmz6datGzfddBNFRUVeRxOJCWY21MxWAn2Bt81setX2Nmb2TtVu/YA/AUfvsG74ieHI53mxJyIitVNSnovPUqt5pYzCkq/DnkdEooPf7+fyyy8nLy+PYcOGMW7cOLp06cLbb7/tdTSRoJmr/1YXzrnXnHPtnHOJzrlM59zAqu2rnXMnVj3+3DlnzrkDd1g3/J3dv3P9ULEnIrKDgCuloHgW20u+xrlyr+P8Rry/PY7qMsWREL9/2POISHRp1aoVzz77LDNmzCApKYmTTjqJoUOHsnz5cq+jiUiIqNgTEamyregjclZ1Z/mGC1i2/k/krD6Y7SVzvY71X0kJ2STFdwV2WvrAEmiWdoE3oUQk6hx11FF899133H333bz//vt06tSJu+++m9LSUq+jiexZFN6z5yUVeyIiQFnFWn7eeAkBl1/VCqgIbGLZ+nOoCBR4He+/2reYTKPkARjxQDwJcR1o3+JZEuK1oLmI1F5CQgLXXXcdOTk5HH/88YwdO5bu3bszY8YMr6OJ1MyBBeq/xTIVeyIiwJbtr0G1C5M7thW9F/Y8NfH70tmr+VNktc0hq8089mv1GamJh3odS0SiVPv27Xn11VeZNm0aJSUlHH300ZxzzjmsXbvW62giUg9U7ImIAOWBzTh2HcLkXBkVgS3hD7QHPl8yfn8TKmdzFhGpm0GDBrFo0SJuuukmpk6dSlZWFo8++igVFRVeRxP5LQ3jDIqKPRERoFHSEZhVszC4+UhL7B/+QCIiYZacnMztt9/OggUL6N27NyNHjqR3797MmTPH62gi8jup2BMRAVIT+5GW2Pc3BZ/PUmicfApJCdkeJhMRCa8DDjiA999/nxdffJE1a9bQp08fLr30UjZt2uR1NJHK5Wbru8UwFXsiIoCZsXfzZ2jb5C7SEo+gUdLRtGv6EG2b3ut1NKlvRUUwezbMmgX5+V6nEYlIZsYZZ5xBbm4uo0aN4umnnyYrK4tJkyYRCMT4jBYS0cy5em+xTMWeiEScrYXv8uPaU8hZ3Y+Vm66nrHxNWI5r5qdJ6ml0aPk8+7SYTEbKibonLpaUlsL110P79jBiBFx5Jey9N1x+uYo+kRqkp6fz4IMP8s0333DAAQdw/vnnc+SRR7JgwQKvo4lILajYE5GIsm7royzfOIrC0m8oLf+ZjQUvkLd2IGUVv3gdTaJZeTmceipu4UI+eHwy5/7xas485QpeffIFKgoKYMAA2L7d65QiEat79+589tlnTJw4kZycHHr06MFVV11Fvv5QIuGmCVqComJPRCJGRaCAddvG41zRDlvLqQgUsH7bPz3LJTFg6lTYuJGxJ17ALV8sYcGyteSu+IV7v/iBC7sMxLVuDY8/7nVKkYjm8/m44IILyMvL48ILL+SBBx4gOzubqVOn4mL8F2aRaKViT0QiRnHZD1WLhe+sjPziL8KeR2LIhAmsOu8iPs1ZQVFp+X83F5eV8+PqjXw37FyYMMHDgCLRo1mzZvzzn/9k1qxZZGZmcsYZZzBw4EB++OEHr6NJrHNAIAQthqnYE5GIEe9vUe1adwAJcW3DnEZiSl4eXzdtR6Ca3ofCkjI+SmgKP/0EWlNMpNb69OnDnDlzePjhh5k9ezbdunXj5ptvpqioaM9fLPI7GPU/OYsmaBERCZOEuL1ITeiJkfCb7WbJtEy/1KNUEhPS0mhZXkycf9ePvYR4P3v5KiAxEXz6WBQJRlxcHCNHjiQ3N5dhw4bx97//nS5duvDOO+94HU1EULEnIhFmnxYTSEvqh5GAz1LxWwbtmtxFauIhXkeTaHbqqfT+6mPi/f5dXvKbcVLe13DaaaDZV0V+l9atW/Pss8/y8ccfk5iYyKBBgzj11FP5+eefvY4msUYTtARFxZ6IRBS/L4N9W06mU9vZdGz1Fl3azaNp2mlex5JoN2IEcVNe4NmDmtK2WQZJCXGkJMbTLD2Fpw/fl9SHHoAxY7xOKRL1/vCHPzB//nzuuusu3nvvPTp16sQ999xDaWn1Q/RFJLRU7IlIRIr3NycpviNm1U3YIhKk9u3htddod9UVvLXgTV7fL46p+yfwwYrP6HzxufD009Cjh9cpRWJCQkICf/vb38jJyeHYY4/luuuuo0ePHnz66adeR5NYoJ69oKjYExGRhqFfP1i6FDvhBDK/+JQ2n36I9eoJP/4Igwd7nU4k5uy99968/vrrvPnmmxQWFnLUUUdx7rnnsm7dOq+jiTQYKvZERKThSEuDSy6BKVPgpZdg9Gho2tTrVCIx7eSTT2bRokXccMMNTJkyhaysLB577DEqNPutBEtLLwRNxZ6IiIiIhFRKSgrjxo1jwYIF9OrVi8svv5xDDz2UOXPmeB1NooyWXgiOij0RERERCYusrCw++OADpkyZwurVq+nTpw+XXXYZmzdv9jqaSExSsSciIiIiYWNm/PGPfyQ3N5dRo0YxYcIEsrKymDRpEi7Ge1mkHmiClqCo2BMRERGRsEtPT+fBBx/km2++Yf/99+f888/niCOOYMGCBV5HE4kZKvZERERExDMHHXQQn3/+OU8//TQ5OTn06NGDq6++mvz8fK+jScQJQa+eevZERERERELH5/Nx4YUXkpeXxwUXXMD9999Pp06dePnllzW0U/7HoWIvSCr2RERERCQiNGvWjAkTJjBr1ixatGjBsGHDOOGEE/jxxx+9jiYSlVTsiYiIiEhE6dOnD19//TXjx49n1qxZdO3alVtuuYWioiKvo4nXtM5eUFTsiYiIiEjEiYuL44orriA3N5fTTjuN22+/nW7duvHuu+96HU0kaqjYExEREZGI1bp1a55//nk++ugj4uLiOPHEEznttNNYsWKF19HEA1pUPTgq9kREREQk4h199NHMnz+fO++8k3fffZdOnTpx7733UlZW5nU0CSdN0BIUFXsiIiIiEhUSExMZO3Ysixcv5phjjuHaa6+lR48ezJw50+toIhFJxZ6IiIiIRJV99tmHN954gzfeeIOCggKOPPJIzjvvPNatW+d1NAklBwRc/bcYpmJPRERERKLS4MGDWbx4Mddffz0vvPAC2dnZPPHEE1RUVHgdTSQiqNgTERERkaiVkpLCHXfcwffff8/BBx/MiBEj/rt0g8SaENyvp3v2REREREQiW3Z2Nh9++CEvvPACK1eu5NBDD2XEiBFs3rzZ62ginlGxJyIiIiIxwcwYPnw4ubm5jBw5kn/+859kZWUxefJkXIz34DQY6tkLioo9EREREYkpGRkZjB8/nm+++Yb99tuP8847jyOPPJKFCxd6HU3qSsVeUFTsiYiIiEhMOuigg/jiiy94+umnWbRoEQcddBDXXHMNBQUFXkcTCQsVeyIiIiISs3w+HxdeeCF5eXmcf/753HfffXTq1IlXXnlFQzujjZZeCJqKPRERERGJec2bN+epp57iyy+/pFmzZpx++umceOKJLFmyxOtoIiGjYk9EREREGoy+ffsyd+5cHnroIb744gu6du3KbbfdRnFxsdfRZI8cuED9tximYk9EREREGpS4uDhGjRpFbm4uQ4cO5dZbb6Vr16689957XkeTPdEELUFRsSciIiIiDVKbNm144YUX+OCDD/D7/ZxwwgkMGzaMlStXeh1NpF6o2BMRERGRBm3AgAF8//33jBs3jmnTppGdnc19991HWVmZ19FkR5qgJWgq9kRERESkwUtMTOSGG25g8eLF/OEPf+Caa66hR48efPbZZ15HkwhmZsPMbJGZBcys1x729ZvZPDObFq58KvZERERERKp06NCBt956izfeeIP8/HyOOOII/vznP/PLL794HU0gEu/ZWwicCsysxb6jgJy6HjAYKvZERERERHYyePBgFi9ezNixY3n++efJysriiSeeoKKiwutoDVuEFXvOuRznXN6e9jOzdsAg4Ok6HTBIKvZERERERKqRmprKnXfeyffff0+PHj0YMWIEffr0Ye7cuV5Hk/rV3Mzm7tAuDsExHgKuBcK61oOKPRERERGR3cjOzuajjz7iueeeY+XKlfTu3Zu//vWvbN682etoDUwIevUqe/Y2OOd67dAm7HhUM/vQzBZW04bUJrWZnQT84pz7JgQ/lN1SsSciIiIisgdmxllnnUVubi4jR47kySefJDs7m3//+9+4GF+rraFzzg1wznWtpr1Ry7foBww2s2XAFOBoM3s2ZIF3oGJPRERERKSWMjIyGD9+PHPnzqVDhw6ce+65HHXUUSxatMjraLHPAYFA/bdQx3ZurHOunXNuH2A48LFz7pyQHxgVeyIiIiIiQevRowdffvklEyZMYOHChRx00EFce+21FBQUeB1NwsjMhprZSqAv8LaZTa/a3sbM3vE2nYo9EREREZHfxefz8Ze//IW8vDzOO+887r33Xjp16sSrr76qoZ2hEnmzcb5W1WuX6JzLdM4NrNq+2jl3YjX7f+KcO6lOBw2Cij0RERERkTpo3rw5Tz/9NF988QVNmzbltNNOY9CgQSxdutTraLEnwoq9SKdiT0RERESkHhx22GF88803PPjgg3z22Wd06dKF2267jeLiYq+jSQOlYk9EREREpJ7ExcVx5ZVXkpeXxymnnMKtt95K165dmT59utfRYoCDQAhaDPO82DOzYWa2yMwCZtZrN/sdb2Z5ZrbEzP4WzowiIiIiIsFo06YNU6ZM4YMPPsDv93P88cczbNgwVq5c6XU0aUA8L/aAhcCpwMyadjAzP/AYcALQGTjTzDqHJ56IiIiIyO8zYMAAvv/+e8aNG8e0adPo1KkTDzzwAGVlZV5Hiz4OnAvUe4tlnhd7zrkc51zeHnbrDSxxzv3knCulcjHCWq1YLyIiIiLipcTERG644QYWL17MkUceyVVXXcXBBx/M8uXLvY4WfTSMMyieF3u11BZYscPzlVXbqmVmF5vZXDObu379+pCHExERERHZkw4dOvDWW2/x+uuv065dO1q3bu11JIlxceE4iJl9CLSq5qUbnHNv1PfxnHMTgAkAvXr1iu1yXURERESihpkxZMgQhgzRILXfJcaXSqhvYSn2nHMD6vgWq4C9dnjermqbiIiIiIiIVCMsxV49+BroaGYdqCzyhgNneRtJRERERETCxjkIxPaEKvXN83v2zGyoma0E+gJvm9n0qu1tzOwdAOdcOXA5MB3IAV5yzi3yKrOIiIiIiHjAufpvMczznj3n3GvAa9VsXw2cuMPzd4B3whhNREREREQkanle7ImIiIiIiNSG0zDOoHg+jFNERERERETqn3r2REREREQkCsT+PXb1TT17IiIiIiIiMUg9eyIiIiIiEvkcEFDPXjBU7ImIiIiISHRwmqAlGBrGKSIiIiIiEoPUsyciIiIiIhHPAU7DOIOinj0REREREZEYpJ49ERERERGJfM7pnr0gqdgTEREREZGooGGcwdEwThERERERkRiknj0REREREYkOGsYZFPXsiYiIiIiIxCBzLrbHvZrZemC5hxGaAxs8PL4ER+cruuh8RR+ds+ii8xVddL6iSyScr72dcy08zlBrZvYelT+3+rbBOXd8CN7XczFf7HnNzOY653p5nUNqR+cruuh8RR+ds+ii8xVddL6ii86XhIOGcYqIiIiIiMQgFXsiIiIiIiIxSMVe6E3wOoAERecruuh8RR+ds+ii8xVddL6ii86XhJzu2RMREREREYlB6tkTERERERGJQSr2REREREREYpCKPRERERERkRikYq+emdnlZjbXzErMbFIt9h9tZmvNbJuZPWNmiWGIKVXMrKmZvWZm281suZmdtZt9bzWzMjMr2KHtG868DVFtz5FV+oeZbaxq/zAzC3fehi6I86XrKQIE85mlzyvv1fZ8mdmfzaxip+vrqLAFFQDMLNHMJlb9W5hvZt+Z2Qm72V/XmNQ7FXv1bzUwDnhmTzua2UDgb8AxwN7AvsBtIU0nO3sMKAUygbOBJ8ysy272f9E5l7ZD+yksKRu22p6ji4FTgO7AgcDJwCVhyij/E8w1pevJe7X6zNLnVcSo9e8YwKydrq9PQhtNqhEHrACOBDKAG4GXzGyfnXfUNSahomKvnjnnXnXOvQ5srMXu5wETnXOLnHObgb8Dfw5hPNmBmaUCpwE3OecKnHOfA28Cf/I2mfwqyHN0HnC/c26lc24VcD+6nsJK11T0CeIzS59XESDI3zHEY8657c65W51zy5xzAefcNOA/QM9qdtc1JiGhYs9bXYD5OzyfD2SaWTOP8jQ0BwDlzrkfdtg2n8rzUpOTzWyTmS0ys8tCG08I7hxVdz3t7lxK/Qv2mtL1FD30eRV9epjZBjP7wcxuMrM4rwM1dGaWSeW/k4uqeVnXmISEij1vpQFbd3j+6+NGHmRpiNKAbTtt20rNP/+XgE5AC+AvwM1mdmbo4gnBnaPqrqc03bcXVsGcL11P0UWfV9FlJtAVaEllb/uZwDWeJmrgzCweeA74P+dcbjW76BqTkFCxFwQz+8TMXA3t89/xlgVA+g7Pf32cX/e0UovztfPPn6rn1f78nXOLnXOrnXMVzrkvgfHA6aH9Lhq8YM5RdddTgXPOhSib7KrW50vXU9TR51UUcc795Jz7T9XQwQXA7ej68oyZ+YB/U3k/8+U17KZrTEJCxV4QnHNHOeeshtb/d7zlIionk/hVd2Cdc05j8etBLc7XD0CcmXXc4cu6U/3wimoPAajXKLSCOUfVXU+1PZdSP+pyTel6imz6vIpuur48UjW6ZCKVk1ad5pwrq2FXXWMSEir26pmZxZlZEuAH/GaWtJtx8pOBC82ss5k1pnKWpknhSSrOue3Aq8DtZpZqZv2AIVT+9W0XZjbEzJpUTfHfG7gCeCN8iRueIM/RZGCMmbU1szbAVeh6Cqtgzpeup8gQxGeWPq8iQG3Pl5mdUHV/GGaWDdyEri+vPEHlkPWTnXNFu9lP15iEhnNOrR4bcCuVf0Hbsd1a9Vp7Krvp2++w/xhgHZX3ufwLSPT6e2hIDWgKvA5sB34GztrhtcOpHAb46/MXqJwBrQDIBa7wOn9DaDWdo2rOjwH3AJuq2j2AeZ2/obUgzpeupwhoNX1m6fMqMlttzxdwX9W52g78ROUwzniv8ze0RuUSCg4orjo/v7azdY2phauZc7qdRUREREREJNZoGKeIiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiEhJmdo+Zvb7D83vN7CMzS/AwloiISIOhRdVFRCQkzKwZ8BNwFHAo8Fegv3Nuq5e5REREGgoVeyIiEjJmditwKpBBZaG3omr7P4DDgGXABc65Mq8yioiIxCoN4xQRkVCaB3QDxu5Q6HUH2jrnDgdygdM9zCciIhKzVOyJiEhImFk34Ang/4ALdnjpMOD9qsfvAf3CHE1ERKRBULEnIiL1zszaAm8BlwIjgG5mdlTVy02AbVWPtwJNw51PRESkIVCxJyIi9crM0oF3gAecc2865wqBe4E7qnbZAqRXPc4ANoU9pIiISAOgCVpERCSszOwgYIxz7lwzux74j3PuBY9jiYiIxBz17ImISFg5574D1pnZZ0AX4BVvE4mIiMQm9eyJiIiIiIjEIPXsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg/4famoRwHI+MNYAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
"output_type": "display_data"
}
],
@@ -616,10 +619,11 @@
" suptitle=\"Influences of input points with corrupted data\",\n",
" legend_title=\"influence values\",\n",
" # colorbar_limits=(-0.3,),\n",
- ")"
+ ");"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "80f76c03",
"metadata": {},
@@ -628,6 +632,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "38a7f17f",
"metadata": {},
@@ -636,6 +641,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "fe10a49c",
"metadata": {},
@@ -651,34 +657,49 @@
"id": "e508f38c",
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Batch Test Gradients: 100%|██████████| 8/8 [00:00<00:00, 17.89it/s]\n",
+ "Batch Train Gradients: 100%|██████████| 1/1 [00:00<00:00, 308.47it/s]\n",
+ "Conjugate gradient: 100%|██████████| 2000/2000 [00:16<00:00, 118.24it/s]\n",
+ "Batch Split Input Gradients: 100%|██████████| 1/1 [00:00<00:00, 44.89it/s]"
+ ]
+ },
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Average mislabelled data influence: -1.0463689425714193\n",
- "Average correct data influence: 0.015039001098187444\n"
+ "Average mislabelled data influence: -0.82248804123547\n",
+ "Average correct data influence: 0.01127580743952819\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
]
}
],
"source": [
"influence_values = compute_influences(\n",
- " model=model,\n",
- " loss=F.binary_cross_entropy,\n",
- " x=x,\n",
- " y=y_corrupted.astype(float),\n",
- " x_test=test_data[0],\n",
- " y_test=test_data[1].astype(float),\n",
+ " differentiable_model=TorchTwiceDifferentiable(model, F.binary_cross_entropy),\n",
+ " training_data=train_corrupted_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"up\",\n",
" inversion_method=\"cg\",\n",
- " inversion_method_kwargs={\"n_iterations\": 10, \"max_step_size\": 1},\n",
+ " progress=True,\n",
")\n",
- "mean_train_influences = np.mean(influence_values, axis=0)\n",
+ "mean_train_influences = np.mean(influence_values.numpy(), axis=0)\n",
"\n",
"print(\"Average mislabelled data influence:\", np.mean(mean_train_influences[:10]))\n",
"print(\"Average correct data influence:\", np.mean(mean_train_influences[10:]))"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "3dbb4049",
"metadata": {},
@@ -694,14 +715,12 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAIfCAYAAADJ38UbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACz2ElEQVR4nOzdd3gU1dvG8e+zu+kJNXSkqJjQpAgoVuxdLNgLKoq9/+yK3dcuInbsYq/Ye0VRQKUT7PRQ0/vuef/YRUNIIIEkk2zuz3XNxe7M7Jl7N5uwz86Zc8w5h4iIiIiIiEQXn9cBREREREREpPap2BMREREREYlCKvZERERERESikIo9ERERERGRKKRiT0REREREJAqp2BMREREREYlCKvZERLaQmR1tZn+YWdDMnjGzYWbmzKyz19kaksjrMtvMSs3sqyr2udHMfq/naJ4ws26R98muXmfZlOq+pyPv/8/qK1e0MbO/zey6Gj6m0byPRKT+qdgTEYnYnA+qZuYHngJeBboAF9VFtijxCPAzsDVwZBX73APsVG+JyjGzXSMfmrvV0yEXAR2AH2vyIDMrM7NT6yRR1b4nnHVpJEN9v1YNkplNqOqLi4bMzK4zs7+9ziEidU/FnojIlukAJAMfOOeWOOeyvQ7UgPUAPnXOLXLOralsB+dcnnNuVT3n8oRzLuicW+6cK/U6y6Y450oiWUNeZ6kuM4upzjoRkWimYk9EpArrzvSZ2Wgz+8fMcsxskpm1i2w/lfDZGYBvImc6hlXSTqVd4CqeoTGzdpFjrjSzXDObbGa7V9LOvmb2jZkVmNlcMzuwQrttzexpM8s0syIzyzCz08tt39bM3jCzLDNba2afmFnfctubRR6/3MyKzWyRmd23idcqzczeN7O8yPKumW1bPjfgB56LPIdTq2hnvW6c6+6b2XAzm29m+Wb2lZn1KLfPqZHXch8zmxN5zj+aWf+K+1Q4Vud1P7PIGapvI5v+iqz/aiPP15nZRZHXMd/MlpjZRRX26WBmL0de58JI7kHltq/X/a7c/WPM7L3Iz/fPCu+RvyOv49ORfV1kfY1+Zmb2vJlNLHf/tEh7Z5RbN9HMXorc/vc9XJ3XqqrfmY3kCZjZDRbuDl0ceT0frMFruS7fwWb2nZkVAWfYf7/DF0Reu2IzS4g8fkKFDOud7Sr32EsieQrM7DUzaxXZfiMwCthj3c9i3c/KzJLN7IFyj/vFzI6scLx+ZvZ95Pn+ZmbHbOw1Kve4YyK/E0Vm9j2wfYXtZmZPRF7Lwsh76HYzi4tsPxW4BehaLveNkW0nWPh3J9vMVln4d3q76uQSkYZJxZ6IyMYNBvYEDgb2B/oS7moI8AowJHJ7OOGzfN9vzkHMLAH4EkgBDgQGAB8An5pZzwq73wPcDvQj3AXwFTNrWa6dryPbTgR6ARcABZHt7YDvgBXAboS7TGYAX5lZm0j7twIDI8+pB3AsMG8T2T8B4oE9Iksy8JGZxfJfF0CA8yO3X6nBy9MBOCfyfHYm/Bo9VWEfH3AXcC7hn8lK4P1ItupYRPj5Enl8B6ruarrODcBXhH9WdwH3mtlwCH/gBt4G0oFDIm1mEv55pm6i3TuA5wh/iH8ZmFDuA/dgIAhcHMm47nWt0c+M8Httz3L39yL8mu1Vbt2ewBeVPHZTr9XGfmeq8iRwHnAj4ffsUcCfUOPX8l7gTqAn8G65jHtFMvcDSjaRpbwhkedyAHAQ0D+SlchzehH4gf9+Fq9E8r4bOdaxQB/CXZhfNrO9I88pgfDvd1bkGKcAlwNtNxbGzAYALwGvRdq/B3ig4m6Ef79PIPw6XAycBlwT2f4K4ddocbnc634+cfz3XtqX8Hvt/cjvsYg0Rs45LVq0aNHiHMAzwGcV7q8A4sqtuxJYVu5+N8ABu5ZbNyyyrnNl98vtVwacGrl9KuEPX4EK+3wBjK3QzpHltreLrNs/cn8UUFTxWOX2vxGYUmGdAX8AF0fuvwM8U4PXbRThYjK1Qq5C4JRy6xxw0ibauhH4vcL9MqBNuXXHAiEgvtxr54C9y+3TEsgDRpXbp6zCsTpHHjcscn/XyP1u1XjODni+wroXgW8jt/eO7NOr3PY4YBkwprL3Trn7l5Z7jB/IBc6q7H1Tbl1Nf2bdyueLvPcuI/LeJlwkOGCbKt7Tlb5WVON3ppIs20baGlHF9uq8luvynVxJniwgucL6r4AJFdZdB/xd4bF5QPNy6/aLHGfbyP0JwFcV2hlG+HeweYX1TwFvR26fEWm7ZbntfSJtX7eR1+oFYHKFdedT4W9QJY+7BPitque6kce1irS9S3XfW1q0aGlYSwAREdmY+c654nL3lxIuZGrbYKA9kBU+MfCvOMJFU3m/rrvhnMs0s2C5TDsAc51zizdynB3MLK/C+gTCZ4QAHgbeiHST+xz4CPjYVX29Vu/IMf+91i6SKyOybUstdc6tLH+fcIHaFlhYbv0P5Y6/1szm1dLxq/JDhfuTCXePI3Lc1c65ueUyFZvZj9XI9Gu5xwTNbAWbfs/V6GfmnPs70mVxr8j7p0WkjTFm1ovw2ayFzrk/NnHcytT0d2Zg5N9Pqthek9fyp0oeP885V/H9Xl1z3frX4U6O/NsLqGrU2MFALLCkwu9yLPBbucfPc86tXbfROTfbzDZ1zW8vwj/f8r6ruJOZnUm4oOwGJAEBqtGby8Jdn28gfAYzlfDvGUBX/nvuItKIqNgTEdm4il2+HP99AKqudR+4/32chUfxLP/hy0e4290RlTy+YBOZ1j2+OnyEPyyeX8m2bADn3Mdm1oVwF7xhhM8mzDKzvZ1zwWoepzZV9jOAml2KUFnR01AH66js+W70uW7mz+wLwmfNgsB3zrlCM/uGcJfHqrpwbm7+mv7ObK78aq4LsWGm2no/+Aj/Lg2uZFtNupBuFjM7GngIuIpwl+4c4Gjgtk08LpFwwf0d4W6fmZFNcwgXqiLSCOmaPRGRurci8m/Hcuv6s/6HzWmEpyTIcc79XmFZWoNjTQd6WdXzoU0jfDZkcSXH+ffsmXNujXPuJefcWYSvvdqD8FmFysyJHPPf66ci1wamAbNrkH1L/Ttlg5m1INwVcd3ZoBWAv8JAIQNZ37oP4v6aHi9i53LHmwO0jpwlW5cpDtiRLX9NSirLWMOfGYSv29sD2If/zhatKwCHsfFir6av1cb8HPl3vyq218VruYL1fx9hw/cDQE8za1bu/s6Rf9f9nCv7WUwjfKY0vpLfsYXlHt8z8j4FwMx6A803kXtuuQzr7FLh/u7AL865+5xz051zvxE+w1deZbl7Am2Aa51zXznn5hHuDl1fhbqI1AEVeyIide934B/gRjNLt/Doi/fz3xkqgInAX4QHQ9jPwiMz7mhmV5vZ4TU41kuRY02y8OiU3c1sbzM7NrJ9POEPee+Y2W6R4+xqZreZ2c4AkdtHWniEzR6EB0bJY/0uk+W9SHhwj1fMbKCZ7UB4YJEl1Gwgli3hgLvMbHcLjyz6HOFr3V6MbP8pcv8OM+thZgcAYyq08Q/hMz4HWXhE00198D7EzM6PtHcB4WsJ741s+yJyzBfNbBcz6xPJFE94sI4t8Rewp5l1XFdgb8bPbF3GlsBh/FfYfUF4EJRWbLzYq+lrVSXn3O+E3/8Pm9lJZraNmQ22/0Y3rYvX8jNgHzM72sKj015FeMCiDeIRHkG2j4VHxn0ImBTJDOGfRbqZ9Taz1EgR+kWk/TfN7HAz29rMdrDwiKBnRh73IuH34wsWHpVzJ8LX9FXssl3R/cDQyM97OzM7gvC1luVlAH0tPILtNpHXseJgQ38B7c1saCR3IuGfaTFwQeRxexMe/MUhIo2Wij0RkTrmnCsjXAi0BX4h/IHxWsp1LXTOFRE+yzINeBpYALxJeKS+f2pwrIJIO7MJF1zzIsdLiGzPBIYCqyLtZxD+oN2V8IAXEB5c4mbCZwmnER4V8kBXxRyCzrlCwmdlioFvCHcdywcOcM7Vebe1iBDh0QYfI5y5PXBw5PXAhef1O57w2biZwPXAFeUbiLw2VxPu/raM8KAnG3Mz4bNiMyLHvsI591akLQccDswH3gemRjLt67Z8HsHLCF+b+TfhIhtq+DOLZFxK+H2WS/h9CeHXJgtY4JxbspHH1vS12pTTCP/sbiX8nn0L6B45Vl28ls8S/r14iPDrtRUwrpL9fiLcrfFTwtdBzgJOL7f9yUie7wn/LI6P5D2M8O/X/eVyH0x4IKR1v6cHAa0jx5gY2XcFG+Gcm054lM3jIlmuIjz4SnmPAc8T/jvyC+EzoDdW2OdtwiN6vh/JfUXktTyJ8CiccwiP0Pk/Ku8CLSKNhIX/JomIiDROFp43bIJzrt6uQ7fw/HYnO+deqK9jSv0ys2cIjz66j9dZREQ2l87siYiIiIiIRCEVeyIiIiIiIlFI3ThFRERERESikM7siYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlFIxZ6IiIiIiEgUUrEnIiIiIiIShVTsiYiIiIiIRCEVeyIiIiIiIlEo4HWAupaamuq6devmdQwRERERkQZl+vTpq5xzbbzOUV3775nkVq8J1nq702cWf+ycO6DWG24Aor7Y69atG9OmTfM6hoiIiIhIg2Jm/3idoSZWrwny08ddar1df4ffUmu90QYi6os9ERERERFp/BwQIuR1jEZFxZ6IiIiIiDQCjqBTsVcTGqBFREREREQkCunMnoiIiIiINHjhbpzO6xiNis7siYiIiIiIRCGd2RMRERERkUZBA7TUjIo9ERERERFp8ByOoFM3zppQN04REREREZEopDN7IiIiIiLSKGiAlprRmT0REREREZEopDN7IiIiIiLS4DkgqDN7NaJiT0REREREGgV146wZdeMUERERERGJQjqzJyIiIiIiDZ4DTb1QQzqzJyIiIiIiEoUaRLFnZluZ2ZdmNtfM5pjZRZXsY2Y2zsx+N7OZZjbQi6wiIiIiIuKNUB0s0axBFHtAGXCZc64XsBNwnpn1qrDPgUCPyDIaeKR+I9ZcRkYGq1at8jqGiIiIiIg0QQ2i2HPOLXPO/Ry5nQvMAzpV2G048JwLmwK0MLMO9Ry12pxznHLKKaSlpTFhwgRCoWj/3kBEREREpO44HME6WKJZgyj2yjOzbsAA4McKmzoBi8rdX8yGBeG6Nkab2TQzm7Zy5co6ybkpZsaTTz5J7969OfPMM9lll1349ddfPckiIiIiItLoOQjWwRLNGlSxZ2bJwBvAxc65nM1txzn3uHNukHNuUJs2bWovYA316dOHr7/+mmeffZY//viDHXbYgYsvvpicnM1+aiIiIiIiItXSYIo9M4shXOhNdM69WckuS4Ctyt3vHFnXoJkZp5xyChkZGZx11lmMGzeO9PR0Xn75ZZyGjhURERERqRaHBmipqQZR7JmZAU8C85xz91Wx2yTglMionDsB2c65ZfUWcgu1bNmShx9+mB9//JGOHTty/PHHs++++5KRkeF1NBERERERiUINotgDdgFOBvYys18jy0FmdraZnR3Z5wPgT+B34AngXI+ybpHBgwfz448/Mn78eKZNm0bfvn257rrrKCgo8DqaiIiIiEgDZgTrYIlmFu1dCQcNGuSmTZvmdYxKZWZmcvnll/P888/TrVs3xo0bx6GHHup1LBERERFpAsxsunNukNc5qqvP9rHujfdTa73d9C7LGtXrUBMN5cxek9SuXTuee+45vvrqKxITEznssMMYPnw4f//9t9fRRERERESkkVOx1wDsscce/Prrr9x111189tln9OrVi//7v/+jpKTE62giIiIiIg2GunHWjIq9BiImJobLL7+cefPmceCBB3LNNdfQr18/vvjiC6+jiYiIiIg0aWZ2gJllmNnvZnZVJdvjzOyVyPYfI3OHe07FXgPTpUsX3njjDd5//31KSkrYe++9OeGEE1i2rNEMPCoiIiIiUusc3pzZMzM/8BBwINALON7MelXYbRSw1jm3LXA/cGftPvvNo2KvgTrooIOYPXs2Y8aM4Y033iA9PZ1x48ZRVlbmdTQREREREU+EnNX6Ug1DgN+dc38650qAl4HhFfYZDjwbuf06sHdkejlPqdhrwBISErjpppuYPXs2O+20ExdddBGDBw9mypQpXkcTEREREYkWqWY2rdwyusL2TsCicvcXR9ZVuo9zrgzIBlrXVeDqUrHXCPTo0YOPPvqIV199lZUrVzJ06FBGjx7N6tWrvY4mIiIiIlIv6rAb5yrn3KByy+MeP9Vao2KvkTAzjj76aObNm8dll13GU089RVpaGk899RShUMjreCIiIiIi0WoJsFW5+50j6yrdx8wCQHPA8zMzKvYamZSUFO655x5++eUX0tPTGTVqFLvtthszZszwOpqIiIiISJ1xGEF8tb5Uw1Sgh5l1N7NY4DhgUoV9JgEjI7dHAF8451ytPfnNpGKvkerbty/ffPMNTz/9NAsWLGCHHXbg0ksvJScnx+toIiIiIiJ1wosBWiLX4J0PfAzMA151zs0xs5vN7LDIbk8Crc3sd+BSYIPpGbygYq8R8/l8nHrqqWRkZHDmmWcyduxY0tPTeeWVV2gAXySIiIiIiEQF59wHzrntnHPbOOdui6wb45ybFLld5Jw72jm3rXNuiHPuT28Th6nYiwKtWrXikUceYcqUKXTo0IHjjjuO/fbbjwULFngdTURERESkVng1z15jpmIvigwZMoSffvqJ8ePHM3XqVPr27cv1119PQUGB19FERERERKSeqdiLMn6/n/POO4/58+dzzDHHcOutt9K7d2/ee+89r6OJiIiIiGwBI+h8tb5Es+h+dk1Y+/btef755/nyyy9JSEjg0EMP5fDDD+eff/7xOpqIVINzZazMuovfFvckY1Fn/sk8hMLiX72OJSIiIo2Iir0oN2zYMH799VfuvPNOPv30U3r27Mkdd9xBSUmJ19FEZCOWr7mctXmPEXLZQIiikp9ZtHIEJaW/ex1NRETEEw4I4av1JZpF97MTAGJjY7niiiuYN28eBxxwAFdffTX9+vXjyy+/9DqaiFSiLLiK3IK3ca5wvfXOFbM65yGPUomIiHhPA7TUjIq9JqRLly68+eabvPfeexQXF7PXXntx0kknsXz5cq+jiUg5pWV/EZ6ztaIgxaVz6j2PiIiINE4q9pqggw8+mDlz5jBmzBhee+010tLSGD9+PMFg0OtoIgLEBLrhXGVdrf3ExfSq9zwiIiINgXMaoKWmovvZSZUSEhK46aabmD17NjvttBMXXHABgwcP5scff/Q6mkiTF/C3ISXxMMwS1ltvFkurZud5lEpEREQaGxV7TVyPHj346KOPePXVV8nMzGTo0KGcddZZrFmzxutoIk1a+1b30DL5DHyWAhhxMf3Yqs1rxMX08DqaiIiIZ0JYrS/RTMWeYGYcffTRzJ8/n0suuYQnn3yStLQ0nn76aUKhkNfxRJoksxjatLiaHp0z2K7zYrq1/5CEuIFexxIREfGMA4L4an2JZtH97KRGUlJSuPfee/nll19IS0vj9NNPZ/fdd2fmzJleRxNp0syi+1tHERERqRsq9mQDffv25ZtvvuHpp58mIyODgQMHctlll5Gbm+t1NBERERFpsjRAS01F97OTzebz+Tj11FPJyMhg1KhR3H///aSnp/Pqq6/inPM6noiIiIiIbIKKPdmoVq1a8dhjj/HDDz/Qrl07jj32WPbff38WLFjgdTQRERERaUIcEMJX60s0i+5nJ7Vmxx13ZOrUqYwbN44ff/yRvn37MmbMGAoLC72OJiIiIiJNRNBZrS/RTMWeVJvf7+eCCy4gIyODo48+mltuuYXevXvz/vvvex1NREREREQqULEnNda+fXteeOEFvvjiC+Li4jjkkEM44ogjWLhwodfRRERERCRKOUxTL9RQdD87qVN77rknM2bM4I477uCTTz6hZ8+e3HnnnZSUlHgdTURERESkyVOxJ1skNjaWK6+8krlz57Lffvtx1VVX0b9/f7766iuvo4mIiIhIlAk5X60v0Sy6n53Um65du/LWW2/x7rvvUlhYyJ577slJJ53E8uXLvY4mIiIiItIkqdiTWnXIIYcwd+5crr/+el577TXS0tIYP348wWDQ62giIiIi0og50DV7NRTdz048kZCQwM0338ysWbMYMmQIF1xwAUOGDOHHH3/0OpqIiIiINFKO2p92QVMviGym7bbbjk8++YSXX36ZZcuWMXToUM4++2zWrFnjdTQRERERkainYk/qlJlx7LHHMn/+fC6++GImTJhAWloazzzzDKFQyOt4IiIiItKIhPDV+hLNovvZSYPRrFkz7rvvPqZPn852223Haaedxh577MGsWbO8jiYiIiIiEpVU7Em96tevH99++y1PPvkk8+bNY8CAAVx22WXk5uZ6HU1EREREGjDnIOh8tb5Es+h+dtIg+Xw+Tj/9dDIyMhg1ahT33Xcf6enpvPbaazjnvI4nIvKvUKiAVbnP8NfKk1i8+jIKS9QbQUTEO0aoDpZopmJPPNO6dWsee+wxfvjhB9q2bcsxxxzDAQccwG+//eZ1NBFpoApLZrIm7zlyCz/HubI6PVYwlMdvmQeyPOs28oq+Ym3Ba/yx4kjW5r9Rp8cVERGpLSr2xHM77bQTU6dOZdy4cUyZMoU+ffowZswYCgsLvY4mIg2EcyX8s/Ik/l5xJJlrb2LJ6nP5bdlQSsuW1NkxV+c9S2nZYhzr/haFcK6QpWuvIeSK6uy4IiJSOYe6cdZUdD87aTQCgQAXXHAB8+fPZ8SIEdxyyy307t2bDz74wOtoItIArM59jIKiH3CuEEcRIZdHWTCTxavPq7Nj5hR8iKO4ki1GYcmcOjuuiIhIbVGxJw1Khw4dmDhxIp9//jlxcXEcfPDBHHnkkSxcuNDraCLiobV5L+KoeDYtSFHJDMqCdTN3p9/XvNL1jiB+X0qdHFNERDYuiK/Wl2gW3c9OGq299tqLGTNmcPvtt/PRRx/Rs2dP7rrrLkpKSryOJiIecJRWscWAurl2r3XK6ZglVljrI9a/FXGBHnVyTBERqZrDCLnaX6KZij1psGJjY7n66quZO3cu++67L1deeSUDBgzg66+/9jqaiNSzZgmHYMRusD4msBUBf9s6OubetEk5GyMOn6XgsyRiA1vRrc2zmEX3hwMREYkOKvakwevWrRtvv/02kyZNoqCggGHDhnHyySeTmZnpdTQRqSdtml9CTKDTv2fajHh8lkyn1g/W6XHbNb+U9I5T2ar1g3Rv8xLbtf+O2MBWdXpM8UZp2TJW5jxBZvaDFJbM9TqOiFRB3ThrJrqfnUSVQw89lDlz5nDttdfyyiuvkJaWxkMPPUQwGPQ6mojUMb+vOVu3/5yOLe+kZdLJtGl+Odt2+J6E2O3r/NgBfyuaJexDYtxAndGLUmvzJzFv2e4sy7qT5dn38lvmcJasuUFzv4pIo6diTxqVxMREbr31VmbNmsWgQYM4//zz2XHHHZk6darX0USkjvksjuZJR9Kh1R2kNjubgL+115EkCgRD2SxacxnOFUVGXw3iXBFr8l8mv/gnr+OJSDkOCDlfrS/RLLqfnUSttLQ0Pv30U15++WWWLl3KjjvuyDnnnMPatWu9jiYiIo1ITuFXGIEN1odcIVkFb3mQSESk9qjYk0bLzDj22GOZP38+F110EY8//jhpaWk8++yz6nojIiLVVHXXXP1fItLQGME6WKKZij1p9Jo1a8b999/P9OnT2XbbbTn11FPZY489mD17ttfRRESkgWuWMAxX6fQdjjX5LzJnySDW5L1W77lEZEPqxllz0f3spEnp378/3333HRMmTGDOnDn079+fyy+/nLy8PK+jiUg0WrYMbr0VDjsMjjwSHn0UcnO9TiU15Pc1Y6tW92MWjxEP+NfbXhbMZPHaa1mT94Y3AUVEtoCKPYkqPp+PUaNGkZGRwWmnncY999xDeno6r7/+urrjiEjteeEF6N2b0MKFLN79IDKH7o377DPo0QOmTPE6ndRQy6RD6NnxOzq0vAafJWyw3blClmff40EyEalI3ThrRsWeRKXU1FSeeOIJvv/+e1JTUzn66KM58MAD+f33372OJiKN3bffwuWXM/OOCRzzcSwXjp3JWffP5rQFW5N5w50wfHj4rJ80KjH+dqQmn0rIVd4bpDS4tJ4TiYhsORV7EtWGDh3KtGnTGDt2LN9//z19+vThxhtvpLCw0OtoItJY3XMP2RdezvVjPiEvq4CC3CKK8otZ/s8qLrznZ4KHHwGPP+51StkMZkaMv1Ol22IDW9VzGhGpyDnTNXs1FN3PTgQIBAJcdNFFZGRkcOSRR3LTTTfRt29fPvzwQ6+jiUhjU1ICH33E+0UdCAaDG2wuLS5lbtpQePNND8JJbejQ4irM4tdbZxZPh+ZXe5RIRMoLOl+tL1vCzFqZ2adm9lvk35aV7NPfzH4wszlmNtPMjt2ig9ZAgyn2zOwpM1thZpUOoWhmw8ws28x+jSxj6jujNG4dOnTgxRdf5LPPPiMQCHDQQQdx1FFHsWjRIq+jiUhjUVwMMTFkri6irGTDYi8UDJFVFgMFBR6Ek9rQMulwtmp1H7GBbkCA2EB3urR+gBZJB3sdTUQapquAz51zPYDPI/crKgBOcc71Bg4AxppZi/oI12CKPeAZwk9+Y751zvWPLDfXQyaJQnvvvTczZszg9ttv58MPP6Rnz57cfffdlJaWeh1NRBq65GRo2ZLdt44lPilug82hkKMPKyE93YNwUltaJh1Kz47f0q/LX/Ts+A0tEg/yOpI0EhoMrm45IITV+rKFhgPPRm4/Cxy+QW7nFjjnfovcXgqsANps6YGro8EUe865b4A1XueQpiEuLo6rr76auXPnsvfee3PFFVcwYMAAvvnmG6+jiUhDZgajRzNgyjt0Te9IXELsv5vik+LY/+hBtHzhSTjrLA9Dikh9ci5EZvZDzF7cl5mLujB/6TByCr/yOpbUTKqZTSu3jK7BY9s559aNyrUcaLexnc1sCBAL/LGZWWukwRR71TTUzGaY2Ydm1ruqncxs9Lof1sqVK+sznzQy3bp145133uGdd94hLy+PPfbYg5EjR7JixQqvo4k0WsWlC8gteJ/i0gyvo9SNSy7B9+ef3Nf1L869eA/SB21Nv93Tue6K3Tl33svQty8cpDNBIk3F8uy7ycx5gGAoC4Disj/4e9Vo8op+8jZYVLK6umZvlXNuULllvVG2zOwzM5tdyTK8/H4ufGq3ytO7ZtYBeB44zTkXqoMXaMNjNqTTzWbWDXjPOdenkm3NgJBzLs/MDgIeiPSN3ahBgwa5adOm1X5YiToFBQXcdttt3H333SQlJXH77bczevRo/H7/ph8sIoRcIctWnUZhyVTCE1OXER87iFbNLie/8AOcKyUl8RDiY3fErJHPa5STA9deCxMnQteu4Wv5srPh/PPhiitAfzdEmoRQqJDZS/rh3IajfCfH7cw27V7xIFX1mdl059wgr3NUV4feLd3pL+1Z6+3e3u+tzX4dzCwDGOacWxYp5r5yzqVVsl8z4Cvgdufc61sUuAYazZk951yOc+HJb5xzHwAxZpbqcSyJIomJidx2223MnDmTgQMHcu6557LTTjuhLwtEqmdV1m0UFP+Ic4U4l4dzRRQW/8CSlUeSlfcE2flPs2TVSazIuqLxX9fSrBk8+CAsXAgTJsBLL8Hff8PVV6vQE2lCykKrqtxWVKq5fZuIScDIyO2RwDsVdzCzWOAt4Ln6LPSgERV7ZtbeIl8FR/q6+oDV3qaSaJSens5nn33GxIkTWbx4MUOGDOHcc89l7dq1XkcTadByCl4BiiusDUaWEOBwroDcgjcpKomSL1GSk2GHHaBfP4iJ8TqNiNSzgL8NVsUAH/ExG5zckVoQxFfryxa6A9jXzH4D9oncx8wGmdmEyD7HALsDp5abWaD/lh64OhpMsWdmLwE/AGlmttjMRpnZ2WZ2dmSXEcBsM5sBjAOOc43+q2FpqMyME044gfnz53PBBRfw2GOPkZaWxnPPPdf4z0iI1BHniqq9X17hB3WcRkSk7vksnjYpZ2GWsN56swTat7jMo1RSn5xzq51zezvnejjn9nHOrYmsn+acOyNy+wXnXEy5WQX6O+d+rY98DabYc84d75zrEHkhOjvnnnTOPeqcezSyfbxzrrdzrp9zbifn3PdeZ5bo17x5cx544AGmTZvGNttsw8iRIxk2bBizZ1c6HaRIk5YQNxSqNYS1f4MPRiIijVW75pfQofmVBHxtAT/xMb3Yus0zJMXt4HW0qOMwQq72l2jWYIo9kYZswIABTJ48mSeeeILZs2czYMAArrjiCvLy8ryOJlJrQq6QnLwXyFx1OqvXXktJDUfTbNviNnyWgrFu/rnYSvczC9As8YgtTCtecs6RVzSZzOx7WZ37LGVBdXOXpsvMaNNsFL07T6dfl79J6/AxyfE7ex1LBFCxJ1JtPp+PM844g4yMDEaOHMndd99Nz549eeONN9S1Uxq9UCiPZZn7szZ7DIVFH5Kb/yzLVhxIfkH1u1vGxvSga/tvaJFyLonx+9Ay5TzathiLWQJmSZglYsSR2nwMsTGbHExZGijnSvl75Qn8veo0VuTcz7LsW8lYthP5xVFyHaaINGghfLW+RLPofnYidSA1NZUJEyYwefJkWrduzYgRIzjooIP4/XeNuiWNV07eU5SWLSo3fHgQ5wpZvfZSnCutdjsBf1tSm19Op9TnSG1+Oc2Tj6F7h19o2/JO2ra4jW4dfqJF8ql18hykfqzJe4n8kmk4VwCAc4WEXD4LV51FPU0bJSJNlHMQdFbrSzRTsSeymXbeeWemTZvG2LFjmTx5Mn369OHGG2+kqKh6g1SINCT5hZOADd+7jiAlpXO3qG2/rxnNEo+kWdKxBPxttqitTSkqmc3S1RfwT+bBrMi6lbLgijo9XlO0Nv/VSucUC7k8ikrneZBIRESqomJPZAsEAgEuuugi5s+fz5FHHslNN91Enz59+Oijj7yOJlIjPkupYksQnyXVa5bNlVf4GQtXDCe34C2KSn5hbe4E/lq+J6Vli72OFl2sqo8OjuoN0CMisvk0QEvNqNgTqQUdO3bkxRdf5LPPPiMQCHDggQcyYsQIFi1a5HU0kWppljwKs8QKa30E/F2JidnWk0w14VyI5Wsuj5xxWteVsIRQKIdV2Xd5GS3qtEo6rtLRVH2+5sTH9PQgkYiIVEXFnkgt2nvvvZkxYwa33nor77//Pj179uSee+6htLT61zyJeCEx4WBSkk4G4jBLxiwZv78jbVOf9TpatZQFMwmFsivZEiS/6Jt6zxPNWiYdQ3LcrpEvB/yYJeKzFLq2fgKz6P6GXES8FZ56wVfrSzSL7mcn4oG4uDiuvfZa5s6dy1577cXll1/OgAED+Pbbb72OJlIlM6NVixvp3OEHUlveR7vU5+jc/kdiAl28jlYtPl8y/53RW5/f16Jes0Q7swBdU5+ie5uXaN/8Cjq2uIX0jlNJjOvvdTQRaQKCWK0v0UzFnkgd6d69O5MmTeKdd94hLy+P3XffnVNPPZUVKzRghDRcAX8HkhIPJT5uKFbltVkNj9+XQlL8XlSc288sgZYpZ3kTKoqZGUlxO9Cm2Xm0Sj4Wvy/Z60giIlKJxvM/uUgjddhhhzF37lyuueYaXnzxRdLS0nj00UcJBoNeRxOJKu1bjyUxbjBm8fisGUYcLZJOoXnScV5HExGRWuDQAC01pWJPpB4kJiZy2223MXPmTAYOHMg555zD0KFDmT59utfRRKKG39eMrdq+Rrf2X9Ap9Um27jiNti1v0HVkIiLSZKnYE6lH6enpfPbZZ7z44ossWrSIwYMHc95555GVleV1NJGoERvoRmL8LgT8rb2OIiIitUoDtNRUdD87kQbIzDj++OOZP38+F154IY8++ihpaWk8//zzOOe8jiciIiLSYIWwWl+imYo9EY80b96csWPHMn36dLbeemtOOeUUhg0bxpw5c7yOJiIiIiJRQMWeiMf69+/P5MmTeeKJJ5g9ezb9+/fnyiuvJC8vz+toIiIiIg2GcxB0VutLNFOxJ9IA+Hw+zjjjDDIyMhg5ciR33XUXPXv25M0331TXThERERHZLCr2RBqQ1NRUJkyYwOTJk2nVqhVHHXUUBx98MH/88YfX0UREREQ8pwFaaia6n51II7Xzzjszffp0xo4dy3fffUfv3r25+eabKSoq8jqaiEi9yy+exuLVl7Fw1TlkF3yAc5qnVESkOlTsiTRQgUCAiy66iPnz53PEEUdwww030LdvXz7++GOvo4mI1JsVOQ/y18rjWVvwKtmF77JozcX8s+p0nAt5HU1E6pmj9idU16TqIuKpjh078tJLL/Hpp5/i8/k44IADOProo1m8eLHX0UREak1pcDkrcx9neda9FBRPxzlHaXA5K7LH4lwhEL5+2bkC8ot/ILfoS28Di4gnNPVCzajYE2kk9tlnH2bOnMmtt97Ke++9R3p6Ovfeey+lpaVeRxMR2SLZBR+RsWxXMrPuZGXuWP5ceRyL11xEbuF3mAU22D/kCsgp+MCDpCIijYuKPZFGJC4ujmuvvZa5c+ey55578r///Y+BAwfy3XffeR1NRGSzhEKFLF5zIc4V4SgGHM4Vkl34ESVlv0Ol37r78fua1XNSEfGaA3XjrCEVeyKNUPfu3Zk0aRJvv/02OTk57Lbbbpx22mmsXLnS62giIjWSV/w94N9gvXMFFJVWXuyZxdAy6di6Dyci0sip2BNppMyM4cOHM3fuXK6++momTpxIWloajz32GKGQBi4QEXAuRG7hF2Rm3cbq3CcpC67xOtIGbCPXy/gslm5tnsNnzfBZCj5LxoijQ4ubiI9Nr8eUItJQaOqFmonuZyfSBCQlJXH77bczY8YM+vfvz9lnn83QoUOZPn2619FExEMhV8zfK45k8eqzWZ37MCuybuf3ZTtRUDzV62jrSYrfmXWDr5RnlkjLpKNJihtMz06/0KX1Q3RudR89O02ndfKJ9R9URLxXB1041Y1TRBqFnj178vnnn/PCCy/wzz//MGTIEC644AKysrK8jiYiHlib+wxFpbNxLh8ARxEhl8/i1Wfj3IbFlVd8Fk+X1McwS8AsEYjBLIGWiSNIjh8W2SeOlIS9aJ54EH5fCy/jiog0Kir2RKKImXHiiSeSkZHBeeedx8MPP0x6ejovvPBCg/pwJyJ1L6vgjciUBesLhnIoLlvgQaKqpcTvQXqHn+jYYgztm1/Jtm3fpVOr2zGL7m/cRaRmHJp6oaZU7IlEoebNmzNu3DimTp1K165dOfnkk9lzzz2ZO3eu19FEpDYUFcHzz8OoUXD66fDUU1BQsN4uVsmgJ2FuI9u8E/C3pFXySbRpdrauxxMRqSUq9kSi2MCBA/nhhx94/PHHmTlzJv369eOqq64iPz/f62gisrmmTIGtt4aJE8lJ60tWr364t96C7t3h66//3a1F0gmYJWzw8ICvLbGBbeozsYhIrdE1ezWjYk8kyvl8Ps4880wyMjI45ZRTuPPOO+nZsydvvfWWunaKNDb//APDh5N5yz2c1u4Ijv28hBM+LWZks4NYdNdDcPTRsCDcRbNl8vEkxe0WKfhi8VkSPmvOVqkT1D1SRBolzbNXcyr2RJqINm3a8OSTT/Ldd9/RokULjjzySA455BD+/PNPr6OJSHWNH0/ZCSdx9juZLFq4mpLiMoqLy1iyZC3nvfoPJaNGw9ixAJgF6NLmabq1eZ12La6iQ8s72a7jdOJjewFQWraU1bmPsTJ7LIUlszx8UiIiUldU7Ik0Mbvssgs///wz9913H9988w29e/fm5ptvpqioyOtoIrIpr73GT712p7S0jIon5oPBEN9sOxReeWW99Qlx/WmdchbNk47A5wt368zOf5ffl+/Giqw7WZlzH3+vOIJla67S2X4RafB0Zq9mVOyJNEGBQIBLLrmE+fPnM3z4cG644Qa23357PvnkE6+jicjGZGez3MVRUhLcYFNRUSmLS2MhJ2ejTQRDOSxdezHOFeEoBoI4V0hWwRsUFE+uo+AiIuIFFXsiTVinTp14+eWX/y3y9t9/f4499liWLFnicTIRqdS229I/tIqY2A1H00xIiGWwPwu23XajTeQXfVPpaJzOFZCd/1ZtJRURqXUOTapeUyr2RIR9992XWbNmccsttzBp0iTS09O5//77KSsr8zqaiJR35pl0f/M5eqW3Jy4u8O/q2NgA3bql0uv9F2H06E00YpGlkvUauKX25eXBd9+Fl9xcr9OISBOjYk9EAIiLi+O6665jzpw57L777lx66aUMHDiQyZPVrUukwTjlFKywkDtXfcrZR/ama9fWbLVVa844ojcPlH2PLV60yWIvKX4PHBt2AzVLoHniUXWVvOkpKICLL4YuXeB//wsvXbvChReCpr8R2WyaVL1mVOyJyHq23npr3nvvPd566y2ysrLYddddOf3001m5cqXX0UQkPh4+/BBfSjKHXXUST/3zEs8seYWjrjkJfygIn38OSUkbbcLvS6ZTq/GYxWMWD8RgFk/LpBNJjNupfp5HtCsuhoMOIpSZyceXPsA5pbtzdslufHjJWEKrV8MBB4AGxRKpOacBWmrKon3krUGDBrlp06Z5HUOkUcrPz+eWW27h3nvvJSUlhTvuuIMzzjgDn0/fE4l4LisLpk0D52DgQGjdukYPLwuuIqfgPUKukOSEvYiPSaubnE3R44/jXnuNa3y7MWvyAooLigGIS4yl947bckfMj9hhh8G553ocVJo6M5vunBvkdY7qap7Wzu30+PG13u4nwx5oVK9DTegTm4hUKSkpiTvuuIMZM2bQr18/zjrrLIYOHcrPP//sdTSRBqmk9Hdy8t+goPgHnAvV7cFatIB99oF9961xoQcQ8KfSKuVUUpudo0Kvtj32GH8dcCyzv/+v0AMoLihh7k9/8se+R8Pjj3sYUKRx0qTqNadiT0Q2qVevXnzxxRe88MIL/PPPPwwePJgLLriA7Oxsr6OJNAjOBVm2+hwWrtiPFVlXsXTVKfyTuRtlweVeRxMvLFjAtOx4SopKN9hUVFDE1Kw4WLDAg2Ai0tSo2BORajEzTjzxRObPn8+5557Lww8/TFpaGhMnTtREzNLkZeU9TX7hJ+G561w+zuVTWraQ5avVTa9JSkmhXSLExsdssCkuIY72ieF9ikp/Z03eS+QUfo5zGv1YpDp0Zq9mVOyJSI20aNGCBx98kKlTp9K1a1dOOukk9tprL+bNm+d1NBHPZOc/i6OwwtoghSU/Ewyu9iSTeGjECIaumY0/sOF8hv6Aj12yZpN7SHt+zzyApVljWLT6POYvHUJx6Z8ehBVpPDTPXs2p2BORzTJw4EB++OEHHnvsMWbMmMH222/P1VdfTb6GFJcmyLmKhV6Y4SPkNOpik3PhhcQ+8xQP3rEv7bq1IT4pjvikONp2SeXBO/cn8NQjLDslO3ImuJCQy6MstJJ/Vo3yOrmIRBkVeyKy2Xw+H6NHjyYjI4OTTz6ZO+64g169evH222+ra6c0KcnxBwEbdtnz+9sQ8Hes/0DirW23hVdfZavrL+X5/st5+tpBPH3tIF4YmMlW113I0od7ULx1xW6bjpLgYopL//Ikskhj4ZzV+rIlzKyVmX1qZr9F/m25kX2bmdliMxu/RQetARV7IrLF2rRpw1NPPcW3335L8+bNOeKIIzj00EP58091SZKmoVWziwn422OWGFkTi1ki7VuNwyy6uwhJFYYNgz//xPbfn1YzvqPZ9DdZPvgX5n3bnLU7VT5wj+HD6UywSGNzFfC5c64H8HnkflVuAb6pl1QRgfo8mIhEt1133ZXp06czfvx4xowZQ+/evbn22mu5/PLLiYuL8zqeSJ3x+1vRtd2X5BS8TmHxD8QEutM86URiAp28jiYeCiX6WTxiJjkH/YyjZJP7myUQp2kwRDYqRIP7Am04MCxy+1ngK+DKijuZ2Q5AO+AjoN7m9NOZPRGpVTExMVxyySXMmzePQw89lOuvv57tt9+ezz77zOto0sAVF33CmhX7sWpZL9auOpLS4qleR6oRny+RFsmn0KH1I6Q2v0KFnrB47RXkFH5UjUIvFrMEurQej5k+molUxbk6G40z1cymlVtG1yBWO+fcssjt5YQLuvVY+Bf7XuB/W/wi1JD+oohInejcuTOvvvoqH330EaFQiH333ZfjjjuOpUuXeh1NGqCigjfJWXMuwbI5OJdNWcmPZK0+jpLiH72OJrJZgqEccgo+wLnijewVQ2LsYNo0O4/t2n9Ncvyu9ZZPRNazyjk3qNzyePmNZvaZmc2uZBlefj8XHrCgskELzgU+cM4trsPnUCkVeyJSp/bff39mzZrFTTfdxNtvv016ejpjx46lrExzSkmYc478nFtgg6kLisjPudWLSCJbrCy0BmzDqRfKM/PTqdUdtG9+GbEBDeQjUh1eDNDinNvHOdenkuUdINPMOgBE/l1RSRNDgfPN7G/gHuAUM7uj9l6VqqnYE5E6Fx8fz5gxY5gzZw677rorl1xyCTvssAPff/+919GkAXAun1BoTaXbysrm13MaaQpyCj/hz8wRLFi2F8uybqcsWPn7b0vE+jthGxkawSyBlPg9idc1eiKN3SRgZOT2SOCdijs45050znVxznUj3JXzOefcxgZyqTUq9kSk3myzzTa8//77vPnmm6xdu5ZddtmFUaNGsWrVKq+jiYfMEjCLr3Sb39e+ntNItFuR/QALV59PfskUissWsDp3Ar9l7k9ZcG2tHscshg4trsMsofxawIjxd6F986vo0vqRWj2mSPRrkJOq3wHsa2a/AftE7mNmg8xswpY2vqVU7IlIvTIzjjjiCObOncsVV1zBc889R1paGk888QShUMjreOIBMz8JSaOBhAobEkhMucyTTI1BcekClqw6mT+WpPHXsh3Jyn1a81tuQjCUzYqccThX8O86RwnB4BrW5D1X68drlXwCXVs/TmLsYGL8nWiReDjbtf+G9I7fk5oyCjMNii7S2DnnVjvn9nbO9Yh091wTWT/NOXdGJfs/45w7v77yqdgTEU8kJydz55138uuvv9K3b19Gjx7NzjvvzC+//OJ1NPFAYsolJCafBZYExGHWguRm1xOfeLjX0RqkkrK/WbTiEAqKviDkcikLLmJVzq2syr7F62gNWmHJbMxiN1jvKCa36Ms6OWZKwp5s0+4t0jv+yFatHyQupnudHEekqWhok6o3dCr2RMRTvXv35ssvv+T555/nr7/+YtCgQVx44YVkZ2d7HU3qkZmPpGaXk9p+Dq3bTaV1+5kkJI3c9AObqLW543GukPKDvjlXSHbe0wRD+t2pSsDfBkdlg0MZMX4NkCLS0DnqbOqFqKViT0Q8Z2acdNJJZGRkcM455zB+/HjS09N58cUX1S2tiTGLwedvjW1iFMOmrqj4ZyC4wXqzWErL/qz/QI1EfMx2xAV6QIWBU8ziSU3ZoLeViEijp2JPRBqMFi1aMH78eKZOncpWW23FiSeeyN577828efO8jibSoMTGbEt4sI/1OVdCwF+/k7k3ti9kurV5lsTY/hhx+CwZn6XQqeUdJMYN9DqaiGyKC0+sXttLNFOxJyINzg477MAPP/zAI488wi+//EK/fv245ppryM/P9zqaSIPQMuX8DUYwNeJJStiXgL9tvWQoLpnHwszDWbC4MwsWb0Pm2msJhSrOldjwxPjbsE27t9muwzds3fYNenaaQcuko7yOJSJSJxpMsWdmT5nZCjObXcV2M7NxZva7mc00M30FJxLF/H4/Z599NhkZGZx44on83//9H7169eKdd95pdGcSRGpbfOz2dGj9JAF/FyAGI46UpBG0azWuXo5fWraUhSuGU1jyE+Ai1wu+yJLVjacrZGygEwmxvfFVMmCLiDRcIazWl2jWYIo94BnggI1sPxDoEVlGA5qcRqQJaNu2LU8//TTffPMNzZo14/DDD+ewww7jr7/+8jqaiKeS4ofRrf0PbN1xJtt0yqBdy7vwVTFfYW3LynuakCtZb52jmMLiHygp/aNeMohI0+PQaJw11WCKPefcN8CajewynPBs8845NwVoYWYd6iediHhtt9124+eff+aee+7hq6++olevXtx6660UFxd7HU3EM2aG39e80ukE6lJRyWygZIP1RgwlZb/XaxYREalagyn2qqETsKjc/cWRdRsws9FmNs3Mpq1cubJewolI3YuJieGyyy5j3rx5HHrooVx//fVsv/32fPrpp15HE2lS4mO3ByqZr86VEhvoUf+BKlNaCi+/DPvuCz16wJAhcP/9kJXldTIR2Wy1P+2Cpl5ohJxzjzvnBjnnBrVp08brOCJSyzp37syrr77KRx99RCgUYr/99uO4445j6dKlXkcTaRJappyGz+IoPyKoEU9i/K7ExmztXbB18vNh//3hwQdZftgxfHPlPSw4/WLcjz/BgAHwu84+ikjT0JiKvSXAVuXud46sE5Emav/992fWrFncdNNNvP3226SnpzN27FjKyiqbNFkaCudClOS/TN6KA8nN3J2inDtwoSyvY0kNBPzt6dLuXRLjdgEC+CyFFskj6Zj6eP0EyMyE//s/OOEEOP10ePttKP97f8klhDp05No9LuS0j7O5453fueSD5ZwSN4y8cy6Aww+HUKh+sopIrdLUCzXTmIq9ScApkVE5dwKynXPLvA4lIt6Kj49nzJgxzJkzh1122YVLLrmEHXbYge+//97raFKFouyrKMq5gVDZHFzwb0ryJpC38hBcqMDraFIDcTHbsVXbV0nbaiE9OmfQtuUN9TNAzOOPQ3o6oT//JHPIbuSk9Ya774a+feHPP2HVKnj1Vd7c40R+nrmI4uIyiopKKSwsYdnyLG5Y0R4CAfjss7rPKiK1TgO01EyDKfbM7CXgByDNzBab2SgzO9vMzo7s8gHwJ/A78ARwrkdRRaQB2mabbfjggw944403WLNmDbvssgtnnHEGq1at8jqalBMqW0hpwVvgys/HVoILrqSk4A3Pckkj8d57cNtt/PDoKxyavz2nfF/MkVONc3Y5l7yRo2C//cJF3C678OY3f1NcvP5Z/lDIMWvOEoqHHwkff+zRkxARqT8Npthzzh3vnOvgnItxznV2zj3pnHvUOfdoZLtzzp3nnNvGOdfXOTfN68wi0rCYGUceeSTz5s3j8ssv59lnnyUtLY0JEyYQUpetBiFY+itYoJIthQRLvqvvOJuttDSDoqIvCAYzvY7StNx+O0uuvpkxr80hN6+IwqJSSkqCzF+wjAuWpuJ69IBvv4W4OEpKK+/ObQbBmNj1u32KSKMQ7napM3s10WCKPRGR2pKcnMxdd93FL7/8Qu/evTnzzDPZZZdd+OWXX7yO1uSZr10VW2Lw+beqYlvDEQqtZeWKQ1m18iDWrjmHzOU7kZV1Nc7py4Q6t2QJLFjA84WtKS0LrrcpGHIsWZZF5sFHwrx58O237DmkG4HAhh9zOnZoQeI3X4RH5xQRiXIq9kQkavXp04evv/6a5557jj///JNBgwZx0UUXkZ2d7XW0JssfOxjztQH862+wALFJJ3mSqSbWrrmI0tKZOFeIc7lAMYUFr1GQ/6LX0aJfbi60bs3y1fmEQhuOqOD3G2tjkiAYhCFDGJX9M6mpKcTHxwAQG+snMSGWm/ZoBTNnwogR9f0MRKQWaOqFmlGxFyUKin9h4erz+CPzCDKzxxLUyHYiQLhr58knn8z8+fM5++yzefDBB0lPT+ell17CRfsQXA2QmY+k1FfwxWwPxIElYr62JLZ8Al+gm9fxNioUyqa4+GugdL31zhWQn/+EN6Gakk6dIDOTXbduRlzshl2BS0uDdMv8Mzyn3qOPEv/8MzyXMofLj0hn/337Murwvrw6pJgul50NEydCXJwHT0JEpH6p2IsCa/Pf5M+Vx5BdMImCkqmszHmQBcv3oSy4xutoIg1Gy5Yteeihh/jpp5/o3LkzJ5xwAnvvvTfz5s3zOlqT4/N3ILnNOyS3+5akNh+Q3O4nAvG7ex1rk5zLZ4MzkhGhUE79hmmKUlLgqKM4dO6XNG+WQEzMfz+L+LgYTtivFwlPTYAzz4SttoIpUwgkJbDnFSO58tbjOfqiI0mcPwc+/xz23tvDJyIiW0JTL9SMir1GLuRKWLr2WpwrBMLvVkcxweBqVuY+4m04kQZo0KBBTJkyhUceeYRffvmFfv36cc0111BQoGH/65vP3x5/YGvMGsd/RT5fB3y+lpVsCRAfr+KhXtx8M3GvvcILHZdy4r7pdOncij7pHbn10G047flb4YADYMcdw/u2axeekiEzExYuhOxseOEF2H57b59DIxIM5VJSthjngpveWaSeaICWmmkc/8NKlYpLfwc2HBjAUUpuoeYQEqmM3+/n7LPPJiMjgxNOOIH/+7//o1evXrzzzjteR5MGzMxo0fJezBL47wxfHD5fc1KaXbbJxztXRFb2LSxZ2ovFS7qzcvWplJX9U6eZo06nTvDtt8TPn8vpV5/IC3Of5+FP72HIVWdhhx0GDz+84WP8fmjRAmJi6j1uYxUKFbBw1TnMW9KPBcv3ZN7SAWTlT/I6lohshsrGv5ZGxO9rjnOVDx/t97Wq5zQijUvbtm155plnOP300zn33HM5/PDDOfTQQ3nggQfo3r271/GkAYqPH0Zqmw/Jz3uCsrK/iY0bSlLSSPz+1pt87KrVp1NU/ANQBEBR0adklvxE+7bfVuvxEtGlC7z+OixbBvPnQ3w8DBqkYq4WLVx9PnlFX+MoAQdBV8jitZcRE2hPUpxGMRXvOKL/TFxt05m9Ri420ImE2L5UrNvNEmjTbLQ3oUQamd13351ffvmFu+++my+++ILevXtz++23U1xc7HU0z7lQFq54Mq50nga0iYiJ2Y4WLe8mtc1rNGt2abUKtdLSDIpL/iv0wkKEQoXk5b9QZ1mjWocOsOeeMHSoCr1aVBrMjBR66//9c66QlTkPeZRKRDaXir0o0CX1CeJjemGWgM9SMOJok3IezRL29zqaSKMRExPD//73P+bPn8/BBx/MtddeS79+/fj888+9juaZUN7DuBW74rIuwK05Drf6MJwmEd8spaUZVN6ZpojS0l/rOY1I1cqCmZjFVrqtpGxRPacR2ZCrgyWaqdiLAjH+NvRo/wHbtnufrqkT6NlpOu2aX+x1LJFGqXPnzrz22mt8+OGHlJWVsc8++3D88cezbNkyr6PVK1f0JeQ/BpSAywNXCGW/49ae43W0RikQ6A5UNshFHDExPes7jkS5YCifNXkTWbp2DGvyXiEUKqz2Y2MD2+AqTC8SFiApbsfaCymyOZwGaKkpFXtRJD5mO5Ljd8Hva+F1FJFG74ADDmD27NnceOONvPXWW6SlpfHAAw9QVlb5NbLRxhU8HS7w1hMMF3xlCz3J1JjFxvYlJqYPsP4ZE7MYkpNGehNKolJJ2SIylu3M0qybWJ33FMuyridj+W6UBpdX6/F+XxJtUy6IDES0jg+fJdKm2Xl1E1pE6oyKPRGRKsTHx3PDDTcwe/Zsdt55Zy6++GIGDRrEDz/84HW0uhfKqny9BcBl12uUaNGm9UQSE4YTLvh8xMbsQNs27+D3t/M6mkSRJWuvIhhai3Ph6WRCroCy4EqWrr2x2m20bX4RnVvdS3xMbwK+tjRPHE6P9h8SG+hcR6lFakD9OGtExZ6IyCZsu+22fPjhh7z++uusWrWKnXfemTPPPJPVq1d7Ha3uxO1NxbNQYQ4CafWdJir4fCm0bjWOzh3/onPHv2nX9j1iY3p5HUuiiHMh8oq+ZcMpmYLkFn5ao7ZaJB5Gj/Yf07PTz3Rp/SCxga61llNE6o+KPRGRajAzjjrqKObNm8f//vc/nn76abbbbjsmTJhAKLThXJeNnSWdCr42QNy6NUA8pNxQ5eANUj1mPsw0eqTUlco/2plpti2JDk3pmj0z29PMukdudzCzZ83saTNrX902VOyJiNRASkoKd999N7/++iu9e/fmzDPPZJddduHXX3/1OlqtMl9zLHUSJF8AMYMh/hCs1fP4Eg/3OpqIVMHMR/OEA4H1v0wwYmieeJg3oURqmXO1vzRgD/Pf6F73Ev7lDgGPV7cBFXsiIpuhT58+fP311zzzzDP88ccf7LDDDlx88cXk5OR4Ha3WmC8FX/JofK0n4mtxLxbbz+tIIvXOuTJyCj5gyeqLWb72ZopLf/c60kZ1bHkbcYGu+CwJIw6fJREXsx0dWlzvdTQRqblOzrmFFj41vz8wGjgH2Lm6DajYExHZTGbGyJEjycjI4KyzzmLcuHGkp6fz8ssvawJykSjgXCn/rDiWJWsuIrvgNdbkTeDPzP3Jyn/T62hVCvhb0aP9F3RJfZz2La6ha+pTbNvuI/y+Zl5HE9lijqbVjRPIMbN2wB7AXOdcXmR9ta8FULEnIrKFWrZsycMPP8yPP/5Ix44dOf7449lnn32YP3++19FEZAtkF7xFYemMf0e2hCDOFbFs7RWEQgUbfayXzHykxO9BasookuN3waxBf5gVkao9CEwFJgIPRdbtAlT7A4aKPRGRWjJ48GB+/PFHHn74YaZPn87222/PtddeS0FBw/1QKCJVy85/G7fBfJNgBCgomepBIpEmzgHOan9poJxzdwL7ALs4516OrF4CnFHdNlTsiYjUIr/fzznnnENGRgbHH388t99+O7169eLdd9/1OpqI1JDPl1jFFodvvUnHRaS+NLEBWgD+Ajqa2bGR+0uAP6v7YBV7IiJ1oF27djz77LN89dVXJCUlcdhhhzF8+HD+/vtvr6NJE1YWXEZ27uNk5TxASclcr+M0eC2TT8Zsw4LPLIGE2B08SCQiTYmZ9QUWAE8AT0ZW7wE8Vd02VOyJiNShPfbYg19//ZW77rqLzz77jF69evF///d/lJSUeB1Nmpi8/LdZsmxn1mbfTlbO3SxbeTCrs67XYEIbkRy/B62TR0VGtUzEZ8n4fS3o0uZ5zPxexxNpmlwdLA3XI8AY51w6UBpZ9zWwa3UbULEnIlLHYmJiuPzyy5k3bx4HHHAA11xzDf369eOLL77wOpo0EcFQNqvXXoKjCChm3UAjefkvUlzyo9fxGrS2La5i2w7f0r7l7XRq/SDbdfyFhNi+XscSkaahN/BC5LYDcM7lA9XuR65iT0SknnTp0oU333yT999/n5KSEvbee29OPPFEli1b5nU0iXKFRV+CBTZY71wheQUNdxqBhiIm0IkWSUeTkrAfZrFexxFpwmp/2oUGPvXC38B6fcbNbAhQ7Qk/VeyJiNSzgw46iNmzZzNmzBhef/110tPTGTduHGVlZV5HkyhlNOgPM1IX/voLbrwRRo2CK6+EWbO8TiQiNXc98L6Z3QTEmtnVwGvAddVtQMWeiIgHEhISuOmmm5g9ezY77bQTF110EYMHD2bKlCleR5MolBC/J7gNv0wwSyA58SgPEkmdCYXgsstg8GDK1qxlbXpfSvHBgQfCccdBUZHXCUW2TBO6Zs859x5wANCG8LV6XYEjnXOfVLcNFXsiIh7q0aMHH330Ea+99horV65k6NChjB49mtWrV3sdTaKIz9eM1q3GYcQDcUAAI56UpJOJj9vR63hSm265BffDD7xy14scsqQbx09xHLSgDQ9e/hihkhIYPdrrhCKbz9HUunHinPvFOXeuc+5g59zZzrnpNXn8hh34RUSkXpkZI0aMYP/99+emm25i7NixvPnmm9x5552cdtpp+Hz6Xk62XHLiocTHDaGg8D1cqJCEhH2IjUn3Oladca4E54L4fE1oPrzcXHjgAb4Y9zJPvTmbouL/zua++3UGCfuO5owxJ8Off8LWW3sYVESqw8xurmqbc25MddrQJwgRkQYiJSWFe+65h19++YWePXtyxhlnsOuuuzJjxgyvo0mUCPjb0Sx5FM2bnR+1hV4wuJYlq85kweIe/LZkO/5efiBFTWVOwY8/hp12YsKXf69X6AEUF5fx2qfzCB1zDLz2mkcBRWpBE+rGCWxVYRkM/A/YproNqNgTEWlg+vbtyzfffMMzzzzDb7/9xsCBA7nkkkvIycnxOpqIpwqLp7B01RksWnEYa3LGEwzlrrfdOceilceQV/gJ4SmpghSXzmDRiiMoC67yJHO9ysqC9u1Zm51f6ebSsiBlbdpCdnb95hKRzeKcO63CciBwJFDtEd1U7ImINEBmxsiRI8nIyGD06NE88MADpKen88orr2gSbGmSsvKeZsmqE8kv+oCikmmsyb2PRZn7rVfwFZVMo6TsL/6bezjMuRKy816s58Qe2Hpr+Plnttu6XaWbW7dMImbWTHXhlEbO6mBpVD4BDq/uzir2REQasFatWvHII48wZcoUOnTowHHHHcd+++3HggULvI4mUm9CoXxWZd+Cc4X/rnOuiLJgJtl5z/67rqTsbyr74OYoprhsfj0k9diwYZCXx2W9/MTHBbByL0VcXIArDuiOffklHHusZxFFtlgD68ZpZq3M7FMz+y3yb8sq9utiZp+Y2Twzm2tm3arR9tYVlj7ArcCi6uZTsSci0ggMGTKEn376ifHjxzN16lT69u3L9ddfT2Fh4aYfLNLIFZfOAmI2WO8oIr/o43/vxwV6rlcQ/seIj+lfZ/kaDJ8Pxo+n65UX8vSBbdhl0Na0SU2hf5/OjB/elcHXnAP/93+QkuJ1UpFochXwuXOuB/B55H5lngPuds71BIYAK6rR9u/Ab5F/fwemALsBI6sbTqNxisgGgqEscvLfojS4iITYHUhO2A+zDT9oSf3y+/2cd955HHXUUVx++eXceuutTJw4kXHjxnHIIYd4Ha9e5JcV8Pzfr/P96uk4QuzQcntO7XYMLWKbex1N6pDP14KqLlHx+9r8e9tR1RxyjoC/TRXboswBB8DEiXT83/+4LTcXevaEn/+BNwrhttvghBO8TiiyZRrelQzDgWGR288CXwFXlt/BzHoBAefcpwDOubzqNOyc2+ITcyr2RKJMWXA5a3Ofoah0FvGx29My+VQC/sqv36hMUclsFq0YgaMU5wrJsiRiAl3o2vYdfL7kOkwu1dW+fXuef/55Ro0axbnnnsuhhx7K4YcfztixY+natavX8epMyIW4YfY9LCvKpMwFAfhx9S8syP2TsQNuJtanLySiVWwgjRh/V0rKfgOC/643S6BF8hn/3i8s+RnwA6EN2igqnU0zjqj7sA3BPvvAL7/Ar7/C4sXQujXstFP4zJ+IVCbVzKaVu/+4c+7xaj62nXNuWeT2cqCyD13bAVlm9ibQHfgMuMo5F6xk31qlYk8kihSXZrAw8zBCrgQopqDoe7Jyn6JLu3eJi9muWm0sW30eIfffqI/O5VNa+iercx6kTYur6yi5bI5hw4bx66+/MnbsWG666SZ69uzJmDFjuPTSS4mNjfU6Xq2blT2flcWr/y30AEKEyC8rYMrq6ezeZqd6zeNcMUV5j1BS8DK4UmLiDyG+2SWRs1BSm8yMjqnPs3TVSZQGF2H4cZTSutnVJMbv/O9+AX97zGJxrrTC4+OJ8Xeq79jeMoMBA8KLSLRwQN1Mgr7KOTeoqo1m9hnQvpJN15a/45xzZlbZuccA4e6XA4CFwCvAqcCTlRxrEdU4f+mc67KpfdYdWESiRObaawi58kORFxNyJWSuvYYubV/f5OPLgpmUli3cYL2jmJyCt1TsNUCxsbFcccUVHHfccVx88cVcffXVPPvsszz88MPsueeeXserVYsLllLmNuzKVxQqZmH+EqjHXnrOOfJXn0pZyTSIdB0sKXiesuIvSWn7KWZx9RemiYgJdKJLuy8oKcsgGFxDfOz2G/Q2SE7YDyMOR/6/w7Q4wAjQLLGJnNUTiXJeDEjtnNunqm1mlmlmHZxzy8ysA5Vfi7cY+NU592fkMW8DO1FJsQecVAuR/6Xz+SJRpLD4x0rWuirWV8ZPVV8mGf7NjSX1oEuXLrz55pu89957FBcXs9dee3HiiSeyfPlyr6PVmg4J7QjYht9Rxvni6JTYoV6zBEt/pax0Oqx3jVgpoVAmpYUf1GuWpsTMiItJJzF+5yq6lTtiAi3xmYVHojTwmdEy+XT8/koHyBMR2VKT+G/AlJHAO5XsMxVoYWbrvpbcC5hbWWPOua+rs1Q3nIo9kShiFl+j9RUF/KnExvSk4p8GI57mScdvaTypBwcffDBz5szh+uuv5/XXXyctLY0HH3yQsrJqz7/aYPVv0ZsWsc3xl/viwYePeH8cQ1vvUK9ZgqUzK/962RVEzvaJF7LzXqKsbCnrvrQKn91zZOU/QShU4GEyEak1DWzqBeAOYF8z+w3YJ3IfMxtkZhMAItfm/Q/43MxmEf7z9ER1Gjez/mZ2gZndZGY3r1uqG07FnkgUaZ50LLB+9zEjjuZJx1W7jY6pj+D3tcZnyUAsZonEx+1Ay2Zn1W5YqTMJCQncfPPNzJ49mx133JELL7yQIUOG8OOP1T3D2zD5zMctfS5nUKvt8ZsPH0bfFunc1vdK4v31223S5+8MVtnZ7nh8ge71mkX+k1/4Po4Np14wAhSVTPcgkYhEO+fcaufc3s65Hs65fZxzayLrpznnzii336fOue2dc32dc6c650o21baZjQYmEz4TeCXQF7gM2La6+XTNnkgUadP8OkrK/qKweApGDI5SEuJ2ok3za6rdRmygG9t0nEpe4aeUBpcSH9uPhNjBmNXJBdFSh3r06MHHH3/M66+/zsUXX8zQoUM588wzuf3222ndurXX8TZLs5gULk07C+ccDofPvPnOMhC3B+ZrgQsWUX50SCyG2MSjPMkkVDk4jiOEz9esfsOISN2omwFaGqorgAOcc9+a2Vrn3BFmdiBQ7W/xdWZPJIr4fAls1eZFurb7mPatxtK13cds1eZFfL6EGrVjFktK4sG0SjmTxLghKvQaMTPj6KOPZv78+VxyySU8+eSTpKWl8dRTTxEKbTg8fWNhZp4VeuHjB0hJfRN/7CDCk33H4gukkZz6Gj6frg3zSovk0zCr+PfO8PtaExezvSeZRES2QFvn3LeR2yEz8znnPgQOrW4DKvZEolBcTA9SEg8kLqaH11GkgUhJSeHee+/ll19+IT09nVGjRrHbbrsxc+ZMr6M1Wj5/R1JSX6dZ+59p1u4nmrX9jEBMb69jNWmJ8bvSKuVijDjMUjBLJuDvQKfUifrSSiRKmKv9pQFbbGbdIrcXAMPNbDdgk11A11GxJyLShPTt25dvvvmGp59+mgULFjBw4EAuvfRScnJyNv1gqZTP1wKfv3F2i41GrZpdQPcO02jfahydUp+nW/ufiI3ZxutYIlIb6mJwloZd7N0F9Izcvhl4AfgCuKm6DajYExFpYnw+H6eeeioZGRmcccYZjB07lp49e/Lqq6/ivJjASKSW+f2tSU7Yn4S4HTEPu/uKiGwJ59wzkW6bRP5tCbR0zj1S3Tb0F1BEpIlq1aoVjz76KD/88APt2rXj2GOPZb/99mPBggVeRxMREamEhQdoqe2lgTKzsWY2eN1951yJcy6vJm2o2BMRaQBKyxaxJusmlq88jrXZ9xAMrqq3Y++4445MnTqV8ePHM3XqVPr27cv1119PYeGGQ9iLiIhIvTHgHTP7LTLPXlpNG1CxJyLiseKSX1iauSc5eU9SVPw12bnjWbJ8N0rL/qm3DH6/n/POO4/58+dzzDHHcOutt9K7d2/ef//9essgIiKySU3omj3n3EVAZ+BcYCtgiplNN7NLq9uGij0REY+tWnMZzuUDpZE1xYRcDmuzbq73LO3bt+f555/niy++ID4+nkMOOYQjjjiChQsX1nsWERGRDTShYg/AOReKTMh+OtAHWA3cXd3Hq9gTEfFQKFRAaVll18iFKCz+pt7zrLPnnnvy66+/cscdd/DJJ5/Qs2dP7rzzTkpKqj3as4iIiGwhM0sys5PM7H3C0y+UASOr+3gVeyIiHjKLoao/xT5LrN8wFcTGxnLllVcyd+5c9t13X6666ir69+/PV1995WkuERFpwprQmT0zew3IBEYD7wFdnXMHOedeqG4bKvZEqqGoNIM1uc+QXfAOoZAGrZDaYxZDUsKhQGyF9fGkJFf7i7s61bVrV95++23effddCgsL2XPPPTn55JNZvny519FERESi2VSgl3Nud+fcI865Go/epmJPZCOccyxZfSl/ZR5EZtYtLF1zOQuW7kBhyUyvo0kUad3yDuJiB2KWgFkKRhwJ8fvRPOUCr6Ot55BDDmHOnDlcd911vPrqq6SnpzN+/HiCwaDX0Zos5xzFhe+QtfJg1mbuTH7W9YSCK72OJSJSNxxNauoF59xdzrktumhexZ7IRuQUvktO4bs4V4SjCOfyCblsFq08DedCXseTKOHzpdCh7Vt0aPshbVo9SMf239C29WORLp4NS2JiIrfccguzZs1i8ODBXHDBBQwZMoSffvrJ62hNUkHOneRl/Y9g6QxCwYUUFbxA1sr9CIXWeh1NRKROmKv9JZqp2BPZiKy8iThXsMH6kMulqHSWB4kkmsXGpJGYsD8xgS5eR9mk7bbbjk8++YRXXnmF5cuXs9NOO3H22WezZs0ar6M1GaHQWorynwBXvmt5KS6UQ1He057lEhGRhkPFnshGOFfVyIOGc6VVbJOmJOSKWZ19P38sHcIfSwawYu0NBEPZXseqF2bGMcccw7x587j44ouZMGECaWlpPP3004RCOvNd14Klc8BiK9lSTGnxt/WeR0SkXjShAVpqwxYVe2Z2Sm0FEWmImiUehVlCJVv8JMT2q/c80rA451iyciSrcx6kLLiYslAma/Oe5Z/Mgwm5Yq/j1ZtmzZpx3333MX36dLbbbjtOP/10dt99d2bO1LWtdcl87cCVVbLFhy+wVb3nERGR2mdmrc3sZDO7InK/o5l1ru7jq1XsmVmvSpbewFmbmbuyYxxgZhlm9ruZXVXJ9lPNbKWZ/RpZzqitY4tUpWXysSTEDsAiQ+AbsZgl0Ln1Qw3yeiqpX0Ulv1JYMhVHUbm1JZQFl5NX8L5nubzSr18/vv32W5588knmz5/PwIEDueyyy8jNzfU6WlQKxPTAH5MOBNbfYHEkJJ3pSSYREak9ZrYHkAGcCFwfWd0DeKS6bQQ2vQsAU4DXgYrD1XSt7oE2xsz8wEPAvsBiYKqZTXLOza2w6yvOufNr45gi1WEWQ9c2r5BX9AX5Rd/i97WmRdIIYgIdvY4mDUBRyQxwG/b/cK6AwuJpNEs60oNU3vL5fJx++ukMHz6ca665hvvvv5+XX36ZsWPHMmLECMwa7qhnlXGulGDRxwSLJ2P+9gQSj8Hn7+B1rH81a/UsuWvPoaxkGpgfsziSmt1JILav19FERGTLjQWOdc59bmbrRt76ERhS3QaqW+zNAy53zq0uvzIyk3ttGAL87pz7M9Luy8BwoGKxJ1LvzHykJOxDSsI+XkeRBiYm0BmzwAb1nlk8MYFunmRqKFq3bs1jjz3GaaedxrnnnssxxxzDfvvtx/jx4+nRo4fX8arFuUKKVo0gFPwTXAEQS2n+I8S3fBJ/3C5exwPA529F89RXCAVX4lwOPn83wt+fiohEp2gfPbOCbs65zyO31z3zEqpfw228G6eZrWtoXyCr4nbn3MHVPdAmdAIWlbu/OLKuoqPMbKaZvW5mVV6QYGajzWyamU1buVLzDYlI3UiKH4bP1xxY/8O1EUPzpBHehGpgdtppJ3766SfGjRvHlClT6NOnDzfccAOFhYWbfrDHSvOfJlT2e6TQAygBV0hR1oUNbuoVn78N/sA2KvREJPo1oXn2gLlmtn+FdfsA1R4SflPX7H1oZsnOuRznnNez5r5LuLrdHvgUeLaqHZ1zjzvnBjnnBrVp06beAopI02IWoEvbt0iI3QGIwYglNpDGVm1fx+9v5XW8eudckFUFX/L7mntZnDOR0mAWAIFAgAsuuID58+czYsQIbr75Zvr06cMHH3zgbeBNKCucBOtdjxnhCnBlC+o9j4iINDmXARPN7FkgwcweA54BLq9uA5sq9n4FJpvZvxcomdnuZlbbYzovAcqfqescWfcv59xq5/4d3m4CsEMtZxARqbGYQGe6tHubbTv+ytYdp9G9w5fEN8HrpYKhQqYtO5Y5Ky9lYc7j/L72Lr5fvBc5xf99+dihQwcmTpzI559/TmxsLAcffDBHHnkkCxcu9DB51azSaQ0IX6dZ1bYo4lyQwvwXWLtyf9asGEZ+7lhcaMN5R0VE6k1dTLvQgLuFOuemANsDc4CngL+AIc65qdVtY6PFnnPucsKjvUw2s+PM7FPgVeDtzQ1dhalADzPrbuH/XY8DJpXfwczKXxF/GOHrCEVEGgS/vyUBf6rXMTyzMOcZ8ksWEIx0eQy5IoIun9krL8FVuKhxr732YsaMGdx+++189NFH9OzZk7vuuouSkqrmtfRGIPEk2GDqFcP8HTB/d08y1afctReQl30jZaWzCZb9RkHuONauGq45RkVE6omZxQErnXN3OefOc87dAWRG1ldLdaZe+AHIASYSvq6uu3Pu3s1KXAXnXBlwPvAx4SLuVefcHDO72cwOi+x2oZnNMbMZwIXAqbWZQURENl9m3juE2HBuwZLgSorKFm+wPjY2lquvvpq5c+ey7777cuWVVzJgwAC+/vrr+ohbLYGEEfjjDgDigQSwZPC1Jr7VhEY3qmhNlZXOp7joY6D8tZXFBIP/UFzUsLvfikiUa0Jn9ghfulaxN+MOhGumatnUAC1vAV8BbwBHAvsDe9UoYjU55z5wzm3nnNvGOXdbZN0Y59ykyO2rnXO9nXP9nHN7Oufm10UOERHZDFUODOI2OmhIt27dePvtt5k0aRIFBQUMGzaMk08+mczMzLrJWQNmPuJbjiUh9V1im48hrsVYEttOwRfYxutoda60ZBobzrYEuHxKiyfXex4RkXXM1f7SgPUlPNVCeT8B/arbwKbO7C0AtnHO3eycewc4ABhvZufVKKaIiES1jskj8Fl8hbVGQmAr4qsxL+Whhx7KnDlzuPbaa3nllVdIS0vjoYceIhj0emww8MVsR0ziCQTi98Usxus49cLnb1tFAR+Lz1/ZYNkiIlIHsoF2Fda1A/Kr28Cmrtm70jm3ptz9WcCuwJk1CCkiTUgwlE0wlOt1DKlnnZudSPO4HfBZAkYMfksixteCPm3GVbuNxMREbr31VmbNmsWgQYM4//zz2XHHHfnpp5/qMLlUJjZuT8wS2eDsngWITzzWk0wiIkBT68b5BvCimfUxs0Qz6ws8R3gMlWqpzjV763HOLQF2q+njRCS6FZcuYGHmAfy5tC9/Lu3D4hUjKC1bsukHSlTwWSz92z3JgHZPsU3LS0lvfQs7d/6apNiad3lMS0vj008/5eWXX2bp0qXstNNOnHPOOaxZs2bTD5ZaYRZDi9Q38Ae2A+LBEvH52tG81XP4/e29jici0lRcS3g8k5+AXGAKkAFcU90GrOIoadFm0KBBbtq0aV7HEIlqwVAOfy/bkZDL4b+vyPwE/O3o1v6HJtP1TWpfTk4ON9xwA+PGjaNVq1bcfffdjBw5MuoHSGlIgmULca44Mml7jb8jFpEGzMymO+cGeZ2juuK22sp1vuiSWm/3z8sva9Cvg4X/00sFVrkaFm/6qy0iWyw3/00cJazfFyJIMJRNftEXXsWqnlWrYOxYuPBCuOEGmDvX60RSTrNmzbj//vv5+eef6dGjB6eddhq77747s2bN2vSDpVb4A10IxPRQoScinquLwVka+AAtmFlzYDDhwVr2NLO9zKzaA2bqL7c0aYUlc8kueI+i0t+8jtKolQb/xrnCDdY7V0pp2SIPElXTvfdCjx64X36msGt7ggV5sPfecMwxUKDJoxuSfv368d133/Hkk08yb948BgwYwOWXX05eXp7X0UREROqEmZ0KLAXeBZ4st0yobhsq9qRJCoby+CPzSP5YMZzFa/7H75kH8tfKkwm5Iq+jNUrxsf0xS9pgvVmA+Ni+HiSqhieegCeeYMY3T3D9/+IYs888rj5pJW9+dxOhgB9OOcXrhFKBz+fj9NNPJyMjg9NPP5177rmH9PR03njjjQ0mbhcRkSjlrPaXhus2YIRzrp1zrnu5ZevqNqBiT5qkpWvHUFjyK84VEnJ5OFdEftH3ZGbd43W0Rik54SAC/nZA+Wvz4oiL6U187BCvYlWtrAxuvpk/n7iRiaFJ5AdzKXOllLoSpuR9x5u37AE//ggzZ3qdVCrRunVrHn/8cb7//ntSU1MZMWIEBx54IL///rvX0URERGpTAPhkSxpQsSdNjnMhsgvejlxjVm49xazNf8mjVJsWChVSWDKL0rKl3gQoKoLnn4czzoBRo+Cpp/7t6mgWy1Zt36N50kn4fan4fe1omTKaTm1ebpgDaUyeDO3aMandHErd+u+DUlfCj3mTKTv5RHip4b4fBIYOHcq0adN44IEH+P777+nTpw833ngjRUU6Qy8iErWa1tQLdwLX2RZcNK1iT5qgEI6yyrc00G6ca3KfImPp9vyzYgS/L9uVf1YcRzCUVX8BpkyBrbeGiRPJ2r4Xawf0wb35JnTvDl9/DYDf14K2LW9j644z2brjL6Q2vxqfJdRfxppYvRo6d2ZtycpKN/vMR3HH1qCh/hu8QCDAhRdeyPz58znyyCO56aab6NOnDx9++KHX0URERLbUJcB1QK6ZLSy/VLcBFXvS5JgFSIjtX8kWH8nxDW8KybzCr8jMvh3nCsJdTikmv/hHFq86p34C/PMPDB/O0gfu4oirDmK/bXPZf+scDr10b/55YhwcfTQsWFA/WWpLt24waxZd4rtXutmHj4Q5f0DXrvWbSzZbx44defHFF/nss88IBAIcdNBBjBgxgkWLGvAAQSIiUmNNbDTOk4B9gIOAkyss1aJiT5qkTi3vwGfJGLEAGPH4fc3o0PJGb4NVYlXuw5WMdFlCQfGPlAaX132A8eMpPelEjmu2kL/yVlIcKqM4VMaigjWcEPsbxWeNDk9d0JgMGADNmnHEz62J9cWttynGF8dhgf3xvfIqjBzpUcD1lZb9RVbO/azNvoPikhlex2nQ9t57b2bMmMHtt9/OBx98QM+ePbn77rspLS31OpqIiNSGJtSN0zn3dVVLddtQsSdNUkJsL7br8DWpzc4hJX4/2ja7kO3af01coJvX0TZQFsysdL1ZDMHgqroP8OqrfH/IbpSGghv8PSxzIT47YAi8+mrd56hNZnD//bQ6/xquWLA7PZP7keRPoWN8F04vPpihJ94J558PnTp5nZScvBdYunwvsnLuIzv3QZavPILVa6/zOlaDFhcXx9VXX83cuXPZa6+9uOKKKxgwYADffPON19FERESqzczizOw2M/vTzLIj6/Yzs/Or20ag7uKJNGwx/na0b3651zE2KSl+d0ry/gEqnplwxMZsW/cBsrNZnBJLccGG1zkWBUv5JyUA2dl1n6O2DRsGL79M64suYnRJCfTvD0vnw4Jn4cor4ZJLvE5IMLiSNVnXAcX/rnOukLyCl0hKPJz4uEHehWsEunXrxqRJk5g0aRIXXnghe+yxB6eccgp33XUX7dq18zqeiIjUVMPvdlnb7gc6AScC6y5GnxNZP746DejMnkgDl9rsfPy+FMpPa2CWQNvm1+Oz+LoPsO22DPlnDbG+Db8bSvTHssvCbNi2HorOurDXXuHpFZ57Dg4/HK65BhYuhEsvDZ/981hB0eeY+TdY71wh+QXveJCocTrssMOYO3cu11xzDS+99BJpaWk8/PDDBINBr6OJiIhszBHACc65H4AQgHNuCeECsFpU7Ik0cDH+dmzd/jNaJZ9KbGA7kuJ2Z6vUp2iVUu1rc7fM6NFs+/gLbN+sI/G+/wrOOF+AbZPbsP2Tr8Do0fWTpS6YwY47wvHHw4EHQlzcph9TTwwfUFnRaZg1vY4ZJWWLWZv/NrlFk3GuZoVaYmIit912GzNnzmSHHXbgvPPOY8cdd2Tq1Kl1lFZEROpEE7pmDyihQk9MM2sDrK5uAyr2RBqBGH872re8kW07fEnXti+RHL97/R38lFOwggIeffxrLm3dn62T29AtKZXzW/fn6Rd+xhYtbtzFXgOWkLAvVFLUmMWRlHikB4m84Zxj8ZrrmL90GIvXXMXfK89g3tKdKS79u8Ztpaen89lnn/HSSy+xZMkSdtxxR84991zWrl1b+8FFRKT2Na1i7zXgWTPrDmBmHQh333y5ug2o2BORjYuPhw8/xJeUzLEHjOStm97inVve4ZQDTiVQFoTPP4ekJK9TRiW/ryWtWz2IEY9ZAhCHEUfzlAuJi+3rdbx6k1UwibX5r+EoJuTyCbk8SoPL+WvVqM1qz8w47rjjmD9/PhdeeCGPPfYYaWlpPPfcczjXsP/XFxGRJuUa4C9gFtAC+A1YCtxU3QYs2v9jGzRokJs2bZrXMUSiQ1YWTJ0KzsEOO0Dr1l4nqjXOlVBQ9DWhUBYJcbsQCHT0OtK/gsFVFBR+iKOEhPh9iQl08TpSvfo980jyizfsbmmWQFr7j4iL2XqL2v/1118555xzmDJlCrvvvjsPPfQQffr02aI2RUQaAzOb7pxrNKN9xXfaynU9+9Jab3fBmEs3+3Uws1bAK0A34G/gGOfcBt1FzOwu4GDCJ9s+BS5yNSjEIt03V9XkMaAzeyJSEy1awL77wn77RVWhV1wym3+W9WfFmnNZlXU1i5bvzJrs//M61r/8/lRSkk+mWfKoJlfoAQRD+ZWuN3wEXcEWt9+/f38mT57ME088wezZsxkwYABXXHEFeXl5W9y2RD/nigkGV+FcyOsoIuKNq4DPnXM9gM8j99djZjsDuwDbA32AwcAem2rYzLZetwApQPdy96tFxZ6INGnOBVm+6kRCobU4l4dz+TiKyc6bQEHRV17HE6BF4iEYGw6cYxZDQkx6rRzD5/NxxhlnkJGRwSmnnMLdd99Nz549eeONN9S1UyrlXAmr1l7FwiXpLFq2A4uXDSCv4F2vY4lI/RsOPBu5/SxweCX7OCAeiAXiCA+xXvlEyuv7nXDXzd/LLb9FlmpRsSciUSu/8BMWZ+7L30vSWLricIqKf9pgn+KS6YQqOTvkXAE5ec/XR0zZhNSU04mN6YpZYmRNALN4urS+v9ZHJU1NTeXJJ59k8uTJtGrVihEjRnDQQQfx+++/1+pxpPFbvfYK8vNfwVEElBAMrWD12osoLPre62gi0a1uBmhJNbNp5ZaajDzXzjm3LHJ7ObDBRK6RqRO+BJZFlo+dc/M2+VSd8znn/JF/fUBH4HGg2kOyq9gTkaiUm/8mK9acTUnpbEIuh6KSH1m26lgKi6est1/IFVL59AbgnLrxNQR+XxLbtX+fzi1vpnnCoaSmnE5a+09olrBPnR1z5513Zvr06dx///1MnjyZPn36cNNNN1FUVFRnx5TGIxjKJq/g7Uih9x/nCsnOHetNKBHZEqucc4PKLY+X32hmn5nZ7EqW4eX3i1xPt0F3EDPbFugJdCY8R95eZrZbTUM655YDFwPVvtZExZ6IRB3nHGuyb8K5wgrri1iTdct66+JjBwNlG7Rhlkhy4hF1GVNqwGfxtEo+lm5tHqZTy+uJi+le58cMBAJcfPHFzJ8/nyOOOIIbb7yRPn368NFHH9X5saVhCwYzqzyrXFb2d/2GEWlKHFgdLJs8rHP7OOf6VLK8A2RGpkRYNzXCikqaOAKY4pzLc+Fvkj8Ehm7mq5AGJG5yrwgVeyLiCeccJaV/Ulq2tA7azicYWlPptpKy+evd9/kSSW1xD2bxgB8IF3pxMduT3ITmspOqdezYkZdeeolPP/0Uv9/PgQceyIgRI1i0aJHX0cQjgcBWVD45l4/Y2AH1HUdEvDUJGBm5PRJ4p5J9FgJ7mFnAzGIID86yyW6cZvatmX1TbpkG/AjcV91wtXuxg4hINRQUfc+yNRcQDGWBCxEbk0an1CeICWxVK+2bJWAWX2k3zIC/wwbrUpKOJC62Dzn5LxIKrSYxfn+SEg6o9evBpHHbZ599mDlzJvfeey+33HILH330ETfeeCMXXXQRMTExXseTeuSzBJqnXEx27ljcv9f8GmbxtGh2mafZRKJewxsz6w7gVTMbBfwDHANgZoOAs51zZwCvA3sRni/PAR8556ozotOECvfzgRnOuWoP0KJ59kSkXpWWLeav5cPKfUAC8BHwd2DrDlMw89fKcdZk30t23kPrdeU0SyC1xb2kJKl7ZrTKKfqZhdkPU1T6D83iBrJVi3NJiOla68f566+/uPDCC3nvvffo3bs3jzzyCLvtVuPLL6QRc86RX/gm2TkPEAyuJC5uB1o2v5bYmJ5eRxOptkY3z17HrVy30bU/z17GTZs/z15Dp6+tRaReZeW/hHMVr5ELEQplU1A8maT43WvlOC2bXQKEyM57DFwZ5kukZbMrVehFsVX5n5Cx6lJCLjxoRmHZQlYVfET/Dm+SGLtNrR6re/fuvPvuu0yaNIkLL7yQ3Xff/d8pG9q2bVurx5KGycxITjyK5MSjvI4i0rRE93kqzOzm6uznnBtTnf10zZ6I1KuyskVAyQbrHY6y4PJaO46Zj1bNL6dbx3l06TCNrh1m0Tx55KYfKI2ScyH+WHPjv4VeWJCgK+DvtXfX2XEPO+ww5s6dyzXXXMNLL71EWloajzzyCMFgsM6OKSLSVBneDNBSz7aqxtK5uo2p2BORepUYv0u5+dLKC5IQO7DWj2cWg9+fWmvdQ6VhKg2toTSUXckWR3Zx3XblT0xM5LbbbmPmzJkMHDiQc889l5122gldQiAiIpthunPuNOfcacBt625XWE6vbmMq9kRqQShUyNK1Y5izuCezF3Xnr5UnUVz6p9exGqSUxOEE/B0wYv9dZ5ZAcsJBxMZs62Eyacz8llzlthh/63rJkJ6ezmeffcaLL77I4sWLGTJkCOeddx5r166tl+OLiDQJdTOpekNyW7nbP29pYyr2RDbBuTJyCj9hVe4T5BV9T2WDGv2zahRr8iYScrk4Sskr+po/Mg+lLLjag8QNm8/i6drufVqmnE1MoDtxMb1o0/xGOrR6wOto0oj5ffG0SToEI2699T5LoHOzs+oth5lx/PHHM3/+fC644AIeffRR0tLSeO655yr92yEiIlLBn2Z2r5mdDsSY2emVLdVtTMWeyEaUli0lY9kuLFp9Icuy/o9/Vp3KHysOIxT6byTJopL55JdMxVFc7pGOkCtidd4L9R+6EfD7mtGmxVVs3WEy3dp/RsuUk9XNUrZYj1Y30zpxH4xY/JaMz+Lp3Gw07ZLrf1Ce5s2b88ADDzBt2jS22WYbRo4cybBhw5gzZ069ZxERiRoeTapez44FmgPHAzHAyZUsJ1W3MY3GKbIRi9ZcSmlwORAebCHkSigqmUtm9r10aHk9AEVlv2H4N+gF4CimqHRm/QYWacJ8vjh6tn2AkuBqSsoySYjpit+X5GmmAQMGMHnyZJ588kmuuuoq+vfvzyWXXMKYMWNITq6666mIiFSh4RVntco5twA4A8DMPnfO7b0l7enMnkgVQqFC8ounsK7QW8dRzNqCN/69HxfYBseGI+8ZccTH9K7rmCJSQay/NclxvTwv9Nbx+XyceeaZZGRkMHLkSO6++2569uzJm2++qa6dIiJSpfKFnpn5yi/VbUPFnkgVHKGNbP2vuEuI7UVCzPbrDTgChlksrZJPrrN8ItK4pKamMmHCBCZPnkyrVq046qijOPjgg/njjz+8jiYi0nhE/wAt/zKzgWb2g5nlA6WRpSzyb7Wo2BOpgt+XREJsX8KzupQXQ/OEg9db063Nc7RIGhEZHMJIjNuRbdq9TYy/TX3FFZFGYuedd2b69Oncf//9fPvtt/Tu3Zubb76ZoqKiTT9YRESakmeBL4FBwNaRpXvk32pRsSeyEVu1Govf1xwjPC+cz5KIDXSiXfMr19vP70uic6u76N35d/p0/odt2r5OfEyaF5FFpBEIBAJcfPHFzJ8/n8MPP5wbbriBvn378vHHH3sdTUSkQWsCA7SU1xW41jk3zzn3T/mlug2o2BPZiLiYbUjr8AMdW44hNeUsOrW6ix7tPyfgb1np/mZGDbpRi0gT16lTJ15++WU++eQTzIwDDjiAo48+msWLF3sdTUSkYWpC3TiBt4D9tqQBfSoV2QS/L4VWySfRocX1tEgcjs/iNv2gOlRc9jf5xT8SDOV4mkNEas++++7LrFmzuOWWW3jvvfdIT0/n3nvvpbS02pdliIhI9IkH3jKzT8zsufJLdRtQsSfSSARDWfyReRS/Ld+Hv1eeyrwlA8jMvt/rWCJSS+Li4rjuuuuYO3cuw4YN43//+x8DBw7ku+++8zqaiEjDUBdn9Rr2mb25wJ3AZOCPCku1aJ49kUZi4erzKCj5GSjFER7IYWXuw8TH9KB54iHehhNp4PJLl/NHzocUB7PomLQTHRN3bLBdrrt37867777LpEmTuPDCC9ltt9049dRTufPOO2nbtq3X8UREpJ44527a0jYa5v90IrKesuAq8ot+oOJIu84VsjL3UW9CNQElpb+xOvteVmXfSVHJLK/jyGZanPcd7/xzLLPWPMX87Ff4Ztk1fL70YkKuzOtoVTIzhg8fzty5c7nqqquYOHEiaWlpPProowSDG87rKSLSVET7AC1mtnu523tVtVS3PRV7Io1AMJSNWeUn4suCa+o5TdOwJvdRFmbuz5rcsazNfZDFKw9nVdZtXseSGgqGSvgu8waCrphQ5MuSMlfIisKZ/JXb8Ee+TEpK4v/+7/+YMWMGAwYM4JxzzmHo0KFMnz7d62giIlI3Hi53+8kqlgnVbUzFnvyrLLiaVbnPkJn9APnFv+BcA/uqowmLDXTFLLaSLQFS4ofVd5yoV1q2mDXZd0a6ywaBEM4VkpX/FMUls72OJzWwqmh2pddjBF0Rf+Z8VP+BNlPPnj35/PPPmThxIgsXLmTw4MGcf/75ZGVleR1NRKR+Rfk1e865PuVud69i0Tx7UjO5hd8wd+lQlmbdxvLs+/hjxXEsXH0+zoW8jiaAWYCOLW7HLIF1k7wbsfh9zWnb/EJvw0Wh/KJPWfc6l+dcMbmF79d/INlsZgFcFf+T+y2mntNsGTPjhBNOICMjg/PPP59HHnmEtLQ0XnjhBX05JyJNRrR346xtKvaEkCvh71Xn4FwhzhURPotRQE7hZ2QXfuh1PIlokXQYW7d5hWYJB5EQ04/UlDPp0f4zYvztvY4WdYwA2IbFHlh4mzQaqfG9Cfg2nC4lYAls23y4B4m2XPPmzRk3bhxTp06lW7dunHzyyey5557MnTvX62giItLAqNgTCoqnARuewQu5AtbkvVr/gaRKiXED6Zr6GNu2f5/2La4mxt/G60hRKSnhAKjkrLYRQ0riYZU+xrkgBYWfszrrFrJyHycYXFXXMaUafOZnz473EONLImCJ+C0Ov8XRPWV/tkrafdMNNGADBw7khx9+4LHHHmPmzJn069ePq666ivz8fK+jiYjUnSjvxlnbVOzJxlV6dkPqU3HZ3/y9ciSzF23NnMXpLF07hlCosF6O7VwJ+UU/UFD8E64Bj1xY2wL+NrRteQ9GHGYJGPEYcbRufjWxMT022N+5YpauPILMNWeRnfcwa7P/j4XLd6SweIoH6aWi1PjejOj+Pju1u5odUi/g4C7PslO7q7Ao+Pvm8/kYPXo0GRkZnHTSSdx555307NmTt99+W107RURE/ZEEEuMGYZXU/T5LpFXSMR4kknXKgmv5I/NQgqFswt1rS1iTN5Gi0nls3fa1Oj12XuGXLF59Duu+8jKLYavUp0mMG1ynx20omiUdRWL87uQXfoyjjKT4fYkJdKp03+y85ygpmY0jXIQ7isDBitVn06XDz7Uyn1tJ6TyCweXExvTF70/d4vaamoAvnu4p+3odo860adOGp59+mlGjRnHuuedyxBFHcNBBB/Hggw+y9dbVvo5fRKRhawJn4mqbzuwJPoula5vH8FliZAAQP2YJNEvYn+YJB3gdr0lbm/9y5Czef10KHcUUlPxKYcmcOjtuaTCTRavPJORyCbk8Qi6PYGgtC1eeSDCUW2fH9VIwlEtRya+UBVf8uy7gb0Pz5JNokXxqlYUeQF7Bq/8WeuWFXB6lZRlbliu4iqWZ+7NsxcGsWH0Wi5YNYk3WzQ36rE0wuIzsrJtYueIQ1q65mNLS+V5HajJ23XVXpk+fzn333cc333xD7969ueWWWyguLvY6mojIFrM6WqKZij0BICV+V3p2nELHFtfTvvn/2Lbta3RNHVcrZyRk8xWUzIgM/78+w0dR6ZYVERuTk/9WpdesOSA3ygbtcc6xKvsO/lrajyUrj+XvZTuybPWZhFxNuspW1UnCAf4tyrdy9VmUlM6NDKCUCxSTm/8s/9/efcdHVeVvHP98Z9ITEnpooqiY0EQEEQTLKoqKgqi4WFbXshZWRLAtdl0sa8e+KC4/1oJiFws2FAuCKCIliYIL0qWTkJ45vz8SdxESyJjM3JnJ897XeTlz52buk9y9TL45556zvei1Or1vqJSX/4df1v2B7dufoazsW4qKXmHD+kGUFM/0OlqDER8fz+jRo8nNzWXw4MHcfPPNdOvWjffff9/raCIiEmb6TV7+K87fhOaN/kRmxuWkJHb3Oo4AyfFdMJJ22e5wJMXvH7Ljlge24Ni1J8C5MioCW0J2XC9s2/4CWwqewlFMwOXjKGF70Uf8svn6Wr9HeurZmKXsst3va0583K73+NVWecUvFJd+A/z2fknnCtmWP+F3v28obdt6J84VQNUC5lBRuUbhlusiujcyFrVt25YXX3yR6dMrF48fOHAgZ5xxBqtWrfI4mYhIHWiClqCo2BOJYE3TzqpaTP1/gwyMBJLiO5GccGDIjpuWdHi1xYuZn9TE/iE7rhc2FzyO26kXz1FMQeHrBNyuvarVaZR6JsmJR1YNg07ALBWfNSaz2TN1mgTEBbZhVn3PYCBCi+6Sks+pbnbfiorVOLcl7HkEjjvuOBYsWMDf//533nrrLbKzs3nggQcoKyvb8xeLiEhUU7EnEsHi/M3YL/MNUhIPBXwYCWSknEKHFs+G9LgpiYeRmtjvNwWfWQrpyYNJSugc0mOHW0XFpmq3OxyBQO2msDfz06r5M7Rp8RrNMm6gRZN7ad/mWxITutQpW1xch6oCcmfxJCcPrNN7h4rPl17DK1bD9yLhkJiYyI033siiRYs44ogjuOqqq+jZsyeff/6519FERIKiRdWDo2JPJMIlxXdkv5Yv07XdMrq0W8pezR7A72sU0mOaGXs1n0ibJv8gNfFI0pKOpm3Th2jT9P6QHtcLyYmHUt3t2X5/M/y+pkG9V2JCdzIaXUxaylB89VDYmPlp1uTeqiKp8p9rIwm/rymNG42s8/uHQmraxbDL955IcvLJmO06JFnCa99992XatGm89tprbNmyhcMPP5zzzz+f9evXex1NRKR2NIwzKCr2RKKEmS+s64KZ+clIPZW9Wz5P+xb/Jj1lUEysS7az5hnX47NU/jeRSmUPVMvGd0XE95uafAKtW7xFasowkhIOIyN9FG1afRKxyy+kpp5PSsoZQCJm6UASiYmHkdH4bq+jSRUz45RTTiEnJ4frrruOZ599lqysLCZMmEAgsOsQXBERiV4RU+yZ2fFmlmdmS8zsb9W8nmhmL1a9PtvM9vEgpojEmIT4jrTP/JD01OEkxGWRmnQ87Vq8TFrycV5H+6+EhC60aPoQrVq+QuP0K/H7GnsdqUZmPho3vovMVl/TtNkztMz8hGbNn8PnS/U6muwkNTWVu+++m/nz59O9e3cuueQS+vbty7fffut1NBGRmqlnLygRUexZ5QwEjwEnAJ2BM81s5xuDLgQ2O+f2Bx4E/hHelCISq+Lj2pPZ5F72bjWDNs0nkpTQw+tIUc/vb05i4mHExbX3OorsQefOnfn444959tlnWb58OYcccghXXHEFW7du9TqaiIjUUUQUe0BvYIlz7ifnXCkwBRiy0z5DgP+revwycIxFwhgriWml5StZu/V+Vm26jq2Fb+Nc+Z6/qAYlZf9hxcaR5K7uzdJ1Q9hW9GE9JvVWUcl3LPvlDHJXdmbp2gFsK4yttfhEYp2ZcfbZZ5Obm8uIESN47LHHyMrK4rnnntOSGSISOUIwOYsmaAmPtsCKHZ6vrNpW7T6u8jfurUCz6t7MzC42s7lmNlc3ncvvlV80gx/W/oH12x5j0/bnWLFpNEt/GVrr6fh3VFK+jCXrTmBL4ZuUVaymsPQbft54GRvz/2/PXxzhikq+Y9n60yks+YKA20pJWQ6rNo1kc8FznuYqLP6KZWuPI2/FXixZdSCbtj2Jq2aheBH5n8aNG/PII48wZ84c9t57b8455xyOPvpocnJyvI4mIiK/Q6QUe/XKOTfBOdfLOderRYsWXseRKORcOSs2jqxaf620alshxWW5bCp4Puj3+2XrgwRcIVCxwzGKWLv1LgJu18XLo8kvW+/edZ06V8QvW+/CuYoavup/Ssp+oqj0eyo79etHcen3rNxwNiVlC4EKKgIb2LDtXjZsvavejiESy3r27MmsWbN48skn/3tP39ixY9m+vXbLkYiIhIzu2QtKpBR7q4C9dnjermpbtfuYWRyQAWwMSzppcIpKF+LYdcimc0Vs2f5q0O+3vWQO1S00DY6y8pXBB4wgxWULqt0eCBRSEdhc49eVlq9g6Zpj+GndcSz/ZRh5q7qzdfu0esm0Yet9uJ16YJ0rYnPBRAKBwno5hkis8/l8XHLJJeTl5XHOOedw991307lzZ15//XUN7RQRz2gYZ3Aipdj7GuhoZh3MLAEYDry50z5vAudVPT4d+Njp00ZCpPL/htUP+fs966fF+1tXuz3gSoNeyy3SxPl3HnFdxXz4a1hg2znH8vV/pKT8B5wrIuAKCLhtrN58JcWluXXOVFKWQ/V/qvNTXrG6zu8v9U//nEeuFi1a8Mwzz/DZZ5+Rnp7O0KFDOfnkk/npp5+8jiYiInsQEcVe1T14lwPTgRzgJefcIjO73cwGV+02EWhmZkuAMcAuyzOI1Jek+E74fbveEmqWQtNG5wT9fi3TR1YtjL2zCtbnPxnVv+i2SB+zy/dmlkyTtPOqiuZdFZXOpaJiAzsX1M6Vsrmg7vcxJsQfUP0LroK4Ggpv8UZp6TzW/3ICa1a3Y83qjmzd8vd6HdIr9ad///58++233H///Xz66ad06dKFcePGUVIS3UPRRSTKaBhnUCKi2ANwzr3jnDvAObefc+6Oqm03O+ferHpc7Jwb5pzb3znX2zmnPylKyJgZ+zT/F35fU3yWhlkyRhKNU4aQkTx4z2+wk0bJf6BN49uAuJ1eCbCx4Bk2b3+pXnJ7IT3leFo1Hoff1xQj8b+FXmbG9TV+TXnFBqC6yXQrKKuHnrfm6VdVW4A2TjtX671FkPKypWzcMIyysvmAw7ntbN/+LzZvvtLraFKD+Ph4xowZQ05ODieffDI33XQT3bp144MPPvA6moiIVCNiij2RSJOUkE12m7ns1Ww8bRrfRsdW79Ou6b383hU/GqecglVzyTlXxIb8J+oa11NN0oZzQJvv6Njma7LbLqZV45uoXD6zesmJB+Nc2S7bzZJJSzqmznmSEw+mbfNJJMRV9vD5LIOmjUbSovHNdX5vqT8FBY/jdpmgqJjionepqFjrSSapnXbt2vHSSy8xffp0nHMcd9xxDB8+nFWrdr7dXkSkfumeveCo2BPZDZ8lkJ48kKZpZ5EYv2+d3qvC5VN9bxaU72Yik2hh5ifO36zGoZs7ivdn0rTRBZil/O/rSSTe35rGqcPqJU9q0uF0aP0JB7RbScd2OTTPuBIz/ZMXScrKFrPjDLW/MkukvHxZ2PNI8I477jgWLFjA7bffzhtvvEF2djYPPvgg5eW/f01SEZEahWIIp4o9EakPcb6W+P2Nq3nFR1riYeGO47mWGTfQtul4UhL6khjfhebpo+iQ+Q4+X/AT4OzMuXLyi95n/bbxbCuaFvXLW8Sq+PhuwK49wM6VEBdXtz+uSPgkJSVx0003sWjRIo444gjGjBlDz549+eKLL7yOJiLS4KnYEwkTM6Ntk7ur7iX7tYcvHp+lkdn4Oi+jecLMSE85kX0yX2a/Vu/TImMUfl+jOr9vRWALS9cOYOXGy1m/9T7WbLqaJWsOo6xcw8siTVqjyzBL2mlrMsnJg/H7W3qSSX6/fffdl2nTpvHqq6+yefNm+vfvz4UXXsiGDRu8jiYisUQ9e0FRsScSRunJx7Jvy5dJTz6BpPjONE07h46tPiQxbh+vo8WMdVvupLR8Gc5tBwIE3HbKK9azevM1XkeTncTFdaBZ81eIT+gNxGHWmLRGl9C4yf1eR5PfycwYOnQoixcv5tprr2Xy5MlkZWXx1FNPEQhUv5yNiIiEjoo9kTBLSejO3s0n0LHV+7Rt8ncS4tp4HSmmbCt8C9h58pcKthd/rin9I1BCwoG0aPE6bdr+TOs2i0lPvxaznWetlWiTlpbGP/7xD7777ju6devGxRdfTL9+/Zg3b57X0UQkihmRN0GLmQ0zs0VmFjCzXrvZ73gzyzOzJWYWtiXkVOyJSIyJ8fEYIlGkS5cuzJgxg3//+9/89NNP9OrVi1GjRrF161avo4lItIq8YZwLgVOBmTXtYJVTlD8GnAB0Bs40s851PnItqNgTkZiSnnwSEL/TVj+pif1qNVOoiNQvM+Occ84hLy+Pyy67jEceeYTs7Gyef/55nNMfZ0QkujnncpxzeXvYrTewxDn3k6scZjQFGBL6dCr2RCTGZDa+gYS49viscvF0s1TifM1p0/Q+j5OJNGyNGzfm0UcfZc6cOey1116cffbZHHPMMeTk5HgdTUSiiDlX7w1obmZzd2gX13PstsCKHZ6vrNoWcroxQkRiit/fhP1afUx+0YeUlOWQELcPjVJOwLfLrI+/VV6xCbME/L60MCUVaZh69erFrFmzeOqppxg7dizdu3fn6quv5sYbbyQlJWXPbyAiUv82OOd2d7/dh0Cral66wTn3Ruhi1Z2KPZFYsGoVTJoES5ZAejqccQYcdhhY9Yu4xzqzONJTjgeO3+O+hSXfsHrTaMrKVwCOlKT+tG06njh/s5DnFGmo/H4/l156KaeeeirXXnstd911F88//zwPP/wwgwcP9jqeiEQqj5ZKcM4NqONbrAL22uF5u6ptIadhnCLRzDm4807o1o2KFSvZ1PVgSho3g/PPh2OOgc2bvU4Y0crKV7F8/XBKy5fiKMVRxvbiz1i+/o+6l0gkDFq2bMmkSZOYOXMmjRo1YsiQIZx88sn85z//8TqaiESoSJuNs5a+BjqaWQernEBgOPBmOA6sYk8kmj31FDz3HNMffYmTtnbizDkVnLgojVsvuIfy7E5w2mmVBWGUqAgUsG7Lnfy4ujc/ru7L+q0PEXDFITvepoJ/41z5TlvLKS1fTlHptyE7roj81uGHH863337Lfffdx4wZM+jcuTN33HEHJSUlXkcTEdktMxtqZiuBvsDbZja9ansbM3sHwFX+snE5MB3IAV5yzi0KRz4VeyLRqqICxo1jwfV3cf/rC9heWEJRcRllZRV8Pvcn/t5+QOXwzi+/9DpprThXzrJfTmFT/tOUVayirOJnNmx7hJ/X/ylkvWyl5UuB6tbeM8oqVobkmCJSvfj4eK666ipyc3M56aSTuPHGGznwwAP58MMPvY4mIpEkwpZecM695pxr55xLdM5lOucGVm1f7Zw7cYf93nHOHeCc2885d0fdjlp7KvZEotXs2dCkCf9cuJ3ikt/2TpWWVfD53P9QfOY58OKLHgUMTn7R+5SV/4zjf3/JdxRTVPodRaVzQ3LMlIRDMUve9QVXQVJ815AcU0R2r127dkydOpX33nuPQCDAsccey/Dhw1m9erXX0UREoo6KPZFotXUrtGrF+o351b4c5/dRkN6kcr8oUFT6DQG3fZftzpVTVDovJMdsnHYGfksH/P/dZpZMWvIxJMbvF5JjikjtDBw4kAULFnDbbbfx+uuvk52dzUMPPUR5+c5Dr0WkIYnSe/Y8o2JPJFrttx8sWECPrFb4fLvOumlmNFmaU7lfFIj371VtL5vPEoj3twnJMf2+dPZt9R6NU87A72tGvL8dLdLH0K7Z4yE5nogEJykpiZtvvplFixbRv39/Ro8eTc+ePfkySoani4h4TcWeSLQ64ADo2JFL4laSnJTwm4IvKTGOK07ugn/KFLjgAg9D1l5G6lCM+J22+jBLoVHycSE7bpy/JW2a3UdW2+/p2GY2zdNHYKZVaUQiyX777cfbb7/Nq6++yqZNm+jXrx8XXnghGzZs8DqaiIRbhN2zF+lU7IlEswcfpMm4W3j+UD8D+3cks0U6XbPbcu+Q/TnxH2Ng1Cho187rlLXi92WwT8uXSYg7ACMRI4Gk+G50yHyNylmKRaQhMzOGDh1KTk4O11xzDZMnTyYrK4unn36aQCDgdTwRCYcQDOGM9WGcFutrSfXq1cvNnRuayR1EIsI338CYMfDjj9C9O6xbB+vXw9ixcNllUbmwelnFOgw/cf7mXkcRkQi1aNEiRowYwcyZM+nTpw9PPPEEBx10kNexRKKKmX3jnOvldY7aSm22l+s6aHS9v++cf18VVT+HYGiskshulJavYGvhdMDISBlIQlwE9pL17Amffgq5ubB0KaSnQ9++EBe9l3e8P9PrCCIS4bp06cInn3zCs88+y9VXX03Pnj0ZOXIkt99+O+np6V7HE5FQie1+qnqnYZwiNVi/7RlyV/+BNVvuZs2Wu8hdfRQb8id5Hatm2dkwaBAcfnhUF3oiIrVlZvzpT38iNzeXSy+9lIcffpisrCxeeOGFkK3PKSISTVTsiVSjpGwZa7beiaPkN2315nGUlq/wOp6IiOygSZMmPPbYY8yZM4d27dpx1llnMWDAAHJzc72OJiL1yNA9e8FSsSdSja1F7+FcdTf8O7YWvhv2PCIisme9evXiq6++4vHHH+fbb7/lwAMP5IYbbqCwsNDraCJSX5yr/xbDVOyJVKv6C99V/U9ERCKT3+/nsssuIy8vj7POOos777yTzp0789Zbb3kdTUQk7FTsiVQjI3kgZv5dtpv5yUge6EEiEREJRsuWLZk0aRKffvopaWlpDB48mMGDB7Ns2TKvo4lIHWgYZ3BU7IlUIzF+XzLTr8QsicpJa+MwS6JVxlUkxu/jcToREamtI444gnnz5nHvvffy8ccf07lzZ+68805KSkq8jiYiEnIq9kRqkJnxVw5o9R6tMq6iVcZVZLWaTsv0S72OJSIiQYqPj+fqq68mNzeXQYMGccMNN9C9e3c++ugjr6OJSDBciFoMU7EnshtJ8fuRmXE5mRmXkxi/r9dxRESkDtq1a8fUqVN59913KS8vZ8CAAZx55pmsXr3a62giUksWqP8Wy1TsiYiISINy/PHHs3DhQm699VZee+01srOzGT9+POXl5V5HExGpVyr2REREpMFJSkrilltuYeHChfTr148rr7ySXr16MWvWLK+jicjuaBhnUFTsiYiISIO1//7788477/DKK6+wceNGDjvsMP7yl7+wceNGr6OJiNSZij0RERFp0MyMU089lZycHK655homTZpEVlYWEydOJBCI8Rt6RKKMll4Ijoo9ERERESAtLY177rmHefPm0alTJy666CL69+/P/PnzvY4mIvK7qNgTERER2UHXrl2ZOXMmkyZNYsmSJRx88MGMHj2abdu2eR1NpGFzgHP132KYij0RkRjjXCnlFetwrszrKCJRy8w477zzyMvL45JLLmH8+PFkZ2czZcoUXIz/cigSyTSMMzgq9kREYoRzjg1bH+DHVV34aXVflqzqwsZtj+oXU5E6aNKkCY8//jizZ8+mTZs2nHnmmRx77LHk5eV5HU1EZI9U7ImIxIjN+f9kU/5jOLcdRzEBV8DGbQ+ypWCS19FEot4hhxzC7Nmzeeyxx5g7dy7dunXjxhtvpLCw0OtoIg2Lll4Iioo9EZEYsSn/UZwr+s0254rYuO1hjxKJxBa/38+IESPIy8tj+PDh3HHHHXTp0oW33nrL62giItVSsSciEgOcc1QENlX7WkVgQ5jTSKgEKjZStO1+8jecxvYtV1NRlut1pAYpMzOTyZMn88knn5CSksLgwYMZMmQIy5Yt8zqaSEwzdM9esFTsiYjEADMjPq5Dta8lxHcMcxoJhUDFGvLXH0NJwRNUlM6hrPBl8jcMpqx4htfRGqwjjzyS7777jnvuuYcPP/yQzp07c9ddd1FaWup1NJHYFIqZOGP8vnYVeyIiMaJl49swS/rNNrNkWja+xaNEUp+K8h/ABbYAJVVbKsAVUbjlGpzTwt9eiY+P55prriE3N5cTTzyR66+/nu7du/Pxxx97HU1ERMWeiEisSEseQNvmk0lK6IXP14TkhN60a/4cqUlHeh1N6kF58SdAxS7bXWArrmJN2PPIb+211168/PLLvPPOO5SWlnLMMcdw9tlns2aNzo1IfdIwzuCo2BMRiSGpSf3ZO/NNOrZdRPvM10lJ6uN1JKkn5kuv4ZUA+FLDmkVqdsIJJ7Bw4UJuueUWXn75ZbKzs3n44YcpLy/3OpqINEAq9kRERKJAYupFYMk7bY0nLvFwfL7GXkSSGiQnJ3PrrbeycOFC+vTpw6hRozjkkEP46quvvI4mEv209EJQVOyJiPxOgUAhmwqmsHrzzWwqeI6KwHavI0kMS0gZTkLKmUAiWCMgGX98d1KaPORxMqlJx44dee+995g6dSrr16+nb9++XHzxxWzcuNHraCJRS8M4g6NiT0TkdygrX03emv6s2XIzGwueYfWW28hb04/S8pVeR5MYZWakZNxGeuYsUps8QaMWb9OoxWvq1YtwZsbpp59OTk4OY8aM4ZlnniErK4uJEycSCGhiHREJLRV7IvXAuQAb8p8lb80AFq/qy6rNt1NesdnrWBJCqzbfTHlgIwFXCIBzhVQENrJ03Ums2/oQ5RVa205Cw+dvQXzSkfi1pEZUadSoEffffz/z5s0jOzubiy66iP79+zN//nyvo4lEDwcEXP23GKZiT6QerNh0Dau33E5xWR5lFSvZmD+JH9aeqGF9Mayg+GN2nRnRUR7YwC/bHiZvzRGUlC31IpqIRLBu3boxc+ZM/vWvf/Hjjz/Ss2dPRo8ezbZt27yOJiIxSMWeSB2VlP/Mlu1v4FzRf7c5yigPbGRTwcseJpOQMv9uXiwl4PJZvfnGsMURkejh8/n485//TF5eHn/5y18YP3482dnZvPjii7gYX+BZpM40QUtQVOyJ1FFRyXzM4nfZ7lwRBSWfe5BIwiEj+WRg1/P+P46Cki/DFUdEolDTpk154okn+Oqrr2jdujXDhw/nuOOOIy8vz+toIhIjVOyJ1FF8XCuq/7NQPAlxe4c7joRJmya3kBS/Pz6reX0znyWFMZGIRKvevXszZ84cHn30Ub7++mu6devGjTfeSGFhodfRRCKOZuMMjoo9kTpKSehFvL8V8NthfWZxNG/0J29CScj5fRnsnzmdvZtPJCWhFzv38hmJNE493ZtwIhJ1/H4/f/3rX8nLy2P48OHccccddOnShWnTpnkdTSSyOFf/LYap2BOpIzNjv5ZTSE08GCMBs2Ti/a3o0OIZEtWzF9PMfKQl9adDi+dJTeyFWTI+S8MsmZTEXrTO0D17IhKczMxMJk+ezIwZM0hJSeHkk0/mlFNOYfny5V5HE5EoFOd1AJFYEB/Xiv0zX6WsYj0BV0iCvz1m5nUsCROfL4V9W06lqHQxJeVLSIrrSFJCJ69jiUgUO+qoo5g3bx4PPfQQt912G506deLmm29mzJgxJCQkeB1PxDOxPuyyvqlnT6QexftbkBi3twq9Bio5oTONUwar0BORepGQkMC1115LTk4Oxx9/PGPHjqV79+7MmDHD62giEiVU7ImISFBKy5aycv2f+GHlfixZ1Y0NW+/HuTKvY4nErPbt2/Pqq68ybdo0SkpKOProoznnnHNYu3at19FEwisUyy7EeE+h58WemTU1sw/M7Meq/zapYb8KM/uuqr0Z7pwiIgLlFWtZvm4Q24s/xrkiKgIb2ZT/GGs2XeF1NJGYN2jQIBYtWsRNN93E1KlTycrK4pFHHqGiosLraCJhYYA5V+8tlnle7AF/Az5yznUEPqp6Xp0i59xBVW1w+OKJiMivNudPJOCK2fFPoc4VU1D4HmXlK70LJtJAJCcnc/vtt7Nw4UIOPfRQrrjiCg455BBmz57tdTSRBsnMhpnZIjMLmFmvGvbZy8xmmNniqn1HhStfJBR7Q4D/q3r8f8Ap3kUREYlszgXIL/qIdVvGsWHbBMorNoT1+EWl84DSXbabJVBSpoWgRcKlY8eOTJ8+nZdeeol169bRt29fLrnkEjZt2uR1NJHQCoSg1c1C4FRg5m72KQeucs51BvoAfzWzznU+ci1EQrGX6ZxbU/V4LZBZw35JZjbXzL4ys1N294ZmdnHVvnPXr19fn1lFRDwTcCUs++V0Vm68jI35T7B+6938uKYv24u/CluGxPhOVDeRs6OMhLgOYcshIpVL/wwbNozc3FxGjx7NxIkTycrK4l//+heBQN1/gxWRPXPO5TjndvvXTufcGufct1WP84EcoG048oWl2DOzD81sYTVtyI77Oed2d5vk3s65XsBZwENmtl9Nx3POTXDO9XLO9WrRokX9fSMiIh7aXPAcxWXzcW47AI4SnCtk5cZLcS48v9g1aXQRZr+d9t1IJDnhUBLi9w1LBhH5rUaNGnH//ffz7bffkpWVxQUXXMDhhx/O999/73U0kXoXonv2mv/aUVTVLg5ZfrN9gB5AWMZeh6XYc84NcM51raa9Aawzs9YAVf/9pYb3WFX135+AT6j8IYmINBhbt0/FueJdtgdcISVlOWHJkBC3N3u1mEpifFfAh5FIesqptG0+MSzHF5GaHXjggcycOZNnnnmGH374gYMPPpgxY8aQn5/vdTSR+hG62Tg3/NpRVNUm7HjY2nZc7YmZpQGvAFc657b9nh9BsCJhGOebwHlVj88D3th5BzNrYmaJVY+bA/2AxWFLKCISAcx2HT5ZqQJqfK3+JSf2YJ9W79Ox3VI6tltCq2b34/OlhO34IlIzn8/H+eefT15eHhdddBEPPfQQ2dnZvPTSS7gYn3VQJFT20HFVK2YWT2Wh95xz7tXQpf2tSCj27gaONbMfgQFVzzGzXmb2dNU+nYC5ZjYfmAHc7ZxTsSciDUrj1LMB/y7bnSvFb83CnsdniZjtmkdEvNe0aVOefPJJZs2aRWZmJn/84x8ZOHAgP/zwg9fRROrAgQtBCzEzM2AikOOceyDkB9yB58Wec26jc+4Y51zHqqp5U9X2uc65i6oef+mc6+ac6171X40XEpEGJzXxMKq/rdnPlu2Twx1HRKLAoYceytdff80jjzzC7Nmz6datGzfddBNFRUVeRxOJCWY21MxWAn2Bt81setX2Nmb2TtVu/YA/AUfvsG74ieHI53mxJyIitVNSnovPUqt5pYzCkq/DnkdEooPf7+fyyy8nLy+PYcOGMW7cOLp06cLbb7/tdTSRoJmr/1YXzrnXnHPtnHOJzrlM59zAqu2rnXMnVj3+3DlnzrkDd1g3/J3dv3P9ULEnIrKDgCuloHgW20u+xrlyr+P8Rry/PY7qMsWREL9/2POISHRp1aoVzz77LDNmzCApKYmTTjqJoUOHsnz5cq+jiUiIqNgTEamyregjclZ1Z/mGC1i2/k/krD6Y7SVzvY71X0kJ2STFdwV2WvrAEmiWdoE3oUQk6hx11FF899133H333bz//vt06tSJu+++m9LSUq+jiexZFN6z5yUVeyIiQFnFWn7eeAkBl1/VCqgIbGLZ+nOoCBR4He+/2reYTKPkARjxQDwJcR1o3+JZEuK1oLmI1F5CQgLXXXcdOTk5HH/88YwdO5bu3bszY8YMr6OJ1MyBBeq/xTIVeyIiwJbtr0G1C5M7thW9F/Y8NfH70tmr+VNktc0hq8089mv1GamJh3odS0SiVPv27Xn11VeZNm0aJSUlHH300ZxzzjmsXbvW62giUg9U7ImIAOWBzTh2HcLkXBkVgS3hD7QHPl8yfn8TKmdzFhGpm0GDBrFo0SJuuukmpk6dSlZWFo8++igVFRVeRxP5LQ3jDIqKPRERoFHSEZhVszC4+UhL7B/+QCIiYZacnMztt9/OggUL6N27NyNHjqR3797MmTPH62gi8jup2BMRAVIT+5GW2Pc3BZ/PUmicfApJCdkeJhMRCa8DDjiA999/nxdffJE1a9bQp08fLr30UjZt2uR1NJHK5Wbru8UwFXsiIoCZsXfzZ2jb5C7SEo+gUdLRtGv6EG2b3ut1NKlvRUUwezbMmgX5+V6nEYlIZsYZZ5xBbm4uo0aN4umnnyYrK4tJkyYRCMT4jBYS0cy5em+xTMWeiEScrYXv8uPaU8hZ3Y+Vm66nrHxNWI5r5qdJ6ml0aPk8+7SYTEbKibonLpaUlsL110P79jBiBFx5Jey9N1x+uYo+kRqkp6fz4IMP8s0333DAAQdw/vnnc+SRR7JgwQKvo4lILajYE5GIsm7royzfOIrC0m8oLf+ZjQUvkLd2IGUVv3gdTaJZeTmceipu4UI+eHwy5/7xas485QpeffIFKgoKYMAA2L7d65QiEat79+589tlnTJw4kZycHHr06MFVV11Fvv5QIuGmCVqComJPRCJGRaCAddvG41zRDlvLqQgUsH7bPz3LJTFg6lTYuJGxJ17ALV8sYcGyteSu+IV7v/iBC7sMxLVuDY8/7nVKkYjm8/m44IILyMvL48ILL+SBBx4gOzubqVOn4mL8F2aRaKViT0QiRnHZD1WLhe+sjPziL8KeR2LIhAmsOu8iPs1ZQVFp+X83F5eV8+PqjXw37FyYMMHDgCLRo1mzZvzzn/9k1qxZZGZmcsYZZzBw4EB++OEHr6NJrHNAIAQthqnYE5GIEe9vUe1adwAJcW3DnEZiSl4eXzdtR6Ca3ofCkjI+SmgKP/0EWlNMpNb69OnDnDlzePjhh5k9ezbdunXj5ptvpqioaM9fLPI7GPU/OYsmaBERCZOEuL1ITeiJkfCb7WbJtEy/1KNUEhPS0mhZXkycf9ePvYR4P3v5KiAxEXz6WBQJRlxcHCNHjiQ3N5dhw4bx97//nS5duvDOO+94HU1EULEnIhFmnxYTSEvqh5GAz1LxWwbtmtxFauIhXkeTaHbqqfT+6mPi/f5dXvKbcVLe13DaaaDZV0V+l9atW/Pss8/y8ccfk5iYyKBBgzj11FP5+eefvY4msUYTtARFxZ6IRBS/L4N9W06mU9vZdGz1Fl3azaNp2mlex5JoN2IEcVNe4NmDmtK2WQZJCXGkJMbTLD2Fpw/fl9SHHoAxY7xOKRL1/vCHPzB//nzuuusu3nvvPTp16sQ999xDaWn1Q/RFJLRU7IlIRIr3NycpviNm1U3YIhKk9u3htddod9UVvLXgTV7fL46p+yfwwYrP6HzxufD009Cjh9cpRWJCQkICf/vb38jJyeHYY4/luuuuo0ePHnz66adeR5NYoJ69oKjYExGRhqFfP1i6FDvhBDK/+JQ2n36I9eoJP/4Igwd7nU4k5uy99968/vrrvPnmmxQWFnLUUUdx7rnnsm7dOq+jiTQYKvZERKThSEuDSy6BKVPgpZdg9Gho2tTrVCIx7eSTT2bRokXccMMNTJkyhaysLB577DEqNPutBEtLLwRNxZ6IiIiIhFRKSgrjxo1jwYIF9OrVi8svv5xDDz2UOXPmeB1NooyWXgiOij0RERERCYusrCw++OADpkyZwurVq+nTpw+XXXYZmzdv9jqaSExSsSciIiIiYWNm/PGPfyQ3N5dRo0YxYcIEsrKymDRpEi7Ge1mkHmiClqCo2BMRERGRsEtPT+fBBx/km2++Yf/99+f888/niCOOYMGCBV5HE4kZKvZERERExDMHHXQQn3/+OU8//TQ5OTn06NGDq6++mvz8fK+jScQJQa+eevZERERERELH5/Nx4YUXkpeXxwUXXMD9999Pp06dePnllzW0U/7HoWIvSCr2RERERCQiNGvWjAkTJjBr1ixatGjBsGHDOOGEE/jxxx+9jiYSlVTsiYiIiEhE6dOnD19//TXjx49n1qxZdO3alVtuuYWioiKvo4nXtM5eUFTsiYiIiEjEiYuL44orriA3N5fTTjuN22+/nW7duvHuu+96HU0kaqjYExEREZGI1bp1a55//nk++ugj4uLiOPHEEznttNNYsWKF19HEA1pUPTgq9kREREQk4h199NHMnz+fO++8k3fffZdOnTpx7733UlZW5nU0CSdN0BIUFXsiIiIiEhUSExMZO3Ysixcv5phjjuHaa6+lR48ezJw50+toIhFJxZ6IiIiIRJV99tmHN954gzfeeIOCggKOPPJIzjvvPNatW+d1NAklBwRc/bcYpmJPRERERKLS4MGDWbx4Mddffz0vvPAC2dnZPPHEE1RUVHgdTSQiqNgTERERkaiVkpLCHXfcwffff8/BBx/MiBEj/rt0g8SaENyvp3v2REREREQiW3Z2Nh9++CEvvPACK1eu5NBDD2XEiBFs3rzZ62ginlGxJyIiIiIxwcwYPnw4ubm5jBw5kn/+859kZWUxefJkXIz34DQY6tkLioo9EREREYkpGRkZjB8/nm+++Yb99tuP8847jyOPPJKFCxd6HU3qSsVeUFTsiYiIiEhMOuigg/jiiy94+umnWbRoEQcddBDXXHMNBQUFXkcTCQsVeyIiIiISs3w+HxdeeCF5eXmcf/753HfffXTq1IlXXnlFQzujjZZeCJqKPRERERGJec2bN+epp57iyy+/pFmzZpx++umceOKJLFmyxOtoIiGjYk9EREREGoy+ffsyd+5cHnroIb744gu6du3KbbfdRnFxsdfRZI8cuED9tximYk9EREREGpS4uDhGjRpFbm4uQ4cO5dZbb6Vr16689957XkeTPdEELUFRsSciIiIiDVKbNm144YUX+OCDD/D7/ZxwwgkMGzaMlStXeh1NpF6o2BMRERGRBm3AgAF8//33jBs3jmnTppGdnc19991HWVmZ19FkR5qgJWgq9kRERESkwUtMTOSGG25g8eLF/OEPf+Caa66hR48efPbZZ15HkwhmZsPMbJGZBcys1x729ZvZPDObFq58KvZERERERKp06NCBt956izfeeIP8/HyOOOII/vznP/PLL794HU0gEu/ZWwicCsysxb6jgJy6HjAYKvZERERERHYyePBgFi9ezNixY3n++efJysriiSeeoKKiwutoDVuEFXvOuRznXN6e9jOzdsAg4Ok6HTBIKvZERERERKqRmprKnXfeyffff0+PHj0YMWIEffr0Ye7cuV5Hk/rV3Mzm7tAuDsExHgKuBcK61oOKPRERERGR3cjOzuajjz7iueeeY+XKlfTu3Zu//vWvbN682etoDUwIevUqe/Y2OOd67dAm7HhUM/vQzBZW04bUJrWZnQT84pz7JgQ/lN1SsSciIiIisgdmxllnnUVubi4jR47kySefJDs7m3//+9+4GF+rraFzzg1wznWtpr1Ry7foBww2s2XAFOBoM3s2ZIF3oGJPRERERKSWMjIyGD9+PHPnzqVDhw6ce+65HHXUUSxatMjraLHPAYFA/bdQx3ZurHOunXNuH2A48LFz7pyQHxgVeyIiIiIiQevRowdffvklEyZMYOHChRx00EFce+21FBQUeB1NwsjMhprZSqAv8LaZTa/a3sbM3vE2nYo9EREREZHfxefz8Ze//IW8vDzOO+887r33Xjp16sSrr76qoZ2hEnmzcb5W1WuX6JzLdM4NrNq+2jl3YjX7f+KcO6lOBw2Cij0RERERkTpo3rw5Tz/9NF988QVNmzbltNNOY9CgQSxdutTraLEnwoq9SKdiT0RERESkHhx22GF88803PPjgg3z22Wd06dKF2267jeLiYq+jSQOlYk9EREREpJ7ExcVx5ZVXkpeXxymnnMKtt95K165dmT59utfRYoCDQAhaDPO82DOzYWa2yMwCZtZrN/sdb2Z5ZrbEzP4WzowiIiIiIsFo06YNU6ZM4YMPPsDv93P88cczbNgwVq5c6XU0aUA8L/aAhcCpwMyadjAzP/AYcALQGTjTzDqHJ56IiIiIyO8zYMAAvv/+e8aNG8e0adPo1KkTDzzwAGVlZV5Hiz4OnAvUe4tlnhd7zrkc51zeHnbrDSxxzv3knCulcjHCWq1YLyIiIiLipcTERG644QYWL17MkUceyVVXXcXBBx/M8uXLvY4WfTSMMyieF3u11BZYscPzlVXbqmVmF5vZXDObu379+pCHExERERHZkw4dOvDWW2/x+uuv065dO1q3bu11JIlxceE4iJl9CLSq5qUbnHNv1PfxnHMTgAkAvXr1iu1yXURERESihpkxZMgQhgzRILXfJcaXSqhvYSn2nHMD6vgWq4C9dnjermqbiIiIiIiIVCMsxV49+BroaGYdqCzyhgNneRtJRERERETCxjkIxPaEKvXN83v2zGyoma0E+gJvm9n0qu1tzOwdAOdcOXA5MB3IAV5yzi3yKrOIiIiIiHjAufpvMczznj3n3GvAa9VsXw2cuMPzd4B3whhNREREREQkanle7ImIiIiIiNSG0zDOoHg+jFNERERERETqn3r2REREREQkCsT+PXb1TT17IiIiIiIiMUg9eyIiIiIiEvkcEFDPXjBU7ImIiIiISHRwmqAlGBrGKSIiIiIiEoPUsyciIiIiIhHPAU7DOIOinj0REREREZEYpJ49ERERERGJfM7pnr0gqdgTEREREZGooGGcwdEwThERERERkRiknj0REREREYkOGsYZFPXsiYiIiIiIxCBzLrbHvZrZemC5hxGaAxs8PL4ER+cruuh8RR+ds+ii8xVddL6iSyScr72dcy08zlBrZvYelT+3+rbBOXd8CN7XczFf7HnNzOY653p5nUNqR+cruuh8RR+ds+ii8xVddL6ii86XhIOGcYqIiIiIiMQgFXsiIiIiIiIxSMVe6E3wOoAERecruuh8RR+ds+ii8xVddL6ii86XhJzu2RMREREREYlB6tkTERERERGJQSr2REREREREYpCKPRERERERkRikYq+emdnlZjbXzErMbFIt9h9tZmvNbJuZPWNmiWGIKVXMrKmZvWZm281suZmdtZt9bzWzMjMr2KHtG868DVFtz5FV+oeZbaxq/zAzC3fehi6I86XrKQIE85mlzyvv1fZ8mdmfzaxip+vrqLAFFQDMLNHMJlb9W5hvZt+Z2Qm72V/XmNQ7FXv1bzUwDnhmTzua2UDgb8AxwN7AvsBtIU0nO3sMKAUygbOBJ8ysy272f9E5l7ZD+yksKRu22p6ji4FTgO7AgcDJwCVhyij/E8w1pevJe7X6zNLnVcSo9e8YwKydrq9PQhtNqhEHrACOBDKAG4GXzGyfnXfUNSahomKvnjnnXnXOvQ5srMXu5wETnXOLnHObgb8Dfw5hPNmBmaUCpwE3OecKnHOfA28Cf/I2mfwqyHN0HnC/c26lc24VcD+6nsJK11T0CeIzS59XESDI3zHEY8657c65W51zy5xzAefcNOA/QM9qdtc1JiGhYs9bXYD5OzyfD2SaWTOP8jQ0BwDlzrkfdtg2n8rzUpOTzWyTmS0ys8tCG08I7hxVdz3t7lxK/Qv2mtL1FD30eRV9epjZBjP7wcxuMrM4rwM1dGaWSeW/k4uqeVnXmISEij1vpQFbd3j+6+NGHmRpiNKAbTtt20rNP/+XgE5AC+AvwM1mdmbo4gnBnaPqrqc03bcXVsGcL11P0UWfV9FlJtAVaEllb/uZwDWeJmrgzCweeA74P+dcbjW76BqTkFCxFwQz+8TMXA3t89/xlgVA+g7Pf32cX/e0UovztfPPn6rn1f78nXOLnXOrnXMVzrkvgfHA6aH9Lhq8YM5RdddTgXPOhSib7KrW50vXU9TR51UUcc795Jz7T9XQwQXA7ej68oyZ+YB/U3k/8+U17KZrTEJCxV4QnHNHOeeshtb/d7zlIionk/hVd2Cdc05j8etBLc7XD0CcmXXc4cu6U/3wimoPAajXKLSCOUfVXU+1PZdSP+pyTel6imz6vIpuur48UjW6ZCKVk1ad5pwrq2FXXWMSEir26pmZxZlZEuAH/GaWtJtx8pOBC82ss5k1pnKWpknhSSrOue3Aq8DtZpZqZv2AIVT+9W0XZjbEzJpUTfHfG7gCeCN8iRueIM/RZGCMmbU1szbAVeh6Cqtgzpeup8gQxGeWPq8iQG3Pl5mdUHV/GGaWDdyEri+vPEHlkPWTnXNFu9lP15iEhnNOrR4bcCuVf0Hbsd1a9Vp7Krvp2++w/xhgHZX3ufwLSPT6e2hIDWgKvA5sB34GztrhtcOpHAb46/MXqJwBrQDIBa7wOn9DaDWdo2rOjwH3AJuq2j2AeZ2/obUgzpeupwhoNX1m6fMqMlttzxdwX9W52g78ROUwzniv8ze0RuUSCg4orjo/v7azdY2phauZc7qdRUREREREJNZoGKeIiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiEhJmdo+Zvb7D83vN7CMzS/AwloiISIOhRdVFRCQkzKwZ8BNwFHAo8Fegv3Nuq5e5REREGgoVeyIiEjJmditwKpBBZaG3omr7P4DDgGXABc65Mq8yioiIxCoN4xQRkVCaB3QDxu5Q6HUH2jrnDgdygdM9zCciIhKzVOyJiEhImFk34Ang/4ALdnjpMOD9qsfvAf3CHE1ERKRBULEnIiL1zszaAm8BlwIjgG5mdlTVy02AbVWPtwJNw51PRESkIVCxJyIi9crM0oF3gAecc2865wqBe4E7qnbZAqRXPc4ANoU9pIiISAOgCVpERCSszOwgYIxz7lwzux74j3PuBY9jiYiIxBz17ImISFg5574D1pnZZ0AX4BVvE4mIiMQm9eyJiIiIiIjEIPXsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg1TsiYiIiIiIxCAVeyIiIiIiIjFIxZ6IiIiIiEgMUrEnIiIiIiISg/4famoRwHI+MNYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAL/CAYAAACqBkp7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVd/G8e/spvcESEKvSgtdOggC0pQiqKgooNhFQX1EsQBWLNh7BSxYQAFFQKUI0muAICAo0kMLpNfdef8I5CWSTrKTcn+ua55HZs7O3DO7SXZ/e+YcwzRNExERERERERERESkUm9UBREREREREREREyiIV1kRERERERERERIpAhTUREREREREREZEiUGFNRERERERERESkCFRYExERERERERERKQIV1kRERERERERERIpAhTUREREREREREZEiUGFNRERERERERESkCFRYExERERERERERKQIV1kRERIpBXFwcDzzwAHXq1MHNzQ3DMIiMjOT333/HMAwmT55sdcQKKzo6mpEjR1KjRg3sdjuGYXDmzJk8H2MYBt27d3dJvvKuIl3L7t27YxhGoR4zffp0DMNg+vTpJRNKStSoUaMwDIN///33ovc1efJkDMPg999/v+h9iYiI66iwJiIiFZZhGIX+EJyb8ePH8/bbb9OsWTMmTJjApEmTCA8PL5Z9y8UZNWoUX3zxBd26dePJJ59k0qRJeHl5WR2r2FSU4m1RilalQUV5fkqLf//9F8MwGDVqlNVRLFOcxT4REcmfm9UBREREyoP58+dz6aWX8tNPP2Vbv2vXLosSCUBaWhq//fYbvXr14quvvirw43bu3ImPj08JJqs4KtK1/Pzzz0lKSrI6hoiIiLiQCmsiIiLF4MiRI1x++eVWx5D/iI6Oxul0Uq1atUI9rlGjRiWUqOKpSNeyVq1aVkcQERERF9OtoCIiIuc5/zaif//9lxtuuIHKlSvj5eXFZZddxvz587O1P3d7mmmaLF++POv20vzGlKpTpw516tTJcVte4+zs2rWLUaNGUbNmTTw8PAgLC+Omm25i9+7dF7Q9/3agDz/8kGbNmuHl5UVYWBh33nknsbGxOR7/0KFDPPDAA1xyySV4e3sTEhJCu3btePbZZ3NsO2bMGOrVq4enpyeVKlVi4MCBbNiw4YK28fHxPPvss0RERBAQEIC/vz/169dn2LBhbNq0Kc/rdb49e/YwYsQIqlevjoeHB9WqVWPEiBHs2bMnW7s6depQu3ZtAGbMmJH13BTkFrGcnsPzn5fZs2fTrl07fHx8CAkJ4YYbbuDw4cMX7Ofc6yM1NZUnn3ySunXr4unpSf369Xn66adJS0vL1j6/29j+ezvkqFGjuOKKKwB4+umns86xoOM0nTvPI0eOcMsttxAaGoq3tzdt2rRh5syZOT7G6XTywQcf0LZtW/z8/PD19aVt27a8//77OJ3OXI9xvsJcy3PXZPny5Vn7y+nnbNu2bdx4443UqVMHT09PqlSpQuvWrRk3bhzp6el5XoeEhAQ8PDzo3LlztvXJycl4eXlhGAZffPFFtm3vv/8+hmHw2WefZa272Odn2bJldO/eHX9/fwICArjqqqvYuXNnntlz8uuvvzJgwABCQ0Px9PSkZs2aDBo0iMWLF2drV9TnMjo6mttvv53q1atjt9uzxofLb3tet/PmNtbcud+VsbGxjBkzhurVq+Pl5UWTJk146623ME0zq+3kyZOpW7cukP1nPqf9/vLLL/Tv35/KlStn/Uw+8sgjuY6/uHjxYrp27Yqvry8hISEMHjy4yD2SN23aRN++fbOe5169erFmzZpc28+dO5ebb76ZSy+9FF9fX3x9fWnTpg1vvfXWBc+TYRjMmDEDgLp162ad//l/bzZt2sTYsWNp0aIFISEheHl5cckll/Dwww9z+vTpIp2TiEhFph5rIiIiOdi/fz/t2rWjXr163HLLLcTExPDtt99mfTg992F51KhRdO/enaeffpratWtnFURyK5pdjEWLFjFkyBDS09MZMGAADRo04NChQ/zwww/8/PPPLFu2jNatW1/wuPHjx/PLL78wYMAAevfuzbJly/j444/Zu3cvS5cuzdZ248aN9OnTh5iYGC6//HKGDBlCUlISf/75J5MnT+app57Kart582Z69+5NTEwMffr0YciQIZw8eZK5c+fSpUsX5syZQ//+/QEwTZO+ffuyevVqOnbsyO23346bmxuHDh1i2bJldO3alTZt2uR7DTZs2ECvXr2Ij49n4MCBNGnShF27dvHll18yb948Fi9eTNu2bQEYN24c//77L2+++SYtWrRg8ODBALRs2bKIz0Cm9957jx9//JGBAwfSrVs31q1bx7fffsvWrVuJjIzE09Pzgsdcf/31bNiwgWuvvRZ3d3fmzZvH5MmT2bhxIz/++GORxw47d04zZsygW7du2QpNBX0Nnj59mk6dOhEUFMStt97KmTNn+O677xg+fDiHDx/mkUceydb+lltuYebMmdSsWZPbb78dwzCYM2cO9957LytXrizULbcFuZZBQUFMmjSJ6dOns3//fiZNmnTBOW7bto327dtjGAYDBw6kbt26xMXFsXfvXt577z2ee+453N3dc83h5+dHu3btWLduHfHx8fj7+wOwatUqUlNTAViyZAm33HJL1mOWLFkCQM+ePXPdb2Gen/nz5zNv3jz69evH3XffzZ9//smCBQvYsGEDf/75J5UrV873egJMmjSJZ555Bj8/PwYPHkzNmjU5cuQIq1ev5ssvv6RXr15ZbYvyXMbExNChQwf8/PwYMmQINpuNsLCwAm8virS0NHr16sWZM2e44YYbSEtL4/vvv2fs2LHs3r2bd999F8gs3J05c+aCn3nI/nP/9NNPM3nyZEJCQrj66qsJDQ1l27ZtTJ06lQULFrBmzRoCAgKy2s+ePZthw4bh4eHBsGHDqFq1KitXrqRjx440b968UOeyevVqevXqRVpaGkOGDKFBgwZERkbSvXt3evTokeNjHnvsMWw2G+3bt6d69erExsaydOlSxo4dy4YNG7IVfSdNmsTcuXPZunUrY8eOJSgoCCDr/wE+/vhj5syZQ7du3ejVqxdOp5NNmzbx2muvsXDhQtatW5f1MyAiIgVgioiIVFCA+d8/hfv27ctaP3ny5GzbFi1aZAJmv379ctxXt27dLli/bNkyEzAnTZqUbX3t2rXN2rVr55hr0qRJJmAuW7Ysa11MTIwZFBRkVqpUydyxY0e29tu3bzd9fX3NVq1aZVs/cuRIEzBr1qxp7t+/P2t9enq62bVrVxMw161bl7U+NTXVrFOnjgmYX3311QW5Dh48mG0f9evXNz09Pc3ff/89W7vDhw+b1apVM8PDw82UlBTTNE1z27ZtJmAOHjz4gv06HA4zJiYmx2txPqfTaTZq1MgEzC+//DLbtm+++cYEzIYNG5oOhyNr/bnnc+TIkfnu/3w5PZ/nnhd/f39z27Zt2bbdeOONJmB+++232dZ369bNBMxLLrkk2zkmJyebHTp0MAHz888/L3Dec/s7X26vsYKeJ2Bed9112a7bP//8YwYHB5vu7u7m33//nbV+5syZJmC2atXKjI+Pz1qfkJBgtmnTJsfXTnFfy5w89NBDJmDOnTv3gm0xMTHZzi03Tz31lAmY8+fPz1r32GOPmXa73ezRo4dZo0aNrPUOh8MMCQkx69Wrl2/G/J6fadOmmYBpt9vNxYsXZ9v22GOPmYD50ksv5ZvfNE3zl19+MQGzbt265qFDhy7Yfv7PcFGfS8C85ZZbzPT09Av2n9/2vJ7Dc9dh2rRp2dbXrl3bBMzOnTtn/T4xTdM8deqUWa9ePRMwly9fnrU+v5+hpUuXmoDZsWNH8/Tp0zlmGDduXNa6+Ph4MyQkxHRzczM3bNiQrf24ceOyznnfvn05Hu98TqfTbNiwYY6v1TfeeCNrX+f/7jdN09y7d+8F+3I4HOaIESNMwFy7dm22bed+9+eW6d9//zUzMjIuWP/JJ5+YgPniiy/mey4iIvL/dCuoiIhIDmrXrs2TTz6ZbV2fPn2oVasW69evd3mezz//nDNnzvD000/TpEmTbNsiIiK444472LJlC3/++ecFj504cWK2sZ/c3Ny49dZbAbKdy08//cS///7LwIEDuemmmy7YT40aNbL+++eff+bvv//m/vvvp1u3btnaVatWjfHjxxMdHZ3Vq+ccb2/vC/Zrs9kIDg7O6/SBzJ4eu3btomPHjgwfPjzbtmHDhtGlSxd2797NypUr893XxXjggQdo1qxZtnV33HEHQK6vjaeeeirbOXp5eTFlyhSAbLcSWsFut/PSSy9hs/3/28K6devywAMPkJ6enq03zLmsL774In5+flnrfX19eemllwD45JNPCnzsolzLvOT0+goODs52brk51/Ps/NfskiVLaNOmDUOGDOHQoUP89ddfAERGRhITE5Nnb7XCuuGGGy7Y35133gkU/Fq8/fbbALz66qtUr179gu3n/wwX9bn08PBg6tSpuLnlfONLftuLasqUKdl6g4aEhGT1oJ02bVqB9/PWW28Bmb22zu/FBZk9kFu2bJmtp968efOIiYnhpptu4rLLLsvWfvLkyQQGBhb42KtXr2b37t1cfvnlDBo0KNu2MWPGUL9+/Rwfl9N6m83G2LFjgczbWgujdu3a2O32C9bfdtttBAQEFHp/IiIVnW4FFRERyUHLli1z/OBRs2bNPMfCKSnnjrl161YmT558wfZzH/h37tx5QeHtvx8GIfM8gGzj6axduxaAfv36FTjP/v37c8xzbryznTt30r9/f5o0aULLli35+uuv2b9/P4MGDaJLly5cdtlleHh45Hs8yLz1FMj1dqkePXqwcuVKtmzZUqITSRT0ep7vv8VHgC5dumC329myZUvxBiykWrVqZY1Ldb5ztzifn2/z5s3YbLYcxxDs1q1boc+nKNcyJ8OGDePNN99k8ODBXHvttfTq1YvOnTvnWqjISceOHfH29s4qrMXGxrJ582bGjx+f9ZpbsmQJl156adYt1Lm9FouiOK7F2rVrMQyDvn375tu2qM9lnTp1CA0NzXW/+W0vCjc3Nzp16nTB+nPZC/OaW7NmDe7u7syaNYtZs2ZdsD0tLY0TJ05w6tQpKlWqlPV7J6ef4cDAQFq2bJk1/l9+8tqX3W6nS5cu/P333xdsO3XqFK+88goLFizgn3/+ITExMdv2nMZ3zEt6ejoffvgh33zzDX/++SexsbHZxmor7P5ERCo6FdZERERy8N+eDOe4ubnlOKh3STt16hSQ2csiLwkJCResy+lczvUmcTgcWevODdqdU0+X3PLk9ME0pzx2u52lS5fyzDPPMHv2bB599FEA/P39GTlyJFOmTMnWayYn5yZbqFq1ao7bz63PbfDx4lLQ63m+nMaYcnNzo3Llyhw/frxY8xVWbuNfhYeHA2Sb5CI2NpaQkJAci6FFOZ+iXMuctGvXjj/++IPnn3+e2bNnZ/Wya9iwIZMmTeLGG2/Mdx8eHh506dKFxYsXc+LECVavXo3D4aBnz540btyYqlWrsmTJEu655x6WLFmCYRjFWlgrjmtx5swZgoODc+y5919FfS7PvS5yk9/2oqhcuXKOX3Tk9BrNz6lTp8jIyODpp5/Os11CQgKVKlXK2nd+PycFUZR9nTlzhrZt27Jv3z7atWvHiBEjCAkJwc3NLWs8uXPjABbUsGHDmDNnDvXq1WPQoEGEh4dn9QZ84403Cr0/EZGKToU1ERERC9hstgtmhDwnp8LQuduNtm7dWujBsgvq3Af7gvRWOJdn3rx5DBw4sED7Dw4O5vXXX+f1119n7969LF++nA8//JB33nmHM2fOXDDrYm7HjI6OznH70aNHs7UrTY4dO5btdlyAjIwMTp48mW2Q9HO3LGZkZOS4n5IoGh47dizH9eeu8/nXMzAwkJiYGNLT0y+YDCCn83Gljh07Mn/+fFJTU9m0aROLFi3i7bff5qabbqJKlSrZBu3PTY8ePfjtt99YsmQJq1evxsvLK2um0B49erBw4UJSU1P5448/aNq0abH3zLpYQUFBnDp1iuTk5HyLa0V9LvObaCOv7ee/vv97q2her+2TJ0/icDguKK7l9BrNT2BgIE6nk5iYmAK3h/x/TkpqX5988gn79u1j0qRJF/QOXrNmDW+++WaBjw+ZE9TMmTOHXr16sXDhwmzPg9Pp5OWXXy7U/kREBDTGmoiIiAWCg4M5duwY6enpF2zbuHHjBes6dOgAwB9//FFimc4dY+HChQVuW9Q8DRo0YPTo0Sxfvhw/Pz/mzZuX72NatWoFwO+//57j9mXLlgHkODOq1XK6VWzlypU4HI6s8wKyxmE7ePDgBe3j4uKybvk937liQ2F6eJ3vwIED/PvvvxesP3edz8/XqlUrnE4nK1asuKD9ihUrcDgcJXb9C3qenp6edOrUiWeeeSZrPK2CvL4g+zhrS5cupVOnTnh5eWVti4mJ4f333ycxMbHA46td7PNTGB06dMA0TRYtWpRvWyuey7xe3zn93jsnIyOD1atXX7A+p9dofte7Q4cOnD59mh07dhQo87lrkNPPcGxsLJGRkQXaT377cjgcOY4PuXfvXgCGDh16wbbcbkHN6xqc29/AgQMvKG6uX7+e5OTkvE5BRERyoMKaiIiIBdq1a0dGRsYFg25Pnz6dVatWXdD+1ltvJSgoiKeffjrHgcydTmeuBaeCGjBgAHXq1OHHH3/k66+/vmD7oUOHsv570KBB1K9fn3fffZcFCxbkuL81a9aQlJQEwL59+/jnn38uaHP69GlSU1MLdOta586dadiwIStXrmT27NnZts2ePZs//viDSy+9lC5duuS7L1d79tlns42TlZKSwoQJEwCyJpKAzFtjGzVqxKpVq7JNROFwOHjooYdy/NBbqVIlILNAVhQOh4NHH3002y3O+/bt46233sLNzY2bb745a/1tt90GwIQJE7KeW4CkpCQee+wxAEaPHl2kHPnJ6zxXr16d47U51zPIx8enQMdo3bo1gYGBzJs3jx07dmQrnp277fPcpBMFvQ30Yp+fwrj//vsBePjhh3PseXr+Oiuey3bt2gEX3tK+ZMmSHH/nnG/ChAnZblGMiYnhueeeA7L/DAUHB2MYRq7X+8EHHwQyJ8k4cuTIBdsTExOzxpuEzN91wcHBzJw584Li3+TJkwt1G2qnTp1o2LAhK1asuKDY+8477+Q4vlqdOnWAC79Q2LJlS9Zr8b/yes3ltr/jx49z3333FeAsRETkv3QrqIiIiAXuv/9+pk2bljVeU82aNYmMjGTNmjVcffXVzJ8/P1v7SpUqMXv2bK655ho6dOhAz549adq0KYZhcPDgQdasWcOpU6dISUkpciYPDw9mzZpF7969uemmm/jwww/p0KEDKSkp7Ny5kyVLlmTdouju7s4PP/xAnz59uOqqq+jUqRMtW7bEx8eHgwcPsmHDBv755x+OHj2Kj48PW7duZciQIbRt25bGjRtTrVo1Tpw4wbx580hPT88acy0vhmEwY8YMrrzySoYNG8agQYNo1KgRu3fvZu7cufj7+/P5558XaAZIV2vcuDFNmzbl2muvxd3dnXnz5vH3339z1VVXccstt2Rr+8gjjzB69Gg6d+7Mddddh5eXF8uWLSM9PZ0WLVqwdevWbO0bNmxI9erV+eabb3B3d6d27doYhsEtt9xC7dq1883WvHlz1q1bR5s2bejduzdnzpzhu+++48yZM7z88svZJgC46aabmDdvHt999x1NmzZl8ODBGIbB3Llz2bdvH8OGDbtgxtbi0rNnT2bNmsWQIUPo378/3t7e1K5dm1tuuYWXX36ZpUuX0rVrV+rWrYufnx87duxg4cKFBAcHZ82umR+73U737t2zih7nF9Zq165N/fr1+fvvv7Hb7TkOQJ+Ti31+CqN37948+eSTPPfcczRu3JjBgwdTs2ZNjh07xsqVK+nQoQPTp08HrHkub731Vl555RWmTJnC1q1badKkCX/99RcLFy7kmmuu4fvvv8/xcVWrViU1NZWIiAgGDhxIeno6s2fP5ujRo9x7773ZJivx8/Ojffv2/PHHHwwfPpxLL70Uu93OwIEDad68OT179uTFF19kwoQJXHLJJfTv35+6deuSkJDA/v37Wb58OV26dMnq9efn58dHH33EsGHD6Nq1K8OGDaNq1aqsXLmSqKgoLr/88hx7/eXEMAw+/fRTrrzySoYOHcqQIUNo0KABkZGRLFmyhL59+17Q23DEiBG88sorjBs3jmXLlnHJJZewZ88e5s+fz5AhQ/j2228vOE7Pnj155ZVXuOOOOxg6dCj+/v4EBQUxZswY2rZtS+fOnfnhhx/o1KkTXbp04dixYyxcuJCGDRtSrVq1gj6dIiJyjikiIlJBAeZ//xTu27fPBMyRI0fm+Jhu3bpd8Jhz++rWrdsF65ctW2YC5qRJky7Y9scff5hdu3Y1vb29TX9/f7N///7m1q1bzUmTJpmAuWzZsgses2/fPvO+++4zGzRoYHp6epr+/v5mw4YNzZtvvtmcM2dOtrYjR440AXPfvn2FyrV//37znnvuMevUqWO6u7ubISEhZrt27cznn3/+grbHjh0zH330UbNp06amt7e36evrazZo0MAcOnSo+cUXX5jp6emmaZrmwYMHzQkTJpidOnUyw8LCTA8PD7N69epm3759zQULFlyw37zs2rXLvPnmm83w8HDTzc3NDA8PN4cPH27u2rUrx+uV1/OZm5yez/yel5yOc+71kpKSYj7xxBNmnTp1TA8PD7Nu3brm5MmTzZSUlByP/8knn5hNmjQxPTw8zLCwMPPOO+80T548mevrb/369WaPHj3MgIAA0zCMXHPmdp6HDx82hw8fblapUsX09PQ0W7VqZX711Vc5PsbhcJjvvvuu2aZNG9Pb29v09vY2W7dubb7zzjumw+HI9RjnK8q1zMjIMCdMmGDWrVvXdHNzy7bfX375xRw1apTZuHFjMyAgwPTx8TEvvfRS8/777zf//ffffK/D+d566y0TMAMCAsyMjIxs2+68804TMNu1a5fjY4vy/EybNs0EzGnTpuW4z9x+t+Tl559/Nvv06WMGBwebHh4eZo0aNczBgwebS5YsydauOJ7LwmaNiooy+/XrZ/r5+Zm+vr5mt27dzN9//z3X61C7dm2zdu3a5pkzZ8x7773XrFatmunh4WE2atTIfPPNN02n03nBMfbs2WNeffXVZkhISNb1/u9+//jjD/O6664zq1atarq7u5uVK1c2W7RoYT744IPmhg0bLtjnr7/+anbu3Nn09vY2g4KCzIEDB5o7d+7M8/dsbjZu3Gj26dPH9PPzM/38/MyePXuaq1evzvXnYseOHeaAAQPMKlWqmD4+Pmbr1q3Njz/+OM/fb6+++qrZqFEj08PDwwTM2rVrZ207deqUec8995i1a9c2PT09zXr16pkTJkwwExMTs663iIgUnGGaplnCtTsRERGRCql79+4sX76c0vp2yzAMunXrdtG3EYuUlHO3LuY0DqCIiEhpUPrulRARERERERERESkDVFgTEREREREREREpAhXWREREREREREREikBjrImIiIiIiIiIiBSBeqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBGosCYiIiIiIiIiIlIEKqyJiIiIiIiIiIgUgQprIiIiIiIiIiIiRaDCmoiIiIiIiIiISBG4WR2grHE6nRw5cgR/f38Mw7A6joiIiIiIiEi5ZJom8fHxVKtWDZutYvULSklJIS0tzZJje3h44OXlZcmxyyIV1grpyJEj1KxZ0+oYIiIiIiIiIhXCwYMHqVGjhtUxXCYlJYW6tf2IPu6w5Pjh4eHs27dPxbUCUmGtkPz9/YHMH+yAgACL04iIiIiIiIiUT3FxcdSsWTPrc3hFkZaWRvRxB/s31SHA37U99eLindRu8y9paWkqrBWQCmuFdO72z4CAABXWREREREREREpYRR2Gyc/fwM/ftefupGJe64tRsW5SFhERERERERERKSYqrImIiIiIiIiIiBSBbgUVERERERERESllHKYTh+n6Y0rhqMeaiIiIiIiIiIhIEajHmoiIiIiIiIhIKePExIlru6y5+njlgXqsiYiIiIiIiIiIFIF6rImIiIiIiIiIlDJOnLh6xDPXH7HsU481ERERERERERGRIlBhTUREREREREREpAh0K6iIiIiIiIiISCnjME0cpmsnE3D18coD9VgTEREREREREREpAvVYExEREREREREpZZyYOHFtDzJXH688UI81ERERERERERGRIlBhTUREREREREREpAh0K6iIiIiIiIiISCnjxMShW0FLPfVYExERERERERERKQL1WBMRERERERERKWU0eUHZoB5rIiIiIiIiIiIiRaAeayIiIiIiIiIipYzDNHGYru1B5urjlQfqsSYiIiIiIiIiIlIEZbawNmXKFNq2bYu/vz+hoaEMHjyY3bt35/u4WbNm0ahRI7y8vGjWrBkLFixwQVoRERERERERESlvymxhbfny5dx3332sXbuW3377jfT0dHr37k1iYmKuj1m9ejU33ngjo0ePZsuWLQwePJjBgwcTFRXlwuQiIiIiIiIiInlzWrRI4RimWT5uoD1x4gShoaEsX76cyy+/PMc2w4YNIzExkfnz52et69ChAy1btuSDDz4o0HHi4uIIDAwkNjaWgICAYskuIiIiIiIiItlV1M/f5857184w/P1d2x8qPt5Jo8bHKtw1vxhltsfaf8XGxgIQEhKSa5s1a9bQq1evbOv69OnDmjVrSjSb1b788kvWr19vdQwRERERERERKSAHpiWLFE65KKw5nU7GjRtH586diYiIyLVddHQ0YWFh2daFhYURHR2d62NSU1OJi4vLtpQlu3fv5o477qBTp0488cQTpKamWh1JRERERERERKRcKBeFtfvuu4+oqCi++eabYt/3lClTCAwMzFpq1qxZ7McoSVWqVGHIkCE4HA5eeOEF2rVrR2RkpNWxRERERERERETKvDJfWBszZgzz589n2bJl1KhRI8+24eHhHDt2LNu6Y8eOER4enutjJkyYQGxsbNZy8ODBYsntKiEhIXz11VfMnj2bKlWqsG3bNtq2bcuzzz5Lenq61fFEREREREREJAcO05pFCqfMFtZM02TMmDHMmTOHpUuXUrdu3Xwf07FjR5YsWZJt3W+//UbHjh1zfYynpycBAQHZlrJo6NChREVFMWTIEDIyMpg4cSIdO3Zkx44dVkcTERERERERESmTymxh7b777uPLL79k5syZ+Pv7Ex0dTXR0NMnJyVltRowYwYQJE7L+PXbsWBYtWsSrr77Krl27mDx5Mhs3bmTMmDFWnILLhYaGMnv2bL766iuCg4PZtGkTrVu35uWXX8bhcFgdT0RERERERETOclq0SOGU2cLa+++/T2xsLN27d6dq1apZy7fffpvV5sCBAxw9ejTr3506dWLmzJl89NFHtGjRgtmzZzN37tw8JzwobwzD4KabbiIqKoqrrrqKtLQ0Hn30Ubp27cpff/1ldTwRERERERERkTLDME1Td9AWQlxcHIGBgcTGxpbZ20LPMU2T6dOnM27cOOLi4vD29mbKlCncf//92GxltuYqIiIiIiIi5UB5+vxdGOfOe/OfYfj5u/azeUK8k9ZNjlW4a34xVD2pwAzD4NZbb2X79u306tWL5ORkxo0bR48ePdi3b5/V8URERKSUME0nCWl/EZu6nXRHnNVxREREREoNFdaEWrVq8euvv/Lee+/h6+vL8uXLadasGR988AHq0CgiIlJxmabJofhZrDx4JWsOD2L9ketZfqALO048QZrjtNXxRERERCynwpoAmb3X7rnnHrZt28bll19OYmIi99xzD3379uXgwYNWxxMREREL/HPmPXaenEiK40jWOpN0jibMY8ORm0h3xFqYTkREpHxzmtYsUjgqrEk29erVY9myZbzxxht4eXnx66+/EhERwfTp09V7TUREpAJJTj/EP2fezXGbiYOkjAPsj53m4lQiIiIipYsKa3IBm83G2LFjiYyMpEOHDsTFxXHrrbcycODAbLOsioiISPl1OOF7wMijhZND8d/oizcREZES4sCwZJHCUWFNctWwYUNWrlzJiy++iIeHB/Pnz6dp06bMnDlTb6JFRETKueT0Q/m2SXfG4jCTXJBGREREpHRSYU3yZLfbefTRR9m0aROtW7fm9OnTDB8+nOuuu47jx49bHU9EREQKwjRh3Tq4/34YOhRuuAGeew7y6InubgvAyOdbawM3bIZncacVERERKTNUWJMCiYiIYO3atTz99NO4ubnx/fffExERwffff291NBEREcnLxo1w2WXQoQP8+CMkJMDx4zBlCtSqBbfcAnFxFzwszK8/Jo5cd2tgJ8y3PzbDrSTTi4iIVFi6FbRsUGFNCszd3Z2JEyeyfv16mjVrxokTJ7j22msZPnw4MTExVscTERGR/1q5Erp1A8Mg6bvvmfPMl7zS5g7e7PYA679ZhvOVqfDTT9C9O8Rmn+EzyLM1lbw6k/PbRRuG4UbdoNtdcRYiIiIipZYKa1JorVq1YsOGDTz++OPYbDZmzpxJREQEP//8s9XRRERE5JwzZ2DQIGjXjtWTPmDYS9v46LVfWLZwG7/O3czEJ37kzqUmp2bPh3/+gbvuyvZwwzBoHvYmoT69zq6xYWAHwNNehTbhn+HncYlrz0lERKQCcZqGJYsUjmFqFPpCiYuLIzAwkNjYWAICAqyOY7n169czcuRIdu3aBcCtt97K66+/TmBgoMXJREREKrg334RHHmHvojU88NBcnKYJ/3nXZ7PbCK8ezMf9PLE/cD/s25d5e+h/JKb/y8mk33Gaqfh5XEpl78sxDLuLTkRERCqqivr5+9x5r4yqhp+/a/tDJcQ76RJxpMJd84uhHmtyUdq1a8fmzZt5+OGHMQyDadOm0axZM3777Tero4mIiFRs778PQ4fyzc9/gWFcUFQDcDqcHDlwijU1LgNfX/j44xx35eteh9qBo6gbdBdVfK5QUU1ERMQFNMZa2aDCmlw0b29vpk6dyooVK6hfvz4HDx6kd+/e3HvvvSQkJFgdT0REpOJJSYHduzH79GHtsl04Hc5cm9rsBqvW7ofLL4etW10YUkRERKTsU2FNik2XLl3YunUrY8aMAeD999+nRYsWrFixwuJkIiIiFUxaGgCmhwcZGbnP7AlgOk3SUtLB0zPrcSIiIiJSMCqsSbHy9fXl7bffZvHixdSqVYt//vmH7t278+CDD5KcnGx1PBERkYrB3x98fLDt2UONOpXJ664OwzCo0yAUdu2C8HDXZazgTNNJuuMMDqfeH4mISM4c2CxZpHB0xaRE9OzZk+3bt3P77bdjmiZvvPEGLVu2ZO3atVZHExERKf8MA268ET79lEHDLst3tJSrazrgzz/hpptcEq8iczhT+OfMB6w42I3fD3Rk6f7WbDx6KzHJeo8kIiJSFqmwJiUmICCAjz/+mAULFlCtWjX++usvOnfuzGOPPUZqaqrV8URERMq3e++Fgwfpf3IzbTpfgvGf6prNlrnigcf6E/zGS9CgAfTqZUHQisPhTGFz9Gj+Pv02aY6TWetPp6xnU/RtHImfa104EREpdUzTwOnixTQ1eUFhqbAmJa5fv35ERUVxyy234HQ6eemll2jTpg2bNm2yOpqIiEj51bo13H8/9oce5OnG8dzxUG/CqgVlbW7eth4vvjaUvt+9An/8AR9+CDa9NSxJB+JmcCY1EvjvZBJOwOTPk0+R5ohxfTAREREpMjerA0jFEBwczOeff87QoUO588472bFjB+3bt+eJJ57giSeewMPDw+qIIiIi5c/rr4NpYn/gfobUrcs1t99OWoNW2JwZuC9bCoMyJxxizhzo0cParOWcaZocjJvJhUW189rg4Ej8HOoEjXZdMBEREbko+lpSXGrQoEHs2LGD6667DofDwTPPPEOHDh3Yvn271dFERETKH7sd3n4b1q6Frl0xnnkGz2HX4n7jDTB/Pjz6KOzdC1dfbXXScs9hJpLqOJ5PKxsJ6XtckkdEREo/B4YlixSOCmvicpUrV+a7777j22+/pVKlSmzZsoU2bdowZcoUMjIyrI4nIiJS/rRvDzNmQFwcHD0Kp07BwYMwcSJUrWp1ugrBZniQ5/SsZ7faDS+X5BEREZHiocKaWOb6668nKiqKgQMHkp6ezuOPP07nzp3ZtWuX1dFERETKJw8PCA+HkBCNp+ZiNsODSt5dAHuubUwcVPHRBBIiIpLJYdosWaRwdMXEUuHh4cydO5cZM2YQGBjI+vXradWqFa+99hoOh8PqeCIiIiLFpm7QnYBJTj3XDOz4ezSmkncnl+cSERGRolNhTSxnGAYjRowgKiqKPn36kJKSwsMPP0z37t3Zu3ev1fFEREREikWw12U0q/Jy1m2hBnaMs3OJ+Xk0pFX4RxiG3p6LiEgmJwZObC5eNMZaYekvt5QaNWrUYOHChXz00Uf4+fmxcuVKWrRowbvvvovTmfsMWiIiIiJlRbjfVVxeczkNQx6jqt8gavhfT+vwT2lfbTae9spWxxMREZFCUmFNShXDMLjjjjvYvn07V1xxBUlJSYwZM4Yrr7yS/fv3Wx1PRERE5KK52wOpFTiCplWep1Hlp6jk3QnDUA8BEREpm959913q1KmDl5cX7du3Z/369Xm2nzVrFo0aNcLLy4tmzZqxYMECFyUtGSqsSalUp04dFi9ezFtvvYW3tzdLly6lWbNmfPLJJ5imaXU8ERERERERkRLlwLBkKYxvv/2Whx56iEmTJrF582ZatGhBnz59OH78eI7tV69ezY033sjo0aPZsmULgwcPZvDgwURFRRXHJbOEYapKUShxcXEEBgYSGxtLQECA1XEqhD179jBq1ChWr14NQL9+/fj444+pXr26xclERERERESkpFTUz9/nzvvHbfXx9c99NumSkBjvYGDzvwt8zdu3b0/btm155513AHA6ndSsWZP777+fxx577IL2w4YNIzExkfnz52et69ChAy1btuSDDz4ovhNxIfVYk1LvkksuYcWKFbzyyit4enqycOFCIiIi+OKLL9R7TURERERERMolh2mzZCmotLQ0Nm3aRK9evbLW2Ww2evXqxZo1a3J8zJo1a7K1B+jTp0+u7csCFdakTLDb7fzvf/9j8+bNtG3bljNnzjBixAiuueYajh07ZnU8ERERERERkXIjLi4u25KamnpBm5MnT+JwOAgLC8u2PiwsjOjo6Bz3Gx0dXaj2ZYEKa1KmNGnShNWrV/Pcc8/h7u7OvHnzaNq0KbNmzbI6moiIiIiIiEi5ULNmTQIDA7OWKVOmWB2p1FJhTcocNzc3nnjiCTZs2ECLFi04deoU119/PTfccAMnT560Op6IiIiIiIjIRXNiWLIAHDx4kNjY2KxlwoQJF+SrXLkydrv9grvIjh07Rnh4eI7nFB4eXqj2ZYEKa1JmtWjRgvXr1/PUU09ht9v59ttviYiIYN68eVZHExERERERESmzAgICsi2enp4XtPHw8KBNmzYsWbIka53T6WTJkiV07Ngxx/127NgxW3uA3377Ldf2ZYEKa1KmeXh48Mwzz7B27VqaNGnCsWPHGDx4MCNHjuTMmTNWxxMREREREREpEic2HC5enIUsEz300EN8/PHHzJgxg507d3LPPfeQmJjIrbfeCsCIESOy9XYbO3YsixYt4tVXX2XXrl1MnjyZjRs3MmbMmGK9dq6kwpqUC5dddhmbNm1i/Pjx2Gw2Pv/8cyIiIli0aJHV0URERERERETKpWHDhjF16lQmTpxIy5YtiYyMZNGiRVkTFBw4cICjR49mte/UqRMzZ87ko48+okWLFsyePZu5c+cSERFh1SlcNMM0TdPqEGVJXFwcgYGBxMbGEhAQYHUcycGaNWsYOXIke/bsAeCOO+7g1Vdfxd/f3+JkIiIiIiIiUlAV9fP3ufOetbURPv52lx47Kd7BdS12VbhrfjHUY03KnY4dOxIZGckDDzwAwMcff0yzZs1YtmyZxclERERERERECsZh2ixZpHB0xaRc8vHx4c0332TZsmXUqVOH/fv306NHD+6//34SExOtjiciIiIiIiIi5YAKa1Kude/enW3btnHXXXcB8M4779CyZUtWrVplcTIRERERERGR3DnPTibg6kUKR1dMyj1/f38++OADfvnlF2rUqMHevXvp2rUrjzzyCCkpKVbHExEREREREZEySoU1qTB69+7N9u3bGTVqFKZpMnXqVFq3bs2GDRusjiYiIiIiIiKSjcM0LFmkcFRYkwolKCiIadOm8eOPPxIeHs7OnTvp2LEjTz75JGlpaVbHExEREREREZEyRIU1qZAGDBhAVFQUN954Iw6Hg+eff562bduydetWq6OJiIiIiIiISBmhwppUWJUqVWLmzJnMmjWLypUrs23bNi677DKeffZZ0tPTrY4nIiIiIiIiFZgDmyWLFI6umFR41157LTt27OCaa64hIyODiRMn0rFjR3bs2GF1NBEREREREREpxVRYEwFCQ0P5/vvv+fLLLwkKCmLTpk20bt2aV155BYfDYXU8ERERERERqWCcps2SRQpHV0zkLMMwGD58ODt27KB///6kpaUxfvx4Lr/8cvbs2WN1PBEREREREREpZVRYE/mPatWqMX/+fD799FP8/f1ZvXo1LVq04K233sLpdFodT0RERERERERKCRXWRHJgGAa33XYbUVFR9OrVi+TkZMaOHUuPHj3Yt2+f1fFERERERESknNPkBWWDrphIHmrVqsWvv/7Ke++9h4+PD8uXL6dZs2Z8+OGHmKZpdTwRERERERERsZAKayL5MAyDe+65h23bttG1a1cSExO5++676du3LwcPHrQ6noiIiIiIiJRDTsBhGi5dNPhR4amwJlJA9evX5/fff+e1117Dy8uLX3/9lYiICKZPn67eayIiIiIiIiIVkAprIoVgs9l48MEH2bJlC+3btycuLo5bb72VgQMHcvToUavjiYiIiIiISDnhxGbJIoWjKyZSBI0aNWLlypVMmTIFDw8P5s+fT0REBF9//bV6r4mIiIiIiIhUECqsiRSRm5sbjz32GJs2baJVq1bExMRw0003cf3113PixAmr44mIiIiIiIhICVNhTeQiRUREsG7dOiZPnoybmxuzZ8+madOmzJkzx+poIiIiIiIiUkY5TJslixSOrphIMXB3d2fSpEmsW7eOiIgITpw4wZAhQ7j55ps5ffq01fFEREREREREpASosCZSjFq3bs3GjRuZMGECNpuNr776iqZNm7JgwQKro4mIiIiIiEgZ4sSwZJHCUWFNpJh5enrywgsvsHr1aho2bMjRo0e56qqrGD16NLGxsVbHExEREREREZFiosKaSAlp3749W7Zs4cEHH8QwDD777DOaNWvG4sWLrY4mIiIiIiIiIsVAhTWREuTt7c1rr73G8uXLqVevHgcPHuTKK6/k3nvvJSEhwep4IiIiIiIiUkpp8oKyQVdMxAW6du3K1q1buffeewF4//33adGiBStWrLA4mYiIiIiIiIgUlQprIi7i5+fHu+++y+LFi6lVqxb//PMP3bt356GHHiI5OdnqeCIiIiIiIlKKOLBZskjh6IqJuFjPnj3Zvn07t99+O6Zp8vrrr9OqVSvWrVtndTQRERERERERKQQV1kQsEBAQwMcff8zPP/9MtWrV2L17N506dWLChAmkpqZaHU9EREREREQs5jQNSxYpHBXWRCzUv39/oqKiuPnmm3E6nbz44otcdtllbN682epoIiIiIiIiIpIPFdZELBYcHMwXX3zBDz/8QGhoKFFRUbRv357JkyeTnp5udTwRERERERERyYUKayKlxDXXXENUVBTXXnstGRkZPP3007Rv357t27dbHU1ERERERERczGnBxAVOlYkKTVdMpBSpUqUK3333HV9//TUhISFs2bKFyy67jClTppCRkWF1PBERERERERE5jwprIqWMYRjccMMN7NixgwEDBpCWlsbjjz9Oly5d2L17t9XxRERERERExAWcps2SRQpHV0yklAoPD2fevHlMnz6dwMBA1q1bR8uWLXn99ddxOp1WxxORYmCaJk4zDdM0rY4iIiIiIiJFoMKaSClmGAYjR44kKiqK3r17k5KSwkMPPUT37t35+++/rY4nIkWUknGEPaeeYdWBVvyxP4LVB9vxT8wrpDlirI4mIiIiIiKFoMKaSBlQo0YNFi1axIcffoifnx9//PEHzZs357333lPvNZEyJjFtL5uODOZI/Nc4zCQAMpyxHIz7jM1HriE1I9rihCIiIiJSGjgwLFmkcFRYEykjDMPgzjvvZNu2bXTv3p2kpCTuu+8+evfuzYEDB6yOJyIFtOvk/8hwxgOO/2xxkOY4zp5Tky1IJSIiIiIiRaHCmkgZU7duXZYsWcKbb76Jt7c3S5YsISIigs8++0zjNImUcvGp20lI+5MLi2qZTBycSl5GSsZR1wYTERERkVJHkxeUDbpiImWQzWbjgQceIDIyko4dOxIfH8/o0aO5+uqrOXLkiNXxRCQXCWk7C9DKJDFNMwCLiIiIiJQFKqyJlGGXXnopf/zxBy+//DKenp4sWLCAiIgIvvrqK/VeEymFbIZHAdt5lnASKYx0RxypGcdwmmlWRxEREZEKxIEV46xJYamwJlLG2e12HnnkETZv3sxll13G6dOnufnmmxk6dCjHjx+3Op6InCfYuwsG9jzb2A0/AjxbuSiR5OV08jo2R4/gj4NtWXXocv440IE9MS+S7oizOpqIiIiIlBIqrImUE02aNGH16tU8++yzuLu7M2fOHJo2bcrs2bOtjiYiZ3nYKxPudy15/fmtEXgbdpuX60JJjo4nLmTLsZGcSdmQtc5hJnIw7nM2RQ8j3RFrYToRERERKS1UWBMpR9zd3XnyySfZsGEDzZs35+TJk1x33XXceOONnDp1yup4IgI0qPQUlXx6AJztvWZk9WIL9xtG7cB7LUwnABnOBP48OeHsv5z/2eogKX0//8a+6+pYIiIiUsFo8oKyQVdMpBxq0aIFGzZs4Mknn8Rut/PNN98QERHBTz/9ZHU0kQrPZnjQtMq7tAz/lqr+w6js05tq/jfTpto8GlZ+FsPQn2arHUv8GaeZAuQ2VqWDI/GzcDhTXRlLREREREqhMv3ufcWKFQwYMIBq1aphGAZz587Ns/3vv/+OYRgXLNHR0a4JLOJCHh4ePPvss6xZs4bGjRsTHR3NwIEDGTVqFGfOnLE6nkiFZhgGgV6tuKTSZJqGvk2DSk/g59HY6lhyVlL63/mOhecwk0hzaBxLERERKTkO02bJIoVTpq9YYmIiLVq04N13C3c7xu7duzl69GjWEhoaWkIJRazXtm1bNm/ezCOPPIJhGMyYMYNmzZrxyy+/WB1NRKRUshne5N5b7f/ZbT4lH0ZERERESrUyXVjr168fzz33HNdcc02hHhcaGkp4eHjWYrOV6csgki8vLy9efvll/vjjDxo0aMChQ4fo27cvd911F/Hx8VbHExEpVUJ9emPmOdm8jQDPVnjYK7ksk4iIiIiUThWyotSyZUuqVq3KlVdeyapVq/Jsm5qaSlxcXLZFpKzq3LkzkZGR3H///QB89NFHNG/enGXLllmcTESk9PD3bEqIV1dyf5tkUjfoPldGEhERkQrIxMDp4sXEsPq0y5wKVVirWrUqH3zwAd9//z3ff/89NWvWpHv37mzevDnXx0yZMoXAwMCspWbNmi5MLFL8fH19eeutt1i6dCm1a9fm33//pUePHjzwwAMkJSVZHU+kWCSl/8P+M++yN+YFDsd9Sboj1upIUsZEhL5BiFdHIHP2VgM3Mmdw9aBx5SlU8u5qbUARERERKRUM0zTzH0SkDDAMgzlz5jB48OBCPa5bt27UqlWLL774IsftqamppKb+/6xfcXFx1KxZk9jYWAICAi4msojl4uPj+d///sdHH30EwCWXXML06dPp1KmTxclEisZpprH75OMcT/wRsGNgYOLAwJ1LKj1FVf9hVkeUMiYudRvHE3/FYSbi416PcN+BuNsDrY4lIiJSIcTFxREYGFjhPn+fO+9HVl+Fp5+7S4+dmpDOK51+rnDX/GJUqB5rOWnXrh179+7NdbunpycBAQHZFpHywt/fnw8//JCFCxdSvXp19uzZQ9euXRk/fjwpKSlWxxMptL9OTuR44vyz/3JgkgGYmKTx16mnOJGoSTukcAI8m9Mg5H80rDSJmgG3qKgmIiIiItlU+MJaZGQkVatWtTqGiKX69u1LVFQUI0aMwOl08sorr9CmTRs2btxodTSRAktJP8SxxDmAM5cWBv+eeZNy0lFbRERERMo5p2lYskjhlOnCWkJCApGRkURGRgKwb98+IiMjOXDgAAATJkxgxIgRWe3feOMN5s2bx969e4mKimLcuHEsXbqU++7TAMQiQUFBzJgxg3nz5hEWFsaff/5Jhw4deOqpp0hLS7M6nki+Tib9BnkOtmqSlL6X5Iz9rookIiIiIiLlXJkurG3cuJFWrVrRqlUrAB566CFatWrFxIkTATh69GhWkQ0gLS2Nhx9+mGbNmtGtWze2bt3K4sWL6dmzpyX5RUqjgQMHsmPHDoYNG4bD4eC5556jXbt2bN261epoInnKMBMxCvBnzeFMdEEaERERERGpCMrN5AWuUlEHT5SKadasWdxzzz2cOnUKd3d3Jk2axKOPPoqbm5vV0UQucDzxZ3aeeDDPNgZudKy5Gnd7kGtCiYiIiEiRVdTP3+fOe9yqgZZMXvBG5x8r3DW/GGW6x5qIlKzrrruOHTt2MHjwYNLT03nyySfp1KkTO3futDqayAUq+1yJmy2Q3G4HNbBTxbefimoiIiIiIlJsVFgTkTyFhYXxww8/8MUXXxAUFMSGDRto1aoVU6dOxeFwWB1PJIvN8KBh5ZfILKxl//NmYMfdXol6wY9Ykk1EcnD8OEyZAt27Q+vW0K0bPP88HDtmdTIREZFSQZMXlA0qrIlIvgzD4OabbyYqKop+/fqRmprKI488wuWXX86ePXusjieSpbJPD1qEf0GQV7usdQYehPldQ+uq3+PpFm5hOhEBwOGA8eOhRg145hmoXBk6dIDQ0MzCWs2a8PDDme1ERERESjkNlCQiBVa9enV+/vlnPvvsMx588EFWr15NixYteOmll7jvvvuw2VSrF+sFebUlKPxz0h0xZDgT8LBXxm7zsTpWsUlzxHAk/iui438gwxmHl1t1qvnfSLjfEGw2T6vjieTNNOG22+DLL3FOmsSmzlfz04aDnDgVT+Wa/lx99wTarlmIbfIkiI6GL74A/W0RERGRUkyTFxRSRR08UeS/9u/fz+jRo1myZAkAV1xxBZ999hl16tSxNphIOZaU/i+RR28i3RkDOM+uNQATf8+WtAibXq6KiFIOffYZjB5N+ozPeexvLzZs+RebzcDpNLP+v3XzWrzcxInHzcPhgw/gzjutTi0iIhapqJ+/z533mJXXWDJ5wTtd5lS4a34x9BWgiBRJ7dq1+fXXX3n33Xfx8fFh2bJlNGvWjI8++gjV60WKn2ma/Hn8AdKdp/n/ohpA5s9bfOo2/jk91ZJsIgVimvDmmzBgAG8mhLEpcj8ATqeZ7f8jtx/k9VPBMHgwvP125uNERERESikV1kSkyGw2G/feey/btm2ja9euJCQkcNddd9G3b18OHjxodTyRciUudQuJ6buA3MadchKdMJsMZ4IrY4kU3MaNsG0biaNGs+C37ThzKZg5TZNFS3cQP+I2iIqCNWtcHFRERKR0cJiGJYsUjgprInLR6tevz7Jly3j11Vfx8vLi119/pVmzZsyYMUO910SKSVzqFvL7s+00U0hM04QiUkrt2gXAlpC6ZDiceTZ1OJxsDq6T+Y/du0s4mIiIiEjRqbAmIsXCbrfz0EMPsWXLFtq1a0dsbCyjRo1i0KBBREdHWx1PpMwzsBesnVGwdiIu58wspjko2DfhGedqb5odVEREKiinaViySOGosCYixapRo0asWrWKF154AXd3d3766SeaNm3Kt99+a3U0kTIt2Lsz2cdWu5CbLRA/j0auCSRSWDVrAhCRfLxAzZunn8r8j1q1SiqRiIiIyEVTYU1Eip2bmxsTJkxg06ZNtGrVipiYGG644Qauv/56Tpw4YXU8kTLJ1+MSgr06Q6491wyqB4zEZni4MpZIwXXrBrVrU+m7L+nUtj52W87fiNttBu1b16XKrC+hRg3o0cPFQUVEREQKToU1ESkxzZo1Y926dUyaNAk3NzdmzZpFREQEc+fOtTqaSJnUuMqr+Lo3OPuvc3/CMwttob5XUzvwHktyiRSI3Q533w0zZ/J4uyCqhgdhGNmLa4ZhEBYawBNdq8AXX8Bdd4Gbm0WBRURErGWaNpwuXkxTZaLC0hUTkRLl7u7O5MmTWbt2LU2bNuX48eNcc8013HLLLZw+fdrqeCJlirs9hNbVvqdx5dcI8e6Kv0czqvj0o3nYDBpVnqrx1aT0GzcO2rUj4Ppr+LRbAHff0oUa1YLx9nKnetUg7ry5M5/1DCHo2sHQujU8/LDViUVERETyZJiasq9Q4uLiCAwMJDY2loCAAKvjiJQpqampTJo0iVdeeQWn00m1atX45JNP6Nevn9XRRETEVeLjYdgwWLgQGjSA4cOhShU4cQJmzoQ9e6B3b/juOwgMtDqtiIhYqKJ+/j533qOXX4+Hn7tLj52WkM6n3b6rcNf8YqjHmoi4jKenJy+++CKrVq3i0ksv5ciRI/Tv35/bb7+duLg4q+OJiIgr+PvDzz/DypXQrh28/XZmT7a334Y2beCPP2DRIhXVREREpExQYU1EXK5Dhw5s2bKFcePGYRgGn376Kc2aNWPJkiVWRxMREVcwDOjcGb76Ck6dgvT0zP//+mvo0iVzu4iIiJQrMTExDB8+nICAAIKCghg9ejQJCQl5tr///vtp2LAh3t7e1KpViwceeIDY2FgXps6fCmsiYgkfHx9ef/11fv/9d+rWrcuBAwfo1asXY8aMITEx0ep4IiJlTrojlqPxP3AgdhonEn/DaaZZHUlEREQugtMEp2m4eCm58xk+fDg7duzgt99+Y/78+axYsYI777wz1/ZHjhzhyJEjTJ06laioKKZPn86iRYsYPXp0yYUsAo2xVkgV9R5vkZKUkJDA+PHjef/99wGoV68e06dPp2vXrhYnExEp/UzTyb4zb7M/9hNM0sj83tSJuy2IhpWeJdS3t9URRUREiqSifv4+d963/n49Hn4eLj12WkIa07oX/xhrO3fupEmTJmzYsIHLLrsMgEWLFtG/f38OHTpEtWrVCrSfWbNmcfPNN5OYmIhbKZk5XD3WRMRyfn5+vPfee/z222/UrFmTf/75h27duvHwww+TnJxsdTwRkVLtnzNv8m/se2eLagBOANKdsUSdeIBTSSusCyciIiJF5jRtliyQWdw7f0lNTb2oc1mzZg1BQUFZRTWAXr16YbPZWLduXYH3c67gV1qKaqDCmoiUIr169WL79u3cdtttmKbJa6+9RqtWrQr1i1ZEpCJJd5zmQOwnuWzNvCnh79OvuS6QiIiIlAs1a9YkMDAwa5kyZcpF7S86OprQ0NBs69zc3AgJCSE6OrpA+zh58iTPPvtsnrePWkGFNREpVQIDA/n000+ZP38+VatWZffu3XTq1InHH3/8or8lEREpb44n/YaJI48WJgnpO0lK3+eyTCIiIlL2HTx4kNjY2KxlwoQJObZ77LHHMAwjz2XXrl0XnScuLo6rrrqKJk2aMHny5IveX3EqPX3nRETOc9VVVxEVFcUDDzzAV199xZQpU5g/fz4zZsygVatWVscTESkV0h2nMbDlU1yDdMcZcHdNJhERESkeTgycuHam7HPHCwgIKNAYaw8//DCjRo3Ks029evUIDw/n+PHj2dZnZGQQExNDeHh4no+Pj4+nb9+++Pv7M2fOHNzdS9ebGhXWRKTUCgkJ4csvv2To0KHcddddbN++nXbt2vHkk0/y+OOPl7pfqCIirublVj3fohoYeLkVbEDgsiTDGU982k4MbPh7NMFu87E6koiISIVTpUoVqlSpkm+7jh07cubMGTZt2kSbNm0AWLp0KU6nk/bt2+f6uLi4OPr06YOnpyc//vgjXl5exZa9uOhWUBEp9a655hp27NjB0KFDycjIYPLkyXTo0IGoqCiro4mIWKqKTy/shl8eLeyEeHXG0y3MZZlKmsOZxO5Tk1l5oBNbom9hc/Rw/jjYib0xL+M00/LfgYiISBnhMA1LlpLQuHFj+vbtyx133MH69etZtWoVY8aM4YYbbsiaEfTw4cM0atSI9evXA5lFtd69e5OYmMinn35KXFwc0dHRREdH43Dk98Wi66iwJiJlQpUqVZg1axYzZ84kODiYzZs306ZNG1588UUyMjKsjiciYgm7zYuGlSae/dd/3wjbsRueNAh51NWxSozTTGPLsds4HP8tTtLOW5/MgbjP2H78fkzTaWFCEZHSxTSdHImfw9rDQ1m8rxlL/23D9uPjiUv90+poUgF99dVXNGrUiJ49e9K/f3+6dOnCRx99lLU9PT2d3bt3k5SUBMDmzZtZt24d27dvp0GDBlStWjVrOXjwoFWncQHDNE3T6hBlSVxcHIGBgVlTvIqI6x09epQ777yT+fPnA9C+fXtmzJhBw4YNLU4mIuWBaZrEp20jOn42KRlH8bCHEOo3iGCvjhhG6fxO8kTiYv4+PZWkjP+fpCDYqwOXhDyOn0f5+d14JH4Wu049mWeb5qEfUNnnChclEhEpvUzTwfYT/+NY4iIyv3zJ/OhvYAegeegbhPr2si5gAVTUz9/nzvuGJTfj4efh0mOnJaTxTc8vK9w1vxgaY01EypyqVavy448/MmPGDMaOHcu6deto2bIlL7zwAmPHjsVmK50ffEWk9DNNB7tPPs6xxDkY2DFxYGDnWOJcgrw6ERH6Xqkcy6uKby8q+/QkMf0v0h1n8HKvgbdbdatjFbsj8d9x/ofDC9k5Ev+dCmsiIsCh+Flni2pw/u/NzLE5Dbaf+B+Xe/2Ouz3Iingi5YY+fYpImWQYBqNGjSIqKoorr7ySlJQUHnroIbp3787ff/9tdTwRKaP2n3mHY4lzALImBTj3/2dS1vLXqYm5PtZqhmHg59GQYO/25bKoBpCccZjci2oADpIzSs+tISIiVjoQ9zkXDhNwjonTTONIwlwXJhIpn1RYE5EyrWbNmvzyyy988MEH+Pr68scff9CiRQvee+89nE6NsyPyX6ZpkpZxnNSMo5hm6Rn0tTRwOJM5FDc9jxZOjifOJzUj2lWR5D887MH5tLDhYa/kkiwiIqWZ00wjKX0feX8ZYRCbut1VkaQInBg4TRcvuRZjJTcqrIlImWcYBnfddRfbtm2jW7duJCYmct9999GnTx8OHDhgdTyRUsE0TaLjZ7PpcB/WHerE+kNdWX+oKwdjP8Q0NQEIQHzqNhxmYj6tnMQkr3RJHrlQuN815N77AsB5to2ISEVnI+/flwAGNsPdFWFEyjUV1kSk3KhXrx5Lly7ljTfewNvbm8WLF9OsWTM+++wzNE+LVHT7Tr/EnlOPkXze4PZpjuP8e3oqfx4fo95rgJP0ArUzzYK1k+JXze96vOxV4ezA29nZ8XW/lFCffq6OJSJS6tgMN0K8OmZNVJAzB5W9L3dZJik8k8weZK5cTPVYKzQV1kSkXLHZbIwdO5bIyEg6dOhAXFwco0eP5uqrr+bIkSNWxxOxRHzqVg7HfXL2X/8tMpvEJC/mROJ8V8cqdfzcG1KQt0b+nhElH0Zy5G4PoHXVmQR6tji7xuBcj4wQr460Cp+B3eZpWT4RkdKkTtDorHFCL2THy61aqZ8VVKQsUGFNRMqlSy+9lJUrV/LSSy/h4eHBggULiIiI4KuvvlLvNalwjsZ9nc831jaOxH/psjyllYdbFar49CHn3lAAdvw8muLv2cyVseQ/vNyq0qbq17StOpdLQ57i0pCJtK+2gJbhn+JhD7E6nohIqVHJuxONKk0i8wuIc3/bMr+M8LRXoXX4J9gMD6viiZQbblYHEBEpKXa7nfHjx3PVVVcxcuRINm3axM0338z333/PBx98QGhoqNURRVwiMf2vPL6xBnCSlLbXZXlKswaVJpGQtpPkjAPA+ROg2HG3BdK4ymtWRZP/8PdsjL9nY6tjiIiUajUDbqCydxcOxX9HfNpObIYXoT49CPPth93mZXU8yce5CQVcfUwpHPVYE5Fyr2nTpqxZs4ZnnnkGNzc35syZQ9OmTfn++++tjibiEm42P/IbwNhu83FNmFLOwx5C66qzqRP0AJ72cMCGmy2YGgG30qbaPHzc61odUUREpFC83WtwSchDtA7/mJZhb1PN/xoV1USKkQprIlIhuLu789RTT7FhwwaaN2/OyZMnufbaa7npppuIiYmxOp5Iiars258Lx1Y7n50qvgNcFafUc7MHUDvoXjrUXEG3OrvoXGsd9UPG4+kWZnU0ERERqUCcps2SRQpHV0xEKpSWLVuyYcMGnnjiCex2O19//TVNmzZl/nwN3C7lV6jvQDzt1XIZZ82G3fCiWsAtLs8lIiIiIlLWqbAmIhWOh4cHzz33HKtXr6ZRo0ZER0czYMAAbr31VmJjY62OJ1Ls7DYfmoV/iZd7HQAM3DDODrPqbgshInwGXm7VLUwoIiIiIv91bow1Vy9SOJq8QEQqrHbt2rF582aeeuopXnvtNaZPn87ixYv59NNP6d27t9XxRIqVt3st2lRbyJmUlZxOXoVpOgjwakUlnys1I5hVTBN+/x2WL4fERAgOhgEDoJlmHRUREREpK9RjTUQqNG9vb6ZOncqKFSuoX78+hw4dok+fPtx9993Ex8dbHU+kWBmGjWDvy6kXMoH6lZ6kiu9VKqpZ5euvoWlT6NED3nsP5s6Fl16C5s3h8sth5UqrE4qIiIhIAaiwJiICdOnSha1btzJmzBgAPvzwQ1q0aMHy5cstTiYi5c5zz8FNN8GllxK7YAGfL/yFN6d9zg/LlpMycyakpmYW3ObMsTqpiIiIWMiJYckihaNbQUVEzvL19eXtt9/mmmuu4bbbbmPfvn10796dsWPH8sILL+Dj42N1RJGLkuGI41jC98QkL8NpphHg2Ypw/xvwdq9tdbSKY9YseOopnE8/zdSu3fl042ac5i7sNhsZTieT3N2Z+N4HXPfyi3DjjbBxI0REWJ1aRMoYp5nG8cTFnEhahtNMwc+jEdX9h+LlFm51NBGRcscwTdO0OkRZEhcXR2BgILGxsQQEBFgdR0RKSFxcHP/73//4+OOPAbjkkkuYMWMGHTt2tDiZSNHEp24n6thIMpzxwLk//XbA5JJKzxLuP8zCdBWEaULr1hAezquPPcH76zbk2vTtvr3oN+Bq6NULPv3UhSGluCWnHyIx/W/sNm8CPVvq9mspccnph9gUfRvJGQfJvEHJhLM9UJpUfprq/tdaGU+kUCrq5+9z533VL7fj7uvavxvpiWn83OeTCnfNL4ZuBRURyUFAQAAfffQRCxcupHr16uzZs4cuXbrw6KOPkpKSYnU8kULJcMYTdWwUGc4E/r+oBuAAnOw59SSxKZssSleBrF0LkZHE3303n2zI/XobwNS1GzHvugtmzoTTp12XUYpNcvpBIqNHs+ZwL7Ydv5Mt0bew6mBXDsROQ99rS0lxmhlsih5NSsaRc2vI/L3vBJz8eXIiMclrrQsoIlIOqbAmIpKHvn37sn37dkaMGIHT6eTll1+mTZs2bNqkIoSUHccT5pLhjCPzg9WFDGwcjlOvqBK3ejX4+vJrnXqkO3N+LiDzI/D+M2f4u/sVkJICkZEui+hKaY4YkjMO4zTTrI5S7FIyotl49HpiUtZwfjE73XmGvadf5J8zr1kXTsq1E0lLSc44gIkjx+0GNv4984mLU4mIlG8qrImI5CM4OJgZM2Ywd+5cwsLC+PPPP2nfvj0TJ04kLa38fSCU8ud0ct4zTJo4OJ28wkVpKrCkJPD1JTYtHZuR/8DAse7u//+4cuRU8ko2Hb2JlQc7suZQD/440IE9MVNId8RZHa3Y/HvmPTKcsZBLcWN/7Mckpx9ybSipEE4mLcfAnut2EwenUlbjNNNdmEpEisppGpYsUjgqrImIFNCgQYOIiopi2LBhOBwOnn32Wdq3b8+2bdusjiaSJ5MMst8CmkMbM+cCgBSjSpXg9GnqutlxFuBWwJpxZwtNISElHMx1jibMZeux24lN3ZK1zmEmcjDuczZF31guimtOM43oxLm59hjKZCM6ca6rIkkF4jTTMPP5fQ+mfueLiBQjFdZERAqhcuXKfPPNN3z77bdUqlSJyMhILrvsMp5//nkyMjKsjieSI3/PluT9J9+Gv2cLF6WpwAYMAIeDy9esopKPd66T2dsNg861axH63bdQvTq0bevSmCUl3RHLrpNP8f/jPZ3PSVL6PvbHvm9BsuKV4YzHaabm2cbAICXjqIsSSUXi79mEvL9IMfB2q4Xd5uWqSCJyEdRjrWxQYU1EpAiuv/56duzYwaBBg0hPT+fJJ5+kU6dO7Ny50+poIhcI97v+7K1Bub1RclI9YJQLE1VQNWvCwIHY33yTl7t2xjCMC24JtRsG3u7uTK5fB778Eu66C9zcrMlbzKITf8Qkr9vPHByO/67M36JmN/wwyO85M/GwV3JJHqlYqvkNxoY7uf++h1oBt7gukIhIBaDCmohIEYWFhTFnzhy++OILgoKC2LBhA61atWLq1Kk4HLrFQkoPT7cwGlZ5lcwPWuePvZP531X9R1DJp48V0SqeZ5+Fo0fpNu4BvuzTixZVw7M2GUC3enWZ16UDdW8YBtWqwX33WZe1mCWl/5Pn2E8ADjOBdEeMixKVDLvNk1DffvmOcxXuO9CFqaSi8LAHExH6Epn9Is9/DWYW2ip7d6dGwA2WZBORwlOPtbJBhTURkYtgGAY333wzUVFR9O3bl9TUVB555BG6devGnj17rI4nkqWKb39aVZ1LqO8g3GyB2A1fAr3a0ST0feqHPIVRgMH0pRhERMDPP0NkJO26dWXW5vWsbt2cBR3bsrHJpXw073tqd+4ENhv8+mu5Gl/NbviQ31h/ADbDu+TDlLA6gfdgGB7k/FbbINz3Gnw9Grg6llQQYb59aVfta6r49MzqPenrXpdGlSbSIuwtbEb56AUrIlJaGKZZgNFzJUtcXByBgYHExsYSEBBgdRwRKUVM0+TTTz/loYceIj4+Hm9vb1566SXuu+8+bDZ9jyEi5zl4EN55Bz79FE6d+v/19erBPffAHXdAYKB1+UpAXOo2Nh69Lo8WNoK82tI6/HOXZSpJcalR/HlyPEnpf2etM3Cjuv9wGoQ8gs1wtzCdVBSZH/WcGEbevUVFSquK+vn73HlfueAu3H09XHrs9MQ0fuv/YYW75hdDhbVCqqg/2CJScPv37+e2225j6dKlAFxxxRV89tln1KlTx9pgIlL6pKTAn39CQgIEB0PTppm91coh0zSJPHYbp1PWwQUzZmb2mGwVNp1g7w4uz1ZSTNMkLnULCel7sRteVPLuirs92OpYIiJlRkX9/H3uvHstuAs3X0+XHjsjMZXFKqwVSvl85yYiYqHatWvz22+/8c477+Dj48OyZcto1qwZH330EfouQ6TkpDlOkZJxGKeZZnWUgvPygtat4fLLoVmzcltUg8xb55uFvk2IV2bhzMB+9jY1A5vhSdPKr5b5oprTTM/2+jMMg0Cv1lT3v55wv4EqqomIiJRDusFeRKQE2Gw27rvvPvr06cOtt97KypUrueuuu/jhhx/45JNPqFGjhtURRcqNmKTfORD7DvGpkUDmrIzh/jdQK+g+3Gz+1oaTbNxsfrQM/4y41ChOJP2Kw5mEr0cDwnyvxs3mZ3W8Ijue+CsH4j4l7uxr0N+jKTUDbiXM92qNXygiIkVmxWQCmryg8Mrv16IiIqVAgwYN+P3333n11Vfx9PTkl19+ISIigs8//1y91wrAaaYTnfgb/5z5jIPxs0kt47MFSvGLjv+OHcdvJz51W9Y6h5nA4bjP2Hr0BjKc8Ramk9wEeEZQP/ghLq30JNX9byjTRbV/Tr9N1In7iTvvNRiftpM/T/6PPTEv6He9iIhIOafCmohICbPb7Tz00ENs2bKFtm3bEhsby8iRIxk8eDDR0dFWxyu1jiUuZcmBK9h8/EF2n36T7SefZumBHuyKeQ3T/O/4TFIRpTti2Htq0tl/Of+z1UlS+h4OxX7k6lhSAKbpKBcFp7jUbfwb+87Zf53/Gsz870PxnxOTssrluURERMR1VFgTEXGRxo0bs3r1ap5//nnc3d358ccfiYiI4Ntvv7U6WqlzMnktm46PI90ZC4CJAzAxyeCf2M/Ydfp1awNKqXAs4QdMMvJo4eRo/NcqxJYSpunkaPxsNh4ewIr9jVmxvwnbj93OmeR1VkcrskNxX2GQ12yLdg7FfemyPCIiUr6cuxXU1YsUjgprIiIu5ObmxuOPP87GjRtp2bIlp06d4oYbbuD666/n5MmTVscrNXbHvHH2v3Lu0bIv9nNSM3S9Krrk9H8w8nkrk+E8Q7rzDKbpJDZlA8cS5hCTtLxsTXBQDpimk10nH+GvU4+TmP7X2bUOYpJXsfXYCI7Gf2dpvqKKT4s6W/jPjYP4tB0uy5MT03SS5ogh3RFraQ4REZHySoU1ERELNG/enHXr1jFx4kTsdjuzZs2iadOmzJ071+polktKP0RsWhQX3tp3PpOjSb+6KpKUUjabD5Dft6oG8alb2HC4B9uib+Svk4+w4/ho1h3sxNH4b1wRU4DjiT9yPPGns/86v2Ce2Rv1r1MTSUk/ZEGyi2MzvPJtYy9Am5LgNDM4EDuN1Yd6sPJgR/442I71R67heOLCYj1OhjOBowlzORA7jeOJC3E4U4t1/yIiFZl6rJUNKqyJiFjEw8ODp59+mrVr19KkSROOHz/ONddcw4gRIzh9+rTV8Sxz7vbPvBjYSXecKfkwUqpV9umbz62gdvw8mvHn8XtJzTicbUuG8wx7Tz3JEd2m5xKH4r4g77edBkcTyl6vtSo+V5L3edmp4tPbVXGymKaDqOMPsPf0S6Q6jmatT0jbRdSJcew7814xHMNkf+wnrDzYmZ0nH2Xv6ZeJOjGOVQc7czRh7kXvX0REpKxQYU1ExGKXXXYZmzZt4tFHH8Vms/HFF18QERHBwoXF26ugrPByCye/XkgmGXi7VXdNICm1AjzbEODZFnIc48oATDKybn/L+bbif0+/gsOZXEIJ5ZzEtJ3k3QvVQXyqtbdMFkU1/+txs/mS81tqGzbDg+oBN7k6FtGJP3IyeQkXvu4zn4N9Z94kIe2vCx5XGAfjpvP36VdwminZ9p1hxrPz5KPF3jNORKQiUo+1skGFNRGRUsDLy4sXX3yRlStXcskll3DkyBH69+/PHXfcQVxcnNXxXMrTXolQn+55DghuN3wI973ShamkNDIMg6ahHxLo1Tbz39gxcAPAZnhTN/hxUhz7yaug4zATiUle6oq4FZphuOfXApvh6ZIskHmbZFL6fpLSD1zU5BYe9hBahk3D3RZ4do2dc2+v7YYvLcI+tuRLgMwJE3J/m29g50h80SfOcTiT2HfmrTzb7D09FdPMq5gqIiJSPrhZHUBERP5fx44diYyM5IknnuCNN97gk08+4ddff2XatGn06NHD6ngu0yjkYWJSNuJwJv1nYPDMXkhNKz2Bm83HqnhSirjZA2ge/iXxqds4lfQrDmcKPh4NCPUdQHzqtgLswUZaxvESz1nRVfLuyYmkhZDrQP8mlXxK/necaTo4EPcZB+Omk+bInADFwx5KrYBbqRkwEsPIa4bPnAV4NqNTjWUcS/yZ0ylrAZNAzzaE+w3EzeZXzGdQMInpe8mroGziICFtd5H3fyp5OQ4zKc82KRmHiE+LIsCzeZGPIyIiUhaosCYiUsr4+Pjw+uuvM3jwYG699Vb27dtHz549ue+++3jppZfw9fW1OmKJ83OvQ6eqM/kz5iVOJq/i3O1Mvm61aRgyVr3V5AL+ns3x/88HeA97aAEe6cTDrSDt5GLUDBzNiaQFnCuOZ2fHw16JUN+rSjSDaTrZceJhjictypYhzXGcvadfIj7tT5pUfgXDKPwtMHabN9X8r6Wa/7XFmLjo7Ib3ebdo5sTAfhFfThR0jMs0R8UdL1REpDiYpoHp4lszXX288kC3goqIlFLdunVj27Zt3H333QC8++67tGjRglWrVlmczDX8POrSLvwDrqj5Gx2qfk7X6nO4vMZPKqpJgfl41MfXoyl5vd2xG36EePd0XagKyt+zKU2qvHH2Vl3j7JL5vHjYK9M8bDp2m3eJZjiZvIzjSQvJbby9Y4k/EZO8okQzuEqob988b6cHkyo+fYq8fy+3agVqp7EwRUSkIlBhTUSkFPPz8+P999/nl19+oUaNGvz999907dqV//3vfyQnV4wB173dwgnxao2/xyVF6kkiFVv9kCcxsJHbhBh1Qx7DbvNybagKqopvXzrU/IO6wQ9T2ac3ob79aVT5FdpXX4yvR4MSP/7huG/IeaKLc+wcjv+mxHO4QuZtrW7k9FbfwI6XvRphvv2LvP9g78542CuT+0QzNvw9mrnkeRURKc+cGJYsUjgqrImIlAG9e/dm+/btjBo1CtM0efXVV2ndujXr16+3OppIqRbo1ZaIsGl4u9XNtt7dXoVLK79CVf8bLEpWMXnYQ6gVeCdNQ9+mcZXXCPMbhM3mmkkLMscdy2uiAsfZNmWfj3tdWoR+nDXGm4Fb1sQeXm41aRX++UX1ELQZbjSs9MzZf/33A5gNAzcaVppY5P2LiIiUJRpjTUSkjAgKCmLatGkMHTqUO+64g127dtGxY0cee+wxJk6ciKen62bUEylLgrw70qb6LySkbSMl4xDuthACvdqe7dEjFYWbzZ/UfCYAdbP5uyaMCwR7t6dzjRUcS1xAfNo2DNwI8e5KJe+uRZqk4b+q+PSkRdjH7I15mcT0v7LWB3q25JKQCZq0QEREKgy9oxSRIjMdRzGTvoKUX8BMAfcmGD7DwaOrbtkrQVdffTVRUVE88MADzJw5kxdeeIGffvqJzz//nJYtW1odT6RUMgwDf88W+Hu2sDqKWCTM92r+ObOH3GfLNAjzHeDKSCUuc1KFocDQEtl/Je+uhFTrQlL636Q5TuHpVhUf91olciwRkYrIaRo4XTyZgKuPVx7oVlARKRIzbTPmyX6Q+Ak49oPzGKSuwDx9O2bc05hmzoNDS/GoVKkSX331FbNnz6Zy5cps376dtm3b8swzz5Cenm51PBGRUqe6/3W424JzGdTfjoe9MlX9hrg8V1lnGAa+Hg0I9m6vopqIiFRIKqyJSKGZZjLm6bsye6ll++b/7D02yTMheY4V0SqcoUOHsmPHDoYMGUJGRgaTJk2iY8eO7Nixw+poIiKlirs9mNbhX+B1dqbK88cd83GrRevwL3G3B1oZUUREJBvTNCxZpHBUWBORwkueD2Ysed1OYyZ95spEFVpoaCizZ8/mq6++Ijg4mE2bNtG6dWteeuklHI58BhQSEalAfD3q06H6L7QI+4RagaOpFXg7LcM+o331Bfi417E6noiIiJRBKqyJSKGZ6Zsgx1tpslpAxl+YziRXRarwDMPgpptuIioqiquuuoq0tDQee+wxunTpwl9//ZX/DkREKgjDsFHJuyv1gx+ifvCDhHh3xjD0llhEREqfc2OsuXqRwtG7CBEpggL+stUEBi5XrVo1fvrpJ6ZNm0ZAQABr166lRYsWvPHGGzidufUwFBERERERkaJQYU1ECs3waE/WeGo5soFbUwzD21WR5DyGYTBq1CiioqK48sorSUlJ4cEHH+SKK67gn3/+sTqeiIiIiIhIuaHCmogUnlc/sFUi918hTgzf212ZSHJQs2ZNfvnlFz744AN8fX1ZsWIFzZs354MPPtCsrSIiIiIipZwmLygbVFgTkUIzDE+M4E/B8Cf7baFnx13zvQu8+lsRTf7DMAzuuusutm3bRrdu3UhMTOSee+6hd+/eHDhwwOp4IiIiIiIiZZoKayJSJIZ7E4wqv2D4PQRuEWBvAF5XYYR8i83/YQyNr1aq1KtXj6VLl/LGG2/g7e3N4sWLadasGdOmTVPvNRERERGRUsi0YOIC9VgrPBXWRKTIDFsIht9d2Cr/gK3KAmxBUzE8WlkdS3Jhs9kYO3YskZGRdOzYkbi4OG677TYGDhzI0aNHrY4nIiIiIiJS5pTpwtqKFSsYMGAA1apVwzAM5s6dm+9jfv/9d1q3bo2npycNGjRg+vTpJZ5TRKQ0ufTSS/njjz946aWX8PDwYP78+TRt2pSZM2eq95qIiIiIiEghlOnCWmJiIi1atODdd98tUPt9+/Zx1VVXccUVVxAZGcm4ceO4/fbb+eWXX0o4qYhI6WK32xk/fjybN2+mTZs2nD59muHDh3Pttddy/Phxq+OJiIiIiFR4JmCaLl6sPukyqEwX1vr168dzzz3HNddcU6D2H3zwAXXr1uXVV1+lcePGjBkzhmuvvZbXX3+9hJOKiJROTZs2Zc2aNTz99NO4ubnxww8/EBERwffff291NJFSyzRNzqQlk5CeanUUEREREbGYm9UBXGnNmjX06tUr27o+ffowbty4XB+TmppKaur/v3GOi4srqXgiIpZwd3dn4sSJDBgwgJEjR7J9+3auvfZabrzxRt555x1CQkKsjigXwTQziEleSmzKKkzTgb9nGyr79sdmeFodrczJcDr58u/1zPh7HUeSYgFoFlyNOy/tTO/qjS1OJyIiIuWNEwMD104m4HTx8cqDMt1jrbCio6MJCwvLti4sLIy4uDiSk5NzfMyUKVMIDAzMWmrWrOmKqCIiLteqVSs2bNjA448/js1m4+uvv6Zp06bMnz/f6mhSRMnp/7D5cE92n7ibY/FfczzhO/aeepiNhzoRl7LJ6nhlisN0MnbdLF7c/mtWUQ1gx+mj3L9uFh/tXmlhOhERERGxSoUqrBXFhAkTiI2NzVoOHjxodSQRkRLj6enJ888/z5o1a2jUqBHR0dEMGDCA2267jdjY2Px3IKWGw5nAjmPDSXUcAcAkA5MMADKcsfx5fCQpGYesjFimzDuwjcVHd18w7ojz7JpXdyxlb9wJ1wcTERGRcss0DUsWKZwKVVgLDw/n2LFj2dYdO3aMgIAAvL29c3yMp6cnAQEB2RYRkfKuXbt2bN68mYcffhjDMJg2bRrNmjXjt99+szqaFNDxxDmkOY4Djhy2OnGaqUTHf+7qWGXWl39vwJbHrRF2w8a3+za7MJGIiIiIlAYVqrDWsWNHlixZkm3db7/9RseOHS1KJCJSenl7ezN16lRWrFhB/fr1OXjwIL179+aee+4hISHB6niSj1OJi/Jp4eBkom7zLai9cSeyeqflxGE6+SvuWK7bpWSkZhzjeOLPHE+YT3K67ioQERER1yvThbWEhAQiIyOJjIwEYN++fURGRnLgwAEg8zbOESNGZLW/++67+eeffxg/fjy7du3ivffe47vvvuPBBx+0Ir6ISJnQpUsXtm7dypgxY4DMGZabN2/O8uXLLU4meXGYieQ3YbrDTHJNmHLA0573fE8G4G33cE0YIcOZwM4TD7P2UDd2nniQnScfYv3hXmw/didpjlNWxxMRESkWTtOwZJHCKdOFtY0bN9KqVStatWoFwEMPPUSrVq2YOHEiAEePHs0qsgHUrVuXn3/+md9++40WLVrw6quv8sknn9CnTx9L8ouIlBW+vr68/fbbLF68mFq1arFv3z6uuOIKxo0bR1KSijOlka97I8CeRwsbvu4NSzyH00zlZOKPHDj9AgfPvEp86hZMM++CX2nUr3oT7Ebub5tMoHf1Rq4LVIE5zXS2HxvN8cSfAed5W0xikv8g8uhNZDjVq1ZERERcwzDL4rtbC8XFxREYGEhsbKzGWxORCikuLo6HH36YTz75BIBLL72UGTNm0KFDB4uTyfkSUrexLXpwnm0urfw2lX2vKrEMsSlr2HviPjKcpzFww8QEHPh5tuHSKh/ibq9UYscubn/Hn2Twkg9JdzrPnsf/sxs2wrz9WXjlvXjZ3S1KWHEcT1zAzhPj8mhhUD/kcWoEjHRVJBERKSEV9fP3ufNu+u0j2H08XXpsR1IqO4a9UuGu+cUo0z3WRETE9QICAvj4449ZsGAB1apV46+//qJz58489thjpKamWh1PzvLzbE71gHvO/uv8Lv0GYFDJ5yoq+fQrseMnpf3F7mO3kuHMnE02c0bSzIkUElIj2XVsJKaZ08QKpVN9/8p81OlG/Nwyb/d0M2y4ne3BVsMniM+7jlBRzUWOJfxAfm9ho+NnuSaMiIiIVHgqrImISJH069ePqKgobrnlFpxOJy+99BJt2rRh06ZNVkeTs2oF/Y9LKr2Gj/ulWes87dWpG/wUl1Z+AyOPWxsv1tG4j84W05w5bHWQlL6DM8m/l9jxS0LH0Hqs6P8gz7W6miG1W3J93da833EYC3vfS03fYKvjVRipGcfI+XV1jkma44Sr4oiIiEgFl/dIvCIiInkIDg7m888/Z+jQodx5553s2LGD9u3b88QTT/DEE0/g4aHB3K1kGAZV/AZT2XfQ2Z5jDtxsIRhGyQ5Ka5omp5Lmc66HWs7sxCQtINinZ4lmKW4+bh5cV7c119VtbXWUCsvTrSqJ6XvJ/fVl4GEPc2UkERGREmGaBqaLJxNw9fHKA/VYExGRizZo0CB27NjBddddh8Ph4JlnnqF9+/Zs377d6mhCZoHN3R6Eu71SiRfVMpmYZn63BTtxaIB5KYJwv6HkXbSFqv7XuyaMiIiIVHgqrImISLGoXLky3333Hd988w0hISFERkbSpk0bXnjhBTIyMqyOJy5kGDY87DXyaWXDy72eS/JI+VLZpyeBnu3J+W2sHV/3Swj3G+LqWCIiIsXuXI81Vy9SOCqsiYhIsRo2bBg7duxg4MCBpKen88QTT9C5c2d27dpldTRxoTD/m8k+acJ/OQn1u8FVcaQcMQw3moV9RLjfUIxso5rYqOxzJS3Cv8Bu87Esn4iIiFQsKqyJiEixCw8PZ+7cucyYMYPAwEDWr19Pq1ateO2113A4ys5MkFJ04f4j8fVowYVvNTKLbTWCHsbLvbbLc0n5YLd507Dy83SsuZKmoe/RtMo7dKjxO01D38LdrokkRERESqOYmBiGDx9OQEAAQUFBjB49moSEgg0NYpom/fr1wzAM5s6dW7JBC0mFNRERKRGGYTBixAiioqLo06cPKSkpPPzww3Tv3p2///7b6nhSwmw2LxqHfUXVgLuwG/5Z673dG1C/8htUD7zPwnRSXrjbQ6js04vKvr3xdAu3Oo6IiEixcpqGJUtJGT58ODt27OC3335j/vz5rFixgjvvvLNAj33jjTdcNFZw4amwJiIiJapGjRosXLiQjz76CD8/P1auXEnz5s159913cTqdVseTEmS3+VAreDyta26gRbVltKy+imZVf6Gy7yCro4mIiIiIC+3cuZNFixbxySef0L59e7p06cLbb7/NN998w5EjR/J8bGRkJK+++iqfffaZi9IWjgprIiJS4gzD4I477mD79u1cccUVJCUlMWbMGK688kr2799vdTwpYTbDEy/3Oni6VSu13zSKiIiIlDamac0CEBcXl21JTc1vxve8rVmzhqCgIC677LKsdb169cJms7Fu3bpcH5eUlMRNN93Eu+++S3h46eydrsKaiIi4TJ06dVi8eDHvvPMOPj4+LF26lGbNmvHJJ59gnvsrLiIiIiIilqpZsyaBgYFZy5QpUy5qf9HR0YSGhmZb5+bmRkhICNHR0bk+7sEHH6RTp04MGlR673hQYU1ERFzKZrNx3333sXXrVjp37kx8fDx33HEHV111FYcPH7Y6nogACalR/HXiQdYdaM7aA43ZHn0dJxN/VgFcRETEhTJ7kBkuXjKPffDgQWJjY7OWCRMm5JjxsccewzCMPJddu3YV6fx//PFHli5dyhtvvFHEK+gabvk3ERERKX4NGjRg+fLlvPHGGzzxxBMsXLiQiIgI3nrrLW6++WbdMihikZOJP/PXybFkzuCaOYtvfOoW4lM3Eeq7kvqVXtDPZwkzTSdpjhMYhh13WyVdbxERcbmAgAACAgLybffwww8zatSoPNvUq1eP8PBwjh8/nm19RkYGMTExud7iuXTpUv7++2+CgoKyrR86dChdu3bl999/zzefKximvnoslLi4OAIDA4mNjS3Qi0xERPK3c+dORo4cyYYNGwAYNGgQH374IWFhYRYnE6lY0hwn2HSoCyYZQM5vES+p/DpVNAFFiTBNB4fiZnA4bgapjqMAeLvVpWbgHYT7DVWBTUQqnIr6+fvceV/y5WPYfbxcemxHUgp7bn6x2K/5zp07adKkCRs3bqRNmzYA/Prrr/Tt25dDhw5RrVq1Cx4THR3NyZMns61r1qwZb775JgMGDKBu3brFlu9i6FZQERGxXOPGjVm9ejXPP/887u7uzJs3j6ZNm/Ldd99ZHU2kQjme8B0mDnIrqoGNo3HTXBmpwjBNJ3+eeIh/Tr+UVVQDSM74l79OPc4/p1+yMJ2IiFjB9beBZi4loXHjxvTt25c77riD9evXs2rVKsaMGcMNN9yQVVQ7fPgwjRo1Yv369QCEh4cTERGRbQGoVatWqSmqgQprIiJSSri5ufH444+zYcMGWrRowalTpxg2bBjDhg274JsqESkZ8albAWceLZwkpEVd1Fhryen/8u/pF9lx7GZ2HhtNdPzXOJyJRd5feXEiaREnkxZyYVEz89+H4j4jLiXS1bFERESKzVdffUWjRo3o2bMn/fv3p0uXLnz00UdZ29PT09m9ezdJSUkWpiw8jbEmIiKlSosWLVi/fj3PPfccL7zwAt999x3Lly/nww8/LNWzAYmUB4ZhJ3NstdwLZwb2It+SeDT+C/bFTCbzu10HYHA6ZRkHz7xB07Av8fG4pEj7LQ+OxH1F5nXJubBpYOdI/EwCvFq6MpaIiFjIJK+/yCV3zJISEhLCzJkzc91ep06dfL+8K42jmanHmoiIlDoeHh4888wzrF27liZNmnDs2DEGDx7MyJEjOXPmjNXxRMqtYK/u5P2W2k6Qd/ci7ftM8kr2xUw6u3/H2bWZx0p3xvDn8ZE4zdQi7bs8SEzfQ169BU0cJKb/5bpAIiIiUiAqrImISKl12WWXsWnTJsaPH4/NZuPzzz8nIiKCRYsWWR1NpFyq7DsAN1slwJ5LCyfVA0YXad+H4z7KY78O0hzRnEpcWKR9lwd2wzefFgZ2w88lWURERKTgVFgTEZFSzcvLi5deeomVK1dyySWXcPjwYfr168edd95JfHy81fFEyhW7zYemYZ/jZgs6u+bcLZ92wEb9kBcI8GpX6P2appPYlFX8f0+1nBicTlle6H2XF6G+/cm98Jipim8/14QREZFSoTxNXlCeqbAmIiJlQseOHYmMjGTs2LEAfPzxxzRr1oxly5ZZnEykfPH1aEyb6suoF/IMwV7dCfTqRPWAO2hdbRlh/sOKuFcn+Y/aYlboSQyqBdyM3fAm57fndjzsoYT5aZxJERGR0kaFNRERKTN8fHx44403+P3336lbty779++nR48e3H///SQmVtwP5CLFzW7zI9z/ZhqHfUrTsC+pHTweL/eaRd6fYbjh494w33ZJaTsLNShxasYxTiev4EzyGhzOlCLnKw283KrSPHw67rYQAAzcMM7OM+blVoMW4V/gZtOtoCIiFYpp0SKFosKaiIiUOd26dWPr1q3cddddALzzzju0bNmSVatWWZxMRHJTNeDWfNukOg4Tn7op33ZpGSf48/h9rD/Ulahjt7H92C2sO9iB/WfexjTzut20dAvwbE6Hmr/TuMrrVPO/kWoBNxMR+iHtqi/Cx72O1fFEREQkByqsiYhImeTv788HH3zAL7/8Qo0aNdi7dy9du3blkUceISWlbPdcESmPgr2uyLeNgRsxyYvzbJPuOE1k9HWcSlrM+bNoOswEDpx5kz2nnrrYqJayGR6E+l5Fg0pP0SDkcSr5XIFh5D32moiIlFNWjK+mMdYKTYU1EREp03r37s327dsZNWoUpmkydepUWrVqxfr1662OJiLnMUkrWDsz73aH46aTmnGE3CZCOJbwHQmpUYWNJyIiIlIkKqyJiEiZFxQUxLRp0/jxxx8JDw9n165ddOrUiSeeeIK0tIJ9mBeRkuVuD8XNFphnG5MMfDwa5dkmOv4bzu+p9l8GdqITvi9KRBERESmHDhw4wMqVK7Ot27p1KyNGjGDYsGHMnTv3ovavwpqIiJQbAwYMICoqihtvvBGHw8ELL7xA27ZtiYyMtDqaSIVnM9wJ8xtO7m8/DeyGL5V9rs51H6bpIN15Ks/jmDhIyzha9KAiIiKlhGlas5Q3DzzwAJMnT87697Fjx7jiiiv44YcfWLFiBUOHDuWHH34o8v5VWBMRkXKlUqVKzJw5k1mzZlG5cmW2bdtG27ZtefbZZ0lPT7c6nkiFViPwXvw8mnHhW1A7BnYuqfwmdptPro83DDt2wz/PYxjYcbdXuviwIiIiUi6sX7+eK6+8Muvfn3/+OcnJyWzdupXDhw/Ts2dPpk6dWuT9q7AmIlKMTOcZ0hKmkRw7kZS4V3Ck77Q6UoV17bXXsmPHDq655hoyMjKYOHEiHTt2ZMeOHVZHE6mw7DYfmobNpFbQQ7jbQ8+tpZJPb5qFzybEp0e++wjzGwrkPpi/iYNQv0HFE1hERMRCrp64IGsCg3ImJiaG0NDQrH/Pnz+fbt26Ub9+fWw2G0OGDGHXrl1F3r8KayIixSQt8Rvioy8jJW4y6YlfkpbwHokn+pAUczumM9nqeBVSaGgo33//PV9++SVBQUFs2rSJ1q1b88orr+Bw5DzwuYiULLvNmxqB93JZ9TW0r7mDjrV20bDKu/h5Ni/Q42sE3oabzZ+ci2s2gr27EeDZtlgzi4iISNlVpUoV9u/fD8CZM2dYu3Ytffr0ydqekZFBRkZGkfevwpqISDFIT/mNlNjxQBpgAhmcm7EuI2UxyWcetDBdxWYYBsOHD2fHjh3079+ftLQ0xo8fz+WXX86ePXusjidSYRmGgd3mjWHk3vssJ55u1WgR/i2+Hg3/s8VGmO81NK7yLoZR/r5tFxERkaLp1asXb731Fq+99hojRozA6XQyePDgrO1//vknNWvWLPL+3Yoho4hIhWOaThzpO8BMwOZWh9T418n8riKnmeqcZKQswJG+B7v7JS5OKudUq1aN+fPnM23aNMaNG8fq1atp0aIFL774ImPGjMFm03dNImWFj0d9Wlf7kfjU7SSkRWHDg2Dvrni4heb/YBERkbLCNDIXVx+znHnxxRf566+/+N///oeHhwdTp06lbt26AKSmpvLdd99x0003FXn/KqyJiBRSWtJskuOnYjoOn11jACYGYJDbHyI7GSmLVFizmGEY3HbbbfTq1YvRo0ezePFixo4dyw8//MC0adOy/sCKSNng79kMf89mVscQKdMS0/7mcPxMzqRsxDDsVPK+nGr+N+DlFm51NBGRYhEWFsaqVauIjY3F29sbDw+PrG1Op5MlS5ZcVI81fT0vIlIIqQmfknTmwfOKapB562fm/5rkNj+1DdNMLOl4UkC1atXi119/5b333sPX15fly5fTrFkzPvjgA8zyOMe4iIhIDo7Ez2Ldkas4FP81Cem7iE/bwb+xH7L2cG9ikldZHU+kwjNNa5byKjAwMFtRDcDb25sWLVoQEhJS5P2qsCYiUkBORwzJcc/n2Sb3v0Pp2NwaFHckuQiGYXDPPfewbds2Lr/8chITE7nnnnvo27cvBw8etDqeiIhIiYpL3cauU0+R+e7l/Al9nDjNNLYdv4fUjOMWpRMRKV4HDhzg7rvvpmHDhgQHB7NixQoATp48yQMPPMCWLVuKvG8V1kRECig9eS6ZkxLk7cJeawYYfrh7XVUSseQi1atXj2XLlvH666/j5eXFr7/+SkREBNOnT1fvNRERKbcOxs7AyPXjoInTTOdIwiyXZhKR/zAtWsqZP//8k1atWvHtt99St25d4uLismYBrVy5MitXruSdd94p8v5VWBMRKSCn4xCFH5rSDhh4B72GYfMugVRSHGw2G+PGjSMyMpIOHToQFxfHrbfeysCBAzl69KjV8URERIpdTMpKzGw91f7LSUzyapflEREpKePHjycoKIi//vqLL7/88oIvz6+66ir++D/27js8imoP4/h3dje9NxI6UgQkNEEQRAVBQESlWFCUXhQ76BUUQey9gAULKGIBe0UUUAGp0jtKk5YEQiC97e7cPyIokoQQkp2U93OfebyZPXPmnQU2u789c87ixcXuX4U1EZEiMmxhUOgb0OP+KaDZvdvhHzEbL7/upZZLSk7Dhg1ZvHgxTz31FN7e3nz33Xc0adKEjz/+WKPXRESkQil4Xth/y2+1cxGR8mXRokXcdtttREVFYRinLjZXq1YtDhw4kM+RRaPCmohIEXn5XU3hY6PtOHwuJbjqBgKrLCMoZgMBkR/h8GnrqYhSAhwOB2PHjmX16tWcf/75HD16lJtuuonrrruOw4cPWx1PRESkRIT6tMbAXkgLG6G+F3gsj4icyjQNS7aKxu124+/vX+Djhw8fxsfHp9j9q7AmIlJEdkdtvP37A/n9sjEAG75BYzAMX2yO6hi2UM8GlBIVGxvL8uXLmTRpEg6Hg88//5wmTZrwxRdfWB1NRETkrNUMHljoraAGNqoF3eDBRCIipeP888/n+++/z/cxp9PJrFmzuPDCC4vdvwprIiJnwC/kMbwDhvDPXGt5L6OGLZqAiPdxeLe0LJuUPC8vLyZMmMCKFSuIjY3l8OHD9O3bl/79+5OUlGR1PBERkWIL82tL3dAxACeNXMv7/zaaRD2Pn6O6RelE5AQtXHDWxo0bx9y5c7ntttvYtGkTAAkJCcyfP5+uXbuydetWxo4dW+z+DVOTxpyRlJQUQkJCSE5OJjg42Oo4ImIRtyuR3Kx5mGYadkc9HD6XYhiF3U4h5V12djaTJk3imWeewe12U7VqVd5++22uvFKrvUrJcptuVh75k98ObyHX7aR+UDW6Vz2fIC8tgCIiJe9Y1ir2p3zAsexVGNiJ8LuUGsG3EOjdwOpoIpX28/fx66711gRsfr4ePbc7M4u9Ix6tcM/5zJkzufvuu0lOTsY0TQzDwDRNgoODeeONN7jxxhuL3bcKa2eosv7DFhGRPCtWrGDgwIFs374dgCFDhvDiiy8SEhJicTKpCA5npTBm7TR2psVjN/JGxLpNN942BxNib6RjdKzFCUVERDynsn7+VmGtdKSnp/PTTz+xY8cO3G439erVo1u3bgQFBZ1VvyqsnaHK+g9bRET+kZmZyfjx43nppZcwTZOaNWsyffp0unTpYnU0KcecbhcDl7/MvoxEXObJK/EZgIHBm21u57yQmtYEFBFM0yQ99w9c7nR8HTXxcURZHUmkQqusn7+PX3fNNydaUljbN3JSpXvOz4bj9E1ERETk3/z8/HjhhRfo1asXgwcPZufOnVx++eXcdtttPPvsswQGBlodUcqhZYnb2JN+KN/HTMCGwQe7f+HJFgM8G0xEAEhI+55dx14m07n37z02Iv060SD8Qfy8aliaTURECrZ3797TNwJq1apVrP5VWBMRESmmiy++mPXr1/PAAw/w2muv8cYbb/Djjz/y7rvvcskll1gdT8qZRYc3Yzdsp4xWO86Fm8WHt+A23dgMrT8l4kn7Uz7ij6RJnLwyuJvEzF9JjltL62qfaaJ/ESl5ViwoUAHvaaxTpw6GYZy2nctV8ErJhVFhTURE5CwEBATw6quv0rt3b4YMGcKuXbvo2LEjd999N08++SR+fppwXoomy5WL+zQzdLgxcZpuvFVYE/GYXFcyfyY99fdP//036sLpTmbX0ZdpEvWcp6OJiEgRTJ8+/ZTCmsvlYs+ePbz//vtUqVKF22+/vdj9q7AmIiJSAjp37szGjRsZPXo006ZN4+WXX2bOnDnMmDGDCy+80Op4Ug7UDYzm14SNhX5RXNU3DG+b3r6JeFJC+neY5Bb4uImLQ+lzaBgxEYdNUwGISEkyOHmkrKfOWbEMGjSowMceeOAB2rZtS3JycrH719edIiIiJSQ4OJh33nmH77//nmrVqvHHH39w0UUXMXbsWLKzs62OJ2Vcz2ptCn3cwODaWu09lEZEjsty7sfAXmgbEyfZrvznSBQRkbIrICCAwYMH89JLLxW7DxXWRERESliPHj3YtGkTN998M263m2eeeYZWrVqxevVqq6NJGRblG8z9jXsDeQsV/JuBQcuwuvSpqcKaiKc5bKGY5D/34b952UI8kEZEREqa2+0mPj6+2MersCYiIlIKwsLCmDlzJl988QVVqlRh8+bNtG3blkceeYTc3IJvKZLK7eoabXnx/KE0DzvnxL4on2BG1u/GC+cP0W2gIhaIDuhB4bN52wjzvRBve4SnIolIZWFatFUSKSkpfPfddzz33HO0bNmy2P3o3ZmIiEgp6t27Nx06dOD222/n008/ZdKkSXzzzTfMmDGDpk2bWh1PyqC2EefSNuJcslw55LidBDn8irSSlYiUDj+vmlQLvI6DaZ9y6idOAwODc0LvsiKaiIgUgc1mK/C9lGma1KpVi9dff73Y/auwJiIiUsqioqL45JNPmD17NqNGjWLt2rW0atWKSZMmcf/99+Nw6NexnMrX7o2v3dvqGFIGuN3ZZLsSsNv88bZHWh2nUjo3YgKG4cWB1I/JK67ZABdetnDOi3yKUN9WFicUkQrJihFkFXDE2oQJE04prBmGQVhYGPXq1aNr165n9X7cMM3TrOsuJ0lJSSEkJITk5GSCg4OtjiMiIuVMfHw8I0aM4NtvvwWgbdu2vPfeezRq1MjiZCJS1jhdKfx1bDLxaZ/gNjMACPRuRu3QOwn372Rxusop23mIxIwFOM00/B3nEOF/KTbDy+pYIhVWZf38ffy6a77+CDY/X4+e252Zxb5Rj1S65/xsaI41ERERD4qJieHrr7/mvffeIyQkhBUrVtCyZUteeukl3O7TT44tIpWD05XCuvjrOZg680RRDSAtZxObDw0nPvUTC9NVXj6OKlQPvpHaIcOJCuiiopqIiOhWUBEREU8zDIOBAwfSuXNnhg4dyk8//cTo0aP58ssveffdd6lXr57VEUXEYvuS3yAzdzfg+s8jeQX4HUcmEuF/OV72MI9nExERDzGNvM3T5yznhgwZcsbHGIbBtGnTinU+FdZEREQsUqNGDebOncvbb7/NmDFjWLx4Mc2aNeO5557j1ltvxWbTwHKRysht5hKXOotTi2r/MHFyKO1Lqoec+YcHERGRiuznn38+44WfzmahKBXWRERELGQYBiNGjKBr164MHjyYX3/9ldtvv50vvviC6dOnU6tWLasjioiHOV3HcJmphbYxsJORu9tDiURExAqmmbd5+pzl3Z49ezx6Pn0VLiIiUgbUqVOHBQsWMHnyZPz8/FiwYAGxsbFMmzYNrTMkUrnYbH5FaGVitwWUehYREREpnAprIiIiZYTNZuPOO+9k/fr1tG/fntTUVIYNG0bPnj05ePCg1fFExEMctkBCfTsA9gLbmLiICrjCc6FERMTzTIs2OSMqrImIiJQxDRo0YNGiRTz33HP4+PgwZ84cmjRpwgcffKDRa55kmrBtGyxZAmvXQmam1YmkEqkVegd5n27ym/PFTqjvRQR6N/NwKhERkfLphx9+4PLLLyciIgKHw4Hdbj9lKy4V1kRERMogu93Offfdx5o1a7jgggs4duwYt9xyC3369CEhIcHqeBVbejpMmQJNmkDjxtChA5x/PlSvDmPGwG7NayWlL8S3NY2jpmAz8m4LNXBwfARbmO9FNK7y6llNtCwiIlJZfP755/Ts2ZOEhAT69euH2+3mxhtvpF+/fvj5+dGsWTMmTJhQ7P5VWBMRESnDzjvvPJYuXcrjjz+Ol5cXX331FbGxsXz66adWR6uY4uLgoovg3nuhSROyvv2MQ6t/JGXR9zBsGLz3HjRrBvPmWZ1UKoHIgG5cWHM5DSKepFrwLdQMuZWWVb8mNmY6DluQ1fFERKS0mYY1WwXz1FNP0aZNG9auXcukSZMAGDJkCB9++CGbNm0iLi6Oc845p9j9q7AmIiJSxjkcDh566CF+//13mjdvTmJiItdffz39+vXjyJEjVserONLT4YorIDGR5JXz+fj5tjxe62NecUzlmZB3eH24yY5N38DFF8M118CqVVYnlkrAbvMnJuh66oY/RJ2wewn0aWJ1JBERkXJly5Yt9OvXD7vdjsPhACA3NxfIW0Bs1KhRPPPMM8XuX4U1ERGRcqJ58+asXLmShx9+GLvdzuzZs2nSpAnffPON1dEqhmnTYPNmkr/9kNd83mNL8nJM3CcePpi5i3cPv8DGaWPg3HNh3DgLw4qIiEhFZ5jWbBWNv78/3t7eAISGhuLj40NcXNyJx6Ojo9l9FlN9qLAmIiJSjnh7e/Poo4+yfPlyGjduTEJCAtdccw0DBw7k2LFjVscrv0wTXn8d+vRhTvjvZLrScP+rqAZg/r1M1pdHpuMcfTfMnw/bt1uRVkRERESKqGHDhmzZsuXEzy1atGDmzJk4nU6ysrL46KOPqFWrVrH7V2FNRESkHGrdujVr1qzhf//7H4Zh8P777xMbG8uPP/5odbTyaetW2L6drIH92Jy8/JSi2r9luzPZ3LUGBAXBl196MKSIiIiInKnevXvz9ddfk52dDcBDDz3Er7/+SmhoKFFRUSxevJixY8cWu38V1kRERMopX19fnnnmGX777Tfq16/PgQMH6N69OyNGjCA1NdXqeOXL33PVJVcNOOn2z/zYsJNoJEFMzInjREREREqcadFWwdx3333s3bsXHx8fAHr27Mmvv/7K8OHDGTlyJAsWLGDQoEHF7l+FNRERkXKuffv2rF+/nrvuuguAt99+m2bNmvHLL79YnKwc8fcHwDej8KIagIkbX8MPUlNPHCciIiIi5cfFF1/MSy+9xPPPP0+nTp3Oqi8V1kRERCoAf39/XnnlFX755Rfq1KnDnj17uOyyy7jrrrtIT0+3Ol7Z17gxhIQQ8t1Cqvqeg0HhS8033+YF8fHQrp2HAoqIiEilYxrWbBXM9ddfz5dffnniVtCSpsKaiIhIBdKxY0c2bNjAiBEjAJgyZQotWrRgyZIlFicr4/z9YdAgeOcdugb1PrFQwakMLgjvSuAb70O9etC1qydTioiIiMgZWrJkCX379qVKlSrccsstfPfdd+Tm5pZY/yqsichZMU0nxzJ+Ii75ZRJSppKVu8PqSCKVXlBQEG+++SZz586levXq7Nixg4svvpj777+frKwsq+OVXXfeCZmZnDviGW6Iug1vmy+QN6ea8ff/2oR35aovs2DWLHjgAbDlvZVKyfyFXYduZuO+Jmza34y9ifeSmbPZyqsRERGR8k5zrJWI/fv38+uvv3LzzTczb948rr76aqKjoxk6dCg//fQTLpfrrPo3TNOsgE9b6UlJSSEkJITk5GSCg4OtjiNiqbSsFexOvJ1c9yHAAbgBNyF+l1Mn4hXstkCLE4rIsWPHuOeee5gxYwYAjRs3ZsaMGVxwwQUWJyuj5s6F3r2hcWOcY+5mU5eqJJpJ+Nn8abbdm6A33oePP4bRo+H558EwOHjsKQ6nvA7YgeNvzOyASa2IKYQFXG3d9YiIiJRjlfXz9/HrrvniY9j8fD16bndmFvtGP1xhn3O3280vv/zCJ598wpdffkliYiIRERH07duXqVOnFqtPFdbOUGX9hy3yX5k529kW3xOTXDhlBT07QT4XUr/KRxhGxbtHX6Q8+uabbxgxYgQJCQnY7XbGjh3LhAkT8Pb2tjpa2bNiBYwbB7/8AsHBULVq3kIFBw9C3bowdiwMGwaGQUrmfHYfHlxIZw4aV1uCt6Oax+KLiIhUFJX187cKa57hcrmYPn069913H2lpacUeuaZbQUWkWOJTXsfEyalFNQAXqdlLSM9e6elYIlKAq6++ms2bN9OvXz9cLhdPPPEEF1xwAevXr7c6WtnTti38/DNs3gz/+x9ceSUMGQJz5sCff8Lw4fD3lwaHU6aRNzqtIG6OpH3okdgiIiJSwehW0FIRFxfH5MmTueSSS7j11ltJS0ujffv2xe7PUYLZRKSSME0XxzK+459bnvLjICnjWwJ923oqloicRkREBB9//DF9+vRh1KhRbNiwgdatWzNhwgTGjh2Ll5eX1RHLlvPOy9sKkZGzmsJfC91kZK8q0VgiIiIicmYOHTrEZ599xuzZs1myZAlut5s2bdrw/PPPc/3111O9evVi960RayJyxtxm1t+3gBbaCpc7xSN5PMU0c0nN+Jb9hwfxV0JPDiaOIj3rN3RHvZQ31113HZs2baJ37944nU4mTJhA+/bt2bJli9XRyqHCRqvlMQwVLEVERKQYNGKtRHTu3Jnq1atzxx13kJqayhNPPMGuXbtYvnw5995771kV1UCFNREpBpvhj90WfppWBj6O2h7J4wku11H+SriKg0dGkp41n6ycNaRmfsv+w9cTd+Q2TNNpdUSRMxIdHc3nn3/OzJkzCQ0NZdWqVZx//vk899xzZ70yUmUS5HsphRfXDIJ8L/FUnDLraHY63+xbx+w9K/k9cbe+kBARERGPOXToEBMnTmT79u2sWbOGBx54gDp16pRY/7oVVETOmGEYRAXeTHzKq+Q/xxqAm4jA6z0Zq1TFJd1Ndu7mv386fs15xYfUzG/xTqlHZMj9lmQTKS7DMLj55pvp1KkTw4cP54cffuB///sfX331Fe+99x4NGjSwOmKZFxU8guTMOQU8asNm+BMWcJ1HM5UlTreLF7f8xKw9K3Cabgzyvgiv6R/Oky370Dy8ltURRUREpILbuHFjqfavEWsiUizRwSPwcZxDQSM1qoaMxsdR07OhSklO7k7Ss+ZT8DxKJkdT38HtzvRkLJESU716db7//nveeecdgoKCWLp0Kc2bN2fy5Mm43QUVzwUgwOd8aoY/R95bqn+/HhrYDH/qVvkAhz3MonTWe2zDt3y4exlOM+/v0fFxagcyjjJs2Xv8kZJgXTgREZGyzjSs2eSMlPvC2muvvUadOnXw9fWlbdu2rFxZ8CqE7733HoZhnLT5+np26VqRisJuC6Zh9JdEBt6Agc+J/d72WtQOf56qIXdbmK5kpWctAgr/BeM2U8nO3eSZQCKlwDAMhg4dysaNG+ncuTOZmZncfffddO7cmT179lgdr0wLD7yBRlUXEhU0DH/v1gT4XEjV0AdpXG0JAT6trI5nmd1piXy5b02+U7W4MXGabt784xeP5xIREREpSeX6VtDZs2czevRopk6dStu2bXn55Zfp1q0b27dvp0qVKvkeExwczPbt20/8bBiqxooUl8MeSq3wp6ke+hDZzr8wDB98HfUwjHJfs/+Pos03ZZqal0rKv9q1a/PTTz8xdepU7r//fn799VeaNm3KCy+8wPDhw/V7swA+XnWoFjbe6hhlypwDG7AbNlxm/qMeXaabBfFbyXBm4+/wybeNiIhIZWaYeZunzylnplx/+n3xxRcZPnw4gwcP5rzzzmPq1Kn4+/szffr0Ao8xDIOYmJgTW3R0tAcTi1RMdlsQ/t6x+Hk1qIBFNfD1bs3plscx8MbHu7FnAomUMpvNxqhRo9iwYQMdOnQgLS2NkSNHcsUVV7B//36r40k5cTQ7/TRjfcFtmqTkZnkkj4iIiEhpKNVPwG63m/fff79U+s7JyWH16tV06dLlxD6bzUaXLl1YtmxZgcelpaVRu3ZtatasyTXXXMPmzZsLbCtSmpzuVOJS3mNDXC/WHOjEloQhJGXMxyzgm32xjq93c3y8mlLwyn92ggOuw24L8WQskVJXr149fv31V1588UV8fX358ccfiY2NZcaMGVrVUU6rql8I7tP8PfG22Qn19vdQIhEREZGSV6qFtdzcXAYPHlwqfScmJuJyuU4ZcRYdHU18fHy+xzRs2JDp06fz9ddf88EHH+B2u2nfvn2h375nZ2eTkpJy0iZytrKc+1l38Ap2H32MtJyNZDn/4ljWYrYdHsH2xDswTafVEeVfDMOgWsRU7LYITn7ZNAADH68mRIVOsCidSOmy2+3ce++9rF27lrZt25KcnMygQYO45pprCvx9KwLQs0aLQh+3GzaurN4cX7vXPzszM+G99+DSS6FWLahdG7p0gVmzICenVPOKiIiUOaZFWwWVnZ3NsmXL+Prrr0lMTCyxfs96jrVHH320wMdyc3PPtvsS1a5dO9q1a3fi5/bt29O4cWPefPNNHnvssXyPeeqpp5g0aZKnIkolYJom2w7dSo4rgZNftfLm50rK+JH9yW9QM/ROS/JJ/ry9zqFOzAKOpb1HcvonuN3HcDiqExpwMyEBN2Kz+VkdUaRUNWrUiN9++43nn3+eiRMn8u2339KkSRNee+01brjhBs29JqeI9gtm5LkdeSOfBQrsho1gL19uPbfjPzt/+gluugmOHIFu3WDgQDBNWLIEbrwRqlaFTz+Fiy7y3EWIiIhIhTB58mQeeeQRkpOTAZg3bx6XXXYZiYmJNGrUiGeffZYhQ4YUq++zHrH2+OOPs23bNuLi4k7ZEhJKbwn1yMhI7Hb7KedISEggJiamSH14eXnRsmVLduzYUWCbcePGkZycfGLbt2/fWeUWSc1eRUbuFgqeEN8kLvU93Ka+mS9rHPYIIkPGUK/aChrU2M45MT8TFjRERTWpNBwOB2PHjmX16tW0bNmSpKQkbrzxRq6//noOHz5sdTwpg249tyMPxl5JhHfAiX0GcGFkXT7oMIKq/qF5O3/8Ea68Etq0YdeapUx8ehRXXBpJj45VePyV+9i3cjE0aJA3em3pUkuuRURERMqnd999l3vuuYfu3bszbdq0k6Y0iYyM5LLLLmPWrFnF7v+sR6w1bdqUm266iZ49e57yWFZWFu+8887ZniJf3t7etGrVigULFtCrVy8gb063BQsWcMcddxSpD5fLxcaNG+nRo0eBbXx8fPDx0UpVUnJSsleSN1dXwStIOt1HyczdRYB3I4/lEhEpqtjYWFasWMGTTz7J448/zmeffcaiRYuYOnUqvXv3tjqelCGGYdDvnLZcW7s1G4/tJ8OZwzmBUVQ7XlADyMjIG6nWtSufT57AxE0/YPvXaqL79xzlEwyem/4i3YaMhhtugF27wMsr/5OKiIiI/MsLL7zANddcw0cffcSRI0dOebxVq1ZMnjy52P2f9Yi14cOH43bnP9m6l5cXEydOPNtTFGj06NG8/fbbzJgxg61bt3LbbbeRnp5+Yl63AQMGMG7cuBPtH330UX766Sd27drFmjVruPnmm/nrr78YNmxYqWUU+a+iT/hdgW9uF5Fy7/jv+BUrVhAbG8uhQ4fo06cPN998M0ePHrU6npQxDpudluG1uahKg5OLagAffwxHj7LjqYlM3PQDJpwoqgG4TBOX6eb+zd9z8OlHYf9++PZbj+YXERGxggEYpoe3UryepKQk+vfvT3BwMKGhoQwdOpS0tLTTHrds2TIuu+wyAgICCA4O5pJLLiEzM7PI592xYwdXXHFFgY+Hh4fnW3ArqrMurN16661cffXV+T5mt9tLtbB2ww038PzzzzNhwgRatGjBunXrmDt37okFDfbu3UtcXNyJ9kePHmX48OE0btyYHj16kJKSwtKlSznvvPNKLaPIfwX7tqGw0WoADlsIfl51PRNIROQsnH/++axatYpx48Zhs9n48MMPadKkCXPmzLE6mpQX06ZBjx686zyIzSjsranJzKDMvDnWpk3zWDwREREpGf3792fz5s3MmzeP7777jkWLFjFixIhCj1m2bBndu3ena9eurFy5kt9//5077rgDm63o5azQ0NBCFyvYsmVLkacUy49hFn34DABjxozhhRdeKPYJy7uUlBRCQkJITk4mODjY6jhSDpmmyfq4HmTk7iD/AptBjZA7qRV6j4eTiYicnRUrVjBw4EC2b98OwJAhQ3jppZf0+1IKFx0Nd95J5wv8ic8qfPX1c4Oj+fK7HTBnDmzd6qGAIiJilcr6+fv4ddd+5nFsvr4ePbc7K4u/Hhhf4s/51q1bOe+88/j9999p3bo1AHPnzqVHjx7s37+fatWq5XvchRdeyOWXX17ggpNFMWTIEH7++WfWrVuHy+UiKiqK+fPnc9lll7F582batm3LkCFDin076BmPWJsyZQq9e/cudNjdX3/9VawwIpWBYRg0inoTb3sUJw+0zfvnGObXmRoht1uSTUTkbLRt25a1a9dy7733YhgG06dPp2nTpixYsKBY/WXmHuBg2nfEpX1PpjPu9AdI+aaFZUVERE5mGtZs5BX3/r1lZ2ef1aUsW7aM0NDQE0U1gC5dumCz2VixYkW+xxw6dIgVK1ZQpUoV2rdvT3R0NJdeeim//fbbGZ378ccfx+VyERsby/jx4zEMgxkzZnDzzTfTunVrqlSpwoQJE4p9bWdcWJszZw4LFy7k4osvJj4+/qTH/vrrL0aMGEHDhg2LHUikMvD1qkWLanOpHTYOf6/GeNurEeLbjoaRr9Eo6g1shiZkFpHyyc/PjxdffJGFCxdSt25d9u7dS5cuXRg1alSR5tAAyHEdY23CHSza35WNh//HhsP3s2hfF9Yl3EOuq/ARTVIO1asHy5ZxYWRd7IXcCmo3DNpF1YXly6GupksQEREpTTVr1iQkJOTE9tRTT51Vf/Hx8VSpUuWkfQ6Hg/Dw8FNqS8ft2rULgEceeYThw4czd+5czj//fDp37syff/5Z5HNXq1aN1atX0717d2bPno1pmsycOZNvv/2WG2+8keXLlxMZGVnsazvjwlqXLl1YunQpx44d44ILLmDdunUnFdRmzpzJ0KFDix1IpLJw2IKpHjyMFtW+p3WN32gSPZOIgCswDLvV0UREztrFF1/M+vXrGTVqFABvvPEGzZs3Z/HixYUe53Jn8nvcQA5lLOTkRVxMEjIWsCp+KG4zp/SCi+cNHQo//MBge1XcZv4LYuUxuDnFB5YuzTtGRESkojMt2oB9+/aRnJx8Yvv3wpD/NnbsWAzDKHTbtm1bsS7/+EKZI0eOZPDgwbRs2ZKXXnqJhg0bMn369DPqq0qVKrzzzjskJSWRkJBAXFwcR48eZfr06acU/M5UsRYvaNSoEStXrqRGjRp06NCBhg0b8uGHH3Lbbbexa9cuXnvttbMKJSIiIuVfYGAgr732GvPmzaNmzZrs2rWLSy+9lNGjRxc4pcTBtK9Jy/2T/OegdJGSs5n4tLmlmls87MYbISyM+uMm8ViTKzDgpJFrdsPAbth4oUlPqo2dADVqQAELZ4mIiEjJCA4OPmnz8fHJt92YMWPYunVroVvdunWJiYnh0KFDJx3rdDpJSkoqcOGAqlWrApyy4GTjxo3Zu3dvsa8tKiqK6OjoM1oAoTDF6mXfvn1MmDCBdevWkZGRQW5uLs8//zwvvfTSiQsXERERgbzR7hs3bmTIkCGYpslLL71Ey5Yt851PY3/qFxQ+2ZaN/WlflFpWsYC/P3z8McybR+87H+Hbml3pW7sltQMiqBMYQb86FzAnuhOXD74Hfv8dPvkEHA6rU4uIiAh5RapGjRoVunl7e9OuXTuOHTvG6tWrTxz7888/43a7adu2bb5916lTh2rVqp1YGOu4P/74g9q1axc54/jx42nRokWBj7ds2ZJJkyYVub//OuPC2rBhw2jQoAHTpk1j+PDh7Nmzh6FDh3LnnXfy9NNPFzuIiIiIVFwhISFMmzaN7777jqpVq7J9+3bat2/PuHHjTpoMN9t1mJNvAf0vN9nOhFLPKx7WtWveSp+rVnFOq4uYeN9k5vwcx/fzD/Lgnc9Q48JLYOdO+PlnaNfO6rQiIiKeYeGtoCWtcePGdO/eneHDh7Ny5UqWLFnCHXfcQb9+/U6sCHrgwIETd0hC3sJ/999/P5MnT+azzz5jx44dPPzww2zbtu2MpiD77LPPuOKKKwp8vEePHsyePbvY13bGhbUPP/yQ4cOHs3PnTiZPnkytWrV46623eOqppxg/fjyDBw8mNze32IFEROQfOc79pGctITNnE6ZZSr/lRDzoyiuvZNOmTfTv3x+3283TTz9N69atWbNmDQC+jmhON2LN16HR8RXS5ZfDvn3w/vvgdMJHH8GsWeDtDbNnw+7dKqqJiIiUYx9++CGNGjWic+fO9OjRgw4dOvDWW2+deDw3N5ft27eTkZFxYt8999zDuHHjuPfee2nevDkLFixg3rx51KtXr8jn3bt3b6HtzznnHP7666/iXRRwxuPod+7ceaKa+G/3338/DRo04Oabb2bXrl0sXLiw2KFERCq77Nw/iT/6MOnZ/0z07mWvTZXQBwjxv8bCZCJnLzw8nA8++IC+ffsycuRINm3aRNu2bXnooYcYeFcvkrM3FHK0mxpBfT2WVTzM1xduuSVvExERqeQMM2/z9DlLS3h4OB999FGBj9epUyffwQRjx45l7NixxT5vYGBgoYWz3bt34+vrW+z+z3jEWn5FteN69erFwoUL2bFjR7EDiYhUdtm5O9idcBXp2UtP2p/r+osDR0ZxNC2fX0a//563Sl7btnD++dCzZ95IjxytnihlV+/evdm8eTPXXnstTqeTSZMm0bfLMxzeWZ3836LYCPVpSXRAV09HFREREZFyqmPHjrz55pscOHDglMf27dvHW2+9RadOnYrdv2GWwr1FBw4coHr16iXdbZmQkpJCSEgIycnJBAcHWx1HRCqgvYcHk5a1gPxXRQTD8OPcauuw2wJh/37o1w+WLIHataFzZ/Dygi1bYPFiiI6Gt9+Gq67y7EVIkbjcR0lP/5iMzG8wzXS8HI0JDByIj3d7DKOw2yErFtM0mT17NrfffjtJSUl4e3tz631t6TboCHZH3tsUAwdVA3vSOOIhHLYAixOLiIiIJ1TWz9/Hr7vO409gO4uRVMXhzspiz/iHKtRzvn37dtq0aYNhGAwdOpQmTZoAsGnTJqZPn45pmixfvpzGjRsXq/9SKaxVZJX1H7aIeIbTlcgfB1twullDq4W9SGhyB2jfHoCMF1/kk5q1mL9nD9kuJ02jYxjo60Ptp5+G77/Pm5/o2mtL/wKkyHJzt3MosS9udxL//HnbARcBAYMJC3miUhXXAOLi4hg5ciTffvstAG3atOLFqbfT4NxahPi2wMceYXFCERER8aTK+vlbhbWSt2HDBu68804WL1580v5LLrmEyZMn06xZs2L3rbXKRUTKkFxXPKdfisdBjmsfDB4Mbjd/fPstNy1ZyrE9f504cn1cPO+bJuMffphBAQF58xV16AAxMaV8BVIUpunk8JH+uN3HOPnPO2+UYnr6u3h7NSEwoL8V8SxTtWpVvv76a95//33uuusuVq5cTZf2o3jyySe5++7iD88XERERkcqtWbNmLFy4kMTERHbt2gVA3bp1iYyMPOu+z3iONRERKT0OW1gRWrnw/jML5s0j58kn6b90GSnZ2SeXZ0wTE3hs0WKWjhsHhgHvvFNKqeVMZWb9iMt1gIJu9wWD1LQ3KuVKsIZhMHDgQDZt2sTll19OVlYWo0ePpmPHjuzcudPqeCIiIiKeY1q0VWCRkZG0adOGNm3alEhRDTRiTUSkTPFyVMfPuxWZOWsBdwGtbAR/sB+qVOGb884j6deCV2G2GwZv/vEn7fv3h7fegvHjSyW3nJns7GXk/Qp2FtDCxOncidt9BLu9ZH7hlzc1a9bkxx9/5K233mLMmDEsXryY5s2b8+yzz3Lrrbdis+m7QREREREpGpfLxY8//siuXbs4evToKV9gG4bBww8/XKy+VVgTESljqoSM5a/D/QCD/L4yiggaju3P5XDhhSw8GIfNMHAXMLLJZZos3bsX98UXY3vnHcjMBD+/0r0AKYKifhVYwb8yPA3DMBg5ciRdu3Zl8ODBLFy4kNtvv50vv/ySadOmUatWLasjioiIiJQaw8zbPH3OimbVqlX07duX/fv3F3hHyNkU1vR1r4hIGRPg256akdOx246PVMp7qTbwIiLoDqqEPARuN9jtuE3ztLcLmqYJx0f3uAq69VA8yce7DQWPVgMwsNvrYLNVztFq/3XOOefw888/88orr+Dn58f8+fNp2rTpiVWcREREREQKMmrUKDIzM/nqq69ISkrC7XafsrnO4nOSCmsiImVQkF8Xzq22ipqR7xIdOoFq4S/SoNoaokPHYRg2qFUL1q2jZUx0of0EeuXQvX42rjULMMPCICDAQ1cghfHzuwKbLZq8VUDzYxIUOLLSrQr6b07XMdJzNpKZuxPTNLHZbNx1112sW7eOdu3akZKSwtChQ+nZsycHDx60Oq6IiIiIlFEbNmzggQce4KqrriI0NLTE+1dhTUSkjDIMB0F+XYkIGk5owA047OH/PDhoEOzezQ1xcXg7HPy3/BLglcXtrX5ixtWvc/t5UzDencHR6xwcSXtHI3zKAMPwJipiJoYRwMm/ivMKbf5+NxAYMMCSbFbLccazM/Eu1h5oxZb4q9gU15lNcV1IyvgegHPPPZfFixfz7LPP4u3tzZw5c4iNjeXDDz/U320RERGpWEzDmq2CqVGjRqm+T1RhTUSkPLrwQmjZkqBHHuGNTp2w22zY/x7d5OvI4elOs7n8nE14211EvZKKPdkkqb9BwrFHSDg20eLwAuDt3ZSq0YsIDroXh6M+dltVfH0uJTL8fcLDXsobmVjJ5LgOsSWh199FtH+G42c5d7Ez8XYOpc4EwG63c//997NmzRpatWrF0aNHufnmm+nbty+HDh2yKL2IiIiIlEUPPPAAb7/9NikpKaXSvxYvEBEpjwwD3n0XLr6YS0cM58dXXuGdlFR++vNPutddRa2QIzjSXEROTiXyzXQSHgwm55y8l/yktGmEBtyAr3cTiy9C7PZoQoLvIyT4PqujlAkHk18i13WYfxfV8uR9w7j36KOE+/fEYQ8DoEmTJixbtoynn36aRx99lC+//JLFixfzxhtvcO2113o2vJQpLvcxktJmcCztY5zuwzhsUYQG3kh44EDstlCr44mIiBSNiefXsqqANwCkpqYSGBhI/fr16devHzVr1sRuP3lKFsMwuPfee4vVv2HqvokzkpKSQkhICMnJyQQHB1sdR0Qqu1Wr4Jpr4OBBuPxy6NqVQ5lT8NqWSMhXmRjZJgkPBpM0LCCvGAeAnfDAgcSEPWZpdJF/c7kzWbu/BSbZhbQyqBU2geigwac8sm7dOgYOHMiGDRsAuPHGG5kyZQoRERGllFjKqlxXPHsSepPr2g+4//WIDS97DepEf4WXvfD5KUVEpGyorJ+/j1/3OY88ic3X16PndmdlsfuRByvUc26znf5OEMMwir2AgUasiYiUZ61bw44d8Omn8OabmI89RmR2Cs5oO0eGB3D0pgCcVf87Qb6LHOdflsQVKYjTnXiaohoY2Ml27s33sRYtWvD777/z6KOP8vTTT/Pxxx/zyy+/8Pbbb9OzZ8/SiCxl1MGk+8h1HeDkohqAm1zXAQ4mjaF21AdWRBMRETkjhpm3efqcFc3u3btLtX8V1kREyjs/PxgwAAYMwAC272+M2yxs/gC7boWSMsduBJ22jYmJ3Sj4m1Nvb28ef/xxrrnmGgYOHMjWrVu56qqrGDRoEC+//DIhISElGVnKoBznX6Rn/VJICxfpWb+S4/wLb0dtj+USERER69SuXbq/8yvfzMgiIhVcSEAfjq8umT8Xwf69PJRGpGgc9lCCfTpwur+74QFXnbavCy64gDVr1nDfffdhGAbvvfcesbGx/PTTTyWWV8qmzJz1RWhlFrGdiIiIVCQHDhzg448/5pVXXmH//v0AuFwukpKSin0bKKiwJiJS4UQEjcRm+JN/gcKOn3drAn07ejiVyOlVCz0+YWx+y7zbCPe/Gj+v+kXqy9fXl+eee47FixdTv3599u/fT7du3bj11ltJTU0tscxSthhFvBmjqO1EREQsZVq0VTCmaTJ69GjOOecc+vfvz+jRo/njjz8ASEtLo06dOkyZMqXY/auwJiJSwXg7alGnymd42Wv8vcfO8Zf7QN9O1IqaiWHo5V/KniCfVjSIegfHiVuVHeT93TWICOjDORHPnXGfF110EevWrePOO+8E4M0336RZs2b8+uuvJZRayhJ/nwsBr9O08vq7nYiIiFQGzz33HK+88gr33Xcf8+bN499reIaEhNCnTx8+//zzYvevr+tERCogX+9Y6lf9jfTs38jK2YhheBHoexk+RRztI2KVUL9ONK++gmOZ88jK3YnN8CfMvxs+jprF7jMgIIDJkyfTu3dvBg8ezJ49e+jUqRN33nknTz/9NP7+/iV4BWIlhz2c0IAbOJb+EacuXgBgIzSgHw57uKejiYiInDkLFi+oiCPW3n77bQYMGMCTTz7JkSNHTnm8WbNm/PDDD8XuX0MWREQqKMOwEeh7CZHBtxMRNEJFNSk3bIY34f5XUi3kLmKCh51VUe3fOnXqxMaNGxkxYgQAU6ZMoUWLFixdurRE+peyISZsEgG+l/79k/2k/wb4XkpM2CNWxBIRERGL7Nu3j/bt2xf4eEBAACkphS3+VjgV1kRERKTSCAoK4s0332Tu3LlUr16dP//8k4svvpj//e9/ZGVlWR1PSoDN8KVW5PvUivqYYL+r8PduS7DfVdSK+phake9jM3ytjigiIiIeVKVKFfbt21fg46tXr6ZWrVrF7l+FNREREal0unXrxqZNmxg4cCBut5vnnnuOVq1asWrVKqujSQk4PmK3RuRr1In+ghqRrxHoe4nmlxQRkfJFixeUiD59+jB16lR27dp1Yp9h5C2W9dNPP/Hee+9x3XXXFbt/vbsQERGRSik0NJT33nuPr7/+mujoaLZs2cKFF17Iww8/TE5OjtXxRERERKQETJo0iapVq9KiRQsGDBiAYRg888wzdOjQgSuuuIJmzZrx4IMPFrt/FdZERESkUrv66qvZvHkzN9xwAy6Xi8cff5w2bdqwfv16q6OJiIhIZaYRayUiJCSE5cuX87///Y8DBw7g6+vLwoULOXbsGBMnTmTx4sVntZiVCmsiIiJS6UVERDBr1iw++eQTIiIiWL9+PRdccAFPPPEETqfT6ngiIiIichb8/PwYP34869atIz09nczMTDZt2sSECRPw8/M7q75VWBMRERH523XXXcfmzZvp1asXubm5jB8/nvbt27N161aro4mIiEglY5jWbHJmHFYHEBERESlLoqOj+eKLL/jwww+58847+f3332nZsiWPP/449957L3a73eqIIiIiIlJEQ4YMOW0bwzCYNm1asfpXYU1ERETkPwzD4Oabb6ZTp04MGzaMuXPncv/99/PVV1/x7rvv0qBBA6sjioiIiEgR/PzzzydWAT3O5XIRFxeHy+UiKiqKgICAYvevW0FFREREClC9enXmzJnD22+/TVBQEEuWLKF58+ZMmTIFt9ttdTwREREROY09e/awe/fuk7a9e/eSkZHB5MmTCQoKYsGCBcXuX4U1ERERkUIYhsGwYcPYuHEjl112GZmZmdx111106dKFPXv2WB1PRERERIrBy8uLO+64g65du3LHHXcUux8V1kRERESKoHbt2sybN49XX30Vf39/fvnlF5o2bcpbb72FaWqmXxERESlhpkVbJdO8eXMWLVpU7ONVWBMREREpIpvNxu2338769evp0KEDaWlpjBw5kiuuuIL9+/dbHU9EREREztC8efPw9/cv9vFavEBEpAxyu7PIdSfhsAVjtwVaHUdE/qN+/fr8+uuvvPLKKzz44IP8+OOPxMbGMnnyZG655ZZTJsgVEREREWs8+uij+e4/duwYixYtYs2aNYwdO7bY/Rum7l04IykpKYSEhJCcnExwcLDVcUSkgslxxnEg+WWOpH+FSTZgEOLXmeoh9xDgHWt1PBHJx7Zt2xg4cCArV64E4Oqrr+bNN98kJibG4mQiIiLlW2X9/H38uuuPfRK7r69Hz+3KymLH0w9WqOfcZsv/Zs2wsDDq1avHsGHDGD58eLG/GNWtoCIiZUS28wCb468iMf2zv4tqACbJmb+wNb4PKVnLLc1X2ZmmSUbWUuKOjGRP/CXsTbiCpNTXcLmSrI4mFmvUqBFLlizhiSeewMvLi2+++YYmTZowe/Zsq6OJiIiIVHputzvf7ciRI6xcuZIRI0ac1d0GKqyJiJQRe48+gtN9FHD95xEXJk52H7kX0/zvYyfLdR3iwLFn2XigDev2NWTzwcs4lDINtzuz1HJXBqZpcvjYBA4kXkta5hxynTvIzl3PkeQn+SvhErJzt1kdUSzmcDh48MEHWbVqFS1atCApKYl+/fpx/fXXk5iYaHU8ERERKa+0cEGZpznWRETKgBzXIY5lzqfg32ZuclxxJGctItSvU74tsnJ38kfCtTjdxzhenMt27mT/sUc5kv4550bPxm4LKo34FV5KxiyS06f9/dO/i5smLncyBxNvpk7MMgzDy4p4UoY0a9aMFStW8MQTT/DEE0/w6aefsnDhQt5880169epldTwRERGRCm/v3r3FOq5WrVrFOk6FNRGRMiA7dzen/4rIRlbuTsinsGaaJrsTR51UVPv7EQAyc7ey/+jj1I54poQSVx6maXI09Q3AIP8/IxdO10HSMn8iyP9KD6eTssjb25tJkyZx9dVXM3DgQDZv3kzv3r255ZZbeOWVVwgLC7M6ooiIiJQHVowiqwCj1urUqVOsWztdrsLvDiqICmsiImWAzRZQhFYmNlv+y0Cn56wmM3drIce6SEr/nOphD+KwhRQrY2XldieR69xxmlYOMrOXqLAmJ2nVqhWrVq3ikUce4bnnnmPmzJksWLCAadOm0b17d6vjiYiIiFRI7777rkfPp8KaiEgZ4O/VGC97VXJdcYW0Mgj165LvIxnZ68ibNtNd4NEmOWTlbCfQt83ZRK10iv6lXQX4ek9KnK+vL08//TTXXHMNgwYN4o8//uCKK65g2LBhvPDCCxVmtS0RERGRsiIsLIzWrVtTrVo1j5xPixeIiJQBhmGnesi9hbUgKvAmvO1VCnjYQVEKO4ah71POlN0Wjpe9Nnm3ghbEiZ9PW09FknKoXbt2rF27lnvuuQeAd955h6ZNm/Lzzz9bG0xERETKLMO0Zivvevfuza+//nri57p16/LNN9+U2vlUWBMRKSOiAq+nRuhYwA7YMHD8/f8hwr8PtcImFHhssO/FnK6wZreF4Ofd5KwymmbBI+IqKsMwCA26lYKfXzt2WxUC/Xp4MpaUQ/7+/rz00kv8+uuvnHPOOezdu5fOnTtzxx13kJ6ebnU8ERERkQohKCiIY8eOnfh5z549pKWlldr5NHRBRKQMqRp8K5EBfUhM/5Ic534ctjDCA67Gz6t+ocf5etUj2LczKVm/cvLiBf+oEjQMm+Fzxpmynfs4lPIWR9I/x22m4WWPJjKwP1WChmC3VY7b2EICbiErZx2pGbPJK3Yef45t2IwAqkW+j2F4W5hQypNLL72UDRs2cP/99zN16lRee+015s6dy3vvvUeHDh2sjiciIiJlhRYvKJY2bdrwxBNPkJCQQEhI3vzSc+bMIT4+vsBjDMPg3nsLu4OoYIZpmhXgafOclJQUQkJCSE5O1rwoIlKmON3H2HHoFjJy1vPPfGt5RaBw/z7UjngBw7CfUZ8ZOVv4I+E63GYGJxfsbPg4zqFh9Bc47JVjhUPTNEnPmk9y+gyyc7diM/wJ8ruakMABOOzRVseTcmrevHkMHTqUffv2nXhD9/jjj+Pn52d1NBEREctV1s/fx6+7wf1PYvfx9ei5XdlZ/Pncg+X6Od+xYwcDBgxg+fLlQF7R7HSlL8Mwir0qqAprZ6iy/sMWKYuOZi7lYMr7pOWsx8CbCP8uVAu+BT+vOlZHs4xpOknOnE9S+pfkuhLxcdQhMvAGAnwuOOMlp03TZEtcR7Kde8l/FJydcP9e1Il8qUSyi1RWycnJjB49munTpwPQqFEj3nvvPdq21bx9IiJSuVXWz98qrJWMrKwsDh06RJ06dXj55Ze55pprCm1fu3btYp1Ht4KKSLljmiZ7jj7H/pS3+PdteQdTPyAu9WPOq/IG4f6XWprRKobhINS/O6H+3c+6r7Ts5WQ7dxfSwsXRjK+p4ZqIwx561ucTqaxCQkKYNm0affr0Yfjw4Wzbto327dvzwAMPMHHiRHx8zvwWbhERESn/rFhMoCIsXnCcr68vtWrVYuLEiVx22WXFLpydjhYvEJFy50jG/L+LanDySCoXJrlsPXw7ua4kK6JVKBk5mzjdrwkTJ1m5f3gmkEgFd+WVV7Jp0yb69++P2+3mqaee4oILLmDt2rVWRxMREREptyZOnEhsbGyp9a8RayJS7hxImcY/c4j9l4nbzCYh7QtqhAzzcLKKxTC8KMrspUYxFkQQkfyFh4fzwQcf0KdPH2699VY2btxImzZtGD9+PA8++CBeXl5WRxQRERFP0eIFJWbr1q28++677Nq1i6NHj54y55phGCxYsKBYfWvEmoiUK6Zpkpq9lvyLaidakZy1ylORKqwQ346nbeOwReDvfV7phxGpZPr06cPmzZvp27cvTqeTRx55hAsvvJBNmzZZHU1ERESkXJk5cyZNmzZlypQp7NixA7fbjWmaJ21ud2GfLwunEWsiZUiOK4kDqbOIT/uKXPcx/BzVqRZ0I1UDe2EzvK2OV4bYyH8y/eMMDEPfG5wtH686hPpdwbHMuRRUyIwOvu3vkW0iUtKioqL49NNPmTVrFrfffjtr1qyhVatWPProo9x3333Y7We2yq+IiIiUMxqxViIeeeQRWrZsyQ8//EBkZGSJ969PniJlRGbuPlYevJrdx6aQ6fwLpzuZ1JytbD/yMGviB+ByZ1gdsUwwDINQ3wvJW7SgYHlt5GzVjnieQJ/jz6X9pP9GBQ6iStBwS3KJVBaGYXDjjTeyefNmevbsSU5ODmPHjqVDhw5s377d6ngiIiIiZd7BgwcZMmRIqRTVQIU1kTLBNE02Hr7r7wn3/z0yKO/rgpTs9ew8+oIl2cqi6iFDKXjEmg27EUiVwN6ejFRh2W2BNKjyMfWrfEREQF9C/C4nKnAAjWJ+pGb4oxiGYXXEcs003aRlLeZwyiskprxGVo5u85P8Va1alW+++Ybp06cTHBzM8uXLadGiBS+//PJZ3bogIiIiUtE1a9aMgwcPllr/KqyJlAEpORtIy9mCWWCxyM3BtM9wutM8mqusCvPrwDlhY//+6d8j12zYDT9io6fhsAVZEa1CMgyDYN8O1I54nnpR06gZPgl/78ZWxyr3snK2sTP+EvYe7sfh5Bc4lPwMuxK6sefQtThdiVbHkzLIMAwGDx7Mpk2buPzyy8nKyuLee++lU6dO7Nq1y+p4IiIiUsIM05qtonnxxReZNm0aS5cuLZX+NceaSBmQnLWWgle5zOM2s0jL2U6obyuP5SrLaoQMI9S3PXGpH5KSvQ6b4U2Efxdigm7A2146Q3xFSkquM449h/riNlP/3vNPUT0jeyV/He5H3eg5GJpbUfJRs2ZNfvzxR958803uu+8+Fi1aRLNmzXjuuee49dZbNZJURERE5F+eeeYZQkJCuPjiiznvvPOoVavWKXPVGobB119/Xaz+VVgTKQPyJto//VcDxmnmFatsAn3Oo4HPE1bHEDljSWnv/l1Uy2+Uqovs3K2kZM4lxP9qT0eTcsIwDG699Va6du3KkCFDWLhwIaNGjeKLL75g2rRp1KpVy+qIIiIicra0eEGJ2LBhA4ZhUKtWLdLS0tiyZcspbc7mi0kV1kTKgDDfdpzuFcxhBBGo2+/KNKc7lSPpc8hy7sNhDyXSvwc+jmpWx5IyKDn9Mwpf2dZGcvpXKqzJadWtW5eff/6ZKVOmMHbsWObPn0/Tpk156aWXGDx4sEaviYiISKW3Z8+eUu1fc6yJlAGB3g0I821PQStdGrlQy9UXe65nc0nRJaTOZtX+tuxMepCDKW/x19GnWX3gYnYdmYhpOq2OJ2WMy0w5TQs3LvdRj2SR8s9ms3H33Xezfv16LrzwQlJSUhg6dChXXXUVcXFxVscTERERqdBUWBMpI5pEvUCAV72/f7KByyRyXgbNB+6nY8M/qFPvQfD1hQ4d4KOPIDvb0rzyj8T0OexMGofbzAJMTJzkzZdnEp/2AXuOPmVxQilrvO21gMJGEtnxdpzjqThSQZx77rn89ttvPPPMM3h7e/P999/TpEkTPvroI0yzAt7XIWWW03WYIymvsPdQX/Ym9ObwsafJde63OpaISPljWrSVc3v37mXv3r2n/Hy6rbgMU++0zkhKSgohISEkJycTHBxsdRypYNxmDofSf+Dwvk+pPXguwSuOkNu6MfYBt+GKjMKRmoIxaxb88gvExsL334Pm0bGUaZqsPdiZLOdfFPxbyE7rGkvxtkd5MpqUYUmp7xF/bDyFvXOpU+Vr/H1aey6UVCibN29m4MCBrF69GoA+ffrwxhtvUKVKFYuTSUWXnrWIA4mDMc1s/lmUyQ4YVIt4nSD/nhamE5HyprJ+/j5+3Q3vfhK7j69Hz+3KzmL7Kw+W6+fcZrNhGAaZmZl4e3uf+Pl0XK7CpmopmOZYEylDbIY3MbbLiRn0JOyEtC++YdaKZOZMWkBqUhp+gb5cPuAmbrpvPBG3D4XOnWHZMoisPKtgZjsPkZazFZvhRbBPC+w2f0vzZOT+QZZzz2lauUnKmEdM0E2eiCTlQGhgP5IzviAzZy35rQYcGtAfP2+tACzF16RJE5YtW8ZTTz3FY489xhdffMHixYt544036Nu3r9XxpILKdcZxIHHQ30W1f39x4AIMDh65jTpeDfDxamhRQhGR8sUw8zZPn7O8mz59OoZh4OXlddLPpUWFNZGy5rXXYN06jn41h9tv/ZQjB4/iduV98M5My+K7t+bx88d+TPlwJjVuuhoefRQmT7Y4dOnLcR1hx5FJHM74ieOFCJvhT43ggdQJvRPDsOblzOVOLUIrWxHbSWVhM3ypHTWLQ8nPcjT9Q0wzAwC7LYrIoFsJDxqhSeflrHl5eTFhwgSuuuoqBg4cyMaNG7n22mu58cYbefXVVwkPD7c6olQwyekfYJo55D8aN2/f0dTpxIQ/49FcIiJSuQwaNKjQn0ua5lgTKUtcLnjjDbjhBl56cxVJcf8U1Y5zO91kpGTy+LivMEeOhBkzIC3NosCe4XSlsDauH4cz5vHv0T1uM4O9yVPZlviAZfMH+TpON1cWgAtfrzoeSCPlic3mT0zYIzSstoFzoudSN3oe51ZbRUTwrRiGfj1LyWnZsiWrVq3iwQcfxGaz8fHHH9OkSRO+++47q6PlKytnAynpn5Ka8b2+lChn0jIXkN8o3H+4SM9a4Kk4IiIiHqF37iJlyfLlsHs3R3v3Y/m3q3E5839z6na52bn+L3a16w4pKVBGPxyVlAOpH5Dl3EferST/ZXIo/VtSs9d7OhYA3o4qhPl1oqAVXcHAYQsnzO8yT8aScsRm88PPuym+3udZNvJSKj5vb2+eeOIJli1bRqNGjYiPj+eqq65iyJAhJCcnWx0PgOyczexNuJx9h7qTcPRu4pOGszuuOYnJT2OaxZvzRDzt9H9OWilbROQMaPGCckGFNZGyJC4OgN3OgCKNwNoWnwP+/ieOq6jiUmdR2DfgBnbi0z7zXKD/OCfsYRy2IE4trtkAg/oRz2AzvCxIJiJysjZt2rBmzRrGjBmDYRi8++67xMbG8tNPP1maKyd3J/sO9yY7d9tJ+00zi6OpUzh87GGLksmZ8PNpS8FfNAHY8fNp46k4IiIiHqHCmkhZ8vfkit62on1N4O3jBbm54O1dmqksl+06XOjjJi6ynAc9lOZUvl61aRbzFRH+3fn3y2qQz/k0if6QcP/OlmUTEfkvPz8/nn/+eRYtWkS9evXYv38/3bp147bbbiPNoqkFklJewjQzKWhkcnL6e+Q4d3s6lpyh0MCBnO5W0LCgoZ6KIyJS7h1fvMDTm5wZFdZEypLYWAAaJe8mIKTw1S5tDhsXBqbmFdaaNvVEOst42UILfdzAjrfd2pVRfb1q0TBqChfUWEXzqnNoVX0pTWM+IcS3raW5REQK0qFDB9avX88dd9wBwNSpU2nWrBkLFy70aA63mUlq5jcUfhuhndR060YmS9H4eDUgOuwZ8uYe/ffItbz/HxkyFn8f/V4UEZGKRYU1kbKkXj24/HIcb73Jtff2LLCZYTPoNqgTQR/PgPPOg4sv9mBIz4sJ7ENht5aYuIgOvMZzgQrhZQ8lwLsRPo4Yq6OIiJxWQEAAU6ZMYf78+dSqVYvdu3fTsWNH7rnnHjIyMjySwe1OAU4375aB01346GUpG0IDb6ZWlW8I8rsSmy0UmxFMgG9nakR9QkTwXVbHExEpXzTHWrmgwppIWXPvvbBiBTc5/qTnyMsBsDvsGIaB3ZFXXGp3VWvuausNn38O99wDxulWpSzfqgcP/HvUWn7FNRuhvu0J9W3n4VQiIhVH586d2bhxI8OGDQPglVdeoWXLlixbtqzUz22zhQCnm4fSxGHXFxblhZ9PK6pFTqVB9S00qLGNGlHvEeDbwepYIiIipUKFNZGy5oorYOJEbA89xN25K5n+9Sh63dGdDn3a0GNYZ1778g4eqXcIx/BhMHQo/P0hqCLzcVShZdVZBHk3+c8jNqIDria2yusYhl7ORETORnBwMG+//TZz5syhWrVq/PHHH3To0IGxY8eSnZ1daue1Gb4E+Rc+MhncBPtfW2oZRERERIrLMIuy9KCckJKSQkhICMnJyQQHB1sdRyqy11+HiRMhMREuvBBiYiApCX77DQIC4L77YPx4sFWuglJq9hbScjZiGF6E+bbXLZciIqXg6NGj3HPPPbz//vsANGnShBkzZtCqVatSOV+ucy97E7rhNtPIb6610MCRRIVOLJVzi4hI2VVZP38fv+7Go57E7uPr0XO7srPY+vqDle45PxuV6xO5SHkyahTs2wczZ0KdOpCVBdHR8NprcPAgTJhQ6YpqAEE+51E16AZiAvuoqCYiUkrCwsKYMWMGX331FdHR0WzevJm2bdsyceJEcnJySvx8Xo5a1KzyDb7erU/abzOCiAgeR2TIhBI/p4iIiEhJqHyfykXKE19fuPlm+Phj+OEH+OQTuPVWCAy0OpmIiFQC11xzDZs2beKGG27A5XLx6KOP0rZtWzZu3Fji5/L2akDNKl9SO3ohVSPeoVrkR5xTbR3hwXdiVPC5REVERPJjWLSVlqSkJPr3709wcDChoaEMHTqUtLS0Qo+Jj4/nlltuISYmhoCAAM4//3w+//zzUkx55lRYExEREZECRUZGMmvWLD755BMiIiJYt24drVq14sknn8TpPN1qnmfO26sBgX49CPDtiM3wK/H+RURExBr9+/dn8+bNzJs3j++++45FixYxYsSIQo8ZMGAA27dv55tvvmHjxo306dOH66+/nrVr13oo9emV+8Laa6+9Rp06dfD19aVt27asXLmy0PaffvopjRo1wtfXl6ZNmzJnzhwPJRUREREpv6677jo2b97MNddcQ25uLg899BAXXXQRW7dutTqaiIiIlHFbt25l7ty5vPPOO7Rt25YOHTowZcoUZs2axcGDBws8bunSpdx55520adOGunXrMn78eEJDQ1m9erUH0xeuXBfWZs+ezejRo5k4cSJr1qyhefPmdOvWjUOHDuXbfunSpdx4440MHTqUtWvX0qtXL3r16sWmTZs8nFwqu2xnAvFp3xGf9g0ZuXutjiMiIlIk0dHRfPnll7z//vuEhISwcuVKWrZsyQsvvIDLdeqiAyIiInIWTIs28hZQ+Pd2tiuEL1u2jNDQUFq3/mc+1S5dumCz2VixYkWBx7Vv357Zs2eTlJSE2+1m1qxZZGVl0bFjx7PKU5LKdWHtxRdfZPjw4QwePJjzzjuPqVOn4u/vz/Tp0/Nt/8orr9C9e3fuv/9+GjduzGOPPcb555/Pq6++6uHkUlk53WlsPnwfS/Z3ZEviGLYk3s/yA5ezLn44Oa5Eq+OJiIiclmEY3HLLLWzevJnu3buTnZ3Nfffdx6WXXsqOHTusjiciIiIloGbNmoSEhJzYnnrqqbPqLz4+nipVqpy0z+FwEB4eTnx8fIHHffLJJ+Tm5hIREYGPjw8jR47kyy+/pH79+meVpySV28JaTk4Oq1evpkuXLif22Ww2unTpwrJly/I9ZtmyZSe1B+jWrVuB7QGys7NPqdSKFIfbdLIuYRgJ6d8D7pMeO5q1hNVx/XG6C5+4USqOrNx9pGVvJtd11OooIiLFUr16debMmcPbb79NYGAgS5YsoVmzZrz66qu43e7TdyAiIiKFMkxrNoB9+/aRnJx8Yhs3bly+GceOHYthGIVu27ZtK/Zz8PDDD3Ps2DHmz5/PqlWrGD16NNdff32pLKRUXA6rAxRXYmIiLpeL6Ojok/ZHR0cX+IcWHx+fb/vCqqNPPfUUkyZNOvvAUuklZswnJTv/CRZNXGQ6/+Jg6mfUChnk2WDiUUkZC9lz7EXSczb/vcdGpH83zgl7AF+vGh7N4nKnk+NKwG4E4O2IPv0BIiL/YRgGw4YN4/LLL2fIkCH8/PPP3HnnnXzxxRdMnz6dOnXqWB1RREREiiE4OJjg4ODTthszZgyDBg0qtE3dunWJiYk5Zdoup9NJUlISMTEx+R63c+dOXn31VTZt2kSTJk0AaN68OYsXL+a1115j6tSpRbuYUlZuR6x5yrhx406q0u7bt8/qSFJOxaV9yen+ycWlfeqZMGKJw+nfs/nQMNJztvxrr5vEjJ9YG9eHrNz9HsmR40pk55EHWbmvFWsPdmHVgXZsiOvF0cyFHjm/iFQ8tWvXZt68ebz66qv4+/vzyy+/0LRpU95++21M07Q6noiISPlk4RxrRRUVFUWjRo0K3by9vWnXrh3Hjh07adGBn3/+GbfbTdu2bfPtOyMjA8i7O/Hf7HZ7mRodX24La5GRkdjtdhISEk7an5CQUGC1MyYm5ozaA/j4+Jyo1Ba1YiuSn2xnAv+9BfRkJtmuw56KIx7mcmfyZ+JDf//0399WLpzuZHYffeakvaXxYTTHlcjGuD4kpH2KSc6J/Wk5m9h6aAiH0r4s8XOK/JtpmqRkzmP34ZvZeqA12+MuISH5OXJdCac/WMo0m83G7bffzvr167noootIS0tjxIgR9OjRgwMHDlgdT0RERCzUuHFjunfvzvDhw1m5ciVLlizhjjvuoF+/flSrVg2AAwcO0KhRI1auXAlAo0aNqF+/PiNHjmTlypXs3LmTF154gXnz5tGrVy8Lr+Zk5baw5u3tTatWrViwYMGJfW63mwULFtCuXbt8j2nXrt1J7QHmzZtXYHuRkuTjiAHshbQw8LEXXOSV8u1Ixo+4zDQK/grIRWLGj+Q4jxCf+hlrDlzFb3815Le/mrD10B2kZK8rkRz7jr1EtisO+O/qfW7AZFfSQzjdqSVyLpH/Mk03+5NG81fiYNKyFuN0x5Pj3MWhlCn8EdeJzJyyM1eGFF/9+vVZuHAhzz//PD4+PsydO5fY2Fhmzpyp0WsiIiKV2IcffkijRo3o3LkzPXr0oEOHDrz11lsnHs/NzWX79u0nRqp5eXkxZ84coqKiuOqqq2jWrBnvv/8+M2bMoEePHlZdxinK7RxrAKNHj2bgwIG0bt2aNm3a8PLLL5Oens7gwYMBGDBgANWrVz+xesXdd9/NpZdeygsvvMCVV17JrFmzWLVq1Ul/kCKlpVrgtRzJ/KXwNkHXeSiNeFpm7l8YODBxFtLKzR+J93E0azF533u4Mc1sEjPmkZjxEw0jX6RKYM9iZ3C5Mzmc/gWnFtX+lcDMJjH9W2KCbir2eUQKkpQ2k2MZx295//ffQzduM509hwfSsNpybIa3FfGkBNntdsaMGUOPHj0YOHAgv//+OwMGDODzzz/nzTffPGXOWxERESlABfpOKjw8nI8++qjAx+vUqXPKl3ANGjTg888/L+1oZ6XcjlgDuOGGG3j++eeZMGECLVq0YN26dcydO/fEm7W9e/cSFxd3on379u356KOPeOutt2jevDmfffYZX331FbGxsVZdglQikf6dCPO9kPz/2dkJ8KpPtcC+no5VoZimicudjtvMtTrKKRy2YMxCbwXOk1dUg5NvG3aRV3S7nxxn8W8XznEl4DazC21j4CAzd3exzyFSENM0SUx9EzAKaOHC6T5ESuZcT8aSUta4cWOWLl3KE088gZeXF19//TVNmjThk08+sTqaiIiISIkwTI3JPyMpKSmEhISQnJys+dbkjLncmfyZ9BRxaV9gcrz4YyPKvxuNIibiZQ+zNF955XJnsj/lPQ6mfkCO6zBgI8L/MmqFjCTYp7nV8QDIdh5k5f5LKfgrJwMD77/nPSuojY3aofdQK3RUsTLkuBJZtb/NaVrZqRlyBzVD7y7WOUQK4nQlsvVgi9O0chAe2J/qYU94IpJ42IYNGxg4cCDr1q0D4Prrr+e1114jMjLS2mAiIlJmVdbP38evO3bEk9i9fT16bldOFpveerDSPedno1yPWBMpb+w2PxpFPkqHmotpWuV1mka9ykU1fqVplZdVVCsmlzuD9fG3sOfYK38X1QDcHMn4hXVx/UjMWFDo8Z7i46hG1cAbyX+0jgGYmGRT+Fhvk7SczcXO4G2PJMinNYW/9LuI8C878xVIRVLQSLX/tipaOyl/mjVrxooVK5gwYQJ2u51PPvmEJk2a8PXXX1sdTURERKTYVFgTsYCXPYwo/85EBVyOj0PzzJyNvclvkpqziVNXXHVh4mbb4TG43OlWRDtF3YiH/1Vcs2H8Pc2l3fDn3IgXMQpd3ALAwGZ4nVWGmiF3k1e8y694YSPc/wr8vRuc1TlE8mO3hePtqEfhBTYnAT7tPRVJLODt7c2kSZNYvnw55513HocOHaJXr14MGDCAo0ePWh1PRERE5IypsCYi5ZZpOjmY+hGnFtVOtMBlZnAo/XtPxiqQzfCifuSjtKmxkLph46gZchvnRj5H25rLiQ66mjC/Syh85Vg34X4dzypDqN9FnBv5CjbDDwADrxPnjPDvToOIF86qf5GCGIZBVNCtFDwq046XvTrBfl09GUss0rp1a1avXs3//vc/bDYbM2fOJDY2lrlzNceeiIjICaZFm5yRcr0qqIhUbjmuRJzu5ELbGDhIy9nmoURF4+OoRvWQwafsrxEygqTMXws4yo63PYpI/yuKfd607M0kZvyEy51OzdD7sWEj23UAuxFIREB3/L3qF7tvkaIIC+hHVu5WjqRNJ6+ge3xlUAO7LZQ6Ue9jGHprUln4+vryzDPP0KtXLwYOHMiff/7JFVdcwbBhw3jhhRc0r4uIiIiUCxqxJiLlls3wKWI7z074WVwhvhdwbsTT5BUcjr885/3X2x5F05j3sdmKds3/5nSnsSl+CGvjrmF/8lTiUj9gV9Lj7Dr6LAHeTakZeoeKauIRhmFQNXQS50R9SohfD3wc9fHzbk5MyHjOjfkVX6+GVkcUC7Rr145169Zx9915i6a88847NGvWjJ9//tniZCIiItYyTGs2OTP6WlhEyi0vexhB3s1JzdlIQbeDmjiJ9O/s2WBnITqoL6F+7YlPnU1azhZshjfh/pcR5X9lsYpqAFsP3cmxrCUAmCdGCIHbzGLb4XvwsoUT6teuRPKLnI5hGAT6tiPQV3/n5B/+/v68/PLL9O7dm8GDB7N79246d+7MHXfcwdNPP01AQIDVEUVERETypRFrIlKu1Qq9jYLnWLMT7NOSYJ/zPRnprPk4qlI77B6aRL9F4yqvEh3Yp9hFtdTsjRzLWkz+z1HeIgZ7k187m7giIiXm0ksvZf369YwcORKAV199lRYtWrBkyRKLk4mIiFhAc6yVCyqsiUi5Ful/GQ3CHyHv5SxvO77aZpB3E2KrvIFhFLYKYcWWmDH3NKuNuknOWo7TleKxTCIihQkKCmLq1Kn8+OOP1KhRgx07dnDxxRdz3333kZWVZXU8ERERkZOosCYi5V614Ju4sMYi6oTeTZWAnsQEXkvT6HdpWfUTvOzhpXditxtSUiAn54wPdbkz2Jf8Div2d2bhnkYs2XsBO448Rlbu/hKN6HKnA6cvLLrM9BI9r4jI2eratSsbN25k0KBBmKbJCy+8QMuWLfn999+tjiYiIiJyggprIlIh+DiqUDv0NhpHPc+5kY8S7ncRhlEKL3GmCUuWQP/+4O8PISHg4wMtWsCbb0Ja2mm7cLrTWBt3I7uOPkeWcx/gxulO5kDqR6w6eDWp2VtKLK6/V92T5lXLj90IxMseUWLnFBEpKaGhobz77rt8++23xMTEsG3bNtq1a8dDDz1Edna21fFERERKlRYvKB9UWBMRKarsbBgwADp0gJUr4ZFHcH/0Mea0aVCnDowaBQ0bwrp1hXaz++jzpOdu59QJDFy4zEy2HL4T0yxo3rgzUyWgF4bhXUgLOzFB12MrtI2IiLV69uzJpk2buPHGG3G5XDz55JNccMEFrDvN662IiIhIaVNhTUSkKNxuGDgQPvmE3GnT+eThd7l5uR/dX/mDnu/G8UyLgexbsBxiYqBzZ9i+Pd9unO404tM+p+AFF1xkOfdxNGtpicR22INpEPE4ebeD/vcl346fVx1qhtxeIucSESlNERERfPTRR3z22WdERkayceNGLrjgAh577DFyc3OtjiciIlLytHhBuaDCmohIUXz3HcyeTfa7Mxiz1M20N37hUHwyALm5Ln6dt5lbH/6JDc9Ng4gIuOeefLvJzN2N2zzd7Ut2UrM3llj06MDexEZPI8in5Yl9NsOfakG30DzmE7zsISV2LhGR0ta3b182b95Mnz59cDqdTJgwgXbt2rF582aro4mIiEglpMKaiEhRvP46tGnDB8ei+GPLQUzz5K9yXC43TqebSU//hPP+B2DuXNi585RuDMOrCCczS/zWzDC/S2hRdTZta67gguq/0K7m79SLGK+imkgxmaZJrisRp+vIKa8HUvqqVKnCZ599xocffkhYWBirV6/m/PPP59lnn8XlKnxeSREREZGSpMKaiMjpHD4MP/6Ic9hwvv9yNW53/h+iTdMkNSWLxVWa5S1q8OGHp7QJ8KqPtz3qNCd0E+53SQkEP5W3PQJfr5rYbD6l0r9IRWeabhJT32PbwQ5sOdCSzQdasD2uE0fSZqnA5mGGYXDTTTexadMmrrzySnJycnjggQfo0KEDf/zxh9XxREREzp5uBS0XVFgTETmd+HgAjsXUJi01q9CmDoeNP/86CnXrwsGDpzxuGA5qhowopAc7Yb4XE+Dd4GwSi0gpME2TfUfGcODow+S49p3Yn+3cxf6k+zlwdIKKaxaoVq0a3377LdOnTyc4OJjly5fTvHlzXnnlFdzuklkIRkRERKQgKqyJiJyOV97tmw7z9LcXmSZ4eTkgNxe887+ds3rQAKoHDQDAwP733rz/BnnH0jjqxbPPLCIlLiVzPkczPvv7p38X0PL+/5G090jPXu7xXJI3em3w4MFs3LiRyy+/nKysLO655x4uu+wydu3aZXU8ERGRYjFMazY5MyqsiYicTq1aEBREyO9LqFM3CsMouKnL5aZDg0DYsgWaNs23jWEY1I8YT6uqX1E1qB9hvhdTJaAHsVXepGXVWZr3TKSMOpI2A04Uw/NjJzFtpqfiSD5q1arFjz/+yBtvvEFAQAALFy6kWbNmTJ06VaMJRUREpFSosCYicjr+/jBgAMbbb9P/5nYU9NnMZjc4r1lN6v/yNQQEwI03FtptoM95NIiYSLOYaTSOeoEI/04YRmEf2kXESpm524HCRq66yMrZ6qk4UgDDMLj11lvZsGEDl1xyCenp6dx2221069aNffv2nb4DERGRskJzrJULKqyJiBTF7bfDkSNc+uVrDL21ExhgsxkYRl5BDaBu/Wge61Ud48UXYfhwCAy0OLRIxWAW4TZsT7Ab/qdtY7Pp331ZUbduXX755RdefvllfH19mTdvHrGxsbz77rsavSYiIiIlxmF1ABGRcqFxY5g2DQYN4oZDh7hs4r18u9vF/r+O4OfvQ6cLqnH+poXYru0FF14ITz5pdWIpo3Kch0jP2Yhh2An0OR+HLdjqSGVSriuBwylvkpT2CS4zGbstlPCAG4kKHoGXPdKSTKH+V5GQMgUoaEJ8g1D/np6MJKdhs9m4++676d69O4MGDWL58uUMGTKEL774grfeeouqVataHVFERETKOcPUV3ZnJCUlhZCQEJKTkwkO1ochkUrnq6/grrtg3z5o2TJv9c/0dFi4EJxOGDgQpkwBX1+rk1ojMxPmzMl7fhyOvIJkp05g0wDpXNdR9iQ9TFLGDxwvzBh4UyXwJmqFj8Vm+FgbsAzJdv7FjvjeON1JnHzrpR2HPYoG0V/h7aju8Vy5rgS2HbwMt5nOqbeE2rHbQmlU9Rcc9jCPZ5PTc7lcPP/880yYMIGcnBzCwsJ47bXX6NevH0Zhk2eKiIhlKuvn7+PX3eKWJ7B7e/ZzhSsni3UzH6p0z/nZ0CcdEZEz0asX6dvmkTL7SXIbVsdMTQUfHxg/Pq+Y9PbblbOolpwM//sf1KgB114LDz4IY8ZAly7QsGFesdFd0CifkmWanjnPmXC509ma0I+kjLn8e7STSQ4Jae/zx6GRZTK3VfYm3ptPUQ3AhdN1mH1H7rciFl72aOpFz8Jhi/h7j4Pjg/+97DHUrzJbRbUyzG6388ADD7B69WrOP/98jh49yk033cR1113H4cOHrY4nIiIi5ZRuBRURKaLkrHX8kfQ4qTkboQ3QBvwd51A//C4i/S+zOp51Dh3KK6Dt2QMjRrDnmutY7/bHbjO4KC2OsJnvwt13w2+/wYcf5o1kK2E5rkTiUqaRkPYJTvdRHLYQqgReR7WgYXg7qpT4+c7UobTZZOb+Sf6zwbpJzlpIctYiQv06ejhZ2ZOV+wcZOb8X0sJFWvZisnP34ONVx1OxTvD3bkrj6stIzphLevZKwCDQtz0hfpdjGHpbVR7ExsayfPlynnrqKR577DE+//xzFi1axNSpU+nTp4/V8URERP5hxWICuqfxjOkdoIhIESRnrWNN/M2Y/xlBk+Hcw4ZDo4iNepkqAd0tSmchtxuuuQYOHSLh+5948NfdbJy25MTDNsOg66U381Cv3vjcdGPeiLYXXijRCNnOA2yMv44c12GOj3ByupM5mPIuh9O+omnMZ/h61SrRc56pQ6kfn6aFncNpn6iwBmTmbC5au9wtlhTWAGyGN2EBVxMWcLUl55ez5+XlxYQJE7jqqqsYMGAAmzZtom/fvtx0001MmTKF8PBwqyOKiIhIOaFbQUVEiuCPpMf/Lqr993a9vK+Rth+ZhNvMtSCZxX78EZYvJ2Xaewz6bB1bdsef9LDbNPlp+Xbu2WXifuQRePVVKOFbrnYcefCkoto/XOS6j/KnRbcN/luuK4HCv/5zke084Kk4xZaRs5XE9C9IypiD051cKucwDO8itbMVsZ1IYVq2bMmqVasYN24cNpuNjz76iNjYWL7//nuro4mIiEg5ocKaiMhppOfszLv9s8CVACHXnURS5mLPhSorXn8dWrbkw8xAjqZm4nKfWjxymyart+1n9SU9wDDyVlctIVm5e0nOWsypRbXjXKRm/05Gzp8lds7i8LJHnKaFHS+79besFiQzdwdb4nuxOf4Kdh8Zzc7EUazbfwF7jz5e4gXlQJ/2GHgV2sYwfAnwaVui55XKy8fHhyeffJKlS5fSsGFD4uLi6NmzJ0OGDCE5uXQKyCIiIkVhmNZscmZUWBMROY0s18EitDLIcsaVepYyZ8EC6NePb3/bjDufotpxdpvBN1vioVs3+PnnEjt9ehFvGyxqu9ISFXg9hf/KdREVeK2n4pyRbOcBtiZcS3rOxpP2m+SQkDqNPUceKNHzOexhhAfeDBS0SqNBZOBg7LagEj2vSNu2bVm7di2jR4/GMAzeffddmjZtyvz5862OJiIiImWYCmsiIqfhZSvKKn8mXpVtNUCXCzIzITyc5LTMwpu6TY4kp0N4OKSmlliEot42WNR2paVKUH+87dUAez6P2gj0aU2YX2dPxyqSuJQ3cLlTyX9UoMmRjC/IyNlSouesFjaeEL8ef/9kP+m/of69qRr6vxI9n8hxfn5+vPDCCyxcuJB69eqxb98+Lr/8ckaNGkVaWprV8UREpLIxLdrkjKiwJiJyGkHeTfBz1KLgETRgN/yJrGwTz9vtEBgI8fFEhQYW3tRmUDUyGOLjITS0xCIE+7bBZvgW2sbAixDf9iV2zuJw2IJpEvMpwb7/vX3RRrh/TxpVebdMrihpmm6OpH9GwbfaAjhITP+8RM9rM7ypHfkG9aO/ISLwRoL9uhER2J8G0d9RO/KVMvlcScVy8cUXs379em6//XYA3njjDZo3b86iRYssTiYiIiJljQprIiKnYRgG9cOP3+6Wf3HtnNC7sdv8PReqrLjySpg5k16XNsVmFFx4dLlNejWIgHnz8o4pIQ5bEDFBAyjstsHowBvxsoeW2DmLy9sRQ+PoD2lWbT51I56jXsSLtKy+hAZRr2C3FV6YtIrbzMRtZp2uFbmukl2QAvL+3QX4tKRG+FOcE/UONcKfwN+neYmfR6QgAQEBvPrqq8yfP59atWqxa9cuOnbsyL333ktmZuGjdEVEREqC5lgrH1RYExEpgij/LjSJehEvW8jfe/IKOXbDn/ph46gZPNC6cFYaNQr++IMbMvZSIzoUu+3UApdhQOcLziX264/B1xduuaVEI9QKHUOk/9V//3TybYPhfl2pE/5giZ7vbPl51SMq8FoiA3vj7YixOk6hbIYfNuN0BWMDb3vZvg6Rs9G5c2c2btzIsGHDME2Tl19+mRYtWrB8+XKro4mIiEgZoMKaiEgRRQf04KKai2la5XXODR9Pk6iX6FBzCbVCBmEUMlqrPEjP+YMjGb+QnLUW0yx49dNTXHwx9OiB3/ChTO9Uk46tGmD7V3HNz8eLAT0u4HH3HowXX4QHH4SQkEI6PHM2w4sGkS/SNOZLYgJvJNzvcqIDr6dpzGc0jHodm8Xzq5VnhmEjMuB68p8b7jgXkQFlc+EFkZISHBzM22+/zZw5c6hWrRp//PEHF110EePGjSM7O9vqeCIiImIhwzRNDfQ7AykpKYSEhJCcnExwcLDVcUTKpPScHaTl/oHd8CXUtw2OMnqbm0BK9nr+PPIIaf9aNdPHXpW6YfdTJbBn0TpJTYWrr4bffoO+fUm+eSDbQqviZbppsmcrPu+8BYsWwd13w0sv5Q1hk3IjxxnP5vgrcbqPkd9ca5EBN3JOxFMezyVilaNHj3LXXXfxwQcfANCkSRNmzJhBq1atLE4mIlLxVNbP38ev+/x+T2D3Lnw+4ZLmyslizayHKt1zfjY0+6+IlJiM3N1sTXyQ5Ow1J/bZDF9qBg+ibuhdGEZho17E01KyN7Aurj8mzpP2Z7vi2Jo4GreZTUxQ39N3FBQEc+fC1Knw+uuEzJ7NSVP0X3IJfP459OlTovnFM7wdMTSO+ZI9Rx4gNXvZif02w5+YoGFUC7nbwnQinhcWFsbMmTPp27cvI0eOZPPmzbRt25bx48fz0EMP4eXlZXVEERER8SCNWDtDlbViLnI6mc4D/H6wD053KvmNaqkW2I9GkZPOuN+U7A0cTP2UjNy/8LKHERPQkwj/Tti0KuBZWxvXj5TsdUD+t37ajUDa1VyK3XYG35KZJqxYAfv3g8MBjRrlbVIhZOXuJiN3OzbDhyCftpVzwQ6Rf0lMTGTUqFF8+umnALRs2ZIZM2bQtGlTi5OJiFQMlfXz9/HrbnWDNSPWVs/WiLUzoU+mIlIi/jr2Jq4CimoAB9NmUTN4AAHe9YrUn2m62X5kEgfTZmFgx8QF2DicMZcg7ya0iJ5eJlZ6LK8yc/eS8q+RhflxmWkcyVxAlYAzWMXTMODCC88ynZRVvl7n4Ot1jtUxRMqMyMhIPvnkE2bPns2oUaNYu3YtrVq1YtKkSdx///04HHqrLSIiUtFp8QIROWtu00l8+ld/F7/yZ2AnLu3LIve5L+VdDqbNAvhXv3kjq1JztrH58Ohi5xXIdiUUoZWNbGd8qWcpj0zTRAO+ReS4G264gc2bN3P11VeTm5vLgw8+yEUXXcS2bdusjiYiIiKlTIU1ETlrLnc6brPwVdFMIMd1uEj9uc1c/kqeVtgZScpaQlrOn0UPKSfxtoUXoZUbL3tR2lUOpmlyKO0b1h7sw29/NWTJX+exKWE4x7JWWB1NRMqAmJgYvvrqK2bMmEFISAgrV66kZcuWvPjii7hcBX/xJCIiUiDTok3OiAprInLW7LYAbIZPoW0MwNseVaT+0nP+JNd95DStbCRl/la0gHIKf+96BHg1Ju9PJn82w5dI/8s9F6oMM02THUceZnviaNJyNgFuTHI5mrmIjfE3E5f6sdURRaQMMAyDAQMGsGnTJrp160ZWVhZjxoyhY8eO7Ny50+p4IiIiUgpUWBORs2YzHMQE9MKg4FU/TVxUDexdpP7+u0pl/gxMcouYUPJTL/wB8gpr+RfX6oTehcMW6NFMZdWRjB+J//vW5JMXe3ABJjuOTCAzd4/ng4lImVSjRg1++OEH3nrrLQIDA/ntt99o1qwZr732Gm53/gvGiIiI5McwPbvJmVNhTURKRO3QkdhtQVBAca1a4PVFXrjA36vuaUfAgYsgb626djbC/NoTW+UNvO1VTtpvNwKoFzaOGsFDLUpW9hxImUHhvzJtxKfO9lQcESkHDMNg+PDhbNy4kU6dOpGRkcEdd9zB5Zdfzl9//WV1PBERESkhKqyJSInwc1SnVdWPCfZpdtJ+m+FL7ZBbaRjxSJH7ctgCqRp4LQW/RNnxc9QhzFerT56tCP9OXFjjV5pGT6dBxKOcFzWFdjWXUiNkMIZR8G2ilc3x2z8L5iI1e4On4hRJVu5e0rI3kutKsjqKSKVWp04d5s+fz5QpU/D39+fnn3+madOmvPPOO1oERURECmea1mxyRrQGuIiUmACvurSuOou0nD9Iz/kTm82HMN8Li3U7Yb2w0aRkryc1Z/Pfe46/wNtx2AJpWmWyCj8lxDDshPt1sDpGmWYYXmBmFtYCm+HtsTyFOZr5C3uPvkh67vF/OzYi/LtRO3Qsvl41Lc0mUlnZbDbuuOMOunfvzqBBg1iyZAnDhw/niy++4O2336Z69epWRxQREZFi0og1ESlxgd7nEh14JVH+XYo9R5fDFsj5MR/QIGws/o46GHjjZYugVvBA2lT7hkDvhiWcWqRgEX6dKeg25+PC/S/zTJhCHE7/hq2HhpGeu+Vfe90cyfiJDfG9yMrdZ1k2EYH69euzcOFCnn/+eXx8fPjhhx+IjY1l5syZGr0mIiJSTqmwJiJllt3mR82QQVxYYy6d6mzk4lpLqR/+AL6OGKujSSVTPWTI3/8vv1GSdhy2UKoE9vJgolO53JnsOvIQ+a+T7sLpTuGvY09bkExE/s1utzNmzBjWrl3LBRdcwLFjxxgwYAC9e/cmISHB6ngiIlKGeHrhAi1gUDwqrImIiJxGoHdjGkdNxsBB3q/Of1ZT9bKF0DR6Bg5bkJUROZIxF5eZXkgLF0cyftScayJlROPGjVm6dCmPP/44Xl5efP311zRp0oRPP/3U6mgiIiJyBlRYExERKYLIgG60qfkbdULvJcKvMxH+XWkQ8QQX1PiVQJ/zrI5HlvOvvwt/hXGT7YrzSB4ROT2Hw8FDDz3E77//TvPmzTly5AjXX389/fr1IzEx0ep4IiJiNdOiTc6ICmsiIiJF5G2PoGbobZwXPZXzqrxGTNAN2G3+VscCwGELwSx05dK/2xnBHkgjImeiefPmrFy5kocffhi73c7s2bOJjY3lm2++sTqaiIiInIYKayIiIhVAhH/307QwCPCK1cqgImWUt7c3jz76KMuXL6dx48YkJCRwzTXXMHDgQI4dO2Z1PBERESmACmsiIiIVgI+jKtGBN5H/Agt5+2qFjfZoJhE5c61bt2bNmjXcf//9GIbB+++/T2xsLD/++KPV0URExMMMtzWbnBkV1kQqmczc/ew5No0dSS9zMPUrXO5MqyOJSAmpGz6B6MD+5P16t52Yc81uBHBu5MuE+XW0Mp6IFJGvry/PPvssv/32Gw0aNODAgQN0796dESNGkJqaanU8ERER+RfDNE1NTXcGUlJSCAkJITk5meBgzVMj5YfbzGFr4iMcTPsKMDCwYeLEbgRwXuSjxAT2sDqiiJSQbGc8SRlzcbqT8XXUJty/O3abr9WxRKQYMjIyGDduHJMnTwagTp06TJ8+nU6dOlmcTESk9FXWz9/Hr/uCXo/j8PLsezhnbha/fzW+0j3nZ0Mj1kQqiX+KaibgxsQJgMvMYOPh+ziSscTKeCJSgnwcMVQNHkTN0LuJCuyloppIOebv788rr7zCL7/8Qp06ddizZw+XXXYZd911F+np6VbHExERqfRUWBOpBDJy9/6rqPZfJmCw49hkz4b6bwrTTbYrkRzXUTSQVkRE5GQdO3Zkw4YNjBw5EoApU6bQokULli5danEyERGRyk2FNZFKICH9R/Kf0Pw4NynZG8hyxnsq0j9nNp3sSZ7O4n2XsWjvxSzc257lB3oTl/a9x7OIiIiUZUFBQUydOpUff/yRGjVqsGPHDjp06MD9999PVlaW1fFERKSEGaY1m5wZFdZEKgGnOw2jCP/cnW7PTohsmi42HLqHP5OeJ9uVcGJ/Wu4fbDp8HzuOWjuKTkREpCzq2rUrGzduZODAgZimyfPPP8/555/P77//bnU0ERGRSkeFNZFKwN+r9ok51Qpi4MDHEeOhRHni0r7jcMYCTr1FNe/n3cfeIDV7q0cziYiIlAehoaG89957fP3110RHR7N161batWvH+PHjycnJsTqeiIiUBNO0ZpMzosKaSCUQHdANu+FX4OMGdmICeuBlC/JgKtiX8hGFvQwZ2NmfOttzgURERMqZq6++ms2bN9OvXz9cLhdPPPEEF1xwAevXr7c6moiISKWgwppIJeCwBdA48lHy5lk7ea41Azte9nDqh9/r8VzpuTsAd4GPm7hIzfnDc4FERETKoYiICD7++GM++eQTIiMj2bBhA61bt+axxx4jNzfX6ngiIlJMmmOtfFBhTaSSqBrYkxbRbxDkfd6JfQYOogN60LbaJ/h6+DZQoNBRdHkMHLYAj2QREREp76677jo2bdpE7969cTqdTJgwgfbt27Nlyxaro4mIiFRYKqyJVCJR/pdyYfXP6FBjPhdW/5pLay2haZVnLSmqAUQHXoGBvZAWJtEB3TyWR0REpLyLjo7m888/54MPPiA0NJRVq1Zx/vnn89xzz+FyuayOJyIiUuGosCZSCfl5VSfI+1y87MGW5qgVfAuG4UV+L0UGdnztVYkJuNLzwURERMoxwzDo378/mzdvpkePHmRnZ/O///2PSy65hD///NPqeCIiUlSmRZucERXWRMQy/l61OD/mHbxseQU+AwcGDgD8HDVpVXUGdtvpbhcVERGR/FSrVo3vvvuOadOmERQUxNKlS2nevDmTJ0/G7S54jlMREREpOhXWRMRSYb6tuLjmrzSJfJrqQddRI/hGWkS/Qfsa3+HvVdPqeCIiIuWaYRgMGTKETZs20aVLFzIzM7n77rvp3Lkzu3fvtjqeiIgUQosXlA8qrImI5ew2H6oFXUPjyAk0iniQKP+OGEZhc6+JiIjImahVqxY//fQTr7/+OgEBAfz66680a9aMN998E9PUpygREZHiUmFNRERERKQSMAyD2267jQ0bNnDJJZeQlpbGrbfeSvfu3dm3b5/V8URERMolFdZERERERCqRunXr8ssvv/DSSy/h6+vLTz/9RGxsLO+9955Gr4mIlCWmac0mZ0SFNRERERGRSsZms3HPPfewbt062rZtS0pKCoMHD+aaa64hLi7O6ngiIiLlhgprIiIiIiKVVMOGDfntt9946qmn8Pb25ttvvyU2NpaPP/5Yo9dERCxW0RYveOKJJ2jfvj3+/v6EhoYW6RjTNJkwYQJVq1bFz8+PLl268Oeff5ZeyGJQYU1ESM/dzR9Jz7EmfgQbDt1LfNr3uM0cq2OJiIiIBzgcDsaOHcvq1atp2bIlSUlJ3HTTTVx33XUcPnzY6ngiIlJB5OTkcN1113HbbbcV+Zhnn32WyZMnM3XqVFasWEFAQADdunUjKyurFJOeGRXWRCq5PcfeYen+HuxNnsGRzMUkpP/ExsP3sWz/NWQ5462OJyIiIh4SGxvLihUreOSRR3A4HHz++ec0adKEL774wupoIiKVk2nRVkomTZrEvffeS9OmTYvU3jRNXn75ZcaPH88111xDs2bNeP/99zl48CBfffVV6QU9QyqsiVRiCek/8ufRFwAwcf291w1ApnMfa+NHYppui9KJiIiIp3l5eTFx4kRWrFhBbGwshw8fpm/fvtx8880kJSVZHU9ERDwkJSXlpC07O9vjGXbv3k18fDxdunQ5sS8kJIS2bduybNkyj+cpiAprIpXY7mNvUtDLgImLtNw/SMoqOy9YIiIi4hnnn38+q1atYty4cdhsNj788ENiY2P5/vvvrY4mIiIeULNmTUJCQk5sTz31lMczxMfn3UEVHR190v7o6OgTj5UFKqyJVFI5rqOk5mzl+Ai1/Bg4SMxY5LlQIiIiUmb4+Pjw5JNPsnTpUho2bEhcXBw9e/Zk6NChJCcnWx1PRKTCs3Lxgn379pGcnHxiGzduXL4Zx44di2EYhW7btm3z4LPmeSqsiVRSpplbpHbuIrYTERGRiqlt27asXbuWe++9F8MwmD59Ok2bNmX+/PlWRxMRkVISHBx80ubj45NvuzFjxrB169ZCt7p16xYrQ0xMDAAJCQkn7U9ISDjxWFngsDqAiFjD2x6Btz2SHFdigW1MnAT7xHowlYiIiJRFfn5+vPjii/Tu3ZtBgwaxa9cuLr/8cm677TaeffZZAgMDrY4oIlLxuM28zdPnPANRUVFERUWVSpRzzjmHmJgYFixYQIsWLYC8ud9WrFhxRiuLljaNWBOppAzDTs3g/oBRUAscRhAxAVd4MpaIiIiUYRdffDHr169n1KhRALzxxhs0b96cRYs0dYSIiBRu7969rFu3jr179+JyuVi3bh3r1q0jLS3tRJtGjRrx5ZdfAmAYBvfccw+PP/4433zzDRs3bmTAgAFUq1aNXr16WXQVp1JhTaQSqxMyhHDfdn//9E+BzcCOgRfNol/BbvOzJpyIiIiUSYGBgbz22mvMmzePWrVqsWvXLjp27Mjo0aPJzMy0Op6IiJRREyZMoGXLlkycOJG0tDRatmxJy5YtWbVq1Yk227dvP2kez//973/ceeedjBgxggsuuIC0tDTmzp2Lr6+vFZeQL8M0TQ+PKyzfUlJSCAkJITk5meDgYKvjiJw1t5nLgdTP2JfyIem5u7EbfkQHdKN2yGACvetbHU9ERETKsJSUFEaPHs20adMAaNiwITNmzKBt27YWJxORiqCyfv4+ft3tu0zC4eXZApIzN4ul8ydWuuf8bJTbEWtJSUn079+f4OBgQkNDGTp06EnDB/PTsWPHU1anuPXWWz2UWKRsshle1Ay+kfY1vuPyczZzWZ1VNIl6QkU1EREROa3g4GDeeecdvvvuO6pWrcr27dtp374948aNIzs72+p4IiIipa7cFtb69+/P5s2bmTdvHt999x2LFi1ixIgRpz1u+PDhxMXFndieffZZD6QVESkat+nkcMZ8Nh++jw0Jt7Ej6RkycndbHUtERKRQV155JZs2baJ///643W6efvppWrduzZo1a6yOJiJSbhmAYXp4s/qiy6FyWVjbunUrc+fO5Z133qFt27Z06NCBKVOmMGvWLA4ePFjosf7+/sTExJzYNLRRRMqKHNcRVh3sy8ZDt5OQPofEzJ/ZmzKD5Qe6s/vYq1bHExERKVR4eDgffPABX3zxBVFRUWzatIm2bdvyyCOPkJuba3U8ERGRUlEuC2vLli0jNDSU1q1bn9jXpUsXbDYbK1asKPTYDz/8kMjISGJjYxk3bhwZGRmFts/OziYlJeWkTUSkpJmmycZDd5Ce++ffe1wn/Xf3sSnEpX1lRTQREZEz0rt3bzZv3kzfvn1xOp1MmjSJtm3bsnHjRqujiYiUL6ZpzSZnpFwW1uLj46lSpcpJ+xwOB+Hh4cTHxxd43E033cQHH3zAL7/8wrhx45g5cyY333xzoed66qmnCAkJObHVrFmzRK5BROTfUrLXk5y9BvNEQe2/DP469iZab0ZERMqDqKgoPv30Uz7++GPCw8NZu3YtrVu35qmnnsLpdFodT0REpMSUqcLa2LFjT1lc4L/btm3bit3/iBEj6NatG02bNqV///68//77fPnll+zcubPAY8aNG0dycvKJbd++fcU+v4hIQY5k/oqBvZAWJhnOXWS74jyWSURE5GwYhkG/fv3YtGkTV111FTk5OTz44IN06NDhrN7Ti4iIlCUOqwP825gxYxg0aFChberWrUtMTAyHDh06ab/T6SQpKYmYmJgin+/4MuA7duygXr16+bbx8fHBx8enyH2KiBSH28ylKFOFus2c0g8jZY5puknO+p0s10G8bOGE+bXDZnhbHUtEpEiqVq3K119/zfvvv89dd93FihUraNmyJU8++SR33303NluZ+q5fRKTMOL6ggKfPKWemTBXWoqKiiIqKOm27du3acezYMVavXk2rVq0A+Pnnn3G73SeKZUWxbt06IO+XvYiIlYJ8mmBS+K0xDiMIX0c1DyWquNxmDofSfyIlex2GYSfctz3hfhdjGGXzg92RjF/588jEk0YrOmyh1A27j6pB11uYTESk6AzDYODAgVx22WUMGzaMn376idGjR/Pll1/y7rvvFvglt4iISFlXNj9FnEbjxo3p3r07w4cPZ+XKlSxZsoQ77riDfv36Ua1a3ofOAwcO0KhRI1auXAnAzp07eeyxx1i9ejV79uzhm2++YcCAAVxyySU0a9bMyssRESHKvwtetnAKflm2US2on0YpnaXkrHUs2XcpWxLHcCD1Y/anfMD6QyNYcaAHmbll71b/pMzf2HToVrJdJ88f6nQf448j4zmYOsuiZCIixVOzZk3mzp3L1KlTCQgIYPHixTRr1ozXX38dt9ttdTwRkbLFtGiTM1IuC2uQt7pno0aN6Ny5Mz169KBDhw689dZbJx7Pzc1l+/btJ1b99Pb2Zv78+XTt2pVGjRoxZswY+vbty7fffmvVJYiInGAzvImtMhmb4fWfudYMwCDYpxnnhN5uVbwKITN3P+sSBpPrPgaAifPEKMFM517Wxg/A5S58pWhPMk2TnUlPUtg7nF1Jz+JyZ3k0l4jI2TIMg5EjR7Jx40Y6duxIRkYGt99+O127dmXv3r1WxxMRETkjhqkl5s5ISkoKISEhJCcnExwcbHUcEalg0nN2sjflXRLSv8NtZuHnqEH1oP5UD7oRu83X6njl2p9JT7M/5f1CVl6FRhGPUy3oOg+mKlhazjZWH7z6tO3Oi5pMVEB3DyQSESl5brebV199lbFjx5KZmUlQUBAvv/wygwcPxjBOP/eoiFRslfXz9/Hr7tDpERwOz34GcDqz+O2XRyrdc342yu2INRGRiijAux6NIx+nY+11dKq9lXY15lMrZLCKaiUgIf37QotqYJCQ/oPH8pxOjiuxCK0MclyHSz2LiEhpsdls3HXXXaxbt4527dqRmprK0KFD6dmzJwcPHrQ6noiIpQzTtGSTM6PCmsj/27vv+Kiq/P/j75teSCYGsiFUQWAREkiUvghGUbFQViGIsICIsCwWWBAQUURgXetaEBQLiOKCoJRd21JdQIyBECAoiBRDC4JACpA69/eHS37mC4nJJDM3M/N6Ph7noXPn3rnvISdnkk/OvQeoofhLffX67cs8TRXbc12SpSICfX9Xgb1MBfpGOz0LADhbixYttHHjRj377LMKDAzUp59+qtjYWC1atEhcYAMAqMkorAEAvEJoQDOV97FnyFehAS1cF+g3hPg3V6h/S5WX2c/HpsiQ612WCQCcydfXV4888ohSU1PVrl07nTlzRoMHD9Zdd92lEydOWB0PAFzPblFDpVBYAwB4hQZh96i8nxRMFat+2N2uC/QbDMNQs9pTZfxvAYvLuSryUVaKBeBxWrVqpS1btmjGjBny9/fX8uXLFRsbq6VLl1odDQCAS1BYAwB4hejQO1Qn+EZdWqT65XGj8PsVHhjr8lzliQjqoLjodxTs16TU9gDfaLWs84Lq1rrTomQA4Fx+fn6aOnWqUlJS1KZNG506dUpJSUkaOHCgfv75Z6vjAYBLcI8190BhDQDgFQzDV7G/e0VXXTFeAb+6f1mIf1NdXefvuuqK8RamK9sVwZ3Vvv5nSohZplZRr6ht3UXq1GCDomv1sjoaADhd27ZtlZKSoqlTp8rX11eLFy9WbGys/vWvf1kdDQAASZJhcjfQSvHW5X4BwJOYpl0FxSdlGL7y96nNQhEA4AZSUlI0dOhQfffdd5KkIUOG6OWXX1ZERIS1wQA4JmVySAAAKQVJREFUjbf+/n3xfXe77gn5+QW59NxFRXn678anvO7fvCqYsQYA8DqG4aNAv2gF+NahqAYAbqJ9+/ZKTU3VI488IsMwtHDhQsXGxuqLL76wOhoAOIdpUUOlUFgDAAAA4BaCgoL07LPPatOmTWrWrJmOHj2qnj17atSoUcrJybE6HgDAC1FYAwAAAOBWunTpoh07duihhx6SJM2bN09t2rTRhg0brA0GANXJNK1pqBQKawAAAADcTkhIiF5++WWtW7dOjRs31qFDh5SYmKiHHnpI58+ftzoeAMBLUFgDAAAA4LYSExO1a9cujRw5UpL06quvqm3btvrqq68sTgYA8AYU1gAAsMK+fdLzz0tTpkgzZ0obNjD1HgAcFBYWpjfeeEOfffaZ6tevrx9++EFdu3bVxIkTlZeXZ3U8AHCIYVrTUDkU1gAAcKWtW6VbbpFatJCmTZM++ED6xz+kxEQpNlZatMjqhADgtnr27Kn09HQNGTJEpmnqueee07XXXqutW7daHQ0A4KEorAEA4Cr/+Y/UrZuUmanCt9/Rmk82a8ErS/TR4rXKWvWJ1Ly5NHjwLwU3AIBDIiIi9O6772rlypWKjo7Wt99+q06dOunxxx9XQUGB1fEAoOJYvMAtUFgDAMAV9u+X7rpLSkzU2pcXqmfyeT329jrN+2iLnntvnW5dtlevJI2T/W9/k556Snr/fasTA4Bb6927t3bv3q0BAwaouLhYM2fOVIcOHbRjxw6rowEAPAiFNQAAXOGVV6TgYH39+LOa8vZanTufL0kqtttlmlKx3dSiz7bp1UadpT59pL/9jb8YAkAV1a5dW4sXL9aHH36o2rVra8eOHWrfvr1mzpypoqIiq+MBQLkMuzUNlUNhDQAAZzt3TlqwQOZ99+nVVdtkGFJZJbMl/9murOH3S999J335pUtjAoCn6t+/v3bv3q2+ffuqsLBQjz/+uDp37qxvv/3W6mgAADdHYQ0AAGdLT5eys5WZeIt+OHyq3IlodtPU6uB6UmSktGmT6zICgIeLjo7Wxx9/rPfee08RERHaunWrrrnmGj3//PMqLi62Oh4AwE1RWAMAwNnOnZMk5foG/OauPoaPss/lS+HhJccBAKqHYRgaPHiw0tPTdeuttyo/P1+PPPKIunXrpn379lkdDwBKY/ECt0BhDYDXsJuFKrKfk8mHBVwtMlKS9LsLWTKM8nctttvV0BYknTxZchwAoHrVr19fn3zyid566y2FhYXpq6++Utu2bfXqq6/KbucGQwCAiqOwBsDjnc1L1fbMP2vtobZa/2M7bTycqINn31SxPd/qaPAWcXFSkyayLV2srvFN5etz+eqaISk0OEDdD23/ZbZanz6uzQkAXsQwDN13333atWuXbrjhBl24cEEPPfSQevTooUOHDlkdDwB+uSmvFQ2VQmENgEfLzP1MKcf/pFMXNunip0R+8Qn9cOYfSs28j+IaXMPXV/rzn6UlS/TXTg0UHBRwSXHt4oIGj95znQJeekm66SapRQtL4gKAN2ncuLFWr16t2bNnKyQkROvXr1dcXJzmzZvHLHcAwG+isAbAYxUWZ2n3qUf1S7ni/96U2NTZ/O3KyF7g+mDwTqNGSVdeqXqDk/TekI7q3KZJqctCr2pQR//4y8266fnHpH37pFmzrMsKAF7Gx8dHY8aM0Y4dO9S1a1fl5uZq1KhRuvXWW3XkyBGr4wEAajAKawA81vHclbKbBSp7PrNdGdmLZJrcSwUuYLNJX3whBQSo3o1d9cKOj/VF0tV6b1hnrfjTtXpfe9Sl743Shg3Sxx9L7dtbnbjGKrLn6mj2+0o/MVq7TozSj2fnqqD4lNWxAHiAZs2aacOGDXrhhRcUGBioL774QrGxsVq4cCGz1wC4nGGaljRUDoU1AB4rp2CvjN8Y5gqKT6rInu2iRPB6jRtLycnSU09JmzbJ1us2tejRRTG3XC/jtdekAQOktDSpZ0+rk9ZY2fk7lXwkUT+cnqGfL6zT6Qvrdejsy/r6cHedOrfa6ngAPICvr6/++te/Ki0tTR06dFBWVpaGDh2qvn37KjMz0+p4AIAahsIaAI/lawTpl9vBl8/HCHB+GOAim02aOFH64Qdp+3Zp7Vppyxbp6FHplVekZs2sTlhjFRaf1c4T96rInqPSd9e1y1SRvj35sM4VfG9hQgCepGXLltq8ebNmzZolf39/rVq1Sq1bt9aSJUusjgbAW5imNQ2VQmENgMeKCr1BporK2cNHkUGd5esT4rJMQAkfHyk+XrrhBqlTJ6lWLasT1XiZuR+p2J4r6XKXb5syZepI9kJXxwLgwfz8/DRlyhRt27ZNCQkJOn36tO6++24lJSXp1CkuQQcAUFgD4MEigzorLOBqGfItYw9TV0bc79JMABz38/n1Kn8N+GL9fH6Nq+IA8CJxcXFKTk7WtGnT5Ofnp6VLl6p169ZasWKF1dEAeDJTv/w90ZWNCWuVRmENgMcyDB8lRL+h0IDmvzyWr34Z9nxkyE+t6sxU7eDOlmYEUHGmWVCBfQpdkASAN/L399eTTz6p5ORktW7dWj/99JP++Mc/6k9/+pPOnDljdTwAgEUorAHwaIF+UepU7yMlRL+hemF3KSb0djW7Yqyua7Re9cPutDoegEoIC2wrlTkDVZJ8FRbYxlVxAHipa665Rtu2bdPkyZPl4+Oj999/X7Gxsfrss8+sjgYAsACFNQAezzB8VCekm1rVma7Y3z2rJhH3K9C3jtWxAFRSvbC7dfn7q11UrHrhf3JVHABeLDAwUE8//bQ2b96sFi1a6NixY7rttts0YsQIZWez2jiA6mGYpiUNlUNhDQAAuIWQgKvUPHLa/x79eubaLz/O1A8bqtrBiS7PBcB7derUSdu3b9e4ceNkGIbefvttxcXFae3atVZHAwC4CIU1AADgNuqF36O2dd9XZHA3GQqQIT+FByaoVdSruipyigzDsDoiAC8TEhKiF198URs2bFCTJk2UkZGhHj16aMyYMcrNzbU6HgB3ZkoyTRc3q9+0+6GwBgAA3EpEUAfFRb+hblemq9uV3yoh5p+KCr2FohoAS3Xr1k07d+7U6NGjJUlz5sxR27ZttXHjRouTAQCcicIaAAAAAFSDWrVqac6cOVq9erUaNmyoAwcOqHv37ho/frwuXLhgdTwAgBNQWAMAAACAatSjRw/t2rVLw4cPl2maevHFF5WQkKDk5GSrowFwJy6/DPR/DZVCYQ0AAAAAqpnNZtPbb7+tf//734qJidHevXvVpUsXTZkyRfn5+VbHAwBUEwprAAAAAOAkt99+u9LT0zVo0CDZ7XY9/fTTat++vbZv3251NAA1nd2ihkqhsAYAAAAAThQZGan3339fH330kaKiorRr1y516NBB06dPV2FhodXxAABVQGENAAAAAFzgzjvv1O7du3XXXXepqKhITz75pDp16qT09HSrowEAHERhDQAAAABcJCoqSkuXLtUHH3ygK664Qqmpqbr22mv197//XUVFRVbHA1CDGKZpSUPlUFgDAAAAABcyDEMDBw7U7t27dccdd6igoECPPvqounbtqr1791odDwBQCRTWAAAAAMACMTExWrVqlebPn6/w8HAlJycrPj5eL730kux27iAOeD3TtKahUiisAQAAAIBFDMPQsGHDlJ6erptuukl5eXkaN26cEhMTdeDAAavjAQB+A4U14H+y8tO1++RUbTnSV98cu1uHzr6lguIzVscCAACAF2jYsKG++OILvf766woNDdV///tftWnTRnPnzpXJDBLAOzFjzS1QWAMkHTgzR98c66/juSuUW7hXWfk7tO/Mi9p85FZl539rdTwAAAB4AcMwNGrUKO3cuVPdu3fXuXPn9Je//EU333yzMjIyrI4HALgMCmvwej+dW6P9Z1+VJJkq/tUzporsOdqeOVLF9jxrwgEAAMDrNG3aVOvWrdNLL72koKAgrVmzRnFxcXrnnXeYvQYANQyFNXi9Q1nvqOxvBbsK7D/rxLnPXBkJAAAAXs7Hx0cPP/ywduzYoU6dOik7O1v33XefevXqpWPHjlkdD4ArcCmoW6CwBq9mNwuVlb9dUnmrLvnqdN7XrooEAAAAlGjRooU2bdqkZ555RgEBAfrkk08UGxurDz74gNlrAFADUFiDl6vIDyMmP7QAAADAMr6+vpo4caJSU1N17bXX6syZMxo0aJD69eunn376yep4AJzFblFDpVBYg1fzMQIUFtBS5X8r2BURlOCqSAAAAMBltW7dWlu2bNH06dPl5+enjz/+WK1bt9ZHH31kdTQA8FoU1uD1GoUPU9lleR/5GrUUU6u3CxMBAAAAl+fv768nnnhCKSkpatOmjU6dOqV+/frpnnvu0enTp62OBwBeh8IavF5Mrd5qEDZQkmTI91fP+MrHCFB89Gvy8wm1JhwAAABwGfHx8UpJSdFjjz0mX19f/fOf/1Tr1q3173//2+poAKqJYZqWNFQOhTV4PcMw1LL244qPnqvI4C4K8KmtIL96ahT+J3Wuv0qRwR2sjggAAABcIiAgQDNnztSWLVt09dVXKzMzU7169dK9996rrKwsq+MBgFegsAbol+JaVMj1uqbuPHVvvEnXNVyr39eepBD/hlZHAwAAAMrVvn17paamasKECTIMQwsWLFBcXJxWr15tdTQAVWGa1jRUCoU1AAAAAHBzQUFBeu6557Rx40Y1a9ZMhw8f1s0336zRo0crNzfX6ngA4LEorAEAAACAh/jDH/6gtLQ0Pfjgg5Kk119/XW3atNGXX35pcTIAlWY3rWmoFAprAAAAAOBBQkND9corr2jdunVq3LixDh48qOuvv15jx47V+fPnrY4HAB6FwhoAAAAAeKDExETt2rVL999/vyTp5ZdfVnx8vLZs2WJxMgDwHBTWAAAAAMBDhYWFad68efrss89Uv3597du3T127dtWkSZOUl5dndTwA5fGwxQtmzZqlLl26KCQkRBEREb+5f2FhoSZNmqS4uDiFhoaqXr16GjJkiI4dO+a0jI6gsAYAAAAAHq5nz55KT0/XkCFDZLfb9eyzz+raa6/V1q1brY4GwEsUFBSof//+Gj16dIX2P3/+vFJTU/X4448rNTVVH3/8sfbu3avevXs7OWnl+FkdAAAAAADgfBEREXr33Xd15513atSoUfr222/VqVMnTZkyRVOnTlVAQIDVEQGU4twZZGWe00mmT58uSVqwYEGF9rfZbFq9enWpbbNnz1aHDh2UkZGhRo0aVXdEhzBjDQAAAAC8SJ8+fZSenq4BAwaouLhYM2bMUMeOHbVz506rowGoIbKzs0u1/Px8qyNJkrKysmQYRoUuJXUVCmsAAAAA4GXq1KmjxYsXa8mSJapdu7bS0tLUrl07zZo1S0VFRVbHA2Cxhg0bymazlbSnn37a6kjKy8vTpEmTNHDgQIWHh1sdpwSFNQAAAADwUklJSdq9e7f69OmjwsJCTZ06VV26dNF3331ndTQAFi5ecPjwYWVlZZW0Rx999LIRJ0+eLMMwym179uyp8j9FYWGhkpKSZJqm5s6dW+XXq07cYw0AAAAAvFh0dLSWL1+uRYsW6cEHH1RKSooSEhI0a9YsjR07Vr6+vlZHBOBi4eHhFZoVNn78eA0bNqzcfZo2bVqlLBeLaj/++KPWrVtXo2arSRTWAAAAAMDrGYahwYMHKzExUSNGjNDnn3+uCRMmaPny5VqwYIGaNWtmdUTA+9hNOXMxgbLPWXFRUVGKiopyUpj/X1Tbt2+f1q9fr9q1azvtXI7iUlAAAAAAgCSpfv36+vTTT/Xmm28qLCxMmzdvVtu2bTV79mzZ7Xar4wFwYxkZGUpLS1NGRoaKi4uVlpamtLQ05ebmluzTsmVLLV++XNIvRbV+/fpp69atWrRokYqLi5WZmanMzEwVFBRY9TYuQWENAAAAAFDCMAyNGDFCu3bt0g033KDz58/rwQcfVI8ePXTo0CGr4wHew7Rb05zkiSeeUEJCgqZNm6bc3FwlJCQoISFBW7duLdln7969ysrKkiQdPXpUq1at0pEjRxQfH6+YmJiS9tVXXzktZ2UZpmm6eF6he8vOzpbNZlNWVlaNu64XAAAAAKqT3W7X3LlzNXHiRJ0/f161atXSiy++qBEjRsgwDKvjwcN56+/fF993j0Z/kZ9PoEvPXWTP15qMOV73b14VzFgDAAAAAFyWj4+PxowZox07dugPf/iDcnNzNXLkSN122206cuSI1fEAwHIU1gAAAAAA5WrWrJm+/PJLPf/88woMDNTnn3+u2NhYLVy4UFwEBTiJaVrTUCkU1gAAAAAAv8nX11fjx4/X9u3b1b59e2VlZWno0KH64x//qMzMTKvjAYAlKKwBAAAAACrs6quv1ldffaVZs2bJ399fK1euVGxsrD788EOrowGexW5a01ApFNYAAAAAAJXi5+enKVOmaOvWrYqPj9fPP/+sAQMGaMCAATp16pTV8QDAZSisAQAAAAAc0qZNGyUnJ+uJJ56Qr6+vPvzwQ7Vu3VorV660OhoAuASFNQAAAACAwwICAjR9+nR9/fXXatWqlX766Sf17dtXQ4YM0ZkzZ6yOB7gvFi9wCxTWAAAAAABV1q5dO23btk2TJk2Sj4+P3nvvPcXFxenzzz+3OhoAOA2FNQAAAABAtQgKCtLf//53bdq0SS1atNDRo0d16623auTIkcrJybE6HuBeTFkwY83qN+1+3LawNmvWLHXp0kUhISGKiIio0DGmaeqJJ55QTEyMgoOD1aNHD+3bt8+5QQEAAADAy3Tu3Fnbt2/Xww8/LEl68803FRcXp3Xr1lmcDACql9sW1goKCtS/f3+NHj26wsc8++yzeuWVV/T6668rOTlZoaGhuuWWW5SXl+fEpAAAAADgfUJCQvTSSy9pw4YNatKkiX788UfdeOONeuCBB3Tu3Dmr4wE1H/dYcwtuW1ibPn26xo0bp7i4uArtb5qmXnrpJU2dOlV9+vRRmzZttHDhQh07dkwrVqxwblgAAAAA8FLdu3fXzp079ec//1mS9Nprr6lt27batGmTxckAoOrctrBWWQcPHlRmZqZ69OhRss1ms6ljx47asmWLhckAAAAAwLPVqlVLc+fO1X/+8x81aNBA+/fvV7du3TRhwgRduHDB6ngA4DCvKaxlZmZKkqKjo0ttj46OLnnucvLz85WdnV2qAQAAAAAq76abblJ6erruvfdemaapF154QePHj7c6FlAz2e3WNFRKjSqsTZ48WYZhlNv27Nnj0kxPP/20bDZbSWvYsKFLzw8AAAAAnsRms+mdd97Rv/71L7Vq1UpTp061OhIAOMzP6gC/Nn78eA0bNqzcfZo2berQa9etW1eSdOLECcXExJRsP3HihOLj48s87tFHH9Vf//rXksfZ2dkU1wAAAACgiu644w7ddttt8vGpUfM9gJrDisUEWLyg0mpUYS0qKkpRUVFOee0mTZqobt26Wrt2bUkhLTs7W8nJyeWuLBoYGKjAwECnZAIAAAAAb0ZRDYC7c9tRLCMjQ2lpacrIyFBxcbHS0tKUlpam3Nzckn1atmyp5cuXS5IMw9DYsWM1c+ZMrVq1Srt27dKQIUNUr1499e3b16J3AQAAAAAAAHdVo2asVcYTTzyhd999t+RxQkKCJGn9+vW6/vrrJUl79+5VVlZWyT4TJ07UuXPnNHLkSJ09e1Zdu3bV559/rqCgIJdmBwAAAAAAKBeXgroFwzT5V6uM7Oxs2Ww2ZWVlKTw83Oo4AAAAAAB4JG/9/fvi++5RZ7j8fAJceu4ie4HWnHrH6/7Nq8JtZ6wBNZndLFB+0Un5+oQowPcKq+MAAAAAANyN3ZTk4rlQduZeVRaFNaAaFdpzdODMHB3NWapi85wkyRYYr6YRf1GdkOssTgcAAAAAAKoThTWgmhTac5RybJDOFR6QVFyyPSt/p7afGKXWdWapXtgfrQsIAAAAAHAbpmmXadpdfk5UjtuuCgrUNIfOztO5wv36dVHtF3ZJpr49NU2FxWddHwwAAAAAADgFhTWgGtjNIh3JWaJfimiXZ6pIx3NXuS4UAAAAAABwKi4FBapBYfEZFdlzyt3HkK9yCw+4KBEAAAAAwK2ZpusXEzBZvKCymLEGVANfn+AK7GXKzwhxehYAAAAAAOAaFNaAauDnU0uRQV1U3reUqWL9LvRm14UCAAAAALgv07SmoVIorAHVpGnEn//3f8ZlnvVVZFAn2QLbujISAAAAAABwIgprQDW5Iri92vzuRfkYQZIkQ34y5CtJigzqqDbRr8gwLld0AwAAAAAA7ojFC4BqFB16i2oHd1Vm7ic6V/iDfIxg/S70JtkCY62OBgAAAABwJ3a7ZNhde07TxefzABTWgGrm5xOqBuFJVscAAAAAAABORmENAAAAAACgpjFNSS5eTIDFCyqNe6wBAAAAAAAADmDGGgAAAAAAQA1j2u0yXXyPNZN7rFUaM9YAAAAAAAAAB1BYAwAAAAAAABzApaAAAAAAAAA1DYsXuAVmrAEAAAAAAAAOYMYaAAAAAABATWM3JYMZazUdM9YAAAAAAAAAB1BYAwAAAAAAABzApaAAAAAAAAA1jWlKsltwTlQGM9YAAAAAAAAABzBjDQAAAAAAoIYx7aZMFy9eYDJjrdKYsQYAAAAAAAA4gMIaAAAAAAAA4AAuBQUAAAAAAKhpTLtcv3iBi8/nAZixBgAAAAAAADiAGWsAAAAAAAA1DIsXuAdmrAEAAAAAAAAOYMYaAAAAAABATcM91twCM9YAAAAAAAAABzBjrZIuXm+cnZ1tcRIAAAAAADzXxd+7vfW+X0UqlFz81otU6NoTegAKa5WUk5MjSWrYsKHFSQAAAAAA8Hw5OTmy2WxWx3CZgIAA1a1bV5syP7Xk/HXr1lVAQIAl53ZHhumtpV8H2e12HTt2TGFhYTIMw+o4FZKdna2GDRvq8OHDCg8PtzoOahD6BspC30BZ6BsoC30DZaFvoCz0DZTlYt/IyMiQYRiqV6+efHy8605WeXl5KigosOTcAQEBCgoKsuTc7ogZa5Xk4+OjBg0aWB3DIeHh4Xxg4bLoGygLfQNloW+gLPQNlIW+gbLQN1AWm83mtX0jKCiI4pab8K6SLwAAAAAAAFBNKKwBAAAAAAAADqCw5gUCAwM1bdo0BQYGWh0FNQx9A2Whb6As9A2Uhb6BstA3UBb6BspC34A7YfECAAAAAAAAwAHMWAMAAAAAAAAcQGENAAAAAAAAcACFNQAAAAAAAMABFNYAAAAAAAAAB1BY80DHjx/X5MmTlZiYqLCwMBmGoQ0bNlTqNY4ePaqkpCRFREQoPDxcffr00YEDB5wTGC519uxZjRw5UlFRUQoNDVViYqJSU1MrdOywYcNkGMYlrWXLlk5OjeqSn5+vSZMmqV69egoODlbHjh21evXqCh3LuODZHO0bTz755GXHhaCgIBekhivk5uZq2rRp6tmzpyIjI2UYhhYsWFDh46vyuYOarSp9Y8GCBZcdOwzDUGZmpnODw6lSUlL0wAMPqHXr1goNDVWjRo2UlJSk77//vkLHM2Z4rqr0DcYM1GR+VgdA9du7d6+eeeYZNW/eXHFxcdqyZUuljs/NzVViYqKysrI0ZcoU+fv76x//+Ie6d++utLQ01a5d20nJ4Wx2u1233367duzYoUceeUR16tTRnDlzdP3112vbtm1q3rz5b75GYGCg3nrrrVLbbDabsyKjmg0bNkzLli3T2LFj1bx5cy1YsEC33Xab1q9fr65du5Z5HOOC53O0b1w0d+5c1apVq+Sxr6+vM+PChU6dOqWnnnpKjRo1Utu2bSv1x7rq+NxBzVWVvnHRU089pSZNmpTaFhERUT0BYYlnnnlGmzdvVv/+/dWmTRtlZmZq9uzZuuaaa/T1118rNja2zGMZMzxbVfrGRYwZqJFMeJzs7Gzz559/Nk3TNJcuXWpKMtevX1/h45955hlTkvnNN9+UbPvuu+9MX19f89FHH63uuHChJUuWmJLMpUuXlmz76aefzIiICHPgwIG/efzQoUPN0NBQZ0aEEyUnJ5uSzOeee65k24ULF8yrrrrK7Ny5c7nHMi54tqr0jWnTppmSzJMnTzo7JiySl5dnHj9+3DRN00xJSTElmfPnz6/QsVX93EHNVpW+MX/+fFOSmZKS4sSEsMLmzZvN/Pz8Utu+//57MzAw0Bw0aFC5xzJmeLaq9A3GDNRkXArqgcLCwhQZGenw8cuWLVP79u3Vvn37km0tW7bUjTfeqA8//LA6IsIiy5YtU3R0tO68886SbVFRUUpKStLKlSuVn59fodcpLi5Wdna2s2LCSZYtWyZfX1+NHDmyZFtQUJDuu+8+bdmyRYcPHy73WMYFz1WVvnGRaZrKzs6WaZrOjAoLBAYGqm7dug4dW12fO6iZqtI3fi0nJ0fFxcXVkAg1QZcuXRQQEFBqW/PmzdW6dWt999135R7LmOHZqtI3fo0xAzUNhTWUYrfbtXPnTrVr1+6S5zp06KD9+/crJyfHgmSoDtu3b9c111wjH5/S3/odOnTQ+fPnK3R/g/Pnzys8PFw2m02RkZEaM2aMcnNznRUZ1Wj79u1q0aKFwsPDS23v0KGDJCktLe2yxzEueD5H+8avNW3aVDabTWFhYRo8eLBOnDjhjKhwM9XxuQPPlpiYqPDwcIWEhKh3797at2+f1ZHgBKZp6sSJE6pTp065+zFmeJ+K9o2LGDNQE1FYQymnT59Wfn6+YmJiLnnu4rZjx465OhaqyfHjx6v0tY2JidHEiRM1f/58/fOf/1Tv3r01Z84c9ezZU0VFRU7JjOrj6NefccHzVWVsuOKKK/TAAw/ojTfe0LJlyzRixAgtWbJE1113HTNbUeXPHXiukJAQDRs2TK+99pqWL1+uiRMnau3aterSpUuFZsnCvSxatEhHjx7VgAEDyt2PMcP7VLRvMGagJmPxghrObreroKCgQvsGBgbKMIwqne/ChQslr/V/XVzh7eI+sJYjfePChQtV+to+/fTTpR7ffffdatGihR577DEtW7ZMd999dwXTwwqOfv0ZFzxfVcaGhx9+uNTju+66Sx06dNCgQYM0Z84cTZ48uXrDwq1U9XMHnispKUlJSUklj/v27atbbrlF3bp106xZs/T6669bmA7Vac+ePRozZow6d+6soUOHlrsvY4Z3qUzfYMxATcaMtRruv//9r4KDgyvU9u7dW+XzBQcHS9Jl71+Ql5dXah9Yy5G+ERwcXO1f23HjxsnHx0dr1qyp2huC0zn69Wdc8HzVPTbcc889qlu3LuMCnPK5A8/VtWtXdezYkbHDg2RmZur222+XzWYruZ9neRgzvEdl+8blMGagpmDGWg3XsmVLzZ8/v0L7Xm7adGVFRkYqMDBQx48fv+S5i9vq1atX5fOg6hzpGzExMdX+tQ0ODlbt2rV1+vTpSh8L14qJidHRo0cv2f5bX3/GBc/naN8oT8OGDRkX4JTPHXi2hg0bVssfi2G9rKws3XrrrTp79qw2btxYoe93xgzv4EjfKAtjBmoCCms1XN26dTVs2DCXnc/Hx0dxcXHaunXrJc8lJyeradOmCgsLc1kelM2RvhEfH6+NGzfKbreXuilscnKyQkJC1KJFi0rnyMnJ0alTpxQVFVXpY+Fa8fHxWr9+vbKzs0vdpD45Obnk+cthXPB8jvaNspimqUOHDikhIaE6Y8INOeNzB57twIED/EzhAfLy8tSrVy99//33WrNmjVq1alWh4xgzPJ+jfaMsjBmoCbgU1MtlZGRoz549pbb169dPKSkppX6J3rt3r9atW6f+/fu7OiKqUb9+/XTixAl9/PHHJdtOnTqlpUuXqlevXqXuabF//37t37+/5HFeXt5lV36cMWOGTNNUz549nRseVdavXz8VFxdr3rx5Jdvy8/M1f/58dezYUQ0bNpTEuOCNqtI3Tp48ecnrzZ07VydPnmRc8DLHjx/Xnj17VFhYWLKtMp878FyX6xuXGzs+/fRTbdu2jbHDzRUXF2vAgAHasmWLli5dqs6dO192P8YM71OVvsGYgZrMME3TtDoEqt/MmTMlSbt379bixYs1fPhwNWnSRJI0derUkv2uv/56ffnll/p1N8jJyVFCQoJycnI0YcIE+fv768UXX1RxcbHS0tL4i4AbKy4uVteuXZWenq5HHnlEderU0Zw5c5SRkaGUlBT9/ve/L9n3yiuvlCQdOnSo5L8JCQkaOHCgWrZsKUn64osv9Omnn6pnz5765JNPLlkaHTVPUlKSli9frnHjxqlZs2Z699139c0332jt2rXq1q2bJMYFb+Vo3wgJCdGAAQMUFxenoKAgbdq0SYsXL1bbtm21efNmhYSEWPWWUI1mz56ts2fP6tixY5o7d67uvPPOkhmJDz74oGw2m4YNG6Z3331XBw8eLPkMqcznDtyTo32jefPmSkhIULt27WSz2ZSamqp33nlHMTExSklJUXR0tIXvClUxduxYvfzyy+rVq1epm81fNHjwYElizPBCVekbjBmo0Ux4JElltl/r3r37JdtM0zQPHz5s9uvXzwwPDzdr1apl3nHHHea+fftcFR9OdPr0afO+++4za9eubYaEhJjdu3c3U1JSLtmvcePGZuPGjUsenzlzxhw8eLDZrFkzMyQkxAwMDDRbt25t/u1vfzMLCgpc+A5QFRcuXDAnTJhg1q1b1wwMDDTbt29vfv7556X2YVzwTo72jREjRpitWrUyw8LCTH9/f7NZs2bmpEmTzOzsbFfGh5M1bty4zJ8rDh48aJqmaQ4dOrTU44sq+rkD9+Ro33jsscfM+Ph402azmf7+/majRo3M0aNHm5mZmda8EVSbi58Vv/W7CGOG96lK32DMQE3GjDUAAAAAAADAAVy3BQAAAAAAADiAwhoAAAAAAADgAAprAAAAAAAAgAMorAEAAAAAAAAOoLAGAAAAAAAAOIDCGgAAAAAAAOAACmsAAAAAAACAAyisAQAAAAAAAA6gsAYAAAAAAAA4gMIaAAAAAAAA4AAKawAAAAAAAIADKKwBAACPcPToUQUFBWn48OGltq9Zs0b+/v4aN26cRckAAADgqQzTNE2rQwAAAFSHBx54QPPmzdO+ffvUuHFj7dmzR507d9Z1112nFStWyMeHvykCAACg+lBYAwAAHuPo0aO66qqrNHz4cM2YMUMdO3ZUWFiYNm3apNDQUKvjAQAAwMP4WR0AAACgutSvX1/333+/3nzzTaWmpurChQv68ssvKaoBAADAKbgeAgAAeJQJEyYoPz9fO3fu1KpVq1S/fv1Sz588eVK33367QkND9fvf/15r1661KCkAAADcHTPWAACAR5k1a5YkqaioSJGRkZc8P2bMGNWtW1cnT57UmjVrlJSUpH379l12XwAAAKA8zFgDAAAe47nnntNbb72l2bNny8/Pr6TIdlFubq5WrFih6dOnKyQkRL1791ZcXJxWrlxpUWIAAAC4MwprAADAI6xYsUKTJ0/WjBkzNGbMGI0cOVILFy7UwYMHS/bZt2+fatWqpQYNGpRsi4uL0+7du62IDAAAADdHYQ0AALi9bdu2adCgQRo0aJAee+wxSdLEiRPl4+NTatZabm6uwsPDSx0bHh6u3Nxcl+YFAACAZ6CwBgAA3NqRI0fUq1cvJSQk6M033yzZXq9ePQ0fPrzUrLVatWopOzu71PHZ2dmqVauWSzMDAADAMximaZpWhwAAAHCF3NxcRUZG6uDBgyWrhSYmJmrIkCG69957LU4HAAAAd0NhDQAAeJX+/fvLZrPp1Vdf1dq1azV06FBWBQUAAIBD/KwOAAAA4Epz5szR0KFDVbt2bTVo0EBLliyhqAYAAACHMGMNAAAAAAAAcACLFwAAAAAAAAAOoLAGAAAAAAAAOIDCGgAAAAAAAOAACmsAAAAAAACAAyisAQAAAAAAAA6gsAYAAAAAAAA4gMIaAAAAAAAA4AAKawAAAAAAAIADKKwBAAAAAAAADqCwBgAAAAAAADiAwhoAAAAAAADggP8HRugmfRisJPIAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
@@ -720,6 +739,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "bfcbebd9",
"metadata": {},
@@ -766,7 +786,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "dval_env",
"language": "python",
"name": "python3"
},
@@ -780,11 +800,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.4"
+ "version": "3.9.16"
},
"vscode": {
"interpreter": {
- "hash": "4e000971326892723e7f31ded70802f690c31c3620f59a0f99e594aaee3047ef"
+ "hash": "b3369ace3ad477f5e763d9fa7767e0177027059e92a8b1ded9e92b707c0b1513"
}
}
},
diff --git a/notebooks/influence_wine.ipynb b/notebooks/influence_wine.ipynb
index 1ffbe67fe..3f061cefa 100644
--- a/notebooks/influence_wine.ipynb
+++ b/notebooks/influence_wine.ipynb
@@ -1,18 +1,20 @@
{
"cells": [
{
+ "attachments": {},
"cell_type": "markdown",
"id": "a75acfec",
"metadata": {},
"source": [
- "# Influence functions and neural networks\n",
+ "# Influence functions for outlier detection\n",
"\n",
"This notebook shows how to calculate influences on a NN model using pyDVL for an arbitrary dataset, and how this can be used to find anomalous or corrupted data points.\n",
"\n",
- "It uses the wine dataset from sklearn: given a set of 13 different input parameters regarding a particular bottle, each related to some physical property (e.g. concentration of magnesium, malic acidity, alcoholic percentage, etc), the model will need to predict to which of 3 classes the wine belongs to. For more details, please refer to the [sklearn documentation](https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-recognition-dataset)."
+ "It uses the wine dataset from sklearn: given a set of 13 different input parameters regarding a particular bottle, each related to some physical property (e.g. concentration of magnesium, malic acidity, alcoholic percentage, etc.), the model will need to predict to which of 3 classes the wine belongs to. For more details, please refer to the [sklearn documentation](https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-recognition-dataset)."
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "68ec440b",
"metadata": {},
@@ -21,6 +23,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "9eb29a26",
"metadata": {},
@@ -40,7 +43,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "be813151",
"metadata": {},
"outputs": [],
@@ -55,12 +58,13 @@
"import numpy as np\n",
"import torch\n",
"import torch.nn.functional as F\n",
- "from notebook_support import plot_train_val_loss\n",
- "from pydvl.influence.model_wrappers import TorchMLP\n",
- "from pydvl.influence.general import compute_influences\n",
- "from pydvl.utils.dataset import load_wine_dataset\n",
+ "from support.common import plot_losses\n",
+ "from support.torch import TorchMLP, fit_torch_model\n",
+ "from pydvl.influence import compute_influences, TorchTwiceDifferentiable\n",
+ "from support.shapley import load_wine_dataset\n",
"from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, f1_score\n",
- "from torch.optim import Adam, lr_scheduler"
+ "from torch.optim import Adam, lr_scheduler\n",
+ "from torch.utils.data import DataLoader, TensorDataset"
]
},
{
@@ -77,6 +81,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "7487d30c",
"metadata": {},
@@ -107,6 +112,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "be7ddf7c",
"metadata": {},
@@ -121,15 +127,16 @@
"metadata": {},
"outputs": [],
"source": [
- "train_data, val_data, test_data, feature_names = load_wine_dataset(\n",
+ "training_data, val_data, test_data, feature_names = load_wine_dataset(\n",
" train_size=0.3, test_size=0.6\n",
")\n",
"# In CI we only use a subset of the training set\n",
"if is_CI:\n",
- " train_data = (train_data[0][:10], train_data[1][:10])"
+ " train_data = (training_data[0][:10], training_data[1][:10])"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "b96a15cc",
"metadata": {},
@@ -145,12 +152,36 @@
"outputs": [],
"source": [
"num_corrupted_idxs = 10\n",
- "train_data[1][:num_corrupted_idxs] = torch.tensor(\n",
- " [(val + 1) % 3 for val in train_data[1][:num_corrupted_idxs]]\n",
+ "training_data[1][:num_corrupted_idxs] = torch.tensor(\n",
+ " [(val + 1) % 3 for val in training_data[1][:num_corrupted_idxs]]\n",
")"
]
},
{
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "5de58672",
+ "metadata": {},
+ "source": [
+ "and let's wrap it in a pytorch data loader"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "816f688d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "training_data_loader = DataLoader(\n",
+ " TensorDataset(*training_data), batch_size=32, shuffle=False\n",
+ ")\n",
+ "val_data_loader = DataLoader(TensorDataset(*val_data), batch_size=32, shuffle=False)\n",
+ "test_data_loader = DataLoader(TensorDataset(*test_data), batch_size=32, shuffle=False)"
+ ]
+ },
+ {
+ "attachments": {},
"cell_type": "markdown",
"id": "a018e72c",
"metadata": {},
@@ -162,56 +193,47 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 9,
"id": "00dc59af",
"metadata": {},
"outputs": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9001287c81bb4cc08a9e27c420f2e260",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Model fitting: 0%| | 0/300 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Model fitting: 100%|██████████| 300/300 [00:00<00:00, 307.77it/s]\n"
+ ]
}
],
"source": [
- "feature_dimension = train_data[0].shape[1]\n",
- "unique_classes = np.unique(np.concatenate((train_data[1], test_data[1])))\n",
- "num_classes = len(unique_classes)\n",
+ "feature_dimension = 13\n",
+ "num_classes = 3\n",
"network_size = [16, 16]\n",
- "\n",
+ "layers_size = [feature_dimension, *network_size, num_classes]\n",
"num_epochs = 300\n",
"lr = 0.005\n",
"weight_decay = 0.01\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
- "nn_model = TorchMLP(feature_dimension, num_classes, network_size)\n",
+ "nn_model = TorchMLP(layers_size)\n",
"nn_model.to(device)\n",
"\n",
"optimizer = Adam(params=nn_model.parameters(), lr=lr, weight_decay=weight_decay)\n",
"scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)\n",
"\n",
- "train_loss, val_loss = nn_model.fit(\n",
- " x_train=train_data[0],\n",
- " y_train=train_data[1],\n",
- " x_val=val_data[0],\n",
- " y_val=val_data[1],\n",
+ "losses = fit_torch_model(\n",
+ " model=nn_model,\n",
+ " training_data=training_data_loader,\n",
+ " val_data=val_data_loader,\n",
" loss=F.cross_entropy,\n",
" optimizer=optimizer,\n",
" scheduler=scheduler,\n",
" num_epochs=num_epochs,\n",
- " batch_size=16,\n",
")"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "1a3ba188",
"metadata": {},
@@ -221,28 +243,27 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 10,
"id": "f4b57b77",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAHmCAYAAAChwtkCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAABPfElEQVR4nO3deZzkV13v/9ep6n3v6WX2LZNlspCFTCABDGGTBAMoqEBQImpQFBWXn3JR2a73qvfKRbksiiwhIHARZFVAWcKaBCaQhIRMwmSZzD7dM9MzvW91fn98q3t6n+6Z7vpWdb+ej0fx3as+3fOl0+8+53tOiDEiSZIkSVIpyaRdgCRJkiRJC2WYlSRJkiSVHMOsJEmSJKnkGGYlSZIkSSXHMCtJkiRJKjmGWUmSJElSySlLu4Cz0draGrds2ZJ2GZIkSZKkJXD33Xd3xhjbZjpW0mF2y5Yt7Ny5M+0yJEmSJElLIISwZ7ZjdjOWJEmSJJUcw6wkSZIkqeQYZiVJkiRJJccwK0mSJEkqOSU9AJQkSZIklYLh4WH27dvHwMBA2qUUnaqqKjZs2EB5efmCrjPMSpIkSdIS27dvH/X19WzZsoUQQtrlFI0YI0ePHmXfvn1s3bp1QdfazViSJEmSltjAwAAtLS0G2SlCCLS0tJxRi7VhVpIkSZIKwCA7szP9vhhmJUmSJEklxzArSZIkSTprN9xwAx/+8IcL9nkOACVJkiRJK1RdXd34el9fH5WVlWSzWQD+6Z/+iVe+8pXzfq8vfelLi17fXAyzkiRJkrRC9fT0jK9v2bKF97///Tz3uc+ddt7IyAhlZcUVH+1mLEmSJEma5Pbbb2fDhg387d/+LWvWrOHVr341x48f58Ybb6StrY3m5mZuvPFG9u3bN37Nddddx/vf/34Abr31Vp7xjGfwJ3/yJzQ3N7N169ZFb7k1zEqSJEmSpjl06BDHjh1jz549vO997yOXy/HqV7+aPXv28MQTT1BdXc3rXve6Wa+/6667uOCCC+js7ORP//RP+Y3f+A1ijItWX3G1E0uSJEnSMvfWLzzATw6cXNLPuGhdA29+4cVn9R6ZTIa3vvWtVFZWAlBdXc1LX/rS8eN//ud/zrOe9axZr9+8eTO33HILADfffDO/8zu/w+HDh1mzZs1Z1TXGMCtJkiRJmqatrY2qqqrx7b6+Pv7wD/+QL3/5yxw/fhyA7u5uRkdHxweNmmhiaK2pqQEmP6N7tgyzSyVGGOoFIlTWp12NJEmSpCJxti2mhRJCmLT99re/nYceeoi77rqLNWvWcM8993DFFVcsatfhhfCZ2SUU/2YTI9/8P2mXIUmSJElnrbu7m+rqapqamjh27BhvfetbU63HMLtERiMczdVx/yOPpV2KJEmSJJ2117/+9fT399Pa2srVV1/N9ddfn2o9Ia0m4cWwY8eOuHPnzrTLmNWjb7mYnoZtXPpHn0+7FEmSJEkpevDBB7nwwgvTLqNozfb9CSHcHWPcMdM1tswuob6yRsoHu9IuQ5IkSZKWHcPsEhosb6J6uCvtMiRJkiRp2THMLqHRqmZqc0s7f5QkSZIkrUSG2aVUs4rGeJLR0VzalUiSJEnSsmKYXULZ2lYqwijHjh9LuxRJkiRJWlYMs0uooqEVgGMdB1OuRJIkSZKWF8PsEqppagfg5PHDKVciSZIkScuLYXYJ1TcnYbb3+JGUK5EkSZKk5cUwu4SaWtcAMHiyM+VKJEmSJGlxhRDYvXt3ap9vmF1CFfVtAIz0dKRciSRJkiRNd/311/OmN71p2v7Pfe5zrFmzhpGRkRSqmh/D7FKqamSUDLHX0YwlSZIkFZ+bb76Zj370o8QYJ+3/yEc+witf+UrKyspSquz0DLNLKZOlL1NHduB42pVIkiRJ0jQ///M/z9GjR/n2t789vu/48eN88Ytf5EUvehHXXHMNTU1NrF27lte97nUMDQ2lWO1khtkl1lfWRMVQV9plSJIkSdI01dXV/PIv/zK33Xbb+L5PfvKTbN++nbq6Ot7xjnfQ2dnJHXfcwde+9jXe8573pFjtZMXbZrxMDFc0UjPQRYyREELa5UiSJElK25feAId+vLSfseZJcMPfzOvUm2++mRtvvJF3vetdVFVVcdttt3HzzTdz5ZVXjp+zZcsWfuu3fotvfvObvP71r1+iohfGltklNlrVQiM9dPUNp12KJEmSJE3zjGc8g9bWVj772c/yyCOP8P3vf5+bbrqJhx9+mBtvvJE1a9bQ0NDAG9/4Rjo7i2emFltml1ioWUVzuI8j3YM011akXY4kSZKktM2zxbSQXvWqV3Hbbbfx0EMP8fznP5/Vq1dz0003ccUVV/Dxj3+c+vp6/v7v/55PfepTaZc6zpbZJVZW30oz3Rw52Z92KZIkSZI0o1e96lV89atf5Z//+Z+5+eabAeju7qahoYG6ujp27drFe9/73pSrnKwgYTaE8MEQwpEQwv2zHN8eQrgjhDAYQviTQtRUKFUNrVSFYY4e70q7FEmSJEma0ZYtW3ja055Gb28vL3rRiwD4u7/7Oz72sY9RX1/PLbfcwste9rKUq5ysUN2MbwXeBdw2y/FjwO8DP1+gegqmtnk1AN3HjwDnp1uMJEmSJM3i9ttvn7R97bXXsmvXrkn73va2t42vT52bttAK0jIbY/wWSWCd7fiRGOMPgGU3SlJlfSsAfSeOpFyJJEmSJC0fJffMbAjhNSGEnSGEnR0dHWmXc3o1LQAMnSyeUb8kSZIkqdSVXJiNMb4vxrgjxrijra0t7XJOr2YVALkew6wkSZIkLZaSC7MlJ98yS/+svawlSZIkSQtkmF1qVU1EAmWDx9OuRJIkSVKK0h4wqVid6felIKMZhxA+DlwHtIYQ9gFvBsoBYoz/GEJYA+wEGoBcCOH1wEUxxpOFqG9JZcsYLKunduAkPYMj1FUWagBpSZIkScUim80yPDxMRUVF2qUUneHhYcrKFp6TCpKsYoyvOM3xQ8CGQtSShuHKZlYNdnPk5AB1bXVplyNJkiSpwJqamjh8+DDr168nk7GD7JhcLsfhw4dpbGxc8LU2ExZArF5F08keDp8c5BzDrCRJkrTitLa2sm/fPh566KG0Syk6tbW1tLa2Lvg6w2wBZOtaWHVkNw919addiiRJkqQUZDIZNm3alHYZy4rt2wVQ1dBGU+hhv2FWkiRJkhaFYbYAsrUttIRuDhhmJUmSJGlRGGYLoWYV1Qxy5FhX2pVIkiRJ0rJgmC2EmhYAeo4fSbkQSZIkSVoeDLOFUL0KgIGTnU6ULEmSJEmLwDBbCPmW2fpcF509QykXI0mSJEmlzzBbCLVtALTQ7YjGkiRJkrQIDLOFUJtMALwqnGT/ccOsJEmSJJ0tw2whVDURQ5aWcNLpeSRJkiRpERhmCyGTIdS0sCbbYzdjSZIkSVoEhtlCqW1jXXkP++xmLEmSJElnzTBbKLUttGcdAEqSJEmSFoNhtlBq22jmJPuP96VdiSRJkiSVPMNsodS2UT96nJMDI3QPDKddjSRJkiSVNMNsodS0UjnSQzkjdjWWJEmSpLNkmC2UsblmcXoeSZIkSTpbhtlCyYfZlnCS/Y5oLEmSJElnxTBbKLVtAKzOdrPPlllJkiRJOiuG2UKpSVpmz6kdsGVWkiRJks6SYbZQ8t2Mt1T1OQCUJEmSJJ0lw2yhVDVCppz15T22zEqSJEnSWTLMFkoIUNtKe7aHI92DDI6Mpl2RJEmSJJUsw2wh1bayihMAHOwaSLkYSZIkSSpdhtlCqmmlfjQJs841K0mSJElnzjBbSLVtVA0dA3B6HkmSJEk6C4bZQqptpWzgGCHgIFCSJEmSdBYMs4VU20oY6mZjHU7PI0mSJElnwTBbSDXJXLPbG4ZsmZUkSZKks2CYLaTaNgDOrRu0ZVaSJEmSzoJhtpDyYXZLVR8HT/STy8WUC5IkSZKk0mSYLaTaFgDWV/QyPBrp6BlMuSBJkiRJKk2G2ULKt8yuznYDsM/nZiVJkiTpjBhmC6miDrKVrOIk4IjGkiRJknSmDLOFFALUtlE/2gU416wkSZIknSnDbKHVtlA+cJTG6nL2d/WlXY0kSZIklSTDbKHVtkFvJ+ubqm2ZlSRJkqQzZJgttLEw21ztM7OSJEmSdIYMs4VW0wJ9p1pmY3SuWUmSJElaKMNsodW2wXAfWxqgd2iUk/0jaVckSZIkSSXHMFtota0AbKlKBn/a5yBQkiRJkrRghtlCq20DYH1FL+D0PJIkSZJ0JgyzhVaTtMy2Z7sBHARKkiRJks6AYbbQ8t2MG0a7qCrP2DIrSZIkSWfAMFto+TAb+jpZ1+T0PJIkSZJ0JgyzhVZRC+U10NvJhuYaw6wkSZIknQHDbBpqW6H31FyzkiRJkqSFMcymoaYV+jrZ0FzN0d4h+oaca1aSJEmSFsIwm4baNujtYENzNQAH7GosSZIkSQtimE1DvpvxWJjda1djSZIkSVoQw2waxp6ZbUzCrM/NSpIkSdLCGGbTUNsGo4O0Vw5Rng3sM8xKkiRJ0oIYZtNQk8w1m+k/6lyzkiRJknQGDLNpqG1LlvnnZvcd70u3HkmSJEkqMYbZNNS2JMv8XLN2M5YkSZKkhTHMpmG8ZbaDDc01dHQPMjA8mm5NkiRJklRCDLNpyD8zS28H65uca1aSJEmSFsowm4byKqioh76j43PNOgiUJEmSJM2fYTYttS1Jy2w+zPrcrCRJkiTNn2E2LbVt0NvJmoYqspnAfsOsJEmSJM2bYTYt+TBbls2wpqHK6XkkSZIkaQEMs2mpaYG+TgA2NFf7zKwkSZIkLYBhNi21bdDbATGyvtm5ZiVJkiRpIQyzaalthdwIDHSxobmGwycHGBrJpV2VJEmSJJUEw2xaatuSZe9RNjRVk4tw6MRAujVJkiRJUokwzKalpiVZ9naMzzW7r8tBoCRJkiRpPgyzaRlrme3rdK5ZSZIkSVogw2xaxrsZd7C2sZoQcK5ZSZIkSZonw2xaxrsZH6WiLMPq+ipbZiVJkiRpngyzaSmrgKrGZHoexuaa9ZlZSZIkSZoPw2yaalrHw6xzzUqSJEnS/Blm01TbNqll9tCJAUZGnWtWkiRJkk7HMJumuolhtoaRXORw92DKRUmSJElS8TPMpqm2/VQ346Zkeh5HNJYkSZKk0zPMpqm2DfqOwegIG8bnmnUQKEmSJEk6HcNsmuragAh9R1lny6wkSZIkzZthNk21bcmy9whV5Vna6isd0ViSJEmS5qEgYTaE8MEQwpEQwv2zHA8hhHeGEHaHEO4LITy5EHWlrrY9WfYcAZLnZvd3GWYlSZIk6XQK1TJ7K3D9HMdvAM7Lv14DvLcANaWvLh9mezuBZHoen5mVJEmSpNMrSJiNMX4LODbHKS8GbouJO4GmEMLaQtSWqtrWZNmbb5ltruZA1wC5XEyxKEmSJEkqfsXyzOx6YO+E7X35fctbZQNkKyfNNTs0mqOjx7lmJUmSJGkuxRJm5y2E8JoQws4Qws6Ojo60yzk7ISSDQPXkw2zT2PQ8PjcrSZIkSXMpljC7H9g4YXtDft80Mcb3xRh3xBh3tLW1FaS4JVXXNqFl1rlmJUmSJGk+iiXMfh54VX5U46uBEzHGg2kXVRC17ZOemQUc0ViSJEmSTqOsEB8SQvg4cB3QGkLYB7wZKAeIMf4j8B/AC4DdQB/w6kLUVRRq2+DQjwGoqShjVW2F3YwlSZIk6TQKEmZjjK84zfEI/G4haik6Y92MY4QQkrlmDbOSJEmSNKdi6Wa8ctW2QW4YBroA55qVJEmSpPkwzKattj1Z9nYCJC2zXf0kjdWSJEmSpJkYZtNW25ose5JBoDY0VzMwnONo71CKRUmSJElScTPMpq1urGV2bETjGsC5ZiVJkiRpLobZtE3pZjw216yDQEmSJEnS7AyzaatZBSEz3s14bK5ZB4GSJEmSpNkZZtOWyUJNSzI9D9BQVU5DVRn7u2yZlSRJkqTZGGaLQW3beJiF5LlZn5mVJEmSpNkZZotBbdt4N2NInpv1mVlJkiRJmp1hthjUtU9umW2qZt/xPuealSRJkqRZGGaLwZRuxhuaq+kdGuVE/3CKRUmSJElS8TLMFoPaNhjqgaFkBOMN4yMa29VYkiRJkmZimC0GtW3JMt86u6G5BjDMSpIkSdJsDLPFoK49WfZ2Askzs+Bcs5IkSZI0G8NsMRhvmU1GNG6qKae2Iutcs5IkSZI0C8NsMRgLs/npeUIIrG+utpuxJEmSJM3CMFsMxrsZT5xrtsa5ZiVJkiRpFobZYlBWCVVN4y2zcGquWUmSJEnSdIbZYlHXDj2Hxzc3NFdzcmCEkwPONStJkiRJUxlmi0XdaujpGN9cn59r1q7GkiRJkjSdYbZYTGuZTeaaNcxKkiRJ0nSG2WJR2z7tmVlwrllJkiRJmolhtljUtcNQNwwl4bW1roLKsoxzzUqSJEnSDAyzxaJudbLsda5ZSZIkSTodw2yxGAuzPZPnmjXMSpIkSdJ0htliUdeWLKdMz+Mzs5IkSZI0nWG2WIy3zJ4KsxubazjeN0zP4EhKRUmSJElScTLMFouaViBMmmt246pkROO9x2ydlSRJkqSJDLPFIlsGNS3TWmbBMCtJkiRJUxlmi0nd6kkDQG1clQ+zDgIlSZIkSZMYZotJXfv41DwAzTXl1FZkbZmVJEmSpCkMs8WkbvWkbsYhBDauqnFEY0mSJEmawjBbTOrakm7GMY7v2tBczd5jdjOWJEmSpIkMs8WkbjWMDMDgyfFdG5pr2Hu8jzgh4EqSJEnSSmeYLSbjc81OnJ6nhr6hUY73DadUlCRJkiQVH8NsMalrT5aTpudxrllJkiRJmsowW0xqZwiz49PzGGYlSZIkaYxhtpiMdzOeYa5ZB4GSJEmSpHGG2WJS3QyZsklzzdZVltFcU27LrCRJkiRNYJgtJpkM1LZN6mYMSeusz8xKkiRJ0imG2WJT1z6pmzHAxuYa9h23m7EkSZIkjTHMFpu61dNaZjc0V7P/eD+5nHPNSpIkSRIYZotPXfukeWYBNqyqYWg0x+HugZSKkiRJkqTiYpgtNrXtyQBQudz4rlNzzdrVWJIkSZLAMFt86lZDbgT6j4/vOjU9j4NASZIkSRIYZotP/dhcs4fGd61vyrfMOj2PJEmSJAGG2eJTvzZZdh8c31VVnmVNQxVP2DIrSZIkSYBhtvjUr0mW3Ycm7d7cUsMTRw2zkiRJkgSG2eJTNxZmD07avbmlhscNs5IkSZIEGGaLT3kVVDVB9+S5Zje31NLZM0jv4Eg6dUmSJElSETHMFqP6tTO2zALssXVWkiRJkgyzRal+zfRnZlfVAvDEsd40KpIkSZKkomKYLUb1a6eF2U22zEqSJEnSOMNsMapfk8wzm8uN72qsLqe5ptxBoCRJkiQJw2xxql8LuRHoOzpp9+aWWrsZS5IkSRKG2eJUvzpZ9kyfa/bxTltmJUmSJMkwW4zq1ybLaYNA1XDwRD9DI7kZLpIkSZKklcMwW4zq1yTLadPz1JKLsO+4rbOSJEmSVjbDbDGqy3czntoy64jGkiRJkgQYZotTWSXUtMzYMguw56iDQEmSJEla2QyzxWqGuWZb6yqoqciy55gts5IkSZJWNsNssapbPa1lNoTAplU1djOWJEmStOIZZotV/VroPjxt95aWWrsZS5IkSVrxDLPFqn4N9ByG3Oik3Ztbath7rJ/RXEypMEmSJElKn2G2WNWvgTgKvZ2Tdm9uqWVoNMehkwMpFSZJkiRJ6TPMFqv6tclyynOzW8am5+m0q7EkSZKklcswW6zGw+zkEY23tiXT8zximJUkSZK0ghlmi1X96mQ5pWV2TUMVNRVZHjnSk0JRkiRJklQcDLPFqi4fZnsmj2gcQmBbWx2PdBhmJUmSJK1chtlilS2H2rZpLbMA29pqebTDbsaSJEmSVi7DbDGrXzPtmVmAc9rq2N/VT//Q6AwXSZIkSdLyZ5gtZvVr4eSBabu3tdUB8GinXY0lSZIkrUyG2WI2W5htz49obFdjSZIkSSvUvMNsCOFZIYSt+fW1IYQPhxA+FEJYs3TlrXCNG6CvE4YHJu3e0lJLCDiisSRJkqQVayEts+8Bxh7SfDtQDuSA9y12UcprWJ8sT+6ftLuqPMuG5moeda5ZSZIkSStU2QLOXR9jfCKEUAY8H9gMDAHT+8FqcTSOhdkD0LJt0qFtbXW2zEqSJElasRbSMnsyhLAaeCbwkxjjWJIqX/yyBEDDhmQ5pWUWkjD7aGcPuVwscFGSJEmSlL6FtMz+X+AHQAXw+vy+pwO7FrkmjWlYlyxP7Jt26Jy2WgaGcxw8OcD6puoCFyZJkiRJ6Zp3mI0x/m0I4TPAaIzxkfzu/cBvLkllgooaqF41a8ssJINAGWYlSZIkrTQLmponxvjwWJANITwLWBtj/PF8rg0hXB9CeCiEsDuE8IYZjm8OIXwthHBfCOH2EMKGhdS2bDWuhxNzhNkOn5uVJEmStPIsZGqeb4YQnp5f/zPgE8DHQghvnMe1WeDdwA3ARcArQggXTTnt74DbYoyXAm8D/nq+tS1rDRtmbJltraugvqrMMCtJkiRpRVpIy+wlwJ359VuAZwFXA789j2ufAuyOMT4aYxwiCcIvnnLORcDX8+vfmOH4ytSwbsZnZkMIySBQHU7PI0mSJGnlWUiYzQAxhLANCDHGn8QY9wLN87h2PbB3wva+/L6J7gVekl//BaA+hNAy9Y1CCK8JIewMIezs6OhYQPklqnE9DHTB0PTQuq2tjt1OzyNJkiRpBVpImP0O8C6S7sCfAcgH285FquVPgGeGEH5EMv3PfmB06kkxxvfFGHfEGHe0tbUt0kcXsfHpeaZP53ve6jqOdA9yom+4wEVJkiRJUroWEmZ/DegC7gPekt+3HfiHeVy7H9g4YXtDft+4GOOBGONLYoxXAH+e39e1gPqWp8Z8A/YMXY23r6kHYNehk4WsSJIkSZJSt5CpeY4Cb5yy79/nefkPgPNCCFtJQuzLgZsmnhBCaAWOxRhzwH8DPjjf2pa1hnyYnWEQqAvXNgCw61A3Tz1nWo9sSZIkSVq2FjKacXkI4a0hhEdDCAP55VtDCBWnuzbGOAK8DvgK8CDwyRjjAyGEt4UQXpQ/7TrgoRDCw8Bq4H8s+KtZjhrWJcsZpudpr6+kqabclllJkiRJK868W2aB/0UyKvFvA3uAzcBfAg3AH57u4hjjfwD/MWXfmyasfwr41ALqWRnKKqG2HU7OPKLx9jX1PHiwO4XCJEmSJCk9CwmzvwRclu9uDEkr6g9JRiE+bZjVWWhcP2PLLMD2NQ18cudecrlIJhMKXJgkSZIkpWMhA0DNlpRMUEutYf2Mz8wCXLi2nr6hUfYe7ytwUZIkSZKUnoWE2X8FvhBCeH4I4cIQwvXAZ4FPLkllOqVh7pZZwK7GkiRJklaUhYTZPwW+CrwbuBv4v8A3gKElqEsTNa6HoW4YmD7Q0/mr6wnB6XkkSZIkrSwLmZpnCHhT/gVACKEK6CUJuloqE6fnqWqYdKi6IsuWllp22TIrSZIkaQVZSMvsTCI+M7v0Gjcky1m7Gtfz0GHDrCRJkqSV42zDLCSBVktpvGV2+vQ8kDw3+/jRXvqGRgpYlCRJkiSl57TdjEMIz57jcMUi1qLZ1K+FkJm9ZXZtPTHCw4d7uHxjU2FrkyRJkqQUzOeZ2Q+c5vgTi1GI5pAtg/p10DXzt/rC/IjGuw6eNMxKkiRJWhFOG2ZjjFsLUYhOo3kzdO2Z8dCG5mpqKrLsOuRzs5IkSZJWhsV4ZlaF0LQZjs8cZjOZwIVrG7h//4kCFyVJkiRJ6TDMlormzdB9EIYHZjx86YZG7j9wgpHRXIELkyRJkqTCM8yWiqbNQIQTe2c8fPnGJgaGczx8uKewdUmSJElSCgyzpaJ5c7KcpavxZRuaALhvX1dh6pEkSZKkFBlmS0VTPsx2PT7j4c0tNTRWl3OvYVaSJEnSCmCYLRX1ayFbMWvLbAiBSzc0cs9eB4GSJEmStPwZZktFJgONG2edngeS52YfPtxN/9BoAQuTJEmSpMIzzJaS5tmn54HkudnRXOSBA7bOSpIkSVreDLOlpGnznC2zl25sBOCevV0FKkiSJEmS0mGYLSXNm6H/OAycnPFwe30V6xqruG+fLbOSJEmSljfDbCkZH9F4jq7GG5sc0ViSJEnSsmeYLSWnmWsW4NINTew52sfx3qECFSVJkiRJhWeYLSVNW5LlnC2zyXOzts5KkiRJWs4Ms6WkZhVU1J22ZTabCdy953gBC5MkSZKkwjLMlpIQTjuicV1lGZesa+CuR48VsDBJkiRJKizDbKk5zVyzAFef08I9e7sYGB4tUFGSJEmSVFiG2VIz1jIb46ynXH1OC0OjOX74hF2NJUmSJC1PhtlS07wZhvugt3PWU3ZsaSYT4E67GkuSJElapgyzpWZsrtnjj896Sn1VOZesb+SuR48WpiZJkiRJKjDDbKlp2ZYsjz0652lP3bqKH/ncrCRJkqRlyjBbapq3QMjA0Z/OedrV57QwNJLjnr1dBSlLkiRJkgrJMFtqyiqTrsadc4fZHVtWEQLcaVdjSZIkScuQYbYUtZ4HRx+Z85TG6nIudr5ZSZIkScuUYbYUtZwHR3dDLjfnaU/d2sIPnzjuc7OSJEmSlh3DbClq2QYj/XBy/5ynPf3cFgZHcvzgcVtnJUmSJC0vhtlS1Hpesjy6e87TrjmnlcqyDF/fdaQARUmSJElS4RhmS1HL/MJsdUWWp21r4RuGWUmSJEnLjGG2FNWvgYq6045oDPDs7e08frSPRzt6ClCYJEmSJBWGYbYUhZA8N3uallmAZ21vB7CrsSRJkqRlxTBbqlrOg6Onb5nd0FzD+avrDLOSJEmSlhXDbKlqORe69sJw/2lPfdb2dr7/2DG6B4YLUJgkSZIkLT3DbKlqPQ+IcOyx05767AvaGclFvvPTzqWvS5IkSZIKwDBbqlrOTZbz6Gp85eZmGqrK7GosSZIkadkwzJaqlm3Jch4jGpdlM1x3QTtf23WEkdHcEhcmSZIkSUvPMFuqKuuhfi0cfWRep//cpWs51jvEdx85usSFSZIkSdLSM8yWspZz59XNGOC6C9qoryrjC/ceWOKiJEmSJGnpGWZLWcu5STfjGE97amVZludfvIav3H+IwZHRAhQnSZIkSUvHMFvK2i+CgS7oPjSv01942Tq6B0f45kMdS1uXJEmSJC0xw2wpW31Rsjz8wLxOf9q2FlbVVvCF+w4uYVGSJEmStPQMs6WsfSzM3j+v08uzGW64ZA1f/clh+oZGlrAwSZIkSVpahtlSVrMKGtbPu2UWkq7G/cOjfPVB55yVJEmSVLoMs6Vu9cULCrNXbVnF2sYqPnX3viUsSpIkSZKWlmG21K2+GDofhpGheZ2ezQRedtVGvv3TDvYe61vi4iRJkiRpaRhmS93qSyA3PO/5ZgFedtVGAvDx7z+xdHVJkiRJ0hIyzJa61RcnywV0NV7bWM2zt7fzyZ37GB7NLVFhkiRJkrR0DLOlruVcyFbMe0TjMTc9dROdPYN89SeHl6gwSZIkSVo6htlSly2HtgsW1DIL8Mzz21nfVM3H7GosSZIkqQQZZpeD1ZcsOMyeGgiqk8c7e5eoMEmSJElaGobZ5WD1xdB9EHqPLuiyl1+1kYpshvd/59ElKkySJEmSloZhdjlovyhZHllY62x7QxUvefJ6/nXnPjq6B5egMEmSJElaGobZ5WD1JclygV2NAV5z7TkMjea49XuPLXJRkiRJkrR0DLPLQV071LTCoYWNaAxwTlsd11+8ho/csYfugeElKE6SJEmSFp9hdjkIAdZeCgfvPaPLf/uZ2zg5MMLHHdlYkiRJUokwzC4X66+EIz+BoYWPTHzZxiaetq2F93/7MfqHRpegOEmSJElaXIbZ5WL9lRBH4eB9Z3T5HzznPI50D/Ihn52VJEmSVAIMs8vFuicnywM/PKPLn3pOC8/Z3s57b3+E471Di1iYJEmSJC0+w+xyUb8aGjbA/rvP+C3+7Ibt9A6O8O5v7F7EwiRJkiRp8Rlml5P1Tz6rMHv+6np+8coN3HbHHvYe61vEwiRJkiRpcRlml5P1V8Lxx6Hv2Bm/xR8+73xCgL/98q7Fq0uSJEmSFplhdjlZn39udv+ZPTcLsLaxmtdet40v3neQbzx0ZJEKkyRJkqTFZZhdTtZeDoSz6moM8NrrtrGtrZa/+Mz99A2NLEppkiRJkrSYDLPLSVUDtF1w1mG2sizLX7/kUvZ39fOO/3p4kYqTJEmSpMVjmF1u1l+ZTM8T41m9zVO2ruIVT9nEB77zGPfu7Vqc2iRJkiRpkRhml5t1V0BvB5zYe9Zv9YYbtrO6oYrf/8SP6B4YXoTiJEmSJGlxGGaXm/VXJst9O8/6rRqry3nnK65g3/F+/vwz9xPPsrVXkiRJkhaLYXa5WX0JlFXD3u8vyttdtWUVf/S88/n8vQf45M6zb+2VJEmSpMVgmF1uyipgww544o5Fe8vXPnMbP3NeK2/63AM+PytJkiSpKBhml6NN18Ch+2Cwe1HeLpMJvONll9NWX8lvfHgne4/1Lcr7SpIkSdKZKliYDSFcH0J4KISwO4TwhhmObwohfCOE8KMQwn0hhBcUqrZlZ9PVEHOw7weL9patdZXc+uqrGBoZ5ddv/QEn+h0QSpIkSVJ6ChJmQwhZ4N3ADcBFwCtCCBdNOe0vgE/GGK8AXg68pxC1LUsbnwIhA3sWr6sxwLnt9fzTr+7g8aO9vOa2nfQNjSzq+0uSJEnSfBWqZfYpwO4Y46MxxiHgE8CLp5wTgYb8eiNwoEC1LT+V9bDmSYv63OyYa7a18PZfvpwfPH6M37jVQCtJkiQpHYUKs+uBiUPh7svvm+gtwK+EEPYB/wH8XmFKW6Y2XZNMzzO6+N2BX3TZOt7xssu567GjBlpJkiRJqSimAaBeAdwaY9wAvAD4SAhhWn0hhNeEEHaGEHZ2dHQUvMiSsekaGOmHg/cuydu/+PL144H2le+/i6M9g0vyOZIkSZI0k0KF2f3AxgnbG/L7JvoN4JMAMcY7gCqgdeobxRjfF2PcEWPc0dbWtkTlLgObrkmWS9DVeMyLL1/Pe175ZH5y4CQvee/3eKyzd8k+S5IkSZImKlSY/QFwXghhawihgmSAp89POecJ4DkAIYQLScKsTa9nqn41rDpn0QeBmur6S9bysVuupntghJe857t8d3fnkn6eJEmSJEGBwmyMcQR4HfAV4EGSUYsfCCG8LYTwovxpfwzcEkK4F/g48GsxxliI+patTdckLbNL/G28cnMz//bap9FSV8mvfuAu3v2N3eRy/tNJkiRJWjqhlPPijh074s6dO9Muo3j98CPw+dfB79wJ7Rcu+cf1Do7whn/7MV+49wDP3t7O3770UtrqK5f8cyVJkiQtTyGEu2OMO2Y6VkwDQGmxbf2ZZPnYtwvycbWVZbzz5Zfz1hddzHd2d3L933+LL99/qCCfLUmSJGllMcwuZ81boGkTPP6tgn1kCIGbn7aFL/7eM1jTWMVvf/RuXv+JH9HR7WjHkiRJkhaPYXa523Jt0jKbyxX0Y89fXc9nfufp/P5zzuPff3yQ57z9dv7lrj0+SytJkiRpURhml7ut18JAFxz+ccE/uqIswx8973y+9AfXcvG6Rv78M/dz4//9Dt9zxGNJkiRJZ8kwu9wV+LnZmZzbXsfHbnkq73zFFZzoH+am99/Fqz/0fe7d25VaTZIkSZJKm2F2uWtYBy3nwWOFe252JiEEXnTZOr72x8/kv92wnR8+0cWL3/1dXvXB7/ODx4+lWpskSZKk0mOYXQm2/gzs+R6MjqRdCVXlWX7rmdv47huezZ9dv50H9p/gl/7xDl72T3fwnZ92UspTRUmSJEkqHMPsSrD1WhjqhoP3pF3JuLrKMl573Ta+82fP5k03XsTjR3v5lQ/cxQve+R0+dtcT9A6mH7wlSZIkFS/D7EqwZey52W+mW8cMqiuy/PoztvKtP30Wf/2SJxFj5I2f+TFX/8+v8ZbPP8DuI91plyhJkiSpCIVS7ta5Y8eOuHPnzrTLKA3vfTrUtMDNn0+7kjnFGPnhE8f5yB17+I8fH2JoNMdTtq7ipU9ez/WXrKWxujztEiVJkiQVSAjh7hjjjhmPGWZXiC+/EX7wfvizx6GiJu1q5qWzZ5BP7tzLv+7cx2OdvVSUZXjO9nZ+/or1XHdBG5Vl2bRLlCRJkrSEDLOC3V+Dj74EXvkpOO95aVezIDFG7tt3gs/8aD9fuPcAR3uHaKwu53kXreZnL1rNtee3UVVusJUkSZKWm7nCbFmhi1FKNj8dyqqTUFtiYTaEwGUbm7hsYxN//nMX8p3dnXz+ngP85wOH+NTd+6guz3Lt+a08/+I1PHt7O001FWmXLEmSJGmJGWZXivIq2PJ02P3VtCs5K+XZDM+6oJ1nXdDO8GiOux49xlceOMR//uQQX3ngMJkAl25o4trz23jm+a1ctqGJsqzjnEmSJEnLjd2MV5I73wtffgP8wb3QvCXtahZVLhe5b/8JvrHrCN/6aQf37u0iF6Ghqoynn9vKNdtaeOrWFs5rryOTCWmXK0mSJGke7GasxLnPTZa7vwZX/Ua6tSyyTCZw+cYmLt/YxB8+73y6+ob47u6jfOvhDr790w6+dP8hAJprynnK1lU8dWsLV21ZxQVr6qkos+VWkiRJKjWG2ZWk5Vxo2gSPfH3Zhdmpmmoq+LlL1/Jzl64lxsi+4/3c+ehR7nrsGHc9dpSvPHAYgIqyDBevaxgPwpdtaGJzSw0h2HorSZIkFTPD7EoSAmx7Dvz4UzAyBGUrY6CkEAIbV9WwcVUNv7RjIwAHuvr50RNd3LP3OPfuPcEnvr+XD333cQCaasq5dEMTl65v5II19WxfU8/W1lqfvZUkSZKKiGF2pTn3uXD3h2Df92HLM9KuJjXrmqpZ11TNz126FoCR0Rw/PdLDPXu7uHdvF/fs7eK9uzsZzSXPlFdkM2xrr2P7mnouGHutrmdNQ5XP4EqSJEkpMMyuNFuvhUwZ/PQ/V3SYnaosm+HCtQ1cuLaBVzxlEwCDI6PsPtLDQ4e6eehQN7sOdXPHI0f5zI/2j19XVZ5h86patrTWsKW1lq0ttcmytZb2+kq7K0uSJElLxDC70lQ1JCF217/Dc9+adD3WjCrLsly8rpGL1zVO2t/VN8RDh7r56ZEeHu/s5fGjfTzS0cs3dnUwNJobP6+6PMvapirWN1WzrjFpCR7fbqpmbWMVVeXZQn9ZkiRJ0rJgmF2JLnwh/PsfQ8dD0L497WpKTlNNBU89p4WnntMyaf9oLnKgq5/Hj/byeGcve472cfDEAPu7+vnGoSMc6R6c9l4NVWW01VfSWlc5adlWX0lbXSVNNeU0VpfTVFNBQ1WZz+1KkiRJeYbZleiCn0vC7INfMMwuomzm1EBTP3Ne27TjgyOjHD4xyP6ufg509XPwRD8d3YN09AzS2T3EAwdO0tE9SM/gyKyfUVdZRmN1+fhrLOw2VpdTU1FGTUWW6oostZVZqsuT7eR1ar2qIktFNkNFNuPzvpIkSSpZhtmVqGEtbLgKdn0Bnvn/pV3NilFZlmVTSw2bWmrmPK9/aJTOnkGOdA9yon+IE/3DnOgb5kT/CF357ZP9w3T1DbP7SE9yvH+YwZHcnO87k2wmUJ4NlOfDbXk2Q0VZ5tS+smRfeTaQzQQyIRBCIBMgwKTtZH3yMhOS0aRDgMDYksnbAZhwjKnHYfzZ4xnfZ+xY/n9m/Rwgm8lQXhbGv9bybIay7MTtQHlZ8r0oy5xar57yR4FyW8glSZJSZ5hdqbbfCF99M3Q9kcw9q6JRXZEdb+FdiNFcpG9ohP6hUXqHRsfX+/Lrffn1/qFRhkZzDI+/IkMjU7ZHcwyPTD8eYyQXGV/mYiROXTJ5e2w95q+L5NfJ789vk99O1qacm18nTj+Wv3L8vZj23pPPXQzl2UB1eXZya3hFGTWV2fGW8oaqU63mDdUT15PW9brKMgcIkyRJOguG2ZXqwhcmYXbXv8PVr027Gi2CbCZQX1VOfVV52qUUrdFcnBTah0dzE4L8DMfyxyf+UaB/aJS+4dH8vpHxPxD0DY1yrHeIxzp7x1vPc3ME6PJsoKW2ktb6ClrrJj833VpXQVtdJa357eaacoOvJEnSFIbZlaplG7RfBA9+0TCrFSObCWQz2YKMIh1jpGdwZLwbeBJwRziZXz/WN0Rn9yCdPYN09iQjZHf2DDI8Oj0BV2QzrG2qYm1jVTJHcmMyMva68ZGyq/wjhiRJWnEMsyvZ9hvh238HPR1QN33AIklnLoRTLeUbmud3TYyRE/3DdPYM0tE9lF8Ocrh7gANdAxzs6ufOR45yuHuQ0SnNvvWVZaxrqmbjqmo25ec+3txSy+ZVNaxvrvY5X0mStOwYZleyi14M3/pf8JPPwlNuSbsaacULIdBUU0FTTQXnts9+3shojiPdgxw80c+BroH86NjJNFB7j/Xx3d1H6R8eHT8/mwmsb6pmc0sNm1tq2NJSy+aWWs5pq2XTqhqDriRJKkmG2ZVszSWw5knwo48aZqUSUpbNJF2Mm6q5cvP04zFGOroHefxoH3uOJnMeP360lyeO9fH5ew5wcuDU9E/l2cDmllrObatjW3st57bXcW5bPee01VJb6X8iJElS8fI3lZXu8lfCl98Ahx+A1RenXY2kRRBCoL2hivaGKp6yddW04119yUBVj3b0srujh91Henj4SDf/9eDhSd2X1zVWsa29jm1tdVywpj55ra435EqSpKIQ4mLOV1FgO3bsiDt37ky7jNLWexTefgE89bfg+f8j7WokpWhoJMeeo708kg+4u4/08EhHL7uP9EzqtrxxVTUXrG5gez7gbl9Tz5bWWrsrS5KkRRdCuDvGuGOmY/55faWrbYHznw/3/T947lsg64io0kpVUZbhvNX1nLe6ftL+XC6y73g/uw6d5KFD3ew63M1Dh7r5xkNHxltyK7IZzmmrzQfcU0F3bWOV0wpJkqQlYZhV0tV41xdh91fhghvSrkZSkclkAptaatjUUsPPXrxmfP/gyCiPHOnlocMn2XUoCbh3PXaMz95zYPychqoytq9pYPvaeravaRjvrlxnV2VJknSW/G1CcN7zoLYtGQjKMCtpnirLsly0roGL1jVM2n+if5iHD3ez61A3uw4mQffffrifnsE94+dsWlXDBWvquXBNPdvXJiF3S0st2YytuJIkaX4Ms0q6Fl/6MrjrH+HEPmjckHZFkkpYY3U5V21ZxVVbTg0+FeNYV+VuHjp0kgfzQfdrDx5mbMypqvIM569OBpnavraBC/OtuC11lSl9JZIkqZg5AJQSx/fAO6+Aq1/rQFCSCmZgeJTdR3p48GD+edxD3ew6dJLOnqHxc9rqK9meH2hqrMvyue11VJZlU6xckiQVggNA6fSaN8PFvwB33wrX/n9Q3ZR2RZJWgKryLJesb+SS9Y2T9nd0D+bD7UkePNjNQ4dP8uE79jA0kgMgmwmc01rL9rUNp4Lu2gbWOeCUJEkrhmFWpzz99+H+T8HdH4Jn/GHa1UhawdrqK2mrr+QZ57WO7xsZzfH40d78s7hJK+6PnjjOF+49NeBUfVXZhCmDGjg3P09ua12FIVeSpGXGbsaa7LafhyM/gdf/GMp8Tk1S8eseSAacevBg96npgw520z04Mn5OQ1UZ57Qlwfactlq2tdWxra2WzS21VJQ5P64kScXKbsaav6f/PnzkF5J5Z5/8qrSrkaTTqq8q58rNq7hy8+QBp/Z39fNIRy+PdvTwSEcPj3b08p3dHXz6h/vGz8tmAptW1XBOa20y/dCqU6+Nq2qoKve5XEmSipVhVpOd8yxYexl863/Dk34ZyqvSrkiSFiyEwIbmGjY01/DM89smHeseGOaxzl4e7egdD7mPdPRwx6NH6RsanXTu6obK8WA7MeSubaxidUMV5VlbdSVJSovdjDXdI9+Aj/w8PO9t8PQ/SLsaSSqIGCNHe4d44lgfe4/18cTRPp441je+ffDkABP/kxkCtNVVsraxijWNVaxtrJ623t5Q6ajLkiSdBbsZa2G2PQvO+1n41tvh8l+B2pa0K5KkJRdCoLWukta6Sp68qXna8cGRUfYd72fvsT4OnRjg4ImBZHlygEc7evne7qOTntMd01BVRmt9Ja21lbTWV9BSm3zG2HpbfrmqroL6yjIHqpIkaZ4Ms5rZ8/47vPdp8M2/gRf877SrkaTUVZZl8wNH1c16TvfAMIdPDnCgKwm6h04OcLRnkM6eITp7kumGOnuOcqJ/eMbrs5lAY3U5TdXlNFSX01STrDdWl9NYUzG+3lBdTm1llrrKsvFXbWUZNRVZw7AkacUwzGpm7dvhypvhBx+Aq26BtvPTrkiSil59VTn1VeWc214/53lDIzmO9SYBtzMfdo/3DnGif5iu/iG6+oY50T/Msd4hHu3o5UT/MCcHhjndk0EhQF1FEmzHw25VGbUVSeCtqshSVZaluiJDVVmWqvJsfl+GqvIs1eX5feWZ/DJZH9tfUZahLBMMzJKkomCY1eyueyP8+NPwhT+AX/t3yDjQiSQthoqyDGvyz9fO12gu0j0wTFffMN0DI/QMjtA7OELv0AjdA/n1wRF6BkfpGRymd3B0/JyjPX30DI4wMJxjYHiUgeFRRnJnNmZGCFCezVCRzVCeDcl62dh2hvKyZF95NkNlWX7f2Hn5/RVlp86tyGbIZgJlmUA2k8kvA2XZMPP+Scdn2J/JzHB9sj+TgWxItkMIZELSGp4JYy+SZcawLkmlwDCr2dW1wfX/Ez73u7DzA/CUW9KuSJJWrGwm0FRTQVNNxaK83/DoWLA9FXAHhnP059fHloMT9g2N5BgezTE0GpPl+HaO4dHI8ITtoZEcvYMjyf4J+4YnnDuU31+MY1FODLaZkITgTAiEiQE4MyEAh0Amk6xnp5wXQiCbPxZCIDvlvTNTAnaA8c+CZDlxX7Kd7Jy0n+TZ7/Hl+L7k/ORv0jPsD4y3tk/ed+r9yNc58bpJnzlt39zf37Nt3T/t+zP3CfP5+IVWONNtPNu9HWc4eyH/P5hpANeZrl+KmmYtc6aa5vn5M332Qj5/IV/TPHfN+D1eqprO+t9+np8/2/f59559HqsbSnMGE8Os5nb5K+H+T8N/vTkZFKp5c9oVSZIWwVjraX0R/P6Sy0VGY2Q0FxnJRUZHIyO53Knt8WWOkVxkZDROOZabcu0M+/PLXC6Si5FcZHx9NEZiPFVHLia/MI7m8ufFsevy6xOOxanrU947OXfysVPXJNsjo7l8HcmxGJNfOnO55JfUsV9eY/7zx/ZFgJick5twXYzkX2Pnntqfy18UI5PeJ5eb/H5xrNYJ5zLD5xfjHyKUnpn+SDDTHwVm+mPGbH88mPk95/lBs37+/N5ztj96nO3XNN/yZ/ujz2J/n3/taVtZ3TDjRxU9w6zmFgK88B/gPdck3Y1/9TPz+3OmJEnzlMkEMgTKncWoJJ0K4BNC9pznn+b4ad7hbAP0fK6fTw1nG4hmMu/gNuu5M513lsHR3/tUxAyzOr2mTfC8t8K//zHc9Y9w9WvTrkiSJBWJsW7G+a00S5G0wjiij+Znx2/ABS+A//xLOPCjtKuRJEmStMIZZjU/IcCL3w117fCvr4aBk2lXJEmSJGkFM8xq/mpWwUs/AF1PJM/POuqDJEmSpJQYZrUwm6+B5/wlPPBv8N2/T7saSZIkSSuUYVYL9/TXwyUvha++FR76ctrVSJIkSVqBDLNauBDgRe+CtZfCp38TjuxKuyJJkiRJK4xhVmemogZe/jEor4aPvhRO7E+7IkmSJEkriGFWZ65xA/zKp2DgBHz0JdB3LO2KJEmSJK0QhlmdnbWXwSs+BscehY+/HIZ6065IkiRJ0gpgmNXZ23otvPT9sO8H8NFfhMHutCuSJEmStMwZZrU4LnpxMgft3rvgI78A/V1pVyRJkiRpGTPMavFc8hL45dvgwD3w4RdC96G0K5IkSZK0TBlmtbguvBFe8XE4+gj883Pg0I/TrkiSJEnSMmSY1eI773nw61+GmIMPXg8PfSntiiRJkiQtM4ZZLY21l8ItX4eWbckox//1JhgdTrsqSZIkScuEYVZLp2Et/Pp/wpWvhu/+A9x6I3TtTbsqSZIkScuAYVZLq7wKXvj3yUjHh++H9z4NfvQvEGPalUmSJEkqYYZZFcaTfhF++zuw5knwud+BT9wEJ/alXZUkSZKkEmWYVeGs2go3fxGe/z/hkW/Au54C332nz9JKkiRJWjDDrAork4Frfhd+9y7Yei3811/CP10Le+5IuzJJkiRJJcQwq3Q0b4abPgEv/zgM9sCHrofP/g70HEm7MkmSJEklwDCrdG1/AfzunfCMP4L7Pgn/cDl8/X/AwMm0K5MkSZJUxAyzSl9FLTz3zUnX4/N/Fr71v+AfLoM73g3DA2lXJ0mSJKkIGWZVPFq2wS/dCq+5HdZeBl95I7xrB/zwIzAylHZ1kiRJkoqIYVbFZ90V8KrPwqs+B7Vt8PnXJS21332n3Y8lSZIkAYZZFbNzroNbvg6/8mloPTcZ+fgdF8N/vRlOHky7OkmSJEkpKku7AGlOIcC5z01e+38I33tn8rrzPXDhi2DHq2Hz05PzJEmSJK0YhlmVjvVPTp6pPfYY3PleuPcTcP+noOVcePLNcPlNUNuadpWSJEmSCiDEGAvzQSFcD/wDkAXeH2P8mynH3wE8K79ZA7THGJvmes8dO3bEnTt3LkG1KglDffCTz8Hdt8LeOyFTnkz186RfhvOeB2WVaVcoSZIk6SyEEO6OMe6Y8VghwmwIIQs8DDwP2Af8AHhFjPEns5z/e8AVMcZfn+t9DbMad+RBuPvD8ON/hb5OqGyEC18IT/pF2HotZLJpVyhJkiRpgeYKs4XqZvwUYHeM8dF8QZ8AXgzMGGaBVwBvLlBtWg7aL4Qb/gZ+9q/gsdvhx59OWm3v+SjUtsMFN8D2n0uCbXl12tVKkiRJOkuFCrPrgb0TtvcBT53pxBDCZmAr8PUC1KXlJlt2asCoG/8P/PQ/4f5/g/s/DT/8MJTXwLZnwwUvgPN+Fura0q5YkiRJ0hkoxgGgXg58KsY4OtPBEMJrgNcAbNq0qZB1qdSUV8NFL05eI4Pw+LfhoS8lr11fTM5ZfUkyBdA5z4LN10BFbaolS5IkSZqfQj0zew3wlhjj8/Pb/w0gxvjXM5z7I+B3Y4zfO937+syszkiMcPBeeOTr8Og34Ik7YXQoGUBq41Ng09Ww8WrYeBVUN6ddrSRJkrRiFcMzsz8AzgshbAX2k7S+3jT1pBDCdqAZuKNAdWklCgHWXZ68fuaPklGR994Jj94Oj30LvvP3MNYxoO1C2PRUWH8lrL08eTY3W55a6ZIkSZISBQmzMcaREMLrgK+QTM3zwRjjAyGEtwE7Y4yfz5/6cuATsVDzBUkAFfnnaLc9O9ke6oX9d8MTdyUh9/7PJNP/AGQrYfXFSRBec2kSblvPh5pVaVUvSZIkrUgFm2d2KdjNWAWRy8GxR+HgPXDgR0kX5YP3weCJU+fUrYa2C6Bt+6ll6/lQ25a0BEuSJElasGLoZiyVrkwGWs9NXk/6xWRfLgcnnoCOh6FjF3Q8lCzv+TgMdZ+6trwWmjZB82Zo2jx9WdWQztckSZIklTjDrHQmMhlo3pK8zv/ZU/tjhJMHkmDb+VPo2gPH9yTLx787OehCEnbrV0P92qR1t37N5GVtK1SvSroxOz+uJEmSNM4wKy2mEKBxffI69zmTj8UI/cfh+ONJuO16AroPQ/dB6DmcdF9++Csw3Dvze5dVJ6G2ehXUNCfLqgaoqEtelXXJ1EIV9fn1ifvroKwKyiqTV6bM7s+SJEkqaYZZqVBCSMJozSpY/+TZzxvsPhVy+49B37EJy+Onlkd+AgMnkwGrhnqAhTz/HvLhtiJZZisnrFdAJgshm19mpmzPsT9kIJBfZpLPGVsPmeR7MH6MWfZPvWa295t6TZi+f9Zrwqn9mbLk6y6vSv5gUF6V366evDT8S5IkFRXDrFRsKuuTV+u5878ml4PhviTUDvUmgXioBwZ78vt6YGQQRgZgZAhGp67nX6NDyf7caDI9US4HuZHkWBydvH/S9ijEXNL6HHNAfjn+iqeWk45NWJ+4vxiVVUF5Tf7fp+HUv9Ok14T91U1Q05JvSW9JtjPZtL8KSZKkZcMwKy0HmUzSnbiyLu1KFkeMswfdafvj9P2zXjNDmM4NJ2F9uD8J8nMtx1rBB7uTV88hOPrTU9sjA3N8UQGqm5NgO/7KB92x56THXnVrkimjJEmSNCvDrKTiE/LdhsmkXcnCjAwlYXfgBAx0JV3C+45B39HJr/5jyXPTB36YbI8OTX+vqsZkYLCxcFu/JtluXA+NG5NRsqub7f4sSZJWLMOsJC2Wsgooyz8XPV8xJsG3+1DynPSkZf6153vJvtzw5GvLa6FpYxJuGzfk1zed2le/Nmm1lyRJWoYMs5KUppDvflzdDO0Xzn5ejEkr7ol9cGIvdO3NL59IlvvvTlp8J8pWJnMaN29NppFatfXUevNmp3uSJEklzTArSaUghGTe4dpWWHf5zOcM9uTD7r78HMePw/HH4NjjsOe7+VGvJ6hflw+4W5KQOzHs1qyyC7MkSSpqhllJWi4q66B9e/Kaaqxl99hj+YD72Kmwu/tryWBWk96rIR9yt5wKuWPBt2EDZP3PhyRJSpe/jUjSSjCxZXfjVdOPD/UlrblTw+6Rn8BDX5r8vG6mLBmAalKL7pZTrbrLZVRtSZJU1AyzkqRkKqD2C2d+bjc3CicPTG/RPfYY7P9hMoDVRLXt05/RbdqUDFLVsA6y5Uv/9UiSpGXPMCtJmlsmm4yQ3LQRtl47/Xj/8ekh9/jjySjM930SiBNODvkphjZMeG3MTzmUX3fKIUmSNA+GWUnS2aluhvXNsP7J04+NDJ4acXlscKoT+5Ptg/fCrn+H0cHJ12QrktbdunaoWz3Dcmy9HcprDL46JcakJ0HM5V8T1nOjyfGJ+yedO/GVP494anvi+rTtsXNnuG7SsdmuW4zPYJb3ma0e5q41ecNT39eJ2zPtixOOnfac+bzPEpwzSZjwsyO/nGt7Uc5lAecudg3McG7+vJCZYT0zYZuZj007b+Ix5jg203XM8tmz1TVT/XO9/5SaZvraZ3uPaV//TOfOdHziv4OWimFWkrR0yiqh9bzkNZMYobcTTu47FXZ7DkPPkWR5ch8c+CH0dpz6hX2ibGV+aqOmU1Mcjb2qmpLndytqk1d57an1ia/y2mSO4FKQy0FuZMprNHmmedL2hOOjM50/MuGaqecPT98312fMev4snzEeLieGx5lC59R9M4TO8f2jM98fWoApv6SP754rmJ0uVM11DvM4Z7E+a0qgGAv84+ucZnu+557ufc70fec4VyVgrj8azBSMOYvgPJ9zM/n/a0z4/8cv3Qqrzinod2WxGGYlSekJAerakte6K2Y/LzeajMbcc3hy2O0/PuHVlcy/e/C+ZHu4d/51ZMqSFuFsOWTKk+Vs65kzeeY3ngpfEwNfnLJ9uuNp/gIbMsn3afyVzS/Lp2xPOZ7NHy+vhpBN9ofM9Nek/fn1TGb6vvFzwyz7T/e+YfbPm9iaM68Wq1l+iZyzpWiOlqNZW8Xm0RJ2xvVMaH1S6YpnEpJnaMmfq3fAaXsKzLS9gJ4K8+q1wBzHZvjs8eNx5nqnvc/Eng7zPXfq+8/3s8bWl+CzZn2viZ814V7IlG4kLN3KJUkrRyZ7qmsxT5rfNSNDydy6Q70w3Hdqfahvhv19MDqUb2UcTpazredGGP+L9ryF5JeFsqopYW+GABiyc58TMqcC4owhcqbXlGA5Y/A83XtmTv9lSkrHxO6w0gpimJUkLU9lFVC2CmpWpV2JJElaAv6ZVZIkSZJUcgyzkiRJkqSSY5iVJEmSJJUcw6wkSZIkqeQYZiVJkiRJJccwK0mSJEkqOYZZSZIkSVLJMcxKkiRJkkqOYVaSJEmSVHIMs5IkSZKkkmOYlSRJkiSVHMOsJEmSJKnkGGYlSZIkSSXHMCtJkiRJKjmGWUmSJElSyTHMSpIkSZJKjmFWkiRJklRyDLOSJEmSpJITYoxp13DGQggdwJ606ziNVqAz7SJUtLw/NBvvDc3F+0Nz8f7QbLw3NJdivT82xxjbZjpQ0mG2FIQQdsYYd6Rdh4qT94dm472huXh/aC7eH5qN94bmUor3h92MJUmSJEklxzArSZIkSSo5html9760C1BR8/7QbLw3NBfvD83F+0Oz8d7QXEru/vCZWUmSJElSybFlVpIkSZJUcgyzkiRJkqSSY5hdIiGEVSGEz4QQekMIe0IIN6Vdk9ITQrg9hDAQQujJvx6acOym/D3SG0L4bAhhVZq1ammFEF4XQtgZQhgMIdw65dhzQgi7Qgh9IYRvhBA2TzhWGUL4YAjhZAjhUAjhjwpevJbcbPdHCGFLCCFO+BnSE0L4ywnHvT+Wufy/8Qfy/73oDiHcE0K4YcJxf36sYHPdH/78EEAI4aMhhIP5f+eHQwi/OeFYyf78MMwunXcDQ8Bq4JXAe0MIF6dbklL2uhhjXf51AUD+nvgn4FdJ7pU+4D0p1qildwD4K+CDE3eGEFqBfwP+ElgF7AT+34RT3gKcB2wGngX8aQjh+gLUq8Ka8f6YoGnCz5H/PmH/W/D+WO7KgL3AM4FG4C+AT+aDij8/NOv9MeEcf36sbH8NbIkxNgAvAv4qhHBlqf/8cACoJRBCqAWOA5fEGB/O7/sIsD/G+IZUi1MqQgi3Ax+NMb5/yv7/SfKD5ab89jbgQaAlxthd8EJVMCGEvwI2xBh/Lb/9GuDXYoxPy2/XAp3AFTHGXSGEA/nj/5k//t+B82KML0/lC9CSmuH+2AI8BpTHGEdmON/7YwUKIdwHvBVowZ8fmmLC/XE3/vzQBCGEC4DbgT8Amijhnx+2zC6N84GRsSCbdy9gy+zK9tchhM4QwndDCNfl911Mcm8AEGN8hKRF//zCl6eUTb0XeoFHgItDCM3A2onH8WfKSrUnhLAvhPCh/F/T8f5YmUIIq0n+W/EA/vzQFFPujzH+/FjhQgjvCSH0AbuAg8B/UOI/PwyzS6MOODll3wmgPoVaVBz+DDgHWE8yh9cX8q2wdST3xkTeKyvTXPdC3YTtqce0MnQCV5F087qS5N/+X/LHvD9WmBBCOcm//4djjLvw54cmmOH+8OeHAIgx/g7Jv+3PkHQtHqTEf36UpV3AMtUDNEzZ1wDYbXSFijHeNWHzwyGEVwAvwHtFp8x1L/RM2B6YckwrQIyxh+Q5JoDDIYTXAQdDCPV4f6woIYQM8BGSXjyvy+/254eAme8Pf35oohjjKPCdEMKvAK+lxH9+2DK7NB4GykII503YdxmTu3poZYtAILknLhvbGUI4B6gkuYe0sky9F2qBbcADMcbjJN2BLptwvj9TVraxAS8y3h8rRwghAB8gGTDwpTHG4fwhf35orvtjKn9+CJJGzW2U+M8Pw+wSyPc1/zfgbSGE2hDC04EXk/ylTCtMCKEphPD8EEJVCKEshPBK4FrgyyTdfF4YQviZ/A+PtwH/5uBPy1f+HqgCskB27L4APgNcEkJ4af74m4D78l3EAG4D/iKE0BxC2A7cAtyawpegJTTb/RFCeGoI4YIQQiaE0AK8E7g9xjjW9cv7Y2V4L3Ah8MIYY/+E/f78EMxyf/jzQyGE9hDCy0MIdSGEbAjh+cArgK9R6j8/Yoy+luBFMrT1Z4Fe4AngprRr8pXavdAG/ICkS0YXcCfwvAnHb8rfI73A54BVadfsa0nvh7eQ/FV84ust+WPPJRmUoZ9klMEtE66rJJmu5SRwGPijtL8WX4W7P0h+6Xgs/3PiIMkvF2u8P1bOi+R5x0jS1a9nwuuV+eP+/FjBr7nuD39++Mr/LvrN/O+hJ4EfA7dMOF6yPz+cmkeSJEmSVHLsZixJkiRJKjmGWUmSJElSyTHMSpIkSZJKjmFWkiRJklRyDLOSJEmSpJJjmJUkSZIklRzDrCRJBRRC+FII4ea065iPEMKWEEIMIZSlXYskSVP5HydJkk4jhNAzYbMGGARG89u/FWP8l/m+V4zxhsWsTZKklcowK0nSacQY68bWQwiPA78ZY/zq1PNCCGUxxpFC1iZJ0kplN2NJks5QCOG6EMK+EMKfhRAOAR8KITSHEL4YQugIIRzPr2+YcM3tIYTfzK//WgjhOyGEv8uf+1gIYdaW2xDCuhDCp/Pv/VgI4fcnHHtLCOFTIYT/F0LoDiH8MIRw2YTjF+Y/uyuE8EAI4UUTjlWHEN4eQtgTQjiRr6l6wke/MoTwRAihM4Tw54v1/ZMk6WwYZiVJOjtrgFXAZuA1JP9t/VB+exPQD7xrjuufCjwEtAL/C/hACCFMPSmEkAG+ANwLrAeeA7w+hPD8Cae9GPjXfD0fAz4bQigPIZTnr/1PoB34PeBfQggX5K/7O+BK4Gn5a/8UyE1432cAF+Q/800hhAtP+12RJGmJGWYlSTo7OeDNMcbBGGN/jPFojPHTMca+GGM38D+AZ85x/Z4Y4z/HGEeBDwNrgdUznHcV0BZjfFuMcSjG+Cjwz8DLJ5xzd4zxUzHGYeD/AFXA1flXHfA3+Wu/DnwReEU+JP868Acxxv0xxtEY4/dijIMT3vet+a/tXpIwfRmSJKXMZ2YlSTo7HTHGgbGNEEIN8A7geqA5v7s+hJDNB9apDo2txBj78o2ydTOctxlYF0LomrAvC3x7wvbeCe+VCyHsA9aNHYsxTmxt3UPSwttKEnofmeNrPDRhvW+W+iRJKijDrCRJZydO2f5jki65T40xHgohXA78CJjWdXiB9gKPxRjPm+OcjWMr+RbXDcCBsWMhhMyEQLsJeBjoBAaAbSStrpIklQS7GUuStLjqSZ6T7QohrALevEjv+32gOz/YVHUIIRtCuCSEcNWEc64MIbwkPy/s60mmELoTuIukRfVP88/QXge8EPhEPtx+EPg/+QGmsiGEa0IIlYtUtyRJS8IwK0nS4vp7oJqkxfNO4MuL8ab5Lso3ApcDj+Xf//1A44TTPge8DDgO/CrwkhjjcIxxiCS83pC/7j3Aq2KMu/LX/QnwY+AHwDHgb/F3BElSkQsxTu0dJUmSSk0I4S3AuTHGX0m7FkmSCsG/ukqSJEmSSo5hVpIkSZJUcuxmLEmSJEkqObbMSpIkSZJKjmFWkiRJklRyDLOSJEmSpJJjmJUkSZIklRzDrCRJkiSp5BhmJUmSJEkl5/8HNaJgwIgx80YAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKvCAYAAACRY9qRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACD+klEQVR4nOzdd3hkZ3037s+M6jZpe7PXXvfutTHYYMAYMNimBpLQTAAn1CQ/Qpy8Seh5SSEJJW9IIHQIJCZ0HELAOAaDAWMbN1zWfdfb+660XSvN/P4YSStt0UqrMir3fV2Tc+ac5znzlT0WVz56SqFcLpcDAAAAADDMitUuAAAAAACYGISRAAAAAMCIEEYCAAAAACNCGAkAAAAAjAhhJAAAAAAwIoSRAAAAAMCIEEYCAAAAACNCGAkAAAAAjIjaahdQbaVSKWvWrMm0adNSKBSqXQ4AAAAAjCnlcjnbt2/PwoULUyz2PfZxwoeRa9asyaJFi6pdBgAAAACMaStXrsyxxx7bZ5sJH0ZOmzYtSeUfVlNTU5WrAQAAAICxpbW1NYsWLerO2foy4cPIrqnZTU1NwkgAAAAAOEr9WQLRBjYAAAAAwIgQRgIAAAAAI0IYCQAAAACMCGEkAAAAADAiJvwGNgAAAACMXuVyOR0dHWlvb692KRNSXV1dampqhux5wkgAAAAARp1yuZxt27Zl48aN6ejoqHY5E9r06dMzf/78fu2WfSTCSAAAAABGnXXr1mXbtm1pampKU1NTamtrhyQMo//K5XJ27dqVDRs2JEkWLFgw6GcKIwEAAAAYVTo6OtLS0pI5c+Zk9uzZ1S5nQps0aVKSZMOGDZk7d+6gp2zbwAYAAACAUWXfvn0pl8uZMmVKtUshyeTJk5NU/r0MljASAAAAgFHJtOzRYSj/PQgjAQAAAIARIYwEAAAAAEaEMBIAAAAAxpk3vOENWbx4cbXLOIgwEgAAAABGSKFQ6Nfrpptuqnapw6K22gUAAAAAwETx5S9/udf7L33pS7nhhhsOun7GGWcM6nM+85nPpFQqDeoZw0EYCQAAAAAj5LWvfW2v97/85S9zww03HHT9QLt27crkyZP7/Tl1dXVHVd9wM00bAAAAAEaRSy+9NGeffXbuuOOOXHLJJZk8eXLe9a53JUmuu+66vPCFL8zChQvT0NCQk046KX/1V3+Vjo6OXs84cM3I5cuXp1Ao5MMf/nA+/elP56STTkpDQ0Oe8pSn5Pbbbx+xn83ISAAAAAAYZTZv3pwrr7wyr3rVq/La17428+bNS5J88YtfzNSpU3PNNddk6tSp+dGPfpT3ve99aW1tzYc+9KEjPvfaa6/N9u3b85a3vCWFQiH/8A//kJe//OV5/PHHR2Q0pTASAAAAgDGhXC5n976OIzccIZPqalIoFIbl2evWrcsnP/nJvOUtb+l1/dprr82kSZO637/1rW/NW9/61nziE5/IX//1X6ehoaHP565YsSKPPPJIZsyYkSQ57bTT8tKXvjTXX399XvSiFw39D3IAYSQAAAAAY8LufR05833XV7uMbg984PJMrh+eeK2hoSFXX331Qdd7BpHbt2/P3r1788xnPjOf+tSn8uCDD2bJkiV9PveVr3xldxCZJM985jOTJI8//vgQVd43YSQAAAAAjDLHHHNM6uvrD7p+//335z3veU9+9KMfpbW1tde9lpaWIz73uOOO6/W+K5jcunXrIKrtP2EkAAAAAGPCpLqaPPCBy6tdRrdJdTXD9+weIyC7bNu2Lc961rPS1NSUD3zgAznppJPS2NiYO++8M3/+53+eUql0xOfW1By65nK5POia+0MYCQAAAMCYUCgUhm1a9Fhw0003ZfPmzfnWt76VSy65pPv6smXLqljVwEzcf3sTRfve5PGfJIVCcsrzql0NAAAAAEepa1Rjz1GMbW1t+cQnPlGtkgZMGDne3fOV5Lt/lBxzgTASAAAAYAy7+OKLM2PGjLz+9a/P29/+9hQKhXz5y18esSnWQ6FY7QIYZqe9IEkhWX1H0rKq2tUAAAAAcJRmzZqV//7v/86CBQvynve8Jx/+8IfzvOc9L//wD/9Q7dL6rVAeS9HpMGhtbU1zc3NaWlrS1NRU7XKGx+evSFbcklz5D8lFb6l2NQAAAAB92rNnT5YtW5YTTjghjY2N1S5nwjvSv4+B5GtGRk4A2xZfUTlZ+t3qFgIAAADAhCaMHOe+fdeqvOzGGZU3T/w82bmpugUBAAAAMGEJI8e58xbNyIrynNxbWpyUS8lD/1PtkgAAAACYoISR49wJs6fkFU8+Nj/ouDBJUjZVGwAAAIAqEUZOAG9/7in5UeGiJEn5sR8ne1qqXBEAAAAAE5EwcgJY0DwpT3/qxXmstCDF0r6UHv5htUsCAAAAYAISRk4Qv//sk7tHR6679RtVrgYAAACAiUgYOUHMnFKfKee9LEkyY/VNad+zs8oVAQAAADDRCCMnkBdf8YKszaxMyp784gajIwEAAAAYWcLICWTapPpsXnR5kmT7nd9Iy+59Va4IAAAAgIlEGDnBnPbc1ydJnlW6Lf9y/a+rXA0AAAAAE4kwcoKpO/6i7JlybKYW9mTt7d/J/Wtaql0SAAAAAEdp+fLlKRQK+eIXv1jtUvpFGDnRFAppPP8VSZIXF3+R9193f8rlcpWLAgAAAJgYXvKSl2Ty5MnZvn37YdtcddVVqa+vz+bNm0ewspExqsLIn/70p3nxi1+chQsXplAo5Dvf+U6f7deuXZvXvOY1OfXUU1MsFvOOd7xjROoc8875rSTJs4t35+EnVuVbd66uckEAAAAAE8NVV12V3bt359vf/vYh7+/atSvXXXddrrjiisyaNWuEqxt+oyqM3LlzZ5YsWZKPf/zj/Wq/d+/ezJkzJ+95z3uyZMmSYa5uHJl3VjL3zNQX2nN5ze354PeX2swGAAAAYAS85CUvybRp03Lttdce8v51112XnTt35qqrrhrhykbGqAojr7zyyvz1X/91Xvayl/Wr/eLFi/NP//RPed3rXpfm5uZhrm6cOfs3kySvavxlNu1oywf/Z2mVCwIAAAAY/yZNmpSXv/zlufHGG7Nhw4aD7l977bWZNm1anvGMZ+RP//RPc84552Tq1KlpamrKlVdemXvuuacKVQ+dURVGjoS9e/emtbW112tC6pyq/aTSfZlb2Jr/vH1lbn5kY5WLAgAAABj/rrrqqrS3t+drX/tar+tbtmzJ9ddfn5e97GVZu3ZtvvOd7+RFL3pRPvrRj+b//J//k3vvvTfPetazsmbNmipVPni11S5gpH3wgx/M//2//7faZVTfjMXJsU9JYdXt+b8nPZy3PXpR/uKb9+b6P74kUxsm3NcCAAAAGAvK5WTfrmpXsV/d5KRQGHC35zznOVmwYEGuvfba/OEf/mH39a9//evZt29frrrqqpxzzjl5+OGHUyzuH0v4O7/zOzn99NPzuc99Lu9973uH5EcYaRMudXrnO9+Za665pvt9a2trFi1aVMWKquic305W3Z7nl36WRTMvzcotu/N331+av/6Nc6pdGQAAAMDB9u1K/nZhtavY711rkvopA+5WU1OTV73qVfnHf/zHLF++PIsXL05SmaI9b968PPe5z01NTU13+46Ojmzbti1Tp07NaaedljvvvHOofoIRN+GmaTc0NKSpqanXa8I662VJoZiaNXfk/z2/submv/9yRX7x2KYqFwYAAAAwvnVtUNO1kc2qVaty880351WvelVqampSKpXyj//4jznllFPS0NCQ2bNnZ86cOfn1r3+dlpaWapY+KBNuZCQ9TJ2bnPCs5PEf54KtP8xVF70o/3Hrivz5N3+d7/+R6doAAADAKFM3uTIacbSom3zUXS+44IKcfvrp+cpXvpJ3vetd+cpXvpJyudwdUv7t3/5t3vve9+Z3f/d381d/9VeZOXNmisVi3vGOd6RUKg3VTzDiRlXatGPHjjz66KPd75ctW5a77747M2fOzHHHHZd3vvOdWb16db70pS91t7n77ru7+27cuDF333136uvrc+aZZ450+WPTeVclj/84ufvavPNtf5KbHtqYlVt25y//6/58+LeXVLs6AAAAgP0KhaOaFj1aXXXVVXnve9+bX//617n22mtzyimn5ClPeUqS5Bvf+Eae/exn53Of+1yvPtu2bcvs2bOrUe6QGFXTtH/1q1/l/PPPz/nnn58kueaaa3L++efnfe97X5Jk7dq1WbFiRa8+Xe3vuOOOXHvttTn//PPzghe8YMRrH7POeFHS0Jy0rMjUNb/IP77yvBQLyTfuWJX/umcU/aUBAAAAYJzpGgX5vve9L3fffXf3+6SyrmS5XO7V/utf/3pWr149ojUOtVE1MvLSSy896B9yT1/84hcPutZXe/qhblJyzm8mv/p8cte/58Lf/Gz+8Nkn52M/ejTv/va9edJx03PsjKMfcgwAAADAoZ1wwgm5+OKLc9111yVJrzDyRS96UT7wgQ/k6quvzsUXX5x77703//Ef/5ETTzyxWuUOiVE1MpIqOf+1lePS7ya7t+Xtzz0l5x83Pdv3tOcd/3l32jvG7joEAAAAAKNZVwB54YUX5uSTT+6+/q53vSt/8id/kuuvvz5/9Ed/lDvvvDPf+973smjRomqVOiQK5Qk+tLC1tTXNzc1paWmZuDtrl8vJv16cbHggeeFHk6f8XlZs3pUXfOzm7Njbnndcdkrecdmp1a4SAAAAmCD27NmTZcuW5YQTTkhjY2O1y5nwjvTvYyD5mpGRVBZ/Pa9zGPBd/54kOW7W5PzVb5yVJPnYjY/k549uqlZ1AAAAAIwTwkgqzn1lUqxN1tyZrH8gSfKy84/NK558bErl5O1fuStrW3ZXuUgAAAAAxjJhJBVT5ySnXlE5v/s/ui9/4KVn58wFTdm8sy1/8B93pq3d+pEAAAAAHB1hJPt1bWRzz38m7W1Jksa6mvzra5+UaY21uXPFtnzw+0urWCAAAAAAY5kwkv1Ofl4ydV6ya1Py0Pe6Lx8/a0o++orzkiRf+PnyfPeeNVUqEAAAAICxTBjJfjW1yZNeVzm//XO9bj3vzHl526UnJUn+/Ju/zqMbto90dQAAAACMccJIervgDUmhmCy/Odn4UK9bf/K8U/O0E2dlV1tH3vrvd2bn3vbq1AgAAABMCOVyudolkKH99yCMpLfmY/dvZPOrz/e6VVtTzMdefX7mTmvIoxt25C++da9fCgAAAMCQq6mpSZLs27evypWQJO3tlQFptbW1g36WMJKDPfn3Kse7v5K07ex1a860hnziqieltljId+9Zky/d8kQVCgQAAADGs7q6ujQ0NKSlpcVAqFGgtbU1NTU13SHxYAw+zmT8Oek5yYzFydblyX3f3L+OZKcnL56Zv7jy9Pz195bmr7/3QM4+pjkXHD+jKqUCAAAA49Ps2bOzevXqrFq1Ks3Nzamrq0uhUKh2WRNKuVzOzp0709ramgULFgzJP39hJAcrFpMLrk7+9/2VjWwOCCOT5PeecULuXLE1/3PvuvzBf9yZ/377MzJ7akMVigUAAADGo6ampiTJpk2bsnr16ipXM3EVCoVMnz49zc3NQ/O88gQf69ra2prm5ua0tLR0f8lJsnNT8tEzko625E0/So654KAmO/a256X/8rM8tnFnnnbirHz59y5MbY2Z/wAAAMDQ2rdvXzo6OqpdxoRUV1d3xOnZA8nXjIzk0KbMTs56WfLrrya3f/6QYeTUhtp86ncuyEv+5ee55fHN+dAPH8o7rzyjCsUCAAAA41ldXV3q6uqqXQZDwDA2Dq9rI5v7vpHs3HzIJifPnZZ/+K1zkySf+snj+cF9a0eqOgAAAADGGGEkh7fowmTBeUn7nuSOLxy22YvOXZg3PuOEJMmffv3XWbZp52HbAgAAADBxCSM5vEIheervV85v/2zSse+wTf/8ytNz4eKZ2bG3PX/wH3dmzz7rOAAAAADQmzCSvp31smTqvGT72uSB6w7brK6mmI+9+vzMnFKfB9a25m++t3QEiwQAAABgLBBG0rfa+uQpb6yc3/LxpI/N1+c3N+ajr1iSJPnyL5/I/9xr/UgAAAAA9hNGcmQXXJ3UNCRr7kxW3d5n00tPm5u3XXpSkuTPv/HrPLHZ+pEAAAAAVAgjObKpc5Jzfrty/stPHLH5nzzv1Dz5+BnZvrc9f3jtXWlrLw1zgQAAAACMBcJI+uepb60cH/ivpGVVn01rO9ePnD65Lveubsk//+iRESgQAAAAgNFOGEn/zD8nWfzMpNyR3PbpIzZfOH1S/uY3zkmSfPzHj+bOFVuHu0IAAAAARjlhJP331N+vHO/4YrJ3+xGbv/DcBXnpeQtTKid/8rV7squtfXjrAwAAAGBUE0bSf6dekcw6OdnTktz17/3q8oGXnJ35TY1ZtmlnPvg/Dw5zgQAAAACMZsJI+q9YTJ72B5XzWz6RdBx5pGPz5Lp86LfPTZJ8+ZdP5CcPbxzOCgEAAAAYxYSRDMySVyeTZyUtK5Kl1/WryzNPmZPXP+34JMk7v/nr7NxrujYAAADARCSMZGDqJiUXvrly/vOPJeVyv7r9xZVn5NgZk7KmZU/+6Ua7awMAAABMRMJIBu4pb0xqG5O1dydP/LxfXSbV1+QDLz0rSfK5ny3LA2tah7FAAAAAAEYjYSQDN2V2ct5rKue/+Od+d3vO6fNy5dnz01Eq593fuTelUv9GVQIAAAAwPggjOTpP/YMkheThHyQbH+p3t/e/+KxMbajNXSu25drbVgxffQAAAACMOsJIjs7sk5PTX1g5v+Vf+t1tfnNj/uT5pyZJ/v4HD2bj9r3DUR0AAAAAo5AwkqN38f9XOd7zn8n29f3u9rqnLc45xzRn+572fOj6B4epOAAAAABGG2EkR2/RRckxT0462pLbP9PvbjXFQv7yJZXNbL5xx6o8vH77cFUIAAAAwCgijOToFQr7R0fe/tmkbWe/u15w/Ixccdb8lMrJ33/f6EgAAACAiUAYyeCc8eJk+vHJ7q3J3dcOqOufXXFaaoqF3Pjghvzy8c3DVCAAAAAAo4UwksEp1iRP+8PK+S0fT0od/e564pypefWFi5IkH/yfpSmXy8NRIQAAAACjhDCSwTv/qqRxerJ1WfLg9wbU9Y+ee2om19fknlUt+d69a4enPgAAAABGBWEkg1c/JXnKGyvnv/jnAXWdM60hb77kxCTJh65/KG3tpaGuDgAAAIBRQhjJ0LjwzUlNfbLqtmTFrQPq+qZnnpjZUxvyxOZd+dadq4apQAAAAACqTRjJ0Jg2Lzn3lZXzX3xsQF2nNNTmrc+qjI781E8fT0fJ2pEAAAAA45EwkqHTtZHNg99LNj82oK6vuvC4NE+qy7JNO3P9/euGoTgAAAAAqk0YydCZe3pyyuVJypWdtQdgakNtXn/x4iTJv970mJ21AQAAAMYhYSRD6+LO0ZF3/0eyc9OAur7h4sVprCvm3tUt+fmjm4ehOAAAAACqSRjJ0Fr8zGTBkqR9T3L75wbUdeaU+rzqKcclSf71J48OR3UAAAAAVJEwkqFVKCQXv71yftunk327B9T9jc88IbXFQn7+6Obcs3Lb0NcHAAAAQNUIIxl6Z740aV6U7NqU/PqrA+p67IzJecl5C5NU1o4EAAAAYPwQRjL0auqSp76tcv6Lf0lKpQF1f+uzTkqSXP/AuqzcsmuoqwMAAACgSoSRDI8nvS5paEo2P5I8/qMBdT113rQ84+TZKZeT/7x9xTAVCAAAAMBIE0YyPBqmJee9pnJ+66cG3P01F1U2svnar1ZlX8fARlYCAAAAMDoJIxk+F765cnzkhmTzwNZ/vOyMeZk9tT4bt+/NjUs3DENxAAAAAIw0YSTDZ9ZJycnPS1JObv/sgLrW1xbzWxcsSpJ85TZTtQEAAADGA2Ekw+uit1aOd/17snfHgLq++sJKGPnTRzbayAYAAABgHBBGMrxOek4y86Rkb2tyz1cG1PX4WVO6N7L56u0rh6lAAAAAAEaKMJLhVSwmF72lcn7bp5NyeUDdX31h10Y2K21kAwAAADDGCSMZfktendRPTTY9nDz+4wF1fd6ZlY1sNtjIBgAAAGDME0Yy/BqbkvNeUzm/7TMD6tpzI5v/vN1GNgAAAABjmTCSkfGUN1WOD/8gaV0zoK6vePKxSZKbH9mULTvbhroyAAAAAEaIMJKRMefU5PinJ+VSZWftAThxztSctbApHaVyrr9/3TAVCAAAAMBwE0Yyci54Q+V455eSUseAur7w3AVJkv/+9cBGVQIAAAAweggjGTlnvCRpnJ60rEweG9hGNi86Z2GS5JbHNmfTjr3DUBwAAAAAw00Yycipa9y/kc0dXxhQ1+NmTc65xzanVE6+f5+p2gAAAABjkTCSkfWk11eOD30/2T6wUPFFnVO1v2eqNgAAAMCYJIxkZM09PVn01KTcMeCNbF5wTiWMvHXZlmzYvmc4qgMAAABgGAkjGXndG9n8W1Iq9bvbsTMm5/zjpqdcTr5/r6naAAAAAGONMJKRd9ZvJI3NybYVyeM/GlDXF57TNVV77TAUBgAAAMBwEkYy8uomJee+snJ+97UD6to1Vfv2J7ZkXYup2gAAAABjiTCS6ljy6srxwe8le1r73W3h9El58vEzUi4n37vX6EgAAACAsUQYSXUsPD+ZfWrSvidZ+l8D6npl5+jIG5euH47KAAAAABgmwkiqo1DYP1X7nv8cUNdnnzYnSXL78i3Zsbd9qCsDAAAAYJgII6mec19ROS7/WdKyqt/dTpg9JcfNnJx9HeX84tFNw1QcAAAAAENNGEn1TD8uOf4ZScrJr7/W726FQqF7dORND28cpuIAAAAAGGrCSKprSedU7V9/NSmX+93t0tPmJkl+8tDGlAfQDwAAAIDqEUZSXWe+NKltTDY+mKy9p9/dnnrirNTXFrN62+48umHHMBYIAAAAwFARRlJdjc3JaVdWzn/91X53m1Rfk6eeOCtJctNDpmoDAAAAjAXCSKrv3FdVjvd+I+no/+7Yl57atW7khuGoCgAAAIAhJoyk+k5+bjJ5drJzQ7Lspn53u7RzE5vbl23Nzr39DzEBAAAAqA5hJNVXU5ec+ZLK+QPX9bvbCbOn5LiZk9PWUcovHts8TMUBAAAAMFSEkYwOZ760cnzwe/2eql0oFLpHR970kKnaAAAAAKOdMJLR4fhnJJNmJrs2J0/8vN/d9oeRG1Mul4erOgAAAACGgDCS0aGmNjn9hZXzpf/V725PO3F26muLWb1tdx7buGOYigMAAABgKAgjGT26pmov/W5SKvWry6T6mlx0wswkyc2PbBquygAAAAAYAsJIRo8TnpU0NCc71icrb+13t6eeOCtJctuyLcNVGQAAAABDQBjJ6FFbn5x2ZeV8AFO1u0ZG3rZsi3UjAQAAAEYxYSSjy5kvqRwf+K+kn8HiucdOT0NtMZt3tuWxjTuHsTgAAAAABkMYyehy0nOS+qlJ66pk9Z396lJfW8yTjpuRJLl12ebhrA4AAACAQRBGMrrUTUpOeX7l/IHv9LvbhT2magMAAAAwOgkjGX26d9Xu/1Tti06shJG3Pm7dSAAAAIDRShjJ6HPK85LaxmTr8mTjg/3qcv6iGamrKWRd656s2rp7eOsDAAAA4KgIIxl96qcki59ZOX/kh/3qMqm+JuceOz1J8svHrRsJAAAAMBoJIxmdutaNfOSGfnexbiQAAADA6CaMZHQ65bLKccUtyZ6WfnW5qCuMXC6MBAAAABiNhJGMTjNPTGadnJTak8dv6leXC46fkWIheWLzrqxr2TO89QEAAAAwYMJIRq/uqdr9WzdyWmNdzlrYnCS5dZl1IwEAAABGG2Eko9cpz6scH/nfpFzuV5eLrBsJAAAAMGoJIxm9jn96Ujc52bEuWXdvv7p0bWJzqzASAAAAYNQRRjJ61TYkJ15aOe/nVO2nLK6EkY9u2JHNO/YOU2EAAAAAHA1hJKNb91TtG/rVfMaU+pw8d2qS5J5V24apKAAAAACOhjCS0e3kzjBy1W3Jrv5NvV5y7PQkyd0rW4apKAAAAACOhjCS0W36omTOGUm5lDz2o351OW9RZUfte1ZuG8bCAAAAABgoYSSj3wCnai9ZND1JZZp2uZ+7cAMAAAAw/ISRjH5dYeRjP0r6ES6ePr8p9TXFbNu1Lyu27Brm4gAAAADoL2Eko9+xFyY1DcnODcmmh4/YvL62mDMXNiVJ7jZVGwAAAGDUEEYy+tU1JosurJwvv7lfXc7rmqptExsAAACAUUMYydhwwiWV47L+hZFLujaxWbVtmAoCAAAAYKCEkYwNi59ZOS7/Wb/WjVxy7PQkyX2rW7KvozSMhQEAAADQX8JIxoZjLkhqJyW7NiUblh6x+eJZU9LUWJu97aU8tG77CBQIAAAAwJEIIxkbauuT4y6qnC//2RGbF4uFLOlaN9JUbQAAAIBRQRjJ2NE9Vfun/WreNVX7HjtqAwAAAIwKoyqM/OlPf5oXv/jFWbhwYQqFQr7zne8csc9NN92UJz3pSWloaMjJJ5+cL37xi8NeJ1XStYnN8p8lpSOvA7nEjtoAAAAAo8qoCiN37tyZJUuW5OMf/3i/2i9btiwvfOEL8+xnPzt333133vGOd+SNb3xjrr/++mGulKpYeH5SNyXZvTXZcP8Rmy85trKj9sMbtmfH3vbhrg4AAACAI6itdgE9XXnllbnyyiv73f6Tn/xkTjjhhHzkIx9Jkpxxxhn52c9+ln/8x3/M5ZdfPlxlUi01dcnxT0se/d9k2c3J/HP6bD63qTELmxuzpmVP7lvdkqeeOGuECgUAAADgUEbVyMiBuuWWW3LZZZf1unb55ZfnlltuOWyfvXv3prW1tdeLMWTxMyrHfmxik/Scqr1teOoBAAAAoN/GdBi5bt26zJs3r9e1efPmpbW1Nbt37z5knw9+8INpbm7ufi1atGgkSmWoLO5cN/KJnyWljiM2t6M2AAAAwOgxpsPIo/HOd74zLS0t3a+VK1dWuyQGYsGSpH5asqclWXfvEZvv31HbJjYAAAAA1Tamw8j58+dn/fr1va6tX78+TU1NmTRp0iH7NDQ0pKmpqdeLMaSmNjn+4sr58puP2PysYyr/fldv252tO9uGszIAAAAAjmBMh5FPe9rTcuONN/a6dsMNN+RpT3talSpiRHStG7nil0ds2tRYl+NmTk6SLF1rfVAAAACAahpVYeSOHTty99135+67706SLFu2LHfffXdWrFiRpDLF+nWve113+7e+9a15/PHH82d/9md58MEH84lPfCJf+9rX8sd//MfVKJ+RsujCynHlbUm5fMTmZy6ojI58QBgJAAAAUFWjKoz81a9+lfPPPz/nn39+kuSaa67J+eefn/e9731JkrVr13YHk0lywgkn5Hvf+15uuOGGLFmyJB/5yEfy2c9+NpdffnlV6meELDgvKdYlOzck2544YvOzFnaGkWuEkQAAAADVVFvtAnq69NJLU+5jpNsXv/jFQ/a56667hrEqRp26xmTBucnqO5KVtyczFvfZ/MzOMPJ+YSQAAABAVY2qkZHQb8c+pXJcddsRm3aFkY9u3JE9+zqGsyoAAAAA+iCMZGzqDiNvP2LT+U2NmTG5Lh2lch5Zv2OYCwMAAADgcISRjE1dm9isuzfZt7vPpoVCIWctbE6SPLC2ZbgrAwAAAOAwhJGMTc2Lkqnzk1J7subIa4aeaRMbAAAAgKoTRjI2FQrJos6p2iv7sW7kApvYAAAAAFSbMJKx69jOqdr9WDeya2Tk0rWtKZUOv2M7AAAAAMNHGMnYdWyPkZHlvgPGE2dPSUNtMTvbOrJiy64RKA4AAACAAwkjGbsWnpcUa5OdG5JtK/psWltTzOnzpyVJHlhrqjYAAABANQgjGbvqJiXzz62cD2Cq9v1r7KgNAAAAUA3CSMa2RZ3rRg5gExs7agMAAABUhzCSsa1r3chV/QgjFzYnMU0bAAAAoFqEkYxtXSMj192b7NvdZ9PT509LoZCsb92bTTv2jkBxAAAAAPQkjGRsa16UTJ2XlNqTNXf12XRKQ21OmDUlianaAAAAANUgjGRsKxT2T9VefecRm5/RuYmNqdoAAAAAI08Yydi34LzKce09R2x61kKb2AAAAABUizCSsW/BksqxH2HkGfMrYeRD67YPZ0UAAAAAHIIwkrFv4XmV46aHk7adfTY9df60JMljG3ekrb00zIUBAAAA0JMwkrFv6txk2oIk5cqu2n1Y2NyYaQ21aS+Vs2xT38ElAAAAAENLGMn40M+p2oVCoXt05IPrrBsJAAAAMJKEkYwPA9jE5rTOMPLh9daNBAAAABhJwkjGhwFsYnPavEoYaRMbAAAAgJEljGR86AojNyxN9u3us2nXyMiHjIwEAAAAGFHCSMaHpoXJ5NlJuSNZ/0CfTbtGRq7csjs79raPRHUAAAAARBjJeFEoJAvPq5yvvbvPpjOm1GfutIYk1o0EAAAAGEnCSMaP7nUj7z5i0+5NbKwbCQAAADBihJGMH0exic2DwkgAAACAESOMZPxYcF7luP6BpL2tz6bdIyNN0wYAAAAYMcJIxo/pxyWN05PSvmTj0j6bdu+obWQkAAAAwIgRRjJ+FAr7p2qvubvPpqfMnZZCIdm8sy0bt+8d/toAAAAAEEYyzvRz3chJ9TU5fubkJKZqAwAAAIwUYSTjy8LzKsf+bGIz3yY2AAAAACNJGMn40r2JzX1JR3ufTbt21H5YGAkAAAAwIoSRjC8zTkjqpyXte5JND/fZ9LT5TUmSB03TBgAAABgRwkjGl2IxmXdm5XzDA3027Zqm/cj67SmVysNdGQAAAMCEJ4xk/JnbGUauv7/PZotnTU59bTG72jqyauvuESgMAAAAYGITRjL+zDurcjxCGFlbU8zJc6YmSR5c1zrcVQEAAABMeMJIxp+uMPII07ST/VO1H7ZuJAAAAMCwE0Yy/sw9o3JsWZnsaemz6SnzKiMjH16/Y7irAgAAAJjwhJGMP5NmJE3HVs7X9z068tS5RkYCAAAAjBRhJONT947afa8beeq8Shj5+Madae8oDXdVAAAAABOaMJLxqZ+b2Bw7Y1Im1dWkraOUJ7bsGoHCAAAAACYuYSTj09yuMLLvadrFYiEnz62sG/mIdSMBAAAAhpUwkvGpe5r2A0m53GfTrk1sHrFuJAAAAMCwEkYyPs06JSnWJXtbK7tq9+GUrk1sNhgZCQAAADCchJGMT7X1yexTK+dH2lHbyEgAAACAESGMZPzq3sTmvj6b2VEbAAAAYGQIIxm/eq4b2Ydjpu/fUXv5ZjtqAwAAAAwXYSTjV/eO2vf32axYLNjEBgAAAGAECCMZv7qmaW96JGnf22fT7k1s1tvEBgAAAGC4CCMZv5oWJo3NSbkj2fhQn027NrF5eIORkQAAAADDRRjJ+FUoJPPOrpwfYd3Irk1sHjUyEgAAAGDYCCMZ3+Z2bmJzhHUju9aMfHzTjuyzozYAAADAsBBGMr7N618Yecz0SZlSX5N9HeU8sXnnCBQGAAAAMPEIIxnf+jlNu1Ao5OR5NrEBAAAAGE7CSMa3OadVjtvXJru39dn01Lmdm9ist4kNAAAAwHAQRjK+NTYn0xZWzjc93GfTrnUjHzEyEgAAAGBYCCMZ/+aeXjlufLDPZqd0T9M2MhIAAABgOAgjGf/mdIaRG/oOI0/tDCOXbdqZtnY7agMAAAAMNWEk41/XupFHGBm5sLkxUxtq014qZ7kdtQEAAACGnDCS8a9rZOTGh/psVigUcvJc60YCAAAADBdhJONf18jI1lXJntY+m546z47aAAAAAMNFGMn4N2lGMnV+5XzTI3027Vo38pENwkgAAACAoSaMZGLoXjdyaZ/N9u+obZo2AAAAwFATRjIxdK8beaQdtSvTtJfbURsAAABgyAkjmRi6R0b2vYnN/KbGTOvcUXvZJjtqAwAAAAwlYSQTw9wzKscjjIwsFAo5xSY2AAAAAMNCGMnE0DVNe9uKpK3vEY+nzO3cxEYYCQAAADCkhJFMDJNnJlPmVM6PMFV7/8hIm9gAAAAADCVhJBNH9yY2fYeRp3buqP3IBiMjAQAAAIaSMJKJo987alfCyOWbd2Vve8dwVwUAAAAwYQgjmTj6uaP2vKaGTGusTYcdtQEAAACGlDCSiaOfIyMLhUL36EjrRgIAAAAMHWEkE0dXGLl1ebJvd59NT+3cxMaO2gAAAABDRxjJxDFldjJpZpJysunhPpueMrdrZKQwEgAAAGCoCCOZOAqFZO4ZlfP+7qhtmjYAAADAkBFGMrF0b2JzpB21K9O0l2/emT377KgNAAAAMBSEkUws3ZvY9D0ycs60hjRPqkupnDy+0Y7aAAAAAENBGMnEMvuUyvEIa0ZWdtTu3MRmg3UjAQAAAIaCMJKJZfapleOWZUnHvj6bnjzXupEAAAAAQ0kYycQybWFSNyUp7Uu2PtFn066RkXbUBgAAABgawkgmlmIxmXVS5fwIU7W7d9TeYGQkAAAAwFAQRjLxdE3V7mcY+YQdtQEAAACGhDCSiacrjNz8SN/NptZn5pT6lMrJo0ZHAgAAAAyaMJKJp3tH7b7DyJ47aj+0zrqRAAAAAIMljGTi6QojNz6UlMt9Nj2tc6q2TWwAAAAABk8YycQz86QkhWTPtmTX5j6bnjq/EkY+JIwEAAAAGDRhJBNP/eRk+qLK+RGmap/eGUY+bJo2AAAAwKAJI5mY+rmj9imd07TXtOxJy+59w10VAAAAwLgmjGRi6mcY2dRYl4XNjUmSR0zVBgAAABgUYSQT06yTK8cjTNNOrBsJAAAAMFSEkUxMXSMjNx85jOzeUdu6kQAAAACDIoxkYuoKI7cuT9r39tn0tM6RkQ8KIwEAAAAGRRjJxDR1btLQnJRLyZbH+2x6atfIyPXbUy6XR6I6AAAAgHFJGMnEVCgks7vWjex7E5uT505NsZBs3bUvG3f0PYoSAAAAgMMTRjJx9XNH7ca6miyeNSVJ8vC6HcNdFQAAAMC4JYxk4pp9SuW46dEjNu2aqv3gutbhrAgAAABgXBNGMnH1c2Rksn8Tm4fX28QGAAAA4GgJI5m4ZnWNjHwkOcLGNF1h5EPrTdMGAAAAOFrCSCaumSckhZqkbXuyfV2fTbumaT+yfntKJTtqAwAAABwNYSQTV21DMmNx5XzzI302XTxrcupri9nV1pHV23YPf20AAAAA45Awkomtn+tG1tYUc/KcqUmSB9dZNxIAAADgaAgjmdhmn1w5bup7ZGRiExsAAACAwRJGMrENYEftrnUjjYwEAAAAODrCSCa27jDy0SM2Pb1rR+11rcNZEQAAAMC4JYxkYusKI1tWJG27+mx6+oJKGPnYxp3Z294x3JUBAAAAjDvCSCa2yTOTSTMr55v7Hh05v6kxzZPq0lEq55H1O0agOAAAAIDxRRgJ/Vw3slAo5IwF1o0EAAAAOFrCSJh9SuV4hJGRSXLGgqYkydK11o0EAAAAGChhJAxgR+0z5gsjAQAAAI7WqAwjP/7xj2fx4sVpbGzMRRddlNtuu+2wbfft25cPfOADOemkk9LY2JglS5bkBz/4wQhWy5jXNTKyP2Fkj5GR5XJ5OKsCAAAAGHdGXRj51a9+Nddcc03e//73584778ySJUty+eWXZ8OGDYds/573vCef+tSn8s///M954IEH8ta3vjUve9nLctddd41w5YxZ3SMjH01KpT6bnjJvaoqFZOuufdmwfe8IFAcAAAAwfoy6MPKjH/1o3vSmN+Xqq6/OmWeemU9+8pOZPHlyPv/5zx+y/Ze//OW8613vygte8IKceOKJedvb3pYXvOAF+chHPjLClTNmTT8+KdYl7buT1tV9Nm2sq8mJc6YmMVUbAAAAYKBGVRjZ1taWO+64I5dddln3tWKxmMsuuyy33HLLIfvs3bs3jY2Nva5NmjQpP/vZzw7bvrW1tdeLCa6mNpl1UuW8H1O1T59f2VF76Vo7agMAAAAMxKgKIzdt2pSOjo7Mmzev1/V58+Zl3bp1h+xz+eWX56Mf/WgeeeSRlEql3HDDDfnWt76VtWvXHrL9Bz/4wTQ3N3e/Fi1aNOQ/B2PQrJMrx02PHLFp17qRD64TZAMAAAAMxKgKI4/GP/3TP+WUU07J6aefnvr6+vzhH/5hrr766hSLh/7R3vnOd6alpaX7tXLlyhGumFFpIDtqL+gaGSmMBAAAABiIURVGzp49OzU1NVm/fn2v6+vXr8/8+fMP2WfOnDn5zne+k507d+aJJ57Igw8+mKlTp+bEE088ZPuGhoY0NTX1esHAwsjKd+axjTuzt71jOKsCAAAAGFdGVRhZX1+fCy64IDfeeGP3tVKplBtvvDFPe9rT+uzb2NiYY445Ju3t7fnmN7+Zl770pcNdLuNJVxi5+dEjNp3f1Jjpk+vSUSrnkfU7hrkwAAAAgPFjVIWRSXLNNdfkM5/5TP7t3/4tS5cuzdve9rbs3LkzV199dZLkda97Xd75znd2t7/11lvzrW99K48//nhuvvnmXHHFFSmVSvmzP/uzav0IjEWzO9eM3L422dP39OtCodC9ic2D62xiAwAAANBftYPpvGLFiqxYsSLPeMYzuq/dc889+chHPpK9e/fm1a9+dX7jN35jQM985StfmY0bN+Z973tf1q1bl/POOy8/+MEPuje1WbFiRa/1IPfs2ZP3vOc9efzxxzN16tS84AUvyJe//OVMnz59MD8aE01jczJ1XrJjfbL5keSYC/psfsaCpvzy8S3WjQQAAAAYgEK5XC4fbeff+I3fyI4dO/K///u/SSprO55xxhlpa2vLtGnTsmHDhnz961/Py1/+8iEreKi1tramubk5LS0t1o+c6L74omT5zcnLPpUseVWfTb92+8r82Td/nYtPmpVr3/TUESoQAAAAYPQZSL42qGnat912W573vOd1v//Sl76U3bt355577snq1avz3Oc+Nx/+8IcH8xEwcmafUjlueuSITbs2sVm6tjWDyPMBAAAAJpRBhZFbtmzJ3Llzu9//93//d571rGflpJNOSrFYzMtf/vI8+OCDgy4SRsSsrjDyyDtqnzJvaoqFZOuufdmwfe8wFwYAAAAwPgwqjJwzZ06eeOKJJMm2bdvyy1/+Mpdffnn3/fb29rS3tw+uQhgpXTtq92NkZGNdTU6cMzVJrBsJAAAA0E+D2sDmsssuy8c+9rE0NTXlpptuSqlU6rVhzQMPPJBFixYNtkYYGV3TtLc8lpQ6kmJNn81Pnz8tj27YkaVrt+fS0+b22RYAAACAQY6M/Lu/+7ucccYZ+dM//dP88Ic/zIc//OGccMIJSZK9e/fma1/7Wp773OcOSaEw7JoXJbWNSUdbsnX5EZuftbA5SXL/mpZhLgwAAABgfBjUyMh58+bl5z//eVpaWjJp0qTU19d33yuVSrnxxhuNjGTsKBaTWScn6+9LNj+WzDqpz+ZnLaxsYnP/GtO0AQAAAPpjUCMjuzQ3N/cKIpNk0qRJWbJkSWbOnDkUHwEjoyuA3PzoEZt2hZHLNu3M9j37hrMqAAAAgHFhUGHkjTfemA996EO9rn3+85/Pcccdl3nz5uWP//iP09HRMagCYUTNOrly7EcYOWtqQxY2NyZJlq7dPpxVAQAAAIwLgwoj//Iv/zL33HNP9/t77703b3nLWzJnzpxceuml+djHPpYPf/jDgy4SRswAwsgkOeuYyrqR9622biQAAADAkQwqjFy6dGme/OQnd7//8pe/nKamptx888356le/mje96U350pe+NOgiYcR0h5GP9av52Z2b2NxnExsAAACAIxpUGLlz5840NTV1v//BD36QK664IpMnT06SPOUpT8kTTzwxuAphJHWFka2rkrZdR2x+9jGdm9istokNAAAAwJEMKoxctGhRbr/99iTJo48+mvvuuy/Pf/7zu+9v2bIlDQ0Ng6sQRtLkmcmkGZXzLY8fsfnZndO0H9mwPbvbrI8KAAAA0JdBhZFXXXVVPv3pT+clL3lJLr/88syYMSMvfelLu+/fcccdOfXUUwddJIyoAawbOXdaQ2ZPbUipnDy4zuhIAAAAgL4MKox897vfnb/4i7/IypUrc9xxx+U73/lOpk+fnqQyKvKmm27KS17ykqGoE0bOAMLIQqHQPVX7vjXCSAAAAIC+1A6qc21t/uZv/iZ/8zd/c9C9mTNnZt26dYN5PFTHrJMqx35M004qm9jc9NDG3G9HbQAAAIA+DSqM7GnHjh1ZuXJlkspaklOnTh2qR8PIGsDIyCQ5a2HnJjZGRgIAAAD0aVDTtJPk9ttvz7Of/ezMmDEjZ599ds4+++zMmDEjz3nOc/KrX/1qKGqEkTXAMLJrE5uH1m1PW3tpuKoCAAAAGPMGNTLy1ltvzaWXXpr6+vq88Y1vzBlnnJEkWbp0ab7yla/kkksuyU033ZQLL7xwSIqFETHzxMpx1+Zk15bKDtt9OHbGpDQ11qZ1T3se2bA9Zy1sHoEiAQAAAMaeQYWR7373u3PMMcfkZz/7WebPn9/r3l/+5V/m6U9/et797nfnhhtuGFSRMKLqpyRNxyStqyvrRh4hjKxsYtOcXzy2OfevbhVGAgAAABzGoKZp33rrrXnLW95yUBCZJPPmzcub3/zm/PKXvxzMR0B1dG1iM8Cp2vetsYkNAAAAwOEMKowsFotpb28/7P2Ojo4Ui4NelhJG3syBhZFdm9jcZ0dtAAAAgMMaVFJ48cUX5+Mf/3ieeOKJg+6tWLEin/jEJ/L0pz99MB8B1XGUm9g8sLY1HaXycFUFAAAAMKYNas3Iv/3bv80ll1yS008/PS972cty6qmnJkkeeuihXHfddampqckHP/jBISkURtQAw8gTZk3JlPqa7GzryOMbd+SUedOGsTgAAACAsWlQYeT555+fW2+9Ne9+97vzX//1X9m1a1eSZPLkybniiivyl3/5l5k9e/aQFAojqjuMfCwpl5NCoc/mxWIhZy5syu3Lt+bXq1qEkQAAAACHMOgFHc8888x8+9vfTmtra9auXZu1a9emtbU13/rWt/Ld7343ixYtGoo6YWTNOD4p1CT7diXb1/ary5JjpydJ7l65bfjqAgAAABjDhmx3mWKxmHnz5mXevHk2rWHsq6lLZiyunPdzqvZ5x01PIowEAAAAOBypIRzOANeNPG/R9CTJ0rWt2bOvY5iKAgAAABi7hJFwOD3XjeyHY6ZPyuypDWkvlXP/mpZhLAwAAABgbBJGwuHMOqly7OfIyEKh0D068q4V24anJgAAAIAxbMC7ad955539brtmzZqBPh5GjwFO006S84+bnv9dut66kQAAAACHMOAw8slPfnIKhUK/2pbL5X63hVGnK4zcujzpaE9qjvyfS9fISGEkAAAAwMEGHEZ+4QtfGI46YPSZtiCpnZS0705aViQzTzxil3OPbU6hkKzaujubduzN7KkNI1AoAAAAwNgw4DDy9a9//XDUAaNPsZjMPCHZ8ECy5fF+hZHTGuty8pypeWTDjty9YlsuO3PeCBQKAAAAMDbYwAb60hVAbn68311M1QYAAAA4NGEk9KUrjNwygDDyuOlJhJEAAAAABxJGQl+6w8jH+t2la2TkPSu3pVQqD0NRAAAAAGOTMBL6chQjI0+bNy2NdcVs39uexzftGKbCAAAAAMYeYST0ZdZJlePWJ5KO9n51qa0p5pxjmpMkd63YNkyFAQAAAIw9wkjoy7SFSW1jUtqXtKzsdzeb2AAAAAAcTBgJfSkWkxknVM4HsonNohlJhJEAAAAAPQkj4UgGsaP2g+u2Z3dbxzAUBQAAADD2CCPhSGYOfGTkwubGLGhuTEepnLtWbh2mwgAAAADGFmEkHEnXJjYDCCMLhUIuPGFmkuS2ZVuGoyoAAACAMUcYCUfSNU1782MD6tYVRt76uDASAAAAIBFGwpF1hZFblyel/q//eFFnGHnniq1pay8NQ2EAAAAAY4swEo6k6dikpiEp7UtaVva720lzpmbmlPrsbS/l3tXbhq8+AAAAgDFCGAlHUiwmMxZXzge6buTizqna1o0EAAAAEEZCvxzFJjZJbGIDAAAA0IMwEvqjexObowsjf7V8azpK5aGuCgAAAGBMEUZCf8w8oXIc4MjIMxY0ZVpDbXbsbc/Sta3DUBgAAADA2CGMhP6Y2TVN+7EBdaspFvLkxTOSWDcSAAAAQBgJ/dE1TXvr8qTUMaCuF54wK0ly27LNQ1wUAAAAwNgijIT+aD42qalPOtqS1tUD6tpzE5ty2bqRAAAAwMQljIT+KNYkMxZXzjcPbKr2Occ0Z1JdTbbu2pdHN+wY+toAAAAAxghhJPRX11TtAW5iU19bzJOOn57EupEAAADAxCaMhP7q3sRmYGFkkly4uGvdSGEkAAAAMHEJI6G/Zp5QOQ5wmnayf93IWx7fbN1IAAAAYMISRkJ/de+ovWzAXZ90/PRMqqvJxu178+C67UNcGAAAAMDYIIyE/urawGbr8mSAoxsbamvy1BMroyN/+vDGoa0LAAAAYIwQRkJ/TT8uKdQk7XuS7esG3P2SU+ckSW5+ZNNQVwYAAAAwJggjob9q6pLmYyvnRzFVuyuMvG35luxu6xjKygAAAADGBGEkDETXJjZbBh5Gnjh7So6ZPilt7aX8ctnmIS4MAAAAYPQTRsJAzOgMI49iZGShUMglp85Oktz8sKnaAAAAwMQjjISBGMTIyCR55imVqdo/fcQmNgAAAMDEI4yEgRjEyMgkefpJs1MsJI9u2JE123YPYWEAAAAAo58wEgZikCMjmyfXZcmi6UmSm42OBAAAACYYYSQMxIzFlePuLcmelqN6xCXdU7WtGwkAAABMLMJIGIiGacnkyiY02br8qB7RtYnNzx7ZlI5SeYgKAwAAABj9hJEwUIOcqr3k2OmZ1liblt378utV24auLgAAAIBRThgJAzXITWxqa4p5+kmV0ZE/fdhUbQAAAGDiEEbCQA1yZGSSXHpaZd3IHz24figqAgAAABgThJEwUIMcGZkkzzljbgqF5J5VLVnXsmeICgMAAAAY3YSRMFDdIyOXH/Uj5k5rzPmLpidJblhqdCQAAAAwMQgjYaC6Rka2rkra2476Mc87c36S5IYHhJEAAADAxCCMhIGaOjepm5KUS8m2FUf9mOefNS9Jcstjm9K6Z99QVQcAAAAwagkjYaAKhWTG4sr5INaNPGnO1Jw4Z0r2dZTzk4c2Dk1tAAAAAKOYMBKORte6kVuXD+oxzzuzMjryh6ZqAwAAABOAMBKORtfIyC1HPzIySZ7fuW7kTQ9uSFt7aZBFAQAAAIxuwkg4GkMwTTtJzl80PbOnNmT73vbcumzz4OsCAAAAGMWEkXA0uqZpD3JkZLFYyPPOnJsk+eH9pmoDAAAA45swEo7GjB5rRpbLg3pU17qR/7t0fcqDfBYAAADAaCaMhKMx/bikUJO07062rxvUoy4+aXYm19dkbcue3Lu6ZYgKBAAAABh9hJFwNGrqkuZjK+eDXDeysa4ml542J0nyvXvXDrYyAAAAgFFLGAlHa4jWjUySF5+7MEny3/esTalkqjYAAAAwPgkj4Wh1rxs5+DDy2afPzdSG2qzetjt3rtg66OcBAAAAjEbCSDhaM3tsYjNIjXU1ef5ZlY1srrt7zaCfBwAAADAaCSPhaM1YXDkOwTTtJHnJkspU7f+5d23aO0pD8kwAAACA0UQYCUdrCKdpJ8nTT56dmVPqs3lnW37+2OYheSYAAADAaCKMhKPVNU171+ZkT+ugH1dXU8wLz1mQJPkvU7UBAACAcUgYCUerYVoyeXblfIhGR77kvMpU7evvX5c9+zqG5JkAAAAAo4UwEgaja3TkEK0becFxM7KwuTE79rbnxw9uGJJnAgAAAIwWwkgYjCFeN7JYLOTFnRvZ/Nc9pmoDAAAA44swEgZjiEdGJukOI298cENa9+wbsucCAAAAVJswEgZjiEdGJslZC5tyytypaWsv2cgGAAAAGFeEkTAY3SMjlw/ZIwuFQl514XFJkmtvXZFyuTxkzwYAAACoJmEkDMaMxZVj66qkvW3IHvvy849JfW0xD6xtzb2rW4bsuQAAAADVJIyEwZg6L6mbnJRLScvKIXvsjCn1ecHZ85MkX7ltxZA9FwAAAKCahJEwGIXC/tGRQ7iJTZK8unOq9nV3r8mOve1D+mwAAACAahBGwmANwyY2SXLhCTNz4pwp2dXWYSMbAAAAYFwQRsJgdW9iM7RhZKFQyGs6R0eaqg0AAACMB8JIGKyuadpDPDIySV7+pGNTX1PMvatbcp+NbAAAAIAxThgJgzVMIyOTZOaU+lxhIxsAAABgnBBGwmB1rxm5PCmXh/zxXRvZfPuu1WnZtW/Inw8AAAAwUoSRMFjTj0sKxaR9d7J93ZA//qknzszp86dlV1tH/v3WJ4b8+QAAAAAjRRgJg1VTlzQfWznfunzIH18oFPKWZ52YJPnCz5dnz76OIf8MAAAAgJEgjISh0D1Ve+jXjUySF527MAubG7Npx958+67Vw/IZAAAAAMNNGAlDYRg3sUmSuppifvcZlc/4zE8fT6k09GtTAgAAAAw3YSQMhWEeGZkkr7rwuDQ11ubxTTtzw9L1w/Y5AAAAAMNFGAlDYZhHRibJ1Iba/M7Tjk+SfPqnjw/b5wAAAAAMF2EkDIURGBmZJK+/eHHqa4q544mt+dXyLcP6WQAAAABDbVSGkR//+MezePHiNDY25qKLLsptt93WZ/v/9//+X0477bRMmjQpixYtyh//8R9nz549I1QtZP/IyF2bkz2tw/Yxc6c15jcvOCZJ8i8/fnTYPgcAAABgOIy6MPKrX/1qrrnmmrz//e/PnXfemSVLluTyyy/Phg0bDtn+2muvzV/8xV/k/e9/f5YuXZrPfe5z+epXv5p3vetdI1w5E1rDtGTy7Mr5MI+OfMslJ6W2WMhND23MbcuMjgQAAADGjlEXRn70ox/Nm970plx99dU588wz88lPfjKTJ0/O5z//+UO2/8UvfpGnP/3pec1rXpPFixfn+c9/fl796lcfcTQlDLkRWDcySRbPnpJXPGVRkuQffvBgymU7awMAAABjw6gKI9va2nLHHXfksssu675WLBZz2WWX5ZZbbjlkn4svvjh33HFHd/j4+OOP53/+53/yghe84JDt9+7dm9bW1l4vGBIzT6wctzw27B/19ueckobaYn71xNb8+KFDjxoGAAAAGG1GVRi5adOmdHR0ZN68eb2uz5s3L+vWrTtkn9e85jX5wAc+kGc84xmpq6vLSSedlEsvvfSw07Q/+MEPprm5ufu1aNGiIf85mKBmnlQ5bh7+na7nNzfmDRcvTpJ86PqHUyoZHQkAAACMfqMqjDwaN910U/72b/82n/jEJ3LnnXfmW9/6Vr73ve/lr/7qrw7Z/p3vfGdaWlq6XytXrhzhihm3ZnWGkSMwMjJJ3vqskzKtoTZL17bmu79eMyKfCQAAADAYtdUuoKfZs2enpqYm69ev73V9/fr1mT9//iH7vPe9783v/M7v5I1vfGOS5JxzzsnOnTvz5je/Oe9+97tTLPbOWxsaGtLQ0DA8PwATW/c07eEfGZkkM6bU582XnJiP3PBwPnrDw3nBOQtSVzPm/74AAAAAjGOjKrmor6/PBRdckBtvvLH7WqlUyo033pinPe1ph+yza9eugwLHmpqaJLGxByOra2TkjvXJ3u0j8pG/+4wTMntqfZ7YvCv/8csnRuQzAQAAAI7WqAojk+Saa67JZz7zmfzbv/1bli5dmre97W3ZuXNnrr766iTJ6173urzzne/sbv/iF784//qv/5r//M//zLJly3LDDTfkve99b1784hd3h5IwIhqbk8mzK+cjNDpySkNt/uiyU5MkH/nhw9mwfc+IfC4AAADA0RhV07ST5JWvfGU2btyY973vfVm3bl3OO++8/OAHP+je1GbFihW9RkK+5z3vSaFQyHve856sXr06c+bMyYtf/OL8zd/8TbV+BCaymScmuzYlmx9LFiwZkY98zYXH5eu/Wplfr2rJ33xvaf7pVeePyOcCAAAADFShPMHnMre2tqa5uTktLS1pamqqdjmMdd9+a3LPV5LnvCe55P+M2Mf+etW2vPTjP0+5nPzHGy/K00+ePWKfDQAAAExsA8nXRt00bRjTZnauG7l5ZKZpdzn32On5nacenyR573fuy972jhH9fAAAAID+EEbCUJo1sjtq9/Qnzz8ts6c25PFNO/Ppn4z85wMAAAAciTAShlLXyMgtj434RzdPqst7X3RGkuRffvxoHtu4Y8RrAAAAAOiLMBKG0szOkZE7NyZ7Wkf841+yZGGeecrs7G0v5e1fuct0bQAAAGBUEUbCUGpsSqbMqZxXYXRkoVDIh35rSWZMrsv9a1rz4esfGvEaAAAAAA5HGAlDrXsTm5EPI5NkfnNj/v43z02SfObmZfnJwxurUgcAAADAgYSRMNRmda0bWb1NZJ5/1vzu3bX/5Gv3ZNOOvVWrBQAAAKCLMBKG2szq7ajd07tfeEZOnTc1m3bszZ987Z50lMpVrQcAAABAGAlDbVZ1p2l3aayryT+/+klpqC3mJw9vzN//4MGq1gMAAAAgjISh1rVmZBU2sDnQafOn5UO/vSRJ8umfPp6v3r6iyhUBAAAAE5kwEobazBMqx12bk93bqlpKkrxkycL80XNPSZK8+9v35ZbHNle5IgAAAGCiEkbCUGuYlkydVzkfBaMjk+Qdl52SFy9ZmPZSOW/99zuybNPOapcEAAAATEDCSBgOXVO1N1d3E5suhUIhH/qtc3Peoulp2b0vr/v8rVmzbXe1ywIAAAAmGGEkDIdZo2NH7Z4a62ry6dddkONnTc7KLbtz1WdvzYbWPdUuCwAAAJhAhJEwHEbRJjY9zZ3WmGvf9NQcM31Slm3amdd89tZs2rG32mUBAAAAE4QwEobDrK5p2qMrjEySY6ZPylfe9NQsaG7Moxt25LWfvTVbd7ZVuywAAABgAhBGwnCY2TVNe/SFkUly3KzJ+Y83XpQ50xry4Lrt+a1P/iIrt+yqdlkAAADAOCeMhOHQFUbu3prs2lLdWg7jxDlT85U3XZQFzY15bOPOvPxff5H7VrdUuywAAABgHBNGwnCon5I0L6qcb3yourX04eS50/Lt3396Tp8/LRu3780rP3VLfvLwxmqXBQAAAIxTwkgYLnNOqxw3PljdOo5gfnNjvvbWp+XpJ8/KzraO/O4Xb89nfvp4yuVytUsDAAAAxhlhJAyXOadXjqN4ZGSXpsa6fOENF+bl5x+TjlI5f/M/S/OmL/0q23bZ2AYAAAAYOsJIGC5jZGRkl/raYj7yiiX56984O/W1xfzv0g154cd+ljtXbK12aQAAAMA4IYyE4TKGRkZ2KRQKee1Tj8+33nZxFs+anNXbdue3/vUX+dv/WZrdbR3VLg8AAAAY44SRMFxmn1o5bl+T7Gmtbi0DdPYxzfnu//eMvPS8hSmVk0//9PFc/v9+mp89sqnapQEAAABjmDAShsuk6cm0BZXzTQ9XtZSjMa2xLv/0qvPzudc/OQuaG7Niy6689nO35u1fuSsrt+yqdnkAAADAGCSMhOE0xtaNPJTnnjEvN1zzrLzh4sUpFJL/umdNnvuRn+QD330gW3ba4AYAAADoP2EkDKfudSPHbhiZJFMbavOXLzkr3/3DZ+QZJ89OW0cpn//5sjzrH36cj/zwoWzasbfaJQIAAABjgDAShlP3yMixs4lNX84+pjn//saL8qXfvTBnLmjK9r3t+ecfPZqL/+5Hede3782yTTurXSIAAAAwitVWuwAY12aP/Wnah3LJqXPyjJNn5/r71+WTP30896zclmtvXZGv3LYizzp1Tq666Pg85/S5qSkWql0qAAAAMIoII2E4dU3T3rYiaduZ1E+pbj1DqFgs5MpzFuSKs+fntmVb8smfPJYfP7QxN3W+FjY35hVPWZTffNKxWTRzcrXLBQAAAEaBQrlcLle7iGpqbW1Nc3NzWlpa0tTUVO1yGI/+4aRk16bkzTclC8+vdjXDavmmnfnKbSvytV+tzNZd+7qvX7h4Zl7+pGNy5TkL0jyprooVAgAAAENtIPmaMFIYyXD7wguTJ36WvOxTyZJXVbuaEbFnX0euv39dvnHHqvzs0U3p+i1TWyzkaSfNyuVnzc/zz5yXuU2N1S0UAAAAGLSB5GumacNwm3NaJYwcZ+tG9qWxriYvPe+YvPS8Y7K2ZXeuu3tNvn3n6jy0fntufmRTbn5kU9573X05f9H0PP+s+bn8rPk5Yfb4mcIOAAAAHJqRkUZGMtxu/XTy/f+TnPaC5NVfqXY1VfX4xh25/v71uf7+dbl75bZe906dNzXPPGVOnn7yrFx4wqxMbfC3EgAAABgLTNMeAGEkw+7xnyRfekky86Tk7XdWu5pRY13LntywdH1+eP+63PLY5rSX9v8qqi0WsmTR9Dz9pFm5+OTZOf+46WmoralitQAAAMDhCCMHQBjJsNu+PvnIqUmhmLxrbVJnncQDtezal58+sjG/eGxTfv7o5qzYsqvX/ca6Yi44fkYuOH5mnnz8jJx/3PRMa7QRDgAAAIwGwsgBEEYy7Mrl5O8XJ3u2JW/9eTL/7GpXNOqt3LKrO5j8xWObs2nH3l73i4XktPlNefLxM/LkxTNywfEzcsz0SSkUClWqGAAAACYuYeQACCMZEZ+7PFn5y+Q3P5ec81vVrmZMKZfLeXj9jty+fEvueGJrbl++Jau27j6o3fymxs7Rk5WA8vT5TamvLVahYgAAAJhY7KYNo82c0yph5MaHql3JmFMoFHLa/Gk5bf60vPapxydJ1rfuya+Wb82vnqgElPevac261j353r1r87171yZJ6muKOWPBtJxzbHPOPXZ6lhw7PSfPnZqaotGTAAAAUC3CSBgJc06rHDc+WN06xol5TY154bkL8sJzFyRJdrW15+6V23LH8q351RNbc/fKbWnZvS/3rGrJPatakqxIkkyqq8nZxzTlnGOmZ8miSkh5/MzJKQooAQAAYEQII2EkdIWRGx6obh3j1OT62lx80uxcfNLsJJWp3Su27Mo9q1py76ptuWdVS+5b3ZJdbR25ffnW3L58a3ffaY21OXNBU85c2JQzFzTljAVNOWXeVLt3AwAAwDAQRsJImL+kctz8WLJ3e9Iwrbr1jHOFQiHHz5qS42dNyUuWLEySdJTKeXzjjl4B5QNrW7N9T3tuXbYlty7b0t2/tljIyXOndoeTZy6sHGdOqa/WjwQAAADjgg1sbGDDSPnomUnr6uQN/5Msfnq1qyHJvo5SHl6/PQ+sac3StdvzwNqWLF27PS279x2y/fymxpw2f1pOmTs1p8ybmpPnTs3Jc6eleVLdCFcOAAAAo4cNbGA0WnBeJYxce7cwcpSoqynmrIXNOWthc/e1crmcNS17snRNax5Y25qlayvHJzbvyrrWPVnXuic/eXhjr+fMndZQCSfnTM3J8zrDyrlTM2tqw0j/SAAAADCqCSNhpCw8L3noe8mau6tdCX0oFAo5ZvqkHDN9Ui47c1739R172/Pg2tY8smFHHlm/I49s2J5HN+zI2pY92bB9bzZs35ufP7q517OmT67L8TMnd04Zn5zjOs8Xz5qcOdMaUijYOAcAAICJRRgJI2XBeZXj2rurWQVHaWpDbZ68eGaevHhmr+vb9+zLYxt35pH1lXDy0Q078siGHVm5dVe27dqXbbu6dvTubVJdTWc4WXkdN2tKjpnemIXTJ2VB86Q0NdYKKwEAABh3hJEwUhaeVzluesQmNuPItMa6nLdoes5bNL3X9d1tHVm+eWee2LwrK7bszPLNu7Ji8648sWVnVm/dnd37OvLQ+u15aP32Qz53Sn1NJZicPikLm7tCyv3H+c2NmVzvVzgAAABji/9PFkbK1LnJtIXJ9jXJunuT4y+udkUMo0n1NTmjczfuA7W1l7J62+48sXlnVmzZleWbdmXFll1Zs2131rbsztZd+7KzraMyJXzDjsN+xpT6msxtasycqQ2ZM+0Qr6kNmdvUkFlTGlJTNMoSAACA6hNGwkhaeF7y0JpkzV3CyAmsvraYE2ZPyQmzpxzy/u62jqxp2Z212/ZkTcvuSkjZ87xlT3a1dWRnW0eWbdqZZZt29vl5hULSPKkuMyfXZ8aU+syYXJ+ZU+oyo/N91/WuazOn1KepsS5FASYAAABDTBgJI2nBeclD/2MTG/o0qb4mJ82ZmpPmTD3k/XK5nB1727Nx+97Ka8febGitHDd2bqbTdW/zzr0pl9O5fuW+5AjBZZdiIZkxuT7TJ9elaVJdmhrrMq2xtvu8aVJt57EuTd3X919rqC1a8xIAAICDCCNhJC08v3K0iQ2DUCgUMq2xLtMa63LiYQLLLu0dpWzdtS/bdrVly862bN3Vli0793Ue27J1Z1u27GrL1l37srXz/fa97SmVk80727J5Z9tR1VhfU+wOLKd1BpXTGmszpb42UxpqM6WhJlMaajO1Yf+1qT2uT2mozdT6yvvamuJR1QAAAMDoI4yEkWQTG0ZYbU2xew3J/mprL1XCy11t2bpzX7bv2ZfWPe1p3b0vrXv2pXV3e+dxX7bv6Tzvcb1cTto6Stm0oy2bdhxdmNlTQ20xUxtqM7mhJlPqazvPazOprpjJ9bVprKvJpLqaTK6vyaT6mjR2ndf1OO98333sPDeCEwAAYGQJI2Ek2cSGMaC+tpi5TY2Z29Q44L6lUjk729r3h5e7K0Hm9j2V4HLH3vbs7Hzt2NuRXW09r3VUztvas2tvR9o6SkmSve2l7G1vy+b+zTAfkEIh3UFmV6jZWFcJKRvqimmo7Tyv7Tyvq5zX1x5wr6tP7SH6Hviczra1xYIgFAAAmHCEkTDSujexuVsYybhTLO6fQn7M9EmDelZbe6kztKwElDv3dnQHmbvaOrJrX0f2tHVk976O7GrryJ59HdndeX135/tdbe3Zva+0/7ytI3v2lbqDznI5lWe1dQzFjz8ghUJSVyymrqaQutpi6mqKqSv2OK/pvNfjWF9TTG2P87qe72sr7WqL+88Pfk7lvKZYCUNrerxqu4/FyrGmkGKhx/Wa3vd79xGsAgAA/SOMhJHWtYmNdSOhT/W1xdTXVnb6HmrtHaXs3lcJMne39Ti2dWRvRyl795Wyt72jc1RmKXv39Thv7+i836PNIdq3Hdi+o5S29lJ3DV3T2ds6klQhDB1qxUJ6BZUHhpU1NT2CzEIhxWIhNcWkWKgEmTWFynmxUEix2PO8kGLPe53nNcVCCoc67+xf6DovdJ73fM5Bz+x83/mcQrqO6fU+qTxr//XO953n6bxXLBzcPz3bd13v89m9n5Fe77t+rsM/uy+VVn3cP2L/I6jy5/cVjA/k2fvbFnq9L3Tf39+6cECfwgF9DlXDgW16tj3o3mFq6quug/scvq6e38Gu/zZ6f9cOfSx2diwe4j4AwOEII2Gkda0baUdtqJrammKm1RQzrbFuRD+3VCqnrTPsbOsoZV/3q9zjvPf7tvbKeXuplH3t5e5+7R3lXs/o9b69nH2lzue0dz6ns82+jlI6yuV0lMpp7+g8lkoplZP2UikdHeW0l7quV44dpd7tDvmzdYarGfu5KjAEDgwnu4L67veFQ4eYR2pX6BGWdgX/XX8A6frjRNcfJQ6+VvnjSLHz/f77vdt29+l5v8/+Pa/loP69R5hXRsF3ve/6I01dTbH7jze9r+8flV65biQ6AGOfMBJG2oLzKsdND9vEBiaYYrGQxmJlXcqxqlQq7w8zDwgqewec5ZTKvQPPA/uUyuWUy+k+L5XTeew8Lx36vKNcTrlc7qwllfNyOR2ldD7zgPOezy4d5rzzZyqXk3LSeay8qbwv97i+/30625XL+/uUy+kMbcsHte/5Pundp9f5gc8+XA0H9T+8rs88Gn11LffxqX33O9Jn9vHcPjse3Wf2/Lxy97Wu9+Xe7w/xoO5/pzm4zUH9D2rT47MPatPHcw+4l8P07dfP1Pl/ytn/38UgvjKV/wbK5c6/TwziQRykWKj8Ua0r5OwKMut6jEKvPSDwPLDtgaFnV9B54HO7lv/oWu6jtqaY+ppKu57LgNR2LTNS3L98yIFLjdR2nReLqetcO7mrHgAmFmEkjLRp85JpC5Lta21iA4w5xWIhxRQyhvNUYADKnWF+17HUmVCWDrjeFY53X8/+94c7doX2pUPc39+mK4Tv+pz919P5x4muP2h0lNLjfP+x9/3KH0Y6yr3/uNJ1vv9aDtG/x6vHH0RKB107dJ/2Hn+w2dfjDzhdf6zZ1+OPN+2do9QPpVSurKvcNmLfguHVFa72XBe5aw3l2uL+NY8PDDkrayR3haU9Q8/eQWp9r+ccEIweEKTWdQat9TXF1HU+u/5Qn90ZqhYFqQBHRRgJ1bDgvEoYaRMbAGAU61rTtR+rhTLEugLYfR2HCC5L5c5lNUrdIWfXeSXY7NmnnI7OpTv2h6KlXsfeYWkp+zrvdS0b0rXMx/7rve+19VhOZF+pR/vuNp3npdJBI267w9Ue6yqPFV1T6Q8c7XmoTeRqD7jWHcB2h6G9R58eGJp2PeOQ4egBwWz3ea/n7n+O0ahAtQkjoRoWnp88/P1k1e3VrgQAgFGoKwiuKY6voehdYWlXWNl+wLrG+zqD1UMGnp332torIeqBgWdbx/6AtdKm9zrKvQLWXveOHKS2dRwclnaNet2TUrK3Cv8wj1Jfo1G7RovWHzAytVeAeogwtK62MyjtPD9wpOnBo0sPCFo7P/Ogz+8xarXGmqkwbggjoRq6RkMu/1llvpH/UQUAYAKobO4z9tZPLvdYL7lneNo7GD18wHpQANq+f7TovvbOkPVQfQ7Y2G5/0Hrw5+8PbXv3OXDG/1gdjVoopLK2adc6qD3WRD1w3dMDN4w61HqptZ0BZ12xmJqaznVXewSfXc/bv5nU/nt1vdZb7b3hVN0BfXp95oFrvdYcXJ/AlYlAGAnVcOxTktrGZOeGZONDydzTq10RAABwGIVCZ6BUkzEXpHaNRm0vlSshaOdI0X2do0fb2vsejdoraO0cmbp/pGll+v6+zlD0UGHo4Z7VO1w9uM+B66aWy+ls01Glf5Ijo1hIaovFFIudx86RrMVCoTvM7PUqHOJa5/XamkJ3v2Kx97GvfjU1nf0P0a93HcXUFNP72OO5B/XrrKdYqPxhonJeSLGY1BQqbYuFymcXCul+TqHQeb+7Te/+NZ3XBLljhzASqqGuMVl0YbLsp8nym4WRAADAsOgajZokaahuLQNR6hyJeuDapIdaC7VrndTu96VS57qqB24SdXCfA9dd3b+m6v41Vrvb9fj8A9dfPejzez63o3f7rucd8ucup7IsQEeSjK3Rq9XWO7TMYYLNQmeb7A8/O8PMrvNCoVAJVwtd5/vvd7fvCkUL+9t3haUHPf+AEPXPrjg9Uxsmdhw3sX96qKYTLqmEkct+klz4pmpXAwAAMGoUi4XUd64fOR71nPrfFVTu6yin1Hm9o0doWSpXgs1SudwdZh54rSu87e5broSvHaUccOzxzB79uvuXKxtkdRxQR+/nHv5ar2cepu6OUjnlcrr7dv2zKJUrIXSpXLleKqX7/MDNrw79zzRpL5eTlDvD3NHpHZedOqb+MDAchJFQLYsvqRyX/ywplZLi+PwfWQAAAHrrOfWfIyuXK2FlV6BZ6vG+K8zsCi272/QIM0ulg/t3B6Cd93v23x+S7r9fKqfHs3qEqt3nBzzzgP4dnTVPGmNLPQwHYSRUyzFPSuqmJLu3JuvvSxacW+2KAAAAYNSpTK+uTHNm7DMUC6qlpi45/mmV8+U3V7cWAAAAgBEgjIRqOqFzqvayn1a3DgAAAIARIIyEalr8zMrxiV8kHe3VrQUAAABgmAkjoZoWLEkampO9rcm6e6pdDQAAAMCwEkZCNRVrksVPr5ybqg0AAACMc8JIqLbudSNtYgMAAACMb8JIqLaudSNX3JK0t1W3FgAAAIBhJIyEapt7ZjJ5VrJvV7L6jmpXAwAAADBshJFQbcVicsKzKucP/6C6tQAAAAAMI2EkjAZnvKhyXPpfSblc3VoAAAAAhokwEkaDU56f1DYmWx5P1t9X7WoAAAAAhoUwEkaDhmnJyZdVzh/4r+rWAgAAADBMhJEwWpzxksrxgeuqWwcAAADAMBFGwmhx2hVJsS7Z9FCy4cFqVwMAAAAw5ISRMFo0NicnPbtyvtRUbQAAAGD8EUbCaHLmSytHU7UBAACAcUgYCaPJaS9IirWVHbU3P1btagAAAACGlDASRpPJM5PFz6ycGx0JAAAAjDPCSBhtTNUGAAAAxilhJIw2p78oKRSTtXcnWx6vdjUAAAAAQ0YYCaPN1DnJiZdWzu/+SlVLAQAAABhKwkgYjc5/beV497VJqaO6tQAAAAAMEWEkjEanvTBpbE5aVyWP31TtagAAAACGhDASRqO6xuScV1TO7/6P6tYCAAAAMESEkTBadU3VXvrfye6t1a0FAAAAYAgII2G0WrAkmXd20rE3ufcb1a4GAAAAYNCEkTBaFQr7R0fe9e/VrQUAAABgCAgjYTQ75xVJsS5Ze3ey7r5qVwMAAAAwKMJIGM2mzEpOu7JybiMbAAAAYIwTRsJo1zVV+9dfTdrbqlsLAAAAwCAII2G0O+m5ydT5ya7NycM/qHY1AAAAAEdNGAmjXU1tct6rK+c2sgEAAADGMGEkjAXndU7VfvSGpHVtdWsBAAAAOErCSBgLZp+cLHpqUi4lv/7PalcDAAAAcFSEkTBWnH9V5XjXvyflcnVrAQAAADgKwkgYK856WVI3Odn8aLLytmpXAwAAADBgwkgYKxqmVQLJJLnry9WtBQAAAOAoCCNhLDmvc6r2/d9O2nZWtxYAAACAARJGwlhy/MXJzBOTth3JA9dVuxoAAACAARFGwlhSKCTnvaZyfte/V7cWAAAAgAESRsJYs+Q1SaGYPPHzZPNj1a4GAAAAoN+EkTDWNB+TnHxZ5dxGNgAAAMAYIoyEsej836kc77426Wivbi0AAAAA/TQqw8iPf/zjWbx4cRobG3PRRRfltttuO2zbSy+9NIVC4aDXC1/4whGsGEbYqVckk2cnO9Ynj/yw2tUAAAAA9MuoCyO/+tWv5pprrsn73//+3HnnnVmyZEkuv/zybNiw4ZDtv/Wtb2Xt2rXdr/vuuy81NTX57d/+7RGuHEZQbX2y5FWVc1O1AQAAgDFi1IWRH/3oR/OmN70pV199dc4888x88pOfzOTJk/P5z3/+kO1nzpyZ+fPnd79uuOGGTJ48WRjJ+Pek11WOD1+fbF9X3VoAAAAA+mFUhZFtbW254447ctlll3VfKxaLueyyy3LLLbf06xmf+9zn8qpXvSpTpkwZrjJhdJhzWnLshUm5I7nnK9WuBgAAAOCIRlUYuWnTpnR0dGTevHm9rs+bNy/r1h155Ndtt92W++67L2984xsP22bv3r1pbW3t9YIx60mdG9nc9e9JuVzdWgAAAACOYFSFkYP1uc99Luecc04uvPDCw7b54Ac/mObm5u7XokWLRrBCGGJnvSypm5JsfjRZ0b/RwwAAAADVMqrCyNmzZ6empibr16/vdX39+vWZP39+n3137tyZ//zP/8zv/d7v9dnune98Z1paWrpfK1euHHTdUDUN05KzX145v+0z1a0FAAAA4AhGVRhZX1+fCy64IDfeeGP3tVKplBtvvDFPe9rT+uz79a9/PXv37s1rX/vaPts1NDSkqamp1wvGtAvfXDk+cF3Ssqq6tQAAAAD0YVSFkUlyzTXX5DOf+Uz+7d/+LUuXLs3b3va27Ny5M1dffXWS5HWve13e+c53HtTvc5/7XH7jN34js2bNGumSoboWnJssfmZlI5vbP1vtagAAAAAOq7baBRzola98ZTZu3Jj3ve99WbduXc4777z84Ac/6N7UZsWKFSkWe2eoDz30UH72s5/lhz/8YTVKhup76tuS5Tcnv/pCcsmfJfWTq10RAAAAwEEK5fLE3oK3tbU1zc3NaWlpMWWbsavUkfzzk5Kty5MX/WPy5N+tdkUAAADABDGQfG3UTdMGjkKxJrnorZXzX/5rUipVtx4AAACAQxBGwnhx3lVJ/bRk08PJ4z+qdjUAAAAABxFGwnjR2JQ86Xcq57/81+rWAgAAAHAIwkgYTy58c5JC8uj/Jmt/Xe1qAAAAAHoRRsJ4MvOE5OyXV86//+fJxN6fCgAAABhlhJEw3jzvA0nd5GTFL5L7vlntagAAAAC6CSNhvGk+NnnmNZXzH74n2bujuvUAAAAAdBJGwnj0tP8vmbE42b42ufnD1a4GAAAAIIkwEsanusbkir+rnP/iX5JNj1a3HgAAAIAII2H8OvWK5OTnJaV9yf/8aVLqqHZFAAAAwAQnjITxqlCojI6sqU8e/3Fy3R8mpVK1qwIAAAAmMGEkjGezT05+87NJoSa559rkv98hkAQAAACqRhgJ492ZL01e/umkUEzu/Lfk+3+WlMvVrgoAAACYgISRMBGc81vJSz+RpJDc/pnkm7+XbFtZ7aoAAACACUYYCRPFea9OXvxPSQrJfd9M/vmC5IfvTXZvrXZlAAAAwAQhjISJ5ILXJ2+8MTn+GUnH3uQXH0v+6bzkf/8y2bKs2tUBAAAA41yhXJ7Yi8e1tramubk5LS0taWpqqnY5MDLK5eSRHyY3vD/ZuLTzYiE56TnJU34vOfXKpOhvFQAAAMCRDSRfE0YKI5nISh3Jg99L7vhC8tiP9l9fcF7yvP+bnHhptSoDAAAAxghh5AAII6HTlseTO76Y3P65pG1H5dpJz0ku+7/JgnOrWhoAAAAweg0kXzMPE6iYeWLyvA8kb787ueitSbGuMlry05cm//t/k/a91a4QAAAAGOOEkUBvU+ckV/598oe3J2f+RlLuSH720eRTz0pW31nt6gAAAIAxTBgJHNrME5JX/Fvyyn9PpsypbHTz2csqm97s3VHt6gAAAIAxSBgJ9O2MFye/f2ty1ssroyR//v+Sf3ly8uuvV3blBgAAAOgnYSRwZFNmJb/9heRVX0lmLE62r02+9cbkC1cmD/3AepIAAABAv9hN227aMDD79iS3/HPy048k7bsr1xqak9NfmJzxomTmSUnTwqTRf08AAAAwEQwkXxNGCiPh6LSsSn7xL8kD36mMlDxQ/bRk6tyksXn/a/pxyfxzk/nnJLNPSYo1I142AAAAMLSEkQMgjIRBKpWSlb9M7v92svxnSevqZE/LkfvVTkpOfFZlx+7TrkwmTR/uSgEAAIBhIIwcAGEkDIO9OyqjJXdsSPa2VsLJ3duSzY8k6+5N1t2X7Nu5v32xLjn5uYJJAAAAGIMGkq/VjlBNwETSMDVpOKUyFftQSh3JhqXJ0u9WpnlvfDB5+AeVV7EuOek5lV28j784mXliUiiMaPkAAADA8DAy0shIqL4ND1ZCyfu/XQkme5o8O1l0UTL/7KTpmM7XwqT5mKShSVAJAAAAVWaa9gAII2GU6QomH/txsubOpKPt8G3rp1aCyaZjkrlnJPPOqrzmnJ7UTRqxkgEAAGAiE0YOgDASRrH2vcmau5OVtyZbHkta13S+Vie7tx6+X7EuOeaC5IRLkhOemRx7YVLXOGJlAwAAwEQijBwAYSSMUW27KpvktKxKtq1INjyQrL+vsjnO7i2929Y0JIsuTE54ViWcPOaCpKauOnUDAADAOCOMHABhJIwz5XKydVmy7OZk+c3Jsp8mO9b3blM3JTnuqftHTs47O6ltqE69AAAAMMYJIwdAGAnjXLmcbHokWfaTznDy5oNHThZqKrt2zzmtsvbknNMrr1knm94NAAAARyCMHABhJEwwpVJlSveyn1bCySd+kezZdui2hWJnSHn6/tf8c5LZpybF4oiWDQAAAKOVMHIAhJEwwZXLyfZ1ycalycaHkg2dx41Lkz0th+5TPy1ZeF5y7JMr608ec0FlV28AAACYgISRAyCMBA6pXK6sNdkznNzwYLLu18m+XQe3n7YgWfikZP7Zlanec89MZp6U1NSOfO0AAAAwgoSRAyCMBAakoz3Z9FCy6lfJ6juS1XcmG+5PyqWD2xZqkqZjkumLkuZFncdjO8+Pq9yrnzzyPwMAAAAMIWHkAAgjgUFr25msvSdZc1dlPcoNnaMo9+08ct9JM5KmY5PmYyrhZNPCSmDZdMz+a3b6BgAAYBQbSL5m/iDAYNVPSY6/uPLqUiol29cmLauSlpWV17bOY8uqynnb9mT31spr/b2Hf/7k2Z3BZM/Q8pjeAWZN3fD/nAAAADBIwkiA4VAsVsLC5mOSXHToNntakpbVSevqSkDZunr/+67z9t3Jrk2V19p7Dv95Dc3JpObKSMvG6cmk6Z3HGYc573xfP83O4AAAAIwYYSRAtTQ2V17zzjz0/XK5MmqyO6jsPLau6QwtV1XOO9qSvS2V17YVA6uhUOysY/qhw8oDg82GaZWRoPVTkrrJlaNRmQAAAPSTMBJgtCoUkskzK68F5x66TamU7NpcCS33bOuc9r2t83xbj+vbDr7fvqey8U7XVPGty46uzmLdAQHl5KSu8333+eTOe1N7nB8Qah7qWrHm6GoCAABgVBJGAoxlxWIydU7lNVD7dvcOLo8UZu7emrTtSNp2VY7ljspzSvsqbfZsG4If6AA1DfsDzdqGpLax97Fu0qGvH/LY89VH27pJSU19JQwGAABgSAkjASaqukmVV9OCgfctlyvTw9t2Jvt2VY7d57sqO4m37exxvqvz3o4e5330LZcqn9OxN9m9txKEjrTaxkoYWlO3/1U88Lz+0Pdq6g/xvvbw7bufVbu/b7G2EjYXajrPO4+FYo/zmkO3K9R0tunZrutcyAoAAFSPMBKAgSsUOkcTNiSZObTPLpcrU8h7BZk7k/a2yvX2vX0cd/d4f4S2+3YffD3l/XV0PWPcKRwQWnaGmb1Cyx6BZqF4wKuw/zyFQ9zvanO4e139+up7qPPDfV6hR8B6qPPO913nA2mbrsNwfUb6169Xux7XegXLB1472n49b43E5w302X3VPcQ1DUud1azpgH/HI/7vs/MPKYVCUujxu+Wg3zP+YAIA450wEoDRpVDYP2ozs0buc8vlpGPfwaFlaV9lFGhHe+V4yPddr7ak1Hm9Y1/v8459A+tb7khKXa/23u/Lndd6ve/Rrmtk6aF/0MrnlvaN2D9agP4rHBBQdp4Xi4e4VrM/wDxkwNkVfh54rdi/Z/YagV5zwB9xDhyNPpA2XaPcaw9z7RCj2g+6VrO//yFHw3f+oQkARiFhJAAklf/Hs7a+8hrryuVDhJbtlZCy6333vdIBYeeB7UpJypVj96t8mPMD2hzU71DPOESbAX1ex/6fuefPn3KPa+X913re77PtofqlH/2O9jNycL9eP1f5gPeHujaU/Q71fgCfN+y1H/B+KD9vUM86XJsB1jCktfd41EjUcNh+B3y3Dqtc+f3D0OgVWNYeHG72DDUPfF+o6fv+kZ5ROFTbvvoeok2hr8/vMbK/rzZG3AKMOsJIABhvCoXK+pOpTdJQ7WoAOv+QUE736O1yaf8fPMod+//QUOpxv6ttqcf9XtcO8YeOXs/sulY6xLVD9D/ws3v9sabHaPRDXet+f+AfeY7Qr9e1A/v181l96XrORNdnqHmE0PWIoWx/nzGIULZf4e4RahTKAqOIMBIAABhe3eu7mjo85LoCy0MFm4cLMg8aJd/j2kHv+2hz4Aj8w/Y78H7PUfiHa3OE++VD1HY45Y6ko6OyMd5EdmAoWzhwWYSeyxYUel/r1e6ApREOalPIQUsg9Ox70Gce+OxDrSfbc13ZwiCOOeD9QJ+Zo/jMAz9jgunvbJJ+zVI5sG36+ayBzFzpObPgaOrux2c9+11J/ZQ+/7GNd8JIAACAsapYTIr1ScbBMiOD0T269sDw8jBharmvsLQ/IewhAtaDPnMoPvsQ948UIh/2n5FQFkaFZ1wjjKx2AQAAADAoXaP1ijWZ8EuUHDSq9BBBaEf7oZc66F7O4FBLJ/RsU87hlzno6t/RR5sDll7o1e4wdZU60mt0Wa/RZkdzTOexdJTPGEgNPT4jE3B05EEjQw91fqiRpwe2zQDaHua5h+2XAbQdyHMPUXvtBP8dFWEkAAAAjB9GywKjnEVbAAAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARIYwEAAAAAEaEMBIAAAAAGBHCSAAAAABgRAgjAQAAAIARUVvtAqqtXC4nSVpbW6tcCQAAAACMPV25WlfO1pcJH0Zu3749SbJo0aIqVwIAAAAAY9f27dvT3NzcZ5tCuT+R5ThWKpWyZs2aTJs2LYVCodrlDIvW1tYsWrQoK1euTFNTU7XLgWHl+85E4zvPROL7zkTjO89E4vvORDPevvPlcjnbt2/PwoULUyz2vSrkhB8ZWSwWc+yxx1a7jBHR1NQ0Lr7g0B++70w0vvNMJL7vTDS+80wkvu9MNOPpO3+kEZFdbGADAAAAAIwIYSQAAAAAMCKEkRNAQ0ND3v/+96ehoaHapcCw831novGdZyLxfWei8Z1nIvF9Z6KZyN/5Cb+BDQAAAAAwMoyMBAAAAABGhDASAAAAABgRwkgAAAAAYEQIIwEAAACAESGMHMf27t2bP//zP8/ChQszadKkXHTRRbnhhhuqXRYMyk033ZRCoXDI1y9/+ctebX/xi1/kGc94RiZPnpz58+fn7W9/e3bs2FGlyuHIduzYkfe///254oorMnPmzBQKhXzxi188ZNulS5fmiiuuyNSpUzNz5sz8zu/8TjZu3HhQu1KplH/4h3/ICSeckMbGxpx77rn5yle+Msw/CRxZf7/vb3jDGw75O//0008/qK3vO6PV7bffnj/8wz/MWWedlSlTpuS4447LK17xijz88MMHtfX7nfGgv995v+MZD+6///789m//dk488cRMnjw5s2fPziWXXJLvfve7B7X1O76ittoFMHze8IY35Bvf+Ebe8Y535JRTTskXv/jFvOAFL8iPf/zjPOMZz6h2eTAob3/72/OUpzyl17WTTz65+/zuu+/Oc5/73Jxxxhn56Ec/mlWrVuXDH/5wHnnkkXz/+98f6XKhXzZt2pQPfOADOe6447JkyZLcdNNNh2y3atWqXHLJJWlubs7f/u3fZseOHfnwhz+ce++9N7fddlvq6+u727773e/O3/3d3+VNb3pTnvKUp+S6667La17zmhQKhbzqVa8aoZ8MDtbf73uSNDQ05LOf/Wyva83NzQe1831ntPr7v//7/PznP89v//Zv59xzz826devyL//yL3nSk56UX/7ylzn77LOT+P3O+NHf73zidzxj3xNPPJHt27fn9a9/fRYuXJhdu3blm9/8Zl7ykpfkU5/6VN785jcn8Tu+lzLj0q233lpOUv7Qhz7UfW337t3lk046qfy0pz2tipXB4Pz4xz8uJyl//etf77PdlVdeWV6wYEG5paWl+9pnPvOZcpLy9ddfP9xlwlHZs2dPee3ateVyuVy+/fbby0nKX/jCFw5q97a3va08adKk8hNPPNF97YYbbignKX/qU5/qvrZq1apyXV1d+Q/+4A+6r5VKpfIzn/nM8rHHHltub28fvh8GjqC/3/fXv/715SlTphzxeb7vjGY///nPy3v37u117eGHHy43NDSUr7rqqu5rfr8zXvT3O+93PONVe3t7ecmSJeXTTjut+5rf8fuZpj1OfeMb30hNTU13Ap8kjY2N+b3f+73ccsstWblyZRWrg6Gxffv2tLe3H3S9tbU1N9xwQ1772temqamp+/rrXve6TJ06NV/72tdGskzot4aGhsyfP/+I7b75zW/mRS96UY477rjua5dddllOPfXUXt/v6667Lvv27cvv//7vd18rFAp529vellWrVuWWW24Z2h8ABqC/3/cuHR0daW1tPex933dGs4svvrjXiJckOeWUU3LWWWdl6dKl3df8fme86O93vovf8Yw3NTU1WbRoUbZt29Z9ze/4/YSR49Rdd92VU089tVcQkyQXXnhhksoUVhjLrr766jQ1NaWxsTHPfvaz86tf/ar73r333pv29vY8+clP7tWnvr4+5513Xu66666RLheGzOrVq7Nhw4aDvt9J5Xd8z+/3XXfdlSlTpuSMM844qF3XfRgLdu3alaampjQ3N2fmzJn5gz/4g4PWAPZ9Z6wpl8tZv359Zs+encTvd8a/A7/zXfyOZ7zYuXNnNm3alMceeyz/+I//mO9///t57nOfm8Tv+ANZM3KcWrt2bRYsWHDQ9a5ra9asGemSYEjU19fnN3/zN/OCF7wgs2fPzgMP/P/t3X1MVvX/x/EXhF6ATAQkQ0IyCDXNaSVMCukGTVLCDNMW82ZuoDPLRG2YqWlRhhqmY2ZrJYotcc0b5kDNLJuGmmlaEZRSiTC8407u7OL8/micnxeI+LW8lMvnY+OP8zlvzvkcffO+8O3nnPOzli5dqoiICO3bt08DBw5USUmJJLX6M7B37157Txv4z7SV3+fPn1d9fb0sFotKSkrUrVs3OTk5tYiT+CxA++Dn56c5c+bowQcfVGNjo3JycpSenq6jR49qz549cnH559dZ8h3tTWZmpoqLi7Vo0SJJ1Hc4vuY5L1Hj4ViSkpL04YcfSpKcnZ01evRorVq1ShI1vjmakQ6qtrZWFoulxbirq6u5H2iPwsPDFR4ebm4/88wziouLU//+/ZWcnKycnBwzv1v7GSD/0Z61ld9NMRaLhc8COIR33nnHZnvcuHEKCQnR66+/rk2bNpkPcSff0Z7k5+dr2rRpGjx4sCZMmCCJ+g7HdqWcl6jxcCwzZsxQXFycTp8+rY0bN8pqtaqhoUESNb45btN2UG5ubqqvr28xXldXZ+4HHEVwcLBiY2P11VdfyWq1mvnd2s8A+Y/2rK38vjyGzwI4qldffVXOzs7atWuXOUa+o70oLS3ViBEj5OnpaT7nXaK+w3G1lvOtocajverdu7eioqI0fvx4ZWdnq7q6WjExMTIMgxrfDM1IB+Xn52cuA75c01j37t3tPSXghgoICFBDQ4MuXrxoLl9v7WeA/Ed71lZ+e3t7m/+T6ufnp9LSUhmG0SJO4rMA7Zebm5t8fHx0/vx5c4x8R3tQUVGh6OholZeXKycnxyYvqe9wRFfL+dZQ4+Eo4uLidPDgQRUUFFDjm6EZ6aAGDBiggoKCFm8ky8vLM/cDjuTEiRNydXWVh4eH+vXrJxcXF5uX2khSQ0ODjhw5Qv6jXfP395evr2+L/JakAwcO2OT3gAEDVFNT0+KtlXwWoL2rqqrS2bNn5evra46R77jV1dXVKSYmRgUFBcrOztb9999vs5/6DkfTVs63hhoPR9F0O3VFRQU1vhmakQ4qLi5OVqtVa9asMcfq6+v1ySefKCwsTAEBATdxdsD1O3PmTIuxo0ePauvWrRo2bJicnZ3l6empqKgorV+/XlVVVWbcunXrVF1drTFjxthzysB/7rnnnlN2drb++usvc+zLL79UQUGBTX7HxsaqQ4cOSk9PN8cMw9Dq1avl7+9v8/xV4FZUV1dnU8ebLF68WIZhaPjw4eYY+Y5bmdVq1dixY7V//35lZWVp8ODBV4yjvsNRXEvOU+PhKMrKylqMXbp0SRkZGXJzczMb8dT4/8cLbBxUWFiYxowZo+TkZJWVlSk4OFhr165VUVGRPv7445s9PeC6jR07Vm5ubgoPD9edd96pn3/+WWvWrJG7u7veffddM+7tt99WeHi4IiMjlZCQoFOnTmnZsmUaNmyYzS82wK1m1apVKi8vN9+St23bNp06dUqSNH36dHl6emru3LnKysrS448/rldeeUXV1dVKTU3VAw88oEmTJpnHuvvuuzVjxgylpqbq0qVLGjRokDZv3qy9e/cqMzOzzWc2ATdaW/l+4cIFDRw4UC+88IJ69+4tScrNzdX27ds1fPhwxcbGmsci33ErS0pK0tatWxUTE6Pz589r/fr1Nvvj4+MlifoOh3EtOV9aWkqNh0NITExUZWWlhgwZIn9/f5WWliozM1P5+flatmyZPDw8JFHjbRhwWLW1tcasWbOMu+66y7BYLMagQYOMnJycmz0t4F9ZsWKFERoaanh7exsuLi6Gn5+fER8fbxQWFraI3bt3rxEeHm64uroavr6+xrRp04zKysqbMGvg2gUGBhqSrvh18uRJM+748ePGsGHDDHd3d6NLly7Giy++aJSWlrY4ntVqNVJSUozAwECjY8eORt++fY3169fb8YqA1rWV7xcuXDDi4+ON4OBgw93d3bBYLEbfvn2NlJQUo6GhocXxyHfcqiIjI1vN9eb/JKO+wxFcS85T4+EoPvvsMyMqKsro1q2b4eLiYnh5eRlRUVHGli1bWsRS4//hZBjNnogJAAAAAAAAADcAz4wEAAAAAAAAYBc0IwEAAAAAAADYBc1IAAAAAAAAAHZBMxIAAAAAAACAXdCMBAAAAAAAAGAXNCMBAAAAAAAA2AXNSAAAAAAAAAB2QTMSAAAAAAAAgF3QjAQAAMB/auLEibrnnntu9jTs5tNPP5WTk5MOHTp0s6cCAABwy6MZCQAAcJtwcnK6pq89e/bc7KkCAADAQbnc7AkAAADAPtatW2eznZGRoZ07d7YY79Onz786z0cffaTGxsZ/dQwAAAA4JpqRAAAAt4n4+Hib7e+++047d+5sMd5cTU2N3N3dr/k8HTp0uK75AQAAwPFxmzYAAABMjz32mPr166fvv/9eQ4YMkbu7u+bOnStJ2rJli0aMGKHu3bvLYrEoKChIixcvltVqtTlG82dGFhUVycnJSUuXLtWaNWsUFBQki8WiQYMG6eDBg9c0r/Lycs2YMUMBAQGyWCwKDg7WkiVLbFZgXn6e999/X4GBgXJzc1NkZKSOHz/e4pi7d+9WRESEOnXqpC5duig2Nla//PJLi7ji4mJNnjzZvO6ePXtq6tSpamhosImrr6/XzJkz5evrq06dOunZZ5/VmTNnrun6AAAAbhesjAQAAICNc+fOKTo6WuPGjVN8fLy6desm6Z8XtXh4eGjmzJny8PDQ7t27NX/+fFVWVio1NbXN427YsEFVVVVKTEyUk5OT3nvvPY0ePVonTpy46mrKmpoaRUZGqri4WImJierRo4f27dun5ORklZSUKC0tzSY+IyNDVVVVmjZtmurq6rRixQo98cQTOnbsmHktu3btUnR0tO69914tXLhQtbW1WrlypR555BEdPnzYbKaePn1aoaGhKi8vV0JCgnr37q3i4mJt2rRJNTU16tixo3ne6dOny8vLSwsWLFBRUZHS0tL00ksv6fPPP/8f/wYAAAAcF81IAAAA2CgtLdXq1auVmJhoM75hwwa5ubmZ21OmTNGUKVOUnp6ut956SxaL5arH/fPPP1VYWCgvLy9JUq9evRQbG6vc3FyNHDmy1e9bvny5fv/9d/3www+67777JEmJiYnq3r27UlNTlZSUpICAADP+t99+U2Fhofz9/SVJw4cPV1hYmJYsWaLly5dLkmbPni1vb2/t379f3t7ekqRRo0Zp4MCBWrBggdauXStJSk5OVmlpqfLy8vTwww+b51i0aJEMw7CZp4+Pj3bs2CEnJydJUmNjoz744ANVVFTI09Pzqn82AAAAtwtu0wYAAIANi8WiSZMmtRi/vBFZVVWls2fPKiIiQjU1NcrPz2/zuGPHjjUbkZIUEREhSTpx4sRVvy8rK0sRERHy8vLS2bNnza+oqChZrVZ98803NvGjRo0yG5GSFBoaqrCwMG3fvl2SVFJSoiNHjmjixIlmI1KS+vfvr6FDh5pxjY2N2rx5s2JiYmwakU2amo5NEhISbMYiIiJktVr1xx9/XPX6AAAAbiesjAQAAIANf39/m9uPm/z000+aN2+edu/ercrKSpt9FRUVbR63R48eNttNjckLFy5c9fsKCwv1448/ytfX94r7y8rKbLabVk9eLiQkRBs3bpQksznYq1evFnF9+vRRbm6uLl68qOrqalVWVqpfv35XnV+T670+AACA2wnNSAAAANi4fAVkk/LyckVGRqpz585atGiRgoKC5OrqqsOHD+u1116zeZFMa+64444rjje/3bm5xsZGDR06VHPmzLni/pCQkDbPbQ/Xe30AAAC3E5qRAAAAaNOePXt07tw5ffHFFxoyZIg5fvLkyRt+7qCgIFVXVysqKuqa4gsLC1uMFRQUmC+lCQwMlCT9+uuvLeLy8/PVtWtXderUSW5uburcufMV38QNAACA68MzIwEAANCmplV/l6/ya2hoUHp6+g0/9/PPP6/9+/crNze3xb7y8nL9/fffNmObN29WcXGxuX3gwAHl5eUpOjpakuTn56cBAwZo7dq1Ki8vN+OOHz+uHTt26Omnn5YkOTs7a9SoUdq2bZsOHTrU4tyseAQAAPjfsTISAAAAbQoPD5eXl5cmTJigl19+WU5OTlq3bp1dGnKzZ8/W1q1bNXLkSE2cOFEPPfSQLl68qGPHjmnTpk0qKipS165dzfjg4GA9+uijmjp1qurr65WWliYfHx+b27xTU1MVHR2twYMHa/LkyaqtrdXKlSvl6emphQsXmnEpKSnasWOHIiMjlZCQoD59+qikpERZWVn69ttv1aVLlxt+/QAAAI6EZiQAAADa5OPjo+zsbCUlJWnevHny8vJSfHy8nnzyST311FM39Nzu7u76+uuvlZKSoqysLGVkZKhz584KCQnRm2++KU9PT5v48ePHy9nZWWlpaSorK1NoaKhWrVolPz8/MyYqKko5OTlasGCB5s+frw4dOigyMlJLlixRz549zTh/f3/l5eXpjTfeUGZmpiorK+Xv76/o6Gi5u7vf0OsGAABwRE4G95cAAADAARQVFalnz55KTU3VrFmzbvZ0AAAAcAU8MxIAAAAAAACAXdCMBAAAAAAAAGAXNCMBAAAAAAAA2AXPjAQAAAAAAABgF6yMBAAAAAAAAGAXNCMBAAAAAAAA2AXNSAAAAAAAAAB2QTMSAAAAAAAAgF3QjAQAAAAAAABgFzQjAQAAAAAAANgFzUgAAAAAAAAAdkEzEgAAAAAAAIBd0IwEAAAAAAAAYBf/B1aGaD8EduAdAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
- "plot_train_val_loss(train_loss, val_loss)"
+ "plot_losses(losses)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "b3345522",
"metadata": {},
@@ -252,24 +273,23 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"id": "08f1cba4",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHqCAYAAAD8lb//AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnXklEQVR4nO3de5xdZXno8d+TSTKTyYUAQQxJgIDgaRSFCqhHWxGrIPVeP1WqiG1PsS1QRYuKx0+R1gtQC1pR27Qg4FEREcVaKKJgvZRCgyKXILdgSEIAAyH3697P+WOv7JnEzMyeZGavWTu/r5/1yV5rr/WuZ+azTB6e933XG5mJJElS1Y0rOwBJkqSRYFIjSZI6gkmNJEnqCCY1kiSpI5jUSJKkjmBSI0mSOoJJjSRJKl1EdEXEzyPiu8X+3Ii4LSIeioivR8TEodowqZEkSWPBe4H7+u1fAFycmc8BVgJ/OlQDJjWSJKlUETEb+H3gX4v9AI4HrilOuQJ401DtmNRIkqSyfQb4IFAv9vcFnsnMrcX+UmDWUI2MH5XQRsCMfbry4DkTyg5DFfbAXb1lhyBpD7aRdWzOTVF2HMNxwisn51NP10a83Tvu2nQvsLHfofmZOR8gIl4HPJmZd0TEcbtznzGb1Bw8ZwK33zin7DBUYScccGTZIUjag92WPyg7hGF76ukat9944Ii32zXzwY2ZefQAX78MeENEnAT0ANOAzwLTI2J8Ua2ZDSwb6j52P0mSJAASqI/C/wa9Z+Y5mTk7Mw8G3g7cnJnvAG4B3lqcdipw3VDxj9lKjSRJarekloMnIW30IeCqiPg48HPg0qEuMKmRJEljQmb+EPhh8XkRcOxwrjepkSRJwLbupyw7jF3mmBpJktQRrNRIkqSmoQb2jmUmNZIkCYAkqaXdT5IkSaWyUiNJkpocKCxJklQyKzWSJAloTOmuWamRJEkql5UaSZLUVOUxNSY1kiQJKLqfnNItSZJULis1kiSpqbrvE7ZSI0mSOoSVGkmSBBTLJDhQWJIkVV5Crbo5jd1PkiSpM1ipkSRJQGNKtwOFJUmSSmalRpIkFYIaUXYQu8ykRpIkAUX3kwOFJUmSymWlRpIkNVW5+8lKjSRJ6ghWaiRJElCs0l3hSo1JjSRJaqpndZMau58kSVJHsFIjSZKA6nc/WamRJEkdwUqNJEkCIAlqFa53VDdySZKkfqzUSJKkpirPfjKpkSRJgAOFJUmSxgQrNZIkqRDUsrr1jupGLkmS1I+VGkmSBDTG1NQrXO8wqZEkSU0OFJYkSSqZlRpJkgRApgOFJUmSSmelRpIkNdUrPKbGpEaSJAHb3ihc3U6c6kYuSZLUj5UaSZJUcKCwJElS6azUSJIkoLw3CkdED/AjoJtGbnJNZp4bEZcDrwBWFae+OzPvHKgdkxpJklS2TcDxmbk2IiYAP4mIG4rvzs7Ma1ppxKRGkiQ11bL9U7ozM4G1xe6EYsvhtuOYGkmSBEAS1Bg34hswIyIW9NtO2/HeEdEVEXcCTwI3ZeZtxVefiIi7IuLiiOgeLH4rNZIkabStyMyjBzshM2vAkRExHfhWRDwfOAd4HJgIzAc+BPztQG1YqZEkSU31HDfi23Bk5jPALcCJmbk8GzYBXwKOHexakxpJklSqiNivqNAQEZOAVwO/jIiZxbEA3gTcM1g7dj9JkiSg1GUSZgJXREQXjYLL1Zn53Yi4OSL2AwK4E/jzwRoxqZEkSUAxULic2U93AUft5Pjxw2nH7idJktQRrNRIkqSmMt4oPFKqG7kkSVI/VmokSRIAmVR6lW6TGkmSVAjqtH+g8EipbjomSZLUj5UaSZIEFO+pqXD3U3Uj38MsWzSR1819AReccWDz2M3XTueUY+bxhkOP4GN/PJfVK7tKjFBVMXX6Vv7m0ke47qG7ufL2hbzyzSvLDkkV4zOkscqkpiIu+chsDn/h+ub+r+7v4R8/NIcPfm4xX7/rXron1bnknNklRqiqOP2Ty9i6JXjbC+ZxwRkHcuanlnLQ4RvLDksV4jPU2UZple62aNudIuLEiLg/Ih6KiA+3676d4Iffns7kvWoc9fK1zWM3X7s3L371ao54yTomTa5z6geX89Mb9mL9WvNUDax7Uo2Xn7SKKy6cycb1Xdx7+xRu/d5evOqtT5cdmirCZ0hjWVv+BSzWcvg88FpgHnByRMxrx72rbt2acVz56WfznnMf2+744vt7OGTehub+AQdvZvyEZNmi7naHqAqZfegmajW2e04eWdjDQc/dVGJUqhKfoc6WBPUc+a1d2jVQ+FjgocxcBBARVwFvBBa26f6VdeWFMznh7U+z3wFbtju+cf04Jk+rbXds8rQa69c6rkYDm9RbZ/2a7Z+Rdau7mDS5NsAV0vZ8hjpfSQtajoh2RT4LWNJvf2lxbDsRcVpELIiIBb9+yv+DPHzPJH724ym85bRf/8Z3PTv5i2X9mi56p/h708A2rB9H79Ttn5HeqTU2rDMZVmt8hjSWjakp3Zk5H5gPcPQLe7LkcEr3i1un8MSSiZxyTKOnbsO6cdTrwaOv6eFFr1zDooU9zXOXL57Ils3BrEMsAWtgSx/upqsLDpi7icceaXQfHDJvI4vvt9tSrfEZ6mwJ1J3SPaRlwJx++7OLYxrESe9YweW33scXbrqfL9x0P79/ylMc+6rVfOJrD3P8W1Zy2017cfdtk9m4fhxX/v2zedlrV9E7pV522BrDNm3o4qc37MW7zn6c7kk15h2zjpeesIofXLNP2aGpInyGNJa1q1LzP8BhETGXRjLzduCP2nTvyurpTXp6tzb3J02uM7G7zvR9a0zft8aZ5y/hgtMPYvXKLo76nbV84OJHS4xWVXHJObN4/0VLuPruhaxe2cXnzpnN4gd6hr5QKvgMdbKgVuFlEtqS1GTm1og4A7gR6AIuy8x723HvTnLKXz++3f7xb3mG49/yTDnBqLLWPDOe8/5kbtlhqMJ8hjpX1buf2jamJjOvB65v1/0kSdKeZUwNFJYkSeWqcvdTdWtMkiRJ/VipkSRJAGSGY2okSVJnqFU4qalu5JIkSf1YqZEkSUAxpduBwpIkSeWyUiNJkgrhmBpJkqSyWamRJEnAtmUSqjumxqRGkiQ11SrciVPdyCVJkvqxUiNJkgBIotLdT1ZqJElSR7BSI0mSmuoVrneY1EiSJAAyoWb3kyRJUrms1EiSpCYHCkuSJJXMSo0kSQK2Temubr3DpEaSJDXVsPtJkiSpVFZqJEkSUP0FLa3USJKkjmClRpIkFao9ULi6kUuSJPVjpUaSJDXVKzz7yaRGkiQB5a39FBE9wI+Abhq5yTWZeW5EzAWuAvYF7gBOyczNA7Vj95MkSSrbJuD4zHwhcCRwYkS8BLgAuDgznwOsBP50sEZMaiRJUlM9x434NpRsWFvsTii2BI4HrimOXwG8abB2TGokSVLpIqIrIu4EngRuAh4GnsnMrcUpS4FZg7XhmBpJkgRsW/tpVMbUzIiIBf3252fm/O3unVkDjoyI6cC3gP813JuY1EiSpKZRmv20IjOPbuXEzHwmIm4BXgpMj4jxRbVmNrBssGvtfpIkSaWKiP2KCg0RMQl4NXAfcAvw1uK0U4HrBmvHSo0kSQJKXftpJnBFRHTRKLhcnZnfjYiFwFUR8XHg58ClgzViUiNJkkqVmXcBR+3k+CLg2FbbMamRJElNVV77yaRGkiQ15KjNfmqL6qZjkiRJ/VipkSRJQDFQuMILWlqpkSRJHcFKjSRJanJMjSRJUsms1EiSJKDUl++NCJMaSZLUVOWkxu4nSZLUEazUSJIkABJfvidJklQ6KzWSJKmpyi/fM6mRJEkN6UBhSZKk0lmpkSRJQPXfU2OlRpIkdQQrNZIkqanKlRqTGkmSBPieGkmSpDHBSo0kSWpKKzWSJEnlslIjSZKaqvxGYSs1kiSpI1ipkSRJAGTFl0kwqZEkSU0OFJYkSSqZlRpJklTw5XuSJEmls1IjSZKaqjymxqRGkiQBkDj7aVQ8cFcvJxxwZNlhqMJufOzOskNQxb32kJeUHYIqLDZWNzmoqjGb1EiSpDbLxrtqqsqBwpIkqSNYqZEkSU1VXvvJpEaSJAGNgcJVnv1k95MkSeoIVmokSVLBNwpLkiSVzkqNJElqckq3JElSyazUSJKkpirPfjKpkSRJQKPrqcpJjd1PkiSpI1ipkSRJTU7pliRJ2kURMScibomIhRFxb0S8tzj+sYhYFhF3FttJg7VjpUaSJDWVNKV7K/CBzPxZREwF7oiIm4rvLs7MT7fSiEmNJElqKmOgcGYuB5YXn9dExH3ArOG2Y/eTJEkaMyLiYOAo4Lbi0BkRcVdEXBYRew92rUmNJEkCIAkyR34DZkTEgn7baTu7f0RMAb4JvC8zVwNfBA4FjqRRyfmHweK3+0mSJI22FZl59GAnRMQEGgnNVzLzWoDMfKLf9/8CfHewNqzUSJKkphyFbSgREcClwH2ZeVG/4zP7nfZm4J7B2rFSI0mSGsp7o/DLgFOAuyPizuLYR4CTI+LIRmT8CnjPYI2Y1EiSpFJl5k+AnWVT1w+nHZMaSZLUp5z31IwIx9RIkqSOYKVGkiQ1VXmVbpMaSZLUVNIyCSPC7idJktQRrNRIkiSgeK9MhbufrNRIkqSOYKVGkiQ1JGClRpIkqVxWaiRJUlOVZz+Z1EiSpD4VTmrsfpIkSR3BSo0kSSqEU7olSZLKZqVGkiT1qfCYGpMaSZLUkL5RWJIkqXRWaiRJUp8Kdz9ZqZEkSR3BSo0kSeqnumNqTGokSVIfu58kSZLKNWClJiK+TAv5Wma+a0QjkiRJ5alwpWaw7qeH2haFJEnSbhowqcnM89oZiCRJKlkCe8LL9yLi1RFxaUT8W7F/dEQcP3qhSZIkta6lpCYizgS+CDwI/G5xeAPw8VGKS5IklSBz5Ld2abVS8z7g9zLzfKBeHPsl8NzRCEqSJJUkR2Frk1aTmqnAkuLztvAmAJtHPCJJkqRd0GpS8yPgwzsc+yvglpENR5IklSpj5Lc2afWNwmcC/xYRfwZMjYj7gTXA60YtMkmSpGFoKanJzOURcQxwDHAQja6o2zOzPviVkiSpSqJDX763o3E0xtEAdFHlFa8kSdJvavPA3pHWUlITES8Avg10A8uA2cDGiHhzZv5i9MKTJElqTasDhS8DPg/MzsxjgVnAJcVxSZLUEUZhkHAbBwq3mtQcDnwms/EKneLPzwKHjVZgkiRJw9FqUnM98IYdjr0e+PeRDUeSJJWqwi/fG3BMTUR8uV8oXcBVEXEHjZlPc4AXAdeNeoSSJKl9OnSg8EM77N/T7/NC4MaRD0eSJGnXDJjUZOZ57QxEkiSNAR1aqdlOREyksYDlDPq9oyYzbx6FuCRJkoal1ffUvBz4Bo331EwDVtO3yOUhoxadJElqn6StU7BHWquzny4GLszMfYA1xZ9/B3xh1CKTJEkahla7nw6n8V6a/s4HHgE+PaIRSZKk0lR57adWKzWraHQ7ASyPiHnA3sCUUYlKA5o6fSt/c+kjXPfQ3Vx5+0Je+eaVZYekili2aCKvm/sCLjjjwOaxm6+dzinHzOMNhx7Bx/54LqtXdpUYoarg9ac8zmevu4fv3Hc777/w4bLD0Wio8HtqWk1qrgVOKj5fBtwC3AFcMxpBaWCnf3IZW7cEb3vBPC4440DO/NRSDjp8Y9lhqQIu+chsDn/h+ub+r+7v4R8/NIcPfm4xX7/rXron1bnknNklRqgqeOrJiVx1yQF875r9yg5F+g0tJTWZ+b7M/Grx+dPAW4E/K7YhRcRlEfFkRNwz9NkaSPekGi8/aRVXXDiTjeu7uPf2Kdz6vb141VufLjs0jXE//PZ0Ju9V46iXr20eu/navXnxq1dzxEvWMWlynVM/uJyf3rAX69e2+t862hP91437cOtN+7B6ZcuTZ6UhRcSciLglIhZGxL0R8d7i+D4RcVNEPFj8ufdg7ezS316Z+ePMvCEz6y1ecjlw4q7cS31mH7qJWg2WLepuHntkYQ8HPXdTiVFprFu3ZhxXfvrZvOfcx7Y7vvj+Hg6Zt6G5f8DBmxk/Ibd7viSpTbYCH8jMecBLgNOLoS4fBn6QmYcBPyj2BzTYMgk/poWesMz83RbO+VFEHDzUeRrcpN4669dsP+Zh3eouJk2ulRSRquDKC2dywtufZr8Dtmx3fOP6cUyetv2zM3lajfVrHVcj7cnKGCicmcuB5cXnNRFxHzALeCNwXHHaFcAPgQ8N1M5g9cN/HYlAhyMiTgNOA+iht923H/M2rB9H79Tt/xHqnVpjwzr/EdLOPXzPJH724yl84XsP/MZ3PTtJktev6aJ3ikmytEcbnffUzIiIBf3252fm/J2dWBRBjgJuA/YvEh6Ax4H9B7vJYMskXDGscEdA8QPOB5gW+1R4UtnoWPpwN11dcMDcTTz2SKOL4JB5G1l8v90F2rlf3DqFJ5ZM5JRj5gGwYd046vXg0df08KJXrmHRwp7mucsXT2TL5mDWIXZnShpxKzLz6KFOiogpwDeB92Xm6oi+BCszM2LwOpIjvSpk04YufnrDXrzr7Me5+AOzOfT5G3npCas46w2HlR2axqiT3rGC497YN+3/mi8+iyeWTuTM85fwzIoJnPX6w7j7tskcdsQGrvz7Z/Oy166id0qrQ+W0JxrXlXR1JeOKbcLEOrVaUK9V9y206qfNU7D7i4gJNBKar2TmtcXhJyJiZmYuj4iZwJODtWFSUzGXnDOL91+0hKvvXsjqlV187pzZLH6gZ+gLtUfq6U16erc29ydNrjOxu870fWtM37fGmecv4YLTD2L1yi6O+p21fODiR0uMVlVw8hnLeOd7lzX3X/Xmp/h/n53FVz7r6wC066JRkrkUuC8zL+r31XeAU2m88PdU4LpB28kc/ZQsIr5GY6DPDOAJ4NzMvHSwa6bFPvnieNWox6bOdeNjd5YdgirutYe8pOwQVGH/vfF6VtWfqlQJq3vOnJz1/rNGvN1H3v+BOwbrfirWmPwxcDewrVz8ERrjaq4GDgQWA3+YmQO+x6QtlZrMPLkd95EkSbunpNlPPwEGSgBbrnC09J6aiOiOiE9ExKKIWFUce01EnNHqjSRJkkbTcFbpfj7wDvqGEN0L/MVoBCVJkkpS4bWfWu1+ejPwnMxcFxF1gMxcFhGzRi80SZKk1rWa1Gze8dyI2A94asQjkiRJ5anwW+Ja7X76BnBFRMwFKOaKXwJcNVqBSZIkDUerSc1HgEdoTLWaDjwIPAacNzphSZKkdoscna1dWup+yszNwFnAWUW304psxwtuJElSe43O2k9t0VJSExGH7HBo6rb1GDJz0UgHJUmSNFytDhR+iMbQof7p27ZKjUtES5LUKSrcD9Nq99N2Y28i4tnAuTReaSxJklS6XVomITMfj4j3AQ8AXx3RiCRJUmnKWCZhpOzO2k/PBXpHKhBJkjQGdHpSExE/Zvsfsxd4HvC3oxGUJEnScLVaqfnXHfbXAb/IzAdHOB5JklSWNr9XZqQNmdRERBdwPHBaZm4a/ZAkSZKGb8ikJjNrEfEaoN6GeCRJUpkqXKlpdZmEi4HzImLCaAYjSZJKlqOwtcmgSU1EnFx8PBM4G1gTEUsi4tFt26hHKEmS1IKhup/+Gfga8M42xCJJkkrWyQOFAyAz/7MNsUiSJO2yoZKaroh4Jduv+bSdzLx5ZEOSJEkavqGSmm7gUgZOahLYcQVvSZKkthsqqVmXmSYtkiTtKTp4TI0kSdpTVPyNwkO9p2bAsTSSJEljyaCVmsyc2q5AJEnSGNDBlRpJkqRKcEyNJEnqU+FKjUmNJEkCGgNpO3mgsCRJUiVYqZEkSX2s1EiSJJXLSo0kSWqo+Mv3TGokSVKfCic1dj9JkqSOYKVGkiT1sVIjSZJULis1kiSpqcoDha3USJKkjmClRpIk9alwpcakRpIkNSSVTmrsfpIkSR3BSo0kSWpyoLAkSVLJrNRIkqQ+VmokSVIniBz5bch7RlwWEU9GxD39jn0sIpZFxJ3FdtJQ7ZjUSJKksl0OnLiT4xdn5pHFdv1Qjdj9JEmS+pTQ/ZSZP4qIg3e3HSs1kiRprDojIu4quqf2HupkkxpJktSQo7TBjIhY0G87rYVovggcChwJLAf+YagL7H6SJEkARLGNghWZefRwLsjMJ7Z9joh/Ab471DVWaiRJ0pgTETP77b4ZuGegc7exUiNJkvqUMFA4Ir4GHEejm2opcC5wXEQcWUT0K+A9Q7VjUiNJkkqVmSfv5PClw23HpEaSJDW59pMkSVLJrNRIkqQ+Fa7UmNRIkqQ+FU5q7H6SJEkdwUqNJElqaHFV7bHKSo0kSeoIVmokSVKfCldqTGokSVKT3U+SJEkls1IjSZL6WKmRJEkql5UaSZLUVOUxNSY16lgnHHBk2SGo4n79nYPKDkEVtuWsiWWHMHyJ3U+SJElls1IjSZL6WKmRJEkql5UaSZIEQFDtgcJWaiRJUkewUiNJkvpUuFJjUiNJkpoiq5vV2P0kSZI6gpUaSZLU4Mv3JEmSymelRpIkNVV5SrdJjSRJ6lPhpMbuJ0mS1BGs1EiSpKYqdz9ZqZEkSR3BSo0kSepT4UqNSY0kSWpIu58kSZJKZ6VGkiT1sVIjSZJULis1kiQJgKDaY2pMaiRJUp+sblZj95MkSeoIVmokSVJTlbufrNRIkqSOYKVGkiQ1JE7pliRJKpuVGkmS1BT1siPYdSY1kiSpj91PkiRJ5bJSI0mSmpzSLUmStIsi4rKIeDIi7ul3bJ+IuCkiHiz+3HuodkxqJElSQ9JYJmGkt6FdDpy4w7EPAz/IzMOAHxT7gzKpkSRJTZEjvw0lM38EPL3D4TcCVxSfrwDeNFQ7JjWSJGks2j8zlxefHwf2H+oCBwpLkqQ+ozNQeEZELOi3Pz8z57d6cWZmxNA1H5MaSZI02lZk5tHDvOaJiJiZmcsjYibw5FAX2P0kSZIACMoZUzOA7wCnFp9PBa4b6gIrNZIkqaH12UojKiK+BhxHo5tqKXAucD5wdUT8KbAY+MOh2jGpkSRJpcrMkwf46lXDacekRpIkNflGYUmSpJJZqZEkSX2s1EiSJJXLSo0kSWqq8pgakxpJktSQQL26WY3dT5IkqSNYqZEkSX2qW6ixUiNJkjqDlRpJktTkQGFJktQZSlj7aaTY/SRJkjqClRpJktRU5e4nKzWSJKkjWKmRJEkNSaWndJvUSJIkAAIIBwpLkiSVy0qNJEnqUy87gF1npUaSJHUEKzWSJKnJMTWSJEkls1IjSZIanNItSZI6Q7r2kyRJUtms1EiSpCbXfpIkSSqZlZqKmTp9K2f9wxJe9Iq1rHq6iy99aia3fGvvssNShfgMaVi21JnyxSeZ+It1xNoa9WdPZN27ZrD5RVMa32+qM+WyX9P9kzVQS7Ye3M2q8w8sN2btngqPqTGpqZjTP7mMrVuCt71gHoc+fwN/d+UjLLp3Eosf6Ck7NFWEz5CGpQb1GeN55pMHUt9vPBPvWMfUCx9j5T/Opb7/BKZe8jjU4ekvHExO6WL8I5vKjli7IyF8o/DgImJORNwSEQsj4t6IeG877ttpuifVePlJq7jiwplsXN/FvbdP4dbv7cWr3vp02aGpInyGNGw941j/RzOo7z8BxgWbj5lC/VkTGP/wRrqWbmLi7etYe/r+5F7joSvY+hyTY5WnXZWarcAHMvNnETEVuCMibsrMhW26f0eYfegmajVYtqi7eeyRhT0c8dJ1JUalKvEZ0u6KlVvpemwLtQMnMv6BjdSfNZ7erz5Fzy2rqe/TxbqTZ7D5f08tO0ztjgp3P7WlUpOZyzPzZ8XnNcB9wKx23LuTTOqts35N13bH1q3uYtLkWkkRqWp8hrRbtibTLlrOxuOnUZvdTdeKrYxfvJnsHcdTlx/K2vfsz7TPLKdriV1QKkfbZz9FxMHAUcBtO/nutIhYEBELtuD/KXa0Yf04eqdu/49P79QaG9Z1DXCFtD2fIe2yejL14uXk+GDte/YHILuDHA/r37YvTAi2PL+XzUf0MvHn60sOVrslR2Frk7YmNRExBfgm8L7MXL3j95k5PzOPzsyjJ9D9mw3s4ZY+3E1XFxwwty/hO2TeRhbf7+9KrfEZ0i7JZOrnHmfcM1tZ/eEDYHwAsPXgnTw30ebYNOIic8S3dmlbUhMRE2gkNF/JzGvbdd9OsmlDFz+9YS/edfbjdE+qMe+Ydbz0hFX84Jp9yg5NFeEzpF0x5YtP0LVkM6s+Ohu6+/7Z2PK8XuozJtD7jaegloxfuJ4Jd69n82/3lhit9mRtGSgcEQFcCtyXmRe1456d6pJzZvH+i5Zw9d0LWb2yi8+dM9upuBoWnyENx7gntzDpP1aRE4IZpz7UPL7mL5/NpuOmseqjs5j6ucfp/ebT1J41gTXvm0lttpW/SqvwQOF2zX56GXAKcHdE3Fkc+0hmXt+m+3eMNc+M57w/mVt2GKownyENR/1ZE/j1d5474Pe1A7t55u8PamNE0sDaktRk5k+wp1WSpLEtAV++J0mSVC6XSZAkSQAE7Z2tNNJMaiRJUp8KJzV2P0mSpI5gpUaSJPWxUiNJklQuKzWSJKmh4lO6TWokSVJTlWc/2f0kSZI6gpUaSZLUp6RKTUT8ClgD1ICtmXn0cNswqZEkSWPFKzNzxa5ebFIjSZIK6ZRuSZLUAZJGUjPSG8yIiAX9ttMGuPv3IuKOAb4fkpUaSZI02la0MEbm5Zm5LCKeBdwUEb/MzB8N5yZWaiRJUp/6KGwtyMxlxZ9PAt8Cjh1u6CY1kiSpVBExOSKmbvsMvAa4Z7jt2P0kSZKaSnr53v7AtyICGrnJVzPzP4bbiEmNJEkqVWYuAl64u+2Y1EiSpD4VntJtUiNJkhoSqFc3qXGgsCRJ6ghWaiRJUsE3CkuSJJXOSo0kSepT4UqNSY0kSepT4aTG7idJktQRrNRIkqQGp3RLkiSVz0qNJEkqJGSLy2qPQSY1kiSpjwOFJUmSymWlRpIkNThQWJIkqXxWaiRJUh/H1EiSJJXLSo0kSepT4UqNSY0kSSpkpZMau58kSVJHsFIjSZIaEqhX943CVmokSVJHsFIjSZL6VHhMjUmNJEnqU+Gkxu4nSZLUEazUSJKkQrr2kyRJUtms1EiSpIaEzOpO6TapkSRJfex+kiRJKpeVGkmS1Mcp3ZIkSeWyUiNJkhoyXftJkiSpbFZqJElSnwqPqTGpkSRJTWn3kyRJUrms1EiSpEJWuvvJSo0kSeoIVmokSVJDUullEkxqJElSnwovaGn3kyRJ6ghWaiRJEtDofcoKdz9ZqZEkSR3BSo0kSWrIdEyNJEnqDFnPEd+GEhEnRsT9EfFQRHx4V2M3qZEkSaWJiC7g88BrgXnAyRExb1fasvtJkiT1aX/307HAQ5m5CCAirgLeCCwcbkNWaiRJUplmAUv67S8tjg3bmK3UrGHliu/nNYvLjmMMmwGsKDsIVZrP0FBeX3YAY57P0OAOKjuA4VrDyhu/n9fMGIWmeyJiQb/9+Zk5f6RvMmaTmszcr+wYxrKIWJCZR5cdh6rLZ0i7y2eo82TmiSXcdhkwp9/+7OLYsNn9JEmSyvQ/wGERMTciJgJvB76zKw2N2UqNJEnqfJm5NSLOAG4EuoDLMvPeXWnLpKa6RrwvUnscnyHtLp8hjYjMvB64fnfbiczqrvEgSZK0jWNqJElSRzCpkSRJHcGkpmIiYp+I+FZErIuIxRHxR2XHpGqJiDMiYkFEbIqIy8uOR9USEd0RcWnx98+aiLgzIl5bdlwSOFC4ij4PbAb2B44E/j0ifrGrI8W1R3oM+DhwAjCp5FhUPeNpvP31FcCjwEnA1RFxRGb+qszAJAcKV0hETAZWAs/PzAeKY18GlmXmLq9qqj1TRHwcmJ2Z7y47FlVbRNwFnJeZ3yw7Fu3Z7H6qlsOBrdsSmsIvgOeVFI+kPVxE7E/j7yarxSqdSU21TAFW73BsFTC1hFgk7eEiYgLwFeCKzPxl2fFIJjXVshaYtsOxacCaEmKRtAeLiHHAl2mM8Tuj5HAkwKSmah4AxkfEYf2OvRDLvpLaKCICuJTGhIU/yMwtJYckASY1lZKZ64Brgb+NiMkR8TLgjTT+a0lqSUSMj4geGmusdEVET0Q4E1LD8UXgt4DXZ+aGsoORtjGpqZ6/pDEN90nga8BfOJ1bw/RRYAPwYeCdxeePlhqRKiMiDgLeQ+OVEo9HxNpie0e5kUlO6ZYkSR3CSo0kSeoIJjWSJKkjmNRIkqSOYFIjSZI6gkmNJEnqCCY1kiSpI5jUSBUQEZcXq2oTEb8TEfe36b4ZEc8Z4LsfRsT/abGdX0XE7+1iDLt8raQ9i0mNNEKKf3w3FC8ie6JIRKaM9H0y88eZ+dwW4nl3RPxkpO8vSWOVSY00sl6fmVOA3waOZidv6nVJAkkaHSY10ijIzGXADcDzodmNc3pEPAg8WBx7XUTcGRHPRMR/RcQLtl0fEUdFxM8iYk1EfB3o6ffdcRGxtN/+nIi4NiJ+HRFPRcQlEfFbwD8BLy0qR88U53ZHxKcj4tGimvRPETGpX1tnR8TyiHgsIv6k1Z83Ig6NiJuL+6+IiK9ExPQdTjsmIhZGxMqI+FKx/tS26wf8XUhSq0xqpFEQEXOAk4Cf9zv8JuDFwLyIOAq4jMYaOvsC/wx8p0g6JgLfprFQ6T7AN4A/GOA+XcB3gcXAwcAs4KrMvA/4c+DWzJySmdOLS84HDqexbs9zivP/pmjrROCvgVcDhwHDGccSwKeAA2gsdDgH+NgO57wDOAE4tIjho8V9B/xdDOP+kmRSI42wbxdVkZ8A/wl8st93n8rMp4tVjU8D/jkzb8vMWmZeAWwCXlJsE4DPZOaWzLwG+J8B7ncsjUTi7Mxcl5kbM3On42giIor7nlXEsaaI7+3FKX8IfCkz7ylWhP9Yqz90Zj6UmTdl5qbM/DVwEfCKHU67JDOXZObTwCeAk4vjg/0uJKll9u1LI+tNmfn9Ab5b0u/zQcCpEXFmv2MTaSQoCSzL7VebXTxAm3OAxZm5tYXY9gN6gTsa+Q3QqLB0FZ8PAO5o4Z6/ISL2Bz4L/A4wlcZ/MK3c4bT+P//i4n4w+O9CklpmpUZqn/5JyhLgE5k5vd/Wm5lfA5YDs6Jf5gEcOECbS4ADBxh8nDvsrwA2AM/rd8+9ioHNFPed08I9d+aTxf2OyMxpwDtpJEz97dj2Y/1+hoF+F5LUMpMaqRz/Avx5RLw4GiZHxO9HxFTgVmAr8FcRMSEi3kKjm2lnbqeRjJxftNETES8rvnsCmF2M0SEz68V9L46IZwFExKyIOKE4/2rg3RExLyJ6gXOH8fNMBdYCqyJiFnD2Ts45PSJmR8Q+wP8Fvt7C70KSWmZSI5UgMxcAfwZcQqOb5iHg3cV3m4G3FPtPA28Drh2gnRrwehqDfh8FlhbnA9wM3As8HhErimMfKu713xGxGvg+8NyirRuAzxTXPVT82arzaExjXwX8+wDxfhX4HrAIeBj4+FC/C0kajti+216SJKmarNRIkqSOYFIjSZI6gkmNJEnqCCY1kiSpI5jUSJKkjmBSI0mSOoJJjSRJ6ggmNZIkqSOY1EiSpI7w/wFA0fN5m1JLpgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAAK0CAYAAACNyusCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ+0lEQVR4nO3de7xVdZ0//tfmdg63cxSQm+AtTfOCTqREmmmShOXkaKZZX9Fp1OaLTkpOjf1KzC6UzThaEVpj2EXHmWzU0UpHTSC/qZWXKR2HvFChcvEGCMgBzt6/P8hDRyDPQdbe+5zzfD4e6xF7rbX35w2xZL/P6/NZq1SpVCoBAAAoUK9aFwAAAHR/Gg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AAKBwGg8AACBJ8qUvfSmlUinnnntu2761a9dm2rRpGTp0aAYNGpQTTjghS5cu7fRnazwAAID88pe/zJVXXplx48a123/eeefl5ptvzg9+8IPMmzcvzzzzTI4//vhOf77GAwAAerhVq1blQx/6UL71rW9lxx13bNu/YsWKXHXVVbn00kvzzne+M+PHj8+cOXPy85//PPfee2+nxuizvYuupXK5nGeeeSaDBw9OqVSqdTkAAD1epVLJSy+9lNGjR6dXr571M++1a9dm3bp1NRm7Uqls9n24oaEhDQ0NWzx/2rRpec973pNJkybl85//fNv++++/P+vXr8+kSZPa9u2zzz7ZZZddcs899+Stb31rh2vqVo3HM888k7Fjx9a6DAAAXmXRokUZM2ZMrcuomrVr12b3XQdlybLWmow/aNCgrFq1qt2+GTNm5KKLLtrs3Ouuuy4PPPBAfvnLX252bMmSJenXr1922GGHdvtHjBiRJUuWdKqmbtV4DB48OEny+wd2S9OgntVRw7b6qzceUOsSAOjGNmR97s6P276n9RTr1q3LkmWt+f39u6VpcHW/l658qZxdx/8uixYtSlNTU9v+LaUdixYtysc+9rHcfvvtaWxsLLSubtV4vBInNQ3qVfX/g6Gr6lPqW+sSAOjOKhv/p6dOgx80uJRBg6v7ey/nj9+Jm5raNR5bcv/992fZsmV585vf3LavtbU18+fPz9e//vXcdtttWbduXZYvX94u9Vi6dGlGjhzZqbq6VeMBAAB03FFHHZXf/OY37fadfvrp2WefffLJT34yY8eOTd++fXPnnXfmhBNOSJIsWLAgf/jDHzJx4sROjaXxAACAHmrw4MHZf//92+0bOHBghg4d2rb/Ix/5SKZPn54hQ4akqakp55xzTiZOnNipheWJxgMAAArTWimntVL9Mbenf/7nf06vXr1ywgknpKWlJZMnT843vvGNTn+OxgMAAGgzd+7cdq8bGxsza9aszJo163V9rsYDAAAKUk4l5VQ38qj2eB3l1k8AAEDhJB4AAFCQcsrZvisuOjZmPZJ4AAAAhdN4AAAAhTPVCgAACtJaqaS1Ut3F3tUer6MkHgAAQOEkHgAAUBC3091E4gEAABRO4wEAABTOVCsAAChIOZW0mmqVROIBAABUgcQDAAAKYnH5JhIPAACgcBIPAAAoiAcIbiLxAAAACqfxAAAACmeqFQAAFKT8x63aY9YjiQcAAFA4iQcAABSktQYPEKz2eB0l8QAAAAqn8QAAAApnqhUAABSktbJxq/aY9UjiAQAAFE7iAQAABXE73U0kHgAAQOEkHgAAUJBySmlNqepj1iOJBwAAUDiNBwAAUDhTrQAAoCDlysat2mPWI4kHAABQOIkHAAAUpLUGi8urPV5HSTwAAIDCaTwAAIDCmWoFAAAFMdVqE4kHAABQOIkHAAAUpFwppVyp8pPLqzxeR0k8AACAwkk8AACgINZ4bCLxAAAACqfxAAAACmeqFQAAFKQ1vdJa5Z/1t1Z1tI6TeAAAAIWTeAAAQEEqNbidbsXtdAEAgJ5K4wEAABTOVCsAACiI53hsIvEAAAAKJ/EAAICCtFZ6pbVS5dvpVqo6XIdJPAAAgMJJPAAAoCDllFKu8s/6y6nPyEPiAQAAFE7jAQAAFM5UKwAAKIjb6W4i8QAAAAon8QAAgILU5na6FpcDAAA9lMYDAAAonKlWAABQkI3P8ajuYu9qj9dREg8AAKBwEg8AAChIOb3S6snlSSQeAABAFWg8AACAwplqBQAABfEcj00kHgAAQOEkHgAAUJByeqVscXkSiQcAAPRos2fPzrhx49LU1JSmpqZMnDgxP/nJT9qOH3HEESmVSu22j370o50eR+IBAAAFaa2U0lqp7gP9OjvemDFj8qUvfSl77bVXKpVKvvOd7+R973tfHnzwwey3335JkjPOOCMXX3xx23sGDBjQ6bo0HgAA0IMde+yx7V5/4QtfyOzZs3Pvvfe2NR4DBgzIyJEjX9c4ploBAEA3tHLlynZbS0vLa76ntbU11113XVavXp2JEye27b/mmmsybNiw7L///rnggguyZs2aTtcj8QAAgIK01uDJ5a1/XFw+duzYdvtnzJiRiy66aIvv+c1vfpOJEydm7dq1GTRoUG644Ybsu+++SZJTTjklu+66a0aPHp1f//rX+eQnP5kFCxbkP/7jPzpVl8YDAAC6oUWLFqWpqantdUNDw1bP3XvvvfPQQw9lxYoVuf766zN16tTMmzcv++67b84888y28w444ICMGjUqRx11VJ544om84Q1v6HA9Gg8AAChIudIr5So/QLD8xwcIvnKXqo7o169f9txzzyTJ+PHj88tf/jKXX355rrzyys3OnTBhQpLk8ccf71TjYY0HAADQTrlc3uqakIceeihJMmrUqE59psQDAAB6sAsuuCBTpkzJLrvskpdeeinXXntt5s6dm9tuuy1PPPFErr322hxzzDEZOnRofv3rX+e8887L4YcfnnHjxnVqHI0HAAAUpJaLyztq2bJlOfXUU7N48eI0Nzdn3Lhxue222/Kud70rixYtyh133JHLLrssq1evztixY3PCCSfk05/+dKfr0ngAAEAPdtVVV2312NixYzNv3rztMo7GAwAAClJO558kvj3GrEcWlwMAAIWTeAAAQEHK6ZVylX/WX+3xOqo+qwIAALoVjQcAAFA4U60AAKAgrZVeaa3yk8urPV5H1WdVAABAtyLxAACAgpRTSjnVvp1udcfrKIkHAABQOI0HAABQOFOtAACgIBaXb6LxoBDXXj4i3/nyqOy698v55l0L2h175JcDctXnR+fx3wzIgMGtOfzY5Tn9gsXpP7Bco2qhfvTtV86pf78kR53wYgY1t2bho/3znUtG5oH5g2tdGtQl1wx0HfXZDtGlPftM31z31eFpHNC62bEnHu6ffzhpz7S83CtnXvR03n3K8/nxNUPz+TN3q36hUIc+ftmiHH/ms/npDTtm9oU7p1xOPve9J7PfIatqXRrUJdcM9a41vWqy1SOJB9vdty4enTeNX5NyaykrXujd7ticL43KoObWXPLDxzNw8MaEY8SYdbns73fJ/XMHZ/wRL9WiZKgLex+0JkcetzzfunhUrr9ieJLkjut3zDd/uiB/8+nFOe8v96pxhVBfXDPQtdRnO0SX9Zt7B+ZnP9ohH/3s05sdW/1Srzwwf3COOv6FtqYjSSad+GL6D2zN/Jt3qGKlUH8Oe+/ytG5Ifvz9oW371rf0yq3/OiT7vmVNdhq9robVQf1xzdAVlCulmmz1qC4bj1mzZmW33XZLY2NjJkyYkF/84he1LokOaG1NZn16TN59yvPZ/U1rNzv+u0f7p3VDKXsd+HK7/X37VbLHfi/n8Yf7V6tUqEt77v9ynnqyIWtWtU8KFzw0IEmyx34vb+lt0GO5ZqBrqbvG49/+7d8yffr0zJgxIw888EAOPPDATJ48OcuWLat1abyGH313WJY91S9TP7F4i8dfWLZxZt+QEes3OzZkxPq8sLRvofVBvRsyfMMWr4NX9g0dsaHaJUFdc81A11J3jcell16aM844I6effnr23XffXHHFFRkwYEC+/e1vb3ZuS0tLVq5c2W6jNla+0Dvf/ceROeXcJdlh6OaLypOkZe3Gv259+1U2O9avodJ2HHqqfo3lrF+3eTy+rmXjvoZGd36DP+WaoSso12Bhebn+vuInqbPGY926dbn//vszadKktn29evXKpEmTcs8992x2/syZM9Pc3Ny2jR07tprl8ieuvmRUBu/Qmvf99XNbPeeVfwC29o+EfyDo6dat7bXVxjyJ5hxexTUDXUtdXZHPPfdcWltbM2LEiHb7R4wYkSVLlmx2/gUXXJAVK1a0bYsWLapWqfyJp5/sl598f2iO++tn8/zSvlmyqF+WLOqXdS2ltK4vZcmifln5Yu8MGb4x8t5aLL6lKVjQk7ywrM9WpyImyfNL3YgQ/pRrhq6gXOlVk60edekrsqGhIQ0NDbUuo8d7bkm/lMulfOMzY/KNz2x+fOqEfXPc3zybU89fnN59Knnsv/vnHX+5vO34+nWlPPlI/xx+7PLN3ww9yBOP9M+Bb1uVAYNa2y2W3ecv1iRJnnzEDRjgT7lmoGupq3Zo2LBh6d27d5YuXdpu/9KlSzNy5MgaVcVr2W3vlzPjqoWbbbvu/XKG77wuM65amHd/8PkMbCrnL97+Uu78jyFZs2rTX707r98xL6/unbdrPOjhfnZLc3r3SY758PNt+/r2K+fok17Io/cPyLPP9KthdVB/XDPQtdRV4tGvX7+MHz8+d955Z4477rgkSblczp133pmzzz67tsWxVc1DW/O2KSs223/Dv+yUJO2OnfbJxTnvfXvl74/fM1M+/HyeW9w3P7xyeMa/Y2UOPtLDA+nZFjw4MPP/szmnX7A4zcM25JmFDXnXB17IiLHrcunHrWGDV3PN0BW0ppTWVPe5GtUer6PqqvFIkunTp2fq1Kl5y1vekkMOOSSXXXZZVq9endNPP73WpbEd7DXu5Xzpuidy1RdG5cqLdk7/ga2ZfPLz+etPbfkWvNDTXPKxXTL16SU56oQXM7i5NQsfbcyFp+6eh+8bVOvSoC65ZqDrKFUqlc1vB1FjX//61/OVr3wlS5YsyUEHHZSvfvWrmTBhwmu+b+XKlWlubs6Lv90jTYPrahYZ1K3Jow+qdQkAdGMbKuszNzdlxYoVaWpqqnU5VfPK99LP3jcpjYOq+7P+tas2ZMaEO+ruz7zuEo8kOfvss02tAgCAbqQuGw8AAOgOWlP9NRdbfpRz7ZmPBAAAFE7jAQAAFM5UKwAAKEgtniRer08ur8+qAACAbkXiAQAABWmt9EprlROIao/XUfVZFQAA0K1oPAAAgMKZagUAAAWppJRylZ/jUanyeB0l8QAAAAon8QAAgIJYXL5JfVYFAAB0KxIPAAAoSLlSSrlS3TUX1R6voyQeAABA4TQeAABA4Uy1AgCAgrSmV1qr/LP+ao/XUfVZFQAA0K1IPAAAoCAWl28i8QAAAAqn8QAAAApnqhUAABSknF4pV/ln/dUer6PqsyoAAKBbkXgAAEBBWiultFZ5sXe1x+soiQcAAFA4iQcAABTE7XQ3kXgAAACF03gAAACFM9UKAAAKUqn0SrlS3Z/1V6o8XkfVZ1UAAEC3IvEAAICCtKaU1lT5drpVHq+jJB4AAEDhNB4AAEDhTLUCAICClCvVf65GuVLV4TpM4gEAABRO4gEAAAUp1+B2utUer6PqsyoAAKBb0XgAAACFM9UKAAAKUk4p5So/V6Pa43WUxAMAACicxAMAAArSWimltcq30632eB0l8QAAgB5s9uzZGTduXJqamtLU1JSJEyfmJz/5SdvxtWvXZtq0aRk6dGgGDRqUE044IUuXLu30OBoPAAAoyCu306321hljxozJl770pdx///351a9+lXe+85153/vel0ceeSRJct555+Xmm2/OD37wg8ybNy/PPPNMjj/++E7/WZhqBQAAPdixxx7b7vUXvvCFzJ49O/fee2/GjBmTq666Ktdee23e+c53JknmzJmTN73pTbn33nvz1re+tcPjSDwAAKAbWrlyZbutpaXlNd/T2tqa6667LqtXr87EiRNz//33Z/369Zk0aVLbOfvss0922WWX3HPPPZ2qR+MBAAAFKaeUcqXK2x9vpzt27Ng0Nze3bTNnztxqnb/5zW8yaNCgNDQ05KMf/WhuuOGG7LvvvlmyZEn69euXHXbYod35I0aMyJIlSzr1Z2GqFQAAdEOLFi1KU1NT2+uGhoatnrv33nvnoYceyooVK3L99ddn6tSpmTdv3natR+MBAAAFqdTgAYKVP473yl2qOqJfv37Zc889kyTjx4/PL3/5y1x++eU56aSTsm7duixfvrxd6rF06dKMHDmyU3WZagUAALRTLpfT0tKS8ePHp2/fvrnzzjvbji1YsCB/+MMfMnHixE59psQDAAB6sAsuuCBTpkzJLrvskpdeeinXXntt5s6dm9tuuy3Nzc35yEc+kunTp2fIkCFpamrKOeeck4kTJ3bqjlaJxgMAAArzyoLvao/ZGcuWLcupp56axYsXp7m5OePGjcttt92Wd73rXUmSf/7nf06vXr1ywgknpKWlJZMnT843vvGNTtel8QAAgB7sqquu+rPHGxsbM2vWrMyaNet1jaPxAACAgmzLk8S3x5j1qD6rAgAAuhWJBwAAFKQrrPGoFokHAABQOI0HAABQOFOtAACgIOUaPLm82uN1lMQDAAAonMQDAAAKYnH5JhIPAACgcBoPAACgcKZaAQBAQUy12kTiAQAAFE7iAQAABZF4bCLxAAAACifxAACAgkg8NpF4AAAAhdN4AAAAhTPVCgAAClJJUk51pz5Vqjpax0k8AACAwkk8AACgIBaXbyLxAAAACqfxAAAACmeqFQAAFMRUq00kHgAAQOEkHgAAUBCJxyYSDwAAoHASDwAAKIjEYxOJBwAAUDiNBwAAUDhTrQAAoCCVSimVKk99qvZ4HSXxAAAACifxAACAgpRTSjlVXlxe5fE6SuIBAAAUTuMBAAAUzlQrAAAoiOd4bCLxAAAACifxAACAgrid7iYSDwAAoHASDwAAKIg1HptIPAAAgMJpPAAAgMKZagUAAAWxuHwTiQcAAFA4iQcAABSkUoPF5fWaeHTLxuOv3nhA+pT61roM6BJue+ahWpcAXc6UPd5a6xKgy+hV6ZWsrXUV1ANTrQAAgMJ1y8QDAADqQSVJpVL9MeuRxAMAACicxAMAAApSTimlVPnJ5VUer6MkHgAAQOEkHgAAUBAPENxE4gEAABRO4wEAABTOVCsAAChIuVJKqcpTn6r9pPSOkngAAACFk3gAAEBBKpUaPECwTp8gKPEAAAAKp/EAAAAKZ6oVAAAUxHM8NpF4AAAAhZN4AABAQSQem0g8AACAwmk8AACAwplqBQAABfHk8k0kHgAAQOEkHgAAUBBPLt9E4gEAAD3YzJkzc/DBB2fw4MEZPnx4jjvuuCxYsKDdOUcccURKpVK77aMf/WinxtF4AABAQTYmHqUqb52rcd68eZk2bVruvffe3H777Vm/fn2OPvrorF69ut15Z5xxRhYvXty2XXLJJZ0ax1QrAADowW699dZ2r6+++uoMHz48999/fw4//PC2/QMGDMjIkSO3eRyJBwAAdEMrV65st7W0tHTofStWrEiSDBkypN3+a665JsOGDcv++++fCy64IGvWrOlUPRIPAAAoSC2fXD527Nh2+2fMmJGLLrroz763XC7n3HPPzaGHHpr999+/bf8pp5ySXXfdNaNHj86vf/3rfPKTn8yCBQvyH//xHx2uS+MBAADd0KJFi9LU1NT2uqGh4TXfM23atDz88MO5++672+0/88wz2359wAEHZNSoUTnqqKPyxBNP5A1veEOH6tF4AABAQSp/3Ko9ZpI0NTW1azxey9lnn51bbrkl8+fPz5gxY/7suRMmTEiSPP744xoPAADgtVUqlZxzzjm54YYbMnfu3Oy+++6v+Z6HHnooSTJq1KgOj6PxAACAHmzatGm59tprc9NNN2Xw4MFZsmRJkqS5uTn9+/fPE088kWuvvTbHHHNMhg4dml//+tc577zzcvjhh2fcuHEdHkfjAQAABanl4vKOmj17dpKNDwn8U3PmzMlpp52Wfv365Y477shll12W1atXZ+zYsTnhhBPy6U9/ulPjaDwAAKAHq7zGEwfHjh2befPmve5xNB4AAFCUWq4urzMeIAgAABRO4gEAAEWpwRqPVHu8DpJ4AAAAhdN4AAAAhTPVCgAAClKpbNyqPWY9kngAAACFk3gAAEBBusIDBKtF4gEAABRO4wEAABTOVCsAAChKpVT952qYagUAAPRUEg8AACiI2+luIvEAAAAKJ/EAAICiVP64VXvMOiTxAAAACqfxAAAACmeqFQAAFMSTyzeReAAAAIWTeAAAQJHqdLF3tUk8AACAwmk8AACAwplqBQAABbG4fBOJBwAAUDiJBwAAFMWTy9tIPAAAgMJJPAAAoDClP27VHrP+SDwAAIDCaTwAAIDCmWoFAABFsbi8jcQDAAAonMQDAACKIvFo06HGY/78+dv04Ycffvg2vQ8AAOheOtR4HHHEESmVOn5brkqlklKplNbW1m0uDAAA6D461HjcddddRdcBAADdT6W0cav2mHWoQ43HO97xjqLrAAAAurHXvbh88eLFWbZsWfbcc88MHDhwe9QEAADdQqWycav2mPVom2+ne9NNN2WfffbJmDFj8uY3vzn33XdfkuS5557LX/zFX+TGG2/cXjUCAABd3DY1HjfffHOOP/74DBs2LDNmzEjlT9qqYcOGZeedd86cOXO2W5EAANAlVWq01aFtajwuvvjiHH744bn77rszbdq0zY5PnDgxDz744OsuDgAA6B62qfF4+OGH84EPfGCrx0eMGJFly5Ztc1EAAED3sk2LywcMGJDVq1dv9fiTTz6ZoUOHbnNRAADQLbidbpttSjyOPPLIfOc738mGDRs2O7ZkyZJ861vfytFHH/26iwMAALqHbUo8vvCFL+Stb31rDj744Jx44okplUq57bbb8tOf/jRXXnllKpVKZsyYsb1rBQCALqVU2bhVe8x6tE2Jx95775277747Q4cOzWc+85lUKpV85StfyRe/+MUccMAB+dnPfpbddtttO5cKAAB0Vdv8AMH99tsvd9xxR1588cU8/vjjKZfL2WOPPbLTTjttz/oAAIBu4HU/uXzHHXfMwQcfvD1qAQCA7qUWz9XoTlOtkuTZZ5/N+eefn3333TcDBgzIgAEDsu++++b888/P0qVLt2eNAABAF7dNjccjjzySAw44IJdeemmam5tz4okn5sQTT0xzc3MuvfTSjBs3Lg8//PD2rhUAALqWV26nW+2tDm3TVKtp06altbU1991332bTrH7xi1/kmGOOyTnnnJO77rpruxQJAAB0bduUePziF7/Ixz72sS2u7TjkkEPysY99LPfdd9/rLg4AALq0So22OrRNjcfw4cPT2Ni41eONjY0ZPnz4NhcFAAB0L9vUeJx77rmZPXt2lixZstmxZ555JrNnz8655577emsDAAC6iQ6t8bj00ks32zdo0KDsueee+au/+qvsueeeSZLHHnssN954Y/bcc89UKnWa8QAAQLW4nW6bDjUe559//laPXXPNNZvt+/Wvf53zzz8/55133rZXBgAAdBsdajwWLlxYdB0AAND9SDzadKjx2HXXXYuuAwAA6Ma2+cnlAAAAHbVNDxBMNq7j+NrXvpYHHnggK1asSLlcbne8VCrliSeeeN0FAgBAl1WLJ4nX6ZPLtynxmDt3bg455JDccsstGT16dJ588snsscceGT16dH7/+99n0KBBOfzww7d3rQAAQBe1TY3HhRdemD322CMLFizInDlzkiSf+tSncvfdd+fnP/95nnrqqXzgAx/YroUCAEBXU6rUZqtH29R4PPDAA/nIRz6Spqam9O7dO0nS2tqaJJkwYULOOuusfOYzn9l+VQIAAF3aNq3x6NOnTwYPHpwk2WGHHdK3b98sW7as7fgee+yR//mf/9k+FdKl9e1Xzql/vyRHnfBiBjW3ZuGj/fOdS0bmgfmDa10a1JVrLx+R73x5VHbd++V8864F7Y498ssBuerzo/P4bwZkwODWHH7s8px+weL0H1jeyqdBz9E4oDXvP3Nx9j5wVfY+cFUG79Caf/r7PXLHD3eqdWnAq2xT4rHnnnvmscceS7JxEfk+++yTG264oe34j370o4wcOXL7VEiX9vHLFuX4M5/NT2/YMbMv3DnlcvK57z2Z/Q5ZVevSoG48+0zfXPfV4Wkc0LrZsSce7p9/OGnPtLzcK2de9HTefcrz+fE1Q/P5M3erfqFQh5p23JAP/d3TGbvny3ny0QG1Lgc2V6nRVoe2KfE45phj8u1vfzszZ85Mnz59Mn369Jx++unZa6+9kiRPPPFEZs6cuV0LpevZ+6A1OfK45fnWxaNy/RXDkyR3XL9jvvnTBfmbTy/OeX+5V40rhPrwrYtH503j16TcWsqKF3q3OzbnS6MyqLk1l/zw8QwcvDHhGDFmXS77+11y/9zBGX/ES7UoGerGi8/2zSmH/EVefK5f9jpgVb560yO1LgnYim1KPD7zmc/kv//7v9vWd0ydOjXf/e53s//+++fAAw/Mt7/97Xzyk5/croXS9Rz23uVp3ZD8+PtD2/atb+mVW/91SPZ9y5rsNHpdDauD+vCbewfmZz/aIR/97NObHVv9Uq88MH9wjjr+hbamI0kmnfhi+g9szfybd6hipVCf1q/rlRef61frMoAO2KbGo2/fvhk6dGhKpU33CP7whz+cG264Iddff31OO+20bSpm/vz5OfbYYzN69OiUSqXceOON2/Q51Ic99385Tz3ZkDWr2v8Ed8FDG6PwPfZ7uRZlQd1obU1mfXpM3n3K89n9TWs3O/67R/undUMpex3Y/lrp26+SPfZ7OY8/3L9apQLQjc2cOTMHH3xwBg8enOHDh+e4447LggXt1xuuXbs206ZNy9ChQzNo0KCccMIJWbp0aafGqasnl69evToHHnhgZs2aVetS2A6GDN+QF5b23Wz/K/uGjthQ7ZKgrvzou8Oy7Kl+mfqJxVs8/sKyjbNhh4xYv9mxISPWb/H6AqC+lFKD2+l2ssZ58+Zl2rRpuffee3P77bdn/fr1Ofroo7N69eq2c84777zcfPPN+cEPfpB58+blmWeeyfHHH9+pcTq0xuOd73xn56rPxkXnd955Z6feM2XKlEyZMqXTY1Gf+jWWs37d5n/117Vs3NfQ6I489FwrX+id7/7jyJxy7pLsMHTzReVJ0rJ248+G+vbbfJVgv4ZK23EAeD1uvfXWdq+vvvrqDB8+PPfff38OP/zwrFixIldddVWuvfbatr5gzpw5edOb3pR77703b33rWzs0Tocaj3K53G5aVUdUKsUvp29paUlLS0vb65UrVxY+Jh23bm2vrX5hSuJLEz3a1ZeMyuAdWvO+v35uq+e80pxvrYHXvAPw57z6u3FDQ0MaGhpe830rVqxIkgwZMiRJcv/992f9+vWZNGlS2zn77LNPdtlll9xzzz3bt/GYO3duhz6s2mbOnJnPfvaztS6DrXhhWZ8MHbnlKSJJ8vzSbbqpGnR5Tz/ZLz/5/tB89LNP5/k/mS61rqWU1vWlLFnULwMGtWbI8I3TEbc2ZXFLU7AAqDOV0sat2mMmGTt2bLvdM2bMyEUXXfRn31oul3Puuefm0EMPzf77758kWbJkSfr165cddtih3bkjRozIkiVLOlxWl/7md8EFF2T69Oltr1euXLnZHzC188Qj/XPg21ZlwKDWdgvM9/mLNUmSJx+xMJae6bkl/VIul/KNz4zJNz6z+fGpE/bNcX/zbE49f3F696nksf/un3f85fK24+vXlfLkI/1z+LHLN38zAPzRokWL0tTU1Pa6I2nHtGnT8vDDD+fuu+/e7vV06cajo3ERtfGzW5pz4t8+m2M+/Hzbczz69ivn6JNeyKP3D8izz7j9IT3Tbnu/nBlXLdxs/9WXjMzLq3rnby9+OqN2a8nApnL+4u0v5c7/GJJTzluaAYM2Tq268/od8/Lq3nm7xgOg/tXigX5/HK+pqald4/Fazj777Nxyyy2ZP39+xowZ07Z/5MiRWbduXZYvX94u9Vi6dGmnHhrepRsP6tuCBwdm/n825/QLFqd52IY8s7Ah7/rACxkxdl0u/bhkip6reWhr3jZlxWb7b/iXnZKk3bHTPrk4571vr/z98Xtmyoefz3OL++aHVw7P+HeszMFHenggJMmx/2dJBja1ZuiIjc+HmnDUixk2cuOv//O7I7LmJV934M+pVCo555xzcsMNN2Tu3LnZfffd2x0fP358+vbtmzvvvDMnnHBCkmTBggX5wx/+kIkTJ3Z4nLq6EletWpXHH3+87fXChQvz0EMPZciQIdlll11qWBnb6pKP7ZKpTy/JUSe8mMHNrVn4aGMuPHX3PHzfoFqXBl3CXuNezpeueyJXfWFUrrxo5/Qf2JrJJz+fv/7Ulm/BCz3RCWcszogxmx5Ke9i7X8xh734xSfLTG4dpPOA1TJs2Lddee21uuummDB48uG3dRnNzc/r375/m5uZ85CMfyfTp0zNkyJA0NTXlnHPOycSJEzu8sDxJSpVq3H6qg+bOnZsjjzxys/1Tp07N1Vdf/ZrvX7lyZZqbm3NE3pc+Jfe3h4647ZmHal0CdDlT9uj4P7TQ022orMtP1/57VqxY0alpP13dK99Ld/3iF9KrsbGqY5fXrs3vP/X/dfjPfGt3r50zZ07bg8HXrl2bj3/84/nXf/3XtLS0ZPLkyfnGN77RdadaHXHEEVW5DS8AALBRR75/NzY2ZtasWa/rQd+vq/F4+umnM3/+/CxbtiwnnHBCxowZk9bW1qxYsSLNzc3p3bv3a38IAAB0U688TbzaY9ajbXqCW6VSyfTp07P77rvnQx/6UKZPn57f/va3STau09htt93yta99bbsWCgAAdF3b1Hh85StfyeWXX57zzz8/t99+e7t4prm5Occff3x++MMfbrciAQCgS6rUaKtD29R4fOtb38qpp56aL37xiznooIM2Oz5u3Li2BAQAAGCbGo9FixblbW9721aPDxw4MCtXrtzmogAAgO5lmxaXDx8+PIsWLdrq8fvvv99zNwAAoIZPLq8325R4HH/88bniiivy5JNPtu175f6///Vf/5Wrr746J5544vapEAAA6PK2qfH47Gc/m1GjRuWggw7KqaeemlKplC9/+cs57LDDMmXKlIwbNy6f+tSntnetAADQpbxyO91qb/VomxqP5ubm3HvvvfnEJz6Rp59+Oo2NjZk3b16WL1+eGTNm5Gc/+1kGDBiwvWsFAAC6qG1+gGD//v3z6U9/Op/+9Ke3Zz0AAEA39LqeXA4AAPwZldLGrdpj1qFtajz++q//+jXPKZVKueqqq7bl4wEAgG5mmxqPn/70p213sXpFa2trFi9enNbW1uy0004ZOHDgdikQAAC6LLfTbbNNjcfvfve7Le5fv359rrzyylx22WW5/fbbX09dAABAN7JNd7Xamr59++bss8/O0UcfnbPPPnt7fjQAAHQ5bqe7yXZtPF5x4IEHZv78+UV8NAAA0AUV0njcfvvtnuMBAAC02aY1HhdffPEW9y9fvjzz58/PAw88kH/4h394XYUBAECXZ3F5m21qPC666KIt7t9xxx3zhje8IVdccUXOOOOM11MXAADQjWxT41Eul7d3HQAA0P3UYrF3nSYenV7j8fLLL2f69Om5+eabi6gHAADohjrdePTv3z9XXnllli5dWkQ9AABAN7RNU63Gjx+fhx9+eHvXAgAA3YvF5W226Xa6l112Wa677rr8y7/8SzZs2LC9awIAALqZDice8+fPz5ve9KbstNNOmTp1anr16pWzzjorf/d3f5edd945/fv3b3d+qVTKf//3f2/3ggEAoMuQeLTpcONx5JFH5vvf/34++MEPZujQoRk2bFj23nvvImsDAAC6iQ43HpVKJZXKxvZp7ty5RdUDAADdRqkGt9Ot+u17O2ib1ngAAAB0Rqcaj1KpVFQdAABAN9apxuPDH/5wevfu3aGtT59tulMvAADQDXWqO5g0aVLe+MY3FlULAADQTXWq8Zg6dWpOOeWUomoBAIDuxe1021hcDgAAFE7jAQAAFM4KcAAAKIjneGzS4cajXC4XWQcAANCNSTwAAKBIdZpAVJs1HgAAQOEkHgAAUBS3020j8QAAAAqn8QAAAApnqhUAABTE7XQ3kXgAAACFk3gAAEBRLC5vI/EAAAAKp/EAAAAKZ6oVAAAUxOLyTSQeAABA4SQeAABQFIvL20g8AACAwkk8AACgKBKPNhIPAACgcBoPAACgcKZaAQBAQdxOdxOJBwAAUDiJBwAAFMXi8jYSDwAAoHAaDwAAoHCmWgEAQFFMtWoj8QAAAAon8QAAgIK4ne4mEg8AAKBwGg8AAKBwploBAEBRLC5vI/EAAAAKJ/EAAICCWFy+icQDAAB6sPnz5+fYY4/N6NGjUyqVcuONN7Y7ftppp6VUKrXb3v3ud3d6HI0HAAAUpVKjrRNWr16dAw88MLNmzdrqOe9+97uzePHitu1f//VfOzdITLUCAIAebcqUKZkyZcqfPaehoSEjR458XeNIPAAAoBtauXJlu62lpWWbP2vu3LkZPnx49t577/zt3/5tnn/++U5/hsYDAACKUsOpVmPHjk1zc3PbNnPmzG36Lbz73e/Od7/73dx555358pe/nHnz5mXKlClpbW3t1OeYagUAAN3QokWL0tTU1Pa6oaFhmz7n5JNPbvv1AQcckHHjxuUNb3hD5s6dm6OOOqrDnyPxAACAgpRqtCVJU1NTu21bG49X22OPPTJs2LA8/vjjnXqfxgMAAOiwp556Ks8//3xGjRrVqfeZagUAAD3YqlWr2qUXCxcuzEMPPZQhQ4ZkyJAh+exnP5sTTjghI0eOzBNPPJFPfOIT2XPPPTN58uROjaPxAACAomzDczW2y5id8Ktf/SpHHnlk2+vp06cnSaZOnZrZs2fn17/+db7zne9k+fLlGT16dI4++uh87nOf6/TULY0HAAD0YEcccUQqla13K7fddtt2GUfjAQAABSlVNm7VHrMeWVwOAAAUTuIBAABF6QJrPKpF4gEAABRO4wEAABTOVCsAAChSnU59qjaJBwAAUDiJBwAAFMTtdDeReAAAAIXTeAAAAIUz1QoAAIriOR5tJB4AAEDhJB4AAFAQi8s3kXgAAACFk3gAAEBRrPFoI/EAAAAKp/EAAAAKZ6oVAAAUxOLyTTQe0MNNHn1QrUuALufZ/9y11iVAl9G6piU5qdZVUA80HgAAUBSLy9tY4wEAABRO4wEAABTOVCsAACiKqVZtJB4AAEDhJB4AAFAQt9PdROIBAAAUTuIBAABFscajjcQDAAAonMYDAAAonKlWAABQkFKlklKlunOfqj1eR0k8AACAwkk8AACgKBaXt5F4AAAAhdN4AAAAhTPVCgAACuLJ5ZtIPAAAgMJJPAAAoCgWl7eReAAAAIWTeAAAQEGs8dhE4gEAABRO4wEAABTOVCsAACiKxeVtJB4AAEDhJB4AAFAQi8s3kXgAAACF03gAAACFM9UKAACKYnF5G4kHAABQOIkHAAAUqF4Xe1ebxAMAACicxAMAAIpSqWzcqj1mHZJ4AAAAhdN4AAAAhTPVCgAACuLJ5ZtIPAAAgMJJPAAAoCgeINhG4gEAABRO4wEAABTOVCsAAChIqbxxq/aY9UjiAQAAFE7iAQAARbG4vI3EAwAAKJzGAwAAKJypVgAAUBBPLt9E4gEAABRO4gEAAEWpVDZu1R6zDkk8AACgB5s/f36OPfbYjB49OqVSKTfeeGO745VKJRdeeGFGjRqV/v37Z9KkSXnsscc6PY7GAwAACvLKGo9qb52xevXqHHjggZk1a9YWj19yySX56le/miuuuCL33XdfBg4cmMmTJ2ft2rWdGsdUKwAA6MGmTJmSKVOmbPFYpVLJZZddlk9/+tN53/velyT57ne/mxEjRuTGG2/MySef3OFxJB4AANANrVy5st3W0tLS6c9YuHBhlixZkkmTJrXta25uzoQJE3LPPfd06rM0HgAAUJRKjbYkY8eOTXNzc9s2c+bMTpe/ZMmSJMmIESPa7R8xYkTbsY4y1QoAALqhRYsWpampqe11Q0NDDavReAAAQGFq+QDBpqamdo3Hthg5cmSSZOnSpRk1alTb/qVLl+aggw7q1GeZagUAAGzR7rvvnpEjR+bOO+9s27dy5crcd999mThxYqc+S+IBAAA92KpVq/L444+3vV64cGEeeuihDBkyJLvsskvOPffcfP7zn89ee+2V3XffPZ/5zGcyevToHHfccZ0aR+MBAABF6QJPLv/Vr36VI488su319OnTkyRTp07N1VdfnU984hNZvXp1zjzzzCxfvjyHHXZYbr311jQ2NnZqHI0HAAD0YEcccUQqf6ZZKZVKufjii3PxxRe/rnE0HgAAUJBaLi6vNxaXAwAAhZN4AABAUf7kgX5VHbMOSTwAAIDCaTwAAIDCmWoFAAAFsbh8E4kHAABQOIkHAAAUpVzZuFV7zDok8QAAAAqn8QAAAApnqhUAABTFczzaSDwAAIDCSTwAAKAgpdTgdrrVHa7DJB4AAEDhJB4AAFCUSmXjVu0x65DEAwAAKJzGAwAAKJypVgAAUJBSpQaLy+tzppXEAwAAKJ7EAwAAiuIBgm0kHgAAQOE0HgAAQOFMtQIAgIKUKpWUqvxcjWqP11ESDwAAoHASDwAAKEr5j1u1x6xDEg8AAKBwEg8AACiINR6bSDwAAIDCaTwAAIDCmWoFAABF8eTyNhIPAACgcBIPAAAoSqWycav2mHVI4gEAABRO4wEAABTOVCsAAChIqbJxq/aY9UjiAQAAFE7iAQAARbG4vI3Gg0L17VfOqX+/JEed8GIGNbdm4aP9851LRuaB+YNrXRrUJdcMbFmfx15O450r0/c3a9J72fqUB/fO+r37Z82Hh6V1537tTy5X0njr8vS/bUV6P70ulYZSNuzWmFV/s1Nad2+szW8AMNWKYn38skU5/sxn89MbdszsC3dOuZx87ntPZr9DVtW6NKhLrhnYsgE/fCH97nkp6w4ckFVnDM/ayTuk3yNrsuN5v0vv37e0O3fwV5dk0LeWZf0bGrPqzOFZc9KwlHfqk17LW2tUPT1ZqVybrR5JPCjM3getyZHHLc+3Lh6V668YniS54/od882fLsjffHpxzvvLvWpcIdQX1wxs3Zr3DcmGjzcmfUtt+1rePjg7nvO7DLj++bz08dFJkoa7V6bxpyuz4oLRWTdRUgj1pK4Sj5kzZ+bggw/O4MGDM3z48Bx33HFZsGBBrctiGx323uVp3ZD8+PtD2/atb+mVW/91SPZ9y5rsNHpdDauD+uOaga3b8Kb+7ZqOJGkd3S8bdumX3k9tujb63/hi1r+xcWPTUa4ka+v0R7/QA9VV4zFv3rxMmzYt9957b26//fasX78+Rx99dFavXl3r0tgGe+7/cp56siFrVvVut3/BQwOSJHvs93ItyoK65ZqBTqpU0mt5aypNG6+Z0prW9HlsbTbs2ZiB3302Qz/4WHb6wGMZcsaTabh7ZY2Lpcd6ZXF5tbc6VFdTrW699dZ2r6+++uoMHz48999/fw4//PAaVcW2GjJ8Q15Y2nez/a/sGzpiQ7VLgrrmmoHOaZi7Mr2f35A1pwxLkvRevD6lStLws5eS3snqqTulMrB3+t/8YgZ/ZXHK/Xtn/fiBNa4aeq66ajxebcWKFUmSIUOGbPF4S0tLWlo2LShbudJPM+pJv8Zy1q8rbbZ/XcvGfQ2N4m/4U64Z6LjeT7Vk0JXLsn6fxqx9Z1OSpPTHaVW9XmrNi1/ZJRv27p8kaTlkUIae8WQG/vvzWa7xoNoqf9yqPWYdqqupVn+qXC7n3HPPzaGHHpr9999/i+fMnDkzzc3NbdvYsWOrXCV/zrq1vdK33+Z/8/s1bNzXsrZu//pBTbhmoGNKL25I88VPpzKgV1Z+cuek98bmvNJv4zXSOqJvW9ORJOnfKy0HD0yfx15OWuv0Gxn0AHX7r9i0adPy8MMP57rrrtvqORdccEFWrFjRti1atKiKFfJaXljWJ0NGrN9s/yv7nl9a14EbVJ1rBl5baXVrmi96KqXVrVlx0ZiUh266LspDNv66vEPvzd5X2aFPShs2pSJA9dXlv2Jnn312brnllsyfPz9jxozZ6nkNDQ1paGioYmV0xhOP9M+Bb1uVAYNa2y2W3ecv1iRJnnyk/9beCj2SawZew7pymj73dPo8sy7LPzc2rbu0/w5QHtonrTv2Tq/nN18P1euFDan0K6XSv25/5ko3VapUUqryYu9qj9dRdXX1VSqVnH322bnhhhvy05/+NLvvvnutS+J1+NktzendJznmw8+37evbr5yjT3ohj94/IM8+0+/PvBt6HtcM/BmtlTRdsjh9F7yclZ8cnQ37bLkRbzmsKb2f25C+D266I2Zp5Yb0u29V1o0bkPTafB0VUB11lXhMmzYt1157bW666aYMHjw4S5YsSZI0Nzenf38/6etqFjw4MPP/szmnX7A4zcM25JmFDXnXB17IiLHrcunHrceBV3PNwNYN/PazafjFqrQcMjCll1rTcNeKdsdbjmxOkqx5/5A0/L+VafrSM3n5fTumMrBXGm9dntKGSlb/n2G1KJ2erha3t63TxKOuGo/Zs2cnSY444oh2++fMmZPTTjut+gXxul3ysV0y9eklOeqEFzO4uTULH23MhafunofvG1Tr0qAuuWZgy/osXJskafjF6jT8YvPnez37x8ajsmOfLP/SLhn07WfT/z9fTGlDJev36Z+Xpo9K6+6NVa0ZaK+uGo9KnXZnbLv1Lb3yL58bnX/53OhalwJdgmsGtmzFF3fp8Lnlkf2y8lM7F1gNdEIlSbXvaVCnX6nrao0HAADQPWk8AACAwtXVVCsAAOhO3E53E4kHAABQOIkHAAAUpZIa3E63usN1lMQDAAAonMYDAAAonKlWAABQFE8ubyPxAAAACifxAACAopSTlGowZh2SeAAAAIXTeAAAAIUz1QoAAAriyeWbSDwAAIDCSTwAAKAobqfbRuIBAAA92EUXXZRSqdRu22effbb7OBIPAAAoShdJPPbbb7/ccccdba/79Nn+bYLGAwAAerg+ffpk5MiRhY5hqhUAAHRDK1eubLe1tLRs9dzHHnsso0ePzh577JEPfehD+cMf/rDd69F4AABAUV6ZalXtLcnYsWPT3Nzcts2cOXOLJU6YMCFXX311br311syePTsLFy7M29/+9rz00kvb9Y/CVCsAAOiGFi1alKamprbXDQ0NWzxvypQpbb8eN25cJkyYkF133TX//u//no985CPbrR6NBwAAFKWcpFSDMZM0NTW1azw6aocddsgb3/jGPP7449u1LFOtAACANqtWrcoTTzyRUaNGbdfP1XgAAEAPdv7552fevHn53e9+l5///Of5q7/6q/Tu3Tsf/OAHt+s4ploBAEBBSpVKSlV+jkdnx3vqqafywQ9+MM8//3x22mmnHHbYYbn33nuz0047bde6NB4AANCDXXfddVUZR+MBAABF6SJPLq8GazwAAIDCSTwAAKAo5UpSqnICUZZ4AAAAPZTGAwAAKJypVgAAUBSLy9tIPAAAgMJJPAAAoDA1SDwi8QAAAHoojQcAAFA4U60AAKAoFpe3kXgAAACFk3gAAEBRypVUfbG3J5cDAAA9lcQDAACKUilv3Ko9Zh2SeAAAAIXTeAAAAIUz1QoAAIridrptJB4AAEDhJB4AAFAUt9NtI/EAAAAKp/EAAAAKZ6oVAAAUxeLyNhIPAACgcBIPAAAoSiU1SDyqO1xHSTwAAIDCSTwAAKAo1ni0kXgAAACF03gAAACFM9UKAACKUi4nKddgzPoj8QAAAAon8QAAgKJYXN5G4gEAABRO4wEAABTOVCsAACiKqVZtJB4AAEDhJB4AAFCUciVJlROIssQDAADooSQeAABQkEqlnEqlug/0q/Z4HSXxAAAACqfxAAAACmeqFQAAFKVSqf5ib7fTBQAAeiqJBwAAFKVSg9vpSjwAAICeSuMBAAAUzlQrAAAoSrmclKr8XA3P8QAAAHoqiQcAABTF4vI2Eg8AAKBwEg8AAChIpVxOpcprPCrWeAAAAD2VxgMAACicqVYAAFAUi8vbSDwAAIDCSTwAAKAo5UpSkngkEg8AAKAKNB4AAEDhTLUCAICiVCpJqvxcDVOtAACAnkriAQAABamUK6lUeXF5ReIBAAD0VBoPAACgcKZaAQBAUSrlVH9xeZXH6yCJBwAAUDiJBwAAFMTi8k0kHgAAQGbNmpXddtstjY2NmTBhQn7xi19s18/XeAAAQFEq5dpsnfRv//ZvmT59embMmJEHHnggBx54YCZPnpxly5Zttz8KjQcAAPRwl156ac4444ycfvrp2XfffXPFFVdkwIAB+fa3v73dxuhWazxemc+2IeuT+pzaBkA30LqmpdYlQJfxyvVSr+sOilaL76Ubsj5JsnLlynb7Gxoa0tDQsNn569aty/33358LLrigbV+vXr0yadKk3HPPPdutrm7VeLz00ktJkrvz4xpXAkC3dlKtC4Cu56WXXkpzc3Oty6iafv36ZeTIkbl7SW2+lw4aNChjx45tt2/GjBm56KKLNjv3ueeeS2tra0aMGNFu/4gRI/K///u/262mbtV4jB49OosWLcrgwYNTKpVqXQ5/YuXKlRk7dmwWLVqUpqamWpcDdc81A53jmqlflUolL730UkaPHl3rUqqqsbExCxcuzLp162oyfqVS2ez78JbSjmrqVo1Hr169MmbMmFqXwZ/R1NTkHwToBNcMdI5rpj71pKTjTzU2NqaxsbHWZbymYcOGpXfv3lm6dGm7/UuXLs3IkSO32zgWlwMAQA/Wr1+/jB8/PnfeeWfbvnK5nDvvvDMTJ07cbuN0q8QDAADovOnTp2fq1Kl5y1vekkMOOSSXXXZZVq9endNPP327jaHxoCoaGhoyY8aMms8thK7CNQOd45qB1+ekk07Ks88+mwsvvDBLlizJQQcdlFtvvXWzBeevR6nSU+9tBgAAVI01HgAAQOE0HgAAQOE0HgAAQOE0HgAAQOE0HhSqpaUln/zkJzN69Oj0798/EyZMyO23317rsqBurVq1KjNmzMi73/3uDBkyJKVSKVdffXWty4K69Mtf/jJnn3129ttvvwwcODC77LJLPvCBD+S3v/1trUsDtkDjQaFOO+20XHrppfnQhz6Uyy+/PL17984xxxyTu+++u9alQV167rnncvHFF+fRRx/NgQceWOtyoK59+ctfzg9/+MMcddRRufzyy3PmmWdm/vz5efOb35yHH3641uUBr+J2uhTmF7/4RSZMmJCvfOUrOf/885Mka9euzf7775/hw4fn5z//eY0rhPrT0tKSF198MSNHjsyvfvWrHHzwwZkzZ05OO+20WpcGdefnP/953vKWt6Rfv35t+x577LEccMABef/735/vf//7NawOeDWJB4W5/vrr07t375x55plt+xobG/ORj3wk99xzTxYtWlTD6qA+NTQ0ZOTIkbUuA7qEt73tbe2ajiTZa6+9st9+++XRRx+tUVXA1mg8KMyDDz6YN77xjWlqamq3/5BDDkmSPPTQQzWoCoDurFKpZOnSpRk2bFitSwFeReNBYRYvXpxRo0Zttv+Vfc8880y1SwKgm7vmmmvy9NNP56STTqp1KcCraDwozMsvv5yGhobN9jc2NrYdB4Dt5X//938zbdq0TJw4MVOnTq11OcCraDwoTP/+/dPS0rLZ/rVr17YdB4DtYcmSJXnPe96T5ubmtjWGQH3pU+sC6L5GjRqVp59+erP9ixcvTpKMHj262iUB0A2tWLEiU6ZMyfLly/Ozn/3Mvy9QpyQeFOaggw7Kb3/726xcubLd/vvuu6/tOAC8HmvXrs2xxx6b3/72t7nllluy77771rokYCs0HhTm/e9/f1pbW/PNb36zbV9LS0vmzJmTCRMmZOzYsTWsDoCurrW1NSeddFLuueee/OAHP8jEiRNrXRLwZ5hqRWEmTJiQE088MRdccEGWLVuWPffcM9/5znfyu9/9LldddVWty4O69fWvfz3Lly9vu/PbzTffnKeeeipJcs4556S5ubmW5UHd+PjHP57//M//zLHHHpsXXnhhswcGfvjDH65RZcCWeHI5hVq7dm0+85nP5Pvf/35efPHFjBs3Lp/73OcyefLkWpcGdWu33XbL73//+y0eW7hwYXbbbbfqFgR16ogjjsi8efO2etxXHKgvGg8AAKBw1ngAAACF03gAAACF03gAAACF03gAAACF03gAAACF03gAAACF03gAAACF03gAAACF03gAAACF03gAdNBuu+2W0047re313LlzUyqVMnfu3JrV9GqvrnFrSqVSLrrook5//tVXX51SqZRf/epXnS9uKy666KKUSqXt9nkA1CeNB9AlvPKF95WtsbExb3zjG3P22Wdn6dKltS6vU3784x9v05d+AOjK+tS6AIDOuPjii7P77rtn7dq1ufvuuzN79uz8+Mc/zsMPP5wBAwZUtZbDDz88L7/8cvr169ep9/34xz/OrFmzNB8A9CgaD6BLmTJlSt7ylrckSf7mb/4mQ4cOzaWXXpqbbropH/zgB7f4ntWrV2fgwIHbvZZevXqlsbFxu38uAHRHploBXdo73/nOJMnChQuTJKeddloGDRqUJ554Isccc0wGDx6cD33oQ0mScrmcyy67LPvtt18aGxszYsSInHXWWXnxxRfbfWalUsnnP//5jBkzJgMGDMiRRx6ZRx55ZLOxt7bG47777ssxxxyTHXfcMQMHDsy4ceNy+eWXt9U3a9asJGk3dewV27vGjvr973+f//t//2/23nvv9O/fP0OHDs2JJ56Y3/3ud1s8f82aNTnrrLMydOjQNDU15dRTT92sxiT5yU9+kre//e0ZOHBgBg8enPe85z2vq04Aui6JB9ClPfHEE0mSoUOHtu3bsGFDJk+enMMOOyz/+I//2DYF66yzzsrVV1+d008/PX/3d3+XhQsX5utf/3oefPDB/L//9//St2/fJMmFF16Yz3/+8znmmGNyzDHH5IEHHsjRRx+ddevWvWY9t99+e9773vdm1KhR+djHPpaRI0fm0UcfzS233JKPfexjOeuss/LMM8/k9ttvz/e+973N3l+NGrfkl7/8ZX7+85/n5JNPzpgxY/K73/0us2fPzhFHHJH/+Z//2Wwa29lnn50ddtghF110URYsWJDZs2fn97//fVszliTf+973MnXq1EyePDlf/vKXs2bNmsyePTuHHXZYHnzwwey2227bVCsAXVQFoAuYM2dOJUnljjvuqDz77LOVRYsWVa677rrK0KFDK/3796889dRTlUqlUpk6dWolSeUf/uEf2r3/Zz/7WSVJ5Zprrmm3/9Zbb223f9myZZV+/fpV3vOe91TK5XLbeZ/61KcqSSpTp05t23fXXXdVklTuuuuuSqVSqWzYsKGy++67V3bdddfKiy++2G6cP/2sadOmVbb0n98iatyaJJUZM2a0vV6zZs1m59xzzz2VJJXvfve7bfte+f9h/PjxlXXr1rXtv+SSSypJKjfddFOlUqlUXnrppcoOO+xQOeOMM9p95pIlSyrNzc3t9s+YMWOLfx4AdC+mWgFdyqRJk7LTTjtl7NixOfnkkzNo0KDccMMN2Xnnndud97d/+7ftXv/gBz9Ic3Nz3vWud+W5555r28aPH59BgwblrrvuSpLccccdWbduXc4555x2U6DOPffc16ztwQcfzMKFC3Puuedmhx12aHesI7eLrUaNW9O/f/+2X69fvz7PP/989txzz+ywww554IEHNjv/zDPPbEtfko1/3n369MmPf/zjJBuTn+XLl+eDH/xgu99L7969M2HChLbfCwA9h6lWQJcya9asvPGNb0yfPn0yYsSI7L333unVq/3PUPr06ZMxY8a02/fYY49lxYoVGT58+BY/d9myZUk2rnVIkr322qvd8Z122ik77rjjn63tlWlf+++/f8d/Q1WucWtefvnlzJw5M3PmzMnTTz+dSqXSdmzFihWbnf/qsQcNGpRRo0a1rQl57LHHkmxag/NqTU1N21QnAF2XxgPoUg455JC2u1ptTUNDw2bNSLlczvDhw3PNNdds8T077bTTdqtxW9WyxnPOOSdz5szJueeem4kTJ6a5uTmlUiknn3xyyuVypz/vlfd873vfy8iRIzc73qePf34Aehr/5Qd6hDe84Q254447cuihh7abVvRqu+66a5KNP7HfY4892vY/++yzW7xr06vHSJKHH344kyZN2up5W5t2VY0at+b666/P1KlT80//9E9t+9auXZvly5dv8fzHHnssRx55ZNvrVatWZfHixTnmmGPafi9JMnz48D/7ZwFAz2GNB9AjfOADH0hra2s+97nPbXZsw4YNbV+wJ02alL59++ZrX/tau+lGl1122WuO8eY3vzm77757Lrvsss2+sP/pZ73yTJFXn1ONGremd+/e7T4rSb72ta+ltbV1i+d/85vfzPr169tez549Oxs2bMiUKVOSJJMnT05TU1O++MUvtjvvFc8+++w21wpA1yTxAHqEd7zjHTnrrLMyc+bMPPTQQzn66KPTt2/fPPbYY/nBD36Qyy+/PO9///uz00475fzzz8/MmTPz3ve+N8ccc0wefPDB/OQnP8mwYcP+7Bi9evXK7Nmzc+yxx+aggw7K6aefnlGjRuV///d/88gjj+S2225LkowfPz5J8nd/93eZPHlyevfunZNPPrkqNW7Ne9/73nzve99Lc3Nz9t1339xzzz2544472t2m+E+tW7cuRx11VD7wgQ9kwYIF+cY3vpHDDjssf/mXf5lk4xqO2bNn5//8n/+TN7/5zTn55JOz00475Q9/+EN+9KMf5dBDD83Xv/71baoVgK5J4wH0GFdccUXGjx+fK6+8Mp/61KfSp0+f7Lbbbvnwhz+cQw89tO28z3/+82lsbMwVV1yRu+66KxMmTMh//dd/5T3vec9rjjF58uTcdddd+exnP5t/+qd/Srlczhve8IacccYZbeccf/zxOeecc3Ldddfl+9//fiqVSk4++eSq1bgll19+eXr37p1rrrkma9euzaGHHpo77rgjkydP3uL5X//613PNNdfkwgsvzPr16/PBD34wX/3qV9tNIzvllFMyevTofOlLX8pXvvKVtLS0ZOedd87b3/72nH766dtUJwBdV6ny6mwdAABgO7PGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKJzGAwAAKNz/D2gCRcSGk6IFAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
+ "nn_model.eval()\n",
"pred_y_test = np.argmax(nn_model(test_data[0]).detach(), axis=1)\n",
"\n",
"cm = confusion_matrix(test_data[1], pred_y_test)\n",
@@ -278,6 +298,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "cca76db8",
"metadata": {},
@@ -287,7 +308,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"id": "ca48f9d5",
"metadata": {},
"outputs": [
@@ -297,7 +318,7 @@
"0.9906846833902615"
]
},
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -307,6 +328,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "5332e2b4",
"metadata": {},
@@ -315,6 +337,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "45dbdd1e",
"metadata": {},
@@ -327,53 +350,34 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 13,
"id": "218d0983",
"metadata": {},
"outputs": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4b5f7a72f877486b8007e1a0969e1b27",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Split Gradient: 0%| | 0/107 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "15553c7a94c6433b9994a28cf19aa666",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Split Gradient: 0%| | 0/53 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Batch Test Gradients: 100%|██████████| 4/4 [00:00<00:00, 67.10it/s]\n",
+ "MVP: 100%|██████████| 547/547 [00:00<00:00, 742.01it/s] \n",
+ "Batch Split Input Gradients: 100%|██████████| 2/2 [00:00<00:00, 85.02it/s]\n"
+ ]
}
],
"source": [
"train_influences = compute_influences(\n",
- " nn_model,\n",
- " F.cross_entropy,\n",
- " *train_data,\n",
- " *test_data,\n",
+ " TorchTwiceDifferentiable(nn_model, F.cross_entropy),\n",
+ " training_data=training_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"up\",\n",
" inversion_method=\"direct\",\n",
- " hessian_regularization=1,\n",
+ " hessian_regularization=0.1,\n",
" progress=True,\n",
")"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "ce21c2dc",
"metadata": {},
@@ -382,6 +386,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "4153c7db",
"metadata": {},
@@ -391,15 +396,16 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 14,
"id": "9169c2dc",
"metadata": {},
"outputs": [],
"source": [
- "mean_train_influences = np.mean(train_influences, axis=0)"
+ "mean_train_influences = np.mean(train_influences.numpy(), axis=0)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "b5e254ad",
"metadata": {},
@@ -409,27 +415,25 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 15,
"id": "233a57da",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAH3CAYAAACPYcN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAurklEQVR4nO3debxdZX0v/s+XJAiCSWSeExBUwIuoEWdKrVVbQCvVAl7xOuJwEYffr1fAXi8/sUDVljojKqJipejFAaEOLYpWUQu36BWxgJAAYZCARMMg0/P7Y++kh+M5yT7h7Oyzkvf79Tqvs/eznrXWd53zsDmfPGuo1loAAACgqzYadQEAAADwUAi2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALwDpVVS+pql9W1f1VdUZVHVBVrap2GnVtJFX1nar6xGTvp3lfx1fVVZO9H8L+zqiqfx7W9gEYHcEWgLWyNiGhqmYlOT3J2Ul2SfLmYdTGtDokydsG6VhVO/X/keKAAbf9viRPXcu6VlfHy6qqTbDozUleMt37A2D0Zo+6AAA2KNsn2TzJ+a21pUlSVaOtaIarqjmttXtHtf/W2m3Tvc2q2ihJtdZWJFkx3dufTGtt+braFwDrlhlbAKbFyhncqjqyqpZU1W+q6qtVtW1/+SuSXNfv/t3JZvYmOzW5qu7rb2Pl+237+7ylqn5bVd+vqv3HrfOoqvpiVd1WVXdW1U+r6qAxy59UVd+sqhX97ZxTVQvWcJwvrKp/72/v9qr6cVU9YQr7/NOquqSqfldVv6qqj1TVZhP8HN9UVYuT/K6qNl3T8VbVnKr6u6q6vr/tG6vqrDUcy4Kq+npV3VVV11XVmyboM/7U5Gf29/3b/tdPqup5/cUrf7/f7v8OF/fXOb6qrqqqQ6vqF0nuSfLoyU49rqqXVtXVVXV3VX2rqhaOWfZ76/RralW1sD+mPttvb/2vM8b+bMesV1X1//b3dU/1TpF/y7htL66qd1XV+/u/05ur6pSqMjkAMIMItgBMpycn+cMkByZ5XpL/kt7ppknyj0n2679+YXqztz9Ym51U1aZJvp3kEUn+JMkTkpyf5FtVtWe/z3b97c9P8oJ+Lf8zyQP95XsluTDJRUkWJXl2kvv729hkkv1ul+QLST6fZO8kT0vy90nuG3Cf+yT5apLvJnl8kv+W5KAkp47b1X79el7Y77fRmo43yZuS/EWSlyXZo7//H67mZ1hJvpRkyyQHJDm4v84TV7PO7H79P+r3e2KS45Pc2e+yct0/T+/3++Qxq++Q5I39Y94ryfWT7Gb7fr+/SPKsJHOTnNOvdxA/SHLUmG1tn8lPeX9jkhOSnJze7/O9SU6uqleP6/emJDcmeUr/9VH94wBghvCvjQBMp98leUVr7XdJUlWnJnlLkrTW7qqqW/r9bmut3dTvszb7OTS9wHNoa+2+fttfV9UfJXldf5//PUlL8sLW2h39Pr8cs43/keRrrbX/tbKhql6W5NdJnp/kyxPsd/skc5Kc3Vpb3G+7fMzyNe3zL5P8n9baW/vvf9GfJf1SVf1Va21Jv/2BJEf0T9VdOdu9puNdkOSKJBe21lqSa5P82wTHsNIfpReQH9Nau6K/n5f215vMI5I8MslXW2tX9tuuHLP8936/Y2zSP6ZV25/kd//w9MbQVf0+RyT5j/SC/r+sprYkSWvtnqpa3n89vobxjknywdbaaSuPpaoek+QdST45pt/3Wmsnj+nzyiTPGdcHgBESbAGYTr9YGWr7bkiy7RD28+Qk2yW5fVw4eliSu/qvn5TkB2MC5kTb2L2qxl/juUl6M54T+WmSbyT5WVV9K8l3kpzTWlt5Cu6a9rl3kgvGtV2YpNKbxVwZbC9fGWrH1Lqm4/1Ukm8luapf27eSnNtau2eSWvZKsmxlqE2S1totVfUfk/RPa+3X/dOSv1FVF/Rr/1JrbdJ1xrh5bKhdjVtWhtr+Pq+oqmXp/ezWGGwHVVVzk+yU3uz5WBcmeXNVPby1tnIm+tJxfW5Isut01QLAQyfYAjCdxoeoll5om4oH+t9XrVe9uymPvXxmo/RmSl80wfp3TtA2kY3Suxbz5AmW3TrRCq21+6vqT9ILms9J75Tbk6vqJa21rw2430GMD8ZrPN7W2qVVtWuSP07vdPD3Jzmhqp7aWvvNdBXWWnttVb0/yXP7+zqhqo5qrX1sDatOFvan6oH8/piaM03bnsxE49rlXAAziA9lAGaaX/W/7zCmbd88OMxcnGS3JL9prV017uuGfp9Lkjx97I2Zxrk4yT5JfjnBNn49WXGt58ettRNba/unN8P3ygH3eVmS/ce1/UF6QemyyfY54PGmtbaitfal1trR6V03vGd/+xP5eZKtqmrV7HRVbZXkMaupY+V+ftZa+7vW2p+kdzrukf1FKwPgrDVtYzW2rqpHjanp0Um26teb9MbHNv1/7Fhp/HXB9/TXnbSOfti/PhP/Pq4ZM1sLQAcItgDMNFeld0ru8VX12Kp6ZpJT0gt/K30uyTVJzquq5/bvhvuUqjq2qv6s3+cj6f1/7itV9Yyq2rWqDurPuCbJiekFvzOrar/+8j/s3/12t4kKq6qnV9X/7O9rl/41rvvkP0PXmvb53iRP7N9V97FV9fwkH0zyuTWcprvG462qv6yq/1pVe/dnbl+V3s2wrphkm/+S5Cdjjn/f/n4mfbRQVe1eVX9TvbsQL6iqp6V3g6eVx78svcf3PLeqtquqR67mmCZzZ5JPVdWiqlqU5NPpnQq88jTkb6d3He67qncH6pekd23zWNf0v7+gqrauqs0n2ddJSd5UVa+tqj2q6nVJ3pDe2ACgQwRbAGaU/s2RDk2yTZJ/T/Lh9G7m88CYPnenN7N2cXrXll6R5Jz07ia8pN/nxiTPTPLb9O4gfFmSv05/5re1dnmSp6f3XN1vpBfOPp5k0yS3T1Le8vTuhPyV9G6adHp6YfCEAff50/TuPLx/eqHys0nOS/L6NfxM1ni8SX6T5G3p3eX5/6Z32vKfT3b9a/8GU3/WP6bvJvlav+b/s5pS7kjv+uOz+jX874y5C3Fr7YH0QuZfpDcb+u+rO65J3JjktCRfTPKv6QXdQ/r1pn88r01yeJKfpRfgjxt3bP+W3qnYH0tvhvdDk+zro0ne2V//50nenuSY1pqbQgF0TPX/PwEAAACdZMYWAACAThNsAQAA6DTBFgAAgE4TbAEAAOg0wRYAAIBOmz3qAqbLVltt1RYuXDjqMgAAABiCSy65ZFlrbeuJlq03wXbhwoW5+OKLR10GAAAAQ1BVSyZb5lRkAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDT1pubRwEAAEzFAw88kGXLluX222/P/fffP+pyNnizZs3K/Pnzs9VWW2WjjaY2ByvYAgAAG6Trr78+VZWFCxdmzpw5qapRl7TBaq3l3nvvzc0335zrr78+u+yyy5TWdyoyAACwQbrjjjuy4447ZuONNxZqR6yqsvHGG2fHHXfMHXfcMeX1BVsAAGCDNdVTXhmutf19+C0CAADQaYItAAAAA6uqXHXVVaMu40HcPAoAAKBv4THnDXX7i08+cKjb31CZsQUAAFhP3XfffaMuYZ0QbAEAAGaghQsX5n3ve1/22WefzJs3L4ceemjuvvvuJMnHP/7x7L777tliiy3yghe8IDfccMOq9aoqH/7wh7PHHntkjz32yHe+853stNNOec973pNtttkm22+/fb785S/n/PPPz6Mf/ehsscUWOfHEE1et/+Mf/zhPe9rTMn/+/Gy//fY56qijcs8996zz458KwRYAAGCGOvvss/P1r38911xzTX7605/mjDPOyAUXXJBjjz02Z599dm688cYsWLAghx122IPW+/KXv5wf/ehH+fnPf54kuemmm3L33Xdn6dKlede73pXXvva1OfPMM3PJJZfke9/7Xk444YRcc801SZJZs2bllFNOybJly3LRRRflX/7lX/KRj3xknR/7VAi2AAAAM9TRRx+dHXbYIVtssUUOPvjgXHrppfnc5z6XV73qVXniE5+Yhz3sYTnppJNy0UUXZfHixavWO/bYY7PFFltk0003TZLMmTMn73jHOzJnzpwcdthhWbZsWd785jfnEY94RPbee+/stdde+clPfpIkedKTnpSnPvWpmT17dhYuXJjXve51ufDCC0dx+AMTbAEAAGao7bbbbtXrhz/84VmxYkVuuOGGLFiwYFX75ptvni233DJLly5d1bbzzjs/aDtbbrllZs2alSSrwu622267avmmm26aFStWJEmuuOKKHHTQQdluu+0yd+7cHHfccVm2bNn0H9w0EmwBAAA6ZIcddsiSJUtWvb/jjjty6623Zscdd1zVVlVrvf03vOENeexjH5srr7wyv/nNb3LiiSemtfaQah42wRYAAKBDDj/88HzqU5/KpZdemt/97nc57rjj8pSnPCULFy6clu3/9re/zdy5c7P55pvnF7/4RT760Y9Oy3aHyXNsAWADM+xnNK4LngMJbMie85zn5IQTTsif//mf59e//nWe/vSn56yzzpq27b/vfe/LkUcemfe85z15whOekEMPPTQXXHDBtG1/GGqmTykPatGiRe3iiy8edRkAMOMJtgA9l19+efbcc89Rl8E4k/1equqS1tqiidZxKjIAAACdJtgCAADQaYItAAAAnSbYAgAA0GmCLQAAAJ0m2AIAANBpgi0AAACdJtgCAADQaYItAAAA68wBBxyQT3ziE9O6zdnTujUAAIAuO37ekLe/fLjbH7LFixdn1113zb333pvZs2dOnDRjCwAAsB667777BmpbHwi2AAAAM9B1112XQw45JFtvvXW23HLLHHXUUXnggQfy7ne/OwsWLMg222yTl7/85Vm+vDcLvHjx4lRVPvnJT2aXXXbJs5/97Jxxxhl5xjOekbe+9a3Zcsstc/zxx+f444/Py172slX7WbneytB7wAEH5Nhjj81+++2XuXPn5oUvfGFuu+22JMn++++fJJk/f34233zzXHTRRUmS008/PXvuuWce+chH5nnPe16WLFmyavvf+ta38tjHPjbz5s3LUUcdldbatP+sBFsAAIAZ5v77789BBx2UBQsWZPHixVm6dGkOO+ywnHHGGTnjjDPy7W9/O1dffXVWrFiRo4466kHrXnjhhbn88svzjW98I0nyox/9KLvttltuvvnmvOMd7xho/5/5zGdy+umn58Ybb8zs2bNz9NFHJ0m++93vJkluv/32rFixIk972tPyla98JSeeeGLOOeec3HLLLXnWs56Vww8/PEmybNmyHHLIIXn3u9+dZcuW5VGPelS+//3vT9ePaRXBFgAAYIb58Y9/nBtuuCHvfe97s9lmm2WTTTbJM5/5zHzuc5/L2972tuy2227ZfPPNc9JJJ+Wss8560CnGxx9/fDbbbLNsuummSZIddtghb3rTmzJ79uxVbWtyxBFH5HGPe1w222yznHDCCTn77LNz//33T9j31FNPzbHHHps999wzs2fPznHHHZdLL700S5Ysyfnnn5+99947L37xizNnzpy85S1vyXbbbffQf0DjCLYAAAAzzHXXXZcFCxb83g2abrjhhixYsGDV+wULFuS+++7LzTffvKpt5513ftA6498PYuw6CxYsyL333ptly5ZN2HfJkiV585vfnPnz52f+/PnZYost0lrL0qVLc8MNNzxoW1W1VvWsiWALAAAww+y888659tprf+9mTzvssMODrl+99tprM3v27Gy77bar2qrqQeuMf7/ZZpvlzjvvXPX+pptu+r39X3fddQ/ax5w5c7LVVlv93rZW1vqxj30st99++6qvu+66K09/+tOz/fbbP2hbrbUHvZ8ugi0AAMAMs99++2X77bfPMccckzvuuCN33313vv/97+fwww/PKaeckmuuuSYrVqzIcccdl0MPPXRKj97Zd999893vfjfXXnttli9fnpNOOun3+px55pn5+c9/njvvvDPvfOc78+IXvzizZs3K1ltvnY022ihXX331qr6vf/3rc9JJJ+Wyyy5Lkixfvjxf+MIXkiQHHnhgLrvsspxzzjm577778oEPfGDCIP1QCbYAAAAzzKxZs3Luuefmqquuyi677JKddtop//iP/5hXvepVOeKII7L//vtn1113zSabbJIPfvCDU9r2H//xH+fQQw/NPvvskyc96Uk56KCDfq/PEUcckVe84hXZbrvtcvfdd+cDH/hAkuThD3943vGOd+QZz3hG5s+fnx/+8Id50YtelLe//e057LDDMnfu3DzucY/LP/3TPyVJttpqq3zhC1/IMcccky233DJXXnllnvGMZzz0H9A4NYxbLY/CokWL2sUXXzzqMgBgxlt4zHmjLuEhW3zygaMuAVgPXH755dlzzz1HXcaMc8ABB+RlL3tZXvOa14xk/5P9XqrqktbaoonWMWMLAABAp3U+2FbVwVV12sqHEgMAALBhGfwK4xmqtXZuknMXLVr02lHXAgAA0HXf+c53Rl3ClHV+xhYAAIANm2ALAABssNaXm+muL9b29yHYAgAAG6Q5c+bkrrvuGnUZjHHXXXdlzpw5U15PsAUAADZI22yzTZYuXZo777zTzO2ItdZy5513ZunSpdlmm22mvH7nbx4FAACwNubOnZskueGGG3LvvfeOuBrmzJmTbbfddtXvZSoEWwAAYIM1d+7ctQpSzCxORQYAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0wRbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg02ZksK2q3arqk1X1xVHXAgAAwMy2zoJtVZ1eVb+qqp+Na39+Vf1HVV1VVcckSWvt6tbaq9dVbQAAAHTXupyxPSPJ88c2VNWsJB9O8idJ9kpyeFXttQ5rAgAAoOPWWbBtrX03yW3jmvdLclV/hvaeJGcleeG6qgkAAIDuG/U1tjsmuW7M++uT7FhVW1bVqUmeUFXHTrZyVR1ZVRdX1cW33HLLsGsFAABgBpo96gIm0lq7NcnrB+h3WpLTkmTRokVt2HUBAAAw84x6xnZpkp3HvN+p3wYAAAADGXWw/bcke1TVrlW1cZLDknx1xDUBAADQIevycT+fT3JRksdU1fVV9erW2n1JjkryjSSXJzm7tXbZuqoJAACA7ltn19i21g6fpP38JOevqzoAAABYv4z6VGQAAAB4SARbAAAAOk2wBQAAoNMEWwAAADpNsAUAAKDTBFsAAAA6TbAFAACg0zofbKvq4Ko6bfny5aMuBQAAgBHofLBtrZ3bWjty3rx5oy4FAACAEeh8sAUAAGDDJtgCAADQaYItAAAAnSbYAgAA0GmCLQAAAJ0m2AIAANBpgi0AAACdJtgCAADQaYItAAAAnSbYAgAA0GmCLQAAAJ0m2AIAANBpnQ+2VXVwVZ22fPnyUZcCAADACHQ+2LbWzm2tHTlv3rxRlwIAAMAIdD7YAgAAsGETbAEAAOg0wRYAAIBOE2wBAADoNMEWAACAThNsAQAA6DTBFgAAgE4TbAEAAOg0wRYAAIBOmz1Ip6raK8mtrbWbq2rzJH+Z5IEk722t3TnMAgEAAGB1Bp2x/XyS+f3X70uyf5KnJvnYEGoCAACAgQ00Y5tkYWvtP6qqkhySZK8kdyW5ZmiVAQAAwAAGDbZ3V9Uj0gu017bWllXV7CSbDK80AAAAWLNBg+0/JLkgySOSfKjf9sSYsQUAAGDEBgq2rbW3VtVzk9zbWvt2v/mBJG8dWmUAAAAwgIFuHlVVH2itfXNMqE1r7eIkLxhaZQOqqoOr6rTly5ePuhQAAABGYNC7Ir9ikvYjpqmOtdZaO7e1duS8efNGXQoAAAAjsNpTkavqVSv7jXm90m5Jlg2lKgAAABjQmq6xXTkju3EePDvbktyc5L8NoygAAAAY1GqDbWvtD5Okqt7dWvurdVMSAAAADG7QuyL/VZJU1TZJNh+37Ooh1AUAAAADGSjYVtXzkpyeZPtxi1qSWdNdFAAAAAxq0LsifyTJCUk2a61tNOZLqAUAAGCkBpqxTfLIJB9rrbVhFgMAAABTNeiM7SeTvHKYhQAAAMDaGHTG9qlJjq6qY5LcNHZBa23/aa8KAAAABjRosP1E/wsAAABmlEEf9/PpYRcCAAAAa2PSYFtVR7TWPtt//arJ+rXWTh9GYQAAADCI1c3YHp7ks/3XR0zSp6X3fFsAAAAYiUmDbWvtT8e8/sN1Uw4AAABMzaA3j0pVPTLJwUl2TLI0ybmttV8PqzAAAAAYxEDPsa2qpyX5ZZLXJ9knyeuS/LLfDgAAACMz6Izt3yd5Y2vtrJUNVXVokg8kefIQ6gIAAICBDBpsH53k7HFtX0xy6vSWM3VVdXCSg3ffffdRlwIArCMLjzlv1CU8ZItPPnDUJQCsNwY6FTnJlUkOG9f2kvROTx6p1tq5rbUj582bN+pSAAAAGIFBZ2zfkuRrVXV0kiVJFibZI8lBwykLAAAABjNQsG2t/aCqHpXkwCQ7JDk3yfmttduGWRwAAACsycCP+2mt/bqqvp1esL1BqAUAAGAmGPRxP7tU1feSLE5yXpLFVfW9qlowzOIAAABgTQa9edSnk1ySZH5rbZskj0xycb8dAAAARmbQU5GflOS5rbV7k6S1tqKq3p7k1qFVBgAAAAMYdMb2h0n2G9e2KMlF01sOAAAATM2gM7a/THJ+VZ2X5LokOyf50yT/UFXvWtmptfbO6S8RAAAAJjdosN0kyTn919sk+V2SLyXZNL2QmyRteksDAACANRv0ObavHHYhAAAAsDYGvcYWAAAAZiTBFgAAgE4TbAEAAOi0SYNtVb13zOtnr5tyAAAAYGpWN2N75JjXXx5yHQAAALBWVndX5J9U1ReT/DzJw8Y+r3Ysz64FAABglFYXbF+c3qztgiSV/3xe7VieXQsAAMBITRpsW2u/SvLuJKmq2Z5lCwAAwEy0uhnbVVprr6yqRyY5OMmOSZYm+Vpr7bZhFgcAAABrMtDjfqrqaUl+meT1SfZJ8rokV/XbAQAAYGQGmrFN8vdJ3thaO2tlQ1UdmuQDSZ48hLoAAABgIAPN2CZ5dJKzx7V9Mcnu01vO1FXVwVV12vLly0ddCgAAACMwaLC9Mslh49pekt7pySPVWju3tXbkvHnzRl0KAAAAIzDoqchvSfK1qjo6yZIkC5PskeSg4ZQFAAAAgxn0rsg/qKpHJTkwyQ5Jzk1yvrsiAwAAMGqDztimtfbrJGcOsRYAAACYskGvsQUAAIAZSbAFAACg0wYKtlUlAAMAADAjrTGwVtWsJHdU1cPWQT0AAAAwJWsMtq21+5NckWTL4ZcDAAAAUzPoXZE/l95zbN+f5PokbeWC1toFwygMAAAABjFosH1D//vx49pbkt2mrRoAAACYooGCbWtt12EXAgAAAGtj4LsdV9WcqnpWVR3af79ZVW02vNIAAABgzQZ93M9/Se8GUh9P8sl+8x8kOX1IdQEAAMBABp2x/WiSd7bWHpvk3n7bhUmeOZSqAAAAYECDBtu9k5zZf92SpLV2R5JNh1EUAAAADGrQYLs4yZPGNlTVfkmumu6CAAAAYCoGfdzP/0xyXlWdmmTjqjo2yeuTvHZolQEAAMAABpqxba19Lcnzk2yd3rW1C5Ic0lr75hBrAwAAgDUadMY2rbV/T/LGIdYCAAAAUzbo4342rqp3VdWVVXVH//sJVbXJsAsEAACA1Rl0xvajSR6T5OgkS9I7Ffm4JDsmedVwSgMAAIA1GzTY/lmSR7XWbu+//3lV/Si9uyILtgAAAIzMoI/7uSnJw8e1bZrkxuktBwAAAKZm0hnbqnr2mLefTfL1qvpgkuuT7Jzkvyf5zHDLAwAAgNVb3anIn5yg7bhx71+X5G+mrxwAAACYmkmDbWtt13VZCAAAAKyNgZ9jO1NV1cFJDt59991HXQoAdMriTV466hLW2sK7/2HUJQAwgwz6HNvHV9UFVXVbVd3T/7q3qu4ZdoFr0lo7t7V25Lx580ZdCgAAACMw6Izt55P87/SeY3vX8MoBAACAqRk02G6X5J2ttTbMYgAAAGCqBn2O7aeTdPdCHAAAANZbg87Ynpzkoqo6LsnNYxe01p498SoAAAAwfIMG2y8muSbJl+IaWwAAAGaQQYPtvkm2bK2N/C7IAAAAMNag19h+L8lewywEAAAA1sagM7bXJPlmVX0pv3+N7TunvSoAAAAY0KDB9uFJzkuycZKdh1cOAAAATM1Awba19sphFwIAAABrY6BgW1W7TbastXb19JUDAAAAUzPoqchXJWlJakxb63+fNa0VAQAAwBQMeiryg+6eXFXbJflf6d0tGQAAAEZm0Mf9PEhr7aYkb0ly0rRWAwAAAFO0VsG27zHp3S0ZAAAARmbQm0d9L/95TW3SC7R7J3nXMIoCAACAQQ1686hPjHt/R5KftNaunOZ6AAAAYEoGvXnUp4ddCAAAAKyNQU9F3jjJK5Lsm2Tzsctaay+f9qoAAABgQIOeivzpJI9Pcm6Sm4dXDgAAAEzNoMH2+Ul2ba3dPsRaAAAAYMoGfdzPtUkeNsxCAAAAYG0MOmP7mSRfqar3Z9ypyK21C6a9KgAAABjQoMH2qP73E8e1tyS7TV85AAAAMDWDPu5n12EXAgAAAGtj0GtsAQAAYEYSbAEAAOg0wRYAAIBOE2wBAADoNMEWAACAThNsAQAA6DTBFgAAgE4TbAEAAOi02aMu4KGqqoOTHLz77ruPuhQANgALjznvQe8Xb/LSEVWy9hZvMuoKAGB6dX7GtrV2bmvtyHnz5o26FAAAAEag88EWAACADZtgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdNrsURfwUFXVwUkO3n333UddCgBrsPCY80ZdAswY68N/D4tPPnDUJTxk68PvoevWh3HE6HV+xra1dm5r7ch58+aNuhQAAABGoPPBFgAAgA2bYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECnzR51AROpqs2SfCTJPUm+01r73IhLAgAAYIZaZzO2VXV6Vf2qqn42rv35VfUfVXVVVR3Tbz4kyRdba69N8oJ1VSMAAADdsy5PRT4jyfPHNlTVrCQfTvInSfZKcnhV7ZVkpyTX9bvdvw5rBAAAoGPWWbBtrX03yW3jmvdLclVr7erW2j1JzkrywiTXpxdu12mNAAAAdM+or7HdMf85M5v0Au1TknwgyYeq6sAk5062clUdmeTIJNlll12GWOY0OX7eqCtYe8cvH3UFwJp04DNm8SajrgCAmWbhMeeNugSSLD75wFGX8JCMOthOqLV2R5JXDtDvtCSnJcmiRYvasOsCAABg5hn1ab5Lk+w85v1O/TYAAAAYyKiD7b8l2aOqdq2qjZMcluSrI64JAACADlmXj/v5fJKLkjymqq6vqle31u5LclSSbyS5PMnZrbXL1lVNAAAAdN86u8a2tXb4JO3nJzl/XdUBAADA+mXUpyIDAADAQyLYAgAA0GmCLQAAAJ0m2AIAANBpgi0AAACdJtgCAADQaYItAAAAndb5YFtVB1fVacuXLx91KQAAAIxA54Nta+3c1tqR8+bNG3UpAAAAjEDngy0AAAAbNsEWAACAThNsAQAA6DTBFgAAgE4TbAEAAOi0aq2NuoZpUVW3JFky6jpYb2yVZNmoi4A+45GZxphkJjEemWmMyeFZ0FrbeqIF602whelUVRe31haNug5IjEdmHmOSmcR4ZKYxJkfDqcgAAAB0mmALAABApwm2MLHTRl0AjGE8MtMYk8wkxiMzjTE5Aq6xBQAAoNPM2AIAANBpgi0AAACdJtiyQaqqLarqS1V1R1UtqaqXrqZvVdXfVNWt/a+/qaqaoN/Lq6pV1WuGWz3rm+kaj1X16Kr6SlXdUlW3VdU3quox6+5I6KpBx+CaPg+rat+quqSq7ux/33edHQTrlekYkz4TmU7T9Tk5pp+/G6eZYMuG6sNJ7kmybZL/muSjVbX3JH2PTPJnSR6fZJ8kByd53dgOVfXIJMcluWxI9bJ+m67xOD/JV5M8pr+tHyf5yrCKZr0y6BicdPxV1cbpjbczkzwyyaeTfKXfDlP1kMdkfCYyvaZjTCbxd+OwuHkUG5yq2izJr5M8rrV2Rb/ts0mWttaOmaD/D5Kc0Vo7rf/+1Ule21p76pg+pyb5aZK/SHJma+0Twz8S1gfDGI9j+m6R5NYkW7XWbh3iYdBhUxmDqxt/VfXcJJ9KslPr/3FRVdcmObK19vV1d0R03XSNyQm26zORtTLdY9LfjcNhxpYN0aOT3Lfyg6nvJ0kmmyHbu798wr5VtV+SRUlOneY62TBM63gcZ/8kN/kDjjWYyhhc3fjbO8lPV4bavp9Osh1Ynekak+P5TGRtTduY9Hfj8Ai2bIg2T/KbcW3LkzxiNf2Xj+u7ef8aillJPpLkqNbaA9NeKRuCaRuPYztV1U7pnTb1tmmqk/XXVMbg6sbf+GWr2w6sznSNyVV8JvIQTcuY9HfjcAm2rHeq6jv9i/En+vrXJCuSzB232twkv51kk+P7z02yoj8r8cb0Zih+ON3HwfphHY/HlfvcOsk3k3yktfb56Tsa1lNTGYOrG39THcswmekak0l8JjItpmtM+rtxiARb1juttQNaazXJ1zOTXJFkdlXtMWa1x2fyC/gv6y+fqO8fJXlRVd1UVTcleXqSv62qD03vUdFV63g8rrwhxTeTfLW19tfTezSsp6YyBlc3/i5Lss+4mbJ9JtkOrM50jUmfiUyX6RqT/m4cIjePYoNUVWclaUlek2TfJOcneXpr7fc+oKrq9UnenOQ5/XW+leSDrbVTq2p+kk3GdD8nyReTfLK1Nv6UPJjQNI7HuUn+OcmPW2tHraPyWQ8MOgbXMP42TnJlkr9L79qx1yb5yyR7tNbuWUeHwnpimsakz0SmzTSNyfnxd+PQmLFlQ/XGJJsm+VWSzyd5w8oPpqp6VlWtGNP3Y0nOTfJ/k/wsyXn9trTWbm+t3bTyK73bwP/GhxNTNC3jMcmLkjw5ySurasWYr13W0XHQXROOwSl+Ht6T3iMuXp7k9iSvSvJnQi1r6SGPyfhMZHpNx+ekvxuHyIwtAAAAnWbGFgAAgE4TbAEAAOg0wRYAAIBOE2wBAADoNMEWAACAThNsAQAA6DTBFgAmUFWXVdUBA/Z9TFVdWlW/raqjq+qMqnr3cCsEAFaaPeoCAGAmaq3tPYXu/yPJt1tr+yZJVZ0xjJoAgImZsQWAh25BkstGXcSoVJV/KAdgpARbAJhAVS2uquf0Xx9fVWdX1Wf6pxtfVlWL+ssuSPKHST5UVSuq6tHjtvOKqvrXcW2tqnbvv35YVb2vqq6tqpur6tSq2nRM3xf2T3P+TVX9sqqe32+fV1WfrKobq2ppVb27qmZNciz7VdXF/W3cXFV/N2bZM6vqB1V1e1VdV1WvGLP9z1TVLVW1pKr+qqo2GnNM36+qU6rq1iTHr+k4AGCYBFsAGMwLkpyVZH6Sryb5UJK01p6d5HtJjmqtbd5au2KK2z05yaOT7Jtk9yQ7Jnln0gukST6T5C/7+90/yeL+emckua+/zhOSPDfJaybZx/uTvL+1NjfJo5Kc3d/+giT/lOSDSbbu13Bpf50PJpmXZLckf5Dk5UleOWabT0lydZJtk/z16o4DAIZNsAWAwfxra+381tr9ST6b5PEPdYNVVUmOTPLW1tptrbXfJjkxyWH9Lq9Ocnpr7VuttQdaa0tba7+oqm2T/GmSt7TW7mit/SrJKWPWG+/eJLtX1VattRWttR/221+a5J9ba59vrd3bWru1tXZpf+b3sCTHttZ+21pbnORvkxwxZps3tNY+2Fq7L8ndazgOABgq18QAwGBuGvP6ziSbVNXsfrBbW1sneXiSS3oZN0lSSVaeUrxzkvMnWG9BkjlJbhyz3kZJrptkP69O8q4kv6iqa5L8f621r/W3/8sJ+m/V3/6SMW1L0puFXWnsvtZ0HAAwVIItAAzXHemFviRJVW03ZtmyJHcl2bu1tnSCda9L79Thidp/l2SrQYJ1a+3KJIf3r5E9JMkXq2rL/nb2m2CVZenN8i5I8vN+2y5JxtbYpnAcADBUTkUGgOH6SZK9q2rfqtokyfErF7TWHkjy8SSnVNU2SVJVO1bV8/pdPpnklVX1R1W1UX/ZY1trNyb5ZpK/raq5/WWPqqo/mKiAqnpZVW3d39/t/eYHknwuyXOq6i+qanZVbVlV+/ZPtz47yV9X1SP61+K+LcmZE21/gOMAgKESbAFgiPo3k3pXkn9OcmWSfx3X5e1Jrkryw6r6Tb/fY/rr/ji9GzadkmR5kgvTm0VNejdz2ji9GdVfJ/liku0nKeP5SS6rqhXp3UjqsNbaXa21a9O7Vvf/SXJbejeOWnnt8JvSm22+ul/zPyQ5fTWHOulxAMCwVWttzb0AAABghjJjCwAAQKcJtgAAAHSaYAsAAECnCbYAAAB0mmALAABApwm2AAAAdJpgCwAAQKcJtgAAAHSaYAsAAECn/f/lF3aGeXeIyQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAALGCAYAAADMV+a1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2UlEQVR4nO3dd5gV5fk//vvQlr50AaUJSrEBYkcBO2IX/ViigC0KitiimCgQCxITRE0sMYoaY6IxYu8KlqgIKqgRUREUFUUFdqW4CDu/P/yxX9ZdYFl2dll4va7rXDrPPDNzz9lnD4c3M89kkiRJAgAAAACgjFWp6AIAAAAAgE2T8BEAAAAASIXwEQAAAABIhfARAAAAAEiF8BEAAAAASIXwEQAAAABIhfARAAAAAEiF8BEAAAAASIXwEQAAAABIhfARANhk5ObmxtChQ6Nt27ZRrVq1yGQyMW3atJg0aVJkMpkYOXJkRZfIRi6TyUTv3r0LtY0cOTIymUxMmjSpQmq66667IpPJxF133VWovW3bttG2bdsKqWmVin5vAICNn/ARAKhQmUwmMplMmezrN7/5Tdx0002xww47xPDhw2PEiBHRvHnzMtk3lNbAgQMjk8nEnDlzKrqU9bam4BMAoKSqVXQBAABl5fHHH49tt902HnvssULtH374YQVVxKbgnHPOieOPPz5at25dIcc/6qijYvfdd48WLVpUyPHXpqLfGwBg4yd8BAA2GV999VXss88+FV0Gm5gmTZpEkyZNKuz42dnZkZ2dXWHHX5uKfm8AgI2f264BgI3OnDlzIpPJxMCBA2POnDlx/PHHR5MmTaJmzZrRo0ePePzxxwv17927d2QymUiSJF566aWCW7l/OXffL61tzry1zWX34YcfxsCBA6NVq1ZRo0aN2GKLLeLEE0+MmTNnFruvpUuXxpgxY6JHjx5Rr169qFu3bnTu3DmGDh0a33zzTZG+o0ePjq5du0adOnWibt26sccee8Q///nPtZ7LL7377rtxwgknRNu2bSMrKyuaNm0a3bt3j2HDhsVPP/1UqO/KlSvj1ltvjb322iuys7OjVq1a0aFDhzj99NPj448/LtQ3Jycnhg8fHh07doyaNWtGw4YN46CDDornn3++SA2rz7X55ptvRr9+/aJRo0ZFbkH+5z//GX369IkGDRpEzZo1o3PnznHVVVdFXl5ekX2+8sorcdhhh8VWW20VWVlZ0bx589h9991j1KhRJX5vli9fHldeeWW0b98+srKyol27dvG73/2u2ONFrHkslKSWTCYTd999d0REtGvXrmBsrj7uVo3f5cuXx+9///vo2LFjZGVlxcCBAyNi3bc+5+TkxDnnnBNbbrll1KxZM7p06RI33nhjJElSqN+65j795e9D7969Y9CgQRERMWjQoILaV//5re335IUXXoiDDz44GjVqFFlZWbHtttvGpZdeGjk5OUX6rnoPVqxYEddcc01ss802kZWVFa1atYpLLrkkli9fXmzNAMDGz5WPAMBG67PPPotdd901tt566zj55JNjwYIFcf/998cRRxwRzz//fPTp0ycifp5Tr3fv3jFq1Kho06ZNQWiTxsM4nn766Tj66KPjp59+isMOOyw6dOgQX3zxRTz00EPxxBNPxMSJE6N79+4F/RcuXBh9+vSJ6dOnR8eOHePUU0+NGjVqxKxZs2L8+PFx9NFHxxZbbBEREYsWLYp999033nnnnejevXuceuqpkZ+fH88880yceOKJ8b///S+uuuqqddb47rvvxm677RaZTCYOP/zwaNeuXeTm5sYnn3wSN998c1x11VVRvXr1iPg5iDv00EPjueeei1atWsWJJ54Y9evXjzlz5sSECROiZ8+esc022xTUt9dee8UHH3wQu+yySwwbNiy+++67eOCBB+LAAw+MW265JX79618Xqef111+P0aNHR8+ePePUU0+N7777LmrUqBEREaeeemqMHz8+ttpqqzjmmGOiQYMG8cYbb8Tll18eL7zwQjz33HNRrVq1gve+X79+Ub9+/Tj88MNjyy23jAULFsSMGTPi5ptvjhEjRqzzvUmSJI477rh45JFHon379nHOOefE8uXL484774z33ntvnduvUtJaRowYEQ8//HBMnz49zjvvvGjQoEFERMF/V3fMMcfElClTom/fvnHkkUdGs2bN1lnH8uXLY//9949FixbF8ccfH8uXL4///Oc/cd5558XMmTPjL3/5S4nP6ZcGDhwYDRo0iEceeSSOOOKI6Nq1a8G64upf3W233RZnn3121KlTJ4499tho1qxZTJo0KcaMGROPPfZY/Pe//y12HyeeeGK88sor0bdv36hfv348+eST8Yc//CHmz58f48ePL/W5AAAVKAEAqEARkfzyK8ns2bML2keOHFlo3dNPP51ERNK3b99i99WrV68i7RMnTkwiIhkxYkSh9jZt2iRt2rQptq4RI0YkEZFMnDixoG3BggVJgwYNksaNGyf/+9//CvV/7733kjp16iTdunUr1H7CCSckEZGcddZZycqVKwut++GHH5JFixYVLA8YMCCJiGTMmDGF+i1btiw56KCDkkwmk7zzzjvF1ru6Cy64IImI5OGHHy6ybsGCBYXqGD58eBIRyWGHHZb8+OOPhfr++OOPyfz58wuWzzzzzCQikjPPPDPJz88vaP/oo4+S+vXrJzVq1Ehmz55d0L7qfY+I5NZbby1Sy/jx45OISI466qhk6dKlhdatev/HjRtX0Hb00UcnEZFMmzatyL6+/fbbtbwj/88//vGPJCKS3XffPVm2bFlB+/fff59svfXWxY6h4sbC+tSy6ue6+nuzul69eiURkeywww7Fnseq92n8+PGF2tu0aZNERLLXXnsV+tmtfi4vvfRSQfuafg9W398vfx/WdOxVintv5syZk9SoUSOpV69eMmPGjEL9zz777CQikjPOOKPY96B79+7J999/X9C+ePHipH379kmVKlWSefPmFVsDALBxc9s1ALDRatOmTfzud78r1HbQQQdF69at48033yz3eu65555YtGhRjBo1Krp06VJo3fbbbx9nnHFGvPPOO/HBBx9ERMT8+fPj/vvvjxYtWsQf//jHqFKl8FevunXrFszl9/3338e9994bPXr0iN/85jeF+tWsWTPGjBkTSZLEfffdV+J6a9WqVaStYcOGBXWsXLkybr755qhVq1bceuutkZWVVajvqtu1I36+wu7ee++NunXrxujRows9oXybbbaJoUOHxvLly+Oee+4pcsyuXbsWe0XkDTfcENWqVYs777yzSK2XX355NG7cOP7xj3+U6LxKOu/gqqvnrrnmmqhZs2ZBe6NGjeLyyy8v0T7KqpZfuvLKK0u17ejRowv97FY/l4q4WvDee++N5cuXxznnnBOdOnUqtO7qq6+OevXqxd///vdib3MfM2ZMNGrUqGC5Tp06cdJJJ0V+fn5MnTo19doBgLLntmsAYKPVtWvXqFq1apH2Vq1axeuvv17u9aw65vTp04udN++jjz6KiIgZM2ZEly5dYsqUKZGfnx/77LNP1KlTZ637njJlSqxcuXKNc/KtmqdxxowZ66zz//7v/+KGG26II488Mvr37x/7779/7LXXXtG+fftC/T788MPIycmJ3XbbLVq2bLnWfc6cOTOWLl0ae+21V6FwaJV99903rrrqqnjnnXeKrNt1112LtC1dujSmT58eTZo0iXHjxhV7zKysrELne9JJJ8VDDz0Uu+22W/zf//1f9OnTJ/baa6/Yaqut1lr76t5+++2oUqVK9OzZs8i6dc0RurqyqOWXinuf1qVatWqx5557FmlfdS7F/TzS9vbbb0fEz2Pilxo2bBjdunWLl19+OT788MPYaaedCq3v0aNHkW1atWoVET9PYQAAVD7CRwBgo7WmeeWqVasW+fn55VtM/Hx1YkTE7bffvtZ+ixcvjoif50iMiNhyyy1LvO8pU6bElClT1rnvtdl1113jlVdeiauvvjoefPDB+Pvf/x4RER07dowRI0bECSecsN71rXpISIsWLYpdv6p91T5X17x58yJtCxcujCRJ4ttvvy3xw2KOPvroePzxx+NPf/pT3HnnnXHbbbdFRMTOO+8co0ePjgMOOKBE59GoUaOCOS/XVWeatWzI8Vdp0qRJsQH9qn0V93CXtG3IWCnud37VnJ8rV64smwIBgHLltmsAYLNVpUqVWLFiRbHrigtGVt0iPX369EiSZI2vAQMGRMT/C1K+/PLLddayat/nn3/+Wvc9ceLEEp3bHnvsEY8//ngsXLgw/vvf/8bll18e33zzTZx44okFT6YuTX1ff/11sevnzZtXqN/qVr9F+5f769at21rPN/nFE5v79esXL774YixcuDBeeOGFOP/88+N///tfHHrooQW3u6/rPBYsWFDkid9rO7c12dBafqm492ldvvvuu2JDuVXnsvrPY9Xt9usz5ktjQ8YKALDpET4CAJuthg0bxjfffFNsEFXc/HK77757RES88sorJdr/rrvuGlWqVImXX345lixZUqK+Jd13SWVlZcWee+4Zv//97+PGG2+MiIhHHnkkIiI6deoUDRo0iHfffTe++uqrte6nY8eOUbt27Zg+fXqxIdWqUHT1J32vTd26dWO77baL//3vf7FgwYL1OKOf1alTJ/bdd98YO3ZsXHbZZbF8+fJ46qmn1rld9+7dIz8/P1599dUi6yZNmrTedZSkllVXJqZx5d6KFSvitddeK9K+6ly6detW0NawYcOIiJg7d26R/p988kmxV0mWpvZVxyzu/Vy0aFFMmzYtatasGZ07dy7xPgGAykv4CABstnbddddYsWJFkYdy3HXXXfHf//63SP9BgwZFgwYNYtSoUcU+8CY/P79Q4NK0adM4/vjjY968eXHRRRcVuVV88eLFBYFPs2bN4qSTToqpU6fGlVdeWWzYM2vWrJg9e/Y6z+u1116LZcuWFWn/5ptvIiKidu3aEfFzsDR48OBYtmxZnHXWWUUeALJ8+fL49ttvIyKiRo0acdJJJ8UPP/xQ5MEss2bNihtvvDGqV68eJ5988jrrW+WCCy6I5cuXx6mnnlpsoLlw4cKC+QMjIl5++eVir9r75XmtzaBBgyIi4re//W38+OOPBe0LFiyIq666qsS1r08tjRs3joiIzz//vMT7Xx/Dhw8v9LNb/VxWnW/Ez2Fz/fr145FHHon58+cXtC9btiyGDh1a7L5LU/uvfvWrqF69etx0003xySefFFp3+eWXR25ubvzqV78q8oAjAGDTZM5HAGCzde6558b48ePj7LPPjhdeeCFatWoV06ZNi9dffz0OPfTQePzxxwv1b9y4cTz44INx1FFHxe677x777bdfbLfddpHJZGLu3Lnx+uuvx/fff18o1Przn/8c77//ftx6660xadKkOOigg6JGjRoxe/bseOaZZ+LRRx8teDjIn//85/j444/jiiuuiL///e/Rs2fP2GKLLeKrr76KGTNmxJQpU+Kf//xntGvXbq3n9Yc//CFefPHF2HvvvaNdu3ZRt27d+N///hdPPfVUNGzYMM4888yCviNGjIjJkyfHY489Fttuu20ceuihUa9evZg7d248++yzcd1118XAgQMjIuLaa6+NV155Jf785z/HlClTok+fPvHdd9/FAw88ED/88EP8+c9/Xmdtqzv11FPjrbfeiptvvjnat29f8CTzBQsWxOzZs+Pll1+OQYMGxa233hoREUOHDo0vv/wy9tprr2jbtm3UqFEj3nrrrXjxxRejTZs2cfzxx6/zmCeccELcf//98eijj8b2228fRxxxRPz000/x4IMPxi677BKzZs0qUe3rU8t+++0X1113XZxxxhlxzDHHRL169aJBgwZxzjnnlPi9WpMWLVpEXl5ebL/99nH44YcXnMu8efNi8ODBsc8++xT0rV69epx33nlx5ZVXRrdu3eKoo46KFStWxHPPPRctW7Ys9qFDe+yxR9SuXTvGjRsX33//fcFckueee+4ab5tu27ZtjBs3LoYMGRLdu3eP4447Lpo2bRovvfRSvP7669GpU6cYM2bMBp87AFBJJAAAFSgikl9+JZk9e3YSEcmAAQOK3aZXr15Ftlm1r169ehVpnzhxYhIRyYgRI4qse+WVV5K99947qVWrVlKvXr3kkEMOSaZPn56MGDEiiYhk4sSJRbaZPXt2MmTIkKRDhw5JVlZWUq9evaRjx47Jr371q2TChAlF+i9evDi56qqrkh122CGpVatWUrdu3aRz587Jeeedl3zzzTeF+ubl5SU33XRTssceeyT169dPatSokbRq1SrZd999k+uvvz757rvvin1PVvfMM88kAwcOTDp37pzUr18/qV27drLtttsm5557bjJnzpwi/X/66afkpptuSnbZZZekTp06Se3atZMOHTokZ5xxRvLxxx8X6rtw4cLkN7/5TdKhQ4ekRo0aSXZ2drL//vsnzzzzTJH9ru19X91jjz2W9OvXL2natGlSvXr1ZIsttkh22WWX5Le//W0yY8aMgn73339/cvzxxycdOnRI6tSpk9SrVy/ZbrvtkssuuyyZP3/+Ot+XVfLy8pJRo0Yl7dq1S2rUqJG0adMmueyyy5Iff/yx2DFU3FhY31r+9Kc/JZ06dUpq1KiRRETSpk2bgnVrGs+rjB8/PomIZPz48YXa27Rpk7Rp0yZZtGhRMnjw4KRly5ZJjRo1kk6dOiU33HBDkp+fX2Rf+fn5yejRo5Ott946qV69etKqVavk4osvTpYsWVKwv1966qmnkt133z2pU6dOwe/r7Nmz1/jerPLMM88kBxxwQNKgQYOkRo0aSfv27ZOLL744WbhwYZG+a3sP1nT+AEDlkEmSX8ziDQAAAABQBsz5CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApKJaRRdQ3vLz8+Orr76KevXqRSaTqehyAAAAAKBSSZIkfvjhh2jZsmVUqbL2axs3u/Dxq6++ilatWlV0GQAAAABQqc2dOze22mqrtfbZ7MLHevXqRcTPb079+vUruBoAAAAAqFxyc3OjVatWBTnb2mx24eOqW63r168vfAQAAACAUirJlIYeOAMAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApGKze+AMAAAAwOZq5cqV8dNPP1V0GWykqlWrFlWrVi3Rg2RKvM8y2xMAAAAAG6UkSeLrr7+ORYsWVXQpbOSqVq0azZo1i+zs7DIJIYWPAAAAAJu4VcFjs2bNonbt2mV6ZRubhiRJYsWKFZGbmxvz5s2LZcuWRYsWLTZ4v8JHAAAAgE3YypUrC4LHxo0bV3Q5bOTq1asXWVlZ8d1330WzZs2iatWqG7Q/D5wBAAAA2IStmuOxdu3aFVwJlUWdOnUiSZIymR9U+AgAAACwGXCrNSVVlmNF+AgAAAAApEL4CAAAAACkQvgIAAAAABuR3r17R+/evSu6jDIhfAQAAAAAUlGtogsAAAAAoGK0vfSJii4hIiLmXNuvoksgJa58BAAAAIA1SJIkli1bVtFlVFrCRwAAAAAqrZEjR0Ymk4lPPvkkBg4cGA0aNIjs7OwYNGhQLF26tKDfihUr4sorr4z27dtHVlZWtG3bNi677LLIy8srtL+2bdvGoYceGs8880z06NEjatWqFbfddltMmjQpMplMPPDAAzFq1KjYcssto169etG/f//IycmJvLy8GDZsWDRr1izq1q0bgwYNKrLv8ePHx7777hvNmjWLrKys6NKlS9xyyy3l8j5VFLddAwAAAFDpHXfccdGuXbsYPXp0vP322/G3v/0tmjVrFmPGjImIiNNPPz3uvvvu6N+/f1x44YUxefLkGD16dMyYMSMmTJhQaF8zZ86ME044IX7961/HGWecER07dixYN3r06KhVq1Zceuml8cknn8RNN90U1atXjypVqsTChQtj5MiR8cYbb8Rdd90V7dq1iyuuuKJg21tuuSW22267OPzww6NatWrx2GOPxeDBgyM/Pz+GDBlSPm9UORM+AgAAAFDpdevWLe64446C5e+//z7uuOOOGDNmTEyfPj3uvvvuOP300+P222+PiIjBgwdHs2bN4o9//GNMnDgx+vTpU7DtJ598Ek8//XQcdNBBBW2TJk2KiJ+voHzppZeievXqERHx7bffxr/+9a84+OCD48knnyzY9yeffBJ33nlnofDxpZdeilq1ahUsn3POOXHwwQfH2LFjN9nw0W3XAAAAAFR6Z511VqHlvffeO77//vvIzc0tCAUvuOCCQn0uvPDCiIh44onCD95p165doeBxdaecckpB8BgRsdtuu0WSJHHqqacW6rfbbrvF3LlzY8WKFQVtqwePOTk58d1330WvXr3i008/jZycnJKeaqXiykcAAAAAKr3WrVsXWm7YsGFERCxcuDA+++yzqFKlSnTo0KFQn+bNm0eDBg3is88+K9Terl27Eh8nOzs7IiJatWpVpD0/Pz9ycnKicePGERHx3//+N0aMGBGvv/56ofkoI34OI1fta1MifAQAAACg0qtatWqx7UmSFPx/JpMp0b5Wv0KxpMdZ1/FnzZoV++23X3Tq1CnGjh0brVq1iho1asSTTz4Z119/feTn55eotspG+AgAAADAJq1NmzaRn58fH3/8cXTu3Lmg/ZtvvolFixZFmzZtUq/hsccei7y8vHj00UcLXT05ceLE1I9dkcz5CAAAAMAm7ZBDDomIiHHjxhVqHzt2bERE9OvXL/UaVl0ZufqVmDk5OTF+/PjUj12RXPkIAAAAwCZtp512igEDBsRf//rXWLRoUfTq1SvefPPNuPvuu+PII48s9KTrtBx44IFRo0aNOOyww+LXv/51LF68OG6//fZo1qxZzJs3L/XjVxThIwAAAACbvL/97W+x9dZbx1133RUTJkyI5s2bx/Dhw2PEiBHlcvyOHTvGgw8+GL/73e/ioosuiubNm8fZZ58dTZs2LfKk7E1JJln9Ws/NQG5ubmRnZ0dOTk7Ur1+/ossBAGAT0fbSJyq6hHIx59r0b0sDoGz9+OOPMXv27GjXrl3UrFmzosuhEljXmFmffM2cjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAACwmchkMjFy5MhyO161cjsSAAAAABuXkdkVXcHPRuZUdAUblfvuuy/mz58fw4YNq+hSNpgrHwEAAABgI3LffffFuHHjKrqMMiF8BAAAAIBi/Pjjj5Gfn1/suiVLlpRzNZWT8BEAAACASu3LL7+M0047LVq2bBlZWVnRrl27OPvss2P58uUREfHpp5/GscceG40aNYratWvH7rvvHk888UShfUyaNCkymUz861//it/97nex5ZZbRu3atSM3NzcGDhwYdevWjVmzZsUhhxwS9erVi5NOOikiItq2bRsDBw4sUlPv3r2jd+/eRfZ///33x2WXXRbNmzePOnXqxOGHHx5z584ttN0TTzwRn332WWQymchkMtG2bduC9Xl5eTFixIjo0KFDZGVlRatWreI3v/lN5OXlFTp+Xl5enH/++dG0adOoV69eHH744fHFF19s4Du9/sz5CAAAAECl9dVXX8Wuu+4aixYtijPPPDM6deoUX375ZTz44IOxdOnSWLhwYey5556xdOnSGDp0aDRu3DjuvvvuOPzww+PBBx+Mo446qtD+rrzyyqhRo0ZcdNFFkZeXFzVq1IiIiBUrVsRBBx0UPXv2jD/+8Y9Ru3btUtV79dVXRyaTiUsuuSTmz58f48aNi/333z+mTZsWtWrVit/+9reRk5MTX3zxRVx//fUREVG3bt2IiMjPz4/DDz88Xn311TjzzDOjc+fO8d5778X1118fH330UTz88MMFxzn99NPj3nvvjRNPPDH23HPPePHFF6Nfv36lqnlDCB8BAAAAqLSGDx8eX3/9dUyePDl69OhR0P773/8+kiSJCy64IL755pt45ZVXomfPnhERccYZZ8SOO+4YF1xwQRxxxBFRpcr/uzn4xx9/jKlTp0atWrUKHScvLy+OPfbYGD169AbVu2DBgpgxY0bUq1cvIiK6d+8exx13XNx+++0xdOjQOOCAA2LLLbeMhQsXxq9+9atC2953333x/PPPx0svvVRwLhER22+/fZx11lnx2muvxZ577hnTp0+Pe++9NwYPHhx/+ctfIiJiyJAhcdJJJ8W77767QfWvL7ddAwAAAFAp5efnx8MPPxyHHXZYoeBxlUwmE08++WTsuuuuhcK6unXrxplnnhlz5syJDz74oNA2AwYMKBI8rnL22WdvcM2nnHJKQfAYEdG/f/9o0aJFPPnkk+vc9t///nd07tw5OnXqFN99913Ba999942IiIkTJ0ZEFOxr6NChhbaviKdnu/IRAAAAgErp22+/jdzc3Nh+++3X2Oezzz6L3XbbrUh7586dC9avvn27du2K3U+1atViq6222sCKI7bZZptCy5lMJjp06BBz5sxZ57Yff/xxzJgxI5o2bVrs+vnz50fEz+dUpUqVaN++faH1HTt2LF3RG0D4CAAAAAD/vzVd9ZiVlVXo9uxVMplMsf1XrlwZVatWLdPa8vPzY4cddoixY8cWu75Vq1ZleryyIHwEAAAAoFJq2rRp1K9fP95///019mnTpk3MnDmzSPuHH35YsH5DNGzYMBYtWlSk/bPPPoutt966SPvHH39caDlJkvjkk09ixx13LGhbU6DZvn37mD59euy3335r7BPx8znl5+fHrFmzCl3tWNz7kDZzPgIAAABQKVWpUiWOPPLIeOyxx2Lq1KlF1idJEocccki8+eab8frrrxe0L1myJP76179G27Zto0uXLhtUQ/v27eONN96I5cuXF7Q9/vjjMXfu3GL733PPPfHDDz8ULD/44IMxb9686Nu3b0FbnTp1Iicnp8i2xx13XHz55Zdx++23F1m3bNmyWLJkSUREwb5uvPHGQn3GjRtX8hMrI658BAAAAKDSuuaaa+LZZ5+NXr16xZlnnhmdO3eOefPmxb///e949dVX49JLL41//vOf0bdv3xg6dGg0atQo7r777pg9e3b85z//KfZW6vVx+umnx4MPPhgHH3xwHHfccTFr1qy49957i8y3uEqjRo2iZ8+eMWjQoPjmm29i3Lhx0aFDhzjjjDMK+uy8885x//33xwUXXBC77LJL1K1bNw477LA4+eST44EHHoizzjorJk6cGHvttVesXLkyPvzww3jggQfimWeeiR49ekTXrl3jhBNOiJtvvjlycnJizz33jBdeeCE++eSTDTrX0hA+AgAAAGyuRha9uq6y2XLLLWPy5Mlx+eWXxz/+8Y/Izc2NLbfcMvr27Ru1a9eOBg0axGuvvRaXXHJJ3HTTTfHjjz/GjjvuGI899lj069dvg49/0EEHxZ/+9KcYO3ZsDBs2LHr06BGPP/54XHjhhcX2v+yyy+Ldd9+N0aNHxw8//BD77bdf3HzzzVG7du2CPoMHD45p06bF+PHj4/rrr482bdrEYYcdFlWqVImHH344rr/++rjnnntiwoQJUbt27dh6663jvPPOi2233bZgH3feeWc0bdo0/vGPf8TDDz8c++67bzzxxBPlPi9kJkmSpFyPWMFyc3MjOzs7cnJyon79+hVdDgAAm4i2lz5R0SWUiznXbvhf0gAoXz/++GPMnj072rVrFzVr1qzocjZbkyZNij59+sS///3v6N+/f0WXs1brGjPrk6+Z8xEAAAAASIXwEQAAAABIhfARAAAAAEjFRhU+vvzyy3HYYYdFy5YtI5PJxMMPP1ykz4wZM+Lwww+P7OzsqFOnTuyyyy7x+eefl3+xAAAAAFBCvXv3jiRJNvr5HsvaRhU+LlmyJHbaaaf4y1/+Uuz6WbNmRc+ePaNTp04xadKkePfdd+Pyyy83WSoAAAAAbISqVXQBq+vbt2/07dt3jet/+9vfxiGHHBJ/+MMfCtrat29fHqUBAAAAVGpJklR0CVQSZTlWNqorH9cmPz8/nnjiidh2223joIMOimbNmsVuu+1W7K3Zq8vLy4vc3NxCLwAAAIDNRbVqP197tmLFigquhMrip59+ioiIqlWrbvC+Kk34OH/+/Fi8eHFce+21cfDBB8ezzz4bRx11VBx99NHx0ksvrXG70aNHR3Z2dsGrVatW5Vg1AAAAQMWqWrVqVK1a1QVZlEiSJJGTkxNZWVlRvXr1Dd7fRnXb9drk5+dHRMQRRxwR559/fkREdO3aNV577bW49dZbo1evXsVuN3z48LjgggsKlnNzcwWQAAAAwGYjk8lEs2bNYt68eZGVlRV16tSJTCZT0WWxkUmSJH766afIycmJxYsXx5Zbblkm+6004WOTJk2iWrVq0aVLl0LtnTt3jldffXWN22VlZUVWVlba5QEAAABstLKzs2PZsmXx3XffxbffflvR5bARy8rKii233DLq169fJvurNOFjjRo1YpdddomZM2cWav/oo4+iTZs2FVQVAAAAwMYvk8lEixYtolmzZgXz+cEvVa1atUxutV7dRhU+Ll68OD755JOC5dmzZ8e0adOiUaNG0bp167j44ovj//7v/2KfffaJPn36xNNPPx2PPfZYTJo0qeKKBgAAAKgkVs3/COVlowofp06dGn369ClYXjVX44ABA+Kuu+6Ko446Km699dYYPXp0DB06NDp27Bj/+c9/omfPnhVVMgAAAACwBhtV+Ni7d+9IkmStfU499dQ49dRTy6kiAAAAAKC0qlR0AQAAAADApkn4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApGKjCh9ffvnlOOyww6Jly5aRyWTi4YcfXmPfs846KzKZTIwbN67c6gMAAAAASm6jCh+XLFkSO+20U/zlL39Za78JEybEG2+8ES1btiynygAAAACA9VWtogtYXd++faNv375r7fPll1/GueeeG88880z069evnCoDAAAAANbXRhU+rkt+fn6cfPLJcfHFF8d2221Xom3y8vIiLy+vYDk3Nzet8gAAAACA1WxUt12vy5gxY6JatWoxdOjQEm8zevToyM7OLni1atUqxQoBAAAAgFUqTfj41ltvxQ033BB33XVXZDKZEm83fPjwyMnJKXjNnTs3xSoBAAAAgFUqTfj4yiuvxPz586N169ZRrVq1qFatWnz22Wdx4YUXRtu2bde4XVZWVtSvX7/QCwAAAABIX6WZ8/Hkk0+O/fffv1DbQQcdFCeffHIMGjSogqoCAAAAANZkowofFy9eHJ988knB8uzZs2PatGnRqFGjaN26dTRu3LhQ/+rVq0fz5s2jY8eO5V0qAAAAALAOG1X4OHXq1OjTp0/B8gUXXBAREQMGDIi77rqrgqoCAAAAAEpjowofe/fuHUmSlLj/nDlz0isGAAAAANggleaBMwAAAABA5SJ8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXwEAAAAAFIhfAQAAAAAUrFRhY8vv/xyHHbYYdGyZcvIZDLx8MMPF6z76aef4pJLLokddtgh6tSpEy1btoxTTjklvvrqq4orGAAAAABYo40qfFyyZEnstNNO8Ze//KXIuqVLl8bbb78dl19+ebz99tvx0EMPxcyZM+Pwww+vgEoBAAAAgHWpVtEFrK5v377Rt2/fYtdlZ2fHc889V6jtz3/+c+y6667x+eefR+vWrcujRAAAAACghDaq8HF95eTkRCaTiQYNGqyxT15eXuTl5RUs5+bmlkNlAAAAAMBGddv1+vjxxx/jkksuiRNOOCHq16+/xn6jR4+O7OzsglerVq3KsUoAAAAA2HxVyvDxp59+iuOOOy6SJIlbbrllrX2HDx8eOTk5Ba+5c+eWU5UAAAAAsHmrdLddrwoeP/vss3jxxRfXetVjRERWVlZkZWWVU3UAAAAAwCqVKnxcFTx+/PHHMXHixGjcuHFFlwQAAAAArMFGFT4uXrw4Pvnkk4Ll2bNnx7Rp06JRo0bRokWL6N+/f7z99tvx+OOPx8qVK+Prr7+OiIhGjRpFjRo1KqpsAAAAAKAYG1X4OHXq1OjTp0/B8gUXXBAREQMGDIiRI0fGo48+GhERXbt2LbTdxIkTo3fv3uVVJgAAAABQAhtV+Ni7d+9IkmSN69e2DgAAAADYuFTKp10DAAAAABs/4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQimoVXQAAAJu2tpc+UdElAABQQVz5CAAAAACkQvgIAAAAAKSizG67Xrp0afzrX/+KvLy8OOSQQ6JNmzZltWsAAAAAoBIqVfh42mmnxeTJk+P999+PiIjly5fH7rvvXrCcnZ0dL774YnTr1q3sKgUAAAAAKpVS3XY9ceLEOProowuW77vvvnj//ffjH//4R7z//vvRvHnzGDVqVJkVCQAAAABUPqUKH7/++uto27ZtwfLDDz8cPXr0iBNOOCG6dOkSZ5xxRkyePLmsagQAAAAAKqFShY916tSJRYsWRUTEihUrYtKkSXHQQQcVrK9Xr17k5OSUSYEAAAAAQOVUqjkfu3fvHrfffnv06dMnHn300fjhhx/isMMOK1g/a9as2GKLLcqsSAAAAACg8ilV+Hj11VfHQQcdFD169IgkSaJ///6x6667FqyfMGFC7LXXXmVWJAAAAABQ+ZQqfOzRo0d8+OGH8dprr0WDBg2iV69eBesWLVoUgwcPjt69e5dVjQAAAABAJVSqOR9ffvnliIg44ogjCgWPERENGjSIE0880ZyPAAAAALCZK1X42KdPn3juuefWuP7FF1+MPn36lLooAAAAAKDyK1X4mCTJWtfn5eVF1apVS1UQAAAAALBpKPGcj59//nnMmTOnYPnDDz8suP16dYsWLYrbbrst2rRpUyYFAgAAAACVU4nDx/Hjx8eoUaMik8lEJpOJq6++Oq6++uoi/ZIkiapVq8Ztt91WpoUCAAAAAJVLicPH4447LrbffvtIkiSOO+64GDp0aOy9996F+mQymahTp0507do1tthiizIvFgAAAACoPEocPnbu3Dk6d+4cET9fBbnPPvtEu3btUisMAAAAAKjcShw+rm7AgAFlXQcAAAAAsIkpVfgYETFjxowYP358fPrpp7Fw4cIiT8DOZDLxwgsvbHCBAAAAAEDlVKrw8e9//3sMGjQoqlevHh07doyGDRsW6fPLMBIAAAAA2LyUKnwcOXJkdOvWLZ566qlo0qRJWdcEAAAAAGwCqpRmo6+++ipOPfVUwSMAAAAAsEalCh933HHH+Oqrr8q6FgAAAABgE1Kq8HHs2LFxxx13xGuvvVbW9QAAAAAAm4hSzfk4ZsyYyM7Ojr333ju6dOkSrVu3jqpVqxbqk8lk4pFHHimTIgEAAACAyqdU4eO7774bmUwmWrduHYsXL44PPvigSJ9MJrPBxQEAAAAAlVepwsc5c+aUcRkAAAAAwKamVHM+AgAAAACsS4mufPz8888jIqJ169aFltdlVX8AAAAAYPNTovCxbdu2kclkYtmyZVGjRo2C5XVZuXLlBhcIAAAAAFROJQof77zzzshkMlG9evVCy2Xt5Zdfjuuuuy7eeuutmDdvXkyYMCGOPPLIgvVJksSIESPi9ttvj0WLFsVee+0Vt9xyS2yzzTZlXgsAAAAAsGFKFD4OHDhwrctlZcmSJbHTTjvFqaeeGkcffXSR9X/4wx/ixhtvjLvvvjvatWsXl19+eRx00EHxwQcfRM2aNVOpCQAAAAAonVI97fqXli1bFhERtWrV2qD99O3bN/r27VvsuiRJYty4cfG73/0ujjjiiIiIuOeee2KLLbaIhx9+OI4//vgNOjYAAAAAULZK/bTrzz//PAYNGhRbbLFF1K1bN+rWrRtbbLFFnHrqqfHZZ5+VZY0RETF79uz4+uuvY//99y9oy87Ojt122y1ef/31NW6Xl5cXubm5hV4AAAAAQPpKdeXjhx9+GD179oxFixbFAQccEJ07dy5ov+eee+Kxxx6LV199NTp27FhmhX799dcREbHFFlsUat9iiy0K1hVn9OjRMWrUqDKrAwAAAAAomVKFj5deemlUqVIl3nnnndhhhx0KrXv//fdjv/32i0svvTQmTJhQJkVuiOHDh8cFF1xQsJybmxutWrWqwIoAAAAAYPNQqtuuX3rppRg6dGiR4DEiYvvtt49zzjknJk2atKG1FdK8efOIiPjmm28KtX/zzTcF64qTlZUV9evXL/QCAAAAANJXqvDxp59+WuvDZWrXrh0//fRTqYsqTrt27aJ58+bxwgsvFLTl5ubG5MmTY4899ijTYwEAAAAAG65U4WO3bt3ib3/7W+Tk5BRZl5ubG3fccUd07959vfe7ePHimDZtWkybNi0ifn7IzLRp0+Lzzz+PTCYTw4YNi6uuuioeffTReO+99+KUU06Jli1bxpFHHlma0wAAAAAAUlSqOR9HjRoVBx98cHTq1CkGDRoU2267bUREzJw5M+6+++74/vvv4y9/+ct673fq1KnRp0+fguVVczUOGDAg7rrrrvjNb34TS5YsiTPPPDMWLVoUPXv2jKeffjpq1qxZmtMAAAAAAFKUSZIkKc2Gzz//fFx88cUxffr0Qu1du3aN6667Lvbbb78yKbCs5ebmRnZ2duTk5Jj/EQCgHLS99ImKLoEyNOfafhVdAgBQwdYnXyvVlY8REfvvv3+888478fXXX8dnn30WERFt2rRZ68NfAAAAAIDNR6nDx1WaN28ucAQAAAAAiijVA2ciIr799tu46KKLokuXLlG7du2oXbt2dOnSJS666KL45ptvyrJGAAAAAKASKlX4+L///S922GGHGDt2bGRnZ8exxx4bxx57bGRnZ8fYsWNjxx13jPfff7+sawUAAAAAKpFS3XY9ZMiQWLlyZUyePDl22WWXQuvefPPNOOSQQ+Lcc8+NiRMnlkmRAAAAAEDlU6orH998880477zzigSPERG77rprnHfeeTF58uQNLg4AAAAAqLxKFT42a9Ysatasucb1NWvWjGbNmpW6KAAAAACg8itV+Dhs2LC45ZZb4uuvvy6y7quvvopbbrklhg0btqG1AQAAAACVWKnmfMzPz4+6detGhw4d4qijjooOHTpERMTHH38cDz/8cHTo0CHy8/Nj7NixBdtkMpk4//zzy6ZqAAAAAGCjl0mSJFnfjapUWf8LJjOZTKxcuXK9tytrubm5kZ2dHTk5OVG/fv2KLgcAYJPX9tInKroEytCca/tVdAkAQAVbn3ytVFc+zp49u1SFAQAAAACbj1KFj23atCnrOgAAAACATUypHjgDAAAAALAuwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVJQofb7zxxvjoo4/SrgUAAAAA2ISUKHw8//zzY+rUqQXLVatWjfvuuy+1ogAAAACAyq9E4WPDhg3jm2++KVhOkiS1ggAAAACATUO1knTq3bt3jBw5MqZNmxbZ2dkREXHPPffEG2+8scZtMplM3HDDDWVTJQAAAABQ6WSSElzGOH/+/Bg2bFhMnDgx5s+fHxHrvvoxk8nEypUry6bKMpSbmxvZ2dmRk5MT9evXr+hyAAA2eW0vfaKiS6AMzbm2X0WXAABUsPXJ10p023WzZs3ivvvui3nz5sXKlSsjSZK49957Iz8/f42vjTF4BAAAAADKT4nCx18aP3587LnnnmVdCwAAAACwCSnRnI+/NGDAgIL//+CDD+Kzzz6LiIg2bdpEly5dyqYyAAAAAKBSK1X4GBHxyCOPxAUXXBBz5swp1N6uXbsYO3ZsHH744RtaGwAAAABQiZXqtusnn3wyjjnmmIiIuOaaa2LChAkxYcKEuOaaayJJkjj66KPj6aefLtNCAQAAAIDKpURPu/6lPfbYI/Ly8uKVV16JOnXqFFq3ZMmS6NmzZ9SsWTNef/31Miu0rHjaNQBA+fK0602Lp10DAGX+tOtfevfdd2PAgAFFgseIiDp16sTAgQPj3XffLc2uAQAAAIBNRKnCx5o1a8aCBQvWuH7BggVRs2bNUhcFAAAAAFR+pQof991337jhhhuKva168uTJceONN8b++++/wcUBAAAAAJVXqZ52/Yc//CH22GOP6NmzZ+y6667RsWPHiIiYOXNmvPnmm9GsWbMYM2ZMmRYKAAAAAFQupbrysV27dvHuu+/G0KFDY+HChXH//ffH/fffHwsXLozzzjsvpk+fHm3bti3jUgEAAACAyqRUVz5GRDRr1iyuv/76uP7668uyHgAAAABgE1GqKx8BAAAAANZF+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApGK9w8elS5fGzjvvHLfeemsa9QAAAAAAm4j1Dh9r164ds2fPjkwmk0Y9AAAAAMAmolS3XR988MHxzDPPlHUtAAAAAMAmpFTh4+WXXx4fffRRnHzyyfHqq6/Gl19+GQsWLCjyAgAAAAA2X9VKs9F2220XEREffPBB3HfffWvst3LlytJVBQAAAABUeqUKH6+44gpzPgIAAAAAa1Wq8HHkyJFlXAYAAAAAsKkp1ZyPv5STk+MWawAAAACgkFKHj1OnTo2DDz44ateuHY0bN46XXnopIiK+++67OOKII2LSpEllVSMAAAAAUAmVKnx87bXXomfPnvHxxx/Hr371q8jPzy9Y16RJk8jJyYnbbrutzIoEAAAAACqfUoWPl112WXTu3Dk++OCDuOaaa4qs79OnT0yePHmDiwMAAAAAKq9ShY9TpkyJQYMGRVZWVrFPvd5yyy3j66+/3uDiAAAAAIDKq1ThY/Xq1Qvdav1LX375ZdStW7fURQEAAAAAlV+pwsfdd989HnzwwWLXLVmyJMaPHx+9evXaoMIAAAAAgMqtVOHjqFGjYurUqdGvX7946qmnIiJi+vTp8be//S123nnn+Pbbb+Pyyy8v00IBAAAAgMqlWmk22m233eLJJ5+Ms88+O0455ZSIiLjwwgsjIqJ9+/bx5JNPxo477lh2VQIAAAAAlU6pwseIiH333TdmzpwZ77zzTnzyySeRn58f7du3j5133rnYh9AAAAAAAJuXUoePq3Tr1i26detWFrUAAAAAAJuQUoePeXl5cfvtt8eTTz4Zc+bMiYiItm3bxiGHHBKnn3561KxZs6xqBAAAAAAqoVI9cOaLL76Irl27xtChQ2P69OnRtGnTaNq0aUyfPj2GDh0aXbt2jS+++KKsawUAAAAAKpFShY9DhgyJzz77LB544IH48ssv46WXXoqXXnopvvzyy7j//vvj888/jyFDhpR1rbFy5cq4/PLLo127dlGrVq1o3759XHnllZEkSZkfCwAAAADYMKW67fqFF16I888/P/r3719k3bHHHhtvv/123HTTTRtc3C+NGTMmbrnllrj77rtju+22i6lTp8agQYMiOzs7hg4dWubHAwAAAABKr1ThY7169aJZs2ZrXN+8efOoV69eqYtak9deey2OOOKI6NevX0T8PMfkP//5z3jzzTfL/FgAAAAAwIYp1W3XgwYNirvuuiuWLl1aZN3ixYtj/Pjxcdppp21wcb+05557xgsvvBAfffRRRERMnz49Xn311ejbt+8at8nLy4vc3NxCLwAAAAAgfSW68vGhhx4qtNytW7d44oknolOnTjFgwIDo0KFDRER8/PHHcc8990SjRo1ixx13LPNiL7300sjNzY1OnTpF1apVY+XKlXH11VfHSSedtMZtRo8eHaNGjSrzWgAAAACAtcskJXhaS5UqVSKTyRQ82GX1/1/jjjOZWLlyZdlU+f/717/+FRdffHFcd911sd1228W0adNi2LBhMXbs2BgwYECx2+Tl5UVeXl7Bcm5ubrRq1SpycnKifv36ZVofAABFtb30iYougTI059p+FV0CAFDBcnNzIzs7u0T5WomufJw4cWKZFLahLr744rj00kvj+OOPj4iIHXbYIT777LMYPXr0GsPHrKysyMrKKs8yAQAAAIAoYfjYq1evtOsokaVLl0aVKoWnqaxatWrk5+dXUEUAAAAAwJqU6mnXFeWwww6Lq6++Olq3bh3bbbddvPPOOzF27Ng49dRTK7o0AAAAAOAXSh0+vvrqq3HnnXfGp59+GgsXLiwyB2Qmk4np06dvcIGru+mmm+Lyyy+PwYMHx/z586Nly5bx61//Oq644ooyPQ4AAAAAsOFKFT6OHTs2Lr744qhZs2Z07NgxGjVqVNZ1FatevXoxbty4GDduXLkcDwAAAAAovVKFj9ddd13stdde8dhjj0V2dnZZ1wQAAAAAbAKqrLtLUUuXLo2TTjpJ8AgAAAAArFGpwsc+ffrEe++9V9a1AAAAAACbkFKFjzfddFO88MIL8cc//jEWLFhQ1jUBAAAAAJuAUoWPrVq1il//+tdx6aWXRtOmTaNOnTpRv379Qi+3ZAMAAADA5q1UD5y54oor4uqrr44tt9wyevToIWgEAAAAAIooVfh46623Rr9+/eLhhx+OKlVKdfEkAAAAALCJK1VyuHz58ujXr5/gEQAAAABYo1Klh4ceemi88sorZV0LAAAAALAJKVX4OGLEiPjggw9i8ODB8dZbb8W3334bCxYsKPICAAAAADZfpZrzsWPHjhERMW3atLjtttvW2G/lypWlqwoAAAAAqPRK/bTrTCZT1rUAAAAAAJuQUoWPI0eOLOMyAAAAAIBNjcdVAwAAAACpKNWVj7///e/X2SeTycTll19emt0DAAAAAJuAMr/tOpPJRJIkwkcAAAAA2MyV6rbr/Pz8Iq8VK1bErFmz4vzzz48ePXrE/Pnzy7pWAAAAAKASKbM5H6tUqRLt2rWLP/7xj7HNNtvEueeeW1a7BgAAAAAqoVQeOLPPPvvEk08+mcauAQAAAIBKIpXwcerUqVGligdpAwAAAMDmrFQPnLnnnnuKbV+0aFG8/PLL8dBDD8Xpp5++QYUBAAAAAJVbqcLHgQMHrnFdkyZN4tJLL40rrriitDUBAAAAAJuAUoWPs2fPLtKWyWSiYcOGUa9evQ0uCgAAAACo/EoVPrZp06as6wAAAAAANjGlCh9Xt3jx4li4cGEkSVJkXevWrTd09wAAAABAJVWq8PHHH3+MUaNGxR133BHff//9GvutXLmy1IUBAAAAAJVbqcLHwYMHx9133x1HHnlk7L333tGwYcOyrgsAAAAAqORKFT4+9NBDcfrpp8dtt91W1vUAAAAAAJuIKqXZKJPJRPfu3cu6FgAAAABgE1Kq8PGII46I559/vqxrAQAAAAA2IaUKHy+//PL49NNP48wzz4y33norvv3221iwYEGRFwAAAACw+SrVnI/bbLNNRES88847cccdd6yxn6ddAwAAAMDmq1Th4xVXXBGZTKasawEAAAAANiGlCh9HjhxZxmUAAAAAAJuaUs35CAAAAACwLsJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBXCRwAAAAAgFcJHAAAAACAVwkcAAAAAIBWVLnz88ssv41e/+lU0btw4atWqFTvssENMnTq1ossCAAAAAH6hWkUXsD4WLlwYe+21V/Tp0yeeeuqpaNq0aXz88cfRsGHDii4NAAAAAPiFShU+jhkzJlq1ahXjx48vaGvXrl0FVgQAAAAArEmluu360UcfjR49esSxxx4bzZo1i27dusXtt9++1m3y8vIiNze30AsAAAAASF+lCh8//fTTuOWWW2KbbbaJZ555Js4+++wYOnRo3H333WvcZvTo0ZGdnV3watWqVTlWDAAAAACbr0ySJElFF1FSNWrUiB49esRrr71W0DZ06NCYMmVKvP7668Vuk5eXF3l5eQXLubm50apVq8jJyYn69eunXjMAwOau7aVPVHQJlKE51/ar6BIAgAqWm5sb2dnZJcrXKtWVjy1atIguXboUauvcuXN8/vnna9wmKysr6tevX+gFAAAAAKSvUoWPe+21V8ycObNQ20cffRRt2rSpoIoAAAAAgDWpVOHj+eefH2+88UZcc8018cknn8R9990Xf/3rX2PIkCEVXRoAAAAA8AuVKnzcZZddYsKECfHPf/4ztt9++7jyyitj3LhxcdJJJ1V0aQAAAADAL1Sr6ALW16GHHhqHHnpoRZcBAAAAAKxDpbryEQAAAACoPISPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqqVXQBAMBmbmR2RVdASY3MqegKAACoZFz5CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApKJSh4/XXnttZDKZGDZsWEWXAgAAAAD8QqUNH6dMmRK33XZb7LjjjhVdCgAAAABQjEoZPi5evDhOOumkuP3226Nhw4YVXQ4AAAAAUIxKGT4OGTIk+vXrF/vvv/86++bl5UVubm6hFwAAAACQvmoVXcD6+te//hVvv/12TJkypUT9R48eHaNGjUq5KgAAADY2bS99oqJLKBdzru1X0SUArFGluvJx7ty5cd5558U//vGPqFmzZom2GT58eOTk5BS85s6dm3KVAAAAAEBEJbvy8a233or58+dH9+7dC9pWrlwZL7/8cvz5z3+OvLy8qFq1aqFtsrKyIisrq7xLBQAAAIDNXqUKH/fbb7947733CrUNGjQoOnXqFJdcckmR4BEAAAAAqDiVKnysV69ebL/99oXa6tSpE40bNy7SDgAAAABUrEo15yMAAAAAUHlUqisfizNp0qSKLgEAAAAAKIYrHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFQIHwEAAACAVAgfAQAAAIBUCB8BAAAAgFRUq+gCACAVI7MrugKATVLbS5+o6BIoI3Ou7VfRJQCwGXDlIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkArhIwAAAACQCuEjAAAAAJAK4SMAAAAAkIpKFz6OHj06dtlll6hXr140a9YsjjzyyJg5c2ZFlwUAAAAA/EKlCx9feumlGDJkSLzxxhvx3HPPxU8//RQHHnhgLFmypKJLAwAAAABWU62iC1hfTz/9dKHlu+66K5o1axZvvfVW7LPPPhVUFQAAAADwS5UufPylnJyciIho1KhRsevz8vIiLy+vYDk3N7dc6gIAAACAzV2lDh/z8/Nj2LBhsddee8X2229fbJ/Ro0fHqFGjyrmyCjYyu6IrYH2MzKnoCgAA2Ay1vfSJii4BgM1ApZvzcXVDhgyJ999/P/71r3+tsc/w4cMjJyen4DV37txyrBAAAAAANl+V9srHc845Jx5//PF4+eWXY6uttlpjv6ysrMjKyirHygAAAACAiEoYPiZJEueee25MmDAhJk2aFO3atavokgAAAACAYlS68HHIkCFx3333xSOPPBL16tWLr7/+OiIisrOzo1atWhVcHQAAAACwSqWb8/GWW26JnJyc6N27d7Ro0aLgdf/991d0aQAAAADAairdlY9JklR0CQAAAABACVS6Kx8BAAAAgMpB+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkQvgIAAAAAKRC+AgAAAAApEL4CAAAAACkolpFFwAAAACwLm0vfaKiS4D1MufafhVdwkbBlY8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqKmX4+Je//CXatm0bNWvWjN122y3efPPNii4JAAAAAPiFShc+3n///XHBBRfEiBEj4u23346ddtopDjrooJg/f35FlwYAAAAArKbShY9jx46NM844IwYNGhRdunSJW2+9NWrXrh133nlnRZcGAAAAAKymWkUXsD6WL18eb731VgwfPrygrUqVKrH//vvH66+/Xuw2eXl5kZeXV7Cck5MTERG5ubnpFluR8pKKroD1sSmPRahIPguh7JXyz6z8vKVlXAgAq9uk/367Gn+eUNlsyr+bq84tSdb9965KFT5+9913sXLlythiiy0KtW+xxRbx4YcfFrvN6NGjY9SoUUXaW7VqlUqNsN6uza7oCgCgZPyZBbBRyh5X0RUAxdkcfjd/+OGHyM5e+3fEShU+lsbw4cPjggsuKFjOz8+PBQsWROPGjSOTyVRgZWUrNzc3WrVqFXPnzo369etXdDmQOmOezY0xz+bGmGdzY8yzuTHm2dxsamM+SZL44YcfomXLluvsW6nCxyZNmkTVqlXjm2++KdT+zTffRPPmzYvdJisrK7Kysgq1NWjQIK0SK1z9+vU3iUEMJWXMs7kx5tncGPNsbox5NjfGPJubTWnMr+uKx1Uq1QNnatSoETvvvHO88MILBW35+fnxwgsvxB577FGBlQEAAAAAv1SprnyMiLjgggtiwIAB0aNHj9h1111j3LhxsWTJkhg0aFBFlwYAAAAArKbShY//93//F99++21cccUV8fXXX0fXrl3j6aefLvIQms1NVlZWjBgxosgt5rCpMubZ3BjzbG6MeTY3xjybG2Oezc3mPOYzSUmeiQ0AAAAAsJ4q1ZyPAAAAAEDlIXwEAAAAAFIhfAQAAAAAUiF8BAAAAABSIXysJBYtWhRnnnlmNG3aNOrUqRN9+vSJt99+u0TbvvnmmzF48ODYeeedo3r16pHJZNbYN5PJFPu69tpry+pUoETKa8xHRNxxxx3RuXPnqFmzZmyzzTZx0003lcUpwHrZkDEfETFjxow4+OCDo27dutGoUaM4+eST49tvvy3UZ86cOWv8nP/Xv/5V1qcEkZeXF5dcckm0bNkyatWqFbvttls899xzJdr2yy+/jOOOOy4aNGgQ9evXjyOOOCI+/fTTYvv6HGdjUR5j3vd1NialHfMzZ86M888/P/bcc8+oWbNmZDKZmDNnzhr7P/roo9G9e/eoWbNmtG7dOkaMGBErVqwowzOBkimPMd+2bdtiP+fPOuusMj6b8lOtogtg3fLz86Nfv34xffr0uPjii6NJkyZx8803R+/eveOtt96KbbbZZq3bP/nkk/G3v/0tdtxxx9h6663jo48+Wmv/Aw44IE455ZRCbd26ddvg84CSKs8xf9ttt8VZZ50VxxxzTFxwwQXxyiuvxNChQ2Pp0qVxySWXlPWpQbE2dMx/8cUXsc8++0R2dnZcc801sXjx4vjjH/8Y7733Xrz55ptRo0aNQv1POOGEOOSQQwq17bHHHmV+XjBw4MB48MEHY9iwYbHNNtvEXXfdFYccckhMnDgxevbsucbtFi9eHH369ImcnJy47LLLonr16nH99ddHr169Ytq0adG4ceOCvj7H2ZiUx5iP8H2djUdpx/zrr78eN954Y3Tp0iU6d+4c06ZNW2Pfp556Ko488sjo3bt33HTTTfHee+/FVVddFfPnz49bbrklhbOCNSuPMR8R0bVr17jwwgsLtW277bZlcQoVI2Gjd//99ycRkfz73/8uaJs/f37SoEGD5IQTTljn9l9//XWydOnSJEmSZMiQIcnafuwRkQwZMmTDi4YNUF5jfunSpUnjxo2Tfv36FWo/6aSTkjp16iQLFizYgLOAktvQMX/22WcntWrVSj777LOCtueeey6JiOS2224raJs9e3YSEcl1111XticAxZg8eXKR8bZs2bKkffv2yR577LHWbceMGZNERPLmm28WtM2YMSOpWrVqMnz48II2n+NsTMpjzCeJ7+tsPDZkzH///fdJbm5ukiRJct111yURkcyePbvYvl26dEl22mmn5Keffipo++1vf5tkMplkxowZG34iUELlNebbtGlT5LtNZee260rgwQcfjC222CKOPvrogramTZvGcccdF4888kjk5eWtdfstttgiatWqtV7HXLZsWfz444+lqhc2VHmN+YkTJ8b3338fgwcPLtQ+ZMiQWLJkSTzxxBOlOwFYTxs65v/zn//EoYceGq1bty5o23///WPbbbeNBx54oNhtlixZEsuXLy+bE4BiPPjgg1G1atU488wzC9pq1qwZp512Wrz++usxd+7ctW67yy67xC677FLQ1qlTp9hvv/0KjWmf42xMymPMr873dSrahoz5Ro0aRb169dZ5jA8++CA++OCDOPPMM6Natf934+bgwYMjSZJ48MEHN+wkYD2Ux5hf3fLly2PJkiWlrndjInysBN55553o3r17VKlS+Me16667xtKlS9d5G/X6uuuuu6JOnTpRq1at6NKlS9x3331lun9Yl/Ia8++8805ERPTo0aNQ+8477xxVqlQpWA9p25Ax/+WXX8b8+fOLjONV2xc3jkeNGhV169aNmjVrxi677BLPPvvshp8E/MI777wT2267bdSvX79Q+6677hoRscbbjfLz8+Pdd99d45ieNWtW/PDDDwXHiPA5zsahPMb8Kr6vszEo7Zhf32NEFP2cb9myZWy11VY+5ylX5THmV3nxxRejdu3aUbdu3Wjbtm3ccMMNZbbviiB8rATmzZsXLVq0KNK+qu2rr74qs2PtueeecfXVV8fDDz8ct9xyS1StWjVOOukkc2lQrsprzM+bNy+qVq0azZo1K9Reo0aNaNy4cZn+bsHabMiYnzdvXqG+v9x+wYIFBVdOVqlSJQ488MC47rrr4tFHH43rr78+5s+fH3379nWFGGWutON61ZgtybY+x9mYlMeYj/B9nY1HeXxnX9f3HJ/zlKfy+nvqjjvuGCNHjoz//Oc/cccdd0Tr1q1j2LBhlXouaw+cKWf5+fklvs0tKysrMplMLFu2LLKysoqsr1mzZkT8fMtFWfnvf/9baPnUU0+NnXfeOS677LIYOHDget++DRvzmF+2bFmRB3Gsfqyy/N1i81HeY37VunVtn5WVFa1bt45nnnmmUJ+TTz45unTpEhdeeGH069evRHVDSZR2XJd0TK/6r89xNhblMeYjfF9n41Ee39nX9fuRm5u7wceAkiqvv6c++uijhZYHDRoUffv2jbFjx8a5554bW221VZkcpzy58rGcvfzyy1GrVq0SvWbOnBkREbVq1Sp2vq9Vc7yk+QWjRo0acc4558SiRYvirbfeSu04bLo25jFfq1atNYZEP/74oy/vlEp5j/lV60q7faNGjWLQoEExc+bM+OKLL0p+orAOpR3X6zOmfY6zMSmPMV8c39epKOXxnX1dvx8+5ylPFZXNZDKZOP/882PFihUxadKkVI6RNlc+lrNOnTrF+PHjS9R31aW7LVq0KLjcfHWr2lq2bFl2BRajVatWEfHzLSGwvjbmMd+iRYtYuXJlzJ8/v9Ate8uXL4/vv/8+9d8tNk3lPeZX7WNN2zdq1KjYf6Fd3eqf85XxX1LZOLVo0SK+/PLLIu3rGterxmxJfid8jrMxKY8xvya+r1MRSjvm1/cYq/a5apyvfpxVc+1BeSiPMb8mlf1zXvhYzpo3bx4DBw5cr226du0ar7zySuTn5xd6GMHkyZOjdu3ase2225ZxlYV9+umnEfHzk1dhfW3MY75r164RETF16tQ45JBDCtqnTp0a+fn5BethfZT3mN9yyy2jadOmMXXq1CLr3nzzzRKNY5/zpKFr164xceLEyM3NLTQx++TJkwvWF6dKlSqxww47FDumJ0+eHFtvvXXB0yJ9jrMxKY8xvyY+x6kIpR3z63uMiJ8/11cPGr/66qv44osvCj11GNJWHmN+TSr757zbriuB/v37xzfffBMPPfRQQdt3330X//73v+Owww4rdEXLrFmzYtasWaU6zrfffluk7Ycffohx48ZFkyZNYueddy7VfmF9ldeY33fffaNRo0ZFJmi/5ZZbonbt2ua/o9xs6Jg/5phj4vHHH4+5c+cWtL3wwgvx0UcfxbHHHlvQVtzn/Jdffhl33nln7LjjjsVOoA2l1b9//1i5cmX89a9/LWjLy8uL8ePHx2677VbwL/iff/55fPjhh0W2nTJlSqEwZubMmfHiiy8WGtM+x9mYlMeY932djcmGjPmS2m677aJTp07x17/+NVauXFnQfsstt0Qmk4n+/ftv2EnAeiiPMb9gwYJCYz0i4qeffoprr702atSoEX369Cn9CVSgTJIkSUUXwdqtXLkyevbsGe+//35cfPHF0aRJk7j55pvj888/jylTpkTHjh0L+rZt2zYiIubMmVPQ9tlnn8Xf//73iIh4/PHHY/LkyXHllVdGRESbNm3i5JNPjoiIkSNHxsMPPxyHHXZYtG7dOubNmxd33nlnfP755/H3v/89TjrppPI5YTZ75TXmIyJuvvnmGDJkSPTv3z8OOuigeOWVV+Kee+6Jq6++Oi677LL0TxZiw8f83Llzo1u3btGgQYM477zzYvHixXHdddfFVlttFVOmTCkILwcNGhSzZs2K/fbbL1q2bBlz5syJ2267LX744Yd45plnonfv3uV41mwOjjvuuJgwYUKcf/750aFDh7j77rvjzTffjBdeeCH22WefiIjo3bt3vPTSS7H6V9IffvghunXrFj/88ENcdNFFUb169Rg7dmysXLkypk2bVuhf/X2OszFJe8z7vs7GprRjPicnJ2666aaI+PkhSk8//XRceOGF0aBBg2jQoEGcc845BX0ff/zxOPzww6NPnz5x/PHHx/vvvx9//vOf47TTTisUAkF5SHvM33XXXXHVVVdF//79o127drFgwYK477774v33349rrrkmhg8fXv4nXRYSKoUFCxYkp512WtK4ceOkdu3aSa9evZIpU6YU6demTZukTZs2hdomTpyYRESxr169ehX0e/bZZ5MDDjggad68eVK9evWkQYMGyYEHHpi88MILKZ8dFFUeY36Vv/71r0nHjh2TGjVqJO3bt0+uv/76JD8/P6Uzg+JtyJhPkiR5//33kwMPPDCpXbt20qBBg+Skk05Kvv7660J97rvvvmSfffZJmjZtmlSrVi1p0qRJctRRRyVvvfVWWqfFZm7ZsmXJRRddlDRv3jzJyspKdtlll+Tpp58u1KdXr15JcV9J586dm/Tv3z+pX79+Urdu3eTQQw9NPv7442KP43OcjUXaY973dTY2pR3zs2fPXuP39eK+50yYMCHp2rVrkpWVlWy11VbJ7373u2T58uVpnhoUK+0xP3Xq1OSwww5Lttxyy6RGjRpJ3bp1k549eyYPPPBAeZxealz5CAAAAACkwpyPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAAAAAEAqhI8AAAAAQCqEjwAAAABAKoSPAACVzF133RWZTCbmzJlTqu0//vjjOPDAAyM7OzsymUw8/PDDG7xPAAAoTrWKLgAAgPI1YMCAmD17dlx99dXRoEGD6NGjRzz//PMVXRYAAJsg4SMAQCVz8sknx/HHHx9ZWVnrve2yZcvi9ddfj9/+9rdxzjnnpFAdAAD8P267BgCoZKpWrRo1a9aMTCaz3tt+++23ERHRoEGDMq6KVZYsWVLRJQAAbDSEjwAAlUxx8zO2bds2Dj300Hj11Vdj1113jZo1a8bWW28d99xzT0GfkSNHRps2bSIi4uKLL45MJhNt27Zd43EymUyMHDmySHvbtm1j4MCBhdoWLVoUw4YNi1atWkVWVlZ06NAhxowZE/n5+YX65efnxw033BA77LBD1KxZM5o2bRoHH3xwTJ06tVC/e++9N3beeeeoVatWNGrUKI4//viYO3fuOt+bH374IYYNGxZt27aNrKysaNasWRxwwAHx9ttvF+o3efLkOOSQQ6Jhw4ZRp06d2HHHHeOGG24o1OfFF1+MvffeO+rUqRMNGjSII444ImbMmFGoz8iRIyOTycQHH3wQJ554YjRs2DB69uy5wecBALCpcNs1AMAm4pNPPon+/fvHaaedFgMGDIg777wzBg4cGDvvvHNst912cfTRR0eDBg3i/PPPjxNOOCEOOeSQqFu37gYfd+nSpdGrV6/48ssv49e//nW0bt06XnvttRg+fHjMmzcvxo0bV9D3tNNOi7vuuiv69u0bp59+eqxYsSJeeeWVeOONN6JHjx4REXH11VfH5ZdfHscdd1ycfvrp8e2338ZNN90U++yzT7zzzjtrvWrzrLPOigcffDDOOeec6NKlS3z//ffx6quvxowZM6J79+4REfHcc8/FoYceGi1atIjzzjsvmjdvHjNmzIjHH388zjvvvIiIeP7556Nv376x9dZbx8iRI2PZsmVx0003xV577RVvv/12kdD22GOPjW222SauueaaSJJkg88DAGCTkQAAUKmMHz8+iYhk9uzZBW1t2rRJIiJ5+eWXC9rmz5+fZGVlJRdeeGFB2+zZs5OISK677rp17jMikhEjRhQ5fps2bZIBAwYULF955ZVJnTp1ko8++qhQv0svvTSpWrVq8vnnnydJkiQvvvhiEhHJ0KFDi+wzPz8/SZIkmTNnTlK1atXk6quvLrT+vffeS6pVq1ak/Zeys7OTIUOGrHH9ihUrknbt2iVt2rRJFi5cWGwNSZIkXbt2TZo1a5Z8//33BW3Tp09PqlSpkpxyyikFbSNGjEgiIjnhhBMK7WtDzwMAYFPhtmsAgE1Ely5dYu+99y5Ybtq0aXTs2DE+/fTTVI/773//O/bee+9o2LBhfPfddwWv/fffP1auXBkvv/xyRET85z//iUwmEyNGjCiyj1XzVz700EORn58fxx13XKF9NW/ePLbZZpuYOHHiWmtp0KBBTJ48Ob766qti17/zzjsxe/bsGDZsWJErD1fVMG/evJg2bVoMHDgwGjVqVLB+xx13jAMOOCCefPLJIvs966yzCi1v6HkAAGwq3HYNALCJaN26dZG2hg0bxsKFC1M97scffxzvvvtuNG3atNj18+fPj4iIWbNmRcuWLQsFesXtK0mS2GabbYpdX7169bXW8oc//CEGDBgQrVq1ip133jkOOeSQOOWUU2LrrbcuqCEiYvvtt1/jPj777LOIiOjYsWORdZ07d45nnnkmlixZEnXq1Clob9euXZmeBwDApkL4CACwiahatWqx7cn/PwdhWVm5cmWh5fz8/DjggAPiN7/5TbH9t9122xLvOz8/PzKZTDz11FPFns+65qg87rjjYu+9944JEybEs88+G9ddd12MGTMmHnrooejbt2+J61hftWrVKrS8oecBALCpED4CAFCshg0bxqJFiwq1LV++PObNm1eorX379rF48eLYf//917q/9u3bxzPPPBMLFixY49WP7du3jyRJol27dusVWq6uRYsWMXjw4Bg8eHDMnz8/unfvHldffXX07ds32rdvHxER77///hrrXfVE8JkzZxZZ9+GHH0aTJk0KXfWY1nkAAGwKzPkIAECx2rdvXzBf4yp//etfi1z5eNxxx8Xrr78ezzzzTJF9LFq0KFasWBEREcccc0wkSRKjRo0q0m/V1ZlHH310VK1aNUaNGlXkis0kSeL7779fY70rV66MnJycQm3NmjWLli1bRl5eXkREdO/ePdq1axfjxo0rEqyuOl6LFi2ia9eucffddxfq8/7778ezzz4bhxxyyBprWGVDzgMAYFPiykcAAIp1+umnx1lnnRXHHHNMHHDAATF9+vR45plnokmTJoX6XXzxxfHoo4/GoYceGgMHDoydd945lixZEu+99148+OCDMWfOnGjSpEn06dMnTj755Ljxxhvj448/joMPPjjy8/PjlVdeiT59+sQ555wT7du3j6uuuiqGDx8ec+bMiSOPPDLq1asXs2fPjgkTJsSZZ54ZF110UbH1/vDDD7HVVltF//79Y6eddoq6devG888/H1OmTIk//elPERFRpUqVuOWWW+Kwww6Lrl27xqBBg6JFixbx4Ycfxv/+97+CAPW6666Lvn37xh577BGnnXZaLFu2LG666abIzs6OkSNHrvO925DzAADYlAgfAQAo1hlnnBGzZ8+OO+64I55++unYe++947nnnov99tuvUL/atWvHSy+9FNdcc038+9//jnvuuSfq168f2267bYwaNSqys7ML+o4fPz523HHHuOOOO+Liiy+O7Ozs6NGjR+y5554FfS699NLYdttt4/rrry+4SrJVq1Zx4IEHxuGHH77GemvXrh2DBw+OZ599tuBp0x06dIibb745zj777IJ+Bx10UEycODFGjRoVf/rTnyI/Pz/at28fZ5xxRkGf/fffP55++ukYMWJEXHHFFVG9evXo1atXjBkzpsjDZdaktOcBALApySRlPQM5AAAAAECY8xEAAAAASInwEQAAAABIhfARAAAAAEiF8BEAAAAASIXwEQAAAABIhfARAAAAAEiF8BEAAAAASIXwEQAAAABIhfARAAAAAEiF8BEAAAAASIXwEQAAAABIhfARAAAAAEjF/wfIKjRcvfAgpgAAAABJRU5ErkJggg==",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
"_, ax = plt.subplots()\n",
- "ax.hist(mean_train_influences[num_corrupted_idxs:], log=True, label=\"normal\")\n",
- "ax.hist(mean_train_influences[:num_corrupted_idxs], log=True, label=\"corrupted\")\n",
+ "ax.hist(mean_train_influences[num_corrupted_idxs:], label=\"normal\")\n",
+ "ax.hist(mean_train_influences[:num_corrupted_idxs], label=\"corrupted\", bins=5)\n",
"ax.set_title(\"Influece scores distribution\")\n",
"ax.set_xlabel(\"influece score\")\n",
"ax.set_ylabel(\"number of points\")\n",
@@ -438,6 +442,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "8dd63529",
"metadata": {},
@@ -447,7 +452,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 16,
"id": "8bc72789",
"metadata": {},
"outputs": [
@@ -455,8 +460,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Average influence of corrupted points: -0.008919590861305823\n",
- "Average influence of other points: 0.005525699381638608\n"
+ "Average influence of corrupted points: -0.05317057\n",
+ "Average influence of other points: 0.034408495\n"
]
}
],
@@ -472,6 +477,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "f1e747b1",
"metadata": {},
@@ -480,6 +486,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "b00a6164",
"metadata": {},
@@ -489,45 +496,25 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 17,
"id": "462d545e",
"metadata": {},
"outputs": [
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a4f6b7fdbc6d41d1886ab969bcf4ff03",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Split Gradient: 0%| | 0/107 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e73769256e964c4aacf3be5a6a96211d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Influence Perturbation: 0%| | 0/53 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Batch Test Gradients: 100%|██████████| 4/4 [00:00<00:00, 61.20it/s]\n",
+ "MVP: 100%|██████████| 547/547 [00:00<00:00, 1265.72it/s]\n",
+ "Batch Influence Perturbation: 100%|██████████| 2/2 [00:03<00:00, 1.66s/it]\n"
+ ]
}
],
"source": [
"feature_influences = compute_influences(\n",
- " nn_model,\n",
- " F.cross_entropy,\n",
- " *train_data,\n",
- " *test_data,\n",
+ " TorchTwiceDifferentiable(nn_model, F.cross_entropy),\n",
+ " training_data=training_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"perturbation\",\n",
" inversion_method=\"direct\",\n",
" hessian_regularization=1,\n",
@@ -537,28 +524,26 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 18,
"id": "1e096222",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8gAAAKRCAYAAACIpICJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAADoZUlEQVR4nOzdd3ib1fnG8e+xvJec4QzL2TuWnUDC3qPsFmhZ/bHLaguUllK694SWUlYZZbdlBAqUvfcIECCx5Cw723Li2Eks76nz+8NyaoKTOInlV+P+XJcuW9KrV7cdsP2855znGGstIiIiIiIiIokuyekAIiIiIiIiItFABbKIiIiIiIgIKpBFREREREREABXIIiIiIiIiIoAKZBERERERERFABbKIiIiIiIgIoAJZREQkqhhjxhhjXjPGNBlj4m4vRmPMr4wxFbvxusONMX5jTIcx5k1jzHhjjDXGHByJnCIikphUIIuISFQyxniMMW3GmCpjTLLTeQbRT4ARwGxg9ECd1BhzTpQU3H8B9t+N190OfApMBL46oIlERETCVCCLiEi0ugh4FqgDvhzpNzPdUiL9Pv0wBfjIWlturd3gdJi+7Mn3yVrbaK2t3Y2XTgFesdaus9Zu3t33FxER2REVyCIiEnWMMUl0F8j3Aw8Al/Z67hJjTNAYk77Na35ojFkbfi3GmMnGmP8YY+qMMVuMMS8bY4p7HX+BMabTGHOEMeYzoA042hgzwRjzRHjkutkY4zPGnLvNe2UYY+4K59hijPm7MeaP204dNsacZYxZaIxpNcasNsb81RiTtYOv2wJHAd8ITx++P/x4tjHmJmNMIJzpM2PMV7d57e+NMUvCz68zxtxhjHGHnzsc+GfPe2xz7jeNMXdvc66fGWNW97p/vzHmVWPMleHH28Lfg5Hh52qMMQ3GmPeMMYdu7+sLn+tzU6x77htjTjbGLA1PLX/TGDOlJ3v4++ICHgxnv6CP8/Y55Tp87l/1ur/D72Wv85xhjHk2fMzKbd8zfJ6/hb/XbeF/35/0en6XvzciIuI8FcgiIhKNjgfSgBfoLuyOMsaMDz83D0gFTt7mNecB/7LWhowxI4F3gY3AIXRP6V0GvGmMye/1miTgOuBqYDqwAMgGXg9nKAbuAu4zxhzR63XXhd//3PC5g8C3e4cJF1S3AzcAM8P5jgbu2MHXPRr4AHgo/PlVxhgDPAPMAs4EvOHzPmKMOarXa1vovpAwE7gAOBy4Ofzc+8AVvd5jNHDVDnL0ZV/gSLq/7ll0f+/eAHLo/l7tBTwPvGKMmbGL5x4NfAs4GzgwfM57e2XvmWp+RfjzR3fx/ED3LAH6970E+BPwIFACPALcbYyZ2us8zwJfAa4EZtD971sTfj6DgfveiIjIYLLW6qabbrrppltU3YD/Ajf0uv8i8Lte9x8Bnut1fy5ggWnh+78C5m9zTgOsAL4bvn9B+DWH9DPPP8KfZ9E92nzRNsfMByp63V8NfHObYw4Nv+eQHbzXm8Ddve4fDrQC7m2Ouxd4agfnOTWcMyl8/5zuX/s7fr/wYz8DVve6fz/dU92zez12AVAJJG/z2teBv+0g16+2+T79CugE8ns9diYQAtJ7PWaBc3rdHx9+7OC+7vc6rgL4VX+/l73Oc3Wv511AA3BZ+P5R4WPmbudr3K3vjW666aabbs7fEqnpiYiIxABjjAc4ke5Rtx4PADcYY35lre0M33/aGDPCWruR7tG7j6y1y8LH7wPMMcY0bnP6DLrXsvb28Tbvnwn8gu51z6PpHq1Oo3tEEGBy+LH525zng/BrCI9SjwP+aoz5S+/T9zrHx/TPPuH3C3QPXG6VCpT3yv1V4Lvhc+fSPcKbCowCqvr5XjuyxFrb+/u5T/jcddvkSqN7NHtXVFlra3rfp/t7NQJYuxtZt6df38uwhT2fWGu7jDEbgZHhh+YAW6y1C3bwPgP1vRERkUGkAllERKLNRXSP2H22TXHhorsAfRJ4GagF/s8YcxtwFt0jkT2SgNf437Ti3oK9Pu+y1rZu8/yf6Z5GfDXd07Kb6J4m7d7muB11hO5ZwnQV/yuse6vcwWv7OleQ7qJrW+0Axpj9gMeAPwI/ALbQPfX7AbqLvx0J8b/CvUdfTbia+si1hO6R6m017+Q9t9W+zf2e7+2uLAULhT/u6GvZ6fdyJ5n6m2cgvzciIjKIVCCLiEjUMP9rzvUH4OFtnv4J3WtsnwyP6P2b7jXAK+kuXh/pdewCwtNc+yiAd+ZQ4N/W2nm9Mk0FqsPPV9BdPB0ALO71uq1bF1lrq40x6+ie8v2PXXz/bS0A8uiebuzfzjEHA7XW2p/1PGCMOW2bY3qKaZe1tqvX4xuBgm2O3bufuc4D6sOj+E7rGYHe+rUYY0YAnl7H9Od72R+fAEOMMXO3M4ocbd8bERHpJzXpEhGRaHI8MAa401rr732jex3sMb2adT1IdyH3a+BZ+/mtf26le8T5v8aYQ8KdiQ8Od3o+cCcZlgEnG2P2NcbMpLtJ19aiy1rbBNwJ/M4Yc5IxZqox5vd0N2rqPar8U+A7xpifGmO8xphpxphTjDF37uL35HXgVeCJ8OsnGmPmhDtKX9Irc74x5qLw8+exTdMwYFX441eMMfnGmOzw/Vfp7t59uunu/P0juhub7cy/w+d8zhhzTPh7vJ8x5sfGmFN28WvcY9baFuA94FpjzCxjzBy6/xtp63VYf76X/fE68A7waLj79gRjzEHGmIvDz0fV90ZERPpPBbKIiESTS4EPrbV9rTt9HdgMXAxgrS2le53obLoLoa2stdV0j/DWAk/QXUD+m+51wet3kuF7wBq6p0a/BgSAx7c55od0d0N+CPgIGEJ3Ab91tNpa+0/gDOCk8DEf0z0NPLCT9/8ca62lu1vyE8CNwFLgObrXaa8IH/Ms8Hu6R959dE85/8E25/kYuInu4n4j3RcRoHsa9m3h2wK6L1DczE6ER+YPC7/mPmB5OOO+dH//nPANoJHuzteP0H1xY+u/d3++l/0RPs+JdHemvoPu/77+BQwPPx+N3xsREekH0/0zXkRERPaEMeZ1uhs3fc3pLCIiIrJ7tAZZRERkFxljiume3v0B3U2wzgWOoHuKuIiIiMQoFcgiIiK7zgLfonsqchLdU3VPtda+6GgqERER2SOaYi0iIiIiIiKCmnSJiIiIiIiIACqQRURERERERACtQf6C4cOH2/HjxzsdQ0RERERERCLgk08+qbXW5vf1nArkbYwfP54FCxY4HUNEREREREQiwBiz3T3pNcVaREREREREBBXIIiIiIiIiIoAKZBEREREREREgigpkY8xxxphlxpgKY8yP+ng+zRjzaPj5D40x48OPf8kY84kxxhf+eGSv17wZPufC8G3EIH5JIiIiIiIiEkOiokmXMcYF3AZ8CagEPjbGPG2tXdzrsIuALdbaycaYs4DrgDOBWuDL1toqY4wXeAnw9Hrd2dZadd0SERERERGRHYqWEeR9gQpr7UprbTvwCHDyNsecDDwQ/vxx4ChjjLHWfmatrQo/XgZkGGPSBiW1iIiIiIiIxI1oKZA9wLpe9yv5/Cjw546x1nYCQWDYNsd8DfjUWtvW67H7wtOrf26MMQMbW0REREREROJFtBTIe8wYU0T3tOvLej18trW2GDgkfDt3O6+91BizwBizoKamJvJhRUREREREJOpES4EcAMb0ul8YfqzPY4wxyYAb2BS+Xwg8CZxnrV3R8wJrbSD8sQF4iO6p3F9grb3LWjvXWjs3Pz9/QL4gERERERERiS3RUiB/DEwxxkwwxqQCZwFPb3PM08D54c9PA1631lpjTB7wHPAja+17PQcbY5KNMcPDn6cAJwH+yH4ZIiIiIiIiEquiokAOrym+gu4O1EuAedbaMmPMb4wxXwkfdg8wzBhTAVwN9GwFdQUwGfjFNts5pQEvGWNKgYV0j0D/Y9C+KBEREREREYkpxlrrdIaoMnfuXLtggXaFEhERERERiUfGmE+stXP7ei4qRpBFREREREREnKYCWURERERERAQVyCIiIiIiIiKACmQRERERERERQAWyiIiIiIiIDIDWji66QrHdBFoFsoiIiIiIiOyxRz5ai/eXL7Gpsc3pKLtNBbKIiIiIiIjsMX9VPVlpLoZmpTodZbepQBYREREREZE95g8E8XrcGGOcjrLbVCCLiIiIiIjIHmnt6KJ8YyPeArfTUfaICmQRERERERHZI4vX19MVsng9KpBFREREREQkgfkDQQCKC1Ugi4iIiIiISALzB4IMzUqlwJ3udJQ9ogJZRERERERE9ogvUB/zDbpABbKIiIiIiIjsgdaOLsqrG/AW5DodZY+pQBYREREREZHdtnRDA50hS3GMN+gCFcgiIiIiIiKyB3zhBl2x3sEaVCCLiIiIiIjIHigLBMnLTKFwSIbTUfaYCmQRERERERHZbb5AEG9B7DfoAhXIIiIiIiIispvaOrtYXt0QF9OrQQWyiIiIiIiI7KZlGxro6IqPBl2gAllERERERER2kz9QD6ACWURERERERBKbLxAkNz2ZMUNjv0EXqEAWERERERGR3eQPBPF64qNBF6hAFhERERERkd3Q3hli2YaGuJleDSqQRUREREREZDcsr26gvSsUNx2sQQWyiIiIiIiI7AZ/IAjET4MuUIEsIiIiIiIiu8EXCJKTnsy4YZlORxkwKpBFRERERERkl/kDQYoKcuOmQReoQBYREREREZFd1NEVYkmcNegCFcgiIiIiIiKyi5ZXN9DeGV8NukAFsoiIiIiIiOyiskA9EF8NukAFsoiIiIiIiOwiXyBIdloy44dlOR1lQKlAFhERERERkV3iCwSZWZBLUlL8NOgCFcgiIiIiIiKyCzq7QixZXx9306tBBbKIiIiIiIjsgvKNjbR1hlQgi4iIiIiISGLzB4IAcdfBGlQgi4iIiIiIyC7wB4JkprqYMDy+GnSBCmQRERERERHZBb5AkKKCXFxx1qALVCCLiIiIiIhIP3V2hVi8vj4up1eDCmQRERERERHpp5W1TbR2xGeDLoiiAtkYc5wxZpkxpsIY86M+nk8zxjwafv5DY8z48ONfMsZ8YozxhT8e2es1c8KPVxhjbjbGxN8cABERERERkUHiq+xu0KUCOYKMMS7gNuB4YCbwdWPMzG0OuwjYYq2dDNwIXBd+vBb4srW2GDgf+Gev19wOXAJMCd+Oi9gXISIiIiIiEud8gSAZKS4m5mc7HSUioqJABvYFKqy1K6217cAjwMnbHHMy8ED488eBo4wxxlr7mbW2Kvx4GZARHm0eDeRaa+dbay3wIHBKxL8SERERERGROOUPBJkZpw26IHoKZA+wrtf9yvBjfR5jre0EgsCwbY75GvCptbYtfHzlTs4JgDHmUmPMAmPMgpqamt3+IkREREREROJVV8hSVlUft9OrIXoK5D1mjCmie9r1Zbv6WmvtXdbaudbaufn5+QMfTkREREREJMatqm2kpaMrbjtYQ/QUyAFgTK/7heHH+jzGGJMMuIFN4fuFwJPAedbaFb2OL9zJOUVERERERKQffIH4btAF0VMgfwxMMcZMMMakAmcBT29zzNN0N+ECOA143VprjTF5wHPAj6y17/UcbK1dD9QbY/YPd68+D/hvhL8OERERERGRuOSrrCc9JYlJ+VlOR4mYqCiQw2uKrwBeApYA86y1ZcaY3xhjvhI+7B5gmDGmArga6NkK6gpgMvALY8zC8G1E+LlvA3cDFcAK4IXB+YpERERERETiiz8QZMboXJJdUVFGRkSy0wF6WGufB57f5rFf9Pq8FTi9j9f9Dvjdds65APAObFIREREREZHEEgpZyqqCfG1O4c4PjmHxW/qLiIiIiIjIgFi1qYmm9vhu0AUqkEVERERERGQn/AnQoAtUIIuIiIiIiMhO+CqDpCYnMXlEttNRIkoFsoiIiIiIiOyQL9ygKyWOG3SBCmQRERERERHZge4GXfUUe3KdjhJxKpBFRERERHYi2NLhdAQRx6zZ3ExjW2fcrz8GFcgiIiIiIjv06Mdrmfu7V1gfbHE6iogjfOEGXfHewRpUIIuIiIiIbFd7Z4ibXi2no8uycG2d03FEHOEPBEl1JTFlRI7TUSJOBbKIiIiIyHb859NKqoKtAPirgg6nEXGGrzLI9NE5pCbHf/kY/1+hiIiIiMhu6OgKcdsbFcwak8f0UTn4A/VORxIZdNZa/FXBhJheDSqQRURERET69OSnASq3tHDVUZMp9rjxB4JYa52OJTKo1m5upqE1MRp0gQpkEREREZEv6OwKcesbFRR73BwxbQRej5tNTe1sqG91OprIoNraoKtABbKIiIiISEL678Iq1m5u5jtHTcEYgze8/6umWUui8QWCpLgMU0dlOx1lUKhAFhERERHppWf0eMboXI6eMQKAGaNzMaa7m69IIvEHgkwblUNassvpKINCBbJInGhs66SlvcvpGCIiIjHv2dL1rKpt4qqjJmOMASAzNZlJ+dmUqZO1JBBrLf5AfcKsPwYVyCJx4QXfeg74w2v89Emf01FERERiWlfIcsvr5UwflcMxM0d97jlvQa6mWEtCqdzSQrClI2E6WIMKZJGY1tbZxa+eLuNb//6UpvZOPli5yelIIiIiMe0533pW1DRx5ZFTSEoyn3vO63Gzob6VmoY2h9KJDK5Ea9AFKpBFYta6zc2ccccH3P/+ai48aDzXHDuN9UH90hYREdldoZDlltfKmTIim+O9o77wfM8omqZZS6LwBYIkJxmmjcpxOsqgUYEsEoNeKtvAiTe/w8raJu44Zw6//HIRc8YOAdQ8REREZHe9WLaB8o2NXHHk5C+MHgPMLOjuZF1WpWnWkhj8gSBTR+aQnpIYDbpABbJITGnvDPHbZxdz2T8/YdywLJ678hCOC1/hLvK4MQZKK1Ugi4iI7KpQyHLza+VMzM/ipJKCPo/JTU9h/LBMfPpdKwmgu0FXMKEadAEkOx1ARPqnckszVzz0GQvX1XH+AeP4yYkzPtduPzutu7umL1DnXEgREZEY9fLiapZuaODGM2fh6mP0uEeRx82idXWDF0zEIYG6FrY0d+AtVIEsIlHm1cXVfP+xRYRClr+fvTcnFI/u87gSj5t3K2oHOZ2IiEhss7Z79Hj8sEy+vJ3R4x7eAjfPla6nrrmdvMzUQUooMvj8Wxt05TqcZHBpirVIFOvoCvGH55dw8YMLKBySwTNXHrzd4higuNDNxoY2qutbBzGliIhIbHttyUYWr6/niiOnkOza8Z/HXo/WIUti8AWCuJIMM0arQBaRKFBV18KZd37AXW+v5Jz9x/Kfbx3I+OFZO3xNSXgKjNYhi4iI9I+1lpteK2fs0ExOnr3j0WOAovB2N2qKKfHOF6hnyojshGrQBSqQRaLSG0s3csLN77C8upFbvr4XvzuluF8/nGaOdpNkwFdZF/mQIiIiceDNZTX4AkEuP2ISKTsZPQYYmpWKJy8Dv0aQJY5ZaylLwAZdoDXIIlGloyvEDS8v5463VjBzdC63nb03E3YyatxbRqqLKSNyKNVVbRERkZ3qGT325GVw6l6F/X5dUUEuZfpdK3FsfbCVTU3tFCdYgy7QCLJI1FgfbOHrd83njrdW8H/7jeWJbx+4S8Vxj+JCN/5AEGttBFKKiIjEj3fKa1m4ro7Lj5hManL//ywu9rhZWdtEQ2tHBNOJOMcXvgDUs6QgkahAFokCby7byIk3v8uS9fXcdNZs/nBq/6ZU96Wk0E1tYzvrg2rUJSIisj09o8cF7nS+NsezS6/1hqedLtY0a4lT/kCQJAMzE6xBF6hAFnFUZ1eI619cygX3fcyInDSevvJgTp69a7+kt9WzVkSNukRERLbv/RWb+GTNFr51+CTSknftonRRuJO11iFLvPIFgkwZkUNGamI16AIVyCKO2RBs5f/+8SF/f3MFZ+0zhqcuP4hJ+dl7fN4Zo3NJTjL4AnV7HlJERCRO3fRaOaNy0zljnzG7/NoROemMyEnTOmSJS9Za/IHg1pkSiUZNukQc8PbyGr736EKa27u48cxZu9QYZGfSU1xMHZmjEWQREZHt+GDFJj5atZlffXnmLo8e9/B63Pir9LtW4k91fRu1je1b9/xONBpBFhlEXSHLDS8v4/z7PmJYdirPXHnQgBbHPUoK3fjUqEtERKRPN79WTn5OGmftO3a3z+EtyKViYyMt7V0DmEzEeT0NuhJxiydQgSwyaDbWt3L23fO55fUKTtu7kP9efjCTR+RE5L28Hjd1zR1UbmmJyPlFRERi1UerNvPByk1cdujE3W6ICVDkcROysGSD1iFLfPH1NOgqSMwRZE2xFhkE71XUctUjn9HY1slfTp/FaXMGftS4t5LwnnW+QJAxQzMj+l4iIiKx5JbXyxmencrZ+43bo/P0rM8sCwTZe+yQgYgmEhXKAkEm5WeTmZqYpaJGkEUiqCtkufGV5Zxzz4fkZaby9BUHR7w4Bpg2KocUl9E6ZBERkV4+WbOFd8prufTQiXvcnbfAnc6QzBT8AY0gS3zxBYIJO70aNIIsEjEbG1r57iMLeX/FJr66t4ffneIdtCtxackupo/KVSdrERGRXm5+rZyhWamcs/+ejR4DGGPUqEvizsb6VjY2tFGUwAWyRpBFIuD9FbWcePO7fLJmC9d/rYQbTp816NNUigvdlFaqUZeIiAjAwnV1vLW8hksOmThgv5O9HjfLqxto61SjLokPid6gC1QgiwyorpDl5tfKOefuD8lJT+a/VxzEGfuMwRgz6FlKPG4aWjtZs6l50N9bREQk2tz8Wjl5mSmce8Cejx738Ba46eiyLN/QOGDnFHGSLxDEGChK0AZdoAJZZMDUNrZxwX0f8ddXlvOVWQU8c8XBTB/l3A+X4nCjrtKApn6JiEhi81UGeX3pRi4+eALZaQM3o6tnn1hNs5Z44Q/UM3F4FlkD+P9JrImaAtkYc5wxZpkxpsIY86M+nk8zxjwafv5DY8z48OPDjDFvGGMajTG3bvOaN8PnXBi+jRikL0cSzPyVmzjhpnf4cNVm/vjVYm48c7bjP1imjswhNTkJX2WdozlEREScdvPr5eSmJ3PegeMH9Lxjh2aSk56MXxejJU74E7xBF0RJky5jjAu4DfgSUAl8bIx52lq7uNdhFwFbrLWTjTFnAdcBZwKtwM8Bb/i2rbOttQsi+gVIwgqFLLe/tYIbXl7G+GFZ3H/hvlGzZ1yKK4kZo3PVyVpERBJaWVWQVxZX872jp5KbnjKg5zbGUFSQi79Knawl9tU0tLGhvnXrFmaJKlpGkPcFKqy1K6217cAjwMnbHHMy8ED488eBo4wxxlrbZK19l+5CWWTQbGps44L7P+bPLy3jxJICnr7y4KgpjnuUeNyUVdUTCqlRl4iIJKZbXqsgJy2ZCw4aH5HzewvcLFlfT0dXKCLnFxksPTMhVCBHBw+wrtf9yvBjfR5jre0EgsCwfpz7vvD06p8bJzolSVz6ePVmTrz5Xeav3MTvT/Vy81mzB3RN00ApLnTT2NbJqk1NTkcREREZdEs31PNi2QYuPGg87oyBHT3u4fW4ae8MsaJGjboktvV0sE7kBl0QPQVypJxtrS0GDgnfzu3rIGPMpcaYBcaYBTU1NYMaUGJLKGS5/c0VnHXXfNJTknjiWwdy9n7jHOlS3R8l4UZdPk2zFhGRBHTL6xVkpyXzjYMnROw9ekbb/AFNs5bY5g8EmTg8i5wBXooQa6KlQA4AY3rdLww/1ucxxphkwA1s2tFJrbWB8McG4CG6p3L3ddxd1tq51tq5+fn5u/UFSPzb3NTORQ98zHUvLuW4olE8c+XBUT8FZXJ+NukpSVqHLCIiCae8uoHnfes5/8Bx5GWmRux9JgzPIjPVpUZdEvP8gWDU/207GKJlTujHwBRjzAS6C+GzgP/b5pingfOBD4DTgNettdtdWBkuovOstbXGmBTgJODVSISX+Ldg9WaufPgzNjW289uTizhn/+gdNe4t2ZVEUYEbX6DO6SgiIiKD6pbXK8hIcXHRwRMj+j6uJMPM0bkqkCWmbWpsoyrYunXrskQWFQWytbbTGHMF8BLgAu611pYZY34DLLDWPg3cA/zTGFMBbKa7iAbAGLMayAVSjTGnAMcAa4CXwsWxi+7i+B+D91VJPAiFLP94ZyXXv7QMT14G//nWgVv3F44VxR43j368jq6QxZUU/UW9iIjInqrY2MgzpVVceuhEhmZFbvS4h9fjZt4C/a6V2OVTg66toqJABrDWPg88v81jv+j1eStw+nZeO347p50zUPkk8dQ1t/P9eYt4belGjveO4rrTSgZ8e4jBUFLo5v73V7OippGpI3OcjiMiIhJxf3+jgvRkF5ccEtnR4x5FBbk0t3exqraJySOyB+U9RQaSOlj/T9QUyCLR5NO1W7jyoc/Y2NDKr748k/MPHB8TU6r70rPZu68yqAJZRETi3qraJp5aGOCigycwPDttUN6zp6goqwqqQJaY5A/UM35YZkwOBg20aGnSJRIVrLXc/c5KzrjjA4yBx795IBccNCFmi2OAifnZZKa6tk6dERERiWe3vVFBiiuJSw4dnNFjgMkjsklNTtI6ZIlZPjXo2kojyCJhweYOrnl8Ea8sruaYmSP582mzcGfG/lU0V5LBW+CmtLLO6SgiIiIRtXZTM09+FuD8A8YzIid90N43xZXEjFE52upJYtKWpnYCdS2ce8A4p6NEBY0giwAL19Vxws3v8MbSjfz8pJncee6cuCiOexQXuimrqqezK+R0FBERkYi57Y0KXEmGyw4bvNHjHkUeN/6qIDvYZEUkKvXMMizWCDKgAlkSnLWWe99dxel3vA/AY988gIsOju0p1X0pKXTT1hmifGOj01FEREQiYt3mZv7zaSVf32cMI3MHb/S4R7HHTUNrJ+s2twz6e4vsCX9VuEFXgQpk0BRrSWDBlg5++HgpL5Zt4OgZI/jL6bPIy4z8VhBO6N2oa8Zo7W8nIiLx5/a3VpBkDN88fJIj799TXPgCQcYOy3Qkg8ju8AeCjB2aGVezJ/eERpAlIZVW1nHSLe/w6pJqfnrCDP5x3ty4LY4Bxg/LIictmdJAndNRREREBlxVXQuPLVjHGfsUMtqd4UiGqaOySU4yW0fjRGJFd4MuDaD00AhyDOkKWR54fzUT8rOYODwLT14GyS5d49gV1loe/GANv39uCcOzU3n0sgOYM26I07EiLinJUOTJxVepX9oiIhJ/bn9zBQDfOnyyYxnSkl1MHZmjTtYSU+qa21m3uYWv7zvW6ShRQwVyDKmqa+E3zy7eej/FZRg3LIsJw7sL5on5WUwYns2E4VkMz06Nu3W0e6q+tYMf/8fHc771HDl9BDecPoshWfE7arytksI87n9/Ne2dIVKTdWFFRETiw4ZgK49+vI7T5hTiyXNm9LiH15PLq0s2Yq3V32ESE3o6r6tB1/+oQI4hhUMy+ORnR7OytolVNU3dH2sbWVnTxFvLamjv1aE4Jz2ZicO7i+cJw7O3jjpPGJ5FVlri/bP7A0Euf+hTKre08OPjp3PJIRNJSkqsX1zFHjftnSGWVzdonzsREYkbd7y1gpC1fNvB0eMeXo+beQsqWR9spcDhYl2kP9Sg64sSr1KKYcYYhmWnMSw7jX3GD/3cc10hS1VdCytqGllV28Sq2iZW1jTx8eotPLWw6nPHjsxNY2Kvorln5LlwSAYpcTZl21rLvz5cy2+fWczQrFQevXR/5m7zvUsUJYX/ax6iAllEROLBxvpWHv5oLV/d28OYoc43xioKFxn+QFAFssQEXyBI4ZCMhJpVuTMqkOOEK8kwZmgmY4Zmcvi0zz/X0t7Fms3dBXNP4byytpHnStcTbOnYelxykmHs0MxwwdxdNE8MF9H5OWkxN1WoobWDHz/h49nS9Rw2NZ8bz5zN0AT+n3/s0Exy05MprQzy9X2dTiMiIrLn7nx7JZ0hy+VHOD96DDBjdA5JBvxV9RxTNMrpOCI75Q8ENXq8DRXICSAj1cX0UblMH/XF7nRbmtpZWdvEyl4jz6tqm3invJa2zv9N2c5KdYVHnLvXOE8Mfz5+eCY56dHXEn5xVT2XP/Qpazc3c+1x0/jmoZMSbkr1towxlBTm4VMnaxERiQM1DW38+8M1nDy7gHHDspyOA0BmajKT8rMpU6MuiQHBlg7WbGrmjLljnI4SVVQgJ7ghWanMyUr9QifnUMhSFWzZOuK8qrZ7zfNn67bwTGkV1v7v2PycNCYMz2JSr5HnCcOzGDs0c9CbQVlrefijdfzqmTKGZKbw8CX7s++ExJxS3ZfiQjd3v7OS1o4u0lNcTscRERHZbXe/s5L2zhBXRMnocY9ij5v3VtQ6HUNkp3ou5Gjp3eepQJY+JSUZCodkUjgkk0Om5H/uudaOLtZubt46VXtVuIB+qayazU3tW49zJRnGDMkIjzhn9+q2nc3I3IGfst3Y1slPnvDx9KIqDpkynBvPnM3w7LQBfY9YV+Jx09FlWbahgVlj8pyOIyIisls2Nbbx4Adr+MqsAibmZzsd53OKPG6e+CzAxoZWRuSkOx1HZLt6GnSpg/XnqUCWXZae0r3P39SROV94rq65/XNNwnpGnj9YuYnWjv9N2c5MdTF+WBYT8rOYNLz7Y8/Isztj16dsL1lfz+X//pTVm5q45pipfPvwyQk/pbovPVcIfYGgCmQREYlZd7+7itbOLq44MrpGjwG8Bd1L2soC9YyYrgJZopcvUI8nLyOhe/T0RQWyDKi8zFT2GpvKXmO/OGV7Q33r1oK5Z82zPxDkBd96Qr2mbA/PTg1P1f78yPPYYZmkJX9+WrC1lkc/Xscvny4jNyOFf1+8PwdMGjYYX2pMKhySwZDMFHyVWhslIiKxaUtTOw++v5qTSgqYPOKLF+udNjNcIPsDQY6YPsLhNCLb5w8EKSr4Yo+iRKcCWQZFUpKhIC+DgrwMDpo8/HPPtXV2sS48Zbv3yPPrS2uYt6Dyf+cwUDgkc2vxPCk/i0/X1vHkZwEOmjyMv525F/k5mlK9I8YYigvzKFXzEBERiVH3vLuKpvYurozC0WOAnPQUJgzP2jp9VSQa1bd2sKq2ia/u5XE6StRRgSyOS0t2MXlETp9XgYMtHayubfrCyPPHqzfT3N6FMfC9o6dyxZGTcWlKdb+UeNzc/tYKNeoSEZGYE2zu4P73V3NC8ag+l3pFi6KCXD5bW+d0DJHtKgvUA+At1PrjbalAlqjmzkhh1pi8L6yXtdaysaGNzpDFk5fhTLgYVVzopitkWby+nr23mQovIiISze59bxWNbZ1ceeQUp6PskNfj5tnS9WxpameI1ndKFCpTg67tGtw9eEQGiDGGkbnpKo53Q0n4SqHWIYuISCypb+3g3vdWcWzRSGaMju51k96C7t+1ZVX1DicR6ZsvEGS0O107vvRBBbJIghmV2/3DsFQFsoiIxJD731tNQ2v0jx4DeD3hRl1ahyxRyhcIUlSg0eO+qEAWSTDGGEoK3fgCdU5HERER6ZeG1g7ueXcVR88YsXXLwmiWl5lK4ZAM/GqKKVGosa2TVbVNml69HSqQRRKQ1+OmYmMjze2dTkcRERHZqQc/WEOwpYPvHBX9o8c9vAVuFcgSlRZX1WMtFBdG91IFp6hAFklAJR43Idv9A1JERCSaNbV1cvc7KzliWj4lhXlOx+k3ryeX1ZuaqW/tcDqKyOf4whduYmE2hhNUIIskoOJwoy6tQxYRkWj3z/lr2NLcwZUxNHoMUBQuPnQxWqKNPxBkRE4aI3LSnY4SlVQgiySgkbnpjMxN23oFUUREJBo1t3fyj7dXcsiU4TG3NWFPJ2tNs5Zo4wsEtf54B1QgiySoYk8epZV1TscQERHZroc+XMumpna+e3RsjR4D5OekMTI3TVs9SVRpautkRU2jplfvgApkkQRVUuhmZW0TDVobJSIiUailvYs73lrJQZOHMWfcUKfj7BY16pJos2R9uEGXCuTtUoEskqCKC91Yi65si4hIVHr4o7XUNrbxnRjY93h7ijxuVtRo1wiJHj3L63r60cgXqUAWSVA9Vw51ZVtERKJNa0cXd7y1gv0nDmW/icOcjrPbisO7RixZ3+B0FBGgu0Aenp3GiJw0p6NELRXIIglqeHYaBe50dbIWEZGo8+jH69jY0BZT+x73xevp3me2rEq/ayU6+ANBij25GGOcjhK1VCCLJLDiQrc6WYuISFRp6+zi9jdXsM/4IRwQw6PHAKNy0xmWlYpPF6MlCjS3d1KxsVHrj3dCBbJIAispzGNVbRPBFjXqEhGR6PDYgko21LfynaOmxPwolzGGIo8bv/p9SBRYsr6BkEUdrHdCBbJIAuu5glimUWQREYkC7Z0hbn9zBXuPzePgycOdjjMgvAW5lFc30NrR5XQUSXB+NejqFxXIIgmsp0AuVYEsIiJR4D+fVhKoa4mL0eMeXo+bzpBlebUadYmzfIEgw7JSGZWb7nSUqKYCWSSBDclKZczQDK2NEhERx3V0hbjtjQpmFbo5bGq+03EGjLegZ9cITbMWZ/kDQbwed9xcfIoUFcgiCa7Ek0dpoM7pGCIikuCe/CxA5ZYWrjo6fkaPAcYMzSAnPRm/OlmLg1o7uihXg65+UYEskuC8HjfrNrdQ19zudBQREUlQneHRY68nlyOmjXA6zoAyxuAtcKvfhzhqyfp6ukJWDbr6IWoKZGPMccaYZcaYCmPMj/p4Ps0Y82j4+Q+NMePDjw8zxrxhjGk0xty6zWvmGGN84dfcbOLpcqTIACkJN2rQdk8iIuKU/y6sYs2mZr5zZHyNHvcoLnSzZEMDHV0hp6NIglKDrv6LigLZGOMCbgOOB2YCXzfGzNzmsIuALdbaycCNwHXhx1uBnwPX9HHq24FLgCnh23EDn14ktvWsjSrVOmQREXFAV8hy6xsVzBidy5dmjnQ6TkQUFeTS3hmivLrR6SiSoHyBIEMyUyhwq0HXzkRFgQzsC1RYa1daa9uBR4CTtznmZOCB8OePA0cZY4y1tsla+y7dhfJWxpjRQK61dr611gIPAqdE8osQiUXuzBTGD8tUoy4REXHEs6VVrKpt4qqjJsfl6DH8b99ZrUMWp/gC9WrQ1U/RUiB7gHW97leGH+vzGGttJxAEhu3knJU7OaeIAMWFeZpiLSIig64rZLn5tXKmjczhmJmjnI4TMROGZZGV6tI6ZHFEa0cX5dUNatDVT9FSIDvKGHOpMWaBMWZBTU2N03FEBl2Jx02groXaxjano4iISAJ53reeFTVNXHnUZJKS4ndkKynJMLMgF3+VtnqSwbdsQwOdIasCuZ+ipUAOAGN63S8MP9bnMcaYZMANbNrJOQt3ck4ArLV3WWvnWmvn5ufHz757Iv1VrEZdIiIyyEIhyy2vlzNlRDYneEc7HSfiigrcLK7q7iQsMph6/r5TB+v+iZYC+WNgijFmgjEmFTgLeHqbY54Gzg9/fhrwenhtcZ+steuBemPM/uHu1ecB/x346CKxr6ggF2PAr3XIIiIySF4s28Dy6kauODK+R497eD1uWjq6WFWrRl0yuPyBIO6MFAqHZDgdJSYkOx0AutcUG2OuAF4CXMC91toyY8xvgAXW2qeBe4B/GmMqgM10F9EAGGNWA7lAqjHmFOAYa+1i4NvA/UAG8EL4JiLbyElPYcLwLEo1giwiIoMgFF57PDE/i5NKCpyOMyi8nlwA/IF6Jo/IcTiNJBJfIEixGnT1W1QUyADW2ueB57d57Be9Pm8FTt/Oa8dv5/EFgHfgUorErxKPm/krNzsdQ0REEsArS6pZuqGBG8+chSsBRo8BJudnk5achD8Q5JS91DdWBkdbZxfLqxu46OCJTkeJGdEyxVpEHFZcmMeG+lY21rfu/GAREZHdZG336PH4YZl8OUFGjwGSXUnMGJ2rrZ5kUC3f0EhHlxp07QoVyCICQIkadYmIyCB4bclGyqrqufyIySS7EutPUa8nl7JAPSE16pJB8r8GXbkOJ4kdifVTSUS2a+boXJIMlKpRl4iIRIi1lptfL2fM0IyEnGbsLXDT0NbJ2s3NTkeRBOELBMlNT2bs0Eyno8QMFcgiAkBWWjKTR2RrBFlERCLmzeU1lFYGueKIyaQk2Ogx/G+bHU2zlsHiDwTxqkHXLkm8n0wisl3FnjxKK4PsYAc1ERGR3WKt5aZXy/HkZXDqXoVOx3HElJHZpLgM/kC901EkAbR3hli2oUHrj3eRCmQR2arYk0ttYxvV9W1ORxERkTjzTnktC9fV8e0jJpGanJh/gqYlu5g6MocyjSDLIFhe3UB7V2jrzAXpn8T86SQifSouzAOgtLLO0RwiIhJfrLXc9Fo5Be50TpuTmKPHPbwFbvwBzdaSyPNvbdClAnlXqEAWka1mjs7FlWS0DllERAbUBys28cmaLXzr8EmkJbucjuMoryeXLc0dVAW1raJEli8QJCctmXFq0LVLVCCLyFYZqS6mjMhWJ2sRERlQf3utnJG5aZw+d4zTURy3tVGXLkZLhPkDQYo8uSQlqUHXrlCBLCKfU1LoxqepXyIiMkDmr9zER6s2883DJpGektijxwAzwrO1ylQgSwR1dIVYogZdu0UFsoh8TnFhHpub2gnUtTgdRURE4sDNr5WTn5PG1/cd63SUqJCe4mJyvrZVlMgqr26kvVMNunZHvwpkY8wRxpgJ4c9HG2MeMMbcZ4wZFdl4IjLYSsI/SH2aZi0iInvo49WbeX/FJi47dKJGj3sp8uTir9JWTxI5atC1+/o7gvx3oCv8+Q1AChAC7opEKBFxzvTROaS41KhLRET23M2vlTM8O5Wz9xvndJSo4i1wU9PQxsZ6NeqSyPAFgmSnJTNhWJbTUWJOcj+P81hr1xpjkoFjgXFAO1AVsWQi4oiePRpVIIuIyJ74ZM0W3imv5ScnTCcjVaPHvW1t1FUV5MjcdIfTSDzyVwWZWaAGXbujvyPI9caYkcBhwGJrbWP48ZTIxBIRJ5UUuimtVKMuERHZfbe8Xs7QLI0e92VmQS4A/oCmWcvA6+wKsWR9vRp07ab+Fsi3AB8D/wZuCz92ELA0EqFExFnFnjyCLR2s26xGXSIisusWrqvjzWU1XHzIBLLS+jthMXFkpyUzcXiWtnqSiKioaaS1I6QCeTf16yeWtfY6Y8yTQJe1dkX44QBwccSSiYhjSgq7f6CWBuoYO0yby4uIyK655bVy8jJTOO+A8U5HiVpFHjefrtnidAyJQz2NVr2eXIeTxKZd2eZpFVBgjDkzfD8ArBz4SCLitKkjc0h1JamTtYiI7DJ/IMhrSzdy8cETyNbo8XYVe3IJ1LWwuand6SgSZ/yBIJmpLiYMz3Y6Skzq7zZPxcBy4B/APeGHDwPujVAuEXFQanISM0bnUKoCWUREdtFNr5WTm57MeQeOdzpKVPMWhBt1aZq1DDB/VT1FBbm41KBrt/R3BPl24BfW2ulAR/ixt4CDI5JKRBxXXOjGHwgSCqlRl4iI9E9ZVZBXFlfzjYMnkJuuXq47UlTwv07WIgOlK2RZXFWv/Y/3QH8L5CLgX+HPLYC1tgnIiEQoEXFeiSePhrZO1mxudjqKiIjEiFtfryAnLZkLD5rgdJSo585MYczQDMrUyVoG0IqaRlo6urbOUJBd198CeTUwp/cDxph9gYqBDiQi0aHnymNpZZ2zQUREJCYs29DAC/4NXHjQeNwZGj3uD2+BWyPIMqB6+scUF6pA3l39LZB/DjxnjPk1kGqM+THwGPCziCUTEUdNGZlNWrIadYmISP/c/Ho5WakuvnGwRo/7y+txs2ZTM8GWjp0fLNIPvkCQjBQXk/LVoGt39atAttY+CxwH5NO99ngc8FVr7csRzCYiDkpxJTGzIJdSNQ8REZGdKK9u4Hnfes4/cDx5malOx4kZRQXd2/AsrtI0axkYZVVBZqpB1x7p9zZP1trPrLXfttaeaK39prX2k0gGExHnlXjclAWCdKlRl4iI7MCtb1SQkeLi4kMmOh0lpvQsZyrTNGsZAF0hS1lVPcVq0LVH+rU5nTHmN9t7zlr7i4GLIyLRpLgwjwc+WMOq2kYmj8hxOo6IiEShFTWNPLOoiksOncjQLI0e74rh2WmMdqdrqycZEKtqG2lu79o6M0F2T393bx+zzf1RdO+D/OTAxhGRaFJS2NOoK6gCWURE+nTb6xWkJbu4RKPHu6WowI1fU6xlAPgCatA1EPpVIFtrL9z2MWPMccDXBzyRiESNSfnZZKS48AWCfHXvQqfjiIhIlFld28RTCwNcdPAEhmenOR0nJnk9uby2tJqmtk6y0vo7diXyRb7KetJTkpisBl17pN9rkPvwMnDKAOUQkSjkSjIUFeSqk7XElYc+XMv7FbVOxxCJC7e9UUGKK4lLDtXo8e7yFrixFpas1yiy7Bl/VZAZo3NJdu1JiSf9+u4ZYyZuc/MCvwPWRTaeiDituNBNWVU9nV0hp6OI7LFP127hJ0/6OO/ej3jet97pOCIxbe2mZp74LMD/7TeWETnpTseJWT2NurQOWfZEKGRZrAZdA6K/lxcqgPLwxwpgPnAIcH6EcolIlCgpdNPS0cWKmiano4jsEWstf3phKcOzU5k1Jo8rHvqUpz4LOB1LJGb9/c0KXEmGbx42yekoMW1kbhrDs1O1Dln2yKpNTTS2deItUIG8p/q7D3KStdYV/phkrc221h6irZ5E4l+xJw+A0so6R3OI7Kk3l9Xw0arNfOeoKTz4jX3Zb8IwvjdvIY9+vNbpaCIxp3JLM49/UsnX9xnDyFyNHu8JY0x3oy6NIMse6Pnvx6sR5D2mCeoiskMTh2eRlera2hlRJBaFQpbrXlzK2KGZnLXPWLLSkrnvwn04dEo+P/yPjwfeX+10RJGY8vc3V5BkDN88XKPHA8HryaV8YyOtHV1OR5EY5asMkpqcxJSRatC1p7bbKs8Ysw6wOzuBtXbsgCYSkaiSlGTwetyUqlGXxLD/LgqwdEMDN501m9Tk7mvD6Sku7jpvDlc89Bm/fLqM1o4uLtNUUZGdqqpr4bEF6zhj7hhGuzOcjhMXvAVuukKWZRsamDUmz+k4EoN6GnSlqEHXHttRL/lzBi2FiES1kkI3D3ywho6ukH7wSsxp6+zihpeXU1SQy5dLCj73XFqyi7+fvTfffXQhf3xhKa0dIb5z1GSMMQ6lFYl+d7y1AoBvHzHZ4STxY2ujrqqgCmTZZaGQpSxQz8l7Fez8YNmp7RbI1tq3BjOIiESv4sI82jtXUV7dyMyCXKfjiOySf89fS+WWFv5wajFJSV8sfFNcSdx81l6kJSdx46vLae3s4tpjp6lIFunDhmArj3y0jtPmFOLJ0+jxQCkckoE7IwV/QI26ZNet2dxMgxp0DZh+70ZujJlNd+fq4cDWvxqstb8Y+FgiEk16tgzwBepUIEtMaWjt4NY3Kjhw0jAOmTJ8u8e5kgx/OW0W6Skubn9zBa0dXfzipJkqkkW2ccdbK+iylm8frtHjgWSMwevJVaMu2S0+NegaUP3dB/lS4D3gSOCHQDHwfUA/HUUSwLihmeSkJ2sdssScf7yzis1N7fzwuOk7LXaTkgy/P8XLhQeN5773VvPTp/yEQjttxSGSMDbWt/LwR2v56l4exgzNdDpO3PEWuFm2oYH2zpDTUSTGlAWCpLqSmDoyx+kocaG/iwmvBY6z1p4KtIQ/ngZ0RCyZiESNpCRDscetTtYSU2oa2rj7nZWcUDyq32v6jDH84qSZfOvwSTz04VqueXwRnV36Y1UE4K63V9IZslxxpMZHIqHI46a9K0T5xgano0iM8QWCTB+ds7UJpeyZ/n4XR1hr3wl/HjLGJFlrXwC+HKFcIhJligvdLFlfT1untqCQ2HDL6+W0dYa45phpu/Q6YwzXHjuNq780lSc+DXDVowvpUJEsCa6moY1/fbiGk2cXMG5YltNx4pI3vISpTOuQZRdYa/EHgppePYD6WyBXGmPGhz9fDpxsjDkEaB+oIMaY44wxy4wxFcaYH/XxfJox5tHw8x/2yoMx5sfhx5cZY47t9fhqY4zPGLPQGLNgoLKKJKISTx4dXZblGxqdjiKyU2s2NfHQh2s5c58xTMzf9T0hjTF856gp/Pj46TxXup5v//tTXRyShHb3Oytp7wxxhTpXR8z4YVlkpbrwV2m2lvTf2s3N1LeqQddA6m+BfD0wI/z5b4B/Aa8Dvx6IEMYYF3AbcDwwE/i6MWbmNoddBGyx1k4GbgSuC792JnAWUAQcB/w9fL4eR1hrZ1tr5w5EVpFEVVLY/YO3NFDnbBCRfrjh5eUkuwxXHTVlj85z2WGT+PVXinhlcTWXPvgJrR0qkiXxbGps48EP1vCVWQW7dcFJ+icpyVBU4FajLtklPcvfijWCPGD6VSBba+8PT6km/HEIMMRae/sA5dgXqLDWrrTWtgOPACdvc8zJwAPhzx8HjjLdHVdOBh6x1rZZa1cBFeHzicgAKhySQV5mCj416pIo5w8EeXpRFd84aAIjc9P3+HznHzieP321mLfLa7jwvo9pauscgJQiseOed1fR2tmltceDoMiTy+L19XSpQaD0kz9QT4rLMHWULl4NlP52sf6bMWafnvvW2nZr7UDOs/QA63rdrww/1ucx1tpOIAgM28lrLfCyMeaTcCduEdlNxqhRl8SG619aRl5mCpcdNmnAznnWvmO58YzZfLR6M+fd+xH1repRKYlhS1M7D7y/mhOLRzN5hDrkRlqxx01rR4iVNVrOJP3jDwSZNiqHtGTXzg+WfunvFGsD/NcYU26M+bUxZtc6njjnYGvt3nRP3b7cGHNoXwcZYy41xiwwxiyoqakZ3IQiMaTY070FhaaZSrR6v6KWt5fXcPnhk3FnpAzouU/Zy8OtX9+LRevqOOfuD6lrHrA2HCJR6973VtHU3sWVR+7ZcgXpn55GS1qHLP1hrcUXCGr98QDr7xTrq4BC4NvAGGB+eFT26gHKEQift0dh+LE+jzHGJANuYNOOXmut7fm4EXiS7Uy9ttbeZa2da62dm5+fv8dfjEi8Kil00xmyLN2gLSgk+lhrue7FpRS40zn3gHEReY/ji0dz57lzWLq+gbPumk9tY1tE3kckGgSbO7j/vdWcUDyKaaM0ejwYJg7PIj0lCV+lOlnLzlVuaSHY0qEO1gOs35tlWWtD1tpXrLXfALx0F6d/HqAcHwNTjDETjDGpdDfdenqbY54Gzg9/fhrwurXWhh8/K9zlegIwBfjIGJNljMkBMMZkAccA/gHKK5KQigvzAPBV1jmaQ6QvL/g3sKgyyPe+NJX0lMhNNTtqxkjuuWAuqzc1cdZd86mub43Ye4k46d73VtHQ1skVR2j0eLAku5KYMTpXI8jSL2rQFRn9LpDDBec5xpjn6N7qqZP/Fax7JLym+ArgJWAJMM9aW2aM+Y0x5ivhw+4BhhljKoCrgR+FX1sGzAMWAy8Cl1tru4CRwLvGmEXAR8Bz1toXByKvSKIqcKczLCuVUjXqkijT0RXiLy8tY+rIbL66d2HE3++QKfncf+G+rK9r4Yw7PyBQ1xLx9xQZTBuCrdz73iqOmTmSmeH9eWVweAvcLK6qJ6RGXbIT/kCQ5CSjGR4DrL9Nuh4DqoFLgWeBcdbaE6y1/xqoINba5621U621k6y1vw8/9gtr7dPhz1uttadbaydba/e11q7s9drfh183rVe37ZXW2lnhW1HPOUVk9xljKC5Uoy6JPvMWrGNlbRM/OHY6riQzKO+5/8Rh/PPi/djc1M4Zd3zAmk1Ng/K+IpEWClmunreQzi7Lj0+YsfMXyIDyenJpbOtkzeZmp6NIlPMFgkwdmRPRWVOJqL8jyB8DM621h1prb7fW1kYylIhErxKPm+XVDbS0q1GXRIeW9i5uerWcueOGcPSMEYP63nuPHcLDl+xPc3snZ9z5ARUb1XlWYt/d767k/RWb+NVXZjJheJbTcRJOUbjhkvZDlh2x1uIPBPF6NMNjoPW3Sdf11tq1kQ4jItGvuDCPkIXF69VARKLDve+tYmNDGz88fjrGDM7ocW9ej5tHLj2ArpDlrLs+YOkG/b8hsausKsifX1rGcUWjOGPumJ2/QAbc1JE5pLqStA5ZdihQ18KW5g6tP46Afq9BFhGB/zWCUKMuiQZbmtq5460VHD1jBPuMH+pYjmmjcnj0sgNITkrirLvm49M6fYlBLe1dXPXIQoZmpfLHrxY7csFJIDU5iWmjcigL6GKbbF/PDAN1sB54KpBFZJeMzE0jPyeNUk39kijw9zcraGzr5AfHTnc6CpPys5l32QFkpSbzf/+YzydrtjgdSWSX/OH5JVRsbOSG02czJCvV6TgJzevp7mTdvWGLyBf5A/W4kgwzRmuK9UBTgSwiu8QYQ4nHrREycVygroUHPljDV/cqjJoOnmOHZTLvmwcwLDuVc+/5kA9WbHI6kki/vLakmn/OX8Mlh0zg4CnDnY6T8IoK3NQ1d1C5RR3ypW++QJApI7LVoCsCdmWbp2HGmHONMdeG7xcYYyK/l4aIRJ3iQjcVNY00tXU6HUUS2N9eWQ7A1cdMdTjJ53nyMph32QEU5GVwwX0f8fbyGqcjiexQTUMb1z5eyozRuVxz7DSn4wj/mzZbpnXI0of/NejS9OpI6O82T4cBy4CzgZ+HH54C3B6hXCISxUoK3VgLZVVaHyXOWF7dwH8+reS8/cfhyctwOs4XjMhN55FL92difjYXP7CAVxdXOx1JpE/WWn7w+CIa2zq5+azZpCVrNCoaTB+VgyvJ4Nc6ZOnD+mArm5ra1aArQvo7gvw34Exr7XFAz5DRh8C+kQglItGt54plqRp1iUOuf3EZWanJXH7EZKejbNfw7DQevmQ/ZozO4Zv/+oTnStc7HUnkCx78YA1vLqvhpyfOYMrI6FiqIJCe4mLKiGx1spY+qUFXZPW3QB5vrX0t/HlPt4B2IHngI4lItBuRk85odzo+NeoSByxYvZlXl1Rz2WETo76RUF5mKv+8eD9mj8njyoc/5cnPKp2OJLLV8uoGfv/8Eo6Yls+5+49zOo5so6jAjT+gRl3yRf5AkCQDM9WgKyL6WyAvNsYcu81jRwO+Ac4jIjGi2ONWgSyDzlrLdS8uJT8njW8cPMHpOP2Sm57CA9/Yl/0nDuPqeYt4+KO1TkcSoa2zi+88/Bm56clcf9osbekUhbyeXGob29nY0OZ0FIky3Q26cshI1ZKISOhvgfx94N/GmAeADGPMncD9wA8iFUxEoluxx83KmiYaWjucjiIJ5PWlG/l49RauOmoKmamxM4kpKy2Zey/Yh8Om5vPjJ3zc/94qpyNJgvvzi8tYuqGBP582i/ycNKfjSB96ps/6dTFaerHW4gvUU+TR6HGk9KtAttbOB0qAMuBeYBWwr7X24whmE5EoVlzY84tbDURkcHSFukePJwzP4sx9xjgdZ5elp7i489w5HDNzJL96ZjF3vLXC6UiSoN4pr+Hud1dx3gHjOGL6CKfjyHbMHJ2LMfo9K59XXd9GbWObGnRFUH+7WKcBNdba6621l1tr/wRUhx8XkQTU84PZF6hzNogkjCc/C7C8upHvHzOVFFe/dymMKmnJLm47e2++PKuAP72wlL+9ulzrC2VQbW5q5/vzFjF5RDY/OWGG03FkB7LSkpk4PEuNuuRzemYUqECOnP7+hfEKMGebx+YALw1sHBGJFcOy0/DkZVBaqV/cEnmtHV3c+MpySgrdnOAd7XScPZLiSuJvZ87mtDmF/O3Vcq57cZmKZBkU1lp+/EQpdc0d3HTWbNJTtH4x2nk9bk2xls/x9TToKtAU60jpb4FcTPe2Tr19BMwa2DgiEktKCtWoSwbHv+avIVDXwg+Pm05SUuw3E3IlGa7/Wgln7zeWO95awa+fWawiWSLu0Y/X8VJZNT84dhpFBRp9igXeAjfrg63UNqpRl3TzB4JMys+OqT4csaa/BXIQGLnNYyOBpoGNIyKxpLjQzZpNzQSb1ahLIqe+tYNb36jgkCnDOWjycKfjDJikJMPvTvHyjYMmcP/7q/nJk35CIRXJEhkraxr59TOLOWjyMC6KkQ7wwtZGTGVVWocs3XyBoPY/jrD+Fsj/AR4yxniNMZnGmGLgQWBe5KKJSLQr8eQBaH2URNRdb62krrmDHx433ekoA84Yw89PmsHlR0zi4Y/Wcs1ji+jsCjkdS+JMR1eI7z66kLSUJG44fXZczMJIFD0j/ZpmLQAb61vZ2NCmAjnC+lsg/xRYQve06gZgPrAM+EmEcolIDPCGr2xrHbJEysb6Vu55dxVfnlUQt38QGGP4wbHT+f6XpvLEZwGuemQhHSqSZQD97dXllFYG+dNXSxjlTnc6juwCd0YKY4dmUqYL0cL/BiTUoCuy+jV53VrbClxujLkCGA7UWi2WEkl4eZmpjB2aqU7WEjE3v15OR1eI739pqtNRIu7Ko6aQnuLi988voa0zxG1n70VaspooyZ75cOUm/v7mCs6cO4bjvKOcjiO7wevJ1VZPAoCvsh6jBl0R1+99MowxbmAfuht2HWGMOdIYc2TEkolITCgudGsEWSJiVW0TD3+0jq/vO5bxw7OcjjMoLjl0Ir85uYhXl1Rz8QMLaGnvcjqSxLBgSwffe3Qh44Zm8osvz3Q6juymogI3azer34d0rz+eMDyL7DQ16Iqk/u6DfAFQBTwD3NPrdnfEkolITCjxuKnc0sLmpnano0ic+cvLy0h1JXHlUZOdjjKozjtgPNd/rYR3K2q58P6PaGrrdDqSxCBrLT97ys/GhjZuOmsvsvQHdczqmU5btl4XoxOdPxDU9OpB0N8R5N8Dp1lrR1prJ/S6TYxkOBGJfsWF3T+otd2TDCRfZZDnStdzySETGJGTeGsmz9hnDH87czYfr97Cufd8SH2rRo5k1zy1MMAzi6r43pemMmtMntNxZA8UhafTlmmadUKraWhjQ32rCuRB0N8CORl4OZJBRCQ29TRO8lXWORtE4sp1Ly5laFYqlxyauNdhT57t4dav74UvEOTsf3zIFs3SkH5at7mZnz9Vxr7jh/LNwyY5HUf20LDsNArc6boQneB6GnTFa8PKaNLfAvk64GfGmH6vWRaRxJCbnsLE4VlahywD5p3yGt6tqOXyIyaTk57idBxHHV88mjvPncOy6ga+/o/51Da2OR1JolxneEsnA/z1zFm4tKVTXCjyuLWlYoLzh//OKlKDrojrb8H7PeBnQIMxZm3vWwSziUiMKC50a49GGRChkOW6F5fiycvgnP3HOh0nKhw5fST3nr8Pqzc1ceadH7Ah2Op0JIlit72xgk/WbOF3p3opHJLpdBwZIN4CN6tqm2hUT4KE1dOgK9EvHA+G/hbI5wBHAycA525zE5EEV+xxUxVspaZBo1uyZ57zrccfqOf7x0zVFke9HDxlOA9cuC8bgq2cedcHVG5pdjqSRKFP127h5tfLOXUvDyfP9jgdRwaQ15OLtbBkvdYhJyp/IKjp1YOkXwWytfat7d0iHVBEol9PwwiNIsue6OgK8ZeXlzF9VI7+uO/DfhOH8a+L92NLUztn3jmf1bVNTkeSKNLY1sl3H1nIqNx0fn1ykdNxZIB59Xs2oW1qbKMq2EqxR9OrB0N/t3lKM8b83hiz0hgTDD92jDHmisjGE5FYUORxYwxahyx75JGP1rJmUzPXHjdN6ya3Y6+xQ3jokv1pbu/kjDs/oGJjg9ORJEr86ukyKrc087ezZpOrKZhxZ0ROGsOz0/Crk3VC8ld1/7trBHlw9HeK9Y2AFzgbsOHHyoBvRSKUiMSW7LRkJuVn4wvUOR1FYlRTWyc3vVbBvuOHcsS0EU7HiWpej5tHLj2AkIUz75yvKZfCs6VVPP5JJVccMZl9xg91Oo5EgDGGYk8uZWrUlZB6Zg4UFahAHgz9LZBPBf7PWvsBEAKw1gYAzYETEQBKPG6NIMtuu/fdVdQ2tvHD46djjEaPd2baqBzmXbY/Ka4kvv6P+ZRqm7WEVVXXwk+e8DF7TB5XHjXF6TgSQV6Pm/KNjbR2dDkdRQaZrzLIuGGZuDM0O2Qw9LdAbqd7L+StjDH5wKYBTyQiMam40M3Ghjaq69VhV3bN5qZ27nx7JcfMHMmccUOcjhMzJuZnM++yA8hOS+bsf3zIJ2s2Ox1JBllXyHL1vIV0hSw3nTWbFJd244xnRQVuukJWs0YSkE8NugZVf3+SPgY8YIyZAGCMGQ3cCjwSqWAiEltKCrt/cPs0iiy76NbXK2hu7+Ta46Y5HSXmjB2WybzLDmB4Thrn3vMRH6zQdetE8o93VjJ/5WZ++ZUixg3LcjqORJg33KCpZz2qJIYtTe0E6lq2NkSVyOtvgfwTYBXgA/KAcqAK+HVkYolIrJk52k2SgVJ12JRdULmlmX/NX8NpcwqZPCLH6TgxqSAvg0cv3R9PXgYX3PcRby2vcTqSDAJfZZAbXl7GCcWjOH1OodNxZBB48jLIy0yhTL9nE4o/vO5cBfLg6e82T+3W2u9Za7OBkUBO+H57ZOOJSKzISHUxZUQOPq2FlF3w11eWYwx89+ipTkeJaSNy03nk0v2ZlJ/NJQ8s4JXF1U5Hkghqae/iqkc/Y1hWGn84tVjr9hOEMQZvgXtrwSSJwRe+IOJVg65B099tnib23IAcYEKv+yIiQPc6ZF8giLV25wdLwlu6oZ4nPwtwwYHjKcjLcDpOzBuWncbDl+zPjIJcvvWvT3iudL3TkSRCfvfcYlbVNvHXM2eRl5nqdBwZREWeXJZtaKC9M+R0FBkk/kCQMUMzcGeqQddg6e8U6wq6p1VX9LqVh28iIkD3OuTaxnbWB9WoS3bu+heXkZOWzLcOn+R0lLjhzkzhXxfty15j87jy4U954tNKpyPJAHtlcTX//nAtlx4ykQMnDXc6jgwyb4Gbji7L8mrtgZ4ofIGgplcPsv5OsU6y1rrCH5OAAuAu4NyIphORmNLzA1zbPcnOfLRqM68v3cg3D5+kEbABlpOewgPf2Jf9Jw7j+48t4qEP1zodSQbIxvpWfvifUooKcrn6GC1LSEQ9nYy1H3JiCDZ3sG5zizpYD7Ld2g/AWrsB+C7wxwFNIyIxbcboXJKTDL5AndNRJIpZa/nTC0sYmZvGhQdOcDpOXMpMTebeC/bh8Kn5/ORJH/e9t8rpSLKHQiHLNY+X0tzeyU1nzSYt2eV0JHHAuKGZ5KQl4w+ok3UiUIMuZ+zJhnnTgMyBCiIisS89xcXUkTkaQZYdemVxNZ+ureO7R08lI1V/5EdKeoqLO86dw7FFI/n1M4u5/c0VTkeSPfDAB6t5e3kNPztxpjq+J7CkJMPMglw16koQatDljP426XrHGPN2r9sC4EPgrwMVxBhznDFmmTGmwhjzoz6eTzPGPBp+/kNjzPhez/04/PgyY8yx/T2niAy8kkI3fjXqku3o7Apx/UvLmJifpa1pBkFasotb/29vvjyrgOteXMqNryzX/5sxaOmGev74wlKOnjGCs/cb63QccZjX42bJ+no6u9SoK975AkE8eRkMydJSpMGU3M/j7t7mfhOwyFo7IE26jDEu4DbgS0Al8LEx5mlr7eJeh10EbLHWTjbGnAVcB5xpjJkJnAUU0b02+lVjTM/CnJ2dU0QGmNfj5pGP11G5pYUxQzXJRD7viU8DVGxs5I5z9ibZtSeTmKS/UlxJ/O3M2aQlJ3HTa+W0dnbxo+Oma2ugGNHa0cVVDy8kNz2FP32tRP9ugteTS2tHiBU1TUwbpdkE8cyvBl2O6FeBbK19IMI59gUqrLUrAYwxjwAnA72L2ZOBX4U/fxy41XT/ljgZeMRa2wasMsZUhM9HP84pIgOspLD7B7kvEFSBLJ/T2tHFja8uZ/aYPI4tGuV0nITiSjJc/7US0lOSuPOtlbR1hPjFSTNJSlKxFe2ue3Epy6obuP/CfRieneZ0HIkCPdNt/YGgCuQ4FmzpYM2mZs6YO8bpKAlnuwWyMeY3/TmBtfYXA5DDA6zrdb8S2G97x1hrO40xQWBY+PH527zWE/58Z+cUkQE2bVQOKS5DaWWQE4pHOx1HosiDH6xmfbCVv54xW6NgDkhKMvz2ZC/pyS7ufncVrR1d/P7UYlwqkqPWW8truO+91Vxw4HgOnzbC6TgSJSbmZ5OekoS/KsjXtFQlbvV0KlcH68G3oxHk/lyuiIuFTMaYS4FLAcaO1doekT2Rluxi+qhcdbKWzwm2dHDbGys4bGo+B0wa5nSchGWM4acnziA9xcWtb1TQ1hniz6eVaLp7FNrU2MY1jy1i6shsfnT8dKfjSBRxJRlmjs6lTJ2s45p/a4OuXIeTJJ4dFcifWGtvBTDGTLbWVkQwR4DPF+SF4cf6OqbSGJMMuIFNO3ntzs4JgLX2Lrr3dWbu3LlxUfSLOKm40M0zi6qw1mqkUAC4460V1Ld28MPj9Ie+04wxXHPsNNJTkvjLy8tp6+zir2fMJj1FHcWjhbWWH/7HR7C5gwe/sa/+beQLvB43//mkklDIaqlEnPIF6ilwpzNMSysG3Y4uGf++1+efRjjHx8AUY8wEY0wq3U23nt7mmKeB88Ofnwa8brtbcT4NnBXucj0BmAJ81M9zikgElHjcNLR2smZTs9NRJApU17dy33urOHlWATN1JTxqXHHkFH524gye923glNveY3l1g9ORJOyhj9by6pJqfnj8dGaM1v8z8kXeAjdN7V2s3tTkdBSJkLJAUNOrHbKjEeSVxpgbgDIgxRjzjb4Ostbeu6chwmuKrwBeAlzAvdbasvA66AXW2qeBe4B/hptwbaa74CV83Dy6m291Apdba7sA+jrnnmYVkZ0r7tWoa/zwLIfTiNP+9mo5XSHL94+Z5nQU2cbFh0xk0ohsfvDYIr58y7v87KSZnLPfWM38cFDFxkZ+++xiDpkynAsPHO90HIlSPYWTv6qeifnZDqeRgdbQ2sHK2iZO3cuz84NlwO2oQD4TuBb4OpACnNvHMRbY4wIZwFr7PPD8No/9otfnrcDp23nt7/n8iPd2zykikTd1ZA6pyUn4AkG+PKvA6TjioBU1jcxbsI5z9x+nruZR6ohpI3jhqkO55rFF/PwpP28tq+H600oYqn03B117Z4jvPvoZGSkubjh9lqbOynZNGZlNqiuJskCQr+j3bNwpq+peX+4t1AiyE7ZbIFtrlwMXAxhjXrPWHjVoqUQkpqW4kpgxOpfSyjqno4jD/vLSMtKTk7jiyMlOR5EdyM9J474L9uG+91dz3QtLOe5vb3PjmbM5aPJwp6MllL++shx/oJ47z53DiNx0p+NIFEtxJTF9dA6+cCMniS//a9ClAtkJ/Wpb2bs4NsYk9b5FLpqIxLISjxt/oJ5QSH3vEtXCdXW84N/AJYdO1P6tMSApyXDRwRN48vIDyUlP5px7PuSPLyyhvTPkdLSE8MGKTdz59gq+vu9Y7RMu/VJU4MYfCNLdkkfiiS8QZFRuOvk5+t3phH4VuMaYvY0xHxhjmoCO8K0z/FFE5AuKC900tnWySg1EEpK1luteWMqwrFQuPmSi03FkFxQVuHn2ykP4+r5jufOtlXzt9vdZWdPodKy4Fmzu4Op5C5kwLIufnzTD6TgSI7yeXOpbO6nc0uJ0FBlgfjXoclR/R4AfAN4A5gITw7cJ4Y8iIl9Q0tOoq1LTvxLR2+W1fLByE1ceOZnstB21u5BolJHq4g+nFnPHOXNYt6WZk255l3kL1mmkKgKstfzkSR81DW3cdNZeZKbq/xfpn57pt35Ns44rjW2drKxtolgFsmP6WyCPA35qrV1irV3T+xbJcCISuybnZ5OekkSpCuSEEwpZ/vTCUsYMzeD/9hvndBzZA8d5R/HCVYdQUujm2sdLueLhzwi2aPLYQPrPpwGe863n6mOmbt0BQKQ/po3KwZVk8Ffp92w8WVxVj7VQXKgt3pzS3wL5SeCYSAYRkfiS7EqiqMCNL1DndBQZZM+UVrFkfT3XHDON1GS1qoh1o90Z/Pvi/bn2uGm85N/ACTe9w8erNzsdKy6s2dTEL//rZ78JQ7ns0ElOx5EYk57iYsqIbPyBeqejyADyqUGX4/r7l0s68KQx5mVjzIO9b5EMJyKxrdjjpqyqni416koY7Z0hbnh5OTNH5/LlEm09Ei9cSYZvHz6Zx791IMkuw5l3fsBfX1lOZ5caeO2uzq4Q3310Ia4kw41nzsalLZ1kNxR71Kgr3vgDQUbkpKmTvYP6WyAvBq4D3gNWbHMTEelTSaGb5vYuNfhJIA9/tJa1m5u59rhp2sM1Ds0ek8dz3zmEU/bycPNr5Zx513zWbW52OlZMuuX1Cj5bW8fvTy2mIC/D6TgSo7weN5ua2qmub3M6igwQfyCo9ccO61cnCGvtryMdRETiT88P+NLKIFNG5jicRiKtsa2Tm18r54CJwzhsar7TcSRCstOS+esZszlsaj4/e9LPCTe9w+9O9XLybI/T0WLGJ2s2c8vr5Xx1bw9fnqWZFrL7vJ7udaq+QJBRbo04xrrm9k5W1DRyQvFop6MktO2OIBtjDu31+ZHbuw1OTBGJRRPzs8lMdW1dTyPx7e53VrKpqZ0fHj8dYzR6HO9Onu3h+asOYcrIbK56ZCFXz1tIY1un07GiXkNrB1c9shDPkAx+/ZUip+NIjJsxOhdj1Mk6Xiyuqidk0Qiyw3Y0gvx3wBv+/J7tHGPRVk8ish2uJIO3wE1pZZ3TUSTCahvb+MfbKzneO4rZY/KcjiODZMzQTOZddgA3v17Bra+X88maLdx01l76b2AHfvnfMtYHW5l32QHkpKc4HUdiXGZqMpPysylTJ+u4sLVBlwpkR213BNla6+31+YTt3FQci8gOFRd2N+pSM5/4duvrFbR2hrjm2GlOR5FBluxK4uovTeXRyw6gs8ty2u3vc9sbFWrO14enF1XxxGcBrjhiMnPGDXE6jsQJb0GuOlnHCV8gyPDsNEbmpjkdJaFp/w0RiaiSQjdtnSHKN6pRV7xau6mZf3+4hjPmjmFSfrbTccQh+4wfyvNXHcKx3lH8+aVlnHP3h6wPtjgdK2oE6lr46ZM+9hqbx5VHTnY6jsQRr8fNhvpWahrUqCvWlQXqKfbkapmSw1Qgi0hE9ayj0Trk+PXXV5bhSjJ89+gpTkcRh7kzUrj163tx/WklLKqs4/ib3uFF/wanYzmuK2T53qMLCYUsN525F8ku/fklA6covF+uplnHtpb2Lso3Nmj9cRTQT2gRiajxw7LISUvGV6lf3PFocVU9/11UxYUHTWCk9mwUwBjDGXPH8OyVBzNmSCbf/Ncn/ORJHy3tXU5Hc8wdb63go1Wb+c3JXsYOy3Q6jsSZonAn67IqTbOOZYvXdzfoKlKB7DgVyCISUUlJhiJPLqUaQY5L17+0lNz0FL552CSno0iUmZifzX++dSCXHTaRhz5cy0m3vJOQI1yllXXc+MpyTiwZzVf31lZYMvBy01MYPyxTnaxjXM+/n0aQnacCWUQirqQwjyXr62nvVKOuePLBik28uayGy4+YhDtD3Xjli1KTk/jx8TP410X70dDayam3vc89764ilCANvJrbO7nqkYXk56Txh1OKta5QIqbI48afgBeg4ok/EGRYViqjtZ+141Qgi0jEFXvctHeGWF7d4HQUGSDWWv704lJGu9M574DxTseRKHfwlOG8+N1DOXRqPr99djEX3v9xQjQU+u2zi1m9qYm/njEbd6YuIknkeAvcrNvcQl1zu9NRZDf5AkG8HrcupEUBFcgiEnElhWrUFW9eKtvAonV1fO/oqaSnuJyOIzFgaFYq/zhvDr89xcv8lZs4/qa3eWPpRqdjRcyL/g08/NE6vnnYJA6YNMzpOBLnvFqHHNNaO7oo39io6dVRQgWyiETc2KGZ5KYnU6pGXXGhsyvE9S8tY/KIbK2plF1ijOHc/cfxzJUHMzw7jQvv/5hfP1NGa0d8NfCqrm/lx0+U4vXk8r2jpzodRxJATydrrUOOTUvW19MVslsvdIizVCCLSMQZYygpzMMXqHM6igyAxz6pZGVNE9ceO03b1chumToyh6cuP4gLDhzPfe+t5pTb3qM8TpZghEKWax5bREtHFzedtRepyfp/RCJvaFYqnrwM/BpBjkk9Fza8GkGOCvqpLSKDorjQzbINDbR1xtdIUaJpae/ib68uZ864IXxp5kin40gMS09x8auvFHHvBXPZ2NDGSbe8y7/mr8Ha2G7gde97q3invJZfnFTEpPxsp+NIAikqyKVMI8gxyR+oZ0hmCp68DKejCCqQRWSQlHjcdHRZlm2Ij1GiRHX/+6uprm/jh8dNVyMRGRBHTh/Ji1cdwr4ThvKzp/xc+s9P2NwUm42GFlfVc/2Ly/jSzJF8fd8xTseRBOP1uFlZ20RDa4fTUWQXqUFXdFGBLCKDomfakNYhx6665nZuf7OCI6ePYN8JQ52OI3FkRG46D1y4Lz87cQZvLtvI8Te9zfsVtU7H2iWtHV1899HPcGemcN3XSvSHrgy6nvWrS9brQnQsae3oYnl1gxp0RREVyCIyKAqHZDAkMwWfCuSYdfubK2ho6+Ta46Y5HUXiUFKS4eJDJvLktw8iKy2Zs+/5kD+9sDRm9k//0wtLWV7dyF9On8XQrFSn40gC6rkQrUZdsWXZhgY6Q1brj6OICmQRGRTGGIoL8yjVL+6YtD7Ywv3vr+bUvTxMH6UumxI5Xo+bZ688mLP2Gcsdb63gtDveZ1Vtk9OxduiNpRu5//3VfOOgCRw2Nd/pOJKgRuSkMyInDX+Vfs/Gkp4tMDWCHD1UIIvIoCnxuFle3RB3W7okgr+9Uo61cPWXtGWNRF5majJ//Goxt5+9N2s2NXPize/w+CeVUdnAq7axjR88vojpo3I0u0Ic5/W4NYIcY8qqgrgzUigcogZd0UIFsogMmuJCN10hy+L12oYillRsbOCxT9Zxzv7jKByS6XQcSSDHF4/mhasOodjj5prHFvGdRxYSbImeBkTWWn74eCn1rZ3cdNZepKe4nI4kCc5bkEvFxkZa2nUhOlb4AkGK1aArqqhAFpFBU1Ko9VGx6PoXl5GZmswVR052OookoIK8DB66ZH9+cOw0nvet54Sb3uHj1ZudjgXAvz5cy2tLN/Lj46czbVSO03FEKPK4CVlYskEXomNBW2cXyzY0aP1xlFGBLCKDZlRuOsOz09TJOoZ8smYLLy+u5rJDJ6rxkDjGlWS4/IjJPP7NA3AlGc688wNufGU5nV3ONfCq2NjA755dzGFT87ngwPGO5RDprafQ0n7IsWH5hkY6uuzWDuQSHVQgi8igMcZQUuhWJ+sYYa3luheXMjw7jYsOmeB0HBH2GjuE575zMKfM9nDTa+Wcedd81m1uHvQcbZ1dfOfhhWSlJfPn07Wlk0SPAnc6QzJT8Ac0ghwL1KArOqlAFpFB5fW4Kd/YQHN7p9NRZCfeXFbDR6s2c9VRk8lMTXY6jggAOekp/PXM2fztzNks29DACTe9w9OLqgY1w19fXs7i9fVc/7USRuSkD+p7i+yIMaa7UZc6WccEf1WQ3PRkxg5Vf49oogJZRAZVSXh91OIqXd2OZl2h7tHj8cMyOWvfsU7HEfmCU/by8Px3DmHyyGy+8/BnXPPYIhrbIn/h7b2KWu58eyVn7zeWo2eOjPj7iewqb3jHiLZONeqKdv5AEK8adEUdFcgiMqiKw426tA45uv13YYClGxr4/jHTSHHpV4VEp7HDMpl32QF858jJPPFpJSfd/A6L1tVF7P22NLXz/XmLmJifxc9OnBmx9xHZE94CNx1dlvLqRqejyA60d4ZYul4NuqKR/uoRkUE1MjedkblpW9fdSPRp6+zihpeX4/XkcmLxaKfjiOxQiiuJq4+ZxsOX7E9bZ4iv3f4+t7+5glBoYPdMttbykyd9bGpq4+az9iIjVVs6SXTqafikHSOi2/LqBtq7QiqQo5AKZBEZdMWePEor65yOIdvx7/lrCdS18MPjppOUpGlfEhv2mziMF686lGOKRnLdi0s5554P2RBsHbDzP7agkhf8G7jmmGn6g1ai2tihmeSkJ+tCdJQrq1KDrmilAllEBl1JoZuVtU2Dsl5Qdk1Dawe3vlHBwZOHc8iUfKfjiOwSd2YKt/3f3lz3tWI+W1vHcTe9zUtlG/b4vKtrm/jVM2UcMHEYlxwycQCSikSOMYaiglz86vUR1XyBIDlpyYxTg66oowJZRAZdcaEba7VPYzT6x9sr2dzUzg+Pm+50FJHdYozhzH3G8ux3DsaTl8Fl//yEnz7po6V99xoWdXSFuOrRhaS4krjhjFmaVSExwVvgZsn6ejoc3CtcdswXqKfIk6ufKVFIBbKIDLqe6USa/hVdahrauPvdVZxYMnprMzWRWDUpP5snvn0glx46kX9/uJYv3/rubnXPv/m1chatq+MPpxZTkJcRgaQiA8/rcdPeGWJFjRp1RaOOrhBL1tfjLdDv2mikAllEBt3w7DQK3OnqZB1lbnm9nPbOENccM83pKCIDIi3ZxU9OmME/L9qXYEsHp9z2Hve+uwpr+9fA6+PVm7ntjQpOn1PIiSVqWCex43+NujTNOhqVVzfS3hnSxego5XiBbIwZaox5xRhTHv44ZDvHnR8+ptwYc36vx+cYY3zGmApjzM0mvJGYMeZXxpiAMWZh+HbCYH1NIrJzxYVujSBHkdW1TTz04VrO2ncME4ZnOR1HZEAdMiWfF686hEOmDOc3zy7mwvs/pqahbYevqW/t4LuPLGTM0Ex++ZWiQUoqMjAmDM8mM9WlTtZRyh9u0KWGf9HJ8QIZ+BHwmrV2CvBa+P7nGGOGAr8E9gP2BX7Zq5C+HbgEmBK+HdfrpTdaa2eHb89H8GsQkV1UUpjHqtomgi0dTkcR4IZXlpPiSuI7R01xOopIRAzLTuPu8+fym5OLeH/FJo6/6W3eXLZxu8f/4ik/G+pbufHM2WSnJQ9iUpE950oyzBydu7VTskQXfyBIdloyE4bpgnQ0ioYC+WTggfDnDwCn9HHMscAr1trN1totwCvAccaY0UCutXa+7Z4v9eB2Xi8iUaZnHbIadTnPHwjyzKIqLjp4AiNy0p2OIxIxxhjOO2A8z1xxMMOy0rjgvo/5zTOLaev8fAOvpz4L8NTCKq46agp7j+1zYptI1PN63JRV1Q/4nuCy53yBIDML1KArWkVDgTzSWrs+/PkGYGQfx3iAdb3uV4Yf84Q/3/bxHlcYY0qNMfdub+o2gDHmUmPMAmPMgpqamt36IkRk1/QUyKUqkB133YtLGZKZwqWHafsaSQzTRuXw3ysO4vwDxnHve6s45bb3qdjYAMC6zc38/Ck/c8cN4duHT3I4qcjuKyrIpbm9i5W1TU5HkV461aAr6g1KgWyMedUY4+/jdnLv48KjwAN1met2YBIwG1gP3LC9A621d1lr51pr5+bna99PkcEwJCuVMUMztA7ZYe9V1PJOeS2XHzGZ3PQUp+OIDJr0FBe/PtnLPefPpbq+lZNueZd/zV/D1fMWYoEbz5xNsisaxhFEdk/P+lZNs44uFTWNtHaEKC7MdTqKbMegLKqx1h69veeMMdXGmNHW2vXhKdN9LQgKAIf3ul8IvBl+vHCbxwPh96zu9R7/AJ7d3fwiEhklnjx86mTtGGst1724FE9eBufsP87pOCKOOGrGSF686hC+/9gifvaUH4Abz5zFmKGZDicT2TOTR2STmpyEPxDk5Nmenb9ABkVPZ/FiNeiKWtFwafRpoKcr9fnAf/s45iXgGGPMkPBU6WOAl8JTs+uNMfuHu1ef1/P6cLHd41TAH6kvQER2j9fjZu3mZuqa252OkpCe922gtDLI9740lfQUl9NxRBwzIjedBy7cl199eSZXf2kqp6iYkDiQ4kpixqgcbfUUZfyBIJmpLiYMz3Y6imxHNLRl/BMwzxhzEbAGOAPAGDMX+Ka19mJr7WZjzG+Bj8Ov+Y21dnP4828D9wMZwAvhG8D1xpjZdE/ZXg1cFvkvRUR2RUl4/z9fIMghU7S8YTB1dIX4y8vLmDYyh1P3UjEgkpRkuOCgCU7HEBlQRR43zyyqwlpLeCdUcZgvEKSoIBeXGnRFLccLZGvtJuCoPh5fAFzc6/69wL3bOc7bx+PnDmxSERloPQ0qSitVIA+2Rz9ex6raJu45f65+SYuIxClvgZuHPlzLus0tjB2mZQNO6wpZFlfVc+Y+Y5yOIjsQDVOsRSRBuTNTGD8sU+uQB1lzeyc3vVbOPuOHcOT0EU7HERGRCPF6uhtB+dWoKyqsqGmkpaNL64+jnApkEXFUcWGeOlkPsvveW01NQxs/On66ptyJiMSxaaNySE4y+PV7Nir0/DsUF6pAjmYqkEXEUSUeN4G6FjY1tjkdJSFsaWrnjjdX8KWZI5kzbqjTcUREJILSkl1MHZmDv0qNuqKBLxAkI8XFpHw16IpmKpBFxFHFvRp1SeTd9kYFTe2dXHvsNKejiIjIIPB6cvEHglhrnY6S8PyBIDPVoCvqqUAWEUcVFXSvj9I65MgL1LXw4Adr+NrehUwZmeN0HBERGQRej5vNTe2sD7Y6HSWhdYUsZVX1eMN/90j0UoEsIo7KSU9hYn4WpRpBjrgbX1kOBr73palORxERkUFSFN4xQuuQnbWqtpHm9i68atAV9VQgi4jjSjxujSBH2PLqBp74tJILDhxPQV6G03FERGSQzBidQ5JB65Ad5g90f//VoCv6qUAWEccVF+axob6VjfWa/hUp17+4jKy0ZL59+CSno4iIyCDKTE1mUn42ZRpBdpQvECQtOYnJatAV9VQgi4jjStSoK6IWrN7Mq0uq+eZhk8jLTHU6joiIDDKvx629kB3mCwSZMTqXZJfKr2infyERcdzM0bkkGSjVNOsB19rRxY+f8DEqN51vHDTB6TgiIuIAr8dNdX0bGxs0U8sJoZBlcVU9xVp/HBNUIIuI47LSkpk8IlsNRCLghpeXUb6xketOKyEj1eV0HBERcUBP5+QyrUN2xOpNTTS2dapAjhEqkEUkKhR78ijVPo0Dav7KTdz97irO2X8sh03NdzqOiIg4ZGZPgawL0Y7oWUKmDtaxQQWyiESFYk8uNQ1tVNe3OR0lLjS0dvD9eYsYNzSTn5www+k4IiLioJz0FCYMz1KvD4f4A0FSk5OYMlINumKBCmQRiQrFhXkAlFbWOZojXvzmmcWsD7bw1zNnk5ma7HQcERFxWFFB7tathmRw+QJBZozKIUUNumKC/pVEJCrMHJ2LK8no6vYAeLlsA499Usm3D5/M3mOHOB1HRESigNfjJlDXwpamdqejJJRQyFIWqNf06hiiAllEokJGqospI7LVyXoP1Ta28eMnfBQV5PKdo6Y4HUdERKKEt6C7QFOjrsG1dnMzDWrQFVNUIItI1CgpdONTo67dZq3lx0/4aGjr5MYzZ5OarB/xIiLSrSjcqEv7IQ8uNeiKPfrrSUSiRnFhHpub2qkKap/G3fH4J5W8sriaHxwzjakjc5yOIyIiUWRIViqevAxtqTjI/IEgqa4k/V6OISqQRSRqlISvrvrUqGuXVW5p5tfPLGa/CUO56OAJTscREZEoVOxxa4r1IPMFgkwblaNZXTFE/1IiEjWmj84hxWW0DnkXhUKWax5bBMBfTp9FUpJxOJGIiEQjryeXVbVNNLR2OB0lIVhr8QeCml4dY1Qgi0jUSEt2MXVkjjpZ76J731vF/JWb+cWXZzJmaKbTcUREJEoVedSoazCt29xCfasadMUaFcgiElVKCt2UVqpRV38tr27g+peWcfSMkZw+p9DpOCIiEsV6OllrHfLg6LngrwI5tqhAFpGoUuzJI9jSwbrNLU5HiXrtnSG+9+hCctKS+dPXijFGU6tFRGT78nPSGJmbphHkQeILBElxGaaOynY6iuwCFcgiElVKCruvspYG6pwNEgNueb2csqp6/vDVYoZnpzkdR0REYoC3wK0R5EHiDwSZOjKHtGSX01FkF6hAFpGoMnVkDqmuJHxq1LVDn67dwm1vVHDanEKOLRrldBwREYkRRR43K2oaaW7vdDpKXLPW4gsENb06BqlAFpGokpqcxIzRatS1I83tnXx/3iJGuzP4xZdnOh1HRERiiLcgl5CFJesbnI4S1yq3tBBs6VAH6xikAllEok5xoRtfIEgopEZdffnj80tZVdvEX06fRW56itNxREQkhni3drLWhehI8qtBV8xSgSwiUafY46ahtZM1m5udjhJ13lpewz/nr+GigydwwKRhTscREZEYM9qdzrCsVK1DjjBfIEhykmHaqByno8guUoEsIlGn2JMHQGllnaM5ok1dczvXPr6IKSOy+cGx05yOIyIiMcgYQ5HHjT+gTtaR5AsEmTIyh/QUNeiKNSqQRSTqTBmZTVqyGnVt6xf/LWNTYzs3njlbv3BFRGS3eQtyWV7dQGtHl9NR4pK1lrKqeoo9uU5Hkd2gAllEok6KK4mZBbmUavrXVs8squLpRVVcddQUNfwQEZE94vW46QxZllerUVckVAVb2dzUrvXHMUoFsohEpRKPmzI16gKgur6Vnz3lZ/aYPL51+CSn44iISIzzFnQXbppmHRk9M+B0QTs2qUAWkahUXJhHU3sXK2ubnI7iKGstP3i8lLbOLv56xiySXfqxLSIie2bM0Axy0pPxq5N1RPgDQVxJhhmjNcU6FukvLRGJSiWF3VddfYE6Z4M47N8fruXt5TX89IQZTMzPdjqOiIjEAWMM3oLumVoy8HyBIFNGZKtfSIxSgSwiUWlSfjYZKS5KE7hR16raJn7/3BIOmTKcc/Yf53QcERGJI15PLks2NNDRFXI6Slyx1uIPBDW9OoapQBaRqORKMhQV5CZsJ+vOrhDfn7eQFJfhz6fNwhjjdCQREYkjXo+b9s4QFRsbnY4SVzbUt7JJDbpimgpkEYlaxYVuyqrq6UzAq9t3vr2ST9fW8dtTvIxypzsdR0RE4kzPCKdf06wHlBp0xT4VyCIStUoK3bR0dLGiJrEadfkDQW58ZTknlYzm5Nkep+OIiEgcmjAsi6xUF2VV6mQ9kPyBIEkGZqpBV8xSgSwiUavYkwdAaWWdozkGU2tHF1fPW8jQrFR+d4rX6TgiIhKnkpIMMwty8WkEeUD5AkEmj8gmI1UNumKV4wWyMWaoMeYVY0x5+OOQ7Rx3fviYcmPM+b0e/70xZp0xpnGb49OMMY8aYyqMMR8aY8ZH+EsRkQE2cXj31e1E+uV9w8vLWF7dyPWnlZCXmep0HBERiWNFBW4WV9XTFbJOR4kb/qp6Ta+OcY4XyMCPgNestVOA18L3P8cYMxT4JbAfsC/wy16F9DPhx7Z1EbDFWjsZuBG4LgLZRSSCkpIMXo87YQrk+Ss3cfe7qzh7v7EcPm2E03FERCTOeT3dS5lW1apR10Corm+lpqFNDbpiXDQUyCcDD4Q/fwA4pY9jjgVesdZuttZuAV4BjgOw1s631q7fyXkfB44yagMrEnNKCruvbsf7NhQNrR18f94ixg7N5KcnznA6joiIJACvp3udrD+gdcgDoadBlwrk2BYNBfLIXgXuBmBkH8d4gHW97leGH9uRra+x1nYCQWDYnkUVkcFWXJhHW2eI8ur4vrr922cXsz7Ywl/PmE1marLTcUREJAFMzs8mLTlJnawHiC8QxBiYoQZdMW1Q/gozxrwKjOrjqZ/2vmOttcaYQV8EYYy5FLgUYOzYsYP99iKyAz1XYX2BOmYWxOcvnJfLNjBvQSWXHzGJOeP6bMMgIiIy4JJdSUwfnYu/SgXyQPAHgkzKzyYrTRe6Y9mgjCBba4+21nr7uP0XqDbGjAYIf9zYxykCwJhe9wvDj+3I1tcYY5IBN7BpO/nustbOtdbOzc/P37UvTkQiatzQTHLSkymtjM9f3rWNbfz4CR8zR+dy1VFTnY4jIiIJptiTS1mgnpAade0xf1VQ06vjQDRMsX4a6OlKfT7w3z6OeQk4xhgzJNyc65jwY/0972nA69Za/Z8vEmOSkgzFcdqoy1rLT57w0dDayY1nziY1ORp+JIuISCLxFrhpaOtk3ZZmp6PEtI0NrVTXt6mDdRyIhr/G/gR8yRhTDhwdvo8xZq4x5m4Aa+1m4LfAx+Hbb8KPYYy53hhTCWQaYyqNMb8Kn/ceYJgxpgK4mj66Y4tIbCgudLN0fQPtnfHVqOs/nwZ4eXE11xw7lWmjcpyOIyIiCainoFOjrj3Ts45bI8ixz/EJ8tbaTcBRfTy+ALi41/17gXv7OO5a4No+Hm8FTh/QsCLiiBJPHu1dIZZXN8TNldnKLc386uky9p0wlIsOnuh0HBERSVBTRmaT4jL4AkFOLBntdJyY5ausxxjitl9KIomGEWQRkR0qKewuiuNlHXIoZLnmsUVYa7nh9Fm4krQDnYiIOCMt2cXUkTmUqVHXHvFXBZkwPItsNeiKeSqQRSTqFQ7JIC8zBV+gzukoA+Le91Yxf+VmfvnlIsYMzXQ6joiIJDhvgRt/IIja9ew+f0ANuuKFCmQRiXrGdDfqiocR5PLqBq5/aRlHzxjB6XMLnY4jIiKC15PLluYOqoKtTkeJSbWNbawPtqpAjhMqkEUkJhR73Czb0EBrR5fTUXZbe2eI781bSHZaMn/8agnGaGq1iIg4r2hro67YvxDthJ6dNooKVCDHAxXIIhITSgrddIYsSzc0OB1lt936ejn+QD1/OLWY/Jw0p+OIiIgAMGNULkkGylQg7xZ/eIZbkUcNuuKBCmQRiQnFhXkA+CrrHM2xuz5bu4Xb3lzB1/Yu5DjvKKfjiIiIbJWR6mLKiBz8VdrqaXf0NOjKTU9xOooMABXIIhITCtzpDMtKjcl1yC3tXVw9bxGjctP55VdmOh1HRETkC4o8uZpivZv8gfq42YZSVCCLSIwwxlBc6N66zieW/PGFJayqbeLPp5fo6rKIiEQlb4GbjQ1tbKxXo65d8cSnlQTqWihRgRw3VCCLSMwo8bgp39hIS3vsNOp6e3kND36whosOnsCBk4Y7HUdERKRPPSOgfu2H3C+dXSF+++xirp63iP0mDOWMfcY4HUkGiApkEYkZxYV5dIUsi9fHxhqpYHMHP3h8EZNHZPODY6c5HUdERGS7ZhZ0N5jyB2Ljd6yTNje1c969H3HPu6u44MDx/Ovi/XBnaIZYvEh2OoCISH/17C/oq6xjzrghDqfZuZ//18+mxnbuPm8f0lNcTscRERHZruy0ZCYOz9I65J0oqwpy6YOfUNPYxp9PK+H0uRo5jjcqkEUkZozMTSM/J43SGPjl/cyiKp5eVMXVX5pKcaHWJYmISPQr8rj5dM0Wp2NEracXVXHt44vIy0hl3mUHMHtMntORJAI0xVpEYoYxhhKPG1+Ud7Kurm/lZ0/5mTUmj28fPsnpOCIiIv3iLcglUNfC5qZ2p6NEla6Q5Y8vLOE7D39GUYGbp688SMVxHFOBLCIxpbjQTUVNI01tnU5H6ZO1lmsfL6Wts4sbz5hFsks/ZkVEJDb0LGUqU6OurYLNHVx4/8fc+dZK/m+/sTx8yf6MyEl3OpZEkP5yE5GYUlLoxlqitlHXvz9cy1vLa/jJCTOYmJ/tdBwREZF+KyoId7JWoy4Allc38JXb3uWDFbX8/lQvfzi1mNRklU/xTv/CIhJTerahKI3Cadara5v4/XNLOGTKcM7Zb5zTcURERHaJOzOFMUMztNUT8KJ/Pafc9h5NbV08fMn+nK3f6wlDTbpEJKaMyElntDsdX2Wd01E+p7MrxNXzFpLiMlx/WglJScbpSCIiIrvMW+BO6E7WoZDlb68u5+bXK5g1Jo87z5nDKLemVCcSjSCLSMwp9rijrpP1nW+v5NO1dfz2FC+j3RlOxxEREdktXo+bNZuaCbZ0OB1l0NW3dnDJgwu4+fUKTp9TyKOX7q/iOAGpQBaRmFPscbOypomG1uj45V1WFeRvry7nxJLRfGVWgdNxREREdltRQS4Ai6sSax1yxcZGTrntPd5aXsNvTi7i+tNKSE9xOR1LHKACWURiTs++wtHQRKS1o4urH13EkMxUfneyF2M0tVpERGJXT6OuROpk/eriak657T3qmjv418X7cd4B4/X7PIGpQBaRmNOzDYUvUOdsEOCvryxnWXUD151WwpCsVKfjiIiI7JH8nDRG5aYnxDrkUMhy82vlXPzgAsYNy+SZKw9m/4nDnI4lDlOTLhGJOcOy0/DkZTjeyfrDlZv4xzvd+yIeMW2Eo1lEREQGiteTiz/Op1g3tnVyzbxFvFi2gVNmF/DHr5aQkaop1aICWURiVEmhs102G1o7+P5jixg7NJOfnjDDsRwiIiIDzetx89rSjTS3d5KZGn/lwuraJi795wIqNjbysxNncNHBEzSlWrbSFGsRiUnFhW5Wb2om2OxMo67fPbuEqroW/nrGLLLS4u+PBxERSVzeAjfWwpL18TeK/NbyGr5y67tsbGjjwW/sx8WHTFRxLJ+jAllEYlKJJw8AvwNNRF5ZXM2jC9bxzcMmMWfc0EF/fxERkUjyeqKnGeZAsdZyx1sruPC+jyjIy+Dpyw/m4CnDnY4lUUjDHiISk7ye7m0oSiuDHDR58H7BbWps48dPlDJjdC7fPXrqoL2viIjIYBmZm8bw7FR8cdKoq7m9k2sfL+XZ0vWcWDKaP59WEpdTx2Vg6L8MEYlJeZmpjB2aOaidrK21/ORJH/Utnfzr4lmkJmsSjoiIxB9jDEUFzvb6GCjrNjdzyYMLWFbdwA+Pm843D9OUatkxFcgiErOKC90sWlc3aO/3n08DvFRWzY+Pn870UbmD9r4iIiKDzevJ5d2KWlo7ukhPic3uzu9V1HL5Q5/SFbLce8E+2nFC+kXDHyISs0o8biq3tLClqT3i71W5pZlfP13GvuOHcvEhEyP+fiIiIk7yFrjpClmWbWhwOsous9Zyz7urOO/ejxiencbTVxys4lj6TQWyiMSs4sLuJiKRXiMVCll+8FgpIWu54YxZuJI0NUtEROLb1kZdDjTD3BOtHV18f94ifvvsYo6aPoKnLj+ICcOznI4lMURTrEUkZvX88vYFghw6NT9i73Pf+6v5YOUmrvtaMWOGZkbsfURERKJF4ZAM3BkpMdXJuqquhcv++Qm+QJDvHT2VK4+cTJIuassuUoEsIjErNz2FicOzKK2si9h7lFc3cN2LSzl6xgjOmDsmYu8jIiISTYwxeD25lMXICPKHKzfx7X9/SltniH+cN5cvzRzpdCSJUZpiLSIxrbjQja8yMr+8O7pCfG/eQrLTkvnjV0vU9VJERBKKt8DN0vUNdHSFnI6yXdZa/vnBas6++0PcGSk8dflBKo5lj6hAFpGYVuxxUxVspaahbcDPfctr5fgD9fzh1GLyc9IG/PwiIiLRrMjjpr0rxPLq6GzU1dbZxY/+4+Pn/y3j0Kn5PHXFQUweke10LIlxKpBFJKYV9zQRGeBGXZ+t3cJtb67gq3t7OM47akDPLSIiEgu8Bd1bGpZF4Trk6vpWzrprPo8uWMcVR0zm7vPmkpue4nQsiQMqkEUkphV53BgDpQM4zbqlvbsD5sicNH71laIBO6+IiEgsGT8si6xUV9R1sv5kzRZOuuVdlm1o4O9n7801x05TMy4ZMGrSJSIxLTstmUn52fgCdQN2zj+9sISVtU08dPF+uhotIiIJKynJUFTgHvBZWnvikY/W8vP/+hntzuCfF+3L9FG5TkeSOKMRZBGJeSUe94DthfxOeQ0PfLCGbxw0gQMnDx+Qc4qIiMSqIk8ui9fX0xWyjuZo7wzxs6d8/OgJH/tPHMbTVxyk4lgiQgWyiMS84kI31fVtVNe37tF5gs0d/OCxUiaPyOba46YNUDoREZHY5S1w09oRYmVNo2MZahraOPvu+fxr/louO3Qi912wD3mZqY7lkfimKdYiEvNKCrsbdfkqg4ycmb7b5/nF035qG9v4x3lzSU9xDVQ8ERGRmFUc/h3rrwoyZWTOoL//onV1XPbPT6hraefmr+/FV2YVDHoGSSyOjyAbY4YaY14xxpSHPw7ZznHnh48pN8ac3+vx3xtj1hljGrc5/gJjTI0xZmH4dnGkvxYRccbM0W6SDJTuwTTrZ0ur+O/CKq48csrWPwZEREQS3cThWaSnJOF3oJP1fz6p5PQ7P8CVZPjPtw5UcSyDwvECGfgR8Jq1dgrwWvj+5xhjhgK/BPYD9gV+2auQfib8WF8etdbODt/uHvjoIhINMlJdTBmRg6+ybrdev7G+lZ895WfWmDwuP2LSwIYTERGJYcmuJGaMzh3URl0dXSF+/UwZ339sEXPGDuGZKw+mqEAXr2VwREOBfDLwQPjzB4BT+jjmWOAVa+1ma+0W4BXgOABr7Xxr7frBCCoi0au4sLtRl7W71kTEWsu1/ymltaOLv54xi2RXNPxYFBERiR7eAjdlVfWEBqFR16bGNs675yPue281Fx40ngcv2pehWVpvLIMnGv4SHNmrwN0AjOzjGA+wrtf9yvBjO/M1Y0ypMeZxY8yY7R1kjLnUGLPAGLOgpqam38FFJHqUFLqpbWxnfXDXGnU99NFa3lxWw4+Pn8Gk/OwIpRMRkf9v767D5aquN45/VxIIHtwdigd3bYsULVDcaaFo0aIFipZSiktxKFa0UNyKU9zd3YsTJEDy/v5Ye5qT+0sgJPfeMzP3/TwPDxm5uXsmM+ectffaa1nrmmuq8Rgw8Dte++jLLv09T771Kb884T889PrHHLHOPOy/2pyM5olr62bd8omLiH9HxJPD+G/16vOUSz+dNTV1FTC9pLnJFeezh/dESadKWlDSgpNMMkkn/Xoz6079pyqFun5ECtirH3zBIVc/w5IzT8wmi07XVUMzMzNraY305q5Ms77i0bdY++S7GTRYXLL1Yqy9wNRd9rvMvk+3BMiSlpM01zD+uwJ4LyKmACj/f38Yf8VbQHUFeOpy3/f9zg8lDSw3TwcWGPVXYmbNavYpxqNPr+CJN0fs5D1osNj14kfp0zv46zpz06tXdPEIzczMWtMsk43LaL2DJ9/u/AB50GDx52ufYacLH6X/VP24aoclmWea8Tv995iNqGbIWbgSaFSl3gy4YhjPuQFYISImKMW5Vij3DVcj6C5+CTzTCWM1syY1xmi9mWWycUe4kvXJt7/Ew69/wsGrz8UU/cbs4tGZmZm1rtH79GLWycflqU6uZP3Jl9+w+Vn3c8odL7PJotNx/paLMsm4fTv1d5j9WM0QIB8GLB8RLwDLldtExIIRcTqApI+Ag4EHyn8HlfuIiMMj4k1grIh4MyIOKH/vjhHxVEQ8BuwIbN6Nr8nMajD31P144s1PfrBQ11Nvf8ox/36eVfpPwerzumWEmZnZD5lryn48+faPL4Y5PM+++xm/POE/3Pvyhxz2q/4cvMZcjN6nGUIT6+n61D0ASR8Cyw7j/geBLSu3zwTOHMbz9gD2GMb9ewN7d+pgzaypzTVVPy584A3e/PgrpplwrGE+5+tvB7HrRY8x/lijc8gacxHh1GozM7Mf0jjHvvXJV0w9wbDPsSPquife4feXPMY4fftw4VaLscB0E/zwD5l1E0/TmFnbmHvqHy7UdfRNz/Pce59z+FpzM4HbRpiZmY2QuaZqFOoa+TTrwYPFETc8x7bnP8wsk43LVTss6eDYmo4DZDNrG7NOnkVEHh9Ooa77Xv6QU+98mQ0WnpafzTZpN4/OzMysdc02+bj07hU8NZKFuj796lu2POdBTrj1RdZdcGou2npRJhtvjE4epdmoqz3F2syss/Tt05vZJh+PJ9765P89NmDgd/z+kseYZoKx2HeV2bt/cGZmZi1sjNF685NJx/lR7RQbXnz/c7Y65yFe/+hLDl59TjZedDpvcbKm5RVkM2sr/afuxxNv/v8iIgdf9TRvf/IVR607D2P39dygmZnZjzXnlP148q0fV6jrpqffY40T7+azr7/l/C0XYZPFpndwbE3NAbKZtZW5p+rHZ19/x+sfffm/+/799Htc9OAbbL3MTCw4/YQ1js7MzKx1zTXVeHww4Bve/3zgDz538GBx7L9f4LfnPMgME4/Nlb9bkkVmnKgbRmk2aryMYmZtpX8p1PX4m58y3URj8+GAgex12ePMPsV47LLcLDWPzszMrHUNKdT16ffuHx4w8Dt2vehRbnz6PX4131Qc+qv+jDFa7+4aptko8QqymbWVWSYbl9H79OKJkgL2h8uf4LOvvuPo9eZxf0UzM7NRMPsU4xHx/ZWsX/ngC9Y88T/c/Oz7/HHVOThy3XkcHFtL8QqymbWV0Xr3YvYpxuPxNz/hsoff4oan3mPvlWZjtsnHq3toZmZmLW2cvn2YYeKxeXI4laxvfe59drzgEfr0Cs75zcIsMfPE3TxCs1HnANnM2s7cU/Xjnw+/yVNvfcbC00/IlkvNWPeQzMzM2kL/qfrxwCsfDXWfJE66/SX+esNzzDb5eJy6yQJMM+FYNY3QbNQ439DM2k7/qfvx5TeDGCxxxDrz0LuXq2WamZl1hrmm7Mfbn37NhwOyUNeX33zH7y54hMOvf45V+k/BP7ddzMGxtTSvIJtZ21l4+gnp0yvY/5dzMu1EPkmbmZl1ljmnyi1LT779GTNMNDZbnfsgz733OXutNBtbLz2jWzhZy3OAbGZtZ/qJx+bxA1ZgrNF9iDMzM+tMc06ZlazPu/c1Hnj1IwYPFn//9cIsM8skNY/MrHP46tHM2pKDYzMzs87Xb8zRmHbCsbjp6feYZbJxOHWTBZl+4rHrHpZZp/EVpJmZmZmZjbBNF5uOF98fwL6rzsE4fR1OWHvxJ9rMzMzMzEaYu0NYO3MVazMzMzMzMzMcIJuZmZmZmZkBDpDNzMzMzMzMAAfIZmZmZmZmZoADZDMzMzMzMzPAAbKZmZmZmZkZ4ADZzMzMzMzMDHCAbGZmZmZmZgY4QDYzMzMzMzMDHCCbmZmZmZmZAQ6QzczMzMzMzAAHyGZmZmZmZmaAA2QzMzMzMzMzwAGymZmZmZmZGeAA2czMzMzMzAxwgGxmZmZmZmYGOEA2MzMzMzMzAxwgm5mZmZmZmQEQkuoeQ1OJiP8Cr9U9jh8wMfBB3YNoEn4vhub3Y2h+P4bwezE0vx9D+L0Ymt+Pofn9GMLvxdD8fgzN78cQrfBeTCdpkmE94AC5BUXEg5IWrHsczcDvxdD8fgzN78cQfi+G5vdjCL8XQ/P7MTS/H0P4vRia34+h+f0YotXfC6dYm5mZmZmZmeEA2czMzMzMzAxwgNyqTq17AE3E78XQ/H4Mze/HEH4vhub3Ywi/F0Pz+zE0vx9D+L0Ymt+Pofn9GKKl3wvvQTYzMzMzMzPDK8hmZmZmZmZmgAPkthERUfcYzMzMzMzMWpkD5DYhSRHhf08zMzMzM7OR5ICqxUXEMhFxRkRMLWlwuc//rmZm1iV8jjEzs3bmk1zr6wdMAvwjInaNiD4OlP+/iOhb9xistfXkbQw9+bVbqn4GGucYM/txIqJ3+f94lft8fLUeq1k//w6gWt81wF7ApcAvgGsiYk0YchHTrB++7hIRcwI7R8Rc1UmDdnpfIqJP+f945b+J6x5Tu2hc0AC9I2LSiJg8IvrVOqgu1vG7UbZwRDt9Z0ZG5eJ2kYjYvPLZaGsR0bt8BuaPiMMiYuy6x9QOKp+nJcp7O0bdY+pKjeNHRIxZ91jqImlQ+eNlEbFPua+t2sn0lONiK6occ6aJiJ83Jmoq380uO8c3rr8jondE9G1cpzbr598BcouTNEjS08CZwIHAw8DuEXFeRMxXntOUH75uNC+wIbA3sGFETA/t875ERC9J30XEWMCFwKPA0RGxY0TMUu/o2sphwO3AVcDeEbFyO2YmlM+TImLciFgrIg6JiMVV9OTMlMrF7VnAZEBjYqpPbYPqBpXXfRrQG/g6IvqUybjx6xtZ6yrfs0ERMQFwCTAR8E15rO0CyMpxpR+wS0TMXr0Y74HHleOAVSJiHWjN118JtiaIiBkjYnkY6nhhTabyb3MhsCLwVYfHu+S6uHz/B0fEhMBfgbuAw8oW0Ym64neOKvdBbmEREcP6MJeD1AbArMADwMGSPuzu8TWTiJgS2B2YHXgDuAh4SNLHtQ5sFETEuMCqwIXlwuPvwHjA0WQ2wZzAh8CtwL8lvVfXWFtRRGwPXCvplYhYkHwfFwEWB5YAxiUnI26WdE9tA+1kjeNKRFwBTAW8SH6e7gF+K+mt6vNqHGq3KquogyJid2AtSYuWwHhP4JfA9ZL2r3eUna/yujcG9pY0Z7n/eGAx8ni6raR36xxnq6l8zy4FvpC0WURMBawFLATcDZzcLt+xygXyP4EvJW1S7u8HDJb0eb0j7F7l2LEbsDKwhaQXah7Sj1L59xwDuIw8Hw4gz41LSXqs1gHa/1P5N9uQjAtmKvdvD8xC/vsd1RXxQuV4dyXwPnA6GaD/GpiZnCD8QNJ3nf27R1bLzVjZEI0TZ0SsERF/jYjjImJ7STcBOwInA/3Lfz1SyQodXdLbwL+Bb4H1gRPJtOuFImL0Wgc58hYDzgdui4glgFfIC9g7Je0LHAN8CWwKbFfbKFtQOelvDTxZ0uAmBv4k6WlJp5OTLbcDcwN/iIgZ6htt5yonsWmBKcmLnQ3IC/ZvgOcj4sTG8+obZfdprJKUILE3MAfwj/Lw6cCiwAXAphGxVD2j7HwlI6XxugOYBrg9covBscBc5PdgEnKizn6E8j2bgDy27FXuvghYGhhc/t82GSrlwnxBYBlgS4CIOJi8TnkwIpatc3xdrZLCOhqApO8kHQY8ApxT3ptWSk9uHP9PBD4BfgrsA4wNvBUR05XVQmsSldoRSwGnAETEgcBvgdGAJYEuuZYpx7ufkAt3O0i6l5wcOlHSt8AqwMJd8btHlgPkFlVJbdkU2J88yX5EphDfCkxBXrRtI+m2usbZDCR9ExEzkSklh5CrYoeQs1enANtGxBw1DnGkSLoRGAt4GbgT2BbYqPL47cAu5OfgxjrG2KokfS1pbjI1f3vgYmDjiJi0PP6BpOPJz9Hlkl6pb7SdT9LrwM3AGCWz+kVJawBrAL+MiF/UOb7uUrI0to6IOcsM+CCy7sOaEXE+OfP9G0nHAM+QQWTLK6tbB0TE2hExdpkM+RcwHZlePhOwpaRbgdeByWsbbAuJiP4RsXrlri+A54CHSgbQd5LWJo85c5EXk+1kSuBKSQMjYjty8vYS8lgzT60j62IlQJgG+GtEHBkRW0Ru9/oH8B8yQGiZ9ORKuvz0wF/KuP8KHC3pA2A58t/Xms8NwG8i4ipgeWBjSduREx1LdOHvfQ94AfguslbSBJIOL4/tRtmy1CycYt3iIuJxYGdJt0Tuh5yO3Gv7vqQ96x1d84iILYGVJf2qct945ImpH7ChpLvqGt/IiIjRyswbJcA/ElgW2A84TtJX3/fzNnzV97bc3gX4E3Av8HtJjwzjZ1o65biSSvsrcqJlBeA6Mivhpcrz+jRTGlRXioiVye/VfeR7cRd5kt+UTBN7qqTgrwacIWnS2gbbiSJidvLzPhh4ltyicVtELAwE8Iqk98uq32XAVJIG1Dfi1hAR2wB/IbOZ/iDpubKi+DvgY+AmSW+VNP71JC1Y43A7XUTMSJ5zvyO3f50k6aaI+AswjaQNax1gF6mkl/4KWJ2cFNmIzPrqRU7WA5wL7CTpk1oGOhIi4mRygv514AJJU5f7nwAOk3R+neOzYSsB6sTkVsOHI2Ju8rs5o6T/dvb1TMmgGJ2caO0DzA8sJ+mRiPgjsIKkJTvr93UGB8gtqnzYxidnH0+X9M/KY6uRqW8bNPYL9jQRMZukZysnpiWAK4E1JN1Zed7vgb6SDq1tsCOhevCKiMlU9hdHxLrA8cDnwO6SLq9xmC2rsldnVknPlfvGBc4g9wieSu7hebvOcXaFiHiXfH1fktszpiaDw+MlfVHn2OoQETMDOwHzkUUQLwHurUxOrQgcDPxN0lntMoFQVofWJFN9JyNXzq+S9EZ5fGkyNfjGsoJuP6Bs3egP7AD8nMxM+YOkr8vjY5b7zwRWk3R/Y+KqrjF3hYhYFbivXIhPAzwOLFsu1HupDdqIVc4hM0t6sQQkq0raovKcOYDPgAWA2ciCopdIuqyWQY+AjoFTRGxBZlKNS65E/isidgS2kjRXXeO0ISrXwTMCC5ITVLeq1OCJiNnIa5tbJO3XlcecsnXnb2R69WXA1+Q5ZhNJTzXT8c4BcouLiKPIA+tqjQ9V5P7BW4G5e+gF7fzAAZJ+2eH+o8g9o9eRe72+AZ4E1i2rIy1zYq6s9u1CHvD2Lmmxjcf3J1Pv95b0l7rG2Yoq7+1UwOXkivxtkgaWx+cjJ6b6AdNVV5pbVeVi7pfA6pK2KGm2s5J7y5YHpiUveh6scajdpkxChoa0y1uW3Ms/MbkCeCPwIJk2uriki+oaa2eLiL4lDXYW4CByz9oAslDbLeQqwLfAAq2WedMMIit/LwP8nvz8HCXpb+WxpYBpJZ3fSuekYakcS5ckL4J7kSm4X5THZyHTct+X9NtWf70dlWuxV4FzyOyuP0g6N7IuyjcdntuHLFi0I7CSpDe7e7w/RkQsr6x3Q2TRp0PJoqDvkwHYQZIeqHGIxlDfwUXJmhlPkdsZ+gE/KwtJcwCLSjqz/EynrB53+N39gbElHRNZsX15snbFk8BdJThuqu+/A+QWFxFTA/8kK9AdQbbgWBW4Tm1YUXVElPdktJL6uAYwm6TDyuz89uTF3nLkxe3Lkn5d32h/vEowMxG5/3hFSfeUmfgFyYPNfyMLwAyS9FmtA24xldnWG4FnJe1YVo8XB3pJuq48r5Gl0DQznqOifF6OJQtlbCbpvnL/2GQ61JLkhfzA+kbZ/TqetCNiPWArMkvjWrLS+ZvlsZZOs+8oIl4iV8cvJle5NiYrud9DriZfW+PwWsqwPhsRMQ5ZIGcr4ANgX2XtiOH+TKuoHEenJVOKLyKPIZOQky7HK+uDzE9uVRjYbBfInSEiJicrkk8D7Epm/H3VyDSJLFz0rqTPI7fJfQz8pJmz/0rAczc5WbabpEfL/euRqdYvSvpvfSO0jiLiIeB8SUdF1hA5TdK0EdEfeK4xYdOJwXHj+z8zWYjuenKBanxgF0n/+L6fbwYOkFtEmXHpU04oE5FVZb9qnEzLDN7WwPPAY5JOqG+0zSMidiCrVn9IXtzfVi5KpgIGAa+Wk1TLBTllRXxySRtG7h/5G1ksZypgSUkPtfIFVp3K+3kVuR9nUERcQ04+rQD8VW24vz8ipiOLui0OPE2e0G6U9FF5fAxJX7fjReywVGa/ZyMn1CYj903eTq6Q7EoGjIdLOqO+kXaNiJiTLPC3WDUTKSLOItPjDvZ5ZsRVLhjnIou7TUsW+Hsjsgr+78jU69Ubk3DtIHIb08SS9i63NyFbEb4D7K8mTiceWZEFyMaQdFS5fTwZOO5Kbl3ZTdLlJeX1fOAXkj6LiAWA+SWdVtfYR1SZUD2F3HJ0BrCnWrhtZjsrkzR/B34l6cuIeJ2spXJJRJwKPCPp6C763X8hY5UDIustbA8cQO6/36GZM5AcILeAjkFORNxLFk9ZkCyOcLykf9U0vKZTWWEdi9zfsChZfXcp4AngWElP1TjEThERvyZn5O4HdiaDmf0i4hTg/na8aO8ukX2zDyXf21mAn0qaNyIWJ4PI36gN+nZWVjHGkvRlue/nwHrApGRl5jvIz1bbB8UNlWPIpGRhtlvIys0DyQvdA5XFlOYkC1Z92eqTUfH/6zaMQ27VuUjSEZXnzUemBu/YmDyx79ch1fhY4CtypXA5ss3JbpGdKeaV9FCdY+1MkcXejiYrV/+t+h0pQeNPJbVVG8qICPJ64z5Jb5d/8/s0pGbBIcAeZMG/sYFHJG1T13hH1PCOb5GF+84mCzCdSF5ftdRiQ7srC2xXknUkpgMWkrRsZKHa54GfS3q6i1aPjwTOrk6ERcTE5HFhLknzjerv6ypu89Qaro6I3QAiYhEyj39xsrH2E8AxEfH3iFiypBH3WOVCZHBkW6dTyfTqu8kv6WHkKuAFEbF3nePsJHcAcwI/I9M89yv3/5ws/GEj7yMy5XFVshVLo13FKsD47RAcQ/biLH+8MyLOjYgJJN1CTrj8i2zhsRNt0r5oRFUmA44gKzhvKelnZDGaycljyDiSnmpMLLR4cNwXuCgiZmq8DmVV6mPJNnhnRsSsZcLgcOA9B8cjrhIwHAcco6zWuia5Er9EROwhaVCrB8cRMWVETFa5a27ygvyPEbFa9TsiaQdy60Zj/21bKK/xXyU4ngj4M3BDRGxUHt+XPIb8h5wc2Qby2qWuMY+IRsATEcdHxBSV++8HNiNrEvzWwXHzKeezU8iJ752Aw8ux/GSycv7TZVJ4lM5hETFhZP2Kxt+zErn3+NCo9DlXtsnchNxy0bTff68gN7kYsm92I7Ko1I3AZ5L+WnnOHORFS38yPefDOsbaTCKiUUzmQFWKYUTu012dTCm5uZVWfSqrfTOTKw9BFgB5WUMqLR9K7kmev76Rtp4OKxvVP08o6aOIGJ3M2LiGLMj0TCum5Q9PZGGg48mL2QMkHVvunx6YTz2wGnpZCToWeEBZWKcxKz45Wcl6M0kv1zvKzlEuUKZR1m2YEdiTrIL/WUQsD/yGnBx6ltyuspraoFJ3dyrnnn8Av5P0WOX+HcmtG+uSqYgtcT4aloi4hOyJ+2BZtepN9nPeBFiMXK06qvr6202H80cvcs/+8uQ5+x2yBeN/Go+XCf2WuA6JiOXINPGxgCvIyZ7Gaz2C3G7yfo1DNIb6XDUmXUZTbo9ak2wD+zJZgPM2YJ+SATXKW6ci4g5gO0lPltv9yC1ba5FblJ4CzlWLZHA6QG4B5eJlBnKWbiMyLWdhSa92eN6crfLB60qRBSTOljRrud24sO0HjCnp3XpH+ON1OOk+S6a+Tgb0JdPsryBTYlcD/uzPwY9TSYFcmVzZGZcsTPSwpFcjK1rvDPxX0uHtFBxXRbbsOAJ4idxTdnPlsZa4iOtMEbEPuS90TUn3VO5/Adi8caHbTiJiIeAkYDzyArhRXXlS8pjzvHpYobbOEhFnAJ+Se1Ab1dEnJauiL6sWL2wUEYspC0b2IfdU30q2cBqbrGL9K7KV0c3AXu14PKmcS2YBRpf0ZFlJXpg8t8xJ1njYW9IHdY51RFQm5scAxiQnOqYlA/5xyUKF05AtrGarb6TWULnmPQT4BfAG+V28mNzaMTW5F/5DSd+OanBcCch/LumWkpG0Abm14qMyObgKsARZpOs2cqKsqb//DpBbSGQl3f7APmSRrjPIqpdtd6E+KiL3PR0HrCPpkygtFSKrWx8PbN1qs5yVA9DhZGuVZcvs4ECyGndfclXr1uqFvP2wygXNrOS+sJPJQGAl8kLuYjIbYRDwXTnxtHSwWPk8La7cglB9bCyy9cL05CrpuXWMsVlExNFkK72nySJdS5Gr6ovXOrBOVrmoCjI43pjMXvoc+KOkG2odYBuI7P97EpleewzZMmxzYICkzTtjFacZRMRi5BanZ8m2ijdKerOk5q4BfCnp7BqH2CU6TGQ/Rmb2Xa4h9R3GANYmg4ddJD1f22B/pIi4ipyEf5Zs5fQUeZzYgswM2F/S0/WN0GCo4/gKZJHF35CB6cxkUHwd2bay06qkl4B4UCOrKLJK9j/J66a/kWncgyJiHvKz/7hcxdo6U8ntb/RiXZdc0Rqf3MdyYo1DayoRMQlDWhDsUjk5HQ3MpA79kVtFZLudC4FDyyz9P4E3Je0UEU+Qs4RrenVn5ETE9cCjkvaKLER0a/lvMeBSsq9jS02sdBQRUzVOjCWj4iqyYNBxkq6pPG8bcqXrona4YB8RHS5upwfmICtWDyaDxZ+Se6b+TmaovNxumQSRW3pmIFcW3qtkTqxLtupZzceXEVOZhBodmILs9ftVWU05gVx1G0BOvOxYJnHbIkAGKMHwjuTK8bPAZWQLwk8rz2npicaOKv/mfyG34ixVguJVyBXXayVdFRFTlwmDpnz9JTV8DeBuSe+W1zM/OakzFzA7MAZ5jXVR9d/U6tPhHLYJMI6kk8rthck9yDOT22T27KyMlYjYnVy421HSOeW+SclCp8uRW0NPlPRYRIymIQXrmvLz3+AAuYlVVrbmIFsVzUbu/ThC2a5ofHKGf2FJq9c41KZTApwjyGbod5EVFlcAllFWn225C5FyobUyebHxJXAT2YLlo8hS/edJuqPOMbaqkl1wDNl24J2IeIbci3tRRNxFplrvWOsgR1Hk3vWdgJ0bQV1khdVVyYvYZ8hA+bGIaKQAXtHsJ7HOUrm4/TO5VeFL8nh7rErblUY2SvlzW7wvlfPMJuQWngnJgO5acr/stxGxNNDfE7E/XmRXgaXJ9NRzgQuURXEmJ4spflNSWFvunDQskZVxx5f0erk9P3ncmY6cDNi/sy7Mm1FZTbuJzFR7JiLOJb9PH5HfrdVVaZvWjCKLnD5ErjaeRh4Pz1O2juxFThT+jNxf/RawTTtNFLa6iPgNWRzuDmATSV9XHlsHmEyd2KKvTPqtQ2YTfExmtt5WHluULG45JVlJ+0BJX3XW7+5KDpBbQFkdvJMsyDQRGRSfTRZLENkf+cvaBlizSkrJBGQP4D6SHo2IacmL/9XIE9bdku5t9VWfkgI5DXARsD+ZDny4pCm+9wdtuMp7uhTwArm/6ihJS5Q09kvInoGvtPJFbGRv58kl3RjZnmg6cmZ3NGBZcn/gGuQFz0eSlqlrrN2tcgyZnEyjXpNsEbcwuYL6JVl8qK2KlVVedz+yL+UmZPrkGOQF1iBgo2Ze7WpGlfd1WTL7ZE5yJWU98vt2Nbnv+LlWPhc1VCZZlievSxYiU3D3UtnyExHrkauqO9U41C4X2ev1JLKo41VkgaLFyCrPNwJ7qMO2lmYUuY98W3JyYwB5Dbq3srp9Y8vfysC7km6vbaBGRGwAvK4hxd+mJqtWrwT8BThsWJkbnXk9Uz4vswFbkefPO8jPeiNjbStygWqjzvh93cEBcpOLiLXJgh6LVu6bn8zr36OnrxhWTsxzke/JOORF3UPAIZLerHWAXaikjG9DFkE5WNLVNQ+pLUTEbOQF7BFkWtlskpaud1Sdq5IydwdZSOOxksI/LVnA4xFJH7T6ZNKPFdmKZQlJ25Xbo5MTCZsAuwFrSbquxiF2ibLisKak1Sr3TUFODh2lSg9LG3ElYJxR0inl9hjkBPfqwCfAFu20mhoRLwFnkYHhTmRh0QvIa5W3K89r2YnGEVGCx+OAF4FryoT9KmSa6fS1Du5HKpmKh5DB8NHkKuBbchX7plAm8f8I/EPScxExZeO7FrkX+GSyRs1eZBZAl37vSqC8JHm+nBs4S9L+HcfcCtcVDpCbXESsTjaVXxt4F/7Xj+4M4HVyX2SP/0eMiEY60N/Ik/JBwHvkLNpfVGn11E7KKnlIeq3usbSTiNgL2BJ4jEy7frtVDurDU70ojayqui7ZM/s7smjQNZJeqXGItSop6I2Vn9+RFxyN/Vxjk/ULHq9xiF2mpMGdDGwq6fHKCsOfyUq8v695iC0nItYn2zo9KGnhDo/NBCwl6e91jK0zVbYmLAGsV92KUjJVTiFbvazd7hMtETElMK2keyv3BVm/4Gxy3+cFUSpD1zTMkVImjs8CviCvs+5Si9fkaBcRMZ6yJd/kZCvKm8iswo/K47uSE/7/lrRCJ//uxvd/TLKq+cQqxdoiYlMyC2FmclLwnlaKVxwgN7nIglOXlP9OIyvFDYqIy8iCQgfVOsAmEBErkvsEG22dXiVTjxchV1j/IWnj+kZorajsJRtN0oBWX/GonMTGIveO3aQsCjQnmfY5D7lH7t9UAsOepKzurUeulPQF7gGuVxv3bG2ILKhyGjlZsi/wAbk/9hGyKOB5NQ6vJZXsg+3JvqOvAL8d1gRLO6Sul7Tiy8hz7vqSbunw+NrAnZLeq2N8XamSxbY5Q4KBz4E/SPpHCZCXJjNTDq1xqKOsvJZVgPPJvaRH1TwkqyjnsN+SE98TkPUOGtkrowGLSLqrs65nKtcV/chJk5nJ7TnfANsq+6FPTRa5PLURsLcKB8hNpnKwnRSYQ1mMaz3gROAJcn/c1MACwOytfNHeWSJbSswv6cSI2IVMFVw6sqn9ksAJJV20pYMcG3XlIuY6sqJsp+7BaWaVE9n5QB9gS0mfVx6fD9idbElySV3j7G7DCk5KSuGm5KrPx+QWhvMkfdjtA+wilc9DNatgYrI1zxJkMaWxgFclrVfjUFteOZcfTqbpn0NmpAyod1SdKyImJGt9rE9WQT+TLPj3dYfntfxkQFX19UTEy8B+5AreVsCBwP3kFrkHumLfZ13K5M/Ykj6ueyw9XeVztTBZtfqWiOhPfh+XJye+z5J0dWd//yq/+1Jyy8iZZIXsHch9yLtIujiG9NJuqe+/A+QmFRE3kGmPJ0n6b1nN+iNZBfE54HZJj9Q5xmYRWVVxEmVbkiPJLPTdIuJk8jO+dc1DtCZQUgDvlNRrBJ/fOKivC3wl6aquHWHXqJzE5if7Ok8v6dOI2Izsqw55Mfe1SvuFnqASJPYhV47XJC9oX5d0YUQsQFZ1noVMPW6p2e/h6XBRfxCwDFk86EpJT5SLq9nJavmvyS1cRkiHye3Fyff1VXLf6Xfl83QG0E/SDDUOtUuU8/B05ArjKkAA56gF+p2OrMoxZFVgeVUKkJVsnb+Rk22bOgvDulJka8YNyJ71t5dtVPMxpMXY6pJe7oLfOxl5/lihmiESEYcA00napLN/Z3dxgNxEKheyqwPHNE6i0eJ7H7tTee/2BV4iZ89mkfRhO8za2qiJbGOzqqT1ImJjYE5Jew/nudUg4muyONM1w3puq4iIfYApJW1fXv9BZDGyBch9+le22gzvqKhc3J4OTA7cB8xEpokuqNKKJSJmVRY/aYtjSOU8cyywKNnOaUkyoLkBuBh4o7w3Pebz0FnK5DZkj9g/AVdLWqPy+PSSXm2X83q5QJ6RzDr4kuwbPi+553BtshDZPbUNsItF1ie4mMw42UrS+R0enwN4ueNqullnimyvthsZFO8m6bly/3Rk94r7uup4HhGXkK0w/1y5byayrd36Ki3fWk2fugdgqcPJcjFyj0djT0GjqfZiwMRks/mWP7F2kVuAWcnUyBNLcNxyBTGsSzwK/DkiLie/Y1vAcCuq9gIGlSDillYPjotbgJPKBfyYZPrTFRFxArnadWVPCoZKADgd2Qpj7nKsuIl8H74ok20PNi402iQ4bqxyjkbuN960BP+9yf2ya5LB8sUR0SP3oo+MyqTDisAMkmYp928MXFTe79WA6yS9CtDK5/BKds3qZBu0Bcnj6w3k9+ehiHgOuErSA/WNtFv0IVeK3wf2i4hFgCNVCmcqe15HnQO09lM55oxBdqR4XdIfI+KPwD0RsbWkS8rnsPFZ7JTjeeU8sgYwPpntuklEvABcT3aSWRno1arBMThAbgoRMbqGrrL8LLBjRBzQYdZxU+DTVk317A7KfZWHd7jPwbEh6Qlg6oh4m9yqsHBE3NMxdbZy8J8G+DVD0pBbmqR7IqtzzwQ8pizW0Y9MI14R2r/9yjD0Bh4owfFyZN2H5ctjewL7kH2h20IlKDuevKi6nyG9eI8re8kOAL5zcDziKu/VJGSLQSJiP3LbwgWR1WV/R9YQeaOeUXaeyjn1RLKTxs8i4gqyjsHPIuJishBgWwbH1ZW4sgXhmjLx+Kvy37kRcSPZf9bfJet0lc/UPuW/GyLiG7K92NjArhHxJVlostMm48pnv/H3HQb8RtLdkVWsTwceJqtZDyKL5LZsFqxTrGsW2eB7D+BPki4t900I/JNsU3Qm2at0SbKS9Zyq9BPsqYaXKlKZVWvMcM9Kpjf1mL2VNmwRMZqkbyPiFjJDYw+y0uMfgDMqKdWNz9DtZNrQLvWNeuR1CPTnACYCblApNhXZIuxo4BtJG/TA4LhRkOsBslfremS/1isiYmtge0lz1zm+rhIROwO7ktlJ60p6qN4RtYeSTnsCOblyFbBKWU09AxhP0jrtkrYeEVsCG0haNnK/7SvAGmStlMWA7dTG+48BIutTzAOMTk60XVw+A8sCG5KVfB+tcYjW5iJiRuAvwFNkW8rfkFsd1iGvXxbs5N/X2Jq0IrAC2eXgg/LYeOQx4HVyRfvlVj7eOUCuWWT/ydXIyqFvk5Uf742IuclKiAuRpdPvAm6WdFxtg63ZiH7RKl/gvuT7tqSkgV0/Qms1EbED8Gfy5LKfpBvL/dMCN0qarc7xjazKd6BRQOMFcp/grMAvyurxTGRq9cVqg1ZWIysiFiJnwucBdiFTjw8EtpZ0a6vOfv+QyCIuh5EXVJeSr/eTWgfV4iJiHHLSaTOyRdYGZMuVA8lOC++1y/cssjDVVJJOiYhTgPGV9R3WJfe271e2KrTsBfKwVCYedyWD4LvItmgHkkWJ3ixbFmaQ9GKdY7X2FhHjS/qkxAunktsbDo3sxz0ZGeM93NnnsLJafDu5tWIXScd21t/dTBwgN4FyobIwOfMyD7lifBjwKTApufpzn9qsNcSPUVnVC2An4FJJbw7nuY3g4CzgIUkndOtgral0WEldjqww+yk58/lRZPXVc4BFJc1c+blxWv07V1Jm35e0XXn9zwP9yGqz7zReX7tdxA5PJYtgKmBKoG+ZLJib3H+7NDmZcL2kf7XL+1I5Jo5G7q8fT9J/y2PzAEeSgdwm6lBkyIavcl6aHOjTOCdF9v39I1nF+i2yUNc1rT7ZUnm9s0l6NiKmlPR2RPwNuFfSORFxJ3C+pJPbZTKgo/I9egpYW9LjEXEiOVmwRpk4eEnSM/WO0tpZRPyU7Hn8JjkJ/jCZcfosmdrfpd0HImJecmvWruQk0a4q9RXa5XvvALlGHS++ImICcmP7KsC0ZBroKe3wQRtVlSDnRGAqspfkGx2eE0Dvklo9B3nQmNbvnwFExB1k8bbnyYqjcwE7STq1PD6mpK+iTYq6ldWss8m2D09FxIPAvyQdEhH7kz0Td693lN0jIsZQqedQtrDcQ676jE+2zdujsdrTCKLLn1s+QO4wuXgcmTXwCFnp/2JJz5bnrUemiXZ6K5B2VNnGsxBwFFkN/nrgMrKq8bdkS6dP6htl54ssbHcyWeCtMcmyM/ke3EB2jpipvhF2vfIenEZmCPQDHgTmlfR6ZEXfy9s9vdzqFRE/IfuOB1lH5BvgCbJ7yynkeb/Trn0r1+DTkxmvs5PZVreSWbBrAVeQK8otfc5scIBco8oJdhbgZ8B45H64PuSHb3kyTWJXSf+pb6TNISKmJk9Es6vSoL6kUn9XnZmPiLuAPf2+GUBErAkcqMqe0ojYEDgY2FzSnbUNrgtFxKnAR8DL5HFktnL/i+V227d2Kvui9gVulXRdRBxBFmn7I7mKvC25l+oyYN+unnnvbh0mF2cFjiEzlrYmW1tdBVwh6f36Rtk6ImJhYD5Jp5Tbj5F72P9FpqsvSa4uXgo8WtKq2+Y7Vr5P55NZKBtLerzcvyo5eX17WV1ui4nGho6r/xHxT7J67+Jk0cODI2IJsn7M1O302q15VbKi1iBTnhcBXpC0XRf9vgeBT8jsmJ+QGa5/JFey/wxsI+murvjd3c0Bck2qJ8yIeBZ4hqyAORY5C30XIPJke7qkV+oaa7OIiKWA/cgVdpGF/AZFxBTAdsAJ5WJkZeAPkpascbjWRCLbrWxI9kEeXNKqRV7Y3i7ppFoH2EUiW44cQgZEu5GF/vYAlu4p34/IOg/7AQOAx8maDicoiyf1JituLkZWAu0lafHaBttFyuTiw8BCkl6LrDj8DfmerELO/G/tbJsfFhHrA/8gq1XvTX63jld2UGh83rYjt0sdJensusbalSLiOOArSXvWPZau1uF67SDgr2S/2fOAqcntCRMCewFnSzqx3SYIrLkMb9Itsi/31+XauFNSnStbdFYB9pe0cFmY6k3WW9iAnGh+Q9Jno/r7mkWvugfQgwVARBwOvCVpTTL1bV6yAuIhZMrWhT01OC6pa5RgBjIlcCZgTWXrhMZs7s/JwkPvldsTAat362Ct2d1NXsCsExH9JA2unFwmq3Fcnaak0Db+3Cci+kq6j6xn8Ci5SnonmVa8WXle7+4fafeSdC/Z8/o+smXXosCfImJ6SYNKCuyNZLraxtCW78sMZKX21yJiGWBBSeuQBaXuAU52cDxiJF1ITmY/AFxHBslrVR6/V9KmZGXZW2Ho72ar6XBcGb3y0JnAahFxVrlYbmdbRcRvykTrFpI+l3QHmfn3FzKldWXyO3YiuL2kda6Ox5COwXHjOlnSF5Vr405ZAa0sKvwEeKxM/gyU9CU56T4IWKydgmPwCnKtykzPhWSxoHtKys6bknaKiCfIlIU11AMrMEcWjjlV0iId7t8Z2IG8oD2NDJj/CvxO0tXdPU5rfuXE0gf4PbmKfA3wOTAGWeRiFkmft3oaZCWV9ndksPc5cDOZ6vkaeXL7AvhA0sBWf70jqsPqz7zk5NnS5F70W8hq5W2VVg1DzfqPJenLiOgv6YmI2BuYRlm4bWOy0NAaNQ+3JUXEXOQ2jVXJVo0H1DuirhMR65ATaw+ThUTfJ1MtzwT+Lum8+kbXdSJbWO0DzEYWeTxJ0l7lsf/t768eSztr5c4sIsZrBJ4/dM7ucK6bWsMpZDuS45iZzJoZndxKcn1jq2NEXAU8KOnAzvp9zcABco3KbOzKZNW5L4GbyFmYj8rewfPKLGWPFBETSfowIjYn91XsoNyzvTp5ol6aDADul3Rk+RmfmGy4ImJ54Ndk9sx7ZNGqtmnlE9kT8WlgUzIbZWZyFvnfwL97cDZKxwvYRcnPwWTk8fdmSTfVNb6uFNmD95+Sri23VweOINuC7EtWrr6yxiG2jO9Ja1yLfE9HA3Yrq8wtrxIA9iIvikcjJwMGApOT6cW9ya1hm7Xr56i8/sOBLcnrtLfISt0PlMe3Be4l95z7oto6RUTMSS4IXQHc0lgs+57jUKOu0U7ABJ09YVcyq7Yit2ldDbwDfE1uKZlduRe6ba7BHSA3gbLCNQ1wEbA/edF2uKQpah1YTSJiAeAbSU+U22uQewjHJGfpzy/3j0/utWhUp22bL6Z1ro6fjcaqWuV2uwTIvyD7fu9Xbs9JrprPTlbV3Uc9qDdnZVV9aXLleFyy3sM15JaNDYBNyADy1PpG2jUiYlzgIGAKsurwN+X+Y8kWgrdLOrnGIbaUSsC4PDAL+b06XdKj5fF9yBXl9SRdUt9IO0fl9W5FflaeK/dPTlaBX4QsdNefTDfeXqVoV7uovAezkNcgs5JVe8cm0+zvIwOY2SS9Vd9Ird1ExArk3t5vgSeB6xqTMuXx6opxI2OoL/AuWSjuiy4a1/hka8DNyOKEx0u6vSt+V50cIDeRiDga2IYsJHNwT0wZLqvq55Ll4/9NHhDejYiJgc3J2at3yGqzbVl52LpONVButxTjEgReQLYtWlvSR5XHVgIWkHRIXePrbpUL2ynI3sYnkBfzAfQFjpF0d2TLlnfbNe08IiYi94n1AX5bCXJcROhHqEy2LEf2Tb+DXFFdk3x/NyyPT6LS/qiVVV7vL8iq1T8Fnh3WZ6ZclJ8MvC5p/+4dadepHEMmIltIvl/u/wnwS2ApcpvXBZIObZeJVmseJRjdjKxJNCnZbeGmRjZY5TPa+L6eDjykbig8WtKuzwG+Ak4E7pD0QVf/3u7iALnJRMS05L/La3WPpS6R1apXJ9NDXyd7K94s6euImI1M59iETHH6XX0jtWZUTQscXkZBdX8m2e7mBJXet62oZKGMDZxFFgw6jeyD+F71OT/0vrSTyuvdDJhf0k7l/jnIicilgBXaIZipGlaQHxFjkgHM85L+VM/I2kNEXEeee84rt6cn+x4/DmzVbt+tiLgH+JukczusWPVTZe9+RBwJLKI2qY5fCTjmAY4lA5RryBWzGyR9HBGTkC0mG3sx226CzeoTEaNL+iYifk1mLSwMvE0W3byJ3Af8eeX5s5P1eabrruNQufZYhZxEO1DSUd3xe7uDq1g3GUmv9+TgGEDSnZJ2A/5OpkRuAewdEQtLelbSjsB65Kx9S1cItS7ROyJmGMETxFnArK0aHMeQasuTSxqgrEy8CNm26LmI2LGs7vyv6mW7XcAPTwmO5yaPH9WsgafJgm0DgLlqHGKXKK976oj4a0TMX7asDAKOA7aPiIMiYrSah9lSyh7URvHIT4D/BYaSXiX7gM5EVrduG2Xl9EOyXkPjs9WnPPy78tlqvD93knt020JlJfgsshr50uT7sANwSEQsCwwugXKUn3FwbJ2inKu+iYiZgOOBPYFpyboRYwEHAIeWz2HDSWRv8m47xytdTR77zuqu39sdvIJsTaeaplRO0BuQLbAGAf8hZ2+fr3GI1sQiYkNyf8yKkh7rmPZWWRlYgCzyNrWkAXWNd2RVU6vIdjOPkWnDb5XHNydPrO8Ac6vs1e9JSjrskeR+0S1V6heUx/5LpsW2XXGuyF7wuwNTAU+REwEXk5XM1wb6S3qqvhG2pog4jyxS9SjZ3umhchE7EVnsbR5Jb9c4xE4X2e+4L7Bdh/Pyy8C8arPCfyXY7a0sdjQ1ma12fOMcUbaybEPuPz9Gbdrn2ppDRKxLnrtWqGS+jUlmM0xE7vu/q2xDXFfS32odcBtxgGxNqexFnkzSG+X2LGSxofnIVjW/q+6xNGuIiDHIiqMhaYfved79ZBXrQ7ttcJ2ocrJcl0wTn5+sYH0ZeeHWuJhdRdI1PSW1uqpMHkxF1i/YgmxNcztZ42BySZu34/tS+WxMRRboGpvMuvkCmFLSRrUOsIVFxHpkgPQZcD/wDTAP8LGkHdptb3dELE6mTz4JHENOsqxCtqTctp333UbEy+TxY0tJ53Z47NfknsuXnFptXSUiZiUzGLaVdEXl/m2AaSX9oXKfP4edyAGyNY3Kyt6mZAGMJcmT8h6SHi7PWR6YQtI5NQ7VmlRlVXUusir8k2R7sPfLykCUwGEz4CBJ09U64JFUCYD6kzPJvwUmJKvhr0gGQieptPYpP9NjT54lLXQOYFdgDfJzsYk6FDqpb4SjpsPe0BnIicRnJD3T4Xl9yLTQtpoQ6A4dMpsmAXYiA8VpgaOBM1t99bhyXBmNnFgZnZwI+Ip8jbOX23cCh5XntsUEUzk/HE52yvik3Lc4mSmwPLCfpL/WN0LrqSJid7It4a1kVtg4wPXA+pL+3c6TVHVygGxNoXJinoisOHsIGeA8BExAzmDvp0obhVa/qLXOUZlY6ausRNz4/7Rky5VrJF3c4WduAY6WdFUtg+4kEXEy0EvSVuX2uGSBu5PJ1Nr7yIr4bVWIamRFxNjk/uztyFW/M9UGRasq34GdyH61X5ATAueSrb0+K8/zMXMUVCfZyu3ZgN2AGYB7gNuAu1VpIdeKItuALULWAHmHXCk/mGxzNEBD2oW1RXAMEBELAktIOrYcJ6bWkIrvGwN/Ifs/79Tq5w1rXpVjeW8yW+Ndslr+0mQW0CrAXWRF+Z3qG2n7c4BsTaVc8I8maYuSWnIbsBFwOXmyXlLS3TUO0ZpURDwBPE/253yH7E25K3lC2V7SBZXnLiLpvloG2onKSviawFod9lmfCLxCnlSvVQ/odTuiwV8JciYhPxd7Aoe2ckZKJWtiQnJf6K8k3RIR/wJ+QdZu2E/S0XWOs5X8UODX8fGIWJ3M4ugHbCTp9W4YZqeqTFKvQaZSL0iujs9MZnS9Xk3nbEeV4GR7cq/+JWQLp49L9sUfySJJbdHn2ppL5Ts4BvAPYHJgMuBuMoPjUTJTTMBH5bjfNpNUzcYBsjWNclA4DHhU0t8j4nbgLkn7RMSh5AHhiHpHac2o7FEfjUyF+45sdTSArMC6MXli2UbSg3WNsSuUVY/LydYO25aCQeOQKcRrAj8H1gFWkfRhfSPtOuX1jt6oSfBDgXLlImQeYIxWnyipvJ4/AbNIWici5iPbgMwOXAj8DNhR0gl1jrXV/FDqYpTq1uX9n4lsJ9bSgVOZpP5Y0t6V+1YFTgdWbbdjaFVlsmlxYDkyy+RL4ApJl5bnTCHpnTrHae2p8vk7E5hI0urlu3clOfnWu5H+b13PAbI1nZJaMj5wNbnH4rWIeBLYTNJDnjHr2SonkSWA/0p6PiIGk8WH3q08b1oyJW56sojVvMDK1ee0gzI58A8ypfY2csb5JUnrliyMy8jMi4/rG2XXiYj9gCmBS4HbVQokDStQ7rBX9ykyXfLf3T3mzlCC4BdV+mBGxC+A8SVdFBGXA49L2j8ifge8I+mfdY63VUTEg2Tf3zPL7f8FwcN4bmNyYkpyT+Ayrf49i4iNyP35K5bbjdd4MXB5NROnnUXEWOTE0nJkC69XgUsl3VHnuKy9RUQ/4FqyIvVbEXEl8LKknSNiD3Ly6rR6R9kzuA+y1aqkLRERC0fEThGxN/CLstp1D3B5SRX8VtJD0HP6uNqwVYKeNYF7I+JxMg3uXYCI6FsCodclvSfpPkm/Ad4iV1RbUgzpxTpGRPw8Iv4SEctLel7SgmTK8A3AtsCm5cdOIiuttvRF+/CUdOl3yO0XWwN7RMS8MORzUp7T0HgP9we+bOHgeFGy5+ReEbEUgKQbgCsjW4B8CzT+zXfB5/oRUj4rVwCHR8TDETGfpMElQOz9PT96HPBEm3zPHgHmiIg7I4sdNopV/QK4o9yO7/n5llfOH19Kuobce3wJWbTsZ/WOzNqdpE+Bz4GVImIFspXazuXh9cnMOOsGXkG2phARb5JpoR8AkwJvlNujk6mzF0l64YdS3qz9RcRMytYaowHbA0cBrwN/kXRS5XmzkG19PisXuA+TlZ1bcva1spJzJlml+GWyINeVwF8l3VN57jjkZMBe5OpxW08qRcQUZK2CxcgLiLuB6xp7QcsFfa+yv3B8cjVoaUmP1zPiURMRz5CBzDdk8PskcJVK1eqI2A7Yiqw+/I2kZeoaayuKLHZ3HLAZcAqwV7lwHaqITvn/4mS20xSSBtY36pFTycjpTX5Hvo0slnkY+fpfAP5LFjv8a085B3fMQImIOYG322QSxJpIlNZwETEpWSV+JXIBYFnyuua4yAKMW0rqX+dYexIHyFa7iPgVmdK1ZkRMQ178r0BWBn2D7Hn83Q/tLbT2Vy5Stpe0Xbk9A7AEmUq9P1m9dz9JN0bE++S+3H9GRF8yZenc4f3dzawSHC9Epl/NJunDiLiLLNoxI3AesG9lJb0fuTe3bStYN1ayKqvFC5KVPmchMwb+Dfxb0meVQOBSshLv5jUNe5RExNLAuZKmi4jJyb2hX5Gf/dvJtl9fAqsBHwGPtdu2gq5SCXpnI7MwfgFMRBbLOVil4nl1m09EPAScL+mousY9siJitBIQz0a2rfo5mYVyiLI13hTAQsB/SlZXj6uEPoxAeQxJX9c5Jmt9lfPRBI1Jl3I+34ac8P8jWVPlLmBhsp7KQZLu7imTVHVzgGy16HCBMTGwI3CghvSZnIWswPsz4Ldq8bYZ1jki99ROIumuEgxNTQZAAyJiRnLVbBsy7fYtScvVONxOF1lA5xtJO0b2C99f0kwR8U8yxXpdSVfWO8r6RcTKwK/IWgbvAkdKeiUiZicvOKaV9EWNQxxpETEBcCrZi3YB8jvwazKVurFX8p/Ava24otkMyj7ki8ieo0H2zj4eeJs8T/2zPG8ncnV5ipqGOlIiC4pNKenOcvsJ4GGyhsEO5ITbIaoUxWzHwLgy8Tgu2T3joxH4mcPJjLaHun6E1u4i4iZyEu5BssjfgpXHliWzKAHuk/RRO34Pm5UDZKtFZfbsL8CKwGzAgcC/JD1dntMXGE/Sf8OFuayD8tmZn+zReT1Z8VwlC2Fu4EFJ75XUwcGtfFKJoSsvTyHp+oi4DThN0vkRsRdwv6Rb6h1p96ms9k1JpqOtQqZWHynpq8heppuQGSnblM/GQuQx5eb6Rj5qIveir0G2MFsY2Ac4AuhNZt6sTRYtu4tsYeXj5o9QPk+XAVtVU/AjYmfyvX5c0rLlvpXIbIQ76xjryIqI3YAtgKvIjJRNlXUaGo9vBPwV6EtWrr5nmH9Rm4gsQPYPSf8azuONFNh1gRMlTdKtA7S2FhEXAOuS26U2LOevxjXyWGS3hR+cvLHO5QDZul3li78MWRBlI3KleCZyr9MdwC2S3q5xmNbkyqz/2mQaZG8yUL6mMcHSDqqzxeX1jgN8UNIi/0GmEf8NeAZYXNLD9Y22HhFxC9kX8gZgD/IYcqxK7+eIGLtVV4u/T0ScB8xKFnR5FbiYTCkfA9gSeEFZZMi+R8kq+ErSq5X7ziT3du8p6b1y38TkJO4fJH3aCJrqGPOoiojpgUXJiZZJyW0aG3Y8dkbEkcA5kh7r7jF2tcqk4xzAmZIWHc7zqsfgV8iMgYu6c6zWnioTLyuTBbh+AswFHAwcXwLlC8kipFfUOdaeyAGy1SYifguMLemYcnspcv/g1GRa5L6SPqhvhNZMKhc0AfRT6QcYEVORvY4XIfci3wSc1corxg2VVdK9yX7GH5OF7M4AxiK3JkxCrp5v21MyLSqfhdWBoyTNVO5/HHicTK9+HvhNY9Kg3VLTImIsSV9GxNzA7sB0ZNr1FZLur3d0rSMiriaDnicjYlxJn0e2kDsCeIzsMz6YzEaYUNKqNQ63U0W2ClsS2I7cw37IsFZR2+27UxURB5P7rNeV9Fm5rxoUN47B+wMrSlqsxuFam6gsFE0BDGysEEfExmTh0c/ISd8NJE1Y41B7LAfIVouIWINsn/AW2d/4jcpjmwKTVvc/mVWCor3JVNJ+5EXsv0qgMC9Z1frqdpptjYjJgOfIFKzxgP5kYbKPyD2D/yDTPL/rKQFyQ0T8DfhU0t4RsS/wK0nzl73a8wE79JRgMbLY4Rbkfrb1JL1W85BaQkRMJ+m1yOrmewHXS7qtrCweSK6uTkhOuGxb9gG23Pes45gjYhKykNslwOzkavKSZDbCsT1hj21EzAwcRG7PuAI4rLLF63/9ryMLHr5JdgRou9V0q09EHEAuDJ1DTvYOLPf/gezgcrWkh1o5Y6VVOUC2WpR9odsAfwAuAM4GXpT0VXm8EQy13IWIdb7KbOtSwM3kntNlyBTrJ8gLurbcfxtZqXgHSftUbi9KFrFbgZxgavuL2Y5KjYLRgDmBB8jPxaGSboqIY8g2Tze08+pXR+U9WVnS5XWPpRVUjitB1i04kVxJvZWsTP1G2ZM8APiuTMS17DmpvM7LyPZNF5Jti7Ysj01C7mlflaye++tW21s9MkrNip+Rr7sPucXrfFWq/0fE9sCsknasZ5TWrkpdkSUZ8vk7U9IF5bGWPda0AwfIVqsya38MWWzpNLJgyCs+KFhDDF3xfAOyyNIp5faUwKFksHgH2QKq5febVtL6pgWWAnYj28xcVnnO7GS7p7YPhioTZo0U2PHI7IHty37sXmS7o/HIvbjnAdO7joH9GCWA/A2ZTv0ZcClwR3V/ciuL7G98Flm34SsyU+ubDinFswKzDyvVuh1UJkXGJGs6hLKl1XRkPZT5yv17SHqi8nMOVmyUDWvCNrKg5DxkwdrVyIryp0m6t4YhWuEA2ZpCZB/GC4HXgDV6yoqPjbhSyOJ84FpJG3V47Kfk/rC9ahhal4mIR8metlOSRcj+A9xUSQP83wpYT/jORFabPY2s4Py+pM0qj61ItjrqS+7DPTrcL9JGQJlwWRB4muw3Ohbwe7Iv8BvAzirFutpBRLxIBoFjkn3jj6s8ti25gvpZux1XKhOPM5MVyZcHHiWPsccA9wArkXuSDyrH1sbPtNV7YfWoTPYuUe56sJJWPSWZxTIncKq3GdbLAbI1jTJ7P42k1z1baxHxc7Ln713l9uzkSur65GTKXtU0uMrPtfRnp3ICXYnsc7xoRPyEIasb75AzzJdI+rjOsXaXcmzoAxxOptVPRk6I3NJh9WtO4LnGXi1f1NrwxJAKsuuTK8aLAi8CjwDnSvpPRCxO7js9vM6xdpZKsDe7pGciYisyA+d9sn7DSmSK/ly1DrSLRcTdZMX3a8gih8uQFeF3k/R8RIwh6etWP5dY84iIiSR9WP48BnA1WVT0crIl3wvlu7kc+T3csxyffA6rSa+6B2DWoPR6+bNPSj1YSZldl2zZQ0RMKekZSVuQ+4+nBB6IiN93/NlW/+w09t4DMwP3lhPkC5IOIHuTQhbU6THH73Js+FbSLmQq/RPASRHxV2C2iBitPHUbsgr+/36u+0drrUBDCt4cTWYlTEGuKvYFDomI6SXd3QiOG0WbWlGZYKJcgE8OjB4R40k6lax+fgO5N3kecgKqUSekLVT/7cok2oTAnyXdJ+lq4FhgdLIaPJK+Lv9v6XOJNYeImBR4PyKOiIh+5fO1PpkV9mvyc7deRCwM7A+85+C4fl5BNrOmVC7gPisnl+OAu8nU2dciYhwygG70vV2mnS5mSgrgQ2R7mU3JfZCflscCmFvSYz3pBBoRo5X9xlNKejsiliUr0I4JnEmmyM4vae5aB2otIyKWAQ6U9NPKfQHcCDwsac+6xtaZKivHB5It0D4l91hfIums8pzRyTZW77brymlE9CEL+11BBsi3VrapzEceTzaU9HmtA7W2UckIW4Wc4J6Q3NZwWnm8P7ADMCNZQ+MTSSvUNmD7HwfIZtZUImIGYFENqeQ4DTnDOhW5P/BmshXLpxExPTCxpAfb7aKurOBsTaaVX0ZWen9J0pe1DqybdUihnhZYjtw3+KSywND25EX/y8Axkp7y3mMbEZE91O8j9xhfWrl/bWADYJ1WP6ZUAsBpyUm31ckWef2Blcm+6qdJuqHGYXaZiHgaOLmxz7pkm5xI9pXfXtI/yrH2GHKL1xp1jdXaT6mv876G9DneBTiEbN24i6Tby/1zkt/Fr8rCgM9hNXOAbGZNJSI2JKsQ30TuM36k3L8seVEzBfAMcAvw71a/gP0hMaTS+zxkz9Jj1QaVukdUZfVrP2BZYHxyFv4u4DhJ95bVr15l32CPWVW3URfZb3Ql4HryuPMJuT/1Ukl/aZeJtxL0Lylp53J7QrJ7xMpk5dzfqA3bOpWAZA/y33VrSXeU+3cni/p9SwYrEwGrtPMKunW/iDgV+Jekayv39QFOBTYnK+X/XtIb9YzQhscBspk1nciqsqeR++HOIgPlDyL7vK5DXtBODPy2sW+93UXEXMDuqlRu7ikiYgryInapklo+E/BHssrwWpLur3WA1hIqky0BjA18Xfb6/Y78LP2UrGT9rqS1axxqp4qIuRmyz/o3wC0a0jpvOrLH7401DrFLRUQ/4AAylfUGcjLgvcj2OusDrwNPS3rLK3fWmSJiBkmvlCyFs4ELy773Rku1M4BFgMMk7VfjUK0DB8hm1lQa1WXLnxcg95dOT/YBPqLcPw0wn6QraxtojXrKRVwlPXRpMh1tzQ4p1+eTe0WPrHek1koi4iSyEvqEZDuVf0TEWGSBt9GB50v6flt8z8rE4k7AL8m2VVcA90h6rcPz2i77osPxYnaynsXPgCPUZm0BrXmUVeJ5gackfVUmog4gi28+Cxwl6Zny3A2BmSUdVNNwbRgcIJtZ0+l4oRYRmwNHku1I9qwGxu14UWdDteGZjuxLehbZhuWUynN2BxaUtF5d47TWUCmWsyO5kngYMAG5ovoBsG8j/bZdRbaL2wWYG3gAuJVcTR5Q68C6QURMotIWMCJWJauX9yP/3U+tdXDWdiJia2AL4BzgNklPRsREwNJkZtyMwHXA0dWicE7vbx4OkM2saVQuYqci94RNCtzaWMWJbOvze+DXks6ucajWhcr+yOkkPRIRjwA7k0Xa1iJ7QN8PvEYWbNtJ0mW+sLDhqWQi9AL+Dhwv6YGIGBOYgbyQ3QD4D7Beq3+OKsfRRru4RYG7Jb1YHl+WnCQYH/ilpM9qG2wXqUywLUkW8VuQrGB9oKTry3P+CCwsadUah2ptKLLX8Q7k/v7nGVJc9OMy6bsSsCowDbC2pBdqG6wNkwNkM2sKlf2Bs5H7ciYl9wMOBv4u6YryvMnIqpA+eLWpiDiIDFruB+aRNGNETED2jFyA3LP1JnCn923ZiCqFqvYmi/vtWbl/HPIzNVlJt27prJRKgPwXYEWyrdN8ZGGgfSV9VZ63oNqwA0BVRLwKnE9OrC1GrqCfCWxbAujGeact0umtfh3S+pci24ctAPyLXFG+C/iGLJK3oKSTaxqqfQ8HyGbWVCLiP8BtwMHkvrk9gRfIFiXnlKrFvphpcxGxKXAK8CIZ1NxR2l+MDYwDLA5cWS5u2/YC3zpHKcy1LblqMwFZPfZ6SU81Hq9c1LZsgFwJjucC7gSWkPR0RNwPzAKIXEU9ps5xdoeI2IJs1bVi5b5ZgYvJzJPb6hqb9QwRcT1wL1ktfWmy1/GtwAWUBYBGdovPYc2lT90DMDNrKOlwk0jap9zegqxWPBWwJXnMutfBcY9wDbB/+fMJwEMRcZyk2yPiDODRxufAFxb2Q0rA+7eIuA7YBFgSmCMi7iBXlN/q8NyWVPku7AqcW4Lj1YHJgSnJ1aujIuI1SZfXNc5u8jYwSURMI+mNMrH6XEQ8ACxBTsSadYmI2AyYvjJB86eI+C1wLLA88AdJN4HPYc3IAbKZNZNPgcMBImIr4BNJJ0TEnGRbp0bg7NnWNifpQ4Z8Fi4G/gScFREPkxe3m5fHWna1z7pWJX22DxkcfiHpFeCgiFiCLJazOVnv4Kj6RtolLgMaE4m7A3+U9GVEXEa2zWvLtk6V/eaLkNknbwJrldf9HvmezAI8Vn1+bQO2dvY2WSvjfySdVrIYZiKz4qxJOUA2s1pVUgLHlfRERLxfHhqfTE0C2A4YvVGF1MFxzyLpVWCjiFic7OW6r6Svo9ISzKyqBD6NAPFMsmrs/BFxDvBnSf+JiLvJPrgPVH6mLYIlSVdHxBilcu4nAKWV1S7AKuV227xeGGpC5KfkhMcOwEXkFo2lgYERMS4wtqTjobWzBazpPQ3MWDKejlBp60QW5rpU0kee7G9e3oNsZrWpBMf9yLYrZ0pqXKyuCJwIPAgsC8wt6W2fUMzsh1SCpf2B1cl2TmOSlaq/AA4BjpX0dY3D7DSVY+kYZPuiSSQ9WR7bl1wtHwy8IGm9dguOqyLiMbJS+enl9kTAb8n91y8BD0l6xbUsrKtFxGLANmTf9W/IjIZ1ye9nW37/2oUDZDOrTSUd7jIyvXorSd9WHl8XGBt4srRl8QWNmY2QUtDtSWBlSc9ExIlkq58HgZPJFNz+kgbWOMxR1mGi8W9ka6e+ZEC8NfA4OUnwLhkcftGuE40R0Z/MGFgW+BLoJemb0vJqA3LlrqX/va21RMT8wOzAMsBzwE2SHncGVHNzirWZdbtGYFyC45+Q7Q76S/q2EjSPDdxc9qIC4ODYzH6EKcmKsR9GxCzAOsBcwHdk4b97JA1sg2CxsdJxBplOvQvwIfA7srXM1pIuHuoHWvv1fp/ngYFk9e7rKvdPRNawuJXcG2rWLSQ9TLYZO7/jQzUMx0ZQr7oHYGY9T6OtQZnVHwg8S6Y/wtDHpaMiYvruHp+ZtaaI6F3+31fSC+QK6idkH+B7Jb0P9AdWlXR9+bGWvlAtx9PJgJ8A+0i6W9JzknYAziL3Wbe9Mrk6ELgbOC0itiv3TwKcBDzQ2KZT5zitfUTE6qU2RuP29362qo97wr+5+SBhZt0qInaLiBklDS6rGAOA6YAjImLyykljW2D2UqDJzOwHVY4f50XENpK+lfQNWTF2moi4FjiH7LHd2Kvc0gEygKT3yNXT33R46CyyUNC03T+q7lX5d9yTrGmxcSn6eAk5AfvbusZmbetyMjuhMSk33MyMylaIqSPiuG4boY0U70E2s25TVoP/BowLXAkcV1Ic5wIOIrd9vEyu+GwGrC3pIe89NrMRUdmisSWZYnyIpEvLlo3VgRmAjySdVOtAO0GlENkaZNX/8ckez38GridbGm0JbCRp0ZqGWYuSSTAhMDfwEfB82Xvtc4l1itKu6XRJS5Xb1wEbSPpkOM9vHJuuJQuSXtp9o7UfywGymXWbkl40O9ly45dkQHyGpAsjYjZgRWA54BngOkm3tMH+QDPrZuVYszuwJFn8751hPadVjy3VKtQR8SzwG0l3R8Te5Arqw+RE5CBgG0mPOjg06zylYvzFZPGtZ8kCeNtFxGjAoOqxpTKZ9TPgGEnz1DNqG1EOkM2s20XEmGSxnNXJYPl14LBKW5L/Xbi2czsSM+scldWZauA4LplKPQdZqOq+dgkSK+maKwIrAIdK+qA8Nh6wBnlcfV3Syz6OmnWNiDge2B54AthY0hPl/t7A4Or3LiKeAtaU9Hwtg7UR5gDZzLpN5aKuD5kO2BtYlGzJsSBwDzm7+kZ9ozSzVhQRE5Bp1QPJVk53kv1HtyC3qB5U4/A6XZlovJ08du4i6diah2TWY1SuZ3Yk97hPQlaQv4zMWvm4PK+xerw7ML+kDeobtY0oB8hm1i0qJ4mFgD2AlYCrgJuAN4BJgbWBLyVtVN9IzawVRcSiwAHAS8C65IrOJ2QK5ATAryT9q6bhdYmImJfcmrIrcBewa6OwYSunkJs1s+FlZJTv47HkpNVJknarPPYPcrvDZ902UBtpDpDNrFuVFKMrgBOAM8keyFcD1wLfAI9Ket0Xd2b2Q77nQrU3GTh+DSwBTC1pq+4eX2erTDROT76u2cm+zrcCqwFrkcfXXZxSbdb5Omzj2JQsBDclcKGkK8v9awHHAz9tpFNHxNiSvqhp2PYjOUA2s24TEesCe0uar9x+FTgU2AqYnFz9uLi+EZpZK4qI+clex88C70l6scPjjXTIdtmD/CC5Ov4q2f94DuCPwJtkFettJN1V1/jM2lVlkuqvwCLA08DH5D7k28iCeR9ERB9J33myvzX1qXsAZtajjAH8HSAiDgdeknRqRAwgV3vuKI+5oIyZfa/KBeiWZN/0CchewB9ExA3AtZI+BGhcoLZycFwJ8lchi/8sFxF9yVoOmwEbkO/D4k7jNOsaJTieGFgf6N9o6xQRpwInk9/D4yV9V57v4LgF9ap7AGbWc0g6h0ynBpiI7IkMsCbZIuFdB8dmNiJKcBxkFsq+kmYke97+lOz/e0hE/LLGIXaqEhz3IleMHysTBAMlfQlcQrZ0WszBsVmXmwh4i/wuNrxK9h9fKiLGLscma1EOkM2sW0l6qfzxdeCSiPgbsDzZjsXM7AeVSvgAmwD3SrouIqYijyXLkAW6VgL61jTErjIjcCCwMbBOqdxNafE0AJiqxrGZ9QiSngNeIL+DY5b7RAbJU0j6whP9rc0p1mZWl4OAL8g2LL+U9HUjZbLmcZlZk4qIRSTdV1aPewMvAueXh/cDrpb0UkRcDQRwefm5tshMkfRiRExI1m04FFg8It4hi5HNDvwKXMHarKtUjiVnkFvGfhoR5wDTkP3H9yrPa4t6Bz2Vi3SZmZlZ04uIscnMk7eBX0t6sNw/oaSPIuJAcm/ugRHxBPA3SSe1a7AYEeMDR5L7j/9F7nu8vc4xmfU0EfEnYE7y2PSApHNrHpJ1AgfIZmZm1vQi4tfAjWS15i2AK4EtJH1cHl8f+AfwIDBI0mJ1jbU7RcTMwDnAV8CJwB0l5drMukg14y0ixpD0deUxrx63OAfIZmZm1tQiYh3gbEljlduzA0cDPwMOlXRguX9qsuXRw6XVSo+4UC0FgVYh080PlHRUzUMya3uNQlySVGn/1JYZKz2Ni3SZmZlZs5uLIS3iNgWWkLQi2Wpls4h4NyLWlfSmpBsbK6g9ITiGvECXdDUwCXBW3eMxa2UjWoG6fO9U/tw41uwQEeN22eCsWzhANjMzs2Z3E7BhRFxOtoe7EUDS5WRxqmOA8yLigUqF6x5H0jeNlHMz+/EaRbgiYqyIWK3jY8P5mT7l/5sAq0r6vBuGal3IKdZmZmbW9CJicuBhYHzgEOBISQMrj08DLCLp0napWm1m3auRIh0R5wOfSdr2B57/v2NNRLwGLCzpve4Yq3UdB8hmZmbW9ErV5gvLf5sDUwCHSfp/KcUOkM3sx6qsHs8H3AZMLenziJiB7Kv+Ntn/+BlKhnVl7/HBwOiS9qztBVincYBsZmZmLSEixi0XrJMDGwNbAu+ShalurXd0ZtYOIuJushr8XhGxIrA/MBiYkGzntLekhysB9cRkT/ZJJX1T38its3gPspmZmTWlyt6+OSJiB2C9iFga+ETSEcAawKvALrUN0szaRkTMAiwMjBsRcwHHAqdJWkLS7MD7wFkRMWYlS2V3suWcg+M24RVkMzMza2oR8SIZCI8PvAw8C1wt6f7yeGNluUe0dTKzrhMR/ck6B8sBj0hastH3OCJ+ApxABsRvludPIemdGodsnazHVno0MzOz5lUplvNL4FVJy0XEhMB6ZP/jGSPiGXJ1533oOW2dzKzzRUQvoJekJ4DVI+IXwFgdnjYdMH0lOO7l4Lj9eAXZzMzMmlLpJ7oreZG6t6TB5f6fAJsBcwCbShpQ3yjNrFUNq6BfRPStVsiv3D8JcDfwV0mnOmOlfTlANjMzs6YUESsA1wODgOUl3dbh8WkkvdFYba5jjGbWuiqZKvsBr0g6r3E/uZr8Xbk9Hlk9f2VJK9Y2YOsWDpDNzMysaUVEX+BE4DfAucAfJL1V76jMrNVVqlAvDNwLvAS8Buwj6b7ynMbe415AX2AMSR979bi9uYq1mZmZNaWImEHSQElbkunUswHPRMQh5YLVzGykVFKrNyAn39YnCwBeGBFnRMSkjRVkYGUggE/Kzzo4bmNeQTYzM7OmUFmtWR5YF1iqPHSkpNPKczYDfilprbrGaWbtISJGB34ODJJ0U0SMAywObAfMDRwD3A7cAUwn6ZOahmrdyAGymZmZNZWIeBM4DriJbLWyC/AwsFa1eI7THM1sVJUgeUxJn1bumxxYidx3vBRwqKR9fczpGRwgm5mZWdOIiHWBrSQtV7mvH3AneZF6YW2DM7OWV61cHRH9GoFx2bahalXriNgL2EbS9B1/1tqX9++YmZlZM3kPmCEi5oH/XZB+ClwNLFjryMyspVUKc00WEfsDV0fEhRExpqTB5bGo/Mi2wCHlZ/s4OO4ZHCCbmZlZM7kfuAFYLyKWBsYp9y8FvAN5kVvT2MysPZwJzACcCswPbBQRU0TEGJXV5bGBDSWdDlAp2GVtzinWZmZmVpvGnr6ImBFYFugDzEhWrX6brFz9HTC6pCXKzzjN0cx+lMrq8QrAWZKmKve/A9wNPAfsDBws6c/1jdTq1qfuAZiZmVnPVSl4cykwEPgceBn4FBhEVpH9gLx4dWEuMxsplUm19YAjACJid3ICbmtJH0TE3cBlEfGMpH/VM1KrmwNkMzMzq0VE9JI0OCJWAgZKWiwipiFXkucHJgIWBv7caK/i4NjMRkYl8+QQ4LNy9yfAxiU47ivp6oi4BJi6rnFa/Rwgm5mZWS1KcNwLmAl4sATMbwB/j4gHgF+QPUnHqHOcZtbaImIyYMuIuErS4437K/3Vo9JCbibg5sr93s7Rw3gPspmZmdUmImYGHgIEbArcJumzyuPTS3rVF6pmNrIiYi1ge+A14B7gujIZN9S2jYjYBthT0gy1DdZq5wDZzMzMahURvYGtgd2Ay4CzgRclfVXrwMysbUTEAsAGwCTA1+Sx5i5JX5THVwT2J4t0XVvaOrlydQ/kANnMzMyaQkSMTxblmge4BDi2cfFqZjYySlu43pK+i4hfkCvJKwIPALcC10q6OyImB6aXdG+Nw7Um4ADZzMzMmkpEzAXsLmmzusdiZu2h9DV+AdgCeBVYDlgBGAu4gky7fqG2AVrTcIBsZmZmTcttncysM0TExsDvJC1auW9W4EoggN0kXVnX+Kx59Kp7AGZmZmbD4+DYzDrJQ8A4JSgGQNJzZE/k64Gr6hqYNRcHyGZmZmZm1rZKC7lngEeAKyJi23L/OMAOwL2SVNrOWQ/nFGszMzMzM2srJSgeXP48jqQBETEBsBGwPjAn8DAgScvVOFRrMg6QzczMzMysbVT7pkfEH4ClgSnJFnIPAM8D8wLvAC+V4Nn1DgxwgGxmZmZmZm2kEexGxH7AL4GDgGmAdYGBwA6Snq9zjNa8HCCbmZmZmVlbiYgxyMJcG0t6pNzXC7gAmAJYVtK3NQ7RmpQ3opuZmZmZWVsofdQBBgOvAP9r61T2JO8JfA1M0v2js1bgANnMzMzMzFpeRCwBHBgR00v6BrgZ2DgiNoqI8crTZgN+Iunt2gZqTc0p1mZmZmZm1vIiYmpyhbgfsLWkryLiUGBWoDcwFjARcLykv7swlw2LA2QzMzMzM2sLETEucAYwHrA98CawGjAOMANwtaQH6huhNTsHyGZmZmZm1pIaLZ06tHbqS64k95J0wPf9XDcO1VqE9yCbmZmZmVlLqgS5Ezb2GUsaCFwNLBURV0fExN/zc2ZD8QqymZmZmZm1lEqv45WBXwOTAn2AuyTt2XgOcArwGXCEpLe9cmw/xCvIZmZmZmbWUkpw3Au4kKxWfQpwIrBCRHwaEVuWAlwHkcW5tig/5+DYvlefugdgZmZmZmY2EtYCHpN0cuOOiLgY2Bb4fURMLOmwiDgNOD0i3gbOKv2QzYbJK8hmZmZmZtaKngUmi4gVIyIAJH1HriQfAvwqIqaQ9BCwEHCzg2P7IQ6QzczMzMysFb0I3ETuQZ6rcaekwZLOBwYAi5f7vpP0ah2DtNbiANnMzMzMzJpeY5W4QdJXwKFkj+P/RMT+ETFzREwTEZMAiwFP1TBUa2GuYm1mZmZmZi0jIhYFVgHukHRTuW9N4M9kxeo+wKDy+O8jopdTq21EOUA2MzMzM7Om1ghyI2IXYFPgfeDnwImSdq487+dAAG8Dz5WfcYBsI8wBspmZmZmZNb2IGBN4C1hZ0r0RsRCwO3A6sCJwXWNF2WxkeQ+ymZmZmZm1gkWBxyXdW24/T7Z6WgmYHTgzIlara3DWHhwgm5mZmZlZK3gRmDkizoiI/uTK8c2SdpG0EnApsFREOMaxkeYPj5mZmZmZNT1JbwBbkTHMMcCkwGGVp/QGJvV+YxsV3oNsZmZmZmZNJyJCHYKVasGtiDgQWAj4I/A18B9gfkkvuTCXjaw+dQ/AzMzMzMyso0ZwHBE/BdYDHgXOAr4pT7kZmBU4DfgCOLQEx70lDeru8Vp78AqymZmZmZk1lUpbp32AVYGXgJ+RhblWkzSgPG9OoC/w35KCPcyVZ7MR5QDZzMzMzMyaTkRMQAbGy0h6IiKCTKP+k6Rr6h2dtSsX6TIzMzMzs2b0a+COEhyPWVaF7wY2bDwhIhaNiJlrG6G1HQfIZmZmZmbWjB4Ebo+IMSR9Ve67AJg7IkaLiNGBO4EJahuhtR2nWJuZmZmZWdOIiJ2AsyR9FhFjS/qiuq84Iu4D1ge2AOaRtJr3HVtncYBsZmZmZmZNISLmA04kq1KfLem8ymNjSPo6Ig4D+gOLAXNJetttnayzOMXazMzMzMyaxdPAzsCtwKYRcUFELAQg6evynMeAlYDjSnDc28GxdRb3QTYzMzMzs6YgaSBwf0QMJPcW7wDMGRG3AUdKek3SBRExlaQjyo85OLZO4xRrMzMzMzNrKhFxD3A18AowLrAsMA1wNrk/eWB5nlOrrVM5QDYzMzMzs6YREUsB50martzuDcwHnArMCJwuabcah2htzHuQzczMzMysmbwBvBERi5bbgyU9CPwF+DtwGOTqcT3Ds3bmD5WZmZmZmTUNSa8C7wFHRMQclfZNPwd6SfqgPM+p1dbpnGJtZmZmZma1aewjjohxyCB4ceB1YHdgOuBGoDcwEzC/pE+899i6igNkMzMzMzOrTUSEJEXE5WRF6rHINOsBQAAfAI8CL0t6prR1GlTbgK2tuc2TmZmZmZnVpgTHCwGLSpoCICKmAtYCNgR2lHR/5fkOjq3LeA+ymZmZmZnVbUzgocYNSW9JOg54BFiptlFZj+MA2czMzMzM6vYqsGBE7N/h/g+Bmbt/ONZTeQ+ymZmZmZnVLiJWAA4AvgQuI7eD7gf8VNJTLsxl3cEBspmZmZmZ1S4iAugPrAmsD9wM3CnpIgfH1l0cIJuZmZmZWVNrVLquexzW/hwgm5mZmZmZmeEiXWZmZmZmZmaAA2QzMzMzMzMzwAGymZmZmZmZGeAA2czMzMzMzAxwgGxmZlariDg5Ivbr7OeOxDjWjIg3ImJARMzXFb/DzMys2bmKtZmZ2UiKiFeBLSX9u+6xjKqIeAnYVdIVnfB3CfiJpBdHfWRmZmbdxyvIZmZmXSQi+tQ9hh9hOuCpugcBEBG96x6DmZn1TA6QzczMRkJEnAtMC1xV0pL3iIjpI0IRsUVEvA7cUp57SUS8GxGfRsQdETFn5e/5e0QcUv7804h4MyJ+HxHvR8Q7EfHrkXzuRBFxVUR8FhEPRMQhEXHXMF5H34gYAPQGHisryUTElBHxz4j4b0S8EhE7Vn5m4Yi4JyI+Kb/3hIgYvTx2R3naY+V9WS8iNu/4u8v7NHPldZ0UEddGxBfAz0bg9z9YXtt7EXHUSP0jmpmZdeAA2czMbCRI2gR4HVhN0jiSDq88vAwwO/CLcvs64CfApMDDwPnf81dPDvQDpgK2AE6MiAlG4rknAl+U52xW/hvW6xgoaZxycx5JM0VEL+Aq4LHydy8L7BwRjdczCNgFmBhYrDy+Xfn7lq78XeNIuuh7XmvVhsCfgHGBu3/g9x8LHCtpPGAm4OIR/B1mZmbfywGymZlZ5ztA0heSvgKQdKakzyUNBA4A5omIfsP52W+BgyR9K+laYAAw6495bklRXgvYX9KXkp4Gzv4R418ImETSQZK+kfQycBqwfnk9D0m6V9J3kl4FTiEnBUbFFZL+I2kw0P/7fn953TNHxMSSBki6dxR/t5mZGQCttDfKzMysVbzR+EMJVv8ErANMAgwuD00MfDqMn/1Q0neV218C4wzjed/33EnIc/wblceqf/4h0wFTRsQnlft6A3cCRMQswFHAgsBY5Xc99CP+/mGpju97fz+5Wn4Q8GxEvAIcKOnqUfz9ZmZmDpDNzMxGwfBaQVTv3xBYHVgOeJVMif4YiC4c13+B74CpgefLfdP8iJ9/A3hF0k+G8/hJwCPABpI+j4idgbW/5+/7ggykAYiIyYfxnOp79r2/X9ILwAYlFfxXwKURMZGkL75nDGZmZj/IKdZmZmYj7z1gxh94zrjAQOBDMkg8tKsHJWkQcBlwQESMFRGzAZv+iL/ifuDziNgzIsaMiN4RMVdELFQeHxf4DBhQ/u5tO/x8x/flMWDOiJg3IsYg08xH+vdHxMYRMUlJx/6k/Mzg4f1lZmZmI8oBspmZ2cj7M7Bvqea823Cecw7wGvAW8DTQXftlf0euVr8LnAtcQAbqP6gE2KsC8wKvAB8Ap5e/D2A3cmX8c3JvcMdCXAcAZ5f3ZV1Jz5Mp0f8GXgD+XzXtH/n7VwSeKtW3jwXWb+z3NjMzGxUhDS87zMzMzNpFRPwFmFzSMKtZm5mZmVeQzczM2lJEzBYRc0damCxsdXnd4zIzM2tmLtJlZmbWnsYl06qnJPcEHwlcUeuIzMzMmpxTrM3MzMzMzMxwirWZmZmZmZkZ4ADZzMzMzMzMDHCAbGZmZmZmZgY4QDYzMzMzMzMDHCCbmZmZmZmZAQ6QzczMzMzMzAD4Pz+UOVp9K0P4AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABUAAAAObCAYAAACSLyvtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wV5b0/8O9ZygLqLiBlQaoVsKEQEDSxoahoRLkqagSRq9dEjIolaFDsehMraoJYsETU2BMLimCLYsMWsSQGEBQBFQFBpe3z+8PfnuvKgrAsLozv9+t1XrDPPDPnO3POzpnz2WdmcimlFAAAAAAAGVRQ3QUAAAAAAKwtAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAqtXw4cOjQ4cOUbdu3cjlcnHVVVdVd0nrhVwuF7vttluVLOvVV1+NvfbaKxo1ahS5XC46duwYERFHH3105HK5mDp1apU8DwBAdRCAAgCsgosuuihyuVzkcrl4//33q7uczLjrrrvipJNOijp16sTJJ58cw4YNi5122ulHee6nn346crlcnHvuuT/K862r5s+fH7169YqXX345+vbtG8OGDYvjjz++ussCAKgyNau7AACAdV1KKW688cbI5XKRUoobbrghLrvssuouKxMefvjh/L/Nmzev5mrWL++++27Uq1dvjZfz8ssvx+zZs+Oiiy6Ks846qwoqAwBYtxgBCgDwA5544omYOnVq9O/fP0pKSuLWW2+NxYsXV3dZmTBjxoyICOFnJbRr1y5atWq1xsvxGgAAWScABQD4ATfccENERBx77LFx5JFHxmeffRYPPPBAuT777LNP5HK5ePPNNytcxt133x25XC5OO+20cu1z5syJM888M9q3bx9169aN4uLi2HPPPeOJJ55Ybhm33HJL5HK5uOWWW2LMmDGx2267RXFxceRyuXyfBx98MH71q1/FlltuGRtssEFssMEG0alTpxg+fHiUlpZWWNu//vWv6NOnTzRo0CA22GCD6N69ezzyyCPlnu/7Pvrooxg0aFBsuummUVhYGBtvvHH88pe/jFdeeWWl27LMueeeG7lcLp566qmIiPzlBb67LhER7733Xhx99NHRsmXLqF27djRt2jSOOOKICi9D8K9//SuGDBkSnTt3jsaNG0dhYWG0bt06jjvuuPjoo4/K9T366KNj9913j4iI8847r9zzP/300+VqLPv5u6ZOnRq5XC6OPvro5Zaby+Vi8uTJcc0118R2220XdevWLXetztV5zVemomuAfrfme++9N7p06RL16tWLhg0bRt++fePjjz9ebh369+8fEREDBgzIb4OKXvMyP3TpgDZt2kSbNm0qnHbnnXfG7rvvHvXr1486depE+/bt48ILL4xFixatcP0+++yzOO6446JZs2ZRWFgYW2+9dYwaNWqF9T3xxBNxwAEHRJMmTaKwsDBatmwZBx54YDz55JPL9X388cdjv/32i0aNGkVhYWFsttlmcfrpp8fcuXNXuHwAYP3jFHgAgJWYNWtW/O1vf4stt9wyunfvHkVFRXH55ZfHyJEj47DDDsv369+/fzz++ONx2223xeWXX77ccm699daIiHKB2Ycffhi77bZbTJ06NX7+85/HPvvsEwsXLoyHH3449tlnn7j++uvj2GOPXW5Z9957b4wZMyb23XffOP744+PDDz/MTxsyZEgUFBRE165dY5NNNol58+bF+PHj46STTopXXnklbr/99nLLeu+996J79+7xxRdfRK9evWK77baLyZMnx0EHHRT77bdfhdvktddei7333jvmzJkTPXv2jIMPPjg+++yzePDBB2OXXXaJBx54YIXzlikL7m655Zb48MMPY9iwYcv1GTNmTBx88MGxZMmSOOCAA2LzzTePjz76KO6///545JFH4qmnnoodd9wx3//++++PESNGxO677x7du3eP2rVrx6RJk+LGG2+Mv//97/Hqq6/GJptsEhERvXv3zr8uu+66a7kgcUXh3eo46aST4rnnnotevXrFfvvtFzVq1IiIyr/mq+tPf/pT/O1vf4tf/vKXseuuu8ZLL70Ud999d7z55pvxxhtvRGFhYdSvXz+GDRsWb7zxRjz00ENx4IEH5m9+VPZvVTrmmGNi1KhR0aJFi+jTp0/Ur18/XnzxxTj77LNj3LhxMXbs2KhZs/zXk7lz58bOO+8ctWvXjv/6r/+KRYsWxT333BPHHHNMFBQU5MPbMsOGDYvzzz8/Ntxww+jdu3e0bNkyZsyYES+88EL85S9/iR49euT7nnfeeXHuuedGw4YNY//9948mTZrEW2+9FZdddlk8+uijMWHChCgqKqry7QAAVIMEAMAKXXLJJSki0sUXX5xv69SpU8rlcunf//53vu3rr79OxcXFqWnTpmnJkiXllvHJJ5+kGjVqpB133LFc+6677ppyuVy68847y7V/8cUXafvtt0916tRJM2fOzLePGjUqRUTK5XLpscceq7DeDz74YLm2ZcuWpX79+qWISC+++GK5aXvssUeKiPSnP/2pXPujjz6aIiJFRBo1alS+fcmSJWmzzTZLhYWF6emnny43z8cff5yaN2+eSkpK0jfffFNhfd+36667pooOSefMmZPq16+fNt544zRp0qRy0/75z3+mDTbYIO2www7l2j/66KMKn/fxxx9PBQUF6fjjjy/X/tRTT6WISMOGDauwtmHDhqWISE899dRy06ZMmZIiIvXv379ce//+/VNEpObNm6fJkydXuL6r85qvTESkXXfdtcKaN9poo/TWW2+Vm3b44YeniEh33313ufay99V3X+fvr8+UKVPybT+03Vq3bp1at25d4XMcdNBB6auvvqqw5quuumq59YuINHDgwLR06dJ8+6RJk1KNGjVS+/bty/V//PHHU0Sktm3bpo8++mi5uqZPn57///jx41NEpG7duqUvvviiwlpPPvnkCtcPAFj/OAUeAGAF0v+/+VFBQUH069cv33700Ufnb4ZUpk6dOnHooYfGrFmz4vHHHy+3nL/85S+xbNmycqPV3nzzzXjmmWeiT58+0bdv33L969evH+edd1588803cd999y1X14EHHhj77LNPhTVvttlmy7UVFBTESSedFBFRrrbp06fH+PHjY/PNN4//+Z//KTfPvvvuW260XJlHHnkk/vOf/8SJJ54Yu+66a7lpzZs3jzPOOCNmzpwZ48aNq7C+VXXbbbfF3Llz47zzzosOHTqUm7bNNtvEscceG6+//nq88847+fZNNtkkCgsLl1vW3nvvHVtvvfVyr8vadMYZZ0Tbtm3Lta3Ja766fvvb38a2225brq1sZOnLL7+8xstfXVdffXXUrFkzbr755qhbt265aWeffXZsvPHGcccddyw3X7169eKKK67Ij6CNiOjQoUPsvPPO8e6778aCBQvy7ddcc01ERFx++eX5kb7f1aJFi/z/hw8fHhHfXt6ifv365fodffTR0bFjxwrrAQDWT06BBwBYgfHjx8d//vOf6NmzZ7lA5YgjjohTTz01brnllrjwwgujVq1aEfFtcHLDDTfErbfeGr169cr3v/XWW6NWrVpxxBFH5NsmTJgQERHz5s2r8FqKn376aUR8e6fv7+vSpcsKa/7888/jj3/8Yzz66KMxefLkWLhwYbnp370G5BtvvBEREd26dYuCguX/Lr7LLrssd93Esro//PDDCuv+97//na/7h06DX5my53nzzTcrfJ5//etf+ecpC0hTSnHHHXfELbfcEm+++WZ88cUXsWzZsvw8tWvXrnQ9q6ui12hNXvPV1blz5+XaWrZsGRERX3zxxRovf3V89dVX8eabb0ajRo3iqquuqrBPYWFhheu9xRZbVHga+nfXZcMNN4yIiBdffDFyudwK/zjwXRMmTIhatWrFPffcE/fcc89y0xcvXhyffvppfP7557Hxxhv/4PIAgHWbABQAYAVGjhwZEbHcjW4aNmwYBxxwQNx3333x0EMPxX/9139FRET37t1jyy23jL/97W/xxRdfRIMGDeK1116Lt99+O3r37h2NGjXKL+Pzzz+PiIixY8fG2LFjV1jDd0e4lSkpKamw79y5c+NnP/tZTJkyJbp06RL9+vWLhg0bRs2aNWPu3Llx9dVXl7vZzLx58yIiomnTphUur6L2srorCo1+qO7VUfY83x1l+0PPM3jw4LjqqquiWbNm+dC6bLRh2bVGfywVvUZr8pqvru+PaoyI/PU1vxsK/xi++OKLSCnFp59+Guedd95qzVvRekRUvC5z586NBg0aLDfCtCKff/55LF269AfrWbBggQAUADJAAAoAUIFPP/00HnzwwYiIOPzww+Pwww+vsN/IkSPzAWhERL9+/WLo0KFx9913x/HHH5+/+dH3b9ZSXFwcEd+eGvzb3/52tWr7/p3Sy9x4440xZcqUGDZs2HIjDCdMmBBXX311ubaykXWzZs2qcHkVtZfV/dBDD8Uvf/nL1ap7dZQ9z5tvvhnbbbfdD/afPXt2DB8+PLbZZpt44YUXYqONNio3/c4771ztGspGxS5dunS5aT90l/CKXqM1ec3XJSvbLhHfbpvvBpdl673DDjvEa6+9ttbqql+/fnz++efx9ddf/2AIWlxcHKWlpTFnzpy1Vg8AsO5wDVAAgArceuutsXjx4ujUqVMMHDiwwkfjxo3jySefjClTpuTn69evXxQUFMStt94aS5YsiTvvvDMaNWpU7pT4iIiddtopIiKee+65Kqv5gw8+iIiIPn36LDftmWeeWa6t7E7fEyZMiNLS0uWm/+Mf/1iubW3UXZHVfZ7JkydHaWlp7L333suFnx999FFMnjx5uXnKriu5ohGRDRo0iIhvr5X6fa+++uoq1fVdP9a2W9tWtl0++OCD/MjiMhtuuGFsvfXWMWnSpLUaOO60006RUooxY8asUt8vvvgiJk2atNbqAQDWHQJQAIAKlJ16/ac//SluvPHGCh//8z//k79RUpmWLVvGHnvsES+++GJcffXV8emnn8YRRxyRv05omc6dO8fPf/7zuP/+++Pmm2+usIZ//vOfMXv27FWuuU2bNhER8fTTT5drf/311+OSSy5Zrn+rVq1it912iw8++CCuv/76ctPGjBmz3PU/I769AdNmm20W1113XTz66KMV1jFhwoT46quvVrnuigwYMCB/Y6CKbtpTWlpabj3L1v0f//hHuUBzwYIFceyxx1Y4WrHs1OZp06ZVWEPZdTxHjRpVbv7p06fH+eefv9rrtDZe8+rQrl27KCoqioceeqhcrV9//fUKR7YOHjw4Fi9eHMccc0yFo2e/+OKLNR4deuKJJ0ZExKmnnlruWrdlvtt2yimnRMS3N4aaMWPGcn0XLlwYL7744hrVAwCsO5wCDwDwPU8//XT861//im233XalNxwaOHBgXHTRRTFq1Kg477zz8tcl7N+/fzz55JNx1lln5X+uyOjRo2OPPfaIgQMHxvDhw6Nr165Rv379+Oijj+Ktt96Kt99+OyZMmBBNmjRZpbr79esXf/zjH+Pkk0+Op556KrbYYov497//HQ8//HAcfPDBcffddy83z3XXXRc777xz/OY3v4lHH300tttuu5g8eXLcd999ceCBB8ZDDz1U7gZJtWrVivvvvz969uwZvXr1iu7du0fHjh2jXr16MX369HjllVdi8uTJ8cknn0S9evVWqe6KbLzxxnHvvffGQQcdFDvttFPsueeesfXWW0cul4vp06fHhAkT4vPPP49vvvkmIr695mbfvn3jrrvuio4dO8bee+8d8+bNi7Fjx0adOnWiY8eO+Zs+ldlqq61ik002ibvuuitq1aoVrVu3jlwuF0cddVS0bt06unbtGr/4xS/i2WefjS5dusQee+wRs2bNir///e/Rs2fPCkdA/pCqfs2rQ61ateKkk06KCy64IHbYYYc46KCDYunSpTF27Nho3rx5NG/efLl5jjnmmJg4cWL86U9/is022yx69uwZrVq1ijlz5sSUKVPi2WefjQEDBsSIESMqXdfee+8dQ4cOjQsvvDDat28fvXv3jpYtW8asWbPiH//4R+y0005xyy23RETEnnvuGZdeemmceeaZscUWW8R+++0Xbdu2jQULFsSHH34YzzzzTOyyyy6rNJoUAFgPJAAAyjniiCNSRKSrr776B/vutddeKSLS/fffn29buHBhKioqShGRttlmm5XOP3/+/HTRRRelHXfcMW2wwQapTp06qU2bNmm//fZL119/fVqwYEG+76hRo1JEpFGjRq1weZMmTUoHHHBAaty4capXr17acccd0w033JCmTJmSIiL1799/uXnefffddNBBB6Xi4uJUr169tNNOO6WHH344/fGPf0wRkR544IHl5pk1a1b63e9+l7beeutUt27dtMEGG6TNN9889enTJ91+++1pyZIlP7jtUkpp1113TSs7JJ0yZUo64YQT0uabb54KCwvTRhttlLbaaqv0q1/9arm6Fi5cmM4666y02WabpcLCwtSiRYv0m9/8Jn322WcrfJ6XX3457bHHHqmoqCjlcrkUEempp57KT//iiy/Sf//3f6fGjRun2rVrp6233jpdf/31K9ye/fv3TxGRpkyZssJ1Wp3XfGUiIu26667l2oYNG7bcOpRZUc0re1+taH1KS0vTJZdckjbddNNUq1at1LJly3T66aenhQsXptatW6fWrVtXWPPf//731KtXr9S4ceNUq1at1LRp0/Szn/0s/f73v0/vvvvuD67fD9WVUkqPPPJI6tmzZ2rQoEGqXbt2atGiRerdu3caN27ccn2fe+65dMghh6RmzZqlWrVqpUaNGqXtt98+nXLKKemVV16p8LkBgPVPLqWUfuzQFQCAdd+RRx4Zo0ePjvfeey+22mqr6i4HAAAqxTVAAQB+wkpLS2PmzJnLtY8bNy7uvvvu6NChg/ATAID1mmuAAgD8hC1evDhatmwZu+++e7Rr1y5q1qwZkyZNirFjx0bt2rXjuuuuq+4SAQBgjTgFHgDgJ2zZsmVx8sknx/jx4+Ojjz6Kr776Kho1ahS/+MUvYsiQIbHDDjtUd4kAALBGBKAAAAAAQGa5BigAAAAAkFmuAVoNSktLY8aMGbHRRhtFLper7nIAAAAAYL2SUoovv/wymjdvHgUFKx/jKQCtBjNmzIiWLVtWdxkAAAAAsF6bPn16tGjRYqV9BKDVYKONNoqIb1+goqKiaq4GAAAAANYv8+fPj5YtW+ZztpURgFaDstPei4qKBKAAAAAAUEmrcnlJN0ECAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADKrZnUXAMBPT5shj1R3CeukqZf2qu4SAAAAMscIUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADIrPU+AL3uuuuiTZs2UadOnejatWu8/PLLK+1/zz33RLt27aJOnTqx7bbbxqOPPlpuekopzjnnnGjWrFnUrVs3evToEf/+97+XW84jjzwSXbt2jbp160aDBg2id+/eVblaAAAAAEAVWK8D0LvvvjsGDx4cw4YNi9deey2233776NmzZ8yePbvC/i+88EIcfvjhMXDgwHj99dejd+/e0bt373j77bfzff7whz/E8OHDY8SIEfHSSy/FBhtsED179oxvvvkm3+e+++6Lo446KgYMGBBvvvlmPP/883HEEUes9fUFAAAAAFZPLqWUqruIyuratWv87Gc/i2uvvTYiIkpLS6Nly5Zx4oknxpAhQ5brf9hhh8XChQvj4YcfzrfttNNO0bFjxxgxYkSklKJ58+Zx6qmnxmmnnRYREfPmzYumTZvGLbfcEn379o2lS5dGmzZt4rzzzouBAwdWqu758+dHcXFxzJs3L4qKiiq1DID1WZshj1R3CeukqZf2qu4SAAAA1gurk6+ttyNAFy9eHBMnTowePXrk2woKCqJHjx4xYcKECueZMGFCuf4RET179sz3nzJlSsycObNcn+Li4ujatWu+z2uvvRYff/xxFBQUxA477BDNmjWLfffdt9wo0u9btGhRzJ8/v9wDAAAAAFj71tsA9LPPPotly5ZF06ZNy7U3bdo0Zs6cWeE8M2fOXGn/sn9X1mfy5MkREXHuuefG0KFD4+GHH44GDRrEbrvtFnPmzKnweS+55JIoLi7OP1q2bLmaawsAAAAAVMZ6G4BWl9LS0oiI+P3vfx99+vSJTp06xahRoyKXy8U999xT4TxnnnlmzJs3L/+YPn36j1kyAAAAAPxkrbcBaKNGjaJGjRoxa9ascu2zZs2KkpKSCucpKSlZaf+yf1fWp1mzZhER0aFDh/z0wsLC2HTTTWPatGkVPm9hYWEUFRWVewAAAAAAa996G4DWrl07OnXqFOPGjcu3lZaWxrhx46Jbt24VztOtW7dy/SMixo4dm+/ftm3bKCkpKddn/vz58dJLL+X7dOrUKQoLC+P999/P91myZElMnTo1WrduXWXrBwAAAACsuZrVXcCaGDx4cPTv3z86d+4cXbp0iauuuioWLlwYAwYMiIiIfv36xSabbBKXXHJJREScdNJJseuuu8bll18evXr1irvuuiteffXVGDlyZERE5HK5OPnkk+PCCy+MLbbYItq2bRtnn312NG/ePHr37h0REUVFRXH88cfHsGHDomXLltG6dev44x//GBERhxxyyI+/EQAAAACAFVqvA9DDDjssPv300zjnnHNi5syZ0bFjxxgzZkz+JkbTpk2LgoL/G+TavXv3GD16dAwdOjTOOuus2GKLLeLBBx+MbbbZJt/njDPOiIULF8Zxxx0Xc+fOjV122SXGjBkTderUyff54x//GDVr1oyjjjoqvv766+jatWuMHz8+GjRo8OOtPAAAAADwg3IppVTdRfzUzJ8/P4qLi2PevHmuBwr8JLUZ8kh1l7BOmnppr+ouAQAAYL2wOvnaensNUAAAAACAHyIABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJlVs7oLACqnzZBHqruEddLUS3tVdwkAAADAOsQIUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyKz1PgC97rrrok2bNlGnTp3o2rVrvPzyyyvtf88990S7du2iTp06se2228ajjz5abnpKKc4555xo1qxZ1K1bN3r06BH//ve/K1zWokWLomPHjpHL5eKNN96oqlUCAAAAAKrIeh2A3n333TF48OAYNmxYvPbaa7H99ttHz549Y/bs2RX2f+GFF+Lwww+PgQMHxuuvvx69e/eO3r17x9tvv53v84c//CGGDx8eI0aMiJdeeik22GCD6NmzZ3zzzTfLLe+MM86I5s2br7X1AwAAAADWzHodgF5xxRVx7LHHxoABA6JDhw4xYsSIqFevXtx8880V9r/66qtjn332idNPPz3at28fF1xwQey4445x7bXXRsS3oz+vuuqqGDp0aBx44IGx3XbbxW233RYzZsyIBx98sNyyHnvssXjiiSfisssu+8E6Fy1aFPPnzy/3AAAAAADWvvU2AF28eHFMnDgxevTokW8rKCiIHj16xIQJEyqcZ8KECeX6R0T07Nkz33/KlCkxc+bMcn2Ki4uja9eu5ZY5a9asOPbYY+P222+PevXq/WCtl1xySRQXF+cfLVu2XK11BQAAAAAqZ70NQD/77LNYtmxZNG3atFx706ZNY+bMmRXOM3PmzJX2L/t3ZX1SSnH00UfH8ccfH507d16lWs8888yYN29e/jF9+vRVmg8AAAAAWDM1q7uA9c0111wTX375ZZx55pmrPE9hYWEUFhauxaoAAACyrc2QR6q7hHXW1Et7VXcJAOu09XYEaKNGjaJGjRoxa9ascu2zZs2KkpKSCucpKSlZaf+yf1fWZ/z48TFhwoQoLCyMmjVrxuabbx4REZ07d47+/fuv+YoBAAAAAFVmvQ1Aa9euHZ06dYpx48bl20pLS2PcuHHRrVu3Cufp1q1buf4REWPHjs33b9u2bZSUlJTrM3/+/HjppZfyfYYPHx5vvvlmvPHGG/HGG2/Eo48+GhHf3pH+oosuqtJ1BAAAAADWzHp9CvzgwYOjf//+0blz5+jSpUtcddVVsXDhwhgwYEBERPTr1y822WSTuOSSSyIi4qSTTopdd901Lr/88ujVq1fcdddd8eqrr8bIkSMjIiKXy8XJJ58cF154YWyxxRbRtm3bOPvss6N58+bRu3fviIho1apVuRo23HDDiIjYbLPNokWLFj/SmgMAAAAAq2K9DkAPO+yw+PTTT+Occ86JmTNnRseOHWPMmDH5mxhNmzYtCgr+b5Br9+7dY/To0TF06NA466yzYosttogHH3wwttlmm3yfM844IxYuXBjHHXdczJ07N3bZZZcYM2ZM1KlT50dfPwAAAABgzeRSSqm6i/ipmT9/fhQXF8e8efOiqKiousthPeUi8BVzAfj1g/dvxbx/AWDFHD+smGMI4KdodfK19fYaoAAAAAAAP0QACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJm13geg1113XbRp0ybq1KkTXbt2jZdffnml/e+5555o165d1KlTJ7bddtt49NFHy01PKcU555wTzZo1i7p160aPHj3i3//+d3761KlTY+DAgdG2bduoW7dubLbZZjFs2LBYvHjxWlk/AAAAAKDy1usA9O67747BgwfHsGHD4rXXXovtt98+evbsGbNnz66w/wsvvBCHH354DBw4MF5//fXo3bt39O7dO95+++18nz/84Q8xfPjwGDFiRLz00kuxwQYbRM+ePeObb76JiIj33nsvSktL4/rrr49JkybFlVdeGSNGjIizzjrrR1lnAAAAAGDV5VJKqbqLqKyuXbvGz372s7j22msjIqK0tDRatmwZJ554YgwZMmS5/ocddlgsXLgwHn744XzbTjvtFB07dowRI0ZESimaN28ep556apx22mkRETFv3rxo2rRp3HLLLdG3b98K6/jjH/8Yf/7zn2Py5MkVTl+0aFEsWrQo//P8+fOjZcuWMW/evCgqKqr0+vPT1mbII9Vdwjpp6qW9qrsEVoH3b8W8fwFgxRw/rJhjCOCnaP78+VFcXLxK+dp6OwJ08eLFMXHixOjRo0e+raCgIHr06BETJkyocJ4JEyaU6x8R0bNnz3z/KVOmxMyZM8v1KS4ujq5du65wmRHfhqQNGzZc4fRLLrkkiouL84+WLVuu0joCAAAAAGtmvQ1AP/vss1i2bFk0bdq0XHvTpk1j5syZFc4zc+bMlfYv+3d1lvnBBx/ENddcE//zP/+zwlrPPPPMmDdvXv4xffr0la8cAAAAAFAlalZ3Aeuzjz/+OPbZZ5845JBD4thjj11hv8LCwigsLPwRKwMAAAAAItbjEaCNGjWKGjVqxKxZs8q1z5o1K0pKSiqcp6SkZKX9y/5dlWXOmDEjdt999+jevXuMHDlyjdYFAAAAAFg71tsAtHbt2tGpU6cYN25cvq20tDTGjRsX3bp1q3Cebt26lesfETF27Nh8/7Zt20ZJSUm5PvPnz4+XXnqp3DI//vjj2G233aJTp04xatSoKChYbzcjAAAAAGTaen0K/ODBg6N///7RuXPn6NKlS1x11VWxcOHCGDBgQERE9OvXLzbZZJO45JJLIiLipJNOil133TUuv/zy6NWrV9x1113x6quv5kdw5nK5OPnkk+PCCy+MLbbYItq2bRtnn312NG/ePHr37h0R/xd+tm7dOi677LL49NNP8/WsaOQpAAAAAFA91usA9LDDDotPP/00zjnnnJg5c2Z07NgxxowZk7+J0bRp08qNzuzevXuMHj06hg4dGmeddVZsscUW8eCDD8Y222yT73PGGWfEwoUL47jjjou5c+fGLrvsEmPGjIk6depExLcjRj/44IP44IMPokWLFuXqSSn9CGsNAAAAAKyqXJLa/ejmz58fxcXFMW/evCgqKqruclhPtRnySHWXsE6aemmv6i6BVeD9WzHvXwBYMccPK+YYAvgpWp18zcUrAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADIrEoFoNOmTYt//OMf5drefPPN6NevXxx22GHx4IMPVkVtAAAAAABrpGZlZvrtb38bCxYsiCeffDIiImbNmhW77757LF68ODbaaKO4995745577omDDz64SosFAAAAAFgdlRoB+vLLL8dee+2V//m2226Lr7/+Ot588834+OOPY88994zLLrusyooEAAAAAKiMSgWgc+bMiSZNmuR/fvjhh2PXXXeNzTbbLAoKCuLggw+O9957r8qKBAAAAACojEoFoI0bN44PP/wwIiLmzp0bL774YvTs2TM/fenSpbF06dKqqRAAAAAAoJIqdQ3QHj16xPDhw6OoqCiefvrpKC0tjd69e+env/POO9GyZcuqqhEAAAAAoFIqFYBeeuml8a9//StOO+20qF27dlx22WXRtm3biIhYtGhR/PWvf40jjjiiSgsFAAAAAFhdlQpAmzZtGs8//3zMmzcv6tatG7Vr185PKy0tjXHjxhkBCgAAAABUu0oFoGWKi4uXa6tbt25sv/32a7JYAAAAAIAqUambIEVETJs2LY4//vjYaqutokGDBvHss89GRMRnn30Wv/3tb+P111+vsiIBAAAAACqjUiNA33nnnfj5z38epaWl0bVr1/jggw/yd31v1KhR/OMf/4iFCxfGTTfdVKXFAgAAAACsjkoFoGeccUbUr18/XnzxxcjlctGkSZNy03v16hV33313lRQIAABUjTZDHqnuEtZZUy/tVd0lAABrSaVOgX/22Wfj17/+dTRu3Dhyudxy01u1ahUff/zxGhcHAAAAALAmKhWAlpaWRr169VY4/dNPP43CwsJKFwUAAAAAUBUqFYDuuOOO8cgjFZ8+s3Tp0rjrrrtip512WqPCAAAAAADWVKUC0DPPPDPGjBkTv/71r+Ptt9+OiIhZs2bFk08+GXvvvXe8++67MWTIkCotFAAAAABgdVXqJkj77rtv3HLLLXHSSSfFyJEjIyLiV7/6VaSUoqioKG677bb4xS9+UaWFAgAAAACsrkoFoBERRx11VBx88MHxxBNPxAcffBClpaWx2WabRc+ePWOjjTaqyhoBAAAAACql0gFoRMQGG2wQBx10UFXVAgAAAABQpSoVgE6bNm2V+rVq1aoyiwcAAAAAqBKVCkDbtGkTuVzuB/stW7asMosHAAAAAKgSlQpAb7755uUC0GXLlsXUqVPjtttuiyZNmsQJJ5xQJQUCAAAAAFRWpQLQo48+eoXTfve730XXrl1j3rx5la0JAAAAAKBKFFT1AjfYYIMYMGBAXHnllVW9aAAAAACA1VLlAWhERGlpacycOXNtLBoAAAAAYJVV6hT4FZk/f348++yz8cc//jF22GGHqlw0AAAAAMBqq1QAWlBQsMK7wKeUolWrVvGnP/1pjQoDAAAAAFhTlQpAzznnnOUC0FwuFw0aNIjNNtss9t5776hZs0oHlwIAAAAArLZKpZTnnntuFZcBAAAAAFD11spNkAAAAAAA1gWrNAL0mGOOWe0F53K5uOmmm1Z7PgAAAACAqrJKAej48eNXeNOjFVnd/gAAAAAAVW2VAtCpU6eu5TIAAAAAAKqea4ACAAAAAJklAAUAAAAAMqvSAehjjz0We+21V2y88cZRs2bNqFGjxnIPAAAAAIDqVKkA9L777ov9998/Zs2aFX379o3S0tI4/PDDo2/fvlG3bt3Ybrvt4pxzzqnqWgEAAAAAVkulAtBLLrkkunTpEq+//nqcd955ERFxzDHHxB133BFvv/12fPLJJ9G2bdsqLRQAAAAAYHVVKgB95513om/fvlGjRo2oWfPbG8kvWbIkIiLatGkTv/nNb+J///d/q65KAAAAAIBKqFmZmerVqxe1a9eOiIj69etHYWFhfPLJJ/npTZs2jSlTplRNhQDVoM2QR6q7hHXS1Et7VXcJAAAAsFoqNQJ0q622infeeSf/c8eOHeP222+PpUuXxjfffBOjR4+OVq1aVVmRAAAAAACVUakA9KCDDoqHHnooFi1aFBERv//97+Ppp5+O+vXrR+PGjeO5556LIUOGVGmhAAAAAACrq1KnwJ922mlx2mmn5X/ef//94+mnn477778/atSoEb169Yrdd9+9yooEAAAAAKiMSgWgFfn5z38eP//5z6tqcQAAAAAAa6xSp8Afeuih8cADD+RPgQcAAAAAWBdVKgB9/vnno0+fPtGkSZM46qij4uGHH44lS5ZUdW0AAAAAAGukUgHoRx99FE8//XT86le/irFjx8Yvf/nLaNq0aQwcODCeeOKJWLZsWVXXCQAAAACw2ioVgOZyufjFL34R1113XcyYMSPGjh0bhxxySPz973+PffbZJ0pKSuL444+v6loBAAAAAFZLpQLQcgsoKIg999wzrr/++vjkk0/i+uuvj8WLF8cNN9xQFfUBAAAAAFRaldwF/pNPPol77rkn7r777njxxRcjIqJ79+5VsWgAAAAAgEqrdAA6e/bsuPfee+Puu++O559/PkpLS6NLly5x2WWXxaGHHhqbbLJJVdYJAAAAALDaKnUK/J577hmbbLJJDBo0KL788su46KKLYvLkyfHiiy/GKaec8qOGn9ddd120adMm6tSpE127do2XX355pf3vueeeaNeuXdSpUye23XbbePTRR8tNTynFOeecE82aNYu6detGjx494t///ne5PnPmzIkjjzwyioqKon79+jFw4MBYsGBBla8bAAAAALBmKhWAzp49O4YNGxbvv/9+vPbaa/G73/0u2rRpU8Wl/bC77747Bg8eHMOGDYvXXnsttt9+++jZs2fMnj27wv4vvPBCHH744TFw4MB4/fXXo3fv3tG7d+94++23833+8Ic/xPDhw2PEiBHx0ksvxQYbbBA9e/aMb775Jt/nyCOPjEmTJsXYsWPj4YcfjmeffTaOO+64tb6+AAAAAMDqqVQA+s9//jOGDh0aW2yxRVXXs1quuOKKOPbYY2PAgAHRoUOHGDFiRNSrVy9uvvnmCvtfffXVsc8++8Tpp58e7du3jwsuuCB23HHHuPbaayPi29GfV111VQwdOjQOPPDA2G677eK2226LGTNmxIMPPhgREe+++26MGTMmbrzxxujatWvssssucc0118Rdd90VM2bM+LFWHQAAAABYBWt8F/jqsnjx4pg4cWL06NEj31ZQUBA9evSICRMmVDjPhAkTyvWPiOjZs2e+/5QpU2LmzJnl+hQXF0fXrl3zfSZMmBD169ePzp075/v06NEjCgoK4qWXXqrweRctWhTz588v9wAAAAAA1r4quQt8dfjss89i2bJl0bRp03LtTZs2jffee6/CeWbOnFlh/5kzZ+anl7WtrE+TJk3KTa9Zs2Y0bNgw3+f7LrnkkjjvvPNWcc2yo82QR6q7hHXS1Et7rVPLoWK279pl+65d9r8Vq6r3ne27YlWxjW3fFauK7Wv/u3Z5/66Y9++6z/t3xRxDrF2279pl3/mt9XYE6PrkzDPPjHnz5uUf06dPr+6SAAAAAOAnYb0NQBs1ahQ1atSIWbNmlWufNWtWlJSUVDhPSUnJSvuX/ftDfb5/k6WlS5fGnDlzVvi8hYWFUVRUVO4BAAAAAKx9620AWrt27ejUqVOMGzcu31ZaWhrjxo2Lbt26VThPt27dyvWPiBg7dmy+f9u2baOkpKRcn/nz58dLL72U79OtW7eYO3duTJw4Md9n/PjxUVpaGl27dq2y9QMAAAAA1twaXQN00aJF8dprr8Xs2bNj5513jkaNGlVVXatk8ODB0b9//+jcuXN06dIlrrrqqli4cGEMGDAgIiL69esXm2yySVxyySUREXHSSSfFrrvuGpdffnn06tUr7rrrrnj11Vdj5MiRERGRy+Xi5JNPjgsvvDC22GKLaNu2bZx99tnRvHnz6N27d0REtG/fPvbZZ5849thjY8SIEbFkyZIYNGhQ9O3bN5o3b/6jrj8AAAAAsHKVHgE6fPjwaNasWeyyyy5x8MEHx1tvvRUR396cqFGjRnHzzTdXWZErcthhh8Vll10W55xzTnTs2DHeeOONGDNmTP4mRtOmTYtPPvkk37979+4xevToGDlyZGy//fZx7733xoMPPhjbbLNNvs8ZZ5wRJ554Yhx33HHxs5/9LBYsWBBjxoyJOnXq5Pvccccd0a5du9hzzz1jv/32i1122SUfogIAAAAA645KjQAdNWpUnHzyydG3b9/Ye++945hjjslPa9SoUeyxxx5x1113lWtfWwYNGhSDBg2qcNrTTz+9XNshhxwShxxyyAqXl8vl4vzzz4/zzz9/hX0aNmwYo0ePXu1aAQAAAIAfV6VGgF5++eVx4IEHxujRo+OAAw5YbnqnTp1i0qRJa1wcAAAAAMCaqFQA+sEHH8S+++67wukNGzaMzz//vNJFAQAAAABUhUoFoPXr14/PPvtshdPfeeedKCkpqXRRAAAAAABVoVIB6H777RcjR46MuXPnLjdt0qRJccMNN8Qvf/nLNa0NAAAAAGCNVCoAvfDCC2PZsmWxzTbbxNChQyOXy8Wtt94av/rVr6Jz587RpEmTOOecc6q6VgAAAACA1VKpALR58+YxceLE2GeffeLuu++OlFLcfvvt8fe//z0OP/zwePHFF6NRo0ZVXSsAAAAAwGqpWdkZmzRpEjfeeGPceOON8emnn0ZpaWk0btw4CgoqlakCAAAAAFS5Sgeg39W4ceOqWAwAAAAAQJWq1HDNoUOHRseOHVc4fYcddojzzjuvsjUBAAAAAFSJSgWg9957b+y7774rnL7ffvvF3XffXemiAAAAAACqQqUC0GnTpsVmm222wult27aNDz/8sNJFAQAAAABUhUoFoBtuuOFKA84pU6ZEnTp1Kl0UAAAAAEBVqFQAuttuu8X1118fH3/88XLTpk+fHiNHjozdd999jYsDAAAAAFgTlboL/AUXXBBdunSJrbfeOgYOHBhbb711RES8/fbbcfPNN0dKKS644IIqLRQAAAAAYHVVKgDdaqut4rnnnosTTzwxrrzyynLTfvGLX8Tw4cOjffv2VVIgAAAAAEBlVSoAjYjYbrvt4plnnonPPvssJk+eHBERm266aTRq1KjKigMAAAAAWBOVDkDLNGrUSOgJAAAAAKyTKh2ALlu2LB5//PGYPHlyfPHFF5FSKjc9l8vF2WefvcYFAgAAAABUVqUC0FdffTX69OkTH3300XLBZxkBKAAAAABQ3QoqM9NvfvOb+Prrr+PBBx+MOXPmRGlp6XKPZcuWVXWtAAAAAACrpVIjQN9666246KKL4oADDqjqegAAAAAAqkylRoC2aNFihae+AwAAAACsKyoVgP7ud7+LG264IebPn1/V9QAAAAAAVJlKnQL/5ZdfxoYbbhibb7559O3bN1q2bBk1atQo1yeXy8Upp5xSJUUCAAAAAFRGpQLQ0047Lf//a6+9tsI+AlAAAOCnZOqlvaq7BACgApUKQKdMmVLVdQAAAAAAVLlKBaCtW7eu6joAAAAAAKpcpQLQMh9//HE8++yzMXv27OjTp0+0aNEili1bFvPmzYvi4uLlrgsKAAAAAPBjqtRd4FNKMXjw4Gjbtm0ceeSRMXjw4PjXv/4VERELFiyINm3axDXXXFOlhQIAAAAArK5KBaB//OMf4+qrr47TTjstxo4dGyml/LTi4uI4+OCD47777quyIgEAAAAAKqNSAegNN9wQ/fr1i4svvjg6duy43PTtttsuPyIUAAAAAKC6VCoAnT59enTv3n2F0zfYYIOYP39+pYsCAAAAAKgKlQpAmzRpEtOnT1/h9IkTJ0arVq0qXRQAAAAAQFWoVAB68MEHx4gRI2Ly5Mn5tlwuFxERTzzxRNxyyy1xyCGHVE2FAAAAAACVVKkA9LzzzotmzZpFx44do1+/fpHL5eJ///d/Y5dddol99903tttuuzjrrLOqulYAAAAAgNVSqQC0uLg4XnzxxTjjjDPi448/jjp16sQzzzwTc+fOjWHDhsVzzz0X9erVq+paAQAAAABWS83Kzli3bt0YOnRoDB06tCrrAQAAAACoMpUaAQoAAAAAsD6o1AjQY4455gf75HK5uOmmmyqzeAAAAACAKlGpAHT8+PH5u76XWbZsWXzyySexbNmyaNy4cWywwQZVUiAAAAAAQGVVKgCdOnVqhe1LliyJ66+/Pq666qoYO3bsmtQFAAAAALDGqvQaoLVq1YpBgwbF3nvvHYMGDarKRQMAAAAArLa1chOk7bffPp599tm1sWgAAAAAgFW2VgLQsWPHRr169dbGogEAAAAAVlmlrgF6/vnnV9g+d+7cePbZZ+O1116LIUOGrFFhAAAAAABrqlIB6Lnnnlthe4MGDWKzzTaLESNGxLHHHrsmdQEAAAAArLFKBaClpaVVXQcAAAAAQJVbK9cABQAAAABYF6zSCNBp06ZVauGtWrWq1HwAAAAAsKqmXtqruktgHbZKAWibNm0il8ut9sKXLVu22vMAAAAAAFSVVQpAR40atbbrAAAAAACocqsUgDZo0CA6d+4czZs3X9v1AAAAAABUmVW6CdJBBx0UTz/9dP7nTTfdNP72t7+trZoAAAAAAKrEKgWgG220UcydOzf/89SpU2PBggVrqyYAAAAAgCqxSqfAd+nSJS666KKYNWtWFBcXR0TEo48+GjNnzlzhPLlcLk455ZSqqRIAAAAAoBJWKQD905/+FP369YsLLrggIr4NN0ePHh2jR49e4TwCUAAAAACguq1SALr55pvHCy+8EN98803Mnj072rRpE1dddVUceOCBa7s+AAAAAIBKW6UAtEydOnWiVatWMWzYsNhjjz2idevWa6suAAAAAIA1tloBaJlhw4ZVdR0AAAAAAFWuUgFoRMS7774bo0aNismTJ8cXX3wRKaVy03O5XIwbN26NCwQAWJdMvbRXdZcAAACshkoFoLfffnsMGDAgatWqFVtttVU0aNBguT7fD0QBAAAAAH5slQpAzz333Nhhhx3isccei0aNGlV1TQAAAAAAVaKgMjPNmDEjjjnmGOEnAAAAALBOq1QAut1228WMGTOquhYAAAAAgCpVqQD0iiuuiJtuuileeOGFqq4HAAAAAKDKVOoaoP/7v/8bxcXF8fOf/zw6dOgQrVq1iho1apTrk8vl4qGHHqqSIgEAAAAAKqNSAehbb70VuVwuWrVqFQsWLIh33nlnuT65XG6NiwMAAAAAWBOVCkCnTp1axWUAAAAAAFS9Sl0DFAAAAABgfbBKI0CnTZsWERGtWrUq9/MPKesPAAAAAFAdVikAbdOmTeRyufj666+jdu3a+Z9/yLJly9a4QAAAAACAylqlAPTmm2+OXC4XtWrVKvczAAAAAMC6bJUC0KOPPnqlPwMAAAAArIvW25sgzZkzJ4488sgoKiqK+vXrx8CBA2PBggUrneebb76JE044ITbeeOPYcMMNo0+fPjFr1qxyfaZNmxa9evWKevXqRZMmTeL000+PpUuX5qfff//9sddee0Xjxo2jqKgounXrFo8//vhaWUcAAAAAYM2stwHokUceGZMmTYqxY8fGww8/HM8++2wcd9xxK53nlFNOib///e9xzz33xDPPPBMzZsyIgw8+OD992bJl0atXr1i8eHG88MILceutt8Ytt9wS55xzTr7Ps88+G3vttVc8+uijMXHixNh9993jgAMOiNdff32trSsAAAAAUDmrdAr8uubdd9+NMWPGxCuvvBKdO3eOiIhrrrkm9ttvv7jsssuiefPmy80zb968uOmmm2L06NGxxx57RETEqFGjon379vHiiy/GTjvtFE888US888478eSTT0bTpk2jY8eOccEFF8Tvfve7OPfcc6N27dpx1VVXlVvuxRdfHA899FD8/e9/jx122KHCehctWhSLFi3K/zx//vwq2hIAsLypl/aq7hIAAADWGevlCNAJEyZE/fr18+FnRESPHj2ioKAgXnrppQrnmThxYixZsiR69OiRb2vXrl20atUqJkyYkF/utttuG02bNs336dmzZ8yfPz8mTZpU4XJLS0vjyy+/jIYNG66w3ksuuSSKi4vzj5YtW67W+gIAAAAAlbNeBqAzZ86MJk2alGurWbNmNGzYMGbOnLnCeWrXrh3169cv1960adP8PDNnziwXfpZNL5tWkcsuuywWLFgQhx566ArrPfPMM2PevHn5x/Tp01e6fgAAAABA1VinAtAhQ4ZELpdb6eO9996r7jLzRo8eHeedd1789a9/XS6Q/a7CwsIoKioq9wAAAAAA1r516hqgp556ahx99NEr7bPppptGSUlJzJ49u1z70qVLY86cOVFSUlLhfCUlJbF48eKYO3duuVGgs2bNys9TUlISL7/8crn5yu4S//3l3nXXXfHf//3fcc8995Q7rR4AAAAAWHesUwFo48aNo3Hjxj/Yr1u3bjF37tyYOHFidOrUKSIixo8fH6WlpdG1a9cK5+nUqVPUqlUrxo0bF3369ImIiPfffz+mTZsW3bp1yy/3oosuitmzZ+dHdI4dOzaKioqiQ4cO+WXdeeedccwxx8Rdd90VvXq50QQAAAAArKvWqVPgV1X79u1jn332iWOPPTZefvnleP7552PQoEHRt2/f/B3gP/7442jXrl1+RGdxcXEMHDgwBg8eHE899VRMnDgxBgwYEN26dYuddtopIiL23nvv6NChQxx11FHx5ptvxuOPPx5Dhw6NE044IQoLCyPi29Pe+/XrF5dffnl07do1Zs6cGTNnzox58+ZVz8YAAAAAAFZovQxAIyLuuOOOaNeuXey5556x3377xS677BIjR47MT1+yZEm8//778dVXX+Xbrrzyyth///2jT58+8Ytf/CJKSkri/vvvz0+vUaNGPPzww1GjRo3o1q1b/OpXv4p+/frF+eefn+8zcuTIWLp0aZxwwgnRrFmz/OOkk076cVYcAAAAAFhl69Qp8KujYcOGMXr06BVOb9OmTaSUyrXVqVMnrrvuurjuuutWOF/r1q3j0UcfXeH0p59+erVrBQAAAACqx3o7AhQAAAAA4IcIQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMqlndBZBdUy/tVd0lAAAAAPATZwQoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAyq2Z1FwAAAABUr6mX9qruEgDWGiNAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZ620AOmfOnDjyyCOjqKgo6tevHwMHDowFCxasdJ5vvvkmTjjhhNh4441jww03jD59+sSsWbPK9Zk2bVr06tUr6tWrF02aNInTTz89li5dWuHynn/++ahZs2Z07NixqlYLAAAAAKhC620AeuSRR8akSZNi7Nix8fDDD8ezzz4bxx133ErnOeWUU+Lvf/973HPPPfHMM8/EjBkz4uCDD85PX7ZsWfTq1SsWL14cL7zwQtx6661xyy23xDnnnLPcsubOnRv9+vWLPffcs8rXDQAAAACoGrmUUqruIlbXu+++Gx06dIhXXnklOnfuHBERY8aMif322y8++uijaN68+XLzzJs3Lxo3bhyjR4+O//qv/4qIiPfeey/at28fEyZMiJ122ikee+yx2H///WPGjBnRtGnTiIgYMWJE/O53v4tPP/00ateunV9e3759Y4sttogaNWrEgw8+GG+88cYK6120aFEsWrQo//P8+fOjZcuWMW/evCgqKqqKTQIAkAlthjxS3SWss6Ze2qu6SwBgDfiMq5jPNypr/vz5UVxcvEr52no5AnTChAlRv379fPgZEdGjR48oKCiIl156qcJ5Jk6cGEuWLIkePXrk29q1axetWrWKCRMm5Je77bbb5sPPiIiePXvG/PnzY9KkSfm2UaNGxeTJk2PYsGGrVO8ll1wSxcXF+UfLli1Xa30BAAAAgMpZLwPQmTNnRpMmTcq11axZMxo2bBgzZ85c4Ty1a9eO+vXrl2tv2rRpfp6ZM2eWCz/LppdNi4j497//HUOGDIm//OUvUbNmzVWq98wzz4x58+blH9OnT1+l+QAAAACANbNOBaBDhgyJXC630sd7771XbfUtW7YsjjjiiDjvvPNiyy23XOX5CgsLo6ioqNwDAAAAAFj7Vm0I44/k1FNPjaOPPnqlfTbddNMoKSmJ2bNnl2tfunRpzJkzJ0pKSiqcr6SkJBYvXhxz584tNwp01qxZ+XlKSkri5ZdfLjdf2V3iS0pK4ssvv4xXX301Xn/99Rg0aFBERJSWlkZKKWrWrBlPPPFE7LHHHquzygAAAADAWrROBaCNGzeOxo0b/2C/bt26xdy5c2PixInRqVOniIgYP358lJaWRteuXSucp1OnTlGrVq0YN25c9OnTJyIi3n///Zg2bVp069Ytv9yLLrooZs+enT/FfuzYsVFUVBQdOnSIWrVqxT//+c9yy/3Tn/4U48ePj3vvvTfatm1b6XUHAAAAAKreOhWArqr27dvHPvvsE8cee2yMGDEilixZEoMGDYq+ffvm7wD/8ccfx5577hm33XZbdOnSJYqLi2PgwIExePDgaNiwYRQVFcWJJ54Y3bp1i5122ikiIvbee+/o0KFDHHXUUfGHP/whZs6cGUOHDo0TTjghCgsLIyJim222KVdLkyZNok6dOsu1AwAAAADVb70MQCMi7rjjjhg0aFDsueeeUVBQEH369Inhw4fnpy9ZsiTef//9+Oqrr/JtV155Zb7vokWLomfPnvGnP/0pP71GjRrx8MMPx69//evo1q1bbLDBBtG/f/84//zzf9R1AwAAAACqRi6llKq7iJ+a+fPnR3FxccybN88NkQAAvqPNkEequ4R11tRLe1V3CQCsAZ9xFfP5RmWtTr62Tt0FHgAAAACgKglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILPW2wB0zpw5ceSRR0ZRUVHUr18/Bg4cGAsWLFjpPN98802ccMIJsfHGG8eGG24Yffr0iVmzZpXrM23atOjVq1fUq1cvmjRpEqeffnosXbq0XJ9FixbF73//+2jdunUUFhZGmzZt4uabb67ydQQAAAAA1kzN6i6gso488sj45JNPYuzYsbFkyZIYMGBAHHfccTF69OgVznPKKafEI488Evfcc08UFxfHoEGD4uCDD47nn38+IiKWLVsWvXr1ipKSknjhhRfik08+iX79+kWtWrXi4osvzi/n0EMPjVmzZsVNN90Um2++eXzyySdRWlq61tcZAAAAAFg9uZRSqu4iVte7774bHTp0iFdeeSU6d+4cERFjxoyJ/fbbLz766KNo3rz5cvPMmzcvGjduHKNHj47/+q//ioiI9957L9q3bx8TJkyInXbaKR577LHYf//9Y8aMGdG0adOIiBgxYkT87ne/i08//TRq164dY8aMib59+8bkyZOjYcOGlap//vz5UVxcHPPmzYuioqJKbgUAgOxpM+SR6i5hnTX10l7VXQIAa8BnXMV8vlFZq5OvrZenwE+YMCHq16+fDz8jInr06BEFBQXx0ksvVTjPxIkTY8mSJdGjR498W7t27aJVq1YxYcKE/HK33XbbfPgZEdGzZ8+YP39+TJo0KSIi/va3v0Xnzp3jD3/4Q2yyySax5ZZbxmmnnRZff/31CutdtGhRzJ8/v9wDAAAAAFj71stT4GfOnBlNmjQp11azZs1o2LBhzJw5c4Xz1K5dO+rXr1+uvWnTpvl5Zs6cWS78LJteNi0iYvLkyfGPf/wj6tSpEw888EB89tln8Zvf/CY+//zzGDVqVIXPfckll8R555232usJAAAAAKyZdWoE6JAhQyKXy6308d5771VrjaWlpZHL5eKOO+6ILl26xH777RdXXHFF3HrrrSscBXrmmWfGvHnz8o/p06f/yFUDAAAAwE/TOjUC9NRTT42jjz56pX023XTTKCkpidmzZ5drX7p0acyZMydKSkoqnK+kpCQWL14cc+fOLTcKdNasWfl5SkpK4uWXXy43X9ld4sv6NGvWLDbZZJMoLi7O92nfvn2klOKjjz6KLbbYYrnnLiwsjMLCwpWuFwAAAABQ9dapEaCNGzeOdu3arfRRu3bt6NatW8ydOzcmTpyYn3f8+PFRWloaXbt2rXDZnTp1ilq1asW4cePybe+//35MmzYtunXrFhER3bp1i3/+85/lwtWxY8dGUVFRdOjQISIidt5555gxY0YsWLAg3+df//pXFBQURIsWLap0ewAAAAAAa2adCkBXVfv27WOfffaJY489Nl5++eV4/vnnY9CgQdG3b9/8HeA//vjjaNeuXX5EZ3FxcQwcODAGDx4cTz31VEycODEGDBgQ3bp1i5122ikiIvbee+/o0KFDHHXUUfHmm2/G448/HkOHDo0TTjghP4LziCOOiI033jgGDBgQ77zzTjz77LNx+umnxzHHHBN169atng0CAAAAAFRovQxAIyLuuOOOaNeuXey5556x3377xS677BIjR47MT1+yZEm8//778dVXX+Xbrrzyyth///2jT58+8Ytf/CJKSkri/vvvz0+vUaNGPPzww1GjRo3o1q1b/OpXv4p+/frF+eefn++z4YYbxtixY2Pu3LnRuXPnOPLII+OAAw6I4cOH/zgrDgAAAACsslxKKVV3ET818+fPj+Li4pg3b14UFRVVdzkAAOuMNkMeqe4S1llTL+1V3SUAsAZ8xlXM5xuVtTr52no7AhQAAAAA4IcIQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZNau7AAAAKDP10l7VXQIAABljBCgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFk1q7sAAAAAgKybemmv6i4BfrKMAAUAAAAAMksACgAAAABklgAUAAAAAMgsASgAAAAAkFkCUAAAAAAgswSgAAAAAEBmCUABAAAAgMwSgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKAAAAAAQGYJQAEAAACAzBKAAgAAAACZJQAFAAAAADJLAAoAAAAAZJYAFAAAAADILAEoAAAAAJBZAlAAAAAAILMEoAAAAABAZglAAQAAAIDMEoACAAAAAJklAAUAAAAAMksACgAAAABkVs3qLuCnKKUUERHz58+v5koAAAAAYP1TlquV5WwrIwCtBl9++WVERLRs2bKaKwEAAACA9deXX34ZxcXFK+2TS6sSk1KlSktLY8aMGbHRRhtFLper7nIyb/78+dGyZcuYPn16FBUVVXc5mWP7rl2279pl+65dtu/aZfuuXbbv2mX7rn228dpl+65dtu/aZfuuXbbvjyelFF9++WU0b948CgpWfpVPI0CrQUFBQbRo0aK6y/jJKSoqsvNZi2zftcv2Xbts37XL9l27bN+1y/Zdu2zftc82Xrts37XL9l27bN+1y/b9cfzQyM8yboIEAAAAAGSWABQAAAAAyCwBKJlXWFgYw4YNi8LCwuouJZNs37XL9l27bN+1y/Zdu2zftcv2Xbts37XPNl67bN+1y/Zdu2zftcv2XTe5CRIAAAAAkFlGgAIAAAAAmSUABQAAAAAySwAKAAAAAGSWABQAAAAAyCwBKAAAAACQWQJQAAAAACCzBKD8pF199dXx4osvVncZP2kppeouAQAA1lmlpaXVXQLAei+XpA/8RL399tux8847R8uWLeOggw6KX//619G8efPqLusnY/bs2dGkSZOIiFi2bFkUFBRELper5qrWbSmlyOVy+X8BWPfZZwOrq7S0NAoKCiKlFJ9++mn+mBmAyjMClJ+sbbbZJm644YZo06ZNjBo1Kg455JC44YYbYunSpdVd2k9C586dY+edd47//Oc/UaNGjcjlcrFs2bLqLmud892/+H8//DQaAKhq9itr7rtjCxYvXiz8zAhjRlaPY7o1U1Dw7df0c889N4466qj46quvIsI+GlZV2e9KaWlpvPLKK/Hhhx/ajyMA5aft0EMPjb/+9a9xxhlnxJIlS+L888+PPn36xJgxY6q7tEybM2dOHHXUUTF79uzYYost4re//W0sXbo0atSoEREO7r6r7AD49ttvjzPOOCMGDRoUf/nLX8pN82G+fvju6+Q9Xjll29D2W3vK9iu33HJL3HbbbfHNN99Uc0Xrn7L36T333BO//vWvY9y4cRVOZ91Vto9ZvHhxfPjhhxERguwfULbNPvvss4iI/DEdayalFGPHjo3LL788Iv5vHw2smosvvjgOPfTQuO+++9b5/bjjg7XPKfD8pJWdXhIRMXXq1Ljuuuvi73//eyxZsiT22muvGDRoUGyzzTbVXGU2LVmyJF5++eW444474s4774yUUlxxxRVxzDHHRMT/fQCs6x9Ua8uyZcti2bJlUbt27fjzn/8cgwcPjtq1a8eGG24Yc+fOjRYtWsRVV10V++67b76/ywism8pG7Zbtb/72t7/FQw89FDNmzIjdd989dtttt9huu+2iTp061V3qOmnZsmX5L9ILFiyIXC4XG2ywQTVXlU1Lly6NmjVrxsMPPxwDBw6MrbbaKp544okK35tO665Y2ft18uTJsfPOO8fPf/7zuOSSS2KzzTar7tJYDWXv7/PPPz/GjRsX//M//xNHHHHEctP5Vtnn24IFC6Jv377x5ZdfxoMPPhgNGjSo7tIyYejQoXHFFVfEJZdcEoMGDYpcLpd/ZFnZ/nTevHnx2muvxfPPPx8LFy6MAw88MFq3bh3NmjWr7hJZR5W9d95999342c9+Fr/+9a/jpJNOihYtWkTEt99Dv/rqqyguLq6W+r77GbJo0aKYM2eO9/OPJcFP3LJly9KyZcvyPz/zzDOpb9++qVWrVmm77bZLF154Yfrss8+qscLsKS0tzf9/zpw56fbbb0/bbrttyuVyqUuXLum5557LT//ua/NT8Oc//zn9+9//zv/85ZdfpmbNmqUBAwakjz76KE2ZMiWNGDEide/ePeVyubT33nunDz74IN//u9uWdUfZ+/jVV19NtWvXThtvvHH62c9+lmrWrJlatGiRfv/736fXX3+9eotcxw0ePDjtuOOOqaSkJPXv3z+NHz8+zZkzp7rLyozv7jvatm2bjjzyyPT+++/n2+bOnZvefffd9PLLL6fFixdXR4nrlX333Td17949vfzyy/m2r776Kt1+++3piSeeSAsXLkwp/fQ+49YHS5cuTSml9NRTT6WioqJ0+umnp7lz51ZzVeu2svfxMccckzp06JD+8Ic/LNfH8cnqK9uuU6dOTXvuuWdq0qRJuWPkn4q+ffum+vXrp4YNG6ZmzZqlXC6Xjj/++PT5559Xd2ms43r37p123nnn9O6776aUUvrmm2/Sq6++mnbffffUvXv39Otf/zpNnz79R62p7Pf6m2++SSNGjEidO3dOm222Wdpuu+3Sdddd5329lglA+Ulb2cHY7bffnvbYY4+0ySabpD322CPdfPPNP2Jl2bdkyZKUUkq33HJL2mOPPVKHDh3S5ptvnjbccMOUy+XSQQcdlGbMmJHvX/aFJMumT5+eateunQoLC9NZZ52VlixZkr766qu08847p0cffbRc33feeSdddNFFqU2bNqlGjRrp+OOP/0lso/XJY489lv785z+njz/+ON+27777pj333DMfikyePDkdeuihKZfLpe233z5dd911aerUqdVV8jqn7CDxT3/6U8rlcmmnnXZKhx9+eGrZsmWqW7duOuaYY9KECRPyYRKVV/Z5eNNNN6VmzZqlcePG5ac9+eSTaccdd0y5XC41a9YsXX311cKMlXjttddSUVFRGjFiRPrqq69SSimNHz8+7bXXXqmgoCD/xyuh2rpthx12SH369Mn/UXLx4sVp0qRJ6fjjj0+nnXZaevvtt6u5wnVD2X76jTfeSHXq1EnXXHNNfp+8aNGidOedd6YTTzwxXXnlleX+YMsP++5+duHChWm33XZLTZs2TU8++WRKKdt/QCk7pr3qqqvShhtumP7whz+kzz77LE2aNCnVqVMnHXvssfahrNT06dNThw4d0imnnJJvu+aaa1Lbtm1Ty5YtU9euXVNhYWG69NJLf9S6yn5vjz/++NSgQYO06667plNOOSV169Yt5XK59MADD5T73c/y73l1EIDyk1S2I1m4cGF65ZVX0hlnnJHOP//8dOutt6aJEyfm+82ZMyddeumlqVOnTql27drp8ccfr66SM6Vs+7/11lupVq1a6cwzz0wffvhhSiml5557Lp1xxhmpuLg4FRQUpIsvvrg6S/1RLVq0KN1+++2pd+/eqVatWqlVq1ZpxIgRqVu3bvkw4uuvv873X7x4cXruuefSiSeemHK5nJB+HbPTTjulXC6XDj/88PTII4+kTz75JPXv3z+dc845y/V94YUX0g477JByuVzad99905133inQ/v9KS0vTnnvumU488cQ0Z86ctHTp0vTee++ls88+OzVo0CCVlJSk888/P73//vv5P6xQeRdccEFq2bJleuedd1JKKd13331pu+22S1tuuWX6y1/+kvbcc89Ut27dNGnSpGqudN3y3d/XZ555JhUXF6fHHnsspZTShAkT0rbbbptat26dbrvttjRy5MhUo0aNdMUVV1RXuXzP979gvvDCC6lhw4bpxhtvzH8RvfHGG9Omm26aioqKUr169VLjxo3T888/Xx3lrpNOOeWU1K5du/TWW2+llFKaOXNmOu2001JBQUFq0qRJyuVy6eijj/ZlfiXK9iPfHQDwXRMmTEitWrVKe+65Z/riiy9+xMqqx+LFi1P79u3TCSeckGbPnp1SSunCCy9MG2+8cbmzZgYPHpxmzZpVTVWyrlq2bFnq1KlTOuCAA9KUKVPSHXfckRo0aJD233///CjLX/ziF2n33Xcv9/1qbdeUUkpvvvlmqlWrVvrjH/+Y/4w54IADUpcuXdJ//vOflNK3ZwFS9QSg/KSddNJJqXHjxqlWrVqpbt26KZfLpa233jpdeOGF5UZtTZo0KV100UXVWGk2/fd//3dq0aLFcl+kFy5cmG699daUy+VSLpdLtWrVSg8//HA1Vfnj++STT9Lw4cNTp06d0gYbbJBq1aqVTj/99Pz0JUuWlAt65syZU260FuuGefPmpYsvvjgVFRWljTfeOJ199tlp3333LRfqL168uNyXwVGjRqVcLpcGDhxYHSWvc0pLS9OSJUvSr371q3TGGWeUm7Z48eL0yiuvpCOPPDLVqVMnbbXVVun222+vpkrXP7Nmzcp/ofyusn3vZZddlq655ppUt27dtM8+++RHLb/44oupqKgojR079scueZ0zb968cvvest/ladOmpdatW6dtt902XXjhhal58+Zpl112yf8RdcqUKWnLLbdMQ4YMqZa6qdjSpUvzX0Rfe+21VLdu3XTjjTemlL79vSgpKUm77757+uCDD9KECRNS/fr107nnnludJa9TLrzwwtSoUaP8fuXwww9PLVq0SKeeempatGhRuvLKK1Mul0v//Oc/q7nSddtXX32V2rZtm7baaqt07LHHptNPPz2NGTMmvfPOO2nBggXprbfeShtttFHq1avXCoPSrPj444/TlltumS688MKUUkofffRR2mCDDdJ5552Xvvnmm5TSt7+rxcXFafTo0dVZKuuYsn35ueeem3K5XCoqKkq5XC4dddRR+dH78+fPT0cddVTaZZdd0oIFC37U+oYOHZratWuX3nzzzZTStwOAcrlc+utf/5r/jvf73/8+HXLIIc5yqmICUH5yyv66+re//S3Vrl07nXrqqWnixIlp1qxZ6dZbb01bbrllqlGjRjrxxBPTvHnzqrnabPn+KZNDhgxJxcXF+YOY74dBV155Zdp+++3Trrvumv7xj3/8qLVWh9LS0nLb6I033kinn3562mqrrfIjCWfOnJmfvmjRIqehrgcmT56c+vXrlw/0N9lkk+VGDS1atCj//9LS0vyB2E91pMz31/u2227LfwH6vi+//DI98sgjqV27dumaa675McrLhJ/97Gdphx12KHc9yjIDBw5MuVwu1a1bNx144IHpX//6V0rp28/PO++8M2288cbpqaeeqoaq1y3nnHNOyuVyqX///uVO7V28eHG6/fbb0w477JAaNGhQ7vpjKX0bIm+66abpsssuq46y+Y733nsvnXrqqcuNtJk/f37ad999U7169dLPf/7zVLNmzdSvX7/86Mbp06enn/3sZ+mEE07wOfz/jRkzJtWsWTPtsMMOqXPnzql27drpiiuuyB9333333alJkyb507cpr+xz7/3330/HHHNMGjhwYNp0001T27ZtU82aNVODBg1Sy5Yt0+67754/Lvz973+fnz+L78Ovv/46tWjRIn8Kc//+/dNWW22VJk+enO8zatSotNlmm6UnnniiuspkHTd+/Pg0aNCgdPPNN5c7vnz66afTpptums4666yU0o97zH3llVem5s2b53/eYYcd0v7775+/tv1XX32VjjzyyNS7d295RBUTgPKTtccee6Q999wzf+HjsgOHZcuWpRNOOCHlcrl05ZVXppSSGz6soenTp1e4Df/617+mXC6XLrroonwImtL/hUHXXntt6t69e7kbcfwUfP8gdty4cal///5po402SkVFRcsFQU6VXj8899xzqVevXimXy6Xu3bunO+64o1ygvWzZsvx7/6cafH7ftddem3r06JG/NvDIkSNXeFO67140PotfBKvSkiVL0h133JG6dOmSatWqlY4++uj0xhtv5PfDpaWl6Z133klPPvlkuX3zO++8k/baa6/UpUuX6ip9nfLss8+m3/zmN2nTTTdNzZs3T2effXa50+gmTZqUZs2aVS5cmzx5cjruuONSw4YNy/3hg+pxwQUXpIKCgrTtttvmR3uWefbZZ9OAAQPSXnvtlU4++eRyI4Qef/zx1Lhx4/ylZ37K+5zvrvu9996b9ttvv9StW7d0zz335N/jc+fOTeeee25q1qyZG3xUoOw47q233koXX3xx/r1WWlqa3n777fT222+n4cOHp9///vepT58+qXXr1qlt27Ypl8ulSy65pDpLX2vK3leXXnppatGiRTr33HNTzZo101133ZXvM3Xq1HTggQemTp06VVeZrKPmzp2bPvnkk3L7m+8eW7/00kvp0EMPTS1btsz//v2Y+/EHHngg1apVKz355JPpz3/+cyosLEzPP/98vpbXXnstbbfddmnw4ME/Wk0/FQJQfpK++OKLtMsuu6SePXvm20pLS/M7nUWLFqWuXbum7bffvpoqzI4ZM2aktm3bpnPOOSd/M4gyX3zxRdpjjz3ShhtumC644IJyI2TKDpa32mqrn8w1UL57APzAAw/krwGT0rej3P7yl7+kvffeO9WoUSNtueWW6e67766uUqmkJUuWpFtvvTW1bt061alTJ/Xv3z89+eSTP/qpN+uyst+DRx99NBUUFKTNN988HXbYYalp06Zpo402Sr/5zW/Sc88996NdrynLPvnkk3TFFVek5s2bp4033jidf/75adq0aRV+CZg2bVr65S9/mRo3bpxefPHFlJI/vqT07V1c77vvvnTIIYek5s2bp2222Sbdeeed5fqU/QHwm2++SUcccURq0qRJuummm6qjXL5n9uzZaeTIkWn33XdPDRo0SLvttlsaP358fvr8+fOXm2fChAlp3333Te3atfsxS12nrCgoKAsYvn895tGjR6eSkpJ09tlnp5TsO8p88cUX6amnnsofH++4446pffv26aOPPqpwG5dtt3nz5qVXX301nXDCCalJkyZpzJgxP2rda0vZ++e76z5p0qS0/fbbp1wul5o3b57uu+++tHDhwjRz5sx0/PHHp3r16mVm/am8st+NadOmpWHDhqUmTZqkVq1apU6dOqUzzzyz3HtqwYIFacstt0ytW7dODzzwQEpp+X3W2jZ37tzUtWvXtNVWW6X69eunY489Nn9c+8knn6QzzzwzFRYWpk8++SSlZGBEVRKA8pN18MEHp2bNmuVPWyu79lPZDvL4449PW265Zf7mPKy+0tLS9Mknn6RWrVqlQw45JKX07RfAsp15St9eC23XXXfNj4o788wz01//+tfUv3//VFhYmH73u9+llLK/4y9bv7lz56Yddtgh9ezZMx8If/dD+z//+U/63//93/wdmX2JXjeVHYhNnTo1jRw5crkv0XPmzElnnnlmqlu3bmrWrFkaOnRo/hqLfKtXr17psMMOS//5z3/SokWL0n/+8590wgknpJo1a6a2bdumiy++OH+jHipv6dKl6d13302DBg1KdevWTe3bt0+33XZbuZG2S5YsScOHD0/bbLNNGj58eErppz3ircx3Q5x//vOf6YADDkh16tTJ38zsu5e6WLZsWbr//vvT7rvv/qPfcZaKffc9/P7776dzzz03bbvttqlhw4apX79+5f4IWRZif/jhh2nnnXdObdu2TU8//XRK6cf/4rwuKNt2TzzxRLr44ovTsccemx577LH01VdfLXe89pe//CU1atQo7brrrsvN/1P3wgsvpHbt2qX27dun3/3ud/lr3n8/CFzRHaFnzpyZ2rZtm/bee+9M/VHw2muvTW+88Ub+50WLFqXf/va3KZfLpfr166dNNtkk1alTJ5WUlKRhw4ZVX6Gsc3r06JGaNm2aBgwYkM4999y09dZbp1wut9yNjJ9++un8PvzH9t3LXXTv3j3lcrnUo0ePdO2116YHHngg7bfffqlx48bpggsuSCn5g1FVE4Dyk1N2EHHfffelgoKCdMABByx3SuWnn36ajjzyyNShQ4fMB28/lrK/bvfv3z/17NkzPfbYY2nu3Ln56SNHjkybbrppqlGjRsrlcqm4uDgde+yx+elZP1gue5/169cvtW/fPt1zzz3lpk+bNq3cKMEXX3wxnX322ZnfLuu7/fffPzVo0CAfGn3fu+++m/r27ZtyuVz67//+7x+5unVP2UHeZ599lgYNGpROO+205fq8+uqrqWfPnimXy6UuXbqkm266yX66Cnz11VfpmWeeSfvtt18qKChI++yzT3r66afzX6o///zz9OGHH+bDHtv8/4Kvhx56KO2zzz6pVatWafDgwekXv/hFKikpSQ0bNkzHH398uT/6TZs2LVNBxfru+5+hzz33XDr++ONTq1atUosWLdL5559f7hI+//jHP9IJJ5yQHnzwwR+71HVG2X76H//4R9poo41SnTp10iabbJJyuVzq1q1buv/++/Nn7ixevDjdcsst6fzzz8/f8NKX+f8za9asdOONN6YuXbqkXC6XWrdunZ555pkfnO+7+98hQ4aktm3bpqlTp67NUn80Dz74YMrlcmmnnXZKI0eOLHe9z7fffjv99re/Tb/5zW/SWWedlf71r3+5TBn534d77rkn1alTp9xlErbeeuty91CYOnVquRsdp/TjfccsLS3NX8+z7Djg008/TRdddFFq2rRp/l4Bbdq0KXdNe9/1qpYAlJ+0q6++Om200UZpww03TJdeeml655130iuvvJJOP/30VLdu3TRixIjqLnG9V/YFseyA9/zzz0+FhYWpUaNG6bTTTksTJkwodyD31FNPpTfffDP95z//yc+T9YPlsg+2SZMmpXr16qVrr702/+Vh2rRpaejQoal9+/apWbNm6eqrr67OUlkFZe/XkSNHVnhn0unTp6cZM2aUuwP3I488kh+N/lMPlr788svUs2fPtPPOO6fTTz89375s2bLlrjVXv379/Chx1tyyZf+PvbsMiGrr+gC+ztBdgqQIBiooIQgoJmIhJraC3R3XDhTFbuwWW8TuTgRFMUBERVRAVDDomv/7gXfOZQTv1fsoMzD79+W5zDnjszic2bPP2nuvXYDU1FTs2bMHNjY2UFJSwrBhwxAdHc064P+gcuXK6Nmzp9iM5LNnz6JLly7gOA5mZmZYtmyZzH+2pVnRWZxZWVnYv38/OnbsiAoVKqBOnTpi7XjRDRtl+XNRv359uLu748aNG3j16hWCg4PRqFEjCAQCdOnSBXfv3uXPZUmqv2VmZvIby4nMnDkTioqKqFChAr9Ba3JyMoC/77GcnBzcvHmTfx0oXE1Sr1492NnZld4vUAouXLgAGxsbcByHDh064OjRo/zmMID4506WP4OMuP79+6Nhw4Z48+YNAPC1NW/fvs3fJyNGjMDMmTNLrU0Sfbc8ffoUvr6+0NfXR4MGDbBo0SLcu3eP/y4pKCjA+fPnERUVhY8fP/LvZ/2G348lQBmZU7QO5ZcvX7Bjxw40adIECgoK4DgO8vLy0NXVFZt9yPxeX79+ha+vLziOQ40aNbBixQqx+p+yasuWLTAxMeHr68XHx6Njx46Qk5ND+/bt4erqCl1d3Z+aHcBIVkFBAWrUqIFhw4bxDysJCQlYvXo1VFVVYWxsjCFDhoh16JlCoaGh/Ci4aOOjoruUFx0QSU9PF9vAjvk1BQUFePbsGW7cuMHPzhJ58+YN5s+fDyMjI6ioqGDjxo0SilK6Xb58GQoKCvz1KZpIy8zMxPDhw8FxHDQ1NWFnZ8dmf0q5og/Fb9++xYoVK9CgQQNoa2vD09NTYksmpYWovU1OTkbjxo2LzVL6+PEjNmzYAEtLS2hpaWHChAn84B5TqFevXjA2Nsb169f5186dO4f9+/fjzJkzGDJkCN9PWL9+Pd+mPHjwACoqKpg7d67Yv3fhwgXExcWV5q/wxxQUFIh9l69Zs4bfAHT06NG4evUqS6YzPzRq1Ci+NnNWVhb09fUxduxY/tk/MTERDRo0wKBBg0r9PnJ0dISenh46deqENm3agOM4VK1aFUuXLsWzZ8/EzmVJ/T+LJUCZck/Ucbh//z4mTZqE9u3bo1evXoiIiODPiYuLw5kzZ7B27VrMmTMH9+7dK7HwPfPrRMmKlJQUvH79Gp8/f+aPPXjwAK6uruA4Du7u7ti7d6/YyLasuXbtGhQVFeHv74/nz5+jWbNmqFatGgIDAwEU1opSUVFhdT/LgKioKJiamortzjpw4EDo6Oiga9euGDNmDDiOw5w5cyQYpXTz9/cHx3FQVVXFqFGjcOfOHbHj5X1m+J/y/WyEoslmDw8PXLhwgT83KysLkZGR8Pb2xvHjxyUVslR79OgRBAIBli9fzr9WUFDAX+dPnz7B0NAQXbt2xY4dOyQVJlMCUaLl+fPnWLFiBXr27IkJEyZg3bp1YjP0Hz58iOnTp6NSpUqoXr26zD6cFh1sOnPmDDp06ICgoCCxY6L/fvnyJaZNmwaO4zB9+nSJxCut9u3bh0qVKvGJ4WfPnoklY96/f4+DBw+iVatW/FJwPz8/uLu7o2LFiiXWBS1vil6P7OxsDBkyBBzHoW7duli0aBEePXokwegYabV9+3YYGBggNjYWEydOhImJiVhy8dKlS6hUqRLWrVsHoPQ+Q5cuXYK+vj5OnDjB9w0iIyPRsGFDcByHJk2aYPfu3fwyfebPYglQplwr+oBsZWUFTU1NWFtbw9TUFBzHoVOnTsVGXUTKc8eitBS9ht26dUPbtm35mZ5FR3j3798PY2NjqKmpoX379jK7sUlCQgK8vLygoaEBRUVFaGho4MiRI8jOzgYAhIWFoWrVqmIzLhjp9OnTJ1SsWBGdOnVCeHg4evXqBR0dHUydOpU/x9nZGb1792ZtzT94+/Yt2rdvD47jUK1aNQQEBLDZRL+Jo6MjzM3NMWvWLGzYsAHjx4+HlZUV5OXli9VeFbVBsiwhIQFPnz4tNtM4IyMDTZs2hbGxMa5cuVIsMf/69Wu4ubnh0qVLpRku8y9Ef6eoqCjUrl0bcnJyqFy5MpSUlKCsrAx7e3ts27ZN7D2nT5/mN7aS5QGY9evX84MmrVq1KlZPTyQnJwfh4eH87Cv2XVfcvXv3+A0/w8PDxa5RbGwsAgMD4ezszK+YEtWeLY8bb0VERPD1EYHC54SiidAZM2bw+wSwmulMSd6+fQsLCwtUqlQJHMchMDCQ/6zExMSge/fuMDU15c//k21S0X/73LlzsLe3R2xsLADxBH9wcDDMzMygoqICT09PmX0GLk0sAcqUO+/evcOCBQvEOgcrVqyAkZERTpw4gfz8fERERGDJkiWoXLkyVFRUMHXqVLENeZjfQ/SAMGXKFJibm2PBggUlHheZPHkyVFVVZfpvkZ6ejlWrVmH79u1iI9wfP37EjBkzoKGhITYzhZFeu3btgq6uLgQCAdTU1LBp0yZ+w7XXr1+jefPm6NKli4SjlB4hISGoUqUKwsPDix27cuUKv5Nn48aNsXHjRplOQPxXog55UFAQ1NXVcezYMf5YVlYWwsLCMGjQIHAchylTprCERRH16tWDjo4OIiMjix3bv38/FBQUYGdnhz179iA+Pp4/tnv3bqirq+PEiROlGS7zkxo0aIB69eohODgYGRkZ+PDhA2bPng1LS0vo6ekhMDBQpj8HmzZtwpUrVwD83X7ExMRg5cqV/O7FAwYMQExMjASjLFtE311CoRDfvn1D27ZtwXEcbGxssHr1aj5JAhQmOt++fYuoqKhyfY2PHz8OjuMwdepUREZGiiWIRP997949NG7cGNu2bSuxHWYYoHBVRqtWraCoqAh3d3ds2rQJy5Ytg729PSpUqIDg4GAAf24QoejnGyjcb8TX1xd2dnbIycnhzyv63wAwe/ZsaGhoiA0CMH8GS4Ay5c6iRYvAcRxq1aqFw4cPAwDWrVuH9u3biyXWsrOzER4ejtGjR0NdXR1VqlTB+vXrJRV2uSNq+JOSkqChoYFZs2bxZQW+n0FT9EtIVOuvPI5uF1XSA1XRL8Pvjy9fvhxGRkbw8/P747Ex/xvR3y4tLQ3h4eE4ePCgWN24vLw87Ny5EyoqKjh9+jQA2Z5NJLJjxw5+1L5nz55ISUkpds7GjRv548x/N3HiRJiamuLly5cAxGcjvHnzBs2bN0eFChX4jQSYwtl/HTp04K/V3bt3xWr4XrlyBXXq1IG8vDwaNWqEHj16oE2bNlBVVYWbm5ukwmb+wZ07d6CmplZifdvHjx/Dzs4OxsbGMluj/MGDB+A4Dg0bNhSrnw8UDtaGhoZiwoQJ0NbWhqGhIZYuXSq2eQfz88LDw+Hk5ASO49CiRQvs379fpga7P336hEGDBkFFRQVWVlYIDAwsVtf08uXLcHR0LDe73TO/z/f3SkREBGbNmsUPnGtoaKBx48Z88rO05Obmonnz5vyM+d69e/P9LqDweaHos59otU15fwaWNJYAZcqd169fY9OmTfySkfbt22P69Onw8vICUNjYFE0uff78GefOnYOHhwfMzMwkFXa5FRQUBAMDA5w6darYMVEi9N69e4iIiJCpTUxE9+CNGzcwcuRING3aFBMnTsSBAweKzYBdv349FBQU0L17d0mEyvyif5vBvHbtWtSuXRuenp6lFFHZIBQKERERgSlTpkBfXx+KioqYN29esfNycnL4EXJZajN+pyVLloDjOLx7945/LT8/n7+ep0+fBsdxYrs4M387fPgwOI7D+PHjERYWJrbBwqpVq2BjYwNDQ0NUrVoVf/31V7nZoKS8uXDhAtTU1HDw4EEAhW1QQUEB//0cHh4OjuOwaNEiSYYpUQcOHMDevXsBFNbS37Bhg9h3XEpKCs6dOwdvb2/Iy8vDwcEBR44cEdu4jvlb0eePtLS0Ysd3794NAwMDKCkpYcCAAbhy5Uqx5HN58v1g/4MHD/jap+7u7jh48CDevn2L5ORkTJgwAbq6uvxKGkZ2iRKEZ86cgYeHB0xMTGBpaYnFixfz/ZqcnBykpqYiJiYGUVFRYp+jPzGrX5Sgv3fvntjrBQUFOHHiBD/A0bFjR5w8eVJsT4z8/HyW9CxFLAHKlFuPHj2Cn58fzM3NIRAIoK2tLbYE7fsZV2/evBFbtsb8HhcuXADHcTh58iSA4lP+c3Nz0alTJ4wfP15mdscVfcnduXMHRkZG0NPTg7u7O3R1dWFubg4fHx+cO3dO7D0nT54US1Yw0kPUlty/fx8TJkxAo0aN4OTkhFWrVhV7CIyOjoaTkxNatmzJz65jsz+LzwI/d+4cevXqBYFAAAsLC5w5c0bsfFlekvo7PH36FOrq6mjZsiUeP35c7HhQUBDU1NRw/vx5CUQn/T5//owxY8ZAXV0dlpaWWLFiBV69eiV2TlxcHNtMUcq9evUKenp66Natm9iyQ1H7IqonN2bMGNbmAGjZsiVUVFTQr1+/Ym3ymzdvsHv3bri5uYHjOPj7+0soSukm+r7ftm0b6tSpg507dwIoPuPrr7/+goKCAvT09DB37txyN9gn+n2ys7Px9OlTHDlyBGFhYfzxI0eOoFatWnztU0NDQygqKrJVUAzfFufn58PAwADVq1eHj48POnXqBHV1dVhYWGD9+vX4/Plzqbbby5cvh4KCAtauXQsAxXaZT0tLw6JFi6CjowMdHR2MHTsWoaGhxZ6LmT+PJUCZcqdoY5ednY2LFy9ixIgRMDQ0hLa2NlauXCl2Lks+/FmRkZHQ1NQsNntR9MXw/Plz1K9fH4MGDZJEeBJla2sLd3d3XL9+HUBhHTmO46CpqQkTExP89ddfJdZDZKSHqBOfkZGBatWqwcDAAM2aNeNretnb2+PAgQP8+Z8/f0ZoaCi/hKu8PdT8iu87prm5uWLX4/379wgMDOSXDjk5Of1w0zrm5xUUFCAnJwfjx48Hx3Fo2rQpgoKC+HsyPDwc7dq1Q9WqVSUcqfSLiopCx44dwXEcGjRogIMHD/5wQxhGugiFQmRnZ/M1b+fPn19ss68rV66gQoUKfL9R1pOgycnJGDt2LPT19WFlZYVJkyYhIiKCP56Xl4enT5/C39+fb09k/ZoVJXreePfuHQwMDNC1a1c8ePDgh+cnJCSgYcOGfP388nAtRd/xov8dN24ctLS0oKSkxO+GXbRkUFBQEDp27IhBgwbxiSWGAQpLIlWpUgW3b98GULj6KjQ0FF26dIFAIEDDhg1x9uzZEmda/ymiTfKAwgGjklYxxcfHY+DAgRAIBKhVqxb8/PzYBJdSxhKgTLlVtKPw/v177Nu3D23atAHHcahdu7bY6LUsJyFKw9y5cyEQCNChQwexL4dv375h+vTpkJeXx9OnTwGU/7+F6L48ceIETExM+B09AcDa2hq+vr64efMmatasCVVVVTRu3LjYpl6M9BDdr0OHDkXlypX5mc6PHj2CqqoqzMzMwHEcvLy8ii2LkVUFBQX8dXv06BEmT54sNvv7+1HzRYsWoU6dOtDX18e+fftKNdbybvPmzTAwMICcnBxq1aoFV1dXaGtrw8DAgJ/9ydqef3f69GnY2dlBXl4ePXv2xNWrV9lGBlKsaP8wJycHAwYMAMdxsLOzw86dO3HhwgVs374dTk5OpbZjsLQr2g7cv38fXl5e0NbWhouLC5YtWyZWL1g0o0mWr1dJRNeja9euqFu3Lh4+fMi//vnzZ0yfPh0LFizAiRMnSlwRVdavp6iut+j3uHXrFjiOw+DBg7F3714sWrQIdevWBcdx6NGjB168eCHJcBkpVHTSUnBwMBo1alQswfnt2zccOXIETk5OUFFRQbt27f5obeLv63gCwLNnz+Ds7AwDAwM4OTmJPeuJ3Lp1Cw0bNgTHcXj79u0fi48pjiVAmXKv6MP08+fPsWbNGtja2oLjOHTq1AlPnjyRYHTlm+iL6s2bN+jfvz80NDRgYmKCdu3aYcaMGXBycoKenh7Gjx8PoPwnP4tauHAhqlevzi8/3bx5M1RVVREaGgoAuHjxIjQ0NKCtrY1x48ZJMlTmX7x58wYWFhaYN28en/To3bs3atasiZs3b2LUqFHgOA7Kysro2rVrua7n9U9KGoWfNm0aBAIB7OzssGvXLv51oVDIPwBu2rQJLi4uYjONmJ9T9IH5wYMH2LJlC86dO4fQ0FC+vf38+TP8/PzQoEEDNG7cGEOGDBEbqGL+lpmZiYcPHyIkJASPHz9GRkYGfx1zc3OxZs0amJiYQE5ODkuWLJFwtExRRfsXBQUFYn3Dd+/eYfXq1XB0dORnnHMcBzc3N1y8eBEAGwgoyaFDh+Dg4AA9PT106NABO3fuZLU//8XLly9hbGwMf39/Pmly9OhRuLq6guM4qKiowMzMjO8LAmU/8QkU9nE5jsPy5cv5z+Jff/2Fpk2b8rOFc3JyEBMTg0WLFsHMzAxqamqYNWsWG0xiij0fDh06FF5eXnBxcRGrpVlUUlISAgIC0LBhwz8a28SJEzFnzpxiqz/i4uKwdOlSODk5QUdHBx07dsSjR4/EzsnLy+MnR8jSM7CksQQoU66IGo9Xr15hzZo18PHxQY8ePbBq1Sr+mFAoxN27dzF9+nRoa2tDXV1dZmpP/mnflx/Izc0Ve8jYu3cvWrZsiSpVqkBLSwvW1tZYu3Ytf44sNf43b97EtGnT+J/t7e3h4+PDby7w5MkTNGzYEK9fv2YPXlLu4sWLqFWrFj/CGxMTA47j+Npeubm5qFevHpo1a4Y2bdpIMlSJycnJQceOHbF582ZkZ2fzbcW7d++wdu1aNGrUCDo6OvDw8MDNmzf59+Xm5iIwMBCurq4/7OQyPyZqO9avXw9tbW0+sVOrVi1MmjRJrMRGVlaW2AYwQPl48P5fia5hZGQkvL29xRJkjRs3xv79+8Ue0N+/f49+/frxs8EZ6bJo0SJ4enrCxsYGkyZN4stqCIVCvHr1CuHh4Vi3bh3OnDkjU7twf080gP3p0yeEhIRgwYIF2LhxY7GyUQUFBViwYAEsLCygqKiIGzduSCLcMiMhIYFPgALA3bt3UaVKFdSpUwdXr17FmzdvYGBgAF9fX8kG+ptdv34dHh4ekJeXR40aNXDlyhUcO3YM3t7exc7NzMzE3bt3MWLECCgrK8PIyOhfN5dkyq/09HSxn1NTU9GiRQtoamqC4zhMnTr1h0ny/Px8flDmTzxLZWdno1evXpCTk4OjoyMOHTqEL1++iPWdwsPDMX78eL5M1vjx41l/VsJYApQpN4rONqxduzYEAgFMTEygr68PjuNgZGSEoKAg/vyMjAwcP368WCF35r8RXf8PHz5g+fLlqFatGl/bs+jU/9zcXDx79gwpKSklbjogK4RCIf+lnJCQAAcHBwwcOJA/furUKZiamorVQmKk09u3b9GrVy9+Z9KRI0fCxsaG3xQlPz8fjo6OWLZs2R/tiEkroVCIR48e8bu6ihSdKfT48WPMmDED1tbW/KYkd+7cweLFi2FqaooePXrw/xbza9LS0qChoYEuXbrg6tWruHXrFlq1agVdXV3Uq1cPixYtKraBD1OcnZ0dqlatioULFyIoKAgLFy6Evb095OXlMWLECEmHx/wDUf9ky5YtkJOTg5WVFVq3bg09PT1oa2tjypQpYku4mb95e3tDQUEB6urqEAgE0NfXF/suE4mPj2cb1PyEzMxMeHh4QFNTEx06dIC6ujqaNGmCy5cvAwC+fv2K5s2bw9vbu1hN2rIuPT0dO3fuhIODAziOg4GBAWxsbBAbGwug+IaQqampCA4OZrU/ZdiWLVvg7u5ebFXKq1evEBQUhGbNmoHjOHTo0AFhYWESmUiTnp6OCxcuoGnTphAIBOjUqRPu3LkjttqroKAAJ0+eRM+ePWFoaIgaNWrwq0RYv7b0sQQoU+54enqiTp06OHjwIIDCOhzr1q2Ds7MzOI7DhAkTZHYJamno2LEjNDU14eHhga5du8LMzAympqbw9fUV2+ERKF7rT5Z5enqiWrVqOHbsGIKDg9GyZUtUr15d0mExvyg/Px/jx49HrVq1+M78s2fP+ESTrBPVOVqwYAFGjx6N+/fvix2/ePEiRo0aBQsLC36WXb169ZCamgpAtmaJ/y53796Fk5NTsRq0R48ehaOjI/T09ODl5YXt27cXm2kh60QPJkFBQdDQ0MDx48f5Yzk5OXj58iWmTp0KjuMwaNAgtpurlLO1tcXAgQORlJSEnJwcPH78GBMmTICamhqqVKmCzZs3y/SsTxHRfX/y5EkoKCggICAAjx8/xpEjR+Dr6wslJSVYW1uXWNcOYO30v4mLi8OwYcNQp04ddOvWDQkJCfw1v3fvHmrVqoXJkycDKJ/JkaSkJMydOxd2dnbgOA69evUSq9HINqdlRMaNGweO43Dp0iUAELtPcnNz8eTJEwQEBKBSpUpQU1PDxIkT+ZIKpe3Tp0/YsmULqlWrBjU1NUyYMAExMTFiz7qpqanYtm0b6tWrBzc3N4nEybAEKFPOPH36FJqamli8eHGx5FpERARatGgBNTU1vvA483uIOiunTp2CkpIS1q9fz3eA69SpAyMjI+jp6cHS0hJ+fn5sl9wSvHnzBlZWVlBTU4OcnBzMzc352mOMdPv+YW/VqlXgOA7Lli3D9evX0b17dygrKyM+Ph5A+Xyg+TdFy1wIhUJ+KbGDgwMCAwPx8uVL/tzMzEyEh4fj7t27uHjxIp+QYA9FP6/ojPwdO3bA2NiYTz5/PwC4dOlSVKlSBfLy8mz56g9MnToVRkZG/HLpovdiUlISOnXqBG1tbbZphxQStc+pqalo2bIl1q1bJ3Y8JycHt2/fRqdOnaCgoID69euz797/t3DhQjRv3lxsg46PHz/iyJEjcHd3B8dxaN++Pdvg7z8QDZYUneX58uVLDBs2DNra2nzN7PKaTBYKhXj48CEGDhwIVVVVGBgYYP369WLH2Xc+A4D/Xs3IyIC7uzsWLVok1ialpaXh9u3bGDZsGNTV1VGlShUsWbJEIuXtRKVUpk+fDi0tLZibm2Pt2rVISkoS+yw/e/aMfyZg93npYwlQplx58uQJ1NXVsXHjRgCFHYeiDcv79++hoKCACRMmSCrEcq1t27bo2rUr4uLiAAB79uyBoqIirl+/jh07dkBFRQVGRkaoUaMGzp07J9lgpZBQKOSvFUvSl12ZmZkYMmQI1NTUwHEcTE1NsWzZMgCso1PU7du3+Rkgnp6eOHTo0B/dqVMWNWrUCNra2jA3NxerSfn9JjAJCQlYsGCBJEIsE0SDGtHR0fxr+fn5/GDGhQsXICcnhytXrkgoQqYkRWsNT5w4Ec2aNcOmTZvEjol8/foVwcHBMDMzw8qVK0s9Vmkh+o6KjIzEvn370L59+xLPi4uLw7p162BpaQl5eXlWo7EEomuZmpqKgwcPYvz48VixYgWSk5OL9QXy8vLQvHlzVKxYkX+GkYVSObm5uThz5gw8PDz4QVHRbD9GthWtSS4UCnHv3j0YGxvD0NAQ7dq1w969e8VKcXz48AEnT56Eu7s7dHV1JbrKMCMjA+Hh4ejWrRvk5OTQoEEDnDx5km3oJSVYApQpV96/fw8zMzM0atQIiYmJ/OuiTkRqaiqsra3h6+vLEhG/WUJCAlxcXNC/f3/+tapVq8LX15efcTR69GiYmprCwcFBbPSOYaTdr87afP/+Pe7evYujR4+KJU1kcfYnALFN6L63detW6OnpQVVVFUOGDMHVq1fZUuLf5OzZs3ySWU9PD5s2bRJLMufl5RV7yC6vM47+F69evYK+vj6cnZ1LnO22d+9eqKqq4uzZsxKIjvk3W7du5Utq2NraIioq6ofnFl0CL6vtdXp6OlRUVPgBPFH9PaFQKNY+5ObmIjw8HOfPnwfABvh+pGvXrpCTk4OOjg4UFBRQoUIFzJgxA69eveLvsaioKEyaNIlP0Muar1+/YuPGjbCxsQHHcWjRogUrV8YU64/k5+djwYIFMDMzg5mZGQYNGsTXzxWJjY3lV2v86UGEot8RBQUFxRKc6enpOH78OFxdXaGoqIhu3bqJbT7JSAZLgDLlSl5eHmbOnAmO4zBq1Cg8fvxYbAQoNDQUZmZmmD59ugSjLJ+EQiH27NnDz4A5fvw4tLW1cfr0af4LaObMmRgxYgQ/U4A9aDOMbFmyZAlWrFgBAGJJTqFQiLFjx4LjOFSpUgVTpkyRWB2n8qJox3zr1q3Q1taGnJwcevTogTNnzohdf5a4+DHRSpK5c+dCSUkJ9vb2WL16NX9/Xr9+HW3atGE1m6VYSkoKTp06xdevdHBwwNGjRyWyRLIs+Pr1KwIDA9GhQwcoKyvD3t5erDxG0dnPRclqwrgkomtx+fJlKCgoYMmSJXj69Clu3ryJsWPHQk1NDdWqVcPWrVv5GtfZ2dl8Wyyr/eM3b95gxIgR6Nmzp6RDYaRIYGCg2MDV27dvMWDAAOjp6cHa2hozZszA06dPSzUm0Wc0OzsbBw8eRPPmzWFvbw8XFxds27aN/1zn5+cjMTERgYGBUFRUxLx580o1TqY4lgBlyjRRB+PTp09iHa+xY8dCIBDAwcEBixYtwrFjx3D48GG4uLigQoUKbFTxDykoKOC/EI4ePQotLS1cuHABQOHfaPDgwXB1dWWdZKbMOHHiBHbt2lXudmMtTaIBkM2bN8PQ0BDNmzfnj33/kBcXF4eWLVuC4ziWAP2PfvTgnJOTg5EjR4LjOOjr6+Ovv/5iMxFK8E/fTzt27IC+vj4EAgGMjY1hb28PFRUVmJqaFpuFwkifV69eYceOHahbty4EAgG6dOmC+/fvsz7JDzx+/BgBAQGoVq0aOI5D3759xWq4s4GTfxcYGIhGjRrxpaGEQiFfd7Zjx44QCARo3rw5Tpw4wTYG/X8FBQVsFQjDi4iI4Cc2fT/D8ubNm2jevDl0dXXRqFEjLFu2rNQ+R6K+1qhRo6Curo5q1aqhYcOG/CxmBwcH3Lx5kz8/Pz9frN49+96RHJYAZcosUccrPj4evXr1Qrt27ZCSksIfP3LkCNzc3PhlTxzHoUGDBj/ctZL5vaKjo2FsbIzWrVtj9+7d+Ouvv6CsrIzNmzcDYB1nRvrl5eVBXl4eM2bMEKsz9Kv3rqiTExYWxhc9lxWi3z07Oxt6enoYNWqUWPmLxMRE3LlzB3fu3MHnz5/512NiYgDI7iyY/0J0rfLy8hAbG4slS5Zg3bp1uHjxIp4/f86f9/z5c77emr6+Pu7cuSOpkKVO0QeSa9euYc2aNQgKChLbFCc/Px8LFy5E586d0aZNG4wfPx7379+XRLjMDxT9O+bl5Ykta8/Pz0d0dDT8/f1hamoKTU1NTJo0Seba5h/5/qE8NzcXN27cwKhRo6CtrQ11dXUsWrSIJev+gaiPEBERgW3btsHd3b3E875+/YrDhw+jTp064DiO1cBmmB9YsGAB5OXl0aVLlxJn7u/atQsGBgZiZdj+JFF/68GDB5CXl8fcuXP554Rnz55h8+bNqFWrFuTl5bF79+5SiYn5eSwBypR5rVq1gqOjI9/AfN95CwsLw86dO3HlyhV+Ojrz5+Xm5iIgIAAmJibQ0NCAtrY2+vXrJ+mwGOanrVmzBpUqVeJr/hUUFIjVFv4VHz58gKWlJXbu3Pk7QywzAgICYG5uzifbhEIhgoODYWlpCY7jYGRkxA+OMP+NqEM+Z84cmJiYQFVVFerq6lBUVES7du0QFRUllrwPCQlB/fr1JRWuVBJdnzVr1kBdXR0cx0EgEKB69ero06cPrl27xp/LVpJIp6IDAbt370azZs1Qu3ZtuLq6YteuXUhPTwdQuEnF7du3MXz4cHAch7lz50oybIkqWqP5zZs3uHfvHhISEsQ2NkpNTUVISAg6d+4MjuNgaGgoNmjFiMvJyYGBgQE4joOmpiYOHz78w3qEb9++xdWrVwGwQT+G+ZHt27ejQoUKaN26NR49egRAvMZnZmYmvn37BqD0PkcTJ06Eubk5Hj9+LPZ6Xl4eLl26BDMzM7i4uPDfO4x0YAlQpkwSNWxnzpyBsrIygoKCZL5ujrSKiorCgQMH8OjRI37pApv9yZQF27Ztg5qaGp+0HDp0KAwMDH5pAy/RgMygQYNgamqKd+/e/ZFYpd306dNhaWmJ9+/fAwA2bNiAatWqoW7duggJCUGHDh2gqKjIz/xkfo2oTb1z5w4UFBQwevRohIeHIycnB2ZmZmjZsiV/7xWdzSwiC7sN/6xv375BS0sLPXv2xOPHjxEWFgYfHx9YWlqiRo0amDhxIl69esWfz/oc0kX09xg/fjx0dHTg4OCA/v37w8HBARzH4ciRI2J/s6SkJJw+fZqf0ShryxKL/r7Dhw/nk3ZGRkYYPXo0zp49K9ZmxMfHY8WKFXzCWNau18/KzMzEkSNH0K9fP6irq6NmzZo4cuQIqzvLMP9C1J/Jzs4WW72SnZ2N9evXQ1dXF+3atePLceTl5fElE0q7PZo/fz6UlZX5NjIvL0/s+2Xnzp3gOA4RERGlGhfzz1gClCnThg8fjqpVq/K7vRVt+ET/fenSJYnEJusKCgqKfRGxjjJTlkRGRvJJj7/++gtKSkoICAjgj//s/Xz//n0IBAJs3bpVZj8D69evB8dxWLBgAebOnQs5OTl069aNr4cUEhICHR0d3L59W8KRlm1t27aFu7s7Xrx4AQC4ePEiBAIBQkJC+ATP3r17+Xp0THGRkZFwdnZGWFiY2OunTp1C27ZtYWJiAldXVyxfvpzVBpYyogfPmJgYKCgoYO7cufx936lTJ9ja2vKDLCUNBMhi+yxKNkybNg16enro3bs3Lly4gKFDh0IgEKBmzZqYM2dOsQd40bVmAwD/7OXLl9ixYwccHR1Z3VmG+QWDBg2CsrIyOnXqhP379yMyMhL5+fm4desWDAwMUL9+fbx580YisYkGjU+dOgWO4zBjxgyxVSGi751Dhw5BXV0dp0+flkicTMkExDBlmIaGBqWmppKVlZXY6wCI4zh69+4dTZ48mfbs2SOhCGWXQCAgjuMIAP8ax3ESjIhhfk2dOnVo3759pKWlRUuWLCElJSUiIvry5QsRUbH7+0fGjx9PDRs2pC5dusjsZ2Dw4ME0bNgw8vf3p4CAAOrfvz8tXryYLC0tKT8/n1JTU0lBQYFUVVUlHWqZ9fXrV/r27RtVqlSJqlSpQkREo0ePpo4dO1LTpk1JQUGBkpOTaeTIkXT48GESCoUSjlh6FBQUEBFRQkIChYaGUkJCAmlraxMRUVZWFhERtWnThoKDg2nGjBkkEAho8uTJdPPmTUmFzJRAICh8rAkKCiJLS0tq164dKSgo0L179ygkJIQmTpxIFhYWRES0ZMkS6tWrF2VkZPDvl7X2GQDJycnR+/fvae3atTRixAgKDAyk5s2bk46ODunr65OhoSH5+fnR+PHjacOGDRQbG0tEf19r0f8y4kR9A0tLS+rVqxft2rWL/Pz86Pbt29SkSROaOXMmxcfHSzhKhpFOGRkZ9ObNG8rNzaVbt27RwIEDqU+fPuTu7k4XLlygSZMm0cOHD8nb25uuXLlSanGJ+gp79uyh48ePk62tLXl4eNCyZcsoICCAnjx5QkRECgoKlJKSQpGRkSQQCMjZ2bnUYmR+gkTTrwzzk4rWISoqKCgIHMdhw4YNJc7EuHz5MqpUqYIdO3b86RCZn/T+/XtER0ez0W9G6olmtoSFhYHjOKiqqkJOTg49evTAqVOnxNqc72fBiO7vAwcOQE5OTmwTFVmVnZ2N2NjYYrM87927B0dHR3h6ekoosvKjWbNm6NKlCwBg3bp1UFVVRWhoKH/86tWrsLGxQWBgoKRClGpt27aFjo4OTExMcPDgQf71/Px8sU1f4uPj2TWUYitXroSpqSn/s4uLCzw8PPDp0ycAhW1Rnz590L59+x/2L2XJsmXLYG1tzbfNL1++hJycHLZt2wYAGDNmDL+Z6MCBAyUZqtQSzaT99OkTjh07hunTp6N///44e/Ysv+w9IyMDt27dwuDBg6Gqqgo9PT2+LAzDMOJu376NNm3aoGvXrggPD8eRI0cwefJkftMwVVVVcByHIUOGlGpc79+/B8dxmDVrFoDCz3ybNm3AcRzq1q2LMWPGYOvWrejQoQM0NDQwZ84cAKz8mzRhCVBG6oWGhqJGjRo4cuQIX9xY5PXr17CwsIC5uTkOHDiAL1++8A3Mq1ev0L9/fxgZGbElOn/If0liurq6wsfHh6/XwjDSrKCgAAcPHoS/vz/evHmD8ePHg+M4VKhQAePHj0d4eLjY+UU/Ezk5OahatSr69u0rUzvmitrbjIwMhIaGYtu2bThx4gSePHlS7NwnT57Azc0NxsbGfF1F1kn8daJrvmrVKigoKGDx4sXQ1dUVW5aVmpqKv/76CwYGBvzmJWwgStzp06fRtGlTcBwHZWVlLFiwQGwH8dzcXHZ/lgEHDx6EvLw8bt68iZ07d0JBQQFXr17l/3aRkZFwcHDAyJEjJRyp5BUUFCAwMBCNGjXiNwrt3r07bG1t+VIZYWFhsLOzw19//cUv5WT96r8VbUdbtWoFDQ0N6OnpoWrVquA4Dn369BFLtCcnJ2P//v1iJXUYRtaV1B958uQJbGxsUKVKFTx8+JB/PTIyEjNnzkT79u358hyl1Sbdvn0b9evX5zf1FNm3bx9sbGygqKgIjuNgamoKPz8//jjrb0kPlgBlpN6dO3dgZ2cHJSUleHt7IzQ0VCx5FhUVBVdXV8jLy6N9+/ZYvHgx1qxZA2dnZ6ipqbHZn7+J6MHh69evuH///i/VPhM1+iEhIZCXl8fJkyf/SIwM8ydkZ2eL1YuLjY1Fy5YtwXEcatWqhWXLloltiiIyZcoUcByH6Ojo0gxXokQd0PT0dHTs2BFKSkpQVlaGgoICzM3NsWTJEj4ZnJOTg/nz56NJkybYs2eP2PuZXyNqYz99+oTu3btDTU0NGhoaCAoKAgCkpaUhICAAurq6mDdvHgCWaP4nO3fuhJWVFdTV1dGiRQvs27dP7HqxayfdPn/+jLp168LOzg76+vro27cvPwvv48ePmDNnDhQVFfH69WsArN2JjIzEuXPnAACJiYmwtrbGjBkz+OPXr1+Ho6Mjv+kII07UHsyePRu6urpYt24dgML638rKyhg9ejS/CWhRrI4qwxR37do1xMbGik166tGjBxwcHLB//36x50/RwMKfTi4WnVy1ZMkSVKhQgW8Pv38evnv3Lp4/f46kpCT+NfYZly4sAcqUCZ8+fcKmTZtQpUoVqKurY9KkSXj+/Dn/IP38+XPMnTsX1atXB8dxkJOTg729PTZt2iThyMufgQMHon79+jhw4MAvvS8vLw9VqlRB79692exPRqoV7Ujl5+cjNTUVHz9+BCC+W/bp06dRrVo1cBwHOzu7YrNBL1++jPXr18tUx0f0u/r6+sLc3Bz+/v74+vUrNm7cCI7jsHHjRrHZsB8/fsTbt2/5n9kI+f8uJiYGvXv3hoaGBjQ0NFCjRg1UqVIFmpqa6N27N38eu9aFfnQdvnz5gkmTJkFfXx8GBgbo27cvrl27VsrRMb9K9KB6//59fqmkl5cXtm/fjsuXL6Nr164wMDDAtGnTxM6XJaLf+c6dO/x3m6jtzsrKgr29Pdq3bw+hUIjs7GysWbMG2traiI2NlVjM0i4tLQ1VqlTBxIkT+VILkydPhrGxMaKiogAUtjV9+/blf2YYRtzWrVvBcRysrKzQsWNHBAQEICEhAbdu3UKvXr3g6emJW7duSSw+BwcHcBwHHR0dbNiwQewYe7YtO1gClCkzhEIhXr58iSlTpkBTUxMWFhZYv349UlJSABR26LKysnDv3j08ffqUX+LH/O9EneWtW7dCW1sbixcv/seH56LHRP8dEBAALS0tPHr06M8GyzD/I9H9funSJT6Rp66uDk9PTxw6dKjYLJhFixZBX18f6enpkghXaog+6zExMdDQ0BDbJbt///6wsbHhl1SmpaUhODhYLKHM/DzRPfr+/XscOXIEO3bsQFBQEP99CAAnT57E6NGj0atXL3Tr1g1nzpzhl7jKYtLne6KEj1AoxOfPnxEWFlbibO0nT57A29sb2traUFdXx6VLl0o7VOYfFO1viGZ5ih5EExISMHXqVGhpafE1LA0MDBAQEMC/T1YHAgoKCmBiYoKmTZuKlcTIz8+Hj48P5OXlMXDgQLRr1w4VKlTga3/K0oDer0hMTETVqlWxbNkyAIUTMxQVFbF8+XJ+0O/27duwsLDAkSNHJBkqw0ithIQE3LlzB8OGDYObmxt0dXWhoqKCzp07o2/fvpCXl4exsTFCQkIkEt/Tp0/5ep8cx8HPz09sBVhBQYHMfqeUJSwBypQ5ubm5CAsLQ9euXSEnJ4cGDRrg1KlTfJ0z5s8QCoWwsLBA//79+ZpoP9sRTkpKgrq6OmbPns06z4xUEyWGXrx4AQMDA5iZmaFHjx7o0aMHbGxsIC8vj27duonNWgT+nhnKEnrAsWPHYGZmxieKrl69Co7jcODAAf7zv3LlSlStWhUxMTGSDLVMKnqPtWzZEgoKCuA4Dtra2rCzs+MfwEvCOuZ/E12LdevWwd7eHpqamlBRUUGLFi1w9+7dYucfOXIEXl5epR0m8wOiZB1QuGnPqFGjULlyZbRs2RKBgYF4/Pgxf256ejqOHDmC8PBwvHv3jn9dlvsjubm5WLZsGXR0dMTq1IlMnToVenp6sLCwwODBg/k+tixfs3/y+fNnmJqaYtiwYQCAdu3awcHBge8rCIVCbNiwAebm5rh586YkQ2WYMiExMRF3797Fhg0bUK9ePdSpU4evq2tlZSXR2C5fvoyaNWuC4zh4eHhg3759bEO9MoQlQJky4/tO15cvX3Ds2DE4OztDXl4evXv3RkREBJuC/ofcu3cPBgYGWLp0abFjor/N/fv3sW/fPv510QOmr68vatSogcTExNIJlmH+R23btoWTkxO/K25GRgZevHiBRYsWQUdHB9bW1oiLi4NQKGRJz+/cu3cPSkpKuHHjBgDA1tYWbdu25Wcf5uTkwM/PD3Xq1MGbN28kGWqZkZmZiStXroi9tm7dOqipqWHhwoV4/fo1li9fjpYtW0JXVxfOzs44fvw4fy6blSBOlDi7efMmlJSU4OHhgbVr12L58uXgOA4CgQD9+vXja0Qy0qOkwe4GDRpAQ0MDzZs3R8OGDcFxHOrUqYPAwMBi9ZnZ5+Bvubm5GDFiBDiOw5o1a4odz8jIYHXsfqCk+2j+/PkwNTXF9OnTIS8vj2PHjvHHYmJi+PuTYZgf+1E7ExoaiqCgIIwZMwanTp0C8OdXs4hief/+PS5fvoxVq1bh0qVLeP/+PQBgw4YNUFVVhaKiIgYMGIALFy6wdrIMYAlQRqqV1MEommzIz89HYmIiVq1aBVNTUxgYGGDcuHElFhtn/jcvX76EkpISFixYAKDkv42fnx86duzIfzEAhcsHOY7Dli1bSi1WhvlfxMfHo1KlShg/fnyxzlVaWhrWrl0LjuNKHAyQdUKhEO/fv0fNmjXRunVrBAYGQllZGaGhofwywAcPHqBOnTro27cv/x7mn02dOhUcx2Hw4MF4/vw5gML6cj4+PmLL3uPi4hAQEIC6detCR0cH3bt3Z2VH/oGbmxtatWrFL30/fvw4FBUV0a1bN2hra6NixYpYs2YN61NIiYKCAgwcOBDHjx/nl23fuHEDOjo6OHz4ML8E/ubNm7C3twfHcWjTpg0OHTok9jlh/k4cFBQUwNfXF4aGhjh06BB/jA3s/Zzz589j9+7dyMvLw9u3b+Hi4gKO42BiYoJjx44hKSkJ8fHx6N69O9TV1REWFgaAlSFhmJ8lqc+K6P/3zZs3/GbLAoEAHMfBzMwMU6ZMQWpqKjIyMtC/f39+D5Lvd4dnpA9LgDJSTfRgfOPGDYwcORJNmzbFxIkTcejQIbGp5jk5OXj27BkGDx6M6tWrSyrcciExMbHEhMS3b9/QoEEDVKtWDS9evCjxfZ07d0bTpk3FXn/y5Am2bNkitos2w0izzMxMmJiYoH///vxr33fA6tSpg5YtW7KHxB84d+4cjI2NIScnh8aNG/OvizboUVNT42eEs9Hyf3fq1Cl4eXmhQoUKsLCwwLJlyzBr1ix06dIFQOEupEXb7bt372LcuHEwMjJC1apVxTaeYgrdvn0b1apVw+bNm/l70NraGl27dsW7d++wYsUKvs6XsbExqysuBa5cuQKO42BoaIgJEyYgLCwM58+fR926dflyGkXb5K1bt0JPTw9aWlro3r07nj17JqnQJe6fJhQ8evQItra2MDMzw9OnT0s7tDJBdP3ev3+Phw8f8j+rqqpi2rRpfA3w7OxszJ07F9ra2lBSUoKOjg44joOlpSWWL18OgH3nMcx/IanB8tatW8Pc3ByLFy/GjRs3cPz4cTRo0AAcx8HNzY1fKXL37l306NFDIjEyv4YlQBmpJeqY3blzB0ZGRtDT04O7uzt0dXVhbm4OHx8fnD17Vuw96enpbJT/f1SrVi2YmpqK1ckSfekcOnQISkpKqF+/Pm7evCnWiVu4cCEUFRX5JT9FE0YsScSUJQUFBejcuTM0NDT4ZTbA3/d0eno62rZtCzc3N5bY/4GMjAwEBgbC3t4eioqKMDExgbu7O7S0tFC1alWsW7cOAJsF8ytyc3OxefNmuLi4QFtbG5UqVYKrq6vYkuCiJWDy8/Nx8OBBnD9/nv+Z+dv58+dhaWnJl2rYv38/VFVV+Z+BwqXVo0ePZisYpMirV6/Qr18/cBwHW1tbTJgwAXXq1BG7v4t+DoRCIcaMGQM5OTl+d25ZdvnyZdy6datYv+zdu3dwcnJC3bp1ER4eDoC1GSVZuXIlatWqhYCAAPTp0wdGRkaIjIwE8HdfNzs7G69evcL8+fMxbtw4rFy5EgkJCXxfmiVAGVn1u8vx/Onny9evX8PCwgKBgYHFju3atQtqampwc3PDx48fxY6xtlO6sQQoI/VsbW3h7u6O69evAyh8SOE4DpqamjAxMcFff/2F+/fvSzjK8iE9PR2rVq1C586d+de+3/F6x44dfBFqT09P9O7dGw4ODtDQ0EC3bt1KO2SG+SNu3bqFSpUqwcLCAitXrhTb9Ojy5cuoVKkSJkyYAEC2l3CLfvdHjx7h9OnT2L17N2JjY/njDx48wOzZs9G9e3c0btwYw4cP55cAFn0/88+KPjAnJiZixowZfAF+JycnsU018vPz2YzPn5Cfn4/t27fzP/fs2RNubm78zOTExETUr18fgYGB7D6VQtevX+dn4XAchwEDBojVFC4oKBBLhIrKGMjyg2lQUBA4joOBgQH09PTg5eWFoUOHYv369YiIiMDkyZNhamqK4cOHSzpUqfXixQt+F2gFBQV06NDhp2cWs3aEkWVF7///JXEp+ndKY8+PlJQUdOnSBcHBwfz/d9HYAwMDwXGc2P4XjPRjCVBGKokatxMnTsDExARHjx7lj1lbW8PX1xc3b95EzZo1oaqqisaNGyMgIIDNNPwNcnNz+QeFHTt2gOM4BAQEIC0tDUDhF87169cxdepU2NvbQ0dHBy4uLti0aRM/+1aWHzCY8uP06dMwNzcHx3FwdHTEoEGDMGzYMJiamootK5bV2Ryiz3l4eDgsLS3BcRxUVVWhra2Nfv36iZUpKWnjEubXCIVCsXvt/v37GDhwICpUqABDQ0OMGDFCLAHENgQUJ7p2ycnJ/IBqUSNHjoSpqSn/86VLl2BkZCSWJGWkS35+Pvbs2YNatWqB4zj07t0bFy9e5JcjA4UP2qxPUig5ORnnz5/H0qVLMX36dDRo0ADW1tZQVVWFuro66tatyyeU+/fvz8+YZYm74qpUqcJfKy8vLxw6dIjf6E/k69evCA0NZSvTGAaAl5cX5s2bJ/baf22br1y5Ak1NTb4m+p+wceNGcBwHNTU1DB06FJmZmcVmccfGxkJbWxuTJ0/+Y3Ewvx9LgDJSbeHChahevToeP34MANi8eTNUVVURGhoKALh48SI0NDSgra2NcePGSTLUMu/Bgwdiy8OEQiFCQ0Ph6+sLdXV1VKtWDfv37+ePizYbSEpKEnvYYJiy7vuHvblz56J27dowNDSEsrIyhgwZwhc5Zw/WgKOjI+zt7XHgwAEcOnQII0eOhK6uLpSVlflN00RYUu73O3z4MFq1agVtbW1Ur14dK1asYNf5HwwcOBBVqlTh63aJHmRCQkIgEAjQtGlTjBw5EpUrV2Y1xaWQqH0u2k6npqZi6tSpUFFRgaGhIaZPn46IiAjWPuPv6xQXF1diIu7169dISkpCcHAw5s+fjxkzZsDW1hbq6urYsGFDaYcr9UQzwJYuXYrDhw9j6dKl0NHRgbq6OoYMGYKrV6/y993JkydhZWWFiIgICUfNMJKVnJyMFi1aQE5ODtWqVRMrYZefn//LEwkaNGiAxo0b85Nz/oTr16/Dy8sLRkZG0NTULLEUzs2bN6GpqYn58+f/sTiY348lQBmpdvPmTUybNo3/2d7eHj4+PvzMoidPnqBhw4Z4/fo1m/35P3j8+DE4jsPw4cNx8+ZNsWv58eNHHD9+HK1atQLHcXB3dxdbwsow5VXRz8GXL1/w9u1bNpPjO3FxcahRowb27t3Lv/b161ecPn0a3bp1g0AgQJUqVXDixAkJRlm2iR6mP336hPPnz2Pt2rXYunUrLl++zJ8jKl/i5OQEFRUVODs7s1m3P7Bnzx4oKSnBy8tLbPAuNzcXa9euhaurK1RVVdGlSxd+sJWRPt/PtgOA6OhoeHt7g+M41K1bF0uXLkVSUpIEopMOorbj+fPncHNzQ82aNZGcnAzg32d1Dhs2DPLy8qzt/gdFN0YaMmQIOI6DhYUF/Pz8sG7dOri6usLOzk7CUTKMdHj79i22b98OZ2dncBwHDw8PxMXF8cf/7Tle9Hnbvn07FBUVcevWrT8ZLgAgLS1NLOYWLVrg/PnzuH//Ps6ePYvWrVvD1NQU2dnZYjEy0o0lQBmpJhQK+U1GEhIS4ODggIEDB/LHT506BVNTU1y9elVSIZYLeXl58PX1hby8PCwsLBAQEFBsJ9C4uDhs3LgR1tbWkJeXx/Dhw2X6wYKRDd8vO2bEZ2DFxcWhU6dO/EY7RTuwiYmJ2LFjBxo3bgyO4/gdcJmfJ7r3vn37BldXV3AcBzk5OXAcx9fwu3v3Ln/+69evMXToUCxevBgA64z/yKFDh6Cjo4NevXrh/fv3/OsFBQX4/PkzPnz4wBLIUkbUtoSHh2P8+PFwcXGBlZUVRowYgeDgYLG/47lz5+Dg4ACO4/iZvrKscePGaNiwIY4fPw6g5LItomSpqLTL27dvUblyZYwaNar0ApViomuWm5uLzMxMsY1CRe7fvw93d3dwHAd5eXlUqlQJ0dHRANhqEYYRiYqKwpIlS1CxYkVwHIfp06f/9Ma5GRkZMDIywrBhw0p14lNiYiL8/PxgZmYGgUAALS0tVKtWDQsWLMCVK1cAsA1/yxKWAGXKFE9PT1SrVg3Hjh1DcHAwWrZsyZao/UaxsbHw8PAAx3GoX78+tm/fLtbJy8nJQWRkJGbMmAEjIyMIBAIEBQVJMGKGYSRl7ty5fH2kpUuX8q9/v/xa1Nn99u0bAJaU+xWia+Xr6wtjY2MEBATgxYsXOHXqFLp16wZ9fX1UqVIFe/bsKfEBm13rkqWnp2Py5MmQl5eHv7+/pMNh/oXoPs7Pz4elpSV0dHTg6uoKd3d3GBgYQEVFBQMGDMCTJ0/492RnZ+PatWsAZLNOs+ianTlzBqqqqti/f3+x8gHftw9Fr9O3b9/g4uKCxo0bl07AUqxo8nPo0KGws7NDnTp14O3tjQcPHhQ7/8aNG9i7dy+/OZIs3n8M8z1R3/DRo0cYOnSoWB1dHR0dbNy4kT9XKBSK9WlEbdXkyZNRsWJFsc02S4tQKERkZCQGDRqEypUrQ1lZGbt37+aP/+4d7pk/hyVAmTLlzZs3sLKygpqaGuTk5GBubo6LFy9KOqwyr6CgQOyL5tSpU6hSpQoEAgG6du2KkydP8hsjAYVLXK9du4ZOnTrxDxgMIyuK1lQT1cKVRQcOHICXlxcMDAygqqparPNadCfyHz1wM/8uNTUVbm5u8Pf3LzbDYM+ePahYsSLq1KkjVsOZKfRv99vUqVPBcRz8/Pxk+rNcVsyaNQumpqb8suz09HQkJCRg/PjxUFJSgru7u9jmayKy3O7Mnj0bRkZGePToEYCSr8Xu3buL1dJ79OgRrK2t+VmjskyUwBwxYgSUlZXh7u4OLy8vVK9eHRzHoU+fPiXedwzDFCq6msXQ0BDt2rXD0aNH8ezZM6xduxbNmzfnS5cUXdVStL168eIFlJWVsXTpUom26Tk5OTh58iRatGgBjuNgb2+PS5cuSSwe5texBChT5giFQly/fh07duzAw4cPJR1OufL9DKIlS5ZARUUFurq6mDhxIkJDQ8XO+fz5cylHyDD/u+9nY/yXjtTDhw9hamqK8PDw3xVWmZSQkIDVq1fD0dERHMfB2dkZN2/e5I/n5uaypX//oydPnqB169b8LNv8/HyxROj169fBcRxmz54toQill+izfuPGDXz69KlY3cjPnz/D29sbFSpUYLUOpVTR9mPz5s3w9vbmk9VF2/KdO3eC4ziMHj261GOUZqtWrQLHcfwMfBHR915SUhJq1aoFf39/sespFApx+/btUo1VmiUmJsLAwEBsY787d+7gr7/+gp6eHpSUlBAQECDBCBlG+k2ePBn6+vrF9pJ48eIFPyDJcRw8PT2LlVnz9vaGtbW11Az2fv36FRs3boSNjQ1fH5SVzikbBMQwZQzHcdSwYUPy9fUlW1tbSYdTrsjJyREREQAiIpo4cSIlJydT+/btadmyZeTr60tr1qyhmJgYIiLS1taWVKgM859xHEdERDNnzqTQ0FD+518xZcoUqlChAlWtWvV3hye1CgoKiIgoPj6eIiMjKTc3l4yNjWnUqFG0fft2mjp1KiUnJ1PDhg2pd+/elJSURAoKCny7wvy6U6dOUe3atenBgwd07do1Sk1NJTk5OZKXl6e8vDwiIrKysqJKlSrRy5cvSSgUSjhi6SIQCCg+Pp6aNWtGZmZm1Lp1a/L09KQlS5bQhQsX6OPHj7Rr1y6ytramPn360MmTJyUdMvMdUfsxbdo0unTpEn348IHk5OTE7nUA5OPjQ40aNaLr169TRkaGpMKVOs7OzkRU+J318eNH/nXR915sbCxlZ2eTnp4eCQQCseOurq6lG6wUMzIyosaNG5O9vT3/mouLC82aNYv27NlDnTt3Jj8/P9LW1qYrV65IMFKGkU4AKCsri+Tk5KhatWpERJSTk0NERFWqVKEFCxbQqFGjqGrVqnTx4kU6ffo0/97U1FRSU1OjZcuWkZ6enkTi/56mpiYNHjyYTp8+TcOHD6cKFSqQioqKpMNifgJLgDKMjBMlO4mIcnNzKTMzkz59+sS/pqGhQdu2baOHDx9ShQoVaPz48dSlSxeKjIyURLgM8z/jOI4+f/5Mu3fvpjFjxlBUVBQR/Z3g+xHRZ+X48eN0/vx5WrBggUwNAogSER06dKA+ffrQgQMH6PXr10REZGNjQ/Pnz6ctW7ZQ37596dy5c2RiYkJ79+6VYMRlX9WqValfv35UUFBAJ0+epKVLl1JsbCwJhUJSUFAgIuKTGurq6mIJDKaQkpISrV69mlauXEm6urr06dMnCggIoFatWpGjoyO5urqSnJwcff36lTZt2iTpcJkSxMXF0ebNm+n06dP06NEjCgkJIYFAQAKBgHJzc/lkXo0aNejjx49iiT5ZBoCsra3Jy8uL1q9fT4sWLaIHDx7wCeKnT59SYGAgZWVl0dChQ/n3MIXXQXQtzpw5Q87OzhQWFkbfvn0jIqLs7GwSCoWkpqZGLVu2pOXLl9OmTZuocuXKbCCKYUrAcRxVrVqVkpOT6c6dO0RU+P0MgE+EVq9enVRUVOjChQvUv39//r26urq0fv168vDwkEjs/8TMzIxWr15N27dvl3QozE/iwL7pGEamCYVCEggEdPz4cdq6dSs9evSIjI2NydnZmSZOnEjGxsZi5+/bt4/vRP+XmXMMIw2EQiHt3r2bRo4cSR07dqRdu3b99Ptq1qxJdevWpe3bt5OSktIfjlQ6FBQUkJycHOXk5NDmzZtp9OjRpK6uTi1btqT+/ftTvXr1+FH59PR0Onr0KG3bto02btzIj/Qz/016ejqFhYXRypUr6eTJk9SgQQPq06cP1ahRgwQCAS1evJjCwsLo/v37ZGJiwrfpTMkSEhJIQUGBQkND6fHjxxQXF0dXr16lz58/U0hICDVq1EjSITIlOH/+PAUHB1NISAh9+vSJJk2aRP7+/vxAwL1792jkyJGkpaVF586dk3C00mfw4MG0c+dOMjU1JUdHR1JTU6Pz589TVlYWrV+/nrp27Ur5+fkkLy8v6VAlKi0tjTQ0NMRe8/Pzo9WrV1N2dja5urrSkSNHSFNTk4gKJw4oKiry5yYmJhbrNzMMU+jDhw/UuHFjys/PpwULFlCLFi1IS0uLiIjy8vJoy5YttHPnTjp58iRVqFCBABDHcfz/MszvwBKgDCPDREmNiIgIatasGRkYGFDz5s0pMTGRzp8/TxUqVKARI0bQpEmTSnygZp1lpqwLCgqigQMHko+PDy1atIh0dHRK7GiJXlu8eDHNnz+fbty4QXXq1JFQ1KVLlFDLzs6mrl27UkpKCn+dHjx4QOnp6dSvXz/q2bMnWVtbk7q6OhERff78mXR0dFhC7jdJSUmhkydP0pIlS/hZy1WqVKHmzZtTjx49qFGjRqxNLkFqairp6ur+63lPnjwhGxubUoiI+a8yMzPpxIkTtGPHDjp37hxVqFCBunbtStnZ2RQfH08pKSm0d+9eqlGjBt+/kVUPHjwgAJSdnU3169cnIqKzZ8/S2rVrKTQ0lFRVVcnOzo6GDx9OrVq1knC00iElJYV69epF/fr1o06dOvHJ9ezsbDpx4gTt27ePjh07Rnp6erRgwQIaOHAgERX2D/Ly8sQSoQzDiBP1ow8dOkSDBg0igUBAvXr1ombNmlGjRo0oODiYFi5cSLVr16Zjx45JOlymPCvNgqMMw0gnNzc3NGvWDPfu3QMAnD59GgKBAA4ODlBWVoaTkxOOHTsm4SgZ5vfJy8uDUCjEt2/fMHr0aKipqWHz5s3/+J73799DW1sbM2fOLLaRUnkm+l2HDBkCS0tLBAcHAwDS0tIQHx+PiRMnQllZGTY2Nli5ciWioqJk6vqUJqFQiFevXmHBggWwsLCAkpISli5dimfPnrFr/v9Em+bcvXsXY8eORcOGDeHs7IwNGzbwm+cIhUL+ehXdUIqRXkU3q0tISMDKlSthb28POTk5CAQCTJkyhT+enZ0tczu/i+7jq1evom3btuA4DvLy8qhQoQLc3d1x48YN/tykpCSkp6eL3fuydr1KEhERAY7j0LVrVwCF331FN496//49AgMD4ezsDI7j4OTkhGvXrvHH2TVkmL8V/Tzk5eWJbZz75s0b9OjRAxzHQU5Ojt/8yNbWFomJiQCKb8zLML8LmwHKMDIK/z8Sd+PGDfL19SV/f3/q3r07CQQCcnBwIAsLC/L396dFixbRrl27SEtLi2xtben06dOkqqoq6fAZ5pf82yzEPn360P79+2ndunU0cODAEpfaDBw4kE6dOkX379+XuSVunz59IkdHR2rWrBlt3LiRnxlDVHhtd+zYQQMHDiQ5OTlyc3OjGTNmkLu7uwQjLt+ys7Pp6dOntGrVKtq3bx/VqFGDJkyYQB4eHmRiYiLp8CRG9Dn/8uULOTg4UEZGBtWuXZuUlJTozJkz5OjoSFOnTqWOHTtKOlTmP8B3s/MjIyMpKCiIzp49S1FRUeTr60uLFi0ifX19Ivr3dr+8KHpdLCwsSENDg7y9vcnc3JzOnj1Lt27douTkZBo7dixNmzaNtLS02JLSH8jMzKScnBzS0dGhiRMnkkAgIF9fX6pWrRo/w/PJkye0f/9+2rt3L717947atGlD69evJyMjIwlHzzDSQdT2ZmZm0uHDh2nDhg2Um5tLSkpKNGzYMOrduzcRET1//pyOHDlC6urqZGxsTA0aNKCKFSvK/Ax+5g+TZPaVYRjJCwoKgpaWFm7dugUAOHz4MJSUlPhR7dzcXFStWhUeHh6YNm2aJENlmP9JYmIixo4di3Xr1uHMmTNITU3F27dvAQBfvnyBp6cn6tati/DwcADio9dZWVlYvnw5jh8/LpHYJUkoFCInJwc2Njbw8PAAUNgufD867+XlBW9vbzg7O0NLSwuHDx+WRLgyJT09HadOnUKjRo2goKAAZ2dnJCQkSDosiRF9Zvv27YuqVavi7NmzAICwsDAoKyvD1NQUHMfB29sbkZGRkgyV+R8Une0sFApx9uxZ9O7dGxoaGtDT04O/v78Eoyt9ovve398fBgYGuHr1qtjxc+fOoVmzZlBRUcGOHTskEWKZk5eXh969e4PjONjb22Pbtm14/fq12DmXL1/GoEGDwHEc9uzZI6FIGUb6iNrogQMHQktLC66urvDx8UHNmjXBcRyOHz/OZngyEsMSoAwj49LS0rBw4UL+Z09PT3h4eCA5ORkA8PbtWzg6OuLcuXP8lxVbasmURVu2bIGSkhJ0dHSgpKQEXV1duLq6okWLFli/fj3GjRsHjuPg4uKC2NjYYu/Pzs6WyXtf9HDds2dPaGho4MqVK/yx7Oxs/r979OiBmTNnIj4+HvXq1YOZmRliYmJKO1yZ9OHDB6xcuRKdO3eWdCgS9+LFC5ibm2PRokX88lVvb2/Y2tri5s2bGDx4MDiOg6qqKvr06cMvi2fKnqLt8devX7Fz5060aNECHMdh586dEoys9IkSdra2tkhLSwMg3j6npKSgfv36MDU1xadPnyQVZpkTGhqKJk2agOM4tG3bFqdOncLHjx/542lpaTh37pwEI2QY6SJql8PDwyEvL4/ly5fz/chmzZqhcePGePXqFYDCdik3N1disTKyqfyvC2EY5h+pq6vT5MmTiahw90tVVVVKS0sjAwMDIiJ6+fIlJScnU2pqKr8cQRaWlDHlg1AoJCKimJgY0tLSouzsbDp79iyFhITQzJkzydTUlIRCIU2dOpXOnj1LmpqadPfuXRozZgx9+vRJ7N9QUlKSyXtftEwyICCAqlWrRq1atSI/Pz/Kzs4mJSUlIiJ69OgRxcbG0ocPH6hSpUo0ceJEevfuHcXExEgydKn2/v17ysvL43/Gf6hIJHqPuro6ubm50c6dO39bfNJO9LsXFBTwn1GiwiV1ampqVLt2bdLQ0KBHjx5RcHAwTZ06lRo0aEArV64kBwcHcnFxoS9fvpCysrKkfgWmiPz8/F/+DIjaY6FQSJqamuTj40O7du2ioKAg8vHx+RNhSi15eXnS09Oj2NhYysjIIKLC7ywAlJubS7q6utSuXTtKTU2ltLQ0CUdbdjg7O9OVK1do9+7d9PTpU+ratSvNmTOH7t69SxkZGaSurk4tWrQgov/WhjNMeSNql/fs2UO1atWili1bEsdxdPHiRbpy5QqNHTuWzMzMiIho9erVNGnSJMrJyZFkyIyMkb0nOYaRcaIO2qtXr+jevXt09+5dSkxMJCIiDQ0NsrW1pYiICBo1ahStXbuWT452795dYjEzzM8S3d/p6emUkJDAd8S8vLwoLCyMMjMzqV69etS6dWsaO3YsHTx4kE6dOkVJSUm0bNkyOnDgAE2ePJnOnTtHs2fPJiKW8BcxMzOjefPmkYuLCy1evJhq1KhBkyZNogkTJlDPnj0pKiqKJk2aRESFCTk1NTV6//69hKOWTrGxsdSwYUPaunUrvXnzhojof6rHN2TIEFq1apVM3asA6Pnz5yQnJ0cCgYDy8/OJiKhmzZpka2tLbm5uRFT4gGVvb0+urq5ERPy5nTp1ogMHDkgsfqbQsWPH6MuXLyQvL08cx/F/x18huu8/f/5MmzZtoi5duvzuMMuE5s2bU1ZWFs2ePZtvezmOI0VFRQJAKioqpKKiQt++fZNwpGVPr1696OHDhzRx4kTasWMH9erVixYvXkxJSUn8OaymKsP8TUtLi7KysqhWrVpERDR27Fjq2LEjNW3alOTl5SktLY3u379PKSkpVFBQIOFoGZkiqamnDMOUPtES9rCwMFhbW/PLAJ2cnLBgwQKkpaUhPT0dffr0gaGhIQQCARwdHXHhwgUAbLdcpuzYsmULvLy8cPDgQfj5+UFJSQlXr16FUCjkl+KIPg8l7dy6bt06KCsr48CBA6UatzQoej1ycnKQkZHBl8QAgNevX8PPzw9NmjRBxYoVIScnh2bNmmHXrl0ACpeiLl68GIqKiiWWEmCA2NhYODk5QUFBAS1btsTx48eRkpLyn/6tu3fvguM4bN68+TdHKd0WLlwIjuMwbNgwZGZmlnhOXl4ehg0bBjs7O/61p0+fwt7eHqtWrSqtUJkfSEtLg56eHgQCAZYsWSJ27Ffqw4narFGjRoHjuGK1GmXJiBEjIBAI0KFDB1y/fp3fUfnatWuoV68eGjVqJOEIy74XL16gS5cuEAgE/7ndZpjybseOHdDQ0MDjx4+xevVqqKqq4u7du2JL5K2trTF9+nQJR8rIGpYAZRgZ5OjoiBo1amDt2rXw9/eHvb09NDU14ejoiBMnTgAAoqOjcefOHZl+kGDKHlHH6vr166hUqRLk5OSgpKSEDh068BseASUnPYG/k/yvX7+GpaUl+vbtK3OF2kXX8NixY2jXrh0qV66M+vXrY8yYMXjz5g1/3tu3b5GYmIjnz5+LvX/btm2wsLDA0KFDSzXusujQoUOwsrKCsrIyBg0ahNu3byMjI+OX/o369evDw8ODr/snC168eAE3Nzf06dMHurq6UFdXx/Lly/njQqGQ/9yKEqVr1qzB1atX4e3tDVVVVbx//15S4TP/Lzs7GyEhIejduzcEAgEsLCxw7Ngx/nh+fv5P112OioqCoqIiAgMDf9i+y4Lc3FwsW7YMpqamUFFRgYODA+zs7KChoYFKlSohOjoawK8lmJmSifrH7FoyzN/9Z9GgwLt372Bubg4nJydoampi3LhxfP8mKSkJf/31F9TU1PiaxLJYY5+RDJYAZRgZEx0dDVtbWxw5coR/LTExEXPmzEH16tWhpqaGzp074+7duxKMkmF+XUkPvVZWVuA4DlpaWhg/fjxu375dbCZzbm4u4uLixF5/+/YtrKysMGjQoD8etzQRPcjdv38fWlpaqFatGoYNG4b27dtDRUUFZmZm8Pf3/+ED382bN9GgQQM0bdqUbS7zkzIyMrBgwQJoaWnByMgI/v7+iI6OFrvG39/bop93794NBQWFYrs+l3fNmzeHk5MTHj58iDNnzqBLly5QU1NDtWrVcP78ebFzv3z5gn79+kFFRQUcx6FSpUpYs2aNhCJnSpKYmIgdO3bAw8OD32xGtEkG8HOrT1q3bo169eohNTX1T4YqFUSJgoKCAty7dw8rVqzAuXPnkJSUhIKCAuTn5+PBgwdYsGABHB0d0aRJE0yZMgXh4eFi72cYhvlfFe2rxMfHo0+fPnjx4gWAwr5kvXr1wHEcunTpgoMHD+LMmTNo3749dHV1+U142SACU5pYApRhZJCLiwu/rD0nJ4d/PSIiAgMGDICpqSk4jsPevXslFSLD/LIBAwbwnanc3Fzk5eWhV69emDVrFnr06AGO41C9enUsXryYnwUDALdu3UKLFi0QGhrKv/bgwQM0aNBAbLdXWeLm5oZmzZrh3r17AIDTp09DIBDAwcEBysrKcHJywtGjR4u9LzMzE5cuXUJcXFwpR1z2xcfHo1+/fhAIBLC3t8eOHTvw7t27H56flZUFU1NTDBo0SKbKk0RFRUFHRwerV6/mX1u6dCmWLFmC+vXrg+M4tG7dWuwefP36NW7fvo2QkBA8e/ZMAlEzJSk6UzczMxNbt26Fo6MjOI4Dx3EYPXq0WB/l+/tcNBBw4sQJCAQCnDx5svSClyDRdZg2bRpUVVX562VjY4NVq1YhPj5e7PyvX79KIswy578mYdLT02V61jEju9LT03Hs2DG+/9y8eXNYWVnh5cuX/DkRERGYNGkSKlasyLdV5ubmWLFiBX8O+/wwpYklQBlGBohG+z98+ICXL1+iffv2YvXPsrOzxc4/evQoOnbsKFNLKpmyLT4+HjVr1kTlypXx7ds3sWOih8UbN27A1dUVHMehSZMm2L17Ny5evIjOnTujYsWKxf5NWbv/RR3Q69evw8LCAnv27OHbDnt7e3Tq1AlRUVHw9fUFx3HQ1tZG48aNf3nJNvPPbt68iYYNG4LjOLRv3x5nz57F58+f+eOiv9PMmTNRsWJFxMTESChSyUhISIC5uTn69u0LALh06RL09fVx/vx5REZGwt/fH+bm5uA4DmPHjmWz3cqIXr16wdbWFt26dcPEiRPh4eEBJSUlaGlpYePGjfx5QqFQ7G8qFApRs2ZNdOvWrVhfpjwJDQ0VqzcZGxsLOTk5DB8+HOfOncP58+fRoUMHcByHBg0a4ODBg0hISJBgxLJBVGeYrZpiZNHTp0/h5OQEIyMjDB48GAKBAEFBQcXOS09Px/v373HmzBncvXtXrG1i39FMaWMJUIYp50Qj2m/fvkWzZs2go6MDjuMgEAgQGBjInycUCsUeHkTvY8sSmLLiyZMnCAsLAwCcO3cOHTp0EBuFFtmxYwc/y1lNTQ3q6ur8sllRslSWR6ODgoKgpaWFW7duAQAOHz4MJSUlXLt2DUDh7NqqVavCw8MD06ZNk2SoZVJJ99b3iZuCggLs2rULlStXho6ODnx8fMTqr7579w4cx8Hf31/m7tW8vDz0798fHMehd+/eMDMzQ/Pmzfk6YllZWbh27RqGDRsGNTU16OjoyNwGUWWF6MF3//79UFJSwr59+/hjnz59woEDB9CgQQNwHAdnZ+cSSz0sXrwYKioqePjwYanFXdrOnTsHjuMwdOhQhIWFIS8vD3v27IGLiwuioqLEzj179izs7e0hLy8PHx8fnD9/ng1S/YCof7tp0yZ4e3sjKSnpp98ranf9/f0hEAjEVpUwjKwoKChAWFgYOnfuDDk5Oejr6yMwMFBmV08xZQNLgDKMjGjdujUMDAwwceJEjB07FnXq1AHHcXB0dMSVK1f480RLhxmmLJs9eza0tLRgbm6OOXPmiC2jBAoffFatWoXp06fj3LlzEopSOqWlpfGlBADA09MTHh4e/E7wb9++haOjI86dO8c/QLIR/J8nulahoaEYN24cGjdujIEDB2Lz5s3FZh1/+fIFkydPhqGhoViSNC4uDosWLZLph4ydO3dCU1MT8vLy6NatGyIjI8U+5ykpKTh8+DC8vLz48hc/2i2ekay+ffvCzMyMH7Aq2gd5+PAhatasyS+dXLZsGX8sIyMDDRo0wMyZM8t1GxQfH4+xY8dCT08PRkZGWL58Ofbs2YO6devy5xQdrM7NzcXatWv5JaclDQQyf6tWrRr69ev3jyVHSpKUlARNTU3MmTOnXN9/DPNvdu/eDY7jULlyZcjLy6NLly44d+4cvnz5wp+Tk5ODq1ev4vTp0+zzwkgUS4AyjAyIj4+HlZUVNm3axL/29OlTzJo1C5aWluA4Dl27dhWbYcQwZVlWVhaCg4PRqVMn6Ovro3bt2iUuyylK1mbS/Yxv376hS5cucHFx4V+7evUqzMzMxGZrMT9HlKR49uwZTExMoKOjgyZNmqB69eqoWLEiWrZsieDg4GLvE9XwK5oYktWBKtHnNDs7G9ra2qhZsyaUlJRgZWWFNWvWIC4uTiwZFBcXhyVLlsDf319SITP/ws/PDwKBQGwDo/z8fP5vvXnzZtjY2MDf358vByE6dvPmTbESEeVVTk4O7t69i27dukEgEMDY2BgVKlTAyZMnf7hhWmJiIpv9/AOi65SSkgI3Nzfs3r37l9/r6+uL6tWrIzEx8Y/EyDDS7Pu25vz583j16hVWrFiBihUrQkdHBxMmTMD9+/eRl5eHmJgYmJqaYuLEiRKMmmFYApRhZMLnz5/Rq1cvfoOAol9a165dw8CBA2FgYACO47Br1y5Jhckwv0XRkeWkpCSsXr0abm5u0NHRQcuWLXHnzh3+OEt6/n0NXr58ifDwcISGhorVZ/L394eioiJGjhyJNWvWwNnZGWZmZpIKt1xwd3eHs7MzLl68CAA4efIkOI6Dqakp9PX10b9/f37HZqZkHz58wIQJE3Dv3j1cvXoVrVq14uv7hoSE4MOHD2Lns8+65J0/f57fHbio8PBwKCkpoXPnzoiNjeVfF/3NNm3ahObNm/Ptkiz/LfPy8hAcHIzmzZuD4zjUrVsXZ86cKbbR0ffXiM24+pvo2rx79w7+/v5wc3PjB0h/9jqFhoaC4zjs3Lnzj8XJMNJM9Fm5deuW2OqK/Px8PHv2DEOHDuUHJ/v3748mTZpAS0uLr9Mvy+04I1ksAcow5dzGjRvBcRw0NTUxe/ZsfgOBorOHMjMzsX//frRo0YItlWLKvJLq1j569AhTp05FrVq1ULFiRfTt2xfv37+XQHTSRXStwsLCYG1tDY7joKqqCicnJyxYsABpaWlIT09Hnz59YGhoCIFAAEdHR1y4cAGA7M5C/C9Enf1bt27BxMQEu3fv5q+fm5sbWrVqhStXrsDFxQUcx6F27doYNWpUsfINzN+KPkB9/PgRO3bsQK1ataCkpARfX1/cvn2b7YAtJcLCwsBxHDp37oysrCyxYxkZGRgyZAg4joOXlxdCQkL4khvR0dHo3r07atSoIYmwpYKoDcjMzERERASAws3AAgMDYW5uDg0NDYwZMwYPHjwo1xtB/W4LFy7kSyu0aNGCHzT5mcSMm5sbmjdvLnObJTJMUe/evUOFChXQokULHD16VOxYdnY2bty4gXbt2oHjODg5OfErh1jfkZEklgBlmHLu+vXr8PLyQsWKFaGvr4/9+/fzx/Lz88WSRaIHRTZTgClLRPfwmzdvMG/ePDRs2BD9+vXDuXPnitX0unDhAgYOHAhFRcUSlxrLKkdHR9SoUQNr166Fv78/7O3toampCUdHR5w4cQJAYSLizp07eP36tYSjLds2bNgAExMThIaGAiic/SkvL49Lly4BAF68eAEjIyNYWVlh8ODBkgy1zBEKhXj9+jXmzJkDQ0NDKCoqYvXq1ZIOi/l/8+fP52t4xsbG4urVq8jNzeWPL168GBoaGlBVVYWLiwvatWuHSpUqQU5ODocPHwYgWxsz5ufnIz09nf+5U6dOsLW15RN1+fn5iI6OxpgxY6CmpgYLCwusXLkSL1++ZP24nxAXF4f169fDw8MDHMehcePGuHfvHn/8R4nQLVu2gOM4fmNAhpFVKSkpGD16NOrUqYPKlSujX79+Yp8hkYSEhF/aZIxh/iSWAGUYGZCWloYdO3bAyckJHMehTZs2ePLkCX88Ly+PLUVgyrymTZtCWVkZtWvXRtWqVSEvLw8vLy+cOnVKbLOYb9++4cyZMxKMVLpER0fD1tYWR44c4V9LTEzEnDlzUL16daipqaFz5864e/euBKMsP54+fYoxY8bwPzdv3hytW7fmZ7y9fv0a9vb2uHnzJr+sjCUzfk1ubi4iIiLQuXNntsmZFCipf2FrawstLS0sWrQIjx494l9/8+YNRo8ejdq1a8PGxgZeXl44cOBAaYYrNa5evYp27dphzZo1CA8PB8dx2LhxY7Fd3bOysviZVgoKCqhRowYbqPoF9+7dg5+fH8zNzcFxHIYPH45Pnz6VeK5QKMSoUaMwePBgseQ9w8iysLAw+Pr6wtzcHNbW1pg1axZbZcVILZYAZRgZkpiYCD8/P5iYmEBOTg5jx46Vic0DmPJL9GB9/vx5aGhoICgoCCkpKUhJScGuXbtgYWEBNTU1jBgxAqGhoWKzaYq+X9a5uLjwy9qLLrmOiIjAgAEDYGpqCo7jsHfvXkmFWGaJHpIzMjIQGRkJAHxiMzU1FR4eHujQoQN//o0bN2BpaYmQkJBSj7W8+X6pNSM9nj17xtdtrV+/PrZt2yY2Y//Lly/Izs4WWyopawMBN27cgKurK5SVlaGhoQFbW1u+z/b9Ch6gcBXP9u3b0aNHDwlEW/YU/f7PyMjAxYsXMWjQIKipqUFfXx8rV64s8X2fPn1iS98ZBihWoufIkSNo3rw5lJWV4eLigm3btrHl7ozU4QCAGIaRGQDoyZMntGLFCgoODqbMzEzat28feXt7Szo0hvklAIjjOCIiOnjwIK1cuZL27NlDFhYWJBQKSSAQ0Ldv32j58uW0dOlSMjQ0pF69etHQoUPJyMhIwtFLluj6fPz4kdLS0mj8+PHUrFkzGj16NBER5eTkkJKSEn/+sWPHaOfOnbRr1y5SV1eXVNhlSkFBAeXk5JCqqioREfXs2ZO+fv1Ku3fvJl1dXf68YcOGUXBwMAUEBJChoSFt2rSJ7t69S0lJSfz9zTDlSUFBAcnJyRER0alTp2j06NEUFxdHXbp0od69e1PDhg1JW1tbskFKia9fv1K/fv3o6NGjpKSkRK1bt6a5c+eSjY0NERHl5eWRgoICERGlp6eTuro6374Xvc6yTnRNhEIhhYeH0/bt2ykrK4sUFRVpwIAB5OLiQkREycnJdPXqVdqzZw+dPHmSFi5cSH/99ZeEo2cY6SBqUz58+EAGBgZEVNgXz8/P59uhnJwcGj16NG3dupUqVapEtWrVosOHD5OysrIkQ2cYHkuAMoyMysvLo0uXLtHcuXNp4cKF1KhRI0mHxDA/peiDjEAgoGPHjtGDBw/o/PnzdPv2bf68ognSly9f0tSpUyk4OJg+fvwoloCSNaIO7Lt378jX15cePHhAX758IY7jaM2aNTR8+HAiKrx+ubm5fCJU9D72UP1zrl69SkFBQdSyZUsyMzOj+vXr06ZNm6h3796krKzM3583b96kkSNH0rt37yg1NZUqVapES5cuJW9vb8rPzyd5eXlJ/yoM81sUbZO/t2TJEpo9ezYpKyvTwIEDqWPHjuTs7EwCgaCUo5Qeous1YMAAyszMJI7j6PLly1RQUEC+vr40ffp00tHRISKiFy9e0IABA2jAgAHk4+Mj4cilj6i/MGfOHFq9ejVlZ2eTjo4OpaenU1paGnXo0IHWr19PFStWJKLCPsOlS5eob9++pKio+I/3LsPIkvT0dGrdujW1atWK+vTpQ5UqVSKiwj6iUCgkBQUFSk1NJVtbW6patSq1bduWJkyYwD5DjNRgCVCGkXFZWVmkoqLCvpiYMiknJ4ccHBwoOjqaiIj8/Pxo1KhRYrOHit7b8fHxZG5uzpJ4RNSmTRu6f/8++fj4UH5+Pl2+fJkeP35MdevWpSVLllCTJk2IqHCwhOM4loj7RadOnaIRI0ZQWloaERFZWlrSuXPnSFdXl4RCIRERn9z58uULhYSEkJycHFlbW1PdunUlFjfD/G6i5FN+fj69ffuW7t+/Tzk5OVS3bl3S0NAgExMTIip8sB4zZgxt376dtLS06MqVK2RnZyfZ4KUAAMrKyiJVVVU6ePAgbd++nW7dukWGhoY0adIk6tChA61evZoWLFhAb9684a8nU0h0/z179ozq1KlDI0aMoDFjxpCZmRlduXKFTp48Sdu2bSM9PT3avn07/90nwvrHjKxKTU0lIhKbNPDo0SPq2LEjZWRkkL29PfXs2ZM6dOhAGhoa/Dnx8fE0aNAgWrNmDVlZWRER+xwxUqRUF9wzDMMwzH907949DBs2DG/evOFfy8/PR0xMDBYvXoxKlSpBU1MTM2fOxLNnz8TqDrFan+Li4+NhZWWFTZs28a89ffoUs2bNgqWlJTiOQ9euXcWuNfPrPn36hAYNGkBOTg76+voYNWoUnj9/zh/Pzc3l6xp+X8+P3bNMeTNv3jy+feE4DhoaGujatStOnDiBL1++8Oc9ePAAvXv3lmCkklX0s1/SrvefPn3C8uXL4ejoCDk5OaiqqkJNTQ1z5sz54XsYYNSoUbC0tBTbBBQo3Bhx48aNUFFRQc+ePQGw9pdhAKB+/fpwcXHB1atXi9XUXrFiBSwsLGBsbIy+ffvi7Nmz/LGQkBDo6enh5MmTpR0yw/wrNgOUYRiGKRPGjRtHq1atos2bN9OAAQPERpMzMjLo2bNntHr1atq3bx/VrFmTxo4dSy1btiRjY2MJRy59vnz5QiNHjqQePXqQp6en2LW8fv067d69m44fP04fP36knTt3Up8+fSQccdmCwk0mSSAQUKtWrfgZXJGRkWRubk4+Pj40aNAg0tLSIiKi2NhYmjZtGvXo0YM6deok4egZ5vcRzbY/ffo0dezYkTp06EB9+/alvLw8un//PgUGBpK8vDwtXry4xKXbsjhbX9Qenzhxgi5evEjx8fHUrl07cnNzIzMzM1JRUSEiomfPntHJkyfpw4cPZGZmRqNGjRJ7v6z7/jpMmjSJgoKCKCkpiYiI8vPzSU5Ojj9n7ty5NGfOHHrx4gVZWlpKJGaGkRa5ubkUFBREa9asoejoaOrXrx+NHDmSqlSpwtfz/PjxI/n5+dHBgwdJV1eXzM3NqUKFCnTx4kUyNjamBw8eSPi3YJgSSCrzyjAMwzC/Ijs7G0FBQfyMuTFjxuDAgQNi53z58gWnTp1Co0aNIBAI0K5dOxw9epTt2FrExo0bwXEcNDU1MXv2bAiFQhQUFIjNmM3MzMT+/fvRokULvHz5UoLRlg+imRNr166FtbU1tLS00KxZMxw+fBifPn2Cn58f5OTkkJycLOFIGebPcHV1hZeXF+Lj4wH8PcMuOjoabdu2BcdxCAkJAQCZ3jVYNHvz1q1bUFZWhpaWFmxsbCAnJ4caNWpg1apVeP78Of89+L0fvS5Lvnz5IjaDU/Tf69evB8dx2Llzp9g9JtrJetu2bVBXV8eNGzdKN2CGkVJ5eXl4+/Yt5s+fD319fRgaGmLJkiV4+/at2Gfo3r176N+/PxwcHGBubo4uXbrwM61luT1npBObAcowDMOUOREREdSyZUvS0tKixo0b04gRI8jBwYGICmcMffz4kY4ePUqLFi2i+Ph4evv2LauL9v9u3LhBS5YsobCwMBIKhbRmzRrq1q0bERVeOyLiZ1x9+/aNNDU1+RpqzP8uOTmZlixZQgcOHKD09HSSl5enrKwsmjRpEs2ePVsmZ7wx5VtSUhK5u7tTvXr1aMeOHWLtiVAopMjISPLw8KCWLVvSnj17JBytdGjWrBkpKirSvHnzyMrKimJiYmjBggV07NgxatiwIY0aNYrc3NzI0NBQ0qFKleTkZOrZsycNGzaMmjRpQhUqVOCPvXr1itzd3QkALVy4kNzd3UlfX5+ICr/rVq9eTcuWLaPo6Gh2XRmZ9vTpU6pcuTKpqakRUeFs6aioKFq9ejXt2rWLbGxsaOrUqeTu7k46Ojr8LOrExERSV1cneXl5UlVVleSvwDA/xBKgDMMwjFRbvnw5Va9endq2bSv2+p07d2jTpk105coVUldXp06dOtGwYcPIyMiIiAqX77x48YKio6Opc+fOLIlXRHp6OgUHB1NgYCDdu3ePWrduTYsXLyZra2siKr40kPl5+P9ll1FRUXT27Fm6d+8eVa1alSwtLcnd3Z3MzMyIiOjBgwe0c+dO+vLlC9WsWZMmT54s9n6GKU+sra1JR0eHbt68SURUbCOwDh06UHJyMp0+fZrf2VzWiD77KSkp1L9/f6pfvz7fLoicOnWKpk2bRjExMdSlSxfq378/NWnShLUZ/+/BgwfUunVrSk9PJ29vbxowYAA5ODjwiZzw8HDy9fWl+Ph46tSpEzVp0oRq1qxJhw4dop07d1K/fv1o2bJlbCCKkVnv37+nunXrUuPGjWndunVim4qmp6dTaGgoLVy4kK5cuULt2rWjSZMmka2tLf8ZYxipJ7nJpwzDMAzzz9LS0uDo6AiO49CtWzfExMQUO+fw4cNo0aIFTExM0KBBA2zatKnEJTdsU4PiEhMT4efnBxMTE8jJyWHs2LH4/PmzpMMqs0T3XXh4OKytrSEvLw9TU1MoKChAQUEBzZo1w969e/kll4D4hiVs+SpT3oja3dWrV4PjOAwfPlxswyOgcFOfDh06wNHRUeY/A0KhENu2bYOnpyfWr18v9rpITk4O1qxZA47jMG7cOEmEKdWys7OxYsUK6OnpQV9fHzNnzsSjR4+QnZ0NAEhISMDkyZOho6PDb8ilpqaGgQMH8tdZ1u9DRnalpKSgefPmGDJkCAAgPT0dUVFR/PGCggJ8+PABW7duRbVq1aCmpobx48fj+fPnbAM2pkxgM0AZhmEYqQWAnj9/TmfOnKFVq1bRhw8faNy4cTRx4sRio9KbN2+mPXv2UHJyMjk7O5OPjw+1a9dOcsGXEQDoyZMntGLFCgoODqbMzEzat28feXt7Szq0MsvOzo40NDRoypQpVL9+fQJAy5YtozVr1pCamhoFBgayzY4YmYD/n9WYkJBAkyZNopCQEGrYsCH5+vpSt27dKCUlhfbs2UOzZs2ipUuX0tChQ2V69t2ePXv4Teesra1p7969VLt2bf44iswQT05OJi0tLVJWVmYrHEqQmJhI8+bNo82bN1OtWrVo9OjR1LJlS34WflpaGp04cYI0NDTI3NycrKysSElJSabvP4YRyc3NJUVFRRoyZAjdunWLRo0aRR07diQDAwMiKlwp9PbtW9q2bRtt2LCBCgoKaPny5dS3b1/JBs4w/4IlQBmGYRipl5OTQ48fP6bdu3fTtm3bSE9Pj+bOnUu9evUSe1B5+fIlbdiwgXbv3k02NjZ08eJFCUZdtuTl5dGlS5do7ty5tHDhQmrUqJGkQyqTLly4QJ06daKNGzdSz549xY7FxsZSx44dKS0tjc6dO0c1atSQUJQMU/o+ffpE/v7+tG/fPvr8+TPp6uoSAEpPT6dWrVpRcHCwpEOUuG/fvtGFCxdo69atdPbsWWrbti2NGTOG6tWrRxoaGvx5LOH588LDw2natGl06dIlatGiBY0cOZJcXV1JT09P0qExjFTJzMzka3fm5OSQkpISbdmyhVasWEEpKSnUsGFD6tGjB7Vt25YUFRWJiCg7O5uioqJo1qxZ1LdvXzZ4zkg9lgBlGIZhyoyvX79SaGgobdiwgY4dO0YNGjSggIAAcnNzEzvv0qVLpKenR3Z2dmw2xy/KysoiFRUVVovyPwoJCaHevXvTgQMHqG3btnytQwAkJydHp0+fprZt29LmzZtpwIABEo6WYX6v/Px8kpeXpxcvXtD58+cpNTWVlJWVycvLi6ysrIiI6P79+3TixAn68OEDpaSkkI+PD7m4uJCenh5rr6lwM7rExEQKDg6mZcuWUVpaGvXv3598fX2pZs2afOKB+Wfff4cdOHCAZsyYQe/evSNfX1/y8fEhOzs7tlkLwxDxNXCXLFlCEyZMEDuWnZ1NCxYsoK1bt5KioiJ5enpSz549qX79+vw5RZOnDCPNWAKUYRiGKXPevXtHly9fptWrV1NERAT5+PiQn58fmZubSzo0RgYVnY0VGRlJzs7ONGjQIFqzZg0RFSY0BAIBcRxHcXFx1LBhQ+rfvz/NnTtXkmEzzG9VNOFUt25devToEcnJyZGqqirp6OhQ+/btaebMmSVucsQGXIrLycnhVzVs3bqVjIyMaPTo0eTp6UlVqlSRdHhSLy0tjb//RDIyMmj58uW0ZMkS0tPTo549e9KoUaPYru+MzLtw4QIFBgbSmTNnyMzMjFatWkWenp5i58TGxtKcOXPozJkzVLlyZercuTN169aNqlatKqGoGebXsbUTDMMwjFQraZzO1NSUevToQbt27aJ58+bRhQsXyN7enubPn0/p6ekSiJKRVaLk5qtXr8jPz4+qVKlC3bt3p8DAQFq8eDEREcnJyfHJnWfPntG3b9/IwsKCiEq+vxmmLBLd4wsXLqQ3b97Qpk2bKD09nQIDA8nZ2Zn27dtHLi4utG7duh++V1Z9+vSJDh48SKdPn6arV68SEZGSkhLVqlWLFixYQGfOnKHatWvT2LFjacOGDZINVkoVFBQQUeGS9wkTJlDjxo2pevXq1LdvX7pw4QKlpqaSmpoazZw5kx49ekSurq60ePFiUlZWlnDkDCN5Hh4etH79etq4cSMZGhqSl5cXtWrVil6/fs2fU61aNdqzZw8dOHCA1NTUaPXq1dS1a1e6efOm5AJnmF/EZoAyDMMwUkk0qw4AvX79mkJCQsjMzIyqVq1KFhYW/CZI6enp9OjRIwoKCqINGzaQv78/TZs2TbLBM+VeWloaPXv2jOzt7UleXp4aNGhAycnJdPv2bRIKhTR69Gg6fPgw1axZk2bNmkVmZmYUGRlJ27Zto69fv9Lz588l/SswzG9TdAanv78/vX79mlasWMHXrfz8+TMFBwfT/v37KSIiguzs7GjixInUpk0bSYYtUaJyAYcOHaK5c+fS06dPSV5eniwsLMjJyYkGDx7M12IWCoWUmppKZ86coUaNGpG5uTmrA1qEqHTC+/fvycXFhdLT08nW1pbk5eXp2bNn9OHDB/L19SV/f3+qUKEC/753796RqakpK73AyLTvZ+A/fPiQtmzZwg9WjR8/ngICAkhBQUHsfWvXrqWNGzfSrVu3SFNTs1RjZpj/iiVAGYZhGKkkerhbvHgxrV69mt6/f08cx1GFChWoV69e5OXlRa6urnw9tA8fPtD9+/fJ3d2dFBUV2ZJK5o+6ffs2DRo0iDQ1NfmlvQcOHKD27duTnJwcvXjxgvbt20cHDhygqKgo/n0NGjSgRYsWUf369fkECMOUdaL29uDBg3TlyhV6//49hYSEUE5ODsnLy/PJpRcvXtDBgwdp+/btpKioSE+fPpVw5JIh+n7LysoiMzMzsre3p7/++ossLS2pe/fu9OTJEzIxMaGOHTvS8OHD+RnjLOlZMtH9161bN4qOjqYVK1aQu7s7ffnyhd69e0d79uyh1atXk62tLYWEhFDFihUlHTLDSBXRIEBycjLNnz+fDh48SDVr1qRnz55RcnIyaWlp0aJFi2jw4MFi7xPtFs8GEZiygiVAGYZhGKkj6khFR0eTvb09devWjQYMGEB16tQhBwcHevPmDVlaWlL//v3J09OTateuLfZ+lvxk/rTk5GTav38/bd68maKjo6ly5cq0f/9+cnJyEjvv8ePH9PnzZ4qOjiZjY2NydXUVm4HEMOXFixcvyNramvT19cnAwIBOnz7N11YUPSSLXLt2jTQ0NMjBwUEmH5xF31GTJ0+mkJAQ2rVrF7m4uFBOTg7p6+tT+/btKS4ujm7fvk1169aljh070ujRo0ldXV3SoUuthIQEatCgAXXu3JkWLlwoNlvt69evtGnTJpo8eTKtWbOGRowYIcFIGUb6iNqktm3bUnJyMk2aNIm6du1KiYmJdPnyZdq1axddvHiRnJycaNWqVeTi4iLpkBnmP2EJUIZhGEZqeXt708ePH2nDhg1Us2ZNevDgAdWrV4/8/f3p1KlTdOfOHfL09KQWLVqQt7c3GRgYSDpkRsbMnj2b5s2bxycmJk2aRKNHjyYtLS3+nIKCAnr9+jUZGBjwS4IZprzJzc2lVatWUUhICIWGhlLlypVp0aJF1KVLFyIqfMDOz88vtoxSVn358oXat29P9vb25OfnR1paWtSvXz+6c+cORUREkLy8PLVr145iYmLow4cPdOjQIZkuGfBvMjIyqEaNGtS6dWvatGkTCYVCAiCWXK9VqxZVrlyZTpw4IXNJd4b5N6KyPlOmTKHp06eLrVCJjY2lGTNm0KFDh4iIqGHDhnT+/HlSVFRkEw6YMoWtoWAYhmGkUlxcHL169YoaNmzI73g7atQoaty4MY0bN44OHjxItWrVouPHj9PIkSPp06dPEo6YkUWNGzemrVu30q5du8jLy4vmzZtHTk5OtH//fn6Do+joaKpbty4tX75cwtEyzJ8BgBQVFWnSpEl08OBBmj59OhERDR06lLy9venevXvEcRwpKChQfn6+hKOVHhUrViQlJSXS0tKit2/f0v79+2nUqFEkFApJUVGRrK2tycjIiJYvX86Sn/9CXl6eatasSSEhIXTr1i0SCAQkJydHeXl5RFSYoK9atSqlp6dTVlaWhKNlGOmjrKxMioqKJC8vT/Ly8vygFVHhBkg7d+4kW1tb8vT0pGrVqpGSkhJLfjJlDis8xTAMw0glRUVFsrKyotq1a5OioiJdu3aNwsLCKDg4mDiOI0NDQ3J2dqauXbuSq6sr1apViy19Z0pds2bN+P+uV68etWzZkjZv3kw9e/akHTt2kKenJ128eJEEAgFNnjyZiFiJBqb8KXo/m5qa0rx588jT05MCAwPp/PnzdOfOHerVqxeNGTOGTExMJBip9NDW1qYVK1bws8WvXbtG+vr6ZG9vT+rq6pSfn086OjpUtWpVGjhwIBGxGqBFFW1HP378SPr6+jRz5kzq0qULDR48mCZMmEAdOnQgXV1dIiKKiIig6Oho8vDwIHV1ddYOM8x39PX1qWbNmrR582by9PQkOzs7kpeX5+uVZ2VlkUAgIC8vL/Lx8SEikskSJkzZxr5BGYZhGKlkZGRE48aNI29vbyIiCg8Pp0qVKlGVKlVIQUGB0tLSKDs7m16+fCmWhGIYSTE2NiYfHx/avHkzLV68mBISEmjMmDH06NEjWrNmDSkrK1N+fj576GbKBaFQSERE6enp9OTJEzp27Bilp6fzr7u4uNDu3btp7dq1ZGNjQ6tXryZPT0/Kzc2VZNhSxcTEhK+Nam5uTgkJCXTnzh0iKtyJ+dixY5SZmcknGFjy82+i+2zjxo3UpEkTWrt2LTVs2JCWLVtGycnJNGzYMOrSpQvNmDGD/Pz8qG/fvpSZmUkLFy4kIiJWBY5hxKmpqdH48eMpISGBxo8fT8eOHaMvX77wS+FjYmIoLS2N8vPzSVlZmYiIJT+ZMofVAGUYhmGkgmg2hlAopJSUFNLX1xc7HhwcTF26dKH9+/dT27Zt6caNGzRkyBDq06cPzZs3j83mYKRKbm4uJSYm0sePH0lBQYHs7OwkHRLD/DaiWT8fPnygkSNH0unTpyk/P58EAgENHz6cfHx8qHr16vxD8rdv32jFihVkYWFBPj4+MjmTseh3lFAopPT0dNLU1OSPJyYmUp8+fSgqKorMzc0pKSmJsrKyKDw8nMzNzdlMqyJE1+LVq1dUt25d6tSpE02YMIFq1apFRIX32/Tp0+nkyZOUkpJC6enp1KlTJxoyZAh5eHiwa8kw/2DLli00fvx4kpeXpzZt2pCtrS0pKSnRhg0bKDk5md69e0cqKiqs382USSwByjAMw0gF0QNxYGAgHT58mHr37k0DBgzgj8fGxpKXlxclJCRQrVq16OXLl6Svr09RUVHEcRzriDEMw5QSUXvboUMHun//PvXu3ZuaN29OwcHBtGHDBjI1NaURI0ZQ9+7dycjISGwH+KLvlxWi77ecnBw6fvw4bdq0iVJSUkhZWZkGDx5M7dq1I11dXXrx4gUtXryYXr58Sebm5uTt7U1t2rRhCbsf8Pb2pri4OAoKCqKaNWuSUCgkoVDIz1h79+4dZWVlkby8PFlYWEg4WoaRbkXb5VevXpG/vz8dOHCAcnJySCgUUqNGjWjcuHHUvn17flk8w5Q1LAHKMAzDSJzo4S4iIoLc3d2pZ8+eNH36dDI2NhY7Lz09nfz9/eny5cvUvHlz6tSpEzk6OrKOGMMwTCkRJfNu3bpFrVq1olWrVlH//v2JiKhFixaUkpJC1atXpwMHDlCTJk1o+PDh1Lhx42Kz+mWJ6JqNHj2atm/fTkZGRmRoaEifP3+mp0+fkp2dHa1atYoaNmxIRESpqal87Uoi2UsY/4ykpCRyd3enRo0aUWBgoFiCOC8vjxQUFEgoFNKzZ8/4maEMw/y7ou1NYmIivXnzhrS1talSpUqkqqoq4egY5n/DEqAMwzCM1GjatCkJBALasGEDVatWTawTVnQGTE5ODikpKUkyVIZhGJk2ZswYevDgAa1bt45sbGzo7Nmz5OnpSadOnaI6derQ0KFD6eTJk0RENG3aNPL395dwxJIhSn4+fPiQnJycaNasWTRhwgRSVVWlmJgYunHjBq1YsYKeP39OW7du5TcXYf5ZQUEBVatWjdzd3Wnz5s18Tc+iieLVq1fT6tWr6dixY2RtbS2pUBlGavxs+REABEDmSpUw5R+7oxmGYRipEBMTQzExMeTq6kqWlpZE9PeDDACSk5Ojjx8/UmRkJEt+MgzDSFBWVhapqKiQkZER2djYEBHRzJkzqUOHDuTi4kLGxsY0ceJEqlevHm3atIkGDx5MRLK58YwogbBnzx4yMTGhjh078rOorKysqG/fvrRmzRoyMjKi9evXU0ZGhiTDLRNEg6N16tShI0eO0O3bt4njOOI4jgoKCoio8B7NysoijuOoQoUKEo6YYSTr3LlzlJOT89MJTY7jWPKTKZfYXc0wDMNIBS0tLcrKyiINDY1itc5EidDdu3fTxIkTKSEhQRIhMgzDyKyiyUsVFRXq3bs3jRo1ioiIHj9+TMnJydSwYUPS1tYmosIlyjk5OeTm5kaVKlUiIpLpZdw6OjqUnJzMD/Dl5+fz9SqbNWtG/v7+dPfuXXr+/LmEI5V+ouTMiBEjKDs7myZMmEDBwcGUmprK9x8uX75MgYGB1Lp1a6pYsSK/azzDyJqkpCRq3bo1bdq0ifLz8//zvyP6DsjMzPxdoTFMqWMJUIZhGKZU5ebmUnZ2drHXNTQ0yMrKinbv3k2xsbH866IOV1paGr17945SU1P5B2yGYRimdIja4kOHDtHXr1/JxsaG3NzciIjIyMiIsrKy6N27d0RUWDcuIiKCUlNTZX7zGVHCwc7OjnJyciggIIDfmEcgEFBeXh4REamqqpKamhq9f/9ekuGWKR4eHrRp0yZ69uwZ9e/fnwYOHEhTpkyhMWPG0IABA0hNTY2WLFki6TAZRqLmzZtHNWrUIA8PD5KXl6fc3Nz/1M5wHEdRUVHk6OhIMTExfyBShvnzWAKUYRiGKVV9+vShIUOGUExMDL9UjYhITU2NevToQVFRUTR//nyKjo6m3NxcfsbQ5cuXae/evdShQwdSU1NjszkYhmFKkUAgoI8fP5KPjw9NmTKF0tLSiKiwFqOuri61atWKVq9eTb169aJu3brRypUrady4caSkpCTW1ssK0e+8Z88eOn78ONna2pKHhwctW7aMAgIC6MmTJ0REpKCgQCkpKRQZGUkCgYCcnZ0lGXaZ06tXL3ry5An16tWLrl+/TuvWraMNGzZQ586daffu3fz9x5bzMrIoNzeXsrKySF1dnd9YdOzYsf+53MbUqVMJgExvaseUbWwTJIZhGKbU5OTkkJ+fH23evJmUlJRowoQJ1KNHDzI0NOTPWbJkCc2bN4+0tbWpZ8+eZGBgQElJSbR7924yMDCgR48eERHbFZdhGKa0paen0/jx42n79u20dOlSGjNmDH/sw4cPtH79ejpw4AApKChQz549afLkyUQku+11cnIyGRkZ0cyZM8nPz49SUlLIx8eHzpw5Qw4ODuTm5kZ16tShEydO0KVLl2jChAk0e/ZssU3/mJ/36dMnSklJIT09PVb3k2H+34YNG2j48OE0evRoatmyJXl6etKmTZvIx8eHFBUV//X9ovb7zJkz5OnpScePH6e2bduWQuQM8/uxBCjDMAxTqvLy8ig6OpqWL19Oe/bsIXt7e5o6dSo1adKEdHR0KDs7my5fvkzbt2+n06dPU1ZWFikqKlK/fv1oyJAhZGdnR/n5+SQvLy/pX4VhGEYmjR49mjZu3EgBAQE0cuRI/iFa1DZ/+/aNNDU1iejndx0uj+7cuUMTJ06kZcuWkYuLC//6/v37af78+fT8+XPKy8sjExMTGjRoEM2aNYuIZDdhzDDM75eXl0cLFy6k5cuXU0ZGBlWpUoXOnj1L5ubmfGmTn2lvrK2tqVatWhQUFMQ2I2XKLJYAZRiGYSQiMzOTbty4QQEBAXTjxg3q2LEjTZo0iV/+l5ubS9++faNnz55RpUqV+E00GIZhGMkQJThfvHhBw4YNoydPntD+/fupcePGkg5Naohmb8bFxVFwcDAtWrSIIiMjydjYmHJycsQSB2FhYaSjo0MaGhr8SghZThgzDPPnjBo1ijZs2EAFBQVkZWVFixcvJi8vLyL68aCL6PWVK1fSzJkz6fr162Rvb1/aoTPMb8MSoAzDMIxEffr0iUJCQmjRokWUnJxMQ4YMoeHDh5O5uTlbAsgwDCNB/zQTMSUlhTw9PenVq1e0Z88e8vDwKOXopFvdunXpwYMHpK2tTQEBATRkyBD+WG5u7k8tPWUYhvldWrZsSdra2lSvXj3av38/3b9/n1q1akWLFy8mGxsbIiq5zU9JSSErKysaNGgQzZ8/nw3QMGUaS4AyDMMwEpefn0/x8fG0ZcsWWrduHenq6tLkyZOpU6dOZGBgIOnwGIZhZI7oQTgzM5Pu3LlDlpaWpKSkxG+kQUT05MkT6t69O2lpadG2bdvIysqKLd/+f1FRUTRp0iQ6c+YMERHNmTOH+vTpQxYWFkRUONOT4zh2rRiGKTWfP38mHR0dioiIoGPHjtG2bdsoKSmJRowYQX5+fqStrV3sPUOHDqVjx45ReHg4mZqaln7QDPMbsQQowzAMI1FFH5azsrLoyZMntHTpUjp69CjZ2trSvHnzqGXLlhKOkmEYRjbNnDmT5s+fTwYGBlSxYkUyNzcnd3d3qlixIrVo0YJu3LhBXbt2JXd3dwoKCiJdXV1JhyxVrly5QiNGjKBnz55R8+bNqX///tS6dWvS0tKSdGgMw5RjJQ1GFS3DkZGRQbdv36YDBw7Qvn37/q+9Ow+Lsl7/OP6ZYYZBQAQBlyNu2KKpkbnkvkBuicsx963czV3T6qRHzKPmFqSBua+hpmjosczc0yzN9WhmWopLLqQgiigwy+8Pf8yRtPJYOgrv13V1pc88z8M9U07NZ+7v91a+fPk0ZMgQDR8+3Hl+amqq3nzzTdWqVUtt27blCxs89ghAAQAPRda+aCkpKfr00081a9YsFS5cWJUqVVLt2rVVuXJl57kpKSn68ssvNXjwYA0ePFgDBgxwYeUAkHt9/fXXSk9P186dO3XgwAGdPn1ahw4dkpubm65fv67Q0FD98MMPOnv2rOLj49WsWTNXl+wSWXt3Xrx4UUeOHNGhQ4dUrlw5lS1bVgULFtTMmTM1dOhQWa1Wde7cWe3atVNoaCjLSQE8EFkB6N69e7Vq1Srt2rVLQUFBeuqpp9SmTRs98cQTkqSLFy9q27ZtmjZtmk6dOqUzZ85ku09ycrLy5s3L8FHkCASgAICHqkuXLoqPj1fx4sWVJ08efffdd3ruuecUHh6u9u3bq0SJEpJuBaZJSUkKDAyUxFRcAHC19PR02e12Xbt2TVu3blVycrI2bdqkI0eOqGzZsvr4449dXaJLZH3Bd+bMGbVt21bffvut7Ha7HA6HgoKC1LFjR73xxhuyWCwaMGCA5s+fL6PRqB07dmSbDg8Af4WsgXW7du1Sx44dde7cOZUuXVqnT59Wamqqihcvrj59+ui1116Th4eHJOnYsWNyc3NTqVKlnNcDOQ0BKADggcv6cLh+/Xo1bdpU7777rnr16qW8efOqXLlyOnXqlKxWq2rUqKHOnTurefPmd92HCADwYN0+hTwjI0NJSUnOCeW/5cKFC/Lw8JCvr6/z/T43eumll3TkyBH169dP1apVU3JysiZOnKidO3eqRo0a+uijj1S8eHHt3r1b77//vpYsWeLqkgHkYBUqVJCfn59Gjhyp0NBQWa1Wffjhh5o5c6ZOnTqliIgIDRs2zNVlAg8NASgA4KFp3LixvLy8NGXKFJUoUUJxcXHq0KGD1q1bp6+//lqjRo1S6dKl9eSTT2rUqFGqWLGiq0sGgFzj9k77qVOnatWqVTp58qRKly6tQYMGqVq1atn2+LTZbDIajXTnSzp16pTq1aunYcOGqW/fvtkeW7x4sV577TVVqFBBn3zyiQICApyP5ebAGMCDs337djVp0kRRUVHq3r17tsd+/vlndezYUYcOHdIXX3zB/28j12DTGQDAQ3Hq1CldvnxZRYsWdS5z/8c//qG2bduqZs2aGjlypFq2bKmLFy9q+/btzqXvAICHw263S5LGjx+v0aNH6/r162rZsqWuXLmiFi1aqH///tq5c6du3rwpSXJzcyP8/H958+ZVpUqVnN2yDodDVqtVktS5c2dNmjRJX331lTZu3JjtOsJPAA+C1WqV1WqVp6enpFvvSXa7XTabTUWKFNG0adN05coVbdiwwcWVAg8PASgA4KEoWLCgWrRooaZNm0qS4uPjlZiYqFdffdX5AbBYsWIaOHCgfvrpJxUrVsz5YRwA8GDZ7Xa5ubkpMTFR7777rrp3766NGzfq/fffV5UqVWSxWLR9+3Y1btxY48aN09GjR2Wz2Vxd9iNh1qxZCggI0GeffaYNGzboxo0bkiSTyeT871iDBg2UL18+HThwwIWVAsgtgoOD5ePjo6VLlyopKUkGg0FGo9G5xUn+/PkVHBysc+fOiUXByC0IQAEAD4WHh4eGDx+uunXrSpKuXLkii8Uib29vmUwmJSUl6cqVK/rqq6+c+38yHRcAHo6s99vp06erZMmSatOmjXx9fXX69GnNmjVL48ePV3x8vIoVK6Zx48YpNDRUCxcudHHVj4YyZcooPDxcPj4+WrJkiZYsWeLsjM16XS9evCi73S4fHx9XlgogF3A4HCpatKg6d+6stWvXauzYsUpOTpYk53vT4cOH9csvv6hs2bIyGAyEoMgVGO0FAHhozGaz89elS5dWamqqli1bpvT0dO3evVtxcXGaOHGiDAZDtkEcAIAHLz09XVevXlWpUqX09NNPS5LeeOMNPfPMM2rdurUKFy6skSNHauzYsSpSpIj8/PxcXPGjoVatWqpQoYLi4uI0Y8YM9ezZU8uXL9ewYcPk7++vX375RVOnTpWPj49ef/11Sdn3WwWAv5LBYJDBYNDEiRPlcDgUHR2tVatWacCAAQoKClJCQoIWLVqkggULqnfv3q4uF3hoGIIEAHAJh8OhmTNnqm/fvvL29pbValWDBg0UHx/v6tIAIMf7+uuvFRwcrIIFC2Y7vmzZMl2+fFn9+vXTqVOnVL16dQ0ZMkSDBw+WyWTS6tWrNXr0aK1cuVLBwcEuqv7Rdf78ec2ePVtz5szRzz//rLx586pAgQLq2rWrqlWrprp168pqtcpkog8FwIOT9SVLYmKi1q1bpyVLlmjbtm3KyMiQyWRSgwYNNGrUKFWpUoX3JOQa/FsOAHAJg8GgPn36qH379lqxYoVKliypZ599VhJTcQHgQbLZbOrUqZN++eUXTZ48Wd27d3d++G3Xrp1zKaTRaJSbm5vS0tJkMpmUnp6u8+fPKyUlRe7u7q58Co+swoUL65///KdatGih6OhobdiwQWfOnFHRokWdW8AYjUY6QAE8UFnvLwUKFNArr7yi+vXr6+bNm9q/f7+CgoJUtmxZeXt7SxLhJ3INOkABAACAXOT06dM6ePCgli9frqVLl6pChQoaP3686tevL+m/nUMpKSmqVq2aMjIyNGXKFO3bt0/z5s1TvXr1tHjxYkK8P5CRkaENGzZo2rRp2rBhg5577jlNmTJFoaGhri4NQC7B+zTwX2yuBgAAAOQShw8fVv/+/VWuXDlNmTJFsbGxMplMatiwodq0aaNjx445Pyzny5dPy5YtU9GiRdWyZUuNGzdOzzzzjGJiYiSJoRl/wN3dXU2aNNGKFSs0Y8YMZWZm6sUXX1TDhg2dk+IB4EG6l/DTbrc/hEoA16MDFAAAAMglXnzxRSUlJWnVqlUqUaKEJCkpKUnz5s1TTEyMEhMTNWTIEA0bNky+vr5yOBw6f/68Ll26pNTUVJUvX1558+Zlq5L7cObMGU2cOFHJycmKjY11dTkAoBs3bihPnjyuLgN4KAhAAQAAgFzgxIkTqlOnjnr06KGIiAhJ0ujRo/XKK68oKChIBw8e1OLFizVv3jz5+/tr9OjRevXVV11bdA5jt9tltVrZQxWAy2Qti9+2bZvGjh2rBQsWqEiRIq4uC3jgWAIPAAAA5AJ/+9vfVKRIEX322Wc6deqUVq9erTFjxmj//v0ym82qVKmSxowZo7i4OFWoUEHdunVTrVq1tGPHDleXnmMYjUbCTwD/s6xl6gcPHtSaNWv+1L2ylsUPGDBA3t7e8vf3/9P1AY8DAlAAAAAgF/Dw8FCXLl307bffqmHDhurevbsaNGigfENhUQAAKJpJREFUmjVrOs/Jly+fGjZsqJiYGC1YsECZmZmqXbu2IiMjXVg5AORuRuOt6KZ169aaNGmSLl++nO3xrID0j/bzzFoAPGPGDP30009666235OHh8QAqBh49LIEHAAAAcpHz58+revXqOnPmjMqXL6/hw4crLCxMBQsWzHaezWbT8ePHtXz5cnXq1EnBwcFMFAaAhyxrz+UFCxaob9++iouL00svvZTt8czMTLm5uclsNku6FYRmhaa/lpKSoieeeEKdOnXSlClT2M8ZuQYBKAAAAJAL3B5eFi1aVGXKlNHx48d17tw5tW7dWl26dFG1atWUN2/ebNdlZmbKbDYTfgKACwUEBKhly5YaN26cAgMDdezYMa1du1azZ89W/vz5VaxYMbVq1Uovv/zyXa/Peg8fPHiw4uLitGPHDucwPCA3IAAFAAAAcpELFy5o3bp1ql+/vnx9fTV58mRFRkbK09NT3bp1U6tWrRQSEiKTyeTqUgEgV8vq5Bw+fLiWLl2qdevWqXz58pKkihUr6vvvv1f58uVlNpt1+PBhGY1GderUSSNHjlSBAgXuuN/333+vkJAQRUZGql+/fnyphVyFABQAAADI5Y4fP66IiAgtW7ZM5cqVU58+ffTiiy/qqaeecnVpAJCrJScnq2TJknJ3d9fSpUsVFhamt99+WzNmzFBMTIxatWols9msXbt2KSIiQhs3btSMGTPUo0ePO+7VqFEjXblyRZ9//rl8fX0f/pMBXIgAFAAAAMglfvrpJ506dUpeXl7y8/O7I+DctGmTIiIitHPnTvXu3VsffvihiyoFAEjSmTNnNHPmTK1evVrfffed2rRpo88//1wRERHq27evLBaLc59Qh8OhmjVr6syZMzp8+LB8fHyy3ad+/fqaPHmymjZt6sJnBLgGASgAAACQg1mtVplMJm3YsEH9+/fX8ePHZTabVaFCBTVo0EA9e/ZU0aJFnednZGRo5syZqlSpkqpVq/a7wzQAAA+e1WrV7t27tWzZMq1cuVJ58uTRvHnzVLt2bec56enpslgsGjBggFatWqX9+/ffsQz+5s2bMpvNDD5CrkQACgAAAOQCpUqVUkBAgF5//XWlpaVp0aJFOn78uIKCgtSlSxd169ZNFovF1WUCAG5z+wC6lJQUbdiwQfv379fw4cPvWMZus9k0dOhQrVu3Tps3b1ZQUFC2xwg+kZsRgAIAAAA53IEDB9S+fXtFR0crLCxM0q1OoHnz5mnhwoX6+eef9fzzz6tHjx5q1qyZi6sFAEjZw8/bJScny8/P747H9+7dq06dOqlSpUpavHjxb14P5EasZQEAAAByILvdLunWssjk5GQZjUblz59f0q3w08PDQ3379lVcXJw6deqkkydPql27doqPj3dh1QCALFnhZVbfWtbf/fz8nI9nHTtx4oRmzZqlixcvKjIyMtv5ACSTqwsAAAAA8NfL2rdz2LBhWr16tQwGg65cuSJJ8vDwUGZmpoxGo4oWLaoJEyaoWbNmWrJkiZo3b+7CqgEg98papj537lwlJSWpTZs2Kl68+O92cRoMBqWnp6tRo0ZKTEzUhAkTFBgYyJJ34FdYAg8AAADkYNOmTdO0adN04sQJBQYGKjIyUu3atXN+MM7IyJC7u3u2axh8BAAPV9Zy9ZMnT6pUqVLy8vJSgwYN1LlzZ9WtW9e53+dvLWvfsWOHTpw4oS5duvzueUBuRQAKAAAA5HApKSmaPHmyPvzwQ7m5ualJkybq0aOHatSoIenWB2WbzSaTiQViAOBKI0eOVHR0tBo1aqR169bJYDCoc+fOateunapUqSKz2Swp+xdVvw47CT+BOxGAAgAAADnMb3VwHjx4UO+88442bNigwoULq3Xr1urWrZtKlSrlgioBALdLTExUq1at9PPPP+unn35ScnKyXn/9dS1YsEDBwcHq3r27WrRooTJlyjivOXnypFJSUvTUU0/J09PThdUDjzbWtQAAAAA5RFZvg9FolM1m05YtW7Rnzx4dOHBA165dU0hIiFatWqVFixbJ19dXMTExatSokTZt2uTiygEAefPmVZEiRRQWFibp1rCjefPm6ZtvvlGRIkU0YsQI9ezZU/PmzdOlS5dktVoVHR2t+vXr69q1ay6uHni00QEKAAAA5BBZQy/i4uI0bdo07dixQ5JUqFAh1atXT+3atVPTpk2d50+ePFkzZszQ7t275e/v76qyAQC3uXnzpjw8PJxfamUtZ4+NjdWIESP0888/q02bNipbtqzef/99hYWFaenSpezfDPwOAlAAAAAgB8j64Hv+/HmVLVtWZcqU0UsvvaTg4GDFx8crPj5eBQoU0LBhw9SjRw95eXlJktLS0uTp6cnEYABwsfT0dFkslt/d0/P69euKiorShAkTnO/fFy5ckLe3NwEo8DsIQAEAAIAcpHv37tq5c6eWLFmiChUqOI9//fXX6tu3r44fP664uDg1atRIVquVwUcA4EL/y8Ci2wPOqVOnasiQIfrggw/Ur18/3s+BP0AACgAAAOQQKSkpatGihfLkyaPPPvtMkpSZmSmTySSDwaBffvlFNWvWlJ+fn7Zv3+6cJgwAeLiygs/U1FTt3btXMTExKlmypGrXrq2GDRv+bpj5ww8/qHfv3jp16pROnjyZ7X4A7o7eaAAAACCHyJcvn3x9fXXs2DElJSU5u4UMBoMyMzMVGBiomjVr6uLFi0pKShK9EADgGllh5YgRI9S+fXtt27ZNc+fOVbdu3bR169Y7zrfb7c5fnzx5UocPH1Z0dLQkyWq1En4Cf4AAFAAAAMgBsj4cV69eXSdOnFB0dLSMRqPc3NxktVplNpuVkZEhf39/ORwO2e12PjADgAtkvV8vX75cCxYsUN++fbV//37t27dPDodDc+fO1Y0bN5SSkqILFy7I4XBk29uzUaNGio+PV5MmTSSJpe/APWAJPAAAAJDDdO/eXfPnz1doaKiioqJUrlw5GQwGrVmzRoMHD1adOnU0f/58lkwCgAs988wzqlSpkqZMmaICBQooPT1dPXr00J49exQWFqZ169bJYrGoQoUKGjRokKpUqXLHwDrex4F7w9cEAAAAwGMqa4n7qVOndO7cOZ05c0ZNmzZVZGSkAgICNHfuXIWEhOjZZ5+VwWDQyZMnVbx4cU2bNk0SH5wBwFXi4uKUkZGhpk2bqkCBApIki8Wio0eP6vr16woICNC4ceO0fPlyLV26VOfPn1d8fLx8fHyy3Yf3cODeEIACAAAAj6GsLqDTp0+rWbNm+v7772UwGGSxWDRy5EgNHjxY4eHh2rBhg3bt2qVr167pzTffVHh4uPLmzXtHFxEA4OFwOBxKTk6Wv7+/nnvuOefxDz/8UHv37tXq1avVpEkTGY1GtWvXTtHR0Ro4cKAWLFiggQMHuq5w4DHGEngAAADgMfbSSy/p2LFj6tevnwICAvTll19q6dKlKliwoMaPH68WLVrIYrEoLS1Nnp6eri4XAPD/vvzyS9WuXdv5+9GjR+vy5cuaOHGiPD09dfPmTXl4eOjSpUt64oknNHDgQI0ZM4bufeA+0AEKAAAAPKbOnj2rhIQEDRs2TH369JEkhYeHq23btpo+fbrat2+vqlWrauzYsQoNDXVxtQCQuyUkJKhEiRLO398efkq3AtCMjAy5u7tLurUkXpLOnTunAgUKyGq1SmLZO3A/mAIPAAAAPKZ8fHxUoUIFFSpUSNKtZZV+fn568cUXFRMTo8WLF8tgMOjFF1/UlClTXFwtAORuVapUUdmyZbV3717nMZvNptsX5maFn1ldnpmZmdq1a5dOnTqlZs2aSfrvFHkA944AFAAAAHgMzZo1S76+vvr000+1Z88eORwOORwO2Ww2SVLhwoXVvn17zZ8/X+PGjVPr1q0lSeyABQAP35UrVzRkyBC5u7urcuXK6tixo5KSkuTm5iaDweDs7syS1eX5zTffKDo6Wo0bN1bVqlXlcDhkNBLlAP8r9gAFAAAAHkPbt2/X5MmTtXv3btlsNkVHR6tt27aS/tsdlPUh2Wq1ymQysW8cALiQw+HQ/v37tXz5ci1evFiXLl3S2LFjNXz4cOc5tw+o27Jli1599VV5enpq8+bNKly4MAPsgPtEAAoAAAA8plJTU7Vy5UrFxMRoz549aty4sSZNmqSyZctKEh+UAeARcfsXUNeuXdO///1vTZkyRQcOHNCTTz6pSZMmqXnz5pJuvXdnZGRo+/btio2NVbt27dS4cWPe04E/gQAUAAAAeMydP39es2fP1qxZs3ThwgUNGDBAERER8vX1dXVpAID/lxVgTps2TcuXL1daWprc3Nx09uxZXbx4UbVr19aHH36oMmXKOM+32+0ym82SRBc/8CcQgAIAAAA5gMPh0OHDhxUVFaWVK1cqLS1NS5cuVatWrVxdGgDkena7XUajUbt371b16tX1zjvvqFevXgoMDNS+ffv06aefavr06bp48aKGDh2qMWPGyNPT09VlAzkGASgAAACQg2RmZmrTpk0aM2aMJkyYoNq1a7u6JADA/+vWrZs2btyo9evXOzs9pVt7Na9evVodOnRQZmamJGnp0qXOvZ0B/DkmVxcAAAAA4K9jNpvVqFEj1alTR3ny5GHJJAA8QgoXLqzk5GQFBwdLuhV8GgwGmUwmvfzyy4qMjNTs2bNVokQJlS5d2sXVAjmH0dUFAAAAAPjr5cmTR5IIPwHgEfLCCy/o+vXrGj16tK5duyaTySQ3Nzdn16fBYFC+fPkUGRmpkJAQsWgX+GvQAQoAAAAAAPAQ1K1bV40aNVJUVJQkqW3btgoJCZHZbNbly5d19uxZnT9/XoULF5bEl1jAX4U9QAEAAAAAAB6SS5cuqVu3blq7dq3KlSunWrVqqVy5clq/fr3Wrl2r0aNHa+TIkc6p8QD+PAJQAAAAAACAB+jMmTNKS0uTwWDQU089JUmKi4vT2LFjdezYMd28eVOFCxdWx44dNWnSJEliD2fgL0QACgAAAAAA8BfK6t78/vvv9cEHH2jWrFkymUzy9PRUaGioxo8f7wxC9+7dKz8/P+XJk0eFChWSwWCQ3W6X0cjYFuCvQgAKAAAAAADwALzwwgs6d+6cWrRoocKFC2v//v3avHmzUlJS9M4772jEiBGuLhHIFRiCBAAAAAAA8BfJ6t6cP3++jhw5oo8++kjNmzeXJF2/fl1bt25VdHS0IiIi5Ovrq379+rm4YiDnowMUAAAAAADgT8jar/P2pet9+vTR5s2btWXLFhUpUkSZmZkym82SpOPHj6tt27ZKTk7Wt99+q4CAAFeWD+R4bCgBAAAAAABwH7J6yjIzM3Xjxo1s+3b6+/srISFBPj4+kiSz2SybzSabzaYnn3xSgwYN0unTp5WUlOSS2oHchAAUAAAAAADgPmRNaZ8wYYJ69uyp1NRU52P169eX1Wp1Bp2S5ObmJjc3N0mS1WqVt7e3Ll68+PALB3IZAlAAAAAAAID7ZLfbJUmrV69WTEyM83jlypXVoUMHLViwQG+//ba2bNmixMRESdKhQ4e0Zs0a/e1vf1OtWrVcUjeQmzAECQAAAAAA4D4ZjUaNGjVKgYGBGj58uC5cuKDRo0crX758+uijj1S+fHlNmjRJn376qUJCQuTp6an9+/crPT1dK1askHSrG9RkIqIBHhSGIAEAAAAAANynrMFHVqtVUVFRmj9/vgYMGKDXXntNkpSenq6jR49q0aJFio+Pl5eXl0JCQtSlSxfVr1/fxdUDuQMBKAAAAAAAwF8gPT1db731lqZNm6b33ntPgwcPzvZ4RkaG0tPT5eXl5RyYlDVBHsCDQ381AAAAAADAn2C322W322WxWBQVFaWCBQsqKipKDodDr732mtzd3WWz2eTu7i53d/ds1xJ+Ag8eQ5AAAAAAAADuk9VqldFolMlkktVqlSR17dpVjRo1UmRkpDZs2CCj0Siz2SwW4QKuwRJ4AAAAAACAe5C1XP3gwYOKj4/XkSNH5OXlpbJly6p3797y9vbOdn6vXr20cOFCTZ06VX369HFR1QAIQAEAAAAAAP5A1rCjXbt2qXXr1kpNTVXJkiV15coVnTt3Tmaz2Tn8KCgoSJJ09epVjRo1Stu3b9c777yj8PBw9vwEXIAAFAAAAAAA4B5VqlRJBQsW1D//+U9VrVpVp0+f1rfffqt///vfiouLU8GCBfXee++pRYsWkqSEhAS99tpr2rdvn5YtW6Z69eq59gkAuRB7gAIAAAAAANyDQ4cO6cyZM3rppZdUtWpVSVKxYsX08ssva8qUKVqyZImKFSumli1basiQIUpLS1OJEiW0bt061atXT4MGDdLhw4dd/CyA3Icp8AAAAAAAAPegePHicjgcSklJkfTf6e8mk0kBAQFq1qyZgoOD9d5772nOnDkKCQnRq6++KkkaPXq0Nm/eLF9fX9c9ASCXYgk8AAAAAADAH3A4HLLZbGrevLn27t2ruLg41axZ0/mYw+GQ0Xhroe3ly5fVvn17fffdd9q/f78KFCggScrIyJC7u7vLngOQW7EEHgAAAAAA4A8YDAaZTCaNGjVKPj4+GjBggOLi4pSamiqDwSCj0SibzaaMjAz5+/urR48eSklJUVJSkvMehJ+AaxCAAgAAAAAA/I7bF8++8MILGj9+vM6cOaPevXtrwoQJ2rdvn6xWq9zc3Jwhp81mk8lk0pUrV1xUNYAsLIEHAAAAAAD4FYfDIYPBIEm6fv263N3ddePGDfn4+EiSLl26pP79+2v58uUqXbq0mjdvrtq1ayssLExr1qzR1KlTlZGRoV27drnyaQAQASgAAAAAAMBvWrRokT744AOdPXtW4eHhioiIUFBQkPPxTZs2KSIiQnv27JHZbJbdbtfNmzf13HPPaeHChSpXrpxsNpvc3Nxc+CyA3I0AFAAAAAAA4DZZgeWcOXMUERGhgIAAhYSEKD4+Xg0bNtSKFSvuuGb79u36z3/+I5vNpkKFCik0NFQBAQHZOkkBuAYBKAAAAAAAwK/cuHFDQUFBat++vYYPH67ixYtr8uTJWrp0qTZt2qRt27bJx8dHfn5+CgkJcU6AB/DoMbm6AAAAAAAAgEfN/PnzlT9/fnXq1EnFixeXJNWqVUtz5sxRhQoVdOnSJaWlpempp55Sz5499corryggIEB2u50wFHjE8CcSAAAAAADgVzIzM3X9+nX5+fk5j23cuFEJCQlq166dNm3apLVr1ypv3rwaMWKEPvnkE0ki/AQeQXSAAgAAAAAA/Iqvr68uXLigTZs2KSMjQz/88IMmTZqkoUOHKiIiQh4eHpKkOnXqKDw8XG+++aZatWqVLTAF8GggAAUAAAAAAPiVzp07a926dRo4cKAMBoN8fHxkt9tVrVo1Z/hptVrl5eWlKlWq6PDhw/rll18IQIFHEAEoAAAAAADAbTIzM2U2mxUVFaWWLVtq27Ztql69ur799lulpqZKktLT02WxWJSeni6DwSB3d3flzZvXxZUDuBsCUAAAAAAAkOvdPrzIbDZLkgoXLqw2bdqoTZs2km51fPbr10+lSpXSCy+8IEnavHmzVqxYoaZNm6pw4cIMQQIeQQaHw+FwdREAAAAAAACuduPGDa1du1aFChVSgQIFVKpUKZlM/+0dS0tLU4MGDbRz5041btxYFotFu3btUsGCBbVz5055eHgQgAKPIP5EAgAAAACAXMtut0uSFi5cqLp166pt27aqU6eOOnTooFWrVjnPczgc8vT01LvvvquuXbvqxIkT+ve//61mzZpp5syZ8vDwkM1mI/wEHkF0gAIAAAAAgFzJ4XDIYDBo3759atiwoSpXrqyXX35Z7u7u+uCDD3T06FGtWbNGdevWdZ4rSampqbp+/bqMRqMCAwNd/CwA/BECUAAAAAAAkKvVr19fBoNBMTExevLJJyVJ33//vRo0aKAqVapo5cqVkm4FppKcQSiAxwN92QAAAAAAINfau3evTp48qfDwcJUsWVLSraCzTJky6tOnj9atW6fdu3c7zzcYDLp+/bpsNpurSgbwPyIABQAAAAAAuda5c+d04sQJlS5dWiaTSbcvlP373/8uo9Go9evXS7oVfqanp2v58uUaNGiQMjIyXFU2gP8BASgAAAAAAMi1ypcvr5deeknBwcGSboWcWUvcn3nmGTVs2FCrV692nn/48GG9+eabslgscnd3FzsLAo8+9gAFAAAAAAC5ytWrV+Xj45PtmM1mk5ub2x3nzp07Vz179tSxY8dUqFAh/eMf/1BsbKwuXboko9GYbTgSgEcTHaAAAAAAACBXqV+/vsLDw/XTTz85j90t/JSk6tWry2g0au3atfrmm280a9YsvfvuuzIajbJarYSfwGOADlAAAAAAAJBrXLt2Te+9954WLVqkxMREvf7663r99dfv6Ai9Xc2aNZWRkaGgoCAdPXpUR44ceYgVA/izCEABAAAAAECucvPmTR0+fFjz589XbGys/Pz8NHHiRL388st37QSNiYnRgAEDJEnbt29XjRo1ZLVaZTKZHnbpAO4DS+ABAAAAAECu4uHhoUqVKmncuHGKjY1Vnjx51K5dO/3973/XN9984zwvq2esatWqkm5Nha9Ro4YcDgfhJ/AYoQMUAAAAAADkKpmZmTKbzYqPj9fs2bN1+vRpXbhwQZmZmbp27Zq6du2qiIgIFS1a1HlNQkKCAgMD5eXl9ZsDkwA8mugABQAAAAAAuYbdbpfZbNb58+fVsWNHFS1aVCtXrtTZs2e1Zs0avfnmm/rkk0/0/PPPKyYmRqmpqZKkEiVKyMvLS9JvD0wC8GiiAxQAAAAAAOQ6b731lubNm6f169erQoUKzuNXr17VunXr1KVLF2VmZqpYsWKKiYlRkyZNXFgtgD+DDSsAAAAAAECu4+Pjo9TUVAUEBEiS0tPTZbFY5OPjo7Zt2+rixYuaNWuWvLy8lJmZ6eJqAfwZLIEHAAAAAAC5ztNPP62bN29qyZIlkiSLxSLpVhAqSQEBATKZTJo3b55atGjhqjIB/AXoAAUAAAAAALnOyy+/rPDwcI0ZM0YpKSnq2rWrnnzySVksFt28eVOXL19WWlqa/P39XV0qgD+JPUABAAAAAECukpGRIbvdritXrqhDhw7aunWrqlatqtDQUNWrV0+rV69WbGyswsPDtXDhQjkcDhkMBleXDeA+EYACAAAAAIAczWazyc3NTXv27NHHH3+szZs3Ky0tTc2bN9crr7yizz77TNHR0Tp37pwyMzNlNBrVrFkzLV68WF5eXrLb7TIa2UUQeFwRgAIAAAAAgBwrK/xMSEhQnTp1dPXqVYWEhCgjI0NHjhyR3W7XmDFj1KtXLx0+fFgOh0Oenp4qXbq0zGaz83oAjy8CUAAAAAAAkOM1adJEFy9e1KRJkxQaGqqkpCQdOnRIsbGxmjNnjpo0aaKPPvpI+fLlc3WpAP5iDEECAAAAAAA52k8//aS9e/eqV69eqlWrliQpf/78qlOnjp5++mn5+vpqypQp+vzzz9W2bVsXVwvgr8YGFgAAAAAAIEfz8fGRzWaT3W6X2WyWdGtpvCQVKlRIkyZNUlBQkFatWuXKMgE8IASgAAAAAAAgR/P29lbp0qU1b948ffvtt5IkNzc3Zwh67do1BQcH6+rVq0pPT3dlqQAeAAJQAAAAAACQo+XJk0eDBg3SpUuXNHToUH3yySdKSkpyDjc6ePCgTp48qWeffVYWi0WMSwFyFoYgAQAAAACAXGHRokUaNGiQHA6HGjZsqPLly8toNGrhwoVKS0vTjz/+KIvFIrvdLqORnjEgpyAABQAAAAAAucbZs2c1btw4LVmyRDdu3JDValWrVq302muvqV69erJarTKZmBkN5CQEoAAAAAAAINdJTEzUmTNnlD9/fhUvXpyOTyAHIwAFAAAAAAAAkGPx9QYAAAAAAACAHIsAFAAAAAAAAECORQAKAAAAAAAAIMciAAUAAAAAAACQYxGAAgAAAAAAAMixCEABAAAAAAAA5FgEoAAAAAAAAAByLAJQAAAAAAAAADkWASgAAAAeihIlSujVV1+9r2vr1q2runXr/qX13Cur1ao33nhDRYsWldFoVIsWLVxSBwAAAO6PydUFAAAA4NGwc+dOffHFFxo8eLB8fX1dXc4jY968eZo8ebIGDx6s559/XsWKFXsgP2fJkiVKTEzU4MGDH8j9AQAAciuDw+FwuLoIAAAAuN6UKVM0fPhwnTx5UiVKlPjL75+eni6j0Siz2fw/X5uRkSFJcnd3/6vL+kPt2rXTjh07dPbs2Qf6c8LDw3X48GElJCQ80J8DAACQ27AEHgAAAP8zu92umzdv/k/XWCyW+wo/pVvBpyvCT0lKTEx8rDti09LSXF0CAACASxGAAgAAQKNHj9bw4cMlSSVLlpTBYJDBYHB2IxoMBvXv31+xsbEqW7asLBaLPv/8c0m3OkerV68uf39/5cmTRxUrVlRcXNwdP+PXe4AuWLBABoNBX331lYYOHarAwEB5eXnp73//u3755Zds1/56D9CtW7fKYDBo+fLlGjdunIKCguTh4aGwsDD9+OOPd/zsmJgYBQcHK0+ePKpSpYq2b9/+h/uKJiQkyGAwaMuWLfruu++cr8nWrVsl3QqB33//fZUtW1YeHh4qWLCgevfureTk5Gz3Wb16tZo0aaK//e1vslgsKlWqlP71r3/JZrNle36ffvqpTp065fw5WV24Wa/TrztDs16DrHqy7lOuXDnt3btXtWvXlqenp95++21JtzpwIyIi9MQTT8hisaho0aJ64403lJ6enu2+GzZsUM2aNeXr6ytvb289/fTTznsAAAA8jtgDFAAAAGrZsqWOHTumpUuXKioqSgEBAZKkwMBA5zmbN2/W8uXL1b9/fwUEBDgDuqlTp6pZs2bq2LGjMjIytGzZMrVu3Vpr165VkyZN/vBnDxgwQH5+foqIiFBCQoLef/999e/fXx9//PEfXjthwgQZjUYNGzZMKSkpmjRpkjp27Khdu3Y5z/nwww/Vv39/1apVS0OGDFFCQoJatGghPz8/BQUF/ea9AwMDtXjxYo0bN06pqal69913JUllypSRJPXu3VsLFixQ165dNXDgQJ08eVLR0dHav3+/vvrqK2e364IFC+Tt7a2hQ4fK29tbmzdv1qhRo3T16lVNnjxZkjRixAilpKTo7NmzioqKkiR5e3v/4fO/m8uXL6tx48Zq166dOnXqpIIFC8put6tZs2basWOHevXqpTJlyujQoUOKiorSsWPHFB8fL0n67rvvFB4ermeffVZjxoyRxWLRjz/+qK+++uq+agEAAHgUEIACAABAzz77rJ5//nktXbpULVq0uOseoD/88IMOHTqkZ555JtvxY8eOKU+ePM7f9+/fX88//7wiIyPvKQD19/fXF198IYPBIOlWZ+W0adOUkpKifPny/e61N2/e1IEDB5zL4/38/DRo0CAdPnxY5cqVU0ZGhv75z3+qcuXK2rx5s0wmk/P5vvrqq78bgHp5ealTp06aM2eO3Nzc1KlTJ+djO3bs0Jw5cxQbG6sOHTo4j9erV0+NGjXSihUrnMeXLFmS7fXp06eP+vTpo+nTp2vs2LGyWCyqX7++ihQpouTk5Gw/535cuHBBM2bMUO/evZ3HPvroI23cuFHbtm1TzZo1ncfLlSunPn36aOfOnapevbo2bNigjIwMrVu3zhmCAwAAPO5YAg8AAIB7UqdOnTvCT0nZwr3k5GSlpKSoVq1a2rdv3z3dt1evXs7wU5Jq1aolm82mU6dO/eG1Xbt2zbY3aK1atSRJJ06ckCTt2bNHly9fVs+ePZ3hpyR17NhRfn5+91Tf3axYsUL58uVT/fr1denSJedfFStWlLe3t7Zs2eI89/bX59q1a7p06ZJq1aqltLQ0HT169L5r+C0Wi0Vdu3a9o94yZcqodOnS2eoNDQ2VJGe9WXudrl69Wna7/S+vDQAAwBXoAAUAAMA9KVmy5F2Pr127VmPHjtWBAwey7Sd5e6j5e4oVK5bt91nB5K/30ryfa7NC1CeeeCLbeSaT6U9Nuj9+/LhSUlJUoECBuz6emJjo/PV3332nkSNHavPmzbp69Wq281JSUu67ht9SpEiROwZGHT9+XN9//322LQ3uVm/btm01Z84c9ejRQ2+99ZbCwsLUsmVLtWrVSkYjvRMAAODxRAAKAACAe3J7J2OW7du3q1mzZqpdu7amT5+uwoULy2w2a/78+VqyZMk93dfNze2uxx0OxwO99s+w2+0qUKCAYmNj7/p4VtB45coV1alTRz4+PhozZoxKlSolDw8P7du3T2+++eY9dVn+VpB8+xCl293tn5Pdblf58uUVGRl512uKFi3qvPbLL7/Uli1b9Omnn+rzzz/Xxx9/rNDQUH3xxRe/+XoDAAA8yghAAQAAIOneOzZvt3LlSnl4eGj9+vWyWCzO4/Pnz/8rS7tvxYsXlyT9+OOPqlevnvO41WpVQkKCnn322fu6b6lSpbRx40bVqFHjroFjlq1bt+ry5ctatWqVateu7Tx+8uTJO879rdc/q6v1ypUr2Y7fyxYBt9d78OBBhYWF/eE/Z6PRqLCwMIWFhSkyMlLjx4/XiBEjtGXLFr344ov3/DMBAAAeFaxjAQAAgKRbQ3+kO4O23+Pm5iaDwZCtGzEhIcE5VdzVKlWqJH9/f82ePVtWq9V5PDY29p6W2P+WNm3ayGaz6V//+tcdj1mtVudrmNUxeXtHakZGhqZPn37HdV5eXnddEl+qVClJ0pdffuk8ZrPZNGvWrP+p3p9//lmzZ8++47EbN27o+vXrkqSkpKQ7Hn/uueckKdv2BgAAAI8TOkABAAAgSapYsaIkacSIEWrXrp3MZrOaNm3qDEbvpkmTJoqMjFSjRo3UoUMHJSYmKiYmRk888YT+85//PKzSf5O7u7tGjx6tAQMGKDQ0VG3atFFCQoIWLFigUqVK3VfXq3RrIFTv3r317rvv6sCBA2rQoIHMZrOOHz+uFStWaOrUqWrVqpWqV68uPz8/vfLKKxo4cKAMBoMWL1581yX6FStW1Mcff6yhQ4eqcuXK8vb2VtOmTVW2bFlVrVpV//jHP5SUlKT8+fNr2bJl2QLdP9K5c2ctX75cffr00ZYtW1SjRg3ZbDYdPXpUy5cv1/r161WpUiWNGTNGX375pZo0aaLixYsrMTFR06dPV1BQULbp8QAAAI8TAlAAAABIkipXrqx//etfmjFjhj7//HPZ7XadPHnydwPQ0NBQzZ07VxMmTNDgwYNVsmRJTZw4UQkJCY9EACpJ/fv3l8Ph0Hvvvadhw4YpJCREa9as0cCBA+Xh4XHf950xY4YqVqyomTNn6u2333YOVurUqZNq1KghSfL399fatWv1+uuva+TIkfLz81OnTp0UFhamhg0bZrtf3759deDAAc2fP19RUVEqXry4mjZtKulWx2rv3r01YcIE+fr6qnv37qpXr57q169/T7UajUbFx8crKipKixYt0ieffCJPT08FBwdr0KBBeuqppyRJzZo1U0JCgubNm6dLly4pICBAderU0TvvvKN8+fLd92sFAADgSgbHg94hHgAAAHjE2O12BQYGqmXLlnddFg4AAICcgz1AAQAAkKPdvHnzjiXnixYtUlJSkurWreuaogAAAPDQ0AEKAACAHG3r1q0aMmSIWrduLX9/f+3bt09z585VmTJltHfvXrm7u7u6RAAAADxA7AEKAACAHK1EiRIqWrSopk2b5hwi1KVLF02YMIHwEwAAIBegAxQAAAAAAABAjsUeoAAAAAAAAAByLAJQAAAAAAAAADkWASgAAAAAAACAHIsAFAAAAAAAAECORQAKAAAAAAAAIMciAAUAAAAAAACQYxGAAgAAAAAAAMixCEABAAAAAAAA5Fj/B4bP7VeDfIz/AAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
"source": [
- "mean_feature_influences = np.mean(feature_influences, axis=(0, 1))\n",
+ "mean_feature_influences = np.mean(feature_influences.numpy(), axis=(0, 1))\n",
"\n",
"_, ax = plt.subplots()\n",
- "ax.plot(feature_names, mean_feature_influences)\n",
+ "ax.bar(feature_names, mean_feature_influences)\n",
"ax.set_xlabel(\"training features\")\n",
"ax.set_ylabel(\"influence values\")\n",
"ax.set_title(\"Average feature influence\")\n",
@@ -567,6 +552,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "656e14dd",
"metadata": {},
@@ -575,6 +561,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "3bf8c4dd",
"metadata": {},
@@ -584,24 +571,36 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 19,
"id": "efdb4050",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Batch Test Gradients: 100%|██████████| 4/4 [00:00<00:00, 81.02it/s]\n",
+ "Batch Train Gradients: 100%|██████████| 2/2 [00:00<00:00, 535.33it/s]\n",
+ "Conjugate gradient: 100%|██████████| 107/107 [00:04<00:00, 22.66it/s]\n",
+ "Batch Split Input Gradients: 100%|██████████| 2/2 [00:00<00:00, 98.91it/s]\n"
+ ]
+ }
+ ],
"source": [
"cg_train_influences = compute_influences(\n",
- " nn_model,\n",
- " F.cross_entropy,\n",
- " *train_data,\n",
- " *test_data,\n",
+ " TorchTwiceDifferentiable(nn_model, F.cross_entropy),\n",
+ " training_data=training_data_loader,\n",
+ " test_data=test_data_loader,\n",
" influence_type=\"up\",\n",
" inversion_method=\"cg\",\n",
- " hessian_regularization=1,\n",
+ " hessian_regularization=0.1,\n",
+ " progress=True,\n",
")\n",
- "mean_cg_train_influences = np.mean(cg_train_influences, axis=0)"
+ "mean_cg_train_influences = np.mean(cg_train_influences.numpy(), axis=0)"
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "28f46c8c",
"metadata": {},
@@ -611,7 +610,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 20,
"id": "599bab0a",
"metadata": {},
"outputs": [
@@ -619,7 +618,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Percentage error of cg over direct method:0.0015781619965701342 %\n"
+ "Percentage error of cg over direct method:1.5124550145628746e-05 %\n"
]
}
],
@@ -630,11 +629,12 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "9245791c",
"metadata": {},
"source": [
- "This was a quick introduction to the pyDVL interface for influence functions. Despite their speed and simplicity, influence functions are known to be a very noisy estimator of data quality, as pointed out in the paper [\"Influence functions in deep learning are fragile\"](https://arxiv.org/abs/2006.14651). The size of the network, the weight decay, the inversion method used for calculating influences, the size of the test set: they all add up to the total amount of noise. Experiments may therefore give quantitative and qualitatively different results if not averaged across several realisations. Shapley values, on the contrary, have shown to be a more robust, but this comes at the cost of high computational requirements. PyDVL employs several parallelization and caching techniques to optimize such calculations."
+ "This was a quick introduction to the pyDVL interface for influence functions. Despite their speed and simplicity, influence functions are known to be a very noisy estimator of data quality, as pointed out in the paper [\"Influence functions in deep learning are fragile\"](https://arxiv.org/abs/2006.14651). The size of the network, the weight decay, the inversion method used for calculating influences, the size of the test set: they all add up to the total amount of noise. Experiments may therefore give quantitative and qualitatively different results if not averaged across several realisations. Shapley values, on the contrary, have shown to be a more robust, but this comes at the cost of high computational requirements. PyDVL employs several parallelization and caching techniques to optimize such calculations.\n"
]
}
],
@@ -654,7 +654,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.9.16"
},
"vscode": {
"interpreter": {
diff --git a/notebooks/least_core_basic.ipynb b/notebooks/least_core_basic.ipynb
index 19f99a49d..1800690bf 100644
--- a/notebooks/least_core_basic.ipynb
+++ b/notebooks/least_core_basic.ipynb
@@ -39,16 +39,20 @@
"We begin by importing the main libraries and setting some defaults.\n",
"\n",
"\n",
- "If you are reading this in the documentation, some boilerplate has been omitted for convenience.\n",
+ "\n",
+ "If you are reading this in the documentation, some boilerplate (including most plotting code) has been omitted for convenience.\n",
+ "\n",
"
"
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "f6656599",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -60,7 +64,9 @@
"execution_count": 2,
"id": "08ee61fd",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -357,31 +363,15 @@
"errors_df = pd.DataFrame(all_errors)"
]
},
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "f2a4dd47",
- "metadata": {
- "nbsphinx": "hidden"
- },
- "outputs": [],
- "source": [
- "_ = shaded_mean_std(\n",
- " errors_df,\n",
- " abscissa=errors_df.columns,\n",
- " num_std=1,\n",
- " xlabel=\"Budget\",\n",
- " ylabel=\"$l_2$ Error\",\n",
- " label=\"Estimated values\",\n",
- " title=\"$l_2$ approximation error of values as a function of the budget\",\n",
- ")"
- ]
- },
{
"cell_type": "code",
"execution_count": 14,
"id": "f3e02c36",
- "metadata": {},
+ "metadata": {
+ "tags": [
+ "hide-input"
+ ]
+ },
"outputs": [
{
"data": {
@@ -395,6 +385,15 @@
}
],
"source": [
+ "_ = shaded_mean_std(\n",
+ " errors_df,\n",
+ " abscissa=errors_df.columns,\n",
+ " num_std=1,\n",
+ " xlabel=\"Budget\",\n",
+ " ylabel=\"$l_2$ Error\",\n",
+ " label=\"Estimated values\",\n",
+ " title=\"$l_2$ approximation error of values as a function of the budget\",\n",
+ ")\n",
"plt.show()"
]
},
@@ -408,35 +407,15 @@
"Still, the decrease may not always necessarily happen when we increase the number of iterations because of the fact that we sample the subsets with replacement in the Monte Carlo method i.e there may be repeated subsets."
]
},
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "1d0a490a",
- "metadata": {
- "nbsphinx": "hidden"
- },
- "outputs": [],
- "source": [
- "mean_std_values_df = values_df.drop(columns=\"budget\").agg([\"mean\", \"std\"])\n",
- "df = pd.concat([exact_values_df, mean_std_values_df])\n",
- "df = df.sort_values(\"exact_value\", ascending=False, axis=1).T\n",
- "df.plot(\n",
- " kind=\"bar\",\n",
- " title=\"Comparison of Exact and Monte Carlo Methods\",\n",
- " xlabel=\"Index\",\n",
- " ylabel=\"Value\",\n",
- " color=[\"dodgerblue\", \"indianred\"],\n",
- " y=[\"exact_value\", \"mean\"],\n",
- " yerr=[exact_values_df.loc[\"exact_value_stderr\"], mean_std_values_df.loc[\"std\"]],\n",
- ")\n",
- "_ = plt.legend([\"Exact\", \"Monte Carlo\"])"
- ]
- },
{
"cell_type": "code",
"execution_count": 16,
"id": "48bccf93",
- "metadata": {},
+ "metadata": {
+ "tags": [
+ "hide-input"
+ ]
+ },
"outputs": [
{
"data": {
@@ -450,6 +429,19 @@
}
],
"source": [
+ "mean_std_values_df = values_df.drop(columns=\"budget\").agg([\"mean\", \"std\"])\n",
+ "df = pd.concat([exact_values_df, mean_std_values_df])\n",
+ "df = df.sort_values(\"exact_value\", ascending=False, axis=1).T\n",
+ "df.plot(\n",
+ " kind=\"bar\",\n",
+ " title=\"Comparison of Exact and Monte Carlo Methods\",\n",
+ " xlabel=\"Index\",\n",
+ " ylabel=\"Value\",\n",
+ " color=[\"dodgerblue\", \"indianred\"],\n",
+ " y=[\"exact_value\", \"mean\"],\n",
+ " yerr=[exact_values_df.loc[\"exact_value_stderr\"], mean_std_values_df.loc[\"std\"]],\n",
+ ")\n",
+ "plt.legend([\"Exact\", \"Monte Carlo\"])\n",
"plt.show()"
]
},
@@ -547,12 +539,25 @@
},
{
"cell_type": "code",
- "execution_count": 20,
- "id": "be2dde67",
+ "execution_count": 21,
+ "id": "1f95fb06",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAALGCAYAAADGEfdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wU9d0H8M/M9uudenBw9CIdC0iTosaCYgmiglijREmMTzQ+ETAaNGpii48FBWIvUcFKkaMpHVSQIuWOcr3X7fN7/pidvd3bvbLHHdc+79eLF7A7O/Pb3dnZu/nM9/uThBACREREREREREREREREFBK5pQdARERERERERERERETUFjFkISIiIiIiIiIiIiIiagSGLERERERERERERERERI3AkIWIiIiIiIiIiIiIiKgRGLIQERERERERERERERE1AkMWIiIiIiIiIiIiIiKiRmDIQkRERERERERERERE1AgMWYiIiIiIiIiIiIiIiBqBIQsREREREREREREREVEjMGQhIiIiopA4nU4sWrQIffv2hclkgiRJ+Pzzz1t6WI0yadIkSJLU0sM4a0ePHsU111yDzp07Q5IkxMTEtPSQqI16//33MWLECERGRkKSJCxcuLClh9ShpKSkICUlpcHLS5KESZMmNdt4WoOO8BxDtXjxYkiShI0bN7b0UIiIiAgMWYiIiDqsJ598EpIkQZIkHDlypKWHQ23Ic889h8cffxxdu3bFn/70JyxatAgDBgxo6WEFNW/ePEiShIyMjJYeSrNxu92YOXMmvv76a1xxxRVYtGgRHn744ZYeVpvU0U/mbtu2DXPmzEF5eTl+97vfYdGiRbj00ktbeljURrTmE/8ZGRmQJAnz5s1r6aG0Khs3boQkSVi8eHFLD4WIiKhN07f0AIiIiOjcE0Jg2bJlkCQJQgi88cYbePbZZ1t6WNRGfPnll4iIiMC6detgNBpbejhn5T//+Q+qqqpaehhnJT09HQcPHsSdd96J119/vaWHQ23YV199BSEE/vOf/+Ciiy5q6eEQUS0WLFiA3/72t+jRo0dLD4WIiIjAShYiIqIOae3atcjIyMDcuXPRuXNnrFy5Eg6Ho6WHRW1EVlYW4uPj23zAAgA9evRotVU4DZWVlQUA6Nq1awuPhNo67ktEbUNCQgIGDBiAsLCwlh4KERERgSELERFRh/TGG28AAO68807MmTMHBQUF+Oyzz2pd/syZM7j//vvRt29fWCwWxMXFYezYsfjb3/7W6GXrassTrMWTb6uPX3/9FTfeeCOSkpIgy7K3NcmePXvwwAMPYNiwYYiLi4PZbEbfvn3x4IMPori4uNbn9+GHH+KSSy7xPiYlJQWzZ8/G7t27AQCvvfYaJEnCkiVLgj4+JycHBoMBQ4cOrXUbvlasWIFZs2ahd+/esFgsiIqKwrhx4/DOO+8EXf7EiRO466670KdPH+9rOnToUNxzzz0oLCxs0DY///xz3HzzzejXrx/Cw8MRHh6OUaNG4cUXX4SiKA1ah/a+pKen4+TJk952c9r8AfW1HQk218CKFSsgSRJWrFiBtLQ0TJo0CZGRkYiKisJvfvMbHDp0KOi6qqqq8PTTT2P06NGIjIxEREQEBg4ciPvvvx+5ubkA1H1s5cqVAIBevXoFjBeofU4WRVHw6quvYsyYMYiIiEB4eDjGjBmD//u//wv6emn7c0FBAe666y506dIFJpMJgwcPxvLly+t5ZQPt2bMHs2bNQlJSEkwmE3r27Il7770X2dnZAdudOHEiAGDJkiXe51hf6xffz9Phw4cxc+ZMxMXFITw8HOPHj8fatWtrfez777+PyZMnIyYmBmazGQMHDsQTTzwBu91e6+uSk5ODO+64A926dYNOp8OKFSu8y+zcuRM33ngjunXrBpPJhC5dumD69On46KOPAta3Y8cOXHfddejcuTOMRiOSk5Nx9913e8MBX9p763K58Pe//907h1BycjL+/Oc/+wXL2n4IAJs2bfK+jjVfy1A/uwCwa9cuTJ8+3btfT506Fdu2bauztdLhw4cxb948JCcnw2g0olOnTrjppptCbu3Y0P1Ye/7avur7eamv1Z7v83jvvfdw/vnnIyIiwu9zVlVVhaVLl2L48OEIDw9HREQELrzwQrz//vsB6/M9juzevRuXXnopoqOjERsbi1mzZuH06dMA1OPib3/7WyQmJsJisWDy5Mn46aefgo4xOzsb9913H1JSUmA0GpGYmIhrr70We/bs8VvuqaeegiRJeOGFF4KuJysrC3q9HqNHj/a73eVy4ZVXXsEFF1yAqKgohIWFYcSIEXj55ZeDHi+EEHj55ZcxePBgmM1mdOvWDQsWLEBpaWmdr3VdsrKycMsttyApKQkWiwWjRo3Ce++9V+vya9asweWXX46EhASYTCakpqbioYceQklJScCyP//8M2bPno2UlBSYTCYkJiZi5MiRWLhwIZxOJwD1+K59R06ePNnvM9QQDocDf/vb35CamgqTyYRevXrhf//3f4MeV7Tn+/jjj2PcuHHe40HXrl1x00034eDBg37LLl68GL169QIArFy50m9s2rHI4XDg5ZdfxuWXX46ePXvCZDIhLi4OU6dOxTfffNOg5+C7Pe0zsXLlSowYMQIWiwVJSUmYP38+cnJygj7u6NGjuPXWW9GtWzfv87n11ltx9OjROrfhK5Tvonnz5mHy5MkA/L8/fNfrcDjw4osvYuTIkYiNjUVYWBhSUlJw9dVXY/369SG9LkRERO0Z24URERF1MLm5uVi9ejX69euHiy66CFFRUXjuuefw+uuv48YbbwxYfvfu3ZgxYwaKioowYcIEXHvttaiqqsLBgwexePFi/PWvf23Uso11/PhxnH/++ejXrx/mzJkDq9WKqKgoAGp49Nlnn2HixImYOnUqFEXBnj178M9//hPffPMNduzYgcjISO+6hBC47bbbsHLlSiQkJODaa69FYmIizpw5g7S0NPTv3x+jR4/GnDlz8D//8z9488038b//+7/Q6XR+Y3rrrbfgcrlw9913N+g5/O53v8PgwYMxYcIEdOnSBYWFhfj6669xyy234MiRI36BVHZ2NsaMGYOysjJcfvnlmDVrFmw2G9LT0/H2229jwYIFiI+Pr3ebDz/8MGRZxvnnn49u3bqhtLQUGzZswAMPPIBdu3bh7bffrncdM2fOREpKCp5//nkA8E6I3RSTrH/55ZdYtWoVLrvsMtxzzz04ePAgvv76a+zatQsHDx5EQkKCd9ni4mLvCdX+/ftj/vz5MBqNOH78OJYvX45rr70WnTp1wqJFi/D555/jp59+wgMPPOAdZ0PGe8stt+C9995DcnIy7rjjDkiShM8++wz33nsvtm7dinfffTfgMSUlJRg3bhyMRiOuu+462O12fPzxx5g/fz5kWcbcuXMb/FrMmjULQghcd9116NmzJ/bs2YP/+7//w6pVq7B161bvCcNFixYhIyMDK1euxMSJE73BZUPnFUlPT8eFF16IoUOH4u6770Z2djY+/PBDXHbZZXjvvfcCjgnz58/H8uXL0b17d8yaNQsxMTHYvn07/vrXv+K7777DunXroNf7/4pRVFSECy64ABEREbj22mshyzI6deoEQP3M/u53v4NOp8NVV12Fvn37Ii8vD7t378Yrr7yCG264wbuet956C3fddRdMJhOuuuoqJCcn4+jRo1i2bBm++OILbN++PWjrnJtuuglbtmzBZZddhqioKHz99df4xz/+gby8PO9Jx+HDh2PRokVYsmQJevbs6Tdvg+9rGcpnFwA2b96M6dOnw+1249prr0Vqair279+PyZMnY8qUKUHfk2+//RbXXnstnE4nrrzySvTp0wdnzpzBp59+iq+++gppaWkYOXJk/W8uGr4fa8+/sZ8XQJ2rad26dbjyyisxefJkb2BQUlKCKVOmYN++fRg5ciTmz58PRVGwZs0a3HTTTfjll1/wxBNPBKxv165dePrppzFx4kTceeed2L9/Pz799FMcOHAAq1atwvjx4zFgwADceuutOHnyJD799FNMmzYNJ06cQEREhHc96enpGD9+PLKysjBlyhTMnj0bp0+fxscff4yvvvoK//3vf3HFFVd4X69HH30U//nPf/DAAw8EjOmdd96B2+322z+092nNmjXo378/brrpJpjNZqSlpeH3v/89duzYEXB8XbhwIV588UV06dIFd911FwwGA1atWoUdO3bA4XCEXCVYXFyMiy66CDExMbjttttQUlKCjz76CHPmzEFmZiYeeughv+WXLFmCxYsXIy4uDldccQWSkpLw888/49lnn8XXX3+Nbdu2eb9Xf/75Z5x//vmQJAlXXXUVevXqhbKyMhw7dgyvvPIKnnjiCRgMBixcuBCff/45Nm3ahLlz5wYE6nURQuCGG27AqlWrkJqaigULFsDhcOCtt97C/v37gz5m8+bNeOqppzB58mTMmjULEREROHr0KD755BOsXr0a33//PYYNGwZA/QyXlJTghRdewLBhwzBz5kzveoYPHw5APU498MADuOiiizBt2jQkJiYiOzsbX3zxBS6//HK88cYbuOOOOxr+pgD417/+hbVr1+LGG2/EpZdeiq1bt2L58uXYuHEjduzYgcTERO+yu3btwtSpU1FeXo6rrroKgwYNwuHDh/HOO+9g1apVWL9+PcaMGdOg7Tb0u0h7HWp+fwDwvn/z5s3D+++/jyFDhuDWW2+FxWJBVlYWtm7dim+//RZTp04N6TUhIiJqtwQRERF1KEuXLhUAxN///nfvbaNGjRKSJImjR4/6LWu320VKSooAIN59992AdZ0+fbpRywohBAAxceLEoGOcO3euACDS09O9t6WnpwsAAoB45JFHgj4uIyNDuFyugNuXLVsmAIinnnrK7/bXXntNABBjxowRJSUlfve5XC6RlZXl/f99990nAIgvvvjCbzlFUUSvXr1EWFhYwDpqc+zYsYDb7Ha7mDJlitDr9eLMmTPe21988UUBQDz//PMBj6moqBBVVVWN3qbb7Ra33nqrACC2b9/eoPUIIUTPnj1Fz549A25PS0sTAMSiRYsa/Ljly5cLAEKn04n169f73ffwww8LAOLpp5/2u3327NkCgLjnnnuE2+32u6+8vNzvfQi2L/maOHGiqPkj8XvvvScAiBEjRojy8nLv7RUVFWLUqFFB93Ft37z99tv99sFffvlF6HQ6MXDgwKDbr6m8vFzExcUJWZbF5s2b/e576qmnBAAxbdo0v9vre92D8f08/elPf/K7b9euXUKv14uYmBhRWlrqvV17r6655pqA/W7RokVB91NtG7fccotwOp1+9/3yyy9Cr9eL2NhYceDAgYAx+h4zjhw5IgwGg0hNTfX7fAghxPr164Usy2LmzJl+t2vv7ciRI0VhYaH39oqKCpGamipkWRbZ2dkB463tuCREaJ9dt9st+vTpIwCIr7/+2u8x//d//+d9bdLS0ry3FxUViZiYGBEfHy9++eUXv8fs379fhIeHixEjRtQ6Pl+N2Y/r+7wEo733YWFhYu/evQH3a+us+Tm2Wq1ixowZQpIksW/fPu/t2v4MQLzzzjt+j5k/f74AIGJjY8UTTzzhd9/jjz8edB+cPn26ABCw/Pfffy90Op2Ii4vze3205ffv3x/wXAYNGiSMRqMoKCgIeP4LFizw++y7XC7veD///HO/7QIQqampfvul1WoVF1xwgQAQ9PhaG+21uv766/2OhydOnBCxsbHCYDCI48ePe2/fsGGDACAuvPBCUVxc7Lcu7TO+cOFC721//OMfA56DpqioyG+b2mvhu083xLvvvisAiAsuuEBYrVbv7YWFhaJ3795BP5e5ubmirKwsYF0//vijCA8PF5deeqnf7doxb+7cuUHHYLPZAn5OEUKIkpISMXjwYBEbG9vg71vtdTAYDAGfiYULFwoAYv78+d7bFEURAwYMCLrPf/DBBwKA6N+/f4Ne61C/i+r6/igpKRGSJIlRo0YF/dnK93NARETU0TFkISIi6kAURfGeXPQ9GfjSSy8JAOJ//ud//Jb/5JNPBABx1VVX1bvuUJYVovEhS6dOnYTNZmvQNjSKooioqCgxefJkv9uHDBkiAAQ9MVjTgQMHBABxxRVX+N3+7bffCgDitttuC2lMwfz3v/8VAMTKlSu9t2khy2uvvXbW6w9mz549AoBYsmRJgx/THCHLnDlzApY/ceKEACBmzZrlvS03N1fIsiy6dOkiKioq6h1rY0KWqVOnCgBizZo1AcuvX79eAAjYl7STzL6hhGbChAkCgN+J3Nq88847AoCYPXt2wH1Op9MbZJ48edJ7+9mELNHR0UFPVGqv24oVK7y3DR8+XOj1+oATs0KoJ5Tj4+PFmDFj/G4HIIxGo8jNzQ14zIIFCwQA8c9//rPe8WonJr/88sug98+cOVPodDq/56K9t+vWrQtY/rHHHgsamtYXstQm2Gd3y5YtQfcVIdQApl+/fgEnSZ9//nkBQLz88stBt6O9DjUDmGAasx+fTcjie2JeU1BQIHQ6nRg9enTQx/74448CgHjooYe8t2n78/jx4wOW37RpkwAgUlJSAk76ZmRkCABi3rx53ttOnz4tAIgePXoIh8MRsL6bb7454H3TTvgHCx+1kFHjdrtFXFyc6Ny5c0CIKIQQxcXFQpIkcf3113tvu+OOOwQA8dZbbwUsrz33UEMWnU4nTpw4EXCf9t4sXrzYe9vMmTMFgKDBphDq5zwxMdH7fy1kCbYf1ba9UEMWbV/dsGFDwH3ad0Qon8srr7xSmEwmv/e8vpClLs8995wAIDZt2tSg5bXXwTdI0ZSUlIjo6GhhNpu9P8ts3brVG3wFM378+IDt1xWyhPJdVNf3R2lpqQAgLrroIqEoSkOeOhERUYfFdmFEREQdyIYNG3D8+HHMmDED3bp1895+00034cEHH8SKFSu8rT8AYPv27QCAyy67rN51h7Ls2Rg2bBhMJlPQ+5xOJ1577TV88MEHOHjwIEpLS/364WdmZnr/XVlZiQMHDqBTp04YMWJEvdvVWgR98803OH36NJKTkwEAr7/+OgDgnnvuafBzOHXqFJ5++ml89913OHXqFKxWq9/9vuO86qqr8Je//AX33Xcf1qxZgxkzZmDcuHEYNGhQg3vdA0BhYSGeeeYZfP311zhx4gQqKytr3WZLqDnHAQDva+w7n86uXbugKAomTJiA8PDwZhnL3r17Icty0JZbEydOhE6nw759+wLu69u3r7fFji/f5+Hbxqi2bQMI2kpKr9djwoQJyMjIwL59+4K2xgrVyJEj/VroaSZNmoSVK1di3759mDt3LqqqqvDTTz8hISHB2y6uJpPJFHQOnZSUFCQlJQXcHsoxY9u2bQDU+VJ27doVcH9eXh7cbjd+/fVXjBo1yu++hu5bDRHKZ1fbR8aPHx+wHlmWcdFFF+HXX3/1u117nj/99FPQeXW05Q8dOoRBgwbVOdbG7seNNXbs2IDbdu3aBbfbXes8Qdp8HsH2m2DvW9euXQGoLZ5qtm3UvtPOnDnjvU17fhdffLH3e83XlClT8M4772Dfvn249dZbAQDXXHMNoqOj8e677+Kpp57ybkeb38m3Vdivv/6KoqIi9O3bN2jLMwCwWCx+z0/7jGtzKfkaP358wPNqiB49enhbCPqaNGkSlixZ4vc+b9u2DQaDAR9//DE+/vjjgMc4HA7k5+ejsLAQ8fHxuPHGG/HCCy9g5syZuO666zB16lSMGzcOqampIY+zNtq+GuyzUlfrw6+++gqvvvoqdu/ejYKCArhcLr/7CwoK0KVLlwaP45dffsEzzzyDzZs3Izs7Gzabze/+UL8ng73H0dHRGD58ODZt2oRDhw5h+PDhdR73tdu3bt2Kffv2YcKECfVutym+iwAgKioKV155Jb744gsMHz4cs2bNwsUXX4zzzz8fYWFh9T6eiIioI2HIQkRE1IFogYDvSSIAiIuLw5VXXon//ve/WLVqFa677joA8E6A6xvI1CaUZc9G586da73vxhtvxGeffYbevXvj6quvRufOnb2BzPPPP+83gW5jxnvvvfdi8+bNWLZsGZYsWYKcnBysXr0aw4cPD3qCMZgTJ05g7NixKC4uxsUXX4zp06cjOjoaOp3OO7eG7zh79uyJnTt3YvHixfj222/x6aefAlBPlvzpT3/C/fffX+82S0pKMGbMGKSnp2Ps2LG49dZbERcXB71e7+1TX9vkwudKsHkftLk93G6397ZzsZ+VlpYiLi4u6LwIer0eCQkJyMvLC7ivtrkrgj2PurYNoNYTg9rtwSanbgxtbpSatM+ZNp7i4mIIIZCfn++d3LqhavvMhvJeFhYWAgCeeeaZOperqKgIuK2h+1Z9Qv3saq9dba9xsNu15/nGG2/UOZZgz7Omxu7HjRXsfdaez65du4KGY5pgzyc6OjrgNu19q+s+LbgBGvd5slgsuOGGG/DGG29g7dq1uOyyy+BwOPD+++8jMTHRLxTUnt/Ro0fr/Fz4Pr+69gvtfQlVQz/H2phdLle9n+OKigrEx8dj7Nix2LJlC5588kl88skn3vll+vfvj0WLFmH27Nkhj7cmbV8NFoTVdvx44YUXsHDhQsTGxmLatGno0aMHwsLCIEmSd26hUL7Xtm/fjilTpsDlcuGSSy7BVVddhaioKMiyjB9//BGrVq0K+Xuyoe9LUx/3m+K7SPPhhx/i6aefxnvvvYdFixYBAMxmM6677jo8++yztT5HIiKijoYhCxERUQeRn5+Pzz//HAAwe/bsWk+MvP76696QRftFvSFXb4ayLABIkhRw1ammrhMJtVVv7N69G5999hmmTp2Kb775xm/ybUVR8I9//OOsxgvAO6H6m2++icceeyzkCe8B4J///CcKCwuxfPnygLDr/fff914t7WvgwIH48MMP4XK58NNPP2H9+vV46aWX8MADDyA8PBy33357ndtctmwZ0tPTsWjRooCrybdt24YXXnihweOviyzLAFDn+9rQSbRr05j3LVTR0dEoKiqC0+kMOOnncrlQUFAQ9Crhpto2AOTk5AS9Pzs722+5s5Wbmxv0dm372na0v0eMGOG96rqhavvM+r6XAwYMqHMd2vZLS0ub7bWvT6ifXW2ctb3GwW7XnudPP/2E884776zGe67342Dvs/Z8/vCHP+Cf//xnk22roRr7eZo7dy7eeOMNrFy5Epdddhm++uorFBYW4oEHHvB7LbXHXXPNNd4AvKFjys3NRe/evf3u096X7t27N2hdmoZ+jrV/K4qCoqKiBq//wgsvxJdffgm73Y49e/bg22+/xUsvvYSbbroJiYmJZz35eV37arD3zuVyYfHixejcuTP27t0bEE5oFWGheOKJJ2C1WpGWlhZQPbN06VKsWrUq5HWGenw9V8f9UFgsFixevBiLFy/G6dOnsXnzZqxYsQLvvPMOMjIysGXLlnM+JiIiotZIbukBEBER0bmxcuVKOBwOjBo1CrfffnvQP4mJiVi/fj3S09MBABdccAEA4Jtvvql3/aEsCwCxsbE4ffp0wO1utxs//vhjA59VtWPHjgFQ22v5BiwAsHPnzoC2PuHh4RgyZAhyc3Mb3DLHYDDgjjvuQGZmJr744gssW7YMERERmDNnTsjjnDVrVsB9mzZtqvOxer0eo0aNwp///Ge8//77AOANzpprm6GIjY0FgKDv67Fjx/yupm6ssWPHQpZlbN68OaDlWTBa651QrtwdMWIEFEXB5s2bA+7bvHkz3G43Ro4c2fBBh0BrXbdx48aA+1wul/eEVlNtf+/evSgvLw+4Xdu+Np6IiAgMHjwYv/zyS0gnZ+vSmONLc5/Qk2W51n0l1M+R9tpt3bo14D5FUfDDDz8E3N6Uz7Ml92ON9nltqROxvu9BsPA3LS0NQODnady4cejbty9WrVqF0tJSb4A2d+5cv+UGDBiAmJgYbN++3a+Cpi7atoLtM1u3bg3pWKU5deoUMjIyAm6v+TkG1H2suLgYv/zyS8jbMZlMuOiii/D444/jxRdfBAC/8KExx1tAfU0URQn6WQl2LCwoKEBJSQkuuuiigICloqIiaBBc39iOHTuGuLi4oO3JGvs9GexxpaWl+PHHH2E2mzFw4EAAdR/3gdr306YQynuWnJyMOXPmYM2aNejTpw+2bt3qreYiIiLq6BiyEBERdRBa+5lXXnkFy5YtC/rn7rvvhhACy5YtAwBceeWVSElJwerVq70n9X359r4PZVlAPfl26tQprF271u/2J554AidPngz5+aWkpAAIPEmRl5eH++67L+hjtFZbd999d0AAoCiK9+pRX3fddRd0Oh0WLFiA9PR03HTTTUHntAh1nGvWrPG+7r727NkTNJzQrpBtSF/02ra5b98+LF26tP5BN9CAAQMQFRWFVatW+bUhslqtDWpr1hCJiYn47W9/i+zsbPzpT3/ym3MHUE+w+b5e8fHxANSTkA01f/58AMAjjzyCqqoq7+1VVVV4+OGHAaDe6qHGmjlzJuLi4vD+++975yzRPP/880hPT8fUqVObZD4WQD3h9/jjj/vdtnv3brz77ruIjo7GNddc4739j3/8IxwOB+bPnx+02qy4uDikKpff/e530Ov1+Nvf/oaDBw8G3O97zFiwYAEMBgP+8Ic/BMxjAqjzSDTFifz4+PigISEQ+mdXm7ciLS0tIEh6/fXXgz6P2267DTExMViyZAl27twZcL+iKLWeiK2pJfdjTVJSEubMmYPdu3fjb3/7W9ATucePH/cG+02te/fumDZtGjIyMgLmEtqxYwfee+89xMbG+u3nmrlz58Jms+GVV17B119/jfPOOy9g/i69Xo/f//73yM7Oxv333x8Q5gNqFYLv/q1VQT355JN+gaXNZsMjjzzSqOfpdrvx5z//2e94mJ6ejhdffBF6vR4333yz9/Y//OEPAIA777wTWVlZAeuqrKz0O/b88MMPQZ9XsO+gxhxvAXW/B4BHH33Ubx6UoqKioHPdJCUlISwsDHv27PFrxeZ0OvHAAw+goKAg4DGxsbGQJKnWsaWkpKCoqAg///yz3+1vvvkm1qxZE9Lz0bz99tsBF3EsXrwYpaWlmD17tred6bhx49C/f39s3boVn3zyid/yn3zyCbZs2YJ+/foFnbPmbNX1nuXn52P//v0Bt1dWVqKiogJ6vT5oO0IiIqKOiO3CiIiIOoCNGzfi119/xdChQ+ucO+T222/Hk08+ieXLl2PJkiUwGo34+OOPMX36dNx000147bXXcMEFF8Bms+HQoUP47rvvvFcHh7IsAPzpT3/CmjVrcPXVV+PGG29EXFwcfvjhB6Snp2PSpEkNPpGoGTNmDMaNG4dPP/0UF110EcaPH4/c3Fx888036N+/v3fCZF933HEHtmzZgrfffht9+/bF1VdfjcTERGRlZWHDhg2YP39+QHutHj164De/+Q1Wr14NACG1CgPUeV2WL1+O66+/Htdddx26du2KAwcO4Ntvv8UNN9yADz/80G/5t99+G6+99hrGjx+P1NRUxMbG4vjx4/jiiy9gMpmwcOHCerd566234plnnsHChQuRlpaGvn374ujRo/jyyy9x7bXXBmyzsQwGAx544AH87W9/w4gRI3DNNdfA5XJh3bp16Nq1a9D3oDFefvllHDhwAK+++io2btyIGTNmwGg0Ij09HWvWrMHq1au9VyNfcskleOaZZ3DnnXdi1qxZiIyMRExMDBYsWFDr+m+66SasWrUKH330EQYPHoyZM2d6+/ynp6fjxhtvDKl6KRQRERF46623cP3112PixIm4/vrr0aNHD+zZswdr165F586d8dprrzXZ9iZMmIBly5Zhx44dGDduHLKzs/Hhhx9CURS89tprfu2k5s+fjz179uCVV15BamoqZsyYgR49eqCoqAjp6enYvHkzbrvtNrz66qsN2vagQYPwyiuv4J577sGIESNw9dVXo2/fvigsLMSuXbsQFRXlvYJ7wIABeOuttzB//nwMHjwYl156Kfr16wen04lTp05hy5YtSExMxOHDh8/q9bjkkkvwwQcf4Morr8TIkSNhMBgwYcIETJgwIeTPrizLWLZsGS699FJcddVVmDVrFlJTU/Hzzz9j3bp1uOyyy/DNN9942+wB6gnPTz75BNdccw0uuOACXHLJJRg8eDAkScLp06exbds2FBYWBkzIHUxL7se+Xn75ZRw9ehSPPfYY3n77bYwfPx6dOnVCVlYWDh06hF27duH9998POnF7U3j11Vcxbtw4PPTQQ1i7di1Gjx6N06dP4+OPP4Ysy1i+fHnQoPyWW27BY489hkWLFsHpdAZUsWj++te/4qeffsKrr76KL774AlOmTEG3bt2Ql5eHo0eP4vvvv8eTTz6JQYMGAVBPqP/+97/HSy+9hCFDhuC6666DwWDAqlWrEBsbG9JE7ZrzzjsPO3bswKhRozB9+nSUlJTgo48+QklJCf7xj3/4TVJ/ySWX4KmnnsIjjzyCvn374vLLL0evXr1QUVGBkydPYtOmTRg/fjy+/fZbAMA//vEPbNiwARdffDF69eqFiIgI/PLLL/jmm28QGxuLu+66y7vuyZMnQ5ZlPPLIIzhw4IC3uvF///d/6xz/7Nmz8eGHH2L16tUYMmQIrr76ajidTnzyyScYM2YMjh8/7re8LMu4//778dRTT2Ho0KG4+uqr4XA4kJaWhqKiIkyePNl77NBERETg/PPPx5YtWzBnzhz069cPOp0OV111Fc477zwsXLgQa9aswfjx43HDDTcgOjoau3fvxtatW3HdddcFhB8Ncdlll2HcuHG44YYb0KVLF2zduhVbt25FSkoKnnrqKe9ykiRh5cqVmDZtGm688UZcffXVGDBgAI4cOYLPP/8ckZGR+M9//uN3rGgq/fv3R7du3fDBBx/AYDCgZ8+ekCQJt9xyC4qLizFixAgMHToU5513HpKTk1FWVoYvv/wSOTk5uP/++0O6yISIiKhdE0RERNTu3XTTTQKAeOGFF+pddtq0aQKA+PTTT723nTx5Uvzud78TKSkpwmAwiLi4ODF27Fjx5JNPBjw+lGVXrVolRo0aJUwmk4iLixM33nijyMjIEHPnzhUARHp6unfZ9PR0AUDMnTu31rEXFhaK3/3ud6Jnz57CZDKJ3r17i0ceeURUVlaKnj17ip49ewZ93DvvvCMmTJggoqKihMlkEikpKeKmm24Se/bsCbr8559/LgCI0aNH1zqWunz//fdi8uTJIiYmRkRERIhx48aJzz77TKSlpQkAYtGiRd5lt2/fLu655x5x3nnnidjYWGE2m0VqaqqYN2+e2L9/f4O3+csvv4grr7xSJCYmirCwMDFy5EjxxhtvNOh1ramu11JRFLF06VLRu3dvYTAYRHJysnjooYdqfQ+WL18uAIjly5cHXR8AMXHixIDbKyoqxBNPPCGGDh0qLBaLiIiIEAMHDhQPPPCAyM3N9Vv2ueeeEwMGDBBGo1EA8BvDxIkTRbAfid1ut/j3v/8tRo0aJSwWi7BYLGLkyJHi5ZdfFm63u8HjFEIE3Z/rs3PnTjFz5kyRkJDgfR3vuecekZmZGbBssP2mPr7v+8GDB8VVV10lYmJihMViERdddJH49ttva33sF198IX7zm9+IxMREYTAYRKdOncSYMWPEo48+Kg4dOuS3bF2vi+aHH34Q1157rXd9Xbp0ETNmzBAff/xxwLI///yzmDt3rujRo4cwGo0iNjZWDB48WNx1113iu+++81u2tvdWiNr3u9zcXDF79myRlJQkZFkOeF1D+exqtm/fLqZOnSoiIiJERESEuOSSS8QPP/wg7rvvPgFA7Nu3L+Ax6enp4r777hN9+vQRJpNJREZGiv79+4ubb75ZfPbZZ3W+nr5C3Y8bs68uWrRIABBpaWm1LmO328VLL70kLrzwQhEVFSWMRqNITk4WU6ZMEf/6179EQUGBd9m6Xsv6jle17W9nzpwR99xzj+jRo4cwGAwiPj5eXH311WLnzp11PrdLLrlEABB6vV7k5OTUupyiKOI///mPmDJlioiNjRUGg0F07dpVjBs3Tjz55JPi1KlTAcu/9NJL3uNSly5dxL333itKSkrqPL7W9ZwzMzPFnDlzRGJiojCZTGLEiBHi3XffrfVxW7ZsEddff73o0qWLMBgMIiEhQQwbNkz84Q9/ELt27fIut2bNGjFv3jwxcOBAERUVJcLCwkS/fv3E73//e5GRkRGw3rffflsMGzZMmM1mAaDWz2BNdrtdLFmyRPTq1UsYjUbRs2dP8Ze//EXYbLag76vT6RTPPfecGDhwoDCbzaJTp07i5ptvrvVnCCGEOHr0qLjiiitEXFyckCQp4BjwxRdfiPPPP19ERESI6OhoMW3aNLFp06Z6v6dq8v1MLF++3Pt6JCQkiHnz5omsrKygjzt8+LC4+eabRefOnYVerxedO3cWc+bMEYcPH65zG74a8120c+dOMWXKFBEVFeV9XdLS0kRxcbFYsmSJmDx5sujataswGo2ic+fOYuLEieK9994TiqI06PUgIiLqCCQhhGjGDIeIiIio3Vm8eDGWLFmCZcuWNXu7HaLmkJGRgV69emHu3LlYsWJFSw+nQxo3bhx27NiB0tJShIeHt/RwiKiJaD8jpKWlBZ3jhYiIiNofzslCREREFILy8nK8+uqriIuLw+zZs1t6OETUilVVVQWdv2bFihX44YcfMH36dAYsRERERERtHOdkISIiImqAr776Cnv37sUXX3yB3NxcPPvssw2adJ6IOq5Tp05hxIgRmDZtGvr06QOXy4V9+/Zh69atiImJwXPPPdfSQyQiIiIiorPEkIWIiIioAT7++GOsXLkSnTp1wiOPPII//OEPLT0kImrlOnXqhDlz5mDTpk1IS0uD3W5H586dcdttt+HRRx/1m5CciIiIiIjaJs7JQkRERERERERERERE1Aick4WIiIiIiIiIiIiIiKgRGLIQERERERERERERERE1Qoefk0VRFGRlZSEyMhKSJLX0cIiIiIiIiIiIiIiIqAUJIVBeXo6uXbtCluuuVenwIUtWVhaSk5NbehhERERERERERERERNSKnD59Gt27d69zmQ4fskRGRgJQX6yoqKgWHg0REREREREREREREbWksrIyJCcne/ODunT4kEVrERYVFcWQhYiIiIiIiIiIiIiIAKBBU4xw4nsiIiIiIiIiIiIiIqJGYMhCRERERERERERERETUCAxZiIiIiIiIiIiIiIiIGoEhCxERERERERERERERUSN0+InviYiIiIiIiIiIiKjtcLvdcDqdLT0MaqMMBgN0Ol2TrY8hCxERERERERERERG1ekII5OTkoKSkpKWHQm1cTEwMOnfuDEmSznpdDFmIiIiIiIiIiIiIqNXTApakpCSEhYU1yQly6liEEKiqqkJeXh4AoEuXLme9ToYsRERERERERERERNSqud1ub8ASHx/f0sOhNsxisQAA8vLykJSUdNatwzjxPRERERERERERERG1atocLGFhYS08EmoPtP2oKeb2YchCRERERERERERERG0CW4RRU2jK/YghCxERERERERERERERUSMwZCEiIiIiIiIiIiIiImoEhixERERERERERERERORn3rx5SElJaelhtHoMWYiIiIiIiIiIiIiIWtCKFSsgSZL3j16vR7du3TBv3jxkZma29PCoDvqWHgAREREREREREREREQGPP/44evXqBZvNhu3bt2PFihXYunUrDhw4ALPZ3NLDoyAYshARERERERERERERtQKXXXYZRo8eDQC44447kJCQgKeffhqrV6/GDTfc0MKjo2DYLoyIiIiIiIiIiIiIqBW6+OKLAQDHjx8HADgcDjz22GMYNWoUoqOjER4ejosvvhhpaWl+j8vIyIAkSXj22Wfx+uuvIzU1FSaTCWPGjMGuXbsCtvP5559jyJAhMJvNGDJkCD777LOg46msrMSDDz6I5ORkmEwm9O/fH88++yyEEH7LSZKEBQsW4OOPP8agQYNgsVhw4YUXYv/+/QCA1157DX369IHZbMakSZOQkZFxti9Vi2ElCxERERERERERERFRK6SFD7GxsQCAsrIyLFu2DLNnz8add96J8vJyvPnmm5gxYwZ27tyJ4cOH+z3+vffeQ3l5Oe6++25IkoR//OMfuPbaa3HixAkYDAYAwNq1azFr1iwMGjQIS5cuRWFhIW677TZ0797db11CCFx11VVIS0vD7bffjuHDh2PNmjV46KGHkJmZiX/9619+y2/ZsgWrV6/GfffdBwBYunQprrjiCvzP//wPXnnlFdx7770oLi7GP/7xD8yfPx8bNmxohlew+TFkISIiIiIiIiIiIqI2RwjA6mrpUfiz6AFJavzjS0tLUVBQAJvNhh07dmDJkiUwmUy44oorAKhhS0ZGBoxGo/cxd955JwYMGICXXnoJb775pt/6Tp06haNHj3pDmv79++Pqq6/GmjVrvOv885//jE6dOmHr1q2Ijo4GAEycOBHTp09Hz549vetavXo1NmzYgCeeeAKPPvooAOC+++7D9ddfjxdeeAELFixAamqqd/kjR47g8OHDSElJ8Y797rvvxhNPPIFff/0VkZGRAAC3242lS5ciIyPDu2xbwpCFiIiIiIiIiIiIiNocqwsY+EpLj8LfoXuBMEPjHz916lS//6ekpOCdd97xVpXodDrodDoAgKIoKCkpgaIoGD16NPbu3RuwvhtvvNEbsADV7cdOnDgBAMjOzsaPP/6Ihx9+2BuwAMC0adMwaNAgVFZWem/7+uuvodPpcP/99/tt48EHH8Qnn3yCb775BgsWLPDefskll/iFJueffz4AYNasWd6Axff2EydOtMmQhXOyEBERERERERERERG1Av/+97+xbt06fPLJJ7j88stRUFAAk8nkt8zKlStx3nnnwWw2Iz4+HomJifjqq69QWloasL4ePXr4/V8LXIqLiwEAJ0+eBAD07ds34LH9+/f3+//JkyfRtWtXv4AEAAYOHOi3rtq2rYU4ycnJQW/XxtTWsJKFiIiIiIiIiIiIiNoci16tHGlNLGd5xn3s2LEYPXo0AGDmzJkYP348brrpJhw5cgQRERF45513MG/ePMycORMPPfQQkpKSoNPpsHTpUhw/fjxgfVrVS001J6pvDrVtuyXH1BwYshARERERERERERFRmyNJZ9eaq7XTwpPJkyfj5ZdfxsMPP4xPPvkEvXv3xqeffgrJZ/KXRYsWNWob2pwrR48eDbjvyJEjAcuuX78e5eXlftUshw8f9ltXR8N2YURERERERERERERErdCkSZMwduxYPP/887DZbN4qEN+qjx07dmDbtm2NWn+XLl0wfPhwrFy50q/d2Lp163Dw4EG/ZS+//HK43W68/PLLfrf/61//giRJuOyyyxo1hraOlSxEREREREREREREjaAIgSoXoAggwgDIPpUFRE3loYcewvXXX48VK1bgiiuuwKeffoprrrkGv/nNb5Ceno5XX30VgwYNQkVFRaPWv3TpUvzmN7/B+PHjMX/+fBQVFeGll17C4MGD/dZ55ZVXYvLkyXj00UeRkZGBYcOGYe3atVi1ahUWLlyI1NTUpnrKbQorWYiIiIiIiIiIiIgayO4WKLYLnK5QcLBYweFiBUdKFPxaoiDfKuBU2ua8EtR6XXvttUhNTcWzzz6LW2+9FX//+9/x008/4f7778eaNWvwzjvveOdxaYxLL70UH3/8MdxuNx555BF8+umnWL58ecA6ZVnG6tWrsXDhQnz55ZdYuHAhDh48iGeeeQb//Oc/z/ZptlmSaKuzyTSRsrIyREdHo7S0FFFRUS09HCIiIiIiIiIiImpFtGqVSidQ5lBQ6QIcbkAAMOnUPwBQ5QJcijrxebxJQqxJQpiBlS1NxWazIT09Hb169YLZbG7p4VAbV9/+FEpuwHZhRERERERERERERD7sbjVYqXAKlNgF7G7ALQC9rIYqYXr4TToOAFFGdZ4Mqxs4UymQaxWIMQFxJhlRRrYSI2qvGLIQERERERERERFRh+ZbrVLqqVZxutX7jDog3ADo5fpDEkmSEKZXQxi7W6DABhTaFEQYgASzjGgjYNQxbCFqTxiyEBERERERERERUYdTX7VKeJBqlVCYdBJMOsCtCFS6gONlCsI8rcRiTFLQahgiansYshAREREREREREVG75xYC1iaoVgmVTpaCtxIzAnFmthIjausYshAREREREREREVG7ZHMLVDnVapVSh4DNDShNWK0SCt9WYg63QKEdKLAriGQrMaI2jSELERERERERERERtQtuz9wqVT7VKg43IEGtVok0qJUlLc2ok2D0bSVWqsBiUFuJxbKVGFGbwpCFiIiIiIiIiIiI2iQhBOwKWk21SqhqthLL9GklFm+WEWkEdK107ESkYshCREREREREREREbYZbqC3Aqlytu1olFDVbiRXZgUKbgggDkGBRW4mZ2EqMqFViyEJEREREREREREStlhACdrcaqpQ7BcraWLVKqHxbiVW5gPQyBWa92kosxiS1q+dK1B4wZCEiIiIiIiIiIqJWRQsYKj3VKlVOwKEAkqSGKm2xWiVUOllCpKeVmE1rJVYlEG1SW4lFsZUYUavAkIWIiIiIiIiIiIhaVIOqVQwds4JDkiRY9IDF00qs2A4U2xSEs5UYUavAkIWIiIiIiIiojRNCQBGALHXME5BE1Db5VquUOBRYnYBTAdCBqlVC5W0l5pmX5kSZArMOiDdLiGUrMaIWwZCFiIiIiIiIqBUQQsAt1Ku2FQHvv2v+rQgBl1BPRLoUAZei3ieghizhegnhBgkmnXqS0iTzhBsRtQ5atUqlC6hwCpQ61P9r1SrmDlytEiqd5N9KLKtSIK9KIMqoVrdEMaAiOmcYshARERERERE1Ed+gJDAc8Q9KnArgEmpIogUlCtT7hWc54fm/BPXfGknyVK1A/VuWABnqegpsAnlWAQmAQQaMOiBCL8FikGD2BC9GBi9EdI64PNUqVS6gxK7A6lLnVpEl9fjEapWz49tKzKkIlDqAYrunlZhZRoyJrcTaghUrVuC2227Drl27MHr06JYejtfBgwfx0UcfYd68eUhJSWnw43788Uc8++yz2LRpE/Ly8hAeHo6RI0dizpw5uPXWW6HT6Zpv0C2AIQsRERERERGRDy0oCR6OwOc+NShxa3/XCEq0sKS+oESu8W+dXP3vs2n/JTzjcihAnk1AsQpIkhq8mGQg3CAhTK9WvJh16u0MXojobPlVqzgESp2sVjlXDLKEaJOnlZgLSC9XYK5iKzFqvIMHD2LJkiWYNGlSg0OWZcuW4Z577kGnTp1wyy23oG/fvigvL8d3332H22+/HdnZ2fjLX/7SvAM/xxiyEBERERERUbujeOYoqauaxC3U+QBcIrCiRAtGagYlGu0UlSR5AhL4ByV6ufr2lponRZLUvv1Gn4tFtWDIrgAVVgEhBGSp+sRnhEGCWVdd8cLghYgaQqtWqfS0AAuoVjGq7a3o3NBJEiINgNAHthKLN8uINrJ6iJrH9u3bcc899+DCCy/E119/jcjISO99CxcuxO7du3HgwIGz3o6iKHA4HDCbzWe9rqYgt/QAiIiIiIiIiIJRhIBLEbC7BawugQqnQJlDoMQuUGgTyLcK5FQJZFYoOFmu4FipG0eK3filyI0DRQp+KVZw0PPnULGCwyUKfi1RcKxUwYkyBafKFWRWqq21SuxApWfCZQH1l2WjrLZfiTAA0UYgzix5/8R6/sSYJEQbJUQaJUR4KkPMeglGnQSDLEEnS60qpJAlCSadOtZYk/pcooxqmGJzA9lVAifK1NfqoOc1O12hoMAmUO4UcPomTUTUYQmhHpcLbQIZZerx4kiJglMVathi1AGxJiDGpB4XGbC0DLWVmHqstxiAEgdwrFTBoRIFuVUCNjeP6W1NZmYm5s+fj06dOsFkMmHw4MF46623/JZxOBx47LHHMGrUKERHRyM8PBwXX3wx0tLSAtb3wQcfYNSoUYiMjERUVBSGDh2KF154AYDawuz6668HAEyePBmSpP5Ms3HjxlrHt2TJEkiShHfffdcvYNGMHj0a8+bN8/6/srISDz74IJKTk2EymdC/f388++yzEMJ/35QkCQsWLMC7776LwYMHw2Qy4dtvv23wa9LcWMlCREREREREzUapZTJ3/7ZbnooSBXAKAbcCuIRPRYnieQw87bZEddstrQWXNi+JNkeJ5FNRIvtVm/BEX01q8KJWrmi0iherGyh3CCgQ0HlajWkVLxZ99eMMvCKaqN2rWa1S5VKDaVartA0GWUKMST2++7YSizOpFw1EtNFWYkIIKHZ7Sw/Dj2wyNctrmZubiwsuuMAbOCQmJuKbb77B7bffjrKyMixcuBAAUFZWhmXLlmH27Nm48847UV5ejjfffBMzZszAzp07MXz4cADAunXrMHv2bFxyySV4+umnAQCHDh3C999/jwceeAATJkzA/fffjxdffBF/+ctfMHDgQADw/l1TVVUVvvvuO0yYMAE9evSo9/kIIXDVVVchLS0Nt99+O4YPH441a9bgoYceQmZmJv71r3/5Lb9hwwZ89NFHWLBgARISEpCSktLg16S5MWQhIiIiIiKiOgULSoK23/IJSrTWWzUncldQ3X4L8J+npGZQov3R6xiUnGt+wYtBvc0tBJxudfLqMoeAgPCeXDXrgAhPFY/WakzP4IWoTRNCbTWlfebLfeZWMcjq5zyCc6u0ObIkIcIAhHtaiWVXqRWd0Z5WYlHGtnX8Vux2/HTnnS09DD/D3ngDumZoY/Xoo4/C7XZj//79iI+PBwDcc889mD17NhYvXoy7774bFosFsbGxyMjIgNFo9D72zjvvxIABA/DSSy/hzTffBAB89dVXiIqKwpo1a4JORN+7d29cfPHFePHFFzFt2jRMmjSpzvEdO3YMTqcTQ4cObdDzWb16NTZs2IAnnngCjz76KADgvvvuw/XXX48XXngBCxYsQGpqqnf5I0eOYP/+/Rg0aJD3tjvuuKNBr0lzY8hCRERERETUAbhrzFFS279dnqDE1cCgRDsNExCU+MxHopN95yZhUNJW6SQJOj3ge9rIragVLxVOoMQuAK3iRQdYfOZ4MXmCGM4BQNS6uRSBylrmVjHrgCijepKe2j61lZjaFtOpCJQ4gGK7gjADkGBS22Ga9XyvWwshBP773//ihhtugBACBQUF3vtmzJiBDz74AHv37sW4ceOg0+m8oYmiKCgpKYGiKBg9ejT27t3rfVxMTAwqKyuxbt06XHrppWc9xrKyMgAI2iYsmK+//ho6nQ7333+/3+0PPvggPvnkE3zzzTdYsGCB9/aJEyf6BSyhvCbNjSELERERERFRGyCE8IYdtU3irpxFUOINTIK03NImRvetMJHAoITU0EQnBwYvDgUo9wQvAgJ6T/Di12pMBkx6thciaklatUqlS20NyGqVjqlmK7GMCgGzVahzd5mkVr0PyCYThr3xRksPw49sMjX5OvPz81FSUoLXX38dr7/+etBl8vLyvP9euXIlnnvuORw+fBhOp9N7e69evbz/vvfee/HRRx/hsssuQ7du3TB9+nTccMMNjQ5coqKiAADl5eUNWv7kyZPo2rVrQCijtSM7efKk3+2+YwdCf02aE0MWIiIiIiKicyQgKFEAN4JXlrg8FQIuRajzk9QRlAD+7bcYlFBL0skSLDLg25xD25/LnUCxp+JFC17C9ECEQfZWu5h0vFKeqDnVVq2ik9TPH6tVOi7fVmJ2N5BbJZBvFYgyAgmttJWYJEnN0pqrtVEUBQBw8803Y+7cuUGXOe+88wAA77zzDubNm4eZM2fioYceQlJSEnQ6HZYuXYrjx497l09KSsKPP/6INWvW4JtvvsE333yD5cuX49Zbb8XKlStDHmOfPn2g1+uxf//+RjzD+tVs+xXKa9LcGLIQERERERGFQAtK3IpPOIIa85UogILqKpJgQYk3LPH833duEkANR2oGIgxKqK3SyxL0PsGL8Mzz41SAUgdQZFNPlGitxsINQLhe9oYuDF6IGo/VKhQqSZJg1gNmTyuxMgdQ4mklFm+SEMtWYudcYmIiIiMj4Xa7MXXq1DqX/eSTT9C7d298+umnfp/rRYsWBSxrNBpx5ZVX4sorr4SiKLj33nvx2muv4a9//Sv69OkT0nEhLCwMU6ZMwYYNG3D69GkkJyfXuXzPnj2xfv16lJeX+1WzHD582Ht/XUJ5TZobQxYiIiIiIurQfE/2OpTq8MQtggclLkUNQ2oGJb4VJd72W975R/xDEb3sH5wwKKGORpIk6D2hoW/w4vJ8FovtQIFVDV4MsvpHC160ihcjgxeiWgWrVnF65lZhtQqFwiBLiPZpJXayQiDHKhDnCVsiGdCdEzqdDrNmzcJ7772HAwcOYMiQIX735+fnIzEx0bssoH6vau/Njh07sG3bNvTo0cP7mMLCQu9k8QAgy7K38sNutwMAwsPDAQAlJSUNGueiRYvw3Xff4ZZbbsGXX36JiIgIv/v37NmDAwcOYO7cubj88svx+uuv4+WXX8YjjzziXeZf//oXJEnCZZdd1mSvSXNjyEJERERERO2e78lbpwI43YBDEbC5BWwuwCkAl1sNVnzbbjEoITp3JEmCQVIDFY3vZ7fIBuQLxfv5M8jq/C5hevWKa5Pninx+DqkjEkLA6gaqnECZU0G5E7C7AQhAr1MrEiIkfj6o8YK1EsuzCkQbgXizjOhW2EqsLXrrrbfw7bffBtz+wAMP4KmnnkJaWhrOP/983HnnnRg0aBCKioqwd+9erF+/HkVFRQCAK664Ap9++imuueYa/OY3v0F6ejpeffVVDBo0CBUVFd513nHHHSgqKsKUKVPQvXt3nDx5Ei+99BKGDx/unRdl+PDh0Ol0ePrpp1FaWgqTyYQpU6YgKSkp6Pgvuugi/Pvf/8a9996LAQMG4JZbbkHfvn1RXl6OjRs3YvXq1XjiiScAAFdeeSUmT56MRx99FBkZGRg2bBjWrl2LVatWYeHChUhNTa339Wroa9LcJCGEqH+x9qusrAzR0dEoLS31Ts5DRERERERtj/dkrFutSFEDFTVI0a7gdSv+QYpOVtsTaVfU63gCiqjVE0JUB6ZKdbs9g6y2GovQSwgzSNUVLzI/19Q+ORW1skCrVqlyqdWWWrUK2+xRc9MqptyKOr9WgllCjEmCpZlaidlsNqSnp6NXr14wt7N5WFasWIHbbrut1vtPnz6N7t27Iy8vD48//jhWr16NnJwcxMfHY/Dgwbjxxhtx5513AlC/J5966im89tpryMnJwaBBg/C3v/0NH3/8MTZu3IiMjAwAwH//+1+8/vrr+PHHH1FSUoLOnTvjsssuw+LFi9G5c2fvtpctW4alS5fi5MmTcLvdSEtLw6RJk+p8Pnv37sVzzz2HjRs3Ij8/HxERERg5ciRuvfVW3HzzzZBl9YqKiooKPPbYY/jwww+Rn5+PlJQU3HXXXXjwwQf9vrslScJ9992Hl19+OWBbDXlNgqlvfwolN2DIwpCFiIiIiKjN0E6uupTqIMXhFrC61X7zrlqCFL3k8zeDFKJ2p67gxahTK14sesk7xwuDF2qLaqtWEUINGM069XuO+zada1orMYcLMOqBWKOEOHPTtxJrzyELnXtNGbKwXRgREREREbUqNU+W+gUpLngnkNeCFAk+FSmedkEMUog6FkmSYPTM06JRhPAGsrlWASEEZO04IQPhnlZjWsWLgcELtUJORaDS6T+3iktUV6tEc24VagW0VmJCL2D3HHPzbQJRRiCBrcSoA2DIQkRERERE51zNIMXhCVJsPkGKyxOkAAxSiCh0ci3Bi1MB7ApQ4RO8GDzHlQiDBItOgskzx4tRx2MMnVtCqEFKpUutVqlwAnaXelGBUQdYDOpE5EStkSSpFYNmndpKrNwJlNiVc9JKjKglMWQhIiIiIqJmIYTwtvRy+QQpVpentZdPRQoQGKSYdZ4J5RmkEFETkSXJO1eFRgtebG6g3BkYvEQaJJh9Wo3xBDc1tWDVKk6hfh+adEC0idUq1PboZQnRRvUYa3UBJysEcqoEYk0SYj2txLhfU3vBkIWIiIiIiBpNCdLay+4JUuzu6ooUobX2kqpDFIMMWBikEFELqy14cSiA1Q2UOwQEqoMXs0/worUaYxscCoVftYpDQYUrsFolivsUtROyJCHcAITp1eNqnqeVWKRPKzGG19TWMWQhIiIiIqI61QxSHG7AoQQGKYpWkRIkSNHxl2ciakNkn5Y3MKi3uRX1WFjlAso8wYtOqp5wPEKvtsHRAhsGL+TL4VYnBg9WrWJmtQp1AJJPoO3yVG+VelqJxZslxLKVGLVhDFmIiIiIiMgbpDgUwOnW5kkRqPIEKW5FDVOCBSlGGbDoAR1PDhFRO6aTJehkwOxzmxa8VDiBErsAPMGLUQteDBLMuupWYwycOw6tRVKVp1ql3KlepACowRyrVagj08sSonxaiZ2qEMitEogxSYhrQCsxIcQ5HC21V025HzFkISIiaiXcnh8wrS7A5haQof7wqZMBvedkpk6qnq+AEz4TUajcvhUpniBFnWhewK5UBym+rb30nuOOUQeEybzKlojIV7DgxeUJXsprBC8GHRCmA8IM/hUvDKjbD99qlRKHgM2lfq9ybhWi4LRWYuEGtd1svlWgwCYQafC0EjP5txLT69VT2S6Xq6WGTO2Ith9p+9XZYMhCRETUQhSfUKXCKVDu9FwtLtQTmxCAgHplhSSpE0LLUOcukGX13wZPKx6jToJBloIGMdqV5vyFjqhjcAvhDVC0yhRtjhSHEliRIvtWpDBIISI6a3pZgl4GLJ7/CyHgFuoxudQJFHqCF70WvOiBCIPsnd/FpONxuK1oSLUK55ogahiTTqpuJeYCSssUWPRAgllCjElCmF6CTqeDTqdDWVkZIiMjW3rI1MaVlZV596mzxZCFiIjoHFGEejVblVu9uq3MIeBwV/diNurUK3hq69+t/YKuaH+grku41JOqqFHqKknVJ0+1vw0yYJQlGGRWyRC1ZVp7GofvZPMuAatbDVJcCrzHCwk1WnsxSCEiOqckSYLecwyuGbw4FKDEARTZFADqz2IGWf2ZMFwve0MXBi+th1atUuGpVrF75lbRs1qFqElorcSEUD9rpysEcqoEYkxAnElGQmIicnNyYDKZEB4ezt9bKWRCCFRWVqKsrAxdunRpkn2IIQsREVEzUYSAze1TqeKoniBa9gQeYXWEKjVpv6A3hBBqDYxvKKO2BVLHpV7BXh3KyFLwKhm9rF5RxCoZonPPrQi/EMWpADZPkOKsLUjxBKdmvRaw8rNJRNQa+QYvGiEEXJ6f2YrtQIFVDV4MNYIX34oXnlxsflq1SqULKLMrqHD5V6uE8vM8ETWcVKOVWIEVKLQpiNBHwhBuRX5+AfLz81t6mNRGSZKEmJgYREdHN8n6GLIQERE1EeEJVbQ+zGXO6ivbZEmdGPpc/RImSZLaXiyEUEYRPqEMAKsbUJqgSkb2mdOBVTJE/rS+/b5/rC4Bm7u6tZe7RmsvveezxCCFiKh9kSQJBs/PVBrf4KXIBuQLBRI8lYkyEG5QW+iY9Z6KF5k/ZzWFWqtVZPU1jjHxdSY6l7RWYm5FoNIlwWXqBLMlATE6F6IMEiwGfh4pNAaDoUnahGkYshARETWS8KlUqXSp7b9sbvXqcglqSx6LAYhsA6GCJHkqVRqwbF1VMlrri/qqZPSeKzK1KplgQQyrZKi9cAW09lJbB9pqtPYSPhUpvkGKvg0cQ4iIqHn4BS+eMzhCVAf0BTYBRQhI8FS86IBIvXrCUat4MTJ4qZfiaUtUVaNaRcDTZpPVKkStgs6nlZjVrUOOU4dCNxAj1FZiUUb+/kgtgyELERFRAwmhtvtSfwHzD1UAz+SWHeCEaFNUyWgVP24hIDwnBqrXH7xKxiBLMPpUyXiDGFbJUAvzndDYN0ixutT2Xk4BuNyeIAXwfn60aq+OcNwgIqKmI0kSjDr15L/GN3jJswkoVgFJAgyeef8iPBUv2vwuDF7U9kNatUqpQ70Awi3U72eTDojR8zUiaq0kSUKYHgjTq5VnBTZPKzEDkGCWEW0EjDp+funcYchCRERUCy1UsbqBKk/7L6tL/eUVUH9h5VXm9WvqKhkJwlsnI0vqCWtdkCoZo05tXabz9DyvWSWj89xH1BC+7VqcCuB0Aw5FbeulHRe01l7a/qntc3pJvQKWISARETWXYMGLIgRcngsAcq3qhS1a20mTrAYvFr3knd/F0M6DF99qlVK7gkoXYPfMrWLSqfM+sFqFqO0x6tTjn9pKDDhepiBMD8SbJMSY1DCmPR/bqHVgyEJEROQhhIBdUdt/aaGKzXPyVGsVYNIBEQb+kNZcmr5KpjqU0dowyT4VMkGrZCT/k+Oyp9qAJ8jbP2+Q4q6uSHG41Ynm7e76gxQTgxQiImpF5FqCF6cC2BWgwqq2GtN+HjJ5Kl4sOgkmvdpqzNDGQ4f6qlViefKVqN3wbyUGnKkUyLEKxBiBeLOMSCMvsqPmw5CFiIg6LCHU+RCsPu2/rC715KoEQK+rvqqNv3y1To2pkvENZZyKegWjEqRKRvLMJcMqmfZFa6fiUgKDFK39X7AgRXufTToGKURE1HbJUnXLMI0WvFjdQLmzuuLFIKtBi1bxYvJWvLTe70CtWqXSCZQ51GoVbW4VVqsQdQw1W4kV2YFCu4JIgxq2xLCVGDUDhixERNSh2D2tfbyhilu9al1AO3nOUKW98q2SacgPQH5VMlBDGa1KRvHcp52G91bJQA1kvPPFyICRVTLnnG9femfNIMUFuET1ZPOAp+WcXP2eMUghIqKOJFjw4vZ8l1a5gDKHgIAavBh1aquxSIMEsyd4MetaNrjwrVYpsavVp26l+oIptgoi6rh8W4lVuYD0MgVmTyuxWLYSoybEkIWIiNo19cSq/5wqDk/vZb0WqvAHKwqiqapkyuupkpF8Ahlv6zJddZWM1judVTL+agYpDi1IcakVKe56ghSzzjOnD19LIiKiADpJgs4ToGjcSnXwUuoJXvQSYNABFh0QrveveGmu4MUt1J/pK51Aqadaxen5+d7IahUiCkInS4j0aSWWWSmQaxWINgIJbCVGTYAhCxERtStaqGJ1qS0CqnxaBGhXqPNqFWpq57pKRmvhoVXJ6OQgbcvaQZWM1tLPt72Xb5DiEuqVqoqofgyDFCIiouahkyXoZMDsc5tbUb+ry51AsV0AUOd4MeqqW42ZdRLMnuBF18jwI2i1iqj++Z4XTRFRQ9RsJVZsB4ptCsINQIJFRrQRMLGVGDUCQxYiImrTnIrW/ssnVFEAIaorVaL1ahsEotbibKtkXIoaHtZVJSN7wpjaqmR8W5q1ZJWMEqS1l90TpNjd1a29tCClZuWPhUEKERFRi9HJEiwyYPG5zeWpeCl3AiV2/4qXMB0QYZS91S4mXfCfPVitQkTNrWYrsRNlCix6IM7TSozhLYWCIQsREbUpWqhidQHlDgWVbvVks6KFKjIQbWSoQu1HY6tkFFSHMrVVycCz3tqqZAyeuWTOtkqmZpDicAMORaDKVd033SWCBylGGbDoWb5PRETUVuhlCXqf4EV4LgpxKkCpU52AGkB18KIHIgwyzDr1Z4EKp0Cpo7r9p4HVKkTUjHxbidncQFalQF6VQLQJiDfLiGIrMWoAhixERNSquXwqVcqd6lVsNUOVKIYqRF6+VTKGepatr0pGUReCgNq2DCFUybi0ihS3f5AivCU3PkGKDrBwrhkiIqJ2SfLMM1czeHF5gpcSB1BoU6qXh/qzQaSh8e3FiIhCJUkSLHr1Ai+tlViRTUGEQQ1bYkxsJUa1a5Uhy7///W8888wzyMnJwbBhw/DSSy9h7NixQZedNGkSNm3aFHD75Zdfjq+++qq5h0pERE3MpVTPqVLuVFDpVCcPV4R69TxDFaKm01xVMhLUWhlJgrcKxqgDwmR+domIiEj9GcTgqZ7VCM+VGKxWIaKW5m0lJtRWYunlCsxVQLyZrcQouFYXsnz44Yf44x//iFdffRXnn38+nn/+ecyYMQNHjhxBUlJSwPKffvopHA6H9/+FhYUYNmwYrr/++nM5bCIiaiS3J1RRJ7JUUOEbqngmzYxkeS5RqxBKlQwRERFRKHjCkohaG50kIdIACL3aSizb00osyggkWGREseKOPCQhhKh/sXPn/PPPx5gxY/Dyyy8DABRFQXJyMn7/+9/j4Ycfrvfxzz//PB577DFkZ2cjPDy83uXLysoQHR2N0tJSREVFnfX42wu7S+CrVz7D0EvHoW+/Ti09HCJqR7RJLK0utd9yuVN4QxVZUvstG2X+oEJERERERERErYtTEah0qm2QwwxAIluJtVuh5AatqpLF4XBgz549eOSRR7y3ybKMqVOnYtu2bQ1ax5tvvonf/va3tQYsdrsddrvd+/+ysrKzG3Q7tePdr5Cy6zNk/LgRf7/oz5gwpitm9gNiLTxgEFFo3ELA5tIqVdRQxeGZxFKW2G+ZiIiIiIiIiNoGgywhxqS2S670aSUWZ5IQa5YQwVZiHZJc/yLnTkFBAdxuNzp18q+c6NSpE3Jycup9/M6dO3HgwAHccccdtS6zdOlSREdHe/8kJyef9bjbI8sF41EQ2RXxzmLc8v3f8dbXZzBmGXDL5wo+OKggs0KgyKaeLLW5BZTWVRBFRC1IEQKVToECm8DJMgUHixQcKlZwvExBgU2dQDvcAMSZJcSYJITpJQYsRERERERERNRmyJKESIOEOJN6AWl2lcCvxQqOlSoosgm4FZ4r7UhaVSXL2XrzzTcxdOhQjB07ttZlHnnkEfzxj3/0/r+srIxBSxBj+sfA9fT/4sDixxGTl4O///okHuv7MDafTMHmk0CMWWB8T4HJvQVSY9UJbU06wKKTYNJJMHgmuDXI6h9OckvUfimeShWrW61UKXOolSouoU56bdKpoYqeQQoRERERERERtSOSJMGiByx6tZVYiQMosisI97QSizYBZrYSa/daVciSkJAAnU6H3Nxcv9tzc3PRuXPnOh9bWVmJDz74AI8//nidy5lMJphMprMea0egj4zE4CWL8OuSJUBODv5x9HGsvuB+fC6GocQm4csjEr48AqTGqWHL+B4C4SahNiWEenJVL6kBjFkHWPQSjLLkF74wgCFqexShTvhmdQGVToEyp4DdBTg9E9UbZLUvKUMVIiIiIiIiIuoofFuJVfm0Eos1SYgzSYgwsJVYe9UqJ74fO3YsXnrpJQDqxPc9evTAggUL6pz4fsWKFbjnnnuQmZmJ+Pj4Bm+PE9/Xz1lejiOPPw5HTg6g08Fx6bXY1ftS/JBpwM4zgEtRDw46SWBsd2B6H4ELugM6WcClqFezuxR1/gVtb5MlQC+rIYzJE8BoFTDaH6PMAw9RayB8QxWXQKlDnajepahhqtFbucbPKxERERERERERoJ5PsXvOp8gSEG0E4s0yooy8MLUtCCU3aHUhy4cffoi5c+fitddew9ixY/H888/jo48+wuHDh9GpUyfceuut6NatG5YuXer3uIsvvhjdunXDBx98ENL2GLI0jKOsDL/+7W9q0CLLMEyaBtvkK1EmR2B3poT1xyX8Wlh9cIgyCUzupQYu/eLVE7G+3ELAHWIAY5T9K2AYwBA1j5qhSrlD/b9TASQABp362dRL/BwSEREREREREdXHqQhUOQFFqN0/EkzqPLVmPc+rtFah5Aatql0YANx4443Iz8/HY489hpycHAwfPhzffvstOnXqBAA4deoUZFn2e8yRI0ewdetWrF27tiWG3CEYo6LQ9+GHcfSpp+DIyYEzbS0iqsoRPuUKTO7dFdP6ChRWAOuOy1h/AiiskrDqMLDqsISeMQLTUwUuSQUSwtT16SQJOh1gDLIttyLgFmoAU+4EShwCQghIUAMYnSeA8bYgYwBDdFa8V1a4Pe2/goQqZj0QwVCFiIiIiIiIiChkBllCtE8rsYwKAZNVII6txNqFVlfJcq6xkiU01pwcHH/uObWiRZIQNmwYzJOmoyy5P6oUHcKNgEGSsDcbWHtMwvenAIdbPUDIksDILmp1y7gegKkREZ9bEXAJtfLFpQBuBdB2YJ1PBYxZB5iDtCBjAEPkCVUUtVKlyjOnis0FOBT1fqMO3uCSnxciIiIiIiIioqZVs5VYlKeVWDRbibUabbpd2LnGkCV0lRkZOPHvf8PpCVosAwYgatx4OAeOQKEUBrcCRHoOCBUOYFOGGrj8kld9gAgzCEzqBUxPFRicFNhOLFRCCCjCv/1YrQGMHrDo1AoYbe4XA1sfUTsmhIBD8Z+o3uZSK1UAQK8DTAxViIiIiIiIiIjOOaeiVrcoCmDRAwlmCbFsJdbiGLKEgCFL45QeOoRTb73lDVrMffsieuRImIaNRHFEEorsanARoa8+aZtZBqw7LmHdMSC3svog0S1SYFofgWmpQKeIph9rXQGMBDWA0clqCGPWMYCh9sHuFmqliktt/2V1Aw63us/rZXVOFYYqREREREREREStg9ZKzOECjHogzqSGLZFsJdYiGLKEgCFL4wghULRvH7Lff19tHQbA0r8/wnr3RvTIkXD26IscK1DlBMKMgFlXfSBQBPBzjhq4bMoAbK7q+4Z1VudvmZACWAzn5nm4fduP1RLAGGS1AsYse+aA0VW3H2MAQ62Bw61+EVe51EoVqwtwutV92SBXtwDjvkpERERERERE1Hr5thKTPK3EEthK7JxjyBIChiyNp7hcKNi2DXlffAFHdjYAIGzwYBgSExE9aBDChw5DAczItwq4fFqI+bI6gS0n1cDlx2xAnd4eMOsFLu6pzt8yrLPam/Bc0wIYlyd40f4GAgMYi14NkoyyBIMngDHK6jI8qU3NweFWq1OsLqDMoahXOrjV+3SeShWGKkREREREREREbZdLEah0qeckwzytxGJMEixsJdbsGLKEgCHL2XHb7cjbvBmFaWlwnD4NAAgfOhS6mBiEJScjfswYOKLjkVOpqC3EZCCilhK33Apg/XFg7XEJmWXV9yeFC0xNVQOX7q3kLfINYHwrYIDqAEavAwwSYNZLsOgBg+zTgkxm8kyh0fpz1gxVBPzbf8kMVYiIiIiIiIiI2hVFqF1L7C61W0msSUKcma3EmhNDlhAwZDl7zvJy5KSloWz3btjT0wF4gpb4eBgiIhA3ahTCevdGsUNCTpWCSgcQZkCtkzcJARzKB9Yek5CWDlQ6q5cblCgwvY/ApBQgwnQunl3ovAGMVv1SRwBj0Usw6wGjLEHPAIZ8OBX1y1MLVSo9E9UrAt59xahjqEJERERERERE1FEIIWBX1CkaZEntHJRolhFlVC/wpqbDkCUEDFmahi0/H7kbN6Lq0CFYjx4FAEQMGQJDcjIUux3RgwcjdtgwuPVG5FkF8upoIebL4QK+Pw2sOyZhdxagCHVZgyxwUQ9gRh+BUV3V9khtQUAA4zlpDgCQPAGM5wS6WaeW/mlzvxgYwLRrLp9KlXKHgkrPRPUMVYiIiIiIiIiIqCbtXJLL00os3iwhlq3EmgxDlhAwZGk6ladOIW/zZtjPnEHVL78AAMIHDkTYoEGw5+UhPCUFcaNHwxQXhwqnQHYDWoj5KqwCvjuhVrhklFQvG2cRuKS32k6sV2yzPsVmJYTwm//F5RPASBKg9wQwhiABjFYBo2MA02a4tEoVtxqqVLiqQxWd5z01MVQhIiIiIiIiIqI6aK3EbG7AJAMxPq3EeF6p8RiyhIAhS9MqO3IE+d9/D3dJCSr27QMAhPXrh8jRo2HNzIQxJgZxo0YhPCUFAkCRHcipUlDhAMLraCHmSwjgWJEatmw4AZTaqx/TN15geqrAlN5AtLm5nuW5pwUw2vwvvgGM7FMBY5CBMJ0Ek95//heDDtDxoNqi3IpAlWei+nKngkonYK8Rqhj5PhERERERERERUSPZ3QJVTvWC7UgDkGCREc1WYo3CkCUEDFmalhACxfv2oWjvXsBmQ9nOnYAQsKSmIvqii2DPz4dwuRAzdChihgyBbDTC4RYhtRDz5XQDOzPVwGXHGcClqI/TywLndwempwqM7a6GDO2VEqQFmRDqhOhyjRZkFk8AY/RtQcYT+83CLarnVCl3KqjwCVVkSa1SMbL6iIiIiIiIiIiImliwVmIxJglhbCXWYAxZQsCQpekpLhcKtm9H2cGDkBQFpT/8AAgBc0oKYidMgKuiAvaCAkSkpiJu1CgYo6MBwNtCrNiuhgINaSHmq9QGbEhX52/5tbD6cdEmgcm91cClb7ya5HYUIQUwegkmnSeA0VW3IWNZYcO4hYDNBVS51H253CngcKuvu05Sq1RMDFWIiIiIiIiIiOgc0VqJ2d3qeb5oExBvltlKrAEYsoSAIUvzcNtsyNu8GVUnT0KWZRRv3gwoCszJyYidNAnC7Yb1zBkYExMRP2oUwpKTAagf/GI7kB1iC7GaMoqBtcclfHccKLRWPz4lRmB6H3UOl/iwJnu6bZIihF/7Mbfwb0Gml9Q2ViZZfQ/MOslb+aJVwnTkg7HiU6mihSp2t/o6ygxViIiIiIiIiIioFQloJWaWEW1iK7HaMGQJAUOW5uMsK0Puxo1wFBZCkiQUp6UBigJTt26ImzwZkGXYcnIAADHDhyN64EDIej0AnFULMV9uBdiTpbYT+/4U4PS0E5MlgdFdgWl9BMYlA0Z90z3v9qBmAOMSagWMBPVA7A1gdJ4WZDoJRp1PC7J2GMAoWqWKG6h0CpQ51EoVZ432X43ZT4mIiIiIiIiIiM4F31ZiFj0Qb5IQZ5ZgYSsxPwxZQsCQpXnZ8vKQu2kTFLsdshAo2rABwuWCsUsXxE2ZAtlggKOkBM6iIkT064e4kSNhiIz0Pv5sW4j5qrADGzOAdccl/JJXvY5wg8CkXsD0PgKDEjtWO7HG0AIYrf2YFsAA/hUwZp3agswot80ARhECNrdPpYpDrVRxeUIVgydkYqhCRERERERERERtjRACVs+5rygDMDBWbvR51/aIIUsIGLI0v8qTJ5G3eTNksxlwOlG0fj2E0wljUhLipk6FbDTCbbfDeuYMzJ06IX7MGFi6dvU+3q+FmBMI1zeuhZivM2Xq3C3rjgN5ldXr6hYlMC1VYFoq0CnirDbRIfkGMFoljF8AI6shjElXPQeMb/hilBsfop0t4QlVqlxAlUug1CFgd1VXqhhleMIiftkQEREREREREVH7UOUSkAEMiWPI4oshSwgYspwbpQcPomDbNhjj4yFsNhSuWwfhcMCQkID4adMgm0wQigJbVhYkvV5tHzZgACSdzrsO3xZiTgWIamQLMV+KAH7KUduJbTkJ2Fzq+iQIDO8CTEsVuLgnYDGc1WYI6sTw7gYGMGF6CUad5J37RfvTlAd64VOpUulS23/Z3OrYJKiBilGnjolfMERERERERERE1B4xZAmOIUsIGLKcG0JRULxvH4r27oWla1colZUoXLsWit0OfVwc4qdPh85sBgDYi4rgKitDVP/+iB05Evow/xnqm7KFmC+rE9hyUg1cfsypXp9ZLzChp9pO7LzOaiBATcutCLX9mE8AA58ARucJYLwtyBoRwAihtvvSKlW0UMXpCVUMOk/7L4YqRERERERERETUQTBkCY4hSwgYspw7itOJgu3bUXboEMJ69oS7vByFa9ZAsdmgj4lRgxZPoOK2WmHNyoKlWzfEjxkDc1KS/7qaoYWYr9wKYN1xtaVYZnn1ejuFC0xNVQOXbtxdmp0QAoqAfwCjePMX6HwqYMx6wKJTA5jquV+gtgBzCpQ5BawuNVQBPJUqzVAhQ0RERERERERE1FYwZAmOIUsIGLKcWy6rFfmbN6Py1CmEp6TAXV6OgjVroFRVQRcVhYQZM6ALDwcACLcb1sxM6MxmxI4cici+fSHJst/6HG6BfKtAbhO2EPMlBPBLHrD2uISN6UCVs3rdg5MEpvcRmJgCRBibbJPUQL4BjFb9UjOAkSX1PgFPpQpDFSIiIiIiIiIiIi+GLMExZAkBQ5Zzz1Fairy0NDiKixHWowdc5eUo/PZbuCsroYuIQPyMGdBHRnqXtxcUwF1ZiahBgxA7fLi3rZivCqdATpWCIpvaWiqyiVqI+bK7gB9OqYHLnixAEer6jTqBcT3U+VtGdVW3Ty1LCKHO+QK2/yIiIiIiIiIiIqoNQ5bgGLKEgCFLy7Dl5iJ340YoLhcsnTvDVVGBwjVr4C4vhxwWhoRLL4Xe5/1wVVXBlp2NsB49ED96NEwJCQHrbO4WYr4KqoDvTqjtxDJKqrcRbxG4JBWYniqQEtssmyYiIiIiIiIiIiJqEgxZgmPIEgKGLC2nIj0d+Vu2QBcWBmNsLNxVVShcswau0lLIFgviZ8yAISbGu7zicsF65gz0kZGIGzUKEb17B/3gN3cLMV9CAL8WAmuPSUhLB8rs1dvpF6+2E5vcC4gOLL4hIiIiIiIiIiIialEMWYJjyBIChiwtq/TgQRRu3w5jfDz0ERFwW60oXLsWruJiyCaTGrTExXmXF0LAnpcHxeFAzJAhiB46FDqTKei6z0ULMV9ON7DjjBq47DgDuD3txPSywAXdgWl9BM7vrk7UTkRERERERERERNTSGLIEx5AlBAxZWpZQFBTv3YuivXth6d4dOpMJit2OwrVr4SwshGQ0In76dBhrtAdzVVTAlpuLiN69ETdqFIyxwXtz1WwhFqYHLM3UQsxXiQ1IO6HO33K0sHp70SaBKb2B6X0E+sQBPG4RERERERERERFRS2HIEhxDlhAwZGl5itOJgm3bUHb4MMJ69oSs10NxOFC4bh2c+fmQDAbETZ0KU6dOAY+rOnMGxthYxI8ahbCePWs9EGgtxPI8LcQim7GFWE0nitW5W9YfB4pt1dvsFSswPVXgkt5AXNg5GQoRERERERERERGRF0OW4BiyhIAhS+vgslqRt3kzqk6dQnhKCiRZhuJ0omj9ejhycyHp9Yi75BKYunTxe5wQAracHAhFQczQoYgZMgSywVDrdrQWYsU2QD4HLcR8uRVgd5baTuyHU4BTUbcrSwKjuwHTUwUuSgaM+nMyHCIiIiIiIiIiIurgGLIEx5AlBAxZWg9HSQnyNm6Eo6QEYcnJANTJ7os3bIA9KwvQ6RA3ZQrM3boFPNZZVgZ7QQEiUlMRP3o0DHW8ly3VQsxXuR3YlKEGLgfzq7cdYRSYlKK2ExuYyHZiRERERERERERE1HwYsgTHkCUEDFlaF2tODvI2bYJwu2H2tAcTLheKNm2C/fRpQJYRN2kSzD16BDzWbbfDmpkJc2Ii4kaPRlj37nVuqyVbiPk6XQqsOy5h3XEgv7J6+92jBKb3EZiaCiSFn/NhERERERERERERUTvHkCU4hiwhYMjS+lSkpyNvyxbow8K8E9oLtxvFmzfDdvIkIEmInTgRlpSUgMcKRYE1OxuSLCN22DBEDRwIWV93/61Kp0B2C7UQ86UI4MdsYO1xCVtPAjaXOgYJAsO7qNUt43sAltq7oRERERERERERERE1GEOW4BiyhIAhS+tUcuAACnfsgCkxEfpwtYxDKApKtm6F9cQJQJIQM348wlJTgz7eUVICZ3ExIvv1Q9zIkdBHRNS5PUUIlNiBrBZsIearyglsyVADl59yqsdh0QtMSFEDl6GdgBYovCEiIiIiIiIiIqJ2giFLcAxZQsCQpXUSioLC3btR8uOPsHTvDp3J5L29dNs2VB09CgCIvugihPfrF3QdbptNbR/WpQviR4+GpUuXerfrVATyqlq+hZivnHJg3XE1cMkurx5L5wiBaanAtFSBrtx1idoVuwsQAMx1F+IREREREREREZ0VhizBMWQJAUOW1ktxOJC/bRvKf/0VYT16eNt+CSFQun07qo4cAQBEn38+wgcODLoOoSiwZmZCNhoRO2IEovr3hyTL9W67ZguxCAMgt/BBRgjgQB6w9piETRlAlbN6PEOS1PlbJqQAEcYWGyIRhcCtADkVwJky4EwpcKZMUv9dVj0/U2K4QPcoeP4IdI9W/905AtDVfygjIiIiIiIiIqoTQ5bgGLKEgCFL6+aqqkLe5s2oOn0a4Skp3oBECIGy3btR+csvAICo0aMRMWRIreuxFxbCVV6OqP79ETtyJPRhYfVuWwiB4lbUQsyXzQX8cApYc0zCvmxAEeq4jDqBcT2AGX0ERnThSViiliYEUGjVQhQgUwtSSoGscsAtGndM0UkCXSPhDV26RXnCmGgg3gLwZyIiIiIiIiIiagiGLMExZAkBQ5bWz1FSgtyNG+EsKUFYcrL3diEEyvftQ8XPPwMAIkeMQOSwYbWux221wpqdDUu3bogfMwbmxMQGbd+pCORbBXKrWk8LMV8FlcD6E2qFy6nS6nElhAlc0ludv6VnTMuNj6gjqLADZ8qBzBoVKWdKAaur9uOFSSfQTatUifZUq0QB3TxfR5naesokn6AGsLtrX6dZ71P9Eu1TARMJRJia+pkTERERERERUVvGkCU4hiwhYMjSNlizs5G3aROEosDcqZPffeU//YTyffsAABHnnYfIESNqPSAoLhesWVnQWyyIGzkSEX36NKh9GNA6W4j5EgI4UgisOyZhQzpQbq8eW/8EgempApN6AdHmFhwkURvmcKnVJ2eCBB8lttqPBbIk0CUC6Bbt0/bLE4AkhAGhZraKAAqqqqtjtFAnsxTIrqiubAsmxiwCAp3uUUDXSMDI+V+IiIiIiIiIOhyGLMExZAkBQ5a2o+LECeRt3Qp9eDiMMTH+9x04gLLduwEA4YMGIWrMmDoPCrb8fLgrKxE9ZAhihw+HztSwy7u1FmLZVQrKW1kLMV8ON7DjjFrdsvNMdUsivSxwQbLaTmxMN0DPdmJEftwKkF8JnPZWokje6pHcCkCg9s97vKV6zpSa86cYdOdm/E537fO8FFbVPnYJAp0i4FNVUx3AJIWz9SARERERERFRe8WQJTiGLCFgyNK2lOzfj8KdO2FKTIQ+PNzvvspDh1C6YwcAIKx/f0RfcEGdBwZXZSVs2dkIS0lB/OjRMMXHN3gcrb2FmK9iK7DhBLD2uITjRdVjjDELTOkNTE8V6NPwp07U5gkBlNh8KlJKJW9brswywKnU/lkOMwgkB6lI6RYFhBnO4ZNohCqnp/1YjQqY06VAlbP252yQBbpq4UuNACnGzPlfiIiIiIiIiNoyhizBMWQJAUOWtkUoCgp37ULJTz/B0r17QAVK5a+/ovSHHwAAlj59EHPRRXW2A1NcLlhPn4Y+Ohrxo0YhvFevkA4mlU6BnCoFhXZAJ7W+FmI1nShSw5bvjgPFPu2NescKTO+jzuESa2nBARI1odpChTOlQGU9oYJW0dGtRlVHewwVziZ0CjfUqN5pQ6ETERERERERETFkqQ1DlhAwZGl7FIcD+T/8gLJff0V4z56Q9f4TCVQdP46SrVsBIWDp3Rsx48fXGbQIIWDPy4PicCBm6FBEDxnS4PZh2uOL7UBOlYKyVtxCzJdbAXZlqoHLtlPVJ1FlSW0jNr2PwIXdOUcDtX5ae6zTpf7zpGSWAYXW+ttjBZufJJHtsby09mnB5qFpSPu0bkFe3y6R5659GhERERERERHVjSFLcAxZQsCQpW1yVVYib/NmVGVmIrxnz4AQxZqRgeJNmwAhYO7ZE7ETJkDS1X1Wz1leDnt+PiJ69ULc6NEB877Up2YLsQgjYGilLcR8ldmBjenq/C2HC6rHG2kUmNRLDVwGJLS/q/ep7eBE762Tw6W+/jUDrjNlQImt9vdElgQ6R1S3H+sW7R9wtYHDJhEREREREVG7wZAlOIYsIWDI0nY5iouRu3EjnKWlCEtODrjfdvo0itLSAEWBqXt3xE2aBElf91lVxelE1enTMMXHI27UKIT37BnyuNpaCzFfp0qAdcclrD8O5PtMkp0cJTCtj8C0VPUkKFFzKLXB26bK94R9Zhlgd9f+GbLofVtWqWFKt2igeyQQ0fCiNGpCFXbgTLkahHnbtHlatVldtb+XJl11qzbfYKxbFBBtPodPgIiIiIiIiKiDYMgSHEOWEDBkadusWVnI27QJAoA5KSngfltmJoo2bADcbpi6dkXslCkB7cVqEooCW04OhBCIPe88RA8eDNkQ2uQCbbGFmC+3AvyYA6w7JmHLyeoT3BIERnRRq1vG9wTMrASgENlcPkFKjRPw5fbaPyM6SaBrJKrDFJ/qhzgLK63aCiGAIqv//C9akJZVDrjqmP8l0iT8gjRtX+gaCVg4/wsRERERERFRozBkCY4hSwgYsrR95cePI3/LFugjI4O2+LJnZ6Pou+8gXC4YO3VC3NSpDQpNnKWlsBcVIbJPH8SNGgVDZGTIY/O2ELMKON1tp4WYr0oHsPmkGrj8nFs99jCDwIQUYHqqwJBObPFD1dyKOk9KsCAlv7LuHSUxPPiJ9M4RnCelvXMr6jwvpxuz34Sp+0q3KJ+2cNHqfqPnfkNERERERERUK4YswTFkCQFDlrZPCIGSAwdQtHMnTElJ0IeFBSzjyMtD4bp1EE4nDImJiJ86FXIDJrd32+2wnjkDc1IS4saMQVi3bo0ao9ZCrMiuhhFtqYWYr6xyYP1xtaVYdnn1+DtHqK3EpvVRqw2o/RMCKLTCp6WX5A1VssoBdx3zpET5ViT4VKR0jWJ1FAVncwFZZYEVMGfKgLJ6KqC6RALJnrCum08AE88KKCIiIiIiIiKGLLVgyBIChiztg3C7UbhrF0p+/hlhycmQjcaAZRwFBShcuxbC4YAhPh7x06ZBNtff5F8oCqxZWZB0OsQOH47ogQMh6XShj7GNtxDzJQRwIA9Ye0zCpgygyln9PIZ2Epieqla5hAe+DdTGVNh9Tmz7zJNypgywNWRujWifqhTOrUHNIGAunzJtLpi65/Ix633DPp8KmCjO5UNEREREREQdB0OW4BiyhIAhS/vhttuR/8MPqDh6FGE9ewade8VZVITCtWuh2GzQx8Yifvp06CyWBq3fUVwMR0kJovr3R9zIkdCHN24GeN8WYg43ENkGW4j5srmA708Ca49L2JsFCKjPxaRT522Z3kdgeGe2emrNHC61+iRYmFJiq33flCWBLhFQJ5mv0aYpIYwt5KhlKQIorKpuW3faJ4DJrgCUOqqtYsyekLBG27pukYCR1VZERERERETUjjBkCY4hSwgYsrQvrspK5G7aBFtWFsJSUoIeGJwlJShcswaK1Qp9dLQatDQwMHHbbLBmZcHSuTPixoyBpXPnRo+1ytNCrLCNtxDzlV9Z3U7sVGn1c0kIE5iaqs7f0iOm5cbXkbkVIK8y+ITjuRXV4Vgw8WG1z5NiCL2oi6jFOd21zxtUWFX7Z0GCQFK4T4WWT7u7pHCGyURERERERNT2MGQJjiFLCBiytD/2oiLkbdwIZ3k5wrp3D7qMq6wMhWvWwF1ZCV1kJOJnzIA+IqJB6xeKAuuZM9CZTIgdNQqRfftCkht3Zq09tRDzJQRwpECtbkk7AZQ7qp/TgASBaX0EJvcCotiSp0kJAZTYgp84zioDnErt+1a4oTo8SY6uvoq/WxQQZjiHT4KohVU5q9uPZfoEkqdLgUpn7Z8hgyzQ1RtG+geSMWbO/0JEREREREStE0OW4BiyhIAhS/tUlZWFvI0bAVmGOTEx6DKu8nI1aKmogC48XA1aQtgH7IWFcJWXI2rgQMSOGAF9A9uOBdPeWoj5criB7afV+Vt2Zla36DHIAhcmq+3ERncD9LwCvMG8J4FL/eehONOAk8C+4YnvVfg8CUxUNyGAUnv15+50qeQXxtQVYoYZRNC5X7pFce4qIiIiIiIialkMWYJjyBIChiztV/mxY8jfuhWGqCgYoqODLuOurETBmjVwl5VBDgtD/PTpMMTENHgbrqoq2LKzEZacjLjRo2sNdBqqPbYQ81VsBb47Aaw7JuF4cfXzijELXNJbDVxS41pwgK2I0w1kB5knJbMMKLTW3c6oU0TwybwT2c6IqFm4FbVdYrB5jeprxxdnCR7AdIlkOz4iIiIiIiJqfgxZgmPIEgKGLO2XEAIlP/+Mwl27YO7UCfqwsKDLuauqULh2LVwlJZDNZsTPmAFDbGyDt6O4XLBmZkIfHo64UaMQkZp6VgckIQRKHEB2ZftqIVbTsUK1ndiGE/6Tq6fGCkzvIzClNxDb+OKgNkERQEGV2oZInZC7ur1XTgMm5tZOzCb7TDjfJYITcxO1Jg4XkF0RvPKs2Fb7Z1yWBDpHVLcf6xbtH5i2k2JHomYnBOBU1M+izV3jb5dacVvzb5cCmHTq96lZ+1sPGHX+f5v0nuV0vIiBiIiIiNouhizBMWQJAUOW9k243SjcuRMl+/cjLDkZsjF4Xxa3zaYGLUVFkEwmxE+fDmN8fEjbsuXlwW21InrwYMQOHw6d6ewmHGnPLcR8uRRgV6baTmz76eqWOzpJYGx3YFqqwAXJ6gmMtqrUVj3Hg+8V7pllgN1d+3tq0VfP6aDN8dAtGugeCURwPhuiNq/C4dv6rzpkPVMKWF21HxuMuurWfzXnf4kysfUftX5CqN//djdgdwX52/NvLRCpvk0Kupzv38FCk7ouWmgqBll4QxdTkEDGL7DxBjcCRh38Hlfr3z7/boc/DhIRERFRC2LIEhxDlhAwZGn/3HY78r//HhXHjiE8JQWSLvjZesVuR+G6dXAWFEAyGNSgJcT2X67KSthychCekoK40aNhijv73ldVToEcq4JCW/tsIearzA6kpavtxA4XVD/HSJPA5F7A9FSB/gmt8wSi1QlklSPopPPl9toHrJcFukai+oSpz9XqcZbW+VyJqHkJARRZfdqPearcMsvU44yrjvlfIo2eAEarcvOEL10jAYvhHD4JapNciieYqKPqIzDYkGoNSeq67VwEHzXJkggaXtQMRHSSJ6Sp57k76rhQojl5A516whj/v4M/97puM+oY6BARERF1BAxZgmPIEgKGLB2Dq6ICuZs2wZaTg7CePWs9YCgOB4rWr4cjLw+SXo+4adNg6tQppG0pTiesZ87AEB2NuNGj1WDnLA9QNVuIWfRAWDtsIebrZIla3bL+BFBYVf1ce0Sr7cSm9gYSws/tmNyK2sZLa+91pkzyXoWeX1X3+5EYXh2eJPsEKZ0i2GKEiBrOrajzvASb/yWvsp7jUJgaunSL8pn/JRroHAHoeRxqtdxK7W2tag9EpNqXryX8sLlaJviQIBoeFvjdVkfQUMvferlpL15QRO3VM7W9R95gKlgQVUdlj7OOcLU5GXWB4Uzd1TnqY+pqr1ZbxQ9/nyciIiJqGQxZgmPIEgKGLB2HvbAQuRs3wlVZibBu3WpdTnE6UbRhAxzZ2WrQMmUKTF27hrQtIQRsubkQTidizjsPMUOG1NqqLBQuTwuxnHbeQsyXWwH2Zavzt3x/srq9liwJjOgCTO8jMK6H+gt6UxACKLTCp6VX9fwJWeWAu44TUFGm6vDEtyKla1TTjY+IqDY2l6eirtS/AuZMGVBWR0WdThLoEglv6OINYKKA+DCe+AzGrdReoVF3FUfoVR91fe80F9/go755SXz/9quWaGBwYmji4KO9ciuegCyE/U4NeaSAIC7Y430rdloq0DHpRB3BTW0BmggxnGOgQ0RERFQTQ5bgGLKEgCFLx1KVmYm8TZsg6XQwJSTUupxwuVCUlgZ7ZiYgy4ibMgXm7t1D3p6zvBz2vDxE9O6NuDFjYIyOPpvhe3WkFmK+Kh3A5gw1cNmfW/18wwwCE1PUwGVIUsN+ca6wB78S/EyZekKiNiad8ExC7TMXQpR6ZXi0+eyfIxFRcwiYG6oMyPQc9+qaG8qs95//RavE6xYFRLayuaG0k9BnW/XRkLCkrpZtzSnghHKNk8jBAxFRZyVBsL8NPAndobX3z5IEn7lwQpoPp54QkZ8lIiIiaqMYsgTHkCUEDFk6nvKjR5H//fcwREfDUMd7LtxuFG/cCNvp04AsI3biRFh69gx5e4rTiarTp2GKj1fbh/XocTbDrx5fB2wh5iurDFh3XMK640BORfXz7hIpMC1VYFoqEG+pnifltM88KZllQImt9tdKlgS6RMBn0vnqeQ3iw9ifnIjaD0UAhVXB55PKLq+7fVSM2TeA8Z//xaSvXn+9VRsNvPre90r7YCdxefU9UdvT4KqwJpgLqK1UhZnqaLlWV6s2VoURERFRYzFkCY4hSwgYsnQ8QgiU/PQTCnftgqVLF+gsltqXVRQUb94MW0YGIEmIvfhiWHr3Dn2bigJbTg4gBGKGDUP0oEGQDU0zA7HWQizXKmDvIC3EfCkC2J+rzt+yOQOw+lShSBAQqP21iA/zae/lc4Kwc4R65SERUUfmUoCc8uoqv9M+7ccK65iHSoJAuLH9zCMR7OQmJwYnantcSj1z6LTx+Y1kSa3QCTcCfeKAQYkCg5KAAQmApWl+7SAiIqJ2iiFLcAxZQsCQpWMSbjcKduxA6f79COvZs87AQygKSr7/HtbjxwFJQsy4cQjr06dR23WUlMBRVITIfv0QN3IkDJGRjX0KAapcAjlVagsxSQIiO0gLMV9WJ/D9KTVw2ZcNCEgINwgkR1fPk6Jddd0tCgjjL5xERI1idVaHL5k+87+cLgUqncG/ewxyCBOVB2vP08CqDwYfRNTStEDHXkdFXlNU59jd9Qc6siTQKxYYlAgMShIYlKhWHHawXxOIiIioDgxZgmPIEgKGLB2X225H/pYtqEhPR3jPnpB0tZcuCCFQum0bqn79FQAQfeGFCO/fv9HbtZ45A3OnTogbMwZhXbs2aj21jbNmCzGLDh3yAFliUyexjzHzl0gionNFCPX4W26vMVeIDtDJLT06IqL2RQhPoOMTupRYgUP5wMF8CQfzgfzKwB+EY8wCAxOBgYlq6NKf1S5EREQdGkOW4BiyhIAhS8fmLC9H3ubNsOXkIKxnzzoPJEIIlO3cicpDhwAAUWPHImLQoEZtVygKbFlZkPR6xAwfjugBA+oMeULV0VuIERERERERUFAJHNRClzzgaGFgK0dZEugdCwxK8rQZSwS6sNqFiIiow2DIEhxDlhAwZCF7QQFyN26E22qFpZ6qEiEEyvfsQcWBAwCAyJEjEXneeY3etqO4GM7SUkT174/YESOgDw9v9LqCYQsxIiIiIiLSONzAscLq4OVQHpAfZJ6tGLPwazHWL0Gdl4qIiIjaH4YswTFkCQFDFgKAqjNnkLdpEyS9HqaEhDqXFUKg4qefUP7jjwCAiGHDEDl8eKMPQm6bDdasLFi6dkX86NEwd+rUqPXURmshllOloMyh/nLUUVuIERERERGRv7xK4GBedbXLsSLAVaPaRScJpMYBA32Cl84RrHYhIiJqDxiyBMeQJQQMWUhT/uuvyPv+exhjYmBowL5Qvn8/yvfsAQBEDBmCyFGjGn0gEm43rJmZ0JnNiB05EpF9+0KSm7Z5PVuIERERERFRfRwu4GiRT/CSDxQGqXaJNYvqFmNJQL94dS4uIiIialsYsgTHkCUEDFlII4RA8Y8/onj3bpi7dIHOYqn3MRUHD6Js504AQPjAgYgaO/asDkb2ggK4KysRNXAgYkeMgM5sbvS6amN1CWSzhRgRERERETWAEJ5ql3zgUJ6EX/LVlmNuEVjt0iceapsxT/CSFM5qFyIiotaOIUtwDFlCwJCFfCkuFwq3b0fpwYMI69EDssFQ72MqjxxB6bZtAICwfv0QfeGFZ3VAclVVwZaVhbCePRE/enS97csaQwiBUgeQXaWg1A5YDGwhRkREREREDWN3Ab8WVgcvB/OBImvg7xLxFoGBWrVLolrtYmS1CxERUavCkCU4hiwhYMhCNbntduRv2YKK9HSEp6Q0qG1X1bFjKPn+e0AIWFJTETNu3Fm1+1JcLljPnIE+MhJxo0YhonfvZjnIsYUYERERERGdLSGA3Ao1dNHmdjleFFjtopcF+sSp1S4DkwQGe6pdiIiIqOUwZAmOIUsIGLJQMM7ycuRt3Ahbfj7CevRo0AHGmp6O4s2bASFgTklB7IQJZxW0CCFgz8+H22ZDzJAhiDnvPOhMpkavry5sIUZERERERE3J5gKOFlbP7fJLHlBiC/wdIyFMrXIZlKT+3SceMOpaYMBEREQdFEOW4BiyhIAhC9XGXlCA3LQ0uG02WLp2bdBjrCdPonjTJkBRYE5ORuykSZB0Z/cbgquiArbcXIT36oX40aNhjI09q/XVhi3EiIiIiIiouQgBZFcAhzyhy8F8tdpFqVHtYpB95nbxBC+JrHYhIiJqNgxZgmPIEgKGLFSXylOnkLd5M2SjEab4+AY9xnbmDIo2bAAUBaZu3RA3eTIk/dk1HlacTlSdOQNjbCziRo5U25g100GPLcSIiIiIiOhcsDo9c7t4gpdD+cGrXRLD/Od2YbULERFR02HIEhxDlhAwZKH6lB05gvzvv4cxLg6GyMgGPcaelYWiDRsgXC4Yu3RB3JQpkA2GsxqHEAK2nBwItxsxQ4ciZujQs15nXdhCjIiIiIiIziUhgOzy6rldfskD0ouDV7v0S/DM7ZIoMCgJSAhroUETERG1cQxZgmPIEgKGLFQfIQSK9+1D0Z49sHTtCp3Z3KDH2XNzUbR+PYTTCWNSEuKmToVsNJ71eJxlZbDn5yOiTx/Ejx4NQzPut2whRkRERERELcnqBI4UeIKXPLXNWJk98PeRpHD/uV1S4wADq12IiIjqxZAlOIYsIWDIQg2huFwo3L4dpb/8grCePRtcQeLIz0fhunUQDgcMCQmInzYNchNMXq84HLCeOQNjYiLiR41CWHLyWa+zLi5FoMAqkMMWYkRERERE1IKEADLLfVqM5QHpJYHVLkadQF/P3C6DPcFLHKtdiIiIAjBkCY4hSwgYslBDuW025G3ZgsqMDHVOFFlu0OOchYUoXLsWit0OfVwc4qdPb3A1TF2EosCanQ1JkhAzfDiiBw6EfJZzv9TH6hLIqRIosAlIUMMWthAjIiIiIqKWVKVVu+QBv3jmdikPUu3SOUJgYI1qF33Dfq0jIiJqtxiyBMeQJQQMWSgUzrIy5G7aBHtBAcKSkxt84HEWF6NwzRooNhv0MTFq0BLWNJdROUpK4CwqQkS/fogbObLB88Y0ll8LMQdg0bOFGBERERERtR5CAGfKqqtdDuYDGcWAeqlYNZOuem6XQZ65XWItLTRoIiKiFsKQJTiGLCFgyEKhsuXnI3fjRih2OyxdujT4ca7SUhSsWQOlqgq6qCgkzJgBXXh4k4zJbbfDmpkJc+fOiB81CpauXZtkvXWp2UIswgAYdTwQExERERFR61PpAA4XAIc8c7scygfKHcGrXQYlqaHL4CSgdyygY7ULERG1YwxZgmPIEgKGLNQYlSdPIm/LFshGI0zx8Q1+nKu8HIXffgt3ZSV0ERGInzED+iaqPBGKAmtmJmSjEbHDhyOqf39Iuuaf6dHqEsitEshnCzEiIiIiImojFAGcKQUO5nuqXfKAkyWB1S5mvUC/eHiDl0FJQMzZd38mIiJqNRiyBMeQJQQMWaixyg4fRv7338MYHx9Siy5XRQUK16yBu7wcclgYEi69FPom3PfsRUVwlZYiasAAxI4cCX0TtSWrC1uIERERERFRW1fhAA7ne4IXT7VLpTPwd5qukeqcLgM9c7uw2oWIiNoyhizBMWQJAUMWaiyhKCjetw9Fe/fC0rVrSJPZu6uqULhmDVylpZAtFsTPmAFDTEyTjc1ttcKalQVL9+6IHz0a5qSkJlt3XdhCjIiIiIiI2gtFAKdL/ed2OVkS+PuNWS/QPwEY7Kl2GZgIRLPahYiI2giGLMExZAkBQxY6G4rTiYLt21F26BDCevSAbDA0+LFuqxWFa9fCVVwM2WRSg5a4uCYbm3C7UZWZCb3FgriRIxHRpw8k+dxcXsUWYkRERERE1B6V29V5XQ55QpdD+UBVkGqXblFqlYvWYiwlhtUuRETUOjFkCY4hSwgYstDZcttsyNu8GZUnTyI8JSWkIEOx21G4di2chYWQjEbET58OY0JCk47PXlAAd2UlogYNQuzw4SFV3JwNrYVYTpWCEgdg1gFherYQIyIiIiKi9sOtAKdK/VuMnSoN/J3HohcYkAgMTGS1CxERtS4MWYJjyBIChizUFJxlZchNS4OjqAiW5OSQDkiKw4HCdevgzM+HZDAgbupUmDp1atLxuSorYcvJQVjPnogfNQqmJg5y6tw2W4gREREREVEHUmbX5naRcDAPOFwQvNqlu1btkqRWu/SMZrULERGdewxZgmPIEgKGLNRUbHl5yN24EYrDAUuXLiE9VnE6UbR+PRy5uZD0esRdcglMIa6j3m24XLCeOQN9VBTiR41CeK9e5/TA6dtCDACi2EKMiIiIiIg6ALcCnNTmdslT24ydKQv8XSjMIDAgARjkM7dLpKkFBkxERB0KQ5bgGLKEgCELNaXKjAzkbdkC2WyGKcT5VRSXC8UbNsCelQXodIibMgXmbt2adHxCCNjz8qA4HIgZMgTRQ4dCZzp3P7WzhRgRERERERFQalPnczmYr7YYO5wPWF2Bvxf1iFbDlkFJatVLzxhA5q9PRETUhBiyBMeQJQQMWaiplR48iMLt22GMj4c+IiKkxwqXC0WbNsF++jQgy4ibNAnmHj2afIzO8nLY8/IQ0bs34kaPhjEmpsm3URethViuTcDmYgsxIiIiIiLq2NwKkFHiqXbJV6tdMoNUu4Qb1LldtDZjAxOACFa7EBHRWWDIEhxDlhAwZKGmJhQFxXv3omjvXli6dQt5onnhdqN482bYTp4EJAmxEyfCkpLS5ONUnE5UnTkDU1wc4kaORHgzbKM+bCFGREREREQUXIlW7eJpMXakALAFqXbpGeOZ2yVRndslOZrVLkRE1HAMWYJjyBIChizUHBSnEwXbtqHsyBGE9egBWa8P6fFCUVCydSusJ04AkoSY8eMRlpra5OMUQsCWkwOhKIg97zxEDx4M2WBo8u3UNwathVipAzCxhRgRERER0f+z9+dBct/3nd///H6/fff03PcMZgaYAUBSvAkClKyVtFpJlKWSy7Y2lnftpbLJ7q9y2Dm8Vd6t2mQTJ6m4arVxKT5iJ5t47a1QsTaKVIw3a1GyKIKUKAIkAIIHSBAXQYAgMEdP39f3+Pz+6LkANED0YGZ6jtejamoGPT39fQ8wmO7+vvr9fovcxA/g/DycmoG3F4KXK/mbnze1RRZ3u9TDl3v6oC3SgoJFRGRLUMjSmEKWJihkkfXilctMv/ACpfffJzkxgWXbTX29CQKyP/sZpTNnAOj4xCdI7tu3HqXi5nJUZ2dJ7d1L92OPEU6l1uU4t+MFhrmK4WpZI8RERERERETuxHx5ebfLqWl4d+7mbhcLw3gn3Ne/0O3SB6PqdhERkQUKWRpTyNIEhSyynmrZLNM//jG1+XkSq9itYowh+/LLlE6fBqDj0CGS99671mUC4FerlD/4gFhfH90HDpAYHV2X43yUime4WjLMLowQS2mEmIiIiIiIyB3xAjifrne7LAYvVws3P59KRQz3Lu516YN7eiGpbhcRkR1JIUtjClmaoJBF1lvl2jWuPf88xveJDQw0/fXGGHKvvkrxrbcAaD9wgLb771/rMuvHCgLKV65gOQ5dDz1E+733Nj3qbE3q0AgxERERERGRNZEureh2WdjtUvNv7naZ6OK63S6j7aCnYCIi259ClsYUsjRBIYtshMKFC8y8+CJOIkGkq6vprzfGkD9xgsLrrwOQeuQRUg89tNZlLqnNz1Obn6d9/366H32UUFvbuh3rdvyg3tGiEWKyFRljMIAx1N+v/NhAcMOfG10nZEPEhrADjh7oiIiIiMga8AI4t9jtMm3x9swtul2i5rrQ5Z5eiG/sCk8REdkAClkaU8jSBIUsslEyb73F3MsvE+3rI5RMruo28idPkj9xAoC2Bx8k9cgj6/bLz69UKH/wAfGhIboPHCA+NLQux7kTN44Qa4vohLOsjaUghAaBx8L74BYBiKF+oQEsrn/PwseWtfB+8eOFPy/Ov7YBx17x3rJwLFjMEoueoeJDza/XYVkQtpffNEpPRERERNbCXGk5dDk1A+/Oghtc/1jTtgy7O+He/uXgZSSlbhcRka1OIUtjClmaoJBFNooJAuZefZXMa68RHx3FiUZXdTuFN98k9+qrACTvu4/2xx9ft1+AJggof/ABdiRC96OPktq3D8u21+VYH1mLRojtaIthSHCLIOTGz3HDn1eGH4sWL1sZeCyFIisDkYXrONbCe9vCAWwbQlb9Z3AxOFl8W7wN21r++oaX3cHPrxsYqj5UfCh7hoJbD17coP692QvBS8RZrkdERERE5G64/vXdLqdmYLp48+PMjujybpf7+mC/ul1ERLYchSyNKWRpgkIW2UiB6zLz0kvkT58mMT6+6n0nxbffJnvkCACJ/fvpeOKJdf0lWJ2bw8vnab/3XroeeYRQPL5ux/oo9RFicLUcUPYgpRFim8aN47FuCkRu+BzcHIxA466QlUEI1opAZEWnyFIIYi12h1g49uLl1wchix9bK27LvuXHm+vnyxhDLWApeCm6hqJbv8wN6tdxFjpdIgvfvx4kiYiIiMjdmi3BqWl4e8birWk4M9e422VPF9y32O3SB0PqdhER2dQUsjSmkKUJCllko3mlEtMvvkjp/fdJTkysujOk+O67ZF96CYD41BSdn/jEunaZeKUSlatXSYyO0n3gALG+vnU71p2oePVdLbNljRBrRqM9IbfsDmkwNgtu3RWy+Ne/1LHBzUGIbV3fFRKyrBXjsqybwo+bgpAVl90YmuzkBwLGLHe7VHwouAElr/4KRG/hH2tpv4td/7sWEREREbkbNR/Ozi10u8xYvD0NM6WbH2d2xha6XRZGjO3vhdjqXm8oIiLrQCFLYwpZmqCQRVqhlskw/fzz1DIZErt2rfp2SufOkfnJT8AY4nv20PnJT65r0BJ4HuUPPiCUTNL96KO0TU62bHwY1E8s51z4sBSQrW6fEWK3W5h+u3FZKy+7MQhZ6g5ZuSOE60OQlSOtrusKsayFQKQ+IsvGujkEWRl6cPNly0HJ1v632Up8Y6h6i8GLIe9qv4uIiIiIrK+Z4vUjxs7eottlshvuWwhe7u2HoTZ1u4iItIpClsYUsjRBIYu0SvnqVaaffx4TBMQGBlZ/O++9x/zhw2AMsfFxuj71KSzHWcNKb1aZmcEvlej42MfoevjhVe+XWSutGCHW1ML0WwQhcP1oLFZ8fMcL063lcViLC9MXx0PdKvBoFH4oCNkZ7nS/y+KbfhZERERE5G7UPDi7YrfLWzMw16DbpStmuKcPOmL1F89FQ4vvzYqP7+B9qN7BLSIid04hS2MKWZqgkEVaqXDhAtMvvkgokSDS1bXq26lcukT6xz+GICA6Okr3Zz6Dtcp9L3fKKxapfPghiYkJeg4cINrTs67HuxMVz3CtbJhZMULMBgJuMwqL24/LujH8WBmIWCsCj+vGYi2GGLA0CmvlwvTFPSG3Wph+U/jR6DLd6ckaaLjfxTPUfO13EREREZG1ZwxML3S7vL3Y7ZIGL1i7x5iOZW4KXhY/jjj1UWWN398i0LnNZY4CHRHZBhSyNKaQpQkKWaTVMm++ydyRI0T7+gglk6u+ncoHH5B+7jnwfaLDw3R99rPY6xy0BJ5H+dIlwh0ddB84UN8x0+JfxitHiOVry5cvBSHcEIhwdwvTb788XXdMsvXcbr+Lv/CIwdF+FxERERFZI1UPzszVw5aSC1XPouZDxePW7xfG4ta8+guGqh4YNv5xacg2HxHcQOSmkObOunNuvC0FOiKyXhSyNKaQpQkKWaTVTBAw98orZE6eJD46elejt6offkj6Rz/CeB6RgQG6P/c57HB4Dau9mTGG6vQ0Qa1G5wMP0PnAA9iRyLoe8074gaHoXb+EvdH+kPrndQcicju32+/iNxgzpoBRRERERDaSMfUXBS0GLh/1fjmwsW4b3DS+jdY81g2vDHTutOPGab47R4GOyM6jkKUxhSxNUMgim0FQqzHz0kvkz5whMTZ2Vx0otelp5n74Q4zrEu7ro+dzn8PegJ0pbj5PdXqatj176D5wgEhn57ofU0RaxwvMUrfLyv0uXlAfwaf9LiIiIiKyHRlTD2huCl8aBTI3hDMffZ3r39daGOjcOri5VUhj6iFNCGKL7z9iRFs0tLx3VERaRyFLYwpZmqCQRTYLr1Ri+oUXKF2+THJ8HMte/UtHarOzzP3gB5hajXBPDz2f/zx2LLaG1TYWuC6lS5eI9vTUx4eNja37MUVkczDG4AbLY8ZKrqGwsN/FC+r7jLTfRURERETkzgWLgc5C8FLzPmKM2tJ766bunMoNX39jqNPKQGexO2cxnFnZXRNrGNyYjwxwbuz4iTgKdERuRSFLYwpZmqCQRTaT2vw81w4fxstmiY+O3tVtuek0cz/4AUGlQqiri54vfAEnHl+jSm/NBAGVq1fBGDoffJCOj31s3UeWicjmpP0uIiIiIiJbw8pAp7l9OLfo0LnVew/coDWP+yO3Gp92y+6cBiPXbnG9mANdcY1ak61JIUtjClmaoJBFNpvyhx8y/fzzGCDW339Xt+VmMsw9+yxBuUyoo4OeJ5/ESSTWptCPOnY2SzWdJjU1RfdjjxFOpTbkuCKyud2436XgGsoL+10CU9+TFHa030VEREREZLvygxtGrn1EKNPsyLWVHTsbGehEHcPuLpjshsluw2Q37OmCuF53KpucQpbGFLI0QSGLbEaF8+eZfvFFQm1td73bxMvlmHv2WfxiESeVoufJJwm1ta1NoR/Br1Ypf/ABsb4+ug8eJDE8vCHHFZGtRftdRERERERkPSwGOnfanbM8Vs267norg5xGt1HxIDA3P0+xMAyn6sHLnm7DVHf9494E6GmNbBYKWRpTyNIEhSyyWWXeeIO5I0eI9vcTSibv6ra8fL4etBQKOMlkPWjZoJ93EwSUr1zBchy6Hn6YjnvvxXKcDTm2iGxNN+53KbuGvPa7iIiIiIjIJuUHcCUPZ9NwPm1xLg3n5mGu1Ph5SipaD1z2dC13vYx11Lv6RTaaQpbGFLI0QSGLbFYmCJh75RUyJ08SHx3FiUbv6vb8YpHZZ5/Fz+WwEwl6n3ySUEfHGlX70Wrz89QyGdr376f70UfvOjgSkZ3lxv0uRS+g6Nb3u3gLY8a030VERERERDaTTIV64JKGcwvhy/vZxl0vIdsw3gmTK4KXPd3Qfneng0Q+kkKWxhSyNEEhi2xmQa3GzEsvkX/3XRLj49ih0F3dnl8qMfeDH+BlMtixGD1PPkm4q2uNqr2D41cqlK9cIT40RPeBA8QHBzfs2CKy/dzJfpeQsxy8aL+LiIiIiIi0Ws2Di9kbul7SUHQbP1/pS17f9TLVDYOp+lhlkbWgkKUxhSxNUMgim51XLDL9wguUP/iAxPg4lm3f1e35lUo9aEmnsaNRur/wBSI9PWtU7Uczvk/5gw9wolG6HnuM1N69d/09iYgs0n4XERERERHZaoyBawWWxowtdr1cLTR+vhIPGfYs7HeZ7DZMdsFEF8Tu7rW5skMpZGlMIUsTFLLIVlBNp5l+/nncfJ7E6Ohd315QrTL3wx/izs5ihcP0fOELRPr61qDSO1edm8PL5+m47z46H36YUDy+occXkZ1B+11ERERERGSrKtTgwny96+Vc2uJ8uv5nN7j5OYttGUbbl4OXPV0w1Q3diRYULluKQpbGFLI0QSGLbBXlK1eYfv55jGUR6++/69sLajXSf/3X1KansUIhuj//eaIDA2tQ6Z3zSiUqH35IYmyMngMHiPb2bujxRWRn0n4XERERERHZqvwALmUXu16Wx41lKo2ft3TGzELwstz1squj/pxHBBSy3IpCliYoZJGtJH/uHDMvvki4vZ3wGiytD1yX9HPPUfvww3rQ8tnPEh0eXoNKm6jB8yh/8AGhZJLuxx6jbXJSv9BFZMP5i8GLp/0uIiIiIiKytRgD6TJLgcu5tMX5+XoYY7j5uUvEMUx0rgheumF3F7RFNr52aT2FLI0pZGmCQhbZSowxZN58k7kjR4gNDBBK3H3Pp/E80j/+MdUPPgDbpvuznyW2BiPJmlWZnsavVOj42MfoeughnGh0w2sQEVlpcb9L1a8/6Cy49SDG1X4XERERERHZAsouvJe5Png5l4aK1/i5y2CbYWpx3Fh3fdxYfxL0VGd7U8jSmEKWJihkka3G+D5zr7xC5vXXSezahR25+5cZGN9n/vnnqVy6BLZN16c/TXx8fA2qbY5XLFK5epXkxATdBw4Q7e7e8BpERG5l5X6Xqg8l7XcREREREZEtJjDwYX45eFnsfpkpNX7u0hap73dZ2fUy3gkRZ2PrlvWjkKUxhSxNUMgiW5FfrTLz0ksUzp4lOT6O5dz9PZsJAuZfeIHKe++BZdH1N/4G8T177r7YJgWuS+nyZSKdnXQ/9hjJiQn9gheRTUv7XUREREREZDvIVljqdDmXtjifrnfB+Obm5zCOZRjrhMmu5a6XyW7ojG142bIGFLI0ppClCQpZZKvyCgWuvfBCfXH8+Pia/BI0QUDmpz+lfO4cWBadP/dzJKam1qDaJuswhsq1axjPo/OBB+i8//416dgREdkIi/tdqj6UPe13ERERERGRrcn14f1sPXg5uxC8nEtDvtb4OUxPot7pshi+THXDUKr+wjPZvBSyNKaQpQkKWWQrq87NMX34MG4+T2KN9qgYY8j+7GeU3n0XgI6Pf5zk/v1rctvNcnM5qrOztE1O0v3YY0Q6OlpSh4jI3Vq536XsGfLa7yIiIiIiIluQMTBTYmnM2OLIsSv5xs9hYiHD7q7l4GWyG3Z3QTy8wYXLLSlkaUwhSxMUsshWV7pyhennnwfbJtbXtya3aYwhd/QoxbffBqD94EHa7rtvTW67WUGtRvnyZSJ9ffQ89hiJXbtaUoeIyFq61X4XdyF40X4XERERERHZSkou9U6X+eVxY+fnoebf/DzGwjDSDnu6Yaq7vvNlqht6EqCnPRtPIUtjClmaoJBFtoP8mTPM/PSnhNvbCa9Rt4cxhvyxYxTefBOA1KOPknrwwTW57aZrCQIqV68C0Pnww3Tcey92KNSSWkRE1svK/S5VHwq32O+yFLxov4uIiIiIiGxifgCXc/Xw5WzaWtr5ki43fi7THq13ukx1w56FrpexDghp3Ni6UsjSmEKWJihkke3AGEPm9deZO3qU2OAgoURizW63cPIk+ddeA6DtoYdIPfxwy37h1jIZ3HSatn376H70UcKpVEvqEBHZKNrvIiIiIiIi2818ecW4sfn6uLFLWQjMzc9nwrZhvJP6rpeFrpfJbkhFN77u7UohS2PN5Aab7qXgf/RHf8Q3vvENrl69ykMPPcQf/MEfcPDgwVteP5PJ8E//6T/lu9/9Lul0mvHxcb75zW/ypS99aQOrFmkty7LovP9+/FKJzBtvkBgbww7f/XBLy7JIPfwwOE69q+XkSfB9Uo891pJfupHOTpx4nPzp07iZDD2PP058eHjD6xAR2SiOZZEIQSIEXdH6791b7XcpexAYo/0uIiIiIiKyqXXF4cBI/a0+LBmqHryXMTd1vZRci7NpOJuG+svM6gaSZmHc2HLXy2Bbfd+lyEbbVCHLt7/9bX7rt36LP/mTP+HQoUN885vf5Mknn+T06dP09/ffdP1arcbnP/95+vv7+c53vsPIyAgXL16ks7Nz44sXaTHLceh69FG8UonCuXMkJyawHGdNbjv1wANYjkPu6FEKb76J8X3aDx5syYk7JxoluXs3lStXuPb883Q+9BAd99yzZt+riMhmF7It2mxoCwNYt9zvUvOh6AIY7BWhS0j7XUREREREZJOJhmB/b/1tMXgJDFwt1IOXc2lrqfvlWtFaeIOfXYLF8CURXu50mVwIXiY667ctsp421biwQ4cO8fjjj/OHf/iHAARBwK5du/jN3/xN/sk/+Sc3Xf9P/uRP+MY3vsE777xDeJWv2te4MNlu3Hye6RdeoHL1Konx8TU9kVY8fZrsz34GQGLfPjo+/vGWnqirptN4uRzt+/fT9eijazYmTURkq7txv0vRCyhov4uIiIiIiGwD+SpLnS6L4cvFDLjBzc9rbMuwqwP2dMFU93L3S1d84+verDQurLEtuZOlVquRSCT4zne+wy/+4i8uXf71r3+dTCbDM888c9PXfOlLX6K7u5tEIsEzzzxDX18ff/fv/l3+8T/+xzi3eFV7tVqlWq0u/TmXy7Fr1y6FLLKtVGdnuXb4MF6xSGJkZE1vu3T2LJmf/hSMIT45SefP/RyW3boNZH65TPnKFeIjI/QcOEBsYKBltYiIbGaBuX7M2OJ+F9cHX/tdRERERERkC/MCeD/LUtfL2XT942y18fOa7vjNXS+j7fUXo+00Clka25I7WWZnZ/F9n4EbTpAODAzwzjvvNPya8+fP89xzz/Frv/Zr/Lt/9+84e/Ys/8l/8p/gui7/zX/z3zT8mt/93d/ld37nd9a8fpHNJNrbS++hQ0y/8ALV2Vmivb1rdtuJqSksx2H+hRconzuH8X26PvWplgUtTjxOcmKC8gcfcO255+h69FFSe/e2NPgREdmMbO13ERERERGRbSpk17tV9nTB5ybrPQXGwFzJcO6GrpcPcpAuW6TL8OoVWBw3FnEMu7uWu14mu2FPNyTufu2xbHObppPlypUrjIyM8NJLL/Hxj3986fLf/u3f5vDhwxw5cuSmr9m3bx+VSoULFy4sda783u/9Ht/4xjf48MMPGx5HnSyyk+TffZeZl14i3NFBeI1/vssXLzJ/+DAEAbFdu+j6zGdavhelOjuLXyzSft99dD38ME4s1tJ6RES2mpv2uywEL64PblCfjOxov4uIiIiIiGxhZRcuLAYv8/Xg5cI8VLzGz22GU4tjxpa7X/qTsF2eCqmTpbEt2cnS29uL4zhcu3btusuvXbvG4OBgw68ZGhoiHA5fNxrs3nvv5erVq9RqNSKRyE1fE41GiUaja1u8yCbVtncvXqlE+pVXsMNhnPjaDZyMj49jffazpJ97jsqlS6Sfe47uv/k3sUKt+7US7e3FSyTIvP46tUyGngMH1rSLR0Rku7Msi4gDkaWHVlZ9v0sAFe/6/S5lt77fBQwh7XcREREREZEtIh6G+/rrb/WXkoEfwIf5xa4Xa6HzBWZLFlfyFlfy8JOLy891UpF68DLZDZNd9a6X8U4It/b1x9IimyZkiUQiPPbYY/zoRz9a2skSBAE/+tGP+I3f+I2GX/NzP/dzfOtb3yIIAuyF0UDvvvsuQ0NDDQMWkZ3Gsiw6H3gAr1gk++abJMbHscNr1+MYGx2l53OfI/3cc1Q/+IC5H/2I7s9+dk2P0axQIkFifJzy5ctcnZ8nOTlJas8ehS0iIqtkWRYxB2JLTxacW+53KbjgG4MF2Fb9lV32wtviZbYFNoufUyAjIiIiIiKt59gw2lF/+/TE8uCnbMUsBS6LXS/vZyBfszh5FU5ehcVxY45lGO9kqetlsrs+eqxDg1a2vU0zLgzg29/+Nl//+tf5X//X/5WDBw/yzW9+k3/zb/4N77zzDgMDAzz11FOMjIzwu7/7uwBcunSJj33sY3z961/nN3/zNzlz5gz/wX/wH/Cf/Wf/Gf/0n/7TOzpmM20/IluVX60y8+KLFM6fJ7l795rvK6leu0b6r/8a47pE+vvp/tznsFscdBpjcLNZaul0fW/L+DipqSliAwPa1yIisg5W7nepeIZaUL/MM/UllAYITP3NGAiov198IGpR/9i6bSijgEZERERERFqr5sPFTD14OZ+2OJuG8/NQqDV+jtKXWNH1shC+DKfqz282A40La2xLjgsD+NrXvsbMzAz/7J/9M65evcrDDz/M97//fQYGBgB4//33lzpWAHbt2sWzzz7Lf/lf/pc8+OCDjIyM8J//5/85//gf/+NWfQsim5ITjdJz6BB+uUzp0iUSY2Nr+kszOjBAzxe+wNwPf0htepq5H/yAns9/HruFo/ksyyLS2UmksxOvUCD/7rsUzp8nMTJCat8+4sPD2C0cbSYist2EbIs2G9rCsPhKrkXGGALqLfiLQYvPwvuFy3wDAQYvqIcybmDwVwQ0K7/WLNwmLIc00CiIqX+81FWz9LGeOIiIiIiIyOpEHNjbU39bfEZiDEwXV3S9pC3OzcOHeYuZksVMCY5chsXnSrHQ8n6XxeBldxfEdKpqS9pUnSytoE4W2Umqs7Nce/55/HKZ+PDwmt++OzfH3A9+QFCtEurupucLX9hUy+f9SoXqzAzG94kPD5Pat4/E6CiO9jSJiGxaxpjlEMYsBzI3/jkw9a4Zd0UHjR/UO2aWumfMckfNUufMwnGsFUGMAhoREREREVkLxVq9y2UpeEnDhXlwg5ufV1gYRtvrwcuebsNUd330WE+8/pxkvaiTpbFmcgOFLApZZIcpXbrEtcOHsSMRoj09a3777vw8c88+S1CpEOrsrActicSaH+duBLUa1dlZgmqVaG8vqf37SY6NEUomW12aiIisIWNMgzDm5veBqY83843BDerhjG+WA5rFkKbeQXPziLNGe2esBiGNnrCIiIiIiIgfwOUc9TFjC+PGzqUhU2n8fKEzdnPXy64OCK3RNHyFLI0pZGmCQhbZiXKnTzPz0ktEuroIp1JrfvteNsvss88SlEo47e30PvkkziYMMALPo5ZO4+XzRLq6SO3dS3L3biIdHa0uTUREWmxlQHNzKLPcTeMHix00Bj+g3kGz2DGzOOKMhWDGLHfPLD4Av10oszK80ZMdEREREZHtLV2Cczd0vVzOQWBufi4Qtg0Ti8FLVz142dMFbasY1qKQpTGFLE1QyCI7kTGG+ddeY/7VV4kNDeHE42t+DC+fZ+7738cvFnHa2uh58klC6xDorAUTBNTm53GzWcJtbST37CE1OUmkp0d3LiIi0rTghhFnt+qm8YP6DhrXXB/QrBxvFrDcPXPdPdKKzplGoYwCGhERERGRra/iwXuZevCy2PVyYR5KbuPH+INty10vU92GPd0w2Hb7cWMKWRpTyNIEhSyyUwWex9zLL5N96y0S4+PY4fCaH8MrFJh79ln8fB47kaD3i18ktIn/nxlj8HI5anNz2PE4ybExUlNTxAYHsew16sEUERG5jeAOR5x5CwGNZxbeN9g/sxjQwPUjzmgQxCx+vPLPCmhERERERDafwMDV/MK4sXlrofMFpouNH7snw/WwZWXXy0QnREL1zytkaUwhSxMUsshO5lerzLz4IoULF0hOTKxLkOCXSsw9+yxeNosdj9Pz5JOEOzvX/DhrzSsWqc7OYtk2idFRUlNTxEdG1iWMEhERWQvBHYw4uzGgWdxB81EBzeKIs+X9MrcIaZY+pydnIiIiIiIbKVeF8+kV48bm4WIGvODmx+a2ZRjrYGG/i2Gy2/Dr99nYth7HL1LI0gSFLLLTufk8155/nursLIldu9YlsfbLZeZ+8AO8+XnsaLQetHR3r/lx1oNfqVCdmYEgIDowQPu+fSTGxnCiqxhyKSIisgkZY5ZCFt/Ud8n43LB/JoCA5a4Zb2EXjRcs7J9ZOeaM5RFncENAc8tQRgGNiIiIiMhac324lL2+6+VsGvLV6x9zd0QNr/3/UMiygkKWJihkEYHKzAzTzz+PX60SHxpal2ME1SpzP/gB7twcViRCzxe+QKS3d12OtR4C16U6O0tQLhPp66N93z6SY2OE2tpaXZqIiEjLLAY0frAilGHhfbAiuFkIaNyFgMZfEdD4KzpoFgObxWBm0c1BzPIeGuu6j/WkUERERETkdoyB2RJLY8ZOz1kkw4Z/+WVLj6dXUMjSBIUsInXF999n+oUXsCMRoj0963KMoFZj7oc/xJ2ZwQqH6f7c54gODKzLsdZL4HnU0mm8fJ5wVxepqSnadu8msgVGoImIiGwmxpjb7p1ZHnVW75pZDGi8YDG4uX7E2Y0BzeLTQ8tqMOYMBTQiIiIiIqCdLLeikKUJCllEluVOn2bmpz8l0t1NOJVal2MErkv6r/+a2rVrWKEQ3X/rbxFdp+6Z9WSCgFomg5vJEE4mSe7ZQ9vkJNHeXt0hiYiIrDOzYv/M7YOahb0zK/bPeKbxiDPM9d0zjg0ha8V7BTEiIiIisg0pZGlMIUsTFLKILDPGMH/iBOnjx4kPDeHEYutynMDzmH/uOapXroDj0P3ZzxIbGVmXY603YwxePk91dhYnFiMxNkZq717ig4NYtt3q8kREROQGiwHN7UIaNzBUfEPZYymc8VeEMI5dD11WhjB6QioiIiIiW5FClsYUsjRBIYvI9QLPY/bll8mdOkVibAw7HF6X4xjPI334MNVLl8C26f7MZ4iNja3LsTaKVyxSnZ3Fsm3iw8Ok9u4lMTq6bn+HIiIisr7MilFli28131DxoeIZXAOeXw9gFlkWhBZDGAUwIiIiIrLJKWRprJncILRBNYnIFmGHQvQcOIBfKlG6eJHExMS6dGRYoRDdn/kM8y+8QOXiRdI//jFdn/408YmJNT/WRgklk4SSSfxqlfKHH1K6dInYwADt+/aRGBtbt84gERERWR+WZRG2IHzdQ6HlJ55eYK4LYNwAyl69C6YWQMVb7I6ppzD2is6XxSDG1hNZEREREZEtTSGLiNzEicXofeIJrlUqlC9fJr5r17ok2Zbj0PXpT5P5yU8onz/P/OHDGN8nMTm55sfaSE40SmJ0lMB1qc7Ocu2FF4h2d5Pat4/k+Pi67bsRERGRjRWyLUI2xK+7tP6YyV8IYGorApiKZyj7ZuHjBgHMDV0wCmBERERERDY/jQvTuDCRW6pMT3Pt8GGCapX4Oi6nN0FA9mc/o3TmDAAdn/gEyX371u14G834PtV0Gi+bJdzVRWpqirbdu4l0dbW6NBEREWkB3xhcf8UIsgCqvqHs1Ttg/AC8hf0wsDCC7IYuGAUwIiIiIrIWNC6sMY0LE5E1Eevvp/fgQaZfeIFqOk20u3tdjmPZNh2f+ATYNqXTp8m+9BL4Psl7712X4200y3GI9fVhenpws1nSr75K7p13aNu9m7bJSaJ9fboTExER2UEcy8IJwfWDRBc6YMyKEWQLQUzVr3fAVH2o+VDyljtgLOv6/S+OBY6txxUiIiIiIhtFIYuI3FZyfJzuAweYfekl7HB43UZdWZZFxxNPYIVCFN96i+yRIxjfp+3++9fleK1g2TaRri4iXV24uRyZt94if+YMibExUnv3Eh8cxHKcVpcpIiIiLeRYFo4DMQcIL15aD00Cc/0OmJoPtaDeAVP16x0xXgBLwwpuHEFm1ceS6cUdIiIiIiJrRyGLiHyk9v378Usl0sePY4fD67bA3bIs2g8cwHIcCq+/Tu7VVzG+T+qhh9bleK0Ubm8n3N6OVypRvHCB4nvvERsaon3fPhKjo9jh8EffiIiIiOwotmURdSB63Wsybg5gvIURZLWFEWQVv35ZJajvgQGDRX382MoQxlEAIyIiIiLSNIUsIvKRLNum88EH8Uolcm+/TWJ8HDu0Pr8+LMui/dFHsRyH/IkT5E+cqActjzyyLZ/0hxIJQmNj+NUqlatXKV++TLS/n479+0mMja1boCUiIiLby+0CGHNDB4y7GMD4hopXD2CqCwGMod4Fs7j/xVkxhmw7PhYTEREREblbCllE5I7Y4TDdBw7gl0oU33+f5MQElm2v2/FSDz2E5TjkXn2VwuuvYzyP9scf37ZP7p1olMToKIHrUp2b49rhw0R7ekjt3UtyYmLdxrSJiIjI9mdZFhEHIrcIYDxT3/9SWxHAVIJ6AOMudMXcGMAsjh9b7ILZro/RREREREQ+ikIWEbljoXicnieewC+XKV++TGJsbF2P13b//ViOQ/bIEYqnTmF8v763ZRs/ibfDYeKDgxjfpzY/z+zPfkb21ClSU1Mkd+8m2t3d6hJFRERkG7Esi7AFYRsSy5cCKwKYxQ6YhR0wFR8qnsE1UHKXR5BBfefLjV0w2/mxm4iIiIiIZZa2Iu5MuVyOjo4Ostks7e3trS5HZEuoXLvGteefJ/A84oOD63684rvvkn3pJQDiU1N0fuIT69pFs5kYY3AzGWrpNKG2NpITE6QmJ4n29+uEhYiIiLSUF5ilThdvIYip74AxS5f5Bhafca4MYBY7YGw9nhERERFpqZJnsIH7u22da1qhmdxAnSwi0rTYwAA9Bw8y8+KL1ObniXR1revxkvv2YTkOmZ/8hPLZsxAEdH7ykzsiaLEsi0hXF5GuLtx8ntypU+TPniU5NkZqaor40BCW43z0DYmIiIissZBtEbIhft2l9SfmiwHMyreKV98DU/94MYCpJzDWwt6XxfAlZCuAEREREZGtQSGLiKxK2+7d+OUycy+/jB0OE2prW9fjJSYnsRyH+cOHKZ8/j/F9uj71qR0VMIRTKcKpFF6pRPHCBQoXLhAfHqZ93z4SIyPYkUirSxQREREBbh/A+Mbg+svhSy2A6kIAUwug5kPJg2BFABO6oQtGAYyIiIiIbBYKWURk1drvuQe/VCJ9/DjxcBgnGl3X48UnJrAch/SPf0zl4kXSP/4x3Z/5DFZoZ/0qCyUShMbG8KtVKteuUb58mWhfH+3795MYGyMUj3/0jYiIiIi0iGNZOCGIXXfpigBmxQ4YN4CKXx9BVvUbBzCLnS+hhY8dWwGMiIiIiGwc7WTRThaRuxK4LrM/+xm5d94hMT6OvQGBR+WDD0g/9xz4PtHhYbo++9kNOe5mFXgetbk5vGKRSHc3qX37aJuYIJxKtbo0ERERkTUTmOtHkNV8qAWGslcPYDxT3wMTLDzDvWkEmVXfC6NZ4yIiIiLLtJOlsWZyA4UsCllE7ppXLjP9wguU3n+f5MTEhuxKqX74Iekf/QjjeUQGBuj+3Oeww+F1P+5mZoKAWjqNm80S7uggNTlJcvduoj09rS5NREREZF3dGMDUQ5h6AFNZCGD8oL4HBup9M459fQjjKIARERGRHUghS2MKWZqgkEVkbdQyGaaff55aJkNi166NOeb0NHM//CHGdQn39dHz+c9rLwn1BbJuNkstnSaUSJAcH6dtaopYf/+GBGAiIiIim4m5VQDjGyre9QGM4foAxlkxhkwnHURERGQ7UsjSmEKWJihkEVk75atXmT58GOP7xAYGNuSYtdlZ5n7wA0ytRrinpx60xGIf/YU7hJvPU5udxYpESIyO0r53L/HhYSzHaXVpIiIiIi23GMB4AdRuCGCqCzthVgYwsKIDZkUXjE5IiIiIyFalkKUxhSxNUMgisrYKFy4w/eKLhBIJIl1dG3JMN51m7gc/IKhUCHV10fOFL+Bo+ft1/HKZ6swMxhjiw8O079tHfGQEJxptdWkiIiIim5IxBs+s6IBZ2AFTWeiAcQ14/vUdMPbK7peF9zpZISIiIpuZQpbGFLI0QSGLyNrLvPkmc0eOEO3rI5RMbsgx3UyGuWefJSiXCXV00PPkkziJxIYceysJajWqs7P41Sqx3l7a77mHxNgYIf1diYiIiNwxYwz+QgBTWxpDVg9fKr6httAd4xtYfMZtr+h8WXxv60SGiIiItJhClsYUsjRBIYvI2jNBwNyrr5J57TXio6Mb1i3h5XLMPfssfrGIk0rR8+SThNraNuTYW03gedTm5vAKBSJdXaT276dtYoKwfg+KiIiI3DUvuHkPTMWrjyFzGwQw1g37X0K2AhgRERHZGApZGlPI0gSFLCLrI6jVmPnZz8i/+y6JsTHsUGhDjuvl8/WgpVDAjkZJPfooib17tfD9FkwQUJufx81mCadStE1O0rZ7N9He3laXJiIiIrIt+TcEMLUAqgsBTG1hB4xnIFgRwKwcP6YARkRERNaSQpbGFLI0QSGLyPrxSiWmX3iB0qVLJCcmNizo8ItF5v76r/Hm5wEI9/TQ8cQTRPr6NuT4W5ExBjebpZZO48TjJMfHSU1NERsYUEAlIiIiskF8Y67bAeMGLOyAMVRXBDBmcQ/Mis6XxSDG0ckRERERaYJClsYUsjRBIYvI+qplMlx7/nncTIbErl0bdlwTBBTfeYf8iRMY1wUgsXcvqUcfxYnHN6yOrcgrFKjOzmKFQiRGRkjt20d8eHjDupFERERE5GaBuaEDxodaYCh7hqpfD1+8oN4BY1sQtiHi1MMXnTARERGRW1HI0phCliYoZBFZf+UPP2T68GFMEBAbGNjQY/vlMrljxyifPQuAFQ6TevRRkvv3q0PjI/iVCtWZGYzvEx8eJrVvH4kN3LEjIiIiIndmZQBT9aHgGvLuQvgSgAWEHYjY9fBFJ1BERERkkUKWxhSyNEEhi8jGKJw/z/RPfkIomSTS2bnhx69NT5N9+WXcdBqAUFcXHU88QXSDQ5+tKKjVqM7OElSrRHt7Se3fT3JsjFAy2erSREREROQWAmOo+FDxoOgZ8rX6n92g/vmwA1GFLiIiIjueQpbGFLI0QSGLyMbJvPEGc0ePEu3ra8kJehMElN59l9zx45haDYD4nj20HziAk0hseD1bTeB51NJpvHyeSFcXqb17Se7eTaSjo9WliYiIiMhHMKbe2VL2oeQacq6h4kFtMXRZGC8WUegiIiKyoyhkaUwhSxMUsohsHBMEzL3yCpmTJ4m3cOyUX6mQP36c0rvvAmCFQqQefpjkvfdiOU5LatpKTBBQm5/HzWQIp1Ik9+whNTlJpKdHd8YiIiIiW4QxhmpQ73QpeYZczVD2wfXBACG7HrhEHLD1GE9ERGTbUsjSmEKWJihkEdlYQa3GzEsvkXv3XZLj4y1dpl6bna2PEJudBSDU0UHHoUNEh4dbVtNWYozBy+Wozc1hx+Mkx8ZITU0RGxzUvhsRERGRLcYYQy2Aig9lD3K1gJJXHy8WGHBWhC6OTsCIiIhsGwpZGlPI0gSFLCIbzysWmX7hBUoffEByfLylJ+SNMZTPniV37BhBpQJAbHyc9scfJ9TW1rK6thqvWKQ6O4tl2yRGR0nt3Ut8eBg7HG51aSIiIiKySjXfLIUu+VpA0YeavxC6WMvjxRxbJ2RERES2KoUsjSlkaYJCFpHWqM3Pc+3553GzWRK7drW6HIJqlfxrr1F85x0wBstxaHvwQdruv18jxJrgVypUZ2YgCIgODNC+fz+JXbtaNhpORERERNaOFxjKXn2vS94NKLpQ9cG/IXQJKXQRERHZMhSyNKaQpQkKWURap3zlCtOHD2OAWH9/q8sBwE2nyR45Qu3aNQCcVIqOQ4eIjY62uLKtJXBdqrOzBOUykb4+2vfvJzk2RiiZbHVpIiIiIrJGvGC506XgGvKuwfXBM2BZy+PFQhY6aSMiIrJJKWRpTCFLExSyiLRW/tw5Zl58kVAqRaSzs9XlAAsjxC5cIPfKKwTlMgDRXbvoePxxQvo90ZTA86il03j5POGuLtr37iU5MbFp/q1FREREZO34xlBZ6HQpuoZ8zVBdDF2AsANRhS4iIiKbikKWxhSyNEEhi0hrGWPIvPkm6SNHiA4MEEokWl3SksB16yPETp0CY8C2aXvgAdoeeAA7FGp1eVuKCQJqmQxuJkM4mSS5Zw9tk5NEe3t1By4iIiKyTQVmudOl5BlyC6GLG9Q/H3YgakPYVugiIiLSKgpZGlPI0gSFLCKtZ4KAuaNHybz+Ooldu7AjkVaXdB03k6mPEPvwQwCcZJL2gweJjY3pzqdJxhi8fJ7q7CxOLEZyfJy2qSnig4NYtt3q8kRERERkHZkVoUvZM+TceudLLah3uoTs5b0uepwtIiKyMRSyNKaQpQkKWUQ2B79aZeallyicOUNifHzTdYoYY6hcvEjulVfwi0UAosPDdBw6RKijo8XVbU1esUh1dhbLtokPD9O+bx/xkRHscLjVpYmIiIjIBjCm3tlS8Zc7Xco+uD4Yrg9dbJ30ERERWRcKWRpTyNIEhSwim4dXLHLt8GEqV66QmJjYlL/YA9el8MYbFN58E4KgPkLsvvtoe+ghhQOr5FcqVGdmML5PbGCA9n37SIyN4cRirS5NRERERDaQMYZasNzpkncNpYVOF2MWQpeF4EWhi4iIyNpQyNKYQpYmKGQR2Vyq6TTTzz+Pm8+TGB1tdTm35OVyZI8epXr5MgB2IkHHgQPEdu/WHdIqBa5LdXYWv1Ih2t1Nat8+2iYmCLW1tbo0EREREWmRml/vbil7UKgFFH2o+RAYcKzlThfH1mNwERGR1VDI0phCliYoZBHZfEpXrjD9/PNg28T6+lpdzm1VLl0ie/Qofj4PQGRggI4nniDc1dXiyrYu4/tU02m8bJZwVxepqSnadu8mor9TERERkR3PDcxCpwsUvICiC9WF0MVeEbqEFLqIiIjcEYUsjSlkaYJCFpHNKX/2LDM/+Qnh9nbCm3znifE8Cm+9ReH11zG+D5ZF8p57SD38MHY02urytiwTBLjZLLV0mlBbG227d9M2OUm0r093+iIiIiICgBcYKoudLm59xFjNB28xdLEh6ih0ERERuRWFLI0pZGmCQhaRzckYQ+b115l75RViAwOEEolWl/SRvEKB3CuvULl4EQA7FqP9wAHik5O6k7pLbi5HdW4OJxIhMTZGau9e4oODWI7T6tJEREREZBPxjaGy0OlSdA25hdDFXQhdwouhi4Ueo4uIiKCQ5VbWPWQ5cuQIhw4dWnWBm4lCFpHNy/g+c0ePknnjDRK7dmFHIq0u6Y5UPviA3JEjeLkcAOG+PjqeeIJIT0+LK9v6vFKJ6swMlmURHx4mtW8fidFR7HC41aWJiIiIyCYULIYufv0kUra2ELoE9c8vjhcL2wpdRERkZ1LI0ti6hyy2bTM1NcXf+3t/j1/7tV9jz549qy621RSyiGxufrXKzE9/SuHsWZITE1umc8H4PoVTpyicPInxPAAS+/fT/sgj2LFYi6vb+vxqlerMDMbziPb307F/P4mxMRz93YqIiIjIbRizPF6s5BlyNUN1RegSspeDF51oEhGRnUAhS2PrHrJ861vf4umnn+aHP/whvu/zxBNP8Pf+3t/jV37lV+ju7l514a2gkEVk8/MKBa4dPkzl6lUS4+Nb6he+XyySe/VVyhcuAGBFo7Q/+iiJvXuxbLvF1W19getSnZvDL5WI9vSQ2ruX5MQE4VSq1aWJiIiIyBZgTD1kKftQWtjpUvbB9cFQD12iTr3Txd5Cz0NERETulEKWxjZsJ8vs7Cx/8Rd/wbe+9S1efvllIpEIX/ziF/n1X/91fuEXfoHIFhjto5BFZGuozs1x7fnn8YpFEiMjrS6nadWrV8m+/DJeJgNAuKeHjkOHiPT3t7awbcL4PrX5edxslnBHB6mpKZK7dxPdYsG/iIiIiLSWMYZasNzpkncNZQ9qK0KXyEK3i0IXERHZDhSyNNaSxffnzp1b6nA5c+YMHR0d/O2//bd56qmn+OQnP7kWh1gXCllEto7SBx8wffgwluMQ7e1tdTlNM0FA8Z13yJ84gXFdAOJTU7Q/9hhOPN7i6rYHEwS42Sy1dJpQWxvJiQlSk5NE+/v1QEFEREREVqXm17tbyh7kagFlvx66BAacxdDFBsfW400REdl6FLI01kxusGazauLxOIlEglgshjEGy7J45pln+PSnP83jjz/OqVOn1upQIrJDJUZG6Hn8cfxyGXdhqfxWYtk2bffdR/8v/zLxqSkAymfPMv3d71J4+21MELS4wq3Psm0iXV20TU7iJBJkT53iyrPPMn34MKXLlzG+3+oSRURERGSLiTgWHRGLwYTFvk6H+7ps9nfaTKRsOhcGeORdSFcMmaqh5Bm8YE1ezyoiIiJbwF11suTzeb7zne/w9NNPc/jwYWzb5ud//ud56qmn+MpXvoJt23zve9/jH/2jf8Tg4CBHjhxZy9rXhDpZRLYWYwyZkyeZe+UVYoODhBKJVpe0arXpabJHjuDOzQEQ6uqi49AhooODLa5se/FKJWqzsxggPjxM+759JEZGsLfASEsRERER2fy8YLnTpeAGFNx6p4tvwLbqo8UiNoTU6SIiIpuQOlkaW/dxYc888wxPP/00//bf/lsqlQqPP/44Tz31FL/6q79KT0/PTdf/l//yX/Kf/qf/KbVardlDrTuFLCJbj/F9Zo8cIfvGGyTGx7HD4VaXtGomCCidOUPu+HFMtQpAfM8e2g8cwNnCAdJm5FerVGdnMa5LtK+P9v37SYyNEdKoNhERERFZQ/6K0KXkGnKuoeaDZ8Cylne6hCx0MktERFpOIUtj6x6y2LbNrl27+PVf/3Weeuop9u/ff9vrHz16lD/+4z/mX/2rf9XsodadQhaRrcmvVpl58UUKFy6QHB/HcpxWl3RXgkqF3PHjlN59FwArFCL18MMk7713y39vm03gedTm5vCKRSLd3bTv20dyYoJwKtXq0kRERERkGwqMoeJB2YeCa8i7hqoPXgAWEF7odAnbCl1ERGTjKWRpbN1Dlueff57PfOYzq61vU1HIIrJ1ufk80y+8QOXqVRLj49vijqA2O0v25ZdxZ2cBCHV01EeIDQ+3uLLtxwQBtXQaN5sl3NFBamqK5MQE0QYdmSIiIiIiayUw9ZCl7EHRM+RrhooP7kLoEloIXSIKXUREZAMoZGls3UOW7UQhi8jWVp2d5drhw/ilEvFtEkQYYyifPUvu2DGCSgWA2Pg47Y8/TqitrcXVbT/GGNxsllo6TSiRIDk+TtvUFLGBAT24EBEREZF1ZxZDF395vFjFg1pQ/3zIhqhT73Sx9fhURETWmEKWxprJDezVHOC/+q/+Kx5++OFbfv6RRx7hd37nd1Zz0yIiTYn29tJ76BCWbVNd6P7Y6izLIrF3L/2/9Esk770XLIvKxYvMfO975E+exHheq0vcVizLItLZSduePTjJJLl33uHDH/yAaz/+MaVLlzC+3+oSRURERGQbsyyLWMiiK2ox0mZzT6fNvd02+zttdrVZJEP10WLZKqQrhlzNUPEMwc5+zayIiMimsaqQ5Tvf+Q4///M/f8vPf+lLX+Lb3/72qosSEWlGYnSUnscfxyuVcHO5VpezZuxolI5Dh+j7yleIDAxgfJ/8iRNMP/MMlUuXWl3ethROpUju3k20u5vSxYt8+MMf8uEPf0jh/Hn8arXV5YmIiIjIDmBZFjHHojNqMZy0uafL4d4um/1dNuMpm1QYfAO5Wj10ydYMZc/gK3QRERFpidBqvuj9999ncnLylp/fvXs3Fy9eXHVRIiLNatu7F7dYZP7VV7HDYZx4vNUlrZlwdzc9X/wi5QsXyL3yCn4+T/pHPyI6OkrHwYOENOpwzTnxOImxMYJajerMDFcvXybW20v7vfeS2LWLUCLR6hJFREREZAeJOhZRBzoiMJhwcAND2avvdcm7AUUP8rX6vhfbgogDURscW2NfRERE1tuqQpa2trbbhigXLlwgFoutuigRkWZZlkXnAw/gl0pk33qLxNgYdjjc6rLWjGVZJPbsIbZrF/mTJym+9RbVy5eZvnKFtgceoO2BB7BDq/qVLrdhRyLEh4cJPI/a3BzThw8T6e4mtX8/bePjhBVwiYiIiEgLhG2LcATaIzCAg7cYuvhQcAMKLuTd60OXiA0hhS4iIiJrblWL73/lV36F559/nhMnTjAyMnLd5y5dusSjjz7Kpz/9ab7zne+sWaHrRYvvRbYXv1pl5sUXKZw/T3L3bix7VVMRNz03kyF75Ai1Dz8EwEkmaT94kNjYmJaUrSMTBNTm53GzWcKpFG2Tk7Tt3k20t7fVpYmIiIiILPEDQ9mvd7oUXEPBNdR88AzYFoTtevASstDzBxGRHU6L7xtrJjdYVchy+vRpDh48iGVZ/If/4X/Ixz72MQDefPNN/vRP/xRjDC+//DL33nvv6r6DDaSQRWT7cfN5pp9/nsrMDIldu7Zt0GKMofL+++SOHsUvFgGIDg/TcegQoY6OFle3vRljcLNZauk0TjxOcmKC1OQksYGBbfvzJiIiIiJbl28MlYVOl6JryNcM1YXQxQLCC50uYVuhi4jITqOQpbF1D1kAXn/9dX7zN3+TF1988brLP/WpT/H7v//7PPjgg6u52Q2nkEVke6rOzjLzk59QmZ4mPjKCs41HGAaeR+H11ym8+SYEAdg2bffdR9tDD22rkWmblVcoUJ2dxQqFSIyOktq7l/jwsMa3iYiIiMimFRhDZaHTpeQZcguhixvUPx9e2Omi0EVEZPtTyNLYhoQsi2ZnZzl//jwAe/bsoXeLjUxRyCKyfbn5PPMnTpB7913C7e1Ee3paXdK68nI5skePUr18GQA7kaD9wAHiu3frTnID+OUy1dlZjO8THx4mtW8fidFRnGi01aWJiIiIiNyWWRG6lD1Dzq13vtQWQxd7ea+LnluIiGwvClka29CQZatTyCKyvRnfJ3f6NPOvvUZQrRLbAR0GlUuXyB49ip/PAxAZGKDjiScId3W1uLKdIajVqM7OElSrRHt7ab/nHhJjY4QSiVaXJiIiIiJyR4wxVAOorOh0Kfvg+mCA0IrQxdYJORGRLU0hS2MbFrJcvnyZEydOkM1mCYLgps8/9dRTq73pDaOQRWRnqFy7xtyxY5QvXyY2OEgomWx1SevKeB6Ft96i8PrrGN8HyyJ5zz2kHn4YW50VGyLwPGpzc3iFApGuLlJ795LcvZuI9uWIiIiIyBZjjKEWLHe65F1DaaHTxZh66BK2IeoodBER2WoUsjS27iFLpVLh61//Ov/P//P/EAQBlmWxeDMr/yF832/2pjecQhaRncMrl8mcPEn21CmcWIxof/+2v/PwCgVyr7xC5eJFAOxYjPbHHiM+NbXtv/fNwgQBtfl53EyGcCpFcs8eUpOTRHp69G8gIiIiIltWza93t1Q8yNcCij7UfAgMONZyp4tj6zGviMhmppClsXUPWX7rt36LP/iDP+B/+B/+Bz7+8Y/zmc98hj//8z9naGiIb37zm1y5coV//a//Nffff/+qv4mNopBFZGcxQUDhwgXSx4/jZrMkRkd3xHL4ypUr5F5+GS+XAyDc10fHE08Q2eZ7ajYTYwxeLkdtbg47Hic5Pk5qcpLY4CCWbbe6PBERERGRu+IG9T0uZR/ybkDRhaoP/g2hS0ihi4jIpqKQpbF1D1nGxsb44he/yP/2v/1vzM3N0dfXx1//9V/z2c9+FoDPfvaz7N+/nz/+4z9e3XewgRSyiOxM1XSa+ePHKZw/T7Svj/AO+P9vfJ/i22+Tf+01jOcBkNi/n/ZHHsGOxVpc3c7iFYtUZ2awHIfE6CipvXuJDw/viMBPRERERHYGLzBU/PqIsYJbHzFW88EzYFv1wCXiQFihi4hISylkaayZ3GBVL52dnp7m4MGDAMTjcQCKxeLS57/61a/y3e9+dzU3LSKyIaLd3fR/6lN0P/44bj5P+coVTIPdUtuJ5Ti03X8//b/0S8T37AGgdPo01773PYqnT2/7738zCSWTJCcmiPb1Ubp8mWs/+hEf/uAH5M+exa9WW12eiIiIiMhdC9kWbWGLvrjF7nabj3Xb3NtlM9VuMxC3cCwou5CuGOYrhoJr8IJVrw0WERFpmVWFLAMDA8zNzQGQSCTo6uri9OnTS5/P5XJUKpW1qVBEZJ3YkQjdjzzCwGc+QyiVovjeezviBLeTTNL1qU/R88UvEurqwlSrZH/2M2b/v/+P2vR0q8vbUZxYjMSuXcSGh6nNzzP94x9z5a/+iuzbb+OtePGCiIiIiMhW51gWybBFb9xiPLUidOmwGUpaRGwoLYQuBdfgK3AREZEtYlXjwn7lV36FcrnMX/7lXwLw7//7/z5/9Vd/xe/93u8RBAH/6B/9Ix555BGeffbZNS94rWlcmIgAuPk86ePHyb/7LuHOTqLd3a0uaUOYIKD4zjvkT5zAuC4A8akp2h97DGehU1E2TuB51NJpvHyecFcXqT17SI6PE+npUcuuiIiIiGxrxhiKHuRqhnTVUPbAGIiGIOaArcfDIiLrQuPCGlv3nSw/+clP+L//7/+bf/7P/znRaJRLly7xuc99jjNnzgAwOTnJv/23/5b9+/ev7jvYQApZRGRR4HnkTp8mc/IkQbVKfGQEy3FaXdaG8MtlcseOUT57FgArHCb1yCMk77lHS9lbwAQBtUwGN5PBicWIj46S2rNHe1tEREREZEfwjaHg1gOX+aqh4oFlQSwEURudBBQRWUMKWRpb95ClkSAIeOONN3Ach3vuuYdQKLQWN7vuFLKIyI3KV6+SPnaM8gcfEBsaIpRItLqkDVObniZ75AjuwkjIUFcXHYcOER0cbHFlO5dXKlGbm8P4PtHeXlL79pEYHSWcSrW6NBERERGRdecG9cBlvhqQq0HFh5ANcQcijk4GiojcLYUsja1ryFIqlfj1X/91vvrVr/Jrv/Zrd1XoZqCQRUQa8cplMq+9RvbUKZxEgmhf3465ozFBQOnMGXLHj2MWdtTEd++m/fHHcXZQ4LTZBK67PEqso4Pk7t0kx8eJ9fer20hEREREdoSqb8jXIF0NKLjg+hB2IB6CkL0znq+JiKw1hSyNrXsnS3t7O//T//Q/8Q//4T9cdZGbhUIWEbkVEwQUzp8nffw4Xi5HfHR0R41qCioVcsePU3r3XQCsUIjUww+TvPfeHTNGbTMyxuBms9Tm57HDYeJDQ6SmpoiPjOBEo60uT0RERERk3RljKPtcF7gEBqILgYv2t4iI3DmFLI2te8jypS99icHBQf70T/901UVuFgpZROSjVOfmSB87RvG994j29++4MU212dn6CLGZGQBC7e20P/EEseHhFlcmfqVCdXaWoFYj2tND2969JHftItLZ2erSREREREQ2RGAMRQ9yVUO6aih79ctjIYg52t8iIvJRFLI0tu4hy/nz53nyySf52te+xn/0H/1HjI6OrrrYVlPIIiJ3wq9Wyb71Fpk33sCybWKDgztqRJMxhvLZs+SOHSOoVACIjY/T/vjjhNraWlydBJ6Hm8ngZrOE2tpIjI3RtmcP8YEBdR2JiIiIyI7hB4a8C9maIVMzVDywrXp3S8RW4CIi0ohClsbWPWRJpVJ4nketVgMgFAoRvWFEiWVZZLPZZm96wylkEZE7ZYyhdOkS6WPHqM7O7sjxTEG1Sv611yi+8w4Yg+U4tD34IG0f+xhWKNTq8nY8YwxeoUAtnQYgNjhI+9QU8dFRQtqnIyIiIiI7SM03FFyYrwbkalANIGzXA5ew9reIiCxRyNJYM7nBqs6IffWrX9VfuIjsOJZlkRwbI9LZSfr4cQpnzhDu6iLS1dXq0jaMHY3ScegQib17yR45Qu3aNfInTlA6e5aOgweJ7drV6hJ3NMuyCKdShFMp/GqVWjrNtcOHiXR20jY5Wf/57enRfbiIiIiIbHsRx6Lbge6YQ8Wrd7jMVQOKNcgbQ8SBuAOOAhcREblLq+pk2U7UySIiqxF4Hrl33iFz8iSB6xIfHt5xY5mMMZQvXCD36qsEpRIA0dFROg4eJKTfp5uGCQJqmQxuJoMTj5MYHa2PEhsawg6HW12eiIiIiMiGMcZQ8iBXM8xX67tcArO8v8XWi5FEZAdSJ0tj6z4ubDtRyCIid6P84Yekjx2jfOUKsaGhHTmSKXBdCidPUnjrLTAGbJu2+++n7cEHsTVCbFPxikVqc3NgDJHeXlJ795IYHSWcSrW6NBERERGRDRWY+jixxcCl7AFWvbsl6mh/i4jsHApZGlv3kOVf/+t/fUfXe+qpp5q96Q2nkEVE7pZXKjH/2mvk33kHO5Eg2tu7I++U3EyG3NGjVK9cAcBJJmk/eJDY2NiO/PvYzALXpZZO4xUKhDs6SE5M0DYxQbSvD8u2W12eiIiIiMiG8oJ64JKpGjI1Q9UHx1rc36LARUS2N4Usja17yGLf5gTMyn8I3/ebvekNp5BFRNaCCQIK586RPn4cr1AgPjKyI0cxGWOovP8+uaNH8YtFAKLDw7QfPEi4s7O1xclNTBDg5nLU5uexIxESw8O0TU4SHx7GiUZbXZ6IiIiIyIar+vXAJV0JyLtQC+pBSyIEIe1vEZFtSCFLY+sesly8ePGmy3zf57333uN/+V/+F95//33+/M//nHvvvbfZm95wCllEZC1VZ2dJHztG8eJFov39O3YMU+B5FN54g8Ibb0AQgGWR/NjHSD300I4Mn7YCv1ymOjdH4LpEe3pITU2R2LWLiMIxEREREdmBjDFUfMjVYL4aUHDBNxBx6iPFHAUuIrJNKGRprOU7Wb785S8zMTHBH/3RH631Ta85hSwistb8apXsm2+SeeMNrFCI2MDAjh3B5OVyZI8epXr5MgB2PE77448T371bd9ybVOB51Obn8fJ5QskkybExknv2EB8YwHKcVpcnIiIiIrLhjDEUvfr+lvTC/hZjIBqCmAO2ntuIyBamkKWxlocsf/zHf8x//V//18zOzq71Ta85hSwish6MMZQuXiR9/DjVuTniIyM7evxS5dIlskeP4ufzAEQGBuh44gnCXV0trkxuxRiDVyhQm5vDsm1ig4OkpqaIj44SisdbXZ6IiIiISEv4pj5OLFczzFcNFQ8sC2IhiGp/i4hsQQpZGmsmNwitRwHnzp2jWq2ux02LiGwJlmWRnJgg0t1N+vhx8mfOEOnqIrJDQ4XYrl1Eh4YovPUWhddfp3btGjP/7/9L8p57SD38MPYODqA2K8uyCKdShFMp/GqV6uwspcuXiXR20jY1RXJsjEh3tx6AiYiIiMiO4lgWHRHoiFgMJgz5GmRqAdkalFxwbEPcgYijx8kiIjvFqjpZXnjhhYaXZzIZXnjhBX7/93+fX/zFX+Tf/Jt/c9cFrjd1sojIegs8j9zbbzN/8iTG84iPjOzY8WEAXqFA7pVXqCzs97JjMdofe4z41JRO2G9yJgiozc/jZjI4iQSJ0VHa9uwhPjSkXTsiIiIisqNV/HrgMl8NyLvg+RB2IB6CkPa3iMgmpk6WxtZ9XJhtN/4LN8bgOA7/3r/37/EHf/AH9PT0NHvTG04hi4hslPKVK8wdO0bl6lXiQ0M4O3zkUuXKFXJHjuBlswCE+/roOHSISG9viyuTO+EVi9Tm5jBBQLS/n/a9e4mPjBBOpVpdmoiIiIhIyxhT39mSdyFdDSi4EBiILgQu2t8iIpuNQpbG1j1kOXz48M03ZFl0dXUxPj6+pcIKhSwispG8YpH5114j9847hNraiO7wQMH4PsW33yb/2msYzwMgsW8f7Y8+ih2Ltbg6uROB61JLp/GKRcLt7SR376ZtYoJob++O7tgSEREREQmMobiwvyVdrYcvUN/fEnO0v0VENgeFLI21fPH9VqKQRUQ2mgkCCmfPkj5xAq9QID46ih1alxVZW4ZfLJI7dozy+fMAWNEo7Y88QmLfPp2o3yJMEODmctTSaexolMTwMG2Tk8SHh3G0c0dEREREdjgvMBRcyNYMmZqh4oFt1btbIrYCFxFpHYUsja17yHLhwgXefPNNvvKVrzT8/F/+5V/ywAMPMDEx0exNbziFLCLSKtXZWeaOHaN08SLR/n6NWQKqV6+SPXIEb34egHBPT32EWH9/iyuTZvjlMtXZWYzvE+npITU5SWJsjEhHR6tLExERERFpuZpvyLuQqQbkalANIGzXA5ew9reIyAZTyNLYuocsX/3qV8nlcvzwhz9s+PkvfvGLdHZ28hd/8RfN3vSGU8giIq3kV6tk33iDzJtvYoVCxAYGdnznhgkCiqdPkz9+HOO6AMSnpmh/7LEdv8dmqwk8j9r8PF4uR7itjcT4OG27d9d/zh2n1eWJiIiIiLRcxasHLnPVgGINPAMRB+IOOApcRGQDKGRprJncYFVn8n72s5/x+c9//paf/1t/62/x4osvruamRUR2FCcapeuxx+j/9Kdx4nGK772HX622uqyWsmybtnvvpf+Xf5n41BQA5bNnmf7udymcOoUJghZXKHfKDoWI9fWR3LMHOx4n9847fPiDH/DhD39I/uxZvHK51SWKiIiIiLRULGTRF7fY32FzT5fNWJtFxIa8C+mKoeQZgp096V9EZNNb1RKA+fl5UrcZa9PW1sbc3NyqixIR2Uksy6Jt924i3d2kjx2jcP48ka4uIp2drS6tpZx4nK5PfpLkvn1kjxzBnZsjd/QopXffpeOJJ4gODra6RLlDlmURbm8n3N6OX61SnZmhdPkykY4OUnv3kti1i2hPT6vLFBERERFpGcuySIYhGbYYSNT3t+RqhnTVkK0CliHuQNTR/hYRkc1mVZ0sY2Nj/PSnP73l51988UVGR0dXXZSIyE4U6eig/2/8DXoOHcIvlylduqSuDSDS30/vl79Mx8c/jhWN4mUyzH3/+8wfPoxfLLa6PGmSE40SHx4mOT6OMYa5V17hyl/9FdMvvEDp0iUCz2t1iSIiIiIiLWVbFu0Ri9E2m/u6bPZ22vTFLHwD81XIVg01X90tIiKbxapClr/zd/4O/9f/9X/x+7//+wQrTgD6vs///D//z3z729/m7/7dv7tmRYqI7BR2OEzXAw8w8NnPEunupnDhAr5GKmHZNsn9+xn4pV8isX8/AOULF5j+3vfIv/EGxvdbXKE0y7Jtoj09tO3ZQ7i9ncK5c/VRYt//PrnTp/EKhVaXKCIiIiLSciHboitqsbvd5t4um8kOm44IVH2YqxhyNYMXKHAREWmlVS2+r1arfPnLX+a5556jr6+P/QsnvE6fPs3MzAyf+cxn+Ku/+iui0eiaF7zWtPheRDYrr1hk/sQJcqdPE2prI9rb2+qSNo3a3BzZl1/GnZkBINTeTvsTTxAbHm5xZXI3AtelOjeHXywS7uwktWcPifFxor29GokgIiIiIrLAGEPFh1wN5qsBBRd8AxEH4iFw9NhZRJqgxfeNNZMbrCpkAQiCgD//8z/nu9/9LufOnQNgcnKSr371qzz11FPY9qqaZDacQhYR2cxMEJA/c4b5EyfwSiXiIyPYoVWt09p2jDGUz50j9+qrBJUKALHxcdoff5xQW1uLq5O7YYIAN5vFzWSwIxHiIyO07dlDfHgYZwu8gENEREREZKMYYyh6y/tbyh4EBmIhiDn10WMiIrejkKWxDQlZtguFLCKyFVRmZkgfO0bp4kVig4MKEVYIajXyJ05QfOcdMAbLcWh78EHaPvYxLAVSW55XKlGbm8N4HtHeXtqmpkiOjRHWfbaIiIiIyHV8Yyi49Z0tmZqh4oFl1QOXqI1OnopIQwpZGlv3kCWdTnP58mUefPDBhp9/4403GB0dpaurq9mb3nAKWURkq/CrVeZPniR36hRWOExsYEB3fiu48/NkX36Z2rVrADipFB0HDxLbtavFlclaCDyPWjqNl88TTqVITkyQnJio/z/YIt2zIiIiIiIbxQ0M+RpkagHZGtR8CNn17paIo+eRIrJMIUtj6x6yfP3rX+f06dO8/PLLDT//iU98gnvvvZf/4//4P5q96Q2nkEVEthJjDMX33iN97Bi1+XkSo6PYkUiry9o0jDFULlwg++qrBKUSANHRUToOHiSk3/HbgjEGL5+nNjeHFQoRGxoiNTVFYmQEJxZrdXkiIiIiIptOxa8HLvPVgLwLbrCwv8WBkK0TqiI7nUKWxprJDVY1R+W5557jP/6P/+Nbfv4rX/kKf/Inf7KamxYRkduwLIu23buJdHWRPnaMwvnzRLq7iXR2trq0TcGyLOJ79hDdtYvCyZMUTp2ievky01eu0Hb//bQ9+KB22mxxlmURbm8n3N6OX61SnZ6m/P77hLu7SU1OkhgbI9rd3eoyRUREREQ2jZhjEYtDb8ym7EHOhXQloODWX8QUcSAe0v4WEZHVWtWZppmZGXp7e2/5+Z6eHqanp1ddlIiI3F6ks5P+T32KaG8vmddfp1QoEB8e1tikBXY4TPuBA8SnpsgdPUr1yhUKr79O+dw52h9/nNj4uF6dsQ040Sjx4WGM71PLZJg7epTsW2+R2LWLtj17iA0OKlQTEREREVlgWRaJMCTC0B+3KbqQqxnSVUOuCgZDLFQfKabnSyIid25VZx6GhoY4ceLELT9/7Ngx+vr6Vl2UiIh8NDscpuuhh4j29pJ+9VWKFy4Q18ik64Q7O+n+/OepvP8+uaNH8YtF5p9/nsjQEB2HDhFWB9C2YDkO0Z4eoj09eIUC+XPnyJ89S2xgoD5KbHSUUDLZ6jJFRERERDYN27JIRSAVsRhIGAouZGuGTM0wXwXbMsRDELEVuIiIfJRVhSy/+Iu/yB/90R/x8z//8/zCL/zCdZ975pln+Ff/6l/ddpyYiIisncTICJGODtInTpA/fZpQezvRnp5Wl7VpWJZFfHyc6MgIhTfeoPDGG9Q+/JCZZ54hed99pB5+GDscbnWZskZCbW2E2toIXJfq7CzTL7xAuKNjeZRYb6+eJIrIdfxqFTeXw81mqabTVK9dwwDhZBInmSQUj2NHo9iRCHY0irPw3o5EsCMR/U4REZEtL2RbdEahM2ox5Bvy7sL+lhoUXAjb9cAlrP0tIiINrWrxfTab5ZOf/CSnTp3ioYce4v777wfgzTff5LXXXuO+++7jJz/5CZ1b4BXCWnwvItuF8X3yZ88yf/w4XqVCfHhYo5Ia8HI5sq+8QvXSJQDseJz2xx8nvnu3TpRtQyYIcLNZ3Pl57GiU+MgIqcnJ+v+PSKTV5YnIBjPG4BUKuNkstUyGyvQ0tbk5vFKJwHWxbBsnHgfLwrgugeeB77P4hMmyLKxwGDsUwgqFcCIRnHi8HsYkEjix2HIQc0MYo/tkERHZaiqeWdrfUnTBM9T3tzjgKHAR2Ta0+L6xZnKDVYUsAMVikX/+z/853/3udzl37hwAk5OTfPWrX+W3f/u3qVardHV1reamN5RCFhHZbirT06SPHaN06RKxwUGNSbqFyqVLZI8exc/nAYgMDNRHiGlp+rbllUrU5uYwvk+0p4fUvn0kRkcJ6/5fZNsKajVq2exSl0rl2jW8fB6/XMYYgxON4iQShBKJOwpeTRBgfJ/AdTGed937wPOwVjy1shwHKxTCDofr76NRdceIiMiWZIyh5C3vbyl5YAxEF/a32LrfEtnSFLI0tiEhSyOVSoW//Mu/5Omnn+b73/8+lUplrW563ShkEZHtyK9UmD95kuypUzjRKNH+ft1RNmA8j8KpUxROnsT4PlgWyXvuqY8Qi0ZbXZ6sk8DzqKXTePk84fZ2khMTJMfHiQ0MYNl2q8sTkVVa2aXiZrNUpqepzs7e1KUSSiZx4vF1//8eeB5m4W0xhFn8mIX7HGNMvTtmZRgTCtVrXAh/nHh8KXxxVgQz6o4REZFWCMzy/pb5qqHigWXVw5aoo/0tIluRQpbGNjRkMcbwox/9iKeffprvfe975PN5ent7+fKXv8yf/umf3s1NbwiFLCKyXRljKF64QPrYMWrZLInRUe0euQWvUCD3yitULl4EwI7FaH/sMeJTU3qAsY0ZY/ByOWrpNFYoRGxoiNTUFImREZxYrNXlichHWNmlUpufp3z16nVdKnYkQiiRIJRMburxgLfrjjHewkuFqf/OWhxTZodC9bFl0Wj9e2xrU3eMiIhsOC+o72/JVA3ZmqHqg2PXx4lFHN3viGwVClka25CQ5dixYzz99NP8xV/8BVevXsWyLH71V3+V3/iN3+CJJ57YMv8gCllEZLurzc+TPnaMwvnzRHt7CXd0tLqkTat65QrZI0fwslkAwr29dDzxBJHe3hZXJuvNr1Sozs1hqlUiPT20TU2R3LWLyBYYfSqyE9yyS6VcJqjVNrxLpVXUHSMiIptV1a8HLvOVgLwLtQDCNiRCENL+FpFNTSFLY+sWspw/f56nn36ap59+mjNnzjAyMsLXvvY1Dh48yNe+9jW+853v8Mu//Mt3/Q1sJIUsIrITBLUa2VOnyLz+OgaIDw1t2xNQd8v4PsW33yb/2mv1VxADiX37SD36qLobdgDj+9Tm53FzOULJJIldu2jbs4fYwIBOPIpsoKBWw83lqGWz1NLpLdul0ip33B0DWLaNHQ6rO0ZERNaEMYaKD7kapKsBRRd8AxEH4iFwdN8hsukoZGmsmdzgjs8WfPzjH+fo0aP09vbyt//23+Z//9//dz75yU8CLC2+FxGRzcmOROh6+GGivb2kX32V4oULxDUSqSHLcWi7/37ie/aQe/VVyufPU3r3XcoXL9L+yCMk9u1TQLWNWY5DtLeXaG8vbj5P/swZ8mfPEuvvp33vXuKjo4QSiVaXKbKt3LZLpVqtd6ksnPSP9vXpd/AdsGx7KTz5KMb36x0xC50xXrGIm80udcxgWfVQZrE7ZjGMCYXq3UNtbfXumFjsugDGWfGxxpWKiOwclmURD9UDlf64TdGDXM2QrhrytfpOl3iovsNFJ3NFZLu445DlyJEj7N69m9/7vd/jy1/+MqF1fDXnH/3RH/GNb3yDq1ev8tBDD/EHf/AHHDx4sOF1/+zP/oy///f//nWXRaNRKpXKutUnIrJVJUZHCXd0MH/iBLl33yXc3k60p6fVZW1KTiJB16c+RWLfvvoIsfl5si+/TOndd+sjxPr7W12irLNwKkU4lSKo1ajOzXHt8GHCnZ2k9uwhOT5OpKdHTwxFVmFll4o7P0/5ww9xG3SpRHt7caLRVpe77VmOg+M48BF/1426Y/z5eSrT07fvjgmFsGOxenfMYvfRrbpjwmGFaCIi24hlWbSFoS1sMZAwFFzIVg3zNUOmCpZVD1witgIXEdna7jgp+cM//EO+9a1v8Uu/9Et0d3fz1a9+lV/91V/lM5/5zJoW9O1vf5vf+q3f4k/+5E84dOgQ3/zmN3nyySc5ffo0/bc4odXe3s7p06eX/qxfzCIitxZOpej7uZ8j2tvL/GuvUXr/fWLDwxqFdAvRwUH6vvIViqdPkz9+HDedZvbf/Tvik5O0HziAE4+3ukRZZ3YkQnxoCBMEuNks6ePHyZ46RXx0lNSePcSHhjSuSOQWbtelYmo1sCx1qWwR6o4REZG74VgWHRHoiFgMBfWulkwtIFuDogshux64hLW/RUS2oKYX31+4cIGnn36ab33rW7zzzjsMDg7yN//m3+Qv/uIv+M53vsMv/dIv3VVBhw4d4vHHH+cP//APAQiCgF27dvGbv/mb/JN/8k9uuv6f/dmf8V/8F/8FmUzmjm6/Wq1SrVaX/pzL5di1a5d2sojIjlS5do25Y8coX7pEbGiIUDLZ6pI2Nb9cJn/8OKUzZwCwwmFSjzxC8p57dGJwh/FKJWpzcxjfJ9rTQ2r//nqnWCrV6tJEWqpRl4qXz9dDlRVdKk4ioS4VwRjTcGfMYkBzU3dMKFTvdgmF6j9LC2FMw+6YxQ4ZdceIiGxqFb8euMxXA/I1cBf3tzgQUuAisiG0k6WxdVt8f6Njx47x9NNP8+1vf5sPP/yQgYEBvvKVr/ALv/ALfO5znyPW5Kz/Wq1GIpHgO9/5Dr/4i7+4dPnXv/51MpkMzzzzzE1f82d/9mf8g3/wDxgZGSEIAh599FH+x//xf+RjH/tYw2P8t//tf8vv/M7v3HS5QhYR2am8cpnMyZNkT53CicWI9vfrTvUj1GZmyL78Mu7cHAChzk46Dh0iOjTU4spkowWeR21uDq9QINzeTnL3bpLj48T6+3VST7a9pS6VXA43k6l3qczN4ZVK13epJJM48bj+T8hdubE7ZjGQubE7xsD1o8rCYZx4HCeRINzWVu+OWTmibGWHjLpjRERaxhhDecX+luLCJMqIU9/vYus5qsi6UcjS2IaFLIuCIOC5557j//w//0++973vkc/nSSQSFAqFpm7nypUrjIyM8NJLL/Hxj3986fLf/u3f5vDhwxw5cuSmr/nZz37GmTNnePDBB8lms/yLf/EveOGFF3jrrbcYHR296frqZBERuZkxhsL586SPH8fNZkmMjupEw0cwQUDpzBlyx49jFu5X4rt310eIqSNoxzHG4OVyVNNp7HCY+NAQqakp4iMjerW+bBs3dalcvYqXy6lLRTYVdceIiGx9gTEU3eXApeLVf2/HQhBztCZAZK0pZGlsw0OWlSqVCs888wzf+ta3Gnae3M5qQpYbua7Lvffey9/5O3+H//6//+8/8vrN/GWJiGx31XSa+ePHKZw/T7Svj7B+L36koFIhd+IEpYXdYFYoRNtDD9F2331YjtPi6qQV/EqF6uwsxnWJdHfTtncvydFRIl1drS5N5I5d16WycpfKjV0qC6GKTjjLVrTUHdMglDG+f10gc10Yo+4YEZEN4wWGggvZqmG+Zqj59ebFeAgitgIXkbWgkKWxZnKDNd9yHIvF+NrXvsbXvva1pr+2t7cXx3G4du3adZdfu3aNwcHBO7qNcDjMI488wtmzZ5s+vojIThft7qb/U58i0tND5o038AoFYoODOnl2G3YsRufHP05i3776CLGZGfLHjlE6c4aOQ4eIjYy0ukTZYE4sRmJ0FOP71ObnmXv5ZbLJJImxMdp27yY+OKgATjadj+xSCYcJJZNEe3vVpSLbhuU4OI4DH/EzfVN3jOfhz88TzMxc3x1jDJbj1AOZUAgrHK4HLgthTCiZvHUYE4no8ZaISAMh26IzCp1RiyHfkHeX97cUXAjbhngIwtrfIiIttOYhy92IRCI89thj/OhHP1rayRIEAT/60Y/4jd/4jTu6Dd/3eeONN/jSl760jpWKiGxfdiRC9yOPEOvtJX3sGMULF+ojj5rcs7XTRHp66P3SlyifO0fu1VfxcznSP/whsfFx2h9/nFBbW6tLlA1mOQ7R3l6ivb24+Tz5d98lf+YMsYEB2qemiI+OEkokWl2m7EB33KWSTBLp69OJX9nxLMuqByZ30JVyY3eMX6ng5vOUP/jguu4YLKseyCx2x4RC9VF7N3bHrAhl1B0jIjtdxLHocaAn5lD26oFLuhJQdCFvTH1/iwOOAhcR2WCbKmQB+K3f+i2+/vWvc+DAAQ4ePMg3v/lNisUif//v/30AnnrqKUZGRvjd3/1dAP67/+6/44knnmBqaopMJsM3vvENLl68yD/4B/+gld+GiMiWl9i1i3BnJ/MnTpA7fZpwZyfR7u5Wl7WpWZZFYmqK2NgY+ddeo/j221QuXqRy+TKpBx+k7WMfwwpturte2QDhVIpwKoVfrVJLp7l2+DCRzk7aJidJjo0R6elRW7asm8B1cbPZ5S6Va9fwsll1qYisg2a7YxbDmOu6YzwPgmD5you7Y+6wOybc3q7/yyKy7cVDFvEQ9MVsSl59f8tctR68GGOILuxvsfUYW0Q2wKY70/O1r32NmZkZ/tk/+2dcvXqVhx9+mO9///sMDAwA8P7772OveDXd/Pw8//Af/kOuXr1KV1cXjz32GC+99BL33Xdfq74FEZFtI5xK0fdzP0e0t5f5116j9P77xEdGNOroI9iRCB0HD5LYu5fsyy9Tu3aN/IkTlM6epePgQWK7drW6RGkRJxolPjSECQJqmQzpY8fInjpFYnSUtj17iA8N6RXKcldu6lKZmaE6M4NXKhFUq/UTwPG4ulREWmyxO4aF/S63c9vuGM9beaNYjkNoYURlYmSEaF+fAhcR2dYsyyIZhmTYoj9hKLqQrRnmq4ZMFWzLEHMg6mh/i+wMxhgMEJj6Xjljlj++8f3i5wIDKT0NvStrvvh+q9HiexGRO1O+epX0sWOUP/iA2NCQxhzdIWMMlQsXyL76KkGpBEB0dJSOgwcJ6X5HAK9YpJZOQxAQ6e0ltXcvidFRwqlUq0uTLWCxS8XN5agt7lJp0KXiJBI60SqyzS12x3iFAm42C0Ckq4vk+DixoSFifX0K8kVkx/CCeldLpmrI1gwVH0J2fZxYxFHYIpvPjeFIYOohyO3CEYv6n6H+8eIHFmADllV/s1dc5tjgWPV9R44FIas+Yi9iQ3dM/zdWaiY3UMiikEVE5I555TKZ114je+oUTiJBtK9Prwa6Q4HrUjh5ksKpU/URILZN2/330/bAAzrhIUD9Z6SWTuMVCoQ7OkhOTNA2MVH/f6ZuA+EjulRqNSzLWupScRIJ/dyI7HCB5y2FsJZtE+nuJjk+TnxwkGhfH7ZGmIrIDlH164HLfCUg70ItgIgN8VD9RLPI3bhVOBJwc0iyGI6stBiUWHcQjiwGIivDEduqf962bnhrdJnO3zRFIUsTFLKIiDTHBAGF8+dJHz+Ol8sRHx1VSNAEL5sle+QI1StXAHCSSdoff5zY+LgCKwHqD9LdbJba/Dx2JEJiaIi2qSniw8PqRNhhGnap5HL1BfXqUhGRJiz+PvHyeaxQiEhnJ8k9e4gPDBDt7dUoWBHZEYwxlH3I1yBdDSi64Jv6KLFYCBw9H9tRjDE3ByErwpGVn2sUjiy6q3DkjgMS/Wy2gkKWJihkERFZnercHOljxyi+9x7Rvj7C+h16x4wxVN5/n9zRo/jFIgCRoSE6Dh0i3NnZ2uJkU/ErFaqzswSuS7S7uz5KbNcuIvo52XaMMfjFIrVcDjeTuX2XSjyuE6IismpBrUYtk8ErFLAjESLd3bRNTBAbHCTa06MuOBHZEQJjKHqQrxnSVUPJq59Ij4cgpv0tm1oz4cji5xq5MRyxreXLHJbHajm2RchevOwjwpGbLtfP0VamkKUJCllERFbPr1bJvvUWmTffxLIsYoODemLehMDzKLzxBoU33qiPELMskvfdR+rhh9UdJNcJPA83k8HN5QglkyTHxpZegayT7VvT7bpUMAZLXSoisgH8ahU3k8ErFrGjUaK9vfXAZWCASFeXHteJyI7gB4aCV9/fkqkZKl79BHk8VB8rpsBlbawMR64bn3XD+8WPWXHGeuXJ68UJb4thhrUyHLEWgxEIWQvhyELYcafhiGPp31zqFLI0QSGLiMjdMcZQunSJ9PHjVKeniY+O6oRgk7x8nuzRo1QvXQLAjsdpe+ABIr29hLq6FLjIksWdHLW5OSzbJjY4SGpqivjoKKF4vNXlyS1c16WSzVKdnqbSoEvFSSQIJRIKzkSkJfxKhVomg18q4cRiRPv7aRsfJzYwQLizUyecRGRHcANDvgbz1YCcC1Ufwgv7W8I7dH+LMabx4nUahyPGLC9hNyx/bN0iHFn8c8ha7B6phyOhhbBjMfhYGsFlrQxDFkZyLXWi7Mx/I1kfClmaoJBFRGRtuPk86WPHKJw5Q7iri0hXV6tL2nIqly6RPXoUP5+/7nKnvZ1wd/fyW1cXdiKhB5A7nF+tUpubw69UiHR20jY1RXLXLiI9PfrZaLHAdZeW09fm5ylfu4aXzapLRUS2DK9Uws1m64FLIkF8YIDk+DjRgQEiHR2tLk9EZENUPEPerQcu+Rq4BiIOxB0IbYHAJTDmpsXrNy5nvzEwafRdNQpHVgYetwpHFoOPxeuu/PON3SN6/iKbkUKWJihkERFZO4HnkXvnHTInTxK4LvHhYb0iu0nG8yiePk31yhXcdJqgXG54PTsaJbQyeOnuJtTRobEeO5AJAmrz87iZDE4iQWJ0lLY9e4gPDakLagM06lKpzs7iFYv46lIRkW3AKxbrgUulQiiZJLYQuMQGBginUq0uT0Rk3RlT39mSqxnmq/VdLoGBqFPvcFnrvRt3Go6s7CqxuL5rBJZHaC2GIdYNgcfKsVrOLcKRj1rMrnBEtjOFLE1QyCIisvbKH35I+tgxyh9+SGxwkFAi0eqStiy/XMZNp3HTabz5+fr7bLbx9j7bJtzZeX340tWFrVfK7xhesUhtbg4TBET7+2nfu5f4yIhOgq0hdamIyE61FCpnMgS1GuG2NmJDQyTHxoj19xNqa2t1iSIi6y4whqIL2YXApezVL4+F6qFLw8Xr3DocWbRyvJa9inDkup0jd7B7ROGIyEdTyNIEhSwiIuvDK5XInDxJ7u23seNxon19eiC3RsziEvR0Gi+dxl0IX4zrNry+k0zWO11WhC9OW5v+PbaxwHWppdN4xSLh9naSu3fTNjFBtLdX3U5NuKlLZWaG6sxMvUulWsWybXWpiMiOZIKg3uGSyWA8j1AqRXxkhMTICLGBAb3ARkR2BC8wFFzIVg3zNYMbLIQjS0HGrcORkF3/2EbhiMhmpZClCQpZRETWjwkCCufOkT5+HK9QID4yovFF68QYg18oLHe9LLz3i8WG17fCYcJdXdeHL52dWKHQBlcu68kEAW4uR21+HjsSITE8TNvkJPHhYXVZNLDUpZLLUUunG3apOIlEvVNFf38iIsBC4JLP42azBJ5HuKOD5Ogo8YXAxYnFWl2iiMi6q/mGanDr0VoKR0S2HoUsTVDIIiKy/qpzc6RffZXixYtE+/s1umgDBdXqUqfLUviSyUAQ3HxlyyLU0VEPXhYCmHB3N048vuF1y9rzy2Wqc3MYzyPS00NqcpLE2NiOXWBsjMEvlahlszd3qWiXiojIqiyG++7CaNNwezuJsTESw8NE+/sVUIuIiMiWoZClCQpZREQ2hl+tkn3zTTJvvonlOMQGBjS2qEVMEOBls0vBy2L4ElSrDa9vx+NLXS+LnS+h9nb9+21RgedRm5/Hy+cJJ5Mkxsdp2727/n9yGwcJDbtUcjm8YvH6LpVEQq+6FhFZA8b3lwMXINzZSdv4OLHhYWK9vdiRSIsrFBEREbk1hSxNUMgiIrJxjDGU3n+f9LFjVOfmiI+M6BWNm4QxhqBUuq7rxU2n8XO5hte3HGe526Wra2nkmMbBbR3GGLx8nlo6XQ8+BwdJTU0RHxkhtMW7l27qUpmdpTo9rS4VEZEWCTwPN5vFy+XAtol0dZEcHyc+NES0t1ePH0RERGTTUcjSBIUsIiIbz83lSB8/TuHMGcJdXUS6ulpdktxC4Lp4i8HLwntvfh7jeQ2v76RSSx0vi2PHnGRSM4g3Ob9apTY3h1+tEunoILV3L4ldu4h0d2+Jf7vFk3eL+2fKV6+qS0VEZJMKXHfpd7YdCtUDl4mJpcBFwbeIiIhsBgpZmqCQRUSkNQLPI/f228yfPInxPOLDw3pSvUWYIMDP52/qeglKpYbXtyKR64KXcFcXoc5O/XtvQiYIqM3P42azOPE4ybGx+iixwcFN8yrjxS4VN5ulpi4VEZEtLajVqGWzePk8djhMpKeHtokJYoODRHt6NJpUREREWkYhSxMUsoiItFb5yhXSx45R/vBDYkNDhBKJVpckq+RXKniLocti10smA40eatg2oY6Om8IXW10Gm4ZXLFKbm8MEAbH+flL79pEYGSHU1rahddyuS8UEAXY4jJNMEkoksKPRLdF5IyIiN/OrVdxMBq9YxI5Gifb01IP+/v56Z6UCFxEREdlAClmaoJBFRKT1vFKJ+RMnyL3zDk4ySayvr9UlyRoxvo+XyVzX8eLOz2NqtYbXtxOJ64OX7m6cVEonzlsocF2qc3P4xSLhjg5Sk5MkxsaI9vWty7+LVywud6nMzVG9dq1hl4oTj2OHQmt+fBERaT2/UqGWyeCXSjixGNG+PtomJoj29xPp6tLjAhEREVl3ClmaoJBFRGRzMEFA4exZ0idO4BUKxEdHdQJ1mzLG4BeLN3W9+Pl8w+tboRChrq6bdr3o52NjmSCod5RkMliRCInhYdomJ4kPD+NEo6u6zdt2qRiDHQqpS0VEZIfzy2VqmQxBuYwdjxPr6yM5MUFsYIBwR4fuG0RERGRdKGRpgkIWEZHNpTo7y9yxY5QuXiTa3084lWp1SbJBgloNd35+OXxJp3EzGfD9m69sWYRSKUI3dL3Y8bhOtmwAv1ymOjuL8f36OJepKZJjY4Q/4rHUYpeKm8tRmZ1Vl4qIiDRl8X7Er1QIJZPEBgZIjo0RGxzUY0YRERFZUwpZmqCQRURk8/GrVbJvvEHmzTexQiFiAwOaw71DmSDAy+Xq+11WhC9BpdLw+nYsttTpstT10tGhn591EngetXQaL58nnEqRnJggOT5ObHCw3vmSy9VHf92qSyWRIJRMqktFRESastgVW8tkCGo1wskkseFhErt2ER8Y2PD9YSIiIrL9KGRpgkIWEZHNyRhD6eJF5o4dw02niY2MrHokkWw/fqm0NGZsMXzxcjlo9LDGtgkvhC6h7u6lj+1IZOML36aMMXj5PLV0GstxiPb1EVSreMUiQbUKUO9QUZeKiIisMWMMXqGAm8kQeB7htjbiIyMkRkeJDQwQSiRaXaKIiIhsQQpZmqCQRURkc6tls6SPH6dw9iyR7m4inZ2tLkk2qcDz8DKZpW4Xb2Hfi3Hdhtd32tpu6npx2trUUXGX/Gq1vrclFFKXioiIbCgTBEuBi/F9QqkUidHRpcDFicVaXaKIiIhsEQpZmqCQRURk8wtcl+w775A5eRJ8n9jwsMY/yR0xxuDn8/XgZUXni18sNry+FQ5ft+Ml1NVFuLMTS50XIiIiW8rKsZUEAeGODhK7dpEYGSHa368OaREREbkthSxNUMgiIrJ1lK5cIX3sGJWrV4kPDeHE460uSbaooFpd6nhZCl8yGQiCm69sWYQ6OpaDl4WRY/r5ExER2RqM7y8HLkC4o4Pk+Djx4WFifX0aISoiIiI3UcjSBIUsIiJbi1csMn/iBLnTpwm1tRHt7W11SbJNGN/Hy2avC17cdBqzsFPkRnY8flPXS6i9XV1WIiIim1jgebjZbH2Xm2UR6eoiOTFBfHCQaF8fdjjc6hJFRERkE1DI0gSFLCIiW48JAvJnzjB/4gReqUR8ZESLtGVdGGMISqXlrpeFAMbP5Rpe33Kc63a8LIYvOmEjIiKy+QSui5vN4ubz2I6zFLjEBgeJ9vbq8aWIiMgOppClCQpZRES2rursLHPHjlF67z1ig4OE2tpaXZLsEIHr4q3odnHTabz5eYzvN7y+k0pdF7yEu7uxEwkthBcREdkkAtellsng5/NY4TCR7m6Su3cTHxgg2tOD5TitLlFEREQ2kEKWJihkERHZ2vxqlfmTJ8mdOoUVDhMbGNCJa2kJEwT4+fxNXS9BqdTw+lY0Wg9cVnS+hDo6dBJHRESkxfxqtT5SrFDAjkaJ9vTQNjFBbGCASHe3RoOKiIjsAApZmqCQRURk6zPGUHzvPdLHj1NLp0mMjmqBqWwafqWCtzJ4Safxsllo9BDMtgl1dl4XvIS7u7Gj0Y0vXERERPArlXrgUiziRKNE+/rqI8UGBoh0denFPSIiItuUQpYmKGQREdk+apkM6WPHKJw/T6S7m0hnZ6tLEmnILC7dvSF8Ma7b8PpOMkloMXRZCGCcVEondkRERDaQXy7XR4qVSjiJBLEVgUu4o0P3yyIiItuIQpYmKGQREdleAtcle+oUmddfxwQB8eFhjXSQLcEYg18oLO13WQxe/EKh4fWtUKg+YmzlrpfOTiwt6RUREVl3XqmEm8ngl8uEkkliAwMkx8frgYvOLYiIiGx5ClmaoJBFRGR7Kn3wAelXX6Vy7RrxkRGcWKzVJYmsSlCr4S6ELt6KXS8Ewc1XtixC7e3L4cti10sisfGFi4iI7ADGGPxSidr8PEGtVg9choZIjo0R6+8nnEq1ukQRERFZBYUsTVDIIiKyfXmFAukTJ8ifPk2ovZ1oT0+rSxJZEyYI8LLZpcBlMXwJKpWG17djsaVul8XOl1B7u7q8RERE1pAxBq9QwM1kCFyXcCpFfHiYxK5dxPr7CSWTrS5RRERE7pBCliYoZBER2d6M75M/e5b548fxKhXiw8PYGqck25AxhqBcvm7Hizc/j5fNNv4CxyHc2Xl9+NLVhR2JbGzhIiIi25AJArxCgVomA55HqL2d+MgIydFRogMDhOLxMWQZtwAAYXNJREFUVpcoIiIit6GQpQkKWUREdobKzAzpV1+ldOkSscFBvZJQdozA867b8bLY+WI8r+H1nVRqaczYYteLk0xqma+IiMgqmSDAzeXwcjlMEBBqbye5axfx4WFiAwM40WirSxQREZEbKGRpgkIWEZGdw69UmD95ktzbb2NHIkT7+3XiWHYkYwx+Pn9d14ubThOUSg2vb0UiS8HLUudLZyeW42xw5SIiIlub8X3cXA43lwNjCLe3kxgfJzE8TKy/Xx2lIiIim4RCliYoZBER2VmMMRTfe4/0sWPUMhkSIyN6MiuyIKhUcFd2vaTTeJkMNHq4aFmEOjuvC19C3d04sdiG1y0iIrIVBZ5X73DJZsGyiHR1kRwfJzY0RKyvDzscbnWJIiIiO5ZCliYoZBER2Zlq8/Okjx2jcP480d5ewh0drS5JZFMyvo+Xzd7U9WJqtYbXtxMJwp2dOMkkdiKBk0wuvyUSCjVFREQaCDwPN5vFzeWwbJtodzeJ8XHiQ0NEe3u1U1BERGSDKWRpgkIWEZGdK6jVyJ46Reb11zHGEB8exrLtVpclsukZYwhKpZuCFz+f/8ivtcLhpcBlZQCzMpDRK3dFRGQnC1wXN5vFy+WwwuF6h8vu3cQHB4n29Ghcp4iIyAZQyNIEhSwiIlK6fJn0q69SmZkhPjyscUciqxS4bj1syeXwSyX8YnH5rVS6ZffLjZaCmBvCGHvFnxXEiIjITuBXq/XApVCo7xTs6SG50OES6e7WC4RERETWiUKWJihkERERADefZ/6118i/+y6hVIpoT0+rSxLZdgLXXQpcghXhy8owxrjuHd2WFYnc1A2zFMAoiBERkW3Ir1ZxMxm8YhEnGiXS20vb7t3E+vvrgYtltbpEERGRbUMhSxMUsoiIyCLj++TPnGH++HH8apXY8LDmX4tssKUgplgkaNAN03QQc2NHzA2dMfo/LiIiW5FfqVCbn8cvl3HicaJ9fbRNTBDr7yfc2anARURE5C4pZGmCQhYREblR5do15o4do3zpErGhIULJZKtLEpEVglrtug6Y68KYtQhiVvxZQYyIiGx2XqmEm8ngl8uEkkliAwMkx8aIDQ4S1nkOERGRVVHI0gSFLCIi0ohfqTB/8iTZU6dwolGi/f16RaDIFhLUajeNI7uxM8Z43h3dlhWNXh/ANAhjLAUxIiLSYsYY/FKJWiZDUK3WA5fBwXrgMjBAOJVqdYkiIiJbhkKWJihkERGRWzHGUDh/nvTx47jZLInRUe14ENlGloKY24QxdxrE2NEo9i0CGAUxIiKy0YwxeIUCbiZD4LqE29qIj4yQGB0lNjCgTm0REZGPoJClCQpZRETko1TTaeaPH6dw/jzRvj6NXRDZIYwxmJWjyW7ohAkWLmsmiFncBdNwT4yCGBERWQcmCPAKBWqZDHgeofb2euAyMkJscJBQPN7qEkVERDYdhSxNUMgiIiJ3IqjVyLz1Fpk33gAgPjSEZdstrkpEWu2mIOaGzpimg5hYbCl0uVVnjOU46/xdiYjIdmWCAC+fx81mCXyfcEcHydFR4iMjxAYGcKLRVpcoIiKyKShkaYJCFhERaUbp0iXSx45RmZ4mPjKCE4u1uiQR2eSWgpgG3TArwxjj+3d0e3YsthS43NQVoyBGRETukAkC3FwON5sFYwi3t5MYGyMxMkK0r0+Bi4iI7GgKWZqgkEVERJrl5vPMnzhB7t13CXd0EO3ubnVJIrLFXRfE3LgnZkUwQ7NBzI1hzGIgoyBGRERWCDxvqcMFINLVRXJ8nNjQELG+Pu0lFBGRHUchSxMUsoiIyGoY3yd3+jTzr71GUK0SGx7G1i4FEVlHxhhMtXrLAGbxz6sKYhbe7Bv2xGgsoojIzhN4Hm42i5vLYdk2ke5ukuPjxAcHifb16TGviIjsCApZmqCQRURE7kb56lXSx49Tvny5vjg0mWx1SSKygxljCKrVpV0wN3XFLHbEBMEd3Z4djzccR7ZyTJmCGBGR7StwXdxsFi+fxwqFiHR2ktyzh/jAANHeXnVFiojItqWQpQkKWURE5G555TKZkyfJvvUWTiJBtK8Py7JaXZaISEPXBTG32RPTdBBzQxizsitGQYyIyNYX1GrUMhm8QgE7EiHS3U3bxASxwUGiPT36XS8iItuKQpYmKGQREZG1YIKAwvnzpE+cwMtmiY+Oana1iGxZi0HMYvByUyDTTBBjWfUg5oZumOvGlP3/27vz+MiqOv//73trubVl35NOJ91NL2zS0E2j7ILaIqjoIOBXRNsNBwEVUJZhRGAQkBFkEEX9OjIijuKCy1dcRga/X/TH6AiD9kZvWbqh6YU0qSRVSW33/P6opJLqJN2dtbK8no9HPZKce2/dU+Fwu3Lfdc4nGOTmHADMIplEQqnOTqVjMdmOI6eyMhu41NTIX1bGNR0AMOsRsowBIQsAYDIlOjp04PnnFWttlVNVJR//tgCYo4wxcvv6cqHLiDNj4vHxBzEHBTIEMQAwM2X6+pTs7FQmHpcnEJBTXa1IU5MCNTXylZYywxsAMCsRsowBIQsAYLK5yaQ6N2xQ54YNsixLgdpabgwCmJfygpjRwpixBjEjzYYhiAGAGSEdjysVjWYDl1BIwZoahZua5NTUyF9SUujuAQBwxAhZxoCQBQAwFYwxiu/apQPPP6/Evn0KLlggj+MUulsAMOMYY+T29g6bAeMeVCdGR/Jni2XJEwoN1oMZIYwhiAGA6ZGOxbKBS1+fvOGwAv2BS6CmRr6iokJ3DwCAQyJkGQNCFgDAVEp1d+vA88+re+tW+cvK5C8rK3SXgBEZ180+MhlpyPcD7Rr685B2q/+t5MAbSkvZm+aWxyOnslLecLhgrwlzx4hBTCwm9+ClycYSxIwyG8ZTVCRPIDD1LwoA5gljjDKxmJKdnXKTSfkiEQXq6hReuFCB6mp5I5FCdxEAgGEIWcaAkAUAMNXcdFpdW7ao869/lZtMKlhfL8vjKXS3MMtNZigiYyTbzo5L25Zl27JtW/J4ZPW3Wx6PbL8//+Hzyfb5ZHm9sj0eyeOR7fHIGKNYe7viu3bJ7euTr7xcvpIS1mTHlDKuO2xpsmEzY44wiPFXVyvQ3KxgU5M8BIUAMGmM62ZnuHR2yqTT8hYVKdjQoFBDgwI1NfKGQoXuIgAAkghZxoSQBQAwXXr37NGB555T7+7dCtTW8kfkPHPIUCSTkYw58lBEkixr7KGI3y/b6x0Wilheb/aYga8jtY8xIDHGKNnRoe6WFsVaWpSKRuUtKZFTXk7IiIIZFsQcFMYMzIwZKhe4NDfLw3UbACaNcV2lu7uVikblZjLyFRcrUFkpX0mJvOGwPIGAPMFgdqZhICDb5yt0lwEA8wghyxgQsgAAplM6HlfnX/+q6KZN8oRCcqqq+HT/DHW4UCQ3W2SyQhGvNzszpEChyFRKdXcr1t6u7q1blezokB0IyKmslO33F7prwDCZWEy97e3qa2tTct++vG3+6moFFi3KznAhcAGASWNcV6muruzMw2QyO+vQmOx7IMeR7fPJEw7LX1IiX1FRNnwJBgeDGOptAQAmGSHLGBCyAACmm3Fd9ezYoQP/8z9Kd3UpuGABn8ybBIcMPw4Rihy8dNDBoYhl29JoocjAklljDEVsrzf7PDM0FJkqmURC8V271LV1q/r27JFlWfJXVjKrCzPWIQOXmhoFm5sVIHABgCnjptNyk8m8h0mlctstv18en0+248gbicg3NIQZEsDYfv+8eK8FAJg8hCxjQMgCACiUREeHDjz3nGJtbXKqq+UrKip0l6bVhEMRY7JByMATHi4U6a8f4vH5ZI0nFOmfMTKfQpGp4qbT6tuzR93btyu+c6cyiYT81G3BDJeJxdTb1qbe9nalCFwAoOCMMTKplNxkUplEIhfCKJORLEuyrOwsGL9fHsfJBjDFxdmlyA6aCWN7vYV+OQCAGYaQZQwIWQAAhZRJJBTdsEGdGzbIsm0Famtn7FIHEw1FLGWX0BpLKOIZCEHGG4oMnTHCzfsZxxijxKuvqqe1NVu3patLvpIS+cvKqNuCGS0XuLS1KbV/f942f02NgosWKbBwIYELABSQcd1hs2DcZFKmfymyobORveGwfMXF8hUXD1+KLBCYse/PAQBTh5BlDAhZAACFZoxRfOdOHXjuOSU6OhRsaJDHcSb+vIUKRQZmigz84UoogiOQ6urK1m3Ztk2JAwfkcRzqtmBWOGTgUls7OMMlGCxQDwEAI3H7Z8HkPdLp7Htfy8q9t/UEAvJGIvKXlsoTDuctQ+YJBCblfTsAYOYhZBkDQhYAwEyR6urSgeefV8+2bfKWlMgTCIwcigwJRI40FLE8nmxoMcZQxBqpdgihCKZQpq9P8ZdeytZteeUVWbZN3RbMGumeHvW1t6u3tVWpV18d3GBZ+UuKEbgAwIxmXHfEEMa4riTJsu3s+2bHkScQkL+kRN7iYvlCoWEzYZidCwCzEyHLGBCyAABmEjedVtfmzYpu2iS5rmTbYw9FDq4dQiiCWchNp9X3yivq2r5dvbt2KZNIyKmokLe4mLGLWSHd06O+gRkuBC4AMKeYTCYXvGSSSbmJhEw6Pfjhp/46gLbjyBuJZGvBFBXlAhhv/1fbcXhfAwAzFCHLGBCyAABmonQsJkmEIpj3cnVbWlqydVt6euQrLqZuC2aVdHd3dobLSIHL0CXFAoHCdRIAMCmMMTLp9PClyFKp7Exzy8p+WMpx5HGcbC2YkhJ5D16KLBiU7fMV+uUAwLxFyDIGhCwAAACzQ17dlo4OeYLBbN0WbkBgFiFwAYD5LbcUWSKRF8LkZsF4PNnZ6n6/PKGQfCUl8hcXD1uGzBMMZmslAgCmBCHLGBCyAAAAzC6Zvj7Fd+3K1m3Zs4e6LZi1coFLa6tSHR2DGwhcAGDeckeYBWNSqexGyxpciszvl7eoSL6SEvkikbwZMJ5gULbfz0x4AJgAQpYxIGQBAACYndx0Wr27d6t7xw7Fd+2Sm0zKKS+nbgtmpXR3t3rb2tTX1jYscHHq6hRoblZg4UICFwCYx4wxMqnUYC2Y/nowymQky5IsS7bjZGfBOE42gCkuHr4UWSDATGAAOAxCljEgZAEAAJjdjDFK7N+vntbW/Lot5eUso4FZ6UgCl+DChbIJXAAAQxjXHV4LJpnMbbP7Z8AMLEXm7w9hhi1FFgjwHgrAvEfIMgaELAAAAHNHMhpVbOdOdW/dquSBA9RtwayX7uoaDFwOHBjcQOACABgjN50eVgvGTadlSYNLkfn9sh1H3khE/tJSeSORYbNgPI5T6JcCAFOOkGUMCFkAAADmnnRvr3p37VLXtm1K7N0r2bacykp5gsFCdw0Yt4HApbetTekRApfgokUKLFwom5tfAIAxMq4rt38psrx6MK4rSbJsOzsLxnHkCQTkKy6Wr6RE3iF1YAa+tzyeAr8aAJg4QpYxIGQBAACYu3J1W7ZtU/zll7N1Wyoq5C0qom4LZrVDBi719Qr213AhcAEATAaTyeSCl4F6MCaVyoUw9kGzYHzFxfIWFY28FBnvwQDMAoQsY0DIAgAAMPcZY5TYt2+wbkssJl9JifxlZaw5jlkvHY0OBi6vvTa4gcAFADBNRpoF46bTkiTLsrL1YBxHHseRt6gouxRZODxsKTLb7y/wKwGALEKWMSBkAQAAmF+SnZ2Ktbere9s2JV97jbotmFNGDVxsOxu4NDURuAAAplXeUmRDasKo/5ak5fFklyLz++UJBuUrLZWvqCi7/FgolBfE8OEYANOFkGUMCFkAAADmp1zdlq1b1bd3ryyPh7otmFMOG7g0NyvQ2EjgAgAoKDedHl4LJpXKhjCWJcvvl8fnk+33y1tUJF9JiXyRyOAyZKGQPMGgbL+fpciAQzDGSK4r0/+QMdmvrivL55OH94R5CFnGgJAFAABgfnNTqWzdlu3bFX/5ZZlkUn7qtmCOSXV2qq+9Xb2trUp3dg5uIHABAMxgxhiZ/lkwmSEhjDKZ7A6WlZ0F078Uma+4WL6SkpGXImPWMqbYsPBiSIhhhn4/ZFuuTRrcdgT7S9mAUq4rN5ORSaez2zOZ/IfryqTTw/o0cD71By++8nLVrV3L3z9DELKMASELAAAApOwfRX379inW2qqe1lalqduCOSrV2am+gRkuIwUuixZlAxfWxQcAzHDGdYfXgkkm+zcaWV5vNoTx+eQJh+UvKZGvqCg3+yUXxAQCvN+b4YwxRx5ajBJyjDaLw4wWiqTTcjMZqT+scNNpKZPJtvVvzwUbQ89jTO7rSG25bUPPa4wG4g0jZb+3rOzxljVsm1G23pEsa3Ds2nauTZaVv/3gNsuS+o9L9/TIGwxqwbvexf8HQxCyjAEhCwAAAA6W7OxUrK1tsG5LOCynooJPQGLOOWTg0tAwOMOFwAUAMAvlLUU2UA8mnc7dwLZ8Pnn6Z8J4I5H8pciGzIKZD8sojSeEyO0/5PuD9x8tEBkIL/JmYbjuYIgxMENjSMgx4iyMg8OLg7ab/lkfxnVzszRyIcYAy8qFHLkQYyCIkEYOKUZr63++ge15ocdIbQcfWwCJAwdk2zYhy0EIWcaAkAUAAACjScfjivfXbUns25et21JVJU8gUOiuAZMu9dpr6m1rU19bm9LR6OAG21agoUEBAhcAwBxijBl5Fkz/TXrLtgeXIgsEBpciOziACQZle72HP98YQ4hhS0llMoMhwpEsJZVK5dpGXUpqyJJSeTMupLylpEx//0ebhdH/C80LL/JmXIz0+zh4VsUowcVI2480uBi2HSMiZBnZWHKDw18BAAAAgHnKGwqpePlyRRYvVu/LLw/WbUml5K+slK+oqNBdBCaNr6xMvrIyFZ944rDApW/XLvXt2kXgAgCYMyzLkqe/lstITCaTC17SsZiSr70mk0pp4PPq9sBSZH6/vP2zX4YuJeWm09lZGP3hxojLRR28lNTQWRjKDzaGLSUlZZ/DtnNBx6hLSR1BcDF0CSl7oE0aW7ABzFOELAAAAMBh2D6fws3NCi1cqL59+9SzY4di7e1K7NsnX2kpdVsw5wwELkUrVyrd2XnowGWghgvL6QEA5hDL48nNWBnpXzg3lcqFMMkDB7LLkB3BUlKWxzNsBsdMXkoKwOERsgAAAABHyLJtBWtrFaytVckxxyjW3q7ubdsUa22VNxKRv7ycG82YUyzLGjlwaW1VuqsrP3BZsGBwhgv/HwAA5jjb58v+excOF7orAAqMkAUAAAAYB39ZmfxlZSpatixbt2XLFvW+/DJ1WzBnDQtc+pcU621rU6arS307d6pv507J41GgoUHB5mY5BC4AAACY4whZAAAAgAkYsW7LSy/JZDLyV1RQtwVzkmVZ8pWXy1derqITTzx04LJgQTZwWbCAwAUAAABzDiELAAAAMAny6rbs3Zut27JzpxL792frtpSWsp425qRRA5fWVmW6u9XX3q6+9vbsLC8CFwAAAMwxhCwAAADAJLJsW8G6OgXr6lR84EC2bsv27YN1WyoqZHt5G465aVjgcuDA4AwXAhcAAADMQfx1BwAAAEwRp7xcTnm5ipctU/yll7J1W3btkuXzyamspG4L5jTLsuSrqJCvokJFJ5106MClsTEbuDQ0ELgAAABgViFkAQAAAKaYNxzO1m1ZtEjxl19W97Zt6t29m7otmDcODlxSBw6ob2jg0tamvrY2WV5v/gwXZn0BAABghuMdKwAAADBNbL9fkUWLFG5qUt+ePepuaVG8vV2JffvkLy+Xr6SEui2Y8yzLkr+iQv6BwKWjYzBw6ekhcAEAAMCswrtUAAAAYJpZtq1gfb2C9fVKHHOMYm1t6t6xQ7G2NnnDYeq2YN6wLEv+ykr5KytVtGoVgQsAAABmHd6ZAgAAAAWUq9uyfLniu3ap68UX1fvSS9mbylVV8jhOobsITIuRApfetjb1tbYqE4vlBS6BxkYFmpsVaGiQReACAACAAuLdKAAAADADeMNhFa9Yocjixdm6LVu3qveVV2QyGTmVlfJGIoXuIjBthgYuxQOBS2ur+tralInF1Nvaqt7WVgIXAAAAFBzvQAEAAIAZZFjdlh07FGtvV9++ffKXlVG3BfNOXuCyerVSr76aneFC4AIAAIAZgHedAAAAwAw0rG5Le7u6t29XrLVV3qIi+cvLqUuBeceyLPmrquSvqjp04OLzDQYu9fUELgAAAJgyvNMEAAAAZjinokJORYWKly1TbNcudW/ZoviuXbJ9Puq2YN4aFrjs36/e9vbBwKWlRb0tLbnAJdjcLIfABQAAAJOMd5cAAADALOGNRFRy9NGKLF6s3t271bV1q/p275YxRk5FBXVbMG9ZliV/dbX81dWDgUtbm3rb2uTG4yMHLg0NsjyeQncdAAAAsxwhCwAAADDLeBwnV7eld88e9QzUbdm7V/7ycuq2YF7LC1xOPvnQgcvChYMzXAhcAAAAMA6ELAAAAMAsZdm2QvX1Cg3UbWlry9ZtaWmRt7iYui2Y90YMXFpb1dveng1cduxQ744dBC4AAAAYN/7iAgAAAOaAgbotRcuWKf7SS9m6LTt3ynYcOZWV1G3BvJcXuKxZo+S+feprayNwAQAAwIQQsgAAAABziK+oaLBuy8svq2vbtsG6LZWV8obDhe4iUHCWZcmpqZFTU5MfuLS1ye3tHQxc/P5sDZdFi+TU1RG4AAAAYBhCFgAAAGAO8jiOIosXZ+u27N2rnu3bFdu5M79ui2UVuptAwY0pcBmY4ULgAgAAgH6ELAAAAMAcZnk8CtXXK1hXp5KODsXa2wfrthQVUbcFGCIvcDn55PwlxXp71bt9u3q3bydwAQAAQA5/TQEAAADzgGVZcior5VRWqmjZMsV27lT3tm3q3bVLtuPIX1FB3RZgCMu25dTWyqmtzc1w6W1rU19bm9y+vrzAJdjUpEBTU7aGi20XuusAAACYRoQsAAAAwDzjKypS6bHHquiooxR/6SV1b92q3j17JOq2ACMaGriYEQKX+LZtim/bJstxFFy4UIGBGS4ELgAAAHMeIQsAAAAwT3kcR0VLlijS3KzePXvUvX274jt3KrF3r3zUbQFGNCxw2bs3G7i0txO4AAAAzEOELAAAAMA8Z3k8CjU0KFhfr2RHh3paW9XT0pKt21JcLKe8nJoTwAgs25ZTVyenrk7mlFNGDVxsx1Fg4UIFFi2SU1tL4AIAADCHELIAAAAAkJRft6V4xQrF2tvVvW2b4u3tsgMBOZWVsv3+QncTmJHGFLg0NSnY3Cw/gQsAAMCsZxljTKE7UUhdXV0qKSlRNBpVcXFxobsDAAAAzCiZRGKwbssrr8iyLPkrKqjbAhwh47pK7tkzGLgkErltBC4AAKDQEgcOyLZtLXjXu3gvMsRYcgNCFkIWAAAA4LBMJqPeV17J1m3ZtUtuIiFfWRl1W4AxIHABAAAzDSHLyMaSG7BcGAAAAIDDsjwehRYsULChQYlXX1VPa6ti1G0BxsSybTn19XLq62Ve//phgUt861bFt26VHQgMBi41NdzwAAAAmMGYycJMFgAAAGBcUt3dirW1qXvbNiUOHJDHcajbAoyDcV0l9uxRX2ur+nbuzJ/hQuACAACmEDNZRsZyYWNAyAIAAABMTCaRUHzXLnVt3aq+PXuydVsqK+UNhQrdNWDWMa6rxCuvqK+tTb07d8oQuAAAgClEyDIyQpYxIGQBAAAAJoebTqvvlVfUvWOH4jt3KpNIyKmokLe4mLotwDjkBS7t7TLJZG6bHQgo0NycDVyqq7kpAgAAxoWQZWSELGNAyAIAAABMLmNMtm5LS4tira1KdXfLV1wsf1kZdVuAcTKuq8Tu3eprbx8euASDCjQ1KdDYyHJ9mNVsv1+W42S/cqMPAKYFIcvICFnGgJAFAAAAmDqpri7F2tsH67YEAtm6LT5fobsGzFomk1HilVfU29amvp078wIXYK6w/H7ZgYBsxxn5McI2y+stdLcBYNYhZBnZWHID/vUBAAAAMGV8xcUqPf54FS1dmq3bsm2bel9+WZZtU7cFGCfL41FgwQIFFizIC1ySe/dK8/tzlJjNjJGbTMqkUtkfk0llkkllxvAUlseTnQkzSggzUkhj+f0saQkAmBBCFgAAAABTzhMIqGjpUoUXLVLv7t3q3rFDvbt2qW/vXjnl5dRtAcZpaOACzAUmk5GbSIz6MImE3L6+Ye0yRiaTkYnH5cbjR35CyxpcpuwwM2XywhmWvwQA9JuRIctDDz2ke++9V3v27NEJJ5ygBx98UGvWrDnscd///vf13ve+V+985zv105/+dOo7CgAAAGBMbK9X4YULFWpsVGL/fvW0tirWX7vFV1wsf3k5yxQAwDxmeTzyhELyjGGmozFGJpUaDF1GCGHM0J/7t5t0OjuDJpGQEomxzZrxegeXKTvC2TPMmgGAuWnGhSw/+MEPdO211+rhhx/WKaecoi9/+ctau3attmzZourq6lGPa2tr0/XXX68zzjhjGnsLAAAAYDwsy1KgulqB6moVr1ih2M6d6t66VbG2NnmCQeq2AACOmGVZ2Roufr9UVHTEx+XNmhkhmMkLaQa2J5PZWTPptDLptDKx2Fg6Ojx4OYLZM8yaAYCZbcYVvj/llFN08skn6ytf+YokyXVdNTY26uqrr9aNN9444jGZTEZnnnmmPvShD+mZZ55RZ2fnEc9kofA9AAAAMDOke3vV21+3JbF3r2Tbcior5QkGC901AAAk9c+aSSaHBzGjhDQDM2hMOj3uc+ZmzRwUwliHCmZ8PmbNADgiFL4f2awtfJ9MJvXcc8/ppptuyrXZtq03velNevbZZ0c97vbbb1d1dbU+/OEP65lnnjnkORKJhBKJRO7nrq6uiXccAAAAwIR5g0EVLVum8OLF2bot27Yp/vLLcpNJORUV8hYVccMIAFBQlmXlZp+MhUmnDzlT5uCQZiCcGTh2zLNmbFu23z9iCHOo2TPcYAWAsZtRIcurr76qTCajmpqavPaamhq9+OKLIx7zhz/8Qd/61rf0wgsvHNE57rrrLt12220T7SoAAACAKZJXt2XfvsG6Lfv3y1daKn9ZGTeBAACziuX1yuP1yhMOH/ExebNmDrOc2dDtymQk18229fWNrZ8+X34oM9LsmYO2W14vH4IAMK/NqJBlrLq7u/X+979f3/zmN1VZWXlEx9x000269tprcz93dXWpsbFxqroIAAAAYJwsy1KgpkaBmhoVH320Yu3t6t62TbHWVnlCIeq2AADmtLxZM2NY4t5Np7MzYcYQzJhkUpJkUillUillenqOvKO2fchgZlhAEwjI9vv5wASAOWNGhSyVlZXyeDzau3dvXvvevXtVW1s7bP8dO3aora1Nb3/723NtrutKkrxer7Zs2aIlS5bkHeM4jpwxTukEAAAAUFj+khL5X/c6FS1dmq3bsnWr+nbvpm4LAAAHsb1eaayzZlxXbjKZW6bsSGfPyHWzs2Z6e+X29o6pn5bfP2IYc6glzpg1A2AmmlEhi9/v16pVq/TUU0/pwgsvlJQNTZ566ildddVVw/ZfsWKF1q9fn9d2yy23qLu7Ww888AAzVAAAAIA5Jle3ZdGibN2W7dup2wIAwARZti1PICAFAkd8jDEmV2vGHGamTF69mYFZM8mkMsmkMt3dR95R2x51psyoM2iYNQNgis2okEWSrr32Wn3gAx/Q6tWrtWbNGn35y19WLBbTunXrJEmXX365GhoadNdddykQCOi4447LO760tFSShrUDAAAAmDtsn0/hpqZs3Zb9+9XT0qKe1lYlXn1VvpIS6rYAADDFLMvK1nDx+aRI5IiPG5g1k7dc2RHMnsnNmonH5cbjY+vrSKHM4WbPeGfcbVMAM9SMu1pccskl2r9/vz73uc9pz549WrlypX7961+rpqZGkrRz507Z/LEEAAAAQNlP3g6r27J1q2Jtbdm6LRUV1G0BAGAGGZg14xnPrJmDQphhM2gO3p5KZY9PJJRJJJQZSz89nvw6MocJaSyvN/vweCTbZmYtMI9YxhhT6E4UUldXl0pKShSNRlU8hiJiAAAAAGamdDyueH/dlsS+fbI8HjlVVWO6mQMAAGY/47qjhjCHWuJME71dalnZkGZI8DLi14FQZoS2I/rq9TJzFxOWOHBAtm1rwbvexXgaYiy5wYybyQIAAAAAE+ENhVS8fLkiixdn67Zs26b4yy/LpFLyV1bKV1RU6C4CAIBpYNm2PMGgPMHgER9jjJFJpUZetqyvb+TZM8mkTDo9GM70z7wx6fQUvbIhLGvE4OZQX3WofQ/Vxg14YESELAAAAADmpKF1W/r27VPPjh2KtbcrsX8/dVsAAMCILMuS5ffL9vulMXwwwxgjuW42XMlk8r+O1Dba14PaNMrxQ04sk0rllkabUrZ9ZLNrDtGmIz2e92iYRQhZAAAAAMxplm0rWFurYG2tSo49VrG2NnVv26ZYa6u8kYj85eXUbQEAABNiWVY2QPB4pvxceYHOOIKbwx2n0QId15Vx3ekPdMYa6hw8c+dQxxHoYBIQsgAAAACYN/ylpfKvXKmiZctydVt6X36Zui0AAGDWyAt0HGdKz2WMyYYuEwxujmjGTiYzeOLpDnQmMDtnpOXY7NGWZbOsqX89mHaELAAAAADmnby6LS+/rO7t27N1W9JpOVVV8obDhe4iAABAwVmWlZ0J4vVOX6AzmbNzRnkOHRzoJJMyU/rq+g0EOuOclXO44CdvOTYCnWlDyAIAAABg3rJ9PoWbmxVauFB9e/eqZ8cOdbe0KNnRoUBtbXY9dgAAAEy5vEBnihljhi+PNsmzcwba5LqDJx4IdJLJKX+NA7OdDhfSuOm0PMHg1PdnDiNkAQAAADDvWbatYF2dArW1Ci9erOiGDYrv2iU7EFCgupq1ugEAAOYQy7Jy9VqmmnHdbOgyNHjJZOSOUP9mwvV0hgY6A+c8gkDHDoWm8Dcw9xGyAAAAAEA/y7IUqq9XoLpasbY2RTdsUKylRf6KCvnLygrdPQAAAMwylm1nP7Dj8035uUYKdIYFMQe1pbq7ZU9D3+YyQhYAAAAAOIjt9aroqKMUrK9X99at6tq8WbGWFjm1tfLyST8AAADMQOMJdBIHDshm1vaEELIAAAAAwCi8oZDKVq5UaOFCdW3apO4dOwbrtfCJPwAAAGDeI2QBAAAAgMNwystVedppCi9apM7+ei3eUEhOVRX1WgAAAIB5jJAFAAAAAI6AZVkKNTTk6rV0btyYrddSWSl/aWmhuwcAAACgAPjIFQAAAACMge3zqWjpUtW95S0qX7NGJpFQT0uL0vF4obsGAAAAYJoxkwUAAAAAxsEbCqn8xBMVXrhQ0U2b1EO9FgAAAGDeIWQBAAAAgAlwKipUdfrpiixapM6NG9W7c6c8kYicykrqtQAAAABzHCELAAAAAEyQZVkKLVigQE2NYq2t6tywQbHWVvkrKqjXAgAAAMxhfKwKAAAAACaJ7fOpaNky1a1dq/LVq+X212vJ9PYWumsAAAAApgAzWQAAAABgknnDYZWfdNJgvZaWFsmyFKipoV4LAAAAMIcQsgAAAADAFHEqK1V1+ukKNzcrunGj4rt2yUu9FgAAAGDOIGQBAAAAgClk2bbCCxcqWFurnoF6LW1tcioq5CspKXT3AAAAAEwAIQsAAAAATAPb71fx8uUKNTSoa8sWdW3ZouSBAwrU1ckTCBS6ewAAAADGgZAFAAAAAKaRNxJR+apVCjc1qXPjRvW0tMiybQVqa2V7+RMNAAAAmE14Bw8AAAAABeBUVqr6jDMUaW5W58aNiu/cKW9RkZyKCuq1AAAAALMEIQsAAAAAFIhl2wo3NSlQW6vY0HotlZXyFRcXunsAAAAADoOQBQAAAAAKzOM4Kl6xQsGGBnVv2aLoiy9m67XU1lKvBQAAAJjBCFkAAAAAYIbwFRWpfPVqhZqaFB2o1+L1KlBTQ70WAAAAYAbiXToAAAAAzDCBqio5Z545WK+lvV2+khL5KypkWVahuwcAAACgHyELAAAAAMxAlm0r3NysQF2denbsUOfGjYq1tMiprpavqKjQ3QMAAAAgQhYAAAAAmNE8jqOSY45RqLFR0U2b1L1tm5IdHQrU1cnjOIXuHgAAADCvEbIAAAAAwCzgKypS5SmnDC4h1tYmy+eTU11NvRYAAACgQHgnDgAAAACzSKCmRjWVlYotWqTohg3Zei2lpfKXl1OvBQAAAJhmhCwAAAAAMMtYHo8iixYpWF+v7m3bFN20iXotAAAAQAEQsgAAAADALOVxHJUed5zCCxcO1ms5cECB2lrqtQAAAADTgJAFAAAAAGY5X3GxKl//eoWbmxXdsEGx9nbZjqNAdbUsj6fQ3QMAAADmLEIWAAAAAJgjgrW1ClRVKbZzpzrXr1esrY16LQAAAMAUImQBAAAAgDkkV6+lrm6wXktrqwI1NfKGw4XuHgAAADCnELIAAAAAwBzkCQRUevzxCi1cqK6Bei0dHXJqaqjXAgAAAEwSQhYAAAAAmMP8JSWqGKjXsnEj9VoAAACASUTIAgAAAABznGVZCtbVyamqUqy9XdGBei1lZfKXlVGvBQAAABgnQhYAAAAAmCdsr1dFS5Yo1NCgrm3b1EW9FgAAAGBCCFkAAAAAYJ7xBAIqO/54hRsbFd24Ud07dijZ0aFAba1sv7/Q3QMAAABmDUIWAAAAAJin/KWlqjz1VIUXLVJ0wwbFd+2SHQhk67XYdqG7BwAAAMx4hCwAAAAAMI9ZlqVQfb0C1dWKtbUpumGDYi0t8ldUyF9WVujuAQAAADMaIQsAAAAAIFuv5aijFGxoUPfWreravFmxlhY5tbXyhkKF7h4AAAAwIxGyAAAAAAByvMGgyk44QeGFC4fXa/H5Ct09AAAAYEYhZAEAAAAADOMvK1PlaacpvGiROvvrtXhDITlVVdRrATBpjOsq1dWlVDQq47qyJBkp91VDv7csWZbV39j/ff/PuetSf9vQ/Q6179D2vJ8H9h3y86H2zZ0PADDvELIAAAAAAEZkWZZCDQ25ei2dGzcq1tqarddSWlro7gGYpYzrKt3drVQ0KjeTka+kRCVHHy1/eXluu4yRjBn8XpKbyUiuK9P/GPq9cV0pk5EZOObgbf3PM/B8xhjJdeVKuXMNfZj+djNC20B/hvbNGKPRYpaB0Gjo9wRJADB3ELIAAAAAAA7J9vlUtHTpYL2WTZvU09KiAPVaABwh47pK9/RkZ6ykUvIWFyuydGk2yK2tlTcYnJ5+DA1NhgYuGhKauO7wtoP3H2gb2F8aDHJGe47DPK80xiDJGJlM5rBBkjnodRMkESQBmFyELAAAAACAI+INhVS2cqVCjY2KbtqkHuq1ADgEY0wuWHFTKfnCYUUWLVKosVGBmhp5w+Fp71PeTXqPZ9rPPx1mZJDUv02au0GSJcnyemV5vbJ9Ptk+X+57y+tlqU1gDiNkAQAAAACMiVNRoarTT1dk0SJ1btyo3p075YlE5FRWchMJmOeMMcrE40p2dspNJOQNhxVqbFR44UIFamrkKyoqdBfnPIKkCQZJQ4891HMc3JbJKB2LKdXTo0wspkwqJdPXJzedlkmlcs9zcBgz7Cv/jgKzDiELAAAAAGDMLMtSaMECBWpqFGttVeeGDdRrAeaxdDyuVGenMr292WClrk7hpiYFamvlKy4udPcwx8z0IMkYI5NKKZNIyE0m5SYSed+nY7Hcw00mle7pyYUxA7NtLEnyePICGMIYYGYiZAEAAAAAjJvt86lo2TIFGxrUtWWLul58UT2trQrW1sozTTUWABRGpq9PyddeU6a3V55gUE51tSLNzQpUV8tXWkp9C8xblmXJ8vtl+/2H3ddNpYaFMAPfp+NxpXt6smFMIqFMfxjj9ocxUv9SZbadDV58PtkDIUz/9zMxhALmGkIWAAAAAMCEecNhlZ90ksILF2brtbS0SBL1WoA5JpNIKNXZqXQsJo/jyF9ZqciiRQpUV8tfXk6wAozRwAwVbyRyyP3cVEpuMpkNYA4KZNLxuDKxmFIDYUw8nt0/nR6sY2NZg2HMQUuU2T4fYQwwAYQsAAAAAIBJ41RWDtZr2bBBvbt2Ua8FmOXcZFLJzk6le3pk+/1yKipUevzxCtbVZYMV/t8GplwujAmHD7mfm07nQpihgUwujOmfHZPp65Pb16d0d7fcVErGdWUpu9SZddAyZXlfvdxOBg7G/xUAAAAAgEll2bZCjY0K1NSoZ6BeS1ubnIoK+UpKCt09AEfATaWUikaV7uqS5fPJX1amkmOPVbC2Vk5FBZ96B2YoeyAIOZIwpn82zLBAprdXqZ4epeNxub292TCmp0cmlZLJZAafxLIGlyXrD4EIYzAfMdoBAAAAAFPC9vtVvHy5QgP1WrZsUfLAAQXq6uQJBArdPQAHcdNppaJRpbq6ZNm2/OXlKlu9WsG6OjmVldw0BeaQXBgTCh1yP5PJKDMQxhwUyGT6+rJhTCyWDWMSiWwYk05nH1J2doxlDasVM/C95fGwzCBmPf51BAAAAABMKW8kovJVqxRualLnxo3qaWmRZdvZei3ctAUKyk2nlerqUrqrS5LkLytT+YknKlBXp0BVFTWVgHnO8njkDQalYPCQ+xnXzYYvQwKZgXAm09ur9MAyZb29cpNJpWOxvDAme7IhYcwIXwljMFPxbhYAAAAAMC2cykpVn3FGrl5LfOdOeYuKsksPUdMBmDbGdXMzVmSMfMXFKjn+eIXq6+VUVcnjOIXuIoBZxrLtIw5jcrNhBkKYIcuUpeNxZWKx7OyYVEomHs9+zWQkY7KzYyxr5HoxhDEoEEIWAAAAAMC0sWxb4YULFaytVU9Ly2C9lspK+YqLC909YM4yrqt0d7dS0aiM68pbXKySY45RsL5egZoaghUA08KybXkCgcMuG2pcV24qlRfCDHyfSSRyQUwmHlcmmZTp7c2GMem0ZPrnxlhWdjmygXoxQ2rHWB4PH/DApCFkAQAAAABMO9vvV/GKFQo2NKh7aL2W2lrqtQCTxLiu0j09SnZ2Sum0vMXFiixdqvCCBXJqarKfOgeAGciybXkcRx7H0aEWLTTGZAOYgRBm6HJl/TVicmFMKiXT1yc3nZZJpbJhTP+sF8vjyc2GGTYzhjAGh0HIAgAAAAAoGF9RkcpXr1aoqUnRgXotXq8CNTXUawHGwRijdE+PUp2dclMp+YqKVLRkiUKNjQpUV8sbDhe6iwAwaSzLyoUxKioadb9Rw5j+r+lYTKmeHmX6lynLDAljjDHZJciMyYYuoy1VRhgzb/GOFQAAAABQcIGqKjlnnqlIc7M6N25UvL1dvpIS+SsqWFsdOAxjjDLxuJKdnXITCXnDYYWamhReuFCB6mr5DnHjEQDmg7GEMSaVGrFmzEAYM/Bwk0llenqUGTIzxkiyJMnjyQtgCGPmNkIWAAAAAMCMYNm2ws3NCtTVqWfHDkU3blSspUUON4mBEaXjcaU6O5Xp7c0GK/X1Cjc1KVBTQ40jABgHy7Jk+f2y/f7D7jtazRg3mVQ6Hs8tVeYmEsr09MhNp+UOLFMmZQMZ284GL/01Y4Z+b3k8U/xqMVkIWQAAAAAAM4rHcVRyzDEKNTYqunmzurduVbKjQ4G6OopzY97L9PYq2dmpTDwuTyikQHV1NpysqZGvpISZXwAwTQZmqHgjkUPu56ZS2Vkv/bVihgYy6d5eZXp6lBoIY+Lx7P7ptOS62dkxljUYxhy0RJnt8xHGzACELAAAAACAGclXVKTKNWtyS4jFWlpk+/1yqqup14J5JZNIKNXZqXQsJo/jyF9ZqciqVQrU1MhfVkawAgAzWC6MOUxNLDedzoUwQwOZTCKhdDyuTP8yZZm+Prl9fUp3d8tNpWRcV7l/BUYJYyyvl/dOU4jfLAAAAABgRgtUV6umslKx5mZFN2zI1mspLZW/vJyby5izMomEUtGo0j09sh1HTnm5yk44IRuslJezpj8AzDH2QBByJGFM/2yYoYFMJpGQ29enVE+P0vG43N7ebBjT0yOTSslkMoNPYlnZZcl8PrmJhGyWZZ0QQhYAAAAAwIxn2bYiixYpWF+v7u3bFd20SbHWVjlVVdRrwZzhplLZpcC6u2X5fPKXl6vkuOMUrKmRU1HBkjAAgMEwJhQ65H4mk1FmIIw5uHbMQBgTi8nt7ZW3uFjigyvjRsgCAAAAAJg1PI6j0mOPVXhovZYDBxSoraVeC2YlN51WKhpVqqtLlm3LKS9XyYoVCtTWyqmsZHkXAMC4WB6PvMGgFAwecj/TX/uF2cHjx7/UAAAAAIBZx1dcrMpTTlG4qUnRjRsVb2+X5fMpUFPDp/0x47nptFJdXUpHo5JlyV9WpvITT1Swrk5OVZVsn6/QXQQAzBMsPzlxhCwAAAAAgFkrWFurQFWVYjt3qnP9esXa2qjXghnJZDJKdXUpFY1KknwlJSp53esUamhQoKpKtt9f4B4CAIDxIGQBAAAAAMxqlsczWK9l69ZcvZZAdbW8kUihu4d5zLjuYLBijLzFxSo59liFGhrkVFezxB0AAHMAIQsAAAAAYE7wOI5Kjz9eoYUL1bVpk7q3bVPiwAEFamq4mY1pY1xX6Z4epaJRmXRa3qIiFS9fng1Wamqy6+MDAIA5g5AFAAAAADCn+EtKVPH61yvc3Kzoxo2KtbfLdhwFqqup14IpYYzJBiudnXLTafkiEUWWLFFowQIFamrkDYUK3UUAADBFCFkAAAAAAHOOZVkK1tUpUF2tWHu7Ov/2t2y9lrIy+cvKqNeCCTPGKBOPK/naa3ITCfkiEYWbmxVqbFSwpoal6gAAmCcIWQAAAAAAc5bl8SiyeLGC9fXq2rZNXQP1Wmpq5A2HC909zELpeFypzk5lenvljUQUWrBA4YULFaitla+oqNDdAwAA04yQBQAAAAAw53kCAZUdf7zCjY2Kbtqk7u3blezoUKC2VrbfX+juYYbL9PYq2dmpTDwuTyikQHW1ws3NCtTUyFdSwswoAADmMUIWAAAAAMC84S8tVeUb3qBIc7M6N2xQfNcu2YFAtl6LbRe6e5hBMn19SkWjSsdi8jiOnKoqRVavllNdzZJzAAAgh5AFAAAAADCvWJalYH29nP56LdH16xVraZG/okK+0lJuns9jmUQiG6z09Mh2HDkVFSpbuVKB6mr5y8sJ4gAAwDCELAAAAACAecn2elW0ZImC9fXq3rpVXZs3K97aKod6LfOKm0op2dmpdHe3bJ9P/ooKlRx3nIK1tXIqKghWAADAIRGyAAAAAADmNW8wqLITTlB44UJFN25U944dSh44kK3X4vMVunuYAm4qpVQ0qlRXl2yvV/6yMpWsWKFgXZ2cykpZHk+huwgAAGYJQhYAAAAAACT5y8pUedppCi9erM716xXftUveUEhOVRWzGeYAN53OLgXW1SXZtvylpSpftSoXrBCoAQCA8SBkAQAAAACgn2VZCtXXK1BVpVhbmzo3blSstVX+igr5S0sL3T2MkclklOrqUioalWVZ8hYXZ2us1NcrUFkp2+8vdBcBAMAsR8gCAAAAAMBBbJ9PRUuXKtjQkK3XsmmTelpaFKitlTcUKnT3cAjGdXPBilxXvpISlRx3nEL19XKqq+VxnEJ3EQAAzCGELAAAAAAAjMIbCqls5UqF+uu19OzYoWRHB/VaZhjjukr39CjV2Sk3nZavpETFy5crtGCBAjU18gQChe4iAACYowhZAAAAAAA4DKe8XFWnn67IokXq3LhRvbt2yUO9loIyxuQHK0VFihx1VC5YYcYRAACYDoQsAAAAAAAcAcuycjfwY62t6tywgXot08wYo0wspmRnp9xkUr5wWOHmZoUXLlSgulreSKTQXQQAAPMMIQsAAAAAAGNg+3wqWrZMwYYGdW3dqq7Nm9XT2qpgba08wWChuzcnpWMxpaJRZfr65A2HFVqwQOGmJgVqauQrKip09wAAwDxGyAIAAAAAwDh4w2GVn3iiwgP1WlpaJIl6LZMkHY8rFY3K7e2VHQwqWFurcFOTnJoa+UtKCt09AAAASYQsAAAAAABMiFNRMVivZcOGbL2WSEROZSX1WsYo09enZGenMvG4PIGAnOpqRQZmrJSWyrKsQncRAAAgDyELAAAAAAATZNm2Qo2NCtTUqGegXktbm5yKCvmYdXFImURCqc5OpWMx2Y4jp7JSkRNPVKCmRv6yMoIqAAAwoxGyAAAAAAAwSWy/X8XLlyvU0KCuLVvUtWWLEgcOUK/lIG4yqeRAsOLzyV9ertLjj1egtlZORQXBCgAAmDUIWQAAAAAAmGTeSETlq1Yp3NSkzv56LZZtZ+u1eOfnn+JuKqVUNKp0d7csr1f+0lKVHHusgjU12aXVPJ5CdxEAAGDM5uc7OwAAAAAApoFTWanqM87I1WuJ79wpb1HRvJmt4abTSkWjSnV1ybJt+cvKVLZqlYK1tXKqquZt4AQAAOYO3s0AAAAAADCFLNtWeOFCBWtr1dPSkq3X0toqp6pKvuLiQndv0plMRqmuLqWiUUmSv6xM5SeeqEBdnQJVVbJ9vgL3EAAAYPIQsgAAAAAAMA1sv1/FK1Yo2NCg7v56LcmODgXq6uQJBArdvQkxrjsYrBgjX3GxSo47TqGGBjlVVfI4TqG7CAAAMCUIWQAAAAAAmEa+oiKVr16tUFOTogP1WrxeBWpqZtXyWcZ1le7uVioalZvJyFdSopIVKxRcsECB6upZHxwBAAAcidnz7g0AAAAAgDkkUFUl58wzB+u1tLfLV1Iif0WFLMsqdPdGZFxX6Z4epaJRmXRa3qIiRZYuVaihQYGaGnlDoUJ3EQAAYFoRsgAAAAAAUCCWbSvc1KRAf72W6NB6LUVFhe6eJMkYkwtW3GRSvkhE4eZmhRcuzAYr4XChuwgAAFAwhCwAAAAAABSYx3FUcvTRCi1YoOjmzereujVbr6W2tiDLbhljlInHlezslJtIyBsOK9TYmAtWZkoABAAAUGiELAAAAAAAzBC+oiJVrlmjSHOzOjduVKylRbbfL6e6elrqtaTjcaU6O5Xp7c0GK3V1Cjc1yampkb+kZMrPDwAAMNsQsgAAAAAAMMMEqqtVU1mpWHOzogP1WkpL5S8vn/R6LZm+PiVfe02Z3l55gkE51dWKNDcrUF0tX2npjK0PAwAAMBMQsgAAAAAAMANZtq3IokUK1tere/t2RTdtmrR6LZlEQqnOTqVjMXkcR/7KSkUWLVKgunpKghwAAIC5ipAFAAAAAIAZzOM4Kj32WIUbGwfrtRw4kK3X4jhH/DxuMqlkZ6fSPT3ZJcgqKlR6/PEK1tVlgxXbnsJXAQAAMDcRsgAAAAAAMAv4iotVecopCjc1Kbpxo+Lt7bJ8PgVqamR5PCMe46ZSSkWjSnd3y/J65S8rU8mxxypYWyunomLU4wAAAHBkCFkAAAAAAJhFgrW1ClRVKbZzpzo3bFCsrS2vXoubTisVjSrV1SXLtuUvL1fZsmUK1tXJqayU7eVWAAAAwGThnRUAAAAAALOM5fEM1mvZtk3RjRsVa2nJzUzxl5Wp/MQTFairU6CqSrbPV+AeAwAAzE2ELAAAAAAAzFIex1Hpcccp1Nio7i1bZCSF6uvlVFWNqV4LAAAAxoeQBQAAAACAWc5fUqKKNWsK3Q0AAIB5xy50BwAAAAAAAAAAAGYjQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHEgZAEAAAAAAAAAABgHQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHGYkSHLQw89pObmZgUCAZ1yyin685//POq+P/nJT7R69WqVlpYqHA5r5cqVevTRR6extwAAAAAAAAAAYD6acSHLD37wA1177bW69dZb9fzzz+uEE07Q2rVrtW/fvhH3Ly8v1z/8wz/o2Wef1d/+9jetW7dO69at029+85tp7jkAAAAAAAAAAJhPLGOMKXQnhjrllFN08skn6ytf+YokyXVdNTY26uqrr9aNN954RM9x0kkn6fzzz9cdd9xx2H27urpUUlKiaDSq4uLiCfUdAAAAAAAAAADMbmPJDWbUTJZkMqnnnntOb3rTm3Jttm3rTW96k5599tnDHm+M0VNPPaUtW7bozDPPHHGfRCKhrq6uvAcAAAAAAAAAAMBYzaiQ5dVXX1Umk1FNTU1ee01Njfbs2TPqcdFoVJFIRH6/X+eff74efPBBvfnNbx5x37vuukslJSW5R2Nj46S+BgAAAAAAAAAAMD/MqJBlvIqKivTCCy/ov//7v3XnnXfq2muv1e9///sR973pppsUjUZzj127dk1vZwEAAAAAAAAAwJzgLXQHhqqsrJTH49HevXvz2vfu3ava2tpRj7NtW0cddZQkaeXKldq8ebPuuusunX322cP2dRxHjuNMar8BAAAAAAAAAMD8M6Nmsvj9fq1atUpPPfVUrs11XT311FN6wxvecMTP47quEonEVHQRAAAAAAAAAABA0gybySJJ1157rT7wgQ9o9erVWrNmjb785S8rFotp3bp1kqTLL79cDQ0NuuuuuyRla6ysXr1aS5YsUSKR0JNPPqlHH31UX/va1wr5MgAAAAAAAAAAwBw340KWSy65RPv379fnPvc57dmzRytXrtSvf/1r1dTUSJJ27twp2x6cgBOLxXTllVfqpZdeUjAY1IoVK/Td735Xl1xySaFeAgAAAAAAAAAAmAcsY4wpdCcKqaurSyUlJYpGoyouLi50dwAAAAAAAAAAQAGNJTeYUTVZAAAAAAAAAAAAZgtCFgAAAAAAAAAAgHGYcTVZptvAamldXV0F7gkAAAAAAAAAACi0gbzgSKqtzPuQpbu7W5LU2NhY4J4AAAAAAAAAAICZoru7WyUlJYfcZ94XvnddV7t371ZRUZEsyyp0d2aUrq4uNTY2ateuXYct7gPMNIxfzGaMX8xmjF/MZoxfzGaMX8x2jGHMZoxfzGaM35EZY9Td3a36+nrZ9qGrrsz7mSy2bWvBggWF7saMVlxczP9gmLUYv5jNGL+YzRi/mM0Yv5jNGL+Y7RjDmM0Yv5jNGL/DHW4GywAK3wMAAAAAAAAAAIwDIQsAAAAAAAAAAMA4ELJgVI7j6NZbb5XjOIXuCjBmjF/MZoxfzGaMX8xmjF/MZoxfzHaMYcxmjF/MZozfiZv3he8BAAAAAAAAAADGg5ksAAAAAAAAAAAA40DIAgAAAAAAAAAAMA6ELAAAAAAAAAAAAONAyAIAAAAAAAAAADAOhCxzWCKR0A033KD6+noFg0Gdcsop+o//+I8jOvbll1/WxRdfrNLSUhUXF+ud73ynWlpaRtz3W9/6lo4++mgFAgEtXbpUDz744GS+DMxj0zGGLcsa8XH33XdP9svBPDPe8btlyxZ9+tOf1qmnnqpAICDLstTW1jbq/j//+c910kknKRAIaOHChbr11luVTqcn8ZVgPpqO8dvc3Dzi9ffjH//4JL8azDfjHb8/+clPdMkll2jx4sUKhUJavny5rrvuOnV2do64P9dfTIXpGL9cfzFVxjt+n3jiCa1du1b19fVyHEcLFizQRRddpA0bNoy4P9dfTIXpGL9cfzGVJnIPbag3v/nNsixLV1111YjbuQ88Mm+hO4Cp88EPflA/+tGP9KlPfUpLly7VI488ore97W16+umndfrpp496XE9Pj974xjcqGo3q5ptvls/n0/3336+zzjpLL7zwgioqKnL7fv3rX9fHP/5x/d3f/Z2uvfZaPfPMM7rmmmsUj8d1ww03TMfLxBw2HWNYyv4Dcvnll+e1nXjiiVPymjB/jHf8Pvvss/qXf/kXHXPMMTr66KP1wgsvjLrvr371K1144YU6++yz9eCDD2r9+vX6p3/6J+3bt09f+9rXpuBVYb6YjvErSStXrtR1112X17Zs2bLJeAmYx8Y7fj/2sY+pvr5el112mRYuXKj169frK1/5ip588kk9//zzCgaDuX25/mKqTMf4lbj+YmqMd/yuX79eZWVl+uQnP6nKykrt2bNH//qv/6o1a9bo2Wef1QknnJDbl+svpsp0jF+J6y+mznjH8FA/+clP9Oyzz466nfvAh2AwJ/3pT38yksy9996ba+vt7TVLliwxb3jDGw557D333GMkmT//+c+5ts2bNxuPx2NuuummXFs8HjcVFRXm/PPPzzv+fe97nwmHw+bAgQOT9GowH03HGDbGGEnmE5/4xOR2HvPeRMZvR0eH6erqMsYYc++99xpJprW1dcR9jznmGHPCCSeYVCqVa/uHf/gHY1mW2bx588RfCOal6Rq/TU1Nw95DABM1kfH79NNPD2v7t3/7NyPJfPOb38xr5/qLqTBd45frL6bCRMbvSPbs2WO8Xq+54oor8tq5/mIqTNf45fqLqTIZY7i3t9c0Nzeb22+/fcR7ZdwHPjSWC5ujfvSjH8nj8ehjH/tYri0QCOjDH/6wnn32We3ateuQx5588sk6+eSTc20rVqzQueeeq8cffzzX9vTTT6ujo0NXXnll3vGf+MQnFIvF9Mtf/nISXxHmm+kYw0P19vaqr69v8l4A5rWJjN/y8nIVFRUd9hybNm3Spk2b9LGPfUxe7+DE1CuvvFLGGP3oRz+a2IvAvDUd43eoZDKpWCw27v4CQ01k/J599tnD2t71rndJkjZv3pxr4/qLqTId43corr+YTBMZvyOprq5WKBTKW/KO6y+mynSM36G4/mKyTcYY/uIXvyjXdXX99dePuJ37wIdGyDJH/c///I+WLVum4uLivPY1a9ZI0qjLd7iuq7/97W9avXr1sG1r1qzRjh071N3dnTuHpGH7rlq1SrZt57YD4zEdY3jAI488onA4rGAwqGOOOUbf+973JudFYN4a7/gd6zmk4dfg+vp6LViwgGswxm06xu+A//zP/1QoFFIkElFzc7MeeOCBSXtuzE+TPX737NkjSaqsrMw7h8T1F5NvOsbvAK6/mGyTMX47Ozu1f/9+rV+/Xh/5yEfU1dWlc889N+8cEtdfTL7pGL8DuP5iKkx0DO/cuVN333237rnnnmFLjA49h8R94NFQk2WOeuWVV1RXVzesfaBt9+7dIx534MABJRKJwx67fPlyvfLKK/J4PKqurs7bz+/3q6KiYtRzAEdiOsawJJ166qm6+OKLtWjRIu3evVsPPfSQ3ve+9ykajerv//7vJ+vlYJ4Z7/gd6zmGPufB5+EajPGajvErSa973et0+umna/ny5ero6NAjjzyiT33qU9q9e7fuueeeSTkH5p/JHr/33HOPPB6PLrroorxzDH3Og8/D9RfjNR3jV+L6i6kxGeP39a9/vbZs2SJJikQiuuWWW/ThD3847xxDn/Pg83D9xXhNx/iVuP5i6kx0DF933XU68cQTdemllx7yHNwHHh0hyxzV29srx3GGtQcCgdz20Y6TdETH9vb2yu/3j/g8gUBg1HMAR2I6xrAk/fGPf8zb50Mf+pBWrVqlm2++WR/84AdHTfCBQxnv+B3rOaTRx3pXV9eEz4H5aTrGryT9/Oc/z/t53bp1Ou+883Tffffp6quv1oIFCyblPJhfJnP8fu9739O3vvUtffazn9XSpUvzziFx/cXkm47xK3H9xdSYjPH77W9/W11dXWppadG3v/1t9fb2KpPJyLbtvOfg+ovJNh3jV+L6i6kzkTH89NNP68c//rH+9Kc/HfYc3AceHcuFzVHBYFCJRGJY+0DNidFuHA+0H8mxwWBQyWRyxOfp6+vj5jQmZDrG8Ej8fr+uuuoqdXZ26rnnnhtzvwFp/ON3rOeQRh/rXIMxXtMxfkdiWZY+/elPK51O6/e///2UnANz32SN32eeeUYf/vCHtXbtWt15553DziFx/cXkm47xOxKuv5gMkzF+3/CGN2jt2rX6+7//e/3mN7/Rd7/7Xd10001555C4/mLyTcf4HQnXX0yW8Y7hdDqta665Ru9///vz6hqPdg7uA4+OkGWOqqury02lHWqgrb6+fsTjysvL5TjOER1bV1enTCajffv25e2XTCbV0dEx6jmAIzEdY3g0jY2NkrJLjwHjMd7xO9ZzDH3Og8/DNRjjNR3jdzRcfzFRkzF+//rXv+od73iHjjvuOP3oRz/KK648cI6hz3nwebj+YrymY/yOhusvJmqy3z+UlZXpnHPO0WOPPZZ3jqHPefB5uP5ivKZj/I6G6y8mw3jH8He+8x1t2bJFV1xxhdra2nIPSeru7lZbW5vi8XjuHNwHHh0hyxy1cuVKbd26ddh02YGpXytXrhzxONu2dfzxx+svf/nLsG1/+tOftHjxYhUVFeU9x8H7/uUvf5HruqOeAzgS0zGGR9PS0iJJqqqqGkfPgfGP37GeQxp+Dd69e7deeuklrsEYt+kYv6Ph+ouJmuj43bFjh9761requrpaTz75pCKRyIjnkLj+YvJNx/gdDddfTNRUvH/o7e1VNBrNO4fE9ReTbzrG72i4/mIyjHcM79y5U6lUSqeddpoWLVqUe0jZAGbRokX67W9/m/cc3AcehcGc9F//9V9Gkrn33ntzbX19feaoo44yp5xySq6tvb3dbN68Oe/Yu+++20gy//3f/51re/HFF43H4zE33HBDri0ej5vy8nJzwQUX5B1/2WWXmVAoZDo6Oib7ZWEemY4xvG/fvmHn7erqMkuWLDGVlZUmkUhM5kvCPDKR8TvUvffeaySZ1tbWEbevWLHCnHDCCSadTufabrnlFmNZltm0adPEXwjmpekYvx0dHXnj1hhjksmkOe2004zf7zevvPLKxF8I5qWJjN9XXnnFLF682NTX14963R3A9RdTYTrGL9dfTJWJjN+9e/cOe77W1lZTVFRkzjjjjLx2rr+YCtMxfrn+YiqNdwxv3rzZPPHEE8Mekszb3vY288QTT5jdu3cbY7gPfDiELHPYe97zHuP1es1nPvMZ8/Wvf92ceuqpxuv1mv/7f/9vbp+zzjrLHJy1Ddxkrq6uNl/84hfN/fffbxobG019ff2wm9IPPfSQkWQuuugi881vftNcfvnlRpK58847p+U1Ym6b6jF86623mhNOOMHccsst5hvf+Ia57bbbTFNTk7Esy3z3u9+dtteJuWm847ezs9Pccccd5o477jBvfetbjSRz3XXXmTvuuMM8+OCDefv+4he/MJZlmXPOOcd84xvfMNdcc42xbdt89KMfnZbXiLlrqsfvt7/9bbNkyRJzww03mIcffth84QtfMMcdd5yRZL7whS9M2+vE3DTe8XvCCScYSeazn/2sefTRR/Mev/3tb/P25fqLqTLV45frL6bSeMdvdXW1ee9732vuuece841vfMN85jOfMeXl5SYQCJg//vGPefty/cVUmerxy/UXU228Y3gkkswnPvGJYe3cBx4dIcsc1tvba66//npTW1trHMcxJ598svn1r3+dt89o/3Pt2rXLXHTRRaa4uNhEIhFzwQUXmG3bto14nm984xtm+fLlxu/3myVLlpj777/fuK47Ja8J88tUj+Hf/va35s1vfrOpra01Pp/PlJaWmre85S3mqaeemtLXhflhvOO3tbXVSBrx0dTUNOw8TzzxhFm5cqVxHMcsWLDA3HLLLSaZTE7lS8M8MNXj9y9/+Yt5+9vfbhoaGozf7zeRSMScfvrp5vHHH5+Ol4c5brzjd7SxK8mcddZZw87D9RdTYarHL9dfTKXxjt9bb73VrF692pSVlRmv12vq6+vNpZdeav72t7+NeB6uv5gKUz1+uf5iqk3kHtrBRgtZjOE+8GgsY4yZwGpjAAAAAAAAAAAA8xKF7wEAAAAAAAAAAMaBkAUAAAAAAAAAAGAcCFkAAAAAAAAAAADGgZAFAAAAAAAAAABgHAhZAAAAAAAAAAAAxoGQBQAAAAAAAAAAYBwIWQAAAAAAAAAAAMaBkAUAAAAAAAAAAGAcCFkAAAAAAAAAAADGgZAFAAAAADCp2traZFmWHnnkkUJ3BQAAAJhShCwAAADALPbII4/IsqzcIxAIaNmyZbrqqqu0d+/eQndvwjZt2qTPf/7zamtrK3RXDuuDH/xg3n8Lx3G0bNkyfe5zn1NfX1+huwcAAABgCngL3QEAAAAAE3f77bdr0aJF6uvr0x/+8Ad97Wtf05NPPqkNGzYoFAoVunvjtmnTJt122206++yz1dzcXOjuHJbjOPrf//t/S5Ki0ah+9rOf6Y477tCOHTv02GOPFbh3AAAAACYbIQsAAAAwB5x33nlavXq1JOkjH/mIKioqdN999+lnP/uZ3vve907ouePx+KwOaqaT1+vVZZddlvv5yiuv1Kmnnqp///d/13333aeampoC9g4AAADAZGO5MAAAAGAOOueccyRJra2tubbvfve7WrVqlYLBoMrLy3XppZdq165decedffbZOu644/Tcc8/pzDPPVCgU0s033yxJ6uvr0+c//3ktW7ZMgUBAdXV1eve7360dO3bkjnddV1/+8pd17LHHKhAIqKamRldccYVee+21vPM0Nzfrggsu0B/+8AetWbNGgUBAixcv1ne+853cPo888oje8573SJLe+MY35pbh+v3vfy9J+tnPfqbzzz9f9fX1chxHS5Ys0R133KFMJjPs9/HQQw9p8eLFCgaDWrNmjZ555hmdffbZOvvss/P2SyQSuvXWW3XUUUfJcRw1Njbqs5/9rBKJxBj/C2RZlqXTTz9dxhi1tLTkbfvVr36lM844Q+FwWEVFRTr//PO1cePGvH0++MEPKhKJaOfOnbrgggsUiUTU0NCghx56SJK0fv16nXPOOQqHw2pqatL3vve9YX1oaWnRe97zHpWXlysUCun1r3+9fvnLX+a27927V16vV7fddtuwY7ds2SLLsvSVr3xFknTgwAFdf/31Ov744xWJRFRcXKzzzjtPf/3rX8f1+wEAAABmO0IWAAAAYA4aCD4qKiokSXfeeacuv/xyLV26VPfdd58+9alP6amnntKZZ56pzs7OvGM7Ojp03nnnaeXKlfryl7+sN77xjcpkMrrgggt02223adWqVfrSl76kT37yk4pGo9qwYUPu2CuuuEKf+cxndNppp+mBBx7QunXr9Nhjj2nt2rVKpVJ559m+fbsuuugivfnNb9aXvvQllZWV6YMf/GAuaDjzzDN1zTXXSJJuvvlmPfroo3r00Ud19NFHS8qGMJFIRNdee60eeOABrVq1Sp/73Od044035p3na1/7mq666iotWLBAX/ziF3XGGWfowgsv1EsvvZS3n+u6esc73qF//ud/1tvf/nY9+OCDuvDCC3X//ffrkksuGfd/i4F6MmVlZbm2Rx99VOeff74ikYjuuece/eM//qM2bdqk008/fVj9mUwmo/POO0+NjY364he/qObmZl111VV65JFH9Na3vlWrV6/WPffco6KiIl1++eV5wdrevXt16qmn6je/+Y2uvPJK3Xnnnerr69M73vEOPfHEE5KkmpoanXXWWXr88ceH9f0HP/iBPB5PLuxqaWnRT3/6U11wwQW677779JnPfEbr16/XWWedpd27d4/7dwQAAADMWgYAAADArPXtb3/bSDK/+93vzP79+82uXbvM97//fVNRUWGCwaB56aWXTFtbm/F4PObOO+/MO3b9+vXG6/XmtZ911llGknn44Yfz9v3Xf/1XI8ncd999w/rguq4xxphnnnnGSDKPPfZY3vZf//rXw9qbmpqMJPP//t//y7Xt27fPOI5jrrvuulzbD3/4QyPJPP3008POG4/Hh7VdccUVJhQKmb6+PmOMMYlEwlRUVJiTTz7ZpFKp3H6PPPKIkWTOOuusXNujjz5qbNs2zzzzTN5zPvzww0aS+eMf/zjsfEN94AMfMOFw2Ozfv9/s37/fbN++3fzzP/+zsSzLHHfccbnfU3d3tyktLTUf/ehH847fs2ePKSkpyWv/wAc+YCSZL3zhC7m21157zQSDQWNZlvn+97+fa3/xxReNJHPrrbfm2j71qU8ZSXmvqbu72yxatMg0NzebTCZjjDHm61//upFk1q9fn9enY445xpxzzjm5n/v6+nLHDGhtbTWO45jbb789r02S+fa3v33I3xkAAAAw2zGTBQAAAJgD3vSmN6mqqkqNjY269NJLFYlE9MQTT6ihoUE/+clP5LquLr74Yr366qu5R21trZYuXaqnn34677kcx9G6devy2n784x+rsrJSV1999bBzW5YlSfrhD3+okpISvfnNb847z6pVqxSJRIad55hjjtEZZ5yR+7mqqkrLly8ftqzWaILBYO777u5uvfrqqzrjjDMUj8f14osvSpL+8pe/qKOjQx/96Efl9Q6WpHzf+96XN7NkoP9HH320VqxYkdf/gaXXDu7/SGKxmKqqqlRVVaWjjjpK119/vU477TT97Gc/y/2e/uM//kOdnZ1673vfm3cej8ejU045ZcTzfOQjH8l9X1paquXLlyscDuviiy/OtS9fvlylpaV5v78nn3xSa9as0emnn55ri0Qi+tjHPqa2tjZt2rRJkvTud79bXq9XP/jBD3L7bdiwQZs2bcqbxeM4jmw7+2dkJpNRR0eHIpGIli9frueff/6wvx8AAABgrqHwPQAAADAHPPTQQ1q2bJm8Xq9qamq0fPny3M3wbdu2yRijpUuXjnisz+fL+7mhoUF+vz+vbceOHVq+fHleUHGwbdu2KRqNqrq6esTt+/bty/t54cKFw/YpKysbVr9lNBs3btQtt9yi//zP/1RXV1fetmg0Kklqb2+XJB111FF5271er5qbm4f1f/Pmzaqqqjqi/o8kEAjoF7/4hSTppZde0he/+EXt27cvLxDatm2bpMG6OQcrLi4e9pwH96mkpEQLFizIBTdD24f+/trb23XKKacMO8fAkmvt7e067rjjVFlZqXPPPVePP/647rjjDknZpcK8Xq/e/e53545zXVcPPPCAvvrVr6q1tTWv/s3A0nQAAADAfELIAgAAAMwBa9as0erVq0fc5rquLMvSr371K3k8nmHbI5FI3s9DA4GxcF1X1dXVeuyxx0bcfnBQMFJfJMkYc9hzdXZ26qyzzlJxcbFuv/12LVmyRIFAQM8//7xuuOEGua47rv4ff/zxuu+++0bc3tjYeNjn8Hg8etOb3pT7ee3atVqxYoWuuOIK/fznP8+dR8rWZamtrR32HAcHWaP9niby+xvJpZdeqnXr1umFF17QypUr9fjjj+vcc89VZWVlbp8vfOEL+sd//Ed96EMf0h133KHy8nLZtq1PfepT4/qdAwAAALMdIQsAAAAwxy1ZskTGGC1atEjLli0b93P86U9/UiqVGjbzZeg+v/vd73TaaaeNO6g52MEzNQb8/ve/V0dHh37yk5/ozDPPzLUPLfouSU1NTZKk7du3641vfGOuPZ1Oq62tTa973evy+v/Xv/5V55577qjnHau6ujp9+tOf1m233ab/+q//0utf/3otWbJEklRdXZ0XyEyFpqYmbdmyZVj7wHJqA78fSbrwwgt1xRVX5JYM27p1q2666aa84370ox/pjW98o771rW/ltXd2duaFMQAAAMB8QU0WAAAAYI5797vfLY/Ho9tuu23YLAdjjDo6Og77HH/3d3+nV199VV/5yleGbRt4zosvvliZTCa33NRQ6XRanZ2dY+57OByWpGHHDsziGPp6ksmkvvrVr+btt3r1alVUVOib3/ym0ul0rv2xxx4btizZxRdfrJdfflnf/OY3h/Wjt7dXsVhszP2XpKuvvlqhUEh33323pOzsluLiYn3hC19QKpUatv/+/fvHdZ6RvO1tb9Of//xnPfvss7m2WCymb3zjG2pubtYxxxyTay8tLdXatWv1+OOP6/vf/778fr8uvPDCvOfzeDzDxtAPf/hDvfzyy5PWZwAAAGA2YSYLAAAAMMctWbJE//RP/6SbbrpJbW1tuvDCC1VUVKTW1lY98cQT+tjHPqbrr7/+kM9x+eWX6zvf+Y6uvfZa/fnPf9YZZ5yhWCym3/3ud7ryyiv1zne+U2eddZauuOIK3XXXXXrhhRf0lre8RT6fT9u2bdMPf/hDPfDAA7rooovG1PeVK1fK4/HonnvuUTQaleM4Ouecc3TqqaeqrKxMH/jAB3TNNdfIsiw9+uijwwIAv9+vz3/+87r66qt1zjnn6OKLL1ZbW5seeeQRLVmyJG/Gyvvf/349/vjj+vjHP66nn35ap512mjKZjF588UU9/vjj+s1vfjPqkmyHUlFRoXXr1umrX/2qNm/erKOPPlpf+9rX9P73v18nnXSSLr30UlVVVWnnzp365S9/qdNOO23EMGs8brzxRv37v/+7zjvvPF1zzTUqLy/Xv/3bv6m1tVU//vGPc3V7BlxyySW67LLL9NWvflVr165VaWlp3vYLLrhAt99+u9atW6dTTz1V69ev12OPPabFixdPSn8BAACA2YaQBQAAAJgHbrzxRi1btkz333+/brvtNknZGiNvectb9I53vOOwx3s8Hj355JO688479b3vfU8//vGPVVFRodNPP13HH398br+HH35Yq1at0te//nXdfPPNuQLzl112mU477bQx97u2tlYPP/yw7rrrLn34wx9WJpPR008/rbPPPlv/5//8H1133XW65ZZbVFZWpssuu0znnnuu1q5dm/ccV111lYwx+tKXvqTrr79eJ5xwgn7+85/rmmuuUSAQyO1n27Z++tOf6v7779d3vvMdPfHEEwqFQlq8eLE++clPjnupNUm69tpr9fDDD+uee+7RI488ov/1v/6X6uvrdffdd+vee+9VIpFQQ0ODzjjjDK1bt27c5zlYTU2N/r//7//TDTfcoAcffFB9fX163etep1/84hc6//zzh+3/jne8Q8FgUN3d3brkkkuGbb/55psVi8X0ve99Tz/4wQ900kkn6Ze//KVuvPHGSeszAAAAMJtYZrxVEQEAAABglnJdV1VVVXr3u9894vJgAAAAAHAkqMkCAAAAYE7r6+sbtozYd77zHR04cEBnn312YToFAAAAYE5gJgsAAACAOe33v/+9Pv3pT+s973mPKioq9Pzzz+tb3/qWjj76aD333HPy+/2F7iIAAACAWYqaLAAAAADmtObmZjU2Nupf/uVfdODAAZWXl+vyyy/X3XffTcACAAAAYEKYyQIAAAAAAAAAADAO1GQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHEgZAEAAAAAAAAAABgHQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcfj/AUwPPXJrutJKAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"fig, ax = plt.subplots()\n",
"\n",
@@ -570,28 +575,7 @@
" title=\"Accuracy as a function of percentage of removed best data points\",\n",
" ax=ax,\n",
" )\n",
- "\n",
- "_ = plt.legend()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "1f95fb06",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAALGCAYAAADGEfdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wU9d0H8M/M9uudenBw9CIdC0iTosaCYgmiglijREmMTzQ+ETAaNGpii48FBWIvUcFKkaMpHVSQIuWOcr3X7fN7/pidvd3bvbLHHdc+79eLF7A7O/Pb3dnZu/nM9/uThBACREREREREREREREREFBK5pQdARERERERERERERETUFjFkISIiIiIiIiIiIiIiagSGLERERERERERERERERI3AkIWIiIiIiIiIiIiIiKgRGLIQERERERERERERERE1AkMWIiIiIiIiIiIiIiKiRmDIQkRERERERERERERE1AgMWYiIiIiIiIiIiIiIiBqBIQsREREREREREREREVEjMGQhIiIiopA4nU4sWrQIffv2hclkgiRJ+Pzzz1t6WI0yadIkSJLU0sM4a0ePHsU111yDzp07Q5IkxMTEtPSQqI16//33MWLECERGRkKSJCxcuLClh9ShpKSkICUlpcHLS5KESZMmNdt4WoOO8BxDtXjxYkiShI0bN7b0UIiIiAgMWYiIiDqsJ598EpIkQZIkHDlypKWHQ23Ic889h8cffxxdu3bFn/70JyxatAgDBgxo6WEFNW/ePEiShIyMjJYeSrNxu92YOXMmvv76a1xxxRVYtGgRHn744ZYeVpvU0U/mbtu2DXPmzEF5eTl+97vfYdGiRbj00ktbeljURrTmE/8ZGRmQJAnz5s1r6aG0Khs3boQkSVi8eHFLD4WIiKhN07f0AIiIiOjcE0Jg2bJlkCQJQgi88cYbePbZZ1t6WNRGfPnll4iIiMC6detgNBpbejhn5T//+Q+qqqpaehhnJT09HQcPHsSdd96J119/vaWHQ23YV199BSEE/vOf/+Ciiy5q6eEQUS0WLFiA3/72t+jRo0dLD4WIiIjAShYiIqIOae3atcjIyMDcuXPRuXNnrFy5Eg6Ho6WHRW1EVlYW4uPj23zAAgA9evRotVU4DZWVlQUA6Nq1awuPhNo67ktEbUNCQgIGDBiAsLCwlh4KERERgSELERFRh/TGG28AAO68807MmTMHBQUF+Oyzz2pd/syZM7j//vvRt29fWCwWxMXFYezYsfjb3/7W6GXrassTrMWTb6uPX3/9FTfeeCOSkpIgy7K3NcmePXvwwAMPYNiwYYiLi4PZbEbfvn3x4IMPori4uNbn9+GHH+KSSy7xPiYlJQWzZ8/G7t27AQCvvfYaJEnCkiVLgj4+JycHBoMBQ4cOrXUbvlasWIFZs2ahd+/esFgsiIqKwrhx4/DOO+8EXf7EiRO466670KdPH+9rOnToUNxzzz0oLCxs0DY///xz3HzzzejXrx/Cw8MRHh6OUaNG4cUXX4SiKA1ah/a+pKen4+TJk952c9r8AfW1HQk218CKFSsgSRJWrFiBtLQ0TJo0CZGRkYiKisJvfvMbHDp0KOi6qqqq8PTTT2P06NGIjIxEREQEBg4ciPvvvx+5ubkA1H1s5cqVAIBevXoFjBeofU4WRVHw6quvYsyYMYiIiEB4eDjGjBmD//u//wv6emn7c0FBAe666y506dIFJpMJgwcPxvLly+t5ZQPt2bMHs2bNQlJSEkwmE3r27Il7770X2dnZAdudOHEiAGDJkiXe51hf6xffz9Phw4cxc+ZMxMXFITw8HOPHj8fatWtrfez777+PyZMnIyYmBmazGQMHDsQTTzwBu91e6+uSk5ODO+64A926dYNOp8OKFSu8y+zcuRM33ngjunXrBpPJhC5dumD69On46KOPAta3Y8cOXHfddejcuTOMRiOSk5Nx9913e8MBX9p763K58Pe//907h1BycjL+/Oc/+wXL2n4IAJs2bfK+jjVfy1A/uwCwa9cuTJ8+3btfT506Fdu2bauztdLhw4cxb948JCcnw2g0olOnTrjppptCbu3Y0P1Ye/7avur7eamv1Z7v83jvvfdw/vnnIyIiwu9zVlVVhaVLl2L48OEIDw9HREQELrzwQrz//vsB6/M9juzevRuXXnopoqOjERsbi1mzZuH06dMA1OPib3/7WyQmJsJisWDy5Mn46aefgo4xOzsb9913H1JSUmA0GpGYmIhrr70We/bs8VvuqaeegiRJeOGFF4KuJysrC3q9HqNHj/a73eVy4ZVXXsEFF1yAqKgohIWFYcSIEXj55ZeDHi+EEHj55ZcxePBgmM1mdOvWDQsWLEBpaWmdr3VdsrKycMsttyApKQkWiwWjRo3Ce++9V+vya9asweWXX46EhASYTCakpqbioYceQklJScCyP//8M2bPno2UlBSYTCYkJiZi5MiRWLhwIZxOJwD1+K59R06ePNnvM9QQDocDf/vb35CamgqTyYRevXrhf//3f4MeV7Tn+/jjj2PcuHHe40HXrl1x00034eDBg37LLl68GL169QIArFy50m9s2rHI4XDg5ZdfxuWXX46ePXvCZDIhLi4OU6dOxTfffNOg5+C7Pe0zsXLlSowYMQIWiwVJSUmYP38+cnJygj7u6NGjuPXWW9GtWzfv87n11ltx9OjROrfhK5Tvonnz5mHy5MkA/L8/fNfrcDjw4osvYuTIkYiNjUVYWBhSUlJw9dVXY/369SG9LkRERO0Z24URERF1MLm5uVi9ejX69euHiy66CFFRUXjuuefw+uuv48YbbwxYfvfu3ZgxYwaKioowYcIEXHvttaiqqsLBgwexePFi/PWvf23Uso11/PhxnH/++ejXrx/mzJkDq9WKqKgoAGp49Nlnn2HixImYOnUqFEXBnj178M9//hPffPMNduzYgcjISO+6hBC47bbbsHLlSiQkJODaa69FYmIizpw5g7S0NPTv3x+jR4/GnDlz8D//8z9488038b//+7/Q6XR+Y3rrrbfgcrlw9913N+g5/O53v8PgwYMxYcIEdOnSBYWFhfj6669xyy234MiRI36BVHZ2NsaMGYOysjJcfvnlmDVrFmw2G9LT0/H2229jwYIFiI+Pr3ebDz/8MGRZxvnnn49u3bqhtLQUGzZswAMPPIBdu3bh7bffrncdM2fOREpKCp5//nkA8E6I3RSTrH/55ZdYtWoVLrvsMtxzzz04ePAgvv76a+zatQsHDx5EQkKCd9ni4mLvCdX+/ftj/vz5MBqNOH78OJYvX45rr70WnTp1wqJFi/D555/jp59+wgMPPOAdZ0PGe8stt+C9995DcnIy7rjjDkiShM8++wz33nsvtm7dinfffTfgMSUlJRg3bhyMRiOuu+462O12fPzxx5g/fz5kWcbcuXMb/FrMmjULQghcd9116NmzJ/bs2YP/+7//w6pVq7B161bvCcNFixYhIyMDK1euxMSJE73BZUPnFUlPT8eFF16IoUOH4u6770Z2djY+/PBDXHbZZXjvvfcCjgnz58/H8uXL0b17d8yaNQsxMTHYvn07/vrXv+K7777DunXroNf7/4pRVFSECy64ABEREbj22mshyzI6deoEQP3M/u53v4NOp8NVV12Fvn37Ii8vD7t378Yrr7yCG264wbuet956C3fddRdMJhOuuuoqJCcn4+jRo1i2bBm++OILbN++PWjrnJtuuglbtmzBZZddhqioKHz99df4xz/+gby8PO9Jx+HDh2PRokVYsmQJevbs6Tdvg+9rGcpnFwA2b96M6dOnw+1249prr0Vqair279+PyZMnY8qUKUHfk2+//RbXXnstnE4nrrzySvTp0wdnzpzBp59+iq+++gppaWkYOXJk/W8uGr4fa8+/sZ8XQJ2rad26dbjyyisxefJkb2BQUlKCKVOmYN++fRg5ciTmz58PRVGwZs0a3HTTTfjll1/wxBNPBKxv165dePrppzFx4kTceeed2L9/Pz799FMcOHAAq1atwvjx4zFgwADceuutOHnyJD799FNMmzYNJ06cQEREhHc96enpGD9+PLKysjBlyhTMnj0bp0+fxscff4yvvvoK//3vf3HFFVd4X69HH30U//nPf/DAAw8EjOmdd96B2+322z+092nNmjXo378/brrpJpjNZqSlpeH3v/89duzYEXB8XbhwIV588UV06dIFd911FwwGA1atWoUdO3bA4XCEXCVYXFyMiy66CDExMbjttttQUlKCjz76CHPmzEFmZiYeeughv+WXLFmCxYsXIy4uDldccQWSkpLw888/49lnn8XXX3+Nbdu2eb9Xf/75Z5x//vmQJAlXXXUVevXqhbKyMhw7dgyvvPIKnnjiCRgMBixcuBCff/45Nm3ahLlz5wYE6nURQuCGG27AqlWrkJqaigULFsDhcOCtt97C/v37gz5m8+bNeOqppzB58mTMmjULEREROHr0KD755BOsXr0a33//PYYNGwZA/QyXlJTghRdewLBhwzBz5kzveoYPHw5APU498MADuOiiizBt2jQkJiYiOzsbX3zxBS6//HK88cYbuOOOOxr+pgD417/+hbVr1+LGG2/EpZdeiq1bt2L58uXYuHEjduzYgcTERO+yu3btwtSpU1FeXo6rrroKgwYNwuHDh/HOO+9g1apVWL9+PcaMGdOg7Tb0u0h7HWp+fwDwvn/z5s3D+++/jyFDhuDWW2+FxWJBVlYWtm7dim+//RZTp04N6TUhIiJqtwQRERF1KEuXLhUAxN///nfvbaNGjRKSJImjR4/6LWu320VKSooAIN59992AdZ0+fbpRywohBAAxceLEoGOcO3euACDS09O9t6WnpwsAAoB45JFHgj4uIyNDuFyugNuXLVsmAIinnnrK7/bXXntNABBjxowRJSUlfve5XC6RlZXl/f99990nAIgvvvjCbzlFUUSvXr1EWFhYwDpqc+zYsYDb7Ha7mDJlitDr9eLMmTPe21988UUBQDz//PMBj6moqBBVVVWN3qbb7Ra33nqrACC2b9/eoPUIIUTPnj1Fz549A25PS0sTAMSiRYsa/Ljly5cLAEKn04n169f73ffwww8LAOLpp5/2u3327NkCgLjnnnuE2+32u6+8vNzvfQi2L/maOHGiqPkj8XvvvScAiBEjRojy8nLv7RUVFWLUqFFB93Ft37z99tv99sFffvlF6HQ6MXDgwKDbr6m8vFzExcUJWZbF5s2b/e576qmnBAAxbdo0v9vre92D8f08/elPf/K7b9euXUKv14uYmBhRWlrqvV17r6655pqA/W7RokVB91NtG7fccotwOp1+9/3yyy9Cr9eL2NhYceDAgYAx+h4zjhw5IgwGg0hNTfX7fAghxPr164Usy2LmzJl+t2vv7ciRI0VhYaH39oqKCpGamipkWRbZ2dkB463tuCREaJ9dt9st+vTpIwCIr7/+2u8x//d//+d9bdLS0ry3FxUViZiYGBEfHy9++eUXv8fs379fhIeHixEjRtQ6Pl+N2Y/r+7wEo733YWFhYu/evQH3a+us+Tm2Wq1ixowZQpIksW/fPu/t2v4MQLzzzjt+j5k/f74AIGJjY8UTTzzhd9/jjz8edB+cPn26ABCw/Pfffy90Op2Ii4vze3205ffv3x/wXAYNGiSMRqMoKCgIeP4LFizw++y7XC7veD///HO/7QIQqampfvul1WoVF1xwgQAQ9PhaG+21uv766/2OhydOnBCxsbHCYDCI48ePe2/fsGGDACAuvPBCUVxc7Lcu7TO+cOFC721//OMfA56DpqioyG+b2mvhu083xLvvvisAiAsuuEBYrVbv7YWFhaJ3795BP5e5ubmirKwsYF0//vijCA8PF5deeqnf7doxb+7cuUHHYLPZAn5OEUKIkpISMXjwYBEbG9vg71vtdTAYDAGfiYULFwoAYv78+d7bFEURAwYMCLrPf/DBBwKA6N+/f4Ne61C/i+r6/igpKRGSJIlRo0YF/dnK93NARETU0TFkISIi6kAURfGeXPQ9GfjSSy8JAOJ//ud//Jb/5JNPBABx1VVX1bvuUJYVovEhS6dOnYTNZmvQNjSKooioqCgxefJkv9uHDBkiAAQ9MVjTgQMHBABxxRVX+N3+7bffCgDitttuC2lMwfz3v/8VAMTKlSu9t2khy2uvvXbW6w9mz549AoBYsmRJgx/THCHLnDlzApY/ceKEACBmzZrlvS03N1fIsiy6dOkiKioq6h1rY0KWqVOnCgBizZo1AcuvX79eAAjYl7STzL6hhGbChAkCgN+J3Nq88847AoCYPXt2wH1Op9MbZJ48edJ7+9mELNHR0UFPVGqv24oVK7y3DR8+XOj1+oATs0KoJ5Tj4+PFmDFj/G4HIIxGo8jNzQ14zIIFCwQA8c9//rPe8WonJr/88sug98+cOVPodDq/56K9t+vWrQtY/rHHHgsamtYXstQm2Gd3y5YtQfcVIdQApl+/fgEnSZ9//nkBQLz88stBt6O9DjUDmGAasx+fTcjie2JeU1BQIHQ6nRg9enTQx/74448CgHjooYe8t2n78/jx4wOW37RpkwAgUlJSAk76ZmRkCABi3rx53ttOnz4tAIgePXoIh8MRsL6bb7454H3TTvgHCx+1kFHjdrtFXFyc6Ny5c0CIKIQQxcXFQpIkcf3113tvu+OOOwQA8dZbbwUsrz33UEMWnU4nTpw4EXCf9t4sXrzYe9vMmTMFgKDBphDq5zwxMdH7fy1kCbYf1ba9UEMWbV/dsGFDwH3ad0Qon8srr7xSmEwmv/e8vpClLs8995wAIDZt2tSg5bXXwTdI0ZSUlIjo6GhhNpu9P8ts3brVG3wFM378+IDt1xWyhPJdVNf3R2lpqQAgLrroIqEoSkOeOhERUYfFdmFEREQdyIYNG3D8+HHMmDED3bp1895+00034cEHH8SKFSu8rT8AYPv27QCAyy67rN51h7Ls2Rg2bBhMJlPQ+5xOJ1577TV88MEHOHjwIEpLS/364WdmZnr/XVlZiQMHDqBTp04YMWJEvdvVWgR98803OH36NJKTkwEAr7/+OgDgnnvuafBzOHXqFJ5++ml89913OHXqFKxWq9/9vuO86qqr8Je//AX33Xcf1qxZgxkzZmDcuHEYNGhQg3vdA0BhYSGeeeYZfP311zhx4gQqKytr3WZLqDnHAQDva+w7n86uXbugKAomTJiA8PDwZhnL3r17Icty0JZbEydOhE6nw759+wLu69u3r7fFji/f5+Hbxqi2bQMI2kpKr9djwoQJyMjIwL59+4K2xgrVyJEj/VroaSZNmoSVK1di3759mDt3LqqqqvDTTz8hISHB2y6uJpPJFHQOnZSUFCQlJQXcHsoxY9u2bQDU+VJ27doVcH9eXh7cbjd+/fVXjBo1yu++hu5bDRHKZ1fbR8aPHx+wHlmWcdFFF+HXX3/1u117nj/99FPQeXW05Q8dOoRBgwbVOdbG7seNNXbs2IDbdu3aBbfbXes8Qdp8HsH2m2DvW9euXQGoLZ5qtm3UvtPOnDnjvU17fhdffLH3e83XlClT8M4772Dfvn249dZbAQDXXHMNoqOj8e677+Kpp57ybkeb38m3Vdivv/6KoqIi9O3bN2jLMwCwWCx+z0/7jGtzKfkaP358wPNqiB49enhbCPqaNGkSlixZ4vc+b9u2DQaDAR9//DE+/vjjgMc4HA7k5+ejsLAQ8fHxuPHGG/HCCy9g5syZuO666zB16lSMGzcOqampIY+zNtq+GuyzUlfrw6+++gqvvvoqdu/ejYKCArhcLr/7CwoK0KVLlwaP45dffsEzzzyDzZs3Izs7Gzabze/+UL8ng73H0dHRGD58ODZt2oRDhw5h+PDhdR73tdu3bt2Kffv2YcKECfVutym+iwAgKioKV155Jb744gsMHz4cs2bNwsUXX4zzzz8fYWFh9T6eiIioI2HIQkRE1IFogYDvSSIAiIuLw5VXXon//ve/WLVqFa677joA8E6A6xvI1CaUZc9G586da73vxhtvxGeffYbevXvj6quvRufOnb2BzPPPP+83gW5jxnvvvfdi8+bNWLZsGZYsWYKcnBysXr0aw4cPD3qCMZgTJ05g7NixKC4uxsUXX4zp06cjOjoaOp3OO7eG7zh79uyJnTt3YvHixfj222/x6aefAlBPlvzpT3/C/fffX+82S0pKMGbMGKSnp2Ps2LG49dZbERcXB71e7+1TX9vkwudKsHkftLk93G6397ZzsZ+VlpYiLi4u6LwIer0eCQkJyMvLC7ivtrkrgj2PurYNoNYTg9rtwSanbgxtbpSatM+ZNp7i4mIIIZCfn++d3LqhavvMhvJeFhYWAgCeeeaZOperqKgIuK2h+1Z9Qv3saq9dba9xsNu15/nGG2/UOZZgz7Omxu7HjRXsfdaez65du4KGY5pgzyc6OjrgNu19q+s+LbgBGvd5slgsuOGGG/DGG29g7dq1uOyyy+BwOPD+++8jMTHRLxTUnt/Ro0fr/Fz4Pr+69gvtfQlVQz/H2phdLle9n+OKigrEx8dj7Nix2LJlC5588kl88skn3vll+vfvj0WLFmH27Nkhj7cmbV8NFoTVdvx44YUXsHDhQsTGxmLatGno0aMHwsLCIEmSd26hUL7Xtm/fjilTpsDlcuGSSy7BVVddhaioKMiyjB9//BGrVq0K+Xuyoe9LUx/3m+K7SPPhhx/i6aefxnvvvYdFixYBAMxmM6677jo8++yztT5HIiKijoYhCxERUQeRn5+Pzz//HAAwe/bsWk+MvP76696QRftFvSFXb4ayLABIkhRw1ammrhMJtVVv7N69G5999hmmTp2Kb775xm/ybUVR8I9//OOsxgvAO6H6m2++icceeyzkCe8B4J///CcKCwuxfPnygLDr/fff914t7WvgwIH48MMP4XK58NNPP2H9+vV46aWX8MADDyA8PBy33357ndtctmwZ0tPTsWjRooCrybdt24YXXnihweOviyzLAFDn+9rQSbRr05j3LVTR0dEoKiqC0+kMOOnncrlQUFAQ9Crhpto2AOTk5AS9Pzs722+5s5Wbmxv0dm372na0v0eMGOG96rqhavvM+r6XAwYMqHMd2vZLS0ub7bWvT6ifXW2ctb3GwW7XnudPP/2E884776zGe67342Dvs/Z8/vCHP+Cf//xnk22roRr7eZo7dy7eeOMNrFy5Epdddhm++uorFBYW4oEHHvB7LbXHXXPNNd4AvKFjys3NRe/evf3u096X7t27N2hdmoZ+jrV/K4qCoqKiBq//wgsvxJdffgm73Y49e/bg22+/xUsvvYSbbroJiYmJZz35eV37arD3zuVyYfHixejcuTP27t0bEE5oFWGheOKJJ2C1WpGWlhZQPbN06VKsWrUq5HWGenw9V8f9UFgsFixevBiLFy/G6dOnsXnzZqxYsQLvvPMOMjIysGXLlnM+JiIiotZIbukBEBER0bmxcuVKOBwOjBo1CrfffnvQP4mJiVi/fj3S09MBABdccAEA4Jtvvql3/aEsCwCxsbE4ffp0wO1utxs//vhjA59VtWPHjgFQ22v5BiwAsHPnzoC2PuHh4RgyZAhyc3Mb3DLHYDDgjjvuQGZmJr744gssW7YMERERmDNnTsjjnDVrVsB9mzZtqvOxer0eo0aNwp///Ge8//77AOANzpprm6GIjY0FgKDv67Fjx/yupm6ssWPHQpZlbN68OaDlWTBa651QrtwdMWIEFEXB5s2bA+7bvHkz3G43Ro4c2fBBh0BrXbdx48aA+1wul/eEVlNtf+/evSgvLw+4Xdu+Np6IiAgMHjwYv/zyS0gnZ+vSmONLc5/Qk2W51n0l1M+R9tpt3bo14D5FUfDDDz8E3N6Uz7Ml92ON9nltqROxvu9BsPA3LS0NQODnady4cejbty9WrVqF0tJSb4A2d+5cv+UGDBiAmJgYbN++3a+Cpi7atoLtM1u3bg3pWKU5deoUMjIyAm6v+TkG1H2suLgYv/zyS8jbMZlMuOiii/D444/jxRdfBAC/8KExx1tAfU0URQn6WQl2LCwoKEBJSQkuuuiigICloqIiaBBc39iOHTuGuLi4oO3JGvs9GexxpaWl+PHHH2E2mzFw4EAAdR/3gdr306YQynuWnJyMOXPmYM2aNejTpw+2bt3qreYiIiLq6BiyEBERdRBa+5lXXnkFy5YtC/rn7rvvhhACy5YtAwBceeWVSElJwerVq70n9X359r4PZVlAPfl26tQprF271u/2J554AidPngz5+aWkpAAIPEmRl5eH++67L+hjtFZbd999d0AAoCiK9+pRX3fddRd0Oh0WLFiA9PR03HTTTUHntAh1nGvWrPG+7r727NkTNJzQrpBtSF/02ra5b98+LF26tP5BN9CAAQMQFRWFVatW+bUhslqtDWpr1hCJiYn47W9/i+zsbPzpT3/ym3MHUE+w+b5e8fHxANSTkA01f/58AMAjjzyCqqoq7+1VVVV4+OGHAaDe6qHGmjlzJuLi4vD+++975yzRPP/880hPT8fUqVObZD4WQD3h9/jjj/vdtnv3brz77ruIjo7GNddc4739j3/8IxwOB+bPnx+02qy4uDikKpff/e530Ov1+Nvf/oaDBw8G3O97zFiwYAEMBgP+8Ic/BMxjAqjzSDTFifz4+PigISEQ+mdXm7ciLS0tIEh6/fXXgz6P2267DTExMViyZAl27twZcL+iKLWeiK2pJfdjTVJSEubMmYPdu3fjb3/7W9ATucePH/cG+02te/fumDZtGjIyMgLmEtqxYwfee+89xMbG+u3nmrlz58Jms+GVV17B119/jfPOOy9g/i69Xo/f//73yM7Oxv333x8Q5gNqFYLv/q1VQT355JN+gaXNZsMjjzzSqOfpdrvx5z//2e94mJ6ejhdffBF6vR4333yz9/Y//OEPAIA777wTWVlZAeuqrKz0O/b88MMPQZ9XsO+gxhxvAXW/B4BHH33Ubx6UoqKioHPdJCUlISwsDHv27PFrxeZ0OvHAAw+goKAg4DGxsbGQJKnWsaWkpKCoqAg///yz3+1vvvkm1qxZE9Lz0bz99tsBF3EsXrwYpaWlmD17tred6bhx49C/f39s3boVn3zyid/yn3zyCbZs2YJ+/foFnbPmbNX1nuXn52P//v0Bt1dWVqKiogJ6vT5oO0IiIqKOiO3CiIiIOoCNGzfi119/xdChQ+ucO+T222/Hk08+ieXLl2PJkiUwGo34+OOPMX36dNx000147bXXcMEFF8Bms+HQoUP47rvvvFcHh7IsAPzpT3/CmjVrcPXVV+PGG29EXFwcfvjhB6Snp2PSpEkNPpGoGTNmDMaNG4dPP/0UF110EcaPH4/c3Fx888036N+/v3fCZF933HEHtmzZgrfffht9+/bF1VdfjcTERGRlZWHDhg2YP39+QHutHj164De/+Q1Wr14NACG1CgPUeV2WL1+O66+/Htdddx26du2KAwcO4Ntvv8UNN9yADz/80G/5t99+G6+99hrGjx+P1NRUxMbG4vjx4/jiiy9gMpmwcOHCerd566234plnnsHChQuRlpaGvn374ujRo/jyyy9x7bXXBmyzsQwGAx544AH87W9/w4gRI3DNNdfA5XJh3bp16Nq1a9D3oDFefvllHDhwAK+++io2btyIGTNmwGg0Ij09HWvWrMHq1au9VyNfcskleOaZZ3DnnXdi1qxZiIyMRExMDBYsWFDr+m+66SasWrUKH330EQYPHoyZM2d6+/ynp6fjxhtvDKl6KRQRERF46623cP3112PixIm4/vrr0aNHD+zZswdr165F586d8dprrzXZ9iZMmIBly5Zhx44dGDduHLKzs/Hhhx9CURS89tprfu2k5s+fjz179uCVV15BamoqZsyYgR49eqCoqAjp6enYvHkzbrvtNrz66qsN2vagQYPwyiuv4J577sGIESNw9dVXo2/fvigsLMSuXbsQFRXlvYJ7wIABeOuttzB//nwMHjwYl156Kfr16wen04lTp05hy5YtSExMxOHDh8/q9bjkkkvwwQcf4Morr8TIkSNhMBgwYcIETJgwIeTPrizLWLZsGS699FJcddVVmDVrFlJTU/Hzzz9j3bp1uOyyy/DNN9942+wB6gnPTz75BNdccw0uuOACXHLJJRg8eDAkScLp06exbds2FBYWBkzIHUxL7se+Xn75ZRw9ehSPPfYY3n77bYwfPx6dOnVCVlYWDh06hF27duH9998POnF7U3j11Vcxbtw4PPTQQ1i7di1Gjx6N06dP4+OPP4Ysy1i+fHnQoPyWW27BY489hkWLFsHpdAZUsWj++te/4qeffsKrr76KL774AlOmTEG3bt2Ql5eHo0eP4vvvv8eTTz6JQYMGAVBPqP/+97/HSy+9hCFDhuC6666DwWDAqlWrEBsbG9JE7ZrzzjsPO3bswKhRozB9+nSUlJTgo48+QklJCf7xj3/4TVJ/ySWX4KmnnsIjjzyCvn374vLLL0evXr1QUVGBkydPYtOmTRg/fjy+/fZbAMA//vEPbNiwARdffDF69eqFiIgI/PLLL/jmm28QGxuLu+66y7vuyZMnQ5ZlPPLIIzhw4IC3uvF///d/6xz/7Nmz8eGHH2L16tUYMmQIrr76ajidTnzyyScYM2YMjh8/7re8LMu4//778dRTT2Ho0KG4+uqr4XA4kJaWhqKiIkyePNl77NBERETg/PPPx5YtWzBnzhz069cPOp0OV111Fc477zwsXLgQa9aswfjx43HDDTcgOjoau3fvxtatW3HdddcFhB8Ncdlll2HcuHG44YYb0KVLF2zduhVbt25FSkoKnnrqKe9ykiRh5cqVmDZtGm688UZcffXVGDBgAI4cOYLPP/8ckZGR+M9//uN3rGgq/fv3R7du3fDBBx/AYDCgZ8+ekCQJt9xyC4qLizFixAgMHToU5513HpKTk1FWVoYvv/wSOTk5uP/++0O6yISIiKhdE0RERNTu3XTTTQKAeOGFF+pddtq0aQKA+PTTT723nTx5Uvzud78TKSkpwmAwiLi4ODF27Fjx5JNPBjw+lGVXrVolRo0aJUwmk4iLixM33nijyMjIEHPnzhUARHp6unfZ9PR0AUDMnTu31rEXFhaK3/3ud6Jnz57CZDKJ3r17i0ceeURUVlaKnj17ip49ewZ93DvvvCMmTJggoqKihMlkEikpKeKmm24Se/bsCbr8559/LgCI0aNH1zqWunz//fdi8uTJIiYmRkRERIhx48aJzz77TKSlpQkAYtGiRd5lt2/fLu655x5x3nnnidjYWGE2m0VqaqqYN2+e2L9/f4O3+csvv4grr7xSJCYmirCwMDFy5EjxxhtvNOh1ramu11JRFLF06VLRu3dvYTAYRHJysnjooYdqfQ+WL18uAIjly5cHXR8AMXHixIDbKyoqxBNPPCGGDh0qLBaLiIiIEAMHDhQPPPCAyM3N9Vv2ueeeEwMGDBBGo1EA8BvDxIkTRbAfid1ut/j3v/8tRo0aJSwWi7BYLGLkyJHi5ZdfFm63u8HjFEIE3Z/rs3PnTjFz5kyRkJDgfR3vuecekZmZGbBssP2mPr7v+8GDB8VVV10lYmJihMViERdddJH49ttva33sF198IX7zm9+IxMREYTAYRKdOncSYMWPEo48+Kg4dOuS3bF2vi+aHH34Q1157rXd9Xbp0ETNmzBAff/xxwLI///yzmDt3rujRo4cwGo0iNjZWDB48WNx1113iu+++81u2tvdWiNr3u9zcXDF79myRlJQkZFkOeF1D+exqtm/fLqZOnSoiIiJERESEuOSSS8QPP/wg7rvvPgFA7Nu3L+Ax6enp4r777hN9+vQRJpNJREZGiv79+4ubb75ZfPbZZ3W+nr5C3Y8bs68uWrRIABBpaWm1LmO328VLL70kLrzwQhEVFSWMRqNITk4WU6ZMEf/6179EQUGBd9m6Xsv6jle17W9nzpwR99xzj+jRo4cwGAwiPj5eXH311WLnzp11PrdLLrlEABB6vV7k5OTUupyiKOI///mPmDJlioiNjRUGg0F07dpVjBs3Tjz55JPi1KlTAcu/9NJL3uNSly5dxL333itKSkrqPL7W9ZwzMzPFnDlzRGJiojCZTGLEiBHi3XffrfVxW7ZsEddff73o0qWLMBgMIiEhQQwbNkz84Q9/ELt27fIut2bNGjFv3jwxcOBAERUVJcLCwkS/fv3E73//e5GRkRGw3rffflsMGzZMmM1mAaDWz2BNdrtdLFmyRPTq1UsYjUbRs2dP8Ze//EXYbLag76vT6RTPPfecGDhwoDCbzaJTp07i5ptvrvVnCCGEOHr0qLjiiitEXFyckCQp4BjwxRdfiPPPP19ERESI6OhoMW3aNLFp06Z6v6dq8v1MLF++3Pt6JCQkiHnz5omsrKygjzt8+LC4+eabRefOnYVerxedO3cWc+bMEYcPH65zG74a8120c+dOMWXKFBEVFeV9XdLS0kRxcbFYsmSJmDx5sujataswGo2ic+fOYuLEieK9994TiqI06PUgIiLqCCQhhGjGDIeIiIio3Vm8eDGWLFmCZcuWNXu7HaLmkJGRgV69emHu3LlYsWJFSw+nQxo3bhx27NiB0tJShIeHt/RwiKiJaD8jpKWlBZ3jhYiIiNofzslCREREFILy8nK8+uqriIuLw+zZs1t6OETUilVVVQWdv2bFihX44YcfMH36dAYsRERERERtHOdkISIiImqAr776Cnv37sUXX3yB3NxcPPvssw2adJ6IOq5Tp05hxIgRmDZtGvr06QOXy4V9+/Zh69atiImJwXPPPdfSQyQiIiIiorPEkIWIiIioAT7++GOsXLkSnTp1wiOPPII//OEPLT0kImrlOnXqhDlz5mDTpk1IS0uD3W5H586dcdttt+HRRx/1m5CciIiIiIjaJs7JQkRERERERERERERE1Aick4WIiIiIiIiIiIiIiKgRGLIQERERERERERERERE1Qoefk0VRFGRlZSEyMhKSJLX0cIiIiIiIiIiIiIiIqAUJIVBeXo6uXbtCluuuVenwIUtWVhaSk5NbehhERERERERERERERNSKnD59Gt27d69zmQ4fskRGRgJQX6yoqKgWHg0REREREREREREREbWksrIyJCcne/ODunT4kEVrERYVFcWQhYiIiIiIiIiIiIiIAKBBU4xw4nsiIiIiIiIiIiIiIqJGYMhCRERERERERERERETUCAxZiIiIiIiIiIiIiIiIGoEhCxERERERERERERERUSN0+InviYiIiIiIiIiIiKjtcLvdcDqdLT0MaqMMBgN0Ol2TrY8hCxERERERERERERG1ekII5OTkoKSkpKWHQm1cTEwMOnfuDEmSznpdDFmIiIiIiIiIiIiIqNXTApakpCSEhYU1yQly6liEEKiqqkJeXh4AoEuXLme9ToYsRERERERERERERNSqud1ub8ASHx/f0sOhNsxisQAA8vLykJSUdNatwzjxPRERERERERERERG1atocLGFhYS08EmoPtP2oKeb2YchCRERERERERERERG0CW4RRU2jK/YghCxERERERERERERERUSMwZCEiIiIiIiIiIiIiImoEhixERERERERERERERORn3rx5SElJaelhtHoMWYiIiIiIiIiIiIiIWtCKFSsgSZL3j16vR7du3TBv3jxkZma29PCoDvqWHgAREREREREREREREQGPP/44evXqBZvNhu3bt2PFihXYunUrDhw4ALPZ3NLDoyAYshARERERERERERERtQKXXXYZRo8eDQC44447kJCQgKeffhqrV6/GDTfc0MKjo2DYLoyIiIiIiIiIiIiIqBW6+OKLAQDHjx8HADgcDjz22GMYNWoUoqOjER4ejosvvhhpaWl+j8vIyIAkSXj22Wfx+uuvIzU1FSaTCWPGjMGuXbsCtvP5559jyJAhMJvNGDJkCD777LOg46msrMSDDz6I5ORkmEwm9O/fH88++yyEEH7LSZKEBQsW4OOPP8agQYNgsVhw4YUXYv/+/QCA1157DX369IHZbMakSZOQkZFxti9Vi2ElCxERERERERERERFRK6SFD7GxsQCAsrIyLFu2DLNnz8add96J8vJyvPnmm5gxYwZ27tyJ4cOH+z3+vffeQ3l5Oe6++25IkoR//OMfuPbaa3HixAkYDAYAwNq1azFr1iwMGjQIS5cuRWFhIW677TZ0797db11CCFx11VVIS0vD7bffjuHDh2PNmjV46KGHkJmZiX/9619+y2/ZsgWrV6/GfffdBwBYunQprrjiCvzP//wPXnnlFdx7770oLi7GP/7xD8yfPx8bNmxohlew+TFkISIiIiIiIiIiIqI2RwjA6mrpUfiz6AFJavzjS0tLUVBQAJvNhh07dmDJkiUwmUy44oorAKhhS0ZGBoxGo/cxd955JwYMGICXXnoJb775pt/6Tp06haNHj3pDmv79++Pqq6/GmjVrvOv885//jE6dOmHr1q2Ijo4GAEycOBHTp09Hz549vetavXo1NmzYgCeeeAKPPvooAOC+++7D9ddfjxdeeAELFixAamqqd/kjR47g8OHDSElJ8Y797rvvxhNPPIFff/0VkZGRAAC3242lS5ciIyPDu2xbwpCFiIiIiIiIiIiIiNocqwsY+EpLj8LfoXuBMEPjHz916lS//6ekpOCdd97xVpXodDrodDoAgKIoKCkpgaIoGD16NPbu3RuwvhtvvNEbsADV7cdOnDgBAMjOzsaPP/6Ihx9+2BuwAMC0adMwaNAgVFZWem/7+uuvodPpcP/99/tt48EHH8Qnn3yCb775BgsWLPDefskll/iFJueffz4AYNasWd6Axff2EydOtMmQhXOyEBERERERERERERG1Av/+97+xbt06fPLJJ7j88stRUFAAk8nkt8zKlStx3nnnwWw2Iz4+HomJifjqq69QWloasL4ePXr4/V8LXIqLiwEAJ0+eBAD07ds34LH9+/f3+//JkyfRtWtXv4AEAAYOHOi3rtq2rYU4ycnJQW/XxtTWsJKFiIiIiIiIiIiIiNoci16tHGlNLGd5xn3s2LEYPXo0AGDmzJkYP348brrpJhw5cgQRERF45513MG/ePMycORMPPfQQkpKSoNPpsHTpUhw/fjxgfVrVS001J6pvDrVtuyXH1BwYshARERERERERERFRmyNJZ9eaq7XTwpPJkyfj5ZdfxsMPP4xPPvkEvXv3xqeffgrJZ/KXRYsWNWob2pwrR48eDbjvyJEjAcuuX78e5eXlftUshw8f9ltXR8N2YURERERERERERERErdCkSZMwduxYPP/887DZbN4qEN+qjx07dmDbtm2NWn+XLl0wfPhwrFy50q/d2Lp163Dw4EG/ZS+//HK43W68/PLLfrf/61//giRJuOyyyxo1hraOlSxEREREREREREREjaAIgSoXoAggwgDIPpUFRE3loYcewvXXX48VK1bgiiuuwKeffoprrrkGv/nNb5Ceno5XX30VgwYNQkVFRaPWv3TpUvzmN7/B+PHjMX/+fBQVFeGll17C4MGD/dZ55ZVXYvLkyXj00UeRkZGBYcOGYe3atVi1ahUWLlyI1NTUpnrKbQorWYiIiIiIiIiIiIgayO4WKLYLnK5QcLBYweFiBUdKFPxaoiDfKuBU2ua8EtR6XXvttUhNTcWzzz6LW2+9FX//+9/x008/4f7778eaNWvwzjvveOdxaYxLL70UH3/8MdxuNx555BF8+umnWL58ecA6ZVnG6tWrsXDhQnz55ZdYuHAhDh48iGeeeQb//Oc/z/ZptlmSaKuzyTSRsrIyREdHo7S0FFFRUS09HCIiIiIiIiIiImpFtGqVSidQ5lBQ6QIcbkAAMOnUPwBQ5QJcijrxebxJQqxJQpiBlS1NxWazIT09Hb169YLZbG7p4VAbV9/+FEpuwHZhRERERERERERERD7sbjVYqXAKlNgF7G7ALQC9rIYqYXr4TToOAFFGdZ4Mqxs4UymQaxWIMQFxJhlRRrYSI2qvGLIQERERERERERFRh+ZbrVLqqVZxutX7jDog3ADo5fpDEkmSEKZXQxi7W6DABhTaFEQYgASzjGgjYNQxbCFqTxiyEBERERERERERUYdTX7VKeJBqlVCYdBJMOsCtCFS6gONlCsI8rcRiTFLQahgiansYshAREREREREREVG75xYC1iaoVgmVTpaCtxIzAnFmthIjausYshAREREREREREVG7ZHMLVDnVapVSh4DNDShNWK0SCt9WYg63QKEdKLAriGQrMaI2jSELERERERERERERtQtuz9wqVT7VKg43IEGtVok0qJUlLc2ok2D0bSVWqsBiUFuJxbKVGFGbwpCFiIiIiIiIiIiI2iQhBOwKWk21SqhqthLL9GklFm+WEWkEdK107ESkYshCREREREREREREbYZbqC3Aqlytu1olFDVbiRXZgUKbgggDkGBRW4mZ2EqMqFViyEJEREREREREREStlhACdrcaqpQ7BcraWLVKqHxbiVW5gPQyBWa92kosxiS1q+dK1B4wZCEiIiIiIiIiIqJWRQsYKj3VKlVOwKEAkqSGKm2xWiVUOllCpKeVmE1rJVYlEG1SW4lFsZUYUavAkIWIiIiIiIiIiIhaVIOqVQwds4JDkiRY9IDF00qs2A4U2xSEs5UYUavAkIWIiIiIiIiojRNCQBGALHXME5BE1Db5VquUOBRYnYBTAdCBqlVC5W0l5pmX5kSZArMOiDdLiGUrMaIWwZCFiIiIiIiIqBUQQsAt1Ku2FQHvv2v+rQgBl1BPRLoUAZei3ieghizhegnhBgkmnXqS0iTzhBsRtQ5atUqlC6hwCpQ61P9r1SrmDlytEiqd5N9KLKtSIK9KIMqoVrdEMaAiOmcYshARERERERE1Ed+gJDAc8Q9KnArgEmpIogUlCtT7hWc54fm/BPXfGknyVK1A/VuWABnqegpsAnlWAQmAQQaMOiBCL8FikGD2BC9GBi9EdI64PNUqVS6gxK7A6lLnVpEl9fjEapWz49tKzKkIlDqAYrunlZhZRoyJrcTaghUrVuC2227Drl27MHr06JYejtfBgwfx0UcfYd68eUhJSWnw43788Uc8++yz2LRpE/Ly8hAeHo6RI0dizpw5uPXWW6HT6Zpv0C2AIQsRERERERGRDy0oCR6OwOc+NShxa3/XCEq0sKS+oESu8W+dXP3vs2n/JTzjcihAnk1AsQpIkhq8mGQg3CAhTK9WvJh16u0MXojobPlVqzgESp2sVjlXDLKEaJOnlZgLSC9XYK5iKzFqvIMHD2LJkiWYNGlSg0OWZcuW4Z577kGnTp1wyy23oG/fvigvL8d3332H22+/HdnZ2fjLX/7SvAM/xxiyEBERERERUbujeOYoqauaxC3U+QBcIrCiRAtGagYlGu0UlSR5AhL4ByV6ufr2lponRZLUvv1Gn4tFtWDIrgAVVgEhBGSp+sRnhEGCWVdd8cLghYgaQqtWqfS0AAuoVjGq7a3o3NBJEiINgNAHthKLN8uINrJ6iJrH9u3bcc899+DCCy/E119/jcjISO99CxcuxO7du3HgwIGz3o6iKHA4HDCbzWe9rqYgt/QAiIiIiIiIiIJRhIBLEbC7BawugQqnQJlDoMQuUGgTyLcK5FQJZFYoOFmu4FipG0eK3filyI0DRQp+KVZw0PPnULGCwyUKfi1RcKxUwYkyBafKFWRWqq21SuxApWfCZQH1l2WjrLZfiTAA0UYgzix5/8R6/sSYJEQbJUQaJUR4KkPMeglGnQSDLEEnS60qpJAlCSadOtZYk/pcooxqmGJzA9lVAifK1NfqoOc1O12hoMAmUO4UcPomTUTUYQmhHpcLbQIZZerx4kiJglMVathi1AGxJiDGpB4XGbC0DLWVmHqstxiAEgdwrFTBoRIFuVUCNjeP6W1NZmYm5s+fj06dOsFkMmHw4MF46623/JZxOBx47LHHMGrUKERHRyM8PBwXX3wx0tLSAtb3wQcfYNSoUYiMjERUVBSGDh2KF154AYDawuz6668HAEyePBmSpP5Ms3HjxlrHt2TJEkiShHfffdcvYNGMHj0a8+bN8/6/srISDz74IJKTk2EymdC/f388++yzEMJ/35QkCQsWLMC7776LwYMHw2Qy4dtvv23wa9LcWMlCREREREREzUapZTJ3/7ZbnooSBXAKAbcCuIRPRYnieQw87bZEddstrQWXNi+JNkeJ5FNRIvtVm/BEX01q8KJWrmi0iherGyh3CCgQ0HlajWkVLxZ99eMMvCKaqN2rWa1S5VKDaVartA0GWUKMST2++7YSizOpFw1EtNFWYkIIKHZ7Sw/Dj2wyNctrmZubiwsuuMAbOCQmJuKbb77B7bffjrKyMixcuBAAUFZWhmXLlmH27Nm48847UV5ejjfffBMzZszAzp07MXz4cADAunXrMHv2bFxyySV4+umnAQCHDh3C999/jwceeAATJkzA/fffjxdffBF/+ctfMHDgQADw/l1TVVUVvvvuO0yYMAE9evSo9/kIIXDVVVchLS0Nt99+O4YPH441a9bgoYceQmZmJv71r3/5Lb9hwwZ89NFHWLBgARISEpCSktLg16S5MWQhIiIiIiKiOgULSoK23/IJSrTWWzUncldQ3X4L8J+npGZQov3R6xiUnGt+wYtBvc0tBJxudfLqMoeAgPCeXDXrgAhPFY/WakzP4IWoTRNCbTWlfebLfeZWMcjq5zyCc6u0ObIkIcIAhHtaiWVXqRWd0Z5WYlHGtnX8Vux2/HTnnS09DD/D3ngDumZoY/Xoo4/C7XZj//79iI+PBwDcc889mD17NhYvXoy7774bFosFsbGxyMjIgNFo9D72zjvvxIABA/DSSy/hzTffBAB89dVXiIqKwpo1a4JORN+7d29cfPHFePHFFzFt2jRMmjSpzvEdO3YMTqcTQ4cObdDzWb16NTZs2IAnnngCjz76KADgvvvuw/XXX48XXngBCxYsQGpqqnf5I0eOYP/+/Rg0aJD3tjvuuKNBr0lzY8hCRERERETUAbhrzFFS279dnqDE1cCgRDsNExCU+MxHopN95yZhUNJW6SQJOj3ge9rIragVLxVOoMQuAK3iRQdYfOZ4MXmCGM4BQNS6uRSBylrmVjHrgCijepKe2j61lZjaFtOpCJQ4gGK7gjADkGBS22Ga9XyvWwshBP773//ihhtugBACBQUF3vtmzJiBDz74AHv37sW4ceOg0+m8oYmiKCgpKYGiKBg9ejT27t3rfVxMTAwqKyuxbt06XHrppWc9xrKyMgAI2iYsmK+//ho6nQ7333+/3+0PPvggPvnkE3zzzTdYsGCB9/aJEyf6BSyhvCbNjSELERERERFRGyCE8IYdtU3irpxFUOINTIK03NImRvetMJHAoITU0EQnBwYvDgUo9wQvAgJ6T/Di12pMBkx6thciaklatUqlS20NyGqVjqlmK7GMCgGzVahzd5mkVr0PyCYThr3xRksPw49sMjX5OvPz81FSUoLXX38dr7/+etBl8vLyvP9euXIlnnvuORw+fBhOp9N7e69evbz/vvfee/HRRx/hsssuQ7du3TB9+nTccMMNjQ5coqKiAADl5eUNWv7kyZPo2rVrQCijtSM7efKk3+2+YwdCf02aE0MWIiIiIiKicyQgKFEAN4JXlrg8FQIuRajzk9QRlAD+7bcYlFBL0skSLDLg25xD25/LnUCxp+JFC17C9ECEQfZWu5h0vFKeqDnVVq2ik9TPH6tVOi7fVmJ2N5BbJZBvFYgyAgmttJWYJEnN0pqrtVEUBQBw8803Y+7cuUGXOe+88wAA77zzDubNm4eZM2fioYceQlJSEnQ6HZYuXYrjx497l09KSsKPP/6INWvW4JtvvsE333yD5cuX49Zbb8XKlStDHmOfPn2g1+uxf//+RjzD+tVs+xXKa9LcGLIQERERERGFQAtK3IpPOIIa85UogILqKpJgQYk3LPH833duEkANR2oGIgxKqK3SyxL0PsGL8Mzz41SAUgdQZFNPlGitxsINQLhe9oYuDF6IGo/VKhQqSZJg1gNmTyuxMgdQ4mklFm+SEMtWYudcYmIiIiMj4Xa7MXXq1DqX/eSTT9C7d298+umnfp/rRYsWBSxrNBpx5ZVX4sorr4SiKLj33nvx2muv4a9//Sv69OkT0nEhLCwMU6ZMwYYNG3D69GkkJyfXuXzPnj2xfv16lJeX+1WzHD582Ht/XUJ5TZobQxYiIiIiIurQfE/2OpTq8MQtggclLkUNQ2oGJb4VJd72W975R/xDEb3sH5wwKKGORpIk6D2hoW/w4vJ8FovtQIFVDV4MsvpHC160ihcjgxeiWgWrVnF65lZhtQqFwiBLiPZpJXayQiDHKhDnCVsiGdCdEzqdDrNmzcJ7772HAwcOYMiQIX735+fnIzEx0bssoH6vau/Njh07sG3bNvTo0cP7mMLCQu9k8QAgy7K38sNutwMAwsPDAQAlJSUNGueiRYvw3Xff4ZZbbsGXX36JiIgIv/v37NmDAwcOYO7cubj88svx+uuv4+WXX8YjjzziXeZf//oXJEnCZZdd1mSvSXNjyEJERERERO2e78lbpwI43YBDEbC5BWwuwCkAl1sNVnzbbjEoITp3JEmCQVIDFY3vZ7fIBuQLxfv5M8jq/C5hevWKa5Pninx+DqkjEkLA6gaqnECZU0G5E7C7AQhAr1MrEiIkfj6o8YK1EsuzCkQbgXizjOhW2EqsLXrrrbfw7bffBtz+wAMP4KmnnkJaWhrOP/983HnnnRg0aBCKioqwd+9erF+/HkVFRQCAK664Ap9++imuueYa/OY3v0F6ejpeffVVDBo0CBUVFd513nHHHSgqKsKUKVPQvXt3nDx5Ei+99BKGDx/unRdl+PDh0Ol0ePrpp1FaWgqTyYQpU6YgKSkp6Pgvuugi/Pvf/8a9996LAQMG4JZbbkHfvn1RXl6OjRs3YvXq1XjiiScAAFdeeSUmT56MRx99FBkZGRg2bBjWrl2LVatWYeHChUhNTa339Wroa9LcJCGEqH+x9qusrAzR0dEoLS31Ts5DRERERERtj/dkrFutSFEDFTVI0a7gdSv+QYpOVtsTaVfU63gCiqjVE0JUB6ZKdbs9g6y2GovQSwgzSNUVLzI/19Q+ORW1skCrVqlyqdWWWrUK2+xRc9MqptyKOr9WgllCjEmCpZlaidlsNqSnp6NXr14wt7N5WFasWIHbbrut1vtPnz6N7t27Iy8vD48//jhWr16NnJwcxMfHY/Dgwbjxxhtx5513AlC/J5966im89tpryMnJwaBBg/C3v/0NH3/8MTZu3IiMjAwAwH//+1+8/vrr+PHHH1FSUoLOnTvjsssuw+LFi9G5c2fvtpctW4alS5fi5MmTcLvdSEtLw6RJk+p8Pnv37sVzzz2HjRs3Ij8/HxERERg5ciRuvfVW3HzzzZBl9YqKiooKPPbYY/jwww+Rn5+PlJQU3HXXXXjwwQf9vrslScJ9992Hl19+OWBbDXlNgqlvfwolN2DIwpCFiIiIiKjN0E6uupTqIMXhFrC61X7zrlqCFL3k8zeDFKJ2p67gxahTK14sesk7xwuDF2qLaqtWEUINGM069XuO+zada1orMYcLMOqBWKOEOHPTtxJrzyELnXtNGbKwXRgREREREbUqNU+W+gUpLngnkNeCFAk+FSmedkEMUog6FkmSYPTM06JRhPAGsrlWASEEZO04IQPhnlZjWsWLgcELtUJORaDS6T+3iktUV6tEc24VagW0VmJCL2D3HHPzbQJRRiCBrcSoA2DIQkRERERE51zNIMXhCVJsPkGKyxOkAAxSiCh0ci3Bi1MB7ApQ4RO8GDzHlQiDBItOgskzx4tRx2MMnVtCqEFKpUutVqlwAnaXelGBUQdYDOpE5EStkSSpFYNmndpKrNwJlNiVc9JKjKglMWQhIiIiIqJmIYTwtvRy+QQpVpentZdPRQoQGKSYdZ4J5RmkEFETkSXJO1eFRgtebG6g3BkYvEQaJJh9Wo3xBDc1tWDVKk6hfh+adEC0idUq1PboZQnRRvUYa3UBJysEcqoEYk0SYj2txLhfU3vBkIWIiIiIiBpNCdLay+4JUuzu6ooUobX2kqpDFIMMWBikEFELqy14cSiA1Q2UOwQEqoMXs0/worUaYxscCoVftYpDQYUrsFolivsUtROyJCHcAITp1eNqnqeVWKRPKzGG19TWMWQhIiIiIqI61QxSHG7AoQQGKYpWkRIkSNHxl2ciakNkn5Y3MKi3uRX1WFjlAso8wYtOqp5wPEKvtsHRAhsGL+TL4VYnBg9WrWJmtQp1AJJPoO3yVG+VelqJxZslxLKVGLVhDFmIiIiIiMgbpDgUwOnW5kkRqPIEKW5FDVOCBSlGGbDoAR1PDhFRO6aTJehkwOxzmxa8VDiBErsAPMGLUQteDBLMuupWYwycOw6tRVKVp1ql3KlepACowRyrVagj08sSonxaiZ2qEMitEogxSYhrQCsxIcQ5HC21V025HzFkISIiaiXcnh8wrS7A5haQof7wqZMBvedkpk6qnq+AEz4TUajcvhUpniBFnWhewK5UBym+rb30nuOOUQeEybzKlojIV7DgxeUJXsprBC8GHRCmA8IM/hUvDKjbD99qlRKHgM2lfq9ybhWi4LRWYuEGtd1svlWgwCYQafC0EjP5txLT69VT2S6Xq6WGTO2Ith9p+9XZYMhCRETUQhSfUKXCKVDu9FwtLtQTmxCAgHplhSSpE0LLUOcukGX13wZPKx6jToJBloIGMdqV5vyFjqhjcAvhDVC0yhRtjhSHEliRIvtWpDBIISI6a3pZgl4GLJ7/CyHgFuoxudQJFHqCF70WvOiBCIPsnd/FpONxuK1oSLUK55ogahiTTqpuJeYCSssUWPRAgllCjElCmF6CTqeDTqdDWVkZIiMjW3rI1MaVlZV596mzxZCFiIjoHFGEejVblVu9uq3MIeBwV/diNurUK3hq69+t/YKuaH+grku41JOqqFHqKknVJ0+1vw0yYJQlGGRWyRC1ZVp7GofvZPMuAatbDVJcCrzHCwk1WnsxSCEiOqckSYLecwyuGbw4FKDEARTZFADqz2IGWf2ZMFwve0MXBi+th1atUuGpVrF75lbRs1qFqElorcSEUD9rpysEcqoEYkxAnElGQmIicnNyYDKZEB4ezt9bKWRCCFRWVqKsrAxdunRpkn2IIQsREVEzUYSAze1TqeKoniBa9gQeYXWEKjVpv6A3hBBqDYxvKKO2BVLHpV7BXh3KyFLwKhm9rF5RxCoZonPPrQi/EMWpADZPkOKsLUjxBKdmvRaw8rNJRNQa+QYvGiEEXJ6f2YrtQIFVDV4MNYIX34oXnlxsflq1SqULKLMrqHD5V6uE8vM8ETWcVKOVWIEVKLQpiNBHwhBuRX5+AfLz81t6mNRGSZKEmJgYREdHN8n6GLIQERE1EeEJVbQ+zGXO6ivbZEmdGPpc/RImSZLaXiyEUEYRPqEMAKsbUJqgSkb2mdOBVTJE/rS+/b5/rC4Bm7u6tZe7RmsvveezxCCFiKh9kSQJBs/PVBrf4KXIBuQLBRI8lYkyEG5QW+iY9Z6KF5k/ZzWFWqtVZPU1jjHxdSY6l7RWYm5FoNIlwWXqBLMlATE6F6IMEiwGfh4pNAaDoUnahGkYshARETWS8KlUqXSp7b9sbvXqcglqSx6LAYhsA6GCJHkqVRqwbF1VMlrri/qqZPSeKzK1KplgQQyrZKi9cAW09lJbB9pqtPYSPhUpvkGKvg0cQ4iIqHn4BS+eMzhCVAf0BTYBRQhI8FS86IBIvXrCUat4MTJ4qZfiaUtUVaNaRcDTZpPVKkStgs6nlZjVrUOOU4dCNxAj1FZiUUb+/kgtgyELERFRAwmhtvtSfwHzD1UAz+SWHeCEaFNUyWgVP24hIDwnBqrXH7xKxiBLMPpUyXiDGFbJUAvzndDYN0ixutT2Xk4BuNyeIAXwfn60aq+OcNwgIqKmI0kSjDr15L/GN3jJswkoVgFJAgyeef8iPBUv2vwuDF7U9kNatUqpQ70Awi3U72eTDojR8zUiaq0kSUKYHgjTq5VnBTZPKzEDkGCWEW0EjDp+funcYchCRERUCy1UsbqBKk/7L6tL/eUVUH9h5VXm9WvqKhkJwlsnI0vqCWtdkCoZo05tXabz9DyvWSWj89xH1BC+7VqcCuB0Aw5FbeulHRe01l7a/qntc3pJvQKWISARETWXYMGLIgRcngsAcq3qhS1a20mTrAYvFr3knd/F0M6DF99qlVK7gkoXYPfMrWLSqfM+sFqFqO0x6tTjn9pKDDhepiBMD8SbJMSY1DCmPR/bqHVgyEJEROQhhIBdUdt/aaGKzXPyVGsVYNIBEQb+kNZcmr5KpjqU0dowyT4VMkGrZCT/k+Oyp9qAJ8jbP2+Q4q6uSHG41Ynm7e76gxQTgxQiImpF5FqCF6cC2BWgwqq2GtN+HjJ5Kl4sOgkmvdpqzNDGQ4f6qlViefKVqN3wbyUGnKkUyLEKxBiBeLOMSCMvsqPmw5CFiIg6LCHU+RCsPu2/rC715KoEQK+rvqqNv3y1To2pkvENZZyKegWjEqRKRvLMJcMqmfZFa6fiUgKDFK39X7AgRXufTToGKURE1HbJUnXLMI0WvFjdQLmzuuLFIKtBi1bxYvJWvLTe70CtWqXSCZQ51GoVbW4VVqsQdQw1W4kV2YFCu4JIgxq2xLCVGDUDhixERNSh2D2tfbyhilu9al1AO3nOUKW98q2SacgPQH5VMlBDGa1KRvHcp52G91bJQA1kvPPFyICRVTLnnG9femfNIMUFuET1ZPOAp+WcXP2eMUghIqKOJFjw4vZ8l1a5gDKHgIAavBh1aquxSIMEsyd4MetaNrjwrVYpsavVp26l+oIptgoi6rh8W4lVuYD0MgVmTyuxWLYSoybEkIWIiNo19cSq/5wqDk/vZb0WqvAHKwqiqapkyuupkpF8Ahlv6zJddZWM1judVTL+agYpDi1IcakVKe56ghSzzjOnD19LIiKiADpJgs4ToGjcSnXwUuoJXvQSYNABFh0QrveveGmu4MUt1J/pK51Aqadaxen5+d7IahUiCkInS4j0aSWWWSmQaxWINgIJbCVGTYAhCxERtStaqGJ1qS0CqnxaBGhXqPNqFWpq57pKRmvhoVXJ6OQgbcvaQZWM1tLPt72Xb5DiEuqVqoqofgyDFCIiouahkyXoZMDsc5tbUb+ry51AsV0AUOd4MeqqW42ZdRLMnuBF18jwI2i1iqj++Z4XTRFRQ9RsJVZsB4ptCsINQIJFRrQRMLGVGDUCQxYiImrTnIrW/ssnVFEAIaorVaL1ahsEotbibKtkXIoaHtZVJSN7wpjaqmR8W5q1ZJWMEqS1l90TpNjd1a29tCClZuWPhUEKERFRi9HJEiwyYPG5zeWpeCl3AiV2/4qXMB0QYZS91S4mXfCfPVitQkTNrWYrsRNlCix6IM7TSozhLYWCIQsREbUpWqhidQHlDgWVbvVks6KFKjIQbWSoQu1HY6tkFFSHMrVVycCz3tqqZAyeuWTOtkqmZpDicAMORaDKVd033SWCBylGGbDoWb5PRETUVuhlCXqf4EV4LgpxKkCpU52AGkB18KIHIgwyzDr1Z4EKp0Cpo7r9p4HVKkTUjHxbidncQFalQF6VQLQJiDfLiGIrMWoAhixERNSquXwqVcqd6lVsNUOVKIYqRF6+VTKGepatr0pGUReCgNq2DCFUybi0ihS3f5AivCU3PkGKDrBwrhkiIqJ2SfLMM1czeHF5gpcSB1BoU6qXh/qzQaSh8e3FiIhCJUkSLHr1Ai+tlViRTUGEQQ1bYkxsJUa1a5Uhy7///W8888wzyMnJwbBhw/DSSy9h7NixQZedNGkSNm3aFHD75Zdfjq+++qq5h0pERE3MpVTPqVLuVFDpVCcPV4R69TxDFaKm01xVMhLUWhlJgrcKxqgDwmR+domIiEj9GcTgqZ7VCM+VGKxWIaKW5m0lJtRWYunlCsxVQLyZrcQouFYXsnz44Yf44x//iFdffRXnn38+nn/+ecyYMQNHjhxBUlJSwPKffvopHA6H9/+FhYUYNmwYrr/++nM5bCIiaiS3J1RRJ7JUUOEbqngmzYxkeS5RqxBKlQwRERFRKHjCkohaG50kIdIACL3aSizb00osyggkWGREseKOPCQhhKh/sXPn/PPPx5gxY/Dyyy8DABRFQXJyMn7/+9/j4Ycfrvfxzz//PB577DFkZ2cjPDy83uXLysoQHR2N0tJSREVFnfX42wu7S+CrVz7D0EvHoW+/Ti09HCJqR7RJLK0utd9yuVN4QxVZUvstG2X+oEJERERERERErYtTEah0qm2QwwxAIluJtVuh5AatqpLF4XBgz549eOSRR7y3ybKMqVOnYtu2bQ1ax5tvvonf/va3tQYsdrsddrvd+/+ysrKzG3Q7tePdr5Cy6zNk/LgRf7/oz5gwpitm9gNiLTxgEFFo3ELA5tIqVdRQxeGZxFKW2G+ZiIiIiIiIiNoGgywhxqS2S670aSUWZ5IQa5YQwVZiHZJc/yLnTkFBAdxuNzp18q+c6NSpE3Jycup9/M6dO3HgwAHccccdtS6zdOlSREdHe/8kJyef9bjbI8sF41EQ2RXxzmLc8v3f8dbXZzBmGXDL5wo+OKggs0KgyKaeLLW5BZTWVRBFRC1IEQKVToECm8DJMgUHixQcKlZwvExBgU2dQDvcAMSZJcSYJITpJQYsRERERERERNRmyJKESIOEOJN6AWl2lcCvxQqOlSoosgm4FZ4r7UhaVSXL2XrzzTcxdOhQjB07ttZlHnnkEfzxj3/0/r+srIxBSxBj+sfA9fT/4sDixxGTl4O///okHuv7MDafTMHmk0CMWWB8T4HJvQVSY9UJbU06wKKTYNJJMHgmuDXI6h9OckvUfimeShWrW61UKXOolSouoU56bdKpoYqeQQoRERERERERtSOSJMGiByx6tZVYiQMosisI97QSizYBZrYSa/daVciSkJAAnU6H3Nxcv9tzc3PRuXPnOh9bWVmJDz74AI8//nidy5lMJphMprMea0egj4zE4CWL8OuSJUBODv5x9HGsvuB+fC6GocQm4csjEr48AqTGqWHL+B4C4SahNiWEenJVL6kBjFkHWPQSjLLkF74wgCFqexShTvhmdQGVToEyp4DdBTg9E9UbZLUvKUMVIiIiIiIiIuoofFuJVfm0Eos1SYgzSYgwsJVYe9UqJ74fO3YsXnrpJQDqxPc9evTAggUL6pz4fsWKFbjnnnuQmZmJ+Pj4Bm+PE9/Xz1lejiOPPw5HTg6g08Fx6bXY1ftS/JBpwM4zgEtRDw46SWBsd2B6H4ELugM6WcClqFezuxR1/gVtb5MlQC+rIYzJE8BoFTDaH6PMAw9RayB8QxWXQKlDnajepahhqtFbucbPKxERERERERERoJ5PsXvOp8gSEG0E4s0yooy8MLUtCCU3aHUhy4cffoi5c+fitddew9ixY/H888/jo48+wuHDh9GpUyfceuut6NatG5YuXer3uIsvvhjdunXDBx98ENL2GLI0jKOsDL/+7W9q0CLLMEyaBtvkK1EmR2B3poT1xyX8Wlh9cIgyCUzupQYu/eLVE7G+3ELAHWIAY5T9K2AYwBA1j5qhSrlD/b9TASQABp362dRL/BwSEREREREREdXHqQhUOQFFqN0/EkzqPLVmPc+rtFah5Aatql0YANx4443Iz8/HY489hpycHAwfPhzffvstOnXqBAA4deoUZFn2e8yRI0ewdetWrF27tiWG3CEYo6LQ9+GHcfSpp+DIyYEzbS0iqsoRPuUKTO7dFdP6ChRWAOuOy1h/AiiskrDqMLDqsISeMQLTUwUuSQUSwtT16SQJOh1gDLIttyLgFmoAU+4EShwCQghIUAMYnSeA8bYgYwBDdFa8V1a4Pe2/goQqZj0QwVCFiIiIiIiIiChkBllCtE8rsYwKAZNVII6txNqFVlfJcq6xkiU01pwcHH/uObWiRZIQNmwYzJOmoyy5P6oUHcKNgEGSsDcbWHtMwvenAIdbPUDIksDILmp1y7gegKkREZ9bEXAJtfLFpQBuBdB2YJ1PBYxZB5iDtCBjAEPkCVUUtVKlyjOnis0FOBT1fqMO3uCSnxciIiIiIiIioqZVs5VYlKeVWDRbibUabbpd2LnGkCV0lRkZOPHvf8PpCVosAwYgatx4OAeOQKEUBrcCRHoOCBUOYFOGGrj8kld9gAgzCEzqBUxPFRicFNhOLFRCCCjCv/1YrQGMHrDo1AoYbe4XA1sfUTsmhIBD8Z+o3uZSK1UAQK8DTAxViIiIiIiIiIjOOaeiVrcoCmDRAwlmCbFsJdbiGLKEgCFL45QeOoRTb73lDVrMffsieuRImIaNRHFEEorsanARoa8+aZtZBqw7LmHdMSC3svog0S1SYFofgWmpQKeIph9rXQGMBDWA0clqCGPWMYCh9sHuFmqliktt/2V1Aw63us/rZXVOFYYqREREREREREStg9ZKzOECjHogzqSGLZFsJdYiGLKEgCFL4wghULRvH7Lff19tHQbA0r8/wnr3RvTIkXD26IscK1DlBMKMgFlXfSBQBPBzjhq4bMoAbK7q+4Z1VudvmZACWAzn5nm4fduP1RLAGGS1AsYse+aA0VW3H2MAQ62Bw61+EVe51EoVqwtwutV92SBXtwDjvkpERERERERE1Hr5thKTPK3EEthK7JxjyBIChiyNp7hcKNi2DXlffAFHdjYAIGzwYBgSExE9aBDChw5DAczItwq4fFqI+bI6gS0n1cDlx2xAnd4eMOsFLu6pzt8yrLPam/Bc0wIYlyd40f4GAgMYi14NkoyyBIMngDHK6jI8qU3NweFWq1OsLqDMoahXOrjV+3SeShWGKkREREREREREbZdLEah0qeckwzytxGJMEixsJdbsGLKEgCHL2XHb7cjbvBmFaWlwnD4NAAgfOhS6mBiEJScjfswYOKLjkVOpqC3EZCCilhK33Apg/XFg7XEJmWXV9yeFC0xNVQOX7q3kLfINYHwrYIDqAEavAwwSYNZLsOgBg+zTgkxm8kyh0fpz1gxVBPzbf8kMVYiIiIiIiIiI2hVFqF1L7C61W0msSUKcma3EmhNDlhAwZDl7zvJy5KSloWz3btjT0wF4gpb4eBgiIhA3ahTCevdGsUNCTpWCSgcQZkCtkzcJARzKB9Yek5CWDlQ6q5cblCgwvY/ApBQgwnQunl3ovAGMVv1SRwBj0Usw6wGjLEHPAIZ8OBX1y1MLVSo9E9UrAt59xahjqEJERERERERE1FEIIWBX1CkaZEntHJRolhFlVC/wpqbDkCUEDFmahi0/H7kbN6Lq0CFYjx4FAEQMGQJDcjIUux3RgwcjdtgwuPVG5FkF8upoIebL4QK+Pw2sOyZhdxagCHVZgyxwUQ9gRh+BUV3V9khtQUAA4zlpDgCQPAGM5wS6WaeW/mlzvxgYwLRrLp9KlXKHgkrPRPUMVYiIiIiIiIiIqCbtXJLL00os3iwhlq3EmgxDlhAwZGk6ladOIW/zZtjPnEHVL78AAMIHDkTYoEGw5+UhPCUFcaNHwxQXhwqnQHYDWoj5KqwCvjuhVrhklFQvG2cRuKS32k6sV2yzPsVmJYTwm//F5RPASBKg9wQwhiABjFYBo2MA02a4tEoVtxqqVLiqQxWd5z01MVQhIiIiIiIiIqI6aK3EbG7AJAMxPq3EeF6p8RiyhIAhS9MqO3IE+d9/D3dJCSr27QMAhPXrh8jRo2HNzIQxJgZxo0YhPCUFAkCRHcipUlDhAMLraCHmSwjgWJEatmw4AZTaqx/TN15geqrAlN5AtLm5nuW5pwUw2vwvvgGM7FMBY5CBMJ0Ek95//heDDtDxoNqi3IpAlWei+nKngkonYK8Rqhj5PhERERERERERUSPZ3QJVTvWC7UgDkGCREc1WYo3CkCUEDFmalhACxfv2oWjvXsBmQ9nOnYAQsKSmIvqii2DPz4dwuRAzdChihgyBbDTC4RYhtRDz5XQDOzPVwGXHGcClqI/TywLndwempwqM7a6GDO2VEqQFmRDqhOhyjRZkFk8AY/RtQcYT+83CLarnVCl3KqjwCVVkSa1SMbL6iIiIiIiIiIiImliwVmIxJglhbCXWYAxZQsCQpekpLhcKtm9H2cGDkBQFpT/8AAgBc0oKYidMgKuiAvaCAkSkpiJu1CgYo6MBwNtCrNiuhgINaSHmq9QGbEhX52/5tbD6cdEmgcm91cClb7ya5HYUIQUwegkmnSeA0VW3IWNZYcO4hYDNBVS51H253CngcKuvu05Sq1RMDFWIiIiIiIiIiOgc0VqJ2d3qeb5oExBvltlKrAEYsoSAIUvzcNtsyNu8GVUnT0KWZRRv3gwoCszJyYidNAnC7Yb1zBkYExMRP2oUwpKTAagf/GI7kB1iC7GaMoqBtcclfHccKLRWPz4lRmB6H3UOl/iwJnu6bZIihF/7Mbfwb0Gml9Q2ViZZfQ/MOslb+aJVwnTkg7HiU6mihSp2t/o6ygxViIiIiIiIiIioFQloJWaWEW1iK7HaMGQJAUOW5uMsK0Puxo1wFBZCkiQUp6UBigJTt26ImzwZkGXYcnIAADHDhyN64EDIej0AnFULMV9uBdiTpbYT+/4U4PS0E5MlgdFdgWl9BMYlA0Z90z3v9qBmAOMSagWMBPVA7A1gdJ4WZDoJRp1PC7J2GMAoWqWKG6h0CpQ51EoVZ432X43ZT4mIiIiIiIiIiM4F31ZiFj0Qb5IQZ5ZgYSsxPwxZQsCQpXnZ8vKQu2kTFLsdshAo2rABwuWCsUsXxE2ZAtlggKOkBM6iIkT064e4kSNhiIz0Pv5sW4j5qrADGzOAdccl/JJXvY5wg8CkXsD0PgKDEjtWO7HG0AIYrf2YFsAA/hUwZp3agswot80ARhECNrdPpYpDrVRxeUIVgydkYqhCRERERERERERtjRACVs+5rygDMDBWbvR51/aIIUsIGLI0v8qTJ5G3eTNksxlwOlG0fj2E0wljUhLipk6FbDTCbbfDeuYMzJ06IX7MGFi6dvU+3q+FmBMI1zeuhZivM2Xq3C3rjgN5ldXr6hYlMC1VYFoq0CnirDbRIfkGMFoljF8AI6shjElXPQeMb/hilBsfop0t4QlVqlxAlUug1CFgd1VXqhhleMIiftkQEREREREREVH7UOUSkAEMiWPI4oshSwgYspwbpQcPomDbNhjj4yFsNhSuWwfhcMCQkID4adMgm0wQigJbVhYkvV5tHzZgACSdzrsO3xZiTgWIamQLMV+KAH7KUduJbTkJ2Fzq+iQIDO8CTEsVuLgnYDGc1WYI6sTw7gYGMGF6CUad5J37RfvTlAd64VOpUulS23/Z3OrYJKiBilGnjolfMERERERERERE1B4xZAmOIUsIGLKcG0JRULxvH4r27oWla1colZUoXLsWit0OfVwc4qdPh85sBgDYi4rgKitDVP/+iB05Evow/xnqm7KFmC+rE9hyUg1cfsypXp9ZLzChp9pO7LzOaiBATcutCLX9mE8AA58ARucJYLwtyBoRwAihtvvSKlW0UMXpCVUMOk/7L4YqRERERERERETUQTBkCY4hSwgYspw7itOJgu3bUXboEMJ69oS7vByFa9ZAsdmgj4lRgxZPoOK2WmHNyoKlWzfEjxkDc1KS/7qaoYWYr9wKYN1xtaVYZnn1ejuFC0xNVQOXbtxdmp0QAoqAfwCjePMX6HwqYMx6wKJTA5jquV+gtgBzCpQ5BawuNVQBPJUqzVAhQ0RERERERERE1FYwZAmOIUsIGLKcWy6rFfmbN6Py1CmEp6TAXV6OgjVroFRVQRcVhYQZM6ALDwcACLcb1sxM6MxmxI4cici+fSHJst/6HG6BfKtAbhO2EPMlBPBLHrD2uISN6UCVs3rdg5MEpvcRmJgCRBibbJPUQL4BjFb9UjOAkSX1PgFPpQpDFSIiIiIiIiIiIi+GLMExZAkBQ5Zzz1Fairy0NDiKixHWowdc5eUo/PZbuCsroYuIQPyMGdBHRnqXtxcUwF1ZiahBgxA7fLi3rZivCqdATpWCIpvaWiqyiVqI+bK7gB9OqYHLnixAEer6jTqBcT3U+VtGdVW3Ty1LCKHO+QK2/yIiIiIiIiIiIqoNQ5bgGLKEgCFLy7Dl5iJ340YoLhcsnTvDVVGBwjVr4C4vhxwWhoRLL4Xe5/1wVVXBlp2NsB49ED96NEwJCQHrbO4WYr4KqoDvTqjtxDJKqrcRbxG4JBWYniqQEtssmyYiIiIiIiIiIiJqEgxZgmPIEgKGLC2nIj0d+Vu2QBcWBmNsLNxVVShcswau0lLIFgviZ8yAISbGu7zicsF65gz0kZGIGzUKEb17B/3gN3cLMV9CAL8WAmuPSUhLB8rs1dvpF6+2E5vcC4gOLL4hIiIiIiIiIiIialEMWYJjyBIChiwtq/TgQRRu3w5jfDz0ERFwW60oXLsWruJiyCaTGrTExXmXF0LAnpcHxeFAzJAhiB46FDqTKei6z0ULMV9ON7DjjBq47DgDuD3txPSywAXdgWl9BM7vrk7UTkRERERERERERNTSGLIEx5AlBAxZWpZQFBTv3YuivXth6d4dOpMJit2OwrVr4SwshGQ0In76dBhrtAdzVVTAlpuLiN69ETdqFIyxwXtz1WwhFqYHLM3UQsxXiQ1IO6HO33K0sHp70SaBKb2B6X0E+sQBPG4RERERERERERFRS2HIEhxDlhAwZGl5itOJgm3bUHb4MMJ69oSs10NxOFC4bh2c+fmQDAbETZ0KU6dOAY+rOnMGxthYxI8ahbCePWs9EGgtxPI8LcQim7GFWE0nitW5W9YfB4pt1dvsFSswPVXgkt5AXNg5GQoRERERERERERGRF0OW4BiyhIAhS+vgslqRt3kzqk6dQnhKCiRZhuJ0omj9ejhycyHp9Yi75BKYunTxe5wQAracHAhFQczQoYgZMgSywVDrdrQWYsU2QD4HLcR8uRVgd5baTuyHU4BTUbcrSwKjuwHTUwUuSgaM+nMyHCIiIiIiIiIiIurgGLIEx5AlBAxZWg9HSQnyNm6Eo6QEYcnJANTJ7os3bIA9KwvQ6RA3ZQrM3boFPNZZVgZ7QQEiUlMRP3o0DHW8ly3VQsxXuR3YlKEGLgfzq7cdYRSYlKK2ExuYyHZiRERERERERERE1HwYsgTHkCUEDFlaF2tODvI2bYJwu2H2tAcTLheKNm2C/fRpQJYRN2kSzD16BDzWbbfDmpkJc2Ii4kaPRlj37nVuqyVbiPk6XQqsOy5h3XEgv7J6+92jBKb3EZiaCiSFn/NhERERERERERERUTvHkCU4hiwhYMjS+lSkpyNvyxbow8K8E9oLtxvFmzfDdvIkIEmInTgRlpSUgMcKRYE1OxuSLCN22DBEDRwIWV93/61Kp0B2C7UQ86UI4MdsYO1xCVtPAjaXOgYJAsO7qNUt43sAltq7oRERERERERERERE1GEOW4BiyhIAhS+tUcuAACnfsgCkxEfpwtYxDKApKtm6F9cQJQJIQM348wlJTgz7eUVICZ3ExIvv1Q9zIkdBHRNS5PUUIlNiBrBZsIearyglsyVADl59yqsdh0QtMSFEDl6GdgBYovCEiIiIiIiIiIqJ2giFLcAxZQsCQpXUSioLC3btR8uOPsHTvDp3J5L29dNs2VB09CgCIvugihPfrF3QdbptNbR/WpQviR4+GpUuXerfrVATyqlq+hZivnHJg3XE1cMkurx5L5wiBaanAtFSBrtx1idoVuwsQAMx1F+IREREREREREZ0VhizBMWQJAUOW1ktxOJC/bRvKf/0VYT16eNt+CSFQun07qo4cAQBEn38+wgcODLoOoSiwZmZCNhoRO2IEovr3hyTL9W67ZguxCAMgt/BBRgjgQB6w9piETRlAlbN6PEOS1PlbJqQAEcYWGyIRhcCtADkVwJky4EwpcKZMUv9dVj0/U2K4QPcoeP4IdI9W/905AtDVfygjIiIiIiIiIqoTQ5bgGLKEgCFL6+aqqkLe5s2oOn0a4Skp3oBECIGy3btR+csvAICo0aMRMWRIreuxFxbCVV6OqP79ETtyJPRhYfVuWwiB4lbUQsyXzQX8cApYc0zCvmxAEeq4jDqBcT2AGX0ERnThSViiliYEUGjVQhQgUwtSSoGscsAtGndM0UkCXSPhDV26RXnCmGgg3gLwZyIiIiIiIiIiagiGLMExZAkBQ5bWz1FSgtyNG+EsKUFYcrL3diEEyvftQ8XPPwMAIkeMQOSwYbWux221wpqdDUu3bogfMwbmxMQGbd+pCORbBXKrWk8LMV8FlcD6E2qFy6nS6nElhAlc0ludv6VnTMuNj6gjqLADZ8qBzBoVKWdKAaur9uOFSSfQTatUifZUq0QB3TxfR5naesokn6AGsLtrX6dZ71P9Eu1TARMJRJia+pkTERERERERUVvGkCU4hiwhYMjSNlizs5G3aROEosDcqZPffeU//YTyffsAABHnnYfIESNqPSAoLhesWVnQWyyIGzkSEX36NKh9GNA6W4j5EgI4UgisOyZhQzpQbq8eW/8EgempApN6AdHmFhwkURvmcKnVJ2eCBB8lttqPBbIk0CUC6Bbt0/bLE4AkhAGhZraKAAqqqqtjtFAnsxTIrqiubAsmxiwCAp3uUUDXSMDI+V+IiIiIiIiIOhyGLMExZAkBQ5a2o+LECeRt3Qp9eDiMMTH+9x04gLLduwEA4YMGIWrMmDoPCrb8fLgrKxE9ZAhihw+HztSwy7u1FmLZVQrKW1kLMV8ON7DjjFrdsvNMdUsivSxwQbLaTmxMN0DPdmJEftwKkF8JnPZWokje6pHcCkCg9s97vKV6zpSa86cYdOdm/E537fO8FFbVPnYJAp0i4FNVUx3AJIWz9SARERERERFRe8WQJTiGLCFgyNK2lOzfj8KdO2FKTIQ+PNzvvspDh1C6YwcAIKx/f0RfcEGdBwZXZSVs2dkIS0lB/OjRMMXHN3gcrb2FmK9iK7DhBLD2uITjRdVjjDELTOkNTE8V6NPwp07U5gkBlNh8KlJKJW9brswywKnU/lkOMwgkB6lI6RYFhBnO4ZNohCqnp/1YjQqY06VAlbP252yQBbpq4UuNACnGzPlfiIiIiIiIiNoyhizBMWQJAUOWtkUoCgp37ULJTz/B0r17QAVK5a+/ovSHHwAAlj59EHPRRXW2A1NcLlhPn4Y+Ohrxo0YhvFevkA4mlU6BnCoFhXZAJ7W+FmI1nShSw5bvjgPFPu2NescKTO+jzuESa2nBARI1odpChTOlQGU9oYJW0dGtRlVHewwVziZ0CjfUqN5pQ6ETERERERERETFkqQ1DlhAwZGl7FIcD+T/8gLJff0V4z56Q9f4TCVQdP46SrVsBIWDp3Rsx48fXGbQIIWDPy4PicCBm6FBEDxnS4PZh2uOL7UBOlYKyVtxCzJdbAXZlqoHLtlPVJ1FlSW0jNr2PwIXdOUcDtX5ae6zTpf7zpGSWAYXW+ttjBZufJJHtsby09mnB5qFpSPu0bkFe3y6R5659GhERERERERHVjSFLcAxZQsCQpW1yVVYib/NmVGVmIrxnz4AQxZqRgeJNmwAhYO7ZE7ETJkDS1X1Wz1leDnt+PiJ69ULc6NEB877Up2YLsQgjYGilLcR8ldmBjenq/C2HC6rHG2kUmNRLDVwGJLS/q/ep7eBE762Tw6W+/jUDrjNlQImt9vdElgQ6R1S3H+sW7R9wtYHDJhEREREREVG7wZAlOIYsIWDI0nY5iouRu3EjnKWlCEtODrjfdvo0itLSAEWBqXt3xE2aBElf91lVxelE1enTMMXHI27UKIT37BnyuNpaCzFfp0qAdcclrD8O5PtMkp0cJTCtj8C0VPUkKFFzKLXB26bK94R9Zhlgd9f+GbLofVtWqWFKt2igeyQQ0fCiNGpCFXbgTLkahHnbtHlatVldtb+XJl11qzbfYKxbFBBtPodPgIiIiIiIiKiDYMgSHEOWEDBkadusWVnI27QJAoA5KSngfltmJoo2bADcbpi6dkXslCkB7cVqEooCW04OhBCIPe88RA8eDNkQ2uQCbbGFmC+3AvyYA6w7JmHLyeoT3BIERnRRq1vG9wTMrASgENlcPkFKjRPw5fbaPyM6SaBrJKrDFJ/qhzgLK63aCiGAIqv//C9akJZVDrjqmP8l0iT8gjRtX+gaCVg4/wsRERERERFRozBkCY4hSwgYsrR95cePI3/LFugjI4O2+LJnZ6Pou+8gXC4YO3VC3NSpDQpNnKWlsBcVIbJPH8SNGgVDZGTIY/O2ELMKON1tp4WYr0oHsPmkGrj8nFs99jCDwIQUYHqqwJBObPFD1dyKOk9KsCAlv7LuHSUxPPiJ9M4RnCelvXMr6jwvpxuz34Sp+0q3KJ+2cNHqfqPnfkNERERERERUK4YswTFkCQFDlrZPCIGSAwdQtHMnTElJ0IeFBSzjyMtD4bp1EE4nDImJiJ86FXIDJrd32+2wnjkDc1IS4saMQVi3bo0ao9ZCrMiuhhFtqYWYr6xyYP1xtaVYdnn1+DtHqK3EpvVRqw2o/RMCKLTCp6WX5A1VssoBdx3zpET5ViT4VKR0jWJ1FAVncwFZZYEVMGfKgLJ6KqC6RALJnrCum08AE88KKCIiIiIiIiKGLLVgyBIChiztg3C7UbhrF0p+/hlhycmQjcaAZRwFBShcuxbC4YAhPh7x06ZBNtff5F8oCqxZWZB0OsQOH47ogQMh6XShj7GNtxDzJQRwIA9Ye0zCpgygyln9PIZ2Epieqla5hAe+DdTGVNh9Tmz7zJNypgywNWRujWifqhTOrUHNIGAunzJtLpi65/Ix633DPp8KmCjO5UNEREREREQdB0OW4BiyhIAhS/vhttuR/8MPqDh6FGE9ewade8VZVITCtWuh2GzQx8Yifvp06CyWBq3fUVwMR0kJovr3R9zIkdCHN24GeN8WYg43ENkGW4j5srmA708Ca49L2JsFCKjPxaRT522Z3kdgeGe2emrNHC61+iRYmFJiq33flCWBLhFQJ5mv0aYpIYwt5KhlKQIorKpuW3faJ4DJrgCUOqqtYsyekLBG27pukYCR1VZERERERETUjjBkCY4hSwgYsrQvrspK5G7aBFtWFsJSUoIeGJwlJShcswaK1Qp9dLQatDQwMHHbbLBmZcHSuTPixoyBpXPnRo+1ytNCrLCNtxDzlV9Z3U7sVGn1c0kIE5iaqs7f0iOm5cbXkbkVIK8y+ITjuRXV4Vgw8WG1z5NiCL2oi6jFOd21zxtUWFX7Z0GCQFK4T4WWT7u7pHCGyURERERERNT2MGQJjiFLCBiytD/2oiLkbdwIZ3k5wrp3D7qMq6wMhWvWwF1ZCV1kJOJnzIA+IqJB6xeKAuuZM9CZTIgdNQqRfftCkht3Zq09tRDzJQRwpECtbkk7AZQ7qp/TgASBaX0EJvcCotiSp0kJAZTYgp84zioDnErt+1a4oTo8SY6uvoq/WxQQZjiHT4KohVU5q9uPZfoEkqdLgUpn7Z8hgyzQ1RtG+geSMWbO/0JEREREREStE0OW4BiyhIAhS/tUlZWFvI0bAVmGOTEx6DKu8nI1aKmogC48XA1aQtgH7IWFcJWXI2rgQMSOGAF9A9uOBdPeWoj5criB7afV+Vt2Zla36DHIAhcmq+3ERncD9LwCvMG8J4FL/eehONOAk8C+4YnvVfg8CUxUNyGAUnv15+50qeQXxtQVYoYZRNC5X7pFce4qIiIiIiIialkMWYJjyBIChiztV/mxY8jfuhWGqCgYoqODLuOurETBmjVwl5VBDgtD/PTpMMTENHgbrqoq2LKzEZacjLjRo2sNdBqqPbYQ81VsBb47Aaw7JuF4cfXzijELXNJbDVxS41pwgK2I0w1kB5knJbMMKLTW3c6oU0TwybwT2c6IqFm4FbVdYrB5jeprxxdnCR7AdIlkOz4iIiIiIiJqfgxZgmPIEgKGLO2XEAIlP/+Mwl27YO7UCfqwsKDLuauqULh2LVwlJZDNZsTPmAFDbGyDt6O4XLBmZkIfHo64UaMQkZp6VgckIQRKHEB2ZftqIVbTsUK1ndiGE/6Tq6fGCkzvIzClNxDb+OKgNkERQEGV2oZInZC7ur1XTgMm5tZOzCb7TDjfJYITcxO1Jg4XkF0RvPKs2Fb7Z1yWBDpHVLcf6xbtH5i2k2JHomYnBOBU1M+izV3jb5dacVvzb5cCmHTq96lZ+1sPGHX+f5v0nuV0vIiBiIiIiNouhizBMWQJAUOW9k243SjcuRMl+/cjLDkZsjF4Xxa3zaYGLUVFkEwmxE+fDmN8fEjbsuXlwW21InrwYMQOHw6d6ewmHGnPLcR8uRRgV6baTmz76eqWOzpJYGx3YFqqwAXJ6gmMtqrUVj3Hg+8V7pllgN1d+3tq0VfP6aDN8dAtGugeCURwPhuiNq/C4dv6rzpkPVMKWF21HxuMuurWfzXnf4kysfUftX5CqN//djdgdwX52/NvLRCpvk0Kupzv38FCk7ouWmgqBll4QxdTkEDGL7DxBjcCRh38Hlfr3z7/boc/DhIRERFRC2LIEhxDlhAwZGn/3HY78r//HhXHjiE8JQWSLvjZesVuR+G6dXAWFEAyGNSgJcT2X67KSthychCekoK40aNhijv73ldVToEcq4JCW/tsIearzA6kpavtxA4XVD/HSJPA5F7A9FSB/gmt8wSi1QlklSPopPPl9toHrJcFukai+oSpz9XqcZbW+VyJqHkJARRZfdqPearcMsvU44yrjvlfIo2eAEarcvOEL10jAYvhHD4JapNciieYqKPqIzDYkGoNSeq67VwEHzXJkggaXtQMRHSSJ6Sp57k76rhQojl5A516whj/v4M/97puM+oY6BARERF1BAxZgmPIEgKGLB2Dq6ICuZs2wZaTg7CePWs9YCgOB4rWr4cjLw+SXo+4adNg6tQppG0pTiesZ87AEB2NuNGj1WDnLA9QNVuIWfRAWDtsIebrZIla3bL+BFBYVf1ce0Sr7cSm9gYSws/tmNyK2sZLa+91pkzyXoWeX1X3+5EYXh2eJPsEKZ0i2GKEiBrOrajzvASb/yWvsp7jUJgaunSL8pn/JRroHAHoeRxqtdxK7W2tag9EpNqXryX8sLlaJviQIBoeFvjdVkfQUMvferlpL15QRO3VM7W9R95gKlgQVUdlj7OOcLU5GXWB4Uzd1TnqY+pqr1ZbxQ9/nyciIiJqGQxZgmPIEgKGLB2HvbAQuRs3wlVZibBu3WpdTnE6UbRhAxzZ2WrQMmUKTF27hrQtIQRsubkQTidizjsPMUOG1NqqLBQuTwuxnHbeQsyXWwH2Zavzt3x/srq9liwJjOgCTO8jMK6H+gt6UxACKLTCp6VX9fwJWeWAu44TUFGm6vDEtyKla1TTjY+IqDY2l6eirtS/AuZMGVBWR0WdThLoEglv6OINYKKA+DCe+AzGrdReoVF3FUfoVR91fe80F9/go755SXz/9quWaGBwYmji4KO9ciuegCyE/U4NeaSAIC7Y430rdloq0DHpRB3BTW0BmggxnGOgQ0RERFQTQ5bgGLKEgCFLx1KVmYm8TZsg6XQwJSTUupxwuVCUlgZ7ZiYgy4ibMgXm7t1D3p6zvBz2vDxE9O6NuDFjYIyOPpvhe3WkFmK+Kh3A5gw1cNmfW/18wwwCE1PUwGVIUsN+ca6wB78S/EyZekKiNiad8ExC7TMXQpR6ZXi0+eyfIxFRcwiYG6oMyPQc9+qaG8qs95//RavE6xYFRLayuaG0k9BnW/XRkLCkrpZtzSnghHKNk8jBAxFRZyVBsL8NPAndobX3z5IEn7lwQpoPp54QkZ8lIiIiaqMYsgTHkCUEDFk6nvKjR5H//fcwREfDUMd7LtxuFG/cCNvp04AsI3biRFh69gx5e4rTiarTp2GKj1fbh/XocTbDrx5fB2wh5iurDFh3XMK640BORfXz7hIpMC1VYFoqEG+pnifltM88KZllQImt9tdKlgS6RMBn0vnqeQ3iw9ifnIjaD0UAhVXB55PKLq+7fVSM2TeA8Z//xaSvXn+9VRsNvPre90r7YCdxefU9UdvT4KqwJpgLqK1UhZnqaLlWV6s2VoURERFRYzFkCY4hSwgYsnQ8QgiU/PQTCnftgqVLF+gsltqXVRQUb94MW0YGIEmIvfhiWHr3Dn2bigJbTg4gBGKGDUP0oEGQDU0zA7HWQizXKmDvIC3EfCkC2J+rzt+yOQOw+lShSBAQqP21iA/zae/lc4Kwc4R65SERUUfmUoCc8uoqv9M+7ccK65iHSoJAuLH9zCMR7OQmJwYnantcSj1z6LTx+Y1kSa3QCTcCfeKAQYkCg5KAAQmApWl+7SAiIqJ2iiFLcAxZQsCQpWMSbjcKduxA6f79COvZs87AQygKSr7/HtbjxwFJQsy4cQjr06dR23WUlMBRVITIfv0QN3IkDJGRjX0KAapcAjlVagsxSQIiO0gLMV9WJ/D9KTVw2ZcNCEgINwgkR1fPk6Jddd0tCgjjL5xERI1idVaHL5k+87+cLgUqncG/ewxyCBOVB2vP08CqDwYfRNTStEDHXkdFXlNU59jd9Qc6siTQKxYYlAgMShIYlKhWHHawXxOIiIioDgxZgmPIEgKGLB2X225H/pYtqEhPR3jPnpB0tZcuCCFQum0bqn79FQAQfeGFCO/fv9HbtZ45A3OnTogbMwZhXbs2aj21jbNmCzGLDh3yAFliUyexjzHzl0gionNFCPX4W26vMVeIDtDJLT06IqL2RQhPoOMTupRYgUP5wMF8CQfzgfzKwB+EY8wCAxOBgYlq6NKf1S5EREQdGkOW4BiyhIAhS8fmLC9H3ubNsOXkIKxnzzoPJEIIlO3cicpDhwAAUWPHImLQoEZtVygKbFlZkPR6xAwfjugBA+oMeULV0VuIERERERERUFAJHNRClzzgaGFgK0dZEugdCwxK8rQZSwS6sNqFiIiow2DIEhxDlhAwZCF7QQFyN26E22qFpZ6qEiEEyvfsQcWBAwCAyJEjEXneeY3etqO4GM7SUkT174/YESOgDw9v9LqCYQsxIiIiIiLSONzAscLq4OVQHpAfZJ6tGLPwazHWL0Gdl4qIiIjaH4YswTFkCQFDFgKAqjNnkLdpEyS9HqaEhDqXFUKg4qefUP7jjwCAiGHDEDl8eKMPQm6bDdasLFi6dkX86NEwd+rUqPXURmshllOloMyh/nLUUVuIERERERGRv7xK4GBedbXLsSLAVaPaRScJpMYBA32Cl84RrHYhIiJqDxiyBMeQJQQMWUhT/uuvyPv+exhjYmBowL5Qvn8/yvfsAQBEDBmCyFGjGn0gEm43rJmZ0JnNiB05EpF9+0KSm7Z5PVuIERERERFRfRwu4GiRT/CSDxQGqXaJNYvqFmNJQL94dS4uIiIialsYsgTHkCUEDFlII4RA8Y8/onj3bpi7dIHOYqn3MRUHD6Js504AQPjAgYgaO/asDkb2ggK4KysRNXAgYkeMgM5sbvS6amN1CWSzhRgRERERETWAEJ5ql3zgUJ6EX/LVlmNuEVjt0iceapsxT/CSFM5qFyIiotaOIUtwDFlCwJCFfCkuFwq3b0fpwYMI69EDssFQ72MqjxxB6bZtAICwfv0QfeGFZ3VAclVVwZaVhbCePRE/enS97csaQwiBUgeQXaWg1A5YDGwhRkREREREDWN3Ab8WVgcvB/OBImvg7xLxFoGBWrVLolrtYmS1CxERUavCkCU4hiwhYMhCNbntduRv2YKK9HSEp6Q0qG1X1bFjKPn+e0AIWFJTETNu3Fm1+1JcLljPnIE+MhJxo0YhonfvZjnIsYUYERERERGdLSGA3Ao1dNHmdjleFFjtopcF+sSp1S4DkwQGe6pdiIiIqOUwZAmOIUsIGLJQMM7ycuRt3Ahbfj7CevRo0AHGmp6O4s2bASFgTklB7IQJZxW0CCFgz8+H22ZDzJAhiDnvPOhMpkavry5sIUZERERERE3J5gKOFlbP7fJLHlBiC/wdIyFMrXIZlKT+3SceMOpaYMBEREQdFEOW4BiyhIAhC9XGXlCA3LQ0uG02WLp2bdBjrCdPonjTJkBRYE5ORuykSZB0Z/cbgquiArbcXIT36oX40aNhjI09q/XVhi3EiIiIiIiouQgBZFcAhzyhy8F8tdpFqVHtYpB95nbxBC+JrHYhIiJqNgxZgmPIEgKGLFSXylOnkLd5M2SjEab4+AY9xnbmDIo2bAAUBaZu3RA3eTIk/dk1HlacTlSdOQNjbCziRo5U25g100GPLcSIiIiIiOhcsDo9c7t4gpdD+cGrXRLD/Od2YbULERFR02HIEhxDlhAwZKH6lB05gvzvv4cxLg6GyMgGPcaelYWiDRsgXC4Yu3RB3JQpkA2GsxqHEAK2nBwItxsxQ4ciZujQs15nXdhCjIiIiIiIziUhgOzy6rldfskD0ouDV7v0S/DM7ZIoMCgJSAhroUETERG1cQxZgmPIEgKGLFQfIQSK9+1D0Z49sHTtCp3Z3KDH2XNzUbR+PYTTCWNSEuKmToVsNJ71eJxlZbDn5yOiTx/Ejx4NQzPut2whRkRERERELcnqBI4UeIKXPLXNWJk98PeRpHD/uV1S4wADq12IiIjqxZAlOIYsIWDIQg2huFwo3L4dpb/8grCePRtcQeLIz0fhunUQDgcMCQmInzYNchNMXq84HLCeOQNjYiLiR41CWHLyWa+zLi5FoMAqkMMWYkRERERE1IKEADLLfVqM5QHpJYHVLkadQF/P3C6DPcFLHKtdiIiIAjBkCY4hSwgYslBDuW025G3ZgsqMDHVOFFlu0OOchYUoXLsWit0OfVwc4qdPb3A1TF2EosCanQ1JkhAzfDiiBw6EfJZzv9TH6hLIqRIosAlIUMMWthAjIiIiIqKWVKVVu+QBv3jmdikPUu3SOUJgYI1qF33Dfq0jIiJqtxiyBMeQJQQMWSgUzrIy5G7aBHtBAcKSkxt84HEWF6NwzRooNhv0MTFq0BLWNJdROUpK4CwqQkS/fogbObLB88Y0ll8LMQdg0bOFGBERERERtR5CAGfKqqtdDuYDGcWAeqlYNZOuem6XQZ65XWItLTRoIiKiFsKQJTiGLCFgyEKhsuXnI3fjRih2OyxdujT4ca7SUhSsWQOlqgq6qCgkzJgBXXh4k4zJbbfDmpkJc+fOiB81CpauXZtkvXWp2UIswgAYdTwQExERERFR61PpAA4XAIc8c7scygfKHcGrXQYlqaHL4CSgdyygY7ULERG1YwxZgmPIEgKGLNQYlSdPIm/LFshGI0zx8Q1+nKu8HIXffgt3ZSV0ERGInzED+iaqPBGKAmtmJmSjEbHDhyOqf39Iuuaf6dHqEsitEshnCzEiIiIiImojFAGcKQUO5nuqXfKAkyWB1S5mvUC/eHiDl0FJQMzZd38mIiJqNRiyBMeQJQQMWaixyg4fRv7338MYHx9Siy5XRQUK16yBu7wcclgYEi69FPom3PfsRUVwlZYiasAAxI4cCX0TtSWrC1uIERERERFRW1fhAA7ne4IXT7VLpTPwd5qukeqcLgM9c7uw2oWIiNoyhizBMWQJAUMWaiyhKCjetw9Fe/fC0rVrSJPZu6uqULhmDVylpZAtFsTPmAFDTEyTjc1ttcKalQVL9+6IHz0a5qSkJlt3XdhCjIiIiIiI2gtFAKdL/ed2OVkS+PuNWS/QPwEY7Kl2GZgIRLPahYiI2giGLMExZAkBQxY6G4rTiYLt21F26BDCevSAbDA0+LFuqxWFa9fCVVwM2WRSg5a4uCYbm3C7UZWZCb3FgriRIxHRpw8k+dxcXsUWYkRERERE1B6V29V5XQ55QpdD+UBVkGqXblFqlYvWYiwlhtUuRETUOjFkCY4hSwgYstDZcttsyNu8GZUnTyI8JSWkIEOx21G4di2chYWQjEbET58OY0JCk47PXlAAd2UlogYNQuzw4SFV3JwNrYVYTpWCEgdg1gFherYQIyIiIiKi9sOtAKdK/VuMnSoN/J3HohcYkAgMTGS1CxERtS4MWYJjyBIChizUFJxlZchNS4OjqAiW5OSQDkiKw4HCdevgzM+HZDAgbupUmDp1atLxuSorYcvJQVjPnogfNQqmJg5y6tw2W4gREREREVEHUmbX5naRcDAPOFwQvNqlu1btkqRWu/SMZrULERGdewxZgmPIEgKGLNRUbHl5yN24EYrDAUuXLiE9VnE6UbR+PRy5uZD0esRdcglMIa6j3m24XLCeOQN9VBTiR41CeK9e5/TA6dtCDACi2EKMiIiIiIg6ALcCnNTmdslT24ydKQv8XSjMIDAgARjkM7dLpKkFBkxERB0KQ5bgGLKEgCELNaXKjAzkbdkC2WyGKcT5VRSXC8UbNsCelQXodIibMgXmbt2adHxCCNjz8qA4HIgZMgTRQ4dCZzp3P7WzhRgRERERERFQalPnczmYr7YYO5wPWF2Bvxf1iFbDlkFJatVLzxhA5q9PRETUhBiyBMeQJQQMWaiplR48iMLt22GMj4c+IiKkxwqXC0WbNsF++jQgy4ibNAnmHj2afIzO8nLY8/IQ0bs34kaPhjEmpsm3URethViuTcDmYgsxIiIiIiLq2NwKkFHiqXbJV6tdMoNUu4Qb1LldtDZjAxOACFa7EBHRWWDIEhxDlhAwZKGmJhQFxXv3omjvXli6dQt5onnhdqN482bYTp4EJAmxEyfCkpLS5ONUnE5UnTkDU1wc4kaORHgzbKM+bCFGREREREQUXIlW7eJpMXakALAFqXbpGeOZ2yVRndslOZrVLkRE1HAMWYJjyBIChizUHBSnEwXbtqHsyBGE9egBWa8P6fFCUVCydSusJ04AkoSY8eMRlpra5OMUQsCWkwOhKIg97zxEDx4M2WBo8u3UNwathVipAzCxhRgRERER0f+z9+dBct/3nd///H6/fff03PcMZgaYAUBSvAkClKyVtFpJlKWSy7Y2lnftpbLJ7q9y2Dm8Vd6t2mQTJ6m4arVxKT5iJ5t47a1QsTaKVIw3a1GyKIKUKAIkAIIHSBAXQYAgMEdP39f3+Pz+6LkANED0YGZ6jtejamoGPT39fQ8wmO7+vvr9fovcxA/g/DycmoG3F4KXK/mbnze1RRZ3u9TDl3v6oC3SgoJFRGRLUMjSmEKWJihkkfXilctMv/ACpfffJzkxgWXbTX29CQKyP/sZpTNnAOj4xCdI7tu3HqXi5nJUZ2dJ7d1L92OPEU6l1uU4t+MFhrmK4WpZI8RERERERETuxHx5ebfLqWl4d+7mbhcLw3gn3Ne/0O3SB6PqdhERkQUKWRpTyNIEhSyynmrZLNM//jG1+XkSq9itYowh+/LLlE6fBqDj0CGS99671mUC4FerlD/4gFhfH90HDpAYHV2X43yUime4WjLMLowQS2mEmIiIiIiIyB3xAjifrne7LAYvVws3P59KRQz3Lu516YN7eiGpbhcRkR1JIUtjClmaoJBF1lvl2jWuPf88xveJDQw0/fXGGHKvvkrxrbcAaD9wgLb771/rMuvHCgLKV65gOQ5dDz1E+733Nj3qbE3q0AgxERERERGRNZEureh2WdjtUvNv7naZ6OK63S6j7aCnYCIi259ClsYUsjRBIYtshMKFC8y8+CJOIkGkq6vprzfGkD9xgsLrrwOQeuQRUg89tNZlLqnNz1Obn6d9/366H32UUFvbuh3rdvyg3tGiEWKyFRljMIAx1N+v/NhAcMOfG10nZEPEhrADjh7oiIiIiMga8AI4t9jtMm3x9swtul2i5rrQ5Z5eiG/sCk8REdkAClkaU8jSBIUsslEyb73F3MsvE+3rI5RMruo28idPkj9xAoC2Bx8k9cgj6/bLz69UKH/wAfGhIboPHCA+NLQux7kTN44Qa4vohLOsjaUghAaBx8L74BYBiKF+oQEsrn/PwseWtfB+8eOFPy/Ov7YBx17x3rJwLFjMEoueoeJDza/XYVkQtpffNEpPRERERNbCXGk5dDk1A+/Oghtc/1jTtgy7O+He/uXgZSSlbhcRka1OIUtjClmaoJBFNooJAuZefZXMa68RHx3FiUZXdTuFN98k9+qrACTvu4/2xx9ft1+AJggof/ABdiRC96OPktq3D8u21+VYH1mLRojtaIthSHCLIOTGz3HDn1eGH4sWL1sZeCyFIisDkYXrONbCe9vCAWwbQlb9Z3AxOFl8W7wN21r++oaX3cHPrxsYqj5UfCh7hoJbD17coP692QvBS8RZrkdERERE5G64/vXdLqdmYLp48+PMjujybpf7+mC/ul1ERLYchSyNKWRpgkIW2UiB6zLz0kvkT58mMT6+6n0nxbffJnvkCACJ/fvpeOKJdf0lWJ2bw8vnab/3XroeeYRQPL5ux/oo9RFicLUcUPYgpRFim8aN47FuCkRu+BzcHIxA466QlUEI1opAZEWnyFIIYi12h1g49uLl1wchix9bK27LvuXHm+vnyxhDLWApeCm6hqJbv8wN6tdxFjpdIgvfvx4kiYiIiMjdmi3BqWl4e8birWk4M9e422VPF9y32O3SB0PqdhER2dQUsjSmkKUJCllko3mlEtMvvkjp/fdJTkysujOk+O67ZF96CYD41BSdn/jEunaZeKUSlatXSYyO0n3gALG+vnU71p2oePVdLbNljRBrRqM9IbfsDmkwNgtu3RWy+Ne/1LHBzUGIbV3fFRKyrBXjsqybwo+bgpAVl90YmuzkBwLGLHe7VHwouAElr/4KRG/hH2tpv4td/7sWEREREbkbNR/Ozi10u8xYvD0NM6WbH2d2xha6XRZGjO3vhdjqXm8oIiLrQCFLYwpZmqCQRVqhlskw/fzz1DIZErt2rfp2SufOkfnJT8AY4nv20PnJT65r0BJ4HuUPPiCUTNL96KO0TU62bHwY1E8s51z4sBSQrW6fEWK3W5h+u3FZKy+7MQhZ6g5ZuSOE60OQlSOtrusKsayFQKQ+IsvGujkEWRl6cPNly0HJ1v632Up8Y6h6i8GLIe9qv4uIiIiIrK+Z4vUjxs7eottlshvuWwhe7u2HoTZ1u4iItIpClsYUsjRBIYu0SvnqVaaffx4TBMQGBlZ/O++9x/zhw2AMsfFxuj71KSzHWcNKb1aZmcEvlej42MfoevjhVe+XWSutGCHW1ML0WwQhcP1oLFZ8fMcL063lcViLC9MXx0PdKvBoFH4oCNkZ7nS/y+KbfhZERERE5G7UPDi7YrfLWzMw16DbpStmuKcPOmL1F89FQ4vvzYqP7+B9qN7BLSIid04hS2MKWZqgkEVaqXDhAtMvvkgokSDS1bXq26lcukT6xz+GICA6Okr3Zz6Dtcp9L3fKKxapfPghiYkJeg4cINrTs67HuxMVz3CtbJhZMULMBgJuMwqL24/LujH8WBmIWCsCj+vGYi2GGLA0CmvlwvTFPSG3Wph+U/jR6DLd6ckaaLjfxTPUfO13EREREZG1ZwxML3S7vL3Y7ZIGL1i7x5iOZW4KXhY/jjj1UWWN398i0LnNZY4CHRHZBhSyNKaQpQkKWaTVMm++ydyRI0T7+gglk6u+ncoHH5B+7jnwfaLDw3R99rPY6xy0BJ5H+dIlwh0ddB84UN8x0+JfxitHiOVry5cvBSHcEIhwdwvTb788XXdMsvXcbr+Lv/CIwdF+FxERERFZI1UPzszVw5aSC1XPouZDxePW7xfG4ta8+guGqh4YNv5xacg2HxHcQOSmkObOunNuvC0FOiKyXhSyNKaQpQkKWaTVTBAw98orZE6eJD46elejt6offkj6Rz/CeB6RgQG6P/c57HB4Dau9mTGG6vQ0Qa1G5wMP0PnAA9iRyLoe8074gaHoXb+EvdH+kPrndQcicju32+/iNxgzpoBRRERERDaSMfUXBS0GLh/1fjmwsW4b3DS+jdY81g2vDHTutOPGab47R4GOyM6jkKUxhSxNUMgim0FQqzHz0kvkz5whMTZ2Vx0otelp5n74Q4zrEu7ro+dzn8PegJ0pbj5PdXqatj176D5wgEhn57ofU0RaxwvMUrfLyv0uXlAfwaf9LiIiIiKyHRlTD2huCl8aBTI3hDMffZ3r39daGOjcOri5VUhj6iFNCGKL7z9iRFs0tLx3VERaRyFLYwpZmqCQRTYLr1Ri+oUXKF2+THJ8HMte/UtHarOzzP3gB5hajXBPDz2f/zx2LLaG1TYWuC6lS5eI9vTUx4eNja37MUVkczDG4AbLY8ZKrqGwsN/FC+r7jLTfRURERETkzgWLgc5C8FLzPmKM2tJ766bunMoNX39jqNPKQGexO2cxnFnZXRNrGNyYjwxwbuz4iTgKdERuRSFLYwpZmqCQRTaT2vw81w4fxstmiY+O3tVtuek0cz/4AUGlQqiri54vfAEnHl+jSm/NBAGVq1fBGDoffJCOj31s3UeWicjmpP0uIiIiIiJbw8pAp7l9OLfo0LnVew/coDWP+yO3Gp92y+6cBiPXbnG9mANdcY1ak61JIUtjClmaoJBFNpvyhx8y/fzzGCDW339Xt+VmMsw9+yxBuUyoo4OeJ5/ESSTWptCPOnY2SzWdJjU1RfdjjxFOpTbkuCKyud2436XgGsoL+10CU9+TFHa030VEREREZLvygxtGrn1EKNPsyLWVHTsbGehEHcPuLpjshsluw2Q37OmCuF53KpucQpbGFLI0QSGLbEaF8+eZfvFFQm1td73bxMvlmHv2WfxiESeVoufJJwm1ta1NoR/Br1Ypf/ABsb4+ug8eJDE8vCHHFZGtRftdRERERERkPSwGOnfanbM8Vs267norg5xGt1HxIDA3P0+xMAyn6sHLnm7DVHf9494E6GmNbBYKWRpTyNIEhSyyWWXeeIO5I0eI9vcTSibv6ra8fL4etBQKOMlkPWjZoJ93EwSUr1zBchy6Hn6YjnvvxXKcDTm2iGxNN+53KbuGvPa7iIiIiIjIJuUHcCUPZ9NwPm1xLg3n5mGu1Ph5SipaD1z2dC13vYx11Lv6RTaaQpbGFLI0QSGLbFYmCJh75RUyJ08SHx3FiUbv6vb8YpHZZ5/Fz+WwEwl6n3ySUEfHGlX70Wrz89QyGdr376f70UfvOjgSkZ3lxv0uRS+g6Nb3u3gLY8a030VERERERDaTTIV64JKGcwvhy/vZxl0vIdsw3gmTK4KXPd3Qfneng0Q+kkKWxhSyNEEhi2xmQa3GzEsvkX/3XRLj49ih0F3dnl8qMfeDH+BlMtixGD1PPkm4q2uNqr2D41cqlK9cIT40RPeBA8QHBzfs2CKy/dzJfpeQsxy8aL+LiIiIiIi0Ws2Di9kbul7SUHQbP1/pS17f9TLVDYOp+lhlkbWgkKUxhSxNUMgim51XLDL9wguUP/iAxPg4lm3f1e35lUo9aEmnsaNRur/wBSI9PWtU7Uczvk/5gw9wolG6HnuM1N69d/09iYgs0n4XERERERHZaoyBawWWxowtdr1cLTR+vhIPGfYs7HeZ7DZMdsFEF8Tu7rW5skMpZGlMIUsTFLLIVlBNp5l+/nncfJ7E6Ohd315QrTL3wx/izs5ihcP0fOELRPr61qDSO1edm8PL5+m47z46H36YUDy+occXkZ1B+11ERERERGSrKtTgwny96+Vc2uJ8uv5nN7j5OYttGUbbl4OXPV0w1Q3diRYULluKQpbGFLI0QSGLbBXlK1eYfv55jGUR6++/69sLajXSf/3X1KansUIhuj//eaIDA2tQ6Z3zSiUqH35IYmyMngMHiPb2bujxRWRn0n4XERERERHZqvwALmUXu16Wx41lKo2ft3TGzELwstz1squj/pxHBBSy3IpCliYoZJGtJH/uHDMvvki4vZ3wGiytD1yX9HPPUfvww3rQ8tnPEh0eXoNKm6jB8yh/8AGhZJLuxx6jbXJSv9BFZMP5i8GLp/0uIiIiIiKytRgD6TJLgcu5tMX5+XoYY7j5uUvEMUx0rgheumF3F7RFNr52aT2FLI0pZGmCQhbZSowxZN58k7kjR4gNDBBK3H3Pp/E80j/+MdUPPgDbpvuznyW2BiPJmlWZnsavVOj42MfoeughnGh0w2sQEVlpcb9L1a8/6Cy49SDG1X4XERERERHZAsouvJe5Png5l4aK1/i5y2CbYWpx3Fh3fdxYfxL0VGd7U8jSmEKWJihkka3G+D5zr7xC5vXXSezahR25+5cZGN9n/vnnqVy6BLZN16c/TXx8fA2qbY5XLFK5epXkxATdBw4Q7e7e8BpERG5l5X6Xqg8l7XcREREREZEtJjDwYX45eFnsfpkpNX7u0hap73dZ2fUy3gkRZ2PrlvWjkKUxhSxNUMgiW5FfrTLz0ksUzp4lOT6O5dz9PZsJAuZfeIHKe++BZdH1N/4G8T177r7YJgWuS+nyZSKdnXQ/9hjJiQn9gheRTUv7XUREREREZDvIVljqdDmXtjifrnfB+Obm5zCOZRjrhMmu5a6XyW7ojG142bIGFLI0ppClCQpZZKvyCgWuvfBCfXH8+Pia/BI0QUDmpz+lfO4cWBadP/dzJKam1qDaJuswhsq1axjPo/OBB+i8//416dgREdkIi/tdqj6UPe13ERERERGRrcn14f1sPXg5uxC8nEtDvtb4OUxPot7pshi+THXDUKr+wjPZvBSyNKaQpQkKWWQrq87NMX34MG4+T2KN9qgYY8j+7GeU3n0XgI6Pf5zk/v1rctvNcnM5qrOztE1O0v3YY0Q6OlpSh4jI3Vq536XsGfLa7yIiIiIiIluQMTBTYmnM2OLIsSv5xs9hYiHD7q7l4GWyG3Z3QTy8wYXLLSlkaUwhSxMUsshWV7pyhennnwfbJtbXtya3aYwhd/QoxbffBqD94EHa7rtvTW67WUGtRvnyZSJ9ffQ89hiJXbtaUoeIyFq61X4XdyF40X4XERERERHZSkou9U6X+eVxY+fnoebf/DzGwjDSDnu6Yaq7vvNlqht6EqCnPRtPIUtjClmaoJBFtoP8mTPM/PSnhNvbCa9Rt4cxhvyxYxTefBOA1KOPknrwwTW57aZrCQIqV68C0Pnww3Tcey92KNSSWkRE1svK/S5VHwq32O+yFLxov4uIiIiIiGxifgCXc/Xw5WzaWtr5ki43fi7THq13ukx1w56FrpexDghp3Ni6UsjSmEKWJihkke3AGEPm9deZO3qU2OAgoURizW63cPIk+ddeA6DtoYdIPfxwy37h1jIZ3HSatn376H70UcKpVEvqEBHZKNrvIiIiIiIi2818ecW4sfn6uLFLWQjMzc9nwrZhvJP6rpeFrpfJbkhFN77u7UohS2PN5Aab7qXgf/RHf8Q3vvENrl69ykMPPcQf/MEfcPDgwVteP5PJ8E//6T/lu9/9Lul0mvHxcb75zW/ypS99aQOrFmkty7LovP9+/FKJzBtvkBgbww7f/XBLy7JIPfwwOE69q+XkSfB9Uo891pJfupHOTpx4nPzp07iZDD2PP058eHjD6xAR2SiOZZEIQSIEXdH6791b7XcpexAYo/0uIiIiIiKyqXXF4cBI/a0+LBmqHryXMTd1vZRci7NpOJuG+svM6gaSZmHc2HLXy2Bbfd+lyEbbVCHLt7/9bX7rt36LP/mTP+HQoUN885vf5Mknn+T06dP09/ffdP1arcbnP/95+vv7+c53vsPIyAgXL16ks7Nz44sXaTHLceh69FG8UonCuXMkJyawHGdNbjv1wANYjkPu6FEKb76J8X3aDx5syYk7JxoluXs3lStXuPb883Q+9BAd99yzZt+riMhmF7It2mxoCwNYt9zvUvOh6AIY7BWhS0j7XUREREREZJOJhmB/b/1tMXgJDFwt1IOXc2lrqfvlWtFaeIOfXYLF8CURXu50mVwIXiY667ctsp421biwQ4cO8fjjj/OHf/iHAARBwK5du/jN3/xN/sk/+Sc3Xf9P/uRP+MY3vsE777xDeJWv2te4MNlu3Hye6RdeoHL1Konx8TU9kVY8fZrsz34GQGLfPjo+/vGWnqirptN4uRzt+/fT9eijazYmTURkq7txv0vRCyhov4uIiIiIiGwD+SpLnS6L4cvFDLjBzc9rbMuwqwP2dMFU93L3S1d84+verDQurLEtuZOlVquRSCT4zne+wy/+4i8uXf71r3+dTCbDM888c9PXfOlLX6K7u5tEIsEzzzxDX18ff/fv/l3+8T/+xzi3eFV7tVqlWq0u/TmXy7Fr1y6FLLKtVGdnuXb4MF6xSGJkZE1vu3T2LJmf/hSMIT45SefP/RyW3boNZH65TPnKFeIjI/QcOEBsYKBltYiIbGaBuX7M2OJ+F9cHX/tdRERERERkC/MCeD/LUtfL2XT942y18fOa7vjNXS+j7fUXo+00Clka25I7WWZnZ/F9n4EbTpAODAzwzjvvNPya8+fP89xzz/Frv/Zr/Lt/9+84e/Ys/8l/8p/gui7/zX/z3zT8mt/93d/ld37nd9a8fpHNJNrbS++hQ0y/8ALV2Vmivb1rdtuJqSksx2H+hRconzuH8X26PvWplgUtTjxOcmKC8gcfcO255+h69FFSe/e2NPgREdmMbO13ERERERGRbSpk17tV9nTB5ybrPQXGwFzJcO6GrpcPcpAuW6TL8OoVWBw3FnEMu7uWu14mu2FPNyTufu2xbHObppPlypUrjIyM8NJLL/Hxj3986fLf/u3f5vDhwxw5cuSmr9m3bx+VSoULFy4sda783u/9Ht/4xjf48MMPGx5HnSyyk+TffZeZl14i3NFBeI1/vssXLzJ/+DAEAbFdu+j6zGdavhelOjuLXyzSft99dD38ME4s1tJ6RES2mpv2uywEL64PblCfjOxov4uIiIiIiGxhZRcuLAYv8/Xg5cI8VLzGz22GU4tjxpa7X/qTsF2eCqmTpbEt2cnS29uL4zhcu3btusuvXbvG4OBgw68ZGhoiHA5fNxrs3nvv5erVq9RqNSKRyE1fE41GiUaja1u8yCbVtncvXqlE+pVXsMNhnPjaDZyMj49jffazpJ97jsqlS6Sfe47uv/k3sUKt+7US7e3FSyTIvP46tUyGngMH1rSLR0Rku7Msi4gDkaWHVlZ9v0sAFe/6/S5lt77fBQwh7XcREREREZEtIh6G+/rrb/WXkoEfwIf5xa4Xa6HzBWZLFlfyFlfy8JOLy891UpF68DLZDZNd9a6X8U4It/b1x9IimyZkiUQiPPbYY/zoRz9a2skSBAE/+tGP+I3f+I2GX/NzP/dzfOtb3yIIAuyF0UDvvvsuQ0NDDQMWkZ3Gsiw6H3gAr1gk++abJMbHscNr1+MYGx2l53OfI/3cc1Q/+IC5H/2I7s9+dk2P0axQIkFifJzy5ctcnZ8nOTlJas8ehS0iIqtkWRYxB2JLTxacW+53KbjgG4MF2Fb9lV32wtviZbYFNoufUyAjIiIiIiKt59gw2lF/+/TE8uCnbMUsBS6LXS/vZyBfszh5FU5ehcVxY45lGO9kqetlsrs+eqxDg1a2vU0zLgzg29/+Nl//+tf5X//X/5WDBw/yzW9+k3/zb/4N77zzDgMDAzz11FOMjIzwu7/7uwBcunSJj33sY3z961/nN3/zNzlz5gz/wX/wH/Cf/Wf/Gf/0n/7TOzpmM20/IluVX60y8+KLFM6fJ7l795rvK6leu0b6r/8a47pE+vvp/tznsFscdBpjcLNZaul0fW/L+DipqSliAwPa1yIisg5W7nepeIZaUL/MM/UllAYITP3NGAiov198IGpR/9i6bSijgEZERERERFqr5sPFTD14OZ+2OJuG8/NQqDV+jtKXWNH1shC+DKfqz282A40La2xLjgsD+NrXvsbMzAz/7J/9M65evcrDDz/M97//fQYGBgB4//33lzpWAHbt2sWzzz7Lf/lf/pc8+OCDjIyM8J//5/85//gf/+NWfQsim5ITjdJz6BB+uUzp0iUSY2Nr+kszOjBAzxe+wNwPf0htepq5H/yAns9/HruFo/ksyyLS2UmksxOvUCD/7rsUzp8nMTJCat8+4sPD2C0cbSYist2EbIs2G9rCsPhKrkXGGALqLfiLQYvPwvuFy3wDAQYvqIcybmDwVwQ0K7/WLNwmLIc00CiIqX+81FWz9LGeOIiIiIiIyOpEHNjbU39bfEZiDEwXV3S9pC3OzcOHeYuZksVMCY5chsXnSrHQ8n6XxeBldxfEdKpqS9pUnSytoE4W2Umqs7Nce/55/HKZ+PDwmt++OzfH3A9+QFCtEurupucLX9hUy+f9SoXqzAzG94kPD5Pat4/E6CiO9jSJiGxaxpjlEMYsBzI3/jkw9a4Zd0UHjR/UO2aWumfMckfNUufMwnGsFUGMAhoREREREVkLxVq9y2UpeEnDhXlwg5ufV1gYRtvrwcuebsNUd330WE+8/pxkvaiTpbFmcgOFLApZZIcpXbrEtcOHsSMRoj09a3777vw8c88+S1CpEOrsrActicSaH+duBLUa1dlZgmqVaG8vqf37SY6NEUomW12aiIisIWNMgzDm5veBqY83843BDerhjG+WA5rFkKbeQXPziLNGe2esBiGNnrCIiIiIiIgfwOUc9TFjC+PGzqUhU2n8fKEzdnPXy64OCK3RNHyFLI0pZGmCQhbZiXKnTzPz0ktEuroIp1JrfvteNsvss88SlEo47e30PvkkziYMMALPo5ZO4+XzRLq6SO3dS3L3biIdHa0uTUREWmxlQHNzKLPcTeMHix00Bj+g3kGz2DGzOOKMhWDGLHfPLD4Av10oszK80ZMdEREREZHtLV2Cczd0vVzOQWBufi4Qtg0Ti8FLVz142dMFbasY1qKQpTGFLE1QyCI7kTGG+ddeY/7VV4kNDeHE42t+DC+fZ+7738cvFnHa2uh58klC6xDorAUTBNTm53GzWcJtbST37CE1OUmkp0d3LiIi0rTghhFnt+qm8YP6DhrXXB/QrBxvFrDcPXPdPdKKzplGoYwCGhERERGRra/iwXuZevCy2PVyYR5KbuPH+INty10vU92GPd0w2Hb7cWMKWRpTyNIEhSyyUwWex9zLL5N96y0S4+PY4fCaH8MrFJh79ln8fB47kaD3i18ktIn/nxlj8HI5anNz2PE4ybExUlNTxAYHsew16sEUERG5jeAOR5x5CwGNZxbeN9g/sxjQwPUjzmgQxCx+vPLPCmhERERERDafwMDV/MK4sXlrofMFpouNH7snw/WwZWXXy0QnREL1zytkaUwhSxMUsshO5lerzLz4IoULF0hOTKxLkOCXSsw9+yxeNosdj9Pz5JOEOzvX/DhrzSsWqc7OYtk2idFRUlNTxEdG1iWMEhERWQvBHYw4uzGgWdxB81EBzeKIs+X9MrcIaZY+pydnIiIiIiIbKVeF8+kV48bm4WIGvODmx+a2ZRjrYGG/i2Gy2/Dr99nYth7HL1LI0gSFLLLTufk8155/nursLIldu9YlsfbLZeZ+8AO8+XnsaLQetHR3r/lx1oNfqVCdmYEgIDowQPu+fSTGxnCiqxhyKSIisgkZY5ZCFt/Ud8n43LB/JoCA5a4Zb2EXjRcs7J9ZOeaM5RFncENAc8tQRgGNiIiIiMhac324lL2+6+VsGvLV6x9zd0QNr/3/UMiygkKWJihkEYHKzAzTzz+PX60SHxpal2ME1SpzP/gB7twcViRCzxe+QKS3d12OtR4C16U6O0tQLhPp66N93z6SY2OE2tpaXZqIiEjLLAY0frAilGHhfbAiuFkIaNyFgMZfEdD4KzpoFgObxWBm0c1BzPIeGuu6j/WkUERERETkdoyB2RJLY8ZOz1kkw4Z/+WVLj6dXUMjSBIUsInXF999n+oUXsCMRoj0963KMoFZj7oc/xJ2ZwQqH6f7c54gODKzLsdZL4HnU0mm8fJ5wVxepqSnadu8msgVGoImIiGwmxpjb7p1ZHnVW75pZDGi8YDG4uX7E2Y0BzeLTQ8tqMOYMBTQiIiIiIqCdLLeikKUJCllEluVOn2bmpz8l0t1NOJVal2MErkv6r/+a2rVrWKEQ3X/rbxFdp+6Z9WSCgFomg5vJEE4mSe7ZQ9vkJNHeXt0hiYiIrDOzYv/M7YOahb0zK/bPeKbxiDPM9d0zjg0ha8V7BTEiIiIisg0pZGlMIUsTFLKILDPGMH/iBOnjx4kPDeHEYutynMDzmH/uOapXroDj0P3ZzxIbGVmXY603YwxePk91dhYnFiMxNkZq717ig4NYtt3q8kREROQGiwHN7UIaNzBUfEPZYymc8VeEMI5dD11WhjB6QioiIiIiW5FClsYUsjRBIYvI9QLPY/bll8mdOkVibAw7HF6X4xjPI334MNVLl8C26f7MZ4iNja3LsTaKVyxSnZ3Fsm3iw8Ok9u4lMTq6bn+HIiIisr7MilFli28131DxoeIZXAOeXw9gFlkWhBZDGAUwIiIiIrLJKWRprJncILRBNYnIFmGHQvQcOIBfKlG6eJHExMS6dGRYoRDdn/kM8y+8QOXiRdI//jFdn/408YmJNT/WRgklk4SSSfxqlfKHH1K6dInYwADt+/aRGBtbt84gERERWR+WZRG2IHzdQ6HlJ55eYK4LYNwAyl69C6YWQMVb7I6ppzD2is6XxSDG1hNZEREREZEtTSGLiNzEicXofeIJrlUqlC9fJr5r17ok2Zbj0PXpT5P5yU8onz/P/OHDGN8nMTm55sfaSE40SmJ0lMB1qc7Ocu2FF4h2d5Pat4/k+Pi67bsRERGRjRWyLUI2xK+7tP6YyV8IYGorApiKZyj7ZuHjBgHMDV0wCmBERERERDY/jQvTuDCRW6pMT3Pt8GGCapX4Oi6nN0FA9mc/o3TmDAAdn/gEyX371u14G834PtV0Gi+bJdzVRWpqirbdu4l0dbW6NBEREWkB3xhcf8UIsgCqvqHs1Ttg/AC8hf0wsDCC7IYuGAUwIiIiIrIWNC6sMY0LE5E1Eevvp/fgQaZfeIFqOk20u3tdjmPZNh2f+ATYNqXTp8m+9BL4Psl7712X4200y3GI9fVhenpws1nSr75K7p13aNu9m7bJSaJ9fboTExER2UEcy8IJwfWDRBc6YMyKEWQLQUzVr3fAVH2o+VDyljtgLOv6/S+OBY6txxUiIiIiIhtFIYuI3FZyfJzuAweYfekl7HB43UZdWZZFxxNPYIVCFN96i+yRIxjfp+3++9fleK1g2TaRri4iXV24uRyZt94if+YMibExUnv3Eh8cxHKcVpcpIiIiLeRYFo4DMQcIL15aD00Cc/0OmJoPtaDeAVP16x0xXgBLwwpuHEFm1ceS6cUdIiIiIiJrRyGLiHyk9v378Usl0sePY4fD67bA3bIs2g8cwHIcCq+/Tu7VVzG+T+qhh9bleK0Ubm8n3N6OVypRvHCB4nvvERsaon3fPhKjo9jh8EffiIiIiOwotmURdSB63Wsybg5gvIURZLWFEWQVv35ZJajvgQGDRX382MoQxlEAIyIiIiLSNIUsIvKRLNum88EH8Uolcm+/TWJ8HDu0Pr8+LMui/dFHsRyH/IkT5E+cqActjzyyLZ/0hxIJQmNj+NUqlatXKV++TLS/n479+0mMja1boCUiIiLby+0CGHNDB4y7GMD4hopXD2CqCwGMod4Fs7j/xVkxhmw7PhYTEREREblbCllE5I7Y4TDdBw7gl0oU33+f5MQElm2v2/FSDz2E5TjkXn2VwuuvYzyP9scf37ZP7p1olMToKIHrUp2b49rhw0R7ekjt3UtyYmLdxrSJiIjI9mdZFhEHIrcIYDxT3/9SWxHAVIJ6AOMudMXcGMAsjh9b7ILZro/RREREREQ+ikIWEbljoXicnieewC+XKV++TGJsbF2P13b//ViOQ/bIEYqnTmF8v763ZRs/ibfDYeKDgxjfpzY/z+zPfkb21ClSU1Mkd+8m2t3d6hJFRERkG7Esi7AFYRsSy5cCKwKYxQ6YhR0wFR8qnsE1UHKXR5BBfefLjV0w2/mxm4iIiIiIZZa2Iu5MuVyOjo4Ostks7e3trS5HZEuoXLvGteefJ/A84oOD63684rvvkn3pJQDiU1N0fuIT69pFs5kYY3AzGWrpNKG2NpITE6QmJ4n29+uEhYiIiLSUF5ilThdvIYip74AxS5f5Bhafca4MYBY7YGw9nhERERFpqZJnsIH7u22da1qhmdxAnSwi0rTYwAA9Bw8y8+KL1ObniXR1revxkvv2YTkOmZ/8hPLZsxAEdH7ykzsiaLEsi0hXF5GuLtx8ntypU+TPniU5NkZqaor40BCW43z0DYmIiIissZBtEbIhft2l9SfmiwHMyreKV98DU/94MYCpJzDWwt6XxfAlZCuAEREREZGtQSGLiKxK2+7d+OUycy+/jB0OE2prW9fjJSYnsRyH+cOHKZ8/j/F9uj71qR0VMIRTKcKpFF6pRPHCBQoXLhAfHqZ93z4SIyPYkUirSxQREREBbh/A+Mbg+svhSy2A6kIAUwug5kPJg2BFABO6oQtGAYyIiIiIbBYKWURk1drvuQe/VCJ9/DjxcBgnGl3X48UnJrAch/SPf0zl4kXSP/4x3Z/5DFZoZ/0qCyUShMbG8KtVKteuUb58mWhfH+3795MYGyMUj3/0jYiIiIi0iGNZOCGIXXfpigBmxQ4YN4CKXx9BVvUbBzCLnS+hhY8dWwGMiIiIiGwc7WTRThaRuxK4LrM/+xm5d94hMT6OvQGBR+WDD0g/9xz4PtHhYbo++9kNOe5mFXgetbk5vGKRSHc3qX37aJuYIJxKtbo0ERERkTUTmOtHkNV8qAWGslcPYDxT3wMTLDzDvWkEmVXfC6NZ4yIiIiLLtJOlsWZyA4UsCllE7ppXLjP9wguU3n+f5MTEhuxKqX74Iekf/QjjeUQGBuj+3Oeww+F1P+5mZoKAWjqNm80S7uggNTlJcvduoj09rS5NREREZF3dGMDUQ5h6AFNZCGD8oL4HBup9M459fQjjKIARERGRHUghS2MKWZqgkEVkbdQyGaaff55aJkNi166NOeb0NHM//CHGdQn39dHz+c9rLwn1BbJuNkstnSaUSJAcH6dtaopYf/+GBGAiIiIim4m5VQDjGyre9QGM4foAxlkxhkwnHURERGQ7UsjSmEKWJihkEVk75atXmT58GOP7xAYGNuSYtdlZ5n7wA0ytRrinpx60xGIf/YU7hJvPU5udxYpESIyO0r53L/HhYSzHaXVpIiIiIi23GMB4AdRuCGCqCzthVgYwsKIDZkUXjE5IiIiIyFalkKUxhSxNUMgisrYKFy4w/eKLhBIJIl1dG3JMN51m7gc/IKhUCHV10fOFL+Bo+ft1/HKZ6swMxhjiw8O079tHfGQEJxptdWkiIiIim5IxBs+s6IBZ2AFTWeiAcQ14/vUdMPbK7peF9zpZISIiIpuZQpbGFLI0QSGLyNrLvPkmc0eOEO3rI5RMbsgx3UyGuWefJSiXCXV00PPkkziJxIYceysJajWqs7P41Sqx3l7a77mHxNgYIf1diYiIiNwxYwz+QgBTWxpDVg9fKr6httAd4xtYfMZtr+h8WXxv60SGiIiItJhClsYUsjRBIYvI2jNBwNyrr5J57TXio6Mb1i3h5XLMPfssfrGIk0rR8+SThNraNuTYW03gedTm5vAKBSJdXaT276dtYoKwfg+KiIiI3DUvuHkPTMWrjyFzGwQw1g37X0K2AhgRERHZGApZGlPI0gSFLCLrI6jVmPnZz8i/+y6JsTHsUGhDjuvl8/WgpVDAjkZJPfooib17tfD9FkwQUJufx81mCadStE1O0rZ7N9He3laXJiIiIrIt+TcEMLUAqgsBTG1hB4xnIFgRwKwcP6YARkRERNaSQpbGFLI0QSGLyPrxSiWmX3iB0qVLJCcmNizo8ItF5v76r/Hm5wEI9/TQ8cQTRPr6NuT4W5ExBjebpZZO48TjJMfHSU1NERsYUEAlIiIiskF8Y67bAeMGLOyAMVRXBDBmcQ/Mis6XxSDG0ckRERERaYJClsYUsjRBIYvI+qplMlx7/nncTIbErl0bdlwTBBTfeYf8iRMY1wUgsXcvqUcfxYnHN6yOrcgrFKjOzmKFQiRGRkjt20d8eHjDupFERERE5GaBuaEDxodaYCh7hqpfD1+8oN4BY1sQtiHi1MMXnTARERGRW1HI0phCliYoZBFZf+UPP2T68GFMEBAbGNjQY/vlMrljxyifPQuAFQ6TevRRkvv3q0PjI/iVCtWZGYzvEx8eJrVvH4kN3LEjIiIiIndmZQBT9aHgGvLuQvgSgAWEHYjY9fBFJ1BERERkkUKWxhSyNEEhi8jGKJw/z/RPfkIomSTS2bnhx69NT5N9+WXcdBqAUFcXHU88QXSDQ5+tKKjVqM7OElSrRHt7Se3fT3JsjFAy2erSREREROQWAmOo+FDxoOgZ8rX6n92g/vmwA1GFLiIiIjueQpbGFLI0QSGLyMbJvPEGc0ePEu3ra8kJehMElN59l9zx45haDYD4nj20HziAk0hseD1bTeB51NJpvHyeSFcXqb17Se7eTaSjo9WliYiIiMhHMKbe2VL2oeQacq6h4kFtMXRZGC8WUegiIiKyoyhkaUwhSxMUsohsHBMEzL3yCpmTJ4m3cOyUX6mQP36c0rvvAmCFQqQefpjkvfdiOU5LatpKTBBQm5/HzWQIp1Ik9+whNTlJpKdHd8YiIiIiW4QxhmpQ73QpeYZczVD2wfXBACG7HrhEHLD1GE9ERGTbUsjSmEKWJihkEdlYQa3GzEsvkXv3XZLj4y1dpl6bna2PEJudBSDU0UHHoUNEh4dbVtNWYozBy+Wozc1hx+Mkx8ZITU0RGxzUvhsRERGRLcYYQy2Aig9lD3K1gJJXHy8WGHBWhC6OTsCIiIhsGwpZGlPI0gSFLCIbzysWmX7hBUoffEByfLylJ+SNMZTPniV37BhBpQJAbHyc9scfJ9TW1rK6thqvWKQ6O4tl2yRGR0nt3Ut8eBg7HG51aSIiIiKySjXfLIUu+VpA0YeavxC6WMvjxRxbJ2RERES2KoUsjSlkaYJCFpHWqM3Pc+3553GzWRK7drW6HIJqlfxrr1F85x0wBstxaHvwQdruv18jxJrgVypUZ2YgCIgODNC+fz+JXbtaNhpORERERNaOFxjKXn2vS94NKLpQ9cG/IXQJKXQRERHZMhSyNKaQpQkKWURap3zlCtOHD2OAWH9/q8sBwE2nyR45Qu3aNQCcVIqOQ4eIjY62uLKtJXBdqrOzBOUykb4+2vfvJzk2RiiZbHVpIiIiIrJGvGC506XgGvKuwfXBM2BZy+PFQhY6aSMiIrJJKWRpTCFLExSyiLRW/tw5Zl58kVAqRaSzs9XlAAsjxC5cIPfKKwTlMgDRXbvoePxxQvo90ZTA86il03j5POGuLtr37iU5MbFp/q1FREREZO34xlBZ6HQpuoZ8zVBdDF2AsANRhS4iIiKbikKWxhSyNEEhi0hrGWPIvPkm6SNHiA4MEEokWl3SksB16yPETp0CY8C2aXvgAdoeeAA7FGp1eVuKCQJqmQxuJkM4mSS5Zw9tk5NEe3t1By4iIiKyTQVmudOl5BlyC6GLG9Q/H3YgakPYVugiIiLSKgpZGlPI0gSFLCKtZ4KAuaNHybz+Ooldu7AjkVaXdB03k6mPEPvwQwCcZJL2gweJjY3pzqdJxhi8fJ7q7CxOLEZyfJy2qSnig4NYtt3q8kRERERkHZkVoUvZM+TceudLLah3uoTs5b0uepwtIiKyMRSyNKaQpQkKWUQ2B79aZeallyicOUNifHzTdYoYY6hcvEjulVfwi0UAosPDdBw6RKijo8XVbU1esUh1dhbLtokPD9O+bx/xkRHscLjVpYmIiIjIBjCm3tlS8Zc7Xco+uD4Yrg9dbJ30ERERWRcKWRpTyNIEhSwim4dXLHLt8GEqV66QmJjYlL/YA9el8MYbFN58E4KgPkLsvvtoe+ghhQOr5FcqVGdmML5PbGCA9n37SIyN4cRirS5NRERERDaQMYZasNzpkncNpYVOF2MWQpeF4EWhi4iIyNpQyNKYQpYmKGQR2Vyq6TTTzz+Pm8+TGB1tdTm35OVyZI8epXr5MgB2IkHHgQPEdu/WHdIqBa5LdXYWv1Ih2t1Nat8+2iYmCLW1tbo0EREREWmRml/vbil7UKgFFH2o+RAYcKzlThfH1mNwERGR1VDI0phCliYoZBHZfEpXrjD9/PNg28T6+lpdzm1VLl0ie/Qofj4PQGRggI4nniDc1dXiyrYu4/tU02m8bJZwVxepqSnadu8mor9TERERkR3PDcxCpwsUvICiC9WF0MVeEbqEFLqIiIjcEYUsjSlkaYJCFpHNKX/2LDM/+Qnh9nbCm3znifE8Cm+9ReH11zG+D5ZF8p57SD38MHY02urytiwTBLjZLLV0mlBbG227d9M2OUm0r093+iIiIiICgBcYKoudLm59xFjNB28xdLEh6ih0ERERuRWFLI0pZGmCQhaRzckYQ+b115l75RViAwOEEolWl/SRvEKB3CuvULl4EQA7FqP9wAHik5O6k7pLbi5HdW4OJxIhMTZGau9e4oODWI7T6tJEREREZBPxjaGy0OlSdA25hdDFXQhdwouhi4Ueo4uIiKCQ5VbWPWQ5cuQIhw4dWnWBm4lCFpHNy/g+c0ePknnjDRK7dmFHIq0u6Y5UPviA3JEjeLkcAOG+PjqeeIJIT0+LK9v6vFKJ6swMlmURHx4mtW8fidFR7HC41aWJiIiIyCYULIYufv0kUra2ELoE9c8vjhcL2wpdRERkZ1LI0ti6hyy2bTM1NcXf+3t/j1/7tV9jz549qy621RSyiGxufrXKzE9/SuHsWZITE1umc8H4PoVTpyicPInxPAAS+/fT/sgj2LFYi6vb+vxqlerMDMbziPb307F/P4mxMRz93YqIiIjIbRizPF6s5BlyNUN1RegSspeDF51oEhGRnUAhS2PrHrJ861vf4umnn+aHP/whvu/zxBNP8Pf+3t/jV37lV+ju7l514a2gkEVk8/MKBa4dPkzl6lUS4+Nb6he+XyySe/VVyhcuAGBFo7Q/+iiJvXuxbLvF1W19getSnZvDL5WI9vSQ2ruX5MQE4VSq1aWJiIiIyBZgTD1kKftQWtjpUvbB9cFQD12iTr3Txd5Cz0NERETulEKWxjZsJ8vs7Cx/8Rd/wbe+9S1efvllIpEIX/ziF/n1X/91fuEXfoHIFhjto5BFZGuozs1x7fnn8YpFEiMjrS6nadWrV8m+/DJeJgNAuKeHjkOHiPT3t7awbcL4PrX5edxslnBHB6mpKZK7dxPdYsG/iIiIiLSWMYZasNzpkncNZQ9qK0KXyEK3i0IXERHZDhSyNNaSxffnzp1b6nA5c+YMHR0d/O2//bd56qmn+OQnP7kWh1gXCllEto7SBx8wffgwluMQ7e1tdTlNM0FA8Z13yJ84gXFdAOJTU7Q/9hhOPN7i6rYHEwS42Sy1dJpQWxvJiQlSk5NE+/v1QEFEREREVqXm17tbyh7kagFlvx66BAacxdDFBsfW400REdl6FLI01kxusGazauLxOIlEglgshjEGy7J45pln+PSnP83jjz/OqVOn1upQIrJDJUZG6Hn8cfxyGXdhqfxWYtk2bffdR/8v/zLxqSkAymfPMv3d71J4+21MELS4wq3Psm0iXV20TU7iJBJkT53iyrPPMn34MKXLlzG+3+oSRURERGSLiTgWHRGLwYTFvk6H+7ps9nfaTKRsOhcGeORdSFcMmaqh5Bm8YE1ezyoiIiJbwF11suTzeb7zne/w9NNPc/jwYWzb5ud//ud56qmn+MpXvoJt23zve9/jH/2jf8Tg4CBHjhxZy9rXhDpZRLYWYwyZkyeZe+UVYoODhBKJVpe0arXpabJHjuDOzQEQ6uqi49AhooODLa5se/FKJWqzsxggPjxM+759JEZGsLfASEsRERER2fy8YLnTpeAGFNx6p4tvwLbqo8UiNoTU6SIiIpuQOlkaW/dxYc888wxPP/00//bf/lsqlQqPP/44Tz31FL/6q79KT0/PTdf/l//yX/Kf/qf/KbVardlDrTuFLCJbj/F9Zo8cIfvGGyTGx7HD4VaXtGomCCidOUPu+HFMtQpAfM8e2g8cwNnCAdJm5FerVGdnMa5LtK+P9v37SYyNEdKoNhERERFZQ/6K0KXkGnKuoeaDZ8Cylne6hCx0MktERFpOIUtj6x6y2LbNrl27+PVf/3Weeuop9u/ff9vrHz16lD/+4z/mX/2rf9XsodadQhaRrcmvVpl58UUKFy6QHB/HcpxWl3RXgkqF3PHjlN59FwArFCL18MMk7713y39vm03gedTm5vCKRSLd3bTv20dyYoJwKtXq0kRERERkGwqMoeJB2YeCa8i7hqoPXgAWEF7odAnbCl1ERGTjKWRpbN1Dlueff57PfOYzq61vU1HIIrJ1ufk80y+8QOXqVRLj49vijqA2O0v25ZdxZ2cBCHV01EeIDQ+3uLLtxwQBtXQaN5sl3NFBamqK5MQE0QYdmSIiIiIiayUw9ZCl7EHRM+RrhooP7kLoEloIXSIKXUREZAMoZGls3UOW7UQhi8jWVp2d5drhw/ilEvFtEkQYYyifPUvu2DGCSgWA2Pg47Y8/TqitrcXVbT/GGNxsllo6TSiRIDk+TtvUFLGBAT24EBEREZF1ZxZDF395vFjFg1pQ/3zIhqhT73Sx9fhURETWmEKWxprJDezVHOC/+q/+Kx5++OFbfv6RRx7hd37nd1Zz0yIiTYn29tJ76BCWbVNd6P7Y6izLIrF3L/2/9Esk770XLIvKxYvMfO975E+exHheq0vcVizLItLZSduePTjJJLl33uHDH/yAaz/+MaVLlzC+3+oSRURERGQbsyyLWMiiK2ox0mZzT6fNvd02+zttdrVZJEP10WLZKqQrhlzNUPEMwc5+zayIiMimsaqQ5Tvf+Q4///M/f8vPf+lLX+Lb3/72qosSEWlGYnSUnscfxyuVcHO5VpezZuxolI5Dh+j7yleIDAxgfJ/8iRNMP/MMlUuXWl3ethROpUju3k20u5vSxYt8+MMf8uEPf0jh/Hn8arXV5YmIiIjIDmBZFjHHojNqMZy0uafL4d4um/1dNuMpm1QYfAO5Wj10ydYMZc/gK3QRERFpidBqvuj9999ncnLylp/fvXs3Fy9eXHVRIiLNatu7F7dYZP7VV7HDYZx4vNUlrZlwdzc9X/wi5QsXyL3yCn4+T/pHPyI6OkrHwYOENOpwzTnxOImxMYJajerMDFcvXybW20v7vfeS2LWLUCLR6hJFREREZAeJOhZRBzoiMJhwcAND2avvdcm7AUUP8rX6vhfbgogDURscW2NfRERE1tuqQpa2trbbhigXLlwgFoutuigRkWZZlkXnAw/gl0pk33qLxNgYdjjc6rLWjGVZJPbsIbZrF/mTJym+9RbVy5eZvnKFtgceoO2BB7BDq/qVLrdhRyLEh4cJPI/a3BzThw8T6e4mtX8/bePjhBVwiYiIiEgLhG2LcATaIzCAg7cYuvhQcAMKLuTd60OXiA0hhS4iIiJrblWL73/lV36F559/nhMnTjAyMnLd5y5dusSjjz7Kpz/9ab7zne+sWaHrRYvvRbYXv1pl5sUXKZw/T3L3bix7VVMRNz03kyF75Ai1Dz8EwEkmaT94kNjYmJaUrSMTBNTm53GzWcKpFG2Tk7Tt3k20t7fVpYmIiIiILPEDQ9mvd7oUXEPBNdR88AzYFoTtevASstDzBxGRHU6L7xtrJjdYVchy+vRpDh48iGVZ/If/4X/Ixz72MQDefPNN/vRP/xRjDC+//DL33nvv6r6DDaSQRWT7cfN5pp9/nsrMDIldu7Zt0GKMofL+++SOHsUvFgGIDg/TcegQoY6OFle3vRljcLNZauk0TjxOcmKC1OQksYGBbfvzJiIiIiJbl28MlYVOl6JryNcM1YXQxQLCC50uYVuhi4jITqOQpbF1D1kAXn/9dX7zN3+TF1988brLP/WpT/H7v//7PPjgg6u52Q2nkEVke6rOzjLzk59QmZ4mPjKCs41HGAaeR+H11ym8+SYEAdg2bffdR9tDD22rkWmblVcoUJ2dxQqFSIyOktq7l/jwsMa3iYiIiMimFRhDZaHTpeQZcguhixvUPx9e2Omi0EVEZPtTyNLYhoQsi2ZnZzl//jwAe/bsoXeLjUxRyCKyfbn5PPMnTpB7913C7e1Ee3paXdK68nI5skePUr18GQA7kaD9wAHiu3frTnID+OUy1dlZjO8THx4mtW8fidFRnGi01aWJiIiIiNyWWRG6lD1Dzq13vtQWQxd7ea+LnluIiGwvClka29CQZatTyCKyvRnfJ3f6NPOvvUZQrRLbAR0GlUuXyB49ip/PAxAZGKDjiScId3W1uLKdIajVqM7OElSrRHt7ab/nHhJjY4QSiVaXJiIiIiJyR4wxVAOorOh0Kfvg+mCA0IrQxdYJORGRLU0hS2MbFrJcvnyZEydOkM1mCYLgps8/9dRTq73pDaOQRWRnqFy7xtyxY5QvXyY2OEgomWx1SevKeB6Ft96i8PrrGN8HyyJ5zz2kHn4YW50VGyLwPGpzc3iFApGuLlJ795LcvZuI9uWIiIiIyBZjjKEWLHe65F1DaaHTxZh66BK2IeoodBER2WoUsjS27iFLpVLh61//Ov/P//P/EAQBlmWxeDMr/yF832/2pjecQhaRncMrl8mcPEn21CmcWIxof/+2v/PwCgVyr7xC5eJFAOxYjPbHHiM+NbXtv/fNwgQBtfl53EyGcCpFcs8eUpOTRHp69G8gIiIiIltWza93t1Q8yNcCij7UfAgMONZyp4tj6zGviMhmppClsXUPWX7rt36LP/iDP+B/+B/+Bz7+8Y/zmc98hj//8z9naGiIb37zm1y5coV//a//Nffff/+qv4mNopBFZGcxQUDhwgXSx4/jZrMkRkd3xHL4ypUr5F5+GS+XAyDc10fHE08Q2eZ7ajYTYwxeLkdtbg47Hic5Pk5qcpLY4CCWbbe6PBERERGRu+IG9T0uZR/ybkDRhaoP/g2hS0ihi4jIpqKQpbF1D1nGxsb44he/yP/2v/1vzM3N0dfXx1//9V/z2c9+FoDPfvaz7N+/nz/+4z9e3XewgRSyiOxM1XSa+ePHKZw/T7Svj/AO+P9vfJ/i22+Tf+01jOcBkNi/n/ZHHsGOxVpc3c7iFYtUZ2awHIfE6CipvXuJDw/viMBPRERERHYGLzBU/PqIsYJbHzFW88EzYFv1wCXiQFihi4hISylkaayZ3GBVL52dnp7m4MGDAMTjcQCKxeLS57/61a/y3e9+dzU3LSKyIaLd3fR/6lN0P/44bj5P+coVTIPdUtuJ5Ti03X8//b/0S8T37AGgdPo01773PYqnT2/7738zCSWTJCcmiPb1Ubp8mWs/+hEf/uAH5M+exa9WW12eiIiIiMhdC9kWbWGLvrjF7nabj3Xb3NtlM9VuMxC3cCwou5CuGOYrhoJr8IJVrw0WERFpmVWFLAMDA8zNzQGQSCTo6uri9OnTS5/P5XJUKpW1qVBEZJ3YkQjdjzzCwGc+QyiVovjeezviBLeTTNL1qU/R88UvEurqwlSrZH/2M2b/v/+P2vR0q8vbUZxYjMSuXcSGh6nNzzP94x9z5a/+iuzbb+OtePGCiIiIiMhW51gWybBFb9xiPLUidOmwGUpaRGwoLYQuBdfgK3AREZEtYlXjwn7lV36FcrnMX/7lXwLw7//7/z5/9Vd/xe/93u8RBAH/6B/9Ix555BGeffbZNS94rWlcmIgAuPk86ePHyb/7LuHOTqLd3a0uaUOYIKD4zjvkT5zAuC4A8akp2h97DGehU1E2TuB51NJpvHyecFcXqT17SI6PE+npUcuuiIiIiGxrxhiKHuRqhnTVUPbAGIiGIOaArcfDIiLrQuPCGlv3nSw/+clP+L//7/+bf/7P/znRaJRLly7xuc99jjNnzgAwOTnJv/23/5b9+/ev7jvYQApZRGRR4HnkTp8mc/IkQbVKfGQEy3FaXdaG8MtlcseOUT57FgArHCb1yCMk77lHS9lbwAQBtUwGN5PBicWIj46S2rNHe1tEREREZEfwjaHg1gOX+aqh4oFlQSwEURudBBQRWUMKWRpb95ClkSAIeOONN3Ach3vuuYdQKLQWN7vuFLKIyI3KV6+SPnaM8gcfEBsaIpRItLqkDVObniZ75AjuwkjIUFcXHYcOER0cbHFlO5dXKlGbm8P4PtHeXlL79pEYHSWcSrW6NBERERGRdecG9cBlvhqQq0HFh5ANcQcijk4GiojcLYUsja1ryFIqlfj1X/91vvrVr/Jrv/Zrd1XoZqCQRUQa8cplMq+9RvbUKZxEgmhf3465ozFBQOnMGXLHj2MWdtTEd++m/fHHcXZQ4LTZBK67PEqso4Pk7t0kx8eJ9fer20hEREREdoSqb8jXIF0NKLjg+hB2IB6CkL0znq+JiKw1hSyNrXsnS3t7O//T//Q/8Q//4T9cdZGbhUIWEbkVEwQUzp8nffw4Xi5HfHR0R41qCioVcsePU3r3XQCsUIjUww+TvPfeHTNGbTMyxuBms9Tm57HDYeJDQ6SmpoiPjOBEo60uT0RERERk3RljKPtcF7gEBqILgYv2t4iI3DmFLI2te8jypS99icHBQf70T/901UVuFgpZROSjVOfmSB87RvG994j29++4MU212dn6CLGZGQBC7e20P/EEseHhFlcmfqVCdXaWoFYj2tND2969JHftItLZ2erSREREREQ2RGAMRQ9yVUO6aih79ctjIYg52t8iIvJRFLI0tu4hy/nz53nyySf52te+xn/0H/1HjI6OrrrYVlPIIiJ3wq9Wyb71Fpk33sCybWKDgztqRJMxhvLZs+SOHSOoVACIjY/T/vjjhNraWlydBJ6Hm8ngZrOE2tpIjI3RtmcP8YEBdR2JiIiIyI7hB4a8C9maIVMzVDywrXp3S8RW4CIi0ohClsbWPWRJpVJ4nketVgMgFAoRvWFEiWVZZLPZZm96wylkEZE7ZYyhdOkS6WPHqM7O7sjxTEG1Sv611yi+8w4Yg+U4tD34IG0f+xhWKNTq8nY8YwxeoUAtnQYgNjhI+9QU8dFRQtqnIyIiIiI7SM03FFyYrwbkalANIGzXA5ew9reIiCxRyNJYM7nBqs6IffWrX9VfuIjsOJZlkRwbI9LZSfr4cQpnzhDu6iLS1dXq0jaMHY3ScegQib17yR45Qu3aNfInTlA6e5aOgweJ7drV6hJ3NMuyCKdShFMp/GqVWjrNtcOHiXR20jY5Wf/57enRfbiIiIiIbHsRx6Lbge6YQ8Wrd7jMVQOKNcgbQ8SBuAOOAhcREblLq+pk2U7UySIiqxF4Hrl33iFz8iSB6xIfHt5xY5mMMZQvXCD36qsEpRIA0dFROg4eJKTfp5uGCQJqmQxuJoMTj5MYHa2PEhsawg6HW12eiIiIiMiGMcZQ8iBXM8xX67tcArO8v8XWi5FEZAdSJ0tj6z4ubDtRyCIid6P84Yekjx2jfOUKsaGhHTmSKXBdCidPUnjrLTAGbJu2+++n7cEHsTVCbFPxikVqc3NgDJHeXlJ795IYHSWcSrW6NBERERGRDRWY+jixxcCl7AFWvbsl6mh/i4jsHApZGlv3kOVf/+t/fUfXe+qpp5q96Q2nkEVE7pZXKjH/2mvk33kHO5Eg2tu7I++U3EyG3NGjVK9cAcBJJmk/eJDY2NiO/PvYzALXpZZO4xUKhDs6SE5M0DYxQbSvD8u2W12eiIiIiMiG8oJ64JKpGjI1Q9UHx1rc36LARUS2N4Usja17yGLf5gTMyn8I3/ebvekNp5BFRNaCCQIK586RPn4cr1AgPjKyI0cxGWOovP8+uaNH8YtFAKLDw7QfPEi4s7O1xclNTBDg5nLU5uexIxESw8O0TU4SHx7GiUZbXZ6IiIiIyIar+vXAJV0JyLtQC+pBSyIEIe1vEZFtSCFLY+sesly8ePGmy3zf57333uN/+V/+F95//33+/M//nHvvvbfZm95wCllEZC1VZ2dJHztG8eJFov39O3YMU+B5FN54g8Ibb0AQgGWR/NjHSD300I4Mn7YCv1ymOjdH4LpEe3pITU2R2LWLiMIxEREREdmBjDFUfMjVYL4aUHDBNxBx6iPFHAUuIrJNKGRprOU7Wb785S8zMTHBH/3RH631Ta85hSwistb8apXsm2+SeeMNrFCI2MDAjh3B5OVyZI8epXr5MgB2PE77448T371bd9ybVOB51Obn8fJ5QskkybExknv2EB8YwHKcVpcnIiIiIrLhjDEUvfr+lvTC/hZjIBqCmAO2ntuIyBamkKWxlocsf/zHf8x//V//18zOzq71Ta85hSwish6MMZQuXiR9/DjVuTniIyM7evxS5dIlskeP4ufzAEQGBuh44gnCXV0trkxuxRiDVyhQm5vDsm1ig4OkpqaIj44SisdbXZ6IiIiISEv4pj5OLFczzFcNFQ8sC2IhiGp/i4hsQQpZGmsmNwitRwHnzp2jWq2ux02LiGwJlmWRnJgg0t1N+vhx8mfOEOnqIrJDQ4XYrl1Eh4YovPUWhddfp3btGjP/7/9L8p57SD38MPYODqA2K8uyCKdShFMp/GqV6uwspcuXiXR20jY1RXJsjEh3tx6AiYiIiMiO4lgWHRHoiFgMJgz5GmRqAdkalFxwbEPcgYijx8kiIjvFqjpZXnjhhYaXZzIZXnjhBX7/93+fX/zFX+Tf/Jt/c9cFrjd1sojIegs8j9zbbzN/8iTG84iPjOzY8WEAXqFA7pVXqCzs97JjMdofe4z41JRO2G9yJgiozc/jZjI4iQSJ0VHa9uwhPjSkXTsiIiIisqNV/HrgMl8NyLvg+RB2IB6CkPa3iMgmpk6WxtZ9XJhtN/4LN8bgOA7/3r/37/EHf/AH9PT0NHvTG04hi4hslPKVK8wdO0bl6lXiQ0M4O3zkUuXKFXJHjuBlswCE+/roOHSISG9viyuTO+EVi9Tm5jBBQLS/n/a9e4mPjBBOpVpdmoiIiIhIyxhT39mSdyFdDSi4EBiILgQu2t8iIpuNQpbG1j1kOXz48M03ZFl0dXUxPj6+pcIKhSwispG8YpH5114j9847hNraiO7wQMH4PsW33yb/2msYzwMgsW8f7Y8+ih2Ltbg6uROB61JLp/GKRcLt7SR376ZtYoJob++O7tgSEREREQmMobiwvyVdrYcvUN/fEnO0v0VENgeFLI21fPH9VqKQRUQ2mgkCCmfPkj5xAq9QID46ih1alxVZW4ZfLJI7dozy+fMAWNEo7Y88QmLfPp2o3yJMEODmctTSaexolMTwMG2Tk8SHh3G0c0dEREREdjgvMBRcyNYMmZqh4oFt1btbIrYCFxFpHYUsja17yHLhwgXefPNNvvKVrzT8/F/+5V/ywAMPMDEx0exNbziFLCLSKtXZWeaOHaN08SLR/n6NWQKqV6+SPXIEb34egHBPT32EWH9/iyuTZvjlMtXZWYzvE+npITU5SWJsjEhHR6tLExERERFpuZpvyLuQqQbkalANIGzXA5ew9reIyAZTyNLYuocsX/3qV8nlcvzwhz9s+PkvfvGLdHZ28hd/8RfN3vSGU8giIq3kV6tk33iDzJtvYoVCxAYGdnznhgkCiqdPkz9+HOO6AMSnpmh/7LEdv8dmqwk8j9r8PF4uR7itjcT4OG27d9d/zh2n1eWJiIiIiLRcxasHLnPVgGINPAMRB+IOOApcRGQDKGRprJncYFVn8n72s5/x+c9//paf/1t/62/x4osvruamRUR2FCcapeuxx+j/9Kdx4nGK772HX622uqyWsmybtnvvpf+Xf5n41BQA5bNnmf7udymcOoUJghZXKHfKDoWI9fWR3LMHOx4n9847fPiDH/DhD39I/uxZvHK51SWKiIiIiLRULGTRF7fY32FzT5fNWJtFxIa8C+mKoeQZgp096V9EZNNb1RKA+fl5UrcZa9PW1sbc3NyqixIR2Uksy6Jt924i3d2kjx2jcP48ka4uIp2drS6tpZx4nK5PfpLkvn1kjxzBnZsjd/QopXffpeOJJ4gODra6RLlDlmURbm8n3N6OX61SnZmhdPkykY4OUnv3kti1i2hPT6vLFBERERFpGcuySIYhGbYYSNT3t+RqhnTVkK0CliHuQNTR/hYRkc1mVZ0sY2Nj/PSnP73l51988UVGR0dXXZSIyE4U6eig/2/8DXoOHcIvlylduqSuDSDS30/vl79Mx8c/jhWN4mUyzH3/+8wfPoxfLLa6PGmSE40SHx4mOT6OMYa5V17hyl/9FdMvvEDp0iUCz2t1iSIiIiIiLWVbFu0Ri9E2m/u6bPZ22vTFLHwD81XIVg01X90tIiKbxapClr/zd/4O/9f/9X/x+7//+wQrTgD6vs///D//z3z729/m7/7dv7tmRYqI7BR2OEzXAw8w8NnPEunupnDhAr5GKmHZNsn9+xn4pV8isX8/AOULF5j+3vfIv/EGxvdbXKE0y7Jtoj09tO3ZQ7i9ncK5c/VRYt//PrnTp/EKhVaXKCIiIiLSciHboitqsbvd5t4um8kOm44IVH2YqxhyNYMXKHAREWmlVS2+r1arfPnLX+a5556jr6+P/QsnvE6fPs3MzAyf+cxn+Ku/+iui0eiaF7zWtPheRDYrr1hk/sQJcqdPE2prI9rb2+qSNo3a3BzZl1/GnZkBINTeTvsTTxAbHm5xZXI3AtelOjeHXywS7uwktWcPifFxor29GokgIiIiIrLAGEPFh1wN5qsBBRd8AxEH4iFw9NhZRJqgxfeNNZMbrCpkAQiCgD//8z/nu9/9LufOnQNgcnKSr371qzz11FPY9qqaZDacQhYR2cxMEJA/c4b5EyfwSiXiIyPYoVWt09p2jDGUz50j9+qrBJUKALHxcdoff5xQW1uLq5O7YYIAN5vFzWSwIxHiIyO07dlDfHgYZwu8gENEREREZKMYYyh6y/tbyh4EBmIhiDn10WMiIrejkKWxDQlZtguFLCKyFVRmZkgfO0bp4kVig4MKEVYIajXyJ05QfOcdMAbLcWh78EHaPvYxLAVSW55XKlGbm8N4HtHeXtqmpkiOjRHWfbaIiIiIyHV8Yyi49Z0tmZqh4oFl1QOXqI1OnopIQwpZGlv3kCWdTnP58mUefPDBhp9/4403GB0dpaurq9mb3nAKWURkq/CrVeZPniR36hRWOExsYEB3fiu48/NkX36Z2rVrADipFB0HDxLbtavFlclaCDyPWjqNl88TTqVITkyQnJio/z/YIt2zIiIiIiIbxQ0M+RpkagHZGtR8CNn17paIo+eRIrJMIUtj6x6yfP3rX+f06dO8/PLLDT//iU98gnvvvZf/4//4P5q96Q2nkEVEthJjDMX33iN97Bi1+XkSo6PYkUiry9o0jDFULlwg++qrBKUSANHRUToOHiSk3/HbgjEGL5+nNjeHFQoRGxoiNTVFYmQEJxZrdXkiIiIiIptOxa8HLvPVgLwLbrCwv8WBkK0TqiI7nUKWxprJDVY1R+W5557jP/6P/+Nbfv4rX/kKf/Inf7KamxYRkduwLIu23buJdHWRPnaMwvnzRLq7iXR2trq0TcGyLOJ79hDdtYvCyZMUTp2ievky01eu0Hb//bQ9+KB22mxxlmURbm8n3N6OX61SnZ6m/P77hLu7SU1OkhgbI9rd3eoyRUREREQ2jZhjEYtDb8ym7EHOhXQloODWX8QUcSAe0v4WEZHVWtWZppmZGXp7e2/5+Z6eHqanp1ddlIiI3F6ks5P+T32KaG8vmddfp1QoEB8e1tikBXY4TPuBA8SnpsgdPUr1yhUKr79O+dw52h9/nNj4uF6dsQ040Sjx4WGM71PLZJg7epTsW2+R2LWLtj17iA0OKlQTEREREVlgWRaJMCTC0B+3KbqQqxnSVUOuCgZDLFQfKabnSyIid25VZx6GhoY4ceLELT9/7Ngx+vr6Vl2UiIh8NDscpuuhh4j29pJ+9VWKFy4Q18ik64Q7O+n+/OepvP8+uaNH8YtF5p9/nsjQEB2HDhFWB9C2YDkO0Z4eoj09eIUC+XPnyJ89S2xgoD5KbHSUUDLZ6jJFRERERDYN27JIRSAVsRhIGAouZGuGTM0wXwXbMsRDELEVuIiIfJRVhSy/+Iu/yB/90R/x8z//8/zCL/zCdZ975pln+Ff/6l/ddpyYiIisncTICJGODtInTpA/fZpQezvRnp5Wl7VpWJZFfHyc6MgIhTfeoPDGG9Q+/JCZZ54hed99pB5+GDscbnWZskZCbW2E2toIXJfq7CzTL7xAuKNjeZRYb6+eJIrIdfxqFTeXw81mqabTVK9dwwDhZBInmSQUj2NHo9iRCHY0irPw3o5EsCMR/U4REZEtL2RbdEahM2ox5Bvy7sL+lhoUXAjb9cAlrP0tIiINrWrxfTab5ZOf/CSnTp3ioYce4v777wfgzTff5LXXXuO+++7jJz/5CZ1b4BXCWnwvItuF8X3yZ88yf/w4XqVCfHhYo5Ia8HI5sq+8QvXSJQDseJz2xx8nvnu3TpRtQyYIcLNZ3Pl57GiU+MgIqcnJ+v+PSKTV5YnIBjPG4BUKuNkstUyGyvQ0tbk5vFKJwHWxbBsnHgfLwrgugeeB77P4hMmyLKxwGDsUwgqFcCIRnHi8HsYkEjix2HIQc0MYo/tkERHZaiqeWdrfUnTBM9T3tzjgKHAR2Ta0+L6xZnKDVYUsAMVikX/+z/853/3udzl37hwAk5OTfPWrX+W3f/u3qVardHV1reamN5RCFhHZbirT06SPHaN06RKxwUGNSbqFyqVLZI8exc/nAYgMDNRHiGlp+rbllUrU5uYwvk+0p4fUvn0kRkcJ6/5fZNsKajVq2exSl0rl2jW8fB6/XMYYgxON4iQShBKJOwpeTRBgfJ/AdTGed937wPOwVjy1shwHKxTCDofr76NRdceIiMiWZIyh5C3vbyl5YAxEF/a32LrfEtnSFLI0tiEhSyOVSoW//Mu/5Omnn+b73/8+lUplrW563ShkEZHtyK9UmD95kuypUzjRKNH+ft1RNmA8j8KpUxROnsT4PlgWyXvuqY8Qi0ZbXZ6sk8DzqKXTePk84fZ2khMTJMfHiQ0MYNl2q8sTkVVa2aXiZrNUpqepzs7e1KUSSiZx4vF1//8eeB5m4W0xhFn8mIX7HGNMvTtmZRgTCtVrXAh/nHh8KXxxVgQz6o4REZFWCMzy/pb5qqHigWXVw5aoo/0tIluRQpbGNjRkMcbwox/9iKeffprvfe975PN5ent7+fKXv8yf/umf3s1NbwiFLCKyXRljKF64QPrYMWrZLInRUe0euQWvUCD3yitULl4EwI7FaH/sMeJTU3qAsY0ZY/ByOWrpNFYoRGxoiNTUFImREZxYrNXlichHWNmlUpufp3z16nVdKnYkQiiRIJRMburxgLfrjjHewkuFqf/OWhxTZodC9bFl0Wj9e2xrU3eMiIhsOC+o72/JVA3ZmqHqg2PXx4lFHN3viGwVClka25CQ5dixYzz99NP8xV/8BVevXsWyLH71V3+V3/iN3+CJJ57YMv8gCllEZLurzc+TPnaMwvnzRHt7CXd0tLqkTat65QrZI0fwslkAwr29dDzxBJHe3hZXJuvNr1Sozs1hqlUiPT20TU2R3LWLyBYYfSqyE9yyS6VcJqjVNrxLpVXUHSMiIptV1a8HLvOVgLwLtQDCNiRCENL+FpFNTSFLY+sWspw/f56nn36ap59+mjNnzjAyMsLXvvY1Dh48yNe+9jW+853v8Mu//Mt3/Q1sJIUsIrITBLUa2VOnyLz+OgaIDw1t2xNQd8v4PsW33yb/2mv1VxADiX37SD36qLobdgDj+9Tm53FzOULJJIldu2jbs4fYwIBOPIpsoKBWw83lqGWz1NLpLdul0ip33B0DWLaNHQ6rO0ZERNaEMYaKD7kapKsBRRd8AxEH4iFwdN8hsukoZGmsmdzgjs8WfPzjH+fo0aP09vbyt//23+Z//9//dz75yU8CLC2+FxGRzcmOROh6+GGivb2kX32V4oULxDUSqSHLcWi7/37ie/aQe/VVyufPU3r3XcoXL9L+yCMk9u1TQLWNWY5DtLeXaG8vbj5P/swZ8mfPEuvvp33vXuKjo4QSiVaXKbKt3LZLpVqtd6ksnPSP9vXpd/AdsGx7KTz5KMb36x0xC50xXrGIm80udcxgWfVQZrE7ZjGMCYXq3UNtbfXumFjsugDGWfGxxpWKiOwclmURD9UDlf64TdGDXM2QrhrytfpOl3iovsNFJ3NFZLu445DlyJEj7N69m9/7vd/jy1/+MqF1fDXnH/3RH/GNb3yDq1ev8tBDD/EHf/AHHDx4sOF1/+zP/oy///f//nWXRaNRKpXKutUnIrJVJUZHCXd0MH/iBLl33yXc3k60p6fVZW1KTiJB16c+RWLfvvoIsfl5si+/TOndd+sjxPr7W12irLNwKkU4lSKo1ajOzXHt8GHCnZ2k9uwhOT5OpKdHTwxFVmFll4o7P0/5ww9xG3SpRHt7caLRVpe77VmOg+M48BF/1426Y/z5eSrT07fvjgmFsGOxenfMYvfRrbpjwmGFaCIi24hlWbSFoS1sMZAwFFzIVg3zNUOmCpZVD1witgIXEdna7jgp+cM//EO+9a1v8Uu/9Et0d3fz1a9+lV/91V/lM5/5zJoW9O1vf5vf+q3f4k/+5E84dOgQ3/zmN3nyySc5ffo0/bc4odXe3s7p06eX/qxfzCIitxZOpej7uZ8j2tvL/GuvUXr/fWLDwxqFdAvRwUH6vvIViqdPkz9+HDedZvbf/Tvik5O0HziAE4+3ukRZZ3YkQnxoCBMEuNks6ePHyZ46RXx0lNSePcSHhjSuSOQWbtelYmo1sCx1qWwR6o4REZG74VgWHRHoiFgMBfWulkwtIFuDogshux64hLW/RUS2oKYX31+4cIGnn36ab33rW7zzzjsMDg7yN//m3+Qv/uIv+M53vsMv/dIv3VVBhw4d4vHHH+cP//APAQiCgF27dvGbv/mb/JN/8k9uuv6f/dmf8V/8F/8FmUzmjm6/Wq1SrVaX/pzL5di1a5d2sojIjlS5do25Y8coX7pEbGiIUDLZ6pI2Nb9cJn/8OKUzZwCwwmFSjzxC8p57dGJwh/FKJWpzcxjfJ9rTQ2r//nqnWCrV6tJEWqpRl4qXz9dDlRVdKk4ioS4VwRjTcGfMYkBzU3dMKFTvdgmF6j9LC2FMw+6YxQ4ZdceIiGxqFb8euMxXA/I1cBf3tzgQUuAisiG0k6WxdVt8f6Njx47x9NNP8+1vf5sPP/yQgYEBvvKVr/ALv/ALfO5znyPW5Kz/Wq1GIpHgO9/5Dr/4i7+4dPnXv/51MpkMzzzzzE1f82d/9mf8g3/wDxgZGSEIAh599FH+x//xf+RjH/tYw2P8t//tf8vv/M7v3HS5QhYR2am8cpnMyZNkT53CicWI9vfrTvUj1GZmyL78Mu7cHAChzk46Dh0iOjTU4spkowWeR21uDq9QINzeTnL3bpLj48T6+3VST7a9pS6VXA43k6l3qczN4ZVK13epJJM48bj+T8hdubE7ZjGQubE7xsD1o8rCYZx4HCeRINzWVu+OWTmibGWHjLpjRERaxhhDecX+luLCJMqIU9/vYus5qsi6UcjS2IaFLIuCIOC5557j//w//0++973vkc/nSSQSFAqFpm7nypUrjIyM8NJLL/Hxj3986fLf/u3f5vDhwxw5cuSmr/nZz37GmTNnePDBB8lms/yLf/EveOGFF3jrrbcYHR296frqZBERuZkxhsL586SPH8fNZkmMjupEw0cwQUDpzBlyx49jFu5X4rt310eIqSNoxzHG4OVyVNNp7HCY+NAQqakp4iMjerW+bBs3dalcvYqXy6lLRTYVdceIiGx9gTEU3eXApeLVf2/HQhBztCZAZK0pZGlsw0OWlSqVCs888wzf+ta3Gnae3M5qQpYbua7Lvffey9/5O3+H//6//+8/8vrN/GWJiGx31XSa+ePHKZw/T7Svj7B+L36koFIhd+IEpYXdYFYoRNtDD9F2331YjtPi6qQV/EqF6uwsxnWJdHfTtncvydFRIl1drS5N5I5d16WycpfKjV0qC6GKTjjLVrTUHdMglDG+f10gc10Yo+4YEZEN4wWGggvZqmG+Zqj59ebFeAgitgIXkbWgkKWxZnKDNd9yHIvF+NrXvsbXvva1pr+2t7cXx3G4du3adZdfu3aNwcHBO7qNcDjMI488wtmzZ5s+vojIThft7qb/U58i0tND5o038AoFYoODOnl2G3YsRufHP05i3776CLGZGfLHjlE6c4aOQ4eIjYy0ukTZYE4sRmJ0FOP71ObnmXv5ZbLJJImxMdp27yY+OKgATjadj+xSCYcJJZNEe3vVpSLbhuU4OI4DH/EzfVN3jOfhz88TzMxc3x1jDJbj1AOZUAgrHK4HLgthTCiZvHUYE4no8ZaISAMh26IzCp1RiyHfkHeX97cUXAjbhngIwtrfIiIttOYhy92IRCI89thj/OhHP1rayRIEAT/60Y/4jd/4jTu6Dd/3eeONN/jSl760jpWKiGxfdiRC9yOPEOvtJX3sGMULF+ojj5rcs7XTRHp66P3SlyifO0fu1VfxcznSP/whsfFx2h9/nFBbW6tLlA1mOQ7R3l6ivb24+Tz5d98lf+YMsYEB2qemiI+OEkokWl2m7EB33KWSTBLp69OJX9nxLMuqByZ30JVyY3eMX6ng5vOUP/jguu4YLKseyCx2x4RC9VF7N3bHrAhl1B0jIjtdxLHocaAn5lD26oFLuhJQdCFvTH1/iwOOAhcR2WCbKmQB+K3f+i2+/vWvc+DAAQ4ePMg3v/lNisUif//v/30AnnrqKUZGRvjd3/1dAP67/+6/44knnmBqaopMJsM3vvENLl68yD/4B/+gld+GiMiWl9i1i3BnJ/MnTpA7fZpwZyfR7u5Wl7WpWZZFYmqK2NgY+ddeo/j221QuXqRy+TKpBx+k7WMfwwpturte2QDhVIpwKoVfrVJLp7l2+DCRzk7aJidJjo0R6elRW7asm8B1cbPZ5S6Va9fwsll1qYisg2a7YxbDmOu6YzwPgmD5you7Y+6wOybc3q7/yyKy7cVDFvEQ9MVsSl59f8tctR68GGOILuxvsfUYW0Q2wKY70/O1r32NmZkZ/tk/+2dcvXqVhx9+mO9///sMDAwA8P7772OveDXd/Pw8//Af/kOuXr1KV1cXjz32GC+99BL33Xdfq74FEZFtI5xK0fdzP0e0t5f5116j9P77xEdGNOroI9iRCB0HD5LYu5fsyy9Tu3aN/IkTlM6epePgQWK7drW6RGkRJxolPjSECQJqmQzpY8fInjpFYnSUtj17iA8N6RXKcldu6lKZmaE6M4NXKhFUq/UTwPG4ulREWmyxO4aF/S63c9vuGM9beaNYjkNoYURlYmSEaF+fAhcR2dYsyyIZhmTYoj9hKLqQrRnmq4ZMFWzLEHMg6mh/i+wMxhgMEJj6Xjljlj++8f3i5wIDKT0NvStrvvh+q9HiexGRO1O+epX0sWOUP/iA2NCQxhzdIWMMlQsXyL76KkGpBEB0dJSOgwcJ6X5HAK9YpJZOQxAQ6e0ltXcvidFRwqlUq0uTLWCxS8XN5agt7lJp0KXiJBI60SqyzS12x3iFAm42C0Ckq4vk+DixoSFifX0K8kVkx/CCeldLpmrI1gwVH0J2fZxYxFHYIpvPjeFIYOohyO3CEYv6n6H+8eIHFmADllV/s1dc5tjgWPV9R44FIas+Yi9iQ3dM/zdWaiY3UMiikEVE5I555TKZ114je+oUTiJBtK9Prwa6Q4HrUjh5ksKpU/URILZN2/330/bAAzrhIUD9Z6SWTuMVCoQ7OkhOTNA2MVH/f6ZuA+EjulRqNSzLWupScRIJ/dyI7HCB5y2FsJZtE+nuJjk+TnxwkGhfH7ZGmIrIDlH164HLfCUg70ItgIgN8VD9RLPI3bhVOBJwc0iyGI6stBiUWHcQjiwGIivDEduqf962bnhrdJnO3zRFIUsTFLKIiDTHBAGF8+dJHz+Ol8sRHx1VSNAEL5sle+QI1StXAHCSSdoff5zY+LgCKwHqD9LdbJba/Dx2JEJiaIi2qSniw8PqRNhhGnap5HL1BfXqUhGRJiz+PvHyeaxQiEhnJ8k9e4gPDBDt7dUoWBHZEYwxlH3I1yBdDSi64Jv6KLFYCBw9H9tRjDE3ByErwpGVn2sUjiy6q3DkjgMS/Wy2gkKWJihkERFZnercHOljxyi+9x7Rvj7C+h16x4wxVN5/n9zRo/jFIgCRoSE6Dh0i3NnZ2uJkU/ErFaqzswSuS7S7uz5KbNcuIvo52XaMMfjFIrVcDjeTuX2XSjyuE6IismpBrUYtk8ErFLAjESLd3bRNTBAbHCTa06MuOBHZEQJjKHqQrxnSVUPJq59Ij4cgpv0tm1oz4cji5xq5MRyxreXLHJbHajm2RchevOwjwpGbLtfP0VamkKUJCllERFbPr1bJvvUWmTffxLIsYoODemLehMDzKLzxBoU33qiPELMskvfdR+rhh9UdJNcJPA83k8HN5QglkyTHxpZegayT7VvT7bpUMAZLXSoisgH8ahU3k8ErFrGjUaK9vfXAZWCASFeXHteJyI7gB4aCV9/fkqkZKl79BHk8VB8rpsBlbawMR64bn3XD+8WPWXHGeuXJ68UJb4thhrUyHLEWgxEIWQvhyELYcafhiGPp31zqFLI0QSGLiMjdMcZQunSJ9PHjVKeniY+O6oRgk7x8nuzRo1QvXQLAjsdpe+ABIr29hLq6FLjIksWdHLW5OSzbJjY4SGpqivjoKKF4vNXlyS1c16WSzVKdnqbSoEvFSSQIJRIKzkSkJfxKhVomg18q4cRiRPv7aRsfJzYwQLizUyecRGRHcANDvgbz1YCcC1Ufwgv7W8I7dH+LMabx4nUahyPGLC9hNyx/bN0iHFn8c8ha7B6phyOhhbBjMfhYGsFlrQxDFkZyLXWi7Mx/I1kfClmaoJBFRGRtuPk86WPHKJw5Q7iri0hXV6tL2nIqly6RPXoUP5+/7nKnvZ1wd/fyW1cXdiKhB5A7nF+tUpubw69UiHR20jY1RXLXLiI9PfrZaLHAdZeW09fm5ylfu4aXzapLRUS2DK9Uws1m64FLIkF8YIDk+DjRgQEiHR2tLk9EZENUPEPerQcu+Rq4BiIOxB0IbYHAJTDmpsXrNy5nvzEwafRdNQpHVgYetwpHFoOPxeuu/PON3SN6/iKbkUKWJihkERFZO4HnkXvnHTInTxK4LvHhYb0iu0nG8yiePk31yhXcdJqgXG54PTsaJbQyeOnuJtTRobEeO5AJAmrz87iZDE4iQWJ0lLY9e4gPDakLagM06lKpzs7iFYv46lIRkW3AKxbrgUulQiiZJLYQuMQGBginUq0uT0Rk3RlT39mSqxnmq/VdLoGBqFPvcFnrvRt3Go6s7CqxuL5rBJZHaC2GIdYNgcfKsVrOLcKRj1rMrnBEtjOFLE1QyCIisvbKH35I+tgxyh9+SGxwkFAi0eqStiy/XMZNp3HTabz5+fr7bLbx9j7bJtzZeX340tWFrVfK7xhesUhtbg4TBET7+2nfu5f4yIhOgq0hdamIyE61FCpnMgS1GuG2NmJDQyTHxoj19xNqa2t1iSIi6y4whqIL2YXApezVL4+F6qFLw8Xr3DocWbRyvJa9inDkup0jd7B7ROGIyEdTyNIEhSwiIuvDK5XInDxJ7u23seNxon19eiC3RsziEvR0Gi+dxl0IX4zrNry+k0zWO11WhC9OW5v+PbaxwHWppdN4xSLh9naSu3fTNjFBtLdX3U5NuKlLZWaG6sxMvUulWsWybXWpiMiOZIKg3uGSyWA8j1AqRXxkhMTICLGBAb3ARkR2BC8wFFzIVg3zNYMbLIQjS0HGrcORkF3/2EbhiMhmpZClCQpZRETWjwkCCufOkT5+HK9QID4yovFF68QYg18oLHe9LLz3i8WG17fCYcJdXdeHL52dWKHQBlcu68kEAW4uR21+HjsSITE8TNvkJPHhYXVZNLDUpZLLUUunG3apOIlEvVNFf38iIsBC4JLP42azBJ5HuKOD5Ogo8YXAxYnFWl2iiMi6q/mGanDr0VoKR0S2HoUsTVDIIiKy/qpzc6RffZXixYtE+/s1umgDBdXqUqfLUviSyUAQ3HxlyyLU0VEPXhYCmHB3N048vuF1y9rzy2Wqc3MYzyPS00NqcpLE2NiOXWBsjMEvlahlszd3qWiXiojIqiyG++7CaNNwezuJsTESw8NE+/sVUIuIiMiWoZClCQpZREQ2hl+tkn3zTTJvvonlOMQGBjS2qEVMEOBls0vBy2L4ElSrDa9vx+NLXS+LnS+h9nb9+21RgedRm5/Hy+cJJ5Mkxsdp2727/n9yGwcJDbtUcjm8YvH6LpVEQq+6FhFZA8b3lwMXINzZSdv4OLHhYWK9vdiRSIsrFBEREbk1hSxNUMgiIrJxjDGU3n+f9LFjVOfmiI+M6BWNm4QxhqBUuq7rxU2n8XO5hte3HGe526Wra2nkmMbBbR3GGLx8nlo6XQ8+BwdJTU0RHxkhtMW7l27qUpmdpTo9rS4VEZEWCTwPN5vFy+XAtol0dZEcHyc+NES0t1ePH0RERGTTUcjSBIUsIiIbz83lSB8/TuHMGcJdXUS6ulpdktxC4Lp4i8HLwntvfh7jeQ2v76RSSx0vi2PHnGRSM4g3Ob9apTY3h1+tEunoILV3L4ldu4h0d2+Jf7vFk3eL+2fKV6+qS0VEZJMKXHfpd7YdCtUDl4mJpcBFwbeIiIhsBgpZmqCQRUSkNQLPI/f228yfPInxPOLDw3pSvUWYIMDP52/qeglKpYbXtyKR64KXcFcXoc5O/XtvQiYIqM3P42azOPE4ybGx+iixwcFN8yrjxS4VN5ulpi4VEZEtLajVqGWzePk8djhMpKeHtokJYoODRHt6NJpUREREWkYhSxMUsoiItFb5yhXSx45R/vBDYkNDhBKJVpckq+RXKniLocti10smA40eatg2oY6Om8IXW10Gm4ZXLFKbm8MEAbH+flL79pEYGSHU1rahddyuS8UEAXY4jJNMEkoksKPRLdF5IyIiN/OrVdxMBq9YxI5Gifb01IP+/v56Z6UCFxEREdlAClmaoJBFRKT1vFKJ+RMnyL3zDk4ySayvr9UlyRoxvo+XyVzX8eLOz2NqtYbXtxOJ64OX7m6cVEonzlsocF2qc3P4xSLhjg5Sk5MkxsaI9vWty7+LVywud6nMzVG9dq1hl4oTj2OHQmt+fBERaT2/UqGWyeCXSjixGNG+PtomJoj29xPp6tLjAhEREVl3ClmaoJBFRGRzMEFA4exZ0idO4BUKxEdHdQJ1mzLG4BeLN3W9+Pl8w+tboRChrq6bdr3o52NjmSCod5RkMliRCInhYdomJ4kPD+NEo6u6zdt2qRiDHQqpS0VEZIfzy2VqmQxBuYwdjxPr6yM5MUFsYIBwR4fuG0RERGRdKGRpgkIWEZHNpTo7y9yxY5QuXiTa3084lWp1SbJBgloNd35+OXxJp3EzGfD9m69sWYRSKUI3dL3Y8bhOtmwAv1ymOjuL8f36OJepKZJjY4Q/4rHUYpeKm8tRmZ1Vl4qIiDRl8X7Er1QIJZPEBgZIjo0RGxzUY0YRERFZUwpZmqCQRURk8/GrVbJvvEHmzTexQiFiAwOaw71DmSDAy+Xq+11WhC9BpdLw+nYsttTpstT10tGhn591EngetXQaL58nnEqRnJggOT5ObHCw3vmSy9VHf92qSyWRIJRMqktFRESastgVW8tkCGo1wskkseFhErt2ER8Y2PD9YSIiIrL9KGRpgkIWEZHNyRhD6eJF5o4dw02niY2MrHokkWw/fqm0NGZsMXzxcjlo9LDGtgkvhC6h7u6lj+1IZOML36aMMXj5PLV0GstxiPb1EVSreMUiQbUKUO9QUZeKiIisMWMMXqGAm8kQeB7htjbiIyMkRkeJDQwQSiRaXaKIiIhsQQpZmqCQRURkc6tls6SPH6dw9iyR7m4inZ2tLkk2qcDz8DKZpW4Xb2Hfi3Hdhtd32tpu6npx2trUUXGX/Gq1vrclFFKXioiIbCgTBEuBi/F9QqkUidHRpcDFicVaXaKIiIhsEQpZmqCQRURk8wtcl+w775A5eRJ8n9jwsMY/yR0xxuDn8/XgZUXni18sNry+FQ5ft+Ml1NVFuLMTS50XIiIiW8rKsZUEAeGODhK7dpEYGSHa368OaREREbkthSxNUMgiIrJ1lK5cIX3sGJWrV4kPDeHE460uSbaooFpd6nhZCl8yGQiCm69sWYQ6OpaDl4WRY/r5ExER2RqM7y8HLkC4o4Pk+Djx4WFifX0aISoiIiI3UcjSBIUsIiJbi1csMn/iBLnTpwm1tRHt7W11SbJNGN/Hy2avC17cdBqzsFPkRnY8flPXS6i9XV1WIiIim1jgebjZbH2Xm2UR6eoiOTFBfHCQaF8fdjjc6hJFRERkE1DI0gSFLCIiW48JAvJnzjB/4gReqUR8ZESLtGVdGGMISqXlrpeFAMbP5Rpe33Kc63a8LIYvOmEjIiKy+QSui5vN4ubz2I6zFLjEBgeJ9vbq8aWIiMgOppClCQpZRES2rursLHPHjlF67z1ig4OE2tpaXZLsEIHr4q3odnHTabz5eYzvN7y+k0pdF7yEu7uxEwkthBcREdkkAtellsng5/NY4TCR7m6Su3cTHxgg2tOD5TitLlFEREQ2kEKWJihkERHZ2vxqlfmTJ8mdOoUVDhMbGNCJa2kJEwT4+fxNXS9BqdTw+lY0Wg9cVnS+hDo6dBJHRESkxfxqtT5SrFDAjkaJ9vTQNjFBbGCASHe3RoOKiIjsAApZmqCQRURk6zPGUHzvPdLHj1NLp0mMjmqBqWwafqWCtzJ4Safxsllo9BDMtgl1dl4XvIS7u7Gj0Y0vXERERPArlXrgUiziRKNE+/rqI8UGBoh0denFPSIiItuUQpYmKGQREdk+apkM6WPHKJw/T6S7m0hnZ6tLEmnILC7dvSF8Ma7b8PpOMkloMXRZCGCcVEondkRERDaQXy7XR4qVSjiJBLEVgUu4o0P3yyIiItuIQpYmKGQREdleAtcle+oUmddfxwQB8eFhjXSQLcEYg18oLO13WQxe/EKh4fWtUKg+YmzlrpfOTiwt6RUREVl3XqmEm8ngl8uEkkliAwMkx8frgYvOLYiIiGx5ClmaoJBFRGR7Kn3wAelXX6Vy7RrxkRGcWKzVJYmsSlCr4S6ELt6KXS8Ewc1XtixC7e3L4cti10sisfGFi4iI7ADGGPxSidr8PEGtVg9choZIjo0R6+8nnEq1ukQRERFZBYUsTVDIIiKyfXmFAukTJ8ifPk2ovZ1oT0+rSxJZEyYI8LLZpcBlMXwJKpWG17djsaVul8XOl1B7u7q8RERE1pAxBq9QwM1kCFyXcCpFfHiYxK5dxPr7CSWTrS5RRERE7pBCliYoZBER2d6M75M/e5b548fxKhXiw8PYGqck25AxhqBcvm7Hizc/j5fNNv4CxyHc2Xl9+NLVhR2JbGzhIiIi25AJArxCgVomA55HqL2d+MgIydFRogMDhOLxMWQZtwAAYXNJREFUVpcoIiIit6GQpQkKWUREdobKzAzpV1+ldOkSscFBvZJQdozA867b8bLY+WI8r+H1nVRqaczYYteLk0xqma+IiMgqmSDAzeXwcjlMEBBqbye5axfx4WFiAwM40WirSxQREZEbKGRpgkIWEZGdw69UmD95ktzbb2NHIkT7+3XiWHYkYwx+Pn9d14ubThOUSg2vb0UiS8HLUudLZyeW42xw5SIiIlub8X3cXA43lwNjCLe3kxgfJzE8TKy/Xx2lIiIim4RCliYoZBER2VmMMRTfe4/0sWPUMhkSIyN6MiuyIKhUcFd2vaTTeJkMNHq4aFmEOjuvC19C3d04sdiG1y0iIrIVBZ5X73DJZsGyiHR1kRwfJzY0RKyvDzscbnWJIiIiO5ZCliYoZBER2Zlq8/Okjx2jcP480d5ewh0drS5JZFMyvo+Xzd7U9WJqtYbXtxMJwp2dOMkkdiKBk0wuvyUSCjVFREQaCDwPN5vFzeWwbJtodzeJ8XHiQ0NEe3u1U1BERGSDKWRpgkIWEZGdK6jVyJ46Reb11zHGEB8exrLtVpclsukZYwhKpZuCFz+f/8ivtcLhpcBlZQCzMpDRK3dFRGQnC1wXN5vFy+WwwuF6h8vu3cQHB4n29Ghcp4iIyAZQyNIEhSwiIlK6fJn0q69SmZkhPjyscUciqxS4bj1syeXwSyX8YnH5rVS6ZffLjZaCmBvCGHvFnxXEiIjITuBXq/XApVCo7xTs6SG50OES6e7WC4RERETWiUKWJihkERERADefZ/6118i/+y6hVIpoT0+rSxLZdgLXXQpcghXhy8owxrjuHd2WFYnc1A2zFMAoiBERkW3Ir1ZxMxm8YhEnGiXS20vb7t3E+vvrgYtltbpEERGRbUMhSxMUsoiIyCLj++TPnGH++HH8apXY8LDmX4tssKUgplgkaNAN03QQc2NHzA2dMfo/LiIiW5FfqVCbn8cvl3HicaJ9fbRNTBDr7yfc2anARURE5C4pZGmCQhYREblR5do15o4do3zpErGhIULJZKtLEpEVglrtug6Y68KYtQhiVvxZQYyIiGx2XqmEm8ngl8uEkkliAwMkx8aIDQ4S1nkOERGRVVHI0gSFLCIi0ohfqTB/8iTZU6dwolGi/f16RaDIFhLUajeNI7uxM8Z43h3dlhWNXh/ANAhjLAUxIiLSYsYY/FKJWiZDUK3WA5fBwXrgMjBAOJVqdYkiIiJbhkKWJihkERGRWzHGUDh/nvTx47jZLInRUe14ENlGloKY24QxdxrE2NEo9i0CGAUxIiKy0YwxeIUCbiZD4LqE29qIj4yQGB0lNjCgTm0REZGPoJClCQpZRETko1TTaeaPH6dw/jzRvj6NXRDZIYwxmJWjyW7ohAkWLmsmiFncBdNwT4yCGBERWQcmCPAKBWqZDHgeofb2euAyMkJscJBQPN7qEkVERDYdhSxNUMgiIiJ3IqjVyLz1Fpk33gAgPjSEZdstrkpEWu2mIOaGzpimg5hYbCl0uVVnjOU46/xdiYjIdmWCAC+fx81mCXyfcEcHydFR4iMjxAYGcKLRVpcoIiKyKShkaYJCFhERaUbp0iXSx45RmZ4mPjKCE4u1uiQR2eSWgpgG3TArwxjj+3d0e3YsthS43NQVoyBGRETukAkC3FwON5sFYwi3t5MYGyMxMkK0r0+Bi4iI7GgKWZqgkEVERJrl5vPMnzhB7t13CXd0EO3ubnVJIrLFXRfE3LgnZkUwQ7NBzI1hzGIgoyBGRERWCDxvqcMFINLVRXJ8nNjQELG+Pu0lFBGRHUchSxMUsoiIyGoY3yd3+jTzr71GUK0SGx7G1i4FEVlHxhhMtXrLAGbxz6sKYhbe7Bv2xGgsoojIzhN4Hm42i5vLYdk2ke5ukuPjxAcHifb16TGviIjsCApZmqCQRURE7kb56lXSx49Tvny5vjg0mWx1SSKygxljCKrVpV0wN3XFLHbEBMEd3Z4djzccR7ZyTJmCGBGR7StwXdxsFi+fxwqFiHR2ktyzh/jAANHeXnVFiojItqWQpQkKWURE5G555TKZkyfJvvUWTiJBtK8Py7JaXZaISEPXBTG32RPTdBBzQxizsitGQYyIyNYX1GrUMhm8QgE7EiHS3U3bxASxwUGiPT36XS8iItuKQpYmKGQREZG1YIKAwvnzpE+cwMtmiY+Oana1iGxZi0HMYvByUyDTTBBjWfUg5oZumOvGlP3/27vz+MiqOv//73trubVl35NOJ91NL2zS0E2j7ILaIqjoIOBXRNsNBwEVUJZhRGAQkBFkEEX9OjIijuKCy1dcRga/X/TH6AiD9kZvWbqh6YU0qSRVSW33/P6opJLqJN2dtbK8no9HPZKce2/dU+Fwu3Lfdc4nGOTmHADMIplEQqnOTqVjMdmOI6eyMhu41NTIX1bGNR0AMOsRsowBIQsAYDIlOjp04PnnFWttlVNVJR//tgCYo4wxcvv6cqHLiDNj4vHxBzEHBTIEMQAwM2X6+pTs7FQmHpcnEJBTXa1IU5MCNTXylZYywxsAMCsRsowBIQsAYLK5yaQ6N2xQ54YNsixLgdpabgwCmJfygpjRwpixBjEjzYYhiAGAGSEdjysVjWYDl1BIwZoahZua5NTUyF9SUujuAQBwxAhZxoCQBQAwFYwxiu/apQPPP6/Evn0KLlggj+MUulsAMOMYY+T29g6bAeMeVCdGR/Jni2XJEwoN1oMZIYwhiAGA6ZGOxbKBS1+fvOGwAv2BS6CmRr6iokJ3DwCAQyJkGQNCFgDAVEp1d+vA88+re+tW+cvK5C8rK3SXgBEZ180+MhlpyPcD7Rr685B2q/+t5MAbSkvZm+aWxyOnslLecLhgrwlzx4hBTCwm9+ClycYSxIwyG8ZTVCRPIDD1LwoA5gljjDKxmJKdnXKTSfkiEQXq6hReuFCB6mp5I5FCdxEAgGEIWcaAkAUAMNXcdFpdW7ao869/lZtMKlhfL8vjKXS3MMtNZigiYyTbzo5L25Zl27JtW/J4ZPW3Wx6PbL8//+Hzyfb5ZHm9sj0eyeOR7fHIGKNYe7viu3bJ7euTr7xcvpIS1mTHlDKuO2xpsmEzY44wiPFXVyvQ3KxgU5M8BIUAMGmM62ZnuHR2yqTT8hYVKdjQoFBDgwI1NfKGQoXuIgAAkghZxoSQBQAwXXr37NGB555T7+7dCtTW8kfkPHPIUCSTkYw58lBEkixr7KGI3y/b6x0Wilheb/aYga8jtY8xIDHGKNnRoe6WFsVaWpSKRuUtKZFTXk7IiIIZFsQcFMYMzIwZKhe4NDfLw3UbACaNcV2lu7uVikblZjLyFRcrUFkpX0mJvOGwPIGAPMFgdqZhICDb5yt0lwEA8wghyxgQsgAAplM6HlfnX/+q6KZN8oRCcqqq+HT/DHW4UCQ3W2SyQhGvNzszpEChyFRKdXcr1t6u7q1blezokB0IyKmslO33F7prwDCZWEy97e3qa2tTct++vG3+6moFFi3KznAhcAGASWNcV6muruzMw2QyO+vQmOx7IMeR7fPJEw7LX1IiX1FRNnwJBgeDGOptAQAmGSHLGBCyAACmm3Fd9ezYoQP/8z9Kd3UpuGABn8ybBIcMPw4Rihy8dNDBoYhl29JoocjAklljDEVsrzf7PDM0FJkqmURC8V271LV1q/r27JFlWfJXVjKrCzPWIQOXmhoFm5sVIHABgCnjptNyk8m8h0mlctstv18en0+248gbicg3NIQZEsDYfv+8eK8FAJg8hCxjQMgCACiUREeHDjz3nGJtbXKqq+UrKip0l6bVhEMRY7JByMATHi4U6a8f4vH5ZI0nFOmfMTKfQpGp4qbT6tuzR93btyu+c6cyiYT81G3BDJeJxdTb1qbe9nalCFwAoOCMMTKplNxkUplEIhfCKJORLEuyrOwsGL9fHsfJBjDFxdmlyA6aCWN7vYV+OQCAGYaQZQwIWQAAhZRJJBTdsEGdGzbIsm0Famtn7FIHEw1FLGWX0BpLKOIZCEHGG4oMnTHCzfsZxxijxKuvqqe1NVu3patLvpIS+cvKqNuCGS0XuLS1KbV/f942f02NgosWKbBwIYELABSQcd1hs2DcZFKmfymyobORveGwfMXF8hUXD1+KLBCYse/PAQBTh5BlDAhZAACFZoxRfOdOHXjuOSU6OhRsaJDHcSb+vIUKRQZmigz84UoogiOQ6urK1m3Ztk2JAwfkcRzqtmBWOGTgUls7OMMlGCxQDwEAI3H7Z8HkPdLp7Htfy8q9t/UEAvJGIvKXlsoTDuctQ+YJBCblfTsAYOYhZBkDQhYAwEyR6urSgeefV8+2bfKWlMgTCIwcigwJRI40FLE8nmxoMcZQxBqpdgihCKZQpq9P8ZdeytZteeUVWbZN3RbMGumeHvW1t6u3tVWpV18d3GBZ+UuKEbgAwIxmXHfEEMa4riTJsu3s+2bHkScQkL+kRN7iYvlCoWEzYZidCwCzEyHLGBCyAABmEjedVtfmzYpu2iS5rmTbYw9FDq4dQiiCWchNp9X3yivq2r5dvbt2KZNIyKmokLe4mLGLWSHd06O+gRkuBC4AMKeYTCYXvGSSSbmJhEw6Pfjhp/46gLbjyBuJZGvBFBXlAhhv/1fbcXhfAwAzFCHLGBCyAABmonQsJkmEIpj3cnVbWlqydVt6euQrLqZuC2aVdHd3dobLSIHL0CXFAoHCdRIAMCmMMTLp9PClyFKp7Exzy8p+WMpx5HGcbC2YkhJ5D16KLBiU7fMV+uUAwLxFyDIGhCwAAACzQ17dlo4OeYLBbN0WbkBgFiFwAYD5LbcUWSKRF8LkZsF4PNnZ6n6/PKGQfCUl8hcXD1uGzBMMZmslAgCmBCHLGBCyAAAAzC6Zvj7Fd+3K1m3Zs4e6LZi1coFLa6tSHR2DGwhcAGDeckeYBWNSqexGyxpciszvl7eoSL6SEvkikbwZMJ5gULbfz0x4AJgAQpYxIGQBAACYndx0Wr27d6t7xw7Fd+2Sm0zKKS+nbgtmpXR3t3rb2tTX1jYscHHq6hRoblZg4UICFwCYx4wxMqnUYC2Y/nowymQky5IsS7bjZGfBOE42gCkuHr4UWSDATGAAOAxCljEgZAEAAJjdjDFK7N+vntbW/Lot5eUso4FZ6UgCl+DChbIJXAAAQxjXHV4LJpnMbbP7Z8AMLEXm7w9hhi1FFgjwHgrAvEfIMgaELAAAAHNHMhpVbOdOdW/dquSBA9RtwayX7uoaDFwOHBjcQOACABgjN50eVgvGTadlSYNLkfn9sh1H3khE/tJSeSORYbNgPI5T6JcCAFOOkGUMCFkAAADmnnRvr3p37VLXtm1K7N0r2bacykp5gsFCdw0Yt4HApbetTekRApfgokUKLFwom5tfAIAxMq4rt38psrx6MK4rSbJsOzsLxnHkCQTkKy6Wr6RE3iF1YAa+tzyeAr8aAJg4QpYxIGQBAACYu3J1W7ZtU/zll7N1Wyoq5C0qom4LZrVDBi719Qr213AhcAEATAaTyeSCl4F6MCaVyoUw9kGzYHzFxfIWFY28FBnvwQDMAoQsY0DIAgAAMPcZY5TYt2+wbkssJl9JifxlZaw5jlkvHY0OBi6vvTa4gcAFADBNRpoF46bTkiTLsrL1YBxHHseRt6gouxRZODxsKTLb7y/wKwGALEKWMSBkAQAAmF+SnZ2Ktbere9s2JV97jbotmFNGDVxsOxu4NDURuAAAplXeUmRDasKo/5ak5fFklyLz++UJBuUrLZWvqCi7/FgolBfE8OEYANOFkGUMCFkAAADmp1zdlq1b1bd3ryyPh7otmFMOG7g0NyvQ2EjgAgAoKDedHl4LJpXKhjCWJcvvl8fnk+33y1tUJF9JiXyRyOAyZKGQPMGgbL+fpciAQzDGSK4r0/+QMdmvrivL55OH94R5CFnGgJAFAABgfnNTqWzdlu3bFX/5ZZlkUn7qtmCOSXV2qq+9Xb2trUp3dg5uIHABAMxgxhiZ/lkwmSEhjDKZ7A6WlZ0F078Uma+4WL6SkpGXImPWMqbYsPBiSIhhhn4/ZFuuTRrcdgT7S9mAUq4rN5ORSaez2zOZ/IfryqTTw/o0cD71By++8nLVrV3L3z9DELKMASELAAAApOwfRX379inW2qqe1lalqduCOSrV2am+gRkuIwUuixZlAxfWxQcAzHDGdYfXgkkm+zcaWV5vNoTx+eQJh+UvKZGvqCg3+yUXxAQCvN+b4YwxRx5ajBJyjDaLw4wWiqTTcjMZqT+scNNpKZPJtvVvzwUbQ89jTO7rSG25bUPPa4wG4g0jZb+3rOzxljVsm1G23pEsa3Ds2nauTZaVv/3gNsuS+o9L9/TIGwxqwbvexf8HQxCyjAEhCwAAAA6W7OxUrK1tsG5LOCynooJPQGLOOWTg0tAwOMOFwAUAMAvlLUU2UA8mnc7dwLZ8Pnn6Z8J4I5H8pciGzIKZD8sojSeEyO0/5PuD9x8tEBkIL/JmYbjuYIgxMENjSMgx4iyMg8OLg7ab/lkfxnVzszRyIcYAy8qFHLkQYyCIkEYOKUZr63++ge15ocdIbQcfWwCJAwdk2zYhy0EIWcaAkAUAAACjScfjivfXbUns25et21JVJU8gUOiuAZMu9dpr6m1rU19bm9LR6OAG21agoUEBAhcAwBxijBl5Fkz/TXrLtgeXIgsEBpciOziACQZle72HP98YQ4hhS0llMoMhwpEsJZVK5dpGXUpqyJJSeTMupLylpEx//0ebhdH/C80LL/JmXIz0+zh4VsUowcVI2480uBi2HSMiZBnZWHKDw18BAAAAgHnKGwqpePlyRRYvVu/LLw/WbUml5K+slK+oqNBdBCaNr6xMvrIyFZ944rDApW/XLvXt2kXgAgCYMyzLkqe/lstITCaTC17SsZiSr70mk0pp4PPq9sBSZH6/vP2zX4YuJeWm09lZGP3hxojLRR28lNTQWRjKDzaGLSUlZZ/DtnNBx6hLSR1BcDF0CSl7oE0aW7ABzFOELAAAAMBh2D6fws3NCi1cqL59+9SzY4di7e1K7NsnX2kpdVsw5wwELkUrVyrd2XnowGWghgvL6QEA5hDL48nNWBnpXzg3lcqFMMkDB7LLkB3BUlKWxzNsBsdMXkoKwOERsgAAAABHyLJtBWtrFaytVckxxyjW3q7ubdsUa22VNxKRv7ycG82YUyzLGjlwaW1VuqsrP3BZsGBwhgv/HwAA5jjb58v+excOF7orAAqMkAUAAAAYB39ZmfxlZSpatixbt2XLFvW+/DJ1WzBnDQtc+pcU621rU6arS307d6pv507J41GgoUHB5mY5BC4AAACY4whZAAAAgAkYsW7LSy/JZDLyV1RQtwVzkmVZ8pWXy1derqITTzx04LJgQTZwWbCAwAUAAABzDiELAAAAMAny6rbs3Zut27JzpxL792frtpSWsp425qRRA5fWVmW6u9XX3q6+9vbsLC8CFwAAAMwxhCwAAADAJLJsW8G6OgXr6lR84EC2bsv27YN1WyoqZHt5G465aVjgcuDA4AwXAhcAAADMQfx1BwAAAEwRp7xcTnm5ipctU/yll7J1W3btkuXzyamspG4L5jTLsuSrqJCvokJFJ5106MClsTEbuDQ0ELgAAABgViFkAQAAAKaYNxzO1m1ZtEjxl19W97Zt6t29m7otmDcODlxSBw6ob2jg0tamvrY2WV5v/gwXZn0BAABghuMdKwAAADBNbL9fkUWLFG5qUt+ePepuaVG8vV2JffvkLy+Xr6SEui2Y8yzLkr+iQv6BwKWjYzBw6ekhcAEAAMCswrtUAAAAYJpZtq1gfb2C9fVKHHOMYm1t6t6xQ7G2NnnDYeq2YN6wLEv+ykr5KytVtGoVgQsAAABmHd6ZAgAAAAWUq9uyfLniu3ap68UX1fvSS9mbylVV8jhOobsITIuRApfetjb1tbYqE4vlBS6BxkYFmpsVaGiQReACAACAAuLdKAAAADADeMNhFa9Yocjixdm6LVu3qveVV2QyGTmVlfJGIoXuIjBthgYuxQOBS2ur+tralInF1Nvaqt7WVgIXAAAAFBzvQAEAAIAZZFjdlh07FGtvV9++ffKXlVG3BfNOXuCyerVSr76aneFC4AIAAIAZgHedAAAAwAw0rG5Le7u6t29XrLVV3qIi+cvLqUuBeceyLPmrquSvqjp04OLzDQYu9fUELgAAAJgyvNMEAAAAZjinokJORYWKly1TbNcudW/ZoviuXbJ9Puq2YN4aFrjs36/e9vbBwKWlRb0tLbnAJdjcLIfABQAAAJOMd5cAAADALOGNRFRy9NGKLF6s3t271bV1q/p275YxRk5FBXVbMG9ZliV/dbX81dWDgUtbm3rb2uTG4yMHLg0NsjyeQncdAAAAsxwhCwAAADDLeBwnV7eld88e9QzUbdm7V/7ycuq2YF7LC1xOPvnQgcvChYMzXAhcAAAAMA6ELAAAAMAsZdm2QvX1Cg3UbWlry9ZtaWmRt7iYui2Y90YMXFpb1dveng1cduxQ744dBC4AAAAYN/7iAgAAAOaAgbotRcuWKf7SS9m6LTt3ynYcOZWV1G3BvJcXuKxZo+S+feprayNwAQAAwIQQsgAAAABziK+oaLBuy8svq2vbtsG6LZWV8obDhe4iUHCWZcmpqZFTU5MfuLS1ye3tHQxc/P5sDZdFi+TU1RG4AAAAYBhCFgAAAGAO8jiOIosXZ+u27N2rnu3bFdu5M79ui2UVuptAwY0pcBmY4ULgAgAAgH6ELAAAAMAcZnk8CtXXK1hXp5KODsXa2wfrthQVUbcFGCIvcDn55PwlxXp71bt9u3q3bydwAQAAQA5/TQEAAADzgGVZcior5VRWqmjZMsV27lT3tm3q3bVLtuPIX1FB3RZgCMu25dTWyqmtzc1w6W1rU19bm9y+vrzAJdjUpEBTU7aGi20XuusAAACYRoQsAAAAwDzjKypS6bHHquiooxR/6SV1b92q3j17JOq2ACMaGriYEQKX+LZtim/bJstxFFy4UIGBGS4ELgAAAHMeIQsAAAAwT3kcR0VLlijS3KzePXvUvX274jt3KrF3r3zUbQFGNCxw2bs3G7i0txO4AAAAzEOELAAAAMA8Z3k8CjU0KFhfr2RHh3paW9XT0pKt21JcLKe8nJoTwAgs25ZTVyenrk7mlFNGDVxsx1Fg4UIFFi2SU1tL4AIAADCHELIAAAAAkJRft6V4xQrF2tvVvW2b4u3tsgMBOZWVsv3+QncTmJHGFLg0NSnY3Cw/gQsAAMCsZxljTKE7UUhdXV0qKSlRNBpVcXFxobsDAAAAzCiZRGKwbssrr8iyLPkrKqjbAhwh47pK7tkzGLgkErltBC4AAKDQEgcOyLZtLXjXu3gvMsRYcgNCFkIWAAAA4LBMJqPeV17J1m3ZtUtuIiFfWRl1W4AxIHABAAAzDSHLyMaSG7BcGAAAAIDDsjwehRYsULChQYlXX1VPa6ti1G0BxsSybTn19XLq62Ve//phgUt861bFt26VHQgMBi41NdzwAAAAmMGYycJMFgAAAGBcUt3dirW1qXvbNiUOHJDHcajbAoyDcV0l9uxRX2ur+nbuzJ/hQuACAACmEDNZRsZyYWNAyAIAAABMTCaRUHzXLnVt3aq+PXuydVsqK+UNhQrdNWDWMa6rxCuvqK+tTb07d8oQuAAAgClEyDIyQpYxIGQBAAAAJoebTqvvlVfUvWOH4jt3KpNIyKmokLe4mLotwDjkBS7t7TLJZG6bHQgo0NycDVyqq7kpAgAAxoWQZWSELGNAyAIAAABMLmNMtm5LS4tira1KdXfLV1wsf1kZdVuAcTKuq8Tu3eprbx8euASDCjQ1KdDYyHJ9mNVsv1+W42S/cqMPAKYFIcvICFnGgJAFAAAAmDqpri7F2tsH67YEAtm6LT5fobsGzFomk1HilVfU29amvp078wIXYK6w/H7ZgYBsxxn5McI2y+stdLcBYNYhZBnZWHID/vUBAAAAMGV8xcUqPf54FS1dmq3bsm2bel9+WZZtU7cFGCfL41FgwQIFFizIC1ySe/dK8/tzlJjNjJGbTMqkUtkfk0llkkllxvAUlseTnQkzSggzUkhj+f0saQkAmBBCFgAAAABTzhMIqGjpUoUXLVLv7t3q3rFDvbt2qW/vXjnl5dRtAcZpaOACzAUmk5GbSIz6MImE3L6+Ye0yRiaTkYnH5cbjR35CyxpcpuwwM2XywhmWvwQA9JuRIctDDz2ke++9V3v27NEJJ5ygBx98UGvWrDnscd///vf13ve+V+985zv105/+dOo7CgAAAGBMbK9X4YULFWpsVGL/fvW0tirWX7vFV1wsf3k5yxQAwDxmeTzyhELyjGGmozFGJpUaDF1GCGHM0J/7t5t0OjuDJpGQEomxzZrxegeXKTvC2TPMmgGAuWnGhSw/+MEPdO211+rhhx/WKaecoi9/+ctau3attmzZourq6lGPa2tr0/XXX68zzjhjGnsLAAAAYDwsy1KgulqB6moVr1ih2M6d6t66VbG2NnmCQeq2AACOmGVZ2Roufr9UVHTEx+XNmhkhmMkLaQa2J5PZWTPptDLptDKx2Fg6Ojx4OYLZM8yaAYCZbcYVvj/llFN08skn6ytf+YokyXVdNTY26uqrr9aNN9444jGZTEZnnnmmPvShD+mZZ55RZ2fnEc9kofA9AAAAMDOke3vV21+3JbF3r2Tbcior5QkGC901AAAk9c+aSSaHBzGjhDQDM2hMOj3uc+ZmzRwUwliHCmZ8PmbNADgiFL4f2awtfJ9MJvXcc8/ppptuyrXZtq03velNevbZZ0c97vbbb1d1dbU+/OEP65lnnjnkORKJhBKJRO7nrq6uiXccAAAAwIR5g0EVLVum8OLF2bot27Yp/vLLcpNJORUV8hYVccMIAFBQlmXlZp+MhUmnDzlT5uCQZiCcGTh2zLNmbFu23z9iCHOo2TPcYAWAsZtRIcurr76qTCajmpqavPaamhq9+OKLIx7zhz/8Qd/61rf0wgsvHNE57rrrLt12220T7SoAAACAKZJXt2XfvsG6Lfv3y1daKn9ZGTeBAACziuX1yuP1yhMOH/ExebNmDrOc2dDtymQk18229fWNrZ8+X34oM9LsmYO2W14vH4IAMK/NqJBlrLq7u/X+979f3/zmN1VZWXlEx9x000269tprcz93dXWpsbFxqroIAAAAYJwsy1KgpkaBmhoVH320Yu3t6t62TbHWVnlCIeq2AADmtLxZM2NY4t5Np7MzYcYQzJhkUpJkUillUillenqOvKO2fchgZlhAEwjI9vv5wASAOWNGhSyVlZXyeDzau3dvXvvevXtVW1s7bP8dO3aora1Nb3/723NtrutKkrxer7Zs2aIlS5bkHeM4jpwxTukEAAAAUFj+khL5X/c6FS1dmq3bsnWr+nbvpm4LAAAHsb1eaayzZlxXbjKZW6bsSGfPyHWzs2Z6e+X29o6pn5bfP2IYc6glzpg1A2AmmlEhi9/v16pVq/TUU0/pwgsvlJQNTZ566ildddVVw/ZfsWKF1q9fn9d2yy23qLu7Ww888AAzVAAAAIA5Jle3ZdGibN2W7dup2wIAwARZti1PICAFAkd8jDEmV2vGHGamTF69mYFZM8mkMsmkMt3dR95R2x51psyoM2iYNQNgis2okEWSrr32Wn3gAx/Q6tWrtWbNGn35y19WLBbTunXrJEmXX365GhoadNdddykQCOi4447LO760tFSShrUDAAAAmDtsn0/hpqZs3Zb9+9XT0qKe1lYlXn1VvpIS6rYAADDFLMvK1nDx+aRI5IiPG5g1k7dc2RHMnsnNmonH5cbjY+vrSKHM4WbPeGfcbVMAM9SMu1pccskl2r9/vz73uc9pz549WrlypX7961+rpqZGkrRz507Z/LEEAAAAQNlP3g6r27J1q2Jtbdm6LRUV1G0BAGAGGZg14xnPrJmDQphhM2gO3p5KZY9PJJRJJJQZSz89nvw6MocJaSyvN/vweCTbZmYtMI9YxhhT6E4UUldXl0pKShSNRlU8hiJiAAAAAGamdDyueH/dlsS+fbI8HjlVVWO6mQMAAGY/47qjhjCHWuJME71dalnZkGZI8DLi14FQZoS2I/rq9TJzFxOWOHBAtm1rwbvexXgaYiy5wYybyQIAAAAAE+ENhVS8fLkiixdn67Zs26b4yy/LpFLyV1bKV1RU6C4CAIBpYNm2PMGgPMHgER9jjJFJpUZetqyvb+TZM8mkTDo9GM70z7wx6fQUvbIhLGvE4OZQX3WofQ/Vxg14YESELAAAAADmpKF1W/r27VPPjh2KtbcrsX8/dVsAAMCILMuS5ffL9vulMXwwwxgjuW42XMlk8r+O1Dba14PaNMrxQ04sk0rllkabUrZ9ZLNrDtGmIz2e92iYRQhZAAAAAMxplm0rWFurYG2tSo49VrG2NnVv26ZYa6u8kYj85eXUbQEAABNiWVY2QPB4pvxceYHOOIKbwx2n0QId15Vx3ekPdMYa6hw8c+dQxxHoYBIQsgAAAACYN/ylpfKvXKmiZctydVt6X36Zui0AAGDWyAt0HGdKz2WMyYYuEwxujmjGTiYzeOLpDnQmMDtnpOXY7NGWZbOsqX89mHaELAAAAADmnby6LS+/rO7t27N1W9JpOVVV8obDhe4iAABAwVmWlZ0J4vVOX6AzmbNzRnkOHRzoJJMyU/rq+g0EOuOclXO44CdvOTYCnWlDyAIAAABg3rJ9PoWbmxVauFB9e/eqZ8cOdbe0KNnRoUBtbXY9dgAAAEy5vEBnihljhi+PNsmzcwba5LqDJx4IdJLJKX+NA7OdDhfSuOm0PMHg1PdnDiNkAQAAADDvWbatYF2dArW1Ci9erOiGDYrv2iU7EFCgupq1ugEAAOYQy7Jy9VqmmnHdbOgyNHjJZOSOUP9mwvV0hgY6A+c8gkDHDoWm8Dcw9xGyAAAAAEA/y7IUqq9XoLpasbY2RTdsUKylRf6KCvnLygrdPQAAAMwylm1nP7Dj8035uUYKdIYFMQe1pbq7ZU9D3+YyQhYAAAAAOIjt9aroqKMUrK9X99at6tq8WbGWFjm1tfLyST8AAADMQOMJdBIHDshm1vaEELIAAAAAwCi8oZDKVq5UaOFCdW3apO4dOwbrtfCJPwAAAGDeI2QBAAAAgMNwystVedppCi9apM7+ei3eUEhOVRX1WgAAAIB5jJAFAAAAAI6AZVkKNTTk6rV0btyYrddSWSl/aWmhuwcAAACgAPjIFQAAAACMge3zqWjpUtW95S0qX7NGJpFQT0uL0vF4obsGAAAAYJoxkwUAAAAAxsEbCqn8xBMVXrhQ0U2b1EO9FgAAAGDeIWQBAAAAgAlwKipUdfrpiixapM6NG9W7c6c8kYicykrqtQAAAABzHCELAAAAAEyQZVkKLVigQE2NYq2t6tywQbHWVvkrKqjXAgAAAMxhfKwKAAAAACaJ7fOpaNky1a1dq/LVq+X212vJ9PYWumsAAAAApgAzWQAAAABgknnDYZWfdNJgvZaWFsmyFKipoV4LAAAAMIcQsgAAAADAFHEqK1V1+ukKNzcrunGj4rt2yUu9FgAAAGDOIGQBAAAAgClk2bbCCxcqWFurnoF6LW1tcioq5CspKXT3AAAAAEwAIQsAAAAATAPb71fx8uUKNTSoa8sWdW3ZouSBAwrU1ckTCBS6ewAAAADGgZAFAAAAAKaRNxJR+apVCjc1qXPjRvW0tMiybQVqa2V7+RMNAAAAmE14Bw8AAAAABeBUVqr6jDMUaW5W58aNiu/cKW9RkZyKCuq1AAAAALMEIQsAAAAAFIhl2wo3NSlQW6vY0HotlZXyFRcXunsAAAAADoOQBQAAAAAKzOM4Kl6xQsGGBnVv2aLoiy9m67XU1lKvBQAAAJjBCFkAAAAAYIbwFRWpfPVqhZqaFB2o1+L1KlBTQ70WAAAAYAbiXToAAAAAzDCBqio5Z545WK+lvV2+khL5KypkWVahuwcAAACgHyELAAAAAMxAlm0r3NysQF2denbsUOfGjYq1tMiprpavqKjQ3QMAAAAgQhYAAAAAmNE8jqOSY45RqLFR0U2b1L1tm5IdHQrU1cnjOIXuHgAAADCvEbIAAAAAwCzgKypS5SmnDC4h1tYmy+eTU11NvRYAAACgQHgnDgAAAACzSKCmRjWVlYotWqTohg3Zei2lpfKXl1OvBQAAAJhmhCwAAAAAMMtYHo8iixYpWF+v7m3bFN20iXotAAAAQAEQsgAAAADALOVxHJUed5zCCxcO1ms5cECB2lrqtQAAAADTgJAFAAAAAGY5X3GxKl//eoWbmxXdsEGx9nbZjqNAdbUsj6fQ3QMAAADmLEIWAAAAAJgjgrW1ClRVKbZzpzrXr1esrY16LQAAAMAUImQBAAAAgDkkV6+lrm6wXktrqwI1NfKGw4XuHgAAADCnELIAAAAAwBzkCQRUevzxCi1cqK6Bei0dHXJqaqjXAgAAAEwSQhYAAAAAmMP8JSWqGKjXsnEj9VoAAACASUTIAgAAAABznGVZCtbVyamqUqy9XdGBei1lZfKXlVGvBQAAABgnQhYAAAAAmCdsr1dFS5Yo1NCgrm3b1EW9FgAAAGBCCFkAAAAAYJ7xBAIqO/54hRsbFd24Ud07dijZ0aFAba1sv7/Q3QMAAABmDUIWAAAAAJin/KWlqjz1VIUXLVJ0wwbFd+2SHQhk67XYdqG7BwAAAMx4hCwAAAAAMI9ZlqVQfb0C1dWKtbUpumGDYi0t8ldUyF9WVujuAQAAADMaIQsAAAAAIFuv5aijFGxoUPfWreravFmxlhY5tbXyhkKF7h4AAAAwIxGyAAAAAAByvMGgyk44QeGFC4fXa/H5Ct09AAAAYEYhZAEAAAAADOMvK1PlaacpvGiROvvrtXhDITlVVdRrATBpjOsq1dWlVDQq47qyJBkp91VDv7csWZbV39j/ff/PuetSf9vQ/Q6179D2vJ8H9h3y86H2zZ0PADDvELIAAAAAAEZkWZZCDQ25ei2dGzcq1tqarddSWlro7gGYpYzrKt3drVQ0KjeTka+kRCVHHy1/eXluu4yRjBn8XpKbyUiuK9P/GPq9cV0pk5EZOObgbf3PM/B8xhjJdeVKuXMNfZj+djNC20B/hvbNGKPRYpaB0Gjo9wRJADB3ELIAAAAAAA7J9vlUtHTpYL2WTZvU09KiAPVaABwh47pK9/RkZ6ykUvIWFyuydGk2yK2tlTcYnJ5+DA1NhgYuGhKauO7wtoP3H2gb2F8aDHJGe47DPK80xiDJGJlM5rBBkjnodRMkESQBmFyELAAAAACAI+INhVS2cqVCjY2KbtqkHuq1ADgEY0wuWHFTKfnCYUUWLVKosVGBmhp5w+Fp71PeTXqPZ9rPPx1mZJDUv02au0GSJcnyemV5vbJ9Ptk+X+57y+tlqU1gDiNkAQAAAACMiVNRoarTT1dk0SJ1btyo3p075YlE5FRWchMJmOeMMcrE40p2dspNJOQNhxVqbFR44UIFamrkKyoqdBfnPIKkCQZJQ4891HMc3JbJKB2LKdXTo0wspkwqJdPXJzedlkmlcs9zcBgz7Cv/jgKzDiELAAAAAGDMLMtSaMECBWpqFGttVeeGDdRrAeaxdDyuVGenMr292WClrk7hpiYFamvlKy4udPcwx8z0IMkYI5NKKZNIyE0m5SYSed+nY7Hcw00mle7pyYUxA7NtLEnyePICGMIYYGYiZAEAAAAAjJvt86lo2TIFGxrUtWWLul58UT2trQrW1sozTTUWABRGpq9PyddeU6a3V55gUE51tSLNzQpUV8tXWkp9C8xblmXJ8vtl+/2H3ddNpYaFMAPfp+NxpXt6smFMIqFMfxjj9ocxUv9SZbadDV58PtkDIUz/9zMxhALmGkIWAAAAAMCEecNhlZ90ksILF2brtbS0SBL1WoA5JpNIKNXZqXQsJo/jyF9ZqciiRQpUV8tfXk6wAozRwAwVbyRyyP3cVEpuMpkNYA4KZNLxuDKxmFIDYUw8nt0/nR6sY2NZg2HMQUuU2T4fYQwwAYQsAAAAAIBJ41RWDtZr2bBBvbt2Ua8FmOXcZFLJzk6le3pk+/1yKipUevzxCtbVZYMV/t8GplwujAmHD7mfm07nQpihgUwujOmfHZPp65Pb16d0d7fcVErGdWUpu9SZddAyZXlfvdxOBg7G/xUAAAAAgEll2bZCjY0K1NSoZ6BeS1ubnIoK+UpKCt09AEfATaWUikaV7uqS5fPJX1amkmOPVbC2Vk5FBZ96B2YoeyAIOZIwpn82zLBAprdXqZ4epeNxub292TCmp0cmlZLJZAafxLIGlyXrD4EIYzAfMdoBAAAAAFPC9vtVvHy5QgP1WrZsUfLAAQXq6uQJBArdPQAHcdNppaJRpbq6ZNm2/OXlKlu9WsG6OjmVldw0BeaQXBgTCh1yP5PJKDMQxhwUyGT6+rJhTCyWDWMSiWwYk05nH1J2doxlDasVM/C95fGwzCBmPf51BAAAAABMKW8kovJVqxRualLnxo3qaWmRZdvZei3ctAUKyk2nlerqUrqrS5LkLytT+YknKlBXp0BVFTWVgHnO8njkDQalYPCQ+xnXzYYvQwKZgXAm09ur9MAyZb29cpNJpWOxvDAme7IhYcwIXwljMFPxbhYAAAAAMC2cykpVn3FGrl5LfOdOeYuKsksPUdMBmDbGdXMzVmSMfMXFKjn+eIXq6+VUVcnjOIXuIoBZxrLtIw5jcrNhBkKYIcuUpeNxZWKx7OyYVEomHs9+zWQkY7KzYyxr5HoxhDEoEEIWAAAAAMC0sWxb4YULFaytVU9Ly2C9lspK+YqLC909YM4yrqt0d7dS0aiM68pbXKySY45RsL5egZoaghUA08KybXkCgcMuG2pcV24qlRfCDHyfSSRyQUwmHlcmmZTp7c2GMem0ZPrnxlhWdjmygXoxQ2rHWB4PH/DApCFkAQAAAABMO9vvV/GKFQo2NKh7aL2W2lrqtQCTxLiu0j09SnZ2Sum0vMXFiixdqvCCBXJqarKfOgeAGciybXkcRx7H0aEWLTTGZAOYgRBm6HJl/TVicmFMKiXT1yc3nZZJpbJhTP+sF8vjyc2GGTYzhjAGh0HIAgAAAAAoGF9RkcpXr1aoqUnRgXotXq8CNTXUawHGwRijdE+PUp2dclMp+YqKVLRkiUKNjQpUV8sbDhe6iwAwaSzLyoUxKioadb9Rw5j+r+lYTKmeHmX6lynLDAljjDHZJciMyYYuoy1VRhgzb/GOFQAAAABQcIGqKjlnnqlIc7M6N25UvL1dvpIS+SsqWFsdOAxjjDLxuJKdnXITCXnDYYWamhReuFCB6mr5DnHjEQDmg7GEMSaVGrFmzEAYM/Bwk0llenqUGTIzxkiyJMnjyQtgCGPmNkIWAAAAAMCMYNm2ws3NCtTVqWfHDkU3blSspUUON4mBEaXjcaU6O5Xp7c0GK/X1Cjc1KVBTQ40jABgHy7Jk+f2y/f7D7jtazRg3mVQ6Hs8tVeYmEsr09MhNp+UOLFMmZQMZ284GL/01Y4Z+b3k8U/xqMVkIWQAAAAAAM4rHcVRyzDEKNTYqunmzurduVbKjQ4G6OopzY97L9PYq2dmpTDwuTyikQHV1NpysqZGvpISZXwAwTQZmqHgjkUPu56ZS2Vkv/bVihgYy6d5eZXp6lBoIY+Lx7P7ptOS62dkxljUYxhy0RJnt8xHGzACELAAAAACAGclXVKTKNWtyS4jFWlpk+/1yqqup14J5JZNIKNXZqXQsJo/jyF9ZqciqVQrU1MhfVkawAgAzWC6MOUxNLDedzoUwQwOZTCKhdDyuTP8yZZm+Prl9fUp3d8tNpWRcV7l/BUYJYyyvl/dOU4jfLAAAAABgRgtUV6umslKx5mZFN2zI1mspLZW/vJyby5izMomEUtGo0j09sh1HTnm5yk44IRuslJezpj8AzDH2QBByJGFM/2yYoYFMJpGQ29enVE+P0vG43N7ebBjT0yOTSslkMoNPYlnZZcl8PrmJhGyWZZ0QQhYAAAAAwIxn2bYiixYpWF+v7u3bFd20SbHWVjlVVdRrwZzhplLZpcC6u2X5fPKXl6vkuOMUrKmRU1HBkjAAgMEwJhQ65H4mk1FmIIw5uHbMQBgTi8nt7ZW3uFjigyvjRsgCAAAAAJg1PI6j0mOPVXhovZYDBxSoraVeC2YlN51WKhpVqqtLlm3LKS9XyYoVCtTWyqmsZHkXAMC4WB6PvMGgFAwecj/TX/uF2cHjx7/UAAAAAIBZx1dcrMpTTlG4qUnRjRsVb2+X5fMpUFPDp/0x47nptFJdXUpHo5JlyV9WpvITT1Swrk5OVZVsn6/QXQQAzBMsPzlxhCwAAAAAgFkrWFurQFWVYjt3qnP9esXa2qjXghnJZDJKdXUpFY1KknwlJSp53esUamhQoKpKtt9f4B4CAIDxIGQBAAAAAMxqlsczWK9l69ZcvZZAdbW8kUihu4d5zLjuYLBijLzFxSo59liFGhrkVFezxB0AAHMAIQsAAAAAYE7wOI5Kjz9eoYUL1bVpk7q3bVPiwAEFamq4mY1pY1xX6Z4epaJRmXRa3qIiFS9fng1Wamqy6+MDAIA5g5AFAAAAADCn+EtKVPH61yvc3Kzoxo2KtbfLdhwFqqup14IpYYzJBiudnXLTafkiEUWWLFFowQIFamrkDYUK3UUAADBFCFkAAAAAAHOOZVkK1tUpUF2tWHu7Ov/2t2y9lrIy+cvKqNeCCTPGKBOPK/naa3ITCfkiEYWbmxVqbFSwpoal6gAAmCcIWQAAAAAAc5bl8SiyeLGC9fXq2rZNXQP1Wmpq5A2HC909zELpeFypzk5lenvljUQUWrBA4YULFaitla+oqNDdAwAA04yQBQAAAAAw53kCAZUdf7zCjY2Kbtqk7u3blezoUKC2VrbfX+juYYbL9PYq2dmpTDwuTyikQHW1ws3NCtTUyFdSwswoAADmMUIWAAAAAMC84S8tVeUb3qBIc7M6N2xQfNcu2YFAtl6LbRe6e5hBMn19SkWjSsdi8jiOnKoqRVavllNdzZJzAAAgh5AFAAAAADCvWJalYH29nP56LdH16xVraZG/okK+0lJuns9jmUQiG6z09Mh2HDkVFSpbuVKB6mr5y8sJ4gAAwDCELAAAAACAecn2elW0ZImC9fXq3rpVXZs3K97aKod6LfOKm0op2dmpdHe3bJ9P/ooKlRx3nIK1tXIqKghWAADAIRGyAAAAAADmNW8wqLITTlB44UJFN25U944dSh44kK3X4vMVunuYAm4qpVQ0qlRXl2yvV/6yMpWsWKFgXZ2cykpZHk+huwgAAGYJQhYAAAAAACT5y8pUedppCi9erM716xXftUveUEhOVRWzGeYAN53OLgXW1SXZtvylpSpftSoXrBCoAQCA8SBkAQAAAACgn2VZCtXXK1BVpVhbmzo3blSstVX+igr5S0sL3T2MkclklOrqUioalWVZ8hYXZ2us1NcrUFkp2+8vdBcBAMAsR8gCAAAAAMBBbJ9PRUuXKtjQkK3XsmmTelpaFKitlTcUKnT3cAjGdXPBilxXvpISlRx3nEL19XKqq+VxnEJ3EQAAzCGELAAAAAAAjMIbCqls5UqF+uu19OzYoWRHB/VaZhjjukr39CjV2Sk3nZavpETFy5crtGCBAjU18gQChe4iAACYowhZAAAAAAA4DKe8XFWnn67IokXq3LhRvbt2yUO9loIyxuQHK0VFihx1VC5YYcYRAACYDoQsAAAAAAAcAcuycjfwY62t6tywgXot08wYo0wspmRnp9xkUr5wWOHmZoUXLlSgulreSKTQXQQAAPMMIQsAAAAAAGNg+3wqWrZMwYYGdW3dqq7Nm9XT2qpgba08wWChuzcnpWMxpaJRZfr65A2HFVqwQOGmJgVqauQrKip09wAAwDxGyAIAAAAAwDh4w2GVn3iiwgP1WlpaJIl6LZMkHY8rFY3K7e2VHQwqWFurcFOTnJoa+UtKCt09AAAASYQsAAAAAABMiFNRMVivZcOGbL2WSEROZSX1WsYo09enZGenMvG4PIGAnOpqRQZmrJSWyrKsQncRAAAgDyELAAAAAAATZNm2Qo2NCtTUqGegXktbm5yKCvmYdXFImURCqc5OpWMx2Y4jp7JSkRNPVKCmRv6yMoIqAAAwoxGyAAAAAAAwSWy/X8XLlyvU0KCuLVvUtWWLEgcOUK/lIG4yqeRAsOLzyV9ertLjj1egtlZORQXBCgAAmDUIWQAAAAAAmGTeSETlq1Yp3NSkzv56LZZtZ+u1eOfnn+JuKqVUNKp0d7csr1f+0lKVHHusgjU12aXVPJ5CdxEAAGDM5uc7OwAAAAAApoFTWanqM87I1WuJ79wpb1HRvJmt4abTSkWjSnV1ybJt+cvKVLZqlYK1tXKqquZt4AQAAOYO3s0AAAAAADCFLNtWeOFCBWtr1dPSkq3X0toqp6pKvuLiQndv0plMRqmuLqWiUUmSv6xM5SeeqEBdnQJVVbJ9vgL3EAAAYPIQsgAAAAAAMA1sv1/FK1Yo2NCg7v56LcmODgXq6uQJBArdvQkxrjsYrBgjX3GxSo47TqGGBjlVVfI4TqG7CAAAMCUIWQAAAAAAmEa+oiKVr16tUFOTogP1WrxeBWpqZtXyWcZ1le7uVioalZvJyFdSopIVKxRcsECB6upZHxwBAAAcidnz7g0AAAAAgDkkUFUl58wzB+u1tLfLV1Iif0WFLMsqdPdGZFxX6Z4epaJRmXRa3qIiRZYuVaihQYGaGnlDoUJ3EQAAYFoRsgAAAAAAUCCWbSvc1KRAf72W6NB6LUVFhe6eJMkYkwtW3GRSvkhE4eZmhRcuzAYr4XChuwgAAFAwhCwAAAAAABSYx3FUcvTRCi1YoOjmzereujVbr6W2tiDLbhljlInHlezslJtIyBsOK9TYmAtWZkoABAAAUGiELAAAAAAAzBC+oiJVrlmjSHOzOjduVKylRbbfL6e6elrqtaTjcaU6O5Xp7c0GK3V1Cjc1yampkb+kZMrPDwAAMNsQsgAAAAAAMMMEqqtVU1mpWHOzogP1WkpL5S8vn/R6LZm+PiVfe02Z3l55gkE51dWKNDcrUF0tX2npjK0PAwAAMBMQsgAAAAAAMANZtq3IokUK1tere/t2RTdtmrR6LZlEQqnOTqVjMXkcR/7KSkUWLVKgunpKghwAAIC5ipAFAAAAAIAZzOM4Kj32WIUbGwfrtRw4kK3X4jhH/DxuMqlkZ6fSPT3ZJcgqKlR6/PEK1tVlgxXbnsJXAQAAMDcRsgAAAAAAMAv4iotVecopCjc1Kbpxo+Lt7bJ8PgVqamR5PCMe46ZSSkWjSnd3y/J65S8rU8mxxypYWyunomLU4wAAAHBkCFkAAAAAAJhFgrW1ClRVKbZzpzo3bFCsrS2vXoubTisVjSrV1SXLtuUvL1fZsmUK1tXJqayU7eVWAAAAwGThnRUAAAAAALOM5fEM1mvZtk3RjRsVa2nJzUzxl5Wp/MQTFairU6CqSrbPV+AeAwAAzE2ELAAAAAAAzFIex1Hpcccp1Nio7i1bZCSF6uvlVFWNqV4LAAAAxoeQBQAAAACAWc5fUqKKNWsK3Q0AAIB5xy50BwAAAAAAAAAAAGYjQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHEgZAEAAAAAAAAAABgHQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHGYkSHLQw89pObmZgUCAZ1yyin685//POq+P/nJT7R69WqVlpYqHA5r5cqVevTRR6extwAAAAAAAAAAYD6acSHLD37wA1177bW69dZb9fzzz+uEE07Q2rVrtW/fvhH3Ly8v1z/8wz/o2Wef1d/+9jetW7dO69at029+85tp7jkAAAAAAAAAAJhPLGOMKXQnhjrllFN08skn6ytf+YokyXVdNTY26uqrr9aNN954RM9x0kkn6fzzz9cdd9xx2H27urpUUlKiaDSq4uLiCfUdAAAAAAAAAADMbmPJDWbUTJZkMqnnnntOb3rTm3Jttm3rTW96k5599tnDHm+M0VNPPaUtW7bozDPPHHGfRCKhrq6uvAcAAAAAAAAAAMBYzaiQ5dVXX1Umk1FNTU1ee01Njfbs2TPqcdFoVJFIRH6/X+eff74efPBBvfnNbx5x37vuukslJSW5R2Nj46S+BgAAAAAAAAAAMD/MqJBlvIqKivTCCy/ov//7v3XnnXfq2muv1e9///sR973pppsUjUZzj127dk1vZwEAAAAAAAAAwJzgLXQHhqqsrJTH49HevXvz2vfu3ava2tpRj7NtW0cddZQkaeXKldq8ebPuuusunX322cP2dRxHjuNMar8BAAAAAAAAAMD8M6Nmsvj9fq1atUpPPfVUrs11XT311FN6wxvecMTP47quEonEVHQRAAAAAAAAAABA0gybySJJ1157rT7wgQ9o9erVWrNmjb785S8rFotp3bp1kqTLL79cDQ0NuuuuuyRla6ysXr1aS5YsUSKR0JNPPqlHH31UX/va1wr5MgAAAAAAAAAAwBw340KWSy65RPv379fnPvc57dmzRytXrtSvf/1r1dTUSJJ27twp2x6cgBOLxXTllVfqpZdeUjAY1IoVK/Td735Xl1xySaFeAgAAAAAAAAAAmAcsY4wpdCcKqaurSyUlJYpGoyouLi50dwAAAAAAAAAAQAGNJTeYUTVZAAAAAAAAAAAAZgtCFgAAAAAAAAAAgHGYcTVZptvAamldXV0F7gkAAAAAAAAAACi0gbzgSKqtzPuQpbu7W5LU2NhY4J4AAAAAAAAAAICZoru7WyUlJYfcZ94XvnddV7t371ZRUZEsyyp0d2aUrq4uNTY2ateuXYct7gPMNIxfzGaMX8xmjF/MZoxfzGaMX8x2jGHMZoxfzGaM35EZY9Td3a36+nrZ9qGrrsz7mSy2bWvBggWF7saMVlxczP9gmLUYv5jNGL+YzRi/mM0Yv5jNGL+Y7RjDmM0Yv5jNGL/DHW4GywAK3wMAAAAAAAAAAIwDIQsAAAAAAAAAAMA4ELJgVI7j6NZbb5XjOIXuCjBmjF/MZoxfzGaMX8xmjF/MZoxfzHaMYcxmjF/MZozfiZv3he8BAAAAAAAAAADGg5ksAAAAAAAAAAAA40DIAgAAAAAAAAAAMA6ELAAAAAAAAAAAAONAyAIAAAAAAAAAADAOhCxzWCKR0A033KD6+noFg0Gdcsop+o//+I8jOvbll1/WxRdfrNLSUhUXF+ud73ynWlpaRtz3W9/6lo4++mgFAgEtXbpUDz744GS+DMxj0zGGLcsa8XH33XdP9svBPDPe8btlyxZ9+tOf1qmnnqpAICDLstTW1jbq/j//+c910kknKRAIaOHChbr11luVTqcn8ZVgPpqO8dvc3Dzi9ffjH//4JL8azDfjHb8/+clPdMkll2jx4sUKhUJavny5rrvuOnV2do64P9dfTIXpGL9cfzFVxjt+n3jiCa1du1b19fVyHEcLFizQRRddpA0bNoy4P9dfTIXpGL9cfzGVJnIPbag3v/nNsixLV1111YjbuQ88Mm+hO4Cp88EPflA/+tGP9KlPfUpLly7VI488ore97W16+umndfrpp496XE9Pj974xjcqGo3q5ptvls/n0/3336+zzjpLL7zwgioqKnL7fv3rX9fHP/5x/d3f/Z2uvfZaPfPMM7rmmmsUj8d1ww03TMfLxBw2HWNYyv4Dcvnll+e1nXjiiVPymjB/jHf8Pvvss/qXf/kXHXPMMTr66KP1wgsvjLrvr371K1144YU6++yz9eCDD2r9+vX6p3/6J+3bt09f+9rXpuBVYb6YjvErSStXrtR1112X17Zs2bLJeAmYx8Y7fj/2sY+pvr5el112mRYuXKj169frK1/5ip588kk9//zzCgaDuX25/mKqTMf4lbj+YmqMd/yuX79eZWVl+uQnP6nKykrt2bNH//qv/6o1a9bo2Wef1QknnJDbl+svpsp0jF+J6y+mznjH8FA/+clP9Oyzz466nfvAh2AwJ/3pT38yksy9996ba+vt7TVLliwxb3jDGw557D333GMkmT//+c+5ts2bNxuPx2NuuummXFs8HjcVFRXm/PPPzzv+fe97nwmHw+bAgQOT9GowH03HGDbGGEnmE5/4xOR2HvPeRMZvR0eH6erqMsYYc++99xpJprW1dcR9jznmGHPCCSeYVCqVa/uHf/gHY1mW2bx588RfCOal6Rq/TU1Nw95DABM1kfH79NNPD2v7t3/7NyPJfPOb38xr5/qLqTBd45frL6bCRMbvSPbs2WO8Xq+54oor8tq5/mIqTNf45fqLqTIZY7i3t9c0Nzeb22+/fcR7ZdwHPjSWC5ujfvSjH8nj8ehjH/tYri0QCOjDH/6wnn32We3ateuQx5588sk6+eSTc20rVqzQueeeq8cffzzX9vTTT6ujo0NXXnll3vGf+MQnFIvF9Mtf/nISXxHmm+kYw0P19vaqr69v8l4A5rWJjN/y8nIVFRUd9hybNm3Spk2b9LGPfUxe7+DE1CuvvFLGGP3oRz+a2IvAvDUd43eoZDKpWCw27v4CQ01k/J599tnD2t71rndJkjZv3pxr4/qLqTId43corr+YTBMZvyOprq5WKBTKW/KO6y+mynSM36G4/mKyTcYY/uIXvyjXdXX99dePuJ37wIdGyDJH/c///I+WLVum4uLivPY1a9ZI0qjLd7iuq7/97W9avXr1sG1r1qzRjh071N3dnTuHpGH7rlq1SrZt57YD4zEdY3jAI488onA4rGAwqGOOOUbf+973JudFYN4a7/gd6zmk4dfg+vp6LViwgGswxm06xu+A//zP/1QoFFIkElFzc7MeeOCBSXtuzE+TPX737NkjSaqsrMw7h8T1F5NvOsbvAK6/mGyTMX47Ozu1f/9+rV+/Xh/5yEfU1dWlc889N+8cEtdfTL7pGL8DuP5iKkx0DO/cuVN333237rnnnmFLjA49h8R94NFQk2WOeuWVV1RXVzesfaBt9+7dIx534MABJRKJwx67fPlyvfLKK/J4PKqurs7bz+/3q6KiYtRzAEdiOsawJJ166qm6+OKLtWjRIu3evVsPPfSQ3ve+9ykajerv//7vJ+vlYJ4Z7/gd6zmGPufB5+EajPGajvErSa973et0+umna/ny5ero6NAjjzyiT33qU9q9e7fuueeeSTkH5p/JHr/33HOPPB6PLrroorxzDH3Og8/D9RfjNR3jV+L6i6kxGeP39a9/vbZs2SJJikQiuuWWW/ThD3847xxDn/Pg83D9xXhNx/iVuP5i6kx0DF933XU68cQTdemllx7yHNwHHh0hyxzV29srx3GGtQcCgdz20Y6TdETH9vb2yu/3j/g8gUBg1HMAR2I6xrAk/fGPf8zb50Mf+pBWrVqlm2++WR/84AdHTfCBQxnv+B3rOaTRx3pXV9eEz4H5aTrGryT9/Oc/z/t53bp1Ou+883Tffffp6quv1oIFCyblPJhfJnP8fu9739O3vvUtffazn9XSpUvzziFx/cXkm47xK3H9xdSYjPH77W9/W11dXWppadG3v/1t9fb2KpPJyLbtvOfg+ovJNh3jV+L6i6kzkTH89NNP68c//rH+9Kc/HfYc3AceHcuFzVHBYFCJRGJY+0DNidFuHA+0H8mxwWBQyWRyxOfp6+vj5jQmZDrG8Ej8fr+uuuoqdXZ26rnnnhtzvwFp/ON3rOeQRh/rXIMxXtMxfkdiWZY+/elPK51O6/e///2UnANz32SN32eeeUYf/vCHtXbtWt15553DziFx/cXkm47xOxKuv5gMkzF+3/CGN2jt2rX6+7//e/3mN7/Rd7/7Xd10001555C4/mLyTcf4HQnXX0yW8Y7hdDqta665Ru9///vz6hqPdg7uA4+OkGWOqqury02lHWqgrb6+fsTjysvL5TjOER1bV1enTCajffv25e2XTCbV0dEx6jmAIzEdY3g0jY2NkrJLjwHjMd7xO9ZzDH3Og8/DNRjjNR3jdzRcfzFRkzF+//rXv+od73iHjjvuOP3oRz/KK648cI6hz3nwebj+YrymY/yOhusvJmqy3z+UlZXpnHPO0WOPPZZ3jqHPefB5uP5ivKZj/I6G6y8mw3jH8He+8x1t2bJFV1xxhdra2nIPSeru7lZbW5vi8XjuHNwHHh0hyxy1cuVKbd26ddh02YGpXytXrhzxONu2dfzxx+svf/nLsG1/+tOftHjxYhUVFeU9x8H7/uUvf5HruqOeAzgS0zGGR9PS0iJJqqqqGkfPgfGP37GeQxp+Dd69e7deeuklrsEYt+kYv6Ph+ouJmuj43bFjh9761requrpaTz75pCKRyIjnkLj+YvJNx/gdDddfTNRUvH/o7e1VNBrNO4fE9ReTbzrG72i4/mIyjHcM79y5U6lUSqeddpoWLVqUe0jZAGbRokX67W9/m/cc3AcehcGc9F//9V9Gkrn33ntzbX19feaoo44yp5xySq6tvb3dbN68Oe/Yu+++20gy//3f/51re/HFF43H4zE33HBDri0ej5vy8nJzwQUX5B1/2WWXmVAoZDo6Oib7ZWEemY4xvG/fvmHn7erqMkuWLDGVlZUmkUhM5kvCPDKR8TvUvffeaySZ1tbWEbevWLHCnHDCCSadTufabrnlFmNZltm0adPEXwjmpekYvx0dHXnj1hhjksmkOe2004zf7zevvPLKxF8I5qWJjN9XXnnFLF682NTX14963R3A9RdTYTrGL9dfTJWJjN+9e/cOe77W1lZTVFRkzjjjjLx2rr+YCtMxfrn+YiqNdwxv3rzZPPHEE8Mekszb3vY288QTT5jdu3cbY7gPfDiELHPYe97zHuP1es1nPvMZ8/Wvf92ceuqpxuv1mv/7f/9vbp+zzjrLHJy1Ddxkrq6uNl/84hfN/fffbxobG019ff2wm9IPPfSQkWQuuugi881vftNcfvnlRpK58847p+U1Ym6b6jF86623mhNOOMHccsst5hvf+Ia57bbbTFNTk7Esy3z3u9+dtteJuWm847ezs9Pccccd5o477jBvfetbjSRz3XXXmTvuuMM8+OCDefv+4he/MJZlmXPOOcd84xvfMNdcc42xbdt89KMfnZbXiLlrqsfvt7/9bbNkyRJzww03mIcffth84QtfMMcdd5yRZL7whS9M2+vE3DTe8XvCCScYSeazn/2sefTRR/Mev/3tb/P25fqLqTLV45frL6bSeMdvdXW1ee9732vuuece841vfMN85jOfMeXl5SYQCJg//vGPefty/cVUmerxy/UXU228Y3gkkswnPvGJYe3cBx4dIcsc1tvba66//npTW1trHMcxJ598svn1r3+dt89o/3Pt2rXLXHTRRaa4uNhEIhFzwQUXmG3bto14nm984xtm+fLlxu/3myVLlpj777/fuK47Ja8J88tUj+Hf/va35s1vfrOpra01Pp/PlJaWmre85S3mqaeemtLXhflhvOO3tbXVSBrx0dTUNOw8TzzxhFm5cqVxHMcsWLDA3HLLLSaZTE7lS8M8MNXj9y9/+Yt5+9vfbhoaGozf7zeRSMScfvrp5vHHH5+Ol4c5brzjd7SxK8mcddZZw87D9RdTYarHL9dfTKXxjt9bb73VrF692pSVlRmv12vq6+vNpZdeav72t7+NeB6uv5gKUz1+uf5iqk3kHtrBRgtZjOE+8GgsY4yZwGpjAAAAAAAAAAAA8xKF7wEAAAAAAAAAAMaBkAUAAAAAAAAAAGAcCFkAAAAAAAAAAADGgZAFAAAAAAAAAABgHAhZAAAAAAAAAAAAxoGQBQAAAAAAAAAAYBwIWQAAAAAAAAAAAMaBkAUAAAAAAAAAAGAcCFkAAAAAAAAAAADGgZAFAAAAADCp2traZFmWHnnkkUJ3BQAAAJhShCwAAADALPbII4/IsqzcIxAIaNmyZbrqqqu0d+/eQndvwjZt2qTPf/7zamtrK3RXDuuDH/xg3n8Lx3G0bNkyfe5zn1NfX1+huwcAAABgCngL3QEAAAAAE3f77bdr0aJF6uvr0x/+8Ad97Wtf05NPPqkNGzYoFAoVunvjtmnTJt122206++yz1dzcXOjuHJbjOPrf//t/S5Ki0ah+9rOf6Y477tCOHTv02GOPFbh3AAAAACYbIQsAAAAwB5x33nlavXq1JOkjH/mIKioqdN999+lnP/uZ3vve907ouePx+KwOaqaT1+vVZZddlvv5yiuv1Kmnnqp///d/13333aeampoC9g4AAADAZGO5MAAAAGAOOueccyRJra2tubbvfve7WrVqlYLBoMrLy3XppZdq165decedffbZOu644/Tcc8/pzDPPVCgU0s033yxJ6uvr0+c//3ktW7ZMgUBAdXV1eve7360dO3bkjnddV1/+8pd17LHHKhAIqKamRldccYVee+21vPM0Nzfrggsu0B/+8AetWbNGgUBAixcv1ne+853cPo888oje8573SJLe+MY35pbh+v3vfy9J+tnPfqbzzz9f9fX1chxHS5Ys0R133KFMJjPs9/HQQw9p8eLFCgaDWrNmjZ555hmdffbZOvvss/P2SyQSuvXWW3XUUUfJcRw1Njbqs5/9rBKJxBj/C2RZlqXTTz9dxhi1tLTkbfvVr36lM844Q+FwWEVFRTr//PO1cePGvH0++MEPKhKJaOfOnbrgggsUiUTU0NCghx56SJK0fv16nXPOOQqHw2pqatL3vve9YX1oaWnRe97zHpWXlysUCun1r3+9fvnLX+a27927V16vV7fddtuwY7ds2SLLsvSVr3xFknTgwAFdf/31Ov744xWJRFRcXKzzzjtPf/3rX8f1+wEAAABmO0IWAAAAYA4aCD4qKiokSXfeeacuv/xyLV26VPfdd58+9alP6amnntKZZ56pzs7OvGM7Ojp03nnnaeXKlfryl7+sN77xjcpkMrrgggt02223adWqVfrSl76kT37yk4pGo9qwYUPu2CuuuEKf+cxndNppp+mBBx7QunXr9Nhjj2nt2rVKpVJ559m+fbsuuugivfnNb9aXvvQllZWV6YMf/GAuaDjzzDN1zTXXSJJuvvlmPfroo3r00Ud19NFHS8qGMJFIRNdee60eeOABrVq1Sp/73Od044035p3na1/7mq666iotWLBAX/ziF3XGGWfowgsv1EsvvZS3n+u6esc73qF//ud/1tvf/nY9+OCDuvDCC3X//ffrkksuGfd/i4F6MmVlZbm2Rx99VOeff74ikYjuuece/eM//qM2bdqk008/fVj9mUwmo/POO0+NjY364he/qObmZl111VV65JFH9Na3vlWrV6/WPffco6KiIl1++eV5wdrevXt16qmn6je/+Y2uvPJK3Xnnnerr69M73vEOPfHEE5KkmpoanXXWWXr88ceH9f0HP/iBPB5PLuxqaWnRT3/6U11wwQW677779JnPfEbr16/XWWedpd27d4/7dwQAAADMWgYAAADArPXtb3/bSDK/+93vzP79+82uXbvM97//fVNRUWGCwaB56aWXTFtbm/F4PObOO+/MO3b9+vXG6/XmtZ911llGknn44Yfz9v3Xf/1XI8ncd999w/rguq4xxphnnnnGSDKPPfZY3vZf//rXw9qbmpqMJPP//t//y7Xt27fPOI5jrrvuulzbD3/4QyPJPP3008POG4/Hh7VdccUVJhQKmb6+PmOMMYlEwlRUVJiTTz7ZpFKp3H6PPPKIkWTOOuusXNujjz5qbNs2zzzzTN5zPvzww0aS+eMf/zjsfEN94AMfMOFw2Ozfv9/s37/fbN++3fzzP/+zsSzLHHfccbnfU3d3tyktLTUf/ehH847fs2ePKSkpyWv/wAc+YCSZL3zhC7m21157zQSDQWNZlvn+97+fa3/xxReNJHPrrbfm2j71qU8ZSXmvqbu72yxatMg0NzebTCZjjDHm61//upFk1q9fn9enY445xpxzzjm5n/v6+nLHDGhtbTWO45jbb789r02S+fa3v33I3xkAAAAw2zGTBQAAAJgD3vSmN6mqqkqNjY269NJLFYlE9MQTT6ihoUE/+clP5LquLr74Yr366qu5R21trZYuXaqnn34677kcx9G6devy2n784x+rsrJSV1999bBzW5YlSfrhD3+okpISvfnNb847z6pVqxSJRIad55hjjtEZZ5yR+7mqqkrLly8ftqzWaILBYO777u5uvfrqqzrjjDMUj8f14osvSpL+8pe/qKOjQx/96Efl9Q6WpHzf+96XN7NkoP9HH320VqxYkdf/gaXXDu7/SGKxmKqqqlRVVaWjjjpK119/vU477TT97Gc/y/2e/uM//kOdnZ1673vfm3cej8ejU045ZcTzfOQjH8l9X1paquXLlyscDuviiy/OtS9fvlylpaV5v78nn3xSa9as0emnn55ri0Qi+tjHPqa2tjZt2rRJkvTud79bXq9XP/jBD3L7bdiwQZs2bcqbxeM4jmw7+2dkJpNRR0eHIpGIli9frueff/6wvx8AAABgrqHwPQAAADAHPPTQQ1q2bJm8Xq9qamq0fPny3M3wbdu2yRijpUuXjnisz+fL+7mhoUF+vz+vbceOHVq+fHleUHGwbdu2KRqNqrq6esTt+/bty/t54cKFw/YpKysbVr9lNBs3btQtt9yi//zP/1RXV1fetmg0Kklqb2+XJB111FF5271er5qbm4f1f/Pmzaqqqjqi/o8kEAjoF7/4hSTppZde0he/+EXt27cvLxDatm2bpMG6OQcrLi4e9pwH96mkpEQLFizIBTdD24f+/trb23XKKacMO8fAkmvt7e067rjjVFlZqXPPPVePP/647rjjDknZpcK8Xq/e/e53545zXVcPPPCAvvrVr6q1tTWv/s3A0nQAAADAfELIAgAAAMwBa9as0erVq0fc5rquLMvSr371K3k8nmHbI5FI3s9DA4GxcF1X1dXVeuyxx0bcfnBQMFJfJMkYc9hzdXZ26qyzzlJxcbFuv/12LVmyRIFAQM8//7xuuOEGua47rv4ff/zxuu+++0bc3tjYeNjn8Hg8etOb3pT7ee3atVqxYoWuuOIK/fznP8+dR8rWZamtrR32HAcHWaP9niby+xvJpZdeqnXr1umFF17QypUr9fjjj+vcc89VZWVlbp8vfOEL+sd//Ed96EMf0h133KHy8nLZtq1PfepT4/qdAwAAALMdIQsAAAAwxy1ZskTGGC1atEjLli0b93P86U9/UiqVGjbzZeg+v/vd73TaaaeNO6g52MEzNQb8/ve/V0dHh37yk5/ozDPPzLUPLfouSU1NTZKk7du3641vfGOuPZ1Oq62tTa973evy+v/Xv/5V55577qjnHau6ujp9+tOf1m233ab/+q//0utf/3otWbJEklRdXZ0XyEyFpqYmbdmyZVj7wHJqA78fSbrwwgt1xRVX5JYM27p1q2666aa84370ox/pjW98o771rW/ltXd2duaFMQAAAMB8QU0WAAAAYI5797vfLY/Ho9tuu23YLAdjjDo6Og77HH/3d3+nV199VV/5yleGbRt4zosvvliZTCa33NRQ6XRanZ2dY+57OByWpGHHDsziGPp6ksmkvvrVr+btt3r1alVUVOib3/ym0ul0rv2xxx4btizZxRdfrJdfflnf/OY3h/Wjt7dXsVhszP2XpKuvvlqhUEh33323pOzsluLiYn3hC19QKpUatv/+/fvHdZ6RvO1tb9Of//xnPfvss7m2WCymb3zjG2pubtYxxxyTay8tLdXatWv1+OOP6/vf/778fr8uvPDCvOfzeDzDxtAPf/hDvfzyy5PWZwAAAGA2YSYLAAAAMMctWbJE//RP/6SbbrpJbW1tuvDCC1VUVKTW1lY98cQT+tjHPqbrr7/+kM9x+eWX6zvf+Y6uvfZa/fnPf9YZZ5yhWCym3/3ud7ryyiv1zne+U2eddZauuOIK3XXXXXrhhRf0lre8RT6fT9u2bdMPf/hDPfDAA7rooovG1PeVK1fK4/HonnvuUTQaleM4Ouecc3TqqaeqrKxMH/jAB3TNNdfIsiw9+uijwwIAv9+vz3/+87r66qt1zjnn6OKLL1ZbW5seeeQRLVmyJG/Gyvvf/349/vjj+vjHP66nn35ap512mjKZjF588UU9/vjj+s1vfjPqkmyHUlFRoXXr1umrX/2qNm/erKOPPlpf+9rX9P73v18nnXSSLr30UlVVVWnnzp365S9/qdNOO23EMGs8brzxRv37v/+7zjvvPF1zzTUqLy/Xv/3bv6m1tVU//vGPc3V7BlxyySW67LLL9NWvflVr165VaWlp3vYLLrhAt99+u9atW6dTTz1V69ev12OPPabFixdPSn8BAACA2YaQBQAAAJgHbrzxRi1btkz333+/brvtNknZGiNvectb9I53vOOwx3s8Hj355JO688479b3vfU8//vGPVVFRodNPP13HH398br+HH35Yq1at0te//nXdfPPNuQLzl112mU477bQx97u2tlYPP/yw7rrrLn34wx9WJpPR008/rbPPPlv/5//8H1133XW65ZZbVFZWpssuu0znnnuu1q5dm/ccV111lYwx+tKXvqTrr79eJ5xwgn7+85/rmmuuUSAQyO1n27Z++tOf6v7779d3vvMdPfHEEwqFQlq8eLE++clPjnupNUm69tpr9fDDD+uee+7RI488ov/1v/6X6uvrdffdd+vee+9VIpFQQ0ODzjjjDK1bt27c5zlYTU2N/r//7//TDTfcoAcffFB9fX163etep1/84hc6//zzh+3/jne8Q8FgUN3d3brkkkuGbb/55psVi8X0ve99Tz/4wQ900kkn6Ze//KVuvPHGSeszAAAAMJtYZrxVEQEAAABglnJdV1VVVXr3u9894vJgAAAAAHAkqMkCAAAAYE7r6+sbtozYd77zHR04cEBnn312YToFAAAAYE5gJgsAAACAOe33v/+9Pv3pT+s973mPKioq9Pzzz+tb3/qWjj76aD333HPy+/2F7iIAAACAWYqaLAAAAADmtObmZjU2Nupf/uVfdODAAZWXl+vyyy/X3XffTcACAAAAYEKYyQIAAAAAAAAAADAO1GQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcSBkAQAAAAAAAAAAGAdCFgAAAAAAAAAAgHEgZAEAAAAAAAAAABgHQhYAAAAAAAAAAIBxIGQBAAAAAAAAAAAYB0IWAAAAAAAAAACAcfj/AUwPPXJrutJKAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
+ "plt.legend()\n",
"plt.show()"
]
},
@@ -661,12 +645,25 @@
},
{
"cell_type": "code",
- "execution_count": 23,
- "id": "1c17b61a",
+ "execution_count": 24,
+ "id": "b2d69593",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABmIAAALGCAYAAABWAo6cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU5f0H8M8ce+8mmztAAkFAELSiIh5QD7yrKKIWxSreUqVqtbYeVdRqqdVarNZ6VbD1+FmtCtYDFfFWxKPW+yJAAsmSc3PsOTPP74/JTnazG0hCYJPweb9evEJmZmefvTfzme/3kYQQAkRERERERERERERERNTv5GwPgIiIiIiIiIiIiIiIaKhiEENERERERERERERERLSdMIghIiIiIiIiIiIiIiLaThjEEBERERERERERERERbScMYoiIiIiIiIiIiIiIiLYTBjFERERERERERERERETbCYMYIiIiIiIiIiIiIiKi7YRBDBERERERERERERER0XbCIIaIiIiIiIiIiIiIiGg7YRBDRERERH0Wj8excOFCjBs3Dg6HA5Ik4dlnn832sPrkkEMOgSRJ2R7GNvvuu+9w4oknorS0FJIkwe/3Z3tINEg9/vjj2GuvveDz+SBJEi677LJsD2mnUlFRgYqKimwPY9Bat24dJEnCWWedle2hDChnnXUWJEnCunXrsj0UIiKinQqDGCIiIsItt9wCSZIgSRK++eabbA+HBpE//elPuOmmmzB8+HD86le/wsKFCzFhwoRsDyujneHgk67rmDVrFl544QUcd9xxWLhwIa666qpsD2tQkiQJhxxySLaHkTXvvfceTj/9dLS2tuLnP/85Fi5ciKOPPjrbw6IhaiC/P7/++uuQJAk33HBDtocyoCxduhSSJGHp0qXZHgoREdGgoGZ7AERERJRdQgg8+OCDkCQJQgg88MADuP3227M9LBok/vOf/8Dr9eKVV16B3W7P9nC2yT/+8Q+EQqFsD2ObVFZW4ssvv8T555+P+++/P9vDoUHs+eefhxAC//jHP3DggQdmezhE1E8WLVqEq666CiNGjMj2UIiIiHYqrIghIiLayb388stYt24d5s2bh9LSUjz88MOIxWLZHhYNEps2bUJBQcGgD2EAYOTIkQO2mqenNm3aBAAYPnx4lkdCgx2fS0RD07BhwzBhwgTYbLZsD4WIiGinwiCGiIhoJ/fAAw8AAM4//3ycfvrpqK+vxzPPPNPt9tXV1bjkkkswbtw4uFwu5OfnY+rUqfjd737X52231AIoU7uS5L7v3377LebMmYPi4mLIsozXX38dAPDRRx/h0ksvxZ577on8/Hw4nU6MGzcOV1xxBZqamrq9fU888QQOO+ww6zIVFRU47bTT8OGHHwIA7rvvPkiShBtvvDHj5Wtra2Gz2bDHHnt0ex3Jli5dipNOOgm77LILXC4XcnJyMG3aNDzyyCMZt1+7di0uuOACjB071rpP99hjD8yfPx8NDQ09us5nn30WP/vZz7DrrrvC4/HA4/Fgn332wV/+8hcYhtGjfSQel8rKSqxfv95qbZeYz2BrrVwyzX2Q3OZk1apVOOSQQ+Dz+ZCTk4Njjz0WX331VcZ9hUIh3HrrrZgyZQp8Ph+8Xi922203XHLJJQgEAgDM59jDDz8MABg9enTaeIHu54gxDAP33nsv9t13X3i9Xng8Huy7777429/+lvH+Sjyf6+vrccEFF2DYsGFwOByYNGkSlixZspV7Nt1HH32Ek046CcXFxXA4HBg1ahQuuugi1NTUpF3vwQcfDAC48cYbrdu4tXY6ya+nr7/+GrNmzUJ+fj48Hg+mT5+Ol19+udvLPv744zj00EPh9/vhdDqx22674eabb0Y0Gu32fqmtrcV5552HESNGQFGUlLY2H3zwAebMmYMRI0bA4XBg2LBhOPLII/Gvf/0rbX+rV6/GySefjNLSUtjtdpSXl+PCCy+0AoRkicdW0zT8/ve/t+Y0Ki8vx29+85uU8DnxPASAN954w7ofu96XvX3tAsCaNWtw5JFHWs/rww8/HO+99x5uuOEGSJJkvX8l+/rrr3HWWWehvLwcdrsdJSUlmDt3bq/bSPb0eZy4/YnnavLrZWtto5Jvx2OPPYb99tsPXq835XUWCoWwaNEiTJ48GR6PB16vFwcccAAef/zxtP0lv498+OGHOProo5Gbm4u8vDycdNJJqKqqAmC+L5566qkoKiqCy+XCoYceik8//TTjGGtqanDxxRejoqICdrsdRUVFmD17Nj766KOU7f7whz9AkiTceeedGfezadMmqKqKKVOmpCzXNA333HMP9t9/f+Tk5MDtdmOvvfbC3XffnfH9QgiBu+++G5MmTYLT6cSIESOwYMECBIPBLd7XXQ0fPjxjhcOoUaMgSVLa5+6LL74ISZJw/fXXpyzv6f0DpL5nv/TSSzjkkEOQm5ub8j761ltvYebMmSgrK4PD4UBpaSn233//lM/Qnrw/b0lraysuv/xylJWVwel0YsKECbjjjju6/Tz79ttvcdVVV2HKlCkoKiqy3lcvuOACVFdXp2x71lln4dBDDwWQ+r6a/HoNBoO47bbbMGPGDJSVlVn32/HHH4/33nuvR7ch+fokScLatWtxxx13YMKECXA6nSgrK8Mvf/lLtLS0ZLxcTz8nkq+ju+9V69atw6mnnorCwkI4nU5MmTIF//nPf1L2ccghh+Dss88GAJx99tkp90tiv62trfjd736H3XffHTk5OfD5fBgzZgzmzJmT8flEREQ01LE1GRER0U4sEAhg+fLl2HXXXXHggQciJycHf/rTn3D//fdjzpw5adt/+OGHOOqoo9DY2IiDDjoIs2fPRigUwpdffokbbrgB1113XZ+27asffvgB++23H3bddVecfvrpCIfDyMnJAWAGTM888wwOPvhgHH744TAMAx999BHuuOMOvPjii1i9ejV8Pp+1LyEEzj77bDz88MMoLCzE7NmzUVRUhOrqaqxatQrjx4/HlClTcPrpp+PXv/41/v73v+O3v/0tFEVJGdNDDz0ETdNw4YUX9ug2/PznP8ekSZNw0EEHYdiwYWhoaMALL7yAM844A998803KwbOamhrsu+++aGlpwU9+8hOcdNJJiEQiqKysxD//+U8sWLAABQUFW73Oq666CrIsY7/99sOIESMQDAbx2muv4dJLL8WaNWvwz3/+c6v7mDVrFioqKrB48WIAsCbx7o+J4f/zn/9g2bJlOOaYYzB//nx8+eWXeOGFF7BmzRp8+eWXKCwstLZtamqyDrqOHz8e55xzDux2O3744QcsWbIEs2fPRklJCRYuXIhnn30Wn376KS699FJrnD0Z7xlnnIHHHnsM5eXlOO+88yBJEp555hlcdNFFePvtt/Hoo4+mXaa5uRnTpk2D3W7HySefjGg0iieffBLnnHMOZFnGvHnzenxfnHTSSRBC4OSTT8aoUaPw0Ucf4W9/+xuWLVuGt99+G6NHjwYALFy4EOvWrcPDDz+Mgw8+2Ao3ezrPSWVlJQ444ADsscceuPDCC1FTU4MnnngCxxxzDB577LG094RzzjkHS5YsQVlZGU466ST4/X68//77uO6667By5Uq88sorUNXUPzcaGxux//77w+v1Yvbs2ZBlGSUlJQDM1+zPf/5zKIqC448/HuPGjcPmzZvx4Ycf4p577sFPf/pTaz8PPfQQLrjgAjgcDhx//PEoLy/Hd999hwcffBDPPfcc3n//fYwcOTLtNs6dOxdvvfUWjjnmGOTk5OCFF17AH//4R2zevNkKHiZPnoyFCxfixhtvxKhRo1Im+k6+L3vz2gWAN998E0ceeSR0Xcfs2bMxZswYfPbZZzj00EMxY8aMjI/JSy+9hNmzZyMej2PmzJkYO3Ysqqur8fTTT+P555/HqlWrsPfee2/9wUXPn8eJ29/X1wtgzh31yiuvYObMmTj00EOtUKG5uRkzZszAJ598gr333hvnnHMODMPAihUrMHfuXHzxxRe4+eab0/a3Zs0a3HrrrTj44INx/vnn47PPPsPTTz+Nzz//HMuWLcP06dMxYcIEnHnmmVi/fj2efvppHHHEEVi7di28Xq+1n8rKSkyfPh2bNm3CjBkzcNppp6GqqgpPPvkknn/+efz73//GcccdZ91f1157Lf7xj3/g0ksvTRvTI488Al3XU54ficdpxYoVGD9+PObOnQun04lVq1bhF7/4BVavXp32/nrZZZfhL3/5C4YNG4YLLrgANpsNy5Ytw+rVqxGLxXpcbThjxgw8+uij+Prrr63Kvu+//x4bNmwAAKxcuTLlc3flypUAgMMOO6xP90+yp556Ci+99JL1nr1+/XoA5vP32GOPRU5ODo4//niMGDECjY2N+Oqrr3DPPfdg4cKFALBNz7doNIrDDjsMa9aswZ577onTTz8dzc3N+N3vfoc33ngj42Wefvpp3HvvvTj00ENx4IEHwm6344svvrDePz788EMr1Jo1axYApL2vArCCoq+++grXXnstDjroIBx77LHIy8vDhg0bsHz5crz44ot47rnnej2/0i9/+Uu8+eab+OlPf4oTTjgBK1aswOLFi/HWW2/h7bffhtPptLbtzefE1qxfvx5Tp07FLrvsgjPOOAONjY144okncMIJJ+DVV1+1QqmzzjoLfr8fy5YtwwknnIDJkydb+/D7/RBC4Oijj8a7776LAw44AOeddx5UVbW+U/34xz/GPvvs06v7hIiIaNATREREtNNatGiRACB+//vfW8v22WcfIUmS+O6771K2jUajoqKiQgAQjz76aNq+qqqq+rStEEIAEAcffHDGMc6bN08AEJWVldayyspKAUAAEFdffXXGy61bt05ompa2/MEHHxQAxB/+8IeU5ffdd58AIPbdd1/R3Nycsk7TNLFp0ybr94svvlgAEM8991zKdoZhiNGjRwu32522j+58//33acui0aiYMWOGUFVVVFdXW8v/8pe/CABi8eLFaZdpa2sToVCoz9ep67o488wzBQDx/vvv92g/QggxatQoMWrUqLTlq1atEgDEwoULe3y5JUuWCABCURTx6quvpqy76qqrBABx6623piw/7bTTBAAxf/58oet6yrrW1taUxyHTcynZwQcfLLp+PX7ssccEALHXXnuJ1tZWa3lbW5vYZ599Mj7HE8/Nc889N+U5+MUXXwhFUcRuu+2W8fq7am1tFfn5+UKWZfHmm2+mrPvDH/4gAIgjjjgiZfnW7vdMkl9Pv/rVr1LWrVmzRqiqKvx+vwgGg9byxGN14oknpj3vFi5cmPF5mriOM844Q8Tj8ZR1X3zxhVBVVeTl5YnPP/88bYzJ7xnffPONsNlsYsyYMSmvDyGEePXVV4Usy2LWrFkpyxOP7d577y0aGhqs5W1tbWLMmDFClmVRU1OTNt7u3peE6N1rV9d1MXbsWAFAvPDCCymX+dvf/mbdN6tWrbKWNzY2Cr/fLwoKCsQXX3yRcpnPPvtMeDwesddee3U7vmR9eR5v7fWSSeKxd7vd4uOPP05bn9hn19dxOBwWRx11lJAkSXzyySfW8sTzGYB45JFHUi5zzjnnCAAiLy9P3HzzzSnrbrrppozPwSOPPFIASNv+nXfeEYqiiPz8/JT7J7H9Z599lnZbJk6cKOx2u6ivr0+7/QsWLEh57WuaZo332WefTbleAGLMmDEpz8twOCz2339/ASDj+2smf//73wUAcffdd1vL7r33Xut9wm63i/b2dmvd5MmThcvlEtFotM/3T+J9QJIk8eKLL6aNafbs2QKA+O9//5u2rq6uLuX3vjzfhBDilltuEQDE7NmzUz4D1q5dK/Ly8gQAMW/evJTLVFdXi0gkkravFStWCFmWxfz581OWb+19tbm5Oe32CGG+bw0bNkxMmDChx7cncT8UFBSIdevWWct1Xbfuz5tuusla3pfPia19r7rhhhtStn/ppZcEAHHMMcekLE88/kuWLEm7Hf/73/8EgLT34sRtaWxs3Op9QURENNQwiCEiItpJGYZhHYBMPmB41113CQDi17/+dcr2Tz31lAAgjj/++K3uuzfbCtH3IKakpCTjwZQtMQxD5OTkiEMPPTRl+e677y4AZDx42NXnn38uAIjjjjsuZXniYMXZZ5/dqzFl8u9//1sAEA8//LC1LBHE3Hfffdu8/0w++ugjAUDceOONPb7M9ghiTj/99LTt165dKwCIk046yVoWCASELMti2LBhoq2tbatj7UsQc/jhhwsAYsWKFWnbv/rqqwJA2nMpcSA6ObhIOOiggwSAlIOZ3XnkkUcEAHHaaaelrYvH41bYuX79emv5tgQxubm5oqWlJW194n5bunSptWzy5MlCVVXR1NSUtr2maaKgoEDsu+++KcsBCLvdLgKBQNplFixYIACIO+64Y6vjveyyywQA8Z///Cfj+lmzZglFUVJuS+KxfeWVV9K2v/766zMGq1sLYrqT6bX71ltvZXyuCGEelNx1113TgpjFixenHVhPlrgfuoY0mfTlebwtQcxll12Wtq6+vl4oiiKmTJmS8bL//e9/BQBx5ZVXWssSz+fp06enbf/GG28IAKKioiItdF+3bp0AIM466yxrWVVVlQAgRo4cKWKxWNr+fvazn6U9bo8++mi3AWUiiEzQdV3k5+eL0tLStKBRCCGampqEJEnilFNOsZadd955AoB46KGH0rZP3PaeBjGJ25w8plNOOUWUlJSI5557LuXxr6+vF5IkpRyg78v9k3jPznSwXYjOIOabb77Z6vj7GsSMHTtWyLKcMRhNPB+7BjFbsscee4jRo0enLOvL+2rCL37xi7T36S1J3A/JYUvCDz/8IGRZFhUVFdayvnxObOl71ahRozKexDJy5EhRUFCQsqwnQUymcREREe2s2JqMiIhoJ/Xaa6/hhx9+wFFHHZXSV37u3Lm44oorsHTpUtx8883WZK7vv/8+AOCYY47Z6r57s+222HPPPeFwODKui8fjuO+++/B///d/+PLLLxEMBlP6xW/cuNH6f3t7Oz7//HOUlJRgr7322ur1JtoRvfjii6iqqkJ5eTkA4P777wcAzJ8/v8e3YcOGDbj11luxcuVKbNiwAeFwOGV98jiPP/54XHPNNbj44ouxYsUKHHXUUZg2bRomTpyYcW6T7jQ0NOC2227DCy+8gLVr16K9vb3b68yGrnMuALDu4+T5fdasWQPDMHDQQQfB4/Fsl7F8/PHHkGU5Y3uvgw8+GIqi4JNPPklbN27cOKtNXrLk25HcMqm76waQsW2Vqqo46KCDsG7dOnzyyScZ23D11t57753Sri/hkEMOwcMPP4xPPvkE8+bNQygUwqefforCwkKrNV1XDocj45w+FRUVKC4uTlvem/eMxJwLb7zxBtasWZO2fvPmzdB1Hd9++21a65uePrd6ojev3cRzZPr06Wn7kWUZBx54IL799tuU5Ynb+emnn2ac5yex/VdffYWJEyducax9fR731dSpU9OWrVmzBrqudztvUTweB4CMz5tMj9vw4cMBmK3UuraITHymJc/3kbh9P/7xjzNOUj5jxgw88sgj+OSTT3DmmWcCAE488UTk5ubi0UcfxR/+8AfrehLzmSS3Jfv222/R2NiIcePGZWyvBgAulyvl9iVe44m5nZJNnz497XZtyahRo7DLLrvg9ddfh2EY1hwmhx9+OA4++GCoqoqVK1fiyCOPxKpVqyCESHlv6cv9k5Dp8QaA008/HU8//TT2228/zJkzB4ceeiimTZuGsrKyHt+uLWltbcX333+P8vJyjBkzJm39IYccknE+NyEEHn30USxduhSffvopmpqaoOu6tb6n7eCSvfPOO7jzzjvx3nvvYfPmzSnzTgHm+0Fv3qczPSd22WUXlJeXY926dWhubobf7+/3z4lMryfAfJ/szXw3EydOxOTJk/H4449j/fr1OOGEEzB9+nRMmTKlT/cvERHRUMAghoiIaCeVCA2SDyQBQH5+PmbOnIl///vfWLZsGU4++WQAZm9/ABknA+6qN9tui9LS0m7XzZkzB8888wx22WUXnHDCCSgtLbVCm8WLF6dMJt6X8V500UV488038eCDD+LGG29EbW0tli9fjsmTJ3d7UKqrtWvXYurUqWhqasKPf/xjHHnkkcjNzYWiKNZcH8njHDVqFD744APccMMNeOmll/D0008DMA+Q/OpXv8Ill1yy1etsbm7Gvvvui8rKSkydOhVnnnkm8vPzoaoqmpubceedd2acaH1HyjQvQGKukeSDZTvieRYMBpGfn5/xwJGqqigsLMTmzZvT1nU3t0Gm27Gl6waAYcOGZVyfWJ64H7ZVYq6WrhKvs8R4mpqaIIRAXV1dxoOcW9Lda7Y3j2VDQwMA4Lbbbtvidm1tbWnLevrc2prevnYT911393Gm5Ynb+cADD2xxLJluZ1d9fR73VabHOXF71qxZkzFAS8h0e3Jzc9OWJR63La1LhDtA315PLpcLP/3pT/HAAw/g5ZdfxjHHHINYLIbHH38cRUVFKcFh4vZ99913W3xdJN++LT0vEo9Lbxx22GF44IEH8PHHH8Nms6Gurg6HHXYYfD4f9t13X2temEzzw2zL+013r+vZs2fjP//5D/70pz/hoYcewn333QcA2GeffbBo0SIcccQRvbp9XW3tddXduC6//HIsXrwYw4YNs05GcblcAIClS5dac9z01DPPPIOTTz4ZTqcTRxxxBMaMGQOPxwNZlvH666/jjTfe6PXn6pZu0/r16xEMBuH3+/v9c2JLn13JJ7NsjaIoeO2113DTTTfhqaeewm9+8xsAgM/nw7x587Bo0aKtnoxAREQ01DCIISIi2gnV1dXh2WefBQCcdtppOO200zJud//991tBTOKP855US/RmWwCQJAmapmVct6WDB91VgXz44Yd45plncPjhh+PFF19MmTDcMAz88Y9/3KbxArAmgf/73/+O66+/Hg899BA0TcOFF17Y433ccccdaGhowJIlS9ICsccff9w66zrZbrvthieeeAKapuHTTz/Fq6++irvuuguXXnopPB4Pzj333C1e54MPPojKykosXLgw7az09957D3feeWePx78lsiwDwBYf155O/N2dvjxuvZWbm4vGxkbE4/G0s8Q1TUN9fX3Gypf+um4AqK2tzbi+pqYmZbttFQgEMi5PXH/iehI/99prL+ts7J7q7jWb/FgmJhrvTuL6g8Hgdrvvt6a3r93EOLu7jzMtT9zOTz/9FD/60Y+2abw7+nmc6XFO3J5f/vKXuOOOO/rtunqqr6+nefPm4YEHHsDDDz+MY445Bs8//zwaGhpw6aWXptyXicudeOKJVkje0zEFAgHssssuKesSj0tvqkdmzJiBBx54AK+++qoVuiXClhkzZmDRokVobGzEypUrkZubi7333jttLH15v9lSReaxxx6LY489Fu3t7Vi9ejX+85//4G9/+xuOO+44fPLJJ1ut5tqS5Psvk0y3ZfPmzfjLX/6C3XffHe+++25aFeDjjz/e63Fcd911sNvt+PDDD7HbbrulrLvwwgvxxhtv9HqfgUAA48ePT1ve3fvxjvqc6I28vDz8+c9/xp///Gd8//33eOONN3Dffffh7rvvRnNzM/75z3/u8DERERFlk5ztARAREdGO9/DDDyMWi2GfffbBueeem/FfUVERXn31VVRWVgIA9t9/fwDAiy++uNX992ZbwPxjvaqqKm25ruv473//28Nb1en7778HYLbySg5hAOCDDz5IayHk8Xiw++67IxAI9Lg9j81mw3nnnYeNGzfiueeew4MPPgiv14vTTz+91+M86aST0tZt7cCNqqrYZ5998Jvf/MY6cJQI17bXdfZGXl4eAGR8XL///nvrLN5tMXXqVMiyjDfffDOtvVomiXYrval82GuvvWAYBt588820dW+++SZ0XU85mNmfEm3yXn/99bR1mqbhrbfeAoB+u/6PP/4Yra2tacsT158Yj9frxaRJk/DFF1+gsbGxX667L+8vidu/vciy3O1zpbevo8R99/bbb6etMwwD7777btry/ryd2XweJyRer9v7cetO8mOQKSBetWoVgPTX07Rp0zBu3DgsW7YMwWDQCtnmzZuXst2ECRPg9/vx/vvvp1TibEniujI9Z95+++1evVcBZtgiSRJWrlyJ1157DbvssgsqKioAmIGMYRj4xz/+ge+++w6HHHJISguqvt4/PeXxeDBjxgzccccduOaaaxCLxVJe7315f/b5fBg7diw2btyIH374IW19pvfOtWvXwjAMHHnkkWkhTHV1NdauXZt2ma2N7fvvv8fEiRPTQhjDMDK+5nsi03Ni7dq1qKqqQkVFhRVe7+jPiWS9eczGjh2Lc889F2+88Qa8Xi+WLVvW7+MhIiIa6BjEEBER7YQSrW7uuecePPjggxn/XXjhhRBC4MEHHwQAzJw5ExUVFVi+fHnGM0aTe/H3ZlvAPEC3YcMGvPzyyynLb7755l63CAFgHXjqemBi8+bNuPjiizNeJtHW68ILL0wLCQzDsM4qTXbBBRdAURQsWLAAlZWVmDt3bsY5Nno7zhUrVlj3e7KPPvooY4CROBvY7Xb3+To/+eQTLFq0aOuD7qEJEyYgJycHy5YtS2l5FA6He9RCrSeKiopw6qmnoqamBr/61a/S2qa0tbWl3F8FBQUAzLk9euqcc84BAFx99dUIhULW8lAohKuuugoAtlqF1FezZs1Cfn4+Hn/8cWsOlYTFixejsrIShx9+eL/MDwOYFSY33XRTyrIPP/wQjz76KHJzc3HiiSdayy+//HLEYjGcc845GavWmpqaelUt8/Of/xyqquJ3v/sdvvzyy7T1ye8ZCxYsgM1mwy9/+cu0eVUAIBaL9cvB/oKCgoxBItD71+60adMwZswYrFq1Ki1suv/++zPejrPPPht+vx833ngjPvjgg7T1hmFkPPiaSTafxwnFxcU4/fTT8eGHH+J3v/tdxoO3P/zwgxX+97eysjIcccQRWLduXdrcRqtXr8Zjjz2GvLy8lOd5wrx58xCJRHDPPffghRdewI9+9KO0+cRUVcUvfvEL1NTU4JJLLkkL/AGzOiH5+Z2oprrllltSQs1IJIKrr76617exuLgYkyZNwjvvvIM333wzpfXYgQceCKfTab3Pd51TZFvun+68+eabGUOdTJ9ZfXl/BszXiWEY+M1vfpPyGVBZWYm//OUvadsnXrtdg662tjacf/75Gce7tbFVVFTgu+++w6ZNm6xlQgjccMMNGd/PeuLOO+9M+f5jGAauvPJKGIaBs88+21q+oz8nkm3pfqmsrMwYajU1NSEajVqt4IiIiHYmbE1GRES0k3n99dfx7bffYo899tjiXCbnnnsubrnlFixZsgQ33ngj7HY7nnzySRx55JGYO3cu7rvvPuy///6IRCL46quvsHLlSusARm+2BYBf/epXWLFiBU444QTMmTMH+fn5ePfdd1FZWYlDDjmkxwcbE/bdd19MmzYNTz/9NA488EBMnz4dgUAAL774IsaPH29N8pzsvPPOw1tvvYV//vOfGDduHE444QQUFRVh06ZNeO2113DOOeektfIaOXIkjj32WCxfvhwAetWWDDDnmVmyZAlOOeUUnHzyyRg+fDg+//xzvPTSS/jpT3+KJ554ImX7f/7zn7jvvvswffp0jBkzBnl5efjhhx/w3HPPweFw4LLLLtvqdZ555pm47bbbcNlll2HVqlUYN24cvvvuO/znP//B7Nmz066zr2w2Gy699FL87ne/w1577YUTTzwRmqbhlVdewfDhwzM+Bn1x99134/PPP8e9996L119/HUcddRTsdjsqKyuxYsUKLF++3Jqg/LDDDsNtt92G888/HyeddBJ8Ph/8fj8WLFjQ7f7nzp2LZcuW4V//+hcmTZqEWbNmQZIkPPvss6isrMScOXN6VQXVG16vFw899BBOOeUUHHzwwTjllFMwcuRIfPTRR3j55ZdRWlpqzbnQHw466CA8+OCDWL16NaZNm4aamho88cQTMAwD9913X0rrqnPOOQcfffQR7rnnHowZMwZHHXUURo4cicbGRlRWVuLNN9/E2WefjXvvvbdH1z1x4kTcc889mD9/Pvbaay+ccMIJGDduHBoaGrBmzRrk5ORYZ+RPmDABDz30EM455xxMmjQJRx99NHbddVfE43Fs2LABb731FoqKivD1119v0/1x2GGH4f/+7/8wc+ZM7L333rDZbDjooINw0EEH9fq1K8syHnzwQRx99NE4/vjjcdJJJ2HMmDH43//+h1deeQXHHHMMXnzxRaulH2Ae5Hzqqadw4oknYv/998dhhx2GSZMmQZIkVFVV4b333kNDQwMikchWb0s2n8fJ7r77bnz33Xe4/vrr8c9//hPTp09HSUkJNm3ahK+++gpr1qzB448/jtGjR2+X67/33nsxbdo0XHnllXj55ZcxZcoUVFVV4cknn4Qsy1iyZEnGMP2MM87A9ddfj4ULFyIej6dVwyRcd911+PTTT3Hvvffiueeew4wZMzBixAhs3rwZ3333Hd555x3ccsstVjuuadOm4Re/+AXuuusu7L777jj55JNhs9mwbNky5OXldTvvx5Ycdthh+Pzzz63/JzgcDkybNi3j/DDbev9055JLLsHGjRsxbdo0VFRUwG6346OPPsJrr72GUaNG4dRTT00Zd2/fnwHgiiuuwLPPPot///vf2HvvvXHUUUehubkZ//rXv3DQQQdZn88JpaWlOPXUU/F///d/mDx5Mo488kgEg0G88sorcDqdmDx5clol7vjx4zFixAj83//9H2w2G0aNGgVJknDGGWdg1KhR+OUvf2m9d5100kmw2Wx455138OWXX2LmzJl47rnnenyfJUybNg2TJ0/GnDlzkJubixUrVuDTTz/FPvvsg1//+tfWdjv6cyLZAQccALfbjcWLF6OhocGak+cXv/gFPv30U8yePRv77rsvdtttNwwfPhx1dXVYtmwZ4vG4NWcMERHRTkUQERHRTmXu3LkCgLjzzju3uu0RRxwhAIinn37aWrZ+/Xrx85//XFRUVAibzSby8/PF1KlTxS233JJ2+d5su2zZMrHPPvsIh8Mh8vPzxZw5c8S6devEvHnzBABRWVlpbVtZWSkAiHnz5nU79oaGBvHzn/9cjBo1SjgcDrHLLruIq6++WrS3t4tRo0aJUaNGZbzcI488Ig466CCRk5MjHA6HqKioEHPnzhUfffRRxu2fffZZAUBMmTKl27FsyTvvvCMOPfRQ4ff7hdfrFdOmTRPPPPOMWLVqlQAgFi5caG37/vvvi/nz54sf/ehHIi8vTzidTjFmzBhx1llnic8++6zH1/nFF1+ImTNniqKiIuF2u8Xee+8tHnjggR7dr11t6b40DEMsWrRI7LLLLsJms4ny8nJx5ZVXdvsYLFmyRAAQS5Ysybg/AOLggw9OW97W1iZuvvlmscceewiXyyW8Xq/YbbfdxKWXXioCgUDKtn/605/EhAkThN1uFwBSxnDwwQeLTF+PdV0Xf/3rX8U+++wjXC6XcLlcYu+99xZ333230HW9x+MUQmR8Pm/NBx98IGbNmiUKCwut+3H+/Pli48aNadtmet5sTfLj/uWXX4rjjz9e+P1+4XK5xIEHHiheeumlbi/73HPPiWOPPVYUFRUJm80mSkpKxL777iuuvfZa8dVXX6Vsu6X7JeHdd98Vs2fPtvY3bNgwcdRRR4knn3wybdv//e9/Yt68eWLkyJHCbreLvLw8MWnSJHHBBReIlStXpmzb3WMrRPfPu0AgIE477TRRXFwsZFlOu19789pNeP/998Xhhx8uvF6v8Hq94rDDDhPvvvuuuPjiiwUA8cknn6RdprKyUlx88cVi7NixwuFwCJ/PJ8aPHy9+9rOfiWeeeWaL92ey3j6P+/JcXbhwoQAgVq1a1e020WhU3HXXXeKAAw4QOTk5wm63i/LycjFjxgzx5z//WdTX11vbbum+3Nr7VXfPt+rqajF//nwxcuRIYbPZREFBgTjhhBPEBx98sMXbdthhhwkAQlVVUVtb2+12hmGIf/zjH2LGjBkiLy9P2Gw2MXz4cDFt2jRxyy23iA0bNqRtf9ddd1nvS8OGDRMXXXSRaG5u3uL7a3eWL18uAAhJktLe/37/+98LAKKkpKTby/fm/tnae/YTTzwhTj31VDF27Fjh8XiEz+cTkyZNEtdcc43YvHlz2vZben/ekmAwKH75y1+K4cOHC4fDIcaPHy9uv/128cMPP2R8jrS3t4trrrlGjBkzRjgcDlFWViYuuugiUV9f3+17xQcffCBmzJghcnJyhCRJac/zJUuWiD333FO43W5RUFAgZs2aJf73v//16DWRLPG6++GHH8Ttt98uxo8fLxwOhxg+fLi49NJLRTAYzHi53nxO9OV7VXf3y4svvij2339/4fF4BABrv1VVVeLqq68WBx54oCgpKRF2u12MGDFCHH300eKFF17o0X1BREQ01EhCCLHdUh4iIiKiIe6GG27AjTfeiAcffHC7t/Yh2h7WrVuH0aNHY968eVi6dGm2h7NTmjZtGlavXo1gMAiPx5Pt4RBRlpx11ll4+OGHUVlZabVRIyIioqGBc8QQERER9VFrayvuvfde5Ofn47TTTsv2cIhoAAuFQhnn01m6dCneffddHHnkkQxhiIiIiIiGKM4RQ0RERNRLzz//PD7++GM899xzCAQCuP3221MmHSYi6mrDhg3Ya6+9cMQRR2Ds2LHQNA2ffPIJ3n77bfj9fvzpT3/K9hCJiIiIiGg7YRBDRERE1EtPPvkkHn74YZSUlODqq6/GL3/5y2wPiYgGuJKSEpx++ul44403sGrVKkSjUZSWluLss8/GtddeizFjxmR7iEREREREtJ1wjhgiIiIiIiIiIiIiIqLthHPEEBERERERERERERERbScMYoiIiIiIiIiIiIiIiLYTzhHTA4ZhYNOmTfD5fJAkKdvDISIiIiIiIiIiIiKiLBJCoLW1FcOHD4csb7nmhUFMD2zatAnl5eXZHgYREREREREREREREQ0gVVVVKCsr2+I2DGJ6wOfzATDv0JycnCyPhoiIiIiIiIiIiIiIsqmlpQXl5eVWfrAlDGJ6INGOLCcnh0EMEREREREREREREREBQI+mM9ly4zIiIiIiIiIiIiIiIiLqMwYxRERERERERERERERE2wmDGCIiIiIiIiIiIiIiou2EQQwREREREREREREREdF2omZ7AERERERERERERERE/UUIAV3XoWlatodCg5CqqlAUBZIk9d8++21PRERERERERERERERZIoRAc3Mz6urqoOt6todDg5iiKCguLkZubm6/BDIMYoiIiIiIiIiIiIho0KutrUVzczNycnKQk5MDVVX7taqBhj4hBDRNQ0tLC2pqahAOhzFs2LBt3i+DGCIiIiIiIiIiIiIa1HRdRzAYRFFREQoLC7M9HBrkfD4fHA4H6uvrUVxcDEVRtml/cj+Ni4iIiIiIiIiIiIgoK+LxOIQQ8Hg82R4KDREejwdCCMTj8W3eF4MYIiIiIiIiIiIiIhoS2IqM+kt/PpcYxBAREREREREREREREW0nDGKIiIiIiIiIiIiIiIi2EwYxRERERERERERERETUK2eddRYqKiqyPYxBgUEMEREREREREREREdEAtnTpUkiSZP1TVRUjRozAWWedhY0bN2Z7eLQVarYHQEREREREREREREREW3fTTTdh9OjRiEQieP/997F06VK8/fbb+Pzzz+F0OrM9POoGgxgiIiIiIiIiIiIiokHgmGOOwZQpUwAA5513HgoLC3Hrrbdi+fLl+OlPf5rl0VF32JqMiIiIiIiIiIiIiGgQ+vGPfwwA+OGHHwAAsVgM119/PfbZZx/k5ubC4/Hgxz/+MVatWpVyuXXr1kGSJNx+++24//77MWbMGDgcDuy7775Ys2ZN2vU8++yz2H333eF0OrH77rvjmWeeyTie9vZ2XHHFFSgvL4fD4cD48eNx++23QwiRsp0kSViwYAGefPJJTJw4ES6XCwcccAA+++wzAMB9992HsWPHwul04pBDDsG6deu29a7KKlbEEBERERERERERERENQomAIi8vDwDQ0tKCBx98EKeddhrOP/98tLa24u9//zuOOuoofPDBB5g8eXLK5R977DG0trbiwgsvhCRJ+OMf/4jZs2dj7dq1sNlsAICXX34ZJ510EiZOnIhFixahoaEBZ599NsrKylL2JYTA8ccfj1WrVuHcc8/F5MmTsWLFClx55ZXYuHEj/vznP6ds/9Zbb2H58uW4+OKLAQCLFi3Ccccdh1//+te45557cNFFF6GpqQl//OMfcc455+C1117bDvfgjsEghoiIiIiIiIiIiIiGJCGAsJbtUXRyqYAk9f3ywWAQ9fX1iEQiWL16NW688UY4HA4cd9xxAMxAZt26dbDb7dZlzj//fEyYMAF33XUX/v73v6fsb8OGDfjuu++sIGf8+PE44YQTsGLFCmufv/nNb1BSUoK3334bubm5AICDDz4YRx55JEaNGmXta/ny5Xjttddw880349prrwUAXHzxxTjllFNw5513YsGCBRgzZoy1/TfffIOvv/4aFRUV1tgvvPBC3Hzzzfj222/h8/kAALquY9GiRVi3bp217WDDIIaIiIiIiIiIiIiIhqSwBux2T7ZH0emriwC3re+XP/zww1N+r6iowCOPPGJVpyiKAkVRAACGYaC5uRmGYWDKlCn4+OOP0/Y3Z84cK4QBOludrV27FgBQU1OD//73v7jqqqusEAYAjjjiCEycOBHt7e3WshdeeAGKouCSSy5JuY4rrrgCTz31FF588UUsWLDAWn7YYYelBCv77bcfAOCkk06yQpjk5WvXrh20QQzniCEiIiIiIiIiIiIiGgT++te/4pVXXsFTTz2Fn/zkJ6ivr4fD4UjZ5uGHH8aPfvQjOJ1OFBQUoKioCM8//zyCwWDa/kaOHJnyeyKUaWpqAgCsX78eADBu3Li0y44fPz7l9/Xr12P48OEpIQoA7Lbbbin76u66E0FPeXl5xuWJMQ1GrIghIiIiIiIiIiIioiHJpZpVKAOFaxuPyE+dOhVTpkwBAMyaNQvTp0/H3Llz8c0338Dr9eKRRx7BWWedhVmzZuHKK69EcXExFEXBokWL8MMPP6TtL1E905UQYtsG2gPdXXc2x7S9MIghIiIiIiIiIiIioiFJkratFdhAlghYDj30UNx999246qqr8NRTT2GXXXbB008/DSlpMpqFCxf26ToSc8B89913aeu++eabtG1fffVVtLa2plTFfP311yn72hmxNRkRERERERERERER0SB0yCGHYOrUqVi8eDEikYhVTZJcPbJ69Wq89957fdr/sGHDMHnyZDz88MMprc1eeeUVfPnllynb/uQnP4Gu67j77rtTlv/5z3+GJEk45phj+jSGoYAVMURERERERERERET9yNA0GLEYjGgURiwGPRoFAMiqCslmg2yzdf5fVSF104qJqCeuvPJKnHLKKVi6dCmOO+44PP300zjxxBNx7LHHorKyEvfeey8mTpyItra2Pu1/0aJFOPbYYzF9+nScc845aGxsxF133YVJkyal7HPmzJk49NBDce2112LdunXYc8898fLLL2PZsmW47LLLMGbMmP66yYMOgxgiIiIiIiIiIiKiHjBiMStY6Rq0aOEw9LY2aKEQ9EgEQtNgxOPmT00DJAmSJEFSlM5/qgq546fidEJ2OKC4XOZPm81cn/TT+j9DHEoye/ZsjBkzBrfffju++eYb1NbW4r777sOKFSswceJEPPLII3jyySfx+uuv92n/Rx99NJ588kn89re/xdVXX40xY8ZgyZIlWLZsWco+ZVnG8uXLcf311+OJJ57AkiVLUFFRgdtuuw1XXHFF/9zYQUoSg3mGmx2kpaUFubm5CAaDyMnJyfZwiIiIiIiIiIiIqJ8IIayAxYhGoScFLEY0Cq29HfG2NuihEIxYDCIeh65pEPE40HFoVQCQZDklNEn5qZrnwwvDgND1rf4zdB2SEOZ+E/tPhDiqClmWgeQQJxHeJMKcxPXa7WZY02UsiaocSR46M1dEIhFUVlZi9OjRcDqd2R4ODQFbe071JjdgRQwRERERERERERENOcIwMlauGLEY9EgEWns79PZ26OEw9FgspYIlEbAgOfzoCDIUrxdq4vdeBhmSLJuXsfV+9vjuQhyj47YIXYehaRC63hneICnE6aie2VKIozidkBO3LVFxkylYGmIhDtH2xiCGiIiIiIiIiIiIBg1D09KCFSMaNf8fiSDe3g6tvR1GOGxu2xGuCE1DojVQIphICRZcLut3SZKyehsz2REhDgwDSKrEMa+4S4hjs0GWZUh2OxSHwwpxVJcrvW1ad6EOQxzayTCIISIiIiIiIiIioqwSQpgtv7oGK4n2YOEw9PZ2xNvbYUSjEPF4Z8hiGJ2hQVJ7MElVITscUD0eSDabWdkyAAOWHWF7hDh6ezviLS3W74kQJ/WKtyHE6fqTIQ4NYgxiiIiIiIiIiIiIaLsQhgEjHk8NVpKCFq2tzWwRFgqZ23UELIn5V6wKFkVJOSivuN1QOVn9DtGvIY6mwdB1iK4hjq6bIU5yUJYc4iiK2U4tKcRJtFRTnU5IqgpNkmBomjnHT+I5IUlm+Nbxb2cN4ij7GMQQERERERERERFRrwhdTw9WEj/DYWihUGfA0hGsGPG4edA9qWpCSqp0kG02qA5HZ0ULKx8GvX4LcTrmvkkLcRLt1ADoDgf08eOhtbUhFouZVVKJ4CU5kJFl8/+Jn92FNQxxqB8xiCEiIiIiIiIiIiIAMCtSusy9kghZ9HAYWmL+lUgkpXpF6Hrn5PCS1Dnh+yCZf4UGnt6GOHFZRsxmg2y3Q7bbzcAvEfoJAZH4XdfNVngdy9OvWNq2ECfx/8Q+GOIQGMQQERERERERERENaUKIjJUr1vwrHdUrWlsbjFgsZf6VxMFsIUmQkuZfkW02yE4n1MTvKg8z0sCRHIKkLOsBkRTeJH4KIczKm96EOB3X3TXEkWQ5c3DDEGdI4zskERERERERERHRICQMI716peN3PRqF3lG9oodC0ONxK2AR8TiEEOYBXiEARUkJWBSvFyonRqedVHJrMmtZDy/bNcQR/RTiSLKcUoXDEGfwYRBDREREREREREQ0gBialhasWNUskYjVHkwPh60J7oWmmfNlAGaLMEmCpCjm5PaJSe2dTvMn518h2i66hji9iUFSQpyOwCYR4iTmVup1iJOhldoWQ5yu7dio3zCIISIiIiIiIiIi2gGMeNwMUzJUsGjhcGcFSyQC0dEaTGgaDE1LPUCaCFY65sNQPR5r0nsePCUanPoa4qSEM11DHE2z1ncX4qRc7xZCHMlmg2K39+m2EYMYIiIiIiIiIiKiPtvq/Cvt7Yi3tUEPhaz5V/SO9mBW+yIg8/wrPh/nXyGiLbIqYZJ+9nuIYxhQ3G4GMduA7+JERERERERERERdCMPIWLlixGJWezC9oz2YHoulVLBAiM4DoopihSuSqnL+FSIaMHoa4hix2I4a0pDFIIaIiIiIiIiIiHYahqZlnHvFiMWgh8OId7QHM8Jhc9uk+VcSTX0kSUoJV2SbDZLLZf5UFAYsRESUgkEMERERERER0U5Cj0YhDCOtD31XKXNMdPP/Xm9DtB0JIcyWX91UsGihEPT2dsTb22FEoxDxeGfIYhidZ4DLcmrA4nCY868kAhY+p4koS/7x6KM476KL8N6qVdhn772zPRzLl19+iX/9618466yzUFFR0ePL/fe//8Xtt9+ON954A5s3b4bH48Hee++N008/HWeeeSYURdl+g84CBjFEREREREREQ5DQdcRbWhAPBhFraUGkthaxYBAwjPSNuwtSMu24y4HojAemM+wvbbvuJgfusqzr8owhUtdtJSm13QoAJCoUulwusb/uKhik5Mt1c7u6HVOXfXd7EL+/wq4M+9/qPrp7PHsT0m3pObG1xyv1glvdn6FpKUFLvLXVbBEWCsGIx81/SfOvWBUsitI5ub2qQnG7O9uDDbGDfUREO9KXX36JG2+8EYccckiPg5gHH3wQ8+fPR0lJCc444wyMGzcOra2tWLlyJc4991zU1NTgmmuu2b4D38EYxBARERERERENckII82z/lhbEW1oQqa9HtK7OPEAdDgMAFJcLissFyWbreuFMO0zZd0/Xp2yb6XLdLO/r5VIu29fLdbdNP1yf6GZ5dzUVmfa4tW3T1neEFqIH19fddWfafmvrtzimTPvYWmVJN2GMMIzU+1JVUypYVK+383e2ByMiGnDef/99zJ8/HwcccABeeOEF+Hw+a91ll12GDz/8EJ9//vk2X49hGIjFYnA6ndu8r/7AIIaIiIiIiIhokDFiMcRbWhALBhFvbka4thZaSwu0UAjCMCDbbFDcbtj9fsilpWynRANSr0Ktjv+zPRgR0ZZt3LQJN9xyC15csQLNwSDG7LILfrlgAc464wxrm1gsht/fdhteXLECP1RWQtM07LXnnlh4zTU45KCDUvb3xFNP4Y4778R3a9dCkiSMGjUK5513Hi699FIsXboUZ599NgDg0EMPtS6zatUqHHLIIRnHd+ONN0KSJDz66KMpIUzClClTMGXKFOv39vZ2XH/99fjXv/6FzZs3o6KiAueffz6uuOKKlM8DSZJw8cUX44ADDsDvf/97fPvtt3jyyScxa9YsbNy4Eddddx2ef/55NDc3Y+zYsbjiiitwzjnn9Ok+7gsGMUREREREREQDmDAMxFtbEQ8GzWqXQACxxkZo4TBELAZIklnt4nbDXVDANks0aGytDVrKttt5LEQ0dAkhzM/LAUKy27dboBzYvBk/PvxwSJKEn19wAYoKCvDSq6/iggUL0NLaiksuuggA0NLaiiX/+AfmnHwyzp03D61tbVjyz3/i2Nmz8c5rr2Hyj34EAHj1tddwxrnn4tCDDsLvb7oJisOBr776Cu+88w4uvfRSHHTQQbjkkkvwl7/8Bddccw122203ALB+dhUKhbBy5UocdNBBGDly5FZvjxACxx9/PFatWoVzzz0XkydPxooVK3DllVdi48aN+POf/5yy/WuvvYZ//etfWLBgAQoLC1FRUYFAIID9998fkiRhwYIFKCoqwosvvohzzz0XLS0tuOyyy7bhHu85BjFEREREREREA4gWCnXO7dLQgMjmzZ0txoSA7HRCcbvhKCyE4nBke7hEREQDmojF8MXll2d7GJZJd9wBaTt9fl9/003QdR0fv/ceCvLzAQAXnHsufnbOOfjdH/6A888+Gy6XC3l+P7777DPY7XbrsufOm4c99t0X99x3H+7/618BAC++/DJycnLwn3/9CzaPBzavN+X6dtllF/z4xz/GX/7yFxxxxBHdVsEkfP/994jH49hjjz16dHuWL1+O1157DTfffDOuvfZaAMDFF1+MU045BXfeeScWLFiAMWPGWNt/8803+OyzzzBx4kRr2XnnnQdd1/HZZ5+hoKAAADB//nycdtppuOGGG3DhhRfC5XL1aDzbgs0yiYiIiIiIiLLEiMcRbWhAW2UlGj/5BJteegkbn3sOm154AXVvvongN99Aj0ah5uTAPWoUPLvsAtfw4bD7/QxhiIiIyCKEwDPLl+PYo4+GEAL1DQ3WvyMPOwzBYBCffPopAEBRFCuEMQwDjY2N0HQd++y1l7UNAOTm5qK9vR0rX3+9X8bY0tICABlbkmXywgsvQFEUXHLJJSnLr7jiCggh8OKLL6YsP/jgg1NCGCEE/v3vf2PmzJnmfVJfb/076qijEAwG8fHHH2/jreoZVsQQERERERER7QBCCGhtbVa1S6SuDtG6OuihEPRYDBIA2eWC6nbD5fdDVvknOxER0baS7HZMuuOObA/DIiVVofSnuvp6NAeDeHDpUjy4dGnGbTbX1Vn//8djj2Hx3Xfjm2+/RTwet5aPHjXK+v/8887DU888g+NPPRUjhg/HkUcdhZ/+9Kc4+uij+zTGnJwcAEBra2uPtl+/fj2GDx+eFtwkWp+tX78+Zfno0aNTfq+rq0NzczPuv/9+3H///RmvY/PmzT0ay7YacN/q/vrXv+K2225DbW0t9txzT9x1112YOnVqt9svXrwYf/vb37BhwwYUFhbi5JNPxqJFi+B0OgEAN9xwA2688caUy4wfPx5ff/31dr0dREREREREtHPTo1FzXpdgENHGRrPFWGsr9HAYQgjINhtUjwf2ggLIDgcnICciItoOJEnabq3ABhLDMAAAc+fMwRmnnZZxmz123x0A8OgTT+C8n/8cxx93HC6/5BIUFxZCURT88Y47sHbdOmv74qIifPj221ixYgVefv11rHj1VSxZsgRnnnkmHn744V6PcezYsVBVFZ999lnvb2APdG0xlrhPfvazn2HevHkZL/OjjvlwtrcBFcQ88cQTuPzyy3Hvvfdiv/32w+LFi3HUUUfhm2++QXFxcdr2jz32GK666io89NBDOPDAA/Htt9/irLPOgiRJuCMp5Zw0aRJeffVV63eVZxURERERERFRPxK63jmvS0sLIrW1iDU3Qw+FYGgaZEWB7HRC9XrhKCqCJLNTOBEREfWfosJC+Hw+6LqOww49dIvbPr1sGXapqMCTjzySciLITYsWpW1rt9tx7FFHYeYJJ0Bxu3HRRRfhvvvuw3XXXYexY8f26kQSt9uNGTNm4LXXXkNVVRXKy8u3uP2oUaPw6quvorW1NaUqJlFkMSqpeieToqIi6z45/PDDezzO7WFAffO74447cP755+Pss8/GxIkTce+998LtduOhhx7KuP27776LadOmYe7cuaioqMCRRx6J0047DR988EHKdqqqorS01PpXWFi4I24OERERERERDUFCCGjt7Qhv2oSWr7/G5rffRvXy5dj4/POoeeUVNHzwASKbN0NWVThLS+EdPRrukSPhLC6G6vEwhCEiIqJ+pygKTjz+eDyzfDk+//LLtPV19fWd23Z8FxFCWMs++PBDvN/luHpDY2PK77IsWxUk0WgUAODxeAAAzc3NPRrnwoULIYTAGWecgba2trT1H330kVVt85Of/AS6ruPuu+9O2ebPf/4zJEnCMcccs8XrUhQFJ510Ev7973/j888/T1tfl9SqbXsbMKUhsVgMH330Ea6++mprmSzLOPzww/Hee+9lvMyBBx6IRx55BB988AGmTp2KtWvX4oUXXsAZZ5yRst13332H4cOHw+l04oADDsCiRYswcuTIbscSjUatJxLQOYkQERERERER7XyMWAzxlhbEgkHEm5sRDgSgBYPQQiGzxZiqQnG7Yff7IZeWssUYERERbTdLH3kEK1auTFv+i/nzccsNN+CNt97C9MMOw7nz5mG38ePR2NSETz79FK+9/joCHXOqHHv00Xj2uedw8umn4ydHHonK9evxwEMPYbcJE9De3m7t88Jf/AJNTU04eNo0lI8ciepAAHfddRcmT55szdMyefJkKIqCW2+9FcFgEA6HAzNmzMjY4Qowj+n/9a9/xUUXXYQJEybgjDPOwLhx49Da2orXX38dy5cvx8033wwAmDlzJg499FBce+21WLduHfbcc0+8/PLLWLZsGS677DKMGTNmq/fXH/7wB6xatQr77bcfzj//fEycOBGNjY34+OOP8eqrr6KxS9i0vQyYIKa+vh66rqOkpCRleUlJSbfzucydOxf19fWYPn26eUaSpmH+/Pm45pprrG32228/LF26FOPHj0dNTQ1uvPFG/PjHP8bnn3+eNslPwqJFi9LmlSEiIiIiIqKhTxgG4q2t0DqCl0gggFhjI7RwGCIWAyQJissFxe2Gu6AAkqJke8hERES0E7nv73/PuPzMuXNRNmIE3nntNdxy66149rnncO+DD6IgPx8TJ0zA75OOd595+umoDQTw4NKleGXlSuw2fjyWPvAA/v3ss3jz7bet7eb+9Kf4+9KluH/JEjQHgygtLcWcOXNwww03QO6oqiktLcW9996LRYsW4dxzz4Wu61i1alW3QQwAXHjhhdh3333xpz/9Cf/4xz9QV1cHr9eLvffeG0uWLMHPfvYzAGahxvLly3H99dfjiSeewJIlS1BRUYHbbrsNV1xxRY/ur5KSEnzwwQe46aab8PTTT+Oee+5BQUEBJk2ahFtvvbVH++gPkkiuP8qiTZs2YcSIEXj33XdxwAEHWMt//etf44033sDq1avTLvP666/j1FNPxc0334z99tsP33//PS699FKcf/75uO666zJeT3NzM0aNGoU77rgD5557bsZtMlXElJeXIxgMIicnZxtvKREREREREQ0UWjiMeDBozu3S2IhIIACtvR16OAwIAdnptIIXZSeY6JeIiGiwissygn4/RpWXw2m3Z3s4Q4oRi0F2OmHzerM9lB0qEomgsrISo0ePhtPpTFvf0tKC3NzcHuUGA6YiprCwEIqiIBAIpCwPBAIoLS3NeJnrrrsOZ5xxBs477zwAwB577IH29nZccMEFuPbaa61ULpnf78euu+6K77//vtuxOBwOOPgFm4iIiIiIaEgx4nHEW1rMNmPNzYgEAogHg9Da2wFdBxQFqscDNScHjuJizuVCRERERP1iwAQxdrsd++yzD1auXIlZs2YBAAzDwMqVK7FgwYKMlwmFQmlhi9JRFt5doU9bWxt++OGHtHlkiIiIiIiIaOgQQkBrazODl2AQkbo6xOrrzWqXWAwSANnlgup2w+X3Q1YHzJ/HRERERDTEDKhvmpdffjnmzZuHKVOmYOrUqVi8eDHa29tx9tlnAwDOPPNMjBgxAosWLQJgTtZzxx13YK+99rJak1133XWYOXOmFcj86le/wsyZMzFq1Chs2rQJCxcuhKIoOO2007J2O4mIiIiIiKh/6dGo1WIs2tRkthhrbYUeDkMIAdlmg+J2w15QANnhgCRJ2R4yEREREe0kBlQQM2fOHNTV1eH6669HbW0tJk+ejJdeegklJSUAgA0bNqRUwPz2t7+FJEn47W9/i40bN6KoqAgzZ87ELbfcYm1TXV2N0047DQ0NDSgqKsL06dPx/vvvo6ioaIffPiIiIiIiItp2Qtc7W4wFg4jU1iIWDEJvb4ehaZBkGYrLBdXrhaOoiC3GiIiIiCirJNFdDy+y9GbSHSIiIiIiIuo/QgjooZBZ7dLSgkh9PaJ1dWaLsXAYkCQoTidUtxuK2w3ZZsv2kImIiCgL4rKMoN+PUeXlcNrt2R7OkGLEYpCdTti83mwPZYeKRCKorKzE6NGj4XQ609b3JjcYUBUxREREREREtHMzYjGr0iXe3IxwIAAtGIQWCpktxlTVbDHm90MuLWWLMSIiIkrFugPqJ/1Zw8IghoiIiIiIiLJCGAbira3QEi3GAgHEGhuhhcMwolGrxZjidsOVnw9Z5Z+wRERElJkshPndQteRXrtA1HvxeBwArPnotwW/xRIREREREdEOoYXDZouxYBCxpiZEams7W4wJAdnphOJywVFYCMXhyPZwiYiIaBBRhIASj6OlrQ1el4tVs7RNhBAIBoNwOByw9UPrWwYxRERERERE1O+MeBzxlhazzVhzMyKBAOLBIPRQCELTAEWB6vFAzcmBo7gYkixne8hEREQ0yLmjUbQFg9gEIMfrhU1RAAYy20zE45AkCfpOUJ0shEA8HkcwGERbWxtGjBjRL/sd+vccERERERERbVdCCGhtbWbwEgwiUleHWH29We0Si0ECILtcUN1u2Px+thgjIiKi7cKpaUBbG0LxOFqDQZ7o0U+EpkGy2XaqimWHw4ERI0YgJyenX/bHb79ERERERETUK3o0arYYa2lBtLERkUAAWmsr9HAYQgjINhsUtxv2ggLIDgdbgxAREdEO49Q0ODUNuiTB4HeQfhGprYV39GjkTZiQ7aHsEIqi9Es7smQMYoiIiIiIiKhbQtcRb20153UJBhGprUUsGITe3g4jHoekKFBcLqheLxxFRTzzlIiIiAYERQgoQmR7GENCPBqFDYDT6cz2UAYtBjFEREREREQEwGwxpodCVrVLpL4e0bo6s8VYJAIAUJxOKC4XnKWlkPv5TEEiIiIioqGIQQwREREREdFOyojFzHldWloQa2pCOBCA1tICrb3dbDGmqmaLMb8fstPJFmNERERERH3AIIaIiIiIiGgnIAwDWlub1WIsWleHaH09tHAYRjQKSZahuFxQ3G648vIgq/xzkYiIiIioP/CbNRERERER0RCkhcOIB4PQWloQbWxEpLa2s8WYYUDuaDHmKCyE4nBke7hEREREREMWgxgiIiIiIqJBzojHO1uMNTcjEgggHgxCD4UgNA1QFKgeD9ScHDiKiyHJcraHTERERES002AQQ0RERERENIgIIcwWYy0tiAeDiNbXI1pXB629HUYsBgCQXS6objdsfj9bjBERERERZRm/kRMREREREQ1gejSKeDCIeKLFWCAArbUVejgMYRiQ7XYobjfsBQWQHQ5IkpTtIRMRERERURIGMURERERERAOE0HXEW1sRDwYRCwYRqa1FLBiE3t4OIx6HpChQXC6oXi8cRUVsMUZERERENAgwiCEiIiIiIsoCIQT0UKiz2qWhAZHNm6G1t0OPRAAAisMBxe2Gs7QUss2W5RHTYCOEgN7ailhdHeL19YjV1cGIxWDLzYWalweb3w81Lw9qbi5DPSIiIqLtiEEMERERERHRDmDEYua8Li0tiDU1IRwIQGtpgdbebrYYs9nMFmN+P2Snky3GqNeMaBSx+nordInX1cGIRtO201tagKqqzgWyDDUnB7a8vJSARvF6+TwkIiIi6gcMYoiIiIiIiPqZMAxobW1Wi7FoXR2i9fXQwmEY0SgkWYbickFxu+HKy4Os8k8z6h1hGNCamhCrq7MqXrRgMH1DWYYtPx/2oiLYioqgOJ2IB4PQmpoQb26G1tQEEY9Da26G1twMVFZaF5VUFarfbwY0ST9ll4sBDREREVEv8Ns+ERERERHRNtLCYfPgdksLoo2NiNTWQguFoIfDgGFAcjigut1wFBZCcTiyPVwahPT29pTQJV5fD6HradspPp8ZuhQWmj/z8yEpSso2juHDrf8LIaC3t0Nrbka8qakzoGluhtA067qSyQ5HSuWMFdDY7dvnxhMRERENcgxiiIiIBilhGOznTkS0gwkhzIPTra1mtUtzMyKbNyPe3Aw9FILQNEBRoHo8UL1eOIqK+F5NvWbE44g3NKTO7RIKpW0n2WxWpYu9sNCqeOkNSZKger1QvV44y8qs5cIwzNZ5iYCm46fe2mq2QKutRay2NmVfisfTWTmTCGpycyGx4ouIiIh2cvw2RERENEgIXUesqQnRhgaEa2oQa2gAZBmSLEOy2SArCiRFgaSqkBTFbHOjKJA71lnbKorZTkRRzN87/qFjeWIbSJK5bWJ98mWT/09EtIMJw4AwDKDjpzAMszJACAhd7369YZhBSuL/XS5rxOMwdB1C08z96DqMeNz8f9IyoevQO1qMQZIgO51QPR7Y/H62GKNeE0JACwYR76h2idXVmS3ChEjdUJKg5uXBnhS6qLm52+2zWJJl2Px+2Px+uCoqOseraeZ4k1qbxZuaYIRC0Nvbobe3I7pxY+q4fT6oSe3NbHl5UHw+hpRERES00+BfCURERAOY1taGaEMDonV1CFVXI9bSAhGNQrLbobjdQOLAYyhk/jSMjD8hBATMs15TDuwkfpckCCGsIAaJsCXp90zLEwGO3DX8UVVIqmr9TAlzkgKhHoU93VyWB2+IskcIkRpkGAag61bIkRaCJH7fSkhiGAagaVYYYmiaFYAYHT+RCEOEsMZhBSyJ976k8VnvhZKE5MPVArB+t94fgZT3uy39tBcUQHY4GEhTr+mRSEroEq+vh4jH07aT3W4zdOmoeLHl50O22bIw4lSSqsJWUABbQUHKciMa7Qxmkn6KaNSsrGlpAdav77xAR9DTNaCR3W6+roiIiGjIYRBDREQ0gBjxOGKNjYg2NiJcXW1O7NzRikT1erf73AIi6cBlxmAn6eCmoeuApnUb/iRfRuoS9iSCIaDjQGimA6CJMEaWzW0SwU1im/6oBuoIglgNRINRWiXIlqpCkkKSXleFJH7vUhViXWfXMCTxPpEchgApIbAVgiS9H0gARPJrPFMQ3GWZLMuAzdb52kz+2fXyRFkgdN1sMVZfb4Uveltb2nZWuNERvNgLC6F4PFkYcd/JDgccJSVwlJRYy4QQMMLhlMoZLXn+mcZGxBsbU/Yj2WxWWzNbUkgj97LlGhEREdFAwiCGiIgoi4QQiLe0INbYiEgggPCmTYi3tMCIx6E4nVB9PrgLC3fYQUQreMgC0V34k+GnEMI8e7gv1UAZfva6GigpwGE10M5rQFSFGIYZavalKiTx3E/cHiRVhWwt1EgKROUeVI9Y4SrRECaEgN7amhK6xBsbzddnF2pubkrooublDcn3dkmSoLjdZhXv8OHWciEE9LY2M5hJmn9GCwYh4nHEN29GfPPmlH3JLldK5Yzq90P1+wdElRARERHR1jCIISIi2sH0aBSxhgZEGxrMdmNNTdBCIUiybE6UW1IC2W7P9jB3uJSDvVnQk8qexIFuI3HAPVPok3zge3tVAyVCnO1cDWT9fwBXA21TVcgW5hmxqkLicXN5N1UhXZ8fPaoK6VIFkvK7JFk/e9IeC7IMWZK6rwrpGqQQUb8xOj7PrdClrs6cN6gL2eHoDF2KimArLNwpP+eTSYl5Y3w+YORIa7nQdbONWZf2ZnprK4xwGLFwGLGampR9KV6vGcwkVc+oOTnmZxoRERHRAMEghoiIaDsThoFYczNijY0I19YiUlODeGsrhGFAcblg8/ngKC4eUAe3d0aJg9TZOHDT62ogXQfi8b5XA1k3uvtqoMSB+22qBkpsm6kaSJZ7VhWSXAnSD1UhKQFI4v5Pvo867hcA3YcaXcMNVoUQDXnCMKA1NZnzunRUvGjBYPqGsgxbfr41r4u9qAiK18vXfg9JimJVvLiSlhvxuNXSLJ7U4swIh6G3tZnt3qqqknYkmVVHicqZjlZnis/Hx4KIiIiygkEMERHRdqCFw4g1NCBSV4dwdTViwSD0cNjsAe/zwTVihHnwmggDsBqoa0urXlQDJQdG3VUDpYUeXatE+lIVkinw6C5AISLaCr293Qxd6uoQr69HvKEBQtPStlN8PqvKxV5UBFt+PisxtgPZZrMqipLpkUhqa7OOnyIpuEkmqarV0ixRRWPz+yG7XPx8ICIiou2KR4CIiIj6gdB1xJqaEG1oQLimBpFAAFpbG4QQUD0e2P1+yKWl/COfBqRsVgMREWWbEY8j3tBghS6xujoYoVDadlJHGGCFLkVFUDiBfFYpTieUYcPgGDbMWiaEgBEKpVTOJFqcCU0zg7X6eoST9iM7HCmVM1ZA43Ds+BtFREREQxKDGCIioj6Kt7Yi1tiIaF2dOddLSwtENArJbofN54O7vJwHtomIiAYQIQS0YNCa1yVWV2dWTSS3bQTM1lZ5ebAnhS5qbi5PqBgEJEmC4vFA8XjgLCuzlgvDgN7amlI5ozU1QWttNef7CQQQCwRS9iW73SmVM2peHmy5uZBY1UxERES9xG8PREREPWTE42bw0tiIcHU1ovX10DrOmFW9XjgKC6HwzEkiIqIBQ49EUkKXeH09RDyetp3sdlutr2yFhbAVFEC22bIwYtpeJFmGmpsLNTc3ZbnQNDOcS6qc0ZqaoLe3wwiFEA2FEN24MWlHEhSfz5p/xpqHJicnay1GiYiIaOBjEENERNQNIQTiLS2INTYiEgggvGkT4i0tMOJxKE4nVJ8P7sJC/tFNREQ0AAhdR7yx0Qxc6uoQq6+H3tqatp2kqrAVFMBWVGRVvCgeTxZGTAOB9XwoKEhZbsRiKZUziYDGiEaht7RAb2kB1q/vvIAsm8FMonKmI6BRPB5WUhER0YAgDAMiHofQNOufkfh/l+Vd12mtrZA0DYX775/tmzFoMYghIiJKokejiDU0INLQgHB1NWJNTdBCIfMsSq8XztJSniFLRESUZUII6K2tiNXXWxUv8cZGwDDStlVzc83QpSN4UfPyeBIFbZVst8NeXAx7cbG1TAgBIxzuDGiSfgpNg9bYCK2xMWU/ks3WWTmT1OKM8wsREVEmQtc7g5AM4UhKUJJpfdIyo8u6TN+TeiOWn99Pt3LnxCCGiIh2asIwEGtuRqyxEeHaWkRqahBvbYUwDCguF2w+HxzFxTyTkYiIKIuMWCw1dKmrgxGNpm0nOxxW6GIrKoK9oIATrlO/kSQJitsNxe2GY/hwa7kQAnpbW0rlTLypCVowCBGPI97xnE0mO52pc890VNDwhB8iooFNCAF0hCVdg46uYYjRTUCSMSjpWJ82b932IEmQVLXzn80GOfn3pOWJ/2utrfCMH7/9xzaEMYghIqKdjhYKme3G6uoQqq5GPBiEHg5Dttmger1wjRgBmZOwEhERZYUwDGhNTea8Lh3hixYMpm8oy7Dl53eGLkVFULxenjxBO5wkSVB9Pqg+H5wjR1rLha5Da2lJDWiam6G3tsKIRBCrqUGspiZlX4rXmx7Q5ORAUpQdfbOIiAatRFiSFpRkasu1haqT7tbvkLBEllNCEbmbgCRlm26Wd10HWe7196VQVRWcZWXb6cbuHHiUiYiIhjxD0xBvbka0oQHhmhpEAgFobW0QQkD1eGD3+yGXlvLADRERURbo7e0poUu8ocE8yNGF4vPBXljYWfGSn8+D0zSgSYoCW0eY4kpabsTj0ILBtAoaIxyG3tYGva0N0aqqpB1JUHNzO1ucdfxUfD5+fyWiQUsI0dmGq5sWW91WnHS3PrEfXd/hYYncXUDSsSxjxcmW1vM7zpDDIIaIiIakeGsrYo2NiHZUvcRaWiCiUUh2O2w+H9zl5fxiQ0REtIMZ8TjiDQ2I19eb4UtdHYxQKG07yWaDrbDQnNelqAi2wkIoLleGPRINPrLNBnthIeyFhSnLjUgkpXImEdCIeBxaczO05mZE1q2ztpdU1Qxoklqb2fLyILtcDGiIqF8IIXo1B0m367upOtkhZDlz660uoUmP1ncNWjjnHPUCgxgiIhoSjHjcDF4aGszgpaEB8fZ2s1WE1wtHYSEU9ognIiLaYYQQ0IJBa16XWH09tKam9DNUJQmq398ZuhQVQc3N5YFk2unITiccpaVwlJZay4QQMEIhc86Z5ubOn83NEJpmBpsNDQgn7UdyODpbmyX95HxJREOTMAyzsqSHc5BsdbL3LIQlkqJsve3WltZ3N8cJwxIaQBjEEBHRoCSEQLylxZzrJRBAeNMmxFtaYMTjUJxOqD4fPIWF/NJFRES0g+iRiBW6JCpeRDyetp3sdltVLvaiItgKCjhBOVE3JEmC4vFA8XiApN78wjCgt7amVM5ozc3QOqrAY4EAYoFAyr5ktzulckb1+2Hz+835AohouxKGkXkOku6CkEyTvXdTcQJd3yG3obu5R7Y4P0nSsm4ng1cU/t1OOwV+2hIR0aChR6OINTQg0tCAUFWV+YdnKARZUaB4PHCWlvJADhER0Q4gdB3xxkYzdOmodtFbW9O2kxQFtsLClDZjiseThRETDS2SLJttyXJzgVGjrOVC08xKtC4tzvT2dhihEKKhEKIbN6bsS8nJ6ayc6Qho1JwcHhilnY4wjMyTuW9tsvcttN5KTPYOw9ght6G7OUi21narR5PBs1KVaJswiCEiogFLGAZizc2INTQgHAggUlODeEsLhBBQXC7YfD44iov5hZCIiGg7EkJAb2vrDF3q6hBvbMx4UEnNzYWtqMic/6KoCGpeHg/mEu1AkqrCVlAAW0FBynIjFkttbdbUBK2pCUY0Cr2lBXpLC7BhQ+cFOoKelAqavDwoHg+/e1NWWZO79yAI2WrbrS6Tve/wsKQnc5D0ZH1imaLw9Uk0gDGIISKiAUULhcx2Y3V1CFVXIx4MQg+HIdtsUL1euMrKILN9AhER0XZjxGKI1dentBkzIpG07WSHwwxdOuZ1sRcUcA4KogFKttthLy6GvbjYWiaEgBGJpFTOJIIaoWnQOsKaZJLNltraLBHQOJ07+ibRACWEAJLacGUMQ7bUdmsrk72nzTO2PUhS7+Yg6W5dhqAFDEuIdlo8kkVERFllaBrizc2INjQgXFODSCAAra0NQgioHg/sfj/k0lJ+WSUiItoOhGFAa2pCrGNOl3hdHbRgMH1DWYYtP78zdCkshOLz8fOZaBCTJAmKywXF5YJj+HBreaIKLq2CJhiEiMcR73ivSCY7nWZrs0SLs46fbBs8MAkhAF3fatutrU32bnRzmR0almSag6Qvk70nzXECWebnGxH1OwYxRES0w8VbWxFrbES0o+ol1jGpqGS3w+bzwV1eDklRsj1MIiKiIUdvb08JXeINDeZBsy4UrzcldLHl53NCb6KdhCRJUH0+qD4fnOXl1nJhGNBaWlIqZ+JNTdBbW2FEIojV1CBWU5OyL8XrTa+gyc3ld/0eEEJ0tuHaQout7sKQrm23shKWyHKP225tbbL3tIoTPoeIaJDhN2kiItrujHjcDF4aGszgpaEB8fZ28488rxeOwkIobGVCRETUr4x4HPGGBsQ7gpdYXR2MUChtO8lmg61jThd7URFshYVQXK4sjJiIBjJJlmHz+2Hz++EaPdpabsTj0ILB1BZnzc0wQiHobW3Q29oQra5O2pEENSfHrJxJCmgUr3fQzSklhOjx/CNbnew9w/odQpa33Harh5O9Z1w/yB5PIqLtiUEMERH1OyEE4i0tiDU0ILJ5M8KbNiHe0gIjHofidEL1+eApLOQXcyIion4ihIAWDFrzusTq6825Hbqe8SxJUP3+ztClqMg8O50tWIioj2SbDfbCQtgLC1OWG9FoamuzjoBGxGJmcBMMIrJunbW9pChQ/f6UuWdsfj9kt3ub3qOssKSXbbd6OuH7DqEoPQ9CejvZO/8mIyLaIRjEEBFRv9CjUTN4aWhAqKrKPBsuFIKsKFA8HjhLS9kjmmiI6/HkrLoOADyTkmgb6JGIFbokKl5EPJ62nex2m63FEsFLQQE/j4loh5AdDjhKS+EoLbWWCSFghEKdlTOJoKa5GULXzSq+hgaEk/Yj2e1W5Yzq85ntunox2Xvie8f2tqWWW9223dpS663EOkXh9yEioiGAQQwREfWJMAzEmpsRa2hAOBBApKYG8ZYWCCGguFyw+XxwFBfzDFuiASYxOWtPzgIdEJOzsrc4kXlwsrExJXTRW1vTtpMUBbbCwpQ2Y4rHk4URExFlJkkSFI/HfG8aMcJaLgwDeltbWgWN1tICEYshFgggFghs+/X3NAjJ8H1ia+v5dw8REW0JgxgiIuoxLRQyq17q6xGqrkY8GIQeDkO22aB6vXCVlUHmRL5E22yoTc6aKURBR5uQrQY6hgERi0HEYjD6e4ySlHYwZWttPba0PjkEgizzgAz1iRACelubGbokKl4aGwEj/RWg5uamhC5qXh7PmiaiQUmSZXPemJwcYNQoa7nQdbPtYkdAo7e3967tVvIyReFnMxERZQ2PlhERUbcMTUO8uRnRhgaEa2oQCQSgtbVBCAHV44Hd74cybFi2h0mUFVucnLW7MGSQTs66tbNA+7ulWI9bnPWgJUmmqh4r5BHCXJahndM2S4Q8Xe6XbtuObKklSZf7GjyQNKQYsZhV5ZKoeDEikbTtZIejs71Yx1wMssORhRETEe04kqLAlp8PW35+todCRES0TRjEEBFRinhrK2INDYh2VL3EWlogolGzN7PPB3d5Odv50KCRMSzZwgH6bltzdbN+h8g0OWsvqzi6PUt0gJ45L0mSGTYoCuBwoL/fcaxqox48zluboLdr4GZVLWzvkEdRum+b0tvnAc8W3mGEYUBrakKsI3iJ19VBCwbTN5Rl2PLzO0OXoiIoPh8fGyIiIiKiQYpBDBHRTs6IxRBrakK0ocEMXhoaEG9vhyRJUL1eOAoLofCMW9qORFLlQ4/abm3tIHk2JmdVlC23s9rKvCYZKyU4Oet2IyWFPP3Nej4nPQ+3pTIq+bWQEvJsxzCwV8/R7lq3dfd62MmCBL29HbH6+s4WYw0NGR83xetNCV1s+flmizuifmDE49Da26GHw9AjEUgABABbTg5sublsK0tERES0A/AbFxHRTkYIgXhLiznXy+bNCG/ciHhrK4x4HIrTCdXng6ewkAd/KUVaWLKlOUi6axnVzWTw2FFhSW9aQm2p9RYPLtMWSLIMyW4H7PZ+33evQ8setm/rGlru8JBna6FlpuqvTOuz/Do0NA3xhgYrdInV1cEIhdK2k2y2lHldbIWFUFyuLIyYhiJhGNDDYSt4EYYBWVWheDxwlZTAUVICm8+HWGMj2tevR7i6GhDCnG8oJ4ehDBEREdF2wm9ZREQ7AT0aRbShwax6qapCvLkZWigEWVGgeDxwlpZCttmyPUzaRsIwuj/TvpsQZIttuZLnK8kwSfT2sMUghO2WaCe33UMeXd/ye0Vf27clhTrbta1fchu/7qrTtra+u/eZLicnCCHMyaPr6qyKl3hTU+f8QwmSBNXvTwld1NxcnuxA/UIIASMahRYKQQ+FYMTjZkWzywXV54N3zBg48vOtypeUCufRo5G7++6I1tUhtGkTQhs2mKEMAFtHKMNWtERERET9h0EMEdEQJAwDseZmxBoaEA4EEKmpQbylBTAMyG43bD4fHMXFPDA9yAghoDU1IVJVheimTeaZrpnmptieejMBeS9aGnECcqLskmTZDAe2Qyifca6mrVXs9KJ9m0XXYeg6EI32+22ALKe8l+mhUMb5f2SXywxcEsFLQQFPdKB+Y2ga9FAIWigEIxwGAMh2O1SPB67Ro+EoLLRCFNXr3epnquJwwF1WBndZGfQ990QkEEB40yaEqqoQ2rDBnKsoEcowPCQiIiLaJgxiiIiGCC0UMtuN1dcjVF2NeHMz9EgEss0G1euFq6yM7SYGIaHriAYCiFZVIbJhA/T29q1fKBGW9LSdT0/OEu/4ybCEiHpLkiRINtv2C3l0fYvVfVtr39Zt6zZN66xwMQyIaBR6UsgjKQpsBQVW6GIvKoLsdvM9kvqFMAzokYgZvLS3A7oOSVWhuN1wFBbCWVwMu99vVrvk5Gxz4Kc4HPCMHAnPyJHQ9twT0UAAoY0bzX/r15vP99xcqD4fQxkiIiKiPuAROSKiQcrQNMSbm812Yxs3IlpXB62tDUIIqB4P7Hl57Dk/SBmRCCIbN5qVLxs3pp51rShwDBsGZ3m52d4mUzsdthIhop2E1BE8Q1UBp7Nf9y2EADpCnq7t2WS7HWpeHg9IU7/Ro1HooRD0cBhGJALIMhSXC6rbDc+oUXDk50PtaDGmbufvd6rLBbWiAp6KCmihECKBAELV1Wa1zPr1kFQVNr8fqsfD1wARERFRDzGIISIaROKtrYg1NCDaUfUSa2mBiEYh2e2w5eTAXV7Og/CDlBYMIlJVhUhVFWKbN6fMMyC7XHCWlcFZXg778OGsbCIi2gEkSQISYXe2B0NDiqFp0MNhK3gRQpjhnssF14gRZrVLbq4Zuni9WQ07VLcb3tGj4R09GlpbG8KBAEJVVYjU1KC9rg6y3d45TlaDEREREXWLR3KIiAYwIxZDtLERscZGM3hpaEC8vd2ciNXrhaOwMHXiVRo0hGEgtnmzFb7oLS0p69W8PDjLy+EsL4etsJAHN4iIiAYhIQSMSARaKAQ9FIKhaeb3OI8HNr8fOePHw+b3m8FLTg5kuz3bQ+6W6vXC5/XCN2YM4q2tiAQCaF+/HpFAANG6OsgOB+x+PxS26CMiIiJKwyCGiGgAEUIg3tJizvWyeTPCGzci3toKoWmQHQ6oPh88hYVsAzFIGbEYops2IbJhAyIbN0IkTygty3CUlsJZXg5HeTlUrzd7AyUiIqI+MeJxc16XUAh6JAIAUJxOqB4PXGPHwllYaM7rkps7qAMLm88Hm88H39ixiAWDiAYCaN+wAZFAAJFAAIrTabYvc7uzPVQiIiKiAYFBDBFRlunRKKINDeZcL1VViDc1QQuHISsKFI8HztLSbZ6AlbJHa21FpLoa0aoqRGtrAcOw1kkOh9VyzDF8+IA+C5aIiIhSCcOAHg5Da283W4zpOmSbDYrHA1dJCRwlJVaLMZvPN2Tbx9pzc2HPzYV33DjEm5sR2bwZbevWIVpXh0hNDRS326yU4dyFREREtBNjEENEtIMJw0CsqQmxxkaEa2sRqa1FvKUFMAzIbjdsPh8cJSWD9gzJnZ0QAvH6eqvlmNbUlLJezcmBY+RIc76XoiJWNxEREQ0CQggY0Whni7F4HJIkQXG5oPp88I4ZA0denhm65ObulK1jJUmCPS8P9rw8+HbdFbHGRkQ2b0Z7RyijR6NmS7bcXChOZ7aHS0RERLRDMYghItoBtFDIbDdWX49QdTXizc3QIxHINhtUrxeusjJOwD6IGZqG2KZNVvhidLQiAQBIEuzFxdZ8L2pubvYGSkRERD1iaJrVYswIhwEAst1uthirqICjqMgMXXJyOFF9BpIkwVFQAEdBAXLGjzdDmUDArJRpaICRCGX8/p0ytCIiIqKdD4/6ERFtB4amWVUvoY0bEa2rg9bWBiEEVI8H9rw8tmcY5PRQyApeojU1gK5b6ySbDY4RI8zwZcQIyDzrk4iIaMAShgE9EjGDl/Z2QNchqSoUtxuOggI4S0pg9/vNuV1yctgytpckWYajsBCOwkLk7LYbog0NCNfWWpUyRjxufj/2+9mmlYiIiIYsBjFERP0k3tpqVr3U1SG8cSNiLS0Q0Sgkux22nBy4y8uHbG/wnYEQAlpjIyLV1Yhs2IB4Q0PKesXrtape7CUlfKyJiIgGKD0ahR4KQQ+HzSpWWYbidEL1eOAZNQr2pBZjKk+c6VeSLMNZVARnURH8EyciWl9vhjKVlYgEAhCaBtXngy03l4EXERERDSkMYoiI+siIxRBtbDSrXqqqEGtoQDwUgiRJUL1eOAoL2WphkBO6jmhtrVn1UlUFvb09Zb2tsBDOjvleVL+fbUmIiIgGGKHr1rwuejgMCAHJbofqcsE1YgScxcWw5+ZCzcmBzefj3G07kKQocJaUwFlSgtxJkxCtq7MqZcI1NRC6blYh5eayhS8RERENevw2Q0TUQ0IIxINBq8d1eNMmxFtbITQNssMB1eeDh5OvD3p6JIJodbUZvmzcCKFp1jpJUeAYPhyO8nI4y8qguN1ZHCkRERElE0LAiESs4MXQNPMEmY4J4nPGj4fN74e9Y24XtsEaOGRVhWvYMLiGDYN/990RqatDpKYG7evXI1xdDQgBNfG4MZQhIiKiQWjAfYP561//ittuuw21tbXYc889cdddd2Hq1Kndbr948WL87W9/w4YNG1BYWIiTTz4ZixYtgjOpH39v90lElKBHo4g2NCDa0IBQVRXiTU3QwmHIimK2oiotZduEQU4IAS0YtKpeYnV1gBDWetnlslqOOYYNg8Q//omIiAYEIx4353UJhaBHIgBgtRhzjR0LZ2GhVVGhuN2sXB0kZJsN7uHD4R4+HLm7745oXR1CmzYhtGGDGcpIkjVfD1vBEhER0WAxoI4mPfHEE7j88stx7733Yr/99sPixYtx1FFH4ZtvvkFxcXHa9o899hiuuuoqPPTQQzjwwAPx7bff4qyzzoIkSbjjjjv6tE8i2rkJw0CsqQmxxkaEa2sRqa1FvKUFMAzIbjdsPh8cJSX8Q36QE4aBWCCASFUVIlVV0FtbU9ar+flW+GIrKODjTbQNhGHAiMdhxGLmv3gcIh6HoWmQbTbzn91u/ZRUlZWFRJRGGAb0cBhaezv0cBjCMCCrKhSPB87iYjhLS61KFx6gHzoUhwPusjK4y8qg77mnVZUeqqpCaMMGQJbN+XxycvjZQURERAOaJETSab9Ztt9++2HffffF3XffDQAwDAPl5eX4xS9+gauuuipt+wULFuCrr77CypUrrWVXXHEFVq9ejbfffrtP+wSAaDSKaDRq/d7S0oLy8nIEg0Hk5OT02+0looFBC4UQa2hApK4OoY0bEW9uhh6NQlZVqD4fVK+XLRCGACMaRXTjRkSqqxGproaIxTpXyjIcw4aZVS9lZVC93uwNlGiQMeLxzqAlEbLEYkh8xZQkqTNssduher2w+XyQnU7ooRBiwSD0UAgiFoOuaRDxOIQQkABAllNCGtlmg2Sz8T2ZaIgTQsCIRjtbjMXjkCQJissF1eeDs7gYjvx88wB8bi7n5NsJaeEwooEAQhs3IrRxI7SWFkiKAltuLlTO9UNERNTvQlVVyJkwAYX775/toQwoLS0tyM3N7VFuMGD+io3FYvjoo49w9dVXW8tkWcbhhx+O9957L+NlDjzwQDzyyCP44IMPMHXqVKxduxYvvPACzjjjjD7vEwAWLVqEG2+8sZ9uGRENVKGNG9HyzTeI1tVBa2uDEAKqxwN7Xh4Ulyvbw6N+oLW2WlUvsdra1JZjDgccZWVwjhwJx/DhbDFHlEFKNUtyyKJpgBAQQEpIono8sPl8sPl8UNxuKE4nFIcDstMJxeWC4nBkPDhmaBqMaBR6JGL9MyIRxNvbobW2QmtthR6LQWtvhxGLAboOdOxHUtWMYQ0r2YgGD0PTrBZjRjgMAGZw6/HAVVEBR1GRVfWger18fRNUlwtqRQU8FRXQQiFEAgGEqqvNapn16yGpKmx+P1SPh6EMERERDQgDJoipr6+HrusoKSlJWV5SUoKvv/4642Xmzp2L+vp6TJ8+3ezxr2mYP38+rrnmmj7vEwCuvvpqXH755dbviYoYIhoahBBo++47NKxZAz0ahT0vD+7ycrawGAKEYSBeX2+FL1pzc8p6NTfXrHopL4e9qIh/mNNOz9A0M1jpWtViGGZFSnI1i80GtaDAqmhRnM7OgCURuPRx4mtZVc0qRI8n43ohBIxYzAxpwmEYkQj0aBRaOAyttRXx1lbooRD0tjbEOgIjYV4QkqJY1TgpYQ3f84myQhiG+VoOhaC1twO6DklVobjdcBQUwFlSArvfb7UY44kStDWq2w3v6NHwjh4Nra0Nkc2b0b5hAyI1NWivq4Nst5uVMgzxiIiIKIsGTBDTF6+//jp+//vf45577sF+++2H77//Hpdeeil+97vf4brrruvzfh0OBxwsbycakoSuo/mzz9D03/9CcbngKS3N9pBoGxnxOKKbNiFSVYVodTWMjsl6AQCSBHtJiTXfi8r2krQTSVSzpIQsHdUsQggzZFFVM5Sw26E4nXAWFcGWk9NZzZIIWzqClmyFF5IkQXE4zPZDubkZtzE0zQxoOkKaRGijtbcj3tICvb3dDG8SVTWGkdi52e4s01w1PGBHtM30aNQMSjtCVCRajHk88JSXw15QYLUYU1mRTNtI9Xrh9Xrh3WUXxFtbEQkE0L5+PSKBAKJ1dZAdDtj9fihuN9/jiYiIaIcaMEFMYWEhFEVBIBBIWR4IBFDazYHS6667DmeccQbOO+88AMAee+yB9vZ2XHDBBbj22mv7tE8iGrr0aBRNH3+M5s8/h6OwEDYelB+09PZ2q+olWlPTeUAVgGSzwVlWBkd5OZwjRkBmsE5DlNExn0pyyGLE44CuQ0gSpI6AQekIFux5eeYZ5snVLImwpaOaZTAflJJVFbLX2+0cT4k5J6z2Z+GwOQdFOIx4S4vZ/iwchtbWZgZYmgYYBgQ62p8lzXNjhTWsqiNKIXTdmtdFD4fNqjS7HarLBdeIEXAWF5vvQ7m5sHEeD9rOEq0yfWPHIhYMIhoImJUygQAigQAUp9NsX+Z2Z3uoREREtBMYMEGM3W7HPvvsg5UrV2LWrFkAAMMwsHLlSixYsCDjZUKhEOQuX96VjjM1hRB92icRDU1aWxvq16xB23ffwTlsGP/gGmSEEIg3NiKyYQOi1dWINzSkrFd8PqvqxV5SwgM7NOgJITKGLImWWxIASVHMSg67HYrDAUdhIVSfDzaPB4rLZQYtDocVtuzsrbgkSbLui+4Y8bg5P02X+Wq0tjYzrGlrM8Ob1lazukgISABEooVbl7CGVTU0lAkhYEQiVvBiaBokSYLqdsOWm4uc8eNh8/th75g8XeGJEZRF9txc2HNz4R03DvHmZrN92bp1iNTVIVJTA8XtNitlWJVFRERE28mACWIA4PLLL8e8efMwZcoUTJ06FYsXL0Z7ezvOPvtsAMCZZ56JESNGYNGiRQCAmTNn4o477sBee+1ltSa77rrrMHPmTCuQ2do+iWjoizY2omH1aoSqquAuL+/zHAa0YwlNQ7S21qp8MUKhlPW24mI4y8rgHDkSam4uD3bSoCJ0PS1kSbTLEkBnNYuqQrLbYUvMl9BRzdK1bdhgr2YZKBJhCny+jOuFYUCPRjtboHWENlp7O+Idc9UYkUhnUKNp5uVgVuxImcIaBsc0SBjxuDmvSygEPRIBhLBajLnGjoWzo9rYlpMDxePhexINSJIkwZ6XB3teHny77opYY6MVykTr6qBHo1A9Hthyc7cY3BMRERH11oAKYubMmYO6ujpcf/31qK2txeTJk/HSSy+hpKQEALBhw4aUCpjf/va3kCQJv/3tb7Fx40YUFRVh5syZuOWWW3q8TyIa2sI1NahfvRqx+nq4R42CrA6otz3qQg+HEa2uNluObdpkHcQEzNZAjuHD4Swvh6OsjGcs0oAlhIDQtLSQxXo+CwHIsnUgXnE44CgogJqTA5vHkzInSyJs4XvXwCDJsjmHxRbef4xYzJqjxuhaVdPaalbVRCLQWlrMVnJCWOGbbLenhzV87CkLhGFYcyzp4TCEYUBWVSgeD5zFxXCWlsLe0WJM9fn4PKVBSZIkOAoK4CgoQM748WYoEwigbd06RBsaYCRCGb+fFV1ERES0zSQhhMj2IAa6lpYW5ObmIhgMIodzShANGm1r16Lhgw9gRKNwDh/Os44HICEEtOZmq+olXleXsl52u62WY47SUkg80EMDQEo1S9JPoetInP+dfDBdcbth8/mg+nxQXS4oDkdn2OJysZplJyMMo7OaJhKxQhs9FEK8pQXx1lbo0ShE4vkVj5vPK0ky56rpGtawqoa2kTV/UkfwYsTjZis/lwuqzwdncTEc+fnmvC65uTwgTUOeMAxEGxoQrq1F+7p1iDU2wojHoXo8sPv9rK4nIqKdUqiqCjkTJqBw//2zPZQBpTe5AY9oEdGQIwwDwS+/ROPHH0NWVbjKyrI9JEoiDAOxQACRDRsQqa6G3tqast5WUGCFL2p+Pg9Q0w6VUs2SHLJkqFxIzM1iz8uDLScHqseT2jYsUdFis2X7ZtEAIskyVLd7i3OVWVU14XBKZU2ioiZTVQ0As9IqOaBJ/J8hNiUxNM1qMWaEwxAAFLsdqscDT0UFnEVFZujS8b7GoI92NpIsw1lUBGdREfwTJyJaX2+GMpWViAQCEJpmzsmWm8vPeCIiIuox/lVGREOKEY+j6b//RfP//gdbbi7seXnZHhIBMKJRRDZuRLSqCpHqavOgdoIsmy3HysrgLC+H4vFkb6A05AnDyBiyGJrWWc3SUXUg22xWJYvN54PqdpvhisvVGbbY7TxISf0uEfTZupurRtc7g5rkOWuSq2piMYhw2Hyed7TFk5KqalLCGlbVDFlWBVZH8AJNg6SqUNxuOAoK4CwpgT0xB1VODg8qE3UhKQqcJSVwlpQgd9IkROvqzFBm/XqEa2ogdN18/eTmMvQmIiKiLeI3BSIaMrRwGI1r1qDl66/hLC2FygP6WaW1tFgtx2KBQOcZ2wBkp9Oa68UxfDgP/FC/SbRySg5Z9FjMev4lV7PINpt5ANLng+r1doYryVUtfG7SACQpyharaoQQ5msg0fYsErGqa7S2NsRbWqCHQua/jteJEAKSEICiWK+PlLCGBxgHBSugC4VgRCJAosWYxwNPeTnsBQWd1S5bqMoionSyqsI1bBhcw4bBv/vuiNTVIVJTY4Yy1dWAEFA7Xl98zyQiIqKu+O2AiIaEWDCIhtWr0b5+PVxlZexfngXCMBCrqzOrXqqqoAWDKetVv99qOWYrKmLLMeo1YRjplSwdZ/tLQqTMoSHbbOYEux3VLIrbndo2zOmE4nCwCoCGJEmSoDgcUBwO2LrpUyx0vTOk6Th4b0QiiLe3Q2tthdZRVaO1t5tBjaZBSBIkpM6BlBzW8H19xxK6Di0RqIXDgBCQ7HaoLhdcw4fDWVJinalv8/n4fkfUj2SbDe7hw+EePhy5u++OaF0dQps2IbRhgxnKSJJVaSYpSraHS0RERAMAgxgiGvQimzej/r33ENm8Ge6RI3kG2g5kxOOIbtyISFUVotXVMKLRzpWSBHtpaed8L9202CFKMDrmZklUsSSCFiGENVl58ln6akEBVK/XDFoSE98nwhaHg5PpEm2BpChQPZ5uq0cTVTXJc9TokQi0cDi1qqatDTFN66yqAcy5apJCGius4cHIPhNCmPMCdQQvhqZBkiSobjdsubnIGT8eNr8f9txcqD4fT0gh2oEUhwPusjK4y8qg77knIoEAwps2IVRVhdCGDYAsW5VoDESJiIh2XjxaSUSDWvuGDahfvRp6Wxs8FRX842YH0NvbzZZjGzYgWlsLGIa1TrLbrbleHCNG8EA4WRLVLCK5dVgsBtExd4WA2fJDttmsM7ptHWdzW9UsDkdK2zC+3om2n+SqGuTmZtzG0LTOkCbRBi0chtbebgY17e3Qo1Fo7e0wYjHz86Kjaia5ei0R2kiqyqqaDkY8bs3rokcikGC29VQ9HrjGjoWzsNA6217xeHi/EQ0QisMBz8iR8IwcCW3PPRENBBDauNH8t349JEWBrSMw5fcYIiKinQuDGCIalIQQaP32WzSsWQMAcJWX8yDEdiKEQLyhwZrvRWtsTFmv+HxwjhwJZ1kZ7CUl/KNyJ2V0nBGfaBuW+GkFdZIEyWaD0nHQ1Z6f39k2rOu8LImDv0Q0oMmqCtnrher1ZlwvhEiZp8boCGy0cBhaa6sZ1nRU2CSCWsAMZiVFSWt/JtvtQ/IzRhiGFWAZkQgMXYesqlA8HjiLi+EsKYE9N9c6eMvKX6LBQXW5oFZUwFNRAS0UQiQQQKi62qyWWb8ekqrC5vdD9XiG5HsbERERpeK3eCIadAxNQ/Nnn6Hpv/+F6vHAUVCQ7SENOULTEK2pscIXIxzuXClJsBcVwZFoOZabyxBsiBOGAaFpKZUsRmLOiI5WRJKimPNGOBxQnE44i4pSqlkSc7JY1SxsUUQ05EmSZL3mu2PE42ZIkxTY6JGIWVUTDJrtz6JRaK2taa0KU+aqSQQ1A7yqxgqnEsFLPG7eTy4XVJ8Pzl12gSM/32xjlJvLUJpoiFDdbnhHj4Z39GhobW2IbN6M9g0bEKmpQXtdHWS73Qxbvd4B/R5GREREfccghogGFT0aReOHH6Llyy9hLyqCjfOO9Bs9FEKkuhrRqipEN22C0HVrnaSqcIwYYbYcKyvb4kE1GnyErqdVsiTaCAmYB1OTq1mseQi8Xusga3JVi2y38yACEfWI3BGmoJvPc2EY5lw14XBnZU00Ci0UQry1FVpLixnctLVlbHeYMazZgWeeG5pmtRgzwmEIAIrdDsXthqeiwgytO+aO4FnxRDsH1euF1+uFd5ddEG9tRSQQQPv69YgEAojW1UF2OGD3+6G43fw+RUREWZFyslQ0ChGLwdB1q80w9Q2DGCIaNOKtrWhYvRptP/wA14gRUFyubA9pUBNCQGtuRmTDBkSqqhCvr09Zr3g8VtWLo7SUFQyDlBDCrGZJqmRJPlgJIVIm1lYcDjgKC6H6fLB5PCktwxJtw9gWh4h2FEmWe1xVY7U/S1TVtLWZYU1bmxnetLSY1XxCdOxcgmK3p4c1NlufxioMw7zujuAFmgYoilW96ywuhj0vz5rbpa/XQ0RDR6JNq2/sWMSCQUQDAbNSJhBAJBCA4nSa7cvc7mwPlYiIhhhhGFbQkqhOF4Zhdryw2ayOFs6SEtjz8qC63XAUF2d72IMaj6QQ0aAQbWhA/fvvI7xxI9yjRvHgRR8JXUc0EEC0qgqRDRugt7enrLcVFsKZaDmWl8ez8AYBoetplSxGPG5VNFnVLKoKqaPthc3ng+rzQXW5oDgcnWGLy8VqFiIadBLhSXdVssIwzD8wk0KaRGASb21FvLUVRiTS2f5M08yQWpIgqar5vtglrJFkGXpHizE9FIIRiZjBjssF1eOBp7wc9oKCzmoXHkQloq2w5+bCnpsL77hxiAeDZqXMunWI1NUhUlMDxe02K2V4MhoREfWCEYt1hi0d1S2JzheJ+Vnt+fnWCUOq2w3F7TZ/ulys2O5HDGKIaMALbdqEhvffR6ypCZ6KClZm9JIRiSCycSMiVVWIbtxoTYYMAFAUOIYNg3PkSDjLyqDwQNGAZ2iaNcm1MAxIiWqWjjNWrC9PHo8VriTOZJGdTlazENFOR5JlqC4XsIWDl4k/UPVIBHo4bIU2iYoara3NDGs6qmpgGJAcDqguF1zDh8NZUmJWunSE3fyDlYj6SpIk2P1+2P1++HbdFbHGRnNOmXXrEK2rgx6NQvV4zHmk2C6YiIjQWZmdXOECw4AQwup8oTidcJaWwu73Q/V4zKCl4ydPdt4xeDSGiAYsIQTafvgBjR98AD0eh3vUKJ6p30NaMIhIVRUiVVWIbd5sntnbQXY6raoX+/DhPDA/CBiahngwCK21FQBgy8lB7sSJcJaUmEFLUtswvkaIiHov0Z5xi1U1Se3PjFgMqtcL1eeD4nDs4NES0c5CkiQ4CgrgKChAzvjxZigTCKBt3TpEGxpgJEIZv5/vRUREQ5wQAiIeT20lFo+nVbc4Cwth8/ut6hbV44GSqG7h8YKs4tE3IhqQhGGg+Ysv0PTRR5AdDrjLyrI9pAFNGAZimzdb4Yve0pKyXs3Ls8IXW2EhP3wHASMeRzwYRLy1FZIkwZabi9w99oB72DA4iov5xzYR0Q4kybL5hywrR4koSyRZhqOwEI7CQuTsthuiDQ2I1NaaoUxdHYx4HKrHA7vfD9luz/ZwiYioj4Sup7QSs6pbYJ48pNjtUFwuVrcMQgxiiGjAMWIxNH7yCYKffQZbXh7sfn+2hzQgGbEYops2IbJhAyIbN0JEo50rZRmO0lI4y8vhKC+H6vVmb6DUY0YshlhH5YukKLD7/cjfay84S0vhKCxk+EJEREREkGQZzqIiOIuKkDtxIqL19QjX1qK9shKRQABC06D6fLDl5vKAHBHRACSEMOd3jcWs6hajo428JElWxwtnYaF5XCwnp3PeFla3DFoMYohoQNFCITSsWYPWb76Bs7QUqseT7SENKFpbG6IdVS/R2lrAMKx1ksMBZ1mZGb4MH84z4QYJPRpFPBiE3tYGyWaD3e9Hzq67wllaCmdhIR9HIiIiIuqWpChwlpTAWVKC3EmTEK2rM0OZ9esRrqmB0HVrDiu2JCYi2rFSqls62tumVLd0zN3iGjYMdr/fqmpRPR4oLhfD9CGGn8JENGDEmptRv3o1Qhs2wFVWxrP/YZ4lEa+vt1qOaU1NKevVnBw4ysvhHDkS9qIiTg48SOiRiDnnS3s7ZJsN9rw85O62G5wlJXAUFvLLFhERERH1mqyqcA0bBtewYfDvvjsidXWI1NSYoUx1NSAE1Nxc2HJyGMoQEfUTq7olqZWYVd0iy1AcDrO6pbgY9rw82Hy+zuoWjweK08nqlp0EP3mJaECIBAKof+89ROrr4R45cqf+w8DQNMQ2bTLDl+pqGOFw50pJgr242JrvRc3Nzd5AqVf0cBixYBB6KATZ4TDDlz32gKu4GPaCgp36OU9ERERE/Uu22eAePhzu4cORu/vuiNbVIbRpE0IbNpihjCSZlTI5OZAUJdvDJSIa8NKqW6JRCCEgAZA6qltUlwv2ESNgz81ldQul4VEfIsq69nXrUL96NfRQCJ5Ro3bKqg49FEKkuhqRDRsQrakBdN1aJ9lscIwYYYYvI0ZAdjqzOFLqDS0UMtuOhcNQHA7YCwrgnTwZjuJiOPLz+UcvEREREW13isMBd1kZ3GVl0PfcE5FAAOFNmxCqqkJowwZAlmHrqJTZGf8WIyJKyFjdEouZFSuyDMXp/H/2/jy+7vOu8/5f1/fs5+joHEm2JNuSJdtxdsdZ7dgu3KUU2tI7kE6AFtomdBjWUrhp+ZVlbsqUe+buPTC0odBpC6QQZlKSttNOgZaypLQ0jrc4cRInsZM4XuNVy9kkne37vX5/XEe2HMuJLWs5kt7Px8OJfZbvuWRLZ/m+r8/nQ6hR3RJrbyecThNKJFTdIpdEQYyIzBkbBBT272foiSfA80iuXDnXS5o11lrqw8NnW47VBgbOuz7U0nK26iXa1aUT9vOEtRa/Eb4E5TJeIkGso4NUfz/xpUuJtrfrw62IiIiIzJlQLEZq5UpSK1dSX7+eyqlTjL76qvt1+DAmFCKSzRJuadH7VhFZsIJ6/WzIctHqlmSSaE8P0UzGVbWMtxNLJtXRQqZE3zUiMieCep3c008zvGePm3PS3j7XS5px1vepnDxJ+ehRKkeP4o+MnHd9ZMkS4itXupZj2ax2UcwT1lr8kRGqjfAlnEoR7+wk1ddHbOlSom1t+hArIiIiIk0nnEgQ7u8n1d9PfXSU8qlTjB475qplDh/GhMMulEml9H5WROad86pbGmFLUK9j4KLVLeNBSziVwovFdF5GppWCGBGZdX65zOATT1DYt4/YkiVE0um5XtKM8ctlKseOufDl1Vex9frZ60woRGz5cmK9vcR7egglk3O4UrkcNgioj4y4ypdqlXAq5Xpw9/YS7+wkoiBNREREROaRcDJJy6pVtKxaRb1Uonz6NCNHjlA+cYKRM2fwolEimYyrlNH7XBFpIuPVLWdbiVUq2CDAeB5eJIIXixFuaSHa23t+dcv47BZVt8gs0XeaiMyqWrHI4I4dlA4cINHTQ2iBzTux1lLP589WvVTPnAFrz17vJRJnW47Fli3D6AV/3rBBQL1UcuFLrUYklSLZ20uqt5dYZ6frqa0PpSIiIiIyz4VbWmhpaaFl9WpqxSLlU6cYOXyY8qlTVM6cwYvFiGazhJJJvf8VkVkxaXVLrQbG4IVCeLGYm8va1eWqW1paVN0iTUdnAEVk1lQGBhjYto2xkydJ9vXhRSJzvaRpYYOA6qlTlI8do3zkCH6xeN714fb2s+FLpKNDL/7ziA0C6sUi1VwOfJ9wOk2qv/9c5csCruYSEREREYmk00TSadJXXUU1n6dy6pSrlDl1ivKpU4Ticde+TNX9IjIN3rC6JR4n0tJCdOVKV6XXqGoJp1KEk0nN15WmpiBGRGbF6LFjDGzfTq1QINXfP+97DAfVKpVXX6V89CjlY8ew1eq5Kz2P2LJlruqlp4dwS8vcLVQum/V9asUi9UKBwPfdB8+1a0muWEG8s1P/niIiIiKyKEUzGaKZDC1r11LL512lzKFDlM+coXziBKFk0lXKJBJzvVQRaWI2CM5Vt4yHLfU6Fs6rbol1dxNta3PVLeOBS0sLoVhsrr8EkSlRECMiM8paS+mllxh84gms75NcuXLeVoTUi0UXvBw9SvXkyfNbjsVixHp6iK9cSWz58gVT7bNYBPU69WKRWqEAQUA4kyF99dUkli934UsqNddLFBERERFpCsYYotks0WyW9NVXUx0ePhvKVM6cwa9UCKdSRDKZBdeKWkQu3dnqlvFWYtWqO49izLnqlnT6vOqWs+3EVN0iC5CCGBGZMdb3ye3dy/BTTxFKJIh3dc31ki6LDQJqAwNnw5d6Lnfe9eFMxlW99PYSXbp03lf5LDZBvU4tn6feaCUXaW0lc/31JJYtI9bZSVg7+UREREREXpcxhlh7O7H2dlqvuYbq0BDlU6coHTpEZXCQYDyUyWa1i11kAZq0uqVWwxqDFw7jRaOuumX5cqLZ7LnqlsbsFj0vyGKiIEZEZoRfqTD85JPknnuOWHs7kUxmrpd0SYJajcrx45SPHqVy7BhBuXzuSmOIdnWdnfcSbm2du4XKlAS1GrVCgVqhgDGGSCZDZt06ko3wRW8CRURERESmxngesSVLiC1ZQut111EZHKR88qQLZc6cIajVCKdSRLNZvGh0rpcrIpchqNUIqtXzq1uCADwPLxp11S2trWer5carWlTdInKOghgRmXb1kREGd+2i+OKLxJcta/rBjf7IyNlZL5Xjx92biQYTiRDv6SHW20t8xQo8naifd4JajVo+78KXUIhoNkv7LbcQ7+4mtmSJwhcRERERkWlmPI/40qXEly4lc/31VAYGGDt5kpGDBymfOoWt1wmn00QyGbV1FmkS51W3lMsE1ep51S2hRuAS6+gg2tZGpKWF0IR2YvpsLfL6FMSIyLSqDg8zsH07o0ePkuztbdqdTkGlwsi+fZSPHKE2OHjedaGWFlf1snIl0a4utRybh/xKhVo+j18qYSIR17/6ttuId3cTX7Kkab8vRUREREQWGhMKEe/qIt7VReaGG6icOeNCmcOHGTtxAuv7RFpbXSgT1mkqkZkW1GrntRKbtLolkyHW1uZmPTXaiI0HLjpHIjI1eoUTkWkzduIEAzt2UBkYINnX17RvoscOHya/fTvB2NjZyyJLl55rOZbNYoyZwxXKVPjlspv5MjKCF4kQbWsjc911xLu6iC1Zop12IiIiIiJzzAuHSSxbRmLZMrI33kj5zBnKJ064UObYMQDCra1EWlub9vOkyHwwXt0y3krMr1TA9wEw49UtiQTxJUuIZLOqbhGZBXpVE5FpUTp4kMEdO/DLZVJ9fU25Q8IfGyO/YwflQ4cACLW2kl63jlhPDyENZp+X/LExqvk8/ugoXizmwpd160h0dhLt6NCHNxERERGRJuVFIiSXLye5fDmZG2+kcuYMo8ePM3rkiAtljHGVMq2tmi8hchGvW90SixGKxYhks7SMV7ckEqpuEZkjOkMlIlfEBgH5F15gaPduvHCYZG/vXC/pAtZaxg4cIL9zJ7ZaBWNoufFG0uvXY3Sift6pj466tmNjY4RiMaIdHbTcfDOxzk5i7e36kCYiIiIiMs+EYjGSPT0ke3rw16+nfOoUY8ePM3r0KKNHj7pQJpNxoYxOHMsiY4PgvLDFr1Swvo+xFhOJEIrFCCUSxJcuJdLWRiSVctUtiYSqW0SaiM5AisiUBbUauaefZvjpp4lkMkTb2uZ6SReol0rkH3+cyvHjAITb22nbsoVIR8ccr0wulbUWvxG+BOUyXiJBrKODVH8/8aVLiba368OYiIiIiMgCEYrFSK1cSWrlSvybb6Z86hSjx44x+uqrjB45AtZiwbWTthbG20pb6/7XOM7EZtMWwBh32cQ21Maca0s91csb/7/U27/u/V9z3ynf/mJrkKYW1GqulVi1+vrVLe3tRFpbXVXLeHVLIqHPxSJNTkGMiExJfWyMoV27KOzbR7yri3BLy1wv6TzWWkb37aOweze2XgfPI33zzbTceKPenMwD1lr8kRGqjfAlnEoR7+wk1ddHbOlSom1t+ncUEREREVngQvE4qb4+Un191EdHqZw+TVCtYq09dyNr3Z8bv85eN34Z7vOFDQJ3UrtxXRAE524zfj2u+sC+9rrx6yfethEIEQTuMcevbzzeax//7H1pBEMTruc1a57w1V38a5pw/WuPYydedvZm9mw4ZbkwqLrguvGga/yyCcHXa4/FJMebseDrMi+/WJB19rorDMomO87rBV8XVLeUy9ggwNCY3XKx6pZkknAyiReNXvTYItLcFMSIyGWrFQoMbN/OyKFDJFasIBSPz/WSzlPL5cg//jjV06cBiHZ2kt2yhXAmM8crk9djg4D6yIirfKlWCadSrmd0by/xzk4i2ax2comIiIiILFLhZJJwf/9cL+OS2dcEJJOGRZNcd16Y8trrJ7v9a2476fUTrpss2LngsS52+9f7WuYi+Hq9v4/XC75e+/Wd/w83s8GXMWerW6JtbUTb24mk06puEVkEFMSIyGUpnznDwLZtVE6dItnX11TD0G0QUNq7l+KePRAEmHCY1ttvJ3nNNTqB36RsEFAvlVz4UqsRSaVI9vaS6u0l1tnpekDr305EREREROaZ11ZQ6FPNzGqK4Gv89hOue22wYyIRVbeILFLNcwZVRJreyJEjDOzYQb1UItnf31Q7NKqDg+S2bqU+NARAbMUKMps2NV3LNGmEL8Ui1VwOfJ9wOk2qv/9c5Us6PddLFBERERERkXlEwZeINDsFMSLyhqy1FF98kcFduwBI9vY2TZWCrdcpPv00pb173e6SWIzMhg0kVq9umjUKWN+nVixSLxQIfJ9IOk167VqSK1YQ7+xUYCYiIiIiIiIiIguWghgReV1BvU7u2WcZ3rOHcCpFrKNjrpd0VuXUKXJbt+IXCgDE+/vJbNxIKJGY45UJuO+derFIrVCAICCcyZC++moSy5e78CWVmuslioiIiIiIiIiIzDgFMSJyUX6lwtDu3RSee47okiVEWlvnekkABNUqhSefZHTfPgC8RILMnXeS6Oub45VJUK9Ty+epF4sARFpbyVx/PYlly4h1dhJWSCYiIiIiIiIiIouMghgRmVStWGRw505KL79MYsWKpqkyKR87Rn7bNvyREQCSa9fSevvteLHYHK9s8QpqNWqFAvVCAYwhksmQWbeOZCN8CenfRkREREREREREFjEFMSJygcrgIAM7djB27BjJvj68SGSul4RfLlPYuZOxV14BINTSQnbzZmLLl8/xyhanoFajls9TKxYxnkc0m6XtlluId3cTW7JE4YuIiIiIiIiIiEiDghgROc/o8eMMbt9OdXiYVH8/JhSa0/VYaykfOkR+xw6CchmMIXX99aRvvrkpAqLFxK9UqOXz+KUSJhIhms2SXruWeHc38SVL8KLRuV6iiIiIiIiIiIhI01EQIyKACzxKr7zC0I4d+LUayb4+jDFzuiZ/dJT8tm2Ujx4FIJzNkt2yhejSpXO6rsXEr1So5XLUR0bwIhGibW1krruOeFcXsSVLFIaJiIiIiIiIiIi8AQUxIoINAvLPPcfQk0/iRaMke3rmdj3WMvrSSxR27cLWauB5tKxbR/qmm+a8Qmcx8Mtlqrkc/ugoXizmwpd160h0dhLt6MAL66VDRERERERERETkUulsmsgiF1SrDD31FPm9e4lks0Sz2TldT71QILdtG9UTJwCILFlCdssWIm1tc7quha4+Ourajo2NEYrFiHZ00HLzzcQ6O4m1tysAExERERERERERmSIFMSKLWH10lMFduyju30+8u5twKjVna7FBwMgLL1B88kms72NCIdK33krquuswnjdn61qorLX4jfAlKJfxEgliHR2k+vuJL11KtL1df+8iIiIiIiIiIiLTQEGMyCJVzeUY2LGD0cOHSfT0EIrF5mwtteFhclu3UhsYACDa3U1282bCra1ztqaFyFqLPzJCtRG+hJJJ4p2dpPr6iC1dSrStTeGLiIiIiIiIiIjINFMQI7IIlU+dYmDbNspnzpDs65uzmR/W9yk+8wylZ5+FIMBEIrTecQfJtWsxxszJmhYaGwTUR0Zc5Uu1SjiVIrl8OcneXuKdnUSyWf1di4iIiIiIiIiIzCAFMSKLzMihQwzs3Ik/MkKqv3/OKiCqZ86Q27qVei4HQLy3l8yddxKaw/ZoC4UNAuqlkgtfajUiqRTJ3l5Svb3EOjuJtLYqfBEREREREREREZklCmJEFglrLcX9+xnctQuMIbly5ZysI6jVKO7Zw8jzz4O1ePE4mY0biff3Kxy4AjYIqBeLVPN5qNcJp9Ok+vvPVb6k03O9RBERERERERERkUVJQYzIIhDU6+SefprhPXsIp9PEOjrmZB2VEyfIPf44frEIQGL1ajIbNuDF43OynvnO+j61YpF6oUDg+0TSadJXXUVyxQrinZ2EW1rmeokiIiIiIiIiIiKLnoIYkQXOr1QY2rWL/AsvEFu6dE4qI4JKhcITTzD60ksAhFIpMps2Ee/pmfW1zHdBvU69WKRWKEAQEM5kSF99NYnly134otZuIiIiIiIiIiIiTUVBjMgCVisWGdyxg9KBAyR6egjNQeXJ2JEj5LdtIxgbAyB57bW03norXjQ662uZr4J6nVo+T71RSRRpbSVz/fUkli0j1tlJOJGY4xWKiIiIiIiIiIjIxSiIEVmgKgMDDGzfztjx4yT7+vAikVl9fH9sjPyOHZQPHQIg1NpKdvNmYt3ds7qO+Sqo1agVCtQLBTCGSCZDZt06ko3wJRSLzfUSRURERERERERE5BIoiBFZgEaPHWNgxw5quRypVaswnjdrj22tZeyVV8jv3ImtVMAYWm68kfT69ZiwnnJeT1CrUcvnqRWLGM8jms3SdsstxLu7iS1ZovBFRERERERERERkHtJZUZEFxFpL6eWXGdy1i6BeJ9nXhzFm1h6/XiqR37aNyquvAhBubye7ZQvRjo5ZW8N841cq1PJ5/FIJEw4TbWsjvXYt8e5u4kuWqIWbiIiIiIiIiIjIPKcgRmSBsL5Pbu9ehp96Ci8eJ7lixew9trWM7t9P4YknsPU6eB7pm2+m5cYbZ7UaZ77wKxVquRz1kRG8SIRoWxuZ664j3tVFbMmSWW8jJyIiIiIiIiIiIjNHQYzIAuBXKgw/9RS5vXuJtbcTyWRm7bHr+Ty5rVupnj4NQKSzk+zmzUSy2Vlbw3zgl8tUczn80VG8WMyFL+vWkejsJNrRgae2bSIiIiIiIiIiIguSzvyJzHP1kREGd+2i+OKLxJctI5xMzsrj2iCgtHcvxT17IAgw4TCtt91G8tprZ7UdWjOrj466tmNjY4RiMaIdHaTWr3eVL+3tmFBorpcoIiIiIiIiIiIiM0xBjMg8Vh0eZmDHDkaOHCHZ0zNrw9xrg4Pktm6lNjQEQGz5cjKbNxNuaZmVx29W1lr8RvgSlMt4iQSxjg5S/f3Ely4l2t6uVm0iIiIiIiIiIiKLjIIYkXlq7ORJBrZvpzIwQKqvb1ZaW9l6neLTT1PauxesxUSjZDZsILFmzaKtgrHW4o+MUG2EL6FkknhnJ6m+PmJLlxJta1P4IiIiIiIiIiIisogpiBGZh0oHDzK4cyf+2Bipvr5ZOdFfOXWK/Nat1AsFAOJ9fWTuvJNQIjHjj91srLXUSyVX+VKtEk6lSC5bRnLlSuKdnUSy2UUbTImIiIiIiIiIiMj5FMSIzCM2CMi/8AJDu3fjhcMke3tn/DGDWo3C7t2M7tsHgJdIkLnzThJ9fTP+2M3EBsG58KVWI5JKkeztJdXbS6yzk0hrq8IXERERERERERERuUBT9sv5zGc+Q39/P/F4nI0bN7Jz586L3vbNb34zxpgLfr3zne88e5uf+ZmfueD6t7/97bPxpYhMm6BWY/jJJxnasYNwMkm8q2vGH7N87Bhn/vf/PhvCJNeupfPuuxdNCGODgFo+z8iRI4wePkxQqZDq76frLW9h+V130f2Wt5Beu5ZoJqMQRkRERERERERERCbVdBUxjzzyCB/+8If53Oc+x8aNG7n//vt529vexv79++ns7Lzg9l/96lepVqtn/zw4OMj69ev5iZ/4ifNu9/a3v52//Mu/PPvn2CwNNReZDn65zOCuXRT27SPe2Um4pWVGHy8ol8nv2sXYgQMAhFpayG7eTGz58hl93GZgfZ9asUi9UCCo14m0tpK+6iqSK1bMyt+9iIiIiIiIiIiILCxNF8R88pOf5Od+7uf4wAc+AMDnPvc5vvGNb/CFL3yB3/qt37rg9u3t7ef9+eGHHyaZTF4QxMRiMbq7u2du4SIzpFYoMLB9OyOHDpFYsYJQPD5jj2WtpXz4MPnt2wnKZQBS119P+pZb8CKRGXvcuRbU69SLRWqFAgQB4UyG9NVXk1i+3IUvqdRcL1FERERERERERETmqaYKYqrVKrt37+a3f/u3z17meR5vfetb2bZt2yUd44EHHuA973kPqdecOP3Od75DZ2cnbW1tvOUtb+E//+f/TEdHx6THqFQqVCqVs38uNIaTi8y28pkzDGzfTuXkSZIrV85oGOKPjpLfvp3ykSMAhLNZsps3E52kEm0hsEFArVCglssBEGltJXP99SSWLSPW2Uk4kZjbBYqIiIiIiIiIiMiC0FRBzMDAAL7v0/Wa2RddXV3sa8yoeD07d+5k7969PPDAA+dd/va3v51/9+/+HatWreLAgQP8zu/8Du94xzvYtm0boVDoguN84hOf4OMf//iVfTEiV2jkyBEGd+ygViqR7O/HeDMz0slay+hLL1HYtQtbq4ExtNx0E+mbbsJM8vMx3wX1OtXBQeqlEpFMhsyNN5JcvpxYZychtSwUERERERERERGRadZUQcyVeuCBB1i3bh0bNmw47/L3vOc9Z3+/bt06brrpJtasWcN3vvMdfvAHf/CC4/z2b/82H/7wh8/+uVAo0NvbO3MLF5nAWkvxxRcZ3LULrCXZ2ztjg+DrxSK5xx+neuIEAJGODrJbthB5Tcu/hcAfG6MyMID1fWIdHbTdcgvJnh4i6fRcL01EREREREREREQWsKYKYpYsWUIoFOLUqVPnXX7q1Kk3nO8yMjLCww8/zO///u+/4eOsXr2aJUuW8PLLL08axMRiMWLaGS9zwPo+uWefZeippwgnk8SWLJmZxwkCRl54geJTT2HrdQiFaL3lFlLXXz9jlTdzwVpLvVCgMjSEF42S7OmhZc0akitW4EWjc708ERERERERERERWQSaKoiJRqPcdtttPProo9x9990ABEHAo48+yq/8yq+87n2//OUvU6lUeN/73veGj3Ps2DEGBwdZtmzZdCxbZFr4lQpDu3eTf+45YkuWEGltnZHHqQ0Pk9u6ldrAAADR7m6ymzcTnqHHmwtBvU51aIh6sUiktZXsunW09PcTW7p0QQVNIiIiIiIiIiIi0vyaKogB+PCHP8x9993H7bffzoYNG7j//vsZGRnhAx/4AAD33nsvK1as4BOf+MR593vggQe4++676ejoOO/yUqnExz/+ce655x66u7s5cOAAH/3oR7nqqqt429veNmtfl8jrqZdKDOzcSenll4kvW0Y4mZz2x7C+T+nZZyk+8wwEASYSofX220leffWMtT6bbX65TGVggKBWI7ZkCdl160itXDljoZaIiIiIiIiIiIjIG2m6IObd7343Z86c4WMf+xgnT57k5ptv5lvf+hZdXV0AHDlyBO81O9r379/PY489xj/90z9dcLxQKMQzzzzDgw8+SC6XY/ny5fzwD/8w/8//8/+o/Zg0hcrgIAM7djB27BjJlSvxIpFpf4zqwAC5xx6jnssBEOvpIbtpE6FUatofa7ZZa6kXi1QHBzHhMIlly0hffTWJ5csJ6WdcRERERERERERE5pix1tq5XkSzKxQKZDIZ8vk8rdpZL9No7PhxBrZvpzo0RHLlSkwoNK3HD+p1ik89xcjzz4O1eLEYmY0bia9aNe+rYKzvUx0eppbPE2lpIdnXR8vq1cS7utR+TERERERERERERGbU5eQGTVcRI7JYFA8cYGjnTvxqlWRf37SHB5UTJ8g9/jh+sQhAYvVqWjdsIBSPT+vjzDa/UqE6OEhQLhPt6KBj0yZSvb1Es9m5XpqIiIiIiIiIiIjIBRTEiMwyGwTkn3uOoaeewotESPb0TOvxg2qVwhNPMPriiwB4ySTZTZuI9/ZO6+PMtlqxSHVoCGMM8e5u0mvXkuzpmffBkoiIiIiIiIiIiCxsCmJEZlFQqzH01FPkn32WSDY77VUc5aNHyW3bRjA6CkDymmtove02vGh0Wh9nttggONt+LJxMkl67lpY1a0h0dU17GzcRERERERERERGRmaAgRmSW1EdHGXriCQr79hHv7iacSk3bsf2xMQo7dzJ28CAAoXSa7JYtxLq7p+0xZlNQrVIZHMQfHSXa1kbHHXeQXLmSWHv7XC9NRERERERERERE5LIoiBGZBdV8noHt2xk9fJhETw+hWGxajmutZeyVVyjs3ElQqYAxtNxwA+mbb8aE59+Pd31khOrgINZa4l1dtG7YQKK3l3AiMddLExEREREREREREZmS+XemVmSeKZ8+zcDjj1M+c4ZkXx/eNAUk/sgIuW3bqBw7BkC4rY3sli1ElyyZluPPFhsE1PJ5qsPDhBIJUqtXk16zhnh397T9XYmIiIiIiIiIiIjMFZ3lFJlBI4cPM7BjB/7ICKn+foznXfExrbWM7t9PYfdubK0Gnkd6/Xpa1q2bluPPlqBWO9t+LJLN0n7bbaRWriTa0YExZq6XJyIiIiIiIiIiIjItFMSIzABrLcX9+xl84gkAEr290xIu1PN5co8/TvXUKQAiS5eS3bKFSDZ7xceeLfXRUaqDgxAERJcupeP220n29EzrzBwRERERERERERGRZqEgRmSaBfU6uWeeYXjPHsItLcQ6Oq74mDYIKD33HMU9e8D3MeEw6dtuI3XNNfOiCsYGAbVCgdrwMF40SrKvj/SaNSSWLcOLROZ6eSIiIiIiIiIiIiIzRkGMyDTyKxWGdu2i8MILRJcuJZJOX/Exa0ND5LZupTY4CEBs+XIymzYRnoZjz7SgXqc6OEi9WCSSzZK56SZaVq0itmSJ2o+JiIiIiIiIiIjIoqAgRmSa1IpFBnfsoPTKKySWLyeUSFzR8Wy9TvGZZyg9+yxYi4lGydxxB4mrrmr6EMMfG6MyMID1fWIdHbTdcgvJnp5pCaZERERERERERERE5hMFMSLToDIwwMCOHYy9+irJlSuvuN1W9fRpclu3Us/nAYj39ZHZuJFQMjkdy50R1lrqhQKVoSHXfqynh5Y1a0iuWIEXjc718kRERERERERERETmhIIYkSs0+uqrDGzfTi2XI9XfjwmFpnysoFaj+OSTjLzwAgBePE7mzjtJ9PdP02qnX1CvUx0epl4oEGltJbtuHS39/cSWLp0X82tEREREREREREREZpKCGJEpstZSOnCAwZ07Cep1kn19V9QyrPzqq+Qffxx/ZASAxFVXkbnjDrxYbLqWPK38cpnKwABBrUZsyRKyN95IauVKIq2tc700ERERERERERERkaahIEZkCqzvk3v+eYZ378aLx0muWDHlYwWVCvmdOxk7cACAUEsLmU2biF/BMWeKtZZ6sUh1aAgTCpFYtoz02rUkVqwg1KSBkYiIiIiIiIiIiMhcUhAjcpmCapWhJ58k/9xzRNvaiGQyUz7W2KFD5LdvJyiXAUhddx3pW2+94hkz0836PtXhYWqFAuFUitZrr6Vl9WriXV1qPyYiIiIiIiIiIiLyOhTEiFyG+ugogzt3UnzxReLLlhFOJqd0HH90lPyOHZQPHwYgnMmQ3bKFaGfndC73ivmVCtXBQfxKhVh7Ox133kmqt5doNjvXSxMRERERERERERGZFxTEiFyiai7HwPbtjB49SqKnZ0qtuKy1jL38Mvldu7DVKhhDy7p1pNevx4RCM7DqqamNtx8zhnh3N+m1a0n29BCKx+d6aSIiIiIiIiIiIiLzioIYkUswdvIkg9u3Uz5zhuTKlXjhy//RqReL5B5/nOqJEwBEOjrIbtlCpL19upc7JTYIXPuxfJ5wMkl67Vpa1qwh0dXVVCGRiIiIiIiIiIiIyHyiIEbkDZQOHmRw5078sTFS/f2XPRPFBgEj+/ZRfPJJbL0OoRCtt9xC6vrrm2K+SlCrURkYwB8bI5rN0nHHHSRXriTWJAGRiIiIiIiIiIiIyHymIEbkImwQUNi3j6EnnsCEwyR7ey/7GLVcjtzWrdTOnAEg2tVFdssWwq2t073cy1YfGaE6OIi1lnhXF60bNpDo6Zny3BsRERERERERERERuZCCGJFJBLUauWeeIff004RbW4m2tV3W/a3vU9q7l+LTT0MQYCIRWm+/neTVV2OMmaFVX8K6goBaPk91eJhQIkFq1SrSa9YQX7ZsSu3WREREREREREREROT16cyryGv45TKDu3ZR2LePeGcn4ZaWy7p/dWCA3Nat1IeHAYj19JDdtIlQKjUTy70kQa1GdWiIeqlEpK2N9ltvJdXXR7SjY06DIREREREREREREZGFTkGMyAS1YpGB7dsZOXiQxIoVhOLxS75vUK9T3LOHkeeeA2vxYjFaN24ksWrVnIUd9dFRqoODEAREly6l/bbbSPb0EJ7DUEhERERERERERERkMVEQI9JQGRjgzLZtlE+eJLlyJV4kcun3PXGC3OOP4xeLACRWraJ148bLCnKmi7XWtR8bGiIUi5FcuZL0mjUkli+/rK9JRERERERERERERK6cghgRYPToUQZ27KBWKJDq78d43iXdL6hWKTzxBKMvvgiAl0yS3bSJeG/vTC538rXU6679WKFAJJslu349LatWEVuyRO3HREREREREREREROaIghhZ1Ky1lF56icFdu7BBQHLlyksOLcpHj5Lbto1gdBSA5NVX03r77XjR6Ewu+QL+2BiVgQFsvU5syRLabr6ZZE8PkXR6VtchIiIiIiLNzQ8sxdq5P3sGjAEPMLjfn/3zhP+767S5S0RERGSqFMTIomV9n9yzzzK8Zw+hRIL4kiWXdD+/XKawYwdjBw8CEEqnyW7eTGzZsplc7nmstdQLBSpDQ3jRKMmeHlrWrCG5YsWsB0EiIiIiItLcynVLrmIZqFhGa2Bx4QqNkAVc6II59/+zwUzjtp6Z8AsIeeBhCHnu+pBxYc34bcfv60041sRg57zLL7iNQh8RERFZWBTEyKLkVyoMP/kkub17iS1ZQqS19Q3vY61l7OBBCjt2EFQqYAypG24gffPNeOHZ+VEK6nWqw8Ou/Vg6TfbGG0n19xPv7LzkdmoiIiIiIrLwBdZSqsFQ2TJctVR8iIUgEwOvEXRYa7G4YMbac//nNZcFgB+85nYT7s/Z+9mzAc/4cQzngp/xfMXwmqDHnB/6XBD8GAgZM+H37muYeAxv4v8nCX88Jr9c1T4iIiIyGxTEyKJTL5UY2LmT0ssvE1+2jHAy+Yb38UdGyG3bRuXYMQDCbW1kt2wheolVNFfKr1Rc+7FqleiSJWRvuIFUX98lBUgiIiIiIrJ4VH1LoQoD5YBiDQILyTCkYhcGDuMVLO4PM7su20hmLgxzLgx9rJ0sGLLnXWY4d7zx5Z+t9GlcMDHYGQ9dmBDYjN/v/MDHhTznqn7A88BwfrXPxYKdCy6/oAJIoY+IiMhipCBGFpXK0BAD27cz9uqrJHt737CNl7WW0RdfpPDEE9haDTyP9Pr1tNx4IyYUmtG1Wmupl0pUBwcxoRDxZctoXbuWxIoVhGKxGX1sERERERGZP6y1jNYhV7EMVixjdQh70BKBsNccJ/7HAwhz9j8z62y1z2ShD+4/F6/2sRcEQePVPhODn8Zhzqv2Ge9TcF6Vz2tCofGAZzyoGa/2CZnzW7xN2s7tUlq+nf19c/zbi4iIiIIYWUTGjh9nYPt2qkNDpPr63jBIqRcK5LZupXrqFACRpUvJbtlCJJud0XVa36c6PEytUCCcStF67bW0rFpFvLtb7cdEREREROQsP7AUajBYDshXoG4hHoa2SapfFpuz1T6zGPq4379xtU/Nf021z4QWceP/GQ94Jvv/xGqe17Z4Y8L1HhMqeCZU+4RwVT4Tq30urNx5ncBnsvAHfc+JiIi8HgUxsiiUXnmFwZ07CSoVkn19rxto2CBg5PnnKTz1FPg+JhwmfeutpK69dkaDEL9SoTo4iF+pEG1ro2PjRlIrVxKd4eBHRERERETml3LdkqtYBiqW0Zo7IZ4MQzSkE+FzYTZbvMEbV/uMBzw+UL+Eap83avN2XrWPOff/11b7nG3x1vh9aELI83rVPhcLfya9vFFBJCIiMt8oiJEFzQYB+eefZ+jJJ/EiERI9Pa97+9rQELmtW6kNDgIQXbaM7ObNhNPpGVtjvVSiMjgIxpDo7ia9di3Jnh5C8fiMPaaIiIiIiMwvgbWUajBctgxVLRUfYiHIxNSCarGZi2qfie3cLlbt89oWb6+9//hsn4nVPRO/jDeq9hn/fSoMbTGPlojCRxERmT8UxMiCFdRqDO/ZQ+6ZZ4hkMkTb2i56W+v7FJ9+mtKzz4K1mGiUzB13kLjqqhkpr7ZB4NqP5fOEk0nSa9fSsno1ie7uGZ89IyIiIiIi80ctsOQrMFAOKNYgsK76JaX2YzILmrHaZ6jx8xAPQzZqyERNU81DEhERmYyCGFmQ6mNjDO3aRWHfPuLd3YRTqYvetnr6NLmtW6nn8wDEV64kc+edhJLJaV9XUKtRGRjAHxsjms3SfvvtpFauJNbRMe2PJSIiIiIi85O1ltE65CqWwYplrA5hD51slgXvUqp9EmH3M1L24dSo5dSoJRGG9pgh3QhlVCUmIjI9xt+TFKqWeNjQFtPz61QpiJEFp5rPM7B9O6NHjpDo6SEUi016u6BWo/jkk4y88AIAXjxO5s47SfT3T/ua6iMjVAcHsUFAvLub1g0bSPT0EJ6BsEdEREREROYnP7AUajBYDshXoG4hHoY2Vb+InMcYQyLsQpnAurDy1RGLGbWN1mWG1qghGdbPjojI5bKN59ViDYYqAaM1KPvQ04KCmCugIEYWlPLp0wxs20b59GmSK1fihSf/Fi8fP07+8cfxSyUAEmvWkNmwAe8ioc1U2CCgls9THR4mlEiQWrWK9Jo1xJctu+i6RERERERk8SnXLfkqnCm7kx3GuPZjmn8h8sY8Y0hFIBWBemAZ8+FIyRI2llQU2mMe6Qgkwvp5EhG5mPFKw/HwZaQK9QAiIUhE3CwwuTI6GywLxsjhwwzs3IlfKpHq78d43gW3CSoV8rt2MfbyywCEUikymzcTX7Fi2tYR1GpUh4aol0pEslnab72VVF8f0Y4O7cQRERERERHA7eIv1WC4YhmqWCo+xEKQiamtkshUhT1D2gMibr7SSA1ylYCYB+kotDVCGYWcIiJOuW4p1mC4ElCqQTWAiOfCl8h57VDtnK1xoVAQI/OetZbiiy8yuGsXAIne3kkDj7HDh8lv304wNgZA6rrrSN96K14kMi3rqI+OuvZjvk+ss5P2W28l2dNDuKVlWo4vIiIiIiLzXy2w5BvDxos1N3w8EYaU2o+JTKuIZ4hE3TmDagDDFdf2LxaCbNSQiRnSmrskIotQ2XebQXKN9yKVwM2iS4TcPDq9H5kZCmJkXgvqdXLPPMPwnj2EW1omHXrvj46S37GD8uHDAIQzGTKbNxPr6rrix7fWuvZjQ0OEYjGSvb2kr7qKxPLl0xbwiIiIiIjI/DY+6DZXsQxWXN/1sOdOdugksMjMMsYQC7mKM2td9dnpsuX0mG3MYHLzZFoiENLJRxFZoCrj4UsloFCDig9h42bRpRS+zAoFMTJv+ZUKQ7t2UXjhBaJLlxJJp8+73lrL2Msvk9+1C1utgjG0rFtH+qabMFc4oyWo1137sWKRSCZDdv16Wvr7iS1dqicuEREREREBwA8shZrbhZ9v9Fp3J351wkNkLhhjiIfdz2HQmIdwYsRyctSSCEN7I5RJhfUzKiLzX7URvuSrlnzVBdHeePii57lZpyBG5qVascjgjh2UDhwgsWIFoUTivOvrxSL5bduoHD8OQKSjg+zmzUQmqZi5HH65TOXMGdd+rKODtvXrSfb2XhACiYiIiIjI4lWuW/JVOFMOGK2BMZAMQzSqEx4izcIzhmTY/Wz6gWXMh6MlS9hYUhE3T6Y1CvGQTlaKyPxRDxrhS8WSq1kqdfc+JB7SRpC5piBG5p3K4CAD27czdvw4yb6+81qA2SBgZP9+irt3Y+t18DzSt9xCyw03YDxvSo9nraVeKFAZGsKLREj29NCyZg3JFSvwotHp+rJERERERGQes3Z82K1lqOJ2ncZCkIm5E74i0rxCnqHFAyJujtNIHXLVgKgH6UYok45CLKSfZRFpPuPhS6FqyVUt5bq7PB6GrMKXpqEgRuaV0VdfZWD7dmq5HKm+PkwodPa6Wi5H7vHHqZ0+DUC0q4vs5s2EM5kpPVZQr1MdHqZeKBBJp8neeCOp/n7inZ1TDnVERERERGRhqQWWfAUGKgHFKlgLiTCkdOJDZF6KeIZIY89l1bfkazBUCYiFoDXqQpmWiLudiMhc8e2E8KUxf87iwhdtAmlOCmJkXrDWUjpwgMGdOwlqNZJ9fWc/1NggoPTssxSffhqCABMO03r77SSvuWZKH3z8SoXKwAC2WiXa0UF20yaSK1cSnWKgIyIiIiIiC4u1ltE65CqWwcbJj7AHLREI6+SsyIIRDRmiIfczX/FhsAwDY4HbZR41ZGKGlgiEdMJTRGZB0AhfilVXfVv23QaQmMKXeUFBjDQ9GwTknnuO4d278eJxkj09Z6+rDgyQ27qV+vAwALEVK8hs2kS4peWyH6dWLFIdHMSEQsSXLaN17Vo3fyYWm7avRURERERE5i/fWgpVGCwH5KtQD9zOU/VcF1nYjDHEw+7nPbDu5OfJUcupMUsiDO0xQzpqSIV1IlREpldgXbvE8fBlrO7Cl2gI0lEFwfOJghhpakG1ytBTT5F/9lkibW1Es1kAbL1Occ8eSs89B9bixWK0bthAYvXqy/oAZIOA6tAQtUKBcCpF6zXX0LJ6NfHubrUfExERmSG+tVQbsxN0skJE5oNy3ZKvwplywGjNDb1NhiEa1XOYyGLjGUMy7J4DfOtmMRwtWULGkopAe8wjHXEtChXQishU2Anhy3DFVeH64+FLxM21kvlHQYw0rfroKIM7d1J88UXi3d2EUykAKidPknv8cfxCAYDEqlW0bthAKJG45GP7lQrVwUH8SoVoWxsdGzaQ6us7G/SIiIjI9KoFlpEaFGuuh3EtgHgIMlFDS2MHqdr5iEgzsdZSrMFwxe1ArfjuBEhrTLtPRcQJGUMqAqmIG5Y9VodDlYBw42RpWyOUiYf1nCEir89a9xxSbMylGq1B3UIk5J5j9Flp/lMQI02pmssxsGMHo0eOkOjpIRSLEVSrFHbvZnT/fgC8ZJLsnXcSX7nyko9bL5WoDA6CMSS6u0mvXUuyp4dQPD5TX4qIiMiiVa67nVyFqqVQs1QaAyRjIferEsCxEYsZtcRDkI4YWhuhTCykXaQiMjdqgat+GSgHFKuu/UciDCm1HxOR1xH2DOmo+33VHw9yAxfgNkKZloibOyMiAi58KfvnwpeRRtvTSAgSEYgofFlQFMRI0xk7eZLB7dspDwyQXLkSLxymfPQouW3bCEZHAUhefTWtt9+OF42+4fFsEFAdHqaWzxNOJkmvXUvL6tUkursxodBMfzkiIiKLxvgurlIdcpWAkRpUA/CMC1ZeO0AyGgIiru9xxYczZcvpMUvUg2QEslGPVMS1/lALMxGZSda6th+5imWw0X897EGLdqCKyBREQ4ZoyD23VAMYqrhwNx6GbNS4imA9v4gsWuX6ubC21PjMFPEUvix0CmKkqZQOHmRw5078sTFSfX0E1SrDjz/O2CuvABBKp8lu3kxs2bI3PFZQq1EZGMAfGyOazdJ+++2kVq4k1tEx01+GiIjIouFby2gNSjVLrup+X7Pug0SsUUb/RjvIPWNIhN2Oc2td27JSzYU5nnGXZ6OGlojrya6dpCIyXXxrKVRhqByQq0ItcM85bap+EZFpYIw5Wwk8vvP91Kjl1KglEYb2mCHdCGW06URkYSv7llINhssufKk0wpd4CNKaObcoKIiRpmCDgMK+fQw98QSEQiR6eigfPEh+xw6CSgWMIXX99aRvuQUv/PrftvWREaqDg9ggIN7dTfqOO0j29hJOJmfpqxEREVnYXjvvpexDYM/t4mq9gl1cxrgdpNFG0Wo9cNUyr45YDNYNqIxCJuKqZeJqYSYiU1D2LfnGDvWRGhjjqu9adSJERGaImbDxJGhUEb/aaNGaCkNbzLVoTYb13kZkoag0wpdcJaBQg4oPYQPx8KVtWJOFRUGMzLmgViP3zDMM79lDuLWVcCzG0Le/TeXoUQDC2SzZLVuILl160WPYIKCWz1MdHiaUSJBatYr0mjXEly17w+BGRERE3ljZd+HLZPNe0hEIzVAJfdgzhD33QSWwlqoPQ2UYGAtc8POaapmZWoeIzH/WjrcBsQw3QuRoCFpjbuC2iMhs8YwhFXHvb+qBZcyHIyVL2FhSUWiPeaQjkAjruUlkvqk2wpd81ZKvus8vplHln1LQuqjpDLXMKb9cZnDXLgr79xPt6KB24gRDTzyBrdXA80jfdBMt69ZddJZLUKtRHRqiXioRyWZpv/VWUn19RDs69MQmIiJyBSbOe8lXAkp1qPoXn/cyGzxjiIfdDrLxFmZjdRcOecYSD7nd7OO7SWNqYSYiuCq+fNVVvxSrYC2NlkA6GSIicy/sGdIeEDlXdZyrBMQ8VwXc1ghl1JpVpHnVAhe+FCqWXGPTmjGuej+r9xvSoCBG5kytWGRwxw5KBw4QyWQoPP441ZMnAYgsWUJ2yxYibW2T3rc+Ouraj/k+saVLab/1VpI9PYRbWmbzSxAREVlQLjbvJdzoXdxMO7he28LMDyyV4Fzf9WhjvZmYRyqM2nyILDLWWkbrkKtYBisuWA57aDi2iDS1iGeIRN1zWDWA4QoMlgNiIVcBnIkZ0noeE2kK9fHwpeo+O5XrgMIXeR0KYmROVAYGGNi2jdETJ2BkhMFt28D3MeEw6VtuIXXddRjPO+8+1lrXfmxoiFAsRrK3l/RVV5FYvhwvEpmjr0RERGR+G995OR6+jNWnb97LbAp5hqTnApfxkxf5GgxWAiKNVgDZmCEVMaTCOoEhslD51lKsuhOXuSrUAvfz36YTIiIyjxhjiIVcFbK1bl7e6bLl9JglPmGeTEtErRVFZpMfWEqNivxcY6OHxVXsz0XHAJlfphTE7Nixg40bN073WmSRGD12jIHt2ykfP07llVeoDQ4CEF22jOzmzYTT6fNuH9Trrv1YsUgkkyF70020rFpFbOlSfZgSERGZgspr5r2U6+7y6AzPe5ktE09egAubKj4cLVnMeAuziCEddaFMLKQTtCLzXdm35Bs7x0dqgHHBbGtUP9siMr+ZCa1ZA+vmW50YsZwctY02iy6UaabKZZGFJLCu8qVYtQw1ZsxZCzGFL3KZphTEbNq0iauuuor3v//9vPe972X16tXTvS5ZgKy1lF56iYEdOxh7+WXKBw+CtZhIhNY77iC5du15bxr8cpnKwAC2XifW0UHb+vUke3uJvCaoERERkddnrRsCO95zvBnmvcymiGeINHqvB41dpWfKllNjlqjnBuVmoh6piDtxu5D/LkQWEmstxRoMVyzDjRMj0RCkY9ohLiILk2fcHLxk2O3MH2tsNAkbSyri5sm0Rl1rJIUyIlMXWMtI/Vz4Mt41IBZys5v0PkOmwlhr7eXe6Ytf/CIPPfQQ//zP/4zv+9x55528//3v5yd/8idpb2+fiXXOqUKhQCaTIZ/P09raOtfLmZes75N79lnOfPe7jO3bh18qARDv7SWzaROhZNLdzlrqxSKVwUG8SITk8uW0NNqPhWKxufwSRERE5pXxDw/j4ctI3bXoGZ/3EvX0AX28hVnFh3oAIeN2m2ajhpaIIRVxIY6INJdaYMlXYaAcUKy6XakJVbeJyCJWC9yJ4lrg3uOlG6FMOgqxkJ4XRS6FnRC+DFfc7wPrNnkkQvO/a8CVylUsnQlDX9p74xsvIpeTG0wpiBk3MDDAww8/zBe/+EW2b99ONBrl7W9/O+973/v40R/9UaLR6FQP3VQUxFwZv1JhcMcOTn/zm1RffRUALx4nc+edxPv6MMZgfZ/KePuxlhZS/f2kVq0i3tl5wawYERERmdz4wMjJ5r3EwwoV3kg9cDvqa777cyzsTmS0Rj1SYe0uFZlL1rrntOGK25k6WnfBclIzn0REzlP1XaWMH7iAujXqQpkWbTARuYC17j1FqQZDlYDRGtQtRBrhi95jnKMgZnKzFsRMdODAgbOVMi+99BKZTIYf//Ef59577+VNb3rTdDzEnFEQM3X1kRFe/drXGPrud7HlMgCJNWvI3HEHXjyOX6m49mPVKtH2dtJr15JcuZJoJjPHKxcREZkfxue9FKuW/GvmvcT04WHKxluYVfxzYVYyDNmYC2WSGo4rMit8aylW3eyXfBWqgQtFk5qFICLyumzjvcz4PIvxqt9MzNCi9zGyiNnGrKViI3wZqbrq+EhIm9dej4KYyV1ObjClGTGTSSQSJJNJ4vE41lqMMXz961/ngQce4NZbb+XBBx/k+uuvn66Hk3lg9NgxDv/5nzP2yisAhFIpMps2Ee/poVYsMnbyJCYUIr5sGemrriLZ06P2YyIiIm9g/INDqQb5xryXyiKa9zJbPGNIhF27I2sttQBG65CvBnjGnQjOxhotzMIQVdsPkWlV9i35igtgRmqAceFLOqqfNRGRS2GMIR52J5aDxvvHk6NuRl4iDO0xQzrq3sfovaMsBuX6+Gy5gFLNbe6IeJBQtZjMkiuqiCkWi3zlK1/hoYce4rvf/S6e5/GOd7yDe++9l7vuugvP8/ja177GRz7yEbq7u9mxY8d0rn3WqCLm8p3653/mxJe+RNCogkldey0tt9xCvVikVigQTqVIrVxJy+rVxLu71X5MRETkdQQTSuZzlYDRuvvgEDaufVZM815mld9oYVZttDCLhqAlDJlGtUxCO/VFpsTa8RMkrjd72Xc/X8mwdm6LiEwX37oK6orv5uOlItAe80hH9B5GFp6ybylVz4UvlUb4Eg9pI9XlUkXM5Ga8IubrX/86Dz30EH//939PuVzmjjvu4P777+c973kPHR0d5932x3/8xxkeHuaDH/zgVB5K5plaPs/Bz36W0nPPARBqbaV1wwbwPMaOHyfa1kbHhg2kVq4k2tY2x6sVERFpXvXADYgsVS3DVfeB2bduJkI8BC0RfVCeKyHPkPLciQtrLZUAcjUYrASEjWtblom6ahnNrxB5Y7XAUqjCQDmgUHUtdNxubT3PiYhMt5AxpCLufUw9cPO3DlUCwiE3G6+tEcrEw3r+lfmp4tuzG9gKNRc6ho2rDkvpM5TMoSkFMe9617vo7e3l13/917n33nu55pprXvf269ev573vfe8lH/8zn/kMf/iHf8jJkydZv349f/Inf8KGDRsmve2b3/xmvvvd715w+Y/8yI/wjW98A3AfkH/v936PP//zPyeXy7FlyxY++9nPsnbt2ktek7w+ay2D3/sex/7H/3BVMMaQvPpqwl1dBEFAfOlSWteuJdHTQziRmOvlioiINKWz815qlnzVnu3pHQ25Dw06od98jDHEQy4cA3dCecyHQsniGevaxUVc649kBOLaeScCuM8PY3XIVS2DZVf1F/JcyKznOhGR2RH2DOmo+33VP9e2KRqC1kYo0xJR5YA0v+p4+FJ1mzrGWzcnwpBSpZc0iSkFMd/+9rd585vffMm337Bhw0WDlNd65JFH+PCHP8znPvc5Nm7cyP3338/b3vY29u/fT2dn5wW3/+pXv0q1Wj3758HBQdavX89P/MRPnL3sD/7gD/j0pz/Ngw8+yKpVq/jd3/1d3va2t/H8888Tj8cv+euQyVUGBjjywAMU9+4FwEulSFx9NdHOTtd+bM0aEt3dmFBojlcqIiLSXCbOeylUA4qNHVtmfN5LVD2755uIZ4h4QORcP/bTZcvJMesCtTBkoh6piGu3pH9fWWx8aylW3eyXfBVqgXu+y2q+lYjInIqGDNGQe39aDWCo4ioV42HIRk2j2ldhuTSPWmAbczMt+ZrrIDA+y7FNVbXShK5oRsxM2LhxI3fccQd/+qd/CkAQBPT29vKhD32I3/qt33rD+99///187GMf48SJE6RSKay1LF++nI985CP8xm/8BgD5fJ6uri7+6q/+ive85z1veEzNiJncaCVg65ceZel3HyGoVMAYor29pG+6ifTVV5NauZLYa1rViYiILHbj815GGjsOR+vuROT4h4ZYSB8aFqLxkxoVH+qB68keD0Nb1JCKuBYhGhIqC1nFt+QqLoAZqQHGhZHaZS0i0rzGNw2V6+7Prm2kq/RtiShAl9lXHw9fqo0OAnWg8Tkqrs9RM0ozYiY34zNi/u//+//m7//+79mzZ8+k199yyy3cfffd/N7v/d5lHbdarbJ7925++7d/++xlnufx1re+lW3btl3SMR544AHe8573kEqlADh48CAnT57krW9969nbZDIZNm7cyLZt2yYNYiqVCpVK5eyfC4XCZX0di8V3/suf0n1wFwHgZzro3LyBtttuI9nbSziZnOvliYiINI2J815yVdeOR/NeFhdjDLFG0Abue6Lsw6sjFrDEwtAaMbRG3VwZfZCUhcBad7JkqGIZrrjv+WgI0jE3o0BERJqbMYZE2AUwQaOl5KsjFjNqSYWhLXbuvYvet8hM8QNLqQ6FqiVXcd+HALEwZFRRK/PIlIKYr3zlK7zrXe+66PU/8iM/wiOPPHLZQczAwAC+79PV1XXe5V1dXezbt+8N779z50727t3LAw88cPaykydPnj3Ga485ft1rfeITn+DjH//4Za19MSrfeCdjh5/lr3vezXe63swvrzL84hqPsAa6iYiIUPVd+FJo7Naq+BBo3os0hD1Dy4QWZhUfBsqWU2OWqOcqBbKxcy3MdNJa5pNaYClUXUubQtXNuoqHoV1tQkRE5i3PuAreVMRtKBnz4UjJEjaWVBTaYx7pCCR0TkimgW8bszOrlqHKudmZCl9kPptSEHPkyBHWrFlz0etXrVrF4cOHp7yoqXrggQdYt27dJc+juZjf/u3f5sMf/vDZPxcKBXp7e690eQvOu37iDg5uuoaB7a2Ujxs+uRP+7oDlY/9HwG3d2hEhIiKLy3jrhpEa5BvzXqq+uy4WhlbNe5GL8CbsNrXWUgtgpO6+j8Zb1mVjhnTEqJWTNC3b2Cmdq1oGy64FY8hD8wRERBagsGdINzaU1AJ3wjxXCYh5kI5CWyOU0XsWuRyBdRvZxsOXsbrbyBYLue8rbUyS+W5KQUxLS8vrBi0HDx4kHo9f9nGXLFlCKBTi1KlT511+6tQpuru7X/e+IyMjPPzww/z+7//+eZeP3+/UqVMsW7bsvGPefPPNkx4rFosRi8Uue/2LjTGG1b0ZvrzC8hd7Aj613fDSoOFnvgb33GD5mZst3Sm9+IqIyMJ13ryXasBo7fx5L1nt/pbLZIwblBtttDDzGy3Mjo+3MAtBOgKtUVctk1ALM5ljvrUUq272S77qngNjjec/hc8iIgtfxDNEoufm4Q1XYKgcEA1BNmrIxoxCebkoOyF8Ga643493EUhHIKTvG1lApjRd581vfjOf//znefXVVy+47ujRo/zZn/0ZP/ADP3DZx41Go9x22208+uijZy8LgoBHH32UTZs2ve59v/zlL1OpVHjf+9533uWrVq2iu7v7vGMWCgV27NjxhseUS+N5hp+7xfC/fhI29Fh8a/jSXo+f/zuPbx4IeCEXcLQUUKhaAmvnerkiIiJXpB64VmPHRwL2Dbtfh4pu+HQsBG0xV70QDxudIJcrFvIMqYihPW5oi0HIuBMcBwoBLwwH7MsFHB9x77Pqgd5nyeyp+JZTo5b9wwEv5gKGKu45sD3uvmcVwoiILC5uHp4LXlwYD6fLlhdzAc8Pnzsv5Ou80KJnrWWk5t5H7MsF7B8OOFKylANXSdseN7REjEIYWXCMtZf/DLh//342bNiAMYaf/dmf5YYbbgBg7969fOELX8Bay/bt27nuuusue0GPPPII9913H5///OfZsGED999/P1/60pfYt28fXV1d3HvvvaxYsYJPfOIT593v+77v+1ixYgUPP/zwBcf8r//1v/L//X//Hw8++CCrVq3id3/3d3nmmWd4/vnnL6lyp1AokMlkyOfztLa2XvbXtJgMjlkefiHg87s88mWDwfKj11p+/EZLItJ4Qo15ZKIQV99QERGZJyab92ItREKu8kU7/GQu1BrVMjXfneyIhSATdS3MUhGIqSJZppm1llINhipu12rZx800iqhdiIiITC5otO+t1MEY14q1PWZojRpSamm/aFjr5gqVaq5iaqQG9cB9nkqE9XlqPshVLJ0JQ196SnUdC9bl5AZTak12zTXX8L3vfY8PfehDfOpTnzrvuu///u/n05/+9JRCGIB3v/vdnDlzho997GOcPHmSm2++mW9961t0dXUBbj6N553/D75//34ee+wx/umf/mnSY370ox9lZGSEn//5nyeXy/GmN72Jb33rW1NqnyavryNheN+NHjd1B/z5LsN3D3l8fZ9hxzHLr20KuHYpHKy6vqGZ2Lm+oXrCFRGRZmIbw9NLjTkdxSpUfDC4eS/qUSzNIOIZIo3+7H7je/bUmOXkqCUaglQYsjGPVGP+jCoUZKpqgaUwof2YtRAPQ7vaL4qIyBvwjJtxlwy7lqtjPhwtWcLGkoq480KtUbe5Sa8pC8v4DM1SDYYrAaUaVAOIeJCIuPeyIovJlCpiJhoYGOCVV14BYPXq1SxZsmRaFtZMVBFz+Uo1y6FiwNYj8BdPeJwecU+u71hr+fnbA6JhGKu7D3GJMHTEDZmoe3HWC6+IiMyFoDFoulRz4ctIDSqBawUVD7lqA71GyXww3qO94rt5HZHG7tNM1NDS2H2qTTDyRmzjOTFXtQyW3TyskIe+f0REZFrUAvc6UwtcdWU6Am1xt1lXVb3zW9m3lKrnwpdKI3yJhzRDej5TRczkLic3uOIgZjFQEDM1o3XL4WLAqRH46nOGv91nsBg6EpZfvdOype/cSa+KD2Hjdhi3xz1aI3pyFhGRmecHruVYqWbJVdxrUt1CuPFBIeIpfJH5r95oYVadUNXVGjnXEkQho0zkW0txQvVLLXDfI6qqEhGRmVL1XaWM33jNaY26SpkWVU3MGxXftS/NVQIKtcZ5vvHwRZ+pFgQFMZObtSDm2LFjPPXUU+TzeYIguOD6e++9d6qHbioKYqau7LswZrgCx4bh/m0eRwvuyff7+y0f2mhpS7jb1gK3084PXKuDtqgb8tYS0Yc+ERGZPuPzXoqNeS9lHwILUc17kUUgaLQwKzfmHEUbrSHaoh6piGsbovddi1PFt+QqLoAp1c718deuZBERmS32Ne9T4mHIRg2ZxrkhtQZuLtXx8KUaUGi0cvYa7x8Uviw8CmImN+NBTLlc5r777uN//a//RRAEGGMYP8zEHzLf9y/30E1JQcyVqfqWI6WAgTIkQvDwsx4PPwuBNaSjll/aYPmhNe7DHpzrIVluDHJLhaEj7nqGJsJ6EhcRkcsz/oFupDHvpfCaeS+xkD7UyeJkraUWuJMd9eDcB+dM1JCOuJaxqlBe2Kx1J1CGKpbhinsPHvVcIBdSKC0iInMoaJwbqtTPbQ5ojxnSjYpebRyZG7XAvXfIVyz5mqVcd+8h1cp54VMQM7nLyQ3CU3mA3/md3+GrX/0q/+W//Bc2bdrEm9/8Zh588EGWLVvG/fffz/Hjx/nrv/7rKS1eFp5oyNCf9vBMwOkxeN/6gO/vM/y3rfDykOEPHjN8+xXLr2+2dLW4J+1EY6is36iSOVgMiHmQibny1HREO5ZFROTirHWvHyN1Vx4/0hgM6Rn3ASEb04c3EWMM0ZCrBgPXwqziw/ERi8ESDbm2sZmIq5bREN2FoxZYCo32Y4WqqwqMh6E9pn9jERFpDp5xm0KSYdc2s1yHoyVLyFhSEWhvnBtKaNbwjKuPhy+NjgJjjXAsHoI2vXcQuWRTqohZuXIlb3/72/mzP/szBgcHWbp0Kf/yL//CW97yFgDe8pa3cM011/DZz3522hc8F1QRMz18a3m1ZDk5akk2Skq/8hw8+JShFhgSYct/uM1y17XuRNlE40Nnx+quPHV8J0Qm5nZC6ElfRER8axmpnT/vpWbdnJeYehOLXJbAWqqN1iB+4+co2WgPkoq491+qmJh/RmuWXNUyWHZhdajx76r++yIiMl/Ug8b7fB/CIUhHzm3YjauLyrTxA0upDoWqq5qt1MHiNm7EQtrUthipImZyM14Rc/r0aTZs2ABAIuEGfIyMjJy9/p577uH3f//3F0wQI9MjZAw9LRAy8OqoJR6yvGedYctKyx9thb2nDX+yw/Dtg5aPbLaszJ67rzGGWKPMMbDuRffYiAt10lG3E6I1qvYZIiKLTS1w4UuxEb6Mz3uJhNzci1adXBSZEs8Y4mH3YdtaS926DTGFqsUzlngIWqOG1qjbrao5Is3Lt5ZiFYYqAbkK1AJVBoqIyPwV9gzpqPt91bcUazBcCYiGIBOFbNSjJaLzQ1MxvrGtWLUMNT5bWevaObfqfYPIFZtSENPV1cXg4CAAyWSStrY29u/fz1133QW4JKhcLk/fKmXB8IxhecqFMcdGLIG19GYMn3yH5e/2W/7iCcNzpw2/8Lfw/pstP3kjhL0Lj5GKQCriTsAVa+6DpSuJNGRjhnRELxAiIgvRxHkvhaqlUDu3OyvW2BGnXfoi08sYQ8RApHHSww8slQBOjbpNMdEQtIQhE/NINVqIqPps7lV8S74KA2MBpdq5/vrpqP5tRERkYYiGXJvV8S4qg2U4MxYQb1TxZqKGFrW2f12BPbexbajRVSCwjc9WUc3SFJlOUwpiNm7cyGOPPcZv/uZvAnDXXXfxh3/4hyxbtowgCPjUpz7FnXfeOa0LlYXDGEN3yhD2LEdKAYWqpTVq+LFr4c4eyx9vg52vGr7wpOG7hyy/scWytmPyY0U8QyTqXnTLvjshcHrMkgpDR9xVySRUmioiMq+90byXjHZnicyqkGdINlpajZ/4yNdgsBIQaZzsz8bOtTDTyY/ZY63r4T5cObeTNepBa1QhtYiILFwTu6hMPD90atSebW2fboQy+tzg/o5G6q7yZbjifh9YNzdQG9tEZs6UZsQ89thjfPnLX+YP/uAPiMViHD16lLe+9a289NJLAKxZs4a///u/55prrpn2Bc8FzYiZOcMVy+FiQC1wJaTGGKyFR1+Bz+w0FCsGz7jKmPevt8QuITr0A8uoD1UfYo0Pnu1x1y9UJwJEROYH31pGx+e9VN3vNe9FpPnVAle1VvXPDXFtjbiTH6lGT3H97E6/WmApVGGwHFCourk+ibD7+9fft4iILFbjre3H35ekwq6Tynhr1cX0Gjm+uW28ldtIrTEHMASJkM6XyRvTjJjJXU5uMKUgZjJBEPDss88SCoW49tprCYenVGzTlBTEzKxC1YUxYz5ko+deCIfH4DM7DN855P7c02r5yBbLuq5LO+74Ds2xuutpOb4LIhNzJwIW0wuuiMh8cNF5L56bU6Fh0iLzS9BoJVhp/CxHPddaNhP1SEVcRY12pV6Z0bp7vhwsu5MroUalkp4vRUREzlcPLGM+1HwIG0g15g2nIwu3k4q17msu1WCo7MKXeuPzVUJVy3KZFMRMbkaDmNHRUd73vvdxzz338N73vveKFjpfKIiZeSM1y6Gi61/92sGhW4/Ap7cZBsfcZT96reU/3GZJRi79+OO7ICqNF9yWxgtua1TDZUVE5lLZd+HLZPNe4iGVxYssFOMbZCo+1AM3L3C8f3tLxM3/U3hwaXxrKVbdjMRcBWqBe85MKNgSERG5JLXAnSOqBa6TSjoKbY1QJjrPzxGNt2YrNSpfSo22zuPhi95vyVQpiJnc5eQGl122kkwm+Zd/+Rfe8Y53THmBIq+VihhWt3ocLroPlJmYPTsQbMtKWN9l+bPd8M0XDX+7z7DtKPz6JsuGnks7vmfcB/xUxL3gjr8gxUOuLDUbc71CNYRMRGRm2UYwXqpDvhJQarQK0LwXkYVtYu92cLtSKz4cH7GAaz+bjkBr1COlllqTqviWfBUGxtxzp8GdUElH9fckIiJyOSbOG64GMFxxFSPRkNskMn6OaD5VjJR9S6l6LnypNMKXeEjvFUSaxZRak/3Ij/wI3d3dfOELX5iJNTUdVcTMnopvOVIMGCpDa+zCF72nTsAnHzecKLrL37ra8ksbLJn45T/W+C6Bcv1cr9D2uEcmunDLUkVE5sLF5r2EGx8MNO9FZHF7bQuzSKO9VqZRLZNcxJtlrB3fQGQZarRsjDb+flQxKCIiMn3OniPyAesqd9tihkzUbextxvciFd+9T8hVAgq1RhcYfcaSGaKKmMnN+IyYV155hbe97W28+93v5hd/8Rfp6bnEsoR5SkHM7KoFLow5U4bW6IVlk2M1eHCP4avPQ2AN2bjlVzZa/o9+F6hMhR9YRn2o1d2gskyjLLU1Or92QIiINIvxeS+lmmVY815E5BJZa6k1WpjVAlctFw+5UCbdGKy7GNrK1gNX/TJYDihU3TDdhCqFREREZkXQCGUqjY274zOHW6NzP3O4Oh6+VN17hEqju0AirPBFZpaCmMnNeBCTTqep1+tUq1UAwuEwsVjs/AMbQz6fv9xDNyUFMbOvHliOlSwnxywtkck/cL9wBv5oq+FQzl23udfyq5ssS5JX9tgV37XNsfbci20mNvcvtiIiza4yYd5LvjHvBSCqeS8iMkV+YKkEnPd80hKGTMy1MEsssPdno3VLrmIZLFtG6xBqVL8ovBYREZkbfuAG3lcbM4dTkXMbd2drg8R4i/18xX3OKtfPbVaJaZOGzBIFMZOb0RkxAPfcc49+yGVGhT3DyrT78HlixGKtJf6admHXLYXP3mX5m2ctX3zG8PhRw9Mn4RfusLxj7dSrY2Ih18N8fAfEsRHLiVFLSxQ6Gi+2i2EnpojIG7HWfSgZaZTDa96LiEy3kGdINsIIa10ok6vBQCUg0tj9mY0ZUhG3aWY+VjL71lKswlDFzUqsBe45NKvnUBERkTkX8gwtHtCYOTxSd9UoUc/Nt2uLe6QvsoH4StTHw5eqJV91G4ZNI3xpiyl8EZmPplQRs9ioImbuWOtCkFdHLNEQJC8yu+XgsKuO2Tfgrr9lmeXXN1mWT9M/Vy1wL3r1xgfjtti54W3N2CdURGSmBNZ9+Cg1PhCM1N1JQ/UiFpHZVgvcppm6705MxEKQiTRamEUg3uQbZyq+az82MOaCbGDRtF4TERGZ76q+25TmN84TtTZa3LdEpl7J6geWUt11GBiuuA4DFtfaORbSBg2ZW6qImdyMtyZbbBTEzC1rLWfKcLQY4HnQEpn8hccP4GsvwF8+aaj4hljI8oFbLe+6zlXWTNdaKj5ndyIkJ7QuS6gcVEQWqPHdWKWaJdfYjaV5LyLSTMYrmauNeVRRz7UOyUQ9UhH3nq0ZTl5Y606wDJctQ435WdFGxY/aN4qIiMw/4+eJyr5rcR8PQzbqzhNdyuZd37r2zsXqufcG1kKsMRuuGd6/iICCmIuZ8SDmr//6ry/pdvfee+/lHropKYhpDoNly5FiQIAr/7xY6HG8AJ/aZnjqhLv+2iWWj2yxrGqb3vWc7RNah0hj90N7zCMd1UlJEZn/Js57KTT6EIObzxALzc/2PyKyOFhrqQZueG3ddxty4mFoizZamF3BTtWpqgeu+mWw7Abr+o1ZhLPVW15ERERm3vjGkEpj8+743OF01LVQHQ9VgvHwpebCl/GNbrGQe8+izivSjBTETG7GgxjPu/hf+MQPEr7vX+6hm5KCmOaRq1gOlwKqPmSiF//gai38w0vwuV2G0Zoh7Fl+ah389E2WSGj611X13UDV8d0P41UyLQtsgKyILFwT573kG/NeKhPmvagUXkTmq3qjhVmt8dEkFnabelqjHqkZDkNG65ZcxTJYdu8VQ43qF23aERERWdh86wKWqg8h4yp122MegXVtx0Ya4Us0BImQKmOl+SmImdyMBzGHDx++4DLf9zl06BD//b//d44cOcKDDz7Iddddd7mHbkoKYppLserCmJHaGw8oGxiBP95u2HbU3aY/a/mNLZZrl87M2ibufvAMtESgI+7RGlW/bxFpPoF1JwZLNchVAkbrUA0gbNyJypjmvYjIAhM02odUfFeVMt4WLBs718LsSnehBtZSqMJQJSBXcc+r8ZDbFatAW0REZPGpN+YO1wL352jIvTdQlwGZTxTETG7OZ8S8853vpL+/n8985jPTfeg5oSCm+YzWLIeKAcUaZGOv/6HWWvjuIfjTHYZc2eAZy7+7Hu672ZKIzNwa64E7wVlvDG7LRg3ZmCEdVZmpiMydeuB2X5WqluGqaznmWwh77sNAROGLiCwS1lpqgevpXg/cJpp4CLIxQ0vEtRCJXsZGmorv2o8NjLmqQnDBjjbjiIiIiMh8pyBmcnMexHz2s5/ld3/3dxkYGJjuQ88JBTHNqVx3lTG5imtT9kZlnPkyfHaX4V8OuNstS1s+vNlyy7KZXef44LaxOmDcB/KOmCETNSTUukxEZsH4vJdizZKvnhsAqZ1YIiLn+I0WZlUfLG4jzdkWZhHXNuS179ustZTqnG0/VvbPVdmoxYiIiIiILBQKYiZ3OblBeCYWcODAASqVykwcWuSseNiwKu1xmIDBCmSi9nVPJmbi8FvfZ3nLKsunthlOFA3/v380vGOt5Rdut7TEZmadxhjiYTc7ZrxH6OGSJepZ0o3WZemoeoWLyPSxjTaJpRoUqq56sOK7gZGxkAuv1R5HROR8Ic+Q8lwP9/GNNMMVOFMOiBhIRiATddUysZB7jh0sBxSqrrLQDeTVJhsREREREbnQlIKYf/u3f5v08lwux7/927/x6U9/mrvvvvtK1iVySaIhw6pWj1Ap4PQopKP2DVtIbOiBB+62PLAbvr7P8A8vGXYeg1/dZNmycmbXGzKGloibHVP1LblG/3D3wd00PtzrA7yIXL7xeS8jNRhuzHupBW4wZCwMbarAExG5ZBM30gDUAsuYD4WSxTOWiOcC7lAjoNGGGhEREREReT1Tak3med6kJ3OstYRCIX7iJ36CP/mTP6Gjo2NaFjnX1Jqs+fnWcqxkOTlqSUUuvRf3s6fgj7YajhXc7f+PfsuvbLS0JWZytecLGjvXy3XXmzwdgfa4R2sU4uopLiKvQ/NeRERmn9+YLRP1VF0oIiIiIouDWpNNbsZnxHz3u9+98EDG0NbWRl9f34ILKxTEzA+BtZwYsRwfscTCkAhf2gfjah3++mnDl/ZCYA3pmOWXN1jeutq18ZlN9cCe3cUeC0Fb1JCNGdIR9RkXWez8Rpuc8V8j9YCRRsuxQPNeRERERERERGSGKIiZ3IwHMYuNgpj5w1rLqVHL0RHXMiIVufQTki8Nwn/bajgw5O6zYYXl1zZZulpmarUXN96XfMwHrGt50dFoXZZQeyGRBa8enAtdyr5ltGYZ9aHmu4oXAM9zFS/xkHZki4iIiIiIiMjMURAzuRkPYg4ePMjevXu56667Jr3+7/7u71i3bh39/f2Xe+impCBmfrHWMlCGI6UAA6Sjl36Csh7Al/bC/9hjqAWGRNjyH2633HWNaxs2F3xrGatD1XfthlontC5TP3KR+a82MXSpW0bqbg7BeOhigFAjdIl4bh6BwlgRERERERERmS0KYiY340HMPffcQ6FQ4J//+Z8nvf7tb3872WyWhx9++HIP3ZQUxMxPwxXL4WJA3brw4nJOXB7JwR89bnjutLvPjZ2Wj2yx9GZmaLGXqOq7UMa3kAhDW8yQjRpSEe2IF2l2tjFTYGKlS6nmZkTVAtdeDFzgOh66qM2YiIiIiIiIiMw1BTGTu5zcYEp/c9u2beOHfuiHLnr9D/7gD/K9731vKocWmTZtMcOqVo+oB/mqOwl6qVZm4VPvsHxoY0AibNl72vDzXzf8zTOuamauREOGTMzQFgMLHB+x7MsF7M8FnB6zlOvqNCjSDFx7QUuhajkzZjlSDNiXC3h+2P3/QCHg+IibCRUykI5Ae9zQHje0Rg2JsFEIIyIiIiIiIiKyQISncqfh4WHS6fRFr29paWFwcHDKixKZLpmoYXWrx6FiQK4CmZi95MoRz8CPXQd39lo+9Tg8cdzwwJOG7x5y1TFrO2Z48a/DGEMyDMmwmyUxWod8ISAWgmzU0BYzpCMQ0olckRk3PtOp0qh2GatZSnVLNXDBbWDBmHNVLomwKthERERERERERBaTKVXErFy5kq1bt170+u9973v09PRMeVEi06klYljT6pGOQq4CwWV24+tqgU/8kOWjbwpIxywvDxk++PeGB3YbqvUZWvRlCHtuB317zLU0OlO2vJQLeCEXcHwkYKRmL6saSEQuLrCWsbolV7GcGrUcLAQ8NxTwwnDA/uGAQ4WA02UXwkQ9aI26Spe2mKElYoiFjEIYEREREREREZFFZkpBzE/91E/xN3/zN3z6058mCM71afJ9nz/+4z/mkUce4ad/+qenbZEiVyoRdpUxbTEYLrsqksthDPzwVfCFuy3f328JrOFvnjX8wt8anj01Q4u+TMYY4iF3wrc15mZOHC1Z9g0HvJwPGCxbqr4CGZFL5VvLaN0yXLGcHLW8nPfZOx665AIOF93PVd1CNATZGLTFDdlG6BJV6CIiIiIiIiIiIoCxU9gqX6lUeOc738m3v/1tli5dyjXXXAPA/v37OXPmDG9+85v5h3/4B2Kx2LQveC5cztAdaW61wM1qOFN2O9UjU2zd9dhh+PR2w9CYu/+PXWv52dssych0rnZ6VH3LmA9BALEwtMcMmaihJaL2SCLj6kGjvZgPZd8yUnM/NzUf6hYM4Hnn2ouFjQs/RUREREREREQWulzF0pkw9KWnVNexYF1ObjClIAYgCAIefPBBvvrVr3LgwAEA1qxZwz333MO9996L5y2cfxQFMQtLPbAcK1lOjVlaIhANTe1karECf/aE4R9ecvfvTFn+r02WDU3alc9aS9mHct1V+LREoCPu0RqBeFgnlGXxqE0MXepunku5Ebr4jdAlNCF0CSl0EREREREREZFFTEHM5GYliFlMFMQsPL61HB9xv5LhKwsinjwOn3zccLLkjvFDayy/eIclE5+u1U6/emAZq0M1gFgIMlFoj3m0RNzMGZGFwFpLLeBs6DLWqHQp+65133iHwvDEShd9/4uIiIiIiIiInEdBzORmPIgZGhri2LFj3HTTTZNe/+yzz9LT00NbW9vlHropKYhZmKy1nBi1vDpiiYYgeQVhzFgN/uopw1efB4shG7d86E7L9/e56pNmZa0bKj5WB2shEYaOuGtdlgyrCkDmj/Hv5fHQZbTu5rtUJoQuhvNDl5BCFxERERERERGRN6QgZnIzHsTcd9997N+/n+3bt096/ebNm7nuuut44IEHLvfQTUlBzMJlreX0mOVoyRLyoCVyZSdmnz8Nf/S44XDOHWfLShfILElOx2pnVmBdlUzFd/MvWqPQHvdIX0H7NpGZYG2jtVgjeBmrufZi1cY8l8C6ADQyIXTRPCQRERERERERkalREDO5y8kNwlN5gG9/+9v80i/90kWvv+uuu/jc5z43lUOLzCpjDF1JQ9izHCkGFKqW1ujUT9he3wmfvcvyN8/AF5+BrUcMe07AL95hefva5q6O8YwhFYFUxM3QyNdgqBIQD0Nb1JCNGVoiOqEtsyuw5+a5jFe6lGqu5Vg9AAt4jdAlGoKkQhcREREREREREWkyUwpizpw5w5IlSy56fUdHB6dPn57yokRmW0fcEDIeh0sB+YqlNTr1tlzRENx3i+X7+uG/PQYvDhr+6HHDtw9afn2zZXl6etc+EyKeIRN1lQdlH06OWk6NWVoibpZMJnplc3VEJuO/JnQp1QJG65wNXQBCxrUXi4WgJaL2eSIiIiIiIiIi0vymFMQsW7aMp5566qLX7969m6VLl055USJzIRtzYcyhYkCuAtmYvaKTvKvb4E/eafnq85a/esrw1AnDz38dfuYWy7uug9A8qOQzxpAIu9kx9cC1LjtYDYh5kIlBW8y1LtOAc7lc9eBc6FL2XZVL2Ydao72YAbxGW7FE2LXLU+giIiIiIiIiIiLz0ZROBd9999088MAD/O3f/u0F133961/nL//yL3nXu951xYsTmW3pqGF1q0dLBIYrri3SlQh58BM3wp/9mGV9t6VcN3xul8evfdNwaHiaFj1Lwp4hHTW0xyASgsEyvJQLeGE44PhIwEjNMoWRU7II1AIXtAyWLa+WAvbnfJ4bdt87L+UDjpUsxZq7bTICbTFoixsyUUMybIh4RiGMiIiIiIiIiIjMW8ZO4cxpPp/nTW96E88//zzr16/nxhtvBGDv3r3s2bOH66+/nscee4xsNjvd650TlzN0RxaGct1yqNSojIlCaBoqPqyFb74En99lGK25uTTvvcnynnUu2JiPAuuqZCq+q1hIR6E97tEagWhIJ84XG2vd7JbxSpcx3zIyXukSQNB4tQl7EPXc/1VNJSIiIiIiIiLS3HIVS2fC0JeeBy1+ZtHl5AZTCmIARkZG+IM/+AO++tWvcuDAAQDWrFnDPffcw0c/+lEqlQptbW1TOXTTURCzOFV8y5FiwGAFMtHpO2E8MAJ/vN2w7ag7Xn/W8htvslx78bFL80ItsIzWwQ8gHoZs1JCNGdIRDU9fiKy1VCeELqN1F7pUg3OhiwHCIddeLGKmJ9AUEREREREREZHZpSBmcrMSxEymXC7zd3/3dzz00EN861vfolwuT9eh55SCmMWrFliOlgJOj0JrzA2xnw7WwncOwWd2GHJlg2cs91wP991iiU9pclPzsNZVQJTrYAykwtAR92iNQiKsE/HzUWAtVR8qjeBlrGYp1i01H2rWfT8b0whcGr8UvomIiIiIiIiILAwKYiZ3ObnBFZ/ytdby6KOP8tBDD/G1r32NYrHIkiVL+Omf/ukrPbTInIt4hr4Wj5CxnBy1pCKW2DS03DIGfmAV3LrM8t93wqOvGL78HDx2BD6y2XLzsmlY/BwxxpAIuwHrfqNK5mAxIOZBJgZtMY90RC2pmlVg7dkql4oPI41Kl1oA9QAs4DVCl2gIkgpdREREREREREREXteUK2J2797NQw89xMMPP8zJkycxxvCe97yHX/mVX+HOO+9cUIOVVREjgbUcH3G/4uHpr+zYfhT+eJvhzKg77juvtvzc7ZaW6LQ+zJwZb2M1Vnctq5JhaI8ZMjFDKsyCer6YT/ygEbo0Kl1KtYDROmdDF4CQcbNcxitd9G8lIiIiIiIiIrK4qCJmcjNWEfPKK6/w0EMP8dBDD/HSSy+xYsUK3vve97Jhwwbe/e53c88997Bp06YrWrxIM/KMYUXKnZQ+NmIJrCUVmb4T0nf2wrouy1/shr/bb/jGi4btx+DX7rRsXjltDzNnjDHEQhALuVBrrO7+Hk+OWtJRaI+51mXRaag2ksnVg3OVLmXfUqq5FnI1H+qNOD7UCFsSYQgbhS4iIiIiIiIiIiLT4ZKDmE2bNrFz506WLFnCj//4j/MXf/EXvOlNbwLgwIEDM7ZAkWZhjKE76VpqHSkGFKuWdHT6TlSnovBrmyw/sMryR48bXi0YPvZtw5v7LR/caGlLTNtDzSnPGFIRSEXcDJ5iDYYqAfEQtMUM2ZghHVG7qytRmxi61C2l+rnQxbdgOBe6JCMuYFToIiIiIiIiIiIiMjMuOYjZsWMHq1at4pOf/CTvfOc7CYfn+URxkSkwxrA0ASHjcbgUkK9aWiPTexL7pm74sx+1/PUe+PJz8J1DhidPwAc3WN6y2s2XWSginiESda3Lyj6cHLWcHrOkwtARd1Uy090GbiGx1s1uGQ9dxhqVLhXftRcLJoQuUQ9aIhDSbB4REREREREREZFZdclN3f70T/+UZcuW8a53vYvu7m5+4Rd+gX/9139liiNmROa19rhhdatH1IN8lWn/OYiF4edut/zpOy1r2iyFiuET3/P4j48aTo9M60M1BWMMibChPe6qYcoBHCwG7BsOOJD3GSpb6sHifq6x1lLxLYWq5cyY5XAx4IXhgOeGA/blAg4UAk6MWsZ8F7ykI+77tC1uaI0a4mGjEEZERERERERERGQOGHuZZ5APHjzIQw89xBe/+EX27dtHd3c3P/ADP8DDDz/MV77yFd71rnfN1FrnzOUM3ZHFpVSzHCoGjNYgE5uZdlr1AL60F/7HHkMtMCQjlv9wm+X/vAYW8nl1ay3VAMbqYK2bW9IeM2RihlR4YbfSCqyl6kMlgHIdRuuWkbql5kPNur8PY1xrsfFfauUmIiIiIiIiIiIzIVexdCYMfelLrutYFC4nN7jsIGai3bt389BDD/HII49w4sQJurq6uOuuu/jRH/1R3vrWtxKPx6d66KaiIEZez2jdVScUqpCdoTAG4HAOPvm44bnT7vjruiwf2WzpyczIwzWVwFrG6q79VthASxTaY651WSw0vwOIwE6Y5+LDaD1gpOZai9UDsLjAbTxwCSt0ERERERERERGRWaQgZnKzFsSMC4KAb3/72/zP//k/+drXvkaxWCSZTFIqla700E1BQYy8kbLvwpjhCmSjMzeHI7Dw9X3wwG5DuW6IeJb7brH8xA2uHdViUAtcKFMLIB6CtpghGzNu/kmTBxR+0AhdGnNdSrWA0fq50AUgZFzYMh68LOTKHxERERERERERaX4KYiY360HMROVyma9//et88Ytf5Otf//p0HnrOKIiRS1H1LUdKAQNlaI26QfQz5WQRPrXNsPu4e4y1Ha465qqOGXvIpmOtpey71l3GQGpC67JEeO7Di3owsdLFUqq59dZ8qDeedcPeudAlbBS6iIiIiIiIiIhI81EQM7k5DWIWIgUxcqnqgeVoyXJqzJKOQHQG22ZZC/98AD6701CsGjxjec86eN9Nlmh4xh62KfmBZdSHWh0iIchEoa3Ruiw8C4N0ahNDl7qlVD8XuvgWDK5iabzKJaTQRURERERERERE5gkFMZO7nNxgkZ2uFZlZYc+wMu1OtJ8ctQRY4jMUxhgDP3wV3L7c8qc74N8OG774DDx2GD682XJj14w8bFMKeYa0B0RcZdJQBQbLAYkJVTKp8JWHH9Zaao22YhUfxhqVLhXftRcLGqHLeJVLS2Tm2tSJiIiIiIiIiIjI/KCKmEugihi5XIG1nBixvDpqiYeYlVZZ3zsMf7LdMDRmMFh+7Dr42VsticiMP3RTCia0LgsZaIlCR6NKJnYJ4Zi1lmoAZR+qPozWLSM1S6UxzyWwLgwLn1fpotBFREREREREREQWFlXETE4VMSJzzDOG5SkXABwbsfjW0hKZ2ZP039cHN3dbPrcL/vFlw/9+AbYdgf9rs+WOFTP60E3JM4ZkGJJh1zpspAb5SkAsBG1RVyWTjrrwJLCWqu9Cl8p46FK31HyoWdcGzphzgUsy7I4vIiIiIiIiIiIi8kZUEXMJVBEjV2KgbDlSDLBAa3R2Tt7vPg6fetxwsuQe74fXWH5xg6U1NisP37SsdW3ExuouWEmE3a/RmmstVg/AAt6E0CXsKXQREREREREREZHFSxUxk7uc3EB/cyIzbEncsKrVI2QgX7HMRvZ523L48x+z/LvrLAbLPx0w/PuvGf7t0Iw/dFMzxhAPG9rihnTEhS/DFQiAWAiyMWiPG7IxQypiiIaMQhgRERERERERERG5IgpiRGZBW8ywutUjFoJchVkJYxIR+OWNlj/+EcvKjCVXNvz+dzz+07cNg6Mz/vBNL+QZWiKGTNSQDLvQxSh0ERERERERERERkWmmIEZklrRGXRjTEmlUYcxSV8DrO+FzP2p533pLyFgeO2L42f9t+NZLbvaJiIiIiIiIiIiIiMwcBTEisygVcW3KMlEXxvizlIREQ/Azt1g+e5fl6g5LqWr4b1s9fvOfDCeKs7IEERERERERERERkUWp6YKYz3zmM/T39xOPx9m4cSM7d+583dvncjk++MEPsmzZMmKxGFdffTXf/OY3z17/n/7Tf8IYc96va6+9dqa/DJGLSoRdGNMRg1wZ6sHslaWsboc/eafl528PiIYsT54w/NzXDV99Hvxg1pYhIiIiIiIiIiIismiE53oBEz3yyCN8+MMf5nOf+xwbN27k/vvv521vexv79++ns7PzgttXq1V+6Id+iM7OTr7yla+wYsUKDh8+TDabPe92N9xwA//yL/9y9s/hcFN92bIIxUKG/laPkAk4XYbWqCXizc58kpAHP3kjbFlp+aOt8Mwpw3/fafjXg5bf2GLpy87KMkREREREREREREQWhaZKJD75yU/ycz/3c3zgAx8A4HOf+xzf+MY3+MIXvsBv/dZvXXD7L3zhCwwNDfH4448TiUQA6O/vv+B24XCY7u7uGV27yOWKeIa+tEfIs5wYtbRELLHQ7A2LX9EK/+3tlm++aPmzJwwvnDH84t/Ce9db3n0jREKzthQREVlkrAUzey95IiIiIiIiInOqaVqTVatVdu/ezVvf+tazl3mex1vf+la2bds26X3+9m//lk2bNvHBD36Qrq4ubrzxRv7f//f/xff982730ksvsXz5clavXs173/tejhw58rprqVQqFAqF836JzISQZ+htMaxIGUZrUK7PXpsyAM/A/3kNPHC3ZWOPpRYY/uopj1/+e8O+gVldioiILEDWwpkR2HkMvrQX/uv3DL/0d4b/838afv7rhn875G4jIiIiIiIispA1TUXMwMAAvu/T1dV13uVdXV3s27dv0vu88sorfPvb3+a9730v3/zmN3n55Zf55V/+ZWq1Gr/3e78HwMaNG/mrv/orrrnmGk6cOMHHP/5xvu/7vo+9e/eSTqcnPe4nPvEJPv7xj0/vFyhyEZ4x9KQgbODYiCXAkgzP7jbhpSn4zz9o+deDls/sMBwcNvzqN+Ce6+G+WyzxpnmmEBGRZlWowKFhODgMB3OGQ8NwKAel6uSvaa8Mw+9/x7C2w/KBWyx3rFCVjIiIiIiIiCxMxtrm2Id4/PhxVqxYweOPP86mTZvOXv7Rj36U7373u+zYseOC+1x99dWUy2UOHjxIKOT6KH3yk5/kD//wDzlx4sSkj5PL5ejr6+OTn/wkP/uzPzvpbSqVCpVK5eyfC4UCvb295PN5Wltbr+TLFLkoay1nynC0GGA8SEfm5mxUrgz/fafh26+4x1+etnx4s+XmZXOyHBERaTJjNTicpxG0GA4Ou98Pjk3+uuUZS08rrGqDVW2W/qxrj/ndQ4b/9RyM1d39bui0/PtbLevVTVZERERERKSp5CqWzoQbsyDnFAoFMpnMJeUGTbPPfcmSJYRCIU6dOnXe5adOnbrofJdly5YRiUTOhjAA1113HSdPnqRarRKNRi+4Tzab5eqrr+bll1++6FpisRixWGyKX4nI1Bhj6ExA2HgcLgYUqpZ0xF0+m7Jx+J3vt7xlleX+bYbjRcNv/KPhnVdbfu52S8uFP1YiIrIA1QM4loeDOTg03AhccnCiCJbJX5u6W1zQ0t8IXVZloScD0Unmjq1qs9x9HTzyLHx9Hzx32vCRbxluW+4qZK5dOoNfnIiIiIiIiMgsapogJhqNctttt/Hoo49y9913AxAEAY8++ii/8iu/Mul9tmzZwhe/+EWCIMDzXBr34osvsmzZsklDGIBSqcSBAwd4//vfPyNfh8iVao8bPONxuBSQr0Imamc9jAG4sxf+osvyF7vh7/cbvvGiYccx+LVNlk29s74cERGZIYGFUyUXshwchoPDhkM5OJqHejD56082blnVBv3Zc1UufVlIXWZYn43DL9xhued6eOgZ+OaLsPu4Yfdxw+Zey8/cYlndfmVfn4iIiIiIiMhca5rWZACPPPII9913H5///OfZsGED999/P1/60pfYt28fXV1d3HvvvaxYsYJPfOITABw9epQbbriB++67jw996EO89NJL/Pt//+/51V/9Vf7jf/yPAPzGb/wGd911F319fRw/fpzf+73fY8+ePTz//PMsXXppWy0vp8RIZLoUa5bDxYCRGrTFZr8yZqKnT8IntxpeLbo1/MAqywc3WrLxOVuSiIhcJmtd+8mDjTku423FDufOtQd7rUTYNqpbYFXW/b4/C22JmVnjiSL8jz2Gf3kFAmswWN68Cu672dKTmZnHFBERERERkden1mSTm5etyQDe/e53c+bMGT72sY9x8uRJbr75Zr71rW/R1dUFwJEjR85WvgD09vbyj//4j/z6r/86N910EytWrODXfu3X+M3f/M2ztzl27Bg/9VM/xeDgIEuXLuVNb3oT27dvv+QQRmSupCOG1WmPQ8WA4QpkYxZvjsKY9d3w+R+z/PUe+Mpz8K8HDbuPwwc3Wt6ySsOVRUSazUj1XIXLxDku+crkT9gRz7IyQyNosY15LtCZmt3n+GVp+Oj3Wd69Dv56j5sj868H4buH4Ievgvevt3S1zN56RERERERERKZDU1XENCtVxMhcKtcth0sBuQpkohDy5jb12D8A/22r4eCwW8fGHsuvbbJ0puZ0WSIii1K1Dkfy46GLacxzgdMjk79WGCzLW2FV1gUt/Y22YitaIdyEG5teHoS/esqw/Zj7esKe5Z1Xw0/fZOlIzvHiREREREREFglVxEzucnIDBTGXQEGMzLWq79qUDTbCmPAchzE1Hx7ZCw89bagFhmTE8nO3Wd55Dczx0kREFiQ/cG27DuYaVS6NOS7HCq6F12SWJG1jhsu5OS4rsxBvqnroS/P8afjLpwxPnXBfayxk+bHr4N03WjJqkykiIiIiIjKjFMRMTkHMNFMQI82gHliOlAJOj0I6CtHQ3Cceh3PwR1sNz59xa7mpy/LhLZYe/ZiIiEyJtTAw2pjjknOBy8FhV/VS9Sd/3k9HbaO65Vxbsf4spGOzuvRZ8dQJ+MKThhcarzvJiOWe6+HHb7CkonO8OBERERERkQVKQczkFMRMMwUx0ix8a3m1ZDkxaklFINYEYYwfwN/ugweeNJTrhmjIct/Nlh+/AUJ6bhYRuah82bUUOzQMByfMcRmpTf7cHgtZ+rLnV7j0t0FHYnHN6rIWdhxzFTIHhtwXno5Z3nOjq5KZjxU/IiIiIiIizUxBzOQUxEwzBTHSTAJrOTFiOT5iiYUhEW6Os28ninD/NsPu4249V3dYPrLFsqZ9jhcmIjLHxmpwOH9+S7FDwzA4Nvnzt2csvRk3x6W/zTb+D90tCrgnCix87zA8+JThSN79XbYnLD99k+VHroZoaI4XKCIiIiIiskAoiJmcgphppiBGmo21llOjlqMjlogHqUhzhDHWwj+9DJ/dZShVDSFjec86eO96qxNiIrLg1QM4lh9vK2YalS5wsgiWyZ+nu1vOtRLrb3O/72lViHA5/AAefQX+eo/hZMn9PXemLO9fb/nhqxReiYiIiIiIXCkFMZNTEDPNFMRIM7LWMlCGo6UAgHS0OcIYgMFR+JMdhscOuzWtzLjqmBs653hhIiLTILBwsuSqWg7l4GBjjsuxAtSDyZ+L2+KW/jZX5bKqzf2+LwvJyGyufGGr+fAPL8FDzxgGR92/w4pW1y7zzavAa56XSRERERERkXlFQczkFMRMMwUx0syGK5bDxYB6AK1RME00KODfDsGfbDcMlw0Gy93Xwb+/1ZLQiUcRmQesheExV9VyaEKVy6EclOuTP9cmI252y6q289uKZeOzuPBFrlJ3s8seftaQr7h/p1Vtlp+5xbK5d3HN0xEREREREZkOCmImpyBmmimIkWZXqLowZsyHbJOFMYUKfH6X4R9fdmvqSll+fbPl9hVzvDARkQlKVTica7QVa8xxOTgMhcrkz6cRz7Iycy5wGQ9fOlM60d8sRmvw1efhy3sNIzX3j3LNEssHbrHctlz/TiIiIiIiIpdKQczkFMRMMwUxMh+UapZDxYDRGmRi4DXZGaYnXoVPIscK2AAAbtNJREFUPW44NeLW9barLL9wh6U1NscLE5FFpVqHw3lX1XKo0VLsYA7OjEz+nOkZy/I057cVy8KKVs0emS8KFRfGfO2Fc5VMN3VZPnCrZV3XHC9ORERERERkHlAQMzkFMdNMQYzMF2N1VxmTr7owJtRkYcxYDb7wpOF/v+AGV7fFLR+60/L9/XO9MhFZaPwAjhddVcv4HJdDw/BqEQI7+XPj0mRjjksb9Gctq9pgZQZi4dldu8yM4TH4m2cMf7cfao1ZPnescBUyVy+Z48WJiIiIiIg0MQUxk1MQM80UxMh8UvFdGDNUdmFMuAmnEz93Gv5oq+FI3q3t+/osH9poaU/O8cJEZN6xFs6MNma4TJjjcjh37mT7a6VjtlHd4gKX8WqXFlXoLQqnR+B/Pm341kvnQrk39Vl+5mb3vSAiIiIiIiLnUxAzOQUx00xBjMw3tcBypBhwpgytUYg0YRhTrcP/fMbwyLPgW0NL1PJLd1h++Cr17ReRyeXL5ypcDg0bDuZcADM+/+O14mFLX5bG/BbbCF6gPaHnGYFXC/A/9hgefcVVaRosP7ga7r3Zslxv90RERERERM5SEDM5BTHTTEGMzEf1wHKsZDk1ZmmJQDTUnGcdXx6EP3rc8NKgW99tyy2/vsnSnZ7jhYnInBmruYoWF7SYs+HL0Njkz2MhY+nNnAtcxitcutPQhDm0NJlDw/BXewyPHXbfLJ6xvH0tvG+9pTM1x4sTERERERFpAgpiJqcgZpopiJH5KrCWV0csx0csyTDEw815RtIP4CvPwYN7DFXfEA9bfvZWy49eq2HYIgtZzYdjhUZbsdy5wOVE8eLPVd0trrJl4hyXnlaIhGZv3bIwvTgAf/mUYder7vsv4lnuugZ+6iZLW2KOFyciIiIiIjKHFMRMTkHMNFMQI/OZtZYToy6QiYYg2aRhDMCxPHzyccMzp9war19q+cgW11pIROavwMLJUqOt2DAcaoQuR/OuNeFk2hOW/iyN6hYXuPRlIRGZ1aXLIvTsKfjLJ8+9FsXDlnddBz95oyWtOUIiIiIiIrIIKYiZnIKYaaYgRuY7ay1nynC0GOB50BJp3jAmsPCN/fDnuw2jNUPEs7x3veU96yCs53qRpmYt/P/bu/P4uOp6/+Pv75k1e9ImbdM13ReWtpRFKAiCWlCu8lMEVCxUBa4IiIAiXJULXEVAAUUU5CcUEK4gwkV/InpFvNeriFfaQqELS/c2adM0+zLJzPn+/jgzk5lk0iWdLJO8no9HmuTMmZkz6cmZyXnP5/PZ1+5VtWxOCVy2Nkgd0czHnfxA9+yW6WXd4UtpeBA3HOjBWmlVtfTQKqONe719tyBg9YkjrT62QMonEAQAAAAwihDEZEYQk2UEMRgp6jqstjW7ciUVBSQzjKdV72mV7nnZ6O87vG2cUWZ13VKrOeVDvGEAJEktES9w8UKX7rZiTZHMx5WAYzW11GspNr00PselTKrIl4bxoQijnLXSX7dLK1cbba73dtSSkNUnj/baloX8Q7yBAAAAADAICGIyI4jJMoIYjCQNEautLa66YlJxcHiHMdZKf9ws3feKUVPEyDFWnzhCWr7IcvILGCSRqLStsbvCZUu993VtW+Zjh2OsJhV5VS2JKpfpZdLEImY+IXe5VvrTZm+W2c4mb98fm2/16aOtzprNjCIAAAAAIxtBTGYEMVlGEIORprnTakuzq/aoVBoa3mGMJDV0eGHMS5u97ZxUZHXNUquFE4Z4w4ARJOZKO5u6K1wS7cV2NUtuH3NcKgqsppfG57jE24pNLaFKACNXzJV+/4702GtGe1q934sJhVbLF1mdMYOwEQAAAMDIRBCTGUFMlhHEYCRq6/LCmOYuL4xxhnkYI0l/3SZ9/29GdfF34p891+qSJVYFwSHeMCCHWOu1/tvSoHh1i9HmBmlbg9TlZj4OFIW8wGV6Wfocl0J+9zBKdcak59+SHn/NqL7D+72ZWmJ10WKrU6ZJzvB/SgUAAACAg0YQkxlBTJYRxGCk6ohabWlx1RiRSoKSLwfOHLV0Sg/+w+g3b3nbWpFv9aUTrd4zZYg3DBiGGju8qpbNDdKWlCqXtq7Mv+thf3fIUlVq4/NcpLI85rgAmXREpefWSz9/w6g5Ph9p5hirFYutTpjM7w0AAACAkYEgJjOCmCwjiMFI1hmz2trsqi4exvhzIIyRpDXV0l1/NdrV7G3v6TOsLj/eqjQ8xBsGDIH2LmlrQyJ06Z7jkninfk8+YzWlxKtwSQQuVWXShELeyQ/0R0un9Ms3jX65rjvoXFBhteIYq8WVQ7xxAAAAAHCYCGIyI4jJMoIYjHRdrtX2Fld72qSioBT05caZ2I6o9Mhq78SXa41KQlZfPMHqfdN5FzJyT1fM26d7frR39bXcaEeTF7jUtPS9w1cWeVUuXnWLVVWZNLmY4eLAQGjskJ58w+i59VIk5v1eLq70KmQWjBvijQMAAACAfiKIyYwgJssIYjAaxFyrHa1WNW1WBQEplCNhjCRt2Ct97y9Gm+u9bX7PZK9dWUXBEG8YRhRrpS43JQzJEJCkhybGWxbd/3US14vZw/udG5MXr2wplarKvK+nlUh5gew8fgAHr65NeuJ1o9+8JUXd7uemixdbzRo7xBsHAAAAAIeIICYzgpgsI4jBaOFaq12tVtWtViG/lOfPnTCmKyY9+Yb0s9eMoq5RfsDq0mOtPjSHVkujibXevpAafrTvJwBJhCWpl7dnCE0Sy9zDDEsOhs9Yhf1SOCDvc8pHXsryPL80vrA7fCmhLR8w7OxukR57zej373QfP06tsrpokdXU0qHdNgAAAAA4WAQxmRHEZBlBDEYTa72qmB2tVgFHKgjkVoqxpV767l+MNuz1tnvhBKtrTrKaxK/usGGtFIn1XSGSGoS0p4YlB6gq6RjEsMTv2O5gpI/QJO0j0GN9v1epkmldWoYBI8+ORumRNUYvbfaOT46x+sBM6cKFVpVFQ7xxAAAAAHAABDGZEcRkGUEMRhtrrfZ2SNuaXRkjFQVzK4yJudJ/rJceXm3UETUK+rx2MB9fIPl4vjgorpUiB11VEg9Lunq04epjvkkkKlkN/D4VcGxa9UjmgCRxue21rFclSsrlfvYjAP2waZ/33PTydu8Y6HeszpotfXqhVXn+EG8cAAAAAPSBICYzgpgsI4jBaLWvw2pri6uYlYoDkjG5Fcjsapbu/qvR6mpvu+eMtbpuqdWMMUO8YVni2swVIj3DkMTl7amVJQeoKumIDs7/ddBnMwYkmapF8gKZ100NSFIDE0I3AMPVhlovkHl1l3esDfqsPjpPuuAoS5tBAAAAAMMOQUxmBDFZRhCD0ayx02prs6tITCoJ5l4YY630wjvS/X83au0y8hmrTx4tfepoq+AgtICKub1DjkxVIt2Xmf0GJKnX7YwNzv9FyGf7bKPVu4LEpleR9FWREpBCPsISAKPbazXSQ6uM3tzjHc/z/FYfP0I69wirwuAQbxwAAAAAxBHEZEYQk2UEMRjtWrqstjS7auuSSkKSk2NhjCTtbZPu/ZvRX7Z52z61xKuOWTBOirp9DGvvcy6J2W+rrtQZJ13u4PysUgOQ/VeVZF63d6su73PILzm5998NADnDWul/d3oVMm/XeQfcoqDVeUdanTPfO24DAAAAwFAiiMmMICbLCGIAqT3qhTFNnVJpjoYx1kp/3ir94G9GDR3d/fmjgxCWGPWeQdJz7kh6KGL3e3lqtUnIJ+XgfwcAIEXiOeqRNUZbG7yDemnY6lNHW509Rwr6h3gDAQAYIDFXaopI9R1SQ7vU0JH4MKqPf5/4HLPSERXSokqrxZXSxCL+FgKAwUAQkxlBTJYRxACejpjVtmZX+zq8MMaXo6USjR3SA/9r9Pt307ffMfYgApIebbgCmdtu9VwWJCwBAByEmCu9tNkLZKqbvSeOinyrCxdZLZsl+fm7BwAwzFnrdQlIhCr1HalhiukRtnh/n1n174+lcQVeILO40mpRpVSen+UHAwCQRBDTF4KYLCOIAbp1xqy2tbja2yEVB6VAjoYxkrSvTepyuytMAoQlAIBhIupKL7wt/ew1o71t3pPTxCKrixZZnTadGVsAgMEVdb3AJLU6xfvapIUqicsOdZ6lkVVJWCpN/cjzqkNLw1JZnlQW9v5+e61GWl1ttL5WvbobTC3xApnFlVYLJ0jFoWz+FABg9CKIyYwgJssIYoB0UddqR4vV7narwoAU9JFeAAAwEDqj0q83Sv++trutZlWp1cWLrZZO5Q0EAID+sVZq7UyvWOmuVDHpYUuH1Bw59CecsN8mQ5WyvNTPNi1sKQt7gcmhvsmgvUt6Y4+0ptpodbX0dl16ZY2R1ayx0qIJXjBz1HhmrwFAfxHEZEYQk2UEMUBvMWu1q9WqutV6A+AJYwAAGDDtXdKz66Wn3jBq6fSec+eM9QKZ4yYRyAAApM5Y76oVb+5KetVKInDpOsRZmY6xKgl1hyeleYnqFZv2fVlYKgkPfujRHJFer5FWVRutqVFy5lqCz1jNq5COqfRmzMyv8FpIAwAOjCAmM4KYLCOIATJzrVVNm9XOVqugT8r3cxYIAICB1BKRfvGm0S/XSR1R73n3yHFWnz3G6ugJQ7xxAICscq3U0pneCqwhPmelvkfg0tAutXYd+t9j+QHbI1RJVKrEl6dUsxSFpFzqTF3XJq2JtzFbvUva3Zq+8SGf1ZHju+fLzB5D608A6AtBTGYEMVlGEAP0zVqrPe1W21usfI5UGMihV+YAAOSohg7p52uNnlvf/Y7mJROtVhxjNa98iDcOANCnSDS1UqWPWSspy2P20P6+8hmbFqokQpayRDuwHoFLyD9AD3QYqm6WVld7wcyaaqm+I/1nWxDw5sosrrRaXClNK6XiFAASCGIyI4jJMoIY4MD2dlhta3ZlJRUHebUKAMBg2Nsq/ex1o9++1X2ybulUq4sWW80oG+KNA4BRIOZKzZ3d4Ul3SzDTK1Spb5fao4f+t1JhsPeslZ5VK4nLCoOEBwfDWmlrQ3cw81pN74qisrBXKZMIZiqLhmZbAWA4IIjJjCAmywhigIPTELHa0uwq6krFQcnwFwAAAIOiull6bI3RHzZJrjUysjptunTRYqvJvHwFgEPS3tW7YqUhPmulZ0uwpoh33D0UAcd2z1lJGVqfGGJf1mPWSoA5JgMu5kpv75PWxIOZN3ZLkVj6/+uEwu5gZtEEaWz+EG0sAAwBgpjMCGKyjCAGOHhNnVZbm121R6XSEGEMAACDaWuD9Mgao//e4j3/OsZq2SzpwoVW4wuHdtsAYKjE3JQh9intvzJVrTR0dM/gOhTFIZsWqpSFpbI822Puive5IEDVynDXGZPW10prqo1WVUsbanu3iZtW6gUyx1R6c9qKQkO0sQAwCAhiMiOIyTKCGODQtHZ5YUxzlxfGOPyVAQDAoHq7Tlq52uiVHd5zcMCx+vBc6VNHWY3hHbwAcpy1UltXesuvjLNW4pc1RySrQ/ubJOizKfNVUmerpA+3LwtLxWHJz3mpEa29S1q7Oz5fpkZ6py59nzKymj1WWlwpLaq0OnKclBcYwg0GgCwjiMmMICbLCGKAQ9cR9dqUNXRKpUHJ5xDGAAAw2N7cIz28ymhNjfc8HPJZnTNfOu9Iq5LwEG8cAKToinlVK/Ud6jG03vSYveIt73IP7e8Lx1gVhzLMWQn3aBMW/zrsp2oFfWvskF5PBDPV0rbG9J3F71jNr+ieLzOvnBZzAHIbQUxmBDFZRhAD9E8kZrWt2VVdh1QSkvyEMQAADIlVu6SHVhlt2Os9F+cHrM49wurjC6SC4BBvHIARyVqppbN31UrPipVEW7DmzkP/WyHPb1MqVbpDlrL4rJXUy4pDko9zRxgge9u658usrpb2tKbvz2G/VyWTCGZmjmF/BJBbCGIyI4jJMoIYoP+6XKvtza72dEjFQSlAGAMAwJCwVnplh1ch826993xcHLI6/yirj87z3v0NAPvTGZUaIon5KqmzVUza9/UdXsVAtB9VK6mBSl9VK2V53hB7jlsYjqyVqpulVdXejJk1Nd7vSKqioNXCCV4bs8WV0tQSKrAADG8EMZkRxGQZQQxweGKu1Y5Wq5o2q4KAFPLxChMAgKHiWum/t0iPrDba3uQ9J4/Js/r00VZnzZGCtE4BRg3XevNTes5Zaegw3WFLR3fw0tZ16K/j8wM2Gaqktv8qDdseYYs37Jz3bWGkca20paG7Yua1mt6/S2PyrBZVxitmJkgTioZmWwGgLwQxmRHEZBlBDHD4XGu1q9X7CPulPD9/YQEAMJRirvSHd6XHXjOqafGel8cXWF24yOqDM2mZAowU1ko7m6T1e6UNtUbbG5XWGsy1h/a63O/YtPCke5i97Q5aEmFLSApStQKkibnSW3XS6ngw8+YeqTOW/ntYWWS1aIJ0TKUX0JTlDdHGAhi1OmPSjkZpc4O0ud7o7Trp1GlWXzqePxJSEcRkGUEMkB3WelUxO1qtgj4pnzAGAIAh1xWTnn9beuI1o7p277l5crHVRYusTp3Ou9OBXNMUkTbUShv2SutrjTbslZoj+/9FLgraHqFKvB1YjzZhZWFvrhQtlIDs6YxK62q9UGZNjbS+tndAWlXqtTBbVGm1cLxUGBqijQUw4sRcqaZF2lzvVe9trjfa0uCFMLEex6LTp1s9/BFeBKQiiMkyghgge6y1qu2Qtje7Mo5UFOAADgDAcBCJSr/aIP37WqOm+EnbGWVWFy+2OnEKJ16B4SjqSpv2eSdu1+812lAr7Wjq/csacKxmj5XmV0gzx1iNyeuuWikJSQFaEgLDRluXtHa3F8ysrpbe3Zf+O+0Y7/d5cbyV2RHjmJcE4MCsleravAqXLfXSlgajzfXS1gYpEsv8Qr8waFVVKk0vk8YXWR0/UVo2nYqYVAQxWUYQA2Tfvg6rrS2uYlYqDkiGszsAAAwLbV3SM+ukp94wyR7288qtVhxjdUwlgQwwVKyV9rR6ocuGvUbra6W363q3NJKkScVW88uleRVW8yukGWWELUCuauyQXqvpDmZ6hq0Bx/s9P2ai185sXoXk5zwpMKo1RxLVLd0VLlvqpebOzC/kgz4vcKkqlarKvK9nlElj87tf+zMjJjOCmCwjiAEGRmOn1dZmV5GYVBIkjAEAYDhpinhhzH+slzqi3nP00eOtPnuM1ZHjh3jjgFGgrUt6a2+82iXeYmxfe+/Xy0VBq7nlXrXL/Arv65LwEGwwgEFR2+rNl1kTD2Zq29KPC2G/1dHjvTZmiyulmWNoMwqMVB1RaVtDoq2YSbYX29uW+ZfeMVaTi6WqMml6qdX0Mu/rysIDz4ckiMmMICbLCGKAgdPSZbWl2VVrl1QWIowBAGC42dcm/Xyt0a83Sl2u9zx9/CSvQmb22CHeOGCEiLnStkZvtsu6eOiytaH3nAifsZoxxgtd5pV774KfVMxJVmC0slba2SytqZZWVRu9Vi019pgJVRTyKmUWVVotniBNKaG6Fcg1UVfa2dQduGyp977e1SxZZf6FHl9gvcAlHrpUlUlTiqVgP1sZEsRkRhCTZQQxwMBqi3qVMU2dUmlIcnhVCADAsLOnVfrZa0YvvN19cviUad4MmWmlQ7ttQK7Z1yat3yttiIcuG/cq2Qow1bgCq3kV0vx46DJ7rBRiFgSAPrjWOzm7utprZfZ6jdQeTT+2jM33ApnFlVaLKqXxhUO0sQB6ca20pyWlrVg8dNne2P2GqJ5Kw/HKllKvrdj0UmlaqVQQzO62EcRkRhCTZQQxwMDriHlhTH1EKg1KPt7WBwDAsLSzSXp0jdEfN3nvwHOM1ekzpOWLrCYWDfXWAcNPZ1R6e19Ki7FaaXdr79e6YX9Ki7FyL4AZmz8EGwxgxIi6XovD1dXSmhqjN3b3Ppk7qcgLZBLBTCmtDYFBUd+eeY5Lz/A0Ic/vVbVUlUrTy7rDl7K8wdlegpjMCGKyjCAGGBydMattLa72dngzY/yEMQAADFub66VHVhv9zzbv+dpnrM6aLX16oVVFwRBvHDBEEm2CNsRDl/W10qZ6KdrjxKeRV0k2v0KaV2E1v9x79+qB+rMDwOGIRKV1tV61zOpqrxqvZwvEGWXdwczR47P/rnpgtGnt9NqNbm6QttR3z3Fp6Mh8zsvvWE0t6THHpVQaVzi0rUgJYjIjiMkyghhg8ERdL4zZ0y4VBaSgjzAGAIDhbONe6eFVRv/Y5T1nBxyrf5onffIoO2jv0AOGSlPEC102xNuMrd8rNUd6v34tDXutxeZXeJ/njOXkJoCh19oprd3dHcxsqk8/fjnGas5Y6ZiJ0qIJVkeMoz0i0JfOmNdCbEu8pdjmeu/rTFWwkvemjIlF3gwXr9LFC10mFUv+YZh1EMRkRhCTZQQxwOCKWaudLVY1bVb5ASlEGAMAwLC3drcXyLy+23veDvutPrZA+sQRVkWhId44IAuirrRpX/dsl/W10o6m3q9TA47V7LHyZrvEq13GFzIcG8Dw19AhramW1sSDmZ3N6QeugOOFMYsqrY6plOaUD88TxsBAirlSdUs8cEmZ47KjqXeFWUJ5vo23FOsOXKaWSuEcCjYJYjIjiMkyghhg8LnWqrrVamebVdgn5fn5yxUAgOHOWunVXdJDq4zeqvOeuwuDVp84wgtl8gJDvIHAQbJW2tPaXemyrlZ6u07qjPV+TTqpyCZbjM2rkGaWSQHfEGw0AGTZ7hbptRppVTyYqWtLPwbm+a2OnuC1MVtc6Z1kpsM4Rgprpbo2r8WoN7/FaHOD12Ys0+sByXvdm2gllpjjMq1UKh4Bb0oiiMmMICbLCGKAoWGt1e42qx2tVn5HKgjwig4AgFxgrfTXbdLDq422NHjP36VhqwuOsvqnubQ1wfDT3uW12VtfK23Ya7ShVqpr7/3aszBoNa+8e7bLvHKphMHWAEYBa713/K+u9lqZranp3YqxOGS1KCWYmVRMNSByQ1Mk0VIsfY5LS2fmHTjk82a9JSpcqsq8r8fmjdx9niAmM4KYLCOIAYbW3nZvboyVVBwcoc9oAACMQDFX+tMW6dHVJtnepDzf6tNHW505m6oBDI2Y6/VwX18rrY+HLlsaercT8RmrGWMUD168qpdJxbzbGwAkybVeu8bV1dLqGqO1NVJ7NP0AWZFvtaiyO5ipKBiijQXiOqJeRUvaHJeG3tVeCY6xmlLSXeGSaC82oVDyjbI8giAmM4KYLCOIAYZefcRqa7OrLlcqCUpmpL7FAACAESjqSv/5jvToa0a18YGlEwqtli+yOmPG6PtDFoOrvr270mV9rVf50tbV+7VkRYEXtswv91qMzR6bW73bAWAoRV3v+JqomFm3R+py04+1k4q9QGZxpVc5Q0UhBkrUlXY2xduK1RttafDmuVQ3S1aZzydNKPSCFq+6xWp6qTS5RAryxiFJBDF9IYjJMoIYYHho6vTCmPaYVEoYAwBAzumMSb95S3riNaP6Du95fGqJ1cWLrU6eRqUBDl9nVHpnX7zapdZow16ppqX3jhX2W80t7652mVchlecPwQYDwAjVEZXe3COtic+Xeauud+XhzDKrxROlRRO8WTP5zJLDIXKtN8soEbRsiVe5bG+Uom7mF5alYW92y/RSqaqsO3xh/9s/gpjMCGKyjCAGGD5au6y2NLtq6ZJKQ5JDGAMAQM5p75Ke2yA9udaoOd57e9YYqxXHWB0/aeT21kZ2WSvtak4PXd7d1/vEi5HXx31eRbzFWLk3OJdKLAAYPC2d0us1XjCzqlrJGXIJjvHmbiUqZhZUSEGqEhFnrdTQ4YUtqYHL1obeLfES8gMpFS7xOS5VpVJZ3mBu+chBEJMZQUyWEcQAw0t71KuMaeyUSkKSj7M1AADkpJZO6ZdvGj39Zvcf0UeMs1qx2OspD6Rqjkgb9kobUoKXpkjv14Gl4XiLsQrvpN7ccqkgOAQbDADoU327tKbGa2O2plra1Zx+PA/6rI4Y1z1fZs5YAvTRorXTC1g2xQOXLfHwpTHDc74kBRyrqSWKBy3xapcyaVwBb+7JJoKYzAhisowgBhh+IjGrbc2u9nVIxSHJTy8TAAByVmOH9OQbRs+tlyIx7zl9caXVZ4/xTqhj9Im63kmXZLVLrbS9qffrvYBjNXtsvNql3Ntfxhdy4gUAcs3ulu75Mmuqpbr29AN5fsBq4QSvjdniSu+kO6cBcltnVNrWmGgrZrS5QdpSL+1pzfwfa2Q1sdhrKTa9rLut2ORiQrrBQBCTGUFMlhHEAMNTl+uFMbUdUnFQCvAqDACAnFbXJj3xutFv3upuL3XiFG+GzMwxQ7xxGDDWSrVt3ZUu62ult+u6Q7lUk4psssXYvAppZpkUYIguAIwo1nozPlZXS6trjF6rVrKVaUJp2AtmEhUzE4sI4YermCtVN0ubG+JtxeqNtjRIO5p6zw1KKM/3KluqSqXpZd7XU0qkMO3qhgxBTGY5HcTcd999uvPOO1VTU6OFCxfq3nvv1fHHH9/n+g0NDfqXf/kXPfPMM9q3b5+mTZume+65Rx/60If6fZs9EcQAw1fUtdrRalXTZlUYkEI+XnkBAJDrapqlx14z+s93u/9AP63K6qLFVlNKhnjjcNjau6SNexNtxrzgpec7nyWpMGg1t1xaUCHNi7cZKwkPwQYDAIZUzPXaVK2q9mbMrN0tdfSYCzKuwCbnyyyqlMrzh2hjRzFrpb1t8TkuDd2By9YGqTPDmyskqSgYD1xS2opVlUpFoUHccBwUgpjMcjaIefLJJ7V8+XLdf//9OuGEE3TPPffoF7/4hTZu3Khx48b1Wr+zs1NLly7VuHHjdOONN2rSpEnaunWrSktLtXDhwn7dZiYEMcDw5lqrna1W1a1WeX4p7CeMAQBgJNjeKD2y2uhPW7zndsdYfWCm9JmFVhOKhnjjcFBcK21rkNbv7W4xtqWh9ztgHeNVPc0r96pd5ldIk4ppOwMA6K0r5oX5a+KtzNbVdlfSJkwt8QKZRRO8z8Wc2M+qxg7v+XxLvbS5wcQrXaTWrsxP3CGf1bRSxee3eC3FqsqksXlUMuUKgpjMcjaIOeGEE3Tcccfphz/8oSTJdV1NmTJFV155pb72ta/1Wv/+++/XnXfeqQ0bNigQCGTlNjMhiAGGP2utqtu8QCbok/IJYwAAGDHe3SetXG308nbv+d3vWH1ojvSpoy3veB1m6tu9k2OJFmMb90ptGU7KVBRYzS/3Kl3mV0izx9JuBADQPx1R6Y3dXiizulp6Z1964G/khf2Jipmjxkt5mU8joof2LmlrYzxwiVe4bKnPXMkqeW+smFLizXGpKrPJeS7jC5njkusIYjLLySCms7NT+fn5evrpp3XOOeckl1900UVqaGjQc8891+s6H/rQhzRmzBjl5+frueeeU0VFhT71qU/p+uuvl8/n69dtSlIkElEkEkl+39TUpClTphDEAMOctVa1HdL2ZleOIxUGCGMAABhJ1tdKD68yWlXtPccHfVYfnSddcJSlZdUQ6Ix6J7vW10ob9nrBS01L79dfYb/VnLHS/JTZLgRoAICB0hyRXo8HM2uqpS0N6c9NPuM9FyWCmfkVUnCUzxuLutKOxkRbMaMt9V7FS3WzZJX53MqEwvQ5LlVl0uRifpYjFUFMZocSxAyb9xzt3btXsVhM48ePT1s+fvx4bdiwIeN1Nm3apD/+8Y/69Kc/reeff17vvPOOLr/8cnV1demmm27q121K0m233aabb7758B8UgEFljNG4PMlnHG1rdtXUaVUU8JYDAIDcN79CumOZ1Zpqq4dXG725x+gXb0q/eUv6+ALp40dYFQaHeitHJmulXc3ShlppfTx0eXdf71YwRlZTS73/q3nl3smtqlLeBQsAGDxFIWnpVGnpVO+95/varNbUdFfM1LQYvblHenOP9LPXjEI+qyPHe23MFk+UZo8Zuc9brpVqWpQMWjbXe23FdjT1fk5PKAt7IYtX3eJ9Pa1UyqeqCDgkwyaI6Q/XdTVu3Dj95Cc/kc/n05IlS7Rz507deeeduummm/p9uzfccIOuueaa5PeJihgAuWFs2MhnHG1tcdXYKZUELWEMAAAjyKJK6Z4JVn/fafXwKqN39hk99pr0H+ul84/yqmRoOXJ4WiKJFmNe8LKhVmqK9H49VRq2aaHLnHIRhgEAhpUx+dLpM6TTZ3jBTHWz9ebL1HgVM/vajV7dJb26y0irpIKA1dETpGMqvfkyVaW5N8fEWq9d6OaG7jkuifClI5r5weQHbLy6pbutWFWZVErVMZAVwyaIKS8vl8/n0+7du9OW7969WxMmTMh4ncrKSgUCAfl83TVv8+fPV01NjTo7O/t1m5IUCoUUCjHFC8hlpaHuMKY+IpWFCGMAABhJjJFOmCwdN8nqf7ZarVxttK3R6P++avTLN60+dbTVh+fSHuNgxFxpU328xVh8tsv2pt6vmwKO1axEi7Fyr63LhMLcOzkFABjdKou8j7PmWFkrbWu0WlUtrak2eq1Gauk0enm7krPpSsM22cZsUaU0sWiIH0APLZ3S1oZ4W7H4HJfN9ZnfQCF5z+dTS1PmuMTbi40r4DkdGEjDJogJBoNasmSJXnzxxeQ8F9d19eKLL+qKK67IeJ2lS5fqiSeekOu6chyvZvCtt95SZWWlgkHvbViHepsARo6ioNGMIkdbmr0wpjRk5fCqAgCAEcUx0nurvPYjf9xs9egao+pmo/v+bvTUm1afWWj1wVmSf4S2GOmP2tZ4pUs8dHm7TorEer9GmlgUr3ap8D7PLJMCBFsAgBHEGK/N1rRS6f/Mt4q50jv7vIqZVdVGb+yWGjqMXtosvbTZe66cUOgFMosneJ/HDtLcs86otLXRq2rZUm+0ucELXGpbM5/ncIzVxCKltxUrlSYVj9zWa8BwZqy1dqg3IuHJJ5/URRddpAceeEDHH3+87rnnHj311FPasGGDxo8fr+XLl2vSpEm67bbbJEnbt2/XEUccoYsuukhXXnml3n77bX32s5/VVVddpX/5l385qNs8GIcydAfA8NMRtdra4qohIpUEJZ9DGAMAwEgVdaUX3vZ6vu9t857zJxVZLV9s9b7pXnAzmrR3SW/VxWe71Bqt3yvVtfX+IRQGreaWx6tdKqzmlUsltCIBAIxynTHvOXR1tdGaGu+NDD1nqUwt6a6YWTjBm1FzOGKuN5dtc8ocly310s5mybWZX8hU5MfnuJRJVaVelcvUEik0bN6Cj1zXELEal2c0rYgUL9Wh5AbD6tfx/PPPV21trb75zW+qpqZGixYt0gsvvJAMTLZt25asfJGkKVOm6He/+52+/OUv6+ijj9akSZP0pS99Sddff/1B3yaAkS/sN5pe5GirXNVFvJkx/tF2FgYAgFHC70hnz5U+ONPqVxutfr7WaGez0W3/bfTvr1utWGx10tSR2XrDtdL2RmldvMXYhlqvN3zPkzaOsZpRJs2rkBbEQ5fJJaMvpAIA4ECCPunoCdLRE6wukvcGhzf2WC+YqfaqSrc1Gm1rlJ7bYGRkNXusN89ucaXVkeP6nltnrVTbFp/hkjLHZWuD1OVmflIuCtl4dUt34FJVKhUyYQEY9oZVRcxwRUUMMDJEXattLa72tElFQSno42wDAAAjXXuX9Mw66ak3jFq7vOf+OWOtVhxjdezE3A5k6tulDXu9SpcNtd7XbV29H1BFfnqLsdljpfCwekseAAC5qSkivV7jVcysrvZCmVR+x3vuXTRBmltuVdPS3VZsS72Sr016CvutppV6Icv0lDkuY/Jy+7ULchcVMZkdSm5AEHMQCGKAkSPmWu1otappsyoISCHCGAAARoXmiPSLN42eWSd1RL3n/6PGW332GKujcqBYvjMmvVPXHbysr5VqWnq/jgn7reaMTWkxViGVD1LvegAARru6NmlNtbS6xmj1Lml3H/NbEnzGakpJd+CSmOcyoYhKVQwvBDGZEcRkGUEMMLK41qq61WpXq5Xf57Uw8Rnvw+GtJQAAjGj17dLP1xr9akN3249jJ3oVMnPLh3jj4qyVqpul9SnVLu/s692T3shqaqk0r9wLXeZXeCdyGMALAMDQs1aqbokHM9VGm+ulyqL0tmKTi6WAb6i3FDgwgpjMCGKyjCAGGHmstdrTblXbbhW1Xk/1WPxzgjHdAY0X0nR/NgQ2AADktNpW6fHXjH77thSLz1A5earVRYu9EyODqSXiVbqkthlrjPR+rVEajrcYK/cqXeaWS4XBwd1WAAAAjD4EMZkRxGQZQQwwcllrFbNS1JWiic/xryMxq86YVWf8e9ftDmsSB07TI6RJ/ZqwBgCA4W9Xs/TYGqMXN3lD7Y2s3jdDumiR1aQBeOkfc6VN9dKG2njosrd3P3lJCjhWs8ZK88u7W4xNKKQvPAAAAAYfQUxmBDFZRhADIOba7qAmJbDpcq06YlZdrtSVCGpcKSavDFmSjLxwxnF6V9jQCg0AgOFha4P0yGqj/97qPTc7xmrZLOnChVbjC/t/u7Wt0vqU0OXtuu4ZNakmFnlhy/wKq/nl0owxUpBWJQAAABgGCGIyI4jJMoIYAAfDtTatoibxuSteVROJBzYx670b1lV6KzSnR2WNz2FuDQAAg+3tOunh1UZ/3+E9/wYcq7PnSp862qosb//Xbe/yrr++Vlq/12sxtret9/N4QSARunS3GSsND8SjAQAAAA4fQUxmBDFZRhADIFustb1aoHmfrTqjUsS16ox5FTUxt++5NWmBDXNrAADIujf3SA+tMnqtxnt+DfutzpkvnXekVXHIe37e3uiFLhtqjdbXSpsbvPZmqRxjNaNMXvBS7s14mVziPXcDAAAAuYAgJjOCmCwjiAEwmDLOrbHdrdAiMatIrLuypufcGqm7mqZnaENYAwDAwbNWWl3tBTIb9nrPofkBqzljpbfqpLau3s+rFfkpLcYqpNljpbB/sLccAAAAyB6CmMwOJTfgTwIAGGaMMfIbyZ/xua37hE8sUyu0eFjT6XphTWJ2TSQ5t8bKyAttkiGNkx7Y0AoNAACPMdIxE6XFlVZ/22H18CqjTfVGa2q8y8N+L5SZXyHNi892KS8Y2m0GAAAAMPwQxABAjvIZI59PCvUa5NsdpCTn1vRqh+YFNZ3x+TXRlMoaN14oaeSdgOo5t8YxkiOqawAAo4cx0olTpBMmW72yw2pfuzSvXKoq9Z4bAQAAAGB/CGIAYARzjFHQJwV7XdIdoqTNrYm3O+uKBzNeG7TuuTVd0dS5NV51jZhbAwAYJZx4IAMAAAAAh4IgBgBGOWOMAkYK7KcVWnJuTUplTcwmWp91hzVRKy+0Sc6tSWmF5vQOa5hbAwAAAAAAgJGOIAYAcEDJuTWStJ9WaIm5NTFX6kqprom6VhHXq7Dpigc5EVdy5YU8Nn59p0cLtO7qGsIaAAAAAAAA5CaCGABA1iTm1uwvrEnMrYlZ9Zhf482tibjxVmiJMMf2DmucHi3QaIUG5BabmEXF7ywAAAAAYBQgiAEADKrE3Jrees+tibnp7dCi8bk1nTGrzsRl8ZZoNj63xsobqtxzbo1DKzRgvxKBp5X3+2STy9OX2YNYJinZljD16+Rn460X8lkVBPidBAAAAACMbAQxAIBh52Dm1khSzLXJFmipgU2Xa9URb4PW5UqdruTGq3CSYY0kJ8PcGodWaBhmkgHJwQYh6g5DMi1LDUhSvzfyAhJJcuIXJD4nLjPxyxK/O90VaUa+xHJJPse7ISdxndTP8a87YtLOVlcNEaviIL93AAAAAICRiyAGAJCzfI538vdgWqGltUGzUlfMm1vTmWFujWu7T1Ontj5LzK9hbg0yVY+khh7KYvVIPNPwwhB1BxnGpIcjJjFfSakhiekOR+IVYamBiJNye07K7Topt+/0XKbsVJYVS8r3O9re4qq+QyoKWgV9/F4BAAAAAEYeghgAwIiWaIXWux1a71ZovQMbq86o1OFadcWkmKSuqFdZkxrWJFqhZWqHRiu0wZOYO3KobbT6CkekvgMSaf/VI4nwJFklYlI/uqtHEqFezwAkNRTpVVGSYR3verm3rxUGjGaVONrVarWnzarTtSqkVRkAAAAAYIQhiAEAjHp9t0JLD2titndlTaIVWiRmFYl5IU1nLBHWJBqhdZ84zxTY5OIJ9EOx39Za6jsUUYbLe1aLqMfXGatHMrTWMokQJH4dr5LEdFeUOJKRyRiAZKoo6bOyZIT/32ZDwDGaWijl+412trqq77AqCfGzAwAAAACMHAQxAAAcBGOM/EbyH8Tcmp5BTSKs6XS9sCYxuybielU2iUqOxEn8RDCQGthk+6R0tqtHUsOQ1O9N/JtkMKL0YETqDi66Z/T0aK3VI7TaX/VIr2Ckz4oSTvIPJ8YYVeTFW5W1uqqPSEUBWpUBAAAAAEYGghgAALIoMbcmdDBza3q1Q/OCms6YVWd8eaKypufcmsRHX4PZE6lIX9UjqUHIgapHerbW8hkTH8i+/+oRJ0MQkrF6JIdbayG7CgJGs4q9VmW7260irlWhn30DAAAAAJDbCGIAABhkybk1vS5Jb4WWWlkTi1fRxKzibdC8VmmJ1lpmP9UjmQaz91U9MlCD2YGD5XeMphR6ocyOVlcNEak4ZOVjPwQAAAAA5CiCGAAAhqG+59ZIqYENMBIZYzQ2LOX5HO1odbUvIhUGrEK0KgMAAAAA5KCMp3cAAACAoZYfMJpR7GhSgVF7VGrqtMn5RgAAAAAA5AqCGAAAAAxbfsdocoHRzGJHQUeqj0gxlzAGAAAAAJA7aE0GAACAYc0YozFhKc/vaEeLq7oOqSBgFfbTqgwAAAAAMPxREQMAAICckOf3WpVNKTSKxGhVBgAAAADIDQQxAAAAyBk+x2hSoaNZJd2tyqK0KgMAAAAADGO0JgMAAEDOKQ0ZhX2OdrR6rcry/FZ5tCoDAAAAAAxDVMQAAAAgJ4X9RtPjrcq6YlIjrcoAAAAAAMMQQQwAAAByls8YTSxwNLPEUdgn7aNVGQAAAABgmKE1GQAAAHJeacgoz+9oZ4urWlqVAQAAAACGESpiAAAAMCKEfEZVxY6mFhpFXakxQqsyAAAAAMDQI4gBAADAiOEYo8oCR7NKHOX7pfqI1EWrMgAAAADAECKIAQAAwIhTHDSaWeKoIk9q7pTaooQxAAAAAIChQRADAACAESnkM6oqclRV5Mh1pYaIlUurMgAAAADAICOIAQAAwIjlGKPx+UazShwVBqT6DlqVAQAAAAAGF0EMAAAARryioNHMYkcT8o1aOqXWLsIYAAAAAMDgIIgBAADAqBD0GU0rMppe7L0Eru+gVRkAAAAAYOARxAAAAGDUMMaoIs9rVVYclOojUmeMMAYAAAAAMHAIYgAAADDqFAaMZpY4qsw3aotKLV1WluoYAAAAAMAAIIgBAADAqBRwjKYWeq3KHONVx9CqDAAAAACQbf6h3gAAAABgqBhjVB6W8nyOdrS6qo9IhQGrkM8M9aYBAAAAAEYIKmIAAAAw6hUEjGYWO5pUYNQelZo7aVUGAAAAAMgOghgAAABAkt8xmlzgBTJ+R2qISDGXMAYAAAAAcHgIYgAAAIA4Y4zGhI1mlTgqC3lhTCRGGAMAAAAA6D+CGAAAAKCHfL/R9GJHkwuNOqJSE63KAAAAAAD9RBADAAAAZOB3jCYVGM0scRR0pHpalQEAAAAA+sE/1BsAAAAADFfGGJWFpLDP0Y4WV/siUr7fKuw3Q71pAAAAAIAcQUUMAAAAcAB5fqMZJY6mFBp1xmhVBgAAAAA4eAQxAAAAwEHwGaOJBY5mljgK+bxWZVFalQEAAAAADoDWZAAAAMAhKA0Zhf2Odra42tsh5fmt8mhVBgAAAADoAxUxAAAAwCEK+4ymFzuaWmjU5UqNEVqVAQAAAAAyI4gBAAAA+sExRpUFjmaVOMrz06oMAAAAAJAZQQwAAABwGEqCRrNKHFXkSc2dUluUMAYAAAAA0I0gBgAAADhMIZ9RVZHXqsx1pYaIlUurMgAAAACACGIAAACArHCM0YQCRzNLHBXEW5V10aoMAAAAAEY9ghgAAAAgi4rjrcom5Bm1dEqtXYQxAAAAADCaEcQAAAAAWRb0GU0rMqoqdmRFqzIAAAAAGM0IYgAAAIABYIzRuDyj2SWOCgNSfYfUGSOMAQAAAIDRhiAGAAAAGECFAa9VWWWBUVuX1EKrMgAAAAAYVQhiAAAAgAEWcIymFnqtyoyk+g5alQEAAADAaEEQAwAAAAwCY4wq4q3KikNSfYRWZQAAAAAwGhDEAAAAAIOoIGA0s9jRxHyjtqjU3GVlqY4BAAAAgBGLIAYAAAAYZAHHaEqh0YxiRz4jNUSkGGEMAAAAAIxIwzKIue+++1RVVaVwOKwTTjhBf//73/tcd+XKlTLGpH2Ew+G0dS6++OJe65x55pkD/TAAAACAPhljNDZsNLvYUWnIC2MitCoDAAAAgBHHP9Qb0NOTTz6pa665Rvfff79OOOEE3XPPPVq2bJk2btyocePGZbxOcXGxNm7cmPzeGNNrnTPPPFMPP/xw8vtQKJT9jQcAAAAOUX7Aq4zJa7OqabOKxKyKAplf0wIAAAAAcs+wq4i56667dMkll2jFihVasGCB7r//fuXn5+uhhx7q8zrGGE2YMCH5MX78+F7rhEKhtHXKysoG8mEAAAAAB83vGE0u8GbHBB2pPiLFXKpjAAAAAGAkGFZBTGdnp1599VW9//3vTy5zHEfvf//79fLLL/d5vZaWFk2bNk1TpkzRRz/6Ub355pu91vnTn/6kcePGae7cufrCF76gurq6Pm8vEomoqakp7QMAAAAYSMYYjQkbzSpxNCbeqqwjShgDAAAAALluWAUxe/fuVSwW61XRMn78eNXU1GS8zty5c/XQQw/pueee089+9jO5rquTTjpJO3bsSK5z5pln6tFHH9WLL76o22+/Xf/1X/+ls846S7FYLONt3nbbbSopKUl+TJkyJXsPEgAAANiPPL/XqmxKoVEkJjV1WllLIAMAAAAAucrYYfRX3a5duzRp0iT99a9/1Yknnphc/tWvflX/9V//pVdeeeWAt9HV1aX58+frk5/8pG699daM62zatEkzZ87UH/7wB51xxhm9Lo9EIopEIsnvm5qaNGXKFDU2Nqq4uLgfjwwAAAA4NNZaNXZK21tctUWl4qDXwgwAAAAABlNDxGpcntG0omFV1zHkmpqaVFJSclC5wbD6yZWXl8vn82n37t1py3fv3q0JEyYc1G0EAgEtXrxY77zzTp/rzJgxQ+Xl5X2uEwqFVFxcnPYBAAAADCZjjEpDRrNLHI0NS02dUjutygAAAAAg5wyrICYYDGrJkiV68cUXk8tc19WLL76YViGzP7FYTGvXrlVlZWWf6+zYsUN1dXX7XQcAAAAYDsJ+o+nxVmVdMamRVmUAAAAAkFOGVRAjSddcc40efPBBPfLII1q/fr2+8IUvqLW1VStWrJAkLV++XDfccENy/VtuuUW///3vtWnTJq1atUoXXnihtm7dqs9//vOSpJaWFn3lK1/R3/72N23ZskUvvviiPvrRj2rWrFlatmzZkDxGAAAA4FD4jNHEAkczSxyFfdK+iBR1CWMAAAAAIBf4h3oDejr//PNVW1urb37zm6qpqdGiRYv0wgsvaPz48ZKkbdu2yXG686P6+npdcsklqqmpUVlZmZYsWaK//vWvWrBggSTJ5/Pp9ddf1yOPPKKGhgZNnDhRH/zgB3XrrbcqFAoNyWMEAAAA+qM0ZJTnd7SzxVVth5Tnt8rzMzcGAAAAAIYzY+lrcECHMnQHAAAAGGiutdrdZlXdZuVaqTjozZQBAAAAgGxriFiNyzOaVjTsGmwNqUPJDfjJAQAAADnGMUaVBY5mlTjK90v1EamLVmUAAAAAMCwRxAAAAAA5qjhoNLPEUUWe1NwptUUJYwAAAABguCGIAQAAAHJYyGdUVeSoqsiR63ptA1y6DwMAAADAsEEQAwAAAOQ4xxiNzzeaVeKoMCDVd9CqDAAAAACGC4IYAAAAYIQoChrNLHY0Id+opVNq7SKMAQAAAIChRhADAAAAjCBBn9G0IqPpxd5L/foOWpUBAAAAwFAiiAEAAABGGGOMKvK8VmXFQak+InXGCGMAAAAAYCgQxAAAAAAjVGHAaGaJo8p8o7ao1NJlZamOAQAAAIBBRRADAAAAjGABx2hqodeqzDFedQytygAAAABg8PiHegMAAAAADCxjjMrDUp7P0Y5WV/URqTBgFfKZod40AAAAABjxqIgBAAAARomCgNHMYkeTCozao1JzJ63KAAAAAGCgEcQAAAAAo4jfMZpc4AUyfkdqiEgxlzAGAAAAAAYKQQwAAAAwyhhjNCZsNKvEUVnIC2MiMcIYAAAAABgIBDEAAADAKJXvN5pe7GhyoVFHVGqiVRkAAAAAZB1BDAAAADCK+R2jSQVGM0scBR2pnlZlAAAAAJBV/qHeAAAAAABDyxijspAU9jna0eJqX0TK91uF/WaoNw0AAAAAch4VMQAAAAAkSXl+oxkljqYUGnXGaFUGAAAAANlAEAMAAAAgyWeMJhY4mlniKOTzWpVFaVUGAAAAAP1GazIAAAAAvZSGjMJ+RztbXO3tkPL8Vnm0KgMAAACAQ0ZFDAAAAICMwj6j6cWOphYadblSY4RWZQAAAABwqAhiAAAAAPTJMUaVBY5mlTjK89OqDAAAAAAOFUEMAAAAgAMqCRrNKnFUkSc1d0ptUcIYAAAAADgYBDEAAAAADkrIZ1RV5LUqc12pIWLl0qoMAAAAAPaLIAYAAADAQXOM0YQCRzNLHBXEW5V10aoMAAAAAPpEEAMAAADgkBXHW5VNyDNq6ZRauwhjAAAAACATghgAAAAA/RL0GU0rMqoqdmRFqzIAAAAAyIQgBgAAAEC/GWM0Ls9odomjwoBU3yF1xghjAAAAACCBIAYAAADAYSsMeK3KKguM2rqkFlqVAQAAAIAkghgAAAAAWRJwjKYWeq3KjKT6DlqVAQCyx7VWlucVAEAO8g/1BgAAAAAYOYwxqsiT8v2Otre6qo9IRQGroM8M9aYBAHKItVZdrtTpSl2u5FrJZyRrJSsrI8nnSH5HCjiS33jPQQAADEcEMQAAAACyriBgNLPYUXWr1e52q4hrVejnJBkAoDdrraLWC1w6Y17oYuQFLEGfNCZklO83CvkkK2+dSMyqLWrVEZM6olLUereTGtD4jffZ4bkHADDECGIAAAAADIiAYzSl0AtldrS6aohIxSErHyfEAGBUi7petUuXK8Vcb1misqU87IUuYb8U9klBp68Q31vmWqvOmFc5kwho2qNW7THv+7aokm0y/QQ0AIAhQhADAAAAYMAYYzQ2LOX5HO1odbUvIhUGrEK0KgOAUSFmrbriQUk0EboYKeCTSgJSYdBR2CeF4h+HGo44Jh7aJJekBDSukvedqKBpj3rfJwIaI8lJCWf8jnjDAAAg6whiAAAAAAy4/IDRjGJHeW1WNW1WnTGrwgCtygBgJHFtd6VLl+vNc3GM116sMCAV+o3y4i3Gwj7J5wzcc4BjjMLx+/F492XjAU2igqbLldqirtqi3tftqQGN8dqcJWbQDOT2AgBGNoIYAAAAAIPC7xhNLpAK/EY7W13VR6SSoOXEFgDkINsjdHHjoYvf8cKP8rBRns+rVgn5vHaVw4ExJll9o0BiqS/5eBIBTacrtUe9KpouV+pwveoeqftxJtqc+QxvLAAA7B9BDAAAAIBBY4zRmLCU53e0o8VVXYdUELAK+zmBBQDDlbVWMeuFE4m5LkZeEBH0SSVBo4KASbYY63uuy/BljFHQ5z2e7oDGpAVOiZAmEdAkKmtiVrKy3RU0JtHiLPd+DgCAgUEQAwAAAGDQ5fm9VmX5fqvqNqtO16qIVmUAMCzEXJsWulh1z3UpC0kFfifZ9ivkG9nH7tSApqB7qay1itru9maRmNQR6w5o2rqkqJWMrGTSZ9D4CWgAYNQhiAEAAAAwJHyO0cQCqSBgtL3Fa1VWHLTyD5P2NQAwGrgpLbmiMS908cVDl6KAVBgwCqe0GGOQvccYo4Dx5sekLJUkReNBVqLFWSRm1dpl4+3OEuGWlYm3NQsQ0ADAiEcQAwAAAGDIGGNUGpLCPkc7Wr1WZXl+qzxalQFA1qXOQelyJRuf6xJwpDyfVBQ2yvN7M1TCPhGM95PfMfI7Un7yrJv3c0xUGiVCmkQFTSQmdUSlaCKgkdfiLBHO+B3JIaABgJxGEAMAAABgyIX9RtMTrcpavVZlxbQqA4B+S7TO6nKlrpg3x8TIC12CPmlMyCjf3z3XJZCDc11yjc8xynOkvOSSeEBjrbpiUiRRRROzao1adcS8lmdtUa9ySUpvb0ZAAwC5gyAGAAAAwLDgM0YTC4zy/VY7Wl3ti0gltCoDgIMSdbuHykddJasqgo40Jhyf6xJvLxYidBlWfMbI55fCySXe/41rbbK9WacrRaJW7TGr9qgX2CQCGiPJSQlnAgQ0ADDsEMQAAAAAGFZKQ0Z5fkc7W1zV0qoMAHpJVFAkghfJmzUS9EklAakw6CTbi4V8nJTPVY7xZvNkCmi6esygaY9ZtXd5+0N7SgWNz6RX0fh4cwMADAmCGAAAAADDTshnVFXsKM9vVd1m1RixKg7yDm4Ao0/ipHui0sVNmeuS75eKAkbheIuxsI8T7aOBY7w5PiFfYon3f26tTc7/SYQ0bVGr9qi3D7W73jpW3j6UCGgCBDQAMOAIYgAAAAAMS44xqiwwKghY7WhxVR+RioJWAU4WARihEnNdOuPVLq6VTDx0CTlSedgoz2cU8nuhC8dDpDKpAU0guVQ2UUGTEtC0xwOaTtebTROLV9AkA5r4Z5/hTRAAkA0EMQAAAACGteKg0cwSRztbXdW2S2G/VT6tygDkOGutYlbJCoZYvMVYID7XpSRsVBAwyRZjQea6oJ+MMQr6vNZ1PQOaRPCXCGk6olZtMS+gaeuSolaSrExKQBMgoAGAQ0YQAwAAAGDYC/mMqoocFfitdrVaNcRblTH3AECuiLndVQmxlLkuAZ9UGpQKA06yvViQuS4YBMYYBeLBSkH3UklS1LXdAU1KBU0kHtDErGQTAU2POTQENADQG0EMAAAAgJzgGKPx+Ub5fqsdra7qO6TiEK3KAAw/bkorqGhMyZkcQZ9UFJAKA0ZhnzfXJeSXfJy4xjDjd4z8jpSfXJIS0KS0OIvErNqiVpGY1B71QkYrKyPJl5hBQ0ADAAQxAAAAAHJLUdBops/RrlarPe1WQZ9VQYCTOwCGRmL+RuLDtV7oEnCkPJ9UGDbK85tktYuf8Bg5LBnQJM8oevtzLBHQxEOaREDTEZM6ol6LM2vTA5pEJQ3VXwBGA4IYAAAAADkn6DOaViQVBIx2trqq77AqCXEyB8DASszU6HKlrpjXnsnIC10CPqksaJSfMtclwFwXjBI+xyjPkfKSS+IBjbXqimUOaDpjUlvUqyCTvFDGFw8xCWgAjDQEMQAAAABykjFGFXlSnt/RjhZX9RGpKGAV9HHiBkB2RN3uapdofK6LP95ibExYKvA7Xujil0KELkAvPmPk80vh5BLvd8S13S3OulJanLVHvdAmEdAYSY6TPoeGVn4AchFBDAAAAICcVhgwmlnS3aqs07Uq8HNCFMChSZwY7oqfGJa8d+enznVJtBgL+Xi3PnA4HNPdrs/j/T5Zm97irNO1ao9atUW938v21IDGeG3OEjNofLT9AzCMEcQAAAAAyHkBx2hqYUqrsohUGrKcKAWQUWKuS2e82sWmzHXJ90tFAaNwSujCXBdgcBjjtfYL+SQFpNSApistoFE8oPGWd7heGzTJ+132p8yh8RnenAFg6BHEAAAAABgRjDEqD0t5Pkc74mFMYcAqRKsyYFRLzHVJtEByE3NdfF47sTEho/x46BL2e8EugOHFGKOgz6tQ8wIaSTLJgCYR0kRiUkc8oOl0pUj8d97KdlfQmO55NAQ0AAYLQQwAAACAEaUgYDSz2FF1m1VNm1VnzKowwMkWYLTINNclEG9fVBI2Kgh477gP+6Qgc12AnJYa0BR0L+0VwEZiUkesO6Bp65KiVjLykll/jyoajgsAso0gBgAAAMCI43eMJhdI+X6vVVlDRCoOWvrHAyNMzO1uV5QIXfzGq3YpCUqFASfZXoy5LsDoYYxRIN5uMGWpJC+sTW1xFolZtXZ5y9q7pFi8gsbE25oFCGgAZAFBDAAAAIARyRijsWEpz+9oZ4urug6pMEirMiBXuSktiLpikpU3CyLokwoDUqHfKC8x18Uv+ThhCiADv2Pkj8+D8njHilgioImHNIkKGq/dmRf2WlkZeS3OEuGM3yHkBXBgBDEAAAAARrR8v9H0Ykd5fq9VWSRmVUSrMmBYS537kJjrkhjAHfZJ5eGU0MXHXBcAh8/nGOU5Ul5ySTygsTZZPdMZkzpjVq1Rq46Y1/KsLeoFxVJ6ezMCGgCpCGIAAAAAjHh+x2hSgTc/ZkeLq/qIVEKrMmBYSMxySIQuMdc7/RlwvBZjZUGjvIAXuoR93nKCVACDxWeM8vy9Axo3NaBxpUjUqj1m1R71AptEQGMkOfFw5mBedthD3D57CFc45Ns+xBs51Nvv123YjF9m57Z7rn+AK5iDuM2e/+Wp65sMN9Dz9vZ3/YO5/FDs77bcw7hdeAhiAAAAAIwKxhiVhaSwz9GOFld1EanAbxX2c0IXGEyJ9j9dGea6lIWkQr+jUDx0CfkIXQAMT44xCvulcHJJd0DT1WMGTXvMqr3r4E5mmz6+7nPdPlbKdOg0Pb45qNvva1vMfr/tff2DOJQ7PTfwEG6/1/cZrrC/IOygbt/0fVnPheaAP92D24a+7v9Qr9trnYP4/+t5eR5JwmHhxwcAAABgVMnzG80ocVTQZlXdatXp0qoMGCipJyS9+Qrx4dc+qSggFQa8FmOJ4IU2PgBynWO8Y1rIl1jiHdestWlBzP6Odgd1Up3jJZBTCGIAAAAAjDo+YzSxwCjfb7Wj1WtVVhy08tOqDOi3xFyXRLWLjc91CcSHYidCl0SlC79vAEYTY4x8B14NwAhFEAMAAABg1CoNGYV9jna2utrbIeX5rfJoVQYcUOpcl86Y5NruuS5BnzQmZJSfEroEffxeAQCA0YsgBgAAAMCoFvYbTS92lO+32tVm1RmxKg7S8gNIFXW9apcuV4ol5ro4XvBSHo6HLn6vvVjQ4fcHAAAgFUEMAAAAgFHPMUaVBUb5AasdLbQqw+gWs1ZdMSWDF0nyx+e6lASkwqCTrHQJMdcFAADggAhiAAAAACCuJGgULom3KmuXQn6rfFqVYQRzbXelS8+5LgUBqdDvzXUJ+bxqFx/hJAAAwCEjiAEAAACAFCGfUVWRo3yfVXWbVUO8VRnv+sdwY631Pqcui//Ta5m8kEXqDl3ceOjid7yQpTxslOfzWoyFfFKA0AUAACArhmUQc9999+nOO+9UTU2NFi5cqHvvvVfHH398xnVXrlypFStWpC0LhULq6OhIfm+t1U033aQHH3xQDQ0NWrp0qX784x9r9uzZA/o4AAAAAOQmxxhNyNCqjBPTw0vGICL+zf6CiLRlKd/YHpdlur1M66vHZX3djokvS/2sHssSeq6jHusmVup5uenxOXUdE/8n4HjVXwUBk2wxxlwXAACAgTPsgpgnn3xS11xzje6//36dcMIJuueee7Rs2TJt3LhR48aNy3id4uJibdy4Mfl9zxePd9xxh37wgx/okUce0fTp0/WNb3xDy5Yt07p16xQOhwf08QAAAADIXcVBo1kljna1Wu1ptwr6rAoCw+NktU1JFYZDEGFTvtjf7Uj9CyIyBRj9CiIyXM/0/D7lQyZ+uem93IlfV/IqSyTjLUtcnnodk3J78XtLbleGsMT0uLzn+qnb2fMxZlqW+j2hCwAAwOAyNvXV+zBwwgkn6LjjjtMPf/hDSZLrupoyZYquvPJKfe1rX+u1/sqVK3X11VeroaEh4+1ZazVx4kRde+21uu666yRJjY2NGj9+vFauXKkLLrjggNvU1NSkkpISNTY2qri4uP8PDgAAAEBOcq3V3g5pZ6urrpjXykkauUFEYt20oGAEBREHf7+EFQAAAMjsUHKDYVUR09nZqVdffVU33HBDcpnjOHr/+9+vl19+uc/rtbS0aNq0aXJdV8ccc4y+/e1v64gjjpAkbd68WTU1NXr/+9+fXL+kpEQnnHCCXn755YxBTCQSUSQSSX7f1NSUjYcHAAAAIEc5xmhcnpTvd1TT6ioWT0MIIgAAAAAcyLAKYvbu3atYLKbx48enLR8/frw2bNiQ8Tpz587VQw89pKOPPlqNjY367ne/q5NOOklvvvmmJk+erJqamuRt9LzNxGU93Xbbbbr55puz8IgAAAAAjCSFAaNZpb6h3gwAAAAAOcQZ6g04XCeeeKKWL1+uRYsW6dRTT9UzzzyjiooKPfDAA/2+zRtuuEGNjY3Jj+3bt2dxiwEAAAAAAAAAwGgxrIKY8vJy+Xw+7d69O2357t27NWHChIO6jUAgoMWLF+udd96RpOT1DuU2Q6GQiouL0z4AAAAAAAAAAAAO1bAKYoLBoJYsWaIXX3wxucx1Xb344os68cQTD+o2YrGY1q5dq8rKSknS9OnTNWHChLTbbGpq0iuvvHLQtwkAAAAAAAAAANAfw2pGjCRdc801uuiii3Tsscfq+OOP1z333KPW1latWLFCkrR8+XJNmjRJt912myTplltu0Xve8x7NmjVLDQ0NuvPOO7V161Z9/vOfl+QNl7z66qv1b//2b5o9e7amT5+ub3zjG5o4caLOOeecoXqYAAAAAAAAAABgFBh2Qcz555+v2tpaffOb31RNTY0WLVqkF154QePHj5ckbdu2TY7TXchTX1+vSy65RDU1NSorK9OSJUv017/+VQsWLEiu89WvflWtra269NJL1dDQoJNPPlkvvPCCwuHwoD8+AAAAAAAAAAAwehhrrR3qjRjumpqaVFJSosbGRubFAAAAAAAAAAAwyh1KbjCsZsQAAAAAAAAAAACMJAQxAAAAAAAAAAAAA4QgBgAAAAAAAAAAYIAQxAAAAAAAAAAAAAwQghgAAAAAAAAAAIABQhADAAAAAAAAAAAwQAhiAAAAAAAAAAAABghBDAAAAAAAAAAAwAAhiAEAAAAAAAAAABggBDEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAFCEAMAAAAAAAAAADBACGIAAAAAAAAAAAAGCEEMAAAAAAAAAADAACGIAQAAAAAAAAAAGCAEMQAAAAAAAAAAAAOEIAYAAAAAAAAAAGCA+Id6A3KBtVaS1NTUNMRbAgAAAAAAAAAAhloiL0jkB/tDEHMQmpubJUlTpkwZ4i0BAAAAAAAAAADDRXNzs0pKSva7jrEHE9eMcq7rateuXSoqKpIxZqg3Z9hoamrSlClTtH37dhUXFw/15gCHjH0YuYz9F7mM/Re5jP0XuYz9F7mM/Re5jP0XuY59ODNrrZqbmzVx4kQ5zv6nwFARcxAcx9HkyZOHejOGreLiYn4BkdPYh5HL2H+Ry9h/kcvYf5HL2H+Ry9h/kcvYf5Hr2Id7O1AlTML+YxoAAAAAAAAAAAD0G0EMAAAAAAAAAADAACGIQb+FQiHddNNNCoVCQ70pQL+wDyOXsf8il7H/Ipex/yKXsf8il7H/Ipex/yLXsQ8fPmOttUO9EQAAAAAAAAAAACMRFTEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAFCEDPKRSIRXX/99Zo4caLy8vJ0wgkn6D//8z8P6ro7d+7Ueeedp9LSUhUXF+ujH/2oNm3alHHdn/70p5o/f77C4bBmz56te++9N5sPA6PUYOy/xpiMH9/5zney/XAwyvR3/924caO+/OUv66STTlI4HJYxRlu2bOlz/V/96lc65phjFA6HNXXqVN10002KRqNZfCQYrQZjH66qqsp4DP7nf/7nLD8ajDb93X+feeYZnX/++ZoxY4by8/M1d+5cXXvttWpoaMi4PsdgDITB2H85/mKg9Hf/ffbZZ7Vs2TJNnDhRoVBIkydP1rnnnqs33ngj4/ocfzEQBmP/5fiLgXI459BSfeADH5AxRldccUXGyzkH3Df/UG8AhtbFF1+sp59+WldffbVmz56tlStX6kMf+pBeeuklnXzyyX1er6WlRe973/vU2NioG2+8UYFAQHfffbdOPfVUrVmzRmPHjk2u+8ADD+if//mf9fGPf1zXXHON/vznP+uqq65SW1ubrr/++sF4mBihBmP/lbwnmeXLl6ctW7x48YA8Jowe/d1/X375Zf3gBz/QggULNH/+fK1Zs6bPdX/729/qnHPO0WmnnaZ7771Xa9eu1b/9279pz549+vGPfzwAjwqjyWDsw5K0aNEiXXvttWnL5syZk42HgFGsv/vvpZdeqokTJ+rCCy/U1KlTtXbtWv3whz/U888/r1WrVikvLy+5LsdgDJTB2H8ljr8YGP3df9euXauysjJ96UtfUnl5uWpqavTQQw/p+OOP18svv6yFCxcm1+X4i4EyGPuvxPEXA6O/+2+qZ555Ri+//HKfl3MO+AAsRq1XXnnFSrJ33nlncll7e7udOXOmPfHEE/d73dtvv91Ksn//+9+Ty9avX299Pp+94YYbksva2trs2LFj7Yc//OG063/605+2BQUFdt++fVl6NBhtBmP/tdZaSfaLX/xidjceo97h7L91dXW2qanJWmvtnXfeaSXZzZs3Z1x3wYIFduHChbarqyu57F/+5V+sMcauX7/+8B8IRq3B2oenTZvW6zUEcLgOZ/996aWXei175JFHrCT74IMPpi3nGIyBMFj7L8dfDITD2X8zqampsX6/31522WVpyzn+YiAM1v7L8RcDIRv7b3t7u62qqrK33HJLxnNlnAM+MFqTjWJPP/20fD6fLr300uSycDisz33uc3r55Ze1ffv2/V73uOOO03HHHZdcNm/ePJ1xxhl66qmnksteeukl1dXV6fLLL0+7/he/+EW1trbqN7/5TRYfEUaTwdh/U7W3t6ujoyN7DwCj2uHsv2PGjFFRUdEB72PdunVat26dLr30Uvn93QWwl19+uay1evrppw/vQWBUG4x9OFVnZ6daW1v7vb1AqsPZf0877bRey/7P//k/kqT169cnl3EMxkAZjP03FcdfZNPh7L+ZjBs3Tvn5+Wnt9Tj+YqAMxv6biuMvsikb++8dd9wh13V13XXXZbycc8AHRhAziq1evVpz5sxRcXFx2vLjjz9ekvpsFeK6rl5//XUde+yxvS47/vjj9e6776q5uTl5H5J6rbtkyRI5jpO8HDhUg7H/JqxcuVIFBQXKy8vTggUL9MQTT2TnQWDU6u/+e6j3IfU+/k6cOFGTJ0/m+IvDMhj7cMIf//hH5efnq7CwUFVVVfr+97+ftdvG6JTt/bempkaSVF5ennYfEsdgZN9g7L8JHH+RbdnYfxsaGlRbW6u1a9fq85//vJqamnTGGWek3YfE8RfZNxj7bwLHX2Tb4e6/27Zt03e+8x3dfvvtvVqZpt6HxDng/WFGzChWXV2tysrKXssTy3bt2pXxevv27VMkEjngdefOnavq6mr5fD6NGzcubb1gMKixY8f2eR/AgQzG/itJJ510ks477zxNnz5du3bt0n333adPf/rTamxs1Be+8IVsPRyMMv3dfw/1PlJvs+f9cPzF4RiMfViSjj76aJ188smaO3eu6urqtHLlSl199dXatWuXbr/99qzcB0afbO+/t99+u3w+n84999y0+0i9zZ73wzEY/TUY+6/E8RcDIxv773ve8x5t3LhRklRYWKivf/3r+tznPpd2H6m32fN+OP6ivwZj/5U4/mJgHO7+e+2112rx4sW64IIL9nsfnAPeP4KYUay9vV2hUKjX8nA4nLy8r+tJOqjrtre3KxgMZrydcDjc530ABzIY+68k/eUvf0lb57Of/ayWLFmiG2+8URdffHGf7wQA9qe/+++h3ofU977e1NR02PeB0Wsw9mFJ+tWvfpX2/YoVK3TWWWfprrvu0pVXXqnJkydn5X4wumRz/33iiSf005/+VF/96lc1e/bstPuQOAYj+wZj/5U4/mJgZGP/ffjhh9XU1KRNmzbp4YcfVnt7u2KxmBzHSbsNjr/ItsHYfyWOvxgYh7P/vvTSS/rlL3+pV1555YD3wTng/aM12SiWl5enSCTSa3liDkZfJ5gTyw/munl5eers7Mx4Ox0dHZzERr8Nxv6bSTAY1BVXXKGGhga9+uqrh7zdgNT//fdQ70Pqe1/n+IvDMRj7cCbGGH35y19WNBrVn/70pwG5D4x82dp///znP+tzn/ucli1bpm9961u97kPiGIzsG4z9NxOOv8iGbOy/J554opYtW6YvfOEL+t3vfqef/exnuuGGG9LuQ+L4i+wbjP03E46/yIb+7r/RaFRXXXWVPvOZz6TNWe7rPjgHvH8EMaNYZWVlsmw3VWLZxIkTM15vzJgxCoVCB3XdyspKxWIx7dmzJ229zs5O1dXV9XkfwIEMxv7blylTpkjy2pwB/dHf/fdQ7yP1NnveD8dfHI7B2If7wjEYhysb++9rr72mj3zkIzryyCP19NNPpw2ETtxH6m32vB+Oweivwdh/+8LxF4cr268fysrKdPrpp+vxxx9Pu4/U2+x5Pxx/0V+Dsf/2heMvDld/999HH31UGzdu1GWXXaYtW7YkPySpublZW7ZsUVtbW/I+OAe8fwQxo9iiRYv01ltv9SrNTZSaLVq0KOP1HMfRUUcdpX/84x+9LnvllVc0Y8YMFRUVpd1Gz3X/8Y9/yHXdPu8DOJDB2H/7smnTJklSRUVFP7Yc6P/+e6j3IfU+/u7atUs7duzg+IvDMhj7cF84BuNwHe7+++677+rMM8/UuHHj9Pzzz6uwsDDjfUgcg5F9g7H/9oXjLw7XQLx+aG9vV2NjY9p9SBx/kX2Dsf/2heMvDld/999t27apq6tLS5cu1fTp05MfkhfSTJ8+Xb///e/TboNzwPthMWr97W9/s5LsnXfemVzW0dFhZ82aZU844YTksq1bt9r169enXfc73/mOlWT/93//N7lsw4YN1ufz2euvvz65rK2tzY4ZM8aeffbZade/8MILbX5+vq2rq8v2w8IoMRj77549e3rdb1NTk505c6YtLy+3kUgkmw8Jo8jh7L+p7rzzTivJbt68OePl8+bNswsXLrTRaDS57Otf/7o1xth169Yd/gPBqDUY+3BdXV3avmuttZ2dnXbp0qU2GAza6urqw38gGJUOZ/+trq62M2bMsBMnTuzz2JvAMRgDYTD2X46/GCiHs//u3r271+1t3rzZFhUV2VNOOSVtOcdfDITB2H85/mKg9Hf/Xb9+vX322Wd7fUiyH/rQh+yzzz5rd+3aZa3lHPDBIIgZ5T7xiU9Yv99vv/KVr9gHHnjAnnTSSdbv99v/+q//Sq5z6qmn2p6ZXeJk9Lhx4+wdd9xh7777bjtlyhQ7ceLEXiev77vvPivJnnvuufbBBx+0y5cvt5Lst771rUF5jBi5Bnr/vemmm+zChQvt17/+dfuTn/zE3nzzzXbatGnWGGN/9rOfDdrjxMjU3/23oaHB3nrrrfbWW2+1Z555ppVkr732Wnvrrbfae++9N23dX//619YYY08//XT7k5/8xF511VXWcRx7ySWXDMpjxMg20Pvwww8/bGfOnGmvv/56e//999tvf/vb9sgjj7SS7Le//e1Be5wYmfq7/y5cuNBKsl/96lftY489lvbx+9//Pm1djsEYKAO9/3L8xUDq7/47btw4+8lPftLefvvt9ic/+Yn9yle+YseMGWPD4bD9y1/+krYux18MlIHefzn+YiD1d//NRJL94he/2Gs554D3jyBmlGtvb7fXXXednTBhgg2FQva4446zL7zwQto6ff0Sbt++3Z577rm2uLjYFhYW2rPPPtu+/fbbGe/nJz/5iZ07d64NBoN25syZ9u6777au6w7IY8LoMdD77+9//3v7gQ98wE6YMMEGAgFbWlpqP/jBD9oXX3xxQB8XRof+7r+bN2+2kjJ+TJs2rdf9PPvss3bRokU2FArZyZMn269//eu2s7NzIB8aRomB3of/8Y9/2H/6p3+ykyZNssFg0BYWFtqTTz7ZPvXUU4Px8DDC9Xf/7WvflWRPPfXUXvfDMRgDYaD3X46/GEj93X9vuukme+yxx9qysjLr9/vtxIkT7QUXXGBff/31jPfD8RcDYaD3X46/GEiHcw6tp76CGGs5B7w/xlprD6OzGQAAAAAAAAAAAPrgDPUGAAAAAAAAAAAAjFQEMQAAAAAAAAAAAAOEIAYAAAAAAAAAAGCAEMQAAAAAAAAAAAAMEIIYAAAAAAAAAACAAUIQAwAAAAAAAAAAMEAIYgAAAAAAAAAAAAYIQQwAAAAAAAAAAMAAIYgBAAAAAAAAAAAYIAQxAAAAAIBBt2XLFhljtHLlyqHeFAAAAGBAEcQAAAAAI9zKlStljEl+hMNhzZkzR1dccYV279491Jt32NatW6d//dd/1ZYtW4Z6Uw7o4osvTvu/CIVCmjNnjr75zW+qo6NjqDcPAAAAwADwD/UGAAAAABgct9xyi6ZPn66Ojg79z//8j3784x/r+eef1xtvvKH8/Pyh3rx+W7dunW6++WaddtppqqqqGurNOaBQKKT/+3//rySpsbFRzz33nG699Va9++67evzxx4d46wAAAABkG0EMAAAAMEqcddZZOvbYYyVJn//85zV27Fjdddddeu655/TJT37ysG67ra0tp8OcweT3+3XhhRcmv7/88st10kkn6d///d911113afz48UO4dQAAAACyjdZkAAAAwCh1+umnS5I2b96cXPazn/1MS5YsUV5ensaMGaMLLrhA27dvT7veaaedpiOPPFKvvvqq3vve9yo/P1833nijJKmjo0P/+q//qjlz5igcDquyslIf+9jH9O677yav77qu7rnnHh1xxBEKh8MaP368LrvsMtXX16fdT1VVlc4++2z9z//8j44//niFw2HNmDFDjz76aHKdlStX6hOf+IQk6X3ve1+y5def/vQnSdJzzz2nD3/4w5o4caJCoZBmzpypW2+9VbFYrNfP47777tOMGTOUl5en448/Xn/+85912mmn6bTTTktbLxKJ6KabbtKsWbMUCoU0ZcoUffWrX1UkEjnE/wGPMUYnn3yyrLXatGlT2mW//e1vdcopp6igoEBFRUX68Ic/rDfffDNtnYsvvliFhYXatm2bzj77bBUWFmrSpEm67777JElr167V6aefroKCAk2bNk1PPPFEr23YtGmTPvGJT2jMmDHKz8/Xe97zHv3mN79JXr579275/X7dfPPNva67ceNGGWP0wx/+UJK0b98+XXfddTrqqKNUWFio4uJinXXWWXrttdf69fMBAAAAch1BDAAAADBKJcKRsWPHSpK+9a1vafny5Zo9e7buuusuXX311XrxxRf13ve+Vw0NDWnXraur01lnnaVFixbpnnvu0fve9z7FYjGdffbZuvnmm7VkyRJ973vf05e+9CU1NjbqjTfeSF73sssu01e+8hUtXbpU3//+97VixQo9/vjjWrZsmbq6utLu55133tG5556rD3zgA/re976nsrIyXXzxxckw4r3vfa+uuuoqSdKNN96oxx57TI899pjmz58vyQtqCgsLdc011+j73/++lixZom9+85v62te+lnY/P/7xj3XFFVdo8uTJuuOOO3TKKafonHPO0Y4dO9LWc11XH/nIR/Td735X//RP/6R7771X55xzju6++26df/75/f6/SMy3KSsrSy577LHH9OEPf1iFhYW6/fbb9Y1vfEPr1q3TySef3GseTiwW01lnnaUpU6bojjvuUFVVla644gqtXLlSZ555po499ljdfvvtKioq0vLly9PCt927d+ukk07S7373O11++eX61re+pY6ODn3kIx/Rs88+K0kaP368Tj31VD311FO9tv3JJ5+Uz+dLBmKbNm3Sf/zHf+jss8/WXXfdpa985Stau3atTj31VO3atavfPyMAAAAgZ1kAAAAAI9rDDz9sJdk//OEPtra21m7fvt3+/Oc/t2PHjrV5eXl2x44ddsuWLdbn89lvfetbadddu3at9fv9actPPfVUK8nef//9aes+9NBDVpK96667em2D67rWWmv//Oc/W0n28ccfT7v8hRde6LV82rRpVpL97//+7+SyPXv22FAoZK+99trksl/84hdWkn3ppZd63W9bW1uvZZdddpnNz8+3HR0d1lprI5GIHTt2rD3uuONsV1dXcr2VK1daSfbUU09NLnvssces4zj2z3/+c9pt3n///VaS/ctf/tLr/lJddNFFtqCgwNbW1tra2lr7zjvv2O9+97vWGGOPPPLI5M+pubnZlpaW2ksuuSTt+jU1NbakpCRt+UUXXWQl2W9/+9vJZfX19TYvL88aY+zPf/7z5PINGzZYSfamm25KLrv66qutpLTH1NzcbKdPn26rqqpsLBaz1lr7wAMPWEl27dq1adu0YMECe/rppye/7+joSF4nYfPmzTYUCtlbbrklbZkk+/DDD+/3ZwYAAADkOipiAAAAgFHi/e9/vyoqKjRlyhRdcMEFKiws1LPPPqtJkybpmWeekeu6Ou+887R3797kx4QJEzR79my99NJLabcVCoW0YsWKtGW//OUvVV5eriuvvLLXfRtjJEm/+MUvVFJSog984ANp97NkyRIVFhb2up8FCxbolFNOSX5fUVGhuXPn9mrh1Ze8vLzk183Nzdq7d69OOeUUtbW1acOGDZKkf/zjH6qrq9Mll1wiv797jOanP/3ptAqVxPbPnz9f8+bNS9v+RJu3ntufSWtrqyoqKlRRUaFZs2bpuuuu09KlS/Xcc88lf07/+Z//qYaGBn3yk59Mux+fz6cTTjgh4/18/vOfT35dWlqquXPnqqCgQOedd15y+dy5c1VaWpr283v++ed1/PHH6+STT04uKyws1KWXXqotW7Zo3bp1kqSPfexj8vv9evLJJ5PrvfHGG1q3bl1aNVAoFJLjeH9qxmIx1dXVqbCwUHPnztWqVasO+PMBAAAARhr/gVcBAAAAMBLcd999mjNnjvx+v8aPH6+5c+cmT5i//fbbstZq9uzZGa8bCATSvp80aZKCwWDasnfffVdz585NCzN6evvtt9XY2Khx48ZlvHzPnj1p30+dOrXXOmVlZb3myfTlzTff1Ne//nX98Y9/VFNTU9pljY2NkqStW7dKkmbNmpV2ud/vV1VVVa/tX79+vSoqKg5q+zMJh8P69a9/LUnasWOH7rjjDu3ZsyctNHr77bcldc/x6am4uLjXbfbcppKSEk2ePDkZ7qQuT/35bd26VSeccEKv+0i0d9u6dauOPPJIlZeX64wzztBTTz2lW2+9VZLXlszv9+tjH/tY8nqu6+r73/++fvSjH2nz5s1p83gSbfAAAACA0YQgBgAAABgljj/+eB177LEZL3NdV8YY/fa3v5XP5+t1eWFhYdr3qaHBoXBdV+PGjdPjjz+e8fKeYUKmbZEka+0B76uhoUGnnnqqiouLdcstt2jmzJkKh8NatWqVrr/+ermu26/tP+qoo3TXXXdlvHzKlCkHvA2fz6f3v//9ye+XLVumefPm6bLLLtOvfvWr5P1I3pyYCRMm9LqNnmFXXz+nw/n5ZXLBBRdoxYoVWrNmjRYtWqSnnnpKZ5xxhsrLy5PrfPvb39Y3vvENffazn9Wtt96qMWPGyHEcXX311f36mQMAAAC5jiAGAAAAgGbOnClrraZPn645c+b0+zZeeeUVdXV19aqgSV3nD3/4g5YuXdrvMKennhUfCX/6059UV1enZ555Ru9973uTy1MH1UvStGnTJEnvvPOO3ve+9yWXR6NRbdmyRUcffXTa9r/22ms644wz+rzfQ1VZWakvf/nLuvnmm/W3v/1N73nPezRz5kxJ0rhx49JCm4Ewbdo0bdy4sdfyROu2xM9Hks455xxddtllyfZkb731lm644Ya06z399NN63/vep5/+9KdpyxsaGtICGwAAAGC0YEYMAAAAAH3sYx+Tz+fTzTff3Ktawlqrurq6A97Gxz/+ce3du1c//OEPe12WuM3zzjtPsVgs2doqVTQaVUNDwyFve0FBgST1um6iGiT18XR2dupHP/pR2nrHHnusxo4dqwcffFDRaDS5/PHHH+/VAu28887Tzp079eCDD/bajvb2drW2th7y9kvSlVdeqfz8fH3nO9+R5FXJFBcX69vf/ra6urp6rV9bW9uv+8nkQx/6kP7+97/r5ZdfTi5rbW3VT37yE1VVVWnBggXJ5aWlpVq2bJmeeuop/fznP1cwGNQ555yTdns+n6/XPvSLX/xCO3fuzNo2AwAAALmEihgAAAAAmjlzpv7t3/5NN9xwg7Zs2aJzzjlHRUVF2rx5s5599lldeumluu666/Z7G8uXL9ejjz6qa665Rn//+991yimnqLW1VX/4wx90+eWX66Mf/ahOPfVUXXbZZbrtttu0Zs0affCDH1QgENDbb7+tX/ziF/r+97+vc88995C2fdGiRfL5fLr99tvV2NioUCik008/XSeddJLKysp00UUX6aqrrpIxRo899livkCAYDOpf//VfdeWVV+r000/Xeeedpy1btmjlypWaOXNmWuXLZz7zGT311FP653/+Z7300ktaunSpYrGYNmzYoKeeekq/+93v+mz/tj9jx47VihUr9KMf/Ujr16/X/Pnz9eMf/1if+cxndMwxx+iCCy5QRUWFtm3bpt/85jdaunRpxsCrP772ta/p3//933XWWWfpqquu0pgxY/TII49o8+bN+uUvf5mcI5Rw/vnn68ILL9SPfvQjLVu2TKWlpWmXn3322brlllu0YsUKnXTSSVq7dq0ef/xxzZgxIyvbCwAAAOQaghgAAAAAkrwT8nPmzNHdd9+tm2++WZI38+SDH/ygPvKRjxzw+j6fT88//7y+9a1v6YknntAvf/lLjR07VieffLKOOuqo5Hr333+/lixZogceeEA33nij/H6/qqqqdOGFF2rp0qWHvN0TJkzQ/fffr9tuu02f+9znFIvF9NJLL+m0007T//t//0/XXnutvv71r6usrEwXXnihzjjjDC1btiztNq644gpZa/W9731P1113nRYuXKhf/epXuuqqqxQOh5PrOY6j//iP/9Ddd9+tRx99VM8++6zy8/M1Y8YMfelLX+p3WzdJuuaaa3T//ffr9ttv18qVK/WpT31KEydO1He+8x3deeedikQimjRpkk455RStWLGi3/fT0/jx4/XXv/5V119/ve699151dHTo6KOP1q9//Wt9+MMf7rX+Rz7yEeXl5am5uVnnn39+r8tvvPFGtba26oknntCTTz6pY445Rr/5zW/0ta99LWvbDAAAAOQSY/s7pREAAAAARjDXdVVRUaGPfexjGVuRAQAAAMDBYEYMAAAAgFGvo6OjV8uyRx99VPv27dNpp502NBsFAAAAYESgIgYAAADAqPenP/1JX/7yl/WJT3xCY8eO1apVq/TTn/5U8+fP16uvvqpgMDjUmwgAAAAgRzEjBgAAAMCoV1VVpSlTpugHP/iB9u3bpzFjxmj58uX6zne+QwgDAAAA4LBQEQMAAAAAAAAAADBAmBEDAAAAAAAAAAAwQAhiAAAAAAAAAAAABghBDAAAAAAAAAAAwAAhiAEAAAAAAAAAABggBDEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAHy/wEaEui/dD/1EAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"fig, ax = plt.subplots()\n",
"\n",
@@ -684,27 +681,7 @@
" title=\"Accuracy as a function of percentage of removed worst data points\",\n",
" ax=ax,\n",
" )\n",
- "_ = plt.legend()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "b2d69593",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmIAAALGCAYAAABWAo6cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU5f0H8M8ce+8mmztAAkFAELSiIh5QD7yrKKIWxSreUqVqtbYeVdRqqdVarNZ6VbD1+FmtCtYDFfFWxKPW+yJAAsmSc3PsOTPP74/JTnazG0hCYJPweb9evEJmZmefvTfzme/3kYQQAkRERERERERERERERNTv5GwPgIiIiIiIiIiIiIiIaKhiEENERERERERERERERLSdMIghIiIiIiIiIiIiIiLaThjEEBERERERERERERERbScMYoiIiIiIiIiIiIiIiLYTBjFERERERERERERERETbCYMYIiIiIiIiIiIiIiKi7YRBDBERERERERERERER0XbCIIaIiIiIiIiIiIiIiGg7YRBDRERERH0Wj8excOFCjBs3Dg6HA5Ik4dlnn832sPrkkEMOgSRJ2R7GNvvuu+9w4oknorS0FJIkwe/3Z3tINEg9/vjj2GuvveDz+SBJEi677LJsD2mnUlFRgYqKimwPY9Bat24dJEnCWWedle2hDChnnXUWJEnCunXrsj0UIiKinQqDGCIiIsItt9wCSZIgSRK++eabbA+HBpE//elPuOmmmzB8+HD86le/wsKFCzFhwoRsDyujneHgk67rmDVrFl544QUcd9xxWLhwIa666qpsD2tQkiQJhxxySLaHkTXvvfceTj/9dLS2tuLnP/85Fi5ciKOPPjrbw6IhaiC/P7/++uuQJAk33HBDtocyoCxduhSSJGHp0qXZHgoREdGgoGZ7AERERJRdQgg8+OCDkCQJQgg88MADuP3227M9LBok/vOf/8Dr9eKVV16B3W7P9nC2yT/+8Q+EQqFsD2ObVFZW4ssvv8T555+P+++/P9vDoUHs+eefhxAC//jHP3DggQdmezhE1E8WLVqEq666CiNGjMj2UIiIiHYqrIghIiLayb388stYt24d5s2bh9LSUjz88MOIxWLZHhYNEps2bUJBQcGgD2EAYOTIkQO2mqenNm3aBAAYPnx4lkdCgx2fS0RD07BhwzBhwgTYbLZsD4WIiGinwiCGiIhoJ/fAAw8AAM4//3ycfvrpqK+vxzPPPNPt9tXV1bjkkkswbtw4uFwu5OfnY+rUqfjd737X52231AIoU7uS5L7v3377LebMmYPi4mLIsozXX38dAPDRRx/h0ksvxZ577on8/Hw4nU6MGzcOV1xxBZqamrq9fU888QQOO+ww6zIVFRU47bTT8OGHHwIA7rvvPkiShBtvvDHj5Wtra2Gz2bDHHnt0ex3Jli5dipNOOgm77LILXC4XcnJyMG3aNDzyyCMZt1+7di0uuOACjB071rpP99hjD8yfPx8NDQ09us5nn30WP/vZz7DrrrvC4/HA4/Fgn332wV/+8hcYhtGjfSQel8rKSqxfv95qbZeYz2BrrVwyzX2Q3OZk1apVOOSQQ+Dz+ZCTk4Njjz0WX331VcZ9hUIh3HrrrZgyZQp8Ph+8Xi922203XHLJJQgEAgDM59jDDz8MABg9enTaeIHu54gxDAP33nsv9t13X3i9Xng8Huy7777429/+lvH+Sjyf6+vrccEFF2DYsGFwOByYNGkSlixZspV7Nt1HH32Ek046CcXFxXA4HBg1ahQuuugi1NTUpF3vwQcfDAC48cYbrdu4tXY6ya+nr7/+GrNmzUJ+fj48Hg+mT5+Ol19+udvLPv744zj00EPh9/vhdDqx22674eabb0Y0Gu32fqmtrcV5552HESNGQFGUlLY2H3zwAebMmYMRI0bA4XBg2LBhOPLII/Gvf/0rbX+rV6/GySefjNLSUtjtdpSXl+PCCy+0AoRkicdW0zT8/ve/t+Y0Ki8vx29+85uU8DnxPASAN954w7ofu96XvX3tAsCaNWtw5JFHWs/rww8/HO+99x5uuOEGSJJkvX8l+/rrr3HWWWehvLwcdrsdJSUlmDt3bq/bSPb0eZy4/YnnavLrZWtto5Jvx2OPPYb99tsPXq835XUWCoWwaNEiTJ48GR6PB16vFwcccAAef/zxtP0lv498+OGHOProo5Gbm4u8vDycdNJJqKqqAmC+L5566qkoKiqCy+XCoYceik8//TTjGGtqanDxxRejoqICdrsdRUVFmD17Nj766KOU7f7whz9AkiTceeedGfezadMmqKqKKVOmpCzXNA333HMP9t9/f+Tk5MDtdmOvvfbC3XffnfH9QgiBu+++G5MmTYLT6cSIESOwYMECBIPBLd7XXQ0fPjxjhcOoUaMgSVLa5+6LL74ISZJw/fXXpyzv6f0DpL5nv/TSSzjkkEOQm5ub8j761ltvYebMmSgrK4PD4UBpaSn233//lM/Qnrw/b0lraysuv/xylJWVwel0YsKECbjjjju6/Tz79ttvcdVVV2HKlCkoKiqy3lcvuOACVFdXp2x71lln4dBDDwWQ+r6a/HoNBoO47bbbMGPGDJSVlVn32/HHH4/33nuvR7ch+fokScLatWtxxx13YMKECXA6nSgrK8Mvf/lLtLS0ZLxcTz8nkq+ju+9V69atw6mnnorCwkI4nU5MmTIF//nPf1L2ccghh+Dss88GAJx99tkp90tiv62trfjd736H3XffHTk5OfD5fBgzZgzmzJmT8flEREQ01LE1GRER0U4sEAhg+fLl2HXXXXHggQciJycHf/rTn3D//fdjzpw5adt/+OGHOOqoo9DY2IiDDjoIs2fPRigUwpdffokbbrgB1113XZ+27asffvgB++23H3bddVecfvrpCIfDyMnJAWAGTM888wwOPvhgHH744TAMAx999BHuuOMOvPjii1i9ejV8Pp+1LyEEzj77bDz88MMoLCzE7NmzUVRUhOrqaqxatQrjx4/HlClTcPrpp+PXv/41/v73v+O3v/0tFEVJGdNDDz0ETdNw4YUX9ug2/PznP8ekSZNw0EEHYdiwYWhoaMALL7yAM844A998803KwbOamhrsu+++aGlpwU9+8hOcdNJJiEQiqKysxD//+U8sWLAABQUFW73Oq666CrIsY7/99sOIESMQDAbx2muv4dJLL8WaNWvwz3/+c6v7mDVrFioqKrB48WIAsCbx7o+J4f/zn/9g2bJlOOaYYzB//nx8+eWXeOGFF7BmzRp8+eWXKCwstLZtamqyDrqOHz8e55xzDux2O3744QcsWbIEs2fPRklJCRYuXIhnn30Wn376KS699FJrnD0Z7xlnnIHHHnsM5eXlOO+88yBJEp555hlcdNFFePvtt/Hoo4+mXaa5uRnTpk2D3W7HySefjGg0iieffBLnnHMOZFnGvHnzenxfnHTSSRBC4OSTT8aoUaPw0Ucf4W9/+xuWLVuGt99+G6NHjwYALFy4EOvWrcPDDz+Mgw8+2Ao3ezrPSWVlJQ444ADsscceuPDCC1FTU4MnnngCxxxzDB577LG094RzzjkHS5YsQVlZGU466ST4/X68//77uO6667By5Uq88sorUNXUPzcaGxux//77w+v1Yvbs2ZBlGSUlJQDM1+zPf/5zKIqC448/HuPGjcPmzZvx4Ycf4p577sFPf/pTaz8PPfQQLrjgAjgcDhx//PEoLy/Hd999hwcffBDPPfcc3n//fYwcOTLtNs6dOxdvvfUWjjnmGOTk5OCFF17AH//4R2zevNkKHiZPnoyFCxfixhtvxKhRo1Im+k6+L3vz2gWAN998E0ceeSR0Xcfs2bMxZswYfPbZZzj00EMxY8aMjI/JSy+9hNmzZyMej2PmzJkYO3Ysqqur8fTTT+P555/HqlWrsPfee2/9wUXPn8eJ29/X1wtgzh31yiuvYObMmTj00EOtUKG5uRkzZszAJ598gr333hvnnHMODMPAihUrMHfuXHzxxRe4+eab0/a3Zs0a3HrrrTj44INx/vnn47PPPsPTTz+Nzz//HMuWLcP06dMxYcIEnHnmmVi/fj2efvppHHHEEVi7di28Xq+1n8rKSkyfPh2bNm3CjBkzcNppp6GqqgpPPvkknn/+efz73//GcccdZ91f1157Lf7xj3/g0ksvTRvTI488Al3XU54ficdpxYoVGD9+PObOnQun04lVq1bhF7/4BVavXp32/nrZZZfhL3/5C4YNG4YLLrgANpsNy5Ytw+rVqxGLxXpcbThjxgw8+uij+Prrr63Kvu+//x4bNmwAAKxcuTLlc3flypUAgMMOO6xP90+yp556Ci+99JL1nr1+/XoA5vP32GOPRU5ODo4//niMGDECjY2N+Oqrr3DPPfdg4cKFALBNz7doNIrDDjsMa9aswZ577onTTz8dzc3N+N3vfoc33ngj42Wefvpp3HvvvTj00ENx4IEHwm6344svvrDePz788EMr1Jo1axYApL2vArCCoq+++grXXnstDjroIBx77LHIy8vDhg0bsHz5crz44ot47rnnej2/0i9/+Uu8+eab+OlPf4oTTjgBK1aswOLFi/HWW2/h7bffhtPptLbtzefE1qxfvx5Tp07FLrvsgjPOOAONjY144okncMIJJ+DVV1+1QqmzzjoLfr8fy5YtwwknnIDJkydb+/D7/RBC4Oijj8a7776LAw44AOeddx5UVbW+U/34xz/GPvvs06v7hIiIaNATREREtNNatGiRACB+//vfW8v22WcfIUmS+O6771K2jUajoqKiQgAQjz76aNq+qqqq+rStEEIAEAcffHDGMc6bN08AEJWVldayyspKAUAAEFdffXXGy61bt05ompa2/MEHHxQAxB/+8IeU5ffdd58AIPbdd1/R3Nycsk7TNLFp0ybr94svvlgAEM8991zKdoZhiNGjRwu32522j+58//33acui0aiYMWOGUFVVVFdXW8v/8pe/CABi8eLFaZdpa2sToVCoz9ep67o488wzBQDx/vvv92g/QggxatQoMWrUqLTlq1atEgDEwoULe3y5JUuWCABCURTx6quvpqy76qqrBABx6623piw/7bTTBAAxf/58oet6yrrW1taUxyHTcynZwQcfLLp+PX7ssccEALHXXnuJ1tZWa3lbW5vYZ599Mj7HE8/Nc889N+U5+MUXXwhFUcRuu+2W8fq7am1tFfn5+UKWZfHmm2+mrPvDH/4gAIgjjjgiZfnW7vdMkl9Pv/rVr1LWrVmzRqiqKvx+vwgGg9byxGN14oknpj3vFi5cmPF5mriOM844Q8Tj8ZR1X3zxhVBVVeTl5YnPP/88bYzJ7xnffPONsNlsYsyYMSmvDyGEePXVV4Usy2LWrFkpyxOP7d577y0aGhqs5W1tbWLMmDFClmVRU1OTNt7u3peE6N1rV9d1MXbsWAFAvPDCCymX+dvf/mbdN6tWrbKWNzY2Cr/fLwoKCsQXX3yRcpnPPvtMeDwesddee3U7vmR9eR5v7fWSSeKxd7vd4uOPP05bn9hn19dxOBwWRx11lJAkSXzyySfW8sTzGYB45JFHUi5zzjnnCAAiLy9P3HzzzSnrbrrppozPwSOPPFIASNv+nXfeEYqiiPz8/JT7J7H9Z599lnZbJk6cKOx2u6ivr0+7/QsWLEh57WuaZo332WefTbleAGLMmDEpz8twOCz2339/ASDj+2smf//73wUAcffdd1vL7r33Xut9wm63i/b2dmvd5MmThcvlEtFotM/3T+J9QJIk8eKLL6aNafbs2QKA+O9//5u2rq6uLuX3vjzfhBDilltuEQDE7NmzUz4D1q5dK/Ly8gQAMW/evJTLVFdXi0gkkravFStWCFmWxfz581OWb+19tbm5Oe32CGG+bw0bNkxMmDChx7cncT8UFBSIdevWWct1Xbfuz5tuusla3pfPia19r7rhhhtStn/ppZcEAHHMMcekLE88/kuWLEm7Hf/73/8EgLT34sRtaWxs3Op9QURENNQwiCEiItpJGYZhHYBMPmB41113CQDi17/+dcr2Tz31lAAgjj/++K3uuzfbCtH3IKakpCTjwZQtMQxD5OTkiEMPPTRl+e677y4AZDx42NXnn38uAIjjjjsuZXniYMXZZ5/dqzFl8u9//1sAEA8//LC1LBHE3Hfffdu8/0w++ugjAUDceOONPb7M9ghiTj/99LTt165dKwCIk046yVoWCASELMti2LBhoq2tbatj7UsQc/jhhwsAYsWKFWnbv/rqqwJA2nMpcSA6ObhIOOiggwSAlIOZ3XnkkUcEAHHaaaelrYvH41bYuX79emv5tgQxubm5oqWlJW194n5bunSptWzy5MlCVVXR1NSUtr2maaKgoEDsu+++KcsBCLvdLgKBQNplFixYIACIO+64Y6vjveyyywQA8Z///Cfj+lmzZglFUVJuS+KxfeWVV9K2v/766zMGq1sLYrqT6bX71ltvZXyuCGEelNx1113TgpjFixenHVhPlrgfuoY0mfTlebwtQcxll12Wtq6+vl4oiiKmTJmS8bL//e9/BQBx5ZVXWssSz+fp06enbf/GG28IAKKioiItdF+3bp0AIM466yxrWVVVlQAgRo4cKWKxWNr+fvazn6U9bo8++mi3AWUiiEzQdV3k5+eL0tLStKBRCCGampqEJEnilFNOsZadd955AoB46KGH0rZP3PaeBjGJ25w8plNOOUWUlJSI5557LuXxr6+vF5IkpRyg78v9k3jPznSwXYjOIOabb77Z6vj7GsSMHTtWyLKcMRhNPB+7BjFbsscee4jRo0enLOvL+2rCL37xi7T36S1J3A/JYUvCDz/8IGRZFhUVFdayvnxObOl71ahRozKexDJy5EhRUFCQsqwnQUymcREREe2s2JqMiIhoJ/Xaa6/hhx9+wFFHHZXSV37u3Lm44oorsHTpUtx8883WZK7vv/8+AOCYY47Z6r57s+222HPPPeFwODKui8fjuO+++/B///d/+PLLLxEMBlP6xW/cuNH6f3t7Oz7//HOUlJRgr7322ur1JtoRvfjii6iqqkJ5eTkA4P777wcAzJ8/v8e3YcOGDbj11luxcuVKbNiwAeFwOGV98jiPP/54XHPNNbj44ouxYsUKHHXUUZg2bRomTpyYcW6T7jQ0NOC2227DCy+8gLVr16K9vb3b68yGrnMuALDu4+T5fdasWQPDMHDQQQfB4/Fsl7F8/PHHkGU5Y3uvgw8+GIqi4JNPPklbN27cOKtNXrLk25HcMqm76waQsW2Vqqo46KCDsG7dOnzyyScZ23D11t57753Sri/hkEMOwcMPP4xPPvkE8+bNQygUwqefforCwkKrNV1XDocj45w+FRUVKC4uTlvem/eMxJwLb7zxBtasWZO2fvPmzdB1Hd9++21a65uePrd6ojev3cRzZPr06Wn7kWUZBx54IL799tuU5Ynb+emnn2ac5yex/VdffYWJEyducax9fR731dSpU9OWrVmzBrqudztvUTweB4CMz5tMj9vw4cMBmK3UuraITHymJc/3kbh9P/7xjzNOUj5jxgw88sgj+OSTT3DmmWcCAE488UTk5ubi0UcfxR/+8AfrehLzmSS3Jfv222/R2NiIcePGZWyvBgAulyvl9iVe44m5nZJNnz497XZtyahRo7DLLrvg9ddfh2EY1hwmhx9+OA4++GCoqoqVK1fiyCOPxKpVqyCESHlv6cv9k5Dp8QaA008/HU8//TT2228/zJkzB4ceeiimTZuGsrKyHt+uLWltbcX333+P8vJyjBkzJm39IYccknE+NyEEHn30USxduhSffvopmpqaoOu6tb6n7eCSvfPOO7jzzjvx3nvvYfPmzSnzTgHm+0Fv3qczPSd22WUXlJeXY926dWhubobf7+/3z4lMryfAfJ/szXw3EydOxOTJk/H4449j/fr1OOGEEzB9+nRMmTKlT/cvERHRUMAghoiIaCeVCA2SDyQBQH5+PmbOnIl///vfWLZsGU4++WQAZm9/ABknA+6qN9tui9LS0m7XzZkzB8888wx22WUXnHDCCSgtLbVCm8WLF6dMJt6X8V500UV488038eCDD+LGG29EbW0tli9fjsmTJ3d7UKqrtWvXYurUqWhqasKPf/xjHHnkkcjNzYWiKNZcH8njHDVqFD744APccMMNeOmll/D0008DMA+Q/OpXv8Ill1yy1etsbm7Gvvvui8rKSkydOhVnnnkm8vPzoaoqmpubceedd2acaH1HyjQvQGKukeSDZTvieRYMBpGfn5/xwJGqqigsLMTmzZvT1nU3t0Gm27Gl6waAYcOGZVyfWJ64H7ZVYq6WrhKvs8R4mpqaIIRAXV1dxoOcW9Lda7Y3j2VDQwMA4Lbbbtvidm1tbWnLevrc2prevnYT911393Gm5Ynb+cADD2xxLJluZ1d9fR73VabHOXF71qxZkzFAS8h0e3Jzc9OWJR63La1LhDtA315PLpcLP/3pT/HAAw/g5ZdfxjHHHINYLIbHH38cRUVFKcFh4vZ99913W3xdJN++LT0vEo9Lbxx22GF44IEH8PHHH8Nms6Gurg6HHXYYfD4f9t13X2temEzzw2zL+013r+vZs2fjP//5D/70pz/hoYcewn333QcA2GeffbBo0SIcccQRvbp9XW3tddXduC6//HIsXrwYw4YNs05GcblcAIClS5dac9z01DPPPIOTTz4ZTqcTRxxxBMaMGQOPxwNZlvH666/jjTfe6PXn6pZu0/r16xEMBuH3+/v9c2JLn13JJ7NsjaIoeO2113DTTTfhqaeewm9+8xsAgM/nw7x587Bo0aKtnoxAREQ01DCIISIi2gnV1dXh2WefBQCcdtppOO200zJud//991tBTOKP855US/RmWwCQJAmapmVct6WDB91VgXz44Yd45plncPjhh+PFF19MmTDcMAz88Y9/3KbxArAmgf/73/+O66+/Hg899BA0TcOFF17Y433ccccdaGhowJIlS9ICsccff9w66zrZbrvthieeeAKapuHTTz/Fq6++irvuuguXXnopPB4Pzj333C1e54MPPojKykosXLgw7az09957D3feeWePx78lsiwDwBYf155O/N2dvjxuvZWbm4vGxkbE4/G0s8Q1TUN9fX3Gypf+um4AqK2tzbi+pqYmZbttFQgEMi5PXH/iehI/99prL+ts7J7q7jWb/FgmJhrvTuL6g8Hgdrvvt6a3r93EOLu7jzMtT9zOTz/9FD/60Y+2abw7+nmc6XFO3J5f/vKXuOOOO/rtunqqr6+nefPm4YEHHsDDDz+MY445Bs8//zwaGhpw6aWXptyXicudeOKJVkje0zEFAgHssssuKesSj0tvqkdmzJiBBx54AK+++qoVuiXClhkzZmDRokVobGzEypUrkZubi7333jttLH15v9lSReaxxx6LY489Fu3t7Vi9ejX+85//4G9/+xuOO+44fPLJJ1ut5tqS5Psvk0y3ZfPmzfjLX/6C3XffHe+++25aFeDjjz/e63Fcd911sNvt+PDDD7HbbrulrLvwwgvxxhtv9HqfgUAA48ePT1ve3fvxjvqc6I28vDz8+c9/xp///Gd8//33eOONN3Dffffh7rvvRnNzM/75z3/u8DERERFlk5ztARAREdGO9/DDDyMWi2GfffbBueeem/FfUVERXn31VVRWVgIA9t9/fwDAiy++uNX992ZbwPxjvaqqKm25ruv473//28Nb1en7778HYLbySg5hAOCDDz5IayHk8Xiw++67IxAI9Lg9j81mw3nnnYeNGzfiueeew4MPPgiv14vTTz+91+M86aST0tZt7cCNqqrYZ5998Jvf/MY6cJQI17bXdfZGXl4eAGR8XL///nvrLN5tMXXqVMiyjDfffDOtvVomiXYrval82GuvvWAYBt588820dW+++SZ0XU85mNmfEm3yXn/99bR1mqbhrbfeAoB+u/6PP/4Yra2tacsT158Yj9frxaRJk/DFF1+gsbGxX667L+8vidu/vciy3O1zpbevo8R99/bbb6etMwwD7777btry/ryd2XweJyRer9v7cetO8mOQKSBetWoVgPTX07Rp0zBu3DgsW7YMwWDQCtnmzZuXst2ECRPg9/vx/vvvp1TibEniujI9Z95+++1evVcBZtgiSRJWrlyJ1157DbvssgsqKioAmIGMYRj4xz/+ge+++w6HHHJISguqvt4/PeXxeDBjxgzccccduOaaaxCLxVJe7315f/b5fBg7diw2btyIH374IW19pvfOtWvXwjAMHHnkkWkhTHV1NdauXZt2ma2N7fvvv8fEiRPTQhjDMDK+5nsi03Ni7dq1qKqqQkVFhRVe7+jPiWS9eczGjh2Lc889F2+88Qa8Xi+WLVvW7+MhIiIa6BjEEBER7YQSrW7uuecePPjggxn/XXjhhRBC4MEHHwQAzJw5ExUVFVi+fHnGM0aTe/H3ZlvAPEC3YcMGvPzyyynLb7755l63CAFgHXjqemBi8+bNuPjiizNeJtHW68ILL0wLCQzDsM4qTXbBBRdAURQsWLAAlZWVmDt3bsY5Nno7zhUrVlj3e7KPPvooY4CROBvY7Xb3+To/+eQTLFq0aOuD7qEJEyYgJycHy5YtS2l5FA6He9RCrSeKiopw6qmnoqamBr/61a/S2qa0tbWl3F8FBQUAzLk9euqcc84BAFx99dUIhULW8lAohKuuugoAtlqF1FezZs1Cfn4+Hn/8cWsOlYTFixejsrIShx9+eL/MDwOYFSY33XRTyrIPP/wQjz76KHJzc3HiiSdayy+//HLEYjGcc845GavWmpqaelUt8/Of/xyqquJ3v/sdvvzyy7T1ye8ZCxYsgM1mwy9/+cu0eVUAIBaL9cvB/oKCgoxBItD71+60adMwZswYrFq1Ki1suv/++zPejrPPPht+vx833ngjPvjgg7T1hmFkPPiaSTafxwnFxcU4/fTT8eGHH+J3v/tdxoO3P/zwgxX+97eysjIcccQRWLduXdrcRqtXr8Zjjz2GvLy8lOd5wrx58xCJRHDPPffghRdewI9+9KO0+cRUVcUvfvEL1NTU4JJLLkkL/AGzOiH5+Z2oprrllltSQs1IJIKrr76617exuLgYkyZNwjvvvIM333wzpfXYgQceCKfTab3Pd51TZFvun+68+eabGUOdTJ9ZfXl/BszXiWEY+M1vfpPyGVBZWYm//OUvadsnXrtdg662tjacf/75Gce7tbFVVFTgu+++w6ZNm6xlQgjccMMNGd/PeuLOO+9M+f5jGAauvPJKGIaBs88+21q+oz8nkm3pfqmsrMwYajU1NSEajVqt4IiIiHYmbE1GRES0k3n99dfx7bffYo899tjiXCbnnnsubrnlFixZsgQ33ngj7HY7nnzySRx55JGYO3cu7rvvPuy///6IRCL46quvsHLlSusARm+2BYBf/epXWLFiBU444QTMmTMH+fn5ePfdd1FZWYlDDjmkxwcbE/bdd19MmzYNTz/9NA488EBMnz4dgUAAL774IsaPH29N8pzsvPPOw1tvvYV//vOfGDduHE444QQUFRVh06ZNeO2113DOOeektfIaOXIkjj32WCxfvhwAetWWDDDnmVmyZAlOOeUUnHzyyRg+fDg+//xzvPTSS/jpT3+KJ554ImX7f/7zn7jvvvswffp0jBkzBnl5efjhhx/w3HPPweFw4LLLLtvqdZ555pm47bbbcNlll2HVqlUYN24cvvvuO/znP//B7Nmz066zr2w2Gy699FL87ne/w1577YUTTzwRmqbhlVdewfDhwzM+Bn1x99134/PPP8e9996L119/HUcddRTsdjsqKyuxYsUKLF++3Jqg/LDDDsNtt92G888/HyeddBJ8Ph/8fj8WLFjQ7f7nzp2LZcuW4V//+hcmTZqEWbNmQZIkPPvss6isrMScOXN6VQXVG16vFw899BBOOeUUHHzwwTjllFMwcuRIfPTRR3j55ZdRWlpqzbnQHw466CA8+OCDWL16NaZNm4aamho88cQTMAwD9913X0rrqnPOOQcfffQR7rnnHowZMwZHHXUURo4cicbGRlRWVuLNN9/E2WefjXvvvbdH1z1x4kTcc889mD9/Pvbaay+ccMIJGDduHBoaGrBmzRrk5ORYZ+RPmDABDz30EM455xxMmjQJRx99NHbddVfE43Fs2LABb731FoqKivD1119v0/1x2GGH4f/+7/8wc+ZM7L333rDZbDjooINw0EEH9fq1K8syHnzwQRx99NE4/vjjcdJJJ2HMmDH43//+h1deeQXHHHMMXnzxRaulH2Ae5Hzqqadw4oknYv/998dhhx2GSZMmQZIkVFVV4b333kNDQwMikchWb0s2n8fJ7r77bnz33Xe4/vrr8c9//hPTp09HSUkJNm3ahK+++gpr1qzB448/jtGjR2+X67/33nsxbdo0XHnllXj55ZcxZcoUVFVV4cknn4Qsy1iyZEnGMP2MM87A9ddfj4ULFyIej6dVwyRcd911+PTTT3Hvvffiueeew4wZMzBixAhs3rwZ3333Hd555x3ccsstVjuuadOm4Re/+AXuuusu7L777jj55JNhs9mwbNky5OXldTvvx5Ycdthh+Pzzz63/JzgcDkybNi3j/DDbev9055JLLsHGjRsxbdo0VFRUwG6346OPPsJrr72GUaNG4dRTT00Zd2/fnwHgiiuuwLPPPot///vf2HvvvXHUUUehubkZ//rXv3DQQQdZn88JpaWlOPXUU/F///d/mDx5Mo488kgEg0G88sorcDqdmDx5clol7vjx4zFixAj83//9H2w2G0aNGgVJknDGGWdg1KhR+OUvf2m9d5100kmw2Wx455138OWXX2LmzJl47rnnenyfJUybNg2TJ0/GnDlzkJubixUrVuDTTz/FPvvsg1//+tfWdjv6cyLZAQccALfbjcWLF6OhocGak+cXv/gFPv30U8yePRv77rsvdtttNwwfPhx1dXVYtmwZ4vG4NWcMERHRTkUQERHRTmXu3LkCgLjzzju3uu0RRxwhAIinn37aWrZ+/Xrx85//XFRUVAibzSby8/PF1KlTxS233JJ2+d5su2zZMrHPPvsIh8Mh8vPzxZw5c8S6devEvHnzBABRWVlpbVtZWSkAiHnz5nU79oaGBvHzn/9cjBo1SjgcDrHLLruIq6++WrS3t4tRo0aJUaNGZbzcI488Ig466CCRk5MjHA6HqKioEHPnzhUfffRRxu2fffZZAUBMmTKl27FsyTvvvCMOPfRQ4ff7hdfrFdOmTRPPPPOMWLVqlQAgFi5caG37/vvvi/nz54sf/ehHIi8vTzidTjFmzBhx1llnic8++6zH1/nFF1+ImTNniqKiIuF2u8Xee+8tHnjggR7dr11t6b40DEMsWrRI7LLLLsJms4ny8nJx5ZVXdvsYLFmyRAAQS5Ysybg/AOLggw9OW97W1iZuvvlmscceewiXyyW8Xq/YbbfdxKWXXioCgUDKtn/605/EhAkThN1uFwBSxnDwwQeLTF+PdV0Xf/3rX8U+++wjXC6XcLlcYu+99xZ333230HW9x+MUQmR8Pm/NBx98IGbNmiUKCwut+3H+/Pli48aNadtmet5sTfLj/uWXX4rjjz9e+P1+4XK5xIEHHiheeumlbi/73HPPiWOPPVYUFRUJm80mSkpKxL777iuuvfZa8dVXX6Vsu6X7JeHdd98Vs2fPtvY3bNgwcdRRR4knn3wybdv//e9/Yt68eWLkyJHCbreLvLw8MWnSJHHBBReIlStXpmzb3WMrRPfPu0AgIE477TRRXFwsZFlOu19789pNeP/998Xhhx8uvF6v8Hq94rDDDhPvvvuuuPjiiwUA8cknn6RdprKyUlx88cVi7NixwuFwCJ/PJ8aPHy9+9rOfiWeeeWaL92ey3j6P+/JcXbhwoQAgVq1a1e020WhU3HXXXeKAAw4QOTk5wm63i/LycjFjxgzx5z//WdTX11vbbum+3Nr7VXfPt+rqajF//nwxcuRIYbPZREFBgTjhhBPEBx98sMXbdthhhwkAQlVVUVtb2+12hmGIf/zjH2LGjBkiLy9P2Gw2MXz4cDFt2jRxyy23iA0bNqRtf9ddd1nvS8OGDRMXXXSRaG5u3uL7a3eWL18uAAhJktLe/37/+98LAKKkpKTby/fm/tnae/YTTzwhTj31VDF27Fjh8XiEz+cTkyZNEtdcc43YvHlz2vZben/ekmAwKH75y1+K4cOHC4fDIcaPHy9uv/128cMPP2R8jrS3t4trrrlGjBkzRjgcDlFWViYuuugiUV9f3+17xQcffCBmzJghcnJyhCRJac/zJUuWiD333FO43W5RUFAgZs2aJf73v//16DWRLPG6++GHH8Ttt98uxo8fLxwOhxg+fLi49NJLRTAYzHi53nxO9OV7VXf3y4svvij2339/4fF4BABrv1VVVeLqq68WBx54oCgpKRF2u12MGDFCHH300eKFF17o0X1BREQ01EhCCLHdUh4iIiKiIe6GG27AjTfeiAcffHC7t/Yh2h7WrVuH0aNHY968eVi6dGm2h7NTmjZtGlavXo1gMAiPx5Pt4RBRlpx11ll4+OGHUVlZabVRIyIioqGBc8QQERER9VFrayvuvfde5Ofn47TTTsv2cIhoAAuFQhnn01m6dCneffddHHnkkQxhiIiIiIiGKM4RQ0RERNRLzz//PD7++GM899xzCAQCuP3221MmHSYi6mrDhg3Ya6+9cMQRR2Ds2LHQNA2ffPIJ3n77bfj9fvzpT3/K9hCJiIiIiGg7YRBDRERE1EtPPvkkHn74YZSUlODqq6/GL3/5y2wPiYgGuJKSEpx++ul44403sGrVKkSjUZSWluLss8/GtddeizFjxmR7iEREREREtJ1wjhgiIiIiIiIiIiIiIqLthHPEEBERERERERERERERbScMYoiIiIiIiIiIiIiIiLYTzhHTA4ZhYNOmTfD5fJAkKdvDISIiIiIiIiIiIiKiLBJCoLW1FcOHD4csb7nmhUFMD2zatAnl5eXZHgYREREREREREREREQ0gVVVVKCsr2+I2DGJ6wOfzATDv0JycnCyPhoiIiIiIiIiIiIiIsqmlpQXl5eVWfrAlDGJ6INGOLCcnh0EMEREREREREREREREBQI+mM9ly4zIiIiIiIiIiIiIiIiLqMwYxRERERERERERERERE2wmDGCIiIiIiIiIiIiIiou2EQQwREREREREREREREdF2omZ7AERERERERERERERE/UUIAV3XoWlatodCg5CqqlAUBZIk9d8++21PRERERERERERERERZIoRAc3Mz6urqoOt6todDg5iiKCguLkZubm6/BDIMYoiIiIiIiIiIiIho0KutrUVzczNycnKQk5MDVVX7taqBhj4hBDRNQ0tLC2pqahAOhzFs2LBt3i+DGCIiIiIiIiIiIiIa1HRdRzAYRFFREQoLC7M9HBrkfD4fHA4H6uvrUVxcDEVRtml/cj+Ni4iIiIiIiIiIiIgoK+LxOIQQ8Hg82R4KDREejwdCCMTj8W3eF4MYIiIiIiIiIiIiIhoS2IqM+kt/PpcYxBAREREREREREREREW0nDGKIiIiIiIiIiIiIiIi2EwYxRERERERERERERETUK2eddRYqKiqyPYxBgUEMEREREREREREREdEAtnTpUkiSZP1TVRUjRozAWWedhY0bN2Z7eLQVarYHQEREREREREREREREW3fTTTdh9OjRiEQieP/997F06VK8/fbb+Pzzz+F0OrM9POoGgxgiIiIiIiIiIiIiokHgmGOOwZQpUwAA5513HgoLC3Hrrbdi+fLl+OlPf5rl0VF32JqMiIiIiIiIiIiIiGgQ+vGPfwwA+OGHHwAAsVgM119/PfbZZx/k5ubC4/Hgxz/+MVatWpVyuXXr1kGSJNx+++24//77MWbMGDgcDuy7775Ys2ZN2vU8++yz2H333eF0OrH77rvjmWeeyTie9vZ2XHHFFSgvL4fD4cD48eNx++23QwiRsp0kSViwYAGefPJJTJw4ES6XCwcccAA+++wzAMB9992HsWPHwul04pBDDsG6deu29a7KKlbEEBERERERERERERENQomAIi8vDwDQ0tKCBx98EKeddhrOP/98tLa24u9//zuOOuoofPDBB5g8eXLK5R977DG0trbiwgsvhCRJ+OMf/4jZs2dj7dq1sNlsAICXX34ZJ510EiZOnIhFixahoaEBZ599NsrKylL2JYTA8ccfj1WrVuHcc8/F5MmTsWLFClx55ZXYuHEj/vznP6ds/9Zbb2H58uW4+OKLAQCLFi3Ccccdh1//+te45557cNFFF6GpqQl//OMfcc455+C1117bDvfgjsEghoiIiIiIiIiIiIiGJCGAsJbtUXRyqYAk9f3ywWAQ9fX1iEQiWL16NW688UY4HA4cd9xxAMxAZt26dbDb7dZlzj//fEyYMAF33XUX/v73v6fsb8OGDfjuu++sIGf8+PE44YQTsGLFCmufv/nNb1BSUoK3334bubm5AICDDz4YRx55JEaNGmXta/ny5Xjttddw880349prrwUAXHzxxTjllFNw5513YsGCBRgzZoy1/TfffIOvv/4aFRUV1tgvvPBC3Hzzzfj222/h8/kAALquY9GiRVi3bp217WDDIIaIiIiIiIiIiIiIhqSwBux2T7ZH0emriwC3re+XP/zww1N+r6iowCOPPGJVpyiKAkVRAACGYaC5uRmGYWDKlCn4+OOP0/Y3Z84cK4QBOludrV27FgBQU1OD//73v7jqqqusEAYAjjjiCEycOBHt7e3WshdeeAGKouCSSy5JuY4rrrgCTz31FF588UUsWLDAWn7YYYelBCv77bcfAOCkk06yQpjk5WvXrh20QQzniCEiIiIiIiIiIiIiGgT++te/4pVXXsFTTz2Fn/zkJ6ivr4fD4UjZ5uGHH8aPfvQjOJ1OFBQUoKioCM8//zyCwWDa/kaOHJnyeyKUaWpqAgCsX78eADBu3Li0y44fPz7l9/Xr12P48OEpIQoA7Lbbbin76u66E0FPeXl5xuWJMQ1GrIghIiIiIiIiIiIioiHJpZpVKAOFaxuPyE+dOhVTpkwBAMyaNQvTp0/H3Llz8c0338Dr9eKRRx7BWWedhVmzZuHKK69EcXExFEXBokWL8MMPP6TtL1E905UQYtsG2gPdXXc2x7S9MIghIiIiIiIiIiIioiFJkratFdhAlghYDj30UNx999246qqr8NRTT2GXXXbB008/DSlpMpqFCxf26ToSc8B89913aeu++eabtG1fffVVtLa2plTFfP311yn72hmxNRkRERERERERERER0SB0yCGHYOrUqVi8eDEikYhVTZJcPbJ69Wq89957fdr/sGHDMHnyZDz88MMprc1eeeUVfPnllynb/uQnP4Gu67j77rtTlv/5z3+GJEk45phj+jSGoYAVMURERERERERERET9yNA0GLEYjGgURiwGPRoFAMiqCslmg2yzdf5fVSF104qJqCeuvPJKnHLKKVi6dCmOO+44PP300zjxxBNx7LHHorKyEvfeey8mTpyItra2Pu1/0aJFOPbYYzF9+nScc845aGxsxF133YVJkyal7HPmzJk49NBDce2112LdunXYc8898fLLL2PZsmW47LLLMGbMmP66yYMOgxgiIiIiIiIiIiKiHjBiMStY6Rq0aOEw9LY2aKEQ9EgEQtNgxOPmT00DJAmSJEFSlM5/qgq546fidEJ2OKC4XOZPm81cn/TT+j9DHEoye/ZsjBkzBrfffju++eYb1NbW4r777sOKFSswceJEPPLII3jyySfx+uuv92n/Rx99NJ588kn89re/xdVXX40xY8ZgyZIlWLZsWco+ZVnG8uXLcf311+OJJ57AkiVLUFFRgdtuuw1XXHFF/9zYQUoSg3mGmx2kpaUFubm5CAaDyMnJyfZwiIiIiIiIiIiIqJ8IIayAxYhGoScFLEY0Cq29HfG2NuihEIxYDCIeh65pEPE40HFoVQCQZDklNEn5qZrnwwvDgND1rf4zdB2SEOZ+E/tPhDiqClmWgeQQJxHeJMKcxPXa7WZY02UsiaocSR46M1dEIhFUVlZi9OjRcDqd2R4ODQFbe071JjdgRQwRERERERERERENOcIwMlauGLEY9EgEWns79PZ26OEw9FgspYIlEbAgOfzoCDIUrxdq4vdeBhmSLJuXsfV+9vjuQhyj47YIXYehaRC63hneICnE6aie2VKIozidkBO3LVFxkylYGmIhDtH2xiCGiIiIiIiIiIiIBg1D09KCFSMaNf8fiSDe3g6tvR1GOGxu2xGuCE1DojVQIphICRZcLut3SZKyehsz2REhDgwDSKrEMa+4S4hjs0GWZUh2OxSHwwpxVJcrvW1ad6EOQxzayTCIISIiIiIiIiIioqwSQpgtv7oGK4n2YOEw9PZ2xNvbYUSjEPF4Z8hiGJ2hQVJ7MElVITscUD0eSDabWdkyAAOWHWF7hDh6ezviLS3W74kQJ/WKtyHE6fqTIQ4NYgxiiIiIiIiIiIiIaLsQhgEjHk8NVpKCFq2tzWwRFgqZ23UELIn5V6wKFkVJOSivuN1QOVn9DtGvIY6mwdB1iK4hjq6bIU5yUJYc4iiK2U4tKcRJtFRTnU5IqgpNkmBomjnHT+I5IUlm+Nbxb2cN4ij7GMQQERERERERERFRrwhdTw9WEj/DYWihUGfA0hGsGPG4edA9qWpCSqp0kG02qA5HZ0ULKx8GvX4LcTrmvkkLcRLt1ADoDgf08eOhtbUhFouZVVKJ4CU5kJFl8/+Jn92FNQxxqB8xiCEiIiIiIiIiIiIAMCtSusy9kghZ9HAYWmL+lUgkpXpF6Hrn5PCS1Dnh+yCZf4UGnt6GOHFZRsxmg2y3Q7bbzcAvEfoJAZH4XdfNVngdy9OvWNq2ECfx/8Q+GOIQGMQQERERERERERENaUKIjJUr1vwrHdUrWlsbjFgsZf6VxMFsIUmQkuZfkW02yE4n1MTvKg8z0sCRHIKkLOsBkRTeJH4KIczKm96EOB3X3TXEkWQ5c3DDEGdI4zskERERERERERHRICQMI716peN3PRqF3lG9oodC0ONxK2AR8TiEEOYBXiEARUkJWBSvFyonRqedVHJrMmtZDy/bNcQR/RTiSLKcUoXDEGfwYRBDREREREREREQ0gBialhasWNUskYjVHkwPh60J7oWmmfNlAGaLMEmCpCjm5PaJSe2dTvMn518h2i66hji9iUFSQpyOwCYR4iTmVup1iJOhldoWQ5yu7dio3zCIISIiIiIiIiIi2gGMeNwMUzJUsGjhcGcFSyQC0dEaTGgaDE1LPUCaCFY65sNQPR5r0nsePCUanPoa4qSEM11DHE2z1ncX4qRc7xZCHMlmg2K39+m2EYMYIiIiIiIiIiKiPtvq/Cvt7Yi3tUEPhaz5V/SO9mBW+yIg8/wrPh/nXyGiLbIqYZJ+9nuIYxhQ3G4GMduA7+JERERERERERERdCMPIWLlixGJWezC9oz2YHoulVLBAiM4DoopihSuSqnL+FSIaMHoa4hix2I4a0pDFIIaIiIiIiIiIiHYahqZlnHvFiMWgh8OId7QHM8Jhc9uk+VcSTX0kSUoJV2SbDZLLZf5UFAYsRESUgkEMERERERER0U5Cj0YhDCOtD31XKXNMdPP/Xm9DtB0JIcyWX91UsGihEPT2dsTb22FEoxDxeGfIYhidZ4DLcmrA4nCY868kAhY+p4koS/7x6KM476KL8N6qVdhn772zPRzLl19+iX/9618466yzUFFR0ePL/fe//8Xtt9+ON954A5s3b4bH48Hee++N008/HWeeeSYURdl+g84CBjFEREREREREQ5DQdcRbWhAPBhFraUGkthaxYBAwjPSNuwtSMu24y4HojAemM+wvbbvuJgfusqzr8owhUtdtJSm13QoAJCoUulwusb/uKhik5Mt1c7u6HVOXfXd7EL+/wq4M+9/qPrp7PHsT0m3pObG1xyv1glvdn6FpKUFLvLXVbBEWCsGIx81/SfOvWBUsitI5ub2qQnG7O9uDDbGDfUREO9KXX36JG2+8EYccckiPg5gHH3wQ8+fPR0lJCc444wyMGzcOra2tWLlyJc4991zU1NTgmmuu2b4D38EYxBARERERERENckII82z/lhbEW1oQqa9HtK7OPEAdDgMAFJcLissFyWbreuFMO0zZd0/Xp2yb6XLdLO/r5VIu29fLdbdNP1yf6GZ5dzUVmfa4tW3T1neEFqIH19fddWfafmvrtzimTPvYWmVJN2GMMIzU+1JVUypYVK+383e2ByMiGnDef/99zJ8/HwcccABeeOEF+Hw+a91ll12GDz/8EJ9//vk2X49hGIjFYnA6ndu8r/7AIIaIiIiIiIhokDFiMcRbWhALBhFvbka4thZaSwu0UAjCMCDbbFDcbtj9fsilpWynRANSr0Ktjv+zPRgR0ZZt3LQJN9xyC15csQLNwSDG7LILfrlgAc464wxrm1gsht/fdhteXLECP1RWQtM07LXnnlh4zTU45KCDUvb3xFNP4Y4778R3a9dCkiSMGjUK5513Hi699FIsXboUZ599NgDg0EMPtS6zatUqHHLIIRnHd+ONN0KSJDz66KMpIUzClClTMGXKFOv39vZ2XH/99fjXv/6FzZs3o6KiAueffz6uuOKKlM8DSZJw8cUX44ADDsDvf/97fPvtt3jyyScxa9YsbNy4Eddddx2ef/55NDc3Y+zYsbjiiitwzjnn9Ok+7gsGMUREREREREQDmDAMxFtbEQ8GzWqXQACxxkZo4TBELAZIklnt4nbDXVDANks0aGytDVrKttt5LEQ0dAkhzM/LAUKy27dboBzYvBk/PvxwSJKEn19wAYoKCvDSq6/iggUL0NLaiksuuggA0NLaiiX/+AfmnHwyzp03D61tbVjyz3/i2Nmz8c5rr2Hyj34EAHj1tddwxrnn4tCDDsLvb7oJisOBr776Cu+88w4uvfRSHHTQQbjkkkvwl7/8Bddccw122203ALB+dhUKhbBy5UocdNBBGDly5FZvjxACxx9/PFatWoVzzz0XkydPxooVK3DllVdi48aN+POf/5yy/WuvvYZ//etfWLBgAQoLC1FRUYFAIID9998fkiRhwYIFKCoqwosvvohzzz0XLS0tuOyyy7bhHu85BjFEREREREREA4gWCnXO7dLQgMjmzZ0txoSA7HRCcbvhKCyE4nBke7hEREQDmojF8MXll2d7GJZJd9wBaTt9fl9/003QdR0fv/ceCvLzAQAXnHsufnbOOfjdH/6A888+Gy6XC3l+P7777DPY7XbrsufOm4c99t0X99x3H+7/618BAC++/DJycnLwn3/9CzaPBzavN+X6dtllF/z4xz/GX/7yFxxxxBHdVsEkfP/994jH49hjjz16dHuWL1+O1157DTfffDOuvfZaAMDFF1+MU045BXfeeScWLFiAMWPGWNt/8803+OyzzzBx4kRr2XnnnQdd1/HZZ5+hoKAAADB//nycdtppuOGGG3DhhRfC5XL1aDzbgs0yiYiIiIiIiLLEiMcRbWhAW2UlGj/5BJteegkbn3sOm154AXVvvongN99Aj0ah5uTAPWoUPLvsAtfw4bD7/QxhiIiIyCKEwDPLl+PYo4+GEAL1DQ3WvyMPOwzBYBCffPopAEBRFCuEMQwDjY2N0HQd++y1l7UNAOTm5qK9vR0rX3+9X8bY0tICABlbkmXywgsvQFEUXHLJJSnLr7jiCggh8OKLL6YsP/jgg1NCGCEE/v3vf2PmzJnmfVJfb/076qijEAwG8fHHH2/jreoZVsQQERERERER7QBCCGhtbVa1S6SuDtG6OuihEPRYDBIA2eWC6nbD5fdDVvknOxER0baS7HZMuuOObA/DIiVVofSnuvp6NAeDeHDpUjy4dGnGbTbX1Vn//8djj2Hx3Xfjm2+/RTwet5aPHjXK+v/8887DU888g+NPPRUjhg/HkUcdhZ/+9Kc4+uij+zTGnJwcAEBra2uPtl+/fj2GDx+eFtwkWp+tX78+Zfno0aNTfq+rq0NzczPuv/9+3H///RmvY/PmzT0ay7YacN/q/vrXv+K2225DbW0t9txzT9x1112YOnVqt9svXrwYf/vb37BhwwYUFhbi5JNPxqJFi+B0OgEAN9xwA2688caUy4wfPx5ff/31dr0dREREREREtHPTo1FzXpdgENHGRrPFWGsr9HAYQgjINhtUjwf2ggLIDgcnICciItoOJEnabq3ABhLDMAAAc+fMwRmnnZZxmz123x0A8OgTT+C8n/8cxx93HC6/5BIUFxZCURT88Y47sHbdOmv74qIifPj221ixYgVefv11rHj1VSxZsgRnnnkmHn744V6PcezYsVBVFZ999lnvb2APdG0xlrhPfvazn2HevHkZL/OjjvlwtrcBFcQ88cQTuPzyy3Hvvfdiv/32w+LFi3HUUUfhm2++QXFxcdr2jz32GK666io89NBDOPDAA/Htt9/irLPOgiRJuCMp5Zw0aRJeffVV63eVZxURERERERFRPxK63jmvS0sLIrW1iDU3Qw+FYGgaZEWB7HRC9XrhKCqCJLNTOBEREfWfosJC+Hw+6LqOww49dIvbPr1sGXapqMCTjzySciLITYsWpW1rt9tx7FFHYeYJJ0Bxu3HRRRfhvvvuw3XXXYexY8f26kQSt9uNGTNm4LXXXkNVVRXKy8u3uP2oUaPw6quvorW1NaUqJlFkMSqpeieToqIi6z45/PDDezzO7WFAffO74447cP755+Pss8/GxIkTce+998LtduOhhx7KuP27776LadOmYe7cuaioqMCRRx6J0047DR988EHKdqqqorS01PpXWFi4I24OERERERERDUFCCGjt7Qhv2oSWr7/G5rffRvXy5dj4/POoeeUVNHzwASKbN0NWVThLS+EdPRrukSPhLC6G6vEwhCEiIqJ+pygKTjz+eDyzfDk+//LLtPV19fWd23Z8FxFCWMs++PBDvN/luHpDY2PK77IsWxUk0WgUAODxeAAAzc3NPRrnwoULIYTAGWecgba2trT1H330kVVt85Of/AS6ruPuu+9O2ebPf/4zJEnCMcccs8XrUhQFJ510Ev7973/j888/T1tfl9SqbXsbMKUhsVgMH330Ea6++mprmSzLOPzww/Hee+9lvMyBBx6IRx55BB988AGmTp2KtWvX4oUXXsAZZ5yRst13332H4cOHw+l04oADDsCiRYswcuTIbscSjUatJxLQOYkQERERERER7XyMWAzxlhbEgkHEm5sRDgSgBYPQQiGzxZiqQnG7Yff7IZeWssUYERERbTdLH3kEK1auTFv+i/nzccsNN+CNt97C9MMOw7nz5mG38ePR2NSETz79FK+9/joCHXOqHHv00Xj2uedw8umn4ydHHonK9evxwEMPYbcJE9De3m7t88Jf/AJNTU04eNo0lI8ciepAAHfddRcmT55szdMyefJkKIqCW2+9FcFgEA6HAzNmzMjY4Qowj+n/9a9/xUUXXYQJEybgjDPOwLhx49Da2orXX38dy5cvx8033wwAmDlzJg499FBce+21WLduHfbcc0+8/PLLWLZsGS677DKMGTNmq/fXH/7wB6xatQr77bcfzj//fEycOBGNjY34+OOP8eqrr6KxS9i0vQyYIKa+vh66rqOkpCRleUlJSbfzucydOxf19fWYPn26eUaSpmH+/Pm45pprrG32228/LF26FOPHj0dNTQ1uvPFG/PjHP8bnn3+eNslPwqJFi9LmlSEiIiIiIqKhTxgG4q2t0DqCl0gggFhjI7RwGCIWAyQJissFxe2Gu6AAkqJke8hERES0E7nv73/PuPzMuXNRNmIE3nntNdxy66149rnncO+DD6IgPx8TJ0zA75OOd595+umoDQTw4NKleGXlSuw2fjyWPvAA/v3ss3jz7bet7eb+9Kf4+9KluH/JEjQHgygtLcWcOXNwww03QO6oqiktLcW9996LRYsW4dxzz4Wu61i1alW3QQwAXHjhhdh3333xpz/9Cf/4xz9QV1cHr9eLvffeG0uWLMHPfvYzAGahxvLly3H99dfjiSeewJIlS1BRUYHbbrsNV1xxRY/ur5KSEnzwwQe46aab8PTTT+Oee+5BQUEBJk2ahFtvvbVH++gPkkiuP8qiTZs2YcSIEXj33XdxwAEHWMt//etf44033sDq1avTLvP666/j1FNPxc0334z99tsP33//PS699FKcf/75uO666zJeT3NzM0aNGoU77rgD5557bsZtMlXElJeXIxgMIicnZxtvKREREREREQ0UWjiMeDBozu3S2IhIIACtvR16OAwIAdnptIIXZSeY6JeIiGiwissygn4/RpWXw2m3Z3s4Q4oRi0F2OmHzerM9lB0qEomgsrISo0ePhtPpTFvf0tKC3NzcHuUGA6YiprCwEIqiIBAIpCwPBAIoLS3NeJnrrrsOZ5xxBs477zwAwB577IH29nZccMEFuPbaa61ULpnf78euu+6K77//vtuxOBwOOPgFm4iIiIiIaEgx4nHEW1rMNmPNzYgEAogHg9Da2wFdBxQFqscDNScHjuJizuVCRERERP1iwAQxdrsd++yzD1auXIlZs2YBAAzDwMqVK7FgwYKMlwmFQmlhi9JRFt5doU9bWxt++OGHtHlkiIiIiIiIaOgQQkBrazODl2AQkbo6xOrrzWqXWAwSANnlgup2w+X3Q1YHzJ/HRERERDTEDKhvmpdffjnmzZuHKVOmYOrUqVi8eDHa29tx9tlnAwDOPPNMjBgxAosWLQJgTtZzxx13YK+99rJak1133XWYOXOmFcj86le/wsyZMzFq1Chs2rQJCxcuhKIoOO2007J2O4mIiIiIiKh/6dGo1WIs2tRkthhrbYUeDkMIAdlmg+J2w15QANnhgCRJ2R4yEREREe0kBlQQM2fOHNTV1eH6669HbW0tJk+ejJdeegklJSUAgA0bNqRUwPz2t7+FJEn47W9/i40bN6KoqAgzZ87ELbfcYm1TXV2N0047DQ0NDSgqKsL06dPx/vvvo6ioaIffPiIiIiIiItp2Qtc7W4wFg4jU1iIWDEJvb4ehaZBkGYrLBdXrhaOoiC3GiIiIiCirJNFdDy+y9GbSHSIiIiIiIuo/QgjooZBZ7dLSgkh9PaJ1dWaLsXAYkCQoTidUtxuK2w3ZZsv2kImIiCgL4rKMoN+PUeXlcNrt2R7OkGLEYpCdTti83mwPZYeKRCKorKzE6NGj4XQ609b3JjcYUBUxREREREREtHMzYjGr0iXe3IxwIAAtGIQWCpktxlTVbDHm90MuLWWLMSIiIkrFugPqJ/1Zw8IghoiIiIiIiLJCGAbira3QEi3GAgHEGhuhhcMwolGrxZjidsOVnw9Z5Z+wRERElJkshPndQteRXrtA1HvxeBwArPnotwW/xRIREREREdEOoYXDZouxYBCxpiZEams7W4wJAdnphOJywVFYCMXhyPZwiYiIaBBRhIASj6OlrQ1el4tVs7RNhBAIBoNwOByw9UPrWwYxRERERERE1O+MeBzxlhazzVhzMyKBAOLBIPRQCELTAEWB6vFAzcmBo7gYkixne8hEREQ0yLmjUbQFg9gEIMfrhU1RAAYy20zE45AkCfpOUJ0shEA8HkcwGERbWxtGjBjRL/sd+vccERERERERbVdCCGhtbWbwEgwiUleHWH29We0Si0ECILtcUN1u2Px+thgjIiKi7cKpaUBbG0LxOFqDQZ7o0U+EpkGy2XaqimWHw4ERI0YgJyenX/bHb79ERERERETUK3o0arYYa2lBtLERkUAAWmsr9HAYQgjINhsUtxv2ggLIDgdbgxAREdEO49Q0ODUNuiTB4HeQfhGprYV39GjkTZiQ7aHsEIqi9Es7smQMYoiIiIiIiKhbQtcRb20153UJBhGprUUsGITe3g4jHoekKFBcLqheLxxFRTzzlIiIiAYERQgoQmR7GENCPBqFDYDT6cz2UAYtBjFEREREREQEwGwxpodCVrVLpL4e0bo6s8VYJAIAUJxOKC4XnKWlkPv5TEEiIiIioqGIQQwREREREdFOyojFzHldWloQa2pCOBCA1tICrb3dbDGmqmaLMb8fstPJFmNERERERH3AIIaIiIiIiGgnIAwDWlub1WIsWleHaH09tHAYRjQKSZahuFxQ3G648vIgq/xzkYiIiIioP/CbNRERERER0RCkhcOIB4PQWloQbWxEpLa2s8WYYUDuaDHmKCyE4nBke7hEREREREMWgxgiIiIiIqJBzojHO1uMNTcjEgggHgxCD4UgNA1QFKgeD9ScHDiKiyHJcraHTERERES002AQQ0RERERENIgIIcwWYy0tiAeDiNbXI1pXB629HUYsBgCQXS6objdsfj9bjBERERERZRm/kRMREREREQ1gejSKeDCIeKLFWCAArbUVejgMYRiQ7XYobjfsBQWQHQ5IkpTtIRMRERERURIGMURERERERAOE0HXEW1sRDwYRCwYRqa1FLBiE3t4OIx6HpChQXC6oXi8cRUVsMUZERERENAgwiCEiIiIiIsoCIQT0UKiz2qWhAZHNm6G1t0OPRAAAisMBxe2Gs7QUss2W5RHTYCOEgN7ailhdHeL19YjV1cGIxWDLzYWalweb3w81Lw9qbi5DPSIiIqLtiEEMERERERHRDmDEYua8Li0tiDU1IRwIQGtpgdbebrYYs9nMFmN+P2Snky3GqNeMaBSx+nordInX1cGIRtO201tagKqqzgWyDDUnB7a8vJSARvF6+TwkIiIi6gcMYoiIiIiIiPqZMAxobW1Wi7FoXR2i9fXQwmEY0SgkWYbickFxu+HKy4Os8k8z6h1hGNCamhCrq7MqXrRgMH1DWYYtPx/2oiLYioqgOJ2IB4PQmpoQb26G1tQEEY9Da26G1twMVFZaF5VUFarfbwY0ST9ll4sBDREREVEv8Ns+ERERERHRNtLCYfPgdksLoo2NiNTWQguFoIfDgGFAcjigut1wFBZCcTiyPVwahPT29pTQJV5fD6HradspPp8ZuhQWmj/z8yEpSso2juHDrf8LIaC3t0Nrbka8qakzoGluhtA067qSyQ5HSuWMFdDY7dvnxhMRERENcgxiiIiIBilhGOznTkS0gwkhzIPTra1mtUtzMyKbNyPe3Aw9FILQNEBRoHo8UL1eOIqK+F5NvWbE44g3NKTO7RIKpW0n2WxWpYu9sNCqeOkNSZKger1QvV44y8qs5cIwzNZ5iYCm46fe2mq2QKutRay2NmVfisfTWTmTCGpycyGx4ouIiIh2cvw2RERENEgIXUesqQnRhgaEa2oQa2gAZBmSLEOy2SArCiRFgaSqkBTFbHOjKJA71lnbKorZTkRRzN87/qFjeWIbSJK5bWJ98mWT/09EtIMJw4AwDKDjpzAMszJACAhd7369YZhBSuL/XS5rxOMwdB1C08z96DqMeNz8f9IyoevQO1qMQZIgO51QPR7Y/H62GKNeE0JACwYR76h2idXVmS3ChEjdUJKg5uXBnhS6qLm52+2zWJJl2Px+2Px+uCoqOseraeZ4k1qbxZuaYIRC0Nvbobe3I7pxY+q4fT6oSe3NbHl5UHw+hpRERES00+BfCURERAOY1taGaEMDonV1CFVXI9bSAhGNQrLbobjdQOLAYyhk/jSMjD8hBATMs15TDuwkfpckCCGsIAaJsCXp90zLEwGO3DX8UVVIqmr9TAlzkgKhHoU93VyWB2+IskcIkRpkGAag61bIkRaCJH7fSkhiGAagaVYYYmiaFYAYHT+RCEOEsMZhBSyJ976k8VnvhZKE5MPVArB+t94fgZT3uy39tBcUQHY4GEhTr+mRSEroEq+vh4jH07aT3W4zdOmoeLHl50O22bIw4lSSqsJWUABbQUHKciMa7Qxmkn6KaNSsrGlpAdav77xAR9DTNaCR3W6+roiIiGjIYRBDREQ0gBjxOGKNjYg2NiJcXW1O7NzRikT1erf73AIi6cBlxmAn6eCmoeuApnUb/iRfRuoS9iSCIaDjQGimA6CJMEaWzW0SwU1im/6oBuoIglgNRINRWiXIlqpCkkKSXleFJH7vUhViXWfXMCTxPpEchgApIbAVgiS9H0gARPJrPFMQ3GWZLMuAzdb52kz+2fXyRFkgdN1sMVZfb4Uveltb2nZWuNERvNgLC6F4PFkYcd/JDgccJSVwlJRYy4QQMMLhlMoZLXn+mcZGxBsbU/Yj2WxWWzNbUkgj97LlGhEREdFAwiCGiIgoi4QQiLe0INbYiEgggPCmTYi3tMCIx6E4nVB9PrgLC3fYQUQreMgC0V34k+GnEMI8e7gv1UAZfva6GigpwGE10M5rQFSFGIYZavalKiTx3E/cHiRVhWwt1EgKROUeVI9Y4SrRECaEgN7amhK6xBsbzddnF2pubkrooublDcn3dkmSoLjdZhXv8OHWciEE9LY2M5hJmn9GCwYh4nHEN29GfPPmlH3JLldK5Yzq90P1+wdElRARERHR1jCIISIi2sH0aBSxhgZEGxrMdmNNTdBCIUiybE6UW1IC2W7P9jB3uJSDvVnQk8qexIFuI3HAPVPok3zge3tVAyVCnO1cDWT9fwBXA21TVcgW5hmxqkLicXN5N1UhXZ8fPaoK6VIFkvK7JFk/e9IeC7IMWZK6rwrpGqQQUb8xOj7PrdClrs6cN6gL2eHoDF2KimArLNwpP+eTSYl5Y3w+YORIa7nQdbONWZf2ZnprK4xwGLFwGLGampR9KV6vGcwkVc+oOTnmZxoRERHRAMEghoiIaDsThoFYczNijY0I19YiUlODeGsrhGFAcblg8/ngKC4eUAe3d0aJg9TZOHDT62ogXQfi8b5XA1k3uvtqoMSB+22qBkpsm6kaSJZ7VhWSXAnSD1UhKQFI4v5Pvo867hcA3YcaXcMNVoUQDXnCMKA1NZnzunRUvGjBYPqGsgxbfr41r4u9qAiK18vXfg9JimJVvLiSlhvxuNXSLJ7U4swIh6G3tZnt3qqqknYkmVVHicqZjlZnis/Hx4KIiIiygkEMERHRdqCFw4g1NCBSV4dwdTViwSD0cNjsAe/zwTVihHnwmggDsBqoa0urXlQDJQdG3VUDpYUeXatE+lIVkinw6C5AISLaCr293Qxd6uoQr69HvKEBQtPStlN8PqvKxV5UBFt+PisxtgPZZrMqipLpkUhqa7OOnyIpuEkmqarV0ixRRWPz+yG7XPx8ICIiou2KR4CIiIj6gdB1xJqaEG1oQLimBpFAAFpbG4QQUD0e2P1+yKWl/COfBqRsVgMREWWbEY8j3tBghS6xujoYoVDadlJHGGCFLkVFUDiBfFYpTieUYcPgGDbMWiaEgBEKpVTOJFqcCU0zg7X6eoST9iM7HCmVM1ZA43Ds+BtFREREQxKDGCIioj6Kt7Yi1tiIaF2dOddLSwtENArJbofN54O7vJwHtomIiAYQIQS0YNCa1yVWV2dWTSS3bQTM1lZ5ebAnhS5qbi5PqBgEJEmC4vFA8XjgLCuzlgvDgN7amlI5ozU1QWttNef7CQQQCwRS9iW73SmVM2peHmy5uZBY1UxERES9xG8PREREPWTE42bw0tiIcHU1ovX10DrOmFW9XjgKC6HwzEkiIqIBQ49EUkKXeH09RDyetp3sdlutr2yFhbAVFEC22bIwYtpeJFmGmpsLNTc3ZbnQNDOcS6qc0ZqaoLe3wwiFEA2FEN24MWlHEhSfz5p/xpqHJicnay1GiYiIaOBjEENERNQNIQTiLS2INTYiEgggvGkT4i0tMOJxKE4nVJ8P7sJC/tFNREQ0AAhdR7yx0Qxc6uoQq6+H3tqatp2kqrAVFMBWVGRVvCgeTxZGTAOB9XwoKEhZbsRiKZUziYDGiEaht7RAb2kB1q/vvIAsm8FMonKmI6BRPB5WUhER0YAgDAMiHofQNOufkfh/l+Vd12mtrZA0DYX775/tmzFoMYghIiJKokejiDU0INLQgHB1NWJNTdBCIfMsSq8XztJSniFLRESUZUII6K2tiNXXWxUv8cZGwDDStlVzc83QpSN4UfPyeBIFbZVst8NeXAx7cbG1TAgBIxzuDGiSfgpNg9bYCK2xMWU/ks3WWTmT1OKM8wsREVEmQtc7g5AM4UhKUJJpfdIyo8u6TN+TeiOWn99Pt3LnxCCGiIh2asIwEGtuRqyxEeHaWkRqahBvbYUwDCguF2w+HxzFxTyTkYiIKIuMWCw1dKmrgxGNpm0nOxxW6GIrKoK9oIATrlO/kSQJitsNxe2GY/hwa7kQAnpbW0rlTLypCVowCBGPI97xnE0mO52pc890VNDwhB8iooFNCAF0hCVdg46uYYjRTUCSMSjpWJ82b932IEmQVLXzn80GOfn3pOWJ/2utrfCMH7/9xzaEMYghIqKdjhYKme3G6uoQqq5GPBiEHg5Dttmger1wjRgBmZOwEhERZYUwDGhNTea8Lh3hixYMpm8oy7Dl53eGLkVFULxenjxBO5wkSVB9Pqg+H5wjR1rLha5Da2lJDWiam6G3tsKIRBCrqUGspiZlX4rXmx7Q5ORAUpQdfbOIiAatRFiSFpRkasu1haqT7tbvkLBEllNCEbmbgCRlm26Wd10HWe7196VQVRWcZWXb6cbuHHiUiYiIhjxD0xBvbka0oQHhmhpEAgFobW0QQkD1eGD3+yGXlvLADRERURbo7e0poUu8ocE8yNGF4vPBXljYWfGSn8+D0zSgSYoCW0eY4kpabsTj0ILBtAoaIxyG3tYGva0N0aqqpB1JUHNzO1ucdfxUfD5+fyWiQUsI0dmGq5sWW91WnHS3PrEfXd/hYYncXUDSsSxjxcmW1vM7zpDDIIaIiIakeGsrYo2NiHZUvcRaWiCiUUh2O2w+H9zl5fxiQ0REtIMZ8TjiDQ2I19eb4UtdHYxQKG07yWaDrbDQnNelqAi2wkIoLleGPRINPrLNBnthIeyFhSnLjUgkpXImEdCIeBxaczO05mZE1q2ztpdU1Qxoklqb2fLyILtcDGiIqF8IIXo1B0m367upOtkhZDlz660uoUmP1ncNWjjnHPUCgxgiIhoSjHjcDF4aGszgpaEB8fZ2s1WE1wtHYSEU9ognIiLaYYQQ0IJBa16XWH09tKam9DNUJQmq398ZuhQVQc3N5YFk2unITiccpaVwlJZay4QQMEIhc86Z5ubOn83NEJpmBpsNDQgn7UdyODpbmyX95HxJREOTMAyzsqSHc5BsdbL3LIQlkqJsve3WltZ3N8cJwxIaQBjEEBHRoCSEQLylxZzrJRBAeNMmxFtaYMTjUJxOqD4fPIWF/NJFRES0g+iRiBW6JCpeRDyetp3sdltVLvaiItgKCjhBOVE3JEmC4vFA8XiApN78wjCgt7amVM5ozc3QOqrAY4EAYoFAyr5ktzulckb1+2Hz+835AohouxKGkXkOku6CkEyTvXdTcQJd3yG3obu5R7Y4P0nSsm4ng1cU/t1OOwV+2hIR0aChR6OINTQg0tCAUFWV+YdnKARZUaB4PHCWlvJADhER0Q4gdB3xxkYzdOmodtFbW9O2kxQFtsLClDZjiseThRETDS2SLJttyXJzgVGjrOVC08xKtC4tzvT2dhihEKKhEKIbN6bsS8nJ6ayc6Qho1JwcHhilnY4wjMyTuW9tsvcttN5KTPYOw9ght6G7OUi21narR5PBs1KVaJswiCEiogFLGAZizc2INTQgHAggUlODeEsLhBBQXC7YfD44iov5hZCIiGg7EkJAb2vrDF3q6hBvbMx4UEnNzYWtqMic/6KoCGpeHg/mEu1AkqrCVlAAW0FBynIjFkttbdbUBK2pCUY0Cr2lBXpLC7BhQ+cFOoKelAqavDwoHg+/e1NWWZO79yAI2WrbrS6Tve/wsKQnc5D0ZH1imaLw9Uk0gDGIISKiAUULhcx2Y3V1CFVXIx4MQg+HIdtsUL1euMrKILN9AhER0XZjxGKI1dentBkzIpG07WSHwwxdOuZ1sRcUcA4KogFKttthLy6GvbjYWiaEgBGJpFTOJIIaoWnQOsKaZJLNltraLBHQOJ07+ibRACWEAJLacGUMQ7bUdmsrk72nzTO2PUhS7+Yg6W5dhqAFDEuIdlo8kkVERFllaBrizc2INjQgXFODSCAAra0NQgioHg/sfj/k0lJ+WSUiItoOhGFAa2pCrGNOl3hdHbRgMH1DWYYtP78zdCkshOLz8fOZaBCTJAmKywXF5YJj+HBreaIKLq2CJhiEiMcR73ivSCY7nWZrs0SLs46fbBs8MAkhAF3fatutrU32bnRzmR0almSag6Qvk70nzXECWebnGxH1OwYxRES0w8VbWxFrbES0o+ol1jGpqGS3w+bzwV1eDklRsj1MIiKiIUdvb08JXeINDeZBsy4UrzcldLHl53NCb6KdhCRJUH0+qD4fnOXl1nJhGNBaWlIqZ+JNTdBbW2FEIojV1CBWU5OyL8XrTa+gyc3ld/0eEEJ0tuHaQout7sKQrm23shKWyHKP225tbbL3tIoTPoeIaJDhN2kiItrujHjcDF4aGszgpaEB8fZ28488rxeOwkIobGVCRETUr4x4HPGGBsQ7gpdYXR2MUChtO8lmg61jThd7URFshYVQXK4sjJiIBjJJlmHz+2Hz++EaPdpabsTj0ILB1BZnzc0wQiHobW3Q29oQra5O2pEENSfHrJxJCmgUr3fQzSklhOjx/CNbnew9w/odQpa33Harh5O9Z1w/yB5PIqLtiUEMERH1OyEE4i0tiDU0ILJ5M8KbNiHe0gIjHofidEL1+eApLOQXcyIion4ihIAWDFrzusTq6825Hbqe8SxJUP3+ztClqMg8O50tWIioj2SbDfbCQtgLC1OWG9FoamuzjoBGxGJmcBMMIrJunbW9pChQ/f6UuWdsfj9kt3ub3qOssKSXbbd6OuH7DqEoPQ9CejvZO/8mIyLaIRjEEBFRv9CjUTN4aWhAqKrKPBsuFIKsKFA8HjhLS9kjmmiI6/HkrLoOADyTkmgb6JGIFbokKl5EPJ62nex2m63FEsFLQQE/j4loh5AdDjhKS+EoLbWWCSFghEKdlTOJoKa5GULXzSq+hgaEk/Yj2e1W5Yzq85ntunox2Xvie8f2tqWWW9223dpS663EOkXh9yEioiGAQQwREfWJMAzEmpsRa2hAOBBApKYG8ZYWCCGguFyw+XxwFBfzDFuiASYxOWtPzgIdEJOzsrc4kXlwsrExJXTRW1vTtpMUBbbCwpQ2Y4rHk4URExFlJkkSFI/HfG8aMcJaLgwDeltbWgWN1tICEYshFgggFghs+/X3NAjJ8H1ia+v5dw8REW0JgxgiIuoxLRQyq17q6xGqrkY8GIQeDkO22aB6vXCVlUHmRL5E22yoTc6aKURBR5uQrQY6hgERi0HEYjD6e4ySlHYwZWttPba0PjkEgizzgAz1iRACelubGbokKl4aGwEj/RWg5uamhC5qXh7PmiaiQUmSZXPemJwcYNQoa7nQdbPtYkdAo7e3967tVvIyReFnMxERZQ2PlhERUbcMTUO8uRnRhgaEa2oQCQSgtbVBCAHV44Hd74cybFi2h0mUFVucnLW7MGSQTs66tbNA+7ulWI9bnPWgJUmmqh4r5BHCXJahndM2S4Q8Xe6XbtuObKklSZf7GjyQNKQYsZhV5ZKoeDEikbTtZIejs71Yx1wMssORhRETEe04kqLAlp8PW35+todCRES0TRjEEBFRinhrK2INDYh2VL3EWlogolGzN7PPB3d5Odv50KCRMSzZwgH6bltzdbN+h8g0OWsvqzi6PUt0gJ45L0mSGTYoCuBwoL/fcaxqox48zluboLdr4GZVLWzvkEdRum+b0tvnAc8W3mGEYUBrakKsI3iJ19VBCwbTN5Rl2PLzO0OXoiIoPh8fGyIiIiKiQYpBDBHRTs6IxRBrakK0ocEMXhoaEG9vhyRJUL1eOAoLofCMW9qORFLlQ4/abm3tIHk2JmdVlC23s9rKvCYZKyU4Oet2IyWFPP3Nej4nPQ+3pTIq+bWQEvJsxzCwV8/R7lq3dfd62MmCBL29HbH6+s4WYw0NGR83xetNCV1s+flmizuifmDE49Da26GHw9AjEUgABABbTg5sublsK0tERES0A/AbFxHRTkYIgXhLiznXy+bNCG/ciHhrK4x4HIrTCdXng6ewkAd/KUVaWLKlOUi6axnVzWTw2FFhSW9aQm2p9RYPLtMWSLIMyW4H7PZ+33evQ8setm/rGlru8JBna6FlpuqvTOuz/Do0NA3xhgYrdInV1cEIhdK2k2y2lHldbIWFUFyuLIyYhiJhGNDDYSt4EYYBWVWheDxwlZTAUVICm8+HWGMj2tevR7i6GhDCnG8oJ4ehDBEREdF2wm9ZREQ7AT0aRbShwax6qapCvLkZWigEWVGgeDxwlpZCttmyPUzaRsIwuj/TvpsQZIttuZLnK8kwSfT2sMUghO2WaCe33UMeXd/ye0Vf27clhTrbta1fchu/7qrTtra+u/eZLicnCCHMyaPr6qyKl3hTU+f8QwmSBNXvTwld1NxcnuxA/UIIASMahRYKQQ+FYMTjZkWzywXV54N3zBg48vOtypeUCufRo5G7++6I1tUhtGkTQhs2mKEMAFtHKMNWtERERET9h0EMEdEQJAwDseZmxBoaEA4EEKmpQbylBTAMyG43bD4fHMXFPDA9yAghoDU1IVJVheimTeaZrpnmptieejMBeS9aGnECcqLskmTZDAe2Qyifca6mrVXs9KJ9m0XXYeg6EI32+22ALKe8l+mhUMb5f2SXywxcEsFLQQFPdKB+Y2ga9FAIWigEIxwGAMh2O1SPB67Ro+EoLLRCFNXr3epnquJwwF1WBndZGfQ990QkEEB40yaEqqoQ2rDBnKsoEcowPCQiIiLaJgxiiIiGCC0UMtuN1dcjVF2NeHMz9EgEss0G1euFq6yM7SYGIaHriAYCiFZVIbJhA/T29q1fKBGW9LSdT0/OEu/4ybCEiHpLkiRINtv2C3l0fYvVfVtr39Zt6zZN66xwMQyIaBR6UsgjKQpsBQVW6GIvKoLsdvM9kvqFMAzokYgZvLS3A7oOSVWhuN1wFBbCWVwMu99vVrvk5Gxz4Kc4HPCMHAnPyJHQ9twT0UAAoY0bzX/r15vP99xcqD4fQxkiIiKiPuAROSKiQcrQNMSbm812Yxs3IlpXB62tDUIIqB4P7Hl57Dk/SBmRCCIbN5qVLxs3pp51rShwDBsGZ3m52d4mUzsdthIhop2E1BE8Q1UBp7Nf9y2EADpCnq7t2WS7HWpeHg9IU7/Ro1HooRD0cBhGJALIMhSXC6rbDc+oUXDk50PtaDGmbufvd6rLBbWiAp6KCmihECKBAELV1Wa1zPr1kFQVNr8fqsfD1wARERFRDzGIISIaROKtrYg1NCDaUfUSa2mBiEYh2e2w5eTAXV7Og/CDlBYMIlJVhUhVFWKbN6fMMyC7XHCWlcFZXg778OGsbCIi2gEkSQISYXe2B0NDiqFp0MNhK3gRQpjhnssF14gRZrVLbq4Zuni9WQ07VLcb3tGj4R09GlpbG8KBAEJVVYjU1KC9rg6y3d45TlaDEREREXWLR3KIiAYwIxZDtLERscZGM3hpaEC8vd2ciNXrhaOwMHXiVRo0hGEgtnmzFb7oLS0p69W8PDjLy+EsL4etsJAHN4iIiAYhIQSMSARaKAQ9FIKhaeb3OI8HNr8fOePHw+b3m8FLTg5kuz3bQ+6W6vXC5/XCN2YM4q2tiAQCaF+/HpFAANG6OsgOB+x+PxS26CMiIiJKwyCGiGgAEUIg3tJizvWyeTPCGzci3toKoWmQHQ6oPh88hYVsAzFIGbEYops2IbJhAyIbN0IkTygty3CUlsJZXg5HeTlUrzd7AyUiIqI+MeJxc16XUAh6JAIAUJxOqB4PXGPHwllYaM7rkps7qAMLm88Hm88H39ixiAWDiAYCaN+wAZFAAJFAAIrTabYvc7uzPVQiIiKiAYFBDBFRlunRKKINDeZcL1VViDc1QQuHISsKFI8HztLSbZ6AlbJHa21FpLoa0aoqRGtrAcOw1kkOh9VyzDF8+IA+C5aIiIhSCcOAHg5Da283W4zpOmSbDYrHA1dJCRwlJVaLMZvPN2Tbx9pzc2HPzYV33DjEm5sR2bwZbevWIVpXh0hNDRS326yU4dyFREREtBNjEENEtIMJw0CsqQmxxkaEa2sRqa1FvKUFMAzIbjdsPh8cJSWD9gzJnZ0QAvH6eqvlmNbUlLJezcmBY+RIc76XoiJWNxEREQ0CQggY0Whni7F4HJIkQXG5oPp88I4ZA0denhm65ObulK1jJUmCPS8P9rw8+HbdFbHGRkQ2b0Z7RyijR6NmS7bcXChOZ7aHS0RERLRDMYghItoBtFDIbDdWX49QdTXizc3QIxHINhtUrxeusjJOwD6IGZqG2KZNVvhidLQiAQBIEuzFxdZ8L2pubvYGSkRERD1iaJrVYswIhwEAst1uthirqICjqMgMXXJyOFF9BpIkwVFQAEdBAXLGjzdDmUDArJRpaICRCGX8/p0ytCIiIqKdD4/6ERFtB4amWVUvoY0bEa2rg9bWBiEEVI8H9rw8tmcY5PRQyApeojU1gK5b6ySbDY4RI8zwZcQIyDzrk4iIaMAShgE9EjGDl/Z2QNchqSoUtxuOggI4S0pg9/vNuV1yctgytpckWYajsBCOwkLk7LYbog0NCNfWWpUyRjxufj/2+9mmlYiIiIYsBjFERP0k3tpqVr3U1SG8cSNiLS0Q0Sgkux22nBy4y8uHbG/wnYEQAlpjIyLV1Yhs2IB4Q0PKesXrtape7CUlfKyJiIgGKD0ahR4KQQ+HzSpWWYbidEL1eOAZNQr2pBZjKk+c6VeSLMNZVARnURH8EyciWl9vhjKVlYgEAhCaBtXngy03l4EXERERDSkMYoiI+siIxRBtbDSrXqqqEGtoQDwUgiRJUL1eOAoL2WphkBO6jmhtrVn1UlUFvb09Zb2tsBDOjvleVL+fbUmIiIgGGKHr1rwuejgMCAHJbofqcsE1YgScxcWw5+ZCzcmBzefj3G07kKQocJaUwFlSgtxJkxCtq7MqZcI1NRC6blYh5eayhS8RERENevw2Q0TUQ0IIxINBq8d1eNMmxFtbITQNssMB1eeDh5OvD3p6JIJodbUZvmzcCKFp1jpJUeAYPhyO8nI4y8qguN1ZHCkRERElE0LAiESs4MXQNPMEmY4J4nPGj4fN74e9Y24XtsEaOGRVhWvYMLiGDYN/990RqatDpKYG7evXI1xdDQgBNfG4MZQhIiKiQWjAfYP561//ittuuw21tbXYc889cdddd2Hq1Kndbr948WL87W9/w4YNG1BYWIiTTz4ZixYtgjOpH39v90lElKBHo4g2NCDa0IBQVRXiTU3QwmHIimK2oiotZduEQU4IAS0YtKpeYnV1gBDWetnlslqOOYYNg8Q//omIiAYEIx4353UJhaBHIgBgtRhzjR0LZ2GhVVGhuN2sXB0kZJsN7uHD4R4+HLm7745oXR1CmzYhtGGDGcpIkjVfD1vBEhER0WAxoI4mPfHEE7j88stx7733Yr/99sPixYtx1FFH4ZtvvkFxcXHa9o899hiuuuoqPPTQQzjwwAPx7bff4qyzzoIkSbjjjjv6tE8i2rkJw0CsqQmxxkaEa2sRqa1FvKUFMAzIbjdsPh8cJSX8Q36QE4aBWCCASFUVIlVV0FtbU9ar+flW+GIrKODjTbQNhGHAiMdhxGLmv3gcIh6HoWmQbTbzn91u/ZRUlZWFRJRGGAb0cBhaezv0cBjCMCCrKhSPB87iYjhLS61KFx6gHzoUhwPusjK4y8qg77mnVZUeqqpCaMMGQJbN+XxycvjZQURERAOaJETSab9Ztt9++2HffffF3XffDQAwDAPl5eX4xS9+gauuuipt+wULFuCrr77CypUrrWVXXHEFVq9ejbfffrtP+wSAaDSKaDRq/d7S0oLy8nIEg0Hk5OT02+0looFBC4UQa2hApK4OoY0bEW9uhh6NQlZVqD4fVK+XLRCGACMaRXTjRkSqqxGproaIxTpXyjIcw4aZVS9lZVC93uwNlGiQMeLxzqAlEbLEYkh8xZQkqTNssduher2w+XyQnU7ooRBiwSD0UAgiFoOuaRDxOIQQkABAllNCGtlmg2Sz8T2ZaIgTQsCIRjtbjMXjkCQJissF1eeDs7gYjvx88wB8bi7n5NsJaeEwooEAQhs3IrRxI7SWFkiKAltuLlTO9UNERNTvQlVVyJkwAYX775/toQwoLS0tyM3N7VFuMGD+io3FYvjoo49w9dVXW8tkWcbhhx+O9957L+NlDjzwQDzyyCP44IMPMHXqVKxduxYvvPACzjjjjD7vEwAWLVqEG2+8sZ9uGRENVKGNG9HyzTeI1tVBa2uDEAKqxwN7Xh4Ulyvbw6N+oLW2WlUvsdra1JZjDgccZWVwjhwJx/DhbDFHlEFKNUtyyKJpgBAQQEpIono8sPl8sPl8UNxuKE4nFIcDstMJxeWC4nBkPDhmaBqMaBR6JGL9MyIRxNvbobW2QmtthR6LQWtvhxGLAboOdOxHUtWMYQ0r2YgGD0PTrBZjRjgMAGZw6/HAVVEBR1GRVfWger18fRNUlwtqRQU8FRXQQiFEAgGEqqvNapn16yGpKmx+P1SPh6EMERERDQgDJoipr6+HrusoKSlJWV5SUoKvv/4642Xmzp2L+vp6TJ8+3ezxr2mYP38+rrnmmj7vEwCuvvpqXH755dbviYoYIhoahBBo++47NKxZAz0ahT0vD+7ycrawGAKEYSBeX2+FL1pzc8p6NTfXrHopL4e9qIh/mNNOz9A0M1jpWtViGGZFSnI1i80GtaDAqmhRnM7OgCURuPRx4mtZVc0qRI8n43ohBIxYzAxpwmEYkQj0aBRaOAyttRXx1lbooRD0tjbEOgIjYV4QkqJY1TgpYQ3f84myQhiG+VoOhaC1twO6DklVobjdcBQUwFlSArvfb7UY44kStDWq2w3v6NHwjh4Nra0Nkc2b0b5hAyI1NWivq4Nst5uVMgzxiIiIKIsGTBDTF6+//jp+//vf45577sF+++2H77//Hpdeeil+97vf4brrruvzfh0OBxwsbycakoSuo/mzz9D03/9CcbngKS3N9pBoGxnxOKKbNiFSVYVodTWMjsl6AQCSBHtJiTXfi8r2krQTSVSzpIQsHdUsQggzZFFVM5Sw26E4nXAWFcGWk9NZzZIIWzqClmyFF5IkQXE4zPZDubkZtzE0zQxoOkKaRGijtbcj3tICvb3dDG8SVTWGkdi52e4s01w1PGBHtM30aNQMSjtCVCRajHk88JSXw15QYLUYU1mRTNtI9Xrh9Xrh3WUXxFtbEQkE0L5+PSKBAKJ1dZAdDtj9fihuN9/jiYiIaIcaMEFMYWEhFEVBIBBIWR4IBFDazYHS6667DmeccQbOO+88AMAee+yB9vZ2XHDBBbj22mv7tE8iGrr0aBRNH3+M5s8/h6OwEDYelB+09PZ2q+olWlPTeUAVgGSzwVlWBkd5OZwjRkBmsE5DlNExn0pyyGLE44CuQ0gSpI6AQekIFux5eeYZ5snVLImwpaOaZTAflJJVFbLX2+0cT4k5J6z2Z+GwOQdFOIx4S4vZ/iwchtbWZgZYmgYYBgQ62p8lzXNjhTWsqiNKIXTdmtdFD4fNqjS7HarLBdeIEXAWF5vvQ7m5sHEeD9rOEq0yfWPHIhYMIhoImJUygQAigQAUp9NsX+Z2Z3uoREREtBMYMEGM3W7HPvvsg5UrV2LWrFkAAMMwsHLlSixYsCDjZUKhEOQuX96VjjM1hRB92icRDU1aWxvq16xB23ffwTlsGP/gGmSEEIg3NiKyYQOi1dWINzSkrFd8PqvqxV5SwgM7NOgJITKGLImWWxIASVHMSg67HYrDAUdhIVSfDzaPB4rLZQYtDocVtuzsrbgkSbLui+4Y8bg5P02X+Wq0tjYzrGlrM8Ob1lazukgISABEooVbl7CGVTU0lAkhYEQiVvBiaBokSYLqdsOWm4uc8eNh8/th75g8XeGJEZRF9txc2HNz4R03DvHmZrN92bp1iNTVIVJTA8XtNitlWJVFRERE28mACWIA4PLLL8e8efMwZcoUTJ06FYsXL0Z7ezvOPvtsAMCZZ56JESNGYNGiRQCAmTNn4o477sBee+1ltSa77rrrMHPmTCuQ2do+iWjoizY2omH1aoSqquAuL+/zHAa0YwlNQ7S21qp8MUKhlPW24mI4y8rgHDkSam4uD3bSoCJ0PS1kSbTLEkBnNYuqQrLbYUvMl9BRzdK1bdhgr2YZKBJhCny+jOuFYUCPRjtboHWENlp7O+Idc9UYkUhnUKNp5uVgVuxImcIaBsc0SBjxuDmvSygEPRIBhLBajLnGjoWzo9rYlpMDxePhexINSJIkwZ6XB3teHny77opYY6MVykTr6qBHo1A9Hthyc7cY3BMRERH11oAKYubMmYO6ujpcf/31qK2txeTJk/HSSy+hpKQEALBhw4aUCpjf/va3kCQJv/3tb7Fx40YUFRVh5syZuOWWW3q8TyIa2sI1NahfvRqx+nq4R42CrA6otz3qQg+HEa2uNluObdpkHcQEzNZAjuHD4Swvh6OsjGcs0oAlhIDQtLSQxXo+CwHIsnUgXnE44CgogJqTA5vHkzInSyJs4XvXwCDJsjmHxRbef4xYzJqjxuhaVdPaalbVRCLQWlrMVnJCWOGbbLenhzV87CkLhGFYcyzp4TCEYUBWVSgeD5zFxXCWlsLe0WJM9fn4PKVBSZIkOAoK4CgoQM748WYoEwigbd06RBsaYCRCGb+fFV1ERES0zSQhhMj2IAa6lpYW5ObmIhgMIodzShANGm1r16Lhgw9gRKNwDh/Os44HICEEtOZmq+olXleXsl52u62WY47SUkg80EMDQEo1S9JPoetInP+dfDBdcbth8/mg+nxQXS4oDkdn2OJysZplJyMMo7OaJhKxQhs9FEK8pQXx1lbo0ShE4vkVj5vPK0ky56rpGtawqoa2kTV/UkfwYsTjZis/lwuqzwdncTEc+fnmvC65uTwgTUOeMAxEGxoQrq1F+7p1iDU2wojHoXo8sPv9rK4nIqKdUqiqCjkTJqBw//2zPZQBpTe5AY9oEdGQIwwDwS+/ROPHH0NWVbjKyrI9JEoiDAOxQACRDRsQqa6G3tqast5WUGCFL2p+Pg9Q0w6VUs2SHLJkqFxIzM1iz8uDLScHqseT2jYsUdFis2X7ZtEAIskyVLd7i3OVWVU14XBKZU2ioiZTVQ0As9IqOaBJ/J8hNiUxNM1qMWaEwxAAFLsdqscDT0UFnEVFZujS8b7GoI92NpIsw1lUBGdREfwTJyJaX2+GMpWViAQCEJpmzsmWm8vPeCIiIuox/lVGREOKEY+j6b//RfP//gdbbi7seXnZHhIBMKJRRDZuRLSqCpHqavOgdoIsmy3HysrgLC+H4vFkb6A05AnDyBiyGJrWWc3SUXUg22xWJYvN54PqdpvhisvVGbbY7TxISf0uEfTZupurRtc7g5rkOWuSq2piMYhw2Hyed7TFk5KqalLCGlbVDFlWBVZH8AJNg6SqUNxuOAoK4CwpgT0xB1VODg8qE3UhKQqcJSVwlpQgd9IkROvqzFBm/XqEa2ogdN18/eTmMvQmIiKiLeI3BSIaMrRwGI1r1qDl66/hLC2FygP6WaW1tFgtx2KBQOcZ2wBkp9Oa68UxfDgP/FC/SbRySg5Z9FjMev4lV7PINpt5ANLng+r1doYryVUtfG7SACQpyharaoQQ5msg0fYsErGqa7S2NsRbWqCHQua/jteJEAKSEICiWK+PlLCGBxgHBSugC4VgRCJAosWYxwNPeTnsBQWd1S5bqMoionSyqsI1bBhcw4bBv/vuiNTVIVJTY4Yy1dWAEFA7Xl98zyQiIqKu+O2AiIaEWDCIhtWr0b5+PVxlZexfngXCMBCrqzOrXqqqoAWDKetVv99qOWYrKmLLMeo1YRjplSwdZ/tLQqTMoSHbbOYEux3VLIrbndo2zOmE4nCwCoCGJEmSoDgcUBwO2LrpUyx0vTOk6Th4b0QiiLe3Q2tthdZRVaO1t5tBjaZBSBIkpM6BlBzW8H19xxK6Di0RqIXDgBCQ7HaoLhdcw4fDWVJinalv8/n4fkfUj2SbDe7hw+EePhy5u++OaF0dQps2IbRhgxnKSJJVaSYpSraHS0RERAMAgxgiGvQimzej/r33ENm8Ge6RI3kG2g5kxOOIbtyISFUVotXVMKLRzpWSBHtpaed8L9202CFKMDrmZklUsSSCFiGENVl58ln6akEBVK/XDFoSE98nwhaHg5PpEm2BpChQPZ5uq0cTVTXJc9TokQi0cDi1qqatDTFN66yqAcy5apJCGius4cHIPhNCmPMCdQQvhqZBkiSobjdsubnIGT8eNr8f9txcqD4fT0gh2oEUhwPusjK4y8qg77knIoEAwps2IVRVhdCGDYAsW5VoDESJiIh2XjxaSUSDWvuGDahfvRp6Wxs8FRX842YH0NvbzZZjGzYgWlsLGIa1TrLbrbleHCNG8EA4WRLVLCK5dVgsBtExd4WA2fJDttmsM7ptHWdzW9UsDkdK2zC+3om2n+SqGuTmZtzG0LTOkCbRBi0chtbebgY17e3Qo1Fo7e0wYjHz86Kjaia5ei0R2kiqyqqaDkY8bs3rokcikGC29VQ9HrjGjoWzsNA6217xeHi/EQ0QisMBz8iR8IwcCW3PPRENBBDauNH8t349JEWBrSMw5fcYIiKinQuDGCIalIQQaP32WzSsWQMAcJWX8yDEdiKEQLyhwZrvRWtsTFmv+HxwjhwJZ1kZ7CUl/KNyJ2V0nBGfaBuW+GkFdZIEyWaD0nHQ1Z6f39k2rOu8LImDv0Q0oMmqCtnrher1ZlwvhEiZp8boCGy0cBhaa6sZ1nRU2CSCWsAMZiVFSWt/JtvtQ/IzRhiGFWAZkQgMXYesqlA8HjiLi+EsKYE9N9c6eMvKX6LBQXW5oFZUwFNRAS0UQiQQQKi62qyWWb8ekqrC5vdD9XiG5HsbERERpeK3eCIadAxNQ/Nnn6Hpv/+F6vHAUVCQ7SENOULTEK2pscIXIxzuXClJsBcVwZFoOZabyxBsiBOGAaFpKZUsRmLOiI5WRJKimPNGOBxQnE44i4pSqlkSc7JY1SxsUUQ05EmSZL3mu2PE42ZIkxTY6JGIWVUTDJrtz6JRaK2taa0KU+aqSQQ1A7yqxgqnEsFLPG7eTy4XVJ8Pzl12gSM/32xjlJvLUJpoiFDdbnhHj4Z39GhobW2IbN6M9g0bEKmpQXtdHWS73Qxbvd4B/R5GREREfccghogGFT0aReOHH6Llyy9hLyqCjfOO9Bs9FEKkuhrRqipEN22C0HVrnaSqcIwYYbYcKyvb4kE1GnyErqdVsiTaCAmYB1OTq1mseQi8Xusga3JVi2y38yACEfWI3BGmoJvPc2EY5lw14XBnZU00Ci0UQry1FVpLixnctLVlbHeYMazZgWeeG5pmtRgzwmEIAIrdDsXthqeiwgytO+aO4FnxRDsH1euF1+uFd5ddEG9tRSQQQPv69YgEAojW1UF2OGD3+6G43fw+RUREWZFyslQ0ChGLwdB1q80w9Q2DGCIaNOKtrWhYvRptP/wA14gRUFyubA9pUBNCQGtuRmTDBkSqqhCvr09Zr3g8VtWLo7SUFQyDlBDCrGZJqmRJPlgJIVIm1lYcDjgKC6H6fLB5PCktwxJtw9gWh4h2FEmWe1xVY7U/S1TVtLWZYU1bmxnetLSY1XxCdOxcgmK3p4c1NlufxioMw7zujuAFmgYoilW96ywuhj0vz5rbpa/XQ0RDR6JNq2/sWMSCQUQDAbNSJhBAJBCA4nSa7cvc7mwPlYiIhhhhGFbQkqhOF4Zhdryw2ayOFs6SEtjz8qC63XAUF2d72IMaj6QQ0aAQbWhA/fvvI7xxI9yjRvHgRR8JXUc0EEC0qgqRDRugt7enrLcVFsKZaDmWl8ez8AYBoetplSxGPG5VNFnVLKoKqaPthc3ng+rzQXW5oDgcnWGLy8VqFiIadBLhSXdVssIwzD8wk0KaRGASb21FvLUVRiTS2f5M08yQWpIgqar5vtglrJFkGXpHizE9FIIRiZjBjssF1eOBp7wc9oKCzmoXHkQloq2w5+bCnpsL77hxiAeDZqXMunWI1NUhUlMDxe02K2V4MhoREfWCEYt1hi0d1S2JzheJ+Vnt+fnWCUOq2w3F7TZ/ulys2O5HDGKIaMALbdqEhvffR6ypCZ6KClZm9JIRiSCycSMiVVWIbtxoTYYMAFAUOIYNg3PkSDjLyqDwQNGAZ2iaNcm1MAxIiWqWjjNWrC9PHo8VriTOZJGdTlazENFOR5JlqC4XsIWDl4k/UPVIBHo4bIU2iYoara3NDGs6qmpgGJAcDqguF1zDh8NZUmJWunSE3fyDlYj6SpIk2P1+2P1++HbdFbHGRnNOmXXrEK2rgx6NQvV4zHmk2C6YiIjQWZmdXOECw4AQwup8oTidcJaWwu73Q/V4zKCl4ydPdt4xeDSGiAYsIQTafvgBjR98AD0eh3vUKJ6p30NaMIhIVRUiVVWIbd5sntnbQXY6raoX+/DhPDA/CBiahngwCK21FQBgy8lB7sSJcJaUmEFLUtswvkaIiHov0Z5xi1U1Se3PjFgMqtcL1eeD4nDs4NES0c5CkiQ4CgrgKChAzvjxZigTCKBt3TpEGxpgJEIZv5/vRUREQ5wQAiIeT20lFo+nVbc4Cwth8/ut6hbV44GSqG7h8YKs4tE3IhqQhGGg+Ysv0PTRR5AdDrjLyrI9pAFNGAZimzdb4Yve0pKyXs3Ls8IXW2EhP3wHASMeRzwYRLy1FZIkwZabi9w99oB72DA4iov5xzYR0Q4kybL5hywrR4koSyRZhqOwEI7CQuTsthuiDQ2I1NaaoUxdHYx4HKrHA7vfD9luz/ZwiYioj4Sup7QSs6pbYJ48pNjtUFwuVrcMQgxiiGjAMWIxNH7yCYKffQZbXh7sfn+2hzQgGbEYops2IbJhAyIbN0JEo50rZRmO0lI4y8vhKC+H6vVmb6DUY0YshlhH5YukKLD7/cjfay84S0vhKCxk+EJEREREkGQZzqIiOIuKkDtxIqL19QjX1qK9shKRQABC06D6fLDl5vKAHBHRACSEMOd3jcWs6hajo428JElWxwtnYaF5XCwnp3PeFla3DFoMYohoQNFCITSsWYPWb76Bs7QUqseT7SENKFpbG6IdVS/R2lrAMKx1ksMBZ1mZGb4MH84z4QYJPRpFPBiE3tYGyWaD3e9Hzq67wllaCmdhIR9HIiIiIuqWpChwlpTAWVKC3EmTEK2rM0OZ9esRrqmB0HVrDiu2JCYi2rFSqls62tumVLd0zN3iGjYMdr/fqmpRPR4oLhfD9CGGn8JENGDEmptRv3o1Qhs2wFVWxrP/YZ4lEa+vt1qOaU1NKevVnBw4ysvhHDkS9qIiTg48SOiRiDnnS3s7ZJsN9rw85O62G5wlJXAUFvLLFhERERH1mqyqcA0bBtewYfDvvjsidXWI1NSYoUx1NSAE1Nxc2HJyGMoQEfUTq7olqZWYVd0iy1AcDrO6pbgY9rw82Hy+zuoWjweK08nqlp0EP3mJaECIBAKof+89ROrr4R45cqf+w8DQNMQ2bTLDl+pqGOFw50pJgr242JrvRc3Nzd5AqVf0cBixYBB6KATZ4TDDlz32gKu4GPaCgp36OU9ERERE/Uu22eAePhzu4cORu/vuiNbVIbRpE0IbNpihjCSZlTI5OZAUJdvDJSIa8NKqW6JRCCEgAZA6qltUlwv2ESNgz81ldQul4VEfIsq69nXrUL96NfRQCJ5Ro3bKqg49FEKkuhqRDRsQrakBdN1aJ9lscIwYYYYvI0ZAdjqzOFLqDS0UMtuOhcNQHA7YCwrgnTwZjuJiOPLz+UcvEREREW13isMBd1kZ3GVl0PfcE5FAAOFNmxCqqkJowwZAlmHrqJTZGf8WIyJKyFjdEouZFSuyDMXp/H/2/jy+7vOu8/5f1/fs5+joHEm2JNuSJdtxdsdZ7dgu3KUU2tI7kE6AFtomdBjWUrhp+ZVlbsqUe+buPTC0odBpC6QQZlKSttNOgZaypLQ0jrc4cRInsZM4XuNVy9kkne37vX5/XEe2HMuJLWs5kt7Px8OJfZbvuWRLZ/m+r8/nQ6hR3RJrbyecThNKJFTdIpdEQYyIzBkbBBT272foiSfA80iuXDnXS5o11lrqw8NnW47VBgbOuz7U0nK26iXa1aUT9vOEtRa/Eb4E5TJeIkGso4NUfz/xpUuJtrfrw62IiIiIzJlQLEZq5UpSK1dSX7+eyqlTjL76qvt1+DAmFCKSzRJuadH7VhFZsIJ6/WzIctHqlmSSaE8P0UzGVbWMtxNLJtXRQqZE3zUiMieCep3c008zvGePm3PS3j7XS5px1vepnDxJ+ehRKkeP4o+MnHd9ZMkS4itXupZj2ax2UcwT1lr8kRGqjfAlnEoR7+wk1ddHbOlSom1t+hArIiIiIk0nnEgQ7u8n1d9PfXSU8qlTjB475qplDh/GhMMulEml9H5WROad86pbGmFLUK9j4KLVLeNBSziVwovFdF5GppWCGBGZdX65zOATT1DYt4/YkiVE0um5XtKM8ctlKseOufDl1Vex9frZ60woRGz5cmK9vcR7egglk3O4UrkcNgioj4y4ypdqlXAq5Xpw9/YS7+wkoiBNREREROaRcDJJy6pVtKxaRb1Uonz6NCNHjlA+cYKRM2fwolEimYyrlNH7XBFpIuPVLWdbiVUq2CDAeB5eJIIXixFuaSHa23t+dcv47BZVt8gs0XeaiMyqWrHI4I4dlA4cINHTQ2iBzTux1lLP589WvVTPnAFrz17vJRJnW47Fli3D6AV/3rBBQL1UcuFLrUYklSLZ20uqt5dYZ6frqa0PpSIiIiIyz4VbWmhpaaFl9WpqxSLlU6cYOXyY8qlTVM6cwYvFiGazhJJJvf8VkVkxaXVLrQbG4IVCeLGYm8va1eWqW1paVN0iTUdnAEVk1lQGBhjYto2xkydJ9vXhRSJzvaRpYYOA6qlTlI8do3zkCH6xeN714fb2s+FLpKNDL/7ziA0C6sUi1VwOfJ9wOk2qv/9c5csCruYSEREREYmk00TSadJXXUU1n6dy6pSrlDl1ivKpU4Ticde+TNX9IjIN3rC6JR4n0tJCdOVKV6XXqGoJp1KEk0nN15WmpiBGRGbF6LFjDGzfTq1QINXfP+97DAfVKpVXX6V89CjlY8ew1eq5Kz2P2LJlruqlp4dwS8vcLVQum/V9asUi9UKBwPfdB8+1a0muWEG8s1P/niIiIiKyKEUzGaKZDC1r11LL512lzKFDlM+coXziBKFk0lXKJBJzvVQRaWI2CM5Vt4yHLfU6Fs6rbol1dxNta3PVLeOBS0sLoVhsrr8EkSlRECMiM8paS+mllxh84gms75NcuXLeVoTUi0UXvBw9SvXkyfNbjsVixHp6iK9cSWz58gVT7bNYBPU69WKRWqEAQUA4kyF99dUkli934UsqNddLFBERERFpCsYYotks0WyW9NVXUx0ePhvKVM6cwa9UCKdSRDKZBdeKWkQu3dnqlvFWYtWqO49izLnqlnT6vOqWs+3EVN0iC5CCGBGZMdb3ye3dy/BTTxFKJIh3dc31ki6LDQJqAwNnw5d6Lnfe9eFMxlW99PYSXbp03lf5LDZBvU4tn6feaCUXaW0lc/31JJYtI9bZSVg7+UREREREXpcxhlh7O7H2dlqvuYbq0BDlU6coHTpEZXCQYDyUyWa1i11kAZq0uqVWwxqDFw7jRaOuumX5cqLZ7LnqlsbsFj0vyGKiIEZEZoRfqTD85JPknnuOWHs7kUxmrpd0SYJajcrx45SPHqVy7BhBuXzuSmOIdnWdnfcSbm2du4XKlAS1GrVCgVqhgDGGSCZDZt06ko3wRW8CRURERESmxngesSVLiC1ZQut111EZHKR88qQLZc6cIajVCKdSRLNZvGh0rpcrIpchqNUIqtXzq1uCADwPLxp11S2trWer5carWlTdInKOghgRmXb1kREGd+2i+OKLxJcta/rBjf7IyNlZL5Xjx92biQYTiRDv6SHW20t8xQo8naifd4JajVo+78KXUIhoNkv7LbcQ7+4mtmSJwhcRERERkWlmPI/40qXEly4lc/31VAYGGDt5kpGDBymfOoWt1wmn00QyGbV1FmkS51W3lMsE1ep51S2hRuAS6+gg2tZGpKWF0IR2YvpsLfL6FMSIyLSqDg8zsH07o0ePkuztbdqdTkGlwsi+fZSPHKE2OHjedaGWFlf1snIl0a4utRybh/xKhVo+j18qYSIR17/6ttuId3cTX7Kkab8vRUREREQWGhMKEe/qIt7VReaGG6icOeNCmcOHGTtxAuv7RFpbXSgT1mkqkZkW1GrntRKbtLolkyHW1uZmPTXaiI0HLjpHIjI1eoUTkWkzduIEAzt2UBkYINnX17RvoscOHya/fTvB2NjZyyJLl55rOZbNYoyZwxXKVPjlspv5MjKCF4kQbWsjc911xLu6iC1Zop12IiIiIiJzzAuHSSxbRmLZMrI33kj5zBnKJ064UObYMQDCra1EWlub9vOkyHwwXt0y3krMr1TA9wEw49UtiQTxJUuIZLOqbhGZBXpVE5FpUTp4kMEdO/DLZVJ9fU25Q8IfGyO/YwflQ4cACLW2kl63jlhPDyENZp+X/LExqvk8/ugoXizmwpd160h0dhLt6NCHNxERERGRJuVFIiSXLye5fDmZG2+kcuYMo8ePM3rkiAtljHGVMq2tmi8hchGvW90SixGKxYhks7SMV7ckEqpuEZkjOkMlIlfEBgH5F15gaPduvHCYZG/vXC/pAtZaxg4cIL9zJ7ZaBWNoufFG0uvXY3Sift6pj466tmNjY4RiMaIdHbTcfDOxzk5i7e36kCYiIiIiMs+EYjGSPT0ke3rw16+nfOoUY8ePM3r0KKNHj7pQJpNxoYxOHMsiY4PgvLDFr1Swvo+xFhOJEIrFCCUSxJcuJdLWRiSVctUtiYSqW0SaiM5AisiUBbUauaefZvjpp4lkMkTb2uZ6SReol0rkH3+cyvHjAITb22nbsoVIR8ccr0wulbUWvxG+BOUyXiJBrKODVH8/8aVLiba368OYiIiIiMgCEYrFSK1cSWrlSvybb6Z86hSjx44x+uqrjB45AtZiwbWTthbG20pb6/7XOM7EZtMWwBh32cQ21Maca0s91csb/7/U27/u/V9z3ynf/mJrkKYW1GqulVi1+vrVLe3tRFpbXVXLeHVLIqHPxSJNTkGMiExJfWyMoV27KOzbR7yri3BLy1wv6TzWWkb37aOweze2XgfPI33zzbTceKPenMwD1lr8kRGqjfAlnEoR7+wk1ddHbOlSom1t+ncUEREREVngQvE4qb4+Un191EdHqZw+TVCtYq09dyNr3Z8bv85eN34Z7vOFDQJ3UrtxXRAE524zfj2u+sC+9rrx6yfethEIEQTuMcevbzzeax//7H1pBEMTruc1a57w1V38a5pw/WuPYydedvZm9mw4ZbkwqLrguvGga/yyCcHXa4/FJMebseDrMi+/WJB19rorDMomO87rBV8XVLeUy9ggwNCY3XKx6pZkknAyiReNXvTYItLcFMSIyGWrFQoMbN/OyKFDJFasIBSPz/WSzlPL5cg//jjV06cBiHZ2kt2yhXAmM8crk9djg4D6yIirfKlWCadSrmd0by/xzk4i2ax2comIiIiILFLhZJJwf/9cL+OS2dcEJJOGRZNcd16Y8trrJ7v9a2476fUTrpss2LngsS52+9f7WuYi+Hq9v4/XC75e+/Wd/w83s8GXMWerW6JtbUTb24mk06puEVkEFMSIyGUpnznDwLZtVE6dItnX11TD0G0QUNq7l+KePRAEmHCY1ttvJ3nNNTqB36RsEFAvlVz4UqsRSaVI9vaS6u0l1tnpekDr305EREREROaZ11ZQ6FPNzGqK4Gv89hOue22wYyIRVbeILFLNcwZVRJreyJEjDOzYQb1UItnf31Q7NKqDg+S2bqU+NARAbMUKMps2NV3LNGmEL8Ui1VwOfJ9wOk2qv/9c5Us6PddLFBERERERkXlEwZeINDsFMSLyhqy1FF98kcFduwBI9vY2TZWCrdcpPv00pb173e6SWIzMhg0kVq9umjUKWN+nVixSLxQIfJ9IOk167VqSK1YQ7+xUYCYiIiIiIiIiIguWghgReV1BvU7u2WcZ3rOHcCpFrKNjrpd0VuXUKXJbt+IXCgDE+/vJbNxIKJGY45UJuO+derFIrVCAICCcyZC++moSy5e78CWVmuslioiIiIiIiIiIzDgFMSJyUX6lwtDu3RSee47okiVEWlvnekkABNUqhSefZHTfPgC8RILMnXeS6Oub45VJUK9Ty+epF4sARFpbyVx/PYlly4h1dhJWSCYiIiIiIiIiIouMghgRmVStWGRw505KL79MYsWKpqkyKR87Rn7bNvyREQCSa9fSevvteLHYHK9s8QpqNWqFAvVCAYwhksmQWbeOZCN8CenfRkREREREREREFjEFMSJygcrgIAM7djB27BjJvj68SGSul4RfLlPYuZOxV14BINTSQnbzZmLLl8/xyhanoFajls9TKxYxnkc0m6XtlluId3cTW7JE4YuIiIiIiIiIiEiDghgROc/o8eMMbt9OdXiYVH8/JhSa0/VYaykfOkR+xw6CchmMIXX99aRvvrkpAqLFxK9UqOXz+KUSJhIhms2SXruWeHc38SVL8KLRuV6iiIiIiIiIiIhI01EQIyKACzxKr7zC0I4d+LUayb4+jDFzuiZ/dJT8tm2Ujx4FIJzNkt2yhejSpXO6rsXEr1So5XLUR0bwIhGibW1krruOeFcXsSVLFIaJiIiIiIiIiIi8AQUxIoINAvLPPcfQk0/iRaMke3rmdj3WMvrSSxR27cLWauB5tKxbR/qmm+a8Qmcx8Mtlqrkc/ugoXizmwpd160h0dhLt6MAL66VDRERERERERETkUulsmsgiF1SrDD31FPm9e4lks0Sz2TldT71QILdtG9UTJwCILFlCdssWIm1tc7quha4+Ourajo2NEYrFiHZ00HLzzcQ6O4m1tysAExERERERERERmSIFMSKLWH10lMFduyju30+8u5twKjVna7FBwMgLL1B88kms72NCIdK33krquuswnjdn61qorLX4jfAlKJfxEgliHR2k+vuJL11KtL1df+8iIiIiIiIiIiLTQEGMyCJVzeUY2LGD0cOHSfT0EIrF5mwtteFhclu3UhsYACDa3U1282bCra1ztqaFyFqLPzJCtRG+hJJJ4p2dpPr6iC1dSrStTeGLiIiIiIiIiIjINFMQI7IIlU+dYmDbNspnzpDs65uzmR/W9yk+8wylZ5+FIMBEIrTecQfJtWsxxszJmhYaGwTUR0Zc5Uu1SjiVIrl8OcneXuKdnUSyWf1di4iIiIiIiIiIzCAFMSKLzMihQwzs3Ik/MkKqv3/OKiCqZ86Q27qVei4HQLy3l8yddxKaw/ZoC4UNAuqlkgtfajUiqRTJ3l5Svb3EOjuJtLYqfBEREREREREREZklCmJEFglrLcX9+xnctQuMIbly5ZysI6jVKO7Zw8jzz4O1ePE4mY0biff3Kxy4AjYIqBeLVPN5qNcJp9Ok+vvPVb6k03O9RBERERERERERkUVJQYzIIhDU6+SefprhPXsIp9PEOjrmZB2VEyfIPf44frEIQGL1ajIbNuDF43OynvnO+j61YpF6oUDg+0TSadJXXUVyxQrinZ2EW1rmeokiIiIiIiIiIiKLnoIYkQXOr1QY2rWL/AsvEFu6dE4qI4JKhcITTzD60ksAhFIpMps2Ee/pmfW1zHdBvU69WKRWKEAQEM5kSF99NYnly134otZuIiIiIiIiIiIiTUVBjMgCVisWGdyxg9KBAyR6egjNQeXJ2JEj5LdtIxgbAyB57bW03norXjQ662uZr4J6nVo+T71RSRRpbSVz/fUkli0j1tlJOJGY4xWKiIiIiIiIiIjIxSiIEVmgKgMDDGzfztjx4yT7+vAikVl9fH9sjPyOHZQPHQIg1NpKdvNmYt3ds7qO+Sqo1agVCtQLBTCGSCZDZt06ko3wJRSLzfUSRURERERERERE5BIoiBFZgEaPHWNgxw5quRypVaswnjdrj22tZeyVV8jv3ImtVMAYWm68kfT69ZiwnnJeT1CrUcvnqRWLGM8jms3SdsstxLu7iS1ZovBFRERERERERERkHtJZUZEFxFpL6eWXGdy1i6BeJ9nXhzFm1h6/XiqR37aNyquvAhBubye7ZQvRjo5ZW8N841cq1PJ5/FIJEw4TbWsjvXYt8e5u4kuWqIWbiIiIiIiIiIjIPKcgRmSBsL5Pbu9ehp96Ci8eJ7lixew9trWM7t9P4YknsPU6eB7pm2+m5cYbZ7UaZ77wKxVquRz1kRG8SIRoWxuZ664j3tVFbMmSWW8jJyIiIiIiIiIiIjNHQYzIAuBXKgw/9RS5vXuJtbcTyWRm7bHr+Ty5rVupnj4NQKSzk+zmzUSy2Vlbw3zgl8tUczn80VG8WMyFL+vWkejsJNrRgae2bSIiIiIiIiIiIguSzvyJzHP1kREGd+2i+OKLxJctI5xMzsrj2iCgtHcvxT17IAgw4TCtt91G8tprZ7UdWjOrj466tmNjY4RiMaIdHaTWr3eVL+3tmFBorpcoIiIiIiIiIiIiM0xBjMg8Vh0eZmDHDkaOHCHZ0zNrw9xrg4Pktm6lNjQEQGz5cjKbNxNuaZmVx29W1lr8RvgSlMt4iQSxjg5S/f3Ely4l2t6uVm0iIiIiIiIiIiKLjIIYkXlq7ORJBrZvpzIwQKqvb1ZaW9l6neLTT1PauxesxUSjZDZsILFmzaKtgrHW4o+MUG2EL6FkknhnJ6m+PmJLlxJta1P4IiIiIiIiIiIisogpiBGZh0oHDzK4cyf+2Bipvr5ZOdFfOXWK/Nat1AsFAOJ9fWTuvJNQIjHjj91srLXUSyVX+VKtEk6lSC5bRnLlSuKdnUSy2UUbTImIiIiIiIiIiMj5FMSIzCM2CMi/8AJDu3fjhcMke3tn/DGDWo3C7t2M7tsHgJdIkLnzThJ9fTP+2M3EBsG58KVWI5JKkeztJdXbS6yzk0hrq8IXERERERERERERuUBT9sv5zGc+Q39/P/F4nI0bN7Jz586L3vbNb34zxpgLfr3zne88e5uf+ZmfueD6t7/97bPxpYhMm6BWY/jJJxnasYNwMkm8q2vGH7N87Bhn/vf/PhvCJNeupfPuuxdNCGODgFo+z8iRI4wePkxQqZDq76frLW9h+V130f2Wt5Beu5ZoJqMQRkRERERERERERCbVdBUxjzzyCB/+8If53Oc+x8aNG7n//vt529vexv79++ns7Lzg9l/96lepVqtn/zw4OMj69ev5iZ/4ifNu9/a3v52//Mu/PPvn2CwNNReZDn65zOCuXRT27SPe2Um4pWVGHy8ol8nv2sXYgQMAhFpayG7eTGz58hl93GZgfZ9asUi9UCCo14m0tpK+6iqSK1bMyt+9iIiIiIiIiIiILCxNF8R88pOf5Od+7uf4wAc+AMDnPvc5vvGNb/CFL3yB3/qt37rg9u3t7ef9+eGHHyaZTF4QxMRiMbq7u2du4SIzpFYoMLB9OyOHDpFYsYJQPD5jj2WtpXz4MPnt2wnKZQBS119P+pZb8CKRGXvcuRbU69SLRWqFAgQB4UyG9NVXk1i+3IUvqdRcL1FERERERERERETmqaYKYqrVKrt37+a3f/u3z17meR5vfetb2bZt2yUd44EHHuA973kPqdecOP3Od75DZ2cnbW1tvOUtb+E//+f/TEdHx6THqFQqVCqVs38uNIaTi8y28pkzDGzfTuXkSZIrV85oGOKPjpLfvp3ykSMAhLNZsps3E52kEm0hsEFArVCglssBEGltJXP99SSWLSPW2Uk4kZjbBYqIiIiIiIiIiMiC0FRBzMDAAL7v0/Wa2RddXV3sa8yoeD07d+5k7969PPDAA+dd/va3v51/9+/+HatWreLAgQP8zu/8Du94xzvYtm0boVDoguN84hOf4OMf//iVfTEiV2jkyBEGd+ygViqR7O/HeDMz0slay+hLL1HYtQtbq4ExtNx0E+mbbsJM8vMx3wX1OtXBQeqlEpFMhsyNN5JcvpxYZychtSwUERERERERERGRadZUQcyVeuCBB1i3bh0bNmw47/L3vOc9Z3+/bt06brrpJtasWcN3vvMdfvAHf/CC4/z2b/82H/7wh8/+uVAo0NvbO3MLF5nAWkvxxRcZ3LULrCXZ2ztjg+DrxSK5xx+neuIEAJGODrJbthB5Tcu/hcAfG6MyMID1fWIdHbTdcgvJnh4i6fRcL01EREREREREREQWsKYKYpYsWUIoFOLUqVPnXX7q1Kk3nO8yMjLCww8/zO///u+/4eOsXr2aJUuW8PLLL08axMRiMWLaGS9zwPo+uWefZeippwgnk8SWLJmZxwkCRl54geJTT2HrdQiFaL3lFlLXXz9jlTdzwVpLvVCgMjSEF42S7OmhZc0akitW4EWjc708ERERERERERERWQSaKoiJRqPcdtttPProo9x9990ABEHAo48+yq/8yq+87n2//OUvU6lUeN/73veGj3Ps2DEGBwdZtmzZdCxbZFr4lQpDu3eTf+45YkuWEGltnZHHqQ0Pk9u6ldrAAADR7m6ymzcTnqHHmwtBvU51aIh6sUiktZXsunW09PcTW7p0QQVNIiIiIiIiIiIi0vyaKogB+PCHP8x9993H7bffzoYNG7j//vsZGRnhAx/4AAD33nsvK1as4BOf+MR593vggQe4++676ejoOO/yUqnExz/+ce655x66u7s5cOAAH/3oR7nqqqt429veNmtfl8jrqZdKDOzcSenll4kvW0Y4mZz2x7C+T+nZZyk+8wwEASYSofX220leffWMtT6bbX65TGVggKBWI7ZkCdl160itXDljoZaIiIiIiIiIiIjIG2m6IObd7343Z86c4WMf+xgnT57k5ptv5lvf+hZdXV0AHDlyBO81O9r379/PY489xj/90z9dcLxQKMQzzzzDgw8+SC6XY/ny5fzwD/8w/8//8/+o/Zg0hcrgIAM7djB27BjJlSvxIpFpf4zqwAC5xx6jnssBEOvpIbtpE6FUatofa7ZZa6kXi1QHBzHhMIlly0hffTWJ5csJ6WdcRERERERERERE5pix1tq5XkSzKxQKZDIZ8vk8rdpZL9No7PhxBrZvpzo0RHLlSkwoNK3HD+p1ik89xcjzz4O1eLEYmY0bia9aNe+rYKzvUx0eppbPE2lpIdnXR8vq1cS7utR+TERERERERERERGbU5eQGTVcRI7JYFA8cYGjnTvxqlWRf37SHB5UTJ8g9/jh+sQhAYvVqWjdsIBSPT+vjzDa/UqE6OEhQLhPt6KBj0yZSvb1Es9m5XpqIiIiIiIiIiIjIBRTEiMwyGwTkn3uOoaeewotESPb0TOvxg2qVwhNPMPriiwB4ySTZTZuI9/ZO6+PMtlqxSHVoCGMM8e5u0mvXkuzpmffBkoiIiIiIiIiIiCxsCmJEZlFQqzH01FPkn32WSDY77VUc5aNHyW3bRjA6CkDymmtove02vGh0Wh9nttggONt+LJxMkl67lpY1a0h0dU17GzcRERERERERERGRmaAgRmSW1EdHGXriCQr79hHv7iacSk3bsf2xMQo7dzJ28CAAoXSa7JYtxLq7p+0xZlNQrVIZHMQfHSXa1kbHHXeQXLmSWHv7XC9NRERERERERERE5LIoiBGZBdV8noHt2xk9fJhETw+hWGxajmutZeyVVyjs3ElQqYAxtNxwA+mbb8aE59+Pd31khOrgINZa4l1dtG7YQKK3l3AiMddLExEREREREREREZmS+XemVmSeKZ8+zcDjj1M+c4ZkXx/eNAUk/sgIuW3bqBw7BkC4rY3sli1ElyyZluPPFhsE1PJ5qsPDhBIJUqtXk16zhnh397T9XYmIiIiIiIiIiIjMFZ3lFJlBI4cPM7BjB/7ICKn+foznXfExrbWM7t9PYfdubK0Gnkd6/Xpa1q2bluPPlqBWO9t+LJLN0n7bbaRWriTa0YExZq6XJyIiIiIiIiIiIjItFMSIzABrLcX9+xl84gkAEr290xIu1PN5co8/TvXUKQAiS5eS3bKFSDZ7xceeLfXRUaqDgxAERJcupeP220n29EzrzBwRERERERERERGRZqEgRmSaBfU6uWeeYXjPHsItLcQ6Oq74mDYIKD33HMU9e8D3MeEw6dtuI3XNNfOiCsYGAbVCgdrwMF40SrKvj/SaNSSWLcOLROZ6eSIiIiIiIiIiIiIzRkGMyDTyKxWGdu2i8MILRJcuJZJOX/Exa0ND5LZupTY4CEBs+XIymzYRnoZjz7SgXqc6OEi9WCSSzZK56SZaVq0itmSJ2o+JiIiIiIiIiIjIoqAgRmSa1IpFBnfsoPTKKySWLyeUSFzR8Wy9TvGZZyg9+yxYi4lGydxxB4mrrmr6EMMfG6MyMID1fWIdHbTdcgvJnp5pCaZERERERERERERE5hMFMSLToDIwwMCOHYy9+irJlSuvuN1W9fRpclu3Us/nAYj39ZHZuJFQMjkdy50R1lrqhQKVoSHXfqynh5Y1a0iuWIEXjc718kRERERERERERETmhIIYkSs0+uqrDGzfTi2XI9XfjwmFpnysoFaj+OSTjLzwAgBePE7mzjtJ9PdP02qnX1CvUx0epl4oEGltJbtuHS39/cSWLp0X82tEREREREREREREZpKCGJEpstZSOnCAwZ07Cep1kn19V9QyrPzqq+Qffxx/ZASAxFVXkbnjDrxYbLqWPK38cpnKwABBrUZsyRKyN95IauVKIq2tc700ERERERERERERkaahIEZkCqzvk3v+eYZ378aLx0muWDHlYwWVCvmdOxk7cACAUEsLmU2biF/BMWeKtZZ6sUh1aAgTCpFYtoz02rUkVqwg1KSBkYiIiIiIiIiIiMhcUhAjcpmCapWhJ58k/9xzRNvaiGQyUz7W2KFD5LdvJyiXAUhddx3pW2+94hkz0836PtXhYWqFAuFUitZrr6Vl9WriXV1qPyYiIiIiIiIiIiLyOhTEiFyG+ugogzt3UnzxReLLlhFOJqd0HH90lPyOHZQPHwYgnMmQ3bKFaGfndC73ivmVCtXBQfxKhVh7Ox133kmqt5doNjvXSxMRERERERERERGZFxTEiFyiai7HwPbtjB49SqKnZ0qtuKy1jL38Mvldu7DVKhhDy7p1pNevx4RCM7DqqamNtx8zhnh3N+m1a0n29BCKx+d6aSIiIiIiIiIiIiLzioIYkUswdvIkg9u3Uz5zhuTKlXjhy//RqReL5B5/nOqJEwBEOjrIbtlCpL19upc7JTYIXPuxfJ5wMkl67Vpa1qwh0dXVVCGRiIiIiIiIiIiIyHyiIEbkDZQOHmRw5078sTFS/f2XPRPFBgEj+/ZRfPJJbL0OoRCtt9xC6vrrm2K+SlCrURkYwB8bI5rN0nHHHSRXriTWJAGRiIiIiIiIiIiIyHymIEbkImwQUNi3j6EnnsCEwyR7ey/7GLVcjtzWrdTOnAEg2tVFdssWwq2t073cy1YfGaE6OIi1lnhXF60bNpDo6Zny3BsRERERERERERERuZCCGJFJBLUauWeeIff004RbW4m2tV3W/a3vU9q7l+LTT0MQYCIRWm+/neTVV2OMmaFVX8K6goBaPk91eJhQIkFq1SrSa9YQX7ZsSu3WREREREREREREROT16cyryGv45TKDu3ZR2LePeGcn4ZaWy7p/dWCA3Nat1IeHAYj19JDdtIlQKjUTy70kQa1GdWiIeqlEpK2N9ltvJdXXR7SjY06DIREREREREREREZGFTkGMyAS1YpGB7dsZOXiQxIoVhOLxS75vUK9T3LOHkeeeA2vxYjFaN24ksWrVnIUd9dFRqoODEAREly6l/bbbSPb0EJ7DUEhERERERERERERkMVEQI9JQGRjgzLZtlE+eJLlyJV4kcun3PXGC3OOP4xeLACRWraJ148bLCnKmi7XWtR8bGiIUi5FcuZL0mjUkli+/rK9JRERERERERERERK6cghgRYPToUQZ27KBWKJDq78d43iXdL6hWKTzxBKMvvgiAl0yS3bSJeG/vTC538rXU6679WKFAJJslu349LatWEVuyRO3HREREREREREREROaIghhZ1Ky1lF56icFdu7BBQHLlyksOLcpHj5Lbto1gdBSA5NVX03r77XjR6Ewu+QL+2BiVgQFsvU5syRLabr6ZZE8PkXR6VtchIiIiIiLNzQ8sxdq5P3sGjAEPMLjfn/3zhP+767S5S0RERGSqFMTIomV9n9yzzzK8Zw+hRIL4kiWXdD+/XKawYwdjBw8CEEqnyW7eTGzZsplc7nmstdQLBSpDQ3jRKMmeHlrWrCG5YsWsB0EiIiIiItLcynVLrmIZqFhGa2Bx4QqNkAVc6II59/+zwUzjtp6Z8AsIeeBhCHnu+pBxYc34bcfv60041sRg57zLL7iNQh8RERFZWBTEyKLkVyoMP/kkub17iS1ZQqS19Q3vY61l7OBBCjt2EFQqYAypG24gffPNeOHZ+VEK6nWqw8Ou/Vg6TfbGG0n19xPv7LzkdmoiIiIiIrLwBdZSqsFQ2TJctVR8iIUgEwOvEXRYa7G4YMbac//nNZcFgB+85nYT7s/Z+9mzAc/4cQzngp/xfMXwmqDHnB/6XBD8GAgZM+H37muYeAxv4v8nCX88Jr9c1T4iIiIyGxTEyKJTL5UY2LmT0ssvE1+2jHAy+Yb38UdGyG3bRuXYMQDCbW1kt2wheolVNFfKr1Rc+7FqleiSJWRvuIFUX98lBUgiIiIiIrJ4VH1LoQoD5YBiDQILyTCkYhcGDuMVLO4PM7su20hmLgxzLgx9rJ0sGLLnXWY4d7zx5Z+t9GlcMDHYGQ9dmBDYjN/v/MDHhTznqn7A88BwfrXPxYKdCy6/oAJIoY+IiMhipCBGFpXK0BAD27cz9uqrJHt737CNl7WW0RdfpPDEE9haDTyP9Pr1tNx4IyYUmtG1Wmupl0pUBwcxoRDxZctoXbuWxIoVhGKxGX1sERERERGZP6y1jNYhV7EMVixjdQh70BKBsNccJ/7HAwhz9j8z62y1z2ShD+4/F6/2sRcEQePVPhODn8Zhzqv2Ge9TcF6Vz2tCofGAZzyoGa/2CZnzW7xN2s7tUlq+nf19c/zbi4iIiIIYWUTGjh9nYPt2qkNDpPr63jBIqRcK5LZupXrqFACRpUvJbtlCJJud0XVa36c6PEytUCCcStF67bW0rFpFvLtb7cdEREREROQsP7AUajBYDshXoG4hHoa2SapfFpuz1T6zGPq4379xtU/Nf021z4QWceP/GQ94Jvv/xGqe17Z4Y8L1HhMqeCZU+4RwVT4Tq30urNx5ncBnsvAHfc+JiIi8HgUxsiiUXnmFwZ07CSoVkn19rxto2CBg5PnnKTz1FPg+JhwmfeutpK69dkaDEL9SoTo4iF+pEG1ro2PjRlIrVxKd4eBHRERERETml3LdkqtYBiqW0Zo7IZ4MQzSkE+FzYTZbvMEbV/uMBzw+UL+Eap83avN2XrWPOff/11b7nG3x1vh9aELI83rVPhcLfya9vFFBJCIiMt8oiJEFzQYB+eefZ+jJJ/EiERI9Pa97+9rQELmtW6kNDgIQXbaM7ObNhNPpGVtjvVSiMjgIxpDo7ia9di3Jnh5C8fiMPaaIiIiIiMwvgbWUajBctgxVLRUfYiHIxNSCarGZi2qfie3cLlbt89oWb6+9//hsn4nVPRO/jDeq9hn/fSoMbTGPlojCRxERmT8UxMiCFdRqDO/ZQ+6ZZ4hkMkTb2i56W+v7FJ9+mtKzz4K1mGiUzB13kLjqqhkpr7ZB4NqP5fOEk0nSa9fSsno1ie7uGZ89IyIiIiIi80ctsOQrMFAOKNYgsK76JaX2YzILmrHaZ6jx8xAPQzZqyERNU81DEhERmYyCGFmQ6mNjDO3aRWHfPuLd3YRTqYvetnr6NLmtW6nn8wDEV64kc+edhJLJaV9XUKtRGRjAHxsjms3SfvvtpFauJNbRMe2PJSIiIiIi85O1ltE65CqWwYplrA5hD51slgXvUqp9EmH3M1L24dSo5dSoJRGG9pgh3QhlVCUmIjI9xt+TFKqWeNjQFtPz61QpiJEFp5rPM7B9O6NHjpDo6SEUi016u6BWo/jkk4y88AIAXjxO5s47SfT3T/ua6iMjVAcHsUFAvLub1g0bSPT0EJ6BsEdEREREROYnP7AUajBYDshXoG4hHoY2Vb+InMcYQyLsQpnAurDy1RGLGbWN1mWG1qghGdbPjojI5bKN59ViDYYqAaM1KPvQ04KCmCugIEYWlPLp0wxs20b59GmSK1fihSf/Fi8fP07+8cfxSyUAEmvWkNmwAe8ioc1U2CCgls9THR4mlEiQWrWK9Jo1xJctu+i6RERERERk8SnXLfkqnCm7kx3GuPZjmn8h8sY8Y0hFIBWBemAZ8+FIyRI2llQU2mMe6Qgkwvp5EhG5mPFKw/HwZaQK9QAiIUhE3CwwuTI6GywLxsjhwwzs3IlfKpHq78d43gW3CSoV8rt2MfbyywCEUikymzcTX7Fi2tYR1GpUh4aol0pEslnab72VVF8f0Y4O7cQRERERERHA7eIv1WC4YhmqWCo+xEKQiamtkshUhT1D2gMibr7SSA1ylYCYB+kotDVCGYWcIiJOuW4p1mC4ElCqQTWAiOfCl8h57VDtnK1xoVAQI/OetZbiiy8yuGsXAIne3kkDj7HDh8lv304wNgZA6rrrSN96K14kMi3rqI+OuvZjvk+ss5P2W28l2dNDuKVlWo4vIiIiIiLzXy2w5BvDxos1N3w8EYaU2o+JTKuIZ4hE3TmDagDDFdf2LxaCbNSQiRnSmrskIotQ2XebQXKN9yKVwM2iS4TcPDq9H5kZCmJkXgvqdXLPPMPwnj2EW1omHXrvj46S37GD8uHDAIQzGTKbNxPr6rrix7fWuvZjQ0OEYjGSvb2kr7qKxPLl0xbwiIiIiIjI/DY+6DZXsQxWXN/1sOdOdugksMjMMsYQC7mKM2td9dnpsuX0mG3MYHLzZFoiENLJRxFZoCrj4UsloFCDig9h42bRpRS+zAoFMTJv+ZUKQ7t2UXjhBaJLlxJJp8+73lrL2Msvk9+1C1utgjG0rFtH+qabMFc4oyWo1137sWKRSCZDdv16Wvr7iS1dqicuEREREREBwA8shZrbhZ9v9Fp3J351wkNkLhhjiIfdz2HQmIdwYsRyctSSCEN7I5RJhfUzKiLzX7URvuSrlnzVBdHeePii57lZpyBG5qVascjgjh2UDhwgsWIFoUTivOvrxSL5bduoHD8OQKSjg+zmzUQmqZi5HH65TOXMGdd+rKODtvXrSfb2XhACiYiIiIjI4lWuW/JVOFMOGK2BMZAMQzSqEx4izcIzhmTY/Wz6gWXMh6MlS9hYUhE3T6Y1CvGQTlaKyPxRDxrhS8WSq1kqdfc+JB7SRpC5piBG5p3K4CAD27czdvw4yb6+81qA2SBgZP9+irt3Y+t18DzSt9xCyw03YDxvSo9nraVeKFAZGsKLREj29NCyZg3JFSvwotHp+rJERERERGQes3Z82K1lqOJ2ncZCkIm5E74i0rxCnqHFAyJujtNIHXLVgKgH6UYok45CLKSfZRFpPuPhS6FqyVUt5bq7PB6GrMKXpqEgRuaV0VdfZWD7dmq5HKm+PkwodPa6Wi5H7vHHqZ0+DUC0q4vs5s2EM5kpPVZQr1MdHqZeKBBJp8neeCOp/n7inZ1TDnVERERERGRhqQWWfAUGKgHFKlgLiTCkdOJDZF6KeIZIY89l1bfkazBUCYiFoDXqQpmWiLudiMhc8e2E8KUxf87iwhdtAmlOCmJkXrDWUjpwgMGdOwlqNZJ9fWc/1NggoPTssxSffhqCABMO03r77SSvuWZKH3z8SoXKwAC2WiXa0UF20yaSK1cSnWKgIyIiIiIiC4u1ltE65CqWwcbJj7AHLREI6+SsyIIRDRmiIfczX/FhsAwDY4HbZR41ZGKGlgiEdMJTRGZB0AhfilVXfVv23QaQmMKXeUFBjDQ9GwTknnuO4d278eJxkj09Z6+rDgyQ27qV+vAwALEVK8hs2kS4peWyH6dWLFIdHMSEQsSXLaN17Vo3fyYWm7avRURERERE5i/fWgpVGCwH5KtQD9zOU/VcF1nYjDHEw+7nPbDu5OfJUcupMUsiDO0xQzpqSIV1IlREpldgXbvE8fBlrO7Cl2gI0lEFwfOJghhpakG1ytBTT5F/9lkibW1Es1kAbL1Occ8eSs89B9bixWK0bthAYvXqy/oAZIOA6tAQtUKBcCpF6zXX0LJ6NfHubrUfExERmSG+tVQbsxN0skJE5oNy3ZKvwplywGjNDb1NhiEa1XOYyGLjGUMy7J4DfOtmMRwtWULGkopAe8wjHXEtChXQishU2Anhy3DFVeH64+FLxM21kvlHQYw0rfroKIM7d1J88UXi3d2EUykAKidPknv8cfxCAYDEqlW0bthAKJG45GP7lQrVwUH8SoVoWxsdGzaQ6us7G/SIiIjI9KoFlpEaFGuuh3EtgHgIMlFDS2MHqdr5iEgzsdZSrMFwxe1ArfjuBEhrTLtPRcQJGUMqAqmIG5Y9VodDlYBw42RpWyOUiYf1nCEir89a9xxSbMylGq1B3UIk5J5j9Flp/lMQI02pmssxsGMHo0eOkOjpIRSLEVSrFHbvZnT/fgC8ZJLsnXcSX7nyko9bL5WoDA6CMSS6u0mvXUuyp4dQPD5TX4qIiMiiVa67nVyFqqVQs1QaAyRjIferEsCxEYsZtcRDkI4YWhuhTCykXaQiMjdqgat+GSgHFKuu/UciDCm1HxOR1xH2DOmo+33VHw9yAxfgNkKZloibOyMiAi58KfvnwpeRRtvTSAgSEYgofFlQFMRI0xk7eZLB7dspDwyQXLkSLxymfPQouW3bCEZHAUhefTWtt9+OF42+4fFsEFAdHqaWzxNOJkmvXUvL6tUkursxodBMfzkiIiKLxvgurlIdcpWAkRpUA/CMC1ZeO0AyGgIiru9xxYczZcvpMUvUg2QEslGPVMS1/lALMxGZSda6th+5imWw0X897EGLdqCKyBREQ4ZoyD23VAMYqrhwNx6GbNS4imA9v4gsWuX6ubC21PjMFPEUvix0CmKkqZQOHmRw5078sTFSfX0E1SrDjz/O2CuvABBKp8lu3kxs2bI3PFZQq1EZGMAfGyOazdJ+++2kVq4k1tEx01+GiIjIouFby2gNSjVLrup+X7Pug0SsUUb/RjvIPWNIhN2Oc2td27JSzYU5nnGXZ6OGlojrya6dpCIyXXxrKVRhqByQq0ItcM85bap+EZFpYIw5Wwk8vvP91Kjl1KglEYb2mCHdCGW06URkYSv7llINhssufKk0wpd4CNKaObcoKIiRpmCDgMK+fQw98QSEQiR6eigfPEh+xw6CSgWMIXX99aRvuQUv/PrftvWREaqDg9ggIN7dTfqOO0j29hJOJmfpqxEREVnYXjvvpexDYM/t4mq9gl1cxrgdpNFG0Wo9cNUyr45YDNYNqIxCJuKqZeJqYSYiU1D2LfnGDvWRGhjjqu9adSJERGaImbDxJGhUEb/aaNGaCkNbzLVoTYb13kZkoag0wpdcJaBQg4oPYQPx8KVtWJOFRUGMzLmgViP3zDMM79lDuLWVcCzG0Le/TeXoUQDC2SzZLVuILl160WPYIKCWz1MdHiaUSJBatYr0mjXEly17w+BGRERE3ljZd+HLZPNe0hEIzVAJfdgzhD33QSWwlqoPQ2UYGAtc8POaapmZWoeIzH/WjrcBsQw3QuRoCFpjbuC2iMhs8YwhFXHvb+qBZcyHIyVL2FhSUWiPeaQjkAjruUlkvqk2wpd81ZKvus8vplHln1LQuqjpDLXMKb9cZnDXLgr79xPt6KB24gRDTzyBrdXA80jfdBMt69ZddJZLUKtRHRqiXioRyWZpv/VWUn19RDs69MQmIiJyBSbOe8lXAkp1qPoXn/cyGzxjiIfdDrLxFmZjdRcOecYSD7nd7OO7SWNqYSYiuCq+fNVVvxSrYC2NlkA6GSIicy/sGdIeEDlXdZyrBMQ8VwXc1ghl1JpVpHnVAhe+FCqWXGPTmjGuej+r9xvSoCBG5kytWGRwxw5KBw4QyWQoPP441ZMnAYgsWUJ2yxYibW2T3rc+Ouraj/k+saVLab/1VpI9PYRbWmbzSxAREVlQLjbvJdzoXdxMO7he28LMDyyV4Fzf9WhjvZmYRyqM2nyILDLWWkbrkKtYBisuWA57aDi2iDS1iGeIRN1zWDWA4QoMlgNiIVcBnIkZ0noeE2kK9fHwpeo+O5XrgMIXeR0KYmROVAYGGNi2jdETJ2BkhMFt28D3MeEw6VtuIXXddRjPO+8+1lrXfmxoiFAsRrK3l/RVV5FYvhwvEpmjr0RERGR+G995OR6+jNWnb97LbAp5hqTnApfxkxf5GgxWAiKNVgDZmCEVMaTCOoEhslD51lKsuhOXuSrUAvfz36YTIiIyjxhjiIVcFbK1bl7e6bLl9JglPmGeTEtErRVFZpMfWEqNivxcY6OHxVXsz0XHAJlfphTE7Nixg40bN073WmSRGD12jIHt2ykfP07llVeoDQ4CEF22jOzmzYTT6fNuH9Trrv1YsUgkkyF70020rFpFbOlSfZgSERGZgspr5r2U6+7y6AzPe5ktE09egAubKj4cLVnMeAuziCEddaFMLKQTtCLzXdm35Bs7x0dqgHHBbGtUP9siMr+ZCa1ZA+vmW50YsZwctY02iy6UaabKZZGFJLCu8qVYtQw1ZsxZCzGFL3KZphTEbNq0iauuuor3v//9vPe972X16tXTvS5ZgKy1lF56iYEdOxh7+WXKBw+CtZhIhNY77iC5du15bxr8cpnKwAC2XifW0UHb+vUke3uJvCaoERERkddnrRsCO95zvBnmvcymiGeINHqvB41dpWfKllNjlqjnBuVmoh6piDtxu5D/LkQWEmstxRoMVyzDjRMj0RCkY9ohLiILk2fcHLxk2O3MH2tsNAkbSyri5sm0Rl1rJIUyIlMXWMtI/Vz4Mt41IBZys5v0PkOmwlhr7eXe6Ytf/CIPPfQQ//zP/4zv+9x55528//3v5yd/8idpb2+fiXXOqUKhQCaTIZ/P09raOtfLmZes75N79lnOfPe7jO3bh18qARDv7SWzaROhZNLdzlrqxSKVwUG8SITk8uW0NNqPhWKxufwSRERE5pXxDw/j4ctI3bXoGZ/3EvX0AX28hVnFh3oAIeN2m2ajhpaIIRVxIY6INJdaYMlXYaAcUKy6XakJVbeJyCJWC9yJ4lrg3uOlG6FMOgqxkJ4XRS6FnRC+DFfc7wPrNnkkQvO/a8CVylUsnQlDX9p74xsvIpeTG0wpiBk3MDDAww8/zBe/+EW2b99ONBrl7W9/O+973/v40R/9UaLR6FQP3VQUxFwZv1JhcMcOTn/zm1RffRUALx4nc+edxPv6MMZgfZ/KePuxlhZS/f2kVq0i3tl5wawYERERmdz4wMjJ5r3EwwoV3kg9cDvqa777cyzsTmS0Rj1SYe0uFZlL1rrntOGK25k6WnfBclIzn0REzlP1XaWMH7iAujXqQpkWbTARuYC17j1FqQZDlYDRGtQtRBrhi95jnKMgZnKzFsRMdODAgbOVMi+99BKZTIYf//Ef59577+VNb3rTdDzEnFEQM3X1kRFe/drXGPrud7HlMgCJNWvI3HEHXjyOX6m49mPVKtH2dtJr15JcuZJoJjPHKxcREZkfxue9FKuW/GvmvcT04WHKxluYVfxzYVYyDNmYC2WSGo4rMit8aylW3eyXfBWqgQtFk5qFICLyumzjvcz4PIvxqt9MzNCi9zGyiNnGrKViI3wZqbrq+EhIm9dej4KYyV1ObjClGTGTSSQSJJNJ4vE41lqMMXz961/ngQce4NZbb+XBBx/k+uuvn66Hk3lg9NgxDv/5nzP2yisAhFIpMps2Ee/poVYsMnbyJCYUIr5sGemrriLZ06P2YyIiIm9g/INDqQb5xryXyiKa9zJbPGNIhF27I2sttQBG65CvBnjGnQjOxhotzMIQVdsPkWlV9i35igtgRmqAceFLOqqfNRGRS2GMIR52J5aDxvvHk6NuRl4iDO0xQzrq3sfovaMsBuX6+Gy5gFLNbe6IeJBQtZjMkiuqiCkWi3zlK1/hoYce4rvf/S6e5/GOd7yDe++9l7vuugvP8/ja177GRz7yEbq7u9mxY8d0rn3WqCLm8p3653/mxJe+RNCogkldey0tt9xCvVikVigQTqVIrVxJy+rVxLu71X5MRETkdQQTSuZzlYDRuvvgEDaufVZM815mld9oYVZttDCLhqAlDJlGtUxCO/VFpsTa8RMkrjd72Xc/X8mwdm6LiEwX37oK6orv5uOlItAe80hH9B5GFp6ybylVz4UvlUb4Eg9pI9XlUkXM5Ga8IubrX/86Dz30EH//939PuVzmjjvu4P777+c973kPHR0d5932x3/8xxkeHuaDH/zgVB5K5plaPs/Bz36W0nPPARBqbaV1wwbwPMaOHyfa1kbHhg2kVq4k2tY2x6sVERFpXvXADYgsVS3DVfeB2bduJkI8BC0RfVCeKyHPkPLciQtrLZUAcjUYrASEjWtblom6ahnNrxB5Y7XAUqjCQDmgUHUtdNxubT3PiYhMt5AxpCLufUw9cPO3DlUCwiE3G6+tEcrEw3r+lfmp4tuzG9gKNRc6ho2rDkvpM5TMoSkFMe9617vo7e3l13/917n33nu55pprXvf269ev573vfe8lH/8zn/kMf/iHf8jJkydZv349f/Inf8KGDRsmve2b3/xmvvvd715w+Y/8yI/wjW98A3AfkH/v936PP//zPyeXy7FlyxY++9nPsnbt2ktek7w+ay2D3/sex/7H/3BVMMaQvPpqwl1dBEFAfOlSWteuJdHTQziRmOvlioiINKWz815qlnzVnu3pHQ25Dw06od98jDHEQy4cA3dCecyHQsniGevaxUVc649kBOLaeScCuM8PY3XIVS2DZVf1F/JcyKznOhGR2RH2DOmo+33VP9e2KRqC1kYo0xJR5YA0v+p4+FJ1mzrGWzcnwpBSpZc0iSkFMd/+9rd585vffMm337Bhw0WDlNd65JFH+PCHP8znPvc5Nm7cyP3338/b3vY29u/fT2dn5wW3/+pXv0q1Wj3758HBQdavX89P/MRPnL3sD/7gD/j0pz/Ngw8+yKpVq/jd3/1d3va2t/H8888Tj8cv+euQyVUGBjjywAMU9+4FwEulSFx9NdHOTtd+bM0aEt3dmFBojlcqIiLSXCbOeylUA4qNHVtmfN5LVD2755uIZ4h4QORcP/bTZcvJMesCtTBkoh6piGu3pH9fWWx8aylW3eyXfBVqgXu+y2q+lYjInIqGDNGQe39aDWCo4ioV42HIRk2j2ldhuTSPWmAbczMt+ZrrIDA+y7FNVbXShK5oRsxM2LhxI3fccQd/+qd/CkAQBPT29vKhD32I3/qt33rD+99///187GMf48SJE6RSKay1LF++nI985CP8xm/8BgD5fJ6uri7+6q/+ive85z1veEzNiJncaCVg65ceZel3HyGoVMAYor29pG+6ifTVV5NauZLYa1rViYiILHbj815GGjsOR+vuROT4h4ZYSB8aFqLxkxoVH+qB68keD0Nb1JCKuBYhGhIqC1nFt+QqLoAZqQHGhZHaZS0i0rzGNw2V6+7Prm2kq/RtiShAl9lXHw9fqo0OAnWg8Tkqrs9RM0ozYiY34zNi/u//+//m7//+79mzZ8+k199yyy3cfffd/N7v/d5lHbdarbJ7925++7d/++xlnufx1re+lW3btl3SMR544AHe8573kEqlADh48CAnT57krW9969nbZDIZNm7cyLZt2yYNYiqVCpVK5eyfC4XCZX0di8V3/suf0n1wFwHgZzro3LyBtttuI9nbSziZnOvliYiINI2J815yVdeOR/NeFhdjDLFG0Abue6Lsw6sjFrDEwtAaMbRG3VwZfZCUhcBad7JkqGIZrrjv+WgI0jE3o0BERJqbMYZE2AUwQaOl5KsjFjNqSYWhLXbuvYvet8hM8QNLqQ6FqiVXcd+HALEwZFRRK/PIlIKYr3zlK7zrXe+66PU/8iM/wiOPPHLZQczAwAC+79PV1XXe5V1dXezbt+8N779z50727t3LAw88cPaykydPnj3Ga485ft1rfeITn+DjH//4Za19MSrfeCdjh5/lr3vezXe63swvrzL84hqPsAa6iYiIUPVd+FJo7Naq+BBo3os0hD1Dy4QWZhUfBsqWU2OWqOcqBbKxcy3MdNJa5pNaYClUXUubQtXNuoqHoV1tQkRE5i3PuAreVMRtKBnz4UjJEjaWVBTaYx7pCCR0TkimgW8bszOrlqHKudmZCl9kPptSEHPkyBHWrFlz0etXrVrF4cOHp7yoqXrggQdYt27dJc+juZjf/u3f5sMf/vDZPxcKBXp7e690eQvOu37iDg5uuoaB7a2Ujxs+uRP+7oDlY/9HwG3d2hEhIiKLy3jrhpEa5BvzXqq+uy4WhlbNe5GL8CbsNrXWUgtgpO6+j8Zb1mVjhnTEqJWTNC3b2Cmdq1oGy64FY8hD8wRERBagsGdINzaU1AJ3wjxXCYh5kI5CWyOU0XsWuRyBdRvZxsOXsbrbyBYLue8rbUyS+W5KQUxLS8vrBi0HDx4kHo9f9nGXLFlCKBTi1KlT511+6tQpuru7X/e+IyMjPPzww/z+7//+eZeP3+/UqVMsW7bsvGPefPPNkx4rFosRi8Uue/2LjTGG1b0ZvrzC8hd7Aj613fDSoOFnvgb33GD5mZst3Sm9+IqIyMJ13ryXasBo7fx5L1nt/pbLZIwblBtttDDzGy3Mjo+3MAtBOgKtUVctk1ALM5ljvrUUq272S77qngNjjec/hc8iIgtfxDNEoufm4Q1XYKgcEA1BNmrIxoxCebkoOyF8Ga643493EUhHIKTvG1lApjRd581vfjOf//znefXVVy+47ujRo/zZn/0ZP/ADP3DZx41Go9x22208+uijZy8LgoBHH32UTZs2ve59v/zlL1OpVHjf+9533uWrVq2iu7v7vGMWCgV27NjxhseUS+N5hp+7xfC/fhI29Fh8a/jSXo+f/zuPbx4IeCEXcLQUUKhaAmvnerkiIiJXpB64VmPHRwL2Dbtfh4pu+HQsBG0xV70QDxudIJcrFvIMqYihPW5oi0HIuBMcBwoBLwwH7MsFHB9x77Pqgd5nyeyp+JZTo5b9wwEv5gKGKu45sD3uvmcVwoiILC5uHp4LXlwYD6fLlhdzAc8Pnzsv5Ou80KJnrWWk5t5H7MsF7B8OOFKylANXSdseN7REjEIYWXCMtZf/DLh//342bNiAMYaf/dmf5YYbbgBg7969fOELX8Bay/bt27nuuusue0GPPPII9913H5///OfZsGED999/P1/60pfYt28fXV1d3HvvvaxYsYJPfOIT593v+77v+1ixYgUPP/zwBcf8r//1v/L//X//Hw8++CCrVq3id3/3d3nmmWd4/vnnL6lyp1AokMlkyOfztLa2XvbXtJgMjlkefiHg87s88mWDwfKj11p+/EZLItJ4Qo15ZKIQV99QERGZJyab92ItREKu8kU7/GQu1BrVMjXfneyIhSATdS3MUhGIqSJZppm1llINhipu12rZx800iqhdiIiITC5otO+t1MEY14q1PWZojRpSamm/aFjr5gqVaq5iaqQG9cB9nkqE9XlqPshVLJ0JQ196SnUdC9bl5AZTak12zTXX8L3vfY8PfehDfOpTnzrvuu///u/n05/+9JRCGIB3v/vdnDlzho997GOcPHmSm2++mW9961t0dXUBbj6N553/D75//34ee+wx/umf/mnSY370ox9lZGSEn//5nyeXy/GmN72Jb33rW1NqnyavryNheN+NHjd1B/z5LsN3D3l8fZ9hxzHLr20KuHYpHKy6vqGZ2Lm+oXrCFRGRZmIbw9NLjTkdxSpUfDC4eS/qUSzNIOIZIo3+7H7je/bUmOXkqCUaglQYsjGPVGP+jCoUZKpqgaUwof2YtRAPQ7vaL4qIyBvwjJtxlwy7lqtjPhwtWcLGkoq480KtUbe5Sa8pC8v4DM1SDYYrAaUaVAOIeJCIuPeyIovJlCpiJhoYGOCVV14BYPXq1SxZsmRaFtZMVBFz+Uo1y6FiwNYj8BdPeJwecU+u71hr+fnbA6JhGKu7D3GJMHTEDZmoe3HWC6+IiMyFoDFoulRz4ctIDSqBawUVD7lqA71GyXww3qO94rt5HZHG7tNM1NDS2H2qTTDyRmzjOTFXtQyW3TyskIe+f0REZFrUAvc6UwtcdWU6Am1xt1lXVb3zW9m3lKrnwpdKI3yJhzRDej5TRczkLic3uOIgZjFQEDM1o3XL4WLAqRH46nOGv91nsBg6EpZfvdOype/cSa+KD2Hjdhi3xz1aI3pyFhGRmecHruVYqWbJVdxrUt1CuPFBIeIpfJH5r95oYVadUNXVGjnXEkQho0zkW0txQvVLLXDfI6qqEhGRmVL1XaWM33jNaY26SpkWVU3MGxXftS/NVQIKtcZ5vvHwRZ+pFgQFMZObtSDm2LFjPPXUU+TzeYIguOD6e++9d6qHbioKYqau7LswZrgCx4bh/m0eRwvuyff7+y0f2mhpS7jb1gK3084PXKuDtqgb8tYS0Yc+ERGZPuPzXoqNeS9lHwILUc17kUUgaLQwKzfmHEUbrSHaoh6piGsbovddi1PFt+QqLoAp1c718deuZBERmS32Ne9T4mHIRg2ZxrkhtQZuLtXx8KUaUGi0cvYa7x8Uviw8CmImN+NBTLlc5r777uN//a//RRAEGGMYP8zEHzLf9y/30E1JQcyVqfqWI6WAgTIkQvDwsx4PPwuBNaSjll/aYPmhNe7DHpzrIVluDHJLhaEj7nqGJsJ6EhcRkcsz/oFupDHvpfCaeS+xkD7UyeJkraUWuJMd9eDcB+dM1JCOuJaxqlBe2Kx1J1CGKpbhinsPHvVcIBdSKC0iInMoaJwbqtTPbQ5ojxnSjYpebRyZG7XAvXfIVyz5mqVcd+8h1cp54VMQM7nLyQ3CU3mA3/md3+GrX/0q/+W//Bc2bdrEm9/8Zh588EGWLVvG/fffz/Hjx/nrv/7rKS1eFp5oyNCf9vBMwOkxeN/6gO/vM/y3rfDykOEPHjN8+xXLr2+2dLW4J+1EY6is36iSOVgMiHmQibny1HREO5ZFROTirHWvHyN1Vx4/0hgM6Rn3ASEb04c3EWMM0ZCrBgPXwqziw/ERi8ESDbm2sZmIq5bREN2FoxZYCo32Y4WqqwqMh6E9pn9jERFpDp5xm0KSYdc2s1yHoyVLyFhSEWhvnBtKaNbwjKuPhy+NjgJjjXAsHoI2vXcQuWRTqohZuXIlb3/72/mzP/szBgcHWbp0Kf/yL//CW97yFgDe8pa3cM011/DZz3522hc8F1QRMz18a3m1ZDk5akk2Skq/8hw8+JShFhgSYct/uM1y17XuRNlE40Nnx+quPHV8J0Qm5nZC6ElfRER8axmpnT/vpWbdnJeYehOLXJbAWqqN1iB+4+co2WgPkoq491+qmJh/RmuWXNUyWHZhdajx76r++yIiMl/Ug8b7fB/CIUhHzm3YjauLyrTxA0upDoWqq5qt1MHiNm7EQtrUthipImZyM14Rc/r0aTZs2ABAIuEGfIyMjJy9/p577uH3f//3F0wQI9MjZAw9LRAy8OqoJR6yvGedYctKyx9thb2nDX+yw/Dtg5aPbLaszJ67rzGGWKPMMbDuRffYiAt10lG3E6I1qvYZIiKLTS1w4UuxEb6Mz3uJhNzci1adXBSZEs8Y4mH3YdtaS926DTGFqsUzlngIWqOG1qjbrao5Is3Lt5ZiFYYqAbkK1AJVBoqIyPwV9gzpqPt91bcUazBcCYiGIBOFbNSjJaLzQ1MxvrGtWLUMNT5bWevaObfqfYPIFZtSENPV1cXg4CAAyWSStrY29u/fz1133QW4JKhcLk/fKmXB8IxhecqFMcdGLIG19GYMn3yH5e/2W/7iCcNzpw2/8Lfw/pstP3kjhL0Lj5GKQCriTsAVa+6DpSuJNGRjhnRELxAiIgvRxHkvhaqlUDu3OyvW2BGnXfoi08sYQ8RApHHSww8slQBOjbpNMdEQtIQhE/NINVqIqPps7lV8S74KA2MBpdq5/vrpqP5tRERkYYiGXJvV8S4qg2U4MxYQb1TxZqKGFrW2f12BPbexbajRVSCwjc9WUc3SFJlOUwpiNm7cyGOPPcZv/uZvAnDXXXfxh3/4hyxbtowgCPjUpz7FnXfeOa0LlYXDGEN3yhD2LEdKAYWqpTVq+LFr4c4eyx9vg52vGr7wpOG7hyy/scWytmPyY0U8QyTqXnTLvjshcHrMkgpDR9xVySRUmioiMq+90byXjHZnicyqkGdINlpajZ/4yNdgsBIQaZzsz8bOtTDTyY/ZY63r4T5cObeTNepBa1QhtYiILFwTu6hMPD90atSebW2fboQy+tzg/o5G6q7yZbjifh9YNzdQG9tEZs6UZsQ89thjfPnLX+YP/uAPiMViHD16lLe+9a289NJLAKxZs4a///u/55prrpn2Bc8FzYiZOcMVy+FiQC1wJaTGGKyFR1+Bz+w0FCsGz7jKmPevt8QuITr0A8uoD1UfYo0Pnu1x1y9UJwJEROYH31pGx+e9VN3vNe9FpPnVAle1VvXPDXFtjbiTH6lGT3H97E6/WmApVGGwHFCourk+ibD7+9fft4iILFbjre3H35ekwq6Tynhr1cX0Gjm+uW28ldtIrTEHMASJkM6XyRvTjJjJXU5uMKUgZjJBEPDss88SCoW49tprCYenVGzTlBTEzKxC1YUxYz5ko+deCIfH4DM7DN855P7c02r5yBbLuq5LO+74Ds2xuutpOb4LIhNzJwIW0wuuiMh8cNF5L56bU6Fh0iLzS9BoJVhp/CxHPddaNhP1SEVcRY12pV6Z0bp7vhwsu5MroUalkp4vRUREzlcPLGM+1HwIG0g15g2nIwu3k4q17msu1WCo7MKXeuPzVUJVy3KZFMRMbkaDmNHRUd73vvdxzz338N73vveKFjpfKIiZeSM1y6Gi61/92sGhW4/Ap7cZBsfcZT96reU/3GZJRi79+OO7ICqNF9yWxgtua1TDZUVE5lLZd+HLZPNe4iGVxYssFOMbZCo+1AM3L3C8f3tLxM3/U3hwaXxrKVbdjMRcBWqBe85MKNgSERG5JLXAnSOqBa6TSjoKbY1QJjrPzxGNt2YrNSpfSo22zuPhi95vyVQpiJnc5eQGl122kkwm+Zd/+Rfe8Y53THmBIq+VihhWt3ocLroPlJmYPTsQbMtKWN9l+bPd8M0XDX+7z7DtKPz6JsuGnks7vmfcB/xUxL3gjr8gxUOuLDUbc71CNYRMRGRm2UYwXqpDvhJQarQK0LwXkYVtYu92cLtSKz4cH7GAaz+bjkBr1COlllqTqviWfBUGxtxzp8GdUElH9fckIiJyOSbOG64GMFxxFSPRkNskMn6OaD5VjJR9S6l6LnypNMKXeEjvFUSaxZRak/3Ij/wI3d3dfOELX5iJNTUdVcTMnopvOVIMGCpDa+zCF72nTsAnHzecKLrL37ra8ksbLJn45T/W+C6Bcv1cr9D2uEcmunDLUkVE5sLF5r2EGx8MNO9FZHF7bQuzSKO9VqZRLZNcxJtlrB3fQGQZarRsjDb+flQxKCIiMn3OniPyAesqd9tihkzUbextxvciFd+9T8hVAgq1RhcYfcaSGaKKmMnN+IyYV155hbe97W28+93v5hd/8Rfp6bnEsoR5SkHM7KoFLow5U4bW6IVlk2M1eHCP4avPQ2AN2bjlVzZa/o9+F6hMhR9YRn2o1d2gskyjLLU1Or92QIiINIvxeS+lmmVY815E5BJZa6k1WpjVAlctFw+5UCbdGKy7GNrK1gNX/TJYDihU3TDdhCqFREREZkXQCGUqjY274zOHW6NzP3O4Oh6+VN17hEqju0AirPBFZpaCmMnNeBCTTqep1+tUq1UAwuEwsVjs/AMbQz6fv9xDNyUFMbOvHliOlSwnxywtkck/cL9wBv5oq+FQzl23udfyq5ssS5JX9tgV37XNsfbci20mNvcvtiIiza4yYd5LvjHvBSCqeS8iMkV+YKkEnPd80hKGTMy1MEsssPdno3VLrmIZLFtG6xBqVL8ovBYREZkbfuAG3lcbM4dTkXMbd2drg8R4i/18xX3OKtfPbVaJaZOGzBIFMZOb0RkxAPfcc49+yGVGhT3DyrT78HlixGKtJf6admHXLYXP3mX5m2ctX3zG8PhRw9Mn4RfusLxj7dSrY2Ih18N8fAfEsRHLiVFLSxQ6Gi+2i2EnpojIG7HWfSgZaZTDa96LiEy3kGdINsIIa10ok6vBQCUg0tj9mY0ZUhG3aWY+VjL71lKswlDFzUqsBe45NKvnUBERkTkX8gwtHtCYOTxSd9UoUc/Nt2uLe6QvsoH4StTHw5eqJV91G4ZNI3xpiyl8EZmPplQRs9ioImbuWOtCkFdHLNEQJC8yu+XgsKuO2Tfgrr9lmeXXN1mWT9M/Vy1wL3r1xgfjtti54W3N2CdURGSmBNZ9+Cg1PhCM1N1JQ/UiFpHZVgvcppm6705MxEKQiTRamEUg3uQbZyq+az82MOaCbGDRtF4TERGZ76q+25TmN84TtTZa3LdEpl7J6geWUt11GBiuuA4DFtfaORbSBg2ZW6qImdyMtyZbbBTEzC1rLWfKcLQY4HnQEpn8hccP4GsvwF8+aaj4hljI8oFbLe+6zlXWTNdaKj5ndyIkJ7QuS6gcVEQWqPHdWKWaJdfYjaV5LyLSTMYrmauNeVRRz7UOyUQ9UhH3nq0ZTl5Y606wDJctQ435WdFGxY/aN4qIiMw/4+eJyr5rcR8PQzbqzhNdyuZd37r2zsXqufcG1kKsMRuuGd6/iICCmIuZ8SDmr//6ry/pdvfee+/lHropKYhpDoNly5FiQIAr/7xY6HG8AJ/aZnjqhLv+2iWWj2yxrGqb3vWc7RNah0hj90N7zCMd1UlJEZn/Js57KTT6EIObzxALzc/2PyKyOFhrqQZueG3ddxty4mFoizZamF3BTtWpqgeu+mWw7Abr+o1ZhLPVW15ERERm3vjGkEpj8+743OF01LVQHQ9VgvHwpebCl/GNbrGQe8+izivSjBTETG7GgxjPu/hf+MQPEr7vX+6hm5KCmOaRq1gOlwKqPmSiF//gai38w0vwuV2G0Zoh7Fl+ah389E2WSGj611X13UDV8d0P41UyLQtsgKyILFwT573kG/NeKhPmvagUXkTmq3qjhVmt8dEkFnabelqjHqkZDkNG65ZcxTJYdu8VQ43qF23aERERWdh86wKWqg8h4yp122MegXVtx0Ya4Us0BImQKmOl+SmImdyMBzGHDx++4DLf9zl06BD//b//d44cOcKDDz7Iddddd7mHbkoKYppLserCmJHaGw8oGxiBP95u2HbU3aY/a/mNLZZrl87M2ibufvAMtESgI+7RGlW/bxFpPoF1JwZLNchVAkbrUA0gbNyJypjmvYjIAhM02odUfFeVMt4WLBs718LsSnehBtZSqMJQJSBXcc+r8ZDbFatAW0REZPGpN+YO1wL352jIvTdQlwGZTxTETG7OZ8S8853vpL+/n8985jPTfeg5oSCm+YzWLIeKAcUaZGOv/6HWWvjuIfjTHYZc2eAZy7+7Hu672ZKIzNwa64E7wVlvDG7LRg3ZmCEdVZmpiMydeuB2X5WqluGqaznmWwh77sNAROGLiCwS1lpqgevpXg/cJpp4CLIxQ0vEtRCJXsZGmorv2o8NjLmqQnDBjjbjiIiIiMh8pyBmcnMexHz2s5/ld3/3dxkYGJjuQ88JBTHNqVx3lTG5imtT9kZlnPkyfHaX4V8OuNstS1s+vNlyy7KZXef44LaxOmDcB/KOmCETNSTUukxEZsH4vJdizZKvnhsAqZ1YIiLn+I0WZlUfLG4jzdkWZhHXNuS179ustZTqnG0/VvbPVdmoxYiIiIiILBQKYiZ3OblBeCYWcODAASqVykwcWuSseNiwKu1xmIDBCmSi9nVPJmbi8FvfZ3nLKsunthlOFA3/v380vGOt5Rdut7TEZmadxhjiYTc7ZrxH6OGSJepZ0o3WZemoeoWLyPSxjTaJpRoUqq56sOK7gZGxkAuv1R5HROR8Ic+Q8lwP9/GNNMMVOFMOiBhIRiATddUysZB7jh0sBxSqrrLQDeTVJhsREREREbnQlIKYf/u3f5v08lwux7/927/x6U9/mrvvvvtK1iVySaIhw6pWj1Ap4PQopKP2DVtIbOiBB+62PLAbvr7P8A8vGXYeg1/dZNmycmbXGzKGloibHVP1LblG/3D3wd00PtzrA7yIXL7xeS8jNRhuzHupBW4wZCwMbarAExG5ZBM30gDUAsuYD4WSxTOWiOcC7lAjoNGGGhEREREReT1Tak3med6kJ3OstYRCIX7iJ36CP/mTP6Gjo2NaFjnX1Jqs+fnWcqxkOTlqSUUuvRf3s6fgj7YajhXc7f+PfsuvbLS0JWZytecLGjvXy3XXmzwdgfa4R2sU4uopLiKvQ/NeRERmn9+YLRP1VF0oIiIiIouDWpNNbsZnxHz3u9+98EDG0NbWRl9f34ILKxTEzA+BtZwYsRwfscTCkAhf2gfjah3++mnDl/ZCYA3pmOWXN1jeutq18ZlN9cCe3cUeC0Fb1JCNGdIR9RkXWez8Rpuc8V8j9YCRRsuxQPNeRERERERERGSGKIiZ3IwHMYuNgpj5w1rLqVHL0RHXMiIVufQTki8Nwn/bajgw5O6zYYXl1zZZulpmarUXN96XfMwHrGt50dFoXZZQeyGRBa8enAtdyr5ltGYZ9aHmu4oXAM9zFS/xkHZki4iIiIiIiMjMURAzuRkPYg4ePMjevXu56667Jr3+7/7u71i3bh39/f2Xe+impCBmfrHWMlCGI6UAA6Sjl36Csh7Al/bC/9hjqAWGRNjyH2633HWNaxs2F3xrGatD1XfthlontC5TP3KR+a82MXSpW0bqbg7BeOhigFAjdIl4bh6BwlgRERERERERmS0KYiY340HMPffcQ6FQ4J//+Z8nvf7tb3872WyWhx9++HIP3ZQUxMxPwxXL4WJA3brw4nJOXB7JwR89bnjutLvPjZ2Wj2yx9GZmaLGXqOq7UMa3kAhDW8yQjRpSEe2IF2l2tjFTYGKlS6nmZkTVAtdeDFzgOh66qM2YiIiIiIiIiMw1BTGTu5zcYEp/c9u2beOHfuiHLnr9D/7gD/K9731vKocWmTZtMcOqVo+oB/mqOwl6qVZm4VPvsHxoY0AibNl72vDzXzf8zTOuamauREOGTMzQFgMLHB+x7MsF7M8FnB6zlOvqNCjSDFx7QUuhajkzZjlSDNiXC3h+2P3/QCHg+IibCRUykI5Ae9zQHje0Rg2JsFEIIyIiIiIiIiKyQISncqfh4WHS6fRFr29paWFwcHDKixKZLpmoYXWrx6FiQK4CmZi95MoRz8CPXQd39lo+9Tg8cdzwwJOG7x5y1TFrO2Z48a/DGEMyDMmwmyUxWod8ISAWgmzU0BYzpCMQ0olckRk3PtOp0qh2GatZSnVLNXDBbWDBmHNVLomwKthERERERERERBaTKVXErFy5kq1bt170+u9973v09PRMeVEi06klYljT6pGOQq4CwWV24+tqgU/8kOWjbwpIxywvDxk++PeGB3YbqvUZWvRlCHtuB317zLU0OlO2vJQLeCEXcHwkYKRmL6saSEQuLrCWsbolV7GcGrUcLAQ8NxTwwnDA/uGAQ4WA02UXwkQ9aI26Spe2mKElYoiFjEIYEREREREREZFFZkpBzE/91E/xN3/zN3z6058mCM71afJ9nz/+4z/mkUce4ad/+qenbZEiVyoRdpUxbTEYLrsqksthDPzwVfCFuy3f328JrOFvnjX8wt8anj01Q4u+TMYY4iF3wrc15mZOHC1Z9g0HvJwPGCxbqr4CGZFL5VvLaN0yXLGcHLW8nPfZOx665AIOF93PVd1CNATZGLTFDdlG6BJV6CIiIiIiIiIiIoCxU9gqX6lUeOc738m3v/1tli5dyjXXXAPA/v37OXPmDG9+85v5h3/4B2Kx2LQveC5cztAdaW61wM1qOFN2O9UjU2zd9dhh+PR2w9CYu/+PXWv52dssych0rnZ6VH3LmA9BALEwtMcMmaihJaL2SCLj6kGjvZgPZd8yUnM/NzUf6hYM4Hnn2ouFjQs/RUREREREREQWulzF0pkw9KWnVNexYF1ObjClIAYgCAIefPBBvvrVr3LgwAEA1qxZwz333MO9996L5y2cfxQFMQtLPbAcK1lOjVlaIhANTe1karECf/aE4R9ecvfvTFn+r02WDU3alc9aS9mHct1V+LREoCPu0RqBeFgnlGXxqE0MXepunku5Ebr4jdAlNCF0CSl0EREREREREZFFTEHM5GYliFlMFMQsPL61HB9xv5LhKwsinjwOn3zccLLkjvFDayy/eIclE5+u1U6/emAZq0M1gFgIMlFoj3m0RNzMGZGFwFpLLeBs6DLWqHQp+65133iHwvDEShd9/4uIiIiIiIiInEdBzORmPIgZGhri2LFj3HTTTZNe/+yzz9LT00NbW9vlHropKYhZmKy1nBi1vDpiiYYgeQVhzFgN/uopw1efB4shG7d86E7L9/e56pNmZa0bKj5WB2shEYaOuGtdlgyrCkDmj/Hv5fHQZbTu5rtUJoQuhvNDl5BCFxERERERERGRN6QgZnIzHsTcd9997N+/n+3bt096/ebNm7nuuut44IEHLvfQTUlBzMJlreX0mOVoyRLyoCVyZSdmnz8Nf/S44XDOHWfLShfILElOx2pnVmBdlUzFd/MvWqPQHvdIX0H7NpGZYG2jtVgjeBmrufZi1cY8l8C6ADQyIXTRPCQRERERERERkalREDO5y8kNwlN5gG9/+9v80i/90kWvv+uuu/jc5z43lUOLzCpjDF1JQ9izHCkGFKqW1ujUT9he3wmfvcvyN8/AF5+BrUcMe07AL95hefva5q6O8YwhFYFUxM3QyNdgqBIQD0Nb1JCNGVoiOqEtsyuw5+a5jFe6lGqu5Vg9AAt4jdAlGoKkQhcREREREREREWkyUwpizpw5w5IlSy56fUdHB6dPn57yokRmW0fcEDIeh0sB+YqlNTr1tlzRENx3i+X7+uG/PQYvDhr+6HHDtw9afn2zZXl6etc+EyKeIRN1lQdlH06OWk6NWVoibpZMJnplc3VEJuO/JnQp1QJG65wNXQBCxrUXi4WgJaL2eSIiIiIiIiIi0vymFMQsW7aMp5566qLX7969m6VLl055USJzIRtzYcyhYkCuAtmYvaKTvKvb4E/eafnq85a/esrw1AnDz38dfuYWy7uug9A8qOQzxpAIu9kx9cC1LjtYDYh5kIlBW8y1LtOAc7lc9eBc6FL2XZVL2Ydao72YAbxGW7FE2LXLU+giIiIiIiIiIiLz0ZROBd9999088MAD/O3f/u0F133961/nL//yL3nXu951xYsTmW3pqGF1q0dLBIYrri3SlQh58BM3wp/9mGV9t6VcN3xul8evfdNwaHiaFj1Lwp4hHTW0xyASgsEyvJQLeGE44PhIwEjNMoWRU7II1AIXtAyWLa+WAvbnfJ4bdt87L+UDjpUsxZq7bTICbTFoixsyUUMybIh4RiGMiIiIiIiIiIjMW8ZO4cxpPp/nTW96E88//zzr16/nxhtvBGDv3r3s2bOH66+/nscee4xsNjvd650TlzN0RxaGct1yqNSojIlCaBoqPqyFb74En99lGK25uTTvvcnynnUu2JiPAuuqZCq+q1hIR6E97tEagWhIJ84XG2vd7JbxSpcx3zIyXukSQNB4tQl7EPXc/1VNJSIiIiIiIiLS3HIVS2fC0JeeBy1+ZtHl5AZTCmIARkZG+IM/+AO++tWvcuDAAQDWrFnDPffcw0c/+lEqlQptbW1TOXTTURCzOFV8y5FiwGAFMtHpO2E8MAJ/vN2w7ag7Xn/W8htvslx78bFL80ItsIzWwQ8gHoZs1JCNGdIRDU9fiKy1VCeELqN1F7pUg3OhiwHCIddeLGKmJ9AUEREREREREZHZpSBmcrMSxEymXC7zd3/3dzz00EN861vfolwuT9eh55SCmMWrFliOlgJOj0JrzA2xnw7WwncOwWd2GHJlg2cs91wP991iiU9pclPzsNZVQJTrYAykwtAR92iNQiKsE/HzUWAtVR8qjeBlrGYp1i01H2rWfT8b0whcGr8UvomIiIiIiIiILAwKYiZ3ObnBFZ/ytdby6KOP8tBDD/G1r32NYrHIkiVL+Omf/ukrPbTInIt4hr4Wj5CxnBy1pCKW2DS03DIGfmAV3LrM8t93wqOvGL78HDx2BD6y2XLzsmlY/BwxxpAIuwHrfqNK5mAxIOZBJgZtMY90RC2pmlVg7dkql4oPI41Kl1oA9QAs4DVCl2gIkgpdREREREREREREXteUK2J2797NQw89xMMPP8zJkycxxvCe97yHX/mVX+HOO+9cUIOVVREjgbUcH3G/4uHpr+zYfhT+eJvhzKg77juvtvzc7ZaW6LQ+zJwZb2M1Vnctq5JhaI8ZMjFDKsyCer6YT/ygEbo0Kl1KtYDROmdDF4CQcbNcxitd9G8lIiIiIiIiIrK4qCJmcjNWEfPKK6/w0EMP8dBDD/HSSy+xYsUK3vve97Jhwwbe/e53c88997Bp06YrWrxIM/KMYUXKnZQ+NmIJrCUVmb4T0nf2wrouy1/shr/bb/jGi4btx+DX7rRsXjltDzNnjDHEQhALuVBrrO7+Hk+OWtJRaI+51mXRaag2ksnVg3OVLmXfUqq5FnI1H+qNOD7UCFsSYQgbhS4iIiIiIiIiIiLT4ZKDmE2bNrFz506WLFnCj//4j/MXf/EXvOlNbwLgwIEDM7ZAkWZhjKE76VpqHSkGFKuWdHT6TlSnovBrmyw/sMryR48bXi0YPvZtw5v7LR/caGlLTNtDzSnPGFIRSEXcDJ5iDYYqAfEQtMUM2ZghHVG7qytRmxi61C2l+rnQxbdgOBe6JCMuYFToIiIiIiIiIiIiMjMuOYjZsWMHq1at4pOf/CTvfOc7CYfn+URxkSkwxrA0ASHjcbgUkK9aWiPTexL7pm74sx+1/PUe+PJz8J1DhidPwAc3WN6y2s2XWSginiESda3Lyj6cHLWcHrOkwtARd1Uy090GbiGx1s1uGQ9dxhqVLhXftRcLJoQuUQ9aIhDSbB4REREREREREZFZdclN3f70T/+UZcuW8a53vYvu7m5+4Rd+gX/9139liiNmROa19rhhdatH1IN8lWn/OYiF4edut/zpOy1r2iyFiuET3/P4j48aTo9M60M1BWMMibChPe6qYcoBHCwG7BsOOJD3GSpb6sHifq6x1lLxLYWq5cyY5XAx4IXhgOeGA/blAg4UAk6MWsZ8F7ykI+77tC1uaI0a4mGjEEZERERERERERGQOGHuZZ5APHjzIQw89xBe/+EX27dtHd3c3P/ADP8DDDz/MV77yFd71rnfN1FrnzOUM3ZHFpVSzHCoGjNYgE5uZdlr1AL60F/7HHkMtMCQjlv9wm+X/vAYW8nl1ay3VAMbqYK2bW9IeM2RihlR4YbfSCqyl6kMlgHIdRuuWkbql5kPNur8PY1xrsfFfauUmIiIiIiIiIiIzIVexdCYMfelLrutYFC4nN7jsIGai3bt389BDD/HII49w4sQJurq6uOuuu/jRH/1R3vrWtxKPx6d66KaiIEZez2jdVScUqpCdoTAG4HAOPvm44bnT7vjruiwf2WzpyczIwzWVwFrG6q79VthASxTaY651WSw0vwOIwE6Y5+LDaD1gpOZai9UDsLjAbTxwCSt0ERERERERERGRWaQgZnKzFsSMC4KAb3/72/zP//k/+drXvkaxWCSZTFIqla700E1BQYy8kbLvwpjhCmSjMzeHI7Dw9X3wwG5DuW6IeJb7brH8xA2uHdViUAtcKFMLIB6CtpghGzNu/kmTBxR+0AhdGnNdSrWA0fq50AUgZFzYMh68LOTKHxERERERERERaX4KYiY360HMROVyma9//et88Ytf5Otf//p0HnrOKIiRS1H1LUdKAQNlaI26QfQz5WQRPrXNsPu4e4y1Ha465qqOGXvIpmOtpey71l3GQGpC67JEeO7Di3owsdLFUqq59dZ8qDeedcPeudAlbBS6iIiIiIiIiIhI81EQM7k5DWIWIgUxcqnqgeVoyXJqzJKOQHQG22ZZC/98AD6701CsGjxjec86eN9Nlmh4xh62KfmBZdSHWh0iIchEoa3Ruiw8C4N0ahNDl7qlVD8XuvgWDK5iabzKJaTQRURERERERERE5gkFMZO7nNxgkZ2uFZlZYc+wMu1OtJ8ctQRY4jMUxhgDP3wV3L7c8qc74N8OG774DDx2GD682XJj14w8bFMKeYa0B0RcZdJQBQbLAYkJVTKp8JWHH9Zaao22YhUfxhqVLhXftRcLGqHLeJVLS2Tm2tSJiIiIiIiIiIjI/KCKmEugihi5XIG1nBixvDpqiYeYlVZZ3zsMf7LdMDRmMFh+7Dr42VsticiMP3RTCia0LgsZaIlCR6NKJnYJ4Zi1lmoAZR+qPozWLSM1S6UxzyWwLgwLn1fpotBFREREREREREQWFlXETE4VMSJzzDOG5SkXABwbsfjW0hKZ2ZP039cHN3dbPrcL/vFlw/9+AbYdgf9rs+WOFTP60E3JM4ZkGJJh1zpspAb5SkAsBG1RVyWTjrrwJLCWqu9Cl8p46FK31HyoWdcGzphzgUsy7I4vIiIiIiIiIiIi8kZUEXMJVBEjV2KgbDlSDLBAa3R2Tt7vPg6fetxwsuQe74fXWH5xg6U1NisP37SsdW3ExuouWEmE3a/RmmstVg/AAt6E0CXsKXQREREREREREZHFSxUxk7uc3EB/cyIzbEncsKrVI2QgX7HMRvZ523L48x+z/LvrLAbLPx0w/PuvGf7t0Iw/dFMzxhAPG9rihnTEhS/DFQiAWAiyMWiPG7IxQypiiIaMQhgRERERERERERG5IgpiRGZBW8ywutUjFoJchVkJYxIR+OWNlj/+EcvKjCVXNvz+dzz+07cNg6Mz/vBNL+QZWiKGTNSQDLvQxSh0ERERERERERERkWmmIEZklrRGXRjTEmlUYcxSV8DrO+FzP2p533pLyFgeO2L42f9t+NZLbvaJiIiIiIiIiIiIiMwcBTEisygVcW3KMlEXxvizlIREQ/Azt1g+e5fl6g5LqWr4b1s9fvOfDCeKs7IEERERERERERERkUWp6YKYz3zmM/T39xOPx9m4cSM7d+583dvncjk++MEPsmzZMmKxGFdffTXf/OY3z17/n/7Tf8IYc96va6+9dqa/DJGLSoRdGNMRg1wZ6sHslaWsboc/eafl528PiIYsT54w/NzXDV99Hvxg1pYhIiIiIiIiIiIismiE53oBEz3yyCN8+MMf5nOf+xwbN27k/vvv521vexv79++ns7PzgttXq1V+6Id+iM7OTr7yla+wYsUKDh8+TDabPe92N9xwA//yL/9y9s/hcFN92bIIxUKG/laPkAk4XYbWqCXizc58kpAHP3kjbFlp+aOt8Mwpw3/fafjXg5bf2GLpy87KMkREREREREREREQWhaZKJD75yU/ycz/3c3zgAx8A4HOf+xzf+MY3+MIXvsBv/dZvXXD7L3zhCwwNDfH4448TiUQA6O/vv+B24XCY7u7uGV27yOWKeIa+tEfIs5wYtbRELLHQ7A2LX9EK/+3tlm++aPmzJwwvnDH84t/Ce9db3n0jREKzthQREVlkrAUzey95IiIiIiIiInOqaVqTVatVdu/ezVvf+tazl3mex1vf+la2bds26X3+9m//lk2bNvHBD36Qrq4ubrzxRv7f//f/xff982730ksvsXz5clavXs173/tejhw58rprqVQqFAqF836JzISQZ+htMaxIGUZrUK7PXpsyAM/A/3kNPHC3ZWOPpRYY/uopj1/+e8O+gVldioiILEDWwpkR2HkMvrQX/uv3DL/0d4b/838afv7rhn875G4jIiIiIiIispA1TUXMwMAAvu/T1dV13uVdXV3s27dv0vu88sorfPvb3+a9730v3/zmN3n55Zf55V/+ZWq1Gr/3e78HwMaNG/mrv/orrrnmGk6cOMHHP/5xvu/7vo+9e/eSTqcnPe4nPvEJPv7xj0/vFyhyEZ4x9KQgbODYiCXAkgzP7jbhpSn4zz9o+deDls/sMBwcNvzqN+Ce6+G+WyzxpnmmEBGRZlWowKFhODgMB3OGQ8NwKAel6uSvaa8Mw+9/x7C2w/KBWyx3rFCVjIiIiIiIiCxMxtrm2Id4/PhxVqxYweOPP86mTZvOXv7Rj36U7373u+zYseOC+1x99dWUy2UOHjxIKOT6KH3yk5/kD//wDzlx4sSkj5PL5ejr6+OTn/wkP/uzPzvpbSqVCpVK5eyfC4UCvb295PN5Wltbr+TLFLkoay1nynC0GGA8SEfm5mxUrgz/fafh26+4x1+etnx4s+XmZXOyHBERaTJjNTicpxG0GA4Ou98Pjk3+uuUZS08rrGqDVW2W/qxrj/ndQ4b/9RyM1d39bui0/PtbLevVTVZERERERKSp5CqWzoQbsyDnFAoFMpnMJeUGTbPPfcmSJYRCIU6dOnXe5adOnbrofJdly5YRiUTOhjAA1113HSdPnqRarRKNRi+4Tzab5eqrr+bll1++6FpisRixWGyKX4nI1Bhj6ExA2HgcLgYUqpZ0xF0+m7Jx+J3vt7xlleX+bYbjRcNv/KPhnVdbfu52S8uFP1YiIrIA1QM4loeDOTg03AhccnCiCJbJX5u6W1zQ0t8IXVZloScD0Unmjq1qs9x9HTzyLHx9Hzx32vCRbxluW+4qZK5dOoNfnIiIiIiIiMgsapogJhqNctttt/Hoo49y9913AxAEAY8++ii/8iu/Mul9tmzZwhe/+EWCIMDzXBr34osvsmzZsklDGIBSqcSBAwd4//vfPyNfh8iVao8bPONxuBSQr0Imamc9jAG4sxf+osvyF7vh7/cbvvGiYccx+LVNlk29s74cERGZIYGFUyUXshwchoPDhkM5OJqHejD56082blnVBv3Zc1UufVlIXWZYn43DL9xhued6eOgZ+OaLsPu4Yfdxw+Zey8/cYlndfmVfn4iIiIiIiMhca5rWZACPPPII9913H5///OfZsGED999/P1/60pfYt28fXV1d3HvvvaxYsYJPfOITABw9epQbbriB++67jw996EO89NJL/Pt//+/51V/9Vf7jf/yPAPzGb/wGd911F319fRw/fpzf+73fY8+ePTz//PMsXXppWy0vp8RIZLoUa5bDxYCRGrTFZr8yZqKnT8IntxpeLbo1/MAqywc3WrLxOVuSiIhcJmtd+8mDjTku423FDufOtQd7rUTYNqpbYFXW/b4/C22JmVnjiSL8jz2Gf3kFAmswWN68Cu672dKTmZnHFBERERERkden1mSTm5etyQDe/e53c+bMGT72sY9x8uRJbr75Zr71rW/R1dUFwJEjR85WvgD09vbyj//4j/z6r/86N910EytWrODXfu3X+M3f/M2ztzl27Bg/9VM/xeDgIEuXLuVNb3oT27dvv+QQRmSupCOG1WmPQ8WA4QpkYxZvjsKY9d3w+R+z/PUe+Mpz8K8HDbuPwwc3Wt6ySsOVRUSazUj1XIXLxDku+crkT9gRz7IyQyNosY15LtCZmt3n+GVp+Oj3Wd69Dv56j5sj868H4buH4Ievgvevt3S1zN56RERERERERKZDU1XENCtVxMhcKtcth0sBuQpkohDy5jb12D8A/22r4eCwW8fGHsuvbbJ0puZ0WSIii1K1Dkfy46GLacxzgdMjk79WGCzLW2FV1gUt/Y22YitaIdyEG5teHoS/esqw/Zj7esKe5Z1Xw0/fZOlIzvHiREREREREFglVxEzucnIDBTGXQEGMzLWq79qUDTbCmPAchzE1Hx7ZCw89bagFhmTE8nO3Wd55Dczx0kREFiQ/cG27DuYaVS6NOS7HCq6F12SWJG1jhsu5OS4rsxBvqnroS/P8afjLpwxPnXBfayxk+bHr4N03WjJqkykiIiIiIjKjFMRMTkHMNFMQI82gHliOlAJOj0I6CtHQ3Cceh3PwR1sNz59xa7mpy/LhLZYe/ZiIiEyJtTAw2pjjknOBy8FhV/VS9Sd/3k9HbaO65Vxbsf4spGOzuvRZ8dQJ+MKThhcarzvJiOWe6+HHb7CkonO8OBERERERkQVKQczkFMRMMwUx0ix8a3m1ZDkxaklFINYEYYwfwN/ugweeNJTrhmjIct/Nlh+/AUJ6bhYRuah82bUUOzQMByfMcRmpTf7cHgtZ+rLnV7j0t0FHYnHN6rIWdhxzFTIHhtwXno5Z3nOjq5KZjxU/IiIiIiIizUxBzOQUxEwzBTHSTAJrOTFiOT5iiYUhEW6Os28ninD/NsPu4249V3dYPrLFsqZ9jhcmIjLHxmpwOH9+S7FDwzA4Nvnzt2csvRk3x6W/zTb+D90tCrgnCix87zA8+JThSN79XbYnLD99k+VHroZoaI4XKCIiIiIiskAoiJmcgphppiBGmo21llOjlqMjlogHqUhzhDHWwj+9DJ/dZShVDSFjec86eO96qxNiIrLg1QM4lh9vK2YalS5wsgiWyZ+nu1vOtRLrb3O/72lViHA5/AAefQX+eo/hZMn9PXemLO9fb/nhqxReiYiIiIiIXCkFMZNTEDPNFMRIM7LWMlCGo6UAgHS0OcIYgMFR+JMdhscOuzWtzLjqmBs653hhIiLTILBwsuSqWg7l4GBjjsuxAtSDyZ+L2+KW/jZX5bKqzf2+LwvJyGyufGGr+fAPL8FDzxgGR92/w4pW1y7zzavAa56XSRERERERkXlFQczkFMRMMwUx0syGK5bDxYB6AK1RME00KODfDsGfbDcMlw0Gy93Xwb+/1ZLQiUcRmQesheExV9VyaEKVy6EclOuTP9cmI252y6q289uKZeOzuPBFrlJ3s8seftaQr7h/p1Vtlp+5xbK5d3HN0xEREREREZkOCmImpyBmmimIkWZXqLowZsyHbJOFMYUKfH6X4R9fdmvqSll+fbPl9hVzvDARkQlKVTica7QVa8xxOTgMhcrkz6cRz7Iycy5wGQ9fOlM60d8sRmvw1efhy3sNIzX3j3LNEssHbrHctlz/TiIiIiIiIpdKQczkFMRMMwUxMh+UapZDxYDRGmRi4DXZGaYnXoVPIscK2AAAbtNJREFUPW44NeLW9barLL9wh6U1NscLE5FFpVqHw3lX1XKo0VLsYA7OjEz+nOkZy/I057cVy8KKVs0emS8KFRfGfO2Fc5VMN3VZPnCrZV3XHC9ORERERERkHlAQMzkFMdNMQYzMF2N1VxmTr7owJtRkYcxYDb7wpOF/v+AGV7fFLR+60/L9/XO9MhFZaPwAjhddVcv4HJdDw/BqEQI7+XPj0mRjjksb9Gctq9pgZQZi4dldu8yM4TH4m2cMf7cfao1ZPnescBUyVy+Z48WJiIiIiIg0MQUxk1MQM80UxMh8UvFdGDNUdmFMuAmnEz93Gv5oq+FI3q3t+/osH9poaU/O8cJEZN6xFs6MNma4TJjjcjh37mT7a6VjtlHd4gKX8WqXFlXoLQqnR+B/Pm341kvnQrk39Vl+5mb3vSAiIiIiIiLnUxAzOQUx00xBjMw3tcBypBhwpgytUYg0YRhTrcP/fMbwyLPgW0NL1PJLd1h++Cr17ReRyeXL5ypcDg0bDuZcADM+/+O14mFLX5bG/BbbCF6gPaHnGYFXC/A/9hgefcVVaRosP7ga7r3Zslxv90RERERERM5SEDM5BTHTTEGMzEf1wHKsZDk1ZmmJQDTUnGcdXx6EP3rc8NKgW99tyy2/vsnSnZ7jhYnInBmruYoWF7SYs+HL0Njkz2MhY+nNnAtcxitcutPQhDm0NJlDw/BXewyPHXbfLJ6xvH0tvG+9pTM1x4sTERERERFpAgpiJqcgZpopiJH5KrCWV0csx0csyTDEw815RtIP4CvPwYN7DFXfEA9bfvZWy49eq2HYIgtZzYdjhUZbsdy5wOVE8eLPVd0trrJl4hyXnlaIhGZv3bIwvTgAf/mUYder7vsv4lnuugZ+6iZLW2KOFyciIiIiIjKHFMRMTkHMNFMQI/OZtZYToy6QiYYg2aRhDMCxPHzyccMzp9war19q+cgW11pIROavwMLJUqOt2DAcaoQuR/OuNeFk2hOW/iyN6hYXuPRlIRGZ1aXLIvTsKfjLJ8+9FsXDlnddBz95oyWtOUIiIiIiIrIIKYiZnIKYaaYgRuY7ay1nynC0GOB50BJp3jAmsPCN/fDnuw2jNUPEs7x3veU96yCs53qRpmYt/P/bu/P4uOp6/+Pv75k1e9ImbdM13ReWtpRFKAiCWlCu8lMEVCxUBa4IiIAiXJULXEVAAUUU5CcUEK4gwkV/InpFvNeriFfaQqELS/c2adM0+zLJzPn+/jgzk5lk0iWdLJO8no9HmuTMmZkz6cmZyXnP5/PZ1+5VtWxOCVy2Nkgd0czHnfxA9+yW6WXd4UtpeBA3HOjBWmlVtfTQKqONe719tyBg9YkjrT62QMonEAQAAAAwihDEZEYQk2UEMRgp6jqstjW7ciUVBSQzjKdV72mV7nnZ6O87vG2cUWZ13VKrOeVDvGEAJEktES9w8UKX7rZiTZHMx5WAYzW11GspNr00PselTKrIl4bxoQijnLXSX7dLK1cbba73dtSSkNUnj/baloX8Q7yBAAAAADAICGIyI4jJMoIYjCQNEautLa66YlJxcHiHMdZKf9ws3feKUVPEyDFWnzhCWr7IcvILGCSRqLStsbvCZUu993VtW+Zjh2OsJhV5VS2JKpfpZdLEImY+IXe5VvrTZm+W2c4mb98fm2/16aOtzprNjCIAAAAAIxtBTGYEMVlGEIORprnTakuzq/aoVBoa3mGMJDV0eGHMS5u97ZxUZHXNUquFE4Z4w4ARJOZKO5u6K1wS7cV2NUtuH3NcKgqsppfG57jE24pNLaFKACNXzJV+/4702GtGe1q934sJhVbLF1mdMYOwEQAAAMDIRBCTGUFMlhHEYCRq6/LCmOYuL4xxhnkYI0l/3SZ9/29GdfF34p891+qSJVYFwSHeMCCHWOu1/tvSoHh1i9HmBmlbg9TlZj4OFIW8wGV6Wfocl0J+9zBKdcak59+SHn/NqL7D+72ZWmJ10WKrU6ZJzvB/SgUAAACAg0YQkxlBTJYRxGCk6ohabWlx1RiRSoKSLwfOHLV0Sg/+w+g3b3nbWpFv9aUTrd4zZYg3DBiGGju8qpbNDdKWlCqXtq7Mv+thf3fIUlVq4/NcpLI85rgAmXREpefWSz9/w6g5Ph9p5hirFYutTpjM7w0AAACAkYEgJjOCmCwjiMFI1hmz2trsqi4exvhzIIyRpDXV0l1/NdrV7G3v6TOsLj/eqjQ8xBsGDIH2LmlrQyJ06Z7jkninfk8+YzWlxKtwSQQuVWXShELeyQ/0R0un9Ms3jX65rjvoXFBhteIYq8WVQ7xxAAAAAHCYCGIyI4jJMoIYjHRdrtX2Fld72qSioBT05caZ2I6o9Mhq78SXa41KQlZfPMHqfdN5FzJyT1fM26d7frR39bXcaEeTF7jUtPS9w1cWeVUuXnWLVVWZNLmY4eLAQGjskJ58w+i59VIk5v1eLq70KmQWjBvijQMAAACAfiKIyYwgJssIYjAaxFyrHa1WNW1WBQEplCNhjCRt2Ct97y9Gm+u9bX7PZK9dWUXBEG8YRhRrpS43JQzJEJCkhybGWxbd/3US14vZw/udG5MXr2wplarKvK+nlUh5gew8fgAHr65NeuJ1o9+8JUXd7uemixdbzRo7xBsHAAAAAIeIICYzgpgsI4jBaOFaq12tVtWtViG/lOfPnTCmKyY9+Yb0s9eMoq5RfsDq0mOtPjSHVkujibXevpAafrTvJwBJhCWpl7dnCE0Sy9zDDEsOhs9Yhf1SOCDvc8pHXsryPL80vrA7fCmhLR8w7OxukR57zej373QfP06tsrpokdXU0qHdNgAAAAA4WAQxmRHEZBlBDEYTa72qmB2tVgFHKgjkVoqxpV767l+MNuz1tnvhBKtrTrKaxK/usGGtFIn1XSGSGoS0p4YlB6gq6RjEsMTv2O5gpI/QJO0j0GN9v1epkmldWoYBI8+ORumRNUYvbfaOT46x+sBM6cKFVpVFQ7xxAAAAAHAABDGZEcRkGUEMRhtrrfZ2SNuaXRkjFQVzK4yJudJ/rJceXm3UETUK+rx2MB9fIPl4vjgorpUiB11VEg9Lunq04epjvkkkKlkN/D4VcGxa9UjmgCRxue21rFclSsrlfvYjAP2waZ/33PTydu8Y6HeszpotfXqhVXn+EG8cAAAAAPSBICYzgpgsI4jBaLWvw2pri6uYlYoDkjG5Fcjsapbu/qvR6mpvu+eMtbpuqdWMMUO8YVni2swVIj3DkMTl7amVJQeoKumIDs7/ddBnMwYkmapF8gKZ100NSFIDE0I3AMPVhlovkHl1l3esDfqsPjpPuuAoS5tBAAAAAMMOQUxmBDFZRhCD0ayx02prs6tITCoJ5l4YY630wjvS/X83au0y8hmrTx4tfepoq+AgtICKub1DjkxVIt2Xmf0GJKnX7YwNzv9FyGf7bKPVu4LEpleR9FWREpBCPsISAKPbazXSQ6uM3tzjHc/z/FYfP0I69wirwuAQbxwAAAAAxBHEZEYQk2UEMRjtWrqstjS7auuSSkKSk2NhjCTtbZPu/ZvRX7Z52z61xKuOWTBOirp9DGvvcy6J2W+rrtQZJ13u4PysUgOQ/VeVZF63d6su73PILzm5998NADnDWul/d3oVMm/XeQfcoqDVeUdanTPfO24DAAAAwFAiiMmMICbLCGIAqT3qhTFNnVJpjoYx1kp/3ir94G9GDR3d/fmjgxCWGPWeQdJz7kh6KGL3e3lqtUnIJ+XgfwcAIEXiOeqRNUZbG7yDemnY6lNHW509Rwr6h3gDAQAYIDFXaopI9R1SQ7vU0JH4MKqPf5/4HLPSERXSokqrxZXSxCL+FgKAwUAQkxlBTJYRxACejpjVtmZX+zq8MMaXo6USjR3SA/9r9Pt307ffMfYgApIebbgCmdtu9VwWJCwBAByEmCu9tNkLZKqbvSeOinyrCxdZLZsl+fm7BwAwzFnrdQlIhCr1HalhiukRtnh/n1n174+lcQVeILO40mpRpVSen+UHAwCQRBDTF4KYLCOIAbp1xqy2tbja2yEVB6VAjoYxkrSvTepyuytMAoQlAIBhIupKL7wt/ew1o71t3pPTxCKrixZZnTadGVsAgMEVdb3AJLU6xfvapIUqicsOdZ6lkVVJWCpN/cjzqkNLw1JZnlQW9v5+e61GWl1ttL5WvbobTC3xApnFlVYLJ0jFoWz+FABg9CKIyYwgJssIYoB0UddqR4vV7narwoAU9JFeAAAwEDqj0q83Sv++trutZlWp1cWLrZZO5Q0EAID+sVZq7UyvWOmuVDHpYUuH1Bw59CecsN8mQ5WyvNTPNi1sKQt7gcmhvsmgvUt6Y4+0ptpodbX0dl16ZY2R1ayx0qIJXjBz1HhmrwFAfxHEZEYQk2UEMUBvMWu1q9WqutV6A+AJYwAAGDDtXdKz66Wn3jBq6fSec+eM9QKZ4yYRyAAApM5Y76oVb+5KetVKInDpOsRZmY6xKgl1hyeleYnqFZv2fVlYKgkPfujRHJFer5FWVRutqVFy5lqCz1jNq5COqfRmzMyv8FpIAwAOjCAmM4KYLCOIATJzrVVNm9XOVqugT8r3cxYIAICB1BKRfvGm0S/XSR1R73n3yHFWnz3G6ugJQ7xxAICscq3U0pneCqwhPmelvkfg0tAutXYd+t9j+QHbI1RJVKrEl6dUsxSFpFzqTF3XJq2JtzFbvUva3Zq+8SGf1ZHju+fLzB5D608A6AtBTGYEMVlGEAP0zVqrPe1W21usfI5UGMihV+YAAOSohg7p52uNnlvf/Y7mJROtVhxjNa98iDcOANCnSDS1UqWPWSspy2P20P6+8hmbFqokQpayRDuwHoFLyD9AD3QYqm6WVld7wcyaaqm+I/1nWxDw5sosrrRaXClNK6XiFAASCGIyI4jJMoIY4MD2dlhta3ZlJRUHebUKAMBg2Nsq/ex1o9++1X2ybulUq4sWW80oG+KNA4BRIOZKzZ3d4Ul3SzDTK1Spb5fao4f+t1JhsPeslZ5VK4nLCoOEBwfDWmlrQ3cw81pN74qisrBXKZMIZiqLhmZbAWA4IIjJjCAmywhigIPTELHa0uwq6krFQcnwFwAAAIOiull6bI3RHzZJrjUysjptunTRYqvJvHwFgEPS3tW7YqUhPmulZ0uwpoh33D0UAcd2z1lJGVqfGGJf1mPWSoA5JgMu5kpv75PWxIOZN3ZLkVj6/+uEwu5gZtEEaWz+EG0sAAwBgpjMCGKyjCAGOHhNnVZbm121R6XSEGEMAACDaWuD9Mgao//e4j3/OsZq2SzpwoVW4wuHdtsAYKjE3JQh9intvzJVrTR0dM/gOhTFIZsWqpSFpbI822Puive5IEDVynDXGZPW10prqo1WVUsbanu3iZtW6gUyx1R6c9qKQkO0sQAwCAhiMiOIyTKCGODQtHZ5YUxzlxfGOPyVAQDAoHq7Tlq52uiVHd5zcMCx+vBc6VNHWY3hHbwAcpy1UltXesuvjLNW4pc1RySrQ/ubJOizKfNVUmerpA+3LwtLxWHJz3mpEa29S1q7Oz5fpkZ6py59nzKymj1WWlwpLaq0OnKclBcYwg0GgCwjiMmMICbLCGKAQ9cR9dqUNXRKpUHJ5xDGAAAw2N7cIz28ymhNjfc8HPJZnTNfOu9Iq5LwEG8cAKToinlVK/Ud6jG03vSYveIt73IP7e8Lx1gVhzLMWQn3aBMW/zrsp2oFfWvskF5PBDPV0rbG9J3F71jNr+ieLzOvnBZzAHIbQUxmBDFZRhAD9E8kZrWt2VVdh1QSkvyEMQAADIlVu6SHVhlt2Os9F+cHrM49wurjC6SC4BBvHIARyVqppbN31UrPipVEW7DmzkP/WyHPb1MqVbpDlrL4rJXUy4pDko9zRxgge9u658usrpb2tKbvz2G/VyWTCGZmjmF/BJBbCGIyI4jJMoIYoP+6XKvtza72dEjFQSlAGAMAwJCwVnplh1ch826993xcHLI6/yirj87z3v0NAPvTGZUaIon5KqmzVUza9/UdXsVAtB9VK6mBSl9VK2V53hB7jlsYjqyVqpulVdXejJk1Nd7vSKqioNXCCV4bs8WV0tQSKrAADG8EMZkRxGQZQQxweGKu1Y5Wq5o2q4KAFPLxChMAgKHiWum/t0iPrDba3uQ9J4/Js/r00VZnzZGCtE4BRg3XevNTes5Zaegw3WFLR3fw0tZ16K/j8wM2Gaqktv8qDdseYYs37Jz3bWGkca20paG7Yua1mt6/S2PyrBZVxitmJkgTioZmWwGgLwQxmRHEZBlBDHD4XGu1q9X7CPulPD9/YQEAMJRirvSHd6XHXjOqafGel8cXWF24yOqDM2mZAowU1ko7m6T1e6UNtUbbG5XWGsy1h/a63O/YtPCke5i97Q5aEmFLSApStQKkibnSW3XS6ngw8+YeqTOW/ntYWWS1aIJ0TKUX0JTlDdHGAhi1OmPSjkZpc4O0ud7o7Trp1GlWXzqePxJSEcRkGUEMkB3WelUxO1qtgj4pnzAGAIAh1xWTnn9beuI1o7p277l5crHVRYusTp3Ou9OBXNMUkTbUShv2SutrjTbslZoj+/9FLgraHqFKvB1YjzZhZWFvrhQtlIDs6YxK62q9UGZNjbS+tndAWlXqtTBbVGm1cLxUGBqijQUw4sRcqaZF2lzvVe9trjfa0uCFMLEex6LTp1s9/BFeBKQiiMkyghgge6y1qu2Qtje7Mo5UFOAADgDAcBCJSr/aIP37WqOm+EnbGWVWFy+2OnEKJ16B4SjqSpv2eSdu1+812lAr7Wjq/csacKxmj5XmV0gzx1iNyeuuWikJSQFaEgLDRluXtHa3F8ysrpbe3Zf+O+0Y7/d5cbyV2RHjmJcE4MCsleravAqXLfXSlgajzfXS1gYpEsv8Qr8waFVVKk0vk8YXWR0/UVo2nYqYVAQxWUYQA2Tfvg6rrS2uYlYqDkiGszsAAAwLbV3SM+ukp94wyR7288qtVhxjdUwlgQwwVKyV9rR6ocuGvUbra6W363q3NJKkScVW88uleRVW8yukGWWELUCuauyQXqvpDmZ6hq0Bx/s9P2ai185sXoXk5zwpMKo1RxLVLd0VLlvqpebOzC/kgz4vcKkqlarKvK9nlElj87tf+zMjJjOCmCwjiAEGRmOn1dZmV5GYVBIkjAEAYDhpinhhzH+slzqi3nP00eOtPnuM1ZHjh3jjgFGgrUt6a2+82iXeYmxfe+/Xy0VBq7nlXrXL/Arv65LwEGwwgEFR2+rNl1kTD2Zq29KPC2G/1dHjvTZmiyulmWNoMwqMVB1RaVtDoq2YSbYX29uW+ZfeMVaTi6WqMml6qdX0Mu/rysIDz4ckiMmMICbLCGKAgdPSZbWl2VVrl1QWIowBAGC42dcm/Xyt0a83Sl2u9zx9/CSvQmb22CHeOGCEiLnStkZvtsu6eOiytaH3nAifsZoxxgtd5pV774KfVMxJVmC0slba2SytqZZWVRu9Vi019pgJVRTyKmUWVVotniBNKaG6Fcg1UVfa2dQduGyp977e1SxZZf6FHl9gvcAlHrpUlUlTiqVgP1sZEsRkRhCTZQQxwMBqi3qVMU2dUmlIcnhVCADAsLOnVfrZa0YvvN19cviUad4MmWmlQ7ttQK7Z1yat3yttiIcuG/cq2Qow1bgCq3kV0vx46DJ7rBRiFgSAPrjWOzm7utprZfZ6jdQeTT+2jM33ApnFlVaLKqXxhUO0sQB6ca20pyWlrVg8dNne2P2GqJ5Kw/HKllKvrdj0UmlaqVQQzO62EcRkRhCTZQQxwMDriHlhTH1EKg1KPt7WBwDAsLSzSXp0jdEfN3nvwHOM1ekzpOWLrCYWDfXWAcNPZ1R6e19Ki7FaaXdr79e6YX9Ki7FyL4AZmz8EGwxgxIi6XovD1dXSmhqjN3b3Ppk7qcgLZBLBTCmtDYFBUd+eeY5Lz/A0Ic/vVbVUlUrTy7rDl7K8wdlegpjMCGKyjCAGGBydMattLa72dngzY/yEMQAADFub66VHVhv9zzbv+dpnrM6aLX16oVVFwRBvHDBEEm2CNsRDl/W10qZ6KdrjxKeRV0k2v0KaV2E1v9x79+qB+rMDwOGIRKV1tV61zOpqrxqvZwvEGWXdwczR47P/rnpgtGnt9NqNbm6QttR3z3Fp6Mh8zsvvWE0t6THHpVQaVzi0rUgJYjIjiMkyghhg8ERdL4zZ0y4VBaSgjzAGAIDhbONe6eFVRv/Y5T1nBxyrf5onffIoO2jv0AOGSlPEC102xNuMrd8rNUd6v34tDXutxeZXeJ/njOXkJoCh19oprd3dHcxsqk8/fjnGas5Y6ZiJ0qIJVkeMoz0i0JfOmNdCbEu8pdjmeu/rTFWwkvemjIlF3gwXr9LFC10mFUv+YZh1EMRkRhCTZQQxwOCKWaudLVY1bVb5ASlEGAMAwLC3drcXyLy+23veDvutPrZA+sQRVkWhId44IAuirrRpX/dsl/W10o6m3q9TA47V7LHyZrvEq13GFzIcG8Dw19AhramW1sSDmZ3N6QeugOOFMYsqrY6plOaUD88TxsBAirlSdUs8cEmZ47KjqXeFWUJ5vo23FOsOXKaWSuEcCjYJYjIjiMkyghhg8LnWqrrVamebVdgn5fn5yxUAgOHOWunVXdJDq4zeqvOeuwuDVp84wgtl8gJDvIHAQbJW2tPaXemyrlZ6u07qjPV+TTqpyCZbjM2rkGaWSQHfEGw0AGTZ7hbptRppVTyYqWtLPwbm+a2OnuC1MVtc6Z1kpsM4Rgprpbo2r8WoN7/FaHOD12Ys0+sByXvdm2gllpjjMq1UKh4Bb0oiiMmMICbLCGKAoWGt1e42qx2tVn5HKgjwig4AgFxgrfTXbdLDq422NHjP36VhqwuOsvqnubQ1wfDT3uW12VtfK23Ya7ShVqpr7/3aszBoNa+8e7bLvHKphMHWAEYBa713/K+u9lqZranp3YqxOGS1KCWYmVRMNSByQ1Mk0VIsfY5LS2fmHTjk82a9JSpcqsq8r8fmjdx9niAmM4KYLCOIAYbW3nZvboyVVBwcoc9oAACMQDFX+tMW6dHVJtnepDzf6tNHW505m6oBDI2Y6/VwX18rrY+HLlsaercT8RmrGWMUD168qpdJxbzbGwAkybVeu8bV1dLqGqO1NVJ7NP0AWZFvtaiyO5ipKBiijQXiOqJeRUvaHJeG3tVeCY6xmlLSXeGSaC82oVDyjbI8giAmM4KYLCOIAYZefcRqa7OrLlcqCUpmpL7FAACAESjqSv/5jvToa0a18YGlEwqtli+yOmPG6PtDFoOrvr270mV9rVf50tbV+7VkRYEXtswv91qMzR6bW73bAWAoRV3v+JqomFm3R+py04+1k4q9QGZxpVc5Q0UhBkrUlXY2xduK1RttafDmuVQ3S1aZzydNKPSCFq+6xWp6qTS5RAryxiFJBDF9IYjJMoIYYHho6vTCmPaYVEoYAwBAzumMSb95S3riNaP6Du95fGqJ1cWLrU6eRqUBDl9nVHpnX7zapdZow16ppqX3jhX2W80t7652mVchlecPwQYDwAjVEZXe3COtic+Xeauud+XhzDKrxROlRRO8WTP5zJLDIXKtN8soEbRsiVe5bG+Uom7mF5alYW92y/RSqaqsO3xh/9s/gpjMCGKyjCAGGD5au6y2NLtq6ZJKQ5JDGAMAQM5p75Ke2yA9udaoOd57e9YYqxXHWB0/aeT21kZ2WSvtak4PXd7d1/vEi5HXx31eRbzFWLk3OJdKLAAYPC2d0us1XjCzqlrJGXIJjvHmbiUqZhZUSEGqEhFnrdTQ4YUtqYHL1obeLfES8gMpFS7xOS5VpVJZ3mBu+chBEJMZQUyWEcQAw0t71KuMaeyUSkKSj7M1AADkpJZO6ZdvGj39Zvcf0UeMs1qx2OspD6Rqjkgb9kobUoKXpkjv14Gl4XiLsQrvpN7ccqkgOAQbDADoU327tKbGa2O2plra1Zx+PA/6rI4Y1z1fZs5YAvTRorXTC1g2xQOXLfHwpTHDc74kBRyrqSWKBy3xapcyaVwBb+7JJoKYzAhisowgBhh+IjGrbc2u9nVIxSHJTy8TAAByVmOH9OQbRs+tlyIx7zl9caXVZ4/xTqhj9Im63kmXZLVLrbS9qffrvYBjNXtsvNql3Ntfxhdy4gUAcs3ulu75Mmuqpbr29AN5fsBq4QSvjdniSu+kO6cBcltnVNrWmGgrZrS5QdpSL+1pzfwfa2Q1sdhrKTa9rLut2ORiQrrBQBCTGUFMlhHEAMNTl+uFMbUdUnFQCvAqDACAnFbXJj3xutFv3upuL3XiFG+GzMwxQ7xxGDDWSrVt3ZUu62ult+u6Q7lUk4psssXYvAppZpkUYIguAIwo1nozPlZXS6trjF6rVrKVaUJp2AtmEhUzE4sI4YermCtVN0ubG+JtxeqNtjRIO5p6zw1KKM/3KluqSqXpZd7XU0qkMO3qhgxBTGY5HcTcd999uvPOO1VTU6OFCxfq3nvv1fHHH9/n+g0NDfqXf/kXPfPMM9q3b5+mTZume+65Rx/60If6fZs9EcQAw1fUtdrRalXTZlUYkEI+XnkBAJDrapqlx14z+s93u/9AP63K6qLFVlNKhnjjcNjau6SNexNtxrzgpec7nyWpMGg1t1xaUCHNi7cZKwkPwQYDAIZUzPXaVK2q9mbMrN0tdfSYCzKuwCbnyyyqlMrzh2hjRzFrpb1t8TkuDd2By9YGqTPDmyskqSgYD1xS2opVlUpFoUHccBwUgpjMcjaIefLJJ7V8+XLdf//9OuGEE3TPPffoF7/4hTZu3Khx48b1Wr+zs1NLly7VuHHjdOONN2rSpEnaunWrSktLtXDhwn7dZiYEMcDw5lqrna1W1a1WeX4p7CeMAQBgJNjeKD2y2uhPW7zndsdYfWCm9JmFVhOKhnjjcFBcK21rkNbv7W4xtqWh9ztgHeNVPc0r96pd5ldIk4ppOwMA6K0r5oX5a+KtzNbVdlfSJkwt8QKZRRO8z8Wc2M+qxg7v+XxLvbS5wcQrXaTWrsxP3CGf1bRSxee3eC3FqsqksXlUMuUKgpjMcjaIOeGEE3Tcccfphz/8oSTJdV1NmTJFV155pb72ta/1Wv/+++/XnXfeqQ0bNigQCGTlNjMhiAGGP2utqtu8QCbok/IJYwAAGDHe3SetXG308nbv+d3vWH1ojvSpoy3veB1m6tu9k2OJFmMb90ptGU7KVBRYzS/3Kl3mV0izx9JuBADQPx1R6Y3dXiizulp6Z1964G/khf2Jipmjxkt5mU8joof2LmlrYzxwiVe4bKnPXMkqeW+smFLizXGpKrPJeS7jC5njkusIYjLLySCms7NT+fn5evrpp3XOOeckl1900UVqaGjQc8891+s6H/rQhzRmzBjl5+frueeeU0VFhT71qU/p+uuvl8/n69dtSlIkElEkEkl+39TUpClTphDEAMOctVa1HdL2ZleOIxUGCGMAABhJ1tdKD68yWlXtPccHfVYfnSddcJSlZdUQ6Ix6J7vW10ob9nrBS01L79dfYb/VnLHS/JTZLgRoAICB0hyRXo8HM2uqpS0N6c9NPuM9FyWCmfkVUnCUzxuLutKOxkRbMaMt9V7FS3WzZJX53MqEwvQ5LlVl0uRifpYjFUFMZocSxAyb9xzt3btXsVhM48ePT1s+fvx4bdiwIeN1Nm3apD/+8Y/69Kc/reeff17vvPOOLr/8cnV1demmm27q121K0m233aabb7758B8UgEFljNG4PMlnHG1rdtXUaVUU8JYDAIDcN79CumOZ1Zpqq4dXG725x+gXb0q/eUv6+ALp40dYFQaHeitHJmulXc3ShlppfTx0eXdf71YwRlZTS73/q3nl3smtqlLeBQsAGDxFIWnpVGnpVO+95/varNbUdFfM1LQYvblHenOP9LPXjEI+qyPHe23MFk+UZo8Zuc9brpVqWpQMWjbXe23FdjT1fk5PKAt7IYtX3eJ9Pa1UyqeqCDgkwyaI6Q/XdTVu3Dj95Cc/kc/n05IlS7Rz507deeeduummm/p9uzfccIOuueaa5PeJihgAuWFs2MhnHG1tcdXYKZUELWEMAAAjyKJK6Z4JVn/fafXwKqN39hk99pr0H+ul84/yqmRoOXJ4WiKJFmNe8LKhVmqK9H49VRq2aaHLnHIRhgEAhpUx+dLpM6TTZ3jBTHWz9ebL1HgVM/vajV7dJb26y0irpIKA1dETpGMqvfkyVaW5N8fEWq9d6OaG7jkuifClI5r5weQHbLy6pbutWFWZVErVMZAVwyaIKS8vl8/n0+7du9OW7969WxMmTMh4ncrKSgUCAfl83TVv8+fPV01NjTo7O/t1m5IUCoUUCjHFC8hlpaHuMKY+IpWFCGMAABhJjJFOmCwdN8nqf7ZarVxttK3R6P++avTLN60+dbTVh+fSHuNgxFxpU328xVh8tsv2pt6vmwKO1axEi7Fyr63LhMLcOzkFABjdKou8j7PmWFkrbWu0WlUtrak2eq1Gauk0enm7krPpSsM22cZsUaU0sWiIH0APLZ3S1oZ4W7H4HJfN9ZnfQCF5z+dTS1PmuMTbi40r4DkdGEjDJogJBoNasmSJXnzxxeQ8F9d19eKLL+qKK67IeJ2lS5fqiSeekOu6chyvZvCtt95SZWWlgkHvbViHepsARo6ioNGMIkdbmr0wpjRk5fCqAgCAEcUx0nurvPYjf9xs9egao+pmo/v+bvTUm1afWWj1wVmSf4S2GOmP2tZ4pUs8dHm7TorEer9GmlgUr3ap8D7PLJMCBFsAgBHEGK/N1rRS6f/Mt4q50jv7vIqZVdVGb+yWGjqMXtosvbTZe66cUOgFMosneJ/HDtLcs86otLXRq2rZUm+0ucELXGpbM5/ncIzVxCKltxUrlSYVj9zWa8BwZqy1dqg3IuHJJ5/URRddpAceeEDHH3+87rnnHj311FPasGGDxo8fr+XLl2vSpEm67bbbJEnbt2/XEUccoYsuukhXXnml3n77bX32s5/VVVddpX/5l385qNs8GIcydAfA8NMRtdra4qohIpUEJZ9DGAMAwEgVdaUX3vZ6vu9t857zJxVZLV9s9b7pXnAzmrR3SW/VxWe71Bqt3yvVtfX+IRQGreaWx6tdKqzmlUsltCIBAIxynTHvOXR1tdGaGu+NDD1nqUwt6a6YWTjBm1FzOGKuN5dtc8ocly310s5mybWZX8hU5MfnuJRJVaVelcvUEik0bN6Cj1zXELEal2c0rYgUL9Wh5AbD6tfx/PPPV21trb75zW+qpqZGixYt0gsvvJAMTLZt25asfJGkKVOm6He/+52+/OUv6+ijj9akSZP0pS99Sddff/1B3yaAkS/sN5pe5GirXNVFvJkx/tF2FgYAgFHC70hnz5U+ONPqVxutfr7WaGez0W3/bfTvr1utWGx10tSR2XrDtdL2RmldvMXYhlqvN3zPkzaOsZpRJs2rkBbEQ5fJJaMvpAIA4ECCPunoCdLRE6wukvcGhzf2WC+YqfaqSrc1Gm1rlJ7bYGRkNXusN89ucaXVkeP6nltnrVTbFp/hkjLHZWuD1OVmflIuCtl4dUt34FJVKhUyYQEY9oZVRcxwRUUMMDJEXattLa72tElFQSno42wDAAAjXXuX9Mw66ak3jFq7vOf+OWOtVhxjdezE3A5k6tulDXu9SpcNtd7XbV29H1BFfnqLsdljpfCwekseAAC5qSkivV7jVcysrvZCmVR+x3vuXTRBmltuVdPS3VZsS72Sr016CvutppV6Icv0lDkuY/Jy+7ULchcVMZkdSm5AEHMQCGKAkSPmWu1otappsyoISCHCGAAARoXmiPSLN42eWSd1RL3n/6PGW332GKujcqBYvjMmvVPXHbysr5VqWnq/jgn7reaMTWkxViGVD1LvegAARru6NmlNtbS6xmj1Lml3H/NbEnzGakpJd+CSmOcyoYhKVQwvBDGZEcRkGUEMMLK41qq61WpXq5Xf57Uw8Rnvw+GtJQAAjGj17dLP1xr9akN3249jJ3oVMnPLh3jj4qyVqpul9SnVLu/s692T3shqaqk0r9wLXeZXeCdyGMALAMDQs1aqbokHM9VGm+ulyqL0tmKTi6WAb6i3FDgwgpjMCGKyjCAGGHmstdrTblXbbhW1Xk/1WPxzgjHdAY0X0nR/NgQ2AADktNpW6fHXjH77thSLz1A5earVRYu9EyODqSXiVbqkthlrjPR+rVEajrcYK/cqXeaWS4XBwd1WAAAAjD4EMZkRxGQZQQwwcllrFbNS1JWiic/xryMxq86YVWf8e9ftDmsSB07TI6RJ/ZqwBgCA4W9Xs/TYGqMXN3lD7Y2s3jdDumiR1aQBeOkfc6VN9dKG2njosrd3P3lJCjhWs8ZK88u7W4xNKKQvPAAAAAYfQUxmBDFZRhADIOba7qAmJbDpcq06YlZdrtSVCGpcKSavDFmSjLxwxnF6V9jQCg0AgOFha4P0yGqj/97qPTc7xmrZLOnChVbjC/t/u7Wt0vqU0OXtuu4ZNakmFnlhy/wKq/nl0owxUpBWJQAAABgGCGIyI4jJMoIYAAfDtTatoibxuSteVROJBzYx670b1lV6KzSnR2WNz2FuDQAAg+3tOunh1UZ/3+E9/wYcq7PnSp862qosb//Xbe/yrr++Vlq/12sxtret9/N4QSARunS3GSsND8SjAQAAAA4fQUxmBDFZRhADIFustb1aoHmfrTqjUsS16ox5FTUxt++5NWmBDXNrAADIujf3SA+tMnqtxnt+DfutzpkvnXekVXHIe37e3uiFLhtqjdbXSpsbvPZmqRxjNaNMXvBS7s14mVziPXcDAAAAuYAgJjOCmCwjiAEwmDLOrbHdrdAiMatIrLuypufcGqm7mqZnaENYAwDAwbNWWl3tBTIb9nrPofkBqzljpbfqpLau3s+rFfkpLcYqpNljpbB/sLccAAAAyB6CmMwOJTfgTwIAGGaMMfIbyZ/xua37hE8sUyu0eFjT6XphTWJ2TSQ5t8bKyAttkiGNkx7Y0AoNAACPMdIxE6XFlVZ/22H18CqjTfVGa2q8y8N+L5SZXyHNi892KS8Y2m0GAAAAMPwQxABAjvIZI59PCvUa5NsdpCTn1vRqh+YFNZ3x+TXRlMoaN14oaeSdgOo5t8YxkiOqawAAo4cx0olTpBMmW72yw2pfuzSvXKoq9Z4bAQAAAGB/CGIAYARzjFHQJwV7XdIdoqTNrYm3O+uKBzNeG7TuuTVd0dS5NV51jZhbAwAYJZx4IAMAAAAAh4IgBgBGOWOMAkYK7KcVWnJuTUplTcwmWp91hzVRKy+0Sc6tSWmF5vQOa5hbAwAAAAAAgJGOIAYAcEDJuTWStJ9WaIm5NTFX6kqprom6VhHXq7Dpigc5EVdy5YU8Nn59p0cLtO7qGsIaAAAAAAAA5CaCGABA1iTm1uwvrEnMrYlZ9Zhf482tibjxVmiJMMf2DmucHi3QaIUG5BabmEXF7ywAAAAAYBQgiAEADKrE3Jrees+tibnp7dCi8bk1nTGrzsRl8ZZoNj63xsobqtxzbo1DKzRgvxKBp5X3+2STy9OX2YNYJinZljD16+Rn460X8lkVBPidBAAAAACMbAQxAIBh52Dm1khSzLXJFmipgU2Xa9URb4PW5UqdruTGq3CSYY0kJ8PcGodWaBhmkgHJwQYh6g5DMi1LDUhSvzfyAhJJcuIXJD4nLjPxyxK/O90VaUa+xHJJPse7ISdxndTP8a87YtLOVlcNEaviIL93AAAAAICRiyAGAJCzfI538vdgWqGltUGzUlfMm1vTmWFujWu7T1Ontj5LzK9hbg0yVY+khh7KYvVIPNPwwhB1BxnGpIcjJjFfSakhiekOR+IVYamBiJNye07K7Topt+/0XKbsVJYVS8r3O9re4qq+QyoKWgV9/F4BAAAAAEYeghgAwIiWaIXWux1a71ZovQMbq86o1OFadcWkmKSuqFdZkxrWJFqhZWqHRiu0wZOYO3KobbT6CkekvgMSaf/VI4nwJFklYlI/uqtHEqFezwAkNRTpVVGSYR3verm3rxUGjGaVONrVarWnzarTtSqkVRkAAAAAYIQhiAEAjHp9t0JLD2titndlTaIVWiRmFYl5IU1nLBHWJBqhdZ84zxTY5OIJ9EOx39Za6jsUUYbLe1aLqMfXGatHMrTWMokQJH4dr5LEdFeUOJKRyRiAZKoo6bOyZIT/32ZDwDGaWijl+412trqq77AqCfGzAwAAAACMHAQxAAAcBGOM/EbyH8Tcmp5BTSKs6XS9sCYxuybielU2iUqOxEn8RDCQGthk+6R0tqtHUsOQ1O9N/JtkMKL0YETqDi66Z/T0aK3VI7TaX/VIr2Ckz4oSTvIPJ8YYVeTFW5W1uqqPSEUBWpUBAAAAAEYGghgAALIoMbcmdDBza3q1Q/OCms6YVWd8eaKypufcmsRHX4PZE6lIX9UjqUHIgapHerbW8hkTH8i+/+oRJ0MQkrF6JIdbayG7CgJGs4q9VmW7260irlWhn30DAAAAAJDbCGIAABhkybk1vS5Jb4WWWlkTi1fRxKzibdC8VmmJ1lpmP9UjmQaz91U9MlCD2YGD5XeMphR6ocyOVlcNEak4ZOVjPwQAAAAA5CiCGAAAhqG+59ZIqYENMBIZYzQ2LOX5HO1odbUvIhUGrEK0KgMAAAAA5KCMp3cAAACAoZYfMJpR7GhSgVF7VGrqtMn5RgAAAAAA5AqCGAAAAAxbfsdocoHRzGJHQUeqj0gxlzAGAAAAAJA7aE0GAACAYc0YozFhKc/vaEeLq7oOqSBgFfbTqgwAAAAAMPxREQMAAICckOf3WpVNKTSKxGhVBgAAAADIDQQxAAAAyBk+x2hSoaNZJd2tyqK0KgMAAAAADGO0JgMAAEDOKQ0ZhX2OdrR6rcry/FZ5tCoDAAAAAAxDVMQAAAAgJ4X9RtPjrcq6YlIjrcoAAAAAAMMQQQwAAAByls8YTSxwNLPEUdgn7aNVGQAAAABgmKE1GQAAAHJeacgoz+9oZ4urWlqVAQAAAACGESpiAAAAMCKEfEZVxY6mFhpFXakxQqsyAAAAAMDQI4gBAADAiOEYo8oCR7NKHOX7pfqI1EWrMgAAAADAECKIAQAAwIhTHDSaWeKoIk9q7pTaooQxAAAAAIChQRADAACAESnkM6oqclRV5Mh1pYaIlUurMgAAAADAICOIAQAAwIjlGKPx+UazShwVBqT6DlqVAQAAAAAGF0EMAAAARryioNHMYkcT8o1aOqXWLsIYAAAAAMDgIIgBAADAqBD0GU0rMppe7L0Eru+gVRkAAAAAYOARxAAAAGDUMMaoIs9rVVYclOojUmeMMAYAAAAAMHAIYgAAADDqFAaMZpY4qsw3aotKLV1WluoYAAAAAMAAIIgBAADAqBRwjKYWeq3KHONVx9CqDAAAAACQbf6h3gAAAABgqBhjVB6W8nyOdrS6qo9IhQGrkM8M9aYBAAAAAEYIKmIAAAAw6hUEjGYWO5pUYNQelZo7aVUGAAAAAMgOghgAAABAkt8xmlzgBTJ+R2qISDGXMAYAAAAAcHgIYgAAAIA4Y4zGhI1mlTgqC3lhTCRGGAMAAAAA6D+CGAAAAKCHfL/R9GJHkwuNOqJSE63KAAAAAAD9RBADAAAAZOB3jCYVGM0scRR0pHpalQEAAAAA+sE/1BsAAAAADFfGGJWFpLDP0Y4WV/siUr7fKuw3Q71pAAAAAIAcQUUMAAAAcAB5fqMZJY6mFBp1xmhVBgAAAAA4eAQxAAAAwEHwGaOJBY5mljgK+bxWZVFalQEAAAAADoDWZAAAAMAhKA0Zhf2Odra42tsh5fmt8mhVBgAAAADoAxUxAAAAwCEK+4ymFzuaWmjU5UqNEVqVAQAAAAAyI4gBAAAA+sExRpUFjmaVOMrz06oMAAAAAJAZQQwAAABwGEqCRrNKHFXkSc2dUluUMAYAAAAA0I0gBgAAADhMIZ9RVZHXqsx1pYaIlUurMgAAAACACGIAAACArHCM0YQCRzNLHBXEW5V10aoMAAAAAEY9ghgAAAAgi4rjrcom5Bm1dEqtXYQxAAAAADCaEcQAAAAAWRb0GU0rMqoqdmRFqzIAAAAAGM0IYgAAAIABYIzRuDyj2SWOCgNSfYfUGSOMAQAAAIDRhiAGAAAAGECFAa9VWWWBUVuX1EKrMgAAAAAYVQhiAAAAgAEWcIymFnqtyoyk+g5alQEAAADAaEEQAwAAAAwCY4wq4q3KikNSfYRWZQAAAAAwGhDEAAAAAIOoIGA0s9jRxHyjtqjU3GVlqY4BAAAAgBGLIAYAAAAYZAHHaEqh0YxiRz4jNUSkGGEMAAAAAIxIwzKIue+++1RVVaVwOKwTTjhBf//73/tcd+XKlTLGpH2Ew+G0dS6++OJe65x55pkD/TAAAACAPhljNDZsNLvYUWnIC2MitCoDAAAAgBHHP9Qb0NOTTz6pa665Rvfff79OOOEE3XPPPVq2bJk2btyocePGZbxOcXGxNm7cmPzeGNNrnTPPPFMPP/xw8vtQKJT9jQcAAAAOUX7Aq4zJa7OqabOKxKyKAplf0wIAAAAAcs+wq4i56667dMkll2jFihVasGCB7r//fuXn5+uhhx7q8zrGGE2YMCH5MX78+F7rhEKhtHXKysoG8mEAAAAAB83vGE0u8GbHBB2pPiLFXKpjAAAAAGAkGFZBTGdnp1599VW9//3vTy5zHEfvf//79fLLL/d5vZaWFk2bNk1TpkzRRz/6Ub355pu91vnTn/6kcePGae7cufrCF76gurq6Pm8vEomoqakp7QMAAAAYSMYYjQkbzSpxNCbeqqwjShgDAAAAALluWAUxe/fuVSwW61XRMn78eNXU1GS8zty5c/XQQw/pueee089+9jO5rquTTjpJO3bsSK5z5pln6tFHH9WLL76o22+/Xf/1X/+ls846S7FYLONt3nbbbSopKUl+TJkyJXsPEgAAANiPPL/XqmxKoVEkJjV1WllLIAMAAAAAucrYYfRX3a5duzRp0iT99a9/1Yknnphc/tWvflX/9V//pVdeeeWAt9HV1aX58+frk5/8pG699daM62zatEkzZ87UH/7wB51xxhm9Lo9EIopEIsnvm5qaNGXKFDU2Nqq4uLgfjwwAAAA4NNZaNXZK21tctUWl4qDXwgwAAAAABlNDxGpcntG0omFV1zHkmpqaVFJSclC5wbD6yZWXl8vn82n37t1py3fv3q0JEyYc1G0EAgEtXrxY77zzTp/rzJgxQ+Xl5X2uEwqFVFxcnPYBAAAADCZjjEpDRrNLHI0NS02dUjutygAAAAAg5wyrICYYDGrJkiV68cUXk8tc19WLL76YViGzP7FYTGvXrlVlZWWf6+zYsUN1dXX7XQcAAAAYDsJ+o+nxVmVdMamRVmUAAAAAkFOGVRAjSddcc40efPBBPfLII1q/fr2+8IUvqLW1VStWrJAkLV++XDfccENy/VtuuUW///3vtWnTJq1atUoXXnihtm7dqs9//vOSpJaWFn3lK1/R3/72N23ZskUvvviiPvrRj2rWrFlatmzZkDxGAAAA4FD4jNHEAkczSxyFfdK+iBR1CWMAAAAAIBf4h3oDejr//PNVW1urb37zm6qpqdGiRYv0wgsvaPz48ZKkbdu2yXG686P6+npdcsklqqmpUVlZmZYsWaK//vWvWrBggSTJ5/Pp9ddf1yOPPKKGhgZNnDhRH/zgB3XrrbcqFAoNyWMEAAAA+qM0ZJTnd7SzxVVth5Tnt8rzMzcGAAAAAIYzY+lrcECHMnQHAAAAGGiutdrdZlXdZuVaqTjozZQBAAAAgGxriFiNyzOaVjTsGmwNqUPJDfjJAQAAADnGMUaVBY5mlTjK90v1EamLVmUAAAAAMCwRxAAAAAA5qjhoNLPEUUWe1NwptUUJYwAAAABguCGIAQAAAHJYyGdUVeSoqsiR63ptA1y6DwMAAADAsEEQAwAAAOQ4xxiNzzeaVeKoMCDVd9CqDAAAAACGC4IYAAAAYIQoChrNLHY0Id+opVNq7SKMAQAAAIChRhADAAAAjCBBn9G0IqPpxd5L/foOWpUBAAAAwFAiiAEAAABGGGOMKvK8VmXFQak+InXGCGMAAAAAYCgQxAAAAAAjVGHAaGaJo8p8o7ao1NJlZamOAQAAAIBBRRADAAAAjGABx2hqodeqzDFedQytygAAAABg8PiHegMAAAAADCxjjMrDUp7P0Y5WV/URqTBgFfKZod40AAAAABjxqIgBAAAARomCgNHMYkeTCozao1JzJ63KAAAAAGCgEcQAAAAAo4jfMZpc4AUyfkdqiEgxlzAGAAAAAAYKQQwAAAAwyhhjNCZsNKvEUVnIC2MiMcIYAAAAABgIBDEAAADAKJXvN5pe7GhyoVFHVGqiVRkAAAAAZB1BDAAAADCK+R2jSQVGM0scBR2pnlZlAAAAAJBV/qHeAAAAAABDyxijspAU9jna0eJqX0TK91uF/WaoNw0AAAAAch4VMQAAAAAkSXl+oxkljqYUGnXGaFUGAAAAANlAEAMAAAAgyWeMJhY4mlniKOTzWpVFaVUGAAAAAP1GazIAAAAAvZSGjMJ+RztbXO3tkPL8Vnm0KgMAAACAQ0ZFDAAAAICMwj6j6cWOphYadblSY4RWZQAAAABwqAhiAAAAAPTJMUaVBY5mlTjK89OqDAAAAAAOFUEMAAAAgAMqCRrNKnFUkSc1d0ptUcIYAAAAADgYBDEAAAAADkrIZ1RV5LUqc12pIWLl0qoMAAAAAPaLIAYAAADAQXOM0YQCRzNLHBXEW5V10aoMAAAAAPpEEAMAAADgkBXHW5VNyDNq6ZRauwhjAAAAACATghgAAAAA/RL0GU0rMqoqdmRFqzIAAAAAyIQgBgAAAEC/GWM0Ls9odomjwoBU3yF1xghjAAAAACCBIAYAAADAYSsMeK3KKguM2rqkFlqVAQAAAIAkghgAAAAAWRJwjKYWeq3KjKT6DlqVAQCyx7VWlucVAEAO8g/1BgAAAAAYOYwxqsiT8v2Otre6qo9IRQGroM8M9aYBAHKItVZdrtTpSl2u5FrJZyRrJSsrI8nnSH5HCjiS33jPQQAADEcEMQAAAACyriBgNLPYUXWr1e52q4hrVejnJBkAoDdrraLWC1w6Y17oYuQFLEGfNCZklO83CvkkK2+dSMyqLWrVEZM6olLUereTGtD4jffZ4bkHADDECGIAAAAADIiAYzSl0AtldrS6aohIxSErHyfEAGBUi7petUuXK8Vcb1misqU87IUuYb8U9klBp68Q31vmWqvOmFc5kwho2qNW7THv+7aokm0y/QQ0AIAhQhADAAAAYMAYYzQ2LOX5HO1odbUvIhUGrEK0KgOAUSFmrbriQUk0EboYKeCTSgJSYdBR2CeF4h+HGo44Jh7aJJekBDSukvedqKBpj3rfJwIaI8lJCWf8jnjDAAAg6whiAAAAAAy4/IDRjGJHeW1WNW1WnTGrwgCtygBgJHFtd6VLl+vNc3GM116sMCAV+o3y4i3Gwj7J5wzcc4BjjMLx+/F492XjAU2igqbLldqirtqi3tftqQGN8dqcJWbQDOT2AgBGNoIYAAAAAIPC7xhNLpAK/EY7W13VR6SSoOXEFgDkINsjdHHjoYvf8cKP8rBRns+rVgn5vHaVw4ExJll9o0BiqS/5eBIBTacrtUe9KpouV+pwveoeqftxJtqc+QxvLAAA7B9BDAAAAIBBY4zRmLCU53e0o8VVXYdUELAK+zmBBQDDlbVWMeuFE4m5LkZeEBH0SSVBo4KASbYY63uuy/BljFHQ5z2e7oDGpAVOiZAmEdAkKmtiVrKy3RU0JtHiLPd+DgCAgUEQAwAAAGDQ5fm9VmX5fqvqNqtO16qIVmUAMCzEXJsWulh1z3UpC0kFfifZ9ivkG9nH7tSApqB7qay1itru9maRmNQR6w5o2rqkqJWMrGTSZ9D4CWgAYNQhiAEAAAAwJHyO0cQCqSBgtL3Fa1VWHLTyD5P2NQAwGrgpLbmiMS908cVDl6KAVBgwCqe0GGOQvccYo4Dx5sekLJUkReNBVqLFWSRm1dpl4+3OEuGWlYm3NQsQ0ADAiEcQAwAAAGDIGGNUGpLCPkc7Wr1WZXl+qzxalQFA1qXOQelyJRuf6xJwpDyfVBQ2yvN7M1TCPhGM95PfMfI7Un7yrJv3c0xUGiVCmkQFTSQmdUSlaCKgkdfiLBHO+B3JIaABgJxGEAMAAABgyIX9RtMTrcpavVZlxbQqA4B+S7TO6nKlrpg3x8TIC12CPmlMyCjf3z3XJZCDc11yjc8xynOkvOSSeEBjrbpiUiRRRROzao1adcS8lmdtUa9ySUpvb0ZAAwC5gyAGAAAAwLDgM0YTC4zy/VY7Wl3ti0gltCoDgIMSdbuHykddJasqgo40Jhyf6xJvLxYidBlWfMbI55fCySXe/41rbbK9WacrRaJW7TGr9qgX2CQCGiPJSQlnAgQ0ADDsEMQAAAAAGFZKQ0Z5fkc7W1zV0qoMAHpJVFAkghfJmzUS9EklAakw6CTbi4V8nJTPVY7xZvNkCmi6esygaY9ZtXd5+0N7SgWNz6RX0fh4cwMADAmCGAAAAADDTshnVFXsKM9vVd1m1RixKg7yDm4Ao0/ipHui0sVNmeuS75eKAkbheIuxsI8T7aOBY7w5PiFfYon3f26tTc7/SYQ0bVGr9qi3D7W73jpW3j6UCGgCBDQAMOAIYgAAAAAMS44xqiwwKghY7WhxVR+RioJWAU4WARihEnNdOuPVLq6VTDx0CTlSedgoz2cU8nuhC8dDpDKpAU0guVQ2UUGTEtC0xwOaTtebTROLV9AkA5r4Z5/hTRAAkA0EMQAAAACGteKg0cwSRztbXdW2S2G/VT6tygDkOGutYlbJCoZYvMVYID7XpSRsVBAwyRZjQea6oJ+MMQr6vNZ1PQOaRPCXCGk6olZtMS+gaeuSolaSrExKQBMgoAGAQ0YQAwAAAGDYC/mMqoocFfitdrVaNcRblTH3AECuiLndVQmxlLkuAZ9UGpQKA06yvViQuS4YBMYYBeLBSkH3UklS1LXdAU1KBU0kHtDErGQTAU2POTQENADQG0EMAAAAgJzgGKPx+Ub5fqsdra7qO6TiEK3KAAw/bkorqGhMyZkcQZ9UFJAKA0ZhnzfXJeSXfJy4xjDjd4z8jpSfXJIS0KS0OIvErNqiVpGY1B71QkYrKyPJl5hBQ0ADAAQxAAAAAHJLUdBops/RrlarPe1WQZ9VQYCTOwCGRmL+RuLDtV7oEnCkPJ9UGDbK85tktYuf8Bg5LBnQJM8oevtzLBHQxEOaREDTEZM6ol6LM2vTA5pEJQ3VXwBGA4IYAAAAADkn6DOaViQVBIx2trqq77AqCXEyB8DASszU6HKlrpjXnsnIC10CPqksaJSfMtclwFwXjBI+xyjPkfKSS+IBjbXqimUOaDpjUlvUqyCTvFDGFw8xCWgAjDQEMQAAAABykjFGFXlSnt/RjhZX9RGpKGAV9HHiBkB2RN3uapdofK6LP95ibExYKvA7Xujil0KELkAvPmPk80vh5BLvd8S13S3OulJanLVHvdAmEdAYSY6TPoeGVn4AchFBDAAAAICcVhgwmlnS3aqs07Uq8HNCFMChSZwY7oqfGJa8d+enznVJtBgL+Xi3PnA4HNPdrs/j/T5Zm97irNO1ao9atUW938v21IDGeG3OEjNofLT9AzCMEcQAAAAAyHkBx2hqYUqrsohUGrKcKAWQUWKuS2e82sWmzHXJ90tFAaNwSujCXBdgcBjjtfYL+SQFpNSApistoFE8oPGWd7heGzTJ+132p8yh8RnenAFg6BHEAAAAABgRjDEqD0t5Pkc74mFMYcAqRKsyYFRLzHVJtEByE3NdfF47sTEho/x46BL2e8EugOHFGKOgz6tQ8wIaSTLJgCYR0kRiUkc8oOl0pUj8d97KdlfQmO55NAQ0AAYLQQwAAACAEaUgYDSz2FF1m1VNm1VnzKowwMkWYLTINNclEG9fVBI2Kgh477gP+6Qgc12AnJYa0BR0L+0VwEZiUkesO6Bp65KiVjLykll/jyoajgsAso0gBgAAAMCI43eMJhdI+X6vVVlDRCoOWvrHAyNMzO1uV5QIXfzGq3YpCUqFASfZXoy5LsDoYYxRIN5uMGWpJC+sTW1xFolZtXZ5y9q7pFi8gsbE25oFCGgAZAFBDAAAAIARyRijsWEpz+9oZ4urug6pMEirMiBXuSktiLpikpU3CyLokwoDUqHfKC8x18Uv+ThhCiADv2Pkj8+D8njHilgioImHNIkKGq/dmRf2WlkZeS3OEuGM3yHkBXBgBDEAAAAARrR8v9H0Ykd5fq9VWSRmVUSrMmBYS537kJjrkhjAHfZJ5eGU0MXHXBcAh8/nGOU5Ul5ySTygsTZZPdMZkzpjVq1Rq46Y1/KsLeoFxVJ6ezMCGgCpCGIAAAAAjHh+x2hSgTc/ZkeLq/qIVEKrMmBYSMxySIQuMdc7/RlwvBZjZUGjvIAXuoR93nKCVACDxWeM8vy9Axo3NaBxpUjUqj1m1R71AptEQGMkOfFw5mBedthD3D57CFc45Ns+xBs51Nvv123YjF9m57Z7rn+AK5iDuM2e/+Wp65sMN9Dz9vZ3/YO5/FDs77bcw7hdeAhiAAAAAIwKxhiVhaSwz9GOFld1EanAbxX2c0IXGEyJ9j9dGea6lIWkQr+jUDx0CfkIXQAMT44xCvulcHJJd0DT1WMGTXvMqr3r4E5mmz6+7nPdPlbKdOg0Pb45qNvva1vMfr/tff2DOJQ7PTfwEG6/1/cZrrC/IOygbt/0fVnPheaAP92D24a+7v9Qr9trnYP4/+t5eR5JwmHhxwcAAABgVMnzG80ocVTQZlXdatXp0qoMGCipJyS9+Qrx4dc+qSggFQa8FmOJ4IU2PgBynWO8Y1rIl1jiHdestWlBzP6Odgd1Up3jJZBTCGIAAAAAjDo+YzSxwCjfb7Wj1WtVVhy08tOqDOi3xFyXRLWLjc91CcSHYidCl0SlC79vAEYTY4x8B14NwAhFEAMAAABg1CoNGYV9jna2utrbIeX5rfJoVQYcUOpcl86Y5NruuS5BnzQmZJSfEroEffxeAQCA0YsgBgAAAMCoFvYbTS92lO+32tVm1RmxKg7S8gNIFXW9apcuV4ol5ro4XvBSHo6HLn6vvVjQ4fcHAAAgFUEMAAAAgFHPMUaVBUb5AasdLbQqw+gWs1ZdMSWDF0nyx+e6lASkwqCTrHQJMdcFAADggAhiAAAAACCuJGgULom3KmuXQn6rfFqVYQRzbXelS8+5LgUBqdDvzXUJ+bxqFx/hJAAAwCEjiAEAAACAFCGfUVWRo3yfVXWbVUO8VRnv+sdwY631Pqcui//Ta5m8kEXqDl3ceOjid7yQpTxslOfzWoyFfFKA0AUAACArhmUQc9999+nOO+9UTU2NFi5cqHvvvVfHH398xnVXrlypFStWpC0LhULq6OhIfm+t1U033aQHH3xQDQ0NWrp0qX784x9r9uzZA/o4AAAAAOQmxxhNyNCqjBPTw0vGICL+zf6CiLRlKd/YHpdlur1M66vHZX3djokvS/2sHssSeq6jHusmVup5uenxOXUdE/8n4HjVXwUBk2wxxlwXAACAgTPsgpgnn3xS11xzje6//36dcMIJuueee7Rs2TJt3LhR48aNy3id4uJibdy4Mfl9zxePd9xxh37wgx/okUce0fTp0/WNb3xDy5Yt07p16xQOhwf08QAAAADIXcVBo1kljna1Wu1ptwr6rAoCw+NktU1JFYZDEGFTvtjf7Uj9CyIyBRj9CiIyXM/0/D7lQyZ+uem93IlfV/IqSyTjLUtcnnodk3J78XtLbleGsMT0uLzn+qnb2fMxZlqW+j2hCwAAwOAyNvXV+zBwwgkn6LjjjtMPf/hDSZLrupoyZYquvPJKfe1rX+u1/sqVK3X11VeroaEh4+1ZazVx4kRde+21uu666yRJjY2NGj9+vFauXKkLLrjggNvU1NSkkpISNTY2qri4uP8PDgAAAEBOcq3V3g5pZ6urrpjXykkauUFEYt20oGAEBREHf7+EFQAAAMjsUHKDYVUR09nZqVdffVU33HBDcpnjOHr/+9+vl19+uc/rtbS0aNq0aXJdV8ccc4y+/e1v64gjjpAkbd68WTU1NXr/+9+fXL+kpEQnnHCCXn755YxBTCQSUSQSSX7f1NSUjYcHAAAAIEc5xmhcnpTvd1TT6ioWT0MIIgAAAAAcyLAKYvbu3atYLKbx48enLR8/frw2bNiQ8Tpz587VQw89pKOPPlqNjY367ne/q5NOOklvvvmmJk+erJqamuRt9LzNxGU93Xbbbbr55puz8IgAAAAAjCSFAaNZpb6h3gwAAAAAOcQZ6g04XCeeeKKWL1+uRYsW6dRTT9UzzzyjiooKPfDAA/2+zRtuuEGNjY3Jj+3bt2dxiwEAAAAAAAAAwGgxrIKY8vJy+Xw+7d69O2357t27NWHChIO6jUAgoMWLF+udd96RpOT1DuU2Q6GQiouL0z4AAAAAAAAAAAAO1bAKYoLBoJYsWaIXX3wxucx1Xb344os68cQTD+o2YrGY1q5dq8rKSknS9OnTNWHChLTbbGpq0iuvvHLQtwkAAAAAAAAAANAfw2pGjCRdc801uuiii3Tsscfq+OOP1z333KPW1latWLFCkrR8+XJNmjRJt912myTplltu0Xve8x7NmjVLDQ0NuvPOO7V161Z9/vOfl+QNl7z66qv1b//2b5o9e7amT5+ub3zjG5o4caLOOeecoXqYAAAAAAAAAABgFBh2Qcz555+v2tpaffOb31RNTY0WLVqkF154QePHj5ckbdu2TY7TXchTX1+vSy65RDU1NSorK9OSJUv017/+VQsWLEiu89WvflWtra269NJL1dDQoJNPPlkvvPCCwuHwoD8+AAAAAAAAAAAwehhrrR3qjRjumpqaVFJSosbGRubFAAAAAAAAAAAwyh1KbjCsZsQAAAAAAAAAAACMJAQxAAAAAAAAAAAAA4QgBgAAAAAAAAAAYIAQxAAAAAAAAAAAAAwQghgAAAAAAAAAAIABQhADAAAAAAAAAAAwQAhiAAAAAAAAAAAABghBDAAAAAAAAAAAwAAhiAEAAAAAAAAAABggBDEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAFCEAMAAAAAAAAAADBACGIAAAAAAAAAAAAGCEEMAAAAAAAAAADAACGIAQAAAAAAAAAAGCAEMQAAAAAAAAAAAAOEIAYAAAAAAAAAAGCA+Id6A3KBtVaS1NTUNMRbAgAAAAAAAAAAhloiL0jkB/tDEHMQmpubJUlTpkwZ4i0BAAAAAAAAAADDRXNzs0pKSva7jrEHE9eMcq7rateuXSoqKpIxZqg3Z9hoamrSlClTtH37dhUXFw/15gCHjH0YuYz9F7mM/Re5jP0XuYz9F7mM/Re5jP0XuY59ODNrrZqbmzVx4kQ5zv6nwFARcxAcx9HkyZOHejOGreLiYn4BkdPYh5HL2H+Ry9h/kcvYf5HL2H+Ry9h/kcvYf5Hr2Id7O1AlTML+YxoAAAAAAAAAAAD0G0EMAAAAAAAAAADAACGIQb+FQiHddNNNCoVCQ70pQL+wDyOXsf8il7H/Ipex/yKXsf8il7H/Ipex/yLXsQ8fPmOttUO9EQAAAAAAAAAAACMRFTEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAFCEDPKRSIRXX/99Zo4caLy8vJ0wgkn6D//8z8P6ro7d+7Ueeedp9LSUhUXF+ujH/2oNm3alHHdn/70p5o/f77C4bBmz56te++9N5sPA6PUYOy/xpiMH9/5zney/XAwyvR3/924caO+/OUv66STTlI4HJYxRlu2bOlz/V/96lc65phjFA6HNXXqVN10002KRqNZfCQYrQZjH66qqsp4DP7nf/7nLD8ajDb93X+feeYZnX/++ZoxY4by8/M1d+5cXXvttWpoaMi4PsdgDITB2H85/mKg9Hf/ffbZZ7Vs2TJNnDhRoVBIkydP1rnnnqs33ngj4/ocfzEQBmP/5fiLgXI459BSfeADH5AxRldccUXGyzkH3Df/UG8AhtbFF1+sp59+WldffbVmz56tlStX6kMf+pBeeuklnXzyyX1er6WlRe973/vU2NioG2+8UYFAQHfffbdOPfVUrVmzRmPHjk2u+8ADD+if//mf9fGPf1zXXHON/vznP+uqq65SW1ubrr/++sF4mBihBmP/lbwnmeXLl6ctW7x48YA8Jowe/d1/X375Zf3gBz/QggULNH/+fK1Zs6bPdX/729/qnHPO0WmnnaZ7771Xa9eu1b/9279pz549+vGPfzwAjwqjyWDsw5K0aNEiXXvttWnL5syZk42HgFGsv/vvpZdeqokTJ+rCCy/U1KlTtXbtWv3whz/U888/r1WrVikvLy+5LsdgDJTB2H8ljr8YGP3df9euXauysjJ96UtfUnl5uWpqavTQQw/p+OOP18svv6yFCxcm1+X4i4EyGPuvxPEXA6O/+2+qZ555Ri+//HKfl3MO+AAsRq1XXnnFSrJ33nlncll7e7udOXOmPfHEE/d73dtvv91Ksn//+9+Ty9avX299Pp+94YYbksva2trs2LFj7Yc//OG063/605+2BQUFdt++fVl6NBhtBmP/tdZaSfaLX/xidjceo97h7L91dXW2qanJWmvtnXfeaSXZzZs3Z1x3wYIFduHChbarqyu57F/+5V+sMcauX7/+8B8IRq3B2oenTZvW6zUEcLgOZ/996aWXei175JFHrCT74IMPpi3nGIyBMFj7L8dfDITD2X8zqampsX6/31522WVpyzn+YiAM1v7L8RcDIRv7b3t7u62qqrK33HJLxnNlnAM+MFqTjWJPP/20fD6fLr300uSycDisz33uc3r55Ze1ffv2/V73uOOO03HHHZdcNm/ePJ1xxhl66qmnksteeukl1dXV6fLLL0+7/he/+EW1trbqN7/5TRYfEUaTwdh/U7W3t6ujoyN7DwCj2uHsv2PGjFFRUdEB72PdunVat26dLr30Uvn93QWwl19+uay1evrppw/vQWBUG4x9OFVnZ6daW1v7vb1AqsPZf0877bRey/7P//k/kqT169cnl3EMxkAZjP03FcdfZNPh7L+ZjBs3Tvn5+Wnt9Tj+YqAMxv6biuMvsikb++8dd9wh13V13XXXZbycc8AHRhAziq1evVpz5sxRcXFx2vLjjz9ekvpsFeK6rl5//XUde+yxvS47/vjj9e6776q5uTl5H5J6rbtkyRI5jpO8HDhUg7H/JqxcuVIFBQXKy8vTggUL9MQTT2TnQWDU6u/+e6j3IfU+/k6cOFGTJ0/m+IvDMhj7cMIf//hH5efnq7CwUFVVVfr+97+ftdvG6JTt/bempkaSVF5ennYfEsdgZN9g7L8JHH+RbdnYfxsaGlRbW6u1a9fq85//vJqamnTGGWek3YfE8RfZNxj7bwLHX2Tb4e6/27Zt03e+8x3dfvvtvVqZpt6HxDng/WFGzChWXV2tysrKXssTy3bt2pXxevv27VMkEjngdefOnavq6mr5fD6NGzcubb1gMKixY8f2eR/AgQzG/itJJ510ks477zxNnz5du3bt0n333adPf/rTamxs1Be+8IVsPRyMMv3dfw/1PlJvs+f9cPzF4RiMfViSjj76aJ188smaO3eu6urqtHLlSl199dXatWuXbr/99qzcB0afbO+/t99+u3w+n84999y0+0i9zZ73wzEY/TUY+6/E8RcDIxv773ve8x5t3LhRklRYWKivf/3r+tznPpd2H6m32fN+OP6ivwZj/5U4/mJgHO7+e+2112rx4sW64IIL9nsfnAPeP4KYUay9vV2hUKjX8nA4nLy8r+tJOqjrtre3KxgMZrydcDjc530ABzIY+68k/eUvf0lb57Of/ayWLFmiG2+8URdffHGf7wQA9qe/+++h3ofU977e1NR02PeB0Wsw9mFJ+tWvfpX2/YoVK3TWWWfprrvu0pVXXqnJkydn5X4wumRz/33iiSf005/+VF/96lc1e/bstPuQOAYj+wZj/5U4/mJgZGP/ffjhh9XU1KRNmzbp4YcfVnt7u2KxmBzHSbsNjr/ItsHYfyWOvxgYh7P/vvTSS/rlL3+pV1555YD3wTng/aM12SiWl5enSCTSa3liDkZfJ5gTyw/munl5eers7Mx4Ox0dHZzERr8Nxv6bSTAY1BVXXKGGhga9+uqrh7zdgNT//fdQ70Pqe1/n+IvDMRj7cCbGGH35y19WNBrVn/70pwG5D4x82dp///znP+tzn/ucli1bpm9961u97kPiGIzsG4z9NxOOv8iGbOy/J554opYtW6YvfOEL+t3vfqef/exnuuGGG9LuQ+L4i+wbjP03E46/yIb+7r/RaFRXXXWVPvOZz6TNWe7rPjgHvH8EMaNYZWVlsmw3VWLZxIkTM15vzJgxCoVCB3XdyspKxWIx7dmzJ229zs5O1dXV9XkfwIEMxv7blylTpkjy2pwB/dHf/fdQ7yP1NnveD8dfHI7B2If7wjEYhysb++9rr72mj3zkIzryyCP19NNPpw2ETtxH6m32vB+Oweivwdh/+8LxF4cr268fysrKdPrpp+vxxx9Pu4/U2+x5Pxx/0V+Dsf/2heMvDld/999HH31UGzdu1GWXXaYtW7YkPySpublZW7ZsUVtbW/I+OAe8fwQxo9iiRYv01ltv9SrNTZSaLVq0KOP1HMfRUUcdpX/84x+9LnvllVc0Y8YMFRUVpd1Gz3X/8Y9/yHXdPu8DOJDB2H/7smnTJklSRUVFP7Yc6P/+e6j3IfU+/u7atUs7duzg+IvDMhj7cF84BuNwHe7+++677+rMM8/UuHHj9Pzzz6uwsDDjfUgcg5F9g7H/9oXjLw7XQLx+aG9vV2NjY9p9SBx/kX2Dsf/2heMvDld/999t27apq6tLS5cu1fTp05MfkhfSTJ8+Xb///e/TboNzwPthMWr97W9/s5LsnXfemVzW0dFhZ82aZU844YTksq1bt9r169enXfc73/mOlWT/93//N7lsw4YN1ufz2euvvz65rK2tzY4ZM8aeffbZade/8MILbX5+vq2rq8v2w8IoMRj77549e3rdb1NTk505c6YtLy+3kUgkmw8Jo8jh7L+p7rzzTivJbt68OePl8+bNswsXLrTRaDS57Otf/7o1xth169Yd/gPBqDUY+3BdXV3avmuttZ2dnXbp0qU2GAza6urqw38gGJUOZ/+trq62M2bMsBMnTuzz2JvAMRgDYTD2X46/GCiHs//u3r271+1t3rzZFhUV2VNOOSVtOcdfDITB2H85/mKg9Hf/Xb9+vX322Wd7fUiyH/rQh+yzzz5rd+3aZa3lHPDBIIgZ5T7xiU9Yv99vv/KVr9gHHnjAnnTSSdbv99v/+q//Sq5z6qmn2p6ZXeJk9Lhx4+wdd9xh7777bjtlyhQ7ceLEXiev77vvPivJnnvuufbBBx+0y5cvt5Lst771rUF5jBi5Bnr/vemmm+zChQvt17/+dfuTn/zE3nzzzXbatGnWGGN/9rOfDdrjxMjU3/23oaHB3nrrrfbWW2+1Z555ppVkr732Wnvrrbfae++9N23dX//619YYY08//XT7k5/8xF511VXWcRx7ySWXDMpjxMg20Pvwww8/bGfOnGmvv/56e//999tvf/vb9sgjj7SS7Le//e1Be5wYmfq7/y5cuNBKsl/96lftY489lvbx+9//Pm1djsEYKAO9/3L8xUDq7/47btw4+8lPftLefvvt9ic/+Yn9yle+YseMGWPD4bD9y1/+krYux18MlIHefzn+YiD1d//NRJL94he/2Gs554D3jyBmlGtvb7fXXXednTBhgg2FQva4446zL7zwQto6ff0Sbt++3Z577rm2uLjYFhYW2rPPPtu+/fbbGe/nJz/5iZ07d64NBoN25syZ9u6777au6w7IY8LoMdD77+9//3v7gQ98wE6YMMEGAgFbWlpqP/jBD9oXX3xxQB8XRof+7r+bN2+2kjJ+TJs2rdf9PPvss3bRokU2FArZyZMn269//eu2s7NzIB8aRomB3of/8Y9/2H/6p3+ykyZNssFg0BYWFtqTTz7ZPvXUU4Px8DDC9Xf/7WvflWRPPfXUXvfDMRgDYaD3X46/GEj93X9vuukme+yxx9qysjLr9/vtxIkT7QUXXGBff/31jPfD8RcDYaD3X46/GEiHcw6tp76CGGs5B7w/xlprD6OzGQAAAAAAAAAAAPrgDPUGAAAAAAAAAAAAjFQEMQAAAAAAAAAAAAOEIAYAAAAAAAAAAGCAEMQAAAAAAAAAAAAMEIIYAAAAAAAAAACAAUIQAwAAAAAAAAAAMEAIYgAAAAAAAAAAAAYIQQwAAAAAAAAAAMAAIYgBAAAAAAAAAAAYIAQxAAAAAIBBt2XLFhljtHLlyqHeFAAAAGBAEcQAAAAAI9zKlStljEl+hMNhzZkzR1dccYV279491Jt32NatW6d//dd/1ZYtW4Z6Uw7o4osvTvu/CIVCmjNnjr75zW+qo6NjqDcPAAAAwADwD/UGAAAAABgct9xyi6ZPn66Ojg79z//8j3784x/r+eef1xtvvKH8/Pyh3rx+W7dunW6++WaddtppqqqqGurNOaBQKKT/+3//rySpsbFRzz33nG699Va9++67evzxx4d46wAAAABkG0EMAAAAMEqcddZZOvbYYyVJn//85zV27Fjdddddeu655/TJT37ysG67ra0tp8OcweT3+3XhhRcmv7/88st10kkn6d///d911113afz48UO4dQAAAACyjdZkAAAAwCh1+umnS5I2b96cXPazn/1MS5YsUV5ensaMGaMLLrhA27dvT7veaaedpiOPPFKvvvqq3vve9yo/P1833nijJKmjo0P/+q//qjlz5igcDquyslIf+9jH9O677yav77qu7rnnHh1xxBEKh8MaP368LrvsMtXX16fdT1VVlc4++2z9z//8j44//niFw2HNmDFDjz76aHKdlStX6hOf+IQk6X3ve1+y5def/vQnSdJzzz2nD3/4w5o4caJCoZBmzpypW2+9VbFYrNfP47777tOMGTOUl5en448/Xn/+85912mmn6bTTTktbLxKJ6KabbtKsWbMUCoU0ZcoUffWrX1UkEjnE/wGPMUYnn3yyrLXatGlT2mW//e1vdcopp6igoEBFRUX68Ic/rDfffDNtnYsvvliFhYXatm2bzj77bBUWFmrSpEm67777JElr167V6aefroKCAk2bNk1PPPFEr23YtGmTPvGJT2jMmDHKz8/Xe97zHv3mN79JXr579275/X7dfPPNva67ceNGGWP0wx/+UJK0b98+XXfddTrqqKNUWFio4uJinXXWWXrttdf69fMBAAAAch1BDAAAADBKJcKRsWPHSpK+9a1vafny5Zo9e7buuusuXX311XrxxRf13ve+Vw0NDWnXraur01lnnaVFixbpnnvu0fve9z7FYjGdffbZuvnmm7VkyRJ973vf05e+9CU1NjbqjTfeSF73sssu01e+8hUtXbpU3//+97VixQo9/vjjWrZsmbq6utLu55133tG5556rD3zgA/re976nsrIyXXzxxckw4r3vfa+uuuoqSdKNN96oxx57TI899pjmz58vyQtqCgsLdc011+j73/++lixZom9+85v62te+lnY/P/7xj3XFFVdo8uTJuuOOO3TKKafonHPO0Y4dO9LWc11XH/nIR/Td735X//RP/6R7771X55xzju6++26df/75/f6/SMy3KSsrSy577LHH9OEPf1iFhYW6/fbb9Y1vfEPr1q3TySef3GseTiwW01lnnaUpU6bojjvuUFVVla644gqtXLlSZ555po499ljdfvvtKioq0vLly9PCt927d+ukk07S7373O11++eX61re+pY6ODn3kIx/Rs88+K0kaP368Tj31VD311FO9tv3JJ5+Uz+dLBmKbNm3Sf/zHf+jss8/WXXfdpa985Stau3atTj31VO3atavfPyMAAAAgZ1kAAAAAI9rDDz9sJdk//OEPtra21m7fvt3+/Oc/t2PHjrV5eXl2x44ddsuWLdbn89lvfetbadddu3at9fv9actPPfVUK8nef//9aes+9NBDVpK96667em2D67rWWmv//Oc/W0n28ccfT7v8hRde6LV82rRpVpL97//+7+SyPXv22FAoZK+99trksl/84hdWkn3ppZd63W9bW1uvZZdddpnNz8+3HR0d1lprI5GIHTt2rD3uuONsV1dXcr2VK1daSfbUU09NLnvssces4zj2z3/+c9pt3n///VaS/ctf/tLr/lJddNFFtqCgwNbW1tra2lr7zjvv2O9+97vWGGOPPPLI5M+pubnZlpaW2ksuuSTt+jU1NbakpCRt+UUXXWQl2W9/+9vJZfX19TYvL88aY+zPf/7z5PINGzZYSfamm25KLrv66qutpLTH1NzcbKdPn26rqqpsLBaz1lr7wAMPWEl27dq1adu0YMECe/rppye/7+joSF4nYfPmzTYUCtlbbrklbZkk+/DDD+/3ZwYAAADkOipiAAAAgFHi/e9/vyoqKjRlyhRdcMEFKiws1LPPPqtJkybpmWeekeu6Ou+887R3797kx4QJEzR79my99NJLabcVCoW0YsWKtGW//OUvVV5eriuvvLLXfRtjJEm/+MUvVFJSog984ANp97NkyRIVFhb2up8FCxbolFNOSX5fUVGhuXPn9mrh1Ze8vLzk183Nzdq7d69OOeUUtbW1acOGDZKkf/zjH6qrq9Mll1wiv797jOanP/3ptAqVxPbPnz9f8+bNS9v+RJu3ntufSWtrqyoqKlRRUaFZs2bpuuuu09KlS/Xcc88lf07/+Z//qYaGBn3yk59Mux+fz6cTTjgh4/18/vOfT35dWlqquXPnqqCgQOedd15y+dy5c1VaWpr283v++ed1/PHH6+STT04uKyws1KWXXqotW7Zo3bp1kqSPfexj8vv9evLJJ5PrvfHGG1q3bl1aNVAoFJLjeH9qxmIx1dXVqbCwUHPnztWqVasO+PMBAAAARhr/gVcBAAAAMBLcd999mjNnjvx+v8aPH6+5c+cmT5i//fbbstZq9uzZGa8bCATSvp80aZKCwWDasnfffVdz585NCzN6evvtt9XY2Khx48ZlvHzPnj1p30+dOrXXOmVlZb3myfTlzTff1Ne//nX98Y9/VFNTU9pljY2NkqStW7dKkmbNmpV2ud/vV1VVVa/tX79+vSoqKg5q+zMJh8P69a9/LUnasWOH7rjjDu3ZsyctNHr77bcldc/x6am4uLjXbfbcppKSEk2ePDkZ7qQuT/35bd26VSeccEKv+0i0d9u6dauOPPJIlZeX64wzztBTTz2lW2+9VZLXlszv9+tjH/tY8nqu6+r73/++fvSjH2nz5s1p83gSbfAAAACA0YQgBgAAABgljj/+eB177LEZL3NdV8YY/fa3v5XP5+t1eWFhYdr3qaHBoXBdV+PGjdPjjz+e8fKeYUKmbZEka+0B76uhoUGnnnqqiouLdcstt2jmzJkKh8NatWqVrr/+ermu26/tP+qoo3TXXXdlvHzKlCkHvA2fz6f3v//9ye+XLVumefPm6bLLLtOvfvWr5P1I3pyYCRMm9LqNnmFXXz+nw/n5ZXLBBRdoxYoVWrNmjRYtWqSnnnpKZ5xxhsrLy5PrfPvb39Y3vvENffazn9Wtt96qMWPGyHEcXX311f36mQMAAAC5jiAGAAAAgGbOnClrraZPn645c+b0+zZeeeUVdXV19aqgSV3nD3/4g5YuXdrvMKennhUfCX/6059UV1enZ555Ru9973uTy1MH1UvStGnTJEnvvPOO3ve+9yWXR6NRbdmyRUcffXTa9r/22ms644wz+rzfQ1VZWakvf/nLuvnmm/W3v/1N73nPezRz5kxJ0rhx49JCm4Ewbdo0bdy4sdfyROu2xM9Hks455xxddtllyfZkb731lm644Ya06z399NN63/vep5/+9KdpyxsaGtICGwAAAGC0YEYMAAAAAH3sYx+Tz+fTzTff3Ktawlqrurq6A97Gxz/+ce3du1c//OEPe12WuM3zzjtPsVgs2doqVTQaVUNDwyFve0FBgST1um6iGiT18XR2dupHP/pR2nrHHnusxo4dqwcffFDRaDS5/PHHH+/VAu28887Tzp079eCDD/bajvb2drW2th7y9kvSlVdeqfz8fH3nO9+R5FXJFBcX69vf/ra6urp6rV9bW9uv+8nkQx/6kP7+97/r5ZdfTi5rbW3VT37yE1VVVWnBggXJ5aWlpVq2bJmeeuop/fznP1cwGNQ555yTdns+n6/XPvSLX/xCO3fuzNo2AwAAALmEihgAAAAAmjlzpv7t3/5NN9xwg7Zs2aJzzjlHRUVF2rx5s5599lldeumluu666/Z7G8uXL9ejjz6qa665Rn//+991yimnqLW1VX/4wx90+eWX66Mf/ahOPfVUXXbZZbrtttu0Zs0affCDH1QgENDbb7+tX/ziF/r+97+vc88995C2fdGiRfL5fLr99tvV2NioUCik008/XSeddJLKysp00UUX6aqrrpIxRo899livkCAYDOpf//VfdeWVV+r000/Xeeedpy1btmjlypWaOXNmWuXLZz7zGT311FP653/+Z7300ktaunSpYrGYNmzYoKeeekq/+93v+mz/tj9jx47VihUr9KMf/Ujr16/X/Pnz9eMf/1if+cxndMwxx+iCCy5QRUWFtm3bpt/85jdaunRpxsCrP772ta/p3//933XWWWfpqquu0pgxY/TII49o8+bN+uUvf5mcI5Rw/vnn68ILL9SPfvQjLVu2TKWlpWmXn3322brlllu0YsUKnXTSSVq7dq0ef/xxzZgxIyvbCwAAAOQaghgAAAAAkrwT8nPmzNHdd9+tm2++WZI38+SDH/ygPvKRjxzw+j6fT88//7y+9a1v6YknntAvf/lLjR07VieffLKOOuqo5Hr333+/lixZogceeEA33nij/H6/qqqqdOGFF2rp0qWHvN0TJkzQ/fffr9tuu02f+9znFIvF9NJLL+m0007T//t//0/XXnutvv71r6usrEwXXnihzjjjDC1btiztNq644gpZa/W9731P1113nRYuXKhf/epXuuqqqxQOh5PrOY6j//iP/9Ddd9+tRx99VM8++6zy8/M1Y8YMfelLX+p3WzdJuuaaa3T//ffr9ttv18qVK/WpT31KEydO1He+8x3deeedikQimjRpkk455RStWLGi3/fT0/jx4/XXv/5V119/ve699151dHTo6KOP1q9//Wt9+MMf7rX+Rz7yEeXl5am5uVnnn39+r8tvvPFGtba26oknntCTTz6pY445Rr/5zW/0ta99LWvbDAAAAOQSY/s7pREAAAAARjDXdVVRUaGPfexjGVuRAQAAAMDBYEYMAAAAgFGvo6OjV8uyRx99VPv27dNpp502NBsFAAAAYESgIgYAAADAqPenP/1JX/7yl/WJT3xCY8eO1apVq/TTn/5U8+fP16uvvqpgMDjUmwgAAAAgRzEjBgAAAMCoV1VVpSlTpugHP/iB9u3bpzFjxmj58uX6zne+QwgDAAAA4LBQEQMAAAAAAAAAADBAmBEDAAAAAAAAAAAwQAhiAAAAAAAAAAAABghBDAAAAAAAAAAAwAAhiAEAAAAAAAAAABggBDEAAAAAAAAAAAADhCAGAAAAAAAAAABggBDEAAAAAAAAAAAADBCCGAAAAAAAAAAAgAHy/wEaEui/dD/1EAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
+ "plt.legend()\n",
"plt.show()"
]
},
@@ -734,7 +711,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.8.16"
}
},
"nbformat": 4,
diff --git a/notebooks/shapley_basic_spotify.ipynb b/notebooks/shapley_basic_spotify.ipynb
index ae1c73aca..4cadcc93e 100644
--- a/notebooks/shapley_basic_spotify.ipynb
+++ b/notebooks/shapley_basic_spotify.ipynb
@@ -21,7 +21,7 @@
"2. The model.\n",
"3. The performance metric or scoring function.\n",
"\n",
- "Below we will describe how to instantiate each one of these objects and how to use them for data valuation. Please also see the [documentation on data valuation](../30-data-valuation.rst)."
+ "Below we will describe how to instantiate each one of these objects and how to use them for data valuation. Please also see the [documentation on data valuation](../../value/)."
]
},
{
@@ -34,7 +34,7 @@
"\n",
"\n",
"\n",
- "If you are reading this in the documentation, some boilerplate has been omitted for convenience.\n",
+ "If you are reading this in the documentation, some boilerplate (including most plotting code) has been omitted for convenience.\n",
"\n",
"
"
]
@@ -43,7 +43,9 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -54,7 +56,9 @@
"cell_type": "code",
"execution_count": 2,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -85,7 +89,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We will be using the following functions from pyDVL. The main entry point is the function [compute_shapley_values()](../pydvl/value/shapley/common.rst#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all Shapley methods. In order to use it we need the classes [Dataset](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset), [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility) and [Scorer](../pydvl/utils/score.rst#pydvl.utils.score.Scorer)."
+ "We will be using the following functions from pyDVL. The main entry point is the function [compute_shapley_values()](../../api/pydvl/value/shapley/common/#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all Shapley methods. In order to use it we need the classes [Dataset](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset), [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility) and [Scorer](../../api/pydvl/utils/score/#pydvl.utils.score.Scorer)."
]
},
{
@@ -96,7 +100,8 @@
"source": [
"%autoreload\n",
"from pydvl.reporting.plots import plot_shapley\n",
- "from pydvl.utils.dataset import GroupedDataset, load_spotify_dataset\n",
+ "from pydvl.utils.dataset import GroupedDataset\n",
+ "from support.shapley import load_spotify_dataset\n",
"from pydvl.value import *"
]
},
@@ -106,7 +111,7 @@
"source": [
"## Loading and grouping the dataset\n",
"\n",
- "pyDVL provides a convenience function [load_spotify_dataset()](../pydvl/utils/dataset.rst#pydvl.utils.dataset.load_spotify_dataset) which downloads data on songs published after 2014, and splits 30% of data for testing, and 30% of the remaining data for validation. The return value is a triple of training, validation and test data as lists of the form `[X_input, Y_label]`."
+ "pyDVL provides a support function for this notebook, `load_spotify_dataset()`, which downloads data on songs published after 2014, and splits 30% of data for testing, and 30% of the remaining data for validation. The return value is a triple of training, validation and test data as lists of the form `[X_input, Y_label]`."
]
},
{
@@ -124,7 +129,9 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -342,7 +349,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Input and label data are then used to instantiate a [Dataset](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset) object:"
+ "Input and label data are then used to instantiate a [Dataset](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset) object:"
]
},
{
@@ -358,7 +365,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "The calculation of exact Shapley values is computationally very expensive (exponentially so!) because it requires training the model on every possible subset of the training set. For this reason, PyDVL implements techniques to speed up the calculation, such as [Monte Carlo approximations](../pydvl/value/shapley/montecarlo.rst), [surrogate models](../pydvl/utils/utility.rst#pydvl.utils.utility.DataUtilityLearning) or [caching](../pydvl/utils/caching.rst) of intermediate results and grouping of data to calculate group Shapley values instead of single data points.\n",
+ "The calculation of exact Shapley values is computationally very expensive (exponentially so!) because it requires training the model on every possible subset of the training set. For this reason, PyDVL implements techniques to speed up the calculation, such as [Monte Carlo approximations](../../api/pydvl/value/shapley/montecarlo/), [surrogate models](../../api/pydvl/utils/utility/#pydvl.utils.utility.DataUtilityLearning) or [caching](../../api/pydvl/utils/caching/) of intermediate results and grouping of data to calculate group Shapley values instead of single data points.\n",
"\n",
"In our case, we will group songs by artist and calculate the Shapley value for the artists. Given the [pandas Series](https://pandas.pydata.org/docs/reference/api/pandas.Series.html) for 'artist', to group the dataset by it, one does the following:"
]
@@ -380,11 +387,11 @@
"\n",
"Now we can calculate the contribution of each group to the model performance.\n",
"\n",
- "As a model, we use scikit-learn's [GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html), but pyDVL can work with any model from sklearn, xgboost or lightgbm. More precisely, any model that implements the protocol [pydvl.utils.types.SupervisedModel](../pydvl/utils/types.rst#pydvl.utils.types.SupervisedModel), which is just the standard sklearn interface of `fit()`,`predict()` and `score()` can be used to construct the utility.\n",
+ "As a model, we use scikit-learn's [GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html), but pyDVL can work with any model from sklearn, xgboost or lightgbm. More precisely, any model that implements the protocol [pydvl.utils.types.SupervisedModel](../../api/pydvl/utils/types/#pydvl.utils.types.SupervisedModel), which is just the standard sklearn interface of `fit()`,`predict()` and `score()` can be used to construct the utility.\n",
"\n",
"The third and final component is the scoring function. It can be anything like accuracy or $R^2$, and is set with a string from the [standard sklearn scoring methods](https://scikit-learn.org/stable/modules/model_evaluation.html). Please refer to that documentation on information on how to define your own scoring function.\n",
"\n",
- "We group dataset, model and scoring function into an instance of [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility)."
+ "We group dataset, model and scoring function into an instance of [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility)."
]
},
{
@@ -404,6 +411,7 @@
" # Stop if the standard error is below 1% of the range of the values (which is ~2),\n",
" # or if the number of updates exceeds 1000\n",
" done=AbsoluteStandardError(threshold=0.2, fraction=0.9) | MaxUpdates(1000),\n",
+ " truncation=RelativeTruncation(utility, rtol=0.01),\n",
" n_jobs=-1,\n",
")\n",
"values.sort(key=\"value\")\n",
@@ -414,7 +422,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "The function [compute_shapley_values()](../pydvl/value/shapley/common.rst#pydvl.value.shapley.common.compute_shapley_values) serves as a common access point to all Shapley methods. For several of them, we choose a `StoppingCriterion` with the argument `done=`. In this case we choose to stop when the ratio of standard error to value is below 0.3 for at least 90% of the training points, or if the number of updates of any index exceeds 200. The `mode` argument specifies the Shapley method to use. In this case, we use the [Truncated Monte Carlo approximation](../pydvl/value/shapley/truncated.rst#pydvl.value.shapley.truncated.truncated_montecarlo_shapley), which is the fastest of the Monte Carlo methods.\n",
+ "The function [compute_shapley_values()](../../api/pydvl/value/shapley/common/#pydvl.value.shapley.common.compute_shapley_values) serves as a common access point to all Shapley methods. For most of them, we must choose a `StoppingCriterion` with the argument `done=`. In this case we choose to stop when the ratio of standard error to value is below 0.2 for at least 90% of the training points, or if the number of updates of any index exceeds 1000. The `mode` argument specifies the Shapley method to use. In this case, we use the [Truncated Monte Carlo approximation](../../api/pydvl/value/shapley/truncated/#pydvl.value.shapley.truncated.truncated_montecarlo_shapley), which is the fastest of the Monte Carlo methods, owing both to using the permutation definition of Shapley values and the ability to truncate the iteration over a given permutation. We configure this to happen when the contribution of the remaining elements is below 1% of the total utility with the parameter `truncation=` and the policy [RelativeTruncation](../../api/pydvl/value/shapley/truncated/#pydvl.value.shapley.truncated.RelativeTruncation).\n",
"\n",
"Let's take a look at the returned dataframe:"
]
@@ -513,26 +521,12 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
- "source": [
- "low_dvl = df.iloc[:30]\n",
- "plot_shapley(\n",
- " low_dvl,\n",
- " level=0.05,\n",
- " title=\"Artists with low values\",\n",
- " xlabel=\"Artist\",\n",
- " ylabel=\"Shapley value\",\n",
- ");"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
"outputs": [
{
"data": {
@@ -548,6 +542,14 @@
}
],
"source": [
+ "low_dvl = df.iloc[:30]\n",
+ "plot_shapley(\n",
+ " low_dvl,\n",
+ " level=0.05,\n",
+ " title=\"Artists with low values\",\n",
+ " xlabel=\"Artist\",\n",
+ " ylabel=\"Shapley value\",\n",
+ ")\n",
"plt.show()"
]
},
@@ -637,26 +639,12 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 17,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
- "source": [
- "high_dvl = df.iloc[-30:]\n",
- "ax = plot_shapley(\n",
- " high_dvl,\n",
- " title=\"Artists with high values\",\n",
- " xlabel=\"Artist\",\n",
- " ylabel=\"Shapley value\",\n",
- ")\n",
- "ax.get_xticklabels()[high_dvl.index.get_loc(\"Rihanna\")].set_color(\"red\");"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
"outputs": [
{
"data": {
@@ -672,6 +660,14 @@
}
],
"source": [
+ "high_dvl = df.iloc[-30:]\n",
+ "ax = plot_shapley(\n",
+ " high_dvl,\n",
+ " title=\"Artists with high values\",\n",
+ " xlabel=\"Artist\",\n",
+ " ylabel=\"Shapley value\",\n",
+ ")\n",
+ "ax.get_xticklabels()[high_dvl.index.get_loc(\"Rihanna\")].set_color(\"red\")\n",
"plt.show()"
]
},
@@ -721,26 +717,12 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 20,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
- "source": [
- "low_dvl = df.iloc[:30]\n",
- "ax = plot_shapley(\n",
- " low_dvl,\n",
- " title=\"Artists with low data valuation scores\",\n",
- " xlabel=\"Artist\",\n",
- " ylabel=\"Shapley Value\",\n",
- ")\n",
- "ax.get_xticklabels()[low_dvl.index.get_loc(\"Rihanna\")].set_color(\"red\");"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
"outputs": [
{
"data": {
@@ -756,6 +738,14 @@
}
],
"source": [
+ "low_dvl = df.iloc[:30]\n",
+ "ax = plot_shapley(\n",
+ " low_dvl,\n",
+ " title=\"Artists with low data valuation scores\",\n",
+ " xlabel=\"Artist\",\n",
+ " ylabel=\"Shapley Value\",\n",
+ ")\n",
+ "ax.get_xticklabels()[low_dvl.index.get_loc(\"Rihanna\")].set_color(\"red\")\n",
"plt.show()"
]
},
@@ -788,7 +778,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.8.16"
},
"vscode": {
"interpreter": {
diff --git a/notebooks/shapley_knn_flowers.ipynb b/notebooks/shapley_knn_flowers.ipynb
index 3d909d3a5..d2894fb17 100644
--- a/notebooks/shapley_knn_flowers.ipynb
+++ b/notebooks/shapley_knn_flowers.ipynb
@@ -33,17 +33,19 @@
"\n",
"\n",
"\n",
- "If you are reading this in the documentation, some boilerplate has been omitted for convenience.\n",
+ "If you are reading this in the documentation, some boilerplate (including most plotting code) has been omitted for convenience.\n",
"\n",
"
"
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "c3a76161",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -55,9 +57,20 @@
"execution_count": 2,
"id": "57174af3",
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/fabio/.local/lib/python3.8/site-packages/requests/__init__.py:109: RequestsDependencyWarning: urllib3 (1.26.9) or chardet (5.1.0)/charset_normalizer (2.0.12) doesn't match a supported version!\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
"source": [
"%autoreload\n",
"%matplotlib inline\n",
@@ -67,7 +80,7 @@
"import numpy as np\n",
"import sklearn as sk\n",
"from copy import deepcopy\n",
- "from notebook_support import plot_iris\n",
+ "from support.common import plot_iris\n",
"\n",
"plt.rcParams[\"figure.figsize\"] = (20, 8)\n",
"plt.rcParams[\"font.size\"] = 12\n",
@@ -86,7 +99,7 @@
"id": "75abb359",
"metadata": {},
"source": [
- "The main entry point is the function [compute_shapley_values()](../pydvl/value/shapley/common.rst#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all Shapley methods. In order to use it we need the classes [Dataset](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset), [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility) and [Scorer](../pydvl/utils/score.rst#pydvl.utils.score.Scorer), all of which can be imported from `pydvl.value`:"
+ "The main entry point is the function [compute_shapley_values()](../../api/pydvl/value/shapley/common/#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all Shapley methods. In order to use it we need the classes [Dataset](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset), [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility) and [Scorer](../../api/pydvl/utils/score/#pydvl.utils.score.Scorer), all of which can be imported from `pydvl.value`:"
]
},
{
@@ -106,9 +119,9 @@
"source": [
"## Building a Dataset and a Utility\n",
"\n",
- "We use [the sklearn iris dataset](https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html) and wrap it into a [pydvl.utils.dataset.Dataset](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset) calling the factory [pydvl.utils.dataset.Dataset.from_sklearn()](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset.from_sklearn). This automatically creates a train/test split for us which will be used to compute the utility.\n",
+ "We use [the sklearn iris dataset](https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html) and wrap it into a [pydvl.utils.dataset.Dataset](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset) calling the factory [pydvl.utils.dataset.Dataset.from_sklearn()](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset.from_sklearn). This automatically creates a train/test split for us which will be used to compute the utility.\n",
"\n",
- "We then create a model and instantiate a [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility) using data and model. The model needs to implement the protocol [pydvl.utils.types.SupervisedModel](../pydvl/utils/types.rst#pydvl.utils.types.SupervisedModel), which is just the standard sklearn interface of `fit()`,`predict()` and `score()`. In constructing the `Utility` one can also choose a scoring function, but we pick the default which is just the model's `knn.score()`."
+ "We then create a model and instantiate a [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility) using data and model. The model needs to implement the protocol [pydvl.utils.types.SupervisedModel](../../api/pydvl/utils/types/#pydvl.utils.types.SupervisedModel), which is just the standard sklearn interface of `fit()`,`predict()` and `score()`. In constructing the `Utility` one can also choose a scoring function, but we pick the default which is just the model's `knn.score()`."
]
},
{
@@ -131,7 +144,7 @@
"source": [
"## Computing values\n",
"\n",
- "Calculating the Shapley values is straightforward. We just call [compute_shapley_values()](../pydvl/value/shapley/common.rst#pydvl.value.shapley.common.compute_shapley_values) with the utility object we created above. The function returns a [ValuationResult](../pydvl/value/result.rst#pydvl.value.result.ValuationResult). This object contains the values themselves, data indices and labels."
+ "Calculating the Shapley values is straightforward. We just call [compute_shapley_values()](../../api/pydvl/value/shapley/common/#pydvl.value.shapley.common.compute_shapley_values) with the utility object we created above. The function returns a [ValuationResult](../../api/pydvl/value/result/#pydvl.value.result.ValuationResult). This object contains the values themselves, data indices and labels."
]
},
{
@@ -143,7 +156,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "aa2ad3d8aa2b4c0e8bce1457d08863ff",
+ "model_id": "2c8b940d44a44da69b9ea62c49d69cf2",
"version_major": 2,
"version_minor": 0
},
@@ -177,15 +190,15 @@
"id": "467f635a",
"metadata": {
"tags": [
- "remove-input"
+ "hide-input"
]
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAL/CAYAAADlZKE2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcVd348c+ZrN1X2mkLpRYa9q1lEWRTiQLKohhaURZ5VFQQFZRVUcAf4oOIIIL6iCCyVCMV2UQCKAiUxYLKIg1QWwptuu9LmmTu748zoaFkmaRJJm0+79drXmnunHvv906m5957vvecE5IkQZIkSZIkSZIkSe2TyncAkiRJkiRJkiRJWyKTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJUg8WQrglhJCEEMZ14T6+l93H4V21jxb2m4QQ/tYTYmmy/9Oy+z9tk+WzQwiz8xFTkxjy+tlIkiRJei+TLJIkSdJmyjZ8J/mOQ92TlOoqLSV4JEmSJPVcJlkkSZIk9STXA7sAz+Zp/3/M7v+Pedp/a/L92UiSJEnaRGG+A5AkSZKkRkmSLAYW53H/K4AV+dp/a/L92UiSJEl6L3uySJIkSd0ohHB8COG2EEJ1CGFN9jUjhHB2CKG16/NUCOGcEMKrIYT1IYS3QgjXhBAGtrCfbUMI14cQZoUQakMIS0II94QQ9mtHrIeEEO7N7qs2hFATQng6hPDddmyjOITwnRDCG9lt/DeE8P0QQkkL5ZuddySXWLJDtp2a/fW/jcO4NZ1LJYTwt+yy4hDCJSGEmdnt3ZJ9v9Uhu0IIg7Kf69vZv8Mr2b9d2KTc4dntfK+F7czeNC7g5uyvNzeJ/Z2hz1qbkyWE8OEQwoMhhKXZ46kOIVwZQhjUTNnGz6AwhHBRCOG17DpzQwg/DCEUNxezJEmSpPeyJ4skSZLUva4EMsAzwNvAIOBDwLXAfsDJLax3DXAo8HvgT8BHga8Dh4QQDk6SZH1jwRDCROAhYCjwF2AaMBw4HngihPCJJEkeaC3IEMKRwP3ASuCebKxDicNVfQW4tK0DzSYefg8cB7xBHO6qGDgd2KOt9TsQy6XZY9yL+Hkuzy5fznvdRfy8/wzcDSzMIZRi4GFgMDA1+/sJ2X3tBJyZ6zE145ZsnMcR/77/bPLe8tZWDCGcAdwIrAEqicdyOHA+cEwI4QNJkjS3jTuAQ4ifwUrgaOA8YATwuY4dhiRJktS7mGSRJEmSutfHkiR5o+mCbA+Wm4FTQgjXJ0nyTDPrfQDYO0mSOdl1LiQ2qH8S+BZweXZ5ITGx0R/4YJIkjzXZz2jgOeCmEMK4JElqW4nzC8Se74cnSfKvTeIdnuOxfpqYNHg6G8v67PrfzcaRq5xiSZLke9leH3sBP0mSZHYr29we2D07BFeuRgGzsuvVZvffeCxfCSH8LkmSx9uxvXckSXJLtjPMccDdSZLckst6IYTtgeuA1cD+SZK82uS9G4AvA/8LfLGZ1XcAdkuSZGm2/MXAv4jfwwuTJKnpyLFIkiRJvYnDhUmSJEndaNMES3ZZhtgbAmIPleZc25hgabLOt4i9Yk5vUu5jxMbznzZNsGTXmUdscE8DH84x5HXNxJtrYqKxN8RFTXvaZBv1L89xG50Vy6a+08F1L2yanNrkWPLR++OzxB411zdNsGRdDKwCTm5heLbzGxMsAEmSrAFuJ94n7ttF8UqSJElbFXuySJIkSd0ohDCMmBw5GhgP9NukyJgWVn1s0wVJkswKIcwFxoUQBmeHhDow+/b2LcwHMiH7cxegtSHDbif2knkmhPA74K/Ak0mSvNXKOpuaSEwCPdHMe39rx3Y6I5ZNPduBdeqBp5pZ/rfsz306HE3HTcz+fHTTN5IkWRZCeIE4zNzOxF4qTf2jme3Nzf4c0mkRSpIkSVsxkyySJElSNwkhDCYOLfU+YiP/rcBSYuP9YOBrQLMTwgMLWlheQxz6ahBx7o5h2eUVbYTTv7U3kySZFkL4OHAusafMGdljmEHszVHVxvbJxrQ0SZK6FuLOSSfF0uH9N7E4SZKGVrb1nknmu0HjPue38H7j8sGbvtHCPC312Z8FmxWVJEmS1EuYZJEkSZK6z+eJCZZLkyT5XtM3QggHEpMsLRkJzGxmeTr7c8UmP49LkuSejocKSZLcD9wfQugHHAB8nDjHx30hhH2SJHmljU2sAIaGEIqaSbSkm1uhC2PZdHtJe8pnDQ8hFDSTaNn0bwCxBw+0fM81mDYmtM9R4z7TwMvNvD9qk3KSJEmSOpFzskiSJEndZ8fsz7uaee+wNtZ9z/shhPHAdsDsJr0Sns7+PKQjATYnSZI1SZI8miTJOcAVxDlAjsph1eeJ9xwHN/Pe4V0US2MCpCt6YhQCBzWz/PDszxeaLFuW/bndpoVDCDvSfK+XjsTeuM/DN30j23Nqb2A98J92bFOSJElSjkyySJIkSd1ndvbn4U0XhhD2AS5sY92vhRC2b7JOCriKeE1/c5NyfwLeAM4MIRzd3IZCCAeGEPq2trMQwqEhhOZ6YYzM/lzbRrw0iev/hRBKm2x7KPDtHNbvSCxLsj/H5rr9dvpB00nkNzmWpn+HV4GVwHEhhBFNyvcBrmth2x2J/TagDvhqNnnT1OXAQOC2JElq27FNSZIkSTlyuDBJkiSpk4QQbmnl7a8Q52D5FvCTEMIHgdeIE9F/HJgGTG5l/SeBf2Ynfl8BfBTYC5gB/G9joSRJ6kIInwT+Qhxe6yngn8RExHbAfsB44jBSrSVKrgPGhBCeJCaHNgCTgA8Bc4Cprazb6M7sMR0LvBRC+BNQBHyKODfNDjlso72xPEL8jP8vhHAXsApYniTJ9TnuqzXziXPmvBRCuIeNxzIKuCFJkscbC2b/DtcC3wFeCCH8kXj/VQ7My742NZ34N/l6CGEYG+d6+WmSJM0O95UkyewQwteBnwHPhxB+Dywi9nw6kJjsOX+zjlqSJElSi0yySJIkSZ3n1Fbe+3qSJPNCCIcAVxKH0PoosRH8K8DDtJ5k+QbwCeALwDhir4drgUuSJFnftGCSJP8OIewFnENM4HyOOEfIfOLwUt8FFrdxLFdk97cvcER2/Tezy3+SJMmyVtZtjCMJIVQAFwCnAWdlY7gZuIw4jFUuco4lSZK/hBDOJX5OXycOJzYH6Iwky4bs/q8ApgDDgVnEv+dPmyn/XWLS5AvAF4lJk6nA94D3zCGTJMmyEMIJ2fVOA/pl37qNVuZUSZLkhhDC68A3gROAvsBcYk+nK1qY4F6SJElSJwgdm+9RkiRJkiRJkiSpd3NOFkmSJEmSJEmSpA4wySJJkiRJkiRJktQBJlkkSZIkSZIkSZI6wCSLJEmSJEmSJElSB5hkkSRJkiRJkiRJ6gCTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQNMskiSJEmSJEmSJHWASRZJkiRJkiRJkqQOMMkiSZIkSZIkSZLUASZZJEmSJEmSJEmSOsAkiyRJkiRJkiRJUgeYZJEkSZIkSZIkSeoAkyySJEmSJEmSJEkdYJJFkiRJkiRJkiSpA0yySJIkSZIkSZIkdYBJFkmSJEmSJEmSpA4wySJJkiRJkiRJktQBJlkkSZIkSZIkSZI6wCSLJEmSJEmSJElSB5hkkSRJkiRJkiRJ6gCTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQNMskiSJEmSJEmSJHWASRZJkiRJkiRJkqQOMMkiSZIkSZIkSZLUASZZJEmSJEmSJEmSOsAkiyRJkiRJkiRJUgeYZJEkSZIkSZIkSeoAkyySJEmSJEmSJEkdYJJFkiRJkiRJkiSpA0yySJIkSZIkSZIkdYBJFkmSJEmSJEmSpA4wySJJkiRJkiRJktQBJlkkSZIkSZIkSZI6wCSLJEmSJEmSJElSB5hkkSRJkiRJkiRJ6gCTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQMK8x1AvoUQAjAaWJXvWCRJkqRuNACYlyRJku9A1PN53yRJkqReKKd7pl6fZCHeKLyV7yAkSZKkPNgWeDvfQWiL4H2TJEmSeqM275lMsmx8EmtbfCpLkiRJvcMAYoO517/KlfdNkiRJ6k1yvmcyybLRqiRJVuY7CEmSJKmrxZGfpA7xvkmSJElbvfbcMznxvSRJkiRJkiRJUgeYZJEkSZIkSZIkSeoAkyySJEmSJEmSJEkdYJJFkiRJkiRJkiSpA5z4XpIkaQsxY8aMAcAofFBGzcsA8ydNmrQq34God7OuUhusqyRJ0lYlJEmS7xjyKoQwEFgBDEqSZGW+45EkSdrUjBkzUsBFBQUFp4QQioCQ75jUIyVJktQ1NDTcClwxadKkTEsFvQZWe+XynbGuUo5yrqskSZLypT33TPZkkSRJ6vkuKioq+nI6nd7Qr1+/tSGE3v2UjJqVJElYs2ZN35qami/X1dUBfD/fManXsa5Sm6yrJEnS1saeLD7FJ0mSerAZM2YMLCgo+Mfo0aOLRowYsSTf8ajnW7hw4bB58+bVNTQ0TGppOB6vgdVebX1nrKvUXrnUVZIkSfnSnnsmx8iVJEnq2dIhhKJ+/fqtzXcg2jJkexAUEefEkLqLdZXaxbpKkiRtLUyySJIk9WwpIDjsjnKV/a4EvNZX97KuUrtYV0mSpK2FFzOSJEmSJEmSJEkdYJJFkiRJkiRJkiSpA0yySJIkCYDHHnus7z777LNznz599gkhTHrqqaf6nHPOOaNDCJPyHZskNbKukiRJUk9SmO8AJEmSlH+1tbXhpJNO2qG4uDhz+eWXz+3bt29mwoQJG/IdV2e68sort+nbt2/m7LPPXpLvWCR1jHWVJEmSehqTLJIkSeKVV14pmTdvXvHVV18955xzzlmc73i6wk033TRiyJAh9TZcSlsu6ypJkiT1NA4XJkmSJGpqagoBhgwZ0pDvWDqqoaGBtWvXhnzHIanrWFdJkiSppzHJIkmS1MudcMIJ444++uidAE4//fTxIYRJ+++//04tla+rq+Nb3/rWqO2222734uLiiWPGjNnjrLPOGrNu3bp3Gg0///nPbzt48OC9M5nMO+udeuqp24UQJn3/+98f0bhs7ty5hSGEST/84Q+3aVy2bt268I1vfGP02LFjdy8uLp6YTqf3/NKXvrRt0+0DhBAmnXLKKWNvvPHGoTvuuONuJSUlE++6665BzcU8ZsyYPV5//fXS5557rn8IYVLjMb7yyivFIYRJl1566YhN16mqquoXQpj0i1/8YihA45wPL7zwQunRRx89vn///vsMHjx478997nPbNddgesMNNwzdbbfddiktLZ04aNCgvT/+8Y+Pf/3114ta+lwltc66yrpKkiSpJ3K4MEmSpF7uy1/+8qLRo0fXXX/99enTTjtt4X777bdm1KhR9S2VnzJlyrhp06YNO/LII5edeeaZC5599tl+P/vZz9IzZ84sraqqegPg0EMPXX3TTTeNnDFjRul+++23HuCZZ54ZkEqlePLJJ/sDCwEefvjhAQAf/vCHV0F8wru8vHzHGTNm9D/ppJMW77LLLutefPHFPr/61a9GvP766yUPP/zwG01jefLJJwfcd999Q04//fSFw4cPr99hhx1qm4v5yiuvnPutb31rbN++fRu++c1vzgcYNWpU/a677rph4sSJqysrK4d997vfXdh0nVtvvXVYv379MieddNLypssnT548ftttt91w8cUXv/XMM8/0v+WWW0YsX7684I9//OPsxjLnn39++qqrrhpz9NFHLzvllFMWL1q0qPCmm24acdhhh+38r3/965Xhw4dvsU/hS/liXWVdJUmS1BOZZJEkSerljjjiiDXr169PXX/99elDDz109ec+97llLZWdPn16n2nTpg2bPHny4qlTp87JLl50xhln1P/yl78cee+99w445phjVh1xxBGrAR599NEB++233/olS5YUvPbaa30++tGPLnv22WcHNG7v8ccf7z9o0KCGiRMnrgf4xS9+MXT69OkDH3jggZkf/ehHVzeW23333dedd95521dVVfUrLy9f07h89uzZpc8+++zLkyZNWt/aMZ588snLL7vssjFDhgyp/8pXvrK06Xuf/vSnl3zrW9/a/oUXXijdZ5991kOcXPu+++4b8tGPfnTZgAEDMk3Lb7fddrWPPPJIYwPqopNPPrnhtttu2+aZZ55ZcMABB6yrrq4uvvrqq8ecd955b1955ZU1jetNnjx52YEHHrjrj370o22aLpeUG+sq6ypJkqSeyOHCJEmSlLN77rlnEMB55523oOnyiy++uAbg3nvvHQQwevTo+ve9733rn3jiif4ADz/8cP9UKpWcf/75NUuWLCl88cUXSwCeeeaZ/pMmTVqVSsXL0rvuumvI+PHj1++5557r58+fX9j4OvLII1dltzOg6X7322+/VW01WrbltNNOW1ZSUpLccsstQxuXTZs2beDy5csLTz755PdMPH3mmWcuavr7OeecsxDgT3/60yCAO++8c3Amk+Gzn/3ssqbHsO2229Zvv/32tY8//viATbcpqXNZV1lXSZIkdRd7skiSJClnc+bMKU6lUuy2227vGupm7Nix9QMGDGiYO3duceOyAw44YPWjjz46COJT4LvvvvvaQw45ZO2gQYMaHnnkkf5jxoypmzlzZt9PfepT7zytPXv27NJZs2aVjh49eq/m9r9w4cJ3zRMwduzYZofcaY/hw4c3fOhDH1o+bdq0oddee+08gDvuuGPoiBEj6o455phVm5bfdddd12/ye20qlWL27NnFAK+99lppkiTsscceuze3v8LCwmRzY5bUOusq6ypJkqTuYpJFkiRJ7ZZKpdpsfPvABz6weurUqcNfeeWV4qeffrr/+9///lWpVIpJkyateuKJJwZsu+22dZlMhsMPP/ydoXYymQwTJkxY97//+79zm9vm+973vg1Nfy8tLe2URsCTTz55yUknnTSkqqqq37777rvu4YcfHnzKKacsKigoaHPdTT+LTCZDCIHKysrXCgoK3hPfpkP6SOo61lUbWVdJkiR1jR6bZAkhXAD8ALg2SZKvt1DmNODmTRbXJklS2rXRSZIk9U7bb7/9hkwmw4svvljaODcBwNy5cwtXrVpVsN12273TsHjEEUesArj//vsHvvjii/2++c1v1gAcfPDBq2+++eZtRo0aVdenT5/MIYccsqbJ9mv/85//9D322GPfGZans4QQWmzk/NSnPrXizDPPrL/11luHzZw5c8369etTp59++nuG3wF45ZVXSnfeeed3jvOll14qzWQyjBs3bgPADjvsUJskCRMmTKjdc889N/vpdUntZ11lXSVJktRdeuScLCGE/YAzgH/nUHwlMKrJa/suDE2SJKlXO/bYY1cA/OhHPxrZdPkVV1wxEuCYY45Z0bhs55133jBixIi6G264YWR9fX1onGD68MMPXzV37tySe++9d8jee++9pqho46g6J5xwwrKFCxcW/fjHPx6+6b5Xr14dVq5c2eHr1z59+mRWrlzZ7OPeRUVFHHfccUvvu+++IbfddtuwCRMmrDvggAPWNVf2Zz/72TZNf//xj388AjYe+5QpU5YXFBTw7W9/e3Qm8+4HwTOZDDU1NW0/ci5ps1hXWVdJkiR1lx7XkyWE0B+4HfgC8O0cVkmSJKnp2qgkSZIEcOCBB6775Cc/ueTOO+8cvmLFioJDDjlk1XPPPddv2rRpw4444ojlm84LsP/++6+67777hk6YMGHdNtts0wBw8MEHr+3Tp09mzpw5JSeccMK7nsD+yle+suSuu+4act55523/2GOPDTjwwANXNzQ0hFdffbX0/vvvH3rPPfdUH3rooWs7Evuee+659vbbb9/mvPPOG7XjjjuuT6fT9ccee+w78Z5++ulLbrnllhHPPPPMgIsvvvitlrYzd+7ckg996EM7fuQjH1nx9NNP9//Tn/409Jhjjll64IEHrgPYbbfdas8777y3f/CDH4zZd999Sz72sY8tGzBgQOa///1v8Z///Ochp5xyyqLLLrtsQUvbl7T5rKusqyRJkrpLj0uyAD8D7k+S5OEQQi5Jlv4hhDnEXjnPAxclSfJyl0YoSZLUi02dOnX2hRdeWDt16tThDz300ODhw4fXnXnmmTVXXXXVvE3LfuADH1h93333Dd1///3fmcugqKiIvffee/X06dMHHnbYYaubli8oKOAvf/nLG5dffvmI3/3ud8MfeuihIaWlpZntttuu9vOf//yC3Xffff2m+8jVFVdcMe+tt94qvuGGG9Jr1qxJ7bfffquPPfbYmY3vH3LIIWt33HHH9bNmzSr9n//5n6UtbWfq1KmzLr744tHf//73ty0oKEhOOeWUhTfeeOO7GjqvuOKKmp122mn9ddddN/Lqq68eDZBOpzcceuihKz/1qU8t7+gxSMqddZV1lSRJUncISdIp8+91ihDCFOBiYL8kSdaHEP4G/LOVOVkOBCYQhxUbBHwTOBTYLUmSZp/oCSGUACVNFg0A3gIGJUmyspMORZIkqVPMmDFj58LCwgcnTJiwum/fvh1utFNudtlll10HDx5cP3369OpN3zvnnHNGX3PNNaPmzZv3r1GjRtXnI75crF27tvS1117rX19ff+SkSZNeba5MCGEgsAKvgZWjtr4z1lXdq7fUVZIkSfnSnnumHjMnSwhhO+Ba4DNJkuR0UZ4kyfQkSW5NkuSfSZI8BnwSWEScz6UlFxI/nMZXi92rJUmS1Hs8/vjjfV999dU+J510UrOTSEtST2BdJUmS1LP0pOHCJgEjgOdDCI3LCoBDQwhnASVJkjS0toEkSepCCC8AO7ZS7AfAj5v83tiTRZIkSb3Qc889V/r000/3++lPfzpym222qWtt+B1JyhfrKkmSpJ6px/RkAR4B9gD2bvL6B3A7sHdbCRaAEEJBdhvzWyqTJEltkiQrG1/AqpbKSpIkaet35513Dv3a1742rr6+Ptx8882z+vbt23PG05WkLOsqSZKknqlHzcmyqU3nZAkh3Aq8nSTJhdnfLwGeBl4HBgPfAo4HJiVJ8kqO+3A8akmS1GM5z4HayzlZ1BWck0WdzTlZJElST9aee6aeNFxYLsYCmSa/DwH+D0gDy4AZwEG5JlgkSZIkSZIkSZI6qkcnWZIkObyN378BfKMbQ5IkSZIkSZIkSQJ61pwskiRJkiRJkiRJWwyTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkrTFq6qq6nfOOeeMXrx4cUG+Y5GkllhXSZIkbX1MskiSJGmL9/e//73/NddcM2rJkiU2XErqsayrJEmStj6F+Q5AknqT8lRFCjgI2IVYBy8EHq7KVK7Ia2CSep1MQ4aXn5rZd/nCFYWDRwyq3+2gndamCnz+RlLPYl0lSZLakqkp6w8cAYwCGoDXgL+n0tX1eQ1MvYZXp5LUDcpTFaE8VfFJ4EHgDuBS4NvAT4EnylMVl5SnKgbmM0ZJvcf0e/4x4BuHXTLh+5N/vMNPvvTLcd+f/OMdvnHYJROm3/OPAd0dy7Jly1Knn376dmPGjNmjuLh44tChQ/c66KCDJjzxxBN9G8s8+uij/Q455JAJAwYM2LtPnz777Lfffjs99NBD/RrfP+ecc0Zffvnl2wLsvPPOe4QQJoUQJs2cObMYoK6ujm9961ujtttuu92Li4snjhkzZo+zzjprzLp160LTWB5//PG+Bx988IQhQ4bsVVpaOnHMmDF7VFRUjGta5pJLLhm5zz777Dx48OC9S0tLJ+6222673HzzzUO69EOSeinrKusqSZJak6kp65upKTsf+DtwA7Gd5XvArcDDmZqyz2RqykIrm5A6hT1ZJKl7nA2cAxQBS4H12eUFwGDgK8C+5amKU6sylcvyEqGkXmH6Pf8YcP3ZN22/bk1tQf9Bfer6FRcm9Rvqw1sz5/W5/uybtgfmHHjsvqu6K55TTz11+wcffHDIqaeeunDXXXddv2TJkoKnnnpqwIsvvlh68MEHr73nnnsGfOpTn5qw2267rT333HPnp1Kp5Pbbbx/+8Y9/fKe//OUvr37wgx9cO3ny5GWvvfZayX333Tf00ksvnTt8+PB6gFGjRtUDTJkyZdy0adOGHXnkkcvOPPPMBc8++2y/n/3sZ+mZM2eWVlVVvQHw9ttvFx5zzDFlQ4YMqf/qV79aM3jw4IbZs2cX33///e9qlPzlL385sry8fPmJJ564ZMOGDeGuu+4aevrpp4/v06fP61OmTLFXotRJrKusqyRJak2298qvgMOAWuJIIY09V0qACcAPgR0yNWWXp9LVSV4CVa8QkqR3f79CCAOBFcCgJElW5jseSVuf8lTFkcDPiV1WW0qgFAMjgHuqMpVf7K7YJPV8M2bM2LmwsPDBCRMmrO7bt+/6ttdoWaYhwzcOu2TC3Jnz+g4ZMXBDCBsf6kqShOULVxZtu9Poddc8dtlr3TUcz4ABA/b+xCc+sfTWW2998z3xZjKMHz9+9+222672scceey2VijGtXr067Lzzzrtvv/3265988snXID61ffnll2/76quvvrjTTjttaNzG9OnT+xx00EG7Tp48efHUqVPnNC4/44wztv3lL3858p577qk+5phjVv32t78dfMopp+zw2GOP/efQQw9d21K8q1evDv3793/nArq2tjbsscceuwwbNqx++vTp1Z30sWyWtWvXlr722mv96+vrj5w0adKrzZXxGnjLFUK4EPgksDOwDngKOD9JkpmtrHMacPMmi2uTJCltx35b/c5YV1lXtVcudZUkSS3J1JT9EDgVWERMsjRnEFAKnJtKV/++u2LT1qE990wOFyZJXag8VRGA04lJlNZ6qGwgVtwfLk9VTOiO2CT1Pi8/NbNvzawFpf0H9alr2mgJEEKg36A+9TWzFpS+/NTMvi1sotMNHDiw4fnnn+83e/bsok3fmz59ep85c+aUTJ48eemCBQsK58+fXzh//vzCVatWFRx88MEr//GPfwxoaGhodfv33HPPIIDzzjtvQdPlF198cQ3AvffeOwhgyJAhDQB333334Nra2haHFGjaaLlo0aKCpUuXFuy///6rX3755W77zNTrHQb8DHg/UE7sJftQCKFfq2vBSuI45Y2v7bsyyM1hXbWRdZUkSe+VqSkbDXwCWE3LCRaI7Swp4H8yNWW2g6vL+OWSpK61C7Af8cTellVAX+KFgiR1uuULVxTW1zWEwuLCZrsyFxYXJvX1DWH5whXdNqTspZde+tbrr7/eZ4cddthzjz322OWcc84Z/corrxQD/Oc//ykF+OpXvzpu9OjRezV9/e53vxu+YcOGsHTp0oLWtj9nzpziVCrFbrvt9q6br7Fjx9YPGDCgYe7cucUARx999KqPfvSjy6655ppRw4cP3+vDH/7wDtdee+2wTedCuPPOOwfttddeO5eUlEwcMWLE3qNHj97r9ttv32b16tWtxiF1liRJjkyS5JYkSV5OkuRfwGnAWGBS26smNU1eC9oonzfWVRtZV0mS1KzjgQHk1taynNgDeL8ujEe9nHOySFLXGkfsmrq0Hevs2DWhSOrtBo8YVF9YVJDUb6gPxaXF72m8rN9QHwoLC5LBIwbVN7d+V/j85z+/rLy8fPWdd945+OGHHx544403jrzhhhvSt9566+uZTAaA73znO29NnDix2WFxBg4cmMllP6lUqtUxclOpFA8++OCsRx55pN/dd989+K9//evAr3/96+Ouv/769D/+8Y//DBo0KPPggw/2/8xnPrPjvvvuu/qHP/zhnNGjR9cVFxcnv/71r4ffe++9Q9t98FLnGJT92da1Rv8Qwhzig3bPAxclSfJyS4VDCCXE8cwbddtk89ZVrb5vXSVJUmxrAchlHox1wFDgfcAzXRWQejeTLJLUtVJAi0M5tMAnDCV1id0O2mltevzI9W/NnNenqKSobtN5DtasWFe47U6j1+120E4tjvPfFbbffvu6Cy64YNEFF1yw6O233y6cOHHirj/84Q9H/fjHP54LcZie448/vtUJrjcdUqjJtjdkMhlefPHF0okTJ74zT8TcuXMLV61aVbDddtttaFr+wx/+8JoPf/jDa4C3f/7znw/98pe//L6bbrpp6DnnnLP497///ZCSkpLMY489Vt2nT593buh+/etfD9+c45c6KoSQAn4CPJkkyUutFJ1JHL7038SkzDeBp0IIuyVJ8lYL61wIfLcTw82ZdZV1lSRJbejI6EyO6KQu45dLkrrWW8B6oE871pnTdhFJar9UQYop5x1fU9qvJLN84cqiDes3hEwmw4b1G8LyhSuLSvuVZKacd3xNd00kXV9fz5IlS96VWB4zZkz9iBEj6mpra1MHH3zw2u222672+uuvT69YseI9Qc2bN++dB4b69euXAd6zvWOPPXYFwI9+9KORTZdfccUVIwGOOeaYFRDnLGh8Gr3RfvvttxbihNEABQUFSTbud1pJZ86cWVxVVTW4vccudZKfAbsDU1orlCTJ9CRJbk2S5J9JkjwGfJI4SewZraz2A2JCpvG1beeE3Dbrqo2sqyRJalbjQyK5PNRaAtQ3WUfqdPZkkaSu9S/gJWAi0NbTlv2ICZm7uzgmSb3YgcfuuwqYM/V/707XzFpQumblulBYWJBsu9PodVPOO74m+363WL58ecHYsWP3POqoo5btueeea/v375959NFHB7700kt9v/vd775VUFDADTfcMOdTn/rUhF122WW3KVOmLBkzZsyGt99+u/jvf//7gAEDBjQ8+uijrwMccMABawAuuuiiMRUVFUuLioqSKVOmrDjwwAPXffKTn1xy5513Dl+xYkXBIYccsuq5557rN23atGFHHHHE8mOOOWYVwI033jjs17/+9Yijjjpq2Q477FC7atWqgltvvXV4//79Gz7xiU+sgNjI+atf/WrkBz/4wQknnnji0oULFxbefPPNI8aOHVtbXV3dnmS6tNlCCNcDHwcObaU3SrOSJKkLIbxAK0OUJklSS5OJZFvqgdFVrKusqyRJasU9wFnE4UxXtlF2CPAG8FRXB6XeKyRJLkPXbb1CCAOJkyQNSpKkrf+UktRu5amKCuDHxHFAW6pnCoBRwF+Bk6oylb27cpb0jhkzZuxcWFj44IQJE1b37dt3fdtr5CbTkOHlp2b2Xb5wReHgEYPqdztop7Xd9VR4o/Xr14evf/3rY/72t78NfOutt0oymQxjx46t/dznPrfo/PPPX9RY7qmnnupz6aWXjn722Wf7r127tmD48OF1e++995ozzjhj0bHHHvtOQ+t555036je/+c02ixcvLspkMrz66qsv7rTTThvq6uq48MILR02dOnX4ggULioYPH153wgknLL3qqqvmNQ6l8+STT/a58sor0zNmzOi/ZMmSov79+zfstddeay699NJ5hxxyyDtJ8p/85CfDfvKTn4yaP39+8ZgxY2q//vWv18yePbvkmmuuGZUkyYxu/QBbsHbt2tLXXnutf319/ZGTJk16tbkyXgNvuULMdvwU+ARweJIkr3VgGwXAy8ADSZKck+M6rX5nrKusq9orl7pKkqSWZGrKbiReDy0A6loo1g8YCHwnla7+dXfFpq1De+6ZTLJ4gympi5WnKlLA5cBpQANxYtrGiVoD8YQ/AHiVmGCZl4cwJfVQXdVwqa2XSZatWwjhBuAk4DjiXCuNViRJsi5b5lbg7SRJLsz+fgnwNPA6MBj4FnA8MClJkldy3G9ekizaeplkkSRtjkxN2TDgdmBvYDXxOqWxobuA2IOlGPgD8I1UurohD2FqC9aeeybnZJGkLlaVqcwA3wG+Txz/fAQwuskrEIcI+7QJFkmS1IYvE+dI+Rswv8lrcpMyY4k9ZBsNAf4P+A/wAPEBj4NyTbBIkiT1NKl09RLgM8BUIMO721lGAsuBHwHnmGBRV3NOFknqBtlEy43lqYrfAEcCOwNFxKTL/VWZSie7lyRJbUqSpM3JUZIkOXyT378BfKOrYpIkScqHbKLl65masv8lzlWXJo4g8jrwQCpd3W1zuKl3M8kiSd2oKlO5FpiW7zgkSZIkSZK2Bql09Tzgl/mOQ72Xw4VJkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQNMskiSJEmSJEmSJHWASRZJkiQJOOGEE8aNGTNmj67a/v7777/T/vvvv1NXbV9S72BdJUmS1LOYZJEkSZIkSZIkSeqAwnwHIEmSJPUEd9xxx5xMJpPvMCSpVdZVkiRJPYtJFkmSpF6oIZPh+fnz+i5et7ZweJ++9RNHjV5bkNr6OjmvXLkyNXDgwJxaI0tKSpKujqez1NXV0dDQEEpLS7eYmKWOsK56L+sqSZKknmXruzqVJElSqx6e9caAKXf9bsJZf753h28/WjXurD/fu8OUu3434eFZbwzozjhuvvnmISGESffff3//Td+76qqrhocQJj333HOlAC+88ELpkUceOX7QoEF7l5SUTNx99913uf322wc1Xee6664b1ri9z372s2OHDh2617bbbrsnwLJly1Knn376dmPGjNmjuLh44tChQ/c66KCDJjzxxBN9G9dvbp6DhoYGLr/88hFlZWW7lpSUTBwyZMhehxxyyITHH3/8nfXq6ur41re+NWq77bbbvbi4eOKYMWP2OOuss8asW7cutPUZvP3224Unnnji9sOGDdurpKRk4k477bTrT3/602FNy8ycObM4hDDpkksuGXnZZZeN2G677XYvLS2d9Pzzz5fm+llLWyLrKusqSZKkLYE9WSRJknqRh2e9MeB7f3tk+7X1dQUDi0vqigoKkrqGhvDGsqV9vve3R7YH5hwxfodV3RFLRUXF8rPOOiszderUoR/72MdWN33vrrvuGrrjjjuu32+//db/4x//KP3gBz+488iRI+u++tWvzu/Xr19m2rRpQ08++eQdGxoa3jjllFOWN133a1/72vZDhw6t/+Y3vzlvzZo1BQCnnnrq9g8++OCQU089deGuu+66fsmSJQVPPfXUgBdffLH04IMPXttSjJMnTx531113DTv00ENXnHzyyYvr6+vDk08+2f+JJ57od+ihh64FmDJlyrhp06YNO/LII5edeeaZC5599tl+P/vZz9IzZ84sraqqeqOlba9evToceuihO7355pslp5566sL3ve99G/74xz8OOfvss8ctX7684Dvf+c7CpuXvuOOO4bW1teGUU05ZXFJSktlmm20aOvCxS1sE6yrrKkmSpC2FSRZJkqReoiGT4Rcznk2vra8rGN6n74YQ4sPLJYWFyfCCgrrF69YW/WLGs+kPjnvfqu4Yjqd///7Jhz70oeUPPPDAkPr6+jcLC+Ol6Ztvvln43HPPDTjnnHPmAZx99tljR40ateFf//rXf/r06ZMAnH/++Yv23XffnS+55JJtN224HDRoUP1TTz01s3F7AH/9618HTZkyZfH//d//vdWk6ILW4rv33nsH3HXXXcNOO+20hTfffPPcpus1zocwffr0PtOmTRs2efLkxVOnTp2TfX/RGWecUf/LX/5y5L333jvgmGOOabYh+Jprrtlm1qxZpTfccMN/v/zlLy8F+OY3v7no/e9//05XXnnlmLPOOmvxkCFD3hk+aMGCBUUzZ858afTo0fWtxS1t6ayrrKskSZK2JA4XJkmS1Es8P39e3zdXLC8dWFxS19ho2SiEwMDikvo3VywvfX7+vL4tbKLTTZ48ednSpUsL77///neG/7ntttuGZDIZTj755KULFiwoePrppwccf/zxy5YvX14wf/78wvnz5xcuWLCg8EMf+tCKOXPmlPz3v/8tarrNz33uc4ubNloCDBw4sOH555/vN3v27HeVbU1lZeWQEAJXXnnlvE3fS2Ubdu+5555BAOedd967GkEvvvjiGoB777130KbrNvrLX/4yaPjw4XVf/OIXlzYuKykpSb785S8vWLt2berBBx9815BIRx555HIbLdUbWFdZV0mSJG1JTLJIkiT1EovXrS2sz2RCUUFBsxMQFxUUJPWZTFi8bm239XY+4YQTVvTv379h6tSpQxuX3XXXXUN33nnndXvuuWftK6+8UpIkCVddddXo0aNH79X0dfXVV48GmDdv3rvi3XHHHWs33c+ll1761uuvv95nhx122HOPPfbY5Zxzzhn9yiuvFLcW2+zZs0u22WabupEjR7Y41M2cOXOKU6kUu+2227v2OXbs2PoBAwY0zJ07t8V9vP3228Xbb799bUFBwbuW77HHHuuz+3/XuuPGjXvPcUlbI+sq6ypJkqQticOFSZIk9RLD+/StL0ylkrqGhlBSWPiexsu6hoZQmEolw/v07bYnkPv06ZN85CMfWf7ggw8Orqurm/PWW28VvfDCC/0vuOCCtwEymUwA+OIXv7jgqKOOWtHcNnbdddd3Nej17ds3s2mZz3/+88vKy8tX33nnnYMffvjhgTfeeOPIG264IX3rrbe+fuKJJ67c3ONIpVLNNgZ3pj59+rznuKStkXWVdZUkSdKWxCSLJElSLzFx1Oi1YwcNXv/GsqV9hhcUvGsYniRJWLmhtnCHIUPXTRw1usXJlbvC5MmTl06bNm3YPffcM/Dll18uTZKEU045ZSnAzjvvXAtQVFSUHH/88Zs1yfX2229fd8EFFyy64IILFr399tuFEydO3PWHP/zhqJYaLseNG1f7xBNPDFywYEFBS0+Ib7/99hsymQwvvvhi6cSJE9c3Lp87d27hqlWrCrbbbrsNLcUzZsyYDTNnzuzT0NBA0yfEX3rppdLs/ltcV9qaWVdZV0mSJG1JHC5MkiSplyhIpThj0v41fQuLMovXrS2qra8PmSShtr4+LF63tqhvUVHmjEn713THRNJNHXfccasGDRrUMHXq1KHTpk0buscee6zZeeedNwCMGTOmfv/991912223bTNnzpz3zFGw6fA7zamvr2fJkiXvGudmzJgx9SNGjKirra1t8WArKiqWJUnCBRdcMHrT9xonkz722GNXAPzoRz8a2fT9K664YiTAMccc0+wT7QAf/ehHVyxevLjoV7/61TvDD9XV1fHzn/98RN++fTNHHnnkZjXUSlsq66qNrKskSZJ6PnuySJIk9SJHjN9hFTDnFzOeTb+5Ynnpqg21oTCVSnYYMnTdGZP2r8m+361KSkqSI488ctm99947dN26dalLLrnkrabv33DDDW9+6EMf2nnvvffe9aSTTlo8fvz42gULFhQ9++yz/ebPn188c+bMV1rb/vLlywvGjh2751FHHbVszz33XNu/f//Mo48+OvCll17q+93vfvetltY75phjVh1//PFLbrnllhGzZs0qKS8vX5nJZHjyyScHHHbYYSsvuuiiRQceeOC6T37yk0vuvPPO4StWrCg45JBDVj333HP9pk2bNuyII45Yfswxx7T4eX7jG99YdMstt2zz1a9+ddyMGTP6jhs3rvbuu+8e+vzzz/e/7LLL5g4ZMsQhd9RrWVdZV0mSJG0pTLJIkiT1MkeM32HVB8e9b9Xz8+f1XbxubeHwPn3rJ44avba7nwpvasqUKUt/97vfDQ8hcPLJJy9t+t6kSZPWT58+/ZVvf/vbo3//+98PW758eeHQoUPrd9ttt7UXXnjhvLa23b9//8wpp5yy6G9/+9vAv/zlL0MymQxjx46tvfLKK988//zzF7W2bmVl5ezLLrts3W233Tb8sssu27Z///4Ne+yxx5pDDz10TWOZqVOnzr7wwgtrp06dOvyhhx4aPHz48Lozzzyz5qqrrmo1tv79+yePP/74zK9//evbVlZWDluzZk3BuHHj1l977bWzzz777CVtHZe0tbOusq6SJEnaEoQk6fJ573q0EMJAYAUwKEmSzZ5IUJIkqTPNmDFj58LCwgcnTJiwum/fvuvbXkO93dq1a0tfe+21/vX19UdOmjTp1ebKeA2s9mrrO2NdpfbKpa6SJEnKl/bcMzkniyRJkiRJkiRJUgeYZJEkSZIkSZIkSeoAkyySJEmSJEmSJEkdYJJFkiRJkiRJkiSpAwrzHYAkdZfyVEUxcARwODAEWAU8Ddxflalck8fQJEmSJEnSViZTUzYEOBbYB+gHLAKqgMdT6eqGJuWGAccDewJ9suX+DDyVSldnmpQbAXwC2A0oARZkyz3TtNzWIFNTFoBdgeOAsUAD8AYwLZWunp3H0HqlTE1ZP+Bo4EBgALAMeAyoSqWrN+Qztp7AJIukXqE8VfER4HvA9kABkAABmAJcUJ6quAa4rSpTmeQtSEmSJEmStMXL1JSlgLOALwLDiO0Pje0QJwOvZWrKLgCeB84BTiM+DLppuf9kasrOB14BzgM+CwzapNypwEuZmrJvpdLVr3TTIXapTE3ZaOB/gQ8ApdnFjcf8lUxN2QPAt1Pp6pV5CrHXyCa7TiJ+T0cRR8Zq/O59BpiTqSm7LJWufjB/UeafSRZJW73yVMUxwDVAX2Ax0DTDXghsA3wf6A/c2O0BSpIkSZKkrUK2UfoS4AtAHVBD7IXRqBTYBbiFmGT5EFALzAcym5TbE/gt8DJwKLC+mXJ9gEnAbZmass9u6YmWTE3ZKOB24me0HFjS5O0ADAROBEZlaso+l0pXr+72IHuXLwAXE5MrC4H6Ju8VA+OA6zM1Zeem0tV/6v7wegbnZJG0VStPVYwEriRenMzj3QkWiCeHBcQLlG+Wpyr27tYAJUmSJEnS1qQcOB1YQ3zQs2GT99cDbwNpoAJYTUwkbDrc13piO8Z2xCHCVgBLmym3Lru9UcA12V40W7JLiQmW+cTPpqmE+DksAg4Gvtq9ofUumZqyPYHzid+5Bbw7wQKxjW0esc3timyCrFfa0v/TSVJbPgkMJWbbW7OEOD7qiV0ekSRJkiRJ2lp9hjhqRltDWaWy5Vprn02y7xdkX62VW0JMThycc6Q9TKam7H3Enj0reW9yqqna7OvETE1Z/+6IrZc6kTgqzJI2yi0gtr19sssj6qFMskja2lUQT8y5TAC3FjiuPFXRt2tDkiRJkiRJW5tMTdm2xHlEVrVRtIQ4zFeGOBdLS/pkyybA4Da2uR4oAo7JJdYe6mPEB2Db+vwgDiU2kpiUUSfL1JT1AY4n9pRqS0Ls5VLRlTH1ZCZZJG21ylMVgdhddn2Oq6wnXsAM7bKgJEmSJEnS1moEcZ6K2jbKFRHnF8lky29uuUYZ4vBiW6oR2Z9JDmXrs+XSXRdOrzaE2EbW1ne5US2Q3gqGq+uQXnnQknqVBuIFSS4C8QRd13XhSJLa65xzzhkdQpjU2dvdf//9d9p///136si6J5xwwrgxY8bs0dkxSdpyWVdJktjY8N9WO0TTJEJrI280lgvklngIvHcu2i1J4+eXq4BtOF0l1+9yo8ZkYHv+flsNkyyStlpVmcoE+Bcx856L/sQJu9oaa1KSJEmSJGlTs4nzibQ1T0gt8aHQFK0Px7Se2HCdIg5x3pqQfb2US6A91Mzsz8IcyvYhJgJmtlVQHbIEeJu2v8uN+gD/SqWrTbJI0lboTmIWva1utY0Tzt1Rlams7/KoJEk5++EPfzhvzZo1z3f2dh9//PHqxx9/vLoj695xxx1zXn/99S35BlZSJ7OukiSl0tUrgWlAKa33AKgH1mTLLG2lXB0bkzDL2tj9AGIi5g85BdszPQAspO35ZyAOZ/Uf4OmuDKi3SqWrG4A7gALaziEUE9ve7uzquHoqkyyStnZVxKc4RhBPDM1JEedumQvc1U1xSVJeJUkDyYZ/9E3W/2VgsuEffZOkId8htaioqIi+ffu2+kRUQ0MDa9euzbUrOwClpaVJaWlph560KikpSfr06dMrn9KSupN1lXWVJG2BbiP2AhjVSpnGB0HXAgPbKJchJmQGtVKuNLud+1Lp6lm5h9qzpNLVq4CbicfdWg+KIcQE1C9S6erWhlvT5pkGzCF+l1vKIxQQ29xeAh7qprh6HJMskrZqVZnKWuCLxKcbRgHD2NjtNEU8MY8mDhP2papM5cJ8xClJ3SlZ/8iAZOlnJiTLv7ZDsuKSccnyr+2QLP3MhGT9IwO6M46bb755SAhh0v333/+eG6irrrpqeAhh0nPPPVfa3DwHIYRJp5xyytgbb7xx6I477rhbSUnJxLvuumsQwDPPPNNnv/3226m0tHTiyJEj9zzvvPNGXXvttcNCCJNmzpz5Ts/GTec5uO+++waEECb96le/GnL++eenR44cuWdJScnEAw88sOyll14qabr/5uY5aGho4PLLLx9RVla2a0lJycQhQ4bsdcghh0x4/PHH+zaWufbaa4e9//3vLxs6dOhexcXFE3fYYYfdfvjDH26z+Z+mtPWxroqsqyRpy5JKV78GnA0sB7YlJkcaE+xFwDbZ13TgDGICZVtikqSxXDGx4Xob4K/AWcShw5orNxIYCjwCXNRlB9Z9rif2oOhPbMcpbfJeP2IbTiFwDfDHbo+uF0mlqxcBXyK2mY0mtqE15hMKiG1so4hDtn0pla5en484e4JcxreTpC1aVaZyTnmqYjLxxHAC8UIlRezKuJzYe+UXVZnKN/IWpCR1k2T9IwOSlZdtT7KugNSAOkJRAnWB+ll9kpWXbQ/MCaUfXtUdsVRUVCw/66yzMlOnTh36sY99bHXT9+66666hO+644/r99ttv/Z13Nt/r/Mknnxxw3333DTn99NMXDh8+vH6HHXao/e9//1v00Y9+dKcQQnLWWWfN79evX+a3v/3t8OLi4pyf5P7xj3+cTqVSnHnmmTUrVqwouOGGG9InnXTS+/7973+/2tp6kydPHnfXXXcNO/TQQ1ecfPLJi+vr68OTTz7Z/4knnuh36KGHrgX41a9+NWKnnXZad/TRRy8vLCxMHnjggcEXXHDB2Ewmw4UXXrgo1xilrZ11VdusqySp50qlqx/N1JRNIT70+RFiA3UgDhM2H5gK/F8qXb0yU1NWnS33YWBMdhP1wFvE4Zd+lUpXr8nUlL0OfB44vEm5OuBN4Hbg11tDI3cqXd2QqSk7D3gBOBXYCRiefXsdMTl1Uypd/UCeQuxVUunqf2ZqyiqI39HjiEmVxknuFxN7Hv0ila5ekL8o888ki6ReIdtD5bLyVMVPgAOIT36sBf5Rlan0RlFSr5AkDSRr/i8dGy2HbSA0PgBXkpAqriOzpChZ839pSg5fFUJLIyx2nv79+ycf+tCHlj/wwAND6uvr3ywsjJemb775ZuFzzz034JxzzpnX2vqzZ88uffbZZ1+eNGnSOzeTp5122nYrV64seOKJJ1456KCD1gF85StfWbzTTjvt0fKW3q22tjb18ssvv9I4PM+QIUMavvOd72z33HPPle63337N3rjee++9A+66665hp5122sKbb755bpO3FmQyG0cwmD59+qv9+/d/pxH1oosuWnTIIYdMuOGGG0bacClF1lW5sa6SpJ4tla7+N3BWpqZsW2AvoIT4oOf0VLp6XZNyM4AzMjVl2wN7EHunLAGeTqWra5uUmw5Mz9SUjQd2zZZbnC23oXuOqntkhwC7PVNTdiewLzFJlQH+C7zUWydXz5fsEHQXZGrKfgTsB/QFVhG/eyvzGlwPYZJFUq9SlalcSZynRZJ6n7oX+tIwtzQ+Fb7JlAAhQGpAPQ1zS6l7oS/F+67tjpAmT5687L777ht6//33DzjuuONWAdx2221DMpkMJ598cmuTgLLffvutatpoCfC3v/1t0N57772msdESYOTIkQ3HH3/8kt/85jcjconppJNOWtx0/oMPfvCDqwCqq6tLWmq4rKysHBJC4Morr3xPY2sqtXGE3qaNlkuWLCnYsGFDOPjgg1c98cQTA5csWVIwbNiwnjvhhNRdrKusqyRpK5JKV79F7JXSVrk5xPkv2io3C9hi511pj2yy5dl8x6Eola5eDPw533H0RM7JIkmS1FtklhSS1AcoauHJr6KEpD6QWdJtD+KccMIJK/r3798wderUoY3L7rrrrqE777zzuj333LO2tXXHjh37nvfnzZtXPG7cuPc0Lu64446tbmuT7b7rScDhw4c3ACxdurTFz2X27Nkl22yzTd3IkSNbbXh86KGH+h100EFlffr02Wf48OF7jx49eq8rr7xyTHb7Xf9IvrQlsK7KiXWVJElSz2BPFkmSpN4iNayeUBjnNaCkmcbLukAoTEgNq++ukPr06ZN85CMfWf7ggw8Orqurm/PWW28VvfDCC/0vuOCCt9tat+kT3J2pcSigTSXJ5u3u5ZdfLjnmmGN2et/73rf+sssumzt27Ni6kpKSzH333TfopptuGtl0qB6pV7Ouyol1lSRJUs9gkkWSJKm3KNpnLQXbrad+Vh9Sxe8ehidJILOqkMLx6yjap1uG32k0efLkpdOmTRt2zz33DHz55ZdLkyThlFNOaXX4nZaMHj16w+zZs0s3Xf7666+XbH6kLRs3blztE088MXDBggUFLT0hftdddw3asGFDuPfee1+fMGHCO0+gP/LIIwO7MjZpi2Nd1WWsqyRJkjqfw4VJkiT1EiEUEPp9oYbQJ0NmSRFJbSDJQFIbyCwpIvTNhH5fqOmOiaSbOu6441YNGjSoYerUqUOnTZs2dI899liz8847d2jyzsMOO2zFP//5z35PPfVUn8ZlCxYsKLj77ruHdV7E71VRUbEsSRIuuOCC0Zu+1/jUd0FB/FybPmW+ZMmSgt/97nddGpu0pbGu6jrWVZIkSZ3PniySJEm9SCj98CpgTrLm/9I0zC0lWR2H3Skcvy70+0JN9v1uVVJSkhx55JHL7r333qHr1q1LXXLJJW1ODNqS73znOzV//OMfh33sYx8r+5//+Z+F/fr1y/z2t78dPmrUqA0rVqzoEzadRLuTHHPMMauOP/74JbfccsuIWbNmlZSXl6/MZDI8+eSTAw477LCVF1100aKPf/zjKy699NJtP/7xj+/4uc99btHq1asLfvvb3w4fOnRo/aJFi4q6JDBpC2VdZV0lSZK0pbAniyRJUi8TSj+8Kgy9/bUw+No3wqDLZofB174Rht7+Wj4aLRtNmTJl6dq1a1MAJ598coeG3wHYcccd6x588MGZO+yww/qf/vSno37xi1+MnDJlypLPfvaziwH69OnTZZMJVFZWzv7Od77z1ty5c0suu+yybX/yk5+MWr9+fTj00EPXAOy11161t9xyyxshBC699NLtbrnllm1OOeWURV/+8pcXdFVM0pbMuqprWFdJkiR1rrC5k+Jt6UIIA4EVwKAkSVbmOx6pJytPVRQDE4HBwDrgxapMZYdvLiVJbZsxY8bOhYWFD06YMGF137591+c7ni3V6aefvt0dd9yxzerVq59vabLorcXatWtLX3vttf719fVHTpo06dXmyngNrPZq6ztjXdU5rKskST1VpqZsPDCe+ND+W8B/Uunq3t2w3MNlasr6AvsAA4A1wD9T6eq8PayypWnPPdPWfdUmqVOUpyoGAKcCJwHbEeuODLC8PFVxN3BTVaZyVv4ilCRpo9WrV4f+/fu/c8NXU1NTMG3atGETJ05ctbU3WkraclhXSZK2BJmassOA04GDgca5xGqBf2Zqyn4D/MlkS8+SqSkbRvybTQZGEtvxGoDFmZqySuDmVLp6Xh5D3Op45SapVeWpiqHAr4H9iRXycqCO+OTCQOB/gKPKUxVnVGUqn8tXnJIkNdp33313Oeigg1btsssu6xYsWFB0xx13DF+9enXqO9/5zvx8xyZJjayrJEk9Xaam7AvAhcTkykqgJvtWH+AAYF9gn0xN2aWpdHWXDXWp3GVqysYCNwO7AhuAZUA9UEAcmearwFGZmrLTU+nq6nzFubUxySKpReWpihRwPfB+YCGxcm6UAZYSK+vRwM/LUxXHVWUqOzwBqCRJneGII45Ycd999w258847hwPsuuuua2+44YbZRx111Op8xyZJjayrJEk9Waam7GjgIiAAb2/y9prsayDweWA+8PNuDVDvkakpKwV+AexGTIjVN30bWExMtuwI/CpTU3ZMKl29otsD3QqZZJHUmgOADxCTKRtaKJMQT6ajgSnAj7onNEmSmnf99de/ff311296IyhJPYp1lSSpp8rUlAXgTKCU9yZYmlqZLfPFTE3Zral09druiE8t+iiwJ/FB6foWyjQQEzA7AscBt3ZPaFu3VL4DkNSjTQaKgbZOkhliEmZKeaqitMujkiRJkiRJUlfZD9idOHpJW5YCaeCoLo1Iufg0sedRSw9KN6onPjT9mUxNmfmBTuCHKKk1k2i7Ym60GhgOjO26cCRJkiRJktTFdgWKaPuhW4gN9oE4RJXyJJss2Zvc/mYQ2/HGE4d802YyySKpNcXEXiq5yBBPqkVdF44k9UoZIEmSJOQ7EG0Zst+VhNzP4VJnsK5Su1hXSVKPVkyso9vD9qD8KiS2y+X6d2tsxyvusoh6EZMsklozn9wr2xKgjjiJliSp89QkSVK3Zs2avvkORFuGNWvW9E2SpI54Hpe6i3WV2sW6SpJ6tEXEBviCdqxje1AepdLVG4jDu5XkuEopsB5Y3lUx9SZOfC+pNX8EDiCeVBvaKDsAeKAqU7mgy6OSpF5k0qRJK2fMmHFrTU3Nl4Fh/fr1WxtCaO9TZeoFkiQJa9as6VtTU1Pc0NBw06RJk1blOyb1HtZVypV1lSRtER4BlgCDsz9bM4A4RNWfuzgmte0u4Fxy69FSCtyeTc5oM5lkkdSaPwHnACNo/QmzgcS5W+7sjqAkqRe6oq6ujnnz5p0SQuhLvGiWNpUkSVLX0NBwE3BFvoNRr2RdpVxYV0lSD5dKV6/M1JRVAl8mDgNW11JRYBDwYCpdXd1d8alFfwA+T5wzeVEr5YYSE2O/746geoOQJL374aIQwkBgBTAoSZKV+Y5H6mnKUxVHAT8F+hIr6KYn1hQwhNgV8VfAd6sylb27UpGkLjRjxowBwCgc8lXNywDzc3kq3GtgtVd7vjPWVWpDznWVJCl/MjVlg4DbgX2JQ0qt3qRIH2AYMAuYkkpXv9mtAapZmZqyU4DLiJ0rFgP1Td4uIP7NAvDDVLr6+u6PcMvRnutfkyzeYEptKk9VfIRYQW9HvFluYOO4nCuAXwI/qcpUOmmlJElbAK+B1V5+ZyRJ6n0yNWVDgR8BhxOTKkn2lSKOaPIC8PVUunp2nkJUMzI1ZScCFwBpYkKlsR0vIQ7/dg1wcypd3bsTA20wydIO3ixIuSlPVZQCH8m+hgNrgGeBP1ZlKhfmMzZJktQ+XgOrvfzOSJLUe2VqynYFTgDKiI31s4G7gedsqO+ZMjVl/YGPAR8kjkKzEvg7cE8qXb08j6FtMUyytIM3C5IkSeptvAZWe/mdkSRJUm/Snutfx8iVJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQNMskiSJEmSJEmSJHWASRZJkiRJkiRJkqQOMMkiSZIkSZIkSZLUASZZJEmSJEmSJEmSOqAw3wFIkiRJkiRJkjZfpqasEDgcmALsBRQBbwN/AP6USlcvbef2SoCPACcCuwIBmA1UAvel0tWrsuX6AEdmy+2UXf0N4PfAA6l09Zp27ncA8HGgAhgHJMB/gN8BD6XS1bXt2Z7UlUKSJPmOIa9CCAOBFcCgJElW5jseSZIkqat5Daz28jsjSVLPl6kpGw38HJgIFADricmJEuKIRguB81Lp6r/kuL0JwC+ISZOQ3R5Aafb3t4CvAiuz+90x+37TcgBzgDNT6ernc9zvAcD1wLbZ+JtuLwFmAl9Kpaurc9me1BHtuf7tscOFhRAuCCEkIYSftFGuIoTwaghhfQjhxRDC0d0UoiRJkiRJkiTlXaambBhwC7A/sIzYe2UJsBSYn30NB36aqSn7UA7bGwv8hth7ZQkwL7utpdl/1wBjgFuJvWQmAIuaKbeQ2BPl15masl1z2O8+wE3Zbdc0s70l2ZhuycYo5V2PTLKEEPYDzgD+3Ua5g4A7if/x9gHuBu4OIeze1TFKkiRJkiRJUg/xRWBPYmKiuaG0MsRES3/g0kxNWVEb2/sGMJ6Y2NjQzPsN2e1tmy03H6hrplx9dhtp4Nut7TBTUxaA7xKTQfOz+9jUhuz2dsjGKOVdj0uyhBD6A7cDXyBmXVvzNeDBJEmuSpLkP0mSfAd4Hjiri8OUJEmSJEmSpLzL1JT1I86Fsp6Y1GjNYuB9wAdb2V4aOApYTUzOtKSIOCxZARuHBmtOAiwH3t9Gb5Z9gL2JvVZam+MiA6wCjsrGKuVVj0uyAD8D7k+S5OEcyh4IbFruL9nlkiRJkiRJkrS1ez8wgpjIaMsGoBA4opUyhwGDiHOttGYAcW6WJPvv1qwG+gCtDVX2YeL8MWvb2BbZ2AYCh+dQVupShfkOoKkQwhTixEz75bhKGliwybIF2eUt7aOE+J+1UVsVgCRJkiRJkiT1VIOIvUna6sXSKAGGtbG9DK33YiG7z0a5tDNnsttubb+5yhCPoz3rSF2ix/RkCSFsB1wLfCZJkvVduKsLgRVNXm914b4kSZIkSZIkqSutJyYccm3rTdF6L5X1OW6raRKmuflTmtvvulbeX0frw4S1d3tSt+gxSRZgErFb2/MhhPoQQj2xa9rZ2d8LmlmnBhi5ybKR2eUt+QExw9n42nazI5ckSZIkSZKk/JhBfJg8l14dBcTkyHOtlHmWmLxoawSgtcSkSKDtIb5KgbrstlvyXDa24ja2RTa2dW1sT+oWPSnJ8giwB3Fyo8bXP4Dbgb2TJGkuGzqdOFZfU+XZ5c1KkqQ2SZKVjS/iJEmSJEmSJEmStMVJpasXAPcB/YgJj9YMAxZmy7e0vVeBJ2k7abOWjcN2tdXGOgx4FXiqlTJ/Bf4LDG9jW2RjezIbq5RXPSbJkiTJqiRJXmr6AtYAS7L/JoRwawjhB01WuxY4MoRwbghh5xDC94B9geu7/QAkSZIkSZIkKT9+SRzdZzQtt/kOISZhfppKV7c1qf11wHJgFC0nbrbJllnMe0cbamokMSHzo1S6usV5XlLp6jrgR0BtdtvNCdmYlgM/bWWfUrfpMUmWHI0l/icCIEmSp4CTgC8C/wI+BRzfmJSRJEmSJEmSpK1dKl1dDZwBzCO2n44A+gJ9gMHAGGJb8DXATTls7zngbGIyYzSxd0mf7GsocQqGOuL8118i9mQZQ+yx0rTcGOKwXhem0tUP5bDfPwHfy2572+w2Grc3PLu95cDZqXS1Q4WpRwhJ0p65hLY+IYSBZMcszA4fJkmSJG3VvAZWe/mdkSRpy5CpKRsDnAh8mo29QWqBB4GpqXT10+3c3nhgClBBTNZA7JXyp+z2/p0tV5Yt9yk2zuWyBpiWLfdKO/e7Z3Z7xxGTRRCTK5XZ7c1qz/ak9mrP9a9JFm8WJEmS1Mt4Daz28jsjSdKWJVNTVkzs0VIELE6lq5dv5vb6AGnicF2LUunqZudgydSU9c2WA1iYSlev3sz9DiAmixKgJpWuXrc525NyZZKlHbxZkCRJUm/jNbDay++MJEmSepP2XP9uaXOySJIkSZIkSZIk9QgmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQMK8x2AJOWqPFVRBHwVOAgoBRYCP6vKVM7Ia2CSJEmSJGmLl6kpC8C+wAFAX2AF8NdUurp6k3KpbJl9gT7AcuCRVLr6jWbKfQDYh9iOsRSoSqWr52xSrgA4FNgDKAGWAA+l0tVvdfIhKg8yNWXbA+XAUGA98ALwZCpdneni/e4KHAYMAFYD04F/ptLVSVfutzcKSdK7P9MQwkBihTkoSZKV+Y5H0nuVpyoCcBXweaA/EIAk+7MB+A9wWlWm8oW8BSlJ0hbEa2C1l98ZSdLWLlNTdijwLWKio5jY7pAC1gFPAj9IpatfydSUlQPnALtmy2WI7RPrgL9ly72eqSn7GPB1YCfig+6N21sDPAJckUpXz8nUlH0SOAuYABQ0KbcKeChbbl5XH786Xza5chHwYaAfG78r9cBM4NpUuvq+LtjvXsAFwPuJyb0M8TtVS0zw/G8qXT29s/e7tWnP9a9JFm8WpB6vPFXxO+AE4oloA/Hk0KiIeBGyGvhoVaby6e6PUJKkLYvXwGovvzOSpK1ZpqbsWOBq4oOdy4C1Td4eAAwG5gN3Al8k9nJZSkysQGyvGAAMBN4CpgFfIPZKWUrsvdBYbmD29V/gz8DpxLaNJcRG8KblBgCvAZ9Jpavf7LwjVlfL1JTtCNwGjCMmzFYSE2gQEx9DiX/vS1Pp6ls6cb8HAr8EtiH2sFrd5O2+2f0uB85Opasf6qz9bo1MsrSDNwtSz1aeqjibeKEDMcHSnEC8cFkAbFeVqWzojtgkSdpSeQ285QohXAh8EtiZ2LDzFHB+kiQz21ivAriceKP/WnadB9qxX78zkqStUrYx/F5iQqOmhWIBGEtMwiwmtj80J5Ut1484xPmiVsptTxxqbAExwdKcAmAU8Azwia4eXkqdI1NTVgjcD+wFzOPdDws3NZw4QsunU+nqZzthv0OBKuJ3Zj4bkzqbGkVM/h3lkHQta8/1rxPfS+rpziTWVS0lWCCeNOqAEcBp3RCTJElSvhwG/Iw4/EM58cnXh0II/VpaIYRwEPHJ25uIY8LfDdwdQti9y6OVJKnnOxEYQssJFojtDg3E4cFaa5/IZMvmUi7kUK6BmIDZm3ju15bhcOJwcotoOcECMWHXFzipk/Z7PDCa+F1urWdFDTHBU9FJ++31TLJI6rHKUxXvB95HvKhoSwPxAuWMLg1KkiQpj5IkOTJJkluSJHk5SZJ/ER8wGQtMamW1rwEPJklyVZIk/0mS5DvA88Tx3yVJ6rUyNWWlxCTL+jaKpoBBxIbroa2UKyT2iMm0Ua6Y2Lje1vYg9lwtJg6jri3Dp4jfhdq2ChLn6DkqU1M2ohP2O4X43Wurx1Pjw8pTsr1utJlMskjqySYR66n6HMsnwLZdF44kSVKPMyj7c2krZQ4EHt5k2V+yy5sVQigJIQxsfBEbjCRJ2tpsQ5z7ZG0b5YqI7RMZ4nDlrZULOZbLZXuN6oEdcyinnmECrfdQamotcdi4MZuzw2yyZHva/i433e8wNl5LajOYZJEkSZKkLVAIIQX8BHgySZKXWima5r1jxy/ILm/JhcQxqBtfjtctSZIkNcMki6SebAbxqY5cuy4GbACQJEm9x8+A3YlDQ3S2HxCfbGx82VtYkrQ1WgSsJA7d1Zo6YvtEitaHgKojjrKRS7lctteoEHg9h3LqGV4jDvGWi77EIeE2qz0rla6uB+bQ9ne56X6XEB+m0WYyySKpx6rKVD4N/BcoyKF4AfFC5hddGpQkSVIPEEK4Hvg48MEkSdq6Ka8BRm6ybCStTPCbJEltkiQrG1/Aqs0KWJKkHiiVrl4P/J62h+zKEBujA60P0VlPPGem2ii3gThcU1vbgziU1AbgrjbKqef4A/G7kMtQcP2AP6fS1Ys6Yb9Tid+9ttr8A3HIuqnZ5Iw2k0kWST3dz4gXM609AdB4clgI3NINMUmSJOVFiK4HPgF8KEmS/+aw2nTgw5ssK88ulySpt/s9sJzWh9EMxIc7N9B6+0QqWzaXckkO5QqI82b8E3i6lXLqWf4GvEKc86e19vfhxGTb7Z2037uBecTvcmilXBpYDFR20n57PZMsknq0qkzldcA04smhlPfWW0XEJwNWAZ+sylQ2dG+EkiRJ3epnwGeBk4BVIYR09tWnsUAI4dYQwg+arHMtcGQI4dwQws4hhO8B+wLXd2fgkiT1RKl09evA+cQhm7blvcMtDSBOSv428D1iYmQMsYdJowAMBEYDs4HLiQ+MjiG2ZTQtNyhb7jXgh8R2jlG8u9dDY7lR2XJfTaWrM5tznOo+2d4hZxK/C6OJf8umSY/S7PIEuDyVrn6uk/a7FDiLOAzYGKD/JkX6Eb/jq4BzU+lqh9zvJCZZJG0JpgDXEE8CRcSTUQkbL1ReAj6YHV5MkiRpa/Zl4o3634D5TV6Tm5QZS2yUASBJkqeISZkvAv8CPgUcnyTJS90TsiRJPVsqXX0P8D/As8Qky2jiuXQMsR3iIeCkVLr6h8CXgBeIDdiN5UYRe53cD0xJpauvIDZ2v8TG5Muo7M8A/AmYnEpXXwp8A5gJDN6kXELsaTA5la5+s0s/AHW6bPJuMvFvHXj333Yg8DJwVipdfUsn73c68YGcvxJ7STX9LvcBngI+l0pXP9SZ++3tQpIk+Y4hr0IIA4ljKg7KjjUsqYcqT1UUES9SPkBMsCwEflaVqZyR18AkSdrCeA2s9vI7I0nqDTI1ZYHY23N/4lP/K4C/ptLV1ZuUSwEHZMuWZss9nEpXz2qm3AeAfYgPiy4DqlLp6jmblCsADgX2yJZbAjxkT4OtQ6ambHviUK1DgFpiku7Jru6dlKkp2xU4jNgbazUxwfKvVLq6dycEctSe61+TLN4sSJIkqZfxGljt5XdGkiRJvUl7rn8dLkySJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHFOY7AEndpzxVUQRMAgYCb1ZlKl/Nc0i9UnmqohgYTayDF1dlKpfnNyJJyq9MTVkKGAP0AZan0tUL8xBDP2Bk9teaVLp6bXfHIEmSpC1HrtewmZqyd7XFpNLVtsXkUaambDAwHKgH5qXS1RvyG5G2BiFJknzHkFchhIHACmBQkiQr8x2P1BXKUxXjgO8BxwIDsosT4E3gZuDKqkxlQ16C60XKUxWjgROBTwMjsos3AH8BpgLTqzKVvbtSltSrZGrKBgInAJ8BxhN7WdcD04E7gb+k0tVden7K1JTtCkwBPgH0zy5eBdwFTE2lq2d25f7zxWtgtZffGUmSolyvYTM1ZePZ2BbTL7t6AswBbgKu6uprXW2UqSl7P/G6/yigOLt4EbE95nepdPXb+YpNPVN7rn9NsnizoK1ceariMOCPwCDiybw++1YKKMguexE4uCpTuSYvQfYC5amK/YCfE3uw1AGrgQxQSrzYWg/cCPyoKlOZyVecktRdMjVlY4FfAXsQ68OVQAPxhqd/dtndwLdS6ep1XRRDBfB94jlyHdDYe6UvsX5eAVyQSlff3RX7zyevgdVefmckSWrXNex9xITLQFpui3kBODyVrrYtpgtlasoC8A3gq8Rr/DXENpgU8W9WBMwDvpJKVz+TrzjV87Tn+tc5WaStWHmqYjwbEyy12VdD9lVHPKk0AHsCVXkKc6tXnqrYEfgFMcEyH1hIbMhbDywH3ib+Hc4GvpCfKCWp+2RqygYRb073BBYQ68bGm52VxJuclcQnBP9f9saos2MoB64kJlTeApYQEy3rsv9+m5gEvypTU3ZYZ+9fkiRJW5Z2XMOeSEy0DKT1tpiJwJ+78xh6qdOJSZYM8Rp/OfFvsJbYPjOf2F7zi0xNWVmeYtQWziSLtHW7go0Jlpa6rdUTT+77lacqjuyuwHqZLxBP2POIJ/XmLCf+Hc4qT1UM6qa4JClfPkV8+q+GjU/1bWotcdiuTwC7d+bOs+Nnf5OYYFnQStEFxKfbzumKRI8kSZK2KLlew5YCJcThwdtqizkwU1P2wU6OU1nZod3OJv4dlrVUjNhekwa+2E2haStjkkXaSpWnKvoQx5lMaPmk3qiOWB+c29Vx9TblqYrhxPFX19D232EpcfK147o6LknKl0xNWQFx/OoGWr45bbSSOJFoRSeH8X5gF2K925ZlwF7EyUolSZLUC7XjGjbFxvlXCtrYbGNbzHmbHaBa8nFgG2JP9dYkxHabj2dqykZ2eVTa6phkkbZehxOf0G2rAatRQuyqqs41kdibKJexyxuAAOzfpRFJUn5tD4wjt3oRYm/Mwzs5hv2AQuLQYG1ZS3wScb9OjkGSJElbjlyvYQcQ7+sT2k6ykC2372ZFptbsR/w7NORQdgWx/caHq9RuJlmkrdcgNp7Yc5EQJ/tS5yol1rW5nNAhdlMd0HXhSFLetbdebGDj04CdpQ+5nx8h1s19OjkGSZIkbTlyvYYtILbF5Mq2mK7Vn5aHbd9Uhvi387pf7WaSRdp6zSeerHP9fx6IT+uqc60g9ibK9aIpBSzuunAkKe9WEG9Oc60Xi8htWK/2WEnuN78h+1rRyTFIkiRpy5HrNWwdGx/myeWhnhS2xXSlpeR+3V9I/Bt73a92M8kibb0eJ445WZhj+QA80nXh9FrPESfFG5xD2WLiCd2/g6St2TzgeWBgDmUD8Tx2byfH8DCwntx6Dg4g3vg+2skxSJIkacuR6zXsKjYOBZ5rz+2HNyMute4R4oOvxTmUHQwsBKZ3ZUDaOplkkbZSVZnKBJhKbuOAFhNPOld0dVy9TVWmci3wO+Jn3NYTL8OBOXiBJWkrlkpXJ8AdxPNTW13xhxF7nUzr5BiqgSfYOLRmi0WJN9KPpdLV/+3MGCRJkrTlaOc1bOO8f231ZCkhtsV8f/OiUyv+CvyX2N7SmkLi3+P3qXT1mi6PSlsdkyzS1u1iYqN9ES33aCkmNjDdVpWpfLm7AutlbgL+DYwkjuO6qRSQBtYA363KVG7oxtgkKR/uA/4MDCWOk7ypQLwRSgE/TqWr3+qCGH5AHFpzNM2fI4uAUcDbwJVdsH9JkiRtWXK9hl1JHFmkiJYfei0mJmFuyT4ApC6QSlfXAZcAq4nX9s21hZcQ22ReBH7ZfdFpa2KSRdqKVWUq1wAHA9XEE3sp8UReTDyJlBIn9vot8Pk8hbnVq8pULgVOA54mPjU9hvh09lDiSX4UcZzQs6sylVV5ClOSuk32ZudrxB4qpcR6cTixXhxJTHzUEXtYdsmNTipd/R/gc8Qn20Zk9zk0+xqdjed14NRUuvq1rohBkiRJW452XMN+H9iLeC1ZSMttMb8BvtStB9ELpdLVfwXOIs5/29gGM5TYLjOGOEzYs8BpqXT1kjyFqS1cSJJc5mDaeoUQBhInNBqUJMnKfMcjdYXyVEUATgW+AuxCPMmvI44vf2VVpvIfeQyv1yhPVRQChwKTgX2IT7XMB/4A3J1NxkhSr5GpKQvAROBEYv3Yl/jU373AXal09ZvdEENf4Chi3bxjdvFM4PfAg6l09bqW1t2SeQ2s9vI7I0lSlOs1bKamrICNbTE7ER9+bWyLuSKVrn6h+6PvvTI1ZUOBY4FPEZMr9cA/iUPtP5ZKV9fnLzr1RO25/jXJ4s2CJEmSehmvgdVefmckSZLUm7Tn+tfhwiRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHWCSRZIkSZIkSZIkqQNMskiSJEmSJEmSJHWASRZJkiRJkiRJkqQOKMx3AJK6R3mqYiTwSWB/oC+wCHgI+EtVprI2n7HlqjxVsS1wAjARKAEWAA8Aj1ZlKuvyGZskSZIkSeqZ/vjM0Xu8uXrgtbNWDZ64tr6oqF/hhg07Dlz+9Lb9Vn31+AMeeL2xXKambDzwbeADQB9gJfAg8INUunpJe/ebqSlLE9ti9mNjW8yDwEOpdPWGzT+yzZOpKSsDPgXsAhQBbwJ/Aqan0tWZfMaWq0xNWQo4EDgOGAvUAf8B/pBKV1fnMzb1HiFJknzHkFchhIHACmBQkiQr8x2P1NnKUxUFwLnA6cCg7OIGYpI1QzyBXlSVqXw0PxG2rTxVUUy8yPk00B9IiLEXEI/lv8A3qzKVz+QtSEmStiBeA6u9/M5IkrZE1zz86QA8/uBb4z+wfENJSJJAKiRkkkAICUNL1mc+Pvb1P395l38eB9wOHE9MNkBsewjZf68Hrkmlq7+dy34zNWWFwHnAqcDA7OLGtpgGYA5wYSpd/VgnHGa7ZWrKBgJXAkcSkz8Z4vEWABuAF4Fv9PQkRTZJdA2wB1BM/GwDcfSmtcBfgPNT6WqvXdRu7bn+NcnizYK2YuWpihTw/4gn9fXAcuKJs1ERsA2wGjirKlP5UHfH2JbyVEUh8BNiD5Y1xP+vTSuuYuIxLAP+pypTOb27Y5QkaUvjNbDay++MJGlL9L8Pfeb5u+eU7QNJMrioNilIbWxOqM8ElteVpgpChusOfHjJ3sMWDSa2N2zawyQQ2x4S4NpUuvqbre0z27PiSuCzNN8WUwwMJ7bFfCmVru7Wh14zNWX9gVuAg4nn9lWbFCnNxjcX+HQqXf06PVCmpmxH4E5gO2Ax8bNuagDxYeMngNNS6erV3RuhtnTtuf51ThZp6/YR4DPEE+ZS3n1Sh9iFch7QD/hheapiID3PCcQnSZYRL0w2zQxvAN4GBgM/Kk9VlHRjbJIkSZIkqQe6/cnjzrl/7o77FIRMMqxk/bsSLACFqYThJesyuwxaQrrPmmF1DaG5BAvEdohaYrLlq5masr3a2PXRxJE4VtJ8W8wGYltMf+B/s0mP7vQl4nBoC3lvggVismIeMXlxZaamLDRTJq+yMf2AGOM83ptggXhsC4nH+qXui069kUkWaet2ErG3SnMnzaYWAiOBj3d5RO1QnqoIwMls7ObZmsXAOOCILg5LkiRJkiT1cP9ZPuzra+sLGVRU2+owPkePfYOiVIblG0oK2thkLXG4rwvbKPeZbLm2ek4sBMYAH2ujXKfJ1JT1BaYQEz2tzQmTIT7sOgnYsxtCa689gX2JMbY2d0zjcU7JHrvUJUyySFup8lTFGOAg4pMTbWnI/vxE10XUIbsAuxF7sLRlA7FOO7YrA5IkSZIkST3bH585evCzi0ZtW1pQn4RW+mH0Kahj0vAFrG8oZEVdaS49NhLgoy29makpGwvsT25tMfXZ7R2fQ9nOcjAwitzaWdYQhw7rtiRQOxxNjG1NDmWXE4/5kK4MSL2bSRZp67UNcZzP2hzLbyCedHqS9h5DPTC668KRJEmSJEk9XSYJu9c2FFKUami1XP+iDRSlMtRlAg1JIJPQVqIlA/RtZQitbYgjiuTajlFH97bFbENsD67LsXwgzs/S02wDbf6tGtURj7knHoe2EiZZpK3XBuITEbn+Pw+03lU0H+qIFzDtOYbmxuGUJEmSJEm9RCokKwIJbeVMGpIUSRIbE7KvVocWyxZrSKWrWypXR9xGrgmA7m6LyTW50lRPayuCjsXUkWOXcmKSRdp6zQaWECdSy0UJ8I8ui6ZjZhLHMM31GAqBF7ouHEmSJEmS1NPNXjXopdF9V9evqy9qNdmxvLaUJbV96FNYT2lBPa0NLZaVAua28v4s4jwhA3IMtYjubYt5mfhwar8cyhYQE0avdGlEHfMKMba25tGB2Ka0nnjsUpcwySJtpaoylWuB3xPHqGzrMqEf8YRT2dVxtUdVpnIJcDcxvraOYSBxLM4/dHFYkiRJkiSpB/vGEXcmB4yY90SGQH2m5eaEDIFH541NUiFhUPH61scWi+2oCfDrFgukq1cT2yVybYuppXvbYl4BngUG51B2CLAYuKcrA+qge4ixDcmh7CDiMffEZJG2EiZZpK3bHcA84jwlLZ3ci4knpcfoeT1ZAG4lnjhH0fIxlBKfErmvKlNZ3V2BSZIkSZKknmn7/iu/vH2/FQ1LavumGlpItNRnAve+uWNYXlvKwKK61pIiKWL7yULgujZ2fTtQQ+ttMSXEtphHgH+2sb1Okx3m7EZgLTCilaL9icd7cypdvbwbQmuXbEw3E2NsbfSTbYB1wM9bGeJN2mwmWaStWFWm8k3gK8ACYAwwlDikVop4Qh9JnPjrCeDrVZnKHnfCqcpU/gf4GrG77RjiRUgB8RhKgXR2WRVwUZ7ClCRJkiRJPcjxBzww84T3VX9h236rGhbX9k0t3VAa6jKpkElgQyYVltSWhiW1fVPDS9bX1yWpH4TAWmI7QzEbkyON7SfFwFLgqFS6el1r+02lq/9LbItZSPNtMWlgGPB34JzubvxPpav/BlxCnKNkDHFkkMZ2lr7E5FA/YrLo2u6MrZ2uBW4jxjqaGHuKeCwDicdWD3wnla7+a76CVO8QkqTHtal2qxDCQGAFMChJkpX5jkfqCuWpih2B04Hjid0kU8ST6RzgTuA3VZnKNXkLMAflqYrdiMfwMWKvlRRxorM3iCf+26oylbX5i1CSpC2H18BqL78zkqQt1R+e/vhH/rN82PVPLRiz4/INpaEhCRSEDMNK1mUOGjlv5s6Dlnzuk++//5lMTdn+wA+Ag4hzpQTi8GDriD1OvpZKV8/Jdb+ZmrIy4HPEtpiBvLst5nbg1lS6em0nHmq7ZGrKDgJOAz5ETFBAbGd5Efgt8IdUujqTn+hyk6kpSwEnAKcAexCTYRB76jwK3JJKVz+Vp/C0hWvP9a9JFm8W1IuUpyqGAnsSn5xYDjxflamsy2tQ7VSeqhgB7EY8cS4BXqjKVLY1bqokSWrCa2C1l98ZSdKW7u5njn7fsg2lX63PpIYWpRoWDS6uvfb4Ax54a9NymZqyMcAniA+pLgLuTKWrV3V0v5masmHEBEAJcZSOF1Lp6h7TFpOpKRsL7EjsbTMfeGlLG1orU1MWgN2JQ83XA2+0JyEmNcckSzt4syBJkqTexmtgtZffGUmSJPUm7bn+dU4WSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWSRJkiRJkiRJkjrAJIskSZIkSZIkSVIHmGSRJEmSJEmSJEnqAJMskiRJkiRJkiRJHVCY7wCkXJSnKoqBA4BtgDrglapM5Rv5jap9ylMVpcD7gaHABuDfVZnKN9uxfgD2AsYBAXgTeKEqU5np/GglSZIkSZI6X6amrD+xfWQQsA6YkUpXL8hvVO03/rqrRwH7AH2A5cDTs84+d01eg5KUFyFJknzHkFchhIHACmBQkiQr8x2P3i2bmDgdOAnYHijKvrUG+Dvwy6pM5VN5Ci8n5amK/sAXgCnAGDYmN1cDjwC/qMpUPt/K+gE4DvgcMclSmn2rFngZuAX4g8kWSZKUK6+B1V5+ZyRJmytTUzYMOAOoAEYABUACrAQeAH6eSlfPzF+EuRl/3dW7EI/jaGAA8UHYBmAB8Hvgl7POPndp/iKU1Bnac/1rksWbhR6rPFXRD/g58GHiyWoZsQdIAPoDA4nJlouqMpW/z1ecrSlPVQwBfk3shVNPPIY64jEMIB7DcuAbVZnKPzezfgAuBL5ETM4sB9Zm3+4DDAYyxETLd020SJKkXHgNrPbyOyNJ2hyZmrIxwG+A3YgPjS4ntpOkiG0j/YlJijNS6eqn8xRmm8Zfd/UHiG1V2xAfnl1JbJcpJLbRlAD/Bk6bdfa58/MUpqRO0J7rX+dkUU92GVAOLCWeaDdklyfAKuBt4snr/5WnKg7IS4StyCZIrgYOBBYDC4kJFtj4pMZbxGTLj8tTFbs1s5mTgC8TL0DmsTHBArFL7fzsz9OBz3f+UUiSJEmSJHVcpqasELgR2J3YvrOYmGCBmKBYTmzjGQH8LJuQ6XHGX3f1WOBnwHBivMuJ8UM8nsa2n72AG8Zfd3VBHsKUlAcmWdQjlacq3kccImsVsL6VoguISYrTuyOudtoD+CDxpLuhlXLzgSHAyU0XlqcqCondTwMxa9qSlcSePp/PDq8mSZIkSZLUUxwOTAQWsTG5sqmE2D4yGjixe8JqtynASOJDsC0NDVRHTLbsCxzcTXFJyjOTLOqpPgn0IyYQ2rIS+HB5qmJs14bUbp8iDum1Ooeya4DjylMVw5osOwwYTxxirC3LiPO9fKS9QUqSJEmSJHWhKcT5V2rbKJchJik+nakpK+7yqNph/HVX9wEmEx+ibWvuhfXE4cMmd3VcknoGkyzqqXYjnrRymTRoNdAX2KlLI2q/vdk4PFhbVhPHH92hybKdiP9H27oIocl+etpnIEmSJEmSere9aH2UkqZWE+c7Gd114XTItsBQcnuQFmJbzt5dFo2kHsUki3qqYnJLsJAtF4CirgunQ4po/zEUNllW2I71m+5TkiRJkiSpp2hP+0ZjucJWS3W/QmK7TXuOwzYaqZcwyaKe6i1y/36WErtr1nRdOB3yFrmfUBuPYUGTZQuJJ/BcPofGcj3tM5AkSZIkSb3bPKAkx7IlxF4gi7sunA5ZSGy3ac9xvNV14UjqSUyyqKe6jzgEVi4TuQ8GXgX+2YXxdMTdxPFEcxlHdCDwHDCrybKHiHOtDM5h/UHAKuDP7YpQkiRJkiSpa/2B2AaZSztkP+DBVLp6eZdG1E6zzj53CVBFHOq9LQXZn3d1XUSSehKTLOqpngJeAYYRe2m0pC+xC+ZtVZnKTHcE1g5VwH+JY4m2dgwDgHrg9qpM5TvdTqsylUuJJ+S+tJ6oKSSe5O+vylTO39ygJUmSJEmSOtGfiD1BRrZRbghx7papXR5Rx9xJjG9wG+VGEEcquberA5LUM5hkUY+UTZh8g9ildAzQZ5MiKeLJdwixx8id3RlfLqoylRuArxO7uI7mvb1yUsQk0gDgdmLvnU1dDTxLPEEP5L3JmgFAGvgX8P1OCl2SJEmSJKlTpNLVS4FvAWuIbTybPkhaQGz3KAauS6Wrn+7eCHP2JHAjsX1nGzb2WGlUQjy+VcC5s84+d0X3hicpX0KStHde7a1LCGEgsAIYlCTJynzHo3crT1XsDPwI2IN4smqcID4h/t3uAK7MJjR6pPJUxUTgB8AuxAuGpsewFLgJuLYqU9nQwvpDgf8HfITYq6VpomUt8DfggqpM5cIuOgRJkrSV8RpY7eV3RpK0uTI1ZYcDlwPvI47K0dg+kiH2dLkOuDmVru6xjZXjr7s6AF8AzgKGExMtGeJx1BGHgf/2rLPP/XvegpTUKdpz/WuSxZuFHq88VZEC9gU+TnyyYQNxKLFpW0piIXsMHwCOJJ6E1wH/Bu7ODguWyzZ2AD5BvBhJAXOy67/aJUFLkqStltfAai+/M5KkzpCpKSsCPgh8GBhK7PXxD+DeVLp6VT5ja4/x1109EDiG2F7Vj/gQ7cPA32adfW59PmOT1DlMsrSDNwuSJEnqbbwGVnv5nZEkSVJv0p7rX+dkkSRJkiRJkiRJ6gCTLJIkSZIkSZIkSR1gkkWSJEmSJEmSJKkDTLJIkiRJkiRJkiR1gEkWSZIkSZIkSZKkDjDJIkmSJEmSJEmS1AEmWaQtTHmqoqA8VVGwGeuH8lRFyWbGUFieqgibs4182xqOQZIkSZKkLdX4664uHH/d1Z12X97Z2+tM46+7Ooy/7urCfMfR02RqylKZmjLbp7XFC0mS5DuGvAohDARWAIOSJFmZ73ik5pSnKsYAFwMnAIOzi1cBfwL+X1WmclYb6xcBXwU+D4wHAlAPPAn8qCpT+VAOMewEnAgcBwwA6oC/A78D/l6VqWxo94F1o2xCZQ+gAvgY0A+oBR4Ffg88XZWpzOQvQkmSuo/XwGovvzOSpM4w/rqrdyXelx8L9Ac2AI8R78ufmHX2uTnfl2cTKvtkt3cU0AdYDzyU3d4/Zp19bt4aPrNJlcOAKcBBQCGwnNiWUznr7HNfy1ds+ZSpKRtCbFv6NLA9kACzgDuBe1Lpaq8z1CO05/rXJIs3C+rhylMVJwG/JF4sADQmM1LEZMl64BtVmcpftrD+eOARYLts+QzxBBay22gA7gEmN5coKU9VpICvA2eyMTGxASgASrPr/xU4uypTuXyzDraLlKcqColJqlOJn2MtMUlUkP19A3A/8K2qTOWafMUpSVJ38RpY7eV3RpK0OcZfd3UK+BbwRaAv770vrwOqgG/MOvvcNs8z46+7uhi4DJicXX8d8WHSQmJbRS0wDbho1tnnru/s48khvmHA9cDB2ZjWEdtPirOvNcA1wA35TAR1t0xN2UHAdcAYYvvUuuxbfYjtVHOBr6TS1TPyE6G0UXuuf3tUd6wQwpdDCP8OIazMvqaHEI5qpfxpIYRkk1e3V5xSVylPVRwD/IqNiYH1xAuPuuzvtcSLh+uyyZhN1x9CfCJkLPFiYz0xoVCX/bmeeBI7Hri9hTDOAs7JlnsLWESsYJYC84CVwEeAG8tTFaWbecidLtuD5WLgDOIFzdvAYjYew9vAWuATwE+yCRlJkiRJktR5vgmcnf13c/flq4mjTlyfTaC0KNuD5fvAKcT2jbeAJdntLclur5bYg+TKbIKn24y/7uq+wC+ADxLbTN4mHucKYpvK28Tk0gXEpFOvkKkp24f4EPFooAaYT+zZszz77wXE9qtfZ2rKds1PlFLH9KgkC7FSvACYBOxLHMbnTyGE3VpZZyUwqslr+64OUupGPwZKiMmQ5p5sSLLvFQE/bGaOkf9HPHltYGMPmE1tyG7nE+Wpin2avlGeqhhLHGasjnhB0Jx1xIuEw4jJmp5mV2IPlrXEC5rmrAGWEbsXl3dTXJIkSZIkbfXGX3f1jsRkwnrivXdz1hITLx8mJltasz9xOPNVxHbB5jS+9wngA+0MeXNVEIcHW8jGnhqbWkJsp/nG+OuuTndXYPmSqSkLwEXAcGJCpbk2qgbiw7wjgfO6Lzpp8/WoJEuSJPcmSfJAkiSvJUlSnSTJxcRM9vtbXy2pafJa0E3hSl2qPFXxIWAcLSdHmqoH0sAnm6xfQDyxQ+yC2ZoNxO6rF22y/FPEMVJbSrA0qs3+/EwPnEz+RGJPoOVtlFtLrBOndHVAkiRJkiT1Ip8iDj/eUoKlUeNoGye1MYH9ZOIDqava2N5q4tBcJ+YY52bL9pr5DPFh1g1tFF8KDKJJW85WbA/iA/XLaP4h4kYJ8QHZQzI1ZTt2R2BSZ+hRSZamQggFIYQpxEp4eitF+4cQ5oQQ5oYQ2ur1Im1JTib+H63LoWx9tuynmyw7DBic4/oQT2SHbrLsqOy2cxkfdAWwG7FrZ09yNBuTQG1ZDRxUnqoY3HXhSJIkSZLUqxxN7m0Tq4iT2TfbuyObxDiSlnuIbGotcERbQ5B1ognZV0sjaTSVyb4+2qUR9QyHExNjucyDu4o4b89hXRmQ1Jl6XJIlhLBHCGE1sVH058AnkiR5pYXiM4HTgeOAzxKP56kQwratbL8khDCw8QUM6NwjkDrN4A6sM7DJv0cQnwDJdQK1hNjjY9Pt1ee4fj1xTNGBbRXsLtleNQPYgo9BkiRJkqQt3CByvy+vI4600VJ7XV/ikOnt2V4RcZSO7jCAGH+uSaU6YEjXhdNj9Cf39imIySfbZrTF6HFJFmLiZG/gAOBG4DchhGYnO0qSZHqSJLcmSfLPJEkeI3avW0Sc4LolFxKzyY2vtzoxdqkzre7AOmub/Hsp8QSW6/Bdgfd2ZV1DTDrkooB4EszlqYRuUZWpTIifyRZ7DJIkSZIkbeFW07778gZavi9fx8YHJHNRmN3e2rYKdpK12f0V5li+kLaHPdsarCX39imIbda2zWiL0eOSLEmSbEiS5PUkSWYkSXIh8C/gazmuWwe8ALQ2Zt8PiBn0xleLvV6kPPsjscE/lxNzATGhck+TZY8RT0i5ntgD8Mwmyx4hPvGRi0HAG8DsHMt3l0eA0hzLDgD+Sdtz0EiSJEmSpNw8QpwbJReDgFeJk6O/x6yzz20AHif2aMlFP+CJWWefuz7H8pvrNWAuufXCCMT2nEe7NKKeYTqx186mI6g0px9xfp7Wpo+QepQel2RpRoo4Zl+bQggFxImUmq2IAZIkqU2SZGXji96RLdaW6Y9ADbklSYqAJcBvGhdUZSpriUmXQNtPCxQRn7T4302WVxKfNhiUw/op4PaqTGUmh3i70++Jww+2NTRgCTFRdUe2B4wkSZIkSdp8lcRG87YSD42JmNtnnX1ua20LU4m9WdpKtPQhtnX8LpcgO8Oss8+tA+4gtuW01Z4zmPhw7B+6OKye4DngJWBoDmWHAP/Ilpe2CD0qyRJC+EEI4dAQwrjs3Cw/IE6MdHv2/VuzyxrLXxJC+EgIYXwIYSJwG7A98Kt8xC91pmxD/3eIFw6t9cQoIV40/L+qTGXDJu9dTOyVUULL/9+LiE9O/L0qU/nYJjFUE/9f9aPlJEUxMPL/s3ffYY5V9R/H3+dmyu7O7myHsIuUoCNi+aECKqIiOIIVFYZu7y2gsWHvPQqx9woigwgWLCOIolgQFKkGCH13dpftbeo9vz++N0w2m0nbZOrn9Tx5Zjc5N/fcm5ubc873FOB64Gdl8jlZ/gVchhXmOsZJ0w4sB64BLp+gfImIiIiIiIjMBjdhHSDnM/7aKG3Y2rL/BC6t8H5/Bn6PNcaPNzJiLrAUG0Uz0SNFLgRuBOKMPztIJ9bW851cMnXPRGVssgTxbAh8Bps6Lk7pzsAO2AfYBHwuiGfVAVamjSkVZMFupj/E1mW5AjgcOM573xe9vh/2ZctbDHwLuBVrGO0EjvTe3zJhORZpor6w9/vA+7EhlXOwYEC+N0Rb9Nwo8Om+sDdTYvv7gOdgo1zy6fNBldbo/wEWXHjuONn4OPa9nAOsxHpa5IMuK4BlWCDjtX1h75Y9O+LGi4JV78ECQPOxY1iI9XjpxI5hCVZIe0Nf2DtRQ4hFREREREREZrxcMuWBD2LBh3mMtS0U1suXAX8HXp9LpsqunxJNGXY21ha4MNq+sJ6ff//fA2/NJVMjDT6ksnLJ1EbgNdgSCMuj/C3A2lIWR/lrwzqJF88oMmMF8eyfgbcBW7BzsBw7Jx1Ym/AKrKPwW4N49p+TlU+RejjvZ3dQ0DnXCWwGFkbTh4lMOd1BzxHYqJRjGZs+bwi4Cvhs8QiUEtsvx4I1p2I/6A5b7+U24OvA18tNkdUd9ATAUcApwLOwIE8I3IKNNPtVX9g7UYvI1aU76IkBx2Dn4GmMLXL/b2wo72+iKdZERERmPJWBpVa6ZkREZE8lMukAeAbWtnAMY/XyG7G2hctzydTOGt6vBegGTgOeXPB+/8Tq+X25ZGqokcdQi0QmPR94AXAm8EisLWYY+B02hdnfogDUrBL2dx0I9GDXwaLo6Q3AT4CLg3j23knKmsguain/KsiiyoJMI91Bz1zgQOyH+e6+sHd7jdu7aPuFwP19Ye+6OvLQEW0/AGycjuuXdAc9C7BeJDuAzdPxGERERPaEysBSK10zIiLSSFEAohPYCWza02BDIpPuxGav2J5LpjY3IIsNk8ikHdbhdQ52rFO6k+pECfu72rDz4oGNQTw7PMlZEtmFgiw1UGVBRERERGYblYGlVrpmRERERGQ2qaX8O9XWZBEREREREREREREREZkWFGQRERERERERERERERGpg4IsIiIiIiIiIiIiIiIidVCQRUREREREREREREREpA4KsoiIiIiIiIiIiIiIiNRBQRYREREREREREREREZE6tEx2BkSq0R30HAg8B9gLGAJuBX7XF/bumKD9x4CnA0cA84DNwFXAv/vCXj9BeVgCPB84IHrqPuBXfWHvuiq3bwWOAZ4AzAE2An19Ye/NVW7vgMcAzwIWATuB64Cr+sLe4aoPZA90Bz3twLOBxwJtwHrgt31h7+0TsX8xiUy6E/s+PgKIAauBX+WSqVWTmjERERERERGpWiKTfjhwPLAMa2u5Cfh9LpkaaOI+HfB54HRgLjAMXAOcmUumthaleyLwDKAT2A78HfhLLpkKC9IFWFvN04D5Ubq/AH8vTFdD/mLRez2JovafXDL1UPtP2N/VAhwNHBYdxybgCuDGIJ4tTNeGtcU8HmuL2QD0BfHsLbXmTUSmLuf9hLQPT1nOuU7shrnQe79lsvMju+oOelYAHwGeCXQAhRfsKuCbwLf7wt6afzhryMNzgXcw1qAM4IBB4N/AR/vC3n83cf9zgXcBJwNLGDsHDrt2fwZ8qi/s3VbmPU4CzsYCNPkRbA4YwAopH+kLe28rs/0h2OdwGFYoyOchBO4CvtAX9v689qOrThTgeRnwJmDfKO9Ef3cAVwMf7gt7725WHgQSmXQr8Fbg5cDygpccsBW4HPhoLpnaMAnZExGRGqgMLLXSNSMiMnMkMun9gA9jAYx5jNXxPfAA8HXge4VBhQbt93PA2xhrWynkgT/nkqmjE5n04cAHgMcB7QX5GwX+B3w2l0z9PpFJPxV4H/BorCOmx+qnw1jn3E/kkqk/15C/47H2l1LtP//B6rvXh/1dJwApIMHubSz/wtpPbgZ6gLOA/YvS7QT+AXwoiGez1eZPRCZWLeVfBVlUWZiyuoOehwEXYD9uW7BG3PwF24IFHGLAt7EG9oZfzN1Bz2nAJ7DAwnrshzVvXpSHB4HX9IW9f2/C/udggaRu7Ed4ExbYAPuBXogFn64GXlkq0NId9LweeC92ztZjvVPy5mOjUlYBr+gLe/9bYvtDge8DcWz0y/aCl9uBpdF7fqwv7P1OPcdZThRgeSfWuA/W66Nw5MwC7DzcDZzRF/be2eg8CCQy6Rbgi8CJ2Oe9ESvgghUSO7HP4j/AGblkav0kZFNERKqkMrDUSteMiMjMkMikDwTOxwIEm7G2lrxWrJ3DAV8DPtmoQEsik/4W8Joqkt6FBSuWYPX/whlM5mBtEDuwYzgFq4tuwNpM8uZG6bYAZ+eSqcuryN8pwKcYG21SOJrnofaf7z/9V5cdFX/gdKw9pLidqANYDKzBOiGejrVbbaB0W8wDwMuCeLaqGUZEZGLVUv6te00W59xi59ybnHOfd859xzn33aJHwxtbZfaIGta/iAVYVmM/jIU/7CPAWqzB/1XAi5qQh/zojRYsCDFYlGQH9oO4BPhyd9DT2eg8AEkswLIe+1EuHLETYg3d67ChrO8s3rg76DkCeHeUdjW7/qgDbMOOYR/sGNqLtp8LfAXYO0q3vWj7QezcALy3O+h5Ym2HV5Vu4M3Rvtawa4AFrEC4Chul86XuoEdrTTXHK4CXYD8uDzIWYAH7bm7GPp9DgY9NcN5ERERmDefc051zv3TOrXLOeefciyqkPzpKV/yIT1CWRURkioim1joPC7CsYtcAC1h9ew0WsHgdNk10I/b7aKoLsAAcCDwMuJ9dAyxggY8HsCDKu7EOlw+wa4CF6P/3Y8GRzyUy6YdVyN+jsHpsvv2neLq0HcADj128dq+DOjelRkNilG4n2h7lZyU2YicE+indFrMKWAF8OZpSTESmsboaI51zxwH3Al/GbpLHYNM5FT9E6vV4bGqqDezamFtsC9Yr4OVRYKaR8j0i1pZJ47ECyErgBY3ceXfQMx/r9TDI7j/whQaxH/yTonVbCp2JFT7KjSrw2DEehAU0Ch2PFXDWsmuQq9iDWI+N08qkqddLsWG/m8qkCaM8PAZ4ahPyMKtF04S9DLsGigNthYax7+SzE5n0AROQNRERkdmoA7gB64RSi0diHWvyj3JlXBERmZmeDPwf1kZQbtr1zVg9/KUN2u+Pa0w/t8Lrw1hApFx7EVh7zRJsRoZyTsZmZijb/nNy4jbfGoy2bhpqHymXLvrbWiF/IdZp9hHAsRXyJyJTXL09vtNYJPb/vPeLvPcHlngkGphPmX1ehA29rGZh+01YIeExjdp5d9AzD+u1X9wbopRR7Ef0lEbtP/JsYC/KBxfyNmEFh+fln+gOepZjQZJyjeJ5w9j94KSi508qeL2S7cDzSwR66tYd9CSAI7GG+0oGsELMSxq1f3nIkViwbWMVabdijT8nNDVHIiIis5T3/jfe+/d772tdD2+t976/4NG0NQ1FRGTKehEWPKmmrWMz8KREJt3VgP0+tsb0McoHWvLr1S5mbM3WUjzWnnFqNIpnN4lMei4WhCnXuZVFbQOxo/a+v3NgtMVvHppTrt2jBZsOLIzyWc4QpdtiRGSaaalzu4cD7/Te39jIzIgUOJDyIycKDWA/rCuBRl2Ty7GG4moKHkTpDmjQvvP2xc5BuR4SeWH0WFnw3D5YoKraObMHsSHDhRLsPvx1PDuxgkQcG4HUCPtix1A8hHk8I9i1I421L/Z7Uc21kP/eriybSkREZBZwzi3GRvomKN0Q5L33r56g7PzHOdcO3AR82Hv/13KJo7SFU8kuaGbmRERkQiSoPPojbyd2718J7Oni7KUWuq9kAaXbZALGRokEWF21XMfQndj6LAuwwFGx5VhbRtn2n33mbWtti40G24dbRod90O49uNLhnTbs9z6M/l3JMGrHEJn26g2y3I4K2dJctfas83VsU+n9auHq2KaSeo6ncJtGHENI+V4hlfKwp/b0HEhjeGq/Dhr9fRAREZlWoimWL8Y67myh9IjQifi9XA28AfgXFjR5DXCVc+5J3vvry2x3DvChCcifiIhMnOlUxx7vN7L4+Wp/S8c7jqqOL/SucD9+nABLLfmpOQ8iMnXVO13Y+4E3OecOaGBeRAplqb5Rdx42muXuBu5/DTYFV0eV6ecA/2vg/gHuiv62VpG2BTtfdxc8dx82hVe1x9AG3Fr03G1U1/OCaD/5xdsa5W7ss632GFpo/Ocgdi0OYdd5JfnflbvKphIREZn5psQUy977/3nvv+G9v857f433/lXANdiCvOV8CltQOP/Yt8lZFRGR5ruN6keV5Gf3uLsB+61mho5ipUadgAUxhrDjGKHyyJwOrJ1ivKnU12IdIcq2OzywfcHwzpGW0Tmx0VhbMFpuarEhLGgSo8IUZJE21I4hMu1VFWRxzmUKH9iCTOuAW51zv3DOfaU4jXPuvKbmXGa6SxibfqqSTuCavrB3T4evPqQv7B0Efor19qsU7GnFfuQvbNT+I1cA92NTS1SyCCsY/Cb/RF/Yuwm4FAtCVdKOFU4uKnr+Iqof4joXuKQv7K12erKK+sLe+7HzUM11MA+bzuriRu1fHvIPLABXzbXYifXWvaypORIREZn6Hg5kpugUy//E8jcu7/2g935L/kH107eKiMjUdQnVd2RcAPwpl0zd04D9/r3G9CNYsGI867G2mk2UHzkSYMGO83PJVMnRIrlkaghr/8lP81XStpG28IpV+29pj426RW0D5aZIH8U6oDoqT6U+h9JtMSIyzVQ7kuUtJR7/hzXMPh944zhpROrSF/beClyFBQ/KjeRYgjWsf78J2bgIeBBbY2Q8AbA3cAfw20buvC/sHQB+gI3OKFcAmod9F3/cF/YWV34vwHp/7F1m+xg2B+lNwJ+LXrsSuBnYi/K9XeJY4eYnZdLU6wfADiyP42nBroV/AOWmvZA6RIXR72IBt4VlkrZj1+rPc8nU6onIm4iIyBQ2ladYPhSbRkxERGaXG7DRjIsp39ayDOv4+oMG7fd0aptGayfl2yznYG1BrYwfGHFYW8UqrANqOT+livaf3rsODnaOtgwubBuaWy5dtO8BrDPqeGLYef4v8JcK+RORKa6qIIv3PqjjUc+iViKF3glchwUIlrJrI/9cYEX03Of6wt4/NHrnfWHvXcDbsV57+7LraAqHNTavAO4F3tgX9u5odB6Ab2A/9p3YeSgcUdKKBT8WAb8AMsUb94W9N2HzaQ9ii9UVBmsCrGC1D9YI8Ka+sHekaPth4E3AnVG6Rex63+iI3ncn8O4oONZQfWHvNcDHsAb+lew6MifAgitxrGByVl/Yq7VAmuMi4NvYd28fdl0ItwUrHC7DgqMfm+jMiYiITEFNmWLZOTffOXeoc+7Q6KkDo//vF73+KefcDwvSn+2cO8E593Dn3GOcc+cCxwBfaWS+RERk6sslUx6bLvIGrI1hCbvW8edi9W4PfDKXTBV3xKx3v/cBH6gy+T+wNooVWLtLYRBlAdY+sxFrr+mP8ttZkM5F/98XG/HyllwytbZC/u6J3m8L47f/rLxjy5J77tq66B2BY3uUrqMo3aIo31msLWaI0u0Y+baYLPDGIJ6tNOWZiExxzvva2yOjAvw67/3OcV6fCyz33t+7h/lrOudcJ9bTf2E0DF6mkO6gZxFWAHgJFmjJL8A9gk1f9NW+sLep0xJ1Bz1HAGcDT8YKHCH2o7gV+D3whb6wN9fE/ceAVwOvAPZj1wLGA8CPgK9HAZHx3uPp2DE8Hmsc99gxbAZ+hR3DuGupdAc9+wLvAJ6DFVby52AAW0T1vL6wt6k9L7qDnuOBtwKPYWyKtvzw4J8DX+wLex9sZh5mu0Qm7bAeSK8FDsKCnPnPYQ02kunLuWSqGQFHERFpIJWBGy+aVrnY04CDgT5svbziRhTvvT+rxv0cDfyxxEs/8N6/wjn3feAA7/3RUfp3Aa/DGnl2YB1TPuq9L/Ue5fara0ZEZIZIZNJLsLaWF2OBlny9bhib5eIruWTq8ibs93XAuZQe4TEK/CiXTL0ykUk/AkhhyxXMZ6wNYic26uPcXDJ1fSKTPgQLjhyNBTzy6XZgHQDPzSVTVU/bmcikD8faTp7Cru0/27D2n3QumcqF/V1PBc4CDsdG1eTTbcGmcf9CEM/eG/Z3PRNIYm0xbYyd5y3AL6N0GlkqMkXVUv6tN8gyCrzUe3/BOK+fAlwwHUazqLIwPUTBlmdhU0YNA7cAf+8Le0vOqdmkPBwCPAn7od0CXBWtGTJR+2/DCg4HYD/K9wFXRtOKVbO9w6b5ewJWCNgYbb+mhjzsAzwT652RD7DcOFGjR6JjOBx4LBYsehD4Q1/YW2meU2mgRCbdgjUaPRwLtKwG/pBLpsZbSFBERKYYlYEbzzlXT7nUT4c6E+iaERGZiaJgy7OwTq1DWIDl2vHWL2ngfk8F3od14hwAenPJ1PtLpNsPeAY2gmUH8LdcMrXbIvGJTDoBHIUFZLYDf80lU3fsQf4OAY7ARqBsAa7KJVO7tP+E/V0Oa5s4DGtj2QT8sThoEqV7PDZVZ74t5oogni07ukZEJt9EBFlC4MwyQZYzge9578vN7zglqLIgIiIiIrONysBSK10zIiIiIjKb1FL+banxTRcVPLU0P+9vkUXAqWghRRERERERmaVm0hTLIiIiIiIyvqoWvo+8DbgrenhsDsW7Sjz+DTwX+HojMyoiIiIiIjKN3IXNdT+eF0ZpRERERERkGqt6JAu2wNM2bC2Iz2ILHF9flMZjcx9e573/V0NyKCIiIiIiMv24Cq+3YgvlioiIiIjINFZ1kMV7/zfgbwDOuQ7gEu/9jc3KmIiIiIiIyHSiKZZFRERERGafWkayPMR7/5FGZ0RERERERGSaexvwwejf+SmWzx0nrQPe3/wsiYiIiIhIM1UVZHHOfbByqt147/3H6thORERERERkOtIUyyIiIiIis0y1I1k+XOI5H/0tnmvYR895QEEWkSmkO+hpBw4C5gAbgbv7wl5ffiuRmenLV56SaIuNPt5BMDgau/Etx/z0tsnO00QL+7vmAgcC7cB64L4gntU9QUSkTppiWUREZrNEJu2Ao4CHAVuBK3PJ1PY9eL8ASACdWAeFO3PJ1EiJdDHgWGAZ8CDwx1wyNTxOuoOA+VH+7swlU1ofrUphf9ciYD+s3Xd1EM+undwciUwdzvva21KccyuBXwM3YcPf/xe9dDBwNnAI8Dzv/aqG5LKJonmTNwMLvfdbJjs/Is3QHfTsBZwWPeJAAIwA/wHOB37RF/buVgARmYm++aeTTtyvY8u7Dl60/tC2YDQGMBzGRrNbFt9yz7aF573m6T/7/iRnsenC/q4VwOnYegDLsHvCMHAtcAHw6yCeHZ28HIpIs6kMLLXSNSMiIuNJZNJzsY7WpwPLGet8PYCN8vxALpm6pcb3OxE4A2trjAGjwL1YG8ZFuWRqUyKTXg58CngxFojJ73crcCnwvlwytTqRSXcCp2BtIgcWvF82er+Lc8nUjj04BTNa2N/1aOyzOAELUDlgEPgdcEEQz14zidkTaZpayr/1BlkuBYa99z3jvH4xEPPev7jmN59gqizITNcd9DwK+BbWW2MY2AKEQBtWCAmBy4Gz+8JeFSpkRjv/ryekj4rf/9a5seHY4GhsdDCMjQK0BWFsbmwkNjjaEv5t7Yqf9DzlVy+b7Lw2S9jfdSjwTax32RBWASm8J4wCPwPeFcSzQ5OUTRFpMpWBG2+mT7Gsa0ZEREpJZNJLgb8CD8ca30ew+oXDZtBx2FSap+aSqd9U8X6LgW8AT42e2hy9ZwxYGP39L/BpLECyNxZYGWFsdp38ftdhgZ93AIdG+dqM1Xlaovdz2CjU1+WSqfX1noeZKuzvOgH4DHaudmIjijwwFwu47ATSwFc1K4LMNBMRZNkCvNt7/7VxXn8j8BnvfWfNbz7BVFmQmSwawXIJVthZjRUkis0DFgM/Bd6m6cNkpvr+1S9++7Er7vlMSzDqNg+1D5aa7XJB61Cbw3Hl6v2+cOZTL3v3pGS0icL+rv2wAMrDgFVYJaNYB7AI+HYQz35g4nInIhNJZeDGc86VuqdWnGLZex9rasYaRNeMiIgUi6YHux54HNaps1Sbg8OmJ94GPKXciJZoOq8fAM/CAiSDJZK1YDN0LAJasY5jpX6DA6wj2TCwCVgT/btYG7AX8CfgzFLTjM1WYX/XUcD3sIBK/zjJlmCBr3cH8eyFE5U3kYlQS/k3qHMfA8BTyrx+ZJRGRCbXadgIlvECLAA7sJ7sJ2BT/YnMOOdecZo7ZNGD72yPjQSlAywAjq3D7UMxFwb/t2TtG8694rT2Cc9o851J+QALWM+k7cBpYX/XgROVMRGR6c57HxQ+sPvtjcBPgCOwHqALgScBFwI3RGlERESmqxcDj8HaG8Zrc/BYsGQ+8NEK7/d04BnYepGlAiwwNmKlPdrnePWaMErbjlUAxwueDGHruDwVeGaF/M0aYX+XA5LAAsYPsABswIIsZ4X9XW0TkTeRqajeIMv5wBnOuYxz7hHOuSB6PMI59yVsKN75jcumiNSqO+hpw4Is4/UmKbQFmAOc3Ox8iUyG+S1Dp+/bsW3Z9uG24dIBljFbR1qHls/Z2bGobSA5QdmbEGF/13zsOz7A+BWRvM3YiJYTm50vEZEZ7CvA7d77M733//Leb40e13rvzwDujNKIiIhMV2cxtr5jOT56HJfIpDvKpDsVG6mys8L7LY7+VmrXzI8WXVQh3UCU9pQK6WaTxwCHAxurSLsB2A8bgSQyK9UbZHk3tjDuW4DbsOjyYPTvN2M9s2bcNCsi08xB2BDaaqdzGGZszlORGWVh2+BxLUEYDIZBxcXcR8JYGLjQLWobPHoCsjaRHoUN5a7mnuCx4Gy5UasiIlLeMcCVZV6/Ajh2gvIiIiLSDI9lbGrMSkawzp1PL/ViNPXYkVQOsDhsii+PtWuW60UXROlaGQu4jGcHcGQik663rXSmeTz2eW2vIu0Qdq6f2NQciUxhLfVs5L0fAl7qnPsc8Fxg/+ile4DfeO9vaFD+RKR+c7AfuUo91vNCbJ5NkRkncH6u9/hKo1jyvHfEgnBOk7M10dqp/Z4wr3nZERGZ8fJTLJdcxxJNsSwiItNfC9UHWfLrkc0f53WHBUMq1VeqXcusuPIXo/wsH2GUppXxpyqbTeZQfd0xbyZOuS1SlbqCLHne+/8C/21QXkSksTZiPUXasF4FlbRiC8uJzDjDYWydc945PL5ioMXjnGdoNLZhQjI3cfL3hNbobyUt6J4gIrInzgeSzrlNwJew6cHARhsnsSmWM5OTNRERkYbYTvUds/KjSu4r9WIumQoTmfQmYJ8K71NclxkvyFP8fKUpzVqxaa+qaT+ZDTZhn1ktHfWqmVpMZEbSEDiRmese4N9AZxVp8z+cv2xqjkQmyfrBOd/YOdI6OrdlpLVS2jmx0dahMBY+ODDvuxORtwl0K/A/Ks9HDGOdMH7dtNyIiMx8mmJZRERmuj6qnS7A6hj9wD/KpLmM6kZDbI/2W2k66NEo3Q4qj7iZA1yaS6aqHZkz0/0RC7QsrCJtBzY6t6+ZGRKZyqoKsjjnQufciHOureD/oxUe1fSSFZEm6Qt7PdaDspopf5ZjPTYubXK2RCbFm5950Q3ZzYtvnhsbiQWE41YCHJ6OluHY3VsX3v/6o3t/M5F5bLYgng2xewJYBaKcZcAaFGQREamb937Ie/9S4FDgfcC3o8f7gMd778+IpmEWERGZrj6OjRCpFBiJYUGOCyoEMXqBbcDSCu9X7dqzeVsrvL4EC9xcXOP7zlhBPLsO+AUWQCk3RZsDFgPXATdOQNZEpqRqpwv7KHYzHCn6v4hMbb8EjgNeiH3fiwsiARZgGQE+2hf2rp/Y7IlMnNu3LHnNPvO2X7n33O3zNw+3DY2EsV2GPMfcaLCwbahtw+CcgZs2Ln/9UZOV0eb6KdANPAvYjFVgCsWwe8Ig8IEgni1+XUREaqQplkVEZKbKJVPZRCb9DeBNWKCl1Fom+UXn/wd8sML73ZHIpM/FRnouA9aza/ujw0ZWOGwazgMYf4r0NqzNI4d1MluMjcwofr8lUR6/kEumbimXv1noi8CTgUcCD7L7WnKtwF7YCKUPBvGs2opl1nLez+7r3znXiTU0LfTe1xoJF5nyuoOeecAngBOwhe2HsdEtrViBYz3wsb6w96eTlkmRCfK1q3qeccTy1RevnLdtceBCNxwGIUBr4APvYc3Oji1/X7vi5a87+uJfTHZemyXs71oAfA4LwM5h13uCwwrP7w/i2Rl7DkREZWCpna4ZEREZTyKTPg94PVanAKtfuOgRYp0NnpVLpiqu2ZHIpF30Xm/Dpj8fxTqG5hel3wb8EPgM1onsuYyNlPEF+x3Fpq96EfAO4NXYqIyR6LWWaLutwJeBL+eSqVoXep/xwv6u/YCvAY/DztkQdp7bsc82B7wliGdvmLRMijRJLeXfuoIszrl53vsddeZvSlFlQWaL7qDnEKAHeBrWsPogNtLlUo1gkdnk3CtOa1/UNvDW/eZveeWyOTtX4mHj0Jy192zr/PHGwTnps469cPtk57HZwv4uhxWSe7CeSXOw6cEuA34RxLObJi93IjIRVAZuPOdcSDRNq/d+KPp/pcqW995XO7vApNI1IyIi5SQy6S7gHKwzVz6YcQPwxVwyVfP6r4lMegXwEuB4bBTKVuBK4OJcMpUrSHdEtN8jsY6lg8A1wGdyydQ1BekOBE4EjsWCN5uA3wE/yyVTD9Sav9kk7O+KAU/H6o+HYEGsu7Hp1X4fxLOlRjCJTHsTEWQZBq4Hro4ef/HeT8tGWlUWRERERGS2URm48ZxzH8aCKh/z3ocF/y/Le/+RJmetIXTNiIiIiMhsMhFBlncDRwFPBRZhlYfbgD8TBV689/fV/MaTQJUFEREREZltVAaWWumaEREREZHZpOlBloIdOeCx2PRDR0V/94levtd7f2Ddbz5BVFkQERERkdlGZeDmm0lTLIOuGRERERGZXWop/+7R/L/eIjT/dc7dhi1idRPwUqAL2G9P3ltERERERGQa2+ycmxFTLIuIiIiIyPjqCrJEUZynYiNXngYcBrQCNwNXAB/CKhIiIiIiIiKz0fux0f6vAt4O+Khz2rSbYllERERERMa3JwvfA/yLXXtmbWxg3iaEhr2LiIiIyGyjMvDEmQlTLIOuGRERERGZXSZiurDtQCewd8FjOTDtgiwiIiIiIiLNoimWRURERERmtnqDLIuBxzE2XdhHgbhzbh3wF8ZGtvyrIbkUERERERGZRjTFsoiIiIjI7FDXdGEl38i5g4BnAWdjvbK8977eIM6E0bD38rqDnvz0BicCh2IVw/uAXwB9fWHv0ATkYQ7wbOCFwEpgELgeuLgv7L2liu0d8ETsGB4DxIC7gEuBq/rC3uHxt54auoOeAHgydgyPBBxwO3AJ8Je+sDecxOzJNJLIpNvZ9fs0DPwH6AVuziVTjflRmOHC/q79gZOAI4F5wIPAb4BfBfFsxd+SsL9rAfB84LnAMmAH8Dfg4iCevbtJ2W6osL9rMXYdPRtYgo1y/TPwsyCefWAi8pDIpA/BPocnAm3AA9jv0+9zydRAs/cf9ne1Ad3YeXgYY9+ni4GbgnhW3yeZslQGbr6ZNMUy6JoRkZkvkUkHwBFYvftgIADuxOrdV+eSqdFJzB6JTHoRkMHqER2AB9YAXwE+l6/LJTLpBcA7gR5gKTAK/A84F7isIN1i4N3Ai7Hy/DDWEeALuWTqNwX7XQ68BzgBWBiluyHa55UF6cat4+SSqbsL0i3Eys/HRfnbgf1G/iyXTN1XkG4J8CKsrXExsBWrb1ySS6ZW1XcWRUSqV0v5d4+CLM65DqyB6WnA07EfoznACPBv7/2T6n7zCaLKwvi6g55FwOeBY4G52A+pxwItIRaoOLsv7G3aiKXuoOcpwBewqRSCKA8BFijZCfwOeFdf2Lt1nO33As4DnoJdm/nKbgtW0MgCb6kmWDNZuoOehwFfAh6PNSKORC+1YMdzI/DWvrA3Nzk5lOkikUk/Cfs+HcDu36cBoA94Ry6Z0r1wHFGj+nuBM7GKTYjdS1qx++Na4ENBPHtZmfd4ATYCdG8sYFr4OWwHLgA+HsSzTQ9i1yvs7zoNOw/LsOMewfIfYJWfbwPpIJ5tSkU0kUl3Ap/BKmZzsc8gZOz36V7g7blk6m/N2D9A2N91OPBF4EDGvk8uysNOrJd6KohnNzcrDyJ7QmXg5nPObcKmWL6bsSDLn7332UnMVt10zYjITJbIpFdg9e7D2L3ePQLcArwll0zdPkn5ew/wcazMXcpW4BlYu8G5WF0FrKwOVk4Nsc6a3Vhg5dNYWbpUupujdK8GPoC1p5RKdz3W6eoZwEeoUMfBAjUfwOoRsGs9YhvwfaycfzrwLiwIU1zf2AJ8Azg3l0ypw6mINE3TgyzOuc9jQZVDsR+cHcA/GKs8/M17v6PmN54EqiyU1h30dAA/wBbn3IT92BVqw9bheRB4eV/Ye30T8vBk4LvAImAdYwGSvAVYL4o/Aq/qC3t3Fm2/GPshfzywAbtOC7VjP+yrgdP7wt7bGnwIe6w76IkDP8VGr6zHGu4KzcGOIQec2hf23juxOZTpIpFJH44VWJdggYDxvk9/Bl6RS6amxT18IoX9XQHwOeA07H6ymbFKBlihfzkwhDWu/7zEe7wQa5ifg30OhUEIh30G84CLgLcH8eyUqzSE/V0vBT6GHe+D7H4Mi7Hj+xbw4UaP5khk0nOx34ZnYp9BcZC9FfscNgGvzCVT/2jk/gHC/q4nAD/EKn3rsM+80Hzst+tq4BVBPLu90XkQ2VMqAzdftOB94RTLTwPi2H1j2k2xrGtGRGaqRCa9F3AhcAjl6933AKfmkqm7Jjh/b8c6wDqs/lFcvnbRYwQLfLRg5dPiukQrVobfjJVXYxXSbcLqiTFsRpHi/ebTPRDtu53ydZz/AI+K8leqHrEIC/pcj82o4qJ0YVG6JVib1NeBj2s2BhFpllrKv0Gd+3g5sAo4B5vCaJH3/ljv/Ye991dMlwCLlPVqbJTSWnYPsID9EK/CChqfiaazapjuoKcV+CzWWLeK3RuEwRrW1mE9Jl5W4vW3YoHANeweYAErJKwCVgAfj6YVm2rejQVYVrN7QQ9s9MEqIIH1BhHZTSKTbsF6Ay3BCsDlvk9HAa+YsMxNL8cDJ2M9pzaxeyVjFOjHCvwfC/u7lha+GPZ3LcF6b7Vj3+niUR4+et/N2BQFz2to7hsg7O/aF3g/VrlZQ+lj2ID9brwca1BstJdj9/117B5gAbu+V2G/H5+Jrv+GCfu7Ytjv09JoP6VGHG3Dfj+fiv2eisgs5M0N3vsve+9P8d6vAB4BfBBryEsDf5/UTIqICEAKuy/3U77evT/w4YnL1kN1uU8xNnKkVEAhH3hpwQIfA+weOAErJw9j5eSWKtItKUhXar/5dA/DOjmVq+Nsx0bGzGf8esTGaF/HMRawKc6fxwJhO4BXYW2SIiKTrq6Gce/9cu/9i7z3ae/9P733I5W3kumiO+hpx4ZmjlC68Sgv/+P2SKxhtpGeiQUO1lVIN4j96J7RHfQ81JDWHfR0YvP0D1C6QTkv/0P+RKynxJQRjWJ5LtZYV27KnRBr9H1md9Bz4ETkTaadp2ONOg9WSDeIXWunJzLptqbnavo5DeupVSrwXGgt1gB/QtHzL8QqH5Xua9uj/ZxeRx6b7URs6ptK19IWrGJ0ciN3nsikW4EzsOt0sELyB4GDgKMbmQfs9y4/urBcr7khLJ+nRdPMicgs5ZzrcM51O+c+CnwHG9H4SOwecd2kZk5EZJaL1hs5ASuDl2vbCrHOUEclMulHTETeIh/DOnFVO1qjUufRfDtgo9LlX2+vkK6NsenDymmtMt1mbITRKRXSiYhMiIaOPpAZ40nAvlhvg0oGsB/L4xuch+MZG+JayUZsjYnDCp47Ghtls6mK7bdjP87PqSWDE6Aba8ysZjqGrdicq8c1NUcyXR2PFVYrNUqDfWf2Bw5vZoamm7C/awW2tlPJ9Z+Kk0eP4iDLCYyt4VLJVuCIsL/rYbXkcwK8CKt8VlPJ2w50h/1dCxu4/ydi1+emKtIOYr8jjb63H8dYD8FKNmK/p+phJzILOec+75z7J3Yv+B3wduw34LNYOW/RdFjDUkRkhjsWq3dXs47eVmzaq0a3f5RzWvS3Uvm7MBhSroNPYfCi3IjvwtfKBTzyr7Vg53E8i7C60DysLD2exVG6/DRl5ewAjktk0h0V0omINF1Dp9CQGWMp1Qc4wH7slzc4D3tTXUMkWD5bsaGsefl/17Lo8tLKSSbUEsYaayvxUbollRLKrLQ31V1HYA3TrUy978NkW8rYgubVGMLm3S+0F+VH1hUaxOYjXgLcV+U2E2Evqv9tGMQqUYuprtJajSXY51BtHkLs+m+kvam+J2H+90nfJ5HZ6eXAX7H19a4GrtcMACIiU84SxurT1fBMbL27ngBCudEnbpx/lxMwfttKfp0YR/ngTit2jh3W3jRevShWlK5cm84g1mF2EdbBS0Rk0ijIIqUMMfYjWU1DkqO6Hr21GKD6kVYBls/CRrchqi8w5FXTy38i1XoMjuobHmV22Ult36eQqfd9mGz5hR5rOY/FAZnBGrcPmXrf6XzgpBrNOIb871O5il5xHhr9+7SD2iqkHn2fRGYl732jOyGJiEjj1dN2MJFl9HqC841eCL7a9ysXqAqxNsj8+jHluCrTTdU6k4jMQpouTEq5EesFUG6oZ16+Aek/Dc7D9dHfago7C7BhuzcVPPdfrGGtml4f+R/6/9aSwQnwX6xANbeKtO1Y4WKqHYNMDf+h+gBBJ7bmyI3NzNA0dA+2QOOCKtO3A/8oeu7vlO/dVagTW7vlrirTT5R/Yr3FqrEAO2/9Ddz/zdj1Wc3nkL/ery+bqnb/pfrv0wL0fRIRERGZyv6LjaqopiNRfm2UG5qao13dWsc2ldZ0bWS6UcaCIuWmVs6vOzlC+Q5I27By9hCVgycLgDuxtRJFRCaVgiyym76w917gD1TXiLUYmxv/0gZn4xLsB3pRhXQOmA9c3hf2Fjbk3Yw1BlbaHmyobz/w65pz2Vx/wwpUi6tIuwRrjP1jU3Mk09Ul2HRNi6pIOx/4bS6ZWtXUHE0zQTw7CPyEsYUYy+nAgrwXFT3fGz0/v9Luov38JIhnGz0KY09dSHXB31j0OD+IZ6udeqGiXDK1GricyucQ7Hrfgl3/jXQp9rtXzb15AfD7IJ6dSlO+iYiIiMiYf2EdNqutd+fbSybKWYzNNFJO4aiPckGR/DRdlaZIK0xXbkRJfl87KD818sbo79YK77cZO9ZKa9O2ROnOzyVTDatviIjUS0EWGc83sUakfcqkWYD11v5eX9jb0J4DfWHvauBHWEPeeKNRXJS/9cB3irb3wFew3hLl5uNfiH0Pvt4X9u7Yw2w3VF/YGwJfwnp5LCuTdAlWsPlSX9hb7XoPMovkkqm1wA+xEQjlGqf3wQq/356IfE1DF2IjM/Zh/N/POVgF7Qp2H0HxH2zh40WMPxokAFZglbcL9yi3zXE1tr7AUsYflRPDztHtwM+bkIdvY/f9FYxf2ezAzvGPcslUI0fSEMSz64DvY79/5Toj6PskIiIiMsVFDfQZbKrfctM8LsaCA1/OJVMTNj1VLpm6ERtt46hurRVP+aUB8qNxPOUXls+no4p0+dEp5eo4i7CycYCVo0uJYfXVDdgxlKtvxIHbaHyHXxGRulQVZHHOfbCOxweanXlpnr6w93rgbKz3wL5YgaIV+6GbjzVuzcMabtNNysansZ7g+f11RPvPL3K/EvvxfWtf2HtT8cZ9Ye+fgXOwwtK+2I96/hgWRO/ZBnyNKdoI1hf2/gr4GBZEWYkFhfLH0Bk954DPYb3kRcbzOWwkRgelv0/7YoHVZC6Z0rRzJQTxbD/wOiwAsg8W/GzDzuPc6LnFwJXA24J41hdt74F3Yj3fFkfp5zJWgViGfTb3AK8L4tkpN5ooiGdHgTdjI+2WYZWb/DG0YxXTOBZgeU0Qz25odB5yydRNQBK7/6/Ert/8fTF/fc/HFpr+TKP3H0ljHQHmsfv3aTH2fdqCXQf/blIeRERERKQBcsnU74APY8GCfSld744BXwQumIQsHobVQRzWjpcPqLiC5zxwMdbRK4YFPFoKXm+LnhsGPoTN/tESPRcrkW4IeA9Wri+XbhB4K/AbKtdxXgz8CeuwFS9Kl69H5IAXYVMv5+sb+WNpB/aKnvsf8NpcMlVpxIuIyIRw3ldev8o5V8/QO++9LxftnhKcc53YcMSF3nvdnIt0Bz2HAC8HXog1WuUXV78Oa2D6VTTioln7D7Af2DOBx2MFnfxcnz8HftQX9t5W4T2eALwMeA7WIOawgsBfgfOB30cjX6as7qDnSOClwLOwAobDph26CjsHf5q83Ml0kcikA+AExr5P+d5JW7EeQD/KJVP1zPk7q4T9Xfti38eTsQpCgFXIstg95aflpvkK+7vmRNueCXRhFYYQG51xEfDjqT69VNjf1QGcHj0SWIUrxNatuRA7hjXNzEMikz4Y+xxejAXOHVZp/DfwY+DSZk4dEPZ3BcALsM/xiYx9n7YBlwE/DOLZW5q1f5E9pTKw1ErXjIjMdIlM+klY+fI4xurdg1i9+/xcMnXlJOatBevkegK7rh/jsTL453LJ1BcSmXQM+ARWRt2bsYDMKDY12idzydSvE5l0O9ax9VQsmJFPN4IFOD6WS6b+kMikO7COSz1Y56Z8umHgGuDDuWTq6kQmXbGOk0um7ktk0vOifZ4BHFSQbh3WSepHuWRqdSKTXsBYfeMAxuob/VjnwR/nkql19Z9REZHKain/VhVkmclUWahOd9CzFPsBbAXWAndMZGCiO+hxwCOw3g3D0f5r6iHdHfTsBRyI/Tiv7gt7p9qC0hV1Bz0rgP2xgs19fWHvlG6IlakpkUnv9n3KJVMNH3Ew00WBhkdhFbBNwC21rD8SNdIfgo2yGwBuC+LZbY3PafOE/V0t2DF0YvMw3xrEszsnMg+JTHoJ8HDs92kdcHsumZqw36ewv8tF+98L+z7dGcSzWnxTpjyVgaVWumZEZLZIZNIrgP2wzlT355Kpeyc5S7tIZNJnAIdidYjLc8nU30qkcUA31iFqAPhzLpnKjZPueKydYQD4Yy6ZuqdEuhjwXGykzw7gD7lk6oES6Xar4+SSqd3qONH7PRobNbQDuDWXTO02hXsUXHo0Vt/YDtySS6am2rqVIjJDKchSA1UWRERERGS2URm48ZxzH6xjM++9/1jDM9MEumZEREREZDappfxbbjEsERERERERqc6H69jGY+vviYiIiIjINFV3kMU59zhscasnYMP7gqIk3nt/0B7kTUREREREZFrw3hfXh0REREREZBaoqyLgnDsa+CfwfGAVNsdjLvr3/tiir39uSA5FRERERERERERERESmoHp7W30UC6o8Enhl9NwnvfdHAUdiC2FdtOfZExERERERERERERERmZrqnS7sCcCHvPdbnHOLo+diAN77fzjnvoHNLfybBuRRRERERERk2tEUyyIiIiIiM1+9I1lGgK3RvzcBw8BeBa/ngEPqz5aIiIiIiMj0pSmWRURERERmh3pHstwBPAKs65Vz7jbgxcD50evPA/r3PHsipjvomQc8HQvmDQM3Azf2hb1+UjNWg+6gZx/gDUAcGAB+3xf2/npycyUis1kik34e8GxgDrAa+EYumVo9Ufu//NrjFgGfjrnwER5GQh/8vTUY/Vj3E/8wMlF5EBFpovwUy08G2oC12BTLVzrnnoSN+n/3JOZPRESmiEQm3QYcBawAQuBO4NpcMhUWpWvH2kbiwCjwP+D6XDJVV9tIIpPuAJ4BLAOGgJuAm/fg/RZF+VsEDALX5ZKpO+p5rxr3GweeCnQA24G/5ZKpVc3er4hInvO+9vumc+6jwKuAA7z3I865lwPfw34EAA4CzvHef6ZhOW0S51wnsBlY6L3fMtn5kV11Bz0dwJuAU4F9oqcdFqS4Hvh6X9jbN0nZq0p30HMA8C2swNRW8FIIPAB8ui/s/fokZE1EZqlEJv1GrGFvJbuOah0CrgZem0um7mnW/i+/9rhFrcHoH/bt2HrokvaBmHNWFhkJA9bs7Bhas7Pj8s62wZcc+bg/TZtAush0ozJw8znntmFTLKejKZbXA8d57/ui1z8FdHvvD5vMfFZL14yISONFwZVXAy8F9sPK5g4rl98CfBu4BGgHXgecga2D7KLHIHAj8M1cMvXLGvbbibW1nALsHT2db2u5FvhqLpm6qob3Ww68BXgJsLTg/XZg9Yuv5JKpa6t9vxr2mwCSwHOATsBH+90K/Bb4ci6ZyjZ6vyIyO9RS/q03yNKK3bw2+OgNnHNnAidikfRfee+/X/MbTwJVFqau7qCnE/gu1hthCNiITVUH1jthEbAT+Ghf2Pv9SchiRd1BzyHAVVghI8RG4eS/dC3RYxT4Yl/Yq56MItJ0iUz6c8BZ2FpqI4zdVx3QilXs1gNPzyVTtzV6/7++9rili9sG7jxo4aaFoYcdw61+1Afe42kNQtfRMuJC77h509Jb57WMPFqBFpHmUBm4+Zxzm4B3ee+/6ZzLN1y9ynt/fvT6a4HzvPfzJjGbVdM1IyLSWNGolC9hs8GEWJvHUPTyXGAxVlb/BvBI4FnR/zdibQsA87C2kWHg87lk6ktV7HcJ1lH6CCxIs4nd21p2AB/IJVMXVPF+K4EfYcsG7IzebzR6eQG2Jtkm4OxcMvXbSu9XrUQm/TiszWhfbArOLdh5dNE+52NTdL4ml0xd36j9isjsUUv5t641Wbz3w9779b4gQuO9/7H3/sXe+5OmS4BFprxPYaM/1kWPwuljtmOjQGLAB7uDnqdPfPbK6w56HHA5FmAZih6FjYUjWGU7AN7WHfScOuGZFJFZJZFJn4oFWALs/lN4X/WM3auWAr9NZNKu0XmYGxv558MXbly4Y7jFbx1qD0d9YJ01cIyEMb95qD0c8c4/etH6R20Zar+k0fsXEZlAu0yxDOSnWM7TFMsiIrPbO4EXYA14axgLsIAFK1ZFz707SrcBm3pyuCDdjijdKJBKZNLPLbfDqHz/eeBJWDvLg5Rua2kFPprIpJ9U4f1iwFewAEs/1llrtCDJVuB+LNjyhUQm/chy71etRCa9EPg6NjJ/FRbEyU+t5qP/P4DNiPK1KLAkItI09S58D4BzLuacO8I5d3L0ONw5F2tU5mT26g56HgEcj/VEGCqTdB3Ww+MVE5CtWp2O/eAPM/ZjX8ogFix650RkSkRmtXdh95vBMmnyo+5WAqc1cue/uva4wxKdmw4cGg38cBgbd4TKzpFWHzjP3nO3P7fvumfVu36ciMhkuxw4zTmXv499AXiJc+5259ztwAux3skiIjLLRI3+p2PBlB1lkm7H2jzasE5S49kQpXlNhY5ShwDPxIIQ5dpa1mKjWl5eJg1Yx9gnsnuwpthqbGTO6RXer1ovBA7EAjvjtbf46PX9gBc1aL8iIiXVHWRxzr0Ci0b/DbgwevwdeMA596qG5E5ms5dgw16rmYpgC/CM7qAn0dws1ezN2HdstFLCKM1jounFREQaLpFJHwI8murvSQF2H2uY1iD84ryWYbdjpLXiFGDbR1p8fO72tqEw9qFG5kFEZAJ9DPg/ovuu9/4HwMuwRYVvwKYOm/JrWIqISFO8EAs6bKqQblH0twULepSzGXgC8NgyaU4E5mDTa1WyDXh2IpPet0yak6O8lQsA5Q0AL4nWg9lTZ2DBlUp1m9HocUYzRumLiOTVFWRxzr0em/dwNbZQ1rHR483Rc99yzr2hUZmUWelR7Dq1Vjn5nh0Pb1526pKg+mMYxXqXH9G87IjILPdk7D5TTZAF7P7V0OB1ezB6gP2rcv1mOAx8LAiJuVD3RRGZljTFsoiIlJFvvyg36wXYgvdgBej2cgmxtpE5lG8bOaSKfeZtw9paytUJHkP5ETHF79eJraFSt2gtmwTlRwAV2o6NZqkUpBIRqVu9I1neDVwNPMl7/w3v/R+jx9exRuJrsClJROoVo/oAhccKHFNtqrpa8pM/1rZmZEREBOthBtXfW6HR91VXfbnDRYEY52htaB5ERCaIcy7nnHthmdef75zLTWSeRERkyqi2nO3G+Xc55abbbaW2+kCl92tp8PtVI3/uJnq/IiLjqjfIEgcu8t4PF78QPXchsPeeZExmvXupvtAxF1tfYFXzslOXNdRWCPLArc3LjojMcrdi95lqKxcOu481zHAYrAPwVdSHYi503jtGvbuzkXkQEZlABwDzy7w+H9h/YrIiIiJTzOrob6U2g2HGggm7tcEVaY/SrC6T5m6qb2uZg41SqfR+1XYWzb9ff5Xpx7MTW4NmTg373Qxs3cP9ioiMq94gy7+BrjKvdwH/qfO9RQB+gQVO5laRdhE2t/V/m5mhOvwYKwxV8z2LAff1hb1XNzdLIjJb5ZKpq7G11KqpVAXY/evHjczD0Gjs00OjMebERisGoOe1jriNQ3NCvHtnI/MgIjLBykWVD6fyXPwiIjIz/RKbxmpBhXSbGFvrtVKQYDGQw9ZOHs9lWCCmmgDFQuB64LYyaX4W/a1m9Pl84Pe5ZGptFWnHlUumPNa5u5XKQSqHBYF+mkumqp02WUSkZvUGWd4KnOycO8s591AjuHNurnPubdjCV29pRAZl1roWC9Qtpfx1Oh8rbPywL+ytdahos52HFYIq9erID9f9TtNzJCKz3Xex+02lSlAbsAXINHLnzzv8dxfes61z07yWERe48aeCbglGXcx57tu24IbnHv67TY3Mg4hIM0X1o1w0DZgHzs3/v+ixHjgbuHxSMywiIpMil0zdBVyBrVFSbqS5w0Z/DFO+bWRelPZHuWRqpEy6vwC3AMsqvF8n1tbyoyioMZ7fAvcAe1E+4LEYW/j+J2XS1OJnWACq0iw6e0XpLm7QfkVESqo3yPJ97Gb7BWCTc+4u59xd2I3r88AI8APn3H8LHjc0IsMyO/SFvSHwNmzo6Qp2n2ohhhUKOrEeDFPuB7Mv7N0JvBIbkTOH3XuP53tUBMBVwCcnMn8iMit9HPgTdt9pY/eKUAy7Xw0Cr8olUzsbnYGNQ3NesHpHx8jCtqGgPTbidp06zDOvZdjNbx12d2xZtHk4jB3T6P2LiDTZWuDm6OGABwr+n3/cBPweW+fy9ZOTTRERmQI+gP0mxLG2jcKyeYAFJpYAvwJuAPZh95EvQZRmMTYjyPfL7TCXTIVAEhvhvoLdF4PPt7V0RO/1iwrvtyN6vwej9yuejaQVC4S0AZlcMvWXcu9XrVwydR/2OzoArMSmSivUHuVnCHh/FNQSEWka533tnf+dc1dR+wJTeO+fWfPOmsw514nNzbjQe79lsvMju+oOeg7Egg9PZtfhrB5YD3wPOK8v7J2ywz67g54XAN8AlrN7YHMQuAR4+VQ+BhGZORKZdAz4IfBidq+MhFgD4etyydSvm5WHX1173FGL2wZ+uf/8LYvaYqM4xgoVO0ZafW7Lwnt2jrY+6XmH/26PphIQkfGpDNx8zrk/Ah/33l8x2XlpBF0zIiKNl8ik98I6Qh2LjUYptBn4KfBpLIjySeBpjI1ayRehNwLnA5/LJVNDVe73EdH7HYa1teTfzwPrgG8DX4mCMtW83+Oj43gMY525PFa/WI2NkK80KqZmiUy6G3gfcBA2Iii/31Fs6rRP5ZKp3zRynyIye9RS/q0ryDKTqLIwPXQHPYcAz8d6VIxgw1t/2Rf2bp7UjFWpO+hxwCnAK7BeJoPAv4BP9oW96yYxayIySyUy6b2B92AVq3Zs8cjvARc1uvIznl9fe9yp7cHoe1tj4TLvGR0KY/cMhcE7n3/478rNIy0iDaAysNRK14yISPMkMukE8AJsVMYIFiC4LJdMrStK14W1jcSjdLdH6TbUsU8HPBZ4DjZV+zA2subXuWSq5vt89H6HA93Y2rkD2JrOv2nGCPmC/bYAT8cCUAuwtW7+AlyVS6aGm7VfEZn5FGSpgSoLIiIiIjLbqAw8MaLz/Cbgmdi88K/33v/TObcE63zzC+/9HZOYxarpmhERERGR2aSW8m+9a7LgnOt0zr3HOfc759y/nXNHRM8vcc693Tn38HrfW0REREREZDpzzu2L9eD9KLAv8DiidQa99xuw9VjeOmkZFBERERGRhmipZ6OowvAn4GHY0MSDKagwOOdeD+wPnNWgfIqIiIiIiEwnn8OmLTkUW++qeJ2pS7EpX0REREREZBqrdyRLYYXhGdjCUoUuBZ5Vd65ERERERESmt2cDGe/9LYwtTlwoh3VaExERERGRaazeIIsqDCIiIiIiIuObC6wr8/qCicqIiIiIiIg0T71BFlUYRERERERExncL8PQyr78IW7NFRERERESmsXqDLKowiIiIiIiIjO9c4FTn3LuBhdFzgXPu4c65HwFPAb44WZkTEREREZHGqGvhe6zC8APn3H+B3ui5wDn3cOBDWIXhxD3PnjRKd9ATAPOBEWBnX9hbapq3cts7bARTC7CtL+wNG5/Lqa876OkAlgBr+8LewUnYvwM6sHWQts/WzyGRSc8B2oDtuWRqdBL2HwPiwACwIZdM1fR9SmTSu3yfcsnUhH+O515xWizmfNx7BkLchrOP/UlNxxD2d+1yDEE8W/MxnHfFqR2B80tGfbD27GN/MuHfp6kg7O9qxa6lTUE8u7XW7ROZdIDdEzz2fajpcwQ474pTFwaO+aPerT372J8M17r9TBB9DvOAnUE8O1TH9rv8xgbxbM2fg4jMPN77Hzvn9gc+Dnwievq3WDkuBN7rvb90krInIlKTRCbdDszB6i8TXgebzgrK7CGwY7wye0G6UWBnPWV7ERGZHM77+u7Zzrn3AR/GKgkB9mORrzC833v/mQblsamcc53AZmCh937LZOen0bqDngOBnuixCGuIuws4H7isL+zdXGH7TuAFwOnAI7DPeAtwMdDbF/be0bTMTxHdQc9c4G3Aq4D9oqc9cBPwVeC7tQat6sjDXsCLsc9hRfT0GuBC4Gd9Ye/qZu5/Kkhk0vOA52Ln4DHYtbgD+DnQm0umbp6APBwJnAM8EwvygH0fLgU+lkum7qmw/QLs+3QGY9+nrUTfp1wydXtzcj7m61f1PGvFvG3vPHjR+qfNiY20eO9YNzBv4+1bFveuG5j3ieQxF5a9lsL+rsXACdjncEB0DBuBi4DeIJ4tew7OveK09sVtA287YMHmVx4wf/OBznlGfeDv2Lz4lnu3d35163Dbt2sN+Ew3UYDqNODNwBMZG1W6Cvgh8Jkgnt1e7j0SmfQKrDPDqcBeBdtfAPw8l0ytLbf9eVecunjpnJ3vefiCTWfsM2/bXs55hkZjo9nNS/55/44FX3zdMy6+tN7jmy6iwMhRwCnAMVjAcBT4E3Zv/VOl4GHY3/Vw7Pf1JKAT+224HfscfhnEszOuXCEzx0wvA08lzrn9sHv2w7F7/p3AJd773KRmrEa6ZkRmn0Qm3QYch5X9n4DdwwaBX2Idbv+tQMD4ojL7SViZfTlWViwss6+L0u0XpTsZWBqluzdKd2kumdow8bkXEZFayr91B1miHU37CsNMrix0Bz09wMew4Mog1us+PxIiAHLA6/vC3pvG2f6RwLewxmAPbIv+zgHasfP20b6w9/ymHsgk6g569geuAh6Gnbt8j53C4OK1QHdf2Fu2UXQP8vBU4EvAPtH+d0Qv5UcRrAPe1hf2XtGM/U8FUaHzm8Djoqe2Y+e+Dbset2Mj7L7SrEJ+IpP+DHA2ds5D7LsAECvI0ytzydTPxtm+C/gGcHC0bf4Y8j3CtmKBmh82I/8AP73mBd98yt4PvGJObCQ2HAbhcBjzDs+c2EjMOcfqHR1b/rZ2Zc8bju79Q6ntw/6ux0XHcECU9+3RsczFPouNwPuCePaSUtt/6cpTHvZ/S9Ze1bVw4/6B825wNDY66h0tLnRtsdFgJIyFN25Yft1tm5cce9axFzbl+zTZwv6uGHA51qifv4cUX0v9QHcQz95S6j0SmfSx2PQyy4lGTkQvzYveYzXwllwydU2p7b/6x5MPO2L5qssf1rF1KQ4GR2KjIY7WYNS1BWEwMNoSXrtun1/cu73zpJka8Ar7u+YBn8EChq3YfXUE+37PA4axzyk1XsAr7O86E/ggtg7dEGO/sfOjv1ngdUE8+7+mHoxInWZyGXiyOefmYPeXA4H1wK+899O+Q4yuGZHZJZFJ7wV8HXgS0UwKjNXB5mJl0G8Bn56MkflTXSKTfjaQBpZRusy+Cut0tRdWLl2ElUF3smu7zb3AG3PJ1PUTmH0REWECgyyN5px7I/BGrAEP4Gbgo97735TZJh9IOADrPfpu7/3lNexzRlYWuoOe5wMZrPFoLWONeHkxrNH+PuDkvrD3rqLt98V6piewBr+RErtZjhWy3tEX9pZsWJ7OuoOeBcCNWIBlmLEAS6FW7Fz+BTi60SNauoOeQ4EfY1OU9WPnu5DDPsctwCv6wt6/N3L/U0Eik16CXYuPwUbvlJrOaAn2WXw0l0x9qwl5+ADWmOqwgGUxhwVLBoDn55KpPxZtvwLr6XUQ5b9PHnhXLpm6qHG5Nxf89YQvPmOfe9/i8GwZbhuyLI+JudAtahtsX7OzY9uf+h929JufedEu62qF/V0HYZ/DiugYir8PDqsgDAFvDuLZ3xa+eN4Vp3Y8YdmaGw9euH7/rcNtw0NhrGh7z5zYaOu8lpHYdQ/u/Y//bV761JnYwB/2d/0KeA52/kpdywFWcV0LHBrEs2sKX0xk0k8BvoeNmljN7vf2AJt+bANwRi6ZuqHwxS9decoBT937gX89rGPL4k1DbUOjPlZ0T/HMbxluawm8+0v/vj896Sm/OqPOQ52yohEs52G9BTdhDQbF5gGLgV8Abwri2V2u17C/60Tg89j5Xldi+xbsc8gBJwfx7P2Nyr9Io8zUMvBkc87tBVyDBVjyP7Y7gBd570t2YpgudM2IzB6JTLoDm/3iyVhZp1QdaBEWbDkvl0x9duJyN/UlMumjgO9gnW/6Gb/MPoCVGwOsrluq3SaOlftPzSVT2SZmW0REitRS/q134fviHR7snPuAc+6rzrlklIF63A+8B5s+5TDgSuAy59yjx9nvkcBPsB+vx2NT9lzqnHtMnfufEbqDnjbgvVjv+FI/1GANfKuwAMIbS7z+OizAsorSDcJgha1W4D3RlFozzfspH2Ch4LUjsR6LjfYOrOfLanYPsMDYcONF2OfgSqSZ7l4GPBornI63XsQG7PycnciklzZy54lMei72OeSHxpfisQLyHKzhtdhrsADLasp/n1qAd0dTozVM5opTlx+2bPXrYs67LcPtuwVYAEZ94DcOtg/uPXf7/P3nbyl1DG8FVmLHUOr74LH7zVzgvdEaFw9Z0j5wTlfnhv23lAywADgGRluGd47ERh+7ZN3hHS3DJ9V8oFNc2N91JPBs7Fod71oOsUDVXlgHgodEa/m8B1s8eRWl7+0h9hktA1LFL66Yt+2z+3ZsWbxpqH1w9wALgGPbSNvQqMcftnz1SV++8pSDqzy86SR/v95E6QALWIPoRmyKwmcUvhCNgjkH+/0rFWAB+56vwn5HX7vHORaR6eQDWOevLwLPx0bB7sRGgoqITBcnAUdgHX/GqwNtil57bSKTPmBisjX1ReuqnMP4naJgrMy+Eiu3lwrEwFi7zQqsPiYiIlNU1UEW59xbnHNZ59yyoudfAPwH+AjwBmzKnuuL01XDe/9L7/3l3vvbvfdZ7/37sCmqnjzOJmcBv/Xef857f6v3/gPA9cBbat33DHMssD/wYIV0+el+Xtgd9CzPP9kd9CwCXoI1MlUa9rseKxgcV29mp6IoWJHvwV1pUb9h7Lt0doPz8CisMXATpQtchTYAh2LBxhkjWlzxVOwcjxecyFuPjWhpdLDrLGyodjWLYY8Cj0lk0g8FhhOZdCe2ZsNOKl9LD2Ijk55TX1ZLWzpn53sWtQ/O2TrcWvYYQgI/FAbhwQvXH/mlK09d+dDz/V35PG2juntCAjg6/8S5V5zmDurc+DLnPMMlAyxjdo62DLcHo8G+HVuSFfYzHb0H641W6VrKn+OXRNOL5T0R+D+s8b8cj/W0OCqRST8y/+R5V5zacfCi9cePeudHfVD2nrJtuG1oXstwy95zt7+vwr6mo1OwAEmlKel2YIHPU4qePx77nq6vsH2Ife9fEvZ3Lao9myIyTT0b+KH3/h1RvSaD1U0OcM49ssK2IiKTLgoSnIGVKSuVWzdiU6ee2Ox8TSOHY7MwVFpHZT7WjhDDZkUYj8emlj4ukUmvLJNOREQmUS0jWV4I3Om9f6jh3jnXAnwbazh8JfBYrBFpf2CPGmacczHn3KlY4+bfxkn2FKB42P3voudns6dRXUMeREOe2PWcHYE1Vm+uYvt8gOHpNeZxqnsU1pO8UqN4XoiNvmqko7CREduqSLsDK5g9rcF5mGyPw3rtVHMt5te2OKbBeXgONvSjmnmGh7FG2ZcVPHc41X+fRrDv0zMqJazF3nO3P8thC8xXSrtjpHV4QetQ24LWwcKG5adgPbGqmRpkELv/PHQttrjwoH07tsZ3jrRU8X1yDIVBmFiw+QlV7Gu6OZLKAdO8YezeXHgtPA2bSmxHyS12tRW7fxyVf2Jey8gLFrcNzNsx0jreKJqHeBx4x4p522bUvT0KWh1LdecQLBBzdNjfVVjxPQq7xiueRyxIvhT7XRWR2WE/bBrZQn/ByhJ7T3x2RERqlsDWZa2m/uKxMtGzm5qj6SVfZt9ZId187Pzl1/QrZwsWzHrqHudORESaopYgyyFA8XoPz8TWEfii9/4H3vubvfefxebtf249GXLOPdY5tw1rqPs68GLvfcnFf7G5KdcUPbcmen689293znXmH9gP1UzTUUPafMNx4Y96vkdFtQEGjzUGziTLqb5hHewctFZMVZsOqm+QBctrpcLZdNOBNWZWGsWSN4pNndZI9ZzTwu9DrccQ0uDvU3swOj/01c0kN+qdD5wn5vySgqfz56Da78MuFYXA+WWB827UB1VtH/rAt8dGWs694rSZNv1dG9V/p/MVruUFz9Vyb8+/x0OfQ8yFiwPnCb2rKg+jOD+nZaShU9dNAXOxe3W138cR7PtbeO4XUf13YRT7PZ1p92YRGV9+jbZC+f+3THBeRETqUWv9ZQTrkCWm2np8MM6/S/EUle1FRGRqqaWgvxRbJL3QsdiN/udFz/8Vm26qHv/Dpj1aiM0D+gPn3DPKBFpqdQ7woQa911RVaQqUQvkf88LREvkpgWJUF2hxVNfLZTpZh13b1QabHNWNHKrFdkotnjG+gOpGvUwn27Hz30J1n0MM6zneSPWc08LvQ+ExVFNRCWjw92kwjG0LqmtXJ+a8C71j1LvC4e35cxBQXeOyL9iG0LsHQ+98zIUBlJ8uDCBwodsx0j48Axe+H8IWVK+Gw85j4Zoftd4THAWfw6gPNobeYQGvyhW/GN4NjLRUO+JjutiJ9bYsNyVDofy9p/B3dRPVd1KJYd+ZmXZvFpHyDnDOFY7IzHeeeIRzblNxYu/99ROSKxGR6hTWX6qp47ZQ3Yj32aLaMns4zr9LcRSV7UVEZGqpZSRLqREiT8Om3Lih6Pkh6mxw9t4Pee/v8N5f570/J3rvs8ZJ3s/uw+73jp4fz6ewik7+sW89+ZzirsYKRW1VpF2INegWTsn2T2yu+Wp607diBYI/15jHqe5WbJG/WKWEkQD4V4PzcDXW87Ga3irzsNFfVzc4D5Ptv9hCf9VciwFW8LyywXn4DWMBt0ryPeR/WPDctdh8vNUcQwv2ffpTjXksa83Ojj94HDEXVizsz2sZbt063Da0dbj9pwVP/w2rOFXTQ60du/88dC2O+ODO+7d3rp7bMlLF98nTFoRBbuvCmdjgdA3VB0lasXtz4bVwNfY9ryZQswC7fzz0OewYafnlxqE5O+a1DFccdefw4DyrdsyfUff2IJ4dBa6g+mBXB3BVEM8WLvj6F+war2b04iLs9/SfNWRTRKa/j2G///lHfnrjrxY9/6/or4jIVJIDbqe6+ovDykS/b2qOppersfawuRXSbWOsY1Wl4EknNh3wX/c4dyIi0hS1BFn+BbzcObcAwDn3aGyO8d9574t7Zx8M3N+YLBIwfo/Tv2GjaQp1M/4aLnjvB733W/IP7IdqprkCuAdYViFdgDUg/aIv7H2ot3Rf2LsJG500j8rXyFLgAWwtnBmjL+z1wPnRfys1DOcDTec2OA+3YY2yi6jcMLsE+A/w70bmYbLlkqlB4ELsHFcaebcUC2Zc1uBsnIf1RqomaBkDbsolUzfnn8glU1uAXqyQXelaWgasxgI7DbN+YO6nNw22DyxoHS57DAGhawvC4LbNS6956zEXPvDQ8/FsPk/5qQTLWYpVzK7KP3H2sT/xd25Z9CPvHa3BaNlzMDc20joYxsL7t3dmKuxnOvo01QXA8+f4kigokHcd1vFgcYXtHVYp/ksumcrmnzzr2Au337Zp6W9jzrtKAbf5rUNtO0ZaR9bs7PhEhX1NRz/FRrNUmn5tHhY0/WnR87/FvqdLK2wfYN/7S4J4dlPt2RSRaeqVwKtKPEo9n39ORGTKyCVTIVYXdlQuty7G2lQubna+ppFrgZuwOno5+RlERrGOVONxWAeq3+WSqQfKpBMRkUlUS5DlI9iC9rc7567AIugeGxlS7MVY43BNnHOfcs493Tl3QLQ2y6eAo4kau51zP4yeyzsPON45l3LOHeyc+zC2+PiXa933TNIX9g4Bn8B6Me9N6Qb6GLag+H3A10q8/k2soXQFpRu382sFDAOf7gt7Ky3qNh19HDs/rYzfOJ5/7Roa37gP8DngQWAfSn9fA+wz2oR9DjNteiWwUSE3YyPpxivkL8HOxbm5ZGp9I3eeS6Z2Ap/HCsDjBXwdtsj4APD2Eq9/G7gD+xzHCxYtxxp0P5NLpho6RVPy2AvX/evBfb456p3vbB1sKzVFcMyFbnH7YPuanR3b7tnW+Y4Sb/MlLKC6D6W/D/kFfXcCnwji2V0WBd8wOOdT2S1L7ulsHWptKxlo8cyJjbTObRmN3bhh+bXbR1pnXEUtiGevwXr5BYw/CiLArvM1wAcKX8glUx4L1GzGvvel7u0B9hmtA9LFL67aMf9d92/v3LiobbA95kZL3FM881uG2mIO9691+1z8lmN+eluVhzed5O/Xixg/0NKBNRr8mqKRZUE8uwMr+wyz65o5hVqwzyiH/Z6KyCwRrVNZ02Oy8ywiUsLF2EjcvRi/DrQoeu1buWTqngnK15QXBak+ic0EsA/ly+wPYPX9+Djp8u02q7D6mIiITFFVB1m89zcCx2A9aVcAfwee672/rjCdc+5obAqx3jrysxfWoPo/bDTG4cBx3vu+6PX9sB+ifJ6uAU4HXof17j0JeJH3/qY69j2j9IW9vwbejfXAX4k1BC3Ahpnug/2I3wm8si/svavE9vdjveuy2OeyItp2QfReK7EG5ff3hb0/a/bxTIa+sHcr8AxsVFAL1ojeGj3aov874B/Ac5sR4OgLe2/Aru9+xj63zuixd/Tcg8Cb+8Levzd6/1NBLpnagPXy/Dc20mMF1kt/QfT/lVgA5DNYMKMZefgY8AWsl9EcrDKRvxby/98OvCyXTO021VcumVoVHcOtjH2f8seQ/z4NAR/MJVMXNeMYTn/qZW+7un/f7474wC9tH5izoHWwbU5spHVubLh1cfvOOQvbhtpX7Zi/5S9r9j3xzc+8aLcRUUE8eyd2T7gLuw73YeyekD+mbcA7g3h2t5FtZx174fb/rN/rGbduWnr3vJaRliXtA3M6WoZb58RGWue3DLUtaR+Y0xaE7voH9742u3lJ9wxcjyXvBGzamHxgro1dr6U27Pv+rCCeXVO8cS6Z+hvwZux7vwK7D+TvCfnPpR94fS6ZKp7Kk7ce89O7/752xfH3bFv4YGfrcNvi9oE582L2OSxoHWxb0j4wx+O4Zs3Ky+7fseDMxh/+5Avi2RB4F9Z40IF9/xZj1/Li6P8dWCAmVTSaKP8eP8OCYIPYtKOFv7ErsO/E/4BXBvGsehyKiIjItJJLprZj9dC/Yh3aVjJWf1mKlX8C4CtYhzQpkEum/gq8FZtpYbwy+2qsPestWEAmX4bMp8vX/+8FXl04Ql1ERKYe5/1MbceqjnOuE+sVvDCaPmxG6Q56DsSCTydjPU081kh6PnBZX9hbdoHt7qCnE3g+cAbwCKxhMD/9UW9f2Htn0zI/RXQHPXOxdYFejY3mAjuPN2KjgL7b7BEk3UHPXsCLsM8h3xtmDfAT4JK+sHd1M/c/FSQy6XnAc7CC6GOxc7ADuATozSVTt0xAHo4E3oMFnPOjarZEefhEpR5ciUx6AWPfpy7sGLZi36eLc8nU7U3K+kO+flXPs1bM2/aOgxeuf/qclpEW7x1rB+ZtvGPL4ovWDcz7ZPKYC8teS2F/12LghdExHBAdw0ZsSqWLg3i27Dk494rT2he3DZx9wILNrzpg/uYDnPNuNAz87VsW33zf9s6vbR1u+/YMDrAAEPZ3OeA0LFjyRMY6PKwCfgB8Nohnt4+zOQCJTHoF8BLgVKzS5rGK2vnApblkam257c+74tTFS+fsfM/DF2w6Y5952/ZyzjM0GhvNbl7yj/t3LDj3dc+4+NI9OMRpIezvCoCjsN/HYxlb5P4qbJrCP0cBmXLvcRDQEz06sc/hduxz+FUQz864coXMHDO9DCyNp2tGZPZJZNJtwLOxOli+3DoI/ALrsPLvaLS1lBCV2U/Eyv7LsbLiA8AFwM9zydSDUbr9onSnYEEsjwVXzgcuizoeiojIBKul/KsgyyypLHQHPfn1V0aBnbUGBbqDnnyv61ZgW1/YW7bhaabqDno6sJ48a/vC3nLzpjZr/w5bJ8AB22fo9GAVJTLpfI//bdFw7InefwzrZTQEbKi1YpHIpHf5Pk3GMZx7xWmxmPPx0LPD4zbVGtiIAgX5dWa2V2qMLuW8K07tCJxfMuqDtWcf+5MJ/z5NBWF/Vyt2LW2qFFgpJbqWOrCK2I56KrnnXXHqgsDROepd/9nH/mS3URuzQfQ5zAN2FE91V+X2AbZm0TAwEMSzs/LeLNPLbCkDS+PomhGZ3aKAyxxgey6ZmpVlxnolMukAK2uGwM7xyuxRuofabRTAEhGZXAqy1ECVBRERERGZbVQGllrpmhERERGR2aSW8m8tC9+LiIiIiIiIiIiIiIhIREEWERERERERERERERGROijIIiIiIiIiIiIiIiIiUgcFWUREREREREREREREROqgIIuIiIiIiIiIiIiIiEgdFGQRERERERERERERERGpQ8tkZ0Cmvu6gZzHwAuBg7JpZC/y6L+y9dVIzJjIJEpn0w4EXAnFgFLgd+EUumXqwyu0XRdvnv0/rgF/nkqlbmpLhJkhk0suwY3gEEANWA7/MJVN3VLl9G/As4MnAPGALcBXwl1wyFVaxvQMOBY4DlgJDwI3Yedxa4+HUJZFJzwWOB54AzAU2AX3AtdUcQ4PysB/2OewHeOBu4LJcMrVqIvYvIiIiItIsUb3pBcCjaEC9KZFJHwK8C+jC6jCrgHNzydSf6ny/lcAJwP7RU/dgZfEH6nm/GvbbBTyfsfpoNtrvhqJ0hwDPA5YDI8CtWJ1tUzPzJyIyWznv/WTnYVI55zqBzcBC7/2Wyc7PVNId9LQCbwdeijVkFtoJ/BV4X1/Ye+9E501koiUy6TjwSeAZWGDAYQ3bYA3sFwKfziVTg+Ns3wK8DXgZsCx6Ov8eO4G/A+fkkql7mnQIeyyRSbcD7wFOBRZi+c8fww4sUPK+XDLVX+Y9XgK8EwsMBAXbD2MVhA/nkqm/lNn+YOATwBOB9oLtPRYA/ibw9WYFOqIAz0uBJLBP0TEMATcBH8glU9c3Y/9RHhYDHwWeA3QUvbwVuAz4SC6Z2tasPIjI9KcysNRK14yITISo3nQW8AqsHaKwzjEA/A14by6ZurvK91sI/ALr4FXc0TgE7gBOrDZ4k8ikO4EPY4GOBUUvbwV+hdVpGnqfjII6nwCejnXyKqyPbgTOBz4HrMDqrU8uke5B4AdYcGmkkfkTEZmJain/KsiiykJJ3UFPDPgicBIwiDUijxYkmQ8sAu4ETlOgRWayRCa9D1ZoPQS7XxSOlgiw78Jc4NfAm3LJ1FDR9jEgDZxM+e9TDji92grDRIpGn3wNeC4WFNqEVUryFmCBl1uwY9gt0JLIpF+OVUjagPVYUCJvDlaJ2oKdwytKbH8I8GOs4rABC+zktQCLsV5p38aCDA3/gUtk0kngHVhlZQMWHMqbGx3Dg8Crc8nUP5qw/0XAj4DDsetwC2OVJod9BvOBq4FX5JKp7Y3Og4jMDCoDS610zYhIsyUy6QD4PNapq1y96W7gtFwydVeF91sAXAccFL3PcFGSVqz+sBk4qlKgJQqw/AB4CqXL4p1YvejvwMsaFWiJAiwXYjMJlKuPXokd6wHYuSvsdBWL0rVH7/WOiRqBLyIyXdVS/tWaLDKeM4CXYBfSenYt2ID9WK/GfsDT3UGPm9jsiUyoT2ABln52LdCCBRo2RI/nAK8usf2pWMCy3PdpFZAAvhCNlphqXoMdX/5YiwvkW7Hzcwh2vnaRyKQfA7wf+91Zza4BFrBeaQ9gFacvJDLppUXbtwAZbPTIA+waYAEbAr8uev5VWDCooRKZ9JHYaKQRYA27V9J2RnlbCmQSmfS8RucBOAcLsKzBrqfCQJLHKlPrgKOAs5uwfxERmWTOuac7537pnFvlnPPOuRdVsc3RzrnrnXODzrk7nHOvaH5ORURqdirWMW0L5etNBwBfrKLe9D2szWKY3cvuRM8NYh2VflZF/t6BBVjWUrosvjl67clR2kb5DBZgWc349dGNWBvOo7BzVDyqfRQ7p1uwc3xqA/MnIjLrKcgiu+kOegJsSiMHlOsFPYr9kB8GPG4CsiYy4aI5b5+BFZjLDaneiRVwz4xGfeS3r/b7lC8cPwF4/B5mu6Gi4zkT+87vLJN0BDtPR0dr1xQ6GevVta7C7tYAewEvKnr+GcAjsVEi5UaobMF6pJ1ZYT/1OA0bcbOhTBqPHcPDaHCgJ5FJ74XN+7yd0pXEvEEsaHVK1NtORERmlg7gBuDN1SR2zh2Ijbb9I7am2bnAt51zxzUpfyIiNYvqTS/F6k3lpr3N15sOxaYQHu/9FmBrKHp2D9YUyr9+UCKTflqZ91sCnIh16iruMFZoKEpzYrTNHolG8x/J7qN6SmnFRviXG6GyDTvHL43OuYiINIBuqFLKYdhicBurSLsda3Q8oak5Epk8z8fWYKlmQfWN2MKHRxU893hskftNVWy/g6n5fToKW0OlmnvCVux8vTD/RDSi48WUD9DkhdHjlKLnX4RVGEqueVNkM/CkEoGeuiUy6WXAcZQPlOXlg3EnNWr/kedhUxBsriLtJmztn2c3OA8iIjLJvPe/8d6/33v/8yo3eQNwl/c+5b2/1Xv/ZeBibHSmiMhUcSg2Kn5TFWnz9aYXlknzZmwKrXKdk/KGsem0ziqT5nhseuJq8rcpSnt8FWkreSF2HJXWW1yEBYxasdkBytmEnetD9yxrIiKSpyCLlLICWzNhoIZtVjYpLyKTbQXW06caQ1jhfJ+i7dup/vsUAvtWnbuJsQI7rnI9tgo5dj0HS7Fet9UEWcDO1b5Fw//3p/xIouLt24rysKfi2OdY7TEMYoGpRtoHqzhVM3fyaJS2kedARESmp6cAfyh67nfR8+NyzrU75zrzD3Zf4FlEpJH2obZ2iBAbPT6eREG6apVr16ilLB5GaVfUsO/xVFsfbYv26bBASzn5+lIj8iciIijIIqXlh6BW27DsqL7xU2S6yTdW16Lw+1Dr9lPx+zRK9fcD2H1Ifv4c1PIexUPha81DqffYE7Ueg2vw/vN5mIhtRERkZoljU1kWWgN0OufmltnuHGz0ZP5xf3OyJyIC1F5urVTerqdOVW6besrVjajXVfsexevDNPK9RUSkAgVZpJQ7sOG3HVWkddgP+O1NzZHI5Lkj+lvN/XIeNtrjzqLtd1L99wkgW3XuJsYd2MiMcg0xefnzdEfBc+uiRzXngGg/t+SSqcLKwU3YaJpqzMfuYbkq01fjPmy9l2qPoR3LcyPdgV0jLVWkzfdku6NSQhERkXF8ClsMOv+YaiNtRWRmybdDVJrqCqxM7IDbyqS5DisPV1uHgPL1sHy5utIokcI0d5ZNVZ07qK6z10CUJqTyFMvzsTpqI/InIiIoyCIl9IW9twL/wCpTlXRiaxRc0tRMiUyey7Dem9V8HxYBN2IFegByyVQW+GuV2+e/Tz+rOZfNdR0WMFhcRdpF2Pm6LP9ELpkaBn6CVTYq/e60YpWInxQ9/zOs4lBNkKMD+E0umeqvIm1VcsnUNmz++jlUruDMwXqFXdSo/Ud+C/RT3eewGLgbuKrBeRARkemnH9i76Lm9gS3e+3GnwfTeD3rvt+QfVLc+nYhIXXLJ1B1YvamziuQLqNwO8X1s7ZFqgiJtWPn9E2XS/AEb0VdtWfx+oK+KtJVcit1/K9UnN2L1lCEqT3HcCfwll0yps6yISIMoyCLj+Q7WoLm0TJp2rHBzWV/Ye++E5EpkguWSqbXAT7FRKuVGcizGFkz8VtEIDIDvYQXdZWW2b8d6FP06l0zdXXeGmyCXTIXAt7DjK1epmBs9LswlU+uKXuvFGnnijB+kCLBGn/9hc8UXugG4Otp/uYrS3tiikD8sk6ZePwE2YMcwnhbsc/4P8OdG7jyXTG3HKoutlA82dWLn8ju5ZKradXRERGTm+htwbNFz3dHzIiJTyXeprt7UCVyeS6bGHbmeS6ZGsXpYfjH48cSwsvPVFd5vIMpfjPJrVC2I0nwv2maP5JKpVVgwaT7WmWs887HA0zB2jsazDDvH393TvImIyBgFWaSkvrD3D9gUAWCLv80reLkV2AsLwPwR+NDE5k5kwn0K+A3WwL831tMpby62YGALcB7wi+KNc8nUlcAnsQJ+qe/TcqywezXw/sZnvyEuw46vBTvewoBTG3ZeFgOXA58u3jiqHLwZWI+dg4WMBVuCaNsV2BRfr88lUzuLtvfA27BRNXtj56tw2qz52DQmg8B7c8nUdTRY1NPrbVhPsn3ZtXIVw+6JceAW4E1Rxa7RvooF/TqjfRVWoOZgC3LOwypNP2jC/kVEZJI55+Y75w51zh0aPXVg9P/9otc/5Zwr7GzwdSDhnPusc+5g59ybgJOBL05szkVEysslU1cBH2es3lTYsai43vS+Kt7yXVjnrQArKxdOHRZgZelWbPrzF1fxft8Cfhzlq7gs3h491xGl+WYV71etjwK/B5ZgbTGFQaN5WD0qwM7dH7BztLwoXQd2Tj3w8ehci4hIgzjva13PeWZxznUSTQUUDYOXAt1Bz3OA1wOHYoUGHz0ewHp1f70v7K00FFVk2ktk0m3Aa4EzgYdhhdj8cOybsEL0L0qMYil8j2cDbwCewK7fp1VE36dcMrWjiYexRxKZtANOwM7DYxhb9yPE1iz5MTaSZ9zRE4lM+tHAW7AetB2MzS+8CQtQfTmXTN1XZvuFWLCmh7GpTxzWG+sfwNdyyVRDR5CUyMMTgTcBR2OVmvxnvh74OXYMa5u4/xjw8uiRYCzYNIzNI/1dbDRR2Kw8iMj0pzLw9OWcOxrr6FTsB977Vzjnvg8c4L0/umibLwKHYFPYfMx7//0a96trRkQmREG96fFYcCRfb1qN1Zu+Vm29KarDfBp4JRakyHf08tgaMJcDr45GjVfzfgFWJ3wF8AgscOOw6cZux0ae/7jRZfFEJj0HeB1wOlYfza9LM4hNWf3NXDL1y0QmPQ94I3Aa1gErn24A+DdW5/x9I/MmIjJT1VL+VZBFlYWKuoMehwVZHon1hFgD/Lkv7N3joa8i000UbHk6VmAdwRYi/Fe54ErR9g54HPAo7Pu0Fvhz8ciNqSyqWDwReDjWwL8KG15f9dRUiUx6P+BJ2IiYrdH2D9aw/Xzsc1hGVLHIJVO3VH0QDZDIpA/CzsMcLEj051wytWkC998CHIlVsjy2BsvfFVwRkWqoDCy10jUjIhOpRL1pHfCneutNUUellwKHYR3m7gC+UW1wZZz3OxLYL3rqXuCaJo1mL9xvO1YPimP10SxwfXF9NJFJz43S7YV1xroV+G+19VYREVGQpSaqLIiIiIjIbKMysNRK14yIiIiIzCa1lH+1JouIiIiIiIiIiIiIiEgdFGQRERERERERERERERGpg4IsIiIiIiIiIiIiIiIidVCQRUREREREREREREREpA4KsoiIiIiIiIiIiIiIiNRBQRYREREREREREREREZE6tEx2BkREppuwvysB7AOMArkgnl1by/aJTDoBHA20ATmgL5dM+UbncypLZNKLgecCi4C1wC9yydRgtduH/V0OOBhYCgwB/wvi2c215CHs71oB7A844P4gnr23xu2XA8cDncBq4LIgnh2tdvtEJh0AhwCLgQHg1lwyta2WPEy2RCbdgh3DQmAHcEsumdo5ubmafcL+rjnY59ABbAFuDuLZkcnNVW3C/q552DHMBTZhxxBOaqZEREREREREquC8n1XtertxznUCm4GF3vstk50fEZmaokb95wAvBZ6EBUg8sB34DfCDIJ79T7n3SGTSLwDeCzwBiEVPe2AN8GPgfblkqupG+ukokUkfAnwaOBZoL3hpG/BL4B25ZGrNeNuH/V2twInAmcCjgVbsHG4CLsE+h1y5PIT9XU/GPsdnA3OwIMsgcBXw4yCe/WOF7Q8DPgE8DbsOiPKwBfg5kCoX8Elk0nOAU4AzgC6sw4MHHgR6gR/lkqn7yuVhsiUy6Q7gdOwYDsSu5xALmF2IHcO4n6M0RhToeylwKhDHRiiPAvcA5wM/CeLZKV22iYKdLwNOBpZhxzAC3IEdw4VBPKvAXROoDCy10jUjIiIiIrNJLeVfBVlUWRCRCsL+rgD4APBqrEF8CzbywGE9x/O9x88J4tlLSr1HIpN+D/CRaPvR6OGxxul8I/v1wNNqGdExnSQy6WcBPwPmYw3yI9hxB9g5cFjA6ZhcMnVb8fZRb/3zgOdF22zCRrEEwAIsYLIGeFMQz15TKg9hf9fLgQ8C87DAzvbopXnRewwC5wLnBfHsbj+QYX/XicAPsN724x3DfcBTg3j2gRLnoBP4KvDM6KlNwHC0fScWeLoPeG0umbqh1DFMtkQmvRT4NhZsDLFjGMGu5U4s8HQH8OpcMpWdpGzOeNGIuu9hgbphrCwzil2Hi7Br6l/Aa2odbTdRwv6ux2DX0gHYPXULdk21YsfggD8Dbwji2U2TkskZTGVgqZWuGRERERGZTWop/2pNFhGRyt4AvBZrgF+FNc6PYA2bm4AHsEb6z4T9XUcWb5zIpHsYC7AMRNuFWOP8SPTcKPBE4LLmHsrkSGTS+2OjNOZj53GIsXMwWvDc3kBfIpNuL/E2HwVeiDXErsKmpxqJtlsfPbc38NWwv+ug4o3D/q7nAB/GggEPYD+UI9FjS/TcKPB24LQS2z8W+D4WYBkocwwPA66MRj8VngMHfA54FrARm2JsZ8ExPBg9tx/wzUQmvaLEOZhUiUw6BnwFeAqW337sXIxgx78ueu4RwLcTmfSSScrqjBb2d3ViwYlHYud7LXb+8/eTfuzzOQL7PrROUlbHFfZ37QV8EwuwrMLyO4Qdw07su7Aem1rxi1GwW0RERERERGTKUYVVRKSMsL9rAfB6rBG93Jofa7CREG8s8doHGAuwjGcEa7B/ZjSl1kzzIWyUwyAWlCglxAJQ+wBv3uUFC5qciAW4doyzvccaa+PAy4u2D4C3YKNdHiyTz43Yb+Nbwv6utqLXPooF08p9jvnRLQlsOq1ChwLHYYG58d4jjI5hP2wKqKnmacBTscbvoXHSjGIN5I8AXjxB+ZptXgQ8CgumjDfFYD5w92TGRk5NJadg35NV2HVfyiD2nTwGOGyC8iUiIiIiIiJSEwVZRETKez6wF7ChirSbgaeG/V2PzD+RyKSfiC3QXs1aK0NYMOacOvI5ZUWjH07AgiCV5qgcxaYIem3R8ycxNi1bOR7rBf+SsL9rUcHzhwOPobrPcQMW5Dg2/0QUbOumcv7BgiwB8Nai53uwIE+lxe3zwabTovVbppJTsWu00hoZ+Snxzkhk0iprNFAUMDyDsYBeOQPYyK1Tmp2vWkQBzNMYG9VXznZsGr2Tm50vERERERERkXqo4UNEpLzHYY3+1QRJtmJTSf1fwXPHYY2cwzXs8/E1pJ0ODsZGsVRzDsEaXQ8oeu5wxtaxqWQLsDDab97/Yes8VLOAdn6dl8cVPPcUrKG3UqN2Xli0f7ARBeON/ii2BViOLSo/lRxB+ZE8hbYC+2Mji6RxlgAHUTlYl7cDeHLx9HWT7GHYiLVq13QYwL6DIiIiIiIiIlOOgiwiIuUVTxlV6zbz6ti+1Hok09mC6G81AZJ8uiBawyRvDpV7vOeF2O9b4efQVsP+8wo/h/lYsK2W94iVeL89OYapYCYcw3TXRvWBX7BrtoWpVeZrx46h2mvJM/PuiyIiIiIiIjJDTKUKt4jIVLSe6hvWW6K0hVNS3R89V8v9dn0NaaeDexhrcK9GAAzkkqnC874GO7/VaMdGDhV+Dhui960mDy56FH4Od2HHUBw4GU/A7iMN1mKjaapR6himgrVUHzRpx0bubGxedmalTdh5rTbo0AZsCOLZaoMyE2E9NiqslmNY27zsiIiIiIiIiNRPQRYRkfJ+hy2+XM2IlEVYMOBPBc/9CJuup5rG9QALyPy0tixObblkajVwG9UHKBxwVdFzv8bOTTXncSFwK3BLwXN/wNbMWVjF9guwz+y3+SeCePbfWMCs2mMA+E3R/y/DPuNq3mMB8M9cMnVfDfubCJdiwa5qpp7qAPpyydTmpuZolgni2R3Yfamae5LDvjOXNDVTNQri2TXAX7ARYhWTR49Lm5knERERERERkXopyCIiUt71wH+wdRDKNSy3Yr2ye4N4dnv+yVwytR1rbHdUvue2YWsUfHkP8jtVfQ0bCVIpSNKG9XD/VNHzv8WCHMsrbD83+nt+EM8+NBVREM+uBX6BNfyXGxETYIGYPwXx7J1Fr32fsamXysmPQvlk0fOXAeuofAwd2FRQF1RINxl+hgWrllVI14kFJy9qeo5mpwuxdUoqBQ2XYmvjXNz0HNXuAuy7vqBCuuXYiK6fNz1HIiIiIiIiInVQkEVEpIwgnvXAe4HVwApKT5XUAeyNBWS+UuL1NwGrom1LBRkCbM2RYeBtuWRqeM9zPuV8A+u5HqP0OXSMTR30o1wy9ffCF6Pe++/GpuBaQelARycWDPstpRv3P4+NbokzFowpNCd677uAj5Z4/RPAv6N9l/oc88fggXODePaOwhdzydRG4P1Y8GGfEsfgsNFQC7Fgxq9L7GNS5ZKp+7Hz4LFrvnhUjsM+g/nAD4CrJzSDs8c/gG9ho1mWsnt5LgD2wj6PzwTx7F0Tm72q/AELFi0AFrN7EDuGfVeHgQ8F8ey6ic2eiIiIiIiISHWc97WuAzyzOOc6iaaQ8d5vmez8iMjUFPZ3PRbIAI/AGv9GopdasR7lVwNvC+LZB0ttn8ikV2KNig9nbFowGGtY3A4kc8nU95uR/6kgkUnHsCl/jsPOYfE5GAa+A7ylaD2Wh4T9XccAnwFWRtsNMzYF147o/T8QBWVKbb8S+BLwRMZGzYAFPEaAm4G3FAdICrbvwIIfR45zDEPAF4J49n2lzwIkMukXYEGcvQuOIRY9tgHnA5/IJVND473HZEtk0qdhwcel0VMjWP4DbOTEt4F0LpmaSuuAzChhf1cAnA28HgsweuxzyE/nth74LPCjKFg85YT9Xa3AOcBLscBciI3iasWOZx3wkSCenVLTnc0UKgNLrXTNiIiIiMhsUkv5V0EWVRZEpEpRg+AzgRcB+2MNmjdhU/H8p1JDZiKTdsALgLcDXVhj6HpsDZZ0Lpna2rTMTyGJTPrxWAP9k7HRI9uAPuCTuWTq7krbh/1d84DjgedjI0IGgGuBi4N4NlvF9gFwBHAicDDWIH0ntm7FX6pZIDzs7zoSG1lzGBas2YoFXz4dxLMPVNo+kUkvAJ4HPBebDmkH8Dfg4mrOwVSQyKQXY9fzcdjolW1YsPHiXDK1ajLzNpuE/V37AC8GjsZGhWzEvk+XBfHshknMWtXC/q79gJOAp2Kjcx7Epln8VRDPqmzWJCoDS610zYiIiIjIbKIgSw1UWRARERGR2UZlYKmVrhkRERERmU1qKf9qTRYREREREREREREREZE6KMgiIiIiIiIiIiIiIiJSBwVZRERERERERERERERE6qAgi4iIiIiIiIiIiIiISB0UZBEREREREREREREREamDgiwiIiIiIiIiIiIiIiJ1UJBFRERERERERERERESkDi2TnQERkekikUnPA44HXgLsD4wC/wV6gb/mkqmw2Xn49O/OfHX/zo6P37tt4V4DozE3Jzbq95u/eW187vb3v+e4H3+n2ftPZNIBcBRwEvA4IAbcDfwc+G0umdrR7DzsqbC/qwU4GugBDgYccAfwM6AviGeHJi93IiIiIiIiIiIynTjv/WTnYVI55zqBzcBC7/2Wyc6PiExNiUz6COA8YD+sUX4o+tsGDAPXAW/OJVOrmrH/T/3uzNb+HR33Xbd+n70HRmPEnCdwntA7Rr1jTmyUJy5dvSY+b/vDzjnux8PNyEMik14BfAV4ItCKnQOPnQMP3AuclUum/tmM/TdC2N+VAL4KPBrraDAYvZQ/htuBNwfx7M2Tk0MRkYmhMrDUSteMiIiIiMwmtZR/FWRRZUFEKkhk0k8AfgAsBdZhQZVCc4BlwE3Aqblk6sFG7j912evc0Giw9h/rVi5rDUaZ1zJM4MZeDz3sGGllOIzxpOUPPNgWC/dKn/DNht7cE5n0MuBC4DHAg8BAUZJWYDmwHnhZLpn6dyP33whhf9e+2DEchB3DYFGSNuwYVgGnBfFsdmJzKCIycVQGllrpmhERERGR2aSW8q/WZBERKSOaHutjWOP7anYPsIAFHPqxAMSbGp2HRW0D5123fp9lrbFR5rfuGmABCBzMbx2mNTbK9ev3WbaobeALjc4D8Gbs+PrZPcACdl5WY8Gmj0fnbap5B/Bw7BiKAyxgI3NWAyuBD05gvkREREREREREZJqaio1gIiJTyeFYcGE9Np3UeEaAncBJiUy6s5EZuH/7glcMhQHzYuVnAZsXG2YwDHhgx4JXN3L/iUx6IbYGy07sOMfjgQ3Y+TqskXnYU2F/1wrgucA2bC2dcZNivRSODPu7Dp6IvImIiIiIiIiIyPSlIIuISHnPxqaR2llF2k3YiJenN2rnn/396XOzW5YsaAtGdxvBUixw0BaMkt28ZMFnf3/63EblATuepdjxVbITO1/PbuD+G+EYYAEWQKlkKzAX6G5qjkREREREREREZNpTkEVEpLzF2AL31ciPkFjUqJ07eOxIGKPFhVWlb3Ehw2GAg0c1Kg+MnYNyI0AKuWibqWQxNkql2rVqPFPvGEREREREREREZIpRkEVEpLwBqm+YBwswlFrvoy7OcZ/DE/rq4jyhdzjbbnWj8kDpNVgqadg5aJABav/Nq+e4RURERERERERkFlGQRUSkvOuxIEtLFWkXANujbRriHd0XrF7ZsWVkMKxm9zAYtrCyY8vIO7ovaGSQ5XpgB3Z8lbRgI0aua+D+G+F6LPAzr4q07dionYZ9jiIiIiIiIiIiMjMpyCIiUt7lQD+wpIq0C4GrcsnUnY3MQGLB5r87YCgsf8seGg1wlv6aRu4/l0zdAVyNHV8lS4HVwG8amYcGuB74D9VNAbYUuAu4qon5ERERERERERGRGUBBFhGRMnLJ1A7gy1ReZ2QfbGH4rzU6D4vbB04+YMGm0a3D7QyPE2gZDgO2jrRzwIJNo4vbB05qdB6Ar2DHt0+5rEZ/vxydtykjiGc9kMFG5OxdJulSYAg4N4hnRyYibyIiIiIiIiIiMn0pyCIiUtn3gHOxe+ZKbERHGzat1FJgXywAcVYumfpXo3f+ju4LVh+2rP9FB8zfFG4dbmPjYDuDowHDYcDgaMDGwXa2Drdx4PxN4WHL+l/0ju4L1jU6D7lk6lrgbcBm7HiXYsffhp2Pldj5ORf4fqP33whBPHsl8B5gJ5bfxdgxtAOLoudC4BNBPHvJJGVTRERERERERESmEed9Les5zzzOuU6s0XCh937LZOdHRKamRCbtgKcBZwDHYMEFgC3AJcAFuWTqf83Mw+d+f/qj1w50XJLdvOQR6wbmudA7AudZPmeH71q44fa95mx/yTuffcHNzcxDIpN+JHYOXsLYGi1DwBXYOfhzM/ffCGF/1+OwY3ghY2u0DGBTnF0QxLP/nKy8iYhMFJWBpVa6ZkRERERkNqml/KsgiyoLIlKjRCa9NxDHFke/N5dMTei941O/O7PV41Kjods3Fvj7HT59znE/Hp7IPCQy6U5gPyAG9OeSqTUTuf9GCPu7lmCjcgBWB/Fsw0cAiYhMVSoDS610zYiIiIjIbKIgSw1UWRARERGR2UZlYKmVrhkRERERmU1qKf9qTRYREREREREREREREZE6KMgiIiIiIiIiIiIiIiJSBwVZRERERERERERERERE6qAgi4iIiIiIiIiIiIiISB0UZBEREREREREREREREamDgiwiIiIiIiIiIiIiIiJ1aJnsDIiITKREJr0f8AxgAbAT+FsumbptAvcfAEcCj8LuwWuBP+SSqc01vMdBwFFAB7AduDqXTOWakN2mCfu7HgU8GZgLbAX+FMSz905urkRkMoT9XQ54LHAYMAfYBFwVxLOrJjNfIiIiIiIiItVw3vvJzsOkcs51ApuBhd77LZOdHxFpjkQm/XDg7UA3MB8IsdF8O4FrgC/mkqnrmrh/B7wYeANwMBZg8YAD1gO9wLm5ZGrc+1Aik350dAxHA/MKjmEHcBXwhVwydXOzjqERwv6uw7BjyAdY8sewDfg98IUgnr1z8nIoIhMp7O96KnA2YwGW/D1hK3A5dk9QALYJVAaWWumaEREREZHZpJbyr4IsqiyIzHiJTPqxwPeBlVjD3RYswAEWcFkEbATenEumrmxSHs7CggutwAZgIHopFu1/LvBP4OW5ZGpjie2fBHwL2Bu7Z21lLEizAOjERsW8JpdM/bMZx7Cnwv6uY4EvA4uxnurbopcclv8FwP3AK4J49qbJyKOITJywv+sFQBr7/m/ERuaB3RMWYvfnHPDyIJ69fVIyOYOpDCy10jUjIiIiIrNJLeVfrckiIjNaIpPuAL6GBVhWYTfHwujyNqxhvxM4N5pOrNF5OB54GzAS5WGg4OVRbCTLWuAI4DMltl8GfBVYHuW1MEjko/8/EL3+1UQmvbTRx7Cnwv6u/YAvYg2n9zMWYAE7hs3YuVkJfD3s7+qY8EyKyIQJ+7seCXwWG5V3P2MBFrB7wibsnpAAvhb2d7VNdB5FREREREREqqEgi4jMdM/DGun6sWloxtOPBSlOauTOo2nCXgW0YT21xzOEBRqOTWTSjyh67cXACmA1uwaICvno9ZVR+qnmZOz8ri6TJgTWYJ/XcyciUyIyaU7DRvH1l0kTYgHoRwHHTkCeRERERERERGqmIIuIzHSnRn9HKqTzWKDjtEQm3cge048CDscCKJVsxXp1PxQkiYI0p2MjXsoFiYheHwVOj7abEqIe6Kdi57fSHJX5z+nUsqlEZNoK+7vmAyey66i+8Qxh5dWTm5opERERERERkTopyCIiM1YUaHgktrh9NXYAS4BGTrd1ALaY844atnl4wb/nAfvWsP2OKP3cGvbXbMuw81rtMewEHhn2d02ZQJGINNQKbA2m7ZUSRgawgLWIiIiIiIjIlKMgi4jMdI7Koyfy8uka2bgf1PF+saLtofpjKN5uKqjnGKZS/kWkser5fivoKiIiIiIiIlOSGrFEZMbKJVMeuJvqR3XMwxZk39DAbNyP9cKuZWTJPQX/3g48WMP2c6P0tYycabYHsanQqj2GOcDdQTxba2BJRKaHfmzEWrX3hHYg17zsiIiIiIiIiNRPQRYRmel+it3rYpUSYg15vblkqpp1Aqp1A3ATtsBzJR1YQObS/BO5ZCoEfgK0UrkntwNagAuj7aaEIJ4dAH6GBU8qiWHHcWFTMyUikyaIZzcBv8LueZW0RH97m5YhERERERERkT2gIIuIzHS/AFYBe1dItze2OP1Fjdx5NJrmB9iC9J1lksaAxcDfgRuLXvsZsB6IV9hdHBs1cnFdmW2unwJbqO5zWAX8suk5EpHJdAE2cnBZmTQOuyfcDfx2AvIkIiIiIiIiUjMFWURkRsslUxuBs4CN2ILw84qSzAFWAkPAB3LJVLYJ2fgZ8EOs1/ZejPXMBmtEXAjsA9wGpKLATOExPAC8A2uQXMnuU+zMjZ7fBrwjl0ytasIx7JEgnv0f8AHsPK9g91Et87DPZyNwVhDPbpzYHIrIRAri2X8DH8fWalqBjSQs1IHd19YCbwni2ak0BaKIiIiIiIjIQ5z3s3vKe+dcJ9Z7faH3fstk50dEmiORST8Ra+Q/FGvMy9/8RoAs8NlcMvX7Ju4/AF4PvAYLqOQ5bN2VPwAfySVTq8u8x9OAc4BHA23YMTgscHEz8KlcMnV1Uw6gQcL+ruOAdwFdjE3h5oBB4D/Ax4J49rrJyZ2ITLSwv+sE4O1Agl3vCQPAv4CPBPHsTZOUvRlNZWCpla4ZEREREZlNain/KsiiyoLIrJHIpB3weOBobPTIdmx6rr9M1BomiUx6HnA8Jjj9ggAARzFJREFUcDC2zso64Ne5ZOqeshuObR8ARwBPA+Zjo1euBv45ldZhKSfs74oBRwFPwnqrbwauAv6txe5FZp+wv6sFuy8fho1y24wFnm/SPaF5VAaWWumaEREREZHZREGWGqiyICIiIiKzjcrAUitdMyIiIiIym9RS/tWaLCIiIiIiIiIiIiIiInVQkEVERERERERERERERKQOCrKIiIiIiIiIiIiIiIjUQUEWERERERERERERERGROijIIiIiIiIiIiIiIiIiUgcFWUREREREREREREREROrQMtkZEJlNwv6uecAiYBDYGMSz4UTuP5FJO2AxMAfYnEumtk/k/qeKRCa9AFgA7AQ25ZIpX+P27cASYBRYn0umRmvZPuzvCoCl2D14YxDPDtSyvTRG2N/Vin0fAmBDEM8OTXKWRERERCZMd9DTipVpHbChL+xVWUhERESkDs77mtoWZxznXCewGVjovd8y2fmRmSfs73LAk4BTgOOBNsADdwI/Bi4L4tmmXnuJTLoDeCFwBnAwVpEaBv4A/BT4S62BhukmkUnHgGOAU4GnATEgBP4DXABcnkumBiu8x6OAk4ETgQ7sc+wHfgJcnEum1pTbPuzvWhJtezrwMOxz2AlcBlwUxLM31Hl4UoOwv+thQA/2nVwWPb0Z6MU+hzsnK28iIhNFZWCpla6ZmaM76NkPOAk4DQuyAGwCLgJ6+8Le3CRlTURERGTKqKX8qyCLKgvSRNGIhXOA12CjR3YAQ1jP+fnR31uA1wbxbFMqM4lMel/gW8D/RU9txUZgtGGBgiHgR8CHc8nUSDPyMNkSmfRc4HPACdjokW1YkKkF+xw88Ffgjblkav047/FS4INR+oHo4bBz2AKsirb/Z6ntw/6uxwLfAA7Ezv+2aL/twFzs2kgDXwvi2dl9Y26isL/rGOBcYDl2DeRHc83FPotNwDlBPHvpJGRPRGTCqAwstdI1MzN0Bz3PAr6IdTQpLAvNw8pCG4B394W9v5ycHIqIiIhMDbWUf6fUmizOuXOcc9c657Y659Y65y51zj2ywjavcM75ooem3pGp4mzgTcAI8ACwEavIbAVWA2uARwPfCfu7ljd654lMeiHwHeDxwDosELAVa9DfFOVpEHgV8N5G738qiKZI+zQ2gmQbdsybsXOwBTsnG4CnA19PZNJzSrzHi4GPYoGpB4D12Oe4DfsM/7+9+46TrCoT//95aiIzzAyZIShsq+gifs3ZNbeLaY0tqJhdI7ahXV3DmhV3dfjpiOuaVsVV0QIxrakMmEAFV0woI7YgDgyZSTCxzu+Pc8vpabordXVXVdfn/XrVq6ZvnXvr6Vunes65zz3nXAkcDnx0aO2aO0zev7rhmKPIn8MQeeTLhmLfrcV7ryf/Pf5X4Bmd+c01WXXDMXcHPkiequ0K4GryZ7AVuJb8OewLvLdIxkiSJM0bw6WRewGnkUevTG4LXUNuC60ETh0ujTyoW3FKkiT1m55KsgAPIl8Auw8wDCwCvh0Ryxvstwk4bMLjqNkMUmpGdcMxhwMvJI8U2ThNsV3kC/R3IE/l1WlPAe5ETgTsnKbMJnLC4ZlDa9cMzUIM3XYP8giWTey5U2+y7eSO5f2AR018YWjtmsXAa8gJlmum2b9K7qgeCrx0itefD9y6KDPd+i21ETSvqm44ZsU0ZTQzY+Q1WK4kjyKaylXk0UmvLUaiSZIk9b3h0kgA/0JeH3K6tlBtKtwVwGuGSyO2hSRJkprQU42mlNLxKaVPppR+l1L6FfBs8oXJuzfeNW2Y8Ki7LoI0R55IvhPs+gbldpMTICdWNxyzpFNvPrR2zUJy4qbK9AmWmo3kO/if3Kn37yFPIU99sLlBue3k6b+eXox+qXk4+e/QlNOITZCK9/jHobVrjqhtLNZheQI5kVVtcIzrgEOARzcopxZVNxxzLDmBf2MTxa8H/r4oL0mSNB8cR7756IYmyl5XlL/nrEYkSZI0T/RUkmUKq4rnRhep942IyyLi8oj4ckTccbqCEbEkIlbWHuS7dKTZ8GDyRfVm1tfYSJ5uatq624Yh8qiu6UbRTJTIiZiHdfD9e8XDyOunNGMzee2aAyZsux/5b+WOJvbfRP6bcu8J2+5WHK+Zz2F38V73byZYteQ+5HVXtjRR9mbySMr7zWpEkiRJc+e+5DUipxvZPZFtIUmSpBb0bJIlIkrkxYl/klL6bZ2iF5PXk3gccBL5dzo3Io6cpvzryBc7a4+/dipmaZIVTD811GS1i+vLOvj+y4EFLcawbwffv+uKESnLaP1zmDhF4TLyCJdmpOIxef9SCzFUySOg1FnLaTySaKJEZ7+PkiRJ3bQM20KSJEmzomeTLOS1WY4DTqxXKKV0Xkrp9JTShSmlH5CnaLqGvBbGVE4hj5CpPaZLxkgzdQOwsMmyC8kX4Td18P03F8dsJYYbO/j+XTc+Olabwmsmn8NmmhuNBPlvarD31GRbaO1zKNF49J5at5k9n08zJn+OkiRJ/azWFmqWbSFJkqQm9WSSJSJOAx4DPCSl1NJIk5TSTuCXwG2neX17SmlT7YENR82eb5M7J818z/YDLgUu6uD7jwN/YM+0e/UEOQnwzQ6+f6/4OnlNlmbsC5w7Pjp244Rt5wC7mjzGKnKi6scTtv0cuJr8GTeyiJyQ+X4TZdWaH5Cnx2hmishl5DV6zpnNgCRJkubQD8hrBDbTFlqObSFJkqSm9VSSJbLTyItEPzSl9Oc2jrEAuBNwZafjk1r0ZfKIhIMalFtM/i5+trR63a5Ovfn46FgV+EzxY6MEQW3NkLM69f495AvkeaX3a1CuNoXCGZO2/xD4I40/x9o0Y18ZHx279m8bV6/bApTJn0Gj0SwHkacw/HaDcmpRafW6P5MvFKyi8WiWA4ALi4ckSVLfq1TLl5DbtftRvy0UwP7ABcBvZj8ySZKk/tdTSRbyFGEnAU8DNkfE6uKxT61ARJweEadM+PlNEfGIiBiKiLsB/0Ne7Ptjcx28NFFp9brrgPeQp5o6iKk7M0uBQ8idmM/NQhhnAT8BDiYv+j2VA8gX/98/Pjp2xSzE0G0XAZ8iJ1H2m6bMcnJn8utAZeIL46Nju4G3k0e9HcbUfzcXAYcDfyb/HZvsY8DvgdXkpNpkARxKvmPwHaXV67bV+4XUtvcA68mf1YIpXi8Vr10HvL20el2z08RJkiT1g/eQb0acri20gNzevRZ4V6Vati0kSZLUhF5LsryYfJfxOeTGX+1xwoQytyY3/Gr2Bz5KvoD5dfKC0fdLKXVy2iWpXZ8iX6DfSe7MHEKu4/sDR5Av+v8YeH5p9bpOrscCwPjo2M3Ai4Dvkr8bR5CTKqvIiZcjyaM33gP8V6ffvxcU67K8E/gw+W/eEeSk1yrgwOLnZcDZwCvHR8duMZpofHTs+8AoeWTSYeRkyX7F43Dyufw98Kzx0bG/TN6/tHrd1cBzyCMjau+5f7H/ocUxtgD/Ulq97qsd+LU1hdLqdRcDzyVPzVc77/sVj8OKx5XAC0ur1/2iK0FKkiTNkkq1fBG5LXQZuT17GHu3hVYDVwAvqFTLv+xOlJIkSf0nUhrsm1MiYiV5mqRVxRotUsdVNxwzBDwZeCL54vou4KfA54Hvl1av2zmb7z+0ds0C4IHAicD9ySMvNgJfAs4cHx1bN5vv3wuG1q4J8lSCTwYeTV5/ZTvwPfLn8LNiirV6xziE/Bk+hXyBvkpOrnwW+Mb46NhN9favbjhmCfAI8mi9O5OTPteQpxM7q7R63fp2fz81r7rhmJXkdb+eSl6/K4C/kEeTfbm0et31XQxPkuaEbWC1yjozfwyXRlYCjyW3hW5DbgtdRtEWqlTLN3QxPEmSpJ7QSvvXJIudBc2x6oZjFgDVbk1FVCQbFkw1YmOQDK1dsxDYXYx0aWf/BUBqlJiZTnXDMQGUSqvX7W5nf3VGdcMxJYDS6nVtfY6S1K9sA6tV1pn5abg0UgKoVMu2hSRJkiYwydICOwuSJEkaNLaB1SrrjCRJkgZJK+3fXluTRZIkSZIkSZIkqS+YZJEkSZIkSZIkSWqDSRZJkiRJkiRJkqQ2mGSRJEmSJEmSJElqg0kWSZIkSZIkSZKkNphkkSRJkiRJkiRJasPCbgcgSXNlaO2a5cAY8GhgFbAV+CHwrvHRsWu6GZskSZLUa4ZLI3cAHg8cVWwaB86uVMuXdC0oSZKkHhMppW7H0FURsRLYCKxKKW3qdjySZsfQ2jX/CrweWD7Fy9uB04EXj4+ODfYfRUnSQLANrFZZZwbLcGnkEODdwIOBZUAConh5K/Ad4HWVavn6rgQoSZI0y1pp/zpdmKR5b2jtmrcBbyMnWHYA2yY8tgOLgecDn+lWjJIkSVIvGC6NHAR8GngUsBP4K7C+eP4rsBt4HPCp4dLIqm7FKUmS1CtMskia14bWrrkj8Bry37ttQHVSkUROtCRgZGjtmhPmNkJJkqTWRcRLI+LSiNgWET+LiHvVKfvsiEiTHtvmMl71ldcDdwY2AJuneH0TcBVwT/JUvJIkSQPNJIuk+e4NwCJyIqWeHeS/iaOzHpEkSdIMRMQJwKnAW4G7Ab8CvhURh9TZbRNw2ITHUXXKakANl0YOI69fuAXYVafoTuAm4EnDpZED5iI2SZKkXmWSRdJ8dzx5lEozqsDdh9auOXAW45EkSZqpVwEfTSl9IqV0EfAi8gXv59bZJ6WUNkx4XDUnkarfPBKozT/eyI3A/sAjZjMgSZKkXmeSRdK8NbR2TZDXYZk8Rdh0dgMLgL+btaAkSZJmICIWA3cnLzwOQEqpWvx83zq77hsRl0XE5RHx5Yi4Y4P3WRIRK2sPYEUn4lfPO5Tcdm7mJqVauUNnNSJJkqQeZ5JF0nzX7CgWgCieb56NQCRJkjrgIPJNIZNHolwFrJ5mn4vJo1weB5xE7geeGxFH1nmf15FHM9Qef51BzOof9aYIm87OjkchSZLUR0yySJq3xkfHEnAl+UJEMxaQp9q4ZNaCkiRJmmMppfNSSqenlC5MKf0AeCJwDfDCOrudAqya8KiXkNH8cXHxvKiJskvINzRd3KigJEnSfGaSRdJ8d3rx3MzfuwD+d3x0bPssxiNJkjQT15KnOJ08RdOhwIZmDpBS2gn8ErhtnTLbU0qbag9gc5vxqr98G1hPXmulkf2BceAHsxqRJElSjzPJImm+ey9wA7CYPdOBTWUpeZqwd8xFUJIkSe1IKe0AfgE8rLYtIkrFz+c1c4yIWADciTziV/qbSrW8DfgoeYT3yjpFV5FHsXy4Ui23M8WYJEnSvGGSRdK8Nj46thn4J2ATeUqDycmWReQEyzbgBeOjYxfNeZCSJEmtORX454h4VkT8PfAhYDnwCYCIOD0iTqkVjog3RcQjImIoIu4G/A9wFPCxLsSu3vfx4rEPcHjxXLOs2LYE+C/gs3MenSRJUo8xySJp3hsfHTsXuD9wDnkxzyXkxMpS8h14FwCPGR8ds5MoSZJ6Xkrp88CrgbcBFwJ3AY5PKV1VFLk1cNiEXfYnj074PfB18giF+6WUvLlEt1CplqvAW4Ax8rRy+5LX5DmSnGQ5HxgF3lWpllOXwpQkSeoZkdJgt4kiYiWwEVhVzDUsaR4bWrvmCOAk4CDy6Jby+OjYH7oblSRJc8s2sFplnRlMw6WREjmJd2vyzUmXAb8yuSJJkua7Vtq/JlnsLEiSJGnA2AZWq6wzkiRJGiSttH+dLkySJEmSJEmSJKkNJlkkSZIkSZIkSZLaYJJFkiRJkiRJkiSpDSZZJEmSJEmSJEmS2mCSRZIkSZIkSZIkqQ0mWSRJkiRJkiRJktqwsNsBaDAMl0b2Be4KLAe2AP9XqZZv6m5U/Wdo7ZrbAUcDAfwFuHh8dCx1Nag+M7R2zVLgbsBK4CbgwvHRsU3djUrdMLR2zW3J36cScDnwB79PkiRprg2XRo4EjiH3z68Gfl2plqszON6DgHsBC4DfAV+rVMtttXGGSyMB3B64VbHp0kq1/McZxBbAnYDVwG7gkkq1fFm7x5MkSeoFkdJgX0+KiJXARmBVSskLrR02XBpZDTwXGAEOJjf0dwNXAV8APlGplq/uXoT9YWjtmmHgOcB9gKXF5u3A+cCngK97cbi+obVrDgCeDZwIHEbuxO4GrgfOBP57fHTsr10LUHNmaO2ah5Hrwv3Z+/t0AXA68DW/T5LmO9vAapV1pvOGSyP3JLfxh8k3owW5TfJ74NPA5yvV8u4WjjcKjAJHsWfWiipwDbnP8Ppmky1FMuSR5DbTPYElxUvbgJ+S+3GVFmIrAU8GngkcBywuXroJ+H5xvHObPZ4kSdJsa6X9a5LFzsKsGS6N3Bb4BHA7cmN8I7CLfHF7P3JD/SLguZVq+dLuRNnbhtauCeBlwKvI52sjuSMCsA+wCtgJfAj4dy8MT21o7ZrDyXXx/5HP143kuriAPKJlH+BS4Hnjo2O/606UmgtDa9e8BPgXcnJlE7C1eKn2fdoFfAR41/joWNt3kEpSr7MNrFZZZzpruDTyRODdwArySP8tQCK3+fcrip0NvKpSLe9o4nifBJ5OTq7sJrd5Ibd3FxXH/jHwsEaJmyLB8lrgxcW+m9jTB1lGbjNtB04FPtAocTNcGlkAnAI8tYjnRnL/MMjJpRXF8d9UqZY/0+h3lSRJmguttH9dk0WzYrg0soJ8ofJ2wJXAteSGfiqerwE2AMcCHx4ujSzrUqi97onAGPkOtPXkzle1eGwFriCfz5cCz+hSjD1taO2axcB/AXcmT79wNbCDfA53AteRz+NRwEeKES+ah4bWrnk8+YJBIn+fNnPL79N24EXkuzYlSZI6brg0ch/g38k3eawnd953k9skN5P7T5uAJ5HbLo2O9yZyggVy8mLnhJd3F9uqwD+QR+028gxy/2InuX00sQ+ypYi5Cry6iLGRlwMnsae9dVOx/27y77mefCPe24dLIw9p4niSJEk9xSSLZstjgTuQEynT3Sm1izxt2J2A4+corr4xtHbNAnLnZiF5Sqvp3Fg8v7hIKGhvDyWvwXINe3c4J6qS6+oQzXUU1WeG1q4pAS8h341Z7/u0kZyEeWGxfo8kSVKn/TN59MZVdcpsJSdcnj5cGjlkukLFqJOXkvv29Ua87CS3eZ8wXBo5sM7xFpNvOAn29DOmcj15VMpLipEq0x1vP/KUaDvICZrpXENOOr24+J0kSZL6hkkWdVzRKK7dSbWrQfHaRe+n1y01mB5AHgl0QxNlbwBuDTx8ViPqTyeS/9Ztb1Bud/F4enFBXvPL/ciJ33oJlprryYu7Ds9qRJIkaeAMl0aGgAeTR3A0ciN5aq4n1CnzLOBApr+ZaKKd5OnI/rVOmYeTR3g302a6gdxfeUCdMv9UxNdMn+ZG8vovxzZRVpIkqWd4IVGzYTlwDPXvVJpoK3BccdeU9rgj+e6wbU2U3UG+28wOyQTFmjZ3p7lzCHn6qFsBB81aUOqWY8mjwpqpC7WLFH6fJElSpx1LXtdkcxNlq+Q2/nF1yjygKFN3nZVCbe2UuzWIL6g/KqZmG7m/cscGx6utE9PIVvK6efWOJ0mS1HNMsmg2LCY3zJtdNDoV5RfOWkT9qbZAZbMS+dxrbwtpvS56HuefxbT2fartI0mS1Em1vlKz7ZJEHn0ynXqvTWdRnddabTOlJo7XqnrHkyRJ6jkmWTQbNpEXM2y2wb+EfCfXzbMWUX+6hvwdbeZ7GkW5a2c1oj4zPjqWyAvdt1IXt9PcdAbqL9ew53vSSBQPv0+SJKnTausENpt8COqv3bJ+QrlWYqj3WqnJ49XK1WszXUPzSZvazVG2wSRJUl8xyaKOq1TLu4CzyUO9m7EEKFeq5VbvMp/vKuRFuFc1UXYleXq2b8xqRP3pLHKHrZmO4nLga+OjY1tnNyR1QYU8z/d+TZRdSZ6u4uuzGI8kSRpMPwP+AuzfRNl9yDcA1WuTfICctGlm9McichLjw3XKfJPcr1jZxPFWkW+w+3adMl8nTyu2vInj7Q9cCfyoibKSJEk9wySLZsvnyRcpD2xQ7iDyKJYzZz2iPjM+OnYN8GVyh6TeVGoLgBXAt8dHxy6fi9j6zFnki+uHNCi3P3kE1hdmOyDNvfHRseuBL5LnQK93EaL2ffru+OjYZXMRmyRJGhyVankH8Blym6PeTWkBHAD8jpyYme5464Gf0NwI+AXAZZVqedqkSKVavhz4Frk9tKDOsRaS+ylfrlTL9UbG/Bq4gNzWrhff4uJxRqVavqlOOUmSpJ5jkkWzolItXwSsITfMD+GWDfQFwKHFv99VqZYvmcPw+sl/AL8CVjP13V/LgMOAi4F3zGFcfWN8dGw98GbyHX6ruWXCqgQcTB5R9cHx0bHz5zZCzaFTgQvJf3v2neL12vfpj8Bb5y4sSZI0YP4b+B75hrOV3HLE9VLgcGAD8OpKtdxofcFnk6fYWszUN2fVEjpbgZOaiO8dwB/I7aJlU7y+nNyu/jXwnnoHKmYreB159M5h5NE5k60g9xl/AnyoifgkSZJ6ikkWzab/At5IHkVwKHAEuTF+ZPHzdcDrK9XyJ7oVYK8bHx27DngG8B1yx+gIcufkMPJ5XEYeTv+08dGxK7sVZ68bHx37AjBGns/6EPbUxdr53Ay8nXwRXvNUMZrlGeQpLZaQv0O179MR5O/TT8jfpyu6FackSZrfKtXyNuCFwOfICZAjyEmVWptkFTmBcVJx81qj410O3Bf4E7mPv7R4LCmeF5LbwY+qVMs/beJ4G4Cnk/sZy7hlm2kpuX9yUqVabrh+SnFD3UnA/5ETKrXjHV78eyF5xPFzK9Wy0/ZKkqS+EykN9jIYEbGSYt2LlNKmbsczHw2XRlYC/wQ8iHyn1o3AOcDXKtXy5u5F1j+G1q4J4E7AE4BjyHe7/Ym89s0viwXe1cDQ2jXLgEcDDyVPv7CZfFH9y8UFeA2A4vt0R+CJ5O9TCRgnf5/+z++TpEFgG1itss7MjuHSyBDwZOA48kiUy4GvAj9uYgTLVMd7LPByYIjcxlkPfBT4VKtrYA6XRgK4K/B44LbkBewvIU/H+5s2jlcC7kPuGx4F7AJ+D5xZqZbXtXIsSZKk2dZK+9cki50FSZIkDRjbwGqVdUaSJEmDpJX2r9OFSZIkSZIkSZIktcEkiyRJkiRJkiRJUhtMskiSJEmSJEmSJLXBJIskSZIkSZIkSVIbTLJIkiRJkiRJkiS1wSSLJEmSJEmSJElSG0yySJIkSZIkSZIktWFhtwOQJPWP93/3xOX7L9n2qqP33fisQ/e56bCIFDduX7JxfPP+X75m2z7vfNlDP3/5bMcwtHbNauCJwOOBQ4DtwM+BzwPnjo+OVWc7BkmSpJkaLo0sAUaB5wFHkm+C3Ax8DXhnpVoeL8rtB7wPeAKwLxDADuAnwMsq1fJFsxTfcuBRwFOA2xSbLwa+AHyzUi3fPBvvK0mS1G8ipdTtGLoqIlYCG4FVKaVN3Y5HknrVh77/lAfc+5D1Xzpi2Zb9IxI7di+oAiwqVUsRcOP2Jdt+ctWRr33OA7942mzFMLR2zVOAtwL7AbvJFxgCWArsBH4MnDw+Onb9bMUgSfOBbWC1yjrTWcOlkbsC3wAOIrdlajeJBHuSKG8H1gGfARYXr6cJ5Sj2+1ClWj55FuL7T+CoYtO24nlp8fwn4EWVavl3nXxfSZKkXtFK+9cki50FSWrog99/yp0fuPryH6zeZ+uKjTsX79hVXbDXaJFSVGPVoh1Lbtq9cNf3rjj6Jc974Fkf73QMQ2vXPAl4L3kU5jXsuRhRsw9wIDnR8qzx0bGtnY5BkuYL28BqlXWmc4ZLI7cFfka+aWQHt2zTQE5mVMmjW0rk5MpUnffaa/9eqZZf16H4jgU+CxwKXAXsmlRkEXk08XrgxEq1fEkn3leSJKmXtNL+dU0WSVJDQytuPG31PltX3LBjyfbJCRaAaiqlG3Ys2bbvwp0L73rgVf/+vu8+dUFH33/tmpXAv5E79Vcx9cWIm4GrgfsBT+/k+0uSJHXQaeQEy3ambtNAHjmykNxnrzJ1goXitQDGhksjnZoO/I3AauAKbplggTx6+EryFGev6dB7SpIk9S2TLJKkuk773glDt191/T23715QraZSneGPwaadi3Yets+W/VYu2v7PHQ7jMeS7Ka9pUK52N+jThtaucd0xSZLUU4ZLIwcDD6R+4gT2TAc2+d9TSeQbUf5jZtH9bRTLfYAbqR9fFdgEPHS4NHL0TN9XkiSpn5lkkSTVtWrx9ufuu2jHopt2LdrRqOzO6oLdC0rVOHifm0Y6HMbxxfPuJsreCPwdcFyHY5AkSZqpZwFLyKNB6lk04d/NJFkAnthuUBM8hDwF65Ymym4GlgMP7cD7SpIk9S2TLJKkuhaVdh8MQbVh/x4gCGBJafd+HQ7jQKaermIqO8nTa6zqcAySJEkzdXDx3Ghx1GYaXpPt08Y+k61i+inMJktFWdtckiRpoJlkkSTVtTuVtsS0a61ObVe1dFOHw9gCNLvOywJyh//mDscgSZI0U1ubLNd8w2uPhqOOm7CN1hI8AXS63SdJktRXTLJIkuratGPJ2dt2L9y9z4JdixqVXRjVUjUF123f5wcdDuMn5P+zmun0ryKv3fK7DscgSZI0U2eRR+c2aldNnCK12VEvP2s3qAl+To5vaRNll5ETO+d34H0lSZL6lkkWSVJdL37IF358yab9/rRs4a4Fjfr4+y7asei67Utvvn770vd0OIyzyIur7t+gXIk8z/kXxkfHmr1TVJIkaU5UquXfAb+m8QjdVpMsVeAlMwit5lzg9+SpWhs5ALgQ+GUH3leSJKlvmWSRJDX0x00HvHHzzsU791+yfenU/fzEikU7FldTcOF1h3785Q87Y2Mn3398dGw98HHyXZUrpym2ADgc+DNweiffX5IkqYPeAGyn/miRRexZG6Vev702iuU7lWr56pkGVqmWq8Aa8hRgh9Ypupq88P2plWq5nanNJEmS5g2TLJKkhl7woDPP+sGGW79m847FOw5csm3pykXbFy8u7V6wOHYvWL5wx6IDlmxbWk3BT6468oyrty1/xSyF8V5yomUJcAR5WrCl5KkqDiV39v8EPG98dOyKWYpBkiRpRirV8reBk8nrnywlt20WFI9FxbYAvga8j3yHS23a1ImP2rbzgeM7HN/ryOvbHUEe1bJP8Tiw2LYFGKtUyz/s1PtKkiT1q0hpsG86iYiVwEZgVUppU7fjkaRe9qHvP+V+hy3b8oa/3+/aBy9ftHNxADurperFNx7wq8u3rnz/8x901mdm8/2H1q4J4CHACcBDgYXkCw/rgc8CZ46Pjl0zmzFI0nxgG1itss503nBp5O7AvwEPJydaII9euQg4rVItf7wo9zjgFOD27LlRMgFXFeXeOUvxHQucCDwRWF5s3gycCZxRqZbXzcb7SpIk9YJW2r8mWewsSFLL3v/dE1ctLlXvFJEW7awuWPeyh56xfq5jGFq75gDy3ZTbgSvGR8d2zXUMktSvbAOrVdaZ2TNcGlkO3Jk8guVPlWr5smnKHQI8kJyQuaBSLV88h/HVpg7bUKmWb5qL95UkSeomkywtsLMgSZKkQWMbWK2yzkiSJGmQtNL+dU0WSZIkSZIkSZKkNphkkSRJkiRJkiRJaoNJFkmSJEmSJEmSpDaYZJEkSZIkSZIkSWqDSRZJkiRJkiRJkqQ2mGSRJEmSJEmSJElqw8JuByBJkiRJUjcNl0ZKwP2BuwJLgeuBSqVavqzN4y0CHgwcCywGrgG+VamWr5xU7mDgc0W5UvG+r6lUy1+bVO5Y4OvAoUAAW4CTK9XyGZPK3QP4InBIsWkz8IJKtXz2FO/7auAOxfH+BLy3Ui2vn1RuJXA8cGSx6dLi99ja/NnY63gHAI8EDgN2A38EvlOplre1czxJkqReECmlbsfQVRGxEtgIrEopbep2PJIkSdJssw2sVs3nOjNcGnk08Arg9uQbERM54bEV+C7wrmaTLcOlkQBOBF4C/F1xnEROZGwGvgG8C7gB+A1wTPHaZFuAxwA/Ba4F9p3mLXcDjwYuAC4H9pmm3E7gQcCvgc8Cw8CSSWV2AD8ATgC2k8/JU4GDi9+BItargE8Dp1Wq5R3TvN9eimTNvwBPAvYHqhNe/ivwceBjlWq5OsXukiRJc66V9q9JlnncWZAkSZKmYhtYrZqvdWa4NPJs4M3khMP1QG1ERQArgJXk0RvPqFTLf2xwrABeRU5O1EalbC9eLhXH2he4iDxiZr8G4dUSDs1M811tstylwK2L8jvZO3myqDjGZcDPyUmZ7eSE0O6i3MIi7iXAV4CXNUq0DJdGVgGfAu4D3ATcyJ7fbRE56bIAOB14g4kWSZLUC1pp/7omiyRJkiRp4AyXRu4J/Bs5wXAFexIskJMPm4rtRwOnDZdGGk23/Y/AKHlEyJXsSbBATircCGwAHkDjBAvk/nqzffZmyx1NTq7sYE+CheLfO4rXjgYeD1xHHkWze0K5XcW2G4DHAi9t4j3fSk6wXE1OPE1Mouwstm8BngE8vcnfQ5IkqWeYZJEkSZIkDaKnA8vISYPpVMnrqRxLXmOlnmeR11+5oU6ZXeTRG9001fRkNbUEyGL2Tq5MdhM5QXLScGlk2XSFhksjtyZPZ7aZnMSZzuYirmcX6+NIkiT1DRsvkiRJkqSBUiz8/kjyuiuNbCdPkzVS53jHAPcmTylRz62ajXEWLa7z2oLiOYDVDY5zQ1FmuE6Zx5GnSGtmirkbgNsB922irCRJUs8wySJJkiRJGjRHkheJv6nJ8juA29Z5/ShgaRPHm3bUR4+YOMplaYOyu4rnW9cpU3utmcVgt5FH+dQ7niRJUs8xySJJkiRJkiRJktQGkyySJEmSpEHzV+Bmmh9Zshi4pM7rl5FHYjQ6XrMjZ7pl4oiTbQ3KLiye/1KnTO21euvA1Cwlr/NS73iSJEk9xySLJEmSJGmgVKrla4BvAMubKL6EPDVWuc7x1gE/A1Y1ONblzcY4i+otQF9b7D4BGxocZ/+iTKVOmS8DW4CVTcS1P7AOOK+JspIkST3DJIskSZIkaRB9hjyy5OA6ZUrF6xcB5zQ43qfICYz965RZSB6t0U311kepXSPYASyoU24Zef2U/6lUy9OOzqlUy38B/hdYQR4NNJ0VRVyfqlTL1TrlJEmSeo5JFkmSJEnSwKlUy+cDbwOqwBHsvdB7kEelHA5cCpxcqZZ3TT7GJN8C1pKTD4eRR8DUlID9gNXAj4EbmwixWjya0Wy5PxfxLWbvKbyi2LaI/Pt+ETgQOIi9ky0LyUmn/YCvAh9s4j3fDPwUOAQ4gL2vQywCDgX2BT5NTnxJkiT1FZMskiRJkqSBVKmWPwWcDPyWPKXV4eQEyeHkxMOXgRMq1fIfmzhWAk4FXgv8iTyipXa81eSpuD4HnEhOOFzM9KNKtgAPJY8Y2VLnbXcDxxfHu7lOuZ3APYE7AV8rfl5CTiwtZc+UaN8G7go8F3g/sJGcBDmseBwCXA+8F3hZpVquN/UYAJVqeSPwTOAjRYyHTXgcDKwH3gq8wVEskiSpH0VK9UYKz38RsZLccFyVUtrU7XgkSZKk2WYbWK2a73VmuDRSAu5PTjAsAW4AKpVq+bI2j7cIeBBwLHmEyLXAtyrV8pWTyh0MfBb4e/IokeuA11aq5a9NKnc7cgJkNTn5s5mc5DhjUrl7kEehHDyh3Asq1fLZU7zvq4E7FJvGgfdWquX1k8qtBP4RuFWx6dLi99jawumYeLwDyEmhw8gJokvI53l7O8eTJEmaLa20f02yzPPOgiRJkjSZbWC1yjojSZKkQdJK+9fpwiRJkiRJkiRJktpgkkWSJEmSJEmSJKkNJlkkSZIkSZIkSZLaYJJFkiRJkiRJkiSpDSZZJEmSJEmSJEmS2mCSRZIkSZIkSZIkqQ0Lux2ApOYNrV2zDFgNBHDV+OjYli6HJEmSJA2U4dLIQuBwYAlwfaVavm6O3ncV8P+ARcDFlWp5/TTl9i/KlYA/VKrlK+ciPkmSpEEVKaVux9BVEbES2AisSilt6nY80lSG1q45BjgReDKwoti8FfgicMb46NhF3YpNkiT1H9vAapV1BoZLIwcDI8BTgSPISYydwPeBM4BzKtVydRbe9z7AvwEPBhYXm6vAr4APVKrlTxflHgS8HvgHciKmVu4C4H2Varnc6dgkSZLmq1bavyZZ7Cyoxw2tXfNPwH8Aq4BtwE3FS/sUj83Av42Pjn2+OxFKkqR+YxtYrRr0OjNcGjkW+ChwG3JiZTM5gbEE2BfYAXwaeEulWt7Vwfc9GXgPOblSBXYXL5WABcW2s4ALgbeQkysTyy0oyu4GTq9Uy8/vVGySJEnzWSvt355akyUiXhcR50fE5oi4OiK+FBG3b2K/kYj4Q0Rsi4jfRMSj5iJeabYNrV3zD8AacsdtPXAdcHPxuL7YthR419DaNY/oVpySJEnSfDVcGjkc+Bg5wXIlcBX5xqdt5I73emA78FzgXzr4vk8C3ktOsGwjJ3J2F4+dxTbIo2veQU6wTC63o9gWwLOGSyOndCo+SZIkZT2VZAEeBHwQuA8wTG4kfjsilk+3Q0TcD/gc8HHgrsCXgC9FxHGzHq00i4bWrglgjDw92IY6Ra8GlgGvHlq7pte+05IkSVK/ewYwBFzBnhEik20iJzOeM1waOaJD7/t29iROprODnEBZ0ES5EvCS4dLIPh2KT5IkSfRYkiWldHxK6ZMppd+llH4FPBu4NXD3Oru9HPhmSuk9KaXfp5T+Dfg/4OTZj1iaVXcF7kIesdLIdcAdgPvPZkCSJEnSIBkujSwDTiCPVGm03soN5BukntSB970PcFumT+rULCAnWWDPOizT2QEsJ/ehJUmS1CE9lWSZwqriud5F5vsC35m07VvF9luIiCURsbL2YM8i4lKvuSd5aoCbGhUk37W2sNhHkiRJUmccBxxEnhaskUROxHTixqcnkRMoOxuUWzDNv6dSJSdkHjqDuCRJkjRJzyZZIqIEvA/4SUrpt3WKribPiTvRVcX2qbyO3ECuPf46s0ilWbMPuaPWrFTsI0mSJKkzlrJn4fhm7KYzN/JNO2V2ByybxWNLkiQNnJ5NspDXZjkOOLHDxz2FPEKm9jiyw8eXOmUj+TsajQoWSjR3h50kSZKk5mwkJ04aTcVVswi4tgPvWztGs32BVthnkCRJ6qCeTLJExGnAY4CHpJQajTTZABw6aduhTLNQeEppe0ppU+0BbJ5xwNLs+B6wlebuhNsXuBn47qxGJEmSJA2W3wLjwH5NlK1N1/XNDrzvf5OnCmuU3Nk1zb+nsoA8ZdhnZhCXJEmSJumpJEtkpwFPAB6aUvpzE7udBzxs0rbhYrvUt8ZHxy4jJ01WUv+7GuRO38/GR8d+PwehSZIkSQOhUi3vBj5Lbo8vblD8YOAa4GsdeN9LgZ/ReGR7dcK/GyVZaqNsPjej4CRJkrSXnkqykKcIOwl4GrA5IlYXj7+tMxERp0fEKRP2eT9wfESMRcQdIuItwD2A0+YycGmW/Ad53aDDmPoutoXA4eSRW2+fw7gkSZKkQfFZ4FzgEKZez6REnk1hJ/DWSrW8qUPvezJ55oUlTN13D/KaMTuBbexZP6ZeuVdWquVW1n2UJElSA72WZHkxeZ2Uc4ArJzxOmFDm1uQLzgCklM4lJ2VeAPwKeDLw+JTSb+cmZGn2jI+O/Ql4JvBH4CByQuWA4nE4uaN3KfDc8dGxi7oUpiRJkjRvVarlreT+5nfJ0/QeARxIbpOvJvdPtwD/WqmWz+rg+/4GeBRwPfmGq6Xk0TSLi38vAbYDrwYeS15rZfE05W4GXlqpls/oVHySJEnKIqXBvoklIlaSG6OrijVapJ4ztHbNPsA/khOOx5DvRvsT8Hng6+OjYzd1MTxJktRnbAOrVdYZGC6NlID7ktvk9yYnL64Gzga+WKmWr5ql910OvBx4DjmhUyJ/FmcDp1Sq5cuLcivICZdnkEfWBHADcCbw7kq1fOVsxCdJkjQftdL+NcliZ0GSJEkDxjawWmWdkSRJ0iBppf3ba9OFSZIkSZIkSZIk9QWTLJIkSZIkSZIkSW0wySJJkiRJkiRJktQGkyySJEmSJEmSJEltMMkiSZIkSZIkSZLUBpMskiRJkiRJkiRJbTDJIkmSJEmSJEmS1AaTLJIkSZIkSZIkSW0wySJJkiRJkiRJktQGkyySJEmSJEmSJEltMMkiSZIkSX0mIl4aEZdGxLaI+FlE3KtB+ZGI+ENR/jcR8ai5ilWSJEmaz0yySJIkSVIfiYgTgFOBtwJ3A34FfCsiDpmm/P2AzwEfB+4KfAn4UkQcNycBS5IkSfNYpJS6HUNXRcRKYCOwKqW0qdvxSJIkSbPNNnB/i4ifAeenlE4ufi4BlwMfSCm9e4rynweWp5QeM2HbT4ELU0ovavI9rTOSJEkaGK20fx3JIkmSJEl9IiIWA3cHvlPbllKqFj/fd5rd7juxfOFbdcoTEUsiYmXtAayYUeCSJEnSPGWSRZIkSZL6x0HAAuCqSduvAlZPs8/qFssDvI58517t8deWI5UkSZIGgEkWSZIkSdJkpwCrJjyO7G44kiRJUm9a2O0AJEmSJElNuxbYDRw6afuhwIZp9tnQYnlSStuB7bWfI6LlQCVJkqRB4EgWSZIkSeoTKaUdwC+Ah9W2FQvfPww4b5rdzptYvjBcp7wkSZKkJjmSRZIkSZL6y6nApyLiAuDnwCuA5cAnACLidGB9Sul1Rfn3Az+IiDHgf4ETgXsAL5jjuCVJkqR5xySLJEmSJPWRlNLnI+Jg4G3kxesvBI5PKdUWt781UJ1Q/tyIeBrwDuBdwB+Bx6eUfjungUuSJEnzUKSUuh1DV0XESmAjsCqltKnb8UiSJEmzzTawWmWdkSRJ0iBppf3rmiySJEmSJEmSJEltMMkiSZIkSZIkSZLUBpMskiRJkiRJkiRJbTDJIkmSJEmSJEmS1AaTLJIkSZIkSZIkSW0wySJJkiRJkiRJktQGkyySJEmSJEmSJEltMMkiSZIkSZIkSZLUBpMskiRJkiRJkiRJbTDJIkmSJEmSJEmS1AaTLJIkSZIkSZIkSW0wySJJkiRJkiRJktQGkyySJEmSJEmSJEltMMkiSZIkSZIkSZLUBpMskiRJkiRJkiRJbTDJIkmSJEmSJEmS1AaTLJIkSZIkSZIkSW0wySJJkiRJkiRJktQGkyySJEmSJEmSJEltMMkiSZIkSZIkSZLUBpMskiRJkiRJkiRJbTDJIkmSJEmSJEmS1IaF3Q6gh6yIiG7HIEmSJM2FFd0OQH3LfpMkSZIGQdN9JpMse07WX7sahSRJkjT3VgCbuh2E+oL9JkmSJA2ihn2mSCnNUSy9KfJtWIcDmxsUXUHuUBzZRFlNzXPYGZ7HzvA8zpznsDM8jzPnOewMz+PM9ds5XAFckQa9Q6CmtNBv6nf99j2e7/w8eoefRW/x8+gdfha9xc+jd8yXz6KpPtPAj2QpTtD6RuUmDInfnFLybr82eA47w/PYGZ7HmfMcdobnceY8h53heZy5PjyH/RCjekSz/aZ+14ff43nNz6N3+Fn0Fj+P3uFn0Vv8PHrHPPosmordhe8lSZIkSZIkSZLaYJJFkiRJkiRJkiSpDSZZmrcdeGvxrPZ4DjvD89gZnseZ8xx2hudx5jyHneF5nDnPodT//B73Fj+P3uFn0Vv8PHqHn0Vv8fPoHQP1WQz8wveSJEmSJEmSJEntcCSLJEmSJEmSJElSG0yySJIkSZIkSZIktcEkiyRJkiRJkiRJUhtMskiSJEmSJEmSJLXBJMskEfGGiEgR8dsmyx8REV+IiBsjYlNEfDkihmY7zl7WyjmMiLcUZSc/ts1FrL0iIh48zXlIEXGfJva3HjKz82hd3FtE3C0ivhIR10fETRHx24gYbWI/6+IE7ZxH62IWEZ+s831OEXFEg/2ti8zsPFoX94iI20XEGRHx1+K7/IeIeFNELGtiX+ui1AciYt+IeGtEfLP4fztFxLO7Hdcgioh7RsRpEfG7iNgaEX8p/o4e0+3YBk1E3DEiyhExXvz/d21E/DAiHtvt2NT69St1zkyv4Wh2tHsdQ5010758v1rY7QB6SUQcCbwe2Npk+X2B7wOrgHcBO4FXAj+IiLuklK6brVh7VavncIIXA1sm/Ly7Y0H1l7XA+ZO2XVJvB+vhlFo+jxMMfF2MiEcAXwV+CbydfD5uAxzZYD/r4gTtnscJBr0ufhj4zqRtAfwXcGlKaf10O1oX99L2eZxgoOtiRNwK+DmwETgNuB64L/BW4O7A4+rsa12U+sdBwJuAvwC/Ah7c1WgG22uB+wNl4NfAauBk4P8i4j4pJS8oz52jgBXAp4ArgGXAk4CvRMQLU0of6WZwg2wG117UWTO59qAO6kD/W53TiT5o3zHJsrf3Aj8FFpAb2Y28BLgdcK+U0vkAEfEN4LfAGPk/vEHT6jmsOTOldO3shNRXfpRSOrPFfayHt9TOeawZ6LoYESuB04H/BZ6cUqq2sLt1sTDD81gz0HUxpXQecN7EbRHxAHLn/jMNdrcuFmZ4HmsGui4CzwD2Ax6QUvpdse0jEVECnhkR+6eUbphmX+ui1D+uBA5LKW2IiHtwy4tmmjunAk9LKe2obYiIzwO/Af4VOKlbgQ2alNLXga9P3BYRpwG/AF4FmGTpnnavvaizZnLtQR3Sof63OqRDfdC+43RhhYh4IPBk4BUt7PZk4PxapxkgpfQH4LvAUzoaYB9o8xxO2D1WRkR0Nqr+ExErIqKVBKj1cAptnMcJuw50XXwacCjwhpRSNSKWFxcSm2Fd3GMm57Fm0OviVJ4GJOCzDcpZF+tr9jzWDHpdXFk8XzVp+5VAFdjB9KyLUp9IKW1PKW3odhyClNK5ExMsxbY/Ar8D/r47UakmpbQbuJx8A4K6YIbXXtRhM7j2oM7pRP9bs6vVPmjfscIBEbEA+ADwsZTSb5rcpwT8P+CCKV7+OXCbiFjRuSh7WzvncJJx8jQcmyPifyLi0I4G2D8+AWwCtkXE94u76KZlPZxWS+dxkkGviw8nn7sjIuJi8hDbTRHxoYhYOt1O1sVbaOs8TjLodXEvEbGIfFH63JTSpXXKWRfraPY8TjLodfGc4vnjEXGXiLhVRJxAnkZtbUppymk6rIuS1DlFov9QYJBHVnZNccHyoIi4TUS8Engk+YYBzbEOXHtRZ83k2oM6pxP9b82SNvugfcdMa/Yi8lyjD29hnwOAJeS7GCerbTscuHhmofWNds4hwA3k+c3PA7YD/wC8FLhXRNwjpbSpo1H2rh3AWeSh2NcCxwKvBn4UEfdLKf1ymv2sh3tr9zyCdbHmduT/G74MfBx4HXlO8peR71Z76jT7WRf31u55BOvidP4ROJDGw4uti/U1ex7BughASumbEfFv5Km9/mnCS+9MKb2xzq7WRUnqnKcDR5DXzdHcWwO8sPh3FfgieZ0czb12r72os2Zy7UGdN5P+t2ZfK33QvjXwSZaIOBB4G/D2lNI1Ley6T/G8fYrXtk0qM6/N4BySUnr/pE1nRcTPyV+8lwDv7kyUvS2ldC5w7oRNX4mIM8kLPZ4CHD/NrtbDCWZwHq2Le+xLnifzv1JKo8W2L0bEYuCFEfGmYrqGyayLe2v3PFoXp/c08qLhX2hQzrpYX7Pn0bq4t0uBH5I709cBjwZeHxEbUkqnTbOPdVGSOiAi7gB8kJz0/1SXwxlU7wPOJN8c8BTyOiCLuxnQIJrJtRd11kyuPWhWtN3/1pxoug/az5wuDN4BXE8ebtmKm4vnJVO8tnRSmfmu3XM4pZTSZ4ENDPidGSmlS8hZ+IcUQ4KnYj1soMnzON2+g1gXa/Xlc5O21+bNvG+D/ayLWbvncUoDWhf/JiL2BR4HfCuldF2D4tbFabR4Hqc0iHUxIk4kL+z7/JTSR1NKX0wpPY98oe/fiwseU7EuStIMRcRq8kLGG8mLGe/uckgDKaX0h5TSd1JKp6eUHkO+oPnVAV6vrVs6eu1FnTWTaw+asY72v9U5neiD9ouBTrJExO2AFwBrgcMj4uiIOJrc8V1U/HzANLtfT74z8bApXqttu6LDIfecGZ7Dei4nT7Mx6C4n3yG0fJrXrYfNaXQeG+07SHWxVl8mL/B8dfG8/zT7WRf31u55rGfQ6uJEjyffmdTM8GLr4vQeT/PnsZ5Bq4svAX6ZUvrrpO1fIZ/Pu06zn3VRkmYgIlYB3yBP9XJ8Ssm/mb3jTOCewDHdDmRQzOK1F3XWTK49qH2z0f9WZzyezvRBe95AJ1nIc7qWyP9J/XnC497kxsKfmWbO15RSFfgNMNWiVvcGxlNKm2ch5l7T9jmcTnE3zNGAw19hiDylyJapXrQeNq3ueZzOgNbFXxTPR0zafnjxPOW5sC7eQlvncToDWhcnejr5+/uVRgWti3U1fR6nM6B18VDytCiTLSqep5x+17ooSe0rFir+KrlP+ZiU0kVdDkl7q013uaqrUQyWjl970axo69qDZqyj/W911Iz7oP1i0JMsvwWeMMXjd8Bfin9/HCAibl3MBTvRmcA9I+JvneeIuD3wUKA869H3hhmdw4g4eIpjvhg4GPjm7IXdW6Y6DxFxZ/ICu98uLtRYDxuYyXm0Lv5NbY7M503a/nxgF3AOWBeb0PZ5tC7urTgfDwfOTindNMXr1sUmtHMerYt/sw64a0RMvlv3qeTFf38N1kVJ6pRimp3Pk6d3GUkpndflkAZWRBwyxbZFwDPJ0/OY/Jo7TV970exr9tqD5kxT/W/NrUZ90PkmUkrdjqHnRMQ5wEEppeMmbXtQSikmbFsB/BJYAbyXvIjPq8h3O95lkBcia+Ec3kRuQP+GnO1/AHAi8Cvg/oPwJQSIiO+RG6nnkoczHkseCrwTuG9K6fdFuXOwHk5rhufRuliIiI8DzyU3VH4APBgYAU5JKb2+KHMO1sW6ZnAerYsTRMTJ5Hmnj08pfWuK18/ButhQm+fRughExAOB75EXvD+teH4M8EjgYymlfy7KnYN1Ueprxd/K/ch3vr4Y+CL5OwzwgZTSxi6FNlAi4n3Ay8kjWW6xSG5K6X/mOqZBFRFnAyuBHwLrgdXku5LvAIyllE7tYnhi6msvmn3NXnvQ3Gmm/6251agPOt+YZJlCswmCYvuRwP8HPII8Mugc4JXFglcDq4Uky0eB+wG3Is8lehlwFvDOQZpCIyJGyY3V25IbsdcA3wXeOrEuWQ/rm8l5tC7uUdyd9nrgOeSLDJcBH0wpvW9CmXOwLtbV7nm0Lu4tIs4jD7s/fKrFbq2LzWnnPFoX94iIewFvIa+/ciB5So5PAf+RUtpVlDkH66LU1yLiUuCoaV7+u5TSpXMXzeCq/T2d7vXJf2c1eyLiRPKd4Xci//+3mTwtzwdSSvN+6pd+YJKlO5q99qC500z/W3OrUR90vjHJIkmSJEmSJEmS1IZBX5NFkiRJkiRJkiSpLSZZJEmSJEmSJEmS2mCSRZIkSZIkSZIkqQ0mWSRJkiRJkiRJktpgkkWSJEmSJEmSJKkNJlkkSZIkSZIkSZLaYJJFkiRJkiRJkiSpDSZZJEmSJEmSJEmS2mCSRZI0KyIiRcRbGpQ5uij37LmJqn0RcWlEfK3bcUiSJEnqb/aVJGl+MckiSX0oIu4UEWdGxGURsS0i1kdEJSJe1u3Y+llEHBsRb4mIo7sdiyRJkqSZi4hnF8mK2mNbRKyLiNMi4tA2jve0iHjFLITa0+wrSdL0TLJIUp+JiPsBFwB3Bj4KnAx8DKgCL+9iaPPBscCbgaO7HIckSZKkznoT8Axy/+lc4MXAeRGxrMXjPA14RWdD6wv2lSRpGgu7HYAkqWVvADYC90wp3TjxhYg4pCsRSZIkSVJv+0ZK6YLi3x+LiOuAVwGPAz7XvbAkSf3OkSyS1H9uA/xucoIFIKV09eRtEXFSRPwiIm6OiOsj4oyIuNWkMudExG8j4u4RcW5R9s8R8aJJ5RZHxNuK422MiK0R8aOIeEgnf8GIuEMxHdr1xXD+CyLinyaVqQ37v39EnBoR1xTxnB0RB08qWyqGtl8RETdFxPeL4e6XRsQna8cDysUu358wncCDJx3rARHx8yKu8Yh4Zid/d0mSJElz4nvF89/VNjTqO0XEOcCjgaMm9BcuLV6zr2RfSdKAMskiSf3nMuDuEXFco4IR8QbgdOCP5Lu03gc8DPhhROw3qfj+wNeBXwCvAf4KfCginjuhzErg+cA5wGuBtwAHA9+KiLu0+ftMjvmOwE+BvwfeDYwBW4EvRcQTptjlA+Sp094KfAh4LHDapDKnkIe2XwD8C/l8fAtYPqHMD4G1xb/fRZ5K4BnA7yeUuS1wJlAp4roB+GQRsyRJkqT+cZvi+Tpouu/0TuBC4Fr29BdeUbxmX8m+kqQB5XRhktR/3gt8A7gwIn4O/Aj4LvD9lNLOWqGIOIrcmH5jSuldE7Z/Efgl8BJyA7nmcGAspXRqUe7DwM+AUyLi08WxbwCOTintmHC8jwJ/AF4GPK8Dv9/7gb+Qp0PbXrzHfwI/Bv4dOHtS+euAR6SUUlG2BIxGxKqU0sbIi1m+CvhSSulvHY+IeDO54wNASmk8In4EjAKVlNI5U8R2e+CBKaUfFcf4AnA58Bzg1TP9xSVJkiTNmlURcRCwFLg/eY2Wm4GvNdt3SilVImI9sH9K6X8mHd++kn0lSQPKkSyS1GdSShXgvsBXyHclvYZ8p9H6ScPEn0j+O/+FiDio9gA2kO9OmjxsfRfw4Qnvs6P4+RDg7sW23bVOQzGs/ABywv4C4G4z/d2K4z0U+AKwYkLMBxa/4+0i4ohJu32k1mko/AhYABxV/PywIsb/nLTfB9oI8aJapwEgpXQNcDEw1MaxJEmSJM2d7wDXkC/8nwFsAZ6QUlpP632nW7CvZF9J0uByJIsk9aGU0vnAEyNiMTnR8gTglcCZEXGXlNJFwO2AIHcKprJz0s9XpJS2Ttq2rng+mjwsnYh4Fnn49x2ARRPK/rm932YvtyXH/PbiMZVDgPUTfv7LpNdvKJ73L55rHYhLJhZKKV0fETfQmsnvVXu//afYLkmSJKl3vJTcv9kFXAVcnFKqFq+12neakn2lW7CvJGkgmGSRpD5W3Cl1PnB+RKwDPgGMkIe6l4AEPBLYPcXuW1p9v4g4Cfgk8CXgPcDVxbFfx545jWeiNsLyveS7saZyyaSfp/rdIHdAOm0u30uSJElS5/w8pXTBNK/NuO9kX8m+kqTBZZJFkuaPWofhsOL5T+QG7Z9TSuum3mUvh0fE8kmjWY4pni8tnp8MjANPnDjsPCLe2nbUexsvnnemlL7ToWNeVjzflgl3kEXEgdzyrqqEJEmSpEHTSt9puj6DfSVJGlCuySJJfSYiHhIRU90N9Kji+eLi+Yvku4nePLl8ZAdO2n8h8MIJZRYXP18D/KLYXLs7KSaUuzd5jZgZSyldDZwDvDAiDpv8ekQc3MZhv0ueEuDFk7afPEXZWoJpvzbeR5IkSVJ/aqXvtBVYNcUx7CtJ0oByJIsk9Z8PAMsi4mzgD8Bi4H7ACeQRJ58ASCn9KSLeCJwCHB0RXwI2A39HXsPlI+Sh5jVXAK+NiKPJcxWfANwFeEFKqTYH8dfIi0KeHRH/WxzrRcBFwL4d+v1eCvwY+E1EfJR8x9ah5M7JkeQ1aJqWUroqIt4PjEXEV4BvFsd4JHAte9+RdSG5c/TaiFgFbAe+V3RoJEmSJM1DLfadfgGcEBGnkqdu3pJS+ir2lSRpYJlkkaT+82ryuiuPAl5ATrL8BfhP4B0ppRtrBVNK7y7Wankl8OZi8+XAt4GvTDruDcCzyEmcfyYvBnlySumjE8p8ElhNHuHyj+QOw0lFPA/uxC+XUrooIu5RxPts4EDyfMa/BN7W5mFfC9xE/r0eDpwHPILcQdk24b03RMSLyPMmfxxYADykeH9JkiRJ81QLfaf/JN+M9pyi7GXAV7GvJEkDKyZMEylJGlARcQ5wUErpuG7HMlciYj9yYumNKaV3djkcSZIkSeoJ9pUkqTWuySJJmvciYp8pNr+ieD5n7iKRJEmSpN5hX0mSZs7pwiRJg+CEiHg28HVgC/AA4KnAt1NKP+lmYJIkSZLURfaVJGmGTLJIkgbBr4FdwGuAleT1Zt4PvLGbQUmSJElSl9lXkqQZck0WSZIkSZIkSZKkNrgmiyRJkiRJkiRJUhtMskiSJEmSJEmSJLXBJIskSZIkSZIkSVIbTLJIkiRJkiRJkiS1wSSLJEmSJEmSJElSG0yySJIkSZIkSZIktcEkiyRJkiRJkiRJUhtMskiSJEmSJEmSJLXBJIskSZIkSZIkSVIb/n/G73y1VJ+R+gAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAIfCAYAAAArE/YjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAADT00lEQVR4nOzdd3wb9f3H8df3vBLHTpytLAgGDIQRSChllW3KKoWCCXvvghkuq/Cji9XhFtxSWspoGS1goMwCNZtSRgMkbEQwIUCiEDIcJ0687vv743vCiiMpiock2+/n46GHbd3pex9Jvrvvfe47jLUWERERERERERGRdfEyHYCIiIiIiIiIiPQNSiSJiIiIiIiIiEhKlEgSEREREREREZGUKJEkIiIiIiIiIiIpUSJJRERERERERERSokSSiIiIiIiIiIikRIkkERER6TXGmMnGGGuM2TUbyolT7l+NMU8n+ruHt3WiMaYt0d+9sL2fGmPm9Fb5IiIiMjApkSQiIiIJ9WZiJUudB1SkurIxps0Yc2KKq98LTOhKUOuIYdcgyTa506LfADv29PZERERkYMvNdAAiIiIi2cJa29DTZRpjDJBrrV0FrOrp8hOx1q4AVqRreyIiIjIwqEWSiIiIdJkx5mhjzGvGmAZjzNfGmMeNMWVxVp1sjHnGGLPKGFNvjDmyUzljg9ZPi4wxjcaYl40xu61j2z8OymoOXveUMWZwkvVHGGPuNcasNMYsNMZcBZhO63Tu6rZlUO6y4HUfGGOOC5bNBXKA24MWQTZ4/sSgpdKexpi3gGZgn0Rd2Ywx+xhj3jPGrA4+y21jlq31GmPMxGB7ewStkF4KFn0aPP98sN5aXduMMScYY943xrQYY74wxlxljMmNWf68MeYWY8z/GWMixpglxpg7jDFFCb8IERERGVCUSBIREZHuKACuAqYB5UA78LgxJr/Ter8CbgO2Bf4O3G2M2Q4gSP48BxQD+wPbAf8C6owxW8TbqDHmB8CluK5omwbbfmIdsd4KTAe+B+wFTAYOXcdr/gEsBnYGtgYuBJYGy74VvN/zgXHBI8oDfhmsvzkwM0H5Hu6zORvYAViE+/wSJsQ6+Rz4fvD7DkEMP4i3ojHmQNx3cCewFVAF/BD4SadVDwdGAHsARwIHAZekGI+IiIj0c+raJiIiIl1mrb099u9gvKDFuCTLyzGLbrXW3h38foUxZi9ckuU4YAYwFJhhrY22vrnaGLM3cAYuUdPZhkAEeNJa2wrMA2YlitMYswlwCLCvtfbZ4LmTgU/X8RY3BH5rrX0/+Ls+usBau8j1WqPBWhvpvEmgylr70jdPGEMcBrjIWvtCsM5xuOTQ0bjEV1LW2nZjzJLgz0Vx4oh1KfCAtfba4O+wMSYEXGeM+YW1tiV4/jNr7QXB7x8aY+4F9gH+b13xiIiISP+nFkkiIiLSZcaYbY0x/zTGfGqMacQldMAlYGK90unvl4Etg9+/BYSAZcaYFdEH8B1ca6N47gPygM+C7mjHGWOKk4Q6Jfj53+gTQeLkf8neH27A6luCLl8/NcZMW8f6sdZVdtQ3n421dinwAR2fTU/aEnix03MvAIOAjWOem91pnfnA2F6IR0RERPogJZJERESkS4wxhcC/AQuchOta9a3g785d25LxcMmTbTs9tgBOi/cCa+2XuC5jJwNf4VrLfGSMmbS+7yMZa+0vgDJc4mor4NVgbKV1abfWru6BEPw4z+X1QLnJtHT626I6o4iIiARUKRAREZGu2gIYDVxurX3eWvsBMJxOA1gHOk9DvzMQ7S42EygFlltr53R6zE+0cWtts7X2SWvtxbjxiwpx3dfiiW5r5+gTwThO30r6Dt126q21f7TWHg5cCZwVs7gFN+B2d3zz2RhjSnCfazTer4AcY0xsi6DOraKiiZ91xfEe0HkA891xM8l9sh7xioiIyACmMZJERERkXYpiZxILrAY+w81Idq4xpho3ePV1uBYsnZ1ijPkQlzQ6FtgJODdYdjdwAW6Q6cuBMK4r1V7AB9bahzoXZow5BXdD7HVgGbA3brDu9zuvC2CtnWOMeQS40RhzBrAQN2ZQwu5wwUxlvwQewI2lVALs12kbnwJ7GmOeAFqstV8nKi8BC/zKGBMdxPtqoBE3IDnB+2vEjWN0Da4L2pWdyvgM13LpgGA8o2ZrbUOcbV0LPGqMuRR4ENfq66dAdcz4SCIiIiJJqUWSiIiIrMu3gbc6PR4KkibH4mZMew83ntCPiN8d61LgdOBt3ADbx1pr3wQIuoDtjksy3Y5LJD2I6yr3WYKYluK60z2P6xZ3IXC6tfaZJO/jZNyA3I/hxgb6EvhnkvXbcC2sbg228RQuAXV0zDpVuJng5uJmXFtfPvBj4M+49x8CDrTWNgFYa5cAR+FaLb2N68J3cWwB1tqFwGW4z3gB8HC8DVlr/4X7DE4A3gV+B/wR+FkX4hYREZEBylgb76ahiIiIiIiIiIjImtQiSUREREREREREUqJEkoiIiIiIiIiIpESJJBERERERERERSYkSSSIiIiIiIiIikhIlkkREREREREREJCVKJImIiIiIiIiISEqUSBIRERERERERkZQokSQiIiIiIiIiIilRIklERERERERERFKiRJKIiIiIiIiIiKREiSQREREREREREUmJEkkiIiIiIiIiIpISJZJERERERERERCQlSiSJiIiIiIiIiEhKlEgSEREREREREZGUKJEkIiIiIiIiIiIpUSJJRERERERERERSokSSiIiIiIiIiIikRIkkERERERERERFJiRJJIiIiIiIiIiKSEiWSREREREREREQkJUokiYiIiIiIiIhISpRIEhERERERERGRlCiRJCIiIiIiIiIiKVEiSUREREREREREUqJEkoiIiIiIiIiIpESJJBERERERERERSYkSSSIiIiIiIiIikhIlkkREREREREREJCVKJImIiIiIiIiISEqUSBIRERERERERkZQokSQiIiIiIiIiIilRIklERERERERERFKiRJKIiIiIiIiIiKREiSQREREREREREUmJEkkiIiIiIiIiIpISJZJERERERERERCQlSiSJiIiIiIiIiEhKlEgSEREREREREZGUKJEkIiIiIiIiIiIpUSJJRERERERERERSokSSiIiIiIiIiIikRIkkERERERERERFJiRJJIiIiIiIiIiKSEiWSREREREREREQkJbmZDqA7jDGLgM8yHYeIiIj0mg2ttaMzHYSsSXUwERGRfi9hHaxPJ5KAz6y122c6CBEREekdxpiZmY5B4lIdTEREpB9LVgdT1zYREREREREREUmJEkkiIiIiIiIiIpISJZJERERERERERCQlSiSJiIiIiIiIiEhK+vpg2yIiIuvtjTfeGJObm3sLsBW6qZJpPvBuW1vbqdOnT/8q08FI92jfyirWGNPQ3t5+u+/7N02fPr0l0wGJiEj/oESSiIgMOLm5ubeEQqEtRo8evdTzPJvpeAYy3/fNokWLpkQikVuAgzMdj3SP9q3sYa2lpaUlb/78+ecuX758GnBCpmMSEZH+QXeKRERkINpq9OjRy3Whm3me59nRo0c34FqwSN+nfStLGGMoKCho3XDDDRuAXTMdj4iI9B9KJImIyEDk6UI3ewTfheok/YP2rSwTfB85mY5DRET6D1XaREREREREREQkJUokiYiIiIiIiIhISpRIEhER6aLZs2cXbL755lOGDBmy3VVXXTXmsMMOm1xZWTk+03GJ9HXat0RERLKXEkkiIiJddPXVV4d22WWXxpUrV751xRVXZOXU9RMmTNj6oYceKs50HCLrQ/uWiIhI9lIiSUREpIu++OKLgi233HJVpuMA8H2f9vb2TIch0iO0b4mIiGQvJZJERES6YMcddyx77bXXii+77LINCgsLt3v77bcLOq9TXV09aoMNNthq2LBh2+61116bzJ07Nw/gggsuGH/CCSdMAmhubjaDBw/e7owzzpgIsGLFClNQUDBt4cKFOQDPPPPMkO22227z4uLibTfbbLMpjz322DctIHbYYYfNzj333AnTpk3bvLCwcNoHH3ywRgyHHHLIRgsWLMg/8sgjNy0sLNzuiiuuGLvHHntscvXVV4+JXa+srGzKHXfcUQJgjJl+1VVXjZk4ceLWw4cPn3rGGWdMjL2Ivv7660eWlpZuOXTo0G133XXXTcPhcH5PfaYioH1L+5aIiGQ7JZJERES64NVXXw1Pnz59xbXXXjuvqanprW222aY5dvkjjzxSfNVVV034+9//Xh+JRGZPmjSp+fDDDy8F2HPPPRtfeeWVYoAXX3yxcNSoUa2vvPJKEcCzzz5bNHny5NVjx45t//TTT/MOO+ywTS+99NIFy5Ytm3Xdddd9ceyxx248f/783Oh27r///hE333zz3MbGxjc33XTTltgYHnrooU/HjRvXcs8993zc1NT01lVXXbXw2GOPXXzvvfeOiK7zyiuvDP7qq6/yjzjiiIboc48++mjJG2+88f7rr7/+wVNPPVVyww03jAK46667Sn7729+Ou//++z9ZvHjxrJ133nnFjBkzSnvj85WBS/uW9i0REcluSiSJiIj0grvuumvEjBkzFu+6665NgwcPtjU1NV/OmjVryEcffZS/1157rfjss88GRSKRnOeee674mGOO+XrhwoX5DQ0N3nPPPVe80047NQLccsstI/fYY4+GGTNmNOTk5HDooYcu32qrrVY+8MADw6LbmTFjxuLtt99+dV5eHgUFBXZdcR199NHL5s6dO+idd94pALj99ttHHnTQQUsGDRr0zWsvuuiiyNixY9s33XTTljPPPHNhbW3tCICbb7559AUXXBCZNm3a6ry8PK699toFH3744WC1nJB00r4lIiKSWWlNJBljcowxbxljHouz7ERjzCJjzKzgcWo6YxMREelJkUgkf8MNN/ymJcWwYcP8kpKS9s8++yyvqKjIbrXVViufeuqp4pdffrlor732apw+ffqKp59+uujll18u3mOPPRoBPvvss/wnnnhieHFx8bbRxxtvvFG0YMGCvGi5kyZNaom3/UQKCwvtQQcdtOS2224b2d7ezkMPPTTixBNPXBy7zuTJk1tif1+4cGEewJdffpl/+eWXT4rGUlJSsq211nz22Wd5nbcj0lu0b4mIiGRW7rpX6VHnAR8AQxMsv9dae04a4xEREekVoVCo5bPPPvtmXJXly5d7y5Yty9lwww1bAXbeeecVzzzzzND333+/cLfddmt64403Gp944omh77zzTuG+++67AtyF7KGHHrr4nnvu+SzRdowx6x3bySefvPjkk0/eaLfddlsxePBgf5999lkZu3zu3Ln522+//WpwF9xjx45tBRg3blzLj370owVnnXXWkvXeqEgP0b4lIiKSWWlrkWSMmQgcCNySrm2KiIhkytFHH73k3nvvHfnf//538KpVq8x55503YerUqSs322yzFnBjuTz44IMjN9lkk9WDBg2y5eXljffcc8/oCRMmtIwfP74N4JRTTln89NNPlzzwwAND29raaGpqMo899ljxJ598knIrhVGjRrXOmTNnjYGC99lnn5We53HJJZdMrKioWNz5NdXV1aFFixblzJkzJ+9Pf/rTmMMOO2wJwOmnn77ot7/97biZM2cOAli8eHHObbfdNrw7n5PI+tK+JSIiklnp7Np2PXAx4CdZ5zBjzNvGmPuNMZPirWCMOd0YM9MYMxMY1QtxioiIdNshhxzSeNlll82fMWPGxqFQaOrcuXML7rvvvvro8r333nvF6tWrzc4779wIMG3atNX5+fn+t7/97cboOptssknrfffdN+e6664bN3LkyG0nTJiwzW9+85uxvu+n3FTioosuilRXV48rLi7e9sorrxwbff6II45Y/PHHHw8++eST17rYPfDAA5dtt912U7bffvst99lnn4bzzz//a4Djjz9+2fnnn7/g6KOPLi0qKtpuyy233PKJJ54Y1vn1Ir1J+5aIiEhmGWvXOXZg9zdizEHAAdbas40xewA/stYe1GmdkcAKa22zMeYMYIa1dq91lDvTWrt9b8UtIiL90+zZs+dOnTr160zHkUl/+MMfRt5+++2j3njjjY9inzfGTH/nnXfe3WqrrZoTvbY3zJ49e9TUqVMnd35e5/rslOh70b6VffsWJN6/REREEklWB0tXi6RdgIONMXOBe4C9jDF3xa5grV1srY2eWG8BpqcpNhERkQGlsbHR+8tf/jL6pJNOGtAX/CI9TfuWiIgMBGlJJFlrL7PWTrTWTgaOBJ611h4bu44xZlzMnwfjBuUWERGRHvTAAw8MHTNmzNRRo0a1nnHGGWt1vRGRrtG+JSIiA0W6Z21bgzHm58BMa+0jQKUx5mCgDVgCnJjJ2ERERPqjww47bPlhhx32VqLl1to30hmPSH+hfUtERAaKtCeSrLXPA88Hv18Z8/xlwGXpjkdERERERERERFKTzlnbRERERERERESkD1MiSUREREREREREUqJEkoiIiIiIiIiIpESJJBERERERERERSUlGZ20TkfQp9yrygb2A7YDVuEHvZ9X5tTaTcYmIiIiISP/mR8rGA/sD44B5wGNeKLwks1FJV6lFksgAUO5VbA38B6gBTgMqgfuA2nKvYngmYxOR7vvoo4/yjTHTW1tbMx2KSL+ifUtEpHv8SJnxI2UXAy8APwZOBq4EXvEjZSdkNDjpMiWSRPq5cq9iDHAXMBRYDiwBFgMNuNZJt5R7FSZzEYr0HS/UvjL03B0vKzty4hlbn7vjZWUv1L4yNNMxiSRjjJlkjHnOGPO+MeY9Y8x5cdbZwxjTYIyZFTyuzESs2r9ERPqlk4EzgEZgKe5aZBmwCrjSj5Ttl7nQpKuUSBLp/44GhgAr4ixbCmwDTE9rRCJ90Au1rwz9U9VfN1i2aHnekGGD25YtWp73p6q/btAbF7uXX355aMyYMdsMGTJku8mTJ2/18MMPF7e3t/PjH/84NGnSpK1KSkq2PeCAA0oXLlyYA7DHHntsBjBs2LDtCgsLt3v66aeHtLe3c/HFF48bP3781iNGjJh66KGHTl68eHEOQFNTk/n+97+/UUlJybbFxcXbbrXVVlt8/vnnuQA33HDDyNLS0i2HDBmy3cSJE7f+9a9/Paqn35+kVRtQZa2dAuwI/NAYMyXOei9Za7cNHj9Pb4jp27+0b4mIpI8fKcvH9YRYCfidFrcBzcBFfqRMN7X7GCWSRPq/7+PGREokB9gnTbGI9Fn3Vz8Sys3LtQWD831jDAWD8/3cvFx7f/UjoZ7czuzZswtuvfXWMa+//voHK1eufOupp54Kb7LJJi3XXHPNmMcff7zk+eef/2jBggWzS0pK2k899dQNAJ5//vmPABoaGt5qamp6a5999ln5+9//fuQ999wz8umnn/7o008/fWflypU5p5xyygYAN95448jGxsaczz///O2lS5fOuummmz4bMmSIDzB27Ni2Rx99dE5jY+Nbf/7znz+98sorJ/3nP/8p7Mn3KOljrV1grX0z+L0R+ACYkNmo1paO/Uv7lohI2m0NFAAtCZY3ARuQheclSU6DbYv0f/msfQcglgUGpykWkT5r0RdLCoYMG9wW+1z+oDx/0RdLCnpyOzk5ObS0tJhZs2YNGjduXNtmm23WAvC9731v9O9+97t5G2+8cSvAtddeO3/jjTfeurW19dN45dx7770jzz777IVTpkxpAfj1r3/9xfTp07dsbW39NC8vzy5dujT3/fffL/j2t7+96jvf+U5T9HVHHnlkQ/T3Aw88cMUuu+yy/Lnnnivaddddm+JtR/oOY8xkXJfm1+Is3skYMxuYD/zIWvtenNefDpwe/NmjrWnSsX9p3xIRSbt83LVGMu3BetKHqEWSSP83E0h2x7MdeDNNsYj0WaMnjmhuWd26xnmzZXWrN3riiOae3M5WW23VfM0113z+i1/8Yvzo0aOnHnTQQaVz587NW7BgQf4xxxyzSXFxcbTLzJY5OTl88cUXefHKWbhwYd7kyZO/uQO46aabtrS3t5svvvgi76yzzlqy1157NRx99NGlY8aM2ebMM8+c2NzcbADuu+++oVOnTt182LBh2xYXF2/7wgsvDPv6669146mPM8YUAQ8A51trl3da/CawobV2KvB74KF4ZVhrb7bWbm+t3R74uifjS8f+pX1LRCTtPsb1fkiUd8gDWoEv0xaR9AglkkT6v9txdwJy4iwrxPVZfiqtEYn0QYdXHRxpa20zzataPGstzatavLbWNnN41cGRnt7WmWeeueSNN974aO7cuW8bY+z5558/cezYsa0PPvhguLGxcVb00dzc/OZGG23UaszaQwuMHTu2de7cud/c4ZszZ05+Tk6OnThxYmtBQYGtrq5e8Mknn7z30ksvfVhXVzfsj3/848hVq1aZE044YePzzz9/4VdffTW7sbFx1u67795g7bpuJko2M8bk4ZJId1trH+y83Fq73Fq7Ivj9X0CeMSat4/eka//SviUikj5eKPw18AQwLMEqRcBfvVC4R2/KSe9TIkmkn6vza2cBv8IdqEtwmf+C4HcfOLXOr002hpKIALtX7LT8zOoT55WMHtq6smFVbsnooa1nVp84b/eKnTq37uiW2bNnFzzyyCPFq1atMoWFhXbQoEHW8zx70kknfXXFFVdMDIfD+QDz58/Pveuuu0oAxo0b1+Z5Hh988ME33YAqKiqW3HTTTWM//PDD/IaGBu/iiy+ecOCBBy7Ny8vj0UcfLX799dcHt7W1UVJS0p6bm2s9z7OrV682LS0t3pgxY1rz8vLsfffdN/Tll1/WzFl9mHGZkFuBD6y1v02wTihYD2PMDrj64eL0RZme/Uv7lohIRlyJa5k0HHcTOxd3XTIc19X6D5kLTbpKzWlFBoA6v/Yv5V7FG8ApwLdwTUjvBu6q82u/yGhwIn3I7hU7Le/pxFFnq1ev9i6//PKJRx111KDc3Fw7bdq0FbfffvtnkyZNarXWmn333bds0aJFeSNGjGj9/ve/v/TYY49dVlxc7J977rkLdt99983b2trMQw899PF555339fz58/P22GOPzZubm81uu+22/JZbbpkHMH/+/Lxzzz13w4ULF+YVFhb63/ve95acffbZi/Py8rjqqqvmHX/88Ru3tLSYvffeu2HvvfduWFfMktV2AY4D3jHGzAqe+zFucFOstX8CDgfOMsa04aZjPtJmoKlMb+9f2rdERNLPC4Ub/EjZD3ATAB0PjAY+BG4DnvBC4dZMxiddY/pyk1pjzMygn76IiEjKZs+ePXfq1Kk9OsaLdM/s2bNHTZ06dXLn53Wuz06JvhftW9kp0f4lIiKSSLI6mLq2iYiIiIiIiIhISpRIEhERERERERGRlCiRJCIiIiIiIiIiKVEiSUREREREREREUqJEkoiIiIiIiIiIpESJJBERERERERERSYkSSSIiIiIiIiIikhIlkkREREREREREJCVKJImIiAwwhYWF273//vv53SljwoQJWz/00EPFPRWTSH+h/UtERPq73EwHICIiIunV1NT0VqZjEOmvtH+JiEh/p0SSiIhIih4PfzT01rdmhhasWFEwrqio+ZTtto8cWLbZ8kzH1Vlrayt5eXmZDiOubI5NMkv7V/dlc2wiItJ/qGubiIhICh4PfzT06pee32DxqlV5xfn5bYtXrcq7+qXnN3g8/NHQntrG5ZdfHtpvv/1KY5876aSTJp144omTFi9enHPEEUdsOHr06G3GjBmzTWVl5fi2tjYAampqRk6bNm3zU045ZVJJScm2VVVV4999992Cb33rW5sVFxdvO3z48KkHHnjgN+UaY6a/++67BQArVqwwp5122sTx48dvXVxcvO306dM3W7FihQG4++67h22yySZbFhcXb7vDDjts9uabbw6KF/eqVavMySefPGnMmDHbjBkzZpuTTz550qpVqwzAY489Vjx27NhtLr/88tCoUaOmVlRUbNRTn5f0H9q/tH+JiEjfoUSSiIhICm59a2YoLyfHDsrN9Y0xDMrN9fNycuytb80M9dQ2TjjhhCUvvPDCsKVLl3oAbW1tPPbYY8OPO+64JUceeeTk3NxcPvnkk3ffeuut95977rlhv/vd70ZFX/v2228PKS0tbV60aNGsa665ZsFll102fq+99mpYtmzZrC+//PLtysrKr+Jt86yzzpo0e/bsIS+//PKHS5cunXXdddd9kZOTw9tvv11w6qmnlv7617/+/Ouvv5697777LjvkkEM2Wb16telcxmWXXTbujTfeGPLWW2+9P2vWrPffeuutIZdeeum46PLFixfnLVmyJOfzzz9/+6677prbU5+X9B/av7R/iYhI36FEkoiISAoWrFhRUJCT48c+V5CT4y9YsaKgp7ZRVlbWMmXKlKa77757OMCjjz46dNCgQX5ZWVnzCy+8MOzmm2+eN3ToUH/ChAlt55xzzsL7779/RPS1o0ePbrn88su/ysvLo6ioyObm5tp58+YVzJ07N6+wsNB+97vfXdF5e+3t7dTW1o664YYb5m200Uatubm5lJeXrxw8eLC98847R+y5554Nhx566PKCggL7s5/9bOHq1au9p59+uqhzOQ888MCIH//4xwsmTJjQNn78+LYrrrhi/v333z8yutwYY6urq+cPHjzYFhUV2Z76vKT/0P6l/UtERPoOJZJERERSMK6oqLm5vX2N82Zze7s3rqiouSe3U1FRseS+++4bAXD33XeP+MEPfrBkzpw5+W1tbWbcuHFTi4uLty0uLt62qqpqw8WLF38zGMq4ceNaY8u54YYbvrDWstNOO22xySabbHn99deP7LytSCSS29zcbKZMmbLWe5g/f37epEmTWqJ/5+TkMG7cuJbPP/98rQFYFi1alL/xxht/U0ZpaWnLV1999c16w4cPbyssLNQFriSk/Uv7l4iI9B1KJImIiKTglO22j7S2t5vVbW2etZbVbW1ea3u7OWW77SM9uZ3jjz9+6euvv178ySef5D311FMlJ5xwwpLS0tLW/Px8u2TJklmNjY2zGhsbZ61YseKtOXPmvBd9nTFmjQvJDTbYoO2ee+757Kuvvnr7xhtv/OySSy7ZMDpuS1QoFGorKCiw77///lqtPsaPH9/6+eeffzOFue/7LFiwIH/SpEmtndcdPXp0yyeffPJNGZ9++mn+mDFjvlnPmLV664isQfuX9i8REek7lEgSERFJwYFlmy2//Dt7zBs5eHBrY0tL7sjBg1sv/84e83p6Vqnx48e37bDDDo3HHXfc5IkTJ7ZMmzZt9YYbbti6yy67NJx++umTlixZ4rW3t/Pee+8VPP7442t1g4m67bbbhn/yySd5ACNHjmwzxuB53hoXwzk5OVRUVHx94YUXTpo7d25eW1sbTz/99JBVq1aZY489dslzzz037OGHHy5ubm42P/3pT8fm5+fbffbZZ60uPIceeuiS6667btz8+fNzFyxYkHv11VePO+ywwxb35Oci/Zv2L+1fIiLSd+RmOgAREZG+4sCyzZanYzryGTNmLD7nnHM2uuKKK76IPnfffffNraysnLDFFlts1dTU5E2cOLHlggsuWJCojNdff33IpZdeOmnFihU5I0eObL3qqqvmTZkypaXzejfddNPnlZWVE3fYYYctVq1a5W222Warnn/++fDUqVOb//znP3964YUXbnDsscfmbb755qseeuihjwcNGrRWF5rrrrtuwdlnn50zderUKQAHHnjg0uuuuy5hbCLxaP/S/iUiIn2Dsbbvdqk2xsy01m6f6ThERKRvmT179typU6d+nek4pMPs2bNHTZ06dXLn53Wuz06JvhftW9kp0f4lIiKSSLI6mFokiWSRcq8iH9gBKAG+AGbX+bV9N9srIiIiIiL4kbLxwFTAB970QuFFMctKcNcAucC7Xig8L2bZYODbwBDgU+ADLxTOyuuDINYdgUKyPNZM8CNlE4BtgHZgphcKL8lwSF2mRJJIlij3Kg4D/g8YBJjg8UW5V3FhnV87K5OxiYiIiIjI+vMjZUOB64B9cQkEAONHyh4Gfg5cABwT8xLPj5T9F6gCDgYuxF23G9wYx2E/Una+Fwp/nKa3sE5+pMwApwLn05Fj8IAP/UjZBV4oPCdTsWWDIFH4a2AP3P+Awf0P3A/8zAuFe3SG0nTQYNsiWaDcq/gB8CsgB1gBNALLgfHA38u9is0zGJ6IiIiIiKwnP1KWB9wJfBdowNXxG3H1/R8ArwInAE0xy5YDuwD/Aa7AJR6i1wcNwKZAbdC6JVucBVwKtNHxPhqAzXCxjs9gbBnlR8oKgL8De+K+2+h3uQKYAfw+SMT1KUokiWRYuVeRhztJNAGds9ErgHzcnQgREREREek79gKmAEuB2C5ePq7uvymu/t8es8ziEg6luOv11k5lLgeKgTN6J+T1E7S4qsQlR+LFOgzXWmmg+i7ue17G2v8DS3EJpm3SH1b3KJEkknnb4/oRJ2rSuBzYs9yrGJK+kEREREREpJtmsGbyINYwXBen4XGWFQevK0nw2kagIktasuyByyu0JVi+HDgibdFkn6NwSaNEPOCQ9ITSc5RIEsm8oetY7uNOJEokiYiIiIj0HaNYu5VOVB6ujh9v3OKcTj87awMGkx3X88NIHCe4WIv8SFk2xJoJI0j8PwCuNdroNMXSYwbqlymSTT4n+cE3F2jBNYcUEREREZG+4SOgIMGy1Z1+xmrBtVZK1GOhAIh4oXB7guXpNI/ErZHATST0pRcKJ2uV05+FcZ9BIjm4/5M+RYkkkcz7AJhD4pZJQ4F76vzalvSFJCIiIiIi3XQXrtVRvOvuxk4/Y63E9UpYkaDcIcCt3Y6uZ7yM675WmGB5IXBL+sLJOncGP+P9D+TiWiQ9kL5weoYSSSIZVufXWtz0ns24PtLR/TIP1xTyU+APmYlORLLFbrvttunvf//7kV19fWFh4Xbvv/9+fk+vK9IfaP8SkV7yNnAHrvtXbKJlSPD4G25ineKYZYNxYyM9hGutVIJrnUSw7ghgFi5JlXFeKNwGnIe7hilh7VjfBP6RkeCyw/+Ae3D/A4Njni/Cfe/XeqHw/EwE1h3x+mOKSJrV+bXvl3sV38cdhPenoynrzcBNdX5tQybjE5HMe/HFFz/uzuubmpre6o11RfoD7V8i0hu8UNj6kbKrgHeBc4DJwaIPgRu8UPjffqTsO8D5wLa41ksR4CZc8mUL4ALcgNYW10LpeuAWLxRelaa3sU5eKPxfP1J2OO597IGLtRH4HS7WeN33BoTgf+BKYDbwQ2Ai7lrvPdz/wDOZjK+rlEgSyRJ1fm09cF65V3Ex7g7F8jq/Nll/YxFJM3/VE0Npui1E+4ICcsY1U3hyxBu8//JMx9Xa2kpeXl6mwxDpFu1fItIfeaGwBf7pR8oewg1ZYb1QeHnM8peAl/xIWRHu+nx5zHhC7wGn+pGywbjWLA1ZMi7SWrxQ+F36SKzpFnyftX6k7H5cy6R2LxSO16Wxz1DXNpEsU+fXNtf5tUuURBLJLv6qJ4bSeO0G+IvzMMVt+IvzaLx2A3/VE+uaeTFll19+eWi//fYrjX3upJNOmnTiiSdO2mGHHTb77W9/OwqgpqZm5LRp0zY/5ZRTJpWUlGxbVVU1PhKJ5Oy1116bFBUVbbfVVlttUVlZOX769OmbRcsxxkx/9913CwAOO+ywyccdd9wGe+yxxyZDhgzZbpttttn8vffeK4i37ooVK8xpp502cfz48VsXFxdvO3369M1WrFhhAPbff//SUaNGTS0uLt52++2332zmzJnJBpMUSUj7l/Yvkf7OC4WtFwo3xCaROi1f4YXCy+INSu2Fwqu8UHhJX0jM9KVY0y34H1jW15NIoESSiIhIappuC2FyLWaQjzG4n7mWpttCPbWJE044YckLL7wwbOnSpR5AW1sbjz322PDjjjtuSed133777SGlpaXNixYtmnXNNdcsOPXUUzcsLCz0FyxYMPtvf/vbp/fdd9+oZNt69NFHR/zkJz+Zv2zZsrcmT57cfMkll0yIt95ZZ501afbs2UNefvnlD5cuXTrruuuu+yInx000+d3vfrfh448/fuerr76avc022zQde+yxpfHKEFkn7V/av0REpM9QIklERCQV7QsKoKDTXcICn/ZIoml911tZWVnLlClTmu6+++7hAI8++ujQQYMG+XvvvffKzuuOHj265fLLL/8qLy+PQYMG2SeffLLk6quv/rK4uNifPn366iOOOOLrZNv67ne/u3TPPfdsysvL45hjjlny3nvvDe68Tnt7O7W1taNuuOGGeRtttFFrbm4u5eXlKwcPHmwBzj///MXDhw/3Bw8ebH/1q1/N/+ijjwYvXrw4p6c+DxlAtH9p/xIRkT5DiSQREZFU5IxrhuZO581mj5xQc09upqKiYsl99903AuDuu+8e8YMf/GCt1hIA48aNa43+Pn/+/Nz29nZTWlr6zXOTJk1qSbadsWPHfrPukCFD/KamprUuUCORSG5zc7OZMmXKWu+xra2Ns88+e8KkSZO2Kioq2m6jjTbaOvqaVN6nyBq0f61B+5eIiGQzJZJkwCv3KvLKvYpty72KHcq9iuGZjkdEslThyRFsm8Gu9rAW97PNUHhypCc3c/zxxy99/fXXiz/55JO8p556quSEE06Ie6FrjLHR38ePH9+Wk5NjP/30029GBP7888+7Pb14KBRqKygosO+///5arUL+/Oc/j3jyySdL6urqwsuXL3/r008/fQfAWrt2QSLrov1rDdq/RKS3+ZGyUX6kbAc/UraNHylTa8f14EfKJvmRsm/7kbLN/EiZyXQ8maBEkgxY5V6FKfcqTgJex02v+Vfg1XKv4jflXkWPDe4pIv2DN3j/5RRfNg9vZCt2RS7eyFaKL5vX07NKjR8/vm2HHXZoPO644yZPnDixZdq0aeucMjc3N5fvfve7yy6//PLxjY2N3ltvvTWotrZ2ZHdjycnJoaKi4usLL7xw0ty5c/Pa2tp4+umnh6xatco0Njbm5Ofn2zFjxrStWLHCO//88+OOASOSCu1f2r9EJD38SNkIP1L2B+C/uOuf+4BX/UjZkQM1KZIqP1K2iR8puxd4FvfZPQo87UfKdsloYBmgRJIMZFXAFUAOsBJoCn4eCvyj3KtYazwDERnYvMH7L/dG1oa9MS+9442sDffW1OQzZsxY/Morrww9/PDDF6f6mr/85S/zGhsbc8aNGzf1uOOO2+iQQw5Zkp+f3+3mCzfddNPnW2yxxaoddthhi+HDh2976aWXTmxvb+ess85aPGHChOZJkyZN3Xzzzbfccccd1xpnRmR9aP/S/iUivcuPlA0FHgD2B1bgrn9WAIOAq4HTMhdddvMjZRvhPrtpQAPuunE5MB643Y+U7ZbB8NLO9OUmssaYmdba7TMdh/Q95V7FeOAFoBFYa4pNoAS4vM6vvTedcYlIesyePXvu1KlTkw6W29edddZZExYuXJj34IMPzs10LKmYPXv2qKlTp07u/LzO9dkp0fcyEPYt6D/7l4gMLH6k7DTgUmBpnMW5wGDg214ovCydcfUFfqTsRmA/4n92hcBiYHcvFI53bdknJauDqUWSDFQH4P7/E+3oLcDx6QtHRKR73nrrrUGvvfbaYN/3ee655wrvueeeUYceeuiyTMcl0h9o/xKRfuJ4YFWCZW24nhr7pi+cvsGPlBXhPpeGBKs0AWOBrdMWVIZp5gcZqMatY3krMCYdgYiI9ITly5d7xx13XOmiRYvyRowY0XbmmWcuPOaYY5ZlOi6R/kD7l4j0E6NInEgClx8YlaZY+pJhuAYIyVobtQPdHj+vr1AiSQaqeUCyfp0FwKdpikVEpNt23333pnnz5r2b6ThE+iPtXyLSTyzAtZxJlExqBXp0tsx+ItqdLQeXMIonB1iYnnAyT13bZKD6Fy6jnCiZmgvclr5wRCTNbF8eI7C/Cb6LfjOmwACnfSvL+L5v0P4lIs7tuIG148nDdW/7d/rC6Ru8ULgJN0PbsASrFAGfA++nLagMUyJJBqQ6v3YR8CugGDeoXFQeMBz4H/BkBkITkTQwxjS0tLTkZToOcVpaWvKMMYnGHZA+RPtW9lm1atUgY4xaGIgIwP3Ae7jrndgb6oXAEOAnXii8IhOB9QG/Bb7GfXbRPIrBJZcscLEXCg+YOylKJMmAVefX3gJcgDsgDMVlknOAvwAn1fm1LRkMT0R6UXt7++3z588fEtyplwzyfd/Mnz+/qL29/a+ZjkW6T/tW9vB936xcuXLw3Llz89va2n6W6XhEJPO8UHgVcDRwB5CPu/4ZBswHzvJC4fsyGF5W80Lh+cAhuMYGRbjE21DgTWCGFwq/kbno0s/05ebHmhJYekK5V2GADXAH08/r/NrVGQ5JRHrZG2+8kZ+bm/sXYFdcAlkypx34T1tb22nTp09fK4Gvc312SvS9aN/KKr4xJtLW1vazadOmPZXpYEQku/iRskJgIrAa+HwgtabpLj9SVoKbmKnBC4X77bhIyepgSiSJiIhI1tK5PjvpexEREenfkp3r1bVNRERERERERERSokSSiIiIiIiIiIikRIkkERERERERERFJSe66VxERERERERGRbONHykYAJcBiLxRuWI/XDQLG4wbbXhA72LYfKcsFJuCmtf/CC4X99Sh3LG5Gs4gXCjel+jrpW5RIEhEREREREelD/EhZGXAZbpbMdsDzI2V1wC+9UHhektcVAucDx+Bm18wF5viRsl8CLwInA2fiprg3wNd+pOwG4L5kM7v5kbKdgUuBLYJ4rB8pqwV+44XCy7v5diXLpLVrmzEmxxjzljHmsTjLCowx9xpj5hhjXjPGTE5nbCIiIiIiIiLZzo+UTQEeBL4DLAdWBI/9gIf8SNkGCV43CPg7cArQGrxmGbAh8BfgYVxyKg9oDMoeClyDSxIlimdf4G/AZkBDUG4zcCxQ60fKirvzfiX7pHuMpPOADxIsOwVYaq3dBPgd8Mu0RSUiIiIiIiLSN1wNFOCSQNFWQj6wFBhG4qTPYcDWwXptMc+vDMopxyWCWmKWrQ6eO9mPlG3SuUA/UpYP/AqXOGqMWdQGLAE2xSWUpB9JWyLJGDMROBC4JcEq38dlMQHuB/Y2xph0xCYiIiIiIiKS7fxI2WRgK1xyJ54GYB8/UjY8zrKTcYmheIbhurLFaz3k43IHFXGW7QYMTlLuymC70o+ks0XS9cDFuH/CeCYAnwNYa9twO8DItEQmIiIiIiIikv3GsWZros583BhFo+MsG49rORRPfvAzL8HyNmCjBPEkG3u5GRjtR8o0Y3w/kpYv0xhzEPCVtfaNHijrdGPMTGPMTGBU96MTERERERER6RMW4wbJTsTgEjtLE7w2P87z4MZMgsRJqjxgQYIy25PEkwc0rM/Mb5L90pUV3AU42BgzF7gH2MsYc1endb4EJgEYY3JxTesWdy7IWnuztXZ7a+32wNe9GrWIiIiIiIhI9vgY+Aw3q1o8w4DXvFB4UZxld+K6ocWzLPgZb4Y1g0sW3R9n2fO4JFSilkxFwN0JlkkflZZEkrX2MmvtRGvtZOBI4FlrbecBtx4BTgh+PzxYJ+H0giIiIiIiIiIDiRcKW+D/cMmdIZ0WD8UNlH1Ngpf/A/gCKAleH5WPyw3MCsqIbfGUG6z/OPBunHiagu0VAYNiFpngdYuA25K/K+lrMtpP0Rjzc2PMwcGftwIjjTFzgAtJMr2giIiIiIiIyEDkhcKv4hphfIlL/AzBtUT6CJjhhcLvJ3jdclyjjWdiXleE6852JbA78Hdcq6UhwSMP+BPwoyCJFa/cu4GLgKagvCFB+f8BfuCFwupJ1M+YvtzoxxgzM+jiJiIiIv2QzvXZSd+LiEjm+ZEyA2yGm6Qq4oXCn6zHa8cAm+BmW3vHC4VbY5YNBabgBu5+N2h1lEqZOcDWQCEw1wuF56caj2SfZOd6JZJEREQka+lcn530vYiIiPRvyc71moJPRERERERERERSokSSiIiIiIiIiIikRIkkERERERERERFJSW6mAxDp78q9ihwgBCyr82tXZjoeERERERHpGj9S5uFmJlvthcItCZa1eKHw6k7LDG4Qahtv8Go/UjYYd32+ItHsaLL+gs81B1jZU59rzPe8KnaQ8oFEg22L9JJyr2IscDOwL+6kYIF3gQvq/NoXMhmbiEhfoXN9dtL3IiIDjR8pKwZOB47HTW/vA48Bvwe+AI4BzgDGBC95CbgBmAUcBJyDmyXNAO8ANV4o/IwfKdsZOA/4Fu564Qvgj0CtFwr76Xhv/ZEfKdsV97lOx32u83Cf6wNd/Vz9SNkw3Hd8LC4p2A48AvzeC4Xn9UTc2USztomkWblXMQ6YDQwH2nAnGoA83AHniDq/9tEMhSci0mfoXJ+d9L2IyEDiR8qGAvcBZUAj0IobJmYY0AR8BGwHrAJW45JFQ3EJjBeAvYAWINo7oQh3o/nfuJvOflCuBQYDg4AHgUuUTFp/fqRsBnA17rqrMXi6ECjAfY8/Xt/WSX6krAR4ANiIjv+BHNz/wHKgwguFP+6J+LOFZm0TSb+bcUmkFjqSSNBxwLm93KswmQhMREQGDmPMJGPMc8aY940x7xljzouzjjHG1Bhj5hhj3jbGTMtErCIiWexsYFNgCa4+D66OvxQYAewf/B7tzmaBBlxC6XhcoiF2iIsVuKTTKUF5y4PXEDy/DDgE2LUX3ku/5kfKRgM/x33ejTGLmnCf6+HATl0o+jxcEin2f6A9+HsI8OuuRdw3KZEk0sPKvYoCYB9cS6R4WnF3KA5NW1AiIjJQtQFV1topwI7AD40xUzqtsz/uAmlTXLeNm9IboohI9vIjZXm4rkwrEqwyBNe6aFCcZUW4ZFLRei6LJpVOWq9gBVwCLoeOZE8si/vMT1yfAv1IWQEwA5fwi6cB2NKPlG26PuX2ZUokifS8CbiDV7JmqBbYJj3hiIjIQGWtXWCtfTP4vRH4AHeeivV94A7rvAqUGGPGpTlUEZFsNQzXJSrRoMoFuLp9fpxl0eRSsmXxElDgWiYNmMRED9qMjkRcPKtwXRTXxyjc9V2ihgLgWidNWs9y+ywlkkR63uIU1/u6V6MQERGJYYyZjBvD47VOiyYAn8f8/QVrJ5swxpxujJlpjJmJq1SLiAwETbhWLImunduDn/FuIidb1hqUmyg5kYtr6SLr52tc0ieRXFwXt/WxIigz2dAkhjW70vVrSiSJ9LA6v7YBCOMG1o7Hw51Mbk9bUCIiMqAZY4pwg4Seb61N1DQ/KWvtzdba7YOBN3UzREQGBC8UbgKexQ1NEU90LKSVcZYtC37GO+5Gx0VaFmcZuFZMf081TvnGY7gEXqKkTy5w9/oU6IXCDcB/Sfw/UIBLIr21PuX2ZUokifSOC3HJotxOz3vBc7fW+bXxTjYiIiI9yhiTh0si3W2tfTDOKl+yZnP8icFzIiLi/BY3iU7n8Yzyg+c/Z+0kQ7QFy6d0jIcU5eFmZ6sPyoi9LjdACa516MM9Ev3A8h7wNO4zjPe5zgMe70K5v8YlqIZ0ej4fNyPcVV4onKzrW7+iRJJIL6jza/8NnIBrCpuHSx7l4g5gNwPnZi46EREZKIwxBrgV+MBa+9sEqz0CHB/M3rYj0GCtXZC2IEVEspwXCn+IG3B7IS5hNBQoDhb/GNgLl8AYFrOsEPgTbqKDZ4NlxTGPR4Bv41odFQXPDQ3Wex04wguFEw3wLQl4obDFzbB2Lx2fazHuc30FODJoZba+5b6Dm4FvMR3fcTGuVdklXij8UE/E31cYa5ONQ5XdjDEzg+bVIlmp3KswwFHAlrhuALfU+bUDpu+siEh36VzfPcaYXYGXgHfoGKPjx8AGANbaPwXJpj8A++FugJxkrZ25jnL1vYjIgONHyjzcWHMTcV3aXvFC4eaY5ZvjBnJeDbzqhcLLY5ZNArbFHYtneqHwwphlI3BJpTzgXS8Uru/9d9P/+ZGykbjPNRd4xwuFP+2BMj1gOjAe1y3xFS8Ubuluudko2bleiSQRERHJWjrXZyd9LyIiIv1bsnO9uraJiIiIiIiIiEhKlEgSEREREREREZGUKJEkIiIiIiIiIiIpUSJJRERERERERERSkpvpAER6UrlXUQr8FijHzXrQhJv68eI6v7Yhk7FlUjB73J7AWcBUoBV4Eri5zq/9KJOxiUgHP1KWAxwMnAFsDKwEHgBu80LhL3ug/FLgNOAgYBBuquI/A08G0+WKiIjIegpm8toPd/6egpu17THgL14oXO9Hyk4BLgMmBS+ZA/zcC4XvzUS82cSPlBUAFcCpwATcbHj/AP7qhcKLMxmbJKZZ26TfKPcqtgNexF0cteGm1swJHouArev82gF3MAqSSJfgDs7tuAtTAwzFJZTOqPNrX8hchCIC3ySRbgT2we2bTbgbPkXACuBILxT+oBvlfwv4K+4Y2Yg7HgwJtlEL/Dgbk0k612cnfS8iIo4fKTPAtcDhuGuQlbjrj2KgGfgY2D9YvRVXD4826PitFwpfmtaAs4gfKRsM3Alsh0u+rcY1BhgCfA0c5oXCX2QuwoFNs7bJQPEAUAC04JJI4C6UWoDRwB0ZiivTdgBOAZbjLh593OeyFHeyu7HcqxiSufBEJHA4rjXlMlwl1OIqnEtxyZ+bgjue682PlOXjWh4ZOvZ9i0tQNeDuBO7TvfBFREQGpHLcObwBd161uPPsUlxC5HvB363B+tHzeztwoR8p2zrdAWeRM4FpuM9qFe6zaQn+Hgn8JnOhSTJKJEm/UO5V7AhMpOMA3VkbsPcATZicFPz04yxbjUu+HZi+cEQkgTNwdy7jaQTGA11tAbInrmVTU5xlFleZPbWLZYuIiAxkp+HOo/Fa9Y4Ifsa77o7Wzf+vN4LKdn6kLA84EZd8i6cBmO5HyjZKW1CSMiWSpL/YkfgH7ygfdyd+8/SEk1W2wWX4E/GArdIUi4jEEXRr24j4iZ4oD9iki5vYDNdUPJEm3JgOIiIisn62IPH5uyD4aZK8fpueDafPGAkMxrVAiid6o2vjtEUkKVMiSfqL5SmsY3CZ7YGmCddPOxEP19pBRDLHx7WoTHZe9kmeFE4m0d2+qBySJ7FEREQkvlUkrmunMvbgQD3/JvvcOq8nWUaJJOkv7sVdZCX6n84DFtX5tXPSF1LWqKXjbkg8bbgZ3EQkQ4JBrh8DhiVaJfj5Yhc38RxuX090R3QI8GAXyxYRERnIHsSdR+NZEvxsT/L6ATmOqxcKNwAzcRMAxZOHa600M21BScqUSJJ+oc6vXYk7COey9oVS9P/8p+mMKYvU4gas63yQNsBw4L/Au+kOSkTWchOuwlTY6XkPl2C6s6vT4Hqh8KfAE0AJax8ji3Etlu7sStkiIiID3N9w59HiTs8b3HikLXTM0hYrD1dHv7FXo8tu1cHPzje9c3BjO97ghcKJxo+UDFIiSfqTM4H7cQeePCCfjjFBflHn1/4lU4FlUp1fuwSYAczDJZNG4gb+Gwo8DZxd59dm3ZTfIgONFwp/DByPq4xG99USXMX0TuCabm7iIuDhoOzhQflDgUXAUV4oPL+b5YuIiAw4wfnzKNz5NHr+Hh78/gCwK65lUvT6JHqNMh/YyQuFE00W1O95ofDrwA9xPUuGAqNwN88Kgd8Bt2UuOknGWNt3rx+NMTOttV2dwUb6qXKvYkPgHNyB6FPghjq/diCOjbSGcq/CA74FbInr4vJSnV/7aWajEpHO/EhZLrAbHYNvP+OFwl/1YPmTgvILgDDwXy8UjjerY1bQuT476XsREVmTHynzgF2ATXGzsL7ghcJfBMsMcDiwH66b28NeKPx4pmLNNn6krADYC5gALMPVfZZmNChJeq5XIklERESyls712Unfi4iISP+W7Fyvrm0iIiIiIiIiIpISJZJERERERERERCQlSiSJiIiIiIiIiEhKlEgSEREREREREZGU5GY6AJGeVO5VFAIHA8fhpt78DPgr8O86v7Y9zbF4uNkHTgI2xs1AcDfwzzq/dkU6YxERERERkeT++doBI+c3Fd3yv0Xj9lvaPChv1KBVLTuMXvDw6EFNpx8y+eMm4EfAWbjrjNXAfcDPvVB4YbJy/UhZGe6aYDfAAk8Bd3qh8NzeeB/BDHL7BNvcCFiCuw55yAuFV/bGNtcRz2DgIOB4YDTwBXA78JQXCrelOx7pPs3aJv1GuVcxHLgHl7RpAVqBQUAO8AJwZp1f25qmWHKA64H9AR9YBeQB+cDnwIw6v7bHpvMWEemvdK7PTvpeRKS/eei1AzZ56LNN3/20cVhBrufbPOPT4ufQbj2mlHzddMNOT8/L9ewmwertgMH18FkJ7OSFwh/GK9ePlB0M/AZ3TbIyeN1goA04wwuFX+jJ9+FHynKB3wPlQZyr6bgO+Qw4wguFF/fkNtcRz1DgH8BmuOuzFjqu0V4BTvFC4ZZ0xSOp06xtMlBcTUfLnybcgaox+HtP4LQ0xnIUcADQACwPYmkKYpkEVKcxFhERERERSeL1ReNeqG8syS/ObfELc9psnufbIbmttji32U4a0jCkqS1vc1ydvhV3o7g9+L0IeDRemX6kbAPg17hkzlJcEqUZd03QBtzkR8pG9PBbOQHYF3cd0sia1yEbBvGk08+AzYPtr2TNa7SdgR+mOR7pAUokSb9Q7lWMxWXdGxKssgI4tdyr6PXunEGXtrNxrZDiNflrAHYs9yo27O1YREREREQkuX++dsDWr341flxRbos1Zs1lnrEcMvljljQPMr7FxHl5C7ChHynbMc6yo3Atb+K1uIm2FDqkW8HHCLq0nYFLHCW6DvmOHymb2FPbXEc8I4EDSX6NdpIfKctPRzzSc5RIkv5ic9xdgUR9NVtwdwvGpiGWYcAY3MkhHou7i7FlGmIREREREZEkVrTmH+YZS45Z+1KiKK+FYfkttPg5tPo5OQmKsMDecZ7fifhJpCg/WKenjASG41o9xWNx10xTenCbyZQF2/MTLG8FCoC0JLak5yiRJP1FKmMfeSmu112tEPduRSybplhERERERCQJz9gV1savvrf5HgaLxWJIOsDwqjjPNZP8mtsj8c3nrmhdx/Zi10uHVK6L0nWNJj1IiSTpL2bhst2Juq4NAeYAi3o7kGBGtreA4gSr5OAOqK/3diwiIiIiIpJcYW7rLfk57bS0e2slPVa151HfWEJxbit5nh9vFujoa+6Ns+wRXN0/EQv8a/0jjs8LhZcB7+F6YsSTE2xzZk9tcx3ewbXIykuwvBA3g9sXaYpHeogSSdIv1Pm1TcCfccmbzv/XubhZCqrr/Np0TVP4uyCOzgdNg+v6dkedX5uor7CIiIiIiKTJod/+17LyCZ++vMrPM+2dWia1+YZ76zenJL/ZNybu9XMu8LwXCn8ZZ9kjuEG2491gHgbMB57pZvidVQcxxbsOGQrc7oXCjT28zbi8ULgZ+AMusRXvGq0AqPZC4b47lfwApUSS9Cd/AO7CHaiHB48S3PSaP63za+vSFUidX/sycBnu4DgsJp6hwP3AL9MVi4iIiIiIJGdgt30nfPphU1ueWd5aYBpaC8zy1nyz2s8zGwxpfH1Qbtv1dNwozsPdqM4D3gAOjldmkLA5GtcrYigwIngMBT4DjvFC4WRjKK03LxR+Abgcdx1SgrsGiW7zPtI/e/QtwG2sfY1WCFzjhcKPpTke6QHGJu3mmd2MMTOttdtnOg7JLuVexQbA93ADXtcDj9X5tYszFMtw3EwFmwJfA4/X+bX1mYhFRKQv0rk+O+l7EZH+6v5XD9p3buOwXyxvzR87LK/5y8nFDZcctuPj/wHwI2WTgUuBLYCvgD8EiZuk/EhZLrAHbmDtduBF4L9eKJxoEOpu8yNlI4CDgI1xiazHvVD4097aXgrxTAriCQFzgce8ULjXhx2Rrkt2rlciSURERLKWzvXZSd+LiIhI/5bsXK+ubSIiIiIiIiIikhIlkkREREREREREJCVKJImIiIiIiIiISEqUSBIRERERERERkZTkZjoASY9yr2IKcAywFdCAm/rx33V+bY9ON5liLOOAGcDuuFkLHgceqvNrlyZYf2tc7FOApcC9wNOZiF1ERERERDLPj5SNAY4A9gyeegp4wAuFMzJbc2lNdSnummV7YCXwIPCv+sqqpkzEI9KbNGtbP1fuVRigEjgHMEAzLoHoAfXA0XV+bdoOtuVexV7AjUAe0BLElAusAI6v82vf6RT7RcBpMbHnBb9/HMS+LF2xi4hI+ulcn530vYhIJvmRsl2AvwD5rHlNsQo40QuF30xnPKU11ccAPwFycNcsXvD7QuCo+sqqz9MZj0hP0KxtA9s+wLm4RM0y3MG1EdcqaWPghnQFUu5VTMAlkdqCWJpw2foGYDDw13KvYnDMS/YHTg/iXYaLfXmwfhnwmzSFLiIiIiIiWSBoiXQzYFn7miIXuN2PlA1NVzylNdXTgJ8GcSwNfq4I4hkL3FJaU23SFY9IOiiR1P+djes+1h5n2TLg2+VexcZpiuVoXIui5jjLVgBDccmjqEqgFfDjrN8A7F7uVWzQ00GKiIiIiEjWOhwowN1k7qwJKAS+l8Z4Tse1iGqLs6wB2Aj4VhrjEel1SiT1Y+VeRS6wLa5FTzLTej8awPVfjpdEirUbQNAyqQx3dyEeGzy27angREREREQk6+2Ju9mciE/HuEnpsDPupngiecD0NMUikhZKJPVv0WRLsqaUlvgtfnqDv45YTEwsqQ7e1XcH+RIRERERkfW1rmsXQ/zeGL1lXdcjsdc4Iv2CEkn9WJ1f2w68BhQnWMUEj9fTFNJTuAHxEvGBpwHq/NrVwGzWHfvMngxQRERERESy2lOse/bxp9IRSOBZoCjJ8lbg1TTFIpIWSiT1f3/Afc/xDrYlwLN1fm26ZhG4F1iN67fc2VDga4JEUqAGN9tBotj/VefXLujhGEVEREREJHv9EzcW0pA4y4px4xI9mcZ4/oK7IR7vhnkJ8A7wdhrjEel1SiT1c3V+7cvAz3DJm+G4g+twXOLmTeBHaYzlK+Ak3EB0w4IYoj+XAMfW+bUtMes/B1yLO0mUBLGXBOu/BlyWrthFRERERCTzvFB4KXA87gZ19Foi+lgOHOuFwk3piqe+sup94AJcIqmENa9ZPgHOqK+s0nAc0q8Ya/vu/7QxZqa1dvtMx9EXlHsVE4EKYCvctJT/BF6p82vT3l+33KsYChyMG1i7DXfH4N9Bd7Z462+Ai30KLuH0IPBaJmIXEZH00rk+O+l7EZFM8yNlRbjZ2fbAjVP0b+DJdCaRYpXWVI8BDsMNrL0CeBR4ob6yKt5sbiJZL9m5XokkERERyVo612cnfS8iIiL9W7Jzvbq2iYiIiIiIiIhISpRIEhERERERERGRlCiRJCIiIiIiIiIiKVEiSUREREREREREUpKb6QBE1qXcq9gOuBzYAjfj3F+AO+r82rVGii/3KgzwA+BcYDRQD/yyzq/9T4Kyc3EzPRwADAJeAx6u82uX9fgbWYcg9m2BQ4ExwMdAbZ1fOy/dsYiIiIiIZLPSmupCXB1+D8AHngb+XV9ZFXcm6JjXecAOuFmkhwPvAffXV1ZFejnWA4HdY2J9qr6yqrm3ttkb/EhZPrAnsB+QB7wCPOqFwsszGpiknWZtk6xW7lXcDJwIGNy0nlFfAN+q82sXx6w7GHgd2CxOUY8DP4hNPpV7FSHgTmBDXOs8P9hOC3BWnV/7Yo++mSTKvYp84PfAXkEs7cFPC/y2zq+9KV2xiIhkE53rs5O+FxHJpNKa6q2BvwFFuPo7uHrzUuC4+sqqcILXFeFuSm/PmnVuH7iyvrLqnl6IdZuYWKMssAQ4tr6yak5Pb7M3+JGyicDdwDjWvHZaDZzmhcKvZjA86QUZn7XNGDPIGPO6MWa2MeY9Y8zP4qxzojFmkTFmVvA4NR2xSfYq9yrOwSWR2nDJndaYxySgrtNLHgY277Rea/D6g4BrYsr2gNuAycByYFnwswF3YP9zuVexUW+8rwT+D9gn2P7SmJhWAD8q9yr2T2MsIiIiIiJZqbSmugS4Ayiko/7eEPxeAtwZtACK51e41kid69yrgKtKa6p36uFYhwexDoqJMxrrcODu0prqwT25zd7gR8pycDfgx7P2tZMH3OZHysZnLEBJu3SNkdQM7GWtnYrrurOfMWbHOOvda63dNnjckqbYJHtdFvyM12yuBdiq3KvYEqDcqxiHayraGmddi7vbcGbQfQzg28AmuINfZ6uBfOC4roeeunKvogQ4IkEs7bj3el5M7CIiIiIiA9X3ca17VsRZ1ohL0Hy384LSmuqJQDkuCdJZK66FzQ97LErnUFysK+Msi8a6bw9vszfsBkwg/vXKKty101FpjUgyKi2JJOtEd/S84NF3+9RJryv3KobhxgmKlxiKNSP4eUjwM9H/VTswBNgq+Ps7JB8jbCWu7286TMOduPwksWyCO9GIiIiIiAxkB+B6HCQTrx7/bdy1QqLrhUZgl2AMpZ5yAMmvZwxxkl5ZaE8gJ8ny1bj3KgNE2mZtM8bkGGNmAV8Bddba1+Ksdpgx5m1jzP3GmEkJyjndGDPTGDMTGNWLIUtmpToQfE6nn6mWm8r66do/cujo252MZlkUERERkYFuXfV4m2CdddW5bbC8J+vcOSRvQJEo1mzT1c9c+qm0XZhaa9uttdsCE4EdjDFbdVrlUWCytXYb3Ng3f0tQzs3W2u2DQZ++7s2YJaOW4JpOruuA9Hjw80mSnxhycF3E3g7+fp3kdzIKgbgzvfWCt3HxJdofBwMLcJ+JiIiIiMhA9gKuh0siXrBOZ2+to9wi4O36yqp1tXZaH8/hun0lYoC0TfDTDf/F9fBIZDB9431ID0l7Cwdr7TLcDrVfp+cXW2uj0x/eAkxPc2iSRYLZ1f5I4kRSHvBZnV/732D9OcBsEp9UcoB76/za6AHwBVzruOIEZfu4wbh7XZ1fuxB4ChgWZ7HBDc53Y51fm6jrm4iIiIjIQHEf7gbxoDjLCnFj9jzceUF9ZdXHwBu4Abk783DXAH/osSid+3Bd25LF+mgPb7M31OHGlop37ZSPSzLFbQgi/VO6Zm0bbYwpCX4fjBvk7MNO64yL+fNg4IN0xCZZ7SfA83SMq5UT83sDa/cnPgCXHIq3/lvA6dEV6/zaNuAk3GwDw3DjJw3GnVgGAT+u82vf75V3Fd+PgXeDWIbGxDIUuBd3EhIRERERGdDqK6sWAmfirmVLcAmZwuD3duCU+sqq5Qlefi4wF1fnLsbVuYcHv9/E2rNCdzfWSEyswzvF2gaclCTWrOGFwi242bRXsva1UwFQ5YXCn2QqPkk/Y23vj3ltjNkGl6GMdt+5z1r7c2PMz4GZ1tpHjDHX4hJIbbguPGdZaz9MWKgrd2bQxU36qWCmsiOAi4ANcAevO4Ff1/m1jXHWHwycB5yKS8IsAG4Abg9aOXVefyju/+5QXALpVeDuOr+2vlfeUBLlXkU+sBdwNDAa+Bj3XmfGi11EZCDQuT476XsRkUwrrakeBxyJGwga4AnggfrKqq/W8bpBuBvSR+KSIu8Bd9ZXVr2d7HXdjHV8sL09cOMJRWNd1Fvb7A1+pGw4bpKj7+FaIv0H+LsXCs/LZFzSO5Kd69OSSOotqsSIiIj0bzrXZyd9LyIiIv1bsnO9ZoESEREREREREZGUKJEkIiIiIiIiIiIpUSJJRERERERERERSokSSiIiIiIiIiIikJDfTAUh6lHsVRcB+wGbAMuDJOr+2R6ZoDGZW2wrYGzcN5NvA03V+bXMPlV8M7A+U4Wb0ezLZrGrlXsXEYP2xwKfAv+r82qVJYp+Km+1hEDALeKbOr23podiHAgcCGwNfA0/U+bWf9UTZfVlpTbUBtgd2wx2H3gCer6+sastoYCIiIiLS40prqsfi6sTjgc+Bx+srq77uZpmDcTMc74abCe3fwMn1lVWtQV1zO2B3XB3/LeDZ+sqqluC1m+BmbisBPgSerK+sWpnCNocBB9BRt/9XfWXVPAA/UjYI2Bd3XbQSeBp43wuFrR8pywG+A3wb8HGznb3mhcJ+dz4DkUzRrG0DQLlXsQ9wA26Kxpzg6XbgceDi7iRNgiTPTbiDYmzZjcBpdX7tG10tOyj/AOA3QF5M+T7wEHBZnV/bGrOuB/wYOAHX2s4E67YDP6nza+/pVPYw4M/AdFwywwJtwHLglDq/dnY3Y/8+cF1Qdk5Qvg/UAv9X59e2d6f8vqq0pnoUcCswhTU/98XAifWVVR9lMDwRyTI612cnfS8ikoogoVMJnIOrm3u4+rAP/Ka+surmLpZ7FnBjUGYsC5yGu6k8lTXrmsuAM3DXCgfR0TunHWgBzquvrHo6yTYPBa5h7br9vW//4NbHCnPb/gQUBstNsM3/Ar8G/giEcNc0AK1APXCSFwov6MpnINLbemTWNmPMvsaYi40xP4999FyY0hvKvYqpuAOXDzTgWvQswSVLvgf8rJubuBHYqVPZDbjM/x3lXsUGXS243KvYHpcAa4tT/qG4pFGss4GTcEmspcG6y4DVwNXlXsVeMWUbXBLpW0F5i+n4XIYAd5V7FeO6EftOuARYa0zsS4PyZwAXdbXsvqy0ptoD7sDdqen8uY8A/lFaUz0icxGKiPQvxpjbjDFfGWPeTbB8D2NMgzFmVvC4Mt0xiki/dgwukbQCVy+P1s+bgEtKa6oPWd8CS2uqN8dd33ROIhE8dwswjbXrmkOBJ4FDWPvawgf+WFpTvU2Cbe6CSwh1rts3bljUcNzqttyHcTftlwfLFgfr7QY8i0siLQ+eXxz8vjFwtx8py1/fz0Ak01JKJBlj/gDchWu5MSnmMbH3QpMeEs3+d+5mZnEHt8PKvYoxXSm43KuYgksixes21oRLJh3flbID5wU/O7eYisZ+dLlXMSKIZTBwJu4k1bmJaGtQxo+CBBLAtrj/53ixr8R10TumG7FfEMQZL/blwIlBt7eBZhdgE+J/7o1AMXBYWiMSEenf/orr2p7MS9babYOHbhKKSI8oranOBc7HXRd0bonfhrvZ+6PgRuP6+HsK64yM89xqYDgdrYliNeOumc5JUN6FdLRciuUfu8m7+avac0rafbM6zussrvtcvCE/GnDX03sm2KZI1kp1pz0amG6tnWGtPSnmcXJvBifdE3T12gt3gR5PNOGycxc3sTvJx9laiWv1tN7KvYp8XFzLE6wSjX3H4Od2QSyt8VdnJW6MpdHB33uSPPZVwPdTjTdWuVcxBJekShR79ES6Q1fK7+P2paOLYjytuLtEIiLSA6y1L+LujouIpNsWQBHxkyjg6ttjgMnrWe7WKaxTHOe5IlxiZ1iC1zQCe3dObJXWVA/F3YSOe031nbFfDF3dluevbMsbEmdxSZJ4wCWvDkqwTCRrpZpI+hrXBFH6lhw6+iEnYnDNMLti0DqW+0BBF8uO9i1ONohXbOx561gXXAIn2i958DrW9+n655KfQizd+dz7skKS/z+20/X/GRGRfscYs5Ex5u/GmPeNMfNiHz24mZ2MMbONMU8YY7ZMEsvpxpiZxpiZwKge3L6I9E95JK/3gav7rW+dOF6XtlRfZ5O83sddO3W+6Zn0feR6vvFdwYm62sX+jLfNdV1TiWSdhC0yjDGlMX9WA3cbY64FFsauZ61NOHuWZFadX9ta7lXMASbgmpQm8kEXN/EuiVsAgRtr6KUulr0K+ALXLHVVgnUM8H7we5jkyad83GfwVfD3LFyT2kSGAC+vV8QdGnDJ1yJcE9rOogMNdvVz78v+BxycZHlhsI6IiDh/Bz4Bqkh+Lu+qN4ENrbUrjDEH4Caz2DTeitbam4GbwQ3A2QuxiEj/8gkuKZPD2l3boGMg7PVNjC+ho5dBIvEmE1qNq4MnOpYWAnPqK6s6X98sDR6FxKnbz1k+fNVmwxYXD8ppj1fvX4m7roi3jCCe1xMsE8layVokzQE+Dn7ehGty93Lw95yY5ZLdbsK18IiXBR+Gm+4y7gCcKXged1AtirMsmsm/pSsF1/m1FjeI3iASxz67zq8NB+svwA1kl6ipahFwa8wsb3W45qnxmqBG+03f2sXYfeBPuFZP8WIfCrxe59d+2pXy+7jHcSfSwXGW5eIqGX9La0QiItltS+B4a+0T1toXYh89Ubi1drm1dkXw+7+APGOMWhuJSLfVV1Y14JLTicYFLQb+UV9Ztb5J8otTWGdhnOdagkeiG70FuGunNdRXVvm4SXri1V+5c85Wqwpy2lcX5LTHu0ndTMd4UJ0V4G7KPxivXJFsljCRZK31rLU5wc9Ej2RjnUh2eAh4AJdgGYprmjkI1193CfDDIGmz3oKkzKm4A/Jw3MEwL9hWMXBjnV/7327Efh/waKfYBwexL8LNABHrMmBuEEt06s2iYP0XCe6iBrG3BLG3BcujsZcEr/ldnV/7RjdivxP4d1BecUzsw4EIbsC+Aae+sqoRN+2qwX0W+XR87kOAn9dXVn2YsQBFRLLPi7hxAHuFMSZkjDHB7zvg6oaLe2t7IjLgXIXrQRBbPx8S/P0mrufLeqmvrPorkOwa40XcBDwlrF3H/wWuLl6CuybKw11nDMNdMz2UoMy/AU8Hca9Rt//vwgn1nuF3wfMlwbKCYN1G4BI6rgPycPXf6HrneKGwjrnS5xhr151DMMbUWGs7X7RjjLneWnt+bwSWCmPMTGvt9pnafl8RDLq9B3AKsBnugHYPUFvn13Z7AM5yr2IcbkD2Q3AHzVm41j+v9UDZHrA3LvZNcANY/wO4r86vbYiz/pAgjuNx3eLmAbcBT9b5tWvdJSj3KsYDx+K6W+UDbwSxd7vJfhB7eRB7KW6csbuBB+r82kQDcQ8IpTXVG+K+o/1xFYpXgFvrK6vezmhgIpJ1BuK53hgTO3PaCGAG8E/cxc83rLVXplDWP3B1gFG4O/Q/IRgv0Fr7J2PMOcBZuBsrq4ALrbXrvAk0EL8XEema0prqwbgJeE4AxgLzgduBx+srq+J1QUu13J8AF9HRw2A57qZkdWlN9URcHf97uGPe/3B1zTdLa6pHABXAkbjkz0e4ngjPB62PEm0vBzdxzMnARrieGXcB/5xzxJ8bcbNZnwxMxbVAehD4uxcKL/QjZVOCZd/B9Xz4N/A3LxT+pKvvX6S3JTvXp5pIWm6tXatJojFmsbU23tSKaaFKjIiISP82EM/1xpjbU1nPWntSb8eSyED8XkRERAaSZOf6ZNOfY4w5ObpezO9RpbgBhUVERESkh2QyQSQiIiKyLkkTScBxwc/8mN/BNcdbiGueKCIiIiK9wBizxFo7Is7zX1lrx2QiJhERERnYkiaSrLV7AhhjrrLWXpGekEREREQkkNf5CWNMHh2zo4qIiIikVcJEkjEmdka3Kzv9/Q1rbcIByURERERk/RljXsK1AB9kjHmx0+KJJJ+xSERERKTXJGuR1IarwKyL7ohJVin3KoYCe+Gm1ZwPPF/n13Z5Rgjp//7w7IzS4QWrz8o1/vCm9rz3GloK/nj+3v9oznRcqfAjZaOAPXFT6n4KvOyFwu2ZjUpEesAtgAG+hZtNKCo6vMCzmQhKRCSdgpnSTgS+jZtZ8q/1lVVvpfjaDYBdcde87wFv1ldW2WBZGXA6MBR4F7ipvrKqNVg2BHctMRL4CniuvrJqVQ++rYzzI2UesCOwKW6GuRe8UDiS/FUiHRLO2maM2TDmzwOBw4Frgc+ADYFLgAestTf1dpCJaMYQiVXuVRjgFKAKl+DMpWM646o6v/bpDIYnWej6Z47KmVzU8PB2Ixfua7B4xpp269lV7bktLy+cWHnKbg/clukYE/EjZTm44/CJuIvNHNz/+xLgh14o/EbmohPpOQP9XG+M2dxa+2Gm4+hsoH8vItL7Smuq9wP+AQzB1XWiF66zgD3rK6tWJnhdIfBrYN/gdR7QDtQDZwE34W7CEVNuS7CsHbgCdx0RvZZoBi6vr6x6pEffYIb4kbIpuM9gHO49+rjP4AHgSi8U1g14AZKf6xMmkjoVMAfY3lq7LOa54cBMa+3GPRXo+lIlRmKVexXHAD8DVuAO+lGDgALgmDq/9vVMxCbZ6Z+vHvDQ9qMXHLCqLbfNx/vmYJjvted4xpqnvij9wRl71D6eyRgT8SNllwKnAQ24CkDUkODv73uh8JxMxCbSkwbiuT7OTLlxWWszluweiN+LiKRPaU311sBrdNwoi5UHvFtfWTUtzusMrhXn7sAy1uxhMxQYDRThEkexcoLHV7iZyVtjluXjWn6fWl9Z9XxX3k+28CNl44EncNdHjTGLPGAY8KAXCl+Uidgk+yQ718cd9yiOYbidJ1Zh8LxIxpV7FfnARUATa59sVuMurC9Od1ySvX7/7JETthu1cP9V7WsmkQBa/Jx2D2s2Gbr02kzFl4wfKRsBnAwsZ80kEsBKXOXgzHTHJSI95riYx/HAn3E3Sk4Nfv6ZNWfTFRHpb66ho0VQZ63AVqU11bvGWTYF2A1YytrDtKzGXb/GG+O3HZdIGs6aSSRwSadW4LIgUdWXnYhLpDV2et7HJd4O8SNlE9Mck/RBqSaS/gY8bYw53RizvzHmdOCp4HmRbLAt7uI5UVPMRmDbcq9irSmUZWAalr/6ZAPGt17cZpmr2nNby4Yt2fz6Z44qSHdsKfhO8DPRWEjLgYP9SFlfr+yIDEjW2j2jD+Ad4CJr7SRr7c7W2knAj4LnRUT6qz1IXM8B1yXtlDjP70/ia9xRwc94Y/xGXzMowWtXAqXApCQx9QU/wL2XeCzus9krfeFIX5VssO1YFwNzgBnAeGAB8AfgL70Ul8j6KmTdg8O3B+st6f1wJNvlGDvUJPmXsRgM1njYIlzf+GxSSPIbAe24ZtjRMQFEpO86lo6Ln6g/4LpeVKY/HBGRtMgjfsuhWEMTPJeoghetO63rRlvseEyx2oDB63htthuCGz82ES9YRySplBJJ1lof+FPwEMlG9bj/50QH/jxck9Sv0hmUZK+mtryZ1oD7d1m7PpHntec0tBas9jHZmHj8hOSVq8HAZ5q9TaRfiAAHA/+Mee576HwmIv3bImAsa3czi/KB2XGef4/EN9GaYl7bmY1ZFu9aItqK6csEZfcVHwGb48aUjacFV88USSrhHW1jzHExv5+c6JGeMEWSq/Nr5wGvk3jcrmLgrjq/VrMQCAAr2/LuW7J6cOOgnLa8tZda8r32nPeWjrrv/L3/se4ZCdJvJjAf938dz2Dg5vSFIyK9qBL4mzHmv8aYe40xr+CGFjg3w3GJiPSmG0nccigHlyyqjrPscVzyKd7QBMtwSaJ4dbvo84m6fQ0D/llfWZUoAdNX3Iy7wR7vsy3EDQfyXFojkj4pWdeIo2J+Py7B49jeC01kvV0MLMYNkpcfPDcIGAG8C/w+Q3FJFjp/73/Y1xaNP6rVz2kbktuSn2N8E00gDclty5vbWPL5gqairOw24oXCPnA2rsvdcDpalxYGfz8H3JuZ6ESkJ1lr63DjctwEvBn8LLXW/jujgYmI9K5f4455+XTUcwwdSZDz6iur1kr6BImec4PXleCSTgZ3820o8Hc6hgCIJlNygr8/w10zxF5LFAR/zwF+2YPvL1OeBB7BfTZDcJ9BdJBxA5zlhcKJWoGJfMNYm40321OjqWels3KvYhRuNoJjcHcOFgC3Af+o82ubkrxUBqgbnztiuw2Klv9mSsniXQq8tpzFzYNXvL901F1frS689Ly970l0Vyor+JGyScBpwKG4ykA9buy6B7xQON4sJyJ9js712Unfi4j0ttKa6hzgStxMtCNw3c7eBi6rr6x6eh2vnRK87ru45NNsXCK+DpgO/AbYEZdEaQTuAC7B3ZSLzpg5AteN+K/A3fWVVZ1nOuuT/EiZBxwEnAVshrsx+SjwZy8UVrc2+Uayc31KiSRjTCXwvLX27Z4OrjtUiREREenfBuK53hjzpLV2v+D3l0gwcKy1dre0BhZjIH4vIiIiA0myc32qs7ZtD1QZY4qBl4AXgsebti83aRIRERHJPnfE/H5LxqIQERERiSPVWduOBzDGTAZ2Dx5XBotLeiMwERERkYHIWvv3mN//lslYRERERDpLtUUSxpjNcAmkPYBdgDCuVZKIiIiI9AJjzFvA87g614vW2iWZjUhEREQGumSztn3DGLMQN5ViKa659VbW2h2stRf1ZnAiIiIiA1wVsBw4H/jCGPO2Meb3xpjDMxuWiIiIDFSptkh6BPgOcAhuasARxpgXrLVf9lZgA1G5V1EE7ICbsv7jOr/24x4s2wBTgMnASuDVOr92dZL1c4NYRuBmPnurzq/1eyqe9RHEvhWwAW5Whdfq/NrmTMQiiZXWVOfjZr8oBj4H3qmvrOqXY6j5kbKRuBk/coDZXig8fx3rb0zHrBive6Fwxmb98CNlo4FpuBsJs7xQeEFPlV1aU+3hxtQbAywCZtZXVrX3VPl+pGwMLnaAt7xQeGFPlS2Sray1zwLPAhhjRgIXAucAZ+OOQSIyQAWzmm0PjMbNLjazvrKqV+vrwWxoF+CuVx6ur6y6P2bZMOAE3PXDm8Cj0bpgaU11Hm4mtA2AT4E7o3WE0ppqA/wA2AZXf7i9vrJqZUy5a9SjYmdPK62pHgdMxU1K8GZ9ZdWiTvHsgJu17b36yqrPevbTEBm4Upq17ZuVjRkL7Ibr4nYs8LW1dpNeii2VePrFjCHlXoUHVAJn0NFKzMNNb3l+nV/7eTfLLwOuBzbFTZsJ0ApUA3+t82ttp/X3B36BSwgAGNzJ6Ud1fu2r3YllfZV7FVOA3wEb0TFrTQvwS+DuzrFLZpTWVB8FXIqrVID7/50LXFBfWfVupuLqaX6kbBDwU1xlxwaPHOA54GIvFF7Waf0JuP/faUB7zGtuAX7nhcJpS876kbJC4OfAwXTsSx7wb+AyLxRe3p3yS2uqd8PtlyNinm4ALq2vrHq2O2X7kbIhwNXAgXQcwzzgX8CPvVB4ZaLXSt/XX871XWWM2Z+Outck4BWCrm7W2vcyGNeA/l5EMq20pnov4FrWHK92CXBJfWXVi72wvUJgNrAJa84kuRLYH5ckOh533UDwswE4DndD+KdAfrDM4pJClwALgb/grjts8Lp24E/Ab3D1qO1w5//YetQtwDXAvqxZN3gYV985D3e9GpWDO35W1VdWfdX1T0Jk4Eh2rk85kWSM2Q5XidkT1zppFa4Sc3RPBbq++kslptyruAw4Fdfapi1m0TDcCeGAOr92cRfLngQ8ChTimsZH5QFFwHV1fu1fYtYvB24CVgePqCG4A/tRdX7tW12JZX2VexUb4VrDFbBm7PlBPD+t82vvTEcskliQRLoKV5FoiVlUjEtYfr++suqTTMTWk/xImcFVWvbAVYyilRaDq8R9APzAC4VbgvVH4LoEjwrWj8rFfTZ/80Lhn6cpdg/4G7BzgtjfBiq8ULgtbgHrUFpT/W3gTtzxqylm0WDc/npKVyu1Qez/wN1xjY3dwx0j3wCO8kLhHmv5JNmlv5zru8oY4wOf4C4Y77DWdmk/7WkD/XsRyaTSmupdgdtx9a5VMYsKcXX84+orq3r05m9pTfV8YBwd5+GoaOKoHVcPiF2eF7NOe/CIysGdyw0uOdQas8zD1Ze+BlYQvx7VjLtGWMaaN8iG4a5hBuGuH6LbNMGyz4Hv1VdWrVjnmxYZ4JKd61MdI2kp8E/cXfVHgB2stRMymUTqL8q9ijHAybgDZOfKYQPuIvSYbmziLNzBtnNrg1Zc4uqCcq9iSBCLB/wEd2Du3O1tJe7/5dJuxLK+fohLGHWOvQV3Urmk3KsYnMZ4pJPSmuoC4DLWTiKB+/8ajGtt1x9sh2sVsJQ1K0k2eG4zoDzm+SNxXbxiKz/g9vMG4Dg/Ujau16Jd0w64boeJYt8Sd5Ogq/4vKKup0/OrcO/3yqDZelfsijv3dI7dD57bNlhHpL/6DnAbUAHMM8b82xhzuTHmOxmOS0QyIDif/gR3fl3VaXETLnFyRQ9v80ggxNpJJOhoRWTiLG/FJZM81kwiEfydGzxaOy2Ltj4ai6tPxoomqzbBXQ/YTq9rwvXCaO20TYtLOk0Cvh/nfYjIekgpkQRsZ62dbK093lp7q7V2Tq9GNbCU476HRF1cmoCjulSwG1voB6ydiIlqw90N2C34e0tcH+vOJ6WoRmBauVcxuivxrI9gjKaDcQf8eKInpp17OxZJakfc3aDOSaSoBuCAYPykvu5Qkh8zfdbcV48i8b7kB2WVJ1je0w6j445hIkd2peDSmupJQBlrV/SiVuLGQ9i4K+UDh5M8dg93gS3SL1lrX7bWXmut3R+XOP0fcDGue5uIDDylwIa482s8K4DNSmuqN+jBbV6cZFn0HB1vzLboc4nqTybJ8uhrR8ZZVhL8HBpn2bBO63TWQvdu0osIKQ62ba2d28txDGQlJB8ss5XEB8J1ycNd5CdruunRcRAeSuKEFrhMfjuuhdOiJOv1hEG4zyVZPIb4JxBJn2HrWO7jvqdCEieb+orRrH03LVYra1Z2Slj7DlssjzXHE+pNo0gee1s3Yhm6jrKj5Xd1Xx1N8s+xNVhHpF8yxhyK61K7Oy5p+wbwB+CFDIYlIpkzjNTOu8XrWGd9DO/i61JtjZxsvbw4z0WvYeNdQ+XSMYZlPG10/dpKRAKptkiS3vMZyS+wB+EGLe6KVlzf4oIk6/i4vsIEP3NJfDDPoWPg7d7WhGtJta6WLF+kIRZJ7HPWffJvInFrlb7kQ5InfQcB4Zi/P6Vj8PF42uj6vr2+PiL5jYMC1ox9fSygY5yDeAzu/6Crs3x+RPLjQB7uuxHpr87Dtc69EBhprf2OtfZya+2/MxuWiGTIFySvr3u483KPzcoKfJxke8mkOqlIoi5zsHa3eegYgiPeNVQzLtZEMzwPAupTjEtEElAiKfOeoWOwuHgKcDMZrLdgRrNbca1B4inEDeb9arD+PNxUnYlaDgwDHqnza3t9cLo6v9bHDSJYlGCVItwJ8o3ejkWSmoWr0CS661UM/K0np4DPoPtxFZ14CRkPV+G5I+a5W4l/Fw3cft2MmzEtHe7FxR4vERbtWntXVwqur6xaAjxN8uPGf+orqxZ2pXzg7ySP3eIG4xbpl6y1e1hrf2KtfdZam6i7rIgMEMGMYy+RuFX4MODp4PzcU6roGAups2jCJ15dz+/0M95ro49Ey5bFWRYdGynejcrGTj9jGVzd4bYE8YhIipRIyrA6v3YVcAHuwnIYHQfoAlwz0v/gZl3rqjuAd4Kyonf1o7MWGOC8IGkTdRnu4DyCjgu33ODv+cCvuhHL+roV19JgBB0X5B6uOaoPXNApdkmz+soqC5xPRzPh6DElD/e9hYGbMxFbT/NC4S9w09sXs2aCsxC3P/0Dl4iNehx4Efc5RBPF0e6Yg4AfeaFwvLtsPc4LhT8Frg+2PSRmUTT2v3qh8Dvd2MQvgMWsedzIwR13luEGBe0SLxQO46YA7hz7EFzsf/ZCYbVIEhGRgeQnuAknOp93R+B6I1zVkxurr6x6BzfhUnRQ7ahoYqYRl0iKvYHm4a49FuNaEOXHvNYEf6+kowdC7HVpXlDe88SvR4G70TSUNW+YDwn+viMoI/ZG5yBcXfVxNMacSLclTCQZY/ZK5ZHOYPurOr/2adzAvK/iDnDRaSt/CZxW59cmGx9kXWU3AUcDv8cdkIcFj+eAw+r82tc7rV+PG+T6ATouMvOAvwKH1Pm1vT02UmwsK4EjgBuDp4bhTgh1wKF1fu2biV4r6VNfWfU2cAjwFO77iSYpbwIq6iur+kO3NgC8UPgW4AxcE+/hwWMhbhDKn3ihsI1Zty1Y9xrcoNslwWMmcLQXCj+Z5thvxM2EOJeO2Ofjustc052y6yurFuCOG3fhKmrDcDP23QccXF9ZNa875QO/xc3+N4+O2OfhuvxUd7NsERGRPqW+supz3Mxj9+DOt8Nw59+7cOfd+b2wzUNw1yarcdeQ0VnansONVXg4MAd33ZCHazH0OG5W211xEwXkBMtygFeAb+Mm+4m20I6+9kPgAGA/EtSjcLNeX4iry0TrBnOBc+orq04FTqTjZnoJbgKYK4EL6iurdCNapJuMtfFaEoIx5tMUXm+ttaU9G1LqjDEzrbXbZ2r7vaHcqyjEZd0berq1TblXkYM70awKWkKta/18XMuLxu4ks3rC+sYumVFaUz0Il4BcXl9Z1ZbpeHqTHykbiqtINcQmkBKs6+H+f5vT1QopSSwGl/AzwPJ1xb6+ghn6ioAV9ZVVPTrAekzsAI09Hbtkp/54ru8P9L2IZIfePO8m2eZGuPPx+53re6U11dGkzuf1lVWtnZYNAcYCC+srq1Z2WlYATAAW11dWNXRa9k09qr6yqqnTsmgrJQs0Bq3lY5cX4ZJTDUogiayfZOf6hImkvkCVGBERkf5N5/rspO9FRESkf0t2rk82i4+IiIiIpJkx5k7iDz67Bmvt8WkIR0RERGQNKSWSjDFDgZ8CuwOjiBlkzVq7Qa9EJiIiIjIwzcl0ACIiIiKJpNoi6Y/ARODnuEHcjgUuwg3ILCIiIiI9xFr7s0zHICIiIpJIqomkfYEtrLWLjTHt1tqHjTEzcdPS/673wpOeVO5VhIANcFNtftDTg3mvZywTgH2AVuDxOr+2YR0vEZE4Smuqc4ADcdPj/q++suq9niz/sf9999seHGChIcf4N+63fV1zT5YvIutmjMnHzXzUuVX4sxkLSkT6rWBQ7C1wXWw/iB3gOhjce0vcANYf11dWLU2xTAOU4o5jX9VXVqUysVP0tSOBjYFm4L2emNAlGMB7C2AIMK++sirS3TJFBpKUBts2xnwNhKy1bcaYL3AHj0ZgmbV2aC/HmCwuDfSYgnKvYjxwFfAdXOImB/gauLrOr/1XmmMZDjyMm+4zyuKSkkfW+bXt6YxHpC8rran+KVAF5AdPGeBT4Ij6yqrZ3Sn7sf99d/uSvOanNihePty3BoNldXuurW8c9viw/Jbv77zNC313pgbpUwb6ud4YsytQi5vRdSiwHDdb0ueaOVdEelKQJPoRrveJCR7twF+B64HjgEpgEK7+7gGPAL+or6xanqTcacAvgE2D8nKB94D/q6+seifJ64bjhlfZH2gLtrcC15Dh751naFuP93kAcDkuqdWOS4q9BFxRX1k1vytlivRHyc71XoplzMaNjwRuJ/sjcBMQ7n540pvKvYoxwD+B3XCVzyZcErAEqCn3Kg5LYywFwFvATriDdlvwsMAhwH/SFYtIX1daU/0b4Me4yk90X2oFNgL+U1pTXdbVsh97/bubbVi0/JUNixuGr27LsS3tOba5Pdfmer7ZevjXBzW25L/UI29CRFLxO+BX1toRQGPw8xe4upiISI8IWujcBJwCtOB6MKzA1S3OBJ7HJV+iyZyVweNQ4O7SmupBCcqdBvwd2AR3LbISaACmAPeW1lRvmeB1RcC9wEHB9pqCnwW44VbO7uL7PAyowV0LNQblLsddK/2ztKZ6TFfKFRloUk0knQbMDX4/D1iN2/k0W0j2Ow2XbV/GmjPArMIdOH8SJHjS4QJgPO7kFBuLHzw3vdyr2C9NsYj0WcEdunNwCdnOrfhacXcKb+hq+fle+x3D81fnrmrLszG9aGj3Pbu6PcduXrJk58de329KV8sXkfVSxtr783W4c6qISE/ZEZdMWYq7ORXVhkv+fAtXX2+JWebjrjG2wHWzj+fnuMpEY6fnl+Nuhl2e4HWH4bqzLQ22E9UcvPa8oMtbyoJk109x10CrYhZZ3PsYjUukicg6pJRIstbWW2s/CX7/ylp7irV2hrX2/d4NT7qj3KswwFG47H08Lbis/m5pCum0dSw3qGIskoqzcPtLonHO2oA9u1r4xKLG6c1+Ttzm4r71MMaaXM+/rqvli8h6acB1aQNYYIyZAgwHijIXkoj0Q0cSe/doTdFjUEmC5a3AiZ2fLK2p3gg3vlvnJFLUcuBbpTXVY+MsOwHXeCGedtx17HcTLE/kO7jhAFoSLG8EjgnGcxKRJFJtkYQx5mRjTJ0x5r3g5ynGGO1k2S0PN4Bca5J1PGC9svndMIzEF77g7gaMS1MsIn3ZeBJX9sDtZzmlNdVdam04JLfNa/dNwnEHcoxvPePHq/SJSM97EDgg+P024DngDeD+jEUkIv3RBBInWPJw9fT8BMtbgHhdwkaS/DrE4m5+xbsWGZMkHnBjvq5vXWQkya9/W3HXTnnrWa7IgJPSrG3GmF8B38cNsvYZsCFuILbNgIt7KzjptlbcncxkmXcfSNcsBV/j7mgkG1B7bnpCEenT6lmze2hnHtBaX1nVpRnWGlvz2wtzW3LaErRKavc90269z7tStoisH2vt+TG//8YY8ypusO0nMxaUiPRHc4GpuG5fnbXgbmAlqlcUAHPiPL+Q5EkZg7se/SrOsvnAxATxgEtAfZmk7HgWkvymdj7u2ilZ8ktESL1F0onA3tbam6y1/7LW3gTsC5zUa5FJt9X5tRa4E5dZj2cQrs/zy2kK6Q8prPPrXo9CpO/7My4hm5NgeS7Q5RkZv1xZ9HK+5xsbJ1eVY3zTbo1tt6aqq+WLSOqMMTWxf1tr/2OtfQI3CLeISE/5B+4mVbwWz8s7/ewsFzez2xrqK6s+B2bheiXEMwz4T31l1ddxlt2OS1DFk4erB61vQv0/uMRU3IHBcV2G7+jqbHAiA0mqiaRG1u7b2kjig4lkj1uAebjxFGIvOotwB+dL6vzadGXdbwI+xmX7Y//3coLnnq7zazUblMg61FdWrcQNXumxZstSg6tcNeImRuiSVusd+9XqwubC3DZjjLtxZ7Hk57Sb/BzffNgw4tGDvvXUZ11/ByKyHk5M8Pxx6QxCRPq9N4BHcOMgxXZhK8BdN9Th6hiDY5bl4a4xXidxUudKXEumEjqSVCb4ewVuFsp4/gm8HZQfW9cpDOL5RX1l1Xpdi9ZXVrUCF9HxnqJygu18Bty6PmWKDFSpJpKuBx40xpQbY7YwxuwL1AK/M8aURh+9FqV0WZ1f24Cb9eAB3IF/CC77Pwc4oc6vrUtjLO3A9sDDwVO5uBNQK/AnEs/2ICKd1FdWXYdLFi3D7Ue5uIrQm8D29ZVV69vc+xsHfeupL+avLNpqTsOIeXmeNQU57WZwbru3vKWg7Z0lo27ef/u67/fEexCRxIKxKU8GcqO/xzyuwnUXFxHpEUErnIuAX+K6jRUHj9XAVcD3gAuBxbihKopw9Y6bgZODJE28cj/AXYu8HLxuSPDzeeAH9ZVV9Qletxo4BtfSKTru6zBgAXBOfWXV3V18n0/jBvKeE5Q3BHeN9ABwWH1lVUNXyhUZaIy16265980t6eSstTZRN4teYYyZaa3dPp3b7MvKvYpi3GDWK+r82vkZjmUI8G1cs9T/BEkmEemC0prq6bgBJGfXV1Yt7MmyH/vfdycaKAeWDC9Y/cjO27yg5t6SVgP1XG+MeS749TtAbGtdixvn4wZr7atpDywwUL8XkYGgtKY6D9gAd7z5rL6yqj1mmQdMwrVa+jxI+KRa7ihcfWVRfWXVkvV4XSFuvKTVwTZ7pC5SWlM9HpcQW1BfWZVoZjmRASvZuT6lRFK2UiVGRESkfxvo53pjzFXW2isyHUdnA/17ERER6e+SnetT7doWLWiSMWbHnglLRERERJKx1l5hjBlpjDnOGHMRgDFmvDFmYqZjExERkYEppUSSMWYDY8zLwIfA08FzhxtjbunN4EREREQGMmPM7sBHuLFCrgye3hQ3gYWIiIhI2qXaIunPwOO4AdeiA6nV4cbNEBEREZHecT0ww1q7H24AXIDXgB0yFpGIiIgMaLnrXgVwlZUDrbW+McYCWGsbjDHDei+0/qHcqxiBm95ycTCDWrJ1DW4w7EHA/Dq/NuXB6zItiH1b3IB1s+r82h4dsC4YnHssbqDwr3qy7N5WWlNdBIwBGusrqxb1cNkGmI6bbeLNYFr4ZOvnAxNwCeEve2qwwqg/PDtj8xzPH9vq53xYudc9SQd99iNlXhBLDvClFwrHne0j6oZnjhyS77VPs5imFj/nzfP3/kefGeDNj5QNw+0fy4FZXiicNPbSmuphuMEol6UyGOWNz83Y0jP+qNb2nHcr975ncU/EnC5+pCyEm8o34oXCTetYNwf3PwPuf0aD9MtAMNla+0zwe/TY0ULqdTgRWU+lNdXDcdPBL6mvrFqW4XB6RWlNdQEwHmjGDTZtY5bl4Aa3tsAX9ZVVqUy8JCIDSKqztr0PHGKtDRtjllhrRxhjpgD3WGu36fUoE8eVtQM9lnsVmwKX4WZbacddLD8NXFfn134WZ/09gUuAjYP124G7gevr/NqkF1eZVu5VXAJcjGuxZoPHs8AxdX7t0m6WPQI3FemhwVO5wCzc5zizO2X3ttKa6jG42A/GfSa5wBvAtfWVVbN6oPyrgHNwF+EW8IF/Acd3TigFCaSzgZOAAlxrxPnAb+orqx7rbix/eeGwo7ca/vUvJw5pHNtujTVgPmwYMevjhhHHnrPXveHYdf1ImcF9n+cDoSD2JuAW4ObOCaUbnjly2IZFy+/aesSi8hzjGw9rlrQMWvH2kjG/OX7Xh67pbuy9yY+UjQTuAvYETPBYDvzSC4V/3Xn90prqDXDHgXLc95kD/Af3PxPuvP6tLx52ytbDF10VKlwx0rfGWgwfLB35+ieNJceeu9e9ax1nsokfKdsVuBTYDHe884F7gd95ofDyTut6wHHAD3FT9RpgGfBH4A4vFFYFtx/L5nN9OgRDC/zcWvtUTB1sX+DH1to9MhjXgP5epH8qrakuxdXf96Cj/v4ccF2iaer7mtKa6sFAJe68moerE84FfgU8A5yAqzMODV6yFPgD8HcllEQGlm7P2maMORlX4b8WuAE4A/gxcJ219u4UXj8IeBF3AZsL3G+t/UmndQqAO3CtKxbjmnHPXUe5WVmJKfcqNgPux7USacBdKHu4C6DlwKF1fu3cmPUPA36JayUSTQDk4g7gs4GjsrV1UrlX8Xvc/4OPO+GCe6+5QATYvM6vTdpKJknZw4GHcFOMNsSUPxT3mZ5S59f+p8vB96JgetOHcHd6orEbXLLNB06or6x6rRvl3wkcSUfSETo+90+BLesrq1qDdXOBW3FJzUY6uqcW4vbJ6+orq/7S1VhuffGw0/YZP/cPYM2q9txWMHj4ZnBuW25Dy6BVzy/YYPo5e907J7q+HymrBM7DTeG6Kng6HxiCS7aeFU0M3PDMkUO2HxV5b4Oi5RNWt+e0tVvPB0uB5+fker7334UTbpux86NndjX23uRHyoqBD3At6VrpaEmQg/uu/uiFwudH1w+SSA/hWjAuw/2fGNxxYzVwRH1l1fvR9f/20iE/2nP8vGt8a1jdnuM+d+Obwpy2vEWrCxv+s3DS1HP3uufLXn6bXeJHyg7AnUvagRXB09Fj3odAhRcKrwzWNcAvgKNwCcfmYP0C3P/wvcDl62rlJX1Xtp7r0yWY5OQx3BADR+DqSt8Dvm+t/V8G4xrQ34v0P6U11ZsAD+DqI7H196G4c9Vh9ZVVn2Quwu4LbizeBWzP2nXCfOB9YEvWPN8Owl3T3FFfWfWztAYsIhnV7VnbrLW34VpWVACf4zLV/5dKEinQDOxlrZ2K696xX5zZ304BllprNwF+h0us9FW/wB10l9Fx8ejjMvrFwDfT+JZ7FUXB+k10JJHAjYOwBNgGOKzXI+6Ccq9iEnA6ayYzwL3XFtwF9E+7sYkzcEmkJZ3KXx78XV3uVazXzINp9ENcEik2douL3QK/Ka2p7lLspTXVWwIzcCf/eJ/7ZNz+GlUO7BLEEtvapwlXibgoaD213q5/5qicHcd8We1bY1e157W6vAf4eHZlW35rSf7qwg2LG/78TYCRsonAubjPYVVMUS24/WVvYPfokyMLVv94g6Ll41e25ba4JBKAodnPaV/dntO245j5J/3h2RmlXYk9DX6B69LYQsdxADr2l7P8SNmEmOcvxSWNluC+S4LXLcMlTa6OrnjDM0cO2Wns/J+3+p6/OkjeAfjWsyva8ltGD2oaNr6w8fpeeVfd5EfKCoDrcMmxFTGLose8zXGDCkdthft/b6CjUkvwewPuwnrrXgxZJKOsta/i6gLvAbfhbhbskMkkkkg/9VNcEmkZa9bfl+GGbvhJvBf1Md/D3bSPVyf0gf1wdbTY8+1q3Pn22NKa6ilpilNEslzKF7LW2oettQdYa7e01u5nrX1oPV5rrbXRC4a84NH57vH3gb8Fv98P7G2MMaluI1sEyZVpuANuPA3A7uVexcjoS3CfR0uC9VcDJ/dokD2nCncFm6iZqw8c35WCgwTRMbhERzxNuJYbnROSGVdaU52Hu7hdnmCVlbgEw3Zd3MSlwc9kLTBOj/n9RNZMOMVqw7WQObgrgRTlthxblNta0Ox7cctf1Z7bumXJ17tc/8xRBcFTP8Add+KtH+0W+c3/TNmwJSe3+8ZGEyWx2q1nPWPNqEFNP+pK7GlwDMn3DQNcCFBaU10C7EPy48ZWpTXVkwGG5TefUeC15bT6OXE/99V+TtvWwxcd0PXQe9UeuER7c4LlTbgumFFH4v5n4n2W0c/x6B6MTyQrGGMKjTHXGGMewR3Tb7DW/tBae5219otMxyfSn5TWVIeAb5P8PLxTaU312PRF1StOJvH5d2inn7F83Ll4Rm8EJSJ9T9JEkjFmujFmq5i/Rxtj7jbGzDbG/MkYU5TqhowxOcaYWcBXQJ21tnO3ngm41k5Ya9twB+yR9D0h1szwd2ZxF+/RE9F4XCIpkeZgnWy0MfGu8Dv4xD8ZpaIweCT7LA3u8842xbjmwW3rWK+rsa+rBU47boDIqA1IXGmI2rArgRTktG/qsjzx/w3arWfzPN/LMf644KnJJE6ugEucTo7+MSx/9dBWGz9JBWCwpjC3bZP1Djw9ot0YEzG4fQhgdLBusvXbcIPxU5DTXuqZxPtem+/5Q/Ja82MSeNlkHMkHCV4NjA26tIH7f0+UaCdYtlEPxSaSTW7EtR74EDgc+E1mwxHp10K482yim3Sd6+991UQS1wmjdYb8BMtb6ai3iMgAt64WSdez5sXuLUAZcDOuu8GvUt2QtbbdWrst7gC2Q2yCan0YY043xsw0xswERnWljF62mOQXSSZYHp2J6WuSJxzygzKz0XySt4rxWLP70vpYhTth5SRZx9LxOWaTlXQMlJyIxXV17Ir561jusWY3ya9InqwEN57Vemv1vS9Mkv8Bz/im3RrrWxOdrW4ByY87+bGxrGzLX5VjbML1LYbV7TlZOQ4Q7n842Xu1QDT2pbj/l2SJ2RyCY0Grn7PAtybh555jrLe6Pbed5AmYTFnCuo95y2LGPJpP8v/fPNz/lUh/sx+wr7X2YmB/4KAMxyPSny1h3TMhxtbf+6rFJE8UQeJzdC4d9RYRGeDWlUjaAngJwBhTgqvIHGOtvRE38On/t3fn8e1U9f7HX5+0/e47W9lEq9QrKiKyqXgFsSJ6ERSLLF5wRUUMSNx+LiiKevXae6WiIorsskQBQVGJiKJyQb4q+1K+BNnL9t33tnN+f3wmNA1JmqZtlvb9fDzyaJM5c/KZTNo585kz5xw81jcMIazEZz94a8Gix/DxcDCzVnyskOclUEIIZ4UQ9ogHfXpmrO9fAw8Cy/DeCMUsAP6RidK5k+UM5ZMOs/GBNRvR6fHPUie/LUC6moozUXoIH/BwYYkiM/ET9RurqX8yZZOpTcDVlI59Fj42zN+qfIv/HWW5MfI7cz6lT8RztwxdXU0gawZmnLcpahlqSwwV/f7OaRlsu3flFv888YBLcomtXzJ8O1IxLcAFuSf3rVp8aVsiShTLVSUIBAhPb5zz3Wpir4ErKP13ndv+0wGyydQzwM2U/s7Mw2dUuR9g5aaZZw4FCy02VPR/+OyWwZa7Vmz5x5MOuLgRB6D+A95rrtR3ch4+EGjOZZRPWAfgkokJTaShzA0hPAEQQniE0v8fRGScssnUw/g4ZKV60i8A7sgmU81+W+l5eDu0mJXxz2K39xl+vL1sEmISkSY0WiKpleEr2vsA/SGEPniuUbOokjeJb4lbFP8+Gx8X6N6CYlfhg3iDd+H+Q6hkSrkGk4nSATglflp46998PMv/tbzyy/GeXwsYeYXA8M/3URr0JCkTpe/GZ5HJTR2arw0fI+iUwvXG4Pt4T41FjEw8zI4fX85E6UbscQHQi29/YcN/Nn4APyWbTI1261tR2WTqRuCv+Pel2Oe+nLyBmfF9dC9+u1uioOxCfBaOh6uJ5cQDLtlw81PbfXtGImqZkRhqGT7fD8xpGWjbMNQ2kF2z6IRc+UR7Xx8+BtoiRiYSEnF8t+EztwHw9Ia5pzy9cfbqua2DbZaXS2ixocSc1oEZ/3xmm2s/vv9lt1UTew18AR/jqzBhkptd7+r488j5Bv7/trAROxf//p+STaYCQPKAS569+antfjSrJWoZmcQLzGkdaFszMGPzw2sXnDyhWzNBEu19a/HBtucx3I0ehv/nPQGcm/f6LcAf8e9HfmKuJX7tBqpPyoo0slYz29/M3mRmbyp8Hr8mIhPnVPxiV+HF4Pn4BZCv1jyiifcL/KL3Ika2CWfgx9V/4tubf7xtjctfB/yjFkGKSOMbLZF0Fz5TG/iAp8+d4JnZ9pQekK7QtsD1ZnY7flKQCSH8ysy+ama5QX7PBrYws2X4ALSfK1FXw8tE6VuA/wQexk8K5+In7PcDR2Si9J0Fq/wQnwliED+5mhuvdx1wWCZKlxq0uRG8C7+6EfADTSt+4nwvsGcmSj9ZbcWZKP14XP/NDH+O8/HvXTITpX85vtAnT5yYeRd+wF3IcOwrgI9lk6lrxvkWb8YbAzDyc78NeHU2mXpukPJsMrURH4z4lwx/v+bhJ+7fYWTSacz+c98rv3L9Ey/48vrBtk2zWoZaZ7YMts5pHWx7dN38/t8/ttOBx+9/2dKCVb6A98RpyYtnLp5gOibR3vdccjB5wCXP/vXJHV5z36old89qGWqbmRhqndUy2AqJcONT21/44NpFY+4VWSuJ9r4n8Ol1+/B9k9tPATgHT5g/J5tM3Y0PYnkvw9/3BXhvzfdlk6mb8ssf+fqrTvzTEzv2bB5qGZzdMtiW+9z/tWbhw9c/sdMbT3jTpXdP8iZWLdHedx7wWXw8pPz/eTcAhyXa+5bnlY3wWRDPwZOwue/LLDzh9LG4jMhU8xQ+S9vZ8ePZguc/qV9oIlNPNpn6Jz5RxoOMPA5ngaOzydSt9YtuYmSTqbX4hDC/Y2SbMMIvdP87w72WcsfbGfj/m2TugpaIiJXr9GNm++K3vAQ8E79vCOG+eNnJwN4hhLqN3m9mS+Nb3BpSV6Lb8DGltgSezETpZaOUb8OnsZ4FLMtE6acmP8qJ0ZXongscih9wbshE6cIeZ+Otf0f81se1wJ2ZKN00J44dvT0vwMcGWw3cnU2mJiz2jt6e+XjCagZwXTaZyo5Sfgk+vfpmvIv2aINwV+y71x3ZMqd14JBWi7bcONR6+/H7X3ZTufJRf+dsfKy1VuDeRHtf2TGjzvjDezrntA7sFwVbt26w7cq82+UaXtTfuQuwL/79vSLR3ld27LCO3p4X4+PTPQvcV67h9t3rjmyb2zpwaItFizcMtd7y8f0v++dExj6Zov7OFnxa89nAg3HyrVz5ecDL46d3xb2bZIpr9GP9dKX9IlNVR2+PATvjE2E8Ddw/FRMoHb09W+HbuQlvE27OWzYfP94G4M5sMtU0bS4RmTjljvVlE0nxyvPxZEhfCGFN3usvBdaEEEYb+HfSqBEjIiIytelY35i0X0RERKa2csf60WYnIE4e/b3I6/dNQGwiIiIiIiIiItIkRhsjSUREREREREREBFAiSUREREREREREKjTqrW1SW12J7pn4lNhrm2lAaamfjt6e2fjf8trRBoOMB5CcBwxmk6myAz7XQhx7C7BuDLEPxDPRjVZ3Cz74+4ZsMjUwEfEW1D8HT8aPGnsVdediX59NpgYnsm4RERGpj47enrlAyCZT66tYbxHQn02mhsawXgJvO23MH0x7vMq1PTt6e2bgEwetncgJZkSksYw62HYjm0oDPXYluncDTsSn3QSfJeJHwIWZKD3hJ8HS/Dp6e16Hf2f2xGfVeBT4AZAuPHDHDYnDgeOB7QED/gZ8t3Ba+Vro6O15Ax777njsDwHfB64oEnsLcATwMWBbPPYbgdOzydQtRepeBHwUn8J3NjAI/BI4I5tMPTIBse8Xx/6qOPYscAZw1XgTSvGsescDR+IJ5UHgcjz2uk1sIFJPU+lYP5Vov4hUJr4Q9lYgCbw0fvluoDebTF07yrpvAb6Dz7hrwABwDfCRbDL1bJn15gEfBo4B5gMR8Jv4PR8Yx7bsjbeB9sHbQI8BPwQuBV4SLzswLr4aOAc4e6yJMxFpDOOata2RTZVGTFeie388aWT4P92AZ/LnAH8EjstEafVKkOd09PYcBnwLbxiswb8zs/HvzeXAZ3MJmTiJ9N/AO4EN8cPwhkUC+FQ2mbqyhrEfCXwNGIpjB/+uzwQuAb6YS8jEsfcCBwEb82JfEK93UjaZ+nVe3UuAXwA7xXUP4D2eFuB/W4dlk6nsOGI/FjgFT/AUxn4ucFq1yaSO3p4tgSvwRN/q+D1agIXACuCd2WTq4WpjF2lWU+VYP9Vov4hUpqO350Q8ibQZWBe/PA9oA/43m0ydUWK99wDnM5xAAm+3tQLPAK8olkyKey+l8eTT2vh9E3h7YgNwRDaZurOK7XgH0IO3OQvbnjfhFwdnAKvw9umMeDtvA45qhJ7wIjI25Y71GiOpzroS3bOA0/F/8qvwf8rgJ83LgTcCB9cnOmlEcbLk63hjJJd4BG8crAQOBfbNW+WNwCF4MiJ3EA/xuuuBb3b09iye7LgBOnp7tga+gse+Jm/Revz7fziwd97rXfhVvJWMjH1V/Py/O3p75ueVT+FJpOUMN7qG8G2fhyffqo19e+ALcdzFYj8GeHW19QOfA7bDY88ljofi5wuBb4yjbhGZpszsp2b2lJkVPXE012tmy8zsdjPbvdYxikxVHb09LwVOwNtc6/IWrY1fO7Gjt+clRdZrwS8yw3B7BjxBsxnYEvheibf9CJ5EWh6Xza23Ak9efTfuJTWW7ViIt6E2ULzt+S78wtqK+L2I33s53oP7mLG8n4g0PiWS6u8APJNfasyXzXjXVJGcg/GrUcVuecwd2N+f99r78IN6sZ4ym/FGxdsnML5y3on3sikWe67hcWzeax/EkynlYj8Inhuz6DA8qVPMKmC3jt6eF409bIjrbmE4yZMvwq8Y/mc1FcfJsIPxxlkxq4C942SWiMhYnIsn5Es5CNg5fhyH36YiIhPjKLx9UGxcoyH8XOyIIsveiydmSt2RMAgcUpgQintyH4MnqopZA7wA2HXUyEd6O972LDbO0hy8fTSvxLrrgA+NNXklIo1NiaT62wnv+lnKBqDaE1+Zml46yvIN+AlBTielE5XgDZzR6pwoL6V4UihnY0EsHQz3RCqmBXhx/PuW8c9yg1AOAjuOEmMpLxul7o34FcBqtOOfS6n6A+OLXUSmqRDCDXivgFIOAc4P7iZgkZltW5voRKa8l1H84lnO5rhMoVeMUm/u1rElBa8vwBM65QbWDvj5x1jsTOnzxhlxnTNLLN8EbEH58x0RaTJKJNXfasqfnLZSupeCTE/P4smfUloZ2StnJeVnaLS4zlpYjid/SmnFu0XnrMF7HZWTK782Xr/cZ5Og9FW60TxL+djbGBn7WKwZpW7w2NeMUkZEZKy2B/InIng0fu15zOw4M1tqZksZTt6LSGnPUr4N1kbxNtizlL/wZgwPU5Bvffz6aOd4Yz23WE7p9tVQwc9Cud7cmjxIZApRIqn+fo9fVSi1L+biAxCL5Pya4VupipkB/Czv+c8ofRUo1936mgmLrryrGD1xWhh7qStcudh/A5BNppbjM9EtKFF+Fp5Uu7XiaEe6kuHb74pJABdXU3E2meoH7sQHQC9mNvAUcE819YuITIQQwlkhhD3igTefqXc8Ik0gPcryAPy8yOs/jpeVauu1Ardlk6kRyZlsMrUZ+B2l20Iz8N5KY52x9xpKtz3Xxq+vLLHuAuDKwll5RaS5KZFUZ5ko3Y/PyLCQ5/dIWIhfkbiw1nFJ48omU/fiB/RFjPwbtvi1R/Hp7nOuxKdnXVhQVSIu/+tsMtU3KcE+3x3A9cBiisf+L+LEUOwy4Ml4Wb6W+LXLs8nUQ3mvfwtPLs0pKD8TTyR9dRwNmb8DfykT+zKg7DS+o/h6XFex2GcCX1MjTEQmwWOMvG12h/g1ERm/G/C2zyJGJmEMb0/circtRohnY7sY77FUeL7Whrd1Ti7xnqfjt5MVXpxqwy9QfzubTJUb8uB5ssnUA3jbclGReObj7beI5/ciX4D3kvrBWN5PRBqfEkmN4ev44Jaz8X/GC/CT/ruB7kyUfrqOsUlj+jTeW2ceI78zfwMOzyZTz92+lU2m1uCzoS3FGwDz48c8PEn5mVoFnU2mAvAJ/ApdLvb5cew34lPSrs8rvwroBv4Rl8mVnwOcg8+ill//bfjg4ivzys7HG1ypbDL163HGfjxwRUHdC4A/AUdnk6lN46h/KfABvLt5fv0DwInZZGo8SSoRkVKuAo6JZ2/bB1gVQnii3kGJTAXZZGoQn0TkWry9sIDhds9vgPeXuUj0AeACPOnUhvdCasNvc39PNpn6c4n3vB8f5PvxgvdM4DPnVnuB+nP4xe/89tsivI327/j5TCsj20cPx7H+q8r3FJEGZSGUu/22sZnZ0rh79ZTQleheAOyD95y4PxOldRuLlNXR27ME2BtvWNyZTaayo5R/MfByPDlxc3w7WF109PZsCeyFNzpuH62R0dHbszM+IOVm4KZsMrWyTNkEsAewLT5u0U1xd+8J0dHbs3VcfwvetfzhCaw7gX8u2+BjEtxU2HVdZDqZasf6WjOzi4H98DGNngS+TNxrIIRwppkZcAY+s9t64P0hhKUV1Kv9IjIGHb092wG7x0//kU2mHq9wvcX4bLxbALcDl8UXt0Zbz4BX4z0O1wA3jrUnUpl49sZvk7s7m0wty1s2B3gtnmz6F96+a96TTZFprtyxXokkERERaVg61jcm7RcREZGprdyxXre2iYiIiIiIiIhIRZRIEhERERERERGRiiiRJCIiIiIiIiIiFVEiSUREREREREREKtJa7wBEpDpRf+fLgOOAt+Az8PwTOBP4Y6K9b8Qo+vHMHZ+MH9sAEXAn8MVsMvXbWsY9VnHsnwU+AWyFx3478PlsMvX7wvJRf+ds4HDgg/isbSvxqW4vSLT3PW+Wuqi/c1vgffE684AHgR8DVyTa+waLlD8MOBXYGZ+S91HgvxLtfWeViP2t+H56BbAR+BXw49Fm2JsMHb09rwY+ik/Ta8BNwJnZZOqmWsfSSKL+zgXA0cAx+MxWTwHnAT9LtPetrXEsLcA7gI8ALwbWAb8Afppo73uslrGIiIiIiBSjWdtEmlDU37k/8EM8GbwGCHgSJAGcmWjv+06ubJzMuAY4IH5pAE8itMbrfTqbTPXWLvrKxbFfB+wbv1QY+yeyydRzCZyov3MOcDHDSZuNeJJtLtAPHJZo7+vPK/8SIA0sANYCg8BsYCZwA3Bcor1vIK/8qcD/i58OxjG0xc8vS7T3vbcg9q/jCapBPCHQAswHNgHvyyZTf6v+0xmbjt6ew4Bv4p/fmvjl+fHPr2eTqXNrFUsjifo7lwA/B3bCpz7fjO//2cADwOGJ9r6VNYqlBfg+8Gb8u74e/67Pw7+fRyTa++6pRSyNRMf6xqT9IiIiMrVp1jaRKSTq75wPnIEnJ1YCQ3gvndXx4yNRf+deeau8H08iDcQP8ATIQPzz2x29PVvVJPix+zieRCoV++kdvT2L88ongVcCK4ANcZnN8fNtgP/KFYz6Ow3/HOfGy3N1ro+fvxE4Kq/8vwGfwz/vXFni3weBw6P+zrfnxXIAnkRahScBQlxuRbz8zI7enhlj/0jGrqO3Z1vgG/hnsgr/vkTx7+uAL3T09rykFrE0oFPwJNIKPMEX8ATkCrxH0OdrGMu7gS7873odw9/1FcAs4IdRf6eO2yIiIiJSV2qQijSftwEz8JPdQhHe4+T9ea+lytQ1hP8fqOXJ8licVGbZEN7DJwUQ9XfOBN7LcG+bQquA10f9ndvHz1+JJwpWlyi/Hk/KWfz8C/hnGxUpG+JlX8h77cNx2WLdPtfjvUzeVOK9J1o3/lkNFFk2iH8Hjq5RLA0j7o30Nvy7Ucxq4JD41rda+AiezCpmDbAdoB4gIiIiIlJXSiSJNJ9d8aRFKevxJEnOjnjSpZzdxxvUJNkWT3SUYsBr4t+3wW8zK5YsgeEeQS+On+88yntvBNrxniAArx6l/BCQ36vnZXivklLagM5R6pwou1H+O7AJeFVtQmkoOzHco6+Y3LIdJzuQ+La2F+F/v6UkGPkdExERERGpOSWSRJrPGsr/7bYwMoGRG1eolPwxcxrNIOVjh+HYN+DbXo7F5XLlSyUQwD/jiOHE1GiDLhsje5OsryCecommibSG8rEUfmemiw2MfhxsYfg7M5ly37Vy8UQ1ikVEREREpCQlkkSaz28o37tkJj54cH75cn/rAfjpBMQ1GTKUT4AE4CcAifa+p4G7GB5AutAM/CT81vj5X+P1S9W/ALg2b+a280aJ1Rj5uV8BzClTdhD4wyh1TpRfMnrS7Odllk9VfcAz+MDaxcwBHsdn8ptU8UyLvwIWlioS/7xhsmMRERERESlHiSSR5nM7Pm374iLLFgDLGZkUOAXv6dBapHwb8DCe9GhEp+AJl2KxzwAeyCZT1+a99m38/9rMgrKt+KDaPblZ2BLtfauAs/HPrPB/4ez4fc/Ie+0sPOnQxvO14Umq0/JeOx/vxVSY2DJgEfCbbDI16QmK2A3Asvh9Cy0EHgV+V6NYGkaivS/CB2CfxfP3axv+PfqvOMlTCz/EB4cvTEAm8P10QaK979kaxSIiIiIiUpQSSSJNJj6p/RhwHX5yuRjYAk+IPAS8J9Hel5sZjGwylcUHFF6HnxzPiB9teHLhtdlkqlYnymOSTabuBg7FbxMrjP0e4HX55RPtfX8FTsSTNQuALfHPaBbwLeCigrfowXs0zYvLbYEnfjYBH0i0992dV/cQ8Fo86VIYywrgTfkn+dlk6gngSOCpOJYt8ETOQuBq4DPVfSpjl02mBvGByP8ev/8Shr8zdwFHZpOpYoO3T3mJ9r6r8YTlDIa/Mwvw5OPnEu19v61hLPcDx+AJyPzvzHzgAnzmPRERERGRurIQGvL8sSJmtjSEoBlsZNqK+js7gH3xk947gVtK9Z7o6O1pAY6Nyw8AF2aTqT/XKtbxiGP/ILAPPgj2hdlk6sZS5aP+ztnA/vhg3SuB38c9kEqV3wqfQW0e3kPrj7meSyXKvxV4F/65XwtcWuZzT+AJr068t8mfssnUIyU3dpJ19PbsAuyFJ9v+AdzeqInEWor6O+cBb8YTSU8B1yXa++oyblTU39kK/DvDg29fl2jve6oesTQCHesbk/aLiIjI1FbuWK9EkoiIiDQsHesbk/aLiIjI1FbuWK9b20REREREREREpCJKJImIiIiIiIiISEWUSBIRERERERERkYookSQiIiIiIiIiIhVprXcAIlKdjt6e7YCjgf/Ap6C/GTgnm0zdPt66v33tUbPXDsy84v7Viw9YsXlW65yWgWjnBcvv3Gr2+sM+1XXxsvHW39HbswM+Hf3b8P9DN+Kx3zXeuscq6u9cABwGHIlPuX4fcC7wp0R7X1TreERERERERBqZZm0TaUIdvT27A+cDs4ANQADmxD+/lk2mzq+27v/OHDX/rhVbPr1s9ZKZRqAtMUQUjMHQwhYzN4TXb/PI/p95y8/+NI7Y98ITNTOKxH5KNpm6uNq6xyrq79wOuAxoBzYBg3EsBlwBfFbJJJH60rG+MWm/iIiITG2atU1kCuno7ZkNnI3//a7EEyCb49/XAV/s6O15RbX196+fe+v9q5bMnN0ywJzWQdoSgZktEXNbB3hm42y7c8VWvxtH7HOBn+BJo8LY1wOndvT2dFZbfxV6gW3i998ADACr4se74oeIiIiIiIjElEgSaT5vAebhiZdCg0AL8L5qKv72tUfNvmPF1h0zEkMk7PnL57QOkF2zeOa3rz36iGrqx2/Dm40nbQoN4P+Tjqmy7jGJ+jtfCrwKTxoVCniS62NRf2eRT0JERERERGR6UiJJpPnsQfm/3XXA3tVUHLC3bBhsZUZL8bu5EgYtFrF2YMbR1dQP7DXK8o3APlXWPVYvxxNGpawHXoTfPigiIiIiIiIokSTSjDbjY/iUkojLjJkRVkYYUZn0SsBIWCjWo6gSGyj/f8eoMvYqDIyy3PBE02ANYhEREREREWkKSiSJNJ8M5ZMbs4BfVlPxZ97ysz+1z14XbRpqKbp8MDISBOa1bTqlmvqBa4Fyg1fPpMrYq3BT/LPU/8EFwF8S7X2jJZxERERERESmDSWSRJrP34B7gUVFls3Fb8m6tNrKX7Ho6asjEgxGIzs9RQE2DrWy65Inn/xU18X3Vln9X4AHKB77PGAt8PMq6x6TRHvf00AaWMjze3jNwHsjfa8WsYiIiIiIiDQLJZJEmkw2mYqA9wN34b1mlgCL49/XAe/NJlNPVlv/qW8/99DXb/3IrQOhhXWDrawdaGPtQBsbhtp45ZKn1uwwd82Lxhn7McB9ebEviX9fBRyVTaaerbb+KpwK/IqRn+NCoA04OdHet7SGsYiIiIiIiDQ8C6HcWLONzcyWhhD2qHccIvXQ0dtjwJ7A/vgtYUuB32eTqQkZY+jb1x71xqc3zvnh2oEZ281qGVyz9ez13/h/B174w4mou6O3J4EPvL0fnrS5BfjDRMU+VlF/ZydwEJ5I6gN+lWjvW12PWERkJB3rG5P2i4iIyNRW7livRJKIiIg0LB3rG5P2i4iIyNRW7livW9tERERERERERKQiSiSJiIiIiIiIiEhFlEgSEREREREREZGKKJEkIiIiIiIiIiIVaa13ACLiOnp7WvEZ2I4AtsJnD7sIuDWbTI17VPyO3p4dgaOA1wKbgKuAq7PJ1PNmJ4tnhHs1cDSwM/A0cDHwx2wyNTjeWMYq6u/cCTgS2AfYCFyJz6y2ttaxiEy2qL/zZfjf3iuB1UAa+F2ivW9TXQMTEREREUGztok0hI7envnAucCuQAAGgJnx7xcDX8kmU9E46v8PoAdoATYDhieSVwJHZZOp+/PKJoBT8YSW4Umntvj324D3ZZOpmiVwov7Ow4Bv5MWeiB8rgCMS7X0P1ioWkckW9XeeAJyIf8c34n+nCeBfwJGJ9r5n6hddfehY35i0X0RERKY2zdom0vhOA14FrMJ7IGzAkzxr8J4J76624o7enk48ibQprnM9sC5+rwXAeR29PW15qxyO91xaE5ffEMe0Cu+l9NVqYxmrqL9zF+Cb+An1Sjz2tXE8i4Fzo/5O/R+TKSHq73wTcBL+HV+B/+2twf/2XgScUbfgRERERERiOgETqbOO3p6tgbfhyZFCEZ5EOSG+3awaxzLcm6fQGmBL/Ja6XG+kE+L3LNYDahXwHx29PVtVGctYfQCPfaDIstXAtsAbahSLyGQ7HhiKH4VWAntE/Z2dNY1IRERERKSAEkki9bcrfuJY6ta1DcB2wBZV1v9GvCdPKa34uEngSaVt4vcsJoofr6wylrH6d7x3RiltwN41ikVk0sQ9615D+e87wO41CEdEREREpCQlkkTqr9Kxj6odIynCxzeqpO5KyoKP3VQLlcRTrPeGSDMa7e8qUP3/ARERERGRCaFEkkj93YonS0r9Pc4BsviYKdW4FphdZvkg8Kf492eBh+L3LKYFj/WfVcYyVr8vEwv4LW9/qVEsIpMm0d4XATfi45YVY/Hj5poFJSIiIiJShBJJInWWTaaWAz8HFhZZ3ILP3nZ6NpmqthfQBXjCZVaRZQuBR4iTMfF7nB6/Z0uR8guAy7LJ1MoqYxmrc/FE18wiyxYBDwC31CgWkcl2Bp4saiuybBHwx0R730M1jUhEREREpIASSSKN4at4r6CF+Gxk8+Of8/DEzjXVVpxNph4CPoKfoC6M616IJ4UeB47JJlP5t8tcDfTG752LZVG8zvX4DHM1kWjvW4YPQNxaJPaHgQ/EPTlEml6ive8m4Et4D8L8/wML8J6LJ9ctOBERERGRmIVQq6FOJp6ZLQ0h7FHvOEQmQjwr22uAdwNbA/cB6WwylZ2g+pcAh+IDa28Cfg1cl02mis3mRkdvTwdwONAJPIn3mvrHOHpGVS3q79wCeBewFz6j3NXA9Yn2vmKzuYk0tai/czv8b+8V+EyJVwJ/na5JUx3rG5P2i4iIyNRW7livRJKIiIg0LB3rG5P2i4iIyNRW7livW9tERERERERERKQiSiSJiIiIiIiIiEhFlEgSEREREREREZGKKJEkIiIiIiIiIiIVaa13ADL9RP2d84D/APYFhoBrgUyiva/o7GFjEc989krgMGAbYBnw82wy9a/x1j3Z4th3A96Jz9p2Pz5r28MlyrcBbwIOBGYC/wdclU2mVhcrH/V3LgTegc/athH4LZr5jKi/04A9gUOALYC7gZ8n2vser2tgIiIy5XUluluAfwfeDswFbgGuzETp5XUNTEREpAzN2iY1FfV37g78FJgTv2RAAJ4Gjk609/2r2rrjxMp3gbcALcBg/DMCvg+cXo+p6yvR0dszA/genhhK4Am2BP7Z/E82mfphQfntgQuB7eNyEf5ZbgKOyyZTN+aXj/o7Xw/8CE84hbx1HsM/92mZNIn6O+fgn8ve+Hcl97lHwNcS7X0X1DE8EUHH+kal/TJ+XYnurYDzgRczfOxJAJuBZCZK/76O4YmIyDRX91nbzGxHM7vezO42s7vM7MQiZfYzs1Vmdmv8OKUWsUntRP2dWwPnATOA1fFjVfxzK+DCqL9zxjje4jPAW+P6lsc/VwBrgU/gPU4a1ZeAN+Ofxwo89pV47J/q6O05KFewo7cngTc8d8grl/ssDfhJR2/PDrnyUX/nC4CfxMtWFayzA3Bu1N85XW9z/SbwOoa/K7nPZj3w5ai/8w31C01ERKaqrkS3AT8GdmbkcXklflHjjK5Ed2e94hMRESmnViePg0AqhLALsA/wcTPbpUi5P4cQdosfX61RbFI77wZm4yfphVbjt3O9qZqKO3p75gPvjesp7HU0hPfUOSm+fayhdPT2LAIOx5M8hYbwK5Mn5sW+L7BjifIb8ETd0XmvvRdoi5cVWgW8EE+mTCtRf+d2wNvwRnuhQfyzP6GWMYmIyLTxamAXih+DNuHDT7y/lgGJiIhUqiaJpBDCEyGEf8S/rwHuwW/JkenlIDwpUkoCvy2tGq+Kfw6VWL4e/85tU2X9k2l3vDt7VGL5OuAlwOL4+f6UH99sI/5Z5xxI8SRSTiuwXyWBTjF74knHUrc7rgH2HGcvORERkWJei1/kKWUd1beJREREJlXNb2cxsxfiV2FuLrL4tWZ2m5n9xsxeXmL948xsqZktBbacxFBl4rVS+qQdhsfuqUYCv3WrnPHUP5laGD12GI59rJ9jyyjlc2Wmm0q/C434nRERkeY22rE/MD2PzSIi0gRqeoJkZvOAXwAnhRAKZ5b6B7BTCOFV+KDDVxarI4RwVghhj3jQp2cmM16ZcH/CB3suJQB/rrLuu/Dvc6nv9Cx8DJz+KuufTLfjjcVSsc8GnsDHfQK4kdI9r8AHMs//HP+MzwRTyiBwU0WRTi234Y34Ug35ucB9ifa+jbULSUREpol/UL6X9jz8eC8iItJwapZIMrM2PIl0UQjh8sLlIYTVIYS18e/XAG1mph5HU8vP8KRFsWTSXHxg6d9UU3E2mXoWuApYWGSx4cmYM7PJVKnbx+omm0w9CfyO0rHPAr6fF/t1eFJsfpHyM/DP+Ly8187FE0/FbtGajyeo/lBN7M0s0d6XxRNoxT73BP55fa+mQYmIyHRxIz5z6oIiy3I9j39c04hEREQqVKtZ2ww4G7gnhPA/Jcq0x+Uws73i2J6tRXxSG4n2voeBJN5AWoQnd+bEv28C3p9o7ys2EHelvgz8E08MLIjrz/1+OSOTK43m88CdjIx9Ufz7pcBluYLZZGozcCw+fsJCPAmXKz8T+Ew2merLlU+0992Hz2g3Ex9naXa8zkI8eXdsor1vYDI3roGdBDyAfxbzGf4c5+Mz3VWV2BQRESknE6Uj4AP4xZzCY/lc4NRMlP5n3QIUEREpw0IYbeiUCXgTs33x22vuYHhA4c8DLwAIIZxpZicAH8N7U2wATg4hlO3Sa2ZL41vcpIlE/Z07AEcAb8T39zXALxLtfcvLrliBjt6eNnww6qOBrfAkwYXA37LJ1OR/2ceho7dnBj5r3VF47PcDFwBLi8Uez/Z2KPAOvPfMjcBF2WTqoWL1R/2dL8Q/l9fhA3JfBVyZaO8rNvvbtBH1d87EByQ/Am/A3w1ckGjvu62ecYmI07G+MWm/TIyuRPd84GDgXXgiaSlwQSZKL6trYCIiMu2VO9bXJJE0WdSIERERmdp0rG9M2i8iIiJTW7ljvWYjEhERERERERGRiiiRJCIiIiIiIiIiFVEiSUREREREREREKqJEkoiIiIiIiIiIVKS13gGIyLCO3p59gE8AWwP3Ad/KJlOP1DcqERERqYeuRPcLgbcCW+Kzuf4mE6VX1zUoERGZ9jRrm0gD6OjtaQOuA/YBLH45xI/vZZOpT9UrNhGRetKxvjFpv0yurkR3K/A1oJvhOwiGgEHgs5kofVW9YhMRkelBs7aJNL6fA68FBoDN8WMAiIBkR2/Px+sYm4iINDEze6uZ3Wdmy8zsc0WWv8/MnjazW+PHh+oRp4zwaeBwYBWwPH6swtsGPV2J7n3qGJuIiExzSiSJ1FlHb882eLf1gSKLo/jnF2oXkYiITBVm1gJ8HzgI2AU40sx2KVL00hDCbvHjJzUNUkboSnQvBI4FVuM9k/Ntjl87qcZhiYiIPEeJJJH6OzL+Weo+0wFgq47enh1rFI+IiEwdewHLQgjZEMJm4BLgkDrHJOXtjd/mPlRi+Rpgr65E95zahSQiIjJMiSSR+ptVQZkAzJ3sQEREZMrZHsiftOHR+LVCh5nZ7Wb2czMreuHCzI4zs6VmthQf/FkmRxulLy4RL4viciIiIjWnRJJI/f2R4QG2i0ngvZLur0k0IiIy3VwNvDCEsCuQAc4rViiEcFYIYY944M1nahngNHMP0FJm+SzgKbxnkoiISM0pkSRSZ9lk6ibgIUpfWWwFfpFNpkp1cRcRESnlMSC/h9EO8WvPCSE8G0LYFD/9CfCaGsUmRWSidBZYCiwsstiA2cCZmSgdFVkuIiIy6ZRIEmkMBwPr8WRSC95QbANmAMuAD9cvNBERaWK3ADub2YvMbAZwBDBi6ngz2zbv6TvwHjFSX58EngQW44mjNmA+nlz6LXBR/UITEZHpTokkkQaQTabuBV4GnAOsw8c/eBL4GrBrNpnaVGZ1ERGRokIIg8AJwO/wBNFlIYS7zOyrZvaOuFjSzO4ys9uAJPC++kQrOZko3Q+8DTgNeAK/xf1W4OPAJzJRWr2URUSkbiyEcmP5NTYzWxrfpy8iIiJTkI71jUn7RUREZGord6xXjyQREREREREREamIEkkiIiIiIiIiIlIRJZJERERERERERKQiSiSJiIiIiIiIiEhFWusdgFSnK9FtwMuBVwMR8LdMlL6/vlFNjo7enlbg34EXAGuA67PJ1PL6RjU5Onp7FgJvwqf3fQz4UzaZ2lzfqKa+jt6eJcD++NTKDwF/ziZTg/WNSkREGklXorsV2BfYCZ9h9fpMlH62wnXfAhyKX8T9dSZKX13heovx49MC4BHghkyUHqgw1jfEsa4F/pCJ0lOy7SQiIrWnWduaUFeiexvgh8ArGe5VFgH/ByQzUXplnUKbcB29Pa8Fvoef4LcBQ/i2ngX8bzaZiuoY3oTp6O0x4GP4tMsJPMk7AKwHPplNpv5Yt+CmsI7engSQAj6Ef+4t+Oe+Gjghm0zdXMfwRITpe6xvdNNtv3QluvcEvo9f6Mm1RwLwU+DbmShdtD3SlejuAH4P7ABY/HIAngQOzETpu0uslwA+ARzP8PFpEL+gdmImSv+lTKx7AWcUifUnwHdKxSoiIpJPs7ZNIV2J7tnAJXgSaRWwIn6sAl4PnBc3PppeR2/PLsA5wBy84bQc3871eMPqE/WLbsK9H09obMSTGMvxbW4Dzuro7dm9jrFNZScCH8W/U6sY/tznAud29Pa8rI6xiYhIA+hKdHcC5wPzGNkeWQt8GD9+F1tvJn6Rbwf8IsXm+DEAbAP8uSvRPbfE234Uv7iUf3xaDcwCftKV6N61xHv+G3BekVjXAR8BTqp4w0VEREqYEgmHaeZAvEGyqsiyFcDL8G7XU0ES75mzvuD1Ibxx9NGO3p75NY9qgnX09swCPok3SAtvp9qIX8E8udZxTXUdvT0L8Eb1avw7lW89nsT7eK3jEhGRhvNx/JhQ2B6J8GPIh7oS3QtLrLcYTxwVGsB7W3+6cEFXontOvO4ann982oC3jU4sEesJJWIdimM9rivRvaDEuiIiIhVRIqn5vBtvuJSSAA6pUSyTpqO3pw14M97oKWYQ39bX1SyoybMn3ugrNebBamCfqZA0azCvx5N0hY30nNXAW+MxukREZBqKe3m/jdLtkSH8WPKGIsuOreAt3lvktX0YvpWtmFXAfnEv9fxYW4C3jhJrgqlzwVFEROpEiaTms4DSDQvwRkKxq2LNZgbeMCuXNDP8trdmN3uU5QH/HEYrJ2Mzh/L/A6N4+YzahCMiIg2oNX5U0x6Zhx/DSyl1bJ/D8HhKxYT4MbPg9Rn4cWu0MZCmQttJRETqSImk5nMbz2845GuJyzS79cAzlN9WgAdqEMtkewDfb6XMwD8PzbYysR6gfAN/Fj4Y6obahCMiIg1oAJ9FddYo5Yq1R+6kfEKoBbi3RF3l2ugz8V5JhT2PNuLHrWpiFRERqZgSSc3nQvzkt1jioQ2/CpWuaUSTIJtM5WYXKTUI5QK8IXRHzYKaJNlk6gHgdkr3JJsHnKfp6CfcbcBD+HepmNnAWfF3UUREpqFMlA74TLGlevEsAB4G/lFk2dfin8Xa24a3504r8p73APdQ+vg0B/hJ4exrFcQ6P4711hLLRUREKqJEUpPJROn7gP/GGwML8IZIAliENxw+n4nS/XULcGKdB9yID1Q5G9/Wtvj5eiA5hU7yTwZW4tvWFr82C1iCN07PrE9YU1f83fk4/l1agt+6YPh3bTH+3buobgGKiEijuBj4E36syN121oofKzYAJ8RJnBEyUXop8CP84l9b3qK2eP0LM1H6+hLveRI+CUd+uyB3fLoF+GmJ9S4C/hyXKxbrx4vFKiIiMhZKJDWhTJQ+C3gf3pBYiCeV/ggckYnSP69fZBMrm0xtBj4AfAl4Cm8EJYBzgbdlk6n76xfdxMomUw8Bbwd+jF+hXILfynYq8N5sMqXbqyZBNpnqwwdRPQdv6C/Gv2tfBD4YfwdFRGQay0TpAeA44PNAP36saAHOB94e9yAqte4ngA8D/8ITQm3Ao3jy6QNl1svi7YJcwmgJfsv/l4FjMlF6U4n1NgMfwo9j+bGeF8d6X0UbLSIiUoaF0LwXJcxsaQhhj3rHISIiIpNDx/rGpP0iIiIytZU71qtHkoiIiIiIiIiIVESJJBERERERERERqYgSSSIiIiIiIiIiUhElkkREREREREREpCKt9Q5ARKanM/7wno75bZsPNwsz1g7M+O3x+1/2t4mqu6O3JwHsBmyHz353SzaZGpio+kVEZPrpSnQbcDCwO35sOS8TpVflLX83cAiwEfjfTJS+ewLecwawD7AAeBi4IxOlm3emHBERmRI0a5uI1NTp1x0xd+cFK37z8iXP7BMCASBhwR5cs+jBO5ZvddAJb7o0O576O3p79gS+A2wL5P7BrQNOySZTvxpX8CJSczrWN6bptl+6Et1vAS4CFjJ8bAnAhcC5wG+AuXmrGPAAsGsmSq+v8j2PBD4HzIpfSgAPAZ/MROk7qqlTRESkUpq1TUQawnevO9Jesfjpm1655Kl9Ng22DGwcah3cONQ6uH6wdaBj/soXvX6bR/92+nVHLK62/o7enl2B84GtgdXAmvjRBny3o7fnoAnZEBERmTa6Et37AL/Ek0gDwGD8CMCxwA14EinkPSLgxcCyKt/zCOA0PCGVO5atAnYELu5KdL+k+i0SEREZHyWSRKRm5rQOHLLzwhUvXTfYNhBheUuMdYOtA1vM2rBgy1nrPzeOt/gsfsvuuoLXN+G3Gnw5vu1NRESkUv+DH1sKb5GO8ESPMdxLqXB5e5wUqlh8O9vn8WPZ5oLFa/AeSsmx1CkiIjKRdEIlIjWz7ey1xxvBGJFEyjGiyMKL5686upq6O3p7lgB74T2RitkILAZ2raZ+ERGZfroS3S3Aa3h+EimnJf5Z7MCW85kxvu0+wEyen0TKWQ0c1JXonjnGekVERCaEEkkiUjMzW4a2CMFKDsw2iEWzWwfmVFn9fGCI4leFcyJ8wFIREZFKzMHby+MZVHTJGMsvHGV5rifU7OrCERERGR8lkkSkZlZvnnGvlblmOyMRtTy7afYTVVb/dPyzpUyZVuDRKusXEZHpZy3eM2g8beb7x1j+Ecr3cGoD1uO3uYmIiNScEkkiUjNPbpz3jSgYLRY9r4Fs8cXef61ZeHo1dWeTqfXAFZS+krsQuCObTI1rVjgREZk+MlE64ANtt5YoEsU/i/VYyh3rTh7j296GJ5Pml1g+Hzg/E6WHxliviIjIhFAiSURq5uP7X3rXTU9t99NZLUOts1oGW3OT28xIDLXMaR1ou2vFln9fPTDzx+N4i+/gPY6WMNzoT8TP1+GDcYuIiIzFJ4BngBmMbDu34bO3rYlfHzmLhD+uykTpO8byZnHy6pNx3Yvy3rMNH+uvDzhrrBshIiIyUZRIEpGaes/rrv7o7x9/4Wee3DB3+bzWgRlzWwfb1g22bfxz/44/uG/VFvuedMDFVY9DkU2mngUOBc7BE0kL8SmZLwcOySZTY729QEREprlMlH4WeAXwK/wKSFv8WAa8G9gKuI7hsYsS+AQP38lE6UOrfM/b8ePZb/EeSAvjus8EDs9E6VITS4iIiEw6C2E8YwfWl5ktDSHsUe84RKQ6vX84YlsjzBgKiYfHk0AqpqO3pw1vfK/LJlObJrJuEakdHesb03TdL12J7jZgR2BFJkqvKFjWCuwCrMlE6Qcn8D1n4YN+r85E6cGJqldERKSccsd6JZJERESkYelY35i0X0RERKa2csd63domIiIiIiIiIiIVUSJJREREREREREQqokSSiIiIiIiIiIhUpHX0IiIiIiIizSNv4OtZwAPxzGuVrvsiYGvg2XjdkLfsXcBBwJPAqZkoPZC37N3ACfiMbR/JROmH8pbtAXwTv4j7xUyU/r+8ZTOBd+CzjN6QidLZvGUG/BuwAHgkE6UfH8N2bAu8AFgD3JuJ0lGl64qIiJSjwbZFRESkYelY35gadb/EiZcjgZOBeUCEXzj9LfCVTJReXmbdVwCnAS8HBuP17ge+BOwMnAfMKFjtOjxBdC3P7+m/Cngx8Bgws2DZZqAT+CxwLMMXdw24C3gn0AF8BWiP42kDbga+kJ+kKrId2wNfB14PDAAtwNPAaZko/dtS64mIiOTTrG0iIiLSlHSsb0yNul+6Et0fAz4FrAc2xS8ngIVAFnhnJkqvLbLeLsDP8YTO6rxF8/GeQttPUsiD8SO/t1AbsAHvEbUR3xbwJNPCOL6DM1H6scLKuhLd2wBXA0vwRFauoT8bT2alMlH6lxO/GSIiMtVo1jYRERERmdK6Et1bAJ/EEy2b8hZFwAq8h8+7S6z+RTyBs7rg9TV4j6DJkmBkEgm8F9F8PGm0Pu/1AKwEFuG30BXzUWDLuFz+1eIN8eOrXYnuwl5VIiIiY6JEkoiIiIhMBQfibduhEss34reRjdCV6N4a2JPnJ5FyWiYkuuKKtcVzry0ssc4q4J2FCaGuRHcCeA+lt2MTPmbUvlXEKSIi8hwlkkRERERkKtiK8kmfzXGZQlvgt5cVG++hbQLiGiuLf5Zqpw/ht+DNLXh9VvwYLFN3At9eERGRqimRJCIiIiJTweOU7o0EPkZQsVnPnsITM1Zk2UCR1yZbLqFValta8aRY4VhPG4B1lE9+RUD/uKITEZFpT4kkEREREZkKfsfw7GbFzATOKXwxE6WfBf5M6VvJyiWnxqtwfKT810rdorYAuDQTpUckuTJROgAX4uMrFTMbH/Pp/6qIU0RE5DlKJImIiIhI08tE6dXAqcA8YE7eolZgMXAHcEWJ1U/De/gsYrhnksXPH6b4bW+VKLdewJNG+bfjGTADn7FtOSOTQgl8O54AflCizrOAR+Jy+fXOj+v9TCZKl7v1TUREZFRKJImIiIjIlJCJ0hcDx+PJloX4OEJtwLnAUZkovbHEelngXcD1eI+fufHPG4GDgP3x28byRXgPoE5GzhKX8wjeC2hVkWVr4/i+ht+S1oYnvBLADcC/AUcBd8Xl5sUxXQ28MxOlny6xHSvi7bgcT6bNjde/DzgmE6X/UGw9ERGRsbAQqr3AUn9mtjSEsEe94xAREZHJoWN9Y2r0/dKV6DZgR3zw6UczUXr9GNZdgg/KvbwwYdOV6H4Vnlj6VyZKX1KwbBfgJDxx9MVMlN6Ut2w+3uupBfh6Jko/URDr3nji6u/xrXb59W6L9yjqj3tdVbodC4B2YG0mShcbG0pERKSkcsd6JZJERESkYelY35i0X0RERKa2csd63domIiIiIiIiIiIVUSJJREREREREREQqokSSiIiIiIiIiIhUpLXeAYhUoqO3Zy6wDbA2m0w9Ve94REREpHl1Jbq3wgewfioTpddOUJ1zgd3xWdj+nonSIW9ZC7AnfhH3lkyUHpiI9xQREakHDbYtDa2jt2cJ8GngnfFLrcCtwH9lk6ml9YpLRERqQ8f6xtSs+6Ur0b0b8P+A1wCDgAFXA9/OROmqLlTFCaSLgAPxRJEB64DTga8B3wP+E5gRLxsALgU+nInSQ+PYHBERkUlT98G2zWxHM7vezO42s7vM7MQiZczMes1smZndbma71yI2aVwdvT2LgSuA9+BX99YCK4FdgYs6env2rV90IiIi0ky6Et17A5fgvYZW4e2K9cC7gMu7Et1bVlHnTOB24G3xS4N4omg28AXgEeDDQFvesgSeWLqxK9Ft49gkERGRuqjVGEmDQCqEsAuwD/BxM9uloMxBwM7x4zjghzWKTRrXR4AdgeVA/hW71fHzno7eHo3zJSIiImV1JboTwH8DAU8i5brkD+HtjO2Aj1dR9WfxtsoAEOW9PhQ/to2X5bdjImAz8GrgyCreU0REpK5qchIeQngihPCP+Pc1wD3A9gXFDgHOD+4mYJGZbVuL+KTxxAmio4E1JYqsBxbhiUkRERGRcnbDx1pcV2L5auDwrkT3jDHWe1yZZW0FP4s5eYzvJyIiUnc1781hZi/Er8DcXLBoe7z7b86jPD/ZJNPHnPhRbjBKA9prE46IiIg0sdHaC4P4GEbzx1jvQkb2NspnBT8LRXiPJRERkaZS00SSmc0DfgGcFEJYXWUdx5nZUjNbCoz5XnZpGhvwJFJLmTIB744uIiIiUs6KUZa34Imdsc7gto7SiaJQ8LNQArVjRESkCdUskWRmbXgS6aIQwuVFijyG32Oes0P82gghhLNCCHvEo4c/MynBSt1lk6kh/PuysESRmXiy6caaBSUiIiLN6hb89rVZJZYvBK7OROlNY6z3Ykpf9Bos+FnMD8b4fiIiInVXq1nbDDgbuCeE8D8lil0FHBPP3rYPsCqE8EQt4pOG9X38CuIiRl7tmx0/vpxNpjbXIS4RERFpIpkoPQh8CU8kzS5YvBBPMvVWUfVX8bZK4dhKifixFmhlZDvG4vIPA2dV8Z4iIiJ1VaseSa/Hpzl9k5ndGj/eZmYfNbOPxmWuAbLAMuDHwPE1ik0aVDaZehyfkvdmYAEwFx+7YBWQzCZTv6xjeCIiItJEMlH6t8DH8NvJ5uPtioXAP4HDMlH64SrqXIGP/XkHPqh2a/wAuBSfDe4PeK+l3LIW4C/AqzNRutT4SiIiIg3LQih123bjM7Ol8S1uMsV19PbsiN/6uBa4M5tMRaOsIiIiU4CO9Y2pmfdLV6I7AeyCX6R6tJoEUol6XwK8Cb/1/vJMlF6Xt2wr4GC8N9JvM1H6ecM3iIiINJJyx3olkkRERKRh6VjfmLRfREREprZyx/qaztomIiIiIiIiIiLNS4kkERERERERERGpiBJJIiIiIiIiIiJSESWSRERERERERESkIkokiYiIiIiIiIhIRZRIEhERERERERGRiiiRJCIiIjKFmdlbzew+M1tmZp8rsnymmV0aL7/ZzF5YhzBFRESkSSiRJCIiIjJFmVkL8H3gIGAX4Egz26Wg2AeBFSGElwD/C3yrtlGKiIhIM1EiSURERGTq2gtYFkLIhhA2A5cAhxSUOQQ4L/7958ABZmY1jFFERESaiBJJIiIiIlPX9sAjec8fjV8rWiaEMAisArYorMjMjjOzpWa2FNhycsIVERGRRqdEkoiIiIiMKoRwVghhjxDCHsAz9Y5HRERE6kOJJBEREZGp6zFgx7znO8SvFS1jZq3AQuDZmkQnIiIiTUeJJBEREZGp6xZgZzN7kZnNAI4ArioocxVwbPz7u4E/hBBCDWMUERGRJtJa7wBEREREZHKEEAbN7ATgd0AL8NMQwl1m9lVgaQjhKuBs4AIzWwYsx5NNIiIiIkUpkSQiIiIyhYUQrgGuKXjtlLzfNwLdtY5LREREmpNubRMRERERERERkYookSQiIiIiIiIiIhVRIklERERERERERCqiRJKIiIiIiIiIiFREiSQREREREREREamIEkkiIiIiIiIiIlIRJZJERERERERERKQiSiSJiIiIiIiIiEhFlEgSEREREREREZGKKJEkIiIiIiIiIiIVUSJJREREREREREQqokSSiIiIiIiIiIhURIkkERERERERERGpiBJJIiIiIiIiIiJSESWSRERERERERESkIhZCqHcMVTOzp4GHSizeEnimhuHUk7Z16pku2wna1qlqumzrdNlOqN+27hRC2KoO7ytljNIGayTT6W+0Gvp8StNnU54+n/L0+ZSmz6a8Rvp8SrbBmjqRVI6ZLQ0h7FHvOGpB2zr1TJftBG3rVDVdtnW6bCdMr22VqUPf2/L0+ZSmz6Y8fT7l6fMpTZ9Nec3y+ejWNhERERERERERqYgSSSIiIiIiIiIiUpGpnEg6q94B1JC2deqZLtsJ2taparps63TZTphe2ypTh7635enzKU2fTXn6fMrT51OaPpvymuLzmbJjJImIiIiIiIiIyMSayj2SRERERERERERkAimRJCIiIiIiIiIiFVEiSUREREREREREKtL0iSQz29nMNprZhSWWm5l9y8yejR/fMjOrdZwToYJt/YqZDZjZ2rxHR63jHA8z+2O8jbn47ytRrun36xi2ten3K4CZHWFm95jZOjN7wMzeUKLcJ82s38xWm9lPzWxmrWMdj0q208zeZ2ZDBft0v9pHW52CuNfG2/K9MuWbdp+OZVunwH59oZldY2Yr4v11hpm1lih7lJk9FH/PrzSzJbWOV6QcMzvBzJaa2SYzO7fe8TQSM5tpZmfHf8NrzOxWMzuo3nE1EjO70MyeiI9bfWb2oXrH1GhGOy+Zript309nlZ4TTCdjbVs3gqZPJAHfB24ps/w44FDgVcCuwMHARyY/rEkx2rYCXBpCmJf3yNYisAl2Ql78Ly1RZqrs10q2FZp8v5pZF/At4P3AfODfgedtg5kdCHwOOADYCegATq1dpONT6XbG/q9gn/6xRmGOW37cQDuwAUgXK9vs+3Qs2xpr2v0K/AB4CtgW2A14I3B8YSEzeznwI+A/gW2A9fG6Io3kceA04Kf1DqQBtQKP4H/jC4EvApeZ2QvrGVSD+SbwwhDCAuAdwGlm9po6x9RoKjkvma4qbd9PO2NsK08bVbQ3666pE0lmdgSwEriuTLFjgZ4QwqMhhMeAHuB9kx/dxKpwW6eTKbFfp5FTga+GEG4KIUQhhMfi/VboWODsEMJdIYQVwNdorv1a6XZOJYfhyYc/l1je7Ps032jb2uxeBFwWQtgYQugHfgu8vEi5o4GrQwg3hBDWAl8C3mVm82sYq0hZIYTLQwhXAs/WO5ZGE0JYF0L4SgjhX/Gx6lfAg4ASJbH4mLUp9zR+vLiOITUUnZfIOEzHtvJYNUV7s2kTSWa2APgqcPIoRV8O3Jb3/DaKN4wb1hi2FeBgM1tuZneZ2ccmObTJ8k0ze8bM/lrmtpCm36+xSrYVmni/mlkLsAewlZktM7NH41tmZhcpXmy/bmNmW9Qi1vEY43YCvDre931m9qVStxA1gWOB80MIocTypt2nRYy2rdDc+/W7wBFmNsfMtgcOwpNJhUbs0xDCA8BmoLMWQYrIxDKzbfC/37vqHUsjMbMfmNl64F7gCeCaOofUEMZ4XjJdVdq+n1aqaCtPV5W0N+uuaRNJ+FXts0MIj45Sbh6wKu/5KmCeWVONp1Pptl4GvAzYCvgwcIqZHTnZwU2wz+K3vmwPnAVcbWbFrgBNhf1a6bY2+37dBmgD3g28Ab9l5tV4V/pCxfYreNfXRjeW7bwBeAWwNX7V4Ujg0zWJcgKZ2U74rRHnlSnWzPv0ORVua7Pv1xvwJNFq4FFgKXBlkXKF+5T4eVPtUxEBM2sDLgLOCyHcW+94GkkI4Xj8/9obgMuBTeXXmDYqPS+Zript309HY2krT0sVtjcbQlMmksxsN+DNwP9WUHwtsCDv+QJgbaNn+HLGsq0hhLtDCI+HEIZCCDcCp+N/qE0jhHBzCGFNCGFTCOE84K/A24oUber9CpVv6xTYrxvin98LITwRQngG+B8q368AayYxvolS8XaGELIhhAfjLr134Ff2mmmf5vwn8JcQwoNlyjTzPs036rY28341swTe++hyYC6wJbAYH8egUOE+JX7ebPtUZFqL/+4vwHsUnlDncBpS3Pb6C7AD0FQ9wifDGM/BpqUxnMtMR2M5J5iuKmlbN4SmTCQB+wEvBB42s37gU8BhZvaPImXvwgdkznkVzdV1dz8q39ZCAWimHjrFlNqGZt+vxVS6v5pqv8bj4jyKx/3cyyWKF9uvT4YQGn6MizFu5/NWp4n2aZ5jGP2KSdPu0wKVbGuhZtqvS4AXAGfEjd9ngXMo3rgbsU/NZ5GcCfTVIlARGb+4B/fZeA+Bw0IIA3UOqdG1ojGSYHznJdNVM7UFJtU428rTRTXtzbpo1kTSWfg/893ix5nAr4EDi5Q9HzjZzLY3s+2AFHBuTaKcGBVvq5kdYmaLze0FJIFf1i7U8TGzRWZ2oJnNMrNWMzsaH8m/2BgdTb1fx7Ktzb5fY+cAnzCzrc1sMfBJ4FdFyp0PfNDMdjGzRXhX13NrFuX4VbSdZnZQPCYFZvZv+GDFTbVPzex1eLft0WaUaPZ9WvG2NvN+ja8KPgh8LP6ftAi/R//2IsUvwsdte4OZzcV7Xl0eQlCPJGkY8fd4FtACtOSOt/WOq4H8EL9t/uAQwobRCk8n8TH8CDObZ2Yt5rOPHokGloaxnYNNO2M8l5muKj0nmHbG0LZuCE2ZSAohrA8h9OceeDf7jSGEp+OG7dq84j8CrgbuAO7E/9n9qPZRV2eM23oEsAy/veB84Ftxl8pm0YZP1fs08AzwCeDQEELfVNuvjG1bm32/gt9PfwveY+Ee4J/A183sBWa21sxeABBC+C3wbeB64GHgIeDL9Qm5KhVtJ3AAcLuZrcMH77wc+EY9Ah6HYymSPJiC+xQq3Faaf7++C3gr/n9pGTCAN/CIt/MN4LMZAR/FE0pP4WOIHF+PgEXK+CJ+G8XngPfGv2scDp4bg+MjeCKgP/77Xhuf9Ir3kPgY3nNiBfAd4KQQwlV1jaoBlDsvqXdsDaJk+76uUTWWom3lukbUOIq2NxuVNdGQMiIiIiIiIiIiUkdN2SNJRERERERERERqT4kkERERERERERGpiBJJIiIiIiIiIiJSESWSRERERERERESkIkokiYiIiIiIiIhIRZRIEhERERERERGRiiiRJCINx8z+ZWZvLrHsXDM7rdYxxe9dMi4RERGRZmVmXzGzC0ss28/MHq11TPF7l4xLROpHiSQRKcnM9jWzG81slZktN7O/mtme9Y6rFuqZsBIRERGB5y5ibTCztWb2ZNw+mVfBen80sw/VIsaJUs+ElYiMjRJJIlKUmS0AfgV8D1gCbA+cCmyqZ1wiIiIi08zBIYR5wO7AHsAX6xyPiExzSiSJSCmdACGEi0MIQyGEDSGEa0MIt+cKmNkHzOweM1thZr8zs53ylgUzS5pZ1syeMbP/NrNEvOzFZvYHM3s2XnaRmS2qJkgz+w8zu9XMVsa9p3bNW/YvM/uUmd0e96q61Mxm5S3/jJk9YWaPm9mH4phfYmbHAUcDn4mvAF6d95a7lapPREREZLKEEB4DfgO8AsDM9onbPivN7DYz2y9+/evAG4Az4nbMGfHrp5vZI2a22sz+bmZvqCYOM9vOzH5hZk+b2YNmlsxb9hUzu8zMzjezNWZ2l5ntkbd8dzP7Z7wsHbelTjOzufG2bRfHvNbMtotXm1GqPhGpDyWSRKSUPmDIzM4zs4PMbHH+QjM7BPg88C5gK+DPwMUFdbwTv3K2O3AI8IHc6sA3ge2AlwE7Al8Za4Bm9mrgp8BHgC2AHwFXmdnMvGKHA28FXgTsCrwvXvetwMnAm4GXAPvlVgghnAVcBHw7hDAvhHDwaPWJiIiITCYz2xF4G/BPM9se+DVwGt5z/FPAL8xsqxDCF/B22QlxO+aEuIpbgN3i8j8D0mO9IBZfFLwauA3vrX4AcJKZHZhX7B3AJcAi4Cogl8iaAVwBnBvHcDHeViSEsA44CHg8jnleCOHxcvWJSP0okSQiRYUQVgP7AgH4MfC0mV1lZtvERT4KfDOEcE8IYRD4Bt5bZ6e8ar4VQlgeQngY+C5wZFz3shBCJoSwKYTwNPA/wBurCPM44EchhJvjXlPn4bfe7ZNXpjeE8HgIYTne8Nktfv1w4JwQwl0hhPVUnsgqVZ+IiIjIZLjSzFYCfwH+hLe53gtcE0K4JoQQhRAywFI80VRUCOHCEMKzIYTBEEIPMBN46Rhj2RPYKoTw1RDC5hBCFm8nHpFX5i9xXEPABcCr4tf3AVrxttRACOFy4G8VvGep+kSkTpRIEpGS4iTR+0IIO+DdqLfDE0IAOwGnx92pVwLL8Z5G2+dV8Uje7w/F62Nm25jZJWb2mJmtBi4EtqwixJ2AVC6GOI4dc+8T68/7fT2QG6Byu4L48n8vp1R9IiIiIpPh0BDCohDCTiGE40MIG/A2UHdBG2hfYNtSlcS3+98T356/EljI2NtfO+G3n+W/7+eBbfLKFLaVZplZK972eiyEEPKWV9L+KlWfiNSJ/gBFpCIhhHvN7Fz8NjLwA//XQwgXlVltR+Cu+PcXALkuyt/Aezq9MoSw3MwOpbpuyrkYvl7Fuk8AOxTEmi8gIiIi0pgeAS4IIXy4xPIR7Zh4PKTP4Lei3RVCiMxsBX4RcKzv+2AIYeexBoy3vbY3M8tLJu0IPFAsZhFpXOqRJCJFmdm/mVnKzHaIn++I35p2U1zkTOD/mdnL4+ULzay7oJpPm9nieN0TgUvj1+cDa4FV8T3+n64yzB8DHzWzvc3NNbO3m9n8Cta9DHi/mb3MzOYAXypY/iTQUWVcIiIiIpPpQuBgMzvQzFrMbJaZ7Zdrt/H8dsx8YBB4Gmg1s1OABVW879+ANWb2WTObHb/3K8xszwrW/T9gCDjBzFrj8Tb3ylv+JLCFmS2sIi4RqSElkkSklDXA3sDNZrYOTyDdCaQAQghXAN8CLolvT7sTHyQx3y+BvwO34gNCnh2/fio+APeq+PXLqwkwhLAU+DDem2kFsIwKB78OIfwG6AWuj9fLJcg2xT/PBnaJu21fWU18IiIiIpMhhPAIPpHJ5/Hk0CP4hbnc+d3pwLvNZ9btBX4H/BafTOUhYCOV39af/75DwH/gY0Q+CDwD/AS/TW60dTfjk7R8EFiJj/P0K+K2VwjhXnwA7mzc/tquRFUiUmc28hZVEZGJYWYB2DmEsKzesVTCzF6GJ8NmxoOHi4iIiMgkMrObgTNDCOfUOxYRqZx6JInItGVm7zSzmWa2GO9ddbWSSCIiIiKTw8zeaGbt8a1txwK74j2lRKSJKJEkItPZR4Cn8EEeh4CP1TccERERkSntpcBt+K1tKeDdIYQn6hqRiIyZbm0TEREREREREZGKqEeSiIiIiIiIiIhURIkkERERERERERGpiBJJIiIiIiIiIiJSESWSRERERERERESkIkokiYiIiIiIiIhIRf4/DyeuXT1aeTkAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
@@ -216,13 +229,17 @@
"cell_type": "code",
"execution_count": 7,
"id": "a2715c13",
- "metadata": {},
+ "metadata": {
+ "tags": [
+ "hide-input"
+ ]
+ },
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAL/CAYAAAD7rZGFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRiElEQVR4nOzdd5xkVZn4/8/TPYmBYchZREkCujKgCEhwHB1AXWVRFGFZwy6mNZGEQSSJzCICxsVd9IcJE4qoi8B8HUcESUoUBxVQRIEh58ldz++Pc1uaplP1dFV1dX/er9d9dde9p+o+fTvVuc85z4nMRJIkSZIkSZIkSUPT0eoAJEmSJEmSJEmS2onJFUmSJEmSJEmSpDqYXJEkSZIkSZIkSaqDyRVJkiRJkiRJkqQ6mFyRJEmSJEmSJEmqg8kVSZIkSZIkSZKkOphckSRJkiRJkiRJqoPJFUmSJEmSJEmSpDqYXJEkSZIkSZIkSaqDyRVJkiQJiIh3RkRGxDtbHUtPEXFSFderWh1LM0TEFtXX+7VWxyJJkiRJ/TG5IkmSpDEpIjoj4rCIuDwiHomIFRHxQETcEhFfiYg3tjpGqdFGa9JQkiRJancTWh2AJEmSNNIiohP4P2Bf4DHgYuDvwCRgB+Bg4EXAT1oUoiRJkiSpjZlckSRJ0lj0dkpi5WZg78x8vOfBiJgKvKIVgUmSJEmS2p9lwSRJkjQW7V59/FrvxApAZi7OzAX9PTkiZkbELyPiyYh4IiIujojt+mi3TUT8V0T8NiIejIhlEfHXiPjfiNisj/avqko0nRQRu0XEzyPi8eo8l0XEy+r5IiPiRRHxtYj4W0Qsj4j7I+LbEbFtr3bfqc67dz+v8+bq+BcHOd+xVbuP9HN8k4hYGRG/7bXvhIj4dUQsquK8t4pz+zq+1l9GRPZzrN/SVxGxWUR8MSL+XH1/Ho6In0TEy/toOy0iPhERt1bf9ycj4s6I+F5E7DzUWIcjIt4YEfMj4r4qznurknYf6KPtOhExNyJui4gl1c/Q/IiY3avdL4HzqofnVdeoe9uiR7vp1ev9MSKWRsSj1c/ja/o4d0TEOyLiqupnfmn183dZRLytV9uZ1e/Cwup6Lqmu7YkRMWUkrpskSZLUKiZXJEmSNBY9XH3cZhjPfQMwD3gC+DJwBfA64PKIWK9X2wOA9wF/A74DfAFYCPwH8JuI2LSfc7wC+CWwDPgScAkwC7giIvYcSpARsS9wA3AI8Bvgs8D8KqbrImKnHs3PqT6+p5+Xe2/18cuDnPabQA34t36O/yvQCXytx769gGMp5dl+CJwNXAO8pYrzpYOcc9iqa3AT8AHgj5Tvz0+rmK6MiNf1aBvApcAplO/9VyjX7dqq/W4NjPM9wI+B7av4zgR+BqwGvKtX2+cD11Ou6YOU79n3gO2ASyPisB7Nv1a9LtXHk3tsj1WvtxZwVfV6j1N+jn5I+XrnRcR7ebZPVa+7EfB94Czg58CmwIG92h4DzKZ8D/6Hck2XAycBl0Qp3ydJkiS1pcjsc/CXJEmS1LYiYgblpvgE4HzgR8D1mfnXAZ7zTsoo/y5gn8yc3+PYXMrN52My89M99m8KPJSZy3q91mxKwuR/M/P9Pfa/CuieMfOhzPxij2NvAi4C7gC2zcxatf8k4ERgZmb+stq3NvDnKta9MnNhj9d5MSV58afM3KnH/luBrYBNM/PhHvtfWJ3z6sx8ZX/Xp0f7yyg3zF+Smbf2Ovb76hybdJ8jIjYAlmTmk73avhT4NXBFZu7XY/8WwF+Ar2fmO3vs/yWlxFv0EdM7Kd+7d2Xm16p9E4A/AJtRvp+X92i/CSUh1QFskZnLIuIlwC3ARZn5L71evwOYnpmPDnZ9hiMirgdeDDwvMx/odWy9zHyox+NfUpI9B2fmd3vsX4uSsNu2+prur/a/k17Xptfr/w8l6fa/wPuy6iBGxNbAb4EplJ/Hu6r9DwNLgG0yc/Egsb4Q+Ev3a/bY/0ngeOCgzPzeUK6RJEmSNNo4c0WSJEljTmbeSJlFcX/18YfAXVVJqB9FxD8P8PTv9kysVP63+rhLr/Pc0zuxUu2fB/we2Kefc9wB/Hev5/wYuJySnBhs9sq/AWsBJ/ZMrFSvcytwLjCjV9mtc4DJwDt7vdZhQFBmFgzF16uP7+i5M0pJs+2Bi3smbzLzgd6JlWr/zcAvgJkRMXGI567H64EtgS/0TKxU574X+DRl9sWsXs9b0kestUYlVnpYCazo49w9kxUvBfYGftgzsVK1e4yShJsCvHkoJ4yISZTfj6eAOT2TIJl5O/B5YBLPnam0gpLY6zfW6vGfeydWKmdXH/v7/ZAkSZJGPRe0lyRJ0piUmd+PiB8BM4E9gBnVx/2B/SPiG8A7+7j5+1ue62/Vx7V77qxKSR1CSVi8tDres9TR8n7Cu6J7Zkovv6TcPJ9BSbT0p7tE1UurmS29dZdD245SpgzgG8B/UWYpnFnFP7GK/VFKiaeh+BGlfNQhEXFsZnbfZO9Otnyt9xMi4vWU8mkvA9bjuf2Q9YD7hnj+oeq+Rs/v5xptXX3cjlKCayGlfNXbq9JbPwauBH6bmf19H58lIvYHduy1+6bMvGiQp55P+Z4sjIjvUr73v87MB3u16/6apvfzNa1ffXzO+kD92BaYWp3rkT6O/4Iyw2RGr1g/VMX6/SrWq/ta2ygiVgc+AvwL5WdyGiWR162/snmSJEnSqGdyRZIkSWNWZq6grJ8yD6Ba4+HNwP9HGY3/I0oprp4e6+N1VpY8Cr3XiDgL+CglMXAZcA/PzHx4J/D8fkK7v5/9i6qP0/s53m3d6uNhA7aCNbo/ycwnI+JbwPsiYmZmLgDeSJm98dnMXDrIa3W/zpLqpvphlPJgl1QzIN5OWQPkkp7tI+IjlHU8HgX+H3A3sBhISqLrpZQZNSOt+xr1XgektzUAMrMrIl4NnEBZD+b06viTEfF1ysyOpwZ5rf3pNaOHMtPnooGelJlnRcRDlLVhPkz5mcqIuBw4OjO7E37dX9Nrq23Ar2kIun/O+ktsde9fq8e+wykl6d5FKZV3LLAyIn4GHJmZd8A/Ene/oMz2upWyLsyDPDM750Qa832XJEmSmsLkiiRJksaNapbF96v1NY4HXs0gN777U60l8mHKjePd+1hT5O0DPH3DfvZvVH18ziyAXrqPvzQzbxks1h7OocwgeS9l7Zfuxcr/t99n9O3rlOTKOyjJlNdTbvx/rkpoAf9Y9+QkStJop8x81k38iKhnkfjuNWgmZObKXsfW6qN99zV6U2b+ZCgnqEp/HQ4cHhFbUWYRvRf4YHWOQwd5/jt5btm1IcnMbwDfqNZO2Z0y2+PdwGUR8aJqFkv31/SRzPz8cM7TS/frbdTP8Y17tev+Hfos8Nnqd2AP4CBKEmuHiNihKpX3Jkpi5WuZ+a6eLxoRG1OSK5IkSVLbcs0VSZIkjUfdiZDnLI5ehxdS3k/P6yOxsll1vD97VIuk9/aq6uONg5z7murjYGuzPEuViPk18C8R8QrgNcCvMvO2Ol/n18DtwJsiYjrPzNb4eq+m61GSElf1kVhZA9ipjtN2r3nyvD6OvayPfcO6Rt0y847M/ColwfIUJVnQcJn5WGb+LDMPo5RYW4eygD0M72vqLtvWe9YVwB8ps4heWiV1eptZfbyhn1gfyMwLM/OtlFkqWwIvrg5vVX28sI+n7j2EuCVJkqRRzeSKJEmSxpyIeHtEvLavBEZEbMQz5bR+tQqnuav6uEdVbqz79degLCg/0CzxrSkloHrG9SbKTec7gCsGOfd5lPJlJ0bELr0PRkRHRLyqn+eeQ1mk/IeU5NKXBzlXf75OWTz9A8DrgFsys3dS6AHKzfudq+vSHd9E4HOU5MtQXVd9fFYptIiYRSlJ1tuPgTuB/4yI1/X1ghGxW0RMrT5/QUT0lRBbm1K+6jkL3Y+UiJhZrd/T2wbVx8UAVXmwK4ADIuLd/bzWS6oZJd0erj5u3rtttZbM+ZS1UD7Z63W2pMzMWgF8s9o3OSJe2cc5J1KSQP+IlWd+P17Vq+0LeabkmiRJktS2LAsmSZKksegVlIW0F0XElcBfqv0voJSwWo1y8/0Hwz1BZi6qFh8/CLgpIuZR1rB4LbCUsjj6jv08/VLgzIjYD7iZMsr/gOp57+5nsfue5344It5CWTPmmoiYD/yeso7J8ygLn69LSX70dgFwNmUx8Yfoe2bBUHwTOAU4GZjIc2etkJm1iPg8ZV2O30XEjymJnZmUm/ELeGZ2xGDOA44G5kTESykL0G8D7Ee5Dm/ude4VEXEAZS2ciyPiKsr3ZDHlGr2cMrto42rfS4ELI+I3wG3AvZQF4t9UfX2NTAj8CHgqIq6hJCWCMjvl5cD1wM97tD2YMkvkqxHxYeBaSqJtM+CfKDNHdqMktgCupnx9H42IdXlmXZ8vVIvQH1ud64MR8XLK92Q94K2UpMsHM7P792c14MqIuKOK66+Un7HXAtsBP+kxC+qnlEThEVUZvhspCZ43ABfTR7JHkiRJaifOXJEkSdJYdCZlnYxrKDec30dZJHwP4JeUtTMOyMxcxfP8O3Aa5abzfwL7AP9HWTNjoHVTrqWM6J9cxbkf5Yb5Xpk52KwVADJzPuVr+29gC8rX+O+Um+u/oCR9+npe92wFKOthLBvK+fp4nbspN+InAit7vGZvnwCOpMz8eC8lifRbynocd9dxvgcoM3suoZTJej/PJLP+r5/n3EJJmpxetX1X9bydKTf7D6UkmKhi+q/qa9m3ink/ShLhdZl51lBjHYZjgd9QyqR9oIpzInAMMLPnOjaZ+fcq/o9TSn4dQplhsjvler4X+F2P9o9SEk8LKevBfLLa1q6OP0JJxnyakpA7grJ+ynXAvpn53z3ifLqK6Y7qfB+hJHueoFzXA3uc92nKmkbfBnaoYvyn6tz/OtwLJUmSJI0Wser9SUmSJElDUZXqWgCcnJkntTCOX1ISFNtm5u2tikOSJEmS2pUzVyRJkqRxpFqjZW/gMhMrkiRJkjQ8rrkiSZIkjQMR8X7KOivvAmrAia2NSJIkSZLal8kVSZIkaXw4hrLo+Z+BQzPzuhbHI0mSJEltyzVXJEmSJEmSJEmS6uCaK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdTC5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXUwuSJJkiRJkiRJklQHkyuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdZjQ6gBaLSIC2AR4stWxSJIkrYJpwL2Zma0OJCKmAJNadPrlmbm0ReeWxiz7TZIkaQywz1TYZxoh4z65Qukg/L3VQUiSJI2AzYB7WhlARExZb52OJx56pDaxRSEsiogX2FmQRpz9JkmSNBbYZ7LPNGJMrjwz8mozHIUlSZLa0zTKTc/R8F5m0kOP1Cbefs0Wt6w1vaOrmSd+7PFa59a73vVPlBFgdhSkkWW/SZIktTP7TNhnGmkmV57xZGY+0eogJEmS6lWq9Ywu06fTtdZaUWvmOVs+t18aH+w3SZKktmOfqbDPNLJc0F6SJEmSJEmSJKkOJlckSZIkSZIkSZLqYFkwSZIkjbiurNGVzZ1635VNnVEvSZIkScNmn6n9OXNFkiRJkiRJkiSpDs5ckSRJ0oirkdSavFxis88nSZIkScNln6n9OXNFkiRJkiRJkiSpDs5ckSRJ0oirUaNGc+sH17B+sCRJkqT2YJ+p/TlzRZIkSZIkSZIkqQ4mVyRJkiRJkiRJkupgWTBJkiSNuK6ErmzuYoldrs0oSZIkqU3YZ2p/zlyRJEmSJEmSJEmqgzNXJEmSNOJqJDWaOyyq2eeTJEmSpOGyz9T+nLkiSZIkSZIkSZJUB5MrkiRJkiRJkiRJdbAsmCRJkkZcjaTLKe6SJEmS1Cf7TO3PmSuSJEmSJEmSJEl1cOaKJEmSRpyLM0qSJElS/+wztT9nrkiSJEmSJEmSJNXBmSuSJEkacV2ZdGVzR0U1+3ySJEmSNFz2mdrfqJ25EhHHRkRGxGcHaPPOqk3PbWkTw5QkSVIbi4j/jIi7ImJpRFwbEbsM0v7AiPhD1f53EfG6HscmRsTp1f6nI+LeiPhGRGzS6zXu6uM97LGN+holSZIkaVXYb+rbqEyuRMTLgfcCtwyh+RPAxj225zcwNEmSJI0REfE24CzgZGAn4GbgsojYoJ/2uwPfAb4KzAAuAi6KiBdXTaZWr/PJ6uMBwLbAT/p4uRN49nvYL4zIFyVJkiRJI8h+U/9GXVmwiFgDOB84DDh+CE/JzFzU2KgkSZJUj1q1NfucdToCODczzwOIiPcBrwfeDfxXH+0/AlyamWdUjz8REa8FPgi8LzMfB17b8wkR8UHguojYPDPv7nHoSd/DSpIkSeNXm/SZwH5Tv0bjzJUvARdn5s+H2H6NiPhrRPwtIn4cETs0MjhJkiSNetMiYs0e2+TeDSJiErAz8I/3nJlZqx7v1s/r7tazfeWyAdoDTAcSeKzX/mMj4uGIuDEijo6IUTfoSZIkSdKYNWifCew3DWZUBRMRB1GmAr18iE/5IyVDdgvlG3AUcFVE7JCZf+/nHJOBnj8s04YfsSRJkvrSRdJFkxdnfOZ8vd8Hngyc1GvfekAncH+v/fcDL+rnFBv1036jvhpHxBTgdOA7mflEj0OfB24AHgF2B+ZSprgf0c95JUmSJI0xbdBnAvtNAxo1yZWIeB7wOeC1mTmkRekz82rg6h6vcRVwG2W9lk/087Q5wImrFq0kSZJGsc2AJ3s8XtbsACJiIvB9IID39zyWmWf1eHhLRCwH/ici5mRm02OVJEmSNO60vM8E7d9vGk1lwXYGNgBuiIiVEbES2Bv4cPW4c7AXyMwVwI3AVgM0m0uZ5dK9bbbKkUuSJGk0eTIzn+ix9fXG+yGgC9iw1/4Ngf5q+i4aSvseHYTnUwYOPcHArqUMetpikHaSJEmSNBKG0mcC+00DGk3JlfnAS4Ade2y/pSxuv2Nmdg32AlUC5iXAff21ycxlPX9weHaGTpIkSSOgK1uzDVVmLgeuB2Z174uIjurx1f087eqe7Suv5dkzqbs7CFsDr8nMh4cQzo6UtSUfGGL4kiRJktrcaO8zgf2mwYyasmCZ+SRwa899EfE08HBm3lo9/gZwT2bOqR6fAFwD3AGsBRxNyXR9pXmRS5IkqU2dBXw9In4LXAd8FFgdOA+e+96TUsL28og4ErgYOAh4GfCeqv1E4AeUNQTfAHRGRHdd4Ucyc3lE7Aa8AlhAGeSzG3A28K3MfLSxX64kSZIk1c1+Uz9GTXJliDanZKe6rQ2cS1kM51FKFm33zFzYgtgkSZJUSZ79pq1Z56yrfeb3ImJ94BTK+8mbgH0zs3vxxWe998zMqyLiYOBU4DTgdmD/7oFAwKbAG6vPb+p1upnALym1jA+iLBY5GfgLpZNwFpIkSZLGjXboM4H9poFE5nAu6dgREWsCjwPTh1DXTZIkadQZTe9numO54Xcb3Dh9rY6m9hUef6zWsdNLHpjBKLgO0lgzmv7OSJIk1Ws0vZexzzR2tNvMFUmSJLWBLoIuounnlCRJkqR2YJ+p/Y2mBe0lSZIkSZIkSZJGPZMrkiRJkiRJkiRJdbAsmCRJkkZcLcvW7HNKkiRJUjuwz9T+nLkiSZIkSZIkSZJUB2euSJIkacS5OKMkSZIk9c8+U/tz5ookSZIkSZIkSVIdTK5IkiRJkiRJkiTVwbJgkiRJGnFOcZckSZKk/tlnan/OXJEkSZIkSZIkSaqDM1ckSZI04moZ1LK5o6KafT5JkiRJGi77TO3P5IokSRrX9ttuzprAa4ANgZXAbcBVl9w2t9bSwCRJkqR+zN7llPWBWcA6wDLgJuCGededkK2MS5LGE5MrkiRpXKqSKh8FDgTWBRIISoLlj/ttN+fLwIWX3DbXDuow1FpQP7hm/WBJkjTGzd7llA2AI4E3AWvyzHvY5cDNs3c55Qvzrjvh5y0MUdIQ2Wdqf665IkmSxp39tpuzNvBN4P3AGsD9wH3AvcATwPbA2cBH99tuju8+JUmS1HKzdzllU+C7wDuAicAinnkPuxjYBfjf2buccnDLgpSkccTkiiRJGo/mAq8AHgQeBrp6HFtK6aSuAD4C7Nf06CRpEBHxnxFxV0QsjYhrI2KXQdqvFRFfioj7ImJZRPwpIl7XrHglSatm9i6ndABfpAwCWgQ8CvQsY7sYuIdSpeaU2buc8rKmBylJ44zJFUmSNK7st92crYDXUmaoLB+g6aPAJOBdzl6pXxdBFx1N3vw2aXyIiLcBZwEnAzsBNwOXRcQG/bSfBPw/YAvgLcC2wGGUm3CSpPawK7AzZWDQygHaPQCsDvxrM4KSNHz2mdqfyRVJkjTeHABMpSRXBvM48DLKCEFJGi2OAM7NzPMycyHwPsqI5Xf30/7dlAWP98/MX2fmXZl5eWbe3KR4JUmr7kBKKbAlQ2j7NPC6an0WSVKDuKC9JEkab7aso+1iYG3gBcDvGxPO2FTLoJZNXpyxyeeTWqGahbIzpbwhAJlZi4ifA7v187Q3AlcDX4qIN1FKIn4bOD0zu/p6QkRMBib32DVtBMKXJA3fiyhla4fiaUpS/fmUmSySRiH7TO3PmSuSJGm8qef9Tw7jOZLUSOsBncD9vfbfD2zUz3NeSCkH1gm8DvgkcCRw/ADnmUOZvde9/X34IUuSRsBw7oh6F1WSGsgbBZIkabz5K0PvaK5GWeDem4qS2lkHZeTyezLz+sz8HvApSjmx/swFpvfYNmt4lJKkgdxJKQs2FKsBy3BtLUlqKMuCSZKk8ebHwL9TFvp8epC2awM3Ajc1OKYxpyzO2NzBki7OqHHiIaAL2LDX/g2BRf085z5gRa8SYLcBG0XEpMxc3vsJmbmMcmMOgAh/vySpxX5EKfM4mR5/n/sxDbh43nUnmFyRRjH7TO3PmSuSJGm8uZWy9sDalBI5/ZlGuYH59Utum1trRmCSNJgqEXI9MKt7X0R0VI+v7udpvwa2qtp12wa4r6/EiiRpVPol8AdKeciB7uetTZl5/c0mxCRJ45rJFUmSNK5cctvcBI6ijNremFLupufwnQnA+sAalE7pD5od41jQlR0t2aRx4izgsIh4R0RsB5xDmY13HkBEfCMi5vZofw5lYePPRcQ2EfF64DjgS02OW5I0TPOuO2El8EFKudpNKAOBeppEWXtrIvDZededcHlzI5RUL/tM7c+rKUmSxp1Lbpt7L/B2SnmFoHRQu7cNgIcp6xEc76wVSaNNtWbKUcAplLKFOwL7Zmb3IvebU5LH3e3/BuwDvBy4Bfg88Dngv5oWtCRplc277oQ/AgcB8yhJlE155j3susDdwLGUv/OSpAZzzRVJkjQuXXLb3EXA+/fbbs7mwOspSZUVlHILl15y29zFrYyv3SUd1Jo8jifJpp5PaqXM/CLwxX6OvaqPfVcDuzY4LElSg8277oQ7gX+bvcsp21IS5+tQ1mC5Gfj5vOtOsNyj1CbsM7U/kyuSJGlcu+S2uXdTSuZIkiRJbaGaxfLHVschSeOZZcEkSZIkSZIkSZLq4MwVSZIkjbgugi6i6eeUJEmSpHZgn6n9OXNFkiRJkiRJkiSpDs5ckSRJ0ojryg66srnjeLrSxRklSZIktQf7TO3PmSuSJEmSJEmSJEl1MLkiSZIkSZIkSZJUB8uCSZIkacTVCGpNXiyx2eeTJEmSpOGyz9T+nLkiSZIkSZIkSZJUB2euSJIkacR10UFXk8fxdOHijJIkSZLag32m9ufMFUmSJEmSJEmSpDqYXJEkSZIkSZIkSaqDZcEkSZI04roIurLZU9xrTT2fJEmSJA2Xfab258wVSZIkSZIkSZKkOjhzRZIkSSMu6aDW5HE86bghSZIkSW3CPlP782pKkiRJkiRJkiTVwZkrkiRJGnFdGXRlNP2ckiRJktQO7DO1P2euSJIkSZIkSZIk1cHkiiRJkiRJkiRJUh0sCyZJkqQR10UHXU0ex9Ps80mSJEnScNlnan9eTUmSJEmSJEmSpDo4c0WSJEkjrpYd1LK543iafT5JkiRJGi77TO3PqylJkiRJkiRJklQHkyuSJEmSJEmSJEl1sCyYJEmSRpyLM0qSJElS/+wztT+vpiRJkiRJkiRJUh2cuSJJkqQRV8ugK6Pp55QkSZKkdmCfqf05c0WSJEmSJEmSJKkOzlyRJEnSiKvRQa3J43iafT5JkiRJGi77TO3PqylJkiRJkiRJklQHkyuSJEmSJEmSJEl1sCyYJEmSRlxXdtCVzR3H0+zzSZIkSdJw2Wdqf15NSZIkSZIkSZKkOjhzRZIkSSOuBtSIpp9TkiRJktqBfab258wVSZIkSZIkSZKkOjhzRZKkceibt++6DbAvsA6wHLgZ+H+Hbn3N8pYGJkmSJEmS1AZMrkiSNI588/ZdXwicBOwBrAZkdSiBu795+65fAs4/dOtrsu9XkIbGxRklSZIkqX/2mdqfyRVJksaJarbKt4DNgceBR3ocngQ8D5gLbACc1fQAJUmSJEmS2oTJFUmSxoFv3r5rJ/AFSmLlXp67jt1yYBGwNvDhb96+602Hbn3NL5obpcaSLjroavLyfs0+nyRJkiQNl32m9ufVlCRpfNgb2B54kOcmVnp6FJgMHNKMoCRJkiRJktqRyRVJksaHf6HMWF02hLZPAnt/8/ZdN29sSBrLMoNak7fMaPWXLUmSJElDYp+p/ZlckSRpfNgSWDnEtosps1c2bVw4kiRJkiRJ7cvkiiRJ48NApcB66x7KUs9zJEmSJEmSxg0XtJckaXy4Ddh5iG2nAkuAvzYuHI11Ls4oSZIkSf2zz9T+vJqSJI0PPwSWA6sNoe0awGWHbn3NosaGJEmSJEmS1J6cuSJJ0vhwHfBb4JXAIvpff2V94Gngm02KS2NULTuoZXPH8TT7fJIkSZI0XPaZ2p9XU5KkceDQra+pAR8CFgIbAWvz7PcBUykL2HcBJx+69TXXNT1ISZIkSZKkNmFyRZKkceLQra+5FzgIOI9SImwjYGNgE0py5TrgfYdufY2zViRJkiRJkgZgWTBJksaRQ7e+5gFgzjdv3/VMYBawLrAUuAW4/tCtr8lWxqexo4ugi2j6OSVJkiSpHdhnan8mVyRJGocO3fqah4DvtToOSZIkSZKkdmRyRZIkSSPOxRklSZIkqX/2mdqfV1OSJEmSJEmSJKkOzlyRJEnSiLN+sCRJkiT1zz5T+3PmiiRJkiRJkiRJUh1MrkiSJEmSJEmSJNXBsmCSJEkacZnR9MUSM53iLkmSJKk92Gdqf85ckSRJkiRJkiRJqoMzVyRJkjTiurKDriaPwmr2+SRJkiRpuOwztT+vpiRJkiRJkiRJUh2cuSJJaopZM+euBmwMBPDA/AVznmxxSJIkSZIkSdKwmFyRJDXUrJlzXwgcBLwVmF7tXjJr5tyLgO/OXzDnllbFJqlxagQ1mrtYYrPPJ0mSJEnDZZ+p/VkWTJLUMLNmzp0N/BT4MLAWsLjapgDvBi6cNXPuO1oWoCRJkiRJkjQMzlyRJDXErJlzdwE+D0wD7gGyx+ElwCPA+sBJs2bOfWz+gjk/bn6UkhrFxRklSZIkqX/2mdqfV1OS1CgfpcxWuY9nJ1Z6ehCYBBw5a+bcic0JS5IkSZIkSVo1zlyRJI24WTPnbgfsCjw2hOaPAC8EZgLzGhiWpCaqZVDLJtcPbvL5JEmSJGm47DO1P2euSJIa4eXAasBTQ2i7DOgEXtbQiCRJkiRJkqQRYnJFktQIq9F/KbD+TG1EIJIkSZIkSdJIsyyYJKkRHgeCksSv1fEcSWNEFx10NXkcT7PPJ0mSJEnDZZ+p/Xk1JUmNcDnwBLDmENpOpZQGm9/QiCRJkiRJkqQRYnJFkjTi5i+Ycx9wCbAGA/+vCWAd4CbgxsZHJqlZslqcsZlbujijJEmSpDZhn6n9mVyRJDXKWcBfgE2ASX0c76yOPQScPH/BnHrXaJEkSZIkSZJawuSKJKkh5i+YczfwDmAhsC4lkbIuZabKJsCGwN+Bf5+/YI6zViRJkiRJktQ2XNBektQw8xfM+dOsmXP3A14LvA3YjpLY/wtwAXDx/AVznmxhiJIapEYHtSaP42n2+SRJkiRpuOwztT+TK5Kkhpq/YM4y4P+qTZIkSZIkSWp7JlckSZI04roy6GryYonNPp8kSZIkDZd9pvbnPCBJkiRJkiRJkqQ6OHNFkiRJI65GUGvyqKgajsKSJEmS1B7sM7U/Z65IkiRJkiRJkiTVweSKJEmSxq2I+M+IuCsilkbEtRGxyyDtD4yIP1TtfxcRr+txbGJEnF7tfzoi7o2Ib0TEJr1eY52IOD8inoiIxyLiqxGxRqO+RkmSJElaFfab+mZyRZIkSSOulkEtO5q81TfFPSLeBpwFnAzsBNwMXBYRG/TTfnfgO8BXgRnARcBFEfHiqsnU6nU+WX08ANgW+Emvlzof2AF4LfAGYC/gf+sKXpIkSVJba4c+E9hvGojJFUmSJI1XRwDnZuZ5mbkQeB+wGHh3P+0/AlyamWdk5m2Z+QngBuCDAJn5eGa+NjO/n5l/zMxrqmM7R8TmABGxHbAv8B+ZeW1mXgl8CDio90gtSZIkSRoF7Df1w+SKJEmSRlwX0ZKtMi0i1uyxTe4dX0RMAnYGft69LzNr1ePd+vmyduvZvnLZAO0BpgMJPNbjNR7LzN/2aPNzoAa8YoDXkSRJkjSGjPY+E9hvGozJFUmSJI01fwce77HN6aPNekAncH+v/fcDG/XzuhvV0z4ipgCnA9/JzCd6vMYDPdtl5krgkQHOK0mSJEkjaSh9JrDfNKAJrQ5AkiRJGmGbAU/2eLys2QFExETg+0AA72/2+SVJkiRpAC3vM0H795tMrkiSJGnEZcawFktc1XNWnuwx4qk/DwFdwIa99m8ILOrnOYuG0r5HB+H5wKt7xbII2KBX+wnAOgOcV5IkSdIY0wZ9JrDfNCDLgkmSJGncyczlwPXArO59EdFRPb66n6dd3bN95bU92/foIGwNvCYzH+7jNdaKiJ177Hs15X35tfV/JZIkSZLUGPabBubMFUmSJI24WnZQy+aO4xnG+c4Cvh4RvwWuAz4KrA6cBxAR3wDuyczu+sOfAy6PiCOBi4GDgJcB76naTwR+AOwEvAHojIjuesCPZObyzLwtIi4Fzo2I9wETgS8C383Me+v/qiVJkiS1ozbpM4H9pn6N2pkrEXFsRGREfHaQdgdGxB8iYmlE/C4iXtekECVJktTGMvN7wFHAKcBNwI7AvpnZvfji5sDGPdpfBRxM6RTcDLwF2D8zb62abAq8kVK/+Cbgvh7b7j1OfQjwB2A+8DPgyuo1JUmSJGlUsd/Uv1E5cyUiXg68F7hlkHa7A98B5gD/R/mmXRQRO/X4ZkmSJEl9yswvUkZA9XXsVX3suwC4oJ/2d1EWYhzsnI9Q3rdKkiRJ0qhnv6lvoy65EhFrAOcDhwHHD9L8I8ClmXlG9fgTEfFa4IPA+xoXpSRJkgZSI6gN/n55xM8pSZKk9jJz9ukTgVcB+wMvoCyefSulbNANC+Ydky0LTmog+0ztbzSWBfsScHFm/nwIbXcDere7rNrfp4iYHBFrdm/AtOGHKkmSJEmSJGk4Zs4+fQfKvbzzgAOAl1BKDr0L+CHw7ZmzT9+gZQFK0gBGVXIlIg6iLGQzZ7C2lY2A+3vtu7/a3585wOM9tr/XGaYkSZIG0ZXRkk0aLyLiPyPirmrtyWsjYpcB2r6zWs+y57a0mfFKktTbzNmnvwj4JrAd8ChwD+W+3v2U+3WLgZnA12fOPn3tVsUpNYp9pvY3apIrEfE84HPAIZnZyDf6c4HpPbbNGnguSZIkSRpREfE24CzgZMrgtJuByyJioJG9T1AWGu3ent/oOCVJ6s/M2acH8ClgE+BeYFkfzRZTEi0zKEsASNKoMmqSK8DOwAbADRGxMiJWAnsDH64ed/bxnEXAhr32bVjt71NmLsvMJ7o34MkRil+SJEmVWna0ZJPGiSOAczPzvMxcSFlvcjHw7gGek5m5qMfWuwKAJEnN9FLKAIFHgYHWVFkBLAHeMnP26Ws2IzCpWewztb/RdDXn80xdxe7tt5TF7XfMzK4+nnM1MKvXvtdW+yVJkiRpTImISZSBaf9YezIza9XjfteeBNaIiL9GxN8i4scRsUODQ5UkaSD7AFOAp4fQ9jFgfcogbEkaNSa0OoBumfkkcGvPfRHxNPBwZt5aPf4GcE9mdq/J8jng8og4ErgYOAh4GfCepgUuSZIkSc2zHtBJ32tPvqif5/yRMqvlFkpp5KOAqyJih8zscw3KiJgMTO6xa9qqBC1JUi/rAkNd/KF7wPU6DYpFkoZl1CRXhmhzoNb9IDOvioiDgVOB04Dbgf27kzGSJElqjVoGtSYvltjs80ntIjOvpsfs/oi4CrgNeC/wiX6eNgc4sfHRSZLGqWUMXA6stwCWNygWqSXsM7W/UZ1cycxXDfS42ncBcEGTQpIkSZKkVnqIMoK3rrUne8rMFRFxI7DVAM3mAmf1eDwN6HOWiyRJw/A7SnJlArBykLZrAEuBmxsdlCTVYzStuSJJkqQxoka0ZJPGusxcDlxPj7UnI6KjejyktScjopOy3uV9A5xnWWY+0b0BT65S4JIkPdvFlJKWQyn1tRZwzYJ5xyxsaERSk9lnan8mVyRJkiSpvZwFHBYR74iI7YBzgNWB86CsVRkRc7sbR8QJETE7Il4YETsB3wKeD3ylBbFLksSCecc8Tfn/1UFZD6w/GwJPVW0laVQZ1WXBJEmSJEnPlpnfi4j1gVOAjYCbgH0zs3uR+2etVQmsDZxbtX2UMvNl98x0BLAkqZW+AmwAHAZsQpkluYSyvsrq1fYkcNyCecf8qlVBSlJ/TK5IkiRpxGULFmdMF2fUOJKZXwS+2M+xV/V6fDhweBPCkiRpyBbMO6Y2c/bpnwJ+A/wrsDuwHmUtlsXA94BvLJh3zA2ti1JqHPtM7c/kiiRJkiRJkqSmWzDvmAQuAy6bOfv0FwAbA13AXxbMO+aBlgYnSYMwuSJJkqQRV8sOatnc5f2afT5JkiSNnAXzjvkL8JdWxyE1i32m9ufVlCRJkiRJkiRJqoMzVyRJkjTiaknT6wfXsqmnkyRJkqRhs8/U/py5IkmSJEmSJEmSVAeTK5IkSZIkSZIkSXWwLJgkSU229+zTtsoO9gImkdwRyfzL5x3n5FyNKTWCGk2e4t7k80mSJEnScNlnan8mVyRJapK99jntjbVJHR/vmj5xR4LOand2LK8t2mu/uV+Prjzx8nnHdbU0SEmSJEmSJA3KsmCSJDXBXvvN/cSKNSdesHJq58uAoCtX0JXLqWWtNrljkxXTJhzbNbnjyr1nnzax1bFKI6GW0ZJNkiRJktqBfab2Z3JFkqQG22vf0w5escaE47ODzliZS6OWKwJqARnJyliZS8msdU3t3KVrUseFrY5XkiRJkiRJAzO5IklSg9UmdRxPBxNiZS7rb4xI1FhBUutarXP23rNP26qpAUqSJEmSJKkurrkiSVID7b3Pabt2rTlxK2rZNejk265czoSYUpsQxwHvbkJ4UsO0Ysq5U9wlSZIktQv7TO3PmSuSJDVQdsS+dNBJjRWDtQ0ggZwQMxofmSRJkiRJkobLmSuSJDVSsNownjOlAZFITeUoLEmSJEnqn32m9ufMFUmSGqmW95AkQ/yfGwA1Hm5oTJIkSZIkSVolzlyRJKmBosZ50ZWfys5Yja5cNlDbDDpJsmNF7TvNik9qFEdhSZIkSVL/7DO1P2euSJLUQJfPO+7JzqVd8wgio///uwnQGRNjRe2xqPHl5kUoSZIkSZKkeplckSSpwTpW5Ps6ltXuozMmZTAhex3PoIPOmBJduWLCkq4PXz7vuK6WBCpJkiRJkqQhMbkiSVKDXT7vuAcnLO56ZefSrjvoiA4mxJTsjMnVNoWOmBQr86kJT638919dety3Wx2vNBKSoNbkLXGKuyRJkqT2YJ+p/ZlckSSpCS6fd9xfO5fUXjTxiRVv61zcdUXH8tqDHStqj3Qu7frjxCdXnjzxqZWb/OrS485vdZySJEmSJEkanAvaS5LUJJfPOy6BC6tNGtNqtGBxRkdhSZIkSWoT9pnanzNXJEmSJEmSJEmS6mByRZIkSZIkSZIkqQ6WBZMkSdKIq2ULprg3+XySJEmSNFz2mdqfM1ckSZIkSZIkSZLq4MwVSZIkjThHYUmSJElS/+wztT9nrkiSJEmSJEmSJNXBmSuSJEkacY7CkiRJkqT+2Wdqf85ckSRJkiRJkiRJqoPJFUmSJEmSJEmSpDpYFkySJEkjLjPIJk85b/b5JEmSJGm47DO1P5MrkjSG7XvqnBfFtK7jYq2uvZmYU1kZS/Kxzivyic5PXXr83IWtjk9qtRvu3nwS8FrgTcBmwArgJuAHwK07bX53ti46SZIkSZI0WplckaQxaN9T5kRM7/p654uXvy0m5wQyyYyMyHVYf+VBuTzest8XPnZRPtp58KUnzO1qdbxSK9xw9+a7AGcBL6CUSl0BBPAK4N+An99w9+ZH7bT53Y+3Lsr2VSOo0eTFGZt8PkmSJEkaLvtM7c81VyRpDIq1ur7TsdWyg5mYHbk4luaSzqUs7ViWSzqX5tOxlM7s6Nxy2Ztjna4ftTpWqRVuuHvznYHzgC2Bh4F7gAeA+4G/A8uAfwa+csPdm6/eqjglSZIkSdLoZHJFksaYfeceu1/HC5YdQI1kacdyeo9KiIBlHcuzi1rH85ftt+9/Hfu21kQqtcYNd2/eCXwaWAe4F1jeR7OngAeBVwLvbl50kiRJkiSpHZhckaQxJtbqOjImZCfLo68bxs9YHitiAh2xdteHmhSaNFrsCWxDmbEy0Joqy4Au4O3V2iyqQ2ZQa/Lm4oySJEmS2oV9pvZnckWSxpB9T5kTHRuu3D27ovacGSvPEeRKah0brHjZvqfMWa0pAUqjwz7ARGDpENo+CjwP2LWhEUmSJEmSpLbigvaSNJYE6zAhJ9A14Gj8Z3RFjU466GBj4M+NDU4aNTYEakNsu5ySiFmnceGMTdmCUVGOwpIkSZLULuwztT9nrkjSWJIsJslBJ610i+q/avJ044KSRp0lDP09UAeldNjAZfYkSZIkSdK4YnJFksaQS0+YuyQf61zERDqH0j4m0ZlPdD5M8kCjY5NGkZspCZOhvA+aRlnc/paGRjQG1ZKm1w+uDW3OniRJkiS1nH2m9mdyRZLGmNpDE74ZCXTkwH/jIzsSyAcnfPfSE+b671XjyY+Ax4G1htB2GjBvp83v/ntDI5IkSZIkSW3F5IokjTVPd5xee7TzwZiSk4h+EiyREVNrk/LRzkfzqY5Tmxyh1FI7bX73g8B5wBRgjQGabkxZ0P7cZsQlSZIkSZLah8kVSRpjLj1h7pO1uybvV3u085FYLSexWm0yHdkJGXRkB1Nqk2O1nFx7dMJjtbsmv+HST8x9uNUxSy1wJvAtYHVgk+rjBMri9WsDm1Fmt3x0p83vvqlFMba17sUZm71JkiRJUjuwz9T+TK5I0hh06cfn3lj78+SXdd0++YJ8qmMxk3JCrJaTmJQTc3HHkq47Jv+odufkl1963NxrWh2r1Ao7bX73SuBY4IPAr4HJwHrAOpTF688D3rLT5ndf1rIgJUmSJEnSqDWh1QFIkhrj0uPn/hU4aN9T5qzOpHwDHaxH8ijL4seXnjD36VbHJ7XaTpvfXQN+fMPdm/8E2ArYAFgB3LnT5nc7o2sVdS+Y2OxzSpIkSVI7sM/U/kyuSNIYVyVSvtfqOKTRaqfN707g9mqTJEmSJEkalGXBJEmSJEmSJEmS6uDMFUmSJI24zLI1+5ySJEmS1A7sM7U/Z65IkiRJkiRJkiTVwZkrkiRJGnE1ghpNXpyxyeeTJEmSpOGyz9T+nLkiSZIkSZIkSZJUB2euSJIkacRlBpnNHRXV7PNJkiRJ0nDZZ2p/zlyRJEmSJEmSJEmqg8kVSZIkSZIkSZKkOlgWTJIkSSOulkGtyVPOm30+SZIkSRou+0ztz+SKJI1xexzwmbWAVwBrAE8D11154VGPtDSocW7nw87eBngR5f/w/cC11597+MrWRiVJkiRJkqShMrkiSWPUHgd8ZlPgvcC/AOtSSkHWgMf2OOAzPwL+58oLj7q7hSGOOzsfdvZewGHAK4Gp1e4VwJ93Puzs84GvXX/u4ctbFZ80kjLL1uxzSpIkSVI7sM/U/lxzRZLGoD0O+Mw2wAXAe4DVKbMj/l59nAL8O/D9PQ74zA4tC3Kc2fmwsw8FzgNeAywH7qF8Tx4DtgROBM7Z+bCzp7QqRkmSJEmSJA2NyRVJGmP2OOAzawD/A7wQuA94BOiqDndVj+8Fng/8T1U2TA1UzVg5iTJj9B7gKaB7vMgyYBElyfI64PjmRyhJkiRJkqR6mFyRpLHn9cC2lBv2Xf20qVXHtwTe2KS4xrP/oJQBe3CANksoa+K8defDzt6kKVFJDZQZLdkkSZIkqR3YZ2p/Jlckaew5uPo42ALpXZQky7/uccBn/O/aINXi9XsATwyh+ePANGD/RsYkSZIkSZKkVeOC9pI0huxxwGcmAS+izIAYiqeBFwBrAE82Kq5xblvKrJV7htA2gQC2a2hEUlO0YlSUeWJJkiRJ7cI+U7tz5ookjS0TKP8pc7CGlVrVfmLDIlL3QIahfk8Svx+SJEmSJEmjmskVSRpblgCPAlOG2H4KZcbKUEpWaXjuB1YAk4fYPijr4UiSJEmSJGmUMrkiSWPIlRcelcAFlJkPQ5nrOQX4wZUXHjXY+iwavuuAPwNrD6HtVGAp8NOGRiQ1QS2jJZskSZIktQP7TO3P5IokjT0XUBZG32CQdutTZq1c0PCIxrHrzz18JfAtSrJrtQGadgDrADcBNzQ+MkmSJEmSJA2XyRVJGmOuvPCovwInUEpRbcxz1++YCGxEWW/lk1deeNSfmhvhuPR14BJK8mRtnjuraCqwCXA3cNT15x4+1PVZpFErszWbJEmSJLUD+0ztz+SKJI1BV1541PeBjwJ/A9YDNgM2rT6uD9wHHH3lhUd9o1UxjifXn3v4cuCDwFeAlZRESs/vyVTgGuDg6889/I5WxSlJkiRJkqShmdDqACRJjXHlhUf9ZI8DPjMPmA3sCaxFWbj+SuDSKy88akkLwxt3rj/38KXAJ3Y+7OxzgP2B7SiziO4D/g+4wRkrGksyg2xyPd9mn0+SJEmShss+U/szuSJJY9iVFx61FPhJtWkUuP7cw+8F/rvVcUiSJEmSJGn4LAsmSZIkSZIkSZJUB2euSJIkacQ5xV2SJEmS+mefqf05c0WSJEmSJEmSJKkOzlyRJEnSiMtqa/Y5JUmSJKkd2Gdqf85ckSRJkiRJkiRJqoPJFUmSJEmSJEmSpDpYFkySJEkjzsUZJUmSJKl/9pnanzNXJEmSJEmSJEmS6uDMFUmSJI08V2eUJEmSpP7ZZ2p7zlyRJEmSJEmSJEmqgzNXpFW033Zz1gf+BTgA2AhYDvwG+D5w5SW3ze1qYXjjzr47fDyAfwIOBF4NrA48BlwM/ODS33/qz82Io7Zom9WB1wFvBbasdv8R+B5wWcdGf1rSjDgkqVWsHyxJkiRJ/bPP1P6cuSKtgv22m7M/sAA4GXgxsCawPiXR8i3gu/ttN2eDlgU4zuy7w8enAJ8BLgL+HdgUmAa8ADgCmLfvDh8/Yt8dPt7Qv321RdvsBPwc+BzwSmCtatsb+G/gstqibbZvZAySJEmSJEmSGsfkijRM+2035w3AmZSb5vcBi4BHgIeBe4AngD2Br+633Zw1WxTmuFElTM4ADgZWUL4HD1K+Jw9UjzuAw4GPNiqO2qJtdgDOA7aozntvFcMj1ecPAlsDX68t2mbLfl5GkiRJkiRJ0ihmckUahv22mzMVOAmYQkmq1PpotoRyc31n4B1NC278eg2wP6UE2BN9HE9KgmMF8IF9d/j4Ng2K43hgQ0oiZWUfx1dQknHPAz7WoBgkqeUyW7NJkiRJUjuwz9T+TK5Iw7MvsAllFsJAlgNdwNv3227OpIZHNb69jbKO1NODtHuEsg7LW0Y6gKrU1ysoCZ6B/l3VgCeBWbVF22w+0nFIkiRJkiRJaiyTK9LwvBYI+p6Z0NtjwGbAjEYGNJ7tu8PH1wb2Ap4a4lOWA//cgFBeDaw2xDieoCR5Xt2AOCSp5boXZ2z2JkmSJEntwD5T+zO5Ig3PepQZKUOxgjKjYnrjwhn31gQ6Kdd6KFYAa+27w8dH+j/KdPouEdeXrNr6cyFJkiRJkiS1GZMr0vA8RbmZPxSdlJvoSxsXzri3hHKN6/meLLn0958a6UqTSygzmoYqqudIkjQiImJSRKze6jgkSZIkaTQayT6TyRVpeK6uPg7ld2hN4FHg5saFM+49CPwBmDbE9lOAyxsQx28opeKmDKHt6pTyZL9pQByS1HoJZDR5a/UX3TwRcVBEnN1r34mUASCPRcSPImKN1kQnSZIkaVD2mRqqGX2mCavyZGkc+xFwBLA28PAA7Tooa3B87ZLb5j7ejMDGo0t//6ncd4ePnw/sBEyiJC36053U+G4DQvk18EfgxcA9g7RdG7gKuKkBcUiSxr4jgRu7H0TE7sCJwMXAbcCHgI8Dc1oSnSSNQ/vMOHEysAllpvyDl914sn3AUeTVe54SROyYwfqRPEjmTb+44oRxdJtx9Nv1kDPXBDaglGG/75rzj7QCyCgya+bcCZS/cZOBR+YvmDPQ/TBpNGh4n8mZK9IwXHLb3AeBcyg38vtbM6MD2Bj4G3Bek0Ibz34MXE95IzapnzarAWsBl9KAGSMdG/2pBnyGUuprgwGabkRZ0P7sjo3+5Jt5SWNSZmu2ekXEf0bEXRGxNCKujYhdBml/YET8oWr/u4h4Xa/jB0TEvIh4OCIyInbs4zV+WR3ruX25ztC3BG7p8fhgYBHwL5n5MeBLwJvrfE1J0jDsM+PE5+0z48SjKIOtfgH8P+DafWaceNY+M04c8P+KGu/Ve54ybebMUz+zcvWJ96xYc9J1K9ecdPGK6ZOuW7n6xPtmzjz1s6/e85S1Wx3jeLfrIWfutOshZ34auJby+/ML4KpdDznzmF0POXOLlgYnZs2cu96smXPfDywAfkn5Hl0za+bc/501c+6rZ82c6/3lYWqXPhO0bb+p4X0mf/il4fsC8D/ARGBTSpJlCjAV2JCSWPkr8B+X3Db37lYFOV5c+vtPLQbeQ0mwrEe5/qtTvifTKKMr1gJ+Bhx56e8/NdSF5+vSsdGfLqNkvJdSfi7WoSR1VgPWrfY9CRzZsdGfrmhEDJKkoYmItwFnASdTZj/eDFwWEX0myKuRTt8BvgrMAC4CLoqIF/dotjpwJXDMIKc/l/K/qnv7WJ3hT+bZ67nNBi7JzJXV44XAZnW+piSpTvvMOPGVwE8po2PXBxZX20Tg7cB395lx4of2mXFiPWszaoS8eq9Tnt81dcLvVk6bdHhtYueGZNaoZRe1rNUmdq6/ctqkD62cOvF3r97rlG1aHet4teshZ74HuAA4lDJQsvt3aB3gcOAnux5y5qtbF+H4Nmvm3O0p73lPALagvP98qjr8z5TBxKdUs1o0RrVxv6nhfSaTK9IwXXLb3BrwSeDfgAspVQu7b+b/DfgU8KZLbpvrWitNcunvP3Uf8DbKH9pbKG/M1qBMy78C+ADwvkt//6mn+n2REdCx0Z++B+xP+QewmJJwm0qZrfLfwJs6NvrTTxsZgyS1XLZoq88RwLmZeV5mLgTeR/m7/e5+2n8EuDQzz8jM2zLzE8ANwAf/8WVnfjMzTwF+Psi5F2fmoh7bE3XG/hfgNQAR8TJgK8rMzG4b8kzHV2NQvaMHezzvoGrU30UNDlEa8/aZceL2wJcpf3PvpawFuaTaHuWZUsFHU24cq4levecpk7umTFhQmzzheXTVlnfUaksDVgZ0BazsqNWW0lVbXpvcuXHXahPnv3rPU0ZkcWMN3a6HnPlW4DjK/cl7KL833b9DD1X71gO+uOshZ85oVZzj1ayZczcGvkJ5n7kIuJ/yXnkp8Djl+7OU8t653oFCgnbpM0H79psa3mcyqyitgktum5vAr4Bf7bfdnHUoIyuWA/ddctvcFS0NbpyqEiff2neHj3+bZ2avPA48cOnvPzXMyY/169joTwuBE2qLtvk0z5QIW9Sx0Z8WNysGSRrHpkU8a4Dwssxc1nNHREwCdgbmdu/LzFpE/BzYrZ/X3Y0yYqunyygJ9XodEhH/Sumo/hT4ZGbW8z/if4DPRcT2lNFWfwf+r8fxVwK/H0ZcagM9Rg++j1JC5aOU0YPbZuYDAzxvC0oJU2fPSiPjA5TZKvfQ/+2qRyg3bz6yz4wTf3DZjSfbH2iS7IyP1iZP2Jyu2oqAPisXBNToqq2oTe7cpGN518cotfjVBLsecuZkyg3bCZT3Q31JSuJyM8pN2X9vTnSqHAq8gPI96K/6x5OUmXrvnDVz7jfmL5jz92YFp1U2aJ8J2r7f1PA+k8kVaYRcctvcRyhvnDUKVGW/BltUvuE6NvrTUzhyWJKarXen7mTgpF771qPMbLy/1/77gRf187ob9dN+ozrj+zaldOi9wD8BpwPbAgcM9QUy8wsRsRR4HaUk5umZuQQgItapYqp3HRe1j3+MHgSIiPcBr6eMHvyvvp4QEZ3A+ZQbh3tSyqVKGqZ9Zpy4KaW8yJMMPg74YcrAr9cBP2hwaKrUJnW+O4PoKIuj9yugq0ZOrE3qeAcmV5rptcDzKDNUBvME8KpdDznzhdecf+SfGxuWAGbNnDsVOIgygHiwsuqPUkqxvxn4XIND08gZSp8J2rjf1Iw+k8kVSZIkjbjMILO55eV7nG8zys2ubs8ZgdVKmfm/PR7+LiLuA+ZHxJaZeWcdr3MupQRl7/2PAC9b9Ug1Gg1z9CCUWukPZOZXI2LPIZxnMqVOdbdpwwxZGqteBqzJ0AZ0raSUPdoFkytN8eo9T5lYmz55i6jlgImVblGjqzaxc5NX73nKur+44oSHGx2fgPL70AEMperHk5Sb9y8HTK40xw6Um+qPDaFtUhIwe2BypS72mQY2Ev2mRveZTK5IkiRprHlyCLV4H6KMZN2w1/4N6b80xaI62w/VtdXHrYAhJ1fgHzfAd6KUoPx1Zg5l9KfaW92jByNiD0oplR3rOM8cHMEtDWQ16q9ev1qDYtFzrQUM/Y5lZhIRBGtTZhqp8aYw9O9R9++av0PNsxol+TXYrJVuXZQ1b9U+htJngjHQb2pkn8kF7SVJkjTyRvnijJm5nDI1fFb3vojoqB5f3c/Tru7ZvvLaAdoP1Y7Vx/vqeVJEfLh6zq+BCylT5YmI9SLioYjob4FJjSMRMQ34JnBYnR3JucD0HttmDQhPamePU/7zdA6xfTK0EeAaGY+Q1Bjqzfuy8ECS9f0v1irp/h0aig7K9/LxxoWjXh6j3FAf6sD8iQytxJt6GuV9Jmj/flOj+0wmVyRJkjRenQUcFhHviIjtgHOA1YHudSy+ERFze7T/HLBvRBwZES+KiJMoU8m/2N0gItaJiB2B7atd20bEjhGxUXV8y4j4RETsHBFbRMQbgW8Av8rMW4YaeES8C/gscCllnY1/3DyqbqD/glInW2NPvaMHtwS2AH4aESsjYiXwb8Abq8db9nWSzFyWmU90bzy7bISkcpPmYYa2ftFkSmmw+Y0MSM/4xRUndHUsW3l9dkTHYPcRE6AjOjuWdS38xRUnPN2E8FT8grKex1Bmo6xFWdfjV40MSM/ye8rMgLWG0LY7yXxpw6JRq7Vlv6kZfSaTK5IkSRqXMvN7wFHAKcBNlJFQ+2Zmd7mlzSkLEHe3vwo4GHgPcDPwFmD/zLy1x8u+EbgRuLh6/N3q8fuqx8uB1wDzgD8AZwI/BP65zvCPBH6cmQcDP+3j+PWUWtkaY4YxevAPwEsoP9/d20+ABdXnf2tguNKYddmNJz8BXEC5MTzYyO71gNuBKxodl57RsaL2pcisETFxwIYRE8msdazoOqdJoam4FlgIrDtIu05gKnDRNecfacm2Jpm/YE4XZTHxDp69Bltf1gcepO/3pBoD2rjf1PA+k2uuSJIkacQlLVicsY7S6v94TuYX6TGCqtexV/Wx7wLKzbT+Xu9rwNcGOP43YO86w+zLVsDnBzj+CIPfrFD7Ogv4ekT8FrgO+Ci9Rg8C92TmnMxcCvTsyBIRjwH06uBKqt+XgVdRRt0+yHMXA+6k1Hd/HDjhshtPHtLi6hoZUcvvdC5ZeVjX1Il7ZQ3IXNHznUJCSax0RGfH4hXXRlc+Z8FjNc415x9Z2/WQM0+kvG/ahLJ2WO/fkUmU36Hb6ef9mhrq28A+wJ6U95aLex3voCRWVgCnzF8wZyjrd6iHdukzQdv2mxreZxr2zJWIWDsiPhARn4mIr0bE/9dr++qqBCZJkiSpX49RRkL3Z3tWfcFIjVL1jh6U1BiX3XjyA8A7KSNf1wY2pdykWYfyO7ghJenygctuPPnKFoU5bv3iihOyY1nXvp1Pr/gFQWRnx5TsiEkZMSk7YlJ2dkwhiI7FK67sXNY16xdXnFDnSgRaVdecf+R1lJHt9wIbUZIs61B+j7p/n24G3nHN+Ufe26o4x6v5C+YsBt4L/JyyWH3Pv3EbUf7OPQXMmb9gzg9aFac0gMdocJ9pWDNXImIf4AeU0VFPUOoe9uY/JUmSpPFqGIsljsg5x4+fAe+JiP/ufSAidgAOA/6/pkelpql39GCv4+9sQEjSuHTZjSffvc+ME/cHZgJvoyyUO4FScu8HwE8uu/Hkx1oW4Dj3iytOWAa8duben5ydEzqOrE3u3DWDSVFjRefylb+JFbXPLrj8E5YyaqFrzj/yyl0POfPVwBuAtwLPp8xguRX4HjD/mvOPXN7CEMe1+QvmPDJr5tx/A3ajfH92pZQJewD4EXDh/AVz7h/gJTQQ+0yN1vA+U2TWf0Uj4lbKL9IBmfm7VQmg1SJiTcoU3enVQo2SJEltZTS9n+mOZbP//sSNnatPrTXz3F1PL+74+wc+OYNRcB0aLSI2odQqD0r94PcA36KUoHkzcB+wS7VQo7TKRtPfGUmSpHqNpvcy9pmaoxl9puGuubIVcHS7J1YkqZFm73TidOAjBNsCSbIQ+Ny8G05+uplx7P1PR+ydkyceTMR0Mp+I5Su/e/nNZ/6imTFsf/zZEym1Ml9IKUl5DzB/4amH967ZqibZc/8z1qMsfrwupT74LcBvr7jo6PE1jkUNFNXW7HOOD5l5b0TsDJxGGSkdwKHAk8B3gGNNrLReRKwNvJ3y/29tnvtDmpn5700PTJIkSaOAfaZGakafabjJlduBaatyYkkaq2bvdOLqBF+jI/YjYrUeh5LMY2fvdOKPgXfPu+HkFY2MY++XHvnPXdOnfiaft94LsjM6gYSIqNXetcden7ir44nFx/7qpjN/2MgYtj/+7A5KHep3A1vw7P/ii7Y//uzzgS8tPPXw3ot/qkH23P+MDYAjgDcB0ymTggNYDvxuz/3P+MIVFx09r4UhShqizHwA+A/gPyJifUry+sHMbOroN/XNUsqSJElSazW6zzTcBe2PBz4QEVuMRBCSNFaUxEr8ho6OA4ApZC4nc2m1rQCm0tlxMBHXzt7pxImNimOvHY86dOXGa3+/ttbqWyUJy1YujWUrl7FsxdLMzNpaq7+wa+O1z99rxlHvaVQMVWLlU5TFdrcAHqFMubyPsrDnesDRwP9sf/zZUxoVh56x5/5nbAJ8l5LwmkRZuO0+ygKSi4GXAV/ec/8zDm1VjJKGJzMfzMz7TayMKmdS/s6+NDPXyswX9LG9sNVBSpIkSeNBI/pMQ5q5EhGf72P3g8BtEfH/KAu1dfU6npn5kXqCiYj3A++n3IQD+D1wSmZe0k/7dwLn9dq9LDO9SSepNYLv0RHbVomU3n8Xa8AyMifQES+lll8HDh7pEPZ+yREv7Npk7XNy0oRJLFuxtOdUkQBYWVuRK2srcvKEKV0bTv/s3i854srLf3fWwpGOA3gHZbrl05Qplz2tpPwfWQ3YB/gYJQmjBtlz/zM6gC8A21Nu9q3s1WRxta0PnLjn/mf88YqLjr6uuVFqTHFxxoaKiBOG0Cwz85MND0b9sZSyJEmS+mefqaGa0WcaalmwDw5w7A397E+gruQK8HfgWErZsaDcmPtxRMzIzN/385wngG17nVeSmm72TiduTEfMomTAeydWelpJZicR/zx7pxOnzbvh5N6Jh1WSUyZ+PCdPWI1lK5b1V0kzgFy2cmlOnjglV5v0ceCQkYyhWmPlXdXDgb6+JdX2tu2PP/uLC089/JGRjEPPsgtlZsrDPDex0tODwKaUxJjJFWn0OmmAY93l/hIwudI6llKWJEmSWuekAY6NSJ9pSGXBMrNjGFtnvcFk5k8z82eZeXtm/ikzPw48Bew68NNyUY/t/nrPK0kj5GNETAKGspbKCiKmAoePdBC16avtH0nGIMnmACIza9OnvmHvFx9e99/sQexJWby3r/ryvT0GrEP/yXqNjDdTSoEtGULbp4B99tz/jI0aG5LGtGzRNk709f6bMnBqS+Bs4LfABi0NUpZSliRJUv/sMzVUM/pMw1rQPiI2pyz80ucNmigLOK+fmXcPN7CI6AQOpCwAefUATdeIiL9SEkU3AMcNMMuFiJgMTO6xy9FkkkZGsG31T2oo/6pqQBJsP5Ih7P3iw6fl89ebll21Wn+zVnrKrlqNSZ2rEWwE3DOCobyA8nd5KAvVl2tRnqPG2Y6BZ6z0tJiS8Ho+pYSYpDZQ1Q7+C3BURJxPKQU44uUn1bdmlVKWJEmSNDwj3WcaVnKlCuBQ4Nv9HH9jdazukdAR8RJKMmUKZeTsv2Rmf2sB/BF4N3ALMB04CrgqInbIzL/385w5wIn1xiVJQzCk2YC9jPSMkfJ3fSiZlb6eN3KGcy2G8xwNXT3XtztB6PdEal+/Ak5vdRDjTLNKKUuSJEladavcZxruzbTBbttNpIxEHo4/AjtSkiVvAb4eEXv3lWDJzKvpMaslIq4CbgPeC3yin9efC5zV4/E0ylovkrRqkrvoYKhTLAMIkjtHOIrHYnnXEqZMXH0of4ajIzpY0bWUHPG/g3+nXImJDF4mrYNyPUZy5oye605gxhDbTqXMOvJ7ouHLKFuzz6luL2P478c1DFWZAUmSJGlo7DO12ir3mYacXImINYG1euxatyoP1ttawEHAfcMJKDOXA3dUD6+PiJdTRnO9dwjPXRERNwJbDdBmGT3K1ET4AyVpxHyG5F2UdS2WD9J2IuXv0ZkjGcDlt56de+1y7CUrV5t+IAycCU+Ajo7ofPzJ+ZffenbvMiWragHlxvxGwAODtF0TeAL46QjHoGf7EbA/pTTmYOXapgE/u+Kio4dd3lNSY0XEv/VzaC1gL+AA4CtNC0jP0YxSypIkSZL61ow+Uz0zVw4HTqg+T+Cz1daXoCzgOBI6ePYaKf2q1ml5CfCzETq3JA3ZvBtOvmP2ziddQ0fsQRm92l/2u5OIDmq1BfNuOPnBkY4jliz/ZKzoelNOmjAll69c2leCJYGYNGEyK7tWdixeNnekY1h46uFLtz/+7G8BxwKr0f8i6pOANYBvLTz18GEl5TVklwMLgX+iDIDo7+dzbUry5fwmxaUxKrNszT7nOPK1AY49BPwXcEpzQlE/GlZKWZIkSe3PPlPDfW2AYyPSZ6onuTKPsgZKAJ8GvkNZQL6nBJ4Grs/M39YbTETMBS4B7qaMmj0YeBWwT3X8G8A9mTmnenwCcA1lpstawNGUxXcdpSepNTLfSo3f0hGbkNnFs0tiBTCxJFbyLrIxiwxf/ruzfr/XTkef0LXRWqfm5IlTcsXKFdSyK+ierRKdTOycSFetq/P+x+ZefstZ1zQiDuDLlBv5rweWAo/xzEK+HZQZK2sA1wKfbFAMqlxx0dFde+5/xoeAbwGbA48DT/ZoMomyiH0CZ19x0dG/aH6Ukurwgj72JfBoZj7ZxzE1XyNLKUuSJEkaWMP7TENOrvRc3yQiVgcuzMzfjUQQPWwAfAPYmHLT5xZgn8z8f9XxzXl2B2Rt4FxK2ZlHgeuB3ftan0WSmmHeDSffP3unE19GjR8QsQvBFKCaKgIkK6jVfkXylnk3nPx4o+L41Q1nnLHXjKMer62zxidz6qR1M2LiPwYnJNnx9LJHOx556pRf3fiZzzcqhoWnHr58++PP/gBwJCVZvmGPw0H5O/914FMLTz38iUbFoWdccdHRf9pz/zMOAk4C9gA25ZlVgpIyuOFLOGtFIyEZ6hpUI3vOcSIz/9rqGPRczSqlLEmSpDHAPlNDNaPPFDnO5gL1VnWAHgemZ6Y39ySNmNk7nfgi4GiCLYAkuQP49LwbTv5zs2LY+8WHd+aEzkNzysQ30xHTqOXTsWzFj2NF11cbsM5Kv7Y//uzplBksL6TMWrkH+L+Fpx5+f7Ni0LPtuf8Z2wD7UmarLANuBn5+xUVHD7ZekEah0fR+pjuWTT934o2dq09t6qj8rqcXd9zzkZNnMAqug8aniDiRZ0opD9ocOD4zT2tgSCNmNP2dkSRJqtdoei9jn2nsGNLMlar8Vr0yMy3zImncmnfDyX8A/r2VMVQJlK8xcJ3Jhlt46uGP03/NebXAFRcd/SfgT62OQ9LQRESN+seZZWbWUwZYq67hpZQlSZIkPVcr+kxDfeJJfZ24+ti7lvAzxW+soS9JkjQ+ZZSt2eccu05hXE3ib09NKqUsSZKkscA+00hrep9pSMmVzOzo+TgiNgUuBm4FPgv8sTr0IuCjwPaU8i+SJEmSVlFmntTqGFSfzDy51TFIkiRJ40Ur+kzDnfLyJeD2zPzXXvt/AxwSET+o2vzLqgQnSZKk9hRZtmafU2oVSylLkiSpHvaZ2t9wkyuvBo4Z4Ph84PRhvrYkSZKkIYiIzYAZwHSgo/fxzPxG04Mav07qY5+llCVJkqQWamSfabjJlaXAbsA5/RzfvWojSZIkaYRFxBTg68CbKR2E7pv18Ow6wyZXmsRSypIkSdLo0Yw+03MyNUN0PqX81+cjYuuI6Ki2rSPiC8DBVRtJkiSNR9mibfw4DTgA+DjwKkon4R3AbOAS4Gbgpa0KTkCPUsqZ+dvMfLLafpOZhwB3Vm0kSZI0HtlnarSG95mGm1w5Bvg28EHgD8CyavsD8J/Adxm4bJgkSZKk4XsLcF5mng78vtp3T2b+PDPfADxGeV+u1nk18IsBjs8HZjUpFkmSJGm8aXifaVjJlcxcnpmHAjtSMj9fqbaPAzMy85DMXL4qgUmSJKmNZbRmGz82AK6rPl9SfVy9x/EfUkZpqXW6Syn3x1LKkiRJ45l9pkZreJ9puGuuAJCZtwC3rMprSJIkSarb/cC6AJm5OCIeBbYFflodXxOY0qLYVJwPfDgiHgO+QCkDBrAl8GFKKeXPtyY0SZIkacxreJ9plZIrkp5x4FXv7wDWAFYASy/Y/ZzxVcWwh1kz53Zfi5XAkvkL5ozba7HrIWd2ULLiCTx9zflHtuRa7P36T08EpgJLLr/4Yy2ZWXjhnTOiiqEDePqALW+stSKO0WC/7Y8LYDXK/+GnLll42ri9FhrDWlHPd3z9t7kW2AM4vXr8U+DoiLiP8nf2cOCaFsWm4hhgPUop5f8Euv/Wd1DqPX8HSylLkiSNX/aZGq3hfaYhJVciokbpDEzNzOXV48G+FZmZJm805h141ftfBBwIvJlnbqLfduBV7z8fuPiC3c95upXxNdOsmXO3oFyLtwJrUa7FX2bNnPtt4MfzF8x5rGXBNdmuh5y5MeVn4iBgw2r3vbsecua3gR9dc/6RDzQ6hr1f/+kOyj+Rt1Jquk8AuvZ+/acvp6yNdfnlF3+s4Tf1L7xzxrrAv1BG6G5GuaH08IV3zvgu8IMDtrzx742OYbTYb/vj1gT+mXIttqZciyf22/64C4ALLll42p0DPV+Sevg8cGBETM7MZcAnKCWovlkdv5MyO0ItUpVJPjQizgBeBzy/OvRX4JLMvLllwUmSJEljX8P7TJE5eLoqIk6i3CT9ZGbWejweUGaevCrBNUNErAk8DkzPzCdaHY/ax4FXvT+Aw4CPUZIqy6qte6YCwELgsAt2P+cvLQmyiWbNnPsW4JOUpMpySg3xoFyLAO4C3jt/wZzftSjEptn1kDNnAWcD61PN3qkOTQU6gfuAD15z/pFXNSqGvV//6dUomfn9gYnA4iqWCVUcK4BLgCMuv/hjDUsAXnjnjJcD/01JqnRVcUCZdjkReBj42AFb3vizRsUwWuy3/XEvAv6XklSpAU9T/pdOASZT/hedcsnC085vWZBqW6Pp/Ux3LJt95uQbO1ef2tRZWV1PL+74+1EnzmAUXIdWiIgO4CWUv7d/yMyVLQ5JY8ho+jsjSZJUr9H0XsY+U+uMdJ9pSMmVsWw0/WKpvRx41fv/jZJMqFFuEPc2kTJj4Q/AWy/Y/ZyGz1RolVkz576OUkt8EvAAz02+dgIbAX8H3jZ/wZw/NzfC5tn1kDN3A86j1G28j+deiw7KtXgEOOSa848c8VGr1YyVz1JmET1GuYnf21RgbeAnwAcuv/hjXSMdx4V3ztieUvJkA8q16P2GISi/I4uBww7Y8sbLRzqG0WK/7Y97HnABsAWwiJLo6m0Dyj/3Iy9ZeNqFzYtOY8Foej/zj47CGS3qKBw9PjoKETE9Mx9vdRwaP0bT3xlJkqR6jab3MvaZmqMZfaaO4TwpIqaOdCBSOznwqvdPB46iKm/UT7MVlBvK2wLvbE5kzTdr5txJwHGU0ff30/esti7KtXge8P7mRddcux5yZgDHAtOBe+n7WtQo12I94MgGhbIb8CbKm4b+ZqUsBh6llCnZu0FxfJSSPLmX5yZWoFyfRcA04LgL75wxrP9JbeIwSmLlXvpOrEBJTE4C5uy3/XGrNSkuSe3rgYj4cUQcHBFrtDoYlVLKEbEyIib1eNw1yObsIkmSJKkxGt5nGu6NrMcj4tqI+ExEvCki1h3RqKTR758pN8f7S6x066KUyHrbgVe9f6wmJV9NuWk82LXoLoP0z7Nmzt2g0UG1yE7ASylJi4EkJfGxx66HnLltA+J4G+Um/VODtFtMKRN20EgHcOGdM15A+dl4gsHLSD4MbEdJCo05+21/3NrAAZTrPdiIlIeATYDZjY5Larhs0TZ+nAXsAHyL0mn4QUQcGBEmZ1vnFMqs5pU9Hg+2fbL5YUqSJGlUsM/UaA3vMw13wfnjKYskvxs4AsiI+APwK+AK4IrM/NvIhCiNSq+izFoZSimlxynlfmYAv25gTK2yJ6Xs1/IhtH0c2JhyE/3HjQyqRfakJDUeGkLbJyk30fcE/jhSAVQlwV7DM+u8DOZpYO+9X//pKZdf/LGlIxUH8ErKejv3DqHtUmBdyrUYi78juwDrUGZ2DWYF5fdpL8bm74ikEZKZc4A5EfFySlL9LZRE7tMR8X/A94CfVYuqqwky86SBHkuSJElqnmb0mYY1cyUzT8/Mf6bcDNsR+DBwC2U0/zeBuyJizC/grXFtOkNLrEAZvdjJM4vcjzXdC9YPRfeo/bFavqTe73EO4zmDWY2SOB9qmZFG/XyuTvl+1zMmYiz/XHQw9L8ZSVmzR5IGlZm/ycyjMnMLSmL7q5Rk9Q8ZWlJXDWIpZUmSJKn1GtlnGu7Mle7AErilmrVyC3ArcCiwDbD5qry2NMo9TrkhPRQTKDdV+1v7ot09zdBvoHcndAcrV9WunmboiSaqtiP9c7GEkjCZMsT2jfr5fJry/Q6G/vMxln8uapS/GUNJsASlnJrU3jLK1uxzjmOZeXVEPEQpT3kEJmpb7fGIuIFqZj9wZWYOVkZVkiRJ44V9pqYb6T7TcBe0XzMi9ouI0yLiCsqN5gXAW4H5wNspC1dLY9UvKTeMh5JgmU5ZqPrGRgbUQldQbhhPGkLb6ZS/F1c3NKLWuQJYBgxlpOo0SjmsX41kAJdf/LEa8HPKDJahWB24fIRLggFcSUkqTBtC2ymUclhXjHAMo8V1wCOUn//BTKT8Po3oz4WksS0iXhARx1Y38v9AKeF7LfCe1kY27h1PeQ/4buBHlDrPv4+Ic6pFNe0vSZIkSU3QqD7TcBe0fxj4CTCTcpP0rcD6mfnSzPzPzPxeZg6lzr7Urn5KWVdj3UHadVKSDt+7YPdzFjc8qtb4BXAXsN4g7TooN/J/On/BnAcaHVSL3ADcDKw9SLug3Gi/8przj/xTA+L4HmUNnMHKbE2lzHL57kgHcMCWN95F+dlYk8Fn86wL3MYYTbpdsvC0R4ELKdd7sP+761HWqbms0XFJjRZAZJO3Vn/RTRQRz4uIIyPiOuAO4FTKAIb/BDbJzNmZ+dWWBjnOWUpZkiRJA7HP1FjN6DMNN7nyNOWm8YY9tvVXJRCpnVyw+zmPA5+hzF7pL8EykbJ4+x+ArzUnsuabv2DOcuA0SjmqDen773Qn5Vr8DTinedE11zXnH5nAf1H+UG9C39eig3ItHgLObFAoV1MWQ59O/wmWqZQk0M+AyxsUx2cptSs3oe//NwFsBDwJnHbAljfW+mgzVpxLSUJuQt8lOQPYgJIUm3vJwtNGeiaRpLHnr8CnKTP/Dgeel5kzM/PLmflga0NTT1ncQvlf8N+U90K3U/72W0pZkiRJaoyG95mGm1xZG5gBnEUp53IK8IeIuD8ifhgRH42Il41EgNIo9k3gU5SR/5tRRpxPo9zQ3oSScLwVePcFu58zVmdqADB/wZyfAR+jrJnR/bVPo8xa2JiSdPkz8O75C+b8uVVxNsM15x95NSUD/hDlWmxIuQ5rUhIJGwOLgPdcc/6RNzcihqo02DHABZQkyqaUv9vTqo+bUpIuPwGOuPzijw11ofW6HLDljQuB/wD+Tvm6N+KZa7EB5fo8Bnz0gC1vbFSCZ1S4ZOFpfwPeCfyJZ772NSnfk/Up35MlwPGXLDztwhaFKam9HA1skZmvzMzPZ+Z9rQ5Iz2YpZUmSJKmlGt5nirIm/Qi8UMSWwGuAj1IWtM/M7Gt07qgSEWtSOjrTM9MFhFW3A696/7bAgcCbKTesE1gIfBu4+ILdzxmrC9k/x6yZc7cA3kK5abA25Vr8BTgf+Mn8BXMea1lwTbbrIWduDBxAuXGyIeVa3Ee5Fhddc/6RDU+47f36T3cArwTeBszimcXrf0kpBfarKhHTUBfeOWNdYH/gEEoiMijlJb8D/PCALW/8e6NjGC322/64NYE3UK7F1jyzeP33gR9csvC0O1sYntrYaHo/0x3L8/7rlBs7p05t6oy0rsWLO/527AkzGAXXQYqIFdWnv+XZi9o/2rqohm80/Z2RJEmq12h6L2OfaexYpeRKRKwO7A7sCewF7EKZybISuDEzXzESQTbSaPrFUns78Kr3d1CSK8sv2P2ccV3SZ9bMud3rq3QBS+YvmDMyWdw2tOshZwblWiSwuCod1nR7v/7TEymzWBZffvHHVgzWvhEuvHNGAKtRZk0uHuNlwAa03/bHBeX/5UTgqUsWnjZur4VGxmh6P2NHQSoi4jHKLMW7eCa58qvMbMR6aw03mv7OSJIk1Ws0vZexzzR2DGtmSUR8hpJM2bF6jcXAtZQaZlcAV2fmWF28W+rTBbufU6OMQB/35i+YU6OsozHuVcmUp1odR5VQebyVMRyw5Y1J+X8x7l2y8LSklAFb0upYJEkNszbwT5SBaHtSSilvFBEPAlfyzEyW37YuREmSJEnDNdyyXe8Afg18j9IpuCEzV45YVJIkSZLUxrKUCLi52r4IzymlvD9lZuuoL6UsSZIk6bmG9UY+M9cf6UAkSZI0dkSWrdnnlEabwUoptzA0SZIktZB9pvbnKClJkiSpzUTEpMxc3uo41D9LKUuSJEmt04w+k8kVSZIkqf0siogfAN/MzCtaHYz6ZCllSZIkqXUa3mcyuSJJkqSRl1G2Zp9z/PgB8Gbg3yPib8C3gPMz87bWhqVullKWJEnSgOwzNVrD+0wdI/VCkiRJkpojM98DbAS8BfgtcCRwa0T8NiI+EhEbtjRASZIkSWqhZvSZTK5IkiRp5GWLtnEkM1dk5o8y8y3AhsB7gMeBM4G/RcTPIuLgiFitpYFKkiRJei77TA3X6D6TyRVJkiSpzWXmE5n5VeAY4EeU8r/7Uqa+L4qIMyJi9VbGKEmSJEmt0og+05DWXImIE+oNFsjM/OQwnidJkiRpiCLiBcAh1bYN8DDwReAbwHLK6KwPAy+k1ByWJEmSpHGjUX2moS5of1IdsXZLwOSKJLXQzNmndwAvB/YC1gCeBq4Erlkw75haK2OTNMa1Ysr5OJriHhHrAm8D/hV4BaVD8H/Ax4BLMnNlj+YfrBZwHM6AKUmSJEmNYJ+poZrRZxpSciUzLR8mSW1m5uzTdwc+DrwYmET5FxrAB4HbZs4+/bQF8465vIUhSpKG7z7Ke/mrgQ8A38vMxwZo/3vggSbEJUmSJEmjQcP7TEOduSJJaiMzZ5/+Gsr0xunAI8CSHodXA/4J+MrM2ad/dMG8Yy5uQYiSxrjIsjX7nOPIacA3M/POoTTOzP+jjNJSg1hKWZIkSfWwz9RwDe8zmVyRpDFm5uzTNwTOAqYB9/TRZEm1fyPgjJmzT//dgnnH3N3EECVJqygzT2p1DHqOk4bxHEspS5IkSQ3QjD7TsMt9RcQ/RcS5EXF9RNwREX/utQ0pIyRJGnFvBtYH7h+k3f3AOsBbGh6RpPEnW7SNIxGxZkQcGxGXRcSNEbFLtX+diDgiIrZqdYzjSWZ2DGPrbHXckiRJahH7TA3X6D7TsJIrEfEq4DrgDcC9wAuBP1efPx94CvjVqgQmSarfzNmnB/B2YCUw2IL1SVnM623VwveSpDYREZsBNwKnAJtRyj2uAZCZjwDvBT7UsgAlSZIkqYWa0Wca7s20UyjJlG2Bd1X7TsvMPYDdq2C/vyqBSZKGZQqwIc9eY2UgSyizV9ZsWESSpEY4g1L+cUdgbyB6Hb8IeE1zQ5IkSZKkUaPhfabhrrmyE3BiZj4REWtX+zoBMvPaiPgfSu3gS1YlOElS3bpnq/T+hzHU50nSyGjFlPPxNcV9NnB2Zi6MiHX7OP5n4HlNjkm9RMQ/UUbD7QRM57mD2zIzt2x6YJIkSWo9+0yN1vA+03BnrqwEnqw+fwxYAWzQ4/ifge2HH5YkaTgWzDtmGfBXYOoQn7I6sIhSzlGS1D5WAx4c4Pi0ZgWivllKWZIkSWqphveZhptcuQPYGspQK+APwL/0OP56ys06SVLzfZvy932wRXK725y/YN4xzlyRNKIiW7ONIwuBvQY4vj+lvrBax1LKkiRJ6pd9poZreJ9puMmVnwFvj4jusmJnAQdExO0RcTvwRuB/ViUwSdKw/Rj4G7AR/ZcHi+r4fcCFTYpLkjRyPgscFBHHUMpNAXRExFYR8U1gN+DsVgUnoJQC+2pmPgF0Vfv+UUqZ0l/6ZItikyRJksa6z9LgPtNwkyufBF5K1UnIzK8D/wbcCtwMvDszT1+VwCRJw7Ng3jGPAB8A7gc2pSxW3zPJMq3a/zDwwQXzjnmg6UFKklZJZn4LOAE4FfhTtftS4I/AQcBxmXlRa6JTxVLKkiRJUos0o880rAXtM3MF5aZcz33fAr61KsFIkkbGgnnH/Hbm7NMPBo4AXgVsQlm0vgNYDFwMfG7BvGNuaVmQksa2jLI1+5zjSGZ+qhpx9WZgK8rf+DuBCzPzzy0NTtCrlHJEdJdSPr86billSZKk8cw+U8M1us80rORKt4joBHYGtqh2/QW4ITO7+n2SJKkpFsw7ZiHwHzNnn/4CYE9gDeBp4NcL5h1zR0uDkySNiMy8G8t/jVY/A94dEXMycyWllPJ5VRllgC2BOS2LTpIkSRoHGtlnGnZyJSLeCcylTG3vTnkl8GBEHJeZ/9+qhydJWlUL5h3zF0ryW5KaJ6ut2eeURo9PAp+jRynliOiijJrrAj6VmV9rXXiSJElqKftMbW9YyZWIeC9wDnATcBLP1CzbFngvcG5ETMrML49AjJIkSdK4FhE16u8KZWau0kx1DZ+llCVJkqTmaUWfabhPPAa4AnhN1WnotiAivgr8AvgYYHJFkiRpHIosW7PPOYadguPM2kpE/Bn4aGb+pJ/jbwA+n5kvbG5kkiRJGg3sM424pveZhptc2Qg4s1diBSgjtCLiu8CnVykySZIkSQBk5kmtjkF124Ky3ll/1gCe35xQJEmSpLGtFX2mjmE+70ZgmwGOb0MpGSZJkiRJ49VAI+deDjzWpDgkSZIkjbDhzlz5EHBxNdX9fzNzCUBErAa8D3gr8LqRCVGSJEltx8UZGy4i1qeU630dZZYEwF3Az4AzMvP+1kQ2fkXER4CPVA8T+GxEfKqPptOBtYBvNyk0SZIkjTb2mRqu0X2m4SZXvgZ0AWcBn46Ie6v9m1SveS/w9Yjo+ZzMzJcO83ySJEmSKhGxAzAf2AC4FrigOrQNcARwaETMysxbWxTiePUA8Pvq8y2Ae6qtpwSeBq4H/rtpkUmSJEnjSDP6TMNNrjwCPAzc3mv/XcMNRJIkSWOHizM23JeATuAVmfmbngciYhfKSKwvADNbENu4lZnfAb4DEBELgFMzc35ro5IkSdJoZJ+p4RreZxpWciUzXzXcE0qSJElaZbsAp/XuJABk5nUR8TlgTvPDUrfMNLElSZIktU7D+0zDXdBekiRJUus8ACwd4PjSqo1aKCLWjIhjI+KyiLixGiFHRKwTEUdExFatjlGSJEkaoxreZxpuWTAiYk3gA5RpMxsA760yPusA7wR+kpl3rEpwGv12e/uZ6wNrU34Y77n6O0d2tTikltnq+6euA6wLLAfuu+Otxy9vdgz77nhCJ7ApMAV49NKbTnmw2THo2bY6/ew1gA0p9dUX3XHM4YtbHJIkNc/4mnLebJ8FPhQR38rMRT0PRMQmwPurNmqRiNgMuBx4HqWc8ouANQAy85GIeC/wfOAjLQtSkiRJrWWfqZE+S4P7TMNKrthRGN92e/uZHcBrgbcDrwQmAjXgrt3efua3gR9e/Z0jH21hiE2z1fdPDWBP4G2UazKR6ib6Vt8/9TvA9+946/H3NzqOfXc8YR3gzcAhwOaUWWkr9t3xhCspdb9/fulNp9QaHYeesdXpZ+9A+bk4AFi92v3EVqef/UPgu3ccc/ifWhacJGks6ACeAu6IiB8B3YOatgb2rx53RMQRPZ6TmXl2U6Mc384ApgE7UkbE9R4VdxHwhuaGJEmSJI0bDe8zRWb96bGI+A4wC3gVz3QUXpOZv6iOnw68ITN3qPvFm6yagfM4MD0zn2h1PKPdbm8/cxLwacqN/E7KD+hyyg/rmtW+24DDrv7OkXe2Ks5m2Or7p3YAxwPvBiZTrsUyyrWYRkm03AW89463Hn9zo+LYd8cTtgLOBbalJLmeqD5OoiQ9u4DvA3MuvemUps+mGY+2Ov3stwGfpPwcLKk2gKmUWUWPAcfccczhP2lJgJLGnNH0fqY7lhced+qNnatNbWpiv2vJ4o4/n3b8DEbBdWi0iBjOtc3M7BzxYNSniHgYODszT42IdYEHeXaf6b3AGZm5ZivjHKrR9HdGkiSpXqPpvYx9puZoRp9puGXBZlM6CgurjkJvf6bMatHYcwJlNP7jlGRCT4spP1PbA1/Z7e1nvuXq7xz5cJPja6YPAe+lfN0P9Tq2mJJkeT7wla2+f+qb73jr8XePdAD77njCesBXKYmVRcDKHoeXUhIta1BmGS0GPjHSMejZtjr97H2AuZTfhXt6He5OsmwEfGar089+9I5jDr+imfFJksaMF7Q6AA1qNUpCpT/TmhWIJEmSNA41vM803AXt7SiMQ7u9/cxtKDfpn+K5iZVuK4H7KKXiDmpSaE231fdPXZ9Sl285JdHUlxrlWjwPeFeDQnk7sE11npX9tHkKeBo4uJrlogbZ6vSzO4CjKH8jB1oQaxFlptfhW53+/7d352FyVWXix79v9ZLOzr4bQXEU3AK44Y4IBFxGFEVxhVEGlUECOBCWCGGJuBBRR0dRUdQfghtuEHZExqBsERFcEBDZ9wSSdKe76/z+ONXSNN3pru7a+/t5nvt06tapW2/f6rq5733vOWdJ1CI2Saq1SPVZJouU0j/Gs9Q77knmZuC163j+bcANtQlFkiRJjcacqbpqkTONt7hiojA57UOeO2KkYsKAfvKF/v1Kw4i1or2B2cBoc8sUyb0V9tn23JNmVzKAeXMXdpKLK33kfb4uK8if3TsrGYOe5lXkXkRj6bH1KLAjeRx2SZLUer4AvDsijiSfN0Ie03nbiPgusDPgHDiSJElSkxrvsGBfAL4TETcCPyytK0TEtsCnyInCOyYenhrM64DeMbZdCWwJPJs8B0ur2bn0cyxj960ENgReDFxZwRieA2zB6MWuAb3koujiCsagp3op+bjaPYa2q8gXWl6KxWhJ0jhExIvIw5TuSP4/ZeiNUyml9OyaByYAUkrfi4hnAicBJ5dWLwWCfA55dErpvDqFJ0mSJLW8audM4yqumChMWtMZvYfEgH7yH+vU6oVTVwMTxY/FwL7oqnAMU0vbHevkTP3kz1DVMxUop4NlonW/I5KkKoqI15PPvx8FrgV2AC4jn2/sDPwJuK5O4akkpXRyqZfKO4Btyedufwd+klK6ra7BSZIkSS2sFjnTeHuumChMTg8z9omAOsjDVY21V0WzeQhoG2Pbau2LFeSCSTt57pexxDGW4ao0fisY+3CLUWrbqt8RSVJ1LQJuA14BdJLn+jolpXRZRLwcuAA4so7xTVoR0QX8O/m8+WHglyklh/+SJEmSaqvqOdO4iysAKaU7cZzgyeR84GWMrbfEbOB68h9wK7qYnDS3M/JE8gPWA/5J5Yd++jt5/qMdgNWjtC2UlvMrHIOe6jLgMHLPpidGaTuLPDTYZdUOSpLqIlFeX75KvefksSPwqZTSyohYv7SuDSCl9LuI+BpwIjlhUI1ExCbAb8mFlSitXh0Rb0spXVK/yCRJktRwzJmqreo503gntH+KiHheRBwXEV+JiEMiYlYltquG81PgMfL8IevSRf6qfn/Z2Ye36ld2KXAPsPEo7TrJX9qzb33XsWPpXTL2AJYvKgLfJ+/r0YYc24jcBe68Ssagp7r1yPk3A78jF9RiHU0LwEzg0luPnH9nDUKTJLWePuDx0r8fI8+ttsmg528Dtq9xTILjgK3JN6C9GTgUWAN8rX4hSZIkSZNS1XOmMRdXIuLgiPhrRGw0ZP1bgOXACcBB5Mnurx/aTs1v2dmHPwB8uvRwY4a/eDydfCH/MuAnNQqt5m5917GrgePJE5dvxvDfpankL+y1wHeqFMqPgcvJ+3y4+VSC/Fkl4NNLly96sEpx6EknAfcDWzB878AOYHNyb6bP1DAuSVJruRV4DuQZGIE/A3sPev5NwH11iGuy2x04K6V0RErp/JTSF4GDga0j4rl1jk2SJEmaTKqeM5XTc+WtwN9TSg8NrIiIduAb5Hkf9gdeCBwFPBM4ZiKBqWGdRS6kdZMvHm8KbEC+uL8lMA34FfDxZWcf3lOvIGvh1ncd+0vyEFCPkS+Wb07eFxuS98Us4DfAh29917ErqxHD0uWLeoCPkff5tNL7blSKY1PyZ9QNfAr4bjVi0FPdeuT8P5GPh3eQi2tbkD+PDUr/3gj4K/DBW4+c//c6hSlJVRepPsskcj7wntL5OMBpwNsj4m8R8Tfyubu9JWpvDnDVkHVXkW942bT24UiSJKlRmTNVXdVzpnKKK9sDVw9Ztwv5rvglKaXvpJT+lFL6DHAusNdEAlNjWnb24WnZ2Yd/C3gDsJh8kXglucr3feCdwIeXnX14VYoJjebWdx37M/L3YCFwI3lfPEjutfNe4N23vuvYB6oZw9Lli1YCHwHeBfw/8mexEvgLcAqwy9Lli769dPmiyXX4rKNbj5x/PbArcAjwf+QC3KPAr8nFsHmlIcQkSRqvE4EXk29yIqX0HeADwE3AH4ADUkqn1i+8SWsK+caWwQYeT2i+S0mSJEllqXrOVM4J/obkYWwG25U83NBPh6z/P+DtE4hLDW7Z2YffDXyxtExqt77r2AeBM0pLXZTmX/ldaVEDuPXI+auBH5UWSZp8nJyxqlJKvcDDQ9Z9D/hefSLSIFtHxI6DHs8u/XxORDw2tHFK6fqaRCVJkqTGYs5UVbXImcoprtxPnltisNcAq8mVnsHWlhZJkiRJmkxOLC1DfWXI4yCnt21Vj0hS1b12j5M7Unt8NBXipQRtFNOdhb50+pVLj7m33rGNx55HHxz9T7QdWVg/3kQbU1nLw8WHiidf9L9fvLLesak1XX/nnOnkm7i3JN9lfitw5Y5z7uyra2CStA7lFFeuBT4YEV9KKT0eEc8HXgb8LKU09ED3POCuSgUpSZKkJuNdWFUXEXsA/wE8C1iffLF+sJRSenbNA5vc9q93AJJq67V7nBzFjvhC3+yO9xc7CrOIJ4/F0Zc+8ap/X3xlW0/xfVcuPebBesZZjj0O/8TpHS9oO7Brs/6uaHvyP9fi2sJue51+6AN9t6QPXPS/p19UxxDVQq6/c85U4GDgPeSbuhP5nKYfuO36O+d8E/jejnPuLNYvSqlKzJmqrto5UznFlROAa4C/RcSfgJ3IH8fiYdruDVw23qAkSZIkjSwiPgl8mty7/PfAH+sbkeBf4zhLmiReu8fJ0d9VuKB3RscbIRHFYm8kigAJIhWio3dmxxuLHf3Xv3beyS9rhl4s844+9Lxpu/a/NdpTFHsiFdcU0kBHu5iSomv73k37Nms7f/ePfeLdF33ldIdA1oRcf+ecacA3yHPZ9gAPAAM3cE8Bnk2eS/ZZ1985Z5EFFknlqEXONObiSkrpjxHxBuAYcqXnauBzKaXrBreLiNeThwr7YeXClCRJkjTIJ8g3M+1VGktYk0xEfBz4JPku3z8A/5VS+v0Ibd8OHA1sC3QAfwM+n1L6bo3ClVpSsSM+3Tuj442RUjGKTz0WB6QoprUppUJ/V9sW0Z9+Sb5JtWHtfsgnDpu2e/GtFIj+JwrFp97cG6SeSP1rU2rfoL9tys7t39/9wEPOv+jrX1xdt4DVCo4hF1YeBrqHPNcD3AfMAj4M/BX4fzWNTlKzq3rOVCincUrptymlN6WUtkspzUspXTJMmytSSi9MKdlFVJIkaZKKVJ9lElkf+JGFlckpIvYFTiOPLrAjubhyYURsMsJLHgFOBnYGXgScCZxZGiZB0ji8do+To39q24cIYmhhZbBIFKOY+vuntr3wNfNOfkktYyxX+zYcXphSjOLqGFJYGSQF/asLqX2T/s6YFZ+rbYRqJdffOWcT4B3kG7SHFlYGW0n+g9z/+jvnlHUdU2p05kxVV/WcyYOSJEmS1Hx+Dzy33kGobg4DzkgpnZlSuhk4iHxx6oDhGpdugPtpSumWlNLfU0qnAzcCr65dyFJrSW3s199Z2DD6i6NfsCmm3lSItmJn4cgahDYuux94yIs6ty1unnojjVhYGdAfKSLRvk3sW5vo1KLeBswGVoyh7aPk855XVDMgSS2n6jmTxRVJkiRVXqrTMnl8DHh7ROxX70BUWxHRSR5a6F+jCKSUiqXHO4/h9RERu5ITzSvX0W5KRMwaWICZEw5eaiGpEDsQEST6R2s7UKpIbfGsKoc1fl3xxuhIUewdpbBSkvpJbRsWZ1U5KrW2rUs/xzKPSjd5WMttqhaNVA/mTNVW9ZypnAntJUmSJNVBRNw4zOp24LsR8VXgLnjaBb6UUnpx1YNTrW0EtJEn5hzsfuB5I70oImYDd5MnCO4HPpZSungd77MA+NTEQpVaWts4XtPIN7g2cmxqTeX+zSXG972TNEnUI2eyuCJJkiQ1vkd4+n1mD5MnJpfG4nFgLjAD2BU4LSJuSyldMUL7xeR5XQbMJCekkoAocguJRNA2Wu+VgYN39KfG/Q51p/9LfZGiPZH6R++9Em1EcUU4mb0mYuD7EIx+L30nuYdL436HJDWCmudMFlckSZJUcfWYLLGVJ2dMKb2+3jGoYTxEvuNu0yHrNwXuG+lFpaHDbi09XB4R25F7p1wxQvseoGfgccTYhgqSJovoT2cWeoufLnbErOhP6x4aLKIjiqlY6C2eXqPwynbR17+4bK8vHfpI1/N6N+zvSeued6WQIhH03ha/rF2EakE/Bw4FZjH6vCvrA3cAv6luSFJtmTNVVj1yJosr0gS9aP6SAvByYE9yUtsD3AScd+OS+Q/UM7bJatdXLNw0tbcdldoLr03B9EisiN7+X0V/8fOXXr1oVb3jkyRJGq+U0tqIuI7c++Q8gIgolB5/uYxNFchDhEkahysvPKb31W9Z/MO1nR0fTpHaI9E3XLsEkdqirX11362/ueCYS4Zr0yj6b0tfS8+OowtdKYrdI11+SxSmF6P/kba+9Ejx47WNUK1kxzl33nn9nXOWAvsAq4HeEZpOI/+fddaOc+4cqY0k1YVjakoT8KL5S7YHfgH8ADgQeCvwLuAE4MoXzV9yzIvmL+moY4iTyq6vWBhveM0JX+ub3XV736wph/RP65hbnNrxnP5pHS/pm931qf5ZXfe84VXHH1XvOCVpUnByxqqKiLkR8Z4h6/aIiCsj4ncR8Yl6xaaaOA34SER8sNQD5avAdOBMgIg4KyIWDzSOiAURsVtEPCsitouIw4H3A9+rR/BSqyisLR7cvqpveWortBfbonNwd48EpEJ0pPbClEJP8bH21f171zHUMblwyenHrLm2/fcUiML0YoG2NKj7SiI6itE2s1goPlEodl8Vn7zojC8+Vrdg1SoWAteTb1Rdj6d2mWojzzO2Pvlmgm/VODap+syZqqoWOZPFFWmcXjR/yQuA7wM7Ak+Qx/68u/TzXvKYoB8HPvei+UucdK0GUmfb2X0zp/wHbYVO+os90V/sHlgoFtcW2wsz+mdNWfSGVx1/fL1jlSQ1hoj4eETcERHdpRPsl43S/p0R8edS+z9GxF5Dnn97RFwUEQ9HRIqIucNsoysi/qfU5omI+HFEDB3iaTSfAfYdtM1tgJ8C25RWnRYRB5a5TTWJlNI5wBHAImA5eS6VeSmlgUnu5wCbD3rJdOArwJ+A/wPeAbwvpfSNGoUstaQrLzymt311/ys7Vvb+NPrpTe2FKcX2QlexvdCV2gtdAO2r+v7Y+XjvzlcuPebmesc7FksXfuHla65s/2X/ikJ/oStFYUZ/oTCjv9A2o1iIdmLtP9pXrbm0cNBFXzr9C/WOVc1vxzl3PgK8D/h/5DlVthi0bEoeLuzzwKE7zrlz2N5hkmqjSfOmqudMDgsmjUOpWPIFYDPgHp5e9y2SJ1GaTk5erwbOrmGIk84bXvmp/fpnd72DlBLFtHboCMGRKKb+YjdthSn9M6cctevOnzr30mUnNEWCI0lNqR53RZX5fhGxL7kHwEHA78jjfl8YEc9NKT1taM+IeCX5//MFwC+B/YDzImLHlNJNpWbTgauAc4EzRnjrJcCbgHeSLxp8GfgJ8Koywn8x8NlBjz9Anodjh5TSQxFxTun3+noZ21QTSSl9mRGGARs63nRK6Vjg2BqEJU06V154TA+wz2vnnbxpsT2OSm3xfKA9itwTvcUv/GbpMdfWO8ZyLT3lC2/Z/SOHzIz1279Q2IDXRBudqYfH+u9PX7/oS6d/pd7xqbWUCiyHXX/nnM+Rz482J5/T/B04f8c5d66sZ3xSVTVBzgRNnTdVPWeyuCKNz2uA55InFF3XYWkVMBt434vmLznnxiXzi7UIbjJKnW2HpIgC/cXukdoEkPqLPbQVulJ74WjyHTKSpMnrMOCMlNLAUEoHkU/eDwA+PUz7TwBLU0oDJ+jHRcRuwMHkk3JSSt8tbWvr4d4wImYD/wHsl1K6rLRuf+CWiHhFSunqMcY+G3h40OO9gItTSg+VHl9Mng9OklQDVy495n5gfr3jqJSLzvji4+T/r6Sa2HHOnfcw8gVWSfXVrHlT1XMmhwWTxuct5OJkzxjaPgY8H3hBNQOazHZ9xcKNi10dO5BScWiPlaEiL6nY1e4FJ0maxCKiE9gJ+NfkwimlYunxziO8bOfB7UsuXEf74ewEdAx53z8Dd5a5nXuB7QAiYvPSdi8a9PwMck9aSZIkSRqXJs+bqp4z2XNFGp+tyN3IxqKbPDFbuWOpa6wink1QoDi2zySlVKStMGPXVyyMS69eNImm8pKk2omUl1q/Z8nMiKeU23tSSkNviNiIPFHq/UPW3w88b4S32GyE9puVEeZmwNqU0mMT3M7PgP+KiC7g5eQbPn466PkXA7eVsT1JkiRJNdQEORM0d95U9ZzJnivS+Kxl7N+fIA8d5uRr1ZMP/sFoHVcGBImihRVJall3kcfkHVgW1DecqjiWPN7w+4FNgA8NTGYeEbOAfXjqXVmSJEmSNMCcqQI5kz1XpPG5CXjjGNvOIM+98pfqhTPJpXQz/WlNtBem0Z9GL2JFFKK3754aRCZJk1d9J2fcCnh80DPD3YH1ELkX6tCepZsC943wDveV2X6kbXRGxHpD7sIqazsppSeA947w9BPkfbC6jLgkSZIk1VLj50zQxHlTLXIme65I4/Nj8pdv1hjazgQuunHJfC/mV8mlVy/qaevuvWAsvSlT5ONeoafvOzUITZJUH4+nlFYOWp6WKKSU1gLXAbsOrIuIQunxshG2u2xw+5Ld1tF+ONcBvUPe97nAnDK3M6KUUjGltCKl1FuJ7UmSJElqOaPmTNC6eVOlciaLK9I43Lhk/q3Ar8jFlSnraLopsBL4dg3CmtSit7go+ordtBW6RiqwJAgKhc7C2v5Hor/4+ZoGKElqRKcBH4mID0bEdsBXgenAmQARcVZELB7U/nRgXkQcHhHPi4jjgZcAXx5oEBEbRMRcYPvSqudGxNyI2AwgpbQC+CZwWkTsEhE7ld5vWUrp6mr+spIkSZI0DuZNI7C4Io3f0cDlwIbkIkpnaX2Qiy5bkSezP+rGJfOvrUuEk8ily074U9sTPQdGf7GHtkJXKkTHQO/KBJEK0UlbYUqht39F26q1b7n06kWr6h2zJLW8VOOl3PBSOgc4AlgELAfmAvMGxuEl3xW1+aD2vwX2Aw4E/kAeo/dtKaWbBm32rcAN5JswAH5QenzQoDbzgV+Se8JeSe7W/vbyfwNJkiRJTa3BcyYwb1qXSGlyz+dcmrxmBTA7pbSy3vGoubxo/pKpwAHkA8YcoKP01CrgCuCMG5fMb5hq6mSw686fekNxSvuni13tL06FaCfI1ZX+tLbQ3ft/hbX9h1y67ISb6x2nJFVSI53PDMTy3ENOuqGta1qxlu/d37268JcvHrsDDbAfpFbTSMcZSZKkcjXSuYw5U+twQntpAm5cMn8N8D8vmr/kDOAVwEbAWuDmG5fMv62uwU1Sly474TLgZbvu/KntUyHeQTCLxEPRXzzr0qsX3Vvv+CRpsoixTIRVhfeUJEmSpGZgztT8LK5IFXDjkvlryd3T1CBKvVPsoSJJkiRJkiSp4pxzRZIkSZIkSZIkqQz2XJEkSVLlTWDCxAm9pyRJkiQ1A3OmpmfPFUmSJEmSJEmSpDLYc0WSJEkV5+SMkiRJkjQyc6bmZ88VSZIkSZIkSZKkMthzRZIkSZXn+MGSJEmSNDJzpqZnzxVJkiRJkiRJkqQyWFyRJEmSJEmSJEkqg8OCSZIkqfLs4i5JkiRJIzNnanoWV5rUvLkLNwGeBbQB9y5dvui2Wsew+84nFoDtgfWBbuCWi5Yd90St41DjOeLbH3hdW3v/dqTo7ettW/b5A75zc71jqpd5cxfOAbYqPbxj6fJF99QzHkmSJEmSJEkTZ3Glycybu3Au8EFgT2A6EMDaeXMXXg18D7hg6fJFVa1B7r7ziVOAfYH3As8l/x0l4OHddz7xh8B3L1p23J3VjEGN59Bv7B/TpnUft/7GKw947guf2LJQKAZAX19b/ym/fNsfH3tk5qmf+cB3f1jvOGtl3tyFrwM+ALwO6CqtXjNv7sJLgO8uXb7ot3ULTpJqJOodgCRJkiQ1MHOm5uacK01k3tyFewPnAO8mFzQeAR4C1gKvB/4XWDhv7sKqfa6773ziDOAMYDHwAmBVKYZHgfWA/wJ+svvOJ+5QrRjUeA79xv5tG2684vJnP+/uhRtuvOIZxf4o9nR3rF3b3dEbpNh8q4d22Ha7f37/6LPfs7jesVbbvLkLY97chYcA3wb2Aork78hDpSZvA747b+7CA+oSoCRJkiRJkqQJa6jiSkR8NCJujIiVpWVZROw5ymveGRF/jojuiPhjROxVq3hrad7cha8EPgNMA+4GHgN6gT7gCeAe8tBcBwIHVSOG3Xc+MYDPAruRiyn3AmtKMawlXzy+B9gS+PruO5+4ZTXiUOOZvf4TZ28558HX9PVHcc3qru6+vva+lAqpmArF3t6O3tWrp3S3tfcXtt723sOP/N57P1LveKvsXcAR5N5cdwMryd+RPmBFaV0bcNy8uQvfVK8gJUmSJEmSJI1fQxVXgLuAo4CdgJcAlwE/i4jnD9c4Il4JnA18E9gBOA84LyJeUJNoa+ujwEzg/nW0GbiI+5/z5i6cWYUYXgjMI18g7h6hTZFcdNkK2K8KMajBHPbND225+ZYPv6VYjGJfb0fv8K2C7jWdPR0dfW0bbrziqNpGWDvz5i7sIPfeaiP3LBvJQ8AU4JBq9jSTpLpKdVokSZIkqRmYMzW9hrqol1L6RUrp/JTS31JKf00pHUPulfGKEV7yCWBpSumzKaVbUkrHAdcDB9cq5lqYN3fhc4FXkYsao3kE2Bh4cxVCeScwlfyZrEuR3JNl3913PnFqFeJQA5k2Y83RnV1rO9eubR+hsDIgWNvb3r/+ho/P+eR33r97baKruV2ArYGHx9D2UWA7Rj6+SZIkSZIkSWpQDVVcGSwi2iLi3eRJ25eN0Gxn4JIh6y4srR9pu1MiYtbAQu4N0uheTC5qPD6Gtv3kuZBeVIU4diYXTcbicXKR51lViEMNZOq0tTtFQEqFUWvffb1tve0d/YXOKb2tWlx5Efm4OpbvyRry3EnV+K5KUt1Fqs8iSZIkSc3AnKn5NVxxJSJeGBFPAD3kCdr3TindPELzzXj6MFn3l9aPZAG5B8jActfEIq6JzjLbB3nIoUqbQu6VMhbFKsahBhJR7Bx7l8KABBF0VTOmOuqkvA6WifK/35IkSZIkSZLqrOGKK8BfgLnAy4GvAt+JiO0ruP3FwOxBy1YV3Ha1PEK+CNs+xvaJsQ1LVK77GfuF4E6gt0pxqIH09bWX5hYZvaYQUYxE0N9fuLfKYdXLI+Tjaoyh7UC7dc3NIknNy/GDJUmSJGlk5kxNr+GKKymltSmlW1NK16WUFgB/IM+tMpz7gE2HrNu0tH6k7feklFYOLIxtqK16u5Jc2FhvDG2nkXv9LK1CHD8nXwxuG0PbWcC1wJ1ViEMNZNXjU7/XXyyk9rb+Uf8uOjv7OrrXdPZ0r+n831rEVgcXAasY23CDs4CVwMVVjUiSJEmSJElSxTVccWUYBUYeWmoZsOuQdbsx8hwtTWnp8kVPAOeS90PHOpoGsAGwHLi+CqH8HHiAPJfKukwnz/3y/y5adpz10BbX09PxnZWPTX+oc0pfx7rK34UoFgptxcKD96336yX/8e2W7NG0dPmi24AryIWTdR1f24AZwK+WLl80dGhDSZIkSZIkSQ2uoYorEbE4Il4bEVuX5l5ZDLwe+H7p+bNK6wacDsyLiMMj4nkRcTzwEuDLtY69Br5CLphsSi5eDNUJbAHcCxy9dPmiihc1Llp23GPAMeSeMZvx9GHKgty7Zj3gJ8AvKx2DGs8XPnxmuvefGx3Y3d25duq0nq5CoX/IcSXR3t7X3jVtbedjj8x8cMUjMz9cn0hrZhFwO/n7ONzcMlOBzYE/A5+tYVySVFt2cZckSZKkkZkzNb2GKq4AmwBnkedduRR4KbBHSmlg2Jw55IuSAKSUfgvsBxxIHj5sH+BtKaWbahl0LSxdvmgF8EHgEvLF2a3IhZZNgS3JPVb+DHxg6fJFN1crjouWHfdL4BDgQfLntWXp52bki8kA3wA+edGy4/qrFYcay2c/+N2f3/7XLd/3xMppKzun9HVMndbd1dXVM6Vras+UadN7utpyj5U77rpjk1ef9h/fvrve8VbT0uWL7gTeC1xH7sGyJU/9rs4Argbet3T5ohGHMJQkSZIkSZLUuCKlyV2uiohZwApgdmkOloY2b+7CAHYA3gG8gNx75B/AecDlS5cv6q1FHLvvfOIM4E2lZWNgNfmC8Y8uWnbc7bWIQY1n/jf2n9o1recTs9d74n1Tpq7dJBWjf/WqrltXPjb9y2vXdpz7hQ+fOWkOOPPmLiwArwbeDmxLvjfgL8CPgd8tXb6oWMfwJLWYRjqfGYjl+R8+6Yb2rmk1Pdb1da8u/Okbx+5AA+wHqdU00nFGkiSpXI10LmPO1DqGDuukBlca7ut6qjOnyphdtOy4J4BzSosEwJIPn7kG+HRpmdRKxZMrS4skSZIkSZKkFtJow4JJkiRJkiRJkiQ1NHuuSJIkqfLqMVnipBl8UpIkSVLTM2dqevZckSRJkiRJkiRJKoM9VyRJklRxkfJS6/eUJEmSpGZgztT87LkiSZIkSZIkSZJUBnuuSJIkqfIcP1iSJEmSRmbO1PTsuSJJkiRJkiRJklQGiyuSJEmSJEmSJEllcFgwSZIkVZyTM0qSJEnSyMyZmp89VyRJkiRJkiRJkspgzxWNyy57nDoTeBOwF7AxsBq4GvjR5RceeXs9Y5MkSQ3Cu6IkSZIkaWTmTE3N4orKtssep74JOAnYFAigl9wL6lXAf+6yx6lnAydefuGRa+sXpSRJkiRJkiRJ1eGwYCrLLnuc+mbgi+TeKg8Ad5d+3lf6N8CHgc/tssepbXUJUpIkSZIkSZKkKrK4ojHbZY9T1wNOBqaQiyl9Q5ok4LHSsjfw5tpFJ0mSGkqq0yJJkiRJzcCcqelZXFE53krusfLgKO1WAW3AfrvscWpUPSpJkiRJkiRJkmrIOVdUjreWfvaPoe1K4CXAHOAfVYtIkiQ1pEh5qfV7SpIkSVIzMGdqfvZcUTk2BcY6Sf1aoAPYsHrhSJIkSZIkSZJUe/ZcUTl6GHtBrkAexa+neuFIkqSGVY/xfL0LS5IkSVKzMGdqevZcUTmWkXujjMVM8twst1UvHEmSJEmSJEmSas/iisrxQ6AbmDFKuwLQCZxz+YVHrql6VJIkSZIkSZIk1ZDDgqkcfwSWAm8D+siFlqEKwObAXcD/q1lkkiSpoURKRKptn/Nav58kSZIkjZc5U/Oz54rG7PILj0zAJ4GLgfXJRZSp5CJdJ7ARsAW5sHLg5RceeXedQpUkSZIkSZIkqWosrqgsl1945BPAR4CjgJuA6eSiynrAY8AXgXdcfuGRN9QpREmS1AhSnRZJkiRJagbmTE3PYcFUtssvPLIH+O4ue5z6fWA7ci+WHuCWUvFFkiRJkiRJkqSWZXFF43b5hUcWgT/VOw5JkiRJkiRJkmrJ4ookSZIqLlJeav2ekiRJktQMzJman3OuSJIkSZIkSZIklcGeK5IkSaq8ekyW6F1YkiRJkpqFOVPTs+eKJEmSJEmSJElSGey5IkmSpIpz/GBJkiRJGpk5U/Oz54okSZIkSZIkSVIZLK5IkiRJkiRJkiSVwWHBJEmSVHlOzihJkiRJIzNnanr2XJEkSZIkSZIkSSqDPVckSZJUcU7OKEmSJEkjM2dqfvZckSRJkiRJkiRJKoPFFUmSJEmSJEmSpDI4LJgkSZIqz8kZJUmSJGlk5kxNz54rkiRJkiRJkiRJZbDniiRJkirOyRklSZIkaWTmTM3PniuSJEmSJEmSJEllsOeKJEmSKi+lvNT6PSVJkiSpGZgzNT17rkiSJEmSJEmSJJXB4ookSZIkSZIkSVIZHBZMkiRJFefkjJIkSZI0MnOm5mfPFUmSJEmSJEmSpDLYc0WSJEnV4V1RkiRJkjQyc6amZs8VSZIkSZIkSZKkMlhckSRJkiRJkiRJKoPDgkmSJKniopiXWr+nJEmSJDUDc6bmZ88VSZIkSZIkSZKkMthzRZIkSZWXqP3kjE4GKUmSJKlZmDM1PXuuSJIkSZIkSZIklcHiiiRJkiRJkiRJUhkcFkySJEkVFykvtX5PSQLYc7sFGwBvBXYH1gdWAb8GfnzBLYvvqWdsgm1PXdIGvAZ4O/BsoAj8Gfgx8Ptbj5zfVNPtvvotp0ZhbfG0/q7C/qm9MJOA6E+9hZ7+3xR6i/v9+uJjHqx3jOX6/C/2Pm3Hbe792DNnPjGlI4qsLralmx7Y8OGb79zk3cftc+6l9Y6vXDv+x+c+0jctPt8/NWYSQIK27rSqfVX65PXfPOKr9Y6vXHsd88mNmVk8KjYs/jtT0mz6WcuKwo3p0cJnzz/hc5fVO75y7bn90R3A64G3AdsA/cBNwI+A6y+4+RTP8ups110W/xuwD/BSoAu4D/glcMGlly9YXc/Ympk5U/OLlCb3Ho2IWcAKYHZKaWW945EkSSpXI53PDMTysrcuuqG9c1pNL471rV1d+P3PF+5AA+wHqdU00nFmXfbcbkEA+wFHARuRRxbvA9pKy0rg68BpF9yyuKku4LeKbU9dsi3wZeD55Bs++0pPtQNrgWuB/7r1yPlNUQR73W4nv653ZsfFqaPQMdzzUUypfWXf6VdeuGB+rWMbjxN/9K5n7vaC2/6+/azH29p4cjqAAgkIuovBhXdu+Y/9Xnnp1nUNdIxeOP+0iL60om9GqagyVIL21Wl1+5q0wfVfP6Kn5gGOw14nH3FU4Tm9xzE9dQFQJBFAgaCXYvpn+/Xpnrbdzz/lsyvqG+nY7Ln90c8HvgT8G/k4PXBM6AC6gWXAJy64+ZQH6hPh5LbrLounASeSC1/TyIWvIk/esH83cOSlly9o+KJeI53LmDO1DocFkyRJUuWlVJ9FmiQi4uMRcUdEdEfE7yLiZeto+5GI+E1EPFpaLllX+yb3AeBkYDb5rtp7gAeAe8kXgNqB+cBxpUKMamjbU5dsA3wPmEu+wHU3cH9puRt4AngV8L1tT12ySZ3CHLPXvfHkHXtndV6WOgodA1WIGLSQIBUiemd3HPq6PU75bL3jHc1nfvb2mW+Z+9fbXjjr8baUYE0RuosFeooF1hTb6C7ClELizVvf9cyzf7vrHfWOdyyimJ7om1kqrBQhBi0UgYC+6TGtb2o0RSFir5OPOKrw/N5FTE9drKaHVdHNmuhhdfTwBN2kSLFN30tiTt+yvY7+5NR6xzuaPbc/+nnAd4HtgEd56jHhLmA1sAvwnT23P3r9esU5We26y+JO4Ivkmxb6yZ/PfeT/Vwf+f90S+N9dd1n8hnrF2dTMmZqexRVJkiRJaiIRsS9wGnACsCPwB+DCiBjpYvTrgbPJF6h2Bv4JXBQRW1Y/2trZc7sFc4CjgSBf8Okf0iQBj5Av1u0PvLKmAQpgIbA1+aJc9zDPryFfuNseOKJ2YY1P/7T2C1J7FEj5j25otS6AUocPemd0HPbaPRYP27ulUTxj4xV/2nbamkJvgt5UYOglo0SB7mJeu8cz737miT/cd++6BDpGO37kc9/rmxbToFRQGfJ8lNYD9E2LKTse+Llf1TbC8ux1zCc3LTyn9zg6UhurciHlqS0C1tJLD72xVf9zY1bxlPpEOjZ7bn90kIvhW5CPCcP1HFpNLrTsABxcu+hUsg+wJ/n/zuF6OPSRP7sZwKmlXi7SpGJxRZIkSRU3+M7dWi7SJHEYcEZK6cyU0s3AQeQLUAcM1zil9N6U0ldSSstTSn8GPkzOBXetWcS1sQ8wC3holHYrgCnAvlWPSP+y7alLngO8lrz/1zUESh95jpy3bnvqko1rEdt4vO6NJ2/b39W2CTz9ov1gAwWW1B4Fgv+tSXDjcNXNL4uXbnH/M4JEX1rXpaICPUWYEokXb3PvN2sW4DisnVF410CPlXUq9WBZO6OwRw3CGreYWTzqXz1W1vVX1xf9BLBZ/7v3WvDJRu6h92LyDQKPksuQI+klF1732XP7o2fVIjDBrrssLgDvJf+xrRml+YPkHizzqh1XqzFnan4WVyRJkiSpSUREJ7ATcMnAupRSsfR45zFuZhp5LPtHKh5gfe1NvjA/lssGq4Dd99xugRfqamcP8t/e42Nou4JcKHtjVSOagNRR+OLAxOhjVZxSaNieHstu3eqkTTp76U2jX4tPFIDECzZ+pGGHaXrh/NOiOIUOWHfxa/DzxSm07XjA5zavbmQTsGHx3wGe3mNlGD30xgbFjehMu1U7rAnYgzwx+qoxtH0M2Bh4XTUD0lM8j9yL8LExtO0lf5XeXM2ApEZkcUWSJEmSmsdG5Al/7x+y/n5gszFu41TyMB6XjNQgIqZExKyBBZg5nmBrpTR/ykYMP6zMcNYCncB61YpJT7MBYy9FFEttN6heOBOTCrE5jH7hfnCbVIiu6kU0MdO61u5UAIpj/ISKBNPaho681zg6VhR3Kqv4NdC7JRr44n1Xmk1x1H44WT9FCgRtPLPKUU3EhoztKwRPDvPYsMeEFrQh+UaMtWNs38fYz0OklmFxRZIkSZWX6rRIWqeIOAp4N7B3Smm4OS8GLCD3HhhY7qpBeON2wS2LE/kC0Fhz3Hzr/dgvGmniyt3XMY7X1E7Kc8aU819PpDFeGK+D/v7CownGfqkb6B9DL5c6urus1v+qgJX5uloq0kuM8RMKonRuNJZeIfXSQ5lfIRr5mNB6Bj6fsf6/OpbhwzSUOVPTs7giSZIkSc3jIfIdvJsOWb8peSLwEUXEEcBRwO4ppRtHeZ/FwOxBy1bjira2fgdMHWPbmcDt5InvVRs3ki/pdI6h7VTyMDN/qGpEE1DoK5471rYD17Gir/iPKoUzYY89MfXTPcWgY0yX7ou0kbhr9dSG7bpy/beOuDf6GHuxKCD6oXd24apqxjUhjxX+SIEY05XRTtrpiV7WxuXVD2zc/kj+ZdrH0HYG0E0DHxNa0F/IQ4KNpedqkD/Ha6oZkNSILK5IkiSp8uoxMaN3YWkSSCmtBa5j0GT0ETEwOf2ykV4XEf8NHAfMSyldO4b36UkprRxYGNs8GfX2A/KwJKMNvdROzoW/f8Etixu2J0ELugT4B2Mb1mcD4CZg1L/Vevn1RUcvid5i75gudZeGpyp09+9fg9DGZeE7z/nDHx9br6cNGG0G+PaAfoJr7tjiV7WIbbzaV6V/wuifz8Dz7avSA39ccljDnk2kRwqn0UuRjugYpSW0U0h3t111/smfvbc20Y3Lr8hDWo7lmLAecPUFN59yc1Uj0r9cevmCFcBPyMXu0cqUs8hz5/yo2nG1HHOmpmdxRZIkSZKay2nARyLigxGxHfBVYDpwJkBEnBURiwcaR8SRwInAAcAdEbFZaZlRh9ir6UpygWkjRu4d0UYeE/7PwE9rFJeAW4+cvxb4MvnK/bomQt+YfIf6l249cn5DF7/aV/d/hwTrKrAMrG9b03/3ry855vc1Cm1cfv/3LY9fVQymFhIjFVgKUaQz4B9rutLcZ9z/tpoGWKa27rRr9AGFUT6fQu610rYmval20ZXv/BM+d0G6u/2PTElttKW24VslmE4Xq6InPVw4obYRlueCm09ZRf7/q0DuITmSTYEnSm1VW98h94rdgpELLNPIPYt+cunlC26tVWBSo7C4IkmSJElNJKV0DnAEsAhYDswl90gZmOR+DrD5oJd8lFxs+BFw76DliNpEXBsX3LK4D/g4cDW5wLIZuRdLOzAF2KS07q/AgRfcsvix+kQ6qZ0NLCEXubYk3+3cTp40eXZpXR/wqVuPnL+0XkGO1ZVLF3yk/Ym+qwYXWJ6yRF5f6O5fUVhb3KaesY7Fkf/+40+fe/O2F64uFphWSEwpFClQJCjSFkWmFvqZEvDPtZ389Ibn7vbq7X/f0Pc/X/+tI/425eHigugnF1gKQz6fAv8qrEx5qHjK9d86omF7Sg1Id7Xtlu5qu5UpdDA9ddGe2ogUFFKBrtTJDLpYHT3FWzo+dv6izzXuEGdP+gbwv+T/o7YgD0E1cExYj3xMWAMcdcHNp1xZpxgnrUsvX3Ab+RzifvLnsyH5s2onF1W2IB/HfwEsrFOYUl1FSg39f2HVRcQs8gSNs0vd3SVJkppKI53PDMTy8j2Pv6Gjc1pN7zjuXbu68LsLjt+BBtgPUqtppOPMaPbcbsEMYL/Ssg35Qn6RfHHobOB7F9yy2LlW6mjbU5e8AXgv8Hpy4SuRe6tcBJx165Hzf1e/6Mr3uj1O+Wzf1LaPFjvbpg++tzt6i31t3f1XpbbCG676xZFNc/HlMz9/+6Kdt73rqO1nr+yYEokgf4FW9LVx/QMbPbr89s1fvvCd5/yt3nGO1Y4HfG7vvhnx3f5pMT0NusU4itC2Jq1pfyIdcP03j/hB/SIsz15Hf3J6zC6eyub974r1iuvneViA7uhNd7f9X3q4cHyTFFYA2HP7owPYHXgf8EqePCasBi4Azrrg5lOur1+E2nWXxc8C3g/sQy56BXlerD8B3wN+fOnlC3rrFuAYNdK5jDlT67C40kBfLEmSpPFopPMZEwWpNTXScWas9txuQTuwPblHxCrglgtuWbymvlFpsG1PXTIH2Ip87f7OW4+cf0+dQ5qQ1+12yp6pLfYBuqKYrv31RUcvqXdME3Hij971mo3XW7Wova04Y01Px22J9IFD5v2ip95xjdeOB3zumbTzlVRg0yjyMH0ceP23jvhHveMar70WfLKNKWkv2tiKIqtZG5ecf/Jn7653XBOx5/ZHb0PuedkP3H7BzadYCG8gu+6yeBbwPHLvlYeBP196+YKmubDcSOcy5kytw+JKA32xJEmSxqORzmcGYnnFvPokClcvNVGQqqGRjjOSJEnlaqRzGXOm1uGcK5IkSZIkSZIkSWVor3cAkiRJakEDs8XW+j0lSZIkqRmYMzU9e65IkiRJkiRJkiSVweKKJEmSJEmSJElSGRwWTJIkSRUXKS+1fk9JkiRJagbmTM3PniuSJEmSJEmSJEllsOeKJEmSKq+Y8lLr95QkSZKkZmDO1PTsuSJJkiRJkiRJklQGiyuSJEmSJEmSJEllsLgiSZKk6kg1XsYhIj4eEXdERHdE/C4iXjZK+3dGxJ9L7f8YEXsNeT4iYlFE3BsRayLikoh4zpA2d0REGrIcNb7fQJIkSVLTaoKcCcybRmJxRZIkSZNSROwLnAacAOwI/AG4MCI2GaH9K4GzgW8COwDnAedFxAsGNftv4BDgIODlwKrSNruGbG4hsPmg5UuV+a0kSZIkqXLMm0ZmcUWSJEkVF6k+S5kOA85IKZ2ZUrqZfGK/GjhghPafAJamlD6bUrolpXQccD1wMOS7r4BDgZNSSj9LKd0IfADYAnjbkG09nlK6b9CyquzoJUmSJDWtJsmZwLxpRBZXJEmS1GpmRsSsQcuUoQ0iohPYCbhkYF1KqVh6vPMI2915cPuSCwe13wbYbMg2VwC/G2abR0XEwxFxQ0R8MiLax/7rSZIkSdKEjJozgXnTaBoqGEmSJLWIlPJS6/fM7hryzAnA8UPWbQS0AfcPWX8/8LwR3mGzEdpvNuh5RmkD8EXynVuPAK8EFpO7uB82wvtKkiRJajWNnzOBedM6WVyRJElSq9kKeHzQ4556BTKclNJpgx7eGBFrga9FxIKUUkPFKkmSJKklNXTOBM2RNzksmCRJklrN4ymllYOW4U68HwL6gU2HrN8UuG+E7d43Svv7Bq0b6zYhd39vB7ZeRxtJkiRJqpSx5Exg3rROFlckSZJUcY0+OWNKaS1wHbDrv2KOKJQeLxvhZcsGty/ZbVD728nJwOBtzgJevo5tAswFisADY/4FJEmSJDW1Rs+ZwLxpNA4LJkmSpMnqNOA7EXEt8HvgUGA6cCZARJwF3J1SWlBqfzrw64g4HPgV8G7gJcCBACmlFBFfAI6NiL+Rk4YTgXuA80rb3JmcNFxO7oa/M7AE+F5K6dHq/rqSJEmSVDbzphFYXJEkSVLlpdJS6/csp3lK50TExsAi8sSJy4F5KaWBiRXnkO+MGmj/24jYDzgJOAX4G/C2lNJNgzb7GXKi8XVgPeCq0ja7S8/3kJOL44Ep5ERiCTlhkSRJkjRZNEHOBOZN62JxRZIkSZNWSunLwJdHeO71w6z7IfDDdWwvAQtLy3DPXw+8YjyxSpIkSVI9mDcNzzlXJEmSJEmSJEmSymDPFUmSJFVcpESk2vZxr/X7SZIkSdJ4mTM1P3uuSJIkSZIkSZIklcGeK5IkSaq8IoOmNKzhe0qSJElSMzBnanr2XJEkSZIkSZIkSSqDPVckSZJUcY4fLEmSJEkjM2dqfvZckSRJkiRJkiRJKoPFFUmSJEmSJEmSpDI4LJgkSZIqL5WWWr+nJEmSJDUDc6amZ88VSZIkSZIkSZKkMthzRZIkSZWXUl5q/Z6SJEmS1AzMmZqePVckSZIkSZIkSZLKYHFFkiRJkiRJkiSpDA4LJkmSpIqLlJdav6ckSZIkNQNzpuZnzxVJkiRJkiRJkqQy2HNFkiRJlZeow+SMtX07SZIkSRo3c6amZ88VSZIkSZIkSZKkMthzRZIkSRUXCaJY+/eUJEmSpGZgztT87LkiSZIkSZIkSZJUBosrkiRJkiRJkiRJZXBYMEmSJFVeSnWYnNE+7pIkSZKahDlT02uonisRsSAiromIxyPigYg4LyKeO8prPhQRacjSXauYJUmSJEmSJEnS5NJoPVdeB/wPcA05tlOAiyJi+5TSqnW8biUwuAhjCU6SJKmeErU/I/MMUJIkSVKzMGdqeg1VXEkpzRv8OCI+BDwA7ARcue6XpvuqGJokSZIkSZIkSRLQYMOCDWN26ecjo7SbERH/iIh/RsTPIuL51Q5MkiRJkiRJkiRNTg3Vc2WwiCgAXwD+L6V00zqa/gU4ALiRXIw5AvhtRDw/pXTXMNudAkwZtGpmxYKWJEkSAJESUePJEmv9fpIkSZI0XuZMza9hiyvkuVdeALx6XY1SSsuAZQOPI+K3wC3AfwLHDfOSBcCnKhemJEmSJEmSJEmaTBqyuBIRXwbeDLx2uN4n65JS6o2IG4BtR2iyGDht0OOZQFnvIUmSpFGklJdav6ckSZIkNQNzpqbXUMWViAjgS8DewOtTSrePYxttwAuB84d7PqXUA/QMaj++YCVJkiRJkiRJ0qTUUMUV8lBg+wH/DjweEZuV1q9IKa0BiIizgLtTSgtKjxcCVwO3AusBnwSeCXyjtqFLkiTpX4qlpdbvKUmSJEnNwJyp6TVaceWjpZ9XDFm/P/Dt0r/n8NQ/g/WBM4DNgEeB64BXppRurlqUkiRJkiRJkiRp0mqo4kpKadQxulJKrx/yeD4wv1oxSZIkSZIkSZIkDdZQxRVJkiS1hkiJqPFkibV+P0mSJEkaL3Om5leodwCSJEmSJEmSJEnNxJ4rkiRJqryU8lLr95QkSZKkZmDO1PTsuSJJkiRJkiRJklQGiyuSJEmSJEmSJEllcFgwSZIkVZ5d3CVJkiRpZOZMTc+eK5IkSZIkSZIkSWWw54okSZIqr1haav2ekiRJktQMzJmanj1XJEmSJEmSJEmSymBxRZIkSZIkSZIkqQwOCyZJkqSKi5SIGk+WWOv3kyRJkqTxMmdqfvZckSRJkiRJkiRJKoM9VyRJklR5KeWl1u8pSZIkSc3AnKnp2XNFkiRJkiRJkiSpDPZckSRJUuV5F5YkSZIkjcycqenZc0WSJEmSJEmSJKkMFlckSZIkSZIkSZLK4LBgkiRJqoI6dHHHLu6SJEmSmoU5U7Oz54okSZIkSZIkSVIZ7LkiSZKkyisCUYf3lCRJkqRmYM7U9Oy5IkmSJEmSJEmSVAaLK5IkSZIkSZIkSWVwWDBJkiRVXKRE1Hhyxlq/nyRJkiSNlzlT87PniiRJkiRJkiRJUhnsuSJJkqTKSykvtX5PSZIkSWoG5kxNz54rkiRJkiRJkiRJZbDniiRJkiqvmCBqfFdU0buwJEmSJDUJc6amZ88VSZIkSZIkSZKkMlhckSRJkiRJkiRJKoPDgkmSJKnyEnWYnLG2bydJkiRJ42bO1PTsuSJJkiRJkiRJklQGe65IkiSp8lKqw11Y3oYlSZIkqUmYMzU9e65IkiRJkiRJkiSVweKKJEmSJEmSJElSGRwWTJIkSZVnF3dJkiRJGpk5U9OzuKKm99L9T+sENgc6gYevOfOwR+ockiRJkiRV3Ly5CzcANgTWAvcsXb6ot84hqYUdddK+HW0dxZ0imFXsjztPWXDun+sd00TstsOxATGXYGMSD0JafvENJ3mVUZI0bhZX1LReuv9pmwL7Au8BNgUC6H3p/qddDJwD/OaaMw/zREmSpHooJoga/zdc9L99Sa1n3tyFAbwGeDfwRqADSMB98+Yu/H/AuUuXL3qgjiGqxRx9yru2nrZBz/HPeMkTb+2avXZmRKJYjHTaD/e4c+U907/VvbLj1E8fd05/veMcq912OHYmbYVPpa6O/VJ728YD66Ov+PBuL1n4A/qLJ1x8w0mP1jNGSZOUOVPTc84VNaWX7n/aDsDPgQXAVkA3sIpcYHk7cBZw9Ev3P82/cUmSJElNad7chQVgITm/eRs531lFzn+eARwD/Hze3IUvqleMai3HnPrO122548PXb/WSh94/bYPuWf290d+3ttBPgg22eWKbZ+58/6INn/34tQtO2nd6vWMdi912OPaZaUrHH4tTO+en9rZNSalISv2kVEzthY2LUzv/K03p+ONuOxz7b/WOVZLUfLzwrKbz0v1P2xo4A5gD3AvcD6wmJxgrgLuBXuCjwMH1iVKSpEkuFeuzSJNERHw8Iu6IiO6I+F1EvGwdbZ8fET8utU8RcWgNQ9XEfAI4kJzf3EPOd7rJ+c/95HzomcAZ8+YunFOvINUajj7lXdtu8eKHz5u+0ZrZPY+39/Q80dFT7Cv0F/sK/X09bb3dKzu6+3ra+jf+txUvWm/OExfWO97R7LbDsVPSlI7LU2f7MyimtVFM3ZHoi0R/JPqimLopprWps33zNKXj0t12OLYpCkaSWog5U9OzuKJmdAC5t8q9wEhHhBVAH3DQS/c/bcNaBSZJkiRVW0TsC5wGnADsCPwBuDAiNhnhJdOA24CjgPtqEqQmbN7chZsA/0meX2XFCM2KPFlg+VBtIlOrmr5R98nTN+qe1fN4Z09Kw49T099b6OvrKfRv9JyVLz/2M+/cvdYxlqVQODR1tM2hWOyNEa4dBBTpL/amjrYtKBT+u9YhSpKam8UVNZWX7n/aeuRhv9YwcmFlwCPA+sDeVQ5LkiRJqqXDgDNSSmemlG4GDiL3ZDhguMYppWtSSp9MKf0A6KlhnJqYvYHZwGhzQRTJ+dE+8+YunFX1qNSSFpy07/T1t35iz1SMlBLrHJC/r6fQ29bRX5i+cffhtYpvPFJ72wEQEYl1zg8T0E9A6mj7YK1ikyS1BosrajYvBtZj5Du3BhsovuxctWgkSdLwUqrPIrW4iOgEdgIuGViXUiqWHlfsvDcipkTErIEFmFmpbWvMXlX6OZbxO1YCGwDOvaJxaZvS//quWWun9nW39Y3eOkjFSDM3Wb1T9SMbn912OLYjdbRtDWmdhZV/KdKf2tu22G2HYx35QlLtmDM1PYsrajZTgTbGlmAA9AMzqheOJEmSVFMbkc+H7x+y/n5gswq+zwLyDU0Dy10V3LbGZjqs+477QfrJ+f206oWjVhYFZkcQqTj8cGBDpWKkQkexs9pxTcB6QKy7D85gKRFAHv1CkqQxaa93AFKZBuZSaSePPTyaNuDhqkYkSZKeLiUo1viuKO/CkippMXlelwEzscBSaw+R85mx6CDnSY9VLRq1tGJf3F0skqItBcUYtX20pejrbl9Vg9DG6xFIRSLaxlRgiQhSSuQ5jCSpNsyZmp49V9RsrgPuJt+FMpoOIAEXVzMgSZIkqYYeIvdS2HTI+k2p4GT1KaWelNLKgQV4vFLb1phdTM5nxnJT5HrAP4HlVYxHLax/beHKVQ91PdLe1d8xeutEBLHy3mmXVj+y8bn4hpP6Y23/dUQURruMWHq+LXr7b774hpMauWAkSWowFlfUVK4587C1wP8jF05GO+nbiHx33dJqxyVJkiTVQkppLfmGo10H1kVEofR4Wb3iUlWcT76LfuNR2nWSCzBnL12+aCy9+6Wn+fRx56TH7pzxA4BCe3GdPaY6p/d19q5p61v9yJRTahPd+ERf//+QUpGIdV87yM8Xo6//q7WJTJLUKiyuqBl9m5xQbgp0DfN8gTzedDdw/DVnHramdqFJkiTAyRml6joN+EhEfDAitgO+Sp6f40yAiDgrIhYPNI6IzoiYGxFzyRfityw93rYOsWuMli5ftBo4npzXbMrw+ftUYBPg98BZNQtOLWnNo1OOffQfM+7onNbX0dZRbOdp42klOqf1dkLEfTet/91TFpx7c10CHauUzo6e3qsI2lJEx9N/G0gRHUS0RU/fNRTTGfUIU9IkZs7U9CyuqOlcc+ZhK4EDgN8As4EtgQ2BDYDNyYWVx4D515x52Pl1ClOSJEmqipTSOcARwCLyMFBzgXkppYFJ7ueQz4sHbAHcUFo2L732BuAbtYlY47V0+aJfkD+vlTyZ62xAzn+2JM+FcyXw4aXLF62sV5xqDYuPPefxB/+y3msfvm3W39o6i21ds/q6Oqf1dXZ09XVOmdE7pWtWX1exr6149w0bnrXqoa6P1Dve0Vx8w0kpevvnRXfvZQRBW6ErFaJzYKEtuggienqvit6+XS++4SSvOEqSyhJpklerImIWeZL02aWxhNUkXrr/aW3Aq4F9gZeQ78K7F/gJcN41Zx72YB3DkySpZhrpfGYgll03/8gNHYWuYi3fu7fYXbj03jN2oAH2g9RqGuk4MxnNm7twE+BtwNvJBZYe4FrgHOCqpcsX1fR4q9Z21In7Rue0vg/O2GzNx2Zuuma7QnuxrXdNe/eKu6ZftvrhrsUnH3XudfWOsVy77Xjc7rQXDi+2t72CiE4SvdHXd030Fb9w8fUn/qLe8UmqvkY6lzFnah0WVxroiyVJkjQejXQ+Y6IgtaZGOs5IkiSVq5HOZcyZWkd7vQOQJElSC6rHeL6T/KYhSZIkSU3EnKnpOeeKJEmSJEmSJElSGSyuSJIkSZIkSZIklcFhwSRJklR5xSJQ4/mVi87nLEmSJKlJmDM1PXuuSJIkSZIkSZIklcGeK5IkSao8J2eUJEmSpJGZMzU9e65IkiRJkiRJkiSVweKKJEmSJEmSJElSGRwWTJIkSZVnF3dJkiRJGpk5U9Oz54okSZIkSZIkSVIZ7LkiSZKkyisC1PiuqGJt306SJEmSxs2cqenZc0WSJEmSJEmSJKkM9lyRJElSxaVUJKXa3hZV6/eTJEmSpPEyZ2p+9lyRJEmSJEmSJEkqg8UVSZIkSZIkSZKkMjgsmCRJkiqvmKj95Iw1fj9JkiRJGi9zpqZnzxVJkiRJkiRJkqQy2HNFkiRJlZdSXmr9npIkSZLUDMyZmp49VyRJkiRJkiRJkspgcUWSJEmSJEmSJKkMDgsmSZKkyktFKBZr/56SJEmS1AzMmZqePVckSZI0aUXExyPijojojojfRcTLRmn/zoj4c6n9HyNiryHPR0Qsioh7I2JNRFwSEc8Z0maDiPh+RKyMiMci4psRMaMav58kSZIkTZR50/AsrkiSJKnyBiZnrPVShojYFzgNOAHYEfgDcGFEbDJC+1cCZwPfBHYAzgPOi4gXDGr238AhwEHAy4FVpW12DWrzfeD5wG7Am4HXAl8vK3hJkiRJza0JciYwb1oXiyuSJEmarA4DzkgpnZlSupl8Yr8aOGCE9p8AlqaUPptSuiWldBxwPXAw5LuvgEOBk1JKP0sp3Qh8ANgCeFupzXbAPODDKaXfpZSuAv4LeHdEbFGl31OSJEmSxsu8aQQWVyRJklRxqVisy1IyMyJmDVqmDI0vIjqBnYBL/hVzSsXS451H+LV2Hty+5MJB7bcBNhuyzRXA7wa12Rl4LKV07aBtXAIUyXdsSZIkSZoEGj1nAvOm0VhckSRJUqu5C1gxaFkwTJuNgDbg/iHr7yef6A9ns1HabzZo3braPDD4yZRSH/DIOt5XkiRJkippLDkTmDetU3u9A5AkSZIqbCvg8UGPe+oViCRJkiQ1IHOmCrC4IkmSpMpLCSh/ssSJvycAj6eUVo7S+iGgH9h0yPpNgftGeM19o7S/b9C6e4e0WT6ozVMmfoyIdmCDdbyvJEmSpFbT+DkTmDetk8OCSZIkadJJKa0FrgN2HVgXEYXS42UjvGzZ4PYluw1qfzv5RH/wNmeRxwQeaLMMWC8idhq0jTeQz8t/N57fRZIkSZKqwbxp3ey5IkmSpMorJoi63YU1VqcB34mIa4HfA4cC04EzASLiLODulNLA+MOnA7+OiMOBXwHvBl4CHJjfPqWI+AJwbET8jZw0nAjcA5xXanNLRCwFzoiIg4AO4MvAD1JK95T/S0uSJElqSs2RM4F504gsrkiSJGlSSimdExEbA4vIkyIuB+allAYmVpwDFAe1/21E7AecBJwC/A14W0rppkGb/Qw50fg6sB5wVWmb3YPavJecGFxa2v6PgUMq/ftJkiRJ0kSZN40s0viqVS2j1OVoBTB7jOPMSZIkNZRGOp8ZiGWXKe+8oSOmFEd9QQX1pp7C5T0/3IEG2A9Sq2mk44wkSVK5GulcxpypddhzRZIkSZWXigy6eamG7ylJkiRJTcCcqek5ob0kSZIkSZIkSVIZ7LkiSZKkikvFRKrx5IyTfbhbSZIkSc3DnKn52XNFkiRJkiRJkiSpDBZXJEmSJEmSJEmSyuCwYJIkSaq8lKj95Ix2cZckSZLUJMyZmp49VyRJkiRJkiRJkspgzxVJkiRVnJMzSpIkSdLIzJmanz1XJEmSJEmSJEmSymDPFUmSJFVeKlL78YNr/H6SJEmSNF7mTE3PniuSJEmSJEmSJEllsOfKk2ZGRL1jkCRJGo+Z9Q5gqF7WtlHj4Xx7WdtW23eUJiXzJkmS1IzMmTBnqrSY7JPYRMSWwF31jkOSJKkCtkop3V3PACKiC7gd2KxOIdwHbJNS6q7T+0stybxJkiS1CHMmc6aKsbiSb7vaAni8zJfOJCcXW43jta3GffEk98WT3BdPcl88yX3xJPfFk9wXT5rIvpgJ3JMa4OSulCx01unt15okSJU3gbypEfj/TGPz82lsfj6Nz8+osfn5NBZzpsycqUIm/bBgpS9T2dXKQV3hH08praxoUE3GffEk98WT3BdPcl88yX3xJPfFk9wXT5rgvmiYfVc6UfdkXWoh482bGoH/zzQ2P5/G5ufT+PyMGpufT8NpmM/AnKk1OKG9JEmSJEmSJElSGSyuSJIkSZIkSZIklcHiyvj1ACeUfk527osnuS+e5L54kvviSe6LJ7kvnuS+eJL7QpIqz2NrY/PzaWx+Po3Pz6ix+flILWzST2gvSZIkSZIkSZJUDnuuSJIkSZIkSZIklcHiiiRJkiRJkiRJUhksrkiSJEmSJEmSJJXB4ookSZIkSZIkSVIZLK6sQ0QcExEpIm4aQ9u3R8Q5EXFbRKyOiL9ExOcjYr0ahFp15eyLYV57cem1X65GbLU2nn0REftGxLKIWBURj0XEbyPiDdWMsxbK3RcR8caIuDwiHirth99HxPurHWc1RMTrS7/7cMsrxvD6LSPi3NJ+WBkRP4uIZ9Ui9kqbyL5otWPnRP8uhmyrqY+dldgXrXLsrMDxomWOnZJUKRExIyJOiIilEfFI6Zj6oTJev15EfD0iHiz9P3N5ROxYxZAnnYl8RhGxa0R8KyL+WjpHvC0ivhERm1c57Eljot+hIds6o/T6X1Y4zEmrEp9P6RzysohYERGPR8R1EbFvlUKedCrw/9BOEfHLiLgvIp6IiBsj4pCIaKti2JIqrL3eATSqiNgKOBpYNcaXfB24B/gecCfwQuBgYK+I2DGltKYqgdbAOPbF4Ne+Hdi54kHVyXj2RUQcDywEfgR8G+gAXgBsWfkIa6fcfRERbwXOA5YBxwMJeBdwVkRslFJaUp1Iq+6LwDVD1t26rhdExAzgcmA2cArQC8wHfh0Rc1NKD1cj0Booe1/QusfO8eyLf2mxY+e49kWLHjvHc7xo1WOnJE3URuT/J+4E/gC8fqwvjIgC8CvgxcBngYeAjwFXRMROKaW/VTzayWncnxFwKrAB8EPgb8CzyOeIby6dL99X2VAnpYl8Pv8SES8BPgR0VyowARP8fCJif+CbwMXkvL0feC7wjIpGOblN5P+hnYDfko9vpwKrgT2B04FnA5+ocKySqsTiysg+B1wNtJEPmKPZJ6V0xeAVEXEd8B3gvcA3Kh1gDZW7LwCIiC7g8+T/KBZVJ7SaK2tflO5IXggc3oIXwMr9uzgYuBd4Q0qpByAivgb8mXwy3qz75zcppR+V+ZqPAc8BXpZSugYgIi4AbgIOJ5/8NqPx7ItWPXaOZ18ALXnsLHtftPCxczx/F6167JSkiboX2DyldF/p4u7Q4vW67AO8EnjnwHE5Is4F/gqcAOxX6WAnqYl8RocBV6WUigMrImIp8Gvy/43HVjTSyWkinw8AERHkm0fOAnatcHyT3bg/n4jYGvgf4EspJS/SV89EvkP/Wfr52pTSI6V/fy0ifk0+x/dzk5qEw4INIyJeSz7hPnSsrxl6cbDkp6Wf2008qvoYz74Y5L/Jf2Ofq2RM9TLOfXEocB9wemQzqhBazY1zX8wCHh24OAiQUuoj3ynYrL0TAIiImRFRTrF6H+CagcIKQErpz8Cl5DvSm1a5+6JVj50wrr+LAS117IRx7YtDacFjJ4xrX7TssVOSJiKl1DOB3gv7APcDPxm0vQeBc4F/j4gpFQhx0pvIZ5RSunJwYWVgHfAITX6O2Cgm+B0a8H5yz+JjKhCSBpng53MQ+SbIhfCv4auiYsEJmPBnNIvc2+uxIevvxXN8qalYXBmiNLbhl4BvpJT+OMHNbVb6+dAEt1MXE9kXETEHOAo4somH9fmXCeyLXcl3LxwCPAg8HhH3RsTBVQizJiawL64Anh8RJ0bEthHx7Ig4DngJ8JkqhForZwIrge7IY3W/ZF2NS8NQvAi4dpinfw88OyJmVj7MmihrX6xDUx87S8a1L1rt2Fkynn3RcsfOkvHsiytozWOnJNXTDsD1Qy/ek8/FpgH/VvuQNJrSzRYzaO5zxJZRyllOBU5xmLaG80ZyL+e9IuIu4HHg4dL5pNcBG8MV5ALL1yJiu4h4ZkQcBLwdWFzXyCSVxWHBnu4g4Jnk/4wm6kjyuJbjGhqmAUxkX3weuCGl9IPKhlQ3Ze+LiFifPFzWq4A3kIcYuBPYH/hSRPSmlL5WhVirbbx/FycC25Dvahroxr8aeEdK6WeVC69m1gI/Bs4nJ3jbA0cAv4mIV6aUbhjhdRsAU8h3pAw1sG4L4C+VDbeqxrsvRtLMx86J7otWOnaOa1+06LFzIn8XrXbslKRGsDlw5TDrB5+LTfRGO1XeoUAncE6d41C2kHyHvUOUNp7nkPOpM8k34/yBfNH+WPJ1wAX1C00lZwDPJw8P9uHSun7g4JTS/9YtKklls7gySERsSB7f/sRSt/CJbGs/4D+AzzTjhIgT2RcRsQvwDuDl1Yit1iawLwaGsdkQeHdK6ZzS9n5ETtaOBZrqAuEEvyM95HGsf0QegqENOBD4XkTsllK6uqLBVllK6bfkCegG/Lz02d5IvtNk3ggvnVr62TPMc91D2jSFCeyLp2n2Y+dE9kWrHTsnsC9a7tg5we9ISx07JalBTKWFzsUmg9KwxJ8Czk0pXVbveCa7iPg38pwQ7xk8dKkaxgzySDVHpZROLa37cURsAHwiIk5JKT1ev/CUUuqPiL8DFwI/JP//8x7yzWT3pZTOq2d8ksbO7oBPdRJ5DNcvTWQjEfEa4Jvkg2Szjj06rn1RGkf+i8B3B88n0eTG+3cxMKRPL4PuwC8NP3AOsFVpCKBmMpHvyJeBt5Avlv4gpfR9cu+Xe4HTKxdi/aSUbgV+BuxSGj5tOAN/F8ON5d01pE3TGuO+eIoWOXY+zVj2RYseO5+mzO9IKx07n6aM70jLHzslqQ7W0OLnYq0kIp5HnpPvJp68w1v1dTrw25TSj+sdiIY1cAw7e8j6s8nF4x1qG46GioijyCM2vCeldFZK6dyU0t7AVcD/jHPuTkl1YHGlJCKeQ74T9IvAFhGxdURsTT7B7ig93mAM23kx8HPyid8+pUlnm8oE98UHgOeSx43cetBrAWaWHk+r8q9QMRPcF4+Q7z54OKXUP+S5B0o/169C2FUxkX0REZ3k3gi/Gjy2dUqpF7gAeEmpTSv4J3m4gukjPP8I+U7JzYd5bmDdPVWIqx5G2xf/0grHzlGMti9a6tg5irF8R1rm2DmKde6LSXbslKRaupfJcS7W9CLiGcBFwApgL++2r7+IeAO51+3pQ85b24Gppcez6hqkBo5h9w9Z32rn0s3sY8BlKaUnhqz/OXloyq1rHpGkcbG48qQtyfvji8Dtg5aXkyc0vJ08puiIIuLZwFLyf1h7DXOQbBYT2RdzgA7g/4a8FvLFw9uB3asVeBWMe1+ULoQtBzYe5uLXFqWfExp+rsYm8nexIflke7i7sztK2x1T74Ym8CzyheFhv/+lv4s/kiejHurlwG0tlDSuc18MaKFj57qMti9a7di5LmP5jiyndY6d6zLa38VkOnZKUi0tB3YcZmLnl5PntfprzSPS05SGJL6I3Mtoj5TScHMWqvYGehD/hKeet25Jni/vduCA+oSmkutKP7ccsr7VzqWb2aaMfI4PTuMgNQ2/rE+6Cdh7mPUnATPJ44n+HaA0HMm0lNKfBxpFxGbkE78i+cSvmf+zmsi++AE5WRnqp+SJfM8AflfheKtpQn8X5CFsXgF8kPy7ExFdwHuBm1NKzXRX3ET2xQPAY8DeEbEwpbS21G4GebibP6eUmmr4hYjYeOj3vNT74q3ABQN3mY/wd/Ej4NMR8ZKU0rWlds8lJyOfq8kvUEET2RctduycyL5otWPnRL8jrXTsnMi+aLljpyTVWkRsDswG/l7q+Qf5XGwf8gTPPyq12wh4J/AL55CoreE+o4iYTj4H2hLYpRnn4msVw3w+lzF8Xvh14B/AyeSbyVQDIxzjzgHeTe4BfUypXQHYn9xL/LphNqUqGeEz+iuwW0RsmFJ6uNSuDXgX8DilayuSGl+klOodQ0OLiCuAjVJKLxiy7nUppRi0bjnwYuAzPP1E4v6U0sVVD7bKxrovRnhtAv4npXRwVYOskTL+LqYC15B7dpwO3Am8H9gReEtK6YIahl0VZeyLY8iFmBuAs8h3afwHsB3wvtI8Ak0jIi4jj2X7W/IF0O3Jw6b1AjunlG4ptbuCp++LmeT9MJNcTOkFDiPvk7nNVmCY4L5YTgsdOyeyL0bYXtMeOyf4d9FSx84J7ouWOnZKUiVFxMHAeuS7sT9KvpP+htLTX0oprYiIb5OL9duklO4ova6NPK79C4DPAg+Rh2iZA7w0pfSX2v0WrW0Cn9F5wL8D3wIuH7LZJ5zsuTLG+/mMsK07gJtSSm+uYsiTygS+PwFcTL557wzgD8DbgN2A/0wpfb1mv0SLm8Bn9F7ge+QiytfJucJ7gJ2BY1NKJ9fut5A0EfZcqZwXl37+9zDP/Zr8H5smmZTSmtKYtJ8hd42eTr47/U0ppQvrGVutpZROjojbyT1cPkXu3n8jeX6NZpwI8TzyXfSHAbPIXat/ApxQmqh6RCmlxyPi9cAS4Fjy0D5XAPObrbBSch7j3Be03rHzPMa/L1rNeYz/O9Jqx87zGP++aLVjpyRV0hHAMwc9fntpgXzRasVwL0op9UfEXuTCyiHkCZ6vAT5kYaXixvUZAXNLPw/g6UNM/YP8f6smbryfj2pjvMe4FBFvI9+gsy/wIeAveGNONYz3M/p+RDwELAA+Sc4R/gIclFL6WvXClVRp9lyRJEmSJEmSJEkqgxPaS5IkSZIkSZIklcHiiiRJkiRJkiRJUhksrkiSJEmSJEmSJJXB4ookSZIkSZIkSVIZLK5IkiRJkiRJkiSVweKKJEmSJEmSJElSGSyuSJIkSZIkSZIklcHiiiRJkiRJkiRJUhksrkjSBEVEiojjR2mzdandh2oT1fhFxB0R8ct6xyFJkiSpuZkrSZJamcUVSQ0tIl4YET+KiH9ERHdE3B0RF0fEf9U7tmYWEdtHxPERsXW9Y5EkSZI0cRHxoVKRYmDpjoi/RsSXI2LTcWxvv4g4tAqhNjRzJUnSWFlckdSwIuKVwLXAi4EzgIOBbwBF4BN1DK0VbA98Cti6znFIkiRJqqyFwPvJ+dNvgY8CyyJiWpnb2Q84tLKhNQVzJUnSmLTXOwBJWodjgBXAS1NKjw1+IiI2qUtEkiRJktTYLkgpXVv69zci4mHgMODfgbPrF5YkSa3FniuSGtmzgT8NLawApJQeGLouIt4XEddFxJqIeCQifhARzxjS5oqIuCkidoqI35ba3h4RBw1p1xkRi0rbWxERqyLiNxGxSyV/wYh4XmnYs0dK3favjYi3Dmkz0L3/VRFxWkQ8WIrnpxGx8ZC2hVIX9nsiYnVEXF7q1n5HRHx7YHvAD0svuXzQsAGvH7KtV0fE70tx3RYRH6jk7y5JkiSpJi4r/dxmYMVouVNEXAG8CXjmoHzhjtJz5krmSpIkLK5Iamz/AHaKiBeM1jAijgHOAv5GvivrC8CuwJURsd6Q5usD5wPXAf8N3AV8NSIOGNRmFvBh4ArgSOB4YGPgwoiYO87fZ2jMzweuBrYDPg0cDqwCzouIvYd5yZfIQ6SdAHwVeAvw5SFtFpO7sF8LfJK8Py4Epg9qcyXwxdK/TyEPGfB+4JZBbbYFfgRcXIrrUeDbpZglSZIkNY9nl34+DGPOnU4GlgMP8WS+cGjpOXMlcyVJEg4LJqmxfQ64AFgeEb8HfgNcClyeUuodaBQRzySfRB+bUjpl0PqfADcAHyOfGA/YAjg8pXRaqd3XgN8BiyPiu6VtPwpsnVJaO2h7ZwB/Bv4L+I8K/H6nA3eShz3rKb3HV4CrgFOBnw5p/zCwe0opldoWgEMiYnZKaUXkSSoPA85LKf0r4YiIT5ETHgBSSrdFxG+AQ4CLU0pXDBPbc4HXppR+U9rGucA/gf2BIyb6i0uSJEmqmtkRsRHQBbyKPAfLGuCXY82dUkoXR8TdwPoppe8N2b65krmSJAl7rkhqYCmli4GdgZ+T70L6b/KdRXcP6Q7+dvLx7NyI2GhgAe4j3400tHt6H/C1Qe+ztvR4E2Cn0rr+gWSh1H18A3JB+lpgx4n+bqXtvQE4F5g5KOYNS7/jcyJiyyEv+/pAslDyG6ANeGbp8a6lGL8y5HVfGkeINw8kCwAppQeBvwDPGse2JEmSJNXOJcCD5Av+PwCeAPZOKd1N+bnT05grmStJkjJ7rkhqaCmla4C3R0QnucCyNzAf+FFEzE0p3Qw8BwhyMjCc3iGP70kprRqy7q+ln1uTu58TER8kd/N+HtAxqO3t4/ttnmJbcswnlpbhbALcPejxnUOef7T0c/3Sz4HE4dbBjVJKj0TEo5Rn6HsNvN/6w6yXJEmS1Dg+Ts5v+oD7gb+klIql58rNnYZlrvQ05kqSNAlZXJHUFEp3Rl0DXBMRfwXOBN5J7tJeABKwJ9A/zMufKPf9IuJ9wLeB84DPAg+Utr2AJ8csnoiBnoOfI999NZxbhzwe7neDnHhUWi3fS5IkSVLl/D6ldO0Iz004dzJXMleSJGUWVyQ1o4FEYfPSz7+TT2RvTyn9dfiXPMUWETF9SO+Vfyv9vKP0cx/gNuDtg7uXR8QJ4476qW4r/exNKV1SoW3+o/RzWwbdMRYRG/L0u6gSkiRJkiabcnKnkXIGcyVJknDOFUkNLCJ2iYjh7v7Zq/TzL6WfPyHfPfSpoe0j23DI69uB/xzUprP0+EHgutLqgbuRYlC7l5PngJmwlNIDwBXAf0bE5kOfj4iNx7HZS8ld/z86ZP3Bw7QdKCytN473kSRJktScysmdVgGzh9mGuZIkSdhzRVJj+xIwLSJ+CvwZ6AReCexL7mFyJkBK6e8RcSywGNg6Is4DHge2Ic/R8nVyl/IB9wBHRsTW5LGI9wXmAgemlAbGGP4lebLHn0bEr0rbOgi4GZhRod/v48BVwB8j4gzyHVqbkpOSrchzzIxZSun+iDgdODwifg4sLW1jT+AhnnoH1nJyUnRkRMwGeoDLSomMJEmSpBZUZu50HbBvRJxGHqL5iZTSLzBXkiQJsLgiqbEdQZ5XZS/gQHJx5U7gK8BJKaXHBhqmlD5dmotlPvCp0up/AhcBPx+y3UeBD5KLNx8hT/J4cErpjEFtvg1sRu7Rsgc5UXhfKZ7XV+KXSyndHBEvKcX7IWBD8njFNwCLxrnZI4HV5N/rjcAyYHdyYtI96L3vi4iDyOMifxNoA3Ypvb8kSZKkFlVG7vQV8k1o+5fa/gP4BeZKkiQBEIOGx5SklhcRVwAbpZReUO9YaiUi1iMXlI5NKZ1c53AkSZIkqSGYK0mSJsI5VySphUTE1GFWH1r6eUXtIpEkSZKkxmGuJEmqNIcFk6TWsm9EfAg4H3gCeDXwHuCilNL/1TMwSZIkSaojcyVJUkVZXJGk1nIj0Af8NzCLPJ/M6cCx9QxKkiRJkurMXEmSVFHOuSJJkiRJkiRJklQG51yRJEmSJEmSJEkqg8UVSZIkSZIkSZKkMlhckSRJkiRJkiRJKoPFFUmSJEmSJEmSpDJYXJEkSZIkSZIkSSqDxRVJkiRJkiRJkqQyWFyRJEmSJEmSJEkqg8UVSZIkSZIkSZKkMlhckSRJkiRJkiRJKsP/B8ux8SCIohUxAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJAAAAIfCAYAAAAv5iYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACGL0lEQVR4nOzdeZgcZbX48e+ZJQk7CCoIREBQCVwERMQFMCAhiAqiKFxc4Krcq5efGhRjEIJEIKJg1CuiiBuKCu4oWxAioggSFkFAMCKyiOwkrMnM9Pn9UTUwDjOdSbqnepbv53nqme6qmurTncn0mdPnfd/ITCRJkiRJkqTBtLU6AEmSJEmSJI1sFpAkSZIkSZJUlwUkSZIkSZIk1WUBSZIkSZIkSXVZQJIkSZIkSVJdFpAkSZIkSZJUlwUkSZLGoYj4dkT8eqw9VqMi4nURkRGxUatjkSRJGkksIEmSNMZExCoR8emI+GtEPBkRD0XEVRHxoVbHppEnIk6PiN+0Og5JkjSydbQ6AEmS1HSnAlOBDwN/AtYEtgMmtzIoSZIkjV52IEmSNPbsC3wuM3+emX/PzD9l5rczc07/EyPi0Ij4R0QsiYhzIuL5fY5tGhE/jYh/RsQTEXFDRLyr3/f/JiK+GRGfiYgHyuucFhGT6gUYEQdExHUR8VRE3B4Rn4+I1cpjB0fEIxGxar/vmV12VcUA19sjInr6Dz2LiHeUsa9Z3j8+Im4u990ZEV+NiLXqxDngkLaI6I6Ig/vcf345VO/+iHg0In4fEbv0Od5ZPse7ImJpRNwTET+s9xoNVUQcGRG3lde9PyIujIhV+hzfo4znyYi4OyK+FRHrlsc+BbwX2LV8ntn7vCJig4j4Yflv8WT5b73DUJ9TRGwfEedHxH0R8VjZBTe9Gc9ZkiRVzwKSJEljzz3A9Ih4znLOewVFp9LewJ7AfwAn9Tm+OnAJsFd57DTgWxExtd913gasC+wMHERRwJo72IOWBYpTgZOBKcC7gdcDXy1POQtIYP8+39MG/BdwembmAJe9mOJ5H9Rv/3uAn2fmkvL+k8Ch5eMeDLwO+NJgsQ5FWaxZAKxB8VptB5wHXBQRW5an/T/g7cA7gS2ANwNXNPK45WPvB3yCottsC2AP4Pw+x3cDfgH8ENiG4t9mE+CnZSHuJOD7wB+ADcrtrPLYz4GXAm8EdgTuLZ/TekN8TmtS/FtOBbYHLgTOiYgXN/q8JUlS9WLgHEySJI1WEfEaiqLARsCNFH/Unwf8orf4EhHfBt4AbJyZS8t9M4GPZOYGda79C+C+zHx/ef83FAWJF2VmT7nvUIqizLqZ+Xj5WBtl5uvL47cDn8nMr/a57i7ApcBzMvPhiPgSsH1mvrY8vifwy/I69w0S22eAN2bm1uX95wN3A3tn5oWDfM9bKIorq2RmLSJeR1EM2jgz7+p/v8/3dQPvy8xvlwWx44BNMrO7zzmXANdn5kci4osURbjdBymArZSImAF8ANgqM7sGOP4b4IrM/ESffZOBfwDbZeZ1EXE6sHlmvq7PObsDvy6ve1O5byJwO3BqZs5ZmecUEX8Czs7M41fm+UqSpNaxA0mSpDEmM38PvIiiI+g7wPOBH1N0f/Qd/vWX3uJR6Z/luQBExKrl0LQbo5iI+zGKotML+z3kH3uLR6XfAxPLGP5NRDy3/P7Pl8OaHiuv29s1s3n59WvAa/p08LwfOGew4lHpO8BWEbF9ef8g4D6KQkjv4+8XEb+NYljeY8CZwARg/TrXXZ5XlN//SL/ntDNFZw7AtyiKLYvKYXNvjYgJg12wHJb2WJ9t50FOPRvoBP5RDqF7V0Ss0S+2j/SL66by2Bb9L9bHVsCDvcUjgPJn5cry2HKfU0Q8NyK+EhF/KYfBPVZ+b/+fH0mSNAo4ibYkSWNQ2QlzebmdHBHvBL4L9Hb6ACzr/21A3wLT54B9gMOBW4DHKYadDTpn0BD0fnj1YYrOnv7uKuO/MSJ+B7y/7Cx6M8VQqkFl5s0RsZBiSNw15dfv9emMeiXwI4rhdUcADwM7URSeBivm1MqvT78uEdHOv38I1wbcDLxlgO9/ooztuojYlGKI2VTgi8CnI2KnPsPr+voqRXGo192DPOe7I+Kl5TV3A44GToyIV2bmnWVsJ1L82/f3r4GuOVRDeE7fppi4/ePA3ymGD/6QwV9rSZI0gllAkiRpfLi5/Pq8FfieXYAzM/NseHoeohdTzIXT1ysior1PF9KrgaXA3/pfMDPvjYg7gZdk5teX8/hfA74APERRQLloCDF/Bzg6Is4AXkYxP0+v1wIPZOZRvTsi4m3LuV5vx9MLgDvL29vy74W23qLVknodUpn5GPAz4GcRcQLFnE27UgzN63/uQxTPe7nKzqALgAsi4miKf599gf8rY9sqMxfVucQyoL3fvhuBdSNiSr8hbK8EvjLE57QL8PHMPKf8/tWAzYA/D+V5SZKkkcUhbJIkjTERcWlE/E9E7BARLyzns/kK8AgDd/0M5hZgn4jYMSKmUEyi/YIBzlsXOCUitoyIvYFPA1/LzMcHue4ngQ9FxCcjYuuIeElE7BsRX+t33o/Lr0cz+OTZ/f0AWAf4BnBNZvYtVtwCPDci3hsRm0XEu4EPLud6iyjmC/pURLw0Il4LzKPo1up1JkWHzbkRMS0iNomIV0bErIjYFyAijoiIgyJiq7Jr57+AHuDWITynQZXP5f0R8bKIeCHFsL01eGaY2myKf8PPR8S2EfGiiJgeEd+IZ1Zq+zvw0jK29cpC0SXAH4HvR8RrImJr4AxgEsUE6EN5TrcAB0XEf0TEthT/Nv0LVZIkaZSwgCRJ0thzPkUh4TyKP+K/BfwVeE1mPrAC15lBUTxZQLHK2d08U9Tp68fAo8DvKIYo/YpiZbABZeZ3KVbveiNFkeIq4FP0G6aVmU9RDL1qA745lIAz80HgXIouoTP6HfsVcDxwAnADcADFULZ61+sG3kHRuXUtcApFAazW55ynKLpuFlK81rcCP6VYuewf5WlLKIYC/qF87LcAb83MW4byvOp4GDgE+A1Fl9nhwKGZeXEZ2wKKoW3bAJcB11MUwB4Feifd/gbFv8HlwP3AgWWxbl/gLxSv51UU8zzt0ednaHnP6RCKf7s/UqzodkF5HUmSNAq5CpskSVpp5SpfizLzfcN0/bOBzswcaH4hSZIkVcQ5kCRJ0ogTEetQdPC8Bdi9xeFIkiSNexaQJEnSSHQtxdxKn83M37Y6GEmSpPHOIWySJEmSJEmqy0m0JUmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNVlAUmSJEmSJEl1WUCSJEmSJElSXRaQJEmSJEmSVJcFJEmSJEmSJNXV0eoAGhER9wP/aHUckqQx44WZ+dzhfICdX7nK4ocW15r+/nvTLcsuy8zpzb6uNBBzMElSk5mDjQKjuoAE/CMzd2h1EJKksSEiFg73Yzy0uNZxw29eeHOzr9u+wV/Xa/Y1pTrMwSRJTWMONjqM9gKSJEmjTFKj1uogJEmSxhlzsEZZQJIkqUKZ0JMmL5IkSVUyB2uck2hLkiRJkiSpLjuQJEmqWI1sdQiSJEnjjjlYY+xAkiRJkiRJUl12IEmSVDEncJQkSaqeOVhjLCBJklShJOlJ26clSZKqZA7WOIewSZIkSZIkqS47kCRJqpgTOEqSJFXPHKwxdiBJkiRJkiSpLjuQJEmqUAI9fvolSZJUKXOwxtmBJEmSJEmSpLrsQJIkqWKOv5ckSaqeOVhj7ECSJKliPZlN34YiIqZHxC0RsSgiPjHA8YkRcVZ5/MqI2KTcv0dEXB0RN5Rfd+vzPb8pr3lduT2vWa+TJElSM7UiBxtL+VelBaSIaI+IayPiVwMcOzgi7u/zAryvytgkSRrLIqIdOAXYC5gCHBgRU/qd9l7g4czcHJgHnFjufwB4U2b+B/Ae4Lv9vu+gzNy23O4btichSZI0ioy1/KvqDqQPAzfXOX5Wnxfg9KqCkiSpKgnUhmEbgh2BRZl5W2YuA34I7NPvnH2A75S3fwzsHhGRmddm5j/L/TcCq0TExBV53pIkSa3UohxsTOVflRWQImIjYG/AwpAkSdXbELizz/27yn0DnpOZ3cBiYN1+57wVuCYzl/bZ962ye/joiIjmhi1JkjRqjan8q8pJtL8AfBxYo845b42IXYBbgRmZeWf/EyLiUODQ8u56zQ5SkqThNkxLyK4XEQv73D8tM09r5gNExFYUbdXT+uw+KDPvjog1gJ8A7wLOaObjSpIkNcNozMFGUv5VSQEpIt4I3JeZV0fE6wY57ZfADzJzaUT8N0UL1279Tyr/IU4rr7uw/3FJkkayBHqGZwGQBzJzhzrH7wY27nN/o3LfQOfcFREdwFrAg/B0J/HPgHdn5t96vyEz7y6/PhoR36do1baAJEmSRpQW5WBjKv+qagjba4A3R8TtFGP+douI7/U9ITMf7NOOdTrw8opikyRpPLgK2CIiNo2ICcABwDn9zjmHYpJGgLcBl2RmRsTawLnAJzLz970nR0RHRKxX3u4E3gj8eXifhiRJ0qgxpvKvSgpImTkrMzfKzE0oXrBLMvOdfc+JiA363H0z9SfbliRp1GrFJNrlmPrDgAsp3mPPzswbI2JORLy5PO0bwLoRsQg4HOhdavYwYHNgdr/lYicCF0bE9cB1FJ+gfX1lXhNJkqThVnUONtbyryrnQHqWiJgDLMzMc4APlS9gN/AQcHArY5MkaazJzPOA8/rtm93n9lPA/gN833HAcYNc1o5hSZKkQYyl/KvyAlJm/gb4TXm774s2C5hVdTySJFUpgR5cqEySJKlK5mCNa2kHkiRJ41FteCZwlCRJUh3mYI2pahJtSZIkSZIkjVJ2IEmSVCHbpyVJkqpnDtY4O5AkSZIkSZJUlx1IkiRVzE+/JEmSqmcO1hgLSJIkVSmhliYvkiRJlTIHa5gFJElSS+y15awAtgJ2B1YDbgDmn3/z3KUtDUySJA1q2o5zBnz/nv/H2b5/S2OcBSRJUuX22nLW6sApwKsp3osS6AYe32vLWf99/s1z/9jK+IaTEzhKkkaraTvOGfT9e9qOc/57/h9nj9n3b41+5mCNcxJtSVIr/B/wWmAx8CDwELAEmAh8e68tZ72whbFJY0pETI+IWyJiUUR8YpBz3h4RN0XEjRHx/apjlDRq1H3/nrbjHN+/pTHMDiRJUqX22nLWSymSz4cHOPwEsA5wMHBshWFVKOjx8xtVJCLaKboF9gDuAq6KiHMy86Y+52wBzAJek5kPR8TzWhOtpJFs2o5zxvn7t0Y/c7BG+epJkqq2C/U/wHgMeFNFsUhj3Y7Aosy8LTOXAT8E9ul3zvuBUzLzYYDMvK/iGCWNDr5/S+OcHUiSpKpNhLoD0GvlOWNS4gogqtSGwJ197t8FvLLfOS8GiIjfA+3ApzLzgv4XiohDgUPLu+s1P1RJI9y4fv/W6GcO1jgLSJKkqt0ILKtzfHXgDxXF0hJO4KgRpgPYAngdsBHw24j4j8x8pO9JmXkacBpARCysOEZJrTfu3781+pmDNcYhbJKkqv2WYuLNNQY41kbx6ebXK41IGrvuBjbuc3+jcl9fdwHnZGZXZv4duJWioCRJffn+LY1zFpAkSZU6/+a53cB7gScpJtycCHQCa1MkpV89/+a5l7UswGGWQE+2NX2TBnEVsEVEbBoRE4ADgHP6nfNziu4jImI9iiFtt1UYo6RRYP4fZy/3/Xv+H2eP2fdvjX7mYI0bX89WkjQinH/z3JuAPSlWh3qEoiX+N8C7z7957kmti0waWzKzGzgMuBC4GTg7M2+MiDkR8ebytAuBByPiJmABcERmPtiaiCWNZPP/OHvQ9+/5f5zt+7c0xkVmtjqGlRYRCzNzh1bHIUkaG6p4X9n0xRMf//b8F97c7Ou+btO/4nuiqmIOJklqJnOw0cFJtCVJqlDiBI6SJElVMwdrnEPYJEmSJEmSVJcdSJIkVWy8TbgoSZI0EpiDNcZXT5IkSZIkSXXZgSRJUsVqjr+XJEmqnDlYYywgSZJUoSTosQFYkiSpUuZgjfPVkyRJkiRJUl12IEmSVDEncJQkSaqeOVhjfPUkSZIkSZJUlx1IkiRVKIGan99IkiRVyhyscb56kiRJkiRJqssOJEmSKhX0pEvISpIkVcscrFEWkCRJqlCCS8hKkiRVzByscb56kiRJkiRJqssOJEmSqpRQcwlZSZKkapmDNcxXT5IkSZIkSXXZgSRJUoWScPy9JElSxczBGmcBSZKkirkCiCRJUvXMwRpj+U2SJEmSJEl12YEkSVLFan5+I0mSVDlzsMb46kmSJEmSJKkuO5AkSapQAj0uIStJklQpc7DGWUCSJKlSQQ0ncJQkSaqWOVijLCBJ0ij23b/uFMAkoOddW1yxrNXxSJIkSRqbLCBJ0ij03b/u1AbsC3wQ2KzcdwXwpXdtccUVLQxNy2H7tCRJUvXMwRrnqydJo0zZdXQ88DngBcBDwMPADsD3vvvXnd7awvAkSZIkjUEWkCRp9Hk18DbgEeCJcl8CS4DHgeO/+9edntOa0DQUPbQ1fZMkSVJ95mCNGV/PVpLGhoPLrznAsS6K4clvqiwaSZIkSWOecyBJ0ujzEuDJ5ZwzpYpAtOISqKUrgEiSJFXJHKxxFpAkafRZDKwHDLbqWhvwYHXhaMXEuGt3liRJaj1zsEb56knS6PMDoHOQYwH0AL+qLhxJkiRJY50dSJI0+vwCOBTYiGIi7V5twFrA/HdtccVNLYhLQ1C0T/v5jSRJUpXMwRrnqydJo8y7trjiceDtwEKKgtGawBrA6sCPgI+0LDhJkiRJY5IdSJI0Cr1riyvuAw747l932hzYGugGrnzXFlfc39rINBQ9OIGjJElS1czBGmMBSZJGsXdtccUiYFGr49AKyLB9WpIkqWrmYA3z1ZMkSZIkSVJddiBJklShxPZpSZKkqpmDNc4OJEmSJEmSJNVlB5IkSRVz/L0kSVL1zMEaYwFJkqQKJUGPyYskSVKlzMEa56snSZIkSZKkuuxAkjQi7T51biewO/CfwPOAvwPfBf5w8YJZ2crYpEbVnMBRkiSpcuZgjbEDSdKIs/vUuasBPwD+D9gJ2AjYA/gOMG/3qXPbWxieJEmSJI07diBJGok+BWwHPNxn31NAAG8CbgC+UX1YUuMSHH8vSZJUMXOwxvnqSRpRdp869znAPsDiAQ4n8ATwP3YhSZIkSVJ17ECSNNJsBfQAtUGOLwXWAjYA7qoqKKmZaun4e0mSpKqZgzXGApKkkaZnCOcEgxeYpBEu6LEBWJIkqWLmYI3y1ZM00vyp/DpYgXsV4J/APdWEI0mSJEmygCRpRLl4wazHKVZbWwOetc5mOzAJ+MLFC2Zl1bFJzZAU7dPN3iRJkjQ4c7DGOYRN0kh0MrA+sDdF0aibouCdwJeAn7csMkmSJEkahywgSRpxLl4wqwv4yO5T534d2I+imHQb8OOLF8z6R0uDk5qgZgOwJElS5czBGmMBSdKIdfGCWTcCN7Y6DqmZMqFnnLU7S5IktZo5WOMsv0mSJEmSJKkuO5AkSarYeJtwUZIkaSQwB2uMHUiSJI0TETE9Im6JiEUR8YkBjk+MiLPK41dGxCbl/j0i4uqIuKH8uluf73l5uX9RRHwpIszMJEmSSmMp/7KAJElSpYJatjV9W+6jRrQDpwB7AVOAAyNiSr/T3gs8nJmbA/OAE8v9DwBvysz/AN4DfLfP95wKvB/Yotymr/xrI0mSNFyqz8HGWv5lAUmSpAol0EM0fRuCHYFFmXlbZi4Dfgjs0++cfYDvlLd/DOweEZGZ12bmP8v9NwKrlJ+WbQCsmZlXZGYCZwD7NvYKSZIkNV+LcrAxlX9ZQJIkaWxYLyIW9tkO7Xd8Q+DOPvfvKvcNeE5mdgOLgXX7nfNW4JrMXFqef9dyrilJkjSW1cvBxlT+5STakiRVbJgmcHwgM3cYjgv3ioitKNqqpw3n40iSJA2H0ZiDjaT8yw4kSZLGh7uBjfvc36jcN+A5EdEBrAU8WN7fCPgZ8O7M/Fuf8zdazjUlSZLGqzGVf1VaQIqI9oi4NiJ+NcCxAWcelyRprGnFJNrAVcAWEbFpREwADgDO6XfOORSTNAK8DbgkMzMi1gbOBT6Rmb/vPTkz7wGWRMRO5eof7wZ+0dCLI0mSNExakIONqfyr6iFsHwZuBtYc4NjTM49HxAEULVrvqDI4SZLGqszsjojDgAuBduCbmXljRMwBFmbmOcA3gO9GxCLgIYokB+AwYHNgdkTMLvdNy8z7gA8C3wZWAc4vN0mSKjd12oltwNrAUwvmz3yixeFIYy7/qqyAVLZe7Q0cDxw+wCn7AJ8qb/8Y+HI583hWE6EkScMvCWpDWzWt+Y+deR5wXr99s/vcfgrYf4DvOw44bpBrLgS2bm6kkiQN3dRpJ04A/gt4H0UBKaZOO/FyYN6C+TOvaWVsGjlalYONpfyryiFsXwA+DtQGOT6UmceJiEN7ZzcH1hueUCVJGj49GU3fJEkaj8ri0Tco/tacCDxSbjsBZ02dduJuLQtOI445WGMqKSBFxBuB+zLz6kavlZmnZeYO5SznDzQenSRJ0tgVEdMj4pZynslPDHD84Ii4PyKuK7f3tSJOSVpJ+wKvphj6s7TclxQNCUuBeVOnnTixNaFJY0tVQ9heA7w5It4ATALWjIjvZeY7+5zTO/P4Xf1nHpckaazIZKiTXksNi4h24BRgD+Au4KqIOCczb+p36lmZeVjlAUpS497HM4Wj/p6imH93d/oNIdL4Yw7WuEpevcyclZkbZeYmFBNCXdKveASDzDxeRXySJElj1I7Aosy8LTOXAT+kmHdSksaKyRSFosFM4N+XPJe0kqpehe3fDHHmcUmSxpTaOBsvr5Z6eo7J0l3AKwc4760RsQtwKzAjM+/sf0JEHAocWt51HkpJI8USilEuywY53g08Wl04GsnMwRpTeQEpM38D/Ka8vdyZxyVJGmtatQqbNIhfAj/IzKUR8d/Ad4BnTTqbmacBpwGUi5lI0kjwQ+B/GbiA1EaxiNOvK41II5Y5WGMcAChJkjR29c4x2Wujct/TMvPBzOydP+R04OUVxSZJzXAGxdy5a/Xb3zuv7jcWzJ95f+VRSWOQBSRJkiqUBLVs/iYN4ipgi4jYNCImUEwRcE7fEyJigz533wzcXGF8ktSQBfNnPkAxh+4NwNrAGsDqFHMffQH4XKti08hiDta4ls6BJEmSpOGTmd0RcRhwIdAOfDMzb+w3D+WHIuLNFPOEPAQc3LKAJWklLJg/8w5gv6nTTnwxsDnFpNpXLpg/8/HWRiaNLRaQJEmqmEvIqkqZeR79lq/uNw/lLGBW1XFJUrMtmD/zVorFAKQBmYM1xgKSJEkVG2/tzpIkSSOBOVhjLL9JkiRJkiSpLjuQJGkY7brnCS/L4JXAw1Hj55fOP7Kr1TGptRKXkJUkSaqaOVjjLCBJ0jDYdc8TXtYzqe1HPWt2bhKZmUFEja6d95r75cvOnzWz1fFJkiRJ0opwCJskNdmu007YrGv1jst6JrRvQi27SLqjRlcG7d2rdxy+8xvmfqXVMaq1XEJWkiSpeuZgjbGAJElN1jOh7QvZxipRy66+bymR9FDL7u7V2t+767QTntuyACVJkiRpBTmETZKarDap7fXU6B7oWEAtoT3b4zDgmIpD00gwDj+tkiRJajlzsIZZQJKkJtp12gmRa3d20pPLBj0pIjJYv8KwNIIkLiErSZJUNXOwxjmETZKa6NL5R2b05FKizu/XzIzk7xWGJUmSJEkNsQNJkpqs/amec7pX7dg/M5f1/4wjg7ZIeqInT2lJcBoR/PRLkiSpeuZgjbEDSZKarK0rZ7R11x6hjQkJAUXLbAYdRLS3P95zwqXzj3y0xWFKkiRJ0pBZQJKkJrt0/pH3djzes237U7U/0EZ7tkUHbdHZ1pMPdz7a9eHLzp/16VbHqNaqEU3fJEmSVJ85WGMcwiZJw+DS+UfeDeyy67QT1s1gm4CHLr3wyD+1Oi61nhM4SpIkVc8crHEWkCRpGF06/8gHgQWtjkOSJEmSGmEBSZKkivnplyRJUvXMwRrjHEiSJEmSJEmqyw4kSZIqFX76JUmSVDlzsEZZQJIkqUKZtk9LkiRVzRyscQ5hkyRJkiRJUl12IElqyPQ5s9qBCRfMnvtkq2PR6HTNHZPbgPbtJ9/R1epYqpJ++iVJklQ5c7DGWECStFKmz/3E62O97s+2b9u9NW0Ze58944naPzvPzCXtH7WYpKG45o7JU4DDgGlAxzV3TL4N+Crw4+0n31FraXCSJEmS/o1D2CStsOknfuKg9i2fOrdt/a6t6aKLpbGMCTmx7UVL39+28bI/TZ8za5VWx6iR7Zo7Ju8C/IyieLQEeABYH5gLfKHsShqzakTTN0mSJNVnDtaYMZ2gS2q+6XNmdba/aOlXCZJlbV0QQEBP9LAslsV63ZuyRu0zrY5TI9c1d0yeBPwf0AU8AvR2Gz1R3n8DML0VsUmSJEkamAUkSStmUv43E3Ii3dHz7INFIaltg653VR+YRpHdgVWApwY4lkA38P5KI6pQUqwA0uxNkiRJgzMHa5wFJEkrJCbkfxB1flP20BOr96wxfc6s8fXbVCviRUBnneNPAltUFEtLZEbTN0mSJNVnDtYYC0iSVkjWWEKSg54QBN3Rc8HsuYOfo/HuUajzM1Qs8PBoRbFIkiRJGgILSJJWzBNtXyvmPRrk7/+O7Kz9q/PKSmPSaPNroAcGnXVwVeDs6sKpWvNbp8db+7QkSdKKMwdrlAUkSSvkgqPmLqrd1XkxE3IC9P2NmdBR66QnuvOhjpmti1Aj3faT77gT+DGwDs9+H1qTYiLtMysOS5IkSVIdHa0OQNLokw90vLGWnNO2cdceZD7dR5JPtj1eu23iuy84cu4VrY1Qo8BsYBlwYHm/txh5G/CB7SffcV9LoqrIeBsvL0mSNBKYgzXGApKkFXbB7Lk9wN7Tj5u1CavU3hdtrJ7L4lqWxhnOfaSh2H7yHV3AMdfcMfn/gNcCE4FbgD9tP/mOMf0zlMm4a3eWJElqNXOwxllAkrTSLjhq7u3AUa2OQ6PX9pPveAD4eavjkCRJklSfBSRJkiqWY7rHSpIkaWQyB2uMk2hLkiRJkiSpLjuQJEmqWA3H30uSJFXNHKwxFpAkSaqYK4BIkiRVzxysMQ5hkyRJkiRJUl12IEmSVKHEJWQlSZKqZg7WOAtIklbKa/c7aRKwJ7A/sAbwJ+DM3/30Y7e0NLAR5OXvn/cS4J3ANsCjwNnA/Ku/PuOplgYmSZIkSSvIIWySVthr9zvpecB5wEnAK4AtgP8Efvna/U7671bGNlK8/P3z/gf4JXAgsDnF63QycO7L3z/vea2MTa2X2fxNkiRJ9ZmDNcYCkqSVcSowGVhM0VnzBPAI8Djwsdfud9IurQut9V7+/nm7AB+jeD0eAZ6keJ0WAy8ETmlZcJIkSZK0EiwgSVohr93vpCkUQ7IeGeBwD8Xw4v+pMqYR6INAjeL16O8RYNuXv3/elEoj0ggSZDZ/kyRJUj3mYI2ygCRpRW1P/d8djwKvfO1+J42v36all79/XgA7UrwOg2kDtqsmIo04icmLJElS1czBGmYBSdKKqlF0GQ0mynPGsxrF6zCYpP5rKEmSJEkjigUkSSvqj9QvfqwB/PZ3P/3YuCyQXP31GQlcRvE6DCaBK6uJSCNRLaPpmyRJkuozB2uMBSRJK+R3P/3YIuAPwDoDHO4sv361uohGpK9QdCB1DnBsHeD3V399xt+qDUmSJEmSVp4FJEkr40PAn4E1gbUpum3WBlYBjvzdTz92VcsiGwGu/vqMq4AjKV6PtXnm9VmT4nX7cKtiU+slLiErSZJUNXOwxllAkrTCfvfTjz0CvAV4H3AOxZCtLwGv+91PP/ajFoY2Ylz99RlnA6+jeF0uA35B8Xq95eqvz1jcwtA0AjiBoyRJUvXMwRrT0eoAJI1Ov/vpx2rAb8tNA7j66zP+SVFAkiRJkqRRzQKSJEkVG2+fVkmSJI0E5mCNcQibJEmSJEmS6rIDSZKkio2z+RYlSZJGBHOwxlhAkiSpYrZPS5IkVc8crDEOYZMkSZIkSVJddiBJklSlxP5pSZKkqpmDNcwCkobNXlvOWguYBjwXuBe46Pyb5y5pbVQjx/StPhnADsB2QA24EvjzBTce37Rfa7V/vfilwGso/q/fAFzRtv6ttWZdX5IkSZI0PlhA0rDYa8tZBwOfANqBTqALOG6vLWcdd/7Nc89sZWwjwfStPrkRcDqwGTCBohbeDVw3fatP/s8FNx7/YCPXr/3rxWsCpwA78cz/8y7grtq/Xvy+tvVvva2R60tqRDj+XpIkqXLmYI1yDiQ13V5bztoPOBp4ClgMPFB+XQYcu9eWs/ZuYXgtN32rT64K/BB4EbCE4vV5kOI12g747vStPtm+stev/evFQVGcenV5zQfLbQmwIXBW7V8vXqeR5yBp5SWQ2fxNkiRJgzMHa5wFJDXVXlvOagOOAJ6k6KjpqwtYCnx8ry1njefS797A8ymKO/09AmwO7NLA9XuHxT08wLFHgXWA/Rq4viRJkiRpnLGApGZ7CfAciu6jgTwJbABsWllEI89bgZ46x9uANzVw/ekUQwcHs6yMQVKLZEbTN0mSJNVnDtYY50BSs02imBC6np7yvPFqVeoXkHqA1Ru4/urU/zfoKWOQpMpFxBTgwcy8NyJWp+harQGfy8wnWhudJEnS2NOs/MsOJDXb7RTdL4P9bLUDAdxZVUAj0DXAxDrH28tzVtZ11F+gchXgTw1cX1KjMpq/jR4/ANYub59EMWR3J+BrrQpIkiSNE+M3B2tK/mUHkprq/JvnPrzXlrN+BezDwHPwrAmcdf7Ncx+tNrIR5UzgIIr/f/3niZpQ7vtJA9c/FziKosur/1DCdori0rcauL4kNWKTzLwlIoJiPrYpFMOb/97asCRVZc/tjplMkStuCPwD+MWF1x77z9ZGNTLttsucF9c62mbRFi8huT+6a/+34NKjf93quEainQ46eQ3gDcDLKOb9vBC49oozPzrOpjlevt2nzp0A7EFRQOgGFgC/u3jBrOWNJNHo1ZT8yw4kDYdPA3+jmKx5EsXP2Srl/VuAz7QutNa74Mbj/0rxGq0GrEVR1OmgqAhPAj56wY3H37+y129b/9YlwP+W11yn/NpePtbqwBfb1r/1upV/BpIa1aoVQCJiekTcEhGLIuITAxyfGBFnlcevjIhNyv3rRsSCiHgsIr7c73t+U17zunJ73nLCeCoi1gB2BO7IzAcoFlgYz0ObpXFhz+2Oadtzu2OOBC4GPgK8DfgYcOme2x3z4T23O2bUfJRfhddNPe6UrjUn/rln1c6DeiZ17NCzSscbuteYcN6uexx/1W47z6nXzT7u7HTQybsCfwCOA94OvB84C/h+WVhSafepc6cAvwPmAf8JvIdiBecLd5869wWtjK0KrcjBxlL+ZQFJTXf+zXMfpqhqHg88RFE8uh+YA7zt/JvnLmlheCPCBTcefwZwIPAboJOiwHMu8JYLbjz+3Eav37b+rb8B3kzRyRQUnU2XA+9pW//WL9f5VknDLYdpW46IaAdOAfai+NTpwHI8fF/vBR7OzM0pEssTy/1PAUdT/KE3kIMyc9tyu285oXwfuAT4DvDtct/22IE0bJaXuPY5760RkRGxQ5XxaVw5hOL3zKMUneqPlF8fAz4E7N+yyEaYqa/79Iye1TvfTy27I7Or3JaR2VWb2LFtbUL7L1sd40ix00Env5hnhuEspvi5eqi8vSPwpdZENvLsPnXucyhGQ6wJLKH4//dQeXsT4Hu7T507dkcptSAHG2v519j94VBLnX/z3MeAb5abBnDBjccvBBYO1/Xb1r/1VuDj5SZJOwKLMvM2gIj4IcUQkpv6nLMP8Kny9o+BL0dEZObjwO8iYvNGg8jMGRExDejKzAXl7howo9Fr69n6JK57AHcBV0XEOZl5U7/z1gA+DFxZfZQaD/bc7pgJwP8DHufZi330UAylmLHndsf8+MJrjx33w2h6JnXMpJYZ8e9/ngaQtezqWaVj1912mbPhJb+dfXeLQhxJ3k/xgexjAxx7GHjtTgedvMUVZ370r9WGNSK9FViDosjW32JgI2BXii5BNceYyr/sQJIkqWLDtITsehGxsM92aL+H3ZB/X8DgrnLfgOdkZjdFMrnuEJ7St8r26aPLsfXLef45H1gUETuV9xdm5iVDeBytuKcT18xcBvQmrv19muITz/5z50nN8lKKoRLLBjn+FPAcYNPKIhqhdttlzsbZ0bYuz54rE4DeolK2xTsqDWzk2pOiq20w7cBrK4plpHsTg/8fhKI+ML2iWFqiBTnYmMq/7ECSJGlseCAzWzH06KDMvLvsYPkJ8C7gjMFOjojJFCuBbEvR+L16RLwNmJ6Z76sg3vFmoMT1lX1PiIjtgY0z89yIOGKwC5UJcW9SvF6zA9WY18HyB9wm/n0CxWq9Q1jbKSYMfyijQidFB9tg2vDnqlcn9f8fJvVXi9bAWpGDtST/sgNJkqSqtWAOJOBuYOM+9zcq9w14TkR0UEy+/2Ddp5J5d/n1UYrx9TsuJ46vUcz5tgbQVe67iGKIlSoWEW3A54GPLu/czDwtM3cok+QHhj04jTWLKEZgtQ9yvJOi4+YflUU0UiV/j1ouzUFeq/JXfkQtL6oyrBHsaoqFYgazDPhzRbGMdJez/ALR5VUE0jLV52BjKv+ygCRJUsWGqX16ea4CtoiITSNiAnAAcE6/c86hWI0FitWRLskcfH2RiOiIiPXK253AG1l+kr4j8JnMrFGmXZm5mCJZUvMtL3FdA9ga+E1E3E6xpPM5TqStZrvw2mOXUHxKvuYgp6wOnHHhtceO+2GUl1w2u6ftqe4fENE+4C/giM62ZT23XfLbo6+uOrYR6jSKv2sHKritQdF56fxuhTMp5hwbqHttFYqhpL+qNKKKtSAHG1P515ALSBExLSI+HhFz+m4r8mCSJKk1yjH1hwEXAjcDZ2fmjeX7+ZvL074BrBsRi4DDgadX7CqLC58HDo6Iu8oVRCYCF0bE9cB1FIWJry8nlHuBf5sMsrzWHY09Qw2ibuKamYszc73M3CQzNwGuAN6cmcO2yIPGteOBa4G1KQpGEyj+wF+bouvhi60KbKRp66r9b9vSnj8T0ZkRnQltCe0ZMSF6ao+2P9X9hlbHOFJcceZHf0uxWEDvz9IEimLI2hSri73vijM/Ou4nZge4eMGs24CZFPORrU3xPt57G+B9Fy+YNdBk5FpJYy3/GtJY0Ij4MvB2YAHwRJ9DQ2ualyRJz2jRu2dmngec12/f7D63n2KQZbTL4sJAXr6CYZwE/Coi5gIdEXEgcCTwmRW8joYgM7sjojdxbQe+2Zu4Agszs/+noNKwufDaY5/Yc7tj/pNikt53A+tTdId8B7jowmuPHXDS6PHokstmd+2285wd2rp6PlSb0P6/2dH2XGr5RNvS7rPaumufvuSy2XWHt4w3V5z50Xk7HXTyb4FDgJdR/M36Y+AnV5z50YdaGtwIc/GCWT/ffercmyg6Xl5L0ZF0HvCDixfMGvur+rUgBxtL+VfU6Yx65qSIh4CXZeadyz25QhGxsEUThkqjwrTtj1mNIkmbCFw6/5pjm/qmsOvWM9ppb3tDRqwZPbWrLr3h87c28/pTjpoXwGbAOsA9Nx03Y+y/qa2gnff93JoUnyZ0A3+57OdH1FtZQ8tRxfvKhI2e//gLTphxc7Ov+4/3zGK0vCdGxD7AfwMvpJjg+auZ+fOWBqUVYg4mSWomc7Dh14z8a6iz0T8APLIiF5bUOtO2P6Yd+CZtbftDluPBg2kvP+ZKkrfMv+bYhj+12uXlRxzb84J1ZtDRPglIgth556NubXvkibdfesPnb2r0+lOOmvdK4FiKAlIP0DHlqHkLgdk3HTfjr41ef7Tbed/PrQrMovi0IikmJn1q530/92Xgm5f9/AhbtUe0Ic1ZNGZl5i+AX7Q6jtEgIjalGPazLf0mic3Mya2ISZKk0Wv85mDNyL8GLSBFxGZ97p4MnFm2O93bL4jblvcgETEJ+C1FF0QH8OPMPKbfOQcDn+OZiR2/nJmnD+E5SHq2C2lr2xWym6IzBcigrW0nanndtO2Peen8a459fGUvvssOH/9iz/rrfDBrtR56al1BUcGorbnKS2qTJvxh1/+Y8bJLb5h3+8pef8pR814FfLu87JJydwA7AD+ectS8t9x03Izl/u4Zq3be93MTKJbp3I7i9ekpD02gKCo9n+IPTo1U43gAeET812DHMvObVcYySnwf+BvFKmlPLOdcSZJUzzjNwZqVf9XrQFrEM59q93pj/8di8KU4+1oK7JaZj5WzhP8uIs7PzCv6nXdWZh42hOtJGsS07Y95LW1tu0D2H8qUZHYR8XwyjwA+tTLX33XrGev2bLzuf2dPrTuKWfyB8hdFd20ZEzpWra068WTgrStz/XLY2vFADehb5EpgMcUkfx8H/mdlrj9GTKPoRni43/5lFAXDg3fe93PfveznRzgpsUaid/W7vz7wIuD3gAWkZ9sKeE32+X0rSZK0gpqSfw1aQMrMIa/QtjzlEnS9s7l3lts4rf1Jw25G/f9eCUUF+lMrc/Gc2PH/iGiLWq1rwOO1WndtndWmr8y1S1OADYFHBzm+BNh9ylHz1rzpuBlLBjlnrHs3T3eWPUuNYoXNfYEvVRWQVkAyrt8BM3Nq/33lp2JbtiCc0eC3FN2GLtctSVIjxnEO1qz8a0hFoogY8I+QiPjCUB8oItoj4jrgPuCizLxygNPeGhHXR8SPI2LjQa5zaEQsjIiFwHpDfXxp3AgG/L/TRw/Bmit9/ba2FxAx+ODhWtboaJ+w69YzVnaA8XoURZBBH4FiyNY6K3n9sWB9im6jwSRFEU4aLb4NvLfVQYwU5dK+c8qV0m4HLoiI0/ruL49JkiStrG+zgvnXULuMDh5kf/82qEFlZk9mbgtsBOwYEVv3O+WXwCaZuQ1wEcVyngNd57TM3KGc5fyBoT6+NG4k/1jOGe1kA5Pi99TupN7yjW3RRlfP0kv/PG9l6/v3UX9obFu5jeclWe+mmFNuMAHL/TlQywTkMGyjRES09dtWBw7FxTr62rjPthrwK4ru7Y37bZIkacjGbw7WrPyr7ipsfSZa6hhg0qXNWIkCTmY+EhELKJYW/3Of/X1XhTod+OyKXlsSACdC7FP+NhugiBOQta+u7MVjWfeXyPxktkVb1AaYk6OtraPtwSU/W9nrA3+h+MR9Ms8Mfe1rLeBXNx03Y7AhbuPBd4BXDHKsnaJLyxWuNFJ18+zfTXcD729BLCNSZh7S6hgkSdKY0pT8a3kdSO8qtwl9br8LeCfFhEvvGcqDRMRzI2Lt8vYqwB4UfyT2PWeDPnffDNw8lGtL+nfzrzl2IbXaeRSfVvft5GmD6CTzDmDeyl7/0j/PW9x+35KTo62tPdvb2nt/CyUEHW0T2pZ2LWl7cukRK3v9m46bkcAnikv+21C7oBi2thg4aWWvP0b8GvgDxevR2Wf/JIrX7JTLfn7E3QN9o0aGzOZvo8imFB9C9W7Pz8zJmXlha8MamSJiwG7LiLiv6lgkSRrtxnEO1pT8q24BKTOnlpMtfab3drntlpkHDrCK2mA2ABZExPXAVRRzIP2qHMP/5vKcD0XEjRHxJ+BDDD5sTtLyvYVafgXogugot6BWm0/my+Zfc+zSRi7+26s/+8n2ex6e2bas67HoaOukva0j2tva2x554ur2ex/Z/tIb5jVUvLjpuBnXAAcA11F0HK0GrAFcDOx703Ez7mzk+qPdZT8/oht4H/A1iiLh6hSvz6PAkcAXWxedhiSHYRslMvMf/TaHo9fX2X9HuaLtUFbBlSRJfY3THKxZ+VcMNpVJRAxpfqRWLisbEQvLuZAkDWDa9se0A7tQzJfzh/nXHLu4mdffdesZQVu8koh1qdWuufSGefc08/oAU46atwGwNnDvTcfNGM/zHg1o530/Nwl4IUVb6t8v+/kRLvXdgCreVyZsuP7jG8w5vOldtne8byYj9T0xIi5jCClWZu5SQTijQp/X7FUUHYd9bQTcmJlvqjywkjmYJKmZzMGabzjyr3pzIA00Rm4gfgImjVDzrzm2B1gwXNcvJ8oeaifiSrnpuBn3AE0vTI0Vl/38iKeAW1odh1bQKJlwsYlOb3UAo9DpFEN3XwF8o8/+BO4FLmlFUJIkjWrjKwdrev5Vr4C0aZ/bewNvA+ZSrOzzQmAm8JNmByRJksaWzBxwZVUNrvc1i4grMvMvyztfkiSpr+HIvwYtIGXm00tAR8ThwA6Z+Ui569aIWAgsBE5tdlCSJI1lMUrGyw+XiHg+sCOwHkWXDQCZ+c2WBTWC9F/5NiJePdB5vl6SJK2Y8ZyDNSP/qteB1NdawKrAI332rVrulyRJQzWKJlwcDhGxL/A94K/AVsCNwNbA7wALIoV39bkdwGuAfwF3AhsD6+PrJUnSihnHOViz8q+hFpC+A/w6Ir7AM8nLh8r9kiRJQ3UccEhm/igiHs7M7SLiEIpkRhSr4Pbejoj/A36emV/os+/DwItaEJokSRqdmpJ/DbWA9HFgEfAO4AUUE9p+Gfj6ijyYJElivE3g2N/kzPxRv33foeiw+VgL4hnp3knRat7Xl4EHKD7MkyRJQzV+c7Cm5F9tQzkpM2uZ+dXM3D0zt8zM3cr7PSsQsMap/S//wKj+X7r71LmjOv6dDjo5djro5GF9Drvu/dlhvf5P/7bdqP432GvKkaM6fqnJ7ivH4APcHhGvouimcVXXgf0LeHO/fW8C7mtBLJIkaXRqSv41aAdSRLwrM79b3v6vwc5zAkcNZP/LP7AO8B6KeRzW3f/yD9wPnAF850evPnVJS4Mbgt2nzm2jSNA/ALxk96lzlwG/Ar528YJZt7Y0uCHa6aCTX0YR/+5A+04HnfwniknvL7rizI82PPp3170/uylwKLAvMGnXvT97G3Aa8JNLz/14d6PX/+nftnsu8F/AgcDaP/3bdv+iGJ/7vf1edO0TjV5/uO015cgO4K0Ur9Fme0058ing58Bp5990wt9bGZtGgHE6/r70deC1FCu5zgMWADXg5FYGNYJ9CPhJRBxBMY3AZGAKsH9Lo5IkaTQavzlYU/KvyBz4FYyI8zLzDeXtBYN8f2bmbivygM0UEQszc4dWPb4Gtv/lH3guxQ/mhsDjwDJgArA68A/grT969akPtS7C+sri0ecoCiPLKJ5DO7Am0AUcfPGCWVe0LMAh2Omgk/cCvkjRZbiE4lfl6hTP4xvAZxopIu2692dfBpwJrFJev4diYv2JwMXABy499+Mr3aH4079ttyHwU4phG49RvO4TgdWAvwDv2O9F1z66stcfbmXx6CsUxbulwBM88zP0JPCf5990wvWti1CDqeJ9ZcIL1n/8BUd/7OZmX/cfHzyC0fieGBGTgdUys+mvyVgREesBe/HMNALnZuaDLY7JHEyS1DTmYNVa2fxr0CFsvcWj8vbUQbaWFY80on2Konj0MEUBhvLrQxSfnB7ZmrCGbE9gH4pVBx8v9/VQPJ8e4NTdp86d0JrQlm+ng05eG/g88BTFc6hRFJAepSj2vBdY6V9wu+792TaKTqYOnnlNoCiSPExRNNlvZa9fOhFYt7xeV7lvKcXP0EuADzd4/eH2VorX4WGK1wWe+RnqAE7da8qRQxpCLI01EfGRPi3UZOYdFo/qy8wHMvO7mXliZp7R6uKRJEkaXZqVfw3pD5iI+FBEbLOiF9f4s//lH1gX2ANYPMgpi4E37X/5B9asLqoV9j6KP/YH6tB5kqILZiQXT99EUaRYNsCxWvn14Aau/2qe6QwayFKKYVsr5ad/225j4JUM/jP0KHDgT/+23cSVfYwKHErxOgzkMeC5wKuqC0cjTg7DNnq8Dvh7RPw6Ig6JiJH8ftASEXFBn9uXRcRvB9paGaMkSaPS+M3BXkcT8q+hfgK+A/DLiHgoIn4REYdHxMsjwolh1d9kiuJLbZDjtXLbuLKIVtxLeKZrZCATgM0rimVlbA3U+7/5JI0tl70Z9VdwfAJ4UQMTa28KdDP4r+NuiuFgzx/keEuVE2ZvRv2foXZcglvjVGbuSzEU64cU8+TdExE/iYhGOxfHkjP63D6dYujxQJskSdJyNSv/qvdHYN8HezdARGwC7Fpus8vDa6/IA2rM653rpZ526v9x3WqPU8ztM9gcPjWeGdo2Ej1K/eJwO43F/ySDvzZQ/F556tJzP76y9fgnqV8A632MEfkzdP5NJ2Q5YXY79X+GRmT8qkAynpeQBSAzH6EojJxejsE/HfgRrsQGQGZ+v8/t77QyFkmSxoxxnoM1I/8a8hwcEfESYBrF/DC7A7dSzOQt9fVX4F6KAsxAVgXuAG6vKqCV8BOKYWoDCYqiwMXVhbPCfkX9Ak8nReV5Zf2G4tfvYL8/1gB+1sD1r6MocA02z9QawJ/2e9G1DzTwGMPt5xQTZg+kjeL1+01VwUgjUUS8NiJOAa4CNgKOaXFII1JEXBsR8yJi34h4TqvjkSRJo1ej+ddQ50C6FziXYljGGcDWmbljZh6xgvFqjPvRq0+tAXOBSTy7ADCh3E740atPHcmjRc+g6OJZo9/+NoqOu19cvGDWHVUHtQL+BPwBWIdnd/KsBdwP/GJlL37puR+/H/heea3+v0NWp+ggWuni8n4vurYLOImiiNe/S3JS+ZifXdnrV+RrFK/D6v32t1G8bmecf9MJI7kApmEW2fxttIiIz0XEPyh+jzwG7JmZUzLzuBaHNlJ9lGIBhI8Ad0XE9RHxfxHxttaGJUnS6DNec7Bm5V9D7UA6h2LekX2BtwBviogNV+SBNH786NWnngfMpGiFW4OikLEmRTHjoz969amXtDC85bp4wax/AW8H/kkR9zoUf/SvQdHiN6JXkbvizI8m8D/AhRTxr80zz+EW4O1XnPnRJQ0+zPHAtykKJGvxzL/xA8B/Xnrux29v8Po/BI4DJvLMv8GaFL+HPrDfi669ssHrD6vzbzrhduA/gQf595+h1YFvURRZNZ6N3wkcoSgOvzMzN8nMmZl5XasDGsky85LMPCYzX0cxf+AvgXcDZ7U0MEmSRqPxm4M1Jf+KzKE/43LZt10o5kB6J/BAZrZsMuGIWJiZK70cuYbX/pd/YFWK2d7XA+4DfvOjV5/6VEuDWgG7T53bRjGB/EsoVtS69OIFs+5tbVQrZqeDTp5MsWpaB3A9cENZYGqKXff+7HoUvw9WAxYBV1x67scHm0B9hf30b9utDkylKMDcA1y634uuHWh1uRFprylHtgE7UUy6/jjwm/NvOsHlt0ewKt5XJmyw/uMbHnlE05etv/1DH8P3xLEnIvbimdxrY4oO098Al2bmjS2MyxxMktQ05mCjw5ALSBGxHUXyMhXYmWJ4xqWZ+Z/DF95yYzJ5kSQ1jcmLRpqIqAF/o+hcPCMzu1scEmAOJklqLnOw0WFIq7BFxMPAYuC3FMPZPpqZi4YzMEmSJLEzRQfS/sBxEfFn4FLgt5l5WUsjkyRJ48qQCkjAdpl5+3AGIknSeDFaJlxU62Xm74HfA3Mj4nnAh4GPA3NYgWV3JUmSOVijhjSJtsUjSZKaKKP52ygRER+OiPVaHcdoERFviYgvRsR1wO0U3UhfBvZqZVySJI1K4zQHa1b+NdRV2CRJkpphN+D2iPhVRLwjIia2OqAR7sPAI8DhwLqZuXNmfjIz57c2LEmSNIo0Jf+ygCRJUtXG7xKyZOY+wAuB84GPAP+KiNMjYpeWBjZCZebrMvOYzLwkM59sdTySJI1q4zQHa1b+ZQFJkiRVKjMfzMxTMvNVFCu8vgJYEBG3R8QnI2L1FocoSZI0pjQj/xp0Eu2I2G2IQVwy5IgljRlTp504AXg9sB+wJvAn4AcL5s+8raWBSSPdKPq0ajhFxO7AO4F9gIXAZ4E7KIZsnU+x+pgkSVJzmIM1nH/VW4XtG0N4/AQ2G1KkksaMqdNOXA84E9i03NUDbA8cPHXaiccvmD/z262KTRoNxvMKIBFxEnAAsBg4AzgqM+/uc/wK4OEWhSdJksaw8ZqDNSv/GrSAlJmbDnZM0rh3CvAiiold++oAjpo67cRbF8yfeXnlUUkaDSYBb8nMqwY6mJldEbFDxTFJkiSNZU3Jv+p1IEnSs0ydduJLKbqNHhngcDdFZ+IHAQtI0mDG6adfAJl5GEBEbAxsmJlXDHDOXyoPbASJiO8yhJ+SzHx3BeFIkjR2jNMcrFn515AKSBGxJvApiomW1gOiz4NMHlrIksaIHag/Af8S4FVTp50YC+bPHKe/oiUNpkxcfghsS5HGrR4RbwOmZ+b7WhnbCLKo1QFIkqSxo1n511A7kL4CbATMAb5HMenSEcBPViBmSWPD8opCMYRzpPFtfP8POQ04l2KSxgfLfRcBJ7csohEmM49tdQySJI1J4zcHa0r+NdQC0jRgy8x8MCJ6MvMXEbEQ+CUwb0UeUNKodxVQq3N8DeD3dh9JGsSOwN6ZWYsoprLMzMURsVaL4xqxImIC8BKe3QXuSriSJGkompJ/1RuG0v+8xeXtx8oHuQfYfEUeTNLot2D+zFuBPwJrD3C4g+KPm1OrjEkabSKbv40i99Ivf4iIKRRLyKqfiHgt8A/gUopPCn8MXAic3sq4JEkajcZxDtaU/GuoBaQ/Ucx/BHAZxZC2U4FbV+TBJI0Z/4/i//+awFrA6hQFpVWBTy2YP/NZk7JJ6iOj+dvocRLwq4g4BOiIiAOBs4ATWxvWiDUP+GxmPgd4tPz6aYpcTJIkrYjxm4M1Jf8aagHp/cDt5e0PA09R/LHo6h/SOLRg/syHgDdTrLZ2EbAQ+Brw+gXzZ36vlbFJGtky85sU8yjuD9wJvAc4OjPPbGlgI9eLgS/22/cZYEYLYpEkSaNQs/KvIc2BlJm39bl9H/DeFXkQSWPPgvkzu4Ffl5ukoUrG8wSOAGTmL4BftDqOUWIxRbfnI8A9Zbv5gxSdn5IkaajGeQ7WjPxrqJNoExH/BRwIvAD4J8UScN/MzHH8TyBJkpanzCGWq/x0TP/up8AbgO8D3wQWAF0UcyFJkiQNaDjyryEVkCLis8A+wBcoJnJ8IfAxihVBPj7UB5MkabwLRtWEi83yriGckxQFEvWRmR/pc/ukiLiCYrXLC1oWlCRJo9A4zMGann8NtQPpYGD7zLyrd0dE/Aq4BgtIkiStmPGVvJCZU1sdw2gVEV/KzA/13s/M35X7vwB8pEVhSZI0Oo2jHGw48q+hTqL9aLn137ekueFIkqSxLiLWjoiDIuKI8uvarY5pBDt4kP1D+VRRkiQJaE7+NdQOpC8AP42IzwB3ARtTzOA9LyI26z2p72TbkiRpYOOsffrfRMRuFPP63EIxLH4ycEpEvDUzL25pcCNIn3kLOgaYw2Az4IGKQ5IkadQbrzlYs/KvoRaQepeP7d8CtTvwpfJ2Au1DfWBJkjQufRk4NDPP7t0REfsDpwAvbVlUI09vh9EE/r3bKIF7KZbflSRJGoqm5F9DKiBl5lCHuqmJXnXgyZOBnYGJwM3AlX/4wUdrrY1q6DY/+7jVKYqM6wH3A79e9PajnmjW9advO3sC8DqKjrglwMUXXDfnoWZdfyzY/MR5mwGvpSju3gBcvWjmjHFad5dGkPH9v/AFwE/67fsZ8PUWxDJi9c5bEBHHZeZRrY5HkqQxYfzmYE3Jv4bagQRARGwMbJiZV6zI92nFvOrAk1cBPkOxbG9buXUB/3zVgScf+ocffPTWVsY3FJuffdx/AkdR/Ix1UsTftfnZxx2z6O1HNbz08PRtZ+9C0Rm3Wnn9bqA2fdvZXwO+cMF1c0ZNoW04bH7ivNUphp6+jnLBAaAHuG3zE+cdumjmjH+0LjpJ4zh5Afgu8L8808EM8AHgjNaEM7Jl5lERsS5FTrB+Zn4uIl4AtPVd3ESSJA3B+M3BmpJ/DamzKCImR8Tvgb8Avy73vS0iTl+RB9OQnQy8kaKr5mHgwfL2BsAPX3Xgyc9rYWzLtfnZx70J+DRF0WgJz8TfA3xm87OP27OR60/fdva2FJXSzj7XXww8QfGf4gONXH+02/zEeQF8jWLI6SMUP0MPUbxGmwFnbX7ivLVaFqCk8W474OSIuCsiroyIuyje97aLiN/2bi2OccSIiF0p5is4CJhd7t4COLVlQUmSpNGmKfnXUDuQvgacSzGc6sFy30XlA6qJXnXgyS8G9qD4o7+/R4G1gf+k6C4ZcTY/+7g2YBbwFEUBqa9lFD9zMzc/+7j5i95+1MrWf2dQFD+f6re/h+I1+uD0bWd/64Lr5jRtuNwosx2wIwP/DC2mGFK4L/CdCmOS1CvH7wSOpa/jcLUV8QXgHZl5cUT0/l6/kuL3vCRJGqrxnYM1Jf8aagFpR2DvzKxFFC95Zi6OCLsYmu/11J+M/EngbYzQAhLwYmBdikLOQJ4ANgI2BVZ41b7p285elWJOn0cGOaUbmATsBFyyotcfI/am/s/QMuAdWECS1AKZ6e+eFbNJn9VRetPe3g9kJEmSlqtZ+ddQk497gc2Bp+feiYgpwB3NCEL/ZnWK+WoG0wOsWlEsK2MVYHnzD/VQFHlWxqTy+surHa/s9ceC1an/bzDSf4YkjXER8XyKD6fWo897XmZ+s2VBjVw3RcSemXlhn32vp1gYQZIkaUiakX8NtYB0EvCriJgLdETEgcCRFBM9q7lu5tlDv/paFfhjRbGsjH9QdL+0MXARo53ih3VlJ/58hGLeo4nA0kHOaQcWreT1x4Lrgf3qHF+lPEeSKhcR+wLfA/4KbAXcCGwN/A6wgPRsH6XIwc4FVomIrwFvAvZpbViSJGm0aFb+NaRJtMuK1BHA/sCdwHuAozPzzBWKWkNxEcUwtVUGONZGUXwZsXNHLHr7UQ8B5wODDW9cE/jForcftWRlrl+urnY6xeprA1kL+PMF180Z8SvVDaNfUhQhJw5wrPf/vENIpFbKYdhGj+OAQzJzO+Dx8uuhwNWtDWtkKle+3YYi0fsm8Hdgx8y8qqWBSZI0Go3fHKwp+deQCkgAmfmLzHxDZm6VmdMz8+crFK6G5A8/+OhTFKuItQPrUHSJBbAGRXHkB8BIX53mWIrhjc+hKGJE+XUd4G/A3Aav/02KCUSfQ1FoC2BCef3FFJNsj1uLZs5YAnyI4jVZm2c6wtYst68smjnDP9SkFops/jaKTM7MH/Xb9x3g3a0IZqSKiFUj4oSIOIciwftiZv5vZn4mM1e2i1eSpHFtHOdgTcm/6haQIuLlEbF1n/vPjYgzI+JPEfHViFh9RR5MQ/OHH3z0cor29J9QLFW/JnAT8EHgmD/84KMj+se07ELaB/gc8DhF4esx4ETgrYveftQjjVz/guvmLKXogjuKYn6utSgmzz4NeMMF1825vZHrjwWLZs74NcUwtnMp5oNaA7gWeP+imTM+38rYJI1795Vj8AFuj4hXAS+i/uT/49EpFLnAXygWzzipteFIkqRRrCn5V2QOXouIiMuAYzPz1+X9XwAvAL4NHAhcn5kfXPHYmyMiFmbmDq16fEnS2FLF+8rE563/+KYfnHlzs697y7GHMxreEyNiJrAoM38SEe+mKP7XgJMz8+jWRjdyRMQ9wPaZeU9EbAz8NjM3bXVcvczB1Khdph//3ISNAu747QWffLDV8QDsdeRh0fNg22sI2qI9L7/wlP/rbnVMWjHX3DG5E3gu8NT2k+94qNXxaOjMwYZXs/Kv5U2ivSVwWfmAawN7AVtn5q1lS/XlFF0xkiRJy5WZJ/a5fUZE/AZYLTObntCNcqtl5j0AmXlnRAw2t6A0quy81/Gv7pnUfmrPcyZsSTF7SLz6LZ/5U/uTPYdedsEnr21FTHsdeVjUsv2sidu0vWXSmrX2BPKJttr0oz+8IB+q7WUhaeS75o7Jq1BMA/Ieiiku2q65Y/KfgJO2n3zHH1oanDQCNCv/Wt4cSB3AsvL2TsC/MvPW8kHvpJhfRZIkrYjxO4Hjv4mINopVOW8pb+sZHRExNSJ2i4jd+t8v9w1JREyPiFsiYlFEfGKA4/8TETdExHUR8buImNLUZyKVdt7r+F2XrTXh192rtG9JLbuilt3Usqt7lfZtu9bu/N3O049vzSf4q3X8adWde/ZvWy3ba0sjc2lbMiHbVnlVz+7tL2q/fa8jD4vlX0Stcs0dkycCZwCHlbuWUKzcvDVwxjV3TH5Di0LTSGQO1lD+tbyTb6RYeQ3gAODXfR50Q4oJiyVJ0goYxxM4EhHbR8QfIuJxihUjuyjmsetqbWQjzn0Ui0Z8o9we7Hf/9KFcJCLaKeZT2guYAhw4QIHo+5n5H5m5LfBZwLnyNCy6V+34drbR0VbLrt6KTABttVxWa4vOnlXbK18ldtoHP3zAxG27t64tjVp2RxYRAT2RtaciJ7yke8OeJ9odXjuy7QdsDzzEv7+XPAo8BXy27FCSxm0O1qz8a3kFpJnA1yLiIWBvikmQe70D+P2KPJgkSRr3vgMsAHYANiu3TcuvKmXmJpm5aZ1tqK/XjhRzHtyWmcuAH1IsdNH3sZb0ubsao/LzVI10O08//uW1iW0bRi0H/GMlatnVM6l9i12mH1/p74L2jeNTBJADNRkFAdmxGf9bZUxaYe8Dlg5ybCnFysSvry4caURqSv5Vdw6kzPxdREwGXgzcmpmP9jl8LkUSIkmShmqUtjs30QuBT2a9VTzUTBsCd/a5fxfwyv4nRcT/AodT/KE15OFx0pC1xdbkwGUaKPp+MskMtgRuqyystXN9aoMfz56gfW2cg2xk2xB4os7xCcAGFcWikWx852BNyb+WO94tMx/NzKv7FY/IzFsy85+NPLgkSRp3fgZMa3UQ+neZeUpmvoii+/yogc6JiEMjYmFELATWqzRAjX6ZdxODj/ZIKBp+kkr/vsgnYkndGUDaktoTPFVZQFoZjwCddY5349QrUlPyr+WtwiY1ZJsZ815AkWTef/28Gfe0Op6RZvedZq+VbbFrQFLLX198xZwnWx2TpOE3WsbLN0tEfJdnPvObCPwsIn4H/KvveZn57qpjGwfuBjbuc3+jct9gfgicOtCBzDyNYtlfyiKSNGRR4+LoziXZwRrUePaqZhGdbctq91W9Elv3HfnVCS/leMhn5j96WrGr+2+cVWVMWmFnAh9h4GFs7UAPcFGVAWnkGk852HDkXxaQNCy2mTFvK+AYYDuKqn/HNjPmLQSOvX7ejL+0NLgRYPedZq9Wm9Dxw9raq+xBb7aS2bPbzsf+JLp6Dr74ijk9rY1Q0rAaR8lLaVG/+ze1JIrx6Spgi4jYlKJwdADwn31PiIgtMvOv5d29gb8iNdlvL/xk7vyGE45ctnbnlzOynaQneLrzqIMgO57o/ljVcbWv1jO36x/tR0zYpGft2lJqTw+yiyQmZvTc2/5ULs4ZVcelFXImcCDwPIpOo9532U5gdeBL20++46EWxaaRZnzlYE3Pvywgqem2mTFva+Bsil/ave2iQTFh14+2mTHvbdfPm3FLq+Jrtd13mt1eW6Xzqp5JHVtQy+4oPhUhg7ae1Scc0PZE12bAa1ocpqQxKCKmA1+k+ET29Mz8TL/jvUshv5xi1a93ZObtEbEu8GPgFcC3M/OwPt/zcuDbwCrAecCH+4+vz8xjh+1Jqa7M7I6Iw4ALKf7dv5mZN0bEHGBhZp4DHBYRr6dYieVh4D2ti1hj2WXnHXnazm84obNrjY4Tsj0mZQJBRHc+1vlY1+GXnffJyudXPf+EL+e0939o03y849oJL+154dN/XQYs+2vHvd031Haaf/qX6s2voxbbfvIdD11zx+S3USz4tBNlbg0sA+ZSrFwptcxYyr8sIGk4HMu/F4+geDdeDKwNHA28s/qwRoZsbzu0Nqljc2q5rG+jdCS1zFxWW7XzFbu/+pi9L7782HNbFqSk4dWCT7/6LOe+B8VEyldFxDmZ2ffTqPcCD2fm5hFxAEUy/g6KZZCPBrYut75OBd4PXEmRwEwHzq8Tx1Tg9sz8e0SsXz5GDZiVmf8a7Pu08jLzPIp/m777Zve5/eHKg9K4ddl5R56yy57HfzXbeRsRG1PL26LGz3574Sdb1hcw/+tfegTYdNr7P/SSWDP+B+jMR/O780/7wpWtikkrZvvJd/wTeNc1d0yeDGxO8b519faT7xhsdTaNVxX/phlr+ZcFJDXVNjPmbQxsw+AT1S0GXrnNjHnPv37ejHuri2zkqE1oP2ygUfbw9L6odbYfTrHSoSQ1y9PLuQNERO9y7n0TmH2AT5W3fwx8OSIiMx8HfhcRm/e9YERsAKyZmVeU988A9qVOAgN8BdizvP358uuTFHPrvHmlnpmkUeW3F36yB0bevELzv/6lWwCHq41i20++4w7gjlbHIfUxpvIvC0hqtudStMAPJinmRHouMC4LSLS3rUfmoAvGZpLZFhtVGZKk6gTDNoHjev0mNj6tnPS411CWc3/6nHLo02JgXeCBQR5zw/I6fa+54XLi3DAz74iIDopE5oUUwwxc2VWSJA2bFuVgYyr/soCkZnuA+stoBsXP3WD/Gca+ntoDdHSsQ+aAE2VHEFHLuwY6Jkl1PJCZO7Q6iCFYEhHPp2jFvikzH4uICdR/75AkSRqpRkMO1pT8q21YQtO4df28GXcANwBrDXLKWsAfr583Y9zOc9G2rOcrEQMPvy33ZVtXz+cHOCxprMhh2JZvKMu5P31O+QnVWhSTOda7Zt+OyeUtEQ/wfxQrg51JMScAFAsHjPsVOiVJ0jCrPgcbU/mXBSQNh9kUw9j6FpGivP8U8OlWBDVSRE/tq21Pdd9GW0zoOxVSBm3RFhPanuxa6ATa0hg2HInL0ApITy/nXn7idABwTr9zzuGZFbjeBlzSf0WPf3sqmfdQfKK1U0QE8G7gF/WCyMwTgdcDr8nM3hWX7gbeN6RnIUmStDJak4ONqfzLApKa7vp5M/4MvB24lqJotBqwJnA1sP/182aM60+ZL75iTk/bk10vb3+864KIaCOig4iOyMi2x5ad1fZU986tjlHS2JOZ3UDvcu43A2f3LuceEb2TJ34DWDciFgGHA5/o/f6IuJ1i0sWDI+KuiJhSHvogcDqwCPgb9Sdw7I3l1sz8W7/7NzT6HCVJkkaSsZZ/OQeShkVvEWmbGfM2BNYD7r9+3gwnSC1dfMWcx4E37b7T7HWyLaYGdFHLS8r9ksa4YZrAcbmGsJz7U8D+g3zvJoPsX8izl5aVJEkacVqRg42l/MsCkobV9fNm3M3yx2OOWxdfMedh4KetjkOSJEmSpHosIEmSVLUWdSBJkiSNa+ZgDbGAJElSxVo1hE2SJGk8MwdrjJNoS5IkSZIkqS47kCRJqpqffkmSJFXPHKwhdiBJkiRJkiSpLjuQJEmqmp9+SZIkVc8crCEWkFbS9G1nbw98AHgtEMDlwFcvuG7OH5tx/Wmv+vTmwKHAG4AJwJ+BrwIXzf/D0f7YD7OPnH5IrLrqU0ev9/xHPrD6mk+uW6tF7YH71r7mkQfXmHXSwWdc2ur4hmL6trOnAP8N7AG0A9cCp15w3ZxREb80lkWrA5AkSRqHzMEa4xC2lTB929n7A2cBrwOeBJ4AdgbOnL7t7Hc1ev1pr/r0q4FfAm8FuoHHgK2ArwCfmvaqT/tzP4w+cvohsd7zH/n9pi/+51GrrfHkc7q62rtqtag9f4OHXrHFlDvnf/y772z433i4Td929u7Az4C9gaXA48D2wDembzt7RitjkyRJkiSNPpUUkCJiUkT8MSL+FBE3RsSxA5wzMSLOiohFEXFlRGxSRWwravq2szcEjqcoGi0GauW2mOKP9KOnbzt7s5W9/rRXfXoSRaGoBjxMUUCqAY8CS4CDgF0aeApajlVWXTrz+Rs8tMOyZR1d3d0d3RBktuWyZZ3LyMxNXnTP12acfvBqrY5zMNO3nb0m8CVgGfAI0EPxM7Sk3P637KCT1Ao5TJskSZIGZw7WsKo6kJYCu2Xmy4BtgekRsVO/c94LPJyZmwPzgBMrim1FvZ1iOFDXAMe6y2MHNnD9PYBVKTqb+qtR/Ii+v4HraznWfe7i/60lDNTg2N3T0dPR2dMxadVl/6/ywIbuTRTDHpcOcKxWfj24smgkSZIkSaNeJXMgZWZSDMMC6Cy3/rW6fYBPlbd/DHw5IqL83pFkewYuHvVaSlEkW1lbUrw+g3kcmNLA9bUcq6/5xHN7uju6Bzve1laLCRO7tqsyphW0DfWH9z5ZniOpRWKkvbNJkiSNA+ZgjalsDqSIaI+I64D7gIsy88p+p2wI3AmQmd0UQ8LWHeA6h0bEwohYCKw3vFEP6FGKLqPBdPBMsWxlPEb9Rrh2iuFzGiY9Pe3dQQ5agEkga/F4hSGtqMeoX0DyZ0iSJEmStEIqKyBlZk9mbgtsBOwYEVuv5HVOy8wdMnMH4IFmxjhEP2P5Ix1/0sD1f00xZ81gVmnw+lqOB+5d67KOzp5BioQJGfnE45NOrzaqFXIuzwxVG8gE4OyKYpE0EMffS5IkVc8crCGVr8KWmY8AC4Dp/Q7dDWwMEBEdwFrAg5UGNzS/AW4D1h7g2FrAXcBFK3vx+X84+lbgYmAdnt1FsgZFd8mZK3t9Ld+SR1Y/sru7vaejo7vfUMJkwoTuCfffu/aNJx18xuWtiW5IrgUWUvwM9bcmxf+rn1UakaR/Z/IiSZJUPXOwhlS1CttzI2Lt8vYqFBNF/6XfaecA7ylvvw24ZATOf8QF183pAt4JXENRMFq33NYCbgAOuOC6OQNNXrwiZlB0kaxJUQRYt7z9L+Ad8/9w9H0NXl91nHzId6697ZYN375saeeTnZ3dnRMmLpswYUJXZ2dnd+f9/1rnT/ffs86IXgXvguvmJHAoRbFzLeA5PPMzdDvw9guum7O4VfFJkiRJkkafSibRBjYAvhMR7RRFq7Mz81cRMQdYmJnnAN8AvhsRi4CHgAMqim2FXXDdnAeAt0/fdvYUYEeKTqGrgRvKP94bMv8PRz8JfGjaqz49GdiFYsjRX4Ar5v/h6HpDk9Qkn3vPd3/5kdMPec6kScsO7ZzY9YqsxZNPPjHxWycfcsbCVsc2FBdcN+dR4L3Tt539IuA1FP/XbwAWNuNnVFJjnMBRkiSpeuZgjYkR2OQzZBGxsJwLSZKkhlXxvjJp3fUff+l/zry52df905cPx/dEVcUcTJLUTOZgo0NVHUiSJKnX6P3sRpIkafQyB2uIBSRJkioUafu0JElS1czBGlf5KmySJEmSJEkaXexAkiSpan76JUmSVD1zsIbYgSRJkiRJkqS67ECSJKlijr+XJEmqnjlYYywgjVBT9zxxArAH8GZgEnAV8KMFF868t6WBSZIaZ/IiSZJUPXOwhjiEbQSauueJLwDmA/OAqcArgY8Al07d88S9WhiaJEmSJEkahywgjTBT9zyxDfgmsCGwpNweAx4BlgFfmLrniS9pWYCSpMblMGySJEmqzxysIRaQRp5XApsBiwc4tgxoBw6pNCJJkiRJkjSuOQfSyLMT0Fnn+OPA7hXFIkkaBk7gKEmSVD1zsMbYgTQ6RasDkCRJkiRJ44cdSCPPH4GuOsdXA35eTSiSpKYbh+PlJUmSWs4crGEWkEaePwB3ApN59jxIE4AaxSTbkqRRKtLsRZIkqWrmYI1xCNsIs+DCmTWKSbLvBdYC1qDoOlobmAh8fMGFM29qWYCSJEmSJGncsYA0Ai24cOYdwDTg48AVwA3AqcDuCy6c+fMWhiZJagaXkJUkSaqeOVhDHMI2Qi24cOYTwM/KTZIkSZIkqWUsIEmSVDGXkJUkSaqeOVhjLCBJklQ1kxdJkqTqmYM1xDmQJEmSJEmSVJcdSJIkVcz2aUmSpOqZgzXGDiRJkiRJkiTVZQeSJElVGodLvkqSJLWcOVjDLCBJklShwPZpSZKkqpmDNc4hbJIkSZIkSarLDiRJkqrmp1+SJEnVMwdriB1IkiRJkiRJqssOJEmSKub4e0mSpOqZgzXGApIkSVVLsxdJkqTKmYM1xCFskiRJkiRJqssOJEmSKmb7tCRJUvXMwRpjB5IkSZIkSZLqsgNJkqQqJS4hK0mSVDVzsIbZgSRJkiRJkqS67ECSJKliUWt1BJIkSeOPOVhjLCBJklQ126clSZKqZw7WEIewSZIkSZIkqS47kCRJqphLyEorb68tZz0H2A/YBlgM/Aq46vyb5zowoZ/NT5y3GvBGYCegC7gIWLBo5ozuVsa167QTPtEzqf3wbIvVoyeXtC/t+fSl8488pZUxffrHb3/hpus/dPGWz3to07ZI/vrAWv/6y13Pf8Ps/c/6Uyvj2v69J32ia7U4OjtjUvRkT+cT+auu1dreesO8w1v2TvKGWUe0s2oeGmvX3kV7rspjbVfm4rYTzjv+c/9oVUwAe0058jnAPsB2wKPAucAV5990gr8b+tl96txVgb2A1wA9wK+BSy5eMKurpYFVwBysMZE5el/BiFiYmTu0Og5J0thQxfvKqmut//h20464udnXvfzHH8P3RFWlVTnYXlvO2hs4GWgvd7VR/PFzHfC+82+eu6TqmEaqzU+ctwPwDWDVclcANeBu4J2LZs64u+qYdtlzbmfPpLb7axPb1yIohpJEcaz9yZ77SZ7/u1/OrPyPk5N/+ZbPv3O7v8yY1G9ylK4MfnDjFj/7f3v+cr+qYwLY5rCTF3evEWs+vaN8zdqWUZvwcG2za775scoLNm846ojNYvOu38dauS5tCbUo/iKvRdZu7ph13idP/nzVMQHsNeXIPYEv8EyDRO/vhhuBQ86/6YRHWhHXSLT71LnbAt8CVqP4qer93fAv4J0XL5h1RyviMgcbHRzCJklS1TKbv0mDiIjpEXFLRCyKiE8McPzwiLgpIq6PiIsj4oWtiHN59tpy1suAecAyis6jxcDDwBLg5RR/PArY/MR56wPfBjp55rV6hOK12gj47uYnzmsf7PuHS60zFtUmta8FRc0hyq8k9KzS/tyo5Q1VxzTnR+/Yord41JVt/7Z1RPKfW//1Lcf/ZP+3VR3Xth84+ZbuNWNNsnytspz8N6E2gbautWJR1TG9YdYREZt1X8o6tXXpyi6WRhdddLEsusistU3pnvuGYz42req49ppy5BTgS0A3z/7dsA3Q0u62kWT3qXPXA84AJlG8Pn1/N2wAfG/3qXM7WxZgFczBGmIBSZKkKvX9Y6CJmzSQiGin+ONpL2AKcGBETOl32rXADpm5DfBj4LPVRjlk/0NRc1g2wLGHgZ332nLWZtWGNGIdQPEH4hMDHFtMUUTapcqAdt3j+Of2rNoxmXy66ehpAZDQvWr7VrvsWe0fr1ts+MBFvcWj/rqzjQ6SbTa95/QqY/qPGZ+PrjXjxdQGf616JkXH9v910luqjIuJuV88p/b8WErXsyLriRqREc+tHVtpTIX3U3QlLh3g2MPAjntNOXLLakMasfan6Ep8fIBji4H1gamVRlQlc7CGWUCSJEkau3YEFmXmbZm5DPghxRwhT8vMBZnZW2i4gqK4MBLtRjGvyWDagFdXFMtItzcD/zHdq53i9axMtrUdCc8uiPQKgAgi80OVBQVs9fwHJ9c7XgO2WveRtSoKB4DOJbW3Zp3+sN7XsDYxjqskoN7HXT33oy1j0H/FLrrj+T0vqzKm0h7AY3WOdwCvqiiWke4NDFyE79UGVN5FptHDSbQlSaraOPu0Si21IXBnn/t3Aa+sc/57gfMHOhARhwKHlnfXa0p0K6ad+v97Aj8c7dVOUfsYTAITKoql11A7iyYNaxT9tJHL/ZXcXn2LwSpDfJ+o9m+5yOU/XgxaIxxO7dQvivSeo+Jnpt5PVzL0/6ujkzlYQ3yTlSRJEhHxTmAH4HMDHc/M0zJzh3Ki0AcqDa6wEFijzvEe4PqKYhnpLgNWqXO8BlxeUSwARE/tVBj8b7en99fym5UEVPrrQ2s9FHVKHu3AbYtXr9fN1XztnF3vj9zeQ23L8uuVxNP7uE+0LaCnTjWtMzrywbbbq4voaX+k/u+GLqClq+mNIL8FJi7nnN9VEYhGJwtIkiRVqHfSWMffqyJ3Axv3ub9Rue/fRMTrgU8Cb87Mav9YHrpTKXLXgToJ1gJuwT8Se51BUVAbqMtoNYqhgBdWGdClv/7kje1P9TxCPLuIlAAB7U/23HPprz95T5Vx3Xj7+gf1ZNAez27YaosaNeCPt230qSpjuua0jy3teDQfoG3w16qti7zmGx87qcq4eCK+nk/E43QO0PkUGZDkv9o/U2lMha9RvL0O9rvhduCqKgMawc6kmGx8oN8NvXMjnVtpRBUyB2ucBSRJkqrmCiCqzlXAFhGxaURMoJhc+Zy+J0TEdhR/gL05M+9rQYxDcv7Ncy+lWGlpdWAdiqFOq1H8gXgv8N/n3zzX/wzAopkz/gYcQdFpsDbFa7VqeXspcMiimTOeqjqu9ie6t4+uWndvEal3A2hbVlvW/lR35fPnHLX/2ReeffOLfgPBhKjRXm6dUaMN+MVtG988c5+fVF4U6ejKjdqeooeA7H29ygXXowYTHqq9ueqYzpv7uZ68pWPfXEYXE7KTjmynPduZmBPopKP2187vnXfMSd+pOq7zbzrhcorOyYF+NzwAvO/8m07wdwNw8YJZdwAzKApIa1N0Kvb+bugG/uviBbMGmnx/7DAHa4gFJEmSpDEqM7uBwyi6TW4Gzs7MGyNiTkT0/gHa+4fXjyLiuog4Z5DLtdz5N8/9EvBW4GfAPRTP6Whgz/NvnvuszqrxbNHMGecA04HvUMx99TfgJGD3RTNntGSo36W//uTfOx/tfk7nkq7z27prXVHLbOuqLet8tOsX7U/0rH7pRZ+8vxVx/c/rz5361T9u/cErH3zOE4/1tPNYTzvXPbLW0tOu3urT79n51/1XLazENad9bGkknRMfqv2+rYuMhOgmOxfnPybeX9vkmm9+7FetiOu8OSddmtdPeEne2vnNXNL2UD7R9lje2XFV7doJbznviJP/qxUxAZx/0wlfA/alWEnyn8BfgE8B086/6YQ7WhXXSHTxglnnA3sC36KYI+/vwOeB3S9eMOuaVsamkS9yFFfMImJhOQ5fkqSGVfG+stqa6z/+8qkfvbnZ173snI/je6KqYg4mSWomc7DRwQ4kSZIkSZIk1VXt0o+SJMklZCVJklrBHKwhdiBJkiRJkiSpLjuQJEmq0jhc8lWSJKnlzMEaZgFJkqSq1cxeJEmSKmcO1hCHsEmSJEmSJKkuC0iSJFUth2EbgoiYHhG3RMSiiPjEAMcnRsRZ5fErI2KTPsdmlftviYg9++y/PSJuiIjrImLhCr4SkiRJ1WlBDjaW8i+HsEmSNA5ERDtwCrAHcBdwVUSck5k39TntvcDDmbl5RBwAnAi8IyKmAAcAWwEvAH4dES/OzJ7y+6Zm5gOVPRlJkqRRYKzlX3YgSZJUscjmb0OwI7AoM2/LzGXAD4F9+p2zD/Cd8vaPgd0jIsr9P8zMpZn5d2BReT1JkqRRowU52JjKvywgSZJUpczh2WC9iFjYZzu03yNvCNzZ5/5d5b4Bz8nMbmAxsO5yvjeB+RFx9QCPKUmSNDK0JgcbU/mXQ9gkSRobHsjMHVrwuK/NzLsj4nnARRHxl8z8bQvikCRJaoVW5GAtyb/sQJIkqWItGsJ2N7Bxn/sblfsGPCciOoC1gAfrfW9m9n69D/gZDm2TJEkjVAtysDGVf1lAkiRpfLgK2CIiNo2ICRSTMp7T75xzgPeUt98GXJKZWe4/oFwlZFNgC+CPEbFaRKwBEBGrAdOAP1fwXCRJkkaDMZV/OYRNkqSqDa1jqLkPmdkdEYcBFwLtwDcz88aImAMszMxzgG8A342IRcBDFEkO5XlnAzcB3cD/ZmZPRDwf+FkxzyMdwPcz84LKn5wkSdJQVJyDjbX8ywKSJEkVi2xBBQnIzPOA8/rtm93n9lPA/oN87/HA8f323Qa8rPmRSpIkNV8rcrCxlH85hE2SJEmSJEl12YEkSVLVaq0OQJIkaRwyB2uIHUiSJEmSJEmqyw4kSZIqVCz52po5kCRJksYrc7DG2YEkSZIkSZKkuuxAkiSpan74JUmSVD1zsIZYQJIkqWq2T0uSJFXPHKwhDmGTJEmSJElSXXYgSZJUsfDDL0mSpMqZgzXGDiRJkiRJkiTVZQeSJElVc/y9JElS9czBGmIBSZKkKiVErdVBSJIkjTPmYA1zCJskSZIkSZLqsgNJkqSq2T4tSZJUPXOwhlTSgRQRG0fEgoi4KSJujIgPD3DO6yJicURcV26zq4hNkiRJkiRJ9VXVgdQNfDQzr4mINYCrI+KizLyp33mXZeYbK4pJkqTW8MMvSZKk6pmDNaSSAlJm3gPcU95+NCJuBjYE+heQJEka45KwfVqSJKli5mCNqnwS7YjYBNgOuHKAw6+KiD9FxPkRsdUg339oRCyMiIXAesMYqiRJkiRJkqh4Eu2IWB34CfCRzFzS7/A1wAsz87GIeAPwc2CL/tfIzNOA08rrLRzeiCVJGgZ++iVJklQ9c7CGVNaBFBGdFMWjMzPzp/2PZ+aSzHysvH0e0BkRdhhJkiRJkiS1WCUdSBERwDeAmzPz84Ocsz5wb2ZmROxIUdx6sIr4JEmqTAK1VgchSZI0zpiDNayqIWyvAd4F3BAR15X7jgQmA2TmV4G3AR+IiG7gSeCATPvLJEmSJEmSWq2qVdh+B8Ryzvky8OUq4pEkqZVcAUSSJKl65mCNqXQSbUmShBM4SpIktYI5WEMqm0RbkiRJkiRJo5MdSJIkVc1PvyRJkqpnDtYQO5AkSZIkSZJUlx1IkiRVzSVkJUmSqmcO1hALSJIkVSldAUSSJKly5mANcwibJEmSJEmS6rIDSZKkSqUTOEqSJFXOHKxRdiBJkiRJkiSpLjuQJEmqmp9+SZIkVc8crCEWkCRJqprJiyRJUvXMwRriEDZJkiRJkiTVZQeSJElVq7U6AEmSpHHIHKwhdiBJkiRJkiSpLjuQJEmqUCSE4+8lSZIqZQ7WODuQJEmSJEmSVJcdSJIkVc1PvyRJkqpnDtYQC0iSJFWtZvIiSZJUOXOwhjiETZIkSZIkSXXZgSRJUqXS9mlJkqTKmYM1yg4kSZIkSZIk1WUHkiRJVfPTL0mSpOqZgzXEApIkSVVKTF4kSZKqZg7WMAtI49wrDvn884DVgXuv+tbhj7c6HkmSpNFq+razn86rLrhujnnVKPOJT7+jvX1C7RVAW09X29WfOeqspa2OCWCP7Y7agIgXk3nPRdced2ur45E0fllAGqdeccjndwBmAS8Dust9PwM+d9W3Dn+olbFJ0pjnErLSmDJ929mvoMirtqHMq6ZvO/tnwOcuuG6OedUI94lPvyNWXXfpF1640+JDOlfpngTQvay967ivvfknj92/yns/c9RZXa2Ia4/tjpqSnR3fydUmvYyidyJev9Ox/4xl3R+96JpP/6QVMUmjnjlYQ5xEexx6xSGffy3wfeA/gEeAx4AngXcAP3vFIZ9fp3XRSZKkZoqI6RFxS0QsiohPDHB8l4i4JiK6I+JtrYhxNJu+7exdgDOBrfn3vOrtwE+mbzt77ZYFpyFZa8PHz99w2wc/2D6xZ0L3svau7mXtXW3t2bbBNg8fuO5mS678xKffEVXHtMd2R700V5l4RU7o2JbMrsjsJrMrO9pfUFt1wvf32P7o91QdkyRZQBpnXnHI59uBk4EuYEmfQz3AQ8DGwKEtCE2Sxo+sNX+TBhAR7cApwF7AFODAiJjS77Q7gIMpPlzSCpi+7ex24CQGzqseBl4IvK8FoWmIjvrs/rs99yWLd+t6qm1Zrbutp3d/rSdqXU+0LVvnhY9tPWG17kOqjis720/L9lglMpf1Vq8CiMwugJzU+cU9tjuq8sKWNOqZgzXEAtL480pgbYpPxgbyKPDOVxzyeX82JGlYZDGBY7M3aWA7Aosy87bMXAb8ENin7wmZeXtmXg+Mryy4OXYC1qJ+XvXu6dvONq8aoVZ77pMzI4iiPNNPFPvW2OCJD1UZ0x7bHbVaTuh8JbUceOhc0p1tbasS8fYq45JGP3OwRvlmNv6sz4DvkE/rAlYtN0mSNLptCNzZ5/5d5T41xwYsP69aHZhUTThaURNW7X5hrcagfwFmT9Qmrt61QZUxUXSuRTBwXOUPXBKxeYUxSZKTaI9DDzHIm1GpnSLZGeyTNElSIxIncNSoFBGH8sww9/VaGcsIsry8qgNYCjxVTThaUd1Ptd/X1sZmPYMcj/Zs63qy4+FKg4J7oJw1e/Bzgsy7K4pHGhvMwRpmB9L4czlFcWjiIMfXAn501bcOH+x9VJIkjR53U8xv2Gujct8Ky8zTMnOHzNwBeKAZwY0Bv6MoEE0Y5PiawNkXXDfH4YEj1GP3r/LFTAYZhlLsW/LPVb9WZUwXXXvcw7Gs+89EdA50PIP2yFxG5plVxiVJFpDGmau+dfgy4BhglXLrFRRzIz0MnFp9ZJI0jjj+XtW5CtgiIjaNiAnAAcA5LY5pzLjgujnLgE9RDP3vO0ytN696CPhq5YFpyLqebP/pw/9Y48bOVWsTIvLphp+IjM5JtQmP/muVu5c+1vnlquOK7p7DyOzOiM7e3/BJUTyCaIunuo676NrjBp4jSdLgzMEaYgFpHLrqW4f/AvgQsBhYA1iN4hOyK4H9rvrW4f9sYXiSJKlJMrMbOAy4ELgZODszb4yIORHxZoCIeEVE3AXsD3wtIm5sXcSjzwXXzfkp8GGKCbOflVddcN2ce1oYnpbjM0eflQ/etsZO99609oVt7dnW3lnrKLZsf2DRmn+47y/rbP+Zo86qvFBz0TWfvrztyWVvjO6ee4nozKCDiI6o5VNtTy77xEVXz/lM1TFJUuQorphFxMKyjVoroVxpbWuKyR3vvOpbh9+5nG+RpDGtiveVNTrXffy1zz/o5mZf94K7/w/fE1UVc7BnK1da682r7rjgujl3tTgkraBZx79j3c5J3W8iaO96suOCuZ88a0TMMbTH9ke/mmAbkn+R+cuLrj3OqSY05piDjQ5Ooj2OXfWtw2vA9a2OQ5LGnVH84Y2kgZXzHJlXjWJzP3nWg8C3Wx1Hfxdd8+nLKeYxldQoc7CGOIRNkiRJkiRJddmBJElSpRJqLsgkSZJULXOwRtmBJEmSJEmSpLrsQJIkqUqJ4+8lSZKqZg7WMAtIkiRVzeRFkiSpeuZgDXEImyRJkiRJkuqyA0mSpKrV/PRLkiSpcuZgDbEDSZIkSZIkSXXZgSRJUoWK+RtdQlaSJKlK5mCNs4AkSVKVMm2fliRJqpo5WMMcwiZJkiRJkqS67ECSJKlqLiErSZJUPXOwhtiBJEmSJEmSpLosIEmSVLVarfnbEETE9Ii4JSIWRcQnBjg+MSLOKo9fGRGb9Dk2q9x/S0TsOdRrSpIkjRgtyMHGUv5lAUmSpHEgItqBU4C9gCnAgRExpd9p7wUezszNgXnAieX3TgEOALYCpgNfiYj2IV5TkiRpXBpr+ZcFJEmSqpbZ/G35dgQWZeZtmbkM+CGwT79z9gG+U97+MbB7RES5/4eZuTQz/w4sKq83lGtKkiSNDNXnYGMq/3ISbUmSqpRJDnHIWZNtCNzZ5/5dwCsHOyczuyNiMbBuuf+Kft+7YXl7edeUJElqvdbkYGMq/7KAJEnS2LBeRCzsc/+0zDytZdFIkiSND+MmB7OAJElS1YZnCdkHMnOHOsfvBjbuc3+jct9A59wVER3AWsCDy/ne5V1TkiRpZKg+BxtT+ZdzIEmSND5cBWwREZtGxASKSRnP6XfOOcB7yttvAy7JzCz3H1CuErIpsAXwxyFeU5IkabwaU/mXHUiSJFWtNiyfftVVjqk/DLgQaAe+mZk3RsQcYGFmngN8A/huRCwCHqJISCjPOxu4CegG/jczewAGumbVz02SJGlIKs7Bxlr+FTk8LVyViIiFy2nXlyRpyKp4X1m9be3HXzNh75ubfd35S7+P74mqijmYJKmZzMFGB4ewSZIkSZIkqS6HsEmSVKWEbMEQNkmSpHHNHKxhdiBJkiRJkiSpLjuQJEmqVELWWh2EJEnSOGMO1igLSJIkVcz2aUmSpOqZgzXGIWySJEmSJEmqyw4kSZKqZvu0JElS9czBGmIHkiRJkiRJkuqKzNE7BjAi7gf+MYRT1wMeGOZwhpPxt95ofw7G33qj/TmMl/hfmJnPHc5AIuKCMp5meyAzpw/DdaVnWYEcbLiN9t9NVfK1Gjpfq6HztRo6X6v6zMFGgVFdQBqqiFiYmTu0Oo6VZfytN9qfg/G33mh/DsYvaSTy//bQ+VoNna/V0PlaDZ2vlcYCh7BJkiRJkiSpLgtIkiRJkiRJqmu8FJBOa3UADTL+1hvtz8H4W2+0PwfjlzQS+X976Hyths7Xauh8rYbO10qj3riYA0mSJEmSJEkrb7x0IEn6/+3dfbRcVX3G8e9DIkkhJGBgxeaFyJsUULilIGkFzFK6AJUK1rjowgpFBHVlESWAFl8aKC+LtFgBqSAFAoRCcMlb0IAskRZQeVNDyUJaStC8QCDkHUMw8dc/9h47XO7MPWe4M3PuzfNZ66zMnbPPmWfOnZ2z7z57nzEzMzMzMzNrkTuQzMzMzMzMzMysKXcgmZmZmZmZmZlZU0OqA0nSXpJekzS3wfqzJD0lab2kxZLO6nTGZvrLX1duW0lPS1raqWxFFXkPkg6U9J+SNkhaIWlGJzM2U+AzNELSlTn3KknzJU3odM6+SHogZ9+Ql2calJOkiyW9kpeLJanTefvIVTR/Jetx0fx15StVj8vkr2odLvEZqmw9NrM3kjRd0uOSNkma00/ZL0p6UdI6SddKGtGhmJVQ9FhJOlHSE/k4LZU0W9LwDkbtujKfq7ptfiQpfKyalt1d0t25jbZS0uwOxayEEnVQks6XtEzS2tx+2a+DUc1aNqQ6kIArgMearBfwKWAn4ChguqTjOxGsoP7y15wFvNzmLK1q+h4k7QzcA1wFjAX2BH7YmWiF9Pc7mAH8ObA/MB5YDVzegVxFTY+IUXnZu0GZU4FjgQNI7+MY4LQO5etPkfxVrsdF8tdUsR73m38Q1OEiv4Oq12Mz+3/LgfOBa5sVknQk8GXgg8BkYHfg3Lanq5ZCxwrYDvgCsDNwCOmYndnWZNVT9FgBIOkE4G1tTVRdRevgtsB9wP3AO4CJQNOL4kNQ0c/VNOBk4DDg7cBPgRvbG81sYAyZDqT8B+Qa4EeNykTE7Ij4eURsjohngDuB93UoYlNF8udyuwGfBC7qQKxSCr6HM4B7I+KmiNgUEesj4umOBOxHwfy7kfKviIjXgHnAYLticCJwSUQsjYhlwCXASd2NVFyV63FRVa7HBVS2DpcwFOqx2VYhIm6LiDuAV/opeiJwTUQsiojVwD8yiM5tA6HosYqIb0fEgxHxem4H3MQgO4++VSU+V0gaA/wDcHa7c1VRiWN1ErA8Ir4REa9GxGsR8WTbA1ZIiWO1G/BQRDwXEVtIHW37tjuf2UAYEh1IkkYD55H+sCm6jUi9vovalatEljL5LwfOATa2NVRJJd7DFGCVpJ9IeilPHdm1/QmbK5H/GuB9ksZL2g44AVjQ7nwlXJSHDD8saWqDMvsBC+t+Xkh1/ngukv8PqlSPs6L5K1mPKZa/knW4TpH3UPV6bGbl9XVuGydpbJfyDCaHU53zaBVdCHwbeLHbQSpuCvC8pAX5PPyApPd0O1RF3QLsIeldkt5G6gC/p8uZzAoZEh1IpKtM10REmXuJzCK9/+vakqicQvklHQcMi4jbOxOrlKK/g4mk/yRnALsCi4Gb25ytiKL5/wdYAiwD1gH7kDqequBLpCH7E4DvAPMl7dFHuVHA2rqf1wKjcmdMNxXNX28W1anHhfJXuB4XPf5VrcNQ/D1UuR6bWWv6OrcB7NCFLIOGpJOBg4B/7naWKpJ0EGl0lqc5928icDxwGWl6+PeBO/PUNnujF4CHgGdIFxOnAV/saiKzggZ9B5KkHuAI4F9KbDOddA+VD0fEpjZFK5qlhwL5JW0PzAZO70CsUkr+DjYCt0fEY3nqyLnAX+ThwV1RMv8VwAjSvV+2B26jIiMXIuKRPJ1oU0RcDzwMfKiPohuA0XU/jwY2RER0ImcjJfID1arHUCx/letxieNfuTpcU+I9VLYem1nL+jq3AazvQpZBQdKxpKnUR0fEyi7HqRxJ2wD/CsyIiM3dzjMIbCRNy1oQEa+TOiXHki7S2Bt9HTgYmASMJLWl7s+jos0qbSh8i8BU4J3Ab/IAilHAMEn7RsSBvQvnKy1fBg4vOWKpXaZSLP9eudyDudy2wBhJLwJTIuL5zkV+k6kU/x08CdR3VHS10yKbSvH8PcBXImIVgKTLgfMk7VzBxleQbjjd2yLSDbQfzT8fQDWHrjfKX8V63Je+8le5HvfW6PhXsQ430ug99DB46rGZFVM7t92afz4AWBER/d7jZmsk6SjgatJFmP/qdp6KGk0anTUvn7OH5eeXSpoWEQ92LVk1PclWdi+tt6AHmFfXhp0j6Zuk+yA93q1QZkUM+hFIpGkKe5AqYg9wJWnI5JG9C+ZvULgQ+MuIeK5zEZsqmv8pUi91rdwpwIr8eEkHcjZT+HdAmmp0nKSePOf3a6SrFWv7KNspZfI/BnxK0pic//OkGwZ29Y9OSTtKOlLSSEnD82f9cPqeT30DcIakCZLGAzOBOR2M+yZl8lexHpfIX8l6XPLzU8U6XPY9VLIem9mb5fo8kvTH+7BaHe+j6A3ApyXtK2lH4Kt0+dzWaUWPlaQPkG6c/dcR8Wjv9VuDgsdqLWkqVk9eaiNa/wx4pENRu65EHZwLTJF0hKRhpG/6WwkMti/aaFmJY/UYME3SOEnbSPpb0rf8PdvJvGYtiYghtZDuiTI3Pz6MNDWntm4x8DvSMOfacmW3MxfN36vcVGBpt/O28h6Az5HuPbIamA9M6nbmEp+hsaRG10ukb2x7CHhvBTLvQjoZrc+5fkbqYOnrPYg0jWpVXmYDGkT5K1ePy+TvtV0l6nHZ/FWswyU/Q5Wsx168eHnzks/J0WuZRboH2wZg17qyZ5A65deROrtHdDt/FY8V8GNgc6/z6IJu56/iseq1zTtzueHdzl/VYwV8jNQJsg54ANiv2/mreKxI09auIN0LaR3wc+Cobuf34qXIoogqzz4wMzMzMzMzM7NuGwpT2MzMzMzMzMzMrI3cgWRmZmZmZmZmZk25A8nMzMzMzMzMzJpyB5KZmZmZmZmZmTXlDiQzMzMzMzMzM2vKHUhmZmZmZmZmZtaUO5DMhghJz0s6osG6OZLO73Sm/NoNc5mZmZkNVpJmSZrbYN1USUs7nSm/dsNcZmZvhTuQzAaYpEMl/UTSWkmrJD0s6eBu5+qEbnZUmZmZmcEfLl5tlLRB0orcPhlVYLsHJJ3SiYwDpZsdVWa29XEHktkAkjQauBu4HHg7MAE4F9jUzVxmZmZmW5ljImIUcCBwEPDVLucxMxv03IFkNrDeBRARN0fElojYGBE/jIgnawUknSzpaUmrJd0raXLdupB0uqTnJK2U9E+Stsnr9pB0v6RX8rqbJO3YSkhJH5H0S0lr8mip/evWPS/pTElP5lFU8ySNrFt/tqQXJC2XdErOvKekU4ETgLPzFb/5dS/Z02h/ZmZmZu0SEcuABcC7ASRNyW2fNZIWSpqan78AOAz4Vm7HfCs/f6mkJZLWSXpC0mGt5JA0XtL3JL0sabGk0+vWzZJ0q6QbJK2XtEjSQXXrD5T0i7zuu7ktdb6k7fN7G58zb5A0Pm+2baP9mZm1yh1IZgPrv4Etkq6XdLSknepXSvoocA7wMWAX4EHg5l77OI50pexA4KPAybXNgYuA8cA+wCRgVtmAkv4UuBY4DRgLXAXcJWlEXbFPAEcBuwH7AyflbY8CzgCOAPYEptY2iIjvADcBsyNiVEQc09/+zMzMzNpJ0iTgQ8AvJE0Avg+cTxopfibwPUm7RMRXSO2y6bkdMz3v4jGgJ5f/d+C7ZS+E5YuB84GFpNHpHwS+IOnIumJ/BdwC7AjcBdQ6sLYFbgfm5Aw3k9qKRMSrwNHA8px5VEQsb7Y/M7O3wh1IZgMoItYBhwIBXA28LOkuSeNykc8CF0XE0xGxGbiQNDpnct1uLo6IVRHxG+CbwN/kfT8bEfdFxKaIeBn4BvD+FmKeClwVEY/kUVLXk6bYTakrc1lELI+IVaQGT09+/hPAdRGxKCJ+S/EOrEb7MzMzM2uHOyStAR4C/oPU5vok8IOI+EFE/D4i7gMeJ3Uw9Ski5kbEKxGxOSIuAUYAe5fMcjCwS0ScFxGvR8RzpHbi8XVlHsq5tgA3Agfk56cAw0ltqd9FxG3AowVes9H+zMxa5g4kswGWO4dOioiJpOHS40kdQQCTgUvzsOk1wCrSyKIJdbtYUvf413l7JI2TdIukZZLWAXOBnVuIOBmYWcuQc0yqvU72Yt3j3wK1G0+O75Wv/nEzjfZnZmZm1g7HRsSOETE5Ij4fERtJbaBpvdpAhwJ/3GgneVr/03ka/hpgDOXbX5NJ08zqX/ccYFxdmd5tpZGShpPaXssiIurWF2l/NdqfmVnL/J+IWRtFxK8kzSFNF4N0wr8gIm5qstkkYFF+vCtQG4p8IWlk03siYpWkY2ltOHItwwUtbPsCMLFX1nqBmZmZWTUtAW6MiM80WP+Gdky+39HZpClniyLi95JWky7+lX3dxRGxV9nApLbXBEmq60SaBPxvX5nNzNrJI5DMBpCkP5E0U9LE/PMk0hS0n+UiVwJ/L2m/vH6MpGm9dnOWpJ3ytjOAefn5HYANwNo8h/+sFmNeDXxW0iFKtpf0YUk7FNj2VuDvJO0jaTvga73WrwB2bzGXmZmZWTvNBY6RdKSkYZJGSppaa7fx5nbMDsBm4GVguKSvA6NbeN1HgfWSviTpj/Jrv1vSwQW2/SmwBZguaXi+n+Z769avAMZKGtNCLjOzUtyBZDaw1gOHAI9IepXUcfQUMBMgIm4HLgZuydPQniLd/LDencATwC9JN3q8Jj9/LunG2mvz87e1EjAiHgc+Qxq9tBp4loI3tY6IBcBlwI/zdrWOsU3532uAffPw7DtayWdmZmbWDhGxhPQFJeeQOoWWkC7I1f4muhT4uNI35V4G3AvcQ/qSlF8Dr1F8+n79624BPkK6B+RiYCXwb6TpcP1t+zrpy1c+Dawh3cfpbnLbKyJ+Rbqx9nO5/TW+wa7MzN4yvXE6rZl1k6QA9oqIZ7udpQhJ+5A6wUbkm4KbmZmZWRtJegS4MiKu63YWM9u6eASSmZUi6ThJIyTtRBpNNd+dR2ZmZmbtIen9kt6Rp7CdCOxPGhllZtZR7kAys7JOA14i3bxxC/C57sYxMzMzG9L2BhaSprDNBD4eES90NZGZbZU8hc3MzMzMzMzMzJryCCQzMzMzMzMzM2vKHUhmZmZmZmZmZtaUO5DMzMzMzMzMzKwpdyCZmZmZmZmZmVlT7kAyMzMzMzMzM7Om/g+4ze07cd7NBQAAAABJRU5ErkJggg==",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
@@ -232,9 +249,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmIAAAL/CAYAAAB1d9j5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtAElEQVR4nOzdd5xcZbnA8d8zm14IhF5ERKzIJREEgkpRsCuIRqmKXPEKxLIJXaXpBQGTtQRQsSAdEQSxiwURAgoSQBTLVVR6D+nJ7rz3j/esWZYts5udOVt+389nPpudeeecZ87ObuY5z3mfN1JKSJIkSZIkSZIkaeBVyg5AkiRJkiRJkiRpuLIQI0mSJEmSJEmSVCcWYiRJkiRJkiRJkurEQowkSZIkSZIkSVKdWIiRJEmSJEmSJEmqEwsxkiRJkiRJkiRJdWIhRpIkSZIkSZIkqU4sxEiSJEmSJEmSJNWJhRhJkiRJkiRJkqQ6sRAjSZKkYSEiDo2IFBGHlh1LRxFxShHXHmXH0ggRsVXxei8oOxY9Vxk/n8H6uylJkiQ1ioUYSZIkDUoR0RQRh0fEDRHxZESsjohHI+KuiPhaRLyj7BglSZIkSerNqLIDkCRJkjqLiCbg+8CbgKeBHwD3A2OAbYEDgZcC3yspRGmoegB4GbCo7EAkSZKkkcJCjCRJkgajA8hFmDuB3VNKzzppHBETgJ3LCEwaylJKq4F7y45DkiRJGklsTSZJkqTBaNfi6wWdizAAKaVlKaVfdvfkiNgzIn4VEYsj4pmI+EFEvKyLcS+OiM9GxG0R8VhErIyIf0bEVyNiiy7G71GsdXFKRMyIiOsjYlGxn59ExI59eZER8dKIuCAi/h0RqyLikYi4NCJe0mncZcV+d+9mO+8qHp/fy/6OL8Z9rJvHN4uI1oi4rdN9J0XETRHxcBHng0WcL+/Da/1VRKRuHut2DZGI2CIi5kfE34ufzxMR8b2IeFUXYydHxKci4g/Fz31xRPxfRFwRETvUGmtfRMQuRezf7WHMn4rYp3a6/40R8cOIeLx4/P8i4uyIWLeLbdxX3NaJiHnFv1dHxCnF4zW99p7WiImICRFxXPH7sDgilhSxfzEiNu40dtOIOKeIY1Xx+3N1X49zROwQEVcVbQfbf//OjYhNuxh7QRH71hHxkchtCpdHxK/6sk9JkiSp0SzESJIkaTB6ovj64n48923AT4FngC8DNwJvAW6IiA06jd0P+DDwb+Ay4EvAH4EPAr+LiM272cfOwK+AlcA5wI+A1wM3RsRrawkyIt4E/B44CPgd8Hng50VMv42IV3YYfl7x9UPdbO5/iq9f7mW3FwFV4H3dPH4w0ARc0OG+3YDjyS3irgJagFuAdxdxbt/LPvutOAYLgSOBP5N/PtcVMf0mIt7SYWwAPwZOI//sv0Y+brcW42fUI8aU0i1FbG+JiPW7eA07kdvoXZdSerLD/ScX8e5Mbr33ReBvwNHATRGxThe7GwP8AtiX/B7/AvCPgXjtEbEecDPwWWAS8I1iG38CPkBuZ9Y+9gXAbeSfy/8Bc4GfAG8Fbo6It/W2v2I7byv2+XbgemAe+VgeAdxW7KcrXwA+Ddxd/PumWvYnSZIklcXWZJIkSRqMrgaOAz4cEZOB7wK3p5T+WcNz9wXemFL6efsdEXEGuZhwGHBWh7EXAS0ppZUdNxARbyAXVz5JPinc2ZuAj6SU5nd4zj7ANcA3IuIlKaVqdwEWJ70vA5YBu6WU/tjhsVeQCx1fA14JkFL6dUTcA7wrIj6aUnqiw/itgb2Am1NKf+hun8V2HoiI64E3RMQruhj/fmBVEVu7XwAbp5QWd3oN25NPgH8WeHNP++2PiBgFfJtcFNgzpXRDh8c2Ixevvh4RWxU/v1eQZ1Jdk1J6Z6dtVYApAx1jB98CTie31Os8K+n9Hca0x7MncAqwAHhLSunpDo8dCnwTOBVo7rStTcmFwt1TSks7PGc71v61nwNsTy7mHdXx/RsRk8gFunZfBjYDPplS+t8O484Ffg18KyKen1Ja0t3Oim1+i5yT7pFSurHDY8eR31dfAd7QxdNfCUxPKf2jhtclSZIklc4ZMZIkSRp0Ukp3kGdnPFJ8vQq4r2hL9d2IeHsPT7+8YxGm8NXi606d9vNA5yJMcf9PgXuAN3azj78B53Z6zrXADcA2QG+zYt4HrAuc3LEIU2znD8D5wPR4duuv84CxwKGdtnU4EOST1rVoLwi8v+OdkduqvRz4QcdCT0rp0c5FmOL+O8lFmj0jYnSN++6LtwIvBL7UsQhT7PtBckFtE/JMpI6WdxFrNaX0VB1ibNc+06jzMR0D7A88Si7stfto8fXwjkUYgJTSBeRZQAd1s685HYswnfTrtUfERsB7gYeAozsXEVNKS9pbBEZu2fcG4F88u6hJSulmchFvKnlmV0/2KcZd0bEIU5gL3AfsHRFbdvHcsyzCSJIkaShxRowkSZIGpZTSt4t1N/YEXgNML77uC+wbERcCh6aUOq87chvP9e/i63od7yxaOh1ELm5sXzze8cr/Vd2Ed2M3M15+BexexHpDF4+3a28VtX37Gh+dtLdkexl5BgTAheRZAh8in6imKIAcCjxFnj1Si+8Ci4CDIuL4lFJbcX97EeGCzk+IiLeSW7jtCGzAc/OIDcgn8QdS+zF6fjfH6EXF15cBPyQfp4XAARHxfOBa4DfAbSml7n6OzxIR+wLTOt29MKV0TU/PSyndHxE/JxcOXt6huPZ2crGhJaXU2uEpM4DVwMyImNnFJscAG0bE+h2LYsAK4K4uxq/ta38V+SK9X/dQ5Gk3vfh6Y0ppdReP/4JcPJ1Ofs92p7313i86P5BSao2IXwNbFdv5V6chv+0lRkmSJGlQsRAjSZKkQas40fvT4kZENAHvIq9f8T5yUeGaTk97uovttOaay7OKLJDXpPg4uYjwE+AB1swqOBR4fjehPdLN/Q8XX3trBdW+lsjhvYyb1P6PlNLiiLiY3K5tz5TSL4F3kGeFfD6ltKKXbbVvZ3lEfLvY9xuAHxUzNw4AHuPZMzeIiI+R1695CvgZ+aT4MiCRi2Lbk2fqDLT2Y9RVoaKjSQAppbaIeB1wEnn9mjOLxxdHxLeAE3pqlVXYl06zWsgziK6pId4LgL2L5x9X3PectmSF9cm52Mm9bHMSa9ZLAni0i8LjQLz2dYuvD/QSD6x5b3dXeGu/f91uHh+I7TzcxX2SJEnSoGUhRpIkSUNGMXvj28WaGJ8EXkdtJ8mfo2jH9FHgD8CuXayBckAPT9+4m/s3Kb4u6mX37Y9vn1LqaoZDd84jz0z5H+CXxVdY03qtVt8iF2LeTy68vJVcHPhCx1kOxTotp5BPfL8ypfSsk+YR0esi8B1U27fZaXYIdH2yvf0Y7ZNS+l4tOyhacDUDzRGxDXl20v8As4p9HNLL8w/lua3favVd4Bng4Ig4kXw83wzcWbRx62gRUEkpTe3jPp5ThPnPA2v32p8uvm5eQwztP5dNunl8007j6rGdbo+DJEmSNBi5RowkSZKGovaiSazFNrYmfx7+aRdFmC2Kx7vzmmIR9M72KL7e0cu+bym+9raWzLMURZubgHdGxM7AXuR2Un/q43ZuAv4K7BMRU+h+5sYG5JP4N3dRhJnEmvZStWhfp+R5XTy2Yxf39esYtUsp/S2l9HVyQWIJeU2SukkpLSe3h9uM/HM5kHzhW+djCvm1rRcR29Yplr6+9t+SC2W7RcTEXsa2v7dfUxTqOtuz+Pr7GrezR+cHiu22/9x7244kSZI06FmIkSRJ0qATEQdExN5dFTsiYhPWtPT69Vrs5r7i62uKlmft258EnE/Ps8dfBBzZKa59yCe+/wZ0Xny8s2+SZyGcHBE7dX4wIioRsUc3zz2PvIbIVeRC1Jd72Vd3vgWMI7+OtwB3pZQ6F5AeJbch26E4Lu3xjQa+QC7U1Kp9XY9ntWOLiNeT26J1di3wf8BREfGWrjYYETMiYkLx7xdERFfFs/XIrdOes5B9HVxQfH1fcWsFLuliXEvx9fyI2KzzgxExMSJ2qXWna/vaU0qPAZeTZ6F8rvPvXURMKgp2pJTuJ7eo24rc1q/juJ3JBainyDOEenIN8CR5XZvOr/XjwAuA61NKndeHkSRJkoYcW5NJkiRpMNoZ+BjwcET8BvhHcf8LyG20xpNP1H+nvztIKT0cEZcD+wMLI+Kn5HUr9iYvir6Q5y7c3u7HwNyIeDNwJ7ANsF/xvMNSStVe9v1ERLybfLL6lmKh93vILZeeR17MfX1yoaSzK8kn8jcHHgeurvEld3YRcBpwKjCaLmZupJSqEfFF4Hjg7oi4llwE2pO8CP0vWTMDojffBI4BToiI7ckLzL+Y3L7ru+S1fzrue3VE7Edeu+cHEXEz+WeyjHyMXkWetbRpcd/2wNUR8TvgT8CDwIbk2SCjWbNuSt2klG6KiL+R17UZDVyXUnq0i3E/j4jjgTOAv0bED8nv8UnkdYl2B34DvKnGXQ/Ea58FvILc+m6PiPgJsIr8O/dG8npEvyrGfpg8M+vsiHgDcBv5ZzKTPLPmA51nmXWWUloSEYeR3883RMSV5PWHdiCvXfQwa1rvSZIkSUOaM2IkSZI0GM0lnxi+Bfgv8onfjwOvIZ8MPgTYr6uFy/vov4HTyYWdo8gnnL8P7ErPa1zcSm6pNLaI883AL4DdUkq9zYYB8sl48ms7lzy74MNFPK8otrV/N89bxZpZFheklFbWsr8utvMvciFlNN3P3AD4FDCHPKvif8gFp9uAncgnzmvd36PkAsOPgN2AI1hT+Pp+N8+5i1xkOLMY+4HieTuQW1sdQi5GUcT02eK1vKmI+c3A7cBbUkrzao11LX2LfEzb/92llNKZ5OPwA+DV5Pf3THKB7avkNZBqtdavvVhjZtdiv6uBD5GP9bbAN8iFs/axfye3k/sy8BLg6GJ/PwZenVK6tpagi3GvBn5I/t07GnhZsd0div1IkiRJQ16sfe4qSZIkjQxFu7BfAqemlE4pMY5fkU/ivySl9Ney4pAkSZIk9c4ZMZIkSdIQUqwpszvwE4swkiRJkjT4uUaMJEmSNARExBHktlUfIK/DcXK5EUmSJEmSamEhRpIkSRoajgO2AP4OHJJS+m3J8UiSJEmSauAaMZIkSZIkSZIkSXXiGjGSJEmSJEmSJEl1YiFGkiRJkiRJkiSpTizESJIkSZIkSZIk1YmFGEmSJEmSJEmSpDqxECNJkiRJkiRJklQnFmIkSZIkSZIkSZLqxEKMJEmSJEmSJElSnViIkSRJkiRJkiRJqhMLMZIkSZIkSZIkSXViIUaSJEmSJEmSJKlOLMRIkiRJkiRJkiTViYUYSZIkSZIkSZKkOrEQI0mSJEmSJEmSVCcWYiRJkiRJkiRJkurEQowkSZIkSZIkSVKdWIiRJEmSJEmSJEmqEwsxkiRJkiRJkiRJdWIhRpIkSZIkSZIkqU4sxEiSJEmSJEmSJNWJhRhJkiRJkiRJkqQ6sRAjSZIkSZIkSZJUJxZiJEmSJEmSJEmS6sRCjCRJkiRJkiRJUp1YiJEkSZIkSZIkSaoTCzGSJEmSJEmSJEl1YiFGkiRJkiRJkiSpTizESJIkSZIkSZIk1YmFGEmSJEmSJEmSpDqxECNJkiRJkiRJklQnFmIkSZIkSZIkSZLqxEKMJEmSJEmSJElSnViIkSRJkiRJkiRJqhMLMZIkSZIkSZIkSXViIUaSJEmSJEmSJKlOLMRIkiRJkiRJkiTViYUYSZIkSZIkSZKkOrEQI0mSJEmSJEmSVCcWYiRJkiRJkiRJkurEQowkSZIkSZIkSVKdWIiRJEmSJEmSJEmqEwsxkiRJkiRJkiRJdWIhRpIkSZIkSZIkqU4sxEiSJEmSJEmSJNWJhRhJkiRJkiRJkqQ6sRAjSZIkSZIkSZJUJxZiJEmSJEmSJEmS6sRCjCRJkiRJkiRJUp1YiJEkSZIkSZIkSaoTCzGSJEmSJEmSJEl1YiFGkiRJkiRJkiSpTizESJIkSZIkSZIk1YmFGEmSJEmSJEmSpDqxECNJkiRJkiRJklQnFmIkSZIkSZIkSZLqxEKMJEmSJEmSJElSnViIkSRJkiRJkiRJqhMLMZIkSZIkSZIkSXViIUaSJEmSJEmSJKlOLMRIkiRJkiRJkiTVyaiyAyhbRASwGbC47FgkSZLWwmTgwZRSKjuQiBgHjClp96tSSitK2rc0bJk3SZKkYWDQ5ExQat5kzlSCEV+IIScT95cdhCRJ0gDYAnigzAAiYtwGUyvPPP5kdXRJITwcES8wsZAGnHmTJEkaDkrPmaD0vMmcqQQWYtZc0bUFXt0lSZKGpsnkE6SD4bPMmMefrI7+6y1b3bXulEpbI3f89KJq04t2ue+/yFeVmVRIA8u8SZIkDWWDKWeCkvImc6byWIhZY3FK6Zmyg5AkSeqr3DFocJkyhbZ1141qI/c5KPoLSMOfeZMkSRpyBmPOBI3Pm8yZylMpOwBJkiRJkiRJkqThykKMJEmSJEmSJElSndiaTJIkSQOuLVVpS42d/t+WGtoJTZIkSZLWSqPzJnOm8jgjRpIkSZIkSZIkqU6cESNJkqQBVyVRbfBSkI3enyRJkiStjUbnTeZM5XFGjCRJkiRJkiRJUp04I0aSJEkDrkqVKo1dI6aK/Y4lSZIkDR2NzpvMmcrjjBhJkiRJkiRJkqQ6sRAjSZIkSZIkSZJUJ7YmkyRJ0oBrS9CWGrsQZJvrTkqSJEkaQhqdN5kzlccZMZIkSZIkSZIkSXXijBhJkiQNuCqJKo293KrR+5MkSZKktdHovMmcqTzOiJEkSZIkSZIkSaoTCzGSJEmSJEmSJEl1YmsySZIkDbgqiTZbk0mSJElStxqdN5kzlccZMZIkSZIkSZIkSXXijBhJkiQNuEYvOtm+T0mSJEkaKhqdN5kzlccZMZIkSZIkSZIkSXXijBhJkiQNuLaUaEuNvdqq0fuTJEmSpLXR6LzJnKk8zoiRJEmSJEmSJEmqEwsxkiRJkiRJkiRJdWJrMkmSJA24anFr9D4lSZIkaahodN5kzlQeZ8RIkiRJkiRJkiTViTNiJEmSNODaSLTR2IUgG70/SZIkSVobjc6bzJnK44wYSZIkSZIkSZKkOrEQI0mSJEmSJEmSVCe2JpMkSdKAa0v51uh9SpIkSdJQ0ei8yZypPM6IkSRJkiRJkiRJqhNnxEiSJGnAJaBawj4lSZIkaahodN5kzlQeZ8RIkiRJkiRJkiTViTNiJEmSNODaCNqIhu9TkiRJkoaKRudN5kzlcUaMJEmSJEmSJElSnViIkSRJkiRJkiRJqhNbk0mSJGnAVVO+NXqfkiRJkjRUNDpvMmcqjzNiJEmSJEmSJEmS6sQZMZIkSRpwjV50sn2fkiRJkjRUNDpvMmcqjzNiJEmSJEmSJEmS6sRCjCRJkiRJkiRJUp3YmkySJEkDztZkkiRJktQzW5ONHM6IkSRJkiRJkiRJqhNnxEiSJGnAVVNQTY292qrR+5MkSZKktdHovMmcqTwWYiSpTqYf2TIK2A3YhjwD8UHg53ec27y01MAkSZIkSVKPjr1zZgCvBKYBY4EngV+ctf2Vj5YZl6ShyUKMJA2w6Ue2VICDgQ8CLwCagFQ8/Mj0I1suA+bfcW7z8pJClKS6q5awRkzVfseSJEkaAMfeOfP1wEeB7YEx5Jw+gGeOvXPm94C5Z21/5SMlhqhhotF5kzlTeVwjRpIGUFGEORk4HdgaeJo8E+Yh4DFgKtAMnD/9yJYJJYUpSZIkSZK6cOydMw8EvgrsBCxjTU7/MDAaeB9w+bF3ztyitCAlDTmDqhATEUdExF0R8UxxWxARb67xuftHRIqIa+ocpiT15ADgv8kf1h4GVnZ4rBV4nDydeS/ghIZHJ0mShrSI2C0irouIB4v8Z98annNQRNwZEcsi4qGI+EZErN+AcCVJGlKOvXPmDsBp5ILLA+Tcvl0VeIqc678MmH/snTMH1blVSYPXYPtjcT9wPLADsCPwC+DaiNi2pydFxFbA54Ab6x2gJHVn+pEtTcBhFNOVexi6AlgKzJx+ZMuGjYhNkhqtjaCNSoNv/ZtmHxFHRcR9EbEiIm6NiJ16GT8zIu4txt8dEW/p8NjoiDizuH9pcbL8wojYrNM27itOone8Hd+vF6CRZiJwJ3BULYMj4tXAhcDXgW2BmeQrfM+vV4CSJA1hh5D/r+1pHZhW4Any+jEzGhGUhq/G503mTGUZVIWYlNJ1KaUfppT+mlL6S0rpE8ASYJfunhMRTcAl5FZAf29QqJLUlV2BF5OvkOnNImAK8I66RiRJ6lFEvBeYB5xKTqbvBH4SERt1M35X4DLySe3pwDXANRHximLIhGI7ny6+7ge8BPheF5s7Cdi0w+1LA/KiNKyllH6UUvpkSum7NT5lBnBfSumLKaV/pJR+A3yFXIyRJEmFY++cuRHwZvKFk71ZTp41M7OuQUmDgDnTwBhVdgDdKQosM8lV6AU9DD0JeDSl9PWIeG0N2x0LjO1w1+S1ClSS1ngB+e/qihrGVjs8R5KGnWoKqqmxC0H2c3+zgfNTSt8EiIgPA28lz3D8bBfjPwb8OKV0dvH9pyJib2AW8OGU0iJg745PiIhZwG8jYsuU0r86PLQ4pfRwf4KW+mABcHpxFeKPgI2AdwM/7OlJ5k2SpBFoS/IJ4idrHL+afPJY6rdG503mTOUZVDNiACJiu4hYQl5X4cvAO1NKf+xm7GvIazEc3oddnEC+Er39dv/aRSxJ/xFA6uNzBt3fYUkaBiZHxDodbmO7GhQRY8gtca9vvy+lVC2+767NxIyO4ws/6WE85BmQCXi60/3HR8QTEXFHRBwTEYP2IikNXSmlm4CDgCuAVeS+9ovovbWZeZMkaaTpT37eNOBRSI1hztRgg/EE4J+BacDOwHnAtyLi5Z0HRcRk4CLg8JTS433Y/hnkH2z7bYu1DViSCveTZ7qMqWFs+yUIntSQpIF3P88+gXxCN+M2ICfPj3S6/xFgk26es0lfxkfEOOBM4LKUUsf1w74I7A/sSW4TdSJwVjf7lPqtyKW+QF54eAfgTcBW5IveemLeJEkaae4nXxg+vsbxo3GZBA1d5kwNNugqSCmlVcDfim9vj4hXkacz/U+noS8kJxDXRfxnSlUFICJagZeklP6vi+2vJP9RpRg7kOFLGtluBP4FPI/n/ofT2TrkNbC66n8pSUNeXnSysZ+zOuxvC2Bxh4dWPnd0/UXEaODb5OL7ER0fSynN6/DtXRGxCvhKRJxQfF6VBsoJwE0dWkPcFRFLgRsj4pMppYe6epJ5kyRppDlr+ysfPPbOmb8A3g4808vwsUAbcFXdA9Ow1ui8yZypPINxRkxnFZ7dm7jdvcB25Nkz7bfvAb8s/v3vRgQnSe3uOLd5FXAh+UqBCT0MHU3us/6jO85tdkaMJA28xSmlZzrcuvuQ/jg5gd640/0bk9s3deXhWsZ3SCieD+zd6cqurtxKvkhqq17GSX01gTVr07VrK75aXZEk6dkuJq/7OrWHMRXyLIF7yechpaHInKnBBlUhJiLOiIjdImKrYq2YM4A9gEuKxy8s7iOltCKl9IeON3IPucXF96vKeh2SRrSvA9cC67Jm+ma7SnH/xsDtwCmNDU2SGqctVUq59UXxefF24PXt90VEpfh+QTdPW9BxfGHvjuM7JBQvAvZKKT1RQzjTyCfLH60xfI1QETEpIqZFxLTirhcU329ZPH5GRFzY4SnXAftFxBERsXVEvJrc5uG3KaUHGxu9JEmD21nbX/lroIV8sncTntt6fDKwGfAAMOus7a9sbWyEGm7MmUZOzjTYWpNtRL6afFNyb7q7gDemlH5WPL4lz72aS5IGjTvObV49/ciWj5H7xB7Cs68ACPL05kuAz9xxbvNTJYQoSXq2eeQ1CW8Dfgt8HJgIfBPyhUDAAyml9p7JXwBuiIg5wA/IPYt3BD5UjB8NfAd4JfA2oCki2nshP5lSWhURM8jrIf6S3A5gBjnhvzil5P8N6s2OPPvq2/aWDd8CDiXnUlu2P5hSuqBYX3MWMJd88dovgOMaEKskSUPRl4DHgI+Qr9Rvn0EawHLyIuSnnLX9lX/r+unSsGPONAAipVR2DKWKiHXIRZ8pNUx/kqSaTT+yZR3grcDW5JkxDwHfv+Pc5i57sUtSfw2mzzPtsVx3x9Z3TF63qaEX0Cx+uq3y9ul/n04fj0NEzAKOIV/1uBD4aErp1uKxXwH3pZQO7TB+JvAZ8pT4vwLHppR+WDy2FfCPbna1Z0rpVxHxSuBc4KXkFrz/AC4C5g3FXscaGQbT3xlJkhrh2DtnjiFf1T+N/JntSeCnZ21/5b1lxqX+GWyfZcrKm8yZymMhZpD9EkqSJPXVYPo8MxQLMZJ6N5j+zkiSJPXVYPssM9QKMVp7g2qNGEmSJEmSJEmSpOFksK0RI0mSpGGgjaDtP+20G7dPSZIkSRoqGp03mTOVxxkxkiRJkiRJkiRJdeKMGEmSJA24tlShLTX2mp+2Eb72oSRJkqShpdF5kzlTeZwRI0mSJEmSJEmSVCcWYiRJkiRJkiRJkurE1mSSJEkacFWCaoMXgmz0/iRJkiRpbTQ6bzJnKo8zYiRJkiRJkiRJkurEGTGSJEkacG1UaGvwNT9tuPCkJEmSpKGj0XmTOVN5nBEjSZIkSZIkSZJUJxZiJEmSJEmSJEmS6sTWZJIkSRpwbQRtqdGtyaoN3Z8kSZIkrY1G503mTOVxRowkSZIkSZIkSVKdOCNGkiRJAy5Rodrga36S1xhJkiRJGkIanTeZM5XHIy9JkiRJkiRJklQnzoiRJEnSgGtLQVuKhu9TkiRJkoaKRudN5kzlcUaMJEmSJEmSJElSnViIkSRJkiRJkiRJqhNbk0mSJGnAtVGhrcHX/DR6f5IkSZK0NhqdN5kzlccjL0mSJEmSJEmSVCfOiJEkSdKAq6YK1dTYa34avT9JkiRJWhuNzpvMmcrjkZckSZIkSZIkSaoTZ8RIkhpq2+NapgL7AnsD6wKLgV8B373nzOaHSgtMkiRJkiRJqgMLMZKkhtj2uJYA3g8cA0wFEtBK/r/otcBHtz2u5cvAF+85s7laWqCSBkSjF51s36ckSZIkDRWNzpvMmcrjkZckNcoHgVOBycBDwIPAo8XXh4CxwNHA8UXRRpIkSZIkSRrynBEjSaq7bY9reSFwLHkWzGNdDKkCT5BblR0OXA/8tlHxSRp41RS0pcbWVKsN3p8kSZIkrY1G503mTOVxRowkqRHeTZ4J80Qv454GxgPvqXdAkiRJkiRJUiNYiJEkNcI7gZXkGTG9WQq8ddvjWibUNyRJ9VSlUspNkiRJkoYKc6aRwyMvSaqrbY9rGQ2sB6yq8SmrgDHAlLoFJUmSJEmSJDWIhRhJUr21Am3U/n9OhTxzZmXdIpIkSZIkSZIaxEKMJKmu7jmzOQG/A2ptNTYJ+Ct5vRhJQ1RbqpRykyRJkqShwpxp5PDIS5Ia4TLyrJixvYwbRf6/6ZJ7zmyu1j0qSZIkSZIkqc5GlR2AJGlE+AV5VswM4BFgdRdjRgGbAPcA32tcaJLqoQpUiYbvU5IkSZKGikbnTeZM5XFGjCSp7u45s3kV8GFyMWZDcsFlHLn4MhbYCNgY+CNw+D1nNj9TUqiSJEmSJEnSgLIQI0lqiHvObH4EOAg4Ffg7MBnYAJgCPAScCbznnjOb/15akJIkSZIkSdIAszWZJKlhipkuX9n2uJZvAC8H1gGWAvfcc2bzylKDkzSgylgI0oUnJUmSJA0ljc6bzJnKYyFGktRw95zZvBq4s+w4JEmSJEmSpHqzECNJkqQB10aFtgZ3wW30/iRJkiRpbTQ6bzJnKo9HXpIkSZIkSZIkqU6cESNJkqQBl1JQTdHwfUqSJEnSUNHovMmcqTzOiJEkSZIkSZIkSaoTCzGSJEmSJEmSJEl1YmsySZIkDbhGLzrZvk9JkiRJGioanTeZM5XHIy9JkiRJkiRJklQnzoiRJEnSgKumCtXU2Gt+Gr0/SZIkSVobjc6bzJnK45GXJEmSJEmSJEmqEwsxkiRJkiRJkiRJdWJrMkmSJA24NoI2ouH7lCRJkqShotF5kzlTeZwRI0mSJEmSJEmSVCfOiJEkSdKAa/Sik+37lCRJkkayvXY//UXAVkAA/wL+fP0NJ6ZSg1K3Gp03mTOVx0KMJEmSJEmSJA1he+1++l7AocCuwLji7pXAbXvtfvq3gB9YkJHKYyFGkiRJA841YiRJkqT622v30wOYBcwBxgKLgKeLh8cDrwZ2Arbba/fTP2sxZnBxjZiRw7lIkiRJkiRJkjQ0vRM4GqgCDwBLin9XgaXAg8Aq4CjgfSXFKI14FmIkSZIkSZIkaYjZa/fTK+QCyyjgyR6GLgIScMReu58+thGxSXo2W5NJkiRpwKUUDV8IMiWn2UuSJGlEeQ3wIuCpGsY+BTwPeD3ww3oGpdo1Om8yZyqPM2IkSZIkSZIkaejZlnyh/Yoaxq4ConiOpAZzRowkSZIGXFuq0NbgGTGN3p8kSZJUstHklmO1SsVzNEg0Om8yZyqPR16SJEmSJEmShp7HybNcajnH2z7u8bpGJKlLzoiRNOIde+fMjYB1geXAA2dtf2W13IgkNdouB82dDGxEvkLs4VsumbOs5JAkSZIkqTc/BRYBU+h9nZh1gKXAj+sdlKTnshAjaUQ69s6Zo4A3AwcCryL/PawCfzv2zpmXAN89a/srnykxREkNsMtBc/8LeC+wLzChuHvRLgfNvRK44pZL5vytrNiGuipBlcYuBNno/UmSJElluv6GEx/fa/fTrwE+ACwGWrsZ2gRMBq66/oYT/9Wg8FSDRudN5kzlsTWZpBHn2DtnTgDOAc4DdgfagCXASvKidWcA3z72zplblBakpLrb5aC5hwBXAYcB44FlxW1d4CPA93Y5aO6bSwtQkiRJknr3OeBOYBNgYhePTwA2Bf4C/G8D45LUwaAqxETEERFxV0Q8U9wWRES3J0Ai4vCIuDEinipu10fETo2MWdLQcuydMwP4LPAO4BngQfJVIyvIU3QfAh4DpgFfO/bOmeuUE6mketrloLlvA04DxgAPAE+S2xMuJ/dMvp88df/zuxw0d5ey4hzK2hedbPRNkiRJGkmuv+HEJ4BDgJ8B44AtyIWXTYHNyYWYG4EDrr/hxAfLilNdM2caOQbbkb8fOB7YAdgR+AVwbURs2834PYDLgD2BGcC/gZ9GxOb1D1XSEDWdNUWY7taAWA08AvwXuV2RpGFkl4PmjgKOBsaSC6/deZjca/ljjYhLkiRJkvrj+htOfBR4H7APufvHr4AbgK8B+wHvuf6GEx8oLUBJg2uNmJTSdZ3u+kREHAHsAtzTxfiDOn4fER8E3gW8HriwXnFKGtJmkq8QebyXcavJi3YffOydMy8+a/srq3WPTFKj7Aa8EHiihrFPA7vsctDcbW+5ZM5zPouoe9UUVFOD14hp8P4kSZKkweL6G05MwF3FTUNEo/Mmc6byDLYZMf8REU0RsT+5t+GCGp82ARhNbi/S3XbHRsQ67TfyQlWSRo49yG3IavEMsA2wWd2ikVSGnciLVa6sYewScvHW1qeSJEmSJKlfBl0hJiK2i4j2RbO/DLwzpfTHGp9+Jnm9h+t7GHMCsKjD7f61CFfS0DMBqHV2Sxv57+SE+oUjqQTj+zi+2o/nSJIkSZIkAYOsNVnhz+RFsqcA7wa+FRG791aMiYjjgf2BPVJKPV3tfgYwr8P3k7EYI40kTwHr1Th2NNBKbk0kafhYBNQ6HzvIBdlF9QtneGqjQluDr/lp9P4kSZIkaW00Om8yZyrPoDvyKaVVKaW/pZRuTymdANxJL4vkRsTRwPHAG1JKPfZBTCmtTCk9034DFg9Y8JKGguvIBZZaTsJOBm49a/srH61vSJIa7OfkFoUTaxg7hfxZ4Zd1jUiSJEmSJA1bg3FGTGcVYGx3D0bEscAngDemlG5rWFSShqrvAB8GptLzQt3tLcwua0RQkhrqLuD3wKuBZUDqZlwFmAR8+5ZL5jzYoNiGjdTgRSfb9ylJkiRJQ0Wj8yZzpvIMqhkxEXFGROwWEVsVa8WcQV5Y+5Li8QuL+9rHHwd8GjgMuC8iNiluk8qIX9Lgd9b2V/4T+AK5EL0+Xc+MmUxuX/Z94MeNi05SI9xyyZwEnAo8CmxG1xemjAY2Be4D5jYsOEmSJEmSNOwMqkIMsBFwIXmdmJ8DryLPdPlZ8fiW5JMi7Y4AxpCvcH+ow+3oRgUsaUg6FziTvP7LZsDG5BkyGwCbk2fhXQnMPmv7K1vLClJS/dxyyZy7gA8C/yJ//tiM/HdgKvnvwAbAvcD7b7lkzj/LilOSJEmSJA19g6o1WUrpv3t5fI9O329Vz3gkDU9nbX9lFZh/7J0zvw+8C3gb+eTrMvI6EFcCC8/a/sru2hVJGgZuuWTOb3c5aO7rgbcA7wG2JrckvBe4AvjpLZfMWVliiENalQrVBl/z0+j9SZIkSdLaaHTeZM5UnkFViJGkRjpr+yvvI7ccsu2QNELdcsmcJcC3i5skSZIkSdKAsxAjSZKkAdeWgrYGLwTZ6P1JkiRJ0tpodN5kzlQe5yJJkiRJkiRJkiTViTNiJEmSNOCqBNUGX21Vxau7JEmSJA0djc6bzJnK44wYSZIkSZIkSZKkOrEQI0mSJEmSJEmSVCe2JpMkSdKAq6agmhp7zU+jW6FJkiRJ0tpodN5kzlQeZ8RIkiRpRIuIoyLivohYERG3RsROvYyfGRH3FuPvjoi3dHhsdEScWdy/NCIejIgLI2KzTtuYGhGXRMQzEfF0RHw9IibV6zVKkiRJUn+ZM609CzGSJEkacG1EKbe+ioj3AvOAU4FXAncCP4mIjboZvytwGfB1YDpwDXBNRLyiGDKh2M6ni6/7AS8BvtdpU5cA2wJ7A28DdgO+2ucXIEmSJGnIMmcaOTmThRhJkiSNZLOB81NK30wp/RH4MLAMOKyb8R8DfpxSOjul9KeU0qeA3wOzAFJKi1JKe6eUvp1S+nNK6ZbisR0iYkuAiHgZ8CbggymlW1NKvwE+Auzf+SowSZIkSSqZOdMAsBAjSZKk4WZyRKzT4Ta2q0ERMQbYAbi+/b6UUrX4fkY3257RcXzhJz2MB5gCJODpDtt4OqV0W4cx1wNVYOcetiNJkiRJA8GcqcEsxEiSJGnApRTFwpONu6U1C0/eDyzqcDuhmzA3AJqARzrd/wiwSTfP2aQv4yNiHHAmcFlK6ZkO23j02ccrtQJP9rBfSZIkScNMo/Mmc6byjCo7AEmSJGmAbQEs7vD9yjKCiIjRwLeBAI4oIwZJkiRJ6oI5U4NZiJEkSdKAq6YK1dTYydcd9re4w5VUPXkcaAM27nT/xsDD3Tzn4VrGd0gong+8rlM8DwMbdRo/Cpjaw34lSZIkDTONzpvMmcpjazJJkiSNSCmlVcDtwOvb74uISvH9gm6etqDj+MLeHcd3SCheBOyVUnqii22sGxE7dLjvdeTP5rf2/ZVIkiRJ0sAzZxo4zoiRJEnSSDYP+FZE3Ab8Fvg4MBH4JkBEXAg8kFJq75n8BeCGiJgD/ADYH9gR+FAxfjTwHeCVwNuApoho72H8ZEppVUrpTxHxY+D8iPgwMBqYD1yeUnqw3i9YkiRJkvrAnGkAWIiRJEnSgKsSVIneBw7wPvsqpXRFRGwInEZe9HEh8KaUUvviklsC1Q7jb46IA4HPAKcDfwX2TSn9oRiyOfCO4t8LO+1uT+BXxb8PIicSPy+2fxXw0T6/AEmSJElDVqPzJnOm8liIkSRJ0oiWUppP/oDf1WN7dHHflcCV3Yy/D3rPblJKTwIH9iVOSZIkSSqDOdPasxAjSZKkAdeWgrbU2Bkxjd6fJEmSJK2NRudN5kzlqZQdgCRJkiRJkiRJ0nDljBhJkiQNuGqqUE2Nvean0fuTJEmSpLXR6LzJnKk8HnlJkiRJkiRJkqQ6sRAjSZIkSZIkSZJUJ7YmkyRphNj1yye/LsZU96eS1qEai9KqyqU3f/jUG8qOqxa7HDzvxcAMYCKwBPj1LRfPvq/UoNSjagqqDV4IstH7kyRJkqS10ei8yZypPBZiJEka5nb9ysn7NU1Z9dkxz2t9QVRSJUEKiNQWh732shP+3vbMmKNv/p9Trys7zq7scvC8acBs4NXABKBKntG7dJeD5/0cmHfLxbP/XF6EkiRJkiRJPbM1mSRJw9iuXz3p8NGbLr9k1JTVLySRqitjRVpZWVldGSuANGq91duM3nT5t3f96kmHlh1rZ7scPG834GLgDUAr8ADwEPAguSCzD3DZLgfPm15akOpWlSjlJkmSJElDhTnTyGEhRpKkYWrGeSe/dPTGKz5fGV0dU10ZK1JrrOY/H7qC1BqrqytiRWV0dczojVbMn3HeyVuXGnAHuxw8bzPgi8BUcgFmcYeHE/BMcf+mwHm7HDxvSsODlCRJkiRJqoGFGEmShqnKuLZPVMZUx+XZL91d9RJUV8aKytjq+Mq46icbGmDP3gVsTJ4Bk7oZk4CHgS2BtzcoLkmSJEmSpD6xECNJ0jA045xTmkZNWf32lEjdF2HaBSmRmtZZtc+Mc04pfZ7yLgfPawIOILcj664I066tGHNAveNS36Ri0clG3pILT0qSJEkaQhqdN5kzlcdCjCRJw1GwUYypTqAa1ZrGV6NaGVudTLBOnSOrxbrARsDSGscvA7YpCjiSJEmSJEmDyqiyA5AkSXWRL7bobT7Jcw2Gzwb9vVCkQp4ho0GgmipUU2Ov+Wn0/iRJkiRpbTQ6bzJnKo9HXpKk4SjxcGqtrKSpxk9ZlVRJqyvLSTxZ58hq8TSwCBhf4/jxwAO3XDx7dd0ikiRJkiRJ6icLMZIkDUMLjjqlrW3R6OsjiN6nxSQiiLZFo3+84KhT+j6HZoAVBZUrgLH0vsBNBWgCLq93XOqbaqLha8RUS3/3SpIkSVLtGp83lf2KRy4LMZIkDVPVZU3/m1orqytj09juizGJypg0Lq2urGpb3nR6QwPs2ZXAU8DGvYzbBHgE+G7dI5IkSZIkSeoHCzGSJA1TNx9x6m2rHxl3emqLamVsGkeFpjUFmQQVmipj07hUjbbVj447dcERp95ZasAd3HLx7H8AxwMrgM2BcZ2GTCjufwZovuXi2Y81NkJJkiRJkqTaWIiRJGkYu+mDp5226qHxs9uWjnoqRlVHVcamcZWx1XGVsWlcjEqj2paOemLVg+M/etMHT/ts2bF2dsvFs68FPgTcDaxDLrxsVnydCNwOvP+Wi2f/srQg1a0qUcpNkiRJkoYKc6aRY1TZAUiSpPq6+fDT5s8455TzYnT1vytjq++gkiZRjSXVlZWr0+rKtxYcdUpb2TF255aLZ/9il4Pn/QqYAbyaXIBZDNwA3HbLxbPtcCtJkiRJkgY1CzGSJI0ARbHlq8VtSLnl4tlV4KbipiGifTHIRu9TkiRJkoaKRudN5kzlsTWZJEmSJEmSJElSnViIkSRJkiRJkiRJqhNbk0mSJGnA2ZpMkiRJknpma7KRw0KMJEmSJEmSJACmH9kyBtgMGA08fse5zU+VHFKvtj2uZTKwEZCAh+85s3lZySENO9vNbqmQ3xcTgEV3z2t+pOSQpCHFQowkSZIGnDNiJEmShpbpR7ZsCrwHOADYuLh71fQjW34KXA7cfMe5zams+Lqy7XEt/wXsD+xDLhAALNr2uJZvA1fcc2bz/5UW3DCx3eyWycA7gYOAF5GXumjdbnbL74BLgR/dPa+5tcQQhzRnxIwcrhEjSZIkSZIkjWDTj2zZAbgOOJ4862E5sBRoAt4NXAwcO/3IlkFzLnHb41reB1wNHAaMB5YVt3WBjwDf2/a4ljeWFuAwsN3sls2BbwOfBV4BrASWAG3AHsB5wLnbzW6Z0N02JGWD5o+nJEmSho/2K7safZOGu4jYLSKui4gHIyJFxL41PGdsRPxvRPwzIlZGxH0RcVgDwpUkDQHTj2zZGvgqsDnwEPAouaCxAngaeIB84v0jwIfLifLZtj2u5R3AqeT2afcDT5KLR8uBx4EHyQWZL2x7XMtOJYU5pBUzYc4HpgOPkd8bS8nvi8Xk98UzwNuBs7ab3eKH8X4wZxo5LMRIkiRJ0tAxEbgTOKoPz/k28Hrgv4GXkFvO/HngQ5MkDVEfJBdhHgSq3Yx5mlyMOXL6kS3rNSiuLm17XMto4GhgLLlA0JVELhysC3ysMZENO/sC04BHgNXdjFkGLALeBryyIVFJQ5SFGEmSJEkaIlJKP0opfTKl9N1axkfEm4DdgbeklK5PKd2XUlqQUrqpvpFKkoaC6Ue2rE8+4b6MXLzoyZPA+uT1WMq0B7A18EQNY58GZmx7XMvL6hnQcLPd7JYKcDD5PdFdEabdEmAc8N56xyUNZRZiJEmSNOASQbXBt4TT7KUuvAO4DTg2Ih6IiL9ExOciYnxPTyrama3TfgMmNyRaSVKjTQemkGc19KYNCGDnukbUu1eRz2murGHsEvL6Ma+qa0TDz6bANuTWY7VYQb7wQ33U6LzJnKk8o8oOQJIkSZJUN1sDryGfIHknsAFwLvmK5g/08LwTgJPrHp0kqWzjgSa6b0nWWRWYVL9wajIe+nQ2uQq4mHzfjCcXu2p9X7ThMZZ6ZCFGkiRJA65K4xeCrHp1l9SVCrmtyEEppUUAETEb+E5EHJlSWt7N884A5nX4fjJ5MWRJ0vCyCGglnyPsrQUV5P9XamkJVk+1zN5pVylufXmO1rwvRgPdfVboaDTwVF0jGqYanTeZM5XH1mSSJEmSNHw9BDzQXoQp/Il8JfEW3T0ppbQypfRM+w1YXOc4JUnl+B1rFrXvzWjyzIfr6xlQDX5BbktWywyMdcjttX5Vz4CGm7vnNT8G3EJts5+C/N64rq5BSUOchRhJkiRJGr5uAjaLiI4nUl5MbjXiDBdJGuHuOLd5OXA5MIZ8Mr0nGwL/Bn5W77h6cQewEJhKzy3KKuRCwo/uObP5oQbENdxcRm1t3aaS1+K5qu4RSUOYhRhJkiQNuGqKUm7ScBcRkyJiWkRMK+56QfH9lsXjZ0TEhR2ecim5hcw3I+LlEbEbcDbwjR7akkmSRpZvkAsbGwPjuni8AmwCLANOuuPc5pWNC+257jmzOQGnAI8Dm9H10gtjyAvO/4Nnt9pU7X4CfA9Yj9yitLMgrzk3CvjS3fOa/97A2IYNc6aRw0KMJEmSJA0dO5KvBL6j+H5e8e/Tiu83BbZsH5xSWgLsTW45cxtwCbl1yEcbE64kabC749zmp4APAAuAKcDm5BPsU8n/r2xKXv/jY3ec2/zTsuLs6J4zmxcCh5Fn6GxELshMJce9WfH1T8D77zmz+V8lhTmk3T2vuQ2YA1xBLmxtDmxAPs7tx7yVfIHH/JLClIaMrirGkiRJ0lop42orr+7SSJBS+hU9tGFJKR3axX33kosxkiR16Y5zmx+efmTLu4HdgP2B6eRWZQ8B3wGuvePc5idKDPE57jmz+bfbHtfyeuAtwHuAF5Bbad1Lbrf2s3vOLHf2zlB397zm5dvNbmkGLiAf4z3JrcqeIl/YcdXd85rvKy3AYaDReZM5U3ksxEiSJEmSJEkj3B3nNrcBvyxuQ8I9ZzYvJs/YuKLsWIaru+c1J3LruoXlRiINbRZiJEmSNOCcESNJkiRJPXNGzMjhGjGSJEmSJEmSJEl1YiFGkiRJkiRJkiSpTmxNJkmSpAGXUpAaPO290fuTJEmSpLXR6LzJnKk8FmKkGuz+9rMDeAXwbmAaMBp4ALgW+NkN1x2zsrzoevaqQ+cGwburTTErVXgxQVNUeTza0uVRZe7vLpizdG22/9p9z14HeBvwZmADYBlwE/CdG6855l9r/wrqZ8aBc6cA7wDeCKxPjv1G4KoFl875d5mx9WaHw1vWA/YB9gamAkuBXwPfuf385gfLjE39M/2olgqwK/Au4EXF3X8FrgJuvuOc5urabH+v3U/fCNgP2BOYAjwN/AL47vU3nPjY2mxbkiRJkiRJ3YuUUtkxlCoi1gEWAVNSSs+UHY8Gn93ffvYU4GzyCe/xQCtQJRdjqsB9QPMN1x3z27Ji7M6rDp27dXV0/Lg6ihekoBKQABIEQKWNJU2r0hG/++acS/uz/dfue/Y7gZOBjcjbXA00kdseLgUuAk6/8ZpjVg/AyxlQMw6c+x7gk8CG5OPSyprYlwAXAGcuuHROa1kxdmWHw1sCOAA4gVz46hz7YuB8YN7t5ze3lRWn+mb6US3PB77EmkJv+/tuFPn36k7gI3ec03xfX7e91+6nV4APAx8B1mXNe2YU+ff2aaAFOP/6G04c2R8KhrDB9HmmPZZdvjvrjtGTx61VAbGvVi9eUbnlnfOnMwiOgzTcDKa/M5IkSX012D7LlJU3mTOVZ1CtERMRR0TEXRHxTHFbEBFv7uU5MyPi3ohYERF3R8RbGhWvhr/d3372BOBr5FkTK4H7gYeBR8kzYp4Atga+ufvbz96xrDi78qpD527aNiZ+0zaaFwLVqLIiqqyMKisr+d+rqk1Mah0bX3/VB+a+t6/bf+2+Z+8HzCUXAx4hH49HgYeA9hkZ/wOc/tp9zx5Uf2tmHDj3AOBMYD3yz/NBnh17BTgKOG3GgXMHVezAIcDp5BPqXcU+Cvg48KmiaKNBbvpRLZsBFwM7kQtpD5B/p9p/r54BXgVcPP2oli36sYuPASeSC8nt75NHi68PAROATwGz1uqFSJIkSZIkqUuD7QTj/cDxwA7AjuSWKddGxLZdDY6IXYHLgK8D04FrgGsi4hUNiVYjwWHAq4HHyLMkOltFPlE6FThz97ef3dTA2HqUmvhydRQbR5VVkWjtfEY+iuJMqjCmbUzMf9Whc2uO/bX7nr0BcBr5yv2Hgc4zLxL5KvtngP3Jrb8GhRkHzt0EOIk8g+QRuo79KfIJ8YOAPRoZX092OLxlS+AT5FkM3cX+JLnF2qHk964GvxPIrcgeApZ38fiK4rFtirE122v30/+LXGBZCTxOnsXXUZX892018LG9dj/95X2KXJIkSZIkSb0aVIWYlNJ1KaUfppT+mlL6S0rpE+ST37t085SPAT9OKZ2dUvpTSulTwO/xql4NgN3ffvYY4EDyye7e1oB5Angx8Np6x1WLVx06d7220bFXQDWee+L1PwKIKqtTE+sR/HcfdrEveU2V3taVWEIueBzQh23X237k2SSP9zJuMTCGXEgaLN5FXtujt9gXAWOBPs90UmMVM1zeSH6/9dRKrq0Y84bpR7U8rw+7mEme8fJUL+OeBCaS18GSBkRKQbXBNxeelCRJkjSUNDpvMmcqz6AqxHQUEU0RsT/5xNCCbobNAK7vdN9PivultbUT8Dx6P4EJ+Yr10eQF68sXfCBVGEuVWtY3aQOi2hQH9WEP+5ALPLX0sFwC7Prafc/etA/br6d3kl9zrbHvOePAuevXN6SavZM8c6GWdTyWAm/Y4fCWdeobktbSG4DJ5NljvXkGmFQ8p1d77X76KHLRdEWNsawE9ivWlJEkSZIkSdIAGVV2AJ1FxHbkwss48knQd6aU/tjN8E3I7Xk6eqS4v7vtjyVfKd5ucv+j1TA3lVxcWVXj+Cp50frSpWBz8oSXXosN/xkU9KXYsDG1H5eVwDrk4/lQH/ZRLxvSt9gnkmN/om4R1aBY72UDep+d1W4V+e/oetR2kl/lmEr+FayluJaKsbX+rk4ivwdqfb+vIr/fJ9B1K0apT1IJV1t5dZckSZKkoaTReZM5U3kG41WvfwamATsD5wHfioiB7Fl/ArltT/vt/gHctoaXVeQTn7X+nlSo/crzeutqnYmepZpP8EMuBvTluFSp/WRwva0k159qUSG/B/pybOri9vObE/kY1nrcgxz7YDnu6toqan8/UoztSzGuL3/D2uuyvmckSZIkSZIG0KArxKSUVqWU/pZSuj2ldAJwJ3ktmK48TL4yv6ONi/u7cwZ5jYX22xZrGbKGr7vJV4XXMmuq/YT9HXWNqEZR5SeRaCMY3dvYVJwEjpT6Evst5PVTarEOeabaP/uw/Xq6FRhf49h1yMXaB+sXTp/0Nfb7eO6sQQ0ud5Jb5Y2rYezYYuxdNW57OXAPeZZLLSYCC6+/4UQLMRoQ1UTD14ip1jK3TJIkSZIGicbnTWW/4pFr0BViulDh2a3EOloAvL7TfXvT/ZoypJRWppSeab+RFz+WnuOG6455gLzmUC2FmHXJM6y+W8+YavW7C+bcWGnlHylo6vXvazA6EqujjdP7sItvs6aNUU8q5PZul954zTGD5eTuFeTYJ/Qyrqm4Xbrg0jm1rLXTCFcArfR+0n4U+dhfcvv5zbWshaPy/Ab4C7lFWW/WB/4K/LqWDV9/w4kJuKT4trei7BhyMfnSWrYtSZIkSZKk2g2qQkxEnBERu0XEVhGxXUScAexBcSIpIi4s7mv3BeBNETEnIl4aEacAOwLzGx27hq3zgaeAnhaab1+H4YIbrjvmsYZEVYNKazo9Em1UGNtdMSYFowkqlVXpx7+7YM7f+7D524DryeuPdFcorQCbkWdlXNGHbdfbAuAG8onv7mJvIv/M/wZ8p0Fx1eIG4GbyWjHdzUhqIq+T9RcGSWFQ3bvjnOY24Evk4mBPa7+sD6wG5hfPqdUPybNuNqb7deFGk9e3WkguPkuSJEmSJGkADapCDPlE0IXkdWJ+DrwKeGNK6WfF41vS4YR4Sulm4EDgQ+QTTe8G9k0p/aGRQWv4uuG6Y9pb4y0it7GbSj5pOYo8G2Sz4uslwOdKCrNLv/vmnG81rUynk2hLFcalYHSCSoJIwahqhXG5CMMtlTZm9mXbN15zTAJmA78kH5NNyS2zRpELBBuwpghz+I3XHDNo2mMtuHROlfwzvZF8cnsT1sQ+FtiQ/Hr+DnxowaVzHi8p1Oe4/fzmNuAocmu4Dcixj+PZsW9CnjXxwdvPb36qpFDVB3ec03wNcDp5Rsrm5LaZo4rbOsV9CTjjjnOar+7Ltq+/4cRl5P8j7yIXYzYmv1dGkd87G7OmCPOh6284cbCsc6VhoH3RyUbfJEmSJGmoMGcaOQZVISal9N8ppa1SSmNTShullPbqUIQhpbRHSunQTs+5MqX0kuI5r0gp/bDhgWtYu+G6Y35KLvJ9k7xI9lTySfCx5NkJHwGOu+G6YwZL+6r/uO0bc04ZtSId0LSK24BEhdFUGANUKq080LQinV5pTbv97oI5q/u67RuvOWYRcBjwCeCP5ILUBuQ2bU8CLcC7brzmmLsH6vUMlAWXznkSeD/wSfLMkfbYpwCPAXOBdy24dM6fSguyG7ef3/w4cDBwCnnGzmTWxP4ocDbwrtvPb/5rWTGq7+44p/mrwPuA75HXbVq/uFWK+95/xznNX+7Ptq+/4cR/A/uTiz33k98rG5DfO/8CPg3sf/0NJz6wli9DkiRJkiRJXYiURvYKPRGxDnm2w5RizRipW7u//eypwDbkWTGPAn+74bpjhsQv0asOnftigl2BcST+DPzqdxfMGZDYX7vv2RXg5eQizArgTzdec8zSgdh2vc04cG4TsC355PQy4E8LLp2zrNyoarPD4S2jyMd9CrAU+NPt5zcvLzcqra3pR7VsTp4BCvDvO85pvn+gtr3X7qePIb/fJwFLgHuuv+HEwbJ+k9bCYPo80x7L9G9//I5Rk8c3dJ2q1sXLK3e85/PTGQTHQRpuBtPfGUmSpL4abJ9lysqbzJnKYyFmkP0SSpIk9dVg+jxjIUYangbT3xlJkqS+GmyfZSzEjDyDqjWZJEmSJEmSJEnScDKq7AAkSZI0/KSUb43epyRJkiQNFY3Om8yZyuOMGEmSJEmSJEmSpDpxRowkSZIGXJWgSjR8n5IkSZI0VDQ6bzJnKo8zYiRJkiRJkiRJkurEGTGSJEkacCkFKTX2aqtG70+SJEmS1kaj8yZzpvI4I0aSJEmSJEmSJKlOLMRIkiRJkiRJkiTVia3JJEmSNOCqKag2eNp7o/cnSZIkSWuj0XmTOVN5nBEjSZIkSZIkSZJUJ86IkSRJ0oBLKd8avU9JkiRJGioanTeZM5XHGTGSJEmSJEmSJEl1YiFGkiRJkiRJkiSpTmxNJkmSpAGXUpAavBBko/cnSZIkSWuj0XmTOVN5nBEjSZIkSZIkSZJUJ86IkSRJUh00fkYMeHWXJEmSpKGk0XmTOVNZnBEjSZIkSZIkSZJUJxZiJEmSJEmSJEmS6sTWZJIkSRpw1RREg1uTVV14UpIkSdIQ0ui8yZypPM6IkSRJkiRJkiRJqhNnxEiSJGnApZRvjd6nJEmSJA0Vjc6bzJnKYyFGGiG2OvdzY4FNyb/3j9135NGLBnL7Ox8ybyNgXWA58MCtF82uDuT2h6q9KzPHA5uQZyA+9rPqlc8M1LZfeURLABsBU4BlwIO/P695wI5788L9J5BjD+DRlmmXLx6obdfbS68+rWPsj9y730lLSg6pZrvtc/ZEYOPi20d+fe0xS8uMR5IkSZIkSWsn0ggvg0XEOsAiYEpKacBOkEqDxVbnfm4L4L3A/sAGxd0rgR8Dl9135NG39nfbOx8yrwl4I3AAMINc5KkCfwcuBa669aLZA1rwGSr2rsx8Afm4vwdYr7h7OXAdcPnPqlfe0d9tv/KIltHAW4ADgR3Ix70N+CtwCfDd35/X3O/CQ/PC/V/YIfYpxd3LgGuBy1umXX5Xf7ddby+9+rQXk9/r7wLWKe5eCnwXuPze/U66p6zYerPbPme/lPy7tB8wqbh7CXA1cPmvrz3mT2XFpsFvMH2eaY/lRRced0fTpPENLcq3LVle+ev7zpzOIDgO0nAzmP7OSJIk9dVg+yxTVt5kzlQe14iRhrGtzv3cruQT/8eQZ04sK26jyCfaL9vq3M99bKtzP9fnlbp2PmTeOOALwFeA15MLMEvIRZ6XAv8LXLXzIfO2WvtXMrTsXZn5OuB7wMeAqaw57mOB9wFX7l2Z+cH+bPuVR7RMAr4MnAO8llyAWQKsArYDzgSueOURLZv2Z/vNC/d/YxH7R8gznNpjHw8cBlzdvHD/9/Vn2/X20qtPezu5WHQEuQjTHvsE4IPAd1969WkHlBdh93bb5+z9gGuAD5GLMO2xTyru++5u+5z9rtIClIa5iDgqIu6LiBURcWtE7NTL+JkRcW8x/u6IeEunx/eLiJ9GxBMRkSJiWhfb+FXxWMfblwf4pUmSJEnSWjNnWnsWYqRhaqtzP/cy8gn7jYEHgMfIMzKWA08X9yXgaODQvmx750PmBfAZ8qyDJcCDwDPACvLsg4eBR4BXAF/b+ZB5667lyxky9q7MfCW5SLI++bg8zprj/hT5uI8CPrl3Zea7+7LtVx7RUgHmkmfDLCq2v5g1x/0h8s95B+CrrzyiZUJftt+8cP+dyMW1dbuI/UngfmA0cGrzwv3f0Zdt19tLrz7tNeRjM5l8jJ/g2bE/AIwD/velV5/2prLi7Mpu+5y9J3AWMJHnxv5Ecd9E4Kzd9jn7dWXFKQ1XEfFeYB5wKvBK4E7gJxGxUTfjdwUuA74OTCcXUa+JiFd0GDYR+A1wXC+7P5/cNrT9dmy/X4gkSZIk1YE508CwECMNXx8mz4J5iFxw6cpTxWMf3ercz03qZkxXXk4uwiwmFwC60kouyGwLzOzDtoe6j5BbkT1I98f9cXJBY/belZlj+rDtnYA3kQtpy7sZsxp4lFyM6WuxpJlchOnpPfMYeWbPnOaF+w+KdcZeevVpAcwmz4J5uIehj5Jn9hz90qtPGxT//+22z9lBLoZOIhcvu/MIeWbPnN32OXtQxC71JqUo5dYPs4HzU0rfTCn9kfz/5zLyLMCufAz4cUrp7JTSn1JKnwJ+D8xa89rTRSml04Dre9n3spTSwx1utgaQJEmSRhBzppGTM3kyRxqGtjr3c5sBbybPVultIagnybNm3tqHXbyHPLugtz9+reTWWQcV68kMa3tXZm4D7EaerdKbJ4DnA3v1YRfvBcbQffGr3ari68GvPKKlpv9hmxfu/3JgZ3KRpzdPAFsDe9Sy7QbYnnyFxVM1jH0CeDHwmrpGVLtXkWeOPVnD2CeLsT1O/5UEwOSIWKfDbWxXgyJiDLlw/Z8P/ymlavH9jG62PYPnJgs/6WF8Tw6KiMcj4g8RcUZE9GkmoyRJkiT1kzlTg1mIkYanHcgtmmqpErcCTeQTwrXanTzzohbPkAsOz+/D9oeqV5FnLSyuYewq8t/gvpxU353chqwWi8lr9WxY4/hXkWeLLKlh7Epye7XBUhDYiVwY7K1ABfn4jaZv7/d62okcz7Iaxi4nF+IGS+xSj1JJt8L95KJ4++2EbsLcgPx/YOcZaY8Am3TznE36OL47lwIHA3sCZwCHABf3cRuSJEmShjBzph4Nq5xpULSVkTTgxgMBVGscXyW3RqrVBPJMl1q0kQsOQ7Zi3Qfj6X0GUlfP6VUxs2U8fTvuo6n9uI+n9vcL5NdZU+wNMI6+xz5Y3o99fc9UGTzHXRrMtuDZRfGVZQXSnZTSVzt8e3dEPAT8PCJemFL6v7LikiRJkjQimDM1mDNipOHpafIJ21qLrUFtrZHaPUU+yV+L0eRZN7W06xrqniYfy778ba3puPz+vOZUbL8vx72t1u0X4yrk+GsRfdh2vQ312PvSoLXC4IldGswWp5Se6XDrLql4nPy3cuNO929M92tOPdzH8bW6tfi6zVpuR5IkSZJ6Y87UYBZipOFpAXlR9XVrGDuW3Gbs533Y/g/I0xJrOYG8DnAHecrjcHcjuVgypYax48ntyXpblKyj68g/r1pMAn79+/Oaa1k3BeBX5Cshaol9AvlKib68Z+rpl+S2ZOvUMHYSuT1ZX457Pf2C3HJscg1jJ5NbmP2irhFJA6SMRSf7uvBkSmkVcDvw+vb7IqJSfL+gm6ct6Di+sHcP42s1rfj60FpuR5Ik9dOMA+dWZhw4d9ivb1qLHQ88I3Z+26l1mY0/bVbLqGmzalvPtI/brUyb1TKkznXucvC8UbscPG/Aj4WGDnOmPplWfB2SOZOtyaRh6L4jj1681bmfuxI4ivx73trD8A2AvwA39GEX3ym2vT65Mt6d9rZLl9560ey+tuwacn5WvfKxvSszvwe8n7w2Tk9txNYn/0d2Wx928R3gMGAqPc9gmkj+mV9R64Zbpl3+UPPC/X8I7E+OvbtWX1HsfwGwsNbt19O9+530r5defdr1wDvJxaSeYl8X+NW9+530xwaF16NfX3vM33bb5+wbgLeQi0k9xT4F+Mmvrz3mr42KTxoh5gHfiojbgN8CHyf/Hf0mQERcCDyQUmrvmfwF4IaImEO+MGF/YEfgQ+0bjIipwJbAZsVdL4kIgIdTSg9HxAuBA4EfAk8A/wW0AL9OKd1Vv5cqSZI6m3Hg3InAW4EDyOtsxowD5z4AfBv47oJL5zxaZnyNtPNbT9k0TRr97dVTxu6S1hs7qnW9sUw7Ym4atWT1g02LVp5w6/dOvqg/2y2KLtsBM8nHeiKwctqsll+Qj/MtC+c396XddMdtr0/OBd8LPA9I02a1/BW4DPj+wvnNtazh2lC7HDzvxeRjsS/5gsLVuxw87yZyDn/DLRfPrrUludQo5kwDYEhViSX1yVeAP5IXwupqFkUTsCn5pPun7jvy6J6KNc9y60WzHwTmkv+GbEDXM2MmkU/Y/xj4fp8iH9q+CPyNfGzHdPF4E/k/mSeAU35WvbLmD5u/P6/5L8C5xXan0vVxn0wuNlxD32eszAPuK+LrqgXaqOKxx4BTW6ZdPpiKa2cB/6L32B8BPt3AuGrxWeAB8numqwsk2mN/EDi9gXFJa6eMVSf78VcppXQFcDRwGrnAPA14U0qpfXHJLcm/n+3jbyYnBB8C7gTeDeybUvpDh82+gzwb9AfF95cX33+4+H4VsBfwU+Be8v+pVwFv7/srkCRJ/TXjwLkvI+esnwd2JucSo4CXAKcA1884cO7eZcXXSDu/49T/XvW8yfev2nD8a9KYyqj/fLaqRLROGbP5yudNvvBV+59+e1+3O21WyyjgZHKO+kFyLlshnzN4L7lg8qVps1r6vI7ntFkte5Dz3k8DLyP/7EYDO5A/X/142qyW/+rrdutll4PnVXY5eN5HySeWZwEbsWZN3XcA3wIu3OXgeVPLi1INZ840YnKmSGkwnUdrvIhYh9xvf0pK6Zmy45EG0lbnfm4LckFme3IBYAX5T+5Y8n/2jwJz7jvy6D63adr5kHlB/oM6h3zyv5Xc4qxSbH8l+cPFMbdeNHvpWr+YIWTvysytgS8D25KLJSvJx31cMeRB4GM/q155U1+3/cojWirAx8gzkiaSj3kr+ec7hvwzvhr4xO/Pa17R1+03L9z/xUXsL+km9vuBWS3TLv9tX7ddby+9+rSXA+eRe4UG+VjAmtj/CRx1734n/b6E8Hq02z5nb0eOfevirs6x/wM44tfXHjMkr/pQ/Q2mzzPtsWz9zRPuaJo0vl9XNvZX25Lllb9/4IzpDILjIA03g+nvjCQNhBkHzt2KPANhS/IFW50vTqyQ1zRYAnxwwaVzbmxogA2089tOefOq503+QWqK6HGOPjD68RU3/e6KE19Ty3aLmTAnkc8dLKPr9S4nki8m/B5w1ML5zTVdJDptVssuwAXkGSUP89zuAqPIP78HgfcunN/8t1q2W0+7HDzvSOAEch7fVZeL8eTuGTcC77/l4tnLGhjesDfYPsuUlTeZM5XHGTHSMHbfkUffT57q+gFyUeRx8n86vweOB/boTxEG4NaLZqdbL5r9FXJ1+kzgr+S2UA8BFwHvAo4aaUUYgJ9Vr/w78DbgcPJaJE+Q1475LfkKgtf1pwgD8Pvzmqu/P6+5BXgDeUrmP8jH/QHg68A+wNH9KcIAtEy7/C/Am4H/Ia9F0h77AqAZeN1gLMIAFO3G3gQcSV7z5ily7DeTi1d7DcYiDMCvrz3mbvLPdBZr1hp6uvj3LGBvizAaaobCGjGSJGlE+yjwfHIO29XJ/2rx2DrASTMOnDtsz6G1Th1/YY9FGPjPVfSr1x/36l3eenKtC2W/gty6u7siDOQWzU+R2zXvVctGi3VgPkVu3/wgXbd4biX//DYnt1Eq1S4Hz9uMnJe20n2r8eXkDhS7Avs1KDSVzJxp5HBGzCCrhkqSJPXVYPo80x7LC75xYikzYv5x2Ole3SXVwWD6OyNJa2vGgXM3Jq+TOop8AVRPxpGLMQcNx1kxu7zl5Jeu2GrKnwhqa1lUgdGPrbjld1ecOKO3odNmtZxGng1zfw1b3hz4ycL5zYfWsN2dgCvJs5WW9zJ8SvF1z4Xzm2uJoy52OXjeR4ATyYWj3o70puR2Tm+75eLZDf08PZwNts8yZeVN5kzlGbbVfEmSJEmSJKkLryWfoK/lJOQK8roje9QzoLJUJ4w+o+YiTKFt0ujtaxz6Vta0Xe7NEuDV02a1TOl1ZP5ZjKH3Igzkn/EkYLca46iXNwFt1HakF5HXvHlBXSOS1FBdLQosSZIkrZWU8q3R+5QkSarBZPIJ8b5chT65TrGUqymm9rUQkyoxurcxRfuwiXTd9q0rq1kz+6i7Nmbt+vKzaP85r9OH59TDutR+LNrXgS07ZjVAo/Mmc6byOCNGkiRJkiRJI8lS8vLzfVksYXgunF5NT/elCAMQ1dRrQWHh/OYqecZKU42bHUWeMVLLOrN9/VlU+vGcgbaE2o9FE7UfC0lDhIUYSZIkDbgyFp104UlJklSjW8knuWuZWTGGfFL85rpGVJJY1nomiT6VpJqWtf6lxqE/J89yqcUkYCHwVA1jF5BnjdSy7cnkIkzZP7+fk4tNtRzpKcA/gf+ra0QaFMyZRg4LMZIkSZIkSRoxFlw655/kE+Pr0PuJ8Q2AfwC/rHdcZbj1B6fcXFnWuqim8kAAVag8s+IDNW7+28BKcpGlJ2PJLcQuXTi/uZb5OTcCfwXW72VckFuC/Xrh/Oa/1bDdevoOufjX2xo4o8nnay+55eLZbXWPSlLDWIiRJEmSRqCIGBMRE8uOQ5KkknwReBTYlO7Pj21EXmz+rAWXzlndqMAabfSTy+dQpeezhEWhZtTTK/9y6w9O/X2Nm74N+B65+NDdZ46xwIbAb4Af1rLRhfOb24DPkme6bNxDxJsCjwFfqDHeurnl4tl/By4EJtD92i+jya/nbnIRS9IgMFB5k4UYSZIkDbwEpGjwrewXPThFxP4R0dLpvpPJvcqfjojvRkRvV6pKkjSsLLh0zj3A/wAPk0/Yb0yeuTGRPAtmc3IR5hMLLp1zXVlxNsKt3zv562MfXPJZ2lKiwrPnCAX/OXs4atGq+4GX1rrdYp2Y44Grycd2c3JRpr0YsRkwFbgBOHLh/OaVfdj2T4HjyLNMNif/zCYWt42KbT9abHdhrduts9OBb5CLT5uTZ+tMJLdP24xckPo98N+3XDx7UUkxqtEanjeV/YIHr3rnTRZiJEmSpOFtDh2uQo2IXYGTgZ8ALcCbgE+UE5okSeVZcOmcBcBbgP8F/k1ew2MMsAg4F3j7gkvnXFZehI1z6zUnnTD234v3HPXkyr9FNSWC/xRkKktbF495cMm82y4+/nm3XXpCn07jLpzfvAz4KHAYecZLIhcigjwL5kjgfQvnNz/R15gXzm/+DvA24EvAk+Sf3WjgQeAM4C0L5zf/uq/brZdbLp7dCnwKOIjcqqyVHHMTuQAzG5h5y8Wz7y8tSGlkq2veFCmN7DJYRKxD/g92SkrpmbLjkSRJ6qvB9HmmPZYtv/qJO5omTag2ct9tS5ZV/vWh/53OIDgOg0lEPAmclFKaX3w/H9gP2DKl1BoRnwPekVJ6cZlxanAbTH9nJKkeZhw4t4k8O6MJeHLBpXNWlRxSaXba57TR0Vbdk4gpUa3edssPTv3HQG172qyWyeQZIMuARTWuCVPLdscA65ELPU8unN/cOhDbraddDp43kTxDaAXw1C0Xzx7ZJ2nrbLB9likrbzJn6l6986ZRAxeqJEmSpEFoLDnBb/cG4EcppfYTFH8kX40qSdKIteDSOW3k9URGvN9ee9Jq4Kf12PbC+c2LgcV12O4q4JGB3m493XLx7KXk1mqSBoe65k22JpMkSdLASyXd1JV/AHsBRMSOwDbAjzs8vjG577EkSZKkRjJnGkzqmjc5I0aSJEka3r4CfCEiXg5sAdwPfL/D468G7ikjMEmSJEkaJOqaN1mIkSRJkoaxlNKXImIFeTHi24EzU0rLASJiKrAJ8OUSQ5QkSZKkUtU7b7IQI0mSpAGXUpBSNHyf6lpK6Xzg/C7ufxLYsfERSZIkSWp03mTO1LN65k0WYiRJkqQRICLGAq8ENgJuSik9XnJIkiRJkjSo1CtvqgzERiRJkqRnKWPRSRee7FZEfBR4CLgJuBr4r+L+DSLi8Yg4rMz4JEmSpBHJnGlQqWfeZCFGkiRJGsYi4gPA54EfA4cB/+lHUFzd9Qtg/1KCkyRJkqRBoN55k4UYSZIkaXibA1ybUjoQuK6Lx28Htm1sSJIkSZI0qNQ1b3KNGEmSJA24RGMXnWzfp7q0DfDFHh5/Eli/QbFIkiRJKjQ6bzJn6lFd86Z+F2IiYj3gAGBrYD14zk8xpZT+u7/blyRJkjQgngY26OHxlwMPNyYUSZIkSRqUnqaOeVO/CjER8UbgO8BE4BngqS6GufSPJEnSSFXGQpB++uzOD4EPRcS5nR+IiG2Bw4FvNDwqSZIkaaRrdN5kztSTuuZN/Z0RM5dc/dkvpXR3f3cuSZIkqe4+CdwK/IHc6zgB74+Iw4B3AQ8Bp5UXniRJkiSVrq55U38LMdsAx1iEkQRwwNc/uv2Y8asPj6a0QUosa10x+getqytXX3H4F6yz19Epl83cadKE5Yc2VapTqymWLl0+7uqT3nvVD8qOa7ibNqtla+A1wCRgKXDTwvnNfys3qvLNOGDuOOB1wJbkDyv3Ab9ccNmcVWXGpTIFz+1c24h9qrOU0oMRsQNwOvBe8oE6BFgMXAYcn1J6vMQQhy3bOUuSJKlnjc6bzJm6U++8qb+FmL8Ck/u7U0nDwwHf+OhOk6Yu/comL162bdPoahMJCEhtcciyReMePvjCWadf/L7555Ud53Bz6uXv3n3TDZ+Yv8PLn3zJ6NGtTaSASLS2Nr3vmzfs9sADj25w8idnXv2tsuMcbqbNank5MAfYndyaswpUgGXTZrX8GmhZOL/5rhJDLMWMA+aOBj5M/nCyeaeH/zXjgLkXAF9bcNmctkbHJmmNlNKjwAeBD0bEhuS/X4+llKrlRjZ82c5ZkiRJGlrqmTdV+vm8TwJHRsRWaxuApKHpwG9+ZM8Nnv/U9VM2WfxfEYlVy0etWL1i9IrVy0etqLZFdeLUZZtttPUTXzjk4iM/U3asw8lpV7zrHa/Y5r4fPn/TR14OsGTZuBVLl49bsXTZuBVt1Up1sw0ff952L/r7V8+4at9jyo51OJk2q2VH8tUPbyUXYB4kT0l9AGgF3gxcMm1Wy66lBVmCGQfMHQPMB04ANgEeJx+Xh4AngC2Ak4C5Mw6Y21RWnJKeLaX0WErpEYswddfeznn7lNK6KaUXdHHbuuwgJUmSJD3XQOdNNc2IiYgvdnH3Y8CfIuJnwL+Bzle6ppTSx/oSTEScAOwHvBRYDtwMHJdS+nMvz/s4cAS5Hcrj5CvPTkgprejL/iXV5r3nf2ziBs9f9J2xE1dOXLVi9MpIkdZMbAyqbU2t1eWV1lHjWsdu8Pynjjnwmx9ZcOkHvmTLrLX0qUveu/4rtvn3RZMmLB+3ZNn4FRB0PO6traNal7Q2tU4cv2Lcy17wz0+fctm7bzrlgO/cXGLIw8K0WS1TgXOBjciFl85XLy8GlgCbAvOnzWp508L5zY82NsrSfBR4B/kq72WdHlsFPEK+Evw9wF/Ix1EjRaMXnWzfp54jIk6qYVhKKX267sGMLLZzliRJUs8anTeZM3Wr3nlTra3JZvXw2Nu6uT8BfSrEkNu9nAP8jhzb6cBPI+LlKaWlXT0hIg4EPgscRi7cvBi4oNj/7D7uX1INxoxv/fj4ySunrF4xalWk6OZPeNC6YtTK0eNbx41fZ8UxgIWYtTR5wrITpkxaOmnp8rEru+/pGSxZPm7FpAkrxq03ZcmJdP83WrXbB3ge+arm7j6ypOLxTckXFHy5MaGVZ8YBcycDBwMreW4RpqOl5GLM+2ccMPfrCy6bs7IR8Ul6llN6eKxoLEoCLMQMLNs5S5IkSUPHKT08ttZ5U02tyVJKlX7c+tyCJKX0ppTSBSmle1JKdwKHkme57NDD03YFbkopXZpSui+l9FNy+5id+rp/SbWZMGX5+4EgVXqZmhdU26I6eYOlu+z/tY9t2pDghrGNN3hqf4CUKj1evxAEbW2V6hYbPb7nJy9+78TGRDesHUhuR9bbGiftYw6aNqulv60/h5I3k2cJdbXmQWdPkduUvb6uEWlwSSXd9BxdfVYnX/T0QqAFuI38+6yBZTtnSZIk9cycadCod95U64yYZ4mILcmL1Czv5vHxwIYppX/1N7DClOLrkz2MuRk4OCJ2Sin9NiK2Bt4CXNRNbGOBsR3u8io1qY/GTly1SapGTf0Rq62VtqbR1aZKU3V78roR6odPXrx/7PjypRu0tjbVtOB5a2tT29gxq8aMaqq+FLi9zuENW9NmtYwFnk/PMz46WkpeK2USeWHm4Wwr8ke4Wt6Tq4uvL6hbNJL6pOhz/A/g6Ii4BPgSufCsfmpUO2dJkiRJjTGQeVO/CjHFzg8BLu3m8XcUj/V7Yd6IqACfJ892+UN341JKl0bEBsBvIiLIr+nLKaXTu3nKCcDJ/Y1LEtB9X6yeuFD32urPUfe4r632mS19vWZkJMyI6c9r9P0oDU6/Bs4sO4hhoFHtnCVJkiQ13lrlTf09UdTb6cDR5BYta+Mc4BXA/j0GErEHcCJwJPBKcm/+t0bEp7p5yhnkmTbtty3WMk5pxFm1fPQTUUk1/f2oNFUr1bZKtdoW99Q7ruHsMwdfnpYsG7+oaVS1phPZo5ramla3jmptq1b+Wu/YhrkV5AXnx9c4fjx5Fudwnw0DcD/5c0QtfwtGkT873F/XiDS4pCjnpv7YkbX/7D7iNaqdsyRJkoYRc6ahZK3ypppnxETEOsC6He5av2hR1tm65OJJv1sQRcR88lVju6WUejtp82ngopTS14rv746IicBXI+J/i+lD/5FSWkleWLh9X/0NUxqxlj09/opJU5cdTVSDHtcrSVRGVZsWPTTp9ss/+MX7GhbgMPXw41Ov2WC9RR+s5biPGlWt/OOBDW7+9EFX1LJ+h7qxcH5zmjar5TLgU+SCQ0//4Qb5QoQrFs5vHgknNH9IvhBiXXpuIUox5hHgp/UNSVJXIuJ93Ty0LrAb+UKmr3UzRv3UwHbOkiRJktZSvfOmvrQmawZOKv6dyG3DPt/N2CAvTtknRWuxLwHvBPZIKf2jhqdN4Lknxtp7L1tlkepg1bLRn125bMwRYyeumrhqeayIbn7VRo1pHVNtbaouWzTu842NcHh6ZsmE05cuG3fwxAkrxi1ZNq6b454YP27l2JWrR7c++cw6Zzc8yOHpKuDDwMb0fJHBxuRF6b/TiKDKtuCyOU/OOGDulcD/kNfGWdnN0HHktdkuW3DZnCWNik/lSynfGr1PdemCHh57HPgscFpjQhlR6t7OWZIkSUNbo/Mmc6YeXdDDY2udN/WlEPNTYAm5uHEWcBnw+05jEvlkzO0ppdv6Ec855MVu9gEWR8Qmxf2L2q8ki4gLgQdSSicUj10HzI6IO4BbgW3Is2SuSynVtKi1pL65/PAvPHXQBbM+tOFWT31zzPjV49pWNbVW2yqt/6l9RrUyemzbmFSN6hP3T7nokkPnd3cCQn1w2kHf/uf/XvnO5ldsc98XJ09YPm7FyjGrW9ua2tqPe1OlrWnc2FWjW9uaqvf+43nnnvTe7/y45JCHhYXzmx+ZNqtlNjAf2Jw8+6Pj1c3jgank/yOPWTi/eSRd2Xw28HLgNcAyYBFrLo6okK8aGQ/8DOhqEWtJjfGCLu5LwFMppcWNDmYEaUQ7Z0mSJEkDo655U82FmJTSAmABQNH66+qU0t1rG0AnRxRff9Xp/g+wpiK1Jc9OWD5DPiCfIZ8ge4xcnPnEAMcmqYNLDp1/+YEXfGTZlI0WnzN+yopNRo9pHUcin3JIpJVLxyxZ9Mjk8y486Nzjy451OPnEzO9+9TPf3m/J8zd7ZO7UKc9sMHbs6tHty8inFOmpZyYv+ueDG889/l3X/m+5kQ4vC+c3Xz9tVsth5P9bXkEuvLS/41cDdwGnL5zffEN5UTbegsvmLJlxwNwPAMcD7wI2hfZ3JAE8AXwLOGvBZXNWlBOlSpNY825o5D71HCmlf5Ydw0jRyHbOkiRJGgYanTeZM3Wr3nlTpBE+H6lIlhYBU1JKI2FxZWlAvff8j0XT6Oo+Yyesen+lKa2XqixfvWL0r1atGPX5Kw7/QnetirSWPnnx/jFuzKoDJk9c9t6mpuqUarWydMmycT9btmLcOZ85+PLVZcc3XE2b1VIhL862GzCZPAv0N8AtI2RdmG7NOGDuhuT13Z5H/mj3T+D7Cy6b09v6MRoAg+nzTHssm3/h5DuaJk5o6O9F29JllQc+dup0BsFx0MgUESezpp1zr8OBT6aUTq9jSANmMP2dkSRJ6qvB9lmmrLzJnKk8Nc2IiYhak4mOUkrp0/14nqQh5IrDv5CAa4qbGuQzB1+eyH3lbfvWQEWx5bfFTR0suGzOY8A3y45DEkRElb5f65ZSSn1pW6yuNaKdsyRJkqS11Oi8qdYnndLVTouvnXsfr2lOlNdqkSRJ0kiTIt8avU9BXkByZE97L0mD2jlLkiRpuGh03mTO1FFD86aaCjEppUrH7yNic+AHwB+AzwN/Lh56KfBx8sK9bx2oICVJkiTVJqV0StkxCFJKp5YdgyRJkqSuNTpv6m/7gXOAv6aUDu50/++AgyLiO8WYd65NcJIkSRqaIuVbo/cplcV2zpIkSeqrRudN5kzl6W8h5nXAcT08/nPgzH5uW5IkSdIAi4gtgOnAFKDS+fGU0oUND2p4OaWL+2znLEmSJA0h9cqb+luIWQHMAM7r5vFdizGSJEmSShQR44BvAe8iJxLtRQB4dk9kCzFrwXbOkiRJ0tBV77zpORWdGl1CbkH2xYh4UURUituLIuJLwIHFGEmSJI1EqaSbunI6sB/wCWAPcjLxfuANwI+AO4HtywpuGPtPO+eU0m0ppcXF7XcppYOA/yvGSJIkaaQyZxpM6po39bcQcxxwKTALuBdYWdzuBY4CLqfn1mWSJEmSGuPdwDdTSmcC9xT3PZBSuj6l9DbgafJneA2s1wG/6OHxnwOvb1AskiRJknpW17ypX4WYlNKqlNIhwDRyhehrxe0TwPSU0kEppVX9DUqSJElDXIpyburKRsBvi38vL75O7PD4VeQrvzSw2ts5d8d2zpIkSSOdOdNgUte8qb9rxACQUroLuGtttiFJkiSprh4B1gdIKS2LiKeAlwDXFY+vA4wrKbbh7BLgoxHxNPAlcisygBcCHyW3c/5iOaFJkiRJ6qSuedNaFWIkSZKkLpXRf9h+x925FXgNcGbx/XXAMRHxEHmGfDNwS0mxDWfHARuQ2zkfBVSL+yvkftOXYTtnSZKkka3ReZM5U0/qmjfVVIiJiCo5cZiQUlpVfN/bjy2llCz0SJIkSeX6IjAzIsamlFYCnyK3zLqoePz/yDM0NICKVs2HRMTZwFuA5xcP/RP4UUrpztKCkyRJktRZXfOmWgslp5ELL62dvpckSZI0iKWUfgP8psP3/46IlwHbAW3AvSml1u6er7VjO2dJkiRp8Kt33lRTISaldEpP30uSJEnPYmuyQSMipqSUFnW8L6VUBZyRIUmSJJXJ1mSDRr3zpko/g5owEDuXJEmSVHePRsS1EXFgREwqO5jhKiKqEdEaEWM6fN/Wy82ZSJIkSdLgUNe8qb9ruCyKiN8DNxa336SUnhi4sCRJkjSkOSNmMJkHzAQuBlZExA+BK4Dvp5SWlxrZ8GI7Z0mSJPWNM2IGk7rmTf0txHwSeA1wGDAbSBFxL/BriuJMSunfaxucJEmSpLWTUjoBOCEiXgW8F3g3sB+wNCK+T04uflgsLq9+sp2zJEmSNHTVO2/qV2uylNKZKaW3A+sD04CPkhegfDtwEXBfRPyjP9uWJEmSNPBSSr9LKR2dUtoKeDXwdeC1wFXAI2XGNhzZzlmSJEkaeuqVN/V3Rkx7UAm4q5gNcxfwB+AQ4MXAlmuzbUmSJA1hKfKt0ftUTVJKCyLiceAp8gz3dUoOaTiynbMkSZJ61ui8yZypTwYyb+pXISYi1iFXg15b3HYERgP3AD8HTiYnG5IkSZIGiYh4AXma/XuA7YEq8EvyNHsNLNs5S5IkSUNQPfKm/s6Iab+S6zZyEnEW+Qqvp/obiCRJkoaPAKLBC0F6bVfXIuJ55ATivcAO5CU6bwSOAq5KKT1WYnjDVkrpTODMiAhgO/IFbK8ht3P+EEBE/Cul9ILyopQkSVKZGp03mTN1r955U38LMUvJ03A27nDbkDxFR5IkSdLg8U9yEnEL0AxcmVJ6qNyQRg7bOUuSJElDQl3zpv4WYtYD/os1rclOAzaJiMeA37CmB/JtAxKlJEmSpP46Bvi2bbAay3bOkiRJ0pBS17ypX4WY4qquO4vbfICIeCGwF/BxYF9y9ai/hR5JA2TGgXODXDh9F7mn4Wjg38C1wPULLp2zqsTwevTZS98V48esOmDDdRcdue7EZdtEVCtLVox79NGn1r148fLxXzj+wKuWlx1jd7ab3RLkaYzvAl4BVID7gO8Cv7p7XnNredFJUgOk4tbofeo5Ukpzy45hhLKdsySpLnY955SJMbY6pzKhdf8YU92ARFta0fSXtmWjvkhrXH3zUacMuk9FOxzeMhXYB9ibfIH3YvK6aVfffn7zg/3d7o6HzRtN8JEUvJ9gU6BK4p9R5Tzgotu+Mbutv9ueccDcFwLvBnYGxgOPAD8EfrDgsjlL+7td6VkanTcNur8Og0e986bINZV+PjliIrAr+Qqv3YCdgHFAK3BHSmnngQiynoor1RYBU1JKz5QdjzSQZhw4dyrwOWBP1vxuQi6SVoG/Ax9bcOmc35cTYffOvvyd27xo8wd/stn6T245uqmt0latJIBKJUVKkZ5cPGnxPf/c8oMff/f3rio71s62m92yEfAFYAYwlmcf91bgz8BH757X/MdyIpQ03AymzzPtsTzvs6fd0TRhQrWR+25btqzy7+NPms4gOA5SRDxNbud8H7kQcyPw65TSX0oMq98G098ZSRrJdv3KSQeN3nDluZXxbZMAUsqnVSOIVI1q2zOj/t721Ng33HzkKf8sN9Jsh8NbgtyS81hgffJp4FagiXzB4jPAV4DP335+c58+O+542Lw3pSYuThXWJS990X6SM4AUVR6KNt522zdm39mX7c44YO444BRgJjCxiLdKvrA1AQ8CJy64bM5P+7JdlWuwfZYpK28yZypPpT9PiojPRcRvyWvC/ASYDbSRr/LaG1h3KBRhpOFsxoFzJwNfB94CrAAeIF+98Ujx7yeAFwIXzDhw7rSSwuzSWZft97xtn/+vm56/0WNbtbY1VRctG79iyYpxK5esGLfymWXjVyxfOWb1+ussXmeHbf7v4pYr3/GOsuPtaLvZLVOBC8nFr2U897g/DWwLXLTd7JaXlBSmJEmqv/WA6cA88gUxpwH3RsQjEXFVRHw8Inbsz4YjYreIuC4iHoyIFBH79uG5r46I1ohY2J99S5LKs+tXTtp/zKYrvl4Z3zapuqqyqrqysiKtqqxMqyorqytjRapSHbXu6m1GbbDi5l3PPWXjsuMtfAD4NPnihIfIRYxHO/x7DDAH+ERRtKnJjofN27M6iqtShfVIrI7EikisjMRKEitItKYKm6UmfrHjYfNeXOt2ZxwwdxT5/+73k4svDwAPFzE/UHzdFDh3xgFz31jrdiWpX4UY8h+jB4ETgF3IhZfXp5ROSSn9PKW0bMAilNRfh5N/Px8Fupoyu4r8wWdD4LMzDpzb378HA26T9Z766iZTn95gyfJxq1a1jmrNF7Os0VqtVJ9ZOn7FpPHLx7x4iwe/8tlL31Xzh7UGmAVMIxdeuvpbuJL893Nz4DNFCzNJkjTMpOzOlNL8lNJ7U0qbAS8CTgJeDswlLwTaHxPJbaKP6suTImJd8gUjP+/nfiVJJdn1nFOaRq+/an6Mro6urowVJDpdQR/QFq3V1ZVVTZNbN6lMaP1yOZGuscPhLVsBxxffPgqdYyaRLxJdBhxG7ipRk9TENwjGkVgRnbYb+dZGYmWqsG6q8PU+hP1O4B3ki88X8dxGTq3kcynjgdNnHDB3Uh+2LWkE69eJ15TShimlfVNKc1NKv00pudaBNIjMOHDueOAAYDW54NKdBDxJPhmwSwNC69WZl+234VabPLp7a1ul2pYq3U/NDFi2cszqjaYs2mD82FUHNzDEbm03u2Ud8tTl5eRj351E/lC3I7BdA0KTpIaLVM5NGmwiYmJE7B0Rp5FnK7cALyF3FLi9P9tMKf0opfTJlNJ3+/jULwOXAgv6s19JUnlidPXDlQmt61ZXV1Z3vljxWapUUyI1TVm9167nnDK5cRF26d3kmTCP9zJuEXn26Htq2eiOh817a6qwBYnWnq5sjJx7V1OFV+142Lyte9vujAPmBnAQ+XxpbxeZP0aeGfPWWmKWumPONHIMmivgJQ2oGeQPBLUsBruc3Of0TXWNqEaTx6/48KRxK8auWDmmp0IGAKvbmtqamqqVqZOWvK8RsdVgD3LP26drGLuU/EFzUBx3SdLwFRFjyo5hJBps7Zwj4gPA1sCpjdqnJGngVMa3HUAQVOl18fm0urK6MrZtfIyp/ncjYuvBO8kXh9Zy6ncZ8MYdDm/pfYZJ8EHyOc3eLwxPrCIYTdQ0i3QbYHtyYag37fseVO3SJfVfvfOmUfXcuKTSrE/+/e61mFEIcouy0o1qatsEoFpTjT4IEmNGtU6td1w1Wr/42usH4w4GS+ySpOHr4Yj4DnBRSunGsoMZQd4P3ARcAdwI/L6sTgIR8SLgs8BrU0qtEb13Ro2IscDYDneVfVW1JI1so9L6vQ8qpFQlCCpp0zpG1KMdDm+pkHPknrp0dLSSfLHiusCSngamyHl0LX2+g/9UgWpZM2cq+VxKrTGvrnG7koaGuuZNFmKk4Wll8bXDZ45eLa9TLH2SUqyISOSwa/tYVU1R64ekeltJbUG3S9T+AU+ShpYU+dbofaor34H/Z+++4+Ss6sWPf76zu2mQhE4oUhXLFRXQIMhFBNtPvQKxICDCtSDFlgQUKyAiXCEJSlMQpQiISihWlCZw4RIJKCggIk1K6CSBtN2d8/vjPGuWZcvsZtruft6v1/Pa7Mx5znxnZmfyfJ/vc87hA8AnIuJfwE+A81NKdzU2rJEtpdQUF7lERAt5OrIjU0r3DGLXLwNH1iYqSdKglVk26H3SEPapnkQuVFR6hXmJvNbLgDlywIpKT3R0a7e871b/1jV6p9KDyhI09DXWSFDvvMmcqT81zZucmkwame4gX0FSyZWLLeQDjdtrGlGFXlg29or2jtby2JaOtoHalkiREixeOn5I86vXwB3kg7DVKmjbVQj/S+3CkSQJUkoHAlPI87TfAswE/hoRt0TE5yPCKzlHtonkdelOiYiOiOgAvgG8vvh91z72Ow6Y3G3buC7RSpJ6lZa33Fb8a8C20UJb6ozO1F76bY3D6tP8M6cnYB55UftKTATuY+D1ZCBxc/5R0XnNFqBM4qoK2v6DvI7upAraQs7r51XYVlKTq3XeZCFGGoFuumDm/cAfqezgYU3gaeDymgZVoRkfvuz3jz6z5kPjxra3DHSAOX7sirYXlo9d8dzzqx1Xp/AG8lfyF/UaFbRdC1gANOzAWJJqKjVoU69SSu0ppUtSSh8kT6FxIHn+81nAvyLiNxGxT0RUerJEw8ciYGvgDd227wN/L/59c287pZSWp5QWdW3A4jrEKknqQ3lZ6dupIzqibaARJoloTS2di9ruvfHgo/+vPtH16afkqbvHDdCulXyO8vz5Z04vD9hr4gQSSwn6vYAzAQRtUeYp4MKBur3pwpnPAz8v4h3onOkk8swiPxswXqk/5kxNpZZ5k4UYaeT6PvmLYko/bSaShwmfddMFM5+pS1QVeOiJdf9neXtb58Rxy8f29T/E2Nb2tlIplf7xyIaXfXHvuY/UOcRe3TF7egJOIS8y2F+VfDL5+/f0O2ZPX1KP2CRJ6lKcWD8L+BJwCfnkx7vJQ+8XRMQJEVHJ6E41SESsHhFviIg3FDdtXvy+SXH/cRFxLkBKqZxS+mv3DXgCWFb8/kJjnoUkaTBuPOToezueGXNFlFIpWlIfBYhEjEljU0d0dC5u/VZ9I+zVtcBNwDr0PUVZC/m8xV3ApZV0esuPZiwsdXIBQKL3YkxRhBkDlKPM7Ft+NKPS088/AR4BNqDvKcrGkwsxl9904cy7K+xX0jBT7bypokJMRHxjCNvXh/IEJVXHTRfM/BMwgzxF2cbkkS9t5C+N1YENgQnA2cD3GhNl7z73gV+dcds/t5i1oqO1PHnCsnHj29rbWqJcKpFiTGt766TxS8e1tZZLdz208fVPPDd530bH290ds6f/kTyn+jJgI/LomK7XfWJx2xjgNOCsxkQpSRqtImLziPhaRNxFHgnxVvJFBFPJoyPOAz4HnNuwIFWJNwK3FRvA7OLf3yx+3wDYpAFxSZJqqPx82wc6nhp7c7SkUmlseRwtqZVIQaRStKa20tg0js7obH98/LE3fvqbFzQ63vlnTm8HDiUfc6xDLriMI+fHY4H1itv+Dnxq/pnTF1bceeLT0cnvCCIF4xK0JYgEpQRtBOOAVOrgB7ecNeOESru96cKZDwIHAY+S8/e1yTl8K/kcyobkPP/XwFcqjlfSsFKLvClSqmBuyYiBhwW+VEoptQxhv7qKiEnkUQOTiyH30oiywz6ztgb2A95PXrskyAvQ/Ylcwf31TRfMHMpnvOZO+sX7PzRlzWeO2HS9p17b1trREkBHuZQWPLPmI488vfaPFi0Zf8wR+1zclIMqt54xZ1vgY8B7yFfLBHlxwP8lv+5/KEbQSNIqa6bjma5YNvnWMbe1TJhQ1/9fOpcsKT30ta9vQxO8Ds0kItYG9gI+CmxPPg74FTlp+G1KqaNH+y8B30gpOSpG/9ZM3zOSNJrteOpRLTG28+iWSR37l1brmBKRV95OndHZuXDMbZ3Pt377xoOOboqpx7ts96k5E4G9gX2BzehatyVP1/1T4Cfzz5z+xGD7fePHZwfBYSn4dGphU1aOYClHJ3cVI2HOGUrMO+w9azPyuZQPkqcWD6ADuJOc0//ipgtnrhhK32qMZjuWaVTeZM7Ut1rnTRUVYkayZvsQSrWywz6z1gG2II/OWADcd9MFM4fFF8AJP93zNWPb2t8MtHZ0tvx9xocv+2OjY6rU1jPmrM/KA83H7pg9/f7GRiRpJGqm4xkLMc0nIlaQr+K8iZxEXJRSeq6f9u8DTk4pbV6fCDUcNNP3jCQJdjz1qKAlvS1KaSsSy1Jn3HDjIUff2+i4+rPdp+a0Av9BntbrBeDO+WdOX1aNvt/48dk7Aq8lr0lzyy0/mvGXavS7w96zJgGvJI/geQa4+6YLm/NiVvWv2Y5lLMQ0n1rnTRZimuxDKEmSNFjNdDzTFcumxzSmEPPg100qeoqIo4DzUkr/bHQsI1lEfGMIu6WU0jFVD6YGmul7RpIkabCa7VimUXmTOVPfap03tdaiU0mSJEnNIaV0VKNjGCWOGsI+CRgWhRhJkiRpJKt13jTkQkxEvA74LLAtMBko9WiSUkpbrkJskiRJGq5SsdX7MdWr4oq7Q4C3kRfG/XRKaV5ErAUcAFyeUmrq6UyaXUqpZz4kSZIk9a/eeZM5U79qmTcNqRATEbsAvwOeBW4BtgGuBsYBOwB/A+YPpW9JkiRJ1RMRGwN/BF4G/AN4FbA6QErpmYj4NLAp8PmGBSlJkiRJDVTrvGmoV219E7iPvFjVfxe3fTultBOwI7Ax8LMh9i1JkiTVTUQcGhEPRMSyiLg5IqYO0P5DEXF30f6OiHhPj/unRcTvI+LpiEgR8YZe+hgXEacWbZ6PiIsjYv0qP7UuJwATgTcAbwWix/2XAm+v0WNLkiRJGuZGQc4ENc6bhlqI2RY4q1jQp7O4rQUgpXQz8AOc61iSJGn0Sg3aBiki9gJmA0eTj3H/AlwREev10X5H4ELgLPKo8EuBSyPitd2arQbcAHypn4eeA/wX8CHyQf6GwNzBP4OKvBP4XkrpTnp/le4jX/WlKouI10XEmRExPyLujYj7emw1WQhUkiRJw4Q5U7PkTFDjvGmohZgOYHHx7+eAdvKcad2Des1Qg5IkSZLqZAZwZkrpx8UB90HAEuDjfbT/PPC7lNIJKaW7UkpfB24FPtPVIKV0Xkrpm8CVvXUQEZOBTwAzUkpXp5Tmk0eZ7xgRb67aM1tpPPBkP/dPrMFjjnrFdM7zgPcBjwJbkPOkR8lTGjwPXNeg8CRJkqRKjYacCWqcNw21EHMv8AqAlFIC7gb27Hb/e4EFqxKYJEmShq9IjdkKEyNiUrdtbK8xRowBtqPbwX9KqVz8vkMfT20HXposXNFP+95sB7T1eNy7gYcG2U+l7gR27uf+PYDbavC4o53TOUuSJKlf5kx9qnfOBDXOm4ZaiPkNsHdEtBa/zwamRcQ/IuIfwPvJ05NJkiRJ9fYwsLDb9uU+2q1Dnl738R63Pw5M6WOfKYNs31cfK1JKz61iP5U6CfhIRHwJmFzcVoqIl0fEeeREZk4NHne0czpnSZIkNStzppc6iRrmTa0DN+nVMcB3KRKKlNI5EdEJfKC47diU0tlDDUqSJElaBRuzchpdgOWNCqQZpJR+EhGbAt8Cji1u/h158cky8JWU0qUNCm8kczpnSZIkNStzph5qnTcNqRCTUmoHnu4ZKPCToQYiSZKkESRF3ur9mNniYhTCQJ4iX0S0fo/b16fvaXYXDLJ9X32MiYg1elzhNdh+KpZSOra4iusDwMvJI+P/CcxNKd1Xi8fUi6dzjoiu6ZzPL+53OmdJkqTRrt55kzlTv2qZNw11RAwAEdFCnq9ts+Km+4FbU0qdfe4kSZIkNYGU0oqImA/sBlwKEBGl4vdT+tjtpuL+k7rd9o7i9krNJ4+O2A24uHjcVwKbDLKfQUkpPYRTkNXTb4CPR8SXU0od5Omcf1xM5QywJX1PASFJkiQ13GjLmaB2edOQCzERcQBwHHl4fVcpLQFPRsRXUko/WvXwJEmSNCylYqv3Yw7ebOCciLgFmAd8AVgN+DFARJwLPJJS6jph/l3gjxExE/g18BHgjcCBXR1GxFrkBGHD4qZXRgTAgpTSgpTSwog4C5gdEc8Ai4CTgZtSSv83pGehZuR0zpIkSepfvfMmc6aGGVIhJiI+DZwO/Bk4CrinuOuVwKeBMyNiTErp+1WIUZIkSaqJlNJFEbEu8E3yoo9/Bt6dUupaXHIT8nzAXe1vjIh9yPMGfxv4B7BHSumv3bp9P0VSUvhp8fNo8rEzwPSi34uBscAVwCHVeE4RUWbwKVZKKa3SaHm9mNM5S5IkaSQYiTkT1D9vipQGXwaLiPuAfwFvLxKM7ve1AVcDG6WUthhKUPUUEZOAhcDkCufFkyRJairNdDzTFcvmX//WbS0TJpQH3KGKOpcsKd1/zNe2oQleh0aKiKMYwrVuKaWjqx/N6FXkTF9IKV3ex/3vA743HHImaK7vGUmSpMFqtmOZRuVN5kwr1TtvGupVb1OAWT2LMEUg7RHxU+A7Q+xbkiRJ0hCllI5qdAwC8jqaq/dz/+rApvUJRZIkSVJ39c6bSkPc7zZgq37u34o8REmSJEmSRqv+rrB7E/BcneKQJEmS1EBDHRHzWeDXxXD7M1JKSwEiYjxwEPBh4D3VCVGSJEnDTr0Xnex6TPWqmNP5S+Rj9M2Kmx8AfgOc0G1+Z62CiPg88Pni1wScFBHH9tJ0MrAGcEGdQpMkSVIzqnfeZM7Ur1rmTUMtxJwNdAKzge9ExKPF7RsWfT4KnBMR3fdJKaXXD/HxJEmSJA1BRPwHcBWwHnAz8PPirq2AGcB+EbFbj8UzNTRPAH8r/r0Z8EixdZeAF4D5wGl1i0ySJElSn2qdNw21EPMM8DTwjx63PzDE/iRJkjSCRMpbvR9TvToVaAG2Tyn9qfsdETGVfHXXycDbGhDbiJJSuhC4ECAirgG+lVK6qrFRSZIkqVnVO28yZ+pXTfOmIRViUkq7DGU/SZIkSXU3Ffh2z2QCIKU0LyK+C3y5/mGNbCklC1uSJEnS8FHTvKm0KpFJkiRJanpPAMv6uX9Z0UZVFhGTIuKIiLgiIm4rrqQjItaKiBkR8fJGxyhJkiQJqHHeNNSpyYiIScAh5KE46wGfLipDawEHAJenlO4dav/SaLTjXrPWBdYkf7AfufGimZ0NDqliO+w9az3yorNLgUduunBmuVp977rb8eOADcjDA5+4+qojFlWrb0lSDTnsvVmcBHw2In6SUlrQ/Y6I2BA4uGijKoqIjYE/Ai8jT+n8KmB1gJTSMxHxaWBT4PMNC1KSJEmNZ97ULE6ihnnTkAoxJhVS9ey416wS8A5gb+AtQBtQBh7Yca9ZFwAX33jRzGcbGGKfdth7VgvwLnLsO5C/U8rAfTvsnWO/6cKZC4fa/667Hb8J8BFgL2Ct4uZlu+52/K+Ai66+6ohbViV+SZJGiRLwPHBvRFwCdF0s9Qpgj+L3UkTM6LZPSinNqWuUI88JwETgDeQr53pePXcp8L76hiRJkiSpDzXNm4Y6IsakQqqCHfeaNQb4DvAB8miP54utBGwFHAPss+Nesz5140Uz/9mwQHuxw96zxgEnArvz4thbyMXZY4F9dth71idvunDmA4Ptf9fdjt8ZOAVYF1hR9A0wDtgPmLbrbsfPAk6/+qojvHZAkppNov5Xdvm/QV9O7PbvfXu5/3U92kB+NS3ErJp3AnNSSndGxNq93H8f+cI2SZIkjVb1zpvMmfpT07xpqIWYmiQVEfFlYBr5JO5S4EbgSymlvw+w3xrkk77TyFfNPwh8IaX0m8HGINXZkeTRHgtZWWjosoT8GX0N8MMd95r1wRsvmvl0nePr1Q57zwrgW+QC0nPACz2avECO/bXAD3fYe9YHb7pw5nOV9r/rbsdvDZxG/jw/yov/m1gKPAusDXypePwLhvA0JEkaLTZvdACj1HjgyX7un1ivQCRJkiQNqKZ501ALMbVKKt4KnAr8iRzbt4HfR8RrUko9T/QCEBFjgD+QR+V8EHiEPC3ac0OMQaqLHfeatRV52q2ukSS96QAeIxcnP0L+fDSD15CLMIt5aRGmSwewAPgP4EPAmYPo/1BgHfLnua9a/dPA+sD0XXc7/pKrrzpi6SD6lyTVWKS81fsx9VIppQcbHcModSewM/CDPu7fA7itbtFIkiSp6dQ7bzJn6lut86bSEPfrSir6sgdDSCpSSu9OKZ2dUvpbSukvwAHAJsB2/ez2cfJV83uklP43pfRASumPxf5SM/sgsBp5NEx/OslFjX2KqcyawYfJU4QtGqBdBzn+fYv1ZAZUrAvzdnKRZ6D/Hp4BNgLeXUnfkiRJdXQS8JGI+BIwubitFBEvj4jzyOvrOf2bJEmSNAoMdUTMScA5EXE78PPitlJEvJw81dIO5KvlV1VXwvJMP23eD9wEnBoRu5NH6lwA/E9KqbNn44gYC4ztdpNTAqhR3gq0V9h2EbngsCVwV80iqtxgY9+02O6roP2byAWqRyto204uKL8JuKTCeCRJGnUi4nXAZ4FtycfYPS/ISimlLese2AiWUvpJRGxKns712OLm3wEBlIGvpJQubVB4kiRJknqoZd40pEJMPZKKiCiRCz7/m1L6az9NtwB2Bc4H3gO8nLy2RBtwdC/tv0wuFkmNthp5tEglOskf/PG1C2dQJjD42CdU2L7rOQ5msGSzvC6SJDWdiNiFfKz+LHALsA1wNXl06w7A34D5DQpvREspHVuMfvkAOU8pAf8E5qaUKrlARZIkSVId1DpvGuqImHokFaeSF/reaYB2JfL6MAcWI2DmR8RGwOH0Xog5Dpjd7feJwMOrHq40aE9T+SJQbeRpvgaaxqxengU2rLDtYGPvatdCZcWeNIi+JUkajb5JHpX6ZmAM+dj52ymlqyNie+C3wJcaGN+IEhHjgN3Jx3lPA79KKTkFmSRJktTcapo3DbkQA5BSeogazGscEacA7wN2TikNVCR5DGjvMQ3ZXcCUiBiTUlrRvXFKaTmwvNtjVSlqadB+A0wlFxPLA7SdDNxKZVN71cOvgdeRR8ENNHJlEnAjlRc8byCftJhM/9MSQq5ItwNXVdi3JKleEoMb21itx1RvtgWOTCktiog1i9taAFJKN0fED4BjyImFVkFErEc+7tmcfJwEsCQi9kgpXdm4yCRJktSU6p03mTP1p6Z5U885zoYkIl4VEV+PiNMi4nMRMWmI/URRhNkT2DWldH8Fu/0v8PJiKrMuWwGP9SzCSE3mEuA5YO0B2o0jf02ef+NFM5vl6/IX5LVfBop9PDn2C266sLLYr77qiGeBueSpzFoGaL428Hfy94AkSepdB7C4+Pdz5IsY1ut2/33Aa+oc00j1dWAz8sVq7wO+ACwFftC4kCRJkiRVoKZ5U8WFmIj4TETcExHr9Lj9v4A/k6cBO4i8rsutPdtV6FTgo8A+wOKImFJs/17/ISLOjYjjuu1zOrAW8N2I2Coi3gt8pehLalo3XjTzCeD44td1WXnVZHerAeuQR3zMrVNoA7rpwpmPArPI3yHr0Hvsq5M/m78DfjXIhziVXGDZgDwUsKeW4r6FwDeuvuqIgUYUSZI0mt0LvALyypLA3eQLn7q8F1jQgLhGoncC56aUDksp/Sal9D3gM8BmEfHKBscmSZIkqW81zZsGMyLm/cA/U0pPdd0QEa3AD8nrOPw3sDVwBLAp8NUhxHMweTqia8lTjnVte3Vrswn5BCwAKaV/Ae8C3gTcDnwP+C4rT3BLzexcchFzGXnNlfXJxYt1gI3Io0J+DXzmxotmLu+rkwY5EzgWWEHvsY8jj/r53E0XzhzU6LSrrzriceBjwG1FnxuSR7+sRf78rw88Dnz66quOuKkaT0aSVF2RGrOpV78B9i6O3SGvlzgtIv4REf8gH+c7YqM6NiFPs9rdDeSLVtavfziSJElqZuZMTaWmedNg1oh5DfnEa3dvI1/J/+2U0jnFbX+LiNcD7wGmDyaYlNKAC7aklHbp5babyIvoSMNKMdXYj3bca9YVwAfIC7uuTS7M3AD8DPhTE01J9m/FVGM/2GHvWb8FppG/jNYGlgDXAxcBt1Y6JVlPV191xIO77nb87uTvmY8AryV/Zz0E/Bz45dVXHbFwlZ+IJEkj3zHkC5U6AVJK50REJ/nYoxM4NqV0duPCG1HGko/juuv6fZXW55QkSZJUUzXNmwaTDKwN/KvHbbuR13+4pMft/0s+MSupAjdeNPMR8miu7zU6lsG66cKZD5GnJDyp2n1ffdURK4Arik2SNJzUe9HJrsfUS6SU2oGne9z2E+AnjYloxNssIrbt9vvk4ucrIuK5no1TSrfWJSpJkiQ1n3rnTeZMfap13jSYQszjwJQet/0n+er3v/S4fUWxSZIkSdJockyx9XRaj9+DnAq31DwiSZIkSQ01mELMLcD+EXFySmlxRPwHMBW4LKXU0aPtq4CHqxWkJEmShhlHxDSViHgX8AlgC2BNchGgu5RS2rLugY08/93oACRJkjSMOCKmqdQybxpMIeZo4E/APyLib8B25LfuuF7a7glcPZSAJEmSJFVPRBwOHE8e4T4PuKOxEY1c3dbNlCRJkjSM1DpvqrgQk1K6IyJ2Bb5Krgj9H3BiSml+93YRsQt5urKfVy9MSZIkSUP0efJFUu8p5j2WJEmSJL1YTfOmwYyIIaV0I/DeAdpcC2y9CjFJkiRpmIuUt3o/pnq1JvALizCSJElSc6l33mTO1K+a5k2lWnQqSZIkqWnMA17Z6CAkSZIkqYnVNG+yECNJkqTqSw3a1JtDgGkRsU+jA5EkSZLUjTlTM6lp3jSoqckkSZIkNbeIuL2Xm1uB8yLidOBhoLPH/Sml9PqaBydJkiRJTaDeeZOFGEmSJGlkeYaXXuv2NPCPBsQiSZIkSc2ornmThRhJkiRVXb0Xnex6TEFKaZdGxyBJkiRpYPXOm8yZVqp33uQaMZIkSZIkSZIkSTViIUaSJEnV14hFJ726q1cR8YaI2LvHbe+KiOsi4uaI+HyjYpMkSZJGNXOmplHrvMlCjCRJkjSyfQfYq+uXiNgcuATYvLhpdkQc2IjAJEmSJKlJ1DRvco0YSZIkVV8jrrby6q6+vB44odvvHwM6gW1SSk9FxEXAQcAZjQhOkupps9NO3BL4L2BD8nfhP4HLHzjksCcaGtgIsu0Rx6/XOSGdklZL26dSGhMd8ULL4vg55fj6bd86omOo/W6/76wg2CuV2B9YG1gRifmUOf7m82c+tioxb7/vrFcBRxBsBbSQeBT43s3nz7xmVfp93zWfGT+m1Dl9TEvHO0vBauUUi5d3tvyqvdxy8q/edkr7qvRdXrDVq4D3AesBHcDfgV+WptzzzKr0+9Xbp61B/oy8GmgDngR+dezr5t65Kv3uvPsJJWAnYBdgErAE+D/gyusuO3zFqvQtDWv1zpvMmfpT07wpUhrdr35ETAIWApNTSosaHY8kSdJgNdPxTFcsW33hW7e1jJ9Qrudjdy5dUrrnpK9tQxO8Ds0kIpYBB6eUflz8fjPwSEppWvH7J4HZKaVJDQxTTa6ZvmekodjstBPXA44FdgUmAMHK01ELgYuA4x445LBljYlw+Hv9t74dEL9v36hj1zQu5RlYIkGCSEE8HyvG/Kvt2NuOOeKbg+17+4/O+n/lFs5MLaxPj9ldIrEiOrgsyux78/kzOwfV776zJgOXE7yZl16sXAbuJfGBm8+fOegixLQ/HnzUGuOWTB/b0rFaQHT9xSUiLe9sXfTssvHfuuStp88ebL/lBVu9DPg28BZgfI+7nwZ+AswqTblnUIWer94+rRX4PHAAudAVrPycLCMXTb587OvmPjDYmHfe/YSdgW8AryS/zl39loEHgROuu+zwSwbbrzQYzXYs06i8yZypb7XOm5yaTJIkSRrZHiNf1UpEbABsB/y+2/2rk0+ESNKIVBRhLiRf5d8JPAo8DDxC/o5sAw4ETtvstBPHNCrOYa+FW9q3aH87Y1OJ5aTSsiiXlpbKLItyaieVJ5bHLH/FiqO2+cZxxw2m2+0/Ouu/ym1cnFrYgEQniWVRbCSWJ2gtt/HB1MJV2+87Kyrud99ZqxH8iWAncmFgWY8tAVsR3LD9vrNeM5iYP3DdQSett9rir45r6Vi9o9zSvqLcumxFZ+uyFeXWZR3laB/X0j55vQnPHz/tjwd/YzD9lhdstQn5b/kdwAry33DX9hiwGvA5YHZ5wVYtlfb71dunlYD/AWaSjwseL/rs+pwsB94G/PSrt0/bYjAx77z7Ce8AzgT+g3wSvHu/TwObArN33v2E/QbTryTVQE3zJgsxkiRJqrpIjdnUq8uAz0bE94BLySdTul91+nrgvgbEJUn18i3ySeAFwCJePDFLGXgWeAZ4N/Dpukc3AmzzjeOOad+kY9tUJsXyKJfSyv+VSwSlciSWRTm1pVi+eccXtz3i+M3766/L9vvOGltu5ZwUjCWxLKCze6UlIAWsIFEut7ITwdcHEfbZwJZAe7H11E7+P3MywcWVdrr7tYfuus74Fw4OUqwotyxLxItO2iVK5RXllmWlSKV1xr/wlfdfc+jrK+m3vGCrIK9f8HLyycLnezYhFzYWAtOAj1YaM3lNhL3In4+nyQXL7p4nFzA3BWZ/9fZpFRW8dt79hHWBWeSTl4+QC1zdrSA/lxLwjZ13P2FQBS9pJDBnaio1zZssxEiSJEkj29eAucB+5HnkD0gpPQ7/nhLhg7z4Si9JGjE2O+3ELYDdyCeY+1ufZGlx/76bnXbi2HrENpJ0rFn+dCoB7X2vPlAiYHmU07hU6lw9nVpRx8FnU4lJJFb0d+Y/ctEkyi18vJJut9931kSC/0cuyvU3nVnX/Vtuv++s/6yk73Gt7V9qiXJre7lleR5o03vE7eXS8tZSZ9u41o6vVNIvsDWwPblw2F/MLxQ/P1ZesNWA5/2K0TD7kYPtWdzprqto+QbgjRXEC7AnsC55hE1/ngQmAh+usF9JqoWa5k0WYiRJklR9qUGbXiKl9HxKad+U0poppc1TSj/vdvfzwMYwqCuIJWk4eR95TZjFFbR9FngZ8NaaRjTCbHPE8dt0rtO5Dp2kUp+Fh6yU8tIgnWt37lJJ36mUCwRRyVQwZTpSiY22/+ist1XQ9aHk9VUqWUelHWghr5/Sr/dd85nxk8Ys+89yinLfRZguQYK0+phl764gBoDdgXGsLLT051ngFcDUCtq+gTxi7LkK2i4pYnh/BW0hF1Y6qWwqn6XAtJ13P2FchX1LI4M5U9Oodd5kIUaSJEkapVJK5ZTSwpTSoBb0laRhZMPiZyWnntrJZ883qF04I1ArUykR/Y7R6K4cKY1LFY06SsH6pApPGwadBAFUMr1V1zonlc/1H2w0cBNe1hKpNaWoqN9yinJbqTz+fdd8ZrUKmg/4+N0sA8ZQ2d/yBkXbntOG9aUMbDJQo513P6FEjrnSfpeR17hZq8L2klQ31cibLMRIkiRJkqSRqtLyQJcYwj6jW2LFEPap1FAWRa7kJFl/09T1pZK/ixXFU6toDZVCgopew45B9guVxdzVptK+g8pev65r72sRsyQNOxZiJEmSVBsOsZckNd69xc9Kzn+MJ58Qv3eghlopOvkDHZForXCHElF6vrSoor4T9xIVry3dSqJM4qYK2s4nHz20VNY1kPj7wE34V3u5tKRUKld0vq0UqWV5Z+uzv3rbKZUUj/5B5YWN1chTfVXyt3wvecqxSkblRLHdPVDD6y47PAF3kj9XlVgdeAJ4usL20shhzjQqVPrfpEaRqfvPXoe8mOHawHLgDuBP886Z4ce1hl59ydHrk1/3NchDcm8D/nzXnkeu8uu+07QTW4C3AK8kf+4fB668Ye5hFR38SpIkSdIwdTlwODnPemaAtmsCtwPzahzTiHLr8Uc8vPUJx/6zY+POl5dJ/a4TUy6liAQtz5R+VknfUeZUYAdyHtvnKIwEELSUOrj95vNn3lFB12cD/0N+zwcagTGmeOzjBur0V287pfND13/6l+PGP7/PQDWTIEUAz68Ye1EF8QJcAnwGmAQsHKDtGsAfgbsG6vTY182996u3T/tf4B0MvJbSRPIaNRcP1G/hAmBHoI3+RyqVyO/xBddddvhQRitJUtOzEKN/KwowM4A9gcmsPGpoB+6Yuv/sk+edM+OKBoY4Ir36kqM3JL/u7yO/7mXy674CuO3Vlxz93bv2PPLaofS907QTA/gQ8GlgK/LVPl3v65M7TTvxZ8B3b5h72POr+jwkSeouEhVfvlrNx5QkqbsHDjns6c1OO/FC4BDylflL+2i6Bvlk+5kPHHLYUKbDGtVan2v5euf6nRekcalUXka5t2JMORKMTRELSytieUyvqOPEz0qdfLvcwmYpUY5epior/vsfS6IzypxYSbc3nz+zc/t9Z/2YYDr9FwlagBKJP958/syKRkot72g7dkW5Zc8xpc7xK8oty3ovxiTaWjrHLu9ofX55Z+vxlfRbmnLPQ+UFW10G7Eu+aLavtVfWLu47qzTlnkqPjs4CdgLWAZ7qo81YchHo58e+bu59Ffb7O+DvwKuBR+l9qrkApgCPAb+osF9pxKh33mTO1DhOTSYApu4/ewPgp8DHyf+5LiD/J/go+WqH7YDTp+4/e/+GBTkCvfqSozcFLgI+Si6MPsbK130J+cqfH776kqM/MNi+iyLM4cCJwKvIV8w8WvT/OPkA6jPAuTtNO3HSKj8ZSZIkSWpO3wF+RS62rE8e4dBlPLBhcdspwNx6BzcS3HbsET8dc1/bGdEeiXGUyq0pykWJpEyi3JaCcZRKz7d0jHmw7cO3HXfEkkr6vfn8mSk6eFd08hTBmARjUlHZSEBKtBKMA8otHZx8809mnj+IsL9I4gryubFxvHiashL53EgbeUqwPSvt9PK3nXL3U0tWP7i93LJ8TEvnuJbobFs5H1CiJTrbxpQ6x63oaF361NLVP/rLt53y2CBiPhK4lryg/XpFfF0mkP+WA/if0pR7/lBpp8e+bu4fgW+RA92IF09T1gqsSy7SXA98tdJ+r7vs8CXkC0PvL2Jbk5XnIoN8MerG5OLPoddddvhgXgtJGlYsxIip+88O4HvAa8kFmGd48VUKS4BHyAcl35i6/+wd6h7kCPTqS45uBU4DXkEujjzHS1/3h8kHf8e9+pKjXzfIh3g/udCyoui/+9UyneR5V58kDxM+ZvDPQJIkSZKa3wOHHLYcOBQ4FvgX+ST2RsW2OvBn4AvACQ8ccpjXCg/Rn4/68kFj/zHma61PtiyMIBhHqTwulRhHKcrQ+kjLQ2Pua93ttm8fcdlg+r35/Jn3ljp4Y6mDKwPaCcamYBx5K0Un/2ppZ8bN582cOch+E/A+ErPI+XEruSAzjlzgWELi5yS2u/n8mQNN2fUil+5y2nlPLJk4beGy8X+FYEypc9yYUse4MaXOcRDpueXjb31i6ervvmyXU385mH5LU+55gXwB7Qnk8zfrkAscG5ELMfOAQ0pT7vn+YPoFOPZ1c39ELprcRH4NNir6Xpd87uBEYP9jXzd3UFOcX3fZ4fcAewHnks9PbFD0u2HR5BfAR6677PBK1vaRpGErUhrdxxgR0TW35uSU0qhcL2Pq/rPfRP6P7wXyyf/+bATMnXfOjENrHtgI9+pLjt4VOIdcgFk+QPONgHPu2vPIIyrpuxgNcynwJvIomP5MJl+JstsNcw97sJL+JUnNpZmOZ7piedVnvnVby7gJdZ3apXPZktLdp3xtG5rgdZBGmmb6npFWxWannTiGPAXThuQL4e4FbnE6sura5qvHf6Q8Ln2UEhOikydjSRx72/FH3L6q/W6/76z1CT5NsBGwlMRVN/9k5qCKGX302wLsB7yRXJC5B/jBzefPfGFV+37/NYdu19bSuXfAxATPtXe2nnP52065c1X7LS/YahywM3mUVwdwN/DnQUxH1quv3j4tgNeRpxNrIxdh/njs6+b2Na1fxXbe/YR1yZ+/ieRpAv/vussO/9eq9itVotmOZRqVN5kzNY6FmCb7EDbC1P1nHw/sTx71MpDJxc+3zjtnxkAn+NWPV19y9OnAHlT2uq9JvnLkLXfteeRAC0yy07QTtyEv5LeEgYtrQU5C/ueGuYedVEEskqQm00zHMxZipJGpmb5nJEmSBqvZjmUsxIw+rY0OQE3hVeSrJyrxAnno62YMPNJC/Xs1ubhSiSXkNV02Jk8dN5DNyUOJ+1pkr7tELsZsUWEskiQNqN6LTnY9piRJkiQNF/XOm8yZGsc1YgRD+zuIqkcx+gzmNewqllS6z1DeH99TSZIkSZIkSaoyCzECuI/KR0eNJ69nUsl0WurfP4ExFbadACwDHquw/cPk0TbjBhHPw4NoK0lS/1KDNkmSJEkaLsyZRg0LMQKYS56arJKT9hOBG+adM+OBmkY0OlxMXhyykmLMasAVd+155BMV9v0n4O/ktWUGMpE89dllFfYtSZIkSZIkSaqQhRgB3AD8lbz2S39/E2uQR1n8pA4xjQZ/AO4F1qX/acHWBpYCF1Ta8Q1zDysD55Dr3Kv307QVmAz88Ya5h91daf+SJEmSJEmSpMpYiBHzzplRBj4LPABsSB4h0V0bsD4wFjgVuLKe8Y1Ud+155ArgUPJ0Yxvx0oLJGGAD8uf0O3fteeRNg3yIC4CfApPIxZ7u088FuQAzBfgbcMRg45ckqV9OTSZJkiRJ/TNnGjUsxAiAeefMuBfYG/gd+YT9RuSizIbkkTKPAF8FTpx3zgw/slVy155H/pX8ul9DLrx0f93XAu4HDrtrzyO/P9i+i1ExXwKOA54B1uvW9wZFs4uBvW+Ye9jjq/ZMJEmSJEmSJEm9qXSBdo0C886ZcT9wwNT9Z28FvIs8JdYK4HbgD/POmbG8kfGNVHfteeTfgb1ffcnRrwHeQV7XZTlwK3D1XXse2T7Uvm+Ye1gncPJO0078EfAe4BXkEU6PA7++Ye5h/1rV+CVJ6kt/825KkiRJksybRgsLMXqJeefMuAe4p9FxjDZ37XnkncCdtej7hrmHvQD8vBZ9S5IkSZIkSZL65tRkkiRJkiRJkiRJNeKIGEmSJFVfIxaCdBU7SZIkScNJvfMmc6aGcUSMJEmSJEmSJElSjTgiRpIkSVUXKW/1fkxJkiRJGi7qnTeZMzWOI2IkSZIkSZIkSZJqxBExkiRJqj7XiJEkSZKk/rlGzKjhiBhJkiRJkiRJkqQasRAjSZIkSZIkSZJUI05NJkmSpOpzajJJkiRJ6p9Tk40ajoiRJEmSJEmSJEmqEUfESJIkqeoi5a3ejylJkiRJw0W98yZzpsZxRIwkSZIkSZIkSVKNWIiRJEmSJEmSJEmqEacmkyRJUvXVe9HJrseUJEmSpOGi3nmTOVPDOCJGkiRJkiRJkiSpRhwRI0mSpKqr96KTXY8pSZIkScNFvfMmc6bGcUSMJEmSJEmSJElSjTgiRpIkSdXnGjGSJEmS1D/XiBk1HBEjSZIkSZIkSZJUIxZiJEmSJEmSJEmSasSpySRJklR19V50susxJUmSJGm4qHfeZM7UOI6IkSRJ0qgWEYdGxAMRsSwibo6IqQO0/1BE3F20vyMi3tPj/oiIb0bEYxGxNCKujIhX9GjzQESkHtsRtXh+kiRJkrQqzJlWnSNipCYw7bSZG7St1nHE2EnL39cypnNSubO0YsXzbbetWDzmfy7+9OzrGx2fJElDMgyutoqIvYDZwEHAzcAXgCsi4pUppSd6ab8jcCHwZeBXwD7ApRGxbUrpr0WzLwKfA/YH7geOKfp8TUppWbfuvgGc2e33xdV8bpIkSZKGgSbPm8yZqsMRMVKDffjHXzhqrVc89881t3juMxPWWbrZmInta45bc9n6kzdZ/P/WfuUzV+170aHXTTvtsNUaHackSSPUDODMlNKPU0p3kpOLJcDH+2j/eeB3KaUTUkp3pZS+DtwKfAbylV3kxORbKaXLUkq3Ax8DNgT26NHX4pTSgm7bC9V+cpIkSZK0isyZqqCpCjER8eWI+FNELI6IJyLi0oh45SD2/0gxROnSGoYpVc2Hf/yFo9fYfOFXW8Z1jGlf1rK8fWnrso5lLcs7lrYub1/SsowUTNzw+bdMWPeFG6adelhbo+OVJGmYmBgRk7ptY3trFBFjgO2AK7tuSymVi9936KPvHbq3L1zRrf3mwJQefS4kXznWs88jIuLpiLgtIg6PCEerS5IkSaoHc6Y6a6pCDPBW4FTgzcA7gDbg9xEx4GiAiNgMOBFwGicNC9NOn7nppJct+mKUytGxtGU5qedyWUFne6m9s73Usdr6S7ZundB+VEMClSRpKFKDtuxhYGG37ct9RLkO0AI83uP2x8mJQW+mDNB+Srfb+uvze8BHgLcBPwC+Anynj8eUJEmSNBKZM/XX54jKmZqqgpRSenf33yPiAOAJctXtur72i4gW4HzgSOA/gTVqFqRUJWNWa/9Ky9jOMR3LWpZD9Nmu3FHqKLWVW8evtWy/aace9rW5h57Y5DNHSpLUcBvz4rmDlzcqkL6klGZ3+/X2iFgB/CAivpxSarp4JUmSJI0o5kx11mwjYnqaXPx8ZoB23wCeSCmdVeN4pKoZu8by9wK8dCTMS5XbSx1jJy/fIFrLfQ35kySpqURqzFZYnFJa1G3r6yD9KaATWL/H7esDC/rYZ8EA7Rd0u63SPiEPw28FNuunjSRJkqQRxJyp4j5hmOdMTVuIiYgScBLwvymlv/bTbifgE8CnKux3bPf574CJ1YhXGqyWMZ0TKUe5krapTDlKRJTSZjUOS5KkUSOltAKYD+zWdVtxDLobcFMfu93UvX3hHd3a309OHrr3OQnYvp8+Ad4AlMmjwSVJkiSp4cyZqqeppibr4VTgtcBOfTWIiInAecCnUkpPVdjvl8lTmEkNlcrRSfQzJ1l3QeR5HOP52kYlSVKVvHj+4fo95uDNBs6JiFuAecAXgNWAHwNExLnAIymlrjmTvwv8MSJmAr8mz1n8RuBAgJRSioiTgK9FxD/IScYxwKPApUWfO5CTjGvI0wHsAMwBfpJSenZIz0KSJEnS8FPvvMmcqWGashATEacA7wN2Tik93E/TLclDkX4Z8e/z2aWijw7glSmlf/bY5zjyH0+XieTFiaS6WrF4zN/GTlqxY/4G7L8e09KaWjqWtywvd5Sur090kiSNDimliyJiXeCb5IUh/wy8O6XUtXDkJuSrrrra3xgR+wDfAr4N/APYo8cI7u+QE5MzyGsX3lD0uay4fzk5GTkKGEtOPObw4mNUSZIkSWo4c6bqaKpCTORqysnAnsAuKaX7B9jlbmDrHrd9i1xc+Tzwr547FPPd/XvOu24FHKmuli8a873VpsSbS62ptdwRHX23TERLKi15avw1cw85cVhWfCVJamYppVOAU/q4b5debvs58PN++kvkNQy/0cf9twJvHkqskiRJklRv5kyrrqkKMeTpyPYBdgcWR8SU4vaFKaWl8OKhTkWF7EXrx0TEcwD9rSsjNYPyipZfLH1q/JGrrb/k1SmRUmep86WtEm3jO8e1L2ldtmLRWKfUkyQNG5ESkeo7N1m9H0+SJEmSVkW98yZzpsYpNTqAHg4GJgPXAo912/bq1mYTYIO6RyZV2dxDT0wvPD5htyVPjn+gZUy5rXV8x7hoKbcQKaJULrWO7RzTNqFzXPvS1mULH5z0iYsPmjW/0TFLkiRJkiRJkganqUbEpJQGnCest6FOPe4/oFrxSLU295BZj0877bA3LF885oQJay/74JjVV0ymVG4lQeeKlvYlj064bvmiMUde/OnZ/9foWCVJGpR6LzrZ9ZiSJEmSNFzUO28yZ2qYpirESKPR3ENOXAwcNO3Uww4ttZXfGy1pIxJLOleUfjf3kFmPD9iBJEmSJEmSJKlpWYiRmsTcQ0/sBC5vdBySJEmSJEmSpOqxECNJkqSqi5S3ej+mJEmSJA0X9c6bzJkap9ToACRJkiRJkiRJkkYqR8RIkiSp+uq96GTXY0qSJEnScFHvvMmcqWEsxEiSJEmSJI0y9z28wVhgV2CT4qaHgKu32Pix5avS7667HR/A1sAbgXHAc8C1V191xKOr0m8t/eceJ7QCOwMvB1qAR4Crrr/08BcaGlg/dtxr1iTg7cD6QAfwd+CGGy+aWW5oYA1w44NbTAB2AzYCysD9wLU7bnpfe0MDk6RuLMRIkiSp6lwjRpKk5nTfwxu0AgcCHwNe1uPuf9338AbnAmdssfFjHYPte9fdjn8L8AVWFmHK5GnxF++62/G/AWZffdURD61C+FX1n3ucUAI+CnwC2IJchElAAAv+c48TLgROuf7Sw5c2LsoX23GvWROBzwMfBtZhZbwdwD077jXrB8Avbrxo5og/MrrxwS3GAocC+wJTut2VgAdufHCLHwFn77jpfaOuOKXhwzViRg/XiJEkSZIkSRoF7nt4gzbgJOBrwIbAU8BjxfZUcdvXgO8WbSu2627H/xfwY+A/gWXkUSWPAY+Szz99BPjprrsd//JqPJdVVRRhjgS+DWxJHrnzKDnmJ4C1gBnAmf+5xwkTGhTmi+y416zJwLnk4sNE4HFWvsaLgFcDs4AZO+41KxoVZz3c+OAW44AfAIeTC1JPsvJv+RlgU+CbwLE3PriF5z8lNZxfRJIkSZI0jETEzhHxy4h4NCJSROwxQPtpEfGHiHgyIhZFxE0R8a46hSupuRwMTAMWkosN3aduai9uWwjsWbStyK67Hf9K4ARgAvAw0H1Kr8TKIscWwPd33e34MUN+BtXzEfJImCXAAqD7lGwd5MLU0+Tpv75S9+h6dyywA7no8DTQ2e2+ZeQiRDvwOeC9dY+uvr4IvItcdHmS/J51WUEuUr0A7AfsX/foJKkHCzGSJEmqvtSgTRodVgP+Qr4iuhI7A38A3gNsB1wD/DIitqlNeJKa0X0PbzCBfEK6nRcXSnp6oWizf7FPJfYBJpMLGn0pkws9ryKv59EwxWiYT5Cn9FrUT9Nl5Nfjg/+5xwnr1SO2vuy416wtgHeT413RT9NngTbg4yN1VMyND26xFrAXsLTY+rK4+PnfNz64xaBGeEl1Y840aliIkSRJkqRhJKX025TS11JKl1TY/gsppe+klP6UUvpHSukrwD+A/6ptpJKazLuADcgn6gfybNH2nQM13HW341cnj7JZVkG/K8jrsHy4gra1tCPwCip7LRaSi0y71zSige1JLsQvHqgheQTSNsDWtQyogd5HnjruuQraPgtsTp4yT5IaprXRAUiSJGnkqfeik12PKWlgEVEiry3wTD9txgJju900sdZxSaq5zcnXQncM1LBok4p9BrIh+Tvi+QrjWEZey6SRNiePGqmkeNS10Hslr0UtbUkewVPJEc8ScqFiM+D2GsbUKF1/y+WBGpKnnGuh8e+f1Kt6503mTI3jiBhJkiRJGl0OA1YHftZPmy+TrwLv2h6uQ1ySamso01RVss9Qzi01esqsSgsaPfdppBKDj3mknvcbyvMaqa+FpGHCLyFJkiRJGiUiYh/gSODDKaUn+ml6HHkqnq5t4zqEJ6m2HiYXE1oqaNtStH2kgrYLyOt0jK8wjrHAfRW2rZWHyaMpxlTQtqsAU8lrUUsPDaLtePJIkEbHXCtdf8uVnNdsIxewRuprIWmYsBAjSZKk6mvEopMOs5f6FREfAX5ILsJc2V/blNLylNKiro3K1iSQ1Nx+BzwNrFFB2zWKtr8bqOHVVx3xHPAr8volA+maIv/nFbStpRuAB4E1K2g7iTzt2uU1jWhgl5ILXqtX0HYN4G5gfg3jaaRfAYvI781A1iQXbq6uaUTSUJkzjRoWYiRJkiRphIuIvYEfA3unlH7d6Hgk1d8WGz+2EPgpMI4XrwHV09iizU+LfSpxIblYsU4/bQJYH3iACgo8tXT9pYevAM4lj/yZ0E/TNvL6N7+7/tLDBzMipepuvGjmneQC0hr0v+bzRPJon7NvvGhmJWuoDDs7bnrfY8AvyUWp/kY1jSe/VufvuOl9lawHJEk1YyFGkiRJVde16GS9N2k0iIjVI+INEfGG4qbNi983Ke4/LiLO7dZ+H/IJx5nAzRExpdgm1z14SY02B7iWXDBZixefFyoVt61TtJlTaadXX3XErcC3yNdab8hLCz2rARsBTwCfufqqI5YMKfrqOgu4hFzYWIcXT9kWxe3rk0eVHFnn2PryReBOYAp52sju69a0AuuSCzHnAxfVPbr6Oga4GViP/F51/1tuAdYm/z3/Bvh+vYOTKmXONHpYiJEkSZKk4eWNwG3FBjC7+Pc3i983ADbp1v5A8gm6U4HHum3frUewkprHFhs/tgT4BHAGsIz8fbFhsW1Q3HYG8ImibcWuvuqIs4EvAP8gnxjv6ncj8gib64F9i6JNw11/6eEdwHTyd+gictFlw25bGbgA+Oj1lx7+TKPi7O7Gi2YuAD4CXEwuwnSPdz3ydHLHAl8ZqaNhuuy46X0Lgf2Ac4AOXvy3vD55hNbJwCE7bnrfikbFKUldIqXRXQaLiEnAQmByMfexJEnSsNJMxzNdsWz3gW/e1jp2Ql1PAHQsX1Kaf/E3tqEJXgdppGmm7xlJ1XHfwxusDbyPlYXbh4BfbbHxY0+vSr+77nZ8K7ALuWg8jvzdcSXw16uvOqIpT0L95x4nTALeA2xJHk3xGPDr6y89/NGGBtaPHfeatQk55vWBduDvwG9vvGhmM4w2qqsbH9xifeC9wMbkAtp9wK+LYo0ENN+xTKPyJnOmxulvTklJkiRJkiSNQEXB5Zxq93v1VUd0kAsvV1a771q5/tLDF5HXzxk2brxo5kM45RYAO2563+PAjxodhyT1x6nJJEmSJEmSJEmSasQRMZIkSaq6RiwE6cKTkiRJkoaTeudN5kyN44gYSZIkSZIkSZKkGnFEzDC13YFz2oANgTHA0/PPmP5Mg0NSFez8/hPWBdYElgGPXHf54Z0NDkmqifKCrQKYAkwEXgAeK025p66LekuqA6+2kiRJkqT+mTeNChZihpntDpyzHvAhYB9gAyCAju0OnHMVcCFw3fwzpvvxHUZ2fv8JJeAdwN7AW4A2oAw8sPP7T7gAuPi6yw9/toEhSlVTXrDVGOB95O+wN5D/H+oE7i4v2Op84NLSlHuWNC5CSZIkSZIkqbqcmmwY2e7AOVsDlwNfAzYhj5p4obh7d+Bc4KjtDpzj+zpM7Pz+E8YAs4EfAu8k18CfJ7+3WwHHABfv/P4TtmxYkFKVlBdsNYn8t34ysCO5APM8sALYBjgRuKC8YKv1GhakJEmSJEmSVGWesB8mtjtwzsuAM4HNgMeAx4El5BP2C4FHgOXAJ4HpjYlSQ3AksBe5oPYosIj8ni4BFpDf59cAP9z5/Ses3aggpVVVXrBVCZhDHv31LPnvfTErC8qPAk8BbwZ+UF6w1fgGhSqpSqLcmE2SJEmShgtzptHDQszwsT+5CPMoedqq3iwiX1n+qe0OnLN+neLSEO38/hO2Aj5CHhHwfB/NOsiFt1cVbaXhaidWFmGW9dFmBfAEMBX4f3WKS5IkSZIkSaopCzHDwHYHzplIXhdmGX0XYbo8C0wGPlDruLTKPgisRh7R1J9OckFmn2IqM2k42ou8/tFA67+sIK99tW95wVZR86gk1U5q0CZJkiRJw4U506hhIWZ42BpYi4FP2EMu1CRgh5pGpGp4K9BeYdtFwEaAa8Vo2CkKKm8Flla4y/PA68hFZUmSJEmSJGlYsxAzPIwHWsgjIyrRCUysXTiqktUY3HtaIv8tSMNNK3k0zGD/3ifULCJJkiRJkiSpTizEDA8LyVNTtVXYvhV4unbhqEqepvL3tI38N1DJqCipqZSm3NNOHuXi37s0ikRqzCZJkiRJw4U50+hhIWZ4+AvwILBGBW1byVOTXVHLgFQVvyF/Biv5HE4G7gTuq2lEUu38ChhbYdvVgKtKU+55oYbxSJIkSZIkSXVhIWYYmH/G9HbgQvL0ZAMt1r4OsAD4da3j0iq7BHgOWHuAduPIxbXzr7v8cOvWGq5+Bixh4ILy6uS1k35W64Ak1VhKjdkkSZIkabgwZxo1LMQMH+cB84D16H2dkBKwPrACOHr+GdO9krzJXXf54U8Axxe/rgtEL81WIxfXrgLm1ik0qepKU+75G/BD8vfXmn00m0Qe/fUz4Lo6hSZJkiRJkiTVlIWYYWL+GdMXA58ErgUmAhuRR1KsBUwBNgAWAYfPP2P6ZQ0KU4N3LnA0sAzYkFxMW4tcfNmIvFj5r4HPXHf54csbFaRUJf8DfJc8wmsjcmF5LXIhcmPy1IrnAF8pTbmn3KggJVWHa8RIkiRJUv/MmUaP1kYHoMrNP2P6U9sdOGcf4C3AXsCbyGsuLCCPlrh0/hnTn2hgiBqkYqqxH+38/hOuAD4A7E4usC0DbiCPDPiTU5JpJCiKK98pL9hqLvBB4D3kETDPA1cCPwf+Vppyj3/vkiRJkiRJGjEsxAwz88+YXgauLzaNENddfvgjwPeKTRrRSlPuuZc8Ld/xA7WVJEmSJEmShjsLMZIkSaq+VGz1fkxJkiRJGi7qnTeZMzWMa8RIkiRJkiRJkiTViCNiJEmSVH2NWAjSq7skSZIkDSf1zpvMmRrGETGSJEmSJEmSJEk1YiFGkiRJkiRJkiSpRpyaTJIkSdWXUt7q/ZiSJEmSNFzUO28yZ2oYR8RIkiRJkiRJkiTViCNiJEmSVHVR70Unqf/jSZIkSdKqqHfeZM7UOI6IkSRJkiRJkiRJqhFHxEiSJKn6UrHV+zElSZIkabiod95kztQwjoiRJEmSJEmSJEmqEQsxkiRJkiRJkiRJNeLUZJIkSaq6ei862fWYkiRJkjRc1DtvMmdqHEfESJIkSZIkSZIk1YgjYiRJklR95ZS3ej+mJEmSJA0X9c6bzJkaxhExkiRJkiRJkiRJNWIhRpIkSZIkSZIkqUacmkySJEm14ah3SZIkSeqfedOo4IgYSZIkSZIkSZKkGnFEjCRJkqouUt7q/ZiSJEmSNFzUO28yZ2ocR8RIkiRJkiRJkiTViCNiJEmSVH0p5a3ejylJkiRJw0W98yZzpoaxECNJNTL1gNmtwM7Ay8kjEB8Frpp39owXGhpYBbY9eE4bsAuwOTn2R4Crbj19+pJGxiVJkiRJkiQNNxZiJKnKph4wuwR8FPgkuZDRAnRdcvD41ANmXwicMu/sGUsbFGKftj14Tgk4APg4sBkQ3e5+bNuD51wAnHrr6dOX1z86SZIkSZIkafhxjRhJqqKiCHMk8G1gC+A58kiYx4AngbWA6cCZUw+YPaFBYfaqKMIcCxwDbAo8Q467K/Z1gcOA07c9eM64RsUpaXjoWnSy3pskSZIkDRfmTKNHUxViIuLLEfGniFgcEU9ExKUR8coB9vlURFwfEc8W25URMbVeMUtSD3sDnwCWAAuA7iNHOoCnyAWOtwNfrnt0/TsA+BjwPPA4sKLbfR3kYsyzwP8DDq93cJIkSZIkSdJw1FSFGOCtwKnAm4F3AG3A7yNitX722QW4EHgbsAPwr2KfjWobqiS92NQDZreQp/QKYFE/TZcBLwAfmnrA7HXrEdtAijVh/ps8hdrifpouLba9tj14zlr1iE3SMJUatEmSJEnScGHONGo0VSEmpfTulNLZKaW/pZT+Qr46exNgu3722TeldFpK6c8ppbvJazKUgN3qErQkrbQjsBV51MhAFgKTgffXNKLK7Uxez+aZCtouBNYG3lfTiCRJkiRJkqQRoLXRAQxgcvGzkhODXSaQR9L0uk9EjAXGdrtp4tBCk6SX2Jz8vbqsgrblbvs0g83JRewVAzUEOsnXUGxWy4AkSZIkSZKkkaBpCzERUQJOAv43pfTXQez6P+SFsa/s4/4vkxfSlqRqCwY/yLNZRiaWGL6xS2pCkRKR6jvuvd6PJ0mSJEmrot55kzlT4zTzSbRTgdcCH6l0h4g4omi/Z0qpryvSjyOPtOnaNl7FOCWpy8PkkS5jKmgb3fZpBl1xtFXQtkSO/5HahSNJkiRJkiSNDE05IiYiTiGvPbBzSqmik5QRcRhwBPD2lNLtfbVLKS0HlnfbbxWjlaR/ux54CHgZ8PgAbScBzwOX1zqoCl1NHk24PvDEAG0nkdeJ+WWtg5I0jJVZOQljPR9TkgpT95/dCmwLrEmefvWv886Z8WRjo5IGb/v9Zo8h/y2vASwFbr/5vBmVrEs5oJ2mnbgVsGnx64M3zD3snmr0K0mqUL3zJnOmhmmqQkzkqsjJwJ7ALiml+yvc74vAV4F3pZRuqWGIktSneWfPWDH1gNnnAt8gr1e1pI+mbeT1qX427+wZTTEi5tbTpy/b9uA555EL2uPJCV5vxgCrA+fdevr0BfWKT5IkqVJT9589HtgP2Je8Dl4b+bTD4qn7z/4lcNa8c2bc3cAQpYpsv9/sicABwN7ki71ayX/Lz26/3+xLgB/ffN6M+wbb707TTgzgXcD+wPbAuOKuZTtNO/Fm4BzgihvmHub8NZIkVUmzTU12KvBRYB9gcURMKbbxXQ0i4tyIOK7b718CjgE+DjzQbZ/V6x28JAFnAZeRr1ZbB2jpdl+puH19YD5wVH1DG9D3gd8CawFr89LY1wTWA/6P/L0rSX3qmuu43puk0W3q/rMnAT8mH2dtSR7F+xjwJLkgsx/w86n7z965UTFKldh+v9nrAD8BvkIuwjzHyr/lCcCngJ9vv9/s7QbTb1GEmUE+9t+FPFpsQbGtKG77PjCjaCtJqiFzptGj2QoxB5PXbbmWfIDRte3Vrc0mwAY99hkD/KLHPofVPlxJerF5Z89oBz4PzAEWkYsuGxbbBkAncD7w0Xlnz3imUXH25tbTp68gf6eeTJ42rWfs7eSr4z526+nTFzUqTkmSpN5M3X92ACeSTyQ/TT6xvJw8gqADeJa8xt3awClT95+9ZWMilfq3/X6zS+Rj8u3JhZfHefHf8jPkaYU3BH6w/X6zNxxE9x8h5yud5M/D86ycGOf54rZO4AsMYs1eSZLUv6aamiylNODVFimlXXr8vlmt4pGkoZh39owVwAlTD5j9A+C9wBbk0SWPAb+ad/aMxxoZX3+KYsy3tz14zqmsjL0EPAz8+tbTpw+09o0kSVKjbA28gzxyYHkfbRL5mGxD8mwMR9clMmlwdgDeQi4oruijTZn8t7wRuWAye6BOd5p2Yhv5wqsW+l8X8lnyhVgH7zTtxF/cMPew9spDlyRJvWmqQowkjSTzzp6xCLiw0XEMxa2nT18IXNDoOCQNY6nY6v2YkkazD5LXunh6gHYJWAZ8cOr+s+fMO2eGI33VbPYiT6XX17qNXcrkUesf2X6/2afefN6MvgqQXXYhX2hVycj8Z4q2bwWurKC9JGko6p03mTM1TLNNTSZJkiRJ0lBsR562qRKLydNiv7x24UhDth19j+rqaTGwLrBxBW1fQz4PVEnfy4u2r6kwDkmS1A8LMZIkSaq+lBqzDUFEHBoRD0TEsoi4OSKmDtD+QxFxd9H+joh4T4/7IyK+GRGPRcTSiLgyIl7Ro81aEXF+RCyKiOci4qyIWH1IT0BSl7HkEQKVSECQRx1IzWYslV+zXCb/LY+poO2YQfRL0baSfiVJQ2XONGpyJgsxkiRJGrUiYi/yvPpHA9sCfwGuiIj1+mi/I3naybOAbYBLgUsj4rXdmn0R+BxwEHmh5ReKPsd1a3M+8B/k9SzeB+wMnFG1JyaNTo9S+UnjseQpnZ6qXTjSkA3mb3kc+W95oCn5AJ4kF20qORdUKjY/I5I0ypkzVYeFGEmSJI1mM4AzU0o/TindSU4ElgAf76P954HfpZROSCndlVL6OnAr8BnIV3YBXwC+lVK6LKV0O/Ax8sLgexRtXg28G/hkSunmlNINwGeBj0TEhjV6ntJocBn5Cv5K1kKdBMwH7qtpRNLQXMrKQshAVgeuufm8GU9U0PYK8lRmkypoOwlYVOwjSRrdzJmqwEKMJEmSqi5SY7ZBxRgxhjwP/78XIU4plYvfd+hjtx146aLFV3RrvzkwpUefC4Gbu7XZAXgupXRLtz6uJE8vs/3gnoWkbn4LPAL0enVmN6sDncBP5p0zwyVr1YwuJY9eGehveRKwAvhpJZ3eMPewx4DfkD8D/RUsW4s2vyn2kSTViDnTv/sc8TmThRhJkiSNNBMjYlK3bWwf7dYBWoDHe9z+ODkx6M2UAdpP6XZbf21edOVySqkDeKafx5U0gHnnzFgCzCRfxb8hL53aKYA1ySevfw78sq4BShW6+bwZzwBHAMvIf8s91zIqAWsDqwFnA9cMovvjgDvJ/9+s1sv9qxX33Vm0lSSNTOZMdWYhRpIkSdWXaMDCk/9+9IeBhd22LzfmRZBUb/POmXEd8CnylGNrAxsDGwAbkU9odwKnAV+ad86McqPilAZy83kzfgMcAvyLfBJsI/KJp43If9PLgBOBo28+r/KRXTfMPewJYF9y8WZct/66Pifjivv2LdpKkmqp7nnTvx/ZnKnOKpk7V5IkSRpONibPgd9leR/tniKflF2/x+3rAwv62GfBAO0XdLvtsR5t/tytzYumm4mIVmCtfh5XUoXmnTPj+qn7z94V2A34f+TP21LymjBz550z49FGxidV6ubzZvx++/1mXwe8C3gnubj4AnnqlktuPm/Gk0Pp94a5hz2207QT9wFeD0wDtizu+icwF/jLDXMPc9o+SRrZzJnqzEKMJEmSqi4SRJ2vNe823/HilNKigdqnlFZExHzyydpLASKiVPx+Sh+73VTcf1K3295R3A5wPzkx2I0iiYiISeR5jE/v1scaEbFdSml+cduu5NHqNw8Ut6SBzTtnxgrymjG/bXQs0qq4+bwZy4DLiq1qikLLn1l5wkuS1AD1zpvMmRrHQowkSZJGs9nAORFxCzAP+AJ5fvwfA0TEucAjKaWuofrfBf4YETOBXwMfAd4IHAiQUkoRcRLwtYj4BznJOAZ4lCJxSSndFRG/A86MiIPIc/+fAvw0peSV+pIkSZKaiTlTFViIkSRJ0qiVUrooItYFvkmee//PwLtTSl0LR24ClLu1vzEi9gG+BXwb+AewR0rpr926/Q45MTkDWAO4oehzWbc2+5ITiauK/i8GPlft5ydJkiRJq8KcqToipdE97Wcx7GkhMLmS4ViSJEnNppmOZ7pieevUr9zW1jq+rpOTtXcsLf1x3re3oQleB2mkaabvGUmSpMFqtmOZRuVN5kyNU2p0AJIkSZIkSZIkSSOVU5NJkiSp+lKx1fsxJUmSJGm4qHfeZM7UMI6IkSRJkiRJkiRJqhELMZIkSZIkSZIkSTXi1GSSJEmqukiJSPUd917vx5MkSZKkVVHvvMmcqXEcESNJkiRJkiRJklQjjoiRJElS9aWUt3o/piRJkiQNF/XOm8yZGsYRMZIkSZIkSZIkSTXiiBhJkiRVX7nY6v2YkiRJkjRc1DtvMmdqGEfESJIkSZIkSZIk1YiFGEmSJEmSJEmSpBpxajJJkiRVXaRE1HkhyHo/niRJkiStinrnTeZMjeOIGEmSJEmSJEmSpBpxRIwkSZKqL6W81fsxJUmSJGm4qHfeZM7UMI6IkSRJkiRJkiRJqhELMZIkSZIkSZIkSTXi1GSSJEmqPqcmkyRJkqT+OTXZqOGIGEmSJEmSJEmSpBpxRIwkSZKqr1xs9X5MSZIkSRou6p03mTM1jCNiJEmSJEmSJEmSasRCjCRJkiRJkiRJUo04NZkkSZKqLlIi6rwQZL0fT5IkSZJWRb3zJnOmxnFEjCRJkiRJkiRJUo04IkaSJEnVl1Le6v2YkiRJkjRc1DtvMmdqGEfESJIkSZIkSZIk1YgjYiRJklR9joiRJEmSpP45ImbUcESMJEmSJEmSJElSjViIkSRJkiRJkiRJqhGnJpMkSVINNGBqMhxmL0mSJGk4qXfeZM7UKI6IkSRJkiRJkiRJqhFHxEiSJKn6ykA04DElSZIkabiod95kztQwjoiRJEmSJEmSJEmqEQsxkiRJkiRJkiRJNeLUZJIkSaq6SImo66KT1P3xJEmSJGlV1DtvMmdqHEfESJIkSZIkSZIk1YgjYiRJklR9KeWt3o8pSZIkScNFvfMmc6aGcUSMJEmSJEmSJElSjTgiRpIkSdVXThB1vtqq7NVdkiRJkoaReudN5kwN44gYSZIkSZIkSZKkGrEQI0mSJEmSJEmSVCNOTSZJkqTqS9R/IUhH2UuSJEkaTuqdN5kzNYwjYiRJkiRJkiRJkmrEETGSJEmqvpQaMCLGy7skSZIkDSP1zpvMmRrGETGSJEmSJEmSJEk1YiFGkiRJkiRJkiSpRpyaTJIkSdXn1GSSJEmS1D+nJhs1LMQMU1+/Y882YENgDPD0MVtf8kyDQ5IkSZIkNantDpyzJrAO0A48Ov+M6SsaHFK/9j3tcxEt6XURaf2U4snUGX8+/5DvNfXZo8/eum8bsAEwFnjm5G3Pf7rBITXM1ANml4CNgPHAc/POnvFEtfre9qA5awFrA8uBR2/9/vSOavUtSVKtRBrlVbCImAQsBCanlBY1Op6BfP2OPdcDPgTsQz7AC6ADuAq4ELjumK0vGd1vqiRJo0wzHc90xbLbJofe1tYyrlzPx27vXFa66qFTt6EJXgdppGmm7xlVbrsD5wSwI7A38A7yhXwAj5Pzx5/NP2P6Yw0Kr1f7nva5iWNWa//Gauss2Wfc5OXrRSRSguWLxz7zwpMTfrb8hTFHnX/w95qqwPHZW/ddl5yn700uPpTIBa9rgJ8C15y87fmjIk+fesDsScAHgH2BLcivRQdwE/lv7op5Z8/oHGy/2x40J4C3AR8pfrYBZeCRot+f3/r96U9W4zlIGpma7VimUXmTOVPjuEbMMPL1O/bcGrgc+BqwCbAMeKG4e3fgXOCor9+xp++rJEmSJI1i2x04pwR8EfgJ+cR4Czl/XEqeXeEI4JfbHThnu4YF2cNHT//cy9Z42aLb193q6RkT1lo6JZUpl9tLnakc5fFrLFtnnVc8c8iamyy846Pf/+yrGh1rl8/euu9rgEuBbwCbkfP054u7/wv4MfDNz966b0sj4qunqQfM3gT4BfBt4NXkESvPkwsmuwFnAN+desDscYPpd9uD5rQA3yS/lv9V3Pw8+bXeDPg6cOm2B815zao/C0mSaqOpTthHxJcj4k8RsTginoiISyPilRXs96GIuDsilkXEHRHxnnrEW09fv2PPlwFnkg8yHiNfwbSEfOCxkHwVyHLgk8D0xkQpSZJUSOXGbNIoEBE7R8QvI+LRiEgRsUcF++wSEbdGxPKIuDciDqh9pGqwTwOfBTrJ+eJz5PxxCfAEOa/cCDhjuwPnbNGgGP9t39M+1zZpo8XXrL7uC5t0Lm9pb1/atqzc0dJRLpc6yx0tHe1L25Z1LG9ZsdraS9ZfY+NFf9j3tM9NbHTMn7113w2Bs4At6T9P/wRwWIPCrIupB8yeDPwQeB35dXiMXPhbBiwCHi1+fgA4duoBs2MQ3R9Gfg2Xk1/Thaz8W34cWEB+D87a9qA5G1bj+UhS3ZgzjRpNVYgB3gqcCryZPGy6Dfh9RKzW1w4RsSN5GOpZwDbkK1EujYjX1jza+tqfXIR5lHw1SW8WASuAT339jj3Xr1NckiRJkuprNeAvwKGVNI6IzYFfk6dJegNwEvDDiHhXjeJTgxXrwRxKLsI810ezMiuLMZ+sT2R9axvf8dnV13lhs47lLe3lcqnXqatSuVRuX9a6YsLaSzccM6H9S/WOsRcfAzYn5+l9Tbe1iFw0+ERRuBmpPgRsTS6K9LVmyxJgMTANqOiczbYHzdmIXITpKuj0ppP8HmwO7Fd5yJIk1U9TFWJSSu9OKZ2dUvpbSukvwAHkKbj6Gyr9eeB3KaUTUkp3pZS+DtwKfKb2EdfH1+/YcyL5oGYZfRdhujwLTCZfZSJJkiRphEkp/Tal9LWU0iUV7nIQcH9KaWaRM51Cnj7IkfQj1+7kxcyfGaBdmXxyfI/tDpyzds2j6sf4NZd+klKKcmdLv+uHpHKpDDBhnSUfq09kvfvsrftOAD5M5Xn6JOCDtY6rEaYeMLuFvI5tJ30XYbosAsaTz3FU4gPk1+7ZAdqVySNm9tr2oDl9XswrSVKjNFUhpheTi5/9HTzuAFzZ47YrittfIiLGRsSkrg1o+HDmCmwNrEUefjuQMpDo4/lLkiTVRUqN2ST1ZlA5EwzbvEkrvRkI+h6l0d1CYA3yaKmG2Pe0z7VMWGvZluX23kfC9NTZUeocP3n5lH1P/9wGtY6tH68F1qXvURrdJXKu/paaRtQ4m5JHo1S66PNyYJcK276Flec5BrKQ/J78R4V9S1LjmTONGk1biImIEnnI/P+mlP7aT9Mp5DlBu3u8uL03Xyb/59y1PbxqkdbFePLCihUdlBbtTJQkSZIkQd8506SIGN/HPsMxb9JKqzHwKI0uneRzAxNqF86AVo9Ikahw2ZBEIiAirVnbsPo1jvy6DSZPX7124TTUYF+LMvlvtBKrD6Lfrr/lvr7XJElqmKYtxJDXinkt8JEq93sceaRN17ZxlfuvhYXk4b1tFbZvBZ6uXTiSJEkDSAnKdd68ukuqpuGYN2mlp6k83x9DzjcrmYGhVhaVO6OzFKmiSkxEilSOlFI8VuvA+mGevtJQXouBps3r8nTRvhJtNP5vWZIGp955kzlTwzRlISYiTgHeB7wtpTTQlVcLgJ4L069f3P4SKaXlKaVFXRt5obhm9xfgQfJw8YG0kofsXlHLgCRJkiQNG33lTItSSkt722GY5k1a6Sry6IBKToyvATwGzKtlQP05/5DvpReeXO1P0VouDTwDVaLUVm554anxd59/8PeerUuAvfsrcD+V5ekt5Cf2u1oG1ECPktfqnVRB2yCft/hlhX13vWYtFbRdA7gPuKPCviVJqpumKsREdgqwJ7BrSun+Cna7Cditx23vKG4fEY7Z+pJ24ELygceYAZqvQ060fl3ruCRJkiQNCyM+Z9JL/B74F3m9jP60FdtP558xfVnNo+rH0oXjvps6SuWWMZ39Fo9KreW2VC6lpc+N/369YuvNydue3wmcTz6vMlCevi7wBPCrWsfVCPPOnpGAC8jFpoGmBVubvJbM3Aq7/xV5KsWB/pbHkN+LC279/vRKpzKTJKlumqoQQ56O7KPAPsDiiJhSbP/+jzwizo2I47rt813g3RExMyJeFRFHAW8ETqln4HVwHvkKpfXo/cCmRL6qbQVw9DFbX/JCHWOTJEl6sUYsOukwe40SEbF6RLwhIt5Q3LR58fsmxf3HRcS53Xb5PrBFRHynyJkOAT4MzKlv5KqX+WdMXw58A1hCXiOot9x/HDmH/DPwo7oF14fOFaW5zz0y6dpSS2ppaetoe+nImESprbOtpa3csujR1ed3LGs5oyGBvtgFwI3kPL23NXa65+nHnLzt+ZUuZj8c/Qr4LbAWva+FE+QLR0vA7Hlnz6ho3albvz99EXAM+TVcn97/lieQ34Mbye+JJA0f5kyjRrMVYg4mzz98LXlodNe2V7c2mwAbdP2SUrqRXLg5kDyF1weBPVJKf61PyPVxzNaXLAY+SX5tJgIbka8kWYt8YL0B+aqSw4/Z+pLLGhSmJEmSpNp7I3BbsQHMLv79zeL3Dch5EwDFTAPvJY+C+QswE/hkSsnpjEew+WdM/z3weeBZ8t/EBuT8cW1yPjmZPCrqv+efMb2RU3wBeXqyJU+Pf8+zD03+AxHRNqFjXOu4jrEtYzrGtI5tHzNmQse4UqR47uFJNz3/xGq7nn/I9xo+6uHkbc9/gXwu4ipy8aG3PP154IiTtz3/4kbFWQ/zzp7RTv57m0su8m1ELrysRS6gbAi0A98GBlVEu/X70y8GjiC/lhuQX9vuf8urA1cDB976/elelCpJakqRRnkVLCImkRdym1zMfdzUvn7HniXgLeTi1JuAseSpyOYClx6z9SVPNDA8SZLUAM10PNMVy24bfOq2ttK4cj0fu728rHTVY2duQxO8DtJI00zfMxqc7Q6cszawB/AB8knsdnLh7qfAdfPPaL5pnPY74zPvHDd5+cwJay19c0tbeUy5o9S+5JlxtyxbOG7OuZ86pdK1Rerms7fuWwJ2IOfp25Pz9CeAS4C5J297/uMNDK+uph4wO4BtyaPudiaPVnmavCbMxfPOnvHQUPve9qA56wPTyH/P6wPLgZuBi4Cbbv3+9Loed0gaXprtWKZReZM5U+NYiGmyD6EkSdJgNdPxjIUYaWRqpu8ZSZKkwWq2YxkLMaNPa6MDkCRJ0gjUiPmHR/kFRpIkSZKGmXrnTeZMDdNsa8RIkiRJkiRJkiSNGBZiJEmSJEmSJEmSasSpySRJklR95TJQ5zVzy67RK0mSJGkYqXfeZM7UMI6IkSRJkiRJkiRJqhFHxEiSJKn66r3oZNdjSpIkSdJwUe+8yZypYRwRI0mSJEmSJEmSVCMWYiRJkiRJkiRJkmrEqckkSZJUfU5NJkmSJEn9c2qyUcMRMZIkSZIkSZIkSTXiiBhJkiRVXxmgzldblev7cJIkSZK0SuqdN5kzNYwjYiRJkiRJkiRJkmrEETGSJEmqupTKpFTfy63q/XiSJEmStCrqnTeZMzWOI2IkSZIkSZIkSZJqxEKMJEmSJEmSJElSjTg1mSRJkqqvnKjropP/fkxJkiRJGibqnTeZMzWMI2IkSZIkSZIkSZJqxBExkiRJqr6U8lbvx5QkSZKk4aLeeZM5U8M4IkaSJEmSJEmSJKlGLMRIkiRJA4iItSLi/IhYFBHPRcRZEbH6APuMi4hTI+LpiHg+Ii6OiPV7tNkkIn4dEUsi4omIOCEiWrvdv0tEpF62KbV6rpIkSZI0FOZNfXNqMkmSJFVfKkO5XP/HrJ3zgQ2AdwBtwI+BM4B9+tlnDvBe4EPAQuAUYC7wFoCIaAF+DSwAdiz6PxdoB77So69XAou6/f7EKj0bSZIkSY1X77yptjkTmDf1yUKMJEmS1I+IeDXwbuBNKaVbits+C/wmIg5LKT3ayz6TgU8A+6SUri5u+2/groh4c0rp/4B3Aq8B3p5Sehz4c0R8HfifiDgqpbSiW5dPpJSeq+HTlCRJkqQhM2/qn1OTSZIkqfq6Fp2s95ZNjIhJ3baxq/hsdgCe60omClcCZWD7PvbZjnwF2JUrX5J0N/BQ0V9Xv3cUyUSXK4BJwH/06O/PEfFYRPwhIt4y5GciSZIkqXmMnJwJzJv6ZSFGkiRJI83D5CHtXduXV7G/KfQY0p5S6gCeKe7ra58VvVyN9Xi3faYUv/e8n25tHgMOAj5QbP8Cro2IbQf3FCRJkiTp36qdM4F5U7+cmkySJElVl8plUtR3jZi0cr7jjYHF3e5a3lv7iDge+NIA3b561SMbupTS34G/d7vpxojYEpgO7NeYqCRJkiRVQ73zpsHmTGDeVC0WYiRJkjTSLE4pLRq4GbOAswdocx95Ucj1ut8YEa3AWsV9vVkAjImINXpc3bV+t30WAFN77Ld+t/v6Mg/YaYC4JUmSJKkvleZMYN5UFRZiJEmSNCqllJ4EnhyoXUTcBKwREdullOYXN+9Knub35j52mw+0A7sBFxf9vBLYBLipaHMT8NWIWC+l1DWE/x3AIuDOfkJ6A3novSRJkiTVlHlTdViIkSRJUvWlBKQBm1X/MWvRbborIn4HnBkRB5EXkzwF+GlK6VGAiNgIuAr4WEppXkppYUScBcyOiGfIScLJwE0ppf8ruv49OXE4LyK+SJ7f+FvAqSml5UW/XwDuB/4GjAM+SU5m3lmTJytJkiSpfuqdN9UoZ8pdmzf1x0KMJEmSNLB9yUnEVUCZfLXW57rd3wa8EpjQ7bbp3dqOBa4ADum6M6XUGRHvA04nX+X1AnAO8I1ufYwhTwWwEbAEuB14e0rpmio+N0mSJEmqBvOmPkSqYRVsOIiIScBCYPIg5sWTJElqGs10PNMVy9vGfui2thhbv1Ungfa0vHTN8p9vQxO8DtJI00zfM5IkSYPVbMcyjcqbzJkap9ToACRJkiRJkiRJkkYqCzGSJEmSJEmSJEk14hoxkiRJqr5UJk/zW+/HlCRJkqRhot55kzlTwzgiRpIkSZIkSZIkqUYcESNJkqSqS+VEilTfx0z1fTxJkiRJWhX1zpvMmRrHETGSJEmSJEmSJEk1YiFGkiRJkiRJkiSpRpyaTJIkSdWXEnVddPLfjylJkiRJw0S98yZzpoZxRIwkSZIkSZIkSVKNOCJGkiRJVVfvRSfBhSclSZIkDS/1zpvMmRrHETGSJEmSJEmSJEk14ogYSZIkVV8qU/81Yur8eJIkSZK0KuqdN5kzNYwjYiRJkiRJkiRJkmrEETErTYyIRscgSZI0FBMbHUBP7axooc7TD7ezoqW+jyiNSuZNkiRpOGq6nAnqnzeZMzVOjPYFeiJiI+DhRschSZJUBRunlB5pZAARMQ64H5jSoBAWAJunlJY16PGlEcm8SZIkjRANz5mg4XmTOVMDWIjJl3NtCCxudCxDMJGcDG3M8IxfvfN9HXl8T0cm39eRZ7i/pxOBR1MTHNwVScWYBj38ChMKqfrMm9RAvn/Dl+/d8Ob7N7z5/vWuaXImaGjeZM7UAKN+arLig9fwKuhQdJsSYHFKaVEjY1H1+L6OPL6nI5Pv68gzAt7Tpom5OKj3wF4aQcyb1Ci+f8OX793w5vs3vPn+9ampXgvzptGl1OgAJEmSJEmSJEmSRioLMZIkSZIkSZIkSTViIWZ4Ww4cXfzUyOH7OvL4no5Mvq8jj++pJI1Mfr8Pb75/w5fv3fDm+ze8+f5JTSaaZG0iSZIkSZIkSZKkEccRMZIkSZIkSZIkSTViIUaSJEmSJEmSJKlGLMRIkiRJkiRJkiTViIUYSZIkSZIkSZKkGrEQ02QiYpeISH1sb65g/40i4mcR8VxELIqIyyJii3rErr6tyvsaEUf1sd+yesWvvkXEthFxeUQ8ExFLIuKvEfG5Cvbzs9rEhvK++lltThFxdj/fvykiNhpgfz+rktSEIuI/IuLnEXFf8X/1UxFxXUT8V4X7rxERZ0TEkxHxQkRcExHb1jpuZavy/kXEAf38vz6lHvHrxSLiq8Xr/9cK23t81UQG8/6Z8zSW5wyl4a210QGoT98D/tTjtnv72yEiVgeuASYD3wbagenAHyPiDSmlp2sRqAZl0O9rNwcDz3f7vbMqEWnIIuKdwC+B24BjyO/PlsDGA+znZ7WJDfV97cbPanP5AXBlj9sC+D7wQErpkb529LMqSU1tU2AicA7wKDAB+ABweUR8OqV0Rl87RkQJ+DXweuAE4CngEODaiNgupfSPWgevob9/3XwDuL/Hbc9VM0gNLCI2Br4CvFBhe4+vmshg379uzHkay3OG0jBkIaZ5XZ9S+sUg9zkEeAUwNaX0J4CI+C3wV2Am+T9XNdZQ3tcuv0gpPVXVaDRkETEJOJecxH8wpVQexO5+VpvUKr6vXfysNpGU0k3ATd1vi4idyCd8zh9gdz+rktSkUkq/AX7T/baIOAWYD8wA+juR/0FgR+BDXcfmEfEz4B7gaGCfWsSslVbx/evy25TSLTUIT4NzIvB/QAuwTgXtPb5qLoN9/7qY8zSW5wylYcipyZpYREyMiMEUyz4I/KnrCxUgpXQ3cBXw4WrHp6EZwvvabdeYFBFR9aA0FPsA6wNfTSmVI2K14urKSvhZbV6r8r528bPa/PYBEnDBAO38rErSMJJS6gT+BawxQNMPAo8Dc7vt+yTwM2D3iBhbqxjVt0G8f/9W5FYtNQtK/YqIncmfpy8MYjePr5rEEN+/brub8zSS5wyl4cdCTPP6MbAIWFbMV/zG/hoXJwpfB/R2RdA8YMuImFj9MDVIg3pfe7gPWAgsjoifRMT6NYlQlXo7+b3cKCL+Th6WvSgiTo+IcX3t5Ge16Q3pfe3Bz2oTi4g2cqJxY0rpgX7a+VmVpGGguGhinYjYMiKmA/+PfFKpP9sAt/Yy8nUeecTkVjUIVb0Y4vvX5RrycduSyGv7vaJmgeoligLYycAPU0p3VLiPx1dNYijvXw/mPI3lOUNpGHJqsuazAriYPEz7KeA1wGHA9RGxY0rptj72WwsYCzzWy31dt20I/L264apCQ31fAZ4FTiFPrbMc+E/gUGBqRLwxpbSoppGrL68gf4deBpwFfBnYBfgs+Sq+vfvYz89qcxvq+wp+VoeLdwFrM/C0ZH5WJWl4mAV8uvh3mTzK5TMD7LMBcF0vt3f/fh/KiUkN3lDevyXA2awsxGxHns7sxojYNqX0r9qEqh4OIq/18/ZB7OPxVfMYyvsH5jyN5jlDaRizENNkUko3Ajd2u+nyiPgFcDtwHPDuPnYdX/xc3st9y3q0UZ2twvtKSum7PW66OCLmkU8iHgIcX+VwVZnVyVdMfj+l9LnitrkRMQb4dER8o4+FXv2sNrehvq9+VoePfcgLU/5sgHZ+ViVpeDgJ+AX5BNKHyescjBlgn/H4/d4sTmKQ719K6We8+P/xSyPiCnJx7avkE8yqoYhYG/gmcEwxrV+lPL5qAqvw/pnzNJjnDKXhzanJhoGU0r3kq7Pf1s/8t0uLn73NZzyuRxs1gQrf1772vQBYwOCvXlH1dH2eLuxxe9eaEzsMsJ+f1eY01Pe1V35Wm0tErA7sDlyRUnp6gOZ+ViVpGEgp3Z1SujKldG5K6X3kiyp+OcC6BUvx+70pDPH9662fG4Cb8ZirXr4FPEOe2mowPL5qDkN9/3plztNYnjOUhg8LMcPHv8hXBq3Wx/3PkCvbG/RyX9dtj9YgLq2agd7XgfZdq7rhaBC6Pk+P97j9ieLnmn3s52e1uQ31fe2Pn9XmsQd5xNNA05KBn1VJGq5+AbyJ/td5eQy/35tVJe9fXzzmqoNiLZ4Dge8BG0bEZhGxGflkblvxe1/vg8dXDbaK719//Pw1lucMpWHAQszwsQV5uODzvd1ZLDR5B9DbAl3bA/ellBbXLjwNUb/va1+KK8Q2AwY1jFhVNb/4uVGP2zcsfvb63vhZbXpDel/74me16exL/r69fKCGflYladjqmlplcj9t/gxsWyxe3N325PVH7qlBXKpMJe9fX7bAY6562Ih8Lul7wP3dtu3JBbT7gW/0tqPHV01hyO9fX8x5moLnDKVhwEJMk4mIdXu57fXA+4HfF1+eRMQmEfGqHk1/AbwpIt7Ybd9XArsCP69d1BrIqryvve0LHAysC/yuBuGqMl3zUn+ix+2fBDqAa8HP6jA05PfVz2pzK96ftwOXpJSW9HK/n1VJGkYiYr1ebmsDPkaeXuXO4rYNIuJVxX1dfgGsD0zrtu86wIeAX6aUeptDX1W0Ku9fH7nVe4Dt8JirHv4K7NnL9jfgoeLfZ4HHV01qld4/c57G8pyhNLxFSqnRMaibiLiafOB5I3kqnNeQh422AzuklO4q2l0LvDWlFN32nQjcBkwETiz2mUFe8PANg12ETdWziu/rEuAi8tULy4CdgI8AfwHe0tsJRdVHRJwFfJx88v6PwC7kBP64lNJXijbX4md1WFmF99XPahOLiM+Q58F+d0rpil7uvxY/q5I0bETEJcAk8gLtjwBTyCMfXwXMTCnNLtqdDewPbJ5SeqC4rQW4AXgtcALwFHmR6U2AN6WU/l7P5zIareL79w/y/8+3AAuBbcnHbo+R37+eU8yqDopjqXVSSq/tcZvHV8PAIN4/c54G8pyhNLy1NjoAvcSl5APQGeQD0yeBucDRxQJcfUopLY6IXYA5wNfII56uBab7hdpwlzLE95W8lsGOwAfI87Y+CHwHONaDnIY7iHzV0H+Trxx6kPx5O6m/nfysNr0hva/4WW12+5KTlSsr3cHPqiQ1tYvII1gPBtYGFpOnGP1SSqnfKShTSp3FCIoTgM+Rp8P6E3CARZi6GfL7V+z7XuCd5LXfHgPOJOdWFmGanMdXw545T2NdiucMpWHLETGSJEmSJEmSJEk14hoxkiRJkiRJkiRJNWIhRpIkSZIkSZIkqUYsxEiSJEmSJEmSJNWIhRhJkiRJkiRJkqQasRAjSZIkSZIkSZJUIxZiJEmSJEmSJEmSasRCjCRJkiRJkiRJUo1YiJEkSZIkSZIkSaoRCzGStIoiIkXEUQO02axod0B9ohq6iHggIn7V6DgkSZIkDW/mSpIkZRZiJDW1iNg6In4REQ9GxLKIeCQi/hARn210bMNZRLwmIo6KiM0aHYskSZKkVRcRBxQFja5tWUTcExGnRMT6Q+hvn4j4Qg1CbWrmSpKkWrAQI6lpRcSOwC3A64Ezgc8APwTKwOcbGNpI8BrgSGCzBschSZIkqbq+AexHzp9uBA4GboqICYPsZx/gC9UNbVgwV5IkVV1rowOQpH58FVgIvCml9Fz3OyJivYZEJEmSJEnN7bcppVuKf/8wIp4GZgC7Axc2LixJkkYvR8RIamZbAn/rWYQBSCk90fO2iPhoRMyPiKUR8UxE/DQiXtajzbUR8deI2C4ibiza3h8RB/VoNyYivln0tzAiXoiI6yPibdV8ghHxqmLqtWeKqQNuiYj392jTNcXAWyJidkQ8WcRzSUSs26NtqRhG/2hELImIa4qh9Q9ExNld/QE/L3a5ptvUBbv06GuniJhXxHVfRHysms9dkiRJUl1cXfzcvOuGgXKniLgWeC+wabd84YHiPnMlcyVJ0iBZiJHUzB4EtouI1w7UMCK+CpwL/IN8tddJwG7AdRGxRo/mawK/AeYDXwQeBk6PiI93azMJ+CRwLfAl4ChgXeCKiHjDEJ9Pz5j/A/g/4NXA8cBM4AXg0ojYs5ddTiZP03Y0cDrwX8ApPdocRx5GfwtwOPn1uAJYrVub64DvFf/+Nnnagv2Au7q1eTnwC+APRVzPAmcXMUuSJEkaPrYsfj4NFedOxwJ/Bp5iZb7wheI+cyVzJUnSIDk1maRmdiLwW+DPETEPuB64CrgmpdTe1SgiNiUfcH8tpfTtbrfPBW4DDiEfRHfZEJiZUppdtPsBcDNwXEScV/T9LLBZSmlFt/7OBO4GPgt8ogrP77vAQ+Sp15YXj3EacAPwP8AlPdo/DbwzpZSKtiXgcxExOaW0MPICnDOAS1NK/05OIuJIcnIEQErpvoi4Hvgc8IeU0rW9xPZKYOeU0vVFHz8D/gX8N3DYqj5xSZIkSTUzOSLWAcYBbyGvGbMU+FWluVNK6Q8R8QiwZkrpJz36N1cyV5IkDZIjYiQ1rZTSH4AdgMvJVzd9kXzF0iM9hqRPI3+f/Swi1unagAXkq5x6DpHvAH7Q7XFWFL+vB2xX3NbZlVgUQ9jXIhevbwG2XdXnVvS3K/AzYGK3mNcunuMrImKjHrud0ZVYFK4HWoBNi993K2I8rcd+Jw8hxDu7EguAlNKTwN+BLYbQlyRJkqT6uRJ4klwc+CnwPLBnSukRBp87vYS5krmSJGnwHBEjqamllP4ETIuIMeRizJ7AdOAXEfGGlNKdwCuAICcOvWnv8fujKaUXetx2T/FzM/IQeCJif/JQ81cBbd3a3j+0Z/MiLyfHfEyx9WY94JFuvz/U4/5ni59rFj+7kox7uzdKKT0TEc8yOD0fq+vx1uzldkmSJEnN41ByftMBPA78PaVULu4bbO7UK3OllzBXkiT1y0KMpGGhuOLqT8CfIuIe4MfAh8jD6ktAAv4f0NnL7s8P9vEi4qPA2cClwAnAE0XfX2blHMuromtE4onkq7p6c2+P33t7bpCTlGqr52NJkiRJqp55KaVb+rhvlXMncyVzJUnS4FmIkTQcdSUVGxQ//0k+6L0/pXRP77u8yIYRsVqPUTFbFT8fKH5+ELgPmNZ9iHtEHD3kqF/svuJne0rpyir1+WDx8+V0uxItItbmpVdnJSRJkiSNNoPJnfrKGcyVJEkaJNeIkdS0IuJtEdHbVUXvKX7+vfg5l3xV0pE920e2do/9W4FPd2szpvj9SWB+cXPXVU7Rrd325DVrVllK6QngWuDTEbFBz/sjYt0hdHsVefqBg3vc/ple2nYVodYYwuNIkiRJGp4Gkzu9AEzupQ9zJUmSBskRMZKa2cnAhIi4BLgbGAPsCOxFHrnyY4CU0j8j4mvAccBmEXEpsBjYnLymzBnkYe1dHgW+FBGbkedO3gt4A3BgSqlrTuRfkReyvCQifl30dRBwJ7B6lZ7focANwB0RcSb5yq/1yQnMxuQ1cSqWUno8Ir4LzIyIy4HfFX38P+ApXnxl15/JCdSXImIysBy4ukh6JEmSJI1Ag8yd5gN7RcRs8jTRz6eUfom5kiRJg2YhRlIzO4y8Dsx7gAPJhZiHgNOAb6WUnutqmFI6vlg7ZjpwZHHzv4DfA5f36PdZYH9yoedT5AUsP5NSOrNbm7OBKeSRMu8iJxUfLeLZpRpPLqV0Z0S8sYj3AGBt8vzKtwHfHGK3XwKWkJ/X24GbgHeSk5hl3R57QUQcRJ7H+SygBXhb8fiSJEmSRqhB5E6nkS9Y+++i7YPALzFXkiRp0KLbdJ6SNOJFxLXAOiml1zY6lnqJiDXIxaevpZSObXA4kiRJktQUzJUkSfXiGjGSNIJExPhebv5C8fPa+kUiSZIkSc3DXEmS1EhOTSZJI8teEXEA8BvgeWAnYG/g9yml/21kYJIkSZLUQOZKkqSGsRAjSSPL7UAH8EVgEnn9m+8CX2tkUJIkSZLUYOZK/7+9O6YBAABgEObf9VSQPa0NDgC48YgBAAAAAACIeMQAAAAAAABEhBgAAAAAAICIEAMAAAAAABARYgAAAAAAACJCDAAAAAAAQESIAQAAAAAAiAgxAAAAAAAAESEGAAAAAAAgIsQAAAAAAABEBvqosiYuY+2YAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAIfCAYAAAA8MWbqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACaIklEQVR4nOzdd5icZdWA8ftsSQiQQpEiLSKiglIEgSBFwYL6CYggXbGAUixJiGDHDoRk1Q+igiIgVZAm2ECQIgEMEEWKyIcgIEVaSAJJdnee74/njazLzuwmu/POlvt3Xe+1M289Mzu7c+bMUyKlhCRJkiRJkrS8mhodgCRJkiRJkoY2C0ySJEmSJEnqFwtMkiRJkiRJ6hcLTJIkSZIkSeoXC0ySJEmSJEnqFwtMkiRJkiRJ6hcLTJIkDQMRcUZEXD3crtVfEfHWiEgRsW6jYxnsImJi8VztMIDnPCQiOgbqfJIkafCywCRJ0iAXEWMi4hsR8feIeDEinomIP0XEpxsdm4aVh4G1gVsaHYgkSRp6WhodgCRJ6tUPgLcBnwH+DIwDtgTWb2RQGjoiYlRKaUmtfVJKncDjJYXUZxHRmlJqb3QckiSpNlswSZI0+O0JTE8pXZpS+kdK6c8ppTNSSl/vvmNEHBYRD0XE8xFxeUSs2WXbqyLi4oj4V0S8EBF3RsTB3Y7/Q0ScHhHHR8RTxXlOjYgVagUYEftFxNyIWBQRD0bEzIhYqdh2SEQ8FxErdjvmK0WrrOjhfO+IiM7uXdsiYt8i9nHF/W9FxD3Fuocj4ocRMb5GnD12mYuIjog4pMv9NYuugP+OiPkR8ceI2KnL9tbiMT4SEYsj4rGIOL/Wc9QXxXVO7WH9PRHxzS73qz7fxfY/RMRPipZvjwH/LNbvERF3FM/XcxFxa0RsWWx7WRe5iFgjIn4aEU8U1/pbRHy0y/btIuL6omXdsxFxbkSs0ctjfE9E3FY8b09GxKxusZ8REVdHxKci4kFgcUSMWa4nVJIklcYCkyRJg99jwG4RsWov+72Z3NLpvcC7gDcCJ3XZvjJwDfDuYtupwE8j4m3dzrM3sBqwI3AgucD1nWoXLQozPwBmAJsAHwLeDvyw2OUCIAH7dDmmCfgo8OOUUurhtL8nP+4Du63/MHBpSun54v6LwGHFdQ8B3gp8v1qsfVEUM64FxpKfqy2BXwFXRcTri90+BXwQOAh4DbA7cHN/rls4E9gnIkZ3iWcb4HXAWcX9Q6j9fC/1QeAVwK7AOyJiLeBC4DxgU2AS8F2gxzGSiufhOmBz8u9hE/LjfqHYvhbwO+ARYBvgfcAbgIuqPbiI2Ay4HLi+OO+Hgf/pIfZtgF2APYr9ara+kiRJjRc953SSJGmwiIi3AOcC6wJ3kQsZvwIuW1qciYgzgPcA66WUFhfrjgE+m1Jau8a5LwOeTCkdWtz/AzAReHXRZYqIOIxctFktpbSwuNa6KaW3F9sfBI5PKf2wy3l3IhcnVk0pPRsR3wfelFLaodj+LuCXxXmerBLb8cD/pJTeUNxfE3gUeG9K6bdVjnk/cD4wJqVUiYi3kotF66WUHul+v8txHcDHU0pnFAWcbwITU0odXfa5BvhLSumzEfE9cpFu1yoFsuUSERPIhbUPpZQuLNadDGyVUppU3H+Q3p/vPwCvBF6XUqoU+2wJ3A68KqX0YA/Xngj8A9gxpXRjRHwMOAXYqOtz1WX/bwAfATZc2v0uIjYH5gI7p5SuL57LH6eUWortPwNem1Lapst59gAuKeJ6qHh97Ul+bSxYxqdQkiQ1iC2YJEka5FJKfwReTW5RdCawJrmVyOXdupfdu7S4VPhXsS8AEbFi5K5vd0UeKHwBuSi1QbdL3rq0uFT4IzC6iOG/RMQriuNnRsSCpQvw62KXjYqfPwLe0qUF0KHA5dWKS4UzgU0j4k3F/QOBJ4H/zGAXEXsVXbT+VVz3HGAUsFaN8/bmzcXxz3V7TDuSWysB/JRcYLo/cre8D0TEqGonjIgvdD1XROzY034ppefILXwOLo5rBfbjpdZLfX2+AW5bWlwq/AX4LfDXiLgkIj4TEevVeB62Au7uqbhU2BS4uevYTimlPwPzim3Vjrm+27rrgCC3kFrqHotLkiQNLQ7yLUnSEFC0pLmpWGZExEHAz4ClLVfg5d2IEvmD+1LTyV2OpgB/AxaSu1lVHbOoD5Z+WfUZcsug7h4p4r8rIm4EDi1aJu1O7hpVVUrpnoiYQ+4Cdnvx8+wuLau2JXf5+g4wDXgW2I5cmKpW7FlacPnP8xIRzfz3l25NwD3A+3s4/oUitrkR8SrgHeRuid8DvhER23XpvtfVD4Gfd7n/aJX4IBeTLimKSW8hd21cOr5Tn57vwsKuG1JKnRHxbnIB7e3AB4DjI2KflNIVNeJphIW97yJJkgYTC0ySJA1N9xQ/aw6o3M1OwDkppZ/Df8ZB2hh4ott+b46I5i6tmLYHFgP/1/2EKaUnIuJhcren03q5/o/IY/48Qy6wXNWHmM8EvhwRZ5HH4jmoy7YdgKdSSl9auiIi9u7lfEtbTL0SeLi4vQX/XYhbWtR6vlYLq6KFzSXkYtC3yV3bdiZ3/eu+7zPkx90Xvy323Y9cvLoipfRscZ5leb57ijkBtxbLtyPiN+Rubj0VmG4DPhoR61ZpxXQX8JHoMkNd0UVuPPDXKiHcRX4ddrUzuRh617I+HkmSNHjYRU6SpEEuIq6LiE9GxNYRsUFE7ArMAp6j51Ys1fwN2CMitomITciDfL+yh/1WA06JiNdHxHuBbwA/SilVa1XyReDTEfHFiHhDRLw2IvaMiB9122/p4M9fpvrg3t2dB6wC/AS4PaXUtXDxN+AVEfGxiNgwIj4EHNHL+e4HHgKOi4jXRZ4xrY1c4FjqHPJYRFdGxDsjz662bUR8PiL2BIiIaRFxYERsWrRk+ijQCdzXh8dUU9Fa7VzgcPKA7Wd226Wvz/d/iYjtI+LLxWNZv3gdbQbcXeWQ88jP1eUR8fbIsxDuGhH7FttPBsYBZxRx7EBuVXdDSumGKuecDrwpItqK53834H/Jhc9/1opfkiQNbhaYJEka/H5NHn/oV+Siyk+BvwNvSSk9tQznmUwuGFxLnqXtUXqe8esiYD5wI7lr1hXAsdVOmlL6GXnGsv8ht4z5E3Ac3bqBpZQWkQsQTcDpfQk4pfQ0cCW5ldFZ3bZdAXwL+DZwJ7nFz7ReztcB7Etu+XUHeRDrL/JS17mlce5Mbsn0U3LR6GLyzGYPFbs9T+5qOLu49vuBD6SU/taXx9UHZwKvJ49n9OuuG/r6fPdgHnnmuMvIr5/TycW0b/S0c0rpBfLz8Ffy6+Ae8vM1ptj+BPBO8uDzfyK/Tv5KnoWwRymlv5C7R+4E/Jn8ergS+GQvsUuSpEHOWeQkSdJ/FLOP3Z9S+nidzv9zoDWl1NP4RpIkSRqiHINJkiTVXUSsQm4B9H5g1waHI0mSpAFmgUmSJJXhDvLYTiemlLpPUy9JkqQhzi5ykiRJkiRJ6hcH+ZYkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr9YYJIkSZIkSVK/WGCSJEmSJElSv1hgkiRJkiRJUr+0NDqA/oiIfwMPNToOSdKwsUFK6RX1vMCO246Z98y8yoC//979tyU3pJR2G+jzSj0xB5MkDTBzsGFgSBeYgIdSSls3OghJ0vAQEXPqfY1n5lVa7vzDBvcM9Hmb1/776gN9TqkGczBJ0oAxBxsehnqBSZKkISZRodLoICRJkkYYc7B6s8AkSVKJUoLOZHIjSZJUJnOw+nOQb0mSJEmSJPWLLZgkSSpZhdToECRJkkYcc7D6sgWTJEmSJEmS+sUWTJIklcwBJiVJkspnDlZfFpgkSSpRItGZbJ4tSZJUJnOw+rOLnCRJkiRJkvrFFkySJJXMASYlSZLKZw5WX7ZgkiRJkiRJUr/YgkmSpBIloNNvzyRJkkplDlZ/tmCSJEmSJElSv9iCSZKkktn/X5IkqXzmYPVlgUmSpJI5Ra4kSVL5zMHqyy5ykiRJkiRJ6hdbMEmSVKIEVBodhCRJ0ghjDlZ/tmCSJEmSJElSv9iCSZKkkjlFriRJUvnMwerLApMkSSVKQKe5jSRJUqnMwerPLnKSJEmSJEnqF1swSZJUMgeYlCRJKp85WH3ZgkmSJEmSJEn9YgsmSZJKlIBOotFhSJIkjSjmYPVngUmSpJJVHGBSkiSpdOZg9WUXOUmSJEmSJPWLLZgkSSqRzbMlSZLKZw5Wf7ZgkiRJkiRJUr/YgkmSpJL57ZkkSVL5zMHqywKTJEllSlBJJjeSJEmlMgerOwtM0jC15RFtAbwJeCvQCtwOXHvHrMntjYxLkiRJGso+9+d9JgDvBV4FPAX86sTNL/xnQ4OSBgELTNIwtOURbasCPwHeADQXqzuAZ7c8ou0jd8yafHfDgpNGOAeYlCRp6Prcn/fZG/gm+bN0E/mtfern/rzPucDXTtz8wkoj41N15mD1V8og3xGxQkTcGhF/joi7IuJrNfb9QESkiNi6jNik4WbLI9qagDOAzYB5wDPF8jwwATh3yyPaVm9UfJKk8kTE6RHxZET8tcr28RHxyy452kfKjlGShorP/XmfnYDjgcXAc+Qc+1lgPnAQ8JmGBScNAmXNIrcY2CWltDmwBbBbRGzXfaeIGEv+o7ylpLik4Wg74HXkN7vu5gMrA/uUGpGkLoJOmgZ86dOVI3aLiL9FxP0RcWwP20dHxAXF9lsiYmKx/h0RcVtE3Fn83KXLMX8ozjm3WNYYqGdKA+IMYLca248E7i5ytLcCMyJiVAlxSdJQNBnoBLoPOVEh59mHfu7P+6xUelTqo8bkYCMp/yqlwJSyBcXd1mJJPez6DeAEYFEZcUnD1Duo3f11MbBnOaFIGiwiohk4BXg3sAmwf0Rs0m23jwHPppQ2AtrI78mQx5d4X0rpjcCHgZ91O+7AlNIWxfJk3R6ElllK6XryN+xVdwHGRkSQv4B4htylWpLURTHu0mbkQlJPOsifr+2Jo/8YaflXWS2YiIjmiJgLPAlclVK6pdv2NwHrpZSu7OU8h0XEnIiYA9jNR3q5FcnfolRTAUaXFIukbhJ5BpOBXvpgG+D+lNIDKaUlwPnAHt322QM4s7h9EbBrRERK6Y6U0r+K9XcBYyLC/yPDw8nA64F/AXcCn0kp9fgeYg4maYQbRe0cu+t+GoQalIONqPyrtAJTSqkzpbQFsC6wTUS8Yem2iGgCZgJT+3CeU1NKW6eUtiZX9CT9tz/RcwvBpVYs9pHUIJ3EgC/A6ks//BfLYd0uuw7wcJf7jxTretwnpdRBHsdttW77fAC4PaW0uMu6nxbNs79ctITR0PEuYC7wSvIwBidHxLiedjQHkzTCPUUed6naB/wgT65zb1kBadk1IAcbUflXaQWmpVJKzwHX8t/jAYwlz3b1h4h4kDyGzOUO9C0tl18DLwJjetjWQv7m5YwyA5JUiqeWfvgvllMH+gIRsSm52fYnuqw+sGi6vWOxHDzQ11VdfQS4uBjO4H7gH+Rx/CRJXRSzw50KVBtjaQLwxxM3v/DhKts1fNU1BxtK+VdZs8i9IiImFLfHkMeI+U9lN6U0L6W0ekppYkppInAzsHtKaU4Z8UnDyR2zJi8EDiV/i7IKuZluK/lNbyXgm3fMmnxXwwKURrgEdKamAV/64FFgvS731y3W9bhPRLQA44Gni/vrApcAH0op/d9/Hk9KjxY/5wPnkpuCa+j4J7ArQESsCbwWeKChEUnS4HUGcA05xx5LzrHHFPf/CUxrWGTqVYNysBGVf5XVgmlt4NqI+Au5a85VKaUrIuLrEbF7STFII8YdsybfQm4leDqwgDyw96+Afe6YNfnMWsdKGrb+BLwmIl5VzBK2H3B5t30uJw8iCbA3cE1KKRVfEl0JHJtS+uPSnSOiJSJWL263Av8D/LW+D0PLIiLOA2YDr42IRyLiYxHxyYj4ZLHLN4DtI+JO4PfAMSklu79JUg9O3PzCdnIrkk+Rx61rJxcHvgbsfuLmF/67geFpcBpR+VekVGuolsEtIuYU4wBIktRvZbyvvGrj0QvP+N0G9wz0ed/6qr/TW+wR8R7gu+QxIk5PKX0rIr4OzEkpXR4RK5BnKNmSPJvYfimlByLiS8Dngb93Od07gYXA9eRvcJuBq4EpKaXOgX10GmzMwSRJA2k452AjKf+qNZW5JEkaYAmWDghZ/rVT+hW5NWPXdV/pcnsRsE8Px30T+GaV0241kDFKkiTVQ6NysJGUf5U+yLckSZIkSZKGF1swSZJUsj4Oyi1JkqQBZA5WXz67kiRJkiRJ6hdbMEmSVLJKg8ZgkiRJGsnMwerLApMkSSVKBJ02IJYkSSqVOVj9+exKkiRJkiSpX2zBJElSyRxgUpIkqXzmYPXlsytJkiRJkqR+sQWTJEklSkDF73ckSZJKZQ5Wfz67kiRJkiRJ6hdbMEmSVKqgMzlFriRJUrnMwerNApMkSSVK4BS5kiRJJTMHqz+fXUmSJEmSJPWLLZgkSSpTgopT5EqSJJXLHKzuLDBJGvQ2PaZtVWAv4M3AIuBK4Nq7Tpjc3tDAJEmSJEmABSZJg9ymx7TtApwMtAIVctfedwMPb3pM24F3nTD58UbGJy2rRNj/X5IkqWTmYPXnsytp0Nr0mLZXA7OATmAeML/4+TywPnD6pse0+X9MQ05nigFfJEmSVJs5WH35wUzSYHYIueXS4h62zQM2InebkyRJkiQ1kF3kJA1m7wAW1tjeCuwA3FJOONLAqPj9jiRJUunMwerLZ1fSYNYEpF72aS4jEEmSJElSdbZgkjSY3QDsCTxbZXs7tl7SEJOATqfIlSRJKpU5WP1ZYJI0mJ0OvI/cFa6927ZxwOPAjWUHJfVPUMEBISVJksplDlZvlu8kDVp3nTD5LuDzwArABGBFYGVgPLlV0yF3nTC5s2EBSpIkSZIAWzBJGuTuOmHyLzY9pu024EBgG2ARcClwxV0nTJ7fyNik5WHzbEmSpPKZg9WfBSZJg95dJ0x+EPhWo+OQJEmSJPXMApMkSSXrtIe6JElS6czB6stnV5IkSZIkSf1iCyZJkkqUgEpyBhNJkqQymYPVnwUmSZJKFTbPliRJKp05WL357EqSJEmSJKlfbMEkSVKJcvNsv9+RJEkqkzlY/fnsSpIkSZIkqV9swSRJUsk6cYBJSZKkspmD1ZcFJkmSypTC5tmSJKlf3r7zt1cFNgIWA3dffd0X2hsc0uBnDlZ3FpgkSZIkSRoC3r7ztycAXwXeC3QCASx8+87f/i5w9tXXfSE1LjqNdBaYJEkqUcLm2ZIkadm9fedvrwhcQG65NA+oFJtGAccBqwLfa0hwQ4A5WP3ZPkySJEmSpMHv/eTi0rO8VFwCWAI8Dxz59p2/vUYjApPAFkySJJXO/v+SJGk5fJg85lJPOoFm4N3AmaVFNMSYg9WXBSZJkkqUCDpNbiRJ0rJbg9xaqZoA1iwpliHHHKz+fHYlSZIkSRr8HiWPt1RNBXikpFikl7EFkzQIfe7P+4wFdgc+AIwBbgPOOnHzC+9raGDSANruwBk9vs5vPmfqsH+dVxxgUpIkLbufAscDL/SwrYXcTe7XpUY0xJiD1ZctmKRB5nN/3mcicBV5JojXA+sB+wFXfO7P+3y4cZFJA2e7A2dMpMrrfLsDZ/g6lyRJernLgbnk2eK6NhZZERgLfPvq677wbAPikoCSCkwRsUJE3BoRf46IuyLiaz3sMyUi7o6Iv0TE7yNigzJikwaTz/15nybgdPKbxjxgIbAIeI78TcWXPvfnfbZqWIDSANjuwBm9vs63O3DGsH2dJ6AzNQ34IkmShrerr/vCEuBDwE+AVmAlYDzwJPDpq6/7goN712AOVn9lPRuLgV1SSpsDWwC7RcR23fa5A9g6pbQZcBFwYkmxSYPJdsC65GlGu+sofh5aXjhSXfg6lyRJWg5XX/eFF66+7gvfArYmDzWwK/C2q6/7wpWNjUwqaQymlFICFhR3W4slddvn2i53bwYOKiM2aZDZktoD9y0Eti8pFqleRvzrvJLs/y9Jkpbf1dd94UXg742OY6gxB6uv0gb5johm8gCuGwGnpJRuqbH7x6gyOFlEHAYcVtxdfUCDlBqvs5ft0Yd9pMFuhL/Og06HQJQkSSqZOVi9lfbsppQ6U0pbkLtFbBMRb+hpv4g4iNzcb3qV85yaUto6pbQ18FS94pUaZDbQXmP7yuSBkaWhzNe5JEmSNMyU1oJpqZTScxFxLbAb8Neu2yLi7cAXgZ1TSovLjk0aBP4C/Jk8Vtlz3baNJo9P85NyQ5IG3Ih+nSdsni1JklQ2c7D6K2sWuVdExITi9hjgHcC93fbZEvgRsHtK6cky4pIGmxM3vzABnyD/fYwDVil+jgeagSNP3PzCvzUuQqn/bj5naq+v85vPmerrXJIkSRpCymrBtDZwZjEOUxPw85TSFRHxdWBOSulycpe4lYELIwLgnyml3UuKTxo0Ttz8wqc/9+d9dgd2AN5D/ru4Dbj0xM0vfLahwUkD5OZzpj693YEzenyd33zO1GH/Oq/Y/1+SJKl05mD1VdYscn8hzxrUff1Xutx+exmxSEPBiZtfWAGuLxZpWLr5nKkj8nWeEnTaPFuSJKlU5mD1Z/lOkiRJkiRJ/VL6IN+SJI10DjApSZJUPnOw+rIFkyRJkiRJkvrFApMkSaUKKqlpwJc+XTlit4j4W0TcHxHH9rB9dERcUGy/JSImFuvfERG3RcSdxc9duhyzVbH+/oj4fhQzdUiSJA0ujcnBRlL+ZYFJkqQSJaCTGPClN8VMrqcA7wY2AfaPiE267fYx4NmU0kZAG3BCsf4p4H0ppTcCHwZ+1uWYHwCHAq8plt2W+8mRJEmqk0bkYCMt/7LAJEnSyLANcH9K6YGU0hLgfGCPbvvsAZxZ3L4I2DUiIqV0R0rpX8X6u4AxxbdtawPjUko3p5QScBawZ90fiSRJ0tAwovIvB/mWJKlkDRpgch3g4S73HwG2rbZPSqkjIuYBq5G/QVvqA8DtKaXFEbFOcZ6u51xnoAOXJEkaCA3IwUZU/mWBSZKk4WH1iJjT5f6pKaVTB/ICEbEpudn2OwfyvJIkSUNYXXOwoZR/WWCSJKlkfR2Uexk9lVLausb2R4H1utxft1jX0z6PREQLMB54GiAi1gUuAT6UUvq/Lvuv28s5JUmSBoUG5GAjKv9yDCZJkkaGPwGviYhXRcQoYD/g8m77XE4eRBJgb+CalFKKiAnAlcCxKaU/Lt05pfQY8HxEbFfMXvIh4LI6Pw5JkqShYkTlXxaYJEkqUSKo1GHp9bopdQBHAb8F7gF+nlK6KyK+HhG7F7v9BFgtIu4HpgBLp9I9CtgI+EpEzC2WNYptRwA/Bu4H/g/49QA9VZIkSQOmETnYSMu/7CInSVLJOhszyDcppV8Bv+q27itdbi8C9unhuG8C36xyzjnAGwY2UkmSpIHXiBxsJOVftmCSJEmSJElSv9iCSZKkEqVUtwEmJUmSVIU5WP357EqSJEmSJKlfbMEkSUPIpFnHrda0Quc3mscv2bepNa1YWdK0oHNe6zmVxc1fnn3EcfPLimO7g2a+Atgf+CCwMvB34DTg6pvPnlIpK46hqtKgMZgkSZJGMnOw+rIFkyQNEZNmHbde6xqL7m1dY9HHozWtlFJKMbpzbOuai45sfcWiv02addxqZcSx3UEzNyTPVPFpYDyQgM2AWcBJ2x000/eWXjRiFjlJkqSRzhysvvwQIElDRPP4JRc3jemckDpop0InKRKd0Zk6WNK0YsfqzWPbL6x3DNsdNDPIhaRxwHPAYqATmA/MA/YA9qx3HJIkSZIGFwtMkjQETJp13MSW8e2bp3aW8LJvSoLUER0tE9rfUkIrpi2ADYHne9iWyAWnw+scw5CWCCpp4BdJkiRVZw5WfxaYJGkIiJbKW0iklxeXCikSJKI5bVPnUF5L7feOF4CNtjtoZnOd45AkSZI0iDjItyQNBSlerN3FO0EQJF6ocyRL8sWqaiJ3mXOg7xqcIleSJKl85mD1ZYFJkoaA1BG/TB3RQRNNVHoo3jRFc1oSL6TOuL7OodxILjA10XMRaRzw25vPnlKrCDXi2ZxakiSpfOZg9WX5TpKGgNlHHtfe8czo06MptRDd3hkjRTSl5o5nRn1v9pHH1bWwc/PZU54ELgQm8PL+eisAHeRBwCVJkiSNILZgkqQhovJi86fbnxq9Ruvqi99f9FLLBZ5Epf3fo3/6x49/46slhfI1YDR5trimIo4O4EXgEzefPeWukuIYkhI4pa0kSVLJzMHqzwKTJA0RReukfSf94KsbN43u/Gw0s17qjAcri5pnzD7iuAfLiuPms6csAY7e7qCZJwPvIHeL+ztw1c1nT3mxrDgkSZIkDR4WmCRpiJl9+NfuA45odBw3nz3lQeC0RscxFNn/X5IkqXzmYPXlGEySJEmSJEnqF1swSZJUphR+eyZJklQ2c7C6s8AkSVKJEjbPliSNXFse0fZK4KPAB4CVgQeAU4HL7pg1uaPe19/0mLaVgQOAQ4BXAE8BZwHn3HXC5Ofrff3B4I1T2nYAPgm8GagA1wA/vHPm5DsbGlidmYPVn13kJEmSJEl1t+URbRsDvwI+Qv4s+jywHnAi8MMtj2irawOITY9pmwBcDBxDnqTkeXKR62jg0k2PaVu1ntcfDN44pe0I4KfANsBCYBHwLuAXb5zS9t5GxqahzwKTJEklqxRNtAdykXoSEadHxJMR8dca+7w1IuZGxF0RcV2Z8UkaObY8oi2AWcAY4Fmgndyo5IXi/i7AvnUO4wvAq4vrLSquv7i4vwHwlTpfv6HeOKVtU2AysIBcXKsAncBz5OfjpDdOGd5FNnOw+rLAJEmSNHydAexWbWNETCB/4Ns9pbQpsE85YUkagbYE1gfmV9n+IvCJel1802PaxgG7kwsrPZkHvGfTY9pWqVcMg8CHyDWAzh62LSEPobNXqRFpWLHAJElSySrEgC9ST1JK1wPP1NjlAODilNI/i/2fLCUwSSPRRlDzDetFYL0tj2gbVafrr09usdRTcQVeas2zQZ2uPxhsTn6eq0nFPsOWOVh9Oci3JEklcoBJDTIbA60R8QdgLPC9lNJZPe0YEYcBhxV3Vy8nPEnDyCJyEaeapS1r6jXQ94tAcy/7NFO7ADPULaT2c9BM9RZeQ545WP3ZgkmSJGnkagG2At5LHuT1yxGxcU87ppROTSltnVLamjzrkiQtixuKn9UKHOOAX90xa3KtIlR/PAA8BqxYZfsY4Eng73W6/mBwEbUbmXQCV5QUi4YhC0ySJJXMASY1iDwC/DaltDCl9BRwPcO8e4Skxrhj1uRnyePCjePln0NXJLdcmlWv6991wuQEfAcYDbR229wKrAAcf9cJdStwDQa/BJ4AxvewbRXgr8AtpUZUMnOw+rLAJEmSNHJdBuwQES0RsSKwLXBPg2OSNHydSC4yrQxMAFYjF5xeAA65Y9bke+t58btOmPwb4PPkVjzjyN19xwOjgC/fdcLkYd16586ZkxcA+5FbaY0DVi2W8cAfgY/cOXNYF9hUZ47BJElSqfy2S+WJiPOAtwKrR8QjwFcpvrlPKf0wpXRPRPwG+At5bJQfp5T+2qh4JQ1vd8ya3Al8Y8sj2n4E7AKsBDwIXH/HrMntZcRw1wmTf77pMW1XArsCa5C7/F591wmTF5Rx/Ua7c+bkR944pe295Fn9tiC3HLv5zpmT72toYKUwB6s3C0ySJJUoJQeYVHlSSvv3YZ/pwPQSwpEkAO6YNflJ4PxGXf+uEyYvBC5v1PUb7c6ZkxNwe7GMGOZg9WcXOUmSJEmSJPWLLZg0oHZ+3/RRQPt1v5yWGhXDmw+ZEeSBAl/40xlTlyuOHfecHuQuBO03XNq4xzLpgBlNQPPsc6eW0mS4mq0ObWsGuO20yZ2NjGO42PLItv+8vu44ZfJyvb7evvO3/3OOq6/7QsNeo1o+yW/PJEmSSmcOVl+R0tD9XBIRc4qpctVAO79v+hjgIODj5H7Mi4GLgR9e98tp/ywrjjcfMmPjSjPfq4yKtwHNJDqa29NV0cmn/nTG1If6co4d95y+DvAJYB/yTBJPAacDZ95w6bQX6hZ8N5MOmLEJcBTwTnIh+AHgh8BFs8+dWtrAe1sd2rYTcCSwTbHqduCU206bfE1ZMQwnWx7ZNg44BPgIeWDLF4DzgFPvOGXyk305x9t3/vbq5L+1A8kDZD4PnAX85OrrvvDcgAc9wpTxvrLSxNUXvvknhwz4IMrXvX0GvieqLOZgkqSBZA42PNhFTv1SFJfOJs/GsCLwNPAieXaCX+78vumvLSOONx8yY/POFeK2yqh4O4kUiSUAnaPi3Z2jY+6bD5mxUW/n2HHP6a8GriB/cF9MfiwrANOAC3bcc/pKdXwI/zHpgBk7AZeQi0vPk4tca5GnVf1u0aqp7rY6tO0j5OLalsAz5OfjDcCpWx3adkQZMQwnWx7ZNgH4BfBZoJn8fLYDHwWu2PLItnV7O8fbd/722uTpZQ8jD8b7dLHpSODSt+/87dUGPHDVRYUY8EWSJEm1mYPVVykfVCNihYi4NSL+HBF3RcTXethndERcEBH3R8QtETGxjNjUbx/jpQLE4mJdZ3F/BeB7O79vet3/6iqtnJ+C0ZFYEvmDNwGVSCxJTaxUaeG8PpxmJnkmi2fJsylAfkzPAJsCh9cj9q4mHTBjBeB/yYWH5ygeC7mly3PAe4Dd6h3HVoe2bUAuGi4gF7mWNnWcXyyTtzq0beN6xzHMTAVeTX49LSnWdRT3VyUXEHvzdeAVxTFLu022F/fXI//OJEmSJKl0ZbVgWgzsklLanDwV4m4RsV23fT4GPJtS2ghoA04oKTYtp53fN72J3Pqi2pSe84ENgTfWM443HzJjk0pLvJpEz+MUJdorrbHZmw+ZsU61c+y45/SNgU3IxZSezAc+tOOe01v7HXBtuwJjgEU9bEvkgsShdY4BYF9yK5uOHrZ1AgH0OjORsi2PbFsR2BuYV2WXecB2Wx7ZVvU1+vadv70GearxWud439t3/va4foSqEiTyDCYDvUiSJKk6c7D6K6XAlLKlRYjWYuk++NMewJnF7YuAXSPC39bgtjIwjpdaY/QkARPrGkWwFVD1TzteurFFjbNMJBdOqmknt8haZRmjW1avJv99VPMi8Jo6xwC5KFhrYPEl5O5y6pu1yC/Faq+xpcXDiTXOsX6xT7WB8yrFUrVIpcEjpRjwRZIkSbWZg9VXaWMwRURzRMwFngSuSind0m2XdYCHAVJKHeRv4182nkhEHBYRcyJiDrB6faNWL5Z2ievtdVSthdNAeQaIap+6i/VB+s94NT1Z2Ms1gvw46z3Q93yqFxAgD/g9v84xQO4mWGuWyRaqt6TRyy2g91k7m6j9OlxIblVWS0sv55AkSZKkuiitwJRS6kwpbQGsC2wTEcvV+iGldGpKaetilPanBjJGLZvrfjltMXA1uRVTT1rJLS5urmsgid9E4kWqffgOWqLCPKB7UbOrP5ELZqOqbB8H3HjDpdPqXSy7mpe6oPVkReDndY4B8iyAvc1Wd2EJcQwLxQxxdwJjq+yyAnmMrb/UOM3fgCfIXSh7sjJwP0WhXoPZwDfNtnm2JElSb8zB6q30WeRSSs8B1/LygYofJQ9SS0S0AOOhZosTDQ7fJXel6j7DWgv5A+93r/vltLq2+vnTGVM7mxanEwmaUrfXdMpFp2heko770xlTq7YMuuHSaUuA6eTH0b2L2orkos/MAQ79ZWafO/VhchfRVXj53+c4chHinHrHAdwA3F3E0fW/ZgATyIWMa0uIYzg5nvz8rdBt/ahi3XfuOGVy1aLe1dd9oQJ8CxjNywuhK5D/5r599XVfqNUCTpIkSZLqoqxZ5F4REROK22OAdwD3dtvtcuDDxe29gWtSSn5QGuSu++W0e4EPkQsf48jFh3HkD8HTgR+XEcecn079VvPiNBMgBa3F0gJUmhenr/zpp1NP6cNpzgG+SS4wjSU/lrHk7k0fveHSabValwykrwA/46UxrsYXyz+AfWafO/XJegdw22mTO8m/1z90i2E8cBNw0G2nTa419pa6ueOUybcAnySPX7X09TWO/H/4i3ecMvnS3s5x9XVf+A0wjVyoWvr3NpZc5D3i6uu+cEMdQlcd2P9fkiSpfOZg9RVl1HAiYjPyAN7N5A9TP08pfT0ivg7MSSldHhErkD9UL53yfr+U0gO9nHdO0VVODVbMKLcdeSDi54Hrr/tl3buTvcybD5kxliaOSLBuJP5B4kd/OmPqMo1Js+Oe01cEdiYXUx4BZt9w6bRaA4DXxaQDZqwO7EAu1v0N+PPsc6u3wqqXrQ5tmwhsTS5q3HbbaZNr/l2qti2PbGsFtgfWJv+vu+GOUya/uCznePvO3x4N7EQeh+4J4Marr/uCBb8BUMb7ypgNXrHwjT869J6BPu+f3v0dfE9UWczBJEkDyRxseCilwFQvJjeSpIFkciP1jTmYJGkgmYMND73NaiRJkgbYEP5uR5IkacgyB6uv0gf5liRJkiRJ0vBiCyZJkkpWwQEhJUmSymYOVl8WmCRJKpkzjkiSJJXPHKy+7CInSZIkSZKkfrEFkyRJJUpAxW/PJEmSSmUOVn+2YJIkSZIkSVK/2IJJkqSSOUWuJElS+czB6ssWTJIkSZIkSeoXWzBJklSqcAYTSZKk0pmD1ZsFJkmSypScIleSJKl05mB1Zxc5SZIkSZIk9YstmCRJKplT5EqSJJXPHKy+bMEkSZIkSZKkfrEFk4adibNOGgtMAJ558IijFy7PObY9eOZ4YBzw9C0/m/LCAIZXqnc07RPAGkAz8MRVlQs7l/Ucbzq8rQlYEwjg8dt/MLmyrOeYPHe/JmAtoAI80bbF+Q2ZIPR1F399FPn5ePHevb7ydCNiANhpj+krAqsB866/bNrzjYpDjZFwilxJkqSymYPVnwUmDRsTZ530KmAa8A5yISMmzjrpV8D0B484+tG+nGPbg2duUpxjR6ATSNsePPNiYOYtP5vyVH0ir493NO3zbmAKMJH8//T5dzTt8yPgp1dVLuzo7fg3Hd4WwN7Ap8nFoQQ89abD204Gzu9LoakoLB0CHA6MJxepHpk8d7/vApeXVWh63cVfXwn4FHAQ0Ao0v+7ir/8ZOPHevb5ySxkxAOy0x/S1ganA+4pVTTvtMf0aYPr1l027v6w41HiNGmAyInYDvkcuOv84pXR8t+2jgbOArYCngX1TSg9GxGrARcCbgTNSSkd1OeYPwNrAi8Wqd6aUnqz3Y5EkSVpWjcjBRlL+ZRc5DQsTZ520EXAJ8C5gfrEsAHYHLps466T1ejvHtgfP3JL8B7wjMK84x4vAfsCl2x48c/X6RD/w3tG0z6HAycA65MfyPDAaOBb4/jua9unL3/7ngeOBVbucYxzwDeC4ogBVVVFcmgl8EVihOH4euTXUTOCo6kcPnNdd/PUVgXOBw8hFw/nAc8AbgLNfd/HX31lGHDvtMf2VwKXA+4GFvPQ63RW4ZKc9pr++jDg0ckVEM3AK8G5gE2D/iNik224fA55NKW0EtAEnFOsXAV8Gjq5y+gNTSlsUS8OTG0mSpMFgpOVfFpg0XHwdWAl4ltx6ieLnM8AqwJdqHbztwTMDmE7+m3iO3FoHckHiGeCV5JY8g947mvZZi9wKaz7QtXvfYvJjeyfw1lrneNPhba8DPkIuCL3YZdOiYt3+wGa9hLId8N7imou7rH+BXGz69OS5+63fyzkGwr7kYtIzQHuX9fPJj2f66y7++ugS4vgcsDovf40+Ry7AfbuEGDRIpBQDvvTBNsD9KaUHUkpLgPOBPbrtswdwZnH7ImDXiIiU0sKU0o3kvxlJkqQhqQE52IjKvywwacibOOukdcjNBquNZTMPeNvEWSetWuM0bwDWJ7d66snzwD7bHjxz1HIHWp49yX/bPXWDS+Sixod7Oce+5O5sPXWDqxTnP6CXcxxcnKOnbnCdxbYP9HKOgfAx/rtI1tViYAy9FNz6a6c9po8D3kN+LfZkHvCGnfaYvmE949CItw7wcJf7jxTretwnpdRBfm2u1odz/zQi5kbElyPC6VkkSZKyEZV/WWDScPBKcjGl2ng+FXJBY81ezlFrTKEOcp/ZCcsRX9leTfXnAnIFfGIv53gNPReollpcXKeWDaldba/04RwD4ZW9xNFS7FNPq5Mfb2+vsbXrHIcGiVSHBVg9IuZ0WQ4r6eEcmFJ6I7l78Y7k4rIkSdKgM4xysEGZfznIt4aDZ8nFn1payF2Rap2jVtV3aTG2WgunweRxahePRwH/7uUcj1H7/8Mo4IlezvFvciGrWnGnpQ/nGAjPkeNdUmV7J/n3X+8YWqjeogte6p6pEaBOA0w+lVLausb2R4Gu49GtW6zraZ9HIqKFPDh/zRkXU0qPFj/nR8S55KbgZy1j7JIkSXXXgBxsROVfFpg0HPwf8A9gA3ouAI0D5j54xNGP1TjHbeRucGPouSAyDvjNLT+b8kIP2waby8mztlUrZrQAZ/dyjgvJXe2qScAFvZzjXGDbKtuCXNj5RS/nGAjnAEeSx2DqrqWI45p6BnD9ZdOe2WmP6bOBSfRcRFqRXBi8u55xaMT7E/CaiHgVOZHZj5d3db2c3IV2NnkWyWtSqj6hb5EETUgpPRURrcD/AFfXI3hJUjbpgBkrArsBu5BbR18L/Gb2uVOrDQkwqGyzx9dbaY4fdowbvQ/NMSoWdz7ZMm/xZ2/55Vcv7svxWxzVFsAbyUMtrAncD1w09+TJD/Y1hi2OatuY/D63PrnL0kVzT55877I+luW13UEz1yTH/0Zyd6jLgZtvPntKr7M0a8gZUfmXXeQ05D14xNEJ+Cr59bxSt80rk994v1nrHLf8bEon8BXyYMtjum0eTx7DZ+ZAxFtvV1Uu/Dt5cLgJ/HcRuYk84Pm9wK97Oc0c4Ppi/66tw5qLdbcAN/ZyjquBvxb7d/1f01LEdmXbFueXUVA5E3iyuGbXryxGAWOBmffu9ZVq43cNpO+QW1GN7bZ+RaAV+PL1l02r1bVRw0U92mb34ZVT9Ok/CvgtcA/w85TSXRHx9YjYvdjtJ8BqEXE/MIU88yQAEfEg+f/gIRHxSDEDymjgtxHxF2AuOXE6bdmfFElSX0w6YMYm5BztePLsye8GTgSum3TAjNc1Mra+2O49X31d+5orvrBk7ZU+WlmpZWxldPPozvGj1lu8/thfbL3ft+f2dvwWR7WNIs+UfBFwELnIdjhw1RZHtX2mKD7VOr5pi6PavgpcSR6ncxfyxDa/3OKotm9tcVRb3T8fb3fQzL3Jv8Mp5NmE9yHnq+dvd9DM7nmiBlIDcrCRln9ZYNKw8OARR98MHEIuJIwlF5rGkb+ROPDBI47+c2/nuOVnU35N/uOf3+Uc48kFmQ/e8rMpD9Ql+Pr4IjCLXLhYqVhWJr+ZHnBV5cLFNY7l9h9MrgBHkFv/rNjlHCuSWy4dWuxTVdsW5y8h9wW+tLj20hhGAz8mz3RXd/fu9ZWnyN8Q3Ux+TSyNo5NcmCzln/H1l027mzz73j+6xDGW3Pz149dfNu36MuLQyJZS+lVKaeOU0qtTSt8q1n0lpXR5cXtRSmmflNJGKaVtUkoPdDl2Ykpp1ZTSyimldVNKdxezm2yVUtospbRpSukzKaXORj0+SRrOJh0wYxy5FfpYcsv7eV2W8cDZkw6YsXLjIuzdkrVXnptam1r+64N5cbtjtRU23+YD3/xZL6f4HLn11nzyEAfPFz8XkGd83r36oUD+vPChHo6fT25ZcuiyPqZlsd1BM7chf+m4iNyqfen15wFbMUS+0NayGUn5V9RoeTXoRcScXsab0AgzcdZJS5vMrk7ucnRP0cKpz7Y9eGYTsAX5jfrRW3425b6BjrMs72jaZ0VgS3KroXuuqlz45LKe402Ht40HNiO3/rnz9h9MXubxiibP3W91YBNya7K5bVuc35CxrF538dfXJw8+/gIw9969vlJtXKa62WmP6QG8ljyg9zPAnddfNs3m0INEGe8ro9dbc+H6Mz91z0Cf9/4PfhnfE1UWczCpfJMOmHEgcBzVZ6UdD3xp9rlTexvGoCG23f1rBy9eb+xZtVp8NHVUOm4/9ejWnrZtcVTbOHIr+kXkLwq7WzrkwK5zT578sqtscVRbS3F8Kz2PzTmKnKtuM/fkyXXJEbc7aOaZwPb0/DsM8peQb7/57CkP1eP6g5k52PDgGEwaVopi0l/6c45bfjalAtw+MBE11lWVC18A/tifc9z+g8nzgBv6c462Lc5/itwUuKHu3esr/wT+2cgYim5w9xaLRqAEDOHvdiRJjfNuei6sLFUht+4ZlAWmypjWI3vdp7WpZdv/+dqYW674ak/jSW1e/Kz2HLxAHih5DXqeSGYjcgvyal90LiG3cn8tcGdvsS6r7Q6aGeTZvqp9Wbs0O9gOGHEFpjKYg9WfXeQkSZIkafDrbdbkxOBuQNC32FJaocqWJmrP+gz5Oaj2Gbevn33rMs1Ycd7ezh34GV1DmC9eSZJKllIM+CJJGvb+QO0iTUuxz6DUtKjjvN72iY5UueXK46q18LmL/Pm12mfYFcjDD/TUegngAaCD3EWuJ0tnF76/tziXRzFD3O3kVlLVJOCOelxfmTlYfVlgkiRJg0ZEbBIRaxa3V46Ir0XEVyNixUbHJkkN9gtgMS+f8Zhi3SLgklIjWga3XPaVGdFe6ajahieg9ZlFVadan3vy5KfI07mP7/loxgCz5p7c80Q0c0+evAg4g+oFnrHA2XNPnvxCtRgGwCxyS7SeWqONB+befPYUh1FQQwxEDmaBSZKksqUY+GX4OA+YUNw+CdiJPB7FjxoVkCQNBrPPnfoUL81yNoE8qPWKxe0EfHz2uVOfaUhwfTTqXwt2pzOl/yoyFR3Hmp9vf6LS2rRbL6c4jtzCZzx5QOwx5Mc/DriYPMteLd8Hfl8cP744funt64AZy/J4ltXNZ0/5PfC/5CLXhOL6KxfXfwTodZwq9ZM5WC39zsEsMEmSpMFkYkrpbxERwF7APsDewLsaG5YkNd7sc6feBOxCLpTcXyzfA3aZfe7UmxsZW1/ccsVxvx798PwNRj314o3RUemIzlRperFj4ahHF5x028+OWWvOuZ+vOQTz3JMnLwD2JxdiZpMHw/41cBDwuWqtl7ocvwT4JPAx4Fry5C9/AD4OfLxes8d1dfPZU74HvB+4iBz/XOBzwHtuPnvKMs/4LA2gfudgg3kQOEmShiVnMKlpUUSMBTYB/plSeioiWshja0jSiDf73KlPkAtM3290LMvjliuPe5g8m9pymXvy5Hbgd8WyPMdXyLMbN2yG45vPnvJX4NhGXX8kMwerqd85mAUmSZLKlHhpImL15FzgGvJYGCcX694E/KNhEUmSpKHPHKw3/c7BLDBJkqRBI6U0OSLeCbSnlK4tVleAyQ0MS5IkaVgbiBzMApMkSSVzStvaUkq/i4j1ImK7lNLNKaU5jY5JkiQNfeZgtfU3B3OQb0mSNGhExPoR8UfgXuDqYt3eEfHjxkYmSZI0fA1EDmaBSZKksqU6LMPHj4Aryf3/24t1VwHvaFhEkiRpeDAHq6XfOZhd5CRJKpnNs2vaBnhvSqkSEQkgpTQvIsY3OC5JkjTEmYPV1O8crM8FpmKwpy2AlbuuTyl9pa/nkCRJ6sUTwEbAfUtXRMQmwD8bFpEkSdLw1+8crE8Fpog4GfggcC3wQpdNw6tBmCRJZfDds5aTgCsi4jtAS0TsD3wBOL6xYUmSpCHPHKyWfudgfW3BdACweUrp4WWPURpa9j3tM9HcUtk1mtLalY6mv573se/f0eiYGunL5+y7yqjW9ncCsaS99apvHHjB042OqZG2OKptLWBd4Hng73NPnjwk36Ym7T8jyN9QjAf+Nfu8qf9qcEgSACml0yPiaeATwMPAh4Evp5QubWhgkiRJw9hA5GB9LTA9BTy3rAFKQ81BZx11+OobPP/NUWPax5IiRVOKT17xkUfmPbnyh8/76P/e0Oj4yvSls/cb/YpVnvv5Vps88a6mSJGAlCJ9/1fvuubJZybs882DLljY6BjLtMVRbesB3wDeAnQAzcCjWxzV9rW5J0/+QyNjW1aT9p+xA/BVYAOgE2iZtP+MW4Avzz5v6j8aGtyIYf//WlJKlwGXNTqOwSAiXgV8i56HKVi/ETFJkjR0mYPV0t8crGqBKSI27HJ3BnBO0VTqiW4BPNDbRSJiPeAsYE1yo7RTU0rf67bPeOBsYP0irpNSSj/t4+OQ+u2gs4787BobPnNiqpAqHU3tEKTOxJgJi9YdvfKS3+5/+qffet5Hv39ro+Msw5fO3i/WW+vJm9dZ46k3LGlv6ehMzZ0AEZXYcN3H3jFmhcV/+tLZ+73xmwed39noWMuwxVFtawMXA6sA83ipce2awGlbHNV25NyTJ/+uUfEti0n7z3grcBq5SPZ8sTqA7YCLJ+0/Y/fZ5021tWq9Dcl2b+WIiI9W25ZSOr3MWAaJc4H/A6by38MUSJKkZWUOVtVA5GC1WjDdT376u5b4/qf7dcjf4vemA5iaUro9IsYCt0XEVSmlu7vscyRwd0rpfRHxCuBvEXFOSmlJH84v9cu+p32meY0N53290hmVVGn6T9EkCCrtze3NrR2jVl71hVnA1g0MszQrjFqy/ytf8fSmi5a0Loku/wJSakqLlrQuWWu1Zzd68ulVPkouVIwERwGrAs92W/8CsALw7S2Oartm7smTO0qPbBlM2n9GE/BtYAnwYpdNidxKdVXgs+QPslKjHNzt/lrAq4E/AiOxwLQp8JaUUqXRgUiSpGGt3zlYU7UNKaWmlFJz8bPa0pfiEimlx1JKtxe35wP3AOt03w0YGxFBbgL+DLkwJdVdy6jO/VpGdY7uWlzqqqOjecnKqy3cbL/TPrNK2bE1wqrjn/9URCJ6aEKa1yVWX2XeEeVHVr4tjmprBT7AS619ulsEjCVP6znYbQmsxn8Xl7p6DnjfpP1njCktopEo1WkZJlJKb+u2vB74JDCn0bE1yPXkv11JktQf5mA1DUQO1tdZ5L6fUvp0D+u/m1L6bJ8jzsdMJCdKt3TbdDJwOfAv8oe1fXv6ti4iDgMOK+6uvizXlqppakob1NoeKRdaoim9kpe3Yhl2Vhi9ZM3OSlPVf5eVSlNlhdFL1igzpgZakfy/slZ3wGBo/D9andpvg0v/546jehFKaoQzyONBTmtwHKWIiK93ufsg8JuIuAR4vOt+KaWvlBmXJEkacc5gGXKwqi2YujmkyvruTahqioiVgV8An00pdW8N8C5gLvBK8kCWJ0fEuO7nSCmdmlLaOqW0NfmBSv1W6YwHgKj22TvlClNKlXik1MAa5MXFox9tikrVEfCamlLTi4tGP1ZmTA20kNylrFZBPgFPlhNOvzxJ7f/7zeQi07xywhmpAlIdlmEiIpq6LSuTv1h6rsGhlWm9LstKwBVAa7f16zUsOkmShiRzsFoGIger2YKpyyBPLT0M+LQhy1DgiYhWcnHpnJTSxT3s8hHg+JRSAu6PiH8ArwNGxKDKaqyO9uYLOxa3/LB5VMcKqbP5ZS1VWlo7W59/Yuyfzj/0eyPig/czz41rW3+tJ89PvLybXCqKcE89O/57PR073Mw9eXLHFke1XUCepvOZHnYZQ27VNhT+V/2Z3ALiFeTCWXfjgQtmnzd1UalRSf+tg5dX+x8FDm1ALA2RUvpIo2OQJEkjTr9zsN5aMB1cLKO63D4YOIg82NOH+3KRYlylnwD3pJRmVtntn8Cuxf5rAq8Fep2hThoIFxz6vc5nHh0/LYJoaulsXfp3lUg0t3aM6ljcsnjhs2MOb3CYpVnc3nrJw4+/Ys4Ko9pHNTV1/uf/RFN0Nq0wqr31X0+u9tdFS0ad3cgYSzaLPIPmKvz3/82x5P+Pn5t78uRBPwDv7POmVoBjyI9hbJdNTeTH9hTw/QaENuKkNPDLMPIq8pdYS5c1U0rrp5R+29iwGiMieipsExFDodWkJEmDijlYTf3OwWoWmJYO7kRuWdR1sKddUkr7p5Ru7uN13kIuTO0SEXOL5T0R8cmI+GSxzzeA7SPiTuD3wDEpJbvAqTTnfPjk0558YLWPLlow+t/NrZXWpuZKS3NrpXXB0yv97d//WHXH8z72/T83OsayfPOg89O//r36jvc9tO55lUpTpbWlo6W1paMlEenvD61z0cNPrLHtNw86f3j9O61h7smT/w3sSe6mslKxjAf+Bhw09+TJ1zcuumUz+7yps4EDgLvIj2El8sQKvwX2nH3e1JHS9bGxHGCyqpTSQ92WkZ4LtHZfUbQK79NEK5IkqQtzsKoGIgeLVKXkFhF9Gp+pkdPmRsScYiwmaUDt/5NPbxlNad1KJe46/2PfH9Et6b509n6jW1s6dgZo72j+4zcPuqCnrlUjxhZHtU0A1gaen3vy5EcbHE6/TNp/xiuBCcDjs8+b2mMriZGmjPeVUeustXDtr0+5Z6DP+8+PH8NQfU+MiBvoQ4qWUtqphHAGhS7PySRgdrfN6wJ3pZTeV3pgBXMwSdJAMgdrjIHOwWqNwdRT/7ue+A2ahp3zPvb9O4A7Gh3HYPDNg85fDPyu0XEMFnNPnvwcw2Sw4dnnTf0XeeZOlW0YDQg5QH7c6AAGoR+TZ6h8M3mYgaUSucvuNY0ISpKkIc0crLsBzcFqFZhe1eX2e4G9ge8ADwEbkMfx+MVABiNJkkaelNKZjY5hsFn6nETEzSmlexsdjyRJGn4GOgerWmBKKT209HZETAG2Tik9V6y6LyLmAHOAHwxkQJIkDXcxjPrr10Mx2cc2wOrw0lSWKaXTGxZUibrP3BsR2/e030h5PiRJGijmYLX1Nwer1YKpq/HAivx3t5AVi/WSJKmvhtmAkAMtIvYEzgb+DmxKHpD+DcCNwEgpqBzc5XaQJ0t5HHgYWA9Yi5H1fEiS1H/mYDUNRA7W1wLTmcDVEfFdXkpuPl2slyRJGijfBD6SUrowIp5NKW0ZER8hJzojQjGDLwAR8b/ApSml73ZZ9xng1Q0ITZIkDV/9zsH6WmD6HHA/sC/wSuAx4GTgtGUMWJIkOcBkLeunlC7stu5McgueoxsQT6MdRG6m3tXJwFPkL/skSVJfmYPV0u8crE8FppRSBfhhsUiSJNXLkxGxZkrpCeDBiJhELqaM1FlrHwd2By7psu59wJONCUeSJA1T/c7BqhaYIuLglNLPitsfrbafA0xKkrSM7P9fy2nADuSZatuAa4EKMKORQTXQp4FfRMQ08jAF6wObAPs0NCpJkoYic7Ba+p2D1WrBtD/ws+L2wVX2STjApCRJy8bkpqqU0gldbp8VEX8AVkop3dO4qBonpXRVRGwIvJs8TMGVwJUppacbG5kkSUOQOVhVA5GDVS0wpZTe0+X226rtJ0mSNFAi4rPAeUXzbFJK/2xsRI2XUnqKl770kyRJGnADkYM19fFCn46IzZb15JIkqQepDsvw8VbgHxFxdUR8JCLGNTqgskXEb7rcviEiru9paWSMkiQNSeZgtbyVfuZgfZ1FbmtgakSMBW4AriuW21NKw+splSRJDZNS2jMiJgB7k7von1wUXM5JKV3c0ODKc1aX2z9uWBSSJGnEGIgcrK+zyH0IICImAjsXy1eKzROWKWpJkkayhFPk9iKl9By5sPLjiFi/uH0hI2QmuZTSuV1un9nIWCRJGjbMwXrV3xysry2YiIjXkgtLbwXeAtxHbsUkSZI0oCJiB/KEI3sDTwNfbWxEjRERdwB/IOdc16eUnmlsRJIkaTjrTw7WpwJTRDwBzAcuIjfb/kRKaf6yhypJksLO5VVFxHTgg+TvGS8A3pVSmtvQoBprKvkLvs8C50bE/RRDFaSULmpkYJIkDTXmYNUNRA7W1xZMlwM7AnsCqwCrRsR1KaVHl+ViUr1NOmBGM/BmYHXgSWDO7HOnVsqO44Tz9lplpdGLP9zUVJmwuL31tsXtrVcce8AvSv939sYpbauQn48W4K93zpw84mdjkgYFk5taVgIOSind0OhABoOU0jXANQARsRowBTgKOIIR0mVQ0uCz/azj1ozWysEEK6aOuPGmT37tmjKvv9Whba3ANuTPpv8C5t522uQ+5/xbf3RmM3AwwatIPAT8bM7pU9r7evyk/WcEsDmwLvAccOvs86YuWYaHoEYxB6ul3zlYLMsY3RGxJrAT+Zu0g4CnUkobLe/F+ysi5qSUtm7U9TW4TDpgxq7Ad4DxXVY/DXxu9rlTbywjhuPP/UCsPu75n7x+/UcOaIoUCWiKFM8uWPm5e/657gFTPnjZ1WXE8cYpbaOAL5KbNi79I28CbgSOvnPm5KfLiEMaasp4Xxm19loL1/nCtHsG+rwPfvpofE8cfiLi3byUe60HzKboMpdSuquBcZmDSSPQ9qcc19y0cscvWlZd/O7/rAyi8kLzEx1Pj97zpsO/dlu9Y9jq0Lbdga8BK/4nAngMmHLbaZN7vf7WH515VGrhOwlGE0CCgCXRyVfm/GTKzN6On7T/jC2BmcA6vDSP2IvAN2efN/UXy/eoZA42PDT1dceI2JL8YfUg4ABgIXBrneKSlsmkA2bsDPyQXHWd32WZAJw+6YAZ25QRxyvGzzvrja966OBKJdLijpaOJR0tHYvaW9onrLRgwps3vv/yky7Yc6sy4gBOIv+tLuCl5+J5ckvEC944pW3FGsdKkgaPK8ljIPwYeFVK6YMppVl9LS5FxOkR8WRE/LWX/d4cER0RsfcAxCxpmGoa2/7bltUWvzdV6Eyd0ZE6oyN10N60YuearWst+sP2s766YT2vv9Whbe8lF3da+O8cd03g7K0Obdu01vFbf3TmxyqtzEzQGtAeifaA9gQtlRaO3/qjMw+vdfyk/We8DjgbWLu47nxyvt0CnDhp/xnv7+9jlIayPhWYIuJZ4BLgTeTuctuklNZJKR1Qz+Ckvph0wIwgDzzWQf72oKsXyN8qfLHecZx43l5rv379Rz64eElre2dq6tJEN1jc0do+qqW9de1Vn+31W5H+euOUttcD7yY31+3aVDgV6yYC7613HJKkAbEjcDqwD/DPiPhdRHwxInbs4/FnALvV2iEimoETgN/1J1BJw9v2P/jq5i2rLtkpdbCE1HUkmyB1RHu0VkY3rdj57Xpdf6tD25qB44BFwOJumxcArcC0WudIzXyHRAro7Lo+oJNESs18Y+uPzqw1zdhUYHRxva4Wkz93fGnS/jP6PJGWNNz0tQXTlimliSmlD6WUfpJSur+uUUnL5jXk/s8Lq2yfD2wy6YAZ69QziJXHvPiJCKJSZei4xe2t7a9a88ntjj/3A/WeG/N95HE5qvV/bQcOrHMMkmqINPCLhqeU0h9TSt9JKb0b2AL4E/A5cje5vhx/PdDbzHOfAn5BHrtQknrUNLpyBBC5R9rLpUp0No9vf08dQ9gCGEcuMPVkHrDDVoe2je9p49YfnbldamIC+UvpnnSkJsaRuyW/zKT9Z6xEnlF9XpXjF5N7U9hVahAzB6uvPhWYUkoP1jkOqT/G0+1biB50kN+Q6qalubJ6E9XHFqxAamnpaKLvg+svr9WhRiD5uVilzjFIqiXFwC/DRER8JiJWb3Qcg0VEvD8ivhcRc4EHyR98Tia3VB2I868DvB/4QR/2PSwi5kTEHPJ7jaSRpCmtXqW2lFVSiuY0qo4RjKf2EM2J/Jlg5SrbX1m0XupR5DMkcve3nqzMS2Mu1VLXzxzqJ3OwqgYiB+vzGEzSIPYIuWhT7a+7idyi5/F6BrG4vfWeSmqq+obT0lRpWrhohUXHHvCLPs9QsZz+3sv2FQBbIUoarHYBHoyIKyJi34gY3eiAGuwz5O7NU4DVUko7ppS+mFIaqO5s3wWOSSn1OvtSSunUlNLWxUCmTw3Q9SUNEakj7i0KMD1rprmyuKla656B8DC1Z89sIReYqk1m8xeieoOTBBAE8JcquzxL7glQ68viZvJnE2ko6ncOZoFJQ97sc6c+BtzEf88e19V44Lezz536bD3jWLho9KmL2lvbW5s7enjjS7S2dLY88K+1LqlnDIVLyW+urT1si2I5o4Q4JFWT6rAMEymlPYANgF8DnwUej4gfR0SPXRaGu5TSW1NKX00pXZNS6j7O4EDYGjg/Ih4kDyY+KyL2rMN1JA1xaXHzTCpRoamnz5CJCJo657X+uF7Xv+20yX8H7qZ6C6FxwEW3nTa5xy50c06fcn908neCnltZBa3RyT/mnD7l7p42zz5v6hLg/F6ufx8w4LOUaQCZg1U1EDmYBSYNF18m94delZe+2Wgp7j8JfKveARx7wC/a7/zHBp+OIMa0trcu/XqkOSpNY0a1j/r3vPH/fmr+2M/UO447Z07+N3nq1pWAsV02jSHPqncJ8Md6xyFJyyul9HRK6ZSU0iRgZ+DNwLUR8WAxwHW17g9aRimlVxXjbE4ELgKOSCld2tioJA1GNx153NPtT44+LppSc7Sk1v98sm6iKVrSqMr8ln+kxc1fr3MY08hjMK3CS59ll+b8D5FbZVYVFQ6KxOIUjEr/6RVHpGBUJJZEhYN7uf7/Av8orrf0y9ymIp7FwLTZ500dRiUHjTT9zcGqFpgiYpe+LAP8eKTlMvvcqf8kD259AbAiudXSaPI0onvMPndqXbvHLfXpD1xx+i33brzPI0+v+sAKo9pbV2htb01Euuef611210PrvfGY/S+uayuqpe6cOflc4KPAXeQ3vAnk5sJfAo65c+bkXrtCSKqTenxzNgxT2YjYNSJ+Sh7M+gngQ8DBwJbkb9bUBxFxHjAbeG1EPBIRH4uIT0bEJxsdm6Sh548f/8bx7Y+OObSyoOXRaGFUtKRWKnS2/3uF8zqeGb35TUce1312twF122mT7wN2J89svhI5528hz7a5122nTa45qcGc06fcER1sG53cDDSnoBVojk5ujQ7eMuf0KbfWOn72eVOfA/YCTiN/qT2ePDbTFcAes8+b2mPrJw0S5mB90p8cLFLq+RmJiH/04doppbThMkU7gCJiTjEOgPQfkw6YMYr8j37B7HOnLmlUHCect9cqTZFW6aw0PVzCuEtVvXFK28rkN955d86cPAz/BUoDp4z3lVFrrbVwvc99bsCbzz8wdSrD4T0xIk4C9iO3Sj0LODul9GiX7a3AsyklWzE1kDmYpO1POW41grEkHr7pyON6m3BnwG11aNtocpFp/m2nTV7mXHvrj85cCVgTeGLO6VOqzUZd1aT9Z7SQu8UtnH3e1LoW1kYCc7DGG4gcrGqBaSgwuZEkDSSTm8aLiJOBM1NKf6qxz+tSSveWGJa6MQeTJA0kc7DGG4gcrN7TpUuSpO6G7nc7dZdSOgogItYD1kkp3dzDPsO6uBQRP6MPr5KU0odKCEeSpOHDHKyqgcjB+jTId0SMi4iZEXFbRDwUEf9cuixX5JIkqXQRsVtE/C0i7o+IY3vYPjoiLii23xIRE4v1q0XEtRGxoPh2q+sxW0XEncUx34+I6GeM60XEH4F7gauLdXtHRN1mJhqE7gf+rw+LJEka5IZC/lWcs985WF9bMM0C1gW+Th40+SDyCP6/WKaIJUlSQ749i4hm4BTgHcAjwJ8i4vKUUtcBST9G7lu/UUTsB5wA7EuesefLwBuKpasfAIcCtwC/Anajf4NwnwpcCexInpwA4CpgRj/OOaSklL7W6BgkSRqWSs7BhlD+BQOQg/WpBRPwTuADKaXLgM7i577Q6zSOkiRpcNgGuD+l9EBKaQlwPrBHt332AM4sbl8E7BoRkVJamFK6kZzo/EdErA2MSyndnPKgjmcBew5AnMenlCoUaWBKaR55pp4RKSJGRcQbI+JtzuQrSdKQMlTyr6Wx9isH62sLpibySOIACyJiPPAYsFHfY5UkSQBRn2/PVo+IOV3un5pSOrXL/XWAh7vcfwTYtts5/rNPSqkjIuYBqwFPVbnmOsV5up5zneWIvasnyPnFfUtXRMQmwIjslh8ROwAXAqPJsxU9D4wl/54aNpOvJElDUQNysKGSf8EA5GB9LTD9GdgZ+D1wA7nL3IKuF5YkSX2U+t1NvidPDYcZTICTgCsi4jtAS0TsD3wBOL6xYTVMG3BiSqktIp5NKa0aEV8BXmh0YJIkDTnmYLX0Owfra4HpUGDpb+IzwHeACYCzl0iSNDQ8CqzX5f66xbqe9nkkIlrITaKfprpHi/PUOucySSmdHhFPA58gf5v3YeDLKaVL+3PeIWxj4Hvd1h0P/IOcCEqSpMFrSORfMDA5WJ8KTCmlB7rcfpI8CJUkSVpWiUZNkfsn4DUR8SpyErIfcEC3fS4nJxOzgb2Ba4q+/T1KKT0WEc9HxHbkQSY/BPxvfwMtxnq8rL/nGSbmkbvGPQc8VjRVfxpYuZFBSZI05DQmBxsy+Vdx7n7lYH1twUREfBTYH3gl8C/y4FSn13rgkiRpcCj69B8F/BZoJr+H3xURXwfmpJQuB34C/Cwi7geeISdBAETEg+RCx6iI2BN4ZzEDyhHAGcAY8uwlyzyDSZFj9OUxnL6s5x4GLgbeA5wLnA5cC7STBwGVJEmD2GDOv4rzD2gO1qcCU0ScSB7Z/LvAQ8AGwNHAa4HP9eUckiQp9zev0wCTvUop/Yo8lW3XdV/pcnsRsE+VYydWWT+Hl0+du6z6MittIhdYRpSU0me73D4pIm4mD/L9m4YFJUnSENSoHGwQ518wwDlYX1swHQK8KaX0n5HKI+IK4HYsMEmStGxs+/tfUkpva3QMg1VEfD+l9Oml94vpiomI7wKfbVBYkiQNTeZg/2Wgc7CmPu43v1i6r3t+IIORJEmKiAkRcWBETCt+Tmh0TA10SJX1ffnGUZIkqc/6m4P1tQXTd4GLI+J44BHyCOfTgLaI2HDpTl0HA5ckST1rVBe5oSAidiGPO/Q3crf89YFTIuIDKaXfNzS4EnUZE6Glh/ERNgSeKjkkSZKGPHOw6gYiB+trgWnp9Ljdm0/tCny/uJ3Ig1ZJkiQtr5OBw1JKP1+6IiL2AU4BXtewqMq3tIXSKP67tVICniDPNiNJkjRQ+p2D9anAlFLqa1c6abltv++MMeQi5trAs8DVN10wtfRumJP2n7EKuXg6ntxi79rZ501dsizn2GXX49cgP5aVgAeB66/5/bEdAxyqpKHKb89qeSXwi27rLgFOa0AsDbN0TISI+GZK6UuNjkeSpGHBHKyWfudgfW3BBEBErAesk1K6eVmOk3qz/b4z3gucQP6mtpU8BXNl+31nTAdOv+mCqXX/VzBp/xkBHFUsTeS/j3bgxUn7z5g8+7yp1/R2jl12Pb4Z+CL52+Ygt+prB+btsuvxR1zz+2P/VK/4JQ0hJje1/Aw4kpdaSAMcDpzVmHAaK6X0pYhYDXgPsFZKaXpEvBJo6jr5iiRJ6gNzsFr6nYP1qWVSRKwfEX8E7gWuLtbtHRE/7uPx60XEtRFxd0TcFRGfqbLfWyNibrHPdX19EBratt93xo7kbpiJPHD808XPRcAXgH1LCuXj5Bl5XgDmdYmjGfjRpP1nbN2HcxxD7rYwH3iuyzlWAs7aZdfjXzPgUUvS8LIlMCMiHomIWyLiEWAGsGVEXL90aXCMpYmIncljIRwILJ3S+DXADxoWlCRJGo76nYP1tQXTj4ArgR3JH5gBriou1hcdwNSU0u0RMRa4LSKuSindvXSHYnTyWcBuKaV/RsQafTy3hr5jyK+Rxd3Wd5CLPUdvv++Mi266YGrduphN2n/GGOAzwAKgs9vmReSWVZPJCX6Pdtn1+FXJxaV5QKXb5heAVcgV4CkDE7WkISk5wGQvTmOEdYfrxXeBfVNKv4+IZ4t1twDbNC4kSZKGIHOw3vQ7B+trgWkb4L0ppUpE/pWklOZFxPi+HJxSegx4rLg9PyLuAdYB7u6y2wHAxSmlfxb7PdnH2DSEbb/vjLWA15KLMj1ZDKwMbAbcXsdQ3kz+e1hUZft8YNtJ+88YN/u8quNC7UTuFte9uLTUPOB9u+x6/NRrfn+s/9okqQcppTMbHcMgM7HLzC1L3zuWsIzDHEiSJNUyEDlYX5OTJ4CNgPuWroiITYB/LusFI2IiuenVLd02bQy0RsQfgLHA91JKL+vrFxGHAYcVd1df1utr0FmRl7cY6i4BK9Q5jt7On8iFoxXIXd56Moba3U4r5PGlmuj9MUvSiBURa5K/3FqdXLgHIKV0esOCapy7I+JdKaXfdln3duDORgUkSZKGp/7mYH0tMJ0EXBER3wFaImJ/8tg4xy9jsCuTRyX/bEqp+4f0FmAr8uxdY4DZEXFzSum+rjullE4FTi3ON2dZrq9B6TFysaWF3CWuuyi2/aPOcdxPHmupmlHkbm7P9HKOaq2XIL+uH7zm98daXJKkKiJiT+Bs4O/ApsBdwBuAG4GRWGCaSs7BrgTGRMSPgPcBezQ2LEmSNJwMRA7Wp0G+i2rVNGAf4GHyODNfTimdswzBtpKLS+eklC7uYZdHgN+mlBamlJ4Crgc27+v5NTTddMHUF4Hzya3WejIeuP6mC6Y+Vs84Zp839QFgbnG9nqwMnD77vJrjQN0GPEr1x7IC8MPljVHSMJLqsAwf3wQ+klLaElhY/DyM/D92xClm7t2MnOSdTv7CZZuUkrOSSpK0rMzBaul3DtanAhNASumylNJ7UkqbppR2Syld2tdjIyKAnwD3pJRmVtntMmCHiGiJiBWBbYF7+noNDWlt5PG4ViUXYYLcYmgV4HFya7kyTAGeLa47qohjTHH/NoqWc9Vc8/tjK8AR5HGcViV3hwtyN8BVgN8DF9YpdklDSKSBX4aR9VNK3f9Xngl8qBHBNEpErBgR346Iy8nJ3fdSSkemlI5PKT3S6PgkSRqKzMFq6ncOVrPAFBFbRcQbutx/RUScExF/jogfFl3e+uItwMHALhExt1jeExGfjIhPAqSU7gF+A/wFuBX4cUrpr319IBq6brpg6gJgX3LF9FlyK6LFwPeA3W+6YOoTZcQx+7ypDwPvJc9m2F7E8STwVeCg2edNrTYA+H9c8/tj7ynO8dNi1Thyq7/PAYfbPU6SevVk0f8f4MGImAS8mtrdmIejU8hd4e4F9iYPVyBJklQv/c7BehuD6bvA14ClhZ4fA68kt+TYHziR3GKjppTSjXQZIKrGftOB6b3tp+HnpgumvkBu+t/Q8TVmnzf138CMYlku1/z+2EeAbxSLJL3c8Pq2a6CdBuxA7lbfBlxLHt9uuf8vD1G7AW9KKT0WEf9LHjrgUw2OSZKkoc0crJZ+52C9FZheD9wAEBETgHcDb0gp3Vc02b6JPhSYJEmS+iKldEKX22cVs8uuVLR0HklWSik9BpBSejgiqo0RKEmS1G8DkYP1VmBqAZYUt7cDHl86q1uR7ExYpoglSZLfnvVRRDSRJwEhIppSSrVm6hxuWiLibbzUArz7fVJK1zQkMkmShipzsD5Z3hystwLTXeSZ434O7Adc3eWC6wDzlitaSZJGsGE2IOSAiog3kccf2ow88QPkokpiZI3D9CT/3W386W73E7BhqRFJkjTEmYNVNxA5WG8FpmOAX0bED4FOcn+8pfYF/rgsAUuSJPXiTOCXwEeBFxocS8OklCY2OgZJkjSi9DsHq1lgSindGBHrAxsD96WU5nfZfCVw/vJcVJKkESth8+zaNgC+mFLyWZIkSQPHHKw3/c7BmnrbIaU0P6V0W7fiEimlv6WU/rW8F5YkSerBJcA7Gx2EJEnSCNPvHKy3LnKSJGmA2f//v0XEz3jpO8XRwCURcSPweNf9UkofKjs2SZI0fJiD/beBzsEsMEmSVDaTm+7u73b/7oZEIUmShjdzsO4GNAezwCRJkhoqpfS1RscgadlMnHXSKPIsQwsePOLoPk1fPZxs+aXjW6KDVwNP3X78sU8v6/HbHjgjgDWAJbecM/XZ5Ylh2wNnvAKo3HLO1GW+PsD7rj1qFWBUgieveNvJy/yxu/L4xisAo4D5TWvdt8zHf/Eve/3nNfStzS5e5tfQTntMbwXGAAuvv2xa57IeL2ngc7AYymNoRsSclNLWjY5DkjQ8lPG+MvoVay189aHH3DPQ573nO1MYDu+JEfE24MGU0j8iYi3gBKACfD6l9Hjto1UWc7CRa+KskzYEPgW8lzye60LgLODUB484en6tY4eDLY89fmxlXOXKjrU6t0+jUjNA87PNz7c80fytO7557Im9Hb/tgTOaUxMnpWYOScHKAFHh8aZOvnXL2VN/2IfjA/gSwaeBCcXqZ0i03XLO1OP78hjef90RR44btejzY1qWrAmwpLNlwbwlK/xkcWfLMVe87eReCzWVxzd+E/AZXpph/EngR8DZTWvd19Hb8V/8y16vBT4NvKtYNQ/4KfCTb2128Yu9Hb/THtPXJ78GdydPnf4CcA7ww+svmzavt+M1OJmDNd5A5GC9DvItSZJUolnA0g84M4FWcnJzasMikgTAxFknbQJcRv5gvwB4DgjgSODCibNOGtu46Opvy88fv2L7Oh2PtG/QsWOlOTVFe1RSO5WOCZ1jF792yfFbHPedU2odv+2BMyI1c2OlhaNSMAZYAixJTazZ2cr3tzloxow+hHERwZeBcUuPByYQfGPbA2f8vLeD977+k99bc8Xn21Zobl+jIzUt6UhNS1qaO8e8YsyCz4xtXXzd/1x7VNQ6vvL4xruSZxLfnvz7fxYYC3wZmFV5fOPmWsd/8S97bQVcCuwGPF+coxWYApz9xb/sNabW8TvtMX0j4HLgA+TC0nPkTk+fAC7ZaY/pE2odL6mmfudgFpgkSSpRkAeYHOhlGFknpfTPiGghf7t9GHA4+cOMpAaZOOukAGaQB4F9lvyhA3KB4xngNeS/1WGrMqZyTmWVyri0hEpTJf/nbSJo6oiUKrDkVR2Hv+nY49eoeoLgk5VmtgKWBHQGxXsCtAOdlVaO2vbAGRtVO3zbA2fsRvA+oKNYluoA2gn23PbAGbtUO373a4/aZLUxCw/vTE2dnTS1L716JTV1dqSmJeNGL9qmpany0aqP//GNVwS+Bywmtzpa+u6ziPya2IXcsq1HX/zLXk3A94u7Pb2GtgQOrnZ84URgpWL/pR+E24v7E8ktq6QemYP1qt85mAUmSZI0mDwfEWsCOwN3p5QWFOtbGxiTJNgEeDW51UlPFgAHT5x10rAd47Vjzcp7UoXUxMsb+TRVItGUqIxJVVshpeZc/OipiVDkYkukJr5QI4TPF4f39JE2Fdu+WO3g0c3tn4dEInoY7yifdqXWxVNqXP/t5ALj4irb24GP1zh+W2B1crfKniysdXzReumN5OJWT54HPrjTHtNXqBGDpOr6nYNZYJIkqWypDsvw8b/An8jjaSztbvIW4N6GRSQJYANq/7dpJw/YPL6ccMqXVqy00ln9OUjNUBmVXl91e7AWL7W66VmwSY2tr+rl+AqwYbWNrc2dtc5NJUXnqKbOtWvsMpHak0QtqnV9YH1qf/5cDLyiGPy72vG1Hn9HEd9qNfbRSGcOVku/c7Bh+w2DJEmD0vBLRgZUSumEiLgE6Ewp/V+x+lFqfysuqf6ep/Z/r6WFg14HaR6qoiNSakpBpefnISoQnVF9RrjEiwS1WtcEiVozws2HmkWqoHrrHiopnqbnBlQANAVNldRU6/c3j5e6tfWkheot3CDHX+v4ZnJ3uWoDhT9PjfiLbc3k1nTSy5mD1TQQOZgFpgba5sMzRwG7kpuLdgLXAjfdeuaUETfVK8DrL/naGuRBIzcAngAuv+f9X/3nspxjh71OWrc4x9rAI8BlN158tLMOSdIQklK6r9Z9SQ1xK7mFyShyEaC7ccDVDx5x9AulRlWi5ieb707rdGzaU4mkQiKAphfiG9WOjwoXpSY+QQ8FouIzb4rErBoh/ATobaa4H1fbsKij9YfjRy9660u96V4WRSxoH3VejXNfRR7Mu4meC0VjqD0Y8PXFcS30XEQaB/z8W5tdXO2z0FxykWkFeu6mNw64yZnkpOXX3xzMLnINss2HZ74euIE8UN7BwEeA04HfbPPhmbWapg5Lr7/ka4cCNwLHAgcAk4Hfv/6Sr3319Zd8rdfX6Q57nRQ77HXSseQi3VRgf2AacMMOe5101A57nVRzRgxJKpMDTEoaah484ugl5OLGSuQiU1crk4tObWXHVabm55oOoz1Sak3RtRFTJRLRSlPLYy0P3PHtY6+vdnxUOC4SCxO0dv23Xdxuberkb7ecPfXKGiGcAvybnsdDaSV/QfuDagd3pKZLFrSP+ntLVEb9dzOOREt0ti7pbFmwpLPlO9WOb1rrvn8BZ5O7QXafLW488DS5a02PvrXZxQvIr5GxPTyGceQxmH5Y7fjrL5vWAXwLWJGXvwZXIhfuplc7XgJzsHqzwNQA23x45irAucAEchX+WfLMB8+T+1afvc2HZ46Y1mWvv+Rr/0MuLC2davTZYpkPfIi+zUjyEeDQ4phni/M8R24iO5k8lakkSZKW04NHHH0e8CVy85ex5KLAOHJh46AHjzj6bw0Mr+7u+M6xs0f/vXXvWNC0JFppqrSkptSSIpqJlkdb7m6e1/S6Wsffcs7Up5vamRQVHiEXmVpTLrS0NnVya3SyXS/HLyaxNYn7KI4jtwZqJXEvia1vOWdq1TGKrnjbyen5xWO2m7d4zJzmSK3N0dnSHJXW5qi0Lmwf9fBTL6683S/fdnKtLnoA3wB+RC7yjC2W8cBfgX2a1rrvmV6OP41cqGzpdvxDwL7f2uzih2odfP1l0y4FPkeukC09fhz5s9SHrr9s2p29XF9SHUVKQ7fkFhFzUkpbNzqOZbXNh2ceChxDLoD0ZBzwyVvPnHJNaUE1yOsv+VqQWx2tQS4wdddKTmLefM/7v9rjjBU77HVSK7nZ9tJ+292tQC7e7XDjxUePyO6HkvqmjPeVFVZfa+FGHznmnoE+710nTWEovidqaBqqOZgGxsRZJ40mT1s9jjwkwR0PHjGycqwtv3T8J9KotAsVFjQtihNvP/7YZSqubXvQjJ0J3kFiCYlzbzln6v3LdPyBM7YE9izuXnrLOVPvWJbj33ftURu3NnXuF8Go9krTby5/6yk3Lsvxlcc3HgdMIs8q97emte5bpsf/xb/stWJx/MrAP4A7v7XZxX3+YLrTHtNHFcdPAP4F3Hb9ZdNG1GtwuDEHGx5GTCuZQeZ99FwIWaoJeDcw7AtMwDrFUq2vdDv5jWdzchGpJ68n9/muNqDfIvJsEq8C/q/KPpJUGptTSxrKHjzi6MXkLwhHrDu+eeyPyC15lsstZ0+9DrhuuY/PBaVlKip19cu3nXwf8PXlPb5prfueB367vMd/a7OLXwB+v7zHX3/ZtCX04/nTyGUOVl92kWuMVmqPX5/I3waMBK30Nl1rfj5qFUN7ez6XnqOn/uqSJEmSJKmfLDA1xmyoOUUpwM1lBDIIPMpLM5L0pInc9a1Ws9u/d9mvJy3kIlbNPt2SVJpUh0WSJEm1mYPVlQWmxjibPDVnTy1qxpC7dP2y1Iga5J73f3UJ8FNyN7iejAeuvOf9X6064OCNFx/9PHAxeRyAnowFzr7x4qNf7E+skiRJkiSpZxaYGuDWM6c8AHyBXExahdx6ZzR5kLoADrv1zCnzGxZg+WaR+1BPIBeDRpGnGp0A3AN8tQ/n+Cbwl+KYlYtzjC3u38wwnzZX0hDjt2eSJEnlMwerKwtMDXLrmVN+AewO/Jw8w9nTwI+Bd9165pTZjYytbEUrpkOBT5EHK1wA3EeegnTve97/1ed7O8eNFx+9ENgXOJpclFpALjh9BjjkxouPXlSf6CVp2UUdFkmSJNVmDlZfziLXQLeeOeVe4PONjmMwuOf9X+0Afl0sy+XGi49eAlxaLJIkSZIkqSQWmCRJKpPNqSVJkspnDlZ3dpGTJEmSJElSv9iCSZKkkoXfnkmSJJXOHKy+bMEkSZIkSZKkfrEFkyRJZfPbM0mSpPKZg9WVBSZJkspmciNJklQ+c7C6soucJEmSJEmS+sUWTJIklcwBJiVJkspnDlZftmCSJEmSJElSv9iCSZKksvntmSRJUvnMwerKApMkSSWKZPNsSZKkspmD1Z9d5CRJkiRJktQvtmCSJKlsfnsmSZJUPnOwurIFkyRJkiRJkvrFApMkSSVbOgbAQC59um7EbhHxt4i4PyKO7WH76Ii4oNh+S0RM7LLt88X6v0XEu7qsfzAi7oyIuRExZwCeHkmSpLpoRA42kvIvu8hp0Nj71CnvGz1u8bTm0Z3rdrY3PbXk+dGndC5uPuviI0+yIaOk4aUB/9Uiohk4BXgH8Ajwp4i4PKV0d5fdPgY8m1LaKCL2A04A9o2ITYD9gE2BVwJXR8TGKaXO4ri3pZSeKu3BSJIkLY+Sc7CRln/ZgkkNt9cpRzcfeP6R1676mmd/sdJaCyeNHr94nZXWeGGLCa9+7rSV1lp4116zjl6p0TFK0jCwDXB/SumBlNIS4Hxgj2777AGcWdy+CNg1IqJYf35KaXFK6R/A/cX5JEmSVN2Iyr9KKTBFxHoRcW1E3B0Rd0XEZ2rs++aI6IiIvcuITY03auUl/7vSWgt36GyP9s4lzUsqHU0dnUua2yvt0T5mtRc3WmGVRZc0OkZJGlCpDgusHhFzuiyHdbvqOsDDXe4/UqzrcZ+UUgcwD1itl2MT8LuIuK2Ha0qSJA0e5edgIyr/KquLXAcwNaV0e0SMBW6LiKu6NQtb2nzsBOB3JcWlBtvrlKObV9lo4cGVzuiE6LY16Gxv6lhpzYU77zVr6poXHzHjiYYEKUlDw1Mppa0bcN0dUkqPRsQawFURcW9K6foGxCFJktQIjcjBBmX+VUoLppTSYyml24vb84F7eHnVDuBTwC+AJ8uIS40XLZU3N42qjEqdTZ097pDysGnNoyr/U2pgklRHDRrk+1FgvS731y3W9bhPRLQA44Gnax2bUlr680ngEgZ5021JkjRyNSAHG1H5V+ljMBUjom8J3NJt/TrA+4Ef9HL8YUubngGr1ytOlSde3nSpJ44XJkn98yfgNRHxqogYRR408vJu+1wOfLi4vTdwTUopFev3K2Y5eRXwGuDWiFipaJlMRKwEvBP4awmPRZIkaSgYUflXqbPIRcTK5BZKn00pPd9t83eBY1JKlTyeVc9SSqcCpxbnGzTT8Wn5pI6m2zrbm9qjudKUOpsqL9shUgB0tjf9qvTgJKkeXuqvX+5lU+qIiKOA3wLNwOkppbsi4uvAnJTS5cBPgJ9FxP3AM+QkiGK/nwN3k7u9H5lS6oyINYFLivftFuDclNJvSn9wkiRJvWlADjbS8q/SCkwR0UouLp2TUrq4h122Bs4vnqTVgfdEREdK6dKyYlT5Lj7ypPb9zvr0+ePWf/5DnZ1pyX83Zko0t6bWBY+veOPFh8/o3oxQkoasSA2oMAEppV8Bv+q27itdbi8C9qly7LeAb3Vb9wCw+cBHKkmSNPAakYONpPyrlAJTMcXeT4B7Ukoze9onpfSqLvufAVxhcWlkWDJ/1GELn1jp9Sut8cLWiQqkqETkLnGLnh390KJnxuze6BglSZIkSVJ1ZY1r8xbgYGCXiJhbLO+JiE9GxCdLikGD1MVHntT54lNj3vLM/RM+9MK/V5y7ZMGop194esw9z/7fhKMW/Gvl1158xEnzGx2jJA2o+kyRK0mSpFrMweqqlBZMKaUb6dtAzkv3P6R+0WgwuvjIkxJwfrFIkiRJkqQhpNRBviVJUp+mtJUkSdIAMwerLwtMkiSVzeRGkiSpfOZgdWWBSZIkSdKI8cAja29KHh92E+BZ4ALg6g3XfWxJX47fZdfjXw0cCGwFLCTPlP3ra35/7Av1ifi/7bjn9FcAewNvL1ZdBVx0w6XTnirj+tvvO2NF4L3A+4GVgDnAOTddMPWBMq7fXzc9tGETsB35d7ge8AhwLnDT9hs8UGlkbNJQV9Yg35IkqRBp4BdJUm0PPLJ2PPDI2kcDl5KnBH81MAn4HnDpA4+svWpv59hl1+MPBn4NfBh4DfAm4DvA73bZ9fh16hT6f+y45/RtgWuBqcDri+Vo4Nod95z+5npff/t9Z6wH/A74Nvmxv4b8XPxm+31nHFDv6/fXTQ9t2AqcApwJvIv8Gngn8FPghzc9tOGoBoanEpiD1ZcFJkmSpGEqIk6PiCcj4q9Vth8YEX+JiDsj4qaI2LzsGKUS7QYcDswnt1x6EXgemAdsDMysdfAuux6/NfAV4IXi+BeABcU51gR+vMuux/d5YqNlteOe01cFfkKePOm54vovFLebgZ/suOf0Vep1/e33ndFUXH9N8nO2oMv1XwS+tv2+M7as1/UHyJHkgtLzvBT3c+THsyvw2QbFJQ0LFpgkSSpTPabH9dszVXcG+UN1Nf8Adk4pvRH4BnBqGUFJDXIk0A701A1qHrDDA4+sPbHG8YcVPzuqHL8RsHV/AuzFB4AVyEWR7l4AVgT2rOP1twEmkh9rd+3kwtehdbx+v9z00IajgY+SC2M9vXMuAD5800Mbjik1MJXHHKzuLDBJklSiwObZKk9K6XrgmRrbb0opPVvcvRlYt5TApJI98Mjao4FNyUWEniRy4alWC5ztaxwP0NrL8f31Nnoubi3VUexTL1sBtbqQLQDeUsfr99eryb+j9irb28mfj19TWkQqlTlY/TnItyRJkgA+Rh5bpkcRcRgvteBYvZSIpIHT17YGtQZ5TuTPqP29xvLqbQDqADobeH0Y3O05KtT+/VFsH8yPQRrUbMEkSVLZbJ6tQSYi3kYuMB1TbZ+U0qkppa1TSlsDpcxWJQ2UYoa424GxVXaJYvlTjdNcA6xcY3sHuSVgvfyGPNZSNU3Ab+t4/Zup3voH8nNzdR2v31//R+5KWK0V1ihgMfC30iJS+czB6soCkyRJ0ggWEZsBPwb2SCk93eh4pDr6X3KBpqdeHBOA32647mP/qnH8aeRWMD0VKCYAfwF6HFB/gFxO7obWU5FrLHng6ivreP25wF3kx9rdKPJzc3odr98v22/wQDvwA2AlXv45OIr1p26/wQNLyo5NGi4sMEmSVDL7/2uwiIj1gYuBg1NK9zU6HqmeNlz3seuAb5EHw55ALsqsAowHbgWOrXX8Nb8/9q/AFHIxZenxE4BxwN+BT1zz+2Pr9h/5hkunPQ8cTG6FM7647rji9gLg4BsunTa/Xte/6YKpidxN9v+K607gpedgFPDZmy6Yene9rj9AfgKcx0u/+6U/xwEXkQtQGsbMwerLMZgkSSpbMhtROSLiPOCtwOoR8QjwVfIgt6SUfkiecn01YFZEAHQUXeCkYWnDdR/76QOPrH018EFgE/Ig+JcAN2+47mO9jjF0ze+PvWKXXY+/lTyj21bkws7lwPXX/P7YWgNwD4gbLp321x33nL4j8D/ALsXqq4Erb7h02gv1vv5NF0x9cvt9Z7yX/H/lfeRWP3OAX9x0wdR/1/v6/bX9Bg9UgC/d9NCG5wL7ABsADwM/B+7efoMHfIMe7szB6irSEH6CI2KOSZAkaaCU8b6y4oS1Fm723mn3DPR5bzn3aHxPVFnMwSRJA8kcbHiwBZMkSSWzObUkSVL5zMHqyzGYJEmSJEmS1C+2YFpOWx3Wtg5wAPDOYtU1wDm3nTr5n42LaujaaffpTeS+3B8CJgJPAD8Dfnf95dOcyWGEqzy+8Sbk18Y2wCLgUuCiprXue6aRcUnLxSltJUmSymcOVne2YFoOWx3WtgNwFfAJYO1i+Rjwu60Oa9ul1rF6uZ12n95KnrHhVOAt5MFGtwC+C1yw0+7Te5qKVSNE5fGNDyYXlPYGXkEuQH4OuLry+MavbVxkkiRJkqSlLDAto60Oa1sV+BFQAZ4jt6ZYVNxuB07Z6rC2NRsV3xB1GPAO8nM4D1gMzC/ub0ae8UYjUOXxjbcgz3D0Avn1sLjL7ZWAMyqPb2xLTA05URn4RZIkSbWZg9WXBaZl9wFgFLmo1N1i8tS/Hyw1oiGsaL30cfIUrz2ZB+y+0+7TVy0vKg0iHwMC6Gna3/nk1m47lxqRNBBSHRZJkiTVZg5WVxaYlt1byK2XqmkHdigpluFgHWBFoNo4S5VieV1pEWkw2Q5YWGN7K+CUoJIkSZLUYHYtWXbt5BYV1USxj/qmg94LndVasGj46wBG97KPg8BryHGKXEmSpPKZg9WXLZiW3a962d4MXFlGIMPEv4DHgDFVtreSiwx/KS0iDSa/Irdwq6YduK6kWCRJkiRJVVhgWna/AZ4BxvWwbRx5zKArSo1oCLv+8mkVoA1YgVyc6yqAlYFTr798Wk9jXmn4O4tcROqpADkBuBu4o8yApAGR0sAvkiRJqs0crK4sMC2j206d/CJwAPBvckFpQrGMA54FDrjt1MnzGxXfEHUpuci0MrAKML74OQ74OXBywyJTQzWtdd9D5IG+K+TXw3hg1eL2vcDHmta6z//qGlpSbp490IskSZJqMAerO8dgWg63nTr5ga0Oa3sbsAvwVnJLm+uAq287dbLjwSyj6y+floCTd9p9+iXAXsCryF3nLr3+8mn3NzQ4NVzTWvfdVHl840nAe4E3Ay+QWxLe3LTWfU4MKkmSJEmDgAWm5VQUkn5TLBoA118+7VHgfxsdhwafprXuWwBcUCzS0Oe3XZIkSeUzB6sru8hJkiRJkiSpX2zBJElSiQL760uSJJXNHKz+LDBJklQ2ZxyRJEkqnzlYXdlFTpIkSZIkSf1iCyZJkkpm82xJkqTymYPVly2YJEmSJEmS1C+2YJIkqWx+eyZJklQ+c7C6sgWTJEmSJEmS+sUWTJIklSnZ/1+SJKl05mB1Z4FJkqSyVcxuJEmSSmcOVld2kZMkSZIkSVK/2IJJkqSy+eWZJElS+czB6soWTJIkSZIkSeoXWzBJklQyB5iUJEkqnzlYfVlgkiSpTCnlRZIkSeUxB6s7C0zSMLXNITM3Bj4G7AY0A3OAU289Y8pNZcbxpsPbtgEOA7YDKsDvgJ/c/oPJ95QZhyRJkiSpfhyDSRqGtjlk5k7A5cDe5KHs2oG3AGdtc8jMo8qK402Ht30MOAfYuYihArwfuPRNh7e9o6w4pMEm0sAvkiRJqs0crL5KKTBFxHoRcW1E3B0Rd0XEZ3rY58CI+EtE3BkRN0XE5mXEJg032xwycyzwA6ADeLb42QnMA+YDn9nmkJl1//t60+FtrweOARYW1+7sEtMS4HtvOrxtlXrHIUmSJEmqv7JaMHUAU1NKm5C7yRwZEZt02+cfwM4ppTcC3wBOLSk2abj5H2AUsKiHbZ1AAB8pIY4PkbvmdfSwbTHQCuxRQhzS4JPqsEiSJKk2c7C6KmUMppTSY8Bjxe35EXEPsA5wd5d9uo4LczOwbhmxScPQFuQiUjUvFvvU25bFtapJwFbAGSXEIg0q4QCTkiRJpTMHq6/SB/mOiInkD5631NjtY8Cvqxx/GHnAYIDVBzQ4aXhYQO3Wic3ACyXE8UJxrVpxLCwhDkmSJElSnZVaYIqIlYFfAJ9NKT1fZZ+3kQtMO/S0PaV0KkX3uYiYU6dQpaHsN+TuadWMAi4uIY5fAMfV2N4J/LKEOKTBp9LoAKSha5sPz2wCtgdeTW4p+4dbz5zyZGOjUpm2PXjmaOCtwNrksR2vueVnU+b39fgd9jqpBdgR2ID8xdw1N1589DN1CFXSYGMOVlelFZgiopX8gfOclFKPH24jYjPgx8C7U0pPlxWbNMzMAeYCbyInXV2NLdb9ooQ4Lgc+BaxGHuS7qwnAXcDsEuKQJA0T23x45mbkiSxWJ4/l1wmkbT488zzgG7eeOaWncf80jGx78Mx3AtOBFcivgQ6gc9uDZ54I/9/encfLUZaJHv89WVgkhIRFlEUQRUYUxYjgvRNGPuoVXFlcBiZgUBGiApojriOKRnTwQjISlUXBsEQQr6DooF519M7gQoS4AEYxgkjCIiQEEraYc577R9XRzkl3p8/p7jrb7/v51Ifurreq3vOm6H7qqfd9i0U3XNbTdPzLzKPOPhD4PDCVv59DfTOPOvsi4Ozrrz7Ny09JGqKqniIXwEXAssyc36DM0yh6VRyXmbdVUS9pLFqyqCcpegH+DNiOIsGzI0UgdTdw9JJFPQMTTx239Ly5a4F/Bu4sj91fj+2Am4C3LD1vrkGcxp3ikbbZ8UUa6w6cPX8P4CsUvydrgdUUNzDWAccCpw9f7VSFg46b/z+Az1Fcw/SfAw9TPDzkI8DRzbafedTZzwYuAbZh43PoUeAkYJMnXUsaO4zBuq+qp8j9I3Ac8NKI+FW5vCoi5kTEnLLMRykChi+U6x3+Jg3RkkU9Dy9Z1HMs8DrgTOAs4HjgZUsW9fyxqnosPW/uncArKIbsnVXW5Qjg6KXnzbUruiRpMN4ObE2RUKrVR5EkOObA2fOfXHmtVKX3Uzwk5IkBn2+gSBK976Dj5k9usv3JFL2WBs5F2UuRqDpp5lFnT+1QXSVp3KnqKXLX0/ypVmTmCcAJVdRHGi+WLOpZBiwbzjqUvZR+Xi6SwEfaSkNzBEWvk3r6KG6cHgJcVVF9VKGDjpu/E7AfsKZBkScopgJ4PsV0ARuZedTZE4FDKRJJ9fRSXK/MBK5rs7qSRipjsK6qqgeTJEnql9n5pQURcVhE/D4ilkfEB+us3zIivlquv6F88mv/ug+Vn/8+Ig5tdZ9SBz2JIgnQyISyjMamrWn+7w9ForHRObAlxTnSbHh+lMeRNFYNQww2nuIvE0ySJI0DETGRYmLbVwL7AsdExL4Dir0NeDAznwksoBjaSlnuaOA5wGEUw9kntrhPqVP+QPOL/w3A7RXVRdX7C8W/caMRGFGua3QOPAbcRzE5eDOVTSUgaewbb/GXCSZJkipWTDLZ2aUFBwLLM/P2zFwPXAkcPqDM4RQT4AL8H+Bl5YM6DgeuzMwnMvMOYHm5v1b2KXXKBRS9UOpNu7ANsAq4vtIaqTI3XNbzOHAFxTC4erYDfnbDZT0r6q28/urTEvgijZOU21I8mOTXbVZV0gg2DDHYuIq/TDBJkjQ27BgRN9YsJw5YvytwV837FeVndctk5gaKiZN3aLJtK/uUOuWbwPeAaRTDoPp7rEyjGDo1Z8klPT6ddGz7d4q5Jafz955IWwDbAw8Amxsmcjnw03L7rfn7ObQ9RQ+nd5WJKEkajGYx2LiKv0wwSZJUte6M/38gMw+oWS4c7j9T6qQll/T0AqcA76MIrKdTPBHsq8BrllzSY8+TMe6Gy3rWAW8CPk1xAbY9RXLx88Crb7is5+5m219/9WnrKYaifIRiuNx0YCKwCHj19VefdlvXKi9pZDAG66pKniInSZJKCTE8fSxWArvXvN+t/KxemRURMYliyMmqzWy7uX1KHVMmma4uF41DN1zW8yjwpXIZtDLJdEW5SBpPhicGG1fxlz2YJEkaH34B7B0RT4+ILSgmjbx2QJlrgdnl6zcA/5mZWX5+dPmUk6cDewNLWtynJEnSeDWu4i97MEmSVLUWHmnb+UPmhog4mWIOm4nAxZl5a0R8ArgxM68FLgIui4jlwGqKgIWy3FXAbyme4vSuzOwFqLfPqv82SZKkllQcg423+MsEkyRJ40RmXgdcN+Czj9a8fhx4Y4NtzwTObGWfkiRJKoyn+MsEkyRJVfMZRZIkSdUzBusqE0ySJFUqiWEYIidJkjS+GYN1m5N8S5IkSZIkqS32YJIkqWrePZMkSaqeMVhX2YNJkiRJkiRJbbEHkyRJVUqgb7grIUmSNM4Yg3WdPZgkSZIkSZLUFnswSZJUMZ9gIkmSVD1jsO4ywSRJUtUMbiRJkqpnDNZVDpGTJEmSJElSW+zBJElS1bx7JkmSVD1jsK6yB5MkSZIkSZLaYg8mSZKq5iNyJUmSqmcM1lUmmCRJqlL6BBNJkqTKGYN1nUPkJEmSJEmS1BZ7MEmSVKl0gklJkqTKGYN1mz2YJEmSJEmS1BZ7MEmSVDXvnkmSJFXPGKyrTDBJklQ1gxtJkqTqGYN1lUPkJEmSJEmS1BZ7MEmSVLW+4a6AJEnSOGQM1lX2YJIkSZIkSVJb7MEkSVKFIiEc/y9JklQpY7DusweTJEmSJEmS2mIPJkmSqubdM0mSpOoZg3WVCSZJkqrWZ3AjSZJUOWOwrnKInCRJkiRJktpiDyZJkiqVds+WJEmqnDFYt9mDSZIkSZIkSW2xB5MkSVXz7pkkSVL1jMG6ygSTJElVSgxuJEmSqmYM1nUmmNpw+s1HTgB2AwJYMW+/a3qHuUqSJEka4V544oLaGHLlTRfO3VB1HY694JT9InL7vt4Jtyx+x7mrqj7+KUtnbQ9MA1YtnLH4oaqP364Dj5+/FbAL8Dhwz5JFPYO6ap0xZ8EW5fa9wIql58/1qlfSqBc5ijN4EXFjZh5Q9XHLxNIs4GSKH0aAh4EvAJfM2++avqrrJElqXxW/K9tuseMjM3c7flmn9/vdO85hOH4TNT4NVww22r3wxAUBvAl4N7Ajxf30dcD5wMU3XTi36zcrZ1/0rjlTd1n78S2nrJ+eSZLB2vu2+ekjq5507OJ3nLuy28c/ZemsvYEPAQdTJFcmAj8A/m3hjMV3dvv47Trw+PlPAt5DcS0wkeKG/XLgrCWLen60ue3LxNIc4K3AVuU+7gHOAa410aTxyhhsbKhkku+I2D0ifhQRv42IWyPi3XXKREScGxHLI+I3ETGjiroN0ceAM4BtgLXlshXwEeDTp998ZAxf1SRJkgoRcXFE/CUibmmwfjTFX2PBB4BPAVMpbk6uBSYDHwTmlz2buub4Re84fadnrTp3i23WT+v964S/9m2YuCH7onfqLmtnbv/0Nb+add6pO3fz+KcsnbUPcDXwTxR//zqKNngF8I1Tls7as5vHb1fZa+krwAnAXynqvwbYA/jigcfPf32z7WfMWTAROI8iQTWh3P4hYAdgPkXiSZJGraqeIrcBeG9m7gu8GHhXROw7oMwrgb3L5USKL98R5/Sbj9wX+BeKH4PHa1Y9QfEDcxTwguprJkkaNbKv84tU3yLgsCbrR0X8NRa88MQFewFvY9MYcj1FDPlq4KBuHX/WF07ddvs913y4rzd6+zZM3FCMzoPMyN71E9dvNeWJaVtNffycbh2/NI/ipuwait5bAH3Ag8C2FDdrR7LXA/sBqymub/o9AjwKzDvw+PnbNNn+pcBLyu3X13z+GEXCrWfGnAVP7WiNJW3MGKyrKkkwZeY9mbm0fL0WWAbsOqDY4cClWfg5MC0iRuIX7D9TtFu9Mykpfq2PqbRGkqRRJIsJJju9SHVk5n9RXMw2Mlrir7HgjTSPIRM4rlsHn7z1hnfFxJyQfRPqHD/o3TBhw7Y7P3J4t45/ytJZuwMzKBJs9TwEvOSUpbN26FYdOuCtbJwcrLWeojfaK5psP5v6//5QDBecABwx1MpJ2hxjsG6rqgfT30TEnhQ9fG4YsGpX4K6a9yvYNAk1EjyDoktsI+uBvSqqiyRJUjtGS/w1FuxFkURoZD2wZ7cOPmFS314R2TD2z77om7z1hq1mfeHUbk318BSax9BJ0Suoq8P02rQLxaiFRiYDzRK0T6NxggqKNthz8NWSpJGh0qfIRcQU4OvAezLz4SHu40SKLtxQTI5Ytbspfjwa2aIsI0nSphLo826XRp8REIONdndTTOjcyBbAvd06ePbGvWQ0/PKJyAkb1k/86+J3ntutL6hVNL/2iHJ9sx53w20VxQN+GiWJNpRlGvkL8GQ2Hh5XKygm/JbUDcZgXVdZD6aImEyRXFqcmVfXKbIS2L3m/W7lZxvJzAsz84BylvYHulLZ5q6i6Nra6O5OAldWVx1JkqQhayn+ghERg412X+fv0yk0srhbB1//2OTPZ0ZG9NWN/ydM7pu09r4pP+jW8YE7KJ62tm2D9VOBpQtnLO5akq0DLgO2brBuIsU1wvc3s32jJFv/8MlvDrl2kjTMqnqKXAAXAcsyc36DYtcCby6fZvJi4KHMHIkZ/JuAH1Lcvaj9gZgITAeuB35WfbUkSaOG4/81coyW+GssuBX4No1jyBuBH3fr4Ivfce59D/556qIJk/smxYTaJFMycfKGyRsen/T442u27OnW8RfOWJzAR8u3Uwas3pai98+8bh2/Q66gGEY6jY0ThVtQJMgWLFnU06wH1ncozoNpbHwdNhnYDrhi6flz7+hgfSUNZAzWVVX1YPpHikkLXxoRvyqXV0XEnIjofxzndcDtFHc2vgi8s6K6Dcq8/a5J4FTgSxQ/JtuUy1bAJcCceftd41TykiRp2EXEFRQ3vvaJiBUR8bbRGH+NBTddODeB04DzKRIK/THk1hSJi7fedOHcZnM0te3iYy84adXt0z+bfRP6JkzqnTRhYt+kiZP7Jj+6+kl3PvDH7WdePmfh8m4ef+GMxb+guCb4M0VCZhuKxMofgKMXzlh8SzeP364li3oepniS3A/5e/2nUCTHPkrxb9vQ0vPnrgeOBb7B3//9p1Bcky0AzuhOzSWpGpGjOOMWETeW3bSHxek3H7kN8FyKOxi3ztvvmrXDVRdJUvuq+F3ZdvIOj8zcedayTu/3uysXMpy/iRpfhjsGG+1eeOKCJ1HEkBOAZTddOLfRk9W6YtYXTp08cYveoyLYrnfDhF9cftLCX1Z5/FOWzgrgWRRzed23cMbiria2uuHA4+c/GXgmxXxMNy9Z1NNsAvNNzJizYHtgH4rk1M1Lz5/bbPJvacwzBhsbTDBJklSqLLh58r90Pri5+3MGN6qMMZgkqZOMwcaGyib5liRJkiRJ0tjU7FGhkiSp4xL6nKpPkiSpWsZg3WYPJkmSJEmSJLXFHkySJFUp8ZG2kiRJVTMG6zoTTJIkVc3gRpIkqXrGYF3lEDlJkiRJkiS1xR5MkiRVrc+7Z5IkSZUzBusqezBJkiRJkiSpLfZgkiSpQsX8kj4iV5IkqUrGYN1ngkmSpCpl2j1bkiSpasZgXecQOUmSJEmSJLXFHkySJFXNR+RKkiRVzxisq+zBJEnSOBcR20fE9yPiD+V/pzcoN7ss84eImF3z+Qsj4uaIWB4R50ZElJ+fERErI+JX5fKqqv4mSZKkkW6sxWAmmCRJqlpfX+eX9nwQ+GFm7g38sHy/kYjYHvgYcBBwIPCxmiDoPODtwN7lcljNpgsyc/9yua7dikqSJA2ZMVhXmWCSJEmHA5eUry8BjqhT5lDg+5m5OjMfBL4PHBYRTwWmZubPMzOBSxtsL0mSpI2NqRjMBJMkSVXL7PwCO0bEjTXLiYOo0c6ZeU/5+l5g5zpldgXuqnm/ovxs1/L1wM/7nRwRv4mIixt1+5YkSaqEMVhXOcm3JElVyiTb705dzwOZeUCjlRHxA+ApdVb9a+2bzMyI6NQMmOcB84As/3sO8NYO7VuSJKl1xmBdj8FMMEmSNA5k5ssbrYuI+yLiqZl5T9nd+i91iq0EDql5vxvw4/Lz3QZ8vrI85n01x/gi8O2h1l+SJGk0Gk8xmEPkJEmqWne6Z7fjWqD/iSSzgW/WKfM94BURMb3sZv0K4Htlt+6HI+LF5ZNL3ty/fRko9TsSuKXdikqSJA2ZMVhX2YNJkiT9G3BVRLwNuBN4E0BEHADMycwTMnN1RMwDflFu84nMXF2+fiewCNga+E65AHwmIvan6J79J+Ck7v8pkiRJo8aYisFMMEmSVLW+Tg2v74zMXAW8rM7nNwIn1Ly/GLi4Qbnn1vn8uM7WVJIkqQ3GYF1lgkmSpKplVyaYlCRJUjPGYF3lHEySJEmSJElqiz2YJEmqUkKOsO7ZkiRJY54xWNfZg0mSJEmSJEltsQeTJEmVSsf/S5IkVc4YrNtMMEmSVDG7Z0uSJFXPGKy7HCInSZIkSZKkttiDSZKkqtk9W5IkqXrGYF1lDyZJkiRJkiS1JTJH7xjEiLgfuHO46wHsCDww3JUYY2zTzrI9O8827ayR0p57ZOZO3TxARHyX4u/ttAcy87Au7FfahDHYmGH7tc82bI/t176x0obGYGPAqE4wjRQRcWNmHjDc9RhLbNPOsj07zzbtLNtT0lD43dEe2699tmF7bL/22YYaSRwiJ0mSJEmSpLaYYJIkSZIkSVJbTDB1xoXDXYExyDbtLNuz82zTzrI9JQ2F3x3tsf3aZxu2x/Zrn22oEcM5mCRJkiRJktQWezBJkiRJkiSpLSaYJEmSJEmS1BYTTJIkSZIkSWqLCaYWRcSPI+LxiFhXLr9vUC4i4qyIWFUuZ0VEVF3fkW4Q7XlGRPy1pty6iNir6vqOFhFxdEQsi4hHIuKPEXFwg3JzI+LeiHg4Ii6OiC2rruto0Ep7RsTxEdE74Bw9pPrajmwD2mdd2WYLm5T3HJVERFweEfeU3wW3RcQJTcr6vVFHq23o71lzEbF3Gbte3mC91wBNtNB+xvwNeB2q0cQE0+CcnJlTymWfBmVOBI4Ang88D3gtcFJF9RttWmlPgK/WlJuSmbdXVsNRJCL+F3AW8BZgW+CfgE3aKiIOBT4IvAzYA9gL+Hh1NR0dWm3P0s8GnKM/rqiao0Zt+wBPAR4DvlavrOeopBqfBvbMzKnA64BPRsQLBxbye6Opltqw5O9ZY58HftFkvdcAzW2u/cCYvxmvQzUqmGDqvNnAOZm5IjNXAucAxw9vlTROfBz4RGb+PDP7MnNleQ4ONBu4KDNvzcwHgXl4jtbTantq8F4P/AX47wbrPUclAVB+DzzR/7ZcnlGnqN8bDQyiDdVARBwNrAF+2KSY1wANtNh+ap/noIadCabB+XREPBARP2nSZfg5wK9r3v+6/EybaqU9AV4bEasj4taIeEdFdRtVImIicACwU0Qsj4gVEfG5iNi6TvF65+jOEbFDFXUdDQbZngAvKM/l2yLi9IiYVGF1R6PZwKWZmQ3We45K+puI+EJEPAr8DrgHuK5OMb83mmixDcHfs01ExFTgE0DPZop6DVDHINoPjPmb8TpUo4IJptZ9gKK79a7AhcC3IqLe3Z8pwEM17x8Cpjj+dROttudVwLOBnYC3Ax+NiGMqq+XosTMwGXgDcDCwP/AC4CN1ytY7R6EYBqbCYNrzv4DnAk+m6JlzDPC+Smo5CkXEHsBLgEuaFPMclfQ3mflOiv//DwauBp6oU8zvjSZabEN/z+qbR9E7bsVmynkNUF+r7WfM35jXoRo1TDC1KDNvyMy1mflEZl4C/AR4VZ2i64CpNe+nAuua3Kkfl1ptz8z8bWbenZm9mflT4LMUF/3a2GPlfxdm5j2Z+QAwn9bPUYC1XazfaNNye2bm7Zl5RzmM7maKu3Seo40dB1yfmXc0KeM5KmkjZRxwPbAbUK9ng98bm7G5NvT3bFMRsT/wcmBBC8W9BhhgMO1nzN+Y16EaTUwwDV0C9bLBt1JMrNbv+eVnaq5Rew613LhSzjexgqJ9/vZxg+L1ztH7MnNVl6o36gyyPTfZHM/RZt5M895L4DkqqbFJ1J8/yO+N1jVqw4H8PYNDgD2BP0fEvcBpwOsjYmmdsl4DbOoQWm+/gTz/GvM6VCOWCaYWRMS0iDg0IraKiEkRMYviiVLfrVP8UqAnInaNiF2A9wKLKqzuiDeY9oyIwyNievnYzQOBU4FvVl3nUeLLwCkR8eSImA7MBb5dp9ylwNsiYt+ImEYx7GtRZbUcPVpqz4h4ZUTsXL7+B+B0PEfrioj/SdG9u+7T42p4jkqi/P49OiKmRMTE8klxx1B/omC/N+oYTBv6e1bXhRTJuP3L5XzgP4BD65T1GmBTLbefMX99XodqtDHB1JrJwCeB+4EHgFOAIzLztog4OCLW1ZS9APgWcDNwC8WX6AUV13ekG0x7Hg0sp+jifilwVtk1VJuaR/H419uAZcAvgTMj4mkRsS4ingaQmd8FPgP8CPgzcCfwseGp8ojWUntSPBL7NxHxCMWkqVcDnxqOCo8Cs4GrM3OjISueo5IaSIqhXCuAB4Gzgfdk5rV+b7Ss5TbE37NNZOajmXlv/0IxBOnxzLzfa4DNG2T7GfPX53WoRpVwSKYkSZIkSZLaYQ8mSZIkSZIktcUEkyRJkiRJktpigkmSJEmSJEltMcEkSZIkSZKktphgkiRJkiRJUltMMEmSJEmSJKktJpikMSIi/hQRL2+wblFEfLLqOpXHblgvSZKk0SoizoiIyxusOyQiVlRdp/LYDeslSd1kgknqsIiYGRE/jYiHImJ1RPwkIl403PWqwnAmsiRJkuBvN7cei4h1EXFfGZ9MaWG7H0fECVXUsVOGM5ElSQOZYJI6KCKmAt8GFgLbA7sCHweeGM56SZIkjTOvzcwpwAzgAOAjw1wfSRrzTDBJnfUsgMy8IjN7M/OxzPy/mfmb/gIR8daIWBYRD0bE9yJij5p1GRGnRsTtEfFARPzviJhQrntGRPxnRKwq1y2OiGlDqWREvCYifhURa8reVs+rWfeniDgtIn5T9sL6akRsVbP+/RFxT0TcHREnlHV+ZkScCMwC3l/eMfxWzSH3b7Q/SZKkbsnMlcB3gOcCRMSLy9hnTUT8OiIOKT8/EzgY+FwZx3yu/PyzEXFXRDwcETdFxMFDqUdE7BIRX4+I+yPijog4tWbdGRFxVURcGhFrI+LWiDigZv2MiPhlue5rZSz1yYjYpvzbdinrvC4idik326LR/iSpW0wwSZ11G9AbEZdExCsjYnrtyog4HPgwcBSwE/DfwBUD9nEkxZ22GcDhwFv7Nwc+DewCPBvYHThjsBWMiBcAFwMnATsAFwDXRsSWNcXeBBwGPB14HnB8ue1hQA/wcuCZwCH9G2TmhcBi4DOZOSUzX7u5/UmSJHVTROwOvAr4ZUTsCvwH8EmKnuanAV+PiJ0y818p4rKTyzjm5HIXvwD2L8t/BfjaYG+UlTcLvwX8mqJ3+8uA90TEoTXFXgdcCUwDrgX6E1xbANcAi8o6XEERK5KZjwCvBO4u6zwlM+9utj9J6iYTTFIHZebDwEwggS8C90fEtRGxc1lkDvDpzFyWmRuAT1H07tmjZjdnZebqzPwz8O/AMeW+l2fm9zPzicy8H5gPvGQI1TwRuCAzbyh7WV1CMYTvxTVlzs3MuzNzNUVAtH/5+ZuAL2fmrZn5KK0nuBrtT5IkqRu+ERFrgOuB/0cRcx0LXJeZ12VmX2Z+H7iRIgFVV2ZenpmrMnNDZp4DbAnsM8i6vAjYKTM/kZnrM/N2ijjx6Joy15f16gUuA55ffv5iYBJFLPXXzLwaWNLCMRvtT5K6xgST1GFl8uj4zNyNojv2LhSJIoA9gM+W3bLXAKspeibtWrOLu2pe31luT0TsHBFXRsTKiHgYuBzYcQhV3AN4b38dynrs3n+c0r01rx8F+ifG3GVA/WpfN9Nof5IkSd1wRGZOy8w9MvOdmfkYRQz0xgEx0EzgqY12Uk4bsKwc5r8G2I7Bx197UAxjqz3uh4Gda8oMjJW2iohJFLHXyszMmvWtxF+N9idJXeOXjNRFmfm7iFhEMRwNioDgzMxc3GSz3YFby9dPA/q7On+KomfUfpm5OiKOYGjdnfvrcOYQtr0H2G1AXWslkiRJI9NdwGWZ+fYG6zeKY8r5lt5PMaTt1szsi4gHKW4ODva4d2Tm3oOtMEXstWtERE2SaXfgj/XqLEnDyR5MUgdFxD9ExHsjYrfy/e4UQ9x+XhY5H/hQRDynXL9dRLxxwG7eFxHTy23fDXy1/HxbYB3wUDmHwPuGWM0vAnMi4qAobBMRr46IbVvY9irgLRHx7Ih4EnD6gPX3AXsNsV6SJEnddDnw2og4NCImRsRWEXFIf9zGpnHMtsAG4H5gUkR8FJg6hOMuAdZGxAciYuvy2M+NiBe1sO3PgF7g5IiYVM7neWDN+vuAHSJiuyHUS5I6ygST1FlrgYOAGyLiEYrE0i3AewEy8xrgLODKcpjbLRSTM9b6JnAT8CuKiSgvKj//OMXE3w+Vn189lApm5o3A2yl6Pz0ILKfFSbcz8zvAucCPyu36E2dPlP+9CNi37P79jaHUT5IkqRsy8y6KB6h8mCJpdBfFDbv+a6LPAm+I4km/5wLfA75L8RCXO4HHaX16gNrj9gKvoZiD8g7gAeBLFMPtNrfteoqHw7wNWEMxj9S3KWOvzPwdxcTft5fx1y4NdiVJXRcbD+eVNJwiIoG9M3P5cNelFRHxbIok2ZblpOWSJEnqooi4ATg/M7883HWRpFr2YJI0KBFxZERsGRHTKXpjfcvkkiRJUndExEsi4inlELnZwPMoelZJ0ohigknSYJ0E/IVicsle4B3DWx1JkqQxbR/g1xRD5N4LvCEz7xnWGklSHQ6RkyRJkiRJUlvswSRJkiRJkqS2mGCSJEmSJElSW0wwSZIkSZIkqS0mmCRJkiRJktQWE0ySJEmSJElqy/8HJueZ08lzyCMAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
@@ -244,9 +261,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABl8AAAL/CAYAAADoetFxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVTElEQVR4nOzdd5hdVbn48e87aUAIJbSQRkBB8dIVS/RKE0jsol6a7VoQFBVE0fwkEMoVwQIqNrxeFRugKNgSmp0gYiOgUUAIpAIhpBFImbN+f6w9cpjMmTkzOXXy/TzPfiZn77X3fs/JmTNn7Xevd0VKCUmSJEmSJEmSJNVGR7MDkCRJkiRJkiRJGkxMvkiSJEmSJEmSJNWQyRdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQyZfJEmSJEmSJEmSasjkiyRJkiRJkiRJUg2ZfJEkSZIkSZIkSaohky+SJEmSJEmSJEk1ZPJFkiRJkiRJkiSphky+SJIkabMXEW+LiBQRb2t2LOUiYkYR16HNjqURImJS8Xy/0exYWlVEHFq8RjMacK4UEb+qwXF+FRGpBiFJkiRJbcPkiyRJkgadiBgSEe+KiF9HxLKIWB8RD0fEnIj434h4dbNjlCRJkiQNXkObHYAkSZJUSxExBPgpMAVYDvwMWAAMB/4DOAF4NvDjJoUobYo/AHsDSxtwrr2BNTU4zluArWpwHEmSJKltmHyRJEnSYHM8OfFyB3BISmlF+caI2Ap4QTMCkzZVSmkN8I8Gnasm50kpPViL40iSJEntxLJjkiRJGmwmFz+/0T3xAvnidUrpl5V2jojDijkqVkXEyoj4WUTs3UO7vSLiExHxx4h4JCLWRsQDEXF5RIzvof2/5+qIiBdFxE0RsaI4z/UR8bz+PMmIeHZEfCMi5kfEuoh4KCK+GxHP6tbue8V5D6lwnNcX2y/r43wfLdp9oML2sRGxISL+2G3d2RFxS0QsKeJcVMT5nH4814pzhvQ2X09EjI+IyyLivuL/59GI+HFEHNxD21ERMT0i7ir+31dFxL8i4qqIeG61sfZHRLywiP1HvbSZW8Q+unjc45wvXa9RRAwvXvN/Fvt9o6zNwRFxQ9l7+6bivdjj3EI9zflS3jYi3hARf4iINUV5vysjYlwPz6G3/7+jIuInRVnAtcX7+bqIeFlZm+ERcWpE/Lz4HVtbnO+miJjay0ssSZIkNY3JF0mSJA02jxY/9xrAvq8EbgBWAl8Gfgu8HPh1ROzYre0xwMnAfOB7wOeBvwPvBG7v6SJ04QXAr4C1wBeAmcARwG8j4j+rCTIipgB/Bk4EbgcuBW4uYvpDRBxU1vxLxc+TKhzu3cXPL/dx2m8BJXIJqZ68CRgCfKNs3UuBj5LLv10DXAL8HnhDEef+fZxzwIrX4K/Ae4B/kv9/flLE9LuIeHlZ2wBmAeeR/+//l/y63Va0f1E9Ykwp/b6I7eURsUMPz+H55BJ5P0kpLavysNeQn/Ns8vvizuJYLyW/nw8Dfg5cBjwB/BJ4/gDCfw/wbWAe+X18F3AscFNEjKjmABFxLnA9cGjx89Pk9/He5PdTl9HAZ4FRwI3AZ8hlAw8Efh4R7xxA/JIkSVJdWXZMkiRJg80PgY8AJ0fEKOBHwJ9SSg9Use9rgaNTSjd3rYiIC8kJhLcDF5e1/RZwSUppbfkBIuIockLlLOCUHs4xBXhfSumysn1eA1wL/F9EPCulVKoUYERsT072rAFemlL6e9m2fcjJjf8FDgJIKf0mIv4GvD4i3p9SerSs/R7Ay4DZKaW7Kp2zOM7CiLgJOCoi9umh/VuBdUVsXX4B7JJSWtXtOewP3AJ8Aqj5yIWIGApcDWwNHJZS+nXZtrHkhNXXImJS8f+3D3nE1LUppdd1O1YHsG2tYyzzTeDj5HJ53UcfvbWsTbV2A/ZJKf17TpjiOXwNGAG8PKU0s2zbyTyVoOuPKcDBKaU7y471XfLzeA359a+o+D05G7gf+M+U0sJu28tHjz0G7JZSWtCtzbbk99HFEfGdlNITA3gekiRJUl048kWSJEmDSkrpL+S75h8qfl4DzCtKTv0oIl7Vy+5XlideCpcXP582OiCltLB74qVYfwPwN+DoCue4F/hit32uA34NPBPoa/TLW4DtgHPKEy/Fce4Cvgoc2K2s15fIF97f1u1Y7wIC+Eof5+zSlQR4a/nKyCXTngP8rDy5k1J6uHvipVh/Bzkxc1hEDKvy3P3xCuAZwOfLEy/FuReRk2hjyCOOym108T6lVEopPVaHGLt0jSjq/poOB44DHiYn86o1vTzxUphMfm/9sjzxUrgcuLtfEWefK0+8FL5a/KxmJM37ip9ndE+8AJQnWlJKa7snXor1K4D/A7YHNiolJ0mSJDWTI18kSZI06KSUri7m0TgMeAm5PNFLyCNbXhsRVwBvSyl1n4fij2xsfvFz+/KVRamqE8kJjf2L7UPKmqyrEN5vK4xs+RVwSBHrr3vY3qWrBNb+3ef9KHSVW9ubXAYN4AryKJOTyKWdKJIebyOPKuh1lEKZHwErgBMj4qMppc5ifVfi4Bvdd4iIV5DLsz0P2JGN+yA7AourPH+1ul6j3Sq8RnsWP/cml+D6O7lE2fERsRtwHfA74I8ppUr/j08TEa8FDui2+q8ppWt72y+ltCAibgaOjIjnlCXUXkUut3VJSmlDNTEU/tDDugOLn7/r4fyliJhN/8v0Vf27UsELgUQu99aniPgP4MPkMnC7Alt0a1KpzJ8kSZLUFCZfJEmSNCillNaT52+5ASAihgCvJ98p/xZyIuHabrst7+E4G3Ke5WmJFcjzTpxGThxcDyzkqZETbyOXf+rJQxXWLyl+9lXiqmtukHf10W7rrn+klFZFxLfJpdgOSyn9Eng1efTHpSmlJ/s4VtdxnoiIq4tzHwXMLEZoHA88QrcRGhHxAfK8I4+R5+p4kFwuLZETYfuTR+TUWtdr9MY+2m0NkFLqjIjDyWWw3gBcVGxfFRHfBKallFb3cazX0m30Cnmk0LVVxPsN4Mhi/48U6wZScgyeeh+V63pPVXrvVVrfm+U9rOtKEnX/XenJdsBj1ZQKi4gXkkdKDSXPCfNj8tw8JXLC6zXU530kSZIkDZjJF0mSJG0WilEaV0fEvuT5WA6nugvjG4mInYH3kycZn9zDnCbH97L7LhXWjyl+rujj9F3b908pzekr1jJfIo9AeTd5kvV3F+svr7hHz75JTr68lZxseQU52fHZIuEF/HvelRnkZMBBKaWnjW6JiP5MYl/qOmYPo0C266F912v0mpTSj6s5QVFa7HTg9Ih4JnkU0ruBU4tzvLmP/d/GxmXdqvUjcjLhTRHx/8iv51TgjqJEW9V6GM1FcWyo/N6rtL6elgM7RMSWVSRgzgK2JM/f86vyDRExjZx8kSRJklqKc75IkiRpc9OVKIlNOMYe5O/SN/SQeBlfbK/kJcUE6N0dWvz8Sx/n/n3xs6+5YZ6mSNTcArwuIl4AvAz4TUppbj+PcwtwD/CaYsLzSiM0diQnLWb3kHjZGjioH6ftmnNlQg/bntfDugG9Rl1SSvemlL5GTsCsps4X94vkw9XAWPL/ywnkG+X6O+qlkq731Eu6byjei5NrdJ7++D35d3BKFW2fCSzrnngpHFLLoCRJkqRaMfkiSZKkQSUijo+II3tKcETEGJ4q1/WbTTjNvOLnS4pyZl3H35o86XhvI8z3BN7TLa7XkC8i3wv8to9zf508auCciNhoYvOI6IiIQyvs+yVgOHAN+cL3l/s4VyXfJM+58R7g5cCclFL3pNHD5BJjzy1el674hgGfJSdnqtU1j8nTSq1FxBHkkmfdXQf8C3hvRLy8pwNGxIsiYqvi37tHRE8Js+3J5az6LI1VA98ofr6lWDYA36nRsW8hvx6HRcTUbttOov/zvdTC54ufn46IjeZr6bZuHjA6Ivbr1uYdwNF1i1CSJEnaBJYdkyRJ0mDzAuADwJKI+B1wf7F+d3KJrC3JF+d/MNATpJSWRMSVwHHAXyPiBvK8GkcCT5Inbz+gwu6zyBecpwJ3kO/qP6bY7+0ppVIf5340It5ALlX1+2Ky9r+R51GZQJ5sfgc2npAc4PvAJeTJyZcCP6zyKXf3LeA84FxgGD2M0Cgmcv8c8FHgzoi4jpz4OYw8kfwvi39X4+vkydanRcT+wN/JCYOp5Nfh9d3OvT4ijiHPxfOzYkL5v5KTQROAg8mjk3Yt1u0P/DAibgfmAouAncgjXobx1BwwdZNSuiUi7iXPUzMM+ElK6eEaHbsUEe8kv/d+HBHXkJMx+5HfszPJr2Wv771aSindEBEXkEuKzY2Ia4H55BJoLyGPjHlb0fxScpLld8WcQyvII55eQv49fkOj4pYkSZKq5cgXSZIkDTafJs/T8XvyxeWTgdPIF2p/RZ6745gKc2P0xzuAj5OTOe8lXxz+KbmEU2/zttxGLjE2oohzKnky8ZemlPoa9QJASulm8nP7IjCJ/BzfAexTHOu4Cvut46nRFN9IKa2t5nw9HOdBcvJkGL2P0JgOnEEeOfJucpLpj8DzgQf7cb6HySODZgIvBU7hqWTXTyvsM4ecVLmoaPvfxX7PJZfhejM5AUUR0yeK5zKliHkq8Cfg5Smlz1Qb6yb6Jvk17fp3zRQluw4h/w68gjxn0ZbkBNh9RbOVPe1bLyml6UUss4FXAh8i/x7NBa4oazcLeBU56XYs+b2+lhz7zxoZsyRJklSt2PQ+pyRJkqS+FKXAfgmcm1Ka0cQ4fkVOYDwrpXRPs+JQ64iIW8gjxrZNKT3e7HgkSZKkwcCRL5IkSdJmopgj5hDgehMvm5eI2Coituth/dvIo7VuMPEiSZIk1Y5zvkiSJEmDXEScQp7n5b/J83qc09yI1AQTgb9ExI3AveS+4IHkcnzLyaXWJEmSJNWIyRdJkiRp8PsIMJ48t8ebU0p/aHI8aryHyHPzHEKeK2UEsAT4OvA/KaV/NTE2SZIkadBxzhdJkiRJkiRJkqQacs4XSZIkSZIkSZKkGjL5IkmSJEmSJEmSVEMmXyRJkiRJkiRJkmrI5IskSZIkSZIkSVINmXyRJEmSJEmSJEmqIZMvkiRJkiRJkiRJNWTyRZIkSZIkSZIkqYZMvkiSJEmSJEmSJNWQyRdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQyZfJEmSJEmSJEmSasjkiyRJkiRJkiRJUg2ZfJEkSZIkSZIkSaohky+SJEmSJEmSJEk1ZPJFkiRJkiRJkiSphky+SJIkSZIkSZIk1ZDJF0mSJEmSJEmSpBoy+SJJkiRJkiRJklRDJl8kSZIkSZIkSZJqyOSLJEmSJEmSJElSDZl8kSRJkiRJkiRJqiGTL5IkSZIkSZIkSTVk8kWSJEmSJEmSJKmGTL5IkiRJkiRJkiTVkMkXSZIkSZIkSZKkGjL5IkmSJEmSJEmSVEMmXyRJkiRJkiRJkmrI5IskSZIkSZIkSVINmXyRJEmSJEmSJEmqIZMvkiRJkiRJkiRJNWTyRZIkSZIkSZIkqYZMvkiSJEmSJEmSJNWQyRdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQyZfJEmSJEmSJEmSasjkiyRJkiRJkiRJUg2ZfJEkSZIkSZIkSaohky+SJEmSJEmSJEk1ZPJFkiRJkiRJkiSphky+SJIkSZIkSZIk1ZDJF0mSJEmSJEmSpBoy+SJJkiRJkiRJklRDJl8kSZIkSZIkSZJqyOSLJEmSJEmSJElSDZl8kSRJkiRJkiRJqiGTL5IkSZIkSZIkSTVk8kWSJEmSJEmSJKmGTL5IkiRJkiRJkiTVkMkXSZIkSZIkSZKkGjL5IkmSJEmSJEmSVEMmXyRJkiRJkiRJkmrI5IskSZIkSZIkSVINmXyRJEmSJEmSJEmqIZMvkiRJkiRJkiRJNWTyRZIkSZIkSZIkqYZMvkiSJEmSJEmSJNWQyRdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQyZfJEmSJEmSJEmSamhoswNoBxERwFhgVbNjkSRJ2gSjgEUppdTsQCJiC2B4k06/LqX0ZJPOLQ1K9pkkSdIgYZ8ps89UAyZfqjMWWNDsICRJkmpgPLCwmQFExBY7ju5YuXRZaViTQlgSEbvbmdBgFRHTgGOAZwNPALOBj6SU/tnHftsB/1PsOxp4ADgtpfTzKk5rn0mSJA0W9pnsM9WEyZfqdN29NR7v5JIkSe1pFPnCaCt8lxm+dFlp2D2/nzRnu207Oht54uUrSkP2fOG8/ch3kNmR0GB1CPAF4HZyn+/jwA0R8ZyU0uM97RARw4EbgYeBN5AvOOwGLK/ynPaZJElSu7PPhH2mWjL50j+rUkormx2EJElSf+WKQK1l223p3G67KDXynE2vHSA1QEppSvnjiHgbOanyXOA3FXZ7O3m0y+SU0vpi3bwBnN4+kyRJakv2mTL7TLXT0ewAJEmSJEl1tW3xc1kvbV4N3Ap8ISIeioi7IuL/RcSQnhpHxIiI2KZrId8pKkmSJKlg8kWSJEmSBqmI6AAuBW5JKd3VS9M9yOXGhgAvB84HzgDOqtB+GrCibHG+F0mSJKmMZcckSZLUFJ2pRGdq7ND+ztTQEftSK/gCsA/wkj7adZBLk52UUuoE/hQR44APA+f20P5C4DNlj7tqpEuSJKlG7DO1N5MvkiRJkjQIRcRlwCuBl6aU+kqMLAbWF4mXLnOBMRExPKW0rrxxSmktsLbsXDWKWpIkSRocTL5IkiSpKUokSg2ezrHR55OaIXIm5PPA64BDU0r3V7HbLcAJEdGR0r9vd9wLWNw98SJJkqTGsM/U3pzzRZIkSZIGly8AbwJOAFZFxJhi2bKrQURcEREXlu3zJWA08NmI2CsiXgH8v+JYkiRJkvrJkS+SJElqihIlSjS2VFEJ6xdrs3BK8fNX3db/N/CN4t8T4alfiJTS/Ig4GrgEmAMsBD4LXFTPQCVJklSZfab2ZvJFkiRJkgaRlPqelTWldGgP624FXliPmCRJkqTNjWXHJEmSJEmSJEmSasiRL5IkSWqKzgSdqbGTOXY6d6QkSZKkNmGfqb058kWSJEmSJEmSJKmGHPkiSZKkpiiRKNHY26oafT5JkiRJGij7TO3NkS+SJEmSJEmSJEk1ZPJFkiRJkiRJkiSphiw7JkmSpKYokeh0CL0kSZIk9cg+U3tz5IskSZIkSZIkSVINOfJFkiRJTeHkkZIkSZJUmX2m9ubIF0mSJEmSJEmSpBpy5IskSZKaojMlOlNj76pq9PkkSZIkaaDsM7U3R75IkiRJkiRJkiTVkMkXSZIkSZIkSZKkGrLsmCRJkpqiVCyNPqckSZIktQP7TO3NkS+SJEmSJEmSJEk15MgXSZIkNUUniU4aPHlkg88nSZIkSQNln6m9OfJFkiRJkiRJkiSphky+SJIkSZIkSZIk1ZBlxyRJktQUnSkvjT6nJEmSJLUD+0ztzZEvkiRJkiRJkiRJNeTIF0mSJDVFAkpNOKckSZIktQP7TO3NkS+SJEmSJEmSJEk15MgXSZIkNUUnQSfR8HNKkiRJUjuwz9TeHPkiSZIkSZIkSZJUQyZfJEmSJEmSJEmSasiyY5IkSWqKUspLo88pSZIkSe3APlN7c+SLJEmSJEmSJElSDTnyRZIkSU3h5JGSJEmSVJl9pvbmyBdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQ5YdkyRJUlM4hF6SJEmSKrPP1N4c+SJJkiRJkiRJklRDjnyRJElSU5RSUEqNvauq0eeTJEmSpIGyz9TeTL5IkqSWN3XPMzuA5wH7AcOBpcBNM++5eFkjzl9astdE4BBgFPAEcGvHmLv/0YhzS5IkafNw5/zxWwNHAGOBTuBe4Df7TliwoamBSZIGxOSLJElqaVP3PHMqcCqwDzAMSEAAy6fueeaPgM/MvOfiR+tx7tKSvZ4JfBA4ChgJlMhlW58oLdlrNnBJx5i7/1SPc28OSk2oX1yyfrEkSWoxd84fvxX5++7xwC489X23E/jXnfPH/y/wnX0nLEjNi1JSM9hnam/O+SJJklrW1D3PfDvwReAgYDWwCFgMLAG2AN4BfG/qnmfuUutzl5bstS9wFXAMuQPcde6FwDrgZcC3S0v2OrzW55YkSdLm4c7540cCXwNOB7YHHiZ/51wELAeeCXwCOPvO+eO9IipJbcTkiyRJaklT9zzzxcBZ5Lv+FpLLfXUpAcvISZj9gEun7nlmzTqjpSV7bQ18mVzyYRGwgpyA6bIaWABsC1xalCWTJEmS+ms6cBi5rO5SoLzE2Fry990ngHcC/9Xw6CRJA2byRZIktaq3AFuSO6GVbCAnYV4EHFjDc78c2B14iJzoqWQxsBPwhhqee7PRSdBJR4MXbxiVJEmt4c7543cFXke+sWdtL01XkK/hvePO+eO9lidtRuwztTc/sCVJUsuZuueZE8iTja6qovkacgmyY2oYwvHFz74mN03AeuD40pK9htfw/JIkSRr8XgNsA6ysou1jwLOBF9Q1IklSzQxtdgCSJEk9mEROqPQ26qXcBnJndJOVluwVwLN4epmz3jwOjAZ2II+EUZVKKSilBk8e2eDzSZIk9WL34mdvI627PEn+vrk7cGvdIpLUUuwztTdHvkiSpFYUxZL6alim1t9r+nNuwLHZkiRJ6peBfH/0O6cktQmTL5IkqRUtINe93rLK9kOA+2px4o4xdyfggX6ce0tyebRltTi/JEmSNhsLip/VJFRGkEd7L6xfOJKkWjL5IkmSWs7Mey6+j1xOYdsqmm9BnnflRzUM4Sry96QhVZ7/Bx1j7n6yhuffLOTJIxu/SJIktYgfk0vYjqqi7fbA/cAtdY1IUkuxz9TeTL5IkqRWdQWwDtiulzYdwI7AndS29vWPgUXALn202wVYDlxdw3NLkiRpM7DvhAXzgOuBbYBhvTQdSR4dc8W+Exasb0BokqQaGNrsACRJkiq4AfgicCo5ybGMPMKlyyjyyJh5wPtm3nNxNROVVqVjzN3LSkv2+gDwFWB8ce41ZU22IE94ugY4q2PM3XfX6tybk87UQWdq7L1Anam/U/lIkiTV1dnAHsCBwGpgBU/NPTiEPOJlOHAN8I0mxCepiewztTdHvkiSpJY0856LE3AxcBZ5FMpOwNhiGUe+iWQmcGxRpqymOsbc/TvgrcBtwFbFObvOvw3wN+CUjjF3/6DW55YkSdLmYd8JCx4FTgS+B5R46vvmWGAMORnzKeCD+05YsKFZcUqS+s+RL5IkqWUVCZhvTt3zzCuBo4B9yXf+LQVmzbzn4nvref6OMXf/sbRkr9eS70Q8jJx0eRz4PfC7jjF312y0zeYo0UGpwfcCJbyLS5IktZZ9JyxYBpx+5/zxnwReSU66dAL3Aj/fd8KCVc2MT1Lz2GdqbyZfJElSy5t5z8VrgZ8US0N1jLk7AX8uFkmSJKku9p2wYBFwebPjkCTVhmXHJEmSJEmSJEmSasiRL5IkSWqKToJOouHnlCRJkqR2YJ+pvTnyRZIkSZIkSZIkqYYc+SJJkqSm6EwddKbG3gvUmZw8UpIkSVJ7sM/U3lpq5EtEnBIRcyJiZbHcGhFTe2n/q4hIPSw/K2vzjR62z2rMM5IkSZIkSZIkSZubVhv5sgD4KHAPEMBbgesi4sCU0t96aH8MMLzs8Q7AHcD3u7WbBfx32eO1NYtYkiRJkiRJkiSpTEslX1JKP+m26mMRcQrwQmCj5EtKaVn544g4DljDxsmXtSmlJbWMVZIkSZumRFBq8GSOjT6fJEmSJA2Ufab21lJlx8pFxJAimTISuLXK3d4BXJlSerzb+kMj4uGI+GdEfCkidujj3CMiYpuuBRjV/2cgSZKkwSAi3hsR8yLiyYi4LSKe30f7N0bEP4r2d0bEy8u2DYuIi4r1j0fEooi4IiLGdjvGvB5K5360Xs9RkiRJkjaF/aaNtVzyJSL2jYjV5NJgXwZel1L6exX7PR/YB/jfbptmAW8BjgA+AhwCzIyIIb0cbhqwomxZ0N/nIUmSpN510tGUpT8i4ljgM8C5wEHkErfXR8TOFdpPBr4HfA04ELgWuDYi9imabFUc5/zi5zHAs4Af93C4s4Fdy5bP9yt4SZIkSW2tHfpMYL+pkpYqO1b4J3AAsC3wBuCbEXFIFQmYdwB3ppT+UL4ypXRl2cM7I2IO8C/gUODmCse6kPxm6TIKEzCSJEmbow8CX00pfR0gIk4GXgG8HfhED+0/AMxKKX2yeDw9Io4ETgVOTimtAI4s3yEiTgX+EBETU0oPlm1aZelcSZIkSW3AflMPWm7kS0ppXUrp3pTSn1JK08hZsg/0tk9EjASOI2fK+jr+fcBS4Jm9tFmbUlrZtQCr+vUkJEmS1OpGlZeZjYgR3RtExHDgucBNXetSSqXi8YsqHPdF5e0L1/fSHvJNRwlY3m39RyPi0Yj4S0R8OCJa8cYpSZIkSYNTn30msN/Um5YJpBcdQI//sWXeWLT5dl8Hi4jxwA7A4k0PTZIkSQPVSdCZGnsvUCelrn92H9V8LjCj27odgSHAQ93WPwQ8u8IpxlRoP6anxhGxBXAR8L3ipp8unwP+DCwDJpNHZu9KvqNMkiRJ0magDfpMYL+popZKvkTEhcBM4EFyqa8TyOXBji62XwEsLEbElHsHcG1K6dFux9saOAe4BlgCPAO4GLiXnEmTJEnS5mk8Tx/dvLbRAUTEMOBqIIBTyrellMpL4M6JiHXAVyJiWkqp4bFKkiRJ2uw0vc8E7d1vaqnkC7AzcAU5O7UCmAMcnVK6sdg+EZ5KvQFExLOAlwBH9XC8TmA/4K3AdsAi4AZgeiu8+JIkSZuzRAelBlfBTU+db1W3O6Z6spT8fXKXbut3Id/Y05Ml1bQv60DsBhxeRSy3kb+7TyLPkShJkiRpkGuDPhPYb6qopZIvKaV39LH90B7W/ZOc9eqp/RMUo2YkSZKk/kgprYuIPwFHANcCRERH8fiyCrvdWmy/tGzdkcV6imN0dSD2BA7rPnq7ggPINyE93J/nIEmSJEn1ZL+pspZKvkiSJGnz0ZmCztTjPTR1PWc/fQb4ZkT8EfgDcBowEvg69FgW97PAryPiDOBnwHHA84CTivbDgB8ABwGvBIZERFdd42VFx+VFwAuAX5KH+b8IuAT4dkrpsf4+AUmSJEntqU36TGC/qUcmXyRJkqQKUkpXRcROwHnkyR//CkxJKXVNDvm0srgppdkRcQJwAfBx4B7gtSmlu4om44BXF//+a7fTHQb8ilxL+TjyZJYjgPvJnYjPIEmSJEktxn5Tz0y+SJIkSb1IKV1GheHyFcrifh/4foX286hQMreszZ+BF/Y3TkmSJElqFvtNGzP5IkmSpKbopIPOBk8e2ejzSZIkSdJA2Wdqb76SkiRJkiRJkiRJNeTIF0mSJDVFKXVQSo29F6jR55MkSZKkgbLP1N58JSVJkiRJkiRJkmrI5IskSZIkSZIkSVINWXZMkiRJTeHkkZIkSZJUmX2m9uYrKUmSJEmSJEmSVEOOfJEkSVJTlFLQmaLh55QkSZKkdmCfqb058kWSJEmSJEmSJKmGHPkiSZKkpijRQanB9wI1+nySJEmSNFD2mdqbr6QkSZIkSZIkSVINmXyRJEmSJEmSJEmqIcuOSZIkqSk6UwedqbH3AjX6fJIkSZI0UPaZ2puvpCRJkiRJkiRJUg058kWSJElNUQJKRMPPKUmSJEntwD5Te3PkiyRJkiRJkiRJUg2ZfJEkSZKkQSQipkXE7RGxKiIejohrI+JZ/dj/uIhIEXFtHcOUJEmSBjXLjkmSJKkpnDxSqptDgC8At5P7fB8HboiI56SUHu9tx4iYBHwK+G29g5QkSVLv7DO1N5MvkiRJkjSIpJSmlD+OiLcBDwPPBX5Tab+IGAJ8BzgH+E9gu7oFKUmSJA1yJl8kSZLUFJ100NngKriNPp/UIrYtfi7ro93ZwMMppa9FxH/WOSZJkiT1wT5TezP5IkmSJEmDVER0AJcCt6SU7uql3UuAdwAHVHncEcCIslWjBh6lJEmSNPiYfJEkSVJTpBSUUjT8nNJm5gvAPsBLKjWIiFHAt4B3pZSWVnncaeTyZJIkSaoT+0ztzeSLJEmSJA1CEXEZ8ErgpSmlBb00fQYwCfhJxL872x3FMTYAz0op/avbPhcCnyl7PAro7RySJEnSZsXkiyRJkiQNIpEzKJ8HXgccmlK6v49d/gHs223dBeSEygeA+d13SCmtBdaWnXNTQpYkSZIGHZMvkiRJagonj5Tq5gvACcBrgFURMaZYvyKl9ARARFwBLEwpTUspPQk8bT6YiFgO0Ns8MZIkSaov+0ztzeSLJEmSJA0upxQ/f9Vt/X8D3yj+PREoNSgeSZIkabNj8kWSJElNUUodlFJj76pq9PmkZkhVzJKaUjq0j+1vq1U8kiRJGhj7TO3NV1KSJEmSJEmSJKmGTL5IkiRJkiRJkiTVkGXHJEmS1BSdBJ30WR2p5ueUJEmSpHZgn6m9OfJFkiRJkiRJkiSphhz5IkmSpKZw8khJkiRJqsw+U3vzlZQkSZIkSZIkSaohR75IkiSpKaxfLEmSJEmV2Wdqb458kSRJkiRJkiRJqiGTL5IkSZIkSZIkSTVk2TFJkiQ1RUrR8MkcU3IIvSRJkqT2YJ+pvTnyRZIkSZIkSZIkqYYc+SJJkqSm6EwddDb4Lq5Gn0+SJEmSBso+U3vzlZQkSZIkSZIkSaohky+SJEmSJEmSJEk1ZNkxSZIkNUWJoERjJ3Ns9PkkSZIkaaDsM7U3R75IkiRJkiRJkiTVkCNfJEmS1BROHilJkiRJldlnam++kpIkSZIkSZIkSTXkyBdJkiQ1RSkFpdTg+sUNPp8kSZIkDZR9pvbmyBdJkiRJkiRJkqQaMvkiSZIkSZIkSZJUQ5YdkyRJUlN00kFng+8FavT5JEmSJGmg7DO1N19JSZIkSZIkSZKkGnLkiyRJkpoiNWHyyOTkkZIkSZLahH2m9ubIF0mSJEmSJEmSpBoy+SJJkiRJkiRJklRDlh2TJElSU5TooNTge4EafT5JkiRJGij7TO3NV1KSJEmSJEmSJKmGHPkiSZKkpuhMQWeDJ3Ns9PkkSZIkaaDsM7U3R75IkiRJkiRJkiTVkCNfJEmS1BQlglKD76oq4V1ckiRJktqDfab25sgXSZIkSZIkSZKkGjL5IkmSJEmSJEmSVEOWHZMkSVJTlFJQSo29F6jRQ/YlSY03ZceTRgM7AOuARbOWXr5+oMdasnDsEGAcsAXw2Jhxix7ZlNhuvH/vbYCdgU5g8ZG7z31yU46n5pv9wB7l75Flk3e7b2mTQ5KaZtJXPrUVMAYI4KF57/7Q6iaH1PbsM7U3ky+SJEmSJKmtTdnxpAAOAY4HDgeGASVg8ZQdT/ou8P1ZSy9/uNrjLVk4djTweuBEYCK5csj6JQvH/g74HnDTmHGLStUe78b79z6oiO2V5Iv0AI/deP/eVwFXHbn73HnVHkutYfYDe4wG3gCcQNl7ZPYDe/wWuBK4afJu91X9HpHa2aSvfGov4Djy78SoYvXjk77yqR8CV85794f+3rTgpCay7JgkSZKaopNoyiJJGlym7HjSEGAG8E3g1cXq1cCT5IviZwHXTdnxpH2rOd6ShWOfCVwDnAs8szjOaiABRwNfAz65ZOHY4X0d68b7944b79/7JOD7wJuA4cCaYtkBOB348Y33731YNbGpNcx+YI89gR/R83tkKvk9cvHsB/bo8z0itbtJX/nUq4EfA6eQEy9dn3EjgXcB1076yqf+q3kRtjf7TO3N5IskSZIkSWpnpwHvBNYCC4EV5Ivha4CHgMXA7sBXp+x40vjeDrRk4dgdyRfO9wYeBpYUx3kSWAksAh4nj2KZXkVsbwQ+Rr7+shB4DHiiWB4p1u0IXHbj/XsfUN3TVTPNfmCPncjvkWeR3x/d3yMLye+RE8iJP2nQmvSVT70U+DSwNfm9/yhPfcY9WqzbErhw0lc+dVSz4pSaxeSLJEmSJElqS1N2PGkM+c7qdeQL3z0pkZMmk4C39nHI44G9yAmbDRXarKa4uF6MkunRjffvPQL4IDCEfBGyJ6k41w7AqX3EptZwPLAn+f+ts0Kb1eSEzImzH9jjGY0KTGqkSV/5VJA/40aRk5CVPARsBZwx6Suf8lq0Niu+4SVJktQUKUUxgWTjluTkkZI02BwDbEceUdKbEnlkwhun7HjSqJ4aFGXEjicnXSpdVO+yglxS5429tDmKXPasUuKlSyInjg698f69d++jrZqoKCNWy/eI1M4OBA4AllXRdhl5ROHkegY0GNlnam8tlXyJiFMiYk5ErCyWWyNiai/t3xYRqdvyZLc2ERHnRcTiiHgiIm6KiD3r/2wkSZIkSVKdvZicWKlmYvMV5BEm+1TY/kxgbNGuGuuBl/ay/WAginZ9WUW+UH9wledWc+wF7Ep175FE3+8RqZ09n6fmserLE8Aw/IzTZmZoswPoZgHwUeAe8heUtwLXRcSBKaW/VdhnJbnOZpfUbfuZwPuLY90PnA9cHxHPSSk9iSRJkpqilDoopcbeC9To80mS6m5r+h6B0KWTXAJsywrbtyTfpFpNIqfreCN72b4lVD1rcSqWSrGpNWxJfg9V+54r0ft7RGpnW7Lxddje+Bk3APaZ2ltLJV9SSj/ptupjEXEK8EKgUvIlpZR6rCsYEUGeeO+ClNJ1xbq3kGsNvha4sgZhS5IkSZKk5lhK9dc2hpHLRVUatbCSfFF9KHkOmWqO11tJsRVUf2Gyg5yoqXbUjZpjBfk9NIzqRjT19R6R2tkKnvrsquazzs84bXZaNo0VEUMi4jjyHQK39tJ064h4ICLmR8R1EfEfZdt2B8YAN3WtSCmtAG4DXtTLuUdExDZdC3niKEmSJEmS1FpuIF/0qyYBsx0wD5hTYfu/gL8X7frSUSw/76XNL8gX6Ku503s78rw1v6mirZrnXmAusG0VbbsuSvf2HpHa2S+Ax6nuuunW5NJjN9c1IqnFtFzyJSL2jYjVwFrgy8DrUkp/r9D8n8DbgdcAbyI/n9kRMb7YPqb4+VC3/R4q29aTaeRMbNeyoL/PQ5IkSb0rEU1ZJEmDys+AJcCOfbQbTi4X9b1ZSy/vccTCmHGLSsB3yMmcLfo43o7kZMm1vbT5PTmZM7qPYw0BtgKuPXL3udVMXK0mmbzbfV3vEajNe0RqW/Pe/aF55ATMNvR+jTmA7YHfz3v3h/7RgNAGFftM7a3lki/khMoBwAuALwHfjIjn9NQwpXRrSumKlNJfU0q/Bo4BHgHevYkxXEi+i6FrGd97c0mSJEmS1Gizll6+GjiPXCZsF3q+zrElsDPwB+BbfRzyGuCX5AvnPc3VEcBO5ATNJ8aMW/RIpQMdufvcEnA2+QL8WHKSpbvh5Anc7wEu6yM2tYZrgF/R93ukBFw4ebf7ljYuNKnhLiLftL4rucxed0PJn3+LgQsaGJfUElou+ZJSWpdSujel9KeU0jTgDuADVe67HvgL8MxiVddcMLt0a7pL2baejrM2pbSyawFW9etJSJIkqU+dKZqySJIGl1lLL78W+DB5zpZdyZUuRgM7AOPIJXF+CbyzSNZUNGbcorXAe8gjarYq9t+xON4u5IuITwLn0HcihyN3n/sH4CRgURHX2LLYuv59B/CWI3efu6j6Z61mmbzbfU8Cp9D7e+QJ8nvk200KU2qIee/+0L+At5JL8u3EU59ro4t/70wu9/jf8979oUqVjdQL+0ztreWSLz3oAEZU0zAihgD7krOpAPeTkyxHlLXZhjyqprd5ZCRJkiRJUpuYtfTya4DDgBnA38iJmIfJoxROBE6ctfTyqkYgjBm3aCXwLuC/gO+SryusJFfq+Dhw2Jhxi74xZtyiaiaY5sjd5/4OOBz4EHA7ubz5UvJ8Ne8CXnXk7nPvr+qJqiVM3u2+vt4jh0/e7b5vTt7tvqreI1I7m/fuD/0NOIqcuP41sLxYbgHeDxwx790f+kuz4pOaqZoJ6RomIi4EZgIPku9MOQE4FDi62H4FsLAYEUNEnE2uoXoveXK6DwO7Af8LkFJKEXEpcFZE3ENOxpxPvuPk2sY8K0mSJPWklDoopcbeC9To80mSGmfW0ssfBr5SLJukmP/ltmLZZEfuPnclea6Q7/TVVu2hmP+lZu8RqZ3Ne/eHniBfa722uZEMPvaZ2ltLJV/IQ9GuIA8TXgHMAY5OKd1YbJ9IrpnZZXvgq+Shu48BfwImp5TKh7FdTK7BeTk5QfM7YEpK6cn6PQ1JkiRJkiRJkrS5aqnkS0rpHX1sP7Tb49OB0/vYJ5EnuDt7U+OTJEmSJEmSJEnqS0slXyRJkrT5KKWg1ODJHBt9PkmSJEkaKPtM7c0CbpIkSZIkSZIkSTXkyBdJkiQ1RYmgRIPv4mrw+SRJkiRpoOwztTdHvkiSJEmSJEmSJNWQyRdJkiRJkiRJkqQasuyYJEmSmiI1YfLI5OSRkiRJktqEfab25sgXSZIkSZIkSZKkGnLkiyRJkpqilDoopcbeC9To80mSJEnSQNlnam++kpIkSZIkSZIkSTXkyBdJkiQ1RSnR8PrFpdTQ00mSJEnSgNlnam+OfJEkSZIkSZIkSaohky+SJEmSJEmSJEk1ZNkxSZIkNUWJoESDh9A3+HySJEmSNFD2mdqbI18kSZIkSZIkSZJqyJEvkiRJaopSiiZMHuldXJIkSZLag32m9ubIF0mSJEmSJEmSpBoy+SJJkiRJkiRJklRDlh2TJElSUziEXpIkSZIqs8/U3hz5IkmSJEmSJEmSVEOOfJEkSVJTeBeXJEmSJFVmn6m9OfJFkiRJkiRJkiSphhz5IkmSpKbwLi5JkiRJqsw+U3tz5IskSZIkSZIkSVINmXyRJEmSJEmSJEmqIcuOSZIkqSkSQYnGDmlPDT6fJEmSJA2Ufab25sgXSZIkqRcR8d6ImBcRT0bEbRHx/D7avzEi/lG0vzMiXl62bVhEXFSsfzwiFkXEFRExttsxRkfEdyJiZUQsj4ivRcTW9XqOkiRJkrQp7DdtzOSLJEmSmqJE/HsCyYYt/byLKyKOBT4DnAscBNwBXB8RO1doPxn4HvA14EDgWuDaiNinaLJVcZzzi5/HAM8CftztUN8B/gM4Engl8FLg8n4FL0mSJKmttUOfCew3VWLyRZIkSarsg8BXU0pfTyn9HTgZWAO8vUL7DwCzUkqfTCnNTSlNB/4MnAqQUlqRUjoypXR1SumfKaXfF9ueGxETASJib2AK8M6U0m0ppd8B7wOO636nlyRJkiS1APtNPTD5IkmSpM3RqIjYpmwZ0b1BRAwHngvc1LUupVQqHr+ownFfVN6+cH0v7QG2BRKwvOwYy1NKfyxrcxNQAl7Qy3EkSZIkqVb67DOB/abemHyRJElSUzR8+HyxFBYAK8qWaT2EuCMwBHio2/qHgDEVntaY/rSPiC2Ai4DvpZRWlh3j4fJ2KaUNwLJezitJkiRpkGmDPhPYb6poaLMDkCRJkppgPLCq7PHaRgcQEcOAq4EATmn0+SVJqpepe08bBxwGbAM8Cdw2c+6Ff2tuVFL7m7rnmVsDRwBjgU7gHuC3M++5eENTA9Ng1fQ+E7R3v8nkiyRJkpqi211VDTtnYVXZHVOVLCV3anfptn4XYEmFfZZU076sA7EbcHi3WJYAO3drPxQY3ct5JUlquql7T5sEnAEcDYwil37pAJ6cuve03wOXzpx74W3Ni1BqT1P3PHMrirksyN8tU7GpBPxr6p5nfhX47sx7Lk4VDqE21QZ9JrDfVJFlxyRJkqQepJTWAX8i310IQER0FI9vrbDbreXtC0eWty/rQOwJvCyl9GgPx9guIp5btu5w8nd3L1hJklrS1L2nPRu4Cngj+e7kRcBiYCH5bunDgG9O3XvalKYFKbWhYrTL/wGnAduTyywtLpbl5O+UFwHTp+55ZmOv0kvYb+qNyRdJkiQ1RZPrF1frM8C7IuKtEbE38CVgJPB1gIi4IiIuLGv/WWBKRJwREc+OiBnA84DLivbDgB8U604EhkTEmGIZDpBSmgvMAr4aEc+PiBcX+1+ZUlo0oBdbm5WImBYRt0fEqoh4OCKujYhn9bHPuyLitxHxWLHcFBHPb1TMktrb1L2nbQl8mXxn8iLy3ADld+CvJs8dMAr49NS9p+3R8CCl9jUdOJQ8umApUF5ibC05CfME8C5y8lODSJv0mcB+U49MvkiSJEkVpJSuAj4EnAf8FTgAmJJS6pocciKwa1n72cAJwEnAHcAbgNemlO4qmowDXk2un/xXnrprcTEwuezUJwL/AG4Gfg78rjimVI1DgC8ALyTfQTgMuCEiRvayz6HA98h3pr8ImF/sM66+oUoaJI4i35n8ELkMUiVLyOVgjmtEUFK7m7rnmWOB15ETmL3Nt7GCfJ33HVP3PNPrvWo4+009c84XSZIkqRcppcso7sDqYduhPaz7PvD9Cu3nkUux9HXOZeTOiNRvKaWnlfSJiLeRS5Q8F/hNhX1O7LbPO4HXk8tBXFGXQCUNJseR/76t76NdIl9AfuPUvaddMnPuhU/UPTKpvb2GPGKsmrv4lwN7A88Hfl/HmKQe2W/amMkXSZIkNUVKQWrw5JGNPp/UIrYtfi7rxz5bkUfM9LhPRIwARpStGjWw0CQNEs8Cnqyy7ePAduSJlefVKR5psNidfAE69dWQXHpsdLGPyZdBwj5Te3MYmiRJkiQNUsVkp5cCt5SVcajGReS7bG+qsH0aucRJ17JgE8KU1P4Gcn3Ja1JS3wZyFdwr51KLcOSLJEmSmqJEUGpw37DR55NawBeAfYCXVLtDRHyUXELo0JRSpTvZLyRPrNplFCZgpM3Z/cALqmy7JXn0y8P1C0caNBaQR71UM/plBLABWFjvoNQ49pnam3cZSJIkSdIgFBGXAa8EDkspVZUYiYgPAR8FjkopzanULqW0NqW0smsBVtUkaEnt6mryxeFqbvLdEvjRzLkXrq5vSNKg8GNysrKa8p7bkxOht9Q1IklVM/kiSZIkSYNIZJcBrwMOTyndX+V+ZwLTgSkppT/WM0ZJg85PgfnkeVx6u2V6Z2A1cFUjgpLa3cx7Lr4fuBHYhjwXWyUjyb9735x5z8UbGhGbpL6ZfJEkSVJTpBSUGrw4eaQ2E18A3gScAKyKiDHFsmVXg4i4IiIuLHv8EeB84O3AvLJ9tm508JLaz8y5F64CTgWWAuPIF4LLjQDGkksinTNz7oX9mYNK2tydBfyVnNzcjqcnOIcAOwLbAtcA32hsaKo3+0ztzeSLJEmSJA0up5AvwvwKWFy2HFvWZiKwa7d9hgM/6LbPh+ofrqTBYObcC/9ATvzOBrYgJ2HGFj+3A/4JvG/m3Au/26wYpXY0856LHyXfUHElUCL/XnUtuwArgE8BZ8y85+LOZsUpaWPV1OKUJEmSai414a4q7+LS5iBV8UZPKR3a7fGkesUjafMxc+6Fd0zde9rrgf2AI8iJ4DXA7cCvZ8690AvD0gDMvOfiZcBpU/c882LyfG5jgE7gXuDnM++52LnXBin7TO3N5IskSZIkSZJqYubcCxNwR7FIqqGZ91y8CLi82XFIqo7JF0mSJDVFKUGpwXdVlVJDTydJkiRJA2afqb0554skSZIkSZIkSVINmXyRJEmSJEmSJEmqIcuOSZIkqSmcPFKSJEmSKrPP1N4c+SJJkiRJkiRJklRDjnyRpE105/zxHcC2QAAr9p2woLPJITXMlP3OGg5sA6wFVs+ac4HTskmqWilFEyaP9C4uSZIkSe3BPlN7M/kiSQN05/zxuwCvB44HxpCTL8vvnD/+KuD7+05YMK+J4dXNlP3OCuB5wH8BrwCGAwn425T9zvou8NNZcy5Y08QQJUmSJEmSpKay7JgkDcCd88dPBmYC04FJQAnYAOwEfBCYeef88a9uWoB1MmW/szqAacDVwJuALcjPOwHPBy4Fvj9lv7PGNytGSZIkSZIkqdlMvkhSP905f/x+wFfIo10WAw8Bq4DVwCPAImAU8Jk7548/vFlx1snpwHuBTmAhsIz8vFeSn/dS4LnA16bsd9Z2TYpRUptIqTmLJEmSJLUD+0ztzeSLJPXfB4CdyYmXUg/bE7AEGAl8tJgTpu0Vo1lOJs/vsrxCs3XkZNR+wHGNiUySJEmSJElqLYPigqAkNcqd88c/AziUnHzo616AR4FnA5PrG1XDvB7YGnisj3brySNjTpiy31nD6h6VpLZVIpqySJIkSVI7sM/U3ky+SFL/vBjYilxmrC9PAkOLfQaDI8hJlWoGoK4AJgJ71TUiSZIkSZIkqQUNbXYAktRmRtJzqbG+9hkMtiEnX6qxARjC4HnukuogpSClxt5V1ejzSZIkSdJA2Wdqb458kaT+WUX+7Kz2L1GQJ6QfDB6j+qT9UHKiZrA8d0mSJEmSJKlqJl8kqX9+CzwOjKqi7ZbkCeh/XdeIGudG8t+Nav52bAvcB/yzrhFJkiRJkiRJLcjkiyT1w74TFjwA3EwuwdXX6JfRwF3A7fWOq0F+RJ7LZXQf7YaT/758Z9acC6otUyZpM1RK0ZRFkiRJktqBfab2ZvJFkvrvM8AiYCx5XpPuOoBdyYmK/9l3woL+zhHTkmbNuWAx8Dnyc66UgBkB7ExOOF3doNAkSZIkSZKkllJt7X5JUmHfCQv+eef88e8EvghMBBKwpti8JTk58QjwwX0nLJjdnCjr5svAMOB9wDhgLbm0WgcwkjzPyy3AKbPmXLCqWUFKag8p5aXR55QkSZKkdmCfqb058kWSBmDfCQv+DEwBPgrcCZSK5V/AecDL9p2w4KbmRVgfs+ZcUJo154LPAq8CvgQ8VmzaQJ4T5l3A8bPmXPBwk0KUJEmSJEmSms6RL5I0QPtOWLAcuAK44s7544cBHftOWLC2uVE1xqw5F8wFzpuy31nnA1sA65zfRZIkSZIkScpMvkhSDew7YcH6ZsfQDLPmXJCAJ5odh6T2lFKQGjyZY6PPJ0mSJEkDZZ+pvVl2TJIkSZIkSZIkqYYc+SJJkqQmafxdXOBdXJIkSZLahX2mdubIF0mSJEmSJEmSpBpqqeRLRJwSEXMiYmWx3BoRU3tp/66I+G1EPFYsN0XE87u1+UZEpG7LrPo/G0mSJEmSJEmStDlqtbJjC4CPAveQxze9FbguIg5MKf2th/aHAt8DZgNPAh8BboiI/0gpLSxrNwv477LHa+sQuyRJkvqhlIJo8BD6kpNHSpIkSWoT9pnaW0slX1JKP+m26mMRcQrwQmCj5EtK6cTyxxHxTuD1wBHAFWWb1qaUltQ4XEmSJEmSJEmSpI20VPKlXEQMAd4IjARurXK3rYBhwLJu6w+NiIeBx4BfAGellB6tVaySJEnqv5Ty0uhzSpIkSVI7sM/U3lou+RIR+5KTLVsAq4HXpZT+XuXuFwGLgJvK1s0CfgjcDzwD+DgwMyJelFLqrBDDCGBE2apR/XoSkiRJkiRJkiRps9VyyRfgn8ABwLbAG4BvRsQhfSVgIuKjwHHAoSmlJ7vWp5SuLGt2Z0TMAf5Fni/m5gqHmwacM9AnIEmSpL6lFKQG1xNu9PkkSZIkaaDsM7W3jmYH0F1KaV1K6d6U0p9SStOAO4AP9LZPRHwI+ChwVEppTh/Hvw9YCjyzl2YXkpM/Xcv4fjwFSZIkSZIkSZK0GWvFkS/ddfD0EmBPExFnAh8Djk4p/bGvg0XEeGAHYHGlNimltcDasn36E68kSZIkSZIkSdqMtVTyJSIuBGYCD5LnWTmBXB7s6GL7FcDCYkQMEfER4Lyi3byIGFMcanVKaXVEbE0uH3YNsIQ858vFwL3A9Q16WpIkSeqBQ+glSRqY2x+cNAY4BjgE2AZYAdwIXHvwxHmPNjO2GXe9Zjvg1eRrOaOBNcBvgGtm7HPdgv4ca8p+ZwWwL/B6con6YcB84MfAjbPmXLCuZoEPwNRJp+9BLpn/QmBL4BHgZ8DPZs67ZHUzY5M0ONhnam8tlXwBdgauAHYlf3GYQx7RcmOxfSJQKmt/CjAc+EG345wLzAA6gf2AtwLbAYuAG4DpxegWSZIkSZKktnD7g5M6gFOB95DLpCdgA/n6ziHAGbc/OOlTwNcPnjgvNTq+GXe95r+As4CdymIbAkwGTp1x12u+Dlw8Y5/rNvR1rCn7nbUd8CngCHJiY31xzAOBVwL3T9nvrNNnzbng9jo8lV5NnXT6CPLNvv8FjCRffyqRk0NHAmdOnXT69JnzLvl5o2OTJLWOlkq+pJTe0cf2Q7s9ntRH+ycoRs1IkiSptaRiafQ5JUlqR7c/OCmADwHvJyciFvP0G1Q7yGXWZ5CTAF9pZHwz7nrNCcD/kK81LSEnJLoE+abYU4GtZtz1mrNn7HNdaaODFKbsd9ZI4H+BlwDLge6jeYaTq5t8fcp+Z71l1pwL/lyjp9GnqZNOHwJ8mjwaZzX5Rt/yrxhDgTHA56ZOOh0TMJI2hX2m9tbR7AAkSZIkSZLUp4OAk4EnycmI7smLErnsVSfwodsfnLRnowKbcddrxgLTyaNcHuLpiRfI1/IeIycr3kwepdObd5BHyzxc7NPdOnLSYwfg4in7ndXI61uvBl5DTgqtYOPrlBvIibEtgI9PnXT6Ng2MTZLUQky+SJIkSZIktb5jyeW3lvfR7lFga/JcJI1yDHlkyyN9tFtJHrVyXKUGU/Y7awR5bt8N5CRLJYn8XPcij5Cpu6mTTg/gRHKS6fE+mj8C7AK8qt5xSZJak8kXSWoBN96/95Ab7997QDOaTdl/ekzZf3pLlZGs1uwH9ojZD+zRlrFvqqkTT+uYOvE0/w5rs9Y1eWSjF0mS2s3tD04aAbwCeKLKXdYBxxSlyhrhteTRLtVUq1kNHDbjrteMrrD9BcB4+k4yQR4FNByYUkXbWtidPAJpZRVtu16PV9c1IkmDmn2m9rZZXvCSpFZw4/1770G+G+0YYHtgw433730bcCXwyyN3n7u+0r5T9p/eQb6761jykP1hU/afvhq4DvjBrDvO/3u94x+o2Q/sMQR4KflutxcDw2Y/sMdKcuxXT97tvrubGV89TZ142mhyiYLjgN2ANHXiafcB3wN+PPPBS6vpxEmSJGnzsy25jNXaKtuvA7YhJyaq3WdT7NyP86wDtgJGA8t62L4Dec6a3ka9lEvF+RthNDm2VVW2X08e/SJJ2gx5x60kNdiN9+8dN96/9zuB64HTgbHkz+MtgKnA/wFX3nj/3j12IKbsP30b8uST3yYnbrbiqck1TwF+MmX/6WcWCZqWMvuBPbYHvgFcQb4DrCv2ncmTb/589gN7nDb7gT1aLvZNNXXiaZOBG4GPA/uQb4AYBhwAXAzcMHXiaQc1LUCpGVKTFkmS2s9a8pwu1X5PjqJ9xRu6amwt/YstUTm5MpDnWu2IoE21jv7F1kEenSNJA2Ofqa0NuotbktQG3kKejHIYeZLIh8kTNT4GLCQPr38x8LUb79/7aZMzTtl/+nDgC8DLycP1F5LvFlsBLC0eA7yfnNhpGbMf2GNL4MvAkeRh+uWxPwIsIP9dOgN4b5PCrIupE087ELgc2BVYQp6Ac3mxLCZPSrob8H9TJ572nOZEKUmSpBa2ErgbGFVl+5HA7QdPnFeqX0hPcxt5PppqbAPMJ/eFenIXeT6Vap5rB/ky4R1VnntT3UueZ2abvhoWhpJfG0nSZsjkiyQ10I337z0aOJN8d9ZSer6f4ElyQua5wPHdtr0KOLzYd02F0zxGviPrlCn7T9+jBmHXyuvIpdIeofKdacvIE2u+f/YDe4xvVGD1NHXiaQH8P2BHcqKls4dmneTO567AhxoXndRc1i+WJKk6B0+cl4DvFA+H9dF8BHl0xpV1DerpruKpcmK9GVIs35mxz3Ubemowa84FD5JHjFeTfNmefEPTtdUGuilmzrtkDfm5jqDva2qjyH2779c7LkmDl32m9mbyRZIa67XkOsFL+2jXNZz9hBvv33sowJT9pwdwIjlx09fQ9cfId7u9YVOCrZWijFhX7H3Vgl4GbA28vt5xNci+wPPI/ye9Dd5N5FFAh0ydeNozGhGYJEmS2sqPgb+R5xCpNIfvMGAn4HbgpgbFBXAL8FtyX2d4hTZDyDcb3Qtc08fxvkpOquzaS5tR5CTI12fNuaCv/lUtfZc8an9XKl9X24I8T8/Pyf9nkqTNkMkXSWqsI8kX2asZ/r8cmAT8R/F4LLA/ueRAXxK5vvPUfkdYH5OAvcnJhb4k8kiQVol9Ux1K7hQ+XkXbVeS7BQ+pZ0CSJElqPwdPnLcaeBfwd3ICZmfy98yh5Iv9Xev+BJx88MR51U5Yv8lm7HNdCXgf8DvyiO8x5DJkQ4sYd+KpxMu7Zuxz3aO9HW/WnAv+DJxG7vuMJ49wGVYcbyS5b7QV8C3g0zV/Qr2YOe+S+cBJ5JHrY8nPd3gR21bk57k9eY7Pj8ycd4mzJ0jSZsrkiyQ11nbkslrV2EC+O6xruP2o4nF/9t+uH7HV09b0L/b1tE7sm2oU1U9X15WYq7aGtNTWUmrOIklSuzp44rx5wBuBC8kX/7clX/wfBcwDzgOOP3jivCWNjm3GPtct46n5Le8m9wF2LGJ8hJwkecOMfa77RzXHmzXnglnk0fDfIFcGGF0cbwR5pM2pwLRZcy7oqaxvXc2cd8mfyWWVP0++aW77IratgDnAR4B3zZx3yepGxyZpcLHP1N4qDVOVJNXHKnISohpDyBfiu+Z2WVM87s/+rfJlv7+xD6V1Yt9Ua8jl1qrVQeX5fCRJkrSZO3jivEeBz93+4KSvkEfJjyT3M/528MR565sZ24x9rlsDfG3GXa/5RhHbtuTvtnOLbf0ya84Ffwc+OmW/sz4JPIM8+uVh4N5Zcy5o6uXBmfMueRD4n6mTTv8c8GxyUugxYO7MeZdUU+lAkjTImXyRpMb6NfCf5IvxfXUWtiVP0N5VI3gBcA+wD9WVsBpOY+s89+b+YtmL6hILQ4Gb6xpR49xKHsmzJfBEH21HkufzmV3voKRW0IzJHJ08UpI0WBw8cd5a4M/NjqMnM/a5rpM8AqQmZs254FGg11JlzTJz3iWryHPsSFLN2Wdqb5Ydk6TG+iG5bvHoPtoNId/V9b0jd5+7FmDWHeeXgG+TEzeVJrHssi35Qv/3NynaGpm8232dwHd46nn1ZjtygqYlYq+BPwB3ATtU0Xb7or2TckqSJEmSJLUxky+S1EBH7j53MfAVcvJk2wrNhpInafwHOWFR7ofAH8kTaVZKwGxNHkFx5aw7zv/7psZcQ98H/kqeCLRSAmYUuU7yFZN3u+/eBsVVVzMfvLQEXEwuBTGGnkuQBfn/fDnw6ZkPXmqFVUl1ERHDI2Jks+OQJEmSpFZVq36TyRdJarxLgS+QkyzjyKMdRpITD7uSEyt/A95x5O5zHynfcdYd5z8OnATcRp7QcSx5cvaR5BEj48jJi+8AM+r9RPpj8m73rQTeCfwJ2Ikc+yieHvsWwDeBjzcnyvqY+eClvwY+SB71NI78/EcWy87FukeBU2c+eOkfmhWn1HAJSNHgpdlPujEi4riIuKTbunPI82ktj4gfRcTWzYlOkiRJUlXsM9VVvftNJl8kqcGO3H1uCbgQOA74LrCOPIplCLk81UeA1x25+9z7etp/1h3nLwGOB95PLlHVVYasBFwLvAX4yKw7zl9X1ycyAJN3u28h8EbgNHJd5A5y7BuAa4A3Ax+bvNt9TZ0otB5mPnjpT4BXAp8BlpKf93BgCXlkzCtmPnhpq8zRI6n9nUFO8AIQEZOBc4DrgUuAKcDHmhOaJEmSJLWEuvabhm5qdJKk/jty97mJPHrlthvv33s6eeTHk8DyIjnTq1l3nL8G+MGU/adfU+y7JbBy1h3nr65b0DUyebf71gBXz35gj++TR/1sAayYvNt9jzc3svqb+eCl9wEXT5142qXk556Ax2Y+eOmgSzZJ1UgpL40+52biGeSRhF1OICd7X5dS2hARHcDrgWnNCE6SJElS3+wz1V1d+00mXySpyY7cfe4a8gTz/TbrjvMT8FixtJXJu92XgGXNjqMZZj546TrgoWbHIWlQG0FO6nc5CpiZUtpQPP478J6GRyVJkiRJraOu/SbLjkmSJKk5UpOWzcP9wMsAIuJ5wDOBWWXbdyHXMZYkSZLUquwz1Vtd+02OfJEkSZIGn68An42I5wDjgQXAT8u2vxj4WzMCkyRJkqQWUdd+k8kXSZIkaZBJKX0+Ip4EXg78CbgopfQEQESMBsYAX25iiJIkSZLUVPXuN5l8kSRJUlOkFKQUDT/n5iKl9FXgqz2sXwY8r/ERSZIkSeoP+0z1V89+k8kXSZIkaZCKiBHAQcDOwC0ppaVNDkmSJEmSWkq9+k0dtTiIJEmS1G9OHllXEfF+YDFwC/BDYL9i/Y4RsTQi3t7M+CRJkiT1wT5T3dWz32TyRZIkSRpkIuK/gUuBWcDbgX/XDiju4voFcFxTgpMkSZKkFlDvfpPJF0mSJGnwOQO4LqV0AvCTHrb/CfiPxoYkSZIkSS2lrv0m53yRJElSUySaMHkkm83kkc8EPtfL9mXADg2KRZIkSdIA2Gequ7r2mwacfImI7YHjgT2A7WGj/5WUUnrHQI8vSZIkacCWAzv2sv05wJLGhCJJkiRJLWk5dew3DSj5EhFHAz8ARgIrgcd6aLaZTc0jSZKkfmnGZI6bzzfUnwMnRcQXu2+IiP8A3gX8X8OjkiRJklQ9+0z1Vtd+00BHvnyanPE5JqV050BPLkmSJKkuzgJuA+4i1y5OwFsj4u3A64HFwHnNC0+SJEmSmq6u/aaBJl+eCXzYxIskSZIGLti4cm0jzjn4pZQWRcRzgY8Dx5Kf+JuBVcD3gI+mlJY2MUQVLOcsSZKkyuwz1VO9+00DTb7cA4wa6EklSZIk1VdK6WHgncA7I2InoAN4JKVUam5k6mI5Z0mSJKm56tlvGmjy5SzgCxHx3ZTSvE0NQpIkSVL9pJQeaXYM6pHlnCVJkqQWUet+U1XJl4j4XA+rHwHmRsSNwHygs9v2lFL6wCbGJ0mSpMHKySPrJiLOrqJZSimdX/dg1BvLOUuSJKky+0x1Ve9+U7UjX07tZdsrK6xPgMkXSZIkqfFm9LItkWsZJ8DkS3NZzlmSJElqnhm9bNvkflNVyZeUUsdADi5JUq1dfNbho0Zuv+7DoyeuedPWo9ftBLB62fBHlj241Xcff2z4RWde8ItVzY5RUpW8i6tuevr+HhEdwG7Ae4GXAlMbHZc2YjlnSZIkVWafqa7q3W8a0JwvETGRPOnMExW2bwnslFJ6cKCBSZLU3SUXHPKqZ/3nsitG7bR2m4hE5/qOEsDWo9futsszVk9b9ciIUy+54JA3n37Wr3/S7FglqdUUE0beD3woIr4DfB44oblRbV4s5yxJkiS1tlr2mwaUfClO/mbguxW2v7rYNmSAx5ck6Wk+c96hh+31n0uvHLn9ui2eWDlsXakzSuXbO4akjm12XjtqrxcvvfIz5x36qg+e/atfNCtWSWoDvwEuanYQmyHLOUuSJEntY5P6TQNNvkQf24cBpT7aSJJUtTF7rfry1tuv22L1Y8Oe7OnPUKkzSo8vH/rkyO3XbTHmWau+BDyr8VFK6pcUeWn0OQXwPPy+3nCWc5YkSVK/2Gdqtk3qN1WdfImIbYDtylbtUJQf62474Dhg8UCDkiSp3GfOO/SQfY9+fPe1Twzp7D3/H6x7YkjnTpMe3+Mz5x16yAfP/tWvGxakJLWQiHhLhU3bkesWHwP8b8MCUo8s5yxJkiQ1T737Tf0Z+XI6cHbx7wRcWiw9CfLkkZIkbbKRo9e9Y+jw0pDHlw99sq+265/sWD9yuw1bjBy97p2AyRephaWUl0afczPxjV62LQU+AZzXmFDUC8s5S5IkqSL7THX3jV62bXK/qT/JlxuA1eTEysXA94A/d2uTgMeBP6WU/jjQoCRJKjdkWGl0SqS+q14CBCmRhg4rja57YJLUunbvYV0CHksprWp0MKrIcs6SJElS89S131R18iWldCtwK0BEjAR+mFK6c1MDkCSpL6kz1kQQ+e9fX9epEhEpSqXosYSLpBaSiqXR59wMpJQeaHYM6pnlnCVJklQ1+0x1Ve9+U39GvvxbSuncWgciSVIla1YMu7HUGccMHZqGbNgQnb21HTo0DSl1dqQ1K4bd0Kj4JEnqB8s5a1CYcsDZO5OThE8AC2f99bwBj9I6athxw4Gx5GsUS29Yf+XyTYpt/+mjgR2AdcCiWXecv36gx5q/cNchwDhgC+CxCeMWP7IpsUmqj9KSvZ72OdIx5u7lzY2ofiYf++ltgJ2BTmDx7KvO6LM8t6TmqCr5EhFn991qIymldP4A9pMk6WmeXD30/1Ys2eLj249bM3rD8mGdlUe/JEZsvWHYY4u2XPbkqqFfa2iQktREEVGi//eopZTSgG7G0iaxnLPa1pQDzh4KTAVOAA4mX1MoAfdOOeDs7wA/mvXX81ZWe7yjhh03FjiWPMpr52L1uqOGHTcLuBL4/Q3rr6zqs23K/tMDOAQ4Hjicp8r2LZ6y//TvAt+fdcf5D1cb2/yFu44GXg+cCEwEOoD18xfu+jvy7+1NE8Yttiyg1GSlJXuN46nPkZ2K1etKS/aaCVzZMebu3zctuBqbfOynn0t+nq8kJ4QBlk0+9tNXAVfNvuoMRz5LfWh0vylSFTPoFEFtdNKuzT2sjyKoQTExZFEaYAWwbUqp6i+SkqTa+fwn//Mjz37pIxd0DC3FEyuHru3pz8+WozaMKHV2pH/8Zqfp7/vwbz/RlEClFtVK32e6Yhl36Yy/DBm5VUMvXHU+vqZj4WkzDqQFXodaiogZDKBAgCPamysizmGQlHNupc8Y1ceUA87eCrgEeAUwBFgJrC/+vQ35y9kc4J2z/nregr6Od9Sw454PfIl8p/p6clKyRL6gOBJ4EvgC8Om+EjBT9p8+hDyi7G3A8OJYa8kJk1HkJNE84KRZd5zf5+/b/IW7PhP4KvCsIqaVxc/hwNbku82vBqZNGLd4XV/Hk1QfpSV7vQD4Ir1/jnweuKRjzN1tW0hp8rGfDuDdwIfJz+tx8nOD/Jk0AngYeN/sq874dVOCHCRa6fuMfab6aHS/qaqMTUqpo/xxRIwDfgbcRR4i/89i07OB04DnkL+QSZJUE+/78G8v+uIlLx7zzBc++t6R26/fYsPajtKGdUM6AYYO7xwydESpY/0TQzr/ddsOXzLxImlzk1Ka0ewY1H/1Sn5FxDTgGHL/7AlgNvCRlNI/+9jvjcD5wCTgnmKfn9cjRrWXKQecHcAngFcDjwFrujV5nDzS5ADgf6cccPZ/9TYC5qhhx+0JXA7sQp7XqPyi0pPAcmB78vWFlUXb3pwGvLOIo3tZsDXkJMzuwFen7D/9DbPuOL9icmj+wl13BL5GTrwsATZ0i20l+WLn8cWxp/cRm6Q6KC3Zay/yZ8PO9P45cjr5Yno7V0Y4DphGfo7dP7+eICe/dwW+MPnYT58w+6oz5jQ4PqltNLrfNNAyA18A7kkpvanb+tuBEyPiB0Wb121KcJIklXvP6becfskFh/x2+/FPfHDMM1c9b9gWnUMANqzt6Fw0d5s/LFu41WdO/9ivr2l2nJKqEykvjT6n1CwNLOd8CLk/dju5z/dx4IaIeE5K6fEKsU0ml1KaBvyUXFbq2og4KKV01wDi1uByIDnxspKNEy9d1gMPAfsBrwWu6OV4JwFjgIVUvvv0MXIJoVOPGnbclTesv7LHZM6U/aePAd5Fnt+lUsKnBCwiJxbfCvxPL7EdD+xFvphbaa7B1eQRPyfMX7jrNyeMW3xvL8eTVB8nkz9HFtD758jOwPtLS/a6umPM3asaFVytTD7201sCHyR/5lSacyqRP7PGAe8lj5LRIGGfqb0NNPlyOPCRXrbfDFw0wGNLklTR6Wf9+ofADz85/fBxQ4eX9gPYsK5jzofP/8XCJocmSS0nIsaTL5puS77z+2lSSr1dHFXtzehhXZ/lnMmjUaqWUppS/jgi3kYuR/Jc4DcVdvsAMCul9Mni8fSIOBI4lXyBS5u3/yKX8VnaR7v15PfsiVMOOPvbs/563kZlUo4adtzOwKvIo1T6uryzjHxx9dXAtyu0OQbYjpxc6U2JfDf8G6fsP/1zs+44f6OLsPMX7jqcnHzZQOXES5cVwHjgjcCFfbSVVEOlJXvtArwcWEXfnyOPkj9HXgV8t86h1cNR5LJqfX3+JvLrccTkYz89afZVZ8yrd2DSYFKvftNAky9PAi8i12ftyWSeqj0oSVLNFckWEy6S1IOI2AL4Jnmy6A6eupAPT79IYfKlgZpYznnb4ueyXtq8CPhMt3XXk0cwbCQiRpBrzHcZNdDg1BYOpfo+/kpgT/LFwp7Kex1EniNmSRXH6iR/dj2fysmXF5MTK9XUw18B7ADsA9zaw/ZnkuNeUcWxICebXorJF6nRnkv+27a4irZdnyMH057Jl+eTv8utr6LtSvLol+eR57mS1Id695s2yuJU6Tvk8mKfi4g9I6KjWPaMiM+Th6h/Z4DHliRJ0uYgNWnZPHycfDf4x8gXTYNcaucoYCZwB7B/s4LTv/27nHNK6Y8ppVXFcntK6UTgX0WbAYuIDnJi55Y+yoeNIZeMKvdQsb4n08gXqLuWPidYV1vbiuqSG5AvdHYU+/Rky2J7tccrkedYqWRr+h6lUh7bkCKGWsTWSZ78WlJjbUH+blPt72qifW8S6PpcqkYivyaVPn/Vjuwz1Vtd+00DTb58hJwtPhX4B7C2WP5Bri14Jb2XJZMkSZJUP28Avp5Sugj4W7FuYUrpppTSK8mT0L63WcHp3w4HftHL9puBIzbxHF8g3+V/3CYep7sLyXcddy3ja3x8tZZlVF85Yzi5bNfyCttXFNuHVXm8DnLZoEqW9iO2YcW5K41sWUlOqPTneL3FJqk+VtC/39Wg99GfrWw51V8K7yA/1+X1CkYahOrabxpQ8iWltC6l9GbgAHJW6H+L5WPAgSmlE1NK6wYalCRJkjYDKZqzbB52Bv5Q/PuJ4mf53dnXkO/wUnN1lXOuZJPKOUfEZcArgcNSSn2NTFkC7NJt3S5UKA2VUlqbUlrZtZDrzGvw+ik50VDNh+go4LZZfz3v4Qrbf0+eg2i7Ko7Vlci5uZc2N5AvTFZzEXY7cimeORW2/wv4e5WxdRTLz6toK6m2BvI5clM9A6qjXwDryKN9+rIdOSH8u3oGpAazz1Rvde03DXTkCwAppTkppU+klE4plk+klO7YlGNKkiRJ2mQPkec1IKW0BngMeFbZ9m2orhOv+qpLOefILgNeBxyeUrq/it1uZeNRNkfS87wY2vz8AFgNjO6j3Vbku9G/V6nBDeuvXANcRb4g2lfCZEdysqS3EWI/IycJd+zjWMPJJce+N+uO83ucO2HCuMUl8u9cou/PyB3Jn63X9tFOUo11jLn7ceBq8txj1XyO3A/8st5x1clsYC7F97peDCF/Bl87+6oz2nWUj9QMde03bVLyRZIkSRow6xfX023AS8oe/wT4cEScGBFvBk4n3zWq5qpXOecvAG8iJ29WRcSYYvn3PBcRcUVElE8S/llgSkScERHPjogZ5Al7LxvA+TXIzPrrefPI75Gh5AsUPd0SOwrYnjxKZlYfh/wqefTJGHq+oNEB7Ao8Dpx9w/orK1bWmHXH+auB88h3hu9Cz9c5tuSpO1u/1Uds15Av0u5Iz/O5BLAT+S/KJyaMW/xIH8eTVB+XA3eSP0dG9LC963NkNXB2x5i7q5mwvuXMvuqMEnAOudTaWHKSpbvh5Od6N/7dHnzsM9VbXftNVSVfIqIUERsiYnjZ484+lg0DDUqSJEnSJvkccF9EdF2MmE6uV/wt4JvkDvz7mxOautSxnPMp5HlYfgUsLluOLWszkXyhpiuW2eRkzUnkiUXfALw2pXTXAM6vwemLwEXk8j1jyYmO0eQkxTjyxc/vAx+c9dfzer0ecMP6K5cB/02+mLFtsf8OxfF2LZalwPtuWH9lb6NeAJh1x/nXAh8mz9myK/li7OjimOPIiaFfAu8skjUVTRi3eC3wHvKImq2K/XcsjrdL8dyfJF8M7SuRI6lOOsbc/SjwNvKF0+2o/DlyaseYu9t11AsAs6864/fkv8+LyZ9Du/LUZ9zY4t9/Bd4y+6ozeiwXKqmiuvabIqW+U1nFXU8JOD+lVCp73KuU0rkDDayVRMQ25Bd626KesSRJUltppe8zXbGM/9S5fxkycqtSI8/d+fiajgUfOudAWuB1aLSI6AD2JZcE+kdKyZulVDOt9Bmj+ppywNmTgNeT5xMaDawhJza+D/x11l/Pq/p+2aOGHTcUeCk5MXggeV6ZReQyZ9cVSZrqY9t/+s7kcnvHkC9QrgVuJ5c5u2XWHedX/Tdn/sJdO4CDgf8CXkweobMUuA64ZsK4xYv6E5uk+igt2WsocAhwHLA/T32OfB/4cceYuwdNCa7Jx356W+BVwBvJN1FsAO4if8b9YvZVZzj/9iZqpe8z9pmap5b9pqqSL5u7VvrFkyRJGohW+j7z747EJ5vUkfjw4O9IRMS2KaUVzY5Dm49W+oyRJEkaiFb6PmOfqTHq3W8a0JwvEbFVrQORJEmSVDMPR8R1EXFCRGzd7GCUWc5ZkiRJail17TcNKPkCrIiI2yLiUxHxmojYoaZRSZIkafBrk8kjI+K9ETEvIp4svgM/v4/2b4yIfxTt74yIl3fbfkxE3BARj0ZEiogDejjGr4pt5cuX+xH2Z4D/AL5N7lD8oIhryz72U32dB5xPLhPS9biv5fzGhylJkqSW0CZ9JrDf1JOhA9zvLOAlwNuBDwIpIv4B/Ab4LfDblNL8WgQoSZIkNUtEHEv+Qn4yeULX04DrI+JZKaWHe2g/GfgeMA34KXkC82sj4qCyictHAr8Drga+2svpvwqcXfZ4TbVxp5SmAdMi4mDyXApvIM+B8HhE/JRcG/znA5zMXQOUUprR22NJkiSpHdlv6tmARr6klC5KKb0K2AE4AHg/MIc86dO3gHkRcf9Aji1JkiS1kA8CX00pfT2l9HdyZ2IN+SaknnwAmJVS+mRKaW5KaTrwZ+DUrgYppW+llM4Dburj3GtSSkvKln7XW04p3Z5S+lBKaRJ5wuivAf8JXAM81N/jqbYs5yxJkqRBwn5TDwZadqwrqJRSmkPOLn0R+BJwDxDAxE05tiRJkga5FM1ZslERsU3ZMqJ7eMW8HM+l7Mt+SqlUPH5RhWf1IjbuHFzfS/venBgRSyPiroi4cFMv1KeUbgW+QP7uvhrYZlOOp5qwnLMkSZIqa/E+E9hv6s2Ayo5FxDbkDNB/FsvzgGHA34CbgXPI5cckSZKkVrSg2+NzgRnd1u0IDGHjO50eAp5d4bhjKrQf08/4vgs8ACwC9gMuAp5FHgLfLxGxO3kI/X8B+wMl4JfkIfRqLss5S5IkqVVV02cC+00VDXTOl0eLn38kdwouBn6XUnpsoIFIkiRp8xJADHAyx005Z2E8sKps09rGRtK7lNLlZQ/vjIjFwM0R8YyU0r/62j8iJpA7DceS70JL5O/t7wWuSSk9Uoew1U8ppYuAiyIigH3JN7a9hFzO+SSAiHgwpbR786KUJElSs9hn6l2r95sGmnx5nDzcZpeyZSfA5IskSZLawaoqagEvBTrJ33XL7QIsqbDPkn62r9Ztxc9nAn12Ish3fyXg98DpwPdTSos3MQbVSUopAXOKUS9zgLuANwN7YTlnSZIkNUc1fSaw31TRQOd82R44EPgMsAVwHvCPiHgoIq6JiNMi4nm1ClKSJElqtJTSOuBPwBFd6yKio3h8a4Xdbi1vXziyl/bVOqD4WW1H4MPApJTSi1NKnzPx0pqK2tlTI+LjEfFbYAW5tMF/kcs5Hw9MaGaMkiRJUm/sN1U2oJEvxZ1ZdxTLZQAR8QzgZcBpwGvJGaOBjqyR1EYOOvmSseRaii8FRpFHwd0IXPfnL5++rLd9jzj8wiAP63s9sA85KTwP+BHwq5t/MW1Db/sffeA5WwFTgFcCu5KHQN4O/OD6v5z7z4E/q9Z3+UVHvHD7ndd8dPTOjx88dFhp+Nonhq5eunjrmSuXbXnhyf/vxrrWh1+ycOzWwMuBVwA7A0+Q7xL4wZhxi+6r57mbbeqk0/cA3gC8ENgSeAT4GfCzmfMuWd3bvvMX7tpBLidzDLAn+W/lP4FrgN9PGLe4VMfQpdaTiqXR5+yfzwDfjIg/An8gf9cdCXwdICKuABamlKYV7T8L/DoiziB/NhxHnh/xpK4DRsRo8miGscWqZ+WqUyxJKS0pvlefAPycXO53P+AS4DcppTlVPc2UPt3vZ6pmsJyzJEmSKmuPPhPYb+pR5DzKAHeOGAlMJtcmfinwfPJImA3AX1JKL6hFkM0WEduQ70LbtsqhVtJm4aCTL+kgf5i+m1yKsEQeZjiUXCLyUfJFhG/9+cunb/Rhc8ThF+5M/rB9ETCC/NlBsf8G8kXp99/8i2l/7+n8Rx94ziHAJ4Fx5KTN+uLnUGAN8GPg/13/l3PXbPqzbR1fvOCoEWMmrvjp7s959JDhW2wYkkqRSiUYMiQFBGtWD1v3z7/sctmb3vPbD9fj/EsWjp0C/A852RU8/XV/HLgamDFm3KKWqwW6KaZOOn0EcA75buSR5Pd6CRhWNFkETJ8575Kf97T//IW77kG+YWGfYp/y9/s64C/A+yaMW+zEyqqLVvo+0xXLhE+c95chW23V0KRj55o1HfM/evaB9ON1iIhTyXdEjQH+Crw/pXRbse1XwLyU0tvK2r8RuACYBNwDnJlS+nnZ9rdRdEK6OTelNKOoO/xt8ufFSGA++aaEC5r9f6faiojl5O9Q88jJl9+SO4t3NzGsAWmlzxhJkqSBaKXvM+3WZwL7TT0ZUPIlIj5FTrYcwFMXOW/jqQ7DrSmlfl/sjIhTgFPILzjA34DzUkoze9nnjcD5PPWf9JFu/0kBnAu8C9gOuAU4JaV0Tz/iaplfPKlVHHTyJQF8jPw7uw5YxtNz4x3AjsW6c//85dP/r3z/Iw6/cDTwXfLnyDLy50i5EcX+i4Djb/7FtKddhDj6wHNeClxOvmDxCDkBUG4b8iicWcC7r//LuesG8jxbzRfPP2rI+Gc+9rs99ln6/A3rOjqfXDN0fZH1z6IUW229fnipsyPdddvYy0485ben1/L8SxaOnQp8nqdGfJSPTAry67418EPgA2PGLep15FK7mDrp9CHkROHrgdXASp7+fh9KnvvsCeD93RMw8xfuOhG4EtiDXAv1yW6n2BLYgZxwPHbCuMWbWuNU2kgrfZ9px46EVA9FX2U/8s1sXcsY8t/Y35H7Vr9LKf2xaUFWqZU+YyRJkgailb7P2GcaHAY658tbyRdEp5HLrmyXUjoipTQjpXTzQBIvhQXAR8kliJ4H/AK4LiL+o6fGETEZ+B7wNfIcNNcC10bEPmXNzgTeD5wMvIB8V/b1EbHFAGOUlL0AeAc5afIoGw9KLAEPF+s/etDJl0zqtv1UcuLlITZOvEAuH7aIPKrlf4ryZAAcfeA5WwAXkS/0L2LjxAvki+PLgKPI9dIHhZHbrv3QpL0fPXjdk0M61z4x7OmJF4DUkdasGrG2Y0gpnv3cJe/5yoUve06tzr1k4dhtgI+TEwWLeXriBfL/9Qpy2bnXAK+u1blbwKvJz2k5+Tl2f79vIL8mWwAfnzrp9G26bT+LnHhZxMaJF8hJm8XAs4CP1CxqSVJLS9kdKaXLUkrHppTGkstSng08B/g0uaynJEmSpDYzoORLSmmnlNJrU0qfTin9IaVUkzubU0o/SSn9PKV0T0rp7pTSx8h3GL+wwi4fAGallD6ZUpqbUpoO/Jl8UbfrTrLTyEONritqvb2FXCfutbWIWdqMHUe+0Lyij3aPkpMkb+haccThF24LvJF8wbmnxEmXRL6Q/zxg37L1R5FrPj7Sx7mfKH6eePSB5ww02dxSdpmw8u1DhpRi/dqhvb1urFk1fO0WW64fut1OT/y/Gp7+lcAu5KRar6cn/305ccnCsdFH25Y3ddLpAZwIDCEn8HvzCPk1elXXivkLd90dOJycEOztbpVO8t+8qfMX7jpmU2KW2kWk5ixSq4mIkRFxZEScR76x7BJyQr6TPHmpJEmSNkP2mdpby16MjIghEXEcuV7brRWavQi4qdu664v1ALuTh+3/u01KaQW5RNqLkDQgB518yUjgaHoesdJdIpclO6Zs3aHkEkvLq9j/cXKSZ0rZulfw1BwvfVkO7MXTkzdt6SsXvuw5u0xYtfu6tUM7+24dpFKkMRNXHF3DELoSClWcnxXkEYl71PD8zbI7cBA5edKXTvJ7vnzUz9Hkv2Wrqth/JTlZeWQ/Y5Skp4mI4c2OQX2LiE9FxB/IN5tcD3yQ/LfkYvLfgu0GyzyakiRJUqupd7+p5ZIvEbFvRKwmlxz6MvC6lFKPk22TEysPdVv3ULGesp+9tekphhERsU3XQp43QtJTtiPPyVLthOrrgNEHnXxJ12fODsXPai7idxld9u9d2LjkVW/nHlZ2zrY1ZGhp4pAhpejcEFXV+uzs7EhbjFw/soYhjKG6hBcMoted/N4bRvXv9/Xk92j5/iU2LlXWk652o/tqKEl9WBIRl0fEfzY7EPWqXuWcJUmSJPWtrv2mofU46Cb6J3keiG3JZYq+GRGH9JKAqYdpwDkNPJ/UbtaRLxJXm8DtICdLui4+ryVPzl6trtEzXZ7sx7mj2L/aC+ctK6V4PKWofvxnJEobOvqT4OpLf173DvJ7pO1fdwb2fi+f12Ud/Xu/B09/v0uDV4q8NPqcm4cfAK8H3hER84FvA99JKc1tblgql1LaqdkxSJIkqYXZZ6q3uvabWm7kS0ppXUrp3pTSn1JK04A7yHO79GQJT7+7mOLxkrLt9NGmJxeSkz9dy/gqw5c2F48C91H9qLAtgdv+/OXTu7IGc8gXp6sZldGVJL6jbN3t5Pk3qvlrsA25lFPbX2xav27IHx9fOfyJEVt0VpE4TwwdWup4dMnIe2sYwh/II0CqMYr8Pqnl+ZvlXp6au6gaQ8nlLbvMISdvqhnKuiU5UXlHXw0lqTcppZPIIxbfAPwROAO4KyL+GBEfiIju348lSZIkabNS735TyyVfetBBLm/Uk1uBI7qtO5Kn5oi5n5xk+XeboozYC6g8jwwppbUppZVdC9XV6Zc2G3/+8uklcia4g75H0G1BLi92Zdm6u8gfaNtVcbrR5N/jmWXrfkCemHzbPvYNYCvgR9f/5dxlVZyrpb3nrBueWPCv7Wd2DElB9H4bwtBhnUM6OzvSI4u2vqyGIVwNPEHfSbeuz+2rx4xb1NcE9S1v5rxL1gBXkZ9TX383R5ETi98vW/dL8t+jakqwbU9OFP6+/5FKbSg1adlMpJTWp5R+lFJ6A/nmo5PIc3J9GpgfET+PiBMiYsumBipJkiSpZ/aZ6q6e/aaWSr5ExIUR8dKImFTM/XIheWLu7xTbryjWdfksMCUizoiIZ0fEDOB5wGUAKaUEXAqcFRGvjoh9gSvIdZWvbdDTkgara8kXiceQR6H0ZDiwIznZ+auulTf/Yloi/56uYeORaeW2JX9OffHmX0z7d83z6/9y7gPki+EjycmVngSwK/Aw8M2+nky7eOzhrc5ZsXTLx7fedu2ISn8Nhwzt7Nhi5IZhi+dtO++J1cO/UcPT/x34GXkESKU/OB3k130R8N0anrvZvgssID+3Sn87tyC/Z38O/K1r5YRxi9cDnycnIXuby2VHcpm2z08Yt7iqeX0kqVrFTUVfAz4C/Ih888QU8s0USyLikxFRy3nCJEmSJKmt1LrfVNWcLxFx9sBiTef3c5+dycmRXcnZpTnA0SmlG4vtE8mlW7pOMDsiTgAuAD4O3AO8NqV0V9kxLyZfoL2cfJf974ApKaXyevyS+unPXz595UEnX/Iu4P+AZ5HnqFhBvsA8lPz71kEuv/TeP3/59KdN1H7zL6b9+ojDL5wG/A8wDni8WBL5wv42xTG/WJyju/OKc7ym+Lm8aN9BHn2wJfAQ8N7r/3Lu3TV50i3g3dNu+sf/furwE//j4MXf2WaHJ0Z2bugorX1iyIZUitQxJHWM2GrD0Ahi8f3bLrr/7zse8Z7pN9Rszpcx4xalJQvHfoT8mXoU+XVfwVOv+zbkBMRC4KQx4xY9WKtzN9vMeZfMnzrp9JOAr5Lfr0+Sy9l1lRPrGoV1PfCRmfMu6Z4Z+z450fjBYv9V5ORj1+isrYvH/zNh3OKf1vfZSNrcRMTuwInFshe5lOJl5O/d68h3dr0f2INc71iSJEmSNiv16DdFHhzS54kHcgduSilVuhu+rRSlylYA2xZlyCQVDjr5kp3JH0rHk0fBdJATMPPIowW+++cvn16xdN8Rh194EPAW4OXkhEmQ7/6/hZxVvrEYKbORow88ZyhwTHH+/cjzkSRyIuaHwLeu/8u5g2HOkY1c/omXHbjDmNUXjN/zscO22nr98IhEqTPSimVbrlr4r+2ufeyRrT58ysdufLQe516ycOxw4I3Am4C9ycm2BCwjJxm+NWbcogfqce5mmzrp9InAm8nPfwfy+3UDeRTYd4CrZ867ZF2l/ecv3PUQ8vv9EHKiKpETOTcC35owbnHFkpjSpmql7zNdsUy84Py/DNlqq4aO9Opcs6bjwbOmH0gLvA71FBE7AMeSP6tfQO4s/JTccZiZUtrQrf1HgLNTSo5+0YC00meMJEnSQLTS9xn7TI1R735TVcmXzV0r/eJJreqgky/ZAngOeVTESuBvf/7y6Rt63+spRxx+4S7A7uTkzeKbfzHt/mr3PfrAc4I8+mZH8ofk3df/5dzl1Uffvr70P0fuMGLLDVM6OtJ2nRs6Fq99Yuh1tRzt0pslC8d2AM8ml9JaC/xjzLhFm8UcWVMnnT6K/NxHAI8Bc2fOu6TqL0PzF+46AZhATr48MGHc4kV1CVQq00rfZ+xI1F9ErCMnx28ldxyuSikt76X9K4HPp5R2b0yEGmxa6TNGkiRpIFrp+4x9psaod7/J5EsVWukXT5IkaSBa6ftMVyy7nd+cjsQD0wd/R6KYC/FbKaV/NTsWPaWB5ZwbrpU+YyRJkgailb7P2GdqjHr3m6qa80WSJElS+0gpzWh2DOrRjAHsk4CWT75IkiRJ7abe/aYBJ18iYj/gfcBB5ImGO7o1SSmlZ2xCbJIkSRrMUrE0+pybieJuufcAhwE7A+9OKf0hIkYDbwN+nFIalHOjtaqUUvc+kyRJklSZfaa6q2e/aUDJl4g4FJhFrnP/R+BA4BfkyYNfBPwN+NNAji1JkiRp00TEeODX5Pml7iHPU7U1QEppWUS8G9gN+EDTgpQkSZKkJqp3v2mgd16dB9xHnuD6v4t1H08pvQSYDIwHrh7gsSVJkiRtmk8Co4ADgEOA6Lb9WuBljQ1JkiRJklpKXftNAy07dhBwTkppZURsX6wbApBSui0ivkKuSzxzoIFJkiRpkHMIfT0dBVySUvp7ROzQw/b7yHd3qcks5yxJkqSK7DPVW137TQMd+bIBWFX8ezmwnlwPrTyo5ww0KEmSJEmbZEvgkV62j2pUIKqsKOf8B+CVwCJgD3JfahG5vMFq4DdNCk+SJEka7Orabxpo8uVeYE/It2EB/wBeV7b9FcCSTQlMkiRJg1uk5iybib8DL+1l+2uBvzQmFPXCcs6SJEmqyD5T3dW13zTQ5MvP+f/t3XmYXFWZ+PHvW92dhEDYBUIgIuKCI4rRUUF+EHUSE/cNAWUcFZXFLREUAUVFgUGWREWQQRSRGVEcRVESEsWACCoKCCgqDGAg7GuAkKTTdX5/nGop2l6qO1V1q7q+n+e5T6dunXvrrVu3O/Xe955zYL+I6B+27BTgrRFxU0TcBLwROGOsQUmSJElaLwuBfSPicPJQVgCliNgpIr4D7AYsKCo4/cMM4KyU0kqgr7LuH8M5k3OqLxQUmyRJkjTeLaSBedNY53z5AvBlKglCSunbEdEHvK2y7tiU0tljDUqSJEnS2KWUzo2IpwNfBI6trF5MnkCyDByZUrqgoPD0JIdzVsc75Or9S8ArgOeSr1HcA/z8tBnnrhzL/vZ6zXE7lrvjI5RiKimtjr50WZT59qUXH9k38tbS+DJzzgnPJveknEweyvLSZYsP/3uxUUlS62h03jSm4ktKqRd4YGCgwLljDUSSJEkdJkVemv2aHSKldGzlbq23ATuRe73/H/DDlNIthQanfk8Zzjki+odz/u/K8w7nrHHrkKv3D+CtwEHkofe6yVP8BvDAIVfv/33gy7UWYfZ6zXE79U0sfatv056XplJUX+vYv7S2fPyerz3+a5dddMQxdX4bUkuaOeeEXYGPA3uQ5zMok3+3Vs2cc8IvgJOXLT78b8VFKKlm5kwN18i8aaw9XwCIiC7gxcAOlVW3AlenlLyjRJIkSSpYSmk5Di/Wyi4C3hcRR6SU1pGHc/5WZShngGcCRxQWndQglcLLPGA+eai9h4DVlae7gE2BQ4AXH3L1/u89bca5Dw23v73mHPe83indl5V7SpuRKNOXVge5kgN0lSeUtlzbU/rM/3v98Tv86qdHvK8R70lqFTPnnLAncBqwJfAI8GDlqSBPHP0m4F9nzjnhgGWLD3f+N0micXnTWOd8ISLeA9wBXAmcV1l+A6yICL/MSJIkaXipoEVqHV8AXkjVcM7Au4EbgD8C70spnVBceFLDzCUXX3qBu3iy8AL59+EB4D7gZTw5BMig9nrNcbFug66Lyj2lzehLa6Kc1vbfrxt56aMvrQbo3ajn3/d87fEH1/etSK1j5pwTtgW+AmwOrODJoS0hfwtaWVk/FTh95pwTNm56kJJGx5yprY2p+BIRBwLfJH9JOgR4dWX5UGXdmRFxUL2ClCRJkjS0iChHRN8ol3VFx93pUkq9KaUHUkqpat25KaW3pJTe7jyaGo8qvV7eB/SQe7wMZS35wvFrDrl6/2cO1SiV2K9vYtc0+lJvDHG5KADKaS1BqW9C6aNjj15qeW8HtiZfmxvq8mkiD2k5HXhDk+KSpJbQ7LxprMOOHQ78Cvi3yvwv/X4ZEWcBlwCfBL4+1sAkSZI0vkXKS7Nfc5w6Bu9RazsRcQswL6X0kyGefz3wlZTSjs2NTGqofyEPX/5IDW1XAtuR54Y5cbAG5Z7SwQQlcrFmSJUCTF/fpNIz95xz3MsvW3zkb0YVtdTiZs45oQvYD1jHyN8J+ipt3smT84xJakHmTHXX1LxprMWXbYCTBxRegHz3VkScB3xpvSKTJEmSVJOU0ueKjkFjsgOw0TDPbwQ8vTmhSE3zDPIE4A+O1LAikec/GlS5O55BjVMDp8Q6SjGRUryEPGy6NJ5sBjwNeLzG9quAnWbOOaG0bPHh5caFJUmto9l501jnfLkGePYwzz8buHaM+5YkSZKkTjHcnXf/CjzcpDikZumvk4zmrtPhrl3UUncZzf6kdjXW89rfB0lqkLH+gf0I8I6I+FhEbNC/MiI2iIj5wDuAD9cjQEmSJI1TTh7ZUBHxtIg4KSL+HBGrKsufK+u2Ljq+TlXJoW6pDDmWgIX9jwcsD5AnJL+o0ICl+rsDWEPu/VKLAJYP9WSpL62gxhFSIugiUaacbqjxtaV28hB5OL9af7c2AO5Ytvhw54CTWpk5U8M1Mm8aa/HlbPL4kKcAD0fErRFxK/murJPI40t+OyKuq1r+uD6BSpIkSapNRPwLcD3wcfKFmPMryyOVdddFxPOLi7Cj3Qv8qbIEsKLqcf9yA7CEPNfmgcWEKTXMteTzfLMa2m4IPAFcMFSD0tr0TfJloq6RdpZK0d21pm/FZYuPvKSmSKU2smzx4b3A94GJjNwjrET+nTmv0XFJUitrdN401jlfHgQeAG4asP62sQYiSZKkzuLkkQ31NfJFlZellK6qfiIiXkruTfFV4JUFxNbRUkrfBb4LEBG/BL6YUvpFsVFJzXPajHPLh1y9/9nkmzmnAI8O0bSLXKD5BblYM6gopzNLa8ufL08obZn6Ut+QV5yDHiB1rSmfOebgpdb3feA9wNbA3cO02wa4h2EKm5JagzlTwzU0bxpT8SWlNHMs20mSJElqipcCxw1MIABSSr+LiC8DRzQ/LFVLKVn8Uqf6AfAi4N3AJPJwSf1DHwWwMbkwcyPwidNmnDvkZaBLLz6yb885x72jt9T909RTmkxf6kuJ3qqJZUp0RQ9A9+PrlkZfOq5B70kq3LLFh986c84JnwJOBqaRb5xeXdVkMrA5eeSaecsWH35f04OUpNbS0LzJSbUkSZKk8edennqxZaDVlTYqWERsHBGfioiLI+Kayh12RMTmEfHxiNip6Bilejttxrll4CjgWPLF4a2AbauWAH4E7HfajHPvHGl/ly0+8tKeR9fN6nqi75YUBF0xKVUWumJCrEurex7tPbtrTfm1l158ZGfdz6uOs2zx4T8GPkgeRmdjchFm28rPycDvgf9YtvjwZUXFKEktpKF501iHHSMiNgYOIXe52Qo4sFIN2pzcxfEnKaWbx7p/SZIkdQAvgTXKQuAjEXFuSukpw45ExLbAwZU2KlBEbAdcCmxPHtL5ucBGACmlByPiQODpwMcKC1JqkEoB5rTKEGRzyOd/D/kCx89Om3Hu8tHs77LFR/4GeNaec457VeopHZSCrYA10Zd+W1qXTrz04iOHGt5MGneWLT78kplzTlgG7F5ZNiQP8bcM+MOyxYf7DUxqJ/7GNtJCGpg3jan4YpIgSZIktbQS8Bhwc0T8COi/KepZwJsrj0sR8fGqbVJKaUFTo9SJ5KGVdiVfcB54V90FwOubG5LUXKfNOHcV8MN67e+yxUdeAlxSr/1J7WrZ4sPLwOWVRZI0uIbmTWPt+WKSIEmSpPWTaP5dXJ1z19hJVf9+1yDPv2BAG8hHx+JLc80GFqSU/hwRWwzy/C3kG94kSZLUicyZGq2hedNYiy8mCZIkSVLrekbRAagmGwDDTXY8pVmBSJIkSR2ooXnTWIsvJgmSJElaL5Hy0uzX7AQppb8XHYNq8mdgT+CMIZ5/M3BN06KRJElSSzFnaqxG502lMW7XnyQM5c2YJEiSJEnScBYC+0bE4cAmlXWliNgpIr4D7IZDwUmSJEltaaw9XxYC346I64DzK+tKEbET8FlykvC29Q9PkiRJ0lhExAuAjwAzyBf2B954lVJKz2x6YPqHlNK5EfF04IvAsZXVi4EAysCRKaULCgpPkiRJGvcamTeNqfhikiBJkiS1roiYSf5+/hDwe+BFwCXAJPKNUn8C/lBQeKqSUjq20svlbcBO5GTv/4AfppRuKTQ4SZIkaRxrdN401p4vJgmSJElS6zoGuAV4OTABuBc4LqV0SUS8DFgEHF5gfB0tIiYBbyJP8PkA8NOUksOLSZIkSc3V0LxpzMUXgJTSchyDWJIkSWORKkuzX7MzzAA+m1JaGRGbVdZ1AaSUfhsRZwBfICcTaqKI2Aq4glx4icrqVRHx5pTSz4uLTJIkSS3HnKnRGpo3rVfxpV9EPBfYG5gK/AU4O6W0sh77liRJkjRq64BHK/9+GOgFtqp6/hbgeU2OSdlngB3IN7FdQh5F4DPAGYBz8EiSJEnN09C8qebiS0R8GPgosHtK6f6q9W8Azid3y+n30Yh4eXU7SZIkSU1zM/AsyLNDRsRfgLcA/115/nXA3QXF1ulmA+eklA7rXxER9wD/ExHPSSn9tbjQJEmSpI7S0LypNIq2bwT+b0DhpRv4BtAHvBfYBfgU8HTgqLEGJUmSpPEvUjFLh7gI2K/yfR3gFOCtEXFTRNxE/m5/RmHRdbbpwOUD1l1OHoJs6+aHI0mSpFZlztRwDc2bRjPs2POAMweseyXwNPIkNN+urPtTRLwQeC0wf6yBSZIkSRqzLwBfJt8kRUrp2xHRB7ytsu7YlNLZxYXX0SYCqwes639cl2GhJUmSJNWkoXnTaL7cbwHcPmDdq8lT8PxowPpfA28da1CSJEnqAE4e2TAppV7ggQHrzgXOLSYiDbBDRMyoerxJ5eezIuLhgY1TSlc3JSpJkiS1FnOmhmp03jSa4ss9wDYD1v0/YBXwxwHr11YWSZIkSdJTfaGyDHTagMdBTn+7Gh6RJEmSpLoaTfHl98B/RMRXU0qPRsS/AC8FfpxSWjeg7XOBO+oVpCRJksYh7+JqqIh4DXAAsCOwGflCfrWUUnpm0wPTe4sOQJIkSW3CnKnhGpk3jab48nngKuCmiPgT8GLyR3H8IG3fAlwyloAkSZIkrZ+I+ATwn+Te678Dri82IvWrmitTkiRJUoEanTfVXHxJKV0fEa8CjiJXgX4DnJRS+kN1u4iYSR6K7Pz6hSlJkiRpFD5GvhnqtZVxjCVJkiRJT9XQvGk0PV9IKV0BvG6ENsuAXdYjJkmSJHWASHlp9mt2iM2AH1h4kSRJktqXOVPDNTRvKjVip5IkSZIK9TvgOUUHIUmSJEktrKF5k8UXSZIkFSMVtHSGQ4C3RsQ7iw5EkiRJ0hiZMzVaQ/OmUQ07JkmSJKn1RMR1g6zuBr4TEacDdwB9A55PKaUXNjw4SZIkSWoBzc6bLL5IkiRJ7e9B/vketQeAmwqIRZIkSZJaUVPzJosvkiRJKoSTR9ZPSmlm0TFIkiRJqi9zpvpqdt7knC+SJEmSJEmSJEl1ZPFFkiRJxXDyyIaJiF0jYr8B614TEZdFxG8j4mNFxSZJkiSpRuZMDdXovMniiyRJkjT+fAnYp/9BRDwD+BHwjMqqUyLig0UEJkmSJEktoqF5k3O+SC1izq5H9wCvAnYHNgQeBX4FXLr42mP6ioxtPJtx8IKJwCzgpcBkYCVwCXDF1afPL4+0/azS3lsDbwJ2JBe07wB+srR8/m0jbfv+ow+Irg3K+03YbN27Y0LanDJr1z3adVXvI93/eebnzrpn7O9KGtzMOSdsBLwWeCEwgTzR3MXANcsWH97S97bsvs/JU4DXAS8AesgT4i0Crrvie4e2dOwaRhF3VXXO2fJC4MSqx+8G+oAXpZTuj4jvAQcB/1VEcJIkSZJqYM7UaA3Nmyy+SC1gzq5Hvw74FLmq2gUE+U/d+4Gb5+x69BcWX3vMJQWGOC7NOHjB3sChwPbkwkn1cf/LjIMXfO7q0+dfMdi2s0p7TwaOAt4GbDLg6Y/OKu29BPjM0vL5Dwy2/QePe98bNn7+qjMmbt37tFJ3KgGkBAG7rXus68APnfruH625t+fd3zjmLAtvWm8z55xQAj5A/sKwNflc7z/fDwSumTnnhKOWLT78z8VFObjd9zm5BBwMfBDYqrK6OvY/7L7PyUde8b1D/1ZQiFKr2oRcpOz3WmBpSun+yuOlwNymRyVJkiRJraOheZPDjkkFm7Pr0fsAXwWeSb4LfQW598QK4GHgucAZc3Y9+rVFxTgezTh4wQHkyvZ2wP089bivBHYBvjnj4AUzB247q7T3BsA3gPeR78C/q7LdCuBOoAy8FfjvWaW9Nx+4/YHHve/Nm8149HsbTFu7dVobfb0ru1b3ruxeve7R7tW9j3WtKW3Q17PJCx/bZ4Pt1i55/9EHRP3fvTrJzDknBHAk8BlgC+Bennq+rwJ2A/575pwTXlBUnIPZfZ+TA/gcOf5Ngbt5auyrgT2A7+6+z8k7FxOl1LLuAnYGiIipwIuBJVXPb0T+/0qSJEmSOlVD8yaLL1KB5ux69E7AMeReaHcCawc0WUO+wLgB8KU5ux69bXMjHJ9mHLzgBcARlYd3A70DmqwmH/eNgQUzDl6w2YDnPwy8klwZf4in/hFO5OLNPcCuwNHVG77/swdsMOVfHv9m95S+ib0ru1aX15X68k38/VtH6lvVvbbcG+Upz1m1V8/GfUeO/Z1KAMwm93p5glx4WTfg+VXk830b4Msz55zQ09zwhvUG4L3A48B95K6/1R4n/+3cFvjy7vuc3NXc8LS+IhWzdIgfAx+JiK8AF5C/U/yo6vkXArcUEJckSZKkGpkzNVxD8yaLL1Kx3kHu3nbvCO3uId+x/taGR9QZ9iVXru8fod095AvSb+xfURlubD9yoWz1MNv2kuftee2s0t7T+ld2T+n72ITNezde93jX2qcUXQYor+nqja4Uk6atOWCkNyON4F3k+V0eGaZNIhc3nkUuLBau0uvl38lDMa4cpmmZXAjdGfh/TQhNahefBn5I/j3aCnhPSukegIjYGHg7T72jS5IkSZI6TUPzJosvUkHm7Hp0D/kXeLgL+P0S+W71fRoaVAeYcfCCjYA3ke/2H0kf+cJu9XF/NXnOjIdq2H4lMAV4ff+KiU9buz9BpL4Yscti35pS36Rt1m7/wS++zwvKGpOZc07YAXgFwxcv+q0lFzpapcj7LHJ33+GKRv1Wk3sQvrmRAakBUkFLB0gpPZZSeldKabOU0jNSSudXPf0YedjNzxQUniRJkqRamDM1VKPzpu71jlDSWG1CHtaqluILlXZbzdn16AmLrz1m4PBkqt2WwGRqK75APu7bVT2eWvk5cOimwfT/l9W/Dd0blbdK5dr+Gyv3xrruDdOEUk/aGfhVjfFK1bYl93p5tMb2vcDTGxfOqEwFJlJb8QXy7+QODYtGGkdSSmVq/92S1OZ23/vErlTifeWe+EC5K6YDpSinFV296VvRx+lXnP+JgUPwDmvBSa97+pTNnzhys6c9OnvipHUbrVtXWvPwfRtd9cgDGx7/sfkX/a5Bb6MmMw5aMBmYQ775aSp56JCrgB9c/fX5fy0ytlY2d8fDSsDLyTfhPJfcRf9m8p3Aly+65aSBQ7+qAeZOn9dD7oX+ZvL32j7geuAHwDWLli/soMuhklS8euRNFl+k4vR/gR3thOpOjrt++sgFkVqPe/DUeSb6RrFt9TZZolzzC0d+nZT+aS4gqVb9RcLRnO+1FBabYSy/q6O6eCRJ0ni3+ztOfHHv5Liw3FPaikhBqtwEFKUt+iZySmld+TO7vePEd1z5/U/8spb9nXnmqxe84BV3HbTBRmsnkKBcLqWIxFbbPfLG3jXdr/vOf/+/Zfeu2PQNh37ywjUNfWODmHHQgr2AE4Fp5FE+eis/Xw4cMOOgBT8Bjrz66/NrvQmrI8zd8bDtgK8CM8g37fR/F5xBLsbcMHfHwz606JaTnCesgeZOn7cL8GXg2eTe6P2fw78C7wR+PXf6vHmLli+8r6AQJUlj4LBjUnEeIU9yvWGN7TcE/rb42mNa5cJou7qHPD9Ercd9EvCnqsc3ky8KT6xh2y6evGsMgN5Hum+JLqKWPpylCeWu8troK68tFXoHodrareRJ6Ws937uBGxoXzqjcQu6hVmvsXcCfGxeOGsbu81LdRcSeEXFhRNwZESki3lzDNu+KiD9GxKqIuCsivhkRWzQhXDXI7u848V96J5d+Xp5Q2pqU1tHH6iizJsqsib60mpTWlXtKm/duWPrJbu84cY+R9nfmN1791ee++PYPT5rc27Pq0QlrHl85afUTj01Ys+rRiWsef2Ti6ojEM3e569VTn/7gJSd/6Q1dzXiP/WYctGBP4Axyj/X7yXnWvcDdwB08OYTz12YctGBCM2NrZXN3PGxr4DvAbuShVVaQ86V7Kv9+BHgR8D9zdzysVXpHjztzp897HnAOeQ7DB3nq53AH8AR5+Ouz506ft2lBYUoqkjlT27L4IhVk8bXHlIH/Jl8wHOl3sb+X2v80NKgOcPXp89cC3yXf1TXSHfUTyP/tnFe17nLgJmDzGl5uM/Ik5j/rX7Hm3p5Ty+uiXOpOIySkidKE1LVq+cQbzjz6LC8oa0yWLT78PuCnwEY1NJ9MHprjBw0NqkZXfO/QO8mT2k2poflG5CECWyJ2SWoBGwJ/BD5US+OIeAX5wt9ZwL8AewMvBc5sVIBqvL4J8a1yT2xMX1oTib6BX3wj0UdfWp26Y3LfpDhruH0tPOV1u+z0gjs/GKUUqx6duCaVSwMuzQRrnujpXbumu2/6c+572eQpaz5W57czpBkHLZgEnEAe0vlOBu8Ju5J8UXs2sF+zYmsDnyBf8L+LfIF/oNXkY7oDcHTzwuocc6fPC+BY8jB5d8Kgox48Ti7EzKDGv+uSpNZg8UUq1o/Id7JMZehCQIk8wfst5IuoWn/nk++EG+64dwFbATcCS/tXLi2f3wd8gzz82ybDvMZkcvHmO0vL5/9jsvO+J0rfXX3nhBVdk8s9UUpD/A1OdG/YN7FvTalvzd0TTqz5XUmD+w75rsWth2nTQy4oXglc3YygavRt8l2YWw3TZgKwKXAprdNrRzWKVMwijXcppUUppU+nlH5U4ya7AbellL6SUro1pXQ5uRfBSxsXpRpp93ec+Ly+ifFCyqlvuC7XAUQ59fVNiB13e8eJrxyq3SZbPH7UxA16u594fMKww4n1runuLXWVY8upj3xgPcIfrdnAdPJNT8PpLy68a8ZBCzr+Wkil18vryd+1hpvTpUwuXu01d8fDdmxGbB3mRZXlQYa/37yXfKPU3nOnz6vlxipJ44Q5U3vr+C8cUpEWX3vMfcDB5O7w08gX8/uLASXyBcVtgeXABxdfe0ytk2ZrGFefPv924MPkL7jTyHfJVR/3zcmFmZuAA68+ff7AJPO75DtBJ1XaTap6bgL5Ivcm5OLawuoNv3HMWemxmybPWX33hAe6N+qb0LVB3wQiVV47Ueopd/ds3DcprSuVH7l2wwVnHPGt6l430qgtW3z4H4EjyHcubsdTe8F0AVuSixvXAB9btvjwlvmadcX3Dr0KOIqcbE7jqbF3k2N/Gnki3Y9f8b1DWyZ2SWozVwLbR8RrI9saeDtwUcFxaYzKXRySStFNGnk+tJToJaKUuuPAodpstd3Ds1I5EmnkqdjWrunq22q7R5654OTX7TTKsMfqdTw5x8tIHibPqbFLIwNqE/9GzllWjtQQeJTco25OQyPqTHPIQ1rXMhfRw+Tv7Xs1MiBJUv1YfJEKtvjaY34P7EvujZHIxZZtyRf11wHnAvsuvvYYh56qo6tPn/8r8sSFPyb/Law+7quBbwL7XH36/P8buO3S8vkJ+AJwKPlO+43JF4ankYcauw34PPCxpeXz/ykJPPPos/6y8oYN/3XlDRv+orymtK57o76J3VPWTerZuG9SdKfSquUTlz901ZSPnf7xbx9e/3euTrRs8eE/BN4D/IJcIJxGPt+3JidxpwLvXLb48HsLCnFIV3zv0O8B7yX3bJnIk7FvBTwEfAV41xXfO/TBwoKUpDaXUvo18C7ge+Qhb+4m95occnibiJgYERv3L9Q2TKSaJRfQaiiV9N+BlEjBlkO1mTS5d3Lfutrugy2vK5VLXeXo6irvUEv7OtiaJycnH8laco9f5zPKx6BcWUaSKu1qGXpZo7M5Iw+H3a//PPf8laQ20T1yE0mNtvjaY/4KfGTOrkdvC+xOHrLqMeDyxdce03IXQ8eLq0+ffx1w4IyDFzydPKzGBuQ7v3519enzHxhu20oB5vuzSnv/AHgZ8AxyEWcFcPlgRZdqZ372rL8Dsz/wuQOmdk/pOzC601QST6x7vGvpfx31zZ8Nt600FssWH/5r4Ncz55zwXOCF5ELGg8ClyxYf3tK96q743qGXAZftvs/JzwNeQC4g3Q9cesX3Dn280OC0foqY0NH+UdI/iYjnAV8GjgEuJt+MciLwdeCAITY7AvhsUwLUGKTVVEYNqe2qbgBpyCHF+taV+iZMrO36QQSkFKQUj9X00utvNbXfWBrk/wmGHT6tQ6yh9ov+VNoONh+J1s9aRvftJPD8lTqLOVNbs/gitZDF1x5zJ04Y3XRXnz7/78Dfx7Lt0vL5ZfJQHVeOZfszP3fWXcDnxrKtNBbLFh/+F+AvRccxFld879A/A/YClKT6OwL4dUqpf6656yLiceBXEfHplNJdg2xzPHBK1eMp5LkM1QKij8tI7EfQRRp2Pg9SLlykUl+6Yqg2D9270c0bPfuJXfLVmOGv10+YtK575UOTH1/X23XNmIIfvauAmTxZWBnOxuSbrW5scEzt4HpyT4oNeHI+nKFMIPd8+WOjg+pAfySft92M3INrI/JndV2jg5Ik1YfDjkmSJKkQTh4ptYzJ/PPQQ/0X7Ae90p5SWpNSWtm/kOeEUIuIMt8srUsPUYqeEf/sleiJdWlV9D11rsJqD9y98dfLfaXU3VPuGvZ1S+WIUoq7btvsp4d+8sJm3Z3/A/KoAZuM0C7I5/qPrv76fIcrhd+Qi1Cb1dB2C/LQypc0MqAO9TPgXmr7HDYFfrNo+UKLh1IHMWdqbxZfJEmSJGkciYiNImLXiNi1suoZlcfTK88fHxHnVG1yIfDWiDg4InaMiFeQ59T6XUrpzuZGr3q44vxP9HWvLn+VRJkSE4a6hpKCHgi6V5e/fcX5nxhyKM8nHp9w5j13bLJ80oa9PaXu8qDXESJSTJ6yduLKByY/9sgDG36+Lm+kBld/ff7fyfMVbUgurgwaHnk4vXuBbzcptJa26JaTyuThBtfA0PP9kOck6QNOXXTLScMOrazRW7R84WPkIR67Gb6AuDW5yH1aM+KSJNWHxRdJkiQVIxW0SOPfS4BrKgvk4cGuIc/pAvki9PT+ximls4GPAx8GbgDOB/4KvLU54aoRrjzvE8f0rOrLhYaumESJnv4bWgl6UldMIiJ6VpV/XFrHR4fb16GfvLBv+V+3+rd7bt/0zg0mr50wecqaiV3dfV1RKkepu1yatOHaCZM3XjPx0YcmP37TH6e9c/6hP/tbU97kk44BfkgeVmxbchGmmzxc1hbANOA+4JCrvz6/2bG1rEW3nHQR+dj1kY/RJkAP+dhtXFkXwEnkApca478qy0TyMZ9C/gx6yL1dpgGrgMMXLV94eUExSiqKOVNbi5Q8miOJiI2BR4BNKl3qJUmS2korfZ/pj2XnQ754TdekyQOHOmqovtWrSjee9ukX0QLHQRpPWulvjJ5qt31OPKBvQswrT4znpIh8A2ZK5a616dautenrV573iQW17uuUE1+/xSZbPn7S1B0efNOUTZ+YUiqlSCl44vEJa+68dfNfPnTvRkfN+/hFhcwLMuOgBd3kguG7gBeQL1wn4GFyYeY7V399/s1FxNbq5u542G7A/sBsYBK54LIauBT4zqJbTlpWXHSdYe70eQHMIX8OLycXYhLwOLAIOGfR8oXXDL0HSfXQSt9nzJnGh5YqvkTEEeQvS88lTyJ2BXB4Sumvw2yzDNhrkKcuSim9rtLmbOA/Bjx/cUppTo1xtcwvniRJ0li00vcZEwlp/GmlvzEa3O7vOPFFKXgJECSuu/L7n/jNWPd18pfe0DNhUu8bu7rL25T7Sg+vXd29+OOf+OkDdQx3zGYctCCA55CH0loL/O3qr89/uNCg2sTcHQ/bFng6ufhyx6JbTlpecEgdae70eTsC25B7JN26aPnCewsOSeoYrfR9xpxpfOguOoAB9gK+BlxFju04YElEPC+lNNT4s28ldyXutwXwR3JX+WqLgfdWPW7W5H+SJEkaTBFd2lvnviNJaqorvv+J6qHo1suhn7ywF/jfeuyr3q7++vwE/KXoONrRoltOuhNwnqeCLVq+8BbglqLjkNQizJnaWksVXwb2RImI95AnxHsxcNkQ2zw4YJt9yWNhDiy+rEkp3V23YCVJkiRJkiRJkgbRUsWXQWxS+fngsK2e6gDgvEF6ysyMiHuBh4BLgE+nlAbtFh0RE8nja/abMorXlyRJUo2i6AAkSZIkqYWZM7WvUtEBDCXyRIALgV+nlG6ocZuXAs8HvjHgqcXAu4FXA4eThzdbFBFdQ+zqCPL4fv3LHaONX5IkSZIkSZIkdaZW7vnyNXIhZY9RbHMAcH1K6XfVK1NK51U9vD4irgP+D5gJ/GKQ/RwPnFL1eAoWYCRJkiRJkiRJUg1asvgSEacCrwf2TCnVVPSIiA2BfYGjR2qbUrolIu4HdmKQ4ktKaQ2wpmrfNUYuSZKkmjl5pCRJkiQNzZyprbVU8SVyleOrwFuAmSmlW0ex+d7keVrOreF1tgO2AO4aS5ySJEmSJEmSJElDaaniC3mosXcCbwIejYhtKusfSSk9ARAR5wArUkpHDNj2AOCClNID1SsjYiPgs8D/AncDzwS+BNwMXNyoNyJJkqThRcpLs19TkiRJktqBOVN7a7Xiy8GVn8sGrH8vcHbl39OBcvWTEfEc8twwswfZZx/wAuA/gE2BO4ElwGcqw4tJkiRJkiRJkiTVTUsVX1JKI06uklKaOci6vwKDblvpMfOa9Q5OkiRJ9eX4xZIkSZI0NHOmtlYqOgBJkiRJkiRJkqTxxOKLJEmSJEmSJElSHbXUsGOSirPnnONemrrjI6kUW5HoLfWl30VfOvnSi498vOjYWtn1t283BZgLPINc0F4B/GyX7e94oNDAJKkd2IVekiRJkoZmztTWLL5IHW6vOce9cN2kru+UN+15boroqqxOwNxYlz7x/15//HdLvenASy8+0j+9Va6/fbsJwEeAfwe24sn/mgL41PW3b/cD4Eu7bH/HYwWFKEmSJEmSJKkgDjsmdbC95hz34t6Nui/t26DrX0hAX1odeVlDX1qbumOD3ik97+ubWLp4r9ccF0XH2yquv327HuArwKHApsC9wF2V5W5gEvBB4OxKzxhJ0iAiFbNIkiRJUjswZ2pvFl+kDrXXa46LdZO7Lij3lKbQl9aQ6K2urgSUoy+tiXIqr9uw+1WpKz5bWLCt54PAG4GHgfuBdVXPlYEHyQWZVwBHNjs4SZIkSZIkScWy+CJ1qFRiv74JXdvQl3pjuNEcE71A9E0qHWDvF7j+9u0mAu8mF1xWDdN0beX5t1x/+3ZbNSM2SZIkSZIkSa3B4ovUoco9pQMJSkDfyI3Tur4JXdukEq9tfGQt75XAdsBDNbR9BNgYeH1DI5KkdpUKWiRJkiSpHZgztTWLL1KHSl3xdCDV1JUlsY6gRMQuDQ6rHUyv/OytoW258nP7BsUiSZIkSZIkqQV1Fx2ApMKMpY5t7dvjJkl1U8Rkjk4eKUmSJKldmDO1N3u+SB0q+tKt1Pj3NIJuEmXK6Q+NjqsN3EYupkyooW0JiMo2kiRJkiRJkjqExRepQ5V6y18jUSZG7gGXStHdtabvjssWH/nzZsTW4i4F/g5sVkPbTclzw/y0kQFJUttqk/GLI+JDEXFbRKyOiN9GxEtHaL93RPyl0v76iHjtgOffGhFLIuKBiEgRsesg+5gUEV+rtHksIv43IrYeffSSJEmS2lab5Exg3jQYiy9Sh4oyP+xa03cHpehOuXfGoFIpJpAod60pf72Z8bWqXba/Yy1wNvnv50bDNJ0EbAB8f5ft73iwCaFJkhogIvYBTgE+D8wA/ghcHBFbDdF+d+C7wFnAi4ALgAsi4vlVzTYELgcOH+alFwBvAPYG9gK2BX64Pu9FkiRJkhrBvGlwFl+kDnXpxUem7if6XlfqLT9EV0xMpeipLmwn6EpdMYkgeh5f9+PLLjrihMKCbT3fBM4DNga2BnqqnusGtgS2AH4OeNwkqb19HDgzpfStlNKfgYOAVcD7hmj/MWBxSunElNKNKaXPAFcDH+5vkFL6TkrpGPL/E/8kIjYBDgA+nlK6JKX0B+C9wO4R8fK6vTNJkiRJqg/zpkFYfJE62KWLj/xzz6PrXt69at1vI6VEV0xKlYWu6C71lh/pWdm7oLS2vHfRsbaSXba/ow/4JLmav4JcbJlaWbYiDzW2APjALtvf8URRcUpSq+ufPLLZS83xRUwAXkzVl/2UUrnyeLchNtuNf04OLh6m/WBeTC7sV7/uX4Dlo9yPJEmSpDbW6jkTmDcNZ8S5HiSNb5defOTNwO57vea4Z5e746OUYhtgXfSly6MvnXHpxUf2Fh1jK6oUYM64/vbtzgZeDTyDXNBeASzZZfs7HiswPEnSyKZEPGXUzTUppTUD2mwJdAH3DFh/D/DcIfa7zRDttxlFbNsAa1NKD6/nfiRJkiRprGrJmcC8aUgWXyQBcOnFR/6Nqq59qs0u29+xBrio6DgkqW2NcTLHOrhjwOPPA58rIA5JkiRJGpo5U9uy+CJJkqROtB3waNXjwe7guh/oI8/vVW1r4O4h9nv3KNsPtY8JEbHpgLu4RrsfSZIkSRqrWnImMG8aknO+SJIkqRM9mlJaWbX8UyKRUloL/IE8vCQAEVGqPL5yiP1eWd2+YtYw7QfzB6B3wOs+B5g+yv1IkiRJ0liNmDOBedNw7PkiSZKkYiSa34V+9K93CvDtiPg98DtgHrAh8C2AiDgHWJFSOqLS/svApRFxKPAzYF/gJcAH+3cYEZuTE4JtK6ueUxlL+e6U0t0ppUci4izglIh4EFgJfBW4MqX0m1G/A0mSJEntqT1yJjBvGpTFF0mSJGkIKaXvRcTTgGPIkzZeC8xJKfVPDjkdKFe1vyIi3gl8ETgOuAl4c0rphqrdvpFKElJxXuVn9RjK8yv7/V9gInAxcEjd3pgkSZIk1Yl50+AipeJm7GkXEbEx8AiwSUppZdHxSJIkjVYrfZ/pj+UF7/7iNd0TJ5dH3KCO1q1ZVbrunE+/iBY4DtJ40kp/YyRJksailb7PmDOND/Z8kSRJkiR1pFl7HNsFTAMmAQ8tvfyo+woOSZIkSeOExRdJkiQVo33GL5Y0zsza49jNgLcD+wE7ACWgd9Yex/4a+C6wdOnlRzX1LlNJkqR/Ys7U1kpFByBJkiRJUrPM2uPYZ5LHBT8GeDawGniMfKlhNvAN4ORZexw7obAgJUmS1Pbs+SJJkiRJ6giz9jh2C+As4LnA3cC6qqdXAyuBjYB9gceBTzc7RkmSJI0P9nyRJElSISKlQhZJHW0/4DnAXTy18FLtscqy36w9jn1WswKTJEkayJypvVl8kSRJkiSNe5VhxN5JLrr0jdD8EWBDYO9GxyVJkqTxyeKLJEmSipEKWiR1qp2AbclDi9WiF9izceFIkiSNwJyprVl8kSRJkiR1gknkHHikXi/9+sjzv0iSJEmjZvFFkiRJktQJHiEXVHpqbN8DPNC4cCRJkjSedRcdgCRJkjpTpLw0+zUldaxbgD8BM4DHR2hbqiw/a3RQkiRJQzFnam/2fJEkSZIkjXtLLz8qAf9NHsl80gjNtwQeBi5obFSSJEkaryy+SJIkqRhOHimp+X4IXEIurmw4yPMBPI381+I/l15+1L1NjE2SJOmpzJnamsOOSWp7c6fP2xz4N3ISvRa4Hrhq0fKF5UIDk1Q3O5xxUgl4CfACYAJwP/Dz2w487MFCA5MktZWllx+1ZtYex34IWED+/rgpsAYok+d46QZWAv8JnFNQmJIkSRoHLL5Ialtzp8/bApgPvJWcOCfy3Yq9wA1zp8/72qLlCy8qLkJJ9bDDGSfNBT4MPJ98Yaz/d/3hHc446UfAKbcdeJgTIrchxy+WVISllx+1ctYex36AXNR/B7AHeRiyB4AfA/+79PKjVhQYoiRJEmDO1O4svkhqS3Onz9sK+A7wQmAVcDf5jkWADcgTqX5t7vR5X1i0fOE3i4lS0vra4YyT3gd8hnxR7EHgicpTJXLR9QDgX3c446R/v+3Aw+4pJEhJUttZevlRZeB3lUWSJEmqO+d8kdR25k6fF8CXyYWXu8kXZKuHGHsCWEG+M/7Tc6fP26PpQUpabzuccdIrgE+Tf5dX8GThBfLv/IPkvwEvABbucMZJ0fQgJUmSJEmSBmHxRVI7ehGwG/AQsG6YdveTe8G8uxlBSaq7d5N/h+8fps06chFmN/LfBrUTJ4+UJEmSpKGZM7U1iy+S2tFbyUMQPV5D20eBV82dPm96Y0OSVE87nHHS9sCryb/DI1lF/pvw1oYGJUmSJEmSVCPnfJHUjp7L8D1eqj0ObAXsACxvVECS6m4HckFluF4v1daR/zaojTh5pCRJkiQNzZypvdnzRVI7Gsu8Ds4FIbWXqCyj+drn9xpJkiRJktQSvEghqR3dAnTV2HYDYA15sm5J7eMO8u/uBjW27yL/bZAkSZIkSSqcxRdJ7egCoJfaLspuDPxm0fKFNzc0Ikl1dduBh90CXAlsUkPzSeS/CT9qaFCqPyePlCRJkqShmTO1NYsvktrRlcB1wOYM/3dsU/IF2XOaEJOk+jsHWEv+XR5KCdgSuJ78t0GSJEmSJKlwFl8ktZ1FyxeWgY8CtwHbAlMGNOkBtibfDX86cHEz45NUN0uA04CJ5N/pngHPTyH/DbgN+MhtBx5Wbmp0Wm/9k0c2e5EkSZKkdmDO1N4svkhqS4uWL7wF2AdYBHQD08gXYbcl3wV/J/Bp4IRFyxf634bUhm478LAEfIn8u3wn8DSe/D2fRv7dXwTsUxmmTJIkSZIkqSV0Fx2AJI3VouULlwPvnTt93k7AHHLRZS15+KEli5YvXFNkfJLWX6UA8+0dzjjpPGA2sAswAbgfWHzbgYc5n1M7SykvzX5NSZIkSWoH5kxtzeKLpLa3aPnCm4FTi45DUuPcduBha4ALK4skSZIkSVJLc9gxSZIkSZIkSZKkOrLniyRJkgpRxGSOTh4pSZIkqV2YM7U3e75IkiRJkiRJkiTVkT1fJEmSVBzvqpIkSZKkoZkztS17vkiSJEmSJEmSJNWRxRdJkiRJkiRJkqQ6ctgxSZIkFSLKeWn2a0qSJElSOzBnam/2fJEkSZIkSZIkSaoje75IkiSpGInmTx7pZJWSJEmS2oU5U1uz54skSZIkSZIkSVIdWXyRJEmSJEmSJEmqI4cdkyRJUiEi5aXZrylJkiRJ7cCcqb3Z80WSJEmSJEmSJKmO7PkiSZKkYqSUl2a/piRJkiS1A3OmtmbPF0mSJEmSJEmSpDqy54skSZIK4fjFkiRJkjQ0c6b2Zs8XSZIkSZIkSZKkOrLnyzg1a49je4DdgKlAH/A34Pqllx9l7XKcmt2zbwAvAJ4FdAF3AVcu6T2vt9DAxrlDrt4/gBnAjkAAK4DfnDbj3L5CA5MkSZIkSZJUGIsv48ysPY6dALwX+Hfg6eTPOIAngGtm7XHsmUsvP2pRgSGqAWb37Pta4APAi4BJQALWAbfN7tn3O8DZS3rPW1tgiONOpejyZuD9wPOBiTx53G865Or9zwG+YxFGkoaRKkuzX1OSJEmS2oE5U1tz2LFxZNYex04EvgYcTS68PES+C/8OcvFlN+D0WXsce0hhQaruZvfs+yHgNOBlwCry572C/PnvAHwWOHV2z74Ti4pxvKkUXj4JfJlc8HqMJ4/7w8BzgGOBkw+5en+L3JIkSZIkSVKHaaniS0QcERFXRcSjEXFvRFwQEc8ZYZv3REQasKwe0CYi4piIuCsinoiIn0fEsxr7bgrxKeD15Iu/9wDVPR1WkS8Ml4FPztrj2Nc2PTrVXaXHyyfIn+ud5M+531ryefAI8Aby+aH6eAfwYfIxvpNc3Oy3hjzk28pKu480PTpJahfpyQkkm7V4F5ckSZ3t9hVTN799xdR33L5i6iG3r5j6/ttXTH3Z7SumttT1MUn6B3OmttZq/7nsRe658XJgFtADLImIDUfYbiV5bpP+5ekDnv8k8FHgIHLvgMeBiyNiUv1CL9asPY7dCtiPfBH4iWGaPghMAD4wa49joxmxqTEqc7x8kPx5PjhM01Xkc2Lf2T37Pq0ZsY1nh1y9f4l83EvkQudQHicXZ/7jkKv3n9KE0CRJkiRJQ7h9xdQtbl8x9VjgcmAhcBRwDPB94MLbV0ydW2B4kqRxqKWKLymlOSmls1NKf0op/RF4DzAdePHIm6a7q5Z7+p+IiADmAV9MKf04pXQd8G5gW/J8DePFm4BNGP5icL+HyUMlvbCB8ajxdq0sD9fQ9mFgU/J5ovXzCuBZ5GHdRvIQsBVgTzNJkiRJKsjtK6ZuDXwXOIA8T+rd5BEL7iQPIz0DOO32FVPfV1iQkqRxp6WKL4PYpPJzuLv6ATaKiL9HxO0R8eOI+Jeq554BbAP8vH9FSukR4LfkOVD+SURMjIiN+xegHe5afzYQ5OGnRrKK/GXj2Q2NSI32bPLnuGqkhjx5XviZr79nA93A6pEaAn1V20iSBkqpmEUa5yJiz4i4MCLurAzL/OYatpkYEcdW8qo1EXFbRHgRUlLbu33F1CD3dHkBuejyIE+9dvIEeZj2AI66fcXUVzQ7RkkakjlTW2vZ4ktElMj/Of46pXTDME3/CryPfEf//uT3dEVEbFd5fpvKz3sGbHdP1XMDHUGeJ6N/uWO08Rega5Tt0xi2UWvpYnSjMAZ+5vUw2uPev40kSVKzbAj8EfjQKLb5PvBq8l3hzyEPafzX+ocmSU33IvLNtw8C64Zpdz8wmTxaiiRJ66276ACG8TXg+cAewzVKKV0JXNn/OCKuAG4EDgQ+M8bXPh44perxFFq/AHM3tV8QnkC+I//uxoWjJrib/DlOIM8tMpKEn3k93E0uZHUz/Bd3Ku0Cj7skDeofEzo2+TWl8S6ltAhYBJBHYR5eRMwhz7+5Y0qpf9SB2xoVnyQ12dvIo0bcX0PbR4FX375i6vbbT7vr9saGJUkjM2dqby3Z8yUiTgVeD7wypTSqokdKqRe4Btipsqr/oufWA5puzRAXRFNKa1JKK/sX8n++re6n5K6yG9XQdjNgOfDrhkakRrscuJ38eY5kCvn8uLChEXWGS8g95zatoe3G5PGDf9bIgCRJktbTG4HfA5+MiBUR8beIOCkiNhhqgzYdqllSZ3ouI984169/mPYdGhaNJKljtFTxJbJTgbcAr0op3TqGfXQBu5AnTgO4lVxkeXVVm42Bl1HVY6bdLb38qD+TiymbMvwQRxtUnj936eVH1dJbQi1qSe95a4FzyZ/nkIlx5flNgMuX9J73l2bENp6dNuPcx4DzgImVZSjd5IsQS06bca53TEnSYFJBi6SBdiSPOPB8ci42D3g7cNow27TjUM2SOtPIXQCflHhyBANJKp45U1trqeILeaix/YF3Ao9GxDaV5R8XliPinIg4vurx0RExOyJ2jIgZ5IvRTwe+AZBSSuS5Yz4dEW+MiF2Ac4A7gQua9L6a5QjgJmAq/9wDpkTuIbE5sJjK8VHbO5P8eW5O/nwH/k5vRD4fbiKfH6qPrwKXAU8jFzwHfjGfQp5T6gbgc80MTJIkaQxK5DT7XSml36WULgI+DvzHML1fjiff4NO/bDdEO0kq2i3UPg/nZGANsKJx4UiSOkWrFV8OJn9xX0buudK/7FPVZjr5YnK/zcgXoG8ELiIP87N7SunPVW2+RL5Y+l/AVeQL0nNSSqsb8i4KsvTyo+4gT4z5C/I8INPISdB25GPWSy66HGKvl/Gh0vvlQ+TPtZf8Ofd/5tPI58HPgX2X9J7nl8c6OW3GuavIk9GeC5SBbXnymE8j93r5GfDO02ace19RcUqSJNXoLmBFSumRqnU3km8wGbSo0qZDNUvqTBeQ8+VJNbSdAlyx/bS7/q+hEUmSOkJ30QFUSymN2K0zpTRzwOP5wPwRtknA0ZVlXKsUYN41a49jnwe8gXwxfh2558MFSy8/6p4i41P9Lek97wngM7N79u0fsm8n8u/2XcCFS3rP+/Nw22tsKsOPHXbI1fsvIB/3Z5AL2iuAH58249ybioxPktqBk0dKLePXwN4RsVFK6bHKumeTbzJxODFJ7e4K4HrgxeRRUMpDtNuUXKT5TnPCkqSRmTO1t5Yqvqh+KnPAeNG9gyzpPe8e4OtFx9FpTptx7grg1KLjkCRJ6hcRG5FvyOn3jIjYFXgwpbS8MozztJTSuyvP/w/wGeBbEfFZYEvgROCbKaUnmhi6JNXd9tPuKt++YupHyH/rdiDPU1XdW6+HPJR3kEdNWdLsGCVJ45PFF0mSJBWjnPLS7NeUxr+XAL+senxK5ee3gfeQe8dP738ypfRYRMwiX3T8PfAA8H3g080IVpIabftpd91y+4qp+5Dn5NyTPFx09ZeC24HTgW9vP+0uvyxIah3mTG3N4oskSZIkjSMppWXkO7iHev49g6z7CzCrcVFJUrG2n3bX34H33r5i6k7AHHIvv7XkIcmWbD/trjVFxidJGn8svkiSJEmSJKkjbD/trptx6GhJUhNYfJEkSVJx7NEuSZIkSUMzZ2pbpaIDkCRJkiRJkiRJGk/s+SJJkqRCRMpLs19TkiRJktqBOVN7s+eLJEmSJEmSJElSHdnzRZIkScVIKS/Nfk1JkiRJagfmTG3Nni+SJEmSJEmSJEl1ZPFFkiRJkiRJkiSpjhx2TJIkSYVw8khJkiRJGpo5U3uz54skSZIkSZIkSVId2fNFkiRJxUiVpdmvKUmSJEntwJyprdnzRZIkSZIkSZIkqY4svkiSJEmSJEmSJNWRw45JkiSpEJESkZrbp73ZrydJkiRJY2XO1N7s+SJJkiRJkiRJklRH9nyRJElSMcqVpdmvKUmSJEntwJyprdnzRZIkSZIkSZIkqY7s+SJJkqRCOH6xJEmSJA3NnKm92fNFkiRJkiRJkiSpjiy+SJIkSZIkSZIk1ZHDjkmSJKkYqbI0+zUlSZIkqR2YM7U1e75IkiRJkiRJkiTVkT1fJEmSVIyU8tLs15QkSZKkdmDO1Nbs+SJJkiRJkiRJklRHFl8kSZIkSZIkSZLqyGHHJEmSVIhIeWn2a0qSJElSOzBnam/2fJEkSZIkSZIkSaoje75IkiSpGIkCJo9s7stJkiRJ0piZM7U1e75IkiRJkiRJkiTVkT1fJEmSVIhIEOXmv6YkSZIktQNzpvZmzxdJkiRJkiRJkqQ6svgiSZIkSZIkSZJURw47JkmSpGKkVMDkkfahlyRJktQmzJnamsUXSZIkSZLUdAtunB3A84G3A7sCPcDtwE+ApfN3XrJ2NPubVdp7MjAHeD0wFVgDXAX8YGn5/L/WL3JJkqSRWXyRJElSMVJlafZrSpIKt+DG2ZsAJwOvBjYAesl/pV9ELp7cuuDG2fPn77zkqlr2N6u0917AicA08hDrvZWfLwcOmFXa+yfAkUvL56+q93uRJKlhzJnamnO+SJIkSZKkpllw4+wNgW+QiyxrgDuAe4B7gRXAA8AzgbMX3Dj7xSPtb1Zp7z2BM4DtgPsr+7gXuLuy73XAPsDXZpX2nlDv9yNJkjQYiy+SJEmSJKmZ3ge8ArgPeGyQ59cCdwKbA19acOPsrqF2NKu09yTgBGDjyja9gzRbCTwIzAb2W6/IJUmSamTxRZIkSYWIlApZJEnFWXDj7AnAO4E+cq+XoSRyD5hnA3sM0242MJ1cyBnOE5Wf75pV2ttrIZKktmDO1N78wiFJkiRJkprl5eThwR6qoe1qoAeYM0yb1/HkHC8jeZhczNmlhraSJEnrpbvoACRJktShUspLs19TklSkzckFlbU1ti8DWw3z/NbkOV1qsRbYFNiixvaSJBXLnKmt2fNFkiRJkiQ1y1rykGK1Xo8o8eSQYYNZPYp9ReW1hxvuTJIkqS7s+SJJkqRilCtLs19TklSk64HHgCnAIyO0LZGLJX8cps1VwEyeLKwMZ2NgJXBjLYFKklQ4c6a2Zs8XSZIkaRgR8aGIuC0iVkfEbyPipSO03zsi/lJpf31EvHbA8xERx0TEXRHxRET8PCKeNaDNbRGRBiyfasT7k6Rmmr/zktuBJeTiy0g2I8/TcsEwbX5ALuZsMsK+ApgM/Ghp+fwHa3htSZI0CuZN/8ziiyRJkjSEiNgHOAX4PDCDfPf1xREx6PwDEbE78F3gLOBF5AuGF0TE86uafRL4KHAQ8DLg8co+Jw3Y3dHA1Krlq/V5V5JUuDOBh8h/24ayETAROHv+zkvuG6rR0vL5fwe+B2xILq4MJiqvdS/w7bEELEmShmbeNDiLL5IkSSpEpFTIMkofB85MKX0rpfRn8hf/VcD7hmj/MWBxSunElNKNKaXPAFcDH4Z89xYwD/hiSunHKaXrgHcD2wJvHrCvR1NKd1ctj482eElqRfN3XnIt+W/hI8B25B4uPeSh0Tck/03cEDgXOLmGXR4D/JA8rNi25CJMNzAB2AKYBtwHHLK0fP7f6vdOJElqrDbJmcC8aVAWXyRJktSJpkTExlXLxIENImIC8GLg5/3rUkrlyuPdhtjvbtXtKy6uav8MYJsB+3wE+O0g+/xURDwQEddExCciwvkaJY0b83decjHwduBsYC2wObAlubfLr8kXXz41f+cl60ba19Ly+WvIF3E+Tp4DZoPKvjYjD0l2BvC2peXzL6/7G5EkafwaMWcC86bhtEwgkiRJ6jAp5aXZr5ndMeCZzwOfG7BuS6ALuGfA+nuA5w7xCtsM0X6bqucZoQ3AV8h3fj0I7A4cT+5C//EhXleS2s78nZf8GfjUghtnnwg8k9z75V7g5vk7LxnVfxBLy+evA74/q7T3+cBzyH/D1wJ/W1o+/+G6Bi5JUrO0fs4E5k1DsvgiSZKkTrQd8GjV4zVFBTKYlNIpVQ+vi4i1wBkRcURKqaVilaT1NX/nJQ8AD9RjX0vL5yfgL/XYlyRJHa6lcyZo/bzJYcckSZLUiR5NKa2sWgb7Yn4/0AdsPWD91sDdQ+z37hHa3121rtZ9Qu5e3w3sMEwbSZIkSaqXWnImMG8aksUXSZIkFaO/C32zl5rDS2uBPwCv7l8XEaXK4yuH2OzK6vYVs6ra30pOFqr3uTHwsmH2CbArUCYPxyNJkiSpE7R4zpRDNG8aisOOSZIkSUM7Bfh2RPwe+B0wD9gQ+BZARJwDrEgpHVFp/2Xg0og4FPgZsC/wEuCDACmlFBELgU9HxE3kpOILwJ3ABZV97kZOKn5J7ua/G7AAODel9FBj364kSZIkjZp50yAsvkiSJKkY5crS7NcchZTS9yLiacAx5IkdrwXmpJT6J36cXr3XlNIVEfFO4IvAccBNwJtTSjdU7fZL5ETkv4BNgcsr+1xdeX4NOfn4HDCRnGgsICc0kiRJkjpFG+RMYN40lEij7EbUiSpdmh4BNkkprSw6HkmSpNFqpe8z/bG88vmfuKane4OmphK9654o/fKGE19ECxwHaTxppb8xkiRJY9FK32fMmcYH53yRJEmSJEmSJEmqI4cdkyRJUiEiJaLJvbCb/XqSJEmSNFbmTO3Nni+SJEmSJEmSJEl1ZM8XSZIkFSOlvDT7NSVJkiSpHZgztTV7vkiSJEmSJEmSJNWRPV8kSZJUDO/ikiRJkqShmTO1NXu+SJIkSZIkSZIk1ZHFF0mSJEmSJEmSpDpy2DFJkiQVpIAu9NiFXpIkSVK7MGdqZ/Z8kSRJkiRJkiRJqiN7vkiSJKkYZSAKeE1JkiRJagfmTG3Nni+SJEmSJEmSJEl1ZPFFkiRJkiRJkiSpjlqq+BIRR0TEVRHxaETcGxEXRMRzRtjmAxHxq4h4qLL8PCJeOqDN2RGRBiyLG/tuJEmSNJxIqZBFkiRJktqBOVN7a6niC7AX8DXg5cAsoAdYEhEbDrPNTOC7wCuB3YDbK9tMG9BuMTC1atmvrpFLkiRJkiRJkiQB3UUHUC2lNKf6cUS8B7gXeDFw2RDbvGvANu8H3ga8Gjin6qk1KaW76xmvJEmS1kNKeWn2a0qSJElSOzBnamut1vNloE0qPx8cxTaTyT1mBm4zszKU2V8j4vSI2GKoHUTExIjYuH8BpowubEmSJEmSJEmS1KlaqudLtYgoAQuBX6eUbhjFpicAdwI/r1q3GPghcCvwTOA4YFFE7JZS6htkH0cAnx1L3JIkSapROUE0+a6qsndxSZIkSWoT5kxtrWWLL+S5X54P7FHrBhHxKWBfYGZKaXX/+pTSeVXNro+I64D/I88X84tBdnU8cErV4ynAHTVHLkmSJEmSJEmSOlZLDjsWEacCrwdemVKqqegREYcBnwJmp5SuG65tSukW4H5gpyGeX5NSWtm/AI+O6g1IkiRJkiRJkqSO1VI9XyIigK8CbyH3Xrm1xu0+CRwFvCal9Psa2m8HbAHctR7hSpIkaX0kCpg8srkvJ0mSJEljZs7U1lqt58vXgP2BdwKPRsQ2lWWD/gYRcU5EHF/1+HDgC8D7gNuqttmo8vxGEXFiRLw8InaIiFcDPwZuBi5u4nuTJEmSJEmSJEkdoKV6vgAHV34uG7D+vcDZlX9PB8oDtpkA/GDANp8HPgf0AS8A/gPYFLgTWAJ8JqW0pi5RS5IkafRSKuAuLm/jkiRJktQmzJnaWksVX1JKUUObmQMe7zBC+yeA16xXYJIkSZIkSZIkSTVqtWHHJEmSJEmSJEmS2lpL9XyRJElSB7ELvSRJkiQNzZyprVl8kdQSFtw4ewNgKhDAffN3XrKy4JAkSZIkSWM0d/q8rYFNgCeAFYuWLyyPsIkkSeOKxRdJhVpw4+xnAPsA7wA2q6x+YsGNsy8Ezpu/85JrCgtOktRY5QTR5Luqyt7FJUlSo8ydPq8bmAu8E/hX8nWnMnDT3Onz/hu4YNHyhd5oJ0m1Mmdqa875IqkwC26c/WrgJ8DHgM2BVZVlIvBu4PwFN84+oLgIJUmSJEm1mDt93mTgNOB0YCbQBzwGrAGeD/wn8L250+dtV1SMkiQ1k8UXSYVYcOPsGcCpwBbAncD95O7oTwAPASvId0l9ZsGNs99eVJySpAZK5WIWaZyLiD0j4sKIuDMiUkS8eRTbviIi1kXEtY2LUNJ4M3f6vABOAN4IrCTnc48Cq4HHgbuA+4AXAWfOnT5vSkGhSlJ7MWdqaxZfJBXlI+Rhxu4EhurPeD/QA3x8wY2zJzQrMEmSpDa3IfBH4EOj2SgiNgXOAX7RgJgkjW8zgDcAj5BHMxhML3AP8ELgzc0JS5Kk4lh8kdR0C26cvROwJ/mL+UgeAJ4O/FtDg5IkSRonUkqLUkqfTin9aJSbfh34H+DKBoQlaXx7BzCJ3NtlOL3km+/2nzt9ntekJEnjmv/RSSrCS4HJjPzFHGAt+W/VvzY0IklS86VUzCLpn0TEe4Edgc/X2H5iRGzcvwAOISR1tpnkIcZqsRLYCZjasGgkabwwZ2prFl8kFWESQw81NpTJjQhEkiSp00XEs8gTYe+fUlpX42ZHkHsx9y93NCg8Se1hA6CvxrZl8vUoczxJ0rjWXXQAkjrSI0CQv3DXOotXLUOUSZLaSUpQbvJdVd7FJT1FRHSRhxr7bErpb6PY9HjglKrHU7AAI3Wyh4BNa2zbA6zDHE+SRmbO1Nbs+SKpCJeRv2hvUkPbDchDj/28oRFJkiR1pinAS4BTI2JdRKwDjgZeWHn8qsE2SimtSSmt7F+obThZSePXT8lFlaih7UbAbxYtX3hvY0OSJKlYFl8kNd38nZfcB/wE2BDoGqH5FsANwO8bHZckSVIHWgnsAuxatXwd+Gvl378tJixJbeYHwGPA5iO0m0we/eC7DY9IkqSCWXyRVJQvAzeTJ1mcMMjzXcC2wAPAZ+fvvKTW4ckkSe3CySOlhoiIjSJi14jYtbLqGZXH0yvPHx8R5wCklMoppRuqF+BeYHXl8ePFvAtJ7WTR8oW3Al8lD2+/BYP3gJkCbAZcCCxpXnSS1MbMmdqaxRdJhZi/85IVwLuB68hfzret/Ny88u+tgTuBD87feYm9XiRJkmr3EuCaygJ5bpZrgGMqj6cC0wuIS9L4dirwJfJ8Lv053ebAlsA08k133wcOXbR84bqigpQkqVm6iw5AUueav/OSWxbcOPv1wL8B+wLPIxeFl5O/lP90/s5LVhYYoiSpkYq4q8q7uNQBUkrLGGbehZTSe0bY/nPA5+oZk6Txb9HyhWXgq3Onz7sQeBvwBnJPl1XAL8k53h8XLV/of8aSVCtzprZm8UVSoebvvGQtcFFlkSRJkiS1sUXLF94GnFxZJEnqWBZfJEmSVAzv4pIkSZKkoZkztTXnfJEkSZIkSZIkSaojiy+SJEmSJEmSJEl15LBjkiRJKka5DJQLeE1JkiRJagPmTG3Nni+SJEmSJEmSJEl1ZM8XSZIkFcPJIyVJkiRpaOZMbc2eL5IkSZIkSZIkSXVk8UWSJEmSJEmSJKmOHHZMkiRJxbALvSRJkiQNzZyprdnzRZIkSZIkSZIkqY7s+SJJkqRilAGafFdVubkvJ0mSJEljZs7U1uz5IkmSJEmSJEmSVEf2fJEkSVIhUiqTUnNvq2r260mSJEnSWJkztTd7vkiSJEmSJEmSJNWRxRdJkiRJkiRJkqQ6ctgxSZIkFaOcaP7kkU1+PUmSJEkaK3OmtmbPF0mSJEmSJEmSpDqy54skSZKKkVJemv2akiRJktQOzJnamj1fJEmSJEmSJEmS6sjiiyRJkiRJkiRJUh057JgkSZKKkcpQLjf/NSVJkiSpHZgztTV7vkiSJEmSJEmSJNWRPV8kSZJUjJQAJ4+UJEmSpEGZM7U1e75IkiRJkiRJkiTVkT1fJEmSVIhULpOiueMJJ8cvliRJktQmzJnamz1fJEmSJEmSJEmS6sjiiyRJkiRJkiRJUh057JgkSZKK4eSRkiRJkjQ0c6a2Zs8XSZIkSZIkSZKkOrLniyRJkopRThDexSVJkiRJgzJnamv2fJEkSZIkSZIkSaojiy+SJEmSJEmSJEl15LBjkiRJKkYqA+UCXlOSJEmS2oA5U1uz54skSZIkSZIkSVId2fNFkiRJhUjlRGry5JHJySMlSZIktQlzpvZmzxdJkiRJkiRJkqQ6svgiSZIkSZIkSZJURw47JkmSpGKkRPMnj7QLvSRJkqQ2Yc7U1uz5IkmSJEmSJEmSVEf2fJEkSVIhnDxSkiRJkoZmztTe7PkiSZIkSZIkSZJUR/Z8kSRJUjFSmeaPX9zk15MkSZKksTJnamv2fJEkSZIkSZIkSaoje76MzpSIKDoGSZKksZhSdAAD9bK2iyYPJ9zL2q7mvqLUccyZJElSuzJnwpypnsIJdEYWEdOAO4qOQ5IkqQ62SymtKDKAiJgE3ApsU1AIdwPPSCmtLuj1pXHHnEmSJI0j5kzmTHVh8aUGkW/d2hZ4tOhYCjCFnERtR2e+/7HyuI2Nx21sPG5j57EbG4/b2LTCcZsC3Jla4AtgJZmYUNDLrzWJkOqrzXOmVvj7LD+HVuHn0Br8HFqDn0NraPbnYM6UmTPVgcOO1aDyy1ZotbMoVUMGPJpSWllkLO3E4zY2Hrex8biNncdubDxuY9Mix61lPq/KF3m/zEvjRDvnTC3y97nj+Tm0Bj+H1uDn0Br8HFpDAZ9Dy3zW5kztr1R0AJIkSZIkSZIkSeOJxRdJkiRJkiRJkqQ6sviikawBPl/5qdp53MbG4zY2Hrex89iNjcdtbDxuktSa/PvcGvwcWoOfQ2vwc2gNfg6twc9BbStaYO4gSZIkSZIkSZKkccOeL5IkSZIkSZIkSXVk8UWSJEmSJEmSJKmOLL5IkiRJkiRJkiTVkcUXSZIkSZIkSZKkOrL40oEiYmZEpCGWl9ew/bSI+H5EPBwRKyPixxGxYzNiL9L6HLeI+NwQ261uVvxFi4gZEfGTiHgwIlZFxA0R8dEatuvI863fWI5bp59vEXH2ML+rKSKmjbB9R55z63PcPOfiWRFxXkTcUfk9/UtEHB0Rk2vYtiPPN0kqQkQcVfn/6YYa2nb0/231Yu7ZGsxlW4u5cWsw1y6Webs6RXfRAahQXwGuGrDu5uE2iIiNgF8CmwDHAb3AfODSiNg1pfRAIwJtMaM+blUOBh6retxXl4haXETMBi4ErgG+QD4GzwS2G2G7jj7fxnrcqnTk+QacAfx8wLoAvg7cllJaMdSGHX7Ojfm4Vem4cy4itgd+BzwCnAo8COwGfB54MfCmYbbt5PNNkpoqIrYDjgQeH+WmHfd/W4OYe7YGc9mCmRu3BnPtlmDero5g8aWz/Sql9INRbnMI8CzgpSmlqwAiYhFwA3AoOaEZ78Zy3Pr9IKV0f12jaXERsTFwDvAz4O0ppfIoNu/Y8209j1u/jjvfAFJKVwJXVq+LiD2AycB/j7B5x55z63nc+nXiOffvwKbAHimlP1XW/VdElIB3R8RmKaWHhti2Y883SSrAScBvgC5gy1Fs14n/tzWCuWdrMJctkLlxazDXbg3m7eoUDjvW4SJiSkSMpgj3duCq/j9uACmlvwC/AN5R7/ha1RiOW9WmsXFERN2Dal3vBLYGjkoplSNiw8pFyVp08vm2PsetXyeeb0N5J5CA/xmhXSefc4Op9bj168RzbuPKz3sGrL8LKANrh9nW802SmiAi9iT/zZ03ts077v+2hjD3bA3msoUyN24N5tqty7xd447Fl872LWAlsDoifhkRLxmuceU/oxcAvx/k6d8Bz4yIKfUPs+WM6rgNcAt5aJpHI+LciNi6IRG2ln8jH69pEfFXctfclRFxekRMGmojz7exHbcBOvF8+ycR0UP+AnZFSum2Ydp1+jn3FLUetwE68ZxbVvl5VkTsGhHbR8Q+5KEIvpJSGnR4G883SWqOiOgCvgp8I6V0/Rh20Yn/tzWCuWdrMJctlrlxazDXbkHm7RqvHHasM60F/he4CLgfeB5wGPCriNg9pXTNENttDkwk3807UP+6bYG/1jfcljHW4wbwEHkugCuBNcD/Az4EvDQiXpJSWtnQyIv1LPLfmh8DZwFHADOBj5CH6tlviO06/Xwb63GDzj7fBvMaYAtG7rrc6efcQLUeN+jgcy6ltDgiPkPu2v7GqqeOTSl9ephNPd8kqTkOAp5Ovtg2Gh37f1udmXu2BnPZ1mBu3BrMtVuTebvGJYsvHSildAVwRdWqn0TED4DrgOOBOUNsukHl55pBnls9oM24sx7HjZTSlwes+t+I+B35P5VDgP+sc7itZCPymJ1fTyl9tLLuhxExATgwIo5OKd00yHYdfb4x9uPW6efbYN5JnoDv+yO06/RzbqBaj5vnHNwGXEa+qPEA8DrgyIi4O6V06hDbeL5JUoNFxBbAMcAXUkr3jWZb/2+rD3PP1mAu2zLMjVuDuXZrMm/XuOSwYwIgpXQzuer/ykrX/ME8Ufk5cZDnJg1o0xFqPG5Dbfs/wN2M/i68dtN/Tnx3wPr+MTx3G2G7Tj3fxnrcBtVB59tTRMRGwJuAi1NKD4zQvNPPuX8Y5XEbVKeccxGxL/BfwPtTSmemlH6YUjoA+DZwQuXC32A83ySp8b4IPEgedmy9dcr/bY1m7tkazGULYW7cGsy1W4x5u8Yziy+qdjswAdhwiOcfJFeWpw7yXP+6OxsQV6sb6biNtO3m9Q2n5fSfEwMno7638nOzIbbr9PNtrMdtOJ1wvg30ZvJdTbUMndXp51y1N1P7cRtOJ5xzhwDXpJTuGLD+J+Rj+KIhtvN8k6QGiohnAR8EvgJsGxE7RMQO5AszPZXHY/k/qhP+b2sGc8/WYC7bXObGrcFcu/W8GfN2jVMWX1RtR3IXvccGezKlVAauBwablO9lwC0ppUcbF17LGva4DSUiAtgBGNUQCG3oD5Wf0was37byc9D37/k2tuM2lA463wZ6F/l38ycjNfSce4qaj9tQOuic2xoY7G7RnsrPQYd49XyTpIabRs53vwLcWrW8DHh25d9Hj2aHHfR/WzOYe7YGc9nmMjduDebarce8XeOWxZcOFBFPG2TdC8kTBS+p/CEjIqZHxHMHNP0B8K8R8ZKqbZ8DvAo4v3FRF299jttg2wIHA08DFjcg3FbSP17nAQPWvx9YBywDz7dBjPm4dfj59g+V4/BvwI9SSqsGed5zbhBjOW4dfs79DXhRRDx7wPr9gDJ5LHXPN0lqvhuAtwyy/AlYXvn3WeD/bY1k7tkazGVbhrlxazDXbiHm7RrvIqVUdAxqsoi4hDz+4RXkbpXPI3fJ7wV2SyndWGm3DNgrpRRV204BrgGmACdVtvk4+a7fXUc7kWU7Wc/jtgr4Hrk6vxrYA9gX+CPwisH+gxlPIuIs4H3kLzmXAjOBvYHjU0pHVtosw/PtKdbjuHX0+dYvIj5MHuN9Tkrp4kGeX4bn3D8Z43Hr2HMuIvYELgEeAE6t/Hw9MBf4RkrpA5V2y/B8k6TCVf4eb5lSev6Adf7f1gDmnq3BXLZ1mBu3BnPt1mHernEvpeTSYQvwUeC35AtEveSxEL8D7DSg3bJ8ivzT9tuRK8mPAI8CFw7cdjwu63PcgDPJd9mtBNYCNwH/CUwp+n016dj1AJ8Fbqt6//M83xpz3Dr9fKs6DleSx/HtGuJ5z7k6HbdOP+eAlwIXAXdV3v9fgSOB7uGOW2V9R59vLi4uLs1eKn+PbxhkXRqwrqP/b6vj8Tb3bIFlfT4Hfxfq/lmYG7fAMtbPwd+HhnwW5u0u43qx54skSZIkSZIkSVIdOeeLJEmSJEmSJElSHVl8kSRJkiRJkiRJqiOLL5IkSZIkSZIkSXVk8UWSJEmSJEmSJKmOLL5IkiRJkiRJkiTVkcUXSZIkSZIkSZKkOrL4IkmSJEmSJEmSVEcWXyRJkiRJkiRJkurI4oskNUFEpIj43Ahtdqi0e09zohq7iLgtIn5adBySJEmS2pu5kiRpvLL4IqntRcQuEfGDiPh7RKyOiBURsTQiPlJ0bO0sIp4XEZ+LiB2KjkWSJEnS+ouI91SKGP3L6oj4W0ScGhFbj2F/74yIeQ0ItaWZK0mSamHxRVJbi4jdgd8DLwTOBD4MfAMoAx8rMLTx4HnAZ4EdCo5DkiRJUn0dDfw7OX+6AjgYuDIiJo9yP+8E5tU3tLZgriRJGlF30QFI0no6CngE+NeU0sPVT0TEVoVEJEmSJEmtbVFK6feVf38jIh4APg68CfhucWFJkjR+2PNFUrt7JvCngYUXgJTSvQPXRcT+EfGHiHgiIh6MiPMiYvsBbZZFxA0R8eKIuKLS9taIOGhAuwkRcUxlf49ExOMR8auIeGU932BEPLcyrNqDlWEBfh8RbxzQpn/4gFdExCkRcV8lnh9FxNMGtC1VusjfGRGrIuKXlW7zt0XE2f37A86vbPLLqmEJZg7Y1x4R8btKXLdExLvr+d4lSZIkNcUllZ/P6F8xUu4UEcuA1wFPr8oXbqs8Z65kriRJHc/ii6R293fgxRHx/JEaRsRRwDnATeS7uhYCrwYui4hNBzTfDLgI+APwSeAO4PSIeF9Vm42B9wPLgMOBzwFPAy6OiF3H+H4GxvwvwG+AnYH/BA4FHgcuiIi3DLLJV8lDsH0eOB14A3DqgDbHk7vI/x74BPl4XAxsWNXmMuArlX8fRx6S4N+BG6va7AT8AFhaiesh4OxKzJIkSZLaxzMrPx+AmnOnY4Frgft5Ml+YV3nOXMlcSZI6nsOOSWp3JwGLgGsj4nfAr4BfAL9MKfX2N4qIp5O/ZH86pXRc1fofAtcAh5C/OPfbFjg0pXRKpd0ZwG+B4yPiO5V9PwTskFJaW7W/M4G/AB8BDqjD+/sysJw8rNqaymucBlwOnAD8aED7B4DZKaVUaVsCPhoRm6SUHok8iebHgQtSSv9ISCLis+SECICU0i0R8Svgo8DSlNKyQWJ7DrBnSulXlX18H7gdeC9w2Pq+cUmSJEkNs0lEbAlMAl5BngPmCeCnteZOKaWlEbEC2CyldO6A/ZsrmStJUsez54uktpZSWgrsBvyEfBfTJ8l3Jq0Y0N38reS/ed+PiC37F+Bu8t1MA7u/rwPOqHqdtZXHWwEvrqzr608mKt3TNycXtX8PzFjf91bZ36uA7wNTqmLeovIenxUR0wZs9l/9yUTFr4Au4OmVx6+uxHjagO2+OoYQ/9yfTACklO4D/grsOIZ9SZIkSWqenwP3kQsC5wGPAW9JKa1g9LnTPzFXMleSJNnzRdI4kFK6CnhrREwgF2DeAswHfhARu6aU/gw8CwhysjCY3gGP70wpPT5g3d8qP3cgd28nIv6D3I38uUBPVdtbx/ZunmIncsxfqCyD2QpYUfV4+YDnH6r83Kzysz+xuLm6UUrpwYh4iNEZ+Fr9r7fZIOslSZIktY4PkfObdcA9wF9TSuXKc6PNnQZlrvRPzJUkqcNYfJE0blTurLoKuCoi/gZ8C9ib3GW+BCRgLtA3yOaPjfb1ImJ/4GzgAuBE4N7Kvo/gyTGT10d/78STyHdvDebmAY8He2+QE5N6a+ZrSZIkSaqf36WUfj/Ec+udO5krmStJkiy+SBq/+hOJqZWf/0f+ontrSulvg2/yFNtGxIYDer88u/LztsrPtwO3AG+t7r4eEZ8fc9RPdUvlZ29K6ed12uffKz93ouqOs4jYgn++CyshSZIkqdOMJncaKmcwV5IkdTznfJHU1iLilREx2N1Dr638/Gvl5w/Jdx99dmD7yLYYsH03cGBVmwmVx/cBf6is7r+bKaravYw8B816SyndCywDDoyIqQOfj4injWG3vyAPLXDwgPUfHqRtf+Fp0zG8jiRJkqT2NJrc6XFgk0H2Ya4kSep49nyR1O6+CkyOiB8BfwEmALsD+5B7qHwLIKX0fxHxaeB4YIeIuAB4FHgGeY6Y/yJ3We93J3B4ROxAHgt5H2BX4IMppf4xjn9KnozyRxHxs8q+DgL+DGxUp/f3IeBy4PqIOJN8h9fW5KRlO/IcNzVLKd0TEV8GDo2InwCLK/uYC9zPU+/gupacNB0eEZsAa4BLKomOJEmSpHFolLnTH4B9IuIU8hDQj6WULsRcSZIkiy+S2t5h5HldXgt8kFx8WQ6cBnwxpfRwf8OU0n9W5oKZD3y2svp2YAnwkwH7fQj4D3Jx5wPkSSg/nFI6s6rN2cA25B4xryEnEvtX4plZjzeXUvpzRLykEu97gC3I4yVfAxwzxt0eDqwiv69/A64EZpMTl9VVr313RBxEHpf5LKALeGXl9SVJkiSNU6PInU4j36T23krbvwMXYq4kSRJRNfSmJAmIiGXAliml5xcdS7NExKbkgtOnU0rHFhyOJEmSJLUEcyVJ0lg554skdZiI2GCQ1fMqP5c1LxJJkiRJah3mSpKkenLYMUnqPPtExHuAi4DHgD2A/YAlKaVfFxmYJEmSJBXIXEmSVDcWXySp81wHrAM+CWxMns/my8CniwxKkiRJkgpmriRJqhvnfJEkSZIkSZIkSaoj53yRJEmSJEmSJEmqI4svkiRJkiRJkiRJdWTxRZIkSZIkSZIkqY4svkiSJEmSJEmSJNWRxRdJkiRJkiRJkqQ6svgiSZIkSZIkSZJURxZfJEmSJEmSJEmS6sjiiyRJkiRJkiRJUh1ZfJEkSZIkSZIkSaqj/w9z2la6RaRmngAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJYAAAIfCAYAAAAi+FZZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACMKklEQVR4nOzdeXxcddX48c9JmlKgbIJspVBQUJBd3BAFwULro+KjIqiACwrK4wKCIqvKIrJZ3BAQxAUVBFFRaaEKiIggWNmrwA8KbQGRrS2ltE1yfn/cGwhhkqaZycwk+bxfr/vKzN3mzJLkzLnfJTITSZIkSZIkaXm1NDoASZIkSZIkDU0WliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEkaYSLiRxHxx+H2WNWKiF0iIiNig0bHUisR8dWIuK9G51ru9zIiPhoR7bV4fEmS1JwsLEmSNIxExIoRcUJE3BsRiyLiyYi4OSI+1+jY1BCnA2+s0bk+D+y1nMdcDIyr0eNLkqQmNKrRAUiSpJr6PvA2iiLAbcCqwHbAho0MSo2Rmc8Az/S2PSJagMjMjn6ca94AHn8RsGh5j5MkSUOHLZYkSRpe3gOclpm/ycwHMvO2zPxRZh7fc8eIODAiHoyI+RFxeUSs023bxhFxWUQ8HBHPRsQdEbFfj+OvjYgfRsQ3IuLx8jznRsSYvgKMiH0i4taIeC4iZkXENyNi5XLbRyPi6YhYqccxx5WtsKLC+SZGREfPLmwRsXcZ+6rl/ZMiYma5bnZEnB0Rq/URZ8WucRHRHhEf7XZ/nbKb2H8jYkFE/DUi3tpte1v5HOdExOKIeCQiLurrNeqP8nHOrbB+ZkScWN5+UVe4rvvla/MvYAmwWUSsGRGXRMTCiPhP2ertx927vvXsCtd1fxmfo5d0hYuI10bEtHL/ZyLi7xHxhnLbMj93kiSpuVhYkiRpeHkEmBQRL1vGfq+jaNn0P8AewFYU3aa6jAWuBiaX284FLoiIt/U4z/uBNYG3AB+mKGyd3NuDlgWZ7wNnAFsA+wNvB84ud7kYSLp1uSpb1XwcOC8zs8Jp/0TxvD/cY/1HgN9k5vzy/iLgwPJxPwrsAny7t1j7IyJWBK4BVqF4rbYDrgCmR8Tm5W6fBT4A7AtsCrwbuLGaxy39GNgrIlboFs/rgVcDP+njuPWBgyleny2AOcAFwDbAO4FdgQ0o3stlWdbn6EUi4jXAdcBT5eNsB0zhhZy0v587SZLUJOwKJ0nS8PIJ4OfAfyPiLooCxhXAb3sUZRYDH83MxQARcTZwSNfGzLwDuKPb/t+JiLcDH6IopHR5EvhU2ZVqZkQcA3w7Io7JzIUV4vsqcGRm/rS8f39EfAb4c0R8LjOfioifAp+kKJwATKQohlxQ6QlnZmdEXAjsB5xSPp91gN0pCh5d+53Y7bBZEXEkcFFEfCwzOyudux/2puhuuHdmdrXMOSkidgMOonhNNwLuAf5cvgcPATcP8PG6+yXwLYpC1SXluv2BGzPznj6OGwPsl5kPAUTEpsC7gLdn5jXlugMpCn7L0ufnqIIvA/cBH+72mt/btXE5PneSJKlJ2GJJkqRhJDP/CryCogXRj4F1gEuBy3t0I/tXVzGg9HC5LwARsVLZxe2uKAYAfwZ4B0WRpLu/9xif56/ACmUMLxIRLy+P/2bZBeqZ8rxTy11eWf48B3hztxY/nwQuz8zH+njqPwZeExHbl/c/DDwGdO+69d6IuK7sZvUM8DNgNLBuH+ddlteVxz/d4zm9haJ1EhQFsa2A+8rud++LiNG9nTAijup+roh4S6X9MvNp4HKKghoR0QbsQ9+tlQD+01VUKm1R/ny+FVVmLgVuWcZ5YBmfowpeC/ypt0LecnzuJElSk7DFkiRJw0zZcuaGcjkjIvYFfgq8FfhzuduSnocB3QtPpwF7Al8A/g0spOi+1uuYRP3QdUHr81RufTKnjP+uiLge+GREfIOiRc47+zpxZs6MiFsoWuzMKH9e2FX0KsfwuYSim94XKbpivZGiINVbkaer+PH86xIRrbz4wlwLMBP43wrHP1vGdmtEbEzR8uptFK2MToiIN3brptfd2RStkbrM7SU+KIpIvy6Ldm+m6Eq2rPGbKrUkg+IzsLyW9TlaXoPxuZMkSYPIwpIkScPfzPLn2stxzFuBn2XmL+H5cY42A/7TY7/XRURrt1ZLO1J0j/p/PU+Ymf+JiNnAqzLzB8t4/HOAMym62s0Fpvcj5h8Dx0bETyjGC9q327adgMcz85iuFRHx/mWcr6uF1PrA7PL2try4cNJVzJrfV4uqcna2X1MUgb5OMSbUzsDvKuz7JMXz7o8ry333oSha/T4zn+rnsV3uLn++iWK8KiJiFEXror661A3EP4DdIqKll1ZL/f3cSZKkJmFXOEmShpGI+HNEfCoidoiIjcqxfs4Cnmb5xqj5N7BnRLw+IragGER5/Qr7rQl8LyI2j4j/AU4AzullfCWAo4HPRcTREbFlRLwqIt4TEef02O/S8uex9D5od0+/ANYAzgdmZOadPZ7PyyPigIjYJCL2pxjAui/3AQ8CX42IV0fEThQDTXeP5WfAA8AfImL3iJgQEW+IiCMj4j0AEfHFiPhwRLymbLn0caCDGhRtytZpPwc+TTGe1I/7PqLiOe6lKHB9LyJ2Lt/vcyjGjhpIK6a+nErRRfBn5Wf0FRGxV0S8qdze38+dJElqEhaWJEkaXqZSjC90BcWX9AsoBkd+c2Y+vhznOZSiqHINRSuWubxQ7OnuUmABcD1FF6zfUwzQXFE5aPcHKLq2/Z1iEOuv0qO7V2Y+R9F9rwX4YX8CzswngD9QtCr6SY9tvwdOAr5OMTj0PhRd4vo6XzvF4NxrA/8EvkdRGOvsts9zFC2PbqF4re8BLgNeT/H6Acyn6Nr1t/Kx/xd4X2b+uz/Pqx9+DGwOzOOF8aqW18eAO8vjr+WFVmLP1SC+55WDc+8CvJyiW+atwGEUhTbo/+dOkiQ1iejfBUBJkqQXi4hrgfsy8xODdP5fAm2ZWWn8Ig2iciypf1EMmn5Yo+ORJEnNyzGWJElSU4mINSha/PwvsFuDwxkRIuKtvNAyaxWKlkMTgB81LipJkjQUWFiSJEnN5p8UYzedmpnXNTqYEaIVOAZ4JbCUolvc28qua5IkSb2yK5wkSZIkSZIGxMG7JUmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IBaWJEmSJEmSNCAWliRJkiRJkjQgFpYkSZIkSZI0IKMaHcBgiYj/Ag82Og5J0rCwUWa+fLAf5C1vWHHek/M6a/6/+e5/L/lLZk6q9Xk1dEXEeOAnwDpAAudm5rcq7LcLcCbQBjyemTsv47zmX5KkWhr0HMz8q3rDtrAEPJiZOzQ6CEnS0BcRt9TjcZ6c1znqjms3mlnr87aud+9atT6nhrx24LDMnBERqwD/iIjpmXl31w4RsTpwFjApMx+KiLX7cV7zL0lSzdQjBzP/qt5wLixJkjTEJJ10NjoIjQCZ+QjwSHl7QUTMBMYBd3fb7UPAZZn5ULnfY3UPVJKkQWf+VS0LS5IkNYlM6EgTG9VXREwAtgNu6rFpM6AtIq4FVgG+lZk/qXD8gcCB5d0Rc3VWkjQ8mH9Vz8KSJEnSCBURY4FfAYdk5vwem0cBrwV2A1YE/hYRN2bmPd13ysxzgXPL89Wl26gkSWoeFpYkSWoinWSjQ9AIERFtFEWln2XmZRV2mQM8kZkLgYURcR2wDXBPhX0lSRqyzL+q09LoACRJklRfERHA+cDMzPxmL7v9FtgpIkZFxErAG4CaD24qSZKGNlssSZLURBw8UnXyZmA/4I6IuLVcdxSwIUBmnp2ZMyNiGnA70Amcl5l3NiJYSZIGk/lXdSwsSZLUJJKkI22KrcGXmdcD0Y/9TgNOG/yIJElqDPOv6tkVTpIkSZIkSQNiiyVJkpqIg0dKkiTVl/lXdWyxJEmSJEmSpAGxxZIkSU0igQ6vmEmSJNWN+Vf1bLEkSZIkSZKkAbHFkiRJTcQ+/pIkSfVl/lUdC0uSJDURp7uVJEmqL/Ov6tgVTpIkSZIkSQNiiyVJkppEAp2NDkKSJGkEMf+qni2WJEmSJEmSNCC2WJIkqYk43a0kSVJ9mX9Vx8KSJElNIoEO8xpJkqS6Mf+qnl3hJEmSJEmSNCC2WJIkqYk4eKQkSVJ9mX9VxxZLkiRJkiRJGhBbLEmS1CQS6CAaHYYkSdKIYf5VPQtLkiQ1kU4Hj5QkSaor86/q2BVOkiRJkiRJA2KLJUmSmoRNsSVJkurL/Kt6tliSJEmSJEnSgNhiSZKkJuIVM0mSpPoy/6qOhSVJkppFQmea2EiSJNWN+VfVLCxJkgZk8qZfagHeCOwEBHAjcP3Ue0/tqPbcnY9u9jLgHcAE4FHgipZ173m42vNKkqRlu2P2BmsD7wTWB2YDV2w1fs5/GxuVpGZlYUmStNwmb/ql9YEfURR+2srVBwCPTN70Sx+Zeu+pswZ67s5HN9sXOBZopRgLMIEjOh/d7IfAKS3r3tM58Mibm4NHSpIa6Y7ZGwTwWeAzFP+DW4BO4Og7Zm9wBnDuVuPnODG7hhXzr+o5eLckablM3vRLo4GfARsD84EnymU+sB7wi8mbfmnlgZy789HNdge+BjwHPA08CTwFLAA+ARxYZfiSJKl3HwQ+Dyzkhf/DT5f3vwS8t1GBSWpeFpYkScvr7cA4YF6FbfOBtSiazy+Xzkc3C+BwYAmwtOdm4Bng4M5HN1thec89dAQdtNR8kSRpWe6YvcEo4FDgWaBnt/YOYBFw2B2zN/Afi4YZ869qjaxnK0mqhXdCn+2FO4B3D+C861C0glrYy/alwGhgmwGcW5Ik9e1VwCrA4l62P0dx8WiTukUkaUhwjCVJ0vIaQ9GCqDed5T7La/QyzgtFN/hh22IpcVYSSVLDjKb4V9SXjnI/adgw/6qehSVJ0vL6O/DWPraPBm4awHkfpbgaOpqiO1xPLRT/t/49gHMPGQ4eKUlqkP9H0SK5lZd2hYPif3ACs+oYk1QX5l/VsSucJGl5XUrRLa1Sy6HRFMnoL5b3pC3r3rMEuADobeDvVYHpLeve89jynluSJPVtq/Fz5gO/pvh/W8mqwMVbjZ/zbP2ikjQUWFiSJC2Xqfee+jjFVMRtwBoUxaTR5e0xwBFT7z119gBPfxZwA7A6MJbi6uhK5bnvB46uJvZml0BHttR8kSSpn04C7qT4v7syxf/hlcv7M4DTGheaNDjMv6o3sp6tJKkmpt576h8pBvH+BcXsMc8ClwF7Tr331N8M9Lxlq6WPA18AZgLtwGzgOOA9Leve81R1kUuSpN5sNX7OM8DewBEUF3TagfuALwIfsrWSpEocY0mSNCBT7z31PuCYcqmZlnXvWQpcXi4jTNDpNR9JUgNtNX7OcxTd3i9tdCxSfZh/VcvCkiRJTSJx8EhJkqR6Mv+qnmU5SZIkSZIkDUhdWixFxBjgOooZhEYBl2bmV3rsMwV4W3l3JWDtzFy93NYB3FFueygz312PuCVJqreRNtijJElSo5l/VadeXeEWA7tm5jMR0QZcHxFTM/PGrh0y89Cu2xHxWWC7bscvysxt6xSrJEmSJEmS+qEuZbksPFPebSuX7OOQD1LMNCRJ0ojSSdR8WZaImBQR/46I+yLiyxW2rxARF5fbb4qICeX6iRHxj4i4o/y5a7djri3PeWu5rF3L10mSJKlWGpF/wfDJweo2eHdEtAL/AF4JfC8zb+plv42AjYGru60eExG3UEx3+Y3M/E0vxx4IHFjeXatGoUuSVBdJ0FHn4Q/L/8/fAyYCc4CbI+LyzLy7224HAE9l5isjYh/gFIrpqB8H3pWZD0fElsCVwLhux304M2+pyxORJEkagEbkXzC8crC6vXqZ2VF2Z9sAeH355CvZh2IMpo5u6zbKzB2ADwFnRsQrenmMczNzh3Lfx2sYviRJw9Xrgfsy8/7MXAJcBOzZY589gR+Xty8FdouIyMx/ZubD5fq7gBUjYoW6RC1JkjS0DZscrO5lucx8GrgGmNTLLvvQoxtcZs4tf94PXMuLx1+SJGnY6MiWmi/AWhFxS7flwG4POQ6Y3e3+HF58xetF+2RmOzAPWLPHPu8DZmTm4m7rLiibYB8bEc7jK0mSmlID8i8YRjlYvWaFezmwNDOfjogVKZp6nVJhv1cDawB/67ZuDeDZzFwcEWsBbwZOrUfckiQNE4+XrXkHRUS8huL/+u7dVn84M+dGxCrAr4D9gJ8MVgySJElNZlDzL2ieHKxeLZbWA66JiNuBm4Hpmfn7iDg+It7dbb99gIsys/vA3psDt0TEbRQtnb7Ro8+hJEnDQgKdtNR8WYa5wPhu9zco11XcJyJGAasBT5T3NwB+Deyfmf/v+efyQmvjBcDPKZp7S5IkNZUG5V8wjHKwurRYyszbqdB9LTOP63H/qxX2uQHYatCCkyRpZLsZ2DQiNqZIXvahGNOwu8uBj1C0KH4/cHVmZkSsDvwB+HJm/rVr5zLxWT0zH4+INuCdwB8H/ZlIkiQNHcMmB6vbrHCSJGlZgo6s71BEmdkeEZ+hmE2kFfhhZt4VEccDt2Tm5cD5wE8j4j7gSYrEB+AzFLO9HhcRXReLdgcWAleWCU0rRULzg7o9KUmSpH6rf/4FwysHs7AkSVKTSGjIdLeZeQVwRY91x3W7/RywV4XjTgRO7OW0r61ljJIkSYOhUfkXDJ8crDGvniRJkiRJkoY8WyxJktQsEjrTaz6SJEl1Y/5VNV89SZIkSZIkDYgtliRJahJJNKyPvyRJ0khk/lU9C0uSJDWRRsxKIkmSNJKZf1XHspwkSZIkSZIGxBZLkiQ1kU6v+UiSJNWV+Vd1fPUkSZIkSZI0ILZYkiSpSSTQ4XS3kiRJdWP+VT0LS5IkNY2gEwePlCRJqh/zr2pZlpMkSZIkSdKA2GJJkqQmYVNs1UtEjAd+AqxD8dE7NzO/1cu+rwP+BuyTmZfWL0pJkgaf+Vf1LCxJkiSNPO3AYZk5IyJWAf4REdMz8+7uO0VEK3AKcFUjgpQkSc3PwpIkSU2kw17qqoPMfAR4pLy9ICJmAuOAu3vs+lngV8Dr6huhJEn1Y/5VHV89SZKkESwiJgDbATf1WD8O+F/g+8s4/sCIuCUibgHWGqw4JUlSc7LFkiRJTSKBznRWEtVPRIylaJF0SGbO77H5TOCIzOyM6P1zmZnnAueW57tlkEKVJGlQmH9Vz8KSJElNI2yKrbqJiDaKotLPMvOyCrvsAFxUFpXWAt4REe2Z+Zv6RSlJ0mAz/6qWhSVJkqQRJopq0fnAzMz8ZqV9MnPjbvv/CPi9RSVJktSThSVJkppE0RTbK2aqizcD+wF3RMSt5bqjgA0BMvPsBsUlSVJdmX9Vz8KSJEnSCJOZ1wP9HlAiMz86eNFIkqShzMKSJElNpKP/3/UlSZJUA+Zf1bGwJElSs8iwKbYkSVI9mX9VzVdPkiRJkiRJA2KLJUmSmkRiU2xJkqR6Mv+qni2WJEmSJEmSNCC2WJIkqYnYx1+SJKm+zL+qY2FJkqQmkQQdJjaSJEl1Y/5VPV89SZIkSZIkDYgtliRJaiKdDh4pSZJUV+Zf1bHFkiRJkiRJkgbEFkuSJDWJBPv4S5Ik1ZH5V/V89SRJkiRJkjQgtliSJKmJdKZ9/CVJkurJ/Ks6FpYkSWoaQYeNiSVJkurI/KtavnqSJEmSJEkaEFssSZLUJBKbYkuSJNWT+Vf1bLEkSZIkSZKkAbHFkiRJTaTTaz6SJEl1Zf5VHQtLkiQ1iUzosCm2JElS3Zh/Vc+ynCRJkiRJkgbEFkuSJDURB4+UJEmqL/Ov6thiSZIkSZIkSQNiiyVJkppG0Jle85HUHCatdeAGwF7A5sCTwGXALdMeP7ezr+Menbv+2sD7gG2BBcDlwPXrjnu4z+OmP7D5y4A9gTcCi4ArgGsmbjxzaXXPZGS64cFNAtgOeC+wNnAf8MsdN7p/ViPjUvOacM7pLRS/f3sCawB3ApfOOujwhxsa2KAz/6qWhSVJkppEAh3YFFtS401a68CPAUcBAXRQfG94H3DjpLUOPGja4+c+W+m4R+euvydwKtDa7bh3AzMfnbv+R9cd9/BTlY6b/sDmOwPfB0YDnRQ9K94BzJn+wOYfnrjxzEdq+fyGuxse3GQ08F3gbRSvZTuwK/DJGx7c5DvAd3bc6P5sYIhqMhPOOX0scD6wPS98ZnYDPjPhnNO/Nuugw3/WyPgGk/lX9SzLSZIkSXrepLUOfBtwNLAQeJqi1dFTwDxgR+CkSsc9Onf9bYHTgMU9jpsPvAb4TqXjpj+w+cbA2RQFpafL/bt+bghcMP2Bzf3esnyOpigKzKN4DxZQvKbPAJ8H/qdhkalZnQbswIs/M09RtB786oRzTt+xgbGpyfkHWpKkJtKZUfNFkpbT5yhaG7VX2DYPeOektQ5cp8K2gyhaOC2psO1p4A2Pzl3/VRW27U/RUum5Xo7bBHjDMqMWADc8uMlqwN4UhbmeOigKf4eUXeUkJpxz+njg7RS/bz0tpWjU85l6xlRv5l/VqUthKSLGRMTfI+K2iLgrIr5WYZ+PRsR/I+LWcvlEt20fiYh7y+Uj9YhZkiRJGmkmrXXgisA2FK0VKumk+JL5ugrbdunjOCi6x1UqEO1B0TqqN23AW/vYrhfbrvzZ0cv2Z4EJwJp1iUZDwesofq976x65AHjThHNOb61fSBpK6jXG0mJg18x8JiLagOsjYmpm3thjv4sz80WV0Ih4GfAVimZ5CfwjIi7PzIr9syVJGsocPFJSg/X3MnulP1bL+gMWFMWl5T0u+7GPXtBC7wWCLr6m6q6Fvn/3uz5Pw7YZjvlXdery6mXhmfJuW7n0d7C4PYDpmflkWUyaDkwahDAlSZKkkW4RcC+wci/bo1xurbDtJmCVPs7dDvyzwvq/ACst47ib+tiuF7uDooDX23e9McBjwON1i0jN7tZlbB8L3D7roMMrdY+V6leljojWiLiV4o/Y9Mys9M/hfRFxe0RcGhHjy3XjgNnd9plTrqv0GAdGxC0RcQuwVg3DlyRp0CVB5yAsktRf0x4/NykG2R5N5e8KqwHXTXv83IcqbDub3lslrQbMBG6rsO0Cii52bRW2rUrx/eHPywxeAOy40f3/Bf5A8Zr3FMCKwPd23Oj+zroGpqY166DD7wP+DqxeYXMrRU+n79Uzpnoy/6pe3QpLmdmRmdsCGwCvj4gte+zyO2BCZm5N0SrpxwN4jHMzc4fM3AEr8JKkIagjo+aLJC2nPwDnUbQ+Wp2iELEKRaHiHuDwSgetO+7hG4BTKFo3dB03tjzuEeBT6457+CW9FiZuPPNu4MsULWnWKI9buTzuaeAjEzee2dt4QarsWIpWKKtRFOdWpHhPVgV+CVzUqMDUtD4P3E/xmVmF4jOzBsXv8FkU39GHLfOv6tRrjKXnZebTEXENRXe2O7utf6LbbucBp5a351IMBNhlA+DawY1SkiRJGpnKVksnT1rrwCuAfYHNgScpihF/nPb4uZVmfQNg3XEP/+DRuetfVx63LcX09pcA09Yd9/CzvR03ceOZl01/YPMZwIcpBvheDPwG+N3EjWdWmt1Mfdhxo/ufueHBTfYB3gZ8iKI3x/8Dfgr8Y8eN7u/vsCQaIWYddPjjE845/V0UQ9HsTVGEvAu4cNZBh9/Z58Ea8epSWIqIlwNLy6LSisBEiqsZ3fdZLzMfKe++m6KpLMCVwNcjYo3y/u7AkXUIW5Kkusp08EhJzWPa4+feRuWua31ad9zD/6ZoMbNcJm48cxZw0vIep8p23Oj+pcBV5SIt06yDDl8MXF4uI4b5V/Xq1WJpPeDHEdE1iNwvM/P3EXE8cEtmXg58LiLeTTE435PARwEy88mIOAG4uTzX8Zn5ZJ3iliRJkiRJUi/qUljKzNuB7SqsP67b7SPppSVSZv4Q+OGgBShJUpPoHGF98iVJkhrN/Ks6dR9jSZIk9W6kzSIiSZLUaOZf1bEjoSRJkiRJkgbEFkuSJDWJJGyKLUmSVEfmX9WzxZIkSZIkSZIGxBZLkiQ1Eae7lSRJqi/zr+pYWJIkqYnYFFuSJKm+zL+qY1lOkiRJkiRJA2KLJUmSmkTidLeSJEn1ZP5VPVssSZIkSZIkaUBssSRJUhOxj78kSVJ9mX9VxxZLkiRJkiRJGhBbLEmS1CwyvGImSZJUT+ZfVbOwJElSk0hsii1JklRP5l/VsyucJEmSJEmSBsQWS5IkNRGvmEmSJNWX+Vd1bLEkSZIkSZKkAbGwJElSE+kkar4sS0RMioh/R8R9EfHlCttXiIiLy+03RcSEcv3EiPhHRNxR/ty12zGvLdffFxHfjggvBUqSpKbUiPwLhk8OZmFJkqQm0TV4ZK2XvkREK/A9YDKwBfDBiNiix24HAE9l5iuBKcAp5frHgXdl5lbAR4Cfdjvm+8AngU3LZVJVL44kSdIgaET+BcMrB7OwJEnSyPZ64L7MvD8zlwAXAXv22GdP4Mfl7UuB3SIiMvOfmflwuf4uYMXyytp6wKqZeWNmJvAT4D2D/kwkSZKGjmGTgzl4tyRJTaQBg0eOA2Z3uz8HeENv+2Rme0TMA9akuFrW5X3AjMxcHBHjyvN0P+e4WgcuSZJUCw0avHvY5GAWliRJGv7Wiohbut0/NzPPrdXJI+I1FE2zd6/VOSWpWU3e/MiVgHcA7wLagBuAX06defJjDQ1Mw87kTb9U+bN276l+1oaGQc2/oHlyMAtLkiQ1jf71yR+AxzNzh162zQXGd7u/Qbmu0j5zImIUsBrwBEBEbAD8Gtg/M/9ft/03WMY5JWnImbz5kZsAvwBeBnSWy+uBz0ze/MiDp848+epGxqfhY/KmX+r9s7bplw6eeu+pftZqpiH5FwyjHMwxliRJahKZDRk88mZg04jYOCJGA/sAl/fY53KKgSEB3g9cnZkZEasDfwC+nJl/feF55CPA/Ih4YzkTyf7Ab6t+gVQzETE+Iq6JiLsj4q6I+HyFfT4cEbeXM8vcEBHbNCJWqVlM3vzINorxStYA5gELgIXA08BS4HuTNz9yQqPi0/AxedMvLfuztumXJjQqvuGmQfkXDKMczMKSJEkjWGa2A58BrgRmAr/MzLsi4viIeHe52/nAmhFxH/AFoGs63M8ArwSOi4hby2XtctvBwHnAfcD/A6bW5xmpn9qBwzJzC+CNwP9VmInmAWDncsaZE4CaNt+XhqBdgLWB+RW2LaboqrRfPQPSsLULftaGveGUg9kVTpKkJpINGDwyM68Aruix7rhut58D9qpw3InAib2c8xZgy9pGqlopr2g+Ut5eEBEzKQb3vLvbPjd0O+RGXty0XhqJdgJa+9i+CNiNohArVcPPWp01Iv8qHnd45GAWliRJkkawiJgAbAfc1MduB9DLFc+IOBA4sLy7Vk2DkyRJTc+ucJIkNZFOouaL1JuIGAv8CjgkMyt1uSAi3kZRWDqi0vbMPDczdygHKH280j7SMPEXoKOP7SsBf6pTLBre/KzVmflXdSwsSZIkjUAR0UZRVPpZZl7Wyz5bU4zTsGdmPlHP+KQmdC3wH2DVCttWAJYAP61nQBq2rsXPmoYQC0uSJDWJpGGzkmiEKWeKOR+YmZnf7GWfDYHLgP0y8556xic1o6kzT26nmGHpSYopv1cBxgKrUwwx8n9TZ548q1HxafiYeu+py/6s3XvqrEbFN9yYf1XPMZYkSWoijRo8UiPOmylmFLojIm4t1x0FbAiQmWcDxwFrAmcVdSjay+5u0og1debJD0ze/MhdgUnAO4HRwF+BX02defJjDQ1Ow8rUe099YPKmX6r8Wbv3VD9rNWb+VR0LS5IkSSNMZl4PfQ8AkZmfAD5Rn4ikoWPqzJOfpWjNV7ELqVQrU+891c+ahgQLS5IkNY2R13RakiSpscy/quUYS5IkSZIkSRoQWyxJktRE7OMvSZJUX+Zf1bGwJA0Td8zeYAVge2AMcM9W4+fMbXBIyzRp62PagO2AlYFZ024/8YEGhyQ1VCY2xZYkSaoj86/qWViShrg7Zm8QwAHA5yhmi0hg1B2zN/grcMRW4+f8p5Hx9WbS1se8HziSoqiUwKhJWx9zK/DFabefOKuBoUmSJEmS+skxlqSh73MUBZoEngEWAvOBnYBL75i9weqNC62ySVsf82HgFIpCWFfM84BtgV9N2vqY9RoXndRYmbVfJEmS1Dvzr+pYWJKGsDtmb7AW8H8UhaSl3TYl8DSwPrBP/SPr3aStj1kJOIqioLS4x+Z5wBrAgfWOS5IkSZK0/CwsSUPb7hS/xx29bH8W2K9+4fTLWyi64S7tZft8YJ9JWx9jR2eNSJ1EzRdJkiT1zvyrOo6xJA1ta9D37/HScp9msjp9F7XbgdWANmBJPQKSmomzkkiSJNWX+Vd1bLEkDW1z6b3lDxQzxM2pUyz99QhFV73ejAaeou/nJUmSJElqArZYkoa26RStekZTuXXPCsD5dY1o2W6gGP9pZWBRhe1jgSnTbj9xhA15JxUVV6e7lSRJqh/zr+rZYkkawrYaP2chxYxwKwGrdNs0GngZcAvw6waE1qtpt5/YDhxGUdheDZ7vgDyKIuZ7gAsaE50kSZIkaXlYWJKGuK3Gz7kc+Cgwk2L8oq4C03eBj2w1fk7TjVM07fYT/wJ8kKLwtRpFzG0UBaUPTLv9xGcaGJ7UUE53K0mSVF/mX9WxK5w0DGw1fs71wPV3zN5gTYpxlf7bjAWl7qbdfuIM4IOTtj5mDYpucf+ddvuJixscliRJkiRpOVhYkoaRrcbPeaLRMSyvabef+BTFYN2SCGclkSRJqivzr2pZWJIkqVmk091KkiTVlflX1RxjSZIkSZIkSQNSlxZLETEGuI5i6vNRwKWZ+ZUe+3wB+ATQDvwX+HhmPlhu6wDuKHd9KDPfXY+4JUmqN6e7lSRJqi/zr+rUqyvcYmDXzHwmItqA6yNiambe2G2ffwI7ZOazEfFp4FRg73Lboszctk6xSpIkSZIkqR/qUljKzAS6pg9vK5fssc813e7eCOxbj9gkSWoWycibnlaSJKmRzL+qV7fBuyOiFfgH8Erge5l5Ux+7HwBM7XZ/TETcQtFN7huZ+ZteHuNA4MDy7lpVBy1JUp05eKQkSVJ9mX9Vp26FpczsALaNiNWBX0fElpl5Z8/9ImJfYAdg526rN8rMuRGxCXB1RNyRmf+vwmOcC5xbnueWwXgekiRJkiRJKtStsNQlM5+OiGuAScCLCksR8XbgaGDnzFzc7Zi55c/7I+JaYDvgJYUlSZKGOq+YSdLyufmhCeOAfYBdgE7gCuDS120464nBeLyv3rnn6sD/Au8CRgM3AD/76pa/fbCv4yZtfcxY4J3A+4CVKHpzXDjt9hPvGYw4J084tA3YDfgQ8HLgXuBC4Oaps6bY8UfqxvyrOi31eJCIeHnZUomIWBGYCPyrxz7bAecA787Mx7qtXyMiVihvrwW8Gbi7HnFLkiRJal43PzRhV+CPwKeBTYBNgcOBa25+aMK2tX68r96556uBqykuhm8ObAx8HLjqq3fu+a7ejpu09TEbAlcBJwBbAhOADwN/mLT1MR+pdZyTJxy6CvBL4DvAG4ENgXcAPwNOnjzh0Lp8D5Q0MtTrD8p6wDURcTtwMzA9M38fEcdHxLvLfU4DxgKXRMStEXF5uX5z4JaIuA24hmKMJQtLkqRhKQdhkaThqGyp9D2KcVifBhYBzwLzKCYLuuDmhyasXKvH++qde44GfgysXD7ewvIxn6aYBfv0r96556Y9j5u09TEtwHkUrYbmdTvuqfL2MZO2PuZ1tYqzdCKwdfl487vFOR/YC/hgjR9PGtLMv6pTr1nhbqfovtZz/XHdbr+9l2NvALYavOgkSWoeNsWWpH77IEUBaWGFbQuB1Sha6VxSo8d7O7AGRXGmpyUU3dv2A47rse11FC2U5lU4rr38+UmKC/BVmzzh0LWByb08XlIUmf5v8oRDfzF11pTOWjymNNSZf1Wn7mMsSWq86Q9s/mrg/cAGwEPApRM3nlmxf/+kbY59OfBeYFtgAfA74K/TbjuhronIDQ9usjFFzK8AHgEuA+7ccaP7m/aCwOQND1mfIuYtgCeA3wC3TH3ozKaNWZKkIWQXipZCfdmZ2hWW3gS09rF9ES+egKjLdhRjMfXmGWDHKuLqaUuKsaZ6y9Weo2g9tRbwWC/7SFK/WViSRpDpD2zeApxEUexoATooEqSPTX9g8wuBEyZuPPP5JGTSNse+GziV4m9FZ7nve4C7J21z7Een3XbC04Md8w0PbhLAF4BP9Yh5X+CKGx7c5PAdN7p/6WDHsbwmb3jIRyjGX2jhhdfuA8ANkzc85NNTHzrz2UbGpyY1EttOS9LAdQLLambQUcPH61jG4wWViznLuhjX23ED1Z9z1foxpaHL/KtqDtomjSyfoihuzKfo19/1cwGwP/D84JGTtjl2G+B0iqbdT/c4Zivgu3WK+b3AwWWM3WOeTzGzyhfqFEe/Td7wkJ2BYynGeXiaF2KeB+xEMe6BJEmqzlT6bgmUFANm18q1vNB1rZIxwLQK628E+roINhaYPvCwXuKf5c/eWletBMyiaE0tSVWzsCSNENMf2Hw0cBDFmAM9a/KdFEWQ/5v+wOZdLRkPovgbsaTC6Z4C3jBpm2M3G6RwAbjhwU1agM9TNNnueVUtKYpNH7nhwU1qNjBnjXye4qpmpeRzHvCuyRsesnZ9Q9LQEGTWfpGkYeoSivylUh6wCvBfaluw+Qswm2Lspp5WpMiZflZh2x3ArcDqFbatQJHjnF+TCIGps6bMAy4CVuWlLaxay8c8c+qsKbbRkADzr+pZWJJGjldTJBKVCkVQjFGwCsVUvQBvo/LglF1aKaavHUzrAetSjFlQSTvF37FtBjmOfpu84SFjeGE8qkq6xjx4fb1i0tCRQGbtF0kajl634azHKVpbL6Yo9qza7ecTwH6v23BWb3nPcvvqlr/toGjhPad8jNW7PWYncMBXt/ztnJ7HTbv9xKS4YPfvHsetTjHcwGen3X5irWe9/jpFUW1VigHHux5vLDAF+EONH08assy/qucYS9LI0cKyew8nLzSb7mtwSiiugC1rn2r1p/idLHt8hXrqT8zRz/0kSVIfXrfhrH/e/NCEnYD/Ad5KcdHpKuCPr9tw1rIG9l5uX93yt3O/eueeu1NcgJtMcdHur8Dvvrrlb3u9IDft9hOfnLT1Me8G3gy8i6LAMwO4bNrtJ9a8S9rUWVOWTJ5w6KeBrYH3AWsD9wKXTJ015aFaP56kkc3CkjRy3ENRhBlF5S5abRT9/+8v7/8deAOVp6qlPMettQ3xJR4uH38MlWd9aSmXWl/lq8Yi4D5gPJWnP45yua2eQWnoGGlNpyWpWq/bcNYzwMXlMui+uuVvl1IUr5Zr/KZpt5/YAVxXLoOu7Op2G+Yc0jKZf1XHK+bSCDFx45nPAhdSdHerZCxwwcSNZ3YVcL5P762SVqNozn1rjcN8kR03ur8DOIdikMlKf+1XA36940b3PzWYcSyPqQ+dmRQDm4+m8t/Y1YDrpz505oN1DUxqchGxRUSsU94eGxFfi4ivRMRKjY5NkiRpuKpFDmZhSRpZTqe4SrZauazY7fYfge907TjtthP+CpxKUXBao9x3bLnvo8CB0247oR69hy8ALueFMQxW7Hb7H8DxdYhhef2OIu5VKMYzWLG8vRpFM/TDGhaZml9G7Zeh4Re8MLDt6RRdWt5IUVyWJEkaPCM3/4Ia5GAWlqQRZOLGM5cABwCfAP4MPARcDXwc+PTEjWe+aCrcabedcC7wboqZRWZRNKU+Ethj2m0nPFyPmMtWS1+gGCzzKuBBirEMDgY+tONG9z9bjziWR9lq6STgA8BvKWK+BTgUeM/Uh858soHhSc1qQmb+OyICeC+wF/B+YI/GhiVJkjSsVZ2DOcaSNMJM3HhmJ0VR6c/92X/abSfMBI4e1KCWYceN7k/gb+UyJJTFpX+Wi9RvI20WkW6ei4hVgC2AhzLz8YgYRTHGmiRJ0qAZwfkX1CAHs7AkSVKzSJY9d+Pw9XOKFpSrUIxTBrA98EDDIpIkScPfyM6/oAY5mIUlSZLUcJl5aETsDizNzGvK1Z0UXUglSZI0CGqRg1lYkiSpiYzk6W4z86qIGB8Rb8zMGzPzlkbHJEmShr+RnH9B9TmYg3dLkqSGi4gNI+KvwL8oZqkkIt4fEec1NjJJkqThqxY5mIUlSZKaSQ7CMjScA/yBon9/1wyV04GJDYtIkiSNDCM3/4Ia5GB2hZMkqYmM4KbYrwf+JzM7IyIBMnNeRKzW4LgkSdIwN4LzL6hBDtbvwlI5mNO2wNju6zPzuP6eQ5IkqRf/AV4J3NO1IiK2AB5qWESSJEnDX9U5WL8KSxHxXeADwDXAs902Da0GXpIkNbuR+5/1dOD3EXEyMCoiPggcBXyjsWFJkqRhb+TmX1CDHKy/LZY+BGyTmbOXP0ZJkqS+ZeYPI+IJ4CBgNvAR4NjM/E1DA5MkSRrGapGD9bew9Djw9PIGKEmSltfI7eOfmb8FftvoOIaCiNgYOInKwxRs2IiYJEkaukZu/gXV52C9FpYiYpNud88AflY2jfpPjwDuH+iDS5KkHkZoU+yI+Hhv2zLzh/WMZYj4OfD/gMN48TAFkiRpeY3Q/Atqk4P11WLpPoqXt3vp7p09Hwdo7c8DSVK9nXL0rm1A5xEnXd3R6FgkLdN+Pe6vC7wC+CtgYemlXgO8OTM7Gx2IJEka0qrOwXotLGVmy8DjkqTGOOXoXVvHrrnka+tttuCg1+753OqZwc9+8dp7H7t/7LGHHv3nXzU6PqlPyYi9YpaZb+u5rryCtnkDwhkKrgO2A/7R6EAkSRrSRnD+BbXJwfo7K9y3M/NzFdafmZmH9PfBJGkwnXL0rrHOK5/5y7gt5r+uoz06nlvYugTg5RsvfOXLJyz8xXdO2+noz37x+tMaHaekfvsRxTiPX2xwHE0hIo7vdncWMC0ifg082n2/zDyunnFJkqRh50csRw7W31ZJH+1lfc8mU5LUMCuu2v759Tefv8PiRS1L2pe0dBQ9eYMli1qXdrS3dGz6pidOOPXYXV/e6Dil3gXkICxDQES09FjGAgfi5CHdje+2rAz8HmjrsX58w6KTJGlIGrn5F9QmB+uzxVK3QZxGVRjQaROKCpYkNYW1N3nms0VT1pf+Ie9oj87RYzrbxq65+Ajg8LoHJ2lZ2nlpQ/S5wCcbEEtTysyPNToGSZI07FSdgy2rK1xXi6TRvLh1UlLMDveR/j6QJA22sWsuXqdoqVRZtCRjxrZvV8+YpOWVI7eP/8Y97i/MTC9g9SIinszMl1VY/1hmrt2ImCRJGqpGcP4FNcjB+iwsdQ3iFBEnZuYxyxmcJNVV++LWpWPGLh3V2dlb09OIjqUtT9Y1KGl5jdDEJjMfbHQMQ0xbzxUR0Yaz9UqStPxGaP4FtcnBei0sRUT38ZeO63G/exBOcyupKTx2/8p/mPDapz5AOxVaLSWZ5ILHV/hB/SOTVElE/IV+pHKZ+dY6hDMkdHvNxkTEdT02bwDcUP+oVA+Ttj1uNDCRosfAesAc4CfA9Gm3Ht/e23G7t+3TAuxaHjcBeAy4ELjiqqUXLe718bY5NoA3U4y1uhkwD/g5cPm0205Y2Fess+eu99ryuG2AZ4BLgcvGj3vk6WU+UakOOh/d7DUUn9HXA0uA3wC/bFn3nv82MKyX2HHvM9YB9gbeRXFB4W/AT264+LCZDQ1MQ16tc7C+WixV6mdXiVfGJDWFef8Zc8ySZ1vfM3rFjtFLnmtZWgzeDZCssFJn23/uG/uvLxx77VUNDVJaliE02GMNnNfoAIag8yj+uL0OOL/b+q5hCq5uRFAaXJO2PW4lihl6tgc6gMXA2hSfgxsnbXvcAdNuPf4lRaLd2/ZpA75HUVjqBJ4DXg6cBnxs97Z99r1q6UXzX/J42xzbApwE7EXx2VpUHncCcOCkbY7de9ptJzzW87jZc9cL4DDgIIrP6bPAWsBRwEGz56639/hxj8wa+CshVa/z0c32B46hmMhqUfnzUOCTnY9u9qGWde+5u5Hxddlx7zO2AX4KrETxO99J8Tv5vh33PuMrN1x82C8aGd+wM7LyL6hxDtZXYal7P7v/Ad4PnAw8CGwEHAH8qpbBSFI1vnj8NbPO+Noub5+w/VO/XeXli9cAinQ44OF/rfLP/9y7ytsbG6Gk7jLzx42OYajpes0i4sbM/NdAzxMR4ylau6xD8Zfy3Mz8Vo99AvgW8A6KAsFHM3PGQB9TVTkCeC3wVLd1S8qfbwK+QJGn9/RJYLdejnsNcDxwSIXj3gt8gGJGoK4LzV3HjQemAB+ucNwuwKeA+RRfgruOexZ4GfCD2XPX2338uEdGcKcTNVLno5ttAxwLLKRoSNFlETAWuKDz0c3e0rLuPUsqHV8vO+59xhjgAopWSk9327S4XPe1Hfc+47YbLj6sKYpgGnpqnYP1Wljq3s8uIr4A7JCZT5er7omIW4BbgO/XMiBJqsZhX7n2xlOO3nXd0St1vHfMyu1v7eyM5xbNb7vw8K9ec0ejY5P6I0bw162IWIeiW8JavNDkkMz8YcOCaiI9Z+iNiB0r7dfP16sdOCwzZ0TEKsA/ImJ6Znb/kjIZ2LRc3kCR871hQMFrwCZte9xYiiLPS1oWlRYA+07a9rgzp916/KKulWVrpU9SfIGuZB7wjt3b9jnxqqUXPT9Ia9kF7mCKL7CV/iI9Dbx+0jbHbjLtthPu77HtUxQFpUpDZcyj6Iq3A3BzLzFJg+3jFP9fKnUffQZYA3gbcGU9g6pgd4pCV6Xf+6XAyhTdW4+oZ1DD2UjOv6D6HGxZs8J1WY2iCd7T3datVK6XpKZyxElXJ0WLSltVamhJRuzgkRHxHopxX+6laElxF7AlcD1gYanQfYbervFvHgVmU7QiWZd+vl6Z+QjwSHl7QUTMBMYB3QtLewI/ycwEboyI1SNivfJY1c8ry5+9zXraDoyh6G3Q/f1bjyJfX9DLcZ3lOV9N8bnpsiJFAaivyS6S4vezZ2FpO4ov570ZBWyFhSU1zhvovdgKxWd0BxpfWHodfQ85s4iitaJqYQTnX1CbHKy/haUfA3+MiDN5IXn5XLlekiSpWicCH8vMSyLiqczcLiI+RpHgiBdm6wWIiO8Av8nMM7ut+zzwiuU9b0RMoCgI3NRj0ziKvK/LnHLdiwpLEXEgcGB5d63lfXwtUzvdrh73ooWXtsBoL9f3pVLLjY5u23r7qpUVjut6zL5i7e04qV7683vR0G5wpSX0/bsUFC2XpFqoOgdb1i9Vly8B36YYkf6bwD7Ad8v1kiSpVjJqvwwNG2bmJT3W/RjYvxHBDAH7At/pse67vLhV0zJFxFiK1p2HZGZvXa36lJnnZuYOmbkD8PgyD9Dy+jfFGEWje9k+hmIMpft6rH+EojC4Ui/HjaIoIt3WfeW0205YTNGiaJVejmuh+FL79wrbpvdxHBStpK7vY7s02P5A778TUPxOXFOnWPpyNX0XYccAv69TLCPDyM2/oAY5WL8KS5nZmZlnZ+Zumbl5Zu5a3u+tSa4kSdLyeKzs3w8wKyLeRNH6xtlnK3sUeHePde+imEq+XyKijaKo9LPMvKzCLnMpWql32aBcpzqaduvxSymKiCvz0ty9laLr2rem3Xr8i8Y1umrpRUlxQXg0L/09aqEoAP3gqqUXLeKlvlXu09ZjfVAMhXHJtNtOqFREPIfii/kKFbatAVw7ftwjPbvPSfV0IcXsiJWKS2tQdAH6R10jquxvFMXi1StsW5miK5yzwqlWqs7Bei0sRcR+3W5/vLdlwKFLkqSXykFYhoYfADuVt6dQXDG+DTirYRE1t88BP46IGyLi4oj4G8XVxc/25+ByxrfzgZmZ+c1edrsc2D8KbwTmOb5Sw/yIYmroVSi+/K5e/hwLfI9evmBetfSi3wOnlvut3u24Vcpjvl3puGm3nXAD8GWKVhGrlce9DFgVmAZ8rdJx48c9cjfFwN8tFY77G5VnoJPqpmXde2YDH6PoRrYqL/6M3gUc0LLuPQ3/z3nDxYd1Ah8F7qGI7WUUsa5GUVTa/4aLD3u0UfENSyM3/4Ia5GBRjMdYYUPEFZn5jvJ2b80BMzN37Xe4dRQRt5RNsiVJqkq9/qeMXn/dhesfe/jMWp/3wYO/yFD7nxgRGwIrZ2bNX4/hIiLWopi5bX2Kbk9/yMwn+nnsTsBfgDt4YQavo4ANATLz7LL49F1gEkVXrI9l5i3LOK/51yCatO1xGwLvoRjr6iHgt9NuPX7Oso7bvW2fdcvjNqZo7fbbq5ZetMyWQ5O2OfZlFIO4vxp4Avj9tNtOWOb05rPnrrcqRQu6rShmtZoK3Dp+3CND66uWhq3ORzdbieJv2+soCjXTgZta1r2n0oyGDbPj3me0UAzS/XaKloA3AVfdcPFhlVoaDkv1+L9i/vViA8nBei0sDXUmNpKkWrGwNPgi4hDgF5n5n0bHooEz/5Ik1ZKFpcFXixysX2MsRcTnImLrgT6IJEnqpwY0xY6ISRHx74i4LyK+XGH7CmV3q/si4qZyFjEiYs2IuCYinomI7/Y45trynLeWy9rLCGMX4IGI+GNEfCwiVl125CNLREzrdvsvEXFdpaWRMUqSNCQ1qCvccMnBRvVzvx2AwyJiFYpm038ulxk5XJs8SZI0AkREK8UYLRMpppO/OSIuz8zu3V0OAJ7KzFdGxD7AKRQzxT4HHAtsWS49fXhZXae6ZOZ7ImJ14P0UM5t9tyyk9Daw9Ej0k263z2tYFJIkqWrDKQfrV2EpM/cHKKtjO5fLceXm1ftzDkmStAxJI6anfT1wX2beDxARF1GMqdI9qdkT+Gp5+1KKhCMycyFwfUS8shaBZObTFAWT88r+/ecBl+DMcABk5s+73f5xI2ORJGnYaEz+BcMoB+tXVziAiHgVsDuwB7AbxQj1P1jOeCVJUv2tFRG3dFsO7LZtHDC72/055Toq7ZOZ7cA8YM1+PO4FZRPsY8uBoJcpInaKiO8BN1NMb/+V/hw30kTEPyNiSkS8JyJe1uh4JEnSS/SVf8EwysH61WIpIv4DLKCokP0EOCgzF/T3QSRJUv/E4HQwf7wBg0d+ODPnlt3of0XRtPonve0cEacBH6C4bngxsEdm3lqPQIeowyhakB8C/Dwi7qMcqiAzL21kYJIkDTXDKP+CBuRg/R1j6XLgLRTTlK4BvCwi/pyZc5fnwaShYvtPTVmdomniKODOGWcf+lBv++6268mjy31XB+YCt/7p6iMr/mnaY7uvBEUf2A0pirU3XfnPry2uafCD4LzTdp20wortb+zsiPnPPjP6x58+enq/prNelkfnrj8GeCOwMjALuHvdcQ839bhtkycc+pL3e+qsKRVjnj13vZe83+PHPdL077carP6/AXOB8d3ub1Cuq7TPnIgYBaxGMfV4r7pyhMxcEBE/p/i96TWpofg7sG9m/mX5wh+ZMvNq4GooBvAEvgB8BjgYuw5KkrR8GvMNZNjkYP0dY+mTABGxDvBWiitkZ0XE45lZkz59UjPY/lNT2oAjgQ93W92y/aem3AAcNuPsQx/vvv9uu578vxTjja1Urgpg7m67nnzYn64+ckb3fffY7itbAGcCE3jhT9fiPbb7yinAz6/859earqDyg1N32+kVW/73l69928K1sjOSILIzvv7L83f87eMPj/3Qwcde1TGQ8z46d/0APgIcDrSVq1uAex+du/4h6457+J4aPYWamjzh0Irv9+QJhx42ddaUF73fs+euV/H9nj13vVOAn48f90jTvd8asW4GNo2IjSmSl32AD/XY53KK39m/UQzseHVfk3eUic/qmfl4RLQB7wT+2FcQmXnwwJ/CyBMRk3khJxtP8d4cSdFqSZIkNb9hk4MtzxhL2wEfBPaleLILgb/389gxEfH3iLgtIu6KiK9V2KfiNHrltiPL9f+OiD36G7M0AKdS/OI+S9HCZAEwH3gzcPH2n5rSVVBgt11Pfg9wGkWBtvu+6wE/223Xk7fo2neP7b6yMUWzwgnlPl37AxzPiwtZTeGck9++xdZvmnvlGmsvXGvJc6OWLl0yqn3p4lFLOzqic7Pt/vPetTdYUM0sTQdQzGLQwQuvxTzglcAvH527/vg+jm2IyRMOfQ99vN+TJxz6/Ps9e+56Q+791shV9tf/DHAlMBP4ZWbeFRHHR8S7y93OB9Ysu1t9AXh+OtyImAV8E/hoRMyJiC2AFYArI+J24FaKZMlxGWvrDxQJ5nnAxpn5gcw8KzPvanBckiSpH4ZTDtbfMZaeovjSdx1FxeywzLxvOR5nMbBrZj5TVs2uj4ipmXljt30qTqNXvjj7AK8B1gf+GBGbZeaAWkpIvdn+U1M2o6joPs2LG0NmuW4j4N3ARbvtevIo4BhgEcXnu7tnKLpJHUbxuYbiD8ZKwFM99l1Snv+IPbb7yqVX/vNrz9Xm2VRvrfWfOX2FlZa2LV7UtrT7+uxsycWLWPqKLf87+eyT377Jp4784/3Lc95H566/MsUfxQVAe4/N8ym6234KOLqK8Gtq8oRDa/5+z5673qXjxz3SNO+3RrbMvAK4ose647rdfg7Yq5djJ/Ry2tfWKj5V9BaKFkt7ASdGxJ0UrZWuszuhJElDw3DJwfrbYmm7zJyQmftn5vnLWVQiC8+Ud9vKpWfzrT2BrqlzLwV2K0cv3xO4KDMXZ+YDwH0UfQSlWnsXxbgUvTUtXMoLLU22B1bhpUWGLvOAnXfb9eRV9tjuK23luef1cd7RwI4DCXqwjH/lU7ssXdJauYCbLUnAKqst/r8BnPqtFK9zz6JSl/nA+8rucs2iX+/35AmHrjJ77npD8v1W84is/aLhJzP/mpknZ+ZkYFuK5vRfAq5tZFySJA1F5l/V6VdhKTNnVftAEdEaEbcCjwHTM/OmHrv0No1ef6bg63qMA7um8gPWqjZmjThrAZ19bF9K0ZoGikHT+vpzkeW5VgbGUBRS+jp3AKv2O9I6aBvTPqqjPXqNuaW1M1pHdQ5kiutV6Xtg2Q6KJpxtfexTb8P+/VYTyaj9MgRExOcjwv/d/RQR/xsR3ypzq1kURfvvApMbGZckSUPSCM2/oDY5WL/HWKpWZnZk5rYUI52/PiK2HITHODczdyin9Ht8mQdIL3bvMravSNFiDopiZ1/FkVEULXKepBiPbD5FK5W+zOlHjHXzzNNjnmlr6+z1OXa2t+SS50b9ewCnnk3fRZcVgMfXHffwkgGce7AM+/dbagK7ArMi4vcRsXdErNDogJrc5ym6aX8BWDMz35KZR2fmVY0NS5IkDTFV52B1Kyx1ycyngWuAST02PT/VXo9p9PozBZ9UC7+laC1TqaVMV8n5gvLnv8ult1YnqwIX/enqI5dc+c+vdVJ08xzby75jgUeAGb1sb4jZ967x89a2ztZKDXVa2zpaly5tbX9m/ujvDODUN1L8bq/Uy/aVKAajbSb9er+nzpqyZPy4R4bk+60mkoOwDAGZuSfFWHZTgUOARyPivIh4a0MDa1KZuUtmfiUzr87MRY2OR5KkIW2E5l9QmxysLoWliHh5RKxe3l4RmAj8q8duXdPowYun0bsc2KecNW5jYFP6ORudtDxmnH3oExRTya9MMZ5OlxUpBmf+HfAXgD9dfWQCXwSeo+ge1/W71Aa8jKJbQveiy3kUn/mX8ULhqqU8bydwSFmAahpPP77iEf+du8rcFVZqH93S2tECkJmMHtPe1tqScffN63354GOmL1ze86477uFOiivtQfH8u4p2oylenzuBn9bkSdTI1FlTav5+lwUoSd1k5hOZ+b3MfBOwM/A64JqImBURR0dEbwVbSZIkDVC1OVivhaWI2LU/Sz/jXK8M6naKwSWnZ+bv+zONXjlt7i+Bu4FpwP85I5wGy4yzD70Y+DhFcWMNikLAk8CxwOEzzj70+WLAn64+cibwHuD3FK1QVqPoLvUD4L1/uvrI52cEu/KfX3sG+ADwvXLVahTFq6uA/73yn1/752A+r4E4+JjpC++7/eVb3fPPdS7p7GjtHD2mvW3MSu1tj81Z5cEZ143f/6Ofv/bbAz33uuMe/jvwPuBqitdiNYrWYt8GPrjuuIefrcmTqKGps6b0+X5PnTXl+fd7/LhH+ny/x497pOnebzWJwbhaNoSumAFExG4RcQHFINT/AfYH9gO2o7iSJkmSVDvmX0B1OVgUjYIqnvSBfjx2ZuYmyxVtnUTELeVYS9KAbP+pKWMpxs6ZN+PsQ/v807DbrievQNHSaf6frj6yt9nOANhju6+0UhQanr3yn18bEtPNn3XC7q0trZ3jM2PBp4+e/kQtz/3o3PVXpGgVNm/dcQ8PiaLx5AmHPv9+T501pc/3e/bc9Z5/v8ePe2RIvN96qXr9Txm97roLx3/pSzNrfd77DzuMZv+fGBGnA/tQTN7xE+DCzJzbbXsb8FRm2mqpiZl/SZJqqR7/V0Zy/gW1ycFG9bYhMzeuYazSkDPj7EOf6e++f7r6yMX0PhX9i1z5z691ULSCGjIOPvaqDoruXjW37riHFwFDanyQqbOm9Pv9Hj/ukSH3fksNMgb438y8udLGzFwaEU2fnEmSJA0xVedgvRaWJElSAwzBptO1kJmfAYiI8cC4zLyxwj49x2ccUSLip/TjE5KZ+9chHEmSho8Rmn9BbXKwfhWWImJV4KsUgzitxQuD7ZKZG/Y/ZEmSpJcqk5mLgG0p0ruxEfF+YFJmfqKRsTWR+xodgCRJGl5qkYP1t8XSWcAGwPHAhcC+FDMk/Wo5Y5YkSX0ZuVfMzgX+ALwF6BrLbTpwRsMiajKZ+bVGxyBJ0rA0cvMvqEEO1t/C0u7A5pn5RER0ZOZvI+IWiunXpyxHwJIkSZW8HvifzOyMiATIzHkRsVqD42paETEaeBUvbU1+dcOCkiRJQ03VOVh/C0stFCOEAzxTPsAjwCuXJ1pJktS3GLlXzP5DkVfc07UiIrYAHmpYRE0sInYCLgFWAFYF5gOrALOBppyxV5KkZjWC8y+oQQ7W38LSbRTjK/0J+AtF17hnuj+wJEmqgYxl7zM8nQ78PiJOBkZFxAeBo4BvNDaspjUFODUzp0TEU5n5sog4Dni20YGpuRw8Y9824B3Ax4HxwOPAT4HLztr+woW9HbfzHl9vzdY4omNMy6c7R7W8LDpzSetzHb9vWZrH/PnKox6sT/QaSnaZdEqvn7Vrpx3R62dNagojN/+CGuRgLf3c75O8MNX454HngNUBZx2RJElVy8wfUozfuBdFq5uPAMdm5s8aGljz2gz4Vo913wAObUAsalIHz9h3BeAC4JsU3SZbKMZN/Srwm4Nn7PuySsftvMfX29pXbP3nklVHfbWzrWWdhOhsiRWXjm3be8mqo+7YedLXt6vXc9DQsMukU/r8rO0y6ZSKnzVJjVeLHKxfLZYy8/5utx8DDli+UCVJ0jIlI3rwyMz8LfDbRscxRMyj6AL3NPBI2WT9CWBsI4NS0zkY2BF4stu6doqWbRsDJ5b7vEjnqJjSMaZ1czpzCTw/gFcHndmRrTGmfaXW31EUDaQuA/qsSU1hhOdfUH0O1t+ucETEx4EPAusDD1NMR/fDzBzhb4EkSRqIMrdYpvJKml7sMoouJz8HfghcAywFLm1kUGoeB8/YdzTwUWBBL7vMByYePGPftc/a/sLHulbuvMfXo2PVUfvRmR0VO4Z0srRjdMvab5309d2vm3bUVTUPXEPOLpNO6ddnbZdJp6x97bQjHutlH0l1VOscrF+FpYg4FdgTOBN4ENgIOJyimeOX+nMOSZLUt2DEDR65Xz/2SYrCibrJzEO63T49Im6kGLx7WsOCUrNZFxhD71/2OylalLwK6P5lf63O1liJTpZUOiiAhMzW2BmwsCQY+GdNagojMP+CGudg/W2x9FFg+8yc07UiIn4PzMDCkiRJtTOCEpvMfFujYxiqIuLbmfm5rvuZeX25/kzgkAaFpeayhGWPpxrA4h7rnn2+fNSbJCJ5rqroNJwM9LMmNY8RlH9B7XOw/g7evYCXVqAXUDRrlCRJqlpErB4RH46IL5Y/V290TE3so72s788VSI0M/wHuB1buZXsbRUHgtu4r/3zlUQtbF3fMjqCt0kEJEZDRkT+tabQaygb0WZPUPKrNwfpbWDoTuCwiJkbE5hGxO3AJMCUiNulali90SZLUU2Ttl6EgInalmIH2c8DrgM8CsyJit0bG1Wwi4uPluAijum53W06kmN5b4qztL0yKKaTbyqW7FoqB3r931vYXvqQVSetzHccSkPHi7wpZHNnWuqjj+j9fedSsQQlcQ861047o12ft2mlH2GJJTWuk5l9Qmxysv4WlbwFvA64E7qLov78b8G3gvnK5t78PKkmS1MN3gQMz8w2Z+YHMfCPwSeB7DY6r2exXLqO73d4P2Bd4BcUUwRIAZ21/4XTgOGAFYHXgZcAaFONx/aBcXuK6qUf9bNT89hMDWrKFtmyJ0dnC6GihbdSijn+0Lu58R52egoaIa6cdMaDPmqSmUHUO1q8xljKzvwUoSZJUjSF0havG1gd+1WPdr/HLyIt0jYkQESdm5jGNjkfN76ztL/z5wTP2nQpMBjYE/gtccdb2Fz7S13F/ueLI43fe4+vndI6KL2ZrvCY684loz7Oum3bUDfWIW0PPtdOO+Pkuk055yWft2mlH9PlZk5rCyM2/oAY5WH8H7wYgIsYD4zLzxuU5TpIk9dPITWx+CvwfRWvoLp8GftKYcJpbZh4TEWsC7wDWzczTImJ9oKX7ZCsSwFnbX/gU8PPlPe7PVx71H4qZoKV+uXbaEQP6rEkNN3LzL6hBDtavwlJEbAj8AtiW4iUfGxHvByZl5if6+2CSJEm92A74VER8CZgLjAPWBm6KiOu6dsrMtzYovqYSETtTXF28BXgzcBqwKUUR4F0NDE2SJA0tVedg/W2xdA7wB+AtwBPluunAGQMIWpIkVTLEBnusMcfgWD5nAntn5p8i4qly3U3A6xsXkiRJQ9DIzr+gBjlYfwtLrwf+JzM7I4qXPDPnRcRq1Ty4JEkSQGb+uNExDDETMvNP5e2udHgJyznMgSRJGtlqkYP1N/n4D/BK4J6uFRGxBfBQtQFIkiQBRMQ6FBez1gKia31m/rBhQTWvuyNij8y8stu6twN3NCogSZI0NFWbg/W3sHQ68PuIOBkYFREfBI4CvrF84UqSJL1URLwHuBC4F3gNcBewJXA9YGHppQ6jyM3+AKwYEedQjK20Z2PDkiRJQ0ktcrB+FZYy84cR8QRwEDAb+AhwbGb+ZrmjliRJvRu5ffxPBD6WmZdExFOZuV1EfIwiwVEPmXljRGwN7EuR9M0GXu+McJIkDcDIzb+gBjlYv/vhZ+Zvgd8OIEhJktRPI3jwyA0z85Ie634MPIrTnT8vIlYCjqG4kjgDODkzFzc2KkmShrYRnH9BDXKwlr42RsRrI2LLbvdfHhE/i4jbIuLsiBi73CFLkiS91GNl/36AWRHxJuAVQGsDY2pG36Po8vYv4P0UwxVIkiQNVNU5WJ+FJYqpbNftdv88YDPgXIorZaf2O1RJkrRsOQjL0PADYKfy9hTgGuA24KyGRdScJgG7Z+aXgMnAOxscjyRJQ9/Izb+gBjnYsrrCbQ78BSAiVqdIYLbMzHsi4nLgBuDg5YtZkiTpxTLzlG63fxIR1wIrZ+bMxkXVlFbOzEcAMnN2RKzW6IAkSdLQVYscbFmFpVHAkvL2G4FHM/Oe8gFnl8UmSZJUK0PrCtegiIgWYE7X7czsbHBIzWRURLyNF6YC7nmfzLy6IZFJkjRUmX8BA8/BllVYugvYC/glsA/wx24POA6YN6BoJUlSRSN18MiI2J5i/KCtgTFdqylSPcdZesFjvHjq3yd63E9gk7pGJEnSEDdS8y+oTQ62rMLSEcDvIuJsoIMX+t0B7A38dXkCliRJ6sWPgd8BHweebXAsTSszJzQ6BkmSNKxUnYP1WVjKzOsjYkOKAbvvycwF3Tb/AbhoIA8qSZIqGHqDPdbSRsDRmTlyXwFJklR/Izv/ghrkYMuaFY7MXJCZ/+hRVCIz/52ZDw/0gSVJkrr5NbB7o4OQJEkaYarOwZbVFU6SJNXRSOrjHxE/5YVrhCsAv46I64FHu++XmfvXOzZJkjRyjKT8C2qfg1lYkiSpmYysxOa+HvfvbkgUkiRpZBtZ+RfUOAezsKSmM2nb40ZTjEb/zLRbjx/RU0xv/+kpAawMdM74/qHLHEhtYsteK1BUnJ+Z3nlJn6/dJ75ywAoRrJXJY+d97fyltYlY9bTLpFOef7+vnXZEw35Xdtz7jJUoZo549oaLDxt5/5Y1YJn5tUbHIEmSNNLUOgezsKSmMWnb414FfJ4X+nfOm7TtcRcA50+79fhFjYus/sqC0ruBz1BMGx3bf3rKbcC3Z3z/0Gt67j+xZa9tKV67t5ar/juxZa9zgAund17yoqLRJ48/4DVj1l/8/bXe8twbooXIDvKz5+771+ceXeHgHxx3/r8G83mpNnaZdMq29Hi/d5l0yjnAhddOO6JuRcId9z5jIvA54DXlqnt23PuM7wBXWGCqwgh95SLibcCszHwgItYFTgE6gSMz89G+j5YkSarCCM2/oDY52DIH75bqYdK2x70W+A2wBzAfeBpoA74AXDhp2+PGNCy4OiuLSscA3wTGAU8BTwJbAD/Y/tNTPtp9/4kte+0K/BLYieJ1ewoYCxwLnD2xZa/nC8gHnvDx166xw4Kbxr5i0Zs626OjY3HL0s6O6Bi76aK3rP7aBTd/8vgDXoOa2i6TTunz/d5l0il1uWCw495nHAScDWxK8fl8kmJGiW8Dh9UjBg07ZwEd5e1vUvwP6ATObVhEkiRJw1/VOZiFJTXcpG2Pa6H4MgrFl+SuLj1LKL6sbgvsV//IGmY7YH9gHtC9+9sC4BngqO0/PWV9gIkte40BzqR4rebxQq39OYrXbhfgnV0nWGnj537eumLn6I7nWpeQ5RB1GdnxXOuSUSt1jFlpo+d+MYjPS1XaZdIpy/V+D5Yd9z5jAkXxaD7FZ7LLwjKug3bc+4wtBjuO4SgoBo+s9TJEjMvMhyJiFMVFhgOBTwM7NjYsSZI0nI3w/AtqkINZWFIzeAOwFsWX0kqeBT5Rv3Aabn+Kv2+Vxsxpp/i9fX95/+0U41E918u5lgCfBPjk8QdsMWb9JRt3PBcVu0p1PNeyZMXxi1/9ya8dMKGK2DW4+v1+D7K9KT6HHRW2dVJ8fvetQxwaXuZHxDrAzsDdmdlVtGxrYEySJEnDXdU5mGMsqRlsCLT2sX0xsPakbY8bPe3W45fUKaZGehW9Fw6g+OK+eXl7I2B0H/suAjYGaGnr3JZOOovv/JUEdGa2tOXWwKzlC1l10u/3e5BtTlHk7M0S4NV1iGN4GlpXuGrpO8DNFJ/xQ8p1bwYc+03Dyo4fOG2TjlGc2jGmZQ+C0dHBM62LOy9saeeoGy75Ym8X2fjm6e9cb7U1F54ybuMn9hyz8pIxixausOjhB172q3mPr/ylL3zx90/UOs7tPzVlFMV4j5+k+N+yALgI+OmMsw99rNaP1wiTNzl8a+Agii9TAdwAnDP1/tNvaWhgDTZ5w0NWAfahuNj5cuAx4ALg4qkPnbnMyWSkIWnk5l9QgxzMFktqBguo3PKhSyvFF9WRMnPZU/RdHW4FuhLI+fT92rWV+5Cd8RgttPT+VzOhGMx7WCSLw1S/3+9B9gR9f0ZHUXyOtbxykJYhIDNPoWiV9+bMvKhcPZeR1WJVw9yOHzhtuyUrt9zWvlLLuzMYlUl7ZysrL1255eD2FePuHfc6bbVKx005438mvGq7OXduuvXDHxw9pn2F9iWt7SuMWTJm060f3n/Tbef+65unv3NcLePc/lNT2ijG1jgNmEDRenwF4GDgiu0/NWVCLR+vESZvcviewKUU3T6WUuSauwC/mLzJ4SO21e3kDQ9ZA7gM+DKwBsV7/zKK8T9/NXnDQ1ZtYHjS4BjB+RfUJgezsKRm8BeKVji9taBbFbhs2q3HD6Ffz6pcRN+/mx3Ar8vbf6R47XrbfyXgFwCdi+NP7fNbn2kZlRVbh7W05ailT416unNp3DSwsFUH/X6/B9llVO6q2d3FdYhDw0xm3pOZ/6/H/TsaGdNwFhE/jIjHIuLOXravFhG/i4jbIuKuiPhYvWMcbtrHxGXZwgrRydJIOstxPTroZEnH6Fi/o43zKx233kZPXTZ29UWrLF7UtqSjvaUjM+hob+1YvGjUktVe9uzq64x/6pIah/phiiLLUxRDFXRSFF6eAlYDvr39p6b01gS66U3e5PB1gVMpWog/TZFbdVCME7gQOG7yJodv0rAAG+s4ihmJn6J4fTrLn08Bm1EUnCQNM9XmYBaW1HDTbj1+AcWAxKvw0lYQq1L8g/9+ncNqpCuB+yiuEnVP2lrKdX8FZgBM77zkEeCnFElez4LRahQtS34GcN7x5+cz96741WilJUZ1vmjfGNXZSgux8L4Vjznv+PNHSgFvyLl22hH9fr8H2d8omsuuwYv/j0S5biZwTR3iGJZG+OCRqq8fAZP62P5/FGMtbENRZDgjIvrqjqs+vOkDp+3YOTrGkS9tgR0AnbR3jGl5x457nbZC921TzvifCetu9OSWS58bVaHldrBkcevS9Td58rXfPP2d69UizrJgdBAvnkCku3kUXaI372X7UPABXmgR31PXeJYfqmtETaBsrfQOive4kvnAe8uuctKwYv5VHQtLahbnAt+gaLW0SrmsBjwI7D3t1uMfamBsdTXj+4cupkhm/kxRWFul2/Jr4OAZ3z+0+5+qEymmfV+x3GdVitfuLuD90zsvebxrx7O/+KNvPzVj7HHZHh0toztHtYzuGNUyurMtl7a0P33L2CPOPuICp/Vufn2+39dOO+LxPo6tiRsuPqyTomns73nhs9kVx5+A/W64+LCR0nVVGrIy8zqKGSV73QVYJSICGFvu29f4aupLC28myT5HOgxGEbyy+/q20R07ZkZmL0dmZ0uS0NbWsUONIl0ZWJu+x3tMYNMaPV4jbEffXcuXANvXKZZmsjFFC6XeWiV3ULz34+sWkaQhwcG71RTKbm4/mLTtcT8D3kSRwD4A3DGCusA9b8b3D30K+Pj2n56yIbANxT/yW2Z8/6WDZU7vvKQTOG1iy17nAG+kmDXsnumdl1QcbO3sw3/0jU985YApo1bq/Fi05fhcGg+2P9tywXlfO99CwBBw7bQjOoHTdpl0yove72unHVHXAY5vuPiwZ4HP77j3GScDr6W44H7rDRcfNqeecQxLI+4vnprYd4HLgYcpCsh7Z+ZLvnBGxIEUUxNDMcurKluQ9D6FRgIEATzzovWdMS/6vPSdtLRkdGbNxtjrasUT9P4XKem78NTsnqHvC+yt9D5b8XC2iGU3PGhlaL/3UmXmX1WxsKSmMu3W45+laPEgYMb3D30I6Fdrremdl8wHrurPvud97fzFFK1eNERdO+2Ifr/fg+mGiw97FPhDo+MYTkZa02k1tT2AW4FdgVcA0yPiL5n5ogJGZp5L0fKYiBjRs2n1JTr4RcCZCS1RoUVIBG0tS/PRG375xQe7r1+yeNS0xYvalrSN7mjraG95SSubUW2drc8uWOHZ9iWjrqtFnDPOPnTJ9p+aci3FTGlPV9illeIr2N9q8XgNcjnF57s3AfyqTrE0k39TtExchcrFo5WARygu/krDivlXdewKJ0mSpEo+BlyWhfsovky+usExDVk3XPLFeaMWdV5CMCp7NFzKoCWB1ufyqz2PO+xLv+t48F9rf29UW0drtHa+6LhozZaWUZ2tD97z8m8e9qXf1fJr0bcoWkuP6bG+haLr8/kzzj60HrOQDpZrgPuB1StsW42ieDKtngE1g6kPndlJMaj5iry0AUIbxcyAp0x96Ey/gkt6EQtLkiQ1kxE83a2azkPAbgARsQ7wKoov4xqglqXsP2pR5x8iGJUt0ZYtjM6gLSDaFnae8LeLv1hxVrgDD/zTl++9bf0LWkdl6+gx7W1jVl4yevSYpW2trZ0t9/5z3FmfOuiPx9cyzhlnH3o7RffGDopC0loURZhVgB8CZ9Ty8ept6v2ntwP7AbdRFJLWLJdVgXuAD069//QR2d1r6kNn/ho4nqKouBrFe78aMBo4eupDZ17RwPCkwWP+VZXIHPxnHBHjgZ8A61C8xOdm5rd67PNFiqlNoaiQbw68PDOfjIhZwAKKf27tmbnMwQkj4pb+7CdJ0rLU63/KmLXWXbjpR46YWevz3vnNL+D/RPUUEb+gmO1tLeA/wFcoZ2fNzLMjYn2KmePWo2hh843MvHAZ5zT/6ocdP3DaKztb+WxGrBmdeX9LB1NuuOSLTy3ruG+e/s5xY1dbdEjb6I71ly4eNeeZ+WPO/MLhv39ksOLc/lNTVqDoCrkhRS7+xxlnv3S8x6Fq8iaHB7Al8AaKz/g/gH9Ovf/0EfaV8KUmb3jIqsBE4OXAY8D0qQ+duaCxUWkkqsf/FfOv6tWrsLQesF5mzoiIVSj+aL8nM+/uZf93AYdm5q7l/VnADpnZ79mOTGwkSbVS18LS/oOQ2EwZOYmNGsv8S5JUS3UrLJl/VaUug3dn5iMUfZXJzAURMRMYB1QsLAEfBH5Rj9gkSWomvc0YJUmSpMFh/lWduo+xFBETgO2Am3rZvhIwiRfPxJDAVRHxj3JK297OfWBE3FLOSOJ0t5IkSZIkSYOoLi2WukTEWIqC0SE9p6rt5l3AXzPzyW7rdsrMuRGxNsVUt//KzJdMqep0t5KkIW0EDvYoSZLUUOZfVatbi6WIaKMoKv0sMy/rY9d96NENLjPnlj8fA34NvH6w4pQkSZIkSVL/1KWwFBEBnA/MzMxv9rHfasDOwG+7rVu5HPCbiFgZ2B24c3AjliSpMSJrv0iSJKl35l/VqVdXuDcD+wF3RMSt5bqjKKYuJTPPLtf9L3BVZi7sduw6wK+L2hSjgJ9n5rR6BC1JkiRJkqTe1WtWuOvpx0Drmfkj4Ec91t0PbDMogUmS1GxG2BUuSZKkhjP/qkpdB++WGumtk7/+rmyJnYHFLe350z9fedS/Gh1TLd0xe4OXUbQOHAP8G7hjq/Fz/BMpDTX+1kqSJNWX+VdVLCxp2Nt50td3WLrSqMtztba1yOJvRgRf3GnPb9zc+lzn7n++8qiFyzxJE7tj9gajgC9TdDcNXmgdeN8dszf4v63Gz7m/YcFJkiRJkoa1us0KJzXCznt8faMlq4y6pnN0rJWdLCVZGsnS7GRp+4qtr2sf03p9o2Osga8AHwMWAvOBeeXyCuCSO2ZvsHYDY5O0nBw8UpIkqb7Mv6pjYUnDWmdbnJCtLStEJ0u7D/IVAJ0s7Vix5TVvnfT1XRsUXtXumL3B+sAHKQpJnT02zwdWp2jJJEmSJElSzVlY0rDWMab1nXRmz4IL8Hx/sci2+HQ9Y6qxt1P8Hld8jhStmD5Qv3AkVS0HYZEkSVLvzL+q4hhLGtayJUbT5691kBEvq1tAtbcKfReI28t9JA0BI7HptCRJUiOZf1XPFksa1lqWdj4WQWuvO2RmdOTtdQyp1h4AlvSxfUXgvjrFIkmSJEkaYSwsaVhrXdz5XaJyk6UMWgKypT1PrXtgtfMnYBEwppfto4Hz6heOpKo1oCl2REyKiH9HxH0R8eUK21eIiIvL7TdFxIRy/ZoRcU1EPBMR3+1xzGsj4o7ymG9HRPQ8ryRJUlNoUFe44ZKDWVjSsBYd+a3WRR230sLohNbnf8eDtoDWUQvav/bnK496pMFhDthW4+csBj5L0a11dV74nV4RWAO4CvhDQ4KTNCRERCvwPWAysAXwwYjYosduBwBPZeYrgSnAKeX654BjgcMrnPr7wCeBTctlUu2jlyRJGpqGUw5mYUnD2p+vPKqj9bnON7UtaP9mS2cupCVG08LolsWdD7TNX7r/X6448uuNjrFaW42fcx3wPmA6sCqwJvA4cAzwma3Gz+loYHiSllMDprt9PXBfZt6fmUuAi4A9e+yzJ/Dj8valwG4REZm5MDOvp0huXngOEesBq2bmjZmZwE+A91T1wkiSJA2SBuRfMIxyMAfv1rD35yuP6gCOAI7YeY+vrwws+fOVRy1tcFg1tdX4OXcBn75j9gatQOtW4+f0Ne6SpGY2OINHrhURt3S7f25mnlveHgfM7rZtDvCGHsc/v09mtkfEPF4oYlcyrjxP93OOG2DskiRJg6v++RcMoxzMwpJGlD9fedTCRscwmMrWSbZQktTT45m5Q6ODkCRJGkFGTP5lVzhJkppJ/QePnAuM73Z/g3JdxX0iYhSwGvDEMs65wTLOKUmS1BwaM3j3sMnBLCxJkjSy3QxsGhEbR8RoYB/g8h77XA58pLz9fuDqst9+RZn5CDA/It5YzkSyP/Db2ocuSZI0ZA2bHMyucJIkNZF+DvZYM2V//c8AVwKtwA8z866IOB64JTMvB84HfhoR9wFPUiQ+RbwRsygmDhgdEe8Bds/Mu4GDgR9RzFI5tVykQTdxp5MCiOnXH93Z6FgkSUNDvfMvGF45mIUlSZJGuMy8Ariix7rjut1+Dtirl2Mn9LL+FmDL2kUp9W3iTidtQ5FM7wa0TtzppDsoplyeNv36oxvwlUGSpL4NlxzMrnCSJDWLwejf79dpjQATdzppEnAJRVFpPsX4E5sB3wGOLlsxSZL0UuZfVbPFkiRJTSR67zYvqYKJO520GjAFWFwuXZ6huIj6EeCPwI31j06SNBSYf1XHFkuSJEkayt5JcbF0cYVtXeMsfbRu0UiSNMLYYkmSpGbiBTNpeb0G6Kur26JyH0mSKjP/qootliRJkjSUzaPvnHYUsKBOsUiSNOJYWJIkqYlE1n6RhrkrgPY+to8GLq5TLJKkIcj8qzoWliRJaibOSiItrzuB64E1eGmXuNWA/wK/rndQkqQhxPyrKo6xJNXR5A0P2Qr4MLAF8CTFFdQ/TX3ozCUNDUwagAnnnL4m8D5gj3LVNcAvZx10+GONi0rSSDP9+qNz4k4nfQb4BjC5XN0CdAD/Ag6efv3R8xsVnyRJw52FJakOJm94SABHAAdQXE1dDLwaeDPw78kbHrLv1IfOfLpxEUrLZ8I5p28P/AhYkaILSgLbAAdPOOf0T8w66PAbGhjekDbSmk5LtTD9+qOfBT43caeTNgB2pMhx7wTumH790f5WSZL6ZP5VHQtLUn28A/gEMJ8Xpj5eVP58NXAa8MkGxCUttwnnnL4qcAHF/5B53TY9S1Fo+sGEc07fZdZBh/+3EfFJGrmmX3/0HOCXjY5DkqSRxDGWpPr4LLCUF4pK3c0Ddpm84SEb1jckacDeDaxEUUjqaRGwAvD+ukY0XAxG/36vwEmSJPXO/KtqFpakQTZ5w0NWAjYDFvayS9efnm3rFZNUpV2oXCTtshTYtT6hDC+Bs5JIkiTVk/lX9SwsSYOvv39W+vqiLjWTTl4681KlfSRJkiQNcxaWpEE29aEzFwG3AWN72SXK5Za6BSVV5yr6LiyNAqbVKZbhx6bYkiRJ9WX+VRULS1J9fAdoo/KA+asDf5j60JmP1jUiaeCuAJ4GVqmwbWWKbp+/qWM8kiRJkhrEwpJUB1MfOvNq4GSKL91rUHwhXx1YFbgJOKphwUnLadZBhz8L7Ecxy+Gq3ZbVgOeAj8w66PCnGhfh0GYff0mSpPoy/6qOhSWpTqY+dOZ5wG7AWcBfgcuA/YF9pz50ZqXZtaSmNeugw/8F7Ax8GbgauAY4DnjLrIMOv62RsQ15mbVfJEmS1Dvzr6pU6pYjaZBMfejMh4AzGh2HVAtly6XLykWSJEnSCGRhSZKkJjLSmk5LkiQ1mvlXdewKJ0mSJEmSpAGxxZIkSc1iBE5PK0mS1FDmX1WzxZIkSZIkSZIGxBZLkiQ1kehsdASSJEkji/lXdSwsSZLUTGyKLUmSVF/mX1WxK5wkSZIkSZIGxBZLkiQ1Eae7lSRJqi/zr+rYYkmSJEmSJEkDYoslSZKaSXrJTJIkqa7Mv6piYUmSpGaRNsWWJEmqK/OvqllYGiQTdzppLLAK8OT0649e3Oh4hqvd2/YZA6wBzL9q6UULGx1Pox08Y9/VgRWAJ87a/sL2BocjSZIkSRrmLCzV2MSdTtoMOAzYlWLSwvaJO510KXDm9OuPfrKhwQ0ju7ftszZwCPBeirHCYve2faYDp1+19KL7GxlbIxw8Y983UXzutgM6gIUHz9j3AuCcs7a/0MKmNJR4xUySJKm+zL+qUpfBuyNifERcExF3R8RdEfH5CvvsEhHzIuLWcjmu27ZJEfHviLgvIr5cj5gHYuJOJ20JXAa8HVgAzAeWAPsCv5m400lrNjC8YaMsKv0a2AdYRPE6LwB2B36ze9s+r25geHV38Ix9/wf4CbAV8BTF69EKfB644OAZ+45uYHiSJEmqgdlz12ubPXe9sbPnrucETJKaSr3+KLUDh2XmFsAbgf+LiC0q7PeXzNy2XI4HiIhW4HvAZGAL4IO9HNtQE3c6KYDTgTaKL/ed5aZ24ElgA4ov+qreF4H1KF7XjnJdJ/A0MAb4RmPCqr+DZ+y7EnAK8BxFca3LEorP4RuAPRsQmqQBCIo+/rVeJElD1+y56202e+563wVmArcBf589d71Pz5673pgGhyYNC+Zf1atLYSkzH8nMGeXtBRR/FMf18/DXA/dl5v2ZuQS4iOb8orw5sAkv/nLf3Xzg/RN3OmmF+oU0/Ozets/KwLuBeb3sMh94ze5t+2xSv6ga6u3AaKC37m6LgQPqF46kqmXWfpEkDUmz5663PfAbYBJFnvsUxXiaXwQutLgk1Yj5V1Xq3owyIiZQjANzU4XNb4qI2yJiakS8plw3DpjdbZ859L8oVU/jeKGVUiXtFGNavaw+4QxbL6foAdvRxz7tFC3ERoLxFIWl3jwHbFinWCRJQ0RE/DAiHouIO/vYZ5dyeIK7IuLP9YxPEpRd3r5D0aDiaV74rrGYouX+dsB+DQlOkrqpa2EpIsYCvwIOycz5PTbPADbKzG0o/oD+ZgDnPzAibomIW4C1qo13OT1N8Ue/Ny3l9t5aNKl/5lMU6Jb1Wj9dl2ga7yn6LrK1MXJeC2lYsCm26uRHFC0gKoqI1YGzgHdn5muAveoTlqRu3kDxnaa3mY+fxZbpUk2Yf1WnboWliGijKCr9LDMv67k9M+dn5jPl7SuAtohYC5hL0SqjywblupfIzHMzc4fM3AF4vNbPYRlmUBQ9emuOuipw9fTrj36mfiENP1ctvehJ4AZgtV52WRH4L9DrFdhhZjpFYam1l+0rAT+tXziSpKEgM6+jaPHQmw8Bl2XmQ+X+j9UlMEndbUjvOR4ULZfWmT13PSdqkdRQ9ZoVLoDzgZmZ+c1e9lm33I+IeH0Z2xPAzcCmEbFxRIymmAns8nrEvTymX390B/AVisJSz+LSKhR/+M+od1zD1CnAUorXtbsVKbqFfeWqpRf11S1x2Dhr+wv/C5xLUbhs67YpKIpvj1KMSyZpqMhBWKTltxmwRkRcGxH/iIj9e9uxwS3GpeFsAX23TG+lmLClvT7hSMOY+VdV6tVi6c0U/X93Lfvq3xoR74iIT0XEp8p93g/cGRG3Ad8G9slCO/AZ4EqKQb9/mZl31Snu5TL9+qOvoJj5bRFF0WMsxRf+B4B9pl9/9D0NDG/YuGrpRXdRXEmdTfH6jqV4vRcAB1+19KI/NTC8RvgmcBpFcjG2XFajGMfs/Wdtf+FTDYxNkjQ0jQJeC/wPsAdwbERsVmnHBrcYl4azv1CMqzSql+2rApeNH/fIiLigKql59fZHqqYy83r6HhOHzPwu8N1etl0BXDEIodXc9OuP/sPEnU6aRpGMrUbRbW/m9OuPHmE1y8F11dKL/rl72z4TgdcA61GMNTRjpLRU6u6s7S/sBM4+eMa+PwZ2oJgp5N6ztr/wwcZGJmm5jcA++Wpac4AnMnMhsDAirgO2AbxIJtXJ+HGPLJg9d73vAIdRXEDt3jJpFYqxl85uRGzSsGL+VbW6FJZGmrJb3N8bHcdwd9XSi5JiLKWRMp5Sn87a/sJFFFe2JA1lnWY2agq/Bb4bEaMoupm/AZjS2JCkEen7FN3hPkcx7EPXxfqHgM+NH/eIFxKlWjD/qoqFJUmSpBEmIn4B7AKsFRFzKMaJbAPIzLMzc2ZETANup+iKc15meiFHqrPx4x5J4JzZc9f7KbATsDLFMBu3ldskqeEsLEmS1Ez8mqA6yMwP9mOf0yjG8JPUYOPHPfIscFWj45CGLfOvqtRr8G5JkiRJkiQNM7ZYkiSpiTh4pCRJUn2Zf1XHwpIkSc0is1gkSZJUH+ZfVbMrnCRJkiRJkgbEFkuSJDURm2JLkiTVl/lXdWyxJEmSJEmSpAGxxZIkSc3EK2aSJEn1Zf5VFQtLkiQ1kXDwSEmSpLoy/6qOXeEkSZIkSZI0ILZYkiSpmXQ2OgBJkqQRxvyrKrZYkiRJkiRJ0oDYYkmSpCYRaR9/SZKkejL/qp4tliRJkiRJkjQgtliSJKmZeMFMkiSpvsy/qmJhSZKkZmJTbEmSpPoy/6qKXeEkSZIkSZI0ILZYkiSpiYQXzCRJkurK/Ks6tliSJEmSJEnSgNhiSZKkZmIff0mSpPoy/6qKhSVJkppFQnQ2OghJkqQRxPyranaFkyRJkiRJ0oDYYkmSpGZiU2xJg2DKzN1XANYA5h+6+VXP9ve4iS17jS6PWzi985JnBis+SWoo86+qWFiSJEmShqkpM3d/OXAI8F6gtVw3HTjj0M2vur+34ya27LUq8Fngg8BooGViy17XAWdM77zkrsGOW5I0dNgVTpKkZpKDsEgakabM3H1t4DcUxaHngPnAM8Ak4DdTZu7+qkrHlUWlS4EDgPbyuHnAW4FLJ7bstcOgBy9J9WT+VRULS5IkNY0ksvaLpBHri8B6wJNAR7muE3gKGAOc0stxnwReWR7XXq5L4Ony9pSJLXv5PULSMGH+VS3/IUiSJEnDzJSZu68MvJuipVEl84HXTJm5+ybdV5YFo/2BBb0ctxBYB7DVkiQJcIwlSZKaywi7wiVp0LycopVRRx/7tAMbAN3HWloZGEvRqqkv46qKTpKaiflXVWyxJEmSJA0/8ykG644+9mnhhe5tXRZRFKNa+zgu6b0llCRphLGwJElSs0iK0U9qvSxDREyKiH9HxH0R8eUK21eIiIvL7TdFxIRu244s1/87Ivbotn5WRNwREbdGxC3L/2JIqsahm1/1JHAjsGovu6wIPA7c2X3l9M5L2oHL+zhuNLAY+GttIpWkBmtQ/gXDJwezsCRJ0ggWEa3A94DJwBbAByNiix67HQA8lZmvBKZQDvhb7rcP8BqKWabOKs/X5W2ZuW1mOhaL1BjfAJZSdG3rbgywAvCVQze/qtLXn29TzB7Xs7i0AkVXua9P77xkcY1jlaQRZTjlYBaWJElqIg2YleT1wH2ZeX9mLgEuAvbssc+ewI/L25cCu0VElOsvyszFmfkAcF95PklN4NDNr7oL2BeYS1EkGgusQjEA98GHbn7VHysdN73zkoeAvYB/dztuLEWR6ojpnZdcNPjRS1L9NGhWuGGTgzl4tyRJzWRwBo9cq0dT6HMz89zy9jhgdrdtc4A39Dj++X0ysz0i5gFrlutv7HFs14C+CVwVEQmc0+3xJNXRoZtfNWPKzN3fDmwJrEcxKPc/emmp9LzpnZfcA7xrYsterwI2opgl7pbpnZcsHeyYJanu6p9/wTDKwSwsSZI0/D3egO5oO2Xm3IhYG5geEf/KzOvqHIMk4NDNr0rgjnJZLtM7L/k3RcslSdLyaUT+BQ3IwewKJ0lSM8ms/dK3ucD4bvc3KNdV3CciRgGrAU/0dWxmdv18DPg1dpGTJEnNqv75FwyjHMzCkiRJI9vNwKYRsXFEjKYYCPLyHvtcDnykvP1+4OrMzHL9PuWMJRsDmwJ/j4iVI2IVgIhYGdidHjNPSZIkjXDDJgezK5wkSc2kn9PT1krZX/8zwJVAK/DDzLwrIo4HbsnMy4HzgZ9GxH3AkxSJD+V+vwTuBtqB/8vMjohYB/h1MbYko4CfZ+a0+j4zSZKkfqpz/gXDKwezsCRJUrNI+juLSG0fNvMK4Ioe647rdvs5ihmiKh17EnBSj3X3A9vUPlJJkqQaa1D+BcMnB7MrnCRJkiRJkgbEFkuSJDWNfg/2KEmSpJow/6qWLZYkSZIkSZI0ILZYkiSpmXjFTJIkqb7Mv6piYUmSpGZiYiNJklRf5l9VsSucJEmSJEmSBsQWS5IkNZPORgcgSZI0wph/VcUWS5IkSZIkSRqQurRYiojxwE+AdYAEzs3Mb/XY58PAEUAAC4BPZ+Zt5bZZ5boOoD0zd6hH3JIk1VMkhH38JUmS6sb8q3r16grXDhyWmTMiYhXgHxExPTPv7rbPA8DOmflUREwGzgXe0G372zLz8TrFK0mSJEmSpGWoS2EpMx8BHilvL4iImcA44O5u+9zQ7ZAbgQ3qEZskSU3FK2aSJEn1Zf5VlboP3h0RE4DtgJv62O0AYGq3+wlcFREJnJOZ5/Zy7gOBA8u7a1UfrSRJddZpYiNJklRX5l9VqWthKSLGAr8CDsnM+b3s8zaKwtJO3VbvlJlzI2JtYHpE/Cszr+t5bFlwOrc8zy01fwKSJEmSJEl6Xt0KSxHRRlFU+llmXtbLPlsD5wGTM/OJrvWZObf8+VhE/Bp4PfCSwpIkSUNb2hRbkiSprsy/qtVSjweJiADOB2Zm5jd72WdD4DJgv8y8p9v6lcsBv4mIlYHdgTsHP2pJkiRJkiT1pV4tlt4M7AfcERG3luuOAjYEyMyzgeOANYGzijoU7Zm5A7AO8Oty3Sjg55k5rU5xS5JUX14xkyRJqi/zr6rUa1a464FYxj6fAD5RYf39wDaDFJokSc0jMbGRJOn/t3f30ZqVdf3H3x9FQRmeFBydkRnUzEYM0QXlakmylgZOhQ9FLc1KysSHZTQjPpRlC0lzYT8dVH6lmIKIoZiGYqLTqsg0Na3EojGXAvKMPA0wiJAz398fe5/fujmeM3POvs/Z98N5v9a6F+fc+9r7/l77gsP3vvb32lvqk/nX0Hp/Kpw0jbZsO+5gYH/g5s0btt416ngkSZK0fDau2xRgLc33qesvufrM+0YckiSNjBNL0hC2bDvuJ4E/AI4GdgLZsu24zwBnbN6w9caRBidpMvm4W0kaaxvXbXoOcCqwhib/u3fjuk0fAP7CCSZpQpl/DaWXm3dL02jLtuOeClxIM6l0J7ADuBt4DnDRlm3HrR5heJIk7VaSDyT5XpLdPhQlydFJfpjkxL5ik8bVxnWbXgZsAQ4G7qDJ/wKcArxn47pNDxxheJI0Ek4sSR1s2XZcgD+jSSTuoFmZC7ALuB14BLBpJMFJmmy1a+lf0tzOBZ69uwZJHgicAWztIyBpnG1ct+mRwGtoLijeM7DpPpr872eBZ44gNEnDMv8aihNLUjeHA4fSXKWayx3A87dsO+4h/YUkafJVc/PIpX5Jc6iqzwO37aHZ7wIfB763/BFJY++5NBcVd86zfRdwUm/RSFoi5l/DcmJJ6uZRNMnDfHbS/Pd1YC/RSJK0xJKsBZ4P/MWoY5HGxGF72P4DYF0PcUjSWPHm3VI3t9JcsZrPA9rtd/YTjqSpUHjzSI2TM4HXV9WuZP7/5SU5GTi5/fXgHuKSRuUGdp//PRir+6TJY/41NCuWpG6+TrN8YL6lbgcAn9u8YevdvUUkSdLSOgr4SJKrgBOBP0/yvNmNqursqjqqqo4Cbuk3RKlXn6L5Cjrfd6i9gPP6C0eSxoMTS1IHmzds3QX8Ic2VqYfO2nwAzdPh3tF3XJKmgGv8NSaq6jFVdVhVHQb8NfDKqrpotFFJo3PJ1WdeBZxPk+s9aGDTzO0PLgcu6T0wScMz/xqKE0tSR5s3bP0H4KU0V2f3A/alSTQuA07cvGHrFSMMT5Kk3UpyAfAl4AlJrk3ykiQvT/LyUccmjbHTgS00S+JW0eR/+wIXAb9+ydVn3ju60CRpNLzHkjSEzRu2Xrpl23HPAJ5IM6l0/eYNW68abVSSJtoKu8Kl0amqFy6i7UnLGIo0MS65+sxdwFkb1216H3AEzfep/7nk6jP39IRFSePM/GsoTixJQ9q8YWvRlD5L0vBMbCRp7LWVSV8ddRySloj511BcCidJkiRJkqROrFiSJGlsFOzaNeogJEmSVhDzr2FZsSRJkiRJkqROrFiSJGlcFK7xlyRJ6pP519CcWJIkaZyY2EiSJPXL/GsoLoWTJEmSJElSJ1YsSZI0TnZ5xUySJKlX5l9DsWJJkiRJkiRJnVixJEnSmGjuHenjbiVJkvpi/jU8J5YkSRoXVZZiS5Ik9cn8a2guhZMkSZIkSVInVixJkjROfNytJElSv8y/hmLFkiRJkiRJkjqxYkmSpHGyy5tHSpIk9cr8ayhWLEmSJEmSJKkTK5YkSRonrvGXJEnql/nXUJxYkiRpXFRRlmJLkiT1x/xraC6FkyRJkiRJUidWLEmSNE4sxZYkSeqX+ddQrFiSJEmSJElSJ1YsSZI0TnZ5xUySJKlX5l9DcWJJkqRxUt48UpIkqVfmX0NxKZwkSZIkSZI6sWJJkqRxUVCWYkuSJPXH/GtoVixJkiRJkiSpEyuWJEkaG+Uaf0mSpF6Zfw3LiSVJksaIpdiSJEn9Mv8ajkvhJEmSJEmS1IkVS5IkjRNLsSVJkvpl/jUUK5YkSZIkSZLUSaqmcy1hkpuB7446jkU6GLhl1EEsI/s3+aa9j/Zv8i1XH9dX1SHLcNz7SfJZmj4stVuq6tnLcFzpfsYo/1oJf++68tzMzfMyN8/L/Dw3c1vq87LsOZj51/CmdmJpEiX5WlUdNeo4lov9m3zT3kf7N/lWQh8l7Zl/C+bnuZmb52Vunpf5eW7m5nlZmVwKJ0mSJEmSpE6cWJIkSZIkSVInTiyNl7NHHcAys3+Tb9r7aP8m30roo6Q982/B/Dw3c/O8zM3zMj/Pzdw8LyuQ91iSJEmSJElSJ1YsSZIkSZIkqRMnliRJkiRJktSJE0uSJEmSJEnqxImlHiW5NMkPkuxoX/8zT7skOSPJre3rjCTpO94uFtHH05L870C7HUke23e8XSR5QZJtSe5O8p0kx8zTbnOSG5PcmeQDSfbuO9YuFtK/JCcl2Tlr/I7tP9rFmRXvjrYP795N+4kaw8X0b4LH8LAkn0lyezs2ZyXZa562v5bku+2/yxcleVjf8UpaXkke3+Yd58+zfWLzja5WQr7Z1UrIU7ua9vy2q2nOi7ua9nxa3Tix1L9XVdWq9vWEedqcDDwPeDJwBHAC8LKe4lsKC+kjwEcH2q2qqit6i7CjJD8HnAH8FrAf8LPAj8Sd5Hjg94FnAuuBxwJv6i/Sbhbav9aXZo3fpT2F2dlgvMAjgXuAj83VdhLHcDH9a03cGAJ/DnwPeBRwJPAM4JWzGyU5HHgv8BvAauD77b6Spsv/Bb66hzYTl28sgZWQb3Y1tXlqV9Oe33Y17XlxV9OeT6sbJ5bG04uBt1fVtVV1HfB24KTRhqTWm4DTq+rLVbWrqq5rx2i2FwPvr6rLq+p24E+YjDFcaP+mwS/TTFD88zzbJ3UMZ+ypf5PqMcCFVfWDqroR+Cxw+BztXgRcXFWfr6odwBuBX0qyX4+xSlpGSV4AbAf+fsShTCrzTc2Y9vy2q5WUF3c17fm0FsiJpf69NcktSb64mxLJw4HLBn6/jLm/OI2rhfQR4IQktyW5PMkreoqtsyQPBI4CDkny7STXtstwHjJH87nGcHWSh/cRaxeL7B/AU9px/laSN863HGmMvRg4r6pqnu0TN4az7Kl/MJljeCbwgiQPTbIW2EgzuTTb/cavqr4D3Af8eB9BSlpeSfYHTgdevYDmE5VvLJGVkG92NZV5alfTnt92tQLz4q6mPZ/WAjmx1K/X05T/rQXOBi5O8rg52q0C7hj4/Q5g1YSse19oHy8ENgCHAC8F/jjJC3uLspvVwIOAE4FjaJbhPAX4oznazjWG0JTRjqvF9O/zwJOAR9BcqXgh8NpeolwCSdbTLKH64G6aTeIYAgvu36SO4edpkpQ7gWuBrwEXzdFu9vjR/j724ydpQf6E5ir4tXtoN4n5xrBWQr7Z1TTnqV1Ne37b1YrJi7ua9nxai+PEUo+q6itVdVdV3VtVHwS+CPz8HE13APsP/L4/sGMPlQdjYaF9rKr/rqrrq2pnVf0L8E6aP9zj7J72n++uqhuq6hbgHSx8DAHuWsb4hrXg/lXVFVV1ZVsW/J80V43HffwG/Qbwhaq6cjdtJnEMZ+yxf5M4hkkeQFOd9AlgX+Bg4CCa+x/MNnv8aH+fhPGTtBtJjgSeBWzZU9sJzTeGshLyza6mPE/tatrz265WUl7c1bTn01oEJ5ZGq4C5rgpdTnMjxRlPbt+bRPP1sWu7kWnXBV9LE+v/f3ue5nON4U1VdesyhTe0RfbvR3ZnzMdvlt9k91dXYALHcMBC+jfbJIzhw4B1wFntl4JbgXOYO/m93/i1T/PZG/hWH4FKWlbHAocBVye5EXgN8MtJ/n0B+07C37qlthLyza6mJk/tatrz265WWF7c1bTn01oEJ5Z6kuTAJMcn2SfJXkleRPNkgbnuDXIe8Ooka5OsAU4Fzu0x3E4W08ckz01yUBo/BZwCfLLvmDs4B/jdJI9IchCwGfj0HO3OA16S5IlJDqQpmz23tyi7W1D/kmxMsrr9+Sdobow8CeNHkp+hKYHf3dPSYELHcKH9m8QxbK8WXgm8ov0bcyDN2v5vzNH8wzT3xzgmyb40Vw8/UVVeIZMm39nA42iWphwJvAf4W+D42Q0nON/oZCXkm12tkDy1q2nPb7ua+ry4q2nPp9VBVfnq4UWzRvurNGV/24EvAz/XbjuGpvR4pm2AtwG3ta+3ARl1H5a4jxcAt9KUR34TOGXU8S+wjw+ieWT5duBG4F3APjRVFDuAdQNtXw3cRHMvmHOAvUcd/1L1D/g/bd/upnns6unAg0Yd/wL7+F7gQ3O8Py1juKD+TeoY0nyJvBS4HbiF5j4Yq9ttO4BjBtr+GnB128dPAg8bdfy+fPla+hdwGnB++/NU5BtDnIupzzd7Ojcr7d+bqc5vl/u8TGpONeS5mep82tfiX2kHW5IkSZIkSVoUl8JJkiRJkiSpEyeWJEmSJEmS1IkTS5IkSZIkSerEiSVJkiRJkiR14sSSJEmSJEmSOnFiSZIkSZIkSZ04sSStAEmuSvKsebadm+TNfcfUfva8cUmSJE2iJKclOX+ebccmubbvmNrPnjcuSRqGE0tSj5I8Pcm/JLkjyW1Jvpjk6FHH1YdRTmBJkiS1F7TuSbIjyU1tbrJqAftdmuR3+ohxqYxyAkvSyuPEktSTJPsDnwbeDTwMWAu8Cbh3lHFJkiStICdU1SrgqcBRwB+NOB5JmnhOLEn9+XGAqrqgqnZW1T1VtbWqvjHTIMlvJ9mW5PYkn0uyfmBbJTklyRVJbknyZ0ke0G57XJJ/SHJru+3DSQ7sEmSSX0zy9STb2+qqIwa2XZXkNUm+0VZdfTTJPgPbX5fkhiTXJ/mdNuYfS3Iy8CLgde1VwosHPvLI+Y4nSZK0HKrqOuAS4EkASZ7W5j3bk1yW5Nj2/bcAxwBntTnMWe3770xyTZI7k/xbkmO6xJFkTZKPJ7k5yZVJThnYdlqSC5Ocl+SuJJcnOWpg+1OT/Ee77WNtHvXmJPu2fVvTxrwjyZp2twfPdzxJ6sqJJak/3wJ2Jvlgko1JDhrcmOS5wBuAXwIOAf4ZuGDWMZ5Pc3XtqcBzgd+e2R14K7AG2AAcCpy22ACTPAX4APAy4OHAe4FPJdl7oNmvAs8GHgMcAZzU7vts4NXAs4AfA46d2aGqzgY+DLytqlZV1Ql7Op4kSdJySXIo8PPAfyRZC/wt8GaaqvLXAB9PckhV/SFNTvaqNod5VXuIrwJHtu3/CvjYYi+OtRcILwYuo6lkfyawKcnxA82eA3wEOBD4FDAzsfVg4G+Ac9sYLqDJE6mqu4GNwPVtzKuq6vrdHU+ShuHEktSTqroTeDpQwPuAm5N8KsnqtsnLgbdW1baq+iHwpzTVPOsHDnNGVd1WVVcDZwIvbI/97ar6u6q6t6puBt4BPKNDmCcD762qr7RVVR+kWar3tIE276qq66vqNppk6Mj2/V8Fzqmqy6vq+yx8Ymu+40mSJC21i5JsB74A/BNNvvXrwGeq6jNVtauq/g74Gs3E05yq6vyqurWqflhVbwf2Bp6wyFiOBg6pqtOr6r6quoImR3zBQJsvtHHtBD4EPLl9/2nAXjR51P9W1SeAf13AZ853PEnqzIklqUftpNFJVfVomtLrNTQTRADrgXe2JdjbgdtoKpHWDhzimoGfv9vuT5LVST6S5LokdwLnAwd3CHE9cOpMDG0ch858TuvGgZ+/D8zc9HLNrPgGf96d+Y4nSZK01J5XVQdW1fqqemVV3UOT//zKrPzn6cCj5jtIe2uAbe1S/u3AASw+91pPs1xt8HPfAKweaDM7T9onyV40edd1VVUD2xeSe813PEnqzD8i0ohU1TeTnEuz7AyaZOAtVfXh3ex2KHB5+/M6YKas+U9pKqF+sqpuS/I8upU2z8Twlg773gA8elasgwpJkqTxcw3woap66Tzb75fDtPdTeh3N0rXLq2pXkttpLggu9nOvrKrHLzZgmrxrbZIMTC4dCnxnrpglaTlZsST1JMlPJDk1yaPb3w+lWcr25bbJe4A/SHJ4u/2AJL8y6zCvTXJQu+/vAR9t398P2AHc0d4n4LUdw3wf8PIkP53Gvkl+Icl+C9j3QuC3kmxI8lDgjbO23wQ8tmNckiRJy+V84IQkxyd5YJJ9khw7k7PxoznMfsAPgZuBvZL8MbB/h8/9V+CuJK9P8pD2s5+U5OgF7PslYCfwqiR7tffq/KmB7TcBD09yQIe4JGlRnFiS+nMX8NPAV5LcTTOh9F/AqQBV9TfAGcBH2uVs/0Vz48VBnwT+Dfg6zU0m39++/yaaG3rf0b7/iS4BVtXXgJfSVDvdDnybBd5Mu6ouAd4F/GO738yE2b3tP98PPLEt9b6oS3ySJElLraquoXkoyhtoJouuoblIN/Nd6Z3AiWme2vsu4HPAZ2kezPJd4Acs/BYAg5+7E/hFmvtLXgncAvwlzbK6Pe17H80DX14CbKe5T9SnafOuqvomzQ29r2hzrzXzHEqShpb7L8uVNK6SFPD4qvr2qGNZiCQbaCbH9m5vRi5JkqRlkuQrwHuq6pxRxyJpZbFiSdKSSfL8JHsnOYim+upiJ5UkSZKWXpJnJHlkuxTuxcARNJVUktQrJ5YkLaWXAd+juXHkTuAVow1HkiRpaj0BuIxmKdypwIlVdcNII5K0IrkUTpIkSZIkSZ1YsSRJkiRJkqROnFiSJEmSJElSJ04sSZIkSZIkqRMnliRJkiRJktSJE0uSJEmSJEnq5P8BsOgcUwqqXGcAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
@@ -355,16 +372,16 @@
"execution_count": 10,
"id": "686ded22",
"metadata": {
- "jupyter": {
- "source_hidden": true
- }
+ "tags": [
+ "hide"
+ ]
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAL/CAYAAADlZKE2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hdVbn48e97pqSTkBBIAmm0cIOCgIpiw45cFYmCAkrzYrlXf4iFiJcOVwQLYr+iUhSRYhALitdeQFQIKERCS4MkEEJ6m5lz1u+PdQaGYVpOZs6ZmXw/z7Ofyey99l7vOZk5s9d691orUkpIkiRJkiRJkiRp6xRqHYAkSZIkSZIkSdJAZJJFkiRJkiRJkiSpAiZZJEmSJEmSJEmSKmCSRZIkSZIkSZIkqQImWSRJkiRJkiRJkipgkkWSJEmSJEmSJKkCJlkkSZIkSZIkSZIqYJJFkiRJkiRJkiSpAiZZJEmSJEmSJEmSKmCSRZIkSf1SRPwuIlIN678yIlJETGuzb1p535W1iqscR03fm94SEXtFxE0Rsbz8vq7ugzpOLF/7xN6+9raIiHPLcR1a61iqob/87kiSJEm9rb7WAUiSJGnw6iAR0ASsBZYAdwE/BH6ZUir2Qd0LAVJK03r72n2t3BF9AjA9pbSwttH0jYioA34E7Al8F3gU2NzD804G3g08HxgFrAKWA38FfpxS+nHfRC1JkiRJz2aSRZIkSdVwXvlrHTAG2Bd4D/Be4O8RcVxK6YF25xwPDK9ahM91BvAZ4LEaxtCZWr83vWE6MBO4PKX0vp6cUE6w/BQ4DFgN/IycnGkk/0wdC+wDmGSRJEmSVBUmWSRJktTnUkrntt8XEbsAXwaOAn4VES9MKT3R5pzF1YvwuVJKy4BltYyhM7V+b3rJpPLXpVtxzjHkBMs9wKtSSmvaHoyI4cDBvROeJEmSJHXPNVkkSZJUEymlx4F3Ab8DJgOfanu8o3VHIjshIm6LiBURsTkilkTErRHxznKZQ8vnTQWmlteBSO3Xgyh//7uImBAR34qIxyKi2Lp2R0drsrSLZZ+I+FFEPBURGyLiTxHxhg7Kdbr2RkfrVJRjP6H87YI2sS/s6r0p7y9ExAci4m8Rsb4c198i4oMR8Zx7/zbvwU4R8c2IWBYRWyLivog4qaPX3ZWIOCgifhgRT5SvsygivhYRE9vXC/y+/O05bV7jud1UcUj565XtEywAKaWNKaXfdhHfq8uvd11ErI2In0XEv3VQbu+I+ExE/L38c9b6Wr4ZEbt1UP7Q1vgj4qUR8auIWFOu59aIeGE3r6v99fYp//wtiYimiHg8Ir4fETPalbu2XO+rOrnO28vHv9JNfZ8slzu1k+OTIqIlIv7ebt/ZEfHnyGvqNEXE0nKcM7fitXa6vlB0sZ5OROwWEV+JiEfK/z8rI+LHEfGiDsqOioizIuLe8v/7uoh4OCKui4iDehqrJEmS1BFHskiSJKlmUkqliLgQOBQ4JiJOSyl1taD7/5Cn8VoAXA+sASYCLyKPiLkOWEienuwj5XO+2Ob8u9tdbyzwF2A9MAcoAY/3IPTpwO3AP4H/LcfwTuDnEXFsSum6HlyjM+cBbwP2By4jT4tFm69d+S55yqwlwLeABBwJfA14OXBcB+eMAf5MXi/nRmAI+b38TkSUUkpX9SToiHgzeY2dKF9nEXAQ8EHgiIh4eUppQZvXOI2cTPo9OdFGm6+dWVn+undPYmrnzcARwM+Bb5CnKjsceFFEzEwpPdmm7CzgA8BvgdvI782+wH8Ab4k86qqjaeQOJv98/gr4Knm9mVnAKyPiDSmlP3YXZEQcRv5ZbAB+AjwE7Fa+zr9HxKtTSneVi3+dnKh8H88krdp6f/nrN7qp9rvk363jyT9z7b2bPNXflW32vRL4JPk9+iH5d2gv4B3AWyPiZSmle7qptyIRcSDwS/Lv763k92sn8u/NnyLiyJTSLeWyAfyCnKC7nfx70UJ+T18N/BG4sy/ilCRJ0nYipeTm5ubm5ubm5ubWJxu5kz91U2YI0FwuO73N/t+1P5fcyf4oMLyD6+zU7vuFwMLuYgOuBuo7OH5l+fi0NvumtTnvs+3Kv7D8OlYBO7TZf265/KEd1NF6vSu7q7vd8Y7em2PK59wFjGyzfwTw9/KxYzt5D74F1LXZP5PcET2vh//PI8v/N0XgFe2OzS7X8ct2+w8t7z93K36eDiAnPErkxMAsYGo355xYrqcFeG27YxeVj53ebv+uwJAOrvWG8mv8eievJQEfanfsiPL+B4FCVz8XwI7ln58ngZntrvM8ciLjrnb77wU2A+Pa7d+9/D79uYfv7a3leJ7XwbH7gC1t6wB2BkZ1UHb/cpw/7+HP+nN+ljv4vzuxzb56cuJpM3nKuLblJ5HXUFrW+v8HPL98jZs6uH4B2LGnP39ubm5ubm5ubm5uHW1OFyZJkqSaSilt4ZkRCuN7cEozuaO7/XWe7KBsd5qAj6eUWrbyvDXA+e3q/ztwDXlkyJEVxLKtTi5//WRKaX2buDaQEx2QR2K0txH4aEqp2OaceeTRLf8WESN7UPcR5FEF16Xnjtb4PDnh9fqImNKTF9KZlNJc8qiKx8tffwgsLE8VdVNEvKWL03+QUvp1u33fLH99cbt6Hiv/XLav/5fkhMMbO6njIfKoobbn3EweZbIn8Iou4oM8kmQMcE75/6Dtde4FLgcOaDcd19fJicoT213rFPKoov/tps5WrSOWTmi7szzV2UzgZyml1t9TUkpPpJTWtb9IyqNXfgO8OiIaelj31vh3YA/gyymlZ43eSSktBS4BJgCvbXfepg5iLaWUVvVBjJIkSdqOOF2YJEmS+oMof+1qqjDISYwPA/Mi4npy5/XtqYP1OXpoYUrpiQrOu6ujDmbyU/knkEdc9GiarV50IHnkwu86OPZ7cmLqgA6OPZhSWtvB/iXlrzuSRyZ0VzfkzvVnSSm1RMQfyCMZDgAWd3OtLqWUro+Im8hTPb28fM2Xk6eKeltEXE0e+dD+Z+nvPFfb1/i08hRTx5ETF/uXj9e1KdLUSXh/TCmVOtj/O+BV5Vg7mtar1UvLX/fvZH2a1mnS/g1oTcJcDXyGPGXY58vxN5RjX0WeVq8nbiInD4+LiE+2Sbq1Jl2ubH9CRPw7eVq1F5Kn62rfvtyJPKqkN7W+R1M7eY/2Kn/9N+AW8vt0N3k6wqnAzcCfgL+nlDr7f5QkSZJ6zCSLJEmSaioihpJHQQCs6Kb4acAjwEnk9SA+CbRExC3Ax1JKD21l9cu3snyrztZtab3e6Aqvuy1GA0911HFcTnQ8SZ7iqb3VnVyvdXRPXSfH29cNnXeot+4f04NrdSul1Exek+OXABFRB7wd+A55NMhNwI/anba6g+u05HzKc17jF8hr+iwjT6P1GM+MhDgRmNpJaNv6czGu/PWUbso9PboopbQuIr4HfKC8XstvgbeSR3N8MaW0uZtrtV5nUzlxeQp5WrSfR0QjeRq6FeS1bJ4WEaeS1ztaBfwfOXm2kZwofRs5OTWkJ3Vvpdb36Khuyo0ESCkVI+I1wNnk9WIuLh9fFxFXAWe0HfklSZIkbS2TLJIkSaq1l5PvSx9PKS3sqmD56fovAl+MiJ3L576L3OG6b0Ts29E0T11dsqKIYZdO9k8of207sqZ1ZENH995jKqy/I2uAsRHRUE5CPC0i6smjCjoasdJbdcMzr7+9ie3K9aryz8X1EfF84EzgNTw3ydIj5Z+r/0de6+SQ9iOWIuKYLk7fmp+LjrQe3z+l9I/uYm3j6+QRJe8nL0TfuuD9Nzs9o2NXkZMsJ5CTKv9OTmpc1vZnqvzzdC45eXRgSulZybWIeCk9V2q9ZgfT9o3poHzre3RESunHPamgPCXYacBpEbEneVTR+4EPlet4z1bEK0mSJD2La7JIkiSpZiKiAPx3+dvvb8255TUh5qSUjiZPU7UHeXHwVkV6NgqjEgdGxKgO9h9a/jq3zb7WNR8md1D+hZ1cv3Wqpq2Jfy75/v6VHRx7Zflad23F9bZG6+s9tP2Bcod861okfVV/q9aESHRZqmu7k9/HX3aQYNmtfLwzLy//TLd3aPnr3A6OtfWX8tfu1m55lnJC5s/AkRFxMPA64A8ppX9t5XX+DDwIHBERo3lmqrD2U9/tRE5O3NZBgmUkz0wf1xNb+/tR0XvUKqX0UErp2+REy3ryekKSJElSxUyySJIkqSbKIwZ+QO6AXgx8upvyQyLiZR3sb+CZ6cY2tjm0EhgfEcN6JeBnG02efqhtHC8kr+OxhjxdVau/lr+eVE44tJaf3P4abbQuML41C8V/p/z1oogY3qae4eQ1OwC+vRXX2xo/Ap4ir3vxknbHPgJMB36VUtqm9Vgi4piIeH1HiYyImMAz02z9YRuqWVj++vLyNGSt1x9JXni+q9kA9gL+s11cR5A79B8C/thN3VeQpzU7JyJe3P5gRBQi4tBOzv060Aj8kJxk+kY3dXXmKmAo+XUcDvwjpdQ+OfQE+XftoPL70hpfA3AZOQnTU62/H8+aIi0iXkueqqy9m4GHgf+KiMM7umBEvLT1dyAipkdER4mxHcnTmW3q4JgkSZLUY04XJkmSpD7XZoHqAvkJ+H3JU301kjtZj0spPdnNZYYBf4qIh4A7gUXkzuDXkxe5/nG7J/d/DbwI+EV54fUtwD0ppZ/0wkv6A/Af5VEDfyZPh/XO8ut7f9uF5FNKd5TrfyXw14j4DXlaqbeQ1/vo6An+XwOfAC6PiB+SR2isTil9pbOAUkrfL3foHw3cFxE/4pn1MaYD16WUrtmmV9153esj4mTgBuD3EXEDOXF2EHl9j+U8M4XVtjgYOBVYHhF/AhaU908nT201jNwJf2OlFaSUlkfED8jT0N0dEb8kJ9VeD2wmL6L+gk5O/wXw+Yh4E3APsCcwq3zeySmlUifntda9MiLeQU7S/SUifg3cR/5/nExe9H0c+ee+vRuAS4FdgSeBOT18ye19FzgfOA9o4LmjWEgplSLiS+Q1kf4ZETeTf5dfTU54/rb87564gvyzfkZE7E9eqH5v4E3k9+Ht7epujohZ5N+dn0XEbeT/k43k9+hF5NFGE8v79gfmRMTfgH8BS4Hx5BEsDTyzRoskSZJUEZMskiRJqoZzyl+byAmDRcDV5Kfuf9ld53PZBmA2ufP2EHLyYB35qfYP8sxIjlYXkhM6bwFeRp4u6yqgN5IsC8hrYHym/HUIeSqs81NKt3ZQ/gjgs+WvHyZPyXQ6eeH2o9sXTindGhEfIz/d/xFyB/YioNMkS9kxwO+Bk3kmqfEv4PPkkQ59JqV0c3mk0aeAN5ITE8vJIyouSCkt7YVqPk9+714H7FeuZyh55M/vyFPOfT+lVOlaO63eCzxCTpz9F3nh9x+TRx79sIvz7iAnKC4gr/cR5Kns/jul9LeeVJxS+nVE7Ad8nPz6XkH+vVlavlaH9aeUmiLiGvLPy5VbuTZR2+ssjojfAq8FWoDOEnNnkd+X/yD/rK0B/o+8Js55W1HfExHxKvLvxyvJo37+Tk5qTaddkqV8zj/KCZmPAm8GTiKv7bKMPCXbOeREE+VrfaZ83cPII1hWkBO1X0op/bynsUqSJEkdiW1vf0iSJEnS9qs8hddvgfNSSufWMI7fkRMVM1JKD9YqDkmSJGl74poskiRJkjTAlddweRVwqwkWSZIkqXqcLkySJEmSBqiI+CB5HZbWKbPO6foMSZIkSb3JJIskSZIkDVyzgd3Ia8i8J6X01xrHI0mSJG1XXJNFkiRJkiRJkiSpAq7JIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGTLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBkyySJEmSJEmSJEkVMMkiSZIkSZIkSZJUgfpaB1BrERHAJGBdrWORJEnaBqOApSmlVOtAImIo0Fij6ptSSptrVLc0aNlukiRJg4Btpsw2Uy/b7pMs5IbCo7UOQpIkqRfsBjxWywAiYuhOYwtrn3yq1FCjEJZHxHQbDVKvs90kSZIGA9tMtpl6nUmWZ57E2g2fypIkSQPTKHLnZ3+4l2l88qlSw4N/mfaPMaMLxWpWvHpNqW6vlyzcj/xEmA0GqXfZbpIkSQOZbSZsM/UVkyzPWJdSWlvrICRJkrZWnsWnfxk9muKYMVGqZp01H/MvbR9sN0mSpAHHNlNmm6lvuPC9JEmSJEmSJElSBUyySJIkSZIkSZIkVcDpwiRJktTriqlEMVV3SH4xVXWkvSRJkiRVzDbT4OFIFkmSJEmSJEmSpAo4kkWSJEm9rkSiVOVlFatdnyRJkiRVyjbT4OFIFkmSJEmSJEmSpAo4kkWSJEm9rkSJEtWdX7iE8wtLkiRJGhhsMw0ejmSRJEmSJEmSJEmqgEkWSZIkSZIkSZKkCjhdmCRJknpdMUExVXdRxaJrOEqSJEkaIGwzDR6OZJEkSZIkSZIkSaqAI1kkSZLU60okSlT3Malq1ydJkiRJlbLNNHg4kkWSJEmSJEmSJKkCJlkkSZIkSZIkSZIq4HRhkiRJ6nUlEkWHvkuSJElSh2wzDR6OZJEkSZIkSZIkSaqAI1kkSZLU61zEUZIkSZI6Z5tp8HAkiyRJkiRJkiRJUgUcySJJkqReV0yJYqruU1LVrk+SJEmSKmWbafBwJIskSZIkSZIkSVIFTLJIkiRJkiRJkiRVwOnCJEmS1OtK5a3adUqSJEnSQGCbafDotyNZIuKTEZEi4otdlDmxXKbttrmKYUqSJEmSJEmSpO1UvxzJEhEvAt4P/KMHxdcCM9p87+o9kiRJNVYkUazybVm165MkSZKkStlmGjz63UiWiBgJXAOcAqzqwSkppbS8zfZ430YoSZIkSZIkSZLUD5MswFeBn6WUftXD8iMjYlFELImImyNi374MTpIkSZIkSZIkCfrZdGER8S7gQOBFPTxlPnAyeVqx0cDHgdsiYt+U0qOd1DEEGNJm16jKI5YkSVJHiilv1a5TkiRJkgYC20yDR79JskTEZOAy4PUppR4tXp9Suh24vc01bgP+RV7P5axOTjsDOGfbopUkSZIkSZIkSdu7fpNkAQ4CdgbuiojWfXXAKyPiQ8CQlFKxqwuklJojYi6wZxfFLgK+0Ob7UUCHo14kSZJUmQSUalCnJEmSJA0EtpkGj/6UZPk18Px2+64A7gcu7i7BAhARdeVr3NJZmZTSFmBLm3MqClaSJEmSJEmSJG3f+k2SJaW0Dri37b6I2ACsTCndW/7+auCxlNIZ5e/PBv4CPASMAT4BTAW+Vb3IJUmS1F6RoEh1H2apdn2SJEmSVCnbTINHv0my9NAUnj2KakfgcmACsAq4EzgkpTSvBrFJkiRJkiRJkqTtSL9OsqSUDu3m+9OA06oYkiRJkiRJkiRJEtDPkyySJEkamEopb9WuU5IkSZIGAttMg0eh1gFIkiRJkiRJkiQNRI5kkSRJUq9zEUdJkiRJ6pxtpsHDkSySJEmSJEmSJEkVMMkiSZIkSZIkSZJUAacLkyRJUq9z6LskSZIkdc420+DhSBZJkiRJkiRJkqQKOJJFkiRJva6UglKq7lNS1a5PkiRJkiplm2nwMMkiqd/Y9+ZzdwReB4wHmoB5wF/uO+LcUk0DkyRJkiRJg9pdi6dMAl4NjAY2A38D7j1wyuJU08Ak9XsmWSTVXDm5chowCxgLJCCAFuBf+9587lfvO+LcH9cwREnSVirVYH7hkvMLS5IkaSvdtXjKFOBjwJuAUUCJvMTCZuBvdy2e8sUDpyy+rYYhapCyzTR4uCaLpJra9+ZzdwK+B7wPGA48DiwDlgLrgOcDX9r35nM/WLMgJUmSJEnSoHPX4il7A9cD7yT3ky4l90k8Rk6yvBK44q7FU/69ZkFK6vdMskiqmX1vPjeAzwIHkZMrTwHFNkU2kW9wEnD6vjef+5qqBylJktSPRMQZEfG3iFgXEU9ExI8iYkY355wYEandtrlaMUuS1B/dtXjKEOAbwDRy38Nqcv9Dqw3Ao8AI4LPlhIwkPYfThUmqpZnAoeQbmeYuyq0EdgVOBH7T10FJkrZdkaBY5ed5ijhdtrYLrwK+Sp4nvh74NPDLiJiZUtrQxXlrgbbJGH9hJEnbu9eR/zY+QZ4irDPLyX0S7wLOr0Jc2k7YZho8HMkiqZbeDgwF1veg7FrgZfvefO4efRuSJElS/5VSOiyldGVK6b6U0j3kh1CmkEcGd3NqWt5me7zPg5UkqX9rnSKsqQdlNwPvuGvxlBF9G5KkgciRLJJqaS96/hTlBmACMB14uM8ikiT1ilIKSqnKizhWuT6pnxhd/vpUN+VGRsQicmfSXcCnUkr3dVY4IoYAQ9rsGrVNUUqS1P/sQ06e9MRG8t/CicBDfRaRtiu2mQYPR7JIqqU6tn6qCj+3JEmSgIgoAF8E/pxSureLovOBk4EjgHeT76dui4jdujjnDGBNm+3R3ohZkqR+ZGv6FxIQW3mOpO2EHwySaukRev45NAzYgg18SZKkVl8FnkeeI75TKaXbU0pXp5TuTin9HpgFrADe38VpF5FHybRuXSVkJEkaiB7h2aM2uzKcPJpled+FI2mgcrowSbV0M/lpytabla6MBm4H/tXXQUmStl1exLG6Q9GrXZ9USxHxFeDNwCtTSlv1EEpKqTki5gJ7dlFmC/kBl9b6Kg1VkqT+6gbg5eT+0ZZuyg4HrjtwyuK1fR6Vthu2mQYPR7JIqqW/A3cCY8lTh3VmNPmG56r7jjh3a6cXkyRJGjQi+wpwJPCalNKCCq5RBzwfWNbb8UmSNIDcAiwCdoEue57HA+uB66oRlKSBxySLpJopJ0xOAx4kLx63A8++sWkAdiY/MfJt4CfVjlGSVJliKtRkk7YDXyWPBD4WWBcRE8rbsNYCEXF1RFzU5vuzI+INEbF7RBwIfA+YCnyr2sFLktRfHDhl8QbgQ+QpNHcFRrQrMoTcV1ECLjhwyuK7qxqgBj3bTIOH76qkmrrviHMXk+cR/yn5M2lSm2088DhwLnCBo1gkSZL4IHmU7+/II1Fat3e2KTOF3CnUakfgcvK0q7eQH2w5JKU0rwrxSpLUbx04ZfGdwHHAn4Ch5GRLa5/EGPJDoaceOGXxVbWKUVL/55oskmruviPOfQz4j31vPnd34DBycqUZmAfcet8R526qZXySpK2XKFCq8vM8CXPxGvxSSt1OpJ1SOrTd96eRRw9LkqR2Dpyy+J93LZ5yFHkqzdeSkyubgL8Bvz9wyuLu1muRKmKbafAwySKp37jviHMfAb5W6zgkSZIkSdL248ApixPwj/ImSVvF6cIkSZIkSZIkSZIq4EgWSZIk9boiQZFuZzXq9TolSZIkaSCwzTR4OJJFkiRJkiRJkiSpAo5kkSRJUq8rpgLFVN3neYrJRRwlSZIkDQy2mQYPR7JIkiRJkiRJkiRVwCSLJEmSJEmSJElSBZwuTJIkSb2uRFCq8qKK1a5PkiRJkiplm2nwcCSLJEmSJEmSJElSBRzJIkmSpF5XpECxys/zFHERR0mSJEkDg22mwcORLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBpwuTJElSrysSFFO1h76XqlqfJEmSJFXKNtPg4UgWSZIkSZIkSZKkCjiSRZIkSb0uUaBU5ed5ks8PSZIkSRogbDMNHr6rkiRJkiRJkiRJFXAkiyRJknpdMQXFFFWvU5IkSZIGAttMg4cjWSRJkiRJkiRJkipgkkWSJEmSJEmSJKkCThcmSZKkXlekQLHKz/NUuz5JkiRJqpRtpsHDd1WSJEnbrYj4r4hYGBGbI+KOiHhxN+WPioj7y+X/GRGHtznWEBEXl/dviIilEXF1REzq+1ciSZIkSX3DdlPXTLJIkiSp15VSoSbb1oiIdwJfAM4DDgTuAW6NiJ07KX8IcC3wbeAA4EfAjyLieeUiw8vXuaD8dRYwA/jxVr59kiRJkga5gdBmAttNPWGSRZIkSdurjwKXp5SuSCnNAz4AbARO7qT8qcAvUkqfTSn9K6V0FnAX8CGAlNKalNLrU0rXp5Tmp5T+Uj52UERM6fuXI0mSJEm9znZTN0yySJIkabsTEY3AQcCvWvellErl71/ayWkvbVu+7NYuygOMBhKwutJYJUmSJKkWbDf1jAvfS5IkqdfVeBHHURHR9tCWlNKWdsV3AuqAx9vtfxzYp5MqJnRSfkJHhSNiKHAxcG1KaW2XwUuSJEnargyANhPYbuoRR7JIkiRpsHkUWNNmO6PaAUREA3A9EMAHq12/JEmSJHWh5m0mGDztJkeySJIkqdeVUlBM0X3BXq6zbDdgXZtDHT2R9SRQBHZpt38XYHknVSzvSfk2DYWpwGsG6tNYkiRJkvrOAGgzge2mHnEkiyRJkgabdSmltW225zQYUkpNwJ3Aa1v3RUSh/P3tnVz39rbly17ftnybhsJewOtSSiu36ZVIkiRJUu/rts0Etpt6ypEskiRJ6nUlCpSq/DxPBfV9AbgqIv4O/BX4CDACuAIgIq4GHksptQ6dvwz4fUR8DPgZ8C7ghcD7yuUbgBuBA4E3A3UR0Trv8FPlBookSZIkDZQ2E9hu6pZJFkld2vP6C+uAVwBvIC92tRG4G7j5oaPPXFXD0CRJ2iYppesiYjxwPnkRxruBw1JKrYs0TgFKbcrfFhHHAhcCnwYeBN6WUrq3XGRX4K3lf9/drrpXA7/r/VchSZLUM6Xle+8DvA2YBiTgEeCmwoQHHgJY/tikfYEjyPdAReBh4KYJuy5dUFq+dwDPJ9/r7Aa0AA8BcwoTHlhc3Vey9a568JB64JXkp+l3AjYAdwE/PmGv21bXMLQB4bg7ThlH/tnZDxgGrAB+Afz5moMvL3VxqgYB203di5RSrWOoqYjYgby4z+iBPO+b1Bf2vP7CFwMXAXsDDeSbsCh/XQl8E/jKQ0ef6R9USaqh/nQ/0xrLV//2orkjRtdX9e/DhjUthf960d8OoB+8D9Jg058+ZyRJW6e0fO+dgc8AhwLDeaZtD7ChJZVue6q0sRF4MTC0vL+17b8h4I/jCiNGFiJe2NFx4GbgnMKEB9ZX4/VsrasePOSlwP+QpyVq37fxJPAN4Osn7HWbfRvtHHfHKXXAacDJwI48874F0AT8C/jkNQdfPrdmQfZQf7qXsc00+DiSRVKH9rz+wpcC3yb/EV0JbG5zuK68fzYwbs/rLzz3oaPP3L4ztpKkZymmAsVU3aHv1a5PkiSpvyst33sn4LvA/uQO5kfbHi+m0o7rSpuPDkgJFpPb/62C3PY/bm1pc2mHwtCFhYj2x3cAjgUmlZbv/d7ChAc29uXr2VpXPXjIK4DLgdHkhErbdSda+zY+BYy96sFDLjxhr9vs2yg77o5TCuTk1PHk920ZbUYrkBNu+wFXHXfHKSdec/Dld1U/yoHNNtPg4bsq6Tn2vP7CYeT5FscAj/HsBAvkYcNPkp9YOYk8lZgkSZIkSepf/pucYFkOrGt/cH2paVQLpUKBqCsQI9sdTnXEDgUiminWbSg1Pec4OXHzJPAq4AN9EH/FrnrwkJHApeRE0GM8O8ECz/RtbAT+gzxNkZ7xFuA48s/NSp6dYIHcV7QUGA9cdtwdpzRWNzyp/zDJIqkjbyLPp7iim3JrySPijuvziCRJA0oJKBFV3iRJktSqtHzvScC/A+vJa6g8S0sqNTZT3CGIIkQpiB3JoztaDYEYRfl4Ey1jS6nDx+C3AM3AsaXlew/ri9dSocOBScAT3ZRbAzRi38bTjrvjlADeTf55eE5yro1E7juaDry2CqENKraZBg+TLJI68jbysN/mHpRdB7xsz+svnNynEUmSJEmSpK1xGDCKnER4ji2pZXQiFcgjOloC6iKP+gCgQIyJ3DdQDGgpkeqbUssOHV0LWA1MJI9o6S9mlb8+J8HUgXXAq6568JCJfRjPQLIXcBCd/Oy000ROxhzRpxFJ/ZhJFkkd2Y2eJVggP7HSCOzSd+FIkiRJkqSttAv5YfkO1xkpkRoAgnh6XxANbYrUt9kPQJHU2frOzeSETH/qG9iNnADoic3kvo2d+y6cAWVn8vvRfoq1zrQAPnyr7ZYL30vqSAu0ucvqXqLnSRlJ0nbARRwlSZJqrssRHNFx8qXDhEwq7+7knDaX7Fd9A1vTtxHYt9FWC/n92Jr3r6cJLZXZZho8fFcldeRuoKG7QmWtQ48X9lUwkiRJkiRpq80vf+2wfV9HYTM8nUCJ8r83tx5PeXRH67EIItVFYXP765QNJ496mN/J8Vq4mzwaoydGkac8W9xXwQwwDwEbgJE9LF8P/KPvwpH6N5MskjpyA/nmaHg35QIYBsx56OgzezJPpyRpO1GkUJNNkiRJT/sl8BiwY0cHh0T9mgLRnKA+oD6RtqQ2i5wn0uqURzTUJVJ9HbG5kboNndQ1htzJflcvv4ZtcT15dMWwbsoFMBS44YS9blvf51ENANccfPmTwE+AET0oPhLYRO5L0lawzTR4+K5K6sjfgT8BY+n6qY+JwJPANdUISpIkSZIk9UxhwgObgW+R+/+es2B9IaI0NBpWQqorkaJEWtGuSDGRnkqkuiBiaDSsiOhw9qix5GTG/xYmPNDVdGLV9pfyNo7OZ+sIct/GE8D3qxTXQHEVeXTPxC7KNJITbL8G7uv7kKT+ySSLpOd46OgzE3Aq8FdgfHlrvSEJYDR5AbnVwEceOvrMB2oQpiSpH0spKFV5S2lrlhOTJEnaLnwLuII8mmMSzx7VMXx4NNQPpX5jIm1MMKTd8RElUl0ibRwW9RuGRv0w8oiPp4+Xr1kALilMeOBnfftSts4Je91WAj4M3EleyL1t30aB3LexK/AU8P9O2Ou2R2oRZ391zcGX3wt8lDy6aTdyoq71hruRZ97TPwEfv+bgy/tTgm1AsM00eJhkkdShh44+cyXwbuCz5Cc6xpH/qE4qF/kh8K6Hjj7zV7WJUJIkSZIkdaUw4YEScA7wMWAueWqn3crb8Ij428jCkBMSfBC4t93xocDtCY4bHo3/LyL+Re5ob3v8T8D7ChMe+FqVX1qPnLDXbU8AxwJfAFbwTN/GRPLC7jcA7zphr9t+V6sY+7NrDr78FuA44GZyP/Ku5PdvLLAU+AxwwjUHX766VjFK/UGktH0nGSNiB/Ki3aNTSmtrHY/UH+15/YXDgJeQ53HdAtzz0NFnPlrbqCRJrfrT/UxrLBf/5eVzh49uKFWz7o1rmguzX/KnA+gH74M02PSnzxlJUmVKy/cuAAcAk8kJhkXAPa1TfC1/bFIBOIjckV4CFgD3Tth1aWpz/ovID18WyYuj/6ufTRHWqasePGQ4uW9jDLlvY+4Je922tKZBDSDH3XHKVOD55FEsK4G/XHPw5VtqG1XP9ad7GdtMg099rQOQ1P89dPSZm4Df1joOSdLAUYtFFV3EUZIkqXPlUS13lrfnmLDr0hLwt/LW2fl39FmAfeyEvW7bCPym1nEMVNccfPkicmJOvcQ20+DhuypJkiRJkiRJklQBR7JIkiSp15VSgVKq7vM81a5PkiRJkiplm2nw8F2VJEmSJEmSJEmqgEkWSZIkSZIkSZKkCjhdmCRJknpdkaBIVL1OSZIkSRoIbDMNHo5kkSRJkiRJkiRJqoAjWaR+YtpVFw8DDgRGARuBuQtPmL2utlFJklQZF3GUJEnS1igt37sAvAAYDzQD9xcmPLC0pkENIhfNO3ws8HxgGLAauOuMmbc01TSo7ZxtpsHDJItUY9OuungccBLwLmAX8u9lEVg57aqLbwC+s/CE2d5USJIkSZKkQae0fO9G4Bjg3cDeQCNQAjaUlu/9C+A7hQkP3F27CAe2i+YdvgdwMvA2YAx5ZqNmYMlF8w7/PnDVGTNvWV+zAKVBwNSVVEPTrrp4MnAd8DHykxqrgGXASmA08CHgxmlXXbxPzYKUJKkCrfMLV3uTJEnSwFFavvdQ4KvAp4GZwHpyv8gT5H7Lo4EflJbvfXjNghzALpp3+IuBG4D3kkewrCC/v2uAKcB/A98rj3JRldlmGjxMskg1Mu2qi4cA3wCeBzxO/kPXRH5aoxl4kvyHb3fg8mlXXTymNpFKkiRJkiT1iXOBN5Onr1oGbCL3ixTL+x4lT6v+hdLyvV9QiwAHqovmHb4b8HVgIvAY8BTQQn5/t5D7op4EXgJ8+aJ5h9tPLFXIXx6pdt4IHEB+OqOlkzJF8k3GnuRhnZIkSZIkSQNeafneU4F3ABvIyZXOLCNPc3VyFcIaTI4BJpHfv9RJmSZy8uXlwIurFJc06JhkkWrnGCDIf9C6UiQ/ZXDctKsu9ndWkjQgpBRPL+RYrS0lh75LkiQNIG8HRpKnrurOeuCw0vK9J/VtSIPDRfMOHwa8k2dmTOnKRvI6OEf3dVx6NttMg4cdtlINlJMl+5P/kPXEemA6+ckNSZIkSZKkgW5/cgKgs1EWba0jJ2Rcs7ZnpgA7kd+3nmgCDuq7cKTBrb7WAUjbqbry1t3TBK1K5N/Xhj6LSJKkXlRMBYqpus/zVLs+SZIkbZMh9CzBQrlcYL9ITzWS36+evr8l8v+Hqsg20+DhuyrVwMITZjeT57zs6R+wIeT5SXsyhFaSJEmSJKm/W0p+ALUnGsmjLZ7su3AGlRVAMz3vd2okr90iqQImWaTauZH8BEZPJkMcBvx44QmzN/dtSJIkSZIkSVXxM3qeCNgReBCY26cRDRJnzLxlOfAHYFQPiteR+4hv6tOgpEHMJItUOzcCa4Hx3ZQbS1675fo+j0iSpF5SImqySZIkacD4PTlxshNdP4A6rPz1e4UJD/R02nXBteQk1g7dlNsZeAL4cZ9HpGexzTR4mGSRamThCbMXAecDRWACz10jqY6cgGkALlt4wuy7qxqgJEmSJElSHylMeKAF+Dh5CrBJPHdESwCjyQ+f/gL4flUDHPh+BVwJjATG8dx+4Aby+74RmH3GzFtWVzM4aTAxySLV0MITZl8DnE5+YmAXYDdywmXX8vdrgXOBL9coREmSKtK6iGO1N0mSJA0chQkP3AWcAPwLGEPuD5lI7vyfRE60XAV8qDDhgaYahTkgnTHzlgScB3we2EJ+X3flmX6nnYDFwH+eMfOWX9Qqzu2ZbabBo/2T85KqbOEJs2+YdtXFPwcOB15Dnmd0HXnuzB8vPGH26hqGJ0mSJEmS1GcKEx64q7R87zcArwTeTE6uNAF3AzcWJjywuIbhDWhnzLylCHz+onmHfxc4EngxMII8euiXwC/PmHmL6/9K28gki9QPLDxh9nrymiuuuyJJGhRKKSil6s73W+36JEmS1DvKU4f9prypl50x85YngP8tb+onbDMNHo4PkiRJkiRJkiRJqoBJFkmSJEmSJEmSpAo4XZgkSZJ6XZECxSo/z1Pt+iRJkiSpUraZBg/fVUmSJEmSJEmSpAo4kkWSJEm9LtVgEcfkIo6SJEmSBgjbTIOHI1kkSZIkSZIkSZIqYJJFkiRJkiRJkiSpAk4XJkmSpF5XokCpys/zVLs+SZIkZfcsnjwGeCvwDmAyUATuAa4Dfrv/lCXNXZ2/YdnU8cCR5W0i0ATcWT7/j8BOwCzgbcAuwBbgr8D1wJ9HTFxU6ur6ty6YuRvw9nKMOwGbgT8ANwB/e+P0eWkrX7K0zWwzDR4mWSRJkiRJkiRV5J7Fk18DfIGc/CiREyABvAl4I3DPPYsnf3D/KUsWd3T+hmVT3wp8GhjX7vy3AW8GHgXGAjuQkzdN5ePvAI4A/rxh2dQPjZi4aGX7a9+6YGYAJwOnl89vAZqB0cC7gaOBX966YOZH3zh93rptfS8kbZ/6beoqIj4ZESkivthNuaMi4v6I2BwR/4yIw6sUoiRJkjpRTFGTTZIkSdVzz+LJLwe+BowHlgPLgKeAlcBSYBVwEHDlPYsn79z+/A3Lph4OXAqMKZ/b9vzHgAS8CJgCPF6uo+3xdcCrgW9tWDZ1ZAchngicDQwpx/N4+fwny+dvJCdyvnrrgpmN2/BWSFvNNtPg0S+TLBHxIuD9wD+6KXcIcC3wbeAA4EfAjyLieX0doyRJkiRJkrS9umfx5DrgfPKokGXkUSbtbSEnRmYCH2x7YMOyqcOAc4Gh5TLtp/wqkKf2KgF15NEs7W0CngAOBo5re+DWBTN3IY9ggZxU6WhKsA3khM1ryVOVSdJW63dJlogYCVwDnELOdnflVOAXKaXPppT+lVI6C7gL+FAfhylJkqQulAhKqcobPpUlSZJURa8E9iInMLrSQk6GvOOexZN3aLP/MGC3Ls4fQ17qoIWcIBkLHd7wNZETMcduWDa17dIIs8rXeM40Yu1sLl/32PL0YlJV2GYaPPpdkgX4KvCzlNKvelD2pUD7creW90uSJEmSJEnqG68BGsijVbqzmrzmysvb7HsdObnR3Mk5rQmZRB4l0wgM7+L604D92uw7nJx8aT9CpiNrgOcD03tQVpKepV8tfB8R7wIOJM+12BMTyHMptvV4eX9ndQwhz8PYatTWxChJkiRJkiSJMVtRtkhOqIxus691ofvOtO23bJ3qq66Tss3l8m2vP5bOEzgdnT+i3fmS1CP9JskSEZOBy4DXp5Q292FVZwDn9OH1JUmStnt5OHp1B02XXMRRkiSpmjZtRdkobxvb7NtA17PsdJSA6SwpU1c+1vb6m+g8KdOT86U+ZZtp8OhP04UdBOwM3BURLRHRArwK+H/l7zv6UFwO7NJu3y7l/Z25iJyVbt122+bIJUmSJEmSpO3LX8mJiZ48xL0DsBa4s82+28tfO+ufXNfm3/Xk0TCdJXZ2IK/tcl+bfb8jT2fWEzsAS4BHelhekp7Wn5IsvybPffiCNtvfgWuAF6SUih2cczvw2nb7Xs8zH9LPkVLaklJa27rx7A9sSZIk9YIiUZNNkiRJVXMLsIw87VdXgjxd/y/3n7Lk0Tb7fwSsIk/r1ZHVPJPEKZTLdtQ/WACGAjeMmLhofZv9N5JHpnQ3BVh9ebv2jdPn9XR6MWmb2WYaPPpNkiWltC6ldG/bjTxscGX530TE1RFxUZvTLgMOi4iPRcQ+EXEu8ELgK1V/AZIkSZIkSdJ2Yv8pSzaS++YSnSdKApgIrAC+1vbAiImLngS+wXPXUmnVTB6d0jqK5ckOytQBk4CFwFVtD7xx+rz7geuAkeT1VjpST17b+V/ADzopI0ld6jdrsvTQFNrMvZhSui0ijgUuBD4NPAi8rTUpI0mSJEmSJKnPfJc81dZHgV3JI0da11oeCTQCjwP/tf+UJfM6OP8r5FEup5TPXw9sIT8YPoqcRFlOTtaM7+B4PXmKr1NGTFz0WAfXPwcYBrydnMhZDzSVr9t6/XnAf7xx+rynKnwPJG3n+nWSJaV0aFffl/fdANxQpZAkSZLUAylF1RdVTC7iKEmSVFX7T1mSgK/cs3jyHcA7gTcDw8uHnyCPDrl+/ylLlnR0/oiJi0oblk39NPCH8vlvII86SeQ1Uq4l9/v9G/Au4DVtji8Cvk+eJmxFR9d/4/R5TbcumPlR4OfAMcDLyMmfEvAAeZmCOW+cPm/VNrwNUkVsMw0e/TrJIkmSJEmSJKl/23/Kkr8Bf7tn8eQLyCNOWoBl+09ZsqW7c0dMXJSAPwJ/3LBs6o7kNV6agWUjJi5qKhdbDvx2w7KpY8vHt5SPd7uGyhunzysBtwK33rpg5nhgTPn8x944fV5Ha7xI0lYxySJJkqReV0oFSqm6y/9Vuz5JkiQ92/5TlqwB1lR6/oiJi1aRF7jv7PhTQMXTer1x+rwV5PVhpJqzzTR4+K5KkiRJkiRJkiRVwCSLJEmSJEmSJElSBZwuTJIkSb2uRFCiuosqVrs+SZIkSaqUbabBw5EskiRJkiRJkiRJFXAkiyRJknpdMQXFVN2npKpdnyRJkiRVyjbT4OFIFkmSJEmSJEmSpAo4kkXazkz/7kWvSiX+AxgLbIzg/wi+veA9ZxRrHZskafAopQKlVN3neapdnyRJUjVddv/rhgNvBKYDATwK/OLUfX61hoghK0cOP6a5vv6jw7c07QawaUjD0rpS+uJOa9d/j5Q2/+SR/XYADgMmAwlYCNz6lt3/sQHgNwtnjCkf37V8/BHgl6+ZNn9jVV/odmjOwwcE8ALgpcBIYB3wh1l7zL2vN65/w8MHFYCXAAcBw4DVwK+O2uPOR3rj+qqMbabBwySLtJ2Y/t2LXp2K8Y1UKuwOFEgkgkhwZET6n+lXX/T5Bcef8ZlaxylJkiRJkp5x2f2vawD+EzgBmEBOgEBOtJz5ywtm/vVlQxqPGrd+46i/7jWt6e7dJzeliLT/giV7vmT+gss3Dmn44gPn7nYdx499ITC+3fmP/+SR5/9geDQNi+DtwLh2x5f9ZuGMq4CvvWba/JYqveTtypyHD3gJMBs4ABgClMizD22e8/ABdwCfmbXH3Lsrvf4NDx/0RuCjwL+R+4IT+f929g0PH/Q74H9MtkjbxiSLtB2YfvVFbykV4weUYiiRisBmCrTeNtWlUoxNKS6YdvVFExcef8apNQ1WkiRJkiQBcNn9r6sHvggcCTQDTwCtyY663W57asJrLpx/8iP77lT66NuPXnrvrrutaHv835Yt3fmrc66ZsN//LD150+SGx5989ahlQOtMFvWQxg6JlnOBlBKPR/D4s4+zE/BJYM/fLJzxURMtvWvOwwe8DvgKMAZYBTzZ5vBI4FDgeXMePuB9s/aYe9vWXv+Ghw86FriQPHrlKWBT+VAAo4B/B/a74eGDjj9qjzv/VeHLkLZ7jg+SBrnp371oVKkYV5NiKJE2EzTTusZVAEGRSJshRWopfHD61Re9vZbxSpIGh1KKmmzSYBcRZ0TE3yJiXUQ8ERE/iogZPTjvqIi4PyI2R8Q/I+LwasQrSdpm7yMnWFYDbRMo1G0pld54+n07L3n+junmy/cvjTtkfbQ9DhT3OuTx9NfvTC0tfdHodODHloyv21gqtTne0hgtDXWUGkpQn6COZxIslK+1AlgDvAM4pW9e4vZpzsMH7ApcSk52PApsaFdkPfAYebr3L895+IBxW3P9Gx4+aD/gPHKy7DGeSbBAfux2LbAU2A342g0PH9RYwcvQNrDNNHiYZJEGu8QnSLEDpCY6+xzN+7eQqEul+Gj1gpMkSdJWehXwVfK86q8HGoBfRsSIzk6IiEOAa4Fvk6ci+RHwo4h4Xp9HK0mq2GX3v24IcDw52fGcdVFm/HjZjiNXNhV+8on9WrbUNxR33/HJHYc3bKlrPT68fkvd/uOWjG2ury/98Yw9WoasKRZ2vXHV0x31Qaqvo7RjghaIBDEupQ77CjeQky/H/2bhDDvie89R5JFCy7sok8rHJwFHbOX1jyOPhnmiizIlciJtb+B1W3l9SWUmWaRBLpXi3eXZNktdFgwgUimV4qDp371oclWCkyQNWiWiJps02KWUDkspXZlSui+ldA9wIjCFvJBtZ04FfpFS+mxK6V8ppbOAu4AP9X3EkqRt8BryIvWrOjo44+bHJyw4YFxasdeolqZiXbGxrqVu77GPj2k9/oKdFo8eXt9Uv7mlvmXttGEtS14yJu1605pdWo/XURwd5dErAcWUE/c7dBLLKvLfm1f31ovbns15+IA64F3kKeBSN8VL5CTXsT29/g0PHzQGeAsdJOc60ETuIz66p9dX77DNNHiYZJEGuZQYT6SuEyzPKAJ1JHyqUZIkaWAYXf76VBdlXgr8qt2+W8v7OxQRQyJih9aNPJWJJKm6ppS/Nnd0cIdlmxuWPH/HBKRU7jgdNWTz0yNNxg7d0JiARIGA9Ph+o9LwZU0NrccLQWPu3Q8od/Qn6GykSlO54JROjmvrjCaPYulJEgTyVF+T5zx8QE9HEk0Chm/F9bcAe/WwrKR2TLJIkiRJ0gAUEQXyYsh/Tind20XRCcDj7fY9Xt7fmTPIc/C3bo9WHqkkSZI0eNXXOgBJfSuCFakUU4nuRp8CrYvcBV010iVJ6laqwaKKyUUctf35KvA84OV9cO2LgC+0+b51UV5JUvUsLn9toIPRLGsnDm2e/M9VQ4EIUgJYt2VoU+vxpzaPaAry7OElCrHLP9bFxomNTx8vJZrqA1KeYzwAIo9Y6UgjebTL4k6Oa+usAZ4kjzhZ34Pyw4D7Z+0xt7P/n/aWkkexDCePUunOEODBHl5bvcQ20+DhSBZpkItC+h5BHh/clQSkKEQh3bngPWcsqUpwkiRJqkhEfAV4M/DqlFJ3yY/lwC7t9u1CFwvtppS2pJTWtm7Aum0KWJJUid8AS4AdOzo4/4hdlk+fuzLGP7iuvrGuWNdUrC8+8NQuq1uP3/3klDUbWxpbhta31O+wcFP95L+sjseOHP30yMYidWtSedrwBHWREzlrO4llR3KC5be99eK2Z7P2mFsEfkBOoHXX610gPxT7/Z5e/6g97lwN/IScZOlOI3ndl+t7en1Jz2aSRRrsgs8SaS1EY6dLqeX9QwiKUUhf6KSUJEk9VkqFmmzSYBfZV4AjgdeklBb04LTbgde22/f68n5JUj916j6/2gJcTZ6JZkT74/PfOnHV+nGNpbd89h/1Q1qa6x5ZtdOqjc1Diq3HN7YMKd6zcvJTDS0thVdc9HD9ltF1pUeP2nFl6/FEtBQprAqohxSQVkbQ0ZquI8id/Fe/Ztr8no6kUPduII9m6Wr6zigfXwrcvJXXv4Y8SmbnLsoUgPHAAzx3/Tb1MdtMg4fvqjTILXjPGesKdel4Im0mxVASDU8nW/IKeHWkGAqRor709QXHn/HDWsYrSZKkLn0VeDdwLLAuIiaUt2GtBSLi6oi4qM05lwGHRcTHImKfiDgXeCHwlWoGLkmqyDeBm8gLpY+nzdT/xSGFwq2X7PvE5H+uiiNOuaew8raRiWcvDVD/4G27xItPXlSY9Lc1cdcXJq8oDSu07Qusb0r1LUUKTQVoiTyaoa7t8XKdo4Ebgcv76DVul2btMfcx4DTyaNHdeG4ibSSwK/AU8OFZe8xdyVY4ao87/wGcA7SUrzOszeEAdiBPV/Yo8J9H7XGnCTSpQq7JIm0HFhx/xk+mf/eiN6ci30il2B0YSolE5InEopCeirr0+QXHn/GZWscqSRocSomqzy9c6tHyY9KA98Hy19+1238ScGX531PgmSeRU0q3RcSxwIXAp8lzrr8tpeQ6fJLUz526z69aLrv/dR8B5gMnABPh6Ucn49FDxj75mzNn/Oxl//Pw0T+d+5VJf91r2k737D65KQH7LXy04SXzFwzZOKRhwz/+e9J1Tx466oXk6SKfPh/i8S2p/qvDo2lYBG9vdxxgGXk0zddeM21+SxVe8nZl1h5zfzXn4QNOBE4HDgDGkP+GB7CZPD3bxbP2mHt3Jdc/ao87v3/DwwetBD4K7EOe9i2RH7zfAPwM+J+j9rjzkW16IaqIbabBI1Lavt/ZiNiBvNjU6PJcw9KgNv27F70qlXgvMBbYFMH/EXx7wXvOKHZ3riSpf+pP9zOtsbz15yfObdxhaEfTTfSZprWbCz9+05UH0A/eB2mw6U+fM5K0vbrs/tcNB94ATCd3wj8G/OLUfX61hojGlaNGHNNcV/fR4VuaJgNsGtKwtL5YunTcug3fI6UtP3lkvx2Aw8ijJgAWAre+Zfd/bAD4zcIZo8vHdyV3xD8C/N9rps3fWMWXuV2a8/ABAewPHEIewbIO+P2sPebO643r3/DwQQXgJcBBwFBgNfDr7Sm50p/uZWwzDT4mWfrRL5gkSVIl+tP9jA0GaXDqT58zkiRJW6s/3cvYZhp8nC5MkiRJva5EUKLKQ9+rXJ8kSZIkVco20+DhwveSJEmSJEmSJEkVcCSLJEmSel0pRQ0WcfSpLEmSJEkDg22mwcORLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBpwuTJElSr3PouyRJkiR1zjbT4GGSReoD0668OIAXAOOBFcDdC0+cnWoa1AAx7eqLxwLjgCZg2cLjZzfVOCRJNXTRvMPHAWOBLcDSM2be0tIX9cx5+IAxwE5AC7B01h5z/eyRJEnSgHPq3GOGAxPK3z5+2QHXbmh7fNOy6bsAM4EScO+wiQtWVjnEAeuPC/cMYGdgNLARWPqKaQ+VahuVpP7AJIvUi6ZdefFo4FyCd5E761o9Oe3Ki38AnLvwxNlrahNd/zXt6osDeAXwTuD1QAOQgMenXX3xtcD1C4+fvbyGIUqqoovmHV4ADgXeBbya/JlQAh67aN7h3wduOGPmLU9uaz1zHj4ggJeU6zkMaCwfemLOwwf8ALhu1h5zl25rPdsrn8qSJEmqnlPnHjODfF/7dmBUeff6U+cecxPwg89M+MseBQofr6fu4IA6gAQtW5btfluJdPGwiQt+WaPQ+70/LtyzAXgTcCzwQnJ/ahF46I8L9/wecNMrpj20voYhaoCyzTR4uCaL1EumXXnx7gT3Evw/8pMNJfIf3RKwM8H/I/jntCsv3r2mgfYz066+uACcAVwNzAIC2ABsBnYrH7t52tUXH1CzICVVzUXzDq8HLgCuAN5S3r2e/JkwDTgb+NFF8w6fuS31lBMsHwO+DxxNbmhuADYBE4HTgZ/MefiAF29LPZIkSVJfO3XuMW8DbgY+QE6wbCxvI4H3jSg0//m+TTvNqaPw8oC6BMUExYD6OuoObaDuJ5uX7X5h7V5B//XHhXuOAL4BfA14JbmfZz159o3nARcD1/1x4Z6TahakpJozySL1gmlXXjyC4DfAJPIf2s3kKWeK5a+by/t3JfjNtCsvHlazYPuf/ypvzcBjwBry+7UReBxYBkwBLp929cXTahSjpOo5HTiJ/DnQ0WfCcmBP4FsXzTt84jbUcwrwEcojZIDVbep5gvzZMwn43zkPH7DXNtSz3Wp9KqvamyRJ0vbk1LnHvAr4LDCCfF+7kvzg0CZg5ahoaqmnNPpn63erv3/LqKaU+yaK5ERLUyJtBurqKZy+adnuH6rV6+iP/rhwzwLwOeBwcrtkKbCO3G7YQG4zrAAOAi4vJ2SkHrPNNHiYZJF6x0fJoy6ayR12HSmVj+8GnFaluPq1aVdfPA74IPl96WwatRL5xmU34OQqhSapBi6ad/hu5ATLJnLjpSNF8mfCdOA9ldQz5+EDRgMfLl9rVSfFSuRG1ERyQkaSJEnqV06de0zr6OyR5AeS2kmMqmveZWS0RFOpLv1uw4SGUgerxSbYAlFXR3xq07Lp9sA+44U8k2DZ1EmZZvJDWgcAR1QpLkn9jEkWqTcEJ5KnuSp2U7IIBGGyoOxIYEfgqW7Klcg3NLOmXX3xjn0elaRaeTu5gbi6m3JF8hN477xo3uHDK6jnLcA4uv/sSeQn1N465+EDdq6gHkmSJKkvHQTsRycPDo0sNI8vQD1BGl5oTk+0DC0sah7ZYV9gIjUXiPHAMX0Y70DzTmAIeXqwrjSVvx5XHv0iaTvjL760jaZdefEIYDLdJ1haFYEp5fO2dy8tf+1s9E9ba8gJmf36LhxJNfYK8udBB8/XPccaYDxQydosB5PvgXryub0W2IH8ZJq2QiIoVXlL+OClJEnarryYnATY2NHBoVHcofzPVE+iRLC4eURnfYFFoBDE4X0Q50B1KJ2PYGlvLbAPuY0i9YhtpsHDJIu07cZW+bzBZAQ9S7BA+YYPqOSpdUkDwwh6nrAuUflngp89kiRJGgyG0sV9bbTp94tyv2pzKnTRwxqQR5YrG4btBkk9UF/rAKRB4AnyU9c9TVoG+Y/0E30W0cCxkp6/bw1AC52v3SJp4HuSnt+btH4mrK6gHj97qqBE9RdVLPlUliRJ2r6sId/XBh2MBi8RTz/AlMpHh0axu1Hj3U2puz1ZDezaw7KN2G7QVrLNNHg4kkXaRgtPnL0FuIee/z4VgHvK523vfkW+EWzoQdkxwGPA3/syIEk1dWv5a10Pyo4GHgHuq6Ce35CfNGvsQdkx5EVE/1JBPZIkSVJf+i15qrBRHR3cWKpfSW5zR1MqUE9i7yFrOxs53gCpmEjf6qNYB6KfkKdj64mRwJ9eMe0hk1TSdsgki9QbEl8jj07pLlnQAJRIfLXvgxoQfgE8CuzUTbmG8nbtwuNnN3VTVtLA9RPyaJbuPhOGkO9hrjlj5i09nV6srV8DC3pQTwM5EXPdrD3mdjjPtSRJklQrlx1w7SPA78hrCD6nj29Tql9TJJpJxKZUH1Mb1xd3rt/c4UiWIOqKpIeHTVxwW99GPaDcQF70vrvp3keQR7H8oM8jktQvmWSResdVwG3kp687S7Q0lI/fBlxdpbj6tYXHz94EnAtsBibQ8WfSUGAX4C7giqoFJ6nqzph5yxrgAnIDZRc6/kwYTl5M8s/AtZXUM2uPuU3AOcAGYGIn9bR+9vwD8Gm+CpRS1GSTJEnaznyGPOvDRDroj1jV0vjYmlJDGl3XHK8bubSlg/MLAUMTaXOJ0n/2dbADySumPfQQ8FXyg1djocN5lkaRR9nfTJ6tQ+ox20yDh0kWqRcsPHF2InEYiT+Q/+gOJf8Rbt2GAkHiDyTesPDE2d3NgbrdWHj87FuA08hznU4g3xiOBcaR5z4dDfwROGnh8bPX1ihMSVVyxsxbbgDOID8xNpH8udD2M2EkufHy/jNm3lLx6JJZe8z9NfBh8siZiXT82fMX4KRZe8x1yL8kSZL6pcsOuPZB4ATgIfJI7Unk+9qxwKTN1A8leOjo0Qs2Tqzf3BjE0IDGvMXQIBoTrG+heMywiQt+W8OX0l9dBnyOPHvJJGBn8ns7ntxuaCSPYPn4K6Y9VMkoe0mDQKS0fff1RsQO5EWpRqeU7MDVNpt25cVvAj5KcDD5KZJmEncAX1h44uyf1za6/mva1RePB94GzCJ3djaR11+5DvjTwuNne7MibUcumnf4BOBI8mfCeGALOelxHfCXM2beUuqNeuY8fMBY4AjgHeRGUzMwt1zPH2btMbejp/36nf50P9Mayytu/uDchlFDe+X/qaea120u/PGIrx9AP3gfpMGmP33OSJKe69S5xwwDDgOOBmaUdz9Evq/9+Wcm/GVYEGcUiHcGMQ4gkVaUSN9PpEuGTVywqjaRDwx/XLjn7sDbgTeT123cQF7r8Xrgn6+Y9tD23cE6APSnexnbTIOPSZZ+9AsmSZJUif50P2ODQRqc+tPnjCRJ0tbqT/cytpkGn/paByBJkqTBpxbz/Tq/sCRJkqSBwjbT4OGaLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBpwuTJElSr0spSFUeil7t+iRJkiSpUraZBg9HskiSJEmSJEmSJFXAkSySJEnqdSWCElVexLHK9UmSJElSpWwzDR6OZJEkSZIkSZIkSaqAI1mkXjbtikt2AN4CHAqMBtYAvwN+svCk09fWLjKY+u1LhgJvBN4A7ARsAO4Ablr03tOfqGVskiRJkiRtz978w9Pev37dsI9v2dQ4MUE0DmlZNXLUpu/WFUpn7TF9abGOdMSQuuYPN0RxdyBaUuHRzaWGbxVT4aovHnhd6ura77z9AwEcABwJ7Akk4EHgh8A/r3vpN7o8f1vNXzKpDngF8GZgN6AZ+Cdw44zJSx/py7p7Yt6SXYcBhwGvB8YB6yn3l8yc/NiKWsYmqf+LlPr0M7Tfi4gdyJ3go1NKNe0A18A27YpLAng38AlgfHl3Eagr//sJ4LPANQtPOr3qv3hTv33JG4ALyDczhXaxrQG+CXxx0XtPL1U7NknStulP9zOtsRw858Nz60cNrerflJZ1mwt3zPryAfSD90EabPrT54wkDTZH/OjU/VY8Meb361cNH1MqFYAEAaQgCokxY9Y1vepF/1w1asjmcYVIhQSJBBFEKUXaVGp4fG3zsLd/4cDr/9LR9d95+wd2Bb4IvAgYSu4PgNw3sBm4DTjtupd+o08evpy/ZNLzgS8A+5Af+C6RX2EAG4GbgbNmTF66oS/q7868JbseBpxP7i8Jnt1fshr4X+BLMyc/Zn/JANaf7mVsMw0+Thcm9Z5TgAuBHYHlwGPtvo4F/gd4b7UDm/rtS94EfA2YDDzZLrZlwBDgY8C5U799iZMzSpIkSZJUBW/70akzlj067q9rnxw5hkipvrG51DCkpdTQ2FKqb2wuDR2yOb14xoONI+u27FIqBU2lwubmUt2W5lS3palU2FxK0TKirmnC2MYNt55219EvbH/9d97+gYnA98mjSDYCj5L7AZaR+wQ2A68FvvfO2z8wrrdf3/wlk54HfBd4PrmDu7UfYml5KwHHAN+Yv2TSkN6uvzvzluz6ZuArwK7ACp7bXzKU/DDtWfOW7Gp/iaQOmWSResG0Ky7Zh/xHNwGP88xTIa2K5f0JmD3tikv2rlZsU799yY7AZ8g3BkvJQ3LbKgEryVOHnQC8plqxSZIGr5SiJtvWioj/ioiFEbE5Iu6IiBd3U/6oiLi/XP6fEXF4u+OzIuKXEbEyIlJEvGCrg5IkSduN1WtG/GTjumFD6hpbUl19KUWb25kIeN4ei2KnHdewcdMQNm9urOdZi1YHJaLYVCpsGVJoGTmqfsv3OqjiTGAGOWGwsYPjG8hJhf2A03vthQHzl0wqAJ8DduGZhE5biZx4WUlO9JzUm/V3Z96SXccBF5H7S5bReX/JRuBk4FXVjE+D30BpM4Htpu6YZJF6x1HAKPIoka48WS53dJ9H9IwjgJ3JT2R0ZS3QCBzb5xFJktQPRMQ7yVNXnAccCNwD3BoRO3dS/hDgWuDb5DnNfwT8KCKe16bYCOBPwOy+i1ySJA0Gb/vRqXuufnLUnhEpFQrPnc+/saGZqRNWUCzWUSIoFgukUnSwvnKkYioUh9dt2f2jdx39dCLgnbd/YDJ5TdZ1PPdh0LZayMmWI955+wfGd1Fua70UmAk8RU6odGYzOaFx3Pwlkxp6sf7uvI28Xm1306StIfeXHNPXAUn9ke2m7plkkbbRtCsuKQCzeO4TGZ3ZDLy9fF41HEm+WenqhqrVOuCVU799SYcfkpIk9VQpQSlFlbetDvOjwOUppStSSvOAD/DMk4odORX4RUrpsymlf6WUzgLuAj7UWiCl9N2U0vnAr7Y6GkmStF3ZtLnxgpamuqirb+nwLmbSuKdiSEMLTc31efxKCootdR0mIYqJ5rpIdY2Flv9ss/swYCT5ocrurAFGk5MyveVwcnJiUw/KrgKmAV0+Hd/LZpH7S3qyJsZ64DXzluy6U9+GpO3JAGkzge2mbplkkbbdyPK2pYflt7Q5pxomAk09LLuFfAPkTYMkaSAbFRE7tNmeM793RDQCB9Hmpj6lVCp//9JOrvtSntsIuLWL8pIkSZ0qFgu7AUQnvXNDGvPsVYl4epaw5453aRUkoBCp7UiU8eQRJD3pVm1NNvRmf8CEHtYNuT+ioZfr785Etq4vpwHo9XVrpBrpts0Etpt6yiSLtO2ayTcNPf19KpTL9zTxsa2aePakrV1pja39PKSSJA0kj5KfxmzdzuigzE5AHXnNtLYeJ3cIdGTCVpaXJEnqVETaAtFp4qSUWrsZepinyMXatue3tt8h6N3+gC30vD8iqH5/xBZ63pdTi/ikvtSTNhPYbuqRDuZxlLSVNgP/Al5E/lDqzgjgr/T8aYlt9Xdgjx6WHUX+0FvSd+FIkrYH27Ko4rbUWbYbeQrMVtX6mytJktRjjY0tv4lC6bWpFBF1z021rF43nFIK6golisU6AAqF1OHUVkEqENBSqvt7m93zyImBRrpPuAwlTzN+XyWvpRP3kqfkKtD9lFyjyOvCzOvF+rtzJ/D2HpYdBSwld0xLvcI20+DhSBZpGy086fQEfJ/8VEN3C7S1Hv9++bxquJ78pMXwbsoVyPH9YNF7T+/p+jKSJPVH61JKa9tsHTUYniR3JOzSbv8uwPJOrrt8K8tLkiR1qnlL/UXDRm7Z3NJSHx2NZlmxenRas344QxpaSAkiEnX1xQ6TJXVRamgu1W1uSnWfa7P7V8BiYGwPwtkReJC8EHVvuYln1nrpzg7Ab2dMXrqwF+vvTmt/ybBuyj3dXzJz8mPVmpVE6ms9aTOB7aYeMcki9Y6fkp+22IU8hK4jdeXj84CfVSkugL+Qb5LGkp9e6UiQ5yJ9DPhBleKSJA1i1V/AMW89lVJqIj+9+NrWfRFRKH9/eyen3d62fNnruygvSZLUqV8ed0kaO37t9wuFEsXmjhItwf2LdkvFUoEhjc00NDaXykuvPEtdlBoiYF3LsBu+eOB1q1r3X/fSbzQBXyePZhnTRShjgRbga9e99BvFbX5hZTMmL11Gfih1OF0/+DkBWAtc3lt199CfyPdx4+i8v6RA7i95lJyUkXpNf28zge2mnjLJIvWChSedvgE4BZhPvjkYT37KofVph/Hl/fOB95XLV8Wi955eAj5MTrbsRE70DCnHVk++mdqVPOz1A4vee/pj1YpNkqQa+wJwSkScEBH/Ru6EGAFcARARV0fERW3KXwYcFhEfi4h9IuJc4IXAV1oLRMTYiHgBMLO8a0ZEvCAiBu38w5IkqXK/OPpz752w21N/jEKKlqaGQrGlECnlBe5LxYhHlkyMex6YTl1diaFDmqmL1NC6ln2BVN8QxaEFKKxuHv7HzaX693ZQxXeBr5L7JiYBI8n9AQXyFFi7lv/9eeCHffASLypfdwdysmJYub468giX3cjThM2eMXnpX/ug/k7NnPxYCfgQeUr38Ty3v2Qc+T1bCrx/5uTHllYzPqkfsd3UDZMsUi9ZeNLpjwBHAV8EVpL/GE8sf11Z3n9UuVxVLXrv6SuB9wCfJq+3Mroc23hgI/lpkaMWvff0v3d6EUmSBpmU0nXAx4HzgbuBFwCHpZRaF2mcQv572Vr+NuBY4H3APcA7gLellO5tc9m3AnN5ZtTqD8rff6CvXockSRrY/u+4i1+52/QnLt1h7Po1ENHSVF9oaaovlEqFGL7D5s1r07AfrSyNOH1DccjCIEVDoTS0oVAaWohU2FhsXLaiaeRnNhYbX/PFA697ziiU6176jQRcDHyQPHKjkfwQ6ARy4uXXwCnXvfQbXyqX7VUzJi9tAj4CzAb+Qe6YnQDsXC5yI3DsjMlLb+rtunti5uTHVgDvJieDHiWP+JlIfkh1A/BN4B0zJz92Vy3ik/oD203di9TRpI/bkYjYgfL8kCmltbWOR4PDtCsuGQ4cSH5CZD1w18KTTt9Y26iyqd++pBE4gHzjsBn456L3nv5UTYOSJG2T/nQ/0xrLC677yNz6UcO6W+C0V7Ws21S4+51fPIB+8D5Ig01/+pyRpMHsLXM+cnRLS/1rEjTU15Xuatpc/7VfHnfJ0513H73r6FcXonRQQF0xFeaViJ9+8cDretS5987bPxDADGAyeTjMoute+o0H++aVPNf8JZMKwH7kBEsLMH/G5KX9ZjaNeUt2bST35YwBNgH/mDn5sVVdnqQBoz/dy9hmGnxMsvSjXzBJkqRK9Kf7GRsM0uDUnz5nJEmStlZ/upexzTT41Nc6AEmSJA0+JYISW7eoYm/UKUmSJEkDgW2mwcM1WSRJkiRJkiRJkirgSBZJkiT1upSClKr7lFS165MkSZKkStlmGjwcySJJkiRJkiRJklQBkyySJEmSJEmSJEkVcLowSZIk9bpSCkpVHope7fokSZIkqVK2mQYPkyzqdTPmnD8VeD7QCKwE/jJ/1tlbahtVNu2KS3YGXggMA9YCf1l40unrujpnxpzzdwJeBAwH1pFfz9q+jlWSJEmSJPUvu1/76T2AmUADsAK445FjPtVU26iyVB/7b5lQ/8kopb0BUiEealxRvKSwpXRnrWOTpMHMJIt6zYw5578QeB/wGmBkeXcL8OiMOed/H/j2/Flnb6hFbNOuuGTvcmxvBkYDARSBFdOuuOQG4JsLTzp9RdtzZsw5fzrwfuAIYEz5nBKwcsac828Evjl/1tnLqvYiJEkaQFLKW7XrlCRJ6gu7X/vpQ8j9Cq8ARpR3NwOLdr/2098HvvPIMZ/aXIvYSo2xe8voup80FplZ2JKKG57f2JICRt7btH+hKR3dtFPdA/VrSm8pNKcHahGfpI7ZZho8XJNFvWLGnPPfDFwDvJWciHgMeBR4CpgEfBK4csac80dXO7ZpV1zyYuB64N3kxOKycmwryMmTDwPXTbviksmt58yYc/7+wA3AieQROa3nPE5OIH0QuH7GnPN3r9brkCRJkiRJ1bf7tZ8+GrgaeCP5YdLWPo9VwFTgTODy3a/99IhOL9JHSo2xV2qIf5SGxd7zvzR+1Z23TX7gX1dMuPf+70y4984/T54//6s7ryqOLOyeGuLu4rDCzGrHJ0nbA5Ms2mYz5py/H/A58pMcj5Kn4WrNizYBT5CnDXsF8NlqxjbtiksmAl8HdiHfBK0mJ4Eg3xg9CSwnD/X9xrQrLmmcMef8ccD/ArsCS8k3Ta3nFMmvZRmwF/DNGXPOH1aVFyNJkiRJkqpq92s/fTDwP8AQcr/COp7d5/E4+QHT1wPnVzW4iEJxROE3TTvXDfnnDycuWfnWkY+kxtjYejg1xKaV/z7ikX/OmbRoy6T6htQYvyGirqoxStJ2wCSLesPx5BEhy7soswVYA7xuxpzzq/nkxFHkkTTLeOYmqL0W8qiW/YFXA7PIT6Is55nkSntF8o3UTOCwXoxXkqRBIaWoySZJktTLTgZGkfsAOrOZnHw5YvdrPz29KlEBxRHxhobVpd0e/vROq5p3rn+qs3It4+pWP3TJTivr15Z2aRlVeEu14pPUNdtMg4dJFm2TGXPO35m8zsn6HhRfR15w/h19GlTZtCsuaQSOJc+R2lmypNUWoADpXcBx5CRKsZtzmstfj92WOCVJkiRJUv+z+7WfngK8ljxjR3fWkmf4mNWnQbXRskPhvzfu1dC89iVDu3roFYD1Bw19fP2+jc3FEfGpasQmSdsTkyzaVnuS1yjpSZIFcuJi/74L51l2AXam57FtJjgQ2G0rztkIPG/GnPP9XZIk6Vlq8USWT2VJkqReNQMYTs/6CFJ527dPI2qjsDHNWHPIsC0UoqkHxZvXvGzY5rr1pT37PDBJPWSbabCwY1jbqp7829nZVFztJaCh78J5lkpia6zgnAL+LkmSJEmSNNhU2q9QFVGirrQVPSypHiJR33cRSdL2yY5hbavHyQu9De1h+XpgSd+F8ywryfOi9jS2ISQWAxu24pyhwBPzZ53dUkF8kiRJkiSp/9raPo864NG+C+fZSkPjyeEPNTfQs/69wrAHmxtKQ6PTtVskSZUxyaJt9QAwFxjdg7KN5OnCbu7TiMoWnnT6WuBn5DlRu1MA6iBuAH5EXjumO0FOGt1QaYySJA1WpRQ12SRJknrR3cD9wJgelB1KTsj8tA/jae/yMX/YNGTIo83juivYuKxlxx1/u3FoqT6+VY3AJHXPNtPgYZJF22T+rLMT8D1y8mRkF0UDGA88DPy2CqG1uo68bsrYbsrtAjwJ3ARcT55vdaduztkZWA3cuG0hSpIkSZKk/uaRYz5VIvd5JPLaLJ0JYBwwD7itCqEB0Lii+L+pnqapn1m1M6XU+cRhpdQw5bOrdgFahjxe/Gq14pOk7YVJFvWGHwHXAjuQbyra/1wNBSYBK4CPzJ91dnO1Alt40ul/A75IHnGyc/lrW43l2DYCn1h40ukr5886+17gM+SbpF06OWci+QmVT82fdfbSPnsBkiQNUCnVZpMkSepl15Jn5NiR/ABn+z6PYcCuwDLgtHJipjpSWtcypu5DO/10w9A9T39yr7q1pefMMlJYX9ph9/9euefOc9YPaxlXdxoprapafJK6ZJtp8HCxK22z+bPOLs2Yc/6nyCNBTiQnIFoXhgtyMuIeYPb8WWffU4MQvwysBT5CTrQU2sTWQh5dc87Ck07/TZtzvk1em+Xj5NfT9pwisBi4YP6ss2+pzkuQJEmSJEnV9sgxn2rZ/dpPnwYsB47juX0eW4C/A5945JhP/ava8TU+3nL5lgn1jePnrP/yuFs27LHirSM3rTtoSDMBo+ZuaRj/o/XDCpsSWybUfXzIspavVDs+SdoeRNrO01cRsQOwBhidUlpb63gGuhlzzh8HvA3YjzyCZQXwc+D2+bPOrt7THB2YdsUlI4E3Ay8GRgGrgF8Dv1140ulNHZ0zY875w4E3AS9rc87vgf+bP+vsDs+RJKna+tP9TGsse109e27dyGFV/dtfXL+p8ODxFx9AP3gfpMGmP33OSFKt7H7tp3cGjgT2Jc9y8QR5DZa/V3UES0ciJm+ZVDe7fnXp+LqNaRRAcVisb9mxcM2QpcXPkNLCmsYn1Vh/upexzTT4mGTpR79gkiRJlehP9zM2GKTBqT99zkiSuhAR5CnMAtjI9t7xJ5X1p3sZ20yDj9OFSZIkSZIkSYNBTqpsrHUYkrQ9MckiSZKkXpdSkFJUvU5JkiRJGghsMw0ehVoHIEmSJEmSJEmSNBA5kkWSJEm9LpW3atcpSZIkSQOBbabBw5EskiRJkiRJkiRJFTDJIkmSJEmSJEmSVAGnC5N64AU3nR1A491Hnr+lRydEDC8SL95Y3zB2eEvzU3Wkv5LSxp6cuuf1F9YDxYeOPrPfjeCbdvXF9UBx4fGz+11skqT+xUUcJUnSYLX3jRcEUHjgHWcVKzl/n/MuLQBx/zmnVXT+tirXz/3nnFaqRf197Y5F0+uB4sFTF9h3oX7NNtPgYZJF6sQLbjq7rpTixOaWuv9qaRnybylFYa/v/0+xob7lrvr60pcLka6/+8jzn/UHu6mufsq/xuz8zT0bGl83ormpblRLEwDrGxqLD4+b9Kt/W/3E+xqLLYvbnrPn9RcGsD9wFHA4MBzYsuf1F/4KuB7460NHn1mzG59pV1+8Zzm2twFjgJZpV1/8F+Ba4HcLj5/dUqvYJEmSJEmqhr1vvGAI8HrgGOAAoG7vGy9YAdwI/PCBd5y1pKvz9znv0uHAm8rnzwQK+5x36TLgBuCH959z2uN9Gf8+5126I3BEuf6pQNrnvEsfIbftf3z/Oaet7cv6+9odi6bvAbwDOBLYEWi5Y9H0vwA/AH578NQF9l1I6jOR0vad1I2IHYA1wOiU0oD+g6Le84Kbzh63pbn+N01N9fsmiAhK5LWhIiUKEZSGNDTf1thQPOzuI8/fBLBg1NhXj2va+MuW+rr66178wvTj/fYrPjV8ZBq7cX289R//qHvnX/8e9S3FlpWNw18/fd1TvwPY8/oLG4CzgPcAQ4HNQAs5AToUaAJ+DMx+6OgzezQSprdMu/riAD4InAaMLMfSRJ5mcHg5ztuA/1x4/OyV1YxNkvRs/el+pjWW3a84Y27dyGFVfUiguH5T4ZGTLjqAfvA+SINNf/qckaRq2/vGCyYD3wBeAASwCSiR2+31wGrgvAfecdYPOjp/n/Mu3bt8/j7lXa3t+6FAHbASOP3+c067pS/i3+e8Sw8BvgTsWo57U/nQMPLrWQL85/3nnHZnX9Tfl+5YND2A9wEfB0YBW3h230URuB34z4OnLlhRqzhVe/3pXsY20+DTr9ZkiYgPRsQ/ImJtebs9It7URfkTIyK12zZXM2YNPi+46eyGLU31v9/SVP88IhULkTYXIjUVIjWXv24G0uamhpc3Ndf94gU3nR2rG4ftsVPTxv97cOIu9a//yKnNX3jlazc9PGZ806rGYc0Pjxnf9IVXvnbT6z9yavODE3epH9e08f9WNw7bozyC5SzgP8gJi8fIN1Zryl8fI9/4vAP47J7XX1hX5bfiFOAM8g3jY8CKcmyryt+vAV4FXD7t6otHVDk2SZIkSZL63N43XrATcCVwELmtvpTcLl4DPF7+fgTw6b1vvODI9ufvc96lu5XPn0luVy8lJ2VWA8uBZeRZIy7b57xLX9Pb8e9z3qUHAN8EJrWpr7X+ZeXXMAX49j7nXTqzt+uvgpOA/6bzvovVwCuAy+9YNH1kjWKUNMj1qyQL8CjwSfIfrhcCvwFujoh9uzhnLTCxzTa1r4PU4FYsxUeamuv3iUjNhaAl2k1VGAGFSM0RFLc0NxxSSnH0klFjvrNxSGPdKe9+d/O6+qHN7Wc3DGBd/dDmU9797ubNjQ31i0ft+G3yEzDvATaQbwA6sp58Q/BW4NW99yq7Nu3qi3chj2Apkm8iO7IZeAJ4CXB0lUKTJA0QrfMLV3uTJEnqZSeTEyTLySMk2kvktnEjcObeN14wvN3x/wR2Jyc0mjs4v1S+9gjgnH3Ou7TXpvbf57xLA/gUsFO5/o7WgCmSEz8TgNN7q+5quGPR9PHAJ8j/ByvLX9tr7bt4MfCu6kUndc820+DRr5IsKaWfpJRuSSk9mFJ6IKX03+RO5pd0fVpa3mbr0zksNfg1t9T9RyKiEB3efDwtSM0pURi5avNH9lz75Mt/8JIXp3V1Qzq6YXraurohzT94yYvTXmuffMX4VWuPIw/N7SzB0moD+YmMat4MzCI/SfNUN+WayDcxx067+uJ+9XkiSZIkSdK2KCdM3klu+3a3pseT5Id/n56RZZ/zLh1HXt90Ix0nONpaSU7GvKrCcDvyfPJDzKvoOAHRKpH7Jl6xz3mX7tmL9fe1I8l9F91NYd5ETmYde8ei6dWeJUTSdqDfdopGRF1EvIucyb+9i6IjI2JRRCyJiO5GvUhdesFNZ+/S0lI/PSJ1d/NDBERQ2u/eRw8c1tJSuGm//Vu6ywUHMGe/F7QMa2kuvHjewrfzzDyo3VkPvHLP6y+s1tDWN5JvQHoyL+QaYE9g7z6NSJIkSZKk6nohsAt5honutJD72dpO+fUy8iLsPTl/C9AAHLo1AXbjUPK6Lxt6UHYdeQ2T3kzy9LU3kBNEPe272J1n1sWRpF7Ta0MQe0tEPJ+cVBlK7lg+MqU0r5Pi88nDNv8BjCYvcnVbROybUnq0k+sPAYa02TWqt2LXwJdgQoKA1NNFp9LIjVvqAFaMHNn1cyFlK0blPMmITVuGk6e764kW8tDjUeTfi742hu6f0mnVTI5rhz6LRpI04KSUt2rXKUmS1ItGkhem72n7uAiMbXc+9CwJ0Ko329Yjt7LuUi/X39fG0PEUbB1pIf9fDqTXp0HONtPg0R9Hsswnr1VxMPB14KqI6HDhrZTS7Smlq1NKd6eUfk+e4mgF8P4urn8GOXvdunWYjNH2KeDJgERqvxJL56dsHNpYAhizqWeDUlrLbRrSuIX8B74n6sg3Oz15+qQ3rGPrYitSvdgkSZIkSaqGjeS2eE/bxwWePSX4xvLXrVkEoTfb1hvZur6/Qi/X39fW0fMHyKvdryJpO9LvkiwppaaU0kMppTtTSmcA9wCn9vDcZmAueeqizlxEHvXSuu22jSFrELn7yPMfq68vLks9uIEqZ5sL987cdX5zoZD+/b5/9ugP+5vv+2d9c6GQ7t5r8i/Ia7L0xEjg7w8dfWZPR75sq9+S34Oe3AiOBpYAD/RpRJKkAcVFHCVJ0iAwl7xW6egelK0jz2/x5zb7/kpOBPTk/AbyA4xdTZm/tW4nr0fSk76HEeRF4nuz/r72O3LfZk/7Lh4D7u/LgKStYZtp8Oh3SZYOFHj29F6diog68qJeyzork1LaklJa27qR/9hJT2uob/kuQEpdJ1oS1Aek1eOHf+mB0ePvfvftd0RDKnZ5TkMq1r37tjvigdHj71wyYeyV5JudEd2ENDRXx/d7/iq22Y3kacnGdFOuvrxdu/D42T0doitJkiRJUr/3wDvOWkNuHw+j+z60ccCTwI9bd9x/zmlLgZ+TH5zsrmdzJ/IDjL+sNN4O/A24txxbd3ZsU36g+CG572LHbso93Xdx8NQFTX0elaTtTr9KskTERRHxyoiYFhHPj4iLyIt0XVM+fnV5X2v5syPiDRGxe0QcCHwPmAp8qxbxa3CoK6SLGuuLS0qp0NBZoqWUqEsp6hsbWv5ViPSdcZs2/MfOa9aly354w5CGUkuH5zSUWuq+dOP1Q8avW5cmblh7CvAX4KfkRMbwTsIZSr7R+gNw6za/uB5aePzsxcC3y/V3Nl9pAzABuA/4QZVCkyRJPRARjRHR3YMckiSpe98GFgKT6HzWi7HkJMpl5cRMW18FlpfP76wfbjz5IczP3n/OaVu2NeBW959zWgm4mPyA8QQ6TvQEMBFYDXzu/nNOGzArNhw8dcGjwDfJD2d3Nlqonvza/0V1H16VNAD0VrupXyVZgJ2Bq8nrsvwaeBHwxpTS/5WPTyF/8LfaEbic/EF5C7kz+JCU0ryqRaxB5+4jz98wZEjzaxrrW5aUUjQUSzG0VIqGUqIuf18YSor6IQ0t84c0thx695HnFydsWnfXw6PGnfDy+Q+mn3zja0OOvefvw0YWtzSU6gt1I4tbGo695+/DfvKNrw152QMPpYdGjjt+7JaNdz909Jkl4BPkp1xGAbuSbwqGk3+WdyX/jP8W+K+Hjj6z2k9bfJacsGwkT6u3I3nUzSjyzeF48nR+Jy88fvZTVY5NktTfJSBFlbdav+jqi4h3RcSl7fadQ36qc3VE3BQRIzs+W5IkdeeBd5z1KHAy8BC5s34CeWTKCHJyZTfyXchnge+0P//+c057ADiFPFXVRGCXNuePK5/fBJx7/zmn/bC347//nNP+AJwGrCX3M4wv1z2C3A83iTwl2ofuP+e0v/Z2/VXweXKipYFn+lFa+y5a3+9/AicfPHXByloFKXXINlPV9HW7KVLaTt/ZsojYgbwo2ejy9GESAC+46ewRxVKc0dxc/56WYt3EBBGQ6utbFjTUF6+oK6TP333k+c+aIuvREaMPXjtk6LdnrF6xb11KNBcKNJRKFCOYP2b8fTts2fze3TasuaPtOXtef2Ed8FrgncAreGYxtjvJT1n8ogYJFgCmXX1xAC8FjgYOI9+0JHIi9BrgxwuPn72+FrFJkp7Rn+5nWmOZevl/z60bObxUzbqL6zcWFp3yPwfQD96HaomIvwFzU0rvK39/CPAn4GfkB5E+DHyxvNahVLH+9DkjSbWw940XjAXeBhxHnkUlyGuY3Azc8MA7zprb1fn7nHfpzsDbgWPJnf9BXoT9h8AN959zWp8+MLzPeZdOB44i9z2MKe9+CrgWuPH+c05b3Jf196U7Fk0P4CXk1/ZG8sOiibx27DXAjw+eusDlArZz/elexjZT9fV1u8kkSz/6BVP/tf9NZ08FxgY8cfeR5z/W7QkRuy4YuePbN9Q3ThzR0rRs+vpVN5LS0u5O2/P6C3cgP9Gy8aGjz1y9zYH3omlXXzycfCO2GVi18PjZ2/eHhyT1I/3pfqY1linfrE2DYfH7tq8GQ0Q8BZydUvpK+fuvALOAKSmlloj4HPDWlNLetYxTA19/+pyRpFra+8YLCuQRLA3A6gfecdamrTl/n/MurSufXwes6s3pwXpYfyN5tEcq1z+o1le9Y9H0Z/VdHDx1gX0XAvrXvYxtpurr63ZTfe+FKg1e9xx5/iJgUY9PSOmx6fClra3noaPPXEsewtvvLDx+9kZgY63jkCRJzzKE3InQ6g3Az1NKLeXv5wH/WfWoJEkapB54x1kl8gL3Fbn/nNOKwIrei2ir628CHq9V/X3t4KkL7LuQ1JE+bTf1tzVZJEmSNBikGm3bnwXA6wAi4oXAnsAv2hzfhTzPsCRJkqT+xDZTNfVpu8mRLJIkSdLA9b/AZRExk7xw7qPAT9scfxlwXy0CkyRJkqR+ok/bTSZZJEmSpAEqpfTliNgMHA7cCVycUtoEEBFjgQnAN2oYoiRJkiTVVF+3m0yySJIkqdelFKQUVa9ze5RSuhy4vIP9TwEvrH5EkiRJkrpjm6m6+rLdZJJFkiRJGuAiYghwILAz8OeUUsUL8kqSJEnSYNRX7SYXvpckSVLvcxHHqomI/wcsA/4MzAH2K+/fKSKejIiTaxmfJEmSpA7YZqqqvmw3OZJFvWr6NRcNAd4APB9oBFYCty447owHerOeaf/7uQbgUOAgYBiwGvgVcO/C93+81z4uXvDhSwvkhY9eCowA1gG/B/5+95dP67CefW8+twAcDLyifM4G4I/AHfcdcW6po3NmXHBpkIelvQoYVT7nduDP8886rcNzKjH1O5cE8DzgdcAYYBN5HsLfLTr59Obeqmcw2vvGCyYAbwYmkf8kPQz87IF3nLWmpoFJkrZrEXES8EXgB8Avge+0HkspPRkRvwHe1Xa/JEmD1dTvXNIIvJr8lPJQYBXwy0Unnz5vmy8eMeyJsSO/NGxT84kjNm2pD6ClrsCKsSMfnLRi7TtJae60Ky8eAbwJmEHuc3sC+NnCE2cvBph2+WdHlY/vDdSRO/t+tvCUTzzWkxCmffXzY8jt0ulAUF64eeF/fewJgIvmHT62fHxa+ZTFwE/PmHnLk0SMXjFshw/Wl4ofGN68ZRcCNjQMXVYivrzT5nWXk9L6bX6PJKmf6ut2U6S0HaevgIjYAVgDjE4pra11PAPV9GsuCuA9wH8Bk9scCmAjOclw7oLjzli4rXVN+9/PHQmcBuzOM6OxAtgM/B04Z+H7P77NN1Av+PClrwU+Sb45aiB3rAfQBPwDuODuL5/217bn7Hvzua8APgXMJCeZ2p4zD/j0fUec+8e258y44NIXA2fzTGKq9ZxmYD7wmflnnfbrbX09U79zyb7AueRkzlCeyV2XgEeASxedfPpN21rPYLP3jReMBs4C3gLswLNz/iuBa4AvPPCOs5pqEJ4kAf3rfqY1lslfP3Nu3cjhvfagQE8U128sLPnghQfQD96HaomIe4EHU0pHRsQ4YAXwupTSb8rHZwP/L6W0ay3j1MDXnz5nJKm98gOFRwGnAlN5bl/BX4BzF518+vxKrr9xaONbG5uLN9eXSqwbOoS7d5/Mlvo6pj2xkj2W55lm/jl90qNvO/NDK0qFwoQ2pwawgcT/0RJLId5OnqKm7fF1wM+BCxae8okOp62Z9tXPDwE+DhwDjG13/poh9c0/Pfalf25qrC++jfxAZdvjq1/0rQXzXvmlh95cVyo2/nnXmZv/NW5yE6R4/opFjS9ZOn9Ic13d5g31Q48au3ndTyt5f6SBoD/dy9hmqr6+bjeZZOlHv2ADVTnB8gngw+VdT5ETBK1GAaOBhcC7Fxx3xkOV1jXtfz93Mjkh0TpKZkubwyOAHYHHgRMXvv/jcyut5wUfvvRtwOfK11xJvilrNZx8U7MK+MDdXz7t9wD73nzuYcCXyK/3KfIokVbDyuesBf7ffUeceyvAjAsuPRT4Bvkm6ClyQqrVUGAceVTLx+efddqPKn09U79zyQHAlcAu5bg3tDk8pFxPE3D+opNP90nXsr1vvGAMcDXwYmA9+f+v9Y9fHfn/bSjwE+BDJlok1Up/up9pjWW3r581t25ElRsMGzYWHv3gBdtVgyEiNpMbA9/spLFwCvDllNLQWsapga8/fc5IUntTv3PJB8kPSdaT2/Bt22YjyW23pcDxi04+/d6tuXaxEK+LxP811dfz8f94Oz89eH+ivG50SjBx5Wq++rVrOfCRJdy+z/TmY2a/fx7QUj49SOwATCJRTzGegFj5rOP5Yb5RwD3Auxee8okVbeuf9tXPNwJfBw4n902sBorlw4X6QnHMof82b+JuOz4VDfUtywrBKp5ptxb2uWXZrkfMvnvnf7xoSum8qcc+unTI+JVtj09at3LcJ++4cZcXLn+wcV3j8H8fs3n9z7fm/dH/Z+++49usrgaO/84jydvO3kCcEBIaWgiFMlugBcoIM8wyAqWFUqBQWkjCCAUCZABltoVSKAnrZYUZNi17j7DSEELiELK3ty3pOe8fV0psx0NWLFm2z/fzUYul59G9UqSre55zh+koMqkvYzFT+qU6bkp6TxYR6SEi54jIDSJyt4jc0+B2d7LPbTqcA3EzWGpwCY6Gy06V4TozxcCtQx6YnNTnrvjOG3YBLov9uZT6CRZwiYMluFEhtxffeUNuMuWM+sNNQ4HJuOTDEuonWMAlQr7HdYRuGfWHm3rt8NSVg9iUlFlC/QQLsb+X4Dp3N+zw1JUDR0y6qTdumlpR7PkqG5xTHTsnG5g8YtJNQ5N5PYPvmZYL3I57X5ZQP8EC7n1cGvvvSwffM+3HyZTTSU3EJVhW4jqydX/4orjO+zrcdOyz0l05Y4wxBvf71LuZx0cCy9NTFZMOIrKPiDwjIktFREXkqBaO3y92XMNb/+bOM8aYjmLwPdP2xA389HHLbzUc/FaOi4UHAH+LLSmWsOrs0AuRQIADr7mAWXtsSrAAiMCy3t0ZM/Ec3h0xhD3nLgwd89ZHBXVOV1ziJ4QQIKC5bEqwxB/fgPut3gm4tpEqnItLsKzFxaDROo/5Py5emDWw+7pgZW1WoKImO4c6cWt2WZhDrvyyz5y9B+pTt+7k9zhkXZD6ca2/tLDXqgt/8dv5H/cbVpsdDT+C2xTaGGM6m/WkMG5K6mK3iByEW9fxduC3wC9wa142vJmu4RTczJL1zRzjA6tx+4HsnWQ5v8IlMRqdPhujuAviQ4CDkyzneNyMmJUtHLcCNzPkaOAY3GyQlr6My3Ff6GNj5/VL4JyVuFE3x7VwXFMOwSW4VtL89larce/vr5Isp1MZ/tikgbglwsrZvJNeVyWuk3zK8McmWWfUGGPibBPHdHkOOEtEujd8QER2AM4Enk53pUxK5eNGO5/byvNG4C4wxm8t9XWNMaajOBm3esSaZo5R3KjlYbg9ShPie3JUfnU4cN8v9uD7/r2aeGaXdfn1H08nKsLvn3t9cL1SN13UCyMUQqOjpCO4lRP2L77r+m3jdxb/7cY83OurZfPBnGQFw96QPit7+iq+r160NhLsHvVl4/7LOz7yfe+sqog8c+7O4ajv+QO2W9UzK7c20PB5ol6g+uZdj1yTG6ktWJ+df1Lz74oxps1YzJROKY2bkp3JciOxLLuqdlfVIY3ckhp1bzqWIQ9MHoJLmiQyvawat7fJmNaWU3znDT1wswUazsJoTHwmTauTEqP+cFNW7LwaWm52fCCq6Im4xEQkgXM0dtyJuPOi1B9F0tQ5tcDxIybdFGrh2MYcy6Y9XlpSCRw++J5pPZIop7M5DDdlO5GN7dfh9iLaL5UVMsYYYxpxOW4Jyy+Ba3D9htNE5H7cXnUrgavbr3qmranq86p6uaq2di+9laq6vM4trUtTGGNMKgy+Z1pf4Je4wXEtqcVdBzs20edf0avoH74IN47Zv8Vjq3Oy+Gi7wWy7bFUwr7o6Pt+lALc6RQQX+wuedm/iKcpwy5MfWee+X+AS4+sbO2FI71XdsoORYG0kGBE0qiqBmkiwW/zxkbOW9Z27+wAt7Z8bCdcGI6HsSGDgiJXdGnuub3sMWDW775DasBf4Y4sv1hhjOp6Uxk3Blg9p1DDgYlX9ItmCTaexFa7DUJbg8RHchvWtNQC390Wi5dTgZrO0VvfYreHSXU2pBrZBEWTzUSVNqFKlD+7LnPA5uH1tEplh09BQNl9arblyCoD+uMRBV7YVief4w7hE1lYprZExxnQoErulu8yuRVWXisguwHXACbg34VRcn+khYIKqNjcL2KSQiPTADcYZiuvHNfyQqqr+Jk3VmS1uCZgvgStV9e3mDo4dW3eWbmEqK2eMMUkaiLtWsD7B42tpxTWJnJpwjw15OVTm5DTay2gYLH4wvJjd55Ww7dJV2V8M3To+0LT+oUJTy5Upm8eV8f9udNBkfk51yJ0o7kwF3/c2Pn/RyurQV3sMckl1FVDILapuavBmZG7PrWqHrl8+oInHjTFtzmKmdEl13JRskuUbrJNtnGRGwEVbPqTJchJtCYTk6ha/qJ7qFifewWptOcm8Jj9N5XQ2yUygtPfNGGNM2qnqStwSvr8VkT64UbqrbKZC+4otsfwYbnmvUhofwJKOBRuWAWfjRuhl4z4rr4nI7qr6STPnXQL8JQ31M8aYLdHaawV1z2mRiqi0oqkO+O7YcDBQ96Qticebj+e1+adWQaVB9bWZczxVFLH+gzGmU0pl3JTscmGXA+eISPGWVsB0eCW42Rz5CR4fBL5OopwluMxiouVkAXOTKGcdbp3WvASPzwPmISxuzTkifI9LVuYmeE5+rF7JzC6ZC02OlGmsnDJgaRLldDYLcZ3ZRNrJbFzycGFKa2SMMca0QFVXqeoKS7BkhIxYYllVv1bVO1X1Y1V9R1XPAN4BLmzh1Mm4mdTxm83YNcZkou9xy4onGo+36lpBdXZoRfeKKrqXNb4aWcN0xd5z5uMDC/r3ja8mUYNLlHgbT9EmV5qIzUWpF1eWxM5vNKYvrc6tARDxxU1ngYDnb3z+9YPywsVfrPYAEVEQqFyf21T5oR+tKsmuDoa+a+JxY4zpNNo6bkpoJouI3NrI3auA/4nIy8BiNp+doKp6wRbWz2S4hSdfsmTIA5Nfwa0Z2tLeFXm4DsZjrS2n5HcXlRXfecMTuE2IWpKF64Q80tpyZt92YWTUH256CLiUTR2cpgQABHkQl5y4Gtdxau7L6cXOexCkCvhx7O/mZvcI7rv60NcTL0xmFtAjuDVqs2h+A3dwSZ8Zi84Yl+iybJ3ZM8A43PJxa1s4tgcwH3grxXUyxpiOoz02VeyCmziKyBUJHKaqOinllTENZfISyx8AP23uAFWtoc6SsyJdc2kJY0xmW3TGuLWD75n2NDCWlgclxvdGeTTR5x+4asNpCq9d8siLTPjtMc0eW1ReyY9KljBnmwHh2qyNl9sqccty5+Fi+yi+NFXPbrhBj0/Wue81YBGwDbCi4Qklq/qU7rxNSTg7FA5W+wE80Uh2MLLx2syXRw1cfsikr4p7LyoLbhiRo7WVofDSr/s2uqfuD1ct6vuDtd+HSrNypzb7Qo0xbcdiprRJddyU6HJh5zXz2GFN3K+AJVm6hhnAgUAfXPKtMUGgJ/A60NyyBM15CDget1/I8iaOCQB9gc+B/yZZzmPAb3D7wCyj8eZHYvUoAZ7FJTB+BwzCzQJp6pwBuFk5T+DWVD0PKE7gnBUkkZyK+Q8wB9gR93qaStT0x61j+39JltOpzDt24prhj016GLe8Rg5uxlZj4ksn/nvesRMjaamcMcYYs8mVzTwWXwJVAUuypF8mL7E8CtcvNMaYzuAB4GigH40kImICuGsWHwNvJPzMqq+XFuTWHPv2J9kP77MLnw4v3vwYUYgqj193BwLcdNSBm2aiuF/hNbgkSxBlLUhjgx+zcfuj3l9y5sVL4neWnPvn2uK/3fhv4Crcb0q9AZERP6DzV/Zb/aOtFg8MSJRgwF/lebox5v/yqEFrf3b7/G3G/PWj4AO37xFdNHfQ2khtcLOBoXnh6oKLP3i8V3koZ01RbdWTCb8/xhjTcVzZzGNbHDcltFyYqnpJ3ALJVMh0PAtPvuQd3AfQxyUZ6k7T9XDJlf7AF8AFC0++JKmcacnvLvofbmZBVaycukuHebgZBwOAb4Hfl/zuopZmbTRq9m0XLgX+gBsFM4j6wbHgRpfEkym/n33bhaVfHXnlauBcXJJpEFDEppnDEvt7UOzxc7468so1X0+8sBT4fex5too9b90hgoWxc9YC53898cKklvBadMa42lg5C3DvT3fqf/fzY+VUAeMWnTHuf8mU00lNA17CfYb7UD8xnY37XBcA04H70l47Y4zJZNpOty6msX447vdqW+Am3D4cfdu1kl1XSpZYFpECERklIqNidw2J/b1N7PHJIjKjzvF/FJEjRWSYiPxQRG4GfgH8rS3rZYwx7WXRGeM+x61GUYOLrRteK+iBi4W/Ac5ZdMa4Vq0Q0a2i+icq8Ojku7jw8ZcJhCNorM+hCrvNWcCb465nu2WreGKPUdWv7jyy7ib1gVgdalBqiUoEF0vGBYHesdsbNH4R8B7gflzs2Y/6S4eFZn83mAWr+tbkZoVr87NrtO7jkZxA8Mkbd1q91f/WyYm/+dALPuUFgU0b36tmjVqxYOs7Xvzb0KHrV+CpfzCqyaygYYxJhsVMaZPquElUW//Oxjrwq1S1qonHc4E+qprx6ziKSBFumatuqtrolEmTmCEPTD4YNzPjR7gf7XgWcD1u5sZNC0++ZPWWllN85w0/xc2S2hU3wyC+vmkp8DxwY8nvLlq8peWM+sNNO+PWqt4blziKl1MBvAL8dfZtF86re84OT125A/AnYL8G51Tipvn+9asjr/yq7jkjJt00HPgzsD+uM1j3nLeAm7+eeOGnW/p6Bt8zbetYOYfgkj7xcqpxDckti84YZ8tdNTD8sUnZuATaybikSlx8rdy7gRnzjp1oa98bY9pNJvVn4nXZ6vYrPg3k56W1bYxWVHrfn3f1zmTA+5ApROQBXJ//pPauS2fXxBLLPwO2B9psiWUR2Y/GZ2xPV9XTReReoFhV94sdPw44CzeophI34/tqVW3VrO9MameMMaYxg++Zth9wPrAzLpGhuJh3A2456JsWnTEuuf1HRXauyg59mFsTDkQ8YWG/3oSDQfqv3UCPikoA3vtB8Xu/Gnd2OTACd+Eufk1kNcojRGQJyKnAdrjkS/zxFcDDwK0lZ15c2VjxxX+70QN+HbsVU3+A5tKAF33o9J++URMM+Kfglhar6/sdH1r81r5Tvzm9IFzT8+seg8Jzem9dK6r8cPV3WcPWLwuVhXJWBdQ/JC9c83FS748xHUAm9WUsZso8Wxo3JZtkiQKnquqDTTx+AvBgR5jNkklfsM5gyAOTBfgJLtGSDawGXl148iVr2rKc4jtvkFgZ8UTLeuC/Jb+7qM2XPRj1h5uGA3vhkiZlwBuzb7twUXPn7PDUlUNx61wXAOXAW18deeWC5s4ZMemmwcA+uBkslcA7X0+sn8RpC4PvmTYA+DluRks8wfLFojPGddFcdmKGPzYpD5cIG4jrDC8AXp937MRwsycaY0waZFJ/xgKGzCIivwOmqmr39q5LZyciyXzetSPETJBZ7YwxxjRl8D3TBLck4s64awXrgFcXnTFu5RY/uYjUBAO/Li3IvbmwoqrAU6gJBf2y/OwXBq4uPQ3VNcX3TvVwAzVH4AafrgBeKTl9fClA8V3XB3AJ+HiiZTnwSsmZF5cnUoXiv92YBewLDMElWr4H/lNy7p+rACbPOTQLF+8Pjj2+GHj1kpHP1SASLM3KPaoqmP3nrGh4a0BrAqFFBeGqqQXhmlm00ebPxmSqTOrLWMyUebY0bko2yeIDpzSTZDkF+Leqhhp7PJNk0hfMGGOMMSYZmdSf2Rgw3PaX9gkY/nCVBQx1iMhdwDGq2rO962I6tkxqZ4wxxhhjWiuT+jIWM2WeLY2bEt34Pv6P373OXb3i6/420B04EdtI0RhjjDHGmJQSkbFNPNQdN0N2DPCvtFXIbNSZllg2xhhjjDGmI0t13JRwkgW3N8UVsf9W4ObYrTGC2+jRGGOMMcZ0QaqQxITpLS6zC7q3mcdWA1OAq9NTFdPAQuBUoNHZ/8ARscc6xHJhxhhjjDGmbVnMlFb3NvPYFsdNrUmyvITbW0KAacBDwCcNjlHcpuAfq+pHyVbKGGOMMcYYk5AhjdynwDpVLUt3ZUw90sLjIcDWvzfGGGOMMSb1Uho3JZxkUdV3gXcBRCQfmKmqX2xpBYwxxhhjTCeksVu6y+xiVHVRe9fBbGJLLBtjjDHGmIRZzJQ2qY6bWjOTZSNVvaqtK2KMMcYYY4wxHZwtsWyMMcYYY0wXk1CSRUSuaPmozaiqTkriPGOMMcYYY0wjRMSn9ePPVFWTGlxlWs2WWDbGGGOMMaadpTtuSvSkKxsrNPb/Ddca1th9CliSxXRJxXfc4AHDgAJcoD2/5OyLbM1tkzITnzm2OCsQ2QXwwtHAV1cf/vic9q7TlqhYNjgPt15mFrAmf8Ci79q5SsaY1lJxt3SX2fldTZed5J/5bIllY4zp+IrvntYL2BvIAxaU/GbcB606/96phcBg3DW3lSWnj19a9/GhD107CGV3IIQwZ8GvLqv3OzH88UndYucLsGzeMRNXJv9qOh5/+fCtgD5ALbDQ6z+vsp2rZEzqWMyUSmmNm0S19WWJyCBgFvAlbvr717GHtgf+CIwERqvq0sbOzySxdZM3AN1UtbS962M6tuI7bigAjgdOArYFAkAU+BZ4EHik5OyLytuvhqazufq5o4/qV7j+4m16rN41FIgEACJ+wP9+fa+5K0q733bZIU/d1d51bI2KZYO3wn1/TgB6AR4QBj4A7geezx+wyBKWxjSQSf2ZeF0G3Xzlp4H8vLR+X6MVld6SP165MxnwPhjT2WRSO2OMMalQfPe03VCuRNkXJYv4AGJhCcK9CJNKfjMu2uT5904dCpwCHIPbe0twiYLXgYe8rIinKpeqL3sAwdgQZV9EvxVP7wxk+S+JcBJwNG7ApgA1wMvAA/OOmfh26l59+/KXD/eAg3Cx4J64wXYKrAUeBR7w+s+zfejMFsmkvozFTJ1PskmWJ4Gwqh7XxOOPAQFVPXrLqpd6mfQFMx1b8R039APuAn4C+LjPVQQ3eqUb7mLxB8CZJWdf1KVGopjUmPbS6Ck/GrTowpxgOFgbDfiRaDCiQMiLBrKCkUA4GvTnLN/q0VVl3U6+9shHMn7Uc8WywbsCdwIDccFIGe67lA0U4hKWDwOX5A9YFG6vehqTiTKpPxOvy1Y3tU/A8P2FFjCY9tHZl1jOpHbGGGPaWvHd007F5w6UHFwMEsVd5A/EborwCR77lvxmXNVm5987dT/gVtwMjGrcihYK5ACFoDl4WohLnPi4awVsfH5BvaBfHQj5ZSJU4ZaVVCAXl3CpBm4Cbpt3zMSMj+1aw18+PABcA5wMhIBSXHJJcHFgNrAMONfrP+/d9qqn6fgyqS9jMVPnk+zazL8Axjfz+KvA1CSf25gOp/iOG7KBO4DdgJW4C8RxtUAlbiTG7sCdxXfccELJ2RfVbvZExiTouheOOG+XbUr+FPSiXml1bnXdlRujfsCvjoTCuaHarB8O+O74T6NDV+A24s1YFcsGD2FTgmUZLvCIiydcCnAjm0px0z6NMcbEiMhWwM5sGthRj6rOSHulup4rG7nPllg2xpgMV3z3tJ/VSbBUN2ixfSCMEkTZBeUZ4IB659879YfA7UBPYCn1l6epBQ0i2g8VQbRWZGOCJf78UYVsP+Lli1AdCPlL6p/PhthzX4Sb2XF/m7zwzHERcBou5ms4IDWebBkI/MNfPvx4r/+8eWmunzGmE0lV3LTZEyWoGjd9ryl7xY4xpqs4CJdgWUX9BEtdtbHHd4sdb0xSLnvqeBncc9WErEAkUF6TU7P5dRsAoSqcXeuJsm3vZb+57Onj8tNe0dY5DRjE5gmWusqBKuDU2LJixhjT5YlIjog8DJQATwHTgXtjt3/XuZkUU1Wv7g3YGvgCeAjX/+sWu+0O/B/wWewYY4wx7clnUhMJlk1cYiSKzz7Fd0/btcGjvwN642KZzWeZCAMQBFRRCWnDAE4IibtHo2Gvh2qjA6LX4s47f/jjk3Ja8eoymr98eD/g17hriGVNHKa45FV/4PT01MwY09mkOm5KNsnyAHCyiNwqItuJiBe7bScit+FGGj+QbKWM6YB+hfs+1bRwXHwUxkkpr5HptHJCtWP6Fm7oVxUORRpPsGxSGc4Kd8+tzCvMrv5TmqrXahXLBnfDrVtcRdMJlrj1uBktx6S4WsaYLaXtdOt6rgPGAJcB++F+GE4Dfgk8j7uQv1N7Va6L+xvwjaqeoqofqWpZ7Pahqp6M27Pvb+1cR2OM6dKK7562NbAH4LcQWoHbKzKAMmHj+fdOHYgbRFlGoz0RLUA0m7o9FSVQ5wCPTdfmFPD8iPRvovy1uIFpv2yxph3HGNwAhPUtHKe4FUKO8pcP75XqShmTNhYzpVNK46ZkkyzjcZt4nwfMxV04ron997m4kVnNLSdmTKcRWyrsx7hR9omoAH4cO8+YVsvPqjkk6EW9cDQYaenYqB/wRVQKs6t+lo66JWkH3MaQiawFGu8SNDeb0hhjupJjgX+r6lTgq9h9S1T1FVU9DHfR4tz2qlwX9wvgP808/iqwf5rqYowxpnGH4GaOtBhbbUzCKHVnsozC7RvS1CyMbsSXh9yUxKl7LW5jgkVii0iqLwVNPFc4dvwuLda144i/l4nsSVGKez93TF11jDGdWErjpqSSLKpaq6qn4n5MLgP+FbtdBuysqierqu03YbqKHNx3KdGNqvzY8ZZkMUnxRHNdD73loVYbz/E0kz9vrf0ORXEbQBpjMplK+9y6nr7AB7H/jm/EW3eJyMdxI7ZM+tkSy8YYk+mUAjbtkZXYGW6/1bgcNm1mvzlJ6rpbSx2aTI7tWisfu5ZiujKLmdIppXFTshvfA6CqnwOfb8lzGNMJlONmciW650UWbjZLRcpqZDq1sO+tEhRB6w2HapyLFcLRwPqUVyx563Ajx0K4BEpLgrj9jYwxxsAKoBeAqlaKyDpgBPBM7PEi3AUgk34PAOeLyHrgNtzyYADbAufjlo+9tX2qZowxBgBhObFlukgsFhHcRvRx69kUy4Q3O1qJNBKyaWP/rfH/khbrsS6BenYUq6He8mnNib/Hnen1G2PSJ6VxU7LLhRljYkrOvigKPE3iI+tzgKdi5xnTamXVuf+sjoQiOaFwqKVjswKRYCQa8NdX5Wfypsef4y48dU/g2CAuEHkulRUyxrQBW184Xd4Hflrn72eAi0XkZBE5FbgQeK9damZsiWVjjMl8jyKUksgg5PgIN+HpOve+Cyyn6VhmFa6HIhv7KVJv5oa/8V73v+oFdG0Tz5WH+x15ucW6dhwv4JJbLca2uPf4O+CTVFbImLSymCmdUho3JZRkERFfRCIiklXn72gLt5bXszSm83gUtwlb9xaO646bkvZoiutjOrGrD398zuK1vT/LCkQCnvjNTGVRckLh4Iqy7stqwqGn0lfD1skfsCiKG+2byNTvPsBSXGfcGGOMmwmxQETi7edE3Kja+4DpuNG257dP1bo2W2LZGGMyX8lvxoVjSRNBm7lG5i5KZiNUIUzbeP7p46twSfMsGk0USASVcpegEUFUqT9jRoGIugufnohGxdPVjdRAgJ7AbODTVr3IzPYyLnHSp4XjsnAzXh70+s/bfMaQMca0LKVxU6LLhV1NrOFv8LcxxpkN3IUbqejhpq/W/Y4I0AN3Afl24LM01890MkvW9zqzV0HZGz3zygsqa7NrI36g3jq2AYl6+dk1WeU1OTULVvf7/bVHPpLpbfaDwAHAz3Hfn4bL6QVwHe8q4LL8AYsq01s9Y4zJTKr6FvBWnb8Xi8gPgB/hLuLMVVUb/NSObIllY4zJcMKFCD9H2QolAg2W+HIzWLKBKMI1Jb8Zt6bBM9yFi2N2AdbiBmDWPf97REbgrhVEYvNaNj3sx2ZyCASy/OWy+TC6EG4vgZXAxHnHTMz02C5hXv95Nf7y4ZcCdwIDccv5NFz1Ix93PeVt3IVQY4xptVTHTaLaadrmpIhIES5T1U1VS9u7PqbjKr7jBg83texsoAD3BY3gkpkB3N4tdwA3lZx9UaIbuxnTpCufHbPX9v2WPNGnsLSXJ75EfM8HCHi+hwrrq/LLv1q29RkTD33y8fauayIqlg0uAv6KS7bkALW46fPxjSVXAZfkD1hkS4UZ00Am9Wfiddnq+qs+DeTnpfX3LlpR6X1/8V92JgPeh3QRkW6quqHlI43ZMpnUzhhjTFsrvnvaIHz+gzIUlwyJ92Hc7BahFuG6kt+Om9To+fdO7YMbJb0XLn6pxQ28jMUyupaA3w+VHoBsXDIsPnvG06pglj/PC2gf3DWEuucrUAL8Yd4xEzvlUln+8uEHANcD/WJ31eJSUVm4JdJeB/7o9Z9n+7GYpGVSX8ZipvRLddyUVJJFRPJUtVOMIs6kL5jpHIrvuGEb4BjgQKAb7vP1MvB4ydkXfdeedTOdz2VPHR8qyK4+r2/h+t90y60cJCBlNTmrVpR2f7CsJveGa454tKy969gaFcsGC7AzcCywGy7Zsgx4Cngmf8Aiu5BoTCMyqT9jAUN6iUgNbgnFh4GnVbW8navUZYmIj7sol6eqtbG/Wwq2VFUTXV2gXWVSO2OMMalQfPc0AX6Fz7nAD3CDJUsRnkGYXPKbcYubPf/eqR4uhjket1RkCFgMPAE852VHqlHOVJXfqU8xiIjoOvH0EYRpwSx/PW6/gOOBHXAJnhLgMeClecdMrG77V505/OXDi4DDgCNxs1pqgY+BR4CPvf7zuvYocbPFMqkvYzFT+qU6bko2yRLGbTT1Zuz2lqo2nC7ZIWTSF8wYY4wxJhmZ1J/ZGDBMa6eAYVzXChhEZDJwHDAUqAaewwUOz6pqVXvWrasRkStxSZVJqurX+btZqnpViqvWJjKpnTHGGGOMaa1M6stYzJR+qY6bkh01dTkuu34G8CdARWQu8AaxxIuqNpvhN8YYY4wxxmwZVb0EuEREfgKcgJsJOAaoEJFncYHDc7bBeuqp6pXN/W2MMcYYY4xpH6mOm7wkKzVVVQ8HeuGmQJ6P28zxcOA+oEREFibz3MYYY4wxxpjWUdUPVfUiVS0G9gbuBn4GPI7bRNakmYjktXcdjDHGGGOMMZukKm7aovV/1a019nlsFsvnwJfAqcBwYJsteW5jjDHGGNOBqbhbuss0qOq7IrIaWIebdV7UzlXqqjaISKdYYtkYY4wxxqSAxUztqi3jpqSSLLF14/bGZXl+BuyK29DrK+BV4C+4QMIYY4wxxhiTBiIyBDf1/XhgJ9wm7P/FTX036WdLLBtjjDHGGJNhUhE3JTuTJT4C6yNcgDANNzJrXbIVMcYYY4wxnYcA0uKW321fZlcjIlvjgoMTgF1wG62/CZwLPK6qq9qxel2aqk4FpoqIAD/CDU77KW6J5bMAROQ7VR3SfrU0xhhjjDHtxWKm9El13JRskqUCN32mX51bH9zUGmOMMcYYY0x6LMIFCO8BFwKPquqy9q2SqcuWWDbGGGOMMabdpTRuSjbJ0gPYkU3LhV0N9BeRVcBbbFpz+KM2qaUxxhhjjDGmMRcDj9iyU5nHllg2xpgkiQRwSeh83GDepbiEdccgkgNsjWvzV2D7cRljTCZIadyUVJIlNhrrs9jtdgAR2RY4APgjcBQuM5RsEse0oWGPXBNfouBY3DpzIWAx8BTwyvzjL69tq7J2enbi8Fg5PwFygGXAs8ALnx02qbKxc4pnTBkaO2cPIBdYFTvnuZKxE8rbqm7JKJ4+dQBwNLAfUAisB14Gniw5bfza9quZSdb2V90UAn6Ba6cGAxHgC+Bx4NO5f7mw43Tek+QvHy7Azrjv3Y+AAFACPAn81+s/L9zwnGcW7NhsO3L40M/brB1JxvRv9to2Vrfdce3ICuA5YNZp271T0VblDH980lbAMcA+QB6wFngReHreMRPXt1U5cxYP6guMAX4OdMO1Pf8Bnhi59RJb+sd0DBq7pbvMLkZVb2zvOpgm2RLLxpgOZ9SsiT1xsdIBuAG2Zbi9pGbOHj1paUoLF+n10chtbtimR+HJfdeVheJ3lwzsVV46fKvrd/xmyfXbTr9uJwJ6iXj+rghZ+FKmvjyPL9d9O/aSJfu9+uefAeNx8U4WUIq7vjDltf1vXFY8Y8ovcBfa4jHNBlxMM6Vk7IRVQx6YPIJN1zSyqXNNY+HJl1QW//2GkbHHfxx7fAnwNPDSN+eP32ZVr4IreoUCx2aHo9nguiarehd9mFdZc01BVe0zHSpZZIxJPYuZ0ibVcZNsSfsuIvnAXriRWfsAu+EurEeAT1V197aoZCrFRphtALqpaml716etDXvkmu7AjbiLyrlAGPd1CuE29VkA/HH+8Zd/vCXl7PTsxDzgGuBI3GiTSOz5Q7HylgDjPjts0n/j5xTPmJKNG8F3fOycaINzlgGXlYyd8MKW1C0ZxdOnesD5wNm4C5yKe01B3PKFa4Hrgeklp43vos1Tx7P9VTftCNwCbIdLLERiD4WAalzwcOHcv1zYaUca+cuH9wFuxo2szcG1CeA+21FgHnC+13/el/FznlmwYw9cO/JzNrXx8XPi7cgFhw/9/JM0vIR6pn+zVw5wJXAcjbc9S4FLT9vunZe2pJzhj08KAuOAXwMFsTKibGoTVgHXzDtm4iNbUs6cxYM8XLtzPo23PeuBm4C7Rm69xNoes1Em9Wfiddl6ytWfBvLy/HSWHa2s9BZPuGJnMuB9MEZE1uOWWC4httE98IaqzmvHaiUtk9oZY0zbGzVrouCWMhwH9GJTPzQAeLhkxZ3AzbNHT2rz3/eVPQt3C0b9d/KragPP7v4jntv9h5Tm5dJ3XRnHvPkJ+30+j/lb94mefulp/qoehQGNXSaU2PYCqlLbPb9ydUFuTb9YneN9ZQGI+NQsW9lzXTQa6Bt7PfUeB63G41MRBuIGU9WLK1RZRlVgMWFvR9y1lbrXL/yT33yn6qpHnhpakZ+lzxywY9W7Px5aGQ4G/KHfrcoZ88LsvOELV4ZW9Sx4oc/a8iNRbdcBasZ0VZnUl7GYqfNJKskiIjfgkiqjcBd+KoH32RQ8vKuqjc5ayDSZ9AVra8MeuaYAmI67mLoeaDgrJAu3l85q4LT5x1+e1AXSnZ6dmAX8AzgUN8ql4fsYBPrGyv/dZ4dN+m/xjClB3MXuMbH7S6mfSw3G6lYFnF8ydsJzydQtGcXTpwowAbfxURg3Pblug+cBvXH1vbbktPH/TFfdTPK2v+qmHYAHcHtIrQIadmzzcSO1PgZOmvuXCzekt4ap5y8f3h33HuyC+1w3nOERbxOWAyd7/efNeWbBjgXAfcCeNN+OrALGHj7089kpqv5mpn+zVxC4FTfbrKV25NzTtnvnxWTKGf74JA+3LOYZseda36CcAK5NiACXzTtm4oPJlAMwZ/GgC4E/x55rLZu3Pb1i/z9t5NZLbku2HNP5ZFJ/xgIGY5zYhvd1l1j+GdAf95vZ4ZZYzqR2xhjT9kbNmngGbhCk4K4R1P0NF6Anru//D+Da2aMntdmAn9pQcNuq7NC87/r29H534am6ume+uibUUVVGlKzw7rpxBhuKcjn+yjMrK3Jz6jyDSjDo54ioFOZWR/OywjV1n9/3kaWreuRGogEAH5Xq+jVQQchB3GsXYVG9R5UslGEoWVQHlhLxVtZ9/LCPPu19y70PDX5q91E6+fyDF/vdpf7Mc9WsQ//z5dZX3DKr27qivFl915YfYTNajEm/TOrLWMzU+XhJnncabnTwJbglnrqr6v6qeqWqvtpREixdwG9wM41WsvmFUXAXmZfiLg5OHvbINcl+Ho4HDsZdEGzsyxmJlVMATNnp2Ym5wBG4WS/rcA1cww5GBDeTJRe4tnjGlKIk65aMnwBn4WY2rKF+55LY3ytxdb64ePrUoWmsm0nC9lfdJMB1uAsbS9k8wQIu4bACN+37nPTVLq3Oxb2+FWyeYIFNbcIA4NrYsmJn4dr5ltqRPsCUZxbsmGw7koyjcW1JIu3I5Onf7FWYZDn74kb1lcfKalhOFPeeBoCJwx+fNDCZQuYsHrQjcB5Qw+aBLbG/V+GSvxfMWTxoZDLlGGOMSQ91PlPV21X1BFUdiJtNewUwEjdL9L12raQxxgCjZk0cghtoqLh+f8N+qOJi40rcdYY2XbXkq2EDnivLzfF+Pf40XdOroF6CBVzSet6Qfvx63OkUL13LqS+9l1X38WDQD3qeLwqUV+cEon79J1hXmh90CRZFUA+0QQEE2HRPT9UGS98rRShBBCUn2rPu+YFolMueeHarN3YYrhedenx0bUVRT1UavoDa5/b/0YKp5xxU2ndt+WG1wcBeSbxNxhhjMlhSF8NUtY+qHqWqN6rqB6oaafksk07DHrkmG/gV7mJcc1NR452lH+BmvLTKTs9O9ICTY39WtXD4KmArVQ4CTsF9/lpKyK3EzTw4rLV12wLH4y7Krm/huDW4xNGxqa6Q2WK74NbcXUvzq0+GcRe4j9/+qpvy01GxdPGXDy/EfbZr2LREWGMU9z7tXOWzG3AiibUja3EXjPZokwq3YPo3ewmu7UmkHVmFS7CNTrK4E9m0nnNzVgPdccmfZByHW5qgpbX61+JmXlnbYzKaaPvcjMk0IpIvIgeKyNXA3bhlH0fgkvRbtGSvMca0kWNxe5C2tGzyBtzywSe0Wcki/X74zdLh//7lXpQV5jXxS+6SGt9u3YdZu/2IE1/9OCj+pjyQ52lQBDwUX4Wq2qyN+7n4PlRUZQeBTZkPIVTnuV2SJXY4Lr4YsPFRt19Cr9ihYYQsQrpxEOihn37efcD60sAtR+wfIShhP+Jl11aGGhvcpU/+cqfvl/btFlnTM/+KBN8dY0wnZzFT55HOEccmvfYAtqLlRAG4GRtZuNkorTUSl6BJpJww4KnyK9xSc4ksxxSN/f/hSdSt1YqnT83FXYhNZKNsxV14PiallTJt4SDcpoSJzLJbj0vs7ZPKCrWDfXCzTdYncGwlkF2tciYwkJYv+oNLsoaAQ5KtYCsNwyXOEmlH4gMBWt2ODH98Uk/cnlaNzeJpKL5PS6uTLHMWDwriNhitbuHQuBpgTGwPF2NMFyYiWS0fZdqDiNwgIh/gfkdfBP6E+52YBhyIWw0g4/ewNMZ0CUezaf/WllQCB4+aNbFNBqV9OWzAOaLw5L6jmip7U25E4JGf78JWK9ez07dLPABP1BNxSRg3f0WpjgTjSROqakKer540eM5Anf/2qL9HC7i9EePycddLIrFjhKC/8fFDP/28z/+26q9fFG8TEXGPhytDja7EoZ5X/fSBO1b3WVO+PyLWjzfGmDRKddxkjXrn1Qu3H0GiG6op7gJsa/XEXVhNtJwIblRIa84J40ahp0M3XAcq0brVAt2Lp08NtXikaU+9gIYd66ZE2LTmcGfSK/b/ic48FNxeSkGan/nSUDLtSDJ60ro2LoxLnqW6nFrc+9ZahbhRga0pJx8388UY07UtF5F/isjP2rsiZjO2xLIxJuONmjUxvu9fov3QGlzM3L0tyi/Py9l+fUEupfm5CR2/uK8L03qWVsQSK+qua8VSJAL4dZYLi0a92HWvTTkUabhc2OY2JWHc0mFS5wm07kyY7hWVwe/69KpbgPpRafL6wPcDekSCUT+A6/8bY4xJn5TGTcGWDzEdVC3xURaJjUYRWl7uq6ly4lNqoy0cS+y46jrnJCJ+TjrE37fW1C1MYq/dtJ9EA4Y4SeKcTFdD4okmcN+D+IaRqW5HkpHMd7WmxaOaLifR905Irr2qoXWvR3DtaGf7nJrORGWzJc/TUmbX8xhuVu1vRGQxcD/wgKr+r32rZVQ1XQMPjDFmSygupk104GB81keb9EMDUb80pzbs1uWSln/Hc2rd+K+aUFBxFXFximz6o26HOja7JHmCX78EqPP/1IaCmltb/61orsycmnC8esnEJsaYzsZipnRKadxkM1k6r89xS14lsmF8vJP0WRLlzMUt15PIKAwBPBFex+0pkOjIjRDp2xR0HfANbq+VROQBH5acNr7hxoAms3yOuyAdaOlA3OeykuS+D5nsc1wCJJHPdhBQz31Xy0nsu+p2knTlpMM3tK4dCQLvJ1HOUuB7EmtLwc1GSaacKuAr3OyUROQDs0duvcSSLMZ0cap6Fm7G77HAR8CfgS9F5CMRuUBEkpnFZ4wxpouYPXqS4vqviU0lcf3vb2l5/5aEDPtu5f8VVNey+5ySJq76ab2ExS8+nkttMMD/Bvf3AdT3ovEj3P8LoWB0Y3yemx2ODYjc9PSK1I3f4/9dt/y6Mw2raDhINCoblxf/cqtBZT+ZVyJFlZWBWD0kkB1tavlxb5/3v8laV5T7ParpGkhqjDGG1MdNlmTppOYff/l3wKskdgGyBy658FRry/nssEnrgZm4ZENLqdAioFKEh4BHcBcjW/oMFuI6NY+2tm7JKDltvAIP4OrV0kyvbNwMlgdTXS+zxZ7FbX6eyBJg3YC35v7lwnmprVJ6ef3n/Q8XPHVP4PAewIpunt4LvEZiCYbuuECr1e1IMk7b7p1yXLuQSDtSRJLtyLxjJkZwbUKAlpN0ebhRgA+3tpyRWy+Jtz3Q8ijCLFxCy9oek9m0nW5dkKqGVfUJVT0WtzTiWbhBMDcCi0XkORE5SUQSvYBmjDGma3kYF9vmtHBcfOmsB2aPntQmAw17lFX9Z3G/HlWnvvQeqo39kG+6zCARn5P/8wEv7fEDf203N3ZMAVUvGv9vgNxQeONyx8GgT3YoXO9x6i2HLKAbl1SOz1ZZsfFRIYKwgU3xgE/Y27hn5f0/22tF0I9y3NsfhVQlIKLR7ILa9Y291kHL1vXe+8NvcyIB7+Zm3xRjTNdhMVNapTJusiRL53YnbpPrAc0cU4hLFtwz//jLkx2JMgPXCRlI04mWPNwI+sc+O2zSAtzFxCWxujX1OczFXRydVTJ2wpwk65aMp4E5uOxmU4mWEG7viQ+B/6apXiZJc/9yYSnu+xCk+YRBf6AMuCMd9WoHf8O9vuay891w79OdXv955bj3YgMJtiOHD/18bRvVNRH3sakdaartycXV7+nTtnsn2SmgjwHzcZ+PphIt2bgk3pvAO0mW8xxuBlU/mm97+gKzcZsoG2NMPapaqqp3A+OBJ3DtycG46fDLReR6EWmTzYqNMcZ0Gv/FrR7RGzegpzEBXH94LvBkm5Wsqit7FUw56OM5nPTiB14TiRYl6nPVPc+y1aq13H3QXvVmc0cjXtj3QfHICkY0Kxipt5x396KKWFJFUETRBst910+yVIlQWr94VgFRhBBhWYcvG8tf1rN75Lmdd1x/4ZMve7t8UxLKyg+vCQT9zfa0LCqr6jbtupn9a7KDpX3WVfwz0bfHGGNMarR13JRQkkVErkjiNjGZF2jazvzjL/8EuBAoBbbCjU4P4T40BbikSB4wHbgp2XI+O2zSfOD3uETLINymeVmxcvJi5XTDJS/+AlAydsJ3uGzh0tjjvRucMwA3Mv4F3Ic9bUpOG18KnIlLtPTDXdDMjtUtB9ex7IObWnZ2yWnjbbmejuEO4C7cv+FA3HcgiPtOdMd9RyqAcXP/cmGyF8kzmtd/3lvABNysjkG41x1vEwpj92XjElL/BDh86Ocf4dqRstjjzbUjt6TtxQCnbffOd8DZuHaksbYn3o48D1yabDnzjpm4BtcmfBt7zj5sahNycW1CL1yC5Q/zjpmY1Ki+kVsvqcS1i5/j2p5+1G974u3RbOCskVsvsSUGjDH1iMgQEblcROKzF/cFbgd2A0bhktPn4wbIGGOMMQDMHj0pDJwDfICLzfvj+p9BXH+0b+y+r4Hfzh49qbSJp0rKLnMWT/p45DYvXXnfs1x355PedguXi6qKquL7Krt9sUD+Ne1+jn3jYy47+0j9YvhWQVAvtplBwIdQ1A/4WYGIds+rVBGycNe7BAjkZkeyenUr8wFFUZB6j4Nk4+Pj9kkpp0FcIUJPPMqIyHqqA4IbXBWPifLHn3xc1ZfbDArff+td3rhnnu/Wf+WG3vHHs2vChUe89Nm20y+8t7h48Rof2B/VsrZ8/4wxxrROKuImaXyUwGYFJ3PBSFU1kf0P2pWIFOFGaXdT1TbtKGSKYY9cswMwFjgCd1E0vqn3R7js3LPzj798i6f67vTsxKHAacAY3IVNwU3D/TJWzszPDptUb0RH8Ywp28TqdhyuoyJABPgfbrbLIyVjJ7RLEqN4+tTewCnAr9g04yYKLMIt0/NgLCFjOojtr7pJgENw/657sGnZpQrckmL3zf3LhZ1tL5bN+MuH74z73h3KpqX+anCj1+4HXvD6z6v34/DMgh1/yKZ2JJ9N7ciHuO/qs4cP/bxd9iaa/s1excCpuHU167Yjc3Cv57HTtntni9uR4Y9P6h8r5wRcoBlvE77FvQcPzTtmYmXTz5CYOYsH9QROBk7CJY/i5XwfK+fBkVsvWb+l5ZjOJZP6M/G6bHPNpE8DeXlpbReilZXed5dP3JkMeB/SRUR64dqlU4DdcW3zs7iA4HlVjTQ4fjxwharabBbTKpnUzhhjUmPUrImFuD7oSUAx8eWxYDnwEHD/7NGTVqWkcBH5cIfBfx36/erzem2oCH47oDdleTn0XV/GwDUbWNyvR+VbP9x26uW/PnoPCfr7iWh8xo2qL6Ua8Z7s23PDQ9nZkYuBfdi0BK/i2q7Hvl/e44lINDgO2KvB42uBR/H0ThGOZfNrGp8DD2hp8EtUTgaOwq2QEH/8096lZQ8/89ebD+u1ruKEgO+HFm7dOxwJeAxcsT5QVFHjrepZ8FlBRfVJudXhdK7SYYypI5P6MhYzpV+q46aEkiydWSZ9wVJt2CPX9AK2xXUmVgDfzj/+8jb/AOz07MRuwAjcBew1wNzPDpvUbDnFM6YUAtvjRsmsBeaWjJ2QEZvJF0+fmg3sgLuwXArMKTlt/GbTf03Hsv1VNw3FjcaKAgvn/uXCle1cpbTzlw/vCwzBBU/Lvf7zFrR0zjMLduwNDKVOO3L40M8z4odk+jd7FeHano3tyGnbvdPm7cjwxyflAT/AJag2AF/NO2ZitPmzWm/O4kFZuLanADei7ivb6N40JZP6MxYwpJeI1OJG0r6LCxAeVtX1zRx/GHCbqg5JTw1NZ5FJ7YwxJrVGzZoYxPVDi3AD0ubMHj0pPbOoRUJzi/udvq4o79cBXwujnqzefuHya3qUVf0nvmnLtjMm90L0UKAAZAXKU9+OvWRjf3y/V//cD7fkSx5ueeFZr+1/48bHi2dMGQQcEHv8e+C5krETNj4+5IHJ3YHhuGsaq4GvF558ycaYp/jvN/QEhuFiolXANyXnXBTb9l6KVvfIP6smK7Q7aLanWtJ7TfnfQpHo1yl4t4wxrZBJfRmLmdIv1XGTJVky6AtmjDHGGJOMTOrPxOsyeFL7BAyLJrYuYBCRc4GLcYn3z4A/qOoHzRx/HDAJN8L3G2C8qj5X53EBrsItM9gdeBv4vap+k8xrSqD+VwL3qeq3qXh+kzgRuSKJ01RVJ7V5ZVIgk9oZY4wxxpjWyqS+TEeLmcDippY0tbGuMcYYY4wxnZqInAD8Fbe/0/vAH4EXRWSEqm42w1FE9sItl3IJbmr5ScCTIvJjVf0ydtg43Pq9pwELcYHFiyIyUlXbfBSwql7Z1s9pknZlEuco7jNijDHGGGNMRrK4qWUJbXzfGBHZUUTuEpGPRWS+iCxocLPRdMYYY4wxXZW20611/gTcpar/VtU5uKChEjijieMvAF5Q1etV9X+qOhH4BDgPNo7G+iNwjao+paqf4/azGohbvz0lRKRIRCaIyIsi8qmI7Ba7v6eI/ElEhqWqbLOJqnpJ3DJ+D0tjjDHGGJMiHSNmAoubWpRUkkVE9gM+AA4DluLW518Q++/BuLXj30i2UsYYY4wxxqSSiGQBuwCvxO9TVT/2955NnLZn3eNjXqxz/BDc9Pm6z7kBN9qrqefcIiKyFfApcDWwFbAjbi8nVHUt8DvgD6ko2xhjjDHGGNO5WdyUmGSXC7sal1TZA7cR2ErgOlX9j4jsDjwPjE+2UsYYY4wxxmyBQjc4aqMaVa1pcExvIACsaHD/CmD7Jp63fxPH96/zOC0c09auBwqBUbg+ecPp+k/iBkYZY4wxxhhjTFwiMRNY3JSQZJcL+zFwd2xznGjsvgCAqr4P3ImtLWyMMcYY03W179T373GbWsZvl6Tuhba7XwK3xqbtNzb5fwGwdXqrZOJsiWVjjDHGGNMki5nSKaVxU7IzWSJAWey/1wNhoG+DSo1MtlLGGGOMMcZsga3Y1FcFaGxE1mrcYKF+De7vByxv4nmXt3D88jr3LWtwzOxma5y8XGBVM48Xpqhc04LYEssvAOuAj4Cdgf8AObhlEL4CPm6n6hljjDHGmK4tkZgJLG5KSLJJlvnAdgCqqiIyFzgaeCD2+GiafpNNJzf4nmkjcevaZQFrgNcXnTGuvH1rBYj0/rZfjyuD6KFBP5oTDgTKJaJ3D1694TZUK9u7esYYp/if1wtwOLA/7kLUEuDOkrMubjiNdIvd98EBpyjRExHyUFkleNecutsrX7R1OcZ0RaLulu4yY8piM66bpKq1IvIxrq15EkBEvNjftzdx2ruxx2+uc9+BsfsBFuL6wPsTCw5EpAjYHfhHK15Ka8wB9sHNJG/MUbi1h0362RLLxhjTiNFvnL81rm3Mxe3p+9asfW51y7aIDFjWq+giUf1lwNfcSMArDUb9h/qsL78D1bJmnnajE949ezvcCizZuIHBrz+85x0bEjl32CPXCG7Q8I9wbfdq4PX5x19e0aoX2YTie6cKbm+D4bgVYZYDb5ScPr6pi5vGmE4s02MmsLgpUckmWZ4DzhCRS1Q1AvwV+LeIfBN7fFs6/xQj08Dge6btA/we11nKYdPUq5WD75n2CPC3RWeMS6hj06ZEgt/27/H4NgHv8MFrNsg3P+5LZUFIu62ukqFfrJ5SlR28Zmn/XtO2Xb7msrTXzRhTT/E/rz8f+DMwkPpLWk4o/uf1bwC/KTnr4iVbWs6M9/e/IitU8ecBRaVFoUDEtVYCVeGs4+7/6GffaTT7lFN3f+WtLS3HGJPx/gpMF5GPgA+APwL5wL8BRGQGsERV4/3aW4DXReTPwCzgRGBX4CzYOPjoZuDyWL94IW4J3aXEApIUuDn2Gj4HHo3d54nIMOAvuBkTx6SobNO8HwN/UdVSEekRu2/jEssiEl9i+fn2qqAxxqTT6DfOHwmci1uypYCNvXA2jHnx97NuPPPR7bbxZHT3skp590fb1pTlZWvfdWVb7TanZFptMHDNmt7dpgxYU3olqo1ekjzh3bN3A84D9gby2HRNYs0J7549E7jt4T3vWN1U/YY9cs2+wDnAbmy6pqHAymGPXPMI8Lf5x1/e4gXJxsSSK4fj+gzxBI4CPvB98b1THwD+ackWY0yGsripBdLEb1PzJ4mEgCJgrcaeQEROiVUkCjyrqvcmW6l0imXJNgDdEsnemcYNvmfa8cB1uC/YBtxoFHCJvO64ESSfAGMXnTFuTdoqJhJY3Lvow4Fry3Z+8bSR+taBQyNlWdlhYvs69VtfHtp/5tfBPWctlAX9evxr6PK1Z6atbsaYeor/ef3NuKDLwy1LGYk9JEAodv8qYK+Ssy5ekGw5Mz74xb/7F644LScYlupIUMN+UF0RPjnBiIS8qKytLoiUVfU88tTdXnlui16UMWmSSf2ZeF2Kr5z0aSAvz09n2dHKSq/kyok704r3QUTOAy7GbbA4Gzg/tscgIvIaUKKqp9c5/jjgGqAY+AYYp6rP1XlcgKtwAUR34C3gHFWdt2WvrtnXcBlwJa4x83AXbCT2/5er6tRUlW2aJiLrcZ+Pf8Y+F9XAGar6QOzxM4FbVDWvHauZsExqZ4wxHc/oN87fHfgnbimYMqAUl2TwAhG/28RLnt161CeLQ387Yb+K+w/cfXlpQe6G+OODVq7reeaTb/U56aUP85b3LPpH/zUbzmn4/Ce8e/ahwE1AN1xbFZ/1EsD9HucCXwJjH97zjqUNzx/2yDUnAtfikjPrgfjMlbrXND4ETp9//OVrW/PaYwmW84E/4eKadUBV7OEQ0CNWzsvA2SWnj69q7HmMMVsmk/oyHS1mAoubWnzuZJIsnUkmfcE6qsH3TNsVeAg30qOp5XxCuM7US8Bpi84Yl5YP3rf9e/51yMp1F9575Z7+pzsMqo4nV+oR5NCn5uQcMn2OrCzMP7RvabmNJjQmzYr/ef3puKDLo+l1QD3ciK8FwPCSsy5udTty3wcH/Lpv4fK7swNhqQhn+zTSKIj4FIRqvFWV3Wpqawu7/eon/7HRZCbjZVJ/ZmPA8Jdr2idguOryVgcMnYGIbIMb8DQM115+C8xU1aST0mbLxEb6/VdVL479/RnwjaoeG/v7SWBHVR3afrVMXCa1M8aYjmX0G+f3x41kHogbpVyvH3/qP98ZdOz/fdr/L9ce5r+367aV32/o9o2q17APEfjdzDe2/fODrxRuyM85olt51TPxB0549+wfADNxg4GX0bgg7sLgu8AxD+95x8bnH/bINbsBD7JpacfGZOH2In4O+M384y9POBYpvnfq4bgldSK4BEtjcoBewL9KTh8/MdHnNsYkLpP6MhYztZ9UxU1ey4c0W6mAiOwmIsfHbj8RkcCWPKfpkMbiNgdqbr+EMK4z8TPc1NjUE/F6VVT97pP9t9FPf9hEggVA0eeP+kHNsuIiqvJCf01L3YwxDf0JN8qsuYSGjwtMinH7gLWaeDUTc4O1TSZYAFQ9KsNZ2jO3LDuscmMy5RhjTLqp6neqepOqnquqv1fVGyzB0u6eA34lIvElmv8KjBGRb2LLIhxB02tCG2NMZ3IMLsGyjAYJlkAkyoHP/6/PiweN1Pd/MqQmGIhmF2bVdmvkOaL/PPpnJV8NGRCuys66osFjJ+FGQTeVYAEXR6zB7YeyV4PHTsOtytFUggWgFjfD5efADs0cV09sFstv2TSDpSnVQCVwXPG9UxtuFm2MMaaNpCpuSjrJIiKnA9/jRgH8X+z2HrBERM7Y0oqZjmHwPdP6AwezaSpucypwozOOTWmlYtbl5YzuXl6d9+Zh27aYEVZf/LeP2Fa3WrVhe0T6p6N+xhin+J/X7wxsj1tusiUR3G/X+a0t5/4PDhjWO299cdj3tKkES1xUA+qJTyhY9avWlmOMidF2uhmTOSYBOxH7fVPV6bjBSV8Cn+GWDrOl3IwxndroN84P4JIgEdygqXp++t/53XutrQw8c8SOkfh2zAXZ1T0aHgegIrX/98tdK/quLd0VkcEAJ7x7djfcAKxEltiqwiU7jovfMeyRawbh9ogpb+qkOspxy4615prGzrjfgvUJHLsBt9zZUa14fmNMR2YxU6eR1Mb3IvI74B+49deuBOJrpY0AfgfcJSJZqnpHG9TRZLahuDVLm9w8roEo8MPUVWeTNUV5Py+I1LJwSM/Ixp0dmjHvh32iAV+DwHbA8lTXzxiz0V64xEltgscrsG1rC1Hll1mBsNRGQwl1KaK+p/mhqsZG0RljTLsREZ/Wh0aqqkn1+03yVDWMGzVd9777gfvbp0bGGNMueuGW6apo7MGtF63NLyvIZv52fWMJafGzgtFc91O3+cCod360bZnnZq0MBxYBg3ErayS65E0t9a9JbIu7prEqwfMjwMgEjwW3HE0OiV0zie8NMKwVz2+MMaYR6Y6bkg22xgNvAgfEgoe4/4rI3cB/gHGAJVk6v/hnKNEPrZL8565VVMiKBjyQ5kesx/mexF+DXYQwJr1CtDS1ZHOtXppS3TrKtOY3VsSGeBiTLNH4eNT0ltkFXI2NP+sQRGQB8EdVfbqJxw8Dbu0oe7IYY0yS4v32Rn+7vKhKNJB4KBANbNyrJR63B3CxRGt+G+vG/M3WL4HzWxJo5XPHzzHGdAEWM6VUWuOmZC8m9wdubJBgAdyILRH5P2DaFtXMdBRLcSNBcklsem0QKEllheIKKms/y6mK0HdVeWBF94IWlyEa9N2GeEdmcYqrZoypbw5u1FYAEpl3htD8HlBNnfR+VAMa8Hyi0ZbjloD4UhXJrm5tOcYYk0qqemV718EkrBgoaObxAtwIbGOM6czW4maxFNLIbJY1fQqqi0qr6bOyzFvVt9AX1Av7geqmxmCNXLgs3q5+H/v/Zbh9HXNJbGZ8FvBdnb/j1zRyGqtfIwINzm/JUlyMk5Vg/RRbWcMYY7ZYuuOmZPdk+RQ3NbMpw3FLiZnO71vgA6AogWOzcZ2LJ1NZobgBG8ofqMoORvZ+cUHLV1MF2fuZBd7yXgUrUJ2fhuoZYzZ5GRdIJJL4j48Em97aQk7d/ZV3V1d2W5sViLQ4VM7NKhWqa/NfaW05xhhjTB3NjZ77CYmt0W+MMR3WrH1urQEewyVBNvPagSPW1mSHdPSsL4KgiEB5TfbaJp4u8KuXPixYU5S3CLe/FQ/vecdy3GoqzSW140K4wV2P1blvHvARbi+UluTgrmk8kcCxce/gBpo2us9MA4W4fWManQFpjDEmcyWbZPkDcLyIXCAiG38oRSRXRC4EjgfOa4sKmsy26IxxiltXOkLziRYB+gBfA6+noWqgWrmkR9Fzez6zQAat3pDV3KE7fbk0e/inK6klcF1a6maM2ajkrIvjSRPFBT7NCeEuSP0tmbLCkdx/RfwA2YHaZhItSn6oxiurzY16ePZbZkyybBPHtBGRPiJyg4jMEZHK2G1O7L5+7V2/riQWHy2ILRWmwM3xvxvc1gB/BJ5r1wobY0x6PAKU4a4J1FNRmO2/te+264988jNv66XrsqO+RMpqstc39iT7fjxv670/m5/te95fUa37q/8AUE3ziQwB+uL2cXkxfuf84y9X4D7c/rHNXdPwcPvLzAHeaua4ekpOHx+OPb+H2/ulKQFcoufNktPHz030+Y0xHZzFTGmVyrgp2STLvbgfoL8C60VkoYgsxF34ugF3wX26iHxe5/bZllTUZLRZwD1APq7T1HA0ej4wCFgCnL/ojHEtLt3VVoYtX3tqeVbWunPHvxEc+c2KHPG03mc+IH5g73cX5p426T3v+95Fn22zZkNSF26NMVtsIi5YCeCm0jdMggRwI8eqgVNLzrp4s+UqEzF2t1cnLC3t+1nAU8kLVXtuxkqcEpCoFGZVe1XhLF1b2evaU3Z75fsmn8wYYzKAiOwAfAH8CdgAPBq7bYjd97mI/LDpZzBtbCXwVewmuP7vVw1uXwIv4fa5/F37VNMYY9Jn1j63zgWuxM0iGcDGvRKdf/9+7xUbuuf611/4eGCb99fURP36m7QEon7OUa/N3va2G/+v59qi/Pf7rC//e4Mi3gRujz1vPza/JpGHuyaxCvjDw3ve0XBJ4GeAf7PpmkbD1TDygYG4pb/On3/85a29pvFv4FlcEqgnm1+LK8S9L3OBS1r53MYYYxKQ6rhJ6if/E67UaySR91LVn7e6sBQTkSLcm9lNVUvbuz4d1eB7pnnA2cBZuNEhwqbN56qBT4DLFp0xLv0jMkT6rOhZMLvf2vKBywYXMfvnW2lVQYhuq6vZ9eVF0m1NNYv6dHtv8KoN+6Fak/b6GWMAKP7n9QHgQeAIGgReuIBsBXBGyVkXv7Ql5Twxey8pC2e/2itv7b75oWpPRDdmdCK+x7rqgtqKmu5Xjd3tFZvZZjqMTOrPxOsy9LJrPg3k5fktntCGopWV3oJrL9+ZDHgf0iXWL98BOFRVP2zw2G64mRJfZGI/vLMTkf8C16jqq+1dl7aQSe2MMaZjGv3G+UcC43D7UdXdsD7Sf+mGksnnPbFt3zVlA/43uH/4hT13qC4tyNF+a0q9I978PHfg6g2BlT0KXuu7rvxQVKsaPvcJ754twOm4VVUGUP+aRC3uwtplD+95R6MDgIc9co0HnAOciUu0NLym8TFw6fzjL5+XzGsvvndqVuy1n8SmGTfx56/Erfhxecnp45cm8/zGmJZlUl/GYqb0S3XclFSSpTPJpC9YZzD4nmkFwGhgR9xF0jXA88DnsaXF2oeIrCrMG12Zl3V93/Xlw0KRaKAmKxhe3r3w/UGrS/+YUxv+pN3qZoypp/if1w8AJgC74NqR1cDdwMzY0mJt4oEPDhgQxb/dC4R3FTRL1Sv3/dCDWV500om7vhZpq3KMSYdM6s9YwJBeIlIJXKeq1zTx+ETgElVtbokSY1qUSe2MMabjGv3G+VnAL4C9cDNMSoHXgLdn7XsbpXnZh1fmZF/Wa0P5TqGoH6oJBavXdMt/rdf68quyI9H3aeEi1gnvnp0HHAz8GLcv7DrcHpAfPbznHS3GEsMeuaYQOAz4IZtikeeBL2JLi22R4nun9gKOBIbhZtwsB54pOX38N1v63MaY5mVSX8ZipvRLddxkSZYM+oIZY4wxxiQjk/ozFjCkl4iUALer6g1NPH4xcK6qFqezXsaJfR/OAX6Om+39O1X9QER64kZcP62q89uxignLpHbGGNNFiHioprUvYYzpvDKpL2MxU/qlOm5Kdk8WRKRIRCaIyIsi8mlsWg0i0lNE/iQiw5J9bmOMMcYY0wnYBo7pcDPwexHp3/ABERkI/D52jEkzEdkK+BS4GtgKN9O7AEBV1+L2Y/lDu1XQGGMynSVYjDFdgcVM6XIzKYybGm4GlpBYwPA6sDXwDbA9dQIGEfkdbo3NC5KtmDHGGGOMMaZFHlAOzBeRJ4D4rIjtgKNif3si8qc656iq3pTWWnZN1+M2Mx4FrIzd6noStySNMcYYY4wxJrVSGjcllWTBAgZjjDHGGNOc9hgp1TVHZtWd7n5yI4/v2OAYcO+UJVlS75fATao6R0R6NfL4AtygNWOMMcYY0xVZzJROKY2bkk2yWMBgjDHGGGNM+xvS3hUwTcoFVjXzeGG6KmKMMcYYY0wXl9K4KdkkiwUMxhhjjDGmSaLulu4yuxpVXdTedTBNmgPsA9zZxONH4fZsMcYYY4wxXZDFTOmT6rgp2Y3v4wFDU47CAgZjjDHGGGNM13UzcKKIjAe6xe7zRGSYiNwH7Ikt22aMMcYYY0yHl+xMlpuB6SLyOfBo7D5PRIYBf8EFDMdsefVMU4pnTBHcjKIgUF4ydoLf0jkjZl5d75yvx1zR4jmZbsSjkwqB7sDKr4+bWJOqcopnTMnCvXeVJWMnhFNVTlqI5NVkB39RkZc1MLsmsiG/svYtVJekoqjiu6aFgL5AecmZ4zYkcs4J757tAQVAGKh+eM87UpJj3/vpCQGE/ijVwNq3j5jSYjmXfT7GA/IBH6i8dseZLZ6z+9OXBsS9B77CyvePuK5Djxn4cFGxAD2BHGD5TwaXRFs6p3j61Prt1WnjW257RLYNDwz8zM+VwtDiyDdeLf9BtXYLq9+uXlw4cmM7ctCQOQm1I+8vGrLxnN0HL+zYbY8xJmVEZEfgD8CPcRfzGw6kUlXdNu0V6+JU9X4RGQxcA1wbu/sFQHB9iUtV9cl2qp4xJsVGzZoYj2siQNXs0ZM6dBzQWnu/PH5jP/btA6du1o/d48VLNj7+3kGTrZ9rjDEm5VIZN4lqcr/zInIZcCUuSPBwgUI8YLhcVacm9cRpJiJFwAagm6qWtnd9WlI8Y0p34EjcBj3FuPd8HfAI8FjJ2AklDc8ZMfPqIuDw2DnDYueU4hJkj3495opv01D1NjPi0Un56svF0aicpr43SAEB3wv4swMB/zaEB78+buIWd2CLZ0wJAPsBvwJ+hvuch4FXgIeBdxNJbmWKmuzggDW9Cm7otbbimOyaSHb8fl9EV/YteDenOnJx9/WV77RFWcV3TTsC0T/hsTsQAEBZhcqDKFNKzhy3puE5J7x79gjgOFyCtgC3udT/gAeBZx/e846KtqjbT58Z/9PsUHR8XnbNLzxPQwDhaKC0qiZrZm0kcO3bh0/ZbPrgZZ+P2Qo4FjgR6BWr2+JY3Z64dseZaxues8fTl+wUCkYvy80OHxTw/FyASNSrrK4NPRuOBK5774jJc9ri9aTLh4uKB0WRy8LqHevjdQcQNBwS//UA/tTdBpe83vCc4ulTC4DDcG3PCFzbUw48Bjxactr4eQ3PqRkROhrhr9lfR4rr3h/tJuHaoaEncj+tPRvVdW3+AlPkxYUjg2xqR37KpnbkZVw78t5BQ+bUa0feXzTEA/YFToidG8AF5/+JnfPW7oMXdpi2x6RHJvVn4nXZ9pJrPg3k5qX1sxqtqvS+nXz5zmTA+5AuIrIf7sL9OuAjYDSuvcjBDXz6CvhYVX/dTlXs8kRkG1z/Zhjud+BbYKaqLmjXirVSJrUzxmSyUbMmDmdTXFOIix3mAQ8Az8wePam8HauXUnu/PD7ejz0x9v/1+rG+L+8qsi/N9I3fO2iy9XONMSmRSX0Zi5nSL9VxU9JJlljlOnzAkElfsJYUz5iyI3AHbqMeH6jAddhygRCwHrisZOyEmfFzRsy8envgLty/Ud1zcoBs3Gu/+usxVzyQtheyBUY8Omn7SDjwsh+VgQCIulH0Ki7ZJ/jBYPQNL6AHf33cxKRHwxTPmFKEW77hl7jR9xVANPbfeUAtMBOYUDJ2Qspm0LSVioLsHVDe8T0peOngkVUvHLrDumUDulUVlNeE9v3vvB6HP/15/oClGwIr+xaeM2DZhjuSLaf4rmmC8AieHoXgofi4zxsIARRQ1uLL4SVnjnsP4IR3zxbgN8B4XBBSDdTg2pR83IX5OcCZD+95xxa1Lfs9d/HUbvlVfwx4ftBX8VXdSpSe5wcAwpFAxYaKvF+/edjUx+PnXPb5mEOB63GzN8JAVaxOebigYTFwzrU7zvwofs7ez064qCCvelLA87MA9X3xXTnqARKNejVlVTl/fOewKf/ckteTLh8sGnJ4jQbujyIF7p7Y9w73vROIZEvkrj0GLzwvfk7x9KnDgH8C28fuqsC1QdmxWzkwGfh3yWnjFaBq56xbcmeHz6/dMUT56XlatX9OxM8VQgsjUvBgZSDvsSqJFnmlgbXRkV51amZftaUXF44sws38PJCm25FHgMsPGjKnBuD9RUPygBtxP/YhoBIXmMbPCQNPA+N2H7ywMo0vx2S4TOrPWMCQXiLyBtAb2APIAlYCB6jqf0Rkd+B54GRVfb4dq9mliEgOblDUEGAN8KyqLmvfWm25TGpnjMlEo2ZNFODXwCU0HtcAzAXOmj160vx2qWQK7f3y+Hzgr8AhNNKPVSUClPkqRSABGu8bPwpc9t5BkzM+xjbGdDyZ1JexmCn9Uh03JbsnCwCq+p2q3qSq56rq71X1hi1JsIjI70XkcxEpjd3eFZFDWjjnOBGZKyLVIvKFiByabPmZrHjGlKHAPbhgbTmwDDcbpQz3oViKG/1/ffGMKYcAjJh59dbAvcB2wIoG56wCvsclaK4ZMfPqMWl8OUkZ8eikXpFw4D9+VAYiWiueVosQFiEsntYiWg2qkXBgPz8qTydbTvGMKSHchdFDce/VElwCqwyX7VyCu9B+AnBtbOm2zCXSS+HtNb3z83539ymL7jh337klQ3qvqMkJla7pXbBm5nE/nn/mPafOff3nw2v6rSz7++reBQcnXxYzCOjRALFluGpxF4XDG//26ElAZxXfNW1o7KyTgYm4jvj3wGrce70B97leCewA3HvCu2f3S7Zq+84ad0X3gso/eaKBcNSrjvpera8S9lXCkWigOhLxakLBaH73/MoZP31m/L4Al30+5ufALbgphPG6lOG+R/Hv4dbAvy77fMwPAPZ6dsKZhflV1wY8Pysalepo1KtRlbCqhKNRryYalepAwM8uyqu+dc9nLjku2deTLh8sKt6jWgMPRpECQWs8tNqDsLtpraDVCoEaDf7u/UVDJgMUT5/aH/g3MJJN7dMG3Hu3GvcdCgFX4Ea5UTUq64Lc2eHzy36fr8uf7VVdflx+VbRnIKy5Xrh2ZFbt2mu6Va2Y1TsiokXR3oEvcBewMtaLC0eGgNtw7Ugpjbcj1bjP/6QXF46U2AyWm3D7mlXEjlnX4JwK3OCGabHjjclc2k63rufHwN2xACm+hGMAQFXfx226Pqmd6tbliEhf4EvcbNfrcO//NyJyQLtWzBiTDifi+rfNxTUjgX+PmjVxQHtVMhX2fnl8AJdgOQI3mKpeP1aVpbjE0wgRzQVtqm98EnDNHi9ektkxtjHGtBWLmdIppXFTm1ygEZHtRWSiiPxdRM6PZeOS8T0wAdgF2BU3ZecpEdmhiXL3Ah4C7gZ2Bp4EnhSRHyZZfib7A7AV7qJuY3sgKC6RkgtcGksUnIlbUmwpbgRJY1bisneXjJh5dW4b17lNqS+T/Kj0Q7RWhM2yvCIgQhiIRiKB/Uc8MmnfJIs6ADeDZS1u9E1jynEdwmNxn9WMtWxA0YSs2mjRpVOPXrKqb+Fmy1oBREKBmmkTfvnNN9v1iZDkBqzFd00bjqfHoyguudIYH6UGoTvCtBPePbsIuBjXFq1u4pww7nM/HDcyrNX2fnpCbmFe9Z9F1Iv4UuMmojQgopGoVx0KRnNys8M3xPZfuRSXvFxO4z9DPu77NQC4YPenL5Xc7NqrPdFgNCrVjZaDEI1Ktef5odzs2inJvJ50iqh3g4/kCVotjbwHAghaoyA1Gjjvw0XF3XAzk7bD/bs11fasxv2Yjdtv6sWFoWXRa6sOymbdJYXViNfIKA4hvG2odvU9PSOhJdEe1SND57TVa0yRXwL740YwVzVxTFnsdjzuN2w/XFJmHS6Z0pgKXEB6BLBXm9XWGNORRXBtCbj2IYzbCyxuAe6inkmPibj+9024JTP/iPsduLP9qmSMSbVRsyYWAONw/dum4poIrn+8HXBGmqqWLvuyqR/bWAxdhJutEhEXX+U3cky8b3wc7kKYMcYY05ZSGjclnGQRkfNEZJ6I9G5w/+HAbOAq4GzcDIBPGh6XCFV9RlWfU9VvVHWeql6Gu5i9RxOnXAC8oKrXq+r/VHUi8AlwXhPHd0jFM6b0x025LYfNkwsNrAaGiOcfDozBdXASOWcg7qJgRhrx6KRANOodB9BYgqUe0TBKwPdlXJLF/QrXOW7qwmhcGW7Zo+OTLCf1RAKFpdW/fX2/7apX9C/abB+UuqLBQO0Tx+xc3ntNxfY12aEftb4sLkUI0nSCJU5RFE8PqqoJHgv0oelAZGP1cCObjj/h3bMb65A3KxjwLwgFovnRqFfbeOIjToj6XjQvu3bH5eVFJ+H2EWn2fcMlHkqBA3rnlv0hKxTtHfUl3FI5vi/R7FBkmz2fuST5mUMp9uGi4qFhAj8B/OZfjdufxUfySsM5l+ECo2oaTwjXtQbod8qH710ZXOnnl/2uIIp4zY6pqN0hVFu9TxZelY5vzWtpB8m0IyfglktoaRmwCtwIyRO2sI7GmM5hPu6CHerWAZ4LHF3n8dG4wQImPX4JzFDVi2Jxza242KRYREa0c92MMakzGuhHy7FDPK45btSsiYUpr1X6nEjz/diesf+PACKiPZs4rgy3tHnmxtjGGGM6qpTGTa2ZyXIE8K2qbrwYKiJB4F+4jsKvgR/hZqIMBi5LtlKx5w6IyIm4EQ7vNnHYnrhNyOt6MXZ/Z7IXbrmiRNbJqwUCXkDH4DoyGxI4J4y7GPizpGuYaspevi/dEW1xnxVxV4PVj3pNJeeaFNuLZQ9cQisR1cAvM3jJsO0LKmq7/+eA7ctJYELgG/tut6I6O6hre+W1/uKt6H6tODqMkLtmQ8HJuGv0LV2MB/dZ7ksSo5pCweihiIoiLa5z6Sthz/ODYQ38FnchuzqBIkqB/MLsmlMF9dCWX48qYRH1goHoiQk8f7vwkVMUgkIC3zvwFdgQzj0Mt8ZlIm1PBPB22LD0uMhWAap3DSWwj5JQeXSuZi2M9EWkWwJlpN2LC0d2B3Zn0wiJllSDHoybydLUDJaGKoED3l80JNDqChqTJqLtc+uCngN+FeuXg1uuZYyIfCMi3+D68DaLIn22Ad5qcN9buP5O0sueGmMy3r646ytNzeKuawOuv7xLSmuUJnu/PD4H9/ob7ceqEsBd14nHYr5AUTPhaRVwUFvX0xhjMpHFTGmV0ripNUmWkcB7De77OW4U+k2qOl1Vv1LVabiNfJPaG0VEfiQi5bgN4u4AjlbVOU0c3h+3RFZdK2L3N/X82SJSFL/h1gXNdPm4HkiiGyEJbjquR2IXr4k9f0ZesIzphSIkvnKgqhsd3lr5uIRTIp1jYsfl4C7GZ6JCgHU98lqaXQJAOCsYqczL8qOe19TIoubkxZYKS4QCEvWlO4l/RiO4f5uC1lZMRPMTz4JJfA5Ka9oGBfyA+Hnx50iknNj/ZmwbpLE2obFlwhoT+4Lm40axJfodimaHI3l+bw8ksZ/6aK+Ns12SXZoy1VrdjgjkxwLQ1rQ98U1CjTFd2yRgJ2K/p6o6HRiL2xfkM+AMVZ3aftXrcrLZfIBG/O8gxpjOqhtpiGsyVB7N93092CyWF5q+HhUBcvd48RJrM40xxrSllMZNrfnR6gUsbnDf/rgfyica3P82bqmqZHwNjMJ1Uo4FpovIvs0kWlrrEuAvbfRc6VLBpk5IIomW+PJFPq6zk0hnT0hs5Hl7WYO4C/MJHi/iEnWtVYF7vxL9bgRx73UCI/DbRRlAj3WVWYkcHKqNBPMqa72anGCje7e0oBKhV4JpFgE04Ol63FJ1iQji/m0SnWW0kapUJJ6o35gpSnQWAsS+n1H1KuPP0fJHVeP/25py0kpibYK671OLb2HsVVfg2p0giX0vAjWhYKW32u+FqiSSaAms2bh6WSKz+9pDq9sRhQ0i5LbmHNzMxZaWFjOm/bTHpopdcFSWqoZpsDyNqt4P3N8+NTK4pcHqzryND2TaTkTWNzxYVT9JS62MMam0gdjmuQlIOq7JUJU03/f12TxAam4QaRDY8N5BkxMdfGSMMR2XxUxpk+q4qTUzWRqbIfIz3A/qZw3ur6XlfRkapaq1qjpfVT9W1Utiz31BE4cvZ/Np9/1ofv20ybhAJ37bKpl6ptk7uE5bIqO2s4CoH5WZuI3bE5mdEsJ1it5MuoapJrzjeboelRZnjKhrLMQL+A1nXrWoZOyEUtyMrURHFeUAL5WMnZCpTdTc8vys9fu/MreABBJU+7z+Tb+cmoj0XFP5cKtLUnmtFUeHUKp6dyu7D9e8JxKQdANW4vZdapVwJPAcKipoi22eJ4R834uEJPovXJIgJ4EiioCKsprs+xTxkZZfjwghVfEj0cCDCTx/u/DQ+wUiSgLfO/AE6Baqeha3x04ibU8Q8L/qNvDR4PdRcj4KJzAjTMl7okpqhwRXopqRieGDhsxZD7xPq9oReQF4jcY3AW1MHvDK7oMXJjpi0hhjTPpMAj6sc4svb/z3Bvd/FPt/Y0zH9zouaZDIgJluuP7yxymtUZq8feDUatzrb7QfK0IUNwgpHosFFEqbCU9zcMvAG2OMMR1Ga5IsHwGniUghgIjsAOwGvKiqDUcYbA983zZVxKPpZZ/exc2mqetAmt7DBVWtUdXS+I0MHkUeVzJ2wnLgedwFu5b+zXoDC9X3ngFm4i7EJXLOUjK4I/P1cROjgYD/KIBqC69HJYQQ9TydlmRxD+GSTrktHFeImy3zSJLlpJ5qtKww5659Xvsmp9/y0l7NHRqIRLPGPPZpwepe+XOza8JftL4srkOJ4BJ9zREEwZcXc7KjM4FVuM9gs9XDdbYfeXjPOxLds2KjSNS7JRwNVAQCflbzKXsl4PmBypqsz/sXlD6Im1nX7PvGpuX5XlldVXhbbTiwOuBpqKVyPE8DNeHgd+8ePvmlVr6ctPnJ4JIFIaIfAs3uRu8GXkjIQyuLQtXXAo/i/r1aSjb1Apbf/5M9roz08yoK7ywPoH6zycCsr8JZOW/U4udKpi998xAu0G5NO/IwbnmElpYAy8clAFufDDUmnbSdbl2QiBwkIo+IyEci8q2ILGhw+7a969iF/Bo4o5FbY/fH7zPGdHyzcANTW4od4nHNo7NHT8r4axGt8H8034+Nr5QQBHxVaWrlhMyPsY0xpi1ZzJRWqYybWpNkuQq3of03IvIqbkkwxc0Maeho3OyLVhGRySKyj4gUx/ZmmYzbCPiB2OMzYvfF3QIcLCJ/FpHtReRKYFfg9taW3QHchktcDaDxC5fxzTSrgOtKxk4IA3cBJbjlmBobUSO4jcRrgclfj7kikQ2+2414OtEL6HJUshpLtKiCKiEgEAxGX/36+ImvJ1nUK8BLQE+a7iQWxm6P4RKQGWvA8tKptVmBDdeNf2JQnxWlje61EgxHs8dNeWm7YfNXBRH+mEw5JWeOm4cvj8S2NGkq0eIhZKOsRxn38J53lALX4y5GN5VoCeE+918D/06mbm8fMaWqrDLnRlXxg55mN/qLoiqhgJ8TjgSqq2pCF12740wfuA43jb8/jQ+18nDfr2XALe8fcZ1W1WRd4atEAgHNafyXSwkENMf3vXBVTdaEZF5POgXFv8hDKxXJ0Ubeg1iCJVtAsyV6+08Gl2wA7ga+wf27NTWarzcumXn9a+OvLwv3D1yW+2INPSaX5aB+I79NSujbcFbvM9YGw4MC63LmhP/eVq8xRV7CtSW9aLkdeQT4FDeTZRbQg6ZntOQD3YGnSeJ31hjT+YjIxbhNHH+K6yu+gRtRXPf2RrtVsIuJ7VPZqlt719kYs+Vmj55UDkzD9W+bimuCuP7xN8A9aapauryO+y1qqh9bilsFJaguvmps4Fy8b/woSaxeYIwxxjQn1XFTwkkWVf0C+AVuSutA3JJKh6pqvSmuIrIf7sfz0STq0xeYgbuY+irwE+AgVX059vg2uE5JvE7vACcBZ+GWFTsWOEpVv0yi7IxWMnbCAtxIt4W4ZMoA3Oj5Qtz7NgjXWbm4ZOyE5wG+HnPFYuB0YF7smIF1zukT+7sKuOzrMVfMTOPLScrXx01cEwxFf+4FdCkqWepLjiohVULqSxYqOSASDEVf8wJ6RLLlxBJUF+C+eIW497Z77L97xP7OwY3WuSyDlwpzVNcI/LTX6orKO3/7wOCzb399++KFq/tlV4eLeq0u73XMo58Mu+uM+7bf97/zslf2LTy796ry5Gc0KWOJyhOAIuTgki0hILTxb5+1ROWQkjPHLYid9QBuWY0wbvm+3rj3uhvuM9oH+Ar49cN73rEi2aq9Pnra1evL8/7qq0RDAT8n4PlZnmjIEw0FA9GcYNDPro0EKtZX5I196/CprwNcu+PM/+I+C+tjdemL+w4V4b6DA3B7Vf322h1n/g/gncOm3FVWkXtZ1PdqAwHNCQT8bBENiWgoEPCzAwHNiUa9mtLKnPPfPXxyMu1kWu02uOS9HImeGEDLFcn2kRwfQu4mWYrkCESzJXLH7oMXXgJQctr45bi2Zw6b2p5uuH/X3rh/5zBwNe57RO7s2luqRoVuLfxHhfQ/bE1OwSMVuYG10ZBU+qGsr2qzel6+Ibff6NVBVSkNrI7+CNWMTgofNGROGDifltuRB4DLDxoyR3cfvNAH/gQ8iQtOB8WOrXtOPvA4MC52vDHGXAD8Bxisqkep6q8bu7V3JY0xpgv4P9zg1Kbimr64/vGvZ4+etKy9KpkKbx84NYrrxz5NI/1YEQbiVhH5WlWqQJrqGz8IXP7eQZMzO8Y2xhjTEaU0bhLVrv3bJSJFuP1OusWWD8toxTOmdAeOAE4BinEjy9fhlo15rGTshEUNzxkx8+oi4DDgZGC72DmluNHTj3095ooOtYTEiEcn5asvf45G5dfqe4NiO+j5XsD/NBDwb0d48OvjJm7xB7t4xpQAsC9wYuz/PVyH+WXc+/1eydgJHeYiZ012cMCa3gXX91pdcWx2bWTjEny+iK7sW/BOTnVkXPf1lW0yMr74rmmHI3ohHnsSn3mlrETlAZRpJWeOW9PwnBPePXsELlF6LG5pPAX+h7sIPSuZZcIa89Nnxu+VHYpOyMuu+YXnaRZAOBoorarJerw2Erju7cOnbPYduuzzMVsBxwC/ws1MUFxy5QHgyWt3nLnZdPc9nr5kp1AwemludvjggOfnKhCNepXVtaFnwpHA5PeOmDynLV5Puny4qHhQFLk0rN5xPl53AEHDIfFfC+BP221wyWYzx4qnTy0ARuPaqxG4tqcMNwPssZLTxs9reE7NiNDReNyYPTcypO790e5SWzs09ETuJ7Vno7q+zV9giry4cGQQ1378CrePWbwdeQnXBr930JA59dqR9xcN8YB9gBOAn+O+QxHc4INHgLcswWIayqT+TLwu2110zaeB3Ly0flajVZXeNzdcvjMZ8D6ki4hUAH9S1Tvbuy6mc8ukdsaYTDZq1sThbIprCnGxw9e42OHZ2KyXTmnvl8fH+7En4lYlqdeP9X15V5F9aKZv/N5Bk62fa4xJiUzqy1jMlH6pjpssyZJBX7DWKJ4xRXBr/QeAikQu9o+YebXgRoeEgPKvx1zR4TsvIx6dFF86Z+XXx00Mp6qc4hlTsnDvd2VspkvHJZJXGwr8oiI/q39OTaQ0tyr8NqpLUlFU8V3TAriltspLzhyX0CblJ7x7todLsoSB6of3vCMljdTeT08IIPRFqQXWvn3ElBbLuezzMR5u6ScfqLp2x5ktnrP705eKuFFrvsLq94+4rkM3uh8uKhbcdy4PWP6TwSUtbrxePH1qvban5LTxLbc9ItuG+3t7+/let9DiyDyvlv+iWrtltW9fLy4cGW9HKg4aMqfhXmaNen/RkBDuva7cffDCjt32mJTKpP6MBQzpJSL/BT5V1T+1d11M55ZJ7YwxHcGoWRPrxTWzR0/q0HFAa+398viN/di3D5y6WT92jxcv2dg3fu+gyQn1jY0xZktkUl/GYqb0S3XcZEmWDPqCGWOMMcYkI5P6MxsDhj+3U8BwY9cKGETkB8DzwKWq+mB718d0XpnUzhhjjDHGtFYm9WUsZkq/VMdNTW1IbIwxxhhjjMkwIvJ5I3cHgftE5B+4TRwbzjJUVd0p5ZUzxhhjjDHGmAyQ7rjJkizGGGOMMcZ0HGtx6/vXtQb4ph3qYowxxhhjjDGZKK1xkyVZjDHGGGNMmxN1t3SX2dmp6n7tXQdjjDHGGGPMlrOYKXXSHTd56SzMGGOMMcYYY4wxxhhjjDGms7AkizHGGGOMaXvaTrcuRkRGicivGtx3kIi8ISLvi8gF7VU3Y4wxxhhjTDMsZkqbVMdNlmQxxhhjjDGm45oGnBD/Q0SGAE8AQ2J3/VVEzmqPihljjDHGGGNMhkhp3GR7snQRI2Ze3RM4HBiB+3dfCTz79Zgr5rZrxUynNGrWRAFGAQcBvYBa4Atg1uzRk8oaO2e/Vy8S4IfAIUAfIAx8BTzz2v43lKah2k0T6bNyQMFFuZXh03Irwr1U0MrC7GWRoHdbr5UVd6Ba3thpxTOmbAMcAWyDGytQAjxVMnbC0qaKKr5vykDgKGBw7K7vgKdLTp2wuA1fEcUzpvSJ1W0YEACWAc+UjJ0wv80KEcle1bPgZBUu7lZaNTTga6AyJ1RaWpj7aN81Zddm1Ua+a7OyjDGZpz1GSXXNUVk7AdfX+XssEAV2VtXVIvIwcDbwz/aonDHGmLa12wuXCrArcCDQE6gGPgWe/+Dg6ypbOn/X5y8NAGcJHAsUAZUKrwPXf3TIdY3Gag3KDwL7xG4FQAXwNvDfDw6+Lpzcq9pk+5lXZ+Ne225AHlAK/Ad4Z+6YK/zB/7o+Bxdn7grkAuuBV4H3F/32Yn9LyzfGmLSymCmdUho3iWrXfWcBRKQI2AB0U9X2vZCbAiNmXh0C/gyciuuA1VUFvAVc9vWYK9r0Aq7pukbNmrg9cC2wC5ANCJt+NlbiGqs7Zo+etLEDvN+rFw0FrgN2B3IanLMGuBu47bX9b4im75U4qwYWntNjZcWt6on30b7F1Qu37x32or5s/9mKrB3fXZwdzgpUVRZmj+mxquKF+DnFM6b0AK4CDgXyGzxlGfAUcHXJ2Akbg5ji+6YUAVfgEh+FDc4pB54D/lJy6oT1W/J6imdMyQHGAycC3XDvdfz9rgReAy4rGTth+ZaUs6EwdyfP1/8WVtb0+HSHrWvf2WVoTTgUoHjxmsCBb/4vN7e6luV9ut0wcOWG8XT1HyJj2kAm9WfidRn+x2s+DeTmpfViR7Sq0pt38+U7kwHvQ7qISDXwe1X9d+zv94Elqjom9vdvgb+qalE7VtN0ApnUzhjTVe32wqU74mKtHYEsXD8ewMcNmvob8O8PDr6u0f71rs9feqYnOlmge51zAVCo9FX+9dEh113YTPn7AxOBbXGDN+NxRBRYCEz+4ODrnkv29W0/8+rjcNcvtsatvBJ//rAqc2vLs97xw4HRwMAGj9fiBuhdsei3F3+UbPnGmM4tk/oyFjOlX6rjJkuyZNAXrK2NmHl1ALgZOAaoAdbhOl9xBbjO1XzgpK/HXGGjys0WGTVr4kjgflyndy3uon1cEOiBmzXxL+Cq2aMn6X6vXjQMeAA3c2MdbiRUXCB2ThZwH3DJa/vfkLYfn1UDCs/us7z8H28ftG3V/RfssbS0Z+4GNuX8vb7fl/Y689o3+g//YmWwvCj7wO5rKv9TPGNK91hdf4JLqJTWOUdwiY0C4E3g9JKxEyqK75tSANwL/BSXUNnQ4JwiXOLlfeDUklMnJNVWFc+YkgX8A5f8qcKN+qr7fhbG6jcH+FXJ2AkrkimnKidrBDB7Sf9uwYkXHbly3rb9VuICLwDyK2oKfvvQW1uNnfl+/tK+3f46cMX6PydTjjFmk0zqz1jAkF4ishB4VFXHicgAYDFwnqreEXv8j8CVqtq9/WppOoNMameM6Yp2e+HSH+Nihr40Hmv1xMUOtwA3Nky07Pr8ped7otcLBNWtGlB3AJsHhAQ0qvLAR4dcd3oj5R8O3IQbRLYad40hLgvojZtVM/6Dg697tLWvb/uZV/8Gl8AJ4gba1Z0VkxOpDmwdrgrloawDWdbg8VzcCgprgN8u+u3F77a2fGNM55dJfRmLmdIv1XGT7cnSuZ0CjME1IGuofzEV3MXcZbjlgq4fMfNqwZgkjZo1MQjcCgwAllC/0w8QAVbF7j8DOHS/Vy/ycInAwcBS6idYwHX8V+OSFSfhEobpIdKzx+rK2945cGj136/cb15pz9z11J9U6a/cqmjVtJsPnr9w+96RUG30UUQCwCW4BMsK6idLiP33etz78FPgj7H7/wzsjZvp07AcjT3PStxMnwlb8Kp+i1uObW3s1rBNKAOWAyNxI+SSUlaQ/fjqnvnBs6acsnDetv2WUT+AoyI/u/yW3+4/757j96oYuHLDn8LBwA+SLcsYk7lE2+fWBT0F/EFEbgWexF30eqLO4zsBC9qhXiZFRGQfEXlGRJaKiIrIUQmcs5+IfCIiNSIyX0ROT31NjTFtZbcXLs0BbsMtq9xUrLUS9xtwHm4pr412ff7SwZ7olFiCpZoG/XNcXFCjgCd60q7PX3pC3Qd3e+HSQcAU3KoDS6ifYAE3k2QpEAIm7fbCpUNb8/q2n3n1Trg4Clw8Um/ZsWjYC4SrgjmgIgEtAG0Yx1QB3+MG6N06+F/XF7SmfGOMaS8WM6VVSuMmS7J0UiNmXu3h1paDzS9c1xXFzR7YDfhRqutlOrV9cHv+rKb5FR5LcZ3vU3BJgx/ReBKwrjLcrJaxsb1bUm7lgII/AsEHz999GSKRpo4LZwerHjr3J2vzy2t7fjZ80CnAkbjvXHPrEdfggpsTimdM2Rq3HnI1LjhpSm3seY8uvm9K79a9mo2zWE7Ffeermjk0gvs3+nnxjCnbtrac6uzQD/uuKd/hrl/9rGxDt7zmRkT4d53008XrinL95X2KrmxtOcYYYza6HJiJa+P7Aqer6grYOELuWOCl9queSYF84DPg3EQOjm3qOQv4L27PvJuBf4nIQSmqnzGm7f0SKMYlUpqLtdbjlmw+qcH9lwpk6+bJkYZqBQKCXtDg/mNwM2Vamum+ErdaxrEtHNfQCbjZ/qsbezBaE3CzdIRaIIjQvZnytwJGt7J8Y4wxnV9K4yZLsnRePwG2wyVQWlKBG5FyZEprZDq7o3FTu1vquIObmbF7xPdOw00tb+6if9x6XEImLcnA7OrIGZ/8dJvqdX3yW/wOfT2q/8rFQ3uEBS7FLe21IYEi1uOm1P8RN7V9fQLnbMAt53VoAsc29DPc2saJtAlluE0mj2htIat6Ff55fWGu/9I+P2hxT5farGDFswfsWNV3TdmRiNjvkTGdjbbTrYtR1XJVPVlVe6jqEFWtu0RLOe5i08R2qp5JAVV9XlUvV9UnWj4acBt4LlTVP6vq/1T1duAxoMl9F4wxGecY3PWbRDaWLwf23+2FSwfE7/DQo2L/2eIvpYIvwi67Pu/O3+2FSwW3n2MkgfMVFw+esNsLlwYSqCvbz7y6ADiKzWfnuCf0CfgRrxuCL+LKF9EeTTxdvI7HJVK2Mca0O4uZ0ibVcZNd1Oq8BuIuXle34pxBKaqL6RoG4zq1iagGsnxlGM3PYNnsHKB/EnVrtZzKcK/vhvUMk8jPj0h48bCekfzKmt6x4xN5TdHYscVs2iyyJX7s2AEtHdiI+OaQzc2WiYu/5laXI6pDSrbuFQlnBRNJnDFvSN/a7HA0G7cfjDHGmDakqr6qblDVRC7Kmc5rT+CVBve9GLu/SSKSLSJF8Rv2W21MexpMYv14cAPYsqjblxeKNPG4Kyoubhge+zsHNzgsof49Lm7rFrslog9uT5VGn199CamKsKn+PkJWM89XA2yTYNnGGGNMm8RNlmTpvBK5YFuXkNioGGOaEsV9jlojksQ5rf1sJ0VF/EA08b3HvKiPL5JM3RJNTNWVTDnJ/Pu0uhyFcCDqS6JlBXyNH2ftjzHGGJMa/dl8iZ8VQJGI5DZz3iW4WbTx2/epqZ4xJgGtjRm0wTnJjFuOr1AQHxzWmliiYfnNaen5G9Y9kXokE2MZY4wxSbMkS+c1HzcSJD+BY+OdlG9SVx3TBXyJ2zclEQVAZUD0ExLvrBfgPtPfJlG3VqssyPruB58uzyaB1xSI+DnDP1uRVVqYW4J7PcEEisjCBQyf1/m7JaHY/89P4NiG5uNGvzV3MSUu/tvQ6nI81U+HL1wZLCqtSmi0666flWSX5WWvJ/GRccaYjsSmvRvTkU1m02j0brglFIwx7eNLEosXwMVN5cB38TtUWS6JX/8JqIsbvgL44ODranFxQV6C5+fjkrLlCR6/HLdHZ6PXLiSgYRGNohvjMkGbjR1yiNXdGGM6BIuZOgVLsnRe/wPehyY3hKurCLcHQ6LrOhvTmMdxU8MTSezlA88HPL0Xd3E9kQvyhcBrr+1/Q0myFWwNgb9uP3t51tbz1/Zp6dhdXi8Z0HN1ZaDX2vILcUFCU2sE19UDKMFtPvtdK85ZRnIbcX2EC84SKac7bo+Yp1tbyKAVG/4ajEQ56sXZfVs6ttuGyu4HvjU3Z0NR7j2o2k+9McYYkxrLgX4N7usHlKpqkxcqVbVGVUvjN1y8YIxpH4/iZn4nMmAqF3jig4OvWx+/Q5EZsf9s8RqQgKcq//nokOvqfucfjJ3b0mAyDzdI7YEPDr4uoWUB5o65ohb4PyCbRgbgieB7oehaEE/VPa4qa5t4umzcLJaHEynbGGOMaSuWZOmkvh5zhQJ34y5692rm0Bzcxeunvh5zxeJ01M10Wp8Bb+Iu4oeaOa4fblTTjNf2v2EeLmHQjeZHZvXBbYR4T9tUtWU9VlfOqMoLlZ51zRt9c8trm0wc9Vpe3vOUW97vtr5X7tfFy9a8DdyLe/3NJZuKcO3vPSVjJ1TgvqsezSebCnBBzb9LTp3Q6KaQzSkZO8EH/oULOppLtOTGbv9XMnbCqtaWg+rylb0LX/7Nw+8UjPh2eZN7ugQi0ey/3PzsVuJrdKvl669vdTnGmIwn2j43Y8xm3gX2b3DfgbH7jTEdw7u4QVO9aD7R0R+3vN+DDe6/Xt0gqiyaWUlAIEehVuHaBg89AyyIPX9T15EEtw/MYlo/gPMR3DKGAxqrXzAnulZEI6hkq08VSmkjzxHAxY2fA6+1snxjjGkXFjN1HpZk6cS+HnPFy8BUXCdlIPWn94aAvkBP4L/AX9JeQdOpzB49SYELcZ3/vrjNEesGAAW4ZSZqgEtnj570cez+8cA7uA5xnwbn5AODcOv0XvXa/je8ncrXUI9qTTgrcNBWC9Yx8exnt93pncXboLoxERQIR3P3enH+kCvPfHqb3Ira8vzSmgNjD/0dN3KqCBeEZNd51hxc4JCHSxjdG7v/HmA67vUOiB0Xlx17nkLgIeCOLXhVTwK34L7/A6k/Ei4LlwDrATwHTEm2kAErS48PB70ld054oP8xsz4ZlltVW7DxQdXgTl8tHvT3yx8a/tMPv81a2z3vZFSXJ1uWMcYY09WISIGIjBKRUbG7hsT+3ib2+GSRjaPWwfUdhorINBHZXkTOAY4HbkpvzY0xyYrNCjkXl0Doj0u21F3WuBAXa1UAf/7g4Ovm1D3/o0Ouq/BVxgDl4uKLhgPcQrEES9hXufijQ657r0H5pcDvcAmUgbiZ7/HrSRL7exBu1v3ZHxx83ZrWvL65bsDnH4C1secpYlOyxfMCWhDKC1eJaA0qtSCFdR4P4K5rDMCt6PH7Rb+92PZkMcYYk1bS1VdoEZEi3EiPbrFp8J3OiJlXHwqcBYzCdajiq/AtIXbR9usxV9h+CKZNjJo1sRsuADiOTUtTCG5ZsPeBf8wePemNuufs9+pFBcA5wAm4znH8nGpc0uaO1/a/4dXU135zZd1zdgWeLNxQM2jFwMLId8N7RSTqs91Xq0Ld1lYF1vXKnZNfVntQVk1k42awxTOmBIDTgLHAtmxKHIWBecC/gYdis0vcOfdN8YCTgF8D27FpNlAEtw/NdGB6yakTEpp235TiGVMEOAr4LfBDNgVYUdyyZQ8Ad5WMnVC7JeUg0n15n6Kn+64q/VllXrb/yQ+3rg0HAzp4yZrQsEWrg2X52WurskOn911T9swWlWOMATKrPxOvy/Z/uObTQE7eFrVZrRWtrvTm3nb5zmTA+2BMqojIfrhBUg1NV9XTReReoFhV92twzk3ASNxeCZNU9d5Wlpsx7YwxXdVuL1zai02xVnzFCsHN+n8L+PsHB1/3flPn7/r8pTsLersIu0qdwW0KUVXmKzLxo0Oue7yZ8ocC5wGH4lYj0Fj5ZcALwO0fHHzdvGRf3/Yzr94x9vr2xw1Aiz//OuDJmrKs1/xw4ARgP9zAtfgFrbW42TO3L/rtxSuSLd8Y07llUl/GYqbOx5IsGfQFS6URM68WXJJlBO7i7Qrgja/HXFHdnvUyndeoWRMLgH1wM1pqgC9mj540p7lz9nv1ojxgX9yMllpgDvDFa/vf0L4NlYhU5of2K+ueMy4Y8bdW8CNBb27PVZXXZtVEPmvqtOIZU4LAXsDWuABgEfBu3eTKZufcNyUA7AEUx+5aDLxTcuqENh2NVTxjigfsAgzDBVhLgTe3OLnSQG0oOHRF78LLglF/F081FA4GVuZV1d7Wc0PlU6hG27IsY7qyTOrPbAwYzmungOF2CxiMSYVMameM6ep2e+HSIlzc1AM3MG12a5Ibuz5/6VDgTNwMkErg8Y8Oue6tVpTfD9gbt1pBBfDuBwdftzTxV9C87WdePRjYDTfzvhR4c+6YKzbOjhn8r+uHArviVgBYD7y56LcXr2ur8o0xnVMm9WUsZup8LMmSQV8wY4wxxphkZFJ/xgIGYzqnTGpnjDHGGGNaK5P6MhYzdT7NbZhmjDHGGGNMUtpjU0XbxNEYY4wxxhjTUVjM1HnYxvfGGGOMMcYYY4wxxhhjjDFJsJksxhhjjDGm7SmbtqNNZ5nGGGOMMcYY0xFYzNRp2EwWY4wxxhhjjDHGGGOMMcaYJFiSxRhjjDHGGGOMMcYYY4wxJgm2XJgxxhhjjGl7NvXdGGOMMcYYY5pmMVOnYUkWY0xK3DL3AAG2B3oBtcDXF2z/yobmzhk6fbKgHITKEIQqRF9bcNolJWmobsrs9uRle/gqOwJ4nn74wZHXftrSOce8c84gYHDsz8WP7/X3xc2eINJ9WX6Ps8NeYBTgBdWfN7B87e2oLm/utJplQ0cq7AmEBP6XPWDB6y3Vrfjeqb2BbXG/HyuAb0tOH58RP9HDH59UhPvMZQFrgbnzjpnot2+tMt+bJcOCwEigG1AJzPlZ8fyq9q2V8+i3u3i4f9OeuHZk7nHbflzavrUyxhhjjDHGGGOM2URUM+LaWLsRkSJgA9BNVe3CjTFb6Ja5B4SAY4BTgB2AEC5Pvh6YCUy/YPtXFtQ9Z+j0ySF8mawROUmj0gdEABCNSFA/lIA/acHpl7yUztexpXZ94vLzq2uD59aEQ0NUxQMQUT8nKzwvOxS59aOjr/lnw3OOeeecvYDTgP2BnNjd1cDrwPTH9/r7G/VOEClYUtDz3j6VG470VINLCntFfISBFWsDQT/Kyrzur/WoLv9VTqR2Rd3TapYNPdHHH6/oSIVA7G71kCWC3C3INdkDFtT7cSi+d+oPY3U7HMgHBHfR+yPgfuDZktPHt0tCY/jjk4qBscCxQI9Y3SLAHOAB4NF5x0ysbY+6ZbI3S4YVACfFbkNwnwUflzz7P+C+nxXPX9kedXv0211CuH/PU3AJoLrtyOPAjOO2/XhBk0/QBWVSfyZelx/8/ppPgzl5aW0XItWV3v/+cfnOZMD7YExnk0ntjDHGGGNMa2VSX8Zips7HkiwZ9AUzpqO7Ze4BOcAtwGjcnk/rcRfiPaAQlzhYAZxzwfavvAMwdPrkfA17b2lEfoSK4GkYxcddKA+i4uFp2MvyL1nw6wk3tcPLapXdn7pUaiPBR8srs4/0Ec8TP+oJEQBfCarvBcRTvyC3+r5Pj5l0Rvy8Y94550zgEiAXKAcqYg/l4d67auAG4O+P7/V3RaTbuuz8T7Oj4eKHfrBvxRPb7bFqVX73MkCLairyD5//Qd9T5ryWH/SjG3Ii4VFZ0fBigOplQ6738S+IJVeisZvi/g4C6uG97iG/zB6wIApQfO/U0cCNQPdYvcpj5+QARbiExgPA5SWnj4+m6K1t1PDHJ/0EuAMYiHuPynCJgizczAyAF4Hz5h0zsTKddctkb5YM6w38C9gN936tx/07BnD/plnAfOA3PyuePy+ddXv0211yce3IoTTejuQCy4HfH7ftx++ms26ZLJP6MxYwGNM5ZVI7Y4wxxhjTWpnUl7GYqfOxje+NMW3pKuAIoBRYilt6KIK7QLomdl8/4B+3zD1gWwCNyLMa9nZEiIqn1QJREVQEX4RaRKvxJeTXepOH3jv58PZ5WYkLRwM3lVVmHwUQDPjVnkcYQRHU8wh7Ab9aFcorc07dZeblVwIc8845RwCX4RJLS3A/+pHYrTR2nwLjcKP7WZHXbVaWHxl8zoG/X/7PUQd/vSq/+1ogDERKs/M3PLDDz7/5zcHnf18VzOpWEcp+AxGvetnQ30ddgsUDqgUJC+ILooJEBKkGfB9/P0VnABTfO3VX4K9AAfA9sC5eDi7ZshSows1yuSC17259wx+fNJhNCZaluM9YbaxulcAy3AX6Q4Dr0lm3TPZmybAA8DdgD2A1LmFRjXvfaoBVsfu2A+56s2RYjzRXcRJuxlRT7cgSYu3Io9/uMjTNdTPGGGOMMcYYY4ypx5Isxpg2ccvcA4biEgDluIuijVE2JVpOG3rv5J017O2NaFTcRdTNiEA80aIR74pU1L2t7P7UpbmV1Vm/BvAC2ujyVCLgeVqrKl5VTdZ5P3tuXBD4A27mwJpmnn4tbqbJeRu65Y7sV7lh71t/fHjZ/3pvs7SpE5YW9lo9aa8T1/aoqSguzco9WPHH42Yq1AjS6DmChAHfR4+uWTa0H3A2bkZIc/u7lOEuzp9RfO/Uns0c19ZOAQbhkilNTcuswtXviOGPTxqZropluH2AvdiUlGpMFPe+DgeOTlO9ePTbXbaLlZdIO9IfODVNVTPJ0Ha6GWOMMcYYY0xHYDFTp2FJFmNMWzkWt1dHS1MNFXfhe0wI/y+oBHAzI5oUS7RENSI7Dr13csZeKI/43gWRaCDf8/wWX4/n+eHaSKC7KpOBEbgkSkvWAkMXDeh9a2lWrv/80F2WtXTCh/23W7awW79IZFDoRh8dBESaSrDUEVY0+7vKwsnAfrT8bwpuhksv4MgEjt1iwx+fVAAch5uB0dLU2lLcElPHprpeHcSJuIRdS5vbx5eTO/nNkmHp6i/E25ENLRwXb0eOffTbXbq1cKwxxhhjjDHGGGNMyliSxRjTVnZj0/4eLSkFugXxd4GN29y3JAISROXgpGuYYtGotzcgItLyeppCFETC0cC+uAve1QkUUQN43cqrdvyw/3a1NcGsihbPEAm/NWhkdcG6qqG4Nr/RGUP1qyYKUBkN7IlbJqwsgbrF99HZMYFj28J2QE8Sqxu417176qrToexOywmWuDKgGDf7LB1+QgKf0Zgy3D5BI1JWG7NFRNvnZowxxhhjjDEdgcVMnYclWYwxbSWHlmcUxPm49ieEaKLNu8bSN7mtr1q6SFbCR8YTSyrZtHKyZiDqh6qDWQlvjFYdDKkX8QMACcxiqSsU+//E/43S9++ThUvqtOYzl5266nQoWST+vinufU74s72FWtuOCPbvaowxxhhjjDHGmHZkSRZjTFtZgZuRkYhsIIywDk3wqr8QiG0gvyTZCqaaiK4GSCRtFD/G83Q17kJxIu+DAF51dqhsUPmaIAm24YPK1gTCecFqAEX/v737jpOsKBc+/nt6ws7mAAtLEAYkKiqIAgYUFQXFCIgCChgwK6K85CCCwHJRLsGIKOyFi5JEEQRFQPBKUAQDGWHIywKb44Su94/qgdnZCT09uef3/XwOw5yu6qo+e7b3POc5VdVrO+3ZrMhTgLXycrKlHM/3oWx/zCf3rdyb/3Xkc1Qwj/ITE/Xk6fwWDF53VjOX8r9H2vvW01pGGk7OLyxJkiRJ3TNmqhomWSQNlN+Sv6rLuSE/Fbh/Zaq9iIiUUhnfRYnaKKSlRLq4n/0cNLU1bT+JSG0p9X4MUqKuEMXW+tqWk8iLfE8to4kpwLJV9bU/2XbeY/UbL3pu7d4qTGpePvUdT/xz/OL6iZcG0Ux5fz41QHHdhuVnkxcYn15GnfHkG96/K6PsQHgE+AflHbf2m/ZXD153RpWryMeknMTeROAPOzc+Us66PAPhmtLPchIt04D7gAcGrTeSJEmSJEm9MMkiaaBcBzwFzOylXPt0Uhen4L8ppGWkqO9p9EeCGlJE1BavfvTAo3pcVH44/fXD3/lTQ13Lo8VioabH0SyJKBYLNQ31Lf/603vPuBm4lrz2SU0PtWqAycAfX/3wM99dUVO34vP3XDeTlHq6GV046F9/XK++rZV1n5p/XBC3AoVE6va7vzSKpa5AzJtW13wR8AtyYqanESNBXh/lPuD2HsoNmIf2Oi4BF5OnjJrQS/GZwLO8fAN/rLuCvC5Sb0m6KeR1gH456D162e+Ap4F1eik3npzUvfijr7yrCx6u2gAAasNJREFU7KnzJEmSJEmSBppJFkkD4pCtblgBHEEelbE+XT+JPoV8M/464NJHDzxqWaG+eBiF1EqKhs4jWlLKIz4oRl3UFp+gJn1lsD9Hf40f13JQXW3b8rZioSEVV0+apASpSE1rW2FcfW3b4oZxrZ8qvTQbeAhYj67XNGkovfYf4DuktGJhw6RvvOuJfzYcecflm9e3tkzsXKFQLI779D9/v/kn77t54nMTp59JSk8XiIODeBGoT6Sa1GmMaCn50hDEqgKFz41b79EE/IScOFmHnAjqrJ785/08cGTTQUcM5Q3vXwG/IY+0mcqaIzNqycdtBXD0Q3sdt2QI+zZi7dz4yJPAd8hJinVZM7nXnjSbCFwI/Hmo+vbRV961nN6/R6aW+nctcPlQ9U0VcOi7JEmSJHXPmKlqRCp7zenqFBFTgEXA1JTSUE2HIlWtsx7Y9Z3kpMEG5Ju1LeSEbg2wnDxV0XGHbHXD8vY6m15w2ueKqwrfpRh5REKUvphSBJGKUZseiLriex498Khnh/KzVOqNVx3z9mUrxl3W3FozI6WIKH2eRESQ0ri61nkTG5o/eOeHv/O39jp7/eVLGwFnA9uRExetpZdqycfwX8BXrnjzDx5rr/PMpLX+36xlC05fNG5C8ZpXvnHFPetssqIYhbTV/KcaPvjwHRNmLV9Y8+zE6T9cb9mCL1P6sl/17KZbFSn+rkjakPzn0v6PQAApiMU1FD49br1Hr2pvp/GC2dOB7wLvICd8OvatDXgMOKTpoCP+PoCHsSxbXHFSA3ACsA85KdBKHt1SR/5sz5ATLL8f6r6NdLc2bbYfcBSwVmlXK/nvaQFYApwHfG/nxkfahrpvl/1n+3cBp9H998ivgOM++sq7Vgx130aqkXQ9096XVx188t21DROGdKRR68rlhfvOO3Y7RsBxkKrNSPqekSRJ6quRdC1jzFR9TLKMoL9gUrU464FdJwC7A+8njyRYCfwVuPyQrW54qKs6m1546lSK8f9SW+xNkRkErRTS/VGT/vvRg44adWtp7Pjro2vaioUvNrfUfqa1WFgfSLWFtifr69p+UlMo/uyOD52yxo3rvf7ypQKwE7AXsAX55vIj5Omd/u+KN/9gjX94Wwo1Wz03cfqJM5cv+vC4Yms9QGsU2p6bOO2GGSuWnjC+ddUdneusenbTAPYtUvxSglcCNQHPBXFREGePW+/RNW5cN14wO4DXAHsDryUngp4kJ83+2HTQEc2VHamBscUVJ72SfNx2Io8Geo48Pdi1D+113LLh7NtIdmvTZtOBDwC7kUeHLAVuBS7fufGRZ4azb5f9Z/uuvkfuBC7/6Cvveng4+zYSjaTrmfa+vPqzwxMw3PtTAwZpMIyk7xlJkqS+GknXMsZM1cckywj6CyZJFYsYR576qQDMI6XlvdSQVEVG0vWMAYNUnUbS94wkSVJfjaRrGWOm6tPTgsmSpNEipVXAE8PdDUmSJEmSJGksMckiSZKkgTcciyqO7QHakiRJkkYTY6aqURjuDkiSJEmSJEmSJI1GjmSRJEnSgIuUt6FuU5IkSZJGA2Om6uFIFkmSJEmSJEmSpAo4kkWSJEkDz/mFJUmSJKl7xkxVw5EskiRJkiRJkiRJFXAki6QB944bvzkN+GBpmwWsBO4ELgPuuemd3x2QvPk5d37o1ctS3ZwX0vjXLk+1NQUSU6N5xYxYeXldofjZr73xqpaBaGerE89sAN4D7A00AkXgPvLnueWBEw5tG4h2KnHWA7vWAG8HPgpsTU6ePwpcAfz+kK1uWDVcfZMkSZIkSZKqnSNZJA2od9z4zT2APwGnAW8CNgS2AD4F/Ar4yTtu/OaU/rZzxh17/fLfrWv9+58ta73+mdYJtUuKdbGorT4ea5084Z7WtQ94om3yirPv+PB7+9vOViee+TrgD8APgXcDGwGbAB8B5gC/3urEMzfqbzuVOOuBXTcGfgNcCHy41K+NgN2AHwE3nPXArq8djr5JUvsijkO9SZIkSdJoYMxUPUyySBow77jxm+8DzgLWAp4DngVeAOYBT5NHtHwA+NE7bvxmQ6XtfPeOPS+8t3X6PkuKdUwotDK5poUJhVYm1LQyqdBCXbTxdOuEmv8Up/z2nDs+tEOl7Wx14pmvJicwNit9jqdLP58v/f8i4A3A/2x14pmzKm2nEmc9sOt6wEXA9sDCUn+e79TPzYALz3pg11cNZd8kSZIkSZKkscIki6QB8Y4bvzkROAkYD8wFuppCayn55v/bgX0raefcOz80+bHilE+uooZJhRZqOqXgI6AuEhMLrTzfNr6wgIbfVNLOVieeGcCJ5OnOngG6mnpsJTmRtCXw9Ura6YdvAJuX2u9qSrAWcr/XA04464FdYwj7JklZGuJNkiRJkkYTY6aqYJJF0kDZg3xD//leyq0s/dzvHTd+s8/fQStS7UULi/UxPlqJHtIGNZGoIfF028R1z7nzg5v0tR3gNeRRIgvo+Z+hNmAZ8KGtTjxzrQra6bOzHth1HfKIoGV0ncxql8j93wF49RB0TZIkSZIkSRpTTLJIGijvBQJoLaPsQvIojG362shi6t/ZlgrUljGJZEOhjaWpjpWp9sy+tkNe6L6BnMjozSJgGvDOCtqpxDuAqaV2e7OM/DneM6g9kiRJkiRJksag2uHugKSqsQ7lJVgAmslJiWl9baQ5FeqjzPGNQaKYgiKFStZLmd6HssXSNq2CdioxvUOb5UgMXd8kKRuO4egOf5ckSZI0WhgzVQ1HskgaKMso/zulhpwg6GotkV4qprZy/z1IL/+3nNEona2ib//0FKjg81RoJX3//h6qvkmSJEmSJEljhkkWSQPldvJ3SjkLrE8G5gP397WRSdHyeADFMtIfzanAuCjSEK3n9bUd4C5ykqWujLITyYmPuypopxJ/L7U3sYyy9eSE1t8HtUeS1Emk4dkkSZIkaTQwZqoeJlkkDZTLySNGpvZSrgCMBy6/6Z3fXdzXRibR/NnxhVZWpp5nO0wJmlMt69csW3HIDlf9oq/tAH8AngTKWcx+OnAHcF8F7VTiX+SETjlTmq0FPA78cVB7JEmSJEmSJI1BJlkkDYib3vndJ4CLgAnApG6KFYD1gKeACytp52s7/vr/GmuWPFUkWFXs+issJVharGNCoZWZhRVnVdLOAycc2gycRR4FMqOHorOAJcA5D5xw6JA8D3DIVjck4OxSuz2tN7MWeZ2csw7Z6obmoeibJL0kDdMmSZIkSaOBMVPVMMkiaSCdAvySPI3VBuRpweqBBmAmLydYPldKylRkaqF5081qFi1oo8CStjpWFQu0paA1BcuLNSwpJVi2qllwxaE7/OqofnyeXwCzS/+/AXmUTj0wjpx42QBYCnzzgRMO/b9+tNNnh2x1wy3A4aX2Nyj1Z1ypf1NL+xJwGnDZUPZNkiRJkiRJGitMskgaMDe987vNwDeBLwE3A7XANPLIlueB7wEfvumd3+3X+iBfe+NVLeMKbWu9tvbF376idmlzIliZamhONYyLIlvULlqwTe2Lh/y/Ha/Yuz/tPHDCoemBEw79PvAJ4Apy0mIqMAVYAfwM2POBEw79TX/aqdQhW93wK2Bv4OfkNVqmlPqXyNO37X/IVjf8sDTyRZIkSZIkSdIA63lRA0nqo5ve+d0icDVw9Ttu/OZG5CmrVgGP3fTO764YqHaO3uGyBHwA4Kw7P/zxtlTYMSItq6V4yVd3+PW9A9UOwAMnHPoX4C9bnXjmOuTpuRLw5AMnHLpwINupxCFb3fBv4OizHtj1dOAVQABzD9nqhnnD2zNJY12kRKShzfEOdXuSJEmSVCljpuphkkXSoClNCVbxtGDlKi1sX8ni9n3ywAmHzgNGZPLikK1uWAgsHOZuSJIkSZIkSWOKSRZJkiQNvOFYVNGHsiRJkiSNFsZMVcM1WSRJkiRJkiRJkipgkkWSJEmSJEmSJKkCThcmSZKkARcpb0PdpiRJkiSNBsZM1cORLJIkSZIkSZIkSRVwJIskSZIGnos4SpIkSVL3jJmqhkkWSb3a7NKT1wHeBUwHVgL3AHc/ss+xA/rVvO01x00HdgVmAs3AfcDt9+xxUrHLChH1z0+btF9zXe2X6lta1y1GtK6qr7133flLThzX3HLXQPatEsW5WzQA7wQ2Iv8z1gTcVJj1UPNw9ksaLfa/4+C1yd89awGrgH8Cf7t4x/O8LJQkSZIkSSOCSRZJ3drs0pPXA74BfACYQk4UBDkBcs9ml5589iP7HHtjf9spJVcOBfYEZnRopxW4f9trjvv+PXuc9JuOdZ6ZOW2vqQ31F8xcuHTSPZtv2PyfDWe21ra2xU73PrbxuJbWD8ybPvm+KctW7trQ3PJsf/vXV8W5W9QDnwc+CWzQ4aUEPFGcu8UFwPmFWQ+1DXXfpNFg/zsOnkn+TvgIMJWXvxNagH/tf8fBZ1+843m/H8YuqgzOLyxJkiRJ3TNmqh4mWSR1abNLT94I+B9gS2AZMBdoH1EyAdgROG+zS08++pF9jv1lpe1se81xawMXAtsDy4HngPbkw3jgNcDZ215z3Ab37HHSDwGeXXvqfuvOX3LRX167afMZn3jP0/dvst7z7XVqW9sa3n3n/esd87Nrt2yuq/034+pe3bCqZW6l/eurUoLlHHJiqhV4gXxjGKAeeAXwLWDr4twtDjPRIq1u/zsOXp/83fNquv7u2R740f53HPyti3c8b87w9FKSJEmSJClz4XtJa9js0pMLwLnkBMuzwAJevskJORnyNDlpcNJml568XSXtbHvNcQH8F/mm6XPAfF5OsACsAJ4hP8V++LbXHPdOItZZa9GyC29845arPnf0Jx+6f5P15nas01pbs/J3b97msf1O/uzTzXU1UxdMnvDrSvrWD4cAHwQWAvN4OcECeQTQc8BiYB/gc0PcN2lE2/+OgwvA2eQEy1y6/+6pAU7Y/46DdxzyTkqSJEmSJHVgkkVSV94KbEsehdHTSIvnyNOI7VdhO68CdiEnJFp6KPci0AAc9OQ60w9LQc2xn//Q0201hW7XNnli1oznz/7YO5es++LiHZrral9ZYf/6pDh3i8nAJ8hrRyzvoehS8nE9sDh3i3FD0TdplHgD8EZywrW1h3LPk0e1fHIoOqUKpWHaJEmSJGk0MGaqGiZZJHXlo0AdeZH73iwDPrDZpSevVUE7e5GTJ0vLKLsYeMukFSsP/v2Or1q5YOrERb1V+M3bXvvc0gkNxWfXmnJkBX2rxHuBmeSn73uzgDx12LsGtUfS6LI3eYRcT0nKdkuB3UrTi0mDLiJmRMTFEbE4IhZGxPkRMamXOg0R8f2IeDEilkbEFRGxbqcyZ0fEXRGxKiLuGdQPIUmSJEmDZCzHTCZZJHVla3oeWdLRMvIT5RtV0M7mlJ9DX1bT2jZ++pIV0+58VWNLOfWWN4xbet8m67UWEltX0LdKbELuVznrrLQf38ZB6400+mxNzyNYOlpGTtJuPHjdUX+0L+I41Nsgupg8ld27gfcDbwN+0kudM8lrdH0UeDuwPnBlF+V+BlS8vpkkSZKk0ceYCaiSmMmF7yV1Jej7AMKooJ2avrTzUgNR/j8JKQDSUCWUK2mnZsB7IY1eff0eiQrqSH0WEVsDuwNvTCn9rbTvq8C1EXFYSumZLupMBT4D7JdSurG071PA/RGxU0rpdoCU0tdKr80EXjskH0iSJEmSBtBYj5kcySKpK4+Sp+wpx3jyGiRrfFmW2U6530PjW2trVi2eMG7ZNv95uq6cCnUtreO3eGJeTbFQeKyCvlXiKfIN33I+U22p7FOD2iNpdPkP5T8A0v7d8/TgdUej2OSImNJh6+/6V28CFrYHCyU3AEVgx27qbE+eevOG9h0ppQeAJ0rvJ0mSJEnDxZhpAJlkkdSVK8hTXpWTaJkE/OGRfY6dW0E7vybfJJ1QRtmpwN8XTp5w0fv//K/xk5avnNxbhd1vu3fWWouX1aw7f/HsCvpWiWuBhcC0MspOA54Dfj943ZFGnV+Rpwsr5+JuCnDrxTue9/jgdkkVG95FHJ8CFnXYjurnp5kFzFvt46XUCswvvdZdneaU0sJO+5/roY4kSZKkscKYqWpiJpMskrpyI/AQeRH3nr4nZgAryHMuVuJvwF2l9+lp2qyp5BuvF2703IJTGppbOGLO9RtGSt0+8T5j0dKph/zyxinzpk++v2FVyz8r7F+fFGY99CJwOfkJ+55uEjeUXr+kMOuhZUPRN2mUuBW4l96/e6aTE7T/MxSd0qi0Ifnfjvbt1K4KRcRpEZF62bYayo5LkiRJ0hAwZhpAJlkkreGRfY5tBr5CngJsffJolY7qyRnlGuC7j+xz7P9V0s49e5yUgEOBh4H1yE+md1xfoQ5YhzzS5XzgalJ64tm1ph7xsRvumnDq93+1xcz5S2Z0qlO73YNPbHDx8T9rXHvh0pZJy1d+qJK+9cPpwJ+Btck3gjt+z9aQE0prAX8Azh7ivkkj2sU7ntcGfBV4nPzd03nEWvt3Tz1wDjkhrBFqmBdxXJJSWtxhW9VNN78LbN3L9igwl/zv0cufL6KW/J3e3UjOuUB9REzrtH/dHupIkiRJGiOMmaonZnLhe0ldemSfY+/b7NKT9wVOIM+DuAEvDyoskm+Cng1c2p927tnjpCe2vea4jwMnAruQb6ymDkWeBn4CnF9KyrDhvAX/9dQ601s/cOs//+sDt/5zk5vesOV6j2y4TkttW1u8+R//GbfNY8/WLZw0fl4kdhm/qvnh/vSvrwqzHlpanLvFp4Ajgb1YfXhjAC8CFwD/VZj10Mqh7Js0Gly843kP73/Hwe3fPW9l9e+eBDwJfB+46OIdz0tdv4tUnpTS88DzvZWLiNuAaRGxfUrprtLud5IT6Xd0U+0uoAV4F3kaTiJiS2Aj4LZ+dl2SJEmSBp0xU3kipbF9fyIippDnnZuaUlo83P2RRqLNLj15a+Dd5OzzKuBu4MbSiJcBs+01x20K7E6eKqgFuA+4/p49TlrRZYWIGU/NnPb1huaWg8avaplRjGhdMrHhPw3NLafOWLz8V6TUNpD966vi3C1mAu8HXkG+OdwEXFOY9dD84eyXNFrsf8fBWwC7kUd/NQP/AG64eMfzunvCZswaSdcz7X3Zfq9v3107bkJxKNtuXbW8cNcVx2/HIByHiPgd+YmqL5BHWv4c+FtKab/S6xsAfwQOSCndWdr3Q+B9wEHAYvIILFJKb+7wvpuRR4x+AXgH8LHSS/ellAb031mpP0bS94wkSVJfjaRrGWOm6ouZHMkiqVeP7HPs/cD9g93OPXuc9Cjwg7IrpDR/QzievAFrzi00nAqzHnqe/A+KpApcvON5D5HXh5JGgv2Bc8lBQZH8pNXXOrxeB2xJnuKy3aEdyo4Drge+1Ol9fwq8vcPvd5d+bkJOzkuSJEnSaDBmYyaTLJIkSVIvUkrzgf16eL2J1dcII6W0Evhyaeuu3i4D00NJkiRJGj5jOWYyySJJkqQB12lRxSFrU5IkSZJGA2Om6lEY7g5IkiRJkiRJkiSNRo5kkSRJ0uDwKSlJkiRJ6p4xU1VwJIskSZIkSZIkSVIFTLJIkiRJkiRJkiRVwOnCNKZseskpAUwDxgNLHt336CWD1da21xw3FZgILLtnj5MWDVY7Q6XxwtkTyMduJbCg6cAjeh3QuNP1R7XXWQUsuH23U4s9VoiYsHDi+A8uaWjYpLbYtnzGkuV/HtfScle/Oz8GHHL3vrXADHLyfP5Z213SPMxdkjTGRTFvQ92mJFWLxjmzA5gONACLmg44Ytkwd0mSJA0gY6bqYZJFY8Kml5zSALwP2B94LflGdNuml5xyM/AL4OZH9z26318z215zXB3wbmBfYCegBmjb9prjbgcuAf5wzx4ntfS3naHSeOHsAN4EfAzYDagjzxb5YOOFsy8GftN04BFLO9bZ6fqjAnhjqc77gPpSnf/sdP1RFwNX3b7bqYtXayhircdnzjhrnbravactWzFu0oqV1BZzDmfetMmPNdfWnrThCwt+PpifdbQ65O591wc+Sj7nZpZ2Lz7k7n0vAy47a7tLHh62zkmSJKnPGufMngh8gBy7bA0E0NI4Z/YNwKXArU0H9P7AkyRJkoaG04Wp6m16ySnrAP8LnENOGCTyyIogBy8XAGeWEjEV2/aa46YA5wE/Ad5V2r2y9PNdpf0/KZUb8RovnF0DfIt87PYhJ1hWAW3AdsAZwBWNF87eqL3OTtcfVQCOAH5JDgrrgeZSnW2A2cBVO11/1GbtdVbV1b1i4YTxD0xfumzf/91lx9Z3nvKNJzf/6SkPbH7eyQ9+4cv7v/jIeutssOGLC3/25MwZPyEihuCjjxqH3L3v24DfAUcC65OPdTP5icevAVcfcve+ew1fDyWNaWmYNkkaxRrnzN6AnEj5HrA9+Tp6FfkByb2A/wG+0zhndt2wdVKSJA0MY6aqMaKSLBFxVET8NSKWRMS8iLgqIrbspc5BEZE6bSt7qqOxY9NLTpkA/Bh4MzAfeAZYDCwHFgFPA8vISYSTStOJ9dm21xxXC/w3sHvpfZ8p/Vze6ff3Av+97TXH1VT8oYbO/wM+S75p/zSwgPx5lpA/z/PA64CfNV44e0apzleAr5KDwadKdZaV6jwLPAe8CvjZTtcftQ4R45Y11N+2fFz99A8d/5WnT9rvAw88ut4681LEspba2qXXveE1Tfsd8bn7Zu+9+5JXvLDg4CfWnn7kkH36Ee6Qu/fdFvghefTKM8A88rFeBrxAPv4TgdMPuXvf9wxTNyVJklSmxjmzpwDnk5Mrz5Ov8ZaQr8EXkq/JVwIHAUcPSyclSZK0hhGVZAHeDnyfPM3Su8lPzv8+Iib2Um8xsF6HbePB7KRGlQ8AO5JvQK/qpkx7EmBv8lRildiFfM7OB1Z0U2ZF6fV3k8/1Eas0OuUz5CBucTfFWoC5wKuBj+90/VHrAF8iJ2UWdlOnlZxs2Rz45HPTJh8wY+nyDT7/1U/Oe2zWzHnd1Gn74R67PHLVTtuumLFk2dFE+NRediiwFvl4dvccwnPABOCIQ+7ed6R930uSJGl1+5AfYnqOfK3dlfakywGNc2a/cqg6JkmSpO6NqJtuKaXdU0oXpJTuTSn9g/yEzkbkJ3l6qZrmdtieG/TOasQrjUr5ROnX3hYBX0xeUHKfCpvblzyEf3kv5ZaXyu1XYTtDZW9gEt0nS9q1lrZ9i0U+Ckwlj17pSRv5z+PjiTji9i03af7XJhv29ne2+NPddp4/aVXzpHlTJ4/0YzfoDrl73y2At5JHR/U20PNFYAtg58HulyR1FGl4NkkajRrnzK4hT7fbRvcJlnYLySOWPzrI3ZIkSYPImKl6jKgkSxemln7O76XcpIh4PCKejIhfR8SruysYEeMiYkr7BkwesN5qpFmXPDVVdyMxOlsF7NrXRra95rh68g3vZWVWWQbsXKo3Ur2DHOCV89W7CHhFa2vNHqXyxXLqjFvVsu6shYtf+dsdXrei1FaP/t24wYuPrDezdfm4+j3LeP9qtxN5hMqSMsquBGrIU+ZJkiRpZNoUaKT82KWFl9eBlCRJ0jAasUmWiCiQ17j4v5TSv3so+iDwaeBD5FELBeAvEbFhN+WPIt8Ubt+eGqg+a8SZQD4fer2BX9JGHr3RV+MraKdQqjdSTaZvn6cmpZjSlzoTVjTXASycOL7cOq2LJo4vRkomRvO5XU4yq3MdSRo6KQ3PJkmj0wTygzGtZZZvpbLYRZIkjRTGTFVjxCZZyGuzbAN8vKdCKaXbUkpzUkr3pJT+BOxJXiTw891UOZU8QqZ96y4Zo9FvKfmmf22Z5WvpfXqsriwnP0nWl3ZaKH/ky3BYSPmfpw5ojUjzyYFhWXWWTRjXXARmLlpSVjuRUt3MRUsLKWJBmW1UsyXk7+8os3xQ3qgXSZIkDY8l5MRJuesP1tH7NL2SJEkaAiMyyRIR5wLvB96RUurTSJOUUgtwN7BZN6+vSiktbt/wxmPVenTfo+cBfwWmlFmlHri2r+3cs8dJLcAfyPMil2MC8Pt79jip3KfUhsP15O+Hcr4jpgKP1NW1XUm+mV9OomVqc33tk8/OmPrPj9x293jKSOi88aGmmRs9P7928vKVc8p4/2p3CzmJWM65PYG8Bs7Ng9khSerM+YUlqU+agPt5ecrsnrRfc183mB2SJEmDy5ipeoyoJEtk5wIfAd6ZUnqsgveoAV4DPDvQ/dOodAl5NEtvU3NNJ49IuazCdn5JXtOlt6msJpNveF9aYTtD5UryaJYZvZSrJwd5/xvBr4EXgLV6qVNHTqr877iW1u+8tunpurfe+/D6PVWIlGq/cO2fpi+a0DB/raXLri7rE1Sxs7a75Eng9+Tzqbfv8RnAv8gJR0mSJI1ATQccUQQuLv06rpfiM8gPC145qJ2SJElSWUZUkoU8RdgngP2AJRExq7S9dIM8IuZExKkdfj8+It4TEZtGxOuBi4CNgZ8Odec1Iv2OfDN6Bt2PNJkGNAA/fXTfox+qsJ3byQmayXSfaGl/7bJS+RGr6cAjngPOJD8h113SpAFYB7gNuPT23U5dAMwmrxUyk66nshoHrAv8Hbho7SXLrnx+yqT7zv3B/671+kce37CrOoVisf5bF/1m83f+84FxS8c3/D9S6utaJNXqTOBpYD26HglUANYnTyNx0lnbXeKzCpIkSSPbr4BbydfS3T0kNoN87Xd20wFHuL6oJEnSCDDSkixfJA+Pvpk8EqV9+1iHMhuRbyq2mw6cRx5afS15+pw3p5TuG4L+aoR7dN+jW4BDgKvJSZYNyIHJVGDt0u8FcoLv9ErbuWePk4rAMeSnz8aV3netUjtrlX4fV3r9mFL5ke488hpGreT+zyR/nhml39v/rn6u6cAj2teXuRj4NnlUz/rkJMxU8t/TDUo/bwM+fftupy4mpdaZi5fu3Fpb8+gvT/vxuj/4/kWv2vnfD71i1vxFMzZ+7oWZn/79nzf//TFnbv3JG2+b8MTa04/b4IUFPxuqDz/SnbXdJY8AnwIeJR/n9ckJw2nALPL35DzgC2dtd8kdw9NLSWNaGqZNkkappgOOWAF8AbiBHNd2jF1mln4vAmcAPximbkqSpIFizFQ1IqWxfWQjYgqwCJhaWqNFVWjTS04pAG8CPg7sQp7maik5+XLZo/sefe9AtLPtNccF8HpgH2A38hNoK8hrnFwK/P2ePU4aVX/pGi+cvRmwN/BhcpKkFfgL8AvgT00HHrHG2jI7XX9UY6nOXuTAsA24kzx9242373Zqy2oVIsY/udb0IyevXPnFactWzGzf3RaRnpkx7S+TV648dtrS5TcP/Kcb/Q65e99J5DWs9gW2II8GeoI8hd1VZ213yYvD2D1JQ2QkXc+092XHPU68u7Z+wpA+VNDavLxwxzUnbMcIOA5StRlJ3zPVrnHO7BpgZ/L13VvI0+0uAq4CLm864IhKR99LkjRmjaRrGWOm6mOSZQT9BdPQ2PSSUwKoeXTfowd94fltrzmudoQvcN8njRfOrgXamg48ouwvjp2uP6oGKN6+26m914koAK9fVVuzfm1bcUVNSveS0jOV93hsOeTufQsAZ213yWgYKSVpAI2k65mXAob3nXh33RAHDC3Nywt3XGvAIA2GkfQ9M5Y0zpkdQE3TAWs+2CRJkso3kq5ljJmqT1fz+EtV7dF9j07k0RiDrpoSLABdjVrpze27ndpWduG83srfelvpU10zuSJJklRdmg44YshiF0mSJFVmpK3JIkmSJEmSJEmSNCo4kkWSJEkDL6W8DXWbkiRJkjQaGDNVDUeySJIkSZIkSZIkVcCRLJIkSRpwkfI21G1KkiRJ0mhgzFQ9HMkiSZIkSZIkSZJUAUeySJIkaeCl0jbUbUqSJEnSaGDMVDVMskjq0U7XH1kHfDml+CgwA1hJpLsCTr59t9Oahrd3kiRJ0tjT+KMzZgAfArYFxgMvANcDf276wmFtw9g1SZKkMccki6Ru7XT9kQcVU3wPmALESy+keG2CT+x4/ZG/DfjY7budZiAnSZIkDbLGH51RAL4KHAysRb5GT6WfnwQebPzRGUc1feGwvw5fLyVJksYW12SR1KWdrj/y4GKKHwNTgVZgZYdtFVCTUnwkJf640/VHRg9vJUkag9oXcRzqTZKqVeOPzgjgW8DhwCTgWeAp4OnSz0XAq4ELGn90xo7D1E1JklQmY6bqYZJF0hp2uv7I6aURLLXkpErnkSoJaAbaEvFW4Kgh7qIkSdKYFhFfjoimiFgZEXdExA49lD0oIlKnbeVQ9lcD4r3AQcAy8vRgxU6vryQnXGYA/934ozMahrR3kiRJY5RJFkldORKYQB6x0pMWIFKKzwx+lyRJo0oxDc8mjQER8THge8CJwOuBfwDXR8Q6PVRbDKzXYdt4sPupAbc/UEf+s+zJPGAjYLdB75EkSaqcMVPVMMkiaQ0pxd7t/1tG8bYEG+10/ZHdPj0pSZKkAfUN4LyU0s9TSvcBXwCWA5/uoU5KKc3tsD03JD3VgGj80RkbAzvRe4IF8oNQBeDDg9knSZIkZSZZJK0h5SkGOk8/0J028kKbWw5ejyRJkgQQEfXA9sAN7ftSSsXS72/qoeqkiHg8Ip6MiF9HxKt7aWdcRExp34DJA9F/VWxdoJ48JVg5moFXDF53JEmS1M4ki6Q1xMuJk75wXm9J0urSEG/S2LA2UAN0HonyHDCrmzoPkke5fAj4BDkO/EtEbNhDO0eRF1Jv357qR5/Vf63kb7pyr9GDPKJFkiSNZMZMVcEki6Su/IfyA7hactB3++B1R5IkSZVKKd2WUpqTUronpfQnYE/geeDzPVQ7FZjaYespIaPB9yh5qrBJZZavB+4evO5IkiSpnUkWSWuISD8gTxdWU0bxQsDtt+922pOD3C1J0igSaXg2aQx4gTzqeN1O+9cF5pbzBimlFvIN+M16KLMqpbS4fQOWVNhfDYCmLxy2EPgVML6M4hPJo8wvH8w+SZKk/jFmqh4mWSR1ZU7kKSHq6Pl7ogFoiUinDE23JEmSxraUUjNwF/Cu9n0RUSj9fls57xERNcBrgGcHo48aNBcB84H1eihTD0wHbsGRLJIkSUPCJIukNdy+22kpIr078jQS9aWt4/dFHTnB0lqIdNztu532++HopyRpBEtpeDZpbPgecHBEHBgRWwM/JI9e+DlARMyJiFPbC0fE8RHxnojYNCJeT75ZvzHw02HouyrU9IXDHgS+Tp42bEPyNG7tU/zWAesAM4E7gK83feEwvxQlSRrJjJmqhkkWSV26fbfTHolI20ek3wLNvJxYaQAIuLcQab/bdzvtv4azn5IkSWNNSumXwGHAt4F7gG2B3VNKz5WKbMTqox2mA+cB9wPXAlOAN6eU7huiLmuANH3hsD8AHweuKO1an5xwWYs8Xdx/AZ9s+sJh84enh5IkSWNP7XB3QNLIdftupz0NfGin64+cDhwEzAJWAL+9fbfT/jacfZMkSRrLUkrnAud289ounX4/FDh0CLqlIdD0hcP+AXy58UdnvAJ4LTAOWADc1vSFw1YOa+ckSZLGIJMsknp1+26nLQDOHO5+SJJGj+FYVNFFHCWNJU1fOOxJ4Mnh7ockSaqMMVP1cLowSZIkSZIkSZKkCjiSRZIkSQMvlbahblOSJEmSRgNjpqrhSBZJkiRJkiRJkqQKmGSRJEmSJEmSJEmqgNOFSZIkacBFSkQa2rHoQ92eJEmSJFXKmKl6OJJFkiRJkiRJkiSpAo5kUY8+cOtX1we2AuqA54F7rt75nOLw9mpo7XDd0ZOB7YAJwBLg73fufsqK4e3VEIqIxRMadp4/ZcIXIqV1IFbWt7T+Yb35i88jpeXD3T1lm1x86qbApuTk+VPA/Y/tf5SPJ0gaPsXSNtRtStIQ2ezSkycD2wITyXHC3Y/sc2zZ18ebX/KdjVPiQ8BkYF4E//vwvscsK7f+xuefPhPYBqgHFgB/f/wzh7eWW7/x56evB2xNh1iv6VOH+00qSdJQMWaqGpHG+BChiJgCLAKmppQWD3d/RooP3PrVbYFPA7uTg4YC0Aw8BFwE/O/VO5/TMmwdHAI7XHf0+uRj8FFgLaAGaAWeA34B/PzO3U95cfh6OPjmzpiyW11b2/lrLV6+wdzpk9ueWXta24RVzbHFk8/VraqrXfXC1EnnveL5hV8npbbh7utYtcnFp+4CfAp4KzC+tHsVcDdwIfAbky1S9RtJ1zPtfXnrzsfdXVc3YUgv4Vtalhf+fOtJ2zECjoNUbUbS98xw2+zSk9vjhL2BtVk9Tvgl8LNH9jm22zhh80u+89ZiW3yn2FbYMaWoBQJSikJaUahJ1xcK6ZCH9z3m6e7qb3z+6VsCnwE+SE7QFIAWoAm4GPifxz9zeLfJnsafn/66Uv/fy+qx3sOUYr2mTx3eXN7RkCRpdBhJ1zLGTNXHJMsI+gs2Unzg1q++D/geMA1YSn4qKwHjSvsArgW+evXO56wchi4Ouh2uO3or4GfkkQEryedIG3n011Ty02L3Ap+6c/dTnhyufg6mZ9ae9vF1Fiy5+J+v3KD1hx95++I/bbf53GKh0AIUGp99Yfonr7tj7U9cf8eEedMn37De/MW7kZK58CG2ycWnfg44CmgAFgPtTz6OJ5+nbcD5wLcf2/8o/3ykKjaSrmfa+7LzW48dloDh1j+fbMAgDYKR9D0znDa79OQtyddXm9F9nHAf8KlH9jn2iTXqX/Kd/dqaa85LKRogFQlayLFWIRJ1iYhCofh8TV1xl4f3PeaBzvU3Pv/0nYHvA+uQr/2WkJ9JrQOmkxMmtwIHP/6Zw9f4c2r8+endxXr1pfoA1wFfafrU4WNn9L4kqeqNpGsZY6bq45osWk1pBMv3yE9EPQUsJAcNRWAF8Cz5C+n9wLeGo4+DbYfrjp4GnEdOsDwLvEB+MqxIfsLrefJTatsAP9rhuqPHDU9PB09zXe0may9aetHN223Rsv+3Pv3QTdtv+XixUFhFPgatTeut/fxJn9rjgcO+stfCdRcs3vWJdaafOtx9Hms2ufjU9wNHl359mpcD7CI54H6G/Hf2YOCzw9FHSZKkarLZpSdPJccJm9FznPBq4MebXXpyQ8f6m1/ynde0tdT8JCUaiLQyCjRHkCIggiIFVhGpuVgszGxrLfxh80u+U9Ox/sbnn/5K4Fzy6JmnyVOEtZbaXwXMBV4E3g58d+PzT4+O9Rt/fvpr6T7WW1n6TAuB91GlsZ4kSdJgMMmizj5Dfqrp2R7KLCffxN3rA7d+daOh6NQQ+wgvB07dTYPVCswjz8H87qHp1tCZu9aUE1bW18U3v7r34y21tau6KZaufuvrHr3i7a9fMWPxsi8SUTeknRzDNrn41ALwJfIThz1NWbeYfA5/bpOLT50wFH2TJEmqYh8GNicnM3qLE14LvKfjC8VifCsVGU+wMqLLujnZEqml2BbrpcQXO738CfIIlmfJo0+6soqcKNkVeE2n18qJ9VaQR7js1fjz0zfuoZwkSZJKTLLoJaVF7ncjPxHfm0XkJ6D2HNRODbEdrju6AOxHfpqrt3VGmoEola8eEeNmLli6z6/etu2KZePH9XYupIt322HBpJXNk+dNm7TPkPRPAG8kPyG5oIyyC4D1yOsrSdLQScO0SdIg2OzSkwvA/pRGdvdSvJkca+/bvmPzS74zsdhWeE+QR670JII2IFIxPte+b+PzT59CXgNmJb1/2y0lTye7d/uO0iL37y291pvF5LVa9iqjrCRJqpQxU9UwyaKOtgYmUd6FdyIHGK8d1B4NvWnAJpR3DCA/6bVtKTlTLTYa39wy/k/bbbGs96Lw7003mD93+uS25Q31bx/sjuklrybPu13OPNkt5GTgqwa1R5IkSdVtKn2LE5YB25aSMwCvp0hDil4TNO2KxWJhkw6/v7LUh3IeiIOcCHpDh9+3IidOyqnffgtm2zLbkiRJGtNqh7sDGlHqyDdjy11wKZGfkKom9fTtGBSBmtJWLQuL1wOsrKstN7ddbK6rTYmotnNhJKuj788e1A9GRySpWynlbajblKTBUUd+SLHcJEkqla8lj2wZ3+cWEx3XZGmP1cq+Rmf167/+1pckSQPNmKlqVNPT9+q/F8gBQLkLuRfoeT7f0WgheQh+ucdgHDD/zt1PaRm0Hg29eQCbPvNCWUmTyctWjp+5cElNbbH45OB2Sx08Tw6Sa3orWCoX5L/fkiRJqswi8ijivsQJCx7Z59jm0u+PEC8lXnoVEBGp46iZF8gjlMttvx54ph/1a6i+WE+SJGlQmGRRR38HHgaml1F2HPkprmsGtUdD7M7dT1kJ/BooZ5HwID8RdtmgdmqopfT8szOm/HOfG/82gTJGu33klrvXHdfSxivmLfjREPRO2Y3kBe+nlVF2MrCcKvu7KkmSNJQe2efYVeQ4oZwRKUFOclzevuPhfY95tFBTfLjT6JQupQSJiEJNurbD7seAu4ApZbRfSx6x8psO++4BHqK868eqjPUkSZIGi0kWveTqnc8pAheXfu0peAhgbXJC5k+D3a9hcBn5pvSMXsrNJC8KeXkv5Uaduta2U1776DN1u99+7yt6Kjdj8bIpn/7tXyY+u9aUO0nJkSxD5LH9j1oIXEn+e1rXQ9EaciB+82P7H/WfIeiaJL0k0vBskjSILqW8OGFt8siX1eKEKKQfBxRT6v76LeXvsnERqSUK6eT2/Y9/5vAEXAS0kdfR7Mk6wNPAS0mapk8dXizVh/JivUeAm3tpR5Ik9YMxU/UwyaLOLgauIwcOU8kX2R2NA9YnT1f0zat3PqdtaLs3+O7c/ZS7gbPIN69nsuaUTLXALHKA8+07dz/liaHt4eBbe/Gyy+bOmHzrGedePv2Dt/5j00ip83zMhY3mzl/nwpN+3jhjybLmaUuWf3JYOjq2nUl+mnFdug60JwDrAf8BvjV03ZIkSapOj+xz7D8oL04oAic9ss+xTR1fjOCcQm3xlkjUpCL1nadET4kCKRoIUk1d2+kP73vMI53e/2pyomcKefaBzrFaPbAB+UGwwx7/zOHLO71+CTnxMoM8oqW7WO8F4JtNnzq83PVnJEmSxjSTLFrN1Tuf0wx8BbiQfNG9AflCe73S/08D7gcOvHrnc+4epm4OhbOBE8kByizyZ58FbEh+MmwecPidu59ycbfvMJqlVJw1f8l7Fk6e8KfvnXv59OsPPXvrz/36li32+Mu/Ntn7prte+ePTL9r6D4f+9ys2fH7hipaamrdOXNn88HB3eawpjWY5gBwo15PPzfa/qxsCE4HbgP0e2/8oRxlJGnqJlxdyHLJtuD+0pDHgHOAEcpywLi/HCRvwcpxwxCP7HHtR54oP73tMKtSk9xTqildFUCRFQypGA0XGpSINpKiPQlpRU9f27Uf2O+b4zvUf/8zhReBI4Pvk6bzWL7XbHqutBTwKfO7xzxy+xowDTZ86vBn4KjnWg65jvQeAA5s+dfjfKzw+kiSpXMZMVSNS58dnxpiImEIeyj01pbR4uPszknzg1q9uDOwFbMvLCyf+Frjl6p3PGRNPNe1w3dHTgA8CbyOvbbGAvB7GNXfufsqyYeza0IiIRRMadl0yseH49V5Y9OaalAoA8ydPeGbFuLqzN3hh0Q9Iaclwd3Os2+TiU19F/ru6BfmJysfIc4b/9bH9jxrbX/LSGDGSrmfa+/K2nY65u65ufHEo225pWVG45fbvbMcIOA5StRlJ3zMjwWaXnjyNHCfsTB5ZsgC4CbjmkX2OXdpDVQA2v+Q7W6RiHFssxo7A+Ii0OArptxHMfnjfYxb0Vn/j809fD9gTeAN5+q/ngd8BNzz+mcObe6vf+PPTNwL2Bl5HHsHyLDnW+5MjWCRJ1WgkXcsYM1Ufkywj6C+YNKJF1JMDyJXAMsb6l4ckjSAj6XqmvS9v3/GYu+tqhzhgaF1R+NMdBgzSYBhJ3zOSJEl9NZKuZYyZqk/tcHdA0iiRUjN5fmZJkiRJkiRJEq7JIkmSJEmSJEmSVBFHskiSJGngtS+sONRtSpIkSdJoYMxUNRzJIkmSJEmSJEmSVAFHskiSJGngpdI21G1KkiRJ0mhgzFQ1HMkiSZIkSZIkSZJUAUeySJIkSZI00CImAtsBk4CFwF2k1DKsfZIkSdKAM8kiSb34+C0Hrze+tuXoqfUr9hxX0zIdIi1vrXtucfP4/1nVVnvGL9523pKBaKdxzmnjgd2BfYAtS7v/A/wSuLbpgCOXD0Q7kjQUIiViiBdVHOr2JI1Nu918SAAfikhfL5BeT1BHorlI4faU+O7Vu577n3s23OCCV42rf8ukVc3RXu/FSRNaH914o1+/8Yknv0hKz1fafuOc2QVgR+BjwJuABuB54CrgyqYDjnimXx9QkiQNCWOm6uF0YZLUg0/++dOf2Wjy/IdfMWn+l6bUr5hVG8W62mirnz5u+cYbT55/7AYTFz6+/62f2bW/7TTOOW0b4PfAucDbgWml7S3A2cANjXNO266/7UiSJKlyu918yMRCpD/XFoqX1UTaOYLxAbURTKyJ4q7b/f3xa5vrah/ZdMH8t16425tij5O/nN76vW+mj5zwOX634za1W897bq95kyc9vXDC+G0qab9xzuypwM+AX5CTLOsCk8kP6BwD/LFxzuwDBurzSpIkqXcmWSSpG5/486f323DSgu831LSMX9VWu2plW93KllTT3JJqmle21a1sbis0T6xbNXX9iQuv3O/Wz+5UaTuNc07bHLgQ2Ax4AXgGmF/angHmAZsAP2ucc9qr+v/JJGkIpDQ8myQNkt1uPqSmEOmmQqSdSt84KxPRXNpWNT70/Krjj7m25p7NX8G7zvw639vrXcUHX7FumrvW1PSvTTcsnnDA+4vvOe1racGUCXXNtbV/J2LdvrTfOGf2eODH5JHPy4CnydeO84HnyNeNE4FvN86Zvd/AfnpJkjTgjJmqhkkWSerCx245ONZuWPrdukJb3cq22pWJWONfoSKF4sq22pUTalsmTq1fcW4/mjsC2AB4Fuhqnu5WctC8HnBUP9qRJElS5b5YiPT6BG0QLRCrvfjx8//W8Oz0qXz5Gx+neVIdhcLqBQKYN31KOuj/HZjGt7bU3bHxRj/tY/sfBXYmTw3W1TSyifxwTg1wdOOc2TP6+P6SJEmqgEkWSepCXaFtv0l1q9ZuaatZI4BeXdBSLLRNH7f8Nfve8tk+jzJpnHPaJsAuwGKg2EPRBCwC3tI457St+tqOJA254jBtkjRICpE+B0ROsKxu5nNL4s13PhoXvPdNrJpQl8vXpi4vIudNn5yu2Hk7tnjh+fcSMa6ctkvrsOxf+nVVL8WfB9YCPlzOe0uSpGFizFQ1TLJIUhfG17TsV4hUaCPaeivbmgottYW22oba1oMraOod5GkdlpRRdgl5YdN3VtCOJEmSKrTbzYesVYi0VR7FsqY3/Pmx2kRw9VtfS/sDOtFNtB3A5Tu/Pk1ftqKGvIB9ObYobYvKKFskP6Dz3jLfW5IkSf1gkkWSulBTSFPz//U0iqVdkIACae0KmprGy4FwOVKpjiRJkobOLPKFYZfXbBOXtMSSCeNYPqEeXirU/eXdc9OnAFCMKHdKr6lALV1PLduVFvJoFkmSJA2y2uHugCSNRMUUK8ovndoj7mUVNLWC8jI57YKu5+CWpBElUiKGeFHFoW5P0piykJw16fK6bdX42jRhVQs1rUVSXaF0bdj9Jd7kFSsBKKRU7vXjCvKDOTWUl2ipAZaW+d6SJGkYGDNVD0eySFIXVrXV/jERqUCx1+/J2ijWtaVCcVVb7ZUVNHUn0AxMKKPseKC1VEeSJElD55mU4rnIyYs13Pu69drGtbSyy10PvbQvdTPneQLed+e/Y1VtDcDfymz/QWAuMKWMskHu561lvrckSZL6wSSLJHVhZVvtWSta65bV17TV91wyUVco1ixubnji4p3P/30FTf0d+AdQzlQRM4D7gdsraEeShlZKw7NJ0iC4fpezUjHFxfm3tEYc/ehW6xT/tdX6HHTdbaRizq4U26LLL6VxLS2x341/5V/rr3cPKS0op/2mA45YBfwCqKObRE8HU8kjrC8r570lSdIwMWaqGiZZJKkLv3zbeSteWDHpB8VUKNYXWuu7nlM7Ma6mtaGlWNO6YNWEb1fSTtMBRybgu+RF7Wf1UHRd8jRhZzQdcGQ3z0VKkiRpsCQ4NaWYG1DfVaLl8k+8ftWO9zfxzYv/SFsbpLY1LyDrWlvjzB9dETMWL2OzeS8c2McuXAw8AqxH94mWyeQR0v/TdMARTX18f0mSJFXAJIskdeOCt1xw1DPLpl6YiNRQ09pQF231NVGsqYliTX2htb6hprWhtVjT8vSyaSdc9NafXVhpO00HHHkLcBh53uwNyIuUji9tawEbkufhPrLpgCP/0P9PJkmSpL66fpezFrWleHdp2rD6IDVAqoVUA6nubzs31v3wSzunz/32z1xw8hx2ueehQqRiJIi6ltb40F/+UbjixJ/ELvc8yAMz1zl42ooV/+xL+00HHDEP+AzwEPnhnFnkhEoDeRqxDcjXjxcDpwzoh5ckSVK3Io3xIUIRMQVYBExNKS0e7v5IGnk+cetn9ppUv/Ib08ctf0NN5KcWW4qFlgWrJt6ytGXcqf+780//NBDtNM45bQvg48De5KcQISdergR+2XTAkfcNRDuSqs9Iup5p78s7Xvv/7q6rHT+kI+9aWlcUbvrnf23HCDgOUrUZSd8zw223mw9ZK4JvFUj7RKT2KV9TSjGvmOLiEz736yfWWbT0lFfOe3HK0oZ6lo4fx7SlK2hoaeXe9Wc9N2Hlqn03eXH+TZW23zhn9gzy9eJ+wEbkNVhagVvIU4r9semAIxz5LElSByPpWsaYqfqYZBlBf8EkjWwfv+Xg9QqRtgCKxRT//sXbzitrDu2+apxz2gRenjrsuaYDjlw2GO1Iqh4j6XrGgEGqTiPpe2ak2O3mQwLYFpgJPAf88/pdznopwF46btxO989a57OtNTUzx7W0Pv6aZ549p66t7eGBar9xzuwa8uiVccCCpgOOeGGg3luSpGozkq5ljJmqT+1wd0CSRotfvO28Z4FnB7udpgOOXA48OtjtSNKgKpa2oW5TkoZIKaFyd3evT1q16vY3wu2D1X7TAUe0AU8M1vtLkqRBZsxUNVyTRZIkSZIkSZIkqQImWSRJkiRJkiRJkirgdGGSJEkacJESMcRr/w11e5IkSZJUKWOm6uFIFkmSJEmSJEmSpAo4kkWSJEkDL6W8DXWbkiRJkjQaGDNVDUeySJIkSZIkSZIkVcCRLJIkSRp4PpUlaZhteeW3twTeAUwBlgO3A3c9uOfxvX5ZNF44O4DXAG8FJgFLgT8D/2o68Ii06SUnBynOIvgQpAaIFSmlOY/td+zxAFvMOTlS4oaAN0EUILVCXP7QgcccBLDNhSeOS4k/tkTN6xMUCtAyLrVe9M+DvvVFgMY5p9UABwO7AuOBF4Hzmg448laAjX92eqHUt22BccB84A+Pf/rwJ8o5No0/PqMOeDvwaqAeeB64vunzhz1bTn1JkjQAjJmqRqQxfmAjYgqwCJiaUlo83P2RJEnqq5F0PdPel3du/Y2762rHF4ey7ZbWFYUb7//edoyA4yBVm5H0PdObLa/89quAo4C3kBMURSCAZuCfwBkP7nn8Ld3Vb7xw9huAI4A3AA2l+gVgJfC3qGkbX6gt7g7UEEAqvXu+T9JaaGZ+oYZ1qEsQCVLk14tASxCtxUWt9TVTqekiFm+JVNtW/PuqQl0jMO3ldyaANuDR1BYXkuJdwBbkBydTqX/LgBuAU7pLtjT++IwAPg58Edi0VK/9/ZcAvwNOafr8YfN6PMiSJI0yI+laxpip+jhdmCRJkiSpKmx55be3By4B3g20AE8DzwLPkEez7AD8dMsrv/3+ruo3Xjj77cAcYGdyUqW9/tP59/TBVCzskVLUADk90eFnTQu1hXFpHeqLOanSGtAW0FoqN65IaoipkYovP7ya4qX/LxaIVYW67UnMINdaCawq/SQltqCQvgNpW2Bx6XO1f74EfBj4xcY/O33TNT5bTrAcCswGXgks6FB/LlBDTsD8ovHHZ6xf3hGXJEmSSRZJkiQNgvTy8Peh2l662ylpLNryym9PAX4ArENOiizpVGQ58BQwATh9yyu/vVoiovHC2esCZ5FHkDxFHhnSQWqAVE+CYkthjdk2ojUR9SmPCWmNPIKFaH8VipH3FxKFAkQxEaXXg1w+tdUAKe9IrPZka0q0vfRmNWkapOaOL5Ofzn2GPELl+xv/7PSaTp//PcDXyMmnZ8nJm3ZFYCE52fIq4HulpIwkSRo0xkzVwiSLJEmSJKkavB94BTlR0NMdhLnAdOBjnfbvBcwqvb6mYIOcE8lTgKXi6uF0oa0AhZQn9aK7/ERpZEsNFNpWL1Ns6/B+kQhSQ6fK7WuqFslTla3TRQNF8voq2wBv6/TaQeT1WxZ00znIo2cWADuR13uRJElSL0yySJIkaeAVh2mTNJa1J03aeiyVrQI+uuWV3x4HLy10vy95lEcX3yapAKkOoD3Rktri5dEsxSLUFzuNXulOXmYlOkTj7dOG5ZfzzxQRHV4P8nReLyuktXv4bLXA3u07Gn98xhbAjuTRLr1ZRk7GfKSMspIkqVLGTFXDJIskSZIkaVTb8spvB7AZsKLMKsvJ04K1JyomkkexdFd/0hp70svJlOi4uH05UkBNgtRDhVhtME57Yx1Xgamley3A5h1+3whoIH/uchTJx1OSJEm9MMkiSZIkSZIkSZJUAZMskiRJGnCR0rBsksamB/c8PgGPAOPLrDKBvND7C6Xfl5HXYumu/tI19nQYaZIi5bEl5UbYkfLaLNFDhbTatGPtjUWHn609tFAHPNzh9yeAleTPXY4C+XhKkqRBYsxUPUyySJIkSZKqwS9LP2t6LJWNAy57cM/jVwE0HXhEAi4hJye6iJOjCNEClNIdQdQkXlo1pVCA5kIp8dLbzYsExGozhUXwctKmdPMj0st3QSJIdF5rphgv0LVx5ATM5e07mj5/2EPAHcDUXjoHeeq0VcCvyigrSZI05plkkSRJ0sBLaXg2SWPZb8kjNmbR8+rzs4AFvJyUaXcFeTTLrC5rJZ5uT7AQiSisvp5KsaYIxSileLr7Pkp5LZY2KNasXqZQ0+H9UpCIlZ0qt49cKQBtJOZ10UABmAn8G7il02sXkJMn07vpHOR1XqYDtwP39FBOkiT1lzFT1TDJIkmSJEka9R7c8/jFwJeBecCGwORORSaU9i8HDn9wz+Mf7fhi04FHPAccQp5GbEPyiI4OYiVEMwGFuuLLo1hKUm2QmqO0JH3qNKolQSHl/cWgWIRUCFLp9UQuHzVtQOQdsXq8HvHSCJ1EWyyEqO/4MnmUyvrAo8CXH//04auPfIHfA2eTR+usRx7x0q4ATCMnmO4DDm36/GHehZEkSSqDSRZJkiQNvGIank3SmPbgnsffBexLTijUARuQEwrrk5MsdwKffXDP43/bVf2mA4/4E3AAcCvQ0KH+Bvn3+E0Uir+NSDmB0XGFFKCtjtbiqphHcyFH27WlkSu1pXKrCsTKtDBFgYiXpwlr//9CkTSu2HIXwXxyrQZyMqQBIIKHKMYxEPcAU0qfq/3zBXmKr48//unDV0sgAZSSJmcChwP/IY9Yaa8/izwd2S+Ajzd9/rBnyzzkkiSpUsZMVaO29yKSJEmSJI0OD+55/H3AJ7e88ttbAruQR3gsI69JcteDex7f492FpgOP+FvjhbP3AbYBdgYmkRe+vxX492OfODptesnJQYrvEewJqYEUK1JKcx7b79jjAbaYc3KklXFDEDtB1EBqhbj8oQOPOQhgmwtPHJda+ENL1Lwh5RVdWsal1ov+edC3vgjQOOe0GuAzwLuB8cB84LymA468FWDjn50+G3grsC05CTMf+MPjnz78iR4/W060/KLxx2dcXjo2rwLqgReA602uSJIk9V3HtfTGpIiYAiwCpqaUFg93fyRJkvpqJF3PtPflXa/82t11NeOLvVYYQC1tKwp//M/Z2zECjoNUbUbS94wkSVJfjaRrGWOm6uNIFkmSJA28xNAvqji2nx2SJEmSNJoYM1UN12SRJEmSehERMyLi4ohYHBELI+L8iJjUS52GiPh+RLwYEUsj4oqIWLfD66+LiEsi4smIWBER90fEIYP/aSRJkiRpYI3lmMmRLJIkSRp4KQ3DU1mD2t7F5MWh301eTPvnwE+A/XqocyawB/BR8tQE5wJXAm8pvb49MA/4BPAk8GbgJxHRllI6dxA+gyRJkqSRwpgJqiRmMskiSZIk9SAitgZ2B96YUvpbad9XgWsj4rCU0jNd1JlKXrR6v5TSjaV9nwLuj4idUkq3p5R+1qnaoxHxJmBPcnAhSZIkSSPeWI+ZnC5MkiRJ1WZyREzpsI3r5/u9CVjYHiyU3AAUgR27qbM9+emtG9p3pJQeAJ4ovV93pgLz+9VbSZIkSeqZMdMAMskiSZKkgdc+9H2ot+wp8lDz9u2ofn6aWeQh6h0+XmolX9jP6qFOc0ppYaf9z3VXJyLeDHyMPKRekiRJUjUzZqqamMnpwqRe7HT9UQXyfIITgSXA3Nt3O3WIJ0yUJEl9sCH53+x2q7oqFBGnAUf08l5bD1SnehIR2wC/Bk5MKf1+KNqUxrrGOacFOYCfDCwFnm064MgBu85vvGB2DbAdMAN4Fvh300FH5PePiBU1tW9umjz9422FwrRxra1Pbb74xfNI6dGBal+SJKkHxkwDyCSL1I2drj9qAvBhYH9gK6AGaAXu2en6o/4X+O3tu53aPHw9lCRpBCsmiCF+JqH4UntLUkqLy6jxXeCCXso8CswF1um4MyJqyTdO53ZTby5QHxHTOj2ZtW7nOhHxKuCPwE9SSieX0W9J/dA457R64P3k6/xtydf5bcD9jXNOuxj4ddMBRy6v+P0vmL0ucCLBXsC00u4EzG28YPb//PqIs55Ze9KUEzdYunitV6xYxLJx45i2fDlFOPLRaWs/MnXVyk/MXLH0jn58REmSNBoYM1VNzGSSRerCTtcftQ552NkOpV2LyIFXHfBm8ryAH97p+qO+cvtup5bzhSRJkkaYlNLzwPO9lYuI24BpEbF9Sumu0u53kqfe7e5G6F1AC/Au4IrS+2wJbATc1uG9Xw3cCFyYUjqmwo8iqUyNc06bCnwfeAcQ5Cc4V5Bj49eXtn0a55z2uaYDjuz1+2GN979g9nYE1wFrl3a1khMsBWCDL15z01Gvm/ds/GnrzTn2bR8q/rlxk9YUkRpaWwrvu/e+2s/c9JfNpixdedvjk6fvvfGSBVf2/xNLkiRVzpipPCNqTZaIOCoi/hoRSyJiXkRcVTqwvdX7aEQ8EBErI+JfEfG+oeivqtNO1x/VAPwY2Al4AXgGWAasJAdhzwALgHcDZ5amE5MkSR2l4vBsg/FRUrofuA44LyJ2iIi3AOcCv0gpPQMQERuUrkd3KNVZBJwPfC8i3hER2wM/B25LKd1eqrMNcBPw+1K5WaVt5qB8EGmMa5xzWg1wNrAr+Xr+GfL1/UrydGHPkK//3wT8sHHOaX1aALbxgtlrdUiwNJfet5X8sFbLHnf8s/WIy6+Psz70Tg78xkHFP2+06cooRmuhjbbmqGu5apvXrdjzKwevum2LTWOdlUsvaynUbDZAH12SJI1ExkxVEzONtJvDbyc/VbQT+QZ2HfD7iJjYXYXSYjeXkP9AtgOuAq4q/QFIlXgfsCM5S9vddGAreTnR8tYh6pckSRo++wMPkIeoXwv8Gfhch9frgC2BCR32HQr8lvxU1i3kIe97dnh9b2Am8Anyeg3t218H5RNIehv5icr55Ov5rjST44A3Abv38f2/xcsJltXvYKTEV66+sf6m12zBmR/aFeoKheKEmprOb9AStW1f3e+jLcsaxhUenrb2OX1sX5IkaTiN2ZhpRCVZUkq7p5QuSCndm1L6B3AQeXjQ9j1UOwS4LqX0Xyml+1NKxwF/B74y+D1Wtdnp+qOC/IUA3Sz41MFy8pfDxwa1U5IkadillOanlPZLKU1OKU1NKX06pbS0w+tNKaVIKd3cYd/KlNKXU0ozUkoTU0p7ppTmdnj9W6U6nbfGof100pjxcfK0YL2tt7KKPJXY/o1zToty3rjxgtlBsE/p1zUeEX3Dw48Xtn5qLj9/91sg8lu2Taqt6+q9VhbqWi590/apccmCdxMxqZz2JUmShttYjplGVJKlC1NLP+f3UOZNwA2d9l1f2r+GiBgXEVPaN2By/7upKjIVeC15uoByrAB2KSVnJElSu5SGZ5OkLjTOOa0A7EzvCZZ2S8kzJZQbL24NTCdPDbaGHR58tHbx+AZufXVpBrAE1EaX8XgA17721W0TWltqgNeV2b4kSRptjJmqxohNskREAfhv4P9SSv/uoegs4LlO+54r7e/KUeRFzNu3p/rXU1WZ8eS/F10GR11oIz8N1+VTaJIkSZJGhDrydXu5E5G3keOC8WWWn0bOj3T5/hNWNcfShnGkwuoheHe3ORY3NLT/b7dTZ0uSJGlkqB3uDvTg+8A2DPx6F6cC3+vw+2RMtOhli8mLU5abNKkD5t++26ndrd0iSdLYlBIUh/gpKZ/KktS9ZvIolqm9FSypI8cFS8os/ww5Z9LlA1uLJoxP05ctZ1xzC6vqXw41uhsOP2vx4vaXeprVQZIkjWbGTFVjRI5kiYhzgfcD70gp9ZYAmQus22nfuqX9a0gprUopLW7fKP+iWWPA7buduoy8OFO5T4yNA34zeD2SJEmS1F9NBxyZyNftDb2VLZkI/KHpgCPLml6s6aAjmoDHgDUWswe4YbtXtYxvbmGPv/4r7wiIVcUuR88nYO+/3l2Y3zB+BXBPmf2VJEnSMBlRSZbIzgU+ArwzpfRYGdVuA97Vad+7S/ulSvwSaAF6W2RyGnlNlssGu0OSJEmS+u1y8vX7tF7KTSaPfPlln9498XNKq610fumx9WamW169WTr4+lsZ19ICQM3S1pau3mb95YvqP3DXP2New6Q5pNTapz5IkiRpyI2oJAt5irBPAPsBSyJiVml7aR7ciJgTEad2qHMWsHtEfDMitoqIbwFvAM4dyo6rqtwKXEqeSmBKN2Wmk+dnPu/23U69d6g6JknSqOEijpJGnn8B55Ov46d3U2YqOcnyS+D/+vj+/wXcSzdrNn53r91WbTL3Bb7//f9l/OKVxVhVXG39lgSst3xR/QU//p/apbXjlm618Pmj+9i+JEkaTYyZqsZIS7J8kXxRezPwbIftYx3KbASs1/5LSukv5KTM54B/AHsDH04p/Xtouqxqc/tupxaBo4ELyAHShsBMYAawDrABOQY6G5g9PL2UJEmS1BelKcNOA84p7dqAfH0/g3y9vwF5uq8LgGObDjiyy0Xsu33/g45oI/E24G7ycisNQH1pG/ePTV9R//mvfrLtLff9hz8d893C12750/jNFjxfv+6KxfWve+7pcSf/9rfjrzv93NrJy1YsnbZyxbak5HoskiRJo0CkMZ69iogpwCJgammNFgmAna4/KoBXAx8FdiVPH7YIuBa4/PbdTn1kGLsnSdJLRtL1THtf3rXewXfXFRr6dIOyv1qKKwt/fPa87RgBx0GqNiPpe2YgNM45bXPyA3rvJT/otxT4PXBZ0wFH3tev975gdgB7EhwCbEse1bKKxP8Bpz/86aOffXja2udusmT+u8a3tr704OP8hvErn2uYNGfrhc8fZYJFkqSBNZKuZYyZqo9JlhH0F0ySJKkSI+l6xoBBqk4j6XumakRMJidhJgLzgb+7BoskSYNjJF3LGDNVnzUW5JMkSZL6bTjm+x3jDw9JGmVSWkJeD1KSJI1FxkxVY6StySJJkiRJkiRJkjQqmGSRJEmSJEmSJEmqgNOFSZIkaeAVi8CQTi9calOSJEmSRgFjpqrhSBZJkiRJkiRJkqQKOJJFkiRJA89FHCVJkiSpe8ZMVcORLJIkSZIkSZIkSRUwySJJkiRJkiRJklQBpwuTJEnSwHPouyRJkiR1z5ipajiSRZIkSZIkSZIkqQImWSRJkjTwikAxDfE23B9aGjoR8eWIaIqIlRFxR0Ts0Ev5j0bEA6Xy/4qI9w1VXyVJktQFY6aqYZJFkiRJkkaRiPgY8D3gROD1wD+A6yNinW7Kvxm4BDgf2A64CrgqIrYZkg5LkiRJVcwkiyRJkgZcSsVh2aQx4hvAeSmln6eU7gO+ACwHPt1N+UOA61JK/5VSuj+ldBzwd+ArQ9NdSZIkdWbMVD1MskiSJEnSKBER9cD2wA3t+1KOlm8A3tRNtTd1LF9yfQ/liYhxETGlfQMm96vjkiRJUpUyySJJkiRJo8faQA3wXKf9zwGzuqkzq4/lAY4CFnXYnupzTyVJkqQxoHa4OyBJkqQqVExAGoY2JQ2QU8nrvrSbjIkWSZKkgWPMVDVMskiSJEnS6PEC0Aas22n/usDcburM7WN5UkqrgFXtv0dEnzsqSZIkjQVOFyZJkqSBl9LwbFKVSyk1A3cB72rfFxGF0u+3dVPtto7lS97dQ3lJkiQNNmOmquFIFkmSJEkaXb4HXBgRfwPuBL4OTAR+DhARc4CnU0pHlcqfBfwpIr4JXAN8HHgD8Lkh7rckSZJUdUyySJIkSdIoklL6ZUTMBL5NXrz+HmD3lFL74vYbAcUO5f8SEfsBJwOnAA8DH04p/XtIOy5JkiRVIZMskiRJGnipCMVi7+UGuk1pjEgpnQuc281ru3Sx7zLgskHuliRJksplzFQ1XJNFkiRJkiRJkiSpAo5kkSRJ0sBLCRjiRRVdxFGSJEnSaGHMVDUcySJJkiRJkiRJklQBR7JIkiRpwKVikRRDO99vcn5hSZIkSaOEMVP1cCSLJEmSJEmSJElSBUyySJIkSZIkSZIkVcDpwiRJkjTwXMRRkiRJkrpnzFQ1HMkiSZIkSZIkSZJUAUeySJIkaeAVE4RPZUmSJElSl4yZqoYjWSRJkiRJkiRJkipgkkWSJEmSJEmSJKkCThcmSZKkgZeKQHEY2pQkSZKkUcCYqWo4kkWSJEmSJEmSJKkCjmSRJEnSgEvFRBriRRyTizhKkiRJGiWMmaqHI1kkSZIkSZIkSZIqYJJFkiRJkiRJkiSpAk4XJkmSpIGXEkO/iKND3yVJkiSNEsZMVcORLJIkSZIkSZIkSRVwJIskSZIGnIs4SpIkSVL3jJmqhyNZJEmSJEmSJEmSKuBIFkmSJA28VGTo5xce4vYkSZIkqVLGTFXDkSySJEmSJEmSJEkVcCTLyyZHxHD3QZIkqRKTh7sDnbXQXMMQT/fbQnPN0LYojUnGTZIkaTQyZsKYabDEWF/sJiI2AJ4a7n5IkiQNgA1TSk8PZwciogF4DJg1TF2YC2ySUlo5TO1LVcm4SZIkVQljJmOmAWeSJT+GtT6wpJsik8nBxIY9lKl2HgOPQTuPg8cAPAbgMWjncRhZx2Ay8EwaARd3paChfpiabzZYkAZeGXHTSDaSvqtHG49d/3j8Kuex6x+PX/94/Co30o+dMVNmzDTAxvx0YaW/VN1mLzsMhV+SUlo8JJ0aYTwGHoN2HgePAXgMwGPQzuMw4o7BcLf/ktIFuxftUhXpLW4ayUbYd/Wo4rHrH49f5Tx2/ePx6x+PX+VGwbEbMX0yZqouLnwvSZIkSZIkSZJUAZMskiRJkiRJkiRJFTDJ0rtVwImln2OVx8Bj0M7j4DEAjwF4DNp5HDwGkjQa+F1dOY9d/3j8Kuex6x+PX/94/CrnsdOYNOYXvpckSZIkSZIkSaqEI1kkSZIkSZIkSZIqYJJFkiRJkiRJkiSpAiZZJEmSJEmSJEmSKmCSRZIkSZIkSZIkqQImWUoi4piISBHx7zLLbxARl0bEwohYHBG/johNB7ufg6kvxyAivlUq23lbORR9HSgRsUs3nyNFxE5l1B/150F/jkG1nAftIuL1EfGbiJgfEcsj4t8R8bUy6o3686BdJcegms6DiLigh78PKSI26KX+qD8X+nMMquxc2DwifhERT5X+LjwQEcdHxIQy6o7680CSRruImBQRJ0bEdaXrmhQRBw13v0aDiHhjRJwbEfdGxLKIeKL079oWw9230SAiXh0Rl0XEo6VriBci4paI+MBw9200ij7eqxnL+nt/Q1ml9wXGsv7G0VI1qB3uDowEEbEhcDSwrMzyk4CbgKnAKUALcCjwp4jYNqX04mD1dbD09Rh08EVgaYff2wasU0PrbOCvnfY90lOFKjwP+nwMOhj150FEvAe4GrgbOIn8eV4JbNhLvao5Dyo9Bh2M+vMA+DFwQ6d9AfwIaEopPd1dxSo6Fyo+Bh2M6nMhIl4B3AksAs4F5gNvAk4Etgc+1EPdajkPJGm0Wxs4HngC+Aewy7D2ZnQ5AngLcBnwT2AW8BXg7xGxU0rJm9092xiYDFwIPANMAPYCfhMRn08p/WQ4Ozea9OM+xVjXn9h+TBuAmHisGogYUhrVTLJkZwC3AzXki/HefAnYHNghpfRXgIj4HfBv4Jvki4DRpq/HoN3lKaUXBqdLQ+rWlNLlfaxTbedBJceg3ag+DyJiCjAHuAbYO6VU7EP1qjgP+nkM2o3q8wAgpXQbcFvHfRHxVnJwfHEv1aviXOjnMWg32s+FTwLTgLemlO4t7ftJRBSAAyJiekppQTd1q+I8kKQq8CywXkppbkS8gTVvOKp73wP2Syk1t++IiF8C/wKOBD4xXB0bDVJK1wLXdtwXEecCdwHfAEyylK/S+xRjXX9i+zFrgGLiMWmAYkhpVBvz04VFxNuAvYGv96Ha3sBf22+eAKSUHgD+COwzoB0cAhUegw7VY0pExMD2auhFxOSI6EvisarOA6joGHSoOqrPg/2AdYFjUkrFiJhYuplajmo5D/pzDNqN9vOgO/sBCfjfXspVy7nQlXKPQbvRfi5MKf18rtP+Z4Ei0Ez3qvk8kKRRI6W0KqU0d7j7MRqllP7SMcFS2vcwcC+w9fD0anRLKbUBT5If4lAZ+nmfYszrR2w/lg1ETKyX9TWGlEa1Mf1lERE1wDnAT1NK/yqzTgF4LfC3Ll6+E3hlREweuF4OrkqOQSePkqdTWRIRF0XEugPawaHzc2AxsDIibio97datajsPSvp0DDoZ7efBruTPvkFEPEgeErw4In4YEQ3dVaqy86CiY9DJaD8P1hARdeQb439JKTX1UK6azoXVlHsMOhnt58LNpZ/nR8S2EfGKiPgYeRq0s1NKXU5ZUc3ngSRpbCs9OLEuMJpHqg6p0g3atSPilRFxKPBe8kMX6sUA3KcY6/oT249lAxETi4pjSGlUG+tZ7S+Q50vdtQ91ZgDjyE+zdta+b33gwf51bchUcgwAFpDnqb8NWAXsDHwZ2CEi3pBSWjygvRw8zcAV5OHcLwCvAg4Dbo2IN6eU7u6mXjWdB5UeA6ie82Bz8vfhr4HzgaPI83Z/lfy02b7d1Kum86DSYwDVcx50ZTdgLXof4lxN50Jn5R4DqJJzIaV0XUQcR57a64MdXvpOSunYHqpW83kgSRrb9gc2IK9zo/J8F/h86f+LwJXktW3Uu0rvU4x1/Ynt1b+YWKvrSwwpVYUxm2SJiLWAbwMnpZSe70PV8aWfq7p4bWWnMiNaP44BKaWzOu26IiLuJH+Bfgk4bWB6ObhSSn8B/tJh128i4nLyAo+nArt3U7VqzoN+HIOqOQ+ASeS5Qn+UUvpaad+VEVEPfD4iji9NkdBZ1ZwHVH4Mquk86Mp+5IXLL+2lXDWdC52Vewyq7VxoAm4hB6ovAnsAR0fE3JTSud3UqebzQJI0RkXEVsD3yQ9RXDjM3RlN/hu4nPyAxT7kdUXqh7NDo0F/7lOMdf2J7QX0IybWGsqOIaVqMZanCzsZmE8egtoXK0o/x3XxWkOnMiNdpcegSyml/wXmMsqfNkkpPUJ+cuEdpWHKXamm82ANZR6D7uqOxvOg/c/qkk772+cOfVMv9arhPKj0GHRplJ4Hq4mIScCHgOtTSi/2UryazoWX9PEYdGk0ngsR8XHyorSfTSmdl1K6MqX0GfKNpdml4L8rVXkeSJLGroiYRV4EehF5Iei2Ye7SqJFSeiCldENKaU5K6f3kG7hXj+I164bKgN6nGOv6E9uPQQMaE49VAxFDSqPRmEyyRMTmwOeAs4H1I6IxIhrJN0DqSr/P6Kb6fPITqut18Vr7vmcGuMsDrp/HoCdPkqdLGe2eJD9lNLGb16viPOhFb8egt7qj6Txo/7PqvMj1vNLP6d3Uq6bzoNJj0JPRdh509mHyk0zlDHGupnOhow9T/jHoyWg7F74E3J1SeqrT/t+Qj8d23dSr1vNAkjQGRcRU4HfkaXJ2Tyn5b1j/XA68EdhiuDsyUg3ifYqxrj+x/VgyGDHxWPRhBiaGlEaVMZlkIc8lWyD/w/1Yh21H8gXPY3Qz12xKqQj8C+hq4bAdgUdTSksGoc8DreJj0J3SEzmNQDUM6d2UPLXL0q5erKLzoCc9HoPujNLz4K7Szw067V+/9LPLz1Jl50FFx6A7o/Q86Gx/8vn/m94KVtm50FHZx6A7o/RcWJc8pUdndaWfXU63WsXngSRpjCkt8nw1OTZ8f0rpvmHuUjVonzJ06rD2YmQb8PsUAiqM7cegAY2Jx7B+x5DSaDRWkyz/Bj7SxXYv8ETp/88HiIiNSnPQdnQ58MaIeOkmSkRsCbwTuGzQez8w+nUMImJmF+/5RWAmcN3gdXtgdfU5IuJ15IWOf1+6YVbN50G/jkG1nAe8PE/oZzrt/yzQCtwM1X0e0I9jUEXnwUtKn2lX4FcppeVdvF7N5wJQ2TGoonPhIWC7iOj8pOm+5IVr/wlj4zyQJI09pSmFfkmeGuejKaXbhrlLo0pErNPFvjrgAPJ0RCasulf2fQqtqdzYXt0qKyZW93qLIaVqFiml4e7DiBERNwNrp5S26bTv7Sml6LBvMnA3MBk4g7yY0zfIT71uO5oXZ+vDMVhOvvD+F/mJiLcCHwf+AbxltHyZRsSN5Avdv5CHgL6KPDy5BXhTSun+UrmbqdLzoJ/HoCrOA4CIOB/4NPnC6k/ALsBHgVNTSkeXytxMlZ4H0K9jUDXnQbuI+Ap5HujdU0rXd/H6zVTxuQAVH4OqOBci4m3AjeQF788t/Xw/8F7gpymlg0vlbqbKzwNJGs1K/5ZNIz+F/EXgSvJ3NMA5KaVFw9S1ES0i/hs4hDySZY1Fi1NKFw11n0aTiPgVMAW4BXgamEV+snsr4Jsppe8NY/dGpa7uU2hN5cb26l45MbG611sMKVUzkywdlJtgKO3fEDgTeA95RNDNwKGlRcVGrT4kWc4D3gy8gjw/6uPAFcB3RtNUKBHxNfIF72bkC+HngT8CJ3b8s6zm86A/x6BazgN46emyo4FPkQPxx4Hvp5T+u0OZm6nS8wAqPwbVdB60i4jbyMPq1+9qgddqPxegsmNQTedCROwAfIu8/spa5OkpLgROTym1lsrcTJWfB5I0mkVEE7BxNy9vklJqGrrejB7t/75193rnf/e0uoj4OPlJ+NeQryGWkKchOiel5PQ5FTDJUp5yY3t1r5yYWN3rLYaUqplJFkmSJEmSJEmSpAqM1TVZJEmSJEmSJEmS+sUkiyRJkiRJkiRJUgVMskiSJEmSJEmSJFXAJIskSZIkSZIkSVIFTLJIkiRJkiRJkiRVwCSLJEmSJEmSJElSBUyySJIkSZIkSZIkVcAkiyRJkiRJkiRJUgVMskhSP0VEiohv9VKmsVTuoKHpVeUioikifjvc/ZAkSZI0uhkrSZLGApMskka0iHhNRFweEY9HxMqIeDoi/hARXx3uvo1mEfGqiPhWRDQOd18kSZIk9V9EHFRKVrRvKyPioYg4NyLWreD99ouIrw9CV0c0YyVJUl+ZZJE0YkXEm4G/Aa8DzgO+AvwUKAKHDGPXqsGrgBOAxmHuhyRJkqSBdTzwSXL89Bfgi8BtETGhj++zH/D1ge3aqGCsJEnqk9rh7oAk9eAYYBHwxpTSwo4vRMQ6w9IjSZIkSRrZfpdS+lvp/38aES8C3wA+BFwyfN2SJKk6OZJF0kj2SuDezgkWgJTSvM77IuITEXFXRKyIiPkR8YuIeEWnMjdHxL8jYvuI+Eup7GMR8YVO5eoj4tul91sUEcsi4taIeMdAfsCI2Ko0Hdr80nD+v0XEBzuVaR/2/5aI+F5EPF/qz68iYmansoXS0PZnImJ5RNxUGu7eFBEXtL8fcFmpyk0dphPYpdN7vTUi7iz169GIOGAgP7skSZKkIXFj6ecm7Tt6i50i4mZgD2DjDvFCU+k1YyVjJUlSByZZJI1kjwPbR8Q2vRWMiGOAOcDD5Ke0/ht4F3BLREzrVHw6cC1wF3A48BTww4j4dIcyU4DPAjcDRwDfAmYC10fEthV+ns59fjVwO7A1cBrwTWAZcFVEfKSLKueQp047Efgh8AHg3E5lTiUPbf8b8P/Ix+N6YGKHMrcAZ5f+/xTyVAKfBO7vUGYz4HLgD6V+LQAuKPVZkiRJ0ujxytLPF6Hs2Ok7wD3AC7wcL3y99JqxkrGSJKkDpwuTNJKdAfwOuCci7gRuBf4I3JRSamkvFBEbky+mj00pndJh/5XA3cCXyBfI7dYHvplS+l6p3I+BO4BTI+J/Su+9AGhMKTV3eL/zgAeArwKfGYDPdxbwBHk6tFWlNn4A/BmYDfyqU/kXgfeklFKpbAH4WkRMTSktiryY5TeAq1JKLwUeEXECOfABIKX0aETcCnwN+ENK6eYu+rYl8LaU0q2l97gUeBL4FHBYfz+4JEmSpEEzNSLWBhqAt5DXaFkB/Lbc2Cml9IeIeBqYnlK6qNP7GysZK0mSOnAki6QRK6X0B+BNwG/ITyUdTn7S6OlOw8T3JH+fXRoRa7dvwFzy00mdh623Aj/u0E5z6fd1gO1L+9rag4bSsPIZ5MT034DX9/ezld7vncClwOQOfV6r9Bk3j4gNOlX7SXvQUHIrUANsXPr9XaU+/qBTvXMq6OJ97UEDQErpeeBBYNMK3kuSJEnS0LkBeJ584/8XwFLgIymlp+l77LQGYyVjJUnS6hzJImlESyn9FdgzIurJiZaPAIcCl0fEtiml+4DNgSAHBV1p6fT7MymlZZ32PVT62Ugelk5EHEge/r0VUNeh7GOVfZrVbEbu80mlrSvrAE93+P2JTq8vKP2cXvrZHkA80rFQSml+RCygbzq31d7e9C72S5IkSRo5vkyOb1qB54AHU0rF0mt9jZ26ZKy0BmMlSRrDTLJIGhVKT0r9FfhrRDwE/Bz4KHmoewFIwHuBti6qL+1rexHxCeAC4Crgv4B5pfc+ipfnNO6P9pGEZ5CfxurKI51+7+qzQQ5ABtpQtiVJkiRp4NyZUvpbN6/1O3YyVjJWkiStziSLpNGoPWBYr/TzP+QL2sdSSg91XWU160fExE6jWbYo/Wwq/dwbeBTYs+Ow84g4seJer+7R0s+WlNINA/Sej5d+bkaHJ8giYi3WfKoqIUmSJGms6Uvs1F3MYKwkSVIHrskiacSKiHdERFdPA72v9PPB0s8ryU8TndC5fGRrdapfC3y+Q5n60u/PA3eVdrc/nRQdyu1IXiOm31JK84Cbgc9HxHqdX4+ImRW87R/JUwJ8sdP+r3RRtj3BNK2CdiRJkiSNTn2JnZYBU7t4D2MlSZI6cCSLpJHsHGBCRPwKeACoB94MfIw84uTnACml/0TEscCpQGNEXAUsATYhr+HyE/JQ83bPAEdERCN5ruKPAdsCn0sptc9B/FvyopC/iohrSu/1BeA+YNIAfb4vA38G/hUR55Gf2FqXHJxsSF6Dpmwppeci4izgmxHxG+C60nu8F3iB1Z/IuoccHB0REVOBVcCNpYBGkiRJUhXqY+x0F/CxiPgeeermpSmlqzFWkiRpNSZZJI1kh5HXXXkf8DlykuUJ4AfAySmlhe0FU0qnldZqORQ4obT7SeD3wG86ve8C4EByEudg8mKQX0kpndehzAXALPIIl93IAcMnSv3ZZSA+XErpvoh4Q6m/BwFrkeczvhv4doVvewSwnPy5dgVuA95DDlBWdmh7bkR8gTxv8vlADfCOUvuSJEmSqlQfYqcfkB9G+1Sp7OPA1RgrSZK0mugwfaYkVb2IuBlYO6W0zXD3ZahExDRyYunYlNJ3hrk7kiRJkjQiGCtJkgaCa7JIUhWJiPFd7P566efNQ9cTSZIkSRo5jJUkSYPF6cIkqbp8LCIOAq4FlgJvBfYFfp9S+r/h7JgkSZIkDSNjJUnSoDDJIknV5Z9AK3A4MIW83sxZwLHD2SlJkiRJGmbGSpKkQeGaLJIkSZIkSZIkSRVwTRZJkiRJkiRJkqQKmGSRJEmSJEmSJEmqgEkWSZIkSZIkSZKkCphkkSRJkiRJkiRJqoBJFkmSJEmSJEmSpAqYZJEkSZIkSZIkSaqASRZJkiRJkiRJkqQKmGSRJEmSJEmSJEmqgEkWSZIkSZIkSZKkCvx/9i7hDfuav18AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAIfCAYAAAArE/YjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAADrvElEQVR4nOzdd5xU9dXH8c+Z2ULvKEVgQQTExB5rTGyJRhONXWPBEsuTYouCJGLDRMEYY2ISu6IxRiyJNbEbTawoVgSkLCBN6gJL2d2Z8/zxuwvDsrPMwuzMlu/79Rp2Z+6de88Ms3PPPfdXzN0RERERERERERHZnFi+AxARERERERERkaZBhSQREREREREREcmICkkiIiIiIiIiIpIRFZJERERERERERCQjKiSJiIiIiIiIiEhGVEgSEREREREREZGMqJAkIiLSyJnZ/Wb2UgNt+0wzq0p3vwH2d42ZTWuo7deXmX3dzN41s7VmVroV22nQ9y1f+8oGM3MzOy3fcYiIiEh2qJAkIiKSB1FxyKNbpZktNrP/mtlwM2tbY/WLgBPqse0qMzszw9UfAXpnuu16xPDN6LWV1Fj0W2CfbO9vK4wFVgBDgG+kW8nMzjKz981shZmtNLPPzeyunEUpIiIi0kiokCQiIpI/bwA9gX7AQcBDwM+AD8xs2+qV3L3M3Zdlc8cWFLr7GndfmM1t18XdV7n74lztLwM7AP9x91J3X1TbClFR7i/AfcCewB7AFUA8V0GKiIiINBYqJImIiORPhbsvcPd57v6Ju/8F2BfoDtxYvVLNrm1mtpOZPW9my82sPGodc3q0rJRQ4LivusVT9PiZUUulg8xsIrAOODRdNykzO9TMPou6fL1jZrumLNvkOWa2XbS/A6NWSG9Ei2ZGj78WrbdJ1zYzG2Zmk8yswsy+NLPrzawgZflrZna3mY0yswVmttTMHjCzdnW9uWbW08z+Hr1Pa6Lt7BktK4nem+2B66IYr0mzqR8Cz7j7be4+Nbo96e5n17LP/c3sAzNbHbVg+kbKMjOzu8xsehTPDDP7jZkVp6xzjZlNM7MfRcvXmtmLtbTsqrnfPczsBTNbZWaLzOwJM+sXLRtgZkkz26/Gc75lZonq9Wos6xC9hh/VeLxX9Dk6NLr/o+jzURa1qnvWzAZtJtZNurqZ2Utmdn/K/cLovZgZvQefmdn5NZ7z4+izvzb6TLxuZtvVtW8RERHZeiokiYiINCLuPpfQMulYM0t3nH4YWALsB3wduBSobrH0DSABXExo7dQz5XkxYEy0/hBgQprtxwhdvn4C7AUsAp41s9YZvow5wNHR73tFMRxb24pmdiRwL/Ag8DXgF8BPgatrrHo80AU4EDgZ+D4wIl0AZmbAPwmv8/tRHAuBF82sWxRjT+BLwnvSk9DtrjbzgT03VyAhvG83ELoi7g58BYxPKYpZ9NiPgB0J/0dnAb+ssZ2ehPf+ROAAoAPwRPSaanutQ4H/AG8RWkwdTPgMvGhmrdx9BvAicG6Np54LvODus2pu091XEN6/02ssOo3wfrwS3S8Gro9e73ei/T5rZkW1xVoPdxE+M+cT3qvrgDFmdg6EwhlwO+H9Hgx8G3hgK/cpIiIiGSjY/CoiIiKSY58RigfdCIWHmvoBv3P3SdH9GdUL3H1RVG8oc/cFNZ5nwC/c/Y31D6SpTQCXu/t/onVOJxRefgTcs7ng3T1hZkuju4tqiSPVFcDj7n5DdH+qmfUAbjSz0e5eET0+y90viX6fbGaPAIcCo9Js92BC8Win6vfJzM4ASoGfuPt1wAIzSwCrNhPjtYSC3RQzmwW8A7wMPOTu5SnrGXCxu38Q7e8a4G1Cq6cp7p4EfpWyfqmZbU8oGqUWztoAZ7r7tGg7pwNTotf0ci3xDSe0mFq/jajFzzLgcEJB6A7gQTO7yN1XmFkn4Djg1Dpe9wPAM2bWI+X9OR34a/RacPf7Up9goRvgEkJB8391bDstM+sPnAEMdffJ0cMzzWww8HPCZ7AvUA78Myp6AXyyJfsTERGR+lGLJBERkcanurrjaZb/Frg76qp1jZntXo9tv5fhem9V/xKNz/Q5sFM99pOpnYDXazz2H6AVoQBT7aMa68wDtiW9nYAlKcU23H0doQhUr9cRdT/8JjCU0AKmnNBi61Mz2yZ11Rpxzot+ro/TzM6NuoItNLNV0fZqdi1bVF1EivY/FVhcR9zfAI6JurWtira7hPAe7hCt8xRQxobC0WnR/afreOkvsqEFFdHn7GuktPwxs13N7B9RF7SVwOxo0Sbd5ephT8LfwIQar+mXKa/nRUIBdWbUffG8qKWZiIiINDAVkkRERBqfnQgn+UtqW+juo4FBwHjCif3bZnZ9BttNuPvaLMSXrOWxwixsty4VNe47Oc5j3P1zd78jGhtpN2A74P9SVkm6e6JGjBDFaWYnAH8izJR3RLSN69j69y5G6Bq4a43bIODuKPYqQkue6u5tPwbuix6vVfRaHiK0DiL6+Z67fx69njbAC4TXeRahBdg3ovt1dW1zNhRLq6W+B9X/r/vVeD1fA3aOYltFKDgdA0wFLgCmRV3eREREpAGpkCQiItKImFlvQquRJ6q7D9XG3We4+5/d/XjgKjYuaFSw9TOK7ZMSUyfCODXVrXu+AuKWMrMcYYycVNWFn83F8RnwrRqPfRtYA0yvR7y1bbdrNH4QANGg1nsDn27FdquVAquBbTazXqpvARPd/Xfu/r67fwGU1LJe96jLGwDR2Ezd2PD+1zSBUGCZ7u7TatxSZ/u7G9jFzC6I1r87g5jHRc/ZDTiFjcch2pEwMPyv3P21qMDUmU2LRDV9BfRKeX3FhNZe1d6Pfvat5fWs/0y4e8LdX3f3qwgz6c0naj0lIiIiDUeFJBERkfwpMrMe0UxYXzez/yN0KfsKGFnbE8ysnZn9ycwONrP+0Qn+4WxcZJgJHBRtd0u6+zgwNprV6+uE4sFK4G/R8nej+zea2Q5mdjihmJVqFqHl0hFmto2ZdUyzrxuA48zsCjMbZGYnAtcAN6eMj7QlXoni/JuFmdSqu2S1Av5Snw2Z2V/M7GozO8DM+kWtXsYRxrH6Zz02NQX4upkdbWbbm9lF1D4I+WrCrHt7WphlbhzwIbWPjwTwG0JR569mtlf0uTjIzG41swHVK0WDav8buBV4ORqEu07u/ikwkTAgeifCQO/VZhFm//t59HoOibadrktmtZeAC8xs3+j/5X5SWjBF3fruBe4ys9PNbKCZ7WJmZ5vZCIDoPbzEwmx1fQkz6/UhfbFNREREskSFJBERkfw5gNCKYjbwGqEl0m3A7u6+MM1zqgitPu4hjFv0PGE2stSWGL8gtNAoJcy4Vl9Jwng0dxBau/QAjnT31QDuvpTQOmUf4GPCgNfDUzcQxT+SMJj2fODJ2nbk7s8BZwPDCC2FbgH+TBjgeou5uxOKC5OBZwljQ/UAvuPui+u5uRcJ7+fDhG5UzxFmVjvC3V+sx3buIHRBu49QnNmbUDSraT5wJ/AY8F9CYenY6DVtImoJtB/QjvB5mESY9aw1sLzG6ncSijZ31iPucYSuZc+5+/rultH7eBphtrbPCGN3XUbtXR9TXUb4v34e+BdhjKyaY3edR/gs/Cp6PS8TPiPVxa9lwA8IhbGphDGrrnf3zQ4GLyIiIlvH0uQkIiIiIpJj0Uxvp7n7wAbafvUMcX22ssWXiIiItFAF+Q5ARERERBqWmbUjDA4+HPiTikgiIiKypdS1TURERKT5u43QDfEz4KY8xyIiIiJNmLq2iYiIiIiIiIhIRtQiSUREREREREREMqJCkoiIiIiIiIiIZESFJBERERERERERyYgKSSIiIiIiIiIikhEVkkREREREREREJCMqJImIiIiIiIiISEZUSBIRERERERERkYyokCQiIiIiIiIiIhlRIUlERERERERERDKiQpKIiIiIiIiIiGREhSQREREREREREcmICkkiIiIiIiIiIpIRFZJERERERERERCQjKiSJiIiIiIiIiEhGVEgSEREREREREZGMqJAkIiIiIiIiIiIZUSFJREREREREREQyokKSiIiIiIiIiIhkRIUkERERERERERHJiApJIiIiIiIiIiKSERWSREREREREREQkIyokiYiIiIiIiIhIRlRIEhERERERERGRjKiQJCIiIiIiIiIiGVEhSUREREREREREMqJCkoiIiIiIiIiIZESFJBERERERERERyYgKSSIiIiIiIiIikhEVkkREREREREREJCMqJImIiIiIiIiISEZUSBIRERERERERkYyokCQiIiIiIiIiIhlRIUlERERERERERDKiQpKIiIiIiIiIiGREhSQREREREREREcmICkkiIiIiIiIiIpIRFZJERERERERERCQjKiSJiIiIiIiIiEhGVEgSEREREREREZGMqJAkIiIiIiIiIiIZUSFJREREREREREQyokKSiIiIiIiIiIhkpCDfAWwNM1sEzMp3HCIi0mz0c/fuDbmDA/ZuXba0LJn14++kKRVvuPvh2d6uSG2Ug4mISJYpB2tCmnQhCZjl7nvmOwgREWkezGxCQ+9jaVmy4JPX+n2e7e3Ge37RLdvbFKmDcjAREcka5WBNS1MvJImIiDQxTpJkvoMQERERaWGUg2WLCkkiIiI55A4JVxIjIiIikkvKwbJHg22LiIiIiIiIiEhG1CJJREQkx5J4vkMQERERaXGUg2WHWiSJiIiIiIiIiEhG1CJJREQkxzTQo4iIiEjuKQfLDhWSREREcshxEq5m1SIiIiK5pBwse9S1TUREREREREREMqIWSSIiIjmmgR5FREREck85WHaoRZKIiIiIiIiIiGRELZJERERyyIGEroaJiIiI5JRysOxRiyQREREREREREcmIWiSJiIjkmPrni4iIiOSecrDsUCFJREQkxzT1rIiIiEjuKQfLDnVtExERERERERGRjKhFkoiISA45kMx3ECIiIiItjHKw7MlpiyQzi5vZRDN7ppZlZ5rZIjP7MLr9OJexiYiIiIiIiIhI3XLdIuki4HOgQ5rlj7j7z3IYj4iISM5p6lkRERGR3FMOlh05KySZ2XbAkcCvgUtztV8REZHGxIGEchgRERGRnFIOlj257Nr2e2A4dXdLPM7MPjazx8ysT20rmNl5ZjbBzCYA3RogThERERERERERqUVOCklm9n3gK3d/v47VngZK3H1n4EVgXG0rufud7r6nu+8JLM5+tCIiIg0r2QA3EREREambcrDsyFWLpP2Bo8ysFPg7cLCZ/TV1BXdf4u7rort3A3vkKDYREREREREREclATsZIcveRwEgAMzsQuMzdT0tdx8x6uvv86O5RhEG5RUREmhUHEli+wxARERFpUZSDZU+uZ23biJldB0xw96eAC83sKKAKWAqcmc/YREREGkpSAz2KiIiI5JxysOzIeSHJ3V8DXot+vyrl8fWtlkREREREREREpPHJa4skERGRlkbNqkVERERyTzlY9uRqsG0REREREREREWni1CJJREQkx3Q1TERERCT3lINlhwpJIiIiueSQdCUxIiIiIjmlHCxrVEgSyYKdnrymG3Ak0AeYDzz72dHXLMhvVCIiIiIikg0fzO7bHzgc6ApMBf69e9/ZK/IblUh+qJAkspV2evKaHwPDCWOOxYAkcMVOT17zF+CWz46+RpNMish6GuhRRESk6fhgdt8C4DfAsYBFtwRwzQez+16+e9/Zz+YzPsmccrDs0WDbIlthpyevOQoYCawGlgNLo5+rgJ8Cp+UrNhERETPrY2avmtkkM/vMzC6qZZ0DzazMzD6MblflI1YRkUZqJHA8UAYsI+T7ZUAV8PsPZvfdK4+xieSFCkkiW2inJ6+JAZcDawkHklQJoBy4eKcnrynMdWwi0pgZCWJZv4mkUQX8wt2HAvsAPzWzobWs94a77xrdrsttiCIijdMHs/t2Bk4nFI5q9jKoiB67MNdxyZZSDpYtLfNVi2RHP2BbYE2a5RVAW2DHnEUkIiKSwt3nu/sH0e8rgc+B3vmNSkSkydib6h5RtVsJ7PfB7L6tcheSSP5pjCSRLVdIGA+pLg4U5SAWEWkiHM0YIvlhZiXAbsA7tSze18w+AuYBl7n7Z7U8/zzgvOhut4aKU0SkEdlcHu/RrZDQS0EaMeVg2aNCksiWm0O4OlHApl3bILT4iwPTcxmUiDR+GuhRcs3M2gGPAxe7e81Zhj4A+rn7KjM7AvgnsEPNbbj7ncCd0fYmNGzEIiKNwufU3YunNaEAvyo34cjWUg6WHeraJrKFPjv6mjXAQ0D7NKt0BJ787OhrluUuKhERkY2ZWSGhiPSQuz9Rc7m7r3D3VdHvzwGFZqYWRyLS4u3ed/YXwESgUy2LDWgF3L5739mapVlaFLVIEtk6twC7AnsQxkRaR2gCW0y4gjE6b5GJSKPkQMJ1HUdyw8wMuAf43N1/l2adHsBCd3cz24twoXFJDsMUEWnMLgbGAz3ZMMlOK0LPg2eBh/MWmdSLcrDs0bsoshWiVkmnAb8AviAcWEqBXwInfHb0NTW7D4iIiOTS/oQZhw42sw+j2xFmdoGZXRCtczzwaTRG0h+Ak91dV9dFRIDd+86eBxwJ/AZYAFQSWin9BLh4976zNzdmqkizoxZJIlvps6OvqSCMJ/HP/EYiIk2DkdR1HMkRd/8v1D0ghLvfBtyWm4hERJqe3fvOLiO07rwn37HI1lAOli0qJImIiORQmENYAz2KiIiI5JJysOxROU5ERERERERERDKiFkkiIiI5poEeRURERHJPOVh26F0UEREREREREZGMqEWSiIhIjiXVP19EREQk55SDZYcKSSIiIjnkGAk1CBYRERHJKeVg2aN3UUREREREREREMqIWSSIiIjmmgR5FREREck85WHboXRQRERERERERkYyoRZKIiEgOOZDUdRwRERGRnFIOlj16F0VEREREREREJCNqkSQiIpJTRsI19ayIiIhIbikHyxYVkkRERHLIQVPPioiIiOSYcrDs0bsoIiLSQpjZ4WY2xcymmdkVtSwvNrNHouXvmFlJ9Ph3zOx9M/sk+nlwzoMXERERaYKaY/6lFkkiIiK55JDMw9SzZhYH/gR8B/gSeM/MnnL3SSmrnQMsc/eBZnYyMAY4CVgM/MDd55nZ14Dngd65fQUiIiIiWyEPOVhzzb/UIklERKRl2AuY5u4z3L0C+DtwdI11jgbGRb8/BhxiZubuE919XvT4Z0BrMyvOSdQiIiIiTVezzL/UIklERCSHHGuo/vndzGxCyv073f3OlPu9gTkp978E9q6xjfXruHuVmZUBXQlXxKodB3zg7uuyFrmIiIhIA8tTDtYs8y8VkkRERHKsgWYMWezuezbEhquZ2U6E5tbfbcj9iIiIiDSEppiDNcb8S13bREREWoa5QJ+U+9tFj9W6jpkVAB2BJdH97YB/AGe4+/QGj1ZERESk6WuW+ZdaJEmLNnD89UOA7YE1wNvTTrxydZ5DEpEWIJmf6zjvATuYWX9CwnIy8KMa6zwFDAPeAo4HXnF3N7NOwLPAFe7+v9yFLCIiTVlywaDBwECiXDvWY+rqBXN7xYE9ge7AV8CEHr3nJZMLBrUjjCfTCvgi1mPqF/mIedwX+xmwK6G70XLg3WE7vFmRj1ga0qnvnNsb2BlIABMe2vuupXkOKSfykIM1y/xLhSRpkQaOv74/8HtgKJAEHEgMHH/9bcDt00680vMYnohI1kV97n9GmPEjDtzr7p+Z2XXABHd/CrgHeNDMpgFLCckOwM8IJwJXmdlV0WPfdfevcvsqRESkKUguGFRCyLV3IhQqDKhaOa/kJWBfQouLaktXzSt5r02s6DuEHjMOxJMLBn0CXBTrMTV1fJkGNe6L/XYHbiYUkarPB1aP+2K/64bt8OY/chVHQzr1nXM7ATcBB7Lh/8ZOfefcx4BrH9r7rkYxBk9z0VzzL3NvuufLZjahoceDkOZn4PjrtwWeAzoAZSmLCoD2wB+mnXjlrfmITUTyKxfHld47tCkf/ezun2d7u+cM/h86JkquKAcTkXSSCwZtQ8i1O5KSa6/zqo4rk+v6Ob7EU7r2GPQxrHOHWHFpkRWsSNlUR8JJ9RGxHlOXNHTc477Yb0fgiRASq1IWFQOtgcuG7fDmPxs6joZ06jvnFhO6SQ0i/N9UFwNihPf7ZeD8h/a+K+dFAuVgTYvGSJKW6GygExsXkQCqgBXATwaOv75zroMSkZbCSDbATUREpJE4G+hMSq7t7pQnK7YFkjFinQktMwAKYsQ6AonyZMU2NbZTPXPVqTmIGeAyoJCNi0gA6whd864c98V+Tb1Hz2HADoQue6nFoiSwDDiI0N2tmVIOli0qJElLdBKbHiCqJQh/FwflLhwRERERkWZjk1w7QbI4iRcRcm0s9AxY/xNIJvBWVZ4sqrGtNWw6nkzWjftiv/bAt9n0QnO1dYSeC7s3dCwN7BRC0SidGPDD3IQiTVlTr6iKbIkOhIp7OnE27rctIpI1DiRc13FERKTZ6kBo8bJeMuTXbqH1hoHFwDEsbuE+jruzyQGyktzk5e3YMG5qOp6jWBpSF8J7mk6CMAh6s6QcLHv0LkpLNIcwG0Q6ldE6IiIiIiJSP7OpkWvHsQrAPNRpHLwy/OIVDh49bnGsZpGjFTCr4UNmCeEcoK6GFnGa/jnCVOo+D4oDU3IUizRhKiRJS3QX6b9AWwPlwOu5C0dEWpoEsazfREREGom7CTn1enGLVRUQW0Uo1CQdVgJ4GJ80CRQUEl8Rs1iixraKgTsbOuBhO7xZAYxnQ1e7mjoQCixNvcjyYPSztsShgNAi6fHchZN7ysGyo2W+amnpxgPvEZp2VvfDNkJT1QLg4mknXlmRp9hERERERJqyR4F3CANuF0ePWftY8UrDPEFyGRvOQ2MJkssNS7aLFa2C9SMXFxNy9f8CT+co7luB0mi/hdXxEV7HWuDyYTu82XSnPA/eA/5OOO9JLfa1I4wBdcNDe981Lx+BSdOiQpK0OFGRaBjwWzb0u+5IOFCdMO3EK9UaSUQajANJt6zfREREGoNYj6kVwJmEXLuCKNeOW+y1Nlb4fWAcoYjRkdBL4O62saKj4hb7H2Fm5Y6Ews2NwLmxHlPrGtMna4bt8OZy4FhC74XqMVPbAc8APxy2w5tZnzY+1x7a+y4HrgKuABYR3u/OhC5v5z2091335S+6hqccLHvMvekWVc1sgrvvme84pOkaOP76GOELdO20E69cnedwRCTPcnFc6blDu/Irnt4n68noxTu+jI6JkivKwUQkE8kFg2KEgsy6WI+p63PtBXN7FRGKNKt69J5XkbJ+G0JrpLJYj6l1zS7WoMZ9sV8BoTtb+bAd3lyXrzga0qnvnFvdIyPx0N53rcx3PMrBmhbN2iYt2rQTr0wCS/Mdh4iIiIhIcxMVgzaZLTkqHm2Sg0fFprxf3B22w5tVNPNzhKh10vJ8xyFNkwpJIiIiORSaVatnuYiIiEguKQfLHr2LIiIiIiIiIiKSEbVIEhERybEELXNgRhEREZF8Ug6WHSokSaNSMm5MP6AHoS/1F6XDRjTd0eBFRGrjpmbVIiIiDSC5YJABOxBmIpsf6zF1dp5DypkbJh1hwPZAV2DhyKHPleY3okZIOVjWqJAkjULJuDFDgF8DOwOVhM/mzJJxY64qHTbinbwGJyIiIiIijVpywaD9gOuAvkACKEguGDQRuDLWY+rUvAbXwG6YdMSewGhCISkBFNww6YhPgStHDn3us7wGJ82SynGSdyXjxgwCHiUUkcoIMzWsAPoBD5SMG7NPHsMTEckqJzSrzvZNRESkpUouGPRNYBzQm3AeUU44r9gNeCy5YNCAPIbXoKIi0l+BAWz82ncCxt8w6YiheQyvUVEOlj0qJEljcAXQmvCFl2oVkASuLxk3pmX+hYqIiIiISFrJBYNihJ4NlYQiSqoyoA1wWa7jyoWoO9towICVNRavAIqBX+Y6Lmn+VEiSvCoZN6Yz8C02LSJVKyc0Tx2Ss6BERBpY0mNZv4mIiLRQXwN6Eno11GYF8J3kgkHtcxdSzgwABrJpEalaGbDPDZOO2CZ3ITVuysGyQ2MkSb51BqoILQ3TSRAGjRMRafIcI9FCkw4REZEG0JVwvpBOMrp1In3BpanqSmiJlY4TzrU6A1/lJKJGTDlY9uhdlHxbTPgc1vVZLAAW5CYcERERERFpQhYC8TqWxwhdv5bmJpycWggU1rHcCK9/UW7CkZZChSTJq9JhI1YALwEd06zSAZhSOmzEtNxFJSLSsJJY1m8iIiIt1OdAKdAuzfKOwNOxHlNrjp/U5I0c+tws4FPSn0t1BP4zcuhzzbGItkWUg2WHCknSGNxI6L/bmQ2fSSN88VWhAeJERERERKQWsR5TnTB5jxPOH6rP7GOE84ulwM35iS4nfgVUELruVb92i+6vAn6Tl6ikWVMhSfKudNiI2cAPCS2T2gFtCS2R3gVOKB024uP8RScikl0OJDyW9ZuIiEhLFesx9QPgJOB9QjGpLeG84nngmFiPqfPyGF6DGjn0uUnAccBbbHjtHYBXgWNGDn1uZh7Da1SUg2WPBtuWRiEqJp0fzeLWHVheOmxEix8QTkRERERENi/WY+rHwMnJBYO2IbTGWRTrMXVZfqPKjZFDn5sMnH7DpCO6A12ARerOJg1JhSRpVEqHjVgGtIgvfBFpuZLeMvvTi4iINLRYj6lf0UJnKBs59LlFaGDtOikHyw4VkkRERHLKSKhnuYiIiEiOKQfLFr2LIiIiIiIiIiKSEbVIEhERySFHzapFREREck05WPaokCQiIiIiIiKN0kez+xQAvQl1gC936TsnWdf65fP7dSXMXra4bc9ZK6LHLNpGITC3bc9ZFXVt4/mZQ9sTJgBacVj/SYu3/lWINC8qJImIiORYUj3LRURE6vTR7D5x4GzgAqAdYMDij2b3uRUYv0vfOZ66fvn8fjsBI4G9gQQQK5/f71/ABOAsYDsgCVSUz+93H/CnmgWl52cO7QGMAI4gFK7iz88c+i5w42H9J33SYC9WckY5WHbk9F00s7iZTTSzZ2pZVmxmj5jZNDN7x8xKchmbiIhILrhDwi3rNxERkebio9l9DLiZUBgqBFYCK4AOwG+AK1LXL5/fbxfgUUIRaQWwKrqdAtxFKCJVP+7Az4B7yuf3W9+w4vmZQ7cB/gkcBZRH664A9gLGPz9z6O4N8mIlZ5SDZU+uy3EXAZ+nWXYOsMzdBwK3AGNyFpWIiIiIiIg0FnsDRwLLgNRWQ2uBMuDsj2b3GQjru62NAeLRsuqWSjFC4cmin9Uqo+3uCxyW8vglwDbRsurucx5t04Cbnp85tGVWDURqyFkhycy2I3wZ3J1mlaOBcdHvjwGHmJn+UEVEpNlJumX9JiIi0oycFv30WpYlCeexJ0T3BwMDCK2WUnWMflYBndj03DdB6PLG8zOHtgaOIRSNarMK6AN8LaPopdFSDpYduWyR9HtgOBuquzX1BuYAuHsV4Y+4a04iExERERERkcaiPxu3RKqpKloHoCehKFRTcY378Rr31xKKQ7Ch0FTbdqolgR51LBdpMXIy2LaZfR/4yt3fN7MDt3Jb5wHnRXe7bWVoIiIiOWYkXQM9ioiI1GEBMAhYk2Z5ITA/+n0JtTeQqKxxv2aRqIioIQNhLCSLtpOu4YMBS9OHLI2fcrBsydW7uD9wlJmVAn8HDjazv9ZYZy5RRdjMCghNEZfU3JC73+nue7r7noCmYhQRkSbFgQSW9ZuIiEgz8lAdy4xQFHosuv8p8BXQpsZ6y6OfcUK3t5oFoiLgAYDD+k8qB55nQ3e4mloTzk0nbj50aayUg2VPTgpJ7j7S3bdz9xLgZOAVdz+txmpPAcOi34+P1qmtT6yIiIiIiIg0X/8B3gM6s3GXtAJCN7RnCQUk2vaclQR+RWillFpMqiSMbWRs3AAhFm13CvB0yuO/I8zWVrOY1IZQdLrysP6T0rVWEmlR8tquy8yuM7Ojorv3AF3NbBpwKTWmdBQREWkuNNCjiIhIerv0nZMgzOr9N0JroLbRrRC4Hbhsl75z1jc6aNtz1uvR+l8RZmhrSygIvQH8mjDeUvU22hEKSCe37Tlrfde5w/pPmkFo0PBR9Ny2QHtCEercw/pPeqXhXrHkinKw7MjJGEmp3P014LXo96tSHl/LhpH3RUREREREpIXape+cNcCoj2b3uQkYSuia9ukufeesrm39tj1nvV4+v99BwI6EVkvz2/acNROgfH6/G4GdCS2LprTtOWuTIVQADus/aSpw/PMzh5YQJoNaDkw6rP8k9ZQRSZHzQpKIiEhLp4EeRUREMrNL3zkrgLczWbdtz1kOTKrl8QpgQqb7PKz/pFKgNNP1pelQDpYdehdFRERERERERCQjapEkIiKSQ46RbKEzfIiIiIjki3Kw7FEhSUREJMcSLXRgRhEREZF8Ug6WHSokSbPV/8Eb2hIG2lsw8/SRiTyHIyIiIiLS5N06+dAioBWw6qIhLyUBMOuyqEO7A9zM2q1d+982aysWAzw9Y+cYYZa0dT8Y8PG66m28Ujq4AGgDlB9cMkV5OvDE9N3Wv6/Hbj8xuSXbeHT6Huvf1xO2f1/vqzQYFZKk2en/4A3f9gS/92RsJ8CAypJxN7xgMc6defrIRfmOT0RaNncN9CgiIk3PrZMP3RG4EPhO9NDye1795l8PPG3KYT2Kiw6ZuW23Kjf42qx5hTN7dXt9xoNdn6R/8elAF4CnZ+z8SpzEX1vFqg4hzNZdCFS8Ujr4EeDPB5dMaZF5+hPTdxsKXAQcEj207Inpu90D3Hfs9hPXpX/mBo9O36Mn8DPgOMI5/rpHp+/xd+DPJ2z/fq0z1LVEysGyR++iNCv9H7jhh8nK2POetJ3AKzGvADdPxI5MVtln/R+8Ydt8xygiIiIi0pTcOvnQbwBPEIpIK4DlBWsSrb534Sc3Ld613aGHjL109om/vGDSSSMvmHTQTZfNWLJPmwN2/9mc3xWsTLQBlgHLDT+00BL/duccYB2wHKgAhgFPvVI6uEd+Xl3+PDF9t30I7+shRO8roVXScOD+qJVSnR6dvkdf4GngFGBNtI1K4CzgyUen77FNQ8QuLZsKSdJs9H/wBksm7B7wGEbl+nHUjCR4BW6dPcmdeQ1SRARIumX9JlIbM+tjZq+a2SQz+8zMLqplHTOzP5jZNDP72Mx2z0esItI43Tr50DjwR8AJRYokwNf+NrdTebvi2Iu/3jHZc1BZvHr9gTssLJh0fQ9f3rO19b13aZfoYS+yynaGxxzr5E51t6sqYCmwDXBlrl5TY/DE9N0KCO9rkpT3lVBkWwrsBZyYwaZGE4bzWAqbvK89gZHZirk5UA6WHSokSfPhHI9be0IFfmMG4FWeiH23/4M3FOY6NBGRVMlo1pBs3kTSqAJ+4e5DgX2An5rZ0BrrfA/YIbqdB/wltyGKSCO3L6F72urUB4c8uWCb/542MFHl8cTQ7vO6Vz++T4/p3RMeT340bLuqPk8u7wZgeEEMb0/4TooTxk1KVQZ895XSwV1oOb4JdKDG+5piLeE7Oa1Hp+/RC9iP8P7Vpgw48tHpe3TY0iCbG+Vg2aFCkjQnuwCk/Vs2koQDV69cBSQiIpJP7j7f3T+Ifl8JfA70rrHa0cADHrwNdDKznjkOVUQar77Uct7Ycf6agnlDOyUSbt6msKLQogY1nYrWFFUm48lFX2uXbDt3XQGA4UWAR4m6ATW7bCUJrWla0ndPX8I4UemsAfo8MX23uioV2xEuonua5dXva4vrNigNS4NtS3OymPRfoqlLluYgFhGRWjkttxm05JeZlQC7Ae/UWNQbmJNy/8vosfk1nn8eG66Od2uYKEWkEVrJhm5X661rW+DtF62NrevYLplIxpIeXc2tSMaTMXNr9VWlVbaLO4CHYoaFhNy8tu0Rzk1XNtiraHxWsqErWm0KCDO4pT+/CdvY3Dl9AbCqnrE1S8rBskctkqT5MO4DHE/7uS60WHLyzNNHtqQDlIiICGbWDngcuNjdV2zJNtz9Tnff0933JFy8EZGW4T+Ews9GBYvpB3VfvseTs+JF8UR8xrLuy6q7BXy0uM/SolhVbMd/LCiYd0jHMgDH1jlWQegdAGFg6VTtgKlsXNRu7l6D9T0matMeeHQz25gCLADa1LGNz07Y/v15WxKgSDoqJEmzMfP0kWUWT94LVrBRMckBpwAsaTEuzV+EIiJB0mNZv4mkY2aFhCLSQ+7+RC2rzAX6pNzfLnpMRISLhry0AriNUJRYX0z6aNh2c3f915exAS8vik9c0Hd9cfmN+YOWdH2jPLbTo/Pjs87u8mV41Kj0+EIgBr7MbKOWOK0JxZRfH1wypa7WN83KsdtPXAb8mTBOUs1WRR0IrY3urmsbJ2z/fhK4htBVsFWNxa0J1b3fZCHcZkM5WHaoa5s0Kxbjp5DEE7GzQ/EoPIx5eSyePG/mGSNfymuAIiKgZtWSM2ZmwD3A5+7+uzSrPQX8zMz+DuwNlLn7/DTrikjL9CfCWDwXEhUoVpS0sX/ftNN7R178ydd26Llo4Iu77bgyacYhH01u97XZcxMTb9lu4qohrboQjYeUIF5V5X53oSX2IhSlqpUBPzu4ZMqbuX5RjcAfCd3bfkJ4XyEUf6YDFx67/cTNtiQ6Yfv3X3l0+h4XEmZvq35fDVgGXH7C9u+/m/WomzDlYNmhQpI0KzNPH+nAT/o/eMNInHOArsBnGA9Hy0RERFqS/YHTgU/M7MPosV8SBnnF3W8HngOOAKYRZg86K/dhikhjdtGQlxy449bJhz5ImCWsDVD65f5dPum4am1Rl5Wrzjnhv+//ALBYMvmv9qvX3bH40PbrgKHA9oQZyN48fMCkVa+UDi4gFK27AYuAdw4umVLXWEHN1rHbT0wCtz0xfbf7CO9ra2AG8NlmxkbayAnbv//co9P3eJEN7+tC4J2oxZJI1pl70z23NrMJUT99ERGRrZaL40qHAV3Kv/PXkz/P9naf2P8v6JgouaIcTEREskk5WNPSMjv0iYiIiIiIiIhIvalrm4iISI6pf76IiIhI7ikHyw61SBIRERERERERkYyoRZKIiEguuelqmIiIiEiuKQfLGhWSpMGV3D/mUODXGLsQWsEtwvkjMKb0zBFNd7T3SMkDY9oCPwKGAdsCS4AHgIdKzxhRls/YRLLthklHdCF81n8EdALmEaYWHz9y6HNr67OtJ6bvNgA4F/g+0Ar4DLgD+Hd9Zippahw1qxYRkebjoomn7A5cABxAmHb+rUJL3HH9thO+H8POjWGdHRJJ/N0kyRGte858O78RZ88bpQN3Bs4HDiac57wH3H5AybT/5jUwqZVysOxR1zZpUCX3jzkP41mM3YAkUAl0x7gOeKXk/jFN+i+55IExHYDHgJGEk+oVQFvgF8BTJQ+M6Za/6ESy64ZJR/QCngV+BhQTPu/dgKuBh2+YdESbTLf1xPTdvgE8DZwIJKJtDQH+CPzmiem7NenvBhERkZbgoomnnAA8AhwErAFWg3+zjVW9NnF19ysM6+Qh//c4tl8B8dfWzO9/XD5jzpY3SgceSTgPOAxYC5QDewH3vVE68Cf5jE2koamQJA2m5P4xHTFuJRR/K6OfRL9XYuwP/DRf8WXJCGAQsJRwAHFgHbAM2A64Nn+hiWTdGKA74fNdQfi8r4nu70IoMG3WE9N3KyK0PLLouVXRtlYBZcAJwKFZjr1RSUZNq7N5ExERyaWLJp7SC7geWE04fieBZMdYRds2VlX0Ynmv2OKq4kS0unvIHayA+P1r5vcvzFPYWfFG6cCuwG8J+f9ywkWxJOHC2CrgkjdKB+6UtwAlLeVg2aFCkjSky4E44Ys1nUtyFEvWlTwwph1wHOGAUZsy4DtqlSTNwQ2TjugL7EP4XNdmJXD6DZOOKMpgcwcB7QiJZ01O+M748ZbEKSIiIjlzEiHXr0x9sG2sqnvMQuXogzVdaw6lUmVQDHZ+zqJsGMcChYTiWE0Jwnn2GTmNSCSHNEaSNKTdCS0O0qnC6JGrYBpA7+hnukJZMlpWAizORUAiDWgAG1oO1aYSaE9osTR3M9saTEi+0lkNDK1vgE1Jss6vRhERkSZhV0JusJEYxB08bs68qta1NVwwC+cJTdkuhFw/nTXROtLIKAfLDhWSpCGt3Mxyo8YVjCZmDZtv1RcjNHkVaerWUHdhGMJVyUw+76sy2E5trZWaBQ30KCIizcRKwjF7I9VXnJIORZbc5AKUh1XKGzi2hraCWl57ijhN/zU2O8rBskdd26Qh3UP61gsABTgv5SqYBjAHmA2kG2C4FWH8l0k5i0ik4UwkjP+Vrutae+DjkUOfW5LBtl4lXMFMdyRvCzxR7whFREQkl56klly/0mPlBgZmO7datknLfQMcvzsXATagZ6h7+I4C4NEcxSKScyokSYMpPXPECzjTqP3Es4DQGmlUbqPKntIzRjhwA+H11XyNhUBrYGzpGSPqavYq0iSMHPpcBXAzochTszVrMeF4clMm2zp2+4kzgX8RZjqsWUxqT2ix9OBWhNvoaaBHERFpBl4FphOO5+stTxTOXe1xOsYrGFJctlGxxaAogU9o3XPmRzmMsyG8DXwKdK5lWUdgIWF2WmlklINlhwpJ0tD2x/mcUFipLrgUAmtwflh65ogm3Vqn9IwRLxNmbosDHQhToXckvM5rS88YoVYV0pw8SJihpBXhc96N8LkHuHDk0Ofeqse2LidcyexASMK6Rr8vAk45dvuJ87IVtIiIiGTfrbs9XAWcBrxPyAu6Al0rKIgDE07rNH11oXmhRfm/QWECfy9J8pA8hp0VB5RMSwJnAW8SXnuX6NYB+AI4+YCSaeraJs2WudfV86hxM7MJ7r5nvuOQzSu5f8x+hANNK0IF/57SM0fU1Ry0SSl5YEwbwnTl2wBLgJdKzxixuTGiRJqkGyYd0Qk4hHAFcj7wysihz23RWGBPTN+tD/AtQqumqcCbx24/MW+t+HJxXGnXv1v53vee8Xm2t/vKwbegY6LkinIwEUl10cRThgJ7EVoavw98cmOPtwvA/s/CoNyrHb+ndc+ZE/MZZ0N4o3TgIGBfwoXlD4GJB5RMa7on2XmiHKxpUSFJREQkkovjStuSbuV73Tss60nMa4f8rsUlMZI/ysFERCSblIM1LeraJiIiIiIiIiIiGak5YKqIiIg0MG+hAzOKiIiI5JNysOxQiyQREREREREREcmIWiSJiIjkWBJdDRMRERHJNeVg2aFCkjS4kvvGbgv8CDiaMDPT+8C9pWcN/6Ah9tfvnrHtgWOifXYCpgP3Aq/OOmd43maDEhERERFp7I7+x0Vt1q0rumvZ0nbHVK4rLCoorKrq2GXVi317f3Vt944rL2wTX3dk3LxoXTI+f3Wi+A9VHvvT73d/ZKMZnE566wIjzGR2NvA1oBx4DHjkkX1vX7o18U2Z0ytGmPH1LGAwsAJ4GHh8cJ95K7Zm2+lMmtO7A+H84hTC+cU0wvnFa0P7zNX5hbQ46tomDarkvrFfA14Efgp0A9oChwOPlNw39v+yvb9+94zdBngGuAroC7QGvgHcAfyu3z1j9ZkXkbxyIOmW9ZuIiMjWOvqfF3X6amHnhfNmdztlzariVskEsXVrCotWLWnz/V6tyt7rVFB+cqFVtTWSBW3iFSXdilb+rm183esXf3DS+gNRVET6JfAAcCAhH+8B/AJ4/qS3LhiwpfFFRaQbgbuB/aJt9wZ+BTw3ZU6vXlu67XQmzendg3B+MYoN5xd7AXcCN0+a01vnF02EcrDs0YdeGkzJfWMLgXuAImA5sBaoiH5fBVxact/Yb2R5t7cQDibLgdVAJeEqRRlwFOEqgohIXrlb1m+ZMLPDzWyKmU0zsytqWV5sZo9Ey98xs5Lo8a5m9qqZrTKz27L7boiISGOxoqzNG6vKWreLxRMeL0i6xfBYPOn77/w5hfEq1q4tLkgSSziWTHisMuFW2b5g7T6Flrg2ZTOHEFoLrSDk5JXAmuj3jsCdUbFpSxwLHEfI7ctqbHtb4I9buN26/B7oRfrzixMbYJ/SQPKRgzXH/EuFJGlIBwGdCUWjmhLRz3OytbN+94ztT7g6UFbLYiccZC7od8/Yllk2FpEWzcziwJ+A7wFDgVPMbGiN1c4Blrn7QEJhfkz0+FrCldjLchSuiIjk2NH/vKjTssUddorHE24p2XLn9uXWsd1qKqviVFXFDE89hzTcLdm+YO0FKZu6gJDr19blawWhVU+9LyZPmdPLgJ8A6wi5fU1lwM5T5vQaXN9tpzNpTu/tgT0JRaSanHB8/MmkOb11fiG1aq75lwpJ0pB2BQrrWL6a8MWcLTsRDli1HVggFJJ6AR2yuE8RkXrKfpPqDJtV7wVMc/cZ7l4B/J0wdl2qo4Fx0e+PAYeYmbl7ubv/l5DQiIhIM5RM2uHJpGGxjXPpTu1WAQ5mGODJWHyj50FVcayq88UfnFSd9+9C7ReSqxUQ8vb6agWUEM4h0vEt3HY6O7HhAnht1hB6Q7TL4j6lweQlB2uW+ZcKSdKQ1m1muRGahmbL5rZlDbBPEZHGopuZTUi5nVdjeW9gTsr9L6PHal3H3asIV3e7NlTAIiLSiBircMxrXJJNegzfaKardNds17dAqqLu80xny/Lxqui5mztz1/mF5FpdOVizzL80a5s0pNeAn9WxvA3wSBb39070M07tVw7aA+/NOmd4XVcxREQaXKZjGtXTYnfPZitPERFpQdatLnq2sLiqqqoiHrf4hnLSV8s6uuGGhxqOxb0q9Xlx88JVieIvfr/7I9X597+BH1B7dzAjFJzeqG98g/vMq5wyp9f/CLPB1TaURXXx6q36brsO7xBijlF7V732wNtD+8xtdC1GpHbKwbJDLZKkIX0MvE8YJ6mmNoQWSw9ka2ezzhm+HHiI0HWt5jdEEeHzfmu29icisiXc8zZjyFygT8r97aLHal3HzAoIg6IuycLLFhGRRu6FU8d6t22WP+oeM08pmaxZV8zshd0pKkxQWFS50TAShscAVieKrk7Z1B2Ei7qtatlNJ+CFR/a9fdYWhlk9mHZRjceNcMx6dHCfeYu3cNubGNpn7lLg4WjbtZ1fGDq/aDLylIM1y/xLhSRpMKVnDXfgfEIxqQPQhVBU6kCYvW1Y6VnD56Tfwha5AfhHjf11InzRXzbrnOFvZnl/IiJNxXvADmbW38yKgJOBp2qs8xQwLPr9eOAV95qdHEREpLl6/pTf/qh7r6X/SyZjlqiKW1Vl3BKVcZswaQdfUt62oqi4KhG3ZFGBJQvjliw0w5ZUtLvq5t0efbR6G4/se/tkoLprT0dCPt4l+v0/wOVbGt/gPvPeAy4mjMOauu0OwDPAtWmfvOWuB55k4/OLjlEMlw3tM/edOp4r0izzL2vk8dXJzCa0tCZkTVHJfWMN2A04FGgNTAReKD1reIM1Ae13z9jtgSOAbsBU4NmoxZKISFq5OK607te9/Gu3n/t5trc74Ygb2FzsZnYEYRrjOHCvu//azK4DJrj7U2bWCniQ8J29FDjZ3WdEzy0lJNFFhO4K33X3Sdl+HdI0KAcTad6O/udF+64qbzWmqqKgb0FB4qu27dZe89Qxv3/u0g9O/F5xrOq8mHnnymTswwovGPP73R+ZX9s2TnrrgraEmap2AlYC/35k39uzctyYMqdXB+D7wCBgGfCvwX3mTc3GttOZNKf3QMLrqT6/eGZon7m1dbGTLdCcc7DmmH+pkCQiIhJpzkmMSDYpBxMRkWxSDta0aLBtERGRHEtudsIZEREREck25WDZoUKSiIhIjjXQjCEiIiIiUgflYNmhwbZFRERERERERCQjapEkIiKSQw6ZTBUrIiLStJiFg1tTHoRXmjXlYNmjQlITMfiJ69oARwLHAG2BCcBDU469akZD7K/kvrEFwEGE6Qm7E2YmeAj4sPSs4esPDoOfuG4gcCqwO7AKeBz495Rjr1rdEHGJiIiIiEjtBjz8m0LgYOAkwuxiU4C/Ah/POOWXDVLgWdO/8EdWxZXFcYbgsG67wmlebDe0nlF5v4pKIs2TurY1AYOfuK4P8ALwG0LBZgdgGPDvwU9c96Ns76/kvrHtgUeAPwMHANsDPwTGA9eW3Dc2FsV1BvAv4PQopj2AMcDzg5+4rle24xIRaS7cs38TEZGWbcDDv+kAPAbcBnyTkMMfQ7jQe+WAh3+T9aYYq7cvusequPfLn3fq8s4n/aa+81m/KXMu7dSepP9lTf+Cv69vpSTSSCgHyw4Vkhq5wU9cFwPuAbYFygitflYDy4E1wLWDn7hutyzv9npgl2h/K6L9LAdWElofHT/4iev2AkYB5dGy1VFsZUAP4K7BT1ynA4eIiIiISG7cCHyNTXP4FcCZhKJS1qztV/jD+NrkaZ/8s9esr05q/2WyTWxVsnWsfNFx7ed+8s9eM3GOXlNScFo29ykijYMKSY3fXkAJ4YBQUyVgwLnZ2lnJfWO3AY4gHHBqSgJrgZ+5c16076pa1isDBgHZLnCJiDQDhnv2byIi0nINePg3PYHvEgpHNSWBdcBPs9wq6eq553VcXtktvrLmgqpO8fK5P+m03Kr4ZRb3J7KVlINliwpJjd8eQFEdy1cB+2dxfzsDCcIBpzZrgF6ELm+bHDRSFBK64YmISCpHSYyIiGTbLoQcPl1Hm9WEi9MdsrXDwiWJHZce3jbt+cCS77VdXrSwaods7U9kqykHyxoVkhq/dAWdVNnsmZnJ/jJZL1mPbYmIiIiIyJZLktk5QdbOGxycBOnPohMeq2OpiDRhKiQ1fm8TurCl0w54KYv7+5DQZS3dZ6MNMCPaZ/s6tpMA3sliXCIizUbSLes3ERFp0T4g5O/pcvi2wGTq7lFQL5Xd4x92e3pV2vOB7k+Wd6zoUfBptvYnkg3KwbJDhaTG70PgM6BTLcuKCFcf7s3WzkrPGr6UMNtDx1oWx4Fi4FYz7or2XVu3u87ARGBStuISEREREZHazTjll4uBJ0mfwxcBf5hxyi+z1iLJKv2qXnev6FQ8p7JzzWVFC6o69P7L8k5uXJut/YlI46FCUiM35dirHDgPmE7o09yJ0BKoE+GAcPGUY6/KdsHmOuA/hANR52h/nQmtn24Fnpty7FUfA5cRCkupMXUApgD/F8UuIiIpHE09KyIiDeIq4L+EfLxmDn/zjFN++Xw2d9bqy6oXqzrHfvf1H87r0/tPy/sWz6rsUjy7skuvO5b3/frR8/ol2sbubF1a+Y9s7lNkaygHyx7zJvzKzWyCu++Z7zhyYfAT1xUABwI/IDRNnQA8PuXYqxY1xP5K7htrhIG+jwe2IRSHHi09a/iMGnFtG62zG2Hg76eA16cce1Vts7mJiDRquTiuFPfdpnzArT/9PNvbnXzsNbSUY6LkX0vKwUSakgEP/yYG7AkcS8jhJwPjZ5zyy9KG2ue63gUHJYvtusIlyd1xqOwa+8SquKbVnMp/N9Q+pflRDta0FOQ7AMlMVJh5ieyOh5RW6VnDnVCsmrCZuBYCf8pFTCIiIiIikt6MU36ZBN6NbjlRPLfqVcKMzoBOMEVaAv2di4iI5FhLnSpWREREJJ+Ug2WHxkgSEREREREREZGMqEWSiIhIjjXd0QlFREREmi7lYNmhQpKIiEiOqVm1iIiISO4pB8sOFZJkq+zyj6sGJRKxUYlEbDczVhcUJB6Imf/lw2OuS1SvU9qu85B57Tre3mf18r0LPBn/qlX7eRUeu/IbS758iJRpAweOv34AcALQH5gPPA58Nu3EKxukcFzywJhtCDNa7AKUAU8Db5WeMSLZEPsTEREREWlIgx4bbYTZlI8BuhNmXn5s6vGj5tS2/pBrb+kM/BD4BrAGeBb4z+SrL0nUtn59DLn2ltRcewUh135z8tWXNIpc+51Z/TsARwH7AuuA54FX9u43szKvgYk0AZZyHt/kaOrZ/Pr641dfs2Zt0UgHww2i4m5BPLG0VXHlfh8dc92M13sMOO/rKxbc/tgeu/vTu+ySLC8q8n1nzIid89//xZbEWv9vz0VffmvgI6MBLgPOI4zblQDiQJJwMLts2olXVmUz9pIHxhwNjCEUU5PR/hLAp8BZpWeMKMvm/kSkacjJ1LN9tinvd8vPsz717BcnXNXipp6V/FEOJtL4DHpsdCvCbMrfYkNOHSP05rlp6vGj7kxdf8i1txwM3AYURuvECHlxKXDa5Ksv+WpLYxly7S1HAWPZNNeeBJw5+epLlm/ptrPhnVn99wPuBIrZ+LXPBU7bu9/MuXkMr0VSDta05GSwbTNrZWbvmtlHZvaZmV1byzpnmtkiM/swuv04F7HJltn5iat/uGZt8S+BZMyojMW8MmZeaXhlVVW8y7p1ha+ujRf22Llswe3nn35q4qaDv7t2ctdtK+a071w5fpc91h173vkVrQsS+/9325IxwInABcBKYBnhikX1z6OAS7IZe8kDY3YDbgIqgOU19rcL8Ids7k9EREREJAeuAQ4ktLSvzm2XA+XAiEGPjf5O9YpDrr1lIPBnQnGnLGXdFcAA4O4h196yRX2Ahlx7y67AzdSea38d+OOWbDdb3pnVfzvgbsJl8JqvfTtg3Duz+mtSKpE65OoPZB1wsLvvAuwKHG5m+9Sy3iPuvmt0uztHsckWqKyKX+04ZmzUNNUMzLyyKhHv+fzOOz7+/E5DfWKPPhU1n19eWJwYe/h3E33WlP3E3C8kNKWt2czVCV/oZw4cf32bLIZ/AeHAsUlchIPcfiUPjBmYxf2JiKQw3LN/ExGRlmvQY6O7ErqR1daqvgqoBC5KeewsQmuhdbWsvxzYEdh9C8M5P/qZLtfeZ8i1twzawm1nw2lAEeH8o6YyoC/wzZxGJDmiHCxbclJI8mBVdLeQDc0npYmqrIzvaOGgtAkzcMe2K1u+x7933intn9ZbffpXda5Y07br8lU9gLVpVqsifE6/noWwqx1EaP2UThyordApIrLVHHDP/k1ERFq0PQgXZdONP7QK2HHQY6M7RPe/Q2iplE4BcMAWxtLYc+3DqL2IVK2A0LJLmhnlYNmTsyZ7ZhY3sw+Br4AX3f2dWlY7zsw+NrPHzKxPmu2cZ2YTzGwC0K0BQ5a6bbb0ag6VFk+73DGqYjFimf31ZfOzWt1XPFf7ExERERFpSHEyyM/ZkONmkutuaVOL9CcAG7abz1x7c/E5mpRKpE45+wN294S770rod7qXmX2txipPAyXuvjPwIjAuzXbudPc9o8GsFjdkzJJeQUFilmO1fsG6A4bP7dRx2sGTp6Q9AO28cG7Buli8YnGndssJA93VpvqgOGlrY07xLtC+juUJ4MMs7k9EZCNqVi0iIln2EeHcLt0BoQ0whw1d3/4HtK1je5XA+1sYyztAuzqWV5HfXPsNoHUdyxPAWzmKRXJMOVh25LwS7O7LgVeBw2s8vsTdq/vo3k1onimNVFFh4kYIXdhqLnMojMeTZXtOn3XMMRMnWknZksKa68STydgvXnwpPqNt14eTsdgdhANZbX+FHYDHp514ZTZnUbud8Nmv7WpER+Bz4JMs7k9ERGows6Fmtm30ezszu9bMrjazbI6JJyLSIkw9ftQ84BWgUy2LY4SLtrdNPX5Udav8ewjd4DbJ0wkXXOcD/93CcDaXa08mFL7yZRyhWFRUy7L2hHGcXs5pRCI5kq38K1eztnU3s07R760JfXIn11inZ8rdowgn89JIfXzstfe2Lq54yLGCpFPoTjzpFCTdCuMxX9O6uOJ7PVes+OLTDj1u/Os99xac9sE7xe2q1hXESMa/OWta8YMP3FfcoWz1jP0Xlv6YcCB7mlA06kS4QtCBcKB5F/h1NmMvPWPE68DvCFdKqvfXLtrnfOD80jNGtNDeriKSE27ZvzU9D7PhhOe3hOmq9wHuyFdAIiJN3HBCK/6OhIJIa8L3bHvgIeDx6hUnX33Jx8DV0Tqdo59to+eWAWdNvvqSdOMt1Wny1Zf8lzBDcruUbbeLtr0AOH/y1ZfkLdfeu9/MqYT3qpgN5wLVr70cGLZ3v5m1DRQuzYFysKzkX+Y5GB3KzHYmVH7jhOLVeHe/zsyuAya4+1NmdgOhgFQFLAX+z90np91o2O6EqIub5MkuT1x1eGVV/FeJZGwQUFFYkHi8IJ789YfHXLeoep23u/f7QSurumXIsq8GFCQSNrtD55XzW3W4Y/+FpSNxrwIYOP76GOEDfBrQn1DQeQj4z7QTr6x1UO+tVfLAmKHA6cAuhAEBxwP/Kj1jxOqG2J+INH65OK4U9dm2vM9NF2X9YsmMU35FUzommlmZu3c0MwMWAkMJg5/OdPdt8hudbI5yMJHGadBjo4uAQ4FTgK7AVOBB4IOU1kjrDbn2lu0J+fdehMlvngCennz1JSu2NpYh196yIxty7VXAo8Bzk6++pFHk2u/M6t8POBXYjzDD3JPAk3v3m7k8n3G1VMrBciNb+VdOCkkNRUlME2RmNOUPnYg0a7lKYrYbm/0kZuaPmk4SA2BmC4GBhATmT+6+p5kVAEvdvUPdz5Z8Uw4mIiLZpBwsN7KVf2k0esktFZFEpKVzNj9vZMvwN8J4Hu2B26LHdgdm5i0iERERab6Ug0GW8i8VkkRERCTn3P0SM/suUOnur0YPJ4FL8hiWiIiISLOVrfxLhSQREZEca6lTxdbk7i+YWR8z28fd33b3CfmOSURERJov5WDZyb9yMmubiIiISCoz62tm/yPM4vpS9NjxZnZ3fiMTERERaZ6ylX+pRVIT0f+hGwzYCTiEMD3lJ8ALM08dua6+2yq547cx4JvAvoReov8D3io9/7J6T/G5689vaQ18B/g6Yeazlz784yWTUtfZ6clrLFp+CNAK+Ah46bOjr9loWs3Bo2/pAhwJ9CNMDfrclFGXzKtvTAD97h1bAnyPMFvFF8C/Zp09fKtnn2gsBj02ui1wGLAjYYrW56ceP+qL/EYlIhlT/3wI08w+CxwALIkeexG4OW8RiYjkUb97x9aaM886e3jmU9GbdZ/cf5sney0s27uwMhErb1Ncubxj6zuTlbGLvvubS3cnTPVdALwPvEZlLEaY5W0XwsxNrwCflJ57ea1HqpI/3bwD8F3C9OGTgX+ff9DLawjnFfsDBrw15N/z/7vvqNJvrysovKp1VcUOCYutWVNQ9OiAsoU34b6s/u+OSJYoB8tK/qVZ25qA/g/d0A74E2FqygLCx78KKAfOn3nqyHcz3VbJHb/tC4wDegOF0cOVwGzgzNLzL/sy023t+vNb9gVuB1qzoSiZAN4AfvbhHy9ZvdOT13QgfFj3rBH7KuDHnx19zQcAg0ffcjpwJRAntJRzQl/Ne4CxU0ZdklGRq9+9YwuA0cAJbGhxl4j2OXzW2cOfzvT1NVaDHht9MPAHoJjwfkF4r/4F/GLq8aMyTzZEZCM5mTFku23Le91wSdZnDJl1xsgmM2MIgJktAbq7e9LMlrp7l+jx5e7eKb/Ryea0lBxMJFf63Ts2Xc68EvjxrLOHT9zcNr7q0v7gzitWv7y8bRv+/q09mbltV/b/fDpHvvspK9q2Sh70m8tmlLdptWHbzhqqrACsMNqnRft8D7ig9NzL11+ELfnTzUXAb4EjSMmx27Vakzh2j/dWtS6q7ED1uYV75RHDP+3c8/UVHR8fuP/yidsOqOywbnXsyOkT2u6xcFp8ZVHrg3uvXPJONt43aT6Ug+VGtvKvjLu2mdl3zWy4mV2Xeqt/6LIF/khoQVRGqBouBVYQCgn393/ohn6ZbKTkjt+2AR4GtouevyS6rSC0AvpbyR2/Lc5kW7v+/JbtCUWeguj5S6NbGfBt4HdRS6S/AHvVEntrYNxOT17Te/DoWw4DriFcBVkerbOMcOA8Fzgnk5giw4ETo/2lxlQJ/K7fvWP3rse2Gp1Bj43+OuE9hU1f4xHAr/MUmohIfVVPP7uemQ0lXNiQLDGze83sKzP7NM3yA82szMw+jG5X5TpGkZYuaol0O7XnzG2AB/rdO7ZXnRsxi3dcteblV3cezDdu/SW/O/67/OOAPbjsvBPZ49ZfYU7skTF3lKzftrMGGELcB4CXR/tbEu1/b+DPJXfdlDqYzGhCz4H1+Wfckiu+s9Mn21UlYjtXJqwyev6SfW6f2a5LaXnX2/52cNWDux/45UfbDJj/Rp+vzb3iwDOn3rLn0SvbV6x5GbM2WXr7RKR+spJ/ZVRIMrPbgL8CewB9Um7b1WdnUn/9H7phCKGIVFsT0NWEYtKZGW7ucGAbwgGgpjKgJ6GpaiZ+HO17TS3LlgOHxEqLDiccEGuLvRxo7c7phOLPOsIVkFRJQsulnw0efUvR5gLqd+/YjsAwwkG3ZlO7iuixize3nUbuJ4RWSGtrPO6E/8MfDnpsdI+cRyUi9eMNcGt6fgs8Y2ZnAQVmdgrwCDAmv2E1O/cTjv91ecPdd41uukgokntfJ7RESpszA2fUtYGp/br/Lolx3s9OxWqMJVzephVnX3QGQ2fPL+i9aFl1L4KuhKOHEfPONTa3jFBMGgpQ8qebewDHEnLN9Uecku5fdWhdVFFQkShMrqko7g5gVUl2e3T2Nv/8+e6V3o1Y7yELO6Zu+LntvzH3867bUdphm5/U9XpEGoxysKzkX5m2SPoRsIe7n+TuZ6Xczq5fzLIFqvsxp7MK+EGG2zqaUJxJx+uxrSMJLYbSbSfO2tip1B37airtOKAvoShWm0pCwWrnDGKqbm2USLN8JbB3v3vHNskrIIMeG22E8ajSjfVU/X+7f24iEhHZcu5+L3A5oSvyHMKFgFHu/lBeA2tm3P11QusBEWm8DmLDkBO1WcNmcvRW66rOfGvIACy+8eld9QxVnwzow8o2rTj91TerLzh2ApIYjtGplk0WRHFBGF4DapxHlHRb3BHA8ERloqCDO/T4fEWrqoJ4bN6OnRPu5j13WFRz2/5iyW7lMU+eWNfrEZGGka38K9PBthcTWplI7hUT+iunk4zWyUQr6i4kJQlXPDJRSO2tkarFcFptZhtJklZM+sJPNQc22yIpg3Wqa8Z1HagbMyO0Rqrr/9DI/PMgInmjqWcB3P1J4Ml8x9GYmVl/QrflXYF2qcvcvW+WdrOvmX0EzAMuc/fP0sRyHnBedLdblvYtIiFHr6tdw2bz/VjS4+Wt6k4BKwoKKK6sqj7/qz4QOekbF1Tn8rWej8RiyZi7OQaEf4lXJGMVreJhu47FCpKbPG91QbHH3DPJ7UUagHKwbORfaQtJZjYg5e7NwENmdgOhT11qEDO2JgDZrM8I3bLSaQe8leG23iF0T0ynIFonEx8Bu5O+dUwFhf4WdbckaktR8j+E7m+FhNZHNcUIxZNMZiT7nLpb2bUifH7TtaRq1KYePyo56LHRUwjjWZWnWc2BSWmWiUhj0fSaQWedmaVt1RxdLZPgb8B04Bekb727NT4A+rn7KjM7AvgnsENtK7r7ncCdEAZFbYBYRFqqj9l0iIdUbQizqaW1qm3xZ9/4onQvd2p0bQu91zqsWk3XFat4/WuDFkcLVgPto1Vqyysro7gg5JabHLkWlXUo36b9inbuxOKWXGsGiwe2X9t54WraLV4bX9u7gGXzOm6y7b3mTy1eFy/c7ODhIg2ihedg2cq/6mqRNI3qb54Nvl9zX2yYNUoaxuuEgeu6sGkBJEb4/7krw239HTif0HKnZnGqmHAAezTDbVUnkzE2bSHTHljoXapuA04mFLtqHkTiABbjTkIB6CfU3i+8I/DclFGXLNpcQLPOHj69371j3ycUy2qOA2WE1lZjZp09PKMZ4BqpPwO3EA7+Nb8GOxL+bj/KdVAiIlvg9Br3ewDbA/8DVEjaYCdgf3dvkGOXu69I+f05M/uzmXVz98V1PU9EsuplQu6aNmcmTHKT1pCZC49KwoKj35zIU/vvtv5xM3CH39/5CMvateHVXXZcFS1aTHUhKWlLamyuLaE3yqvR/Y8JF3V3ICXHnrqwx7Ide8/dJmYea1VUsQhgbcfC5NRvbbvi4Ic+b/fsZTtXzf6050Zda/usWNTl0FkftiNMtCMiuZeV/Ctt6w13j7l7PPqZ7qYiUgObeerIKsKsZWuAzoSCTyGhX3N74PaZp458I5NtlZ5/2TzgUkLLnM6EglJRtK0i4KLS8y9bmHYDG3uV8EHrQChgFKZsdw3w40/PGrUuir2qRuwdo9j/8NnR17wL3Aa8Ha3TjlDgbBPdnwaMyjAmCINpL4ye2zraX/voNf6bcGW3KXsGGE94D6unWW1FeH3LgAumHj+qhdfZRRq5hhjksQn+1bv7QTVuOwIXAGrpsrHXgd02u9YWMrMeZqH9gpntRcgNa55UikgDmnX28ArCRDZVhJyuZs5866yzh79b50bcF07aoecTt9z9KDfe/TjtV67GHQaXzuOJ0X/m259+wYXnnzyXkPMXYhQCK0iwDKx6f8WEHLoS+HHpuZdXApT+9BcO/B8h1+xEyD0LV1e0avO/LwYtLS6sXFVcUEW07aJXRwxaNvCDhRz88y8S3Wat6gAUFiSqWh0+Y0Lv21/4c+9FbTpd365i7azsvYMiGVIOlrX8y9w3/8rN7A/ufmEtj//e3S+uzw6zycwmuPue+dp/LvV/6IZtgVOBYwhf3h8B98w8dWSm3drWK7njt4OBs4FvRw+9Atxfev5lU+uznV1/fosRBt87hzDbxBrgMeDvH/7xkq+q19vpyWt6EQZs/yHhADMRuCcqIgEwePQthcD3gLMIMwIuBsYBT04ZdUm9mvL3u3dsB+D4aJ+dCF0C7gVebOKtkYD1g24fSHjfBxMGXB8PPDL1+FEaUFVkK+TiuFLUe9vyXr++9PNsb3fWWVfQ1I+JZhYDFrt7l3zHkk9mljpzWhfgJOAfwILU9dz9qgy29TDhmNGNcKHlaqKxAt39djP7GeEEsYpwHL/U3d/MYLstJgcTyZV+946tmTN/ANy72SJSik8G9b6hz/xll3dctSaeNCPmzrzuHcs/6N/3tJ//36lfJ+TbBYShMe6hMtaKkFPuRuix8A/gb6XnXj6/5rZL/nRzF+BEwndSO2AKcM+Pv/3Kl/GYnwkcEq36+qB/L3h8t+vmXbJt+fIfrisojLWqqoiVFbeduaag6KoByxc8vAVvjzRzysHyZ0vyr0wLSSvcvUMtjy9x9671CzN7lMSIiEg25SaJ6VHe6/oGSGLOHtGkkpgoaUnVBjgNGO7uA2p5SothZvdlsp67n9XQsaSjHEykkTPrB/QEpuBe2/ARuYqjCNgWWI27WjtKWsrBciNb+Veds7alDMRUUMugTAMIrUZERERE6quKTRuEzwXOzUMsjUo+C0Qi0ky4zwLy333MvYIwxbiINA5Zyb/qLCSxYSCmIjYelMkJzaOH1WdnIiIiEgY+FfrXuF+uAZ43ZWZLa2tqbmZfufs2+YhJRESkqVIOlp38q85CkrsfBGBm17v7lfXduIiIiNRCSQwerpbL5hXWfMDMCtGsuSIiIvXXwnOwbOVfaQtJNfrOXVVLX7rqQJr84MUiIiLS8MzsDTJI4dz9WzkIp1FLea9amdnrNRZvB2x2QGwRERGRhsi/6mqRVFvfudroiphsVsntv90OOIBwZXUyMKH0gstUhGwifvXkidaqsOKkNkXrDnK3ylXrWj1yzfefeCPfcZXP79cWOBjoCnwFvNq256w1+Y1KJANu+Y4gX+7OdwBNyN2AAd8A7kl5vHp4gVfyEZSINB4l94xti/MTwiy+SzBuKz1neNrxiEruHzMA2IdwDvgx8FGsuCqGczrYvkAF5vfPOOVX7w96fHQrwoyPPYClwCtTjxu1qqFf09ZKLhjUgZAbdgLmAa/FekytyGtQ0ri0zBws6/lXXYWk1L5zRxKmU7+BMGhbP2AE8Hi2A5LmpeT237YifG6+T0iIY4Qi5eyS2397QekFl03LZ3yyeVc/c9xeX+/95TOdWpd3ipmbh5OY8+5981vTZyze9sDrj3p0YT7iKp/f72RgFKE4WUD4XFWUz+/3q7Y9Zz2Zj5hEpG7uPi7fMTQV1e+Vmb3t7pPzHY+INC4l94z9GQnGEi7qxwj52cUld499EuOk0nOGr28QUHL/mHbALYTCUHU+ngBfkqyyIWBtorNrh9j5Ax769ax4MevMKGJDjpUY9PjoG6YeN+qB3L7SzCQXDDLgHOAXhPekOu41yQWDfhHrMfWlfMYnkk8NkX+lLSSl9p0zs0uBPd19efTQVDObAEwA/pLtoKRZuRk4HFjOxi3c+gKPlNz+28NLL7hsUT4Ck80b9dTxvXfvO/Pl1oXritdVFVaG3APA6d1pyfYFscTbv3ryxAG/Pnp8Tnsbl8/v9wPg18AqILUFUhFwc/n8fivb9pylq/XSaFkL759fzcy2BfYCurHhCwZ3vzdvQTUCNWfKNbP9aluvpb9PIi1VyT1jTyLBzYBjVK1f4BhJjiHGOOAMgJL7xxhwF+G7djnr83FvhfleUeuMNWbhK9ideDIZG0gFawuKk5+l7LYQuHrQ46NXTz1u1GMN/BK3xI+AKwi5YVXK462AvyQXDDot1mPqO3mJTBoV5WDZyb9qHfeoFh2BNjUeaxM9LlKrktt/Owj4LpsWkQBWED4/p+Q4LKmHzm3KR7UpXFe8rqoopYgEYKytLKzctn1Z71aFFTn9Pyyf3y8G/BJYC1TWWFwRPXZF+fx+LbLdqjQB3kC3JsbMfghMB64D7gB+Hv08vY6ntRSnp9zOILwv1wI/jn7qfRJpyZL8BjCMxEaPGw5UkeTEknvGdo4e3QPYE1hG6tHC6IVR3c1nfeMCi1EAeDIRK/Yk7VO2XgmsBkYMenx0oxraJLlgUBFwOSG+qhqL1wLJaLm0dMrBspZ/ZVpIGge8ZGbnmdn3zOw84PnocZF0DiU0LU3357UWOCF34Uh99ey49JhE0tKMZWWYJa1L25Xn5DYqhgBd2LglUqpyQtfcvjmLSES2xPXAWe6+G2Hq2d2A84D38xtW/rn7QdU34BPgcnfv4+77uXsf4LLocRFpYUruGdsdpw+bXkwLjCTh6l/1SeGR1DamrdEBiEYsWL/cgJhZeDxRFeta41nrgA7A17fyZWTbroSWR+nGQloJ7JpcMKhLziISabyykn/VNUZSquHANOAkoBcwH7iN0ExSJJ32m1lexaYt3aQRKYwnipxY2jq7u3lBLLG5/+dsa0O4slQXfbakcWuZAz3W1NfdH63x2DhgAaFQIsFphKbnqW4DFgMX5j4cEcmz0NJoc4cRX99zpCPUaLkUVtgwXkGtWzPAaztXTNL4cqw2bL5dSCJab2nDhyONmnKwrORfGbVIcveku9/u7oe4+47ufnB0v5YvJZH1JrNp89JUbYDPcxSLbIHlq9vOKogl0jZfdqB8XauJOQwJoJQNA0vWJk7Ifr7MVUAiskW+ivroA5Sa2b7A9mg22JoWAEfVeOwHhJkqRaTlmQlU4WnyoFBOMYzq8YA+prZCkVtl9Lix4QLdRsUYi/nqGs8yQkOEmVsUecOZQYgrXYWgkNCCS9+bIlnKv9IWkszs9JTfz05326LQpaV4gdB9rVUty6pnjLinlmXSSCxY0fkmqG4lvbGCWCLmHvNla9r9Jpcxte05azHwEunHaOsA/LNtz1krcxeVSD218P75kbuAb0a/3wK8CnwE/DlvETVOFwLjzOxNM3vEzN4iXDn8eZ7jEpE8KD1neCUxngMK0nz3F2IsKj1n+AvR/acIRZSijdZyFoXnGxsN2A1V7pjhxOK+oMa2OwJvTD1u1PwsvJSsifWYOht4l/S5YXvgr7EeU9N1fZOWRDlYVvKvulokpQ6ge3qa22n12Zm0LKUXXLYG+CnhCkFnNrQUaUf4on8YeC1f8cnmXXnEPx/6YlGvF4oLqwqL45WF1dOBtCqoKIzHkvGP5va7bvQPHpu1+S1l3dXAXMLnqjoxKiaMnTQDuDEPMYlkTkkM7j7G3R+Pfn8AGATs4e6j8htZ4+LuLwIDCLPkfhD9HODuL9T5RBFpvoxzMRYCRTjx6DgQwynEqCTGSdWrlp45YinwC8KF3U6E8z8DVoOtw9xxYu7gjnl0PIkXJ5eYrc+xigg510LChCeN0XBgCSEXrI67VXT/U+CPeYpLGpsWnoNlK/9KW0hy9yNSfj8oze3gLX0B0jKUXnDZG8DRhKshrQgHoamEK6xXlV5wWRP702t55pd1/sEHs7e/Ykl5+4WtCyuLigoSBV8u7zr1vVkDT7nisGd+nY+Y2vactYjQ1eNWwsCPXQgzddwEHNu256zl+YhLRDJnZhenNK3G3We7u7o718LdF7v7g1Hy94C7L8l3TCKSP6XnDF9GjB2JcS/GWqoLJzFeJsZepecM/+9G65854jngeEJvgXZAJ7CPcI6MFSSvtZgvwyjCiFvMP44XJH8Yi/svCYNUdyG0aLoN+MHU40bVbKXUKMR6TJ1LGFj8z4TxkLoAZcCvgZNjPaaW5zE8kUYjW/mXuW/+PN7MLgRec/eP67uDhmRmE9x9z3zHISIizUMujitFvXqU97rysqwXTGb99HKa0jHRzP4JfBd4E3gIeNzdV+Q1qEbCzP7t7odHv79Bmuud7v6tnAaWQjmYiIhkk3Kw3MhW/pXprG17Ar8ws/bAG8B/otsHnkklSkRERCSFu//QzDoRrpKfDtxmZv8GHnL3J/IaXP49kPL73XmLQkRERJqVbOVfGRWS3P0MADMrAb4d3a6KFnfKOGoREZGWztHUsxF3X04olNxtZn2j3x+lhc/c5u5/S/l9XD5jERERaTaUgwHZyb8ybZGEmQ0mFJAOBPYnjHPzn8zDFREREdmYmX2TMMHH8YSBUq/Ob0SNi5lNJExM8R/gdXdfmt+IREREpKnb2vwro0KSmS0kDLb2GKG59fnurqm1RUREtoCpUzhmdhNwIuH64CPAYe7+YV6Dapx+QbiQdzHwNzObRjTEgLs/ls/AREREmpqWnoNlK//KtEXSU8ABwA8Js251MbP/uPvc+u6wpRk4/vpCYC/C+zYP+HDaiVcmt2Rbuzwzqh2wN2Ga86kffX/0tJrrlDxwYwzYFegFLAPeLT3jisotiz4zJePGDAIGAmuBd0qHjdCsCFthyLW3tCL8P7cDZgGfTb76kibxlZdcMKg1Ifa2wEzg81iPqRvF/vSMnQ3YCegHrALe+cGAj9c2ZFzjvtivX7TPSuDdYTu8WbYl2xn0+GgDvg70IRTX35563KiKLdnWpDm9CwjfDV2A+cDEoX3mbtF3gzRBTeIvusG1BU5z9zfyHUhj5u6vAK8AmFlX4FLgZ8BPaOFdAEWyaddnR22Uz3545Ois5LNrWhV1f32PgbcXVyR2riqIreq6vPyXu02e8+/tx/2mCPNhQG+wqTh/n37GyMSBL/+iN/AjoDXwn9cOufk/ACUP3LgPYYDcCuDvpWdcUdr/oRsM2JmQl5QB78w8dWRFyZ9/WwTsA3QAZgOflP708ticnp1PrCiMnwQUxJL+av8vl/wF99XZeJ0iTYZysKzkXxnN2rZ+5TBN3LcIV8ZOAxa7+8CtCWBrNPYZQwaOv/4o4BrCfxaAEU4YfzHtxCsnZLqdXZ4ZFQMuAs6LtmFADJgIXPLR90fPBSh54MY9gN8BPdnwJ7IauKb0jCue3NrXU1PJuDF9gd8TTqyrT4ATwF+AP5UOG6GT4noYcu0tRvi7Gk71NK7h/3o6cOnkqy9ptNNiJxcMMuAswglOYfRwjNAF9uJYj6lfADw9Y+chwC3A9mz4jFYANwEP/mDAx1n9ah/3xX7bADcD+xI+m9X+Ctw4bIc3My6yDnp89E6Ez3sJGz7v64Abph436uH6xDVpTu/vAaOB9tFDBnwFXDa0z9y367Mtya6czBjSs0d5719envW/59ILL2syM4ZI5szse2zIvfoAbxF1dXP3z/IYV6POwUQyteuzo+rMZz88cvQW57Mv7D/0oX0+nPmjF/fYkY+33867rCjnmP9OtEVd2q0979JTk2Ud2xaYOxjmSVvTtf3KWa1bVQ1O2YRVVMa+mreocwKPpeb3Bv4xMVaa0Tvl8TW+zl5mbcGhQKvqdb82e86S+++4Z8fFXdsVv7rv4JWVhfHk3hNntt9pyrzYoq7tT+s/Z/HjW/oaRbJFOVjTUp8xknYjJDEHEVonlQPvNlBcTd7A8dcfSSjqrCG0XKi2DfDgwPHXnzDtxCs/zXBzvyScpK8EqlIe3w14fJdnRh1RtrRtT8LJsQGp0/cVAzeXPHBjovSMK57ZslezqZJxY7oRujp2AZanLCogNL9vA4zJ1v5aiDMIg9iXs/FnZnvgkSHX3vKDyVdfMisvkW3eucAIQguj1NZFOwCPJhcMOvLZ1a0KCM0nW7PxZ7SQ0Cc3BtyfrYDGfbFfu2h/1VfpqpOsOOHvqSNwWSbbGvT46AHA3wkFvtTWTEXA9YMeH02mxaRJc3p/B/gj4X1K/X/uCtw/aU7vU4b2mTsxk22JSIvwLOGCwg3AA+5etZn1RSRDuz47qjt157OtgbFbsu1/HfC1m4ZOX/ijo379E5/XvZObhQF+//LDb/HLB//d6o5b/sbJV/14tZuBOwWFVe1WVLT+erxg9bqigkQCoCoJCxZ37h3Se1+zoVOOGzF2J1yMW38+4Um6U+g/J5GYR2V8MUDXlSvjd99x/943HXV48t/H7jiloCi5BmDcCfvaXhNnbjvmN0/87cuenQ/Ybv4yndeJSMZimaxkZsuAfwC7E7q57eXuvd39Rw0ZXFM1cPz1ccKJ8VpCi4VU5YSD0+WZbGuXZ0b1BIYRTl5rJo9lQHfgZEIrlkLCiXyqdVEcV5c8cGM2m8CfQTjxXV7j8aoornNKxo3pnsX9NWtDrr2lDeH/cBUhKUi1gtCq7ae5jisTyQWD2gOXEIoiNVv4rCC0ujmfEH87Ni4iET1nFXD50zN2bpPF0I4mFJGWs3Ej1gSh2+fR477YL9MWlRcRiqM1x4arIPxNjxz0+OjizW1k0pzeMcJ3Q/XfZapywnfyFRnGJCItwwHAvcAJwGwze8HMfmVmB+Q5LpHmYHP57I93fXZUt3pv1cx2+mLexSN+fKzP36bz+iISOB6P2a9PP5yOK9awz2fTYwAxIxaPewyHVWuLq1uls7ysbWHSDcPB1rf4Tv29yJ2OAO4YTnecBMXJbaqnpjr99Td7vj14gI/fb6+qNctbpb4Wf3e3/gv+etw+K6visZvq/RpFpEXLqJAE7ObuJe5+hrvf4+6bjM0jG9mF0Noh3bgvK4D9B46/vlMG2/oO4f8pXbPa1e6cTphJL924L2sJfaR3zWB/mTqZcOJbmyQh5kOzuL/m7puEAmO6rlYrgB8OufaWxjgexrcIrXzSXSVf6c4J4EezaRGpWiXh9X8zi3GdyqZFuWpOiPnIzW1k0OOji4Dvkf7vq4LQ8m/fDGLaiVD8XZNm+Upg90lzeqsI28yZZ/8mzZO7/8/db3D37xGO4+8RLjy8ls+4RJqJBslnq2KxXRMWK/hgSJ8a385RRSke47Fv78FRb39SBBCLJwsADKcyEbdEMqy3em3x+t4jhke/OxhxNlwk2yb62ZbQdCkJGAXeBuCwjz7t8sg3v5Ew80TV2oKOnmSjuc8f+95uS3svXP5NzDLuqSLSlCkHy46MCknuXtrAcTQ3HUlf+IHwxZ8gtM7YnM7U/f9UFa2ToO6hw5JRXNnSgfSFAwhFgfZ1LJeNdYCND+w1JAjv6WZbveRBRzb/GW1jocVcoo71YoT3IVs6U/dn1IFMrjK2pu5ibrVMYu+wme1Ufzfob6e5c8v+rYkxs4vMrP5X+lsYMzvGzG41sw+BUkLx/jZCgVtEtk4m+Wy9c5Mve3Ta7qtO7bFY+vToq07tab96rQGYefQzLEtGhSR3I4ORgUMByGsMvh+KTbRfsza2sFMHr962u20UVFnHNuui3bXe/CsTaQZaeA6Wrfwr0xZJUj9zqHv8qTjhZHJJBtsqpe4DXCtgRrS9uvZZEMWVLbPZMIhfbSqAL7O4v+Zu9maWFxGaXadryZJPc6i7QFQMzHdsGRsGEa+Nk93P6HTq/owmgS8y2M5KwtXKwjrWMTL7vFd/N6Q74sTZMPC2SHN3MFBqZs+Y2Ulm1hgL5Y3BRYTv/0uBru5+gLv/yt1fyG9YIs3CLBogny2Zt/TT7ectoqCiMu0Z5tBZ85nbvbMDuFv0MyyLx5NJgFg86dUpg2/c7iH199ADwqigemXDSIZW2fO6dK7cafY8cw+PWsw3ytkGzFrUoaogXsGmw2OISPOUlfxLhaQGMO3EK6cBn5H+CkYH4NFpJ16ZSVHgRcJ4Kun+g4vMuAN4dDP7m1R6xhWZnDRn6u46YmpFKHi8nMX9NXcTCMWDtmmWtwXunXz1JY2x8eSbhJOcdOMbtTXjHsIYH+la4bUFFhG6bGTLvYTvuNqSuEJCIWmzA9BPPW5UEniA9K2E2gFzCbMo1mlon7mzgQ9I/7faEXhqaJ+5SuaaO2+AWxPj7kcD/YB/EQa1XWBmd5vZt/IaWCPj7ge6+9Xu/oq7N8aLCSJN2T2kLyRteT7rPvPLHp1XHP3fj2vOkO0A7Veu4dg3JvLwt/dcB5CoilUCJDFaFVYlYlHm0rHtmqr1T1p/YdnAqWJDfjM/+rmGUPgqJMk6ErYW4LG991h41sv/K4glkvGithVLbOOsyIY99nbH+dt0GE99pvIWacpaeA6WrfxLhaSGM5zwhZ7aNa2AMCvEl4RpRjfro++PXk24CtmKjbs/FUfb+g9hRpffE66qdGFDy6RYtP81ZDi4dz38g1BA6MKGgpIRToSLgUtKh42oOdC4pDH56kuShKvOAJ3Y8JkpIrzHk4D7ch/Z5sV6TE0AFxJi7sSGz2h17B8RZhS8jzCzSBc2tEyqfo4DF/1gwMdbPMVuLV4jFIo6sXGS2J5QuPrVsB3eXJrhtu4EphBir26ZVP33lQQunnrcqEwPIyMJV/26wPpm6NXfDfPYwtlhRJoid1/i7n9y930JM8N+A3jVzEqjAaUz6QIuIrKl/gH8j9rz2SLgkg+PHL1F+eySzm1PuGz8Cxz9xkexWFVV1FXN6Td3sd879gGe+vbOPqtX19ASCaiqiiXjMaddq7Xrc6F2bdZ6YUFVGIXFU7rG+/pca6VZaBVuRowYy4EkawrKIHRh+8dee5StixdU/f6+h+N9qxavHzuybfm6thfd/XL//d+bnuy1sOwXW/IaRaRpykb+VbNKvmGB2cEZBvFKfYLOJjOb4O575mv/mzNw/PUlhBPsIwknnesIU4j/edqJV2Z6AgvALs+M+gahYrgP4XizFLgLuP+j74+uBCh54MbOhJmxTiYcDJPAc8CtpWdcUbrVL6iGknFjigjTqP+YDcWP/wG/Lx024oNs768lGHLtLUMI/8+HEv6fVwPjgDsmX31JusEgG4XkgkE7EWZvO5AQ+ypC8ejuWI+pqwGenrFzW+A8wkyE1YNCvgTc+oMBH3+e7ZjGfbFfDDgF+AmwbbS/D4Bbh+3w5n/rs61Bj4+unn3uDDaMI/ACcOvU40ZNrc+2Js3p3Yfw3XAU4e+mAngE+PPQPnMX12dbkl25OK4U9ehRvt2I4Vn/vM+89Bc05mNiOmZ2CHAaYabFCYTvvNmE4vq27q7ZyRqhxp6DiWRq12dHpc1nPzxy9Fbls6/tNeh72y5e+WinstVtPyvpRZeV5fRbuNRf23PQf0acfWw7K2RnwhjbyWSVvblNlxUvFBdV/QToScil1iWTPDJ7Qbe1uJ1GaP1twCLwWyxOnDC5SPUFs3/52tg/WRc/Fjgsemxtp/Lyvz9625/26f3V8sM+H9ijqrIw7l+bMq9oWce2H3RcueaYDivXzNua1ymSDcrBcmtr86+6CkkzM9i/u/uAekWcRU0liRk4/vpiwknzymknXpluVq6M7PLMqDaEIlHZR98fXWvrjZIHbqweGLC89IwrGrxVUMm4MTHClZt1pcNGrG7o/bUEQ669pTWhWFE2+epL6hp/qNFJLhi0PvaotdImnp6xc5zwmVnzgwEfN3hXjaig1BGoHLbDm1vVbWzQ46Or/75WTz1uVLqZGTMyaU7vIkLXuJVD+8zdqu8GyY5cJTF9hmc/iZnxi6aVxJjZbwkXPsoI3Uf/6u5zU5YXAsvcXa2SGqGmkoOJZGrXZ0etz2c/PHJ0VvPZ+d077jqt7zYHd1qx+suvT5v3JO7rALZ/4Ia2hAtd86efMXJ9PnTgy7/oTjh3mPPaITcnAEoeuNGAvsDa0jOuWFi9bv+Hblifl8w8deT6vKTkz79tRSg8rSj9yWWhW5xZp4Vd2x+aiFtR12XlrxdXVGk8U2k0lIPlRrbyr7SFpKZASYyIiGRTc09izOxw4FZCt8q73f3GGsuLCUnFHoQJIU6qnrnVzEYC5xAG17/Q3Z/fmnjN7DZgnLunHRvNzIa4++St2Y80DOVgIiKSTc05B2uO+Vdds3yJiIhIQ8jDNRwziwN/Ar5DGKvvPTN7yt0npax2DuEq1EAzOxkYA5xkZkMJV692AnoBL5nZIHff4haT7v6zKK4+QG93f7uWdVpkEcnMHiSDT4m7n5GDcERERJqPHOdgzTX/ymiwbTPrYGa/M7P3zWyWmc2uvtU7chEREcmHvYBp7j7D3SsIY/YdXWOdowl95AEeAw4xM4se/7u7r3P3mcC0aHtbzMz6mNn/gMmEsdIws+PN7O6t2W4zMQ2YnsFNREREGrdmmX9l2iLpz8B2wHWE2ZdOI8wC9nh9diYiIiI01NWwbmY2IeX+ne5+Z8r93sCclPtfAnvX2Mb6ddy9yszKgK7R42/XeG7vrYz3TsKsowcQmnEDvAjcvJXbbfLc/dp8xyAiItIs5T4Ha5b5V6aFpO8CO7r7EjNLuPuT0Rv1NHBLfXYoW67fvWMLgKGEmRmmzzp7+JLNPGWrrCss2ObzPt1HYfSKVyY/+Pqcr36He4MPjCySqZI7bzLgIKAE+KL0vMvf2NJt/X3CgQUViYKfYd7Z3F48fe+X6jWrm0gjsLiJjVmzF3CkuyfNLEyB7V5mZh3zHFejY2ZFwGCgG6yf9juvM+eKyKaOfP3CtsCOhFPVSc9+6w9rMGs1s2fXMysK47ubs6z3ouV3tF2zbka6bZz01gWFhG4sRcC0R/a9vc6ZngeOv7434YJ/GTBl2olX1vs0ueT+MV2AgYQZpieVnjlCE4CI1E9TysGykn9lWkiKEb6cAFZFO5lP+MKRBtbv3rFGmML8UsIMT0mgoN+9Y/8NXDPr7OF1HmDqzazg8z7dX+hXFDuwql+RL+/SynvPKjumfGnRddP69xy7y8z5I7O6P5EtUHLnTT8Cfk+YqtcBK7nzpsXAT0rPu/yf9dnWuHcOeqxr2+XHFMUrDcDMRz38wb5lVZVtf6CCkjQEy888F3OBPin3t4seq22dL82sgDCD0ZIMn1tfCwl5xNTqB6KxANRtPoWZfRN4lDBjawdgBdCecOUybzPnisgGR75+YREwHDg15eHkg2fu8/kPWxcf+VWX9snP+vda3Xnl6sIeS8oundWz6+v9Fiz9fuoF2pPeusCAMwhTb7ch5Daxk9664Fngmkf2vX1F6j4Hjr++P3A94aSwknBeN2/g+OuvmXbila9lEnfJ/WM6AtcARxIG8jWgvOT+Mb8H/lp65oimOyuTSBp5yMGaZf6V0RhJwEfAt6Pf3yB0dftL6s6lQV0AjCYkkauA1dHPI4FH+t07NqtTI0/u2+3Vgk4cOPquwyvG/XyvtU+euvO6P488YM0fx3472WdV2YiJ/Xv9Kpv7E6mvqIh0H6GIVAlURT+7AY+U3HnTDzLd1gPvHvhS744LjyuIVVllssArkwVekSjw7m3KOnZsu+S1B985dLeGeA3Swrll/7Z57wE7mFn/qIXLycBTNdZ5ChgW/X488IqH6V2fAk42s2Iz6w/sALy7le/Cb4FnzOwsoMDMTgEeIQwwKRvcAox19y7AyujnaEIuJiJ5duTrF8aA24GzCC16yoHy/V6d1vZ7z3x63MVjTqg6/dqzJt945uGzRvz82GnfuuOyL77os81ec7bp/BphDJRqFwNXEQpCq6q3QzRGyklvXdCmesWB46/vAzxBKCKtIJwbrAC2Ae4aOP76QzcXd8n9Y9oQvnOPStnfKqCQUFy6cEvfE5FGLfc5WLPMvzItJJ0LlEa/XwSsJZzAabaQBtbv3rFdgUsIB4d1KYuSwDLC1cjjs7W/la2L+/dZWvbNu0buW7GqVfGG0eAN5vboWPHAFXsn+y1fPgqzTD87Ig3hFsJVs5pNryujx/+YyUb++u6h/bZtv/jgimTcEx5PuT5hrEsUepuCtTFilfdlKWaRvHL3KuBnwPPA58B4d//MzK4zs6Oi1e4BuprZNEIr2Cui534GjAcmAf8Gfro1M4ZE27yXMN7iCYTWNcOAUe7+0NZstxkaRJgyONWNhNxARPJvf8JYI8sIF7bAnR+Ne7fXLZceUjnna10LWxVUtapeeXXr4tUXX3piaUEisdvCLu33BzjprQt6AD8h5PsVKduuzvcHsfHgvBcRWiyUsfGIL6uj5/964PjrN5erH0NolbAs2k+1iiiOn5bcP2abDF6/iNShueZfGXVtc/cZKb9/RZieTnLjMELBL90HZi3hP//+bOxsRs8uN67csU1yTXFRrfub3r/rujWdilrPjhd9t2/4MIvkVMmdN30b6MymRaRqlUCvkjtv2qn0vMs/q2tbSZI3xkhalRcma1temYzTpc3yr29dxCI1ODmfenb9rt2fA56r8dhVKb+vJSQWtT3318CvsxzPk8CT2dxmM1RG6NK2HJgfNT9fQujqLiL5dwopY5cBDJz8VavWqysK3t2r/1rDY+2L13ZeW1W4vhtbRWHBun98e9ey77z7+WXbwn+BI6JtpMv3Kwj5/sMDx1/fCvgBG4YdqWkN4YL/ntTdcmEYGxetUiWAOPA9NswkJdL05SkHa475V6ZjJGFmZxO+KHsB8wjT1t0bNbmShtOd8EWeTkW0TlbE8d5Ltmlbx/+psXTbNsSrqgahQpLkRwmbPwQ4obVenYUk8F4xS/8dlvSYtyqoiP3jw/3smF3f1HedyFaKconNiq6WSfAE4STzb8C9wKuEgvlj+QxKRNbrSY2CTJclq4sWbtsBj5kDHo8li2o+aU6PLomCRLK6xc+21N1TJDXfb0/dF5kh5EHdNhN395px12BAj81sQ0SagIbIvzIqJJnZWEJzyt8Ds4B+wGWEGUSGZ7oz2SLzqPtAUUyYBjArqrAZ285duW/6Ndy2+XIlVeX2cbb2KVJPU6hx5a8WFq23udVmJbED0i2NW9LWVBYnVESSbDLyNth2Y3B6Bus4oWAigLtfnPL7b83sbcKJpC7miDQOs4CvE7qVAfDVtu3W9Z67nHhV0rwQq0rG19V80vZfLiqsKohX5/BfsnH3spqKgWnR72VsaDGU7hzBgAWbiXse4aJbVZrlSTaeslykyWvBOVjW869Mx7k5EzjE3f/i7s+5+1+A7xIGlZOG9TzhC74wzfJiwqDDWTF09lcjdv7fXOuwem2tRcahny8siq31tb2Xr/xPtvYpUh+l513+NvAV6f8mCoHS0vMu3+xkAHFilyWScWKWqKUw5RTGErZ0dacPtiZekVp5A9yaAHc/KIPbwfmOszExsz+k3nf3/7r7vwhjxYlI/v2NaPbY6gdKd+i+bkm3tpXf/O8XhWCsXFe8LPUJbdasa33Max+271q26sbooecIRaF0F/mLiE7wpp14ZQXwOGGMpNq0JczK9OFm4r4v2m5tCqJ4/rWZbYg0PS0wB2uI/CvTQtLK6FbzsRW1rCtZNOvs4SuAawljIbRJWVRAGCfmE+Af2dpfUVVifmm3Ts9ccM1/C7stL9/oRH2HaYuKT73pvdjcdu0vRV0aJb/OJ1wpq1lMKiQUXs/NZCOn7vXSVwtXdvt7YSxpBbEqqz4SGElaxSttRUWbyhgFJ2UzcBHZwMw6mdmpZnZ59LNTvmNqhM5M83gmVxdFpOG9BzxLyMvXF2YePGef+T//w2sFO/1vbkVFZcH6cR27LVvZ8Y4bHypZ1br41S5l5R8APLLv7UsIg+i3p/Z8//1oH9VuJRSLOrPx+VyH6P6IaSdeWVcLJwizQX0AdGHjAlabKI7flJ45YlltTxSRpi0b+ZdlUg8ws58DPyR8wX0J9CGM9P0kKYNGpQ7KnQtmNsHd98zlPvOl371jDyN0I+xLOFFOEsapunnW2cNX1/XcejOzj0u2fXj7r5aeMHtIFyvr0tp7lZZZ+0VrK2d17nj5rjPn/2HzGxFpWCV33nQ48CfC91H1lcAZwPml511erxZzD7x7yK3tWy3/v3ZFawo8msLzq/LOcz3Z+rDT93pxUpZDl0YsF8eV4m17lPe7aMTn2d7uF7+6lKZ0TDSzgwnj/0whdA3pCwwBjnP3l/MZW2OQMp7BbYTZXlINAE5w98G5jWqDlpSDiWzOka9fGCdcxDqP0CIIYMWxD77/9jGPfHja4k7tWk/q33NNp1WrC/f6rLR4QdcOjw+Yt+R03DeaOOSkty74PuEcqych108AfwV+/8i+t69JXXfg+Ot7ACMJA2InCV3dPgJ+M+3EKzNqTV1y/5g2hBkgf0QoQBUAc4GbSs8c8WxdzxXJNuVguZGt/CvTQtLmKtoA7u51DQqddS0tiel371gjnDS3Ar7MegGpJrO2k3p3P7eiMF7Sel3lu4PnL3mErZxuUCTbSu68aQhhAO6ppeddvsXF7H98uJ+tqmjzPWBbg1dO2+ulWdmKUZoOJTG5Y2aTgGvcfXzKYycAo919SP4iaxzM7NXo1wOAN1IWOaElwq3u/nbOA4u0tBxMJBNHvn5hIeGkzIFZz37rDwnMYnO7dzqyvFXRHoVViSX95y/5G+5L0m3jpLcusGgbRcCXNQtINQ0cf31HwmDdK6adeOXmxkWqVcn9Y1oD2wHrgDmlZ45QzwPJOeVguZGt/CujQlJjpSRGRESyKWdJzIUNkMRc2XSSGAAzWw509ZQLFGZWACx29075iquxMbPr3f3KfMdRk3IwERHJJuVguZGt/CvTMZKqd9DHzPapz3NERESkhhY40GMtHgR+WuOx/wMeyEMsjZa7X2lmXc3sdDO7HMDMepnZdvmOTUREpMlRDpaV/CvdzAAbMbO+wMPAroS3qp2ZHQ8c7u4/rs8ORURERIDdgAvMbDhhTI7ewDbAO2b2evVK7v6tPMXXKJjZtwkzNE0A9gduAnYALgN+kMfQREREpOnJSv6VUSEJuIMwU8ABQHWf3heBm+sZtIiISMvmYE3v6lVDuCu6Sd1+D5zk7i+bWfUMSu8Ae+UvJBERkSZIORhkKf/KtJC0F3CkuyfNwlvv7mVm1nFrA2jKSh64MUYYmM6AL0vPuKLWgagHP3FdV6AjsHjKsVetyGGIaQ1+dHQhzjeAJMZ7U04YtcWDaJc8cGNrwuwSa4H5pWdckf8/T7M2c/p0Pr6yML5tm9UVH/dYsOIFtnBAsJK7xhqwB9Aa+KD03OHlta130lsXdAS6Assf2ff2pVscO/DNp68YCt7d3Sb976gbF9W2zq8+PrYN0AMo//XOTyysbZ29n/pl3Mz3MChKuk1856jf1Bp7rr03q6S7w1Bg0V79SmudFa1k3Jjqv68YMLd02IjKTVYyKyrfp+hUbx0bFFuZ/LTNhIpHcK9q0OAz8PzMoanfDXMP6z+p1pjemdW/C9AJWLx3v5mN4rtBJFfcfVy+Y2giSlJmUak+jlWQeQ4n0qjt+uyoboRp6xd9eOTolfmOJxP7vzjCCDlYa2D+/74zZg3APs+PjBOO/w58+fZhN2QyYZGISM5kK//KdNa2ScAP3X2qmS119y5mNhT4u7vvnI1AtkS+BnqMCkinEqbj7RQ9vAL4MzCu9IwrkgCDn7huJ8K0nHsTpu+MAf8Cxkw59qp5OQ4bgMGPjo57wu6sSsROxq0QcMwrCwqSf7WY/7Q+BaWSB25sS5gy9BTClKNxYDpwY+kZV7zWEPFvlpnNGNDtDz3ml503bWD3xPLObSoHzFjcqk15xarlnVqfO2DG4ifqs7mSu8dcQ4yLCFO5OpAkyfP4/7d332FS1dcfx99nZguwsPSqyKpYoolibGiiseUHxqgJlmiMoMaeYqyUCBpRijHFRBO7QmKMGntM7JpYgogRWxRFWBQF6Z1tM+f3x/euLMvM7izMzuyyn9fzzLM7c+/ee+buzNwz536LnVJbUPref87dDhgFfJPwf44TZtiZeO8BN33YlP0d/PeRI0raVUwoLqzp6VG9fF1F0evrq4p+8NLRk+YA/PytYZ2Bi4ETCIWKOPA/YNI1ezz4H4D9Hx1jBfHEhA7FVefF48kOgLtbYl1F0T+qagpOffWYCQ3OANJcXptXtkO1x/5UTbz2fWtxkosLLfnz/QfMvQugbMpkA4YRXlu9CVPariWqnpePGFkDsObw9te1f7PqZzXbx2M12xV4wUc1Fv8skajYo2h8x2fWX5XzJwc8OXc3A74H/BToQXjNrAFuAu4Ysv3/EgCvztt+V8Jnw4Fs+Gx4Cpi0/4C58/MQukRyMtBjrz5ry36S/YEePxjXegZ6rGVmvQkXq3oQPs8AcPc78hZUC2NmLwNXufuTdXKw/wPGuPsheYxLg23LFhn0+Ng9CPnTfkAN4TPg78C1M48an/ICWUvwtadHHgyMBHYmnMMT7tybdFsCdjqhKAawHPg98JdpQybm/yKrSAunHCx3spF/ZVpIOoPwQT8RuB44BxgDTHL3uzP4+3bAv4FiwhW0v7n7FfXWKSYM8LQ3ofvc99y9vJHt5quQ9AvgB8B6QiscCM+tA/A3YFRxx6o9CONKFRKKTE74stiZ8PyOnTVs3IJcxr3L/eMtUWMvJ2ri+2JeY0YSwJ04WLwgnnglVuCHzDphbKMviqgV0l+BLwOrCQkAhIJLIXBJ+fBRDzfPM0mvvKz7lGQ8duJVVx614NP+XUOrIPf4gS/P6X3J5Kd6LO7V6YQdPlr8SCbbKrtt8hRifJ8oSYgejgFxnI9J2u77f3lOH+BhQtKwklD0MML/eT1w/L0H3DQrk/0d/PhlP+7acd2vAZJONRi4WzzuBdU18bUr1nYYdMiAD5YRxsoYGO2vNq5OUWznXbPHg88c9I/L7u3YvnJY0i2BeyL6fIjFYl5QUVX40brKoq+8esyETVv4NKPX5pX1r/CCtxJYR8OrDTwan67QMNpZzSX7D5j7u7Ipky8iDABXQTiGEKbALQGeAH7yzpQrf1v8UfWPl97SNVG1e2FVeH5O8RtVRd3PWR6v2K1ofMdn1l+RMpBm9OTc3UYDZ5L6s+Ex4MIusfW7AfdFj69k48+G5cB3VEzKHyUxuWNm3wH+DHwI7A68SzinvOTuh+YxtBYlmuTk74QhBk4k5EpHA8e6+2t5jEuFJNlsgx4fuw9hwNcCNs2TFwHHzjxq/KL8RZja154eeQzwa0LeuwbAnQKgDChMus0Fqz3/tyO0WLpr2pCJ4/MQrkirohwsN7KVf2U0a1tUmbqU0ALiE2AEMDaTIlKkEjjM3fckDNg9NMXsbz8Elrv7QOA3wOQMt51TZVMn7QZ8n/AFsKLOokpgBTAMfC9C/HE2fFGEUGRYTuj+dHGOQt7AOTGRiO+DeVVtEQnAjAR4VU0ifgCe8cCdxxFecMvZUESC0HJkHXBN2dRJHbIWewbWdCzu33Pxmu+PvG7Yx18UkQDMEq98fcfPfv+zw5Z1XF1xYybbKrv12l2JcTJQzYZiDYT/YTXGdhgjgcsJRZzl0TII/+8VhAQio8Tha4+OKuzcYf0kd5JJt+ovCsNmnkjGqgvjiY7tCqtvILz3BgLL6sW1mvAa/OU3Hr9k35L2ld9NJKnGSdQpMieTSaraFVXvUBBL/iyTuLKpxmM3JrGOMbzKoveEATGoBk9WenzigfeN2pEwa8AqNhSRIHTjWAEM2fGzRUe0f73yR0umdKup2r2oasPzMyr3Kq5acmvXRLs3q8ZgVpjDp8eTc3cbCJxB+s+GowiV/wmEYusKNv1s6Eoo2svWTjOGAFwNnO7uewFro59nA6/nN6yWxd2nAXsQEr07gLnAfvksIolsiUGPjzXCoPFG6jy5N3BBfqJL72tPj+xAOIevIyoiRYoIOV+B4SV1Hq8gPL/hg58cvUvOAhWRhikHy0r+lVEhCcDdH3H3b7n77u4+1N0fbsLfurvXfuAWRrf6h/xYoLa/3t+Aw83MaHm+Rzhuqfo8O2AW9x8BOxC+3KeyCjh6lwevKkmzvFkkEnYRDqmOqoUGHZZI2CUZbu4MNv6yXFcV4X/8zc2Jc3Mt7NN55EsH7bhmRdcOKY/7vw7ZaWHMvdfq0naDGt2Y+aXRb+k/GszPAb5BSBJSWQnsFXV9a1A8nvxhLOaFjqXsWphMWk1Ju8ojkklOY+Pkpa4KoEP3DmsnAWYph5Iz3KG4qPrcxmLKptfmlVk1sW9C6vGLDBKOFezfa85kwvsr1XFwwE/8cMaEqr2LrHpgQcoWVVV7FlUlto/H1w4uOi1rTyAzJ9LIZ0Oc5HmEsaHSjYe0Evjmq/O2L02zXLYS5tm/tULbufv99R6bAgzPRzAtjZl1MLMJZvYoIcG73t1/5O6T3F2tFqU1+wphlqB0+cxKYNigx8cW5y6kjBxGaE1cVe/xbtHPhBk96i1LEnKD7zVzbCKSIeVg2cm/GiwkmdneZvblOvd7mtndZvammd1kZh0z3ZGZxc1sJqG56tPu/mq9VbYhtHbCw2C5Kwktd1qaHQmtVNKpMvOdSP1FuFbtsm4NrJN17rF+mKcf9M88idu2GW6uH6GlRTpFhEEIcyaWTO7w8YDu9U/uX0jGYzXzt+1avapTu50b3ZgxsJE1EhhdCP/Lhj4+asjgOMTMB1Kn6VB9bpaMxbzAoSebJjB1xYviNQMaisndEvFYMtfvrW6OFVjqIkvErcASO9Lwe6ey57rV21bvVJBMf7iM6oGFnuwY22sL4t0c27Nx67z6Kg3fqZF1koT/Xc9sBibSQi2K+ugDlJvZAYRzbDyPMbUkNxK6sL0PHA9cl99wRLKmLw3mA1+MN9klJ9Fkri/hQml9xWxol5BqeTXhArOISEuQlfyrsRZJv2XjL8G3EQaWu4XQrenaTHfk7gl3H0SYyWC/ugWqpjCzs81shpnNgE2q/rnwGalPErWK3O1TGj62seiWriVLszDzpTQUl5thviTDzS2j4eNQTWienDMes4W9F65KH5N7vNfnqwtK1lV93PjG+LSRNYzQtLmQBgpAhL7/jc7g5m6f0VBByt3cLWmhJUtDxz1Zk4wvMjxtTGYeSyYt3VXA5rICPOkNHivzhMc+o+EPsaKVxe2XFMxPxNIfLqdgfo3FKrxJA51nwQIankWpyMM6DT2/2sHTc/rekTxQs2oIA+h/Pfr9N8DzwJuEiSsEhgL/5+6XAUcC385zPCLZsoyGc6faXLWlzeC2lNQXk6sJz8dIfbGokPD9QURaAuVgWcm/GiskfYkw+xRm1oWQyJzi7jcSZurKdDydL7j7CkKwQ+st+hToH+2rgA2DUtf/+1vcfZ9oMKtMix7ZdB8bBlROxT1hNxJaXqUbI6gz8NysYeNyOt13LJ78Q23XpvrcAYN43DMaQ4gwQGK651dAuJr01ObEubm6rFh/3SEvfNCp3fqq9qmW7/3avN7tKqpXd1mxvn5ruE25/baRNeIkmQLMYMPsHPV1BGYTZrJrUE0idnMoFHnK92Q85oVrK4r/E4txN2FMplQKgepl60uuDI0sU32qORixiurCuxqLKZv2HVCeKCT5Hyf1uEUOMfDkW8u2vZyG31+xB3cYNK7di5XEFyZSbqtwbk1h4dvVXvJS5U1ZCj9Tf6Ph2EkQu5HQ8jJdt9bOwCv7D5jbaPFRpLVz98nu/kD0+1TChaq93X1sfiNrMUrcfQGAu39C+HwQ2Rq8TrhgkjJfI7zW/znzqPHrchdSRp4lnOfrXzSqPWfH3Df57mLR39TvRiIikhfZyr8aKyQVsKEbzWBgobt/EO30EzJschp1iesS/d6eMHbO+/VWe5QwkDCEJtzPeSZTyuXe64QTSRc2PpHECQPlvgT2CvBzwhf7+sWWzoSWLL9s9kjrMeP2eCxZjluhe91p/jCwwng8ORtjaoab+wuh+NeVjb84FxEKHb8pHz5qRbZiz0T3JWv+t7Jz++d/cfljZR1XV9T9om4DP1jU89LJT/VY3q3DaDJ4XZWfddl0kvyb8D+s/z4pwlmO2zWEwbSr2bSY1JFwXK6494CbGt3fy8dMWrtyXbvfxWLEDa/TYsWJWbIwkYxVVVQVXgDcDiwmvP7qHvd2hOLE1c8d+aun1lUWTYvFKPKNClNOLEZhdU18SU0iPrGxmLKtwJI/ieFVjhXWPSBOmDWwmMQNzwz7zRvAQ6R/f73xdtl2j60fVPRwjx8uL4gtqinYUDBz4vNrCnucubxg/aCiu3CvO1h3LrwN/IP0sU8H+zcwNnqsfjGplNBdNOf/G8kDXQ3biJnFgPnArOh3gQIzO9TMDjOzw+rfjx4TaXVmHjU+SZispIjUefIawlXyFuXlb05eScjfOxG6s9VaS/i+5I7V7W1QQMgJngJm5iZKEWmUcrAvbEn+1djK7xJmagM4CXimzk63IfOuWX2B583sLeA1whhJfzezq8zsmGid24HuZjYbuIgWOnNR+fBRDvyU0M2vdkryEsIX+SnAueXDRyVnDRv3b8JMdIsIJ5wSwsnxHeCEWcPGzc517LNOGJuIFyb3LihMvGRY3N0K3K3AsHhBQeL5eEFy31knjM3orVA+fNRKwsxtzxK+AJcQiifVhC/KtzTX82hI/0+Wf7vHkjXP//mkOwaOHv/Pgefc+K8B1170t11/deH9fVZ26TB6x9mLb814Y25DSH5xBakguhXivE3S9io/67Ll9x5w07uE98YHhP9vCeF4fAKceu8BN03PdHf/+tYvRy5f035C0mPVMfOCcKOwsrrw0+VrOhz+0tGT3rxmjwcXA98FXmLDce9EKE5ecs0eD94DUFFVeOia9cUPxczMzAvMvMBiFK6vLJy5dn27Qa8eM2FtxschS/YbUP52O6s5PE5yPqGYVBCNm1RdTM2EwWVzawc4Hw38nlDE6xg9xw6Eq3kjykeMrC55sfK4mtLYo/0OWVzY/UfL23W5dlVxj3OXt+v7f4sLKvvE/9Lxhcozc/38hmz/PyfMxnhTFHvtZ0N7QuH1zCHb/y+x/4C5rwCnEZq51/4POwPvAd/bf8Dc+kV22QppoEcws6+a2X/MbC3h3FFN6BbS0DiEbckiwixtt0e3pfXu35a/0ES2zMyjxj8DnEPoXVA3T54JHD/zqPHleQuuYbcTLhZXEuUoZpQCf0u63UBoeV17/i8idCH52bQhE1vhp7TI1qmt52DZyr+socYZZvZ14DFCnS0BfN3dZ0XLLgL2d/e8zUJgZjOiLm55UTZ1UglhrCgD3i0fPmqTvty7PHiVEboIdgEWzBo2bm5Og0xjl/vH98X5FuAYj886Yeznm7utsqmTehMG6KoA3iofPqqhwYRzYk3H4v6f9yn9kZt1jyeS72w/d+mtuG9WE+myW6/thPEdoD3Oc+VnXZayCPi9/5w7kDBl7RLgg0xaIqXytUdHxWMx/46Zd08mY/996ehJM1Kt9/O3hvUDyghXwt65Zo8HNxmkev9Hx3SOx5LfAYqSSXt22jET52xOTNk2fV7ZPo591WCp4Q/vO6B8k9jLpkxuT5jZJQ68Vz5i5Ir66yRLYt3X7V98Bcb2JH1WxxcqryZ0n82rJ+fu1oHw2RAD/jdk+/9t0o311XnbG7ArYdD9BfsPmNsi/jdtXS7OK8W9+qzd4dyR72V7u++Pv4h8nhObyszeJuQYfyIUw7/g7vPyEpRkLN85mGwdBj0+NsaGPHn+zKPGt4r3/teeHllAyFHaA3Ne/ubkhQCDnxxdSpid1YF3pg2ZmPMLdyKtlXKw3MhW/tVgISnaUSdCv7kP3H11ncd3AVa7e94Gj1MSIyIi2ZSTJKZnMyUxV7eeJAbAzFYBnVtoN3ZphHIwERHJJuVguZGt/KvRfnDuvtrdX69bRIoen5XPIpKIiIi0ag8B/5fvIERERETakKzkXw1NVS0iIiLNoLX1p88WM/sTG4alLAYeMrOXgIV113P34bmOTURERLZ+bTEHa478S4UkERGRXGuDSUyk/hhz/8tLFCIiItI2tc0cLOv5lwpJObDLg1cVEgbjWztr2LhNBhWWlm/Q42PbE94va2YeNT7lx88hz15SO6X7uhcOv67ZBxxfX1K0/ZrOxXu2W1u9rNOqyldwT7nPsqmT2hMGrF4bzTq46Tp/mlRAmBltXfmpWzZYetnUSUWEWQzXlA8fldzsDZl1XNSt49eTMSsoXVMxrcP6qiVbEpeI5J+7/yLfMYjI1me/J8bU5mDrpw+d0OjMQ/v8c0x3whAfS2YcOaHBr5X7PTHmixxp+tAJm5Uj7frgVTHCLG8V7w8bV1X7+IDbfvnFd4R5Z16q7wgi0iyaI/9qdLDtlqylD/S4y4NXbQf8GDiW8EV+PXA3cNOsYeNW5DE0ydCgx8cOBi4A9ifUrz8F/gDcN/Oo8UmAQ569pAdwHnASoalgDfA34MYXDr9uQbZjWti/857m/peSVZU7z9+xW3XHlRXxLkvXVy/tVfLrAbOXXUH0pi6bOulrwM+AvaPYPwFuBB6oLfCU/WlSryj27xGmqa0G7gNuLD911KKmxFU2ddKXgJ8C34weWkmYnvrO8uGjKjLekFnxR9v1uKvP4lXDyrft7jUFMR9YvrhgUY9OL/ZavOr4kvVVy5oSl0hT5Gqgxx3Pyv5Aj+9NbD0DPQKY2aFAubvPNbM+wGQgCYx294UN/7XkW0vPwaRt2O+JMV2Ac4FTCAWZGuAR4IbpQyd8Un/9ff455qKY+aVAj+ihlUm3PwBX1C8o7ffEmFQ50v3RtjPKkXZ98Kr2wBnRrXP08FM1FfF7qtcVfQv4LuFCZQXhO8LN8868VHmOtEnKwXIjW/mXCknNZJcHr9oReAAoJXyhTgCFQCegHDhu1rBxy/MWoDRq0ONjjwWuIxRhVkc/20e3h4FLurRb3wN4EOgHrCIkMHFCsrAUGPbC4ddtkshsrkXblH65ZFXla4+cNmjt08fvtrCqXUEFENvh3UU9zh3/715J48/95yw/s2zqpBOAiYQPhdqp5zsQCl33AWMw+hAGW+tVJ/YCwmt2ETCs/NRRGQ2oXzZ10r7AVMJrfFW032LC1cHXgVMzKiaZxT/t3fn1uf17DJx8/pDPP+vTZTlA1xVrO50/9V+9D5o+u7JdZfVOndZUrGpsUyKbQ0lM7pjZe8AQd//YzP4SPbwe6Onux+QxNMlAS87BpG3Y74kx3Qi59gBCnlZNyMFKCbnIcdOHTphTu/4+/xwzJWZ+MiGfq21ZFAfiSbdnZxw5YWidbfclfY60GPju9KETGsyRdn3wqnbAn4GvAmuAKiCWTFi3qtVFvT1pS8EWs/F3hE+A76qYJG2RcrDcyFb+1eisbbLZfkn4Er2McIKAcIJbRjjh/Sw/YUkmBj0+tgswifCmWsWG3rTrgeXAMcAhwBigL+H/WpuUJKL7XYHx2YwrEbepf//BHuse/8Ee5VERCSA5Z/dei6654Vvzui1eN+LBg/faG7gaWMuGIhLAOmAFcAJwIHAF4Ypc3dhrovs9o+WNKps6KQb8jnCMVhCKSACV0bb2Br6fybbm9O9+2poOxbtcPPb42bVFJIDlXUpWX/OTI+e8s3O/Dgt6dZ6UybZEWiojDPSY7VsrtE2UxBQAQ4CzCVf/D8xvWFsXM7vDzBaZ2TtplpuZ/c7MZpvZW2b21VzHKLKZLibk1MsIOTaEHGw5oRvZ5NoV9/nnmMFREamGDTlP7fpVMfPD9vnnmOPqPD6W9DlSD+DKDOI7Fdgr+pva7mzJ6rWFpe7ELOZdwOt/R+gPXJrBtkVkMygHA7KUf6mQ1Ayi1khfIbRESmU1cMIuobmrtExHEa48VaVY5kAS/GzgW6T/P68EvnbIs5f0zUpEZn07L1v/ladO2C1lk8OVPTqsnnbEDqtLaqp+R3hvpxojwKPbOcBhbFxo2mhzwGFlf5rUI83yug4AuhEKVamsA87KYDsU1iQv/uux+66sKYxvOgaBWfKuEw9Y3mvJ6h9ksi0RafFWmVlv4BvA/9x9TfR4YR5j2hrdBQxtYPmRwE7R7WzgjzmISWSL7PfEmA7AcTScgw3a74kx20f3x0Q/037lM7gs2nY34AgazpEO3e+JMT0bCfOH1MuNkgkr8qR1wKjBKCBcdK6/7e8MuO2X9R8XEcmWrORfKiQ1j+3Y+GpHfbXdn7rnJhzZDDvT8PtjPfAlwpWsdANKO6GYs202Aqosju+waJvSREVJ0fp068z5Uo+qjmsrBhAK7ulUALvRcOxJwut0mwxCG0B4PTe0v75lUyc1tA4AJesq+72zS7+0z++dXfqtKl1T0YlQQRdpvbwZbq3P74HXCOOC3Bg99jXg/bxFtBVy938TWjqkcyww1YNpQBczy84FEJHmU3uhq6EBqmsILXww2KWR7SXNfED0+7ZsYY6064NXFQG9Ca2zv+BJK3Jwq83SjKJ6f5oI4dKrkXhFZHMpB8tK/qUvY81jFQ0XIYzwxXtNA+tIfi2l4WJMIfA5UYLSgAJCC7QtFk/4stJl6+O4F2CWslDZdcm6eHVhwUoafm8XAAsJ/fwbkmnstWMipVM70HyjM7hVFcbX9ly6pmjOgNQX+XouXVNcXRCrKa5OaGYTab1aZ9KRde4+2cweAhLu/lH08KfAmXkMqy3ahjAuS6350WObTBZhZmcTWi3Bhi/yIvmwhpCnGOk/UWNsyLVXNLK9mLvVrruKxr8jFZC+xRKEC4lVhBzoi5zFzBM4VifDrJ8bGVnMHUWkHuVgWcu/1CKpecwknFzapVleCkzTzG0t2j/ZcFUolSKwO4H3CIMjptKBkIjPykZABTXJ9w2WDXr5k5RXqSzpBV//5+zSpaUlvyIkJuliLyTMpjaXTZtU1yqJls/NILR/E45VuqSrlDBTXKMf26s6tb/vu0++ke54cvw//tv10z5dX6A1zxIgIl9w9w/qJDG199/OZ0ySnrvf4u77RAOKLsl3PNJ2TR86YRkwnfQXxdoRikczARxuaWybDlOiX+cBH9FwjlROAznS+8PGOWEylo3is7ivtxg17sQAxzcpGHUCXp935qV6f4lIs8lG/qVCUjOYNWxcAriKcBIrrre4hPCl+9pcxyWZm3nU+A+Bx4AubPo+6QJ8RpjNYzyhYFN/vKt2hKlif/HC4ddlp+jh7iu7thv3w8kvde9bvmKjbpGW9IIzJr1UVlCT/Pi459+4FXgqRewWPfYx4bmNJxR/UsVeAIwvP7Xx4k/58FGrCE0kO7FpMakT4WrgzZk8xW0WLB+/38zy2PF/f327+rEfOOOjvic+NqNTYXWNBqGUVk8DPUoL8ikbt67dNnpMpKWbTMipO9R7vJiQy1w1feiE2hY/d7kz31KPAVLoznLg1wDTh05wMsiRovUa8kdCDvRFMckMCtpVLwLinrBlYHVbJHUgtJWYjIg0G+Vg2aFCUjOZNWzcY4RB+5KEL9OdCCeSZcCIWcPGvZXH8CQzI4E/EWb+qP0fdgFmACfMPGr86hcOv246oRlgbaJQ+3+uBH7ywuHXPZfNgMo+WHrzmtLiCeNPf3jbn455duej7n6r/0k3Ti/77Xf/uttXXvt0Ycmqyv2i1joXAvfUib00uk0Dvlc+fNS68lNHvQScSxgIslOd23rg3PJTR73YhND+SCiO1k5fWwp0JlyxO7F8+KhP0v/pBiXrq5at6tj+a+fc/WLB3T+5/Utn/uWl7Ubc/5/+N4/8864TJz3cbVGPTif0X7B8ZhPiEhGRhj0KDI9mbxsMrHT3Tbq1ibQ004dOeBM4jdDyqG4ekwAumT50wuO16844ckLCsX2Tbu8QcpWC6Gehu33k2D4zjpywts62XyZMTFI/R6oAzps+dMK/G4vv/WHjPga+R8iFOhPliQXFyfXxosStwKJ6214BnD7vzEv/u5mHREQkZ6w19xAxsxlR8+oWa5cw2N5gwlTwC4AZs4aNa3SsGGk5Bj0+thuwPyHheHfmUeM/qr/OIc9eEgf2IwysuASY9sLh1zU04PoWqehQ2P3zbUsviyV8j2TMVndYU3VDz4VrXqzf5ats6qTuUewFwNvlw0dt0gy77E+T4tE6PYHFwPTyU0dtVuxlUyd1IEwd2YGQOL2dSZe2TZjF5/bvflJNPHaiOQXA0wPnLb4J94rNiUskU7k4r7Tr0WftwNNHvpft7b573UW09HOi5J6Z3QMcQhjT6HPgCqJWGe5+k5kZcANhZrd1wOnuPiOD7bb4HEzahv2eGBMD9gH6AsuBadOHTkg16y4A+/xzzO6EGd8KgL/POHLC9Aa2vUmONH3ohCblSLs+eJURZnPennDh8T/vDxu3bsBtv9zkO8K8My/VdwRps5SDtS4qJImIiERylcTsdFr2k5h3ftX2khjJH+VgIiKSTcrBWhd1bRMRERERERERkYw0NrWliIiIZFvrbQwsIiIi0nopB8sKtUgSEREREREREZGMqEWSiGTGrB2wA1ADfIR7Is8RibReuhomIiIiknvKwbJChSSRBlz//hG7AGcTZrMpBN4EbgKeu2DXZxxghykTe3rCfkVN7FhP0t6MSgqTj1vcL50zYnRG0943h30f/vnRFVWFV1VWFewGZoWFNQvaF1X/asZ3r/5d7TrHvXJ+J+D7hOlzexBmnJsC3P3AgX9YDYBZyUed+9zWp6B42PJ2HSlK1Fhhsmb90q59bxy4YuHluCcBKhfssLfj1yZJHgjEwVbGsDsMu7y475xqgLK7JhcA3yEc09rZS/4G3FF+2sisTze98wPjDTgUOA/YE6gGngBu+eC4sbOyvb98eLF84ADgTOBYoD3wPnAz8I+DymZnffaX+z/auxswgvC66QJ8BtwO3HfCjq9rVr0MWb4DEBEREWmDlINlh2ZtE0nj+vePOBi4hVBAWkWoX5cAccIX50nXv3p4P6+MzfSkdcFI4CQIXUbjFmOdFSf2mzNi9Ae5jn3vBy+/ZNW69tfgWCzmNQ7uTiEYJe0q/zHz+Ku+c9wr53cF7iO0MloHVAFFQAegHDj+ga/9sXJhhy7vvNe9f88/7nXkknmdey/H3fZcNLfHRTMe7tG+purZAasWH1352fZDEyQe9HBsEkAyOk7xGPZhjNheuzx5TpJQ4PgGUAmsJxSzOxKO74nlp438MFvHICoijSQUWRLAWsK5o5RQUDrng+PG/itb+8uHF8sH7gX8iVBAWk14nh0I/8eHgUuzWUy6/6O9+wEPAL0Ix7MaaBfd3gJOOWHH19dla3/5kKsZQ3Yenv0ZQ97+TdubMUTyRzmYiIhkk3Kw1kVjJImkcP37R5QAfyB041rOhuLIakLR4wxgsNfE7vWkdQGqDBJmYEbSjGpP0sGrY3/Ldez7PTJmm9Xr2l1tlkzG4l6N4WYQi1Ft5tVrK4q/tc/Dl38f+DmhiLScUNjx6OdyoAy4/MMufSfO6dK716hvjJg9r3PvpUASs8SbvXf4/Pxvnj+nMFHzzc+6dzs6QfIvDnHDqg1LGoZhCaAqie/k+LXAyYQi0nJC4coJhYjlhALdDWV3Tc7mRYL9gB8S/l+rCf+/RLS/GuDGnR8YX5LF/eXUi+UDCwit4+JseE5OKPCsILT8OjLLu50M9Iz2VxXtb310f0/gx1ne39bJm+kmIiIiIukpB8saFZJEUhsKFAOpuuokAVZXFp3nNbYvUG2pyx/VXmO77jBl4s7NFmWqndbExzgWM7NNWqKYAQ5VVfHRwNHAyjSbWYn70T0rVp5+51e+uRyzTcZDWlvUbv39u3x9ZXEv/7XjJYSi0Mb7C41HE0l8OHAOoeiQyipCUWuPTJ5jhk6PfqZqkVNB+P8elcX95dpBQFdC4ai+2iLd2dna2f0f7b0dMJj0r5nVwKn3f7R3Ubb2KSIiIiIiLY8KSSKp7UHD7491ayrb7YuDWeo6tBlgOG77N0uEaSSSsb0bKo1bLJmoTsQHEAos6bo9JYsrapIlVRUd3+q1/Yp02/pvnx0r2q+q2CY81bSNiRLu3jFGoh+pC3O1HBjYwPKm2oP0hSsI/98vZ3F/ubYToQtbOuuAXbK4v9qB1tO9uKqjeHpmcZ9bLfPs30RERESkYcrBskOFJJHUVtPwWGwFBbHkGsAaHGbMAXx1NgNrjBlr8QZCdzMzr6aR9391UTxmDiVVFWkH5e9cuTaeLIxVN/r5aXgydHVr7DOnocJPU60jdPtKJ0b4P7dW6wld9dKJ03DhbnP211jXw2zvU0REREREWhgVkkRSe4KGv6QXd+uw5naL+WosdbHCIW5GFcZjzRNiaoUFidsxSFfgcixWXFjzEPA5YZDmVNon47GFn3Xq9sYxs1/tnm5fR300o+Oydh0fCdtNW04qjGHvQOwpwkDXqcQJraNeTreRzXA/oftaOjWE/3Nr9TzhmKUr7nQEHsri/t4gjKGVrhVUJ+CtE3Z8fWkW97n1Uv98ERERkdxTDpYVKiSJpPYuoajRlU2/qHcCVsRj3GeFPhEn5r7xe8kdw4lbUfIPc0aMbqgglXVxS95TVFCzwN2K6haT3CGZpCAWS1YVFiR+AUwiFFoK622ikDAL1+QksZGnvf1Ml12Wzt+ku9I3576xzYGfvlfU88NlF8eI/Qsoql9McjwOeIzYKOAGQvGmfvEqRigw3V5+2sh04+9sjvsJg0DXL14Z4f/6CvBOFveXUweVzZ5PmJmtC5u+RjsSWmTdma39nbDj61XArwgDo9dvpVZM+D/+Mlv72+opiRERERHJPeVgWaFCkkgKF+z6jAM/Ap4mFCK6Ad2j3+cD37tg12eWzTl91HWx4uT1GOZOoTtF7hRixGNFyTvmnD5qZK5jf/XYCV7SvnJwcWH1HHcrTCasKJmwIncrLIwnV5d2qPi/6cdO+OSBA//wD+ByQuGoFOgR/SwEfv7AgX94vGzl588sKuly8R+f+kO/X7z4552GzHm9/zEfvrrd7565edfLpj/QeXGHzkPa11QtimHfihF7MfytFzpeBF5okIgTP6e475ynyk8b+T/CbHcV0X66E4ogHYHbCUWKrPnguLHLgO8BH9fZX7fo92eA8z84bmxr/+j/OfA3wnPqwobX6HLglIPKZn+c5f39CbiOUGjszIbXDMBPT9jx9f9keX8iIiIiItLCmDc4wEvLZmYz3H2ffMchW7fr3z9ie8IMWQWElkqvXbDrMxsNUr3DlIndSdqFONtiLCTm188ZMXpBPuKta9+Hf35oIhE7yaEwHvN/xWPJqa8eO2GjN/1xr5xfAhxBGCR5MfDsAwf+YU3ddSoKinp/XNpzXHFN9QFu1FTHCh7aacWC3+G+0YxhlQt22M3xcwjFhbcNu7G475zKuuuU3TW5EPgGMABYAzxXftrIxdl+7rV2fmB8DNgX2J3QIurFD44bO7e59pcPL5YP7AccQijwzAZePqhsdrO1hLv/o727AIcTilcLgOdO2PH1rWJspFycV9p177N21++PfC/b233zhovQOVFyRTmYiIhkk3Kw1kWFJBERkYiSGJHMKAcTEZFsUg7WuqSdjUlERESaSeu9hiMiIiLSeikHywoVkkRERHLIPNxEREREJHeUg2WPBtsWEREREREREZGMqEWSiIhIrulqmIiIiEjuKQfLChWSRBpw6HMX9wW+DxwNFAPTgTueP+xXbzZ1W7959btXLfX2Fy314hLD6WUVS7tYxcif7f/w7U3Zzq6/+I0BXwdOB3YDVgP3Afe/f8WFK5oaVyauf/+IL0f7O4Aw89k/gD9fsOsz85tjfyIiIiIiItIyqWubSBqHPnfxIOAp4HygO1ACHAX87dDnLj6jKdua+Orx09+s6TH2k0RJSbXHqPQ4cxOdur+V6HHbda8O+1Om24mKSL8A7gQOAtoD/YCRwBO7/uI32zUlrkxc//4R3wceBL4DdAS6AmcBT17//hH7ZXt/Im1BbR/9bN5EREREpGHKwbJDhSSRFA597uJi4A5Cq73lQCVQBawA1gKjD33u4j0z2dZvp3/nwg8SXfctsCTtYgni5hSY0y6WAOC9RNcf/P7VY7+aYWhHAacAq4CVQDWwPoqrO/CHqNiUFde/f8SuwJXAOsJxqCIci+WAAbde//4RHbK1P5E2w5vhJiIiIiINUw6WFSokiaT2TULrm7UpltUQiiinZ7KhZcn245IO8RTl6kJLkvAYq73ozgzjOp9QzEmmWLYS2AX4SobbysQIwudETYpl6wgtoo7M4v5ERERERESkBVMhSSS1vYF4A8vXARl161rpRaWpikgbOGso3Kmx7ez6i9/EgC+RurhVy4AvZxJXhgYTWjylEyPD4yAidehqmIiIiEjuKQfLChWSRFKroOH3R4zQMqhRMRz39J8wjhHDExlsygktkRqKyzONK0OVjewvFq0jIiIiIiIibYAKSSKpPUcYfyiddsBjmWyou63/KNnAW82Azlb1XGPbef+KCx14BihtYFMGvJxJXBl6hDBbXTo1hAHJRaQJNNCjiIiISO4pB8sOFZJEUpsBvAt0SbGshNDd6y+ZbKjUqk4vtgRVyY3fbu5QkYzTKVbl7WI1J2UY142EVkmpijtdgIffv+LCBRluKxP3A2sI40Wl2t9s4JUs7k9ERERERERaMBWSRFJ4/rBfOfBD4G2gM2FGtK6E1kDrgVOfP+xXGRVsfrr/Iy9/Kb788mJLUOkx1ifjrEvGqfI4nWNVyYHxlcf/ZN9HGhqH6AvvX3HhW8CPCO/dzlFM3aLfnwIub9ozbdgFuz6zhA2zxJVG++oW/f4+MOKCXZ9JNfC3iKTTHH3z2+jVMBEREZGMKQfLmoJ8ByDSUj1/2K+WHfrcxcMIA28fTujONgN45vnDftWkcYEu3P+ha26Yfuwf1lFwz1ov3NecZEereqIoljzjp/s+3FAXuk28f8WFT+/6i98MBr5FGHx7JfDP96+48P2mbCdTF+z6zLvXv3/E1wnHYF/CmEgvAK+piCSyeayBcdNEREREpHkoB8sOFZJEGhC1TJoR3bbIj/d7ZDkwdIuDAt6/4sLVwL3Z2FYmLtj1mSrgn9FNRERERERE2igVkkRERHJNF8NEREREck85WFZojCQREREREREREcmIWiSJiIjkWFudKlZEREQkn5SDZYcKSSIiIrmmJEZEREQk95SDZYUKSdJmDbzv6p2BHwB7AquBvwFPzD7x8oqmbGfQ42NjwH7A94Ey4FPgHuClmUeND7OamdmH/Xue0a6yelTvZat3cDP/rEfnt2risXE7fbLo71l7UnUkF+5cChwLHA0UAi8Bf431+eDT5tiftA2nvHpWHPgG4fXeC5gN/AV4/e79b9WpWURERERkK6cxkqRNGnjf1WcBjxO+DO9EmNb+WuCfA++7unem2xn0+NgC4HrgT8CRwI7AEcDtwO2DHh9bhJl91K/HQ/FE8sbfn3hop8F3jPzg4Jsv/ujuoftt03ltxYPvl/W5NstPj+TCnXcFngfGAV8BdgHOA55NLtw5KzPHSdtzyqtndSAUjW4mFJN2BI4hFE4nnvLqWTqnZMg8+zcRERERaZhysOxQ0i9tzsD7rv4aMBJYA6wA1hFaJK0CtgX+OPC+qy3DzZ0DfCv625XA+ujnSuBg4JIP+vc6B2PoCRPP+ejhQ/aav6ZDu7XLS0tWTz3qgE++d82ZH/dcvvpnn/bqemC2nl9y4c5FwBSgYxTH2ug5rgCqgN8mF+68Q7b2J23KFcA+bHiNrye8rlYBJxAKsyIiIiIishVTIUnaovOAJJBIsWwlsAfw5cY2MujxsUXAWYRCTapa9GrgBx0qqkbdePwhy1eXtFtff4VPe3Vd8Zch+61aX1x4dVOeQCOOALpG+6+vitDN7QdZ3J+0Aae8elY34DuE90h9Tigq/VitkjLgzXTbAmbWzcyeNrMPo59d06w3IlrnQzMbUefxa8zsEzNbs2WRiIiIiDQT5WBZo4Rf2qL9Ca2R0okBe2WwnQFAO0JxJpUaSyZjfZeuHPDU4N2Wp9vI0/t9aW3n1esGZbC/TH0diDewfB1waBb3J23DlwmnymSa5RVAN6BPziJqpYwW2ax6FPCsu+8EPBvd3zhus26EVmn7E8aFu6JOsvNY9JiIiIhIi6QcLHtUSJK2qLG3e6a1ZSd8HqVfwQwHjyeSadeLJ92wrPauTdXSqi7LYB2R+jJ5jRrpC03Ssh1L6BJL9PM7KdYZAjzt7svcfTnwNDAUwN2nufuCXAQqIiIishVplTmYCknSFv0LKG1geRJ4NYPtzCWMDVOcZnkhZtWf9uwy+6iX307ZRBHgW6+8XbKiY/tpGewvUy/QcKGoHfBEFvcnbcOb0c90rd3aA58Bn+cmnFaueZpV9zCzGXVuZzchot51kpCFQKpJB7YBPqlzf370mIiIiEjroBwsK1RIkrboj4S3fGGKZV2AV2efePkHjW1k5lHjE8CNQAc2fS8ZYbDr26oKC6760d9e6Npz+epO9bex08efdz/xmddLS9dWjGnic2jIvwgfQp1TLGtP6Ip3Txb3J23A3fvfuoowY1spm7bEixEKlNffvf+t2WxdJ02zxN33qXO7pe5CM3vGzN5JcTu27nrunoUe/yIiIiJtRpvLwQryHYBIrs0+8fL/Drzv6tHANUAJofVOnNAS6V3gx03Y3FSgjDB4tQE1hPdVEngUuGGnTxYlPtyu9zceGHnziClHDV7xzH5fWlNYXRP79stvdzz5yddKP+vRefSXyhe+mXYPTRTr80FNcuHOPyB86e/Fhu5GMUIR6cxYnw8+zdb+pE2ZRLj6cRjh9VT39f5H4KH8hda65GOqWHc/It0yM/vczPq6+wIz6wssSrHap8Ahde5vS2gBKSIiItIqKAfLDgtFr9bJzGa4+z75jkNap4H3Xd0XOB7Yk9BF7RHgpdknXt7k8YMGPT52V+BEQlFpPnA/8M7Mo8Z/8QYr79v9yGTMrui2at2X3Sy5pHPJfzpUVF2+zeIVr2Xh6WwiuXDnYsIMbt8CioCXgEdifT5Y0Rz7k7bhlFfPMsJg9McBfYHZwL1373/rR3kNLEtycV7p0KXP2j2OuvS9bG/31b9cwubGbma/BJa6+yQzGwV0c/fL6q3TDXgd+Gr00H+Bvd19WZ111rh7x817BtKaKAcTEZFsUg7WunIwtUiSNmv2iZcvAH6fjW3NPGr8+8BVDa1TtmDpP4F/1t5PO2hSlsT6fFAJPB7dRLIi6rr23+gmW49JwH1m9kNgHqEwjpntA5zr7me6+zIzGw/UFr+vqk1gzOxa4PtABzObD9zm7lfm+kmIiIiItDKtMgdTIUlERCTH8tGsuiHuvhQ4PMXjM4Az69y/A7gjxXqXAZfVf1xERESkJVEOlh0abFtERERERERERDKiFkkiIiK51Grm4xARERHZiigHyxq1SBIRERERERERkYyoRZKktMM9EwwYBHyXMIX8h8D9c04e83FTtzXo8bEFwDcIs4e1JwwS9vDMo8Yvz1rAm6FsyuRewDDCrG0rgceA/5SPGJmsXWfwk6MLgUOBoUA7YBrwyLQhE1d+sSGzDu9v2+dnHddXnNOhsqpbRVHhypUd2k/50vyFk3BfncOn1GwueOPkUuBo4ACgGngKePb6ve6pymtgIq2UJRtfR0RatrKpk1PmCOXDR65s8A9FRCRvlINlh7m33rZdmnq2eexwz4QiwmxmhxFarSWinw78es7JY/6Y6bYGPT62F/BnoCzaRhIwQjHiRzOPGv98VoPPUNmUyccCkwnF1CQQJzzPd4DTy0eMXDn4ydH9CLFvWy/2KuCcaUMmvrS2XXH31e3bvT2nb8/Odx1+4MrZ/XpVli1aUvyD56aVfqX800qHPXutXD0/H88xWy544+T9gdsISbKz4VgsBE65fq97PsljeCJZlZOpZzv3WTtoSPannv3P/Zs/9axIU7X1HKxs6uSGcoSzy4ePfDmP4YmItDrKwVqXnHRtM7P+Zva8mf3PzN41swtSrHOIma00s5nRbVwuYpOUxgJHEFrpLAdWASuANcAlO9wz4chMNjLo8bFGGFl++zrbWBVtNwn8cdDjY3fMcuyNKpsyeS/gl4Rkrzam2ue5J/C7wU+OjgF3Af3ZNHYHbh385OjtFnXu9OQze32pwymXnjnrqb13/2xO355Ln9vzS5+dceHps+7/+j5WVViQl0JZtlzwxsn9CP/DGOG51z0WfYGpF7xxslo2iohIm1E2dXJDOQLAbWVTJ2+Xl+BERERyIFdjJNUAF7v7bsBg4EdmtluK9V5090HR7aocxSZ17HDPhC7AiWxIhupKEIovF0Rd3xqzL7Bzmm1VEFoDjdi8SLfIuWy4aljfcuDAdeuKjie0okoXe+Ee73xyQbc1a/eccOK35rtt0kjSf/3db35SXF0zYGHXzvtmM/gcOwkoBtanWLYS2AY4OKcRiWwFzLN/E5GcOZD0OcJ6oBD4QS4DEhGRzCgHy46cFJLcfYG7/zf6fTXwHuELqLQ8XyW0FkrXe3QtMBDomsG2vkZIptJZBwxpUnTZcSjQ0NhF8UQidjwNjyG2fpcPFg575Us7rlvXrrgi1Qo1BfHq5/bcdc2S0o4nbUmweXYkoXCWTpzQBVJERKStOIRGcgTC+VNERGSrlPMuKWZWBuwFvJpi8QFm9ibwGXCJu7+b4u/PBs6O7vZorjjbsDihtU5jMilCxhtZ7hms0xxqx3tKy73x2A1iNfF4g9upicdqxxRqrTL5HzZULBSRVFrx+IQiktG5MZNcSkREck05WFbk9AuumXUEHgB+5u6r6i3+LzDA3fckDPT8cKptuPst7r5PNJjVkuaMt416i5AgpXtttAcWAMsy2NYMwqDa6ZQA+RiMcjrQqYHliXjcnyJ0yUynZO6AHs8e8N5HJYU1NUWpVoglkwUHv/Nhx07rKx7fkmDz7F+E/3k6Tn7+hyKtVzM0qW6rzapF8uQ/NJIjAC/mKBYREcmUcrCsyVkhycwKCUWku939wfrL3X2Vu6+Jfv8HUGhmanGUY3NOHvM58CTQOcViI8zcdeOck8dkMnHii4SZvUpTLCskdJ+7bTND3RI3EV77qa4odgbeKyqqvgNYSuqCUyGQeG3v7a9dX1w097zHX+hHiiuPpz43rV9hTWLZgMXLns1i7Ln2J0KynKpY1pEwwOiTuQxIREQkz54nXFBLlSMUEcaUvCuXAYmIiORSrmZtM+B24D13/3WadfpE62Fm+0WxLc1FfLKJMcA7hKJKKaFFSpfo93uB+zLZyMyjxieA0wjFhi6EK3TtCeMrtQfGzTxq/NvZDDwT5SNG/hv4NaEQ0iWKpSPh+S0Aznn929dUEwYCX004DnVjbweMnDZk4vvmfuRpz7xS9Ktb79txt3mf9Ywnku0Hfvp5j2umPLjjhQ8/3XF9UeEQvPW2n7x+r3vmABcRBtzuQjgGHaLf1wMjrt/rnsp8xSfSankz3EQkJ8qHj6wGhpM6RygGLisfPnJW/iIUEZG0lINlheXiO66ZfZ3QOuVtNgziPAbYDsDdbzKzHwPnEVo/rAcucvdXGtnujKiLm2TZDvdMKCIMovx9oCfwIaF1yow5J49p0otm0ONjS4GjgWGEIsx04M8zjxr/UVaDbqKyKZN3A04F9iQkg/cB/ywfMXJd7TqDnxzdGTg2urUDXgHunjZkYnntOss6lfT+vEvppL7LVp5Qum59ydr2xRWfduvySPfVay/tuXL1Jzl8Ss3mgjdO3o7wWvgaobvi34GHrt/rnuV5DUwky3JxXulQ2mftV4+45L1sb/flhy5F50TJFeVgUDZ1csocoXz4yPJ8xiUi0hopB2tdclJIai5KYqTFMbPW3AJJpK3LxXmlpLTP2q8env0k5qWH214SI/mjHExERLJJOVjrkvNZ20S2aioiiUgm9FEhIiIiknvKwbKiNU9LLiIiIiIiIiIiOaQWSSIiIjnWVqeKFREREckn5WDZoRZJIiIiIiIiIiKSEbVIkjZr8JOjugOXuvNVYKUZt08bMumJfMclIm2AroaJbLXKbrquCDgU+CpQAfwLeKP83Ev0zhcRyTd9EmeFCknSJg1+ctSPkm6/IrTKMwB3jt3/iVGzzfjatCGTNK29iIiINEnZTdd9GbgD6ELIsw04H3iz7Kbrzio/9xLlFyIi0uqpa5u0OYOfHDU06fbr6G41UBXdqh3byZ3n8hediGz1PPTPz/ZNJB0zG2pms8xstpmNSrH8NDNbbGYzo9uZ+YiztSu76bpewN1AKbAKWAYsBVYCg4Dbym66zvIWoIhIW6ccLGtUSJI2x50JhCuEiRSLqxzbffCTo/bLcVgi0pYkPfs3kRTMLA7cCBwJ7AacbGa7pVj1XncfFN1uy2mQW4+TgRJgTYplK4A9gL1zGZCIiNSjHCwrVEiSNsex3YGahtdheI7CERERaU77AbPdfY67VwF/BY7Nc0xbq2MJYyKlEweOyFEsIiIizUaFJGmLYjQ8zJoBRTmKRUTaIm+Gm0hq2wCf1Lk/P3qsvuPM7C0z+5uZ9U+1ITM728xmmNkMoEczxNraFQHJBpY70CFHsYiISCrKwbJChSRpi5bQ8EDzbvBKroIRERHJs8eAMnffA3gamJJqJXe/xd33cfd9COdS2djrNFwoSkTriIiItGoqJEmbEzO/gfSv/QLC2AZ/yl1EItLWaKBHyaFPgbotjLaNHvuCuy9198ro7m1oHJ/NdQfh2nQ8xbIOwDrgyZxGJCIiG1EOlh0qJElbNMHwl4HC6GaEpK8QqImZHzdtyKRUA3GLiGw59+a5iaT2GrCTmW1vZkXAScCjdVcws7517h4DvJfD+LYa5ede8iZwLdAR6ELIK4qBroQC05nl517S0BhKIiLSnJSDZY0KSdLmTBsyyc04NGZ+keEfE5K7CsMfjpnvNW3IpOfzHaOIiEg2uHsN8GNCS5j3gPvc/V0zu8rMjolW+6mZvWtmbwI/BU7LT7StX/m5l9wKfI9wvCuBVcCtwJDycy+Zkc/YREREsqWhcWJEtlrThkxy4IboJiKSU221GbTkh7v/A/hHvcfG1fl9NDA613FtrcrPveS/wH/zHYeIiGxKOVh2qEWSiIiIiIiIiIhkRC2SREREck1Xw0RERERyTzlYVqiQJCIikmPWRgdmFBEREckn5WDZoa5tIiIiIiIiIiKSEbVIagGOfvEnMWA/YBfCDB//fuyg33+W36gys98TY2LAYGAnoAL41/ShExbmN6rMrOnQruyTnl2uLK5O7J6I2dqY+507frbkbsIMN1LH9ndPNGAQ8BWgBvjP3FNGz81rUCKtWTLfAYi0bQPvu9oI57RBQAKYNvvEyz9Kt/5O91yzjTs/xq0n5rPN+P2HJ/98bap1B9x+rQFfBXYnnDNfmvfDyz5Ot+2yO6/tBhwKdAI+Bv5dfvplykVERJqDcrCsMG/FTbvMbIa775PvOLbE0S/+ZBfgZqAfobCXJPTcfBj4+WMH/b4qf9E1bL8nxuwG3AT0YePY7weunD50QouNfdZ2fX7Vb8mKnz5+4FdWz9h1QHXXVWvt2Jfe7NRr+epVyVhs/z5LV5bnO8aWYvu7J/YnvEZ3AuJs+Ph9Drho7imj1+QrNpFsy8V5paRj77X773/he9ne7vPPjaa1nxOl9WjNOdjA+67uC/yRUOiJEXIXB14CLph94uWratfd6Z5rzJNMTdTET3THDAzDgUS8MDF29vd/fl3dbQ+4/doywjlze0Ju5ITz5lPApfN+eNm62nXL7rw2BlwInB3FEScUnlYCPy0//bL/NMsBEBFpgZSDtS7q2pZHR7/4kz7AvUBfYBWwDFgR/T4MuDZvwTVivyfGbAPcA/Rm49hXA98DrspbcI14r6zvT0oqKn981C9/NO/ys4+d8/DBgz6589tf+/g7k85/769H7FsQSyZfxUyt9YDt755YCtxHKCKtZMP/eSVwOHBT1FpJRDJkHvrnZ/smIo0beN/VHYC/EopIK4HlbDivHQzcNfC+q7/Ijz3JHxM18ZMcEhajmhhVGNUOlqiOTxj4l2tOq113wO3XdiWcM7dnQ260PPp9KHBD1Fqp1o+B84F1bDjHrgJKgDvL7rx2t+Y4BiIibZVysOxRISm/fkBoxry63uNOSGq+ffSLPynLcUyZOh3oyKaxJwmxHxcVm1oWM+u+cs3YK8/49tLPenZdUW9p8ncnHDbv826lpbO36fn9fITXAh0L9CAkuHU5ITneD9gr10GJiIhspiOBbdj0vAbhvPYVQpd9drrnmpJETXy4Q43ZxvP8mJFwIJmIja/z8PFAN0IxqK7ac+ZBwG4AZXde2wk4j5BHJeqtv47QmuknTX52IiIiOaBCUn4dB6TsX09IOmKEVh8t0TAgXZem2tgPy104GRsIdP3XXjsvSrM8+cjX91wN/DCHMbVk3wOqG1heAByVo1hEth7eDDcRycSJhO5j6cSAYwDcOQmIm6UdUaPak9Znp3uuKYvun0AY6zKdOPCt6PcDon2li2UV8M2yO68tamB7IiLSVMrBskLdd/KrhE2vQtVlhFY/LVEHwhWzdGJA+xzF0hQlq0raJ90s7XFfXtrBY8lkSS6DasE60vBrNAmU5igWka1HG20GLdICdKLh81oC6Bz93rmB9TADHAe6AuU0ntc5G86ZJYQ8L51ktLwIaLFjToqItDrKwbJCLZLyaxahIJNONfBhjmJpqkxin5OjWJqivO+SlbEeK1anLdDt/f7HRZVFhf/LZVAt2FtAuwaWO/B2jmIRERHZUo2d12LROpgxDdIPf+FOjFDw+SB66F0azo2SwDvR72lniIsUA0tI33JdREQkb1RIyq9bCc2cU12Rak9o8fNMTiPK3K1AIalj70AYe+BfOY0oE+4rFvTo/OI5j7zYixSx91u8ovO3X3m7Y//Pl12Rh+haoinRz1SfFcWEJvmP5i4cka1DGOwxuzcRychUQkEnnmJZEaFF0QMAH57881cs5gvMKay/oofuDAWxguRzH57889piz53Rz3TnzCrg8ej+24RiUrpWvSXAbeWnX6Z3t4hIFikHyw4VkvLrGeBBoAsbmjjHo/sx4LzHDvp9S23O/A/gMTaNvWu0/LzpQyc0NLZO3nRes374sS++Gb/8rn/s0GPF6k6AmXvBN974oO/dv7h9u4XdS2/suL5ybr7jbAnmnjL6deAWQqLbifB/jhGa+xcDF849ZfSKvAUoIiLSBLNPvPx/wPWEc1opG5/X2gGjZp94+RfjKMYLkscRo4okRe7E3MGdOE5hLO5LYjE/tc7mpxGKSXXPmbV5XRHwk3k/vGwNQFQg+inhomFXNlycax/df4UNF3NERERaFBWS8uixg36fBEYBFxCuSnUlJDEPA8c+dtDv/5O/6Bo2feiEJHBRdCsnxF4M3A98e/rQCTPyF13Deq5YPT8Ri+120Jsfznz2p7/d4YmLfvfll8+9dveJNz1UuKZ98cidP/78Z/mOsYW5Djib0NS/C6Fw+DRw/NxTRj+Rx7hEWq/o22hWbyKSkdknXn4DcAbwOuG81gl4Hjhp9omXP1R33Q9P/vmMgsLEPrHC5BMGbk6RGZXxwuSf4wXJ3T48+edLa9ed98PLHJgAnE/o5taV0Er7n8B35/3wsufqbrv89Ms+JAy+fRehiNQVWAyMA84oP/2ylnoxUUSk9VIOlhXmrfiJm9kMd98n33FIK2bWBSgjXBH8kNb8hhCRLZaL80rHDr3XHvDVn76X7e0+8/Ll6JwouaIcTEREskk5WOuiWdukbXNfAczMcxQiIiIiIiIirYIKSSIiIrmmxo8iIiIiuaccLCs0RpKIiIiIiIiIiGRELZJERERyTRfDRERERHJPOVhWqJAk0gp9799nWYElv10QS+7tbiuqkvEpfz341uWbs62yqZNiwD5AL2ARMKN8+KhkNuMVkbocU7Nqkbwb8sIFewHfBhLAfU8ecv3s9YWFvf+18463tEskdquJxVb0WrF69B6fffZMU7ddNnXyAGB3oAaYXj585IqsBi8iIptBOVi2qJAk0sqc8uIPD+vXYfU9HQqqujrmAI5NOuOVEfesrSk6496Db83407Fs6qRvAJMJUw7XWl42ddKo8uGjXshu5CIiIvk35IUL+sfMnyyI+UA2XJu+8vYfHLjq+KKC7it7duSVsn7efeUa2+WlN56eOWCbZTt+vnSHThUVKxvbdtnUyT2BXwMHEApUtY//GZhUPnxkdXM8JxERkVxSIUmkFfn+i2fu3b/j8r/HLVlQ7bFqMAAMj/UtWfmDhetKi4BTMtlW2dRJBwK3AtXA6jqLOgG3lk2dNKJ8+KhXsvwURAQ00KNIngx54YKSuPkMw7s5VNWeRw9/5H9Fhz7/YfdvT/4Rn5V2ToZH8RuO/YZdNfXv3cyZs6dZDzz9m7ds6uQS4D6gP7CSDUWqOHAa0Bm4pLmem4iIZEA5WFZosG2RVqRTYcWvCyxZWOPxL4pIAI4la5Kx6t7tVx9/0r/P6tvYdsqmTjJgHJAE1tdbvJ5wFXVctJ6IiMhWweBSM+/qtqGIFEskOenPMwouPW8YS3p1IhbbcIL1WMzHDf+2d66q6DZ9u/7famTz3yEUkVaw8SgcieixY8umTh6YxacjIiKSFyokibQS3/v3Wdat3drBNR5L2Sw+6uZmxfGaczPY3ABgR2BNmuVrouVlmxOriDTACSXcbN9EpFFmPjxUeDZcJ9nl3YWx1cXteGenbQCIFfhGF1E8FvO/HfRVX9OheGIjm/8+UJVmmRNaJh21eZGLiMgWUw6WNSokibQeBXHzmDcw14CZW8y8ewbbKiUMANqQmmg9ERGRrYKF7tsbpf0dVlfZ4q4dMUt/gl3UpROFyWTnRjbflYbPrQ70yDxaERGRlkmFJJFW4t6Db62uTMQrYubxdOu4myeSsfcz2NxnhDHS0nVds2j5Z02PVEQaY+5Zv4lI4xzmW7389/N+nZI7f7KIeHUCA9w3ric5sNu8BbauoHBOI5v/CGjX8O75cHPiFhGR7FAOlh0qJIm0IksrSh6Km8dSXTONk4zXJGNVlcn4zY1tp3z4qCXA84SBP1PpArxQPnzU4i2JV0TScM/+TUQalXS7Lvy24T0zf/vuvqBvZ458+R3cIVmz8TWWbqvX2rGvvMmgjz89o5HN30nIrVNdpCkktFb6++ZHLyIiW0w5WFaokCTSiqyrKb5gTXXx4sJYsihGMnr/OgWWKDTDFqzrfOG9B9+a6dTCvwCWAd0I4zYQ/ewKLAWuzGrwIiIi+feXhNsrBkXg8VBQcu780QHVY/78BEP//Q6WCD3fHNjhs8V217VT7I1tt3m+9+rVcxvZ9guEQlEXNm6Z1AkoAcaWDx+5LNtPSEREJNdUSBJpRf568K3LP19X+uXP15U+4pgXWqKw0JKFq6raz5m3utv3/vT1O27NdFvlw0d9ChwD/AVoT2id1B74K3BMtFxEmoOuhonkxZOHXO/udmgiGfstbusNigyKPty9z7Ibzj14ytmPvLj+hUt+Yzf99i+xv111S+zuiXcwv6TzXw+bNfvwxrZdPnxkEriIMCvqSkJBqSvwNnBa+fCR9zfncxMRkQwoB8sK81b8xM1shrvvk+84RPLhe/8+qzCG93ds+V8PvnX5lmyrbOqkIqAjsKZ8+Kh0M86IbPVycV7p2L7X2q/tdt572d7uU/+9Cp0TJVe2hhxsyAsXGLAtkHzykOu/uHiysLT0qx/27HFIl/XrP/nKgoUP455pS98vlE2dHCNcoKkuHz4y3QypIiISUQ7WuhTkOwAR2TxRF7bGBv7MSFQ8UnN7kVxpo1PFirQkTx5yvQOf1H+8z6pV/+0D/92SbUetk7boIo+IiDQD5WBZoUKSiIhILjltdoYPERERkbxRDpY1GiNJREREREREREQyohZJIiIiOdV2B2YUERERyR/lYNmiQpKIiIiItCq7PHhVL6AMWA+8O2vYuLSjXpRNmVwA7Aa0Az4qHzFyKcD2f7l6T8N+BFQ5Pnnu9y//BGDnKVePAr6F8anDaR8Ov7xy4NSrrX2y5rYktlMcf+Gt064cB1A2dVIJcHS07efLh4+aBzDgjmu7ADsD1cC78864LO1EFmU3XxcDdgU6AZ+Un3PJZ1twaERERJqdZm0TERGJ5GTGkHY9135953OyPmPIk29f0+ZmDJH8yVcOFhWQxgOHATWAASuBSbOGjXuo7rplUyYbcBJwMaFIkwAKwF+2gpphsTilddf3al9ZgJVS6IZHW04AVVTUFMXaWWxDzuw1Rjzhs6pjBdsB8S8ed94mYdPAvkkY0tWACuBG4PZ5Z1y2UcGr7Obr/g8YC/SK9lYIvAJcXn7OJZsMBC4isrVSDta6aIwkERGRXHPP/k1kK7fLg1d1BR4AjgBWAWuBNUAJcN0uD151ar0/ORu4GigGVgPrwNeCj/BEvLTu28YSTkGczhS6kQTcQhkoBrSnXSyRJKweakxJM6pjBbvgXkgoaNW4kwD2Iu7ngK+vE18MGBXdvlB283VHAX8Aum2Ij1XA14AHy26+ru+WHzUREdmIcrCsUCFJRERERFqDU4F+wHKgbuZeQSjYjN7lwas6ApRNmdwNuIhQoKmss24ZhuGGJ+yLB63GQlacNEIjIsJPN3CIFdaZ6ccNkrEQgm00TEQs+uM4Me9d5/EqQqup0wfcce22AGU3X1dEKHKtj261HFgBdAfOa8KxERERyRkVkkRERHIt2Qw3ka3fqYRWPqlUE8b+PCy6/3+ELmc1G61ldA6/OJ6M0mBPYsWe/n3kobBkUeHJk1a7rXDzL/LpDUUlo3u9rdS2bzomuj8Y6MDGRa66VgEnlN18XTzNchER2RzKwbJChSQRERERaQ26E1r3pFMQrVO7bopJZdw2+fWLtk22ydrUWWSb9F6ICkx4vM4DHt3SFYBqu6v1aHiH1ABFhGKTiIhIi6JZ20RERHLIvE4XGRFpis+BjqRvxVMTrQOwkNBKqR7zDU2MovdhbfnnixG2U/ONFtUZeBurqfNg7UXajVtCbVg+r058DX0QFBK6vKVrgSUiIk2kHCx71CJJRERERFqDuwgDa6dSRGit9Hx0/2lCMadwo7Wc5aF8Y1gs6o9gMbzK0mfF5pA0PB4Ntx2LCk61bY/si4LQhuJR0hbX20qc0AHisej+q4Rxk9qn2Wsn4O7ycy5po50mRESkJVMhSUREJNc0Y4jI5rgb+IAwy1ndrmMlhC5gY2YNG7ceoHzEyFXAlYQWTHW7h80HHHMsvuF9kyxIQgKI1VaHCD9jDgbJBLjVjo3kEEvUrlK35VHtHyZwltR5vD1QCvxm3hmXfQ5Qfs4lCeASQgGsU511Y0BX4FPg5kwOioiINIFysKxQIUlERCTXkp79m8hWbtawcWuAE4F7gHaEAlJnQnexM2cNG/do3fXLR4y8lzDz2YJovY5ghWATLZ6Yb3W7qsVj1CT5hEpLhrnXPGTJNYZVsMTNPPSA8zAtW9KThcmaFzBbR2j1VGCGAf8kYVeCxcL+KAWWEYpGN20U3zmX/Bs4BfhfFF9JdHsIGFZ+ziXLsnPkRETkC8rBskJjJImIiIhIqzBr2LhVwM93efCqCcA2wDrg01nDxqXM5MtHjHyqbMrkp4H+hOLT/PIRo9YBP9/+L1f3BIYD1Yb9cc6pl1cD7Dz16iG4nQj+4QcjLp9Uu609p1xxXtJtn7j532eO+MVDAGVTJ8WBA6JtvzZvxKiVAAPuuPY6YDvCOE0fzzvjspRd1MrPuWQ68N2ym6/rRyg8LSw/55JVW3iYREREmpV5K26KZWYz3H2ffMchIiJbh1ycVzoV91j79QE/fC/b233iw2vROVFyRTmYiIhkk3Kw1kVd20RERNo4M+tmZk+b2YfRz65p1hsRrfOhmY2IHutgZo+b2ftm9q6ZTUr1tyIiIiKysdaag6mQJCIikmstb6DHUcCz7r4T8Gx0fyNm1g24Atgf2A+4ok6yc5277wrsBXzNzI7c0oBEREREsk45WFaokCQiIpJLTktMYo4FpkS/TwG+k2KdIcDT7r7M3ZcTplcf6u7r3P15AHevAv4LbLulAYmIiIhklXKwrNFg27LFBj85uj3QF6gAFkwbMrH1DrwlItJ69TCzGXXu3+Lut2T4t73dfUH0+0Kgd4p1tgE+qXN/fvTYF8ysC3A0cH2G+xXJqrKpk7oCXYFl5cNHrdisbdw1uSewG7C4/LSR/wPArMOb3fqevq6wsKxTVeXMLy///F7ca7IVt4iItGptLgdTIUk22+AnR5cAFwInA/Ho9tHgJ0dPmjZk4gv5jE1EpEVrnqlilzQ00KOZPQP0SbHo53XvuLubWZMDNLMCwrTsv3P3OU39e5EtUTZ10kBgNHAwkADiZVMnPQtMLB8+al5G27hr8g7AnzH2jh6ysrsmLZ58431zhxYXH7C6RwdbUFrqO3++yBZXltw5u/eA0Qd8Pu9XzfKERESkeSgHy4qcFJLMrD8wlVBdc0KF7vp66xihevYtwlSup7n7f3MRnzRd1ArpL8CXgdXA+mjRAOC2wU+OvmTakIkP5yk8ERGpx92PSLfMzD43s77uvsDM+gKLUqz2KXBInfvbAi/UuX8L8KG7/3bLoxXJXNnUSTsDfwM6ACsJuWYM+CYwuGzqpO+WDx81t8Ft3DW5DON1oCNQHW2DCx96us/uiz/vd8zo8xOfFZZWWLRgr8/mF/9+6r2//E/vAYkDPp/322Z7ciIi0uptjTlYrsZIqgEudvfdgMHAj8xst3rrHAnsFN3OBv6Yo9hk8xxHKCItJ/x/a60lFAKvGfzk6A75CExEpMXzZPZvW+ZRYET0+wjgkRTrPAn8n5l1jQZ4/L/oMczsaqAz8LMtDURkM4wH2gMriApAQJKQo3QELs9gG3+I1q2q3UaPlas57ZlXYqddeBrzBvSK165owMx+21ZeeOoJyR3WLpuEmcYcFRFpLZSDZUVOTnzuvqC2dZG7rwbeo16fPsIgU1M9mAZ0iSpy0jKdQRgTKZUqoJBwJVBERDbSDIM8bvlAj5OAb5rZh8AR0X3MbB8zuw3A3ZcRvrC/Ft2ucvdlZrYtoWn2bsB/zWymmZ25pQGJZKJs6qRtga8Cq9KsshI4uGzqpB5pt3HX5DjGYWx8YYzvvvzfoif2/jJLOncCIFkS36gl/2v9+lct7VxS9GFp96O35DmIiEiuKAfLlpyPkWRmZYSp6V6ttyjdAFILkJaoH6HlUTpFpO4HKiIiLYy7LwUOT/H4DODMOvfvAO6ot858QiMNkXzoQ52uaCk4oUDUC1iSZp0ehHEeqzba8PJVsdl9e27YUNw2ep2bmX/Uq5f3rl6+B6mvIIuIiDSoteZgOS0kmVlH4AHgZ+6e7spRY9s4m9D1DcKJX/JjGdAJqEyzvJrQpFxEROpymmugR5G2aBmhFXQ6Rsh3G8pJlhG6wtUOgRQe7FSS3Gbpig2t9xMbv28d2Gb5CmtXXTm7yVGLiEjuKQfLmpz16TazQkIR6W53fzDFKp8C/evc3zZ6bCPufou77xONip7uypI0vz8RBrVMpYAwY8pTuQtHRERE2qC5wAeEi1uplAL/LR8+Km0L9/LTRlbjTKdeQerRAwZVH/Pqm5SsD9fMYmsT1XWX77R0UVHZoiWJ3VYsfmBLnoCIiEhrk5NCUjQj2+3Ae+7+6zSrPQoMt2AwsNLd1a2t5foLodDXlY2b0xURkrnfTBsycUUe4hIRaflaXv98kVapfPgoB66I7nast7gToVvb1Rls6qdsGOMRgE96dvMn9v5y8o9/uJtOS9fU1CY7DvRbs7Lwxqn3xmeV9vwd7lWpNigiIi2QcrCsyFWLpK8BpwKHRQNAzTSzb5nZuWZ2brTOP4A5wGzgVuD8HMUmm2HakIkrCTO3PUu42lfChilzxxKmIBQRERFpVuXDR80g5JkfsyEnKSXklCeXDx/1dqPbOG3kGzjfJFwkKyS0ri4Yd+qx61bHCue9dPmv4lc/8li781/4V/Hv/np/u8d+/ceCz+MltxywcN7FzfbEREREWqicjJHk7i/RyCBQ7u7Aj3IRj2THtCETFwNnD35ydG9gR8Isbm9NGzKxpuG/FBFp49ro1SuR5lI+fNT0sqmThgA7E8bQXFQ+fNSHTdrGaSNfAbYvu2vyfsAgYGlNPP7wUW++m6iMF2zTf96SX2xnS/rGkv5up8rKawYv/Hhl1p+IiIg0L+VgWZHzWdtk6zNtyMTPgc/zHYeISKuhJEYk66JubrOi2+Zv57SR04HpdR8rTtR8emCd2XNERKSVUg6WFTkbbFtERERERERERFo3tUgSERHJKYdkMt9BiIiIiLQxysGyRS2SREREREREREQkI2qRJCIikkuO+ueLiIiI5JpysKxRIUlERCTXlMSIiIiI5J5ysKxQ1zYREREREREREcmICkkiIiK5lvTs30TSMLOhZjbLzGab2agUy4vN7N5o+atmVpaHMEVERJqfcrCsUCFJREREZCtlZnHgRuBIYDfgZDPbrd5qPwSWu/tA4DfA5NxGKSIiIq2JxkgSERHJoTDOo6aelZzZD5jt7nMAzOyvwLHA/+qscyxwZfT734AbzMzcNZCEiIhsPZSDZY8KSSIiIrnkbbcZtOTFNsAnde7PB/ZPt46715jZSqA7sKTuSmZ2NnB2dLdHs0QrIiLSXJSDZY26tomIiIhIo9z9Fnffx933oV6RSURERNoOtUgSERHJNfUYktz5FOhf5/620WOp1plvZgVAZ2BpbsITERHJIeVgWaEWSSIiIiJbr9eAncxsezMrAk4CHq23zqPAiOj344HnND6SiIiIpKMWSSIiIrmW1ECPkhvRmEc/Bp4E4sAd7v6umV0FzHD3R4HbgT+Z2WxgGaHYJCIisvVRDpYVKiSJiIiIbMXc/R/AP+o9Nq7O7xXACbmOS0RERFonFZJERERyTb2GRERERHJPOVhWqJAkIiKSS+64mlWLiIiI5JZysKzRYNsiIiIiIiIiIpIRtUgSERHJNTWrFhEREck95WBZoRZJIiIiIiIiIiKSEbVIEhERybWkroaJiIiI5JxysKxQIUlERCTXXAM9ioiIiOSccrCsUNc2ERERERERERHJiFokiYiI5JKDq1m1iIiISG4pB8satUgSEREREREREZGMqEWSiIhITrn654uIiIjknHKwbFEhSUREJMfUrFpEREQk95SDZYe6tomIiIiIiIiISEbUIklERCTX1KxaREREJPeUg2WFWiSJiIiIiIiIiEhGzL319hE0s8XAvBSLegBLchxOtij2/FDs+aHY80OxpzfA3Xs24/YxsycIzyPblrj70GbYrsgmGsjBcq01f55lSs9x69EWnqee49Yj189TOVgr0qoLSemY2Qx33yffcWwOxZ4fij0/FHt+KHYR2Vq0hc8EPcetR1t4nnqOW4+28jxl86hrm4iIiIiIiIiIZESFJBERERERERERycjWWki6Jd8BbAHFnh+KPT8Ue34odhHZWrSFzwQ9x61HW3ieeo5bj7byPGUzbJVjJImIiIiIiIiISPZtrS2SREREREREREQky1RIEhERERERERGRjKiQJCIiIiIiIiIiGWnVhSQz28nMKszsz2mWm5lNNrOl0W2ymVmu40wlg9ivNLNqM1tT57ZDruOsF9MLUcy18cxKs16LO+5NiL3FHfcorpPM7D0zW2tmH5nZQWnWu9DMFprZKjO7w8yKcx1ripgajd3MTjOzRL3jfkjuo/0injX1bgkz+30D67eY496U2FvacY9iKjOzf5jZ8uiY3mBmBWnW/b6ZzYteWw+bWbdcxysiuWdmPzazGWZWaWZ35Tue5mBmxWZ2e/QZt9rMZprZkfmOK9vM7M9mtiA6f35gZmfmO6bm1Fj+35plmmu3dpnm5K1VU3NgabtadSEJuBF4rYHlZwPfAfYE9gCOBs5p/rAy0ljsAPe6e8c6tzm5CKwRP64Tzy5p1mmpxz2T2KGFHXcz+yYwGTgd6AQcDGwSk5kNAUYBhwMDgB2AX+Qu0k1lGnvkP/WO+ws5CnMTdeMA+gDrgftTrdvSjntTYo+0mOMe+QOwCOgLDAK+AZxffyUz2x24GTgV6A2si/5WRLZ+nwFXA3fkO5BmVAB8QvgM7AxcDtxnZmX5DKoZTATK3L0UOAa42sz2znNMzSmT/L81yzTXbpWamNe2SpuRR0ob1WoLSWZ2ErACeLaB1UYAv3L3+e7+KfAr4LTmj65hGcbemrXI496K/QK4yt2nuXvS3T+Njmt9I4Db3f1dd18OjCf/xz3T2Fuy4wiFjRfTLG+Jx71WY7G3RNsD97l7hbsvBJ4Adk+x3inAY+7+b3dfA4wFhplZpxzGKiJ54O4PuvvDwNJ8x9Jc3H2tu1/p7uXR+fPvwFxgqyqyROfOytq70W3HPIbUbNpA/t8WbA15bVO0xjxScqRVFpLMrBS4CriokVV3B96sc/9NUn8hyZkmxA5wtJktM7N3zey8Zg4tUxPNbImZvdxAF5gWd9wjmcQOLei4m1kc2AfoaWazzWx+1NWnfYrVUx333mbWPRex1tfE2AH2iv4/H5jZ2HTdmfJgBDDV3T3N8hZ13OtpLHZoecf9t8BJZtbBzLYBjiQUk+rb6Li7+0dAFbBzLoIUEcklM+tN+Hx7N9+xZJuZ/cHM1gHvAwuAf+Q5pKxrYv7fmmWaa7c6m5HXbg0yySOljWqVhSTCFf/b3X1+I+t1BFbWub8S6GiW1/F6Mo39PuBLQE/gLGCcmZ3c3ME1YiSh2842wC3AY2aW6qpRSzzumcbe0o57b6AQOB44iNDVZy9CE/f6Uh13CE1v86Epsf8b+DLQi3D142Tg0pxE2QAzG0DoVjClgdVa2nEHMo69JR73fxOKRKuA+cAM4OEU69U/7kT31SJJRLYqZlYI3A1Mcff38x1Ptrn7+YTP7oOAB4HKhv+iVco0/2/NMs21W6um5LWtXoZ5pLRhra6QZGaDgCOA32Sw+hqgtM79UmBNvqqqTYnd3f/n7p+5e8LdXwGuJ3xw5Y27v+ruq9290t2nAC8D30qxaos67pB57C3wuK+Pfv7e3Re4+xLg12R+3AFWN2N8Dck4dnef4+5zo2bCbxOu2uX19R45FXjJ3ec2sE5LO+61Go29pR13M4sRWh89CJQAPYCuhPEI6qt/3Inu5/u4i4hkTfS5+CdCi8sf5zmcZhPlXS8B2wItpRV+VjTxu0ur1YTvCa1VU3LyrUEmObC0Ya2ukAQcApQBH5vZQuAS4Dgz+2+Kdd8lDPhca0/y2yT4EDKPvT4HWsSMc3Wki6mlHfdUMj2eeT3u0Zg786M4vng4zeqpjvvn7p6XMSSaGPsmf07LeL0Pp/ErMS3quNeRSez15fu4dwO2A26IEtGlwJ2kTtI2Ou4WZlcsBj7IRaAiIs0tasl9O6ElxHHuXp3nkHKhgK1vjKRD2Pz8vzXLd06RVVuY17ZGm5NHShvSGgtJtxBOMIOi203A48CQFOtOBS4ys23MrB9wMXBXTqJMLePYzexYM+tqwX7AT4FHchfqJvF0MbMhZtbOzArM7BTCTAWpxi5pUce9KbG3tOMeuRP4iZn1MrOuwIXA31OsNxX4oZntZmZdCE1t78pZlKllFLuZHRmN/4CZ7UoYODmvx93MDiQ0z25spooWd9wzjb2lHffo6t5c4LzovdqF0D//rRSr300Yz+wgMyshtKZ60N3VIklkKxd9PrQD4kC89vye77iawR8J3e2Pdvf1ja3c2kS5wUlm1tHM4hZmQT2ZrW8w6qZ8d2mVmvg9oTXLNCdv1ZqQA0sb1uoKSe6+zt0X1t4I3Rsq3H1x9IViTZ3VbwYeA94G3iF8aN+c+6iDJsZ+EjCb0E1jKjA5aiaaL4WEqXYXA0uAnwDfcfcPWvpxp2mxt7TjDqFf/WuElhbvAW8A15jZdma2xsy2A3D3J4BrgeeBj4F5wBX5CfkLGcUOHA68ZWZrCYNsPghMyEfAdYwgRWGilRz3jGKnZR73YcBQwvt1NlBNSNSIYj8Iwkw/wLmEgtIiwvga5+cjYBHJucsJ3UxGAT+Ift+qximJxic5h1B4WBh9/q2JvqBvLZzQjW0+sBy4DviZuz+a16iyrKH8P9+xZVHaXDuvUWVfyrw2rxE1j5R5pEhdpkHYRUREREREREQkE62uRZKIiIiIiIiIiOSHCkkiIiIiIiIiIpIRFZJERERERERERCQjKiSJiIiIiIiIiEhGVEgSEREREREREZGMqJAkIiIiIiIiIiIZUSFJZCthZuVmdkSaZXeZ2dW5jinad9q4RERERForM7vSzP6cZtkhZjY/1zFF+04bl4hINqiQJJJlZvZ1M3vFzFaa2TIze9nM9s13XLmQz4KViIiICHxxEWu9ma0xs8+j/KRjBn/3gpmdmYsYsyWfBSsRabtUSBLJIjMrBf4O/B7oBmwD/AKozGdcIiIiIm3M0e7eEfgqsA9weZ7jERHZaqiQJJJdOwO4+z3unnD39e7+lLu/VbuCmZ1hZu+Z2XIze9LMBtRZ5mb2UzObY2ZLzOyXZhaLlu1oZs+Z2dJo2d1m1mVzgjSzb5vZTDNbEbWe2qPOsnIzu8TM3opaVd1rZu3qLL/MzBaY2WdmdmYU80AzOxs4BbgsugL4WJ1dDkq3PREREZHm4u6fAv8EvgxgZoOj3GeFmb1pZodEj18DHATcEOUxN0SPX29mn5jZKjN73cwO2pw4zKyfmT1gZovNbK6Z/bTOsivN7D4zm2pmq83sXTPbp87yr5rZG9Gy+6Nc6mozK4meW78o5jVm1i/6s6J02xMR2VIqJIlk1wdAwsymmNmRZta17kIzOxYYAwwDegIvAvfU28Z3CVfOvgocC5xR++fARKAf8CWgP3BlUwM0s72AO4BzgO7AzcCjZlZcZ7UTgaHA9sAewGnR3w4FLgKOAAYCh9T+gbvfAtwNXOvuHd396Ma2JyIiItKczKw/8C3gDTPbBngcuJrQcvwS4AEz6+nuPyfkZT+O8pgfR5t4DRgUrf8X4P6mXhCLLgo+BrxJaK1+OPAzMxtSZ7VjgL8CXYBHgdpCVhHwEHBXFMM9hFwRd18LHAl8FsXc0d0/a2h7IiLZoEKSSBa5+yrg64ADtwKLzexRM+sdrXIuMNHd33P3GmACobXOgDqbmezuy9z9Y+C3wMnRtme7+9PuXunui4FfA9/YjDDPBm5291ejVlNTCF3vBtdZ53fu/pm7LyMkPoOix08E7nT3d919HZkXstJtT0RERKQ5PGxmK4CXgH8Rcq4fAP9w93+4e9LdnwZmEApNKbn7n919qbvXuPuvgGJglybGsi/Q092vcvcqd59DyBNPqrPOS1FcCeBPwJ7R44OBAkIuVe3uDwLTM9hnuu2JiGwxFZJEsiwqEp3m7tsSmlH3IxSEAAYA10fNqVcAywgtjbaps4lP6vw+L/p7zKy3mf3VzD41s1XAn4EemxHiAODi2hiiOPrX7ieysM7v64DaASr71Yuv7u8NSbc9ERERkebwHXfv4u4D3P18d19PyIFOqJcDfR3om24jUXf/96Lu+SuAzjQ9/xpA6H5Wd79jgN511qmfK7UzswJC7vWpu3ud5ZnkX+m2JyKyxfRhItKM3P19M7uL0I0Mwon/Gne/u4E/6w+8G/2+HVDbRHkCoaXTV9x9mZl9h81rplwbwzWb8bcLgG3rxVqXIyIiItIyfQL8yd3PSrN8ozwmGg/pMkJXtHfdPWlmywkXAZu637nuvlNTAybkXtuYmdUpJvUHPkoVs4hILqhFkkgWmdmuZnaxmW0b3e9P6Jo2LVrlJmC0me0eLe9sZifU28ylZtY1+tsLgHujxzsBa4CVUR//SzczzFuBc81sfwtKzOwoM+uUwd/eB5xuZl8ysw7A2HrLPwd22My4RERERJrTn4GjzWyImcXNrJ2ZHVKbt7FpHtMJqAEWAwVmNg4o3Yz9TgdWm9lIM2sf7fvLZrZvBn/7HyAB/NjMCqLxNvers/xzoLuZdd6MuERENosKSSLZtRrYH3jVzNYSCkjvABcDuPtDwGTgr1H3tHcIgyTW9QjwOjCTMCDk7dHjvyAMwL0yevzBzQnQ3WcAZxFaMy0HZpPh4Nfu/k/gd8Dz0d/VFsgqo5+3A7tFzbYf3pz4RERERJqDu39CmMhkDKE49Anhwlztd6LrgeMtzKz7O+BJ4AnCZCrzgAoy79Zfd78J4NuEMSLnAkuA2wjd5Br72yrCJC0/BFYQxnn6O1Hu5e7vEwbgnhPlX/3SbEpEJGts4+62IpJPZubATu4+O9+xZMLMvkQohhVHg4eLiIiISDMys1eBm9z9znzHIiJtk1okiUiTmNl3zazYzLoSWlc9piKSiIiISPMws2+YWZ+oa9sIYA9CSykRkbxQIUlEmuocYBFhkMcEcF5+wxERERHZqu0CvEno2nYxcLy7L8hrRCLSpqlrm4iIiIiIiIiIZEQtkkREREREREREJCMqJImIiIiIiIiISEZUSBIRERERERERkYyokCQiIiIiIiIiIhlRIUlERERERERERDLy/02Hbp2w5s4hAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
@@ -386,8 +403,9 @@
}
],
"metadata": {
+ "celltoolbar": "Edit Metadata",
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "dval_env",
"language": "python",
"name": "python3"
},
@@ -401,11 +419,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.8.16"
},
"vscode": {
"interpreter": {
- "hash": "4e000971326892723e7f31ded70802f690c31c3620f59a0f99e594aaee3047ef"
+ "hash": "b3369ace3ad477f5e763d9fa7767e0177027059e92a8b1ded9e92b707c0b1513"
}
}
},
diff --git a/notebooks/shapley_utility_learning.ipynb b/notebooks/shapley_utility_learning.ipynb
index 8e930730e..978583975 100644
--- a/notebooks/shapley_utility_learning.ipynb
+++ b/notebooks/shapley_utility_learning.ipynb
@@ -16,7 +16,7 @@
"The idea is to employ a model to learn the performance of the learning algorithm of interest on unseen data combinations (i.e. subsets of the dataset). The method was originally described in *Wang, Tianhao, Yu Yang, and Ruoxi Jia. [Improving Cooperative Game Theory-Based Data Valuation via Data Utility Learning](https://doi.org/10.48550/arXiv.2107.06336). arXiv, 2022*.\n",
"\n",
"\n",
- "**Warning:** Work on Data Utility Learning is preliminary. It remains to be seen when or whether it can be put effectively into application. For this further testing and benchmarking are required.\n",
+ "
Warning: Work on Data Utility Learning is preliminary. It remains to be seen when or whether it can be put effectively into application. For this further testing and benchmarking are required.
\n",
"
"
]
},
@@ -34,17 +34,17 @@
"\n",
"where $N$ is the set of all indices in the training set and $u$ is the utility.\n",
"\n",
- "In Data Utility Learning, to avoid the exponential cost of computing this sum, one learns a surrogate model for $u$. We start by sampling so-called **utility samples** to form a training set $S_\\operatorname{train}$ for our utility model. Each utility sample is a tuple consisting of a subset of indices $S_j$ in the dataset and its utility $u(S_j)$:\n",
+ "In Data Utility Learning, to avoid the exponential cost of computing this sum, one learns a surrogate model for $u$. We start by sampling so-called **utility samples** to form a training set $S_\\mathrm{train}$ for our utility model. Each utility sample is a tuple consisting of a subset of indices $S_j$ in the dataset and its utility $u(S_j)$:\n",
"\n",
- "$$\\mathcal{S}_\\operatorname{train} = \\{(S_j, u(S_j): j = 1 , ..., m_\\operatorname{train}\\}$$\n",
+ "$$\\mathcal{S}_\\mathrm{train} = \\{(S_j, u(S_j): j = 1 , ..., m_\\mathrm{train}\\}$$\n",
"\n",
- "where $m_\\operatorname{train}$ denotes the *training budget* for the learned utility function.\n",
+ "where $m_\\mathrm{train}$ denotes the *training budget* for the learned utility function.\n",
"\n",
"The subsets are then transformed into boolean vectors $\\phi$ in which a $1$ at index $k$ means that the $k$-th sample of the dataset is present in the subset:\n",
"\n",
"$$S_j \\mapsto \\phi_j \\in \\{ 0, 1 \\}^{N}$$\n",
"\n",
- "We fit a regression model $\\tilde{u}$, called **data utility model**, on the transformed utility samples $\\phi (\\mathcal{S}_\\operatorname{train}) := \\{(\\phi(S_j), u(S_j): j = 1 , ..., m_\\operatorname{train}\\}$ and use it to predict instead of computing the utility for any $S_j \\notin \\mathcal{S}_\\operatorname{train}$. We abuse notation and identify $\\tilde{u}$ with the composition $\\tilde{u} \\circ \\phi : N \\rightarrow \\mathbb{R}$.\n",
+ "We fit a regression model $\\tilde{u}$, called **data utility model**, on the transformed utility samples $\\phi (\\mathcal{S}_\\mathrm{train}) := \\{(\\phi(S_j), u(S_j): j = 1 , ..., m_\\mathrm{train}\\}$ and use it to predict instead of computing the utility for any $S_j \\notin \\mathcal{S}_\\mathrm{train}$. We abuse notation and identify $\\tilde{u}$ with the composition $\\tilde{u} \\circ \\phi : N \\rightarrow \\mathbb{R}$.\n",
"\n",
"The main assumption is that it is much faster to fit and use $\\tilde{u}$ than it is to compute $u$ and that for most $i$, $v_\\tilde{u}(i) \\approx v_u(i)$ in some sense."
]
@@ -66,9 +66,11 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -79,7 +81,9 @@
"cell_type": "code",
"execution_count": 2,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide"
+ ]
},
"outputs": [],
"source": [
@@ -137,7 +141,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "As is the case with all other Shapley methods, the main entry point is the function [compute_shapley_values()](../pydvl/value/shapley/common.rst#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all algorithms in this family. We use it with the usual classes [Dataset](../pydvl/utils/dataset.rst#pydvl.utils.dataset.Dataset) and [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility). In addition, we must import the core class for learning a utility, [DataUtilityLearning](../pydvl/utils/utility.rst#pydvl.utils.utility.DataUtilityLearning)."
+ "As is the case with all other Shapley methods, the main entry point is the function [compute_shapley_values()](../../api/pydvl/value/shapley/common/#pydvl.value.shapley.common.compute_shapley_values), which provides a facade to all algorithms in this family. We use it with the usual classes [Dataset](../../api/pydvl/utils/dataset/#pydvl.utils.dataset.Dataset) and [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility). In addition, we must import the core class for learning a utility, [DataUtilityLearning](../../api/pydvl/utils/utility/#pydvl.utils.utility.DataUtilityLearning)."
]
},
{
@@ -250,7 +254,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We now estimate the Data Shapley values using the [DataUtilityLearning](../pydvl/utils/utility.rst#pydvl.utils.utility.DataUtilityLearning) wrapper. This class wraps a [Utility](../pydvl/utils/utility.rst#pydvl.utils.utility.Utility) and delegates calls to it, up until a given budget. Every call yields a utility sample which is saved under the hood for training of the given utility model. Once the budget is exhausted, `DataUtilityLearning` fits the model to the utility samples and all subsequent calls use the learned model to predict the wrapped utility instead of delegating to it.\n",
+ "We now estimate the Data Shapley values using the [DataUtilityLearning](../../api/pydvl/utils/utility/#pydvl.utils.utility.DataUtilityLearning) wrapper. This class wraps a [Utility](../../api/pydvl/utils/utility/#pydvl.utils.utility.Utility) and delegates calls to it, up until a given budget. Every call yields a utility sample which is saved under the hood for training of the given utility model. Once the budget is exhausted, `DataUtilityLearning` fits the model to the utility samples and all subsequent calls use the learned model to predict the wrapped utility instead of delegating to it.\n",
"\n",
"For the utility model we follow the paper and use a fully connected neural network. To train it we use a total of `training_budget` utility samples. We repeat this multiple times for each training budget.\n",
"\n",
@@ -368,11 +372,26 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABiYAAAPPCAYAAABAK3M6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcV33//9eZGe27LMmWN9m+tuXdjhOW0EA2tlLUgrtRWpetLOXXNrSlLUuAsBVo+VJSugAtLdSllBYMdFgCIRDICkkcW7bjyPa1LduxbEuWZO3LzJzfH+cKK7Ika7mj0fJ+Ph73MdbMnXPPLBprzvue8zHWWkRERERERERERERERGZCJNMdEBERERERERERERGRhUPBhIiIiIiIiIiIiIiIzBgFEyIiIiIiIiIiIiIiMmMUTIiIiIiIiIiIiIiIyIxRMCEiIiIiIiIiIiIiIjNGwYSIiIiIiIiIiIiIiMwYBRMiIiIiIiIiIiIiIjJjFEyIiIiIiIiIiIiIiMiMUTAhIiIiIiIiIiIiIiIzRsGEiIiIiIiIiIiIiIjMGAUTIiIiIiIiIiIiIiIyYxRMiIiIZJgx5qPGGGuMuTfTfZHZwxjzxeB98cVM90Vml/n+3pjvjy9MYTxXxpj7gzbuCq9nIiIiIiLji2W6AyIiIsLO4HJfOhoPBps+MNH9rbUmHf0QmcuMMa8HVgH3W2vvn6vHyKT5/vhmGz3f809Yr6neGyIiIjIbKJgQERHJvOuCy7QEEyNcmIFjiMxHrwduDv59f4aP0QQ0BJdzyeuZ348vE8Z7rl5P+t+zMrNeTzivaVjtiIiIiEyZggkREZEMMsYsAxYHP6Y9mLDWLkn3MUQkvay17wbenel+pMt8f3xh0nMlIiIiInOVakyIiIhk1tAyTh3A8Ux2RERERERERERkJiiYEBERyayhYGK/tdZmtCdjGF4Y1RiTZYz5c2PM48aY9uD6Wyaz34i2bzHG/K8x5hljTL8xpsUYc58x5g3GmOh0+jOBx1VmjHmTMeZ/jDEHjTGtxpg+Y0yjMea/jDHPn+BzYowxbzbG/MwY02GM6TTGPGKM+b0J9OF3jTEPBfe5HLTxFmNMKHU+jDErjDF/Y4zZH7Tfa4zxjTHfMsb8vjEmd4z7Tfd1iRlj/tQY86QxpssYc9EY801jzPZh++cbY+40xhwyxnQbYy4ZY75qjPEm0H62MeZdxpj64L5txph7jTG/PM5zcSq4/+vH2eeqQsLGmNcbYyxXlj35QLDP8G3VsP0n/b6awjGuWfA4hNdwyu/rdD6+dL/Pht1vlTHm08aYw0HbPcaYp40xdxtjVk72OQjaPBj0/Y9Gue3GYc/F10a5PSt4Dawx5vZh10/7PTviOKG97sPanNRn9lSfe2PMbxtjvmeMuWCMGQzaP2aM+T9jzP9nRnzemWl+pky3v8F9J/QZPZ3XdMTxptSOmcLnyUQYYz4ZHPM7wc+vDdq9FLz/fmqMuXXY/lnGmLcaYx4OXt8uY8z3jTHbptoHERERyRwt5SQiIpJZaS18HbJc3FrULwASQCcwWpgyof2MMZ8C/jT40QKXgVLgtmD7PWPMq6y1ndPsz1ju4EpR8CRu1grAymB7jTHmHdbavx+njSjwDeDXgj70AEXA84HnG2PWWWuvKjxujDHAF4A3BFdZoB24AXgucCvQP4nHchVjzG7g87jnCWAA9xytBNYAvwrUA/tH3G+6r0sWcA9we3DMQaAS9xzdHgwynQTuxdVX6QuOUw78FnCLMeY51trTY7SfDfwQeCHuOe8K+vdi4MXGmA9aa+8a77mZpF5cbZby4LF1B8ccLjns31N5X032GOMK4TWc0vt6HKE+vkDa3mfGmN/F/X7mBFf1AymgNtjeYIz5DWvtDybZ5x8DW3CvwT+MuO22Yf++xRhjRoTVzwUKg748dI3jTPX5Dvt1H+man9lTfe6NMf/Glc9TcI83C1gbbHXAd4BTo/Rryp8p03mvTPIzOqzfoUm3E8LnyXiGamwdM8bEgVdy5fe5APea3GOM+SXgPLAXeE7wOAzuuXspsCN4f3YgIiIic4e1Vps2bdq0adOWoQ04g/uivzuNx7grOIad4v3vD+7fGWyvB/KC2xYB5ZPZL/j5j4b6BHwOWBJcXwC8AzcoYYH/nmp/JvC43hI8N9cD2cF1BlgNfBo3uJQArhunD624QOF1w/qwHPi/4PYksG6U+//JsMf/GaAiuL4EN6idAtqC2784hdfsV4I2LPAgcBMQCW7LDn7+PLBpxP3CeF3agBbgN3ADXwY3kOQHtz+EG1w6iRtQigTb7cDFYJ//HKf9dtwg81uB3OC2FcD/Duv7r45y/1PBba8f53n74ljP+bDj3zUD76trHWO8fobxGk7pfT2Jz5LpPL50v89eEjy+QeATwKqgbYMbaP4frgzOrpzk4391cN9LBL+Pw2774bB2LbBjxO13Btffn4b37Ey97tf6P2RKzz3u82yof3/Js/+vWRS8/l8Elob8mTLl9wpT/4ye0Gsa4u/ilD9PJtiPS1z5fW4EXgVkBbe9DBdAWODrwCFcSHNL8BxHgvfSUP/+eDrPiTZt2rRp06Zt5reMd0CbNm3atGlbqBvu7N6hL9Sb03icu4Yd5/w1trtHuf/9w+5fN85xJrpf3rDBiP8aY58/HtbW9VM5TgjP2z8Ex/jXazzWW0e5PQd4Jrj9vSNuyx32+P9jjGN/bFj7X5xkv2PAieC+DxAMjk/gfmG+LjeNct/bht3eA6wdZZ83Drs9a5z23zjKfSPAT4LbD41y+ylmIJgI6X017jHG6mfIr+Gk3tcTfOzTenzpfp8F76GjwW1vGad/3wr2+fQkH38ZbiDbAjtHPK89uLPX/za4/c9G3PdHwfUfCPs9O4Ov+5if2dN57nFhhAW+P41+TeozZZr9ndJn9GRe0zDaYZqfJxPoQ82w+15gRHAU7PMvw/Y5DBSMss/Qa/SP03lOtGnTpk2bNm0zv6nGhIiISOYMLWHQCzw9Q8dcfI2tZJz7HrbWxidwjGvt9xLcMhLgQpPR/BPQFPz7tdPsz1R9J7i8aZx9HrLW/njkldbafuD7wY8j175+KVce/4fGaPfjuDN4p+JW3Nn5AH9qrR2Y4P3Cel0etNY+OMr1P+HK8lRfs9aOVux96DnLA9aN0f4Z4N9HXmmtTQEfCX7cbIzZOsb9M20i76upCus1nMr7eqal4332ouDnFuBfxzn2fwSXL5t4d8Fa2wYcCH4cvnTT84O+PIRbnupZtxtjcoAbgx+vel1ClO7XfbzP7Ok89+3BZeUU6x1M5TNlOv2d6mf0TAvr82Qs1w3795uttedG2edscGmB37bWdo+yzzPBZdYkjx8KY8xZY8w3MnFsERGRuU41JkRERDJnqL5EvbU2CWCM2Qn8Hm65kdW4AbYjwKestd+c7gGttdMpqnytdc0nut8NweUZa+3R0Xaw1iaNMT8CfnfY/lPtz5iMMWuAt+MGijzceuojT9xYPk4TPxvntqFBlvIR1w9//KMNmmKtvWyMeQL4pXHaH8sLgsvz1trHJ3G/sF6Xn49z3xZgGfDYGPe9MOzfZWPsc7+11o5x2wO4ZZJiQf8OjrFfWoXwvpqqsF7DqbyvZ1o63mdDv28lwDkzdg367OCyZmJdfZYf4QZkbwM+GVx327DbHsZ97r/QGBMN/m94AW6mVS/w6BSOOVHpft3H+8yeznN/Hy7IvQ54wBjzBeBH1tqTE+zXVD5TptPfqX5Gz7SwPk/GMhRMnAO+PcY+q4LLh621h8bYZyjkGa1ezB8D7dbaPZPs24QYYxbhPms+l472RURE5jsFEyIiIpkzWuHrv8SdpbgXdyZiHvA7wDeMMR+21r5/Zrv4LBdD2q8quHxm3L2unClZNcbtE+3PqIwxrwa+wpWipeAKFQ8Vyc3GDVoWjNPMeMU+E8HlyLM4J/v4J2tJcNk4yfuF9bpM5DkZdR9rbWLYAN9YZ7+O2T9rbZ8x5hJu9s9Y/UurkN5XUzWTr2FGzk4eJh3vs6XDrls8gT7kTWCfkX4M/DkueIhZaxO4AAvcYHqvMeZR4GZczYxHh93+cJrPrk/36z7eZ/aUn3trrW+M+QPgs7iZJTcCGGOacc/3fwH/N074MJXPlOm8V6b6GT3Twvo8GctQMPGdYHbKaHYEl98a7UZjTAQYmslSP+K2XOD/Af8MpCWYwNVlycPV2hAREZFJ0lJOIiIimTNaMPEZYJm19s3W2s9Zaz+NO7vyUeDdxphMnqWcDHm/6ZrycYKzHL+IGzz+Ea6YZr61tsRau9hauwT4zTA6mQFjDb5Jms3z99VCMLQM0M+stWYi2xSO8VPcIH8h8FxjTD7wPFyB5CeCfX4UXN424jKdyzjNhPE+s6f13Ftrv4yblfA24Ku45Zkqgd8Cvgn8xBhTHOJjmU5/9Rnt7AguR53ZZIzJBjYHP441s2QdV0LefSNuuw4XHI06u2q04wVBx4RZp29o1quIiIhMjoIJERGRDDDGlABrgh9/8WXaWvuQtfZZtQWCL7x7cTMd189YJ9Nn6KzZay1lM3T7tGZGjOEVQDHQhivG+hNrbe+IfZZcfbdQDD2eZdfY71q3j+V8cDnZZWZmw+syEWM+L8Fa/IuCH0f2b+iM79xx2h6vxspEZPJ9BXPnNZytpvq7M2HW2k6uBBC34WqNZAM/HTa4ORRA3GaMKQCeG/z8I+avaT/31trWINB/jbV2JbAWV6/HAi9k7DoJU/lMmU5/0/4+C0naPk+CEHdF8OPIQGHIVlywYMfZZ2jWxUVr7S9mGRpj7sEtiwbwn8YYG2yvCm7/V2NMjzFmjTHmP4NZMV1A1Biz1BjzN8aYJ40xbcaYDmPMz4fuO+Jx/Ksxpnt4oGGM+aIxptMYU22M+Zwxpin4+TvGmOqJPD8iIiILhYIJERGRzLgOMMAAMNa6ycMNLRvRnLYezZyhMx+XG2NGDVqCAqZDy5eMtU78dAwNiDRYa3vG2OfFaTguXHn8K4wx3mg7BGf2Xj/F9ocGY5YYYyaz5vdseF0m4mYz9oLuL+TKUqUjz7BtCy5XMIpgYGm852toqZHxzpKf7vtqIscYz2x/Daf7+NJtqAbCZH93JusXwQPDlnEadvvPgB7cbLnbcYOzXUz+9Zrtz/dwoT/31lrfWvtu3FJO4JZJHM1UPlOm09+pfkZDeK/pRNpJ5+fJUKAwyNi1gIZmlfrW2svXaOfJEdf/I3B/0P7uYdtPgtt34JYuexj3XLwX+Atr7SDwKtxj+jZuec2/xoVTXzPGDIWEDGvn4IilqHbgCrI/gnt+78ItJfUK4FNjPA4REZEFScGEiIhIZgx94T58rTXDjTHLgDfglozw096z9LsXuBT8+64x9nkrV8KYr6ShD0ODHOuDdaifxRizA3htGo4L7vEPDZK/b4x9/pKprV8PbtDzRPDvvwuWw5hovzL9ukzESuB1I68MgoX3BD8+Za0dOdh1ILh89RiDkK9j/DODO4LL0nH2me77aiLHGM9sfw2n+/jS7cfAUEH6a/7uTGNpvaEQ4kbgl0dcR/B/wkO4z4Ch9/SDQT2KyZjtz/dwU37ug1kN4xmatTRWHYOpfKZM570y1c9oCO81nUg76fw8GQoUxvsbaGifsWZLwJXloJ61j7U2jguUnrLW/uewrc0YE8MtEVUF3GGt/X1r7WettXcHd/+StfY51tr3WWv/xVr7cVxQEcWFCwAMa2f/sOuygI24mXGvs9a+JZjF83ZcIfWRwYaIiMiCpmBCREQkM0arL3GVYP3xb+DWrH9Lujs1E4Klbe4KfvwdY8xnjTGLwT1eY8yfAJ8Obv+qtfaJq1uZth/gBqnKgS8H4c/QGtO/Fdw+XiHYKQse/4eDH19njPl0sKwFxphiY8z7cINh7VNsPwn8EW75i5uA+4wxNw0tNRE8xluC5Ss2jejXXcGPmXpdJuIy8M/GmDcPDf4bY1bgBsWGzty9c5T7DQ2abQQ+P+I5/1Nc4dzWcY47NLPpFUPvl1FM9301kWOMaQ68htN6fOkWDPy/Dbfs103AT40xtweDjQAES7+8zRjzGPD2KR7qIdxsuVxgO24m3MggbSioeF5wOZX6ErP6+R5ums/9Pxhj/scY8+vGmKph+xcaY94G/H5w1XfGOPykP1Om09+pfkYHwnpNr9lOmj9PJhI6DP2dNF67o7YThM/bGRYaDLMB97v3v9bar4680VrbHbQRMcaUGGMqgD7ca50zSjvDj7EJtzTbF6y1P+HZBrgSkomIiAgKJkRERDLlmsFEcBbl3mDf37XW1k/3oMaY8xPYXjDd41yLtfYfgL8Lfnwr0GSMacUNEN2NW7rkx8Cb03T8Y8DfBj/uAs4aY9pxy6V8Nbj8k3QcO3A3bmkHgDuAi8HjbwU+FPThW1Nt3Fr7PeD1QD9u4OsBoMcY0wJ0457b38UNoAy/X0Zflwn6J9wSI58HOoL+ncYVuQX4iLX2GyPvZK29jyvP+R8ALcaYNtzslU8BnwPi4xz3S7jBqbXA6eB35VSwLQ+OMd331TWPcS2z/DWc9uNLt+B98pu4AOl5wA+BbmNMizGmD/CBf8Yt+zWlIsbBMl8/G3bV/dbakW2NDCKmEkzM+ud7uGk891nB/b4GXDBuPf+2oJ1/xn3OPQh8dIxDT+czZUrvlal+RhPeazqhdtL4eTJuMGHcElHbgh9HDSaCQKVyjHY8oIirl3iCK7Ms9oy8wTivM8Y8ggsR2nHB4QXcDIxjo7Szf9h124PLr41y3I3A06NcLyIismApmBAREZlhxs2CqA1+HOtLeRbwP8BLgTdZa/eGdPjFE9gms6zElFlr/wy3xvrXcV/6C3EDPD8G3gi8JCgUm67jvwt3Ju3PcQMQWbilOf4aN2hyLo3HTllrfz84/qPB8WO498PbCGEZKWvtf+DO6Pw08BTubM88oBH4Jm697SOj3C+jr8sEDODW3X8P0IA7g/UycB/wK9basZbHAjcQeAduIKkX97fwQ8BvWWvHDaKC0OFW4P9wA1WLcMVra7iyBv203lcTPca1zNbXMKzHl27W2m/iBmw/iHsdu3BL3vTjlgT7V+DVXAmhpmJ40DBaUevHubLcTgfXmF03mrnyfA83xef+w7jA7xu4gd8E7j1/Ebcc0RuBW4bOhB/FlD9TpvNemcpndIifERNuJ+zPk+BvoKGaFWO9rzdwZTnDaxW+brfWnhjjtv2j3G8HLigaOaMB4DPAF3EFyv8E99q9BBfCjGxvB26GXP2I6yzuvfALwUyepYwelIiIiCxY5uqTc0RERCSTgjMF/xv4DeAPrbWfzXCXRDLOGHM/cDPwQWvtXZntjYjMdfpMmb+MMR/BFbQuHVk42xjzQ2CVtXbtiOtXASeBf7DW/vGI276PC3IKh2piBO0st9ZuGLbfj4CVo7T9cuB7uKDru+E8ShERkblPMyZERERmkWCN6S/hQok/VSghIiIiMimrgbaRoURgO6PPwlgRXDYMv9IY8xbc7NWRhbpHq2ExVttDMzg0Y0JERGSYWTmFV0REZAH7W9y60o/g1sD/vRG3PzzKkgUiIiIi4pwEyowxn8AV+m631saD+hkVjB4QHMTVlPiAMaYQtyzXS3CBhWVY4DCsnf3DrlsBlI/R9nXABWtt07QfmYiIyDyiYEJERGR2uT64vDHYRnoDoGBCREREZHSfxNXyejNQBnwXiHOlYPVV4YG1tt0Y82u4mh93AU24ZTU/hKv5Mvw+Q+3sH3bdUOHrsYKJ/aNcLyIisqApmBAREZlFrLW3ZLoPIiIiInOVtbYd+M1Rrv82YMa530+BnaPcZEbsd1U747VtrV13zU6LiIgsQCp+LSIiIiIiIiIiIiIiM0bFr0VEREREREREREREZMZoKacMMcYYgiJYme6LiIiIiIiIiIiIiIRuMfCk1bJFV1EwkTnXAU9kuhMiIiIiIiIiIiIikjbXA/sy3YnZRsFE5gzNlLgezZoQERERERERERERmU8W405M19jvKBRMZN4Fa+0zme6EiIiIiIiIiIiIiITDreQvY1HxaxERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCRERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCRERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCcmYvQ1NeXsbmrIy3Q8REREREZG5KO552XHPK8h0P0REREQmS8GEZNJzgY2Z7oSIiIiIiMhcE/e8HOBW4NVxz1sb9zyT6T6JiIiITJSCCcmkXGBJpjshIiIiIiIyl8Q9Lwv4JWAbUAL8MvCCuOflZrRjIiIiIhOkYEIyrVrLOYmIiIiIiExM3POiwPOB64BG4DRwCXgB8Ctxz6vOYPdEREREJkTBhGRaIVCW6U6IiIiIiIjMdnHPiwA3AM8BzgG9wU2dwDFgOVAX97ztQYAhIiIiMispmJBMKwLKM90JERERERGR2SyoIbEduBG4CHSN2CUJnAAGgduBF8c9r2RGOykiIiIyQbFMd0AWvHxgUaY7ISIiIiIiMsttAm4C2oDL4+zXgptBsRWojHveo4Bf5/s2/V0UERERmRjNmJDZYMXehiaT6U6IiIiIiIjMRnHPWwfcDHQDrRO4Sz9wFDdDXYWxRUREZNZRMCGZ1g2UAMWZ7oiIiIiIiMhsE/e8VcCtQAJonsRdLXAWFcYWERGRWUjBhGRaD245J9WZEBERERERGSbuectwoUQW0DTFZlQYW0RERGYdBROSaSnAAGWZ7oiIiIiIiMhsEfe8KuA2oBA4Pc3mVBhbREREZhUFEzIb9AHLMt0JERERERGR2SDueeW4UGIRcCrEpltwIcdW3OyJtXHPU70/ERERmXEKJmQ26AQq9zY05WW6IyIiIiIiIpkU97xiXCixDDfLIWwqjC0iIiIZp2BCZoMu3PRkLeckIiIiIiILVtzzCnA1JVYBx3EFrNNBhbFFREQkoxRMyGyQAGKoALaIiIiIiCxQwayFm4H1gI+rx5dunbgARIWxRUREZEYpmJDZIglUZroTIiIiIiIiMy3ueVnAC4HNuOWbEjN4+AQqjC0iIiIzTMGEzBadwLK9DU06O0dERERERBaMYIbCC4DtuELXAxnqigpji4iIyIxRMCGzRReu+FpphvshIiIiIiIyI+KeFwGeB9yAq/nQl9keqTC2iIiIzAwFEzJb9AL5qM6EiIiIiIgsAMFshOtwwUQT0J3ZHv3CyMLYr1BhbBEREQlbLNMdEBnGomBCREREREQWhq3ATbgllDoz3JfRDBXGXglUxD3vZ8ChOt9PZrZbIiIiMh9oxoTMJt3Air0NTVrHVERERERE5q24523AFbvuANoz25txqTC2iIiIpIVmTMhs0oWrMVEQ/FtERERERGReiXveGuBmXJHrlgx3Z6KGZnVsBSrjnvco4Nf5vs1st0RERGSu0owJmU26gEK0nJOIiIiIiMxDcc9bAdwGGOB8hrszWSqMLSIiIqFRMCGzSQqIAmWZ7oiIiIiIiEiY4p63BLgVyAOeyXB3pkqFsUVERCQUCiZktukH9IetiIiIiIjMG3HPW4Sr0VAGnMpsb0IxVBh7BVAX97ztcc+LZrhPIiIiMoeoxoTMNp3Akr0NTdm7aqsHMt0ZERERERGR6QiKRd8GVAF+mG2baDRqk8lkmG1OwlBh7Apc6LIk7nmP1vn+5Qz1R0REZE7bt3t3PvBSoA64CagBkriTAb4OfGrnnj1dI+5zF/CBcZr9xM49e96Vlg5Pk4IJmW26cDMmyoALGe6LiIiIiIjIlMU9rxAXSqzEDSqEVix60YYNr8gpK/uD1MDAgY7Tp/+1p7k5U8tDqTC2iIhIOF4L/Evw7yPA/wHFuOUTPwj8zr7du2/euWfPxVHu+xDub42RnkhHR8OgYEJmmwEgBwUTIiIiIiIyh8U9Lw+4BfBwAwWpsNqu2Lz513NKSl4HEM3Jub507drtBUuWfKvt2LH/SfT19YZ1nEkYKoy9DFcYe1/c856o8/2+DPRFRERkrhoEPg98eueePUeGrty3e3c18B3gOuDTuABjpH/duWfPF2egj6FRjQmZjZJAZaY7ISIiIiIiMhVxz8sGXghswC13FNpySxVbt/7uUCgx0NX1rWR//+PGmFh2UdGvV+3Y8c9l69a9KKxjTdJohbGXZKgvIiIic87OPXu+tHPPnrcODyWC65uA/y/4cde+3buzZ7534VMwIbNRF7B8b0OT3p8iIiIiIjKnxD0vBvwSsA1X6HowrLYrt217U05R0W8D9F++/KXm+vovnH/iiQ91NTV9OJVMNplIpDy/svKdS2644a8LlixZFdZxJ2l4YexfVWFsERGRUBwILnOARZnsSFi0lJPMRl1ACW4NtfbMdkVERERERGRi4p4XAZ4H7ARO45Y4mjYTiUQqt237w6z8/JcB9LW1fe7SkSPfGbr98smTj3WePbu/fP36V2cXF/9WNDt7S8nq1Z8uWLz4u23Hj395sLu7O4x+TIIKY4uIiIRrTXA5CLSOcvtt+3bv3gHk4mYwfm/nnj2ztr4EKJiQ2akHWAqUo2BCRERERETmgLjnGeAG4LnAOSCUWg8mEolUbd/+jlhe3i3W2lTfpUufaT169L6R+6UGBwdbDh/+n9yysh+VrF79xlhu7k1ZBQWvrNy69UV9bW1faj169IdYO9MFqVtwJ56pMLaIiMj03BFc3rNzz57RTnzYPeLnD+/bvfvrwOt37tnTld6uTY2WypHZyAIGVwBbRERERERkLtgO3Ag04wbjpy0Si8Wqduz4qyCUSPY2N39ytFBiuL62tpYL+/b9Teczz9yZSiROm0ikOG/Roj9ecsMNnyxctmxdGP2apD5cYewiXGHsF8Q9LzcD/RAREcmUQmNM8bAtZzJ33rd79yuAN+FmS7xvxM3HgXcCm4FC3FKKvws8A/w6sGe6nU8XM/MnTAiAMWYZblrNcmvtM5nuTybsbWh6GbAWN8V5pOXAuV211d+a2V6JiIiIiIhMTtzzNuGWLOpg9OUVJi2SnZ1dtXXru6M5OddbaxM9Fy58vP3EiZ9Ppg0TjUbLa2tfmVNS8lpjTB7AYE/Pve2+/x8DnZ2ZWFapCFgG+MDDdb5/PgN9EBERmRHDxn9H+qC19q6JtLFv9+4NwMO4E7jfsXPPnrsneL9q4CCuHsWNO/fseXRCnZ5BmjEhs1UXsGhvQ1NepjsiIiIiIiIylrjnrQNuxi3dFEooEcvNzavatu0DQSjR33Xu3IcmG0oA2GQyeempp77VcvjwWwd7e+8DyMrPf0nF5s2fXbRx4ytNJDLTYwIqjC0iIgvRBlw93aHtYxO5077du5cB9+BCiU9NNJQA2LlnTxPw78GPL59Ub2eIggmZrbpwZ9OUZ7ojIiIiIiIio4l7Xg1wC5ACLoTRZlZBQUHF1q0fimZnb7XW9naePfv+jsbG/dNpc6Cjo/3ik0/e3XH69F+kBgd9E4kU5JaVvWXJDTfcXbxy5ZYw+j0JQ4WxB3GzTF4c97ySGe6DiIjITOqy1nYM20arEfEs+3bvLgd+ANTgAoZ3TuG4x4LL6incN+0UTMhslcAVZ1edCRERERERmXXinrcUuA3IxhW7nrbsoqKSis2b/zqalVVrU6nOjsbG93aeOXMkjLYBOs+ebTj/xBN/3tva+k82leqMxGI1RcuX//XinTv/Iqe0dFFYx5mgFuAMrjB2Xdzz1gYFxEVERBa0fbt3FwLfAzYBe4E379yzZyr1GIbGVbvD6luYFEzIbDYILM50J0RERERERIaLe14lcCtulvdoNfMmLae0tHzRxo0fi8Riq20q1X751Kn3dJ07dzyMtoezqVSq9emn72k+dOhtg93d37XWpmK5uS9ctHHjZys2b/71SCwWC/uY41BhbBERkWH27d6dA3wLeC7wfeB3du7Zk5xCOwZ49dCP4fUwPAomZDbrBKr3NjTN5B/GIiIiIiIiY4p7XhluCaIq4FQYbeaWl1eV19Z+PBKLLbfJZEub77+r+/z5xjDaHstgV1fnxQMHPnv51Kk/Sw4OHjHG5OSUlLxu8fXX/0PJ6tXXp/PYI1hcYdBLwAuAV8Q9b8kMHl9ERGRW2Ld7dxT4Cm5G5gPArp179gyMs3/lvt27/799u3cXjbi+EPhn4HnAedysi1nHWDuVWSAyXcOqsi+31j6T6f5kwt6GppcBaxn7DKM8oAL4n1211S0z1jEREREREZFRxD2vCHgpsApXxDk13TbzKiuXlq1Z8xETjVakksnzbceO3dnX2npxuu1OVtm6dbfmLVr0ehOJlAEk+vt/3tHY+K+9LS3nZ7AbMdxa2j3Az4BDdb4/6bNERUREZoPJjv/u2737DuDTwY/fADrG2PWdO/fsadm3e/cq4CSuVu9jQBNQCewEFgHtwCt37tnz0NQfRfroTHSZzXpx4UQZbv1RERERERGRjIh7Xj6u0PVqQgolCpYsqSlZterDJhIpTSUSZ1uPHr2zv729dbrtTkXbsWM/7jx79tGydetek1VQ8KuxnJznlq1bd11BdfXetoaG/00ODIx5xmaIEoCPO0HtdmBJ3PMerfP9yzNwbBERkUwbXmv31WPuBXfhxkovAZ8Ang+sx808TOLCii8Cf7dzz55Ze0K8ZkxkiGZMTGjGBMHtj+yqrX50ZnolIiIiIiLybHHPy8HVlNiKCyUS022zcOnSdcUrV37QRCKFqUTixKUjR94/0Nk51pmRMyq/qmp58cqVb4lmZ+8ASCWTzb0tLV9o9/2HZ7AbubjZE+eBRwG/zvc1gCEiInOGxn/HpxoTMtt1A8v3NjSZTHdEREREREQWnrjnZQE34UKJE4QQShStWLGxuKbmIyYSKUwODja0HD783tkSSgD0XLx49vzjj7+/+8KFj6WSyeZINFpZsHjxu5bccMOH86uqVsxQN1QYW0REZB5TMCGzXRduGlNhpjsiIiIiIiILS9zzosCNwHVAIzDt5YyKa2p2FC1f/mFjTF5yYOBQy8GD7x/s7u6ebrvp0O77j1x88sk/7O/o+G9r7WA0O3t7qef9feW2bW+M5eXlzUAXhhfGvhEVxhYREZk3FEzIbNeNCyXKrrWjiIiIiIhIWOKeFwGeE2xncTXwpqVkzZrnFC5d+n5jTHayv/+J5vr6uxJ9fdNuN52SAwMDLYcO/Vfb0aNvT/T3/8wYE80uLHxV1fbtnytbv/5WjJmJ2e2duNoTK4FfjXve9iA0EhERkTlKwYTMdinc+7Q80x0REREREZGFIe55BtiBKyZ5HnfC1LSUrV17U8Hixe8xxsQSfX2PXDxw4KMzVFA6FL2XLl248MQTH+1qavpgKpk8ZyKR0vyKij9dcsMNHy+srl4zA10YKow9iCuM/eK455XMwHFFREQkDRRMyFzQByzNdCdERERERGTB2IKrK9EKTLv2Q/n69bfnVVa+0xgTTfT2/vji/v2fSCUS065VkQmXT5584sITT/xR/+XLX7LW9kWzsjYWr1r1d1Xbt/9hVmFh0Qx0oQU4g6v58cq4560NgiQRERGZQxRMyFzQBVTtbWjKznRHRERERERkfot7Xi3wItzyQW3TbW/Rxo2/kldRcYcxJjLY03PPhf37P21TqdS0O5pBqUQi0XL48NcvHTnytkRv70+NMSaroOCXK7ds+Wz5hg0vN5FIuscahgpjF6PC2CIiInOSggmZC7qAIrSck4iIiIiIpFHc81YDN+OWC2qZbnsVmzf/em5Z2VsBBrq6vnVx//5/wlo73XZni/729tYLTz75yc6zZ9+TSiROmUikKK+8/O1LbrjhU0XLl29I8+FVGFtERGQOUzAhc8EAkI0KYIuIiIiISJrEPW85cCsQA5qm217F1q2/m1NS8jqA/s7OrzbX139hum3OVh2nTx86//jj7+hra/u8TaW6I7HYmuKVK/+m6rrr3pFdXFya5sOrMLaIiMgcpGBC5ooEUJnpToiIiIiIyPwT97zFwG1AAa5+wbRUbtv2ppyiot8G6L98+UstBw9+ebptznY2lUpdOnLk2y2HD79tsKfnXmutzcrLu61i8+bPLdq06ddMNJrOsGBkYezbVRhbRERkdlMwIXNFN7Bsb0OT3rMiIiIiIhKauOctwg1mlwGnptWYMaZqx463ZxcW/hpAX1vb51oOH/76tDs5hwx0dl6+uH//ZzpOn35ncnDwmDEmL7e09E1Lrr/+74traran+fBDhbG3ocLYIiIis5oGeWWu6AJKgk1ERERERGTagrPqbwOWACen05aJRCKLd+x4R1Z+/suttanelpa7Lx058p1QOjrOYYFZuWxR1zPPHDv/+OPv7L106TM2lbocicVWFC1b9uHFO3e+K7e8PJ2z4VUYW0REZA5QMCFzRQ+Qj+pMiIiIiIhICOKeV4ALJVbilgGaclHqSCwWq9qx469ieXm3WmuTvc3Nn2w9evS+sPo6hmxgPbAGqAl+nl2sta0NDfderK9/20B3d9xam4rl5r6gvLb2nys2b/6tSFZWVrqOjApji4iIzGoKJmSuGPqSUJ7RXoiIiIiIyJwXnEF/C7AWOAGkptpWJDs7u2r79vfGcnNvtNYmei5c+Fjb8eMPhtTVsRQCq4HDwHeBZ4DluJAiL83HnrRET09384ED/3L55Ml3JAcGDhljsnNKSn5v8c6d/1i6Zs1z03jo4YWx61QYW0REZPZQMCFzSQ/uj20REREREZEpiXteNvAiYBNu0Dox1bZiubl5Vdu2fSCak3O9tXag69y5D7WfOPHzsPo6hgpgMfAz4L46338a+L9g84Pb1uLCi1ml+/z5U+cff/w9Pc3Nn7SpVGskGl1SsGTJnUuuv/4DeRUV1Wk67FBh7AQqjC0iIjJrGGunPFtVpsEYsww3tXS5tfaZTPcnE/Y2NL0M9wfz6QnepRQ3Pfkru2qre9LVLxERERERmZ/inhcDbgJuwBW67p9qW1kFBQWLNm26K5qVVWut7e08e/aDnWfOPBVSV8eyEkgCjwAH63z/WTM94p4XAZYCG3HftfKBi0B7mvs1adHc3Nzydet+K6uw8FXGmJi1NjHY1fXN1mPH/ifZ19eXpsPm4pa9asIFO36d72tQRERE0kLjv+NTMJEhemNOKZiI4f4Q/9qu2uoF+ZyJiIiIiMjUBIP2NwLPx30Xm/LJTtlFRcWLNm78UCQWW2NTqc6O06c/0HXu3PGw+jqKKG7ppkvAA3W+P26h7rjnGdzMidpgKwJagNY09nFK8iorl5asXPnmaE7O9QA2mbzUe+nSv7UdP/5Amg5pgGW475f7gCfqfD9dQYiIiCxgGv8dn4KJDNEbc0rBBMA64N5dtdUH09MrERERERGZb4KB+htwsyUu4GoPTElOaWl5+fr1H47EYitsKtV++dSp93WfP98YVl9HOySwCjgJ/LTO95snc+e45y3CfY/aDJQBbbiQYsp1NdKhdM2a5+ZVVr45Eo0uBkgODBzqPHv2c2l8botws0tOAA/X+f75NB1HREQWKI3/jm9OBRM1d5MHvBt4De7M+VbgHuB9jXcw4Re35m5uxhU6e26wVQCNjXew6hr3iwJ/ArwRN6DeBfwY+EDjHRyZzGPRG3PKwcQq4OldtdX3pqVTIiIiIiIy78Q9bzvuO2Ar01jWKLe8vKps3bqPRKLRJTaZbGk7ceLO3ubmcyF1czRDg+cHgYfqfL9rqg3FPa8Y9/1rC1AFdOCWeUqG0M9QRLKzs8vXr391dlHRbxpjsq21qcGenu+0HTv2X4menu40HDKGW9qpG/g5cKjO92fN8yEiInObxn/HN2eCiZq7ycWFAM/HrQf5AG6Q+rlAM/D8xjs4McG29gPbR1w9bjBRczcR4GvAq3F/yN6HCzReBPQCtzbewYSLnOmNOeVgogJXtOwru2qrp1ykTkREREREFoa4523EFT3uwi2FNCV5lZVLy9as+YiJRitSyeT5tmPH7uxrbb0YWkevVokLJh4DHqvz/cEwGo17XgHgAVuBJbglrS4AobQfhtzy8sqSVaveFMvNfQGATaUu97W1fan16NH7SM8gRgVuNskh4Gd1vn85DccQEZEFRuO/44tkugOTcCculHgEWN94B7/deAfPA/4c9wfbv02irR8E7b0MN511It6ICyWOARsa7+A3Gu/gFuA3cQXFvlxzN7FJ9EGmpgsoxv3RKCIiIiIiMqa4560Fbgb6mEYoUbBkSU2Z533cRKMVqUTibGtDw7vSGEoY3Fn8WbgT4h4JK5QAqPP97jrfr8edePdd3LJONbgT/3LCOs509LW2Nl/Yt+/jnc888/5UInHWRCIleYsW/cmSG27428KlS9el4ZAtwBlcWPPKuOd5wfJfIiIikiZzYsZEzd1k46aYlgA7G+/gyRG3HwC2ATc03sETk2x7CW4GxrVmTDwFbARe3XgH3xxx27eAXwV+o/EOvj6R4yoxm/KMCYD1QHxXbfXR8HslIiIiIiLzQdzzVgIvxS3XM+XvXIVLl64tXrnygyYSKUolEicuHTny/oHOzo7QOvpsUWANblWAn9b5fjprVwAQ97wsXDCxJbgEOM80ioOHycRisfL161+ZU1LyO8aYPGutTfT23tvu+/+RhtdBhbFFRCQ0Gv8d31yZMfFLuFDCHxlKBL4WXNal4+A1d7MaF0r0At+Z6ePLVVLAokx3QkREREREZqe451UDtwK5TCOUKFqxYmNxTc1HTSRSlBwcbGg5fPi9aQwlcnEnbp0CvjsToQRAne8P1vn+cSAOfBO3SkBl0JeimejDeGwikbj01FPfvPTUU28b7O39sTHGZOXnv7Ri8+bPLdq48VdMJBLmuIbFDSBdAm4EXhH3vCUhti8iIiKBuRJMDNWD2DfG7UPXb0vz8Q813jHqupvpPr48WzewfG9Dk6bWioiIiIjIs8Q9rxK4DSgFpjy4X1xTs6No+fIPG2PykgMDh1oOHnz/YHd3OgowgzsRbyVwALinzvenvOzUVNX5fjIIQ74HfANXcLsYN2O9dKb7M1L/5cttF5988u86Tp/+q1QiccJEIgW5ZWVvXXLDDZ8uWrFioks0T1Qn4ONek7q4522Le1405GOIiIgsaHMlmFgZXJ4d4/ah62vGuH2uH1+erQtXYyLjZ++IiIiIiMjsEfe8UlwoUQWcnGo7JWvWPKdw6dL3G2Oyk/39TzTX19+V6OvrDaufIywGyoEHgR/X+X5Gl1Cq831b5/vP1Pn+D4G9uOLbuUAtrkh0Rk8Q6zx79sj5xx//s97W1n+2qVRXJBZbVbxixccWX3fdn+eUlpaHeKgELpxIAC8Gbo97XkmI7YuIiCxoc6VYc2FwOdYfaENnraRroHraxzfG5PDsQmKFY+0r19SN++O9DEjXNGoREREREZlD4p5XhAsllgPHccvyTFrZ2rU35VVW/rkxJpro63ukub7+b1OJRCLMvgaGilz3Az8EjtT5/qwqAlnn+xeBi3HPOwSsAzbhZlC04+pgpDLRL5tKpVqffvp7WYWFD5atXbs7lpf3slhe3s2LNm58Xv/ly//devTo/9nwXrMW3MlxW4HKuOc9CpyYba+ViIjIXDNXZkzMB+8GLg/bns5sd+a0FO69G+bZMCIiIiIiMkfFPS8PuAVXONpnigPm5evX355XWflOY0w00dt7/8X9+z+RplAihhvobwW+V+f7T83mge4632+t8/2f4eor3gcM4GpQLMUV7M6Iwa6uzov79/9Tx6lTf5ocHHzaGJObW1r6+iXXX/+ZklWrrgvxUH242hvFwCuAF8Q9LzfE9kVERBacuRJMdAWX+WPcXhBcds7i438Mt27o0LYhnK4tWH24P4JFRERERGQBi3teDnAz7jvWCSA5lXYWbdjwiryKijuMMZHBnp57Luzf/3c2lUrHjIA8wMPN6vhene+fScMx0qLO9zvrfP9JXEDxfdwMdg+3/HFWpvrV1dR04vzjj/9VT0vL39lUqj0SjS4rXLr0g4uvv/69uYsWLQ7pMCqMLSIiEqK5EkycDi6Xj3H70PVTLmyW7uNba/uttR1DG1fCDpmaLqBqb0NTzjX3FBERERGReSnueVnATcAWXCgxOJV2KjZv/vXc8vK3AQx0dX3r4v79/4S16ZjBUIr7/vgk8IM6329NwzHSrs73e+p8/xCuBsV3gAu4cGI1rh7FzLPWth09+uOLBw68baCr65vW2lQsJ+d55evX/1PFli2vjWZnZ4d0JBXGFhERCcFcCSYOBJc7x7h96Pr6NB9/S83do54Fku7jy9U6cXU6yjLdERERERERmXnBYPCNwA7cyWQDU2mnYuvW380pKXkdQH9n51eb6+u/EFonn60aF0w8CPykzvfTVUx7xtT5fn+d7z8NfBOI4wqOV+OW1CoY565pk+jt7Wmur/+39hMn/iQ5MFBvjMnKKS5+TdV11/1TqefdGNZhUGFsERGRaZkrwcRDuLoMXs3d7Bjl9t8ILuPpOHjjHZwEjuCm3P7KTB9fRjUIZKM6EyIiIiIiC07c8yLADcH2DDClQf7KbdvelFNU9NsA/Zcvf6nl4MEvh9fLXzC4mQQp4F7gsTrfT0fdioyp8/1Ene/7uNkT3wQagEW4OhrFmehTz4ULp88//vid3RcufDyVTLZEotGqgsWL373khhs+lF9VtSykw7QAZ3CFsV8Z9zwv7nkmpLZFRETmtTkRTDTewQDwD8GP/1hz95UzL2ru5s+AbcBPGu/giWHX/1HN3TxdczcfC6kbnwou/6bmbqqGHWcX8Ku49UG/FdKxZGISQGWmOyEiIiIiIjMnGPjdjpstcQHonnQjxpiqHTvenl1Y+GsAfW1tn2s5fPjroXbUGSpy3YyrJ/H0bC5yPV11vp+q8/3TuPoT3wD2A0VALRma7d7u+w9f3L//D/s7O79qrU1Es7N3lHreP1Ru2/aGWG5uXgiHGCqMXYIKY4uIiExYLNMdmISP4KZIvgA4VnM3DwA1wPNwf+S9ccT+Fbg/fqpHNlRzN38A/EHw49DSTNU1d/PosN3e3ngH+4b9/G+4PzJeDTxdczf3Bce4GXd2zu813sG8OutlDugGlu1taIrsqq1OR1E6ERERERGZfTbj6kq04YovT4qJRCJV27ffEcvLu9Vam+q7dOkzrUeP3hd6LyEfV4fgaeCBOt9vT8MxZqUgfDkHnIt73kFgPbARV6C8BVdAesYCmmR/f3/LwYNfzquouK+4puYPYjk5z80uLHx11Y4dN/deuvTFtmPH7p/mISxu5kQRLjBbHPe8h+t8//x0+y4iIjJfzYkZEwCNd9AH3Ap8GOgBXoULJr4I7Gy8gxOTaG45LtB4HlfqQ2QPu+55jJhu2ngHKeA3gT/H/YH1Stx0za8DNzTewc+m8LBkejpxr1NphvshIiIiIiIzIO5564EX4U5SmnThaBOLxap27PjLIJRI9jY3fzJNoUQZsBR4DLh3IYUSI9X5fnOd7z+E++78k+Dq9cASZnhMorel5fyFJ574SFdT0wdTyWSTiUTK8ysr/2zJc57z8YLq6tUhHEKFsUVERCbIWDtvZ5HOasaYZcBZYLm19plM9ycT9jY0vQxYiytUN1XrgG/tqq32w+mViIiIiIjMRnHPWw28JPixabL3j2RnZ1dt3fruaE7O9dbaRM+FCx9vP3Hi5+H2EnCBRBbwCLC/zveTaTjGnBX3vELc98CtQBUuZLoAM7sCQSQWi5XX1r4qu7j4t40xOdbaVKKn556248f/c7C7uyuEQ1TiTqI7BPyszvcvh9CmiIjMIRr/HZ+CiQzRGzPUYOKBXbXVj4XTKxERERERmW3inrcMeBmQxxS+P8Ryc/Mqtmy5M5qdvdVaO9B17txHOhob94fczQiwCugCflrn+8dCbn9eiXteHrAGF1BUAwPA+eByxuSWlVWUrF79hlhu7gsBbCrV2dfW9h9tx47da1Op6S4ZnIubPXEeeBQ4MZ9rjIiIyLNp/Hd8CiYyRG/M0IKJZcD5XbXV3wylUyIiIiIiMqvEPa8KeDmuuPCpyd4/q6CgYNGmTXdFs7JqrbW9nWfPfrDzzJmnQu5mFm6Q/Szwkzrfn/SMjoUq7nnZuEBnC24QP4UbyO+dyX4Ur1y5tWDJkrdGYrGVAKnBweNdTU2f6zx7tmGaTRvcctJRYB/wRJ3v902zTRERmQM0/js+BRMZojdmaMFECe4slK/sqq3uDqVjIiIiIiIyK8Q9rxx4Ka4ewaSXb80uKipetHHjhyKx2BqbSnV2nD79ga5z546H3M0CYAVwBDdTYtIFuQWCWgw1uOLmq3AD+edxSz3NCBONRsvXr39FTknJ75pIJB9gsLf3vnbf/9JAR0f7NJsvwi3zdQJQYWwRkQVA47/jUzCRIXpjhhZMRHF/tH5tV2312TD6JSIiIiIimRf3vGJcKFEDHAMm9eU1p6SkvLy29sORWGyFTaXaL5869b7u8+cbQ+5mebDtAx6t8/3+kNtfcOKeF8HNjN+I+76YC1wEZqxGQ3ZxcWnpmjW/n5Wf/2IAm0r19F++/F+tR49+xyaT06kZEsO9n7uBnwGHVYNERGT+0vjv+CKZ7oDINCVx4UR5pjsiIiIiIiLhiHteAXAr7iSk40wylMgtL68q37Dh45FYbIVNJlvafP9daQgllgGFwP3AAwolwlHn+6k63z8D3AvsxYU++UAtM/S9b6Cjo/3i/v1/39HY+BepwcFjJhLJzy0r+4Ml119/d3FNzbZpNJ3AzfxJArcDt8c9rySUTouIiMwxmjGRIUrMQpsxAe7LytO7aqvvnXanREREREQko+KelwvcBmzCDeImJnP/vMrKpWVr1nzERKMVqWTyfNuxY3f2tbZeDLGLEWA17gz+n9b5/qSXmJLJiXteBbAe954oAy4BLUwysJoSY0z5+vUvzi0re72JRIoAEn19D14+efLf+traWqbRsgpjy5wR9zyDe8/mAP1Af53vT7c4vMi8p/Hf8SmYyBC9MUMNJipwBdL+a1dt9eC0OyYiIiIiIhkR97ws4BZgB24t/oHJ3L9gyZKaklWrPmwikdJUInG29ejRO/vb21tD7GI2LpRoxIUSF0JsW64hmF2wFtiK+x7YgVvmKe3LIWUVFBSWrV37u7H8/F82xkSstf0DHR3/23r06DdSg4NT/R6qwtgyawwLHwpGbENL1uUDWbiweADowS1L1hVc9o/Y+oL9+hW6yUKl8d/xKZjIEL0xQw0mcoDFwP/sqq1unnbHRERERERkxgXFj28CnoMb+J/UAG3h0qVri1eu/KCJRIpSicSJS0eOfGCgszPMugSFuOWbDgMP1vl+Z4htyyQES32tBbbgCqN3AxeY5OyaqShYsmRV0YoVb4tmZW0CSCWTTT0XL/7L5ZMnH59GsyqMLTMiCB9yuBI6FAaXZcAiXPiQiwthTXC34UHDIK5WSjYupMgKfo4OO4wN9hu+dQ3b+oa196wwo873JxVGi8x2Gv8dn4KJDNEbM9RgAty03m/vqq1uCKEtERERERGZQUHB4+cDNwLP4AaaJ6xoxYqNRcuX32WMyUsODjZceuqpuwa7uyfVxjVUACXAE8DPNHg2OwTLfq3BBRTLcAOgTUxyps1UlK1b96K8RYveaCKRcoBEf/9jHY2N/9rb0tI0xSZVGFtCE/xujJz5MDJ8yOFK+DDAlaCgN/h5qgOGhiuhxVBwkcWVMMMM2zeJCxSHAox+3O9AJy7EGDkDY3iIkfYgUmS6NP47PgUTGaI3ZujBxFrg57tqqx8KoS0REREREZkhwRm8O4EX4c56n9RMhOKamu2FS5feaYzJSQ4MHGo5dOjDib6+3hC7uBI3ePYIcFDrqs8+wRJgq3ABxcrg6ibcAGvaxHJz88rWr//trIKCXzXGxKy1icGurr2tR4/+b7K/f6rF0CtxIdhhXAgW5qwfmUfinjc086EQFzYU4sKHoWWX8nABhMEtfz3I1bMVMj0oGOHZIcbIQGNkiDGIC02GQowu3P8ZYy0lpXoYklEa/x2fgokM0Rsz9GCiGmgH/ndXbbXe1CIiIiIic0Tc87YBtwKtuL/pJ6xkzZrnFCxe/G5jTCzZ3/9E88GDH0sODIR1tnwUV0/iEvBAne+fDKldSZNgObAVwGbcTIoYrrh0VzqPm19Vtax4xYq3RHNyrgOwyWRLz6VLX2g/fnyqJ86pMLYAzwofRs58KA/+ncuV8AGuhA/DA4j58t6Jcu0Qwwbb0CyMydTD6AcG9LsmYdL47/gUTGSI3pihBxOFuHU5/3tXbXVHCO2JiIiIiEiaxT1vA3A7btCoZTL3LVu79qa8yso/N8ZEE319jzTX1/9tKpEIa2mPHNwZ+CdxRa5Vy24OCZYGWwpsxH3nzMcVyW5P53FL16x5Xl5l5R9EotHFAMmBgfqOM2c+33PhwlS+86ow9gIR97xsrq75UIoLHwpxn0d5uNkFcGXZpeFLG2lGwLMNLR81fAkp1cOQGafx3/EpmMgQvTFDDyYiuDNivrGrtvpUCO2JiIiIiEgaxT3PA16CW55jUsV+y9evvz130aI/NsZEEr299188cODTNpUKa2BuqBDxQeChOt9P69n2kj7BMmFVQC2wASjGBWCtpOks8kh2dnb5+vW7souKfsMYk22tTQ12d8fbjh37SqK3t2cKTaow9jwwInwY2kpx4UMRLnzI5Ur4MLRU0fAAQuFD+CZaD8PgZl+oHoZMisZ/x6dgIkP0xgw9mABXAPvHu2qr94XUnoiIiIiIpEHc81YAL8MNAk3q+9CiDRtekVte/jaAwZ6eey4eOPDPhPfFthI3SPgY8Fid7w+G1K5kWNzzynHfGTfhCgC3Ac2kabA3t7y8qmTVqjfFcnNvBLCpVHtva+uX2o4d+9EU3q8qjD0HBLVOhgcPhbh6IYuCfw8tuzR0xv4ACh/mkjDqYXTgZgiqHsYCofHf8SmYyBC9MdMSTKwETu2qrf5OSO2JiIiIiEjI4p63BHgpbsDu1GTuu2jTpl25paWvBxjo6vpWc339F0LqlsF9nxgEHsIN/OrL8jwU97xi3PfQLbjZFB24ZZ7SMtBfsmrVjvyqqrdGYrFlAMnBwYauZ575bNe5c/4UmlNh7AwbJXwowM3EqcCFmrm42Q9D4UOCZy8H1IfCh4VA9TAE0PjvtSiYyBC9MdMSTJThPvy/squ2WmtvioiIiIjMMnHPq8DNlKjALU0zYRVbtrw2p7j4NQD9nZ1fbTl48MshdSuKWxa2GVdPojGkdmUWi3tePuABW4EluMG+87gBwlCZWCxWvn59XU5JyWuMMXnWWpvo7f1+2/Hjewa7ujon2ZwKY6dZ3PNiXD3zoRg382EofMjFDTCDG1DuReGDTE2662H0afZf5mj8d3wKJjJEb8y0BBNZwDLga7tqq5tCalNEREREREIQ97xSXE2J5YDPJNb4r9y27U3ZhYW/BtB/+fKXWg4f/npI3crFLZFzAvhJne9fCqldmSPinpcDrMYFFMtxg8xNuAG9UOWUlJSXrlnz+lhe3i0ANpXq6mtv/8+2o0fvmWSNFBXGnqZRwoehmQ+LgsuRyy4lefaSS32kaZaNyBhUD2MO0vjv+BRMZIjemGkJJgDWAd/fVVt9OMQ2RURERERkGuKeV4gLJdYAx5no2cTGmKrt2/8wKz//5QB9bW2fv3TkyLdD6lYJsBioxxW5nkphYpkngiV6aoDNwKrg6vO4ZVVCVbRixabC6uq3RWKxVQCpROJEV1PT5zrPnDky2aZQYewxxT0vyrNnPeTjfu/Lg8scIA8XPgwN5vbz7NkPCh9kLppsPYyhWhiqhxEyjf+OT8FEhuiNmbZgYg1wYFdt9f0htikiIiIiIlMU97w84MVALS6UmNBAn4lEIlXbt98Ry8u71Vqb6mtt/YfWhoYfhtStxbhByp/hzjbXGaICQNzzIsAKXJHsNbizkS/gzjQOjYlEIuXr1788p7R0t4lECgASvb0/bj9x4ov9ly+3TaKpBV0Ye0T4MHzmQzlQigsfhi+7lOTqgtP6/ZeFTPUw0kjjv+NTMJEhemOmLZiown3w/feu2uoF88eYiIiIiMhsFPe8bOAWYBvurO4JrXNtYrFY1bZt74zl5r7AWpvsbW7+f23Hjz8YQpcMbhC3H3gQOLJQB0tkfHHPM0A1sBE3M78AVyS7PczjZBcVFZd63u5YXt5LjTHGWtvbf/nyf7cePRq3icRkBsznbWHsIHzI59mzH4pwyy6VcKXgdHZwl6Fll4YHEAofRKZvqvUweoAf1fn+xRnt7Syg8d/xKZjIEL0x0xZM5OH+OPnqrtrq1hDbFRERERGRSQjWcH8hcD1wigmu2R/Jzs6u2rr13dGcnOuttYmeCxc+3n7ixM9D6FIMdwb8eVyR6zMhtCkLQNzzqnAzfjbgBsIvBVtoAyqFS5euLVy27K3RrKxagFQi8UzPxYufu3zq1P5JNDNnC2MHM1VGznwYHj7kofBBZK4YWQ+jCthb5/snM9qrDND47/hi195FZE7pxf3BUg4omBARERERyYBgkPFGYCfuRKQJhRKx3Ny8ii1b7oxmZ2+11g50nTv3kY7Gxv0hdCkPN2B7DHigzvf1XUEmLDjL92Lc8w7hZk9sxgUVbUAzE62ZMo6uc+eOdzU1/WXZunW35ZWXvy4Siy0rXLr0Q7nl5Y9cPnXqC32trRM507gP9x5fDrwCeCLueftmS2Hs4HNh+MyHodkPFbhll4YKTg8V8k1xJXToxD3XCh9EZj+LW+ppIPi5MoN9kVlMwYTMRxYXTIiIiIiIyAwLlsC5IdjO4U4euqasgoKCRZs23RXNyqq11vZ2nj37wc4zZ54KoUuluEGRJ3EFgifUH5GR6ny/Dfh53POO4Gb/b8EFFZ24ZZ6mN2hurW07evS+zvz8R8vWrn1NVkFBXSw398by2trrBzo7v9Z69Oje1MDAwLVaAc7g6iy8AFgS97wZK4wdhA95uMBhePhQDpQFtw2FD0P9HQofunEzUSa05JuIiMxtCiZkPurFnSESxnRvERERERGZoCCU2I4bEG3GFcS8puyiouJFGzd+KBKLrbGpVGfH6dN3dZ07dyyELlXjln95ENinItcShjrf7wSejHve04CHCyhW42YGnefKWcJTkujp6W6ur/9CweLF9xatWPGWaHb2tpzi4tcuvu6623ubm/+1/cSJn02gmQ7cuu41wKK454VWGHtY+DBy2aWh8GFo5sPQskuWK0suKXyYZWJ5eflZBQXF0Zycomh2dnEkK6s4EosVR6LRIhONFptIZGgrAqy1tg9r+2wq1Rtc9tmhS7f12mSyP7jsSyUSv9iSAwN9yf7+3uTAwABaW15kwVONiQzRGmNpqzEB7syQPOAru2qru0NuW0RERERExhD3vM3AbbhB0Qktl5RTUlJeXlv74UgstsKmUu2XT516X/f5843T7IoBVuEGZh8EGubKWvsy9wRF3lfjAooVuCWImnAD8dNWunbtTfmLFr3RRKMVAMn+/n0dp0//S09z80THEiZdGDsIGUcuu1SAq/kwfObDaOHDUO2HaQU0Mnmx/PyCrPz8kSFDUSQaLTbRaNGwkKHYRCLFGFNkjIleu+Xw/SLgGHmpwGM+Wgd8QzUmFub473g0Y0Lmo27cH17lwb9FRERERCTN4p63DngRLgyYUCiRW15eVbZu3Uci0egSm0y2tJ04cWdvc/O5aXZlqMj1OVyRaw0ESFrV+f4A0BD3PB9Xy2QzLqiI4GZQTOt7afvx4w92njnzWPn69b+ZVVi4K5qTs7N07drPFCxZ8q22Y8f+J9HXd63lyZpxy01tBSrjnvcocCK4beTMhwKu1HzI50rBacOVdeP7cCsVtKHwIT2MMVn5+fmxvLziWE5OcWT8kKEoCBmKjTGRqRzOWttvU6kOUqkOa22nTSY7bCrVkUomO2wi0ZFKJDqTg4OdxhhMNJprIpE8E43mmEgkz0QiuSYSyTXG5JpIJBd3mYcxucaY3KsurzxEd114z9rQY5ls4NFnk8k+BR4iM08zJjJkoSdmNXdTcX117ztuWd3Vtbw4cTgNh1gP/HBXbfWBNLQtIiIiIiLDxD2vBngpbiB2QsFCXmXl0tI1az4SiUYrUsnk+bZjx+6cYIHf8eTjBoafxhW5bp9meyKTFix1tBzYiFslIAe4gJtJNC15FRXVJTU1b47m5NwAYFOp1t5Ll/6t7dixn07g7iboVxQ4xZU6EDnBBs8OH4Y2hQ/T4UKGglh+fnEsJ6cokp1dHI3Fio1bLulKyBCNFhtjiobNZJhqyNBrU6lOUqkOm0p12lSqI5VKddhksjOVSHTYRKIjOTjYkezv70j09XUO9vR0TqB2STiMMdHs7OxoTk5eNDs7NxKL/WKbROCRY4y5OvhIs9ADDxd69C+QwEMzJhbo+O+1aMaEZMq3n2jKe15uLLXnNzZ3pCOYGAAWp6FdEREREREZJu55S3HLN2UzwWVaCxYvXlmyevVHTCRSmkokzrYePXpnf3v7hGZZjKMMt8zMY8Cjdb4fyjI6IpNV5/sp4HTc884A9cAG3MlzS4AWJjijaDS9LS1NvS0tHypZvfo5+VVVfxCJRqvzKyvfmVNS8vLOs2c/333+/Klx7j5UGLsIF+ANLb3UHvxbrsUYk1VQUJiVl/es5ZJMNDo0k6H4F3UZroQMhdMMGTrGChlSiURn6krI0DHY3d2ZGhycvfU7rLXJ/v7+ZH9/uO+34YFHVlZOJCsrbyjsiMRiYwYeXAk+rhl4zJkZHgsr8JA5TsGEZMqPgOc1Xs5en6b2O4HqvQ1NWbtqq2fvf8oiIiIiInNY3PMqgVtxA50TOhOycOnStcUrV37QRCJFqUTi5KUjR94/0Nl5zTXvr2EpkAX8FNgfRoFfkekK6po0AU1xzzuECyc2ArW4AtCXcGHBpF0+efKxzrNn95evX//q7OLi34pmZ28pWb360wWLF3+37fjxLw92d4+3fFRnsC1oJhKJ/KImQ3Z28bNChljMLZF0JWQoHhYyTGls2qZSPdbazmFBg1sqKZnsTCWTLmQYGOhIDgx0JHp7Owe7uztSiUQi7Mc9L82OwMNdzv7Aow8XeCnwkIxTMCGZch/w7ubuaG3KQiTsT2Dows2YKAOmOx1cRERERERGiHteOXA7UAX4E7lP0YoVG4uWL7/LGJOXHBxsuPTUU3ddYwD1WiK4ItedwI/qfP/YNNoSSZs6328GmuOedxi3rMkWXFBxGfedNTXZNlODg4Mthw//T25Z2Y9KVq9+Yyw396asgoJXVm7d+qK+trYvtR49+sOFMohoIpFIVkFBYWxoJkNW1lBNhqEZDFdChkikyBgz3ZChe1jI0BnMYrgSMgwOdgybydA50N3daRUyzD2ZCzyuLG117cDj2cHHlUPMmsAj2ddXkhwcfJgJnsAgC4eCCcmUhw12sD8ZKX3iXN7S5yzrnW6Bu5H6gVxcAWwFEyIiIiIiIYp7XjFupsRSXChxzcHP4pqa7YVLl95pjMlJDgwcajl06MMTKNo7nixckeuzwE/qfL9pGm2JzIig7sljcc87Ani4gGItrkD2BWDSg9d9bW0tfW1tf1NcU3NPweLFb4nEYivzFi364yU33PDyrnPnPtv1zDNzKrALQoai2PDlkmKx4kgsVvSspZKGhQwmEimc6vGCkKFj1JBh2HJJif7+jkRvb8dgT0+XQgaZlpkNPHJMNJo3ocDjyr9DDzz6L1/+PvBoqI9X5jwFE5IRjXfQu/mfU0e6BqLbDpzP3ZaGYALcGSeL0tCuiIiIiMiCFfe8fOAW3EwFnwmc6V2yZs1zChYvfpcxJivZ3/9E88GDH0tOr9hqAbAMV+T6p3W+P+2iwiIzqc73u4ADcc9rwAUUW3G/UwPAeaZQcLqjsbG+8+zZO8pra1+ZU1z8O9GsrHUlNTX/L7+y8t523/+PEJZMmzQTjUZ/ETJkZ48WMhQNCxmGlkwqmOrxbCrVNTST4RfbiJAhOTBwpfBzd3enTSa19JvMD+kOPLKzc6PZ2bnjBB5DW54xJoeh4MPa8kR/f3OofZJ5QcGEZExFfnJ/10B0W1NXbBtwTxoO0QWs2NvQZHbVVi+I6asiIiIiIukU97xc4GbcGvnHgWsO6JWuXXtTfmXlnxtjoom+vkea6+v/dprrppcH2+O4Itcq2itzVlCk/XDc847hgonNuMLUFhdQTGpWkU0mk5eeeupb2cXFPyn1vNdl5eXdnpWf/5KKzZtf0H/58pdbGxq+a1OpSS8bBVdChqDws1sqKSurOBKN/iJkiEQixTx7JsN0QobOYSFD57CQoeOqkMHVZOic6mMTkXE8O/CYSsC5DncigcizKJiQjFlb3r//VHv271/ui25LpDCxyNSKfo2jCygBipnaB6eIiIiIiATinpcF3IRbeuYEE1hypmz9+tvzFi36Y2NMJNHbe//FAwc+Pc2Bw2W4uhL3AwfqfF+DkDIv1Pn+AHA07nk+LpjYDKzGjducx32/nbCBjo72i08+eXfR8uX3FFZXvy2SleXllpW9ZckNN7ys+/z5z3WeO/d09rCZDMNCBjeLIRotHiVkyJ/KY7PWWqztGlouyaZSnTaZHJrN4GYyDA52JIdqMriQoUshg4jI/KZgQjLm5lXdR390snAgaU3xI2fya15Y03Mq5EN0A0twZ1MpmBARERERmaK450WBG4EdQCMTWGZm0YYNr8gtL38bwGBPz/eb6+v/eRoDjRHcIO1l3NJNEyq2LTLX1Pl+EjgZ97xGXBC3EVeDYimuBsWkvtt2nj3b0HXu3J+XrV//0tzS0t2RWKymaPnyvy5avnxK/QtChs5gNkPHs2YxJJOdNij8nBwY6Ez293cM9vZ2JHp6uhUyiIjISAomJGMKs22iPC95rKUntvlwc+62NAQTFjBAGXAy5LZFRERERBaEuOdFgOcE21kmsLTMok2bduWWlr4eYKCr61vN9fVfmEYXsnGhRCMulLgwjbZE5oRgNtCZuOedBepxy6fVAouBFqB1om3ZVCrV+vTT92QVFDxYtnbt78Xy819ujIlYa1MjQobOYSFDh00kOpKJREdqYKAzKPzcqZBBRETComBCMmpZ8eDRlp7Y5gtdse3A/6XhEH24s0z2paFtEREREZF5Le55BjdL4vm45WS6r3Wfii1bXptTXPwagP7Ozq+2HDz45Wl0oRD39/xh4ME63++cRlsic06d7w/Vmjgf97xDuHBiY3DZhgspJhQUDHZ3d108cOCzsfz8PcYYM9jT0421qscoIiIZEcl0B2Rh21zZfxSgoz+ypS9h0vF+7AQq9zY05aWhbRERERGR+W4Lrq5EK9BxrZ0rt2174y9CicuXvzTNUKICd3b4z4D7FErIQlfn+5fqfP9h4GvAj4FBXFHZaiA60XYSPT3dg93dXQolREQkkxRMSEZdV917NmpsV8qavAca89em4RBduLOsytLQtoiIiIjIvBX3vFrgRbiTfdrG3dkYU7Vjx9uzCwtfBdDX1vb5lsOHvz6Nw68EcnCDrw8FhYFFBKjz/ct1vv8E8HXgB7iZTB6wHK2MISIic4T+w5KMikWwxTnJg219sRsbLuVse4nXfTTkQyRw7/My4FzIbYuIiIiIzEtxz1sD3Iw7I7tlvH1NJBKp3L79jqy8vFuttam+1tZ/aG1o+OEUDx3F1ZO4BDxQ5/uqFScyhjrf7wbq4553FPd7swVYhfse3AT0Z653IiIi49OMCcm46qLEAYDm7ti2NB0iCVSlqW0RERERkXkl7nnLgVtxIUHTePuaWCxWtWPHXwahRLK3ufmT0wglcoC1wGngewolRCamzvf76nz/CPBN4NvAGVxtljWAljUWEZFZScGEZNzWxX31AJ39kU0d/ZGsNByiE1i2t6FpwmtuioiIiIgsRHHPWwLcBuQDZ8fbN5Kdnb14+/b3xnJzX2CtTfRcuPCxtuPHH5zioYtwZ3ofBL5f5/vNU2xHZMGq8/3BOt8/BsSBbwHHcCfprcX9jomIAJhrbJEJbtFrbDG0Wo+MQ28OybjnLus9+/WnStoSKVP208aC2leu7zwU8iG6gEVAKW5KuIiIiIiIjBD3vEW4UKIMODHevrHc3LyKLVvujGZnb7XWDnSdO/eRjsbG/VM8dCVu0PRh4LE63x+cYjsiAtT5fhI4Ffe8RmApsBEXTlQDF4H2zPUu48w1Lof+PdbP17p+tMtrtT3V+022j+P9PPy6dBo6TjoLr1sm/njG689k2hlv33S3M5n2h/af6PVTeZ1Gu08nbjUTkWdRMCEZFzFQmpusb+mJ3ey3Zm8Dwg4menFnfJWjYEJERERE5CpxzyvBhRJLgOPj7RvLzy+o2Lz5rmhWVq21trfz7NkPdp4589QUDmtwRa4HgfuAw3W+n87BKpEFJfh9egZ4Ju55B4FaYAOwGOgAUsyuAe/JDiiP93kx3iDu0KUdcf1Efh553XiX491vZD+G354acf3In6913VAbo/2cGnbc1BjtjdXH0R7bWCYzyD3ZAXG1M7l9Z0M7lmvUq5KFScGEzApLiwbrW3piN7f0RLcD/5WGQ1hcMCEiIiIiIsPEPa8AF0qsxIUSYw5IZBcVFS/auPFDkVhsjU2lujpOn/5A17lzx6Zw2Chu/ftm4Kd1vt84lb6LyMTU+f4F4ELc8w4B64Ca4KZrDXhPdJB85CD4tQa8r/XzWP+e7s+ztl0FsyKy0CiYkFnhuuq++voLeXQNRNY3d0dzKwuSfSEfohtYsbeh6ee7aqv1n72IiIiICBD3vDzgFtwyL8e5cjbtVXJKSsrLa2s/HInFVthUqv3yqVPv7z5//tQUDpuLGxQ9Afykzvc1q1lkhtT5fivws2ATERHJGBW/lllhx5K+C9nR1AUw0QdPF2xKwyG6cDUmCtLQtoiIiIjInBP3vGzghcAmwAcSY+2bW15eVb5hw8cjsdgKm0y2tPn+u6YYSpTgZmYcAO5RKCEiIiKyMCmYkFmjLDdZD3CiLWt7GprvAgrRck4iIiIiIsQ9Lwa8ANgGnMTVeRhVXmXl0rJ16z4eiUaXpJLJ863Hjr2rt7n53BQOuxj39/iDwI/rfL9nKn0XERERkblPwYTMGsuLEwcALvXGtqWh+RRuHduyNLQtIiIiIjJnxD0vAjwPuB44A/SPtW/B4sUryzzv45FotCKVSJxtbWh4V19r68VJHtIAq3DfP38I/LzO98ecnSEiIiIi85+CCZk1nrus5yBA76BZc+ZyVmEaDtEPVKehXRERERGROSHueQYXSDwPaALGnLVQuHSpV7J69cdMJFKaSiROXjpy5N397e2tkzxkDFdotxX4Xp3vP6UCryIiIiKiYEJmjfUVA205sdQZMObhM/lb0nCITmDJ3oam7DS0LSIiIiIyF2zDLeHUjPv7eFRFy5dvLF658qMmEilKDg42tBw+/J6Bzs7LkzxWHuDhimp/r873z0y51yIiIiIyryiYkFllUV7yAMDpy1npWM5pqM6ElnMSERERkQUn7nmbgBcBl4H2sfYrrqnZXrRixYdMJJKfHBg41HLw4PsHu7u7J3m4UmA58CTwgzrfn+xMCxERERGZxxRMyKyysmSwHuBSbzQdBbAHgBwUTIiIiIjIAhP3vLW4UKIXuDTWfiVr1jyncOnS9xtjcpL9/U8019fflejr653k4apxwcSDwE/qfH+y9xcRERGReU7BhMwqL1jRcwis7U9EVhxtyU5HgJAEKtPQroiIiIjIrBT3vJXALcGPF8bar3Tt2psKFi9+jzEmK9HX98jFAwc+mhwYGJjEoQywGkgBPwAeU5FrERERERmNggmZVVaUDHblZdkTAD9/Jn9rGg7RBSzf29Ck976IiIiIzHtxz6sGbgNygWfG2q9s/frb8ysr32mMiSZ6e++/uH//J1KJxGRChaEi1824ehINKnItIiIiImPR4KzMOovyEvUAZzti6VjOqQsoDjYRERERkXkr7nmVuFCiBGgca7/yDRtekV9RcYcxJjLY0/P9iwcOfNqmUqlJHCofWAscxYUSYwYgIiIiIiKgYEJmodWlrs5EW180HQWwe4ACoDwNbYuIiIiIzApxzyvDhRJVwMmx9lu0adOr88rL3wYw0NX1rYv79//jJEOJMmAp8Bhwb53vt0+91yIiIiKyUCiYkFnnhTXdh8EmB5KRxfvP5y4OuXmLW/tWBbBFREREZF6Ke14RcCuwHDiB+xv4KhVbtrw2t7T0DQD9nZ1fba6v/8IkD7UUNxP5p8ADdb7fN/Vei4iIiMhComBCZp3KgmRfYXbqKMCTTbnpmjWxPA3tioiIiIhkVNzz8nGFrtcAPq4Q9VUqt217Y05x8WsA+i9f/lLLwYNfnsRhIkH7g8D363z/iTrfT06r4yIiIiKyoCiYkFmpIj95AOBcZ1Y6gokuYNHehqa8NLQtIiIiIpIRcc/LAV4E1OJCiavDAmNM1Y4db88uLHwVQF9b2+dbDh/++iQOk4Urcn0BV0/i2HT7LSIiIiILj4IJmZW88oF6gPa+6LbUqBPPp6ULKEJ1JkRERERknoh7XhZwE7AFV1MiMXIfE4lEqnbseEdWfv7LrbW299Klv7905Mi3J3GYAmA18DTw3Trfbwqj7yIiIiKy8CiYkFnpRTXdDQY7kEiZsp8/kxf2sksJIIbqTIiIiIjIPBD3vChwI7ADOA0MjNzHxGKxqh07/jIrL+9Wa22yt7n5k60NDT+cxGHKgWrgcVyR644Qui4iIiIiC5SCCZmVinNSg0U5qacADl5IS52JQSDswtoiIiIiIjMq7nkR4IZgewboHblPJDs7e/H27e+N5ea+wFqb6Llw4WNtx48/MInDLMPNlrgfV+S6P4Sui4iIiMgCpmBCZq3KgkQ9QFNnbHsamu8Eqvc2NMXS0LaIiIiISNrFPc/gZknciKv50D1yn1hubl7Vtm0fiObkXG+tHeg6d+5D7SdO/HyCh4gAHtCPK3L9ZJ3vj1pMW0RERERkMhRMyKxVu6i/HqCjP7p1IBn6e7UbKAZKQ25XRERERGSmbMbVlWgDrlpaKZafX1CxdeuHotnZW621vZ1nz76/o7Fx/wTbzgbW4mZhfLfO9/2wOi0iIiIiomBCZq0X1vQcjxjbm7Sm8OHTBatCbr4XyEN1JkRERERkDop73nrgRUAX0Dry9uyiouLKLVs+Gs3KqrWpVFdHY+OdnWfOPDXB5gtxRa6fAu6p8/0LoXVcRERERAQFEzKL5cZsqjgndQjgSEtOOpZzSgGL0tCuiIiIiEjaxD1vNXALkACaR96eU1JSvmjjxr+OxGJrbCrVfvnUqfd0nTt3bILNV+BqsT0K3Ffn+51h9VtEREREZIiCCZnVFgd1Ji50xdJRALsbWL63ocmkoW0RERERkdDFPW8ZcCuQBTSNvD23vLyyfMOGj0VisZU2mWxp8/13dZ8/f2qCza8EcoAfAw/X+f5AWP0WERERERlOhX9lVttc1Xeg4VIOnQORzb2DJpqXZZMhNt+FW8qpEFcMW0RERERk1op73mLgdqAAODXy9rzKyqWla9Z8JBKNVqSSyfNtx47d2dfaenECTUdxSzddAh6o8/2TYfZbRERERGQkzZiQWe3GFT2NUWM7Utbk/qSxYH3IzXfjQgnVmRARERGRWS3ueeXAbUA5o4QSBYsXryzzvI9HotGKVCJxtrWh4V0TDCVycEWuTwPfUyghIiIiIjNBwYTMarEItiQ3WQ9w7FJO2Ms5pXC/A+UhtysiIiIiEpq45xXjQolq4MTI2wuXLvVKVq/+mIlESlOJxMlLR468u7+9/aqC2KMoAlYBB4Hv1/n+VfUqRERERETSQcGEzHrVha7ORHN3NB11JvqApWloV0RERERk2uKeV4CrKbEK8AE7/Pai5cs3Fq9c+VETiRQlBwcbWg4ffs9AZ+flCTRdGWwPAz+q8/2ukLsuIiIiIjImBRMy621f0lcP0DUQ2djeF8kOufkuoGpvQ1PY7YqIiIiITEvc83KBm4F1uFAiNfz24pqabUUrVnzIRCL5yYGBQy0HD75/sLu7+xrNGqAGVzz7PuCROt8fTEP3RURERETGpGBCZr3rl/aey4rYFouJ/bSxYEPIzXfhprBrOScRERERmTXinpcFvBDYBJwEEsNvL1m9+jmFS5d+wBiTk+zvf6K5vv6uRF9f7zWajeLqSVwG7qnz/UN1vm+vcR8RERERkdApmJBZL2KgNKgzcaI1O+zlnAaAbFQAW0RERERmibjnxYAXANuBRtzfrL9QunbtTQVLlrzHGJOV6Ot75OKBAx9NDgwMjNbWMLm4UOIU8N06329MQ9dFRERERCZEwYTMCcuKB+sBWnpi29PQfAK3vq6IiIiISEbFPS8CPBe4ATiDq4n2C2Xr19+eX1n5TmNMNNHbe//F/fs/kUokEqO1NUwJsBI4gJspcSkdfRcRERERmSgFEzInXF/dWw/QPWjWNXXG8kNuvhtYtrehSb8PIiIiIpIxcc8zwHXA84AmoGf47eUbNrwiv6LiDmNMZLCn5/sXDxz4tE2lUqO1Ncxi3LKlDwI/rvP9nmvsLyIiIiKSdhqIlTlhy+L+luxoqglM5KHT+ZtDbr4LdxZZScjtioiIiIhMxjbgJqAF6Bx+w6JNm16dV17+NoCBrq5vXdy//x+vEUoYYBXuO98PgZ/X+f61ZlaIiIiIiMyIWKY7IDJR5XnJA+e7ItWnLmdvAx4LsekeYCmuzkRbiO2KiIiIiExI3PM24kKJDqB9+G0VW7a8Nqe4+DUA/Z2dX205ePDL12guBqwBzgM/rfP9M+H3WERERERk6hRMyJyxoniw/nxX1stbe6JhF8C2wWU5cCLktkVERERExhQs37QFeCHQj5st8QuV27a9Ibuw8NUA/Zcvf6nl8OGvX6PJPFw9iWPAA3W+3xp+r0VEREREpkdLOcmc8bzlPQcBehOR1SfbsopDbr4HWB5ymyIiIiIiY4p7XhR4DnAb0Atc+MWNxpiq7dv/cCiU6Gtr+/wEQolS3N+0TwI/UCghIiIiIrOVggmZM7zywcu5sdQpgEfO5m8NufluYNHehqawC2uLiIiIiFwl7nnZuKWbbgJaGTZTwkQikaodO96RVVDwy9Za23vp0t9fOnLk29doshoXTDwI/KTO93vT1HURERERkWlTMCFzyqK8ZD3AmctZYS/n1AUU4upMiIiIiIikTdzz8oFbcbMlzjGspoSJxWJVO3b8ZVZe3q3W2lRvc/MnWxsafjhOcwZYDaSAHwCPqci1iIiIiMx2qjEhc0pN6UD9M51Zv9rWG3qdiQQQxdWZeCbktkVEREREAIh7XglwC7AOOIWrKwFAJDs7u2rr1ndFc3JusNYmei5c+ET7iRM/G6e5oSLX53BFrvV3rIiIiIjMCZoxIXPKTSt7DoFN9Scjy55qzlkUcvODwJKQ2xQRERERASDueVXAy4G1gM+wUCKam5tbtW3b+4NQYqDr3LkPXSOUyA/aOQp8T6GEiIiIiMwlCiZkTqkuSvTkZ9njAI8/k5eO5ZyW7G1o0kwiEREREQlV3PNW4kKJpcBx3IxdAGL5+QWVW7d+KJqdvc1a29t59uz7Oxob94/TXFnQzmPAvXW+356+nouIiIiIhE/BhMw5FfmJeoCznWmpM1GM6kyIiIiISIjinrceeClQggslUkO3ZRcXl1Zu2fLRaFbWBptKdXU0Nt7ZeebMU+M0txT3N+tPgAfqfL8vnX0XEREREUkHnRkuc86asoH605ezf6O9N7o9ZSFiQmu6D8jFBRPNobUqIiIiIgtS3PMMsA24Cbds6Knht+eWl1eVrVv34Ug0Wm1TqfbLp069v/v8+VNXtwS4k8pWAZ3Aj+p8/1jaOi4iIiIikmaaMSFzzgtrup8y2MRgylQ82ZRbHXLzKSDs2hUiIiIissDEPS8KPBe4FegBmobfnl9VtaJ83bpPRKLR6lQyeaHt+PG/GieUyMIVy76AqyehUEJERERE5jQFEzLnlOelBgqyU08D7D8fep2JbmD53oam8OZhiIiIiMiCEve8HOCFuJkSzUDL8NsLly1bV7pmzcdNNLoolUicbm1o+Kvelpam0doCCoDVwNPAd+t8f6z9RERERETmDAUTMidVFiTrAZo6Y+moM1EGFIXcroiIiIgsAHHPKwBuA24AzgIdw28vrqnZXrxy5UdNJFKUHBxsaDl8+F397e2tYzRXDlQDj+OKXHeMsZ+IiIiIyJyiYELmpHXl/QcA2vui2xIpwpzd0I07K00FsEVERERkUuKeV4Yrcr0ZOIlbwukXSj3vxsKlSz9gjMlNDgzsbz548H2D3d1dYzS3DPd36f24Itf9aey6iIiIiMiMUjAhc9KLarqPGWx/0pqSR8/mrwyx6RTu96I8xDZFREREZJ6Le94S4GXAGsAHBobfXl5b+5L8qqq/MsbEEn19D13cv/9Dyb6+vlGaigAe0A98v873n6zz/VS6+y8iIiIiMpMUTMicVJBtE8U5qcMAhy/mhL2cUx9uyryIiIiIyDXFPa8GF0osAY4DieG3L9q06dV5ixb9sTEmMtjT8/2L+/f/bSqRSIzSVDawFngGV0/CT3ffRUREREQyQcGEzFlVBYl6gPNdWemoM7F4b0NTTsjtioiIiMg8E/e8DbhQohA3U+JZsxsqt259XW5p6RsABjo7v3Zx//5/tKnUaDMgCnFFrp8C7qnz/Qvp7bmIiIiISObEMt0BkanaWNl/4FhrDh39ka19CRPJjdmwprh34tb0LQPOh9SmiIiIiMwjcc+LANuAm3DLLp0efruJRCKV27b9YVZ+/ssA+trb//3SU099Y4zmSoEK4FHg53W+PzDGfiIiIiIi84JmTMic9Usru09GjO1OWZP/0Ol8L8SmB3HT6FVnQkRERESuEve8GPB84BbcSS3POpklEovFqnbs+Ius/PyXWWtTvZcufWacUKIMWAQ8CDysUEJEREREFgIFEzJnZUdJleQkDwI83RJ6nYkEUBlymyIiIiIyx8U9Lxe4GbgRuAi0Dr89mpubW7Vjx/tjubm/ZK1N9Fy8+InWhoZ7x2iuHDdb4qfA4ypyLSIiIiILhYIJmdOWFLo6Exe7Y9tDbrobWLa3oUm/IyIiIiICQNzzCoHbgZ3AGdxsiV/IKiwsqty69cPR7Owd1tq+rnPnPtju+4+M0VwFUAz8BHiyzvdtOvsuIiIiIjKbaNBV5rQti/vrATr7I5s6+yNh1kzpxH1RLA2xTRERERGZo+KeVw68FNgInAB6h9+eU1paXrFp08eiWVm1NpXq7Dh9+r0djY0HxmiuCigA7gfqFUqIiIiIyEKjYELmtOcv7zkdi9h2i8l+oDG/NsSme4B83Jq/IiIiIrKAxT2vGng5sAo4DjyrDkReRUV1eW3tJyKx2EqbTF5qP3HiXV3PPHNsjOaWADnAj+t8/6BCCRERERFZiBRMyJwWMVCam6wHON4aep0JUAFsERERkQUt7nmrcaFEJS6USA6/vaC6enXZ2rWfiESji1PJ5LnWY8f+sufixTNjNFcNRIEf1fn+4bR2XERERERkFlMwIXNedWHiAEBzTzTsOhM9wLKQ2xQRERGROSDueSbueZtwyzfl45ZvetbshqIVKzaV1NT8tYlESlOJxIlLR468q6+1tXmMJof+rryvzvefTl/PRURERERmPwUTMuddV91bD9A1EKm91BPNCbHpLqBib0NTQYhtioiIiMgsF/e8CHAdrtB1Ejg9cp+S1atvKFq+/EMmEilIDgwcbj548D0DHR3tYzS5EkjgQomxlngSEREREVkwFEzInLd9Sd+FrEjqIpjoTxsLNoXYdBdQiOpMiIiIiCwYcc/LAm4EbgY6gAsj9ylbt+5FBUuWvNcYk53o73/sYn39BxK9vT1jNFkD9AE/rPN9P20dFxERERGZQxRMyJwXMVCWl6oHONmWFWadiSRuDWDVmRARERFZAOKel4sLJJ4PnAdaR+6zaMOGV+RVVPy5MSaa6O398cX9+/86NTAwMHK/wCqgG7i3zvdPpanbIiIiIiJzjoIJmReWFw8eALjUGwu7APYAsDjkNkVERERklol7XhHwEmAHcAY3e/ZZKrZseU1uefnbjDFmsLv72xf27/+0TSaTI/cLrAEu40KJq5aCEhERERFZyBRMyLzwnGU9BwF6Bo13tiMWZk2ILmDp3oamrBDbFBEREZFZJO55i4CXAbW4Ite9z9rBGFO5ffubc4qLXwvQ39HxXxcPHPg81tqrGgODCyVacaHE2bR2XkRERERkDlIwIfPChoqB1pxo6iyYyEOnC7aE2HQnrs5EaYhtioiIiMgsEfe8ZcDLcQWqjwGDw2830Wh08Y4d78guKKgD6Gtr+1zLoUP/PUZzBvCAFuAHdb7flL6ei4iIiIjMXQomZN4oz0vWA5y+nLU9xGb7gVxUZ0JERERk3ol7noebKbEIOA6kht8eyc7Ortqx492xvLxbrbWpnubm/3fpyJHvjNFcBBdKNOFCiauKZouIiIiIiBPLdAdEwrKyZLC+qSvrFa290bDrTKRwX1ZFREREZB6Ie54BNgEvxM1yODlyn1heXn7F5s13RrOzt1hrB7rPn//45ZMnHx+jyaFQ4hngh3W+fyldfRcRERERmQ80Y0LmjRtX9BwEa/sSkZXHW7NLQ2y6G1i+t6HJhNimiIiIiGRA3PMiwA3Abbhlm66qAZFdVFRSuXXrX0ezs7fYVKqn8+zZ948TSkSBtbiC2fcqlBARERERuTYFEzJv1JQOdubF7EmAn53N2xpi0524GhNFIbYpIiIiIjMs7nlZwE24mRLtwMWR++SWl1cu2rTpE5FYbI1NpdovNza+u/PMmafGaDKGCyVO4kKJ1jR1XURERERkXlEwIfPKovzkAYAz4daZ6AEKUJ0JERERkTkr7nl5wK3Ac3F1INpH7pNfVbWifN26v4lEo0tTyeTFtuPH/6q7qemqZZ4CMWAN4OOWb7qqPRERERERGZ2CCZlXVpUO1AO09YVaZyKF+11RMCEiIiIyB8U9rxh4MbANaAS6Ru5TuGzZutI1az5uotFFqUTidGtDw1/2trQ0jdFkFq6mxFHcTImOdPVdRERERGQ+UjAh88oLa7qfApsaSEaWHDifWxVi031AdYjtiYiIiMgMiHteJfAyoBY3u6Fv5D7FNTXbileu/KiJRIqSg4NHW5566t397e1jLcuUjZsp8TTwozrfvyrkEBERERGR8cUy3QGRMFUVJHsLslJHuwejG55syt26fUnffSE13QlU7W1oyt1VW33Vl1kRERERmX3inrcct3xTBXAMNxP2WUo978b8qqq/MMbEkgMDB5oPHfposq9vrL/3coBVwGHgJ3W+35OmrouIiIjIArNv9+584KVAHa4uWg2QBI4DXwc+tXPPnlFPitm3e/frgbcDm4AB4FHgIzv37Hk4/T2fGs2YkHmnosDVmXimMyvM5Zy6gEKgLMQ2RURERCRN4p63Fng5UIqbKXFVKFFeW/vi/KqqvzLGxBJ9fQ9f3L//g+OEErm4UOIg8GOFEiIiIiISstcC3wDeiAsk/g94AFgNfBB4bN/u3VetELNv9+5PA/8ObAF+CPwceAnw0327d79qJjo+FZoxIfPO2rKB+sb27N9u74tuT1mImFCaHcStJVyOK5YoIiIiIrNQ3PMM7kvZC3FhxKnR9lu0adOrc0tL3wAw2NNzb3N9/T/aVOqq8CKQB6wADgA/rfP9/tA7LiIiIiIL3SDweeDTO/fsOTJ05b7du6uB7wDXAZ/GBRhDt70YuAO4BNy4c8+eY8H1NwL3A/++b/fu+3fu2dM+Mw9h4jRjQuadF63qftpgBxMpU/7YM3nLQmw6CVSG2J6IiIiIhCjueVHgOcBtQC/wzGj7VW7d+vtDocRAZ+fXL+7f/5lxQol8YCXwJG75JoUSIiIiIhK6nXv2fGnnnj1vHR5KBNc3Af9f8OOufbt3Zw+7+c+Cy48MhRLBfR4BPoubPfym9PV66hRMyLxTnJMaLMxOHQGov5C7PcSmu4BlexuaoiG2KSIiIiIhiHteNm4t3puAVqBl5D4mEolU7djx9uyiot8A6Gtv/2LzwYNfGqfZAmA58BjwQJ3vD4TfcxERERGRazoQXOYAiwD27d6dhzshB+Bro9xn6Lq69HZtahRMyLxUVZCoBzjfFQuzzkQnUAyUhNimiIiIiExT3PPycUWunwOcA9pH7hOJxWJVO3a8Mys//+XW2lTvpUufufTUU3vHabYIWIoLJR6q8/3BNHRdRERERGQi1gSXg7iTcABqcUFF8849e86Ocp99wWWY46OhUTAh89L6RQMHAC73RbcmUoRTZcItB5CHqzMhIiIiIrNA3PNKcMX9tuLqSXSP3Ceam5tbtWPH+2O5uTdZaxM9Fy/+TWtDw73jNFsMLAZ+hgslEmnouoiIiIjIRN0RXN6zc8+eoaVFVwaXo4US7Nyzpxt3wk7Zvt27i9LbvclTMCHz0otWdR+LGNubtKboodP5q0Js2gJlIbYnIiIiIlMU97wq4OXAWsAHrqr/kFVQUFi5deuHo9nZO6y1fV3nzn2w3fcfHqfZUqAKeAR4tM73k2nouoiIiIgsHIXGmOJhW85k7rxv9+5X4OpEDALvG95ucNkzzt2HTtpRMCEyE3JjNlWckzoE8FRzqHUmeoEVIbYnIiIiIlMQ97yVuFBiKXAcuGpWQ05JSXnF5s0fj2Zl1dpUqrPj9Ok7OxobD4zcb5gy3OzYh4CfK5QQERERkRA8DVwetr17onfct3v3BuA/AQP8xc49e8b7W3ZOUTAh89ZQnYkL4deZKN/b0FQQYpsiIiIiMglxz1sPvBRX++s4kBq5T15FRXX5hg2fiMRiK20q1dp+8uS7u5555ug4zZbjgokHgMfrfP+qNkVEREREpmAD7u/Woe1jE7nTvt27lwH34P5G/dTOPXvuHrFLV3CZP04zQ2OYnRPu7QyJZboDIumyqbKv/uilHDoHIpt7B000L8uGccZbN1CJ++J61frFIiIiIpI+cc8zuOJ9N+Gmsp8abb+CJUtWlaxa9SETiZSmksmmtmPH3tfX2npxnKYrcNPbfwIcqPN9G3LXRURERGTh6rLWdkzmDvt27y4HfgDUAP8OvHOU3U4Hl8vHaKMAt0xp2849e2ZdMKEZEzJv/dLKnlNRYztT1uQ90FiwNqRmk0AUFcAWERERmVFxz4sCzwNuxa2j2zTafkXLl28sWbXqYyYSKU0lEicuHTnyV9cIJapwZ5Ldj0IJEREREcmwfbt3FwLfAzYBe4E379yzZ7S/URtwNdYqg9kVI+0MLuvT0tFpUjAh81Ysgi3JTR4EOHopO8w6EwPA4hDbExEREZFxxD0vB3gh8EtAM9Ay2n4lq1dfX7RixYdNJFKQHBx8qvnQofcOdHS0j9P0YiAX+HGd79crlBARERGRTNq3e3cO8C3gucD3gd/ZuWfPqKvA7Nyzpxf4UfDjb46yy28El/Gw+xkGBRMyr1UXJg4AXOwOvc5E9d6GpqwQ2xQRERGRUcQ9rwC4DbgBOAuMOg2+bN26FxUsWXKnMSY70d//WPOBA+9P9PSMt/RmNW5p2/vqfP9w6B0XEREREZmEfbt3R4Gv4P72fQDYtXPPnoFr3O1TweWd+3bvXjesrRuBtwLtwBfC7+30qcaEzGvblvTVH27OpWsgsrG9L5Jdmpu61i/zRHThzq4rA8ZbFkBEREREpiHueWXALYAHnMTNXL1K+YYNr8gtK3urMcYkent/crG+/tM2mRyvvtgywAI/qvP98Qpii4iIiIjMlD8CXh38uwX4p327d4+23zt37tnTArBzz54f7tu9+27gDmD/vt277wWygZcABnjDzj172tPd8anQjAnJpG7cL0ra3LC095lYxLZaTNYDjQUbQmq2HzflX3UmRERERNIk7nlLgJcBawCfMUKJii1bfjuvvPxtxhgz2N397Qv793/qGqHEClzdsB8qlBARERGRWaRs2L9fDbxujK1w+J127tnzDuANwBFcIHEj8EPgRTv37Plmujs9VZoxIZk0VLAwAqTScYCIgdLc5IGWntitfmv2NsIr9pICFoXUloiIiIgME/e8GtxMiTLgOKP9rWiMqdy27U3ZBQW/CtDf0fGVlkOHvnKNplfiTjK5r873T4baaRERERGRadi5Z89dwF1TvO8XgS+G15v004wJyaQLuHoNxek8yLKiwXqAlp5omHUmuoAVexuaTIhtioiIiCx4cc/bgJspUYibKXFVKGGi0WjVjh3vGAol+traPj+BUGIV0AP8QKGEiIiIiEhmKZiQjNlVW90FPAOUpvM41y/trQfoHoysv9gdzQup2S5coJLWUEVERERkoYh7XiTueTuAF+PqP5webb9IdnZ21Y4d787Ky7vVWpvqaW7+1KUjR759jeZXA5eBe+t8f9R2RURERERk5iiYkEw7DeSk8wBbF/c3Z0dTTWAiDzQWbA6p2W6gANWZEBEREZm2uOfFgOfjlm/qBM6Ptl8sLy+/atu2u2I5Oc+11g50X7jw0bZjx+4fp2mDq1HRhqspcTbcnouIiIiIyFQomJBMu4Ab5M9P50HKcpP1AKfas8NazsnivuiWXWtHERERERlb3PNygZtxRfouAq2j7ZddVFRSuXXrX0ezs7fYVKqn8+zZD1w+ceKxcZo2gAe04GZKnAu77yIiIiIiMjUKJiTTWnFfFkvTeZAVJa7OxKVw60z0ActCbE9ERERkQYl7XiFwO7ATOIObLXGV3PLyykWbNn08EoutsanU5cuNje/pPHPm8DhNR3ChxHlcKDHqDAwREREREckMBROSUbtqq1PACVxxw7R53vLegwC9iciaxvasopCa7QQq9zY05YbUnoiIiMiCEfe8cuClwEbc34O9o+2XX1W1vHzduk9EotFlqWSyuc33/6q7qenEOE0PhRLncKHExbD7LiIiIiIi06NgQmaDC0ACiKXrAGvLB9pzY6nTAI+cyd8aUrNduEBFdSZEREREJiHuedXAy4FVwHFgYLT9CpcuXVe6Zs0nTDRakUokzrQ2NPxlb3PzeEsyRYG1uNkX99b5fkvIXRcRERERkRAomJDZ4CKuIGFpOg9Snpc8AHD6clZYyzkNhSmqMyEiIiIyQXHPW40LJSpxoURytP2Ka2q2FdfUfMREIkXJwcFjLU899a7+9vZL4zQdxc2UOIULJUatVSEiIiIiIpmnYEIybldt9QDuC2RpOo9TUzJQD9DaG90eYrNJoCrE9kRERETmpbjnmbjnbcIt35SPW77JjrZv6Zo1zytcuvQuY0xecmDgQMvBg3cOdnWNWn8iEMPNlDiBCyXaQ+6+iIiIiIiESMGEzBbnABNsaXHTyp5DYFP9yciyI805YS2/1Aks29vQFA2pPREREZF5J+55EeA6XKHrJHB6rH3L16+/PX/x4ncbY2KJvr6HL+7f/8FEX9+o9ScCWbiZEkeBH9b5fkeYfRcRERERkfClbU3/dKi5mzzg3cBrgJVAK3AP8L7GO3hmkm2VAXcBrwKWAOeBbwB3Nd5B+xj3WR8c/zagGugHngb+C/jHxjtGXxtXJuQC0AEUA5fTcYClxYnu/Czr9wyadY+dy9u2sbL//hCa7QIW4WZ7jLe0gIiIiMiCFPe8LOC5wdYabKNatGnTq3JLS98IMNjTc29zff0/2lQqNU7z2cBqoAH4UZ3vd4fXcxERERERSZc5M2Oi5u7/n707j4/rvuv9/zozo32XtViWbdkex/IqOUrTNGs3SlPKUK6AApcOlOX+LrSAgNIlbdKmTds0BQpqC5TLpZQOtxcuVBQEpW2afW8SxZJX2T62x5usfR1ts5zfH98xcRwts8nW8n4+HvMYa+acz/frPCJZc97n+/2QCzwK3IdpOPyvmKZ2vwq8UtfKtiRqVQA/An4X0yfgO5g731uAF+paX9/MuK6V24BXgPcDofg5zwJ7gC8BP6hrXVlBz3LSXF8zDvSwxNs5rcuLdAFcGMtYn4kpzFYEaoAtIiIicpV2rzcXeAvwJsyNQPOGEpX79vkvhxKzExNtfQcOfCWBUGIbcAR4RKGEiIiIiMjKsWKCCeBezAea54AdwRZ+PtjCLcCHMI3zvp5ErT/D7EHbBtTHa+0FvgLswAQNV/sq5gL0PcEWdgdbeG+whXfy6l62bwb8Kf3N5LIgkLOUA2wrm+0EGJ5yN8bm3NE4JQ4KJkREREReo93rLQLeATRibiiamOs4y+VyVe3f/4HsoqKfA5gZHf27/q6ubyxSPhcTSnQBj/lsezJjExcRERERkSW3IoKJulaygd+Of/nBYMurH2qCLXwJ84HkzXWt3JRArRrgF4FZ4APBFiJXvP1hoB94X13rqw2N61opxOyJOwl88cp6wRYuYkILgJuT/KvJa/ViViDkLdUAd9ZNHrVwIuGYVXngUu76DJUNAZvaunuWrD+GiIiIyErS7vWuA94J1GNu4pmzR4Tl8Xiq9u//w6z8/Lsdx3GmBge/OnD48LcXKZ8H1AEHgCd8tr1Q/wkREREREVmGVkQwAdwOlAB2sIVX5nj/n+PPvgRq3Y35ez8VbKH3yjeCLcwA7YAb+Ikr3goDCy0jv0w9BtIzCAywhNs5rcuPzhRkx7oBDvTkZWo7pwnMnAsyVE9ERERkxWr3emsxv3NvBk5gfpd+HXdOTk51Y+N9ntzcOxzHiUz29T001N39g0XK5wObMFusPuGz7elMzl1ERERERK6NlRJMNMafO+Z5//LriVxoTrpWPLB4EvNB6CNXHlzXygbgg5gPXIEExpd5NNfXxDB31BUt5TiV+dEugIvjnkwGE4VoOycRERFZ49q9Xi9mpcQ64CTz3NyTVVBQWNnQ8IA7J+dGx3GmJy5e/MyIbT+7SPkCYCPwMvCkz7ZnMzl3ERERERG5dlZKs+bN8efz87x/+fW6Jaz1m8DDwIN1rfwycAgoBu7CNG1+d7CF4wmMLwvrxTQk98SfM257+UzX6ZHsXxydcTfEHHClvwFTDLPKpgw4m3Y1ERERkRWm3eu1gN3AnYAFnJ7v2JySkvLy+vpPuzyeOicWmxg/d+7T4xcudC8yRCGwAXgReNZn20vye6KIiIiIiFwbK2XFRGH8eb6mdqH4cyJ32qdUK9hCN3AHZkXFLuDnMHeD5QKPAYcXGtSyrBzLsoovP66Yh7xWHzDCEm7ndGfdZLeFMxuJWaXPn8/fvPgZCZkBajJUS0RERGTFaPd6XcAbgLdjVhHPdwMQeRUV68t37nwoHkoMjZ4+/bEEQokizO9Zz6NQQkRERERkVVgpwcR1V9fK24BOIAt4G2a1xFbgc8CvAs/UtVK5QIl7gNErHseWdMIrVHN9zQxwBtNTZEkU5cQiRTmxwwCHenMytZ3TOLC+rbsnO0P1RERERJa9dq83C3Pzzp3AMOYmkzkVrF+/pWz79odcbnd1LBrtGTpx4qOh3t7FVpuWANXAs8DzCiVERERERFaHlRJMTMSf8+d5/3LT4fGlqFXXSjnwT5hQ4l3BFh4LtjAebOFMsIX7gD8HtgB/uMC4D2I+WF1+7ExgrmvVRcz/m+lvsjSPqoJIF8ClCU/jYscm6HKfibIM1RMRERFZ1tq93jzgrcAbMVubjsx3bNHGjbtKtmx50HK5ymKRyOnBo0c/Oj042LvIEKVABfAM8COfbUczM3MREREREbneVkowcflOqo3zvH/59eAS1Xo3prHx88EWLsxxzj/Fn++ab1DHcWYcxxm7/ODVgERerxcTDC1ZE+ydFTNdAKMz7r2z0Yx8H8wCOSiYEBERkTWg3estBn4MaMT83jzv77YlW7feVLRp0wOWy1UQDYeP9h869PHZsbGRRYYojz+eAl7y2facTbRFRERERGRlWinBRGf8uWme9y+/3rVEtS6HFaPznHP5dV2UzoDm+poxzF13pUs1xu2bJ22X5YRijlXwdLBgW4bKRmHB7bxEREREVrx2r7cS02utHjgJTM93bNkNN9xVsH79vZZlZUdnZl7q7+y8LzI5GZrv+LgKzLapTwIdCiVERERERFaflRJMPIO5+O+ta2X/HO//bPy5PYFa3wNiwJ11rVRd+UZdKzmAD3OB+btXvHUp/nxjXSvuOWreHH8+k8D4kpggprH4ksj1OLHinNghgGMDGeszMQFsbOvuWSnfVyIiIiJJafd6NwJ3Y27cOQHM2/OhfOfOd+VVVHzIsix3ZGrqid4DBz4XnZ2dXWSISsz2mE8CB3y27WRq7iIiIiIisnysiAuowRZmga/Gv/zzutb/6gNBXSt/ADQATwRbePmK13+7rpVjda08eFWtHuD/AtnAX9S14rni7S9iPgz9fbDlNY37vgfMYJpdP1DX+up/t7pW6oHPxL/85/T+pnKFXszdd3lLNcD6wnAnQF/Ik8lgojj+EBEREVlV2r3eGzChRClgY272mVPFnj3vzSsv/y3LsqxwKPQfvQcOfMmJRhfrEVGN+d3vMZ9tdyqUEBERERFZvTyLH7JsfBazj+1twIm6Vp4C6oBbgH7g1646vgKzvLxmjlq/B7wJ+BngWF0rLwF7gL2YO7/+4MqDgy301LXyh8CXgXuAn69r5RVgHXArprfAd4FvpPuXlP8yAAxiPvhOLcUAe6tmuo4N5DI249oTmrU8BdnOvHf8JWgS2IDZD3kk7QmKiIiILAPtXq+F+T35TkwYcWbegy3Lqty379eyCwvfAzAzNvYPA4cOfSuBYWoAN/Coz7aPpj1pERERERFZ1lbEigmAYAvTwFuBBzAXgH8aE0x8A2gKtnAqiVoDwBuBr2BWTvw3oAQTPLwx2MLQHOd8FXgb8B0gH3gPph/FK8AHgZ8Ktsy/lF2S01xfEwNOYZbyL4lbN02edVvOqIOV82SwYEcGSjqAhXqNiIiIyCrR7vW6MduWvg1zs8iF+Y61XC5X1f79v3s5lJgeHv7rBEOJWszvUAolRERERETWCMtxtEL6erAsqxY4D2x0HGfeD3hrWVt3z2ZMaHSWBfYvTsdnn6j88OCU586tpbPf+t03Df5DBkpuBC4219f8awZqiYiIiFw37V5vNmZ18E2YFcoj8x3rysrKqmxo+IgnJ+cWx3FiUwMDrcMnTjyWwDAbMf3dHvXZ9slMzFtEREREZDnQ9d+FrZgVE7Im9WKanpcs1QA1RZEugP5Jdyb7TKxr6+5Zst4YIiIiIkut3evNx6xWvhm4yAKhhCcvL6+qsfHT8VAiHOrt/VyCocRmIAz8UKGEiIiIiMjaomBClq3m+poZIMgSBhP71091AYRmXTuHplzZGSg5ARRh+kyIiIiIrDjtXm8J8A5gH6afRGi+Y7OLioor9+79vDs7e68Ti01OXLjwqdFTp15MYJgtmK2hHvbZdsJbsoqIiIiIyOqgYEKWuwuYJu3WUhS/sWa6J8vl9DtYnqeCBbszUDKCma/6TIiIiMiK0+71VgF3A9sBG5iZ79jcsrKKdbt3P+TKyvI6sdjoWDD48bGzZw8lMMxWYAwTSgQzMnEREREREVlRFEzIctcLjLNETbBdFpTlRbsA7OHsxgyVDQPVGaolIiIick20e72bMaHEBuAkC/T4yq+qqi3fseOLLre7NhaN9g/b9kcnenoWW/lgAdsw20L90Gfb5zI0dRERERERWWEUTMiy1lxfMwpcYglXINQWhbsABic9meozMQ7UtHX3eDJUT0RERGRJtXu9O4B3YrbQPAnE5ju2cMOG7aXbtj1kud0VsUjk/PDx4x+d6u+/uMgQl0OJAeAHPttW8z8RERERkTVMwYSsBGeA3KUq/oZa02diMmx5L455CjJQMgQUA6UZqCUiIiKyZNq9Xqvd623E9JSwML93zat48+Z9xXV1n7NcruJYOHxi4MiRj04PDw8sMowL8AJ9mO2bLmVi7iIiIiIisnIpmJCVoBeYZonCid2VM4M57tgFsFzPnMvfk4GSU0Ae6jMhIiIiy1i71+sBbgHeCkwCPQsdX7pt2y2FtbX3W5aVF52d7eo/ePDe8MTE+CLDXA4lejChRF8m5i4iIiIiIiubgglZCQaAQZZwBUJ5XrQTIDiSnantnGLAugzVEhEREcmodq83B7gDuB3ox/y+Na+yHTvenl9dfY9lWVmR6enn+jo7Px2Znp5aZBgXpon2Ocz2Tf2ZmLuIiIiIiKx8CiZk2Wuur4kCpzHbIy2JTSXxPhNT7kwFEyFgY1t3j5WheiIiIiIZ0e71FgBvA94AnAfGFjp+3e7d78mvqGixLMsVnpx8uO/AgYdi4XB4kWHcmFDiDKbR9VAGpi4iIiIiIquEgglZKXqAKOZDbsbdumnyIMB0xLXFHsoqyUDJCcxWToUZqCUiIiKSEe1ebxnw48AezI0fkwsdX7lv3/tyS0t/HWB2YuJf+g4c+IoTi83bGDvOgwklTmFCieH0Zy4iIiIiIquJgglZKfqAUSATocHrbCkNj+d5YqcBnj+fvy8DJUOYUEJ9JkRERGRZaPd61wPvBLYBNjA737GWy+Wq2r//A9lFRe8FmBkd/bv+rq6/TWCYLExPiROYUGI0/ZmLiIiIiMhqo2BCVoTm+pppIMhS9pnIj3YBnB/LysR2TjHM91d5BmqJiIiIpKXd663DhBLrgZNAZL5jLY/HU7V//4ey8vPvdhzHmRoc/POBw4e/ncAw2ZhQoht4xGfbizXGFhERERGRNUrBhKwkFzBbAyxJ34YtJbNdAENT7sYMlZwGNmSoloiIiEhK2r3enZhQohCzUmLerZjcOTk51Y2N93pyc+90HCcy2d//R0Pd3d9PYJhsYCtwBBNKTGRi7iIiIiIisjopmJCV5BIwzhL1bbijbvIQOLHZqKvmUG9ORQZKTgBVbd092RmoJSIiIpKUdq/X1e713gj8WPylswsdn1VQUFDZ0PCAOyenyXGcmVBPzwMjJ08+ncBQOZjtoQ4Bj/pse8G+FSIiIiIiIgomZCUZA3pZor4N6wsjUwVZzgmAl3ryMrFqYgIoQts5iYiIyDXW7vV6gDcBb8bc2NGz0PE5JSVlFXv2fMGdlbXTicUmxs+du3f0zJlXEhgqD9gCdAKP+2x7Ks2pi4iIiIjIGqBgQlaM5voaBziD+QC8JCryI50AFzPTZ2IWs62BGmCLiIjINdPu9eZiAolbgT5gaKHj8yoq1pfv3PlFl8dT58RiQ6OnT39s/Pz57gSGygM2A68AT/hsezrduYuIiIiIyNqgYEJWml5M74acpSi+rdz0mRiZdjfEnIyUjACVGakkIiIisoh2r7cQeDvQBJzDrJaYV8H69VvKtm9/yOV2V8ei0Z6hEyc+GurtXXDLp8unApuAl4EnfbY9k+7cRURERERk7VAwIStNPzAIlC5F8bvqQscsnHA4Zq17+WJeJhpXh4Datu4efa+JiIjIkmr3esuBHwd2AaeABbdVKtq4cWfJli0PWi5XWSwSOTN49OhHpwcHexMYqhCoBV4CnvbZdjjduYuIiIiIyNqii6WyojTX10SB00DxUtQvzY3NFmbHjgJ0XsrNxHZOE0BJ/CEiIiKyJNq93hrgbky/h5OYLSXnVbJlS1PRpk2ftVyugmg4fHTg8OF7ZsfGRhIYqgioAV4AnlEoISIiIiIiqVAwIStRD+AA7qUoXlkQ6QLomfBkIpiYBPJRnwkRERFZIu1e71ZMKFGJCSWiCx1ftn37HQU1NfdalpUdnZl5ub+z875wKBRKYKgSYD3wPPCcz7Yj6c5dRERERETWJs/1noBICvqAEcyH4wWbOaZix7rZrlPDOYxOuxsjMSyPi3S6TVw+txyzpYKIiIhIRrR7vRZm26Y7Mb/XL/q7RvnOnXfnlpX9lmVZVmRq6sm+gwf/zIlEEgkYSoF1wDPAiz7bjqUxdRERERERWeO0YkJWnOb6milMM8fSpah/V13ohMtypqOOVfTsufy6DJScBDZmoI6IiIgIAO1erwu4EdPoOgos2rC6Ys+e9+aVl3/AsiwrHAp9t/fAgT9JMJQojz8USoiIiIiISEYomJCV6jxLtOInL8uJFmXHDgMc6cttzEDJELCurbsnPwO1REREZI1r93qzgFuBNwNjwMINqy3Lqmxo+PWckpL3AcyMjf1DX2fn13CcRFaFrsOsUn0KeEmhhIiIiIiIZIKCCVmpLgHjmAaMGVddaPpM9IYy0mdiAihEfSZEREQkTe1eby7wFuBNmEBiwW0tLZfLVbV//+9mFxa+B2B6ePh/Dxw69K0Eh6vA/K71BPCKz7bT2d5SRERERETkvyiYkJVqFNNronQpiu+unOkEGJtx7Z2OWOl+n0QwjbrL056YiIiIrFntXm8R8A6gEbOt5fhCx7uysrKqbrzxnqy8vLc7jhObHBj408GjR/8tweGqgXzgcaBLoYSIiIiIiGSSgglZkZrraxzgNJC3FPVv3xw67baciZhj5T0VLLghAyXDwPoM1BEREZE1qN3rXQe8E6jHNLmeWuh4T15eXlVj46c8OTm3OI4Tnuzt/fzw8eOPJTjceiAbeMxn2wcVSoiIiIiISKYpmJCVrBeYBXIyXdjjwinJjXYBdA9kZ2o7p/Vt3T1L0hdDREREVq92r7cWuBvYDJzA3PAwr+yiouLKvXs/587ObnAcZ2riwoVPjZw69aMEh9uAWen5qM+2j6Q1cRERERERkXkomJCVbAAYZIm2c1of7zPRP5mxPhPFqM+EiIiIJKHd6/ViVkqsA04CCzafzi0rq1i3a9dDrqys7U4sNjYWDH587OzZQwkOVws4wCM+2z6W1sRFREREREQWoGBCVqzm+poIZiuD4qWov696ugtgfMa1a2zGlZVmuWkgFwUTIiIikoB2r9dq93r3YHpK5GC2sFxwS6X8qqrash07vujyeGpj0ejAiG1/dOLiRTvBITdj+mL90GfbJ9KavIiIiIiIyCIUTMhKdwnzId2d6cJvrJ0673E5Qw5W9pPBgvoMlIxh7nYUERERmVe71+sC3gC8HbNt0/nFzincsMFbum3bQy63uyIWiZwfPn78I5P9/RcSHHILpmfFD322fSrVeYuIiIiIiCRKwYSsdL3ACFCS6cIuC0rjfSbsoYz0mQgBG9u6e6wM1BIREZFVqN3rzQLuAO4EhoG+xc4p3rx5b3Fd3ectl6s4Fg6fGDx69GPTw8MDCQ65BbPl5A99tn0mxWmLiIiIiIgkRcGErGjN9TVTmLsIS5ei/oaisOkzEXI3ZqDcBGYrp6IM1BIREZFVpt3rzQPeCrwR6MHcfLGg0m3bbimsrf20ZVl50dnZrv6DB++dHR8fS2A4C9gGjAI/8Nn22TSmLiIiIiIikhQFE7IanAM8S1G4qcb0mQiFXTv6Qu68NMuFgALUZ0JERESu0u71FgM/BjQCQcwNDQsq27HjbfnV1fdYlpUVmZ5+vq+z89OR6empBIa7HEoMAg/7bDvRLZ9EREREREQyQsGErAa9mA/vhZku3Lh+ui/bHesFy/10sGB3muVimO+58gxMTURERFaJdq+3EngnUA+cBKYXO2fd7t3vya+o+D3LslzhqalH+g4c+EIsHA4nMJwFeIF+TCjRk87cRUREREREUqFgQlaDEcz+y6VLUbws3mfi9EhWJvpMTAM1GagjIiIiq0C717sRuBvYCJwAIoudU7lv3/tyS0t/HWB2YuI7fQcOfNmJxWIJDOcCtmO2ifqBz7Z7U5+5iIiIiIhI6hRMyIrXXF/jAKeB/KWov7E43AkwOOXJRDAxAVS3dffkZKCWiIiIrGDtXu8NmFCiFLAxqyvnZblcrqrGxt/MLip6L8DM6Og3+7u6vo7jOAkMdzmUOIdZKdGf1uRFRERERETSsCT78otcB73ALJAdf86YWzZOdb3ck89U2Np2bjSrcFNJeNE9nxcwDtRi+kxcyswMRUREZCVp93otYC9wJyaMOLPYOZbH46lqaPh9T27unY7jONPDw385dOzY9xIc0o3Zvuks8EOfbQ+nOHUREREREZGM0IoJWS36gSGWoLH0DetmR3I9sbNgWc+cy9+XZrkwJjxRnwkREZE1qN3rdQM3A28DpoBFG0+7c3JyqhsbPxEPJSJT/f1/lEQo4cGEEqcx2zcplBARERERketOwYSsCs31NRHMB+6ipahfnmf6TJzNTJ+JCFCZgToiIiKygrR7vdnAHfHHEDCw2DlZBQUFlQ0Nn3Hn5NzkOM5MqKfngeGTJ59OcMjLoYSNWSkxmurcRUREREREMknBhKwmPfHnjP9/vbkk3AUwNO3ORDARAmrbunv0/SciIrJGtHu9+cBbMaslLgIji52TU1JSVrFnz4PurKxdTiwWGj937r7RM2deSXDILEwo0Y0JJcZSnLqIiIiIiEjG6cKorCa9wChQkunCt28OHQTHmYm4Nh0fyE53u6hxoBjT6FJERERWuXavtxR4B7AP008itNg5eevWVZfv3PmQy+PZ4sRiw6Nnznxs/Pz5YwkOmY0JJY4Cj/psO53+WCIiIiIiIhmnYEJWjeb6mkngPEtwwX9jcSSUn+XYAD+6kHafiUkgnyXohyEiIiLLS7vXWwW8E9iO2VJpZrFzCtavryu74YaHXG73+lg0emn4xImPhC5dCiY4ZA6wFTiECSUWDUFERERERESuNQUTstqcw2xdkHHr8iJdAOfGshozVFINsEVERFaxdq93M3A3sAE4iekztaCijRvrS7Zs+YLlcpXHIpEzQ8eOfXRqcLA3wSFzgS1AF/CYz7anUpy6iIiIiIjIklIwIatNL2Z7hIJMF95aZvpMjEy7MtFnYhKozUAdERERWYbavd4dmJUSJZhQIrbYOSVbttxYtGnTZy2XqyAaDh8bOHz4npnR0eEEh8wD6oBO4AmfbU+nOncREREREZGlpmBCVpthoI8l2M7pjs2hI+BEZ6Ou6gOXcqvTLDcBVLR192Q8QBEREZHrp93rtdq93kZMTwkL01NiUWXbt99RUFNzn2VZOdGZmZf7u7ruC4dCiW7DlA9sBl7GhBKLbhclIiIiIiJyPSmYkFWlub7GAU6zBCsmKgui04XZseMAr/TkprtqYgIoRH0mREREVo12r9cCbgTeglkd2ZPIeeU7d96dV1n5YcuyPJHp6ad6Ozs/F52ZSTRcKAA2Ai8CT/tsezaFqYuIiIiIiFxTCiZkNeoFZoHsTBeuyI92Alwcz0o3mIgCbtRnQkREZFW4IpS4ExgBBhI5r2LPnp/LKy//gGVZVjgU+s++Awf+xIlEFu1FEVeE2RryR8AzPtsOpzB1ERERERGRa07BhKxG/ZgtnUozXXh7+Wy8z4S7IeakXW4WSHdLKBEREbnO5gglhhI5r7Kh4ddySkr8ADPj4//Y19n5l04stmgvirhiYD3wHPCsz7YTDTNERERERESuOwUTsuo019eEMds5FWe69l11oWMWzmwkZpW9cD5vU5rlJoANbd09WZmYm4iIiFx7qYQSlsvlqtq//3ezCwt/GmB6ZORvBg4e/D9JDFsKVAHPAM/7bDua5LRFRERERESuKwUTslpd3tM5o/+PF+XEIkU5sSMAB/vS7jMxjukzUZruvEREROTaSyWUcGVlZVXt3/+xrPz8H3McJzY5MPBng0eO/GsSw5YB64CngRd9tp3oCgsREREREZFlQ8GErFa9wBhLsGqisiDSBXBp3JNuMDED5KI+EyIiIitOKqGEJzc3r6qx8VOe3Nw3OY4TnuztfXD4+PFHkxi2HBNMPAm8pFBCRERERERWKgUTsio119eEgPMswWqEnRUznQBjM+59s9G0v4dimLseRUREZIVIJZTILioqrty377Pu7OwGx3GmJi5cuH/k1KkXkhi2AnPDxRPAKz7bTr/blYiIiIiIyHWiYEJWs3NAdqaL3rF50nZZzmTUsQqfPVuwJc1yIWBjW3ePlYGpiYiIyBK7KpQYJoFQIresrGLdrl1fcGVl3eDEYmNjweDHx86ePZjEsFVAAfA40KlQQkREREREVjoFE7Ka9WIu/Bdksmiux4kV58QOARzpz2lMs9w4ZlVHUbrzEhERkaU1RygxvNg5+ZWVtWU7dnzR5fFsjEWjAyOnTn104uJFO4lh12O2fnzMZ9sHFUqIiIiIiMhqoGBCVrMhYIAl2M6putD0megLpd1nYhITnKjPhIiIyDKWSihRWFOzrdTrfcjldlfEIpELw8ePf2Syr+9CEsPWAG7gEZ9tH05p4iIiIiIiIsuQgglZtZrraxzgFBleMQGwp3K6C2B81rUnNGt50igVw3wfKpgQERFZplIJJYo3b95bvGXLg5bLVRwLh08OHj360enh4YEkhq2NPz/is+1jyc9aRERERERk+VIwIatdLxAGsjJZ9NZNk0G35YzFHCv3qbMFN6RZbhpzR6SIiIgsM/FQookkQonSbdveWFhb+2nLsvKis7MH+w8d+sTs+PhYEsNuBiKYUOJEShMXERERERFZxhRMyGrXh7mAUJrJoh4XTmlutAvgxGBOuts5jQNVbd09uenPTERERDLlilDiDhIMJcp27HhrfnX1xy3LyorMzLzQ19l5f2RqaiqJYeswNy084rPtZHpRiIiIiIiIrBgKJmRVa66vCQNngJJM164pMn0m+kPudBtgTwCFQFnakxIREZGMSGWlRPnOne/Kr6j4fcuyXOGpqUf6XnnlwVg4HE5i2C1ACHjYZ9unU5m3iIiIiIjISqBgQtaCi4BFhv9/b1w/1QkwMevaOTTlyk6j1OWtptRnQkREZBm4KpQYIoFQYt3u3e/JKy//LYDZUKi978CBLzuxWCyJYbcBo5hQ4mwK0xYREREREVkxFEzIWnAJGAOKM1m0qWa6J8vlDDhYnqeCBbvSLBcFKjMxLxEREUldKqFExZ49780tLf11gNnx8X/u7+z8axzHSXBICxNKDAE/9Nn2+dRmLiIiIiIisnIomJBVr7m+JgRcIMN9JlwWXO4zcWo4O90+ExNAbVt3jzv9mYmIiEgqrgolBkkglKjct8+fU1LyPoCZ0dG/7z948JtJDGkBXmAAs1LiYvKzFhERERERWXkUTMhacRZIZ7ulOdUWhzsBBic9mWiAXcwS9MIQERGRxc0RSowsdk5lY+NvZBcV/RzA9MjI1wcOH/5/SQzpwoQSl4Af+Gz7UtKTFhERERERWaEUTMha0QtMAvmZLPqGDVMHAUJh64aecU86taeAPNRnQkRE5JpLOpSwLKtq//4PZBcU/BTA1NDQ1waPHPlOEkNeDiUuYlZK9KcwbRERERERkRVLwYSsFUNAPxnezmlP1cxAjjt2ESzX02fz92SgZFkGaoiIiEiC2r1eF0mEEpbL5arav//3svLz73YcJzY5MNA6dOzYd5MY0g1sB85hQomBFKcuIiIiIiKyYimYkDWhub4mBpwGCjNduyzP9JkIjqTdZ2IS2JT+jERERCQR8VDiRhINJTweT9X+/R/Oyst7q+M4san+/j8ZPn78kSSG9GBCidOYUGIoxamLiIiIiIisaJ7rPQGRa+gSEAGygHCmim4qDnddmsi6e2jK3ZhmqXGgvK27pyDesFtERESWyBUrJe4ggVDClZWVVdnQ8DFPTs7NjuNEJnt7Hxo5deqFJIb0ANsAG3jEZ9tjKU5dRERERETkmujw+8uBm4AKINgUCDybqdoKJmQt6QeGMQ2mM7Ztwq2bJrtevJjPVMS15fRwVvHWsnCqFxpCQCWmz4SCCRERkSUSDyVuAm4ngVDCnZOTU7lv3yfc2dn7HceZDfX0fH70zJmOJIbMwoQS3cDjPtseT3HqIiIiIiIiS67D768EWoGfxWxHC/B3wLPx938D+CLwU02BwNOpjKGtnGTNaK6vmQXOYIKJjNlaFh7L88TOADx3Pn9fGqWimG90NcAWERFZIsmGEp7c3LzKffvuj4cS0xMXLtyfZCiRjQkljgGPKpQQEREREZHlLL5K4lngF4BDwF8A1lWHtQFFmOAiJQomZK25iPn/PqP/75fnRTsBzo1mpbud0yxQnf6MRERE5GrJhhJZBQUFFfv2PeDOzt7jxGKT4+fO3Td29uyhJIbMwYQShzGhhFZEioiIiIjIcvcJwAt8pikQaGoKBH7n6gOaAoEhoAt4c6qDKJiQteYSMIZJ9DKmrnS2C2B4yp1uA+xxoKatuycr/VmJiIjIZcmGEtlFRcUVe/Z8zp2VtcOJxcbHzp79xPj5891JDJkLbMH8sv6Yz7YnU5u5iIiIiIjINfXTwPGmQOD+RY6zgdpUB1EwIWtKc33NBGbVRFkm696xefIwOLGZqGvD4b6cijRKTQCFZHh+IiIia1myoUROSUnZul27Pu/yeLY5sdjI6JkzH5+4eNFOYsg8oA7oxPSUmE5x6iIiIiIiItdaLeazzGIcoDjVQRRMyFoUxGytkDE1RZHJ/CznJMBLF/PS6TMxg7nDUn0mREREMiDZUCK3rKyifOfOL7g8ns1ONDo4Ytv3hC5dCiYxZAGwCXgFeMJn2zMpTl1EREREROR6GANqEjjOC/SnOoiCCVmL+oBJzN2MGVORH+kEuDCele52TjFgXfozEhERWduSDSXyKirWl+3Y8QWX210Ti0Z7h0+e/Nhkf/+FJIYswtxd9BLwpM+2Z1OcuoiIiIiIyPXyInBzh9+/db4DOvz+RmA/8EyqgyiYkLVoEJPmZXS7pG1lps/EyJS7MeakVWoC2NTW3XN1t3sRERFJULKhRH5VVW3Z9u1fcLndVbFo9MLw8eP3TA0O9iYxZBlQjfnF/GmfbYdTnLqIiIiIiMj19BXMbjP/0uH377r6zQ6/fzsQACzgq6kOomBC1pzm+poYcArTyyFj7qwLHbVwIuGYVdHRk5vIcqf5TGD2Z0t5jzYREZG1LNlQomD9+i2l27Z9wXK5ymORyNnBo0fvmR4eHkhiyAqgFHgC+JHPtqOpzVxEREREROT6agoEvgd8EWgADnX4/ccw/STe2eH3dwJHgb3A55sCgadTHUfBhKxVvUAE8GSqYHlebLYwO3YMoPNSXmMapUKY/anVZ0JERCRJ8VDiDSQYShRu2LC9ZMuWz1suV0ksHLYHjhy5Z3ZsbMFzrlID5AOPAa/4bDuW2sxFRERERESWh6ZA4GPAzwMHgR2Y1RE1wD7gBPBLTYHAfemMkbGLsiIrTB/mQkUpkMwdkQuqKIh2jc+69/aMexqA76VYxsGEhmXA6UzNTUREZLW7IpS4jQRCiaKNG3cVbdz4Kcvlyo+Gw90Dhw/fH5mcDCUx5CbMjQ4/9Nl2d6rzFhERERERWW6aAoF/Av6pw++vBLZgrleebwoEkunDNy8FE7ImNdfXzLZ195zGbPOQsWDihvKZztPD2f99ZNq9LxLD8rhItdvEFKZ5Zkem5iYiIrKaJRtKFNfVNRRu2HCfZVk50dnZQwOHDj0QmZ6eSmLILZhVjo/7bPtUitMWERERERFZ1poCgX5Mv96M0lZOspZdxCxDyliT6bvqQidcljMddayS58/nb06j1DhQ2dbdk5upuYmIiKxWyYYSJVu33lS4YcOnLMvKic7MvNLf1XV/EqGEBXiBUeAHCiVERERERESSpxUTspb1AmOYJtOjmShYkO1EirJjh0dn3Dcd7stpuGPzZDDFUhOY7SHKMQGKiIiIzCHZUKLU6701v6rqw5ZleSIzMy/0d3Y+FItEIgkO58KEEj3Aoz7b7k1j6iIiIiIiIstSfPumDwBvxvSWyJnnUKcpEPCmMoaCCVmzmutrxtu6e3qArWQomACoKoh0jc64b7o0kdUItKdY5nJj7jIUTIiIiMwp2VCi7IYb7sqrqPgDy7Jckenpp/o6O7/kRKPRBIfzYEKJICaUGExj6iIiIiIiIstSh9+/D3gUc8N0xnaauZqCCVnrgsCuTBbcVTnTdWIoh7EZ197piOXK9TixFEtFgSrgcAanJyIisiokG0qU19e/I7e8/Lcty7LCU1OP9Hd2fsWJxRL9NzobcyPDCeAxn22PpTF1ERERERGR5awVWAcEgD8GTjUFAqFMD6JgQta6XmASyMM0nE7b7ZtDp//9eFEo5lgFT5/N9/7YttCJFEuNA7Vt3T3u5vqaRO/mFBERWfWuCCVuBwZYJJRYt2vXu3PLyv4nQDgU+m5fV9df4ThOgsPlYhpdHwae8Nl2xn8hFxERERERWUZuAbqaAoFfWcpB1Pxa1rpBzAWN0kwVzHYTK8mJdgF0D+Q0pFFqAigig3MTERFZ6ZIOJXbvbr4cSsxOTHynr7Pza0mEEgVAHXAAs32TQgkREREREVntJoAjSz2IgglZ05rra2LAKUwAkDHriyJdAH0hT2MaZaaAfMx+biIiImveVaFEP4uEEhV79/5ibmnp+wFmxsf/sb+r6+tJDFcE1AIvAo/7bHs6lTmLiIiIiIisMI8C6VzTTIiCCRGzndPlZtMZsa9qugtgfMa1e3zGlU5dBwUTIiIic4USowsdX7lv36/kFBf/IsDM6Og3Bw4e/D9JDFcGVAPPAU/7bDuc2qxFRERERERWnHuByg6//7Mdfr97qQaxEl/JLplkWVYtcB7Y6DjOhes9n7WsrbsnB/gFTFA3kImaMQc++vD6b0ZiVumPbZv4+Lt3jB9KsdQGzHZT326ur9E3q4iIrElJhRKWZVU1NPyPrIKCnwSYHh7+68GjR9uTGK4Cs1riGeAVn20n2iBbRERERETkv6zk678dfv924F+BbOBx4AIw12cjpykQeCCVMdT8Wta85vqambbunjPAjWQomHBZUJob7RqY9Nx1cii7AUg1mJjA9JgoiP9ZRERkTUkmlLBcLldlQ8MHs/Lz3+E4jjM9NPQXQ93d309iuPW8+ov3QZ9t66YAERERERFZUzr8/izgE8BOwAK8CxzuAAomRNJwEbgJ882WkYsQNYWRzoFJz10Dk+4G4FsplpkAKjHbOSmYEBGRNSWpUMLtdlc1NPyeJy/vzY7jxKYGBlqHT5x4LInhNgJR4BGfbR9La+IiIiIiIiIr12eBX8Fsf/8tTH/ejF+XVDAhYvQC45itG8YyUbBpw1TXwb5cJmZd9YOT7px1+dGZFMrEADdmr+uzmZiXiIjIShAPJW4GbmOxUMLj8VQ1NHzYk5t7q+M40cn+/j8eOXnymSSG2wJMAo/5bPtUOvMWERERERFZ4X4J8xmssSkQ6FuqQdT8WgRorq8ZA3ow2yZlxP71073Z7lgvWO4ngwW70yg1A9Rkal4iIiLLXTKhhCs7O7u6sfHj8VAiEurt/XwSoYQFbIvX/75CCREREREREcqAp5YylAAFEyJXCgK5mSxYmhvrAjg9nNWYRplxoLqtuyc7M7MSERFZvpIJJdy5ublVDQ2fdOfkvMFxnNmJixc/M3rq1IsJDuUCtgN9mFDifLpzFxERERERWQUOY3aVWVIKJkRe1QtMA3mZKrixONwFMDjlaUijzATmh0FZRiYlIiKyTCUTSnjy8vIr9+37tDs7u8FxnKnx8+c/NRYMHkhwKA8mlDgH/MBn271pTl1ERERERGS1+BPgrR1+/41LOYh6TIi8agAYxGznNJWJgjfXTh7s6MljMmx5z495CjYWR0IplJkFcjDBhC6ciIjIqpRMKJFVUFBYsXv3p11ZWTc4sVho7Ny5T01cuHA8waGyga3ACeBxn23PO46IiIiIiMga9BzwVeDxDr//T4GHgQuYXriv0xQIpNQXVysmROKa62timC7zhZmqubNidijHEzsHlvXM2YK9aZSKApWZmpeIiMhykkwokV1UVFKxZ8/n46HE2Ggw+PEkQolcTChxFPihQgkREREREZHXOQO0YHZwuQ94ErCB03M8Uu7TpxUTIq91CRMCeIBIJgqW50a7eiZcm86OZjUCL6RYZgKobevuccUDFBERkVXhqlCiDxib79ic0tLy8h07PuvyeDY6sdjwyOnT90329iZ6d04BsBHoBJ7y2fZ0unMXERERERFZhZ4EnKUeRMGEyGv1Ye7SLMFs65S2zaXhrp6JrHcPTbnT7TNRAhQDI5mYl4iIyPWWTCiRW15eVXbDDZ91ud3rY9HowIhtf2JqYKAnwaGKgBrgReBZn22H0527iIiIiIjIatQUCLzlWoyjrZxErtBcXzMNBDEhQEbcunHyEDjOdMS1+cRgdmmKZSYxd3qWZ2peIiIi11MyoUReRUVN2Q03fCEeSlwaPnHiY0mEEqVANWaf1GcUSoiIiIiIiFx/CiZEXu8CZjWRlYlidaXh8TyPcxrghfN5qa6acOLzKcvEnERERK6nZEKJ/KqqTWXbt3/B5XZXxCKR80Pd3R+bHhrqS3CoCsy/nU8Cz/tsOyPbNIqIiIiIiEh6tJWTyOv1AuOYJtjjmSi4Lj/aeX7Mte38WFYD5uJIKiYxe2O/nIk5iYiIXA/JhBIFNTXbSurqPmO5XMWxSOTM4NGj982OjyfasHo9kA08Dhz02faS75EqIiIiIiKy0nT4/b8c/+O/NAUC41d8nZCmQOCbqYyrYELkKs31NaNt3T2XgE1kKJjYWjrbdX4s678NT6fdZ2JdW3dPXnN9zVQm5iUiInItxUOJNwK3skgoUVhbu6N406ZPWy5XQSwcPjFw5MinwqHQRIJDbQRiwCM+2z6W9sRFRERERERWr29gdmt5HnMt9PLXi7HixymYEMmgM8ANmSp2R13oyFNn86OzUdf6zku5VY3rpxPdguJKE8BmTJ+JC5mam4iIyLWQTChRtGnTnqKNGz9pWVZeNBw+OnDo0KcjU1OTCQ61BbPK8DGfbZ9Kd94iIiIiIiKr3GcwAcPAVV8vKQUTInPrBaaB3PhzWqoKolMFWbHjobB7V0dPbkPj+ukfplAmgvmeLUPBhIiIrCBXhBK3Yf6NnTeUKK6r21+4YcO9lmVlR2dnu/oPHfpsdHo6kX+LLWArMAw86rPt85mYu4iIiIiIyCr3dWCiKRAYAmgKBO6/FoOq+bXI3AaAQaA0UwUrCqJdABfHs9LZzikMVGdmRiIiIksvmVCiZNu2mws3bPikZVnZ0ZmZl/q6uj6TYCjhArYD/cAPFEqIiIiIiIgk7DTwR9d6UAUTInNorq+JYr4pizJVc3vZbBfAyLS7IZb6YqhxoKatu0ernUREZNlLJpQo3b799oLq6o9bluWJTE8/29vZ+fnY7OxsAsN4MKHEOeD7Ptu+lIm5i4iIiIiIrBFW/HFNKZgQmd8lTONMdyaK3bUldMzCmY3ErPIXL+TVplgmBBSTwZUcIiIiSyGZUKLshhveml9Z+WHLstyRqakn+g4c+KITiUQSGCYb8AKnMCslBjMxdxEREREREVlaCiZE5tcLjAIlmShWnBMLF+XEjgJ09eY2plhmCsjD9JkQERFZlpIJJcrr69+ZV1Hxe5ZlucKTkw/3dXb+qROLxRIYJhfTU+IoJpQYzcTcRUREREREZOkpmBCZR3N9zTQQJIOrEyrzI10AlyY86fSZiAHrMjMjERGRzEomlFi3a9dP5a1b90HLsqxwKPTvfZ2dX00wlMgH6oBO4BGfbYcyMXcRERERERG5NrRPvcjCLgA3YvZZS70zRFx9xWyXPZzD6LS7IRLD8rhSqhkCNrZ191jN9TVpz0lERCRTkgklKvbs+dmckpJfBpgdH/92/8GDf5fgMEVADfAi8JzPthPpQyEiIiIiIiLzu7vD7380hfOcpkDg7akMqGBCZGG9mIbThfHntNxZFzrxvZOFU1HHKnzmbMHWN28JnUqhzARmK6eMzElERCQTkgol9u37pZyiop8HmBkb+9bAoUP/kOAwpUAF8BzwI59tJ9KHQkRERERERBZWDaxP4byUb5pWMCGysFHMxZVaMhAC5HqcWHFO7NDItPvmI/05DSkGEyHMD4uyTMxJREQkXVeFEpdY4N+nyoaGX8suLPxpgOmRkW8MHjnSluAwFUAx8CTwis+2E9nySURERERERBb3DPA313JABRMiC2iur3HaunvOADdkqmZ1QaRrZNp9c6/pM/GdFErEMP1hyoGzmZqXiIhIKuKhxC3Am1golLAsq6qh4TezCgreBTA9PPxXg0eP/keCw6wHsoHHgIM+29ZWhiIiIiIiIplzsikQSHR73YxQMCGyuF5gGsgBZtIttrtqurN7MIfxWdeeqbDlzstyoimUmQY2AAfSnY+IiEiq4qHEmzDBxOXtD1/HcrlclY2Nv5OVl/d2x3Gc6aGhrw51dz+c4DAbMaH8Iz7bPpaRiYuIiIiIiMh15breExBZAfqBIcy+1mm7bdNk0G054zHHynsyWJDqSowJoKqtuyc7E3MSERFJVsKhhNvtrtq//0PxUCI2NTDwJ0mEEluAWeBhhRIiIiIiIiKrh4IJkUU019dEgVNAUSbqeVw4JbnRLoDjg9kNKZaZiM+nPBNzEhERSUaioYTL4/FU7d//MU9u7p2O40Qm+/oeGj5x4skEhrCAbZheTz/w2XYqPZlERERERERkmVIwIZKYS/FndyaK1RRGugD6Q55Ug4lZzF7bZZmYj4iISKISDSXc2dnZVY2N93lycm5xHCccunTpcyO2/VwCQ7gAL2bF4g98tn0uU3MXERERERGR13kCuOYr1NVjQiQxvcAIUILZ1iktjeunOw/35zIx69o1Mu3KLs2NzaZQJgJUAkfTnY+IiEgi2r1eNyaQWDCU8OTm5lXs3XufOzt7r+M4MxMXLz4wFgx2JTCEB7NS4izwqM+2BzM1dxEREREREXm9pkDgrddjXK2YEElAc33NFHCODPWZuGnD1MUslzPoYGU9FSzYmWKZEFDb1t2j72MREVlyV4QSb2KhUCI/v6Bi377PxEOJqfFz5z6ZYCiRhVkpcQqzUkKhhIiIiIiIyCqlC5oiiTtPhlYZuSwojfeZsIfS6jNREn+IiIgsmatCiUvME0pkFRYWVe7d+zl3Vla9E4tNjAWD946fP5/Iyr5czEqJo5hQYjRTcxcREREREZHlR8GESOJ6MWFAYSaKbSgOdwEMTHoaUywxCeSjPhMiIrKEEg0lsouLSyt2737Q5fFsc2Kx0dEzZz4+cfHiiQSGyAfqgC7gEZ9thzI1dxEREREREVmeFEyIJG4EE06UZqLYTTVTXQChsHXDpQlPXgolnPhzeSbmIyIicrVEQ4ncsrKKdbt2fcHl8Wx2YrGhkVOnPha6dOlMAkMUARuBl4DHfbY9naGpi4iIiIiIyDKmYEIkQc31NQ5wBnNnZ9r2Vc/0Z7tjPWC5njmbvyfFMpOYCzoiIiIZlWgokbduXXXZjh0PutzuDbFotG/45MmPTfb1XUhgiFKgGngOeNpn27MZmrqIiIiIiIgscwomRJJzCZgFcjJRrDwv2glwZiTlPhMhYF1bd09GwhIRERFIPJTIr6ysLdu+/Qsut7s6Fo32DB8//rGpgYFLCQxRgVnx9xTwvM+2I5mau4iIiIiIiCx/GWnkK7KGDACDmLs8e9MttrE43HVpIuvuwUl3Og2wN2P6TEymOx8REZFEQ4mC9evrSrZsecByuUpjkcjZoe7u+2ZGR4cTGKIaE/A/Bhz02bazyPEiIiIiIiJrQofffxPwDuCN8UctQFMgYM1z/P3ApxYo+VBTIPCxDE8zI9IKJupa+RIwHGzhgQzNR2RZa66vibR195wGbiUDwcQtG6cOvXQxn6mIa9uZkayiLaXhOS/+LCACuDF3nSaybYaIiMi8Eg0lCjds8BZv3vwZy+UqikUipwaPHv3k7Pj4WAJD1MafH/HZ9rHMzFpERERERGTVuA94TwrnPQOcnOP1l1OZRIffXwV8ALgLqGH+3WOcpkDAm8oY6a6Y+G3gX9OsIbLS9GAaT7uAWDqFtpfPjuR6YsHpiKvuuXP5+7aUjj6bQpkwsB44mM5cRERkbUs0lCjauHFn0caN91suV340HD4+eOTIp8KhUCiBIbYAU8BjPtu2MzVvERERERGRVeQ5oAt4Mf44Q2Jbyv/vpkDgG5mYQIffvwt4AlgHzLlSIxPSDSbOoz4Vsvb0AiOY7ZyG0i1Wnhftujjuqjs3mtUApBJMTADr27p7PM31NdqjW0REkpZoKFG8efO+wtra+yzLyo3Ozh4eOHz4M5GpqalFylvAVmAYE0qcy+TcRUREREREVoumQOChK7/u8PuvxzT+CNMX8NvAg8DxpkBgItODpBsqfAd4c10rRRmYi8iK0FxfM4UJ5UozUW9L6WwnwNCUuzHFEhNAMabPhIiISFLiocSbWCSUKNmypamwtvZT8VDiQH9X16cSCCVcgBfoB36gUEJERERERGTZuxPoBt7bFAh0LEUoAemvmPgU8Bbgu3Wt/G6whVfSn5LIinAOSLVh9Wvcvmny8LPn8mMzUVft0f6c8l2VM8muwpgGcjHBRH8m5iQiImvDFaHELSwQSpRu23ZLfnX1Ry3L8kRmZl7s7+r6QiwcDi9S3gNsA84Cj/psezCTcxcREREREZH/8rYOv38/5hrheeA/mwKBlPpLYFa9H2gKBJxMTW4u6QYT/wrMALcDL9W10oP58Dk9x7FOsIW3pzmeyHLRi1mpUBh/TtmG4kgoP8uxJ8PWDS9eyGvcVTnzWAplYph930RERBJy1UqJHuYJJcq2b78zr7LyQ5ZluSLT00/3dXV9yYlEFts6MAsTStiYUGI0k3MXERERERGR17h6z6cHOvz+bwPvT2HFw0tAXWamNb90t3J6C+YOOzBJygbMh9u3zPMQWS1GgD4ytJ3TuvxIF8CF8axUV2GEgI1t3T1L1pBGRERWj0RDifIdO96eV1n5h5ZlucJTU4/1HTjwxwmEEjmY7ZuOAQ8rlBARERERkTWu0LKs4iseiTSzTtRJ4A+BPZgbqDcBvwRcAH4GCKRQ837g5g6/35ehOc4p3RUTWzMyC5EVprm+xmnr7jmNuRs0bdtKZzvPjWb/zPCUuyHmgCv5eGECs5VTETCWiTmJiMjqlHAosXPnT+SVl/8mQHhy8nt9nZ1/ieMstpQ3H/OLcCfwlM+2F+tBISIiIiIistodu+rrT2Mu/qetKRD4+6teCgHf6vD7HwMOAj/d4fe/qSkQeD7J0q1AW4ff/y3gYcz2ULF55vBkkrWBNIOJYAvBdM4XWeF6gVkgO/6csjvrJo8+GSyIhGNW5YFLueubaqYvJVkiBFRjwgkFEyIiMqdEQ4l1u3f/dG5p6a8BzIZC/9bf2fm/EyhfBNRglv0+67PttP5tFBERERERWSV2Yj5/XTaz1AM2BQI9HX7/32JWU9wNJBNMPA44mB2S/MD7Fjnencoc010xIbKW9QNDmDCgN51C6/KjMwXZsWMTs+69B3ryGlIIJmKYrdnKQYGhiIi83lWhxEXm6ZFUsXfvz+cUF/8SwOz4+D/1HzyYyNLfUqAC88vuCz7bXmy7JxERERERkbViwnGc63Ej8Yn4c02S530TE0wsqYwFE3Wt3ArcCdTGX7oAPBVs4blMjSGynDTX10Ti2zndQprBBEBlfrRrYta99+K4pwH4QQolpjE/aF5Jdy4iIrK6JBpKVO7b98vZRUU/CzAzOvr3A4cP/78EylcAxcDTwMs+255zea+IiIiIiIhcU2Xx51AyJzUFAu/P/FReL+1goq6VHZgmGm+Iv3R5d3wn/v5LwPuCLf+V0IisJpeXYbmYZ5+1RN2wbqbr9Ej2fx+dSavPRHVbd09Oc33Nki8JExGRlSHhUKKx8X9kFxT4AKZHRv5m8MiRf02gfDWQi1nq2+Wz7SW/q0ZEREREREQW1uH3W8B/u/zl9ZzLfNIKJupaqQGewHwovQj8E3AGE0psAX4OuBl4vK6VNwRbXrOXlshq0AuMAiXAcDqF7qoLHX/YLpyNxKzS587lb7598+TZJEuMY1YslQHJbgUlIiKrUEKhhGVZVY2NH8jKz38nwNTQ0F8OHTv2nwmUv7xK9hGfbR/N0JRFREREREQkAR1+fyXwXuCbTYHA+BWvFwJ/jNnl5RLQlsYY2cB+XrtL0oGmQCDtnoLprpi4FxNK/ClwT7DltQ2A61r5KPAg8AfAx4HfSXM8kWWlub5msq275zymiU1awURBthMpyokdHptx33ioL6chhWAijGnEXY6CCRGRNS+RUMJyuVxVjY0tnry8tzqOE5saHPzK8PHjjyRQfgswBTzms207k/MWERERERFZqzr8/ncD913xUnb89SubVz/QFAj8B1AAfBX4Qoff/yJmZ5dKoAlYB4wAP9sUCEymMI9c4DPA/wQKr3p7osPv/xrwqaZAYDrZ2pe5Uj0x7ieA7mALH7o6lAAIthAGPgx0Az+Z5lgiy9U5ICsThaoLIp0AvROexhRLRDB7fYuIyBoWDyVuxdwhM3co4fF4qvbv/8h/hRL9/X+cQChhAdswqwW/r1BCREREREQkoyoxn+MuPy5v9n7la5Xx1waBh4CXgR3AzwC3Y25Y/hNgb1Mg8EyyE+jw+3OAHwIfwoQSXcC/Af8KdMZf+0Pgh/FjU5Luioka4NsLHRBswalrpQPzH0ZkNerFNJEpIMlmMlfbWTHTdWIoh9EZ997ZKK5sd9J9K0LAxrbuHldzfY2aj4qIrEFXhBJvxNwx87pQwpWVlVXZ0PAxT07OzY7jRCZ7ex8aOXXqhUVKuzChRC/wqM+2tTpPREREREQkg5oCgW8A30jw2HHgY0swjd8HbgOeBj7YFAgcvPLNDr9/L2alxp3A72HCkaSlu2JiDNiUwHGb4seKrEbDQD9Qmm6hO+pCp1yWE4o5VsFTwQJvCiXGgeJMzEVERFaeq1ZKzBlKuHNycqoaG++LhxKzoZ6eBxIIJTzAduA88AOFEiIiIiIiIqvWL2Kudb776lACoCkQOITZHWkA+KVUB0l3xcRzwE/WtfLuYAv/MdcBda38BGYJSXuaY1HXSh5wD/ALwGZgCPgecF+whQtJ1ioD7gd+GliPWeLyL8D9wRZGFjivELOM5Wcwdw1GMVv5PAF8NNgyR1NJWdWa62uctu6eU5j9ttOS7SZWkhM9NDztueXYQE7D27eFTiRZYpJXG2APpTsfERFZORLZvsmTl5dXsWfPJ93Z2Xscx5meuHDhM2Nnzx5apHQW5nceG7NSYjTTcxcREREREZFlYzvw71c21L5aUyAw0eH3P04a7RvSDSa+gOkz8S91rfwj8C3gTPy9Oky68gtALH5syupayQUexTRw7MHsabUF+FVMOPKmYAunEqxVgQlVtgOngO8Ae4AW4F11rdwabHn9Rd26VrYCjwBb4+f9J5AD1AMfwDT6VjCxNvUCs5iGNGl1pa8ujHQOT3tu6Qt5Glhkq7QFlGMuIImIyBoQDyVuw2zfNGcokVVQULhu9+773VlZO5xYLDR+/vz94+fPdy9SOgfze89R4HGfbev3HBERERERkdUtAuQncFx+/NiUpLWVU7CF5zDBQBizbOPfgUPxx38A/vjkfjXYwvPz1UnQvZhQ4jlgR7CFnw+2cAtm9UIl8PUkav0ZJpRoA+rjtfYCX8E0CvnS1SfUtZKDCSI2A78ZbMEbbOHngi38VLCFemAfukN9LevHbOlUmm6hvVUzXQDjM649oVkrlfDw8qoJERFZAxIJJbKLioor9uz5XDyUGB8LBj+RQCiRj7nRpBN4RKGEiIiIiIjImnAQeFuH379tvgM6/P6twNswjbFTkm6PCYIt/D1mxcADwOPA8fjjceAzwM74MSmrayUb+O34lx+8crukYAtfwvwHeHNdKzclUKsGs5JjFvhAsOU1qc6HMReY31fXStVVp7Zg/p5fCrbwV1fXDbZwKNjCZBJ/LVlFmutrwsBpTH+HtNy6afKsx+WMOFjZTwYLdqRQYgKoaOvuKUh3LiIisrwlEkrklJSUr9u160GXx7PVicVGRk+fvmeip2exVaZFwEbgZcxKialMz11ERERERESWpb8C8oDHO/z+X+/w+/Muv9Hh9+d1+P2/irn2nwt8LdVB0trKqa6VLwHDwRYeAD6VTq1F3A6UAHawhVfmeP+fgQbAh/kAvZC7MYHMU8EWeq98I9jCTF0r7cCvYbao+sYVb/+P+PNXkp69rBU98WcXZvuylLgsKMmJdg1Oee46MZjT8K4bJo4kWWICWIfpMxFKdR4iIrK8JRJK5JaXV5bdcMNnXW53jRONDgyfOnXvVH//xUVKlwIVwPPACz7bTnlproiIiIiIiKwsTYFAoMPvvwNzPfx/Af+rw+8fiL9dEX+2gL9qCgT+T6rjpLti4rcxgcBSa4w/d8zz/uXXE5lL0rXqWtmE2frpfLCFc3Wt3F7XykN1rXytrpWP1rWyPYFxZfXrBcbIwKqJDUWRLoD+SXfjYsfOIYoJHcvTnYeIiCxP7V6vh0VCibyKivVlN9zwBZfbXROLRnuHTp68J4FQYh3m34+ngecUSoiIiIiIiKw9TYHA/wR+DvPZMIxppVAZ//NTwM81BQK/lc4Y6Ta/Pk8GtoNKwOYrxptvHmD2QV6KWrvjzxfrWvlzTKPrK322rpWPBVv4kwTGl1Wqub4m1Nbdcx7Tp2QknVr7a6a6DvblEpp11Q9OunPW5UdnkiwxC1SnMwcREVme4qHErSwQSuRXVW0s3bbts5bLVR6LRi8MdXffOzMyMrhI6WrMUtzHgS6fbTsZnrqIiIiIiIisEE2BwLeBb3f4/R7MTWwAg02BQEZuYEs3VPgOprdDUQbmspDC+PN8PRwub1eTyDxSqVUWf24CfhO4H9gE1AAfjb/3x3WtvHu+QS3LyrEsq/jy44p5yOpyDshOt8j+9dOXslxOv4PleSqYvyuFEhPAhrbunqx05yIiIstHIqFEwfr1W0q3bXvQcrnKY5FIcPDo0XsSCCVqMTesPOKz7U6FEiIiIiIiIgLQFAhEmgKB3vgjY6vq0w0mPgWcBb5b18qNGZjPcnX5v5MH+KtgC58OtnA+2MKlYAtfBP40/v7HF6hxDzB6xePYks1WrqdeTLiVVuNplwVledFOgFMj2als5zSOCb9K05mHiIgsH1dt33SBOUKJwtraG0q2bPm85XKVxMJhe+DIkY/Pjo2NLFJ6CxABHvbZ9tEMT1tERERERETkddLdyulfgRlMc+qX6lrpwQQV03Mc6wRbeHuK41z+4J0/z/uXLwKPL1GtKz/4/+0c5/wt8GHglrpWcoMtc/79HwS+dMXXNSicWI2GgAFMI5i0Gk/XFoe7+kKeHxuc9KTSx2UGsx1HOdCfzjxEROT6uyKUuBkTSrzu35iiTZt2FW3ceL9lWXnRcPjYwOHDn45MTi70b5EFbMVsP/iYz7bPLsHURUREREREZBnr8PsfBRzgV5oCgfPxrxPlNAUCKV3zTzeYeMsVf7aADfHHXNLZEuDyB+WN87x/+fXgEtW68s9n5jjn8mtuzIXg1zWWdBxnBnOxGADLspZ6+yu5Dprra5y27p5TJNbvZEE3b5jqeqUnj8mw5b045inYUBxJNuiI8er+byIiskIlEkoU19U1FG7YcJ9lWTnR2dmD/YcOPRCdnp7rRonLXMA2oA+zfdOlpZi7iIiIiIiILHtvwVy7z7/i60SlfM0/3WBia5rnJ6oz/tw0z/uXX+9aolrHMKtAcjH9Jq6+A738ij+/blsFWXN6MR3qs+LPKdlVOTOU445dmIm6ap8+m7/3vXvHXkiyRAjY2NbdYzXX12ivcBGRFSiRUKJk69Y3FKxff49lWVnRmZmO/oMHPx+dnZ1doKwb8GJu1njMZ9sDSzF3ERERERERWREuX+O/cNXXSyqtYCLYktAKhUx4BtOXwVvXyv5gCweuev9n48/tCdT6HuZO8jvrWqkKttB3+Y26VnIAHxAFvnv59WALM3WtfB94DyYxOn5VzTfHn08FWxhL6G8kq1kfMIzp75DWNkrledHOnglXbXA0uwFINpgYj8+hCPT/pYjISpNIKFHq9d6WX1X1h5ZleSIzMy/0d3Y+FItEFmpGloVZKWFjQomRJZi6iIiIiIiIrBBNgUBwoa+XSlrNr+ta+VJdK/dlajLzCbYwC3w1/uWf17W+2li4rpU/ABqAJ4ItvHzF679d18qxulYevKpWD/B/gWzgL+paXxPOfBGoBP7+ysDiivcA7qtrZccV42wFHoh/+bVU/46yejTX14Qx23uVpFtrU0m4C2Boyp1Kn4lJTM+U8sUOFBGR5SWRUKLshhvenF9V9RHLsjyR6emn+g4c+MIioUQOJpQ4hml0PbIEUxcREREREZEVrMPv/+UOv/+2BI57U4ff/8upjpPuVk6/jWmAfS18FvgxzIf0E3WtPIXZx/8WzF3pv3bV8RVAPabJ9NV+D3gT8DPAsbpWXgL2AHuBE8AfXH1CsIVn61r5DPBJ4JW6Vp7BrKy4HXNH+n/y2ubWsrZdxPRdcWFW6KTktk2TB390IZ/piKvu5FB26fby2ZEkTo/Fxy9n7t4oIiKyDCUSSpTX178jt7z8ty3LssJTU4/0d3Z+xYnFFvr3Jg/YjNmq8imfbU8txdxFRERERERkxftG/PHsIsf9Ouaa/DdTGSStFRPA+QzUSEiwhWngrZjVCZPAT2OCiW8ATcEWTiVRawB4I/AVzMqJ/4a5u/3LwBuDLQzNc96nMGHGy5hg482YrRB+H/ipYAvRFP5qsjr1YrZPKk6nSF1peDzPEzsF8ML5vL0plJhm7nBORESWoURCiXW7dv1k3rp1v2NZlhUOhb7bd+DAlxcJJYqATcBLwOMKJURERERERCQDXFzH5tffAX65rpWiYAvjadZaVLCFKcyKhU8mcOz9wP0LvD8E/G78kcwc2oC2ZM6Rtae5vmairbvnArAdGEmn1rr8aNf5Mde2c6NZjcDTSZ4+DlS1dffkNtfXTKczDxERWVqJhBIVe/b8TE5Jya8AzE5M/Et/V9ffLlK2FLNN5fPACz7bXmirJxEREREREZFEbSONvrbpBhOfwjSD/m5dK78bbOGVNOuJrCZngd3pFtlSOtt1fizrp4enU+ozMQHUAmVAT7pzERGRpZFQKLF373/PKS7+BYCZsbF/GDh06FuLlF2HWRH6NPCSz7ZT3lpQREREREREVq8Ov//qhQD753jtMg+mhcJdwMOpjpluMPGvwAymz8JLda30YC7GznVnthNs4e1pjieykvRith3Ljz+n5PbNk4efPpsfm426ag725lTuq57pT+L0MJCF6TOhYEJEZBlKJJSobGh4f3ZhYTPAzOjoNwcOH/7nRcpWY/pKPA50+Ww75eW1IiIiIiIisurdj9mWyYo/748/FtIHfDzVAdMNJt5yxZ8tYEP8MRd9IJa1ZgjTmH0daQQT6wsjUwVZseOhsHvnyz15DfuqZx5JskQUs42HiIgsM4uGEpZlVTU0/H9ZBQXvBpgeHv7rwaNH2xcpWxt/fsRn20cyPGURERERERFZfX41/mwBX8esvP+beY6dBS4CzzcFAjOpDphuMLE1zfNFVq3m+ppYW3fPaUyT9rRU5Ee7QqPunRfHshqAZIOJCaC2rbvH3VxfowbtIiLLxGKhhOVyuSobGj6YlZ//DsdxnOmhob8Y6u7+/iJl6zArVx/32fbJJZm4iIiIiIiIrCpNgcDfXf5zh9//K8B/XvnaUkgrmAi2EMzURERWqV4ggtlOKZxqEW/5bFdwNPu9w9PuxpgDLiup08cxWzmVYFZxiIjIdbZoKOF2u6saGn7fk5d3l+M4samBgT8bPnHi8QVKWpgbRkaAx3y2fXZpZi4iIiIiIiKrWVMg8NZrMY7rWgwisob1AcOYUCBld9aFjlk44UjMKn/pYl7t4me8xhSmz0V5OnMQEZHMWCyUcHk8nqrGxo/EQ4noZF/fFxcJJVzAdmAA+IFCCREREREREVnukloxUddq9pcKtvD1Od77KeBssIUDc7z3aeAngy3clOpERVai5vqa2bbunjNAE+aCUUpKc2Ozhdmxo+Oz7oauS7kNb6ydupBCmbJUxxcRkcxYNJTIzs6u2rfvHndOzk2O40RCly49OHr69IsLlHQDXuAc8KjPtlP+t0ZEREREREQEoMPvt4BfAt4D3AAUYVbqX81pCgS8qYyR7FZO748/vy6YAL4DfAP4tTne28ziXbxFVquLwBswd7TGUi1SWRDpGp91N/RMeBqA/0zy9ElgE7DQxS0REVlCi4US7tzc3Mq9e+91Z2c3OI4zO3Hx4mfHgsEDC5TMArYBNmb7ppGlmbmIiIiIiIisFR1+fzbwH8DbmDuMAHAWeC8h2spJZOn1AmOYZDFl9etmOwFGp90NkVjS3/jjQHlbd09BOnMQEZHUxEOJ25knlPDk5eVX7tv36XgoMTV+/vwnFwklcjChRDfwsEIJERERERERyZAPAW8H/h2zWiKACSJygF3A/ZjPtH/UFAiknC8omBBZYs31NeNAD1CaTp0760InXZYzFXWsomfP5dcleXoIKER9JkRErrkrQok3MEcokVVYWFS5d+9n3VlZu5xYLDR29uy94+fOHVmgZB6wBegCfuiz7YklmrqIiIiIiIisPT8PDAH/vSkQsInvANMUCISbAoHupkDgM8C7gQ91+P1z7Z6UEAUTItdGEJMqpiwvy4kWZccOAxzuy21M8vQoZh9yBRMiItfQYqFEdnFxacXu3Z9zZWVtd2KxsdFg8OMTFy6cWKBkIWZrvpeBx322PbVUcxcREREREZE1aTvwo6ZA4PLn1xhAh9/vvnxAUyDwFPAM8IFUB1EwIXJt9AJTmLtcU1ZdGOkC6At5GlI4fRaoTmd8ERFJ3GKhRE5pafm6nTsfdHk8W5xYbHjk1Kl7Qj09pxcoWQrUAM8DT/lse3aJpi4iIiIiIiJrVxQYveLry59lK6867gJQn+ogCiZEro1BoJ80t3PaXTnTBTA249o7Fbbcix1/lXGgpq27JyudOYiIyOIWCyVyy8uryuvrv+DyeGpj0ejA8MmTH5vs6zu3QMl1mFVvTwPP+Ww7slRzFxERERERkTXtArDxiq9Pxp/fdNVxDUDKWwsrmBC5Bprra2LAadJsgH375tBpt+WMxxwr7+mzBduTPH0CswVIWTpzEBGRhbV7vVksEErkVVTUlN9wwxdcbvf6WDR6afjEiY9ODQz0LFCyGvPvx+PAiz7bji3R1EVERERERESeB/Z2+P2Xt6X/bvz5zzr8/rs7/P59HX7/VzCNsF9IdRBPCuf8Sl0rvzLH684C74mI2c4pgvm+S+lOV48LpyQ3enBoynNb90B2wzu8dCdx+gyQi7njti+V8UVEZGHxUOI25gkl8qurN5du3fqA5XKVxSKR80PHj987MzIytEDJ2vjzIz7bXqghtoiIiIiIiEgmfBt4F/DjQHtTIHCyw+//M+D3gf+IH2NhPu9+JNVBUgkmrBTHclI8T2S16AVGMNs5DaRaZH1hpGtoynNb/6SnAfinJE+PYbYDERGRDLsqlDgPTF75fkFNzbaSuroHLJerKBaJnBk8evS+2fHx0blqxdUB05gm1ycXOE5EREREREQkI5oCgf/A9De88rUPdfj9LwI/jdmN5Tjw5aZA4ESq41iOo7zgerAsqxZz0WKj4zgXrvd85Npo6+65C7iJV/dmS9oL5/Nq/+FQ6V9aOLP3v7XvF4tzYuEkTl+P6TXxj831NfrmFxHJkMVCiaLa2vqiTZvut1yuglg4fGLgyJFPhUOh+fbitICtmDD7MZ9tn13CqYuIiIiIiMgS0PXfhanHhMi11YP5vkt15RE3105d8LicIQcr+8kzBTuTPH0CKI4/REQkAxYLJYo3b95btHnzZyyXqyAaDh/tP3TovgVCCRfgxays+4FCCREREREREbmWOvz+T3b4/T+VwHG+Dr//k6mOo2BC5Nq6BIySRhNslwWludEugJPD2Q1Jnh4CCjB9JkREJE2LhRIlW7bsL6ytvd+yrLzo7GxXf1fXJyNTU5Nz1QLcwHbgIiaUWKghtoiIiIiIiMhSuB+zZdNifgr4VKqDKJgQuYaa62vGMeFEWTp1aovCnQADIXeywYSD+b5Pa3wREVk8lCjdtu2NBTU1n7QsKzs6M/NSX1fXZ6IzMzPzlMvChBKngO/7bLt/KecuIiIiIiIikiY3pp9tShRMiFx7Z4DcdArctGGqCyAUdu3oC7nzkjx9CqhNZ3wRkbUuHkrcznyhxPbtd+RXV99jWZYnMj39bG9n5+djs7Oz85TLwWzf1A087LPtkSWcuoiIiIiIiEgm7AGGUz3Zk8GJiEhiejHhQF78OWn7qmf6s92xS7NR1/qnggW7f2b32MtJnD4OVLZ19+Q219dMpzK+iMhadkUocRNzhBJlO3a8NW/duhbLslyRqakn+jo7/9SJxea7iyQP2Ax0AU/6bDulfxdEREREREREUtXh93/9qpfumOO1yzxAPeZGve+kOqaCCZFrbxDT1LSUFIMJgLLcaFdvyLX+zEh2A5BMMDEBbML0mbiY6vgiImvRYqFE+c6dd+eVl38AIDw5+YP+rq6/WCCUKAQ2YH6GP+Oz7flWVIiIiIiIiIgspfdf8WcHs9Xw9kXO6QI+nOqACiZErrHm+ppYW3fPKeAuIOXGphuLw129oawfH5x0NyZ5agSzl3kZCiZERBJ21fZN57gqlFi3a9dP5ZaV/QZAOBT6976urr/GcZx5ypUCFcALwPM+244s2cRFREREREREFvbW+LMFPAp8D3honmNngYtNgUAwnQEVTIhcH5cwAYEn/py0N22a6nq5J5+piLU1OJJVVFcaHk/i9AhQBRxOZWwRkbVmsVCiYs+e9+aUlLwPYHZ8/Nv9Bw/+3QLlyjHBxDPASz7bTrlZmIiIiIiIiEi6mgKBJy7/ucPv/zvgqStfWwoKJkSujz5gBHNhaiCVAtvLZ0dyPbGz0xHX5ufO5++tKx19LonTx4Hatu4ed3N9TTSV8UVE1orFQonKffvel11U9F6AmbGxbw0cOvQPC5SrxvSVeALo9Nn2fCsqRERERERERK65pkDgV6/FOK5rMYiIvFZzfc0McAYoSadOeV60C+DsSFZDkqdOAEWYYEREROaxaCjR0PDrl0OJ6ZGRv10klKjF3BTyiM+2DyiUEBERERERkbUqoysm6lrZB3wQ2AqcBP482MKRq47ZD7QFW9iWybFFVqCLmOapFqapTNI2l4Q7L45n/eTQVNJ9JqaAfMx2IoOpjC0istq1e73ZwG3MFUpYllXV0PCbWQUF7wKYHhr62uCxY99doFwdMA087rPtk0s3axEREREREZHUdfj9yeyu4jQFAillDBlbMVHXyu3Ai8AdwDBwN3CgrpX7rjo0B/PhXGSt68VsqVSUaoHbN4cOgePMRF0bjw1klyd5uoMJJkRE5CrtXm8J8A7mCCUsl8tVtX9/S1ZBwbscx3GmBge/vEAoYQHbMCvVfqBQQkRERERERJa5c8DZOR7nMX1rrfjjbPzYlGRyxcTngTbgl4ItOHWtuIDfAR6sa2U38P5gCzMZHE9kRWuurxlr6+7pwQR1Y6nU2FgcCeVnOfZk2Nr+4oX8fTsrZpNpShMCNrV19/youb5G24mIiMS1e721wJ3ARuA0MHv5Pcvtdlc1Nn7Ik5t7h+M4samBgS8Nnzjx5DylXJhQog941GfbPUs9dxEREREREZF0NAUCW+Z7r8PvdwFvA1qBg8AvpjpOJntMNAJfD7aYLWmCLcSCLbQCbwXeAjxa10pFBscTWQ2CQG46BdblRToBzo+l1GeiFChIZ3wRkdWi3eu12r3e3cBPAFXACa4IJVxZWVlV+/d/LB5KRCb7+r6wQCjhBrZjtu37gUIJERERERERWemaAoFYUyDwQ+AngXcDH021ViaDiUmg8OoXgy28ANyKuQD6PLArg2OKrHS9mD3H81ItsLUs3AUwMu1KJZgoRNs5iYhcbnJ9K2b7JgezUiJ2+X13dnZ2VUPDvZ6cnFscx5kNXbr0uRHbfn6eclmYUOI08H2fbfcv8fRFRERERERErpmmQOA05lr/r6VaI5PBRAfwnrneCLZwBtM88izwvzM4pshKN4BpPl2aaoG76kJHwInORl3Vr/TkVidxagxzR29ZqmOLiKwG7V5vMfBjmGCiHxMa/xdPbm5eZUPD/e6cnBsdx5mZuHjxM6OnT788T7kcwAt0Aw/7bHtkCacuIiIiIiIicr1MAptSPTmTwcQ3gR11rXNf5Ay2MAq8E/gGJqAQWfOa62tiwCnSaIC9Lj86U5gd6wZ4pScv2VUTM0BNqmOLiKx07V7vBszWTXuAM8D4le978vMLKvbt+4w7O3uvE4tNjp8798mxYLBrnnJ5wBagC/ihz7bH5zlOREREREREZMXq8PvrgLu46sa+ZCTV/Lqulb/CrIx4Bei8spl1sIX/B/y/hc4PthAGfiOFeYqsZpcwHe098eekVeRHuyZm3bt7JjyNwMNJnDoOVLd192Q319fMLnq0iMgq0e71WkA9cAem184Jrti6CSCrsLCoYvfuB1wezzYnFpsYO3v2kxMXL56cp2QhsAHze9IzPtuemec4ERERERERkWWrw+//5QXeLgR2AO8DioG/SHWcpIIJ4H9g9l0GiNa10s2rQUUHcCDYwliqkxFZo/qAUaAEs61T0m4on+k8M5L9CyPT7oaYAy4r4VMnMCsmykgj4RQRWUni/SRuAt4ITGFWrr1GXkXF+tJt2+5zeTybnFhsZPTMmU+GLl06M0/JEqAS+BHwnM+2UwqZRURERERERJaBb/BqBjCXy1cevwl8KtVBkg0mfhy4EWiKP+/GbH3gJz7ZulZO8WpQ8QrQEWxBTR9F5tFcXzPd1t0TBBpIMZi4s26y+4enCmcjMav0hfN5m27dNHUuwVNnMfuhK5gQkTWh3estAm7H/P5yCV5/Q0VxXV1DYU3NRy2Xq8iJRgdHTp++d7Kv78I8JcsxP0OfAV7y2XZsnuNEREREREREVoLPMH8wMQv0AE82BQKvu8kvGUkFE8EWfgj88PLXda0UAPt5NahowoQVXuBneTWs6AFeDrbM3RxbRLiA+f6xWDiRnFNRTixSlBM7Mjbj3n+wL7chiWACIIq50/dYsuOKiKwk7V7veuBOoA7TT+J12y2t27XrJ3NKS3/DsixXNBw+MXz8+OdmRkeH5ilZjekr8TjQ6bPtpH9+i4iIiIiIiCwnTYHA/ddinGRXTLxGsIUQ5g7BZy6/VtdKNrCP166saAB+Mp2xRFa5Xky/h0KuaryaqKqCSOfYjHv/pXFPI/AfSZw6AdS2dfe44s24RURWlXg/iR2YfhKFzNFPwuXxeCr27v2trPz8dwCEp6YeGzh06KuxcDg8T9kNmDD5UeCIQgkRERERERGRxKUVTMwl2MIs8HL8AUBdKy5gZ6bHElktmutrRtu6ey4Bm0gxmKivmOk6OZTD6Ix732wUV7abREOGCcz+6MXASCpji4gsV+1er4dX+0nMMEc/iezi4tLy+vp73FlZuxzHic2Mjn5j8MiR7yxQdjNm+erjPts+sRTzFhEREREREbneOvz+2zA7D2yIv3QReLopEHhm/rMSk/FgYi7BFmLAkWsxlsgKdga4IdWT79g8af/niaLJmGMVPHO2YOtbt4bsBE+dxPxwKUfBhIisIu1ebyFwG2YlZy8wevUxhTU124o3b77XcrsrnFgsFLp06Y9Gz5zpmKekBWzF9KV41GfbwaWau4iIiIiIiMj10uH378M0wd4ff+lyw2sn/n4n8P6mQKAr1TFcacxPRDKrF5gGclM5OdfjxIpzYgcBjvbnNCRxqoP54VKWyrgiIstRu9dbDbwLs51kkDlCibLt2+8s3rLli5bbXRGLRC6M2PYfLhBKuDA9tAaA7yuUEBERERERkdWow++vB57AtGi4ALQCvxd//BlwDhNYPN7h96e8S9I1WTEhIgkZAIaAUuBSKgXWF4a7Rqbdt/SFPA3AvyRx6iSwkSu2YBMRWYni/SS2Y/pJlDBHPwksy6rcu/d92UVFPwcQnZl5eeDo0T+OTE6G5inrxoQS5zErJfqXav4iIiIiIiIi19nnMdcnvwB8sikQiFz5Zoff/xHgM8A9wOeAn0llEK2YEFkmmutropi9z4tSrbGnaqYLYGzGtTc0ayUTPE4A69q6e/JSHVtE5HqL95N4A3A3kA3YXBVKePLy8qqbmu69HErMjo9/u/eVVx5YIJTIwgQdp4EfKJQQERERERGRVe6twOGmQODjV4cSAE2BQLQpEPgEcDh+bEoUTIgsL5cwF9HcqZz8po2TZ92WM+pg5TwZLEimX8UEJhApT2VcEZHrrd3rLcD8QnQXpl/OxauPyauoqKnct++PPTk5NzuOE57s7/9S/8GDf+fEYrGrj43LwayU6AYe9tn28BJNX0RERERERGS5yAIS6R3RFT82JQomRJaXy81ZS1I52ePCKc2NHgQ4MZTTmMSpEczWbuozISIrTrvXW4VZJbEfOIsJJl6juK5uf9n27V9yeTybnFhsaCwY/NjwiROPL1C2GKgDOoFHfLY9nvGJi4iIiIiIiCw/nZib9BbjjR+bEgUTIstIc33NNKZJa2mqNWqKIp0AAyF3Mg2wAcJAdarjiohcD+1e73bg3cBmTD+J6auPWbdr108Vbthwv+VyFUTD4e7Bo0d/f+LixRMLlK0GKoBngMd8tj25FHMXERERERERWYY+B9zc4ff/2nwHdPj9vwrcjOlHkRI1vxZZfi5gut5bgJPsyfvXT3Ud6stlYta1c2jKlV2eF5tN8NQJoKatu8fTXF/zuv3jRESWk3av141ZIfEmIAqcvPoYl8fjqdi374NZeXlvBwhPTT0ycOjQX8TC4fA8ZS3MKokZ4IfAEZ9tJ/1zWERERERERGQFCwF/Cfx1h9//fuAfMTdSg/nM/F7gjvgxEx1+/11XntwUCDyZyCAKJkSWn15gHCiMPyflxprpnn885AyEY1bFU8GCXe/ZOZ7okqoJzB3CpcBAsuOKiFwr7V5vPnArJpjoB17X+yGnpKSsbMeOj7uzsuodx4nNjIx8ffDo0X9boKwH2Ibp9fOUz7bPLsHURURERERERJa7xzE3S1uYAOL2q9634s+/FX9cLaHeuQomRJafUaAP2EAKwYTLgtK8aGd/yPP2U8PZjSS+19sUkIfpM6FgQkSWpXavtxK4E7OXZRDzs+s1CjdsuKF406aPW273OicWC4UuXXpo9MyZAwuUzcXc9WEDT/pse3AJpi4iIiIiIiKyEnyTFHZxSZaCCZFlprm+xmnr7jlNYk1m5lRbFO7qD3nePjDpSbbPRAxYh9mnXURkWWn3erdhQolyzM+p6NXHlN1ww115FRW/a1lWdiwSOTdy6tRnpwYGehYoW4LpKdEJPKN+EiIiIiIiIrKWNQUC778W4yiYEFmeejF7nOfEn5Nyc+1U14FLeUyGre094578mqJIohfaQsDGtu4eq7m+Rvuqi8iyEO8n0YjZvinGHP0kLJfLVbFnjz+7qOhnACIzMy8OHjnyx5GpqdetqLhCNZAPPA287LNt9dcRERERERERuQZc13sCIjKnfmAI0+8habsrZwZz3LELYLmePpu/J4lTJzBbORWmMq6ISKa1e715wJuBt2B+Rp2/+hhPXl5+9Y033ns5lJgdH/+nvlde+dwCoYQFbMH8HvQw8COFEiIiIiIiIiLXjlZMiCxDzfU10bbunlPAbZjVE0kry4t2XZpw1QZHshuAFxM8LYS5g7iMFPpbiIhkUrvXuw64C7O13Vnm6CeRV1m5oXTr1vtcHk+t4zizUwMDXx4+ceLJBcpe2eT6SZ9tn1uKuYuIiIiIiIisVB1+fw7wC5gbBWswu7rMxWkKBN6eyhgKJkSWr0uYRjNu5thHfTGbSsJdlyay3jU45W5M4rQY5g7icsxFQBGR66Ld692K6SdRgWlK/boVDSVbtjQVrF//YcvlKnCi0YGxc+c+N3Hxor1A2TxgM2YrqCd9tj20FHMXERERERERWak6/P7NwA8xNwlaixye8lbwCiZElq9eYATTmDXpi2e3bpw8+OKFfKYjri32UFaJtzw8muCp08AG4ECyY4qIpKvd63UBDZh+Ei5Mk+vXWbd790/nlJS837IsVzQcPjrU3f3g7NjYyAKlS4Eq4BXgWZ9tL9R7QkRERERERGSt+jKwHXgUaAVOYbZWzigFEyLLVHN9zVRbd885YA8pBBNby8JjeZ7YmamIa8sL5/P3ectHn07w1Amgqq27J7u5vmY22XFFRFLV7vXmAm8CmjA/9wavPsaVlZVVsXfvb2fl5b0VIDw5+fDAoUN/GYtEFuoRsR7IBZ4COtRPQkRERERERGReb8fcJHh3UyCwZJ+f1fxaZHk7TxoBYnletBPg3FhWQxKnTQBFmO2cRESuiXavtxx4J/AG4AJzhBI5JSXlVfv3P5iVl/dWx3Fi08PD/6vvwIGvLBBKWMBWzNLSh4EXFUqIiIiIiIiILGgW6FjKUAK0YkJkuevFBAWFpLBkakvpbNeF8az3DE+5kwkmZoFsTAPsS8mOKSKSrHavtw7T5LqSefpJFNbW7ijetOnjlstV7sRiExM9PV8YCwa7Fih7ucl1D/CEz7YvLMXcRURERERERFaZZzFbOS0prZgQWd5GMOFEaSon31E3eQic2EzUteFwX05FEqdGMBcIRUSWTLvX62r3ehuBdwHFmKbUrwslynbseGvx5s0PWi5XeSwSOTt88uQfLBJK5GGadJ0A/lOhhIiIiIiIiEjCPgXs6vD7/8dSDmI5TsqNsyUNlmXVYrbp2eg4ji6YyLzaunv2Y/Z2O57K+fc+Uv1HobCrfv/6qT/7lf0jjyZ4WjUQAv6xub4mlsq4IiILifeTuAXTT2IEGLj6GMvlclXs3fsr2YWF/w0gMjPzwuDhw1+KTE8v1Li6lNc2uZ7O9NxFREREREREFrOSr/92+P23AX8PnAN+gNlyec5rhE2BwDdTGUNbOYksf728ur1S0s2o1+VHukKj2fUXTJ+JRIOJCczFvRJgONkxRUQW0u71lgF3APWYX9JCVx+TVVBQsG7nzg+7c3KaAGbGx/9x4NChb7HwHRU1QA7wJKbJdTTzsxcRERERERFZ9d6BuelvC+bz+1wsTE9HBRMiq1Q/MITp+dCb7Mnbyma7zo5m/9zItLsh5oDLSui0SWBDfEwFEyKSMe1e72bgTmA98/STyK+qqi3ZuvU+l9u9wXGc2cn+/j8bOXny6QXKujC/LIUwd3Ic99m2loSKiIiIiIiIJKnD7/8wZjunGeBfgFOk0Pt2MQomRJa55vqaSFt3zyngTaQQTLx5S+joE2cKIuGYVdHRk1vzhg3TPQmcdvmCXjnmh4+ISFravV4XsAe4DbMC7ASv/qz5LyVbt95UUF39Ycvlyo9FowNjZ89+NtTTs9DPoSxgK3AR0+T64hJMX0RERERERGSt+C1gDLilKRDoXqpB1PxaZGW4FH9O+nu2NDc2W5gdOwrQeSmvMYlTp4CNyY4nInK1dq83B7P08+1AGDjDHKHEut27mwvWr/+k5XLlR8PhI4NHjvz+IqFEPqbJ9XFMk2uFEiIiIiIiIiLpWQ88sZShBCiYEFkpejHNYUtSObmyINoFcHHc05DEaRPAurbunvxUxhQRAWj3ekuBHwfeiPlZ1n/1Ma7s7OzqG2/8g9zS0vdblmWFJye/1/vKK/fOjo+PLlC6DLPl3IvAwz7bHsn87EVERERERETWHJtrkBsomBBZAZrrayaBC5gLcUm7Yd1MF8DotLshEiOxLhMmmChMdUwRkXavdyPwE8AO5tmTMqe0dF11Y+ODnry8tziOE5saGvpa34EDf+FEIq/rPXGFDUAx8ATwlM+2p5di/iIiIiIiIiJr0NeAt3b4/VuWchAFEyIrx1lS7Atz5+bQCZflTEcdq/i5c/l1CZ4WAdyYPhMiIglr93pd7V7vHkwosQ7TTyJ89XFFtbX163bu/JIrK+sGJxYbn7hw4b6hY8e+u0BpF7AN8/Pp+z7b7vDZdnQp/g4iIiIiIiIia1FTIPDnwP8Cnurw+9/f4ffXLsU4an4tsnL0ASHMKobX3XW8kIJsJ1KUHTs8OuO+6XB/bsOddZNnEjw1jNlX7mBSMxWRNavd680GbgbegPlZdWau48p27Hh73rp1H7QsyxOLRM4M2/bnpgcHexconYUJJc5jmlz3ZHjqIiIiIiIiImteh99/+QZAC/ib+GvzHe40BQIpZQwKJkRWjmHM/uzVJBlMAFQXRrpGZ9w39U54GoB/S/C0CWB9W3ePp7m+ZqFtVUREaPd6SzBNrncBF4Hxq4+xXC5Xxd69v5pdWPgegMj09HMDR478aXR6eqHtmAqAjcAx4EmfbY9lfvYiIiIiIiIiApwDnKUeRMGEyArRXF/jtHX3nMHcMZy0XRUznccHcxibce2djliuXI8TS+C0CaAK02fidQ1rRUQua/d6a4E7MQHCaWD26mOyCgoK1+3a9RF3dvZ+gJmxsf87cPjwP+A4C/3CUx5/vAg877PtmYxPXkREREREREQAaAoEtlyLcRRMiKwslzAX+7KZ46LfQm7bHDrz78eLJqKOVfhUMH/7O7yh4wmcNg3komBCRObR7vVamBUStwN5mH4Srws+86uqNpVs3Xqvy+2ucRxnZrKv709HbPvZRcrXYnrdPA50+mw7kUBVRERERERERJY5BRMiK0s/MIQJChbai/11st3EinOiB4enPbd2D+Y0JBhMgLnAuC7JeYrIGtDu9WZh+kncjOmBc3qu40q2bbu5oLr6Dy3LyotFo31jweBnQ5cunVmgtAvYAowBT/ls+2RmZy4iIiIiIiIiierw+8sAmgKB4UzVVDAhsoI019dE2rp7TgO3kGQwAbC+KNI1PO25tT/kaQD+OcHTQsDGtu4eq7m+Zsn3lxORlaHd6y3GrJLYDfQwRz8JgIo9e342u7jYb1mWFZ2dPTTU3f2F2fHxhXpEZANbMXtaPuGz7UuZnruIiIiIiIiILKzD7/8JoIVXd0igw++fAp4GvtwUCHw3nfqutGcoItfa5Yt0SX//NlRPdwKMz7h2j8+4Eg0mJzArNIqSHU9EVqd2r3cD8BPAHuAMc4QS7uzs7Oobb/zDnJKSX7YsywqHQt/tfeWV+xYJJQowocRR4D8VSoiIiIiIiIhcex1+/58C7cA7gHzMjgaj8T//ONDe4fd/KZ0xFEyIrDy9mB8Excme+MbaqfMelzPsYGU/GSzYmeBpIczFwrJkxxOR1aXd67Xavd6dmFCiGtNP4nX9bnLLyiqqGhsf8uTl3eU4TnRqaOgv+jo7v+ZEo9EFyq8DaoAfAQ/7bHuhAENERERERERElkCH3//zmJUS/cDvAmVNgUBZUyBQDpQCvwP0AS0dfv97Ux1HwYTICtNcXxMCzpNCUOCyoDQ32gVwcii7IcHTYpifFeXJjiciq0e8n8QtmDsjLOAUczS5Ltq4cVd5ff2XXFlZXicWGxs/f/7eoWPHvrdI+Y2Yuy4eA5722fbrwg4RERERERERuSY+AEwDdzUFAl9tCgRGL7/RFAiMNQUCfw68GZiJH5sSBRMiK9M5ICuVEzcUhbsABibdjUmcNo25k1lE1qB2r7cIeBtmX8lBXt1S7jXK6+vfUbRp0+csl6s0FomcGTp+/A/Gz507vEBpF7Ad8zPm+z7bPuCz7deFHSIiIiIiIiJyzTQCjzYFAsfnOyD+3qPA/lQHUTAhsjL18uoWS0m5sWa6C2Bi1rWjP+TOTfC0CaC6rbsnJ9nxRGRla/d61wN3A/uAIGZfydew3G53VWPj/5e3bt3vWJbliUxPP9PX2fnh6aGhvgVKZ2NCifPAf/hs216K+YuIiIiIiIhIUrIx1x0XE4ofmxIFEyIr0zBmn7fSZE/cv366N9sd6wXL/fTZgt0JnjYOFKI+EyJrRryfRD3wbmADpp/EzNXHZRUWFlXfeOOnswoKfhJgZmzs//R2dDwUnZl53bFXKMQ0uT4CfM9n2wsFGCIiIiIiIiJy7djAmzv8/nlviO7w+/Mx2zmlfJOhggmRFai5vsYBTpPCigmAsnifidPDWYn2mQhjElD1mRBZA9q9Xg/wRkw/CTfz9JMoqK7eXLFnz5+4s7MbHMeZDvX2fn7g0KF/XKR8BaZx9vPAIz7bHs/w9EVEREREREQkdf8PqAK+0+H333D1mx1+vxdoAyqBxa4BzMuT8vRE5Hq7BMxiAoOkGsVuLI509oay3jE45Uk0mACIYi4oisgq1u71FgK3YbZu6gVG5zqudNu2W/Krq//Asqy8WDTaOxYMfjZ06VJwkfKbMT9LHgMOqp+EiIiIiIiIyLLzx8B7gLcDRzr8/g7gTPy9OuAmzE2MLwF/kuogWjEhsnL1Y7Z0Kk32xDfWTh4EmAxb3nOjWYUJnjYBbGzr7tHPDZFVqt3rrQbeBTRg+knMGUpU7Nnz3oL16z9hWVZedHa2a+Dw4T9YJJRwY/pJjGOaXHcqlBARERERERFZfpoCgSngLcCfY26Gvhn4ufjjjfHX/hx4W/zYlGjFhMgK1VxfE27r7jmN+YGQ1P7sOypmh3M8sXMzEdemZ8/l7/35ktHnEzhtHNNjohQYSnrCIrJstXu9FiY4uAMowfSTeF1w4M7JyanYs6fFk5t7B0A4FPr3/kOH/saJRqMLlM/B9JM4DTzhs+3+jP8FRERERERERCRjmgKBCeB3Ovz+j2JWSGyIv3UReLkpEJhMdwwFEyIrW0/82cUcFxEXUp4b7eqZcG06O5rVgNnrfTFTQC0mnFAwIbJKxPtJ3Ai8CXPXw5yNq3LLyyvLtm//hMvj2eY4TmR6aOhrQ93dP1ikfBHml5cu4BmfbU9kcu4iIiIiIiIisnTiAcRTS1FbwYTIytYLjAHFwEgyJ9aVhjt7JrLePTTlTrTPhBN/LmeeC5cisrK0e70FmH4SDZiVVyNzHVe0adPuotraeyyXq8SJxUbHL1z4/Pi5c0cXKV+J+dn0HPAjn22HMzh1EREREREREcmQDr//bcBG4KWmQODIIsfuBt4AnGsKBB5LdUztFS+ygjXX14SA86TQZ+K2TZOHwHGmI67NJwazEz1/ErNqQkRWuHavtwq4G9gPnGWeUKK8vv6dRRs3fs5yuUpikcipoe7u308glNgMZAOPAM8plBARERERERFZnjr8/k3AfwD3AucSOOUc8Ang3zv8/g2LHTwfBRMiK985zAXApGwqCU/kZTmnAF44n5/oqokJoKKtu6cg2fFEZPlo93q3A+/GBAgngOmrj7HcbndVY+Nv5q1b90HLstyR6emn+w4c+Mj08PDAAqWvbHL9PZ9tH1STaxEREREREZFl7Tcw1xY/0hQIjC92cPyYDwN5wK+nOqiCCZGVrxcIAUmHBevyIl0A58c8jQmeMhEfpyzZsUTk+mv3et3tXu9NwDsxTalPAq9rXJ1VWFhUfeONn8kqKPgJx3GcmdHRQG9Hxxejs7OzC5TPAW7ArL74rs+2zyzBX0FEREREREREMusdQH9TIPCdRE9oCgT+DXNN8l2pDqpgQmTlGwYGSGE7p62l4S6A4emE+0xEMb1pypMdS0Sur3avNx94S/wxDlyY67iC9eu3VOzZ8yV3dvY+x3GmQr29nx04fPifFilfDNQBnZiVEgutqhARERERERGR5WMn8GIK570E1Kc6qIIJkRWuub4mBpwihRUTd9aFDoMTnY26qg9cyq1O8LRZINFjRWQZaPd6KzH9JJow278Nz3Vcqdd7a8nWrV90ud3VsWi0Z+TUqQ+Pnjq12C8nVUAFpsn1Yz7bDmVy7iIiIiIiIiKypAqA0RTOGwUKUx1UwYTI6tALhIGsZE6qLIhOF2bHjgO80pO7L8HTJoANbd09SY0lItdHu9e7DbO0sg7TT2LqdQdZllWxd+8vFFRX32NZVm50drZz4NChD0329p5doLQVr+kBfoiaXIuIiIiIiIisRMOkdhNyNfPc+JgIT6onisiy0of5QVAK9CdzYkV+tHNi1r3r4nhWA+bi4mLGMT94kh5LRK6ddq/XDTQCtwIxTD+J13Hn5uZW7N79e57c3NsAZkOhfxs4ePDrTiy2UNNqN7AN8zPgCZ9tLxRgiIiIiIiIiMjydQR4U4ffn9cUCLz+ZsY5dPj9+ZjrDT9KdVCtmBBZBZrra8LAGaAk2XO95bNdACPT7saYk9ApM0Au6jMhsmy1e715wJvjjwng/FzH5ZaXV1U1NHzRk5t7m+M4kanBwS/3d3b+70VCiVxgO3Aa0+RaoYSIiIiIiIjIyvXvmO2c7k3inHuBPKA91UG1YkJk9biI2VrFhbk7OiF31YW6Hz1VMBuJWWU/upC38U0bp+a8gHmVGLAuxXmKyBL6/9m78/i47vre/69zZtG+bx5vsn1sj3c7zk72QMIqAoJSSnEL7W1vC9y6pQUKhZa2bIW2F9+W0nv7K/TWFCi0utBpSUJYs5KQeJHt2GP72Ja3sfZ9G83M+f3xlWLFkUYjW9JI8vv5eOgxss73fOcz9tHI+n7O9/OJOE4FcDfgAGeZqHQTULxy5ZbCpUv/0LLtYi+V6uo9f/4zvefPH5ti+hLMjqmDwFN1rjswk7GLiIiIiIiIyJz7e+BDwB/u27VrEPjMzr17J1xb3Ldrlw38EfCHwCXgf1/tkyoxIbJ4NAM9QDHQlelJxTmpkaKc1NGeYd/2Q8252zJMTPQDyxuiMas+HMpsn4WIzLqI46wG7sI0o3aBxETjyjdseH1uWdlvWpblS42MnOw8efIzQ52dbVNMXwPkA08Bz9e57oRzi4iIiIiIiMjCsXPv3oF9u3a9DVPi/U+B39i3a9e3gX1cLuNeBewEfgFYDgwBb9u5d+9V37CoxITIIlEfDvU1RGMXMCVWuqZzblVB4mDPsG/7pT7/NuB7GZzSi+kxUYRJhohIFkUcxwa2Yeo72pgm169g+f3+qi1bfjOQn/86gMTg4OOtR478r1Q8Hk8z/ViT62HMf1KO1rmuEpIiIiIiIiIii8TOvXuf3rdr16uAvcBm4PcmGGaNPh4B3r1z796D1/KcSkyILC5ngU3TPSlcMdzoduTQPeTblkhh+W2mWnQcAJZg+kwoMSGSRRHHyQVuA24AOoH2icYFi4qKy8Phj/qCwc2e53nxnp5/bjty5N+nmN4PrMbsyHq8znXPzWTsIiIiIiIiIjI/7Ny79wCwAHnTTwAAtPlJREFUdd+uXa8D3gjs4HIp93bgAPBfO/fufWQmnk+JCZHFpRmTNMgffczIXbUDJx85WTSY9KzCp84WrL5nVf+pKU5JYe7KLsc03RaRLIg4TjmmdNM64ByTfN8XLFmyqri29uO2z1ftpVID/c3Nf9l9+vTzU0yfh9kpcRL4aZ3rdsxk7CIiIiIiIiIy/4wmHmYk+ZCOPdtPICJzqgNow5RZyliu30sV56QOA7zYmrM9w9OGgNC0ohORGRNxnFrgDZgm1y6TJCVKHedVJatXf8H2+apTyWSs69SpP8ggKVEKrMDUk3xUSQkRERERERERmUlKTIgsIvXhUAo4BRRO99yagkQjQLPpM5GJXqC6IRrLne5zicjViziOHXGc7cDrgRLMjoZXNqK2LKtyy5Z3FdTU/KFlWTnJ4eH9bYcPf3CgpWWqBvdLgDLgCcxOiatuZCUiIiIiIiIiMhGVchJZfJoxi5QBYCTTkzZVDx2MtufQG7c3D45YvryAl5zilD5gGWYBM3bV0YpIxkb7SdwK7MQ0uW+baJw/NzevYtOm3/Pn5t4GEO/r+07b4cP/5KVSqTTTjzW5HgIeA46pybWIiIiIiIiIzAbtmBBZfFowDXBLpnPSq1YMNPksryflWbmPNxWsy+CUEUzyo/wqYhSRaYo4ThnwAHAzJhk4YVIir6Kipmrbts/7c3Nv8zwvMdDW9sXWxsavTJGU8GP6VLQDD9e57lElJURERERERERktigxIbLI1IdDcUxD6mklJvw2XklushHgeHsw03JOSaBqWgGKyLRFHGclpp/Eekw/if6JxhXX1m4rW7fur22/v9ZLpTp7z579aOfx4z+aYvo8YC2mJNTDda47VaknEREREREREZFrosSEyOJ0EfP9bU3npFCh6TPR2u/PtAF2H7CsIRrzTS88EcnEaD+JrZh+EuXACSbqJwFUbNz4xsKlS//Msu2i5MjIifZjx36v98KF6BRPUcrlJtffr3PdzhkMX0RERERERERkQuoxIbI4NQM9QDHQnelJ25cMNR5pzaUvbm/sGrKDpbmp+BSn9GIWS0uAjquOVkReIeI4OVzuJ9GDSTi+guX3+6u2bPmtQH7+gwCJwcEftx458qVUPD7V928IyAEeB/bVue5UfWVERERERERERGaEdkyILEL14VAvpgZ96XTOu3Hp4MWA7bV7WP7Hmwo2ZHDKIJCP+kyIzKiI45QCDwK3YBKNrRONCxYXl9bccMOnA/n5D3qelxrq6vpq8/79/3OKpIQFrAFSwPeB55WUEBEREREREZG5pB0TIotXE5BJcuEltgWlucmDrQP++091BLcBjRmeWjbt6ERkQhHHWQ7cjdnRcArTaP4VCkOhNUUrV37c9vkqvVSqv7+5+S+7T59+YYrp/ZikxEXgp3WuO+EuDBERERERERGR2aTEhMji1YzZ0ZA3+piRZcUjja0D/vvbBvzbga9lcMoApkb9z68qShEBTD8JYCNwB6bE0gnAm2hs2dq1d+ZVVf2uZVnBVDJ5ofvUqU8NtLZemOIp8oGVwDHgiTrX7Zq56EVEREREREREMqdSTiKLVzvQxnTLOYUGGwH6R6x1l/r8eRmc0guUN0RjBdOOUEQAiDhOELgdeA2QBM4wUVLCsqyqrVvfnV9d/WHLsoLJ4eEXWg8d+oMMkhJlwDJMAvExJSVEREREREREJJuUmBBZpOrDoRSmDEzRdM7bUjPcFvSlYmDZTzblb8nglH6gEPWZELkqEccpAR7AJCZagZaJxvnz8vJqdu78o2BR0TsA4n19Dc379/95YmCgf4qnWAoUAz/F7JQYmrnoRURERERERESmT6WcRBa3ZiCB+V5PZHpSeV7y4KU+O3SmO7iNqUs0JQEfJjFx7moDFbkeRRxnGXAXsBw4DUzYtDqvsjJUumbNH9l+/0rP80YG29r+pvPEiZ9MMb0NrAL6gB/Xue7xmYtcREREREREROTqKTEhsri1AF2Yck5tmZ60vHik8VJf4HUdA75tGZ4SB2qmHZ3IdSriOBaX+0nkYfpJpCYaW1xbu70wFPqIZduFXirV0XPu3Kf7Llw4McVTBIDVwAVMk+vYDIYvIiIiIiIiInJNVMpJZBGrD4eGMbXqS6dz3m3LBw4BDCbs1We6ApmUguoFQg3RWGC6MYpcbyKOE8CUbXoA00fiNJMkJSo2bqwrXLr0Ty3bLkyOjETbjx79vQySEgXAGuA48LCSEiIiIiIiIiIy3ygxIbL4XcR8r1uZnuCUj3Tn+lNnAJ45l781g1P6MH0myq4mQJHrRcRxijENrsf6STRPNM72+/3VO3b8Tm5Z2W9YlmWPDA7+sOXAgY8Nd3d3TvEU5ZieEmNNrrtnMn4RERERERERkZmgUk4ii18z0INpgt2T6UkVecnGC732qrPdge3A01MMHwZyMYuiEzbuFbneRRxnKXA3U/STCBYXl5aHwx/zBQIbPM9LDXd3f7X9xRe/m8FTLMP0e/kJcKDOdSfchSEiIiIiIiIikm1KTIgscvXhUE9DNBYDaplGYqK2NN54oTfw5s7BjPtMpICKq4lRZDEb7ScRBu7ElFmatJ9E4dKla4tXrPiY5fNVeqlUf/+lS3/RfebMgSmeYqzJdQ/wZJ3rTlXqSUREREREREQkq1TKSeT60IRpsJuxO1YMHAEvNZy0l73YmpNJwqEPWNEQjWVcMkpksRvtJ3Erpp+EBZxikqRE2bp1dxfX1n7O8vkqU4nE+c6TJz+YQVIiCKwFLmH6SSgpISIiIiIiIiLznhITIteHS8Ag00hOLC1O9OcHvJMAz1/Iy2TXRB9QPPohct2LOE4RcD9wB9CB+T58Bcu27aqtW381v6rqDyzLCiaGh3/eeujQHwy2tU3VtLoAWA0cwyQlJpxfRERERERERGS+USknketDO9AGlGISFBmpzE80nu0Orr/QG9gG/HiK4f3AEkyfCTXcletaxHGWAHdhSqidwfRheQV/Xl5+xaZNv+/PybkZIN7b+29tR458zUulpuoPUYFpNv8c8Gyd6044v4iIiIiIiIjIfKQdEyLXgfpwKIUpIVM4nfPWlMUbAToHfdtS3pTDPcx7StlVhCiyKEQcx4o4Thh4I7AU009iwqRBXlXV0qqtW//Sn5Nzs+d58YHW1r9sPXTonzNISiwH8jHJwieVlBARERERERGRhUY7JkSuH81AEvN9n8jkhLtq+1/86ZmCxEjKqtofyw3duHRoqtIyg8AyYN+1hSqy8EQcxw/cCNyCSUacmmxsyapVOwqWLPmIZdsFXjLZ3nPu3Kf7Ll48OcVT2JjSTd3A43Wu685U7CIiIiIiIiIic0k7JkSuH81AF1CS6Qnleal4QTB1DODApYz6TPQClQ3RWO5VRSiyQEUcpxDTT+JOoBOYNIlXsWnTQwWh0Cct2y5Ijowcazt69PcySEoEgXXABeB7SkqIiIiIiIiIyEKmxITIdaI+HBoGmjB9JjJWlZ9sBIj1+jNtgF2E6TMhcl2IOE4N8HpgG+Z7bMIeK3YgEKi+4YbduaWlv25Zlj0yMPBYy/79H4v39HRN8RSFmJ0SR4BH6ly3eQbDFxERERERERGZcyrlJHJ9uYApNWNhekJMaV3F8MHTXcF3dQ2ZPhO2lXZ4Aghg+kxcvMZYRea1iONYwFrMLokSTD+JCftD5JSUlJetX/9RXyAQ9jwvNdzV9f+1Hz36nxk8TeXo3M9imlzHZyh8EREREREREZGs0Y4JketLM9CD2dWQkbtr+09YeMNJzyp55lz+ygxOSQDVVxugyEIw2k/iJuB1mDJLLpMkJQqXLl1XsXHjX/sCgbCXSvX1Xbz4JxkmJVYAuZgm108pKSEiIiIiIiIii4USEyLXkfpwqAe4xDTKORUEvURxTuoIwOGWnO0ZnNILLGuIxnxXFaTIPBdxnALgPuBuTN+WSXcHla1bd29xbe3nLNsuTyUSZztPnvxgT1PTwSmewsbsxOgHHq1z3YN1rjth0kNEREREREREZCFSYkLk+tOEuQs7Y9UFiUaAS32B6fSZKJ12ZCLzXMRxqjG7JHYAZzGJiVewbNuu2rbtvflVVR+0LCuQGB5+rvXQoQ8NtrVdmuIpxppcnwcernPdUzMXvYiIiIiIiIjI/KAeEyLXn0vAECY5MZTJCRsqhxtPdOTQM2xvHUpYdq7fS3f39iCQj2mA3X7N0YrMExHHWQvchUm6nQCSE43z5+cXVG7c+Ae+nJwbAeK9vd9qPXz4X/C8qfq6FAFLgcPAk3Wu2zdjwYuIiIiIiIiIzCNKTIhcf9pHP8qAWCYn3Fnbf+q/ThT1pzyr4Kmz+c6r1/SfmOIUD5OYEFnwIo7jw+yQuA2TjDg52dj8qqplJWvWfNz2+ZZ5nhcfbG39YufJk09m8DRjTa6fAZ6rc92RGQhdRERERERERGReUiknketMfTiUBE4xjQbYQR+pkpzkIYBjbTmZlHPqB1Y0RGPW1UUpMj9EHCcfuHf0oxe4MNnYktWrbyx1nL+yfb5lqWSyrfvMmQ9nmJRYCeQAPwKeUVJCRERERERERBY77ZgQuT5dAhKY94BEJicsKUw0dg75b2vp928D/n2K4X2YcjcFo5+LLDgRx6nClG5yML1ZBicbW7Fp01tzSkreY1mWlRwZOdoRjX423tPTNcVT+IA1QBvweJ3rnpmZyEVERERERERE5jclJkSuTy1AN6Z0TEZ9ILbUDDcebculd9je3Dts+4tyUukSGn1AFaackxITsuBEHGcNcCdQQZp+EnYwGKzavPn9/ry8+wBGBgYebT18+H97icRUCb8cYBVwGpOUaJ2x4EVERERERERkQdq3a9eNwAPALaMfywB27t2btirJvl273gO8D9gExIGfAZ/auXfv07MZ77VQKSeR61B9ODSEuQO8JNNzbls+cNZve10eVvCJpvzwFMNTmLvBy64hTJE5F3EcX8RxdgKvx+z4OckkSYmc0tLy6u3bP+vPy7vP87zUUEfH37ccOPClDJISRUAtcAh4REkJERERERERERn1CeCzwFsZTUpMZd+uXV8EvgpsAX4APIdJbjy+b9eut8xKlDNAiQmR69cFTPIgoz4QtgUlOclGgJMdGfWZGAZCVx+eyNyKOE4ecDdwD2anz/nJxhYtWxau2LDhf/oCgXVeKtXbd/HiH7cfO/a9DJ6mGrOb6BngR3Wu2z8TsYuIiIiIiIjIovAM8OfAmzHrasPpBu/btes1wG5MRZTtO/fufcvOvXtfh1nfSAJf3bdrV+msRnyVVMpJ5PrVjFl8LcQ09Z3S0qLEwfZB/92tA75twDemGN4H1DREY8H6cCh+baGKzK6I41Rgfmg7wFnS9JMoW7/+/ryKig9YluVPJRJNXa77qcH29uYpnsLCNLkeAX4IHKlzXW+GwhcRERERERGRRWDn3r1/Mf7P+3btmuqUD44+fmrn3r0nxs3zzL5du/4e+B3g14G/msk4Z4J2TIhcp+rDoW5ME+yMyy3dEBpsBOiP2+H2AV/OFMN7MSVrVM5J5rWI46wG3gisBlwmSUpYtm1Xbdv26/mVlb9rWZY/MTT0s9bGxg9nkJTwAWsxfV0eqXPdw0pKiIiIiIiIiMi12LdrVx5w/+gf/22CIWNfq5ubiKZHOyZErm9ngHWZDt6+ZKg5cCjVMpKyqx9vKtj01o09+9MMj2Ma/JZhdmeIzCsRx7GBbcDtmET9icnGBgoKCio2bvyILxjcATDc0/PNtiNHvoHnTZVgyMU0uXYxTa7bZiJ2EREREREREbnuhTFrb6079+6dqBz1vtHHTEqyzzntmBC5vjUDQ5jF0ynZFpTlpRoBTncGMnlTS2Lq6YvMKxHHycWUbroPs0Pi7GRj86url1du2fLXvmBwh+d5w/3NzZ9rO3z46xkkJYox5ZsOAo8qKSEiIiIiIiIiM2jl6OOEPTJ37t3bD3QBZft27Sqaq6AypcSEyPWtDegASjM9YVnxSCNA+6A/k8REH7CsIRrTe43MGxHHKQdeC9wEXMQ0iJpQyerVN5U6zl/ZPl8olUy2dJ858+Eu1306g6epASqBp4Afq8m1iIiIiIiIyHWr0LKs4nEfU5VHz3je0ceBNGPG1iOUmBCR+aM+HEoCp5jGm9MtywYaAQZGLOd8j79giuF9QAnmznGRrIs4Ti3wBkyTa5c0P7wrN29+W8GSJZ+wLCsvGY8fbn/xxQ/2x2Knp3gKC1O6yQZ+ADxb57ojMxO9iIiIiIiIiCxAxzB9J8c+PprdcOYH9ZgQkUtACtOgNznV4A2V8Y4cX+r8cNJe/vTZ/C3v2NLzbJrhA8BSoByzdUwkK0b7SWzF9JPwASeBCUsx+YLBYOXmzb/jz8u7G2Ckv//h1iNH/sFLJBJTPI0fWIP5nnqiznUnLQ8lIiIiIiIiIteNDUBs3J+HZ2jevtHH/DRjxm4q7p2h55wxSkyISDMmW1uCKes0pfK8ZGOsz17e1B3cBqRLTHiYO8jLrjlKkasUcRw/JiFxEyZBNmmvh5zS0orydev+yA4E1nqelxzq7PzfHceOPZLB0+QBtZiEx0/rXDej7yURERERERERWfT6PM/rmYV5x26IXD7RwX27dhVgyrd37ty7V4mJa1G7hzzMVpd3Ypp7dACPAJ9o2s2Fac5VBnwSeAuwBHOH6/8DPtm0e+o7u2v3EAQOABuBZNPuhfV3KTKmPhwaaojGzgJbyDAxsbJkpDHWF3hDx6BvewbDBzBvkC9cQ5giVyXiOEHgDmAnpp9E32Rji5Yv31C0fPnHLNsu9VKpnr6LFz/Xc/bs4QyepgTTU+IA8FSd66ar7SgiIiIiIiIiMhOimN0XVft27Vq2c+/eK9fHd44+Ns5tWJlZMD0maveQC/wI+ASmscd3gXPAe4H9tXtYM425KoHngN8BEsB3MNtZdgPP1u6hPINpPobZhiOyGJxnGonK21cMHAIYStgrT3YES6cY3gdUNERjeVcfnsj0RRwnF7gXuBHz82LSpER5OPyaohUrPmPZdmkqkTjTcfz4BzNMSizBlCp7EtPkWkkJEREREREREZl1O/fuHcSslwP8wgRD3j76GJmbiKZnwSQmgI8DtwHPAOubdvOLTbu5Ffh9oAr4yjTm+iKwFmgAwqNzbQH+BlgP/HW6k2v3sBGzc+MfpvsiROapZkxyLqMm2LWlI715/tQpgGfP522dYnjf6LyZJPxEZkTEcQqAVwPbgDPA4ETjLNu2q7Zv/428iorfsSzLnxgaerqlsfHDQx0dLVM8xViTa4DHgOfqXHeqHhQiIiIiIiIiIjNpbB374/t27Vo39sV9u3bdDvx3TEnrf8xCXFOyPG/C3p/zymjZpBZMuYydTbvZf8Xxg5jFp5uadqcvF1O7hxDm7vAEsLJpN83jjuVg7qotB5Y27eYVC1O1e7CAxzEJjA2Y0jfTLuVkWday0TiWe543rTJUIjOtIRqzgIcwjarPZXLOXz1d+d7zPYG31hSMPPqHd7V9aYrh64FH68OhTO5AF7kmEccpBu4D1gGngJGJxgUKC4sqNmz4sC8Y3A4w3NPz9bYjR/6VqX8wjm9y/dM61z0/c9GLiIiIiIiIyGJwNeu/+3bteiOmYtCYWzA3R47v8frnO/fu/a9x53wRUwloAHPzZBB4YPS8t+/cu/c7V/8qZs9C2TFxByYp4V6ZlBj1b6OPdRnM9TrM635ifFICoGk3w5itLT7gDZOc/9+BO4Hfb9pNZwbPJzLv1YdDHnAa08A3I6tK440AnUO+bRkMH8HU4BeZVRHHKcf88F0HuEySlMivqVlZuXnzX/mCwe2e5w31Nzd/pu3w4W9mkJTIw+y4Owl8T0kJEREREREREZlBVcCt4z6s0a+P/1rV+BN27t37u5h2B0cxayK3Az8A7p6vSQlYOM2vxxrs7pvk+NjXM1kgzWSuX5tortHdFp8Dfti0m69l8FwiC0kzpmFOzuhjWnfV9r/45Nn8VDxphw4151RtrRluTTO8Dwg1RGP++nBI5W5kVkQcpwpTvmkpcAJITTSudM2aW/Jran7fsqy8VDLZ3NPU9Kn+S5eaMniKUswP/33A03WuO2F5KBERERERERGRq7Fz795/Av5prs7LpoWyY2Ll6ONkd6aOfb12luf6WyAXeF8GzyOy0LRiSpOVZjK4uiA5WBBIHQd44WLeVEnBPqA407lFpiviOCHgQSCE2SkxYVKicvPmd+TX1PyRZVl5yXj8UNuRIx/MMCkRwly/T2LKNykpISIiIiIiIiJylRZKYqJw9HFgkuP9o4+ZNO69qrlq9/AQUA98rmk3xzN4npexLCvHsqzisY9xcYjMC/XhUBJTj78403Mq85ONABd6A1MlJgYxJXDKrjpAkUlEHGclJilRySRJCV9OTk7Nzp0fzikpebdlWdZIf/9/Ne/f/8cjfX29U0xvAatH53wM+LmaXIuIiIiIiIiIXJuFUsopq2r3UITZLXEc+OxVTvNR4E9mLCiR2XEJ8DB9VpJTDV5bHj/Y1B18R9eQb3vKA9tKOzwFVGBK7IjMiIjjOJhG17mYxNor5JSWVpSvX/8J2+9f43lecqij4+87otFHM5h+rMl1DLNLIqNGVSIiIiIiIiIikt5C2THRN/qYP8nxgtHHqe58vdq5PgMsB9432iD7anwW08B77GPDVc4jMpuagS7MNTqlu1f1H7PwRhIpq/z5i3nLphg+ACxviMbSpy9EMhRxnA3AazAJhAnLMeXX1KysCIe/YPv9a7xUqrv3/Pk/yjApkQ84mETa95SUEBERERERERGZOQtlx8TZ0cflkxwf+3omdcKvZq46YAj4RO0ePjHBOb7aPfxk9PPfbdrNgSsHeJ43zLiGwpZlZVJ2SmRO1YdDgw3R2DlgM6bfRFrFOamRwmDqaG/ct63xUu62W5YNplu87cWUcioksySiyIQijmMBW4C7gThmp88rFK1YsbFo2bI/tmy7IJVInO88efJPhjo60jVpH1OGKQv1AvBMnesOzVTsIiIiIiIiIiKycBITB0cfd05yfOzrjbM4Vy5wT5p5x46VZhCDyHx2Htie6eDqgkRjb9y3Ldbn3w48nGZoP1CDWfRVYkKuSsRxbGAHcCfmOmqbaFzpmjW35tfUfMiyrGByZORY+9Gjf55BPwkwTa5zgJ8CB+pcd8qSZiIiIiIiIiIiMj0LJTHxFNANOLV72DHBjoS3jz5GMpjrEUyt+7tq91DdtJuWsQO1e8jB7I5IAt8b+3rTblZNNlntHjwg2bR7wfxdikylGVPyrJDLpc8mtb4iftDtzHl395BvayKF5bfxJhmawpSPK+fyziWRjEUcxwfcBNyGKTk24a6e8g0bXpdbVvZblmXZieHhZ9sOHfpCMh6PTzG9DazCJNAerXPd4zMXuYiIiIiIiIiIjLcgekw07SaOaT4N8KXaPS/1gaB2Dx8EtgE/bdrNC+O+/oHaPRyr3fPyZtVNu4kB3wCCwN/V7nlZQuHzQBXwtfEJC5HrTBfQQoa7f+6q7T9pW95g0rOKnjqbv2qK4UPA0muKTq5LEcfxA7cDrwLamSQpUblly7vyysvfZ1mWPTIw8GjL/v2fzSApEQDWYpJy31NSQkRERERERERkdi2ku/w/hWly+irgRO0engBqgVuBVuDXrhhfCYQxZTmu9LuYO27fBhyr3cPzmJr6WzCNTj84C/GLLAj14ZDXEI2dBtZkMj4v4CWLc1KHu4Z8N7/YmrvtnlUDp9MM7wOqG6KxYH04NNVisQgAEccJYt77bwQuMsFOHsu27apt2347kJ//WoDhnp5vtB0+/I0Mpi8AVgDHgMfrXLd75iIXEREREREREZGJLIgdEwBNuxkC7gP+HBgA3oJJTPwTsLNpN6emMVcbcAvwN5idE28FSoD/BdzStHvqpr8ii1wzpqlwMJPB1QWJRoCWfv+2KYb2AUWYck4iU4o4Ti5wL6aE0zkmSEr4gsFg9Q03fDSQn/9az/NSgx0df5dhUqIck7z+OfCYkhIiIiIiIiIiInPD8rzJysHLbLIsaxmmyfByz/MuZDsekfEaojE/8ItAHiZJkdZPz+Sv/s6xkj225Q1+6v7md+UFvHQNg9cD36sPh47OULiySEUcpwCTlNgInAGGrxwTKCgorNi06RO+QGCj53nxgebmL3SdOvVsBtMvA3zAM8BBNbkWERERERERkZmk9d/0FsyOCRGZO/XhUAI4hdndMKU7Vg6c8Vleb8qz8p5oKlg7xfAEppeLyKQijlOMKd+3ETjNBEmJ3LKyysrNm//CFwhs9FKp/t7z5z+RQVLCBhzMjqDv17nuPiUlRERERERERETmlhITIjKZS6OPU75P+G28ktzkIYDj7cHtUwzvB5Y1RGN6/5EJRRynDHgA05DaxSQRXqZgyZLa8nD4L22/f4WXTLZ1nT79kd5z56bahRMA1mGu7e/Vue6JmY5dRERERERERESmpoVBEZlMM9CN6b8ypVBh4iBk3GeiJNN55foScZwq4LXAKkxSInHlmOKVK7eUrFr1Ocu2y1OJxNmO48c/PNDcfHaKqQswOyWOYZISl6YYLyIiIiIiIiIis0SJCRGZUH04NICpg1eayfhtS4YaAfri9saeYTuQZugAkA+UXWuMsrhEHCcEPIhpSH0SeEWJpVLHeVXhsmV/atl2QXJk5MW2I0c+MtTZ2TbF1GXAUuA5TJPrnpmOXUREREREREREMqfEhIikcw5T/mZKNy0dvOC3vQ4PK/D4mYINaYZ6o4/l1xydLBoRx1mBSUpUYnZKpK4cU7Fhwxvyq6s/YllWIDE09EzLwYN/PNLf3z/F1Eswu3N+CjxR57qv6FUhIiIiIiIiIiJzS4kJEUmnGdMTomCqgbYFpbnJgwAnO6bsMzEILL/28GQxiDjOGkz5pmJM03XvyjFVW7e+O7e8/Lcsy7JG+vsfbjlw4C9S8fgrek9coRawgB8A++pc9xXJDhERERERERERmXtKTIhIOp2Y5ERpJoOXFY00ArQN+DLpM1HREI3lX1N0suBFHGcD8BrAD5y58rhl23b1jh3/I1hU9A6A4Z6ef2k5ePDLXiqVLslgYxpn9wCP1Lnu0TrXfUWyQ0REREREREREskOJCRGZVH045GEWi6fcMQFw49LBRoD+EXt9S78vL83QPqAQ9Zm4bkUcx4o4zhbg1aNfunDlGF9OTk71DTf8USA//wHP81KD7e1/03b48L9OMXUAWIfpj/JwnetO1RRbRERERERERETmmBITIjKVZiAOBKcauLVmuDXoS8XAsp9oKtiUZmgC8KE+E9eliOPYwA7gfkxZr9iVYwKFhUVV27Z9yp+Tc7PnefGB5ubPdESjj00xdR7gAMeAR+tct3WGQxcRERERERERkRmgxISITKUFU9KpNJPBZbnJRoAzXcGpyjklMI2J5ToympS4CbgH6AZekTzILS+vrty8+fO+QCDspVK9vefOfbzr1Knnppi6BFgBvAD8oM51e2Y6dhERERERERERmRlKTIhIWvXhUAI4jVn4ndKKEtNnon3AN1UD7F5gSUM05r+2CGWhiDiOH7gduANoAzquHFOwZMmq8vXrv2D7fMtSyWRr16lTH+k9f/7YFFNXARXAk8Djda47NNOxi4iIiIiIiIjIzFFiQkQyEQM8MnjPuHX54CGAwYS9pqkrUJRmaB9QjPpMXBcijhME7gRuAy5hdku8TPHKlVtLVq36nGXbZalE4kxHNPqhgZaW81NMvQJTZuyHwHN1rpuY6dhFRERERERERGRm6U5lEclEM2YhuRjoSjdwbXm8K9efOjuUsFc+cy5/a21p99OTDB0CcjGJCfUCWMQijpML3AVsB84BA1eOKV279s78qqoPWpblT8bjh9tefPHTiYGB/jTT2sAqoAf4aZ3rnpqF0EVEREREREREZBZox4SITKk+HOoHzpNhn4nyvORBgLPdgan6TKQwJXhkkYo4TgGmyfV2oIkJkhIVGze+Kb+q6kOWZfkTQ0NPtxw8+CdTJCX8wFpMwuxhJSVERERERERERBYWJSZEJFPnMSVzplRbEm8E6Bj0TZWY6AeWN0Rj1jXGJvNQxHGKgVcDmzF9Sl7R+6Fq69ZfyS0r+03LsqyR/v7/ajlw4POpkZGRNNPmYpISJ4FH6lz30mzELiIiIiIiIiIis0eJCRHJ1CVMIqFgqoF3rhw4DF5qOGkvP9YWLE8ztA9TyildLwpZgCKOUwY8AKzHJBHi449bPp+v+oYbfjdYVPR2gOHu7r0tBw/+by+VSqWZtghYCRwAHqtz3a7ZiF1ERERERERERGaXEhMikqlOTC+I0qkGLi1O9OcHPBfguQv56XZNjCU61AB7EYk4ThXwIKYHxEngZQ2pfbm5uTU7dnw8kJd3v+d5qcG2tj1tR458e4ppK4Bq4GfAT+pc9xUloUREREREREREZGFQYkJEMlIfDnmYcjxT7pgAqMhLNAJc6EnbZyKFeR9Kt6tCFpCI44QwSYmlmKREcvzxYFFRcdXWrZ/25eTc6HlevP/SpU91HD/+wymmXYq57n4CPFPnuulKPYmIiIiIiIiIyDznz3YAIrKgNGNK8gS5ojTPlVaXjTSe6wm+rXPQtz3lgT15F4khIATsn8lAZe5FHGcFcB9mB4wLeOOP51VU1JSuXftnts8X8lKp3p5z5/6078KF42mmtIBaYBD4UZ3rnpit2EVEREREREREZO5ox4SITEcLpqRTyVQD767tf9HCS4ykrKqDl3Jr0gztA2oaorGcmQpS5l7EcdZgdkqUAKe4IilRGAqtKVu37gu2zxdKJZPNXa774SmSEj5Mk+sO4GElJUREREREREREFg8lJkQkY/Xh0AhwhgwSExX5yeGCYCoKsD+Wl66cUy9QiPpMLFgRxwkDr8HspDlz5fHi2trtxatWfday7dJUInG649ixDw+0tl5IM2UQk5Q4AzxS57rpxoqIiIiIiIiIyAKjUk4iMl0XRx9tTI+ISVXlJxv74r7NsT7/duCxSYaNYBaiy4FLMxalzLqI41jAZuBuTIPr81eOKVu37u68ysrftSzLn4zHG9uOHPlMYnAwXePqAmA5cBh4os51+2cjdhERERERERERyR7tmBCR6WoGeoDiqQauLR9uBOga8m1LeWmHJoHKmQhO5sZoUmIHpqfEEBC7ckzFpk0P5VdV/YFlWf7E0NCTLQcOfHKKpEQZptH1c5ieEkpKiIiIiIiIiIgsQkpMiMi01IdD/cAFoHSqsXfVDkQtvHgiZZX+7Hz+yjRD+4DlDdGY3pMWgIjj2MDNwD2YJFXrywZYllW1bdt7c0tLfx0g3t8fad6//wupRCKRZtolmBJhPwWerHPdtM3VRURERERERERk4dIioIhcjbOY8ktpFeWkEkU5qSMAh5tzpuozUUwGyQ7Jrojj+IHbgTuBNkxz6pdYfr+/ZseO3wsWFr4VYKir659aDx78Bzwv3Z6ZWsACfgDsq3PdtCXCRERERERERERkYVOPCRG5Gs1AP6YfQNpyO9UFicaeYd8Nl/r824D/nGTYILAMU8qnY5IxkmURxwkCrwJuxPQa6Rt/3J+bm1e5ZctHfcHgDs/zkoPt7f+r8/jxH6eZ0gbWAO3AT+pc9+xsxS4iIiIiIiIiIvOHdkyIyNXoxNwtXzrVwA2Vps9E97Bvazw56XuOh7ljvnymApSZFXGcXEzpppswTa5flpQIFheXVm3d+pnRpMRQfyz251MkJQLAutG5HlZSQkRERERERETk+qHEhIhMW304lAJOYXZMpHXHygHXtrz+lGcVPNlUsCbN0H7MrgmZZyKOU4Bpcr0daAJe1sA6r7IyVLFx4+ftQMDxUqmenqamP+o+c2ZfminzAAeIAo/WuW5rmrEiIiIiIiIiIrLIKDEhIlerGRjB3Pk+qVy/lyrOSR0GONaWts9EH1DZEI1NmeyQuRNxnCLg1cAW4DQwNP544dKlTtnatX9h+3xLUslkc+fJkx/qu3jxRJopS4AVwAvAY3Wu2zNbsYuIiIiIiIiIyPykxISIXK0WTEmn0qkGLikcaQRo6fdPlZgowPSZkHkg4jhlwAPAeuAkEB9/vGTVqh3FtbWftWy7NJVInGo/evRDg21tsTRTVgEVwJPA43WuO5RmrIiIiIiIiIiILFJKTIjIVakPh0aAM5g74NPaUj18EKBn2N7cH7f8kwxLAn7UZ2JeiDhOJfAgsBqTlEiMP162bt29BaHQn1iWlZuMxw+2Hjr00XhPT1eaKZcDQeBHwHN1rptIM1ZERERERERERBYxJSZE5FpcHH1M+15y+4qBsz7L6/awch5vKliXZmgcqJmx6OSqRBxnCfBaYCkmKZEcf7xi06a35ldVfdCyLF9icPDx5gMH/jQxODg4yXQ2sAZTAur7da57qM51vdmMX0RERERERERE5jclJkTkWjQDvUBxukG2BaW5yUaAEx0529MM7QOWNkRjaftWyOyJOM4KzE6JSsAFUi8dtCyratu2X88tLX0vQLyv7zvNBw78lZdITLb7wQ+sxVwnD9e57qlZDV5ERERERERERBYEJSZE5KrVh0N9wAUy6DMRKko0ArT2+6bqM1GYyXwy8yKOswaTlCgBTgEv7Wyw/X5/zY4dvx8sLHwIYKir6yutjY1fwfMm2/2Qi0lKnAQeqXPdS7MbvYiIiIiIiIiILBRKTIjItTqL6R2Q1o4lg40A/XF7Q8egPdn4IcyCtvpMzLGI44SB12D+Lc+MP+bPy8ur3rHjT/x5eXd7npccaG39q/YXX/xOmumKgJXAQeCxOtftmp2oRURERERERERkIVJiQkSuVTMwAOSnG3RDaCgWsL1WD8v/RFPBpjRDU0DFTAYok4s4jhVxnC3Aq0e/dH788WBxcWnV1q2f9QWD2z3PG+yPxf6088SJn6aZsgKoBn4G/LjOdQdmJ3IREREREREREVmolJgQkWvVAbQxRfkl24KyPNNn4lRnMF05p35geUM0Zs1YhDKhiONYwHbgPmAYiI0/nldVtbRi48Yv2H7/Gi+V6uppavpY95kzB9JMuRQoAH4CPFPnuiOzE7mIiIiIiIiIiCxkSkyIyDWpD4dSmH4EhVONXVY00gjQNuBPl5joxSQ5imYiPplYxHFs4GbgHqAHaBl/vHDZsnVljvN52+erSSWTsc6TJz/cd/GiO8l0FrAKSALfr3PdA3Wum5pkrIiIiIiIiIiIXOeUmBCRmdAMJIBAukE3LTN9JgZGrLUXe/wFkwwbwNx1rz4TsyTiOH7gduBOzI6XjvHHS1avvrF45crPWLZdnBoZOdn+4osfHmxrm6x5tQ/T5LoDeLjOdU/MZuwiIiIiIiIiIrLwKTEhIjOhBegEStIN2lQ13J7jS10Ay37qXP7mSYalMO9NSkzMgojjBDAJiduAS0DX+ONl69ffX7BkyScsy8pJDg/vbzl06GPx3t7uSaYLYpISZ4BH6lz3wuxFLiIiIiIiIiIii4USEyJyzerDoThmcTptYgIu95lo6krbZ2IICM1IcPKSiOPkAvcCN2GaXPeOP165efPb8isrf9eyLDsxOPjj5oMH/zw5NDQ0yXQFwGrgCKZ8U/sshi4iIiIiIiIiIouIEhMiMlMuYt5T0jatXlkychCgfdA3VZ+J6oZoLHfmwru+RRwnH9PkegfQhCmZBYBl23b19u2/mVNS8qsA8b6+huYDB77oJRKJSaYrxSSOfg78sM51+2YzdhERERERERERWVyUmBCRmdKMaaJcnG7Q7SsGDgEMJexVbkdgsh0WfZhm2mUzGuF1KuI4RcCrgS2YRuUv7YKw/X5/9Y4dfxAoKHgTwFBX1z+2Njb+E57nTTJdDSYx8TjwZJ3rxmc1eBERERERERERWXSUmBCRGVEfDvUCMcyi9aRWlY705vlTpwGePZ+/dZJhI5j+BeozcY0ijlMKPACEgZPAS4kEf15efvWOHX/qz8290/O8xEBLyxfaX3zxu2mmq8X83PgBsK/OdZOzGLqIiIiIiIiIiCxS/mwHICKLShOwYapB5fnJxgs99upzPYFtwJOTDEsAVTMZ3PUm4jiVwP3ACkxS4qVEQk5JSXl5OPxJ2+9f5XneYN/Fi5/uaWpqnGQqG1gDtAM/qXPds7Mdu4iIiIiIiIiILF7aMSEiM6kZGATy0g1aVRJvBOgY9G1PM6wPWNYQjflmLrzrR8RxlgCvBZZxRVIiv6pqWfmGDZ+3/f5VXirV1X3mzEfTJCUCwDpMs+yHlZQQEREREREREZFrpcSEiMykdqCNKco53Vk7cBi8VDxphw4351ROMqwPKAIm60Mhk4g4znLgQaAScIHU2LGiZcvCpY7zedvnq04lkxc7Tpz4UH8sdmqSqfIAB4gCj9a5butsxy4iIiIiIiIiIoufEhMiMmPqw6EUprlyUbpxSwoTgwUB7wTAC7G8bZMMGwDyUZ+JaYk4zmpMUqIE82/xUhPrktWrby5aufLTlm0XJUdGTrS/+OKHh9rbmyeZqgRTAuoF4LE61+2Z7dhFREREREREROT6oMSEiMy0Zkx/iLQ9bCrzEwcBLpg+E+mUzVBci17EcdZjGl3nAmfGHysPh19TsGTJH1mWFUwOD7/Q2tj4sXhv72TJhiqgAtP/4/E61x2azbhFREREREREROT6oubXIjLTWoAuTDmntskGrSmPNzZ1B9/RNeTbnvLAtiYcNoC5a//nMx/m4hFxHAvYBNyN6SVxbvzxys2b35FTUvJugJHBwR+2Njb+rZdMJl85EwDLMbssfgQcrnNdb5JxIiIiIiIiIiIiV0U7JkRkRtWHQ8OYu/XT9oa4u7b/mIWXGElZFS9czFs6ybA+oLwhGiuY4TAXjdGkxHbgfiAOxMaOWbZtV2/f/ltjSYl4b++3W/bv3zNJUsIG1gBDwPfrXPeQkhIiIiIiIiIiIjIblJgQkdlwEfP+MvE+CKA0NxUvDKaOAhy8lDtZOac+oBD1mZhQxHFs4GbgHqAHs1sFADsQCFTv2PHhQEHBGzzP84Y6O/9P66FDeyeZyg+sxZTherjOdSdrhi0iIiIiIiIiInLNlJgQkdnQDPQyRRPsqgLTZyLW558sMZEEfCgx8QoRx/EDtwF3AB2jHwD48/MLqrdv/1N/bu6rPM9LDLS2fr796NH/nGSqXExS4iTwSJ3rXprt2EVERERERERE5PqmxISIzLj6cKgHU1KoNN249RXxRoDuId+2RGrS3RVxoGZGA1zgIo4TwCQkbsckgbrGjuWUllZUbdnyOV8wuMVLpQb6Llz4466TJ5+aZKoioBY4CDxW57pdk4wTERERERERERGZMUpMiMhsacLcjT+pu2v7T9iWN5T0rOJnzuXXTjKsFwg1RGOBGY9wAYo4Ti5wL3ATcAHz9wNAfnX1ivJw+Au231/rpVId3WfO/GHP2bOHJ5mqHKgGngF+XOe6A7McuoiIiIiIiIiICKDEhIjMnmZMI+W8yQbkBbxkUTB1BOBIS+72SYaN9Zkom/EIF5iI4+RjkhI7gLNA/9ixouXLN5auWfMXts9XmUokLnQcP/6h/kuXzkwy1VLM3+lPgGfqXHdkNuMWEREREREREREZz5/tAERk0WoD2jHlnAYnG1RTmGjsHvbd2Nzv3wZ8d4Ihw5idF+WMa+58vYk4ThEmKREGTmFKXAFQumbNrfk1NR+yLCuYHBmJth89+mcjfX29E0xjYUo3DQI/qnPdE3MQuoiIiIiIiIiIyMtox4SIzIr6cCgFuJg78ye1qWr4IEDPsL1lKGFN9p6UAipmNsKFI+I4pcADmKSEy7ikRHk4/GB+Tc1HLcsKJoaHf97a2PjxSZISPkyT6w7gYSUlREREREREREQkW5SYEJHZ1IxJKky6O+uOlf2nfZbXl/KsvCea8tdOMqwPWNEQjU3WIHvRijhOJSYpsRo4CSTGjlVu2fLOvIqKD1iWZY8MDDzWsn//p5PDw8MTTBME1gFngEfqXPfCHIQuIiIiIiIiIiIyISUmRGQ2NQOdQMlkA/w2XklushEg2p6zbZJhfUDx6Md1I+I4S4AHgeWYpEQSwLJtu3rHjvflFBe/C2C4t/dfWw4c+BsvlUpNME0BJqlxGPh+neu2z030IiIiIiIiIiIiE1NiQkRmTX04NAw0kSYxAbCkMNEI0Nrvn6wBdj9mgb18RgOcxyKOsxyTlKjClG9KAdjBYLB6x44/DOTnv87zPG+wo+Pv2w4d+pdJpikFQsDPgR/WuW7fHIQuIiIiIiIiIiKSlhITIjLbLmJKOU1ahmlrzVAjQO+wvbFn2A5MMMTDvF+VzUqE80zEcVZjkhIlmEbXHkCgoKCwevv2P/fn5t7med7IQEvL5zqOHfveJNPUYBITjwNP1rlufJJxIiIiIiIiIiIic0qJCRGZbZeAXtI0wb5l2eB5v+11eFjBx5sKwpMMGwSWzUaA80nEcdZjekrkYnpCAJBbVlZZuXnz53yBwEYvlervPX/+j7tc95lJpqnFvL//ANhX57rJ2Y5bREREREREREQkU0pMiMisqg+HeoAYaXY72BaUjvaZcDuC6fpMVDZEY7kzH+X8EHGczcCrR/94buzrBTU1K8vXr/+C7fev9JLJ9u4zZ/6w99y5IxNMYQNrgR7g0TrXPVrnut7sRy4iIiIiIiIiIpI5JSZEZC40YXYATGpp0UgjQNuAb7I+E71AEYuwz0TEcayI4+wA7gfimEQOAEUrVmwqWb36LyyfryKVSJzrOH78Q/2XLjVNME0Ak5Q4Dzxc57oTjREREREREREREck6JSZEZC40A0OkSU7sDJk+E31xe31rv2+icQnM4vui6jMRcRwbuAm4B5N8aRk7Vuo4txUtX/7nlm0XJEdGjrYdOfKRoc7OtgmmyQMc4Dhmp0TrXMQuIiIiIiIiIiJyNZSYEJG50Aa0Y5oxT2j7kqGWoC/VDJbviaaCzZMMSwDVsxBfVkQcxw/cBtwJdGD+jgAo37DhdfnV1X9oWVYgMTz8bMvBg58Y6e/vm2CaYmAF8ALwWJ3r9sxF7CIiIiIiIiIiIldLiQkRmXX14VASOI1ZRJ9U2WifidNdgcn6TPQCyxqiMd/MRjj3Io4TAO4AbsfsKOkaO1a5Zcu78srL32dZlj0yMPBIy/79n03F4/EJpqkCKoEngcfrXHdoDkIXERERERERERG5JkpMiMhciWF2PEyaVFhePHIQoH3Qn64BdhFpdl4sBBHHyQHuxpRwuoBJuGDZtl29Y8f/yCkufifAcE/P11sOHPg7L5VKTTDNciAI/Ah4rs51E3MTvYiIiIiIiIiIyLXxZzsAEblutADdQAmmbNEr3Lp8sPGFWD6DI9aac92BwhUlI1eWLhoE8jENsNtfOcP8F3GcfExSYgtwFvOa8AWDwcqtWz/iz8m52fO81FBn5993HDv2yART2MAqoAf4aZ3rnpqj0EVERERERERERGaEdkyIyJyoD4eGMAvxpZONWVcR78r1p86CZT19Ln/LJMMSwM0N0dj6hmhsQb2HRRynCHg1JilxmtGkRKCwsKhq+/ZPjyYl4gPNzZ+dJCnhB9ZiSj89rKSEiIiIiIiIiIgsRAtqUU9EFrzzmFJO1mQDyvNMn4mmrsD2SYacwey6eCPwYEM0tiCaYUccpxR4DbAeOAXEAXLLy6sqN236vC8QCHupVH/v+fOf6Dp16tkJpsjFJCVOAo/Uue6lOQpdRERERERERERkRikxISJzqRnTJ6JwsgErS0YaATqGfJP1mUhhEhzngU3AWxqisZsborG8GY51xkQcpwJ4AFgDuMAIQMGSJbXl69d/wfb7l3nJZFvX6dMf6T137ugEUxQBtcBB4LE61+2ao9BFRERERERERERmnBITIjJn6sOhbuASUDbZmFetGDgMnjecsFccbwtOOg4YAk4Aw8A9wEMN0dja+VbeKeI4NcBrMc2qTwJJgOKVK7eUrFr1Ocu2y1OJxNn2aPRDA83NZyeYohyoBp4BflznugNzFbuIiIiIiIiIiMhsmFcLeCJyXWjClCWa0IqSkb78gOcCPHchf2sG83VgEhQVmPJOr2mIxipnItBrFXGc5ZikRBVmp0QKoNRxXlW4bNmfWbZdkIzHj7QdOfKR4a6uiZp5L8XsLvkJ8Eyd647MUegiIiIiIiIiIiKzxp/tAETkunMJs9shB7Pb4RUq8hKNAyPBted7/NuBxzOYM4VprJ0HbAVWNkRj+4AXR5tuz7mI46wC7sMkFl5qUl2xceMbc0pLf9OyLCsxNPRM6+HDf5WKx+NXnG5hSjcNYnZJHJ+ruEVERERERERERGabdkyIyFxrw+xymLRM0+oy02eic/I+E5MZBI5jyiXdD9Q1RGNr5rq8U8Rx1gEPAvmYZt0AVG3d+u7csrL/blmWNdLf/3DLgQN/MUFSwodpct2BaXKtpISIiIiIiIiIiCwqSkyIyJyqD4eSmB0ERZONuXNl/4vgJeNJu+bApdyaq3iaNkw/hxrgTcCrG6Kx8qsKeJoijrMJeM3oH88CWD6fr/qGG3YHi4reATDc3f21loMHv+ylUqkrTg8C6zDJjEfqXPf8XMQsIiIiIiIiIiIyl1TKSUSy4RKm/JKP0WbQ41UVJIcKg6njfXHfxv2x3G07lgw9dhXPkcT0s8gHtgG1DdHYC5jyThOWkLoWEcexRp/nbszOjWYAX05OTtWWLX/oy8m50fO81FBHx5c6otGJXk8BpkH2YeCJOtftm+kYRURERERERERE5gPtmBCRbGgGuoGSyQZU5icPAlzsDUy3nNOVBrhc3unVmPJOqxuiMesa531JxHFs4CbgXqCX0aREoLCwqGrbtk+PJiXi/c3Nn54kKVEKhICfAz9UUkJERERERERERBYzJSZEZM6NNqQ+h1mQn9Da8ngjQNeQb1vKm5GnbQNcTALgTcB9DdHYpH0uMhVxHB9wG3Anpi9EO0BuRUVN5ebNn/cFAuu9VKq399y5P+o+dernE0xRg/l7eAJ4ss51r+w5ISIiIiIiIiIisqgoMSEi2XKONOXk7q7tP2bhxRMpq+y5C3nLZ+g5E5j+Da3ATuCtDdHY9oZoLHg1k0UcJwDcgUlMNANdAAWh0Orydes+b/t8y1LJZGvXqVMf7j1/PjrBFLWY9+EfAC/Uue4rylqJiIiIiIiIiIgsNkpMiEi2NGPKHk3YBLsoJ5Uoykm9CNDYnLt9hp+7H4gCFqZR9ZsaorGV0ynvFHGcHEw/iVuAi5jXQnFt7baSVas+Z9l2WSqRONNx7NiHBlpaLlxxug2sBXqAR+tc92id687MvhAREREREREREZF5TokJEcmWbqCFNOWcqgoSjQCXev3X2mdiMi3AKWAZ8GbgnoZobNK+F2MijpMP3AfcAJzFJDooW7v2zsKlSz9pWVZeMh4/3Hr48EeHu7s7rjg9gElKnAceqXPdppl7OSIiIiIiIiIiIvOfEhMikhX14ZAHnAbyJhsTrhhuBOgZ9m2NJ2ft/WqsvFM7poF1fUM0trUhGgtMNDjiOIWYJtpbMfEPAlRs3FiXX139Ycuy/ImhoadaDh78k8TAQP8Vp+cBDqYZ96N1rtsyK69IRERERERERERkHlNiQkSyqRkYBnImOnhX7cBJ2/IGkp5V+PTZglWzHEsfJmHgAx7ElHdaMX5AxHFKgQeAMKaRdhzLsqq2bv3V3LKy3wAY6e//r5YDB76QGhkZuWL+YmAFsA94rM51e2b11YiIiIiIiIiIiMxTkzaeFRGZA21AB6acU/OVB3P9Xqo4J3W4a8h3y9G2nO33ru4/NcvxeKNxdAArgaUN0dgh4EDgDXcGgPtHv34SSFo+n69q27bfCeTl3Qcw3N39z21HjvzbBPNWYXppPAU8X+e6iVl+HSIiIiIiIiIiIvOWdkyISNbUh0MJTI+H4snG1BSaPhPNfbPWZ2IiI5i4OoFbrOiLv5LatPXXPZ+vltGkhC83N7dmx45PBPLy7vM8LzXQ1rZnkqTEciAI/Ah4VkkJERERERERERG53mnHhIhk2yXMTgUfkLzy4OaqocZoWw69cXtzf9zyFwS9uVzY77VeeLbNevrxu72aUJm3cvUh+8Sx0pyWWLJiw4Y/tgOBdZ7nDfdfuvS57tOnX7jiXBtYBfQAP61z3dne7SEiIiIiIiIiIrIgaMeEiGRbM9AFlEx08PYVA00+y+tJeVbuE2cL1s1lYNZTP6m2H/mPHbRcGqGw6BgVlUv82254oHzr1i/agcA6L5Xq7Tl79o8mSEr4gbWY1/awkhIiIiIiIiIiIiKXKTEhIllVHw4NAucwfSZewW/jleYmGwFOtOfMWTkn60ePhuwfPrrDG47nUL2kmWRyJK/5ItUt59/qg4qkZfe0jaT+qre19eQVp+ZikhIngUfqXPfSXMUsIiIiIiIiIiKyECgxISLzwXnSlJYLFZk+E639vjlJTFiP/McK+/Efbve8lEV1TSuWReHwwOrKgZ5ftT0vP2HZzc01yxsGN25dkXrNG270Vq8tGz21CKgFDgKP1blu11zEKyIiIiIiIiIispCox4SIzAfNQB9QOPr4MtuXDB483JJLX9ze2DVkB0tzU/FZiSKZxI78+ypr33ObvUAgTllFF0DJYN+W4uGBhyywR2zfmZbC0m8lh4aGSSQClFcsTd16R4VVWtZhHTvcaw0OPgU8V+e6I7MSo4iIiIiIiIiIyAKnHRMiMh90AS1MUs5pZ2goFrC9Ng/L/9MzBRtnJYKRuGU3fNOxnv/ZVi8nd3AsKVE+0HNbyfDAWy2wh33+I5eKyr6etH3DACQSI3S0XyR2Ic+rrN6c/G8f8I38+/c7Rr73ZGpWYhQREREREREREVkElJgQkayrD4c84DSQP9Fx24KxPhOnOoMzX85peMi2v/W1sHXg+c1eQWEvJaW9eB5VfV0PFMaHHgAY9AefbS4sa/AsO/nSeakUNMdqrHi8z9u+8zHv9Q91kpf/OuC1DdFYzYzHKSIiIiIiIiIisgiolJOIzBfNQBwIjj6+zLLikcbWAf/97QP+mU1M9PX67H//RtiKvrjeKyntoKBw0PI8u7qv86GcZGILQF8w9wcdeUXPYFmXz0smbKv50hJKSrpS97/usHfz7e2jR3KAMLCiIRo7AByqD4cGZjRmERERERERERGRBUw7JkRkvmgFOoCyiQ7etHSwEaB/xFoX6/VPuLNi2ro6/fY3/3mLdexI2Csrb6OgcNBOJYNLejvelZNMbPEg1Z2T/52O/OKXJyXicb91KRbyqqpbU2/5xX3jkhIAw8BJYBC4G3ioIRpb3xCN6f1WREREREREREQEJSZEZJ6oD4cSmHJORRMd31w93JbjS10Ey/7xmYIbrvkJ21qC9jf/71bLPb7Gq6hqIS9/2J9MFCzp7fyVQCq52oORrrzCb3bnFR562XmDAzlWa3ONt3LVudQv/so+L7ypd5Jn6ASOY/pmvAF4sCEaq7rmuEVERERERERERBY4lXISkfkkNvpoA69oIF2Rn9x3sdde+vMLeX/Q0udf/Z4bOr9Vmpt6RdmnKV08n2s3fHOrdeHscq9qySWCwUROIl5e2d/9Lp/nlaWwBjryi74xEMy9+LLzensKrL7eEm/9xpOpt/3SMYpLElM8Uwo4D+QBm4GVDdHYfuBwfTg0OO24RUREREREREREFgHL87xsx3BdsixrGWbBcrnneReyHY/IfNAQjeUD7wQSmB0HL3OuO1D4lf1lu7uGfLcCBH2p2KtWDHz5oQ29BzJ+kjOn8u3vfGub1Rxb4lUvuUQgkMyPDy0tH+j9JRsvP2lZXW0FJf8y7A92vOy8jvZSaySe423dEU099AsuObmvSJxkoByownzvPw+cqg+HrmYeERERERERERGZx7T+m54SE1miC1NkYg3R2IPABkxZp1dIefDtIyW3vXAx77+PpKwKgMr8xE/euaXrH53yke50c1vRF4vs/2zYRntblVezJIbPnyoaHnBKB/t+wYJAwrIvtRaWfn3E5+9/6STPg9bmKsvnT6Zuu+OI95o3nMfnu5aXaAPLMTvWjgL76sOhtmuZUERERERERERE5het/6anxESW6MIUmVhDNLYR05PheLpxl/r8eXsPlr77Yq//TWBZPsvr21Q1/NVf2dH5A7/NK97YrEP7S+2H/2MbXZ1lXk0ohs/nlQz2bS0eHnizBfaI7TvdXFj6rZTtu1waKpm0rJZLSygo7E3d+8Bh71V3t87gS80DVgDdwD7gxfpwaGgG5xcRERERERERkSzR+m96SkxkiS5MkYk1RGPlwDuALqA//Wj44amCdT88Vfj+wYS9BqAwmHzxDet6v3T7isFzY2Os539Wbj/2ve309xV51UtiWBblg723F8aHXgMw7PMfbiks+65nWZfLKo2M+KyW5iVUVramXlt32NuyPe1ujGtQCVQATcALwOn6cEhvzCIiIiIiIiIiC5jWf9NTYiJLdGGKTKwhGrOAtwLVQEbfG0MJy/7q/rK6E+3Bd3tYORZeYmXpyL+/Z0fnt8v2/aTE/vGj27yhoXyql1wCqOrvfjAvEb8VYNAffKa1oOQHWNa4CQeDVntrtbds5fnUm99+mJWrZrtRtQ9T3skGXsSUd+pIf4qIiIiIiIiIiMxXWv9NT4mJLNGFKTK5hmjsBuB+pijndKVDzTlVDUdL/nvXkO8WgGXdJ1ve7n71mTVDZ2JU1bRaeL7qvq6HcpKJzQB9wdzHOvKLf/aySfr68q2erjJvzbrTqfp3vkh5xcgMvaxM5GMSFF2Y3RNH68Oh4Tl8fhERERERERERmQFa/01PiYks0YUpMrmGaGwp8DbgIhCfYvjLpDz41pGS2y80nnvfqvM/L/GwySkINr46ue/xdX0X3xRIJVd5kOrJyf9ud17h4Zed3NVZbA0N5nubtx1PPfSOE+TnpyZ5mtk2Vt7pDPA80KTyTiIiIiIiIiIiC4fWf9PzZzsAEZEJtAKdQCnQMp0T7VSSd536x9jwsX3//lzBDTcdK9q0tTA1uK28v3drIJW0PIh35hV+qy8n//RLJ3ketLVWWhaed9udjanXP9SEzzejL2ia2jC7JpYDdcCRhmhsf3041JnNoERERERERERERGaCdkxkiTJmIuk1RGN3ALcAJzM+aSRu2d/59hrr4AubvLy8AUrKelqTxRvX9l98a0lqwNdn5fKdolddWuO79J3lXlsrAKmURculJVZeXn/qrvsPe3e/unl2XtFVKwCWAR3APkx5p2ntIhERERERERERkbml9d/0tGNCROar2OijDUxdUml4yLYbvrnOOnww7BUW9VBU3J8fH1p2w0DLG23w9Vs5A/9Y/LpAm690yXGW/8Yqq/npu+P7n85puVhNaVl76oE3HvJuuGk+7kjox/TaqAZeA6xpiMZeAM6pvJOIiIiIiIiIiCxEdrYDEBGZRDPQAxRPObKv12d/8583WIcObPSKSropKu4vGhpYWzHQs8uGvIRlX+wuLPjyndaRL5fTe8LD9p1LlN/1o77Vv300dGsg+bZfemGeJiXGawFOASuANwN3N0RjJdkNSUREREREREREZPpUyilLtJVHZGoN0dhrgfWYJtAT6+r02//29c2We3yNV1bRRn7+UOlg3/ai4YE6C6wR2+c2F5Z9O2XbI2OnHB5esu3sYMEDTVVb8t2lN1NaEvjxL23t+sfVZSM9s/+qZkQhprxTK6a807H6cGgk/SkiIiIiIiIiIjJXtP6bnnZMiMh8dg4ITnq0rSVof/P/brXc42u8iqoW8vKGKvq77ygeHnizBdawL9B4qaj8m+OTEvR0FW3teKH1rpUDn+vfcON/jQRyvdYB/31feq7iy1/dX/qa1MLI1fZhyjsFgAeBNzZEY8uzG5KIiIiIiIiIiEhmtGMiS5QxE5laQzRWAfwC0IXptXDZxfO5dsM3t1oXzi3zKqtbCAYTVf3dr81LxG8GGPAHn24rKPkhlnX5nPa2ciuZ8Hk7bjqWqqs/TSDo/eBUwbofnSr8wGDCXg1QGEwefuP63r+7bfng+Tl6mdcqgCnvlAAOAQfqw6GFsvNDRERERERERGRR0vpvekpMZIkuTJGpNURjFlAPVAGXv0/OnMq3v/OtbVZzbIlXveSS5fdR3df11pxkYiNAXzD3+x35xc++ND6VgtbmGisYHE696p4j3qtfd3H88wwlLPur+8vefKI9+MseVo6Fl6gtHfm3997Q+e3inNRCKZFUBCzF9KJ4AYjWh0OJ7IYkIiIiIiIiInJ90vpvekpMZIkuTJHMNERjO4H7MKWLsE4cK7T/49+2095W5VUviflsK1Dd1/WLgVSy1oNUT07+d7rzCo+8NEEyYVvNl5ZQUtKVuv91h72bb2+f7LkONedUNRwt+a2uId/NADm+1MU7Vg78XV24t3GWX+ZMsYAlmB4UJ4B99eGQ3l9EREREREREROaY1n/TU2IiS3RhimSmIRpbhtk1ccH6+TPF9o8f3UJXV6lXE4oFvFRhVX/3u/xeqtqDeGde0b/25eSdeenkeNxvtTbXeNU1Ld4b3nLIC2/qner5Uh5863DJq16I5f1mImWVA1TlJ370S1u7vrKAmmMHgeVAHGgEDtaHQ33ZDUlERERERERE5Pqh9d/0lJjIEl2YIplpiMYCpJK/aD39xEr7R4+GvJF4kKqa5txkoqJyoPuXbc8rSWH1tRcUf30wkNP80omDAzlWR3ult3LVudRDv3CEpcuHpvO8sV5//t6Dpbtiff43gGX5LK93S/XQV35lR9cPbWvq8+eJEswOikuY8k7H68OhZHZDEhERERERERFZ/LT+m54SE1miC1MkMxHH8SV/4ZffS3vbG+jvv0BFZWd+fGh5+UDPO23IS1pWR2tB6b/E/YGul07q7Smw+npLvLVhN/W2XzpGcclV91p4zC1Y/+PThR8YTNirAIpMc+wv3bp8cKF831pACMjHlHd6oT4cimU3JBERERERERGRxU3rv+kpMZElujBFphZxnFzgNi+0/IHUzbetIpU8XTTQ75QO9b3dAn/Csi+0FJZ+M+HzD7x0Ukd7qTUSz/G27oimHvoFl5zc1LXGMThi+f7pQNmbT7QH37WAm2MHgZXAIJfLO/VnNyQRERERERERkcVJ67/pKTGRJbowRdKLOE4JcDewwSsqbk69/s03lXa2birq773fAitu+062FJb9W8q2TWLA86C1ucry+ZOpW1/1ovfAG8/h881oTAcv5Vb/v6PFv9U97LsJIMeXunDnyoG/e1O499CMPtHsKsWUd7oIPA+cVHknEREREREREZGZpfXf9JSYyBJdmCKTizjOEuBeYBlw2vL7vfLbX/Wx3GTiJoAhX+Bga2Hpf3qWZXZDJJOW1XJpCQWFval7Hzjsveru1tmKLeXBvx4uedW+8c2xCxI/fNfWrq+sKh2Zsrn2PGFjyjvlAVFMeafm9KeIiIiIiIiIiEimtP6bnhITWaILU2RiEcdZC9wFFANngkVFReUbNnzUFwhs8oCBQO6P2vOLnsIa7UA9MuKzWpqXUFnZmnpt3WFvy/buuYhztDn2r8T6/K9/qTl2zdBXfmX7gmqOnQOsAPqBg8Ch+nBoIP0pIiIiIiIiIiIyFa3/pqfERJbowhR5uYjj2MA24A4gCVwoCIXWFK9c+XHb56v0PG+ws7z6R32BnCPE48MADA0Grfa2am/ZivOpN7/9MCtXDc513I+5heEfny54//jm2G8K937plmULpjk2QBlQg3lPeh5w68Oha+7NISIiIiIiIiJyvdL6b3pKTGSJLkyRyyKOEwRuA24EOoCOsrVr78qrqtptWVYwlUxe6Dpz5tN9t961kvyCYnq62+nry7d6usq8NetOp+rf+SLlFVlrQj04Yvm+ur/szSc7gr/sYQUtvMSq0pFvv/eGzm8X5aQS2YprmmxgKWYXxVFgX304NGslsUREREREREREFjOt/6anxESW6MIUMSKOU4gp3bQZuGDZ9kDl5s3vDhYVvR0gOTz8QtvRo3+ZGBjoT9121xpvbXgbp070WkOD+d7mbcdTD73jBPn58+Lu/gOXcmu+Y5pj3wijzbFrB770pvW9h7Md2zTkYco79QL7gcP14dCc70QREREREREREVnItP6bnhITWaILUwQijlMF3AOsAk778/L8FZs2/b4/J+dmgHhfX0Pb4cP/7KVSKQBvzbry1Oq1b7D6e7u8nbccSr3+oSZ8vuy9gAmkPPjm4ZI79pvm2GWwIJtjA5QDVcA54AXglMo7iYiIiIiIiIhkRuu/6SkxkSW6MOV6F3GcVcDdQAVwKq+qaknp6tUft/3+5Z7nxQfb2v6m88SJn447xe/5/U7qvgfXeXfe53o33340K4Fn6GKPv+BrjaW7xjfH3loz9I+7tnf9aAE1x/YBywA/l8s7tWU3JBERERERERGR+U/rv+kpMZElujDlehVxHAtTtulOzML32ZJVq3YWLFnyIcu2C7xksr3n3LlP9128eHLcaQXAcsBNfPp/xr0bbt4ItGL6Ucxr3z9ZGP7xmYL3D11ujn3oTeHev1tgzbHHyjt1A/uAF+vDoaHshiQiIiIiIiIiMn9p/Tc9JSayRBemXI8ijhMAbgJuwfQwaK3YtOmtOSUlv2pZlp0cGTnaEY1+Nt7T0zXutEqgFNPv4NmR7z2ZArZgGmUXAGeB+By+jGkbbY790MmO4LvGNcf+1ntv6Py3BdQcG8y/RQXQhCnvdLo+HNIPERERERERERGRK2j9Nz0lJrJEF6ZcbyKOkw/cAWwDLtnB4FDV5s0f8Ofl3QswMjDwWNvhw19OJRJjC/UWUItJOjwDHK5z3Zd6HDREY0uAm4H1QBfQMlev5WotkubYPszuFRs4AuyvD4fm/c4VEREREREREZG5pPXf9JSYyBJdmHI9iThOOabJtQM05ZSWFpSvW/cxOxBY53learir6x/ajx79r3GnBDENsWPAk3Wue3aieRuisQCwEZOgKMXsnpjXJYZSHnzzUMmd+y/l/cZYc+zqgsQP3rW166u1C6s5dj4mQdGF2T1xtD4cGs5qRCIiIiIiIiIi84TWf9NTYiJLdGHK9SLiOMsxSYka4HTR8uVri5Yv/5hl26VeKtXbd/Hi53rOnj007pQiYCmm2fJTda7bNdVzNERjFZjkxEagH7gEzOs3twmaY/eMNsf+8QJqjg1QBZQDpzEJiiaVdxIRERERERGR653Wf9NTYiJLdGHKYjfa5DoM3AXkAk3l4fBrcsvLf9uyLH8qkTjT6bqfHmpvbx532hJMo+XngefrXDfj3hEN0ZgPU9bpZqAaOAcMzNDLmTWjzbE/MJSwawGKgsnGunDv3928bPBitmObBj9m9wTAYUx5p67shSMiIiIiIiIikl1a/01PiYks0YUpi1nEcXzATuA2YMjy+Vqrtmz59UBBwZsAEkNDT7e9+OIXk0NDY2WXbEzppn7gKeBYnete1ZtTQzRWgmmwvQXTn+IikEp7UpYNjli+r+wve4vbEfyll5pjl4186707Flxz7AJgGdCB2T1xrD4cmteNyUVEREREREREZoPWf9NTYiJLdGHKYhVxnFzgdkxioiVQWJis2LDhI75gcBvAcE/Pv7QdOfItLr/55GKaXDdh+knErjWGhmjMxvSzuBlTFuoiMO/7N+yP5dZ891jxb3cP+3aCaY59V+3Al964sJpjgynbVQKcwiQozqm8k4iIiIiIiIhcT7T+m54SE1miC1MWo4jjlAB3AxuAswVLllQV19Z+3Pb5ajzPGxxobv7rrlOnnh13Simm7NIh4Ok61+2byXgaorFCTIJkG2BhyjslZ/I5ZlrKg28cKrnzwKW830ykrFJYsM2x/cAKzN/3YeBAfTjUnd2QRERERERERETmhtZ/01NiIkt0YcpiE3GcJcC9mFI+p0sd5+b86urftSwrN5VMXuo5c+ZT/c3NZ8edshxTwuk5YH+d685KyaKGaMzC7Mi4efSxGeiajeeaSRd7/AV7G0t/9VJf4HUAPsvr2VYz9I/vXnjNsceambdidk9E68OhkeyGJCIiIiIiIiIyu7T+m54SE1miC1MWk4jjrMXslCjCspoqN2/+xZzi4ncCJOPxA+1Hj35+pL9/bDeEH9NPoh14qs513bmIsSEaywO2AzuAHOAsMO/7Nzx6snDDT84UvH+BN8e2MDtjSoCTwAv14dD57IYkIiIiIiIiIjJ7tP6bnhITWaILUxaDiOPYmDJJdwBJf25uR8WmTb/nz829DSDe1/fdtsOHv+qlUmPNpwswOyVc4Ik6122b65gborFlwC2YHhRtmATJvDZBc+yR1WUj33rPjs5/X2DNsQOY8k4JTPmu/fXh0EIqTyUiIiIiIiIikhGt/6anxESW6MKUhS7iOEHgNuBGoCOvsjJYumbNx22/f6XneYnB9vYvdR4//sNxp1RiekrsB56tc93BuY/aaIjGgsAWTOyFmN0T8WzFk6n9sdya7xwrfl/PsO8GgBxf6vzdtf1fesP6viPZjm2axso7tXC5vNNCSrCIiIiIiIiIiKSl9d/0lJjIEl2YspBFHKcQuAvYDFworq1dUxgKfcSy7SIvlersPXfuM70XLkRHh4/1eIgDPwMO1bluauKZ51ZDNFaD2T2xHujG9J+Y10abY9914FLeb4w1x64pGHnsl7d1f3VFyciMNg+fZRawBJMYOgHsqw+H9F4oIiIiIiIiIovC1a7/7tu16yfAPWmGvH7n3r2PXGN4WafERJYoMSELVcRxqjBvjquA0xUbN742p7T01y3LspMjI8c7T5z4zHBXV8fo8ODouEuY0k1nJ5w0ixqiMT+wEbgJKAfOAVnbzZGp8z3+gn95eXPs7m1Lhv7x3du6frLAmmMHMeWdhoFG4GB9OLSQEiwiIiIiIiIiIq8wA4mJfwcmWiP5q5179x6akSCzaEElJmr3kAd8FHgnsBLoAB4BPtG0m2kt7tfuoQz4JPAWzF27l4D/B3yyaTddV4wNAPcBbwbuBdZg7vY9A/wX8BdNu2mdzvMrMSELUcRxVmGaXFfYfv/Zyi1bfiuQn/8agJHBwR+3HT78t6mRkZHR4WPleo4BT9a5blc2Ys5UQzRWDtyMSVIMAjFg3r9BPnKycONPTXPslQDFOcmDdeGev7tp6VAs27FNUwmX34tfAI7Xh0PJ7IYkIiIiIiIiInJ1ZiAxsXrn3r1nZie67FswiYnaPeQCP8bUtI8BT2DuxL4FaAVua9rNqQznqgSeAdYCp4DnMSVpNgPHgdubdtMxbvxrgMdG/3gG2Idp4no7pm7+JeDept2Mla6ZkhITspBEHMfCfH/cCfhySkp6y9av/5gvEAh7npca7u7+avuLL3533ClLgHzM99bP61x33vdvAGiIxmxMWadbgCrgAtCf1aAy0B+3/F89UPaWUx3Bd15ujh3/11+7obOhIOgtpN4NFhDCXDsngOfrw6FL2Q1JRERERERERGT6lJhIz852ANPwcUxS4hlgfdNufrFpN7cCv49ZQPzKNOb6IiYp0QCER+faAvwNZlHyr68YnwK+BdzatJvVTbt5W9Nu3jw6x6OYRdivXvUrE5nHIo4TwHzvvRqIFy5bllOxceP/9AUCYS+V6u+PxT45LilhY3YUecD3gacXSlICoD4cStWHQ8eA72ASkFWY3Vnz+r2yIOglPnBLx7+9e3vXB4pzkvs9rMCpzpx3//nj1XsePlG4KdvxTYMHXMQ0I18HvKUhGrutIRoryG5YIiIiIiIiIiIykxbEjonaPQSBFkypj51Nu9l/xfGDwDbgpqbdvDDFXCFMpioBrGzafbnZbe0ecjD15cuBpU27ackgtqXwUhmpVU27acrkNWnHhCwEEcfJB+7AfH9dKlu37sa8ysoPWJYVSCUS57pOnfrUYFvbWMmgXEyT6yZM6aaFVkroZRqiMQuTZLkFWI75Pu/NalAZSHnw9caSuw825/23Bd4cG6AUk/i9iNl9c1LlnURERERERERkIZiBHROfAiowN80fB76zc+/eede/9WrN67uAx7kDk5Rwr0xKjPq30ce6DOZ6HeZ1PzE+KQHQtJthIAL4gDdkEljTbi7CS/0llmZyjshCEHGccuC1wHbLts9Xbdv2tvyqqt+zLCuQGB5+rvXQoT8Yl5QoxewsaAQeXuhJCYD6cMirD4dc4D8wO7XKMOXjfNmMayq2Be/e3v347tvafrumYORRgOb+wAN7flbx5b0HS+9Jzf9c9HhdmB+8RcDrgdc2RGM1WY1IRERERERERGRufBz4beD9wB7g5L5duz6R3ZBmzkJJTGwffdw3yfGxr2+b47mo3UMpZsESTK8JkQUv4jjLMQvBq/35+ZdqbrjhI8HCwrcCDPf2/mvzvn2fTgwODo4OXwYUA48DP6pz3YV2V35a9eFQP/AU8J+Y7/G1XP6en7eWFyf6//Cuti896PR+JNefOpv0rJJ9sbzf/9OfVP/ZCxdzQ9mObxpSmN0q54Ew8FBDNHZLQzSWn92wREREREREREQyUmhZVvG4j5wpxj8O7AIcTB/OMPBHmApAf7Zv167dsxvu3PBnO4AMrRx9PD/J8bGv187xXGAyVn7gUNNuTmd4jsi8NNrkOgzcBeTmV1cPl6xe/Xnb5wt5njc80Nr6xa6TJ58aHe7H7CBox/SSOJmdqGdffTjkAU0N0VgzJmm5E5OcOIv5oTBvvX5d39G7a/t/96v7y956qjP4iz3Dvh3/0lj6t8+ci//rexdWc+xh4CSm1N49wJqGaOwFwK0Ph1JZjUxEREREREREZHLHrvjznwKfnGzwzr17//iKLx0HPrNv167nMf2OP7lv167/s3Pv3sFXnr1wLJQdE4WjjwOTHO8ffSyay7lq93ADZksNwEfSjbUsK2d8ZmxcHCLzQsRxfMBNwAMAJWvWVJU6zhdsny+USiZbus+c+fC4pEQ+ZufAGeB7izkpMV59ODRUHw49hynvdAbTg6Iyq0FloCDoJT5wa8e3f3lb1/8ozkke8LAC7uXm2BuzHd80dWB+IJdjSu490BCNVWU3JBERERERERGRSW3AtCkY+/js1Uyyc+/e72N6cJYCt85UcNmyUBIT807tHmqABkzD3y827ebhKU75KNA97uPKTJlI1kQcJxe4e/Sjq3Lz5rsKamo+bllWXjIeP9z+4osf7I/FxnYEVWL6qfwceKTOdduyFHbW1IdDF4GHgR9hek6sBYJZDSoDNy4div3JvS1/fGNo8C/9ttc1nLBXfN8t+ovPPVH5gXPdgYWULE0B54AYsBl4S0M0dlNDNJab3bBERERERERERF6hz/O8nnEfw9cw14nRx4VUpntCCyUxMVazfrKa4gWjj71zMVftHoqA72HK2Hwb+P0MnvezvDwztiGDc0RmXcRxSjC7JG7yBYOtNTt3/mZOSckuy7Kskf7+7zXv3/+JeG9vD2BhrvkczIL843Wuu6C3jF2L+nAoXh8O7Qe+i7mDvxaY942ZTXPsrsd/59b2941rjv3g/3q24u++drD07gXWHHsQ8wM5DtyL6T/hNERjC+Vnm4iIiIiIiIjIdIz1Pe1PO2oBWCiLN2dHH5dPcnzs602zPVftHnIxZVx2At8H3t20mynrm3ueNzw+M8blBIlI1kQcJ4Rpcr0+t6ysp3rHjj/x5+be6XlecrC9/UstBw/+vZdMJjG7AdZhyuh8r851D9a5rur6A/XhUCumvt/3gSSwHsjLalAZWFEy0je+OXYiZZW+EMv7gz/9SfWf7YvlLsl2fNPUgek/UQm8CXh1QzRWkd2QRERERERERERmzr5du6owfWEB9mUzlpmwUJpfHxx93DnJ8bGvN87mXLV78AP/irkz92mgvmk38QyeU2TeiTjOWkzppqKiFSuCRcuWfd6y7WIvleruvXDhs73nzr04OrQIU7rpGPBknet2ZSnkeas+HEoAhxuisQvAzcBGTLPmi8C83oMwrjl2/Vhz7K8dLP3bp8/G//W9N3T+vwXUHDuJSTznYRqU1zZEY/uAI/Xh0LVskRQRERERERERmRP7du16FVANRHbu3Zsc9/VVwNcw1X7+Y+feveezE+HMsTxvXq+ZAVC7hyDQgimBdEPTbg5ccfwgZiHqpqbdvDDFXCHgPJAAVjTtpmXcsRxM3fJyYOkVxyzgn4F3AweA+5p203W1r8myrGWjcSz3PO/C1c4jMl0Rx7GB7cCrgGT5hg3bcsvKftOyLF8qkTjVeeLEp4Y6O8f6RizBlD17Hvh5nesqETeF0TJC64BbMKWdzrNAtte9cDE39B/R4t/uGfbtAMj1p87eXdv/pdev6zua5dCuRiVQgdn99gJwuj4cmv8/8ERERERERERkUbia9d99u3a9B/gqcAmzK6ILUz78Rkyv4yPA/Tv37m2ZZIoFY0GUchrdlfC3o3/8Uu2el/pAULuHD2KSEj8dn5So3cMHavdwrHbPy7ucN+0mBnwDU5rm70Z3QYz5PFAFfG18UmLUFzFJiWPAg9eSlBDJlojjBIE7gXstn2+weseOh/LKy3/bsixfYnDw8ZYDBz48mpSwgTWYu/2/DzytpERm6sOhVH04FMX0nnge856ykgXwfjvWHHtnaPCvfJbXPZSwV442x37/+R5/wdQzzCttmPJOSzDlne5viMaWNERjgeyGJSIiIiIiIiIyqWeBL2OqcNwMvAPYgrlR/veBmxdDUgIWyI4JeKm3w0+AW4EY8AQmW3Qr0Arc1rSbU+PGfxL4E+D/Nu3mPVfMVQn8DHAAF7N4uBnzj3xidK6OceMfAr4z+sfHMBfGRD7XtJtjmbwe7ZiQuRZxnCJMUmJzoLCwt2Ljxt/xBQKbPM/z4j09/9x25Mi/jw7NxTS5PoMp3RTLTsQLX0M0ZgGrMbsnVmDeO3qyGlSGznUHCv+lseQ9zf2BBwH8tte1vWbw/3vXtu7HbSvb0U1bAbAMGML094lh7jzoBDrqw6EFsaNFRERERERERBYOrf+mt2ASEwC1e8gDPgq8C7PI1wE8AnyiaTfnrxj7SSZJTIweLwc+CbwFU26lGfh/wJ9cuRuidg/vwWyhmcp9Tbv5SSavRRemzKWI41RheqPUFixZQnFt7Udsn6/SS6UG+pub/7L79OnnR4eWYurYHcLsklCT9hnQEI3lAzcAOzA7J85heiLMew+fKNz006aC9w8n7BUAxTnJ/Q9t6PnyztDQpWzHdhVygEJM35Qg5t+gD7O74gLmZ0oH0F0fDqm5u4iIiIiIiIhcNa3/pregEhOLiS5MmSsRx1mFaXJdUbp27dL8qqrfsSwrmEomL3SfPv2pgZaWsetvGeADngP217nuQml6vGA0RGMrMdvwVmEWwzvSnjBP9Mct/1f2l9Wf7gz+oocVsPDia8rj33zvjs7vLKDm2BPxYRIVhZheKgADQDcmUdHK5V0VKmUmIiIiIiIiIhnT+m96SkxkiS5MmW0Rx7EwJcruxLL8VVu23BMsKno7QHJ4+IW2o0f/MjEw0A/4MQvlHcBTda57MmtBXwcaorFcYCuwE8gDzgIjWQ0qQ89fzA1FosXv6xn2bQfTHPueVf1fet3aBdkceyIWJkFRiCn/5AfiQC9mV12M0V0V9eGQdhOJiIiIiIiIyKS0/pueEhNZogtTZlPEcQKYO/Nv9uXmJio3b/5Vf07OzQDx3t5/bztyZK+XSqUwi7ArMU2Cn6hz3bbsRX19aYjGQpjeE2sxd+W3ZjeizKQ8+Fpj6b2Nl3L/W9KzigGWFI488svbuv7v8uLEYuzVEORy+accLpd/6sKU5GrH/Pt11YdDC6I8l4iIiIiIiIjMPq3/pqfERJbowpTZEnGcfOAOYFtuRQVljvO7tt+/3PO8+GBb2990njjx09GhlZieEvuBZ+tcdzBLIV+3GqKxALAJk0QqxuyeGM5qUBlq6goUfeNQyXua+wMPwIJvjj0dNi8v/2Rjyj/1YN7Tx0p0ddSHQwvi31JEREREREREZp7Wf9NTYiJLdGHKbIg4TjlwD+AU19aWFYZCuy3bLvCSybaec+c+03fx4klMuZpaTPmgZ4BDda6rRr9Z1BCNVQE3ARsxZYMWTGPp7x0v3Px4U8H7h5P2coCSnOS+hzb0fPmG0FBztmObQ3mYHRWFXC7/1Ae0ABcxiYpOoLc+HNIPXREREREREZHrgNZ/01NiIkt0YcpMizjOckxSoqZi06ZtOSUluyzLspMjI0c7otHPxnt6uoAAsBqz8P1EneuezWLIMk5DNOYDNmASFFWY3RMLYhdL77Dt/6cDpS9rju2Ux7/xazd0ficv4F2P5Y0CXE5U5AIpoB+TnDiPKf/UgSn/tJCbh4uIiIiIiIjIJLT+m54SE1miC1NmymiT6zBwl+33F1Vt3fpmf17ePQAjAwOPtR0+/OVUIpHALJQuBY4BT9a5blfWgpZJNURjpZjSTpswZZ0uAgvijfr5i7mh/zhW/P7euG8bQK4/1XTvqv4vvXZt37Fsx5ZlNqaZ9lhTbRuTdOrBNNRuxiQtOurDoQWRjBIRERERERGR9LT+m54SE1miC1NmQsRxfMBO4LZgUVFuxYYNv2EHAus8z0sNd3b+n/Zjx743OnQJph7+88DP61w3nq2YZWoN0ZiNaYp9MxACLmBKA817KQ++drD0vsbm3F+/TppjX608TJKiCFP+KYH5N27F/Ht3YnZV9Kj8k4iIiIiIiMjCo/Xf9JSYyBJdmHKtIo6TC9wO7CwMhYqLa2t/x7LtUi+V6u27ePFzPWfPHsLcmb0KU0bmKeBYnevqm36BaIjGijCJp22YXRPnMGWB5r2mrkDR1w+Vvqel3/9Sc+wdSwb/4Ze2dj+xyJtjXy0/ZkdFESZpMVb+qZuXN9Xuqg+HRrIVpIiIiIiIiIhkRuu/6SkxkSW6MOVaRBynBLgb2FC2bt2avMrK/2ZZlj+VSJzpdN1PD7W3N2Nq29cCTZjSTbFsxixXpyEaszDJpVuAFZj+IN3ZjGk6/ut40ZYnmvLfN6459gtv2djz9zuWXFfNsa+GxeUdFWPln4YwuyouYso/dWDKPw1kK0gRERERERERmZjWf9NTYiJLdGHK1Yo4Tgi4x7LtFZVbttwbLCx8A0BiaOjpthdf/GJyaGgIKAWqgUPA03WuuyDKAMnkGqKxfGA7sAMIYppjL4jGyaY5dtnbTncGftHD8qs59lXL4XJT7SCXyz+1Y36edGBKQHXXh0MLYmeNiIiIiIiIyGKl9d/0lJjIEl2YcjUijrMWuNufl1dTuXnzL/mCwa0Awz09/9J25Mi3MN/QywAf8Bywv851F8TitWSmIRpbjtk9sQbTj6AjuxFl7ucX8pZGokXvG98c+75V/X/74Nq+aLZjW6DGyj8VYHrIAAxwufxTK5ebaqv8k4iIiIiIiMgc0vpvekpMZIkuTJmOiOPYmLvlX5VXUVFTunbtb9o+X43neYMDzc1/3XXq1LOYRcpVmIXqp+pc92QWQ5ZZ1BCN5QBbgBsxi9JngQXR0Dzlwd6Dpfcdas79b0nPKgLPW1KYeGTXtq5/Xqrm2NfKwiQoCkc/fMAw0IspAXaJy+Wf9HctIiIiIiIiMou0/pueEhNZogtTMhVxnCBwG3BjyapVqwtCod+wLCs3lUxe6jlz5lP9zc1nMYuRK4GTwBN1rtuWzZhlbjREY0uAm4H1QBfQktWApuFMV6DoG4dK39vS738NgN/2OkebYz+p5tgzKogp/1Q0+nkSU/6pA9NMvZPLTbVV/klERERERERkhmj9Nz0lJrJEF6ZkIuI4RcCdwObKzZtvyykpeRtAMh4/0H706OdH+vv7gEpMT4n9wLN1rjuYtYBlzjVEYwFgIyZBUYrZPTGUzZim4z+PF215sin//cNJexmoOfYc8HG5qXY+ZpdFP9ADXOByebDO+nBoOFtBioiIiIjI/NAQjfmBXCAPc7OTNxcf9eGQFixlwdP6b3pKTGSJLkyZSsRxqoB77WBwfdWWLXX+3NxbAeJ9fd9tO3z4q14q5QG1wAjwDHCoznV1x/N1qiEaq8AkJzZiFpovYf5DN+/1Dtv+rx4oe/uZzsA7xppjry2Pf/29N3R+V82x50Q+JlFRgCkJF8fsqmgGLnK5qXaffjkQEREREVk8Rm90y8MkHnLHfZ4PlADFo1/LAQKY3xfGjCURJvs83bHpjEuO+3Nq9GO6n0/254X6wbjXMPb3NbYepKTOPKL13/SUmMgSXZiSTsRxVgF3B4uL11Vs2LDL9vtrPc9LDLa3f6nz+PEfYv5DsBqz+PxEneuezWa8Mj80RGM+TFmnm4FqTKmegawGNQ3PXchb9p/Rot8e1xz7zH2r+r+k5thzLsjlPhW5mP/g9mGSE+eBdi6Xf1LiSERERERknmmIxizM/+vHJxvGPr8y6RDAJB78gM3lxe/4BB+J0aewRj8m+zzdsfk0bioWE9/wN9nXJzLTiZpMx11tEiddQsfj6pI6KeBMfTi0YKo7zBSt/6anxESW6MKUiUQcx8I0Nb6jcOnSjcUrV77Xsu0iL5Xq7D137jO9Fy5EMXc2LwWimKREVxZDlnmoIRorAW7CXEtxzF3vC2I3zWhz7PsPNef++lhz7FBh4uF3b+vaq+bYWWNzufxTAeY/4QOYptoXML1NOjFNta+7/2iKiIiIiMyl0aRDDpcTDuMTD4WYhEPx6JixnQ6BcVMkMZUXrkw6jMzNK7juzIcEzJXJGPuKzyc7duUc449NxwgQqQ+Hzlzl+QuW1n/TU2IiS3RhypUijhPA3Ol+c9n69bfkVVS807IsOzkycrzzxInPDHd1dQBLMHc3PA/8vM5149mMWeavhmjMBhzMNbUUk5zozWpQ0zDaHPvXWvr9rwbTHPuGJYP/8E41x54v8jC/9BRh7qwawVxfLUAMs6OiA+jVNmIRERERkcyM/h53ZVmlsc+LMAmHIi4nHHIwfeTGJIFhXpl4SCCSPeuA/1cfDp3OdiBzTeu/6SkxkSW6MGW8iOPkA3daPt+Oqi1b3hAoKLgHYGRw8Mdthw//bWpkJAmswvQOeAo4Vue6+uaVKTVEY4XATmAb5g6Hc5j/rC4IEzTHfv6tG3v+fvuSoZZsxyYvE+ByoiIHs123H+jC/Kxrw+yq6KwPh/RLkYiIiIhcd0ZL745POIxPPJRg/i9dhCnBFORyT4ex3/1HmHinw4L5/U6uW0pMaP13QkpMZIkuTBkTcZxy4J5AQcGOio0b3+kLBtd7npca7u7+avuLL34X85+UWqAJeLLOdWNZDVgWnNGtvrWY3RO1mKbGXdmMaTp6h23/V/eXvf1M18uaY//Le2/o/A81x563xso/FY4+2sAQ0IPZUdHM6K6K+nBoMFtBioiIiIjMhNEm0lfudMgb/RgrrVTA5aRDkMtlclKYHQ0T7XRYECV5RaagxITWfyekxESW6MIUgIjjrADuzququqlszZpfsXy+ci+V6uuLxT7f09R0ACjFNDE+BDxd57p9WQxXFriGaCwP2A7swNzVfpYFtKV3tDn2+3rjvq0Aef7UmftW93/pAUfNsReIsZq3RZi7vxKY8k/tmJ+HnZhkRU99OKRfwERERERkXmiIxq5sIj32ONZEumj08yuTDmMLbhMlHEZQ0kGuH0pMaP13QkpMZIkuzOvbaJPrDcCdJatX31WwZMk7LcsKpBKJc12nTn1qsK0tBizD1Ir8ObCvznUXzAKyzG8N0dgy4BZMD4o2zMLwgjBZc+xd27v+OVSUGMh2fDItfkyiohDzyx2Y8k/dmJJj7ZhERWd9OKRGfCIiIiIyo8Y1kZ5op0MBl3c65PLy8kpgEg9jTaSvTDyMcDkpISJKTGj9dxJKTGSJLszrV8RxfMBObPtVlRs3viGnpORBgMTw8LPtL77414nBwRFMP4kO4Kk61z2ZxXBlkRq962cLcBPmP91nMf+JXhDOdAWKvn6o9NdaLzfH7rghNPgP79zS/ZSaYy9YFuZOsyJMsmKs/FMfpvzTJS4nKvqzFaSIiIiIzH+jTaRzeGUD6bFdvCWYpMP4XQ7+cVMkuZxkuHKng4hMjxITWv+dkBITWaIL8/oUcZxc4HZfTs4dlZs3v8Ofm7sVYLi391/bDh/+Op6XB6wETmL6SbRmM15Z/BqisRrM7on1mDvVm7Mb0fT8Z7Ro65Nn898/nLSXgppjL0I5XE5UBDHln/oxO30uMNqnAuhW+ScRERGR68No0mGihEMe5v+Oxby8ifRY0mFsASzBxEkHVSkQmR1KTGj9d0JKTGSJLszrT8RxSoC7c8rK7i5ft+7dtt+/xPO84YHW1i92nTz5FFCJ6SlxAPhZneuqIazMiYZozA9sxDTHLsOU0Vkw11/PsB34J9Mc+xdGm2MPr6uIf/09O9QcexHycbn8U/7o1wYwSbULQCuXd1UsmB1AIiIiImKM/m4yPtkw/vOxXQ5XNpG2eXkT6fG7G8Y+1+8FItmjxITWfyekxESW6MK8vkQcJwTcU7R8+QNFy5f/kmXbealksqXn7NlP98diZ4BazH+angEO1bmu7vyVOdcQjZVjkhMbMYmJGAuoNuqz5/OW/dfxovf3xn1bAPL8qdP3re770gNO//FsxyazZqz8UyHmF1Q/5hfPXkzppxijTbXrw6G+bAUpIiIiItAQjQWYOOGQz+V+Dlc2kbYxv5N4XE40XNnXQb8/i8xvSkxo/XdCSkxkiS7M60fEcdYBd5WHw/W55eVvsCzLSsbjhzui0c/Fe3sHgdWYBbQn6lz3bHajlevd6Lbo9ZjyTlWYu9AXTD3/lAf/fKD01Ydbcn9tXHPs7+3a3rVXzbGvG0FMoqIIUwoqielT0Yn5uTvWVLu7PhzSnXMiIiIi12i0iXSQiXc65HN5p8P4JtLB0dPHdjpc2cdhLPGgRSuRhU+JCa3/TkiJiSzRhbn4RRzHBrbbgcC9lZs2/XKgoOBGgJH+/u+1Hj78D14ymQ+EgOOYpERXFsMVeZmGaKwYuBHYilnYPc8CuhPpdGeg+BuHSn+tdcB/P5jm2KW5yYN5/lRHQTDVUZST6ijPS3YsKUx0rCmLdxTnpNTEbvGyuZyoyMP88jsI9GCu6zZGe1XUh0PD2QpSRESuzejCqDXuS+P/PJ3H2Rp75Tkz+XxjvDQf6Y5fzbGMv14fDmnRYQEb/d4a30R6fOKhkMs7HXK4nHAIYK5Pj5cnHcYnHJR0ELl+KDGh9d8JKTGRJbowF7eI4wSB24JFRa8p37DhV32BwErP8xJDHR3/uyMafRSowZQdeR54vs51tRgm887oLyFrMLsnlmN2T/RmNahpikSLtj11Nv99Y82xJ+OzvN6Az+sI+ryOXL/XkedPtRcEUx3FOamO8rxEx9KiRMeasninelYsGmONEQu5XP6pD2gBLnK5qXafFlNEZDKjPydtLtc2n87nkx2b6QXtmViot0c/v/LRGvdn64qxVppzJvrgijnGx21PMm78841/jeMfx399oq9Ndk66eaaa/2rOySSmqzVZ0uDK4xONnez4ZHOnGz/2eWrcY2rcsdQ0j010fGzMtSRiZj1RM1txXM3/WUZ3S19ZVmns80LMTocrm0gHxsWQ5JUJh2HURFpEXk6JCa3/TkiJiSzRhbl4RRynCLiroKbmjSWrV++ybLvIS6W6ey9c+EzvuXNRYBWmNM7TwNE619U3ocxrDdFYAbAT2IZZADjHAmoe1zNsB/7zeNEtXYO+6oERu3woYZUPJ63yeNIqH0laFR5WcOpZDL/tdQXssQRGqiMv8P+3d+dhkl1nned/770RkXtGVmRpSUklF0rJJXnDeMPY7sFDewYayMaU6YdmQGCGnpl+upuGBhp6oGkMZvE8Y3rE0jwwLDaMYQYaFzDF0oOBti1Z2BhLGKksp6yQrKUqVaXKJXKLjOXeM3+ceytuRkXkVpkRWZXfz/Oc5944d4mTmSdPZpz3nnPcwmghXhgfiOaPD0cLt481Fk4eq1cK4fUzugSS/AfsNFAxKN+xsSYfnLgg/yE729nR3rmy1f5uju35PqdPTVHncN3KPOm+Xaf9Tjv6t7pXt/PCTMolx3LJ6/bjQXJM2txpbh1eb5Xf3gG/lfTJ435o7whtP9Ytf7tz93JNP8rUnr/T++/0mm7ndjp/L7YLSG2Xt921WwW/Oh3bj7J0O7YfgZy9ag8aSFfX007Htju+l3vvNMiTk//fJw02FOTbuFT7ItJp4IGgA4DdIjBB/29HBCb6hIp5Yzo7PX2TpLdP3HXXNw/fcss7zSyMG43y4lNP/dTG4uKKfFDiOfmpm+b6WlhgF5JOozvlR0+8TP7J8sW+FmofxE56cSU38mwlX7q0listbYSl1XpQWm8EkxtNK9WaPoDRjK3kZLnt7yhJLs4FWiqEbQGMfDxfHIwWjg83F+4Ybyy8bKKxnAv61smErQXyo9rSRbV309GxXedht6ce2zsNtIvj2RR12KadEFHm+mx+3CFvLwGY/QrQ7Ch4w2iWq7V18O+l0363AYBO+5069rOvg8w2bLuv2u6Zfd3+hHy3gEBaL3bbkd+pnu0kv9t5O63P1GPgxnCQQZfdnr/TgJHT1YEHHnQAcBAITND/2xGBiT6hYt54zk5Pf4mF4dsn77vvnw2Mj79FkprV6scvnzv381G9PizpZkmPSXp4plxe7WthgT06Mzs3KD9y4nXy88g+pyPw1FQzlr2wnB99vpKfvLyeKy1tBKXVelCq+hEYk7UoKDUiKzViHZOsfVqJLlyUD7RYCN18IYwXBnNuYTgfL4wOxAsTA9H8TSPRwp3FxsLt443VoJ/P/2G/des8aE/S9lOf7OU+3e6ZnncQtS3tiE33pauDLt2ObxfIaQ+qtAdj2oMykToHbXYcENnFsWvt6G9/Oj/75H57R3/23G4d+Dvt6O/Whm3V0Z89tpOg1XbfZ+0xHwAAAIcPgQn6fzva4dOfALo5Oz1tkl6VHx7+mtJ99/3PuYGBu51zrr68/FuXz537sKTb5X/XHpT0yEy5fMN34uLGdfrU1IakvzkzO/eC/OiJafnpbi73tWAHLBfInZxorJycaKxI+mK38+qRgmeXCuPnl/Oly+vhZKUWltbqQWm9YaVaFJRqTZtsxFZqxipKFjZiHW/Ednyt0T2WYXKNdP2LQujmhzIBjGOD0cLNI835l000Fm4eaVYJYFwXjuIT0tsFVbYKlnQ73j6Njrqct9NAzlZl3+3PK/0Zb3fvndxnq8747Tr5o12c26mjHwAAALhmtaYF9WinD/DhKGHERJ8QMbsxnJ2ezkt649Dx4++cmJ7+riAMSy6O19cuXnx/5Zln/k5+6qYFSZ+YKZef6mdZgf12ZnauIOmVkl4vPz//c/JDwbGNasPCZ5YKExdWcqX59VxpuRZMrtWDUrUZlGrJGhiNyCYjZ2M7vWdgbiNd/2Ig5xYGc25+OB8vjA9EC8cGo4VbRpsLX3KsPl8aivkZAQcrDUgcxSAUAAAAbnAbTQuer+THL67ligvVsLhSC4qr9aBYbQbFWtOKtaYVG7FNNCIbb8Q2ETsbeeXNG9/0p98y+OF+l73X6P/dGiMmgD06Oz09LOlt43fe+W2jt9/+zWZWiKPofOWZZ35y/dKlRfknycuSHpopl1/qb2mB/Xf61FRd0qOZ0ROnJC1LutjXgl0HhvIuesVNtflX3FSb3+q85VqQf2axcOzF1VxpoRqWlmtBaa0RTG40glItuhLAKMXORmJng7XIbqtFum1li9BDYG4tH7qFgSQN5uOFkXw8Pz4QL5SGooVbR5sLdx2rL4wNxIzuAvaGgAQAAACuG/VIwfOV/NiLq/niYjUsVmpBca0RFKuNoLjRtGI98qkR2UQztvHdPECXWq0FkwdRdlzfGDHRJ0TMrm9np6dLCoL/dvLUqX8xeOzYV0lSVKt95vITT7y/ub4+JGlC0t9J+uRMuVztY1GBnjgzO5eTdK+kN0oqSXpeEnW/R+bXw4EvLuVLF1dzpcWNsLRcC0vr6foXyQLe9cgmnWxgp/cMza3kQzc/kIzAGMrFCyOFeGF8IJ6fHG4u3DbWXPiSifrSUN5FB/m1AQAAAAB2rh4pOL+cH31xNVecr+aKy7WguFZvBRpqPshQrMdWbEZWjJzGJNvlFKQuDk0r+dBV8oGrFEKfBnOuMpyPKyOFuFIciCql4ahy17H65Fgh/p1vfdWtTx/MV3x40f+7NUZMALt0dnr6RG5w8KtL9977ffnh4fskqb6y8uHL5859yMXxHfILAf+VpMdmymXmacaRcPrUVFPS42dm587LByfuk1STdEE8OXzgJoej2uRwNCdprts5sZMureWGnl3Kly6t5SYXN8LSai0orTeCUtUHLybryQgMJ8tHzsaipo1tNHVStW53dS4XqJIP3MJAzs0PhPHCcN4tjBTiheJAtHB8OJq/fbyx8LKJ+nIhZN56AAAAANitZixLAg3j8+vhxHItLK7Wg+J6MyhuNDIjGmIfcEgCDbtc08G50LSaC91SGmgYSAINQ0mgYXwgrkwONSu3jjYrt483VnfxGW9I9AugAwITwA4li1zfO3js2Lsm7r77X4X5/C3OuXr18uVfWPzCFx6Wn7rpRfmpm57tb2mB/jh9amrxzOzcX0h6Vn56p5fLPx2w1teCQYFJt442q7eONs9L6vqkRuyk88v50ecq+dJLa2FpqRZOpgGMjaaV6lFQqkc22Yh1TLKwGWuiGdtEtam7pLDLXV2cD7SYLuI9mPMBjNFCtFAciBeOjzTnT4w3Fk4UGyu5gH9YAQAAANy4YiddWMmNXFjJT8yvh+OVWjixVg+K6+mIhuaVQMN4M7aJZqzx3Qca/Cj4XOCW86Fbyo5oGMrHlZF8XCkOxJVjQ1Hl1tFG5fbx5spgzvEwGXqKwASwA2enp0NJrxu9/fbvHD9x4t0WBEMuii4vP//8T69euHBR0l2SZiU9OFMuL/W1sECfnT41FUuaPTM7NyfpdZJeLWlSPkDBPzqHXGDSiWJj9USxsSq/oHlHzVj27FJ+/IXlfOmyX8C7tFoPS+sNK200gyvTRzVjTUgWNGJNNmKbXG9I3QIYJtfMBVr0C3jH84M5tzCUjxfGCvHCxGC0cNNItHBnsT5/21hzLdjlQGMAAAAAOAixky6u5obPr+SK8+u54tJGWPSBBpvYaAbjtcgm6pGNNyKb8MEGFSXr9lRXV4G5tXzgKun0SQM5tzQQuuWhfLw0ko+XxwfjpWOD0fKto82lO8YbK0y7i8OOwASwjbPT04OS3nLsnnu+d+j48a83M4sajScWZmd/pr68PCDpJkl/LelvZ8rlrhOeAEfN6VNTy2dm5z4m37mdjp64IL9ANq5zuUBuutSoTJcaFUnPdDuvHin44mKheH4lX7q8HpaWa+Hkaj0oVTMBjEZspWZsE06Wa8S6qRHbTWuN7g8EmVw9HX0xELqFwZybH87HC2MD8cKxwWjh5tHmwsmJ+sLNIxHrnAAAAADYlXQa3AsrueLltVyxUguKK7WwuN604kYjKNb81EkTjcjGm7EVm7GKTrbrPtbA3HouuGqNhqXBvFsezcdLYwPR8rGhaOnmkebyifHG8kjBNQ/i6wX6hcAEsIWz09PFoFB4x+S99/5wYXT0dZLUWF//yOXHH/+VuNm8Q356mo9IemKmXGb6EaDN6VNTTtLTZ2bnXpT0ZZJeq9bi2Dy9cQQUQsUvP15ffPnx+qKkcrfz1uqW++JSYeLCSq60UPUjMNbqQanaDCY3kgW8G5GVImdjTlaoR3ZrPdKtq1u8d2Cumg+SAEbOTyE1kncLYwPRfGkoWrglCWCUhuL6/n/lAAAAAA6D2Enz6+HgC8v54uX1sLi0kazR0AiKG83gytRJ6WLQSaAhv9v3CcxVfaBBlfyVQENcGcy5ykghrowV4kppKKrcNNKsnBhvVMYGYgINONLMOfpS+4FV2Q+/s9PTUwPF4jceu/vufxcODJxwzsW1xcX/c/7zn/9LSSflO1YfnCmXL/S3pMD148zs3An50RMnJV2WtNDXAuG6s1wL8k8vFkovruZKC9WwtNIKYJRqzWQB79hKsbPhnd4zMLdWCN18OgJjKB8vjOTjhfGBeGFsIF4ezsfV0UJcHRuINkpDUbU0FG2wFgYAAADQPwvVoPB8pTCRBhpW6kFxvR4Uq00r1prBpsWgk0BDYbfvEZjbyAWukgt0ZUTDQBhXhvKuMpz3i0FPDEaVm0ealRPFRmV8IG4cxNd6A7hH0h+cPjXVdaT9jYr+360xYgLo4Oz09D0jU1PvHr/zzu8OwnDMxfHK6oUL71t+7rnnJb1M0mOSHp4pl1f6XFTgunL61NTzZ2bnXpJfd+J18ovGPyeJf+CwI+MDceO1t25clHRxq/NeWgsHn63kj11czU8uVoPSSj0srTf8FFK1ZP2LRmSTTlaInY1sNG1ko6k7d1qOwNxGYNoIzFVDUzUMXDU0bYSBq+YCVXOB28gHrpoPXbXg08ZAzlUHw7g6nHfV4UK8MVaIq8XBqDo5FFVHCnGTdTMAAABwVC1tBIUXKvnxS2u5iSuBhkZQrDasWIuCYj2y8XrkF4JuRDbhZAO7fQ+Tq+cCt5QPVckHbrmQc0sDYbw8lHNLw4V4eawQL00MRss3jzSXbh9vVBhZDRwsAhNAxtnp6UDSl07cddf3D99yyzebWS5uNr+4WC7/1Mb8fE5SUdKDkh6ZKZcZcgfswelTUxuSPn1mdu4F+dETd0talPRSXwuGG8pNI9HGTSPRnLQx1+2cdJG6Zyv50qW1XGmpGk6u1IPSeiMobTStVGvaZDO20djZUOQ0GDsNSRb4a20wdhqUbGJ/Suyi0FQNfHBjPTBt5AJXDc1thIHW00BHLtRGIfDBjoFcXB0I3cZg3lVH8nF1pBBvjA9E1YnBuHp8uMmoDgAAAPTNSi3IPb+cL15azRUXN8LiSi2YWGsE49WmTdSawXi6RkMj1kQztvHY2dBu38PkGrlAlVzoKoXALRVCtzyQc0uDuXh5JB8vjRbi5YmhaOn4cLR8YryxNDkcsS4ocIgQmAASZ6enC0Eu99bSqVM/PlAs/gNJam5sPHz53LlfjGq1W+WnnPnETLn8VH9LCtwYTp+amjszO/enkl4h6Y3yi2M/K4l/FtETgUlTY831qbHmuvzw2i3FTlquBYX59XBouRYOrtaDobVGMFRtBIMbTRuqRTZUb9pQPbbBRmRDzThNGoxiG4qchpLtYBTbUOw01BpSbmHkNBo5jTbi/Rk6YXK1MFA1M6pjIx3dwagOALg2zVjWiCxoxBak22asoBlb0IwtbMYKIr8fRM7vZ7ex34axk8XOgtgpiJJtHCuInYWxk38tn++cgvTcdN/5P2fOzDkzxSbFZnKBFJs5548pDkyxyaX7mfwreXGQOR6YnJmLA8mFgWIzdyU/uLLvt6EpDs3FQSAXmHNhct8wUByaXC5wcRj4/HSbC5wLA+dygWL+tgCHS+ykpm+HFKVb337ZpbXcyKW1sLhYDYsr9bC4Vg8mqk0brzVtohYF443IJhqxxpuxFXcztWrK5Jq5QJVc4NI1GpYGcm55MBdXRvJxZbQQVyYG48rkcLNyx3ijcnw4qtKGANcvAhOApLPT02P50dGvLd1zz0/mhobulqTa8vJvXz537o/l3B3yC7Y+NFMu80Q3sI9On5pqSPrsmdm5C5LeIOk+SSuSXuxrwYAOApMmBuP6xGBclxqV/bjnRtOCxWo4uLgRDq3UgsHVejBcbQSD1aYN1ZrBYC2y4XrkAx2N2Aabsa4EPKJYg5GzoSjWUKdRHU420Iw1sJ+jOgLTRmiqBkES7PDz7lZDH+jwwY5Q1XzgqgOhqxbCeGMw56qM6gD6Y7vO8ziWNZ0FUZLX6ji3MOmMCqJYviN9m85zJ7Mr+/6cMFamA90paH/t/OswVvK6lRc4mSWvw7b8tvMUKLlP9piuOu478Z0UKL0+s5+cE2avlTbfq/Xat7PYL85JcibFkvy+XdmP0/xMXnKui82unOMkOdmVfX+dte7r8/01SV56vWt/D/PnZa5T672S9zBf7uz9XLIf+XOds+zxTEDI5OLWvr9OUhzY1fnWCjL59+4QePJ5vswdA0/ygaRs4Mk5yUkWO5nkA2TO/zRaWyclv1fmJNu8tavyJJlzV/L9ffzvmfzvrEmSJb+/Sn6/Wu8pC5TcT9l7S9bKt9Z7tR3LvpfPzr7Wpuvkk5LfbXMy63ROh2vSvMBvWl+D1Hqv7LWd7qfk+7fpeKf38vnZe2fe04L2+7e/b/ux5Pjm+7Tua/Lfh33kolygSr4VaKgMJAtCD+ddZbQQVYqDceX4cLNy21izcstoc51AA3B0EJjAkXd2evrm4Ztvvr948uQPB7lcyTlXXb948T8uPf10WdJtkj4j6ZMz5XK1z0UFblinT029dGZ27s/l15t4g6RTyT6/d7ihDeZcnBm1cc3SUR2L1XBwaSMc2u9RHbHTSOw0oj6M6siHbmMgdH76qly8PpR3GyOFuDpaiDcmBqP10lC0MVqIG3yYheR/F+qRBRtNy9UjC+uRBbWm5RqxhY3IwkZsYTPZb8YKo+R15NJ9hZHvdA+j2HKR75DPxU5hHFsQO/n95BzfCe/3XfLaJcec/Hm+41y55Gn30MlymY73nN/uqPP8Sgd5h87zUHSeHxIu7VBPO7g7vjZzkbSpozx7XpTpgE9HQ2Su9fvJGwatDtZNnbCBu9IRaYFrdVQGyh5P6planZiBv97a77npdSavLX83nZvWKlP63esUtr4qjwYf6D0XpyMaCqGr5ANXGchlAw1xZXwgqhwfjipTY43KbWPNNf43A9ANgQkcaWenp7+kePLk947ceus/tyAoxFH0YuWLX/yp9YsXJWlA0l9KemymXI63vhOAa3X61FQk6dyZ2bnz8lM7vUJ+WqcL6vBRFMDV2kZ1LO/HPfdxVMdg5DR0PYzqGCvE1WNDUbU01KwVQt0w/wOkUzNsNIOw1vSd8rWo1VFfj5LO+thyyTQ0YTPd90/Q5yLfee876WOFsbMgSjrpo9jCOOmEj2OFsVqd860Oe0s66n1nfPKkfC7ptA9iZ+l+2Npa2+sr+bn0iXvnP9dk9umU3xmXfSK9vdM7ah1z7R3mnTrPXYdzotY9N3eut7buyj02d75fedI7auUnT3y3nhyPM0+JxyZFmafC46B1vjPzx4LMsWTKoTjwUw6leVEQ+GNh2zaZkujKfi5Ity7Ohy7OJ1umJ/LtTexkzdgsihU0Ygui2CydDiZyssgH+SxyfiRP7Mzi2L/2U1wlef6cZNormdt03D+hH6XTWyUjbXy+zKl1bnYkTpw+jZ8Z7ZO0J+kT/+kogSuBnSRwaNl8bR7d09omgZ9kVEEraJQcb+1bGgRK86+MTtCV4NCVkULZAE42SGTybWP6FH6n4+2Bq0Ct0Sfuyr5d+ZuXPoIQS1LbaBV3ZZSLdbyHy5yb3i9zruv6Xkk4qzVSxVr3ti7vuWnUi0lJe6Ts6+Tc9OvIHHP+va+Mgmm7p/n3zZbF2t7T7Kr3UmvEi8vcR85aZXBBcixI7tXatvItWwbf5ilp/2R+dI2CzHuZta4L2l6bucwxf9xP2ZbsSy4I/HuFgf86wsDFgaQgUBz4r9MdG4pqjHgFsF8ITOBIOjs9bRYEr568776fHjx27OskKarX/27+iSf+j8ba2k3y08g8NFMuP9vfkgJHz+lTU0tnZuf+Un69iXTtifOSVvtaMOCIYlTHplEdG2FwZXRHNRf4RcrbR3WE5prRlQ75zBP1/on7IN136b6Sznj/Ouf81xGkT9FnnrZv227Kz3TSW9pJn8teI1m4L9+U65pLO8ub0pWO82b65LpJzUwnedMfd3EmP/JbFwWW7isKzGX21Uzm40/2FQf+/GZgioPANQN/XhQG/j6BuSj0nU5bdp4HUpx2mgfmYj+H/+ZtzlwUZjrM6TxHPwQmBX59CaekoxgAACCLwASOnLPT0/n8yMhXHrvnnp/NDw+/RpLqq6t/dPnxx3/fxfGtkmblgxKL/S0pcHSdPjUVS3ryzOzcnKTXSXqNpElJz0s3ztPLwFHU51Edgw0f5EgDHoNRrKHejuo4jFz6lHpTuqpTPjIp0qZO+as65pvJk++RJZ3vaYd/4K+Pkw76KOmwTzrm3ZX80NIOekVB0lkf+s5632kfKArNNZMO+CgXqBn6zvZmLlCUC1yUD12UD1yUCxQVwjgqhIryoYsGc3E0ELoo6YyndxQAAAA4BAhM4Eg5Oz09MnT8+LuKJ0/+b2GhcKtzrlmdn/9Pi08++bh8p+cnJX16plyu9bmoACSdPjW1cmZ27uPy6028SdI98iOaKn0tGIBD5bCN6oidclc64v00M820Uz9oe9o++zp9ct5a+83kyfkovLLvojBQM8mLQ99BHyVTyzTDwEX5wD+JnwtaHfX50EWFpOO+ELpoIBc3B0IXD+RcRGc9AAAAgF4jMIEj4+z0dGn8zjv/1ejU1A9ZGA67OF5Yfv75962eP19PTvmIpCdmymU+nAOHyOlTU07SM2dm5y5Kem2SJuWDFc3+lQzAjeogRnUAAAAAAFoITOBIOHv33SdKp0795GCp9G1mFkSNxpMLs7Pvry8vF+Wfvn5wply+0O9yAuju9KmpdUkPn5mdS0dPTEt6SdJCXwsGAAAAAABSJmlQ0nCSWNUKHRGYwA3t7PS05QYHX33Tq1/9S4XR0bdKUqNa/avLjz3223GzeUzSY5IenimXV/pbUgA7dfrU1AtnZudekvQqSa+XdLf86In6lhcCAAAAAID9lFcrADEk39ccS6om6VlJl5IEbGLOMWtNP5jZ7ZJekHSHc+58v8tzIzo7PR0OTU7+98WTJ38pHBg46ZyLa5XKB+Y/97m/lW8o/0bSozPlcqPPRQWwR2dm526V9EZJL5e0JP7ZAQAAAABgvwXaPApiQH4kRF0+ALEsPyPJUrK/LGn59KmpIz39Mv2/WyMw0SdUzIN1dnp6cOzEie8cnZr6mSCXK7o4Xl2dm3v/8rPPrshP+/IJSU+xngRw/TszO5eXdJ98gGJCfvTERj/LhOtaIP8Pdro1+bVMon4WCgAAAAB6pKDWCIhh+c9GTj4AsS7psvxDgcuZVE3Wh0QG/b9bYyon3HDOTk9PHLvnnh8dOn78X5tZLm42n1986qn3bywsFCR9UX49iZf6XEwA++T0qamGpL8/Mzt3Xj44cZ+kNfmnNfjH6PDKdvy3BwPaj2117nZ53Zg214/0dZRsnfwQZMn/vxS2nRvJByzS1EhSNo/6BwAAAOCwCuSDD2kAIjsKYl3+wd7PJ9tlSSuSVo76KAjsH0ZM9AkRs4PxJ/fdd3vp5S//5YHx8a+XpGat9qnLjz/+wahWG5b0qKRPzZTL6/0tJYCDcmZ2LpSf1umNkm6W9Lz8P1RH2V479fcrANBNOgIhTpLLbN0WebFaQYFoi/1scCC9Jt5DcvLzpg7IPzmUpvSf9+xQ5lyS8klKpUGP9sBFo20bCwAAAAD2XzoKIrsgtZP/vLwmPwriJW2ehqnan6LeOOj/3RqBiT6hYu6/j7zpTa8vvuxlv5kbHHylJNWWl3/v8rlzD8m5hqRPSnpsplxmKg7gCDgzO1eU9Ab5BbLrki7o4Dt9r+Wp/jQQIG0fFNitTh387aMCrjUA0KnTP8rcc69BgavSYR0enEwplg1ctAcyBiSNqPVBYFA+eJFrS9mvL/3+tgcwsgkAAAAAUoE2T8NUkP8cWZMPQixLmpNfC2JFUkXS6ulTU/SXHQD6f7dGYKJPqJj75+z0dDB2xx3vHL3ttl8OcrmbnHO19UuXfmGpXH5RfiqXh2bK5Wf7XU4AvXVmdi6QNC0/euI2+X+8pJ0HBXZru6f+08BIe1DgWgMA7cGAax0hcKgDADeKpH62BzDagxnD2hzMSEdjZAMZWe2jMpheCgAAALhxDaj1WWFI/nNsLB+AWJdfB+KyNo+CYD3GHqL/d2sEJvqEirk/zk5PF47dffe/GTp+/MctCAbiKLpUeeaZB9YvXWpImpUPSiz2u5wA+ufM7NyopC+TdKf2LwDQLSiw6xECBACwE2dm50ydp5RqD2yMqvXhpKBWIKN9eqlUp1EY2YAG00sBAAAA/RVqcwCikORvyAcgKvIP5i6pFYRYPX1qiv/l+4z+360RmOgTKua1++NTp8Ym7733FwpjY99uZhbV64/Pf+5zv95YX3eSPiPp0zPlcq3f5QQAoB/OzM7ldHUgoz2YMaxWMGNQV4/KCLV5ofD26aU6TTEFAAAAYG8G1QpADMmP6G9KqkpalV8Hon0UBH1fhxT9v1trnwIAuC78xZvedPLmV7/6t3NDQ2+RpMba2p+99NhjH3FxvCrpYUlPzJTLRN0AAEfW6VNTaaBgbSfnZ6aX2mqKqSFtHpWRUyugkQYyArUCGU6d18nIBjP4ew0AAICjJqfWOhDpKAin1loQc5Iuyo+GSIMQa4yCwI2EwASuOx99+9vfVrzrrg+F+fzLnHPNjfn5X1948smn5Be3fXCmXL7Q7zICAHC9ST7kbCRpW5nppbot9t1teqkhSWNqjcxoD2REunoUBtNLAeindH2q7H42L9jmeLqm1UEe7xTkdW3bvR47jPfudLzTsYMs+07LcK3HAFzfTP5BnjQIMajWKIh1+VEQz0ia1+ZREPW+lBboIQITuG6cnZ62Y/fc8x1jt9328xaGYy6OK8vPPfcLqxcuLEl6XNLDM+XySp+LCQDAkZCsj1JP0upOrkmml+q22Hf6Og1ijMp/cMvLf5BLAxnp9FJSK5DRaUqp7GsA+6Nbp3i3zvrdHE/z9uv4fnIdUrf8nR53aq1N1b5m1XZ57WtZpe+X/Z6oLa99u9U5B3Ese7zTz679nE4/x/Y6tN11Oz1vL8d6fe+DlP07WlfrYYB6cgzAzuXU+l82HV3s5B/8WZN0Xp1HQRCQxJFEYALXhbPT0/njr3zlTxXGx7/fzIK40SjPz87+en15eVXSpyQ9OlMuN/pdTgAA0F1meqn1nZy/xfRS2dfp02ejagUwBtQ5kCExvRR2rlPne6f93Zzb7Vj78Wvp4N+q8/ZapZ3j6X76uxLv4ninlHZ+ph3uaZ7T1Z3w7anb8U4BgJ2+bs+71uNdX9MZ5SWj8KTOgYXd5u3n+ft1/UEcu9bvQSj/93JYfiRjOsJxSNK4/N/Y9rWm0gcS0r+Z2UAGcJSYWmtBpKMgTP53YV3SiqSnJC1o8ygIfleADBa/7hMWP9m5v/jyL58Yu+OOD+WHh79OkprV6oMvPfbYH8fN5kuSHpL0FOtJAACAtumluq2XMSBpRP5D5EiSnwYx0m17IKPbot+HdXqpvXSS7+bcnXau7/WeOynrVrKdaNei29Pv3fY7HdvNue2d1p064LMd9e2d95068nvVMX/N70EHPdB/Z2bnQvkO1oHMNt1P15kak//7mf697TQ1Y0ObR15kX/O7jutNXq0AxJB8fY/lF6Ouyk/BdFGZAISkdf6uQaL/dzsEJvqEirkzH3/HO14+NDn5B2Gh8ArnnKstLf3f80888aikp+XXk3ip32UEAADXr7bppbqNzBjW1cPys4GMMLld2iGedrbutUM9vXavsk+tp6/30qHe6R7bddK3d4hHXfKzrzvtt98j+31tL89e0qG9Bx0ZAA67zIjGQV0dyBhUK4AxqlbwIg1kZIPO3aaQaujwBf1x4zO1RuIOy9dnk6+TVfmAw4uSltQKQKwwCgJbof93awQm+oSKub1PfO3Xfs3AxMSHgjCcdHG8vnrhwq8sP/fcC5IelfSpmXJ5R9NAAAAA7Je26aU6BTLSjhppc2e7a8uT9t6RfSjvQYc6ACArM5IxG7TI7qfTSI1p89/TbNBf8n9vuo3CYC0p7EW6rlkaiEhH/FTlp2K6LOmSNo+CqPK/DnaL/t+tEZjoEypmd2enp+34q171bwpjYz9jZoW42byw+IUv/MbG4uJ5SZ+U9NhMucwiXAAAAAAA3ACSEYydRl+k00hl18FIgxfpVmqNOuw0fVT6GkdPIF9/0gBEdhTEuvwi1JckLWrzKAgCXtgX9P9ujcBEn1AxO/vLt7wlNzo19av54eF3S1KzVnvk8uOPn4lqtS9KemimXH62rwUEAAAAAAB9kayD0WkNjHQ7Lh/AGNXmKaTyyS1MrXV76tq8iHf6mmmkrk/pKIg0pcGqdUlr8mtBbBoFcfrUVLU/RcVRQf/v1nLbnwL0xkP/6B/dPH7ixB+GhcJXSFJtefns5XPnHpRzn5cPSiz2uYgAAAAAAKBPTp+aiuQ7mrec2jmZRqpT4CLdH5EPYoxk8tNARpC5VaTuC3kzk0N/BNo8DVO6dklNvl7MSzonPwpiRa1REPy8gEOGwAQOhYdnZl43ODHxR0Eud4dzrrH24osfrDzzzDlJn5H06ZlyudbvMgIAAAAAgMMvWQtgI0mVrc49MzuXrhnVaSqpEbUW807XxUhHYGTXwXDqPoUU0wLt3YBaIyCG1BrxkganXpBfDyI7CmKjP0UFsFsEJtB3n/zGb/yWgfHxX7UgGImjaH7p6ac/UH3ppVlJD0t6YqZcZr4xAAAAAACw706fmqrLBxFWtjovWQejWwAjnUZqTK21DLLTSVlym1g+UNFpBEZDPsBxFIVqjYBIgz+SDyyty0/B9KJ8kGk52a6ePjXFtFvAdYzABPrmkfvvt0a1+jP5kZEfNDOL6vXZ+c997ncb6+ufk/TgTLl8od9lBAAAAAAASBZEbsqvV9DVmdm5QN0DGANqTSE1Jh+0GFZrLYysNIDRaSqp67lDPh15ki5KHch/rVVJq5Ke09WjIJhFA7gBEZhAXzxy//1DUaPxu/mhoRlJqq+ufvTyuXN/5qLos5IenimXt3xSAQAAAAAA4LBJnuKvJqmrZB2MgroHMNJFvMeS12kgo9M6GNlFvLOBjH6uq5BTaxTEkK4eBTEnPxJiSck6EGIUBHCkEJhAzz1y//2hpL8M8/mvcM7F1cuXf2/xC194WNKnJD06Uy43+lxEAAAAAACAA5Osg1FL0pbOzM7l1T2AkY6+GFVrFMK4fCAglJ9GKp0iKp22qn0KqWvph7GkLGkQYlCtURDr8qMgnpFflDo7CqJ+De8J4AZgzh3V6ev6y8xul1+k5w7n3Pl+l6fXHrn//n/p4vinl5555g/WL178mKSHJD3FehIAAAAAAAC7d2Z2LlT3AMaQfPBiXJsX8c7LP7gcqBXA6DaFlFMr+DGSXJcuNL4uaUHSRfk1IFaS7VoShAGOnKPe/7sdRkygX35p/oknztcqlUB+PYmX+l0gAAAAAACA69XpU1OR/BoYO1kHI51GqlMgI51CajQ5L52KydRaC6IsH4jIjoJgBgwAO8aIiT4hYiadnZ4ekRTNlMsb/S4LAAAAAAAAWjLrYKQBi0B+JMQ6oyCA7dH/uzUCE31CxQQAAAAAAACAGxP9v1sL+l0AAAAAAAAAAABwdBCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQM7l+FwC6xcz6XQYAAAAAAAAAwP65pd8FOMwITPRPWjE/09dSAAAAAAAAAAAOyi2Szve7EIeNOef6XYYjyfwwiS+TdLFPRRiV9HlJ90pa7VMZgBT1EYcJ9RGHCfURhwn1EYcJ9RGHCfURhwn1EYcJ9dEHJR51dMJfhcDEEWVm45IqkorOueV+lwdHG/URhwn1EYcJ9RGHCfURhwn1EYcJ9RGHCfURhwn1EVth8WsAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJg4umqSfjzZAv1GfcRhQn3EYUJ9xGFCfcRhQn3EYUJ9xGFCfcRhQn1EV6wxAQAAAAAAAAAAeoYREwAAAAAAAAAAoGcITAAAAAAAAAAAgJ4hMHGEmNmQmf2EmT1pZhtmdsHMfsPMbu932XD9MrOPmpnbIn1Nl+vebWZ/Y2arZrZgZn9qZm/Z5r3empy3kFz3N2b27QfzleEwM7PXm9m/M7MzZvZCWt92cF1P6p2Z3WFmH0ja2Y2k3f1xMxvc7deKw2+39dHM3rNNu/m+La6lPqIrMxs2s3ea2a+b2Wzy814zs8+a2X8ws9EtrqV9xL7aS32kfcRBMrPvS/5Wf8HMKmZWM7Nnzey3zOzVW1xH+4h9t9v6SPuIXjKzSTO7lNStp7Y5lzYSe8YaE0dE8ov6XyW9WdKcpAclnZT0JkkvSXqzc+7pvhUQ1y0z+6ikr5T0YUmrHU75WefcY23XPCDpeyRVJf25pEFJ/1CSSfom59wfdnifd0n6XfmA6sclXU6umUje4wf24+vB9cHM/lDSN7TnO+dsi2seUA/qnZndLemvJR2X9Likz0l6g6S7JH1C0j90zrHw1w1kt/XRzN4j6cfk60Onf/T/xDn3nztcR33Elszsn0n61eTlE/I/83FJb5E0Junzkr7SOXep7boHRPuIfbaX+kj7iINkZpcljUj6e0nnk+xXSnq5pIak0865P2675gHRPuIA7LY+0j6il8zsg5K+Xb6tKzvn7u5y3gOijcS1cM6RjkCS9JOSnKSHJY1m8r8vyf9ov8tIuj6TpI8mdejkDs9/R3L+ZUn3ZPK/QlJN0qKkibZrSpIqyXWnM/m3SPpCkv/2fn8vSL1Lkn5I0k9ImpF0q6QN/yet6/k9q3eSHkqO/VwmLyfpTJL/nn5//0h9r4/vSerCu3fxHtRH0k7qyXdI+hVJ97XlT0l6JPmZ/07bMdpH0oGkPdZH2kfSgSVJb5U02CH/XyQ/8xcl5TL5tI+kA0t7qI+0j6SeJPkggUv+hjtJT3U5jzaSdO31rd8FIPXghywVJC0lv6xf1uH4Z5Njr+93WUnXX9LuAxN/mpz/vR2O/Vxy7Pvb8n8wyf/DDtd8Y3LsbL+/F6T+JW3fEdyTeic/Cs1JuihpoO3YLZLqkhayHzJIN17aQX3cywdL6iPpmlLyIdEl9bOQyad9JPU8bVEfaR9JfUnyT6A7Sa/J5NE+kvqSutRH2kfSgSdJQ0n9OyfpHm0dmKCNJF1zYo2Jo+Gtkoryw68e7XD895PtTO+KhKPIzIYkfVXy8vc7nNKtLn7dFtf8ifyH2ncwtyA66XG9S68569qGkjrnLspPo3dM0tt2VnrgCuojrtVnk+2ApEmJ9hF9dVV9vAbUR+yHRrKtS7SP6LtN9fEaUB+xWz8mPz3SP1erHl6FNhL7hcDE0fClyfaRLsfT/Nf0oCy4cX2Xmf2Smf2imf1rM7uzwzmn5D+AvuSce6HD8W51sWsdds7V5ecYHJSfjxNo18t6R3uL3fgqM3vAzH7ZzP69mb1+i3Opj7hWdyXbhvxTZRLtI/qnU33Mon1Ez5jZ/fLt4ReSJNE+ok+61Mcs2kccCDN7jaTvl/QB59yD25xOG4l9ket3AdATaQdxp8Yim/+yHpQFN65/3/b6/Wb2XufcezN5W9ZF59yamS1JOmZmY865FTMblx/x0/W6JP8N8nX47/dUetzIelnvaG+xG/e3vX6vmX1Yfoj+appJfcQ++Z5k+18yT5vRPqJfOtXHLNpHHBgz+7fyiwyPSLov2b8g6Vucc1FyGu0jemKH9TGL9hH7zswCSb8mPw38D+7gEtpI7AtGTBwNo8l2vcvxtWQ71oOy4Mbzcfl/jqYlDctHzn9EUlPST5jZ92TO3a4uSlfXx9HMMeow9qKX9Y72FjvxlKQfkP/gOSrphKRvlXRe0rsk/V9t51MfcU3M7GslfZf80+k/mjlE+4ie26I+SrSP6I2vll+c/Zvk69qz8p3An8mcQ/uIXtlJfZRoH3GwvlvSGyX9W+fc/A7Op43EviAwAeCaOOf+g3PuQ865p51zVefck865n5b0zuSU9yTzDwIAJCVt5s865z7nnFtzzr3gnPsd+Q8D85LeaWZv7nMxcYMws3slfUiSyX/Y/Ow2lwAHZrv6SPuIXnDOvcM5Z/Jzkv838tPlfMzMfqS/JcNRtNP6SPuIg5JMw/2Tkj7mnPtgn4uDI4bAxNGQDucb7nJ8JNmu9KAsOCKcc38u6W8lTUj68iR7u7ooXV0fVzPHqMPYi17WO9pb7Jlzbk7SB5KXX5M5RH3EnpjZ7ZL+i3xnx390zv1c2ym0j+iZHdTHrmgfcRCcc0vJPOpfK+kz8lPivDE5TPuIntqmPm51He0jrtV/klSQX/B6p2gjsS8ITBwNzyXbO7ocT/Of7UFZcLSki3VNJdst66KZjcgHMhadcyuS5JxbllTZ6jpRh7G1XtY72ltcq/Z2k/qIPTGzkqQ/l59v9wPy0z+0o31ET+ywPm6H9hEHwjnXkPS78iN5ZpJs2kf0RZf6uB3aR1yLr5efJumXzeyjaZL0/yTHb8/k35rk0UZiXxCYOBrSIdKv63I8zWfRYOy3Y8k2nfNvVlJN0k3JU3PtutXFrnXYzPKSXiVpQ9KT11Ra3Kh6We9ob3Gt2tvNFPURO2Zmo5L+TNIrJJ2R9D8551yHU2kfceB2UR+3Q/uIg3Q52d6UbGkf0U/t9XE7tI+4VhOSvrItpTNfDGbyBpM82kjsCwITR8Mn5KOS02b22g7HvynZnu1ZiXDDM7ObJP2D5OUjkuScq0r6qyTvn3S4rFtd/JO241lfL//H8S+ccxt7LjBuWD2ud+k1M2Y2kL3AzG6R/51YlG+XgU3MzCR9Y/LykbbD1EfsSPKz/iNJb5L0/8kvoBl1Opf2EQdtN/Vxm/vQPuKgfWWyLUu0j+i7TfVxK7SPuFbOOeuUJH1Jcko5k//F5BraSOwP5xzpCCT5hWyc/C/qSCb/+5L8j/a7jKTrL0l6i/wi12Fb/klJDyV164/ajr0jyb8s6Z5M/lfIR8YXJU20XVOSD645Sacz+TfLD1t1kt7e7+8HqX8pqTtui+M9q3eZuv9AJi8n6cNJ/nv6/f0iHWzaqj7KP/n2LyWNteWPSvrlpI7MSRpuO059JG2bJIXyT6Q7SR9vr0ddrqF9JB1I2m19pH0kHWSS9Fb5+feDtvy8pO+WFMlPZXIic4z2kXQgabf1kfaR1I8k36/jJD3V5ThtJOmakyU/TNzgzGxQ0kflh2LNSXpQfo7XL5f0kqQ3O+ee7lsBcV0ys3fLzxP8ovzTGUvy9er18pHuc5K+yjl3qe26ByR9j/w/Wx+RX2jpv5OfR/ObnHN/2OG93iXp95JzPippXv4P4YT8Aorfv69fHA41M/s6ST+ayXqTfN34VCbvvc65P8lc84B6UO/M7B5Jfy1pUtJjkj4n6Y2S7pL0sPzvRG3XXzQOrd3URzM7KekZ+UXcPi3/N/km+SHIk/Lt6Nc756564of6iO2Y2fdIeiB5+QeSlruc+gPOuXSaCNpHHIjd1kfaRxykzOeWy/ILC89LOi7p1fLz8m9I+g7n3O+1XfeAaB+xz3ZbH2kf0Q+Zeld2zt3d5ZwHRBuJa9HvyAipd0nSkKSfkPSU/Fxwc/J/DO/od9lI12eSdJ+kX5L/Z+qSpIb8P0V/LT8aZ2iLa98t6W/l58FclJ97+C3bvN9bk/MWk+s+Lf8PW9+/F6TepqT+uG3Su7tcd+D1TtKJpH2dS9rbLyTt72C/v3ek/U+7qY+SxiS9T/6f8BfkP3iuSXpc0vsl3b7Ne1EfSVv9rN+zg7roJJ3scC3tI2lf027rI+0j6SCT/JQkPyX/1O0FSXX5Tt7HJf28pLu3uJb2kbSvabf1kfaR1I+kbUZMZM6jjSTtOTFiAgAAAAAAAAAA9AyLXwMAAAAAAAAAgJ4hMAEAAAAAAAAAAHqGwAQAAAAAAAAAAOgZAhMAAAAAAAAAAKBnCEwAAAAAAAAAAICeITABAAAAAAAAAAB6hsAEAAAAAAAAAADoGQITAAAAAAAAAACgZwhMAAAAAAAAAACAniEwAQAAAAAAAAAAeobABAAAAAAAAAAA6BkCEwAAAAAkSWZ20sycmX3MzCbM7H83s2fMrGpmnzWzr8uc+0/N7CEzWzGz583sfWaW72f5AQAAAFwfCEwAAAAASL022S5JelTSuyR9StLnJb1G0hkzu9fMPijp1yQtSvqvkm6R9EOSvq+3xQUAAABwPSIwAQAAACD1pcn2H0v6TUn3OOf+qaTXSTorqSDpjyXdlxybcc79Y0n/JLnudI/LCwAAAOA6RGACAAAAQOq1yfY/O+fe45yLJMk55yT9WXKsJOldzrm5zHXpsak0w8zeaWb/434Wzsw+aGYP7ec9AQAAAPRert8FAAAAAHBovDbZ/niHY+PJ9oPOuRfajhWT7eVM3jsl3S3pN/arcJLeK2lgH+8HAAAAoA8ITAAAAACQmRUlnZRUds6d63BKOs3T/9vh2KuT7ef28L55SXE6OmMrzrnybu8PAAAA4PBhKicAAAAAUivw8Okux18ryUn6TJdjkl8wW8ni2N8h6a1m5pL07vSYmT1kZv+DmT0paUPSCTN7m5n9qZldMrOKmX3czN6QfZP2qZwy9/oGM5s1s5XkHlMCAAAAcGgxYgIAAACA1Aou/F37ATMbkvRy+dEUKx2uTYMajybb90q6SdIdkv6XJC872uGUpB+R9O8lrUpalPQWSX8h6YHknG+R9DEzu9c59/wW5b5b0o9K+l8l5SX9vKRflPSuLa4BAAAA0EcEJgAAAABIVwcXsl4jKexyTGoLajjnymb2kqSic+6THc4vSXqbc242k/c76Y6ZBZL+StLbJH2zpPdvUe6SpDemwQszu0PS+8wscM7FW1wHAAAAoE+YygkAAACA1DYd006PmVlB0n2SnnPOLezwvZ5uC0rIzG4ys18zs/OSmpIa8qMh7t7mXk+2jah4Qv4BrJt3WBYAAAAAPcaICQAAAOCIM7OcpFdKOu+ce6nDKV+WbDsFLV4pP4VSt9EUnVzqkPebyb1+TNKTktYlfUDS4Db3Wmp7XU+2210HAAAAoE8ITAAAAAC4V9KAOqwvkXhtsu10/Eu3ONaNy75I1rD4aknf6Zz7rUx+cRf3BAAAAHCdIDABAAAAHHHOuccl2RbH37zFsQ9K+mCHQ3X5YMdODMhPM5uOdpCZvVnSiR1eDwAAAOA6QmACAAAAwEGYlfRtZvYNks5LesY5N9/pROfckpk9KunHzGxNUlHST0ia61lpAQAAAPQMi18DAAAAOAi/LunP5NeO+LSkmW3O/1ZJ85J+V9IPS/peSU8fYPkAAAAA9Ik557Y/CwAAAAAAAAAAYB8wYgIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD3z/wMDMG6CwS0c7QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"fig, ax = plt.subplots()\n",
"shaded_mean_std(\n",
@@ -402,28 +421,7 @@
"ax2.set_ylabel(\"Computation Time\", color=\"indianred\")\n",
"ax2.tick_params(axis=\"y\", labelcolor=\"indianred\")\n",
"ax.set_title(\"$l_2$ Error and computation time with respect to $m_{train}$\")\n",
- "fig.tight_layout();"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABiYAAAPPCAYAAABAK3M6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcV33//9eZGe27LMmWN9m+tuXdjhOW0EA2tlLUgrtRWpetLOXXNrSlLUuAsBVo+VJSugAtLdSllBYMdFgCIRDICkkcW7bjyPa1LduxbEuWZO3LzJzfH+cKK7Ika7mj0fJ+Ph73MdbMnXPPLBprzvue8zHWWkRERERERERERERERGZCJNMdEBERERERERERERGRhUPBhIiIiIiIiIiIiIiIzBgFEyIiIiIiIiIiIiIiMmMUTIiIiIiIiIiIiIiIyIxRMCEiIiIiIiIiIiIiIjNGwYSIiIiIiIiIiIiIiMwYBRMiIiIiIiIiIiIiIjJjFEyIiIiIiIiIiIiIiMiMUTAhIiIiIiIiIiIiIiIzRsGEiIiIiIiIiIiIiIjMGAUTIiIiIiIiIiIiIiIyYxRMiIiIZJgx5qPGGGuMuTfTfZHZwxjzxeB98cVM90Vml/n+3pjvjy9MYTxXxpj7gzbuCq9nIiIiIiLji2W6AyIiIsLO4HJfOhoPBps+MNH9rbUmHf0QmcuMMa8HVgH3W2vvn6vHyKT5/vhmGz3f809Yr6neGyIiIjIbKJgQERHJvOuCy7QEEyNcmIFjiMxHrwduDv59f4aP0QQ0BJdzyeuZ348vE8Z7rl5P+t+zMrNeTzivaVjtiIiIiEyZggkREZEMMsYsAxYHP6Y9mLDWLkn3MUQkvay17wbenel+pMt8f3xh0nMlIiIiInOVakyIiIhk1tAyTh3A8Ux2RERERERERERkJiiYEBERyayhYGK/tdZmtCdjGF4Y1RiTZYz5c2PM48aY9uD6Wyaz34i2bzHG/K8x5hljTL8xpsUYc58x5g3GmOh0+jOBx1VmjHmTMeZ/jDEHjTGtxpg+Y0yjMea/jDHPn+BzYowxbzbG/MwY02GM6TTGPGKM+b0J9OF3jTEPBfe5HLTxFmNMKHU+jDErjDF/Y4zZH7Tfa4zxjTHfMsb8vjEmd4z7Tfd1iRlj/tQY86QxpssYc9EY801jzPZh++cbY+40xhwyxnQbYy4ZY75qjPEm0H62MeZdxpj64L5txph7jTG/PM5zcSq4/+vH2eeqQsLGmNcbYyxXlj35QLDP8G3VsP0n/b6awjGuWfA4hNdwyu/rdD6+dL/Pht1vlTHm08aYw0HbPcaYp40xdxtjVk72OQjaPBj0/Y9Gue3GYc/F10a5PSt4Dawx5vZh10/7PTviOKG97sPanNRn9lSfe2PMbxtjvmeMuWCMGQzaP2aM+T9jzP9nRnzemWl+pky3v8F9J/QZPZ3XdMTxptSOmcLnyUQYYz4ZHPM7wc+vDdq9FLz/fmqMuXXY/lnGmLcaYx4OXt8uY8z3jTHbptoHERERyRwt5SQiIpJZaS18HbJc3FrULwASQCcwWpgyof2MMZ8C/jT40QKXgVLgtmD7PWPMq6y1ndPsz1ju4EpR8CRu1grAymB7jTHmHdbavx+njSjwDeDXgj70AEXA84HnG2PWWWuvKjxujDHAF4A3BFdZoB24AXgucCvQP4nHchVjzG7g87jnCWAA9xytBNYAvwrUA/tH3G+6r0sWcA9we3DMQaAS9xzdHgwynQTuxdVX6QuOUw78FnCLMeY51trTY7SfDfwQeCHuOe8K+vdi4MXGmA9aa+8a77mZpF5cbZby4LF1B8ccLjns31N5X032GOMK4TWc0vt6HKE+vkDa3mfGmN/F/X7mBFf1AymgNtjeYIz5DWvtDybZ5x8DW3CvwT+MuO22Yf++xRhjRoTVzwUKg748dI3jTPX5Dvt1H+man9lTfe6NMf/Glc9TcI83C1gbbHXAd4BTo/Rryp8p03mvTPIzOqzfoUm3E8LnyXiGamwdM8bEgVdy5fe5APea3GOM+SXgPLAXeE7wOAzuuXspsCN4f3YgIiIic4e1Vps2bdq0adOWoQ04g/uivzuNx7grOIad4v3vD+7fGWyvB/KC2xYB5ZPZL/j5j4b6BHwOWBJcXwC8AzcoYYH/nmp/JvC43hI8N9cD2cF1BlgNfBo3uJQArhunD624QOF1w/qwHPi/4PYksG6U+//JsMf/GaAiuL4EN6idAtqC2784hdfsV4I2LPAgcBMQCW7LDn7+PLBpxP3CeF3agBbgN3ADXwY3kOQHtz+EG1w6iRtQigTb7cDFYJ//HKf9dtwg81uB3OC2FcD/Duv7r45y/1PBba8f53n74ljP+bDj3zUD76trHWO8fobxGk7pfT2Jz5LpPL50v89eEjy+QeATwKqgbYMbaP4frgzOrpzk4391cN9LBL+Pw2774bB2LbBjxO13Btffn4b37Ey97tf6P2RKzz3u82yof3/Js/+vWRS8/l8Elob8mTLl9wpT/4ye0Gsa4u/ilD9PJtiPS1z5fW4EXgVkBbe9DBdAWODrwCFcSHNL8BxHgvfSUP/+eDrPiTZt2rRp06Zt5reMd0CbNm3atGlbqBvu7N6hL9Sb03icu4Yd5/w1trtHuf/9w+5fN85xJrpf3rDBiP8aY58/HtbW9VM5TgjP2z8Ex/jXazzWW0e5PQd4Jrj9vSNuyx32+P9jjGN/bFj7X5xkv2PAieC+DxAMjk/gfmG+LjeNct/bht3eA6wdZZ83Drs9a5z23zjKfSPAT4LbD41y+ylmIJgI6X017jHG6mfIr+Gk3tcTfOzTenzpfp8F76GjwW1vGad/3wr2+fQkH38ZbiDbAjtHPK89uLPX/za4/c9G3PdHwfUfCPs9O4Ov+5if2dN57nFhhAW+P41+TeozZZr9ndJn9GRe0zDaYZqfJxPoQ82w+15gRHAU7PMvw/Y5DBSMss/Qa/SP03lOtGnTpk2bNm0zv6nGhIiISOYMLWHQCzw9Q8dcfI2tZJz7HrbWxidwjGvt9xLcMhLgQpPR/BPQFPz7tdPsz1R9J7i8aZx9HrLW/njkldbafuD7wY8j175+KVce/4fGaPfjuDN4p+JW3Nn5AH9qrR2Y4P3Cel0etNY+OMr1P+HK8lRfs9aOVux96DnLA9aN0f4Z4N9HXmmtTQEfCX7cbIzZOsb9M20i76upCus1nMr7eqal4332ouDnFuBfxzn2fwSXL5t4d8Fa2wYcCH4cvnTT84O+PIRbnupZtxtjcoAbgx+vel1ClO7XfbzP7Ok89+3BZeUU6x1M5TNlOv2d6mf0TAvr82Qs1w3795uttedG2edscGmB37bWdo+yzzPBZdYkjx8KY8xZY8w3MnFsERGRuU41JkRERDJnqL5EvbU2CWCM2Qn8Hm65kdW4AbYjwKestd+c7gGttdMpqnytdc0nut8NweUZa+3R0Xaw1iaNMT8CfnfY/lPtz5iMMWuAt+MGijzceuojT9xYPk4TPxvntqFBlvIR1w9//KMNmmKtvWyMeQL4pXHaH8sLgsvz1trHJ3G/sF6Xn49z3xZgGfDYGPe9MOzfZWPsc7+11o5x2wO4ZZJiQf8OjrFfWoXwvpqqsF7DqbyvZ1o63mdDv28lwDkzdg367OCyZmJdfZYf4QZkbwM+GVx327DbHsZ97r/QGBMN/m94AW6mVS/w6BSOOVHpft3H+8yeznN/Hy7IvQ54wBjzBeBH1tqTE+zXVD5TptPfqX5Gz7SwPk/GMhRMnAO+PcY+q4LLh621h8bYZyjkGa1ezB8D7dbaPZPs24QYYxbhPms+l472RURE5jsFEyIiIpkzWuHrv8SdpbgXdyZiHvA7wDeMMR+21r5/Zrv4LBdD2q8quHxm3L2unClZNcbtE+3PqIwxrwa+wpWipeAKFQ8Vyc3GDVoWjNPMeMU+E8HlyLM4J/v4J2tJcNk4yfuF9bpM5DkZdR9rbWLYAN9YZ7+O2T9rbZ8x5hJu9s9Y/UurkN5XUzWTr2FGzk4eJh3vs6XDrls8gT7kTWCfkX4M/DkueIhZaxO4AAvcYHqvMeZR4GZczYxHh93+cJrPrk/36z7eZ/aUn3trrW+M+QPgs7iZJTcCGGOacc/3fwH/N074MJXPlOm8V6b6GT3Twvo8GctQMPGdYHbKaHYEl98a7UZjTAQYmslSP+K2XOD/Af8MpCWYwNVlycPV2hAREZFJ0lJOIiIimTNaMPEZYJm19s3W2s9Zaz+NO7vyUeDdxphMnqWcDHm/6ZrycYKzHL+IGzz+Ea6YZr61tsRau9hauwT4zTA6mQFjDb5Jms3z99VCMLQM0M+stWYi2xSO8VPcIH8h8FxjTD7wPFyB5CeCfX4UXN424jKdyzjNhPE+s6f13Ftrv4yblfA24Ku45Zkqgd8Cvgn8xBhTHOJjmU5/9Rnt7AguR53ZZIzJBjYHP441s2QdV0LefSNuuw4XHI06u2q04wVBx4RZp29o1quIiIhMjoIJERGRDDDGlABrgh9/8WXaWvuQtfZZtQWCL7x7cTMd189YJ9Nn6KzZay1lM3T7tGZGjOEVQDHQhivG+hNrbe+IfZZcfbdQDD2eZdfY71q3j+V8cDnZZWZmw+syEWM+L8Fa/IuCH0f2b+iM79xx2h6vxspEZPJ9BXPnNZytpvq7M2HW2k6uBBC34WqNZAM/HTa4ORRA3GaMKQCeG/z8I+avaT/31trWINB/jbV2JbAWV6/HAi9k7DoJU/lMmU5/0/4+C0naPk+CEHdF8OPIQGHIVlywYMfZZ2jWxUVr7S9mGRpj7sEtiwbwn8YYG2yvCm7/V2NMjzFmjTHmP4NZMV1A1Biz1BjzN8aYJ40xbcaYDmPMz4fuO+Jx/Ksxpnt4oGGM+aIxptMYU22M+Zwxpin4+TvGmOqJPD8iIiILhYIJERGRzLgOMMAAMNa6ycMNLRvRnLYezZyhMx+XG2NGDVqCAqZDy5eMtU78dAwNiDRYa3vG2OfFaTguXHn8K4wx3mg7BGf2Xj/F9ocGY5YYYyaz5vdseF0m4mYz9oLuL+TKUqUjz7BtCy5XMIpgYGm852toqZHxzpKf7vtqIscYz2x/Daf7+NJtqAbCZH93JusXwQPDlnEadvvPgB7cbLnbcYOzXUz+9Zrtz/dwoT/31lrfWvtu3FJO4JZJHM1UPlOm09+pfkZDeK/pRNpJ5+fJUKAwyNi1gIZmlfrW2svXaOfJEdf/I3B/0P7uYdtPgtt34JYuexj3XLwX+Atr7SDwKtxj+jZuec2/xoVTXzPGDIWEDGvn4IilqHbgCrI/gnt+78ItJfUK4FNjPA4REZEFScGEiIhIZgx94T58rTXDjTHLgDfglozw096z9LsXuBT8+64x9nkrV8KYr6ShD0ODHOuDdaifxRizA3htGo4L7vEPDZK/b4x9/pKprV8PbtDzRPDvvwuWw5hovzL9ukzESuB1I68MgoX3BD8+Za0dOdh1ILh89RiDkK9j/DODO4LL0nH2me77aiLHGM9sfw2n+/jS7cfAUEH6a/7uTGNpvaEQ4kbgl0dcR/B/wkO4z4Ch9/SDQT2KyZjtz/dwU37ug1kN4xmatTRWHYOpfKZM570y1c9oCO81nUg76fw8GQoUxvsbaGifsWZLwJXloJ61j7U2jguUnrLW/uewrc0YE8MtEVUF3GGt/X1r7WettXcHd/+StfY51tr3WWv/xVr7cVxQEcWFCwAMa2f/sOuygI24mXGvs9a+JZjF83ZcIfWRwYaIiMiCpmBCREQkM0arL3GVYP3xb+DWrH9Lujs1E4Klbe4KfvwdY8xnjTGLwT1eY8yfAJ8Obv+qtfaJq1uZth/gBqnKgS8H4c/QGtO/Fdw+XiHYKQse/4eDH19njPl0sKwFxphiY8z7cINh7VNsPwn8EW75i5uA+4wxNw0tNRE8xluC5Ss2jejXXcGPmXpdJuIy8M/GmDcPDf4bY1bgBsWGzty9c5T7DQ2abQQ+P+I5/1Nc4dzWcY47NLPpFUPvl1FM9301kWOMaQ68htN6fOkWDPy/Dbfs103AT40xtweDjQAES7+8zRjzGPD2KR7qIdxsuVxgO24m3MggbSioeF5wOZX6ErP6+R5ums/9Pxhj/scY8+vGmKph+xcaY94G/H5w1XfGOPykP1Om09+pfkYHwnpNr9lOmj9PJhI6DP2dNF67o7YThM/bGRYaDLMB97v3v9bar4680VrbHbQRMcaUGGMqgD7ca50zSjvDj7EJtzTbF6y1P+HZBrgSkomIiAgKJkRERDLlmsFEcBbl3mDf37XW1k/3oMaY8xPYXjDd41yLtfYfgL8Lfnwr0GSMacUNEN2NW7rkx8Cb03T8Y8DfBj/uAs4aY9pxy6V8Nbj8k3QcO3A3bmkHgDuAi8HjbwU+FPThW1Nt3Fr7PeD1QD9u4OsBoMcY0wJ0457b38UNoAy/X0Zflwn6J9wSI58HOoL+ncYVuQX4iLX2GyPvZK29jyvP+R8ALcaYNtzslU8BnwPi4xz3S7jBqbXA6eB35VSwLQ+OMd331TWPcS2z/DWc9uNLt+B98pu4AOl5wA+BbmNMizGmD/CBf8Yt+zWlIsbBMl8/G3bV/dbakW2NDCKmEkzM+ud7uGk891nB/b4GXDBuPf+2oJ1/xn3OPQh8dIxDT+czZUrvlal+RhPeazqhdtL4eTJuMGHcElHbgh9HDSaCQKVyjHY8oIirl3iCK7Ms9oy8wTivM8Y8ggsR2nHB4QXcDIxjo7Szf9h124PLr41y3I3A06NcLyIismApmBAREZlhxs2CqA1+HOtLeRbwP8BLgTdZa/eGdPjFE9gms6zElFlr/wy3xvrXcV/6C3EDPD8G3gi8JCgUm67jvwt3Ju3PcQMQWbilOf4aN2hyLo3HTllrfz84/qPB8WO498PbCGEZKWvtf+DO6Pw08BTubM88oBH4Jm697SOj3C+jr8sEDODW3X8P0IA7g/UycB/wK9basZbHAjcQeAduIKkX97fwQ8BvWWvHDaKC0OFW4P9wA1WLcMVra7iyBv203lcTPca1zNbXMKzHl27W2m/iBmw/iHsdu3BL3vTjlgT7V+DVXAmhpmJ40DBaUevHubLcTgfXmF03mrnyfA83xef+w7jA7xu4gd8E7j1/Ebcc0RuBW4bOhB/FlD9TpvNemcpndIifERNuJ+zPk+BvoKGaFWO9rzdwZTnDaxW+brfWnhjjtv2j3G8HLigaOaMB4DPAF3EFyv8E99q9BBfCjGxvB26GXP2I6yzuvfALwUyepYwelIiIiCxY5uqTc0RERCSTgjMF/xv4DeAPrbWfzXCXRDLOGHM/cDPwQWvtXZntjYjMdfpMmb+MMR/BFbQuHVk42xjzQ2CVtXbtiOtXASeBf7DW/vGI276PC3IKh2piBO0st9ZuGLbfj4CVo7T9cuB7uKDru+E8ShERkblPMyZERERmkWCN6S/hQok/VSghIiIiMimrgbaRoURgO6PPwlgRXDYMv9IY8xbc7NWRhbpHq2ExVttDMzg0Y0JERGSYWTmFV0REZAH7W9y60o/g1sD/vRG3PzzKkgUiIiIi4pwEyowxn8AV+m631saD+hkVjB4QHMTVlPiAMaYQtyzXS3CBhWVY4DCsnf3DrlsBlI/R9nXABWtt07QfmYiIyDyiYEJERGR2uT64vDHYRnoDoGBCREREZHSfxNXyejNQBnwXiHOlYPVV4YG1tt0Y82u4mh93AU24ZTU/hKv5Mvw+Q+3sH3bdUOHrsYKJ/aNcLyIisqApmBAREZlFrLW3ZLoPIiIiInOVtbYd+M1Rrv82YMa530+BnaPcZEbsd1U747VtrV13zU6LiIgsQCp+LSIiIiIiIiIiIiIiM0bFr0VEREREREREREREZMZoKacMMcYYgiJYme6LiIiIiIiIiIiIiIRuMfCk1bJFV1EwkTnXAU9kuhMiIiIiIiIiIiIikjbXA/sy3YnZRsFE5gzNlLgezZoQERERERERERERmU8W405M19jvKBRMZN4Fa+0zme6EiIiIiIiIiIiIiITDreQvY1HxaxERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCRERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCRERERERERERERERmTEKJkREREREREREREREZMYomBARERERERERERERkRmjYEJERERERERERERERGaMggkREREREREREREREZkxCiZERERERERERERERGTGKJgQEREREREREREREZEZo2BCRERERERERERERERmjIIJERERERERERERERGZMQomRERERERERERERERkxiiYEBERERERERERERGRGaNgQkREREREREREREREZoyCCcmYvQ1NeXsbmrIy3Q8REREREZG5KO552XHPK8h0P0REREQmS8GEZNJzgY2Z7oSIiIiIiMhcE/e8HOBW4NVxz1sb9zyT6T6JiIiITJSCCcmkXGBJpjshIiIiIiIyl8Q9Lwv4JWAbUAL8MvCCuOflZrRjIiIiIhOkYEIyrVrLOYmIiIiIiExM3POiwPOB64BG4DRwCXgB8Ctxz6vOYPdEREREJkTBhGRaIVCW6U6IiIiIiIjMdnHPiwA3AM8BzgG9wU2dwDFgOVAX97ztQYAhIiIiMispmJBMKwLKM90JERERERGR2SyoIbEduBG4CHSN2CUJnAAGgduBF8c9r2RGOykiIiIyQbFMd0AWvHxgUaY7ISIiIiIiMsttAm4C2oDL4+zXgptBsRWojHveo4Bf5/s2/V0UERERmRjNmJDZYMXehiaT6U6IiIiIiIjMRnHPWwfcDHQDrRO4Sz9wFDdDXYWxRUREZNZRMCGZ1g2UAMWZ7oiIiIiIiMhsE/e8VcCtQAJonsRdLXAWFcYWERGRWUjBhGRaD245J9WZEBERERERGSbuectwoUQW0DTFZlQYW0RERGYdBROSaSnAAGWZ7oiIiIiIiMhsEfe8KuA2oBA4Pc3mVBhbREREZhUFEzIb9AHLMt0JERERERGR2SDueeW4UGIRcCrEpltwIcdW3OyJtXHPU70/ERERmXEKJmQ26AQq9zY05WW6IyIiIiIiIpkU97xiXCixDDfLIWwqjC0iIiIZp2BCZoMu3PRkLeckIiIiIiILVtzzCnA1JVYBx3EFrNNBhbFFREQkoxRMyGyQAGKoALaIiIiIiCxQwayFm4H1gI+rx5dunbgARIWxRUREZEYpmJDZIglUZroTIiIiIiIiMy3ueVnAC4HNuOWbEjN4+AQqjC0iIiIzTMGEzBadwLK9DU06O0dERERERBaMYIbCC4DtuELXAxnqigpji4iIyIxRMCGzRReu+FpphvshIiIiIiIyI+KeFwGeB9yAq/nQl9keqTC2iIiIzAwFEzJb9AL5qM6EiIiIiIgsAMFshOtwwUQT0J3ZHv3CyMLYr1BhbBEREQlbLNMdEBnGomBCREREREQWhq3ATbgllDoz3JfRDBXGXglUxD3vZ8ChOt9PZrZbIiIiMh9oxoTMJt3Air0NTVrHVERERERE5q24523AFbvuANoz25txqTC2iIiIpIVmTMhs0oWrMVEQ/FtERERERGReiXveGuBmXJHrlgx3Z6KGZnVsBSrjnvco4Nf5vs1st0RERGSu0owJmU26gEK0nJOIiIiIiMxDcc9bAdwGGOB8hrszWSqMLSIiIqFRMCGzSQqIAmWZ7oiIiIiIiEiY4p63BLgVyAOeyXB3pkqFsUVERCQUCiZktukH9IetiIiIiIjMG3HPW4Sr0VAGnMpsb0IxVBh7BVAX97ztcc+LZrhPIiIiMoeoxoTMNp3Akr0NTdm7aqsHMt0ZERERERGR6QiKRd8GVAF+mG2baDRqk8lkmG1OwlBh7Apc6LIk7nmP1vn+5Qz1R0REZE7bt3t3PvBSoA64CagBkriTAb4OfGrnnj1dI+5zF/CBcZr9xM49e96Vlg5Pk4IJmW26cDMmyoALGe6LiIiIiIjIlMU9rxAXSqzEDSqEVix60YYNr8gpK/uD1MDAgY7Tp/+1p7k5U8tDqTC2iIhIOF4L/Evw7yPA/wHFuOUTPwj8zr7du2/euWfPxVHu+xDub42RnkhHR8OgYEJmmwEgBwUTIiIiIiIyh8U9Lw+4BfBwAwWpsNqu2Lz513NKSl4HEM3Jub507drtBUuWfKvt2LH/SfT19YZ1nEkYKoy9DFcYe1/c856o8/2+DPRFRERkrhoEPg98eueePUeGrty3e3c18B3gOuDTuABjpH/duWfPF2egj6FRjQmZjZJAZaY7ISIiIiIiMhVxz8sGXghswC13FNpySxVbt/7uUCgx0NX1rWR//+PGmFh2UdGvV+3Y8c9l69a9KKxjTdJohbGXZKgvIiIic87OPXu+tHPPnrcODyWC65uA/y/4cde+3buzZ7534VMwIbNRF7B8b0OT3p8iIiIiIjKnxD0vBvwSsA1X6HowrLYrt217U05R0W8D9F++/KXm+vovnH/iiQ91NTV9OJVMNplIpDy/svKdS2644a8LlixZFdZxJ2l4YexfVWFsERGRUBwILnOARZnsSFi0lJPMRl1ACW4NtfbMdkVERERERGRi4p4XAZ4H7ARO45Y4mjYTiUQqt237w6z8/JcB9LW1fe7SkSPfGbr98smTj3WePbu/fP36V2cXF/9WNDt7S8nq1Z8uWLz4u23Hj395sLu7O4x+TIIKY4uIiIRrTXA5CLSOcvtt+3bv3gHk4mYwfm/nnj2ztr4EKJiQ2akHWAqUo2BCRERERETmgLjnGeAG4LnAOSCUWg8mEolUbd/+jlhe3i3W2lTfpUufaT169L6R+6UGBwdbDh/+n9yysh+VrF79xlhu7k1ZBQWvrNy69UV9bW1faj169IdYO9MFqVtwJ56pMLaIiMj03BFc3rNzz57RTnzYPeLnD+/bvfvrwOt37tnTld6uTY2WypHZyAIGVwBbRERERERkLtgO3Ag04wbjpy0Si8Wqduz4qyCUSPY2N39ytFBiuL62tpYL+/b9Teczz9yZSiROm0ikOG/Roj9ecsMNnyxctmxdGP2apD5cYewiXGHsF8Q9LzcD/RAREcmUQmNM8bAtZzJ33rd79yuAN+FmS7xvxM3HgXcCm4FC3FKKvws8A/w6sGe6nU8XM/MnTAiAMWYZblrNcmvtM5nuTybsbWh6GbAWN8V5pOXAuV211d+a2V6JiIiIiIhMTtzzNuGWLOpg9OUVJi2SnZ1dtXXru6M5OddbaxM9Fy58vP3EiZ9Ppg0TjUbLa2tfmVNS8lpjTB7AYE/Pve2+/x8DnZ2ZWFapCFgG+MDDdb5/PgN9EBERmRHDxn9H+qC19q6JtLFv9+4NwMO4E7jfsXPPnrsneL9q4CCuHsWNO/fseXRCnZ5BmjEhs1UXsGhvQ1NepjsiIiIiIiIylrjnrQNuxi3dFEooEcvNzavatu0DQSjR33Xu3IcmG0oA2GQyeempp77VcvjwWwd7e+8DyMrPf0nF5s2fXbRx4ytNJDLTYwIqjC0iIgvRBlw93aHtYxO5077du5cB9+BCiU9NNJQA2LlnTxPw78GPL59Ub2eIggmZrbpwZ9OUZ7ojIiIiIiIio4l7Xg1wC5ACLoTRZlZBQUHF1q0fimZnb7XW9naePfv+jsbG/dNpc6Cjo/3ik0/e3XH69F+kBgd9E4kU5JaVvWXJDTfcXbxy5ZYw+j0JQ4WxB3GzTF4c97ySGe6DiIjITOqy1nYM20arEfEs+3bvLgd+ANTgAoZ3TuG4x4LL6incN+0UTMhslcAVZ1edCRERERERmXXinrcUuA3IxhW7nrbsoqKSis2b/zqalVVrU6nOjsbG93aeOXMkjLYBOs+ebTj/xBN/3tva+k82leqMxGI1RcuX//XinTv/Iqe0dFFYx5mgFuAMrjB2Xdzz1gYFxEVERBa0fbt3FwLfAzYBe4E379yzZyr1GIbGVbvD6luYFEzIbDYILM50J0RERERERIaLe14lcCtulvdoNfMmLae0tHzRxo0fi8Riq20q1X751Kn3dJ07dzyMtoezqVSq9emn72k+dOhtg93d37XWpmK5uS9ctHHjZys2b/71SCwWC/uY41BhbBERkWH27d6dA3wLeC7wfeB3du7Zk5xCOwZ49dCP4fUwPAomZDbrBKr3NjTN5B/GIiIiIiIiY4p7XhluCaIq4FQYbeaWl1eV19Z+PBKLLbfJZEub77+r+/z5xjDaHstgV1fnxQMHPnv51Kk/Sw4OHjHG5OSUlLxu8fXX/0PJ6tXXp/PYI1hcYdBLwAuAV8Q9b8kMHl9ERGRW2Ld7dxT4Cm5G5gPArp179gyMs3/lvt27/799u3cXjbi+EPhn4HnAedysi1nHWDuVWSAyXcOqsi+31j6T6f5kwt6GppcBaxn7DKM8oAL4n1211S0z1jEREREREZFRxD2vCHgpsApXxDk13TbzKiuXlq1Z8xETjVakksnzbceO3dnX2npxuu1OVtm6dbfmLVr0ehOJlAEk+vt/3tHY+K+9LS3nZ7AbMdxa2j3Az4BDdb4/6bNERUREZoPJjv/u2737DuDTwY/fADrG2PWdO/fsadm3e/cq4CSuVu9jQBNQCewEFgHtwCt37tnz0NQfRfroTHSZzXpx4UQZbv1RERERERGRjIh7Xj6u0PVqQgolCpYsqSlZterDJhIpTSUSZ1uPHr2zv729dbrtTkXbsWM/7jx79tGydetek1VQ8KuxnJznlq1bd11BdfXetoaG/00ODIx5xmaIEoCPO0HtdmBJ3PMerfP9yzNwbBERkUwbXmv31WPuBXfhxkovAZ8Ang+sx808TOLCii8Cf7dzz55Ze0K8ZkxkiGZMTGjGBMHtj+yqrX50ZnolIiIiIiLybHHPy8HVlNiKCyUS022zcOnSdcUrV37QRCKFqUTixKUjR94/0Nk51pmRMyq/qmp58cqVb4lmZ+8ASCWTzb0tLV9o9/2HZ7AbubjZE+eBRwG/zvc1gCEiInOGxn/HpxoTMtt1A8v3NjSZTHdEREREREQWnrjnZQE34UKJE4QQShStWLGxuKbmIyYSKUwODja0HD783tkSSgD0XLx49vzjj7+/+8KFj6WSyeZINFpZsHjxu5bccMOH86uqVsxQN1QYW0REZB5TMCGzXRduGlNhpjsiIiIiIiILS9zzosCNwHVAIzDt5YyKa2p2FC1f/mFjTF5yYOBQy8GD7x/s7u6ebrvp0O77j1x88sk/7O/o+G9r7WA0O3t7qef9feW2bW+M5eXlzUAXhhfGvhEVxhYREZk3FEzIbNeNCyXKrrWjiIiIiIhIWOKeFwGeE2xncTXwpqVkzZrnFC5d+n5jTHayv/+J5vr6uxJ9fdNuN52SAwMDLYcO/Vfb0aNvT/T3/8wYE80uLHxV1fbtnytbv/5WjJmJ2e2duNoTK4FfjXve9iA0EhERkTlKwYTMdinc+7Q80x0REREREZGFIe55BtiBKyZ5HnfC1LSUrV17U8Hixe8xxsQSfX2PXDxw4KMzVFA6FL2XLl248MQTH+1qavpgKpk8ZyKR0vyKij9dcsMNHy+srl4zA10YKow9iCuM/eK455XMwHFFREQkDRRMyFzQByzNdCdERERERGTB2IKrK9EKTLv2Q/n69bfnVVa+0xgTTfT2/vji/v2fSCUS065VkQmXT5584sITT/xR/+XLX7LW9kWzsjYWr1r1d1Xbt/9hVmFh0Qx0oQU4g6v58cq4560NgiQRERGZQxRMyFzQBVTtbWjKznRHRERERERkfot7Xi3wItzyQW3TbW/Rxo2/kldRcYcxJjLY03PPhf37P21TqdS0O5pBqUQi0XL48NcvHTnytkRv70+NMSaroOCXK7ds+Wz5hg0vN5FIuscahgpjF6PC2CIiInOSggmZC7qAIrSck4iIiIiIpFHc81YDN+OWC2qZbnsVmzf/em5Z2VsBBrq6vnVx//5/wlo73XZni/729tYLTz75yc6zZ9+TSiROmUikKK+8/O1LbrjhU0XLl29I8+FVGFtERGQOUzAhc8EAkI0KYIuIiIiISJrEPW85cCsQA5qm217F1q2/m1NS8jqA/s7OrzbX139hum3OVh2nTx86//jj7+hra/u8TaW6I7HYmuKVK/+m6rrr3pFdXFya5sOrMLaIiMgcpGBC5ooEUJnpToiIiIiIyPwT97zFwG1AAa5+wbRUbtv2ppyiot8G6L98+UstBw9+ebptznY2lUpdOnLk2y2HD79tsKfnXmutzcrLu61i8+bPLdq06ddMNJrOsGBkYezbVRhbRERkdlMwIXNFN7Bsb0OT3rMiIiIiIhKauOctwg1mlwGnptWYMaZqx463ZxcW/hpAX1vb51oOH/76tDs5hwx0dl6+uH//ZzpOn35ncnDwmDEmL7e09E1Lrr/+74traran+fBDhbG3ocLYIiIis5oGeWWu6AJKgk1ERERERGTagrPqbwOWACen05aJRCKLd+x4R1Z+/suttanelpa7Lx058p1QOjrOYYFZuWxR1zPPHDv/+OPv7L106TM2lbocicVWFC1b9uHFO3e+K7e8PJ2z4VUYW0REZA5QMCFzRQ+Qj+pMiIiIiIhICOKeV4ALJVbilgGaclHqSCwWq9qx469ieXm3WmuTvc3Nn2w9evS+sPo6hmxgPbAGqAl+nl2sta0NDfderK9/20B3d9xam4rl5r6gvLb2nys2b/6tSFZWVrqOjApji4iIzGoKJmSuGPqSUJ7RXoiIiIiIyJwXnEF/C7AWOAGkptpWJDs7u2r79vfGcnNvtNYmei5c+Fjb8eMPhtTVsRQCq4HDwHeBZ4DluJAiL83HnrRET09384ED/3L55Ml3JAcGDhljsnNKSn5v8c6d/1i6Zs1z03jo4YWx61QYW0REZPZQMCFzSQ/uj20REREREZEpiXteNvAiYBNu0Dox1bZiubl5Vdu2fSCak3O9tXag69y5D7WfOPHzsPo6hgpgMfAz4L46338a+L9g84Pb1uLCi1ml+/z5U+cff/w9Pc3Nn7SpVGskGl1SsGTJnUuuv/4DeRUV1Wk67FBh7AQqjC0iIjJrGGunPFtVpsEYsww3tXS5tfaZTPcnE/Y2NL0M9wfz6QnepRQ3Pfkru2qre9LVLxERERERmZ/inhcDbgJuwBW67p9qW1kFBQWLNm26K5qVVWut7e08e/aDnWfOPBVSV8eyEkgCjwAH63z/WTM94p4XAZYCG3HftfKBi0B7mvs1adHc3Nzydet+K6uw8FXGmJi1NjHY1fXN1mPH/ifZ19eXpsPm4pa9asIFO36d72tQRERE0kLjv+NTMJEhemNOKZiI4f4Q/9qu2uoF+ZyJiIiIiMjUBIP2NwLPx30Xm/LJTtlFRcWLNm78UCQWW2NTqc6O06c/0HXu3PGw+jqKKG7ppkvAA3W+P26h7rjnGdzMidpgKwJagNY09nFK8iorl5asXPnmaE7O9QA2mbzUe+nSv7UdP/5Amg5pgGW475f7gCfqfD9dQYiIiCxgGv8dn4KJDNEbc0rBBMA64N5dtdUH09MrERERERGZb4KB+htwsyUu4GoPTElOaWl5+fr1H47EYitsKtV++dSp93WfP98YVl9HOySwCjgJ/LTO95snc+e45y3CfY/aDJQBbbiQYsp1NdKhdM2a5+ZVVr45Eo0uBkgODBzqPHv2c2l8botws0tOAA/X+f75NB1HREQWKI3/jm9OBRM1d5MHvBt4De7M+VbgHuB9jXcw4Re35m5uxhU6e26wVQCNjXew6hr3iwJ/ArwRN6DeBfwY+EDjHRyZzGPRG3PKwcQq4OldtdX3pqVTIiIiIiIy78Q9bzvuO2Ar01jWKLe8vKps3bqPRKLRJTaZbGk7ceLO3ubmcyF1czRDg+cHgYfqfL9rqg3FPa8Y9/1rC1AFdOCWeUqG0M9QRLKzs8vXr391dlHRbxpjsq21qcGenu+0HTv2X4menu40HDKGW9qpG/g5cKjO92fN8yEiInObxn/HN2eCiZq7ycWFAM/HrQf5AG6Q+rlAM/D8xjs4McG29gPbR1w9bjBRczcR4GvAq3F/yN6HCzReBPQCtzbewYSLnOmNOeVgogJXtOwru2qrp1ykTkREREREFoa4523EFT3uwi2FNCV5lZVLy9as+YiJRitSyeT5tmPH7uxrbb0YWkevVokLJh4DHqvz/cEwGo17XgHgAVuBJbglrS4AobQfhtzy8sqSVaveFMvNfQGATaUu97W1fan16NH7SM8gRgVuNskh4Gd1vn85DccQEZEFRuO/44tkugOTcCculHgEWN94B7/deAfPA/4c9wfbv02irR8E7b0MN511It6ICyWOARsa7+A3Gu/gFuA3cQXFvlxzN7FJ9EGmpgsoxv3RKCIiIiIiMqa4560Fbgb6mEYoUbBkSU2Z533cRKMVqUTibGtDw7vSGEoY3Fn8WbgT4h4JK5QAqPP97jrfr8edePdd3LJONbgT/3LCOs509LW2Nl/Yt+/jnc888/5UInHWRCIleYsW/cmSG27428KlS9el4ZAtwBlcWPPKuOd5wfJfIiIikiZzYsZEzd1k46aYlgA7G+/gyRG3HwC2ATc03sETk2x7CW4GxrVmTDwFbARe3XgH3xxx27eAXwV+o/EOvj6R4yoxm/KMCYD1QHxXbfXR8HslIiIiIiLzQdzzVgIvxS3XM+XvXIVLl64tXrnygyYSKUolEicuHTny/oHOzo7QOvpsUWANblWAn9b5fjprVwAQ97wsXDCxJbgEOM80ioOHycRisfL161+ZU1LyO8aYPGutTfT23tvu+/+RhtdBhbFFRCQ0Gv8d31yZMfFLuFDCHxlKBL4WXNal4+A1d7MaF0r0At+Z6ePLVVLAokx3QkREREREZqe451UDtwK5TCOUKFqxYmNxTc1HTSRSlBwcbGg5fPi9aQwlcnEnbp0CvjsToQRAne8P1vn+cSAOfBO3SkBl0JeimejDeGwikbj01FPfvPTUU28b7O39sTHGZOXnv7Ri8+bPLdq48VdMJBLmuIbFDSBdAm4EXhH3vCUhti8iIiKBuRJMDNWD2DfG7UPXb0vz8Q813jHqupvpPr48WzewfG9Dk6bWioiIiIjIs8Q9rxK4DSgFpjy4X1xTs6No+fIPG2PykgMDh1oOHnz/YHd3OgowgzsRbyVwALinzvenvOzUVNX5fjIIQ74HfANXcLsYN2O9dKb7M1L/5cttF5988u86Tp/+q1QiccJEIgW5ZWVvXXLDDZ8uWrFioks0T1Qn4ONek7q4522Le1405GOIiIgsaHMlmFgZXJ4d4/ah62vGuH2uH1+erQtXYyLjZ++IiIiIiMjsEfe8UlwoUQWcnGo7JWvWPKdw6dL3G2Oyk/39TzTX19+V6OvrDaufIywGyoEHgR/X+X5Gl1Cq831b5/vP1Pn+D4G9uOLbuUAtrkh0Rk8Q6zx79sj5xx//s97W1n+2qVRXJBZbVbxixccWX3fdn+eUlpaHeKgELpxIAC8Gbo97XkmI7YuIiCxoc6VYc2FwOdYfaENnraRroHraxzfG5PDsQmKFY+0r19SN++O9DEjXNGoREREREZlD4p5XhAsllgPHccvyTFrZ2rU35VVW/rkxJpro63ukub7+b1OJRCLMvgaGilz3Az8EjtT5/qwqAlnn+xeBi3HPOwSsAzbhZlC04+pgpDLRL5tKpVqffvp7WYWFD5atXbs7lpf3slhe3s2LNm58Xv/ly//devTo/9nwXrMW3MlxW4HKuOc9CpyYba+ViIjIXDNXZkzMB+8GLg/bns5sd+a0FO69G+bZMCIiIiIiMkfFPS8PuAVXONpnigPm5evX355XWflOY0w00dt7/8X9+z+RplAihhvobwW+V+f7T83mge4632+t8/2f4eor3gcM4GpQLMUV7M6Iwa6uzov79/9Tx6lTf5ocHHzaGJObW1r6+iXXX/+ZklWrrgvxUH242hvFwCuAF8Q9LzfE9kVERBacuRJMdAWX+WPcXhBcds7i438Mt27o0LYhnK4tWH24P4JFRERERGQBi3teDnAz7jvWCSA5lXYWbdjwiryKijuMMZHBnp57Luzf/3c2lUrHjIA8wMPN6vhene+fScMx0qLO9zvrfP9JXEDxfdwMdg+3/HFWpvrV1dR04vzjj/9VT0vL39lUqj0SjS4rXLr0g4uvv/69uYsWLQ7pMCqMLSIiEqK5EkycDi6Xj3H70PVTLmyW7uNba/uttR1DG1fCDpmaLqBqb0NTzjX3FBERERGReSnueVnATcAWXCgxOJV2KjZv/vXc8vK3AQx0dX3r4v79/4S16ZjBUIr7/vgk8IM6329NwzHSrs73e+p8/xCuBsV3gAu4cGI1rh7FzLPWth09+uOLBw68baCr65vW2lQsJ+d55evX/1PFli2vjWZnZ4d0JBXGFhERCcFcCSYOBJc7x7h96Pr6NB9/S83do54Fku7jy9U6cXU6yjLdERERERERmXnBYPCNwA7cyWQDU2mnYuvW380pKXkdQH9n51eb6+u/EFonn60aF0w8CPykzvfTVUx7xtT5fn+d7z8NfBOI4wqOV+OW1CoY565pk+jt7Wmur/+39hMn/iQ5MFBvjMnKKS5+TdV11/1TqefdGNZhUGFsERGRaZkrwcRDuLoMXs3d7Bjl9t8ILuPpOHjjHZwEjuCm3P7KTB9fRjUIZKM6EyIiIiIiC07c8yLADcH2DDClQf7KbdvelFNU9NsA/Zcvf6nl4MEvh9fLXzC4mQQp4F7gsTrfT0fdioyp8/1Ene/7uNkT3wQagEW4OhrFmehTz4ULp88//vid3RcufDyVTLZEotGqgsWL373khhs+lF9VtSykw7QAZ3CFsV8Z9zwv7nkmpLZFRETmtTkRTDTewQDwD8GP/1hz95UzL2ru5s+AbcBPGu/giWHX/1HN3TxdczcfC6kbnwou/6bmbqqGHWcX8Ku49UG/FdKxZGISQGWmOyEiIiIiIjMnGPjdjpstcQHonnQjxpiqHTvenl1Y+GsAfW1tn2s5fPjroXbUGSpy3YyrJ/H0bC5yPV11vp+q8/3TuPoT3wD2A0VALRma7d7u+w9f3L//D/s7O79qrU1Es7N3lHreP1Ru2/aGWG5uXgiHGCqMXYIKY4uIiExYLNMdmISP4KZIvgA4VnM3DwA1wPNwf+S9ccT+Fbg/fqpHNlRzN38A/EHw49DSTNU1d/PosN3e3ngH+4b9/G+4PzJeDTxdczf3Bce4GXd2zu813sG8OutlDugGlu1taIrsqq1OR1E6ERERERGZfTbj6kq04YovT4qJRCJV27ffEcvLu9Vam+q7dOkzrUeP3hd6LyEfV4fgaeCBOt9vT8MxZqUgfDkHnIt73kFgPbARV6C8BVdAesYCmmR/f3/LwYNfzquouK+4puYPYjk5z80uLHx11Y4dN/deuvTFtmPH7p/mISxu5kQRLjBbHPe8h+t8//x0+y4iIjJfzYkZEwCNd9AH3Ap8GOgBXoULJr4I7Gy8gxOTaG45LtB4HlfqQ2QPu+55jJhu2ngHKeA3gT/H/YH1Stx0za8DNzTewc+m8LBkejpxr1NphvshIiIiIiIzIO5564EX4U5SmnThaBOLxap27PjLIJRI9jY3fzJNoUQZsBR4DLh3IYUSI9X5fnOd7z+E++78k+Dq9cASZnhMorel5fyFJ574SFdT0wdTyWSTiUTK8ysr/2zJc57z8YLq6tUhHEKFsUVERCbIWDtvZ5HOasaYZcBZYLm19plM9ycT9jY0vQxYiytUN1XrgG/tqq32w+mViIiIiIjMRnHPWw28JPixabL3j2RnZ1dt3fruaE7O9dbaRM+FCx9vP3Hi5+H2EnCBRBbwCLC/zveTaTjGnBX3vELc98CtQBUuZLoAM7sCQSQWi5XX1r4qu7j4t40xOdbaVKKn556248f/c7C7uyuEQ1TiTqI7BPyszvcvh9CmiIjMIRr/HZ+CiQzRGzPUYOKBXbXVj4XTKxERERERmW3inrcMeBmQxxS+P8Ryc/Mqtmy5M5qdvdVaO9B17txHOhob94fczQiwCugCflrn+8dCbn9eiXteHrAGF1BUAwPA+eByxuSWlVWUrF79hlhu7gsBbCrV2dfW9h9tx47da1Op6S4ZnIubPXEeeBQ4MZ9rjIiIyLNp/Hd8CiYyRG/M0IKJZcD5XbXV3wylUyIiIiIiMqvEPa8KeDmuuPCpyd4/q6CgYNGmTXdFs7JqrbW9nWfPfrDzzJmnQu5mFm6Q/Szwkzrfn/SMjoUq7nnZuEBnC24QP4UbyO+dyX4Ur1y5tWDJkrdGYrGVAKnBweNdTU2f6zx7tmGaTRvcctJRYB/wRJ3v902zTRERmQM0/js+BRMZojdmaMFECe4slK/sqq3uDqVjIiIiIiIyK8Q9rxx4Ka4ewaSXb80uKipetHHjhyKx2BqbSnV2nD79ga5z546H3M0CYAVwBDdTYtIFuQWCWgw1uOLmq3AD+edxSz3NCBONRsvXr39FTknJ75pIJB9gsLf3vnbf/9JAR0f7NJsvwi3zdQJQYWwRkQVA47/jUzCRIXpjhhZMRHF/tH5tV2312TD6JSIiIiIimRf3vGJcKFEDHAMm9eU1p6SkvLy29sORWGyFTaXaL5869b7u8+cbQ+5mebDtAx6t8/3+kNtfcOKeF8HNjN+I+76YC1wEZqxGQ3ZxcWnpmjW/n5Wf/2IAm0r19F++/F+tR49+xyaT06kZEsO9n7uBnwGHVYNERGT+0vjv+CKZ7oDINCVx4UR5pjsiIiIiIiLhiHteAXAr7iSk40wylMgtL68q37Dh45FYbIVNJlvafP9daQgllgGFwP3AAwolwlHn+6k63z8D3AvsxYU++UAtM/S9b6Cjo/3i/v1/39HY+BepwcFjJhLJzy0r+4Ml119/d3FNzbZpNJ3AzfxJArcDt8c9rySUTouIiMwxmjGRIUrMQpsxAe7LytO7aqvvnXanREREREQko+KelwvcBmzCDeImJnP/vMrKpWVr1nzERKMVqWTyfNuxY3f2tbZeDLGLEWA17gz+n9b5/qSXmJLJiXteBbAe954oAy4BLUwysJoSY0z5+vUvzi0re72JRIoAEn19D14+efLf+traWqbRsgpjy5wR9zyDe8/mAP1Af53vT7c4vMi8p/Hf8SmYyBC9MUMNJipwBdL+a1dt9eC0OyYiIiIiIhkR97ws4BZgB24t/oHJ3L9gyZKaklWrPmwikdJUInG29ejRO/vb21tD7GI2LpRoxIUSF0JsW64hmF2wFtiK+x7YgVvmKe3LIWUVFBSWrV37u7H8/F82xkSstf0DHR3/23r06DdSg4NT/R6qwtgyawwLHwpGbENL1uUDWbiweADowS1L1hVc9o/Y+oL9+hW6yUKl8d/xKZjIEL0xQw0mcoDFwP/sqq1unnbHRERERERkxgXFj28CnoMb+J/UAG3h0qVri1eu/KCJRIpSicSJS0eOfGCgszPMugSFuOWbDgMP1vl+Z4htyyQES32tBbbgCqN3AxeY5OyaqShYsmRV0YoVb4tmZW0CSCWTTT0XL/7L5ZMnH59GsyqMLTMiCB9yuBI6FAaXZcAiXPiQiwthTXC34UHDIK5WSjYupMgKfo4OO4wN9hu+dQ3b+oa196wwo873JxVGi8x2Gv8dn4KJDNEbM9RgAty03m/vqq1uCKEtERERERGZQUHB4+cDNwLP4AaaJ6xoxYqNRcuX32WMyUsODjZceuqpuwa7uyfVxjVUACXAE8DPNHg2OwTLfq3BBRTLcAOgTUxyps1UlK1b96K8RYveaCKRcoBEf/9jHY2N/9rb0tI0xSZVGFtCE/xujJz5MDJ8yOFK+DDAlaCgN/h5qgOGhiuhxVBwkcWVMMMM2zeJCxSHAox+3O9AJy7EGDkDY3iIkfYgUmS6NP47PgUTGaI3ZujBxFrg57tqqx8KoS0REREREZkhwRm8O4EX4c56n9RMhOKamu2FS5feaYzJSQ4MHGo5dOjDib6+3hC7uBI3ePYIcFDrqs8+wRJgq3ABxcrg6ibcAGvaxHJz88rWr//trIKCXzXGxKy1icGurr2tR4/+b7K/f6rF0CtxIdhhXAgW5qwfmUfinjc086EQFzYU4sKHoWWX8nABhMEtfz3I1bMVMj0oGOHZIcbIQGNkiDGIC02GQowu3P8ZYy0lpXoYklEa/x2fgokM0Rsz9GCiGmgH/ndXbbXe1CIiIiIic0Tc87YBtwKtuL/pJ6xkzZrnFCxe/G5jTCzZ3/9E88GDH0sODIR1tnwUV0/iEvBAne+fDKldSZNgObAVwGbcTIoYrrh0VzqPm19Vtax4xYq3RHNyrgOwyWRLz6VLX2g/fnyqJ86pMLYAzwofRs58KA/+ncuV8AGuhA/DA4j58t6Jcu0Qwwbb0CyMydTD6AcG9LsmYdL47/gUTGSI3pihBxOFuHU5/3tXbXVHCO2JiIiIiEiaxT1vA3A7btCoZTL3LVu79qa8yso/N8ZEE319jzTX1/9tKpEIa2mPHNwZ+CdxRa5Vy24OCZYGWwpsxH3nzMcVyW5P53FL16x5Xl5l5R9EotHFAMmBgfqOM2c+33PhwlS+86ow9gIR97xsrq75UIoLHwpxn0d5uNkFcGXZpeFLG2lGwLMNLR81fAkp1cOQGafx3/EpmMgQvTFDDyYiuDNivrGrtvpUCO2JiIiIiEgaxT3PA16CW55jUsV+y9evvz130aI/NsZEEr299188cODTNpUKa2BuqBDxQeChOt9P69n2kj7BMmFVQC2wASjGBWCtpOks8kh2dnb5+vW7souKfsMYk22tTQ12d8fbjh37SqK3t2cKTaow9jwwInwY2kpx4UMRLnzI5Ur4MLRU0fAAQuFD+CZaD8PgZl+oHoZMisZ/x6dgIkP0xgw9mABXAPvHu2qr94XUnoiIiIiIpEHc81YAL8MNAk3q+9CiDRtekVte/jaAwZ6eey4eOPDPhPfFthI3SPgY8Fid7w+G1K5kWNzzynHfGTfhCgC3Ac2kabA3t7y8qmTVqjfFcnNvBLCpVHtva+uX2o4d+9EU3q8qjD0HBLVOhgcPhbh6IYuCfw8tuzR0xv4ACh/mkjDqYXTgZgiqHsYCofHf8SmYyBC9MdMSTKwETu2qrf5OSO2JiIiIiEjI4p63BHgpbsDu1GTuu2jTpl25paWvBxjo6vpWc339F0LqlsF9nxgEHsIN/OrL8jwU97xi3PfQLbjZFB24ZZ7SMtBfsmrVjvyqqrdGYrFlAMnBwYauZ575bNe5c/4UmlNh7AwbJXwowM3EqcCFmrm42Q9D4UOCZy8H1IfCh4VA9TAE0PjvtSiYyBC9MdMSTJThPvy/squ2WmtvioiIiIjMMnHPq8DNlKjALU0zYRVbtrw2p7j4NQD9nZ1fbTl48MshdSuKWxa2GVdPojGkdmUWi3tePuABW4EluMG+87gBwlCZWCxWvn59XU5JyWuMMXnWWpvo7f1+2/Hjewa7ujon2ZwKY6dZ3PNiXD3zoRg382EofMjFDTCDG1DuReGDTE2662H0afZf5mj8d3wKJjJEb8y0BBNZwDLga7tqq5tCalNEREREREIQ97xSXE2J5YDPJNb4r9y27U3ZhYW/BtB/+fKXWg4f/npI3crFLZFzAvhJne9fCqldmSPinpcDrMYFFMtxg8xNuAG9UOWUlJSXrlnz+lhe3i0ANpXq6mtv/8+2o0fvmWSNFBXGnqZRwoehmQ+LgsuRyy4lefaSS32kaZaNyBhUD2MO0vjv+BRMZIjemGkJJgDWAd/fVVt9OMQ2RURERERkGuKeV4gLJdYAx5no2cTGmKrt2/8wKz//5QB9bW2fv3TkyLdD6lYJsBioxxW5nkphYpkngiV6aoDNwKrg6vO4ZVVCVbRixabC6uq3RWKxVQCpROJEV1PT5zrPnDky2aZQYewxxT0vyrNnPeTjfu/Lg8scIA8XPgwN5vbz7NkPCh9kLppsPYyhWhiqhxEyjf+OT8FEhuiNmbZgYg1wYFdt9f0htikiIiIiIlMU97w84MVALS6UmNBAn4lEIlXbt98Ry8u71Vqb6mtt/YfWhoYfhtStxbhByp/hzjbXGaICQNzzIsAKXJHsNbizkS/gzjQOjYlEIuXr1788p7R0t4lECgASvb0/bj9x4ov9ly+3TaKpBV0Ye0T4MHzmQzlQigsfhi+7lOTqgtP6/ZeFTPUw0kjjv+NTMJEhemOmLZiown3w/feu2uoF88eYiIiIiMhsFPe8bOAWYBvurO4JrXNtYrFY1bZt74zl5r7AWpvsbW7+f23Hjz8YQpcMbhC3H3gQOLJQB0tkfHHPM0A1sBE3M78AVyS7PczjZBcVFZd63u5YXt5LjTHGWtvbf/nyf7cePRq3icRkBsznbWHsIHzI59mzH4pwyy6VcKXgdHZwl6Fll4YHEAofRKZvqvUweoAf1fn+xRnt7Syg8d/xKZjIEL0x0xZM5OH+OPnqrtrq1hDbFRERERGRSQjWcH8hcD1wigmu2R/Jzs6u2rr13dGcnOuttYmeCxc+3n7ixM9D6FIMdwb8eVyR6zMhtCkLQNzzqnAzfjbgBsIvBVtoAyqFS5euLVy27K3RrKxagFQi8UzPxYufu3zq1P5JNDNnC2MHM1VGznwYHj7kofBBZK4YWQ+jCthb5/snM9qrDND47/hi195FZE7pxf3BUg4omBARERERyYBgkPFGYCfuRKQJhRKx3Ny8ii1b7oxmZ2+11g50nTv3kY7Gxv0hdCkPN2B7DHigzvf1XUEmLDjL92Lc8w7hZk9sxgUVbUAzE62ZMo6uc+eOdzU1/WXZunW35ZWXvy4Siy0rXLr0Q7nl5Y9cPnXqC32trRM507gP9x5fDrwCeCLueftmS2Hs4HNh+MyHodkPFbhll4YKTg8V8k1xJXToxD3XCh9EZj+LW+ppIPi5MoN9kVlMwYTMRxYXTIiIiIiIyAwLlsC5IdjO4U4euqasgoKCRZs23RXNyqq11vZ2nj37wc4zZ54KoUuluEGRJ3EFgifUH5GR6ny/Dfh53POO4Gb/b8EFFZ24ZZ6mN2hurW07evS+zvz8R8vWrn1NVkFBXSw398by2trrBzo7v9Z69Oje1MDAwLVaAc7g6iy8AFgS97wZK4wdhA95uMBhePhQDpQFtw2FD0P9HQofunEzUSa05JuIiMxtCiZkPurFnSESxnRvERERERGZoCCU2I4bEG3GFcS8puyiouJFGzd+KBKLrbGpVGfH6dN3dZ07dyyELlXjln95ENinItcShjrf7wSejHve04CHCyhW42YGnefKWcJTkujp6W6ur/9CweLF9xatWPGWaHb2tpzi4tcuvu6623ubm/+1/cSJn02gmQ7cuu41wKK454VWGHtY+DBy2aWh8GFo5sPQskuWK0suKXyYZWJ5eflZBQXF0Zycomh2dnEkK6s4EosVR6LRIhONFptIZGgrAqy1tg9r+2wq1Rtc9tmhS7f12mSyP7jsSyUSv9iSAwN9yf7+3uTAwABaW15kwVONiQzRGmNpqzEB7syQPOAru2qru0NuW0RERERExhD3vM3AbbhB0Qktl5RTUlJeXlv74UgstsKmUu2XT516X/f5843T7IoBVuEGZh8EGubKWvsy9wRF3lfjAooVuCWImnAD8dNWunbtTfmLFr3RRKMVAMn+/n0dp0//S09z80THEiZdGDsIGUcuu1SAq/kwfObDaOHDUO2HaQU0Mnmx/PyCrPz8kSFDUSQaLTbRaNGwkKHYRCLFGFNkjIleu+Xw/SLgGHmpwGM+Wgd8QzUmFub473g0Y0Lmo27cH17lwb9FRERERCTN4p63DngRLgyYUCiRW15eVbZu3Uci0egSm0y2tJ04cWdvc/O5aXZlqMj1OVyRaw0ESFrV+f4A0BD3PB9Xy2QzLqiI4GZQTOt7afvx4w92njnzWPn69b+ZVVi4K5qTs7N07drPFCxZ8q22Y8f+J9HXd63lyZpxy01tBSrjnvcocCK4beTMhwKu1HzI50rBacOVdeP7cCsVtKHwIT2MMVn5+fmxvLziWE5OcWT8kKEoCBmKjTGRqRzOWttvU6kOUqkOa22nTSY7bCrVkUomO2wi0ZFKJDqTg4OdxhhMNJprIpE8E43mmEgkz0QiuSYSyTXG5JpIJBd3mYcxucaY3KsurzxEd114z9rQY5ls4NFnk8k+BR4iM08zJjJkoSdmNXdTcX117ztuWd3Vtbw4cTgNh1gP/HBXbfWBNLQtIiIiIiLDxD2vBngpbiB2QsFCXmXl0tI1az4SiUYrUsnk+bZjx+6cYIHf8eTjBoafxhW5bp9meyKTFix1tBzYiFslIAe4gJtJNC15FRXVJTU1b47m5NwAYFOp1t5Ll/6t7dixn07g7iboVxQ4xZU6EDnBBs8OH4Y2hQ/T4UKGglh+fnEsJ6cokp1dHI3Fio1bLulKyBCNFhtjiobNZJhqyNBrU6lOUqkOm0p12lSqI5VKddhksjOVSHTYRKIjOTjYkezv70j09XUO9vR0TqB2STiMMdHs7OxoTk5eNDs7NxKL/WKbROCRY4y5OvhIs9ADDxd69C+QwEMzJhbo+O+1aMaEZMq3n2jKe15uLLXnNzZ3pCOYGAAWp6FdEREREREZJu55S3HLN2UzwWVaCxYvXlmyevVHTCRSmkokzrYePXpnf3v7hGZZjKMMt8zMY8Cjdb4fyjI6IpNV5/sp4HTc884A9cAG3MlzS4AWJjijaDS9LS1NvS0tHypZvfo5+VVVfxCJRqvzKyvfmVNS8vLOs2c/333+/Klx7j5UGLsIF+ANLb3UHvxbrsUYk1VQUJiVl/es5ZJMNDo0k6H4F3UZroQMhdMMGTrGChlSiURn6krI0DHY3d2ZGhycvfU7rLXJ/v7+ZH9/uO+34YFHVlZOJCsrbyjsiMRiYwYeXAk+rhl4zJkZHgsr8JA5TsGEZMqPgOc1Xs5en6b2O4HqvQ1NWbtqq2fvf8oiIiIiInNY3PMqgVtxA50TOhOycOnStcUrV37QRCJFqUTi5KUjR94/0Nl5zTXvr2EpkAX8FNgfRoFfkekK6po0AU1xzzuECyc2ArW4AtCXcGHBpF0+efKxzrNn95evX//q7OLi34pmZ28pWb360wWLF3+37fjxLw92d4+3fFRnsC1oJhKJ/KImQ3Z28bNChljMLZF0JWQoHhYyTGls2qZSPdbazmFBg1sqKZnsTCWTLmQYGOhIDgx0JHp7Owe7uztSiUQi7Mc9L82OwMNdzv7Aow8XeCnwkIxTMCGZch/w7ubuaG3KQiTsT2Dows2YKAOmOx1cRERERERGiHteOXA7UAX4E7lP0YoVG4uWL7/LGJOXHBxsuPTUU3ddYwD1WiK4ItedwI/qfP/YNNoSSZs6328GmuOedxi3rMkWXFBxGfedNTXZNlODg4Mthw//T25Z2Y9KVq9+Yyw396asgoJXVm7d+qK+trYvtR49+sOFMohoIpFIVkFBYWxoJkNW1lBNhqEZDFdChkikyBgz3ZChe1jI0BnMYrgSMgwOdgybydA50N3daRUyzD2ZCzyuLG117cDj2cHHlUPMmsAj2ddXkhwcfJgJnsAgC4eCCcmUhw12sD8ZKX3iXN7S5yzrnW6Bu5H6gVxcAWwFEyIiIiIiIYp7XjFupsRSXChxzcHP4pqa7YVLl95pjMlJDgwcajl06MMTKNo7nixckeuzwE/qfL9pGm2JzIig7sljcc87Ani4gGItrkD2BWDSg9d9bW0tfW1tf1NcU3NPweLFb4nEYivzFi364yU33PDyrnPnPtv1zDNzKrALQoai2PDlkmKx4kgsVvSspZKGhQwmEimc6vGCkKFj1JBh2HJJif7+jkRvb8dgT0+XQgaZlpkNPHJMNJo3ocDjyr9DDzz6L1/+PvBoqI9X5jwFE5IRjXfQu/mfU0e6BqLbDpzP3ZaGYALcGSeL0tCuiIiIiMiCFfe8fOAW3EwFnwmc6V2yZs1zChYvfpcxJivZ3/9E88GDH0tOr9hqAbAMV+T6p3W+P+2iwiIzqc73u4ADcc9rwAUUW3G/UwPAeaZQcLqjsbG+8+zZO8pra1+ZU1z8O9GsrHUlNTX/L7+y8t523/+PEJZMmzQTjUZ/ETJkZ48WMhQNCxmGlkwqmOrxbCrVNTST4RfbiJAhOTBwpfBzd3enTSa19JvMD+kOPLKzc6PZ2bnjBB5DW54xJoeh4MPa8kR/f3OofZJ5QcGEZExFfnJ/10B0W1NXbBtwTxoO0QWs2NvQZHbVVi+I6asiIiIiIukU97xc4GbcGvnHgWsO6JWuXXtTfmXlnxtjoom+vkea6+v/dprrppcH2+O4Itcq2itzVlCk/XDc847hgonNuMLUFhdQTGpWkU0mk5eeeupb2cXFPyn1vNdl5eXdnpWf/5KKzZtf0H/58pdbGxq+a1OpSS8bBVdChqDws1sqKSurOBKN/iJkiEQixTx7JsN0QobOYSFD57CQoeOqkMHVZOic6mMTkXE8O/CYSsC5DncigcizKJiQjFlb3r//VHv271/ui25LpDCxyNSKfo2jCygBipnaB6eIiIiIiATinpcF3IRbeuYEE1hypmz9+tvzFi36Y2NMJNHbe//FAwc+Pc2Bw2W4uhL3AwfqfF+DkDIv1Pn+AHA07nk+LpjYDKzGjducx32/nbCBjo72i08+eXfR8uX3FFZXvy2SleXllpW9ZckNN7ys+/z5z3WeO/d09rCZDMNCBjeLIRotHiVkyJ/KY7PWWqztGlouyaZSnTaZHJrN4GYyDA52JIdqMriQoUshg4jI/KZgQjLm5lXdR390snAgaU3xI2fya15Y03Mq5EN0A0twZ1MpmBARERERmaK450WBG4EdQCMTWGZm0YYNr8gtL38bwGBPz/eb6+v/eRoDjRHcIO1l3NJNEyq2LTLX1Pl+EjgZ97xGXBC3EVeDYimuBsWkvtt2nj3b0HXu3J+XrV//0tzS0t2RWKymaPnyvy5avnxK/QtChs5gNkPHs2YxJJOdNij8nBwY6Ez293cM9vZ2JHp6uhUyiIjISAomJGMKs22iPC95rKUntvlwc+62NAQTFjBAGXAy5LZFRERERBaEuOdFgOcE21kmsLTMok2bduWWlr4eYKCr61vN9fVfmEYXsnGhRCMulLgwjbZE5oRgNtCZuOedBepxy6fVAouBFqB1om3ZVCrV+vTT92QVFDxYtnbt78Xy819ujIlYa1MjQobOYSFDh00kOpKJREdqYKAzKPzcqZBBRETComBCMmpZ8eDRlp7Y5gtdse3A/6XhEH24s0z2paFtEREREZF5Le55BjdL4vm45WS6r3Wfii1bXptTXPwagP7Ozq+2HDz45Wl0oRD39/xh4ME63++cRlsic06d7w/Vmjgf97xDuHBiY3DZhgspJhQUDHZ3d108cOCzsfz8PcYYM9jT0421qscoIiIZEcl0B2Rh21zZfxSgoz+ypS9h0vF+7AQq9zY05aWhbRERERGR+W4Lrq5EK9BxrZ0rt2174y9CicuXvzTNUKICd3b4z4D7FErIQlfn+5fqfP9h4GvAj4FBXFHZaiA60XYSPT3dg93dXQolREQkkxRMSEZdV917NmpsV8qavAca89em4RBduLOsytLQtoiIiIjIvBX3vFrgRbiTfdrG3dkYU7Vjx9uzCwtfBdDX1vb5lsOHvz6Nw68EcnCDrw8FhYFFBKjz/ct1vv8E8HXgB7iZTB6wHK2MISIic4T+w5KMikWwxTnJg219sRsbLuVse4nXfTTkQyRw7/My4FzIbYuIiIiIzEtxz1sD3Iw7I7tlvH1NJBKp3L79jqy8vFuttam+1tZ/aG1o+OEUDx3F1ZO4BDxQ5/uqFScyhjrf7wbq4553FPd7swVYhfse3AT0Z653IiIi49OMCcm46qLEAYDm7ti2NB0iCVSlqW0RERERkXkl7nnLgVtxIUHTePuaWCxWtWPHXwahRLK3ufmT0wglcoC1wGngewolRCamzvf76nz/CPBN4NvAGVxtljWAljUWEZFZScGEZNzWxX31AJ39kU0d/ZGsNByiE1i2t6FpwmtuioiIiIgsRHHPWwLcBuQDZ8fbN5Kdnb14+/b3xnJzX2CtTfRcuPCxtuPHH5zioYtwZ3ofBL5f5/vNU2xHZMGq8/3BOt8/BsSBbwHHcCfprcX9jomIAJhrbJEJbtFrbDG0Wo+MQ28OybjnLus9+/WnStoSKVP208aC2leu7zwU8iG6gEVAKW5KuIiIiIiIjBD3vEW4UKIMODHevrHc3LyKLVvujGZnb7XWDnSdO/eRjsbG/VM8dCVu0PRh4LE63x+cYjsiAtT5fhI4Ffe8RmApsBEXTlQDF4H2zPUu48w1Lof+PdbP17p+tMtrtT3V+022j+P9PPy6dBo6TjoLr1sm/njG689k2hlv33S3M5n2h/af6PVTeZ1Gu08nbjUTkWdRMCEZFzFQmpusb+mJ3ey3Zm8Dwg4menFnfJWjYEJERERE5CpxzyvBhRJLgOPj7RvLzy+o2Lz5rmhWVq21trfz7NkPdp4589QUDmtwRa4HgfuAw3W+n87BKpEFJfh9egZ4Ju55B4FaYAOwGOgAUsyuAe/JDiiP93kx3iDu0KUdcf1Efh553XiX491vZD+G354acf3In6913VAbo/2cGnbc1BjtjdXH0R7bWCYzyD3ZAXG1M7l9Z0M7lmvUq5KFScGEzApLiwbrW3piN7f0RLcD/5WGQ1hcMCEiIiIiIsPEPa8AF0qsxIUSYw5IZBcVFS/auPFDkVhsjU2lujpOn/5A17lzx6Zw2Chu/ftm4Kd1vt84lb6LyMTU+f4F4ELc8w4B64Ca4KZrDXhPdJB85CD4tQa8r/XzWP+e7s+ztl0FsyKy0CiYkFnhuuq++voLeXQNRNY3d0dzKwuSfSEfohtYsbeh6ee7aqv1n72IiIiICBD3vDzgFtwyL8e5cjbtVXJKSsrLa2s/HInFVthUqv3yqVPv7z5//tQUDpuLGxQ9Afykzvc1q1lkhtT5fivws2ATERHJGBW/lllhx5K+C9nR1AUw0QdPF2xKwyG6cDUmCtLQtoiIiIjInBP3vGzghcAmwAcSY+2bW15eVb5hw8cjsdgKm0y2tPn+u6YYSpTgZmYcAO5RKCEiIiKyMCmYkFmjLDdZD3CiLWt7GprvAgrRck4iIiIiIsQ9Lwa8ANgGnMTVeRhVXmXl0rJ16z4eiUaXpJLJ863Hjr2rt7n53BQOuxj39/iDwI/rfL9nKn0XERERkblPwYTMGsuLEwcALvXGtqWh+RRuHduyNLQtIiIiIjJnxD0vAjwPuB44A/SPtW/B4sUryzzv45FotCKVSJxtbWh4V19r68VJHtIAq3DfP38I/LzO98ecnSEiIiIi85+CCZk1nrus5yBA76BZc+ZyVmEaDtEPVKehXRERERGROSHueQYXSDwPaALGnLVQuHSpV7J69cdMJFKaSiROXjpy5N397e2tkzxkDFdotxX4Xp3vP6UCryIiIiKiYEJmjfUVA205sdQZMObhM/lb0nCITmDJ3oam7DS0LSIiIiIyF2zDLeHUjPv7eFRFy5dvLF658qMmEilKDg42tBw+/J6Bzs7LkzxWHuDhimp/r873z0y51yIiIiIyryiYkFllUV7yAMDpy1npWM5pqM6ElnMSERERkQUn7nmbgBcBl4H2sfYrrqnZXrRixYdMJJKfHBg41HLw4PsHu7u7J3m4UmA58CTwgzrfn+xMCxERERGZxxRMyKyysmSwHuBSbzQdBbAHgBwUTIiIiIjIAhP3vLW4UKIXuDTWfiVr1jyncOnS9xtjcpL9/U8019fflejr653k4apxwcSDwE/qfH+y9xcRERGReU7BhMwqL1jRcwis7U9EVhxtyU5HgJAEKtPQroiIiIjIrBT3vJXALcGPF8bar3Tt2psKFi9+jzEmK9HX98jFAwc+mhwYGJjEoQywGkgBPwAeU5FrERERERmNggmZVVaUDHblZdkTAD9/Jn9rGg7RBSzf29Ck976IiIiIzHtxz6sGbgNygWfG2q9s/frb8ysr32mMiSZ6e++/uH//J1KJxGRChaEi1824ehINKnItIiIiImPR4KzMOovyEvUAZzti6VjOqQsoDjYRERERkXkr7nmVuFCiBGgca7/yDRtekV9RcYcxJjLY0/P9iwcOfNqmUqlJHCofWAscxYUSYwYgIiIiIiKgYEJmodWlrs5EW180HQWwe4ACoDwNbYuIiIiIzApxzyvDhRJVwMmx9lu0adOr88rL3wYw0NX1rYv79//jJEOJMmAp8Bhwb53vt0+91yIiIiKyUCiYkFnnhTXdh8EmB5KRxfvP5y4OuXmLW/tWBbBFREREZF6Ke14RcCuwHDiB+xv4KhVbtrw2t7T0DQD9nZ1fba6v/8IkD7UUNxP5p8ADdb7fN/Vei4iIiMhComBCZp3KgmRfYXbqKMCTTbnpmjWxPA3tioiIiIhkVNzz8nGFrtcAPq4Q9VUqt217Y05x8WsA+i9f/lLLwYNfnsRhIkH7g8D363z/iTrfT06r4yIiIiKyoCiYkFmpIj95AOBcZ1Y6gokuYNHehqa8NLQtIiIiIpIRcc/LAV4E1OJCiavDAmNM1Y4db88uLHwVQF9b2+dbDh/++iQOk4Urcn0BV0/i2HT7LSIiIiILj4IJmZW88oF6gPa+6LbUqBPPp6ULKEJ1JkRERERknoh7XhZwE7AFV1MiMXIfE4lEqnbseEdWfv7LrbW299Klv7905Mi3J3GYAmA18DTw3Trfbwqj7yIiIiKy8CiYkFnpRTXdDQY7kEiZsp8/kxf2sksJIIbqTIiIiIjIPBD3vChwI7ADOA0MjNzHxGKxqh07/jIrL+9Wa22yt7n5k60NDT+cxGHKgWrgcVyR644Qui4iIiIiC5SCCZmVinNSg0U5qacADl5IS52JQSDswtoiIiIiIjMq7nkR4IZgewboHblPJDs7e/H27e+N5ea+wFqb6Llw4WNtx48/MInDLMPNlrgfV+S6P4Sui4iIiMgCpmBCZq3KgkQ9QFNnbHsamu8Eqvc2NMXS0LaIiIiISNrFPc/gZknciKv50D1yn1hubl7Vtm0fiObkXG+tHeg6d+5D7SdO/HyCh4gAHtCPK3L9ZJ3vj1pMW0RERERkMhRMyKxVu6i/HqCjP7p1IBn6e7UbKAZKQ25XRERERGSmbMbVlWgDrlpaKZafX1CxdeuHotnZW621vZ1nz76/o7Fx/wTbzgbW4mZhfLfO9/2wOi0iIiIiomBCZq0X1vQcjxjbm7Sm8OHTBatCbr4XyEN1JkRERERkDop73nrgRUAX0Dry9uyiouLKLVs+Gs3KqrWpVFdHY+OdnWfOPDXB5gtxRa6fAu6p8/0LoXVcRERERAQFEzKL5cZsqjgndQjgSEtOOpZzSgGL0tCuiIiIiEjaxD1vNXALkACaR96eU1JSvmjjxr+OxGJrbCrVfvnUqfd0nTt3bILNV+BqsT0K3Ffn+51h9VtEREREZIiCCZnVFgd1Ji50xdJRALsbWL63ocmkoW0RERERkdDFPW8ZcCuQBTSNvD23vLyyfMOGj0VisZU2mWxp8/13dZ8/f2qCza8EcoAfAw/X+f5AWP0WERERERlOhX9lVttc1Xeg4VIOnQORzb2DJpqXZZMhNt+FW8qpEFcMW0RERERk1op73mLgdqAAODXy9rzKyqWla9Z8JBKNVqSSyfNtx47d2dfaenECTUdxSzddAh6o8/2TYfZbRERERGQkzZiQWe3GFT2NUWM7Utbk/qSxYH3IzXfjQgnVmRARERGRWS3ueeXAbUA5o4QSBYsXryzzvI9HotGKVCJxtrWh4V0TDCVycEWuTwPfUyghIiIiIjNBwYTMarEItiQ3WQ9w7FJO2Ms5pXC/A+UhtysiIiIiEpq45xXjQolq4MTI2wuXLvVKVq/+mIlESlOJxMlLR468u7+9/aqC2KMoAlYBB4Hv1/n+VfUqRERERETSQcGEzHrVha7ORHN3NB11JvqApWloV0RERERk2uKeV4CrKbEK8AE7/Pai5cs3Fq9c+VETiRQlBwcbWg4ffs9AZ+flCTRdGWwPAz+q8/2ukLsuIiIiIjImBRMy621f0lcP0DUQ2djeF8kOufkuoGpvQ1PY7YqIiIiITEvc83KBm4F1uFAiNfz24pqabUUrVnzIRCL5yYGBQy0HD75/sLu7+xrNGqAGVzz7PuCROt8fTEP3RURERETGpGBCZr3rl/aey4rYFouJ/bSxYEPIzXfhprBrOScRERERmTXinpcFvBDYBJwEEsNvL1m9+jmFS5d+wBiTk+zvf6K5vv6uRF9f7zWajeLqSVwG7qnz/UN1vm+vcR8RERERkdApmJBZL2KgNKgzcaI1O+zlnAaAbFQAW0RERERmibjnxYAXANuBRtzfrL9QunbtTQVLlrzHGJOV6Ot75OKBAx9NDgwMjNbWMLm4UOIU8N06329MQ9dFRERERCZEwYTMCcuKB+sBWnpi29PQfAK3vq6IiIiISEbFPS8CPBe4ATiDq4n2C2Xr19+eX1n5TmNMNNHbe//F/fs/kUokEqO1NUwJsBI4gJspcSkdfRcRERERmSgFEzInXF/dWw/QPWjWNXXG8kNuvhtYtrehSb8PIiIiIpIxcc8zwHXA84AmoGf47eUbNrwiv6LiDmNMZLCn5/sXDxz4tE2lUqO1Ncxi3LKlDwI/rvP9nmvsLyIiIiKSdhqIlTlhy+L+luxoqglM5KHT+ZtDbr4LdxZZScjtioiIiIhMxjbgJqAF6Bx+w6JNm16dV17+NoCBrq5vXdy//x+vEUoYYBXuO98PgZ/X+f61ZlaIiIiIiMyIWKY7IDJR5XnJA+e7ItWnLmdvAx4LsekeYCmuzkRbiO2KiIiIiExI3PM24kKJDqB9+G0VW7a8Nqe4+DUA/Z2dX205ePDL12guBqwBzgM/rfP9M+H3WERERERk6hRMyJyxoniw/nxX1stbe6JhF8C2wWU5cCLktkVERERExhQs37QFeCHQj5st8QuV27a9Ibuw8NUA/Zcvf6nl8OGvX6PJPFw9iWPAA3W+3xp+r0VEREREpkdLOcmc8bzlPQcBehOR1SfbsopDbr4HWB5ymyIiIiIiY4p7XhR4DnAb0Atc+MWNxpiq7dv/cCiU6Gtr+/wEQolS3N+0TwI/UCghIiIiIrOVggmZM7zywcu5sdQpgEfO5m8NufluYNHehqawC2uLiIiIiFwl7nnZuKWbbgJaGTZTwkQikaodO96RVVDwy9Za23vp0t9fOnLk29doshoXTDwI/KTO93vT1HURERERkWlTMCFzyqK8ZD3AmctZYS/n1AUU4upMiIiIiIikTdzz8oFbcbMlzjGspoSJxWJVO3b8ZVZe3q3W2lRvc/MnWxsafjhOcwZYDaSAHwCPqci1iIiIiMx2qjEhc0pN6UD9M51Zv9rWG3qdiQQQxdWZeCbktkVEREREAIh7XglwC7AOOIWrKwFAJDs7u2rr1ndFc3JusNYmei5c+ET7iRM/G6e5oSLX53BFrvV3rIiIiIjMCZoxIXPKTSt7DoFN9Scjy55qzlkUcvODwJKQ2xQRERERASDueVXAy4G1gM+wUCKam5tbtW3b+4NQYqDr3LkPXSOUyA/aOQp8T6GEiIiIiMwlCiZkTqkuSvTkZ9njAI8/k5eO5ZyW7G1o0kwiEREREQlV3PNW4kKJpcBx3IxdAGL5+QWVW7d+KJqdvc1a29t59uz7Oxob94/TXFnQzmPAvXW+356+nouIiIiIhE/BhMw5FfmJeoCznWmpM1GM6kyIiIiISIjinrceeClQggslUkO3ZRcXl1Zu2fLRaFbWBptKdXU0Nt7ZeebMU+M0txT3N+tPgAfqfL8vnX0XEREREUkHnRkuc86asoH605ezf6O9N7o9ZSFiQmu6D8jFBRPNobUqIiIiIgtS3PMMsA24Cbds6Knht+eWl1eVrVv34Ug0Wm1TqfbLp069v/v8+VNXtwS4k8pWAZ3Aj+p8/1jaOi4iIiIikmaaMSFzzgtrup8y2MRgylQ82ZRbHXLzKSDs2hUiIiIissDEPS8KPBe4FegBmobfnl9VtaJ83bpPRKLR6lQyeaHt+PG/GieUyMIVy76AqyehUEJERERE5jQFEzLnlOelBgqyU08D7D8fep2JbmD53oam8OZhiIiIiMiCEve8HOCFuJkSzUDL8NsLly1bV7pmzcdNNLoolUicbm1o+Kvelpam0doCCoDVwNPAd+t8f6z9RERERETmDAUTMidVFiTrAZo6Y+moM1EGFIXcroiIiIgsAHHPKwBuA24AzgIdw28vrqnZXrxy5UdNJFKUHBxsaDl8+F397e2tYzRXDlQDj+OKXHeMsZ+IiIiIyJyiYELmpHXl/QcA2vui2xIpwpzd0I07K00FsEVERERkUuKeV4Yrcr0ZOIlbwukXSj3vxsKlSz9gjMlNDgzsbz548H2D3d1dYzS3DPd36f24Itf9aey6iIiIiMiMUjAhc9KLarqPGWx/0pqSR8/mrwyx6RTu96I8xDZFREREZJ6Le94S4GXAGsAHBobfXl5b+5L8qqq/MsbEEn19D13cv/9Dyb6+vlGaigAe0A98v873n6zz/VS6+y8iIiIiMpMUTMicVJBtE8U5qcMAhy/mhL2cUx9uyryIiIiIyDXFPa8GF0osAY4DieG3L9q06dV5ixb9sTEmMtjT8/2L+/f/bSqRSIzSVDawFngGV0/CT3ffRUREREQyQcGEzFlVBYl6gPNdWemoM7F4b0NTTsjtioiIiMg8E/e8DbhQohA3U+JZsxsqt259XW5p6RsABjo7v3Zx//5/tKnUaDMgCnFFrp8C7qnz/Qvp7bmIiIiISObEMt0BkanaWNl/4FhrDh39ka19CRPJjdmwprh34tb0LQPOh9SmiIiIiMwjcc+LANuAm3DLLp0efruJRCKV27b9YVZ+/ssA+trb//3SU099Y4zmSoEK4FHg53W+PzDGfiIiIiIi84JmTMic9Usru09GjO1OWZP/0Ol8L8SmB3HT6FVnQkRERESuEve8GPB84BbcSS3POpklEovFqnbs+Ius/PyXWWtTvZcufWacUKIMWAQ8CDysUEJEREREFgIFEzJnZUdJleQkDwI83RJ6nYkEUBlymyIiIiIyx8U9Lxe4GbgRuAi0Dr89mpubW7Vjx/tjubm/ZK1N9Fy8+InWhoZ7x2iuHDdb4qfA4ypyLSIiIiILhYIJmdOWFLo6Exe7Y9tDbrobWLa3oUm/IyIiIiICQNzzCoHbgZ3AGdxsiV/IKiwsqty69cPR7Owd1tq+rnPnPtju+4+M0VwFUAz8BHiyzvdtOvsuIiIiIjKbaNBV5rQti/vrATr7I5s6+yNh1kzpxH1RLA2xTRERERGZo+KeVw68FNgInAB6h9+eU1paXrFp08eiWVm1NpXq7Dh9+r0djY0HxmiuCigA7gfqFUqIiIiIyEKjYELmtOcv7zkdi9h2i8l+oDG/NsSme4B83Jq/IiIiIrKAxT2vGng5sAo4DjyrDkReRUV1eW3tJyKx2EqbTF5qP3HiXV3PPHNsjOaWADnAj+t8/6BCCRERERFZiBRMyJwWMVCam6wHON4aep0JUAFsERERkQUt7nmrcaFEJS6USA6/vaC6enXZ2rWfiESji1PJ5LnWY8f+sufixTNjNFcNRIEf1fn+4bR2XERERERkFlMwIXNedWHiAEBzTzTsOhM9wLKQ2xQRERGROSDueSbueZtwyzfl45ZvetbshqIVKzaV1NT8tYlESlOJxIlLR468q6+1tXmMJof+rryvzvefTl/PRURERERmPwUTMuddV91bD9A1EKm91BPNCbHpLqBib0NTQYhtioiIiMgsF/e8CHAdrtB1Ejg9cp+S1atvKFq+/EMmEilIDgwcbj548D0DHR3tYzS5EkjgQomxlngSEREREVkwFEzInLd9Sd+FrEjqIpjoTxsLNoXYdBdQiOpMiIiIiCwYcc/LAm4EbgY6gAsj9ylbt+5FBUuWvNcYk53o73/sYn39BxK9vT1jNFkD9AE/rPN9P20dFxERERGZQxRMyJwXMVCWl6oHONmWFWadiSRuDWDVmRARERFZAOKel4sLJJ4PnAdaR+6zaMOGV+RVVPy5MSaa6O398cX9+/86NTAwMHK/wCqgG7i3zvdPpanbIiIiIiJzjoIJmReWFw8eALjUGwu7APYAsDjkNkVERERklol7XhHwEmAHcAY3e/ZZKrZseU1uefnbjDFmsLv72xf27/+0TSaTI/cLrAEu40KJq5aCEhERERFZyBRMyLzwnGU9BwF6Bo13tiMWZk2ILmDp3oamrBDbFBEREZFZJO55i4CXAbW4Ite9z9rBGFO5ffubc4qLXwvQ39HxXxcPHPg81tqrGgODCyVacaHE2bR2XkRERERkDlIwIfPChoqB1pxo6iyYyEOnC7aE2HQnrs5EaYhtioiIiMgsEfe8ZcDLcQWqjwGDw2830Wh08Y4d78guKKgD6Gtr+1zLoUP/PUZzBvCAFuAHdb7flL6ei4iIiIjMXQomZN4oz0vWA5y+nLU9xGb7gVxUZ0JERERk3ol7noebKbEIOA6kht8eyc7Ortqx492xvLxbrbWpnubm/3fpyJHvjNFcBBdKNOFCiauKZouIiIiIiBPLdAdEwrKyZLC+qSvrFa290bDrTKRwX1ZFREREZB6Ie54BNgEvxM1yODlyn1heXn7F5s13RrOzt1hrB7rPn//45ZMnHx+jyaFQ4hngh3W+fyldfRcRERERmQ80Y0LmjRtX9BwEa/sSkZXHW7NLQ2y6G1i+t6HJhNimiIiIiGRA3PMiwA3Abbhlm66qAZFdVFRSuXXrX0ezs7fYVKqn8+zZ948TSkSBtbiC2fcqlBARERERuTYFEzJv1JQOdubF7EmAn53N2xpi0524GhNFIbYpIiIiIjMs7nlZwE24mRLtwMWR++SWl1cu2rTpE5FYbI1NpdovNza+u/PMmafGaDKGCyVO4kKJ1jR1XURERERkXlEwIfPKovzkAYAz4daZ6AEKUJ0JERERkTkr7nl5wK3Ac3F1INpH7pNfVbWifN26v4lEo0tTyeTFtuPH/6q7qemqZZ4CMWAN4OOWb7qqPRERERERGZ2CCZlXVpUO1AO09YVaZyKF+11RMCEiIiIyB8U9rxh4MbANaAS6Ru5TuGzZutI1az5uotFFqUTidGtDw1/2trQ0jdFkFq6mxFHcTImOdPVdRERERGQ+UjAh88oLa7qfApsaSEaWHDifWxVi031AdYjtiYiIiMgMiHteJfAyoBY3u6Fv5D7FNTXbileu/KiJRIqSg4NHW5566t397e1jLcuUjZsp8TTwozrfvyrkEBERERGR8cUy3QGRMFUVJHsLslJHuwejG55syt26fUnffSE13QlU7W1oyt1VW33Vl1kRERERmX3inrcct3xTBXAMNxP2WUo978b8qqq/MMbEkgMDB5oPHfposq9vrL/3coBVwGHgJ3W+35OmrouIiIjIArNv9+584KVAHa4uWg2QBI4DXwc+tXPPnlFPitm3e/frgbcDm4AB4FHgIzv37Hk4/T2fGs2YkHmnosDVmXimMyvM5Zy6gEKgLMQ2RURERCRN4p63Fng5UIqbKXFVKFFeW/vi/KqqvzLGxBJ9fQ9f3L//g+OEErm4UOIg8GOFEiIiIiISstcC3wDeiAsk/g94AFgNfBB4bN/u3VetELNv9+5PA/8ObAF+CPwceAnw0327d79qJjo+FZoxIfPO2rKB+sb27N9u74tuT1mImFCaHcStJVyOK5YoIiIiIrNQ3PMM7kvZC3FhxKnR9lu0adOrc0tL3wAw2NNzb3N9/T/aVOqq8CKQB6wADgA/rfP9/tA7LiIiIiIL3SDweeDTO/fsOTJ05b7du6uB7wDXAZ/GBRhDt70YuAO4BNy4c8+eY8H1NwL3A/++b/fu+3fu2dM+Mw9h4jRjQuadF63qftpgBxMpU/7YM3nLQmw6CVSG2J6IiIiIhCjueVHgOcBtQC/wzGj7VW7d+vtDocRAZ+fXL+7f/5lxQol8YCXwJG75JoUSIiIiIhK6nXv2fGnnnj1vHR5KBNc3Af9f8OOufbt3Zw+7+c+Cy48MhRLBfR4BPoubPfym9PV66hRMyLxTnJMaLMxOHQGov5C7PcSmu4BlexuaoiG2KSIiIiIhiHteNm4t3puAVqBl5D4mEolU7djx9uyiot8A6Gtv/2LzwYNfGqfZAmA58BjwQJ3vD4TfcxERERGRazoQXOYAiwD27d6dhzshB+Bro9xn6Lq69HZtahRMyLxUVZCoBzjfFQuzzkQnUAyUhNimiIiIiExT3PPycUWunwOcA9pH7hOJxWJVO3a8Mys//+XW2lTvpUufufTUU3vHabYIWIoLJR6q8/3BNHRdRERERGQi1gSXg7iTcABqcUFF8849e86Ocp99wWWY46OhUTAh89L6RQMHAC73RbcmUoRTZcItB5CHqzMhIiIiIrNA3PNKcMX9tuLqSXSP3Ceam5tbtWPH+2O5uTdZaxM9Fy/+TWtDw73jNFsMLAZ+hgslEmnouoiIiIjIRN0RXN6zc8+eoaVFVwaXo4US7Nyzpxt3wk7Zvt27i9LbvclTMCHz0otWdR+LGNubtKboodP5q0Js2gJlIbYnIiIiIlMU97wq4OXAWsAHrqr/kFVQUFi5deuHo9nZO6y1fV3nzn2w3fcfHqfZUqAKeAR4tM73k2nouoiIiIgsHIXGmOJhW85k7rxv9+5X4OpEDALvG95ucNkzzt2HTtpRMCEyE3JjNlWckzoE8FRzqHUmeoEVIbYnIiIiIlMQ97yVuFBiKXAcuGpWQ05JSXnF5s0fj2Zl1dpUqrPj9Ok7OxobD4zcb5gy3OzYh4CfK5QQERERkRA8DVwetr17onfct3v3BuA/AQP8xc49e8b7W3ZOUTAh89ZQnYkL4deZKN/b0FQQYpsiIiIiMglxz1sPvBRX++s4kBq5T15FRXX5hg2fiMRiK20q1dp+8uS7u5555ug4zZbjgokHgMfrfP+qNkVEREREpmAD7u/Woe1jE7nTvt27lwH34P5G/dTOPXvuHrFLV3CZP04zQ2OYnRPu7QyJZboDIumyqbKv/uilHDoHIpt7B000L8uGccZbN1CJ++J61frFIiIiIpI+cc8zuOJ9N+Gmsp8abb+CJUtWlaxa9SETiZSmksmmtmPH3tfX2npxnKYrcNPbfwIcqPN9G3LXRURERGTh6rLWdkzmDvt27y4HfgDUAP8OvHOU3U4Hl8vHaKMAt0xp2849e2ZdMKEZEzJv/dLKnlNRYztT1uQ90FiwNqRmk0AUFcAWERERmVFxz4sCzwNuxa2j2zTafkXLl28sWbXqYyYSKU0lEicuHTnyV9cIJapwZ5Ldj0IJEREREcmwfbt3FwLfAzYBe4E379yzZ7S/URtwNdYqg9kVI+0MLuvT0tFpUjAh81Ysgi3JTR4EOHopO8w6EwPA4hDbExEREZFxxD0vB3gh8EtAM9Ay2n4lq1dfX7RixYdNJFKQHBx8qvnQofcOdHS0j9P0YiAX+HGd79crlBARERGRTNq3e3cO8C3gucD3gd/ZuWfPqKvA7Nyzpxf4UfDjb46yy28El/Gw+xkGBRMyr1UXJg4AXOwOvc5E9d6GpqwQ2xQRERGRUcQ9rwC4DbgBOAuMOg2+bN26FxUsWXKnMSY70d//WPOBA+9P9PSMt/RmNW5p2/vqfP9w6B0XEREREZmEfbt3R4Gv4P72fQDYtXPPnoFr3O1TweWd+3bvXjesrRuBtwLtwBfC7+30qcaEzGvblvTVH27OpWsgsrG9L5Jdmpu61i/zRHThzq4rA8ZbFkBEREREpiHueWXALYAHnMTNXL1K+YYNr8gtK3urMcYkent/crG+/tM2mRyvvtgywAI/qvP98Qpii4iIiIjMlD8CXh38uwX4p327d4+23zt37tnTArBzz54f7tu9+27gDmD/vt277wWygZcABnjDzj172tPd8anQjAnJpG7cL0ra3LC095lYxLZaTNYDjQUbQmq2HzflX3UmRERERNIk7nlLgJcBawCfMUKJii1bfjuvvPxtxhgz2N397Qv793/qGqHEClzdsB8qlBARERGRWaRs2L9fDbxujK1w+J127tnzDuANwBFcIHEj8EPgRTv37Plmujs9VZoxIZk0VLAwAqTScYCIgdLc5IGWntitfmv2NsIr9pICFoXUloiIiIgME/e8GtxMiTLgOKP9rWiMqdy27U3ZBQW/CtDf0fGVlkOHvnKNplfiTjK5r873T4baaRERERGRadi5Z89dwF1TvO8XgS+G15v004wJyaQLuHoNxek8yLKiwXqAlp5omHUmuoAVexuaTIhtioiIiCx4cc/bgJspUYibKXFVKGGi0WjVjh3vGAol+traPj+BUGIV0AP8QKGEiIiIiEhmKZiQjNlVW90FPAOUpvM41y/trQfoHoysv9gdzQup2S5coJLWUEVERERkoYh7XiTueTuAF+PqP5webb9IdnZ21Y4d787Ky7vVWpvqaW7+1KUjR759jeZXA5eBe+t8f9R2RURERERk5iiYkEw7DeSk8wBbF/c3Z0dTTWAiDzQWbA6p2W6gANWZEBEREZm2uOfFgOfjlm/qBM6Ptl8sLy+/atu2u2I5Oc+11g50X7jw0bZjx+4fp2mDq1HRhqspcTbcnouIiIiIyFQomJBMu4Ab5M9P50HKcpP1AKfas8NazsnivuiWXWtHERERERlb3PNygZtxRfouAq2j7ZddVFRSuXXrX0ezs7fYVKqn8+zZD1w+ceKxcZo2gAe04GZKnAu77yIiIiIiMjUKJiTTWnFfFkvTeZAVJa7OxKVw60z0ActCbE9ERERkQYl7XiFwO7ATOIObLXGV3PLyykWbNn08EoutsanU5cuNje/pPHPm8DhNR3ChxHlcKDHqDAwREREREckMBROSUbtqq1PACVxxw7R53vLegwC9iciaxvasopCa7QQq9zY05YbUnoiIiMiCEfe8cuClwEbc34O9o+2XX1W1vHzduk9EotFlqWSyuc33/6q7qenEOE0PhRLncKHExbD7LiIiIiIi06NgQmaDC0ACiKXrAGvLB9pzY6nTAI+cyd8aUrNduEBFdSZEREREJiHuedXAy4FVwHFgYLT9CpcuXVe6Zs0nTDRakUokzrQ2NPxlb3PzeEsyRYG1uNkX99b5fkvIXRcRERERkRAomJDZ4CKuIGFpOg9Snpc8AHD6clZYyzkNhSmqMyEiIiIyQXHPW40LJSpxoURytP2Ka2q2FdfUfMREIkXJwcFjLU899a7+9vZL4zQdxc2UOIULJUatVSEiIiIiIpmnYEIybldt9QDuC2RpOo9TUzJQD9DaG90eYrNJoCrE9kRERETmpbjnmbjnbcIt35SPW77JjrZv6Zo1zytcuvQuY0xecmDgQMvBg3cOdnWNWn8iEMPNlDiBCyXaQ+6+iIiIiIiESMGEzBbnABNsaXHTyp5DYFP9yciyI805YS2/1Aks29vQFA2pPREREZF5J+55EeA6XKHrJHB6rH3L16+/PX/x4ncbY2KJvr6HL+7f/8FEX9+o9ScCWbiZEkeBH9b5fkeYfRcRERERkfClbU3/dKi5mzzg3cBrgJVAK3AP8L7GO3hmkm2VAXcBrwKWAOeBbwB3Nd5B+xj3WR8c/zagGugHngb+C/jHxjtGXxtXJuQC0AEUA5fTcYClxYnu/Czr9wyadY+dy9u2sbL//hCa7QIW4WZ7jLe0gIiIiMiCFPe8LOC5wdYabKNatGnTq3JLS98IMNjTc29zff0/2lQqNU7z2cBqoAH4UZ3vd4fXcxERERERSZc5M2Oi5u7/n707j4/rvuv9/zozo32XtViWbdkex/IqOUrTNGs3SlPKUK6AApcOlOX+LrSAgNIlbdKmTds0BQpqC5TLpZQOtxcuVBQEpW2afW8SxZJX2T62x5usfR1ts5zfH98xcRwts8nW8n4+HvMYa+acz/frPCJZc97n+/2QCzwK3IdpOPyvmKZ2vwq8UtfKtiRqVQA/An4X0yfgO5g731uAF+paX9/MuK6V24BXgPcDofg5zwJ7gC8BP6hrXVlBz3LSXF8zDvSwxNs5rcuLdAFcGMtYn4kpzFYEaoAtIiIicpV2rzcXeAvwJsyNQPOGEpX79vkvhxKzExNtfQcOfCWBUGIbcAR4RKGEiIiIiMjKsWKCCeBezAea54AdwRZ+PtjCLcCHMI3zvp5ErT/D7EHbBtTHa+0FvgLswAQNV/sq5gL0PcEWdgdbeG+whXfy6l62bwb8Kf3N5LIgkLOUA2wrm+0EGJ5yN8bm3NE4JQ4KJkREREReo93rLQLeATRibiiamOs4y+VyVe3f/4HsoqKfA5gZHf27/q6ubyxSPhcTSnQBj/lsezJjExcRERERkSW3IoKJulaygd+Of/nBYMurH2qCLXwJ84HkzXWt3JRArRrgF4FZ4APBFiJXvP1hoB94X13rqw2N61opxOyJOwl88cp6wRYuYkILgJuT/KvJa/ViViDkLdUAd9ZNHrVwIuGYVXngUu76DJUNAZvaunuWrD+GiIiIyErS7vWuA94J1GNu4pmzR4Tl8Xiq9u//w6z8/Lsdx3GmBge/OnD48LcXKZ8H1AEHgCd8tr1Q/wkREREREVmGVkQwAdwOlAB2sIVX5nj/n+PPvgRq3Y35ez8VbKH3yjeCLcwA7YAb+Ikr3goDCy0jv0w9BtIzCAywhNs5rcuPzhRkx7oBDvTkZWo7pwnMnAsyVE9ERERkxWr3emsxv3NvBk5gfpd+HXdOTk51Y+N9ntzcOxzHiUz29T001N39g0XK5wObMFusPuGz7elMzl1ERERERK6NlRJMNMafO+Z5//LriVxoTrpWPLB4EvNB6CNXHlzXygbgg5gPXIEExpd5NNfXxDB31BUt5TiV+dEugIvjnkwGE4VoOycRERFZ49q9Xi9mpcQ64CTz3NyTVVBQWNnQ8IA7J+dGx3GmJy5e/MyIbT+7SPkCYCPwMvCkz7ZnMzl3ERERERG5dlZKs+bN8efz87x/+fW6Jaz1m8DDwIN1rfwycAgoBu7CNG1+d7CF4wmMLwvrxTQk98SfM257+UzX6ZHsXxydcTfEHHClvwFTDLPKpgw4m3Y1ERERkRWm3eu1gN3AnYAFnJ7v2JySkvLy+vpPuzyeOicWmxg/d+7T4xcudC8yRCGwAXgReNZn20vye6KIiIiIiFwbK2XFRGH8eb6mdqH4cyJ32qdUK9hCN3AHZkXFLuDnMHeD5QKPAYcXGtSyrBzLsoovP66Yh7xWHzDCEm7ndGfdZLeFMxuJWaXPn8/fvPgZCZkBajJUS0RERGTFaPd6XcAbgLdjVhHPdwMQeRUV68t37nwoHkoMjZ4+/bEEQokizO9Zz6NQQkRERERkVVgpwcR1V9fK24BOIAt4G2a1xFbgc8CvAs/UtVK5QIl7gNErHseWdMIrVHN9zQxwBtNTZEkU5cQiRTmxwwCHenMytZ3TOLC+rbsnO0P1RERERJa9dq83C3Pzzp3AMOYmkzkVrF+/pWz79odcbnd1LBrtGTpx4qOh3t7FVpuWANXAs8DzCiVERERERFaHlRJMTMSf8+d5/3LT4fGlqFXXSjnwT5hQ4l3BFh4LtjAebOFMsIX7gD8HtgB/uMC4D2I+WF1+7ExgrmvVRcz/m+lvsjSPqoJIF8ClCU/jYscm6HKfibIM1RMRERFZ1tq93jzgrcAbMVubjsx3bNHGjbtKtmx50HK5ymKRyOnBo0c/Oj042LvIEKVABfAM8COfbUczM3MREREREbneVkowcflOqo3zvH/59eAS1Xo3prHx88EWLsxxzj/Fn++ab1DHcWYcxxm7/ODVgERerxcTDC1ZE+ydFTNdAKMz7r2z0Yx8H8wCOSiYEBERkTWg3estBn4MaMT83jzv77YlW7feVLRp0wOWy1UQDYeP9h869PHZsbGRRYYojz+eAl7y2facTbRFRERERGRlWinBRGf8uWme9y+/3rVEtS6HFaPznHP5dV2UzoDm+poxzF13pUs1xu2bJ22X5YRijlXwdLBgW4bKRmHB7bxEREREVrx2r7cS02utHjgJTM93bNkNN9xVsH79vZZlZUdnZl7q7+y8LzI5GZrv+LgKzLapTwIdCiVERERERFaflRJMPIO5+O+ta2X/HO//bPy5PYFa3wNiwJ11rVRd+UZdKzmAD3OB+btXvHUp/nxjXSvuOWreHH8+k8D4kpggprH4ksj1OLHinNghgGMDGeszMQFsbOvuWSnfVyIiIiJJafd6NwJ3Y27cOQHM2/OhfOfOd+VVVHzIsix3ZGrqid4DBz4XnZ2dXWSISsz2mE8CB3y27WRq7iIiIiIisnysiAuowRZmga/Gv/zzutb/6gNBXSt/ADQATwRbePmK13+7rpVjda08eFWtHuD/AtnAX9S14rni7S9iPgz9fbDlNY37vgfMYJpdP1DX+up/t7pW6oHPxL/85/T+pnKFXszdd3lLNcD6wnAnQF/Ik8lgojj+EBEREVlV2r3eGzChRClgY272mVPFnj3vzSsv/y3LsqxwKPQfvQcOfMmJRhfrEVGN+d3vMZ9tdyqUEBERERFZvTyLH7JsfBazj+1twIm6Vp4C6oBbgH7g1646vgKzvLxmjlq/B7wJ+BngWF0rLwF7gL2YO7/+4MqDgy301LXyh8CXgXuAn69r5RVgHXArprfAd4FvpPuXlP8yAAxiPvhOLcUAe6tmuo4N5DI249oTmrU8BdnOvHf8JWgS2IDZD3kk7QmKiIiILAPtXq+F+T35TkwYcWbegy3Lqty379eyCwvfAzAzNvYPA4cOfSuBYWoAN/Coz7aPpj1pERERERFZ1lbEigmAYAvTwFuBBzAXgH8aE0x8A2gKtnAqiVoDwBuBr2BWTvw3oAQTPLwx2MLQHOd8FXgb8B0gH3gPph/FK8AHgZ8Ktsy/lF2S01xfEwNOYZbyL4lbN02edVvOqIOV82SwYEcGSjqAhXqNiIiIyCrR7vW6MduWvg1zs8iF+Y61XC5X1f79v3s5lJgeHv7rBEOJWszvUAolRERERETWCMtxtEL6erAsqxY4D2x0HGfeD3hrWVt3z2ZMaHSWBfYvTsdnn6j88OCU586tpbPf+t03Df5DBkpuBC4219f8awZqiYiIiFw37V5vNmZ18E2YFcoj8x3rysrKqmxo+IgnJ+cWx3FiUwMDrcMnTjyWwDAbMf3dHvXZ9slMzFtEREREZDnQ9d+FrZgVE7Im9WKanpcs1QA1RZEugP5Jdyb7TKxr6+5Zst4YIiIiIkut3evNx6xWvhm4yAKhhCcvL6+qsfHT8VAiHOrt/VyCocRmIAz8UKGEiIiIiMjaomBClq3m+poZIMgSBhP71091AYRmXTuHplzZGSg5ARRh+kyIiIiIrDjtXm8J8A5gH6afRGi+Y7OLioor9+79vDs7e68Ti01OXLjwqdFTp15MYJgtmK2hHvbZdsJbsoqIiIiIyOqgYEKWuwuYJu3WUhS/sWa6J8vl9DtYnqeCBbszUDKCma/6TIiIiMiK0+71VgF3A9sBG5iZ79jcsrKKdbt3P+TKyvI6sdjoWDD48bGzZw8lMMxWYAwTSgQzMnEREREREVlRFEzIctcLjLNETbBdFpTlRbsA7OHsxgyVDQPVGaolIiIick20e72bMaHEBuAkC/T4yq+qqi3fseOLLre7NhaN9g/b9kcnenoWW/lgAdsw20L90Gfb5zI0dRERERERWWEUTMiy1lxfMwpcYglXINQWhbsABic9meozMQ7UtHX3eDJUT0RERGRJtXu9O4B3YrbQPAnE5ju2cMOG7aXbtj1kud0VsUjk/PDx4x+d6u+/uMgQl0OJAeAHPttW8z8RERERkTVMwYSsBGeA3KUq/oZa02diMmx5L455CjJQMgQUA6UZqCUiIiKyZNq9Xqvd623E9JSwML93zat48+Z9xXV1n7NcruJYOHxi4MiRj04PDw8sMowL8AJ9mO2bLmVi7iIiIiIisnIpmJCVoBeYZonCid2VM4M57tgFsFzPnMvfk4GSU0Ae6jMhIiIiy1i71+sBbgHeCkwCPQsdX7pt2y2FtbX3W5aVF52d7eo/ePDe8MTE+CLDXA4lejChRF8m5i4iIiIiIiubgglZCQaAQZZwBUJ5XrQTIDiSnantnGLAugzVEhEREcmodq83B7gDuB3ox/y+Na+yHTvenl9dfY9lWVmR6enn+jo7Px2Znp5aZBgXpon2Ocz2Tf2ZmLuIiIiIiKx8CiZk2Wuur4kCpzHbIy2JTSXxPhNT7kwFEyFgY1t3j5WheiIiIiIZ0e71FgBvA94AnAfGFjp+3e7d78mvqGixLMsVnpx8uO/AgYdi4XB4kWHcmFDiDKbR9VAGpi4iIiIiIquEgglZKXqAKOZDbsbdumnyIMB0xLXFHsoqyUDJCcxWToUZqCUiIiKSEe1ebxnw48AezI0fkwsdX7lv3/tyS0t/HWB2YuJf+g4c+IoTi83bGDvOgwklTmFCieH0Zy4iIiIiIquJgglZKfqAUSATocHrbCkNj+d5YqcBnj+fvy8DJUOYUEJ9JkRERGRZaPd61wPvBLYBNjA737GWy+Wq2r//A9lFRe8FmBkd/bv+rq6/TWCYLExPiROYUGI0/ZmLiIiIiMhqo2BCVoTm+pppIMhS9pnIj3YBnB/LysR2TjHM91d5BmqJiIiIpKXd663DhBLrgZNAZL5jLY/HU7V//4ey8vPvdhzHmRoc/POBw4e/ncAw2ZhQoht4xGfbizXGFhERERGRNUrBhKwkFzBbAyxJ34YtJbNdAENT7sYMlZwGNmSoloiIiEhK2r3enZhQohCzUmLerZjcOTk51Y2N93pyc+90HCcy2d//R0Pd3d9PYJhsYCtwBBNKTGRi7iIiIiIisjopmJCV5BIwzhL1bbijbvIQOLHZqKvmUG9ORQZKTgBVbd092RmoJSIiIpKUdq/X1e713gj8WPylswsdn1VQUFDZ0PCAOyenyXGcmVBPzwMjJ08+ncBQOZjtoQ4Bj/pse8G+FSIiIiIiIgomZCUZA3pZor4N6wsjUwVZzgmAl3ryMrFqYgIoQts5iYiIyDXW7vV6gDcBb8bc2NGz0PE5JSVlFXv2fMGdlbXTicUmxs+du3f0zJlXEhgqD9gCdAKP+2x7Ks2pi4iIiIjIGqBgQlaM5voaBziD+QC8JCryI50AFzPTZ2IWs62BGmCLiIjINdPu9eZiAolbgT5gaKHj8yoq1pfv3PlFl8dT58RiQ6OnT39s/Pz57gSGygM2A68AT/hsezrduYuIiIiIyNqgYEJWml5M74acpSi+rdz0mRiZdjfEnIyUjACVGakkIiIisoh2r7cQeDvQBJzDrJaYV8H69VvKtm9/yOV2V8ei0Z6hEyc+GurtXXDLp8unApuAl4EnfbY9k+7cRURERERk7VAwIStNPzAIlC5F8bvqQscsnHA4Zq17+WJeJhpXh4Datu4efa+JiIjIkmr3esuBHwd2AaeABbdVKtq4cWfJli0PWi5XWSwSOTN49OhHpwcHexMYqhCoBV4CnvbZdjjduYuIiIiIyNqii6WyojTX10SB00DxUtQvzY3NFmbHjgJ0XsrNxHZOE0BJ/CEiIiKyJNq93hrgbky/h5OYLSXnVbJlS1PRpk2ftVyugmg4fHTg8OF7ZsfGRhIYqgioAV4AnlEoISIiIiIiqVAwIStRD+AA7qUoXlkQ6QLomfBkIpiYBPJRnwkRERFZIu1e71ZMKFGJCSWiCx1ftn37HQU1NfdalpUdnZl5ub+z875wKBRKYKgSYD3wPPCcz7Yj6c5dRERERETWJs/1noBICvqAEcyH4wWbOaZix7rZrlPDOYxOuxsjMSyPi3S6TVw+txyzpYKIiIhIRrR7vRZm26Y7Mb/XL/q7RvnOnXfnlpX9lmVZVmRq6sm+gwf/zIlEEgkYSoF1wDPAiz7bjqUxdRERERERWeO0YkJWnOb6milMM8fSpah/V13ohMtypqOOVfTsufy6DJScBDZmoI6IiIgIAO1erwu4EdPoOgos2rC6Ys+e9+aVl3/AsiwrHAp9t/fAgT9JMJQojz8USoiIiIiISEYomJCV6jxLtOInL8uJFmXHDgMc6cttzEDJELCurbsnPwO1REREZI1r93qzgFuBNwNjwMINqy3Lqmxo+PWckpL3AcyMjf1DX2fn13CcRFaFrsOsUn0KeEmhhIiIiIiIZIKCCVmpLgHjmAaMGVddaPpM9IYy0mdiAihEfSZEREQkTe1eby7wFuBNmEBiwW0tLZfLVbV//+9mFxa+B2B6ePh/Dxw69K0Eh6vA/K71BPCKz7bT2d5SRERERETkvyiYkJVqFNNronQpiu+unOkEGJtx7Z2OWOl+n0QwjbrL056YiIiIrFntXm8R8A6gEbOt5fhCx7uysrKqbrzxnqy8vLc7jhObHBj408GjR/8tweGqgXzgcaBLoYSIiIiIiGSSgglZkZrraxzgNJC3FPVv3xw67baciZhj5T0VLLghAyXDwPoM1BEREZE1qN3rXQe8E6jHNLmeWuh4T15eXlVj46c8OTm3OI4Tnuzt/fzw8eOPJTjceiAbeMxn2wcVSoiIiIiISKYpmJCVrBeYBXIyXdjjwinJjXYBdA9kZ2o7p/Vt3T1L0hdDREREVq92r7cWuBvYDJzA3PAwr+yiouLKvXs/587ObnAcZ2riwoVPjZw69aMEh9uAWen5qM+2j6Q1cRERERERkXkomJCVbAAYZIm2c1of7zPRP5mxPhPFqM+EiIiIJKHd6/ViVkqsA04CCzafzi0rq1i3a9dDrqys7U4sNjYWDH587OzZQwkOVws4wCM+2z6W1sRFREREREQWoGBCVqzm+poIZiuD4qWov696ugtgfMa1a2zGlZVmuWkgFwUTIiIikoB2r9dq93r3YHpK5GC2sFxwS6X8qqrash07vujyeGpj0ejAiG1/dOLiRTvBITdj+mL90GfbJ9KavIiIiIiIyCIUTMhKdwnzId2d6cJvrJ0673E5Qw5W9pPBgvoMlIxh7nYUERERmVe71+sC3gC8HbNt0/nFzincsMFbum3bQy63uyIWiZwfPn78I5P9/RcSHHILpmfFD322fSrVeYuIiIiIiCRKwYSsdL3ACFCS6cIuC0rjfSbsoYz0mQgBG9u6e6wM1BIREZFVqN3rzQLuAO4EhoG+xc4p3rx5b3Fd3ectl6s4Fg6fGDx69GPTw8MDCQ65BbPl5A99tn0mxWmLiIiIiIgkRcGErGjN9TVTmLsIS5ei/oaisOkzEXI3ZqDcBGYrp6IM1BIREZFVpt3rzQPeCrwR6MHcfLGg0m3bbimsrf20ZVl50dnZrv6DB++dHR8fS2A4C9gGjAI/8Nn22TSmLiIiIiIikhQFE7IanAM8S1G4qcb0mQiFXTv6Qu68NMuFgALUZ0JERESu0u71FgM/BjQCQcwNDQsq27HjbfnV1fdYlpUVmZ5+vq+z89OR6empBIa7HEoMAg/7bDvRLZ9EREREREQyQsGErAa9mA/vhZku3Lh+ui/bHesFy/10sGB3muVimO+58gxMTURERFaJdq+3EngnUA+cBKYXO2fd7t3vya+o+D3LslzhqalH+g4c+EIsHA4nMJwFeIF+TCjRk87cRUREREREUqFgQlaDEcz+y6VLUbws3mfi9EhWJvpMTAM1GagjIiIiq0C717sRuBvYCJwAIoudU7lv3/tyS0t/HWB2YuI7fQcOfNmJxWIJDOcCtmO2ifqBz7Z7U5+5iIiIiIhI6hRMyIrXXF/jAKeB/KWov7E43AkwOOXJRDAxAVS3dffkZKCWiIiIrGDtXu8NmFCiFLAxqyvnZblcrqrGxt/MLip6L8DM6Og3+7u6vo7jOAkMdzmUOIdZKdGf1uRFRERERETSsCT78otcB73ALJAdf86YWzZOdb3ck89U2Np2bjSrcFNJeNE9nxcwDtRi+kxcyswMRUREZCVp93otYC9wJyaMOLPYOZbH46lqaPh9T27unY7jONPDw385dOzY9xIc0o3Zvuks8EOfbQ+nOHUREREREZGM0IoJWS36gSGWoLH0DetmR3I9sbNgWc+cy9+XZrkwJjxRnwkREZE1qN3rdQM3A28DpoBFG0+7c3JyqhsbPxEPJSJT/f1/lEQo4cGEEqcx2zcplBARERERketOwYSsCs31NRHMB+6ipahfnmf6TJzNTJ+JCFCZgToiIiKygrR7vdnAHfHHEDCw2DlZBQUFlQ0Nn3Hn5NzkOM5MqKfngeGTJ59OcMjLoYSNWSkxmurcRUREREREMknBhKwmPfHnjP9/vbkk3AUwNO3ORDARAmrbunv0/SciIrJGtHu9+cBbMaslLgIji52TU1JSVrFnz4PurKxdTiwWGj937r7RM2deSXDILEwo0Y0JJcZSnLqIiIiIiEjG6cKorCa9wChQkunCt28OHQTHmYm4Nh0fyE53u6hxoBjT6FJERERWuXavtxR4B7AP008itNg5eevWVZfv3PmQy+PZ4sRiw6Nnznxs/Pz5YwkOmY0JJY4Cj/psO53+WCIiIiIiIhmnYEJWjeb6mkngPEtwwX9jcSSUn+XYAD+6kHafiUkgnyXohyEiIiLLS7vXWwW8E9iO2VJpZrFzCtavryu74YaHXG73+lg0emn4xImPhC5dCiY4ZA6wFTiECSUWDUFERERERESuNQUTstqcw2xdkHHr8iJdAOfGshozVFINsEVERFaxdq93M3A3sAE4iekztaCijRvrS7Zs+YLlcpXHIpEzQ8eOfXRqcLA3wSFzgS1AF/CYz7anUpy6iIiIiIjIklIwIatNL2Z7hIJMF95aZvpMjEy7MtFnYhKozUAdERERWYbavd4dmJUSJZhQIrbYOSVbttxYtGnTZy2XqyAaDh8bOHz4npnR0eEEh8wD6oBO4AmfbU+nOncREREREZGlpmBCVpthoI8l2M7pjs2hI+BEZ6Ou6gOXcqvTLDcBVLR192Q8QBEREZHrp93rtdq93kZMTwkL01NiUWXbt99RUFNzn2VZOdGZmZf7u7ruC4dCiW7DlA9sBl7GhBKLbhclIiIiIiJyPSmYkFWlub7GAU6zBCsmKgui04XZseMAr/TkprtqYgIoRH0mREREVo12r9cCbgTeglkd2ZPIeeU7d96dV1n5YcuyPJHp6ad6Ozs/F52ZSTRcKAA2Ai8CT/tsezaFqYuIiIiIiFxTCiZkNeoFZoHsTBeuyI92Alwcz0o3mIgCbtRnQkREZFW4IpS4ExgBBhI5r2LPnp/LKy//gGVZVjgU+s++Awf+xIlEFu1FEVeE2RryR8AzPtsOpzB1ERERERGRa07BhKxG/ZgtnUozXXh7+Wy8z4S7IeakXW4WSHdLKBEREbnO5gglhhI5r7Kh4ddySkr8ADPj4//Y19n5l04stmgvirhiYD3wHPCsz7YTDTNERERERESuOwUTsuo019eEMds5FWe69l11oWMWzmwkZpW9cD5vU5rlJoANbd09WZmYm4iIiFx7qYQSlsvlqtq//3ezCwt/GmB6ZORvBg4e/D9JDFsKVAHPAM/7bDua5LRFRERERESuKwUTslpd3tM5o/+PF+XEIkU5sSMAB/vS7jMxjukzUZruvEREROTaSyWUcGVlZVXt3/+xrPz8H3McJzY5MPBng0eO/GsSw5YB64CngRd9tp3oCgsREREREZFlQ8GErFa9wBhLsGqisiDSBXBp3JNuMDED5KI+EyIiIitOKqGEJzc3r6qx8VOe3Nw3OY4TnuztfXD4+PFHkxi2HBNMPAm8pFBCRERERERWKgUTsio119eEgPMswWqEnRUznQBjM+59s9G0v4dimLseRUREZIVIJZTILioqrty377Pu7OwGx3GmJi5cuH/k1KkXkhi2AnPDxRPAKz7bTr/blYiIiIiIyHWiYEJWs3NAdqaL3rF50nZZzmTUsQqfPVuwJc1yIWBjW3ePlYGpiYiIyBK7KpQYJoFQIresrGLdrl1fcGVl3eDEYmNjweDHx86ePZjEsFVAAfA40KlQQkREREREVjoFE7Ka9WIu/Bdksmiux4kV58QOARzpz2lMs9w4ZlVHUbrzEhERkaU1RygxvNg5+ZWVtWU7dnzR5fFsjEWjAyOnTn104uJFO4lh12O2fnzMZ9sHFUqIiIiIiMhqoGBCVrMhYIAl2M6putD0megLpd1nYhITnKjPhIiIyDKWSihRWFOzrdTrfcjldlfEIpELw8ePf2Syr+9CEsPWAG7gEZ9tH05p4iIiIiIiIsuQgglZtZrraxzgFBleMQGwp3K6C2B81rUnNGt50igVw3wfKpgQERFZplIJJYo3b95bvGXLg5bLVRwLh08OHj360enh4YEkhq2NPz/is+1jyc9aRERERERk+VIwIatdLxAGsjJZ9NZNk0G35YzFHCv3qbMFN6RZbhpzR6SIiIgsM/FQookkQonSbdveWFhb+2nLsvKis7MH+w8d+sTs+PhYEsNuBiKYUOJEShMXERERERFZxhRMyGrXh7mAUJrJoh4XTmlutAvgxGBOuts5jQNVbd09uenPTERERDLlilDiDhIMJcp27HhrfnX1xy3LyorMzLzQ19l5f2RqaiqJYeswNy084rPtZHpRiIiIiIiIrBgKJmRVa66vCQNngJJM164pMn0m+kPudBtgTwCFQFnakxIREZGMSGWlRPnOne/Kr6j4fcuyXOGpqUf6XnnlwVg4HE5i2C1ACHjYZ9unU5m3iIiIiIjISqBgQtaCi4BFhv9/b1w/1QkwMevaOTTlyk6j1OWtptRnQkREZBm4KpQYIoFQYt3u3e/JKy//LYDZUKi978CBLzuxWCyJYbcBo5hQ4mwK0xYREREREVkxFEzIWnAJGAOKM1m0qWa6J8vlDDhYnqeCBbvSLBcFKjMxLxEREUldKqFExZ49780tLf11gNnx8X/u7+z8axzHSXBICxNKDAE/9Nn2+dRmLiIiIiIisnIomJBVr7m+JgRcIMN9JlwWXO4zcWo4O90+ExNAbVt3jzv9mYmIiEgqrgolBkkglKjct8+fU1LyPoCZ0dG/7z948JtJDGkBXmAAs1LiYvKzFhERERERWXkUTMhacRZIZ7ulOdUWhzsBBic9mWiAXcwS9MIQERGRxc0RSowsdk5lY+NvZBcV/RzA9MjI1wcOH/5/SQzpwoQSl4Af+Gz7UtKTFhERERERWaEUTMha0QtMAvmZLPqGDVMHAUJh64aecU86taeAPNRnQkRE5JpLOpSwLKtq//4PZBcU/BTA1NDQ1waPHPlOEkNeDiUuYlZK9KcwbRERERERkRVLwYSsFUNAPxnezmlP1cxAjjt2ESzX02fz92SgZFkGaoiIiEiC2r1eF0mEEpbL5arav//3svLz73YcJzY5MNA6dOzYd5MY0g1sB85hQomBFKcuIiIiIiKyYimYkDWhub4mBpwGCjNduyzP9JkIjqTdZ2IS2JT+jERERCQR8VDiRhINJTweT9X+/R/Oyst7q+M4san+/j8ZPn78kSSG9GBCidOYUGIoxamLiIiIiIisaJ7rPQGRa+gSEAGygHCmim4qDnddmsi6e2jK3ZhmqXGgvK27pyDesFtERESWyBUrJe4ggVDClZWVVdnQ8DFPTs7NjuNEJnt7Hxo5deqFJIb0ANsAG3jEZ9tjKU5dRERERETkmujw+8uBm4AKINgUCDybqdoKJmQt6QeGMQ2mM7Ztwq2bJrtevJjPVMS15fRwVvHWsnCqFxpCQCWmz4SCCRERkSUSDyVuAm4ngVDCnZOTU7lv3yfc2dn7HceZDfX0fH70zJmOJIbMwoQS3cDjPtseT3HqIiIiIiIiS67D768EWoGfxWxHC/B3wLPx938D+CLwU02BwNOpjKGtnGTNaK6vmQXOYIKJjNlaFh7L88TOADx3Pn9fGqWimG90NcAWERFZIsmGEp7c3LzKffvuj4cS0xMXLtyfZCiRjQkljgGPKpQQEREREZHlLL5K4lngF4BDwF8A1lWHtQFFmOAiJQomZK25iPn/PqP/75fnRTsBzo1mpbud0yxQnf6MRERE5GrJhhJZBQUFFfv2PeDOzt7jxGKT4+fO3Td29uyhJIbMwYQShzGhhFZEioiIiIjIcvcJwAt8pikQaGoKBH7n6gOaAoEhoAt4c6qDKJiQteYSMIZJ9DKmrnS2C2B4yp1uA+xxoKatuycr/VmJiIjIZcmGEtlFRcUVe/Z8zp2VtcOJxcbHzp79xPj5891JDJkLbMH8sv6Yz7YnU5u5iIiIiIjINfXTwPGmQOD+RY6zgdpUB1EwIWtKc33NBGbVRFkm696xefIwOLGZqGvD4b6cijRKTQCFZHh+IiIia1myoUROSUnZul27Pu/yeLY5sdjI6JkzH5+4eNFOYsg8oA7oxPSUmE5x6iIiIiIiItdaLeazzGIcoDjVQRRMyFoUxGytkDE1RZHJ/CznJMBLF/PS6TMxg7nDUn0mREREMiDZUCK3rKyifOfOL7g8ns1ONDo4Ytv3hC5dCiYxZAGwCXgFeMJn2zMpTl1EREREROR6GANqEjjOC/SnOoiCCVmL+oBJzN2MGVORH+kEuDCele52TjFgXfozEhERWduSDSXyKirWl+3Y8QWX210Ti0Z7h0+e/Nhkf/+FJIYswtxd9BLwpM+2Z1OcuoiIiIiIyPXyInBzh9+/db4DOvz+RmA/8EyqgyiYkLVoEJPmZXS7pG1lps/EyJS7MeakVWoC2NTW3XN1t3sRERFJULKhRH5VVW3Z9u1fcLndVbFo9MLw8eP3TA0O9iYxZBlQjfnF/GmfbYdTnLqIiIiIiMj19BXMbjP/0uH377r6zQ6/fzsQACzgq6kOomBC1pzm+poYcArTyyFj7qwLHbVwIuGYVdHRk5vIcqf5TGD2Z0t5jzYREZG1LNlQomD9+i2l27Z9wXK5ymORyNnBo0fvmR4eHkhiyAqgFHgC+JHPtqOpzVxEREREROT6agoEvgd8EWgADnX4/ccw/STe2eH3dwJHgb3A55sCgadTHUfBhKxVvUAE8GSqYHlebLYwO3YMoPNSXmMapUKY/anVZ0JERCRJ8VDiDSQYShRu2LC9ZMuWz1suV0ksHLYHjhy5Z3ZsbMFzrlID5AOPAa/4bDuW2sxFRERERESWh6ZA4GPAzwMHgR2Y1RE1wD7gBPBLTYHAfemMkbGLsiIrTB/mQkUpkMwdkQuqKIh2jc+69/aMexqA76VYxsGEhmXA6UzNTUREZLW7IpS4jQRCiaKNG3cVbdz4Kcvlyo+Gw90Dhw/fH5mcDCUx5CbMjQ4/9Nl2d6rzFhERERERWW6aAoF/Av6pw++vBLZgrleebwoEkunDNy8FE7ImNdfXzLZ195zGbPOQsWDihvKZztPD2f99ZNq9LxLD8rhItdvEFKZ5Zkem5iYiIrKaJRtKFNfVNRRu2HCfZVk50dnZQwOHDj0QmZ6eSmLILZhVjo/7bPtUitMWERERERFZ1poCgX5Mv96M0lZOspZdxCxDyliT6bvqQidcljMddayS58/nb06j1DhQ2dbdk5upuYmIiKxWyYYSJVu33lS4YcOnLMvKic7MvNLf1XV/EqGEBXiBUeAHCiVERERERESSpxUTspb1AmOYJtOjmShYkO1EirJjh0dn3Dcd7stpuGPzZDDFUhOY7SHKMQGKiIiIzCHZUKLU6701v6rqw5ZleSIzMy/0d3Y+FItEIgkO58KEEj3Aoz7b7k1j6iIiIiIiIstSfPumDwBvxvSWyJnnUKcpEPCmMoaCCVmzmutrxtu6e3qArWQomACoKoh0jc64b7o0kdUItKdY5nJj7jIUTIiIiMwp2VCi7IYb7sqrqPgDy7Jckenpp/o6O7/kRKPRBIfzYEKJICaUGExj6iIiIiIiIstSh9+/D3gUc8N0xnaauZqCCVnrgsCuTBbcVTnTdWIoh7EZ197piOXK9TixFEtFgSrgcAanJyIisiokG0qU19e/I7e8/Lcty7LCU1OP9Hd2fsWJxRL9NzobcyPDCeAxn22PpTF1ERERERGR5awVWAcEgD8GTjUFAqFMD6JgQta6XmASyMM0nE7b7ZtDp//9eFEo5lgFT5/N9/7YttCJFEuNA7Vt3T3u5vqaRO/mFBERWfWuCCVuBwZYJJRYt2vXu3PLyv4nQDgU+m5fV9df4ThOgsPlYhpdHwae8Nl2xn8hFxERERERWUZuAbqaAoFfWcpB1Pxa1rpBzAWN0kwVzHYTK8mJdgF0D+Q0pFFqAigig3MTERFZ6ZIOJXbvbr4cSsxOTHynr7Pza0mEEgVAHXAAs32TQgkREREREVntJoAjSz2IgglZ05rra2LAKUwAkDHriyJdAH0hT2MaZaaAfMx+biIiImveVaFEP4uEEhV79/5ibmnp+wFmxsf/sb+r6+tJDFcE1AIvAo/7bHs6lTmLiIiIiIisMI8C6VzTTIiCCRGzndPlZtMZsa9qugtgfMa1e3zGlU5dBwUTIiIic4USowsdX7lv36/kFBf/IsDM6Og3Bw4e/D9JDFcGVAPPAU/7bDuc2qxFRERERERWnHuByg6//7Mdfr97qQaxEl/JLplkWVYtcB7Y6DjOhes9n7WsrbsnB/gFTFA3kImaMQc++vD6b0ZiVumPbZv4+Lt3jB9KsdQGzHZT326ur9E3q4iIrElJhRKWZVU1NPyPrIKCnwSYHh7+68GjR9uTGK4Cs1riGeAVn20n2iBbRERERETkv6zk678dfv924F+BbOBx4AIw12cjpykQeCCVMdT8Wta85vqambbunjPAjWQomHBZUJob7RqY9Nx1cii7AUg1mJjA9JgoiP9ZRERkTUkmlLBcLldlQ8MHs/Lz3+E4jjM9NPQXQ93d309iuPW8+ov3QZ9t66YAERERERFZUzr8/izgE8BOwAK8CxzuAAomRNJwEbgJ882WkYsQNYWRzoFJz10Dk+4G4FsplpkAKjHbOSmYEBGRNSWpUMLtdlc1NPyeJy/vzY7jxKYGBlqHT5x4LInhNgJR4BGfbR9La+IiIiIiIiIr12eBX8Fsf/8tTH/ejF+XVDAhYvQC45itG8YyUbBpw1TXwb5cJmZd9YOT7px1+dGZFMrEADdmr+uzmZiXiIjIShAPJW4GbmOxUMLj8VQ1NHzYk5t7q+M40cn+/j8eOXnymSSG2wJMAo/5bPtUOvMWERERERFZ4X4J8xmssSkQ6FuqQdT8WgRorq8ZA3ow2yZlxP71073Z7lgvWO4ngwW70yg1A9Rkal4iIiLLXTKhhCs7O7u6sfHj8VAiEurt/XwSoYQFbIvX/75CCREREREREcqAp5YylAAFEyJXCgK5mSxYmhvrAjg9nNWYRplxoLqtuyc7M7MSERFZvpIJJdy5ublVDQ2fdOfkvMFxnNmJixc/M3rq1IsJDuUCtgN9mFDifLpzFxERERERWQUOY3aVWVIKJkRe1QtMA3mZKrixONwFMDjlaUijzATmh0FZRiYlIiKyTCUTSnjy8vIr9+37tDs7u8FxnKnx8+c/NRYMHkhwKA8mlDgH/MBn271pTl1ERERERGS1+BPgrR1+/41LOYh6TIi8agAYxGznNJWJgjfXTh7s6MljMmx5z495CjYWR0IplJkFcjDBhC6ciIjIqpRMKJFVUFBYsXv3p11ZWTc4sVho7Ny5T01cuHA8waGyga3ACeBxn23PO46IiIiIiMga9BzwVeDxDr//T4GHgQuYXriv0xQIpNQXVysmROKa62timC7zhZmqubNidijHEzsHlvXM2YK9aZSKApWZmpeIiMhykkwokV1UVFKxZ8/n46HE2Ggw+PEkQolcTChxFPihQgkREREREZHXOQO0YHZwuQ94ErCB03M8Uu7TpxUTIq91CRMCeIBIJgqW50a7eiZcm86OZjUCL6RYZgKobevuccUDFBERkVXhqlCiDxib79ic0tLy8h07PuvyeDY6sdjwyOnT90329iZ6d04BsBHoBJ7y2fZ0unMXERERERFZhZ4EnKUeRMGEyGv1Ye7SLMFs65S2zaXhrp6JrHcPTbnT7TNRAhQDI5mYl4iIyPWWTCiRW15eVXbDDZ91ud3rY9HowIhtf2JqYKAnwaGKgBrgReBZn22H0527iIiIiIjIatQUCLzlWoyjrZxErtBcXzMNBDEhQEbcunHyEDjOdMS1+cRgdmmKZSYxd3qWZ2peIiIi11MyoUReRUVN2Q03fCEeSlwaPnHiY0mEEqVANWaf1GcUSoiIiIiIiFx/CiZEXu8CZjWRlYlidaXh8TyPcxrghfN5qa6acOLzKcvEnERERK6nZEKJ/KqqTWXbt3/B5XZXxCKR80Pd3R+bHhrqS3CoCsy/nU8Cz/tsOyPbNIqIiIiIiEh6tJWTyOv1AuOYJtjjmSi4Lj/aeX7Mte38WFYD5uJIKiYxe2O/nIk5iYiIXA/JhBIFNTXbSurqPmO5XMWxSOTM4NGj982OjyfasHo9kA08Dhz02faS75EqIiIiIiKy0nT4/b8c/+O/NAUC41d8nZCmQOCbqYyrYELkKs31NaNt3T2XgE1kKJjYWjrbdX4s678NT6fdZ2JdW3dPXnN9zVQm5iUiInItxUOJNwK3skgoUVhbu6N406ZPWy5XQSwcPjFw5MinwqHQRIJDbQRiwCM+2z6W9sRFRERERERWr29gdmt5HnMt9PLXi7HixymYEMmgM8ANmSp2R13oyFNn86OzUdf6zku5VY3rpxPdguJKE8BmTJ+JC5mam4iIyLWQTChRtGnTnqKNGz9pWVZeNBw+OnDo0KcjU1OTCQ61BbPK8DGfbZ9Kd94iIiIiIiKr3GcwAcPAVV8vKQUTInPrBaaB3PhzWqoKolMFWbHjobB7V0dPbkPj+ukfplAmgvmeLUPBhIiIrCBXhBK3Yf6NnTeUKK6r21+4YcO9lmVlR2dnu/oPHfpsdHo6kX+LLWArMAw86rPt85mYu4iIiIiIyCr3dWCiKRAYAmgKBO6/FoOq+bXI3AaAQaA0UwUrCqJdABfHs9LZzikMVGdmRiIiIksvmVCiZNu2mws3bPikZVnZ0ZmZl/q6uj6TYCjhArYD/cAPFEqIiIiIiIgk7DTwR9d6UAUTInNorq+JYr4pizJVc3vZbBfAyLS7IZb6YqhxoKatu0ernUREZNlLJpQo3b799oLq6o9bluWJTE8/29vZ+fnY7OxsAsN4MKHEOeD7Ptu+lIm5i4iIiIiIrBFW/HFNKZgQmd8lTONMdyaK3bUldMzCmY3ErPIXL+TVplgmBBSTwZUcIiIiSyGZUKLshhveml9Z+WHLstyRqakn+g4c+KITiUQSGCYb8AKnMCslBjMxdxEREREREVlaCiZE5tcLjAIlmShWnBMLF+XEjgJ09eY2plhmCsjD9JkQERFZlpIJJcrr69+ZV1Hxe5ZlucKTkw/3dXb+qROLxRIYJhfTU+IoJpQYzcTcRUREREREZOkpmBCZR3N9zTQQJIOrEyrzI10AlyY86fSZiAHrMjMjERGRzEomlFi3a9dP5a1b90HLsqxwKPTvfZ2dX00wlMgH6oBO4BGfbYcyMXcRERERERG5NrRPvcjCLgA3YvZZS70zRFx9xWyXPZzD6LS7IRLD8rhSqhkCNrZ191jN9TVpz0lERCRTkgklKvbs+dmckpJfBpgdH/92/8GDf5fgMEVADfAi8JzPthPpQyEiIiIiIiLzu7vD7380hfOcpkDg7akMqGBCZGG9mIbThfHntNxZFzrxvZOFU1HHKnzmbMHWN28JnUqhzARmK6eMzElERCQTkgol9u37pZyiop8HmBkb+9bAoUP/kOAwpUAF8BzwI59tJ9KHQkRERERERBZWDaxP4byUb5pWMCGysFHMxZVaMhAC5HqcWHFO7NDItPvmI/05DSkGEyHMD4uyTMxJREQkXVeFEpdY4N+nyoaGX8suLPxpgOmRkW8MHjnSluAwFUAx8CTwis+2E9nySURERERERBb3DPA313JABRMiC2iur3HaunvOADdkqmZ1QaRrZNp9c6/pM/GdFErEMP1hyoGzmZqXiIhIKuKhxC3Am1golLAsq6qh4TezCgreBTA9PPxXg0eP/keCw6wHsoHHgIM+29ZWhiIiIiIiIplzsikQSHR73YxQMCGyuF5gGsgBZtIttrtqurN7MIfxWdeeqbDlzstyoimUmQY2AAfSnY+IiEiq4qHEmzDBxOXtD1/HcrlclY2Nv5OVl/d2x3Gc6aGhrw51dz+c4DAbMaH8Iz7bPpaRiYuIiIiIiMh15breExBZAfqBIcy+1mm7bdNk0G054zHHynsyWJDqSowJoKqtuyc7E3MSERFJVsKhhNvtrtq//0PxUCI2NTDwJ0mEEluAWeBhhRIiIiIiIiKrh4IJkUU019dEgVNAUSbqeVw4JbnRLoDjg9kNKZaZiM+nPBNzEhERSUaioYTL4/FU7d//MU9u7p2O40Qm+/oeGj5x4skEhrCAbZheTz/w2XYqPZlERERERERkmVIwIZKYS/FndyaK1RRGugD6Q55Ug4lZzF7bZZmYj4iISKISDSXc2dnZVY2N93lycm5xHCccunTpcyO2/VwCQ7gAL2bF4g98tn0uU3MXERERERGR13kCuOYr1NVjQiQxvcAIUILZ1iktjeunOw/35zIx69o1Mu3KLs2NzaZQJgJUAkfTnY+IiEgi2r1eNyaQWDCU8OTm5lXs3XufOzt7r+M4MxMXLz4wFgx2JTCEB7NS4izwqM+2BzM1dxEREREREXm9pkDgrddjXK2YEElAc33NFHCODPWZuGnD1MUslzPoYGU9FSzYmWKZEFDb1t2j72MREVlyV4QSb2KhUCI/v6Bi377PxEOJqfFz5z6ZYCiRhVkpcQqzUkKhhIiIiIiIyCqlC5oiiTtPhlYZuSwojfeZsIfS6jNREn+IiIgsmatCiUvME0pkFRYWVe7d+zl3Vla9E4tNjAWD946fP5/Iyr5czEqJo5hQYjRTcxcREREREZHlR8GESOJ6MWFAYSaKbSgOdwEMTHoaUywxCeSjPhMiIrKEEg0lsouLSyt2737Q5fFsc2Kx0dEzZz4+cfHiiQSGyAfqgC7gEZ9thzI1dxEREREREVmeFEyIJG4EE06UZqLYTTVTXQChsHXDpQlPXgolnPhzeSbmIyIicrVEQ4ncsrKKdbt2fcHl8Wx2YrGhkVOnPha6dOlMAkMUARuBl4DHfbY9naGpi4iIiIiIyDKmYEIkQc31NQ5wBnNnZ9r2Vc/0Z7tjPWC5njmbvyfFMpOYCzoiIiIZlWgokbduXXXZjh0PutzuDbFotG/45MmPTfb1XUhgiFKgGngOeNpn27MZmrqIiIiIiIgscwomRJJzCZgFcjJRrDwv2glwZiTlPhMhYF1bd09GwhIRERFIPJTIr6ysLdu+/Qsut7s6Fo32DB8//rGpgYFLCQxRgVnx9xTwvM+2I5mau4iIiIiIiCx/GWnkK7KGDACDmLs8e9MttrE43HVpIuvuwUl3Og2wN2P6TEymOx8REZFEQ4mC9evrSrZsecByuUpjkcjZoe7u+2ZGR4cTGKIaE/A/Bhz02bazyPEiIiIiIiJrQofffxPwDuCN8UctQFMgYM1z/P3ApxYo+VBTIPCxDE8zI9IKJupa+RIwHGzhgQzNR2RZa66vibR195wGbiUDwcQtG6cOvXQxn6mIa9uZkayiLaXhOS/+LCACuDF3nSaybYaIiMi8Eg0lCjds8BZv3vwZy+UqikUipwaPHv3k7Pj4WAJD1MafH/HZ9rHMzFpERERERGTVuA94TwrnPQOcnOP1l1OZRIffXwV8ALgLqGH+3WOcpkDAm8oY6a6Y+G3gX9OsIbLS9GAaT7uAWDqFtpfPjuR6YsHpiKvuuXP5+7aUjj6bQpkwsB44mM5cRERkbUs0lCjauHFn0caN91suV340HD4+eOTIp8KhUCiBIbYAU8BjPtu2MzVvERERERGRVeQ5oAt4Mf44Q2Jbyv/vpkDgG5mYQIffvwt4AlgHzLlSIxPSDSbOoz4Vsvb0AiOY7ZyG0i1Wnhftujjuqjs3mtUApBJMTADr27p7PM31NdqjW0REkpZoKFG8efO+wtra+yzLyo3Ozh4eOHz4M5GpqalFylvAVmAYE0qcy+TcRUREREREVoumQOChK7/u8PuvxzT+CNMX8NvAg8DxpkBgItODpBsqfAd4c10rRRmYi8iK0FxfM4UJ5UozUW9L6WwnwNCUuzHFEhNAMabPhIiISFLiocSbWCSUKNmypamwtvZT8VDiQH9X16cSCCVcgBfoB36gUEJERERERGTZuxPoBt7bFAh0LEUoAemvmPgU8Bbgu3Wt/G6whVfSn5LIinAOSLVh9Wvcvmny8LPn8mMzUVft0f6c8l2VM8muwpgGcjHBRH8m5iQiImvDFaHELSwQSpRu23ZLfnX1Ry3L8kRmZl7s7+r6QiwcDi9S3gNsA84Cj/psezCTcxcREREREZH/8rYOv38/5hrheeA/mwKBlPpLYFa9H2gKBJxMTW4u6QYT/wrMALcDL9W10oP58Dk9x7FOsIW3pzmeyHLRi1mpUBh/TtmG4kgoP8uxJ8PWDS9eyGvcVTnzWAplYph930RERBJy1UqJHuYJJcq2b78zr7LyQ5ZluSLT00/3dXV9yYlEFts6MAsTStiYUGI0k3MXERERERGR17h6z6cHOvz+bwPvT2HFw0tAXWamNb90t3J6C+YOOzBJygbMh9u3zPMQWS1GgD4ytJ3TuvxIF8CF8axUV2GEgI1t3T1L1pBGRERWj0RDifIdO96eV1n5h5ZlucJTU4/1HTjwxwmEEjmY7ZuOAQ8rlBARERERkTWu0LKs4iseiTSzTtRJ4A+BPZgbqDcBvwRcAH4GCKRQ837g5g6/35ehOc4p3RUTWzMyC5EVprm+xmnr7jmNuRs0bdtKZzvPjWb/zPCUuyHmgCv5eGECs5VTETCWiTmJiMjqlHAosXPnT+SVl/8mQHhy8nt9nZ1/ieMstpQ3H/OLcCfwlM+2F+tBISIiIiIistodu+rrT2Mu/qetKRD4+6teCgHf6vD7HwMOAj/d4fe/qSkQeD7J0q1AW4ff/y3gYcz2ULF55vBkkrWBNIOJYAvBdM4XWeF6gVkgO/6csjvrJo8+GSyIhGNW5YFLueubaqYvJVkiBFRjwgkFEyIiMqdEQ4l1u3f/dG5p6a8BzIZC/9bf2fm/EyhfBNRglv0+67PttP5tFBERERERWSV2Yj5/XTaz1AM2BQI9HX7/32JWU9wNJBNMPA44mB2S/MD7Fjnencoc010xIbKW9QNDmDCgN51C6/KjMwXZsWMTs+69B3ryGlIIJmKYrdnKQYGhiIi83lWhxEXm6ZFUsXfvz+cUF/8SwOz4+D/1HzyYyNLfUqAC88vuCz7bXmy7JxERERERkbViwnGc63Ej8Yn4c02S530TE0wsqYwFE3Wt3ArcCdTGX7oAPBVs4blMjSGynDTX10Ti2zndQprBBEBlfrRrYta99+K4pwH4QQolpjE/aF5Jdy4iIrK6JBpKVO7b98vZRUU/CzAzOvr3A4cP/78EylcAxcDTwMs+255zea+IiIiIiIhcU2Xx51AyJzUFAu/P/FReL+1goq6VHZgmGm+Iv3R5d3wn/v5LwPuCLf+V0IisJpeXYbmYZ5+1RN2wbqbr9Ej2fx+dSavPRHVbd09Oc33Nki8JExGRlSHhUKKx8X9kFxT4AKZHRv5m8MiRf02gfDWQi1nq2+Wz7SW/q0ZEREREREQW1uH3W8B/u/zl9ZzLfNIKJupaqQGewHwovQj8E3AGE0psAX4OuBl4vK6VNwRbXrOXlshq0AuMAiXAcDqF7qoLHX/YLpyNxKzS587lb7598+TZJEuMY1YslQHJbgUlIiKrUEKhhGVZVY2NH8jKz38nwNTQ0F8OHTv2nwmUv7xK9hGfbR/N0JRFREREREQkAR1+fyXwXuCbTYHA+BWvFwJ/jNnl5RLQlsYY2cB+XrtL0oGmQCDtnoLprpi4FxNK/ClwT7DltQ2A61r5KPAg8AfAx4HfSXM8kWWlub5msq275zymiU1awURBthMpyokdHptx33ioL6chhWAijGnEXY6CCRGRNS+RUMJyuVxVjY0tnry8tzqOE5saHPzK8PHjjyRQfgswBTzms207k/MWERERERFZqzr8/ncD913xUnb89SubVz/QFAj8B1AAfBX4Qoff/yJmZ5dKoAlYB4wAP9sUCEymMI9c4DPA/wQKr3p7osPv/xrwqaZAYDrZ2pe5Uj0x7ieA7mALH7o6lAAIthAGPgx0Az+Z5lgiy9U5ICsThaoLIp0AvROexhRLRDB7fYuIyBoWDyVuxdwhM3co4fF4qvbv/8h/hRL9/X+cQChhAdswqwW/r1BCREREREQkoyoxn+MuPy5v9n7la5Xx1waBh4CXgR3AzwC3Y25Y/hNgb1Mg8EyyE+jw+3OAHwIfwoQSXcC/Af8KdMZf+0Pgh/FjU5Luioka4NsLHRBswalrpQPzH0ZkNerFNJEpIMlmMlfbWTHTdWIoh9EZ997ZKK5sd9J9K0LAxrbuHldzfY2aj4qIrEFXhBJvxNwx87pQwpWVlVXZ0PAxT07OzY7jRCZ7ex8aOXXqhUVKuzChRC/wqM+2tTpPREREREQkg5oCgW8A30jw2HHgY0swjd8HbgOeBj7YFAgcvPLNDr9/L2alxp3A72HCkaSlu2JiDNiUwHGb4seKrEbDQD9Qmm6hO+pCp1yWE4o5VsFTwQJvCiXGgeJMzEVERFaeq1ZKzBlKuHNycqoaG++LhxKzoZ6eBxIIJTzAduA88AOFEiIiIiIiIqvWL2Kudb776lACoCkQOITZHWkA+KVUB0l3xcRzwE/WtfLuYAv/MdcBda38BGYJSXuaY1HXSh5wD/ALwGZgCPgecF+whQtJ1ioD7gd+GliPWeLyL8D9wRZGFjivELOM5Wcwdw1GMVv5PAF8NNgyR1NJWdWa62uctu6eU5j9ttOS7SZWkhM9NDztueXYQE7D27eFTiRZYpJXG2APpTsfERFZORLZvsmTl5dXsWfPJ93Z2Xscx5meuHDhM2Nnzx5apHQW5nceG7NSYjTTcxcREREREZFlYzvw71c21L5aUyAw0eH3P04a7RvSDSa+gOkz8S91rfwj8C3gTPy9Oky68gtALH5syupayQUexTRw7MHsabUF+FVMOPKmYAunEqxVgQlVtgOngO8Ae4AW4F11rdwabHn9Rd26VrYCjwBb4+f9J5AD1AMfwDT6VjCxNvUCs5iGNGl1pa8ujHQOT3tu6Qt5Glhkq7QFlGMuIImIyBoQDyVuw2zfNGcokVVQULhu9+773VlZO5xYLDR+/vz94+fPdy9SOgfze89R4HGfbev3HBERERERkdUtAuQncFx+/NiUpLWVU7CF5zDBQBizbOPfgUPxx38A/vjkfjXYwvPz1UnQvZhQ4jlgR7CFnw+2cAtm9UIl8PUkav0ZJpRoA+rjtfYCX8E0CvnS1SfUtZKDCSI2A78ZbMEbbOHngi38VLCFemAfukN9LevHbOlUmm6hvVUzXQDjM649oVkrlfDw8qoJERFZAxIJJbKLioor9uz5XDyUGB8LBj+RQCiRj7nRpBN4RKGEiIiIiIjImnAQeFuH379tvgM6/P6twNswjbFTkm6PCYIt/D1mxcADwOPA8fjjceAzwM74MSmrayUb+O34lx+8crukYAtfwvwHeHNdKzclUKsGs5JjFvhAsOU1qc6HMReY31fXStVVp7Zg/p5fCrbwV1fXDbZwKNjCZBJ/LVlFmutrwsBpTH+HtNy6afKsx+WMOFjZTwYLdqRQYgKoaOvuKUh3LiIisrwlEkrklJSUr9u160GXx7PVicVGRk+fvmeip2exVaZFwEbgZcxKialMz11ERERERESWpb8C8oDHO/z+X+/w+/Muv9Hh9+d1+P2/irn2nwt8LdVB0trKqa6VLwHDwRYeAD6VTq1F3A6UAHawhVfmeP+fgQbAh/kAvZC7MYHMU8EWeq98I9jCTF0r7cCvYbao+sYVb/+P+PNXkp69rBU98WcXZvuylLgsKMmJdg1Oee46MZjT8K4bJo4kWWICWIfpMxFKdR4iIrK8JRJK5JaXV5bdcMNnXW53jRONDgyfOnXvVH//xUVKlwIVwPPACz7bTnlproiIiIiIiKwsTYFAoMPvvwNzPfx/Af+rw+8fiL9dEX+2gL9qCgT+T6rjpLti4rcxgcBSa4w/d8zz/uXXE5lL0rXqWtmE2frpfLCFc3Wt3F7XykN1rXytrpWP1rWyPYFxZfXrBcbIwKqJDUWRLoD+SXfjYsfOIYoJHcvTnYeIiCxP7V6vh0VCibyKivVlN9zwBZfbXROLRnuHTp68J4FQYh3m34+ngecUSoiIiIiIiKw9TYHA/wR+DvPZMIxppVAZ//NTwM81BQK/lc4Y6Ta/Pk8GtoNKwOYrxptvHmD2QV6KWrvjzxfrWvlzTKPrK322rpWPBVv4kwTGl1Wqub4m1Nbdcx7Tp2QknVr7a6a6DvblEpp11Q9OunPW5UdnkiwxC1SnMwcREVme4qHErSwQSuRXVW0s3bbts5bLVR6LRi8MdXffOzMyMrhI6WrMUtzHgS6fbTsZnrqIiIiIiIisEE2BwLeBb3f4/R7MTWwAg02BQEZuYEs3VPgOprdDUQbmspDC+PN8PRwub1eTyDxSqVUWf24CfhO4H9gE1AAfjb/3x3WtvHu+QS3LyrEsq/jy44p5yOpyDshOt8j+9dOXslxOv4PleSqYvyuFEhPAhrbunqx05yIiIstHIqFEwfr1W0q3bXvQcrnKY5FIcPDo0XsSCCVqMTesPOKz7U6FEiIiIiIiIgLQFAhEmgKB3vgjY6vq0w0mPgWcBb5b18qNGZjPcnX5v5MH+KtgC58OtnA+2MKlYAtfBP40/v7HF6hxDzB6xePYks1WrqdeTLiVVuNplwVledFOgFMj2als5zSOCb9K05mHiIgsH1dt33SBOUKJwtraG0q2bPm85XKVxMJhe+DIkY/Pjo2NLFJ6CxABHvbZ9tEMT1tERERERETkddLdyulfgRlMc+qX6lrpwQQV03Mc6wRbeHuK41z+4J0/z/uXLwKPL1GtKz/4/+0c5/wt8GHglrpWcoMtc/79HwS+dMXXNSicWI2GgAFMI5i0Gk/XFoe7+kKeHxuc9KTSx2UGsx1HOdCfzjxEROT6uyKUuBkTSrzu35iiTZt2FW3ceL9lWXnRcPjYwOHDn45MTi70b5EFbMVsP/iYz7bPLsHURUREREREZBnr8PsfBRzgV5oCgfPxrxPlNAUCKV3zTzeYeMsVf7aADfHHXNLZEuDyB+WN87x/+fXgEtW68s9n5jjn8mtuzIXg1zWWdBxnBnOxGADLspZ6+yu5Dprra5y27p5TJNbvZEE3b5jqeqUnj8mw5b045inYUBxJNuiI8er+byIiskIlEkoU19U1FG7YcJ9lWTnR2dmD/YcOPRCdnp7rRonLXMA2oA+zfdOlpZi7iIiIiIiILHtvwVy7z7/i60SlfM0/3WBia5rnJ6oz/tw0z/uXX+9aolrHMKtAcjH9Jq6+A738ij+/blsFWXN6MR3qs+LPKdlVOTOU445dmIm6ap8+m7/3vXvHXkiyRAjY2NbdYzXX12ivcBGRFSiRUKJk69Y3FKxff49lWVnRmZmO/oMHPx+dnZ1doKwb8GJu1njMZ9sDSzF3ERERERERWREuX+O/cNXXSyqtYCLYktAKhUx4BtOXwVvXyv5gCweuev9n48/tCdT6HuZO8jvrWqkKttB3+Y26VnIAHxAFvnv59WALM3WtfB94DyYxOn5VzTfHn08FWxhL6G8kq1kfMIzp75DWNkrledHOnglXbXA0uwFINpgYj8+hCPT/pYjISpNIKFHq9d6WX1X1h5ZleSIzMy/0d3Y+FItEFmpGloVZKWFjQomRJZi6iIiIiIiIrBBNgUBwoa+XSlrNr+ta+VJdK/dlajLzCbYwC3w1/uWf17W+2li4rpU/ABqAJ4ItvHzF679d18qxulYevKpWD/B/gWzgL+paXxPOfBGoBP7+ysDiivcA7qtrZccV42wFHoh/+bVU/46yejTX14Qx23uVpFtrU0m4C2Boyp1Kn4lJTM+U8sUOFBGR5SWRUKLshhvenF9V9RHLsjyR6emn+g4c+MIioUQOJpQ4hml0PbIEUxcREREREZEVrMPv/+UOv/+2BI57U4ff/8upjpPuVk6/jWmAfS18FvgxzIf0E3WtPIXZx/8WzF3pv3bV8RVAPabJ9NV+D3gT8DPAsbpWXgL2AHuBE8AfXH1CsIVn61r5DPBJ4JW6Vp7BrKy4HXNH+n/y2ubWsrZdxPRdcWFW6KTktk2TB390IZ/piKvu5FB26fby2ZEkTo/Fxy9n7t4oIiKyDCUSSpTX178jt7z8ty3LssJTU4/0d3Z+xYnFFvr3Jg/YjNmq8imfbU8txdxFRERERERkxftG/PHsIsf9Ouaa/DdTGSStFRPA+QzUSEiwhWngrZjVCZPAT2OCiW8ATcEWTiVRawB4I/AVzMqJ/4a5u/3LwBuDLQzNc96nMGHGy5hg482YrRB+H/ipYAvRFP5qsjr1YrZPKk6nSF1peDzPEzsF8ML5vL0plJhm7nBORESWoURCiXW7dv1k3rp1v2NZlhUOhb7bd+DAlxcJJYqATcBLwOMKJURERERERCQDXFzH5tffAX65rpWiYAvjadZaVLCFKcyKhU8mcOz9wP0LvD8E/G78kcwc2oC2ZM6Rtae5vmairbvnArAdGEmn1rr8aNf5Mde2c6NZjcDTSZ4+DlS1dffkNtfXTKczDxERWVqJhBIVe/b8TE5Jya8AzE5M/Et/V9ffLlK2FLNN5fPACz7bXmirJxEREREREZFEbSONvrbpBhOfwjSD/m5dK78bbOGVNOuJrCZngd3pFtlSOtt1fizrp4enU+ozMQHUAmVAT7pzERGRpZFQKLF373/PKS7+BYCZsbF/GDh06FuLlF2HWRH6NPCSz7ZT3lpQREREREREVq8Ov//qhQD753jtMg+mhcJdwMOpjpluMPGvwAymz8JLda30YC7GznVnthNs4e1pjieykvRith3Ljz+n5PbNk4efPpsfm426ag725lTuq57pT+L0MJCF6TOhYEJEZBlKJJSobGh4f3ZhYTPAzOjoNwcOH/7nRcpWY/pKPA50+Ww75eW1IiIiIiIisurdj9mWyYo/748/FtIHfDzVAdMNJt5yxZ8tYEP8MRd9IJa1ZgjTmH0daQQT6wsjUwVZseOhsHvnyz15DfuqZx5JskQUs42HiIgsM4uGEpZlVTU0/H9ZBQXvBpgeHv7rwaNH2xcpWxt/fsRn20cyPGURERERERFZfX41/mwBX8esvP+beY6dBS4CzzcFAjOpDphuMLE1zfNFVq3m+ppYW3fPaUyT9rRU5Ee7QqPunRfHshqAZIOJCaC2rbvH3VxfowbtIiLLxGKhhOVyuSobGj6YlZ//DsdxnOmhob8Y6u7+/iJl6zArVx/32fbJJZm4iIiIiIiIrCpNgcDfXf5zh9//K8B/XvnaUkgrmAi2EMzURERWqV4ggtlOKZxqEW/5bFdwNPu9w9PuxpgDLiup08cxWzmVYFZxiIjIdbZoKOF2u6saGn7fk5d3l+M4samBgT8bPnHi8QVKWpgbRkaAx3y2fXZpZi4iIiIiIiKrWVMg8NZrMY7rWgwisob1AcOYUCBld9aFjlk44UjMKn/pYl7t4me8xhSmz0V5OnMQEZHMWCyUcHk8nqrGxo/EQ4noZF/fFxcJJVzAdmAA+IFCCREREREREVnukloxUddq9pcKtvD1Od77KeBssIUDc7z3aeAngy3clOpERVai5vqa2bbunjNAE+aCUUpKc2Ozhdmxo+Oz7oauS7kNb6ydupBCmbJUxxcRkcxYNJTIzs6u2rfvHndOzk2O40RCly49OHr69IsLlHQDXuAc8KjPtlP+t0ZEREREREQEoMPvt4BfAt4D3AAUYVbqX81pCgS8qYyR7FZO748/vy6YAL4DfAP4tTne28ziXbxFVquLwBswd7TGUi1SWRDpGp91N/RMeBqA/0zy9ElgE7DQxS0REVlCi4US7tzc3Mq9e+91Z2c3OI4zO3Hx4mfHgsEDC5TMArYBNmb7ppGlmbmIiIiIiIisFR1+fzbwH8DbmDuMAHAWeC8h2spJZOn1AmOYZDFl9etmOwFGp90NkVjS3/jjQHlbd09BOnMQEZHUxEOJ25knlPDk5eVX7tv36XgoMTV+/vwnFwklcjChRDfwsEIJERERERERyZAPAW8H/h2zWiKACSJygF3A/ZjPtH/UFAiknC8omBBZYs31NeNAD1CaTp0760InXZYzFXWsomfP5dcleXoIKER9JkRErrkrQok3MEcokVVYWFS5d+9n3VlZu5xYLDR29uy94+fOHVmgZB6wBegCfuiz7YklmrqIiIiIiIisPT8PDAH/vSkQsInvANMUCISbAoHupkDgM8C7gQ91+P1z7Z6UEAUTItdGEJMqpiwvy4kWZccOAxzuy21M8vQoZh9yBRMiItfQYqFEdnFxacXu3Z9zZWVtd2KxsdFg8OMTFy6cWKBkIWZrvpeBx322PbVUcxcREREREZE1aTvwo6ZA4PLn1xhAh9/vvnxAUyDwFPAM8IFUB1EwIXJt9AJTmLtcU1ZdGOkC6At5GlI4fRaoTmd8ERFJ3GKhRE5pafm6nTsfdHk8W5xYbHjk1Kl7Qj09pxcoWQrUAM8DT/lse3aJpi4iIiIiIiJrVxQYveLry59lK6867gJQn+ogCiZEro1BoJ80t3PaXTnTBTA249o7Fbbcix1/lXGgpq27JyudOYiIyOIWCyVyy8uryuvrv+DyeGpj0ejA8MmTH5vs6zu3QMl1mFVvTwPP+Ww7slRzFxERERERkTXtArDxiq9Pxp/fdNVxDUDKWwsrmBC5Bprra2LAadJsgH375tBpt+WMxxwr7+mzBduTPH0CswVIWTpzEBGRhbV7vVksEErkVVTUlN9wwxdcbvf6WDR6afjEiY9ODQz0LFCyGvPvx+PAiz7bji3R1EVERERERESeB/Z2+P2Xt6X/bvz5zzr8/rs7/P59HX7/VzCNsF9IdRBPCuf8Sl0rvzLH684C74mI2c4pgvm+S+lOV48LpyQ3enBoynNb90B2wzu8dCdx+gyQi7njti+V8UVEZGHxUOI25gkl8qurN5du3fqA5XKVxSKR80PHj987MzIytEDJ2vjzIz7bXqghtoiIiIiIiEgmfBt4F/DjQHtTIHCyw+//M+D3gf+IH2NhPu9+JNVBUgkmrBTHclI8T2S16AVGMNs5DaRaZH1hpGtoynNb/6SnAfinJE+PYbYDERGRDLsqlDgPTF75fkFNzbaSuroHLJerKBaJnBk8evS+2fHx0blqxdUB05gm1ycXOE5EREREREQkI5oCgf/A9De88rUPdfj9LwI/jdmN5Tjw5aZA4ESq41iOo7zgerAsqxZz0WKj4zgXrvd85Npo6+65C7iJV/dmS9oL5/Nq/+FQ6V9aOLP3v7XvF4tzYuEkTl+P6TXxj831NfrmFxHJkMVCiaLa2vqiTZvut1yuglg4fGLgyJFPhUOh+fbitICtmDD7MZ9tn13CqYuIiIiIiMgS0PXfhanHhMi11YP5vkt15RE3105d8LicIQcr+8kzBTuTPH0CKI4/REQkAxYLJYo3b95btHnzZyyXqyAaDh/tP3TovgVCCRfgxays+4FCCREREREREbmWOvz+T3b4/T+VwHG+Dr//k6mOo2BC5Nq6BIySRhNslwWludEugJPD2Q1Jnh4CCjB9JkREJE2LhRIlW7bsL6ytvd+yrLzo7GxXf1fXJyNTU5Nz1QLcwHbgIiaUWKghtoiIiIiIiMhSuB+zZdNifgr4VKqDKJgQuYaa62vGMeFEWTp1aovCnQADIXeywYSD+b5Pa3wREVk8lCjdtu2NBTU1n7QsKzs6M/NSX1fXZ6IzMzPzlMvChBKngO/7bLt/KecuIiIiIiIikiY3pp9tShRMiFx7Z4DcdArctGGqCyAUdu3oC7nzkjx9CqhNZ3wRkbUuHkrcznyhxPbtd+RXV99jWZYnMj39bG9n5+djs7Oz85TLwWzf1A087LPtkSWcuoiIiIiIiEgm7AGGUz3Zk8GJiEhiejHhQF78OWn7qmf6s92xS7NR1/qnggW7f2b32MtJnD4OVLZ19+Q219dMpzK+iMhadkUocRNzhBJlO3a8NW/duhbLslyRqakn+jo7/9SJxea7iyQP2Ax0AU/6bDulfxdEREREREREUtXh93/9qpfumOO1yzxAPeZGve+kOqaCCZFrbxDT1LSUFIMJgLLcaFdvyLX+zEh2A5BMMDEBbML0mbiY6vgiImvRYqFE+c6dd+eVl38AIDw5+YP+rq6/WCCUKAQ2YH6GP+Oz7flWVIiIiIiIiIgspfdf8WcHs9Xw9kXO6QI+nOqACiZErrHm+ppYW3fPKeAuIOXGphuLw129oawfH5x0NyZ5agSzl3kZCiZERBJ21fZN57gqlFi3a9dP5ZaV/QZAOBT6976urr/GcZx5ypUCFcALwPM+244s2cRFREREREREFvbW+LMFPAp8D3honmNngYtNgUAwnQEVTIhcH5cwAYEn/py0N22a6nq5J5+piLU1OJJVVFcaHk/i9AhQBRxOZWwRkbVmsVCiYs+e9+aUlLwPYHZ8/Nv9Bw/+3QLlyjHBxDPASz7bTrlZmIiIiIiIiEi6mgKBJy7/ucPv/zvgqStfWwoKJkSujz5gBHNhaiCVAtvLZ0dyPbGz0xHX5ufO5++tKx19LonTx4Hatu4ed3N9TTSV8UVE1orFQonKffvel11U9F6AmbGxbw0cOvQPC5SrxvSVeALo9Nn2fCsqRERERERERK65pkDgV6/FOK5rMYiIvFZzfc0McAYoSadOeV60C+DsSFZDkqdOAEWYYEREROaxaCjR0PDrl0OJ6ZGRv10klKjF3BTyiM+2DyiUEBERERERkbUqoysm6lrZB3wQ2AqcBP482MKRq47ZD7QFW9iWybFFVqCLmOapFqapTNI2l4Q7L45n/eTQVNJ9JqaAfMx2IoOpjC0istq1e73ZwG3MFUpYllXV0PCbWQUF7wKYHhr62uCxY99doFwdMA087rPtk0s3axEREREREZHUdfj9yeyu4jQFAillDBlbMVHXyu3Ai8AdwDBwN3CgrpX7rjo0B/PhXGSt68VsqVSUaoHbN4cOgePMRF0bjw1klyd5uoMJJkRE5CrtXm8J8A7mCCUsl8tVtX9/S1ZBwbscx3GmBge/vEAoYQHbMCvVfqBQQkRERERERJa5c8DZOR7nMX1rrfjjbPzYlGRyxcTngTbgl4ItOHWtuIDfAR6sa2U38P5gCzMZHE9kRWuurxlr6+7pwQR1Y6nU2FgcCeVnOfZk2Nr+4oX8fTsrZpNpShMCNrV19/youb5G24mIiMS1e721wJ3ARuA0MHv5Pcvtdlc1Nn7Ik5t7h+M4samBgS8Nnzjx5DylXJhQog941GfbPUs9dxEREREREZF0NAUCW+Z7r8PvdwFvA1qBg8AvpjpOJntMNAJfD7aYLWmCLcSCLbQCbwXeAjxa10pFBscTWQ2CQG46BdblRToBzo+l1GeiFChIZ3wRkdWi3eu12r3e3cBPAFXACa4IJVxZWVlV+/d/LB5KRCb7+r6wQCjhBrZjtu37gUIJERERERERWemaAoFYUyDwQ+AngXcDH021ViaDiUmg8OoXgy28ANyKuQD6PLArg2OKrHS9mD3H81ItsLUs3AUwMu1KJZgoRNs5iYhcbnJ9K2b7JgezUiJ2+X13dnZ2VUPDvZ6cnFscx5kNXbr0uRHbfn6eclmYUOI08H2fbfcv8fRFRERERERErpmmQOA05lr/r6VaI5PBRAfwnrneCLZwBtM88izwvzM4pshKN4BpPl2aaoG76kJHwInORl3Vr/TkVidxagxzR29ZqmOLiKwG7V5vMfBjmGCiHxMa/xdPbm5eZUPD/e6cnBsdx5mZuHjxM6OnT788T7kcwAt0Aw/7bHtkCacuIiIiIiIicr1MAptSPTmTwcQ3gR11rXNf5Ay2MAq8E/gGJqAQWfOa62tiwCnSaIC9Lj86U5gd6wZ4pScv2VUTM0BNqmOLiKx07V7vBszWTXuAM8D4le978vMLKvbt+4w7O3uvE4tNjp8798mxYLBrnnJ5wBagC/ihz7bH5zlOREREREREZMXq8PvrgLu46sa+ZCTV/Lqulb/CrIx4Bei8spl1sIX/B/y/hc4PthAGfiOFeYqsZpcwHe098eekVeRHuyZm3bt7JjyNwMNJnDoOVLd192Q319fMLnq0iMgq0e71WkA9cAem184Jrti6CSCrsLCoYvfuB1wezzYnFpsYO3v2kxMXL56cp2QhsAHze9IzPtuemec4ERERERERkWWrw+//5QXeLgR2AO8DioG/SHWcpIIJ4H9g9l0GiNa10s2rQUUHcCDYwliqkxFZo/qAUaAEs61T0m4on+k8M5L9CyPT7oaYAy4r4VMnMCsmykgj4RQRWUni/SRuAt4ITGFWrr1GXkXF+tJt2+5zeTybnFhsZPTMmU+GLl06M0/JEqAS+BHwnM+2UwqZRURERERERJaBb/BqBjCXy1cevwl8KtVBkg0mfhy4EWiKP+/GbH3gJz7ZulZO8WpQ8QrQEWxBTR9F5tFcXzPd1t0TBBpIMZi4s26y+4enCmcjMav0hfN5m27dNHUuwVNnMfuhK5gQkTWh3estAm7H/P5yCV5/Q0VxXV1DYU3NRy2Xq8iJRgdHTp++d7Kv78I8JcsxP0OfAV7y2XZsnuNEREREREREVoLPMH8wMQv0AE82BQKvu8kvGUkFE8EWfgj88PLXda0UAPt5NahowoQVXuBneTWs6AFeDrbM3RxbRLiA+f6xWDiRnFNRTixSlBM7Mjbj3n+wL7chiWACIIq50/dYsuOKiKwk7V7veuBOoA7TT+J12y2t27XrJ3NKS3/DsixXNBw+MXz8+OdmRkeH5ilZjekr8TjQ6bPtpH9+i4iIiIiIiCwnTYHA/ddinGRXTLxGsIUQ5g7BZy6/VtdKNrCP166saAB+Mp2xRFa5Xky/h0KuaryaqKqCSOfYjHv/pXFPI/AfSZw6AdS2dfe44s24RURWlXg/iR2YfhKFzNFPwuXxeCr27v2trPz8dwCEp6YeGzh06KuxcDg8T9kNmDD5UeCIQgkRERERERGRxKUVTMwl2MIs8HL8AUBdKy5gZ6bHElktmutrRtu6ey4Bm0gxmKivmOk6OZTD6Ix732wUV7abREOGCcz+6MXASCpji4gsV+1er4dX+0nMMEc/iezi4tLy+vp73FlZuxzHic2Mjn5j8MiR7yxQdjNm+erjPts+sRTzFhEREREREbneOvz+2zA7D2yIv3QReLopEHhm/rMSk/FgYi7BFmLAkWsxlsgKdga4IdWT79g8af/niaLJmGMVPHO2YOtbt4bsBE+dxPxwKUfBhIisIu1ebyFwG2YlZy8wevUxhTU124o3b77XcrsrnFgsFLp06Y9Gz5zpmKekBWzF9KV41GfbwaWau4iIiIiIiMj10uH378M0wd4ff+lyw2sn/n4n8P6mQKAr1TFcacxPRDKrF5gGclM5OdfjxIpzYgcBjvbnNCRxqoP54VKWyrgiIstRu9dbDbwLs51kkDlCibLt2+8s3rLli5bbXRGLRC6M2PYfLhBKuDA9tAaA7yuUEBERERERkdWow++vB57AtGi4ALQCvxd//BlwDhNYPN7h96e8S9I1WTEhIgkZAIaAUuBSKgXWF4a7Rqbdt/SFPA3AvyRx6iSwkSu2YBMRWYni/SS2Y/pJlDBHPwksy6rcu/d92UVFPwcQnZl5eeDo0T+OTE6G5inrxoQS5zErJfqXav4iIiIiIiIi19nnMdcnvwB8sikQiFz5Zoff/xHgM8A9wOeAn0llEK2YEFkmmutropi9z4tSrbGnaqYLYGzGtTc0ayUTPE4A69q6e/JSHVtE5HqL95N4A3A3kA3YXBVKePLy8qqbmu69HErMjo9/u/eVVx5YIJTIwgQdp4EfKJQQERERERGRVe6twOGmQODjV4cSAE2BQLQpEPgEcDh+bEoUTIgsL5cwF9HcqZz8po2TZ92WM+pg5TwZLEimX8UEJhApT2VcEZHrrd3rLcD8QnQXpl/OxauPyauoqKnct++PPTk5NzuOE57s7/9S/8GDf+fEYrGrj43LwayU6AYe9tn28BJNX0RERERERGS5yAIS6R3RFT82JQomRJaXy81ZS1I52ePCKc2NHgQ4MZTTmMSpEczWbuozISIrTrvXW4VZJbEfOIsJJl6juK5uf9n27V9yeTybnFhsaCwY/NjwiROPL1C2GKgDOoFHfLY9nvGJi4iIiIiIiCw/nZib9BbjjR+bEgUTIstIc33NNKZJa2mqNWqKIp0AAyF3Mg2wAcJAdarjiohcD+1e73bg3cBmTD+J6auPWbdr108Vbthwv+VyFUTD4e7Bo0d/f+LixRMLlK0GKoBngMd8tj25FHMXERERERERWYY+B9zc4ff/2nwHdPj9vwrcjOlHkRI1vxZZfi5gut5bgJPsyfvXT3Ud6stlYta1c2jKlV2eF5tN8NQJoKatu8fTXF/zuv3jRESWk3av141ZIfEmIAqcvPoYl8fjqdi374NZeXlvBwhPTT0ycOjQX8TC4fA8ZS3MKokZ4IfAEZ9tJ/1zWERERERERGQFCwF/Cfx1h9//fuAfMTdSg/nM/F7gjvgxEx1+/11XntwUCDyZyCAKJkSWn15gHCiMPyflxprpnn885AyEY1bFU8GCXe/ZOZ7okqoJzB3CpcBAsuOKiFwr7V5vPnArJpjoB17X+yGnpKSsbMeOj7uzsuodx4nNjIx8ffDo0X9boKwH2Ibp9fOUz7bPLsHURURERERERJa7xzE3S1uYAOL2q9634s+/FX9cLaHeuQomRJafUaAP2EAKwYTLgtK8aGd/yPP2U8PZjSS+19sUkIfpM6FgQkSWpXavtxK4E7OXZRDzs+s1CjdsuKF406aPW273OicWC4UuXXpo9MyZAwuUzcXc9WEDT/pse3AJpi4iIiIiIiKyEnyTFHZxSZaCCZFlprm+xmnr7jlNYk1m5lRbFO7qD3nePjDpSbbPRAxYh9mnXURkWWn3erdhQolyzM+p6NXHlN1ww115FRW/a1lWdiwSOTdy6tRnpwYGehYoW4LpKdEJPKN+EiIiIiIiIrKWNQUC778W4yiYEFmeejF7nOfEn5Nyc+1U14FLeUyGre094578mqJIohfaQsDGtu4eq7m+Rvuqi8iyEO8n0YjZvinGHP0kLJfLVbFnjz+7qOhnACIzMy8OHjnyx5GpqdetqLhCNZAPPA287LNt9dcRERERERERuQZc13sCIjKnfmAI0+8habsrZwZz3LELYLmePpu/J4lTJzBbORWmMq6ISKa1e715wJuBt2B+Rp2/+hhPXl5+9Y033ns5lJgdH/+nvlde+dwCoYQFbMH8HvQw8COFEiIiIiIiIiLXjlZMiCxDzfU10bbunlPAbZjVE0kry4t2XZpw1QZHshuAFxM8LYS5g7iMFPpbiIhkUrvXuw64C7O13Vnm6CeRV1m5oXTr1vtcHk+t4zizUwMDXx4+ceLJBcpe2eT6SZ9tn1uKuYuIiIiIiIisVB1+fw7wC5gbBWswu7rMxWkKBN6eyhgKJkSWr0uYRjNu5thHfTGbSsJdlyay3jU45W5M4rQY5g7icsxFQBGR66Ld692K6SdRgWlK/boVDSVbtjQVrF//YcvlKnCi0YGxc+c+N3Hxor1A2TxgM2YrqCd9tj20FHMXERERERERWak6/P7NwA8xNwlaixye8lbwCiZElq9eYATTmDXpi2e3bpw8+OKFfKYjri32UFaJtzw8muCp08AG4ECyY4qIpKvd63UBDZh+Ei5Mk+vXWbd790/nlJS837IsVzQcPjrU3f3g7NjYyAKlS4Eq4BXgWZ9tL9R7QkRERERERGSt+jKwHXgUaAVOYbZWzigFEyLLVHN9zVRbd885YA8pBBNby8JjeZ7YmamIa8sL5/P3ectHn07w1Amgqq27J7u5vmY22XFFRFLV7vXmAm8CmjA/9wavPsaVlZVVsXfvb2fl5b0VIDw5+fDAoUN/GYtEFuoRsR7IBZ4COtRPQkRERERERGReb8fcJHh3UyCwZJ+f1fxaZHk7TxoBYnletBPg3FhWQxKnTQBFmO2cRESuiXavtxx4J/AG4AJzhBI5JSXlVfv3P5iVl/dWx3Fi08PD/6vvwIGvLBBKWMBWzNLSh4EXFUqIiIiIiIiILGgW6FjKUAK0YkJkuevFBAWFpLBkakvpbNeF8az3DE+5kwkmZoFsTAPsS8mOKSKSrHavtw7T5LqSefpJFNbW7ijetOnjlstV7sRiExM9PV8YCwa7Fih7ucl1D/CEz7YvLMXcRURERERERFaZZzFbOS0prZgQWd5GMOFEaSon31E3eQic2EzUteFwX05FEqdGMBcIRUSWTLvX62r3ehuBdwHFmKbUrwslynbseGvx5s0PWi5XeSwSOTt88uQfLBJK5GGadJ0A/lOhhIiIiIiIiEjCPgXs6vD7/8dSDmI5TsqNsyUNlmXVYrbp2eg4ji6YyLzaunv2Y/Z2O57K+fc+Uv1HobCrfv/6qT/7lf0jjyZ4WjUQAv6xub4mlsq4IiILifeTuAXTT2IEGLj6GMvlclXs3fsr2YWF/w0gMjPzwuDhw1+KTE8v1Li6lNc2uZ7O9NxFREREREREFrOSr/92+P23AX8PnAN+gNlyec5rhE2BwDdTGUNbOYksf728ur1S0s2o1+VHukKj2fUXTJ+JRIOJCczFvRJgONkxRUQW0u71lgF3APWYX9JCVx+TVVBQsG7nzg+7c3KaAGbGx/9x4NChb7HwHRU1QA7wJKbJdTTzsxcRERERERFZ9d6BuelvC+bz+1wsTE9HBRMiq1Q/MITp+dCb7Mnbyma7zo5m/9zItLsh5oDLSui0SWBDfEwFEyKSMe1e72bgTmA98/STyK+qqi3ZuvU+l9u9wXGc2cn+/j8bOXny6QXKujC/LIUwd3Ic99m2loSKiIiIiIiIJKnD7/8wZjunGeBfgFOk0Pt2MQomRJa55vqaSFt3zyngTaQQTLx5S+joE2cKIuGYVdHRk1vzhg3TPQmcdvmCXjnmh4+ISFravV4XsAe4DbMC7ASv/qz5LyVbt95UUF39Ycvlyo9FowNjZ89+NtTTs9DPoSxgK3AR0+T64hJMX0RERERERGSt+C1gDLilKRDoXqpB1PxaZGW4FH9O+nu2NDc2W5gdOwrQeSmvMYlTp4CNyY4nInK1dq83B7P08+1AGDjDHKHEut27mwvWr/+k5XLlR8PhI4NHjvz+IqFEPqbJ9XFMk2uFEiIiIiIiIiLpWQ88sZShBCiYEFkpejHNYUtSObmyINoFcHHc05DEaRPAurbunvxUxhQRAWj3ekuBHwfeiPlZ1n/1Ma7s7OzqG2/8g9zS0vdblmWFJye/1/vKK/fOjo+PLlC6DLPl3IvAwz7bHsn87EVERERERETWHJtrkBsomBBZAZrrayaBC5gLcUm7Yd1MF8DotLshEiOxLhMmmChMdUwRkXavdyPwE8AO5tmTMqe0dF11Y+ODnry8tziOE5saGvpa34EDf+FEIq/rPXGFDUAx8ATwlM+2p5di/iIiIiIiIiJr0NeAt3b4/VuWchAFEyIrx1lS7Atz5+bQCZflTEcdq/i5c/l1CZ4WAdyYPhMiIglr93pd7V7vHkwosQ7TTyJ89XFFtbX163bu/JIrK+sGJxYbn7hw4b6hY8e+u0BpF7AN8/Pp+z7b7vDZdnQp/g4iIiIiIiIia1FTIPDnwP8Cnurw+9/f4ffXLsU4an4tsnL0ASHMKobX3XW8kIJsJ1KUHTs8OuO+6XB/bsOddZNnEjw1jNlX7mBSMxWRNavd680GbgbegPlZdWau48p27Hh73rp1H7QsyxOLRM4M2/bnpgcHexconYUJJc5jmlz3ZHjqIiIiIiIiImteh99/+QZAC/ib+GvzHe40BQIpZQwKJkRWjmHM/uzVJBlMAFQXRrpGZ9w39U54GoB/S/C0CWB9W3ePp7m+ZqFtVUREaPd6SzBNrncBF4Hxq4+xXC5Xxd69v5pdWPgegMj09HMDR478aXR6eqHtmAqAjcAx4EmfbY9lfvYiIiIiIiIiApwDnKUeRMGEyArRXF/jtHX3nMHcMZy0XRUznccHcxibce2djliuXI8TS+C0CaAK02fidQ1rRUQua/d6a4E7MQHCaWD26mOyCgoK1+3a9RF3dvZ+gJmxsf87cPjwP+A4C/3CUx5/vAg877PtmYxPXkREREREREQAaAoEtlyLcRRMiKwslzAX+7KZ46LfQm7bHDrz78eLJqKOVfhUMH/7O7yh4wmcNg3komBCRObR7vVamBUStwN5mH4Srws+86uqNpVs3Xqvy+2ucRxnZrKv709HbPvZRcrXYnrdPA50+mw7kUBVRERERERERJY5BRMiK0s/MIQJChbai/11st3EinOiB4enPbd2D+Y0JBhMgLnAuC7JeYrIGtDu9WZh+kncjOmBc3qu40q2bbu5oLr6Dy3LyotFo31jweBnQ5cunVmgtAvYAowBT/ls+2RmZy4iIiIiIiIiierw+8sAmgKB4UzVVDAhsoI019dE2rp7TgO3kGQwAbC+KNI1PO25tT/kaQD+OcHTQsDGtu4eq7m+Zsn3lxORlaHd6y3GrJLYDfQwRz8JgIo9e342u7jYb1mWFZ2dPTTU3f2F2fHxhXpEZANbMXtaPuGz7UuZnruIiIiIiIiILKzD7/8JoIVXd0igw++fAp4GvtwUCHw3nfqutGcoItfa5Yt0SX//NlRPdwKMz7h2j8+4Eg0mJzArNIqSHU9EVqd2r3cD8BPAHuAMc4QS7uzs7Oobb/zDnJKSX7YsywqHQt/tfeWV+xYJJQowocRR4D8VSoiIiIiIiIhcex1+/58C7cA7gHzMjgaj8T//ONDe4fd/KZ0xFEyIrDy9mB8Excme+MbaqfMelzPsYGU/GSzYmeBpIczFwrJkxxOR1aXd67Xavd6dmFCiGtNP4nX9bnLLyiqqGhsf8uTl3eU4TnRqaOgv+jo7v+ZEo9EFyq8DaoAfAQ/7bHuhAENERERERERElkCH3//zmJUS/cDvAmVNgUBZUyBQDpQCvwP0AS0dfv97Ux1HwYTICtNcXxMCzpNCUOCyoDQ32gVwcii7IcHTYpifFeXJjiciq0e8n8QtmDsjLOAUczS5Ltq4cVd5ff2XXFlZXicWGxs/f/7eoWPHvrdI+Y2Yuy4eA5722fbrwg4RERERERERuSY+AEwDdzUFAl9tCgRGL7/RFAiMNQUCfw68GZiJH5sSBRMiK9M5ICuVEzcUhbsABibdjUmcNo25k1lE1qB2r7cIeBtmX8lBXt1S7jXK6+vfUbRp0+csl6s0FomcGTp+/A/Gz507vEBpF7Ad8zPm+z7bPuCz7deFHSIiIiIiIiJyzTQCjzYFAsfnOyD+3qPA/lQHUTAhsjL18uoWS0m5sWa6C2Bi1rWjP+TOTfC0CaC6rbsnJ9nxRGRla/d61wN3A/uAIGZfydew3G53VWPj/5e3bt3vWJbliUxPP9PX2fnh6aGhvgVKZ2NCifPAf/hs216K+YuIiIiIiIhIUrIx1x0XE4ofmxIFEyIr0zBmn7fSZE/cv366N9sd6wXL/fTZgt0JnjYOFKI+EyJrRryfRD3wbmADpp/EzNXHZRUWFlXfeOOnswoKfhJgZmzs//R2dDwUnZl53bFXKMQ0uT4CfM9n2wsFGCIiIiIiIiJy7djAmzv8/nlviO7w+/Mx2zmlfJOhggmRFai5vsYBTpPCigmAsnifidPDWYn2mQhjElD1mRBZA9q9Xg/wRkw/CTfz9JMoqK7eXLFnz5+4s7MbHMeZDvX2fn7g0KF/XKR8BaZx9vPAIz7bHs/w9EVEREREREQkdf8PqAK+0+H333D1mx1+vxdoAyqBxa4BzMuT8vRE5Hq7BMxiAoOkGsVuLI509oay3jE45Uk0mACIYi4oisgq1u71FgK3YbZu6gVG5zqudNu2W/Krq//Asqy8WDTaOxYMfjZ06VJwkfKbMT9LHgMOqp+EiIiIiIiIyLLzx8B7gLcDRzr8/g7gTPy9OuAmzE2MLwF/kuogWjEhsnL1Y7Z0Kk32xDfWTh4EmAxb3nOjWYUJnjYBbGzr7tHPDZFVqt3rrQbeBTRg+knMGUpU7Nnz3oL16z9hWVZedHa2a+Dw4T9YJJRwY/pJjGOaXHcqlBARERERERFZfpoCgSngLcCfY26Gvhn4ufjjjfHX/hx4W/zYlGjFhMgK1VxfE27r7jmN+YGQ1P7sOypmh3M8sXMzEdemZ8/l7/35ktHnEzhtHNNjohQYSnrCIrJstXu9FiY4uAMowfSTeF1w4M7JyanYs6fFk5t7B0A4FPr3/kOH/saJRqMLlM/B9JM4DTzhs+3+jP8FRERERERERCRjmgKBCeB3Ovz+j2JWSGyIv3UReLkpEJhMdwwFEyIrW0/82cUcFxEXUp4b7eqZcG06O5rVgNnrfTFTQC0mnFAwIbJKxPtJ3Ai8CXPXw5yNq3LLyyvLtm//hMvj2eY4TmR6aOhrQ93dP1ikfBHml5cu4BmfbU9kcu4iIiIiIiIisnTiAcRTS1FbwYTIytYLjAHFwEgyJ9aVhjt7JrLePTTlTrTPhBN/LmeeC5cisrK0e70FmH4SDZiVVyNzHVe0adPuotraeyyXq8SJxUbHL1z4/Pi5c0cXKV+J+dn0HPAjn22HMzh1EREREREREcmQDr//bcBG4KWmQODIIsfuBt4AnGsKBB5LdUztFS+ygjXX14SA86TQZ+K2TZOHwHGmI67NJwazEz1/ErNqQkRWuHavtwq4G9gPnGWeUKK8vv6dRRs3fs5yuUpikcipoe7u308glNgMZAOPAM8plBARERERERFZnjr8/k3AfwD3AucSOOUc8Ang3zv8/g2LHTwfBRMiK985zAXApGwqCU/kZTmnAF44n5/oqokJoKKtu6cg2fFEZPlo93q3A+/GBAgngOmrj7HcbndVY+Nv5q1b90HLstyR6emn+w4c+Mj08PDAAqWvbHL9PZ9tH1STaxEREREREZFl7Tcw1xY/0hQIjC92cPyYDwN5wK+nOqiCCZGVrxcIAUmHBevyIl0A58c8jQmeMhEfpyzZsUTk+mv3et3tXu9NwDsxTalPAq9rXJ1VWFhUfeONn8kqKPgJx3GcmdHRQG9Hxxejs7OzC5TPAW7ArL74rs+2zyzBX0FEREREREREMusdQH9TIPCdRE9oCgT+DXNN8l2pDqpgQmTlGwYGSGE7p62l4S6A4emE+0xEMb1pypMdS0Sur3avNx94S/wxDlyY67iC9eu3VOzZ8yV3dvY+x3GmQr29nx04fPifFilfDNQBnZiVEgutqhARERERERGR5WMn8GIK570E1Kc6qIIJkRWuub4mBpwihRUTd9aFDoMTnY26qg9cyq1O8LRZINFjRWQZaPd6KzH9JJow278Nz3Vcqdd7a8nWrV90ud3VsWi0Z+TUqQ+Pnjq12C8nVUAFpsn1Yz7bDmVy7iIiIiIiIiKypAqA0RTOGwUKUx1UwYTI6tALhIGsZE6qLIhOF2bHjgO80pO7L8HTJoANbd09SY0lItdHu9e7DbO0sg7TT2LqdQdZllWxd+8vFFRX32NZVm50drZz4NChD0329p5doLQVr+kBfoiaXIuIiIiIiIisRMOkdhNyNfPc+JgIT6onisiy0of5QVAK9CdzYkV+tHNi1r3r4nhWA+bi4mLGMT94kh5LRK6ddq/XDTQCtwIxTD+J13Hn5uZW7N79e57c3NsAZkOhfxs4ePDrTiy2UNNqN7AN8zPgCZ9tLxRgiIiIiIiIiMjydQR4U4ffn9cUCLz+ZsY5dPj9+ZjrDT9KdVCtmBBZBZrra8LAGaAk2XO95bNdACPT7saYk9ApM0Au6jMhsmy1e715wJvjjwng/FzH5ZaXV1U1NHzRk5t7m+M4kanBwS/3d3b+70VCiVxgO3Aa0+RaoYSIiIiIiIjIyvXvmO2c7k3inHuBPKA91UG1YkJk9biI2VrFhbk7OiF31YW6Hz1VMBuJWWU/upC38U0bp+a8gHmVGLAuxXmKyBL6/9m78/i47vre/69zZtG+bx5vsn1sj3c7zk72QMIqAoJSSnEL7W1vC9y6pQUKhZa2bIW2F9+W0nv7K/TWFCi0utBpSUJYs5KQeJHt2GP72Ja3sfZ9G83M+f3xlWLFkUYjW9JI8vv5eOgxss73fOcz9tHI+n7O9/OJOE4FcDfgAGeZqHQTULxy5ZbCpUv/0LLtYi+V6uo9f/4zvefPH5ti+hLMjqmDwFN1rjswk7GLiIiIiIiIyJz7e+BDwB/u27VrEPjMzr17J1xb3Ldrlw38EfCHwCXgf1/tkyoxIbJ4NAM9QDHQlelJxTmpkaKc1NGeYd/2Q8252zJMTPQDyxuiMas+HMpsn4WIzLqI46wG7sI0o3aBxETjyjdseH1uWdlvWpblS42MnOw8efIzQ52dbVNMXwPkA08Bz9e57oRzi4iIiIiIiMjCsXPv3oF9u3a9DVPi/U+B39i3a9e3gX1cLuNeBewEfgFYDgwBb9u5d+9V37CoxITIIlEfDvU1RGMXMCVWuqZzblVB4mDPsG/7pT7/NuB7GZzSi+kxUYRJhohIFkUcxwa2Yeo72pgm169g+f3+qi1bfjOQn/86gMTg4OOtR478r1Q8Hk8z/ViT62HMf1KO1rmuEpIiIiIiIiIii8TOvXuf3rdr16uAvcBm4PcmGGaNPh4B3r1z796D1/KcSkyILC5ngU3TPSlcMdzoduTQPeTblkhh+W2mWnQcAJZg+kwoMSGSRRHHyQVuA24AOoH2icYFi4qKy8Phj/qCwc2e53nxnp5/bjty5N+nmN4PrMbsyHq8znXPzWTsIiIiIiIiIjI/7Ny79wCwAHnTTwAAtPlJREFUdd+uXa8D3gjs4HIp93bgAPBfO/fufWQmnk+JCZHFpRmTNMgffczIXbUDJx85WTSY9KzCp84WrL5nVf+pKU5JYe7KLsc03RaRLIg4TjmmdNM64ByTfN8XLFmyqri29uO2z1ftpVID/c3Nf9l9+vTzU0yfh9kpcRL4aZ3rdsxk7CIiIiIiIiIy/4wmHmYk+ZCOPdtPICJzqgNow5RZyliu30sV56QOA7zYmrM9w9OGgNC0ohORGRNxnFrgDZgm1y6TJCVKHedVJatXf8H2+apTyWSs69SpP8ggKVEKrMDUk3xUSQkRERERERERmUlKTIgsIvXhUAo4BRRO99yagkQjQLPpM5GJXqC6IRrLne5zicjViziOHXGc7cDrgRLMjoZXNqK2LKtyy5Z3FdTU/KFlWTnJ4eH9bYcPf3CgpWWqBvdLgDLgCcxOiatuZCUiIiIiIiIiMhGVchJZfJoxi5QBYCTTkzZVDx2MtufQG7c3D45YvryAl5zilD5gGWYBM3bV0YpIxkb7SdwK7MQ0uW+baJw/NzevYtOm3/Pn5t4GEO/r+07b4cP/5KVSqTTTjzW5HgIeA46pybWIiIiIiIiIzAbtmBBZfFowDXBLpnPSq1YMNPksryflWbmPNxWsy+CUEUzyo/wqYhSRaYo4ThnwAHAzJhk4YVIir6Kipmrbts/7c3Nv8zwvMdDW9sXWxsavTJGU8GP6VLQDD9e57lElJURERERERERktigxIbLI1IdDcUxD6mklJvw2XklushHgeHsw03JOSaBqWgGKyLRFHGclpp/Eekw/if6JxhXX1m4rW7fur22/v9ZLpTp7z579aOfx4z+aYvo8YC2mJNTDda47VaknEREREREREZFrosSEyOJ0EfP9bU3npFCh6TPR2u/PtAF2H7CsIRrzTS88EcnEaD+JrZh+EuXACSbqJwFUbNz4xsKlS//Msu2i5MjIifZjx36v98KF6BRPUcrlJtffr3PdzhkMX0RERERERERkQuoxIbI4NQM9QDHQnelJ25cMNR5pzaUvbm/sGrKDpbmp+BSn9GIWS0uAjquOVkReIeI4OVzuJ9GDSTi+guX3+6u2bPmtQH7+gwCJwcEftx458qVUPD7V928IyAEeB/bVue5UfWVERERERERERGaEdkyILEL14VAvpgZ96XTOu3Hp4MWA7bV7WP7Hmwo2ZHDKIJCP+kyIzKiI45QCDwK3YBKNrRONCxYXl9bccMOnA/n5D3qelxrq6vpq8/79/3OKpIQFrAFSwPeB55WUEBEREREREZG5pB0TIotXE5BJcuEltgWlucmDrQP++091BLcBjRmeWjbt6ERkQhHHWQ7cjdnRcArTaP4VCkOhNUUrV37c9vkqvVSqv7+5+S+7T59+YYrp/ZikxEXgp3WuO+EuDBERERERERGR2aTEhMji1YzZ0ZA3+piRZcUjja0D/vvbBvzbga9lcMoApkb9z68qShEBTD8JYCNwB6bE0gnAm2hs2dq1d+ZVVf2uZVnBVDJ5ofvUqU8NtLZemOIp8oGVwDHgiTrX7Zq56EVEREREREREMqdSTiKLVzvQxnTLOYUGGwH6R6x1l/r8eRmc0guUN0RjBdOOUEQAiDhOELgdeA2QBM4wUVLCsqyqrVvfnV9d/WHLsoLJ4eEXWg8d+oMMkhJlwDJMAvExJSVEREREREREJJuUmBBZpOrDoRSmDEzRdM7bUjPcFvSlYmDZTzblb8nglH6gEPWZELkqEccpAR7AJCZagZaJxvnz8vJqdu78o2BR0TsA4n19Dc379/95YmCgf4qnWAoUAz/F7JQYmrnoRURERERERESmT6WcRBa3ZiCB+V5PZHpSeV7y4KU+O3SmO7iNqUs0JQEfJjFx7moDFbkeRRxnGXAXsBw4DUzYtDqvsjJUumbNH9l+/0rP80YG29r+pvPEiZ9MMb0NrAL6gB/Xue7xmYtcREREREREROTqKTEhsri1AF2Yck5tmZ60vHik8VJf4HUdA75tGZ4SB2qmHZ3IdSriOBaX+0nkYfpJpCYaW1xbu70wFPqIZduFXirV0XPu3Kf7Llw4McVTBIDVwAVMk+vYDIYvIiIiIiIiInJNVMpJZBGrD4eGMbXqS6dz3m3LBw4BDCbs1We6ApmUguoFQg3RWGC6MYpcbyKOE8CUbXoA00fiNJMkJSo2bqwrXLr0Ty3bLkyOjETbjx79vQySEgXAGuA48LCSEiIiIiIiIiIy3ygxIbL4XcR8r1uZnuCUj3Tn+lNnAJ45l781g1P6MH0myq4mQJHrRcRxijENrsf6STRPNM72+/3VO3b8Tm5Z2W9YlmWPDA7+sOXAgY8Nd3d3TvEU5ZieEmNNrrtnMn4RERERERERkZmgUk4ii18z0INpgt2T6UkVecnGC732qrPdge3A01MMHwZyMYuiEzbuFbneRRxnKXA3U/STCBYXl5aHwx/zBQIbPM9LDXd3f7X9xRe/m8FTLMP0e/kJcKDOdSfchSEiIiIiIiIikm1KTIgscvXhUE9DNBYDaplGYqK2NN54oTfw5s7BjPtMpICKq4lRZDEb7ScRBu7ElFmatJ9E4dKla4tXrPiY5fNVeqlUf/+lS3/RfebMgSmeYqzJdQ/wZJ3rTlXqSUREREREREQkq1TKSeT60IRpsJuxO1YMHAEvNZy0l73YmpNJwqEPWNEQjWVcMkpksRvtJ3Erpp+EBZxikqRE2bp1dxfX1n7O8vkqU4nE+c6TJz+YQVIiCKwFLmH6SSgpISIiIiIiIiLznhITIteHS8Ag00hOLC1O9OcHvJMAz1/Iy2TXRB9QPPohct2LOE4RcD9wB9CB+T58Bcu27aqtW381v6rqDyzLCiaGh3/eeujQHwy2tU3VtLoAWA0cwyQlJpxfRERERERERGS+USknketDO9AGlGISFBmpzE80nu0Orr/QG9gG/HiK4f3AEkyfCTXcletaxHGWAHdhSqidwfRheQV/Xl5+xaZNv+/PybkZIN7b+29tR458zUulpuoPUYFpNv8c8Gyd6044v4iIiIiIiIjIfKQdEyLXgfpwKIUpIVM4nfPWlMUbAToHfdtS3pTDPcx7StlVhCiyKEQcx4o4Thh4I7AU009iwqRBXlXV0qqtW//Sn5Nzs+d58YHW1r9sPXTonzNISiwH8jHJwieVlBARERERERGRhUY7JkSuH81AEvN9n8jkhLtq+1/86ZmCxEjKqtofyw3duHRoqtIyg8AyYN+1hSqy8EQcxw/cCNyCSUacmmxsyapVOwqWLPmIZdsFXjLZ3nPu3Kf7Ll48OcVT2JjSTd3A43Wu685U7CIiIiIiIiIic0k7JkSuH81AF1CS6Qnleal4QTB1DODApYz6TPQClQ3RWO5VRSiyQEUcpxDTT+JOoBOYNIlXsWnTQwWh0Cct2y5Ijowcazt69PcySEoEgXXABeB7SkqIiIiIiIiIyEKmxITIdaI+HBoGmjB9JjJWlZ9sBIj1+jNtgF2E6TMhcl2IOE4N8HpgG+Z7bMIeK3YgEKi+4YbduaWlv25Zlj0yMPBYy/79H4v39HRN8RSFmJ0SR4BH6ly3eQbDFxERERERERGZcyrlJHJ9uYApNWNhekJMaV3F8MHTXcF3dQ2ZPhO2lXZ4Aghg+kxcvMZYRea1iONYwFrMLokSTD+JCftD5JSUlJetX/9RXyAQ9jwvNdzV9f+1Hz36nxk8TeXo3M9imlzHZyh8EREREREREZGs0Y4JketLM9CD2dWQkbtr+09YeMNJzyp55lz+ygxOSQDVVxugyEIw2k/iJuB1mDJLLpMkJQqXLl1XsXHjX/sCgbCXSvX1Xbz4JxkmJVYAuZgm108pKSEiIiIiIiIii4USEyLXkfpwqAe4xDTKORUEvURxTuoIwOGWnO0ZnNILLGuIxnxXFaTIPBdxnALgPuBuTN+WSXcHla1bd29xbe3nLNsuTyUSZztPnvxgT1PTwSmewsbsxOgHHq1z3YN1rjth0kNEREREREREZCFSYkLk+tOEuQs7Y9UFiUaAS32B6fSZKJ12ZCLzXMRxqjG7JHYAZzGJiVewbNuu2rbtvflVVR+0LCuQGB5+rvXQoQ8NtrVdmuIpxppcnwcernPdUzMXvYiIiIiIiIjI/KAeEyLXn0vAECY5MZTJCRsqhxtPdOTQM2xvHUpYdq7fS3f39iCQj2mA3X7N0YrMExHHWQvchUm6nQCSE43z5+cXVG7c+Ae+nJwbAeK9vd9qPXz4X/C8qfq6FAFLgcPAk3Wu2zdjwYuIiIiIiIiIzCNKTIhcf9pHP8qAWCYn3Fnbf+q/ThT1pzyr4Kmz+c6r1/SfmOIUD5OYEFnwIo7jw+yQuA2TjDg52dj8qqplJWvWfNz2+ZZ5nhcfbG39YufJk09m8DRjTa6fAZ6rc92RGQhdRERERERERGReUiknketMfTiUBE4xjQbYQR+pkpzkIYBjbTmZlHPqB1Y0RGPW1UUpMj9EHCcfuHf0oxe4MNnYktWrbyx1nL+yfb5lqWSyrfvMmQ9nmJRYCeQAPwKeUVJCRERERERERBY77ZgQuT5dAhKY94BEJicsKUw0dg75b2vp928D/n2K4X2YcjcFo5+LLDgRx6nClG5yML1ZBicbW7Fp01tzSkreY1mWlRwZOdoRjX423tPTNcVT+IA1QBvweJ3rnpmZyEVERERERERE5jclJkSuTy1AN6Z0TEZ9ILbUDDcebculd9je3Dts+4tyUukSGn1AFaackxITsuBEHGcNcCdQQZp+EnYwGKzavPn9/ry8+wBGBgYebT18+H97icRUCb8cYBVwGpOUaJ2x4EVERERERERkQdq3a9eNwAPALaMfywB27t2btirJvl273gO8D9gExIGfAZ/auXfv07MZ77VQKSeR61B9ODSEuQO8JNNzbls+cNZve10eVvCJpvzwFMNTmLvBy64hTJE5F3EcX8RxdgKvx+z4OckkSYmc0tLy6u3bP+vPy7vP87zUUEfH37ccOPClDJISRUAtcAh4REkJERERERERERn1CeCzwFsZTUpMZd+uXV8EvgpsAX4APIdJbjy+b9eut8xKlDNAiQmR69cFTPIgoz4QtgUlOclGgJMdGfWZGAZCVx+eyNyKOE4ecDdwD2anz/nJxhYtWxau2LDhf/oCgXVeKtXbd/HiH7cfO/a9DJ6mGrOb6BngR3Wu2z8TsYuIiIiIiIjIovAM8OfAmzHrasPpBu/btes1wG5MRZTtO/fufcvOvXtfh1nfSAJf3bdrV+msRnyVVMpJ5PrVjFl8LcQ09Z3S0qLEwfZB/92tA75twDemGN4H1DREY8H6cCh+baGKzK6I41Rgfmg7wFnS9JMoW7/+/ryKig9YluVPJRJNXa77qcH29uYpnsLCNLkeAX4IHKlzXW+GwhcRERERERGRRWDn3r1/Mf7P+3btmuqUD44+fmrn3r0nxs3zzL5du/4e+B3g14G/msk4Z4J2TIhcp+rDoW5ME+yMyy3dEBpsBOiP2+H2AV/OFMN7MSVrVM5J5rWI46wG3gisBlwmSUpYtm1Xbdv26/mVlb9rWZY/MTT0s9bGxg9nkJTwAWsxfV0eqXPdw0pKiIiIiIiIiMi12LdrVx5w/+gf/22CIWNfq5ubiKZHOyZErm9ngHWZDt6+ZKg5cCjVMpKyqx9vKtj01o09+9MMj2Ma/JZhdmeIzCsRx7GBbcDtmET9icnGBgoKCio2bvyILxjcATDc0/PNtiNHvoHnTZVgyMU0uXYxTa7bZiJ2EREREREREbnuhTFrb6079+6dqBz1vtHHTEqyzzntmBC5vjUDQ5jF0ynZFpTlpRoBTncGMnlTS2Lq6YvMKxHHycWUbroPs0Pi7GRj86url1du2fLXvmBwh+d5w/3NzZ9rO3z46xkkJYox5ZsOAo8qKSEiIiIiIiIiM2jl6OOEPTJ37t3bD3QBZft27Sqaq6AypcSEyPWtDegASjM9YVnxSCNA+6A/k8REH7CsIRrTe43MGxHHKQdeC9wEXMQ0iJpQyerVN5U6zl/ZPl8olUy2dJ858+Eu1306g6epASqBp4Afq8m1iIiIiIiIyHWr0LKs4nEfU5VHz3je0ceBNGPG1iOUmBCR+aM+HEoCp5jGm9MtywYaAQZGLOd8j79giuF9QAnmznGRrIs4Ti3wBkyTa5c0P7wrN29+W8GSJZ+wLCsvGY8fbn/xxQ/2x2Knp3gKC1O6yQZ+ADxb57ojMxO9iIiIiIiIiCxAxzB9J8c+PprdcOYH9ZgQkUtACtOgNznV4A2V8Y4cX+r8cNJe/vTZ/C3v2NLzbJrhA8BSoByzdUwkK0b7SWzF9JPwASeBCUsx+YLBYOXmzb/jz8u7G2Ckv//h1iNH/sFLJBJTPI0fWIP5nnqiznUnLQ8lIiIiIiIiIteNDUBs3J+HZ2jevtHH/DRjxm4q7p2h55wxSkyISDMmW1uCKes0pfK8ZGOsz17e1B3cBqRLTHiYO8jLrjlKkasUcRw/JiFxEyZBNmmvh5zS0orydev+yA4E1nqelxzq7PzfHceOPZLB0+QBtZiEx0/rXDej7yURERERERERWfT6PM/rmYV5x26IXD7RwX27dhVgyrd37ty7V4mJa1G7hzzMVpd3Ypp7dACPAJ9o2s2Fac5VBnwSeAuwBHOH6/8DPtm0e+o7u2v3EAQOABuBZNPuhfV3KTKmPhwaaojGzgJbyDAxsbJkpDHWF3hDx6BvewbDBzBvkC9cQ5giVyXiOEHgDmAnpp9E32Rji5Yv31C0fPnHLNsu9VKpnr6LFz/Xc/bs4QyepgTTU+IA8FSd66ar7SgiIiIiIiIiMhOimN0XVft27Vq2c+/eK9fHd44+Ns5tWJlZMD0maveQC/wI+ASmscd3gXPAe4H9tXtYM425KoHngN8BEsB3MNtZdgPP1u6hPINpPobZhiOyGJxnGonK21cMHAIYStgrT3YES6cY3gdUNERjeVcfnsj0RRwnF7gXuBHz82LSpER5OPyaohUrPmPZdmkqkTjTcfz4BzNMSizBlCp7EtPkWkkJEREREREREZl1O/fuHcSslwP8wgRD3j76GJmbiKZnwSQmgI8DtwHPAOubdvOLTbu5Ffh9oAr4yjTm+iKwFmgAwqNzbQH+BlgP/HW6k2v3sBGzc+MfpvsiROapZkxyLqMm2LWlI715/tQpgGfP522dYnjf6LyZJPxEZkTEcQqAVwPbgDPA4ETjLNu2q7Zv/428iorfsSzLnxgaerqlsfHDQx0dLVM8xViTa4DHgOfqXHeqHhQiIiIiIiIiIjNpbB374/t27Vo39sV9u3bdDvx3TEnrf8xCXFOyPG/C3p/zymjZpBZMuYydTbvZf8Xxg5jFp5uadqcvF1O7hxDm7vAEsLJpN83jjuVg7qotB5Y27eYVC1O1e7CAxzEJjA2Y0jfTLuVkWday0TiWe543rTJUIjOtIRqzgIcwjarPZXLOXz1d+d7zPYG31hSMPPqHd7V9aYrh64FH68OhTO5AF7kmEccpBu4D1gGngJGJxgUKC4sqNmz4sC8Y3A4w3NPz9bYjR/6VqX8wjm9y/dM61z0/c9GLiIiIiIiIyGJwNeu/+3bteiOmYtCYWzA3R47v8frnO/fu/a9x53wRUwloAHPzZBB4YPS8t+/cu/c7V/8qZs9C2TFxByYp4V6ZlBj1b6OPdRnM9TrM635ifFICoGk3w5itLT7gDZOc/9+BO4Hfb9pNZwbPJzLv1YdDHnAa08A3I6tK440AnUO+bRkMH8HU4BeZVRHHKcf88F0HuEySlMivqVlZuXnzX/mCwe2e5w31Nzd/pu3w4W9mkJTIw+y4Owl8T0kJEREREREREZlBVcCt4z6s0a+P/1rV+BN27t37u5h2B0cxayK3Az8A7p6vSQlYOM2vxxrs7pvk+NjXM1kgzWSuX5tortHdFp8Dfti0m69l8FwiC0kzpmFOzuhjWnfV9r/45Nn8VDxphw4151RtrRluTTO8Dwg1RGP++nBI5W5kVkQcpwpTvmkpcAJITTSudM2aW/Jran7fsqy8VDLZ3NPU9Kn+S5eaMniKUswP/33A03WuO2F5KBERERERERGRq7Fz795/Av5prs7LpoWyY2Ll6ONkd6aOfb12luf6WyAXeF8GzyOy0LRiSpOVZjK4uiA5WBBIHQd44WLeVEnBPqA407lFpiviOCHgQSCE2SkxYVKicvPmd+TX1PyRZVl5yXj8UNuRIx/MMCkRwly/T2LKNykpISIiIiIiIiJylRZKYqJw9HFgkuP9o4+ZNO69qrlq9/AQUA98rmk3xzN4npexLCvHsqzisY9xcYjMC/XhUBJTj78403Mq85ONABd6A1MlJgYxJXDKrjpAkUlEHGclJilRySRJCV9OTk7Nzp0fzikpebdlWdZIf/9/Ne/f/8cjfX29U0xvAatH53wM+LmaXIuIiIiIiIiIXJuFUsopq2r3UITZLXEc+OxVTvNR4E9mLCiR2XEJ8DB9VpJTDV5bHj/Y1B18R9eQb3vKA9tKOzwFVGBK7IjMiIjjOJhG17mYxNor5JSWVpSvX/8J2+9f43lecqij4+87otFHM5h+rMl1DLNLIqNGVSIiIiIiIiIikt5C2THRN/qYP8nxgtHHqe58vdq5PgMsB9432iD7anwW08B77GPDVc4jMpuagS7MNTqlu1f1H7PwRhIpq/z5i3nLphg+ACxviMbSpy9EMhRxnA3AazAJhAnLMeXX1KysCIe/YPv9a7xUqrv3/Pk/yjApkQ84mETa95SUEBERERERERGZOQtlx8TZ0cflkxwf+3omdcKvZq46YAj4RO0ePjHBOb7aPfxk9PPfbdrNgSsHeJ43zLiGwpZlZVJ2SmRO1YdDgw3R2DlgM6bfRFrFOamRwmDqaG/ct63xUu62W5YNplu87cWUcioksySiyIQijmMBW4C7gThmp88rFK1YsbFo2bI/tmy7IJVInO88efJPhjo60jVpH1OGKQv1AvBMnesOzVTsIiIiIiIiIiKycBITB0cfd05yfOzrjbM4Vy5wT5p5x46VZhCDyHx2Htie6eDqgkRjb9y3Ldbn3w48nGZoP1CDWfRVYkKuSsRxbGAHcCfmOmqbaFzpmjW35tfUfMiyrGByZORY+9Gjf55BPwkwTa5zgJ8CB+pcd8qSZiIiIiIiIiIiMj0LJTHxFNANOLV72DHBjoS3jz5GMpjrEUyt+7tq91DdtJuWsQO1e8jB7I5IAt8b+3rTblZNNlntHjwg2bR7wfxdikylGVPyrJDLpc8mtb4iftDtzHl395BvayKF5bfxJhmawpSPK+fyziWRjEUcxwfcBNyGKTk24a6e8g0bXpdbVvZblmXZieHhZ9sOHfpCMh6PTzG9DazCJNAerXPd4zMXuYiIiIiIiIiIjLcgekw07SaOaT4N8KXaPS/1gaB2Dx8EtgE/bdrNC+O+/oHaPRyr3fPyZtVNu4kB3wCCwN/V7nlZQuHzQBXwtfEJC5HrTBfQQoa7f+6q7T9pW95g0rOKnjqbv2qK4UPA0muKTq5LEcfxA7cDrwLamSQpUblly7vyysvfZ1mWPTIw8GjL/v2fzSApEQDWYpJy31NSQkRERERERERkdi2ku/w/hWly+irgRO0engBqgVuBVuDXrhhfCYQxZTmu9LuYO27fBhyr3cPzmJr6WzCNTj84C/GLLAj14ZDXEI2dBtZkMj4v4CWLc1KHu4Z8N7/YmrvtnlUDp9MM7wOqG6KxYH04NNVisQgAEccJYt77bwQuMsFOHsu27apt2347kJ//WoDhnp5vtB0+/I0Mpi8AVgDHgMfrXLd75iIXEREREREREZGJLIgdEwBNuxkC7gP+HBgA3oJJTPwTsLNpN6emMVcbcAvwN5idE28FSoD/BdzStHvqpr8ii1wzpqlwMJPB1QWJRoCWfv+2KYb2AUWYck4iU4o4Ti5wL6aE0zkmSEr4gsFg9Q03fDSQn/9az/NSgx0df5dhUqIck7z+OfCYkhIiIiIiIiIiInPD8rzJysHLbLIsaxmmyfByz/MuZDsekfEaojE/8ItAHiZJkdZPz+Sv/s6xkj225Q1+6v7md+UFvHQNg9cD36sPh47OULiySEUcpwCTlNgInAGGrxwTKCgorNi06RO+QGCj53nxgebmL3SdOvVsBtMvA3zAM8BBNbkWERERERERkZmk9d/0FsyOCRGZO/XhUAI4hdndMKU7Vg6c8Vleb8qz8p5oKlg7xfAEppeLyKQijlOMKd+3ETjNBEmJ3LKyysrNm//CFwhs9FKp/t7z5z+RQVLCBhzMjqDv17nuPiUlRERERERERETmlhITIjKZS6OPU75P+G28ktzkIYDj7cHtUwzvB5Y1RGN6/5EJRRynDHgA05DaxSQRXqZgyZLa8nD4L22/f4WXTLZ1nT79kd5z56bahRMA1mGu7e/Vue6JmY5dRERERERERESmpoVBEZlMM9CN6b8ypVBh4iBk3GeiJNN55foScZwq4LXAKkxSInHlmOKVK7eUrFr1Ocu2y1OJxNmO48c/PNDcfHaKqQswOyWOYZISl6YYLyIiIiIiIiIis0SJCRGZUH04NICpg1eayfhtS4YaAfri9saeYTuQZugAkA+UXWuMsrhEHCcEPIhpSH0SeEWJpVLHeVXhsmV/atl2QXJk5MW2I0c+MtTZ2TbF1GXAUuA5TJPrnpmOXUREREREREREMqfEhIikcw5T/mZKNy0dvOC3vQ4PK/D4mYINaYZ6o4/l1xydLBoRx1mBSUpUYnZKpK4cU7Fhwxvyq6s/YllWIDE09EzLwYN/PNLf3z/F1Eswu3N+CjxR57qv6FUhIiIiIiIiIiJzS4kJEUmnGdMTomCqgbYFpbnJgwAnO6bsMzEILL/28GQxiDjOGkz5pmJM03XvyjFVW7e+O7e8/Lcsy7JG+vsfbjlw4C9S8fgrek9coRawgB8A++pc9xXJDhERERERERERmXtKTIhIOp2Y5ERpJoOXFY00ArQN+DLpM1HREI3lX1N0suBFHGcD8BrAD5y58rhl23b1jh3/I1hU9A6A4Z6ef2k5ePDLXiqVLslgYxpn9wCP1Lnu0TrXfUWyQ0REREREREREskOJCRGZVH045GEWi6fcMQFw49LBRoD+EXt9S78vL83QPqAQ9Zm4bkUcx4o4zhbg1aNfunDlGF9OTk71DTf8USA//wHP81KD7e1/03b48L9OMXUAWIfpj/JwnetO1RRbRERERERERETmmBITIjKVZiAOBKcauLVmuDXoS8XAsp9oKtiUZmgC8KE+E9eliOPYwA7gfkxZr9iVYwKFhUVV27Z9yp+Tc7PnefGB5ubPdESjj00xdR7gAMeAR+tct3WGQxcRERERERERkRmgxISITKUFU9KpNJPBZbnJRoAzXcGpyjklMI2J5ToympS4CbgH6AZekTzILS+vrty8+fO+QCDspVK9vefOfbzr1Knnppi6BFgBvAD8oM51e2Y6dhERERERERERmRlKTIhIWvXhUAI4jVn4ndKKEtNnon3AN1UD7F5gSUM05r+2CGWhiDiOH7gduANoAzquHFOwZMmq8vXrv2D7fMtSyWRr16lTH+k9f/7YFFNXARXAk8Djda47NNOxi4iIiIiIiIjIzFFiQkQyEQM8MnjPuHX54CGAwYS9pqkrUJRmaB9QjPpMXBcijhME7gRuAy5hdku8TPHKlVtLVq36nGXbZalE4kxHNPqhgZaW81NMvQJTZuyHwHN1rpuY6dhFRERERERERGRm6U5lEclEM2YhuRjoSjdwbXm8K9efOjuUsFc+cy5/a21p99OTDB0CcjGJCfUCWMQijpML3AVsB84BA1eOKV279s78qqoPWpblT8bjh9tefPHTiYGB/jTT2sAqoAf4aZ3rnpqF0EVEREREREREZBZox4SITKk+HOoHzpNhn4nyvORBgLPdgan6TKQwJXhkkYo4TgGmyfV2oIkJkhIVGze+Kb+q6kOWZfkTQ0NPtxw8+CdTJCX8wFpMwuxhJSVERERERERERBYWJSZEJFPnMSVzplRbEm8E6Bj0TZWY6AeWN0Rj1jXGJvNQxHGKgVcDmzF9Sl7R+6Fq69ZfyS0r+03LsqyR/v7/ajlw4POpkZGRNNPmYpISJ4FH6lz30mzELiIiIiIiIiIis0eJCRHJ1CVMIqFgqoF3rhw4DF5qOGkvP9YWLE8ztA9TyildLwpZgCKOUwY8AKzHJBHi449bPp+v+oYbfjdYVPR2gOHu7r0tBw/+by+VSqWZtghYCRwAHqtz3a7ZiF1ERERERERERGaXEhMikqlOTC+I0qkGLi1O9OcHPBfguQv56XZNjCU61AB7EYk4ThXwIKYHxEngZQ2pfbm5uTU7dnw8kJd3v+d5qcG2tj1tR458e4ppK4Bq4GfAT+pc9xUloUREREREREREZGFQYkJEMlIfDnmYcjxT7pgAqMhLNAJc6EnbZyKFeR9Kt6tCFpCI44QwSYmlmKREcvzxYFFRcdXWrZ/25eTc6HlevP/SpU91HD/+wymmXYq57n4CPFPnuulKPYmIiIiIiIiIyDznz3YAIrKgNGNK8gS5ojTPlVaXjTSe6wm+rXPQtz3lgT15F4khIATsn8lAZe5FHGcFcB9mB4wLeOOP51VU1JSuXftnts8X8lKp3p5z5/6078KF42mmtIBaYBD4UZ3rnpit2EVEREREREREZO5ox4SITEcLpqRTyVQD767tf9HCS4ykrKqDl3Jr0gztA2oaorGcmQpS5l7EcdZgdkqUAKe4IilRGAqtKVu37gu2zxdKJZPNXa774SmSEj5Mk+sO4GElJUREREREREREFg8lJkQkY/Xh0AhwhgwSExX5yeGCYCoKsD+Wl66cUy9QiPpMLFgRxwkDr8HspDlz5fHi2trtxatWfday7dJUInG649ixDw+0tl5IM2UQk5Q4AzxS57rpxoqIiIiIiIiIyAKjUk4iMl0XRx9tTI+ISVXlJxv74r7NsT7/duCxSYaNYBaiy4FLMxalzLqI41jAZuBuTIPr81eOKVu37u68ysrftSzLn4zHG9uOHPlMYnAwXePqAmA5cBh4os51+2cjdhERERERERERyR7tmBCR6WoGeoDiqQauLR9uBOga8m1LeWmHJoHKmQhO5sZoUmIHpqfEEBC7ckzFpk0P5VdV/YFlWf7E0NCTLQcOfHKKpEQZptH1c5ieEkpKiIiIiIiIiIgsQkpMiMi01IdD/cAFoHSqsXfVDkQtvHgiZZX+7Hz+yjRD+4DlDdGY3pMWgIjj2MDNwD2YJFXrywZYllW1bdt7c0tLfx0g3t8fad6//wupRCKRZtolmBJhPwWerHPdtM3VRURERERERERk4dIioIhcjbOY8ktpFeWkEkU5qSMAh5tzpuozUUwGyQ7Jrojj+IHbgTuBNkxz6pdYfr+/ZseO3wsWFr4VYKir659aDx78Bzwv3Z6ZWsACfgDsq3PdtCXCRERERERERERkYVOPCRG5Gs1AP6YfQNpyO9UFicaeYd8Nl/r824D/nGTYILAMU8qnY5IxkmURxwkCrwJuxPQa6Rt/3J+bm1e5ZctHfcHgDs/zkoPt7f+r8/jxH6eZ0gbWAO3AT+pc9+xsxS4iIiIiIiIiIvOHdkyIyNXoxNwtXzrVwA2Vps9E97Bvazw56XuOh7ljvnymApSZFXGcXEzpppswTa5flpQIFheXVm3d+pnRpMRQfyz251MkJQLAutG5HlZSQkRERERERETk+qHEhIhMW304lAJOYXZMpHXHygHXtrz+lGcVPNlUsCbN0H7MrgmZZyKOU4Bpcr0daAJe1sA6r7IyVLFx4+ftQMDxUqmenqamP+o+c2ZfminzAAeIAo/WuW5rmrEiIiIiIiIiIrLIKDEhIlerGRjB3Pk+qVy/lyrOSR0GONaWts9EH1DZEI1NmeyQuRNxnCLg1cAW4DQwNP544dKlTtnatX9h+3xLUslkc+fJkx/qu3jxRJopS4AVwAvAY3Wu2zNbsYuIiIiIiIiIyPykxISIXK0WTEmn0qkGLikcaQRo6fdPlZgowPSZkHkg4jhlwAPAeuAkEB9/vGTVqh3FtbWftWy7NJVInGo/evRDg21tsTRTVgEVwJPA43WuO5RmrIiIiIiIiIiILFJKTIjIVakPh0aAM5g74NPaUj18EKBn2N7cH7f8kwxLAn7UZ2JeiDhOJfAgsBqTlEiMP162bt29BaHQn1iWlZuMxw+2Hjr00XhPT1eaKZcDQeBHwHN1rptIM1ZERERERERERBYxJSZE5FpcHH1M+15y+4qBsz7L6/awch5vKliXZmgcqJmx6OSqRBxnCfBaYCkmKZEcf7xi06a35ldVfdCyLF9icPDx5gMH/jQxODg4yXQ2sAZTAur7da57qM51vdmMX0RERERERERE5jclJkTkWjQDvUBxukG2BaW5yUaAEx0529MM7QOWNkRjaftWyOyJOM4KzE6JSsAFUi8dtCyratu2X88tLX0vQLyv7zvNBw78lZdITLb7wQ+sxVwnD9e57qlZDV5ERERERERERBYEJSZE5KrVh0N9wAUy6DMRKko0ArT2+6bqM1GYyXwy8yKOswaTlCgBTgEv7Wyw/X5/zY4dvx8sLHwIYKir6yutjY1fwfMm2/2Qi0lKnAQeqXPdS7MbvYiIiIiIiIiILBRKTIjItTqL6R2Q1o4lg40A/XF7Q8egPdn4IcyCtvpMzLGI44SB12D+Lc+MP+bPy8ur3rHjT/x5eXd7npccaG39q/YXX/xOmumKgJXAQeCxOtftmp2oRURERERERERkIVJiQkSuVTMwAOSnG3RDaCgWsL1WD8v/RFPBpjRDU0DFTAYok4s4jhVxnC3Aq0e/dH788WBxcWnV1q2f9QWD2z3PG+yPxf6088SJn6aZsgKoBn4G/LjOdQdmJ3IREREREREREVmolJgQkWvVAbQxRfkl24KyPNNn4lRnMF05p35geUM0Zs1YhDKhiONYwHbgPmAYiI0/nldVtbRi48Yv2H7/Gi+V6uppavpY95kzB9JMuRQoAH4CPFPnuiOzE7mIiIiIiIiIiCxkSkyIyDWpD4dSmH4EhVONXVY00gjQNuBPl5joxSQ5imYiPplYxHFs4GbgHqAHaBl/vHDZsnVljvN52+erSSWTsc6TJz/cd/GiO8l0FrAKSALfr3PdA3Wum5pkrIiIiIiIiIiIXOeUmBCRmdAMJIBAukE3LTN9JgZGrLUXe/wFkwwbwNx1rz4TsyTiOH7gduBOzI6XjvHHS1avvrF45crPWLZdnBoZOdn+4osfHmxrm6x5tQ/T5LoDeLjOdU/MZuwiIiIiIiIiIrLwKTEhIjOhBegEStIN2lQ13J7jS10Ay37qXP7mSYalMO9NSkzMgojjBDAJiduAS0DX+ONl69ffX7BkyScsy8pJDg/vbzl06GPx3t7uSaYLYpISZ4BH6lz3wuxFLiIiIiIiIiIii4USEyJyzerDoThmcTptYgIu95lo6krbZ2IICM1IcPKSiOPkAvcCN2GaXPeOP165efPb8isrf9eyLDsxOPjj5oMH/zw5NDQ0yXQFwGrgCKZ8U/sshi4iIiIiIiIiIouIEhMiMlMuYt5T0jatXlkychCgfdA3VZ+J6oZoLHfmwru+RRwnH9PkegfQhCmZBYBl23b19u2/mVNS8qsA8b6+huYDB77oJRKJSaYrxSSOfg78sM51+2YzdhERERERERERWVyUmBCRmdKMaaJcnG7Q7SsGDgEMJexVbkdgsh0WfZhm2mUzGuF1KuI4RcCrgS2YRuUv7YKw/X5/9Y4dfxAoKHgTwFBX1z+2Njb+E57nTTJdDSYx8TjwZJ3rxmc1eBERERERERERWXSUmBCRGVEfDvUCMcyi9aRWlY705vlTpwGePZ+/dZJhI5j+BeozcY0ijlMKPACEgZPAS4kEf15efvWOHX/qz8290/O8xEBLyxfaX3zxu2mmq8X83PgBsK/OdZOzGLqIiIiIiIiIiCxS/mwHICKLShOwYapB5fnJxgs99upzPYFtwJOTDEsAVTMZ3PUm4jiVwP3ACkxS4qVEQk5JSXl5OPxJ2+9f5XneYN/Fi5/uaWpqnGQqG1gDtAM/qXPds7Mdu4iIiIiIiIiILF7aMSEiM6kZGATy0g1aVRJvBOgY9G1PM6wPWNYQjflmLrzrR8RxlgCvBZZxRVIiv6pqWfmGDZ+3/f5VXirV1X3mzEfTJCUCwDpMs+yHlZQQEREREREREZFrpcSEiMykdqCNKco53Vk7cBi8VDxphw4351ROMqwPKAIm60Mhk4g4znLgQaAScIHU2LGiZcvCpY7zedvnq04lkxc7Tpz4UH8sdmqSqfIAB4gCj9a5butsxy4iIiIiIiIiIoufEhMiMmPqw6EUprlyUbpxSwoTgwUB7wTAC7G8bZMMGwDyUZ+JaYk4zmpMUqIE82/xUhPrktWrby5aufLTlm0XJUdGTrS/+OKHh9rbmyeZqgRTAuoF4LE61+2Z7dhFREREREREROT6oMSEiMy0Zkx/iLQ9bCrzEwcBLpg+E+mUzVBci17EcdZjGl3nAmfGHysPh19TsGTJH1mWFUwOD7/Q2tj4sXhv72TJhiqgAtP/4/E61x2azbhFREREREREROT6oubXIjLTWoAuTDmntskGrSmPNzZ1B9/RNeTbnvLAtiYcNoC5a//nMx/m4hFxHAvYBNyN6SVxbvzxys2b35FTUvJugJHBwR+2Njb+rZdMJl85EwDLMbssfgQcrnNdb5JxIiIiIiIiIiIiV0U7JkRkRtWHQ8OYu/XT9oa4u7b/mIWXGElZFS9czFs6ybA+oLwhGiuY4TAXjdGkxHbgfiAOxMaOWbZtV2/f/ltjSYl4b++3W/bv3zNJUsIG1gBDwPfrXPeQkhIiIiIiIiIiIjIblJgQkdlwEfP+MvE+CKA0NxUvDKaOAhy8lDtZOac+oBD1mZhQxHFs4GbgHqAHs1sFADsQCFTv2PHhQEHBGzzP84Y6O/9P66FDeyeZyg+sxZTherjOdSdrhi0iIiIiIiIiInLNlJgQkdnQDPQyRRPsqgLTZyLW558sMZEEfCgx8QoRx/EDtwF3AB2jHwD48/MLqrdv/1N/bu6rPM9LDLS2fr796NH/nGSqXExS4iTwSJ3rXprt2EVERERERERE5PqmxISIzLj6cKgHU1KoNN249RXxRoDuId+2RGrS3RVxoGZGA1zgIo4TwCQkbsckgbrGjuWUllZUbdnyOV8wuMVLpQb6Llz4466TJ5+aZKoioBY4CDxW57pdk4wTERERERERERGZMUpMiMhsacLcjT+pu2v7T9iWN5T0rOJnzuXXTjKsFwg1RGOBGY9wAYo4Ti5wL3ATcAHz9wNAfnX1ivJw+Au231/rpVId3WfO/GHP2bOHJ5mqHKgGngF+XOe6A7McuoiIiIiIiIiICKDEhIjMnmZMI+W8yQbkBbxkUTB1BOBIS+72SYaN9Zkom/EIF5iI4+RjkhI7gLNA/9ixouXLN5auWfMXts9XmUokLnQcP/6h/kuXzkwy1VLM3+lPgGfqXHdkNuMWEREREREREREZz5/tAERk0WoD2jHlnAYnG1RTmGjsHvbd2Nzv3wZ8d4Ihw5idF+WMa+58vYk4ThEmKREGTmFKXAFQumbNrfk1NR+yLCuYHBmJth89+mcjfX29E0xjYUo3DQI/qnPdE3MQuoiIiIiIiIiIyMtox4SIzIr6cCgFuJg78ye1qWr4IEDPsL1lKGFN9p6UAipmNsKFI+I4pcADmKSEy7ikRHk4/GB+Tc1HLcsKJoaHf97a2PjxSZISPkyT6w7gYSUlREREREREREQkW5SYEJHZ1IxJKky6O+uOlf2nfZbXl/KsvCea8tdOMqwPWNEQjU3WIHvRijhOJSYpsRo4CSTGjlVu2fLOvIqKD1iWZY8MDDzWsn//p5PDw8MTTBME1gFngEfqXPfCHIQuIiIiIiIiIiIyISUmRGQ2NQOdQMlkA/w2XklushEg2p6zbZJhfUDx6Md1I+I4S4AHgeWYpEQSwLJtu3rHjvflFBe/C2C4t/dfWw4c+BsvlUpNME0BJqlxGPh+neu2z030IiIiIiIiIiIiE1NiQkRmTX04NAw0kSYxAbCkMNEI0Nrvn6wBdj9mgb18RgOcxyKOsxyTlKjClG9KAdjBYLB6x44/DOTnv87zPG+wo+Pv2w4d+pdJpikFQsDPgR/WuW7fHIQuIiIiIiIiIiKSlhITIjLbLmJKOU1ahmlrzVAjQO+wvbFn2A5MMMTDvF+VzUqE80zEcVZjkhIlmEbXHkCgoKCwevv2P/fn5t7med7IQEvL5zqOHfveJNPUYBITjwNP1rlufJJxIiIiIiIiIiIic0qJCRGZbZeAXtI0wb5l2eB5v+11eFjBx5sKwpMMGwSWzUaA80nEcdZjekrkYnpCAJBbVlZZuXnz53yBwEYvlervPX/+j7tc95lJpqnFvL//ANhX57rJ2Y5bREREREREREQkU0pMiMisqg+HeoAYaXY72BaUjvaZcDuC6fpMVDZEY7kzH+X8EHGczcCrR/94buzrBTU1K8vXr/+C7fev9JLJ9u4zZ/6w99y5IxNMYQNrgR7g0TrXPVrnut7sRy4iIiIiIiIiIpI5JSZEZC40YXYATGpp0UgjQNuAb7I+E71AEYuwz0TEcayI4+wA7gfimEQOAEUrVmwqWb36LyyfryKVSJzrOH78Q/2XLjVNME0Ak5Q4Dzxc57oTjREREREREREREck6JSZEZC40A0OkSU7sDJk+E31xe31rv2+icQnM4vui6jMRcRwbuAm4B5N8aRk7Vuo4txUtX/7nlm0XJEdGjrYdOfKRoc7OtgmmyQMc4Dhmp0TrXMQuIiIiIiIiIiJyNZSYEJG50Aa0Y5oxT2j7kqGWoC/VDJbviaaCzZMMSwDVsxBfVkQcxw/cBtwJdGD+jgAo37DhdfnV1X9oWVYgMTz8bMvBg58Y6e/vm2CaYmAF8ALwWJ3r9sxF7CIiIiIiIiIiIldLiQkRmXX14VASOI1ZRJ9U2WifidNdgcn6TPQCyxqiMd/MRjj3Io4TAO4AbsfsKOkaO1a5Zcu78srL32dZlj0yMPBIy/79n03F4/EJpqkCKoEngcfrXHdoDkIXERERERERERG5JkpMiMhciWF2PEyaVFhePHIQoH3Qn64BdhFpdl4sBBHHyQHuxpRwuoBJuGDZtl29Y8f/yCkufifAcE/P11sOHPg7L5VKTTDNciAI/Ah4rs51E3MTvYiIiIiIiIiIyLXxZzsAEblutADdQAmmbNEr3Lp8sPGFWD6DI9aac92BwhUlI1eWLhoE8jENsNtfOcP8F3GcfExSYgtwFvOa8AWDwcqtWz/iz8m52fO81FBn5993HDv2yART2MAqoAf4aZ3rnpqj0EVERERERERERGaEdkyIyJyoD4eGMAvxpZONWVcR78r1p86CZT19Ln/LJMMSwM0N0dj6hmhsQb2HRRynCHg1JilxmtGkRKCwsKhq+/ZPjyYl4gPNzZ+dJCnhB9ZiSj89rKSEiIiIiIiIiIgsRAtqUU9EFrzzmFJO1mQDyvNMn4mmrsD2SYacwey6eCPwYEM0tiCaYUccpxR4DbAeOAXEAXLLy6sqN236vC8QCHupVH/v+fOf6Dp16tkJpsjFJCVOAo/Uue6lOQpdRERERERERERkRikxISJzqRnTJ6JwsgErS0YaATqGfJP1mUhhEhzngU3AWxqisZsborG8GY51xkQcpwJ4AFgDuMAIQMGSJbXl69d/wfb7l3nJZFvX6dMf6T137ugEUxQBtcBB4LE61+2ao9BFRERERERERERmnBITIjJn6sOhbuASUDbZmFetGDgMnjecsFccbwtOOg4YAk4Aw8A9wEMN0dja+VbeKeI4NcBrMc2qTwJJgOKVK7eUrFr1Ocu2y1OJxNn2aPRDA83NZyeYohyoBp4BflznugNzFbuIiIiIiIiIiMhsmFcLeCJyXWjClCWa0IqSkb78gOcCPHchf2sG83VgEhQVmPJOr2mIxipnItBrFXGc5ZikRBVmp0QKoNRxXlW4bNmfWbZdkIzHj7QdOfKR4a6uiZp5L8XsLvkJ8Eyd647MUegiIiIiIiIiIiKzxp/tAETkunMJs9shB7Pb4RUq8hKNAyPBted7/NuBxzOYM4VprJ0HbAVWNkRj+4AXR5tuz7mI46wC7sMkFl5qUl2xceMbc0pLf9OyLCsxNPRM6+HDf5WKx+NXnG5hSjcNYnZJHJ+ruEVERERERERERGabdkyIyFxrw+xymLRM0+oy02eic/I+E5MZBI5jyiXdD9Q1RGNr5rq8U8Rx1gEPAvmYZt0AVG3d+u7csrL/blmWNdLf/3DLgQN/MUFSwodpct2BaXKtpISIiIiIiIiIiCwqSkyIyJyqD4eSmB0ERZONuXNl/4vgJeNJu+bApdyaq3iaNkw/hxrgTcCrG6Kx8qsKeJoijrMJeM3oH88CWD6fr/qGG3YHi4reATDc3f21loMHv+ylUqkrTg8C6zDJjEfqXPf8XMQsIiIiIiIiIiIyl1TKSUSy4RKm/JKP0WbQ41UVJIcKg6njfXHfxv2x3G07lgw9dhXPkcT0s8gHtgG1DdHYC5jyThOWkLoWEcexRp/nbszOjWYAX05OTtWWLX/oy8m50fO81FBHx5c6otGJXk8BpkH2YeCJOtftm+kYRURERERERERE5gPtmBCRbGgGuoGSyQZU5icPAlzsDUy3nNOVBrhc3unVmPJOqxuiMesa531JxHFs4CbgXqCX0aREoLCwqGrbtk+PJiXi/c3Nn54kKVEKhICfAz9UUkJERERERERERBYzJSZEZM6NNqQ+h1mQn9Da8ngjQNeQb1vKm5GnbQNcTALgTcB9DdHYpH0uMhVxHB9wG3Anpi9EO0BuRUVN5ebNn/cFAuu9VKq399y5P+o+dernE0xRg/l7eAJ4ss51r+w5ISIiIiIiIiIisqgoMSEi2XKONOXk7q7tP2bhxRMpq+y5C3nLZ+g5E5j+Da3ATuCtDdHY9oZoLHg1k0UcJwDcgUlMNANdAAWh0Orydes+b/t8y1LJZGvXqVMf7j1/PjrBFLWY9+EfAC/Uue4rylqJiIiIiIiIiIgsNkpMiEi2NGPKHk3YBLsoJ5Uoykm9CNDYnLt9hp+7H4gCFqZR9ZsaorGV0ynvFHGcHEw/iVuAi5jXQnFt7baSVas+Z9l2WSqRONNx7NiHBlpaLlxxug2sBXqAR+tc92id687MvhAREREREREREZF5TokJEcmWbqCFNOWcqgoSjQCXev3X2mdiMi3AKWAZ8GbgnoZobNK+F2MijpMP3AfcAJzFJDooW7v2zsKlSz9pWVZeMh4/3Hr48EeHu7s7rjg9gElKnAceqXPdppl7OSIiIiIiIiIiIvOfEhMikhX14ZAHnAbyJhsTrhhuBOgZ9m2NJ2ft/WqsvFM7poF1fUM0trUhGgtMNDjiOIWYJtpbMfEPAlRs3FiXX139Ycuy/ImhoadaDh78k8TAQP8Vp+cBDqYZ96N1rtsyK69IRERERERERERkHlNiQkSyqRkYBnImOnhX7cBJ2/IGkp5V+PTZglWzHEsfJmHgAx7ElHdaMX5AxHFKgQeAMKaRdhzLsqq2bv3V3LKy3wAY6e//r5YDB76QGhkZuWL+YmAFsA94rM51e2b11YiIiIiIiIiIiMxTkzaeFRGZA21AB6acU/OVB3P9Xqo4J3W4a8h3y9G2nO33ru4/NcvxeKNxdAArgaUN0dgh4EDgDXcGgPtHv34SSFo+n69q27bfCeTl3Qcw3N39z21HjvzbBPNWYXppPAU8X+e6iVl+HSIiIiIiIiIiIvOWdkyISNbUh0MJTI+H4snG1BSaPhPNfbPWZ2IiI5i4OoFbrOiLv5LatPXXPZ+vltGkhC83N7dmx45PBPLy7vM8LzXQ1rZnkqTEciAI/Ah4VkkJERERERERERG53mnHhIhk2yXMTgUfkLzy4OaqocZoWw69cXtzf9zyFwS9uVzY77VeeLbNevrxu72aUJm3cvUh+8Sx0pyWWLJiw4Y/tgOBdZ7nDfdfuvS57tOnX7jiXBtYBfQAP61z3dne7SEiIiIiIiIiIrIgaMeEiGRbM9AFlEx08PYVA00+y+tJeVbuE2cL1s1lYNZTP6m2H/mPHbRcGqGw6BgVlUv82254oHzr1i/agcA6L5Xq7Tl79o8mSEr4gbWY1/awkhIiIiIiIiIiIiKXKTEhIllVHw4NAucwfSZewW/jleYmGwFOtOfMWTkn60ePhuwfPrrDG47nUL2kmWRyJK/5ItUt59/qg4qkZfe0jaT+qre19eQVp+ZikhIngUfqXPfSXMUsIiIiIiIiIiKyECgxISLzwXnSlJYLFZk+E639vjlJTFiP/McK+/Efbve8lEV1TSuWReHwwOrKgZ5ftT0vP2HZzc01yxsGN25dkXrNG270Vq8tGz21CKgFDgKP1blu11zEKyIiIiIiIiIispCox4SIzAfNQB9QOPr4MtuXDB483JJLX9ze2DVkB0tzU/FZiSKZxI78+ypr33ObvUAgTllFF0DJYN+W4uGBhyywR2zfmZbC0m8lh4aGSSQClFcsTd16R4VVWtZhHTvcaw0OPgU8V+e6I7MSo4iIiIiIiIiIyAKnHRMiMh90AS1MUs5pZ2goFrC9Ng/L/9MzBRtnJYKRuGU3fNOxnv/ZVi8nd3AsKVE+0HNbyfDAWy2wh33+I5eKyr6etH3DACQSI3S0XyR2Ic+rrN6c/G8f8I38+/c7Rr73ZGpWYhQREREREREREVkElJgQkayrD4c84DSQP9Fx24KxPhOnOoMzX85peMi2v/W1sHXg+c1eQWEvJaW9eB5VfV0PFMaHHgAY9AefbS4sa/AsO/nSeakUNMdqrHi8z9u+8zHv9Q91kpf/OuC1DdFYzYzHKSIiIiIiIiIisgiolJOIzBfNQBwIjj6+zLLikcbWAf/97QP+mU1M9PX67H//RtiKvrjeKyntoKBw0PI8u7qv86GcZGILQF8w9wcdeUXPYFmXz0smbKv50hJKSrpS97/usHfz7e2jR3KAMLCiIRo7AByqD4cGZjRmERERERERERGRBUw7JkRkvmgFOoCyiQ7etHSwEaB/xFoX6/VPuLNi2ro6/fY3/3mLdexI2Csrb6OgcNBOJYNLejvelZNMbPEg1Z2T/52O/OKXJyXicb91KRbyqqpbU2/5xX3jkhIAw8BJYBC4G3ioIRpb3xCN6f1WREREREREREQEJSZEZJ6oD4cSmHJORRMd31w93JbjS10Ey/7xmYIbrvkJ21qC9jf/71bLPb7Gq6hqIS9/2J9MFCzp7fyVQCq52oORrrzCb3bnFR562XmDAzlWa3ONt3LVudQv/so+L7ypd5Jn6ASOY/pmvAF4sCEaq7rmuEVERERERERERBY4lXISkfkkNvpoA69oIF2Rn9x3sdde+vMLeX/Q0udf/Z4bOr9Vmpt6RdmnKV08n2s3fHOrdeHscq9qySWCwUROIl5e2d/9Lp/nlaWwBjryi74xEMy9+LLzensKrL7eEm/9xpOpt/3SMYpLElM8Uwo4D+QBm4GVDdHYfuBwfTg0OO24RUREREREREREFgHL87xsx3BdsixrGWbBcrnneReyHY/IfNAQjeUD7wQSmB0HL3OuO1D4lf1lu7uGfLcCBH2p2KtWDHz5oQ29BzJ+kjOn8u3vfGub1Rxb4lUvuUQgkMyPDy0tH+j9JRsvP2lZXW0FJf8y7A92vOy8jvZSaySe423dEU099AsuObmvSJxkoByownzvPw+cqg+HrmYeERERERERERGZx7T+m54SE1miC1NkYg3R2IPABkxZp1dIefDtIyW3vXAx77+PpKwKgMr8xE/euaXrH53yke50c1vRF4vs/2zYRntblVezJIbPnyoaHnBKB/t+wYJAwrIvtRaWfn3E5+9/6STPg9bmKsvnT6Zuu+OI95o3nMfnu5aXaAPLMTvWjgL76sOhtmuZUERERERERERE5het/6anxESW6MIUmVhDNLYR05PheLpxl/r8eXsPlr77Yq//TWBZPsvr21Q1/NVf2dH5A7/NK97YrEP7S+2H/2MbXZ1lXk0ohs/nlQz2bS0eHnizBfaI7TvdXFj6rZTtu1waKpm0rJZLSygo7E3d+8Bh71V3t87gS80DVgDdwD7gxfpwaGgG5xcRERERERERkSzR+m96SkxkiS5MkYk1RGPlwDuALqA//Wj44amCdT88Vfj+wYS9BqAwmHzxDet6v3T7isFzY2Os539Wbj/2ve309xV51UtiWBblg723F8aHXgMw7PMfbiks+65nWZfLKo2M+KyW5iVUVramXlt32NuyPe1ujGtQCVQATcALwOn6cEhvzCIiIiIiIiIiC5jWf9NTYiJLdGGKTKwhGrOAtwLVQEbfG0MJy/7q/rK6E+3Bd3tYORZeYmXpyL+/Z0fnt8v2/aTE/vGj27yhoXyql1wCqOrvfjAvEb8VYNAffKa1oOQHWNa4CQeDVntrtbds5fnUm99+mJWrZrtRtQ9T3skGXsSUd+pIf4qIiIiIiIiIiMxXWv9NT4mJLNGFKTK5hmjsBuB+pijndKVDzTlVDUdL/nvXkO8WgGXdJ1ve7n71mTVDZ2JU1bRaeL7qvq6HcpKJzQB9wdzHOvKLf/aySfr68q2erjJvzbrTqfp3vkh5xcgMvaxM5GMSFF2Y3RNH68Oh4Tl8fhERERERERERmQFa/01PiYks0YUpMrmGaGwp8DbgIhCfYvjLpDz41pGS2y80nnvfqvM/L/GwySkINr46ue/xdX0X3xRIJVd5kOrJyf9ud17h4Zed3NVZbA0N5nubtx1PPfSOE+TnpyZ5mtk2Vt7pDPA80KTyTiIiIiIiIiIiC4fWf9PzZzsAEZEJtAKdQCnQMp0T7VSSd536x9jwsX3//lzBDTcdK9q0tTA1uK28v3drIJW0PIh35hV+qy8n//RLJ3ketLVWWhaed9udjanXP9SEzzejL2ia2jC7JpYDdcCRhmhsf3041JnNoERERERERERERGaCdkxkiTJmIuk1RGN3ALcAJzM+aSRu2d/59hrr4AubvLy8AUrKelqTxRvX9l98a0lqwNdn5fKdolddWuO79J3lXlsrAKmURculJVZeXn/qrvsPe3e/unl2XtFVKwCWAR3APkx5p2ntIhERERERERERkbml9d/0tGNCROar2OijDUxdUml4yLYbvrnOOnww7BUW9VBU3J8fH1p2w0DLG23w9Vs5A/9Y/LpAm690yXGW/8Yqq/npu+P7n85puVhNaVl76oE3HvJuuGk+7kjox/TaqAZeA6xpiMZeAM6pvJOIiIiIiIiIiCxEdrYDEBGZRDPQAxRPObKv12d/8583WIcObPSKSropKu4vGhpYWzHQs8uGvIRlX+wuLPjyndaRL5fTe8LD9p1LlN/1o77Vv300dGsg+bZfemGeJiXGawFOASuANwN3N0RjJdkNSUREREREREREZPpUyilLtJVHZGoN0dhrgfWYJtAT6+r02//29c2We3yNV1bRRn7+UOlg3/ai4YE6C6wR2+c2F5Z9O2XbI2OnHB5esu3sYMEDTVVb8t2lN1NaEvjxL23t+sfVZSM9s/+qZkQhprxTK6a807H6cGgk/SkiIiIiIiIiIjJXtP6bnnZMiMh8dg4ITnq0rSVof/P/brXc42u8iqoW8vKGKvq77ygeHnizBdawL9B4qaj8m+OTEvR0FW3teKH1rpUDn+vfcON/jQRyvdYB/31feq7iy1/dX/qa1MLI1fZhyjsFgAeBNzZEY8uzG5KIiIiIiIiIiEhmtGMiS5QxE5laQzRWAfwC0IXptXDZxfO5dsM3t1oXzi3zKqtbCAYTVf3dr81LxG8GGPAHn24rKPkhlnX5nPa2ciuZ8Hk7bjqWqqs/TSDo/eBUwbofnSr8wGDCXg1QGEwefuP63r+7bfng+Tl6mdcqgCnvlAAOAQfqw6GFsvNDRERERERERGRR0vpvekpMZIkuTJGpNURjFlAPVAGXv0/OnMq3v/OtbVZzbIlXveSS5fdR3df11pxkYiNAXzD3+x35xc++ND6VgtbmGisYHE696p4j3qtfd3H88wwlLPur+8vefKI9+MseVo6Fl6gtHfm3997Q+e3inNRCKZFUBCzF9KJ4AYjWh0OJ7IYkIiIiIiIiInJ90vpvekpMZIkuTJHMNERjO4H7MKWLsE4cK7T/49+2095W5VUviflsK1Dd1/WLgVSy1oNUT07+d7rzCo+8NEEyYVvNl5ZQUtKVuv91h72bb2+f7LkONedUNRwt+a2uId/NADm+1MU7Vg78XV24t3GWX+ZMsYAlmB4UJ4B99eGQ3l9EREREREREROaY1n/TU2IiS3RhimSmIRpbhtk1ccH6+TPF9o8f3UJXV6lXE4oFvFRhVX/3u/xeqtqDeGde0b/25eSdeenkeNxvtTbXeNU1Ld4b3nLIC2/qner5Uh5863DJq16I5f1mImWVA1TlJ370S1u7vrKAmmMHgeVAHGgEDtaHQ33ZDUlERERERERE5Pqh9d/0lJjIEl2YIplpiMYCpJK/aD39xEr7R4+GvJF4kKqa5txkoqJyoPuXbc8rSWH1tRcUf30wkNP80omDAzlWR3ult3LVudRDv3CEpcuHpvO8sV5//t6Dpbtiff43gGX5LK93S/XQV35lR9cPbWvq8+eJEswOikuY8k7H68OhZHZDEhERERERERFZ/LT+m54SE1miC1MkMxHH8SV/4ZffS3vbG+jvv0BFZWd+fGh5+UDPO23IS1pWR2tB6b/E/YGul07q7Smw+npLvLVhN/W2XzpGcclV91p4zC1Y/+PThR8YTNirAIpMc+wv3bp8cKF831pACMjHlHd6oT4cimU3JBERERERERGRxU3rv+kpMZElujBFphZxnFzgNi+0/IHUzbetIpU8XTTQ75QO9b3dAn/Csi+0FJZ+M+HzD7x0Ukd7qTUSz/G27oimHvoFl5zc1LXGMThi+f7pQNmbT7QH37WAm2MHgZXAIJfLO/VnNyQRERERERERkcVJ67/pKTGRJbowRdKLOE4JcDewwSsqbk69/s03lXa2birq773fAitu+062FJb9W8q2TWLA86C1ucry+ZOpW1/1ovfAG8/h881oTAcv5Vb/v6PFv9U97LsJIMeXunDnyoG/e1O499CMPtHsKsWUd7oIPA+cVHknEREREREREZGZpfXf9JSYyBJdmCKTizjOEuBeYBlw2vL7vfLbX/Wx3GTiJoAhX+Bga2Hpf3qWZXZDJJOW1XJpCQWFval7Hzjsveru1tmKLeXBvx4uedW+8c2xCxI/fNfWrq+sKh2Zsrn2PGFjyjvlAVFMeafm9KeIiIiIiIiIiEimtP6bnhITWaILU2RiEcdZC9wFFANngkVFReUbNnzUFwhs8oCBQO6P2vOLnsIa7UA9MuKzWpqXUFnZmnpt3WFvy/buuYhztDn2r8T6/K9/qTl2zdBXfmX7gmqOnQOsAPqBg8Ch+nBoIP0pIiIiIiIiIiIyFa3/pqfERJbowhR5uYjj2MA24A4gCVwoCIXWFK9c+XHb56v0PG+ws7z6R32BnCPE48MADA0Grfa2am/ZivOpN7/9MCtXDc513I+5heEfny54//jm2G8K937plmULpjk2QBlQg3lPeh5w68Oha+7NISIiIiIiIiJyvdL6b3pKTGSJLkyRyyKOEwRuA24EOoCOsrVr78qrqtptWVYwlUxe6Dpz5tN9t961kvyCYnq62+nry7d6usq8NetOp+rf+SLlFVlrQj04Yvm+ur/szSc7gr/sYQUtvMSq0pFvv/eGzm8X5aQS2YprmmxgKWYXxVFgX304NGslsUREREREREREFjOt/6anxESW6MIUMSKOU4gp3bQZuGDZ9kDl5s3vDhYVvR0gOTz8QtvRo3+ZGBjoT9121xpvbXgbp070WkOD+d7mbcdTD73jBPn58+Lu/gOXcmu+Y5pj3wijzbFrB770pvW9h7Md2zTkYco79QL7gcP14dCc70QREREREREREVnItP6bnhITWaILUwQijlMF3AOsAk778/L8FZs2/b4/J+dmgHhfX0Pb4cP/7KVSKQBvzbry1Oq1b7D6e7u8nbccSr3+oSZ8vuy9gAmkPPjm4ZI79pvm2GWwIJtjA5QDVcA54AXglMo7iYiIiIiIiIhkRuu/6SkxkSW6MOV6F3GcVcDdQAVwKq+qaknp6tUft/3+5Z7nxQfb2v6m88SJn447xe/5/U7qvgfXeXfe53o33340K4Fn6GKPv+BrjaW7xjfH3loz9I+7tnf9aAE1x/YBywA/l8s7tWU3JBERERERERGR+U/rv+kpMZElujDlehVxHAtTtulOzML32ZJVq3YWLFnyIcu2C7xksr3n3LlP9128eHLcaQXAcsBNfPp/xr0bbt4ItGL6Ucxr3z9ZGP7xmYL3D11ujn3oTeHev1tgzbHHyjt1A/uAF+vDoaHshiQiIiIiIiIiMn9p/Tc9JSayRBemXI8ijhMAbgJuwfQwaK3YtOmtOSUlv2pZlp0cGTnaEY1+Nt7T0zXutEqgFNPv4NmR7z2ZArZgGmUXAGeB+By+jGkbbY790MmO4LvGNcf+1ntv6Py3BdQcG8y/RQXQhCnvdLo+HNIPERERERERERGRK2j9Nz0lJrJEF6ZcbyKOkw/cAWwDLtnB4FDV5s0f8Ofl3QswMjDwWNvhw19OJRJjC/UWUItJOjwDHK5z3Zd6HDREY0uAm4H1QBfQMlev5WotkubYPszuFRs4AuyvD4fm/c4VEREREREREZG5pPXf9JSYyBJdmHI9iThOOabJtQM05ZSWFpSvW/cxOxBY53learir6x/ajx79r3GnBDENsWPAk3Wue3aieRuisQCwEZOgKMXsnpjXJYZSHnzzUMmd+y/l/cZYc+zqgsQP3rW166u1C6s5dj4mQdGF2T1xtD4cGs5qRCIiIiIiIiIi84TWf9NTYiJLdGHK9SLiOMsxSYka4HTR8uVri5Yv/5hl26VeKtXbd/Hi53rOnj007pQiYCmm2fJTda7bNdVzNERjFZjkxEagH7gEzOs3twmaY/eMNsf+8QJqjg1QBZQDpzEJiiaVdxIRERERERGR653Wf9NTYiJLdGHKYjfa5DoM3AXkAk3l4fBrcsvLf9uyLH8qkTjT6bqfHmpvbx532hJMo+XngefrXDfj3hEN0ZgPU9bpZqAaOAcMzNDLmTWjzbE/MJSwawGKgsnGunDv3928bPBitmObBj9m9wTAYUx5p67shSMiIiIiIiIikl1a/01PiYks0YUpi1nEcXzATuA2YMjy+Vqrtmz59UBBwZsAEkNDT7e9+OIXk0NDY2WXbEzppn7gKeBYnete1ZtTQzRWgmmwvQXTn+IikEp7UpYNjli+r+wve4vbEfyll5pjl4186707Flxz7AJgGdCB2T1xrD4cmteNyUVEREREREREZoPWf9NTYiJLdGHKYhVxnFzgdkxioiVQWJis2LDhI75gcBvAcE/Pv7QdOfItLr/55GKaXDdh+knErjWGhmjMxvSzuBlTFuoiMO/7N+yP5dZ891jxb3cP+3aCaY59V+3Al964sJpjgynbVQKcwiQozqm8k4iIiIiIiIhcT7T+m54SE1miC1MWo4jjlAB3AxuAswVLllQV19Z+3Pb5ajzPGxxobv7rrlOnnh13Simm7NIh4Ok61+2byXgaorFCTIJkG2BhyjslZ/I5ZlrKg28cKrnzwKW830ykrFJYsM2x/cAKzN/3YeBAfTjUnd2QRERERERERETmhtZ/01NiIkt0YcpiE3GcJcC9mFI+p0sd5+b86urftSwrN5VMXuo5c+ZT/c3NZ8edshxTwuk5YH+d685KyaKGaMzC7Mi4efSxGeiajeeaSRd7/AV7G0t/9VJf4HUAPsvr2VYz9I/vXnjNsceambdidk9E68OhkeyGJCIiIiIiIiIyu7T+m54SE1miC1MWk4jjrMXslCjCspoqN2/+xZzi4ncCJOPxA+1Hj35+pL9/bDeEH9NPoh14qs513bmIsSEaywO2AzuAHOAsMO/7Nzx6snDDT84UvH+BN8e2MDtjSoCTwAv14dD57IYkIiIiIiIiIjJ7tP6bnhITWaILUxaDiOPYmDJJdwBJf25uR8WmTb/nz829DSDe1/fdtsOHv+qlUmPNpwswOyVc4Ik6122b65gborFlwC2YHhRtmATJvDZBc+yR1WUj33rPjs5/X2DNsQOY8k4JTPmu/fXh0EIqTyUiIiIiIiIikhGt/6anxESW6MKUhS7iOEHgNuBGoCOvsjJYumbNx22/f6XneYnB9vYvdR4//sNxp1RiekrsB56tc93BuY/aaIjGgsAWTOyFmN0T8WzFk6n9sdya7xwrfl/PsO8GgBxf6vzdtf1fesP6viPZjm2axso7tXC5vNNCSrCIiIiIiIiIiKSl9d/0lJjIEl2YspBFHKcQuAvYDFworq1dUxgKfcSy7SIvlersPXfuM70XLkRHh4/1eIgDPwMO1bluauKZ51ZDNFaD2T2xHujG9J+Y10abY9914FLeb4w1x64pGHnsl7d1f3VFyciMNg+fZRawBJMYOgHsqw+H9F4oIiIiIiIiIovC1a7/7tu16yfAPWmGvH7n3r2PXGN4WafERJYoMSELVcRxqjBvjquA0xUbN742p7T01y3LspMjI8c7T5z4zHBXV8fo8ODouEuY0k1nJ5w0ixqiMT+wEbgJKAfOAVnbzZGp8z3+gn95eXPs7m1Lhv7x3du6frLAmmMHMeWdhoFG4GB9OLSQEiwiIiIiIiIiIq8wA4mJfwcmWiP5q5179x6akSCzaEElJmr3kAd8FHgnsBLoAB4BPtG0m2kt7tfuoQz4JPAWzF27l4D/B3yyaTddV4wNAPcBbwbuBdZg7vY9A/wX8BdNu2mdzvMrMSELUcRxVmGaXFfYfv/Zyi1bfiuQn/8agJHBwR+3HT78t6mRkZHR4WPleo4BT9a5blc2Ys5UQzRWDtyMSVIMAjFg3r9BPnKycONPTXPslQDFOcmDdeGev7tp6VAs27FNUwmX34tfAI7Xh0PJ7IYkIiIiIiIiInJ1ZiAxsXrn3r1nZie67FswiYnaPeQCP8bUtI8BT2DuxL4FaAVua9rNqQznqgSeAdYCp4DnMSVpNgPHgdubdtMxbvxrgMdG/3gG2Idp4no7pm7+JeDept2Mla6ZkhITspBEHMfCfH/cCfhySkp6y9av/5gvEAh7npca7u7+avuLL3533ClLgHzM99bP61x33vdvAGiIxmxMWadbgCrgAtCf1aAy0B+3/F89UPaWUx3Bd15ujh3/11+7obOhIOgtpN4NFhDCXDsngOfrw6FL2Q1JRERERERERGT6lJhIz852ANPwcUxS4hlgfdNufrFpN7cCv49ZQPzKNOb6IiYp0QCER+faAvwNZlHyr68YnwK+BdzatJvVTbt5W9Nu3jw6x6OYRdivXvUrE5nHIo4TwHzvvRqIFy5bllOxceP/9AUCYS+V6u+PxT45LilhY3YUecD3gacXSlICoD4cStWHQ8eA72ASkFWY3Vnz+r2yIOglPnBLx7+9e3vXB4pzkvs9rMCpzpx3//nj1XsePlG4KdvxTYMHXMQ0I18HvKUhGrutIRoryG5YIiIiIiIiIiIykxbEjonaPQSBFkypj51Nu9l/xfGDwDbgpqbdvDDFXCFMpioBrGzafbnZbe0ecjD15cuBpU27ackgtqXwUhmpVU27acrkNWnHhCwEEcfJB+7AfH9dKlu37sa8ysoPWJYVSCUS57pOnfrUYFvbWMmgXEyT6yZM6aaFVkroZRqiMQuTZLkFWI75Pu/NalAZSHnw9caSuw825/23Bd4cG6AUk/i9iNl9c1LlnURERERERERkIZiBHROfAiowN80fB76zc+/eede/9WrN67uAx7kDk5Rwr0xKjPq30ce6DOZ6HeZ1PzE+KQHQtJthIAL4gDdkEljTbi7CS/0llmZyjshCEHGccuC1wHbLts9Xbdv2tvyqqt+zLCuQGB5+rvXQoT8Yl5QoxewsaAQeXuhJCYD6cMirD4dc4D8wO7XKMOXjfNmMayq2Be/e3v347tvafrumYORRgOb+wAN7flbx5b0HS+9Jzf9c9HhdmB+8RcDrgdc2RGM1WY1IRERERERERGRufBz4beD9wB7g5L5duz6R3ZBmzkJJTGwffdw3yfGxr2+b47mo3UMpZsESTK8JkQUv4jjLMQvBq/35+ZdqbrjhI8HCwrcCDPf2/mvzvn2fTgwODo4OXwYUA48DP6pz3YV2V35a9eFQP/AU8J+Y7/G1XP6en7eWFyf6//Cuti896PR+JNefOpv0rJJ9sbzf/9OfVP/ZCxdzQ9mObxpSmN0q54Ew8FBDNHZLQzSWn92wREREREREREQyUmhZVvG4j5wpxj8O7AIcTB/OMPBHmApAf7Zv167dsxvu3PBnO4AMrRx9PD/J8bGv187xXGAyVn7gUNNuTmd4jsi8NNrkOgzcBeTmV1cPl6xe/Xnb5wt5njc80Nr6xa6TJ58aHe7H7CBox/SSOJmdqGdffTjkAU0N0VgzJmm5E5OcOIv5oTBvvX5d39G7a/t/96v7y956qjP4iz3Dvh3/0lj6t8+ci//rexdWc+xh4CSm1N49wJqGaOwFwK0Ph1JZjUxEREREREREZHLHrvjznwKfnGzwzr17//iKLx0HPrNv167nMf2OP7lv167/s3Pv3sFXnr1wLJQdE4WjjwOTHO8ffSyay7lq93ADZksNwEfSjbUsK2d8ZmxcHCLzQsRxfMBNwAMAJWvWVJU6zhdsny+USiZbus+c+fC4pEQ+ZufAGeB7izkpMV59ODRUHw49hynvdAbTg6Iyq0FloCDoJT5wa8e3f3lb1/8ozkke8LAC7uXm2BuzHd80dWB+IJdjSu490BCNVWU3JBERERERERGRSW3AtCkY+/js1Uyyc+/e72N6cJYCt85UcNmyUBIT807tHmqABkzD3y827ebhKU75KNA97uPKTJlI1kQcJxe4e/Sjq3Lz5rsKamo+bllWXjIeP9z+4osf7I/FxnYEVWL6qfwceKTOdduyFHbW1IdDF4GHgR9hek6sBYJZDSoDNy4div3JvS1/fGNo8C/9ttc1nLBXfN8t+ovPPVH5gXPdgYWULE0B54AYsBl4S0M0dlNDNJab3bBERERERERERF6hz/O8nnEfw9cw14nRx4VUpntCCyUxMVazfrKa4gWjj71zMVftHoqA72HK2Hwb+P0MnvezvDwztiGDc0RmXcRxSjC7JG7yBYOtNTt3/mZOSckuy7Kskf7+7zXv3/+JeG9vD2BhrvkczIL843Wuu6C3jF2L+nAoXh8O7Qe+i7mDvxaY942ZTXPsrsd/59b2941rjv3g/3q24u++drD07gXWHHsQ8wM5DtyL6T/hNERjC+Vnm4iIiIiIiIjIdIz1Pe1PO2oBWCiLN2dHH5dPcnzs602zPVftHnIxZVx2At8H3t20mynrm3ueNzw+M8blBIlI1kQcJ4Rpcr0+t6ysp3rHjj/x5+be6XlecrC9/UstBw/+vZdMJjG7AdZhyuh8r851D9a5rur6A/XhUCumvt/3gSSwHsjLalAZWFEy0je+OXYiZZW+EMv7gz/9SfWf7YvlLsl2fNPUgek/UQm8CXh1QzRWkd2QRERERERERERmzr5du6owfWEB9mUzlpmwUJpfHxx93DnJ8bGvN87mXLV78AP/irkz92mgvmk38QyeU2TeiTjOWkzppqKiFSuCRcuWfd6y7WIvleruvXDhs73nzr04OrQIU7rpGPBknet2ZSnkeas+HEoAhxuisQvAzcBGTLPmi8C83oMwrjl2/Vhz7K8dLP3bp8/G//W9N3T+vwXUHDuJSTznYRqU1zZEY/uAI/Xh0LVskRQRERERERERmRP7du16FVANRHbu3Zsc9/VVwNcw1X7+Y+feveezE+HMsTxvXq+ZAVC7hyDQgimBdEPTbg5ccfwgZiHqpqbdvDDFXCHgPJAAVjTtpmXcsRxM3fJyYOkVxyzgn4F3AweA+5p203W1r8myrGWjcSz3PO/C1c4jMl0Rx7GB7cCrgGT5hg3bcsvKftOyLF8qkTjVeeLEp4Y6O8f6RizBlD17Hvh5nesqETeF0TJC64BbMKWdzrNAtte9cDE39B/R4t/uGfbtAMj1p87eXdv/pdev6zua5dCuRiVQgdn99gJwuj4cmv8/8ERERERERERkUbia9d99u3a9B/gqcAmzK6ILUz78Rkyv4yPA/Tv37m2ZZIoFY0GUchrdlfC3o3/8Uu2el/pAULuHD2KSEj8dn5So3cMHavdwrHbPy7ucN+0mBnwDU5rm70Z3QYz5PFAFfG18UmLUFzFJiWPAg9eSlBDJlojjBIE7gXstn2+weseOh/LKy3/bsixfYnDw8ZYDBz48mpSwgTWYu/2/DzytpERm6sOhVH04FMX0nnge856ykgXwfjvWHHtnaPCvfJbXPZSwV442x37/+R5/wdQzzCttmPJOSzDlne5viMaWNERjgeyGJSIiIiIiIiIyqWeBL2OqcNwMvAPYgrlR/veBmxdDUgIWyI4JeKm3w0+AW4EY8AQmW3Qr0Arc1rSbU+PGfxL4E+D/Nu3mPVfMVQn8DHAAF7N4uBnzj3xidK6OceMfAr4z+sfHMBfGRD7XtJtjmbwe7ZiQuRZxnCJMUmJzoLCwt2Ljxt/xBQKbPM/z4j09/9x25Mi/jw7NxTS5PoMp3RTLTsQLX0M0ZgGrMbsnVmDeO3qyGlSGznUHCv+lseQ9zf2BBwH8tte1vWbw/3vXtu7HbSvb0U1bAbAMGML094lh7jzoBDrqw6EFsaNFRERERERERBYOrf+mt2ASEwC1e8gDPgq8C7PI1wE8AnyiaTfnrxj7SSZJTIweLwc+CbwFU26lGfh/wJ9cuRuidg/vwWyhmcp9Tbv5SSavRRemzKWI41RheqPUFixZQnFt7Udsn6/SS6UG+pub/7L79OnnR4eWYurYHcLsklCT9hnQEI3lAzcAOzA7J85heiLMew+fKNz006aC9w8n7BUAxTnJ/Q9t6PnyztDQpWzHdhVygEJM35Qg5t+gD7O74gLmZ0oH0F0fDqm5u4iIiIiIiIhcNa3/pregEhOLiS5MmSsRx1mFaXJdUbp27dL8qqrfsSwrmEomL3SfPv2pgZaWsetvGeADngP217nuQml6vGA0RGMrMdvwVmEWwzvSnjBP9Mct/1f2l9Wf7gz+oocVsPDia8rj33zvjs7vLKDm2BPxYRIVhZheKgADQDcmUdHK5V0VKmUmIiIiIiIiIhnT+m96SkxkiS5MmW0Rx7EwJcruxLL8VVu23BMsKno7QHJ4+IW2o0f/MjEw0A/4MQvlHcBTda57MmtBXwcaorFcYCuwE8gDzgIjWQ0qQ89fzA1FosXv6xn2bQfTHPueVf1fet3aBdkceyIWJkFRiCn/5AfiQC9mV12M0V0V9eGQdhOJiIiIiIiIyKS0/pueEhNZogtTZlPEcQKYO/Nv9uXmJio3b/5Vf07OzQDx3t5/bztyZK+XSqUwi7ArMU2Cn6hz3bbsRX19aYjGQpjeE2sxd+W3ZjeizKQ8+Fpj6b2Nl3L/W9KzigGWFI488svbuv7v8uLEYuzVEORy+accLpd/6sKU5GrH/Pt11YdDC6I8l4iIiIiIiIjMPq3/pqfERJbowpTZEnGcfOAOYFtuRQVljvO7tt+/3PO8+GBb2990njjx09GhlZieEvuBZ+tcdzBLIV+3GqKxALAJk0QqxuyeGM5qUBlq6goUfeNQyXua+wMPwIJvjj0dNi8v/2Rjyj/1YN7Tx0p0ddSHQwvi31JEREREREREZp7Wf9NTYiJLdGHKbIg4TjlwD+AU19aWFYZCuy3bLvCSybaec+c+03fx4klMuZpaTPmgZ4BDda6rRr9Z1BCNVQE3ARsxZYMWTGPp7x0v3Px4U8H7h5P2coCSnOS+hzb0fPmG0FBztmObQ3mYHRWFXC7/1Ae0ABcxiYpOoLc+HNIPXREREREREZHrgNZ/01NiIkt0YcpMizjOckxSoqZi06ZtOSUluyzLspMjI0c7otHPxnt6uoAAsBqz8P1EneuezWLIMk5DNOYDNmASFFWY3RMLYhdL77Dt/6cDpS9rju2Ux7/xazd0ficv4F2P5Y0CXE5U5AIpoB+TnDiPKf/UgSn/tJCbh4uIiIiIiIjIJLT+m54SE1miC1NmymiT6zBwl+33F1Vt3fpmf17ePQAjAwOPtR0+/OVUIpHALJQuBY4BT9a5blfWgpZJNURjpZjSTpswZZ0uAgvijfr5i7mh/zhW/P7euG8bQK4/1XTvqv4vvXZt37Fsx5ZlNqaZ9lhTbRuTdOrBNNRuxiQtOurDoQWRjBIRERERERGR9LT+m54SE1miC1NmQsRxfMBO4LZgUVFuxYYNv2EHAus8z0sNd3b+n/Zjx743OnQJph7+88DP61w3nq2YZWoN0ZiNaYp9MxACLmBKA817KQ++drD0vsbm3F+/TppjX608TJKiCFP+KYH5N27F/Ht3YnZV9Kj8k4iIiIiIiMjCo/Xf9JSYyBJdmHKtIo6TC9wO7CwMhYqLa2t/x7LtUi+V6u27ePFzPWfPHsLcmb0KU0bmKeBYnevqm36BaIjGijCJp22YXRPnMGWB5r2mrkDR1w+Vvqel3/9Sc+wdSwb/4Ze2dj+xyJtjXy0/ZkdFESZpMVb+qZuXN9Xuqg+HRrIVpIiIiIiIiIhkRuu/6SkxkSW6MOVaRBynBLgb2FC2bt2avMrK/2ZZlj+VSJzpdN1PD7W3N2Nq29cCTZjSTbFsxixXpyEaszDJpVuAFZj+IN3ZjGk6/ut40ZYnmvLfN6459gtv2djz9zuWXFfNsa+GxeUdFWPln4YwuyouYso/dWDKPw1kK0gRERERERERmZjWf9NTYiJLdGHK1Yo4Tgi4x7LtFZVbttwbLCx8A0BiaOjpthdf/GJyaGgIKAWqgUPA03WuuyDKAMnkGqKxfGA7sAMIYppjL4jGyaY5dtnbTncGftHD8qs59lXL4XJT7SCXyz+1Y36edGBKQHXXh0MLYmeNiIiIiIiIyGKl9d/0lJjIEl2YcjUijrMWuNufl1dTuXnzL/mCwa0Awz09/9J25Mi3MN/QywAf8Bywv851F8TitWSmIRpbjtk9sQbTj6AjuxFl7ucX8pZGokXvG98c+75V/X/74Nq+aLZjW6DGyj8VYHrIAAxwufxTK5ebaqv8k4iIiIiIiMgc0vpvekpMZIkuTJmOiOPYmLvlX5VXUVFTunbtb9o+X43neYMDzc1/3XXq1LOYRcpVmIXqp+pc92QWQ5ZZ1BCN5QBbgBsxi9JngQXR0Dzlwd6Dpfcdas79b0nPKgLPW1KYeGTXtq5/Xqrm2NfKwiQoCkc/fMAw0IspAXaJy+Wf9HctIiIiIiIiMou0/pueEhNZogtTMhVxnCBwG3BjyapVqwtCod+wLCs3lUxe6jlz5lP9zc1nMYuRK4GTwBN1rtuWzZhlbjREY0uAm4H1QBfQktWApuFMV6DoG4dK39vS738NgN/2OkebYz+p5tgzKogp/1Q0+nkSU/6pA9NMvZPLTbVV/klERERERERkhmj9Nz0lJrJEF6ZkIuI4RcCdwObKzZtvyykpeRtAMh4/0H706OdH+vv7gEpMT4n9wLN1rjuYtYBlzjVEYwFgIyZBUYrZPTGUzZim4z+PF215sin//cNJexmoOfYc8HG5qXY+ZpdFP9ADXOByebDO+nBoOFtBioiIiIjI/NAQjfmBXCAPc7OTNxcf9eGQFixlwdP6b3pKTGSJLkyZSsRxqoB77WBwfdWWLXX+3NxbAeJ9fd9tO3z4q14q5QG1wAjwDHCoznV1x/N1qiEaq8AkJzZiFpovYf5DN+/1Dtv+rx4oe/uZzsA7xppjry2Pf/29N3R+V82x50Q+JlFRgCkJF8fsqmgGLnK5qXaffjkQEREREVk8Rm90y8MkHnLHfZ4PlADFo1/LAQKY3xfGjCURJvs83bHpjEuO+3Nq9GO6n0/254X6wbjXMPb3NbYepKTOPKL13/SUmMgSXZiSTsRxVgF3B4uL11Vs2LDL9vtrPc9LDLa3f6nz+PEfYv5DsBqz+PxEneuezWa8Mj80RGM+TFmnm4FqTKmegawGNQ3PXchb9p/Rot8e1xz7zH2r+r+k5thzLsjlPhW5mP/g9mGSE+eBdi6Xf1LiSERERERknmmIxizM/+vHJxvGPr8y6RDAJB78gM3lxe/4BB+J0aewRj8m+zzdsfk0bioWE9/wN9nXJzLTiZpMx11tEiddQsfj6pI6KeBMfTi0YKo7zBSt/6anxESW6MKUiUQcx8I0Nb6jcOnSjcUrV77Xsu0iL5Xq7D137jO9Fy5EMXc2LwWimKREVxZDlnmoIRorAW7CXEtxzF3vC2I3zWhz7PsPNef++lhz7FBh4uF3b+vaq+bYWWNzufxTAeY/4QOYptoXML1NOjFNta+7/2iKiIiIiMyl0aRDDpcTDuMTD4WYhEPx6JixnQ6BcVMkMZUXrkw6jMzNK7juzIcEzJXJGPuKzyc7duUc449NxwgQqQ+Hzlzl+QuW1n/TU2IiS3RhypUijhPA3Ol+c9n69bfkVVS807IsOzkycrzzxInPDHd1dQBLMHc3PA/8vM5149mMWeavhmjMBhzMNbUUk5zozWpQ0zDaHPvXWvr9rwbTHPuGJYP/8E41x54v8jC/9BRh7qwawVxfLUAMs6OiA+jVNmIRERERkcyM/h53ZVmlsc+LMAmHIi4nHHIwfeTGJIFhXpl4SCCSPeuA/1cfDp3OdiBzTeu/6SkxkSW6MGW8iOPkA3daPt+Oqi1b3hAoKLgHYGRw8Mdthw//bWpkJAmswvQOeAo4Vue6+uaVKTVEY4XATmAb5g6Hc5j/rC4IEzTHfv6tG3v+fvuSoZZsxyYvE+ByoiIHs123H+jC/Kxrw+yq6KwPh/RLkYiIiIhcd0ZL745POIxPPJRg/i9dhCnBFORyT4ex3/1HmHinw4L5/U6uW0pMaP13QkpMZIkuTBkTcZxy4J5AQcGOio0b3+kLBtd7npca7u7+avuLL34X85+UWqAJeLLOdWNZDVgWnNGtvrWY3RO1mKbGXdmMaTp6h23/V/eXvf1M18uaY//Le2/o/A81x563xso/FY4+2sAQ0IPZUdHM6K6K+nBoMFtBioiIiIjMhNEm0lfudMgb/RgrrVTA5aRDkMtlclKYHQ0T7XRYECV5RaagxITWfyekxESW6MIUgIjjrADuzququqlszZpfsXy+ci+V6uuLxT7f09R0ACjFNDE+BDxd57p9WQxXFriGaCwP2A7swNzVfpYFtKV3tDn2+3rjvq0Aef7UmftW93/pAUfNsReIsZq3RZi7vxKY8k/tmJ+HnZhkRU99OKRfwERERERkXmiIxq5sIj32ONZEumj08yuTDmMLbhMlHEZQ0kGuH0pMaP13QkpMZIkuzOvbaJPrDcCdJatX31WwZMk7LcsKpBKJc12nTn1qsK0tBizD1Ir8ObCvznUXzAKyzG8N0dgy4BZMD4o2zMLwgjBZc+xd27v+OVSUGMh2fDItfkyiohDzyx2Y8k/dmJJj7ZhERWd9OKRGfCIiIiIyo8Y1kZ5op0MBl3c65PLy8kpgEg9jTaSvTDyMcDkpISJKTGj9dxJKTGSJLszrV8RxfMBObPtVlRs3viGnpORBgMTw8LPtL77414nBwRFMP4kO4Kk61z2ZxXBlkRq962cLcBPmP91nMf+JXhDOdAWKvn6o9NdaLzfH7rghNPgP79zS/ZSaYy9YFuZOsyJMsmKs/FMfpvzTJS4nKvqzFaSIiIiIzH+jTaRzeGUD6bFdvCWYpMP4XQ7+cVMkuZxkuHKng4hMjxITWv+dkBITWaIL8/oUcZxc4HZfTs4dlZs3v8Ofm7sVYLi391/bDh/+Op6XB6wETmL6SbRmM15Z/BqisRrM7on1mDvVm7Mb0fT8Z7Ro65Nn898/nLSXgppjL0I5XE5UBDHln/oxO30uMNqnAuhW+ScRERGR68No0mGihEMe5v+Oxby8ifRY0mFsASzBxEkHVSkQmR1KTGj9d0JKTGSJLszrT8RxSoC7c8rK7i5ft+7dtt+/xPO84YHW1i92nTz5FFCJ6SlxAPhZneuqIazMiYZozA9sxDTHLsOU0Vkw11/PsB34J9Mc+xdGm2MPr6uIf/09O9QcexHycbn8U/7o1wYwSbULQCuXd1UsmB1AIiIiImKM/m4yPtkw/vOxXQ5XNpG2eXkT6fG7G8Y+1+8FItmjxITWfyekxESW6MK8vkQcJwTcU7R8+QNFy5f/kmXbealksqXn7NlP98diZ4BazH+angEO1bmu7vyVOdcQjZVjkhMbMYmJGAuoNuqz5/OW/dfxovf3xn1bAPL8qdP3re770gNO//FsxyazZqz8UyHmF1Q/5hfPXkzppxijTbXrw6G+bAUpIiIiItAQjQWYOOGQz+V+Dlc2kbYxv5N4XE40XNnXQb8/i8xvSkxo/XdCSkxkiS7M60fEcdYBd5WHw/W55eVvsCzLSsbjhzui0c/Fe3sHgdWYBbQn6lz3bHajlevd6Lbo9ZjyTlWYu9AXTD3/lAf/fKD01Ydbcn9tXHPs7+3a3rVXzbGvG0FMoqIIUwoqielT0Yn5uTvWVLu7PhzSnXMiIiIi12i0iXSQiXc65HN5p8P4JtLB0dPHdjpc2cdhLPGgRSuRhU+JCa3/TkiJiSzRhbn4RRzHBrbbgcC9lZs2/XKgoOBGgJH+/u+1Hj78D14ymQ+EgOOYpERXFsMVeZmGaKwYuBHYilnYPc8CuhPpdGeg+BuHSn+tdcB/P5jm2KW5yYN5/lRHQTDVUZST6ijPS3YsKUx0rCmLdxTnpNTEbvGyuZyoyMP88jsI9GCu6zZGe1XUh0PD2QpSRESuzejCqDXuS+P/PJ3H2Rp75Tkz+XxjvDQf6Y5fzbGMv14fDmnRYQEb/d4a30R6fOKhkMs7HXK4nHAIYK5Pj5cnHcYnHJR0ELl+KDGh9d8JKTGRJbowF7eI4wSB24JFRa8p37DhV32BwErP8xJDHR3/uyMafRSowZQdeR54vs51tRgm887oLyFrMLsnlmN2T/RmNahpikSLtj11Nv99Y82xJ+OzvN6Az+sI+ryOXL/XkedPtRcEUx3FOamO8rxEx9KiRMeasninelYsGmONEQu5XP6pD2gBLnK5qXafFlNEZDKjPydtLtc2n87nkx2b6QXtmViot0c/v/LRGvdn64qxVppzJvrgijnGx21PMm78841/jeMfx399oq9Ndk66eaaa/2rOySSmqzVZ0uDK4xONnez4ZHOnGz/2eWrcY2rcsdQ0j010fGzMtSRiZj1RM1txXM3/WUZ3S19ZVmns80LMTocrm0gHxsWQ5JUJh2HURFpEXk6JCa3/TkiJiSzRhbl4RRynCLiroKbmjSWrV++ybLvIS6W6ey9c+EzvuXNRYBWmNM7TwNE619U3ocxrDdFYAbAT2IZZADjHAmoe1zNsB/7zeNEtXYO+6oERu3woYZUPJ63yeNIqH0laFR5WcOpZDL/tdQXssQRGqiMv8P+3d+dhkl1nned/770RkXtGVmRpSUklF0rJJXnDeMPY7sFDewYayMaU6YdmQGCGnpl+upuGBhp6oGkMZvE8Y3rE0jwwLDaMYQYaFzDF0oOBti1Z2BhLGKksp6yQrKUqVaXKJXKLjOXeM3+ceytuRkXkVpkRWZXfz/Oc5944d4mTmSdPZpz3nnPcwmghXhgfiOaPD0cLt481Fk4eq1cK4fUzugSS/AfsNFAxKN+xsSYfnLgg/yE729nR3rmy1f5uju35PqdPTVHncN3KPOm+Xaf9Tjv6t7pXt/PCTMolx3LJ6/bjQXJM2txpbh1eb5Xf3gG/lfTJ435o7whtP9Ytf7tz93JNP8rUnr/T++/0mm7ndjp/L7YLSG2Xt921WwW/Oh3bj7J0O7YfgZy9ag8aSFfX007Htju+l3vvNMiTk//fJw02FOTbuFT7ItJp4IGgA4DdIjBB/29HBCb6hIp5Yzo7PX2TpLdP3HXXNw/fcss7zSyMG43y4lNP/dTG4uKKfFDiOfmpm+b6WlhgF5JOozvlR0+8TP7J8sW+FmofxE56cSU38mwlX7q0listbYSl1XpQWm8EkxtNK9WaPoDRjK3kZLnt7yhJLs4FWiqEbQGMfDxfHIwWjg83F+4Ybyy8bKKxnAv61smErQXyo9rSRbV309GxXedht6ce2zsNtIvj2RR12KadEFHm+mx+3CFvLwGY/QrQ7Ch4w2iWq7V18O+l0363AYBO+5069rOvg8w2bLuv2u6Zfd3+hHy3gEBaL3bbkd+pnu0kv9t5O63P1GPgxnCQQZfdnr/TgJHT1YEHHnQAcBAITND/2xGBiT6hYt54zk5Pf4mF4dsn77vvnw2Mj79FkprV6scvnzv381G9PizpZkmPSXp4plxe7WthgT06Mzs3KD9y4nXy88g+pyPw1FQzlr2wnB99vpKfvLyeKy1tBKXVelCq+hEYk7UoKDUiKzViHZOsfVqJLlyUD7RYCN18IYwXBnNuYTgfL4wOxAsTA9H8TSPRwp3FxsLt443VoJ/P/2G/des8aE/S9lOf7OU+3e6ZnncQtS3tiE33pauDLt2ObxfIaQ+qtAdj2oMykToHbXYcENnFsWvt6G9/Oj/75H57R3/23G4d+Dvt6O/Whm3V0Z89tpOg1XbfZ+0xHwAAAIcPgQn6fzva4dOfALo5Oz1tkl6VHx7+mtJ99/3PuYGBu51zrr68/FuXz537sKTb5X/XHpT0yEy5fMN34uLGdfrU1IakvzkzO/eC/OiJafnpbi73tWAHLBfInZxorJycaKxI+mK38+qRgmeXCuPnl/Oly+vhZKUWltbqQWm9YaVaFJRqTZtsxFZqxipKFjZiHW/Ednyt0T2WYXKNdP2LQujmhzIBjGOD0cLNI835l000Fm4eaVYJYFwXjuIT0tsFVbYKlnQ73j6Njrqct9NAzlZl3+3PK/0Zb3fvndxnq8747Tr5o12c26mjHwAAALhmtaYF9WinD/DhKGHERJ8QMbsxnJ2ezkt649Dx4++cmJ7+riAMSy6O19cuXnx/5Zln/k5+6qYFSZ+YKZef6mdZgf12ZnauIOmVkl4vPz//c/JDwbGNasPCZ5YKExdWcqX59VxpuRZMrtWDUrUZlGrJGhiNyCYjZ2M7vWdgbiNd/2Ig5xYGc25+OB8vjA9EC8cGo4VbRpsLX3KsPl8aivkZAQcrDUgcxSAUAAAAbnAbTQuer+THL67ligvVsLhSC4qr9aBYbQbFWtOKtaYVG7FNNCIbb8Q2ETsbeeXNG9/0p98y+OF+l73X6P/dGiMmgD06Oz09LOlt43fe+W2jt9/+zWZWiKPofOWZZ35y/dKlRfknycuSHpopl1/qb2mB/Xf61FRd0qOZ0ROnJC1LutjXgl0HhvIuesVNtflX3FSb3+q85VqQf2axcOzF1VxpoRqWlmtBaa0RTG40glItuhLAKMXORmJng7XIbqtFum1li9BDYG4tH7qFgSQN5uOFkXw8Pz4QL5SGooVbR5sLdx2rL4wNxIzuAvaGgAQAAACuG/VIwfOV/NiLq/niYjUsVmpBca0RFKuNoLjRtGI98qkR2UQztvHdPECXWq0FkwdRdlzfGDHRJ0TMrm9np6dLCoL/dvLUqX8xeOzYV0lSVKt95vITT7y/ub4+JGlC0t9J+uRMuVztY1GBnjgzO5eTdK+kN0oqSXpeEnW/R+bXw4EvLuVLF1dzpcWNsLRcC0vr6foXyQLe9cgmnWxgp/cMza3kQzc/kIzAGMrFCyOFeGF8IJ6fHG4u3DbWXPiSifrSUN5FB/m1AQAAAAB2rh4pOL+cH31xNVecr+aKy7WguFZvBRpqPshQrMdWbEZWjJzGJNvlFKQuDk0r+dBV8oGrFEKfBnOuMpyPKyOFuFIciCql4ahy17H65Fgh/p1vfdWtTx/MV3x40f+7NUZMALt0dnr6RG5w8KtL9977ffnh4fskqb6y8uHL5859yMXxHfILAf+VpMdmymXmacaRcPrUVFPS42dm587LByfuk1STdEE8OXzgJoej2uRwNCdprts5sZMureWGnl3Kly6t5SYXN8LSai0orTeCUtUHLybryQgMJ8tHzsaipo1tNHVStW53dS4XqJIP3MJAzs0PhPHCcN4tjBTiheJAtHB8OJq/fbyx8LKJ+nIhZN56AAAAANitZixLAg3j8+vhxHItLK7Wg+J6MyhuNDIjGmIfcEgCDbtc08G50LSaC91SGmgYSAINQ0mgYXwgrkwONSu3jjYrt483VnfxGW9I9AugAwITwA4li1zfO3js2Lsm7r77X4X5/C3OuXr18uVfWPzCFx6Wn7rpRfmpm57tb2mB/jh9amrxzOzcX0h6Vn56p5fLPx2w1teCQYFJt442q7eONs9L6vqkRuyk88v50ecq+dJLa2FpqRZOpgGMjaaV6lFQqkc22Yh1TLKwGWuiGdtEtam7pLDLXV2cD7SYLuI9mPMBjNFCtFAciBeOjzTnT4w3Fk4UGyu5gH9YAQAAANy4YiddWMmNXFjJT8yvh+OVWjixVg+K6+mIhuaVQMN4M7aJZqzx3Qca/Cj4XOCW86Fbyo5oGMrHlZF8XCkOxJVjQ1Hl1tFG5fbx5spgzvEwGXqKwASwA2enp0NJrxu9/fbvHD9x4t0WBEMuii4vP//8T69euHBR0l2SZiU9OFMuL/W1sECfnT41FUuaPTM7NyfpdZJeLWlSPkDBPzqHXGDSiWJj9USxsSq/oHlHzVj27FJ+/IXlfOmyX8C7tFoPS+sNK200gyvTRzVjTUgWNGJNNmKbXG9I3QIYJtfMBVr0C3jH84M5tzCUjxfGCvHCxGC0cNNItHBnsT5/21hzLdjlQGMAAAAAOAixky6u5obPr+SK8+u54tJGWPSBBpvYaAbjtcgm6pGNNyKb8MEGFSXr9lRXV4G5tXzgKun0SQM5tzQQuuWhfLw0ko+XxwfjpWOD0fKto82lO8YbK0y7i8OOwASwjbPT04OS3nLsnnu+d+j48a83M4sajScWZmd/pr68PCDpJkl/LelvZ8rlrhOeAEfN6VNTy2dm5z4m37mdjp64IL9ANq5zuUBuutSoTJcaFUnPdDuvHin44mKheH4lX7q8HpaWa+Hkaj0oVTMBjEZspWZsE06Wa8S6qRHbTWuN7g8EmVw9HX0xELqFwZybH87HC2MD8cKxwWjh5tHmwsmJ+sLNIxHrnAAAAADYlXQa3AsrueLltVyxUguKK7WwuN604kYjKNb81EkTjcjGm7EVm7GKTrbrPtbA3HouuGqNhqXBvFsezcdLYwPR8rGhaOnmkebyifHG8kjBNQ/i6wX6hcAEsIWz09PFoFB4x+S99/5wYXT0dZLUWF//yOXHH/+VuNm8Q356mo9IemKmXGb6EaDN6VNTTtLTZ2bnXpT0ZZJeq9bi2Dy9cQQUQsUvP15ffPnx+qKkcrfz1uqW++JSYeLCSq60UPUjMNbqQanaDCY3kgW8G5GVImdjTlaoR3ZrPdKtq1u8d2Cumg+SAEbOTyE1kncLYwPRfGkoWrglCWCUhuL6/n/lAAAAAA6D2Enz6+HgC8v54uX1sLi0kazR0AiKG83gytRJ6WLQSaAhv9v3CcxVfaBBlfyVQENcGcy5ykghrowV4kppKKrcNNKsnBhvVMYGYgINONLMOfpS+4FV2Q+/s9PTUwPF4jceu/vufxcODJxwzsW1xcX/c/7zn/9LSSflO1YfnCmXL/S3pMD148zs3An50RMnJV2WtNDXAuG6s1wL8k8vFkovruZKC9WwtNIKYJRqzWQB79hKsbPhnd4zMLdWCN18OgJjKB8vjOTjhfGBeGFsIF4ezsfV0UJcHRuINkpDUbU0FG2wFgYAAADQPwvVoPB8pTCRBhpW6kFxvR4Uq00r1prBpsWgk0BDYbfvEZjbyAWukgt0ZUTDQBhXhvKuMpz3i0FPDEaVm0ealRPFRmV8IG4cxNd6A7hH0h+cPjXVdaT9jYr+360xYgLo4Oz09D0jU1PvHr/zzu8OwnDMxfHK6oUL71t+7rnnJb1M0mOSHp4pl1f6XFTgunL61NTzZ2bnXpJfd+J18ovGPyeJf+CwI+MDceO1t25clHRxq/NeWgsHn63kj11czU8uVoPSSj0srTf8FFK1ZP2LRmSTTlaInY1sNG1ko6k7d1qOwNxGYNoIzFVDUzUMXDU0bYSBq+YCVXOB28gHrpoPXbXg08ZAzlUHw7g6nHfV4UK8MVaIq8XBqDo5FFVHCnGTdTMAAABwVC1tBIUXKvnxS2u5iSuBhkZQrDasWIuCYj2y8XrkF4JuRDbhZAO7fQ+Tq+cCt5QPVckHbrmQc0sDYbw8lHNLw4V4eawQL00MRss3jzSXbh9vVBhZDRwsAhNAxtnp6UDSl07cddf3D99yyzebWS5uNr+4WC7/1Mb8fE5SUdKDkh6ZKZcZcgfswelTUxuSPn1mdu4F+dETd0talPRSXwuGG8pNI9HGTSPRnLQx1+2cdJG6Zyv50qW1XGmpGk6u1IPSeiMobTStVGvaZDO20djZUOQ0GDsNSRb4a20wdhqUbGJ/Suyi0FQNfHBjPTBt5AJXDc1thIHW00BHLtRGIfDBjoFcXB0I3cZg3lVH8nF1pBBvjA9E1YnBuHp8uMmoDgAAAPTNSi3IPb+cL15azRUXN8LiSi2YWGsE49WmTdSawXi6RkMj1kQztvHY2dBu38PkGrlAlVzoKoXALRVCtzyQc0uDuXh5JB8vjRbi5YmhaOn4cLR8YryxNDkcsS4ocIgQmAASZ6enC0Eu99bSqVM/PlAs/gNJam5sPHz53LlfjGq1W+WnnPnETLn8VH9LCtwYTp+amjszO/enkl4h6Y3yi2M/K4l/FtETgUlTY831qbHmuvzw2i3FTlquBYX59XBouRYOrtaDobVGMFRtBIMbTRuqRTZUb9pQPbbBRmRDzThNGoxiG4qchpLtYBTbUOw01BpSbmHkNBo5jTbi/Rk6YXK1MFA1M6pjIx3dwagOALg2zVjWiCxoxBak22asoBlb0IwtbMYKIr8fRM7vZ7ex34axk8XOgtgpiJJtHCuInYWxk38tn++cgvTcdN/5P2fOzDkzxSbFZnKBFJs5548pDkyxyaX7mfwreXGQOR6YnJmLA8mFgWIzdyU/uLLvt6EpDs3FQSAXmHNhct8wUByaXC5wcRj4/HSbC5wLA+dygWL+tgCHS+ykpm+HFKVb337ZpbXcyKW1sLhYDYsr9bC4Vg8mqk0brzVtohYF443IJhqxxpuxFXcztWrK5Jq5QJVc4NI1GpYGcm55MBdXRvJxZbQQVyYG48rkcLNyx3ijcnw4qtKGANcvAhOApLPT02P50dGvLd1zz0/mhobulqTa8vJvXz537o/l3B3yC7Y+NFMu80Q3sI9On5pqSPrsmdm5C5LeIOk+SSuSXuxrwYAOApMmBuP6xGBclxqV/bjnRtOCxWo4uLgRDq3UgsHVejBcbQSD1aYN1ZrBYC2y4XrkAx2N2Aabsa4EPKJYg5GzoSjWUKdRHU420Iw1sJ+jOgLTRmiqBkES7PDz7lZDH+jwwY5Q1XzgqgOhqxbCeGMw56qM6gD6Y7vO8ziWNZ0FUZLX6ji3MOmMCqJYviN9m85zJ7Mr+/6cMFamA90paH/t/OswVvK6lRc4mSWvw7b8tvMUKLlP9piuOu478Z0UKL0+s5+cE2avlTbfq/Xat7PYL85JcibFkvy+XdmP0/xMXnKui82unOMkOdmVfX+dte7r8/01SV56vWt/D/PnZa5T672S9zBf7uz9XLIf+XOds+zxTEDI5OLWvr9OUhzY1fnWCjL59+4QePJ5vswdA0/ygaRs4Mk5yUkWO5nkA2TO/zRaWyclv1fmJNu8tavyJJlzV/L9ffzvmfzvrEmSJb+/Sn6/Wu8pC5TcT9l7S9bKt9Z7tR3LvpfPzr7Wpuvkk5LfbXMy63ROh2vSvMBvWl+D1Hqv7LWd7qfk+7fpeKf38vnZe2fe04L2+7e/b/ux5Pjm+7Tua/Lfh33kolygSr4VaKgMJAtCD+ddZbQQVYqDceX4cLNy21izcstoc51AA3B0EJjAkXd2evrm4Ztvvr948uQPB7lcyTlXXb948T8uPf10WdJtkj4j6ZMz5XK1z0UFblinT029dGZ27s/l15t4g6RTyT6/d7ihDeZcnBm1cc3SUR2L1XBwaSMc2u9RHbHTSOw0oj6M6siHbmMgdH76qly8PpR3GyOFuDpaiDcmBqP10lC0MVqIG3yYheR/F+qRBRtNy9UjC+uRBbWm5RqxhY3IwkZsYTPZb8YKo+R15NJ9hZHvdA+j2HKR75DPxU5hHFsQO/n95BzfCe/3XfLaJcec/Hm+41y55Gn30MlymY73nN/uqPP8Sgd5h87zUHSeHxIu7VBPO7g7vjZzkbSpozx7XpTpgE9HQ2Su9fvJGwatDtZNnbCBu9IRaYFrdVQGyh5P6planZiBv97a77npdSavLX83nZvWKlP63esUtr4qjwYf6D0XpyMaCqGr5ANXGchlAw1xZXwgqhwfjipTY43KbWPNNf43A9ANgQkcaWenp7+kePLk947ceus/tyAoxFH0YuWLX/yp9YsXJWlA0l9KemymXI63vhOAa3X61FQk6dyZ2bnz8lM7vUJ+WqcL6vBRFMDV2kZ1LO/HPfdxVMdg5DR0PYzqGCvE1WNDUbU01KwVQt0w/wOkUzNsNIOw1vSd8rWo1VFfj5LO+thyyTQ0YTPd90/Q5yLfee876WOFsbMgSjrpo9jCOOmEj2OFsVqd860Oe0s66n1nfPKkfC7ptA9iZ+l+2Npa2+sr+bn0iXvnP9dk9umU3xmXfSK9vdM7ah1z7R3mnTrPXYdzotY9N3eut7buyj02d75fedI7auUnT3y3nhyPM0+JxyZFmafC46B1vjPzx4LMsWTKoTjwUw6leVEQ+GNh2zaZkujKfi5Ity7Ohy7OJ1umJ/LtTexkzdgsihU0Ygui2CydDiZyssgH+SxyfiRP7Mzi2L/2U1wlef6cZNormdt03D+hH6XTWyUjbXy+zKl1bnYkTpw+jZ8Z7ZO0J+kT/+kogSuBnSRwaNl8bR7d09omgZ9kVEEraJQcb+1bGgRK86+MTtCV4NCVkULZAE42SGTybWP6FH6n4+2Bq0Ct0Sfuyr5d+ZuXPoIQS1LbaBV3ZZSLdbyHy5yb3i9zruv6Xkk4qzVSxVr3ti7vuWnUi0lJe6Ts6+Tc9OvIHHP+va+Mgmm7p/n3zZbF2t7T7Kr3UmvEi8vcR85aZXBBcixI7tXatvItWwbf5ilp/2R+dI2CzHuZta4L2l6bucwxf9xP2ZbsSy4I/HuFgf86wsDFgaQgUBz4r9MdG4pqjHgFsF8ITOBIOjs9bRYEr568776fHjx27OskKarX/27+iSf+j8ba2k3y08g8NFMuP9vfkgJHz+lTU0tnZuf+Un69iXTtifOSVvtaMOCIYlTHplEdG2FwZXRHNRf4RcrbR3WE5prRlQ75zBP1/on7IN136b6Sznj/Ouf81xGkT9FnnrZv227Kz3TSW9pJn8teI1m4L9+U65pLO8ub0pWO82b65LpJzUwnedMfd3EmP/JbFwWW7isKzGX21Uzm40/2FQf+/GZgioPANQN/XhQG/j6BuSj0nU5bdp4HUpx2mgfmYj+H/+ZtzlwUZjrM6TxHPwQmBX59CaekoxgAACCLwASOnLPT0/n8yMhXHrvnnp/NDw+/RpLqq6t/dPnxx3/fxfGtkmblgxKL/S0pcHSdPjUVS3ryzOzcnKTXSXqNpElJz0s3ztPLwFHU51Edgw0f5EgDHoNRrKHejuo4jFz6lHpTuqpTPjIp0qZO+as65pvJk++RJZ3vaYd/4K+Pkw76KOmwTzrm3ZX80NIOekVB0lkf+s5632kfKArNNZMO+CgXqBn6zvZmLlCUC1yUD12UD1yUCxQVwjgqhIryoYsGc3E0ELoo6YyndxQAAAA4BAhM4Eg5Oz09MnT8+LuKJ0/+b2GhcKtzrlmdn/9Pi08++bh8p+cnJX16plyu9bmoACSdPjW1cmZ27uPy6028SdI98iOaKn0tGIBD5bCN6oidclc64v00M820Uz9oe9o++zp9ct5a+83kyfkovLLvojBQM8mLQ99BHyVTyzTDwEX5wD+JnwtaHfX50EWFpOO+ELpoIBc3B0IXD+RcRGc9AAAAgF4jMIEj4+z0dGn8zjv/1ejU1A9ZGA67OF5Yfv75962eP19PTvmIpCdmymU+nAOHyOlTU07SM2dm5y5Kem2SJuWDFc3+lQzAjeogRnUAAAAAAFoITOBIOHv33SdKp0795GCp9G1mFkSNxpMLs7Pvry8vF+Wfvn5wply+0O9yAuju9KmpdUkPn5mdS0dPTEt6SdJCXwsGAAAAAABSJmlQ0nCSWNUKHRGYwA3t7PS05QYHX33Tq1/9S4XR0bdKUqNa/avLjz3223GzeUzSY5IenimXV/pbUgA7dfrU1AtnZudekvQqSa+XdLf86In6lhcCAAAAAID9lFcrADEk39ccS6om6VlJl5IEbGLOMWtNP5jZ7ZJekHSHc+58v8tzIzo7PR0OTU7+98WTJ38pHBg46ZyLa5XKB+Y/97m/lW8o/0bSozPlcqPPRQWwR2dm526V9EZJL5e0JP7ZAQAAAABgvwXaPApiQH4kRF0+ALEsPyPJUrK/LGn59KmpIz39Mv2/WyMw0SdUzIN1dnp6cOzEie8cnZr6mSCXK7o4Xl2dm3v/8rPPrshP+/IJSU+xngRw/TszO5eXdJ98gGJCfvTERj/LhOtaIP8Pdro1+bVMon4WCgAAAAB6pKDWCIhh+c9GTj4AsS7psvxDgcuZVE3Wh0QG/b9bYyon3HDOTk9PHLvnnh8dOn78X5tZLm42n1986qn3bywsFCR9UX49iZf6XEwA++T0qamGpL8/Mzt3Xj44cZ+kNfmnNfjH6PDKdvy3BwPaj2117nZ53Zg214/0dZRsnfwQZMn/vxS2nRvJByzS1EhSNo/6BwAAAOCwCuSDD2kAIjsKYl3+wd7PJ9tlSSuSVo76KAjsH0ZM9AkRs4PxJ/fdd3vp5S//5YHx8a+XpGat9qnLjz/+wahWG5b0qKRPzZTL6/0tJYCDcmZ2LpSf1umNkm6W9Lz8P1RH2V479fcrANBNOgIhTpLLbN0WebFaQYFoi/1scCC9Jt5DcvLzpg7IPzmUpvSf9+xQ5lyS8klKpUGP9sBFo20bCwAAAAD2XzoKIrsgtZP/vLwmPwriJW2ehqnan6LeOOj/3RqBiT6hYu6/j7zpTa8vvuxlv5kbHHylJNWWl3/v8rlzD8m5hqRPSnpsplxmKg7gCDgzO1eU9Ab5BbLrki7o4Dt9r+Wp/jQQIG0fFNitTh387aMCrjUA0KnTP8rcc69BgavSYR0enEwplg1ctAcyBiSNqPVBYFA+eJFrS9mvL/3+tgcwsgkAAAAAUoE2T8NUkP8cWZMPQixLmpNfC2JFUkXS6ulTU/SXHQD6f7dGYKJPqJj75+z0dDB2xx3vHL3ttl8OcrmbnHO19UuXfmGpXH5RfiqXh2bK5Wf7XU4AvXVmdi6QNC0/euI2+X+8pJ0HBXZru6f+08BIe1DgWgMA7cGAax0hcKgDADeKpH62BzDagxnD2hzMSEdjZAMZWe2jMpheCgAAALhxDaj1WWFI/nNsLB+AWJdfB+KyNo+CYD3GHqL/d2sEJvqEirk/zk5PF47dffe/GTp+/MctCAbiKLpUeeaZB9YvXWpImpUPSiz2u5wA+ufM7NyopC+TdKf2LwDQLSiw6xECBACwE2dm50ydp5RqD2yMqvXhpKBWIKN9eqlUp1EY2YAG00sBAAAA/RVqcwCikORvyAcgKvIP5i6pFYRYPX1qiv/l+4z+360RmOgTKua1++NTp8Ym7733FwpjY99uZhbV64/Pf+5zv95YX3eSPiPp0zPlcq3f5QQAoB/OzM7ldHUgoz2YMaxWMGNQV4/KCLV5ofD26aU6TTEFAAAAYG8G1QpADMmP6G9KqkpalV8Hon0UBH1fhxT9v1trnwIAuC78xZvedPLmV7/6t3NDQ2+RpMba2p+99NhjH3FxvCrpYUlPzJTLRN0AAEfW6VNTaaBgbSfnZ6aX2mqKqSFtHpWRUyugkQYyArUCGU6d18nIBjP4ew0AAICjJqfWOhDpKAin1loQc5Iuyo+GSIMQa4yCwI2EwASuOx99+9vfVrzrrg+F+fzLnHPNjfn5X1948smn5Be3fXCmXL7Q7zICAHC9ST7kbCRpW5nppbot9t1teqkhSWNqjcxoD2REunoUBtNLAeindH2q7H42L9jmeLqm1UEe7xTkdW3bvR47jPfudLzTsYMs+07LcK3HAFzfTP5BnjQIMajWKIh1+VEQz0ia1+ZREPW+lBboIQITuG6cnZ62Y/fc8x1jt9328xaGYy6OK8vPPfcLqxcuLEl6XNLDM+XySp+LCQDAkZCsj1JP0upOrkmml+q22Hf6Og1ijMp/cMvLf5BLAxnp9FJSK5DRaUqp7GsA+6Nbp3i3zvrdHE/z9uv4fnIdUrf8nR53aq1N1b5m1XZ57WtZpe+X/Z6oLa99u9U5B3Ese7zTz679nE4/x/Y6tN11Oz1vL8d6fe+DlP07WlfrYYB6cgzAzuXU+l82HV3s5B/8WZN0Xp1HQRCQxJFEYALXhbPT0/njr3zlTxXGx7/fzIK40SjPz87+en15eVXSpyQ9OlMuN/pdTgAA0F1meqn1nZy/xfRS2dfp02ejagUwBtQ5kCExvRR2rlPne6f93Zzb7Vj78Wvp4N+q8/ZapZ3j6X76uxLv4ninlHZ+ph3uaZ7T1Z3w7anb8U4BgJ2+bs+71uNdX9MZ5SWj8KTOgYXd5u3n+ft1/UEcu9bvQSj/93JYfiRjOsJxSNK4/N/Y9rWm0gcS0r+Z2UAGcJSYWmtBpKMgTP53YV3SiqSnJC1o8ygIfleADBa/7hMWP9m5v/jyL58Yu+OOD+WHh79OkprV6oMvPfbYH8fN5kuSHpL0FOtJAACAtumluq2XMSBpRP5D5EiSnwYx0m17IKPbot+HdXqpvXSS7+bcnXau7/WeOynrVrKdaNei29Pv3fY7HdvNue2d1p064LMd9e2d95068nvVMX/N70EHPdB/Z2bnQvkO1oHMNt1P15kak//7mf697TQ1Y0ObR15kX/O7jutNXq0AxJB8fY/lF6Ouyk/BdFGZAISkdf6uQaL/dzsEJvqEirkzH3/HO14+NDn5B2Gh8ArnnKstLf3f80888aikp+XXk3ip32UEAADXr7bppbqNzBjW1cPys4GMMLld2iGedrbutUM9vXavsk+tp6/30qHe6R7bddK3d4hHXfKzrzvtt98j+31tL89e0qG9Bx0ZAA67zIjGQV0dyBhUK4AxqlbwIg1kZIPO3aaQaujwBf1x4zO1RuIOy9dnk6+TVfmAw4uSltQKQKwwCgJbof93awQm+oSKub1PfO3Xfs3AxMSHgjCcdHG8vnrhwq8sP/fcC5IelfSpmXJ5R9NAAAAA7Je26aU6BTLSjhppc2e7a8uT9t6RfSjvQYc6ACArM5IxG7TI7qfTSI1p89/TbNBf8n9vuo3CYC0p7EW6rlkaiEhH/FTlp2K6LOmSNo+CqPK/DnaL/t+tEZjoEypmd2enp+34q171bwpjYz9jZoW42byw+IUv/MbG4uJ5SZ+U9NhMucwiXAAAAAAA3ACSEYydRl+k00hl18FIgxfpVmqNOuw0fVT6GkdPIF9/0gBEdhTEuvwi1JckLWrzKAgCXtgX9P9ujcBEn1AxO/vLt7wlNzo19av54eF3S1KzVnvk8uOPn4lqtS9KemimXH62rwUEAAAAAAB9kayD0WkNjHQ7Lh/AGNXmKaTyyS1MrXV76tq8iHf6mmmkrk/pKIg0pcGqdUlr8mtBbBoFcfrUVLU/RcVRQf/v1nLbnwL0xkP/6B/dPH7ixB+GhcJXSFJtefns5XPnHpRzn5cPSiz2uYgAAAAAAKBPTp+aiuQ7mrec2jmZRqpT4CLdH5EPYoxk8tNARpC5VaTuC3kzk0N/BNo8DVO6dklNvl7MSzonPwpiRa1REPy8gEOGwAQOhYdnZl43ODHxR0Eud4dzrrH24osfrDzzzDlJn5H06ZlyudbvMgIAAAAAgMMvWQtgI0mVrc49MzuXrhnVaSqpEbUW807XxUhHYGTXwXDqPoUU0wLt3YBaIyCG1BrxkganXpBfDyI7CmKjP0UFsFsEJtB3n/zGb/yWgfHxX7UgGImjaH7p6ac/UH3ppVlJD0t6YqZcZr4xAAAAAACw706fmqrLBxFWtjovWQejWwAjnUZqTK21DLLTSVlym1g+UNFpBEZDPsBxFIVqjYBIgz+SDyyty0/B9KJ8kGk52a6ePjXFtFvAdYzABPrmkfvvt0a1+jP5kZEfNDOL6vXZ+c997ncb6+ufk/TgTLl8od9lBAAAAAAASBZEbsqvV9DVmdm5QN0DGANqTSE1Jh+0GFZrLYysNIDRaSqp67lDPh15ki5KHch/rVVJq5Ke09WjIJhFA7gBEZhAXzxy//1DUaPxu/mhoRlJqq+ufvTyuXN/5qLos5IenimXt3xSAQAAAAAA4LBJnuKvJqmrZB2MgroHMNJFvMeS12kgo9M6GNlFvLOBjH6uq5BTaxTEkK4eBTEnPxJiSck6EGIUBHCkEJhAzz1y//2hpL8M8/mvcM7F1cuXf2/xC194WNKnJD06Uy43+lxEAAAAAACAA5Osg1FL0pbOzM7l1T2AkY6+GFVrFMK4fCAglJ9GKp0iKp22qn0KqWvph7GkLGkQYlCtURDr8qMgnpFflDo7CqJ+De8J4AZgzh3V6ev6y8xul1+k5w7n3Pl+l6fXHrn//n/p4vinl5555g/WL178mKSHJD3FehIAAAAAAAC7d2Z2LlT3AMaQfPBiXJsX8c7LP7gcqBXA6DaFlFMr+DGSXJcuNL4uaUHSRfk1IFaS7VoShAGOnKPe/7sdRkygX35p/oknztcqlUB+PYmX+l0gAAAAAACA69XpU1OR/BoYO1kHI51GqlMgI51CajQ5L52KydRaC6IsH4jIjoJgBgwAO8aIiT4hYiadnZ4ekRTNlMsb/S4LAAAAAAAAWjLrYKQBi0B+JMQ6oyCA7dH/uzUCE31CxQQAAAAAAACAGxP9v1sL+l0AAAAAAAAAAABwdBCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD1DYAIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQM7l+FwC6xcz6XQYAAAAAAAAAwP65pd8FOMwITPRPWjE/09dSAAAAAAAAAAAOyi2Szve7EIeNOef6XYYjyfwwiS+TdLFPRRiV9HlJ90pa7VMZgBT1EYcJ9RGHCfURhwn1EYcJ9RGHCfURhwn1EYcJ9dEHJR51dMJfhcDEEWVm45IqkorOueV+lwdHG/URhwn1EYcJ9RGHCfURhwn1EYcJ9RGHCfURhwn1EVth8WsAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJg4umqSfjzZAv1GfcRhQn3EYUJ9xGFCfcRhQn3EYUJ9xGFCfcRhQn1EV6wxAQAAAAAAAAAAeoYREwAAAAAAAAAAoGcITAAAAAAAAAAAgJ4hMHGEmNmQmf2EmT1pZhtmdsHMfsPMbu932XD9MrOPmpnbIn1Nl+vebWZ/Y2arZrZgZn9qZm/Z5r3empy3kFz3N2b27QfzleEwM7PXm9m/M7MzZvZCWt92cF1P6p2Z3WFmH0ja2Y2k3f1xMxvc7deKw2+39dHM3rNNu/m+La6lPqIrMxs2s3ea2a+b2Wzy814zs8+a2X8ws9EtrqV9xL7aS32kfcRBMrPvS/5Wf8HMKmZWM7Nnzey3zOzVW1xH+4h9t9v6SPuIXjKzSTO7lNStp7Y5lzYSe8YaE0dE8ov6XyW9WdKcpAclnZT0JkkvSXqzc+7pvhUQ1y0z+6ikr5T0YUmrHU75WefcY23XPCDpeyRVJf25pEFJ/1CSSfom59wfdnifd0n6XfmA6sclXU6umUje4wf24+vB9cHM/lDSN7TnO+dsi2seUA/qnZndLemvJR2X9Likz0l6g6S7JH1C0j90zrHw1w1kt/XRzN4j6cfk60Onf/T/xDn3nztcR33Elszsn0n61eTlE/I/83FJb5E0Junzkr7SOXep7boHRPuIfbaX+kj7iINkZpcljUj6e0nnk+xXSnq5pIak0865P2675gHRPuIA7LY+0j6il8zsg5K+Xb6tKzvn7u5y3gOijcS1cM6RjkCS9JOSnKSHJY1m8r8vyf9ov8tIuj6TpI8mdejkDs9/R3L+ZUn3ZPK/QlJN0qKkibZrSpIqyXWnM/m3SPpCkv/2fn8vSL1Lkn5I0k9ImpF0q6QN/yet6/k9q3eSHkqO/VwmLyfpTJL/nn5//0h9r4/vSerCu3fxHtRH0k7qyXdI+hVJ97XlT0l6JPmZ/07bMdpH0oGkPdZH2kfSgSVJb5U02CH/XyQ/8xcl5TL5tI+kA0t7qI+0j6SeJPkggUv+hjtJT3U5jzaSdO31rd8FIPXghywVJC0lv6xf1uH4Z5Njr+93WUnXX9LuAxN/mpz/vR2O/Vxy7Pvb8n8wyf/DDtd8Y3LsbL+/F6T+JW3fEdyTeic/Cs1JuihpoO3YLZLqkhayHzJIN17aQX3cywdL6iPpmlLyIdEl9bOQyad9JPU8bVEfaR9JfUnyT6A7Sa/J5NE+kvqSutRH2kfSgSdJQ0n9OyfpHm0dmKCNJF1zYo2Jo+Gtkoryw68e7XD895PtTO+KhKPIzIYkfVXy8vc7nNKtLn7dFtf8ifyH2ncwtyA66XG9S68569qGkjrnLspPo3dM0tt2VnrgCuojrtVnk+2ApEmJ9hF9dVV9vAbUR+yHRrKtS7SP6LtN9fEaUB+xWz8mPz3SP1erHl6FNhL7hcDE0fClyfaRLsfT/Nf0oCy4cX2Xmf2Smf2imf1rM7uzwzmn5D+AvuSce6HD8W51sWsdds7V5ecYHJSfjxNo18t6R3uL3fgqM3vAzH7ZzP69mb1+i3Opj7hWdyXbhvxTZRLtI/qnU33Mon1Ez5jZ/fLt4ReSJNE+ok+61Mcs2kccCDN7jaTvl/QB59yD25xOG4l9ket3AdATaQdxp8Yim/+yHpQFN65/3/b6/Wb2XufcezN5W9ZF59yamS1JOmZmY865FTMblx/x0/W6JP8N8nX47/dUetzIelnvaG+xG/e3vX6vmX1Yfoj+appJfcQ++Z5k+18yT5vRPqJfOtXHLNpHHBgz+7fyiwyPSLov2b8g6Vucc1FyGu0jemKH9TGL9hH7zswCSb8mPw38D+7gEtpI7AtGTBwNo8l2vcvxtWQ71oOy4Mbzcfl/jqYlDctHzn9EUlPST5jZ92TO3a4uSlfXx9HMMeow9qKX9Y72FjvxlKQfkP/gOSrphKRvlXRe0rsk/V9t51MfcU3M7GslfZf80+k/mjlE+4ie26I+SrSP6I2vll+c/Zvk69qz8p3An8mcQ/uIXtlJfZRoH3GwvlvSGyX9W+fc/A7Op43EviAwAeCaOOf+g3PuQ865p51zVefck865n5b0zuSU9yTzDwIAJCVt5s865z7nnFtzzr3gnPsd+Q8D85LeaWZv7nMxcYMws3slfUiSyX/Y/Ow2lwAHZrv6SPuIXnDOvcM5Z/Jzkv838tPlfMzMfqS/JcNRtNP6SPuIg5JMw/2Tkj7mnPtgn4uDI4bAxNGQDucb7nJ8JNmu9KAsOCKcc38u6W8lTUj68iR7u7ooXV0fVzPHqMPYi17WO9pb7Jlzbk7SB5KXX5M5RH3EnpjZ7ZL+i3xnx390zv1c2ym0j+iZHdTHrmgfcRCcc0vJPOpfK+kz8lPivDE5TPuIntqmPm51He0jrtV/klSQX/B6p2gjsS8ITBwNzyXbO7ocT/Of7UFZcLSki3VNJdst66KZjcgHMhadcyuS5JxbllTZ6jpRh7G1XtY72ltcq/Z2k/qIPTGzkqQ/l59v9wPy0z+0o31ET+ywPm6H9hEHwjnXkPS78iN5ZpJs2kf0RZf6uB3aR1yLr5efJumXzeyjaZL0/yTHb8/k35rk0UZiXxCYOBrSIdKv63I8zWfRYOy3Y8k2nfNvVlJN0k3JU3PtutXFrnXYzPKSXiVpQ9KT11Ra3Kh6We9ob3Gt2tvNFPURO2Zmo5L+TNIrJJ2R9D8551yHU2kfceB2UR+3Q/uIg3Q52d6UbGkf0U/t9XE7tI+4VhOSvrItpTNfDGbyBpM82kjsCwITR8Mn5KOS02b22g7HvynZnu1ZiXDDM7ObJP2D5OUjkuScq0r6qyTvn3S4rFtd/JO241lfL//H8S+ccxt7LjBuWD2ud+k1M2Y2kL3AzG6R/51YlG+XgU3MzCR9Y/LykbbD1EfsSPKz/iNJb5L0/8kvoBl1Opf2EQdtN/Vxm/vQPuKgfWWyLUu0j+i7TfVxK7SPuFbOOeuUJH1Jcko5k//F5BraSOwP5xzpCCT5hWyc/C/qSCb/+5L8j/a7jKTrL0l6i/wi12Fb/klJDyV164/ajr0jyb8s6Z5M/lfIR8YXJU20XVOSD645Sacz+TfLD1t1kt7e7+8HqX8pqTtui+M9q3eZuv9AJi8n6cNJ/nv6/f0iHWzaqj7KP/n2LyWNteWPSvrlpI7MSRpuO059JG2bJIXyT6Q7SR9vr0ddrqF9JB1I2m19pH0kHWSS9Fb5+feDtvy8pO+WFMlPZXIic4z2kXQgabf1kfaR1I8k36/jJD3V5ThtJOmakyU/TNzgzGxQ0kflh2LNSXpQfo7XL5f0kqQ3O+ee7lsBcV0ys3fLzxP8ovzTGUvy9er18pHuc5K+yjl3qe26ByR9j/w/Wx+RX2jpv5OfR/ObnHN/2OG93iXp95JzPippXv4P4YT8Aorfv69fHA41M/s6ST+ayXqTfN34VCbvvc65P8lc84B6UO/M7B5Jfy1pUtJjkj4n6Y2S7pL0sPzvRG3XXzQOrd3URzM7KekZ+UXcPi3/N/km+SHIk/Lt6Nc756564of6iO2Y2fdIeiB5+QeSlruc+gPOuXSaCNpHHIjd1kfaRxykzOeWy/ILC89LOi7p1fLz8m9I+g7n3O+1XfeAaB+xz3ZbH2kf0Q+Zeld2zt3d5ZwHRBuJa9HvyAipd0nSkKSfkPSU/Fxwc/J/DO/od9lI12eSdJ+kX5L/Z+qSpIb8P0V/LT8aZ2iLa98t6W/l58FclJ97+C3bvN9bk/MWk+s+Lf8PW9+/F6TepqT+uG3Su7tcd+D1TtKJpH2dS9rbLyTt72C/v3ek/U+7qY+SxiS9T/6f8BfkP3iuSXpc0vsl3b7Ne1EfSVv9rN+zg7roJJ3scC3tI2lf027rI+0j6SCT/JQkPyX/1O0FSXX5Tt7HJf28pLu3uJb2kbSvabf1kfaR1I+kbUZMZM6jjSTtOTFiAgAAAAAAAAAA9AyLXwMAAAAAAAAAgJ4hMAEAAAAAAAAAAHqGwAQAAAAAAAAAAOgZAhMAAAAAAAAAAKBnCEwAAAAAAAAAAICeITABAAAAAAAAAAB6hsAEAAAAAAAAAADoGQITAAAAAAAAAACgZwhMAAAAAAAAAACAniEwAQAAAAAAAAAAeobABAAAAAAAAAAA6BkCEwAAAAAkSWZ20sycmX3MzCbM7H83s2fMrGpmnzWzr8uc+0/N7CEzWzGz583sfWaW72f5AQAAAFwfCEwAAAAASL022S5JelTSuyR9StLnJb1G0hkzu9fMPijp1yQtSvqvkm6R9EOSvq+3xQUAAABwPSIwAQAAACD1pcn2H0v6TUn3OOf+qaTXSTorqSDpjyXdlxybcc79Y0n/JLnudI/LCwAAAOA6RGACAAAAQOq1yfY/O+fe45yLJMk55yT9WXKsJOldzrm5zHXpsak0w8zeaWb/434Wzsw+aGYP7ec9AQAAAPRert8FAAAAAHBovDbZ/niHY+PJ9oPOuRfajhWT7eVM3jsl3S3pN/arcJLeK2lgH+8HAAAAoA8ITAAAAACQmRUlnZRUds6d63BKOs3T/9vh2KuT7ef28L55SXE6OmMrzrnybu8PAAAA4PBhKicAAAAAUivw8Okux18ryUn6TJdjkl8wW8ni2N8h6a1m5pL07vSYmT1kZv+DmT0paUPSCTN7m5n9qZldMrOKmX3czN6QfZP2qZwy9/oGM5s1s5XkHlMCAAAAcGgxYgIAAACA1Aou/F37ATMbkvRy+dEUKx2uTYMajybb90q6SdIdkv6XJC872uGUpB+R9O8lrUpalPQWSX8h6YHknG+R9DEzu9c59/wW5b5b0o9K+l8l5SX9vKRflPSuLa4BAAAA0EcEJgAAAABIVwcXsl4jKexyTGoLajjnymb2kqSic+6THc4vSXqbc242k/c76Y6ZBZL+StLbJH2zpPdvUe6SpDemwQszu0PS+8wscM7FW1wHAAAAoE+YygkAAACA1DYd006PmVlB0n2SnnPOLezwvZ5uC0rIzG4ys18zs/OSmpIa8qMh7t7mXk+2jah4Qv4BrJt3WBYAAAAAPcaICQAAAOCIM7OcpFdKOu+ce6nDKV+WbDsFLV4pP4VSt9EUnVzqkPebyb1+TNKTktYlfUDS4Db3Wmp7XU+2210HAAAAoE8ITAAAAAC4V9KAOqwvkXhtsu10/Eu3ONaNy75I1rD4aknf6Zz7rUx+cRf3BAAAAHCdIDABAAAAHHHOuccl2RbH37zFsQ9K+mCHQ3X5YMdODMhPM5uOdpCZvVnSiR1eDwAAAOA6QmACAAAAwEGYlfRtZvYNks5LesY5N9/pROfckpk9KunHzGxNUlHST0ia61lpAQAAAPQMi18DAAAAOAi/LunP5NeO+LSkmW3O/1ZJ85J+V9IPS/peSU8fYPkAAAAA9Ik557Y/CwAAAAAAAAAAYB8wYgIAAAAAAAAAAPQMgQkAAAAAAAAAANAzBCYAAAAAAAAAAEDPEJgAAAAAAAAAAAA9Q2ACAAAAAAAAAAD0DIEJAAAAAAAAAADQMwQmAAAAAAAAAABAzxCYAAAAAAAAAAAAPUNgAgAAAAAAAAAA9AyBCQAAAAAAAAAA0DMEJgAAAAAAAAAAQM8QmAAAAAAAAAAAAD3z/wMDMG6CwS0c7QAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
+ "fig.tight_layout()\n",
"plt.show()"
]
},
@@ -434,26 +432,14 @@
"Let us next look at how well the ranking of values resulting from using the surrogate $\\tilde{u}$ matches the ranking by the exact values. For this we fix $k=3$ and consider the $k$ samples with the highest value according to $\\tilde{u}$ and $u$:"
]
},
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "shaded_mean_std(\n",
- " accuracies.transpose(),\n",
- " abscissa=training_budget_values,\n",
- " mean_color=\"dodgerblue\",\n",
- " shade_color=\"lightblue\",\n",
- " xlabel=\"$m_\\\\operatorname{train}$\",\n",
- " ylabel=f\"Average Top-{top_k} Accuracy\",\n",
- ");"
- ]
- },
{
"cell_type": "code",
"execution_count": 14,
- "metadata": {},
+ "metadata": {
+ "tags": [
+ "hide-input"
+ ]
+ },
"outputs": [
{
"data": {
@@ -469,6 +455,14 @@
}
],
"source": [
+ "shaded_mean_std(\n",
+ " accuracies.transpose(),\n",
+ " abscissa=training_budget_values,\n",
+ " mean_color=\"dodgerblue\",\n",
+ " shade_color=\"lightblue\",\n",
+ " xlabel=\"$m_\\\\operatorname{train}$\",\n",
+ " ylabel=f\"Average Top-{top_k} Accuracy\",\n",
+ ")\n",
"plt.show()"
]
},
@@ -481,11 +475,26 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdYAAAQCCAYAAAChVKpGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEY0lEQVR4nOzdebxcdXn48c+ThN0AigtxvVSiUa8rao0SjVpt1dhGmqpIbam2tYutS6gC1aptf0Bb41pbq9YdXJrGSxW12kI0igiKS1KNEs1V0eAChoQlLMnz++N8JxmGO/fOzJ25s9zP+/Wa17lzzvec89wzZ7Znvuf5RmYiSZIkSZIkSZJas6DfAUiSJEmSJEmSNExMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUBhPrkiRJkiRJkiS1wcS6JEmSJEmSJEltMLEuSZIkSZIkSVIbTKxLkoZWRGS5rZyP+++ViJgs/9ep/Y6lpt8x9Xv//RQRfxARX4qIXXXn/Ev7HddsRMSp5f+Y7Hcswyoi3luO4Xs7XP/wiPi7iPh2RNxYd249rLuRSrM3qu/3kiRpdhb1OwBJ0vCKiNcCr5li0c3A1cBm4D+A92XmLXMY2qyUpOHRwERmfr2vwainSqJ8DNiYmRv7GswAioi1wOvL3VuBnwEJXN+3oKYREWPAqQCZ+dp+xtIrI/T69BFgVfn7RuCn5e+hea9Q60bovJUkSdrPxLokqVt+Wvf3YmBJuT0VeFFEPDUzf9mXyNr3UuA+wCTw9WnafadMb+htOAK+B+wBru3ydk8FnlD+3tiH/Q+6vyrTtwCnDcEPZGMc+LHvtdO0u5bq+fvjHsfTCy+ltdengRURyziQVH9OZn60n/FoTryUIT9vJUmSGplYlyR1RWYeW38/Iu4NvAr4I+CRVIm55/chtJ7JzGX9jmG+yMwnz+f990NE3AW4W7n7ziFIqrcsMz8GfKzfccxjDy7Tq02qS5IkaVhZY12S1BOZ+cPM/GPgwjLr2RFxh37GJKkth9f9fV3fotAoqp1bnleSJEkaWibWJUm99ukyPRhYOlWDiFgcEaeXARKviYibIuJHEfHhiFjeyU4jYjwiXhsRF0bE98rgeLsi4msR8fcRcecp1nltRCTV5eoA76kbsCzLsvr2txvMLCJeVub9NCKaXhkWldqAmK+eYvnBEfFnEXFRRPwiIm6OiKsi4vyIeFonx6Ru24dFxKsi4lvluPwsIj4ZES33yo6IZ0TEf0bEj8vj9cuI+HxE/GlEHNzQ9q4RcUv5X39zhu3+bWm3rWF+08FDI+K4iHhlRHw6Ir4bEddHxHXl/3tTuXqicZ1Ty+NZKwPzmsbHutTrnnH/ZfnCiHhBOd9+UY7JjyPiP6Yb7C4iNpbtvracE38UEV8u5+ru8pz43emOWSsi4qSI+EQ5L28u009ExLOmaLuyHJvJutnb647LZOM6Lex/rDwW/1cemxsiYmtEvHmqx6duvWUR8Y7yuN4QEXuiem24JCLOiqqkSK3tJHBR3f3Gx/O9dcuaDl5aHouMiI3l/m9GxP9GxNXlcbk4IlY3rPP8iPhieR5cV54LTZ9PMQevT3XrtfxcnWLdU8r/tTsiri3n5h9HREy33jTbq/0P7y2z7jPNY7T/9TWq15A31J0Hja/Fh0bES8tj88tynvwgIt4f0wyGGnXP66gGU31tVIOp3hARP4mID0TEcXXt7xwR/1DiuDGq1+R3RcTdmu2jxePS1ntgRDyn7vjc7jlc2jysHIeMiL9uWHZsRPxFVO8n3y6P7Y0Rsa38Pw9qIeZjIuJvyjlxTdnXZER8ppxbR5V2HZ23U+zvZTGL99aIWBART46It0T1+nFlVK+FV0fE5yLiTyLioFZiadjfylb+j/rzucnyBeX59sk48Dr983I8T272nIuIReU5uTGq955byv/0nYj4SES8sIP/6Y4R8cKI+GhEbK57fH8QEedFxGNa2MYREfHycmxrn2GuLPfXNj5n4rbvhQeVNl+JiJ1THbdo4z2tYb1fj4gNdY//roj4fjnOp0XEnaZY51cj4tyI2F6Ow/XlWHwuIl4dEfds7cju395t3n8i4okRMREROyJib5TXwajeN2/3eWSK7U35+aRx/Yi4W1TvubX/46dRvcY0vfoyIu4ZEW+M6r37+qhem34SEV8t8x/Vzv8uSSMpM7158+bNm7eOblQ1jLN6O2na5hW1NsAjp1j+MOBHdW1uBXbV3d8HnNFk27U2K6dYNlm3/EaqwVT31c27Erh/wzqnAVcBe0uba8v9/beZ9k9VOuPWMv8Z0xyXJ9T9f2MNy+4DbGk4Bjvr7ifwrx0+ZncCLq/bzi3AL+v286d1x+7UKdY/jGpA2vpYrm04tl8C7tiw3ifKsv+YJrYAvl/avabJ4zlVTBvr9n0T8Iu6xzDLsTuxYZ3nlMf05tLmusbHGrhXi/s/iiqhW38O/7LhmPxTk/+5FvvfARN1j8m1Dcf4dR0+3gcDH67bzl7gmobjcx5wUN06jy3//8/r2vy87rhc1mYMp1DVp69taw/VuAS1+7uAp06x3lMa1ru57lyt3V5b1/6y8r/VljU+nm+ua3tqaTM5zevaRuB1dcdtZ8O+X0R1zr637nGrf+26lSavAczN61NHz9W65+K769rtazhvPlT3f7+3jXOh9j/Uzu+90zxGtX3/YVlWO1a7qHvPAe5BNVB2/XlS/1jtBf5ihsfhJcA36/ZRf37+hKp2/69w4PXpeqrXmlqb7wJHdvgcfRgdvAcC/16WX03da1VZdgSwtSy/EFjQsPy9ddu/pWzjlrp5e4Dfnibmp3Lb59otVK+7N9fNW93JeTvNPmf13loew/rnwm5u/5z+PHBYk+3W2qxsmL+ytmyG+Kdcvyy7E/C5hlgaYzsfOLhhvYXAZ6ZYr/51c9q4msT62obz8ZqGbe4D/nKa9R8B/LCu/d5yjtVv46UN62ws888Bvlh3Xl1T9reytGv7Pa1uH3/TcKyuL+dB/bzGx/f3ue1rZm2slfp1Tm3z+J5a1pukeu2pbX8n1XPovVOcs2PTbG9yqjga1n8G1VhItf+7/rG4FnjoFNt9KLd9ntfOhfrj0fLrvzdv3ryN6q3vAXjz5s2bt+G90Vpi/X/rvogd07BsSd0H/f8ETqh9GQLuCvwtB77sr55i29N9UX1f+UJ077p5BwNPBr5c1vtqk5in/JLS6v6BT5b5H55m3XeVNp9rmH8E8O2y7CKqJMEhZdlRwMs48EXwJR08Zhvqvhy+CDi0zL9PWXZz+dI15f8PfKAs+x7wPEoyCTgU+M0yP4GPNaz37Lr9Ht0kthPrzpVfafUxAd4E/BnVFRELyrxFwKOBT5X1fswUCRMOfJl/7QzHbbr9ry/LbgL+Aji8zD+WA8mvBP5kmv1fQ/Wl+vdrcQL3BP6LA8mDpR083q+vO6Z/Wzv2wB2B/1cX2zlTrDtWt3ys3X2XbTylxH4L8A9lm1Fu9wc+yoEv9vduWHdbWfbfwHjd/EOBB1ElSU5tWGdlLeYZ4jq1tJucYtlrOZDkuBU4EziqLLsH1VU4SZX8fB1VEvZFdY/7UqokfwI/oCGpWdrMxetTR8/V0uYv6x77twJ3LvOPohocdh8HfuR4bwfnRdPjX9emtv/dVEniJ3Hg+X2/Ml0IXFL3eJ1CST5SJcI/zoHz/2nTHMtfAtupztcFZbtPAX5Wln+kPC5fAx5T1j2I6nWt9nr59x0ch47fA7nte8XngIV1y2o/ivwCuMcU+30VVcJ7HFhU5i2gel59sKx7HXD3KdZ9ONWPD0n1A/DT6mJeWP6H1wNP7uS8neF4zea99Z7lf3smcKe6+Xco5+OPy3pvmOF8XNkwf2Vt2QyxN1t/IQfeB75GNahv7bXkCOD36s6RNzas+7tl/o3AC4E7lPlRzp9nMc2P2dPE+sdUr4MncOD5FMBxVO+3+6heGx8+xbr34sCPsj+k+hH78LptPJDqNeSUhvVqx2B3uZ3KgffCY2qPGR2+p1F9xqkl39dRd25Tva6dCLwNOKFu/uEc+JHrA8B9G55/JwD/CDy9zeN7at3jdivwHsqPY+V8uG/5e6zu/xmbZnuTzJxYvwb4AqWDC9VnpF+j+uEwgc9Psd3/Kcu+CjwGiDK/dgXqWuCvOn0+e/Pmzduo3PoegDdv3rx5G94b0yTWgXsD76j7UH/+FG1qScdzp9nHy0qbr0+xbMovqi3EfQcO9IA8cYrlU35JaXX/wHPrvjTdrhcjVWJrZ2nzwoZlry7zNzJFj6vS5lmlzc8pSZEW/+9H18X8gimWLwQ21bU5tWH5ijL/pzT0kKxrc0+qhEwCD2vyP/9xk3X/rSzf1Olj0uR/+kZZ93enWL6RWSTWgV+tO17N/q9a4v3nlB8ypth/Ak+cYt1DOJDw+es2//d7cCApd1aTNuvK8puBJQ3LxupiG2tn32X9BVQ9eZsem9Lu/NLmTXXz7lq37yVt7HNlbb0Z2p3KzIn1KY85cGTdOZ40JIhKm/vWLb/da8wMsc369akLz9Wry/z3N1n37Lr/770dnBtNj39dm9r2rwXu2aTNc+raTXXVwyIOJN43T3MsbwCOn2L5C+q2fxUNPw6XNn9blm/r4DjM9j3woRzoefqaMu+5dTH/ZrsxlW3UrjB61RTLau8R36X84NTiNmc8b1vYRsfvrS1s+5Ec+EHh0CmWN3u/X1lbNsP2m63//DL/282OJ1UCdx/Vj7d3rZv/L2Xdf+v0mHb4OPxz2e+7plhW+0HvFzR57WmyzY11x+iZTdp0/J7GgR/3v9NGTLXPTNfRxmetFrZ7at3/+p/TtBurazc2Tbspn1sN63+bqTsXPLOuzT0bltWu3Fk+l+eXN2/evA3bzRrrkqSuiKrWbO12PVVPzT8qi7dS9Siub38oVS9KqHqyNvP+Mn1oY03OTmXmdVQ9/KDqpdRt51P1cjoU+J0plv8mVQ+pPVRJ13q1eqhvyMxbmmx/omz/zlRfuFv13DL9EVUPqdvIzL1UJUmaqcV2bmb+aKoGmXklB+pc/3rd/D1UZSmgSiTcRkQcQvXFF6ov5l1R/qdanf9ePNbPKdMrqXpKTqVW5/fOVL1gp/LFzLyocWZm3kTVYxvgIW3G9ttUicU9VJfXT+XvqZI1BwFr2tz+TB5P1avtFzQ/NnDgOf7rdfN2UyWSoOrV2w97qHpn3kZm7qIqoQJVj8zzpmjzPaoe99Dm49al16eOn6tUZT5qdYb/tsn2z6E6PnPhAyXWqdSef1/KzM80LszMW6muKgAYj4gHN9nOf2bmtinm/3fd3+/IzKunaXPfiDiiyfZvpxvvgZn5DeCvyt1XR8TzgbeX+2/LzP9qNZ4GF5Tpbc6/iFhaN+/MzLy2w+13ajbvrdPKzK9QXaFwBFV5nrlSe67+a7PjmZlfBf6PqqfwE+sW7SzTY3sW3dSanR9HcOA5eU6z154Z/F9mfrzJstm8p+0s08VtPE9r6xxM1Wu+F87u0XYbrcvMG6eY/ymqHyEAGl8fd5Zpv96DJWkomFiXJHXL3epuh9fNfz/V5cI/bmh/AtWXY4DPNCTm99+ovkzW3KedgCJiVRm86/tl0KX6wdJqSdy2Bp1qRfnyUvtSf7skct288+u/SEfEPTjwP/77NMdkB1WvVmjvmDyyTDdmZjZp83mqS5On8rgyfWGz2Ep8v9YktlqC6HFRNyBgsQo4muoL80db+WfqRcSKiHhvVANiXtfwWL+iNOv6Y82BY3pRZu6bqkFmfpuq13l9+0ZfnmYfPynT2w2q1mJsl5Vk8FSx/RL4ygyxdap2vhwF/GSa8+Wdpd3+86U8h/633P10VIPa/mrMMNhml30rM69vsuynZfqVaZ5LtTZ3nGphj1+fZvNcrZ0HP2qSbKa8bn21w9ja9cVpltVi/Z9p2lxEVQKivn2jS5vM/2nd35e10OboaeJo1JX3wMx8K1XJm4VUr7FHUdWcP226nUfEQyPiXyLim1EN4Liv7vz7l9Ks8fx7bJnupUrIzalO31trohoU/E+iGqjyJ2Ugxvrn3V1L0168V9xORCykKrEB8NoZnqv3L+3qz4FaaZzfjIhPRTXI6d27FNuvRMTryyCVO6MaVLN2nD5ZmjUep0dSJbShOic70crzvZP3tEupfuRdAnw5Il4c1eDY0w3E/D2qjiEHlXVeGdWgwAtb+UdacCPVmDdzYcrPGOXHx5+Xu42fMT5Rpu+LiHUR8YSIOBxJ0m00HVFdkqR2ZGYAlC8px1L1HDuHqj7oZqq6mPXqv/y12hO9pQ/0EbGAqpbqyXWzawNK1nrmHEWV1Gi5h2Gb3k9VRuDxEXGfzPxBie0uwG/UtalXf0zu3OJ+2vmSU0saNP7IsV9m7omIq5n6ManFd2S5tRvbF6jqGB9HVRu2vnd8LSHy8czc2cK294uIf+BA8hyqpE/9Y30Hqse5F4/1jMe0uJLqMva7Nlm+e5p1az90HDRNm6m0E1t9+26pnS8H0dpz/LCG+39IVWP+oVS9/l8N3BwRl1H1XP33zLymS7FOpZXHpO3HbY5en2bzXG33vOm1n02zrNXXtF9QnYNtPf8y89a6vFuzx7r+h8h2nqPdfA98AdWVSIdSvf6dXK4SmlJEvBh4Mwc6WdVK7txU7h9Gdd40nn+1ntG/mOZHp17r5L2ViLgr1Q8w9b1y93BgsGuAu1Adk159Lmh0J6pyX9DkB7gp7D8HMvMLEfFKql7av1FuRMSVVP/r+6e6EmomEfEsqgGKD6mbvYsDZYcOLvE2Oz+gumqxE7N6vhe3e0/LzJ0RcTLVFUYPoho7AuDaiPg81Q/6H6m/UjAz90bEc4GPUX1uOafcboiIi6nGpXlfZt7Q0n92e1c3+0G+Bzr5jPEK4HiqqyReXm57I+LrVFctvGOKTjOSNO/YY12S1FVZ2ZGZ/8aBWuD/GBFPamha3+PnsMyMFm4bWwzjhVRJq71UpQyWUg0AeqfMPDYzj+VAr7fpeivNxuepvlgGVRK55rlUP2z/FGgsXVB/TB7Q4jF5b4/in0otvj9tMbZT61cuPXtrZV729zaMiGOAp5e7bZWBiYincCCp/i9USZPGx/qNtebtbFuzVjtfvtzi+XKbxyczfwg8gipZ9BaqHtILqHpj/yOwbYrXlWEwF69Ps3quDpi9MzcZSt18D/w9DvR+X8g0JYQi4gFUJY4WUJXnejRVTfE71p1/L681b1i92dUZc6mT91ao3gceTDV+wAuo6m8flpl3qfu/a1cHzdV7Rf058LQWz4HX1m8gM/+JKun7MqoycT+j6kl+KnBhRPxHRLT8g095P34vVVL9Qqoa8odn5lGZebdynKYqwwPdOT969nzPzP+hOla/RzWA9BVUP2I+k+qzx9fKlYP163wDWEZVhuYdVAP2HkZ1tc+/AFujeYmpmQz0a1tm7szMJ1GN2fGPVFcT3Ep1tc3fAFeUHyskaV4zsS5J6pmSBPgA1ZfUtzZcPntV3d9tlXhpQa2W+Lsy8zWZuW2KXkE9rUlaksgfLHfrL1mv/f2hrC7BrdfLYwIHeoLdo1mDqGqdN6slWotvNrHVEudLI6J2CfxzqHpK/Zz2ywvUHuv/zsw/z8wtWdVVr9fLx7p2TGcqHVBbPl1vvG7rd2yzPl8yc19m/ndmviQzH0nVw/MUqtrmdwTOm+PyMN0wF69Pszn2M75OtLh8Lsx4jkdVy7z2mjaXz7+ZdOX1PiIewYE6zd8s0zeWBPpU1lAldL8NPDczL8vMmxvaNDv/ajHfOdqoJ99Nnby3lsTySeXuizPzPZl5VUObhbR+pVi9/fsq59rtRMRRTda9um792bxO/iQz35SZz8rMu1GN61Ab12IN8KdtbO7pVFcr/JJqENHP5e1rc890fkBvP8N0/J6Wmddn5gcy89TMvF9p+0qq3vj1Pdnr17k5Mzdk5osy88FUVzb8CXANcC+qJH0v1J/HU55bRbPzqysy8wuZ+crMPJGq3NVvUV2Jehjw7ujS+EeSNKxMrEuSeu1vqXrlPBD4/br5l3Gg7MEzu7zPe5Xp16ZaGBF3AH51mvVrSa7Z9lqrXY5+/4h4VETcH3hUw7L9MnOSA5c4d/uYwIG6o0+Ypq7o42leKq5W+3RVpwFkVbO5NvDj8xumU/3YMJOZHusApuvVPNvHunZMn1hKfEwVwzIOJCGb1Wnuhf11ZpsldiLiaOrq1nZ5/7Xz5diI6Er99szcnZnncWDAv7tx29IO+xPUM9TO7ae5eH2azXO1dt7cKyLuO1WDiDiS9gZO7pVarE+eps1KDrymzeXzbyazfg8sye0PUZXm+F+q3ueXUiW8Plx+KG1UO/++McUPOjW/1mT+xWW6EHham+F2630V2nxvpUqE1hKTUz7vqHr5T5e8bOaXdX/fq0mbKZ/PWZUdqdX379p7fmZuzsw/4sDrQLNBs6dS+x++k81LnDQ7P75C7z7X1bYPXXxPy8wfZ+Y/AuvKrBmPVWZendVVma8ssx5eevp324znVkTcj/bGdpiVzNyT1aDItR+qDqU3A8NL0tAwsS5J6qnM/B7wkXL31bVLkrOqz3pemf/KiLj3dNuJiHYGbqwNWvbQJstfDSyeZv3aoFhHt7HP28nM73JgwKjf40ACeUtmNvtyXxvI8YUR8fDptt/mMYEDj8O9ue2PHLXtLQBeNc367yjT8YiYtgdcRBwxTU/iWuLjORHxIA4M3jZVQmQmMz3WfwL8yjTrz/ax/nCZ3oOqJvhU/rZMf8H0gyx2239S9Xg7lAMJgEZnUl3yf0tp300XAbXBL984U8/y+vO5hV7o9T0o65OD9QPaHd1CjP0wF69Ps3mufpYDCZ1XN1ntFdy+Jn4/1J5/yyPiqY0LI2IRVckCqF53t8xZZDPo0nvgPwP3o+r5/HuZeRPwPKp6yg/h9mObwIHz78FT/fgUEU+j+jFiqpi3UZViATir/MDSqq68r5Y42n1v3cWBMiW3e96V8+T/dRjOdznwevTbU2x7AXDGNOvXnqtPj4inT9PududAkx9O6tXiaqeOd+38uN9UPfAj4mFU59jtlER87Tl5ekQ0+6GhUx2/p3VyrNpY5zbrdUt5jfheuXu7c6v4627vF6rnRLPOAkVP/3dJGiYm1iVJc+Fsqi+1YxzoaQrVF6CfUF1+/aWIeH5E7E8oRcRdIuK3I+JjVL3yWvXpMv2jiPjjWtIoIo6NiDdSJYWunmb9WvJlTUS0OqBYM7XSJ8/lQD3Y6eqIr6O6xPZQ4KKIeHF9T6iIODoinhYR7wc2tRNIZn6ZajBIgH+NiD+qfXEsSZ2PAMuBKXupZebngPeUu2+LiDdGxP6kdUQcEhGPiYh/pKqB22ygwI9Q9Wqr1XIF+FZmfrWd/6eoPdZPi4hX18oTlON0JtVl3a081k9vrK3aisy8lANf3t9aHq/DSwzHRsQ7OVCP9tU5zYCC3ZbVoGJvLndPj4jXld58tePzd8BfleVvyMwdXd7/rVQ/bNxK1aPt8xHx5Pp6vxHxKxHxJ1ENSPpndas/NiK+GREvi4gH1L7gR+WxwL+WdldyoPwFVEmuWo/JPxzQXus9f32azXO1lH2oDSz8+xHxptprUEQcGRGvpnrt3tn6v9wz/8mBBOtHI+J5tfMrIo4ry5eX5a+YYv1+6/g9MKpBFU8td1+QmT+B/T9m155LL46IxqsWauffg6jOjTuV7R0RES+iqu8/3fn3EqqyGUuBL0bEb9Qd84WlB/nbI6KxV3M331ehjffWzLyOA7233xART6p7TRkHPknVy7ntAVlLr/Pae8CZEfHsuuf0/akGvnzINJv4INUPrgF8LCJeFRH7B7Ytj8sTI+JtwPcb1p2IiHeXzwRH161zp4h4FQeu5LigjX/pM1SJ0jsB59beFyPi4Ih4dlk+3UCYf031I/IxVOfHsyPisLKNiIjxiPiniHj+NNuY0izf014ZEZ8qz7H9pWTKa+Gz69arP1bPjYgvRsSLGl4/F0bEr1MNZArwpcys713eTbXn/Qsi4s/qjuW9IuJdVKX0Oh08dTr3pKqh/qqIeHhUPz5R9v0QDpRjuh74XA/2L0nDIzO9efPmzZu3jm7Aa6kS5tlC24nS9kdUA/XV5j8A+E5tO1RlY64Grqubl8Bnp9hmbdnKhvlHU9WPrd/mL6m+LCbwdqqEbgLvnWK7j69reytV4mMSmGxl/w1tjgFuaojl7jMcq7tTlUuprbOvxH9twzG5ooPH7Bjg63XbuLlsu7afPyv/awKnTrH+wVS96uvj2E1Va3Rvw/x7TBPHfza0PX2GuKeMiao2++cbjlV9LJ+gShImsHGK7S6l6nlVe2yuqj3WwD1n2n9ZdhSwsS6GW0oM++rm/VOT/6u23mtbeJ7dLv4WHu+DqX7IqD//Gh+r84CDplh3rK7N2CxeJ1ZzoMdo7Zz7BVVyrv4c+Ou6dVY2LKutc0vdvGuBFVPs7111ba6nShxPAq+va3NqWT45xfozHm+mef2Y6bFl7l6fOn6uUnW+ef8U582t5f6HWjkG0xybpse/rs2Mr6+l3T2okra19jdx4DWtFvtftvO60k4czPJ5QgfvgWWfO8v8f26y3drj93OqgTrrl32oYdu/rHtsvwK8eLrHB3hq3f7rn583181b3cl528Zxa+u9lap0Uf0x3cOB16VbqHq9Nz0fpjsPqJKQP244HrX3613AE2ZY/0jg4w2PybXc9nUhgVuavMbUr9P4OeE/gAVtHttzGraxs+6x/T5Vj/UEssn6j6D60bO2/q3l/Lixbt5Lm/wvr50hto7e06j7vFpuN1A9z+qP77eAY6d4nao/Z37RsK8fA8vaPL617c547gN3AP6v4f+tvb7dTPXD0pTnLS2+Nk21fsO6tcfwam77nLsJWNPJ89ebN2/eRulmj3VJ0lypXWZ9T+BFtZmZ+W2q3lwvouoJ9QuqL5lBVUbiP4A/Bp7d6o4ycyfwWOBNVF8Y9lJ9KdgInJyZfzLD+p8HnkHVi2wnVR3n+9DBYFyZeTVVb7ia/83Ss3CadX5C1cP3ZKoe5juAw6m+UE5SfQF/KVWiopN4Hgu8BthK9aXyVqpejE/JzH+ZYf2bs6rd+liqxNr3qOrt3oFqoLCNVKVPHpJV77Jm6su+7ONA76e2ZNVb8KnA66h6K99Cde5cSjVg229SPf7N1r8CeCLVcf45VbKm9lg3qzXfuI1rqXoGvpDq/99NdTyuovoB4YmZ+VdNN9BD5fF6DtUAdp+i+mK8uEw/BZyUmc8rx7FXMUwAx1M9RpdSJbeOpvpS/g2qRPizgH+qW+0yquf8vwJf5cDrwh6qH4b+EXhAZk511cafUyVRNpf796Z6PDsZmLDr5ur1aTbP1awGjf09qjIbl1AlxBYBl1NdhTBlKYh+KLE/Eng5B2I9nOpH3A8AJ2TmW/oX4fTafQ8sPUc/RPWD3hbgtCab/vOy/p2BD8RtyzqcQvUe8k2q5+FCqufLGcDjqJ6j08X8GaofJf8fVc3yG4EjqJKM/13+lwsb1una+2rZXlvvrVldEfVo4KNUx3gB1Wv1R4HHZuZ0V5LNFMuVVHXU38WBcVKuo3qfe0RWV5BMt/6uzHwm1cChH6EanPkQqvP4x1TnxRnA/RtW/QuqkiifBK6gOmcOo/rR4r+A387M38nmtfSbxXM61XP/UqrH9iCqc+ks4OFl+9OtfznVD0anUz0nd1O97/yc6nXn5Rwog9SWWbynvYPqefQhqufNDRwYpHUT1fPhEXnbQW3/i+o4vIfqvepaqufdbqpj82rgQZm5tZP/pRVZXW1xIvAGYDvVe0XtKonlmfnhaVafjR9TfX56I9VjuIPqveNWqh8g3gaMZ+b6Hu1fkoZGZGa/Y5AkSZIkSZIkaWjYY12SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDYv6HcCoi4gA7g7s7ncskiRJkiRJkqRpLQZ+kpk5XSMT6713d+DKfgchSZIkSZIkSWrJPYEfT9fAxHrv1Xqq3xN7rUuSJEmSJEnSoFpM1Ul6xjyuifW5szszd/U7iFEREQuBFcASYAewKTP39jcqSZIkSZIkScOqqurdGgcv1dCJiJOAbcBFwHlluq3MlyRJkiRJkqSeMrGuoVKS5+uBzcByqsszlpf7602uS5IkSZIkSeq1mGFwU81SRBwJXAscZSmY2SnlX7ZRJdFXZ+a+umULgAlgHFhqWRhJkiRJkiRJ7Wgnl2uPdQ2TFcAYcFZ9Uh2g3D8bOK60kyRJkiRJkqSeMLGuYbKkTLc0Wb6loZ0kSZIkSZIkdZ2JdQ2THWU63mT5eEM7SZIkSZIkSeo6E+saJpuASeDMUlN9v3L/DGB7aSdJkiRJkiRJPWFiXUOjDEi6FlgFTETE8ohYHBHLqQYuXQWc5sClkiRJkiRJknppUb8DkNqRmRsiYg2wDri4btF2YE1mbuhPZJIkSZIkSZLmi8jMfscw0iLiSOBa4KjM3NXveEZFRCwEVlANVLoD2GRPdUmSJEmSJEmdaieXa491DaWSRN/Y7zgkSZIkSZIkzT/WWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWrDon4HIEmSJGm4RMRCYAWwBNgBbMrMvf2NSpIkSZo79liXJEmS1LKIOAnYBlwEnFem28p8SZIkaV4wsS5JkiSpJSV5vh7YDCwHFpfpZmC9yXVJkiTNF5GZ/Y5hpEXEkcC1wFGZuavf8UiSJEmdKOVftlEl0Vdn5r66ZQuACWAcWGpZGEmSJA2jdnK59liXJEmS1IoVwBhwVn1SHaDcPxs4rrSTJEmSRpqJdUmSJEmtWFKmW5os39LQTpIkSRpZJtYlSZIktWJHmY43WT7e0E6SJEkaWSbWJUmSJLViEzAJnFlqqu9X7p8BbC/tJEmSpJFmYl2SJEnSjMqApGuBVcBERCyPiMURsZxq4NJVwGkOXCpJkqT5YFG/A5AkSZI0HDJzQ0SsAdYBF9ct2g6sycwN/YlMkiRJmluRmf2OYaRFxJHAtcBRmbmr3/FIkiRJsxURC4EVVAOV7gA22VNdkiRJw66dXK491iVJkiS1pSTRN/Y7DkmSJKlfrLEuSZIkSZIkSVIbTKxLkiRJkiRJktQGE+uSJEmSJEmSJLXBxLokSZIkSZIkSW0wsS5JkiRJkiRJUhtMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUBhPrkiRJkiRJkiS1wcS6JEmSJEmSJEltMLEuSZIkSZIkSVIbFvU7AEmSJEmSJE0tIhYCK4AlwA5gU2bu7W9UkiR7rEuSJEmSJA2giDgJ2AZcBJxXptvKfElSH5lYlyRJkiRJGjAleb4e2AwsBxaX6WZgvcl1SeqvyMx+xzDSIuJI4FrgqMzc1e94JEmSJEnSYCvlX7ZRJdFXZ+a+umULgAlgHFhqWRhJ6p52crn2WJckSZIkSRosK4Ax4Kz6pDpAuX82cFxpJ0nqAxPrkiRJkiRJg2VJmW5psnxLQztJ0hwzsS5JkiRJkjRYdpTpeJPl4w3tJElzzMS6JEmSJEnSYNkETAJnlprq+5X7ZwDbSztJUh+YWJckSZIkSRogZUDStcAqYCIilkfE4ohYTjVw6SrgNAculaT+WdTvACRJkiRJknRbmbkhItYA64CL6xZtB9Zk5ob+RCZJAojM7HcMIy0ijgSuBY7KzF39jkeSJEmSJA2PiFgIrKAaqHQHsMme6pLUG+3kcu2xLkmSJEmSNKBKEn1jv+OQJN2WNdYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWrDon4HIEmSJEmSpKlFxEJgBbAE2AFsysy9/Y1KkmSPdUmSJEmSpAEUEScB24CLgPPKdFuZL0nqIxPrkiRJkiRJA6Ykz9cDm4HlwOIy3QysN7kuSf0VmdnvGEZaRBwJXAsclZm7+h2PJEnSfOGl85KkYVXew7ZRJdFXZ+a+umULgAlgHFjqe5skdU87uVx7rEuSJGnkeOm8JGnIrQDGgLPqk+oA5f7ZwHGlnSSpD0ysS5IkaaR46bwkaQQsKdMtTZZvaWgnSZpjJtYlSZI0Msql8+uAT1BdOn9JZl6XmZcAq8v815d2kiQNqh1lOt5k+XhDO0nSHDOxLkmSpFHipfOSpFGwCZgEziw11fcr988Atpd2kqQ+MLEuSZKkUeKl85KkoVcGJF0LrAImImJ5RCyOiOVUA5euAk5z4FJJ6h8T65IkSRolXjovSRoJmbkBWAM8GLgY2FWm48CaslyS1CeRmf2OYaRFxJHAtcBRmbmr3/FIkiSNslI7fRvVQKWr68vBlEvnJ6gSEkvt5SdJGgblvW0F1dVWO4BNvodJUm+0k8tdNDchSZIkSb2XmXsjYi2wnurS+bOpyr+MU9WjXUXVy8+EhCRpKJT3rI39jkOSdFsm1iVJkjRSMnNDRKwB1lFdMl+zHS+dlyRJktQFloLpMUvBSJIk9YeXzkuSJElqh6VgJEmSNO956bwkSZKkXlnQ7wAkSZIkSZIkSRomJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJasOifgcgdSIiFgIrgCXADmBTZu7tb1SSJEmSJEmS5gMT6xo6EXESsA4Yq5s9GRFrM3NDf6KSJEmSpPnJjk+95fGVpMFkKRgNlZJUXw9sBpYDi8t0M7C+LJckSZIkzYHyHWwbcBFwXplu87tZd3h8JWlwmVjX0Ci/0q8DPgGszsxLMvO6zLwEWF3mv760kyRJkiT1kB2fesvjK0mDLTKz3zGMtIg4ErgWOCozd/U7nmEWESupfp1fXpLpjcuXAxcDT8zMjXManCRJkiTNI6VD0zaqJO/qzNxXt2wBMAGMA0stW9I+j68k9Uc7uVx7rGuYLCnTLU2Wb2loJ0mSJEnqjRVU416dVZ/0BSj3zwaOK+3UPo+vJA04E+saJjvKdLzJ8vGGdpIkSZKk3rDjU295fCVpwM2rxHpEHBMRP4uIjIhtM7Q9NSIujYjrIuKaiPhkRDx2rmLVlDYBk8CZ5dK3/cr9M4DtpZ0kSZIkqXfs+NRbHl9JGnDzKrFONfDlnWdqFBFvAt5D9Ub1P8ClwFOAz0fE6h7Gp2mUunFrgVXAREQsj4jFpbb6RJl/mvXlJEmSJKnn7PjUWx5fSRpw8yaxHhFPBn4feOcM7X4NeAlwNfDQzFydmb8BPB7YC7wnIo7ucbhqIjM3AGuAB1MNVLqrTMeBNWW5JEmSJKmH7PjUWx5fSRp8kZn9jqHnIuIwqpG0bwJWA98FvpeZx0/R9pPA04CXZeabGpa9GfhLqjevdS3uu+WRZNW6MkL6Cqp6cjuATX6gkCRJkqS5FREnUV0dPlY3ezvV92Y7Ps2Sx1eS5lY7udz5klg/B3gF8ATgR1RvQrdLrJcE/C+BQ4B7ZeaVDctXAJ8HPpeZK1vct4l1SZIkSdLIsuNTb3l8JWnutJPLXTQ3IfVPRDyE6vKp92TmpogYm6b5/amS6j9vTKoXl5fpQ7obpSRJkiRJw6kkeTf2O45R5fGVpME00on1MqDHu4CdVD3WZ3LvMp0qqU5mXh8RO4E7RsTizNw9xT4PoUrO1yxuJ2ZJkiRJkiRJ0mAb9cFL/wJ4FPBXmXl1C+3vUKY3TNPm+jJtljA/g+pygdptyiS9JEmSJEmSJGk4jWxiPSLuDfw9VT30987hrs8Gjqq73XMO9y1JkiRJkiRJ6rFRLgXzNuBg4E/aWOe6Mj18mjZHlOntysAAZOZNwE21+xHRxu4lSZIkSZIkSYNulBPrq6hqq7+9Ibl9aJneIyI2lr+fm5lXAT8s96fsZR4RRwBHA7+cqr66JEmSJEmSJGn0jXJiHaok+BOaLDu0blkt2f4dqt7md4mIe2TmjxvWeUSZfrObQUqSJEmSJEmShsfI1ljPzJjqBhxXmnyvbv5kWedG4MKy/Hem2OyaMv14T4OXJEnzQkQsjIiVEXFymS7sd0ySJEmSpJmNbGJ9Ft5Qpq+KiKW1mRGxHHgRVXmZf+9DXJIkaYRExEnANuAi4Lwy3VbmS5IkSZIGmIn1Bpn5P8CbgWOAr0fERER8Evg8VemcP8jMnX0MUZIkDbmSPF8PbAaWA4vLdDOw3uS6JEmSJA22yMx+xzCnImIM2E5VCub4adqdCrwYeABwM3AJ8HeZeXGb+zsSuBY4KjN3dRi2JEkaEaXcyzaqJPrqzNxXt2wBMAGMA0szc29fgpQkSZKkeaidXO68S6zPNRPrkiSpXkSspCr7sjwzL5li+XLgYuCJmblxToOTJEmSpHmsnVyupWAkSZLm1pIy3dJk+ZaGdpIkSZKkAWNiXZIkaW7tKNPxJsvHG9pJkiRJkgaMiXVJkqS5tQmYBM4sNdX3K/fPoBoPZtPchyZJkiRJaoWJdUmSpDlUBiRdC6wCJiJieUQsLrXVJ8r80xy4VJIkSZIG16J+ByBJkjTfZOaGiFgDrKMaqLRmO7AmMzf0JzJJkiRJUisiM/sdw0hrZyRZSZI0v0TEQmAF1UClO4BN9lSXJEmSpP5oJ5drj3VJkqQ+KUn0jf2OQ5IkSZLUHhPrkm7HHpSSJEmSJElScw5eKuk2IuIkYBtwEXBemW4r8yVJkiRJkqR5z8S6pP1K8nw9sBlYDiwu083AepPrkiRJkiRJkoOX9pyDl2pYlPIv26iS6Kszc1/dsgXABDAOLLUsjCRJkiRJkkZNO7lce6xLqlkBjAFn1SfVAcr9s4HjSjtJkiRJkiRp3jKxLqlmSZluabJ8S0M7SZIkSZIkaV4ysS6pZkeZjjdZPt7QTpIkSZIkSZqXTKxLqtkETAJnlprq+5X7ZwDbSztJkiRJkiRp3jKxLgmAMiDpWmAVMBERyyNicUQspxq4dBVwmgOXSpIkSZIkab5b1O8AJA2OzNwQEWuAdcDFdYu2A2syc0N/IpMkSZIkSZIGR2Rmv2MYaRFxJHAtcFRm7up3PFIrImIhsIJqoNIdwCZ7qkuSJEmSJGmUtZPLtce6pNspSfSN/Y5DkiRJkiRJGkTWWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLasKjfAUjSfBIRC4EVwBJgB7ApM/f2NypJkiRJkiS1wx7rkjRHIuIkYBtwEXBemW4r8yVJkiRJkjQkTKxL0hwoyfP1wGZgObC4TDcD602uS5IkSZIkDY/IzH7HMNIi4kjgWuCozNzV73gkzb1S/mUbVRJ9dWbuq1u2AJgAxoGlloWRJEmSJEnqj3ZyufZYl6TeWwGMAWfVJ9UByv2zgeNKO0mSJEmSJA04E+uS1HtLynRLk+VbGtpJkiRJkiRpgJlYl6Te21Gm402Wjze0kyRJkiRJ0gCzxnqPWWNdkjXWJUmSJEnzSfkevILqyuwdwCa/72oYWGNdkgZI+fCwFlgFTETE8ohYHBHLqZLqq4DT/JAhSZIkSRp2EXESVeeyi4DzynRbmS+NDBPrkjQHMnMDsAZ4MHAxsKtMx4E1ZbkkSZIkSUOrJM/XU12xvRxYXKabgfUm1zVKLAXTY5aCkVTPy+EkSZIkSaPIMqgaBe3kchfNTUiSJNhfFmZjv+OQJEmSJKnLVgBjwMn1SXWAzNwXEWdTXbm9Ar8XawSYWJckSdPySgtJkiRJLVhSpluaLN/S0E4aatZYlyRJTTnwkCRJkqQW7SjT8SbLxxvaSUPNxLokSZqSAw9JkiRJasMmYBI4s9RU36/cPwPYXtpJQ8/BS3vMwUslScPIgYckSZIktauuc84ngLOpyr+MUyXVVwFrMnND/yKUpufgpZIkabb2DzwERESspK7GOtWHZAcekiRJkrRfZm6IiDXAOqrvCzXbMamuEWNiXZIkTaU2oNCvAB+iSrLXTAJ/3dBOkiRJkmrJ9fOpOuHs75zjla4aNSbWJUnSVGoDCn2Q6jLOkzlwGeeZZX59O0mSJEkCoCTRN/Y7DqmXrLHeY9ZYl6S5UWqC2yOiSyLiIOAG4GrgHvXHshzrHwPHAIdn5i39iVKSJEmSpO5pJ5e7YLqFkiQNgzJAzjbgIuC8Mt1W5qszj6O6su2uwMciYnlELI6I5cDHyvxFpZ0kSZIkSfOKiXVJ0lCrG3V+M7AcWFymm4H1Jtc7Vqud/rvAg6kGHtpVpuNlfn07SZIkSZLmDWusS5KGVilJso6qBvjqzNxXFl0SEauBCeD1EXG+ZWHaVqud/n3geBrK7ACPbmgnSZIkSdK8YY31HrPGuiT1TkSspCr7sjwzL5li+XKqHtZPzMyNcxrckCs/Wmyj6vlf/6MFEbGA6keLcWCpP1pI84/jWkiSJGkUWWNdkjRf1MqQbGmyfEtDO7WoJMjWAquAiYYa6xNl/mkm0qT5x3EtJEmSJBPrkqThVitDMt5k+XhDO7UhMzcAa5i6xvqaslzSPOK4FpIkSVLFUjA9ZikYSeody5XMDUs+SAJfcyVJkjT62snlOnipJGloZebeiFhL1XtyIiLOpir/Mg6cQVWuZI0Jntkpx29jv+OQ1HcrgDHg5PqkOkBm7iuvwReXdhvnPDpJkiRpDplYlyQNtczcEBFrgHVUCZ2a7ViuRJK6yXEtJEmSpMLEuiRp6JXk+vlYrkSSeql+XItLpljuuBaSJEmaN6yx3mPWWJckSdIosMa6hp1jhkiSpJm0k8tdMDchSZIkSRpmJQG5lmr8iomIWB4RiyNiOVVSfRVwmolKDaKIOInqh6GLgPPKdFuZL0mS1DYT65IkSZJaUsatWAM8mGpci11lOo7jWmhAleT5eqqrLZYDi8t0M7De5LokSeqEpWB6zFIwkiRJGjWW1NCwsISRJElqRzu5XAcvlSRJktSWkoDc2O84pBasAMaAk+uT6gCZuS8izqa66mIFntOSJKkNloKRJEmSJI2qJWW6pcnyLQ3tJEmSWmJiXZIkSZI0qnaU6XiT5eMN7SRJklpiYl2SJEmSNKo2AZPAmaWm+n7l/hnA9tJOkiSpZSbWJUmSJEkjqYwHsBZYBUxExPKIWBwRy6kGLl0FnObApZIkqV0OXipJkiRJGlmZuSEi1gDrqAYqrdkOrMnMDf2JTJIkDbPIzH7HMNIi4kjgWuCozNzV73gkSZIkaT6KiIXACqqBSncAm+ypLkmS6rWTy7XHuiRJkiRp5JUk+sZ+xyFJkkaDNdYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2rCo3wFIktQNEbEQWAEsAXYAmzJzb3+jkiRJkiRJo8ge65KkoRcRJwHbgIuA88p0W5kvSZIkSZLUVSbWJUlDrSTP1wObgeXA4jLdDKw3uS5JkiRJkrotMrPfMYy0iDgSuBY4KjN39TseSRolpfzLNqok+urM3Fe3bAEwAYwDSy0LI0mSJEmSptNOLtce65KkYbYCGAPOqk+qA5T7ZwPHlXaSJEmSJEldYWJdkjTMlpTplibLtzS0kyRJkiRJmjUT65KkYbajTMebLB9vaCdJkiRJkjRrJtYlScNsEzAJnFlqqu9X7p8BbC/tJEmSJEmSusLEuiRpaJUBSdcCq4CJiFgeEYsjYjnVwKWrgNMcuFSSJEmSJHXTon4HIEnSbGTmhohYA6wDLq5btB1Yk5kb+hOZJEmSJEkaVZGZ/Y5hpEXEkcC1wFGZuavf8UjSqIqIhcAKqoFKdwCb7KkuSRo2vp9JkiT1Tzu5XHusS5JGQkk6bOx3HJIkdSoiTqK6AmusbvZkRKz1CixJkqTBYo11SZIkSeqzklRfD2wGlgOLy3QzsL4slyRJ0oCwFEyPWQpGkiRJ0nRK+ZdtVEn01Zm5r27ZAqoBuceBpZaFkSRJ6p12crn2WJckSZKk/lpBVf7lrPqkOkC5fzZwXGknSZKkAWBiXZIkSZL6a0mZbmmyfEtDO0mSJPWZiXVJkiRJ6q8dZTreZPl4QztJkiT1mYl1SZIkSeqvTcAkcGapqb5fuX8GsL20kyRJ0gAwsS5JkiRJfVQGJF0LrAImImJ5RCyOiOVUA5euAk5z4FJJkqTBsajfAUiSJEnSfJeZGyJiDbAOuLhu0XZgTWZu6E9kkiRJmkpkZr9jGGkRcSRwLXBUZu7qdzySJEmSBldELARWUA1UugPYZE91SZKkudFOLtce65IkSZI0IEoSfWO/45Da4Q9CkqT5yMS6JEmSRpKJHknqvYg4iaqE0Vjd7MmIWGsJI0nSKHPwUkmSJI2ckujZBlwEnFem28p8SVIXlNfU9cBmYDmwuEw3A+t9zZUkjTIT65IkSRopJnokqffKVUHrgE8AqzPzksy8LjMvAVaX+a8v7SRJGjkOXtpjDl4qSZI0d0oCZxtVEn11Zu6rW7YAmADGgaWWhZGkzkXESqqrgZaXZHrj8uXAxcATM3PjnAYnSVKH2snl2mNdkiRJo2QFVZ3fs+qT6gDl/tnAcaWdJKlzS8p0S5PlWxraSZI0UkysS5IkaZSY6JGkubGjTMebLB9vaCdJ0kgxsS5JkqRRYqJHkubGJmASOLOU2tqv3D8D2F7aSZI0ckysS5IkaZSY6JGkOVDGqVgLrAImImJ5RCwutdUnyvzTHM9CkjSqTKxLkiRpZJjokaS5k5kbgDXAg6kGKt1VpuPAmrJckqSRFJnZ7xhGWjsjyUqSJKk7IuIkYB3VQKY126mS6iZ6JKmLImIh1aDQS6hKbW3yB0xJ0jBqJ5drYr3HTKxLkiT1h4keSZIkSe1oJ5e7aG5CkiRJkuZWSaJv7HcckiRJkkaPiXVJkiRJGhBeaSFJkjQcTKxLkiRJ0gBoMjbAZESsdWwASeo+f8yUNBsL+h2AJEmSJM13Jam+HtgMLAcWl+lmYH1ZLknqkvK6ug24CDivTLf5eiupVSbWJUmSJKmPSo/JdcAngNWZeUlmXpeZlwCry/zXl3aSpFnyx0xJ3RCZ2e8YRlo7I8lKkiRJmn8iYiVVT8nlJZneuHw5cDHwxMzcOKfBSdKIKT9SbqNKoq/OzH11yxYAE8A4sNSyMNL8004u1x7rkiRJktRfS8p0S5PlWxraSZI6t4JqLIuz6pPqAOX+2cBxpZ0kNWViXZIkSZL6a0eZjjdZPt7QTpLUOX/MlNQVJtYlSZIkqb82AZPAmaUMwX7l/hnA9tJOkjQ7/pgpqStMrEuSJElSH5UavmuBVcBERCyPiMWltvpEmX+atX4lqSv8MVNSV5hYlyRJkqQ+y8wNwBrgwVQDle4q03FgTVkuSZolf8yU1C2Rmf2OYaS1M5KsJEmSpPktIhZSDZi3hKoMwSaTO5LUfRFxErCOaiDTmu1USXV/zJTmqXZyuSbWe8zEuiRJkiRJ0uDxx0xJjdrJ5S6am5AkSZIkSZKkwVGS6Bv7HYek4WSNdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLasKjfAUiSJEmS1GsRsRBYASwBdgCbMnNvf6OSJEnDyh7rkiRJkqSRFhEnAduAi4DzynRbmS9JktQ2E+uSJEmSpJFVkufrgc3AcmBxmW4G1ptclyRJnYjM7HcMIy0ijgSuBY7KzF39jkeSJEmS5otS/mUbVRJ9dWbuq1u2AJgAxoGlloWRJEnt5HLtsS5JkiRJGlUrgDHgrPqkOkC5fzZwXGknSZLUMhPrkiRJkqRRtaRMtzRZvqWhnSRJUktMrEuSJPVJRCyMiJURcXKZLux3TJI0YnaU6XiT5eMN7SRJklpiYl2SJKkPymB524CLgPPKdJuD6ElSV20CJoEzS031/cr9M4DtpZ0kSVLLTKxLkkaCPX81TEryfD3VYHrLgcVluhlYb3JdkrqjDEi6FlgFTETE8ohYHBHLqQYuXQWc5sClkiSpXZGZ/Y5hpLUzkqwkqTMlCbmOanCymklgbWZu6EdMUjPlR59tVEn01fWD6ZXekxNUpQmWmuiRpO5o8llhO1VS3c8KkiQJaC+Xa491SdJQs+evhtAKqsTOWfVJdYBy/2zguNJOktQFJXl+PPBE4HllutSkuiRJ6pQ91nvMHuuS1Dv2/NUwioiTqWqqL87M66ZYvhjYBTwvMz801/FJkiRJ0nxlj3VJ0nxhz18Nox1lOt5k+XhDO0mSJEnSgDGxLkkaZkvKdEuT5Vsa2kmDYBPVGABnlisr9iv3z6Cq+7tp7kOTJEmSJLXCxLokaZjZ81dDp5QlWgusAiYiYnlELI6I5VTli1ZRDaZn+SJJkiRJGlDWWO8xa6xLUu9YY13DrAysu46qnFHNdqqkuoPpSZIkSdIcayeXu2huQpIkqfsyc29ErAXWU/X8PZuq/Ms4VTmNVcAak+oaRJm5ISLOpxoDYAnVlRWbPF8lSZIkafCZWJckDbWSnFxD1fP34rpF26mS6vb8lSRJkiRJXWUpmB6zFIwkzY1SFsaevxoaTUrBTAJr/UFIkiRJkuZeO7lcBy+VJI2EzNybmRsz80NlalJdA6sk1ddTjQ+wHFhcppuB9WW5JEmSJGlA2WO9x+yxLkmS6jnoriRJkiQNJnusS5IkDa4VVOVfzqpPqgOU+2cDx5V2kiRJkqQBNKvBSyNiEfAM4NHAnYEvZ+a7y7K7l3nfysxbZxuoJEnSiFhSpluaLN/S0E6SJEmSNGA67rEeESdSXca8ATgD+EPgxLomy4GvAb85mwAlSZJGzI4yHW+yfLyhnSRJkiRpwHSUWI+IBwKfpupJ9Vbg2UA0NPs4cAPw27MJUJIkacRsAiaBM0tN9f3K/TOA7aWdJEmSJGkAdVoK5tXAocDTM/MzABG3zatn5s0RcTnw8FlFKEmSeiIiDgeWtdJ20dHHHnrY0seM3XjFJZO37rxqT4u72JqZN3Qe4WjKzL0RsRZYD0xExNlU5V/GqZLqq4A1DlwqSZIkSYOr08T6E4FLa0n1afwYeGiH+5AkSb21DPhqKw1v3XkVuy+baHf7JwCXt7vSfJCZGyJiDbAOuLhu0XaqpPqG/kQmSZIkSWpFp4n1o4EftdDuCOCgDvchSZJ6aytV8ntGix+1etkRD1x57vXf2njK7ssmtraxfTVRkuvnAyuoyuvtADbZU12SJEmSBl+nifWfAce30O4BtJaAlyRpViJiISYo21LKtLTUo3zs9AsAOOTY47fuuvRj9kLvknKObux3HJIkSZKk9nQ0eClwIfCwiHhiswYR8Syq5PtnO9zHrEXE4RGxOiL+PSK+ExF7IuL6iPhGRPxNRNxhmnVPjYhLI+K6iLgmIj4ZEY+dy/glSa2JiJOAbcBFwHlluq3MlyRJkiRJ6qpOe6yfAzyHasCt04GP1RZExB2BZwGvB64H3jDbIGfhecA7y9/fBv4LOBJ4LPA64OSIeEJm/qx+pYh4E/AS4EbgM1QDtT4FeGpErMnMiTmJXpI0o5I8Xw98AjiZA4NAngmsL6/b1quWJEmS5omIOJxqPKEZLTr62EMPW/qYsRuvuGTy1p1X7WlxF1vL1Z+S5rHIzM5WjFgNfAA4vEmTPcDJmflfnYU2exHx+1RJ9Ddl5rfr5i8BLgAeDnwoM59Xt+zXqHrZXw0sz8wryvzlVJdq3wAcl5k7W4zhSOBa4KjM3NWFf0uSVJTyL9uAzcDqzNxXt2wBMEGVZF9qWZjZGTv9gkdQDXR6wuQ5z7AUjCRJkgZWRNQ+u/bKCZnpZ2JpBLWTy+20xzqZORER48DLqHpzj1GVlrmSKjG9LjO/1+n2uyEz3we8b4r5OyLiz4GLgZMi4uDMvLksfnmZ/n0tqV7W+VJEvB34S+CFwLreRi/1j7WqNURWUL3/nFyfVAfIzH0RcTbVa/0KrGMtSZIkzRdbgRNaabj4UauXHfHAlede/62Np+y+bGJrG9uXNM91nFgHyMwfAC/tTihz7htleghwDLAjIg4DnlTmr59infVUifVnYmJdI6qU1VhHlaysmYyItZbT0ABaUqZbmizf0tBOkiRJ0ogrZVpa6lE+dvoFABxy7PFbd136MXuhS2pZp4OXjoJfKdNbgGvK3/enSrT/PDOvnGKd2gvsQ3ocm9QXdbWqNwPLgcVlupmqVrUDQWrQ7CjT8SbLxxvaSZIkSZIkzdp8Tqy/pEw/nZk3lb/vXaZTJdXJzOuBncAdI2Jxb8OT5lYp/7KOagDI1Zl5SWZel5mXAKvL/NeXdtKg2ARMAmeWmur7lftnANtLO0mSJEmSpK7oKLEeEXvbuN3a7aBnKyKeTlUn/Rbg1XWL7lCm043sfH2ZTplYj4hDIuLI2q1ZO2kA1WpVnzVVrWrgbOC40k4aCKX2/1pgFTAREcsjYnEZcHqizD/NMQIkSZIkSVI3dVpj/UdATjF/AXAscFC5/4MOt98zEbEM+CAQwF9l5jdmWKVdZwCv6fI2pblgrWoNpczcEBFrqK64uLhu0XZgjWMDSJIkSZKkbusosZ6ZY82WlUvvnwS8maou88kdRdYDEXEP4NPAHYE3ZOabG5pcV6aHT7OZI8p0d5PlZwNvqLu/mCalZaQBU1+r+pIpllurWgOrJNfPp7qiYgnVebrJnuqSJEmSJKkXOu2x3lQpGfE/EbEK+CbwSuCcbu+nXRFxJ+AzwH2A9wCnTdHsh2V6zybbOAI4GvhlZk6ZWC/12m+qW6fzoKW5VV+renV9ORhrVWsYlCT6xn7HIUmSJEmSRl/PBi/NzO1UvV5f0Kt9tCoi7gB8CnggsAH4o8ycqpTNd6iS4ncpvdsbPaJMv9mTQKU+sla1JEmSJEmS1JqeJdaLG4B79Xgf04qIQ4DzgUcD/w2c3CwxmJk3AheWu78zRZM1ZfrxbscpDYJSi3oN8GCqWtW7ynQca1VLkiRJkiRJQA9KwdRExH2AxwM/7dU+WohhIfAhqprvm4CTMvPmGVZ7A/A04FURcUFmXlG2tRx4EbAT+PeeBS31mbWqNazKa77nrSRJkiT1SEQcDixrpe2io4899LCljxm78YpLJm/dedWeFnexNTNv6DxCae50lFiPiN+bZvEdgPsBvwscCfxLJ/vokhcDzyp//wL4lyY1z0/LzF8AZOb/RMSbgZcAX4+IzwIHA08BAviDzNzZ68ClfrJWtYZNRJwErAPG6mZPRsRar7SQJEmSpK5ZBny1lYa37ryK3ZdNtLv9E4DL211J6odOe6y/F5iqRnlNLXv9fuA1He6jG+5Y9/ezmraC11Il3gHIzJdGxNepEvNPAW4G/gf4u8y8uPthSpI6VZLq64FPACcDW6jKF50JrI8IyxhJkiRJUndspUp+z2jxo1YvO+KBK8+9/lsbT9l92cTWNrYvDYVOE+t/S/PE+s1Ul+B/PjO/3+H2uyIzX0uVNO9k3fdS/YAgSRpQpfzLOqqk+urM3FcWXRIRq6kG3n19RJxvWRhJkiRJmp1SpqWlHuVjp18AwCHHHr9116Ufsxe6Rk5HifWSsJYkqd9WUJV/ObkuqQ5AZu6LiLOpBuBdgeWNJEmSJElSlyzodwCSJM3CkjLd0mT5loZ2kiRJkiRJs9ZpKRhJI6yU11hBlYzcAWyyjIYG1I4yHQcumWL5eEM7SZI0T/kZV5IkdVNLifWIuHAW+8jMfPIs1pc0h8pAkOuoymvUTEbEWgeA1ADaBEwCZ0ZEfY11ImIBcAawvbSTJEnzlJ9xJUlSt7XaY33lLPbRbJBTSQOmfOFYTzUQ5MlUZTTGgTOB9RGxxi8eGiSZuTci1lKdtxOlpnrtvD0DWAWssTeaJEnzl59xJUlSL7SaWD+up1FI6rtyaew6qi8cJwEnAs+kukz2JGAD8PqION8kpQZJZm6IiDVU5+/FdYu2UyXV/aIsSV1mSQ0Ni4bPuPVXt10SEauBCfyMK0mSOtBSYj0zf9DrQCT13QqqS2P/DbiChstky/xnlnYb5zQyaQYluX4+JnkkqecsqaEhU/uMe3J9yTiAzNxXrna7GD/jSpKkNjl4qaSaJWV6FlNfJntWQztpoJQk+sZ+xyGp9yLicGBZK20XHX3soYctfczYjVdcMnnrzqv2tLDK1sy8YXYRji5LamgI1T67bmmyfEtDO0mSpJaYWJdU89My/SJTXyb7OaryMD+dYl1JkubSMuCrrTS8dedV7L5sop1tnwBc3kFMI8+SGhpSO8p0HLhkiuXjDe0kSZJa0nFivfQUejnwW8BSYHGTppmZJvAlSZLULVupEuAzWvyo1cuOeODKc6//1sZTdl82sbXFbWtqltTQMNpEVdbwzIio/0GIiFhANdj59tJOkiSpZR0lvCPiKKoPHg8C9gI3A0H1K/+x5W8Aa7NLw+NuZfo4YKJ8Oa5d3n1GmV/fTpKkviilWlrqVT52+gUAHHLs8Vt3Xfoxe6LPjiU1NHQyc29ErKUqYTTVZ9xVVIOde5WFJElqS6c9yU+n+iDyb8DLgLcDz8/Me0TEocCzgXOAL1PVXpQ0+GqXv54JvIiqx1nN9jL/bLxMVpKk+cqSGhpKZZDzNVSljBo/4zougCRpIPR4HCFwLKGu6zSxvhr4CfCXmXlLRGRtQWbuAd4fEV8BvgasBV4/20Al9VztMtnHUpV3OpGqx9kO4AvABrxMVpKk+cySGhpaJbl+PlWpotpn3E32VJckDZBejiMEjiXUdZ0m1u8D/E9m3lLu7wOIiINq8zLzWxHxOeBUTKxLA6/hMtkNVL3TP0HV+2wDXiYrSdK8ZkkNDbtybm7sdxySJDXRy3GEattXF3WaWN9TbjW7yvRY4Ed186/hQF1mSQPOy2QlSdJ0/KwgSZLUG44jNHw6Taz/CLhX3f3aLx5PAD4IEBGLgEcBV3ccnaQ552WykiRpOn5WkCRJkjpPrG8C/iAiFmfmbuDjwFuAt0TEHYAfAy8ExoDzuhGopLnjZbKSJGk6flaQVC8iFuKPbZKkeabTxPqHqWr+PBb478z8SUScQVVL/W2lTQBXAa+cdZSaV1odBdkRkCVJkjQsWv2MC37O1XCJiJOoykON1c2ejIi1loeSJI2yjhLrmfkFYHnDvDdExBeBZwF3BL4LvCczr5l1lJpvWhoF2RGQJUmSNERa+owLfs7V8ChJ9fXAJ4CTOTCg8ZnA+ohw7AVJ0sjqtMf6lDLzy8CXu7lNzUstjYLsCMiSJEkaIi19xgU/52o4lPIv66iS6qszc19ZdElErAYmgNdHxPmWhZkdS+1I0mDqKLEeEauAT/lCrl5odRRkR0DWIPHybkmSNJ1WP+OCn3M1NFZQlX85uS6pDkBm7ouIs4GLS7uNcx7diLDUjiQNrk57rP8X8POI+A/gvMy8uIsxSdIw8vJuSZIkzSdLynRLk+VbGtqpTZbakaTB1mli/WPA04E/A/40IiaBc6mS7F6CKGk+8vJuSZIkzSc7ynQcuGSK5eMN7dQGS+1I0uDrdPDS346II4HfAU4BHg+8CvjriLicKsn+4cy8qmuRStIA8/JuSZIkzTObgEngzIioT/wSEQuAM4DtpZ3aZ6kdSRpwCzpdMTN3Zea/Z+aTgHsDrwC+SdVj8w3AjyLiMxHxe90JVZIkSZIkDYLSS3otsAqYiIjlEbE4IpZT9aZeBZxmb+qOWWpHkgZcx4n1epn5k8x8fWY+HHgQcBbwQ+DXgHd3Yx+SJEmSJGlwlPrea4AHU/We3lWm44D1v2envtTOVCy1I0l91mmN9en8APgW8B3gOCB6sA9JkiRJktRnmbkhIs6nKkmyhCrRu8me6rNmqR1JGnBdSayXQTV+A3ge8JvA4VQJ9R8A53VjH5IkSZIkafCUJPrGfscxSjJzb0SsBdZTldo5m6r8yzhVUn0V1VUB/oAhSX0yq8R6RDyOavDSNcAxVMn0a4APAh/MzC/OOkJJkiRJkqR5plwNsAZYR1Vip2Y7ltqRpL7rKLFefil9LtWgpQHsofoV9YPApzLz1q5FKEmSJEmSNA9ZakeSBlenPdZfCewDLqRKpm/IzN1di0qSJEmSJEmW2pGkAdVpYn0t8OHMdPRpSZIkSZIkSdK80lFiPTPf2O1AJEmaSkQcDixrpe2io4899LCljxm78YpLJm/dedWeFnexNTNv6DxCSZIkSZI038xq8FJJkubAMuCrrTS8dedV7L5sot3tnwBc3u5KkiRJkiRp/jKxLkkadFupkt8zWvyo1cuOeODKc6//1sZTdl82sbWN7UuSJEmSJLXMxLokaaCVMi0t9SgfO/0CAA459vituy79mL3QJUmSJElSTyzodwCSJEmSJEmSJA0TE+uSJEmSJEmSJLXBxLokSZIkSZIkSW3oKLEeEe+OiBe00O7UiHh3J/uQJEmSJEmSJGkQddpj/VTgxBbaPQ74/Q73IUmSJEmSJEnSwFnU4+0fDOzt8T4kSZIGTkQcDiybqd2io4899LCljxm78YpLJm/dedWeFje/NTNvmF2EkiRJkqRO9SyxHhEBPAL4ea/2IUmSNMCWAV+dqdGtO69i92UT7W77BODyDmKSJEmSJHVBy4n1iLiwYdZvTDGvfrv3BY4FPtBhbJIkScNsK1UCfFqLH7V62REPXHnu9d/aeMruyya2trFtSZIkSVKftNNjfWXd30mVND92mva3AJ8ATms/LEmSpOFWSrXM2Kt87PQLADjk2OO37rr0Y/ZClyRJkqQh0E5i/bgyDeD7wHrgr5q0vRn4RWbeMovYJEmSJEmSJEkaOC0n1jPzB7W/I+J1wNfr50mSJEmSJEmSNB90NHhpZr6u24FIkiRJkiRJkjQMOkqsR8STgBcDb8zMTU3aPB54KfCmzPx8xxFK6pqIOBxY1krbRUcfe+hhSx8zduMVl0zeuvOqPS3uYmupKSxJkiRJkiSNrI4S68CLgKcAvz9Nm68DTwX2ACbWpcGwDPhqKw1v3XkVuy+baHf7J9DCQH2SJEmSJEnSMOs0sf5o4GuZubtZg8zcFRGXA7/a4T4kdd9WquT3jBY/avWyIx648tzrv7XxlN2XTWxtY/uSJEmSpBn0+IpiryaWpB7rNLF+LHBxC+1+BDyyw31I6rLywaqlHuVjp18AwCHHHr9116Ufsxe6JEmSJHVXL68o9mpiSeqxThPr1wN3a6HdXalKwUiSJEmSJOmAXl5R7NXEktRjnSbWvwacGBH3zswfTtUgIu4NrAC+1GlwkiRJkiRJo8griiVpuC3ocL13A4cAn4iI25V6KfM+DhxU2kqSJEmSJEmSNBI66rGemR+KiGcBa4AvR8Q3gO+VxfcFHgoE8LHM/EBXIpUkSZIkqUGPB4AEB4GUJElT6LQUDMBzgTOBlwMPK7eancAbgbNmsX1JkiRJkmbSywEgwUEgJUnSFDpOrGfmPuDvI+IfgEcC9yqLfgR8NTNv7kJ8kiRJkiRNp5cDQNa2L0mSdBuz6bEOQGbeQjVAqYOUSpIkSZLmlANASpKkfuh08FJJkiRJkiRJkualWfVYj4h7A88ElgKLqQYsbZSZ+cLZ7EeSJEmSJEmSpEHRcWI9Iv4GeDW37fVeS6xn3f0ETKxLkiRJkiRJkkZCR6VgIuI5wGupBir9Y+CzZdGvA38KfI4qqf4G4EmzjlKSJEnSwIiIhRGxMiJOLtOF/Y5JkiRJmkud9lj/M+Bm4ImZ+YOIOBEgM2sJ9n+LiJcB/whMzDpKSZIkSQMhIk4C1gFjdbMnI2JtZm7oT1SSJEnS3Op08NKHABdn5g/K/QSIiP011jPzjcB3gFfNKkJJkiRJA6Ek1dcDm4HlVOMsLS/315flkiRJ0sjrNLF+CHBV3f09ZXp0Q7tvAI/qcB+SJEmSBkQp97IO+ASwOjMvyczrMvMSYHWZ/3rLwkiSJGk+6DSxvgO4a939H5fpgxra3RPwg7UkSZI0/FZQlX85KzP31S8o988GjivtJEmSpJHWaWJ9M3D/uvsbqQYrfV1EHAEQEc+m+lD9f7MJUJIkSdJAWFKmW5os39LQTpIkSRpZnSbWPw7cIyKeBJCZXwQuAp4I/DIifgF8iKr2+t91I1BJkiRJfbWjTMebLB9vaCdJkiSNrE4T6x8EHgB8vW7es4B3ANdQDWL0LeD5mfnp2QQoSZIkaSBsAiaBMyPiNt8jyv0zgO2lnSRJkjTSFnWyUmbeBHynYd4u4E/KTZIkSdIIycy9EbEWWA9MRMTZVOVfxqmS6quANZm5t49hSpIkSXOio8S6JEmSpPknMzdExBpgHXBx3aLtVEn1Df2JTFIvRMThwLJW2i46+thDD1v6mLEbr7hk8tadV+1pcRdbM/OGziOUJKl/OkqsR8QrM/MfWmh3DPDOzDypk/1IkiRJGiwluX4+sIJqoNIdwCZ7qksjaRnw1VYa3rrzKnZfNtHu9k8ALm93JUmSBkGnPdbPjohfB34vM6+cqkFEPBV4D3Bsp8FJkiRJGjwlib6x33FI6rmtVMnvGS1+1OplRzxw5bnXf2vjKbsvm9jaxvYlSRpKnSbWPws8BfhGRPx5Zn64tiAiDgb+CXgxkMA5s45SkiRJkiTNqVKmpaUe5WOnXwDAIccev3XXpR+zF7okaeQt6GSlzPx14OXA4cC5EfGBiDgyIh5CdZnYXwA/AJ6QmX/dtWglSZIkSZIkSeqzjhLrAJn5JuDRwP8BzwO+BXwZeBDwfuChmfnFLsQoSZIkSZIkSdLA6DixDpCZm4HVwG7g7sDBwAcy89TM3D378CRJkiRJkiRJGiyzSqxHxElUvdSPpCoBczPwuxHxwYg4sgvxSZIkSZIkSZI0UDoavDQijgDeApwK3AK8AlhHVQbmXKrSMI+LiN/LzE3dCVWSJElSL0XE4cCyVtouOvrYQw9b+pixG6+4ZPLWnVftaXEXW8tgiJIkSdJQ6yixDnwduC/wbeCUzPx6mb8lIh4FnAO8BLgwIl6fmWfMNlBJkiRJPbeM6krUGd268yp2XzbR7vZPAC5vdyVJkiRp0HSaWL8v8M/AKzLzNr1TMvNm4OURcQHwPqre7CbWJUmSpMG3lSr5PaPFj1q97IgHrjz3+m9tPGX3ZRNb29i+JEmSNPQ6Taw/IzM/NV2DzPzfiHgw8K8d7kOSJEnSHCplWlrqUT52+gUAHHLs8Vt3Xfoxe6FLkiRpXukosT5TUr2u3S+B53ayD0mSJEmSJEmSBlGnPdYBiIhFwDOARwN3Br6cme8uy+5e5n0rM2+dbaCSJEmSJEmSJA2CjhPrEXEi8EHgXkAACRwEvLs0WQ58FPgdYMPswpQkSZIkSZIkaTAs6GSliHgg8GlgCfBW4NlUyfV6HwduAH57NgFKkiRJkiRJkjRIOu2x/mrgUODpmfkZgIjb5tUz8+aIuBx4+KwilCRJkiRJkiRpgHTUYx14InBpLak+jR8Dd+9wH5IkSZIkSZIkDZxOE+tHAz9qod0RVHXXJUmSJEmSJEkaCZ0m1n8GHN9CuwfQWgJekiRJkiRJkqSh0Gli/ULgYRHxxGYNIuJZVMn3z3a4D0mSJEmSJEmSBk6nifVzgJuBiYj404g4trYgIu4YES8A/h24HnjD7MOUJEmSJEmSJGkwdJRYz8ytwMll/X+mGqQ0gd8HfgG8EzgEOCUzt3cnVEmSJEmSJEmS+q/THutk5gQwDrwV2ArsoerF/n3g34CHZOZ/dSFGSZIkSZIkSZIGxqLZrJyZPwBe2p1QJEmSJEmSJEkafB33WJckSZIkSZIkaT4ysS5JkiRJkiRJUhtMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUhkXd2EhEHALcCbgpM6/pxjYlSZIkSZIkSRpEs+qxHhF/HBFfA64HrgReX7fspIjYEBHHzzJGSZIkSZIkSZIGRkc91iNiIbAe+E3gFuDbwIMamn2jtPkq8P9mEaMkSWrD2OkXLAUWd3mzy2rTsdMv6PKm2T15zjOu6PZGJUmSJEnqlU5LwbwY+C3gk8ALM/OnEbGvvkFmfi8itgFPw8S6JElzoiTVv9vDXZzbi42OnX7B/UyuS5IkSZKGRaeJ9VOBnwLPyczrp2n3LeCEDvchSZLaV+up/rtUV5R1y6HAGDAJ7Onidh8AfJDu97CXJEmSJKlnOk2s3x/4zAxJdahqr9+lw31IkqTOfXvynGdc3uVtXtzl7dGDsjKSJEmSJPVcp4OX3kLVc20m9wZ2d7gPSZIkSZIkSZIGTqeJ9f8DToiIppdtR8RdgYcBX+9wH5IkSZIkSZIkDZxOE+sfAI4B3h4RBzcujIiFwNuAw4H3dR6eJEmSJEmSJEmDpdMa6+8Afgc4GXhsRPx3mf/QiHgzsAo4DvgMcO6so5QkSZIkSdK8Nnb6BUvp/qD3y2rTHoz/s3vynGdc0e2NShoMHSXWM3NvRDwdWAf8IfDHZdHDy20v8E7gJZmZ3QhUkiRJkiRJ81NJqn+3h7voScfQsdMvuJ/JdWk0ddpjnczcA/x5RLwWWAmMUZWWuRK4KDN/0oX4JEmSJGlg2XtSkuZM7bX2d4Fvd3G7h1LltCaBPV3c7gOAD9L99whJA6LjxHpNZv4c+I8uxCJJkqR5bMgSlCYnZe9JSeqPb0+e84zLu7zNi7u8PXrww6ikATPrxLokSZI0W8OYoDQ5Kew9KUmSNG/NKrEeESuBxwNLgEOaNMvMfOFs9iNJkqSRN0wJSpOTamTvSUmSpHmmo8R6RBwFnA+sAGKG5gmYWJckSVIrBj5BaXJSkiRJUqc91v+Bqqf6NuDtVJft7u5WUJI0KIas3i9Y81eSJEmSJKnnOk2s/xbwU+AxmXlNF+ORpIExjPV+wZq/kiRJkiRJvdZpYv0o4JMm1SWNuGGq9wvW/JUkSZIkSZoTnSbWrwCO6GYgkjTABr7eL1jzV5IkSZLUGcugSu3rNLH+VuCtEXF8Zm7rZkCSJEmDrAdfOvzCIUmSpL6xDGpv+aPF6OoosZ6Z74qIpcDnIuJVwGcz88ruhqZRYyJCkjTsevylY15/4ZCkRiYiJGnOWAa1R/zRYrS1lFiPiL3NFgHvKm2arZ6Z2WnPeI0IExGSpBHRiy8d8/4LhyQ1MhEhSX1hGdTu80eLEdZqwvtHQPYyEI08ExGSpFHS7S8d8/0LhyQ1MhEhSRol/mgxglpKrGfmWI/j0PxhIkKSJElSq0xESJKkgWSJFmkEDFn9SWtPSpIkSZIkaah1lFiPiAuBT2fmP87Q7jTg6Zn5pE72I2lmw1h/0tqTkiRJkiRJGmad9lhfSVWTbib3B57Q4T4ktWaY6k9ae1KSJEkaAD246rVXV7yCV71KkgZQr0vBHArc2uN9SKoMfP1Ja09KkiRJ/dfjq167fsUreNWrJGnw9CyxHhFHAo8FdvRqH5Kk4TVkYwOAPaUkSdLo6MVVr7244hW86lWSNKBaTqxHxPcbZq2JiJXTbPduZfrPHUUmSRpZwzg2ANhTSpIkjZxuX/Xa1StewateJUmDq50e62N1fydwh3Kbyi3AT4D/As7oKDJJ0igbprEBwJ5SkiRJkiSpTsuJ9cxcUPs7IvYB783MF/QkKknSfDHwYwOAPaUkSZIkSdJtdVpj/Q+Abd0MRJIkSZIkadgN2VhCjiMkSR3qKLGeme/rdiCSJEmSJEnDbBjHEnIcIUnqTKc91iVJkiRJknRbwzSWkOMISdIsmFiXJEmSJEnqroEfS8hxhCRpdhbM3ESSJEmSJEmSJNWYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNizqdMWIOAR4LvAEYAlwSJOmmZlP7nQ/kiRJkiRJkiQNko4S6xFxb+B/gPsCMUPz7GQfkiRJkiRJkiQNok57rL8FOB64EHgz8H3gum4FJUmSJEmSJEnSoOo0sf5k4ArgNzLz1i7GI0mSJKnLxk6/YCmwuMubXVabjp1+QZc3ze7Jc55xRbc3KkmSJHVLp4n1m4HLTapLkiRJg60k1b/bw12c24uNjp1+wf1MrkuSJGlQdZpYv5iqFIwkSZKkwVbrqf67wLe7uN1DgTFgEtjTxe0+APgg3e9hL0mSJHVNp4n11wCfj4g/ysx3djMgSZIkST3x7clznnF5l7d5cZe3Rw/KykiSJEld11FiPTMvj4inAh+MiN8FPgP8GNjXpP37Ow9RkiRJkiRJkqTB0WmPdYCnAHeluvzzxCZtAkjAxLokSZKaWnDIVYcSeznoyK8te/D7Tu93ONM65K4nLrtl18MhFx7a71gkSZIk9UdHifWI+CuqcjA3AR8Dvg9c18W4JEmSNI8cdNRXxg4+5gvQo4Ewu+ngY77Awcd8gZuvPnEMXtj1UiiSJEmSBl+nPdb/FNgF/GpmfqeL8UiSJGkeuuXaR07esuvhHHTk1045+JgvbO13PNO5+eoTl92y6+Hnkgsn+x2LJEmSpP7oNLF+LPDZUU6qR8RhwBnAc4F7A9cAnwZenZk/7mdskiRJo2bfTcfuAbhpzz22fufl/9rtATa7qm5wzT39jEOSJElS/3SaWP8esKCbgQySiDgUuBB4DLADOJ+qlvwfAKsi4jGZ+f3+RShJ0tSGqU41WKtakiRJrfFzrqRB02li/e3AP0TEWGZOdjGeQfEqqqT6l4CnZuZ1ABHxcmAd8G5gZd+ikySpiWGqUw3WqpYkSVJr/JwradB0lFjPzLdFxH2BTRHxaqqyMCNRHiUiDgZeXO7+eS2pDpCZb4iI3weeEBEnZOZX+xKkpDlhjwgNo2GqUw3WqpYkSVJr/JwradB0lFiPiL21P4F/L/OaNc/M7LRnfD88DjgK+F5mfm2K5euBhwDPBEyst2iYEpQmJ1VjjwgNo2GqUw3WqpYkSVJr/JwradB0mvD+EZDdDGSAPLRMm71I1+Y/pJ2NPuf+9z/88uc/f+/MLUfTnR982P1uvNuXYAgSlLXk5GE/XX6/y5+/8Rv9jmcmY3f59UN3LFrMklt3H3r5859/RL/jmc4wxQpw13s+csfPdz6EI+/wtT846g6Xf7ff8czk2usecb9d1z38PXe95eYdg358h+1cGKZ4hylWMN5eGqZYYbjiHaZYwXh7aZhiheGKd5hiBePtpWGKFYYr3mGKFYy3l4YpVhiueIcpVhi+eHvhOfe//+Ef+c53WmobmaOaH+9MRLwBeBnwxsx8+RTLHwp8Hbg8M0+YYvkhwCF1sxYDV37u2c/mDgcf3Jugh8BNC/ax44jh+pF2yfWHcsi+kR2jV5IkSZLUZX73laThdt3NN/OEj34U4KjM3DVd22Eq0TJX7lCmNzRZfn2ZLm6y/AzgNV2NaAQcsm8BY7sP73cYkiRJUtcMYwINTKJJvbTjiD285lcH/mLX23jdl+/n93VJ6kDXEusRcUeAzPxlt7Y5pM4G3lB3fzFw5b984xtLXvGoR+3uU0x99/K7/PpDdyxa/MUlt+5+3Bt+/t8DXV5lmGKF4Yp3mGIF4+2lYYoVhiveYYoVjLeXhilWGK54hylWMN5eesmDjvidG+/2zff0O452HfbT5X/w9s03/ke/45jOMJ0HMHzxvuSej3z0zw86+MJhKHlYK3d4l1tuftKbr/zKpf2OZyZvPOrxj77le782VMf2jUfd/KQ37x78Yztsz7NhineYYoXhineYYoXhi7cX/uUb31gM7Gil7awS6xHxdOAlVAN+Hlbm3Qh8AXhLZn5yNtvvk+vKtNnPtbX6QlMmyTPzJuCm2v3aoK4f+c53bvjw1q3XT7XOfDB5+gV7ACYPvuOeR3zgAwN9HIYpVhiueIcpVjDeXhqmWGG44h2mWMF4e2mYYoXhineYYgXj7aVfvObfv8v2R3LQkV875eBjvrC13/HM5OarT1x2y66Hn3t9LvzuIz7wwoE+tsN0HsDwxfuzN/zpkoOP+QI3wntu7HcwMzniSxx0ty/xs6tPXPKIswf/2P7o9Auu5WbYc829v3npK94x0ANsjpXz9kdw7SM+8JKBP7bD9jwbpniHKVYYrniHKVYYvnh74SMRC1tt23FiPSLeCPwlEGXWtVQDmh4NPBV4SkS8eao65QPuh2V6zybLa/N/MAexSJIkSRpQ+246dg/ATXvusfU7L//XgU6gAYydfkHtz+GrX6OuuuXaR07esuvhQ/GjUO0HIXLhZL9jkSSpXkeJ9Yh4DlVP9Z8Bfw98IDOvLcuOBJ4PvAp4SURckpkf7VK8c6F2mcMjmiyvzf/mHMQizWjBIVcdSuzloCO/tuzB7zu93+FM65C7nrjsll0Ph1x4aL9jUX8N03kLnruSJGm0DNOPQv4gJPWe38+kznTaY/3PqN7UHp+Zt6kZVkZLfVtEfBb4emk7TIn1L1L1vr9vRDwsM7/esHxNmX58TqOSmjjoqK+MHXzMFwDO7XcsMzn4mC9w8DFf4OarTxyDF17c73jUP8N03oLnriRJc80kjyTNHb+fSZ3pNLH+UODCxqR6vcz8bkRcCJzY4T76IjNvjoh/Bv6a6geCp2bm9QAR8XLgIcDnMvOr/YxTqvEyTg2jYTpvwXNXkqS5ZpJHkuaO38+kznSaWD8YaKWA/fWl7bD5e+DXgMcCV0TEJuA+wK8CPwde0MfYpNvwMk4No2E6b8FzV5KkuWaSR5Lmjt/PpM50mlj/HvCEiDii1pu7UUQcDjyhtB0qmbknIp4InAE8D1gNXAO8F3h1Zl7Zv+gkSZIkabSZ5JEkjQJLm422ThPrHwVeB0xExJ9l5hX1CyPivsDbgLsA/zy7EPsjM28E/qbcJEmShuqDsR+KJUmSpP6ytNlo6zSx/nrgt4AnA9+KiMuBybLsPsAJwELgK8C6WcYoSZI0EIbpg7EfiiVJkqT+srTZaOsosZ6ZN0bESuBsqnrjjyq3mhuBdwNnlJ7fkiRJQ2+YPhj7oViSJEnqL0ubjbZOe6yTmdcBfxERr6TqoX73sugnwFcz84YuxCdJkjQwhumDsR+KJUmSJKl3OkqsR8Q1wObMfEJJoG/qbliSJEmSJEmSJA2mTnusLwKu7GYgkiRJkrpvmAbdBQfelSRJ0nDoNLH+f8A9uhmIJEmSpO4bpkF3wYF3JUmSNBw6Tay/FXh/RJyYmV/oZkCSJEmSumeYBt0FB96VJEnScOg0sf4F4F3Af0fEu4CPAz+kyeBYmfnDDvcjSZIkaRaGadBdcOBdSZIkDYdOE+uTQAIBvLjcmslZ7EeSJEmSJEmSpIHSacL781QJc0mSJEmSJEmS5pWOEuuZubLLcUiSJEmSJEmSNBQWtNIoIi6MiFfU3X98RNyvd2FJkiRJkiRJkjSYWkqsAyuBZXX3NwKndzsYSZIkSZIkSZIGXauJ9ZuBI3oZiCRJkiRJkiRJw6DVGuvbgCdHxBOA7WXeHSLi3q2snJk/7CQ4SZIkSZIkSZIGTauJ9XcAbwIurJv32+U2k2xjP5IkSZIkSZIkDbSWEt6Z+ZaIuBL4LeCewBOBnwFbexibJEmSJEmSJEkDp+We5Jm5AdgAEBH7gE9l5gt6FZgkSZIkad46vEwfMXb6Bd3c7qHAGDAJ7Onidh/QxW1JkqQh0GmJltcBX+tmIJIkSZIkFcvK9J19jaJ9u/sdgCRJmhsdJdYz83XdDkSSJEmSpGKiTLcCN3Rxu8uAc4FT6H5p092T5zzjii5vU5IkDSgHFZUkSZIkDZTJc57xC+Bd3d5uXVmZrZPnPOPybm9fkiTNHwv6HYAkSZIkSZIkScPExLokSZIkSZIkSW2wFIwkSZIkdebwMn1EXYmRbjgUGAMmgT1d3O4DurgtSZKkec3EujT8hukLnV/mJEnSKFlWpu/saxTt293vACRJkoadiXVp+A3jFzq/zEmSpFEwUaZbgRu6uN1lwLnAKWXb3bR78pxnXNHlbUqSJM07Jtal4TdRpsPyhc4vc5KkqXgFVu8M07GFITq+k+c84xfAu7q93brHaevkOc+4vNvbl+jN68K8f02QJM0vs0qsR8RK4PHAEuCQJs0yM184m/1Ias4vdJKkEeEVWL0zjMcWhuf4SsNoGF8XfE2QJA2UjhLrEXEUcD6wAogZmidgYl2SVM/ek5IaTZSpV2B130SZDsuxheE6vtIwmijTbr4u+JogSZpXOu2x/g9UPdW3AW8Hvou/HkuSWjeMvaTA9zqpZ7wCq3c8tpIa9eJ1wdcESdJ802li/beAnwKPycxruhiPJGl+mChTe092n1cDSJIkSZLUY50m1o8CPmlSXW1wcBxJ+9l7sqe8GkCSJEmSpB7rNLF+BXBENwPRyBvGRI9JHknDaKJMvRpAkiRJkqQe6TSx/lbgrRFxfGZu62ZAGlkTZergOJLUQ14NIEmSJElS73WUWM/Md0XEUuBzEfEq4LOZeWV3Q9MocXAcDSlrVUuSJElqxzB9h/D7gyTNQkeJ9YjYW/uTkiyNiGbNMzM77RkvSf00jCWMwDJGkiRJUr8M43cIvz9IUgc6TXj/CMhuBiJJA2iiTK1VLUmSJKkVE2U6LN8hhun7wzBdDQDDdUWAx1bqQKelYMa6HIckDRxrVUuaQi++dPiFQ5KkEeF3iJ4axqsBYDiuCPDYSh2wRIskSVLrhvFLh184JEnSKJgo02G5GgCG54qAiTL12Ept6FpiPSLuCJCZv+zWNiVJkgbMRJl280uHXzgkSZJm4NUAveOxlTozq8R6RDwdeAnwOOCwMu9G4AvAWzLzk7OOUJIkaUD04kuHXzgkSZIkafgs6HTFiHgj8PH/397fx1t2lvXh/+dKokBgAK0gEZREiQQ6iIooo44mooJ11DEdtUEtWGutWot2ojbhKz7gL7GWWOsDotUWHwg+TMeJorVqzdiBdAqCSEYayUAGRQdBnhIgICTX74+1TjicnDM5+8zZZ5+9z/v9es3rzl7r3vtcbMcze3/Wva47yZdk6Dd6e5J3j//9pUl+p6p+fDOKBAAAAACA7WJDwXpVfV2GlepvS/Jvk3xMd39Md39skocm+c4kb03y7Kr62k2qFQAAAAAAZm6jrWC+Pcn7k3xBd79++Ynuvj3Jz1TVHyZ5zTj3N86mSAAAAACAOXP+OH7mshaQm+H+SS5McipDRrtZHreJr7XwNhqsPzHJH68M1Zfr7tdX1R8n+fwN/gwAAAAAgHl1yTj+l5lWMbk7Zl3APNhosP7RSd67jnnvHecCAAAAAOwkR8bxliTv28TXvSTJi5N8/fjam+mOUz/65bdu8msupI0G629I8oVV9cDuXjVgr6rzk3zhOBcAAAAAYMc49aNf/vdJfmGzX3dZW5lbTv3ol796s1+f9dnQ5qUZeqY/PMmRqrp45cmq+pQkh5M8LMmvb7w8AAAAAADYXja6Yv35Sb4qyVOTvK6qXp2hWX6SPDrJk5Kcm+RPk1x3ljUCAAAAAMC2saFgvbvvrKpLk1yb5F8kefL4Z8mdSf5rkqu6+86zrBEAAAAAALaNja5YT3e/J8l3VtX3ZVih/gnjqb9N8qru3syG/AAAAAAAsC1sOFhfMgboxzahFgAAAAAA2PY2unkpAAAAAADsSOtasV5Vz03SSX6mu98xPl6v7u7nbag6AAAAAADYZtbbCuYHMwTrv57kHcse1zqe20kE6wAAAAAALIT1BuvfNI6nVzwGAAAAAIAdZV3Benf/0pkeAwAAAADATrGhzUur6pOq6mPXMe9jquqTNvIzAAAAAABgO9pQsJ7ktiT/cR3zfizJGzf4MwAAAAAAYNvZaLBeWd/GpUtzAQAAAABgIWw0WF+vj0ty55R/BgAAAAAAbJl1bV6aJFX1BSsOPWKVY8tf97FJnpbkLzZYGwAAAAAAbDvrDtaTHE3Syx4/bfyzlhrnXzd5WQAAAAAAsD1NEqz/cj4crD8zyRuSvHyNuf+Q5G+T/E53v3rj5QEAAAAAwPay7mC9u5+19N9V9cwkL+vufzGNogAAAAAAYLuaZMX6Pbp72pueAgAAAADAtiQgBwAAAACACWxoxfqSqvqkJF+R5OIkuzJsWLpSd/c3n83PAQAAAACA7WLDwXpVPTfJ9+cjV70vBeu97HEnEawDAAAAALAQNtQKpqq+LskPJvnrJP8qyR+Op56W5NuS/EmGUP3Hk3zRWVcJAAAAAADbxEZXrH97kn9Icll3v6mqPj9JunspYP+5qvruJD+W5MhZVwkAAAAAANvERjcv/bQkN3X3m8bHnSRVdU+P9e7+T0n+Msn/d1YVAgAAAADANrLRYP1+Sd6y7PH7x/GhK+b9eZInb/BnAAAAAADAtrPRYP10kocve/w34/iPV8x7VJJzN/gzAAAAAABg29losH5zkscue3w0w2alP1RVD0ySqvraJHuT/MXZFAgAAAAAANvJRoP130nyyKr6oiTp7pcnuTHJZUneWVV/n+QlGXqvP28zCgUAAAAAgO1go8H6ryZ5XJLXLDv21Ul+Psk7kuxK8rok39jdv382BQIAAAAAwHZy3kae1N0fSPKXK47dnuRfj38AAAAAAGAhbShYBwAAFk9VnZ/kkvXM3fXk/Zc88PGX5r2vO3pJ1b71/ohbuvt9Gy4QAAC2CcE6AACw5JIkr1rPxDteeSR3vPJIkrx4gtd/UpJXT14WAABsL+sK1qvqjzNsRPrM7n7z+Hi9urufuqHqAACArXRLhvD7Pp330Efc/wEXP+XCO289fupD73rL+yd4fQAAmHvrXbF+aYZg/fxlj9erJ5gLAADMyNimZZIV5TdNqxYAANjO1husXzSOf7PiMQAAAAAA7CjrCta7+01negwAAAAAADvFORt5UlV9zGYXAgAAAAAA82BDwXqS01X1W1V1oKrut6kVAQAAAADANrbRYP3dSb4qya8n+buq+sWqempV1eaVBgAAAAAA289Gg/ULknxZkuvH1/imJH+Q5K+r6j9W1WdsUn0AAAAAALCtbChY7+67u/t/dvc3Jvn4JF+f5H8keXiSg0n+tKr+oqquqqoLN61aAAAAAACYsY2uWL9Hd9/Z3S/p7n0ZVrL/myTHkzwuyY8kOXm2PwMAAAAAALaLsw7Wl+vut3f3C5L8syQvTFLjHwAAAAAAWAjnbdYLVdVDk3xNhrYwn58PB+r/Z7N+BgAAAAAAzNpZBetVdf8kX5nkGUmenuSjMgTqtyR5cZLru/u2sy0SAAAAVlNV5ye5ZD1zdz15/yUPfPylee/rjl5StW+9P+KW7n7fhgsEABbShoL1qnpahjB9f5IHZQjTTyf5tSQv7u5Xb1aBAAAAcAaXJHnVeibe8cojueOVR5JhIdh6PSmJ77gAwEfY6Ir1/zGOdyT55QwfSv64u+/elKoAAABgfW7JEH7fp/Me+oj7P+Dip1x4563HT33oXW95/wSvDwDwETYarP9OhjD9t7t7vR9GAAAAYFONbVomWVF+07RqAQB2jg0F6939VZtdCACwtfSkBQAAgI05q81Lk6SqPjbDbXcfl+RN3e3qP2xTQjRgBT1pAQAAYAM2HKxX1cOS/OckB5KcOx7+pYy31VXVv0zyY0m+srtfdpZ1AptDiAYspyctAAAAbMCGgvVxlfpNST4lyWuSvDzJd6yYdjjJz2YI3gXrrNt6V1VbUb0hQjTgHnrSAgAAwMZsdMX6czKE6j/c3T+YJFX1EcF6d7+jql6b5AvPqkJ2onWtqraienJCNAAAAAA4exsN1vcnef1SqH4Gb0hy6QZ/BjvXulZVW1ENADAbVXVukr1JLkhyOsmx7r5rtlUBAMDW2Wiw/sgkN6xjXid58AZ/BjvUhKuqragGANhCVXV5kuuSXLjs8KmqOtjdh2dTFQAAbK1zNvi82zOsTrkvn5LkbRv8GQAAwDYyhuqHktycZE+SXeN4c5JD43kAAFh4Gw3WX5nkyVV10VoTquqJST49w8amAADAHBvbv1yX5KVJ9nf38e5+T3cfz9Aq8qVJnj/OAwCAhbbRYP2nktwvyW9V1eNWnqyqxyT5lSSV5Kc3Xh4AALBN7M3Q/uWa7r57+Ynx8bVJLhrnAQDAQttQsN7dv5/kx5J8WpITVXVLhn7qT6uqP0/y/5LszvCh+2WbVSwAADAzS60gT6xx/sSKeQAAsLA2umI93f3vk3xdhn6Kn5phdfoFSZ6Q5NYkX9/d378ZRQIAADN3ehx3r3F+94p5AACwsM47myd3928m+c2qeliG20LPSfLm7v6bTagNAADYPo4lOZXk6qrav7wdTFWdk+SqJLeN8wAAYKGdVbC+pLvfluRtm/FaAADA9tPdd1XVwSSHkhypqmsztH/ZnSFU35fkQHffNcMyAQBgS2xKsA4AACy+7j5cVQeSXJfkpmWnbssQqh+eTWUAALC11hWsV9Ufn8XP6O5+6lk8HwAA2CbGcP2GJHsz7LF0OskxK9Vh8VTV+UkuWc/cXU/ef8kDH39p3vu6o5dU7Vvvj7ilu9+34QIBYIbWu2L90jWOd4ZNS890riesCQAA2MbGEP3orOsApu6SJK9az8Q7Xnkkd7zySJK8eILXf1KSV09eFgDM3nqD9YtWOXYwybdl6LH4kgwbGSXJo5NckeRAkhdmuE0UAAAAmC+3ZAi/79N5D33E/R9w8VMuvPPW46c+9K63vH+C1weAubSuYL2737T8cVV9fZJvT/JV3f27K6a/NsnvVNWvJvntJK9I8qYAAAAAc2Ns0zLJivKb7nsKACyGczb4vO9O8rJVQvV7dPfvJXnZOBcAAAAAABbCelvBrPS4JEfWMe9vk3zVBn8GAAAAwEKa8uawNoYFmLKNBuvvTfLZVXVOd9+92oSqOifJk8e5AAAAAHzYNDeHtTEswJRtNFj/n0mekeSFVXWwu+9YfrKqHpRh09JPTnL92ZUIAAAAsHCmuTmsjWEBpmyjwfpVSb44yTcn+Zqq+v18eIPSRyd5epIHJ/m7JFefbZEAAAAAi8TmsADzbUPBene/uar2JPnZJE9L8nWrTPuDJN/W3X99FvUBAAAAAMC2stEV6+nuU0m+rKouSvL5ST5hPHU6ycu6+41nXx4AAAAAAGwvGw7Wl3T3bUlu24RaAAAAAABg2zvrYB0Apqmqzk9yyXrm7nry/kse+PhL897XHb2kat96f8QtY39LAAAAgHURrAOw3V2S5FXrmXjHK4/kjlceSZIXT/D6T8pkm0YBAAAAO5xgHYDt7pYM4fd9Ou+hj7j/Ay5+yoV33nr81Ife9Zb3T/D6AAAAAOsmWAdgWxvbtEyyovymadUCbA9TbhGlPRQAAHCfBOsAAMybabaI0h4KAAC4T4J1AADmzTRbRGkPBQAA3CfBOgAAc0WLKAAAYNY2LVivqvsneUaSxye5O8mJJL/W3f+wWT8DAAAAAABmbVOC9ar6tCQvTfKoZYc7yXOr6su6+9bN+DkAAMDsVdW5SfYmuSDJ6STHuvuu2VYFAABb55xNep2fS/KBJJcleWCShyc5mOTCJD+5ST8DAACYsaq6PMnJJDcmuX4cT47HYduqqnOr6tKqumIcz511TQDA/FpXsF5Vjz/DuY9O8jlJruruP+nuO7v777v7J5L8fpIv2JRKAQCAmRrD80NJbk6yJ8mucbw5ySHhOtuVC0IAwGZb74r111TV86vqQauc+1CSD2ZYpb7Sw5PcudHiAACA7WFc3XtdhhaQ+7v7eHe/p7uPJ9k/Hn++VcBsNy4IAQDTsN4e689N8pwkV1TV93b3i5dOdPfdVfXbSX60qj42yZ8mOT/DRqafleQXN7lmAIBtr6rOT3LJfc3b9eT9lzzw8Zfmva87eknVvvW+/C3d/b6zKhAmtzdDq8cruvvu5SfG7wTXJrlpnHd0y6uDVaxyQWjp7+7xqtqf5EiGC0I32CcAAJjEuoL17v7RqvrVDB9IfqWq/lWSf9PdN49TvjXJi5L8cIZNS2s8fijJd29qxQAA8+GSJK+6r0l3vPJI7njlkSR58X1MXe5JSV69sbJgwy4YxxNrnD+xYh5sBy4IAQBTsd4V6+nuNyf5uqp6YZKfSvKqqvrZJM/t7nck+cqqujgfXpn1F939xk2vGABgPtySIQA/o/Me+oj7P+Dip1x4563HT33oXW95/wSvDVvt9DjuTnJ8lfO7V8yD7cAFIdiB1nvnYOLuQWDj1h2sL+nuG6vqiUmenaFFzD+rqu/r7hd1961Jbt3sIgEA5s34ZWu9q8pvmmYtsEmOJTmV5OqqWt5SI1V1TpKrktw2zoPtwgUh2JnWdedg4u5BYOMmDtaTZOw99+NVdX2SH0vyi2N7mO/o7j/bzAIBAIDZ6+67qupghnaPR8YWGicyBJNXJdmX5IA+1WwzLgjBzrSuOwcTdw8CGzdxsF5V5yV5SHe/vbvfkuSfV9XPJfnpJK+oql9IcnV3v3OTawUAAGaouw9X1YEMey8tv9Pitgyh+uHZVAarc0EIdqYJ7xxM3D0IbMA5651YVV9bVa9NcmeSt1bVe6rq16vqU7r75RmuBH5Xkq9N8vpxBTsAALBAxvD8MUkuS/KMcbxYqM52Nf7dPJDkCRnCs9vHcXdcEAIANmhdK9ar6tsyrEh/W5JfTPLODP2qvjrJU6vqid39N0l+pqp+LcmPJvnZqvqXSf5Nd79iKtUDwKiqzk2yN8PmY6eTHLP6DGA6xt+vR2ddB6zXeLfFDfFZAQDYJOttBXNlkr9O8hnLW7xU1f4kh5P8iyTPS5LufnuSb6mqn0/yMxlWAmyolzsArEdVXZ6hLcGFyw6fqqqDVqEBsB1U1fkZFifdp11P3n/JAx9/ad77uqOXVO1b74+4ZWx9wBpcEAIANtN6A+9HJvndVfqm/69x/ISVT+juVyb57Kr65rOoDwDOaAzVDyV5aZIr8uG+qVcnOVRVbvEGYDu4JMmr1jPxjlceyR2vPJIkL57g9Z+UyfoJw6Zx5yAAO9F6g/W/yNDy5cljYJ6qqiQHk3SS1631xO7+xbOuEgBWMX6Juy5DqL6/u+8eTx0f76o6kuT5VXWDL3cAzNgtGcLv+3TeQx9x/wdc/JQL77z1+KkPvest75/g9WHLuXMQgJ1qklYwv5chqPjLDD3WPznJxyd5bYa+6wCw1fZm+BJ3xbJQPUnS3XdX1bUZWpLtjVu/AZihsU3LJCvKb5pWLbBZ3DkIwE52znomdfeNSR6X5IVJ3pHkoUlek+TZST5HLz8AZuSCcTyxxvkTK+YBALAJVrlz8Hh3v6e7jyfZPx5//jgPABbOujcV7e5TSb5jeqUAwMROj+PuJMdXOb97xTwAADaHOwcB2NHWtWIdALapY0lOJbm6qj7i37Tx8VVJbhvnAQCwedw5CMCOJlgHYG6NG5IeTLIvyZGq2lNVu6pqT4aNS/cludLGpQAAm275nYOrcecgAAtNsA7AXBs3xDqQ5AkZbje+fRx3J7FhFgDAdLhzEIAdbd091gFgu+ruw1V1Q4YenhdkWBl1zEp1AIDp6O67qupgkkMZ7hy8NkP7l90ZQvV9GRY5+DwGwEISrAOwEMYvbUdnXQcAwE4xLm44kOS6DHcMLrkt7hwEYMEJ1gEAAIANcecgADvVwgbrVXVJkq9K8vQMfXcfkuTtGa6i/6fuXrPPW1U9Ksnzkjwtyccm+askL0lybXe/f8qlAwAAwNxw5yDsHFV1fpJL1jN315P3X/LAx1+a977u6CVV+9b7I27p7vdtuEDYQgsbrCf5oySPTPKeJMeTvCPJ45N8dZL9VfXvuvsnVj6pqh6T5P8k+bgM/eGOJfmsJM9N8tSqemp3f2BL/hcAAAAAwPZxSZJXrWfiHa88kjteeSRJXjzB6z8pyasnLwu23iIH67dk2DDlN5evMq+qb03ywiTPr6o/6O7XrXjeizKE6j/Z3c8en3Nekt/IEMpfleQHp149ABOpqnPjFmQAAIBpuiVD+H2fznvoI+7/gIufcuGdtx4/9aF3vWW9HSBu2XhpsLUWNljv7i9e4/jPVdXlSb40ydck+aGlc1X12Uk+L8lbk3zvsud8qKq+LcOu5v+2qn6kuz80zfoBWL/x9/p1SS5cdvhUVR20aRYAAMDmGNu0TLKi/Kb7ngLz6ZxZFzAjfz6On7Di+JeP4++sbPfS3X+XoS3MxyT5/OmWB8B6jaH6oSQ3J9mTZNc43pzk0HgeAAAAYNPs1GD9k8fxLSuOP3Ec17rytnT80za9IgAmNrZ/uS7JS5Ps7+7j3f2e7j6eZP94/PnjPAAAAIBNseOC9ar6lAwtXZLkt1ec/qRxfPMaT186/ujNrguADdmbof3LNd199/IT4+Nrk1w0zgMAAADYFAvbY3014yakL0pyvyS/3t0rdzF+0Di+b42XeO847jrDz7jf+Pq5r7kAnLULxvHEGudPrJgHAAAAcNa2bbBeVb+V5HETPu2fd/crznD+JzP0R39jkm/faG334aokPzCl1wbgI50ex91Jjq9yfveKeQAAAABnbdsG6xlu3X/shM85f60TVfWcJN+W5O+SPK2737HKtPfcx+s8cBzvOEMN1yb58WWPd2Xt1jLAgqiq85Ncsp65u568/5IHPv7SvPd1Ry+p2nffTxjcMu6+zkc6luRUkqurav/ydjBVdU6Gi523jfMAAAAANsW2Dda7+9M367Wq6l8n+ZEk707y9O4+ucbUv0ryGUketcb5peNvWutndfcHknxg2c+euF5gLl2SZGV7qVXd8cojueOVR5LkxRO8/pOy9sbKO1Z331VVB5McSnKkqq7N0P5ld4ZQfV+SA9191wzLBAAAABbMtg3WN0tV/bMkP5Ohb/qXd/drzjD9z5N8VZLPXOP80vHXblqBwKK4JUP4fZ/Oe+gj7v+Ai59y4Z23Hj/1oXe95f0TvD6r6O7DVXUgyXVJblp26rYMofrh2VQGAAAALKqFDtar6p8k+eUkH0ry1d398vt4yu8meW6Sr6iq+42rz5de6+OT7E3yziT39TrADjO2aZlkRflN9z2F9RrD9Rsy/J6+IENP9WNWqgMAAADTsLDBelV9XobWAJXka7v7D+7rOd39iqp6eZLPS/IfknzX+FrnJXlBko9K8pPd/cFp1Q3Axowh+tFZ1wEAALDTVdW5sfCJBbewwXqSlyZ5QIZWAPurav8qc17W3b+w4tg3Jfk/SZ5dVV+U5HVJnpzkkzOsML12ahUDAAAAwByrqssztOq8cNnhU1V1UKvOtVXV+Rn2b7tPu568/5IHPv7SvPd1Ry+p2rfeH3HLeLc9m6S6e9Y1TEVVred/2C9197NWee4nJvnhJE9P8rEZNjV9SZJrunu9/ZCXXuvBGTZNfUh33z7Jc2FWXFkGAGDR+IwLMH1jqH4ow4LXa5KcSLI7ydVJ9sU+WGuqqs9M8qop/ogndfckLWx3pEmy3IUN1rcLwTrzZq0ry0lcWQYAYC75jAswfeMFzJNJbk6yv7vvXnbunCRHMoTsF7uweW+TrFg/76GPuP8DLn7KhXfeevzUh971lvUuArZifR0myXIXuRUMMKEVV5avyEdeWT5UVa4sAwAwV3zGBdgyezNcwLxieaieJN19d1Vdm6HN8t7YH+textB7khXlN02rFtbHivUps2KdeeHKMgAAi8ZnXICtU1VXJLk+ya4kd2ZF+60k5ye5Pckzuvsls6oTzsSKdWAjXFkGAGDR+IwLsHVOj+O/SfKtuXf7rZ9bMQ/m2jmzLgDYNi4YxxNrnD+xYh4AAGx393zGrapzq+rSqrpiHM+Nz7gAm+lYkrcmuTbDnUJ7Mqxe3zM+vjbJ343zYO5ZsQ4sWbpivDvJ8VXO714xD4CzNIY6H3GLrFYEAJvK6kmA2allf2DhWLEOLDmW4cvF1WO/yXuMj69KcltcWQbYFONmeieT3JihF+WNSU6OxwHYHFZPAmydvUkeniE/eEKGVlu3j+Pu8fjHj/Ng7gnWgSTJuELyYJJ9SY5U1Z6q2lVVezJs6rQvyZVWUgKcvTE8P5TVQ55DwnWAqbF6EmB6ltpq/XSSxyS5LMkzxvHiJD+zYh7MteruWdew0CbZSRa2gzHMuS4feZvsbRlC9cMzKQpggYztX05mCNH3L99Mb7xD6EiGFT0Xu5gJcHaq6tIMdwRdlXu3grktyc9nWLV+WXcf3drqABbLst+5e7r7Xi1mx4V7N8XvXLaxSbJcwfqUCdaZR3r+AkyPLxwAW6eqrsjQbmtXkjuz4jNukvMztCl4Rne/ZFZ1AiwCC0hYBJNkuTYvBe5l/Afu6KzrAFhQS7e+nljj/IkV8wDYuKVNSXePFzOPLj9ZVbtXzANgg7r7rqo6mKHl4ZGqujbDZ9ul/ur7khwQqp8diyG3Dz3WmUtVdW5VXVpVV4zjubOuCQDW6Z6QZ43zQh6AzXMsyakkV4+rJe8xPr4qQ0sYm5cCbIKxheyBrL556QEtZs/O2L73ZIY7YK8fx5P2aJoNwTpzxy8RAOackGeLuBAPjCv4DmZYJXmkqvZU1a6x7daR8fiVVvoBbJ4xPL/X5qVC9bMz5l6HMrTa2ZOhzdme8fEhudjW02N9yvRY31zLfom8NMk1+fAtRVfnw7cU+UUNwLa24t+ztW6R9e/ZWVhjM+5TSQ56b2HnWeN3wm0ZQnW/EwDY1vSv3zo2L91GBOubxy8RABaJkGd6XIgHVqMnLQDzqqouzdCxYc+4Z8jK83sytNy5rLuPbmlxC8bmpSyqvRnChyuWh+pJ0t13j5ti3DTOO7rl1QHA2atZFzDvxuDsugyh+vIL8ceran+GC/HPr6obBGqws4z/P3901nUAwAZcMI4n1jh/YsU8toAe68wTv0QAWAj6I07V0oX4a1a7EJ+h9c5F4zwAAJgHp8dx9xrnd6+YxxYQrDNP/BIBYO6tsqL6eHe/Z7ylc/94/Pk22twwF+IBAFg0xzLsF3T12A75HuPjqzK0lTy29aXtXIJ15olfIgAsAiuqp8uFeAAAFsrYzuxghv2CjlTVnqraNfZWPzIev1Krw60lWGdu+CUCwIKwonq6XIgHAGDhdPfhJAeSPCHDHoO3j+PuJAfG82whwTpzxS8RABaAFdVT5EI8AACLasy9HpPksiTPGMeL5WGzUd096xoWWlU9OMm7kzyku2+fdT2LYuw7uzfDar7TSY75ggzAPBj/DTuZYaPS/cvbwYwrqo9kCNcv9m/bxo0bwF6Xoe3OktsyhOq+eAAAAPcySZYrWJ8ywToAsNIY+h7KsFHptRnav+zO0KZkX9yFtSlciAcAACYhWN9GBOsAwGqsqAYAANheBOvbiGAdAFiLFdUAAADbxyRZ7nlbUxIAACuNIfrRWdcBAADAZM6ZdQEAAAAAADBPrFgHYCFoqQEAAABsFSvWAZh74yaQJ5PcmOT6cTw5HgcAAADYVIJ1AObaGJ4fSnJzkj1Jdo3jzUkOCdcBAACAzVbdPesaFtokO8kCMJmx/cvJDCH6/u6+e9m5c5IcSbI7ycXawgAAAABnMkmWa8U6APNsb5ILk1yzPFRPkvHxtUkuGucBADAFVXVuVV1aVVeM47mzrgkApk2wDsA8u2AcT6xx/sSKeQAAbCJ73QCwUwnWAZhnp8dx9xrnd6+YBwDAJrHXDQA7mR7rU6bHOsD06LEOADAbPocBsIj0WAdgRxi/pB1Msi/JkaraU1W7qmpPhi9z+5Jc6cscAMCms9fNFtHDHmB7Om/WBQDA2ejuw1V1IMl1SW5aduq2JAe6+/BsKgMAWGj2utkCYzud6zJcxFhyqqoO+pwLMFtWrAMw98YvFY9JclmSZ4zjxb5sAABMjb1upkwPe4DtTY/1KdNjHQAAgEWjx/p0eX8BZkOPdQAAAGBq7HUzdXrYA2xzeqwDAAAAE7PXzVTpYQ+wzQnWAQAAgA0Zw/UbMqycviBDT/VjVqqfteU97I+vcl4Pe4AZ02N9yvRYBwAAACahxzrAbOixDgAAADCn9LAH2P60ggEAAADYZvSwB9jetIKZMq1gAAAAgI0a28LoYQ+wBSbJcq1YBwAAADZM8Dtd43t5dNZ1APCR9FgHAAAANqSqLs+wyeaNSa4fx5PjcQBYWIJ1AAAAYGJjeH4oyc1J9iTZNY43JzkkXAdgkemxPmV6rAMAALBoxvYvJzOE6Pu7++5l585JciTJ7iQXawsDwLyYJMu1Yh0AAACY1N4kFya5ZnmoniTj42uTXDTOA4CFI1gHAAAAJnXBOJ5Y4/yJFfMAYKEI1gEAAIBJnR7H3Wuc371iHgAsFME6AAAAMKljSU4luXrsqX6P8fFVSW4b5wHAwhGsAwAAABMZNyQ9mGRfkiNVtaeqdlXVngwbl+5LcqWNSwFYVOfNugAAAABg/nT34ao6kOS6JDctO3VbkgPdfXg2lQHA9FV3z7qGhVZVD07y7iQP6e7bZ10PAAAAbKaq+qgk35HkU5K8IcnPdPcHZ1sVAExukizXinUAAABgQ6rq8gwr1i9cdvjZVXXQinUAFpke6wAAAMDExlD9UJKbk+xJsmscb05yaDwPAAtJK5gp0woGAACARVNV5yY5mSFE39/ddy87d06GDUx3J7nYBqYAzItJslwr1gEAAIBJ7c3Q/uWa5aF6koyPr01y0TgPABaOYB0AAACY1AXjeGKN8ydWzAOAhSJYBwAAACZ1ehx3r3F+94p5ALBQBOsAAADApI4lOZXk6rGn+j3Gx1cluW2cBwALR7AOAAAATGTckPRgkn1JjlTVnqraVVV7Mmxcui/JlTYuBWBRnTfrAgAAAID5092Hq+pAkuuS3LTs1G1JDnT34dlUBgDTV9096xoWWlU9OMm7kzyku2+fdT0AAAA7UVWdm2Rvhs00Tyc5ZjX15vDeArAoJslyrVgHAABgoVXV5RlWVV+47PCpqjpoVfXZG0P0o7OuAwC2kh7rAAAALKwxVD+U5OYke5LsGsebkxwazwMATEQrmCnTCgYAAGA2xhYlJzOE6Pu7++5l587JsMnm7iQXa13CdqXVDsDWmSTLtWIdAACARbU3Q/uXa5aH6kkyPr42yUXjPNh2xjsqTia5Mcn143jSnRYAsydYBwAAYFFdMI4n1jh/YsU82Da0MQLY3gTrAAAALKrT47h7jfO7V8yDbWFs/3JdkpdmaGN0vLvf093Hk+wfjz9/nAfADAjWAQBYSFV1blVdWlVXjKPwAXaeY0lOJbl67Kl+j/HxVUluG+fBdqKNEcA2J1gHAGDh6EkLJMm4wePBJPuSHKmqPVW1q6r2ZNi4dF+SK20EyTakjRHANidYBwBgoehJCyzX3YeTHEjyhCQ3Jbl9HHcnOTCeh+1GGyOAba66e9Y1LLSqenCSdyd5SHffPut6AAAW2dju5WSGEH3/8tvnx7YPRzKEERdboQo7y/j7YW+GFb6nkxzze4Dtyr9nALMxSZZ73taUBAAAW2KpJ+0Vq/WkraprM6xU3Zvk6JZXB8zMGD4enXUdsB7dfVdVHcxwB9aR8d+vExnC9KsytDE6IFQHmB3BOgAAi0RPWgAWQncfrqoDSa7LcFF4yW3Rxghg5gTrAAAskuU9aY+vcl5PWgDmxhiu3xBtjAC2HT3Wp0yPdYCtoW8qkOhJCwAAbNwkWe45W1MSAExPVV2eIUi7Mcn143hyPA7sIGNYfjBD79kjVbWnqnZV1Z4Mofq+JFcK1QEAgLMhWAdgro3h+aEMq1P3JNk1jjcnOSRch51n7Dl7IMkTMvSkvX0cd0dPWgAAYBNoBTNlWsEATI+WD8CZaBEFAABMYpIs1+alAMyzvUkuTHLF8lA9Sbr77qq6NsMq1b1Jjm55dcBMjSH60VnXAQAALB6tYACYZxeM44k1zp9YMQ8AAADgrAnWAZhnp8dx9xrnd6+YBwAAAHDWBOsAzLNjSU4luXrsqX6P8fFVSW4b5wEAAABsCsE6AHNr7J98MMm+JEeqak9V7aqqPRk2Lt2X5EqbFQIAAACbyealAMy17j5cVQeSXJdho9IltyU50N2HZ1MZAAAAsKiqu2ddw0KrqgcneXeSh3T37bOuB2BRVdW5SfZm2Kj0dJJjVqoDAAAA6zVJlmvFOgALYQzRj866DgAAAGDx6bEOAAAAAAATEKwDAAAAAMAEBOsAAAAAADABwToAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATOG/WBQAAAACwuqo6N8neJBckOZ3kWHffNduqALBiHQAAAGAbqqrLk5xMcmOS68fx5HgcgBkSrAMAAABsM2N4fijJzUn2JNk1jjcnOSRcB5it6u5Z17DQqurBSd6d5CHdffus6wEAAAC2t7H9y8kMIfr+7r572blzkhxJsjvJxdrCAGyeSbJcK9aZS1V1blVdWlVXjOO5s64JAAAANsneJBcmuWZ5qJ4k4+Nrk1w0zgNgBgTrzB095gAAAFhwF4zjiTXOn1gxD4AtJlhnrugxBwAAwA5wehx3r3F+94p5AGwxPdanTI/1zaPHHItg/Hu8N8PKktNJjvn7CgAALOf7L8Bs6LHOotJjjrmmjREAALAeY1h+MMm+JEeqak9V7aqqPRlC9X1JrhSqA8yOYJ15osccc0sbIwAAYBLdfTjJgSRPSHJTktvHcXeSA+N5AGZEK5gp0wpm81TVpRlW+O7p7uOrnN+T4UPGZd19dEuLgzNwGycAALBR2kkCbJ1JslzB+pQJ1jePcHLr+OC2uVwUAgAAANj+9FhnIekxtzX0AZ8KbYwAAAAAFohgnbmix9x06QM+NafHcfca53evmAcAAABwL1V1blVdWlVXjOO5s65pp9IKZsq0gpkOrUo2n1Y70+O9BQAAAM7WuODxuiQXLjt8KslBi003h1YwLLzuvqu7j3b3S8ZRGHn29mb4xXzN8uA3ScbH1ya5aJzHBLQxAgAAAM6GLgPbjxXrU2bFOvOiqq7I0FN9V3e/Z5XzuzK03nlGd79kq+tbBGtcWb4tQ6juyjIAAABwL+6E3zqTZLnnbU1JwBxY3gf8+Crn9QE/S919uKpuiDZGAAAAwPotdRm4YrUuA1V1bYY9CPcmObrl1e1QgnVgybEMfbmurqrVrn5elWF19bHZlLcYxhD96KzrAAAAAObGBeN4Yo3zJ1bMYwvosQ4k0QccAABgO6qqc6vq0qq6YhzPnXVNwJZb3mVgNboMzIAe61OmxzrzRh9wAACA7WGN72enkhz0/Qx2Dj3Wt84kWa4V68BHGD+cPSbJZUmeMY4X+9AGAACwdcZQ/VCGIG1Pkl3jeHOSQ+N5YAfQZWB7smJ9yqxYBwAAACZhdSqwGl0Gpm+SLFewPmWCdQAAAGASVXVpkhuT7Onu46uc35PkpiSXdffRLS0OmKnxwtveDBuVnk5yzAW2zTNJlnve1pQEAAAAwDpdMI4n1jh/YsU8YIcYQ/Sjs64DPdYBAAAAtpvT47h7jfO7V8wDYIsJ1gEAAAC2l2NJTiW5euypfo/x8VUZ+iof2/rSAEgE6wAAAADbytjq4WCSfUmOVNWeqto19lY/Mh6/Ul9lgNnRYx0AAABgm+nuw1V1IMl1GTYqXXJbkgPdfXg2lQGQJNXds65hoU2ykywAAADAclV1bpK9GTYqPZ3kmJXqANMxSZZrxToAAADANjWG6EdnXQcAH0mwDgAAAGyYFdUA7EQ2LwUAAAA2pKouT3IyyY1Jrh/Hk+NxAFhYgnUAAABgYmN4fijJzUn2JNk1jjcnOSRcB2CR2bx0ymxeCgAAwKIZ27+czBCi7+/uu5edOyfJkSS7k1ysLQwA82KSLNeKdQAAAGBSe5NcmOSa5aF6koyPr01y0TgPABaOYB0AAACY1AXjeGKN8ydWzAOAhSJYBwAAACZ1ehx3r3F+94p5ALBQBOsAAADApI4lOZXk6rGn+j3Gx1cluW2cBwALR7AOAAAATGTckPRgkn1JjlTVnqraVVV7Mmxcui/JlTYuBWBRnTfrAgAAAID5092Hq+pAkuuS3LTs1G1JDnT34dlUBgDTV9096xoWWlU9OMm7kzyku2+fdT0AAACwmarq3CR7M2xUejrJMSvVAZhHk2S5VqwDbCFfOgAAWDTj59mjs64DALaSHusAW6SqLk9yMsmNSa4fx5PjcQAAAADmhGAdYAuM4fmhJDcn2ZNk1zjenOSQcB0AAABgfuixPmV6rANj+5eTGUL0/d1997Jz5yQ5kmR3kou1hQEAAACYjUmyXCvWAaZvb5ILk1yzPFRPkvHxtUkuGucBAAAAsM3ZvJS5ZANI5swF43hijfMnVswDAACAuSW3YSewYp25YwNI5tDpcdy9xvndK+YBAADAXJLbsFMI1pkrNoBkTh1LcirJ1WNP9XuMj69Kcts4DwAAAOaS3IadxOalU2bz0s1jA0jm2bIPFy/N0FP9RIa/r1cl2ZfkQHcfnl2FALB+bu8GAFaS27AIbF7KorIBJHNrDM0PJHlCkpuS3D6OuyNUB2COuL0bAFiD3IYdZUcF61X1/VXV459vOMO8R1XVf6uqv62q91fV66vqh6rq/ltZL/diA0jm2hiePybJZUmeMY4XC9UBmBdu7wYAzkBuw46yY4L1qnpskuckOWPvm6p6TJI/S/KsJG9PckOSc5M8N8kfVdX9plspZ2ADSOZed9/V3Ue7+yXj6PY3AObCeHv3dRnamu3v7uPd/Z7uPp5k/3j8+eM8AGDnkduwo+yIYL2qKsnPJ3lXkt++j+kvSvJxSX6yu5/Q3V+X5LFJfivJ52Xoh8xs2AASAGB23N4NAJyJ3IYdZUcE60n+ZZIvSHIwQ7i+qqr67Azh+VuTfO/S8e7+UJJvS/LBJP+2qs6bZrGsblzZezDDRo9HqmpPVe2qqj0ZNsDYl+RKK4ABAKbC7d0AwJrkNuw0Cx+sV9UjkvxYkv/V3S++j+lfPo6/090fWH6iu/8uwxW1j0ny+ZteKOtiA0gAgJlxezcAcEZyG3aSnbDy+ieTPCDDivP78sRxfPUa51+d5IuSfFqSo2ddGRvS3Yer6oYMtxlfkOHL2zFXPAEApmr57d37l7eDcXs3ALBEbsNOsdDBelXtS/I1SX6gu29dx1M+aRzfvMb5peOPPsPPvF+S5Ruc7lrHz2VC4y/jo7OuAwBgp+juu6rqYJJDGW7vvjZD+5fdGUL1fRlWovnSDAA7nNyGnWBhW8FU1YOSvCDJ65P8h3U+7UHj+L41zr93HM8Ull+V5N3L/qwV0gMAwFxxezcAAAy27Yr1qvqtJI+b8Gn/vLtfMf73NUk+MclTV/ZLn7Jrk/z4sse7IlwHAGBBuL0bgEVRVefGv2fABm3bYD3JRUkeO+Fzzk+SqvrsJN+R5Fe6+48neP57lr/OKh44jnes9QJjiH9PkF9VE/x4AADY/tzeDcC8q6rLk1yX5MJlh09V1UF3YAHrsW1bwXT3p3d3Tfjn6Pj0f5Lhf9sTquro8j9Jnj7Oec547N8v+7F/NY6PWqOspeNv2sT/qQAAAABskTFUP5Tk5iR7MnQb2DM+PjSeBzij7bxifTN8+hnOXTL+ObXs2J8n+aokn7nGc5aOv/ZsCwMAAABga43tX65L8tIk+7v77vHU8aran+RIkudX1Q3awgBnsm1XrJ+N7v7BtVa1J/mlcdo3jseeteypvzuOX1FV91v+mlX18Rn6br0zycun/b8BAICzU1XnVtWlVXXFOJ4765oAgJnbm6H9yzXLQvUkyfj42gztifdufWnAPFnIYH2jxo1PX57k4Un+w9LxqjovyQuSfFSSn+zuD86mQgAA1mO8hftkkhuTXD+OJ93aDQA73gXjeGKN8ydWzANYlWD93r4pyduTPLuqXltVv5bkL5NcnuSmDFcuAQDYpvRNBQDO4PQ47l7j/O4V8wBWJVhfobtvTfIZSV6U5GFJvjrJ3Umel+Sp3f2B2VUHAMCZrNI39Xh3v6e7jyfZPx5/vrYwALBjHcuw397VVfURudj4+Kokt43zANZU3T3rGhZaVT04ybuTPKS7b591PQAAi6yqLs3Q9mXPGKavPL8nw12Il3X30S0tDgDYFpbd3fbSDJ0JTmRYqX5Vkn1JDnT34dlVCMzKJFnueVtTEgAAbAl9UwGAM+ruw1V1IMNdbjctO3VbhOrAOgnWAQBmZGxHsjdDyHs6ybHuvmu2Vc295X1T77ViPfqmAgC5J1y/IT6LARukFcyUaQUDAKxmvAX5uiQXLjt8KslBq6Q2brxYcTLDRqX7u/vuZefOSXIkQ7h+sS/OAADAcpNkuTYvBQDYYsv6et6cZE+SXeN4c5JD43k2YAzLD2boj3qkqvZU1a6xt/qR8fiVQnUAAOBsWLE+ZVasAwDLWVG9Nda4I+C2DKG6OwIAAIB7mSTLFaxPmWAdAFiuqi5NcmOSPd19rx7g48rqm5Jc1t1Ht7S4BaOHPQAAMIlJslyblwIAbK0LxvHEGudPrJjHBo0h+tFZ1wGTcEEIAGA+6LEOALC1To/j7jXO714xD9ghxhZGJzPc1XL9OJ607wIAwPYjWAcA2FrHkpxKcvXYU/0e4+OrMvQCP7b1pQGzYlNjAID5osf6lOmxDgCstCxAe2mSazO0f9mdIVTfl+SADTZh57CpMQDA9qDHOgDANtbdh6vqQJLrMmxUuuS2CNVhJ9qb5MIkVywP1ZOku++uqmsz/K7YG/sGwI5j7wWA7UmwDgAwA2O4fkN8UQZsagysYbzL7boMF9+WnKqqgy7EA8yWHusAADPS3Xd199Hufsk4CtVhZ7KpMXAv9l4A2N70WJ8yPdYBAIAz0WMdWMnvBYDZmCTLtWIdAABghsZQ7GCGzYuPVNWeqtpVVXsyhGf7klwpPIMdZWnvhWtW23shw+bnF43zAJgBPdYBAABmzKbGwAr2XgDY5gTrAAAA24BNjYFllu+9cHyV8/ZeAJgxPdanTI915tHYz88XOgAAgBnQYx1gNvRYBzZs3Fn+ZJIbk1w/jiftOA8AALA17L0AsP0J1oF7jOH5oQyrIvYk2TWONyc5JFwHAADYGuPeCgeSPCHD3gu3j+Pu2HsBYOa0gpkyrWCYF241BAAA2H606gTYOlrBABuxN8mFSa5ZHqonyfj42iQXjfMAAAAAYMcSrANLLhjHE2ucP7FiHgAAAFNkDyyA7UuwDiw5PY671zi/e8U8AAAApsQeWADbmx7rU6bHOvNCj3UAAIDtwfczgNnQYx2Y2Phh7GCSfUmOVNWeqtpVVXsyfGjbl+RKH9oAAACmzh5YANvcebMuANg+uvtwVR1Icl2Sm5adui3Jge4+PJvKAAAAdhR7YAFsc4J14COM4foNGVY+XJChp/oxK9UBAAC2zPI9sI6vct4eWAAzpsf6lOmxDgAAAExCj3WA2dBjHQAAAGBO2QMLYPvTCgYAAABgm7EHFsD2phXMlGkFAwAAAGzU2BbGHlgAW2CSLNeKdQAAAIBtagzRj866DgA+kh7rAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATEKwDAAAAAMAEBOsAAAAAADCB82ZdAACwvVXVuUn2Jrkgyekkx7r7rtlWBQAAALNjxToAsKaqujzJySQ3Jrl+HE+OxwEAAGBHEqwDAKsaw/NDSW5OsifJrnG8Ockh4ToAAAA7VXX3rGtYaFX14CTvTvKQ7r591vUAwHqM7V9OZgjR93f33cvOnZPkSJLdSS7WFgYAAIBFMEmWa8U6ALCavUkuTHLN8lA9ScbH1ya5aJwHAAAAO4rNSwG2kE0gmSMXjOOJNc6fWDEPAAAAdgwr1gG2iE0gmTOnx3H3Gud3r5gHAAAAO4ZgHWAL2ASSOXQsyakkV4891e8xPr4qyW3jPAAAANhRbF46ZTYvBWwCybxadkHopRl6qp/I8Hf1qiT7khzo7sOzqxAAAAA2j81LAbYXm0Ayl8bQ/ECSJyS5Kcnt47g7QnUAAAB2MJuXAkyfTSCZW919uKpuiE13AQAA4B6CdYDpW74J5PFVztsEkm1tDNGPzroOAAAA2C60ggGYPptAAgAAACwQwTrAlI2rfQ9m2OzxSFXtqapdVbUnw8al+5JcqbUGAAAAwHzQCgZgC4x9qg8kuS7D5o9LbotNIAEAAADmSnX3rGtYaFX14CTvTvKQ7r591vUAs1VV58YmkAAAAADbziRZrhXrAFvIJpAAAAAA80+PdQAAAAAAmIBgHQAAAAAAJiBYBwAAAACACQjWAQAAAABgAoJ1AAAAAACYgGAdAAAAAAAmIFgHAAAAAIAJCNYBAAAAAGACgnUAAAAAAJiAYB0AAAAAACYgWAcAAAAAgAkI1gEAAAAAYAKCdQAAAAAAmIBgHQAAAAAAJnDerAsAALa3qjo3yd4kFyQ5neRYd98126oAAABgdqxYBwDWVFWXJzmZ5MYk14/jyfE4AAAA7EiCdQBgVWN4fijJzUn2JNk1jjcnOSRcBwAAYKeq7p51DQutqh6c5N1JHtLdt8+6HgBYj7H9y8kMIfr+7r572blzkhxJsjvJxdrCAAAAsAgmyXKtWAcAVrM3yYVJrlkeqifJ+PjaJBeN8wAAAGBHEawDAKu5YBxPrHH+xIp5AAAAsGMI1gGA1Zwex91rnN+9Yh4AAADsGIJ1AGA1x5KcSnL12FP9HuPjq5LcNs4DAACAHUWwDgDcy7gh6cEk+5Icqao9VbWrqvZk2Lh0X5IrbVwKAADATnTerAsAALan7j5cVQeSXJfkpmWnbktyoLsPz6YyAAAAmK3q7lnXsNCq6sFJ3p3kId19+6zrAYBJVdW5SfZm2Kj0dJJjVqoDAACwaCbJcq1YBwDOaAzRj866DgAAANgu9FgHAAAAAIAJCNYBAAAAAGACgnUAAAAAAJiAYB0AAAAAACZg81IAAGAiVXVukr1JLkhyOsmxcaNjAADYEaxYBwAA1q2qLk9yMsmNSa4fx5PjcQAA2BEE6wAAwLqM4fmhJDcn2ZNk1zjenOSQcB0AgJ2iunvWNSy0qnpwkncneUh33z7regAAYCPG9i8nM4To+7v77mXnzklyJMnuJBdrCwMAwDyaJMu1Yh0AAFiPvUkuTHLN8lA9ScbH1ya5aJwHAAALzealW2dXVc26BgAA2KhPHsc3jSt5VnrT0ryqevUW1QQAAJtp13onagUzZVX1yCRvnnUdAAAAAACsy6O6+2/ONEGwPmU1LFP/hCR3zLqWBbQrw0WLR8X7Ow3e3+nx3k6P93Z6vLfT472dLu/v9Hhvp8d7Oz3e2+nx3k6X93d6vLfT472dHu/tdO1K8rd9H8G5VjBTNv4f4IxXN9iYZa117rAx7Obz/k6P93Z6vLfT472dHu/tdHl/p8d7Oz3e2+nx3k6P93a6vL/T472dHu/t9Hhvp25d76nNSwEAAAAAYAKCdQAAAAAAmIBgnXn2gSQ/NI5sPu/v9Hhvp8d7Oz3e2+nx3k6X93d6vLfT472dHu/t9Hhvp8v7Oz3e2+nx3k6P93YbsHkpAAAAAABMwIp1AAAAAACYgGAdAAAAAAAmIFgHAAAAAIAJCNaZO1X1gKr64ap6fVW9v6r+tqr+a1U9cta1zbOqelJV/fuqOlxVb66qriqbMGyCqjq/qvZX1S9W1V+Of2/fW1V/XlXPraoHzbrGeVZV/278e3trVb27qj5QVW+qql+uqifMur5FUlX/qKreOv5+ODnreuZZVR1d+j27xp+nz7rGeVdVD6uq54+/d++sqndU1aur6j/OurZ5VVWX3sff26U/z511rfOqqp5cVb8xfr79YFW9q6qOVdU3VVXNur55VlWPq6oXV9Xp8bPCqar66ar6uFnXtt1t9HtCVT2rql5RVe8Zfwf/XlV97lbUPE8mfX+r6hOr6tur6kVV9f+q6u7xOZduXdXzYZL3tqrOqaq9VfVjVfWqqrpj/F3xhqp6YVVdtNX1b2cb+Hv7lVX1S1V1c1X9/fhv3FvH3wv7trL27W6jv3NXvMYfLftc9qhp1YrNS5kzVXX/JDcmeUqS00mOJbkwyWcneVuSp3T3G2dW4ByrqiNJvmrl8e72Je4sVdW/TPJfxof/L8mJJA9O8rlJdiW5JckXdvdbZ1PhfKuqv0/ywCSvTfI34+F/nORTk3wwyeXd/dIZlbdQqupFSf55kkryhu5+zGwrml9VdTTJFyb570nes8qU67r75i0taoFU1ZOS/M8k/yjJX+TDv3cfn+RR3X3eDMubW1V1SZJ/v8bpc5N8w/jfX9TdN25NVYujqv5pkl/P8F6+OsnJJA9LsjfJeUmu7+6vn12F86uqvijJ7yQ5P8Pnrtcl2Z3hs8Kbk+zp7jfPrsLtbSPfE6rqJ5I8O8mdSf4gyf2TPDXDZ4gD3X1kCqXOpUnf36r6riT/aZVTl3X30c2sbd5N8t5W1WOS3Do+fEuSVyS5K0PW8MgkdyT5J939smnVO0828Pf2UJLLM3wu+6sM7+eFST5nnHJtd189jVrnzdlmM1X1rCT/LUln+J37if6Nmx7BOnOlqn4kyXOS/J8kX9rd7xmP/7sk1yX5k+6+dHYVzq+q+r4M4eQrxz+nktxPsH72quqZGUL0n+ju/7fs+AVJfjfJZyR5SXc/Y0YlzrWq+rwkr+ru9684/u1JfibJ32UI0j40i/oWRVU9NckfJfn5JP8qgvWzsixYv6i7T822msVSVQ/LEJqdn+SK7v7tFec/u7tfMZPiFlhVfVmS30vy10ke3b5kTKSqzstwcfjhSb6+u69fdu5xSV6W5GPjosXEqur8JG9M8vFJfri7f2A8Xkl+LMmVSf6gu582uyq3t0m/J1TVFyf5wyRvz3DR4tbx+J4kR5O8L8O/f++adu3zYAPv71cmuWzZ/J9O8qURrN/LJO9tVX1Kkp9N8qNJblz6d6yq7pfkhUmelSEQfkx3f3Ar6t/ONvD39jOS/FV3v33F8c/J8B3jgUmeaGHJ2WUz4+fgW5L8aZLHJnl0BOtTJVhnblTVRyd5a5KHJPnM7v6zFef/PMmnJfms7n7VDEpcKFX1/gjWp278gnFTkg8keXB3/8OMS1ooNbQr+ZQMH9JeO+t65lVVPSDJzRn+nu5P8voI1s+KYH16quoFSb4tyXd09wtmXc9OUVUvTvKMJD/a3VfNup55U1W7M/ye/cvuvmSV8/85yb9N8n3d/WNbXd88q6pvSPIrSf4yyeO7++5l5z4qw79pFyb59O7+85kUOWfu63tCVf1eki9L8t3d/RMrzi39Xb6yu6+bdq3zaNLvYVX1+0meFsH6fdrod9zxs/DpDFnEpd39J9Oob56dTX5QVb+Q5JuTPLu7f3LTi5tzk7y34+exyzPclfW/IlifOj3WmSefl+EfsjesDNVHh8bxK7auJDhrS1/g7pehZQGba2k1iQsWZ+cHknxykn+dD7+nsO2MX3y/Icl7M9wCyxaoqgfmw7cs/8osa5ljH1jnvLff9xRWeNI4/u/loXqSjKtOXz4+vNdt90xu/D38RePDQ6tM8Z2NudPdd2a4CJcknzDLWhaU72yboIY9mp6R5P/X3W+YdT07hf6SzJMnjuOr1zi/dPzTtqAW2CyfPI4fTPKOWRayaKrqGzPc/nZrPtwvkQlV1aclOZjkv3X3saq6cMYlLZpvrqp/lOTuDF/YjnT3X824pnn2WRn2rnhZd985tif5kgy9fV+f5De6+29nWeCCujzDLct/1t2vm3Uxc+qNSd6Q5LFV9YxVWsF8Q5J3JvmtGdU3zx44ju9c4/zSxYonrnGeyTw2w4KRt62xQtJ3NuZOVZ2TYeVvMvRfZ5NU1ROSfF2G78N/OONy5ta4yOFnM7SBcWfbFhKsM08+aRzXuoVl6fij1zgP29Gzx/H3u3u9q9VYRVV9T4ZNSx+Y5HHjf/9thh7Ld82ytnk1fon4hSTvSvK9s61mYf1/Kx4/v6qe193Pm0k18+/x4/jWNTZ+uqaqvrm7X7K1ZS28pU1LrVbfoO6+a9yT5aVJXlxVBzNcFH54hs1LX5fkWd3tIvzk3jaOa31HuOg+zjOZM35n6+73VtW7knxMVe3q7ju2rDLYuCsy/D5+W4Y2nmxQVX1Fkn+a5KMy/L743Ayh+rdYZX1WfjhDW7NLtZfdWlrBME8eNI7vW+P8e8dx1xbUAmetqv5Jhl5yH0zy/TMuZxE8LckzkxzIEKq/KUOobs+FjfvOJE9O8j0rNxrirP3vJN+YYQ+A8zOs8HtOkg8l+eGqevYZnsvaPmYcvzLJ05N8R4YvwhcmeX6SByT5par69FkUt4jGjbifmuSuJC5YnIXufnmGvRfemOQzM6zguyzDHS1/OB5ncv97HL+8qj5u+YmqemSGu1oS3yE2y319Z0t8b2OOVNUnJvmJ8eFzLYY6a0/M8J3tGUk+P0MrtO+Mi/MbVlWfmWHB3i/p/7/1BOsAM1BVlyT51SSVIbS0WdZZ6u4vHjd0+ZgkX5Bhpd+fVNVzZlvZfKqqT0ryI0n+pLtfNONyFk53P7e7f7W739jdd3b367v7mgybwybJD459apnM0mfb8zJ8+X1Bd7+tu9/U3d+T5DczrJD6nplVuHiuSHJukj/sbrfHn4WquiLJK5L8dZLPyRBQfmqSF2VoyfXHVXW/mRU4v/4gQ/uRByX5H1X12VX1oHED+f+RD9/FffdaLwDsTGN7jcNJPi5Du74XzrikudfdPzJ+Z3tAkidk2BPn55PcUFUfPdPi5lBVnZsP32F85Wyr2ZkE68yT94zj+WucX+qf6HZCtrVxddTvZwiAf7y7//OMS1oo3f2u7j6W5J8keVWS51XVk2dc1jz6mSQfnWHDUrZId/9Bkj9N8tAMwRqTec+y/15t89KlY1+4BbXsFNrAbIKqujjJLyX5+yT7uvsV3f3e7r61u781Q4uYz0zyL2ZZ5zzq7s6wD8BfZNiH4f9m+L5wU4Y7Wn5wnLpWD3Ymc1/f2RLf25gDVfVRGS7If1aSl2VYYc0m6e73d/eJ7v6OJD+VZF+GletM5ruSfEaS7+3uv59xLTuSYJ15srSZ26PWOL90/E1bUAtsSFV9bIaVU4/OEPC4qjwl3f3BJL+e4a6Ar5hxOfNoX4bbuF9YVUeX/iT5tfH8I5cdf8TMqlxMS5vtXjDTKubT0meA93X321Y5f2ocH7415Sy2cVPNz8gQpB2ZbTVz759luJvi97v7Pauc/41x/IKtK2lxdPebknx6kq/N0NLh55L82wz7MvzdOO0vZlHbAjrjd7ZxBfBDk7xTf3W2q3GfoV9K8mVJXpPkK7r7zpkWtdiWLs6v3BuH+/YVSTrJM5d/Zxu/ty19R/vN8djTZ1blArN5KfNkqVXGZ65xfun4a7egFphYVT0owy3Hj89wS+G3jKuomJ6lq/YPm2kV8+uhWXtl7/2Xnbv/llSzcyz1CX/vGWexmj8bxwdU1f1W6YP6seO4WnDJ5L5xHA9395n6KXPflkLId69xfun4x6xxnvvQ3R/KsPr0N5cfr6rPHf/z6FbXtKD+MkPP5IdV1SO7+29WnPedjXnwUxlanb0+ydO6+12zLWfh+c52dipnvvD+lHF80fRL2XmsWGeevDzDl4pPWWPTsQPj+DtbVhGs09gT9YYkn53kf2bYVPOu2Va1IywFv3aYn1B312p/klw0TnnDsuOnZljqQqmqhyXZOz589SxrmUfd/VcZLsRXVr8otHTsz1Y5xwSqqvLh2+K1gTl7S/3pP2uN80stzU5Nv5SdY7zj6kCSt2dY9MBZGlf1/vH48GtWmeI7G9taVf1Ikm/PcPfFl3T3W2dc0k7gO9sGdfelZ/jetnQn5yeOx140w1IXlmCdudHd/5Dkp8eHPzPeRpgkqap/l+TTMmyy96pZ1AdrGTcUeUmSL0pyLMnl499nzlJVfV5VPX28XXP58Y+qqu/MsJryzgwtYWBbqKrPrar94++G5ccvTPJbGXrP/nZ3v3kW9S2AHxvH51fVPe10xovyB8eHNh87e3sztDX7m3w4RGPjbhjHL6iqb1t+oqqekuS7x4eHtrSqBVFVu6vq/iuOPSrD+74ryUFtHjbVj4/j/zfuH5AkGTeM/dYMm+z94gzqgjOqqu9O8pwMFzu/eLxgz1mqqodV1bdU1b32XqiqL8mHP7uttj8ObGtawTBvfiTJFyf53CS3VtWxDF/qPifJ22JDpw2rqi9P8v3LDn30ePz4smPP6+7f3dLCFsO/SfLV43//fZIXDAv97uVKG45M7OIMH8D+vqpelWHF2cdl2GH+giTvT/Ks7v7r2ZUI9/KpGf7evqWqXp0hYHh0kidlaKvzF0m+ZWbVzbnuvr6qvjTJM5O8rqpuSvKADJ8d7pfkv3T3b57pNViXpU1Lr+/uu2dayQLo7ldX1fMz7L3ygqr6jiSvS/IJSfZkWBD18939RzMsc55dmeSrx9+5pzPss/D5GX4nPK+7f2mWxW13k35P6O4/qqr/nOTZSV5TVX84PudLMtxR9E1aa3zYpO/veNH4t5adu2QcX1BVt4///bvd/bwplTw3Jnlvxwvw143HbkvynDW+s/1Cd79sCuXOlQn/3j4wyc8n+YnxO9ubx2Ofmg///f1P3f3fp174HJDNzBfBOnOlu99fVZcluSrD7cf7k7wjQ6+o77e676w8LMMFipU+Z8UcJre8H+pXrzkr+cF8uL8c6/MnSa7JcPvgp2UI1f8hw63yh5L8ZHefnFl1sLr/m+RnM/x+fXKG3xHvzbA51m8m+VkrJ8/aN2VoIfetSS7NsKnTq5P8nADt7I3tzZbaOfzqLGtZJN39PeOFoH+d4ULbY5PckeHfuv/S3S+ZZX1z7kiGTdyemOTzkrwzye8n+YnuPjq7subGxN8Tuvu7quo1GRaYfEmGz2d/lCEMumlKdc6rSd/f+60x/3HL/vuWTahrEUzy3j40w4WfZLiguWeN1zyaZMcH65nsvX1rku/N8JnsH2doe3ZOhgudv5bh89nRaRU6h2Qzc6TsmwcAAAAAAOunxzoAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAALpKq6qnoLfs6zxp/1g9P+WQAAsN0I1gEAAAAAYAKCdQAAAAAAmIBgHQAAAAAAJiBYBwCABVdVF4790I9W1QOq6ker6k1V9YGqOllV31dVtcZzP6+q/qiq7qiqd1XV/6yqz7mPn3deVX1bVf2fqrq9qu6sqtdU1XdV1XnL5p1bVS8fa/v2VV5nb1XdVVV/W1X/6OzfCQAA2ByCdQAA2Dk+OskfJPmWJH+a5MYkj0zyo0met3JyVe1LcjTJU5O8Lsn/SPKJSf53kj2r/YCqesD4M16Q5FOTHE/yh0kuSPKfkvz3qjonSbr7riTfmOSOJM+vqkuWvc5DkvxKkkryzO5++1n9LwcAgE0kWAcAgJ1jT5K7klzU3f+0u5+eZO947Lur6kFLE6tqV5L/muS8JP+iuz+nu69I8o8zBOT/ao2f8fwklyX59SSf3N1f2t1fmeQxSX4vyVcuf253vzHJdyZ5QJLrq+qjx1MvSPLoJP+5u/9wU/7XAwDAJqnunnUNAADAJqmqTpLurmXHLkxyW5K7kzy+u/9yxXN+J8m+JJd199Hx2DdlCNb/d3d/4Yr5H5XkjUkeleSHuvsHx+MPT/LmJG9J8tjuvnPF8x6R5E1JbunuJ6449xtJvibJf0zy50l+NcmJJJ/V3R/Y2LsBAADTYcU6AADsHG9aGaqPXj+OFyw7tnccf23l5O7+YJJDq7zOpUk+KsnvrwzVx+e9JcmtSZ4wtoxZ7lszhPIHk7wwyQeSfL1QHQCA7UiwDgAAO8eb1zh+xzjeb9mxTxjHN63xnFOrHLtwHL9l3JD0Xn8ytJKpJB+7/Ind/c4k35HhO8qDkjy3u197pv8xAAAwK+fNugAAAGDL3D3l119auPOaDO1czmS1lehft+y/n7QZBQEAwDQI1gEAgNWcHsdHr3F+teNLK+Jf1t3fOckPq6orkjwjyV8k+YckX1tVv9vdvzzJ6wAAwFbQCgYAAFjNsXH82pUnquq8JP90lefcmOSuJPvGDU7Xpao+MckLMqxif0aSb0jy/iQ/VVUXTVg3AABMnWAdAABYzW8meXuSS6vqmUsHq6qS/FCST1r5hO7+myT/NUOv9ZdU1cevnFNVj6mqf7rs8TlJfjnJQ5M8p7tf292vS/J9SR6c5Feq6txN/N8FAABnTbAOAADcS3ffkeSbM6xAf1FVHa+q65OcSPI9Sf7LGk99dpI/zLCi/Q1V9bKqur6qbqiqW5PcmuQbl82/MsmlSf5Xkh9fdvynkvxBks9LctWm/Q8DAIBNIFgHAABW1d03JLksQ4uX3Um+PEPv9S9MctMaz7kzyZcleWaS/5vkcUkOJPmsJG9L8gNJvjdJqurTkzwvyTuTPLO7e9nrdJJnZVg1/wNV9dmb/b8PAAA2qpZ9dgUAAAAAAO6DFesAAAAAADABwToAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATEKwDAAAAAMAE/v9U/KMUY696nAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"fig, ax = plt.subplots(figsize=(18, 12))\n",
"distances = 100 * df.loc[:, df.columns != \"exact\"].sub(df.exact, axis=\"index\").div(\n",
@@ -505,28 +514,7 @@
"ax.set_xlabel(\"Index\")\n",
"ax.set_ylabel(\"% deviation from the exact value\")\n",
"ax.set_title(\"Relative deviation of estimated from exact values across runs\")\n",
- "ax.grid(False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABdYAAAQCCAYAAAChVKpGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEY0lEQVR4nOzdebxcdXn48c+ThN0AigtxvVSiUa8rao0SjVpt1dhGmqpIbam2tYutS6gC1aptf0Bb41pbq9YdXJrGSxW12kI0igiKS1KNEs1V0eAChoQlLMnz++N8JxmGO/fOzJ25s9zP+/Wa17lzzvec89wzZ7Znvuf5RmYiSZIkSZIkSZJas6DfAUiSJEmSJEmSNExMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUBhPrkiRJkiRJkiS1wcS6JEmSJEmSJEltMLEuSZIkSZIkSVIbTKxLkoZWRGS5rZyP+++ViJgs/9ep/Y6lpt8x9Xv//RQRfxARX4qIXXXn/Ev7HddsRMSp5f+Y7Hcswyoi3luO4Xs7XP/wiPi7iPh2RNxYd249rLuRSrM3qu/3kiRpdhb1OwBJ0vCKiNcCr5li0c3A1cBm4D+A92XmLXMY2qyUpOHRwERmfr2vwainSqJ8DNiYmRv7GswAioi1wOvL3VuBnwEJXN+3oKYREWPAqQCZ+dp+xtIrI/T69BFgVfn7RuCn5e+hea9Q60bovJUkSdrPxLokqVt+Wvf3YmBJuT0VeFFEPDUzf9mXyNr3UuA+wCTw9WnafadMb+htOAK+B+wBru3ydk8FnlD+3tiH/Q+6vyrTtwCnDcEPZGMc+LHvtdO0u5bq+fvjHsfTCy+ltdengRURyziQVH9OZn60n/FoTryUIT9vJUmSGplYlyR1RWYeW38/Iu4NvAr4I+CRVIm55/chtJ7JzGX9jmG+yMwnz+f990NE3AW4W7n7ziFIqrcsMz8GfKzfccxjDy7Tq02qS5IkaVhZY12S1BOZ+cPM/GPgwjLr2RFxh37GJKkth9f9fV3fotAoqp1bnleSJEkaWibWJUm99ukyPRhYOlWDiFgcEaeXARKviYibIuJHEfHhiFjeyU4jYjwiXhsRF0bE98rgeLsi4msR8fcRcecp1nltRCTV5eoA76kbsCzLsvr2txvMLCJeVub9NCKaXhkWldqAmK+eYvnBEfFnEXFRRPwiIm6OiKsi4vyIeFonx6Ru24dFxKsi4lvluPwsIj4ZES33yo6IZ0TEf0bEj8vj9cuI+HxE/GlEHNzQ9q4RcUv5X39zhu3+bWm3rWF+08FDI+K4iHhlRHw6Ir4bEddHxHXl/3tTuXqicZ1Ty+NZKwPzmsbHutTrnnH/ZfnCiHhBOd9+UY7JjyPiP6Yb7C4iNpbtvracE38UEV8u5+ru8pz43emOWSsi4qSI+EQ5L28u009ExLOmaLuyHJvJutnb647LZOM6Lex/rDwW/1cemxsiYmtEvHmqx6duvWUR8Y7yuN4QEXuiem24JCLOiqqkSK3tJHBR3f3Gx/O9dcuaDl5aHouMiI3l/m9GxP9GxNXlcbk4IlY3rPP8iPhieR5cV54LTZ9PMQevT3XrtfxcnWLdU8r/tTsiri3n5h9HREy33jTbq/0P7y2z7jPNY7T/9TWq15A31J0Hja/Fh0bES8tj88tynvwgIt4f0wyGGnXP66gGU31tVIOp3hARP4mID0TEcXXt7xwR/1DiuDGq1+R3RcTdmu2jxePS1ntgRDyn7vjc7jlc2jysHIeMiL9uWHZsRPxFVO8n3y6P7Y0Rsa38Pw9qIeZjIuJvyjlxTdnXZER8ppxbR5V2HZ23U+zvZTGL99aIWBART46It0T1+nFlVK+FV0fE5yLiTyLioFZiadjfylb+j/rzucnyBeX59sk48Dr983I8T272nIuIReU5uTGq955byv/0nYj4SES8sIP/6Y4R8cKI+GhEbK57fH8QEedFxGNa2MYREfHycmxrn2GuLPfXNj5n4rbvhQeVNl+JiJ1THbdo4z2tYb1fj4gNdY//roj4fjnOp0XEnaZY51cj4tyI2F6Ow/XlWHwuIl4dEfds7cju395t3n8i4okRMREROyJib5TXwajeN2/3eWSK7U35+aRx/Yi4W1TvubX/46dRvcY0vfoyIu4ZEW+M6r37+qhem34SEV8t8x/Vzv8uSSMpM7158+bNm7eOblQ1jLN6O2na5hW1NsAjp1j+MOBHdW1uBXbV3d8HnNFk27U2K6dYNlm3/EaqwVT31c27Erh/wzqnAVcBe0uba8v9/beZ9k9VOuPWMv8Z0xyXJ9T9f2MNy+4DbGk4Bjvr7ifwrx0+ZncCLq/bzi3AL+v286d1x+7UKdY/jGpA2vpYrm04tl8C7tiw3ifKsv+YJrYAvl/avabJ4zlVTBvr9n0T8Iu6xzDLsTuxYZ3nlMf05tLmusbHGrhXi/s/iiqhW38O/7LhmPxTk/+5FvvfARN1j8m1Dcf4dR0+3gcDH67bzl7gmobjcx5wUN06jy3//8/r2vy87rhc1mYMp1DVp69taw/VuAS1+7uAp06x3lMa1ru57lyt3V5b1/6y8r/VljU+nm+ua3tqaTM5zevaRuB1dcdtZ8O+X0R1zr637nGrf+26lSavAczN61NHz9W65+K769rtazhvPlT3f7+3jXOh9j/Uzu+90zxGtX3/YVlWO1a7qHvPAe5BNVB2/XlS/1jtBf5ihsfhJcA36/ZRf37+hKp2/69w4PXpeqrXmlqb7wJHdvgcfRgdvAcC/16WX03da1VZdgSwtSy/EFjQsPy9ddu/pWzjlrp5e4Dfnibmp3Lb59otVK+7N9fNW93JeTvNPmf13loew/rnwm5u/5z+PHBYk+3W2qxsmL+ytmyG+Kdcvyy7E/C5hlgaYzsfOLhhvYXAZ6ZYr/51c9q4msT62obz8ZqGbe4D/nKa9R8B/LCu/d5yjtVv46UN62ws888Bvlh3Xl1T9reytGv7Pa1uH3/TcKyuL+dB/bzGx/f3ue1rZm2slfp1Tm3z+J5a1pukeu2pbX8n1XPovVOcs2PTbG9yqjga1n8G1VhItf+7/rG4FnjoFNt9KLd9ntfOhfrj0fLrvzdv3ryN6q3vAXjz5s2bt+G90Vpi/X/rvogd07BsSd0H/f8ETqh9GQLuCvwtB77sr55i29N9UX1f+UJ077p5BwNPBr5c1vtqk5in/JLS6v6BT5b5H55m3XeVNp9rmH8E8O2y7CKqJMEhZdlRwMs48EXwJR08Zhvqvhy+CDi0zL9PWXZz+dI15f8PfKAs+x7wPEoyCTgU+M0yP4GPNaz37Lr9Ht0kthPrzpVfafUxAd4E/BnVFRELyrxFwKOBT5X1fswUCRMOfJl/7QzHbbr9ry/LbgL+Aji8zD+WA8mvBP5kmv1fQ/Wl+vdrcQL3BP6LA8mDpR083q+vO6Z/Wzv2wB2B/1cX2zlTrDtWt3ys3X2XbTylxH4L8A9lm1Fu9wc+yoEv9vduWHdbWfbfwHjd/EOBB1ElSU5tWGdlLeYZ4jq1tJucYtlrOZDkuBU4EziqLLsH1VU4SZX8fB1VEvZFdY/7UqokfwI/oCGpWdrMxetTR8/V0uYv6x77twJ3LvOPohocdh8HfuR4bwfnRdPjX9emtv/dVEniJ3Hg+X2/Ml0IXFL3eJ1CST5SJcI/zoHz/2nTHMtfAtupztcFZbtPAX5Wln+kPC5fAx5T1j2I6nWt9nr59x0ch47fA7nte8XngIV1y2o/ivwCuMcU+30VVcJ7HFhU5i2gel59sKx7HXD3KdZ9ONWPD0n1A/DT6mJeWP6H1wNP7uS8neF4zea99Z7lf3smcKe6+Xco5+OPy3pvmOF8XNkwf2Vt2QyxN1t/IQfeB75GNahv7bXkCOD36s6RNzas+7tl/o3AC4E7lPlRzp9nMc2P2dPE+sdUr4MncOD5FMBxVO+3+6heGx8+xbr34sCPsj+k+hH78LptPJDqNeSUhvVqx2B3uZ3KgffCY2qPGR2+p1F9xqkl39dRd25Tva6dCLwNOKFu/uEc+JHrA8B9G55/JwD/CDy9zeN7at3jdivwHsqPY+V8uG/5e6zu/xmbZnuTzJxYvwb4AqWDC9VnpF+j+uEwgc9Psd3/Kcu+CjwGiDK/dgXqWuCvOn0+e/Pmzduo3PoegDdv3rx5G94b0yTWgXsD76j7UH/+FG1qScdzp9nHy0qbr0+xbMovqi3EfQcO9IA8cYrlU35JaXX/wHPrvjTdrhcjVWJrZ2nzwoZlry7zNzJFj6vS5lmlzc8pSZEW/+9H18X8gimWLwQ21bU5tWH5ijL/pzT0kKxrc0+qhEwCD2vyP/9xk3X/rSzf1Olj0uR/+kZZ93enWL6RWSTWgV+tO17N/q9a4v3nlB8ypth/Ak+cYt1DOJDw+es2//d7cCApd1aTNuvK8puBJQ3LxupiG2tn32X9BVQ9eZsem9Lu/NLmTXXz7lq37yVt7HNlbb0Z2p3KzIn1KY85cGTdOZ40JIhKm/vWLb/da8wMsc369akLz9Wry/z3N1n37Lr/770dnBtNj39dm9r2rwXu2aTNc+raTXXVwyIOJN43T3MsbwCOn2L5C+q2fxUNPw6XNn9blm/r4DjM9j3woRzoefqaMu+5dTH/ZrsxlW3UrjB61RTLau8R36X84NTiNmc8b1vYRsfvrS1s+5Ec+EHh0CmWN3u/X1lbNsP2m63//DL/282OJ1UCdx/Vj7d3rZv/L2Xdf+v0mHb4OPxz2e+7plhW+0HvFzR57WmyzY11x+iZTdp0/J7GgR/3v9NGTLXPTNfRxmetFrZ7at3/+p/TtBurazc2Tbspn1sN63+bqTsXPLOuzT0bltWu3Fk+l+eXN2/evA3bzRrrkqSuiKrWbO12PVVPzT8qi7dS9Siub38oVS9KqHqyNvP+Mn1oY03OTmXmdVQ9/KDqpdRt51P1cjoU+J0plv8mVQ+pPVRJ13q1eqhvyMxbmmx/omz/zlRfuFv13DL9EVUPqdvIzL1UJUmaqcV2bmb+aKoGmXklB+pc/3rd/D1UZSmgSiTcRkQcQvXFF6ov5l1R/qdanf9ePNbPKdMrqXpKTqVW5/fOVL1gp/LFzLyocWZm3kTVYxvgIW3G9ttUicU9VJfXT+XvqZI1BwFr2tz+TB5P1avtFzQ/NnDgOf7rdfN2UyWSoOrV2w97qHpn3kZm7qIqoQJVj8zzpmjzPaoe99Dm49al16eOn6tUZT5qdYb/tsn2z6E6PnPhAyXWqdSef1/KzM80LszMW6muKgAYj4gHN9nOf2bmtinm/3fd3+/IzKunaXPfiDiiyfZvpxvvgZn5DeCvyt1XR8TzgbeX+2/LzP9qNZ4GF5Tpbc6/iFhaN+/MzLy2w+13ajbvrdPKzK9QXaFwBFV5nrlSe67+a7PjmZlfBf6PqqfwE+sW7SzTY3sW3dSanR9HcOA5eU6z154Z/F9mfrzJstm8p+0s08VtPE9r6xxM1Wu+F87u0XYbrcvMG6eY/ymqHyEAGl8fd5Zpv96DJWkomFiXJHXL3epuh9fNfz/V5cI/bmh/AtWXY4DPNCTm99+ovkzW3KedgCJiVRm86/tl0KX6wdJqSdy2Bp1qRfnyUvtSf7skct288+u/SEfEPTjwP/77NMdkB1WvVmjvmDyyTDdmZjZp83mqS5On8rgyfWGz2Ep8v9YktlqC6HFRNyBgsQo4muoL80db+WfqRcSKiHhvVANiXtfwWL+iNOv6Y82BY3pRZu6bqkFmfpuq13l9+0ZfnmYfPynT2w2q1mJsl5Vk8FSx/RL4ygyxdap2vhwF/GSa8+Wdpd3+86U8h/633P10VIPa/mrMMNhml30rM69vsuynZfqVaZ5LtTZ3nGphj1+fZvNcrZ0HP2qSbKa8bn21w9ja9cVpltVi/Z9p2lxEVQKivn2jS5vM/2nd35e10OboaeJo1JX3wMx8K1XJm4VUr7FHUdWcP226nUfEQyPiXyLim1EN4Liv7vz7l9Ks8fx7bJnupUrIzalO31trohoU/E+iGqjyJ2Ugxvrn3V1L0168V9xORCykKrEB8NoZnqv3L+3qz4FaaZzfjIhPRTXI6d27FNuvRMTryyCVO6MaVLN2nD5ZmjUep0dSJbShOic70crzvZP3tEupfuRdAnw5Il4c1eDY0w3E/D2qjiEHlXVeGdWgwAtb+UdacCPVmDdzYcrPGOXHx5+Xu42fMT5Rpu+LiHUR8YSIOBxJ0m00HVFdkqR2ZGYAlC8px1L1HDuHqj7oZqq6mPXqv/y12hO9pQ/0EbGAqpbqyXWzawNK1nrmHEWV1Gi5h2Gb3k9VRuDxEXGfzPxBie0uwG/UtalXf0zu3OJ+2vmSU0saNP7IsV9m7omIq5n6ManFd2S5tRvbF6jqGB9HVRu2vnd8LSHy8czc2cK294uIf+BA8hyqpE/9Y30Hqse5F4/1jMe0uJLqMva7Nlm+e5p1az90HDRNm6m0E1t9+26pnS8H0dpz/LCG+39IVWP+oVS9/l8N3BwRl1H1XP33zLymS7FOpZXHpO3HbY5en2bzXG33vOm1n02zrNXXtF9QnYNtPf8y89a6vFuzx7r+h8h2nqPdfA98AdWVSIdSvf6dXK4SmlJEvBh4Mwc6WdVK7txU7h9Gdd40nn+1ntG/mOZHp17r5L2ViLgr1Q8w9b1y93BgsGuAu1Adk159Lmh0J6pyX9DkB7gp7D8HMvMLEfFKql7av1FuRMSVVP/r+6e6EmomEfEsqgGKD6mbvYsDZYcOLvE2Oz+gumqxE7N6vhe3e0/LzJ0RcTLVFUYPoho7AuDaiPg81Q/6H6m/UjAz90bEc4GPUX1uOafcboiIi6nGpXlfZt7Q0n92e1c3+0G+Bzr5jPEK4HiqqyReXm57I+LrVFctvGOKTjOSNO/YY12S1FVZ2ZGZ/8aBWuD/GBFPamha3+PnsMyMFm4bWwzjhVRJq71UpQyWUg0AeqfMPDYzj+VAr7fpeivNxuepvlgGVRK55rlUP2z/FGgsXVB/TB7Q4jF5b4/in0otvj9tMbZT61cuPXtrZV729zaMiGOAp5e7bZWBiYincCCp/i9USZPGx/qNtebtbFuzVjtfvtzi+XKbxyczfwg8gipZ9BaqHtILqHpj/yOwbYrXlWEwF69Ps3quDpi9MzcZSt18D/w9DvR+X8g0JYQi4gFUJY4WUJXnejRVTfE71p1/L681b1i92dUZc6mT91ao3gceTDV+wAuo6m8flpl3qfu/a1cHzdV7Rf058LQWz4HX1m8gM/+JKun7MqoycT+j6kl+KnBhRPxHRLT8g095P34vVVL9Qqoa8odn5lGZebdynKYqwwPdOT969nzPzP+hOla/RzWA9BVUP2I+k+qzx9fKlYP163wDWEZVhuYdVAP2HkZ1tc+/AFujeYmpmQz0a1tm7szMJ1GN2fGPVFcT3Ep1tc3fAFeUHyskaV4zsS5J6pmSBPgA1ZfUtzZcPntV3d9tlXhpQa2W+Lsy8zWZuW2KXkE9rUlaksgfLHfrL1mv/f2hrC7BrdfLYwIHeoLdo1mDqGqdN6slWotvNrHVEudLI6J2CfxzqHpK/Zz2ywvUHuv/zsw/z8wtWdVVr9fLx7p2TGcqHVBbPl1vvG7rd2yzPl8yc19m/ndmviQzH0nVw/MUqtrmdwTOm+PyMN0wF69Pszn2M75OtLh8Lsx4jkdVy7z2mjaXz7+ZdOX1PiIewYE6zd8s0zeWBPpU1lAldL8NPDczL8vMmxvaNDv/ajHfOdqoJ99Nnby3lsTySeXuizPzPZl5VUObhbR+pVi9/fsq59rtRMRRTda9um792bxO/iQz35SZz8rMu1GN61Ab12IN8KdtbO7pVFcr/JJqENHP5e1rc890fkBvP8N0/J6Wmddn5gcy89TMvF9p+0qq3vj1Pdnr17k5Mzdk5osy88FUVzb8CXANcC+qJH0v1J/HU55bRbPzqysy8wuZ+crMPJGq3NVvUV2Jehjw7ujS+EeSNKxMrEuSeu1vqXrlPBD4/br5l3Gg7MEzu7zPe5Xp16ZaGBF3AH51mvVrSa7Z9lqrXY5+/4h4VETcH3hUw7L9MnOSA5c4d/uYwIG6o0+Ypq7o42leKq5W+3RVpwFkVbO5NvDj8xumU/3YMJOZHusApuvVPNvHunZMn1hKfEwVwzIOJCGb1Wnuhf11ZpsldiLiaOrq1nZ5/7Xz5diI6Er99szcnZnncWDAv7tx29IO+xPUM9TO7ae5eH2azXO1dt7cKyLuO1WDiDiS9gZO7pVarE+eps1KDrymzeXzbyazfg8sye0PUZXm+F+q3ueXUiW8Plx+KG1UO/++McUPOjW/1mT+xWW6EHham+F2630V2nxvpUqE1hKTUz7vqHr5T5e8bOaXdX/fq0mbKZ/PWZUdqdX379p7fmZuzsw/4sDrQLNBs6dS+x++k81LnDQ7P75C7z7X1bYPXXxPy8wfZ+Y/AuvKrBmPVWZendVVma8ssx5eevp324znVkTcj/bGdpiVzNyT1aDItR+qDqU3A8NL0tAwsS5J6qnM/B7wkXL31bVLkrOqz3pemf/KiLj3dNuJiHYGbqwNWvbQJstfDSyeZv3aoFhHt7HP28nM73JgwKjf40ACeUtmNvtyXxvI8YUR8fDptt/mMYEDj8O9ue2PHLXtLQBeNc367yjT8YiYtgdcRBwxTU/iWuLjORHxIA4M3jZVQmQmMz3WfwL8yjTrz/ax/nCZ3oOqJvhU/rZMf8H0gyx2239S9Xg7lAMJgEZnUl3yf0tp300XAbXBL984U8/y+vO5hV7o9T0o65OD9QPaHd1CjP0wF69Ps3mufpYDCZ1XN1ntFdy+Jn4/1J5/yyPiqY0LI2IRVckCqF53t8xZZDPo0nvgPwP3o+r5/HuZeRPwPKp6yg/h9mObwIHz78FT/fgUEU+j+jFiqpi3UZViATir/MDSqq68r5Y42n1v3cWBMiW3e96V8+T/dRjOdznwevTbU2x7AXDGNOvXnqtPj4inT9PududAkx9O6tXiaqeOd+38uN9UPfAj4mFU59jtlER87Tl5ekQ0+6GhUx2/p3VyrNpY5zbrdUt5jfheuXu7c6v4627vF6rnRLPOAkVP/3dJGiYm1iVJc+Fsqi+1YxzoaQrVF6CfUF1+/aWIeH5E7E8oRcRdIuK3I+JjVL3yWvXpMv2jiPjjWtIoIo6NiDdSJYWunmb9WvJlTUS0OqBYM7XSJ8/lQD3Y6eqIr6O6xPZQ4KKIeHF9T6iIODoinhYR7wc2tRNIZn6ZajBIgH+NiD+qfXEsSZ2PAMuBKXupZebngPeUu2+LiDdGxP6kdUQcEhGPiYh/pKqB22ygwI9Q9Wqr1XIF+FZmfrWd/6eoPdZPi4hX18oTlON0JtVl3a081k9vrK3aisy8lANf3t9aHq/DSwzHRsQ7OVCP9tU5zYCC3ZbVoGJvLndPj4jXld58tePzd8BfleVvyMwdXd7/rVQ/bNxK1aPt8xHx5Pp6vxHxKxHxJ1ENSPpndas/NiK+GREvi4gH1L7gR+WxwL+WdldyoPwFVEmuWo/JPxzQXus9f32azXO1lH2oDSz8+xHxptprUEQcGRGvpnrt3tn6v9wz/8mBBOtHI+J5tfMrIo4ry5eX5a+YYv1+6/g9MKpBFU8td1+QmT+B/T9m155LL46IxqsWauffg6jOjTuV7R0RES+iqu8/3fn3EqqyGUuBL0bEb9Qd84WlB/nbI6KxV3M331ehjffWzLyOA7233xART6p7TRkHPknVy7ntAVlLr/Pae8CZEfHsuuf0/akGvnzINJv4INUPrgF8LCJeFRH7B7Ytj8sTI+JtwPcb1p2IiHeXzwRH161zp4h4FQeu5LigjX/pM1SJ0jsB59beFyPi4Ih4dlk+3UCYf031I/IxVOfHsyPisLKNiIjxiPiniHj+NNuY0izf014ZEZ8qz7H9pWTKa+Gz69arP1bPjYgvRsSLGl4/F0bEr1MNZArwpcys713eTbXn/Qsi4s/qjuW9IuJdVKX0Oh08dTr3pKqh/qqIeHhUPz5R9v0QDpRjuh74XA/2L0nDIzO9efPmzZu3jm7Aa6kS5tlC24nS9kdUA/XV5j8A+E5tO1RlY64Grqubl8Bnp9hmbdnKhvlHU9WPrd/mL6m+LCbwdqqEbgLvnWK7j69reytV4mMSmGxl/w1tjgFuaojl7jMcq7tTlUuprbOvxH9twzG5ooPH7Bjg63XbuLlsu7afPyv/awKnTrH+wVS96uvj2E1Va3Rvw/x7TBPHfza0PX2GuKeMiao2++cbjlV9LJ+gShImsHGK7S6l6nlVe2yuqj3WwD1n2n9ZdhSwsS6GW0oM++rm/VOT/6u23mtbeJ7dLv4WHu+DqX7IqD//Gh+r84CDplh3rK7N2CxeJ1ZzoMdo7Zz7BVVyrv4c+Ou6dVY2LKutc0vdvGuBFVPs7111ba6nShxPAq+va3NqWT45xfozHm+mef2Y6bFl7l6fOn6uUnW+ef8U582t5f6HWjkG0xybpse/rs2Mr6+l3T2okra19jdx4DWtFvtftvO60k4czPJ5QgfvgWWfO8v8f26y3drj93OqgTrrl32oYdu/rHtsvwK8eLrHB3hq3f7rn583181b3cl528Zxa+u9lap0Uf0x3cOB16VbqHq9Nz0fpjsPqJKQP244HrX3613AE2ZY/0jg4w2PybXc9nUhgVuavMbUr9P4OeE/gAVtHttzGraxs+6x/T5Vj/UEssn6j6D60bO2/q3l/Lixbt5Lm/wvr50hto7e06j7vFpuN1A9z+qP77eAY6d4nao/Z37RsK8fA8vaPL617c547gN3AP6v4f+tvb7dTPXD0pTnLS2+Nk21fsO6tcfwam77nLsJWNPJ89ebN2/eRulmj3VJ0lypXWZ9T+BFtZmZ+W2q3lwvouoJ9QuqL5lBVUbiP4A/Bp7d6o4ycyfwWOBNVF8Y9lJ9KdgInJyZfzLD+p8HnkHVi2wnVR3n+9DBYFyZeTVVb7ia/83Ss3CadX5C1cP3ZKoe5juAw6m+UE5SfQF/KVWiopN4Hgu8BthK9aXyVqpejE/JzH+ZYf2bs6rd+liqxNr3qOrt3oFqoLCNVKVPHpJV77Jm6su+7ONA76e2ZNVb8KnA66h6K99Cde5cSjVg229SPf7N1r8CeCLVcf45VbKm9lg3qzXfuI1rqXoGvpDq/99NdTyuovoB4YmZ+VdNN9BD5fF6DtUAdp+i+mK8uEw/BZyUmc8rx7FXMUwAx1M9RpdSJbeOpvpS/g2qRPizgH+qW+0yquf8vwJf5cDrwh6qH4b+EXhAZk511cafUyVRNpf796Z6PDsZmLDr5ur1aTbP1awGjf09qjIbl1AlxBYBl1NdhTBlKYh+KLE/Eng5B2I9nOpH3A8AJ2TmW/oX4fTafQ8sPUc/RPWD3hbgtCab/vOy/p2BD8RtyzqcQvUe8k2q5+FCqufLGcDjqJ6j08X8GaofJf8fVc3yG4EjqJKM/13+lwsb1una+2rZXlvvrVldEfVo4KNUx3gB1Wv1R4HHZuZ0V5LNFMuVVHXU38WBcVKuo3qfe0RWV5BMt/6uzHwm1cChH6EanPkQqvP4x1TnxRnA/RtW/QuqkiifBK6gOmcOo/rR4r+A387M38nmtfSbxXM61XP/UqrH9iCqc+ks4OFl+9OtfznVD0anUz0nd1O97/yc6nXn5Rwog9SWWbynvYPqefQhqufNDRwYpHUT1fPhEXnbQW3/i+o4vIfqvepaqufdbqpj82rgQZm5tZP/pRVZXW1xIvAGYDvVe0XtKonlmfnhaVafjR9TfX56I9VjuIPqveNWqh8g3gaMZ+b6Hu1fkoZGZGa/Y5AkSZIkSZIkaWjYY12SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDYv6HcCoi4gA7g7s7ncskiRJkiRJkqRpLQZ+kpk5XSMT6713d+DKfgchSZIkSZIkSWrJPYEfT9fAxHrv1Xqq3xN7rUuSJEmSJEnSoFpM1Ul6xjyuifW5szszd/U7iFEREQuBFcASYAewKTP39jcqSZIkSZIkScOqqurdGgcv1dCJiJOAbcBFwHlluq3MlyRJkiRJkqSeMrGuoVKS5+uBzcByqsszlpf7602uS5IkSZIkSeq1mGFwU81SRBwJXAscZSmY2SnlX7ZRJdFXZ+a+umULgAlgHFhqWRhJkiRJkiRJ7Wgnl2uPdQ2TFcAYcFZ9Uh2g3D8bOK60kyRJkiRJkqSeMLGuYbKkTLc0Wb6loZ0kSZIkSZIkdZ2JdQ2THWU63mT5eEM7SZIkSZIkSeo6E+saJpuASeDMUlN9v3L/DGB7aSdJkiRJkiRJPWFiXUOjDEi6FlgFTETE8ohYHBHLqQYuXQWc5sClkiRJkiRJknppUb8DkNqRmRsiYg2wDri4btF2YE1mbuhPZJIkSZIkSZLmi8jMfscw0iLiSOBa4KjM3NXveEZFRCwEVlANVLoD2GRPdUmSJEmSJEmdaieXa491DaWSRN/Y7zgkSZIkSZIkzT/WWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWrDon4HIEmSJGm4RMRCYAWwBNgBbMrMvf2NSpIkSZo79liXJEmS1LKIOAnYBlwEnFem28p8SZIkaV4wsS5JkiSpJSV5vh7YDCwHFpfpZmC9yXVJkiTNF5GZ/Y5hpEXEkcC1wFGZuavf8UiSJEmdKOVftlEl0Vdn5r66ZQuACWAcWGpZGEmSJA2jdnK59liXJEmS1IoVwBhwVn1SHaDcPxs4rrSTJEmSRpqJdUmSJEmtWFKmW5os39LQTpIkSRpZJtYlSZIktWJHmY43WT7e0E6SJEkaWSbWJUmSJLViEzAJnFlqqu9X7p8BbC/tJEmSpJFmYl2SJEnSjMqApGuBVcBERCyPiMURsZxq4NJVwGkOXCpJkqT5YFG/A5AkSZI0HDJzQ0SsAdYBF9ct2g6sycwN/YlMkiRJmluRmf2OYaRFxJHAtcBRmbmr3/FIkiRJsxURC4EVVAOV7gA22VNdkiRJw66dXK491iVJkiS1pSTRN/Y7DkmSJKlfrLEuSZIkSZIkSVIbTKxLkiRJkiRJktQGE+uSJEmSJEmSJLXBxLokSZIkSZIkSW0wsS5JkiRJkiRJUhtMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUBhPrkiRJkiRJkiS1wcS6JEmSJEmSJEltMLEuSZIkSZIkSVIbFvU7AEmSJEmSJE0tIhYCK4AlwA5gU2bu7W9UkiR7rEuSJEmSJA2giDgJ2AZcBJxXptvKfElSH5lYlyRJkiRJGjAleb4e2AwsBxaX6WZgvcl1SeqvyMx+xzDSIuJI4FrgqMzc1e94JEmSJEnSYCvlX7ZRJdFXZ+a+umULgAlgHFhqWRhJ6p52crn2WJckSZIkSRosK4Ax4Kz6pDpAuX82cFxpJ0nqAxPrkiRJkiRJg2VJmW5psnxLQztJ0hwzsS5JkiRJkjRYdpTpeJPl4w3tJElzzMS6JEmSJEnSYNkETAJnlprq+5X7ZwDbSztJUh+YWJckSZIkSRogZUDStcAqYCIilkfE4ohYTjVw6SrgNAculaT+WdTvACRJkiRJknRbmbkhItYA64CL6xZtB9Zk5ob+RCZJAojM7HcMIy0ijgSuBY7KzF39jkeSJEmSJA2PiFgIrKAaqHQHsMme6pLUG+3kcu2xLkmSJEmSNKBKEn1jv+OQJN2WNdYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLaYGJdkiRJkiRJkqQ2mFiXJEmSJEmSJKkNJtYlSZIkSZIkSWrDon4HIEmSJEmSpKlFxEJgBbAE2AFsysy9/Y1KkmSPdUmSJEmSpAEUEScB24CLgPPKdFuZL0nqIxPrkiRJkiRJA6Ykz9cDm4HlwOIy3QysN7kuSf0VmdnvGEZaRBwJXAsclZm7+h2PJEnSfOGl85KkYVXew7ZRJdFXZ+a+umULgAlgHFjqe5skdU87uVx7rEuSJGnkeOm8JGnIrQDGgLPqk+oA5f7ZwHGlnSSpD0ysS5IkaaR46bwkaQQsKdMtTZZvaWgnSZpjJtYlSZI0Msql8+uAT1BdOn9JZl6XmZcAq8v815d2kiQNqh1lOt5k+XhDO0nSHDOxLkmSpFHipfOSpFGwCZgEziw11fcr988Atpd2kqQ+MLEuSZKkUeKl85KkoVcGJF0LrAImImJ5RCyOiOVUA5euAk5z4FJJ6h8T65IkSRolXjovSRoJmbkBWAM8GLgY2FWm48CaslyS1CeRmf2OYaRFxJHAtcBRmbmr3/FIkiSNslI7fRvVQKWr68vBlEvnJ6gSEkvt5SdJGgblvW0F1dVWO4BNvodJUm+0k8tdNDchSZIkSb2XmXsjYi2wnurS+bOpyr+MU9WjXUXVy8+EhCRpKJT3rI39jkOSdFsm1iVJkjRSMnNDRKwB1lFdMl+zHS+dlyRJktQFloLpMUvBSJIk9YeXzkuSJElqh6VgJEmSNO956bwkSZKkXlnQ7wAkSZIkSZIkSRomJtYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJasOifgcgdSIiFgIrgCXADmBTZu7tb1SSJEmSJEmS5gMT6xo6EXESsA4Yq5s9GRFrM3NDf6KSJEmSpPnJjk+95fGVpMFkKRgNlZJUXw9sBpYDi8t0M7C+LJckSZIkzYHyHWwbcBFwXplu87tZd3h8JWlwmVjX0Ci/0q8DPgGszsxLMvO6zLwEWF3mv760kyRJkiT1kB2fesvjK0mDLTKz3zGMtIg4ErgWOCozd/U7nmEWESupfp1fXpLpjcuXAxcDT8zMjXManCRJkiTNI6VD0zaqJO/qzNxXt2wBMAGMA0stW9I+j68k9Uc7uVx7rGuYLCnTLU2Wb2loJ0mSJEnqjRVU416dVZ/0BSj3zwaOK+3UPo+vJA04E+saJjvKdLzJ8vGGdpIkSZKk3rDjU295fCVpwM2rxHpEHBMRP4uIjIhtM7Q9NSIujYjrIuKaiPhkRDx2rmLVlDYBk8CZ5dK3/cr9M4DtpZ0kSZIkqXfs+NRbHl9JGnDzKrFONfDlnWdqFBFvAt5D9Ub1P8ClwFOAz0fE6h7Gp2mUunFrgVXAREQsj4jFpbb6RJl/mvXlJEmSJKnn7PjUWx5fSRpw8yaxHhFPBn4feOcM7X4NeAlwNfDQzFydmb8BPB7YC7wnIo7ucbhqIjM3AGuAB1MNVLqrTMeBNWW5JEmSJKmH7PjUWx5fSRp8kZn9jqHnIuIwqpG0bwJWA98FvpeZx0/R9pPA04CXZeabGpa9GfhLqjevdS3uu+WRZNW6MkL6Cqp6cjuATX6gkCRJkqS5FREnUV0dPlY3ezvV92Y7Ps2Sx1eS5lY7udz5klg/B3gF8ATgR1RvQrdLrJcE/C+BQ4B7ZeaVDctXAJ8HPpeZK1vct4l1SZIkSdLIsuNTb3l8JWnutJPLXTQ3IfVPRDyE6vKp92TmpogYm6b5/amS6j9vTKoXl5fpQ7obpSRJkiRJw6kkeTf2O45R5fGVpME00on1MqDHu4CdVD3WZ3LvMp0qqU5mXh8RO4E7RsTizNw9xT4PoUrO1yxuJ2ZJkiRJkiRJ0mAb9cFL/wJ4FPBXmXl1C+3vUKY3TNPm+jJtljA/g+pygdptyiS9JEmSJEmSJGk4jWxiPSLuDfw9VT30987hrs8Gjqq73XMO9y1JkiRJkiRJ6rFRLgXzNuBg4E/aWOe6Mj18mjZHlOntysAAZOZNwE21+xHRxu4lSZIkSZIkSYNulBPrq6hqq7+9Ibl9aJneIyI2lr+fm5lXAT8s96fsZR4RRwBHA7+cqr66JEmSJEmSJGn0jXJiHaok+BOaLDu0blkt2f4dqt7md4mIe2TmjxvWeUSZfrObQUqSJEmSJEmShsfI1ljPzJjqBhxXmnyvbv5kWedG4MKy/Hem2OyaMv14T4OXJEnzQkQsjIiVEXFymS7sd0ySJEmSpJmNbGJ9Ft5Qpq+KiKW1mRGxHHgRVXmZf+9DXJIkaYRExEnANuAi4Lwy3VbmS5IkSZIGmIn1Bpn5P8CbgWOAr0fERER8Evg8VemcP8jMnX0MUZIkDbmSPF8PbAaWA4vLdDOw3uS6JEmSJA22yMx+xzCnImIM2E5VCub4adqdCrwYeABwM3AJ8HeZeXGb+zsSuBY4KjN3dRi2JEkaEaXcyzaqJPrqzNxXt2wBMAGMA0szc29fgpQkSZKkeaidXO68S6zPNRPrkiSpXkSspCr7sjwzL5li+XLgYuCJmblxToOTJEmSpHmsnVyupWAkSZLm1pIy3dJk+ZaGdpIkSZKkAWNiXZIkaW7tKNPxJsvHG9pJkiRJkgaMiXVJkqS5tQmYBM4sNdX3K/fPoBoPZtPchyZJkiRJaoWJdUmSpDlUBiRdC6wCJiJieUQsLrXVJ8r80xy4VJIkSZIG16J+ByBJkjTfZOaGiFgDrKMaqLRmO7AmMzf0JzJJkiRJUisiM/sdw0hrZyRZSZI0v0TEQmAF1UClO4BN9lSXJEmSpP5oJ5drj3VJkqQ+KUn0jf2OQ5IkSZLUHhPrkm7HHpSSJEmSJElScw5eKuk2IuIkYBtwEXBemW4r8yVJkiRJkqR5z8S6pP1K8nw9sBlYDiwu083AepPrkiRJkiRJkoOX9pyDl2pYlPIv26iS6Kszc1/dsgXABDAOLLUsjCRJkiRJkkZNO7lce6xLqlkBjAFn1SfVAcr9s4HjSjtJkiRJkiRp3jKxLqlmSZluabJ8S0M7SZIkSZIkaV4ysS6pZkeZjjdZPt7QTpIkSZIkSZqXTKxLqtkETAJnlprq+5X7ZwDbSztJkiRJkiRp3jKxLgmAMiDpWmAVMBERyyNicUQspxq4dBVwmgOXSpIkSZIkab5b1O8AJA2OzNwQEWuAdcDFdYu2A2syc0N/IpMkSZIkSZIGR2Rmv2MYaRFxJHAtcFRm7up3PFIrImIhsIJqoNIdwCZ7qkuSJEmSJGmUtZPLtce6pNspSfSN/Y5DkiRJkiRJGkTWWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLasKjfAUjSfBIRC4EVwBJgB7ApM/f2NypJkiRJkiS1wx7rkjRHIuIkYBtwEXBemW4r8yVJkiRJkjQkTKxL0hwoyfP1wGZgObC4TDcD602uS5IkSZIkDY/IzH7HMNIi4kjgWuCozNzV73gkzb1S/mUbVRJ9dWbuq1u2AJgAxoGlloWRJEmSJEnqj3ZyufZYl6TeWwGMAWfVJ9UByv2zgeNKO0mSJEmSJA04E+uS1HtLynRLk+VbGtpJkiRJkiRpgJlYl6Te21Gm402Wjze0kyRJkiRJ0gCzxnqPWWNdkjXWJUmSJEnzSfkevILqyuwdwCa/72oYWGNdkgZI+fCwFlgFTETE8ohYHBHLqZLqq4DT/JAhSZIkSRp2EXESVeeyi4DzynRbmS+NDBPrkjQHMnMDsAZ4MHAxsKtMx4E1ZbkkSZIkSUOrJM/XU12xvRxYXKabgfUm1zVKLAXTY5aCkVTPy+EkSZIkSaPIMqgaBe3kchfNTUiSJNhfFmZjv+OQJEmSJKnLVgBjwMn1SXWAzNwXEWdTXbm9Ar8XawSYWJckSdPySgtJkiRJLVhSpluaLN/S0E4aatZYlyRJTTnwkCRJkqQW7SjT8SbLxxvaSUPNxLokSZqSAw9JkiRJasMmYBI4s9RU36/cPwPYXtpJQ8/BS3vMwUslScPIgYckSZIktauuc84ngLOpyr+MUyXVVwFrMnND/yKUpufgpZIkabb2DzwERESspK7GOtWHZAcekiRJkrRfZm6IiDXAOqrvCzXbMamuEWNiXZIkTaU2oNCvAB+iSrLXTAJ/3dBOkiRJkmrJ9fOpOuHs75zjla4aNSbWJUnSVGoDCn2Q6jLOkzlwGeeZZX59O0mSJEkCoCTRN/Y7DqmXrLHeY9ZYl6S5UWqC2yOiSyLiIOAG4GrgHvXHshzrHwPHAIdn5i39iVKSJEmSpO5pJ5e7YLqFkiQNgzJAzjbgIuC8Mt1W5qszj6O6su2uwMciYnlELI6I5cDHyvxFpZ0kSZIkSfOKiXVJ0lCrG3V+M7AcWFymm4H1Jtc7Vqud/rvAg6kGHtpVpuNlfn07SZIkSZLmDWusS5KGVilJso6qBvjqzNxXFl0SEauBCeD1EXG+ZWHaVqud/n3geBrK7ACPbmgnSZIkSdK8YY31HrPGuiT1TkSspCr7sjwzL5li+XKqHtZPzMyNcxrckCs/Wmyj6vlf/6MFEbGA6keLcWCpP1pI84/jWkiSJGkUWWNdkjRf1MqQbGmyfEtDO7WoJMjWAquAiYYa6xNl/mkm0qT5x3EtJEmSJBPrkqThVitDMt5k+XhDO7UhMzcAa5i6xvqaslzSPOK4FpIkSVLFUjA9ZikYSeody5XMDUs+SAJfcyVJkjT62snlOnipJGloZebeiFhL1XtyIiLOpir/Mg6cQVWuZI0Jntkpx29jv+OQ1HcrgDHg5PqkOkBm7iuvwReXdhvnPDpJkiRpDplYlyQNtczcEBFrgHVUCZ2a7ViuRJK6yXEtJEmSpMLEuiRp6JXk+vlYrkSSeql+XItLpljuuBaSJEmaN6yx3mPWWJckSdIosMa6hp1jhkiSpJm0k8tdMDchSZIkSRpmJQG5lmr8iomIWB4RiyNiOVVSfRVwmolKDaKIOInqh6GLgPPKdFuZL0mS1DYT65IkSZJaUsatWAM8mGpci11lOo7jWmhAleT5eqqrLZYDi8t0M7De5LokSeqEpWB6zFIwkiRJGjWW1NCwsISRJElqRzu5XAcvlSRJktSWkoDc2O84pBasAMaAk+uT6gCZuS8izqa66mIFntOSJKkNloKRJEmSJI2qJWW6pcnyLQ3tJEmSWmJiXZIkSZI0qnaU6XiT5eMN7SRJklpiYl2SJEmSNKo2AZPAmaWm+n7l/hnA9tJOkiSpZSbWJUmSJEkjqYwHsBZYBUxExPKIWBwRy6kGLl0FnObApZIkqV0OXipJkiRJGlmZuSEi1gDrqAYqrdkOrMnMDf2JTJIkDbPIzH7HMNIi4kjgWuCozNzV73gkSZIkaT6KiIXACqqBSncAm+ypLkmS6rWTy7XHuiRJkiRp5JUk+sZ+xyFJkkaDNdYlSZIkSZIkSWqDiXVJkiRJkiRJktpgYl2SJEmSJEmSpDaYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2rCo3wFIktQNEbEQWAEsAXYAmzJzb3+jkiRJkiRJo8ge65KkoRcRJwHbgIuA88p0W5kvSZIkSZLUVSbWJUlDrSTP1wObgeXA4jLdDKw3uS5JkiRJkrotMrPfMYy0iDgSuBY4KjN39TseSRolpfzLNqok+urM3Fe3bAEwAYwDSy0LI0mSJEmSptNOLtce65KkYbYCGAPOqk+qA5T7ZwPHlXaSJEmSJEldYWJdkjTMlpTplibLtzS0kyRJkiRJmjUT65KkYbajTMebLB9vaCdJkiRJkjRrJtYlScNsEzAJnFlqqu9X7p8BbC/tJEmSJEmSusLEuiRpaJUBSdcCq4CJiFgeEYsjYjnVwKWrgNMcuFSSJEmSJHXTon4HIEnSbGTmhohYA6wDLq5btB1Yk5kb+hOZJEmSJEkaVZGZ/Y5hpEXEkcC1wFGZuavf8UjSqIqIhcAKqoFKdwCb7KkuSRo2vp9JkiT1Tzu5XHusS5JGQkk6bOx3HJIkdSoiTqK6AmusbvZkRKz1CixJkqTBYo11SZIkSeqzklRfD2wGlgOLy3QzsL4slyRJ0oCwFEyPWQpGkiRJ0nRK+ZdtVEn01Zm5r27ZAqoBuceBpZaFkSRJ6p12crn2WJckSZKk/lpBVf7lrPqkOkC5fzZwXGknSZKkAWBiXZIkSZL6a0mZbmmyfEtDO0mSJPWZiXVJkiRJ6q8dZTreZPl4QztJkiT1mYl1SZIkSeqvTcAkcGapqb5fuX8GsL20kyRJ0gAwsS5JkiRJfVQGJF0LrAImImJ5RCyOiOVUA5euAk5z4FJJkqTBsajfAUiSJEnSfJeZGyJiDbAOuLhu0XZgTWZu6E9kkiRJmkpkZr9jGGkRcSRwLXBUZu7qdzySJEmSBldELARWUA1UugPYZE91SZKkudFOLtce65IkSZI0IEoSfWO/45Da4Q9CkqT5yMS6JEmSRpKJHknqvYg4iaqE0Vjd7MmIWGsJI0nSKHPwUkmSJI2ckujZBlwEnFem28p8SVIXlNfU9cBmYDmwuEw3A+t9zZUkjTIT65IkSRopJnokqffKVUHrgE8AqzPzksy8LjMvAVaX+a8v7SRJGjkOXtpjDl4qSZI0d0oCZxtVEn11Zu6rW7YAmADGgaWWhZGkzkXESqqrgZaXZHrj8uXAxcATM3PjnAYnSVKH2snl2mNdkiRJo2QFVZ3fs+qT6gDl/tnAcaWdJKlzS8p0S5PlWxraSZI0UkysS5IkaZSY6JGkubGjTMebLB9vaCdJ0kgxsS5JkqRRYqJHkubGJmASOLOU2tqv3D8D2F7aSZI0ckysS5IkaZSY6JGkOVDGqVgLrAImImJ5RCwutdUnyvzTHM9CkjSqTKxLkiRpZJjokaS5k5kbgDXAg6kGKt1VpuPAmrJckqSRFJnZ7xhGWjsjyUqSJKk7IuIkYB3VQKY126mS6iZ6JKmLImIh1aDQS6hKbW3yB0xJ0jBqJ5drYr3HTKxLkiT1h4keSZIkSe1oJ5e7aG5CkiRJkuZWSaJv7HcckiRJkkaPiXVJkiRJGhBeaSFJkjQcTKxLkiRJ0gBoMjbAZESsdWwASeo+f8yUNBsL+h2AJEmSJM13Jam+HtgMLAcWl+lmYH1ZLknqkvK6ug24CDivTLf5eiupVSbWJUmSJKmPSo/JdcAngNWZeUlmXpeZlwCry/zXl3aSpFnyx0xJ3RCZ2e8YRlo7I8lKkiRJmn8iYiVVT8nlJZneuHw5cDHwxMzcOKfBSdKIKT9SbqNKoq/OzH11yxYAE8A4sNSyMNL8004u1x7rkiRJktRfS8p0S5PlWxraSZI6t4JqLIuz6pPqAOX+2cBxpZ0kNWViXZIkSZL6a0eZjjdZPt7QTpLUOX/MlNQVJtYlSZIkqb82AZPAmaUMwX7l/hnA9tJOkjQ7/pgpqStMrEuSJElSH5UavmuBVcBERCyPiMWltvpEmX+atX4lqSv8MVNSV5hYlyRJkqQ+y8wNwBrgwVQDle4q03FgTVkuSZolf8yU1C2Rmf2OYaS1M5KsJEmSpPktIhZSDZi3hKoMwSaTO5LUfRFxErCOaiDTmu1USXV/zJTmqXZyuSbWe8zEuiRJkiRJ0uDxx0xJjdrJ5S6am5AkSZIkSZKkwVGS6Bv7HYek4WSNdUmSJEmSJEmS2mBiXZIkSZIkSZKkNphYlyRJkiRJkiSpDSbWJUmSJEmSJElqg4l1SZIkSZIkSZLasKjfAUiSJEmS1GsRsRBYASwBdgCbMnNvf6OSJEnDyh7rkiRJkqSRFhEnAduAi4DzynRbmS9JktQ2E+uSJEmSpJFVkufrgc3AcmBxmW4G1ptclyRJnYjM7HcMIy0ijgSuBY7KzF39jkeSJEmS5otS/mUbVRJ9dWbuq1u2AJgAxoGlloWRJEnt5HLtsS5JkiRJGlUrgDHgrPqkOkC5fzZwXGknSZLUMhPrkiRJkqRRtaRMtzRZvqWhnSRJUktMrEuSJPVJRCyMiJURcXKZLux3TJI0YnaU6XiT5eMN7SRJklpiYl2SJKkPymB524CLgPPKdJuD6ElSV20CJoEzS031/cr9M4DtpZ0kSVLLTKxLkkaCPX81TEryfD3VYHrLgcVluhlYb3JdkrqjDEi6FlgFTETE8ohYHBHLqQYuXQWc5sClkiSpXZGZ/Y5hpLUzkqwkqTMlCbmOanCymklgbWZu6EdMUjPlR59tVEn01fWD6ZXekxNUpQmWmuiRpO5o8llhO1VS3c8KkiQJaC+Xa491SdJQs+evhtAKqsTOWfVJdYBy/2zguNJOktQFJXl+PPBE4HllutSkuiRJ6pQ91nvMHuuS1Dv2/NUwioiTqWqqL87M66ZYvhjYBTwvMz801/FJkiRJ0nxlj3VJ0nxhz18Nox1lOt5k+XhDO0mSJEnSgDGxLkkaZkvKdEuT5Vsa2kmDYBPVGABnlisr9iv3z6Cq+7tp7kOTJEmSJLXCxLokaZjZ81dDp5QlWgusAiYiYnlELI6I5VTli1ZRDaZn+SJJkiRJGlDWWO8xa6xLUu9YY13DrAysu46qnFHNdqqkuoPpSZIkSdIcayeXu2huQpIkqfsyc29ErAXWU/X8PZuq/Ms4VTmNVcAak+oaRJm5ISLOpxoDYAnVlRWbPF8lSZIkafCZWJckDbWSnFxD1fP34rpF26mS6vb8lSRJkiRJXWUpmB6zFIwkzY1SFsaevxoaTUrBTAJr/UFIkiRJkuZeO7lcBy+VJI2EzNybmRsz80NlalJdA6sk1ddTjQ+wHFhcppuB9WW5JEmSJGlA2WO9x+yxLkmS6jnoriRJkiQNJnusS5IkDa4VVOVfzqpPqgOU+2cDx5V2kiRJkqQBNKvBSyNiEfAM4NHAnYEvZ+a7y7K7l3nfysxbZxuoJEnSiFhSpluaLN/S0E6SJEmSNGA67rEeESdSXca8ATgD+EPgxLomy4GvAb85mwAlSZJGzI4yHW+yfLyhnSRJkiRpwHSUWI+IBwKfpupJ9Vbg2UA0NPs4cAPw27MJUJIkacRsAiaBM0tN9f3K/TOA7aWdJEmSJGkAdVoK5tXAocDTM/MzABG3zatn5s0RcTnw8FlFKEmSeiIiDgeWtdJ20dHHHnrY0seM3XjFJZO37rxqT4u72JqZN3Qe4WjKzL0RsRZYD0xExNlU5V/GqZLqq4A1DlwqSZIkSYOr08T6E4FLa0n1afwYeGiH+5AkSb21DPhqKw1v3XkVuy+baHf7JwCXt7vSfJCZGyJiDbAOuLhu0XaqpPqG/kQmSZIkSWpFp4n1o4EftdDuCOCgDvchSZJ6aytV8ntGix+1etkRD1x57vXf2njK7ssmtraxfTVRkuvnAyuoyuvtADbZU12SJEmSBl+nifWfAce30O4BtJaAlyRpViJiISYo21LKtLTUo3zs9AsAOOTY47fuuvRj9kLvknKObux3HJIkSZKk9nQ0eClwIfCwiHhiswYR8Syq5PtnO9zHrEXE4RGxOiL+PSK+ExF7IuL6iPhGRPxNRNxhmnVPjYhLI+K6iLgmIj4ZEY+dy/glSa2JiJOAbcBFwHlluq3MlyRJkiRJ6qpOe6yfAzyHasCt04GP1RZExB2BZwGvB64H3jDbIGfhecA7y9/fBv4LOBJ4LPA64OSIeEJm/qx+pYh4E/AS4EbgM1QDtT4FeGpErMnMiTmJXpI0o5I8Xw98AjiZA4NAngmsL6/b1quWJEmS5omIOJxqPKEZLTr62EMPW/qYsRuvuGTy1p1X7WlxF1vL1Z+S5rHIzM5WjFgNfAA4vEmTPcDJmflfnYU2exHx+1RJ9Ddl5rfr5i8BLgAeDnwoM59Xt+zXqHrZXw0sz8wryvzlVJdq3wAcl5k7W4zhSOBa4KjM3NWFf0uSVJTyL9uAzcDqzNxXt2wBMEGVZF9qWZjZGTv9gkdQDXR6wuQ5z7AUjCRJkgZWRNQ+u/bKCZnpZ2JpBLWTy+20xzqZORER48DLqHpzj1GVlrmSKjG9LjO/1+n2uyEz3we8b4r5OyLiz4GLgZMi4uDMvLksfnmZ/n0tqV7W+VJEvB34S+CFwLreRi/1j7WqNURWUL3/nFyfVAfIzH0RcTbVa/0KrGMtSZIkzRdbgRNaabj4UauXHfHAlede/62Np+y+bGJrG9uXNM91nFgHyMwfAC/tTihz7htleghwDLAjIg4DnlTmr59infVUifVnYmJdI6qU1VhHlaysmYyItZbT0ABaUqZbmizf0tBOkiRJ0ogrZVpa6lE+dvoFABxy7PFbd136MXuhS2pZp4OXjoJfKdNbgGvK3/enSrT/PDOvnGKd2gvsQ3ocm9QXdbWqNwPLgcVlupmqVrUDQWrQ7CjT8SbLxxvaSZIkSZIkzdp8Tqy/pEw/nZk3lb/vXaZTJdXJzOuBncAdI2Jxb8OT5lYp/7KOagDI1Zl5SWZel5mXAKvL/NeXdtKg2ARMAmeWmur7lftnANtLO0mSJEmSpK7oKLEeEXvbuN3a7aBnKyKeTlUn/Rbg1XWL7lCm043sfH2ZTplYj4hDIuLI2q1ZO2kA1WpVnzVVrWrgbOC40k4aCKX2/1pgFTAREcsjYnEZcHqizD/NMQIkSZIkSVI3dVpj/UdATjF/AXAscFC5/4MOt98zEbEM+CAQwF9l5jdmWKVdZwCv6fI2pblgrWoNpczcEBFrqK64uLhu0XZgjWMDSJIkSZKkbusosZ6ZY82WlUvvnwS8maou88kdRdYDEXEP4NPAHYE3ZOabG5pcV6aHT7OZI8p0d5PlZwNvqLu/mCalZaQBU1+r+pIpllurWgOrJNfPp7qiYgnVebrJnuqSJEmSJKkXOu2x3lQpGfE/EbEK+CbwSuCcbu+nXRFxJ+AzwH2A9wCnTdHsh2V6zybbOAI4GvhlZk6ZWC/12m+qW6fzoKW5VV+renV9ORhrVWsYlCT6xn7HIUmSJEmSRl/PBi/NzO1UvV5f0Kt9tCoi7gB8CnggsAH4o8ycqpTNd6iS4ncpvdsbPaJMv9mTQKU+sla1JEmSJEmS1JqeJdaLG4B79Xgf04qIQ4DzgUcD/w2c3CwxmJk3AheWu78zRZM1ZfrxbscpDYJSi3oN8GCqWtW7ynQca1VLkiRJkiRJQA9KwdRExH2AxwM/7dU+WohhIfAhqprvm4CTMvPmGVZ7A/A04FURcUFmXlG2tRx4EbAT+PeeBS31mbWqNazKa77nrSRJkiT1SEQcDixrpe2io4899LCljxm78YpLJm/dedWeFnexNTNv6DxCae50lFiPiN+bZvEdgPsBvwscCfxLJ/vokhcDzyp//wL4lyY1z0/LzF8AZOb/RMSbgZcAX4+IzwIHA08BAviDzNzZ68ClfrJWtYZNRJwErAPG6mZPRsRar7SQJEmSpK5ZBny1lYa37ryK3ZdNtLv9E4DL211J6odOe6y/F5iqRnlNLXv9fuA1He6jG+5Y9/ezmraC11Il3gHIzJdGxNepEvNPAW4G/gf4u8y8uPthSpI6VZLq64FPACcDW6jKF50JrI8IyxhJkiRJUndspUp+z2jxo1YvO+KBK8+9/lsbT9l92cTWNrYvDYVOE+t/S/PE+s1Ul+B/PjO/3+H2uyIzX0uVNO9k3fdS/YAgSRpQpfzLOqqk+urM3FcWXRIRq6kG3n19RJxvWRhJkiRJmp1SpqWlHuVjp18AwCHHHr9116Ufsxe6Rk5HifWSsJYkqd9WUJV/ObkuqQ5AZu6LiLOpBuBdgeWNJEmSJElSlyzodwCSJM3CkjLd0mT5loZ2kiRJkiRJs9ZpKRhJI6yU11hBlYzcAWyyjIYG1I4yHQcumWL5eEM7SZI0T/kZV5IkdVNLifWIuHAW+8jMfPIs1pc0h8pAkOuoymvUTEbEWgeA1ADaBEwCZ0ZEfY11ImIBcAawvbSTJEnzlJ9xJUlSt7XaY33lLPbRbJBTSQOmfOFYTzUQ5MlUZTTGgTOB9RGxxi8eGiSZuTci1lKdtxOlpnrtvD0DWAWssTeaJEnzl59xJUlSL7SaWD+up1FI6rtyaew6qi8cJwEnAs+kukz2JGAD8PqION8kpQZJZm6IiDVU5+/FdYu2UyXV/aIsSV1mSQ0Ni4bPuPVXt10SEauBCfyMK0mSOtBSYj0zf9DrQCT13QqqS2P/DbiChstky/xnlnYb5zQyaQYluX4+JnkkqecsqaEhU/uMe3J9yTiAzNxXrna7GD/jSpKkNjl4qaSaJWV6FlNfJntWQztpoJQk+sZ+xyGp9yLicGBZK20XHX3soYctfczYjVdcMnnrzqv2tLDK1sy8YXYRji5LamgI1T67bmmyfEtDO0mSpJaYWJdU89My/SJTXyb7OaryMD+dYl1JkubSMuCrrTS8dedV7L5sop1tnwBc3kFMI8+SGhpSO8p0HLhkiuXjDe0kSZJa0nFivfQUejnwW8BSYHGTppmZJvAlSZLULVupEuAzWvyo1cuOeODKc6//1sZTdl82sbXFbWtqltTQMNpEVdbwzIio/0GIiFhANdj59tJOkiSpZR0lvCPiKKoPHg8C9gI3A0H1K/+x5W8Aa7NLw+NuZfo4YKJ8Oa5d3n1GmV/fTpKkviilWlrqVT52+gUAHHLs8Vt3Xfoxe6LPjiU1NHQyc29ErKUqYTTVZ9xVVIOde5WFJElqS6c9yU+n+iDyb8DLgLcDz8/Me0TEocCzgXOAL1PVXpQ0+GqXv54JvIiqx1nN9jL/bLxMVpKk+cqSGhpKZZDzNVSljBo/4zougCRpIPR4HCFwLKGu6zSxvhr4CfCXmXlLRGRtQWbuAd4fEV8BvgasBV4/20Al9VztMtnHUpV3OpGqx9kO4AvABrxMVpKk+cySGhpaJbl+PlWpotpn3E32VJckDZBejiMEjiXUdZ0m1u8D/E9m3lLu7wOIiINq8zLzWxHxOeBUTKxLA6/hMtkNVL3TP0HV+2wDXiYrSdK8ZkkNDbtybm7sdxySJDXRy3GEattXF3WaWN9TbjW7yvRY4Ed186/hQF1mSQPOy2QlSdJ0/KwgSZLUG44jNHw6Taz/CLhX3f3aLx5PAD4IEBGLgEcBV3ccnaQ552WykiRpOn5WkCRJkjpPrG8C/iAiFmfmbuDjwFuAt0TEHYAfAy8ExoDzuhGopLnjZbKSJGk6flaQVC8iFuKPbZKkeabTxPqHqWr+PBb478z8SUScQVVL/W2lTQBXAa+cdZSaV1odBdkRkCVJkjQsWv2MC37O1XCJiJOoykON1c2ejIi1loeSJI2yjhLrmfkFYHnDvDdExBeBZwF3BL4LvCczr5l1lJpvWhoF2RGQJUmSNERa+owLfs7V8ChJ9fXAJ4CTOTCg8ZnA+ohw7AVJ0sjqtMf6lDLzy8CXu7lNzUstjYLsCMiSJEkaIi19xgU/52o4lPIv66iS6qszc19ZdElErAYmgNdHxPmWhZkdS+1I0mDqKLEeEauAT/lCrl5odRRkR0DWIPHybkmSNJ1WP+OCn3M1NFZQlX85uS6pDkBm7ouIs4GLS7uNcx7diLDUjiQNrk57rP8X8POI+A/gvMy8uIsxSdIw8vJuSZIkzSdLynRLk+VbGtqpTZbakaTB1mli/WPA04E/A/40IiaBc6mS7F6CKGk+8vJuSZIkzSc7ynQcuGSK5eMN7dQGS+1I0uDrdPDS346II4HfAU4BHg+8CvjriLicKsn+4cy8qmuRStIA8/JuSZIkzTObgEngzIioT/wSEQuAM4DtpZ3aZ6kdSRpwCzpdMTN3Zea/Z+aTgHsDrwC+SdVj8w3AjyLiMxHxe90JVZIkSZIkDYLSS3otsAqYiIjlEbE4IpZT9aZeBZxmb+qOWWpHkgZcx4n1epn5k8x8fWY+HHgQcBbwQ+DXgHd3Yx+SJEmSJGlwlPrea4AHU/We3lWm44D1v2envtTOVCy1I0l91mmN9en8APgW8B3gOCB6sA9JkiRJktRnmbkhIs6nKkmyhCrRu8me6rNmqR1JGnBdSayXQTV+A3ge8JvA4VQJ9R8A53VjH5IkSZIkafCUJPrGfscxSjJzb0SsBdZTldo5m6r8yzhVUn0V1VUB/oAhSX0yq8R6RDyOavDSNcAxVMn0a4APAh/MzC/OOkJJkiRJkqR5plwNsAZYR1Vip2Y7ltqRpL7rKLFefil9LtWgpQHsofoV9YPApzLz1q5FKEmSJEmSNA9ZakeSBlenPdZfCewDLqRKpm/IzN1di0qSJEmSJEmW2pGkAdVpYn0t8OHMdPRpSZIkSZIkSdK80lFiPTPf2O1AJEmaSkQcDixrpe2io4899LCljxm78YpLJm/dedWeFnexNTNv6DxCSZIkSZI038xq8FJJkubAMuCrrTS8dedV7L5sot3tnwBc3u5KkiRJkiRp/jKxLkkadFupkt8zWvyo1cuOeODKc6//1sZTdl82sbWN7UuSJEmSJLXMxLokaaCVMi0t9SgfO/0CAA459vituy79mL3QJUmSJElSTyzodwCSJEmSJEmSJA0TE+uSJEmSJEmSJLXBxLokSZIkSZIkSW3oKLEeEe+OiBe00O7UiHh3J/uQJEmSJEmSJGkQddpj/VTgxBbaPQ74/Q73IUmSJEmSJEnSwFnU4+0fDOzt8T4kSZIGTkQcDiybqd2io4899LCljxm78YpLJm/dedWeFje/NTNvmF2EkiRJkqRO9SyxHhEBPAL4ea/2IUmSNMCWAV+dqdGtO69i92UT7W77BODyDmKSJEmSJHVBy4n1iLiwYdZvTDGvfrv3BY4FPtBhbJIkScNsK1UCfFqLH7V62REPXHnu9d/aeMruyya2trFtSZIkSVKftNNjfWXd30mVND92mva3AJ8ATms/LEmSpOFWSrXM2Kt87PQLADjk2OO37rr0Y/ZClyRJkqQh0E5i/bgyDeD7wHrgr5q0vRn4RWbeMovYJEmSJEmSJEkaOC0n1jPzB7W/I+J1wNfr50mSJEmSJEmSNB90NHhpZr6u24FIkiRJkiRJkjQMOkqsR8STgBcDb8zMTU3aPB54KfCmzPx8xxFK6pqIOBxY1krbRUcfe+hhSx8zduMVl0zeuvOqPS3uYmupKSxJkiRJkiSNrI4S68CLgKcAvz9Nm68DTwX2ACbWpcGwDPhqKw1v3XkVuy+baHf7J9DCQH2SJEmSJEnSMOs0sf5o4GuZubtZg8zcFRGXA7/a4T4kdd9WquT3jBY/avWyIx648tzrv7XxlN2XTWxtY/uSJEmSpBn0+IpiryaWpB7rNLF+LHBxC+1+BDyyw31I6rLywaqlHuVjp18AwCHHHr9116Ufsxe6JEmSJHVXL68o9mpiSeqxThPr1wN3a6HdXalKwUiSJEmSJOmAXl5R7NXEktRjnSbWvwacGBH3zswfTtUgIu4NrAC+1GlwkiRJkiRJo8griiVpuC3ocL13A4cAn4iI25V6KfM+DhxU2kqSJEmSJEmSNBI66rGemR+KiGcBa4AvR8Q3gO+VxfcFHgoE8LHM/EBXIpUkSZIkqUGPB4AEB4GUJElT6LQUDMBzgTOBlwMPK7eancAbgbNmsX1JkiRJkmbSywEgwUEgJUnSFDpOrGfmPuDvI+IfgEcC9yqLfgR8NTNv7kJ8kiRJkiRNp5cDQNa2L0mSdBuz6bEOQGbeQjVAqYOUSpIkSZLmlANASpKkfuh08FJJkiRJkiRJkualWfVYj4h7A88ElgKLqQYsbZSZ+cLZ7EeSJEmSJEmSpEHRcWI9Iv4GeDW37fVeS6xn3f0ETKxLkiRJkiRJkkZCR6VgIuI5wGupBir9Y+CzZdGvA38KfI4qqf4G4EmzjlKSJEnSwIiIhRGxMiJOLtOF/Y5JkiRJmkud9lj/M+Bm4ImZ+YOIOBEgM2sJ9n+LiJcB/whMzDpKSZIkSQMhIk4C1gFjdbMnI2JtZm7oT1SSJEnS3Op08NKHABdn5g/K/QSIiP011jPzjcB3gFfNKkJJkiRJA6Ek1dcDm4HlVOMsLS/315flkiRJ0sjrNLF+CHBV3f09ZXp0Q7tvAI/qcB+SJEmSBkQp97IO+ASwOjMvyczrMvMSYHWZ/3rLwkiSJGk+6DSxvgO4a939H5fpgxra3RPwg7UkSZI0/FZQlX85KzP31S8o988GjivtJEmSpJHWaWJ9M3D/uvsbqQYrfV1EHAEQEc+m+lD9f7MJUJIkSdJAWFKmW5os39LQTpIkSRpZnSbWPw7cIyKeBJCZXwQuAp4I/DIifgF8iKr2+t91I1BJkiRJfbWjTMebLB9vaCdJkiSNrE4T6x8EHgB8vW7es4B3ANdQDWL0LeD5mfnp2QQoSZIkaSBsAiaBMyPiNt8jyv0zgO2lnSRJkjTSFnWyUmbeBHynYd4u4E/KTZIkSdIIycy9EbEWWA9MRMTZVOVfxqmS6quANZm5t49hSpIkSXOio8S6JEmSpPknMzdExBpgHXBx3aLtVEn1Df2JTFIvRMThwLJW2i46+thDD1v6mLEbr7hk8tadV+1pcRdbM/OGziOUJKl/OkqsR8QrM/MfWmh3DPDOzDypk/1IkiRJGiwluX4+sIJqoNIdwCZ7qksjaRnw1VYa3rrzKnZfNtHu9k8ALm93JUmSBkGnPdbPjohfB34vM6+cqkFEPBV4D3Bsp8FJkiRJGjwlib6x33FI6rmtVMnvGS1+1OplRzxw5bnXf2vjKbsvm9jaxvYlSRpKnSbWPws8BfhGRPx5Zn64tiAiDgb+CXgxkMA5s45SkiRJkiTNqVKmpaUe5WOnXwDAIccev3XXpR+zF7okaeQt6GSlzPx14OXA4cC5EfGBiDgyIh5CdZnYXwA/AJ6QmX/dtWglSZIkSZIkSeqzjhLrAJn5JuDRwP8BzwO+BXwZeBDwfuChmfnFLsQoSZIkSZIkSdLA6DixDpCZm4HVwG7g7sDBwAcy89TM3D378CRJkiRJkiRJGiyzSqxHxElUvdSPpCoBczPwuxHxwYg4sgvxSZIkSZIkSZI0UDoavDQijgDeApwK3AK8AlhHVQbmXKrSMI+LiN/LzE3dCVWSJElSL0XE4cCyVtouOvrYQw9b+pixG6+4ZPLWnVftaXEXW8tgiJIkSdJQ6yixDnwduC/wbeCUzPx6mb8lIh4FnAO8BLgwIl6fmWfMNlBJkiRJPbeM6krUGd268yp2XzbR7vZPAC5vdyVJkiRp0HSaWL8v8M/AKzLzNr1TMvNm4OURcQHwPqre7CbWJUmSpMG3lSr5PaPFj1q97IgHrjz3+m9tPGX3ZRNb29i+JEmSNPQ6Taw/IzM/NV2DzPzfiHgw8K8d7kOSJEnSHCplWlrqUT52+gUAHHLs8Vt3Xfoxe6FLkiRpXukosT5TUr2u3S+B53ayD0mSJEmSJEmSBlGnPdYBiIhFwDOARwN3Br6cme8uy+5e5n0rM2+dbaCSJEmSJEmSJA2CjhPrEXEi8EHgXkAACRwEvLs0WQ58FPgdYMPswpQkSZIkSZIkaTAs6GSliHgg8GlgCfBW4NlUyfV6HwduAH57NgFKkiRJkiRJkjRIOu2x/mrgUODpmfkZgIjb5tUz8+aIuBx4+KwilCRJkiRJkiRpgHTUYx14InBpLak+jR8Dd+9wH5IkSZIkSZIkDZxOE+tHAz9qod0RVHXXJUmSJEmSJEkaCZ0m1n8GHN9CuwfQWgJekiRJkiRJkqSh0Gli/ULgYRHxxGYNIuJZVMn3z3a4D0mSJEmSJEmSBk6nifVzgJuBiYj404g4trYgIu4YES8A/h24HnjD7MOUJEmSJEmSJGkwdJRYz8ytwMll/X+mGqQ0gd8HfgG8EzgEOCUzt3cnVEmSJEmSJEmS+q/THutk5gQwDrwV2ArsoerF/n3g34CHZOZ/dSFGSZIkSZIkSZIGxqLZrJyZPwBe2p1QJEmSJEmSJEkafB33WJckSZIkSZIkaT4ysS5JkiRJkiRJUhtMrEuSJEmSJEmS1AYT65IkSZIkSZIktcHEuiRJkiRJkiRJbTCxLkmSJEmSJElSG0ysS5IkSZIkSZLUhkXd2EhEHALcCbgpM6/pxjYlSZIkSZIkSRpEs+qxHhF/HBFfA64HrgReX7fspIjYEBHHzzJGSZIkSZIkSZIGRkc91iNiIbAe+E3gFuDbwIMamn2jtPkq8P9mEaMkSWrD2OkXLAUWd3mzy2rTsdMv6PKm2T15zjOu6PZGJUmSJEnqlU5LwbwY+C3gk8ALM/OnEbGvvkFmfi8itgFPw8S6JElzoiTVv9vDXZzbi42OnX7B/UyuS5IkSZKGRaeJ9VOBnwLPyczrp2n3LeCEDvchSZLaV+up/rtUV5R1y6HAGDAJ7Onidh8AfJDu97CXJEmSJKlnOk2s3x/4zAxJdahqr9+lw31IkqTOfXvynGdc3uVtXtzl7dGDsjKSJEmSJPVcp4OX3kLVc20m9wZ2d7gPSZIkSZIkSZIGTqeJ9f8DToiIppdtR8RdgYcBX+9wH5IkSZIkSZIkDZxOE+sfAI4B3h4RBzcujIiFwNuAw4H3dR6eJEmSJEmSJEmDpdMa6+8Afgc4GXhsRPx3mf/QiHgzsAo4DvgMcO6so5QkSZIkSdK8Nnb6BUvp/qD3y2rTHoz/s3vynGdc0e2NShoMHSXWM3NvRDwdWAf8IfDHZdHDy20v8E7gJZmZ3QhUkiRJkiRJ81NJqn+3h7voScfQsdMvuJ/JdWk0ddpjnczcA/x5RLwWWAmMUZWWuRK4KDN/0oX4JEmSJGlg2XtSkuZM7bX2d4Fvd3G7h1LltCaBPV3c7gOAD9L99whJA6LjxHpNZv4c+I8uxCJJkqR5bMgSlCYnZe9JSeqPb0+e84zLu7zNi7u8PXrww6ikATPrxLokSZI0W8OYoDQ5Kew9KUmSNG/NKrEeESuBxwNLgEOaNMvMfOFs9iNJkqSRN0wJSpOTamTvSUmSpHmmo8R6RBwFnA+sAGKG5gmYWJckSVIrBj5BaXJSkiRJUqc91v+Bqqf6NuDtVJft7u5WUJI0KIas3i9Y81eSJEmSJKnnOk2s/xbwU+AxmXlNF+ORpIExjPV+wZq/kiRJkiRJvdZpYv0o4JMm1SWNuGGq9wvW/JUkSZIkSZoTnSbWrwCO6GYgkjTABr7eL1jzV5IkSZLUGcugSu3rNLH+VuCtEXF8Zm7rZkCSJEmDrAdfOvzCIUmSpL6xDGpv+aPF6OoosZ6Z74qIpcDnIuJVwGcz88ruhqZRYyJCkjTsevylY15/4ZCkRiYiJGnOWAa1R/zRYrS1lFiPiL3NFgHvKm2arZ6Z2WnPeI0IExGSpBHRiy8d8/4LhyQ1MhEhSX1hGdTu80eLEdZqwvtHQPYyEI08ExGSpFHS7S8d8/0LhyQ1MhEhSRol/mgxglpKrGfmWI/j0PxhIkKSJElSq0xESJKkgWSJFmkEDFn9SWtPSpIkSZIkaah1lFiPiAuBT2fmP87Q7jTg6Zn5pE72I2lmw1h/0tqTkiRJkiRJGmad9lhfSVWTbib3B57Q4T4ktWaY6k9ae1KSJEkaAD246rVXV7yCV71KkgZQr0vBHArc2uN9SKoMfP1Ja09KkiRJ/dfjq167fsUreNWrJGnw9CyxHhFHAo8FdvRqH5Kk4TVkYwOAPaUkSdLo6MVVr7244hW86lWSNKBaTqxHxPcbZq2JiJXTbPduZfrPHUUmSRpZwzg2ANhTSpIkjZxuX/Xa1StewateJUmDq50e62N1fydwh3Kbyi3AT4D/As7oKDJJ0igbprEBwJ5SkiRJkiSpTsuJ9cxcUPs7IvYB783MF/QkKknSfDHwYwOAPaUkSZIkSdJtdVpj/Q+Abd0MRJIkSZIkadgN2VhCjiMkSR3qKLGeme/rdiCSJEmSJEnDbBjHEnIcIUnqTKc91iVJkiRJknRbwzSWkOMISdIsmFiXJEmSJEnqroEfS8hxhCRpdhbM3ESSJEmSJEmSJNWYWJckSZIkSZIkqQ0m1iVJkiRJkiRJaoOJdUmSJEmSJEmS2mBiXZIkSZIkSZKkNizqdMWIOAR4LvAEYAlwSJOmmZlP7nQ/kiRJkiRJkiQNko4S6xFxb+B/gPsCMUPz7GQfkiRJkiRJkiQNok57rL8FOB64EHgz8H3gum4FJUmSJEmSJEnSoOo0sf5k4ArgNzLz1i7GI0mSJKnLxk6/YCmwuMubXVabjp1+QZc3ze7Jc55xRbc3KkmSJHVLp4n1m4HLTapLkiRJg60k1b/bw12c24uNjp1+wf1MrkuSJGlQdZpYv5iqFIwkSZKkwVbrqf67wLe7uN1DgTFgEtjTxe0+APgg3e9hL0mSJHVNp4n11wCfj4g/ysx3djMgSZIkST3x7clznnF5l7d5cZe3Rw/KykiSJEld11FiPTMvj4inAh+MiN8FPgP8GNjXpP37Ow9RkiRJkiRJkqTB0WmPdYCnAHeluvzzxCZtAkjAxLokSZKaWnDIVYcSeznoyK8te/D7Tu93ONM65K4nLrtl18MhFx7a71gkSZIk9UdHifWI+CuqcjA3AR8Dvg9c18W4JEmSNI8cdNRXxg4+5gvQo4Ewu+ngY77Awcd8gZuvPnEMXtj1UiiSJEmSBl+nPdb/FNgF/GpmfqeL8UiSJGkeuuXaR07esuvhHHTk1045+JgvbO13PNO5+eoTl92y6+Hnkgsn+x2LJEmSpP7oNLF+LPDZUU6qR8RhwBnAc4F7A9cAnwZenZk/7mdskiRJo2bfTcfuAbhpzz22fufl/9rtATa7qm5wzT39jEOSJElS/3SaWP8esKCbgQySiDgUuBB4DLADOJ+qlvwfAKsi4jGZ+f3+RShJ0tSGqU41WKtakiRJrfFzrqRB02li/e3AP0TEWGZOdjGeQfEqqqT6l4CnZuZ1ABHxcmAd8G5gZd+ikySpiWGqUw3WqpYkSVJr/JwradB0lFjPzLdFxH2BTRHxaqqyMCNRHiUiDgZeXO7+eS2pDpCZb4iI3weeEBEnZOZX+xKkpDlhjwgNo2GqUw3WqpYkSVJr/JwradB0lFiPiL21P4F/L/OaNc/M7LRnfD88DjgK+F5mfm2K5euBhwDPBEyst2iYEpQmJ1VjjwgNo2GqUw3WqpYkSVJr/JwradB0mvD+EZDdDGSAPLRMm71I1+Y/pJ2NPuf+9z/88uc/f+/MLUfTnR982P1uvNuXYAgSlLXk5GE/XX6/y5+/8Rv9jmcmY3f59UN3LFrMklt3H3r5859/RL/jmc4wxQpw13s+csfPdz6EI+/wtT846g6Xf7ff8czk2usecb9d1z38PXe95eYdg358h+1cGKZ4hylWMN5eGqZYYbjiHaZYwXh7aZhiheGKd5hiBePtpWGKFYYr3mGKFYy3l4YpVhiueIcpVhi+eHvhOfe//+Ef+c53WmobmaOaH+9MRLwBeBnwxsx8+RTLHwp8Hbg8M0+YYvkhwCF1sxYDV37u2c/mDgcf3Jugh8BNC/ax44jh+pF2yfWHcsi+kR2jV5IkSZLUZX73laThdt3NN/OEj34U4KjM3DVd22Eq0TJX7lCmNzRZfn2ZLm6y/AzgNV2NaAQcsm8BY7sP73cYkiRJUtcMYwINTKJJvbTjiD285lcH/mLX23jdl+/n93VJ6kDXEusRcUeAzPxlt7Y5pM4G3lB3fzFw5b984xtLXvGoR+3uU0x99/K7/PpDdyxa/MUlt+5+3Bt+/t8DXV5lmGKF4Yp3mGIF4+2lYYoVhiveYYoVjLeXhilWGK54hylWMN5eesmDjvidG+/2zff0O452HfbT5X/w9s03/ke/45jOMJ0HMHzxvuSej3z0zw86+MJhKHlYK3d4l1tuftKbr/zKpf2OZyZvPOrxj77le782VMf2jUfd/KQ37x78Yztsz7NhineYYoXhineYYoXhi7cX/uUb31gM7Gil7awS6xHxdOAlVAN+Hlbm3Qh8AXhLZn5yNtvvk+vKtNnPtbX6QlMmyTPzJuCm2v3aoK4f+c53bvjw1q3XT7XOfDB5+gV7ACYPvuOeR3zgAwN9HIYpVhiueIcpVjDeXhqmWGG44h2mWMF4e2mYYoXhineYYgXj7aVfvObfv8v2R3LQkV875eBjvrC13/HM5OarT1x2y66Hn3t9LvzuIz7wwoE+tsN0HsDwxfuzN/zpkoOP+QI3wntu7HcwMzniSxx0ty/xs6tPXPKIswf/2P7o9Auu5WbYc829v3npK94x0ANsjpXz9kdw7SM+8JKBP7bD9jwbpniHKVYYrniHKVYYvnh74SMRC1tt23FiPSLeCPwlEGXWtVQDmh4NPBV4SkS8eao65QPuh2V6zybLa/N/MAexSJIkSRpQ+246dg/ATXvusfU7L//XgU6gAYydfkHtz+GrX6OuuuXaR07esuvhQ/GjUO0HIXLhZL9jkSSpXkeJ9Yh4DlVP9Z8Bfw98IDOvLcuOBJ4PvAp4SURckpkf7VK8c6F2mcMjmiyvzf/mHMQizWjBIVcdSuzloCO/tuzB7zu93+FM65C7nrjsll0Ph1x4aL9jUX8N03kLnruSJGm0DNOPQv4gJPWe38+kznTaY/3PqN7UHp+Zt6kZVkZLfVtEfBb4emk7TIn1L1L1vr9vRDwsM7/esHxNmX58TqOSmjjoqK+MHXzMFwDO7XcsMzn4mC9w8DFf4OarTxyDF17c73jUP8N03oLnriRJc80kjyTNHb+fSZ3pNLH+UODCxqR6vcz8bkRcCJzY4T76IjNvjoh/Bv6a6geCp2bm9QAR8XLgIcDnMvOr/YxTqvEyTg2jYTpvwXNXkqS5ZpJHkuaO38+kznSaWD8YaKWA/fWl7bD5e+DXgMcCV0TEJuA+wK8CPwde0MfYpNvwMk4No2E6b8FzV5KkuWaSR5Lmjt/PpM50mlj/HvCEiDii1pu7UUQcDjyhtB0qmbknIp4InAE8D1gNXAO8F3h1Zl7Zv+gkSZIkabSZ5JEkjQJLm422ThPrHwVeB0xExJ9l5hX1CyPivsDbgLsA/zy7EPsjM28E/qbcJEmShuqDsR+KJUmSpP6ytNlo6zSx/nrgt4AnA9+KiMuBybLsPsAJwELgK8C6WcYoSZI0EIbpg7EfiiVJkqT+srTZaOsosZ6ZN0bESuBsqnrjjyq3mhuBdwNnlJ7fkiRJQ2+YPhj7oViSJEnqL0ubjbZOe6yTmdcBfxERr6TqoX73sugnwFcz84YuxCdJkjQwhumDsR+KJUmSJKl3OkqsR8Q1wObMfEJJoG/qbliSJEmSJEmSJA2mTnusLwKu7GYgkiRJkrpvmAbdBQfelSRJ0nDoNLH+f8A9uhmIJEmSpO4bpkF3wYF3JUmSNBw6Tay/FXh/RJyYmV/oZkCSJEmSumeYBt0FB96VJEnScOg0sf4F4F3Af0fEu4CPAz+kyeBYmfnDDvcjSZIkaRaGadBdcOBdSZIkDYdOE+uTQAIBvLjcmslZ7EeSJEmSJEmSpIHSacL781QJc0mSJEmSJEmS5pWOEuuZubLLcUiSJEmSJEmSNBQWtNIoIi6MiFfU3X98RNyvd2FJkiRJkiRJkjSYWkqsAyuBZXX3NwKndzsYSZIkSZIkSZIGXauJ9ZuBI3oZiCRJkiRJkiRJw6DVGuvbgCdHxBOA7WXeHSLi3q2snJk/7CQ4SZIkSZIkSZIGTauJ9XcAbwIurJv32+U2k2xjP5IkSZIkSZIkDbSWEt6Z+ZaIuBL4LeCewBOBnwFbexibJEmSJEmSJEkDp+We5Jm5AdgAEBH7gE9l5gt6FZgkSZIkad46vEwfMXb6Bd3c7qHAGDAJ7Onidh/QxW1JkqQh0GmJltcBX+tmIJIkSZIkFcvK9J19jaJ9u/sdgCRJmhsdJdYz83XdDkSSJEmSpGKiTLcCN3Rxu8uAc4FT6H5p092T5zzjii5vU5IkDSgHFZUkSZIkDZTJc57xC+Bd3d5uXVmZrZPnPOPybm9fkiTNHwv6HYAkSZIkSZIkScPExLokSZIkSZIkSW2wFIwkSZIkdebwMn1EXYmRbjgUGAMmgT1d3O4DurgtSZKkec3EujT8hukLnV/mJEnSKFlWpu/saxTt293vACRJkoadiXVp+A3jFzq/zEmSpFEwUaZbgRu6uN1lwLnAKWXb3bR78pxnXNHlbUqSJM07Jtal4TdRpsPyhc4vc5KkqXgFVu8M07GFITq+k+c84xfAu7q93brHaevkOc+4vNvbl+jN68K8f02QJM0vs0qsR8RK4PHAEuCQJs0yM184m/1Ias4vdJKkEeEVWL0zjMcWhuf4SsNoGF8XfE2QJA2UjhLrEXEUcD6wAogZmidgYl2SVM/ek5IaTZSpV2B130SZDsuxheE6vtIwmijTbr4u+JogSZpXOu2x/g9UPdW3AW8Hvou/HkuSWjeMvaTA9zqpZ7wCq3c8tpIa9eJ1wdcESdJ802li/beAnwKPycxruhiPJGl+mChTe092n1cDSJIkSZLUY50m1o8CPmlSXW1wcBxJ+9l7sqe8GkCSJEmSpB7rNLF+BXBENwPRyBvGRI9JHknDaKJMvRpAkiRJkqQe6TSx/lbgrRFxfGZu62ZAGlkTZergOJLUQ14NIEmSJElS73WUWM/Md0XEUuBzEfEq4LOZeWV3Q9MocXAcDSlrVUuSJElqxzB9h/D7gyTNQkeJ9YjYW/uTkiyNiGbNMzM77RkvSf00jCWMwDJGkiRJUr8M43cIvz9IUgc6TXj/CMhuBiJJA2iiTK1VLUmSJKkVE2U6LN8hhun7wzBdDQDDdUWAx1bqQKelYMa6HIckDRxrVUuaQi++dPiFQ5KkEeF3iJ4axqsBYDiuCPDYSh2wRIskSVLrhvFLh184JEnSKJgo02G5GgCG54qAiTL12Ept6FpiPSLuCJCZv+zWNiVJkgbMRJl280uHXzgkSZJm4NUAveOxlTozq8R6RDwdeAnwOOCwMu9G4AvAWzLzk7OOUJIkaUD04kuHXzgkSZIkafgs6HTFiHgj8PH/397fx1t2lvXh/+dKokBgAK0gEZREiQQ6iIooo44mooJ11DEdtUEtWGutWot2ojbhKz7gL7GWWOsDotUWHwg+TMeJorVqzdiBdAqCSEYayUAGRQdBnhIgICTX74+1TjicnDM5+8zZZ5+9z/v9es3rzl7r3vtcbMcze3/Wva47yZdk6Dd6e5J3j//9pUl+p6p+fDOKBAAAAACA7WJDwXpVfV2GlepvS/Jvk3xMd39Md39skocm+c4kb03y7Kr62k2qFQAAAAAAZm6jrWC+Pcn7k3xBd79++Ynuvj3Jz1TVHyZ5zTj3N86mSAAAAACAOXP+OH7mshaQm+H+SS5McipDRrtZHreJr7XwNhqsPzHJH68M1Zfr7tdX1R8n+fwN/gwAAAAAgHl1yTj+l5lWMbk7Zl3APNhosP7RSd67jnnvHecCAAAAAOwkR8bxliTv28TXvSTJi5N8/fjam+mOUz/65bdu8msupI0G629I8oVV9cDuXjVgr6rzk3zhOBcAAAAAYMc49aNf/vdJfmGzX3dZW5lbTv3ol796s1+f9dnQ5qUZeqY/PMmRqrp45cmq+pQkh5M8LMmvb7w8AAAAAADYXja6Yv35Sb4qyVOTvK6qXp2hWX6SPDrJk5Kcm+RPk1x3ljUCAAAAAMC2saFgvbvvrKpLk1yb5F8kefL4Z8mdSf5rkqu6+86zrBEAAAAAALaNja5YT3e/J8l3VtX3ZVih/gnjqb9N8qru3syG/AAAAAAAsC1sOFhfMgboxzahFgAAAAAA2PY2unkpAAAAAADsSOtasV5Vz03SSX6mu98xPl6v7u7nbag6AAAAAADYZtbbCuYHMwTrv57kHcse1zqe20kE6wAAAAAALIT1BuvfNI6nVzwGAAAAAIAdZV3Benf/0pkeAwAAAADATrGhzUur6pOq6mPXMe9jquqTNvIzAAAAAABgO9pQsJ7ktiT/cR3zfizJGzf4MwAAAAAAYNvZaLBeWd/GpUtzAQAAAABgIWw0WF+vj0ty55R/BgAAAAAAbJl1bV6aJFX1BSsOPWKVY8tf97FJnpbkLzZYGwAAAAAAbDvrDtaTHE3Syx4/bfyzlhrnXzd5WQAAAAAAsD1NEqz/cj4crD8zyRuSvHyNuf+Q5G+T/E53v3rj5QEAAAAAwPay7mC9u5+19N9V9cwkL+vufzGNogAAAAAAYLuaZMX6Pbp72pueAgAAAADAtiQgBwAAAACACWxoxfqSqvqkJF+R5OIkuzJsWLpSd/c3n83PAQAAAACA7WLDwXpVPTfJ9+cjV70vBeu97HEnEawDAAAAALAQNtQKpqq+LskPJvnrJP8qyR+Op56W5NuS/EmGUP3Hk3zRWVcJAAAAAADbxEZXrH97kn9Icll3v6mqPj9JunspYP+5qvruJD+W5MhZVwkAAAAAANvERjcv/bQkN3X3m8bHnSRVdU+P9e7+T0n+Msn/d1YVAgAAAADANrLRYP1+Sd6y7PH7x/GhK+b9eZInb/BnAAAAAADAtrPRYP10kocve/w34/iPV8x7VJJzN/gzAAAAAABg29losH5zkscue3w0w2alP1RVD0ySqvraJHuT/MXZFAgAAAAAANvJRoP130nyyKr6oiTp7pcnuTHJZUneWVV/n+QlGXqvP28zCgUAAAAAgO1go8H6ryZ5XJLXLDv21Ul+Psk7kuxK8rok39jdv382BQIAAAAAwHZy3kae1N0fSPKXK47dnuRfj38AAAAAAGAhbShYBwAAFk9VnZ/kkvXM3fXk/Zc88PGX5r2vO3pJ1b71/ohbuvt9Gy4QAAC2CcE6AACw5JIkr1rPxDteeSR3vPJIkrx4gtd/UpJXT14WAABsL+sK1qvqjzNsRPrM7n7z+Hi9urufuqHqAACArXRLhvD7Pp330Efc/wEXP+XCO289fupD73rL+yd4fQAAmHvrXbF+aYZg/fxlj9erJ5gLAADMyNimZZIV5TdNqxYAANjO1husXzSOf7PiMQAAAAAA7CjrCta7+01negwAAAAAADvFORt5UlV9zGYXAgAAAAAA82BDwXqS01X1W1V1oKrut6kVAQAAAADANrbRYP3dSb4qya8n+buq+sWqempV1eaVBgAAAAAA289Gg/ULknxZkuvH1/imJH+Q5K+r6j9W1WdsUn0AAAAAALCtbChY7+67u/t/dvc3Jvn4JF+f5H8keXiSg0n+tKr+oqquqqoLN61aAAAAAACYsY2uWL9Hd9/Z3S/p7n0ZVrL/myTHkzwuyY8kOXm2PwMAAAAAALaLsw7Wl+vut3f3C5L8syQvTFLjHwAAAAAAWAjnbdYLVdVDk3xNhrYwn58PB+r/Z7N+BgAAAAAAzNpZBetVdf8kX5nkGUmenuSjMgTqtyR5cZLru/u2sy0SAAAAVlNV5ye5ZD1zdz15/yUPfPylee/rjl5StW+9P+KW7n7fhgsEABbShoL1qnpahjB9f5IHZQjTTyf5tSQv7u5Xb1aBAAAAcAaXJHnVeibe8cojueOVR5JhIdh6PSmJ77gAwEfY6Ir1/zGOdyT55QwfSv64u+/elKoAAABgfW7JEH7fp/Me+oj7P+Dip1x4563HT33oXW95/wSvDwDwETYarP9OhjD9t7t7vR9GAAAAYFONbVomWVF+07RqAQB2jg0F6939VZtdCACwtfSkBQAAgI05q81Lk6SqPjbDbXcfl+RN3e3qP2xTQjRgBT1pAQAAYAM2HKxX1cOS/OckB5KcOx7+pYy31VXVv0zyY0m+srtfdpZ1AptDiAYspyctAAAAbMCGgvVxlfpNST4lyWuSvDzJd6yYdjjJz2YI3gXrrNt6V1VbUb0hQjTgHnrSAgAAwMZsdMX6czKE6j/c3T+YJFX1EcF6d7+jql6b5AvPqkJ2onWtqraienJCNAAAAAA4exsN1vcnef1SqH4Gb0hy6QZ/BjvXulZVW1ENADAbVXVukr1JLkhyOsmx7r5rtlUBAMDW2Wiw/sgkN6xjXid58AZ/BjvUhKuqragGANhCVXV5kuuSXLjs8KmqOtjdh2dTFQAAbK1zNvi82zOsTrkvn5LkbRv8GQAAwDYyhuqHktycZE+SXeN4c5JD43kAAFh4Gw3WX5nkyVV10VoTquqJST49w8amAADAHBvbv1yX5KVJ9nf38e5+T3cfz9Aq8qVJnj/OAwCAhbbRYP2nktwvyW9V1eNWnqyqxyT5lSSV5Kc3Xh4AALBN7M3Q/uWa7r57+Ynx8bVJLhrnAQDAQttQsN7dv5/kx5J8WpITVXVLhn7qT6uqP0/y/5LszvCh+2WbVSwAADAzS60gT6xx/sSKeQAAsLA2umI93f3vk3xdhn6Kn5phdfoFSZ6Q5NYkX9/d378ZRQIAADN3ehx3r3F+94p5AACwsM47myd3928m+c2qeliG20LPSfLm7v6bTagNAADYPo4lOZXk6qrav7wdTFWdk+SqJLeN8wAAYKGdVbC+pLvfluRtm/FaAADA9tPdd1XVwSSHkhypqmsztH/ZnSFU35fkQHffNcMyAQBgS2xKsA4AACy+7j5cVQeSXJfkpmWnbssQqh+eTWUAALC11hWsV9Ufn8XP6O5+6lk8HwAA2CbGcP2GJHsz7LF0OskxK9Vh8VTV+UkuWc/cXU/ef8kDH39p3vu6o5dU7Vvvj7ilu9+34QIBYIbWu2L90jWOd4ZNS890riesCQAA2MbGEP3orOsApu6SJK9az8Q7Xnkkd7zySJK8eILXf1KSV09eFgDM3nqD9YtWOXYwybdl6LH4kgwbGSXJo5NckeRAkhdmuE0UAAAAmC+3ZAi/79N5D33E/R9w8VMuvPPW46c+9K63vH+C1weAubSuYL2737T8cVV9fZJvT/JV3f27K6a/NsnvVNWvJvntJK9I8qYAAAAAc2Ns0zLJivKb7nsKACyGczb4vO9O8rJVQvV7dPfvJXnZOBcAAAAAABbCelvBrPS4JEfWMe9vk3zVBn8GAAAAwEKa8uawNoYFmLKNBuvvTfLZVXVOd9+92oSqOifJk8e5AAAAAHzYNDeHtTEswJRtNFj/n0mekeSFVXWwu+9YfrKqHpRh09JPTnL92ZUIAAAAsHCmuTmsjWEBpmyjwfpVSb44yTcn+Zqq+v18eIPSRyd5epIHJ/m7JFefbZEAAAAAi8TmsADzbUPBene/uar2JPnZJE9L8nWrTPuDJN/W3X99FvUBAAAAAMC2stEV6+nuU0m+rKouSvL5ST5hPHU6ycu6+41nXx4AAAAAAGwvGw7Wl3T3bUlu24RaAAAAAABg2zvrYB0Apqmqzk9yyXrm7nry/kse+PhL897XHb2kat96f8QtY39LAAAAgHURrAOw3V2S5FXrmXjHK4/kjlceSZIXT/D6T8pkm0YBAAAAO5xgHYDt7pYM4fd9Ou+hj7j/Ay5+yoV33nr81Ife9Zb3T/D6AAAAAOsmWAdgWxvbtEyyovymadUCbA9TbhGlPRQAAHCfBOsAAMybabaI0h4KAAC4T4J1AADmzTRbRGkPBQAA3CfBOgAAc0WLKAAAYNY2LVivqvsneUaSxye5O8mJJL/W3f+wWT8DAAAAAABmbVOC9ar6tCQvTfKoZYc7yXOr6su6+9bN+DkAAMDsVdW5SfYmuSDJ6STHuvuu2VYFAABb55xNep2fS/KBJJcleWCShyc5mOTCJD+5ST8DAACYsaq6PMnJJDcmuX4cT47HYduqqnOr6tKqumIcz511TQDA/FpXsF5Vjz/DuY9O8jlJruruP+nuO7v777v7J5L8fpIv2JRKAQCAmRrD80NJbk6yJ8mucbw5ySHhOtuVC0IAwGZb74r111TV86vqQauc+1CSD2ZYpb7Sw5PcudHiAACA7WFc3XtdhhaQ+7v7eHe/p7uPJ9k/Hn++VcBsNy4IAQDTsN4e689N8pwkV1TV93b3i5dOdPfdVfXbSX60qj42yZ8mOT/DRqafleQXN7lmAIBtr6rOT3LJfc3b9eT9lzzw8Zfmva87eknVvvW+/C3d/b6zKhAmtzdDq8cruvvu5SfG7wTXJrlpnHd0y6uDVaxyQWjp7+7xqtqf5EiGC0I32CcAAJjEuoL17v7RqvrVDB9IfqWq/lWSf9PdN49TvjXJi5L8cIZNS2s8fijJd29qxQAA8+GSJK+6r0l3vPJI7njlkSR58X1MXe5JSV69sbJgwy4YxxNrnD+xYh5sBy4IAQBTsd4V6+nuNyf5uqp6YZKfSvKqqvrZJM/t7nck+cqqujgfXpn1F939xk2vGABgPtySIQA/o/Me+oj7P+Dip1x4563HT33oXW95/wSvDVvt9DjuTnJ8lfO7V8yD7cAFIdiB1nvnYOLuQWDj1h2sL+nuG6vqiUmenaFFzD+rqu/r7hd1961Jbt3sIgEA5s34ZWu9q8pvmmYtsEmOJTmV5OqqWt5SI1V1TpKrktw2zoPtwgUh2JnWdedg4u5BYOMmDtaTZOw99+NVdX2SH0vyi2N7mO/o7j/bzAIBAIDZ6+67qupghnaPR8YWGicyBJNXJdmX5IA+1WwzLgjBzrSuOwcTdw8CGzdxsF5V5yV5SHe/vbvfkuSfV9XPJfnpJK+oql9IcnV3v3OTawUAAGaouw9X1YEMey8tv9Pitgyh+uHZVAarc0EIdqYJ7xxM3D0IbMA5651YVV9bVa9NcmeSt1bVe6rq16vqU7r75RmuBH5Xkq9N8vpxBTsAALBAxvD8MUkuS/KMcbxYqM52Nf7dPJDkCRnCs9vHcXdcEAIANmhdK9ar6tsyrEh/W5JfTPLODP2qvjrJU6vqid39N0l+pqp+LcmPJvnZqvqXSf5Nd79iKtUDwKiqzk2yN8PmY6eTHLP6DGA6xt+vR2ddB6zXeLfFDfFZAQDYJOttBXNlkr9O8hnLW7xU1f4kh5P8iyTPS5LufnuSb6mqn0/yMxlWAmyolzsArEdVXZ6hLcGFyw6fqqqDVqEBsB1U1fkZFifdp11P3n/JAx9/ad77uqOXVO1b74+4ZWx9wBpcEAIANtN6A+9HJvndVfqm/69x/ISVT+juVyb57Kr65rOoDwDOaAzVDyV5aZIr8uG+qVcnOVRVbvEGYDu4JMmr1jPxjlceyR2vPJIkL57g9Z+UyfoJw6Zx5yAAO9F6g/W/yNDy5cljYJ6qqiQHk3SS1631xO7+xbOuEgBWMX6Juy5DqL6/u+8eTx0f76o6kuT5VXWDL3cAzNgtGcLv+3TeQx9x/wdc/JQL77z1+KkPvest75/g9WHLuXMQgJ1qklYwv5chqPjLDD3WPznJxyd5bYa+6wCw1fZm+BJ3xbJQPUnS3XdX1bUZWpLtjVu/AZihsU3LJCvKb5pWLbBZ3DkIwE52znomdfeNSR6X5IVJ3pHkoUlek+TZST5HLz8AZuSCcTyxxvkTK+YBALAJVrlz8Hh3v6e7jyfZPx5//jgPABbOujcV7e5TSb5jeqUAwMROj+PuJMdXOb97xTwAADaHOwcB2NHWtWIdALapY0lOJbm6qj7i37Tx8VVJbhvnAQCwedw5CMCOJlgHYG6NG5IeTLIvyZGq2lNVu6pqT4aNS/cludLGpQAAm275nYOrcecgAAtNsA7AXBs3xDqQ5AkZbje+fRx3J7FhFgDAdLhzEIAdbd091gFgu+ruw1V1Q4YenhdkWBl1zEp1AIDp6O67qupgkkMZ7hy8NkP7l90ZQvV9GRY5+DwGwEISrAOwEMYvbUdnXQcAwE4xLm44kOS6DHcMLrkt7hwEYMEJ1gEAAIANcecgADvVwgbrVXVJkq9K8vQMfXcfkuTtGa6i/6fuXrPPW1U9Ksnzkjwtyccm+askL0lybXe/f8qlAwAAwNxw5yDsHFV1fpJL1jN315P3X/LAx1+a977u6CVV+9b7I27p7vdtuEDYQgsbrCf5oySPTPKeJMeTvCPJ45N8dZL9VfXvuvsnVj6pqh6T5P8k+bgM/eGOJfmsJM9N8tSqemp3f2BL/hcAAAAAwPZxSZJXrWfiHa88kjteeSRJXjzB6z8pyasnLwu23iIH67dk2DDlN5evMq+qb03ywiTPr6o/6O7XrXjeizKE6j/Z3c8en3Nekt/IEMpfleQHp149ABOpqnPjFmQAAIBpuiVD+H2fznvoI+7/gIufcuGdtx4/9aF3vWW9HSBu2XhpsLUWNljv7i9e4/jPVdXlSb40ydck+aGlc1X12Uk+L8lbk3zvsud8qKq+LcOu5v+2qn6kuz80zfoBWL/x9/p1SS5cdvhUVR20aRYAAMDmGNu0TLKi/Kb7ngLz6ZxZFzAjfz6On7Di+JeP4++sbPfS3X+XoS3MxyT5/OmWB8B6jaH6oSQ3J9mTZNc43pzk0HgeAAAAYNPs1GD9k8fxLSuOP3Ec17rytnT80za9IgAmNrZ/uS7JS5Ps7+7j3f2e7j6eZP94/PnjPAAAAIBNseOC9ar6lAwtXZLkt1ec/qRxfPMaT186/ujNrguADdmbof3LNd199/IT4+Nrk1w0zgMAAADYFAvbY3014yakL0pyvyS/3t0rdzF+0Di+b42XeO847jrDz7jf+Pq5r7kAnLULxvHEGudPrJgHAAAAcNa2bbBeVb+V5HETPu2fd/crznD+JzP0R39jkm/faG334aokPzCl1wbgI50ex91Jjq9yfveKeQAAAABnbdsG6xlu3X/shM85f60TVfWcJN+W5O+SPK2737HKtPfcx+s8cBzvOEMN1yb58WWPd2Xt1jLAgqiq85Ncsp65u568/5IHPv7SvPd1Ry+p2nffTxjcMu6+zkc6luRUkqurav/ydjBVdU6Gi523jfMAAAAANsW2Dda7+9M367Wq6l8n+ZEk707y9O4+ucbUv0ryGUketcb5peNvWutndfcHknxg2c+euF5gLl2SZGV7qVXd8cojueOVR5LkxRO8/pOy9sbKO1Z331VVB5McSnKkqq7N0P5ld4ZQfV+SA9191wzLBAAAABbMtg3WN0tV/bMkP5Ohb/qXd/drzjD9z5N8VZLPXOP80vHXblqBwKK4JUP4fZ/Oe+gj7v+Ai59y4Z23Hj/1oXe95f0TvD6r6O7DVXUgyXVJblp26rYMofrh2VQGAAAALKqFDtar6p8k+eUkH0ry1d398vt4yu8meW6Sr6iq+42rz5de6+OT7E3yziT39TrADjO2aZlkRflN9z2F9RrD9Rsy/J6+IENP9WNWqgMAAADTsLDBelV9XobWAJXka7v7D+7rOd39iqp6eZLPS/IfknzX+FrnJXlBko9K8pPd/cFp1Q3Axowh+tFZ1wEAALDTVdW5sfCJBbewwXqSlyZ5QIZWAPurav8qc17W3b+w4tg3Jfk/SZ5dVV+U5HVJnpzkkzOsML12ahUDAAAAwByrqssztOq8cNnhU1V1UKvOtVXV+Rn2b7tPu568/5IHPv7SvPd1Ry+p2rfeH3HLeLc9m6S6e9Y1TEVVred/2C9197NWee4nJvnhJE9P8rEZNjV9SZJrunu9/ZCXXuvBGTZNfUh33z7Jc2FWXFkGAGDR+IwLMH1jqH4ow4LXa5KcSLI7ydVJ9sU+WGuqqs9M8qop/ogndfckLWx3pEmy3IUN1rcLwTrzZq0ry0lcWQYAYC75jAswfeMFzJNJbk6yv7vvXnbunCRHMoTsF7uweW+TrFg/76GPuP8DLn7KhXfeevzUh971lvUuArZifR0myXIXuRUMMKEVV5avyEdeWT5UVa4sAwAwV3zGBdgyezNcwLxieaieJN19d1Vdm6HN8t7YH+textB7khXlN02rFtbHivUps2KdeeHKMgAAi8ZnXICtU1VXJLk+ya4kd2ZF+60k5ye5Pckzuvsls6oTzsSKdWAjXFkGAGDR+IwLsHVOj+O/SfKtuXf7rZ9bMQ/m2jmzLgDYNi4YxxNrnD+xYh4AAGx393zGrapzq+rSqrpiHM+Nz7gAm+lYkrcmuTbDnUJ7Mqxe3zM+vjbJ343zYO5ZsQ4sWbpivDvJ8VXO714xD4CzNIY6H3GLrFYEAJvK6kmA2allf2DhWLEOLDmW4cvF1WO/yXuMj69KcltcWQbYFONmeieT3JihF+WNSU6OxwHYHFZPAmydvUkeniE/eEKGVlu3j+Pu8fjHj/Ng7gnWgSTJuELyYJJ9SY5U1Z6q2lVVezJs6rQvyZVWUgKcvTE8P5TVQ55DwnWAqbF6EmB6ltpq/XSSxyS5LMkzxvHiJD+zYh7MteruWdew0CbZSRa2gzHMuS4feZvsbRlC9cMzKQpggYztX05mCNH3L99Mb7xD6EiGFT0Xu5gJcHaq6tIMdwRdlXu3grktyc9nWLV+WXcf3drqABbLst+5e7r7Xi1mx4V7N8XvXLaxSbJcwfqUCdaZR3r+AkyPLxwAW6eqrsjQbmtXkjuz4jNukvMztCl4Rne/ZFZ1AiwCC0hYBJNkuTYvBe5l/Afu6KzrAFhQS7e+nljj/IkV8wDYuKVNSXePFzOPLj9ZVbtXzANgg7r7rqo6mKHl4ZGqujbDZ9ul/ur7khwQqp8diyG3Dz3WmUtVdW5VXVpVV4zjubOuCQDW6Z6QZ43zQh6AzXMsyakkV4+rJe8xPr4qQ0sYm5cCbIKxheyBrL556QEtZs/O2L73ZIY7YK8fx5P2aJoNwTpzxy8RAOackGeLuBAPjCv4DmZYJXmkqvZU1a6x7daR8fiVVvoBbJ4xPL/X5qVC9bMz5l6HMrTa2ZOhzdme8fEhudjW02N9yvRY31zLfom8NMk1+fAtRVfnw7cU+UUNwLa24t+ztW6R9e/ZWVhjM+5TSQ56b2HnWeN3wm0ZQnW/EwDY1vSv3zo2L91GBOubxy8RABaJkGd6XIgHVqMnLQDzqqouzdCxYc+4Z8jK83sytNy5rLuPbmlxC8bmpSyqvRnChyuWh+pJ0t13j5ti3DTOO7rl1QHA2atZFzDvxuDsugyh+vIL8ceran+GC/HPr6obBGqws4z/P3901nUAwAZcMI4n1jh/YsU8toAe68wTv0QAWAj6I07V0oX4a1a7EJ+h9c5F4zwAAJgHp8dx9xrnd6+YxxYQrDNP/BIBYO6tsqL6eHe/Z7ylc/94/Pk22twwF+IBAFg0xzLsF3T12A75HuPjqzK0lTy29aXtXIJ15olfIgAsAiuqp8uFeAAAFsrYzuxghv2CjlTVnqraNfZWPzIev1Krw60lWGdu+CUCwIKwonq6XIgHAGDhdPfhJAeSPCHDHoO3j+PuJAfG82whwTpzxS8RABaAFdVT5EI8AACLasy9HpPksiTPGMeL5WGzUd096xoWWlU9OMm7kzyku2+fdT2LYuw7uzfDar7TSY75ggzAPBj/DTuZYaPS/cvbwYwrqo9kCNcv9m/bxo0bwF6Xoe3OktsyhOq+eAAAAPcySZYrWJ8ywToAsNIY+h7KsFHptRnav+zO0KZkX9yFtSlciAcAACYhWN9GBOsAwGqsqAYAANheBOvbiGAdAFiLFdUAAADbxyRZ7nlbUxIAACuNIfrRWdcBAADAZM6ZdQEAAAAAADBPrFgHYCFoqQEAAABsFSvWAZh74yaQJ5PcmOT6cTw5HgcAAADYVIJ1AObaGJ4fSnJzkj1Jdo3jzUkOCdcBAACAzVbdPesaFtokO8kCMJmx/cvJDCH6/u6+e9m5c5IcSbI7ycXawgAAAABnMkmWa8U6APNsb5ILk1yzPFRPkvHxtUkuGucBADAFVXVuVV1aVVeM47mzrgkApk2wDsA8u2AcT6xx/sSKeQAAbCJ73QCwUwnWAZhnp8dx9xrnd6+YBwDAJrHXDQA7mR7rU6bHOsD06LEOADAbPocBsIj0WAdgRxi/pB1Msi/JkaraU1W7qmpPhi9z+5Jc6cscAMCms9fNFtHDHmB7Om/WBQDA2ejuw1V1IMl1SW5aduq2JAe6+/BsKgMAWGj2utkCYzud6zJcxFhyqqoO+pwLMFtWrAMw98YvFY9JclmSZ4zjxb5sAABMjb1upkwPe4DtTY/1KdNjHQAAgEWjx/p0eX8BZkOPdQAAAGBq7HUzdXrYA2xzeqwDAAAAE7PXzVTpYQ+wzQnWAQAAgA0Zw/UbMqycviBDT/VjVqqfteU97I+vcl4Pe4AZ02N9yvRYBwAAACahxzrAbOixDgAAADCn9LAH2P60ggEAAADYZvSwB9jetIKZMq1gAAAAgI0a28LoYQ+wBSbJcq1YBwAAADZM8Dtd43t5dNZ1APCR9FgHAAAANqSqLs+wyeaNSa4fx5PjcQBYWIJ1AAAAYGJjeH4oyc1J9iTZNY43JzkkXAdgkemxPmV6rAMAALBoxvYvJzOE6Pu7++5l585JciTJ7iQXawsDwLyYJMu1Yh0AAACY1N4kFya5ZnmoniTj42uTXDTOA4CFI1gHAAAAJnXBOJ5Y4/yJFfMAYKEI1gEAAIBJnR7H3Wuc371iHgAsFME6AAAAMKljSU4luXrsqX6P8fFVSW4b5wHAwhGsAwAAABMZNyQ9mGRfkiNVtaeqdlXVngwbl+5LcqWNSwFYVOfNugAAAABg/nT34ao6kOS6JDctO3VbkgPdfXg2lQHA9FV3z7qGhVZVD07y7iQP6e7bZ10PAAAAbKaq+qgk35HkU5K8IcnPdPcHZ1sVAExukizXinUAAABgQ6rq8gwr1i9cdvjZVXXQinUAFpke6wAAAMDExlD9UJKbk+xJsmscb05yaDwPAAtJK5gp0woGAACARVNV5yY5mSFE39/ddy87d06GDUx3J7nYBqYAzItJslwr1gEAAIBJ7c3Q/uWa5aF6koyPr01y0TgPABaOYB0AAACY1AXjeGKN8ydWzAOAhSJYBwAAACZ1ehx3r3F+94p5ALBQBOsAAADApI4lOZXk6rGn+j3Gx1cluW2cBwALR7AOAAAATGTckPRgkn1JjlTVnqraVVV7Mmxcui/JlTYuBWBRnTfrAgAAAID5092Hq+pAkuuS3LTs1G1JDnT34dlUBgDTV9096xoWWlU9OMm7kzyku2+fdT0AAAA7UVWdm2Rvhs00Tyc5ZjX15vDeArAoJslyrVgHAABgoVXV5RlWVV+47PCpqjpoVfXZG0P0o7OuAwC2kh7rAAAALKwxVD+U5OYke5LsGsebkxwazwMATEQrmCnTCgYAAGA2xhYlJzOE6Pu7++5l587JsMnm7iQXa13CdqXVDsDWmSTLtWIdAACARbU3Q/uXa5aH6kkyPr42yUXjPNh2xjsqTia5Mcn143jSnRYAsydYBwAAYFFdMI4n1jh/YsU82Da0MQLY3gTrAAAALKrT47h7jfO7V8yDbWFs/3JdkpdmaGN0vLvf093Hk+wfjz9/nAfADAjWAQBYSFV1blVdWlVXjKPwAXaeY0lOJbl67Kl+j/HxVUluG+fBdqKNEcA2J1gHAGDh6EkLJMm4wePBJPuSHKmqPVW1q6r2ZNi4dF+SK20EyTakjRHANidYBwBgoehJCyzX3YeTHEjyhCQ3Jbl9HHcnOTCeh+1GGyOAba66e9Y1LLSqenCSdyd5SHffPut6AAAW2dju5WSGEH3/8tvnx7YPRzKEERdboQo7y/j7YW+GFb6nkxzze4Dtyr9nALMxSZZ73taUBAAAW2KpJ+0Vq/WkraprM6xU3Zvk6JZXB8zMGD4enXUdsB7dfVdVHcxwB9aR8d+vExnC9KsytDE6IFQHmB3BOgAAi0RPWgAWQncfrqoDSa7LcFF4yW3Rxghg5gTrAAAskuU9aY+vcl5PWgDmxhiu3xBtjAC2HT3Wp0yPdYCtoW8qkOhJCwAAbNwkWe45W1MSAExPVV2eIUi7Mcn143hyPA7sIGNYfjBD79kjVbWnqnZV1Z4Mofq+JFcK1QEAgLMhWAdgro3h+aEMq1P3JNk1jjcnOSRch51n7Dl7IMkTMvSkvX0cd0dPWgAAYBNoBTNlWsEATI+WD8CZaBEFAABMYpIs1+alAMyzvUkuTHLF8lA9Sbr77qq6NsMq1b1Jjm55dcBMjSH60VnXAQAALB6tYACYZxeM44k1zp9YMQ8AAADgrAnWAZhnp8dx9xrnd6+YBwAAAHDWBOsAzLNjSU4luXrsqX6P8fFVSW4b5wEAAABsCsE6AHNr7J98MMm+JEeqak9V7aqqPRk2Lt2X5EqbFQIAAACbyealAMy17j5cVQeSXJdho9IltyU50N2HZ1MZAAAAsKiqu2ddw0KrqgcneXeSh3T37bOuB2BRVdW5SfZm2Kj0dJJjVqoDAAAA6zVJlmvFOgALYQzRj866DgAAAGDx6bEOAAAAAAATEKwDAAAAAMAEBOsAAAAAADABwToAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATOG/WBQAAAACwuqo6N8neJBckOZ3kWHffNduqALBiHQAAAGAbqqrLk5xMcmOS68fx5HgcgBkSrAMAAABsM2N4fijJzUn2JNk1jjcnOSRcB5it6u5Z17DQqurBSd6d5CHdffus6wEAAAC2t7H9y8kMIfr+7r572blzkhxJsjvJxdrCAGyeSbJcK9aZS1V1blVdWlVXjOO5s64JAAAANsneJBcmuWZ5qJ4k4+Nrk1w0zgNgBgTrzB095gAAAFhwF4zjiTXOn1gxD4AtJlhnrugxBwAAwA5wehx3r3F+94p5AGwxPdanTI/1zaPHHItg/Hu8N8PKktNJjvn7CgAALOf7L8Bs6LHOotJjjrmmjREAALAeY1h+MMm+JEeqak9V7aqqPRlC9X1JrhSqA8yOYJ15osccc0sbIwAAYBLdfTjJgSRPSHJTktvHcXeSA+N5AGZEK5gp0wpm81TVpRlW+O7p7uOrnN+T4UPGZd19dEuLgzNwGycAALBR2kkCbJ1JslzB+pQJ1jePcHLr+OC2uVwUAgAAANj+9FhnIekxtzX0AZ8KbYwAAAAAFohgnbmix9x06QM+NafHcfca53evmAcAAABwL1V1blVdWlVXjOO5s65pp9IKZsq0gpkOrUo2n1Y70+O9BQAAAM7WuODxuiQXLjt8KslBi003h1YwLLzuvqu7j3b3S8ZRGHn29mb4xXzN8uA3ScbH1ya5aJzHBLQxAgAAAM6GLgPbjxXrU2bFOvOiqq7I0FN9V3e/Z5XzuzK03nlGd79kq+tbBGtcWb4tQ6juyjIAAABwL+6E3zqTZLnnbU1JwBxY3gf8+Crn9QE/S919uKpuiDZGAAAAwPotdRm4YrUuA1V1bYY9CPcmObrl1e1QgnVgybEMfbmurqrVrn5elWF19bHZlLcYxhD96KzrAAAAAObGBeN4Yo3zJ1bMYwvosQ4k0QccAABgO6qqc6vq0qq6YhzPnXVNwJZb3mVgNboMzIAe61OmxzrzRh9wAACA7WGN72enkhz0/Qx2Dj3Wt84kWa4V68BHGD+cPSbJZUmeMY4X+9AGAACwdcZQ/VCGIG1Pkl3jeHOSQ+N5YAfQZWB7smJ9yqxYBwAAACZhdSqwGl0Gpm+SLFewPmWCdQAAAGASVXVpkhuT7Onu46uc35PkpiSXdffRLS0OmKnxwtveDBuVnk5yzAW2zTNJlnve1pQEAAAAwDpdMI4n1jh/YsU8YIcYQ/Sjs64DPdYBAAAAtpvT47h7jfO7V8wDYIsJ1gEAAAC2l2NJTiW5euypfo/x8VUZ+iof2/rSAEgE6wAAAADbytjq4WCSfUmOVNWeqto19lY/Mh6/Ul9lgNnRYx0AAABgm+nuw1V1IMl1GTYqXXJbkgPdfXg2lQGQJNXds65hoU2ykywAAADAclV1bpK9GTYqPZ3kmJXqANMxSZZrxToAAADANjWG6EdnXQcAH0mwDgAAAGyYFdUA7EQ2LwUAAAA2pKouT3IyyY1Jrh/Hk+NxAFhYgnUAAABgYmN4fijJzUn2JNk1jjcnOSRcB2CR2bx0ymxeCgAAwKIZ27+czBCi7+/uu5edOyfJkSS7k1ysLQwA82KSLNeKdQAAAGBSe5NcmOSa5aF6koyPr01y0TgPABaOYB0AAACY1AXjeGKN8ydWzAOAhSJYBwAAACZ1ehx3r3F+94p5ALBQBOsAAADApI4lOZXk6rGn+j3Gx1cluW2cBwALR7AOAAAATGTckPRgkn1JjlTVnqraVVV7Mmxcui/JlTYuBWBRnTfrAgAAAID5092Hq+pAkuuS3LTs1G1JDnT34dlUBgDTV9096xoWWlU9OMm7kzyku2+fdT0AAACwmarq3CR7M2xUejrJMSvVAZhHk2S5VqwDbCFfOgAAWDTj59mjs64DALaSHusAW6SqLk9yMsmNSa4fx5PjcQAAAADmhGAdYAuM4fmhJDcn2ZNk1zjenOSQcB0AAABgfuixPmV6rANj+5eTGUL0/d1997Jz5yQ5kmR3kou1hQEAAACYjUmyXCvWAaZvb5ILk1yzPFRPkvHxtUkuGucBAAAAsM3ZvJS5ZANI5swF43hijfMnVswDAACAuSW3YSewYp25YwNI5tDpcdy9xvndK+YBAADAXJLbsFMI1pkrNoBkTh1LcirJ1WNP9XuMj69Kcts4DwAAAOaS3IadxOalU2bz0s1jA0jm2bIPFy/N0FP9RIa/r1cl2ZfkQHcfnl2FALB+bu8GAFaS27AIbF7KorIBJHNrDM0PJHlCkpuS3D6OuyNUB2COuL0bAFiD3IYdZUcF61X1/VXV459vOMO8R1XVf6uqv62q91fV66vqh6rq/ltZL/diA0jm2hiePybJZUmeMY4XC9UBmBdu7wYAzkBuw46yY4L1qnpskuckOWPvm6p6TJI/S/KsJG9PckOSc5M8N8kfVdX9plspZ2ADSOZed9/V3Ue7+yXj6PY3AObCeHv3dRnamu3v7uPd/Z7uPp5k/3j8+eM8AGDnkduwo+yIYL2qKsnPJ3lXkt++j+kvSvJxSX6yu5/Q3V+X5LFJfivJ52Xoh8xs2AASAGB23N4NAJyJ3IYdZUcE60n+ZZIvSHIwQ7i+qqr67Azh+VuTfO/S8e7+UJJvS/LBJP+2qs6bZrGsblzZezDDRo9HqmpPVe2qqj0ZNsDYl+RKK4ABAKbC7d0AwJrkNuw0Cx+sV9UjkvxYkv/V3S++j+lfPo6/090fWH6iu/8uwxW1j0ny+ZteKOtiA0gAgJlxezcAcEZyG3aSnbDy+ieTPCDDivP78sRxfPUa51+d5IuSfFqSo2ddGRvS3Yer6oYMtxlfkOHL2zFXPAEApmr57d37l7eDcXs3ALBEbsNOsdDBelXtS/I1SX6gu29dx1M+aRzfvMb5peOPPsPPvF+S5Ruc7lrHz2VC4y/jo7OuAwBgp+juu6rqYJJDGW7vvjZD+5fdGUL1fRlWovnSDAA7nNyGnWBhW8FU1YOSvCDJ65P8h3U+7UHj+L41zr93HM8Ull+V5N3L/qwV0gMAwFxxezcAAAy27Yr1qvqtJI+b8Gn/vLtfMf73NUk+MclTV/ZLn7Jrk/z4sse7IlwHAGBBuL0bgEVRVefGv2fABm3bYD3JRUkeO+Fzzk+SqvrsJN+R5Fe6+48neP57lr/OKh44jnes9QJjiH9PkF9VE/x4AADY/tzeDcC8q6rLk1yX5MJlh09V1UF3YAHrsW1bwXT3p3d3Tfjn6Pj0f5Lhf9sTquro8j9Jnj7Oec547N8v+7F/NY6PWqOspeNv2sT/qQAAAABskTFUP5Tk5iR7MnQb2DM+PjSeBzij7bxifTN8+hnOXTL+ObXs2J8n+aokn7nGc5aOv/ZsCwMAAABga43tX65L8tIk+7v77vHU8aran+RIkudX1Q3awgBnsm1XrJ+N7v7BtVa1J/mlcdo3jseeteypvzuOX1FV91v+mlX18Rn6br0zycun/b8BAICzU1XnVtWlVXXFOJ4765oAgJnbm6H9yzXLQvUkyfj42gztifdufWnAPFnIYH2jxo1PX57k4Un+w9LxqjovyQuSfFSSn+zuD86mQgAA1mO8hftkkhuTXD+OJ93aDQA73gXjeGKN8ydWzANYlWD93r4pyduTPLuqXltVv5bkL5NcnuSmDFcuAQDYpvRNBQDO4PQ47l7j/O4V8wBWJVhfobtvTfIZSV6U5GFJvjrJ3Umel+Sp3f2B2VUHAMCZrNI39Xh3v6e7jyfZPx5/vrYwALBjHcuw397VVfURudj4+Kokt43zANZU3T3rGhZaVT04ybuTPKS7b591PQAAi6yqLs3Q9mXPGKavPL8nw12Il3X30S0tDgDYFpbd3fbSDJ0JTmRYqX5Vkn1JDnT34dlVCMzKJFnueVtTEgAAbAl9UwGAM+ruw1V1IMNdbjctO3VbhOrAOgnWAQBmZGxHsjdDyHs6ybHuvmu2Vc295X1T77ViPfqmAgC5J1y/IT6LARukFcyUaQUDAKxmvAX5uiQXLjt8KslBq6Q2brxYcTLDRqX7u/vuZefOSXIkQ7h+sS/OAADAcpNkuTYvBQDYYsv6et6cZE+SXeN4c5JD43k2YAzLD2boj3qkqvZU1a6xt/qR8fiVQnUAAOBsWLE+ZVasAwDLWVG9Nda4I+C2DKG6OwIAAIB7mSTLFaxPmWAdAFiuqi5NcmOSPd19rx7g48rqm5Jc1t1Ht7S4BaOHPQAAMIlJslyblwIAbK0LxvHEGudPrJjHBo0h+tFZ1wGTcEEIAGA+6LEOALC1To/j7jXO714xD9ghxhZGJzPc1XL9OJ607wIAwPYjWAcA2FrHkpxKcvXYU/0e4+OrMvQCP7b1pQGzYlNjAID5osf6lOmxDgCstCxAe2mSazO0f9mdIVTfl+SADTZh57CpMQDA9qDHOgDANtbdh6vqQJLrMmxUuuS2CNVhJ9qb5MIkVywP1ZOku++uqmsz/K7YG/sGwI5j7wWA7UmwDgAwA2O4fkN8UQZsagysYbzL7boMF9+WnKqqgy7EA8yWHusAADPS3Xd199Hufsk4CtVhZ7KpMXAv9l4A2N70WJ8yPdYBAIAz0WMdWMnvBYDZmCTLtWIdAABghsZQ7GCGzYuPVNWeqtpVVXsyhGf7klwpPIMdZWnvhWtW23shw+bnF43zAJgBPdYBAABmzKbGwAr2XgDY5gTrAAAA24BNjYFllu+9cHyV8/ZeAJgxPdanTI915tHYz88XOgAAgBnQYx1gNvRYBzZs3Fn+ZJIbk1w/jiftOA8AALA17L0AsP0J1oF7jOH5oQyrIvYk2TWONyc5JFwHAADYGuPeCgeSPCHD3gu3j+Pu2HsBYOa0gpkyrWCYF241BAAA2H606gTYOlrBABuxN8mFSa5ZHqonyfj42iQXjfMAAAAAYMcSrANLLhjHE2ucP7FiHgAAAFNkDyyA7UuwDiw5PY671zi/e8U8AAAApsQeWADbmx7rU6bHOvNCj3UAAIDtwfczgNnQYx2Y2Phh7GCSfUmOVNWeqtpVVXsyfGjbl+RKH9oAAACmzh5YANvcebMuANg+uvtwVR1Icl2Sm5adui3Jge4+PJvKAAAAdhR7YAFsc4J14COM4foNGVY+XJChp/oxK9UBAAC2zPI9sI6vct4eWAAzpsf6lOmxDgAAAExCj3WA2dBjHQAAAGBO2QMLYPvTCgYAAABgm7EHFsD2phXMlGkFAwAAAGzU2BbGHlgAW2CSLNeKdQAAAIBtagzRj866DgA+kh7rAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATEKwDAAAAAMAEBOsAAAAAADCB82ZdAACwvVXVuUn2Jrkgyekkx7r7rtlWBQAAALNjxToAsKaqujzJySQ3Jrl+HE+OxwEAAGBHEqwDAKsaw/NDSW5OsifJrnG8Ockh4ToAAAA7VXX3rGtYaFX14CTvTvKQ7r591vUAwHqM7V9OZgjR93f33cvOnZPkSJLdSS7WFgYAAIBFMEmWa8U6ALCavUkuTHLN8lA9ScbH1ya5aJwHAAAAO4rNSwG2kE0gmSMXjOOJNc6fWDEPAAAAdgwr1gG2iE0gmTOnx3H3Gud3r5gHAAAAO4ZgHWAL2ASSOXQsyakkV4891e8xPr4qyW3jPAAAANhRbF46ZTYvBWwCybxadkHopRl6qp/I8Hf1qiT7khzo7sOzqxAAAAA2j81LAbYXm0Ayl8bQ/ECSJyS5Kcnt47g7QnUAAAB2MJuXAkyfTSCZW919uKpuiE13AQAA4B6CdYDpW74J5PFVztsEkm1tDNGPzroOAAAA2C60ggGYPptAAgAAACwQwTrAlI2rfQ9m2OzxSFXtqapdVbUnw8al+5JcqbUGAAAAwHzQCgZgC4x9qg8kuS7D5o9LbotNIAEAAADmSnX3rGtYaFX14CTvTvKQ7r591vUAs1VV58YmkAAAAADbziRZrhXrAFvIJpAAAAAA80+PdQAAAAAAmIBgHQAAAAAAJiBYBwAAAACACQjWAQAAAABgAoJ1AAAAAACYgGAdAAAAAAAmIFgHAAAAAIAJCNYBAAAAAGACgnUAAAAAAJiAYB0AAAAAACYgWAcAAAAAgAkI1gEAAAAAYAKCdQAAAAAAmIBgHQAAAAAAJnDerAsAALa3qjo3yd4kFyQ5neRYd98126oAAABgdqxYBwDWVFWXJzmZ5MYk14/jyfE4AAAA7EiCdQBgVWN4fijJzUn2JNk1jjcnOSRcBwAAYKeq7p51DQutqh6c5N1JHtLdt8+6HgBYj7H9y8kMIfr+7r572blzkhxJsjvJxdrCAAAAsAgmyXKtWAcAVrM3yYVJrlkeqifJ+PjaJBeN8wAAAGBHEawDAKu5YBxPrHH+xIp5AAAAsGMI1gGA1Zwex91rnN+9Yh4AAADsGIJ1AGA1x5KcSnL12FP9HuPjq5LcNs4DAACAHUWwDgDcy7gh6cEk+5Icqao9VbWrqvZk2Lh0X5IrbVwKAADATnTerAsAALan7j5cVQeSXJfkpmWnbktyoLsPz6YyAAAAmK3q7lnXsNCq6sFJ3p3kId19+6zrAYBJVdW5SfZm2Kj0dJJjVqoDAACwaCbJcq1YBwDOaAzRj866DgAAANgu9FgHAAAAAIAJCNYBAAAAAGACgnUAAAAAAJiAYB0AAAAAACZg81IAAGAiVXVukr1JLkhyOsmxcaNjAADYEaxYBwAA1q2qLk9yMsmNSa4fx5PjcQAA2BEE6wAAwLqM4fmhJDcn2ZNk1zjenOSQcB0AgJ2iunvWNSy0qnpwkncneUh33z7regAAYCPG9i8nM4To+7v77mXnzklyJMnuJBdrCwMAwDyaJMu1Yh0AAFiPvUkuTHLN8lA9ScbH1ya5aJwHAAALzealW2dXVc26BgAA2KhPHsc3jSt5VnrT0ryqevUW1QQAAJtp13onagUzZVX1yCRvnnUdAAAAAACsy6O6+2/ONEGwPmU1LFP/hCR3zLqWBbQrw0WLR8X7Ow3e3+nx3k6P93Z6vLfT472dLu/v9Hhvp8d7Oz3e2+nx3k6X93d6vLfT472dHu/tdO1K8rd9H8G5VjBTNv4f4IxXN9iYZa117rAx7Obz/k6P93Z6vLfT472dHu/tdHl/p8d7Oz3e2+nx3k6P93a6vL/T472dHu/t9Hhvp25d76nNSwEAAAAAYAKCdQAAAAAAmIBgnXn2gSQ/NI5sPu/v9Hhvp8d7Oz3e2+nx3k6X93d6vLfT472dHu/t9Hhvp8v7Oz3e2+nx3k6P93YbsHkpAAAAAABMwIp1AAAAAACYgGAdAAAAAAAmIFgHAAAAAIAJCNaZO1X1gKr64ap6fVW9v6r+tqr+a1U9cta1zbOqelJV/fuqOlxVb66qriqbMGyCqjq/qvZX1S9W1V+Of2/fW1V/XlXPraoHzbrGeVZV/278e3trVb27qj5QVW+qql+uqifMur5FUlX/qKreOv5+ODnreuZZVR1d+j27xp+nz7rGeVdVD6uq54+/d++sqndU1aur6j/OurZ5VVWX3sff26U/z511rfOqqp5cVb8xfr79YFW9q6qOVdU3VVXNur55VlWPq6oXV9Xp8bPCqar66ar6uFnXtt1t9HtCVT2rql5RVe8Zfwf/XlV97lbUPE8mfX+r6hOr6tur6kVV9f+q6u7xOZduXdXzYZL3tqrOqaq9VfVjVfWqqrpj/F3xhqp6YVVdtNX1b2cb+Hv7lVX1S1V1c1X9/fhv3FvH3wv7trL27W6jv3NXvMYfLftc9qhp1YrNS5kzVXX/JDcmeUqS00mOJbkwyWcneVuSp3T3G2dW4ByrqiNJvmrl8e72Je4sVdW/TPJfxof/L8mJJA9O8rlJdiW5JckXdvdbZ1PhfKuqv0/ywCSvTfI34+F/nORTk3wwyeXd/dIZlbdQqupFSf55kkryhu5+zGwrml9VdTTJFyb570nes8qU67r75i0taoFU1ZOS/M8k/yjJX+TDv3cfn+RR3X3eDMubW1V1SZJ/v8bpc5N8w/jfX9TdN25NVYujqv5pkl/P8F6+OsnJJA9LsjfJeUmu7+6vn12F86uqvijJ7yQ5P8Pnrtcl2Z3hs8Kbk+zp7jfPrsLtbSPfE6rqJ5I8O8mdSf4gyf2TPDXDZ4gD3X1kCqXOpUnf36r6riT/aZVTl3X30c2sbd5N8t5W1WOS3Do+fEuSVyS5K0PW8MgkdyT5J939smnVO0828Pf2UJLLM3wu+6sM7+eFST5nnHJtd189jVrnzdlmM1X1rCT/LUln+J37if6Nmx7BOnOlqn4kyXOS/J8kX9rd7xmP/7sk1yX5k+6+dHYVzq+q+r4M4eQrxz+nktxPsH72quqZGUL0n+ju/7fs+AVJfjfJZyR5SXc/Y0YlzrWq+rwkr+ru9684/u1JfibJ32UI0j40i/oWRVU9NckfJfn5JP8qgvWzsixYv6i7T822msVSVQ/LEJqdn+SK7v7tFec/u7tfMZPiFlhVfVmS30vy10ke3b5kTKSqzstwcfjhSb6+u69fdu5xSV6W5GPjosXEqur8JG9M8vFJfri7f2A8Xkl+LMmVSf6gu582uyq3t0m/J1TVFyf5wyRvz3DR4tbx+J4kR5O8L8O/f++adu3zYAPv71cmuWzZ/J9O8qURrN/LJO9tVX1Kkp9N8qNJblz6d6yq7pfkhUmelSEQfkx3f3Ar6t/ONvD39jOS/FV3v33F8c/J8B3jgUmeaGHJ2WUz4+fgW5L8aZLHJnl0BOtTJVhnblTVRyd5a5KHJPnM7v6zFef/PMmnJfms7n7VDEpcKFX1/gjWp278gnFTkg8keXB3/8OMS1ooNbQr+ZQMH9JeO+t65lVVPSDJzRn+nu5P8voI1s+KYH16quoFSb4tyXd09wtmXc9OUVUvTvKMJD/a3VfNup55U1W7M/ye/cvuvmSV8/85yb9N8n3d/WNbXd88q6pvSPIrSf4yyeO7++5l5z4qw79pFyb59O7+85kUOWfu63tCVf1eki9L8t3d/RMrzi39Xb6yu6+bdq3zaNLvYVX1+0meFsH6fdrod9zxs/DpDFnEpd39J9Oob56dTX5QVb+Q5JuTPLu7f3LTi5tzk7y34+exyzPclfW/IlifOj3WmSefl+EfsjesDNVHh8bxK7auJDhrS1/g7pehZQGba2k1iQsWZ+cHknxykn+dD7+nsO2MX3y/Icl7M9wCyxaoqgfmw7cs/8osa5ljH1jnvLff9xRWeNI4/u/loXqSjKtOXz4+vNdt90xu/D38RePDQ6tM8Z2NudPdd2a4CJcknzDLWhaU72yboIY9mp6R5P/X3W+YdT07hf6SzJMnjuOr1zi/dPzTtqAW2CyfPI4fTPKOWRayaKrqGzPc/nZrPtwvkQlV1aclOZjkv3X3saq6cMYlLZpvrqp/lOTuDF/YjnT3X824pnn2WRn2rnhZd985tif5kgy9fV+f5De6+29nWeCCujzDLct/1t2vm3Uxc+qNSd6Q5LFV9YxVWsF8Q5J3JvmtGdU3zx44ju9c4/zSxYonrnGeyTw2w4KRt62xQtJ3NuZOVZ2TYeVvMvRfZ5NU1ROSfF2G78N/OONy5ta4yOFnM7SBcWfbFhKsM08+aRzXuoVl6fij1zgP29Gzx/H3u3u9q9VYRVV9T4ZNSx+Y5HHjf/9thh7Ld82ytnk1fon4hSTvSvK9s61mYf1/Kx4/v6qe193Pm0k18+/x4/jWNTZ+uqaqvrm7X7K1ZS28pU1LrVbfoO6+a9yT5aVJXlxVBzNcFH54hs1LX5fkWd3tIvzk3jaOa31HuOg+zjOZM35n6+73VtW7knxMVe3q7ju2rDLYuCsy/D5+W4Y2nmxQVX1Fkn+a5KMy/L743Ayh+rdYZX1WfjhDW7NLtZfdWlrBME8eNI7vW+P8e8dx1xbUAmetqv5Jhl5yH0zy/TMuZxE8LckzkxzIEKq/KUOobs+FjfvOJE9O8j0rNxrirP3vJN+YYQ+A8zOs8HtOkg8l+eGqevYZnsvaPmYcvzLJ05N8R4YvwhcmeX6SByT5par69FkUt4jGjbifmuSuJC5YnIXufnmGvRfemOQzM6zguyzDHS1/OB5ncv97HL+8qj5u+YmqemSGu1oS3yE2y319Z0t8b2OOVNUnJvmJ8eFzLYY6a0/M8J3tGUk+P0MrtO+Mi/MbVlWfmWHB3i/p/7/1BOsAM1BVlyT51SSVIbS0WdZZ6u4vHjd0+ZgkX5Bhpd+fVNVzZlvZfKqqT0ryI0n+pLtfNONyFk53P7e7f7W739jdd3b367v7mgybwybJD459apnM0mfb8zJ8+X1Bd7+tu9/U3d+T5DczrJD6nplVuHiuSHJukj/sbrfHn4WquiLJK5L8dZLPyRBQfmqSF2VoyfXHVXW/mRU4v/4gQ/uRByX5H1X12VX1oHED+f+RD9/FffdaLwDsTGN7jcNJPi5Du74XzrikudfdPzJ+Z3tAkidk2BPn55PcUFUfPdPi5lBVnZsP32F85Wyr2ZkE68yT94zj+WucX+qf6HZCtrVxddTvZwiAf7y7//OMS1oo3f2u7j6W5J8keVWS51XVk2dc1jz6mSQfnWHDUrZId/9Bkj9N8tAMwRqTec+y/15t89KlY1+4BbXsFNrAbIKqujjJLyX5+yT7uvsV3f3e7r61u781Q4uYz0zyL2ZZ5zzq7s6wD8BfZNiH4f9m+L5wU4Y7Wn5wnLpWD3Ymc1/f2RLf25gDVfVRGS7If1aSl2VYYc0m6e73d/eJ7v6OJD+VZF+GletM5ruSfEaS7+3uv59xLTuSYJ15srSZ26PWOL90/E1bUAtsSFV9bIaVU4/OEPC4qjwl3f3BJL+e4a6Ar5hxOfNoX4bbuF9YVUeX/iT5tfH8I5cdf8TMqlxMS5vtXjDTKubT0meA93X321Y5f2ocH7415Sy2cVPNz8gQpB2ZbTVz759luJvi97v7Pauc/41x/IKtK2lxdPebknx6kq/N0NLh55L82wz7MvzdOO0vZlHbAjrjd7ZxBfBDk7xTf3W2q3GfoV9K8mVJXpPkK7r7zpkWtdiWLs6v3BuH+/YVSTrJM5d/Zxu/ty19R/vN8djTZ1blArN5KfNkqVXGZ65xfun4a7egFphYVT0owy3Hj89wS+G3jKuomJ6lq/YPm2kV8+uhWXtl7/2Xnbv/llSzcyz1CX/vGWexmj8bxwdU1f1W6YP6seO4WnDJ5L5xHA9395n6KXPflkLId69xfun4x6xxnvvQ3R/KsPr0N5cfr6rPHf/z6FbXtKD+MkPP5IdV1SO7+29WnPedjXnwUxlanb0+ydO6+12zLWfh+c52dipnvvD+lHF80fRL2XmsWGeevDzDl4pPWWPTsQPj+DtbVhGs09gT9YYkn53kf2bYVPOu2Va1IywFv3aYn1B312p/klw0TnnDsuOnZljqQqmqhyXZOz589SxrmUfd/VcZLsRXVr8otHTsz1Y5xwSqqvLh2+K1gTl7S/3pP2uN80stzU5Nv5SdY7zj6kCSt2dY9MBZGlf1/vH48GtWmeI7G9taVf1Ikm/PcPfFl3T3W2dc0k7gO9sGdfelZ/jetnQn5yeOx140w1IXlmCdudHd/5Dkp8eHPzPeRpgkqap/l+TTMmyy96pZ1AdrGTcUeUmSL0pyLMnl499nzlJVfV5VPX28XXP58Y+qqu/MsJryzgwtYWBbqKrPrar94++G5ccvTPJbGXrP/nZ3v3kW9S2AHxvH51fVPe10xovyB8eHNh87e3sztDX7m3w4RGPjbhjHL6iqb1t+oqqekuS7x4eHtrSqBVFVu6vq/iuOPSrD+74ryUFtHjbVj4/j/zfuH5AkGTeM/dYMm+z94gzqgjOqqu9O8pwMFzu/eLxgz1mqqodV1bdU1b32XqiqL8mHP7uttj8ObGtawTBvfiTJFyf53CS3VtWxDF/qPifJ22JDpw2rqi9P8v3LDn30ePz4smPP6+7f3dLCFsO/SfLV43//fZIXDAv97uVKG45M7OIMH8D+vqpelWHF2cdl2GH+giTvT/Ks7v7r2ZUI9/KpGf7evqWqXp0hYHh0kidlaKvzF0m+ZWbVzbnuvr6qvjTJM5O8rqpuSvKADJ8d7pfkv3T3b57pNViXpU1Lr+/uu2dayQLo7ldX1fMz7L3ygqr6jiSvS/IJSfZkWBD18939RzMsc55dmeSrx9+5pzPss/D5GX4nPK+7f2mWxW13k35P6O4/qqr/nOTZSV5TVX84PudLMtxR9E1aa3zYpO/veNH4t5adu2QcX1BVt4///bvd/bwplTw3Jnlvxwvw143HbkvynDW+s/1Cd79sCuXOlQn/3j4wyc8n+YnxO9ubx2Ofmg///f1P3f3fp174HJDNzBfBOnOlu99fVZcluSrD7cf7k7wjQ6+o77e676w8LMMFipU+Z8UcJre8H+pXrzkr+cF8uL8c6/MnSa7JcPvgp2UI1f8hw63yh5L8ZHefnFl1sLr/m+RnM/x+fXKG3xHvzbA51m8m+VkrJ8/aN2VoIfetSS7NsKnTq5P8nADt7I3tzZbaOfzqLGtZJN39PeOFoH+d4ULbY5PckeHfuv/S3S+ZZX1z7kiGTdyemOTzkrwzye8n+YnuPjq7subGxN8Tuvu7quo1GRaYfEmGz2d/lCEMumlKdc6rSd/f+60x/3HL/vuWTahrEUzy3j40w4WfZLiguWeN1zyaZMcH65nsvX1rku/N8JnsH2doe3ZOhgudv5bh89nRaRU6h2Qzc6TsmwcAAAAAAOunxzoAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAALpKq6qnoLfs6zxp/1g9P+WQAAsN0I1gEAAAAAYAKCdQAAAAAAmIBgHQAAAAAAJiBYBwCABVdVF4790I9W1QOq6ker6k1V9YGqOllV31dVtcZzP6+q/qiq7qiqd1XV/6yqz7mPn3deVX1bVf2fqrq9qu6sqtdU1XdV1XnL5p1bVS8fa/v2VV5nb1XdVVV/W1X/6OzfCQAA2ByCdQAA2Dk+OskfJPmWJH+a5MYkj0zyo0met3JyVe1LcjTJU5O8Lsn/SPKJSf53kj2r/YCqesD4M16Q5FOTHE/yh0kuSPKfkvz3qjonSbr7riTfmOSOJM+vqkuWvc5DkvxKkkryzO5++1n9LwcAgE0kWAcAgJ1jT5K7klzU3f+0u5+eZO947Lur6kFLE6tqV5L/muS8JP+iuz+nu69I8o8zBOT/ao2f8fwklyX59SSf3N1f2t1fmeQxSX4vyVcuf253vzHJdyZ5QJLrq+qjx1MvSPLoJP+5u/9wU/7XAwDAJqnunnUNAADAJqmqTpLurmXHLkxyW5K7kzy+u/9yxXN+J8m+JJd199Hx2DdlCNb/d3d/4Yr5H5XkjUkeleSHuvsHx+MPT/LmJG9J8tjuvnPF8x6R5E1JbunuJ6449xtJvibJf0zy50l+NcmJJJ/V3R/Y2LsBAADTYcU6AADsHG9aGaqPXj+OFyw7tnccf23l5O7+YJJDq7zOpUk+KsnvrwzVx+e9JcmtSZ4wtoxZ7lszhPIHk7wwyQeSfL1QHQCA7UiwDgAAO8eb1zh+xzjeb9mxTxjHN63xnFOrHLtwHL9l3JD0Xn8ytJKpJB+7/Ind/c4k35HhO8qDkjy3u197pv8xAAAwK+fNugAAAGDL3D3l119auPOaDO1czmS1lehft+y/n7QZBQEAwDQI1gEAgNWcHsdHr3F+teNLK+Jf1t3fOckPq6orkjwjyV8k+YckX1tVv9vdvzzJ6wAAwFbQCgYAAFjNsXH82pUnquq8JP90lefcmOSuJPvGDU7Xpao+MckLMqxif0aSb0jy/iQ/VVUXTVg3AABMnWAdAABYzW8meXuSS6vqmUsHq6qS/FCST1r5hO7+myT/NUOv9ZdU1cevnFNVj6mqf7rs8TlJfjnJQ5M8p7tf292vS/J9SR6c5Feq6txN/N8FAABnTbAOAADcS3ffkeSbM6xAf1FVHa+q65OcSPI9Sf7LGk99dpI/zLCi/Q1V9bKqur6qbqiqW5PcmuQbl82/MsmlSf5Xkh9fdvynkvxBks9LctWm/Q8DAIBNIFgHAABW1d03JLksQ4uX3Um+PEPv9S9MctMaz7kzyZcleWaS/5vkcUkOJPmsJG9L8gNJvjdJqurTkzwvyTuTPLO7e9nrdJJnZVg1/wNV9dmb/b8PAAA2qpZ9dgUAAAAAAO6DFesAAAAAADABwToAAAAAAExAsA4AAAAAABMQrAMAAAAAwAQE6wAAAAAAMAHBOgAAAAAATECwDgAAAAAAExCsAwAAAADABATrAAAAAAAwAcE6AAAAAABMQLAOAAAAAAATEKwDAAAAAMAE/v9U/KMUY696nAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
+ "ax.grid(False)\n",
"plt.show()"
]
},
@@ -638,25 +626,12 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 21,
"metadata": {
- "nbsphinx": "hidden"
+ "tags": [
+ "hide-input"
+ ]
},
- "outputs": [],
- "source": [
- "fig, ax = plt.subplots()\n",
- "df_corrupted.sort_values(by=\"exact\", ascending=False, axis=0).plot(\n",
- " y=[\"exact\", \"estimated\"], kind=\"bar\", ax=ax, color=[\"dodgerblue\", \"indianred\"]\n",
- ")\n",
- "ax.set_xlabel(\"Index\")\n",
- "ax.set_ylabel(\"Data Shapley value\")\n",
- "plt.legend([\"Exact\", \"Estimated\"]);"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {},
"outputs": [
{
"data": {
@@ -672,7 +647,14 @@
}
],
"source": [
- "plt.show()"
+ "fig, ax = plt.subplots()\n",
+ "df_corrupted.sort_values(by=\"exact\", ascending=False, axis=0).plot(\n",
+ " y=[\"exact\", \"estimated\"], kind=\"bar\", ax=ax, color=[\"dodgerblue\", \"indianred\"]\n",
+ ")\n",
+ "ax.set_xlabel(\"Index\")\n",
+ "ax.set_ylabel(\"Data Shapley value\")\n",
+ "plt.legend([\"Exact\", \"Estimated\"])\n",
+ "plt.show();"
]
},
{
@@ -702,7 +684,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.13"
+ "version": "3.8.16"
}
},
"nbformat": 4,
diff --git a/notebooks/notebook_support.py b/notebooks/support/common.py
similarity index 78%
rename from notebooks/notebook_support.py
rename to notebooks/support/common.py
index 834638f93..b64d7e995 100644
--- a/notebooks/notebook_support.py
+++ b/notebooks/support/common.py
@@ -1,147 +1,33 @@
+import logging
import os
-import pickle as pkl
from copy import deepcopy
-from pathlib import Path
-from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence, Tuple
+from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
-import torch.nn as nn
+from numpy.typing import NDArray
from PIL.JpegImagePlugin import JpegImageFile
-from torch.optim import Adam
-from torchvision.models import ResNet18_Weights, resnet18
-from pydvl.influence.model_wrappers import TorchModel
from pydvl.utils import Dataset
-try:
- import torch
+from .types import Losses
- _TORCH_INSTALLED = True
-except ImportError:
- _TORCH_INSTALLED = False
+logger = logging.getLogger(__name__)
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-MODEL_PATH = Path().resolve().parent / "data" / "models"
-
-
-def new_resnet_model(output_size: int) -> TorchModel:
- model = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
-
- for param in model.parameters():
- param.requires_grad = False
-
- # Fine-tune final few layers
- model.avgpool = nn.AdaptiveAvgPool2d(1)
- n_features = model.fc.in_features
- model.fc = nn.Linear(n_features, output_size)
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- model.to(device)
-
- return TorchModel(model)
-
-
-class TrainingManager:
- """A simple class to handle persistence of the model for the notebook
- `influence_imagenet.ipynb`
- """
-
- def __init__(
- self,
- name: str,
- model: TorchModel,
- loss: torch.nn.modules.loss._Loss,
- train_x: "NDArray[np.float_]",
- train_y: "NDArray[np.float_]",
- val_x: "NDArray[np.float_]",
- val_y: "NDArray[np.float_]",
- data_dir: Path,
- ):
- self.name = name
- self.model_wrapper = model
- self.loss = loss
- self.train_x, self.train_y = train_x, train_y
- self.val_x, self.val_y = val_x, val_y
- self.data_dir = data_dir
- os.makedirs(self.data_dir, exist_ok=True)
-
- @property
- def model(self) -> nn.Module:
- return self.model_wrapper.model
-
- def train(
- self,
- n_epochs: int,
- lr: float = 0.001,
- batch_size: int = 1000,
- use_cache: bool = True,
- ) -> Tuple["NDArray[np.float_]", "NDArray[np.float_]"]:
- """
- :return: Tuple of training_loss, validation_loss
- """
- if use_cache:
- try:
- training_loss, validation_loss = self.load()
- print("Cached model found, loading...")
- return training_loss, validation_loss
- except:
- print(f"No pretrained model found. Training for {n_epochs} epochs:")
-
- optimizer = Adam(self.model.parameters(), lr=lr)
-
- training_loss, validation_loss = self.model_wrapper.fit(
- x_train=self.train_x,
- y_train=self.train_y,
- x_val=self.val_x,
- y_val=self.val_y,
- loss=self.loss,
- optimizer=optimizer,
- num_epochs=n_epochs,
- batch_size=batch_size,
- )
- if use_cache:
- self.save(training_loss, validation_loss)
-
- return training_loss, validation_loss
-
- def save(
- self, training_loss: "NDArray[np.float_]", validation_loss: "NDArray[np.float_]"
- ):
- """Saves the model weights and training and validation losses.
-
- :param training_loss: list of training losses, one per epoch
- :param validation_loss: list of validation losses, also one per epoch
- """
- torch.save(self.model.state_dict(), self.data_dir / f"{self.name}_weights.pth")
- with open(self.data_dir / f"{self.name}_train_val_loss.pkl", "wb") as file:
- pkl.dump([training_loss, validation_loss], file)
-
- def load(self) -> Tuple["NDArray[np.float_]", "NDArray[np.float_]"]:
- """Loads model weights and training and validation losses.
- :return: two arrays, one with training and one with validation losses.
- """
- self.model.load_state_dict(
- torch.load(self.data_dir / f"{self.name}_weights.pth")
- )
- with open(self.data_dir / f"{self.name}_train_val_loss.pkl", "rb") as file:
- return pkl.load(file)
-
-
-def plot_dataset(
- train_ds: Tuple["NDArray[np.float_]", "NDArray[np.int_]"],
- test_ds: Tuple["NDArray[np.float_]", "NDArray[np.int_]"],
- x_min: Optional["NDArray[np.float_]"] = None,
- x_max: Optional["NDArray[np.float_]"] = None,
+def plot_gaussian_blobs(
+ train_ds: Tuple[NDArray[np.float_], NDArray[np.int_]],
+ test_ds: Tuple[NDArray[np.float_], NDArray[np.int_]],
+ x_min: Optional[NDArray[np.float_]] = None,
+ x_max: Optional[NDArray[np.float_]] = None,
*,
xlabel: Optional[str] = None,
ylabel: Optional[str] = None,
legend_title: Optional[str] = None,
vline: Optional[float] = None,
- line: Optional["NDArray[np.float_]"] = None,
+ line: Optional[NDArray[np.float_]] = None,
suptitle: Optional[str] = None,
s: Optional[float] = None,
figsize: Tuple[int, int] = (20, 10),
@@ -214,15 +100,15 @@ def plot_dataset(
def plot_influences(
- x: "NDArray[np.float_]",
- influences: "NDArray[np.float_]",
+ x: NDArray[np.float_],
+ influences: NDArray[np.float_],
corrupted_indices: Optional[List[int]] = None,
*,
ax: Optional[plt.Axes] = None,
xlabel: Optional[str] = None,
ylabel: Optional[str] = None,
legend_title: Optional[str] = None,
- line: Optional["NDArray[np.float_]"] = None,
+ line: Optional[NDArray[np.float_]] = None,
suptitle: Optional[str] = None,
colorbar_limits: Optional[Tuple] = None,
) -> plt.Axes:
@@ -437,6 +323,14 @@ def _process_dataset(ds):
processed_ds["labels"].append(item["label"])
return pd.DataFrame.from_dict(processed_ds)
+ def split_ds_by_size(dataset, split_size):
+ split_ds = dataset.train_test_split(
+ train_size=split_size,
+ seed=random_state,
+ stratify_by_column="label",
+ )
+ return split_ds
+
if os.environ.get("CI"):
tiny_imagenet = load_dataset("Maysee/tiny-imagenet", split="valid")
if keep_labels is not None:
@@ -463,14 +357,10 @@ def _process_dataset(ds):
lambda item: item["label"] in keep_labels.keys()
)
- split_ds = tiny_imagenet.train_test_split(
- train_size=1 - test_size, seed=random_state
- )
+ split_ds = split_ds_by_size(tiny_imagenet, 1 - test_size)
test_ds = _process_dataset(split_ds["test"])
- split_ds = split_ds["train"].train_test_split(
- train_size=train_size, seed=random_state
- )
+ split_ds = split_ds_by_size(split_ds["train"], train_size)
train_ds = _process_dataset(split_ds["train"])
val_ds = _process_dataset(split_ds["test"])
@@ -500,7 +390,7 @@ def plot_sample_images(dataset: pd.DataFrame, n_images_per_class: int = 3):
def plot_lowest_highest_influence_images(
- subset_influences: "NDArray[np.float_]",
+ subset_influences: NDArray[np.float_],
subset_images: List[JpegImageFile],
num_to_plot: int,
):
@@ -531,17 +421,15 @@ def plot_lowest_highest_influence_images(
plt.show()
-def plot_losses(
- training_loss: "NDArray[np.float_]", validation_loss: "NDArray[np.float_]"
-):
+def plot_losses(losses: Losses):
"""Plots the train and validation loss
:param training_loss: list of training losses, one per epoch
:param validation_loss: list of validation losses, one per epoch
"""
_, ax = plt.subplots()
- ax.plot(training_loss, label="Train")
- ax.plot(validation_loss, label="Val")
+ ax.plot(losses.training, label="Train")
+ ax.plot(losses.validation, label="Val")
ax.set_ylabel("Loss")
ax.set_xlabel("Train epoch")
ax.legend()
@@ -551,7 +439,7 @@ def plot_losses(
def corrupt_imagenet(
dataset: pd.DataFrame,
fraction_to_corrupt: float,
- avg_influences: "NDArray[np.float_]",
+ avg_influences: NDArray[np.float_],
) -> Tuple[pd.DataFrame, Dict[Any, List[int]]]:
"""Given the preprocessed tiny imagenet dataset (or a subset of it),
it takes a fraction of the images with the highest influence and (randomly)
@@ -589,10 +477,10 @@ def corrupt_imagenet(
def compute_mean_corrupted_influences(
corrupted_dataset: pd.DataFrame,
corrupted_indices: Dict[Any, List[int]],
- avg_corrupted_influences: "NDArray[np.float_]",
+ avg_corrupted_influences: NDArray[np.float_],
) -> pd.DataFrame:
- """Given a corrupted dataset, it returns a dataframe with average influence for each class
- and separately for corrupted (and non) point.
+ """Given a corrupted dataset, it returns a dataframe with average influence for each class,
+ separating corrupted and original points.
:param corrupted_dataset: corrupted dataset as returned by get_corrupted_imagenet
:param corrupted_indices: list of corrupted indices, as returned by get_corrupted_imagenet
@@ -626,7 +514,7 @@ def compute_mean_corrupted_influences(
def plot_corrupted_influences_distribution(
corrupted_dataset: pd.DataFrame,
corrupted_indices: Dict[Any, List[int]],
- avg_corrupted_influences: "NDArray[np.float_]",
+ avg_corrupted_influences: NDArray[np.float_],
figsize: Tuple[int, int] = (16, 8),
):
"""Given a corrupted dataset, plots the histogram with the distribution of
@@ -656,14 +544,10 @@ def plot_corrupted_influences_distribution(
non_corrupted_infl = class_influences[
~class_influences.index.isin(corrupted_indices[label])
]
- axes[idx].hist(
- non_corrupted_infl, label="Non corrupted", density=True, alpha=0.7
- )
- axes[idx].hist(
- corrupted_infl, label="Corrupted", density=True, alpha=0.7, color="green"
- )
+ axes[idx].hist(non_corrupted_infl, label="Non corrupted", alpha=0.7)
+ axes[idx].hist(corrupted_infl, label="Corrupted", alpha=0.7, color="green")
axes[idx].set_xlabel("Influence values")
- axes[idx].set_ylabel("Distribution")
+ axes[idx].set_ylabel("Number of samples")
axes[idx].set_title(f"Influences for {label=}")
axes[idx].legend()
plt.show()
diff --git a/notebooks/support/shapley.py b/notebooks/support/shapley.py
new file mode 100644
index 000000000..98c295ef9
--- /dev/null
+++ b/notebooks/support/shapley.py
@@ -0,0 +1,159 @@
+from pathlib import Path
+from typing import Any, Callable, Optional, Tuple
+
+import numpy as np
+import pandas as pd
+from sklearn.datasets import load_wine
+from sklearn.model_selection import train_test_split
+from sklearn.preprocessing import MinMaxScaler
+
+
+def load_spotify_dataset(
+ val_size: float,
+ test_size: float,
+ min_year: int = 2014,
+ target_column: str = "popularity",
+ random_state: int = 24,
+):
+ """Loads (and downloads if not already cached) the spotify music dataset.
+ More info on the dataset can be found at
+ https://www.kaggle.com/datasets/mrmorj/dataset-of-songs-in-spotify.
+
+ If this method is called within the CI pipeline, it will load a reduced
+ version of the dataset for testing purposes.
+
+ :param val_size: size of the validation set
+ :param test_size: size of the test set
+ :param min_year: minimum year of the returned data
+ :param target_column: column to be returned as y (labels)
+ :param random_state: fixes sklearn random seed
+ :return: Tuple with 3 elements, each being a list sith [input_data, related_labels]
+ """
+ root_dir_path = Path(__file__).parent.parent.parent
+ file_path = root_dir_path / "data/top_hits_spotify_dataset.csv"
+ if file_path.exists():
+ data = pd.read_csv(file_path)
+ else:
+ url = "https://raw.githubusercontent.com/aai-institute/pyDVL/develop/data/top_hits_spotify_dataset.csv"
+ data = pd.read_csv(url)
+ data.to_csv(file_path, index=False)
+
+ data = data[data["year"] > min_year]
+ data["genre"] = data["genre"].astype("category").cat.codes
+ y = data[target_column]
+ X = data.drop(target_column, axis=1)
+ X, X_test, y, y_test = train_test_split(
+ X, y, test_size=test_size, random_state=random_state
+ )
+ X_train, X_val, y_train, y_val = train_test_split(
+ X, y, test_size=val_size, random_state=random_state
+ )
+ return [X_train, y_train], [X_val, y_val], [X_test, y_test]
+
+
+def load_wine_dataset(
+ train_size: float, test_size: float, random_state: Optional[int] = None
+):
+ """Loads the sklearn wine dataset. More info can be found at
+ https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-recognition-dataset.
+
+ :param train_size: fraction of points used for training dataset
+ :param test_size: fraction of points used for test dataset
+ :param random_state: fix random seed. If None, no random seed is set.
+ :return: A tuple of four elements with the first three being input and
+ target values in the form of matrices of shape (N,D) the first
+ and (N,) the second. The fourth element is a list containing names of
+ features of the model. (FIXME doc)
+ """
+ try:
+ import torch
+ except ImportError as e:
+ raise RuntimeError(
+ "PyTorch is required in order to load the Wine Dataset"
+ ) from e
+
+ wine_bunch = load_wine(as_frame=True)
+ x, x_test, y, y_test = train_test_split(
+ wine_bunch.data,
+ wine_bunch.target,
+ train_size=1 - test_size,
+ random_state=random_state,
+ )
+ x_train, x_val, y_train, y_val = train_test_split(
+ x, y, train_size=train_size / (1 - test_size), random_state=random_state
+ )
+ x_transformer = MinMaxScaler()
+
+ transformed_x_train = x_transformer.fit_transform(x_train)
+ transformed_x_test = x_transformer.transform(x_test)
+
+ transformed_x_train = torch.tensor(transformed_x_train, dtype=torch.float)
+ transformed_y_train = torch.tensor(y_train.to_numpy(), dtype=torch.long)
+
+ transformed_x_test = torch.tensor(transformed_x_test, dtype=torch.float)
+ transformed_y_test = torch.tensor(y_test.to_numpy(), dtype=torch.long)
+
+ transformed_x_val = x_transformer.transform(x_val)
+ transformed_x_val = torch.tensor(transformed_x_val, dtype=torch.float)
+ transformed_y_val = torch.tensor(y_val.to_numpy(), dtype=torch.long)
+ return (
+ (transformed_x_train, transformed_y_train),
+ (transformed_x_val, transformed_y_val),
+ (transformed_x_test, transformed_y_test),
+ wine_bunch.feature_names,
+ )
+
+
+def synthetic_classification_dataset(
+ mus: np.ndarray,
+ sigma: float,
+ num_samples: int,
+ train_size: float,
+ test_size: float,
+ random_seed=None,
+) -> Tuple[Tuple[Any, Any], Tuple[Any, Any], Tuple[Any, Any]]:
+ """Sample from a uniform Gaussian mixture model.
+
+ :param mus: 2d-matrix [CxD] with the means of the components in the rows.
+ :param sigma: Standard deviation of each dimension of each component.
+ :param num_samples: The number of samples to generate.
+ :param train_size: fraction of points used for training dataset
+ :param test_size: fraction of points used for test dataset
+ :param random_seed: fix random seed. If None, no random seed is set.
+ :returns: A tuple of matrix x of shape [NxD] and target vector y of shape [N].
+ """
+ num_features = mus.shape[1]
+ num_classes = mus.shape[0]
+ gaussian_cov = sigma * np.eye(num_features)
+ gaussian_chol = np.linalg.cholesky(gaussian_cov)
+ y = np.random.randint(num_classes, size=num_samples)
+ x = (
+ np.einsum(
+ "ij,kj->ki",
+ gaussian_chol,
+ np.random.normal(size=[num_samples, num_features]),
+ )
+ + mus[y]
+ )
+ x, x_test, y, y_test = train_test_split(
+ x, y, train_size=1 - test_size, random_state=random_seed
+ )
+ x_train, x_val, y_train, y_val = train_test_split(
+ x, y, train_size=train_size / (1 - test_size), random_state=random_seed
+ )
+ return (x_train, y_train), (x_val, y_val), (x_test, y_test)
+
+
+def decision_boundary_fixed_variance_2d(
+ mu_1: np.ndarray, mu_2: np.ndarray
+) -> Callable[[np.ndarray], np.ndarray]:
+ """
+ Closed-form solution for decision boundary dot(a, b) + b = 0 with fixed variance.
+ :param mu_1: First mean.
+ :param mu_2: Second mean.
+ :returns: A callable which converts a continuous line (-infty, infty) to the decision boundary in feature space.
+ """
+ a = np.asarray([[0, 1], [-1, 0]]) @ (mu_2 - mu_1)
+ b = (mu_1 + mu_2) / 2
+ a = a.reshape([1, -1])
+ return lambda z: z.reshape([-1, 1]) * a + b # type: ignore
diff --git a/notebooks/support/torch.py b/notebooks/support/torch.py
new file mode 100644
index 000000000..68faad12f
--- /dev/null
+++ b/notebooks/support/torch.py
@@ -0,0 +1,254 @@
+import logging
+import os
+import pickle as pkl
+from pathlib import Path
+from typing import Callable, List, Optional, Tuple
+
+import numpy as np
+import pandas as pd
+import torch
+import torch.nn as nn
+from torch.optim import Adam, Optimizer
+from torch.optim.lr_scheduler import _LRScheduler
+from torch.utils.data import DataLoader
+from torchvision.models import ResNet18_Weights, resnet18
+
+from pydvl.influence.torch import as_tensor
+from pydvl.utils import maybe_progress
+
+from .types import Losses
+
+logger = logging.getLogger(__name__)
+
+from numpy.typing import NDArray
+
+MODEL_PATH = Path().resolve().parent / "data" / "models"
+
+
+class TorchLogisticRegression(nn.Module):
+ """
+ A simple binary logistic regression model.
+ """
+
+ def __init__(
+ self,
+ n_input: int,
+ ):
+ """
+ :param n_input: Number of features in the input.
+ """
+ super().__init__()
+ self.fc1 = nn.Linear(n_input, 1, bias=True, dtype=float)
+
+ def forward(self, x):
+ """
+ :param x: Tensor [NxD], with N the batch length and D the number of features.
+ :returns: A tensor [N] representing the probability of the positive class for each sample.
+ """
+ x = torch.as_tensor(x)
+ return torch.sigmoid(self.fc1(x))
+
+
+class TorchMLP(nn.Module):
+ """
+ A simple fully-connected neural network
+ """
+
+ def __init__(
+ self,
+ layers_size: List[int],
+ ):
+ """
+ :param layers_size: list of integers representing the number of
+ neurons in each layer.
+ """
+ super().__init__()
+ if len(layers_size) < 2:
+ raise ValueError(
+ "Passed layers_size has less than 2 values. "
+ "The network needs at least input and output sizes."
+ )
+ layers = []
+ for frm, to in zip(layers_size[:-1], layers_size[1:]):
+ layers.append(nn.Linear(frm, to))
+ layers.append(nn.Tanh())
+ layers.pop()
+
+ layers.append(nn.Softmax(dim=-1))
+
+ self.layers = nn.Sequential(*layers)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """
+ Perform forward pass through the network.
+ :param x: Tensor input of shape [NxD], with N batch size and D number of
+ features.
+ :returns: Tensor output of shape[NxK], with K the output size of the network.
+ """
+ return self.layers(x)
+
+
+def fit_torch_model(
+ model: nn.Module,
+ training_data: DataLoader,
+ val_data: DataLoader,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ optimizer: Optimizer,
+ scheduler: Optional[_LRScheduler] = None,
+ num_epochs: int = 1,
+ progress: bool = True,
+) -> Losses:
+ """
+ Fits a pytorch model to the supplied data.
+ Represents a simple machine learning loop, iterating over a number of
+ epochs, sampling data with a certain batch size, calculating gradients and updating the parameters through a
+ loss function.
+ :param model: A pytorch model.
+ :param training_data: A pytorch DataLoader with the training data.
+ :param val_data: A pytorch DataLoader with the validation data.
+ :param optimizer: Select either ADAM or ADAM_W.
+ :param scheduler: A pytorch scheduler. If None, no scheduler is used.
+ :param num_epochs: Number of epochs to repeat training.
+ :param progress: True, iff progress shall be printed.
+ """
+ train_loss = []
+ val_loss = []
+
+ for epoch in maybe_progress(range(num_epochs), progress, desc="Model fitting"):
+ batch_loss = []
+ for train_batch in training_data:
+ batch_x, batch_y = train_batch
+ pred_y = model(batch_x)
+ loss_value = loss(torch.squeeze(pred_y), torch.squeeze(batch_y))
+ batch_loss.append(loss_value.item())
+
+ logger.debug(f"Epoch: {epoch} ---> Training loss: {loss_value.item()}")
+ loss_value.backward()
+ optimizer.step()
+ optimizer.zero_grad()
+
+ if scheduler:
+ scheduler.step()
+ with torch.no_grad():
+ batch_val_loss = []
+ for val_batch in val_data:
+ batch_x, batch_y = val_batch
+ pred_y = model(batch_x)
+ batch_val_loss.append(
+ loss(torch.squeeze(pred_y), torch.squeeze(batch_y)).item()
+ )
+
+ mean_epoch_train_loss = np.mean(batch_loss)
+ mean_epoch_val_loss = np.mean(batch_val_loss)
+ train_loss.append(mean_epoch_train_loss)
+ val_loss.append(mean_epoch_val_loss)
+ logger.info(
+ f"Epoch: {epoch} ---> Training loss: {mean_epoch_train_loss}, Validation loss: {mean_epoch_val_loss}"
+ )
+ return Losses(train_loss, val_loss)
+
+
+def new_resnet_model(output_size: int) -> nn.Module:
+ model = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
+
+ for param in model.parameters():
+ param.requires_grad = False
+
+ # Fine-tune final few layers
+ model.avgpool = nn.AdaptiveAvgPool2d(1)
+ n_features = model.fc.in_features
+ model.fc = nn.Linear(n_features, output_size)
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
+ model.to(device)
+
+ return model
+
+
+class TrainingManager:
+ """A simple class to handle persistence of the model for the notebook
+ `influence_imagenet.ipynb`
+ """
+
+ def __init__(
+ self,
+ name: str,
+ model: nn.Module,
+ loss: torch.nn.modules.loss._Loss,
+ train_data: DataLoader,
+ val_data: DataLoader,
+ data_dir: Path,
+ ):
+ self.name = name
+ self.model = model
+ self.loss = loss
+ self.train_data = train_data
+ self.val_data = val_data
+ self.data_dir = data_dir
+ os.makedirs(self.data_dir, exist_ok=True)
+
+ def train(
+ self,
+ n_epochs: int,
+ lr: float = 0.001,
+ use_cache: bool = True,
+ ) -> Losses:
+ """
+ :return: Tuple of training_loss, validation_loss
+ """
+ if use_cache:
+ try:
+ losses = self.load()
+ print("Cached model found, loading...")
+ return losses
+ except:
+ print(f"No pretrained model found. Training for {n_epochs} epochs:")
+
+ optimizer = Adam(self.model.parameters(), lr=lr)
+
+ losses = fit_torch_model(
+ model=self.model,
+ training_data=self.train_data,
+ val_data=self.val_data,
+ loss=self.loss,
+ optimizer=optimizer,
+ num_epochs=n_epochs,
+ )
+ if use_cache:
+ self.save(losses)
+ self.model.eval()
+ return losses
+
+ def save(self, losses: Losses):
+ """Saves the model weights and training and validation losses.
+
+ :param training_loss: list of training losses, one per epoch
+ :param validation_loss: list of validation losses, also one per epoch
+ """
+ torch.save(self.model.state_dict(), self.data_dir / f"{self.name}_weights.pth")
+ with open(self.data_dir / f"{self.name}_train_val_loss.pkl", "wb") as file:
+ pkl.dump(losses, file)
+
+ def load(self) -> Losses:
+ """Loads model weights and training and validation losses.
+ :return: two arrays, one with training and one with validation losses.
+ """
+ self.model.load_state_dict(
+ torch.load(self.data_dir / f"{self.name}_weights.pth")
+ )
+ self.model.eval()
+ with open(self.data_dir / f"{self.name}_train_val_loss.pkl", "rb") as file:
+ return pkl.load(file)
+
+
+def process_imgnet_io(
+ df: pd.DataFrame, labels: dict
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ x = df["normalized_images"]
+ y = df["labels"]
+ ds_label_to_model_label = {
+ ds_label: idx for idx, ds_label in enumerate(labels.values())
+ }
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
+ x_nn = torch.stack(x.tolist()).to(device)
+ y_nn = torch.tensor([ds_label_to_model_label[yi] for yi in y], device=device)
+ return x_nn, y_nn
diff --git a/notebooks/support/types.py b/notebooks/support/types.py
new file mode 100644
index 000000000..5f3988745
--- /dev/null
+++ b/notebooks/support/types.py
@@ -0,0 +1,9 @@
+from typing import NamedTuple
+
+import numpy as np
+from numpy.typing import NDArray
+
+
+class Losses(NamedTuple):
+ training: NDArray[np.float_]
+ validation: NDArray[np.float_]
diff --git a/pyproject.toml b/pyproject.toml
index 2d453cf3e..206829f39 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -24,6 +24,7 @@ log_level = "INFO"
markers = [
"torch: Mark a test function that uses PyTorch"
]
+filterwarnings = "ignore::DeprecationWarning:pkg_resources.*:"
[tool.coverage.run]
branch = true
diff --git a/requirements-dev.txt b/requirements-dev.txt
index 68667f451..34cdda5a7 100644
--- a/requirements-dev.txt
+++ b/requirements-dev.txt
@@ -1,18 +1,24 @@
+tox<4.0.0
+tox-wheel
+pre-commit==3.1.1
black[jupyter] == 23.1.0
isort == 5.12.0
-jupyter
+pylint==2.12.0
+pylint-json2html
+anybadge
mypy == 0.982
+types-tqdm
+pandas-stubs
+bump2version
+jupyter
nbconvert>=7.2.9
nbstripout == 0.6.1
-bump2version
-pre-commit==3.1.1
pytest==7.2.2
pytest-cov
-pytest-docker==0.12.0
+pytest-docker==2.0.0
pytest-mock
pytest-timeout
-ray[default] >= 0.8
-tox<4.0.0
-tox-wheel
-types-tqdm
+pytest-lazy-fixture
+wheel
twine==4.0.2
+bump2version
diff --git a/requirements-docs.txt b/requirements-docs.txt
new file mode 100644
index 000000000..5cb1fba3e
--- /dev/null
+++ b/requirements-docs.txt
@@ -0,0 +1,19 @@
+mike
+markdown-captions
+mkdocs==1.5.2
+mkdocstrings[python]>=0.18
+mkdocs-alias-plugin>=0.6.0
+mkdocs-autorefs
+mkdocs-bibtex
+mkdocs-gen-files
+mkdocs-git-revision-date-localized-plugin
+mkdocs-glightbox
+mknotebooks>=0.8.0
+pygments
+mkdocs-literate-nav
+mkdocs-material
+mkdocs-section-index
+mkdocs-macros-plugin
+neoteroi-mkdocs # Needed for card grid on home page
+pypandoc
+GitPython
diff --git a/requirements-notebooks.txt b/requirements-notebooks.txt
index cd8463e63..29d63506f 100644
--- a/requirements-notebooks.txt
+++ b/requirements-notebooks.txt
@@ -1,4 +1,4 @@
-torch==1.13.1
-torchvision==0.14.1
+torch==2.0.1
+torchvision==0.15.2
datasets==2.6.1
pillow==9.3.0
diff --git a/requirements.txt b/requirements.txt
index e6c31a00b..471ba7475 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -4,7 +4,6 @@ pandas>=1.3
scikit-learn
scipy>=1.7.0
cvxpy>=1.3.0
-ray>=0.8
joblib
pymemcache
cloudpickle
diff --git a/setup.py b/setup.py
index 002249cea..ac71c80f4 100644
--- a/setup.py
+++ b/setup.py
@@ -12,7 +12,7 @@
package_data={"pydvl": ["py.typed"]},
packages=find_packages(where="src"),
include_package_data=True,
- version="0.6.1",
+ version="0.7.0",
description="The Python Data Valuation Library",
install_requires=[
line
@@ -21,7 +21,11 @@
],
setup_requires=["wheel"],
tests_require=["pytest"],
- extras_require={"influence": ["torch"]},
+ extras_require={
+ "cupy": ["cupy-cuda11x>=12.1.0"],
+ "influence": ["torch>=2.0.0"],
+ "ray": ["ray>=0.8"],
+ },
author="appliedAI Institute gGmbH",
long_description=long_description,
long_description_content_type="text/markdown",
@@ -40,8 +44,8 @@
"License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)",
],
project_urls={
- "Source": "https://github.com/appliedAI-Initiative/pydvl",
- "Documentation": "https://appliedai-initiative.github.io/pyDVL",
+ "Source": "https://github.com/aai-institute/pydvl",
+ "Documentation": "https://aai-institute.github.io/pyDVL",
"TransferLab": "https://transferlab.appliedai.de",
},
zip_safe=False, # Needed for mypy to find py.typed
diff --git a/src/pydvl/__init__.py b/src/pydvl/__init__.py
index 43c4ab005..3b96cbea6 100644
--- a/src/pydvl/__init__.py
+++ b/src/pydvl/__init__.py
@@ -1 +1,10 @@
-__version__ = "0.6.1"
+"""
+# The Python Data Valuation Library API
+
+This is the API documentation for the Python Data Valuation Library (PyDVL).
+Use the table of contents to access the documentation for each module.
+
+The two main modules you will want to look at are [value][pydvl.value] and
+[influence][pydvl.influence].
+"""
+__version__ = "0.7.0"
diff --git a/src/pydvl/influence/__init__.py b/src/pydvl/influence/__init__.py
index 37f1ff9cf..b7604fd74 100644
--- a/src/pydvl/influence/__init__.py
+++ b/src/pydvl/influence/__init__.py
@@ -1,10 +1,9 @@
"""
This package contains algorithms for the computation of the influence function.
-.. warning::
- Much of the code in this package is experimental or untested and is subject
- to modification. In particular, the package structure and basic API will
- probably change.
+> **Warning:** Much of the code in this package is experimental or untested and is subject to modification.
+In particular, the package structure and basic API will probably change.
"""
-from .general import *
+from .general import InfluenceType, compute_influence_factors, compute_influences
+from .inversion import InversionMethod
diff --git a/src/pydvl/influence/conjugate_gradient.py b/src/pydvl/influence/conjugate_gradient.py
deleted file mode 100644
index b4839dc6c..000000000
--- a/src/pydvl/influence/conjugate_gradient.py
+++ /dev/null
@@ -1,228 +0,0 @@
-"""
-Contains
-
-- batched conjugate gradient.
-- error bound for conjugate gradient.
-"""
-import logging
-import warnings
-from typing import TYPE_CHECKING, Callable, Optional, Tuple, Union
-
-import numpy as np
-from scipy.sparse.linalg import cg
-
-from ..utils import maybe_progress
-from .types import MatrixVectorProduct
-
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-
-__all__ = ["conjugate_gradient", "batched_preconditioned_conjugate_gradient"]
-
-logger = logging.getLogger(__name__)
-
-
-def conjugate_gradient(
- A: "NDArray[np.float_]", batch_y: "NDArray[np.float_]", progress: bool = False
-) -> "NDArray[np.float_]":
- """
- Given a matrix and a batch of vectors, it uses conjugate gradient to calculate the solution
- to Ax = y for each y in batch_y.
-
- :param A: a real, symmetric and positive-definite matrix of shape [NxN]
- :param batch_y: a matrix of shape [NxP], with P the size of the batch.
- :param progress: True, iff progress shall be printed.
-
- :return: A NDArray of shape [NxP] representing x, the solution of Ax=b.
- """
- batch_cg = []
- for y in maybe_progress(batch_y, progress, desc="Conjugate gradient"):
- y_cg, _ = cg(A, y)
- batch_cg.append(y_cg)
- return np.asarray(batch_cg)
-
-
-def batched_preconditioned_conjugate_gradient(
- A: Union["NDArray", Callable[["NDArray"], "NDArray"]],
- b: "NDArray",
- x0: Optional["NDArray"] = None,
- rtol: float = 1e-3,
- max_iterations: int = 100,
- max_step_size: Optional[float] = None,
-) -> Tuple["NDArray", int]:
- """
- Implementation of a batched conjugate gradient algorithm. It uses vector matrix products for efficient calculation.
- On top of that, it constrains the maximum step size.
-
- See [1]_ for more details on the algorithm.
-
- See also [2]_ and [3]_.
-
- .. warning::
-
- This function is experimental and unstable. Prefer using inversion_method='cg'
-
- :param A: A linear function f : R[k] -> R[k] representing a matrix vector product from dimension K to K or a matrix. \
- It has to be positive-definite v.T @ f(v) >= 0.
- :param b: A NDArray of shape [K] representing the targeted result of the matrix multiplication Ax.
- :param max_iterations: Maximum number of iterations to use in conjugate gradient. Default is 10 times K.
- :param rtol: Relative tolerance of the residual with respect to the 2-norm of b.
- :param max_step_size: Maximum step size along a gradient direction. Might be necessary for numerical stability. \
- See also max_iterations. Default is 10.0.
- :param verify_assumptions: True, iff the matrix should be checked for positive-definiteness by a stochastic rule.
-
- :return: A NDArray of shape [K] representing the solution of Ax=b.
-
- .. note::
- .. [1] `Conjugate Gradient Method - Wikipedia `_.
- .. [2] `SciPy's implementation of Conjugate Gradient `_.
- .. [3] `Prof. Mert Pilanci., "Conjugate Gradient Method", Stanford University, 2022 `_.
- """
- warnings.warn(
- "This function is experimental and unstable. Prefer using inversion_method='cg'",
- UserWarning,
- )
- # wrap A into a function.
- if not callable(A):
- new_A = np.copy(A)
- A = lambda v: v @ new_A.T # type: ignore
- M = hvp_to_inv_diag_conditioner(A, d=b.shape[1])
-
- k = A(b).shape[0]
- if A(b).size == 0:
- return b, 0
-
- if b.ndim == 1:
- b = b.reshape([1, -1])
-
- if max_iterations is None:
- max_iterations = 10 * k
-
- # start with residual
- if x0 is not None:
- x = np.copy(x0)
- elif M is not None:
- x = M(b)
- else:
- x = np.copy(b)
-
- r = b - A(x)
- u = np.copy(r)
-
- if M is not None:
- u = M(u)
-
- p = np.copy(b)
-
- if x.ndim == 1:
- x = x.reshape([1, -1])
-
- iteration = 0
- batch_dim = b.shape[0]
- converged = np.zeros(batch_dim, dtype=bool)
- atol = np.linalg.norm(b, axis=1) * rtol
-
- while iteration < max_iterations:
- # remaining fields
- iteration += 1
- not_yet_converged_indices = np.argwhere(np.logical_not(converged))[:, 0]
- mvp = A(p)[not_yet_converged_indices]
- p_dot_mvp = np.einsum("ia,ia->i", p[not_yet_converged_indices], mvp)
- r_dot_u = np.einsum(
- "ia,ia->i", r[not_yet_converged_indices], u[not_yet_converged_indices]
- )
- alpha = r_dot_u / p_dot_mvp
- if max_step_size is not None:
- alpha = np.minimum(max_step_size, alpha)
-
- # update x and r
- reshaped_alpha = alpha.reshape([-1, 1])
- x[not_yet_converged_indices] += reshaped_alpha * p[not_yet_converged_indices]
- r[not_yet_converged_indices] -= reshaped_alpha * mvp
-
- # calculate next conjugate gradient
- new_u = r
- if M is not None:
- new_u = M(new_u)
-
- new_u = new_u[not_yet_converged_indices]
- new_r_dot_u = np.einsum("ia,ia->i", r[not_yet_converged_indices], new_u)
-
- if rtol is not None:
- residual = np.linalg.norm(
- A(x)[not_yet_converged_indices] - b[not_yet_converged_indices],
- axis=1,
- )
- converged[not_yet_converged_indices] = (
- residual <= atol[not_yet_converged_indices]
- )
-
- if np.all(converged):
- break
-
- beta = new_r_dot_u / r_dot_u
- p[not_yet_converged_indices] = (
- beta.reshape([-1, 1]) * p[not_yet_converged_indices] + new_u
- )
- u[not_yet_converged_indices] = new_u
-
- if not np.all(converged):
- percentage_converged = int(converged.sum() / len(converged)) * 100
- msg = (
- f"Converged vectors are only {percentage_converged}%. "
- "Please increase max_iterations, decrease max_step_size "
- "and make sure that A is positive definite"
- " (e.g. through regularization)."
- )
- warnings.warn(msg, RuntimeWarning)
- return x, iteration
-
-
-def conjugate_gradient_condition_number_based_error_bound(
- A: "NDArray", n: int, x0: "NDArray", xt: "NDArray"
-) -> float:
- """
- Error bound for conjugate gradient based on the condition number of the weight matrix A. Used for testing purposes.
- See also https://math.stackexchange.com/questions/382958/error-for-conjugate-gradient-method. Explicit of the weight
- matrix is required.
- :param A: Weight matrix of the matrix to be inverted.
- :param n: Maximum number for executed iterations X in conjugate gradient.
- :param x0: Initialization solution x0 of conjugate gradient.
- :param xt: Final solution xt of conjugate gradient after X iterations.
- :returns: Upper bound for ||x0 - xt||_A.
- """
- eigvals = np.linalg.eigvals(A)
- eigvals = np.sort(eigvals)
- eig_val_max = np.max(eigvals)
- eig_val_min = np.min(eigvals)
- kappa = np.abs(eig_val_max / eig_val_min)
- norm_A = lambda v: np.sqrt(np.einsum("ia,ab,ib->i", v, A, v))
- error_init: float = norm_A(xt - x0)
-
- sqrt_kappa = np.sqrt(kappa)
- div = (sqrt_kappa + 1) / (sqrt_kappa - 1)
- div_n = div**n
- return (2 * error_init) / (div_n + 1 / div_n) # type: ignore
-
-
-def hvp_to_inv_diag_conditioner(
- hvp: MatrixVectorProduct, d: int
-) -> MatrixVectorProduct:
- """
- This method uses the hvp function to construct a simple pre-conditioner 1/diag(H). It does so while requiring
- only O(d) space in RAM for construction and later execution.
- :param hvp: The callable calculating the Hessian vector product Hv.
- :param d: The number of dimensions of the hvp callable.
- :returns: A MatrixVectorProduct for the conditioner.
- """
- diags = np.empty(d)
-
- for i in range(d):
- inp = np.zeros(d)
- inp[i] = 1
- diags[i] = hvp(np.reshape(inp, [1, -1]))[0, i]
-
- def _inv_diag_conditioner(v: "NDArray"):
- return v / diags
-
- return _inv_diag_conditioner
diff --git a/src/pydvl/influence/frameworks/__init__.py b/src/pydvl/influence/frameworks/__init__.py
deleted file mode 100644
index b3059de2b..000000000
--- a/src/pydvl/influence/frameworks/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-from .torch_differentiable import *
-
-__all__ = [
- "TorchTwiceDifferentiable",
-]
diff --git a/src/pydvl/influence/frameworks/torch_differentiable.py b/src/pydvl/influence/frameworks/torch_differentiable.py
deleted file mode 100644
index 8e3a370c3..000000000
--- a/src/pydvl/influence/frameworks/torch_differentiable.py
+++ /dev/null
@@ -1,177 +0,0 @@
-"""
-Contains all parts of pyTorch based machine learning model.
-"""
-from typing import TYPE_CHECKING, Callable, Optional, Tuple, Union
-
-import numpy as np
-
-from ...utils import maybe_progress
-from ..types import TwiceDifferentiable
-
-try:
- import torch
- import torch.nn as nn
- from torch import autograd
- from torch.autograd import Variable
-
- _TORCH_INSTALLED = True
-except ImportError:
- _TORCH_INSTALLED = False
-
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-
-__all__ = [
- "TorchTwiceDifferentiable",
-]
-
-
-def flatten_gradient(grad):
- """
- Simple function to flatten a pyTorch gradient for use in subsequent calculation
- """
- return torch.cat([el.reshape(-1) for el in grad])
-
-
-class TorchTwiceDifferentiable(TwiceDifferentiable):
- """
- Calculates second-derivative matrix vector products (Mvp) of a pytorch torch.nn.Module
- """
-
- def __init__(
- self,
- model: "nn.Module",
- loss: Callable[["torch.Tensor", "torch.Tensor"], "torch.Tensor"],
- ):
- """
- :param model: A torch.nn.Module representing a (differentiable) function f(x).
- :param loss: Loss function L(f(x), y) maps a prediction and a target to a single value.
- """
- if not _TORCH_INSTALLED:
- raise RuntimeWarning("This function requires PyTorch.")
-
- self.model = model
- self.loss = loss
-
- def num_params(self) -> int:
- """
- Get number of parameters of model f.
- :returns: Number of parameters as integer.
- """
- model_parameters = filter(lambda p: p.requires_grad, self.model.parameters())
- return sum([np.prod(p.size()) for p in model_parameters])
-
- def split_grad(
- self,
- x: Union["NDArray", "torch.Tensor"],
- y: Union["NDArray", "torch.Tensor"],
- progress: bool = False,
- ) -> "NDArray":
- """
- Calculates gradient of model parameters wrt each x[i] and y[i] and then
- returns a array of size [N, P] with N number of points (length of x and y) and P
- number of parameters of the model.
- :param x: A np.ndarray [NxD] representing the features x_i.
- :param y: A np.ndarray [NxK] representing the predicted target values y_i.
- :param progress: True, iff progress shall be printed.
- :returns: A np.ndarray [NxP] representing the gradients with respect to all parameters of the model.
- """
- x = torch.as_tensor(x).unsqueeze(1)
- y = torch.as_tensor(y)
-
- params = [
- param for param in self.model.parameters() if param.requires_grad == True
- ]
-
- grads = [
- flatten_gradient(
- autograd.grad(
- self.loss(
- torch.squeeze(self.model(x[i])),
- torch.squeeze(y[i]),
- ),
- params,
- )
- )
- .detach()
- .numpy()
- for i in maybe_progress(
- range(len(x)),
- progress,
- desc="Split Gradient",
- )
- ]
- return np.stack(grads, axis=0)
-
- def grad(
- self,
- x: Union["NDArray", "torch.Tensor"],
- y: Union["NDArray", "torch.Tensor"],
- ) -> Tuple["NDArray", "torch.Tensor"]:
- """
- Calculates gradient of model parameters wrt x and y.
- :param x: A np.ndarray [NxD] representing the features x_i.
- :param y: A np.ndarray [NxK] representing the predicted target values y_i.
- :param progress: True, iff progress shall be printed.
- :returns: A tuple where: \
- - first element is a np.ndarray [P] with the gradients of the model. \
- - second element is the input to the model as a grad parameters. \
- This can be used for further differentiation.
- """
- x = torch.as_tensor(x).requires_grad_(True)
- y = torch.as_tensor(y)
-
- params = [
- param for param in self.model.parameters() if param.requires_grad == True
- ]
-
- loss_value = self.loss(torch.squeeze(self.model(x)), torch.squeeze(y))
- grad_f = torch.autograd.grad(loss_value, params, create_graph=True)
- return flatten_gradient(grad_f), x
-
- def mvp(
- self,
- grad_xy: Union["NDArray", "torch.Tensor"],
- v: Union["NDArray", "torch.Tensor"],
- progress: bool = False,
- backprop_on: Optional["torch.Tensor"] = None,
- ) -> "NDArray":
- """
- Calculates second order derivative of the model along directions v.
- This second order derivative can be on the model parameters or on another input parameter,
- selected via the backprop_on argument.
-
- :param grad_xy: an array [P] holding the gradients of the model parameters wrt input x and labels y, \
- where P is the number of parameters of the model. It is typically obtained through self.grad.
- :param v: A np.ndarray [DxP] or a one dimensional np.array [D] which multiplies the Hessian, \
- where D is the number of directions.
- :param progress: True, iff progress shall be printed.
- :param backprop_on: tensor used in the second backpropagation (the first one is along x and y as defined \
- via grad_xy). If None, the model parameters are used.
- :returns: A np.ndarray representing the implicit matrix vector product of the model along the given directions.\
- Output shape is [DxP] if backprop_on is None, otherwise [DxM], with M the number of elements of backprop_on.
- """
- v = torch.as_tensor(v)
- if v.ndim == 1:
- v = v.unsqueeze(0)
-
- z = (grad_xy * Variable(v)).sum(dim=1)
- params = [
- param for param in self.model.parameters() if param.requires_grad == True
- ]
- all_flattened_grads = [
- flatten_gradient(
- autograd.grad(
- z[i],
- params if backprop_on is None else backprop_on,
- retain_graph=True,
- )
- )
- for i in maybe_progress(
- range(len(z)),
- progress,
- desc="MVP",
- )
- ]
- hvp = torch.stack([grad.contiguous().view(-1) for grad in all_flattened_grads])
- return hvp.detach().numpy() # type: ignore
diff --git a/src/pydvl/influence/general.py b/src/pydvl/influence/general.py
index c7c7786de..a200b7f4e 100644
--- a/src/pydvl/influence/general.py
+++ b/src/pydvl/influence/general.py
@@ -1,227 +1,324 @@
"""
-Contains parallelized influence calculation functions for general models.
+This module contains influence calculation functions for general
+models, as introduced in (Koh and Liang, 2017)[^1].
+
+## References
+
+[^1]: Koh, P.W., Liang, P., 2017.
+ [Understanding Black-box Predictions via Influence Functions](https://proceedings.mlr.press/v70/koh17a.html).
+ In: Proceedings of the 34th International Conference on Machine Learning, pp. 1885–1894. PMLR.
"""
+import logging
+from copy import deepcopy
from enum import Enum
-from typing import TYPE_CHECKING, Callable, Dict, Optional
-
-import numpy as np
-from scipy.sparse.linalg import LinearOperator
+from typing import Any, Callable, Dict, Generator, Optional, Type
from ..utils import maybe_progress
-from .conjugate_gradient import (
- batched_preconditioned_conjugate_gradient,
- conjugate_gradient,
+from .inversion import InversionMethod, solve_hvp
+from .twice_differentiable import (
+ DataLoaderType,
+ InverseHvpResult,
+ TensorType,
+ TensorUtilities,
+ TwiceDifferentiable,
)
-from .frameworks import TorchTwiceDifferentiable
-from .types import MatrixVectorProductInversionAlgorithm, TwiceDifferentiable
-
-try:
- import torch
- import torch.nn as nn
- _TORCH_INSTALLED = True
-except ImportError:
- _TORCH_INSTALLED = False
+__all__ = ["compute_influences", "InfluenceType", "compute_influence_factors"]
-if TYPE_CHECKING:
- from numpy.typing import NDArray
+logger = logging.getLogger(__name__)
-__all__ = ["compute_influences", "InfluenceType", "InversionMethod"]
+class InfluenceType(str, Enum):
+ r"""
+ Enum representation for the types of influence.
+ Attributes:
+ Up: Up-weighting a training point, see section 2.1 of
+ (Koh and Liang, 2017)1
+ Perturbation: Perturb a training point, see section 2.2 of
+ (Koh and Liang, 2017)1
-class InfluenceType(str, Enum):
- """
- Different influence types.
"""
Up = "up"
Perturbation = "perturbation"
-class InversionMethod(str, Enum):
- """
- Different inversion methods types.
- """
+def compute_influence_factors(
+ model: TwiceDifferentiable,
+ training_data: DataLoaderType,
+ test_data: DataLoaderType,
+ inversion_method: InversionMethod,
+ *,
+ hessian_perturbation: float = 0.0,
+ progress: bool = False,
+ **kwargs: Any,
+) -> InverseHvpResult:
+ r"""
+ Calculates influence factors of a model for training and test data.
- Direct = "direct"
- Cg = "cg"
- BatchedCg = "batched_cg"
+ Given a test point \(z_{test} = (x_{test}, y_{test})\), a loss \(L(z_{test}, \theta)\)
+ (\(\theta\) being the parameters of the model) and the Hessian of the model \(H_{\theta}\),
+ influence factors are defined as:
+ \[
+ s_{test} = H_{\theta}^{-1} \operatorname{grad}_{\theta} L(z_{test}, \theta).
+ \]
+
+ They are used for efficient influence calculation. This method first (implicitly) calculates
+ the Hessian and then (explicitly) finds the influence factors for the model using the given
+ inversion method. The parameter `hessian_perturbation` is used to regularize the inversion of
+ the Hessian. For more info, refer to (Koh and Liang, 2017)1 , paragraph 3.
+
+ Args:
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data: DataLoader containing the training data.
+ test_data: DataLoader containing the test data.
+ inversion_method: Name of method for computing inverse hessian vector products.
+ hessian_perturbation: Regularization of the hessian.
+ progress: If True, display progress bars.
+
+ Returns:
+ array: An array of size (N, D) containing the influence factors for each dimension (D) and test sample (N).
-def calculate_influence_factors(
- model: TwiceDifferentiable,
- x: "NDArray",
- y: "NDArray",
- x_test: "NDArray",
- y_test: "NDArray",
- inversion_func: MatrixVectorProductInversionAlgorithm,
- lam: float = 0,
- progress: bool = False,
-) -> "NDArray":
- """
- Calculates the influence factors. For more info, see https://arxiv.org/pdf/1703.04730.pdf, paragraph 3.
-
- :param model: A model which has to implement the TwiceDifferentiable interface.
- :param x_train: A np.ndarray of shape [MxK] containing the features of the input data points.
- :param y_train: A np.ndarray of shape [MxL] containing the targets of the input data points.
- :param x_test: A np.ndarray of shape [NxK] containing the features of the test set of data points.
- :param y_test: A np.ndarray of shape [NxL] containing the targets of the test set of data points.
- :param inversion_func: function to use to invert the product of hvp (hessian vector product) and the gradient
- of the loss (s_test in the paper).
- :param lam: regularization of the hessian
- :param progress: If True, display progress bars.
- :returns: A np.ndarray of size (N, D) containing the influence factors for each dimension (D) and test sample (N).
"""
- if not _TORCH_INSTALLED:
- raise RuntimeWarning("This function requires PyTorch.")
- grad_xy, _ = model.grad(x, y)
- hvp = lambda v: model.mvp(grad_xy, v) + lam * v
- test_grads = model.split_grad(x_test, y_test, progress)
- return inversion_func(hvp, test_grads)
+
+ tensor_util: Type[TensorUtilities] = TensorUtilities.from_twice_differentiable(
+ model
+ )
+
+ stack = tensor_util.stack
+ unsqueeze = tensor_util.unsqueeze
+ cat_gen = tensor_util.cat_gen
+ cat = tensor_util.cat
+
+ def test_grads() -> Generator[TensorType, None, None]:
+ for x_test, y_test in maybe_progress(
+ test_data, progress, desc="Batch Test Gradients"
+ ):
+ yield stack(
+ [
+ model.grad(inpt, target)
+ for inpt, target in zip(unsqueeze(x_test, 1), y_test)
+ ]
+ ) # type:ignore
+
+ try:
+ # if provided input_data implements __len__, pre-allocate the result tensor to reduce memory consumption
+ resulting_shape = (len(test_data), model.num_params) # type:ignore
+ rhs = cat_gen(
+ test_grads(), resulting_shape, model # type:ignore
+ ) # type:ignore
+ except Exception as e:
+ logger.warning(
+ f"Failed to pre-allocate result tensor: {e}\n"
+ f"Evaluate all resulting tensor and concatenate"
+ )
+ rhs = cat(list(test_grads()))
+
+ return solve_hvp(
+ inversion_method,
+ model,
+ training_data,
+ rhs,
+ hessian_perturbation=hessian_perturbation,
+ **kwargs,
+ )
-def _calculate_influences_up(
+def compute_influences_up(
model: TwiceDifferentiable,
- x: "NDArray",
- y: "NDArray",
- influence_factors: "NDArray",
+ input_data: DataLoaderType,
+ influence_factors: TensorType,
+ *,
progress: bool = False,
-) -> "NDArray":
- """
- Calculates the influence from the influence factors and the scores of the training points.
- Uses the upweighting method, as described in section 2.1 of https://arxiv.org/pdf/1703.04730.pdf
-
- :param model: A model which has to implement the TwiceDifferentiable interface.
- :param x_train: A np.ndarray of shape [MxK] containing the features of the input data points.
- :param y_train: A np.ndarray of shape [MxL] containing the targets of the input data points.
- :param influence_factors: np.ndarray containing influence factors
- :param progress: If True, display progress bars.
- :returns: A np.ndarray of size [NxM], where N is number of test points and M number of train points.
+) -> TensorType:
+ r"""
+ Given the model, the training points, and the influence factors, this function calculates the
+ influences using the up-weighting method.
+
+ The procedure involves two main steps:
+ 1. Calculating the gradients of the model with respect to each training sample
+ (\(\operatorname{grad}_{\theta} L\), where \(L\) is the loss of a single point and \(\theta\) are the
+ parameters of the model).
+ 2. Multiplying each gradient with the influence factors.
+
+ For a detailed description of the methodology, see section 2.1 of (Koh and Liang, 2017)1 .
+
+ Args:
+ model: A model that implements the TwiceDifferentiable interface.
+ input_data: DataLoader containing the samples for which the influence will be calculated.
+ influence_factors: Array containing pre-computed influence factors.
+ progress: If set to True, progress bars will be displayed during computation.
+
+ Returns:
+ An array of shape [NxM], where N is the number of influence factors, and M is the number of input samples.
"""
- train_grads = model.split_grad(x, y, progress)
- return np.einsum("ta,va->tv", influence_factors, train_grads) # type: ignore
+ tensor_util: Type[TensorUtilities] = TensorUtilities.from_twice_differentiable(
+ model
+ )
+
+ stack = tensor_util.stack
+ unsqueeze = tensor_util.unsqueeze
+ cat_gen = tensor_util.cat_gen
+ cat = tensor_util.cat
+ einsum = tensor_util.einsum
+
+ def train_grads() -> Generator[TensorType, None, None]:
+ for x, y in maybe_progress(
+ input_data, progress, desc="Batch Split Input Gradients"
+ ):
+ yield stack(
+ [model.grad(inpt, target) for inpt, target in zip(unsqueeze(x, 1), y)]
+ ) # type:ignore
+
+ try:
+ # if provided input_data implements __len__, pre-allocate the result tensor to reduce memory consumption
+ resulting_shape = (len(input_data), model.num_params) # type:ignore
+ train_grad_tensor = cat_gen(
+ train_grads(), resulting_shape, model # type:ignore
+ ) # type:ignore
+ except Exception as e:
+ logger.warning(
+ f"Failed to pre-allocate result tensor: {e}\n"
+ f"Evaluate all resulting tensor and concatenate"
+ )
+ train_grad_tensor = cat([x for x in train_grads()]) # type:ignore
+
+ return einsum("ta,va->tv", influence_factors, train_grad_tensor) # type:ignore
-def _calculate_influences_pert(
+
+def compute_influences_pert(
model: TwiceDifferentiable,
- x: "NDArray",
- y: "NDArray",
- influence_factors: "NDArray",
+ input_data: DataLoaderType,
+ influence_factors: TensorType,
+ *,
progress: bool = False,
-) -> "NDArray":
- """
- Calculates the influence from the influence factors and the scores of the training points.
- Uses the perturbation method, as described in section 2.2 of https://arxiv.org/pdf/1703.04730.pdf
-
- :param model: A model which has to implement the TwiceDifferentiable interface.
- :param x_train: A np.ndarray of shape [MxK] containing the features of the input data points.
- :param y_train: A np.ndarray of shape [MxL] containing the targets of the input data points.
- :param influence_factors: np.ndarray containing influence factors
- :param progress: If True, display progress bars.
- :returns: A np.ndarray of size [NxMxP], where N is number of test points, M number of train points,
- and P the number of features.
+) -> TensorType:
+ r"""
+ Calculates the influence values based on the influence factors and training samples using the perturbation method.
+
+ The process involves two main steps:
+ 1. Calculating the gradient of the model with respect to each training sample
+ (\(\operatorname{grad}_{\theta} L\), where \(L\) is the loss of the model for a single data point and \(\theta\)
+ are the parameters of the model).
+ 2. Using the method [TwiceDifferentiable.mvp][pydvl.influence.twice_differentiable.TwiceDifferentiable.mvp]
+ to efficiently compute the product of the
+ influence factors and \(\operatorname{grad}_x \operatorname{grad}_{\theta} L\).
+
+ For a detailed methodology, see section 2.2 of (Koh and Liang, 2017)1 .
+
+ Args:
+ model: A model that implements the TwiceDifferentiable interface.
+ input_data: DataLoader containing the samples for which the influence will be calculated.
+ influence_factors: Array containing pre-computed influence factors.
+ progress: If set to True, progress bars will be displayed during computation.
+
+ Returns:
+ A 3D array with shape [NxMxP], where N is the number of influence factors,
+ M is the number of input samples, and P is the number of features.
"""
+
+ tensor_util: Type[TensorUtilities] = TensorUtilities.from_twice_differentiable(
+ model
+ )
+ stack = tensor_util.stack
+ tu_slice = tensor_util.slice
+ reshape = tensor_util.reshape
+ get_element = tensor_util.get_element
+ shape = tensor_util.shape
+
all_pert_influences = []
- for i in maybe_progress(
- len(x),
+ for x, y in maybe_progress(
+ input_data,
progress,
- desc="Influence Perturbation",
+ desc="Batch Influence Perturbation",
):
- grad_xy, tensor_x = model.grad(x[i : i + 1], y[i])
- perturbation_influences = model.mvp(
- grad_xy,
- influence_factors,
- backprop_on=tensor_x,
- )
- all_pert_influences.append(perturbation_influences.reshape((-1, *x[i].shape)))
+ for i in range(len(x)):
+ tensor_x = tu_slice(x, i, i + 1)
+ grad_xy = model.grad(tensor_x, get_element(y, i), create_graph=True)
+ perturbation_influences = model.mvp(
+ grad_xy,
+ influence_factors,
+ backprop_on=tensor_x,
+ )
+ all_pert_influences.append(
+ reshape(perturbation_influences, (-1, *shape(get_element(x, i))))
+ )
- return np.stack(all_pert_influences, axis=1)
+ return stack(all_pert_influences, axis=1) # type:ignore
-influence_type_function_dict = {
- "up": _calculate_influences_up,
- "perturbation": _calculate_influences_pert,
+influence_type_registry: Dict[InfluenceType, Callable[..., TensorType]] = {
+ InfluenceType.Up: compute_influences_up,
+ InfluenceType.Perturbation: compute_influences_pert,
}
def compute_influences(
- model: "nn.Module",
- loss: Callable[["torch.Tensor", "torch.Tensor"], "torch.Tensor"],
- x: "NDArray",
- y: "NDArray",
- x_test: "NDArray",
- y_test: "NDArray",
- progress: bool = False,
+ differentiable_model: TwiceDifferentiable,
+ training_data: DataLoaderType,
+ *,
+ test_data: Optional[DataLoaderType] = None,
+ input_data: Optional[DataLoaderType] = None,
inversion_method: InversionMethod = InversionMethod.Direct,
influence_type: InfluenceType = InfluenceType.Up,
- inversion_method_kwargs: Optional[Dict] = None,
- hessian_regularization: float = 0,
-) -> "NDArray":
- """
- Calculates the influence of the training points j on the test points i. First it calculates
- the influence factors for all test points with respect to the training points, and then uses them to
- get the influences over the complete training set. Points with low influence values are (on average)
- less important for model training than points with high influences.
-
- :param model: A supervised model from a supported framework. Currently, only pytorch nn.Module is supported.
- :param loss: loss of the model, a callable that, given prediction of the model and real labels, returns a
- tensor with the loss value.
- :param x: model input for training
- :param y: input labels
- :param x_test: model input for testing
- :param y_test: test labels
- :param progress: whether to display progress bars.
- :param inversion_method: Set the inversion method to a specific one, can be 'direct' for direct inversion
- (and explicit construction of the Hessian) or 'cg' for conjugate gradient.
- :param influence_type: Which algorithm to use to calculate influences.
- Currently supported options: 'up' or 'perturbation'. For details refer to https://arxiv.org/pdf/1703.04730.pdf
- :param inversion_method_kwargs: kwargs for the inversion method selected.
- If using the direct method no kwargs are needed. If inversion_method='cg', the following kwargs can be passed:
- - rtol: relative tolerance to be achieved before terminating computation
- - max_iterations: maximum conjugate gradient iterations
- - max_step_size: step size of conjugate gradient
- - verify_assumptions: True to run tests on convexity of the model.
- :param hessian_regularization: lambda to use in Hessian regularization, i.e. H_reg = H + lambda * 1, with 1 the identity matrix \
- and H the (simple and regularized) Hessian. Typically used with more complex models to make sure the Hessian \
- is positive definite.
- :returns: A np.ndarray specifying the influences. Shape is [NxM] if influence_type is'up', where N is number of test points and
- M number of train points. If instead influence_type is 'perturbation', output shape is [NxMxP], with P the number of input
- features.
+ hessian_regularization: float = 0.0,
+ progress: bool = False,
+ **kwargs: Any,
+) -> TensorType: # type: ignore # ToDO fix typing
+ r"""
+ Calculates the influence of each input data point on the specified test points.
+
+ This method operates in two primary stages:
+ 1. Computes the influence factors for all test points concerning the model and its training data.
+ 2. Uses these factors to derive the influences over the complete set of input data.
+
+ The influence calculation relies on the twice-differentiable nature of the provided model.
+
+ Args:
+ differentiable_model: A model bundled with its corresponding loss in the `TwiceDifferentiable` wrapper.
+ training_data: DataLoader instance supplying the training data. This data is pivotal in computing the
+ Hessian matrix for the model's loss.
+ test_data: DataLoader instance with the test samples. Defaults to `training_data` if None.
+ input_data: DataLoader instance holding samples whose influences need to be computed. Defaults to
+ `training_data` if None.
+ inversion_method: An enumeration value determining the approach for inverting matrices
+ or computing inverse operations, see [.inversion.InversionMethod]
+ progress: A boolean indicating whether progress bars should be displayed during computation.
+ influence_type: Determines the methodology for computing influences.
+ Valid choices include 'up' (for up-weighting) and 'perturbation'.
+ For an in-depth understanding, see (Koh and Liang, 2017)1 .
+ hessian_regularization: A lambda value used in Hessian regularization. The regularized Hessian, \( H_{reg} \),
+ is computed as \( H + \lambda \times I \), where \( I \) is the identity matrix and \( H \)
+ is the simple, unmodified Hessian. This regularization is typically utilized for more
+ sophisticated models to ensure that the Hessian remains positive definite.
+
+ Returns:
+ The shape of this array varies based on the `influence_type`. If 'up', the shape is [NxM], where
+ N denotes the number of test points and M denotes the number of training points. Conversely, if the
+ influence_type is 'perturbation', the shape is [NxMxP], with P representing the number of input features.
"""
- if not _TORCH_INSTALLED:
- raise RuntimeWarning("This function requires PyTorch.")
-
- if inversion_method_kwargs is None:
- inversion_method_kwargs = dict()
- differentiable_model = TorchTwiceDifferentiable(model, loss)
- n_params = differentiable_model.num_params()
- dict_fact_algos: Dict[Optional[str], MatrixVectorProductInversionAlgorithm] = {
- "direct": lambda hvp, x: np.linalg.solve(hvp(np.eye(n_params)), x.T).T, # type: ignore
- "cg": lambda hvp, x: conjugate_gradient(LinearOperator((n_params, n_params), matvec=hvp), x, progress), # type: ignore
- "batched_cg": lambda hvp, x: batched_preconditioned_conjugate_gradient( # type: ignore
- hvp, x, **inversion_method_kwargs
- )[
- 0
- ],
- }
-
- influence_factors = calculate_influence_factors(
+
+ if input_data is None:
+ input_data = deepcopy(training_data)
+ if test_data is None:
+ test_data = deepcopy(training_data)
+
+ influence_factors, _ = compute_influence_factors(
differentiable_model,
- x,
- y,
- x_test,
- y_test,
- dict_fact_algos[inversion_method],
- lam=hessian_regularization,
+ training_data,
+ test_data,
+ inversion_method,
+ hessian_perturbation=hessian_regularization,
progress=progress,
+ **kwargs,
)
- influence_function = influence_type_function_dict[influence_type]
- return influence_function(
+ return influence_type_registry[influence_type](
differentiable_model,
- x,
- y,
+ input_data,
influence_factors,
- progress,
+ progress=progress,
)
diff --git a/src/pydvl/influence/inversion.py b/src/pydvl/influence/inversion.py
new file mode 100644
index 000000000..1eb26e957
--- /dev/null
+++ b/src/pydvl/influence/inversion.py
@@ -0,0 +1,205 @@
+"""Contains methods to invert the hessian vector product.
+"""
+import functools
+import inspect
+import logging
+import warnings
+from enum import Enum
+from typing import Any, Callable, Dict, Tuple, Type
+
+__all__ = [
+ "solve_hvp",
+ "InversionMethod",
+ "InversionRegistry",
+]
+
+from .twice_differentiable import (
+ DataLoaderType,
+ InverseHvpResult,
+ TensorType,
+ TwiceDifferentiable,
+)
+
+logger = logging.getLogger(__name__)
+
+
+class InversionMethod(str, Enum):
+ """
+ Different inversion methods types.
+ """
+
+ Direct = "direct"
+ Cg = "cg"
+ Lissa = "lissa"
+ Arnoldi = "arnoldi"
+
+
+def solve_hvp(
+ inversion_method: InversionMethod,
+ model: TwiceDifferentiable,
+ training_data: DataLoaderType,
+ b: TensorType,
+ *,
+ hessian_perturbation: float = 0.0,
+ **kwargs: Any,
+) -> InverseHvpResult:
+ r"""
+ Finds \( x \) such that \( Ax = b \), where \( A \) is the hessian of the model,
+ and \( b \) a vector. Depending on the inversion method, the hessian is either
+ calculated directly and then inverted, or implicitly and then inverted through
+ matrix vector product. The method also allows to add a small regularization term
+ (hessian_perturbation) to facilitate inversion of non fully trained models.
+
+ Args:
+ inversion_method:
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data:
+ b: Array as the right hand side of the equation \( Ax = b \)
+ hessian_perturbation: regularization of the hessian.
+ kwargs: kwargs to pass to the inversion method.
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult], with
+ an array that solves the inverse problem, i.e., it returns \( x \) such that \( Ax = b \)
+ and a dictionary containing information about the inversion process.
+ """
+
+ return InversionRegistry.call(
+ inversion_method,
+ model,
+ training_data,
+ b,
+ hessian_perturbation=hessian_perturbation,
+ **kwargs,
+ )
+
+
+class InversionRegistry:
+ """
+ A registry to hold inversion methods for different models.
+ """
+
+ registry: Dict[Tuple[Type[TwiceDifferentiable], InversionMethod], Callable] = {}
+
+ @classmethod
+ def register(
+ cls,
+ model_type: Type[TwiceDifferentiable],
+ inversion_method: InversionMethod,
+ overwrite: bool = False,
+ ):
+ """
+ Register a function for a specific model type and inversion method.
+
+ The function to be registered must conform to the following signature:
+ `(model: TwiceDifferentiable, training_data: DataLoaderType, b: TensorType,
+ hessian_perturbation: float = 0.0, ...)`.
+
+ Args:
+ model_type: The type of the model the function should be registered for.
+ inversion_method: The inversion method the function should be
+ registered for.
+ overwrite: If ``True``, allows overwriting of an existing registered
+ function for the same model type and inversion method. If ``False``,
+ logs a warning when attempting to register a function for an already
+ registered model type and inversion method.
+
+ Raises:
+ TypeError: If the provided model_type or inversion_method are of the wrong type.
+ ValueError: If the function to be registered does not match the required signature.
+
+ Returns:
+ A decorator for registering a function.
+ """
+
+ if not isinstance(model_type, type):
+ raise TypeError(
+ f"'model_type' is of type {type(model_type)} but should be a Type[TwiceDifferentiable]"
+ )
+
+ if not isinstance(inversion_method, InversionMethod):
+ raise TypeError(
+ f"'inversion_method' must be an 'InversionMethod' "
+ f"but has type {type(inversion_method)} instead."
+ )
+
+ key = (model_type, inversion_method)
+
+ def decorator(func):
+ if not overwrite and key in cls.registry:
+ warnings.warn(
+ f"There is already a function registered for model type {model_type} "
+ f"and inversion method {inversion_method}. "
+ f"To overwrite the existing function {cls.registry.get(key)} with {func}, set overwrite to True."
+ )
+ sig = inspect.signature(func)
+ params = list(sig.parameters.values())
+
+ expected_args = [
+ ("model", model_type),
+ ("training_data", DataLoaderType.__bound__),
+ ("b", model_type.tensor_type()),
+ ("hessian_perturbation", float),
+ ]
+
+ for (name, typ), param in zip(expected_args, params):
+ if not (
+ isinstance(param.annotation, typ)
+ or issubclass(param.annotation, typ)
+ ):
+ raise ValueError(
+ f'Parameter "{name}" must be of type "{typ.__name__}"'
+ )
+
+ @functools.wraps(func)
+ def wrapper(*args, **kwargs):
+ return func(*args, **kwargs)
+
+ cls.registry[key] = wrapper
+ return wrapper
+
+ return decorator
+
+ @classmethod
+ def get(
+ cls, model_type: Type[TwiceDifferentiable], inversion_method: InversionMethod
+ ) -> Callable[
+ [TwiceDifferentiable, DataLoaderType, TensorType, float], InverseHvpResult
+ ]:
+ key = (model_type, inversion_method)
+ method = cls.registry.get(key, None)
+ if method is None:
+ raise ValueError(f"No function registered for {key}")
+ return method
+
+ @classmethod
+ def call(
+ cls,
+ inversion_method: InversionMethod,
+ model: TwiceDifferentiable,
+ training_data: DataLoaderType,
+ b: TensorType,
+ hessian_perturbation,
+ **kwargs,
+ ) -> InverseHvpResult:
+ r"""
+ Call a registered function with the provided parameters.
+
+ Args:
+ inversion_method: The inversion method to use.
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data: The training data to use.
+ b: Array as the right hand side of the equation \(Ax = b\).
+ hessian_perturbation: Regularization of the hessian.
+ kwargs: Additional keyword arguments to pass to the inversion method.
+
+ Returns:
+ An instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+ that contains an array, which solves the inverse problem,
+ i.e. it returns \(x\) such that \(Ax = b\), and a dictionary containing information
+ about the inversion process.
+ """
+
+ return cls.get(type(model), inversion_method)(
+ model, training_data, b, hessian_perturbation, **kwargs
+ )
diff --git a/src/pydvl/influence/linear.py b/src/pydvl/influence/linear.py
deleted file mode 100644
index 5725c17f9..000000000
--- a/src/pydvl/influence/linear.py
+++ /dev/null
@@ -1,167 +0,0 @@
-"""
-This module contains all functions for the closed form computation of influences
-for standard linear regression.
-"""
-from typing import TYPE_CHECKING, Tuple
-
-import numpy as np
-from sklearn.linear_model import LinearRegression
-
-from ..utils.numeric import (
- linear_regression_analytical_derivative_d2_theta,
- linear_regression_analytical_derivative_d_theta,
- linear_regression_analytical_derivative_d_x_d_theta,
-)
-from .general import InfluenceType
-
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-
-__all__ = ["compute_linear_influences"]
-
-
-def compute_linear_influences(
- x: "NDArray",
- y: "NDArray",
- x_test: "NDArray",
- y_test: "NDArray",
- influence_type: InfluenceType = InfluenceType.Up,
-):
- """Calculate the influence each training sample on the loss computed over a
- validation set for an ordinary least squares model ($y = A x + b$ with
- quadratic loss).
-
- :param x: An array of shape (M, K) containing the features of training data.
- :param y: An array of shape (M, L) containing the targets of training data.
- :param x_test: An array of shape (N, K) containing the features of the
- test set.
- :param y_test: An array of shape (N, L) containing the targets of the test
- set.
- :param influence_type: Which algorithm to use to calculate influences.
- Currently supported options: 'up' or 'perturbation'.
- :returns: An array of shape (B, C) with the influences of the training
- points on the test data.
- """
-
- lr = LinearRegression()
- lr.fit(x, y)
- A = lr.coef_
- b = lr.intercept_
-
- if influence_type not in list(InfluenceType):
- raise NotImplementedError(
- f"Only up-weighting and perturbation influences are supported, but got {influence_type=}"
- )
-
- if influence_type == InfluenceType.Up:
- return influences_up_linear_regression_analytical(
- (A, b),
- x,
- y,
- x_test,
- y_test,
- )
- elif influence_type == InfluenceType.Perturbation:
- return influences_perturbation_linear_regression_analytical(
- (A, b),
- x,
- y,
- x_test,
- y_test,
- )
-
-
-def influences_up_linear_regression_analytical(
- linear_model: Tuple["NDArray", "NDArray"],
- x: "NDArray",
- y: "NDArray",
- x_test: "NDArray",
- y_test: "NDArray",
-):
- """Calculate the influence each training sample on the loss computed over a
- validation set for an ordinary least squares model (Ax+b=y with quadratic
- loss).
-
- This method uses the
-
- :param linear_model: A tuple of arrays of shapes (N, M) and N representing A
- and b respectively.
- :param x: An array of shape (M, K) containing the features of the
- training set.
- :param y: An array of shape (M, L) containing the targets of the
- training set.
- :param x_test: An array of shape (N, K) containing the features of the test
- set.
- :param y_test: An array of shape (N, L) containing the targets of the test
- set.
- :returns: An array of shape (B, C) with the influences of the training points
- on the test points.
- """
-
- test_grads_analytical = linear_regression_analytical_derivative_d_theta(
- linear_model,
- x_test,
- y_test,
- )
- train_grads_analytical = linear_regression_analytical_derivative_d_theta(
- linear_model,
- x,
- y,
- )
- hessian_analytical = linear_regression_analytical_derivative_d2_theta(
- linear_model,
- x,
- y,
- )
- s_test_analytical = np.linalg.solve(hessian_analytical, test_grads_analytical.T).T
- result: "NDArray" = np.einsum(
- "ia,ja->ij", s_test_analytical, train_grads_analytical
- )
- return result
-
-
-def influences_perturbation_linear_regression_analytical(
- linear_model: Tuple["NDArray", "NDArray"],
- x: "NDArray",
- y: "NDArray",
- x_test: "NDArray",
- y_test: "NDArray",
-):
- """Calculate the influences of each training sample onto the
- validation set for a linear model Ax+b=y.
-
- :param linear_model: A tuple of np.ndarray' of shape (N, M) and (N)
- representing A and b respectively.
- :param x: An array of shape (M, K) containing the features of the
- input data.
- :param y: An array of shape (M, L) containing the targets of the input
- data.
- :param x_test: An array of shape (N, K) containing the features of the test
- set.
- :param y_test: An array of shape (N, L) containing the targets of the test
- set.
- :returns: An array of shape (B, C, M) with the influences of the training
- points on the test points for each feature.
- """
-
- test_grads_analytical = linear_regression_analytical_derivative_d_theta(
- linear_model,
- x_test,
- y_test,
- )
- train_second_deriv_analytical = linear_regression_analytical_derivative_d_x_d_theta(
- linear_model,
- x,
- y,
- )
-
- hessian_analytical = linear_regression_analytical_derivative_d2_theta(
- linear_model,
- x,
- y,
- )
- s_test_analytical = np.linalg.solve(hessian_analytical, test_grads_analytical.T).T
- result: "NDArray" = np.einsum(
- "ia,jab->ijb", s_test_analytical, train_second_deriv_analytical
- )
- return result
diff --git a/src/pydvl/influence/model_wrappers/__init__.py b/src/pydvl/influence/model_wrappers/__init__.py
deleted file mode 100644
index 4397c4664..000000000
--- a/src/pydvl/influence/model_wrappers/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-from .torch_wrappers import *
-
-__all__ = [
- "TorchLinearRegression",
- "TorchBinaryLogisticRegression",
- "TorchMLP",
-]
diff --git a/src/pydvl/influence/model_wrappers/torch_wrappers.py b/src/pydvl/influence/model_wrappers/torch_wrappers.py
deleted file mode 100644
index 6aba15b16..000000000
--- a/src/pydvl/influence/model_wrappers/torch_wrappers.py
+++ /dev/null
@@ -1,280 +0,0 @@
-import logging
-from abc import ABC, abstractmethod
-from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
-
-import numpy as np
-
-from ...utils import maybe_progress
-
-try:
- import torch
- import torch.nn as nn
- from torch.nn import Softmax, Tanh
- from torch.optim import Optimizer
- from torch.optim.lr_scheduler import _LRScheduler
- from torch.utils.data import DataLoader, TensorDataset
-
- _TORCH_INSTALLED = True
-except ImportError:
- _TORCH_INSTALLED = False
-
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-
-__all__ = [
- "TorchLinearRegression",
- "TorchBinaryLogisticRegression",
- "TorchMLP",
- "TorchModel",
-]
-
-logger = logging.getLogger(__name__)
-
-
-class TorchModelBase(ABC):
- def __init__(self):
- if not _TORCH_INSTALLED:
- raise RuntimeWarning("This function requires PyTorch.")
-
- @abstractmethod
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- pass
-
- def fit(
- self,
- x_train: Union["NDArray[np.float_]", torch.tensor],
- y_train: Union["NDArray[np.float_]", torch.tensor],
- x_val: Union["NDArray[np.float_]", torch.tensor],
- y_val: Union["NDArray[np.float_]", torch.tensor],
- loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
- optimizer: Optimizer,
- scheduler: Optional[_LRScheduler] = None,
- num_epochs: int = 1,
- batch_size: int = 64,
- progress: bool = True,
- ) -> Tuple["NDArray[np.float_]", "NDArray[np.float_]"]:
- """
- Wrapper of pytorch fit method. It fits the model to the supplied data.
- It represents a simple machine learning loop, iterating over a number of
- epochs, sampling data with a certain batch size, calculating gradients and updating the parameters through a
- loss function.
- :param x: Matrix of shape [NxD] representing the features x_i.
- :param y: Matrix of shape [NxK] representing the prediction targets y_i.
- :param optimizer: Select either ADAM or ADAM_W.
- :param scheduler: A pytorch scheduler. If None, no scheduler is used.
- :param num_epochs: Number of epochs to repeat training.
- :param batch_size: Batch size to use in training.
- :param progress: True, iff progress shall be printed.
- :param tensor_type: accuracy of tensors. Typically 'float' or 'long'
- """
- x_train = torch.as_tensor(x_train).clone()
- y_train = torch.as_tensor(y_train).clone()
- x_val = torch.as_tensor(x_val).clone()
- y_val = torch.as_tensor(y_val).clone()
-
- dataset = TensorDataset(x_train, y_train)
- dataloader = DataLoader(dataset, batch_size=batch_size)
- train_loss = []
- val_loss = []
-
- for epoch in maybe_progress(range(num_epochs), progress, desc="Model fitting"):
- batch_loss = []
- for train_batch in dataloader:
- batch_x, batch_y = train_batch
- pred_y = self.forward(batch_x)
- loss_value = loss(torch.squeeze(pred_y), torch.squeeze(batch_y))
- batch_loss.append(loss_value.item())
-
- logger.debug(f"Epoch: {epoch} ---> Training loss: {loss_value.item()}")
- loss_value.backward()
- optimizer.step()
- optimizer.zero_grad()
-
- if scheduler:
- scheduler.step()
- pred_val = self.forward(x_val)
- epoch_val_loss = loss(torch.squeeze(pred_val), torch.squeeze(y_val)).item()
- mean_epoch_train_loss = np.mean(batch_loss)
- val_loss.append(epoch_val_loss)
- train_loss.append(mean_epoch_train_loss)
- logger.info(
- f"Epoch: {epoch} ---> Training loss: {mean_epoch_train_loss}, Validation loss: {epoch_val_loss}"
- )
- return np.array(train_loss), np.array(val_loss)
-
- def predict(self, x: torch.Tensor) -> "NDArray[np.float_]":
- """
- Use internal model to deliver prediction in numpy.
- :param x: A np.ndarray [NxD] representing the features x_i.
- :returns: A np.ndarray [NxK] representing the predicted values.
- """
- return self.forward(x).detach().numpy() # type: ignore
-
- def score(
- self,
- x: torch.Tensor,
- y: torch.Tensor,
- score: Callable[[torch.Tensor, torch.Tensor, Any], torch.Tensor],
- ) -> float:
- """
- Use internal model to measure how good is prediction through a loss function.
- :param x: A np.ndarray [NxD] representing the features x_i.
- :param y: A np.ndarray [NxK] representing the predicted target values y_i.
- :returns: The aggregated value over all samples N.
- """
- return score(self.forward(x), y).detach().numpy() # type: ignore
-
-
-class TorchModel(TorchModelBase):
- def __init__(self, model: nn.Module):
- self.model = model
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.model(x)
-
- def __call__(self, *args, **kwargs):
- return self.model(*args, **kwargs)
-
-
-class TorchLinearRegression(nn.Module, TorchModelBase):
- """
- A simple linear regression model (with bias) f(x)=Ax+b.
- """
-
- def __init__(
- self,
- n_input: int,
- n_output: int,
- init: Tuple["NDArray[np.float_]", "NDArray[np.float_]"] = None,
- ):
- """
- :param n_input: input to the model.
- :param n_output: output of the model
- :param init A tuple with two matrices, namely A of shape [K, D] and b of shape [K]. If set to None Xavier
- uniform initialization is used.
- """
- super().__init__()
- self.n_input = n_input
- self.n_output = n_output
- if init is None:
- r = np.sqrt(6 / (n_input + n_output))
- init_A = np.random.uniform(-r, r, size=[n_output, n_input])
- init_b = np.zeros(n_output)
- init = (init_A, init_b)
-
- self.A = nn.Parameter(
- torch.tensor(init[0], dtype=torch.float64), requires_grad=True
- )
- self.b = nn.Parameter(
- torch.tensor(init[1], dtype=torch.float64), requires_grad=True
- )
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Calculate A @ x + b using RAM-optimized calculation layout.
- :param x: Tensor [NxD] representing the features x_i.
- :returns A tensor [NxK] representing the outputs y_i.
- """
- return x @ self.A.T + self.b
-
-
-class TorchBinaryLogisticRegression(nn.Module, TorchModelBase):
- """
- A simple binary logistic regression model p(y)=sigmoid(dot(a, x) + b).
- """
-
- def __init__(
- self,
- n_input: int,
- init: Tuple["NDArray[np.float_]", "NDArray[np.float_]"] = None,
- ):
- """
- :param n_input: Number of feature inputs to the BinaryLogisticRegressionModel.
- :param init A tuple representing the initialization for the weight matrix A and the bias b. If set to None
- sample the values uniformly using the Xavier rule.
- """
- super().__init__()
- self.n_input = n_input
- if init is None:
- init_A = np.random.normal(0, 0.02, size=(1, n_input))
- init_b = np.random.normal(0, 0.02, size=(1))
- init = (init_A, init_b)
-
- self.A = nn.Parameter(torch.tensor(init[0]), requires_grad=True)
- self.b = nn.Parameter(torch.tensor(init[1]), requires_grad=True)
-
- def forward(self, x: Union["NDArray[np.float_]", torch.Tensor]) -> torch.Tensor:
- """
- Calculate sigmoid(dot(a, x) + b) using RAM-optimized calculation layout.
- :param x: Tensor [NxD] representing the features x_i.
- :returns: A tensor [N] representing the probabilities for p(y_i).
- """
- x = torch.as_tensor(x)
- return torch.sigmoid(x @ self.A.T + self.b)
-
-
-class TorchMLP(nn.Module, TorchModelBase):
- """
- A simple fully-connected neural network f(x) model defined by y = v_K, v_i = o(A v_(i-1) + b), v_1 = x. It contains
- K layers and K - 2 hidden layers. It holds that K >= 2, because every network contains a input and output.
- """
-
- def __init__(
- self,
- n_input: int,
- n_output: int,
- n_neurons_per_layer: List[int],
- output_probabilities: bool = True,
- init: List[Tuple["NDArray[np.float_]", "NDArray[np.float_]"]] = None,
- ):
- """
- :param n_input: Number of feature in input.
- :param n_output: Output length.
- :param n_neurons_per_layer: Each integer represents the size of a hidden layer. Overall this list has K - 2
- :param output_probabilities: True, if the model should output probabilities. In the case of n_output 2 the
- number of outputs reduce to 1.
- :param init: A list of tuple of np.ndarray representing the internal weights.
- """
- super().__init__()
- self.n_input = n_input
- self.n_output = 1 if output_probabilities and n_output == 2 else n_output
-
- self.n_hidden_layers = n_neurons_per_layer
- self.output_probabilities = output_probabilities
-
- all_dimensions = [self.n_input] + self.n_hidden_layers + [self.n_output]
- layers = []
- num_layers = len(all_dimensions) - 1
- for num_layer, (in_features, out_features) in enumerate(
- zip(all_dimensions[:-1], all_dimensions[1:])
- ):
- linear_layer = nn.Linear(
- in_features, out_features, bias=num_layer < len(all_dimensions) - 2
- )
-
- if init is None:
- torch.nn.init.xavier_uniform_(linear_layer.weight)
- if num_layer < len(all_dimensions) - 2:
- linear_layer.bias.data.fill_(0.01)
-
- else:
- A, b = init[num_layer]
- linear_layer.weight.data = A
- if num_layer < len(all_dimensions) - 2:
- linear_layer.bias.data = b
-
- layers.append(linear_layer)
- if num_layer < num_layers - 1:
- layers.append(Tanh())
- elif self.output_probabilities:
- layers.append(Softmax(dim=-1))
-
- self.layers = nn.Sequential(*layers)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Perform forward-pass through the network.
- :param x: Tensor input of shape [NxD].
- :returns: Tensor output of shape[NxK].
- """
- return self.layers(x)
diff --git a/src/pydvl/influence/torch/__init__.py b/src/pydvl/influence/torch/__init__.py
new file mode 100644
index 000000000..1f431d57b
--- /dev/null
+++ b/src/pydvl/influence/torch/__init__.py
@@ -0,0 +1,9 @@
+from .torch_differentiable import (
+ TorchTwiceDifferentiable,
+ as_tensor,
+ model_hessian_low_rank,
+ solve_arnoldi,
+ solve_batch_cg,
+ solve_linear,
+ solve_lissa,
+)
diff --git a/src/pydvl/influence/torch/functional.py b/src/pydvl/influence/torch/functional.py
new file mode 100644
index 000000000..1be128b4b
--- /dev/null
+++ b/src/pydvl/influence/torch/functional.py
@@ -0,0 +1,236 @@
+from typing import Callable, Dict, Generator, Iterable
+
+import torch
+from torch.func import functional_call, grad, jvp, vjp
+from torch.utils.data import DataLoader
+
+from .util import (
+ TorchTensorContainerType,
+ align_structure,
+ flatten_tensors_to_vector,
+ to_model_device,
+)
+
+__all__ = [
+ "get_hvp_function",
+]
+
+
+def hvp(
+ func: Callable[[TorchTensorContainerType], torch.Tensor],
+ params: TorchTensorContainerType,
+ vec: TorchTensorContainerType,
+ reverse_only: bool = True,
+) -> TorchTensorContainerType:
+ r"""
+ Computes the Hessian-vector product (HVP) for a given function at given parameters, i.e.
+
+ \[\nabla_{\theta} \nabla_{\theta} f (\theta)\cdot v\]
+
+ This function can operate in two modes, either reverse-mode autodiff only or both
+ forward- and reverse-mode autodiff.
+
+ Args:
+ func: The scalar-valued function for which the HVP is computed.
+ params: The parameters at which the HVP is computed.
+ vec: The vector with which the Hessian is multiplied.
+ reverse_only: Whether to use only reverse-mode autodiff
+ (True, default) or both forward- and reverse-mode autodiff (False).
+
+ Returns:
+ The HVP of the function at the given parameters with the given vector.
+
+ Example:
+ ```python
+ >>> def f(z): return torch.sum(z**2)
+ >>> u = torch.ones(10, requires_grad=True)
+ >>> v = torch.ones(10)
+ >>> hvp_vec = hvp(f, u, v)
+ >>> assert torch.allclose(hvp_vec, torch.full((10, ), 2.0))
+ ```
+ """
+
+ output: TorchTensorContainerType
+
+ if reverse_only:
+ _, vjp_fn = vjp(grad(func), params)
+ output = vjp_fn(vec)[0]
+ else:
+ output = jvp(grad(func), (params,), (vec,))[1]
+
+ return output
+
+
+def batch_hvp_gen(
+ model: torch.nn.Module,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ data_loader: DataLoader,
+ reverse_only: bool = True,
+) -> Generator[Callable[[torch.Tensor], torch.Tensor], None, None]:
+ r"""
+ Generates a sequence of batch Hessian-vector product (HVP) computations for the provided model, loss function,
+ and data loader. If \(f_i\) is the model's loss on the \(i\)-th batch and \(\theta\) the model parameters,
+ this is the sequence of the callable matrix vector products for the matrices
+
+ \[\nabla_{\theta}\nabla_{\theta}f_i(\theta), \quad i=1,\dots, \text{num_batches} \]
+
+ i.e. iterating over the data_loader, yielding partial function calls for calculating HVPs.
+
+ Args:
+ model: The PyTorch model for which the HVP is calculated.
+ loss: The loss function used to calculate the gradient and HVP.
+ data_loader: PyTorch DataLoader object containing the dataset for which the HVP is calculated.
+ reverse_only: Whether to use only reverse-mode autodiff
+ (True, default) or both forward- and reverse-mode autodiff (False).
+
+ Yields:
+ Partial functions `H_{batch}(vec)=hvp(model, loss, inputs, targets, vec)` that when called,
+ will compute the Hessian-vector product H(vec) for the given model and loss in a batch-wise manner, where
+ (inputs, targets) coming from one batch.
+ """
+
+ for inputs, targets in iter(data_loader):
+ batch_loss = batch_loss_function(model, loss, inputs, targets)
+ model_params = dict(model.named_parameters())
+
+ def batch_hvp(vec: torch.Tensor):
+ return flatten_tensors_to_vector(
+ hvp(
+ batch_loss,
+ model_params,
+ align_structure(model_params, vec),
+ reverse_only=reverse_only,
+ ).values()
+ )
+
+ yield batch_hvp
+
+
+def empirical_loss_function(
+ model: torch.nn.Module,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ data_loader: DataLoader,
+) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]:
+ r"""
+ Creates a function to compute the empirical loss of a given model on a given dataset.
+ If we denote the model parameters with \( \theta \), the resulting function approximates:
+
+ \[f(\theta) = \frac{1}{N}\sum_{i=1}^N \operatorname{loss}(y_i, \operatorname{model}(\theta, x_i))\]
+
+ Args:
+ - model: The model for which the loss should be computed.
+ - loss: The loss function to be used.
+ - data_loader: The data loader for iterating over the dataset.
+
+ Returns:
+ A function that computes the empirical loss of the model on the dataset for given model parameters.
+
+ """
+
+ def empirical_loss(params: Dict[str, torch.Tensor]):
+ total_loss = to_model_device(torch.zeros((), requires_grad=True), model)
+ total_samples = to_model_device(torch.zeros(()), model)
+
+ for x, y in iter(data_loader):
+ output = functional_call(
+ model, params, (to_model_device(x, model),), strict=True
+ )
+ loss_value = loss(output, to_model_device(y, model))
+ total_loss = total_loss + loss_value * x.size(0)
+ total_samples += x.size(0)
+
+ return total_loss / total_samples
+
+ return empirical_loss
+
+
+def batch_loss_function(
+ model: torch.nn.Module,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ x: torch.Tensor,
+ y: torch.Tensor,
+) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]:
+ r"""
+ Creates a function to compute the loss of a given model on a given batch of data, i.e. for the $i$-th batch $B_i$
+
+ \[\frac{1}{|B_i|}\sum_{x,y \in B_i} \operatorname{loss}(y, \operatorname{model}(\theta, x))\]
+
+ Args:
+ model: The model for which the loss should be computed.
+ loss: The loss function to be used.
+ x: The input data for the batch.
+ y: The true labels for the batch.
+
+ Returns:
+ A function that computes the loss of the model on the batch for given model parameters.
+ """
+
+ def batch_loss(params: Dict[str, torch.Tensor]):
+ outputs = functional_call(
+ model, params, (to_model_device(x, model),), strict=True
+ )
+ return loss(outputs, y)
+
+ return batch_loss
+
+
+def get_hvp_function(
+ model: torch.nn.Module,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ data_loader: DataLoader,
+ use_hessian_avg: bool = True,
+ reverse_only: bool = True,
+ track_gradients: bool = False,
+) -> Callable[[torch.Tensor], torch.Tensor]:
+ """
+ Returns a function that calculates the approximate Hessian-vector product for a given vector. If you want to
+ compute the exact hessian, i.e., pulling all data into memory and compute a full gradient computation, use
+ the function `hvp`.
+
+ Args:
+ model: A PyTorch module representing the model whose loss function's Hessian is to be computed.
+ loss: A callable that takes the model's output and target as input and returns the scalar loss.
+ data_loader: A DataLoader instance that provides batches of data for calculating the Hessian-vector product.
+ Each batch from the DataLoader is assumed to return a tuple where the first element
+ is the model's input and the second element is the target output.
+ use_hessian_avg: If True, the returned function uses batch-wise Hessian computation via
+ [batch_loss_function][pydvl.influence.torch.functional.batch_loss_function] and averages the results.
+ If False, the function uses backpropagation on the full
+ [empirical_loss_function][pydvl.influence.torch.functional.empirical_loss_function],
+ which is more accurate than averaging the batch hessians, but probably has a way higher memory usage.
+ reverse_only: Whether to use only reverse-mode autodiff (True, default) or
+ both forward- and reverse-mode autodiff (False).
+ track_gradients: Whether to track gradients for the resulting tensor of the hessian vector
+ products are (False, default).
+
+ Returns:
+ A function that takes a single argument, a vector, and returns the product of the Hessian of the `loss`
+ function with respect to the `model`'s parameters and the input vector.
+ """
+
+ params = {
+ k: p if track_gradients else p.detach() for k, p in model.named_parameters()
+ }
+
+ def hvp_function(vec: torch.Tensor) -> torch.Tensor:
+ v = align_structure(params, vec)
+ empirical_loss = empirical_loss_function(model, loss, data_loader)
+ return flatten_tensors_to_vector(
+ hvp(empirical_loss, params, v, reverse_only=reverse_only).values()
+ )
+
+ def avg_hvp_function(vec: torch.Tensor) -> torch.Tensor:
+ v = align_structure(params, vec)
+ batch_hessians_vector_products: Iterable[torch.Tensor] = map(
+ lambda x: x(v), batch_hvp_gen(model, loss, data_loader, reverse_only)
+ )
+
+ num_batches = len(data_loader)
+ avg_hessian = to_model_device(torch.zeros_like(vec), model)
+
+ for batch_hvp in batch_hessians_vector_products:
+ avg_hessian += batch_hvp
+
+ return avg_hessian / float(num_batches)
+
+ return avg_hvp_function if use_hessian_avg else hvp_function
diff --git a/src/pydvl/influence/torch/torch_differentiable.py b/src/pydvl/influence/torch/torch_differentiable.py
new file mode 100644
index 000000000..bb1d444e4
--- /dev/null
+++ b/src/pydvl/influence/torch/torch_differentiable.py
@@ -0,0 +1,845 @@
+"""
+Contains methods for differentiating a pyTorch model. Most of the methods focus
+on ways to calculate matrix vector products. Moreover, it contains several
+methods to invert the Hessian vector product. These are used to calculate the
+influence of a training point on the model.
+
+## References
+
+[^1]: Koh, P.W., Liang, P., 2017.
+ [Understanding Black-box Predictions via Influence Functions](https://proceedings.mlr.press/v70/koh17a.html).
+ In: Proceedings of the 34th International Conference on Machine Learning, pp. 1885–1894. PMLR.
+[^2]: Agarwal, N., Bullins, B., Hazan, E., 2017.
+ [Second-Order Stochastic Optimization for Machine Learning in Linear Time](https://www.jmlr.org/papers/v18/16-491.html).
+ In: Journal of Machine Learning Research, Vol. 18, pp. 1–40. JMLR.
+"""
+import logging
+from dataclasses import dataclass
+from functools import partial
+from typing import Callable, Generator, List, Optional, Sequence, Tuple
+
+import torch
+import torch.nn as nn
+from numpy.typing import NDArray
+from scipy.sparse.linalg import ArpackNoConvergence
+from torch import autograd
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+
+from ...utils import maybe_progress
+from ..inversion import InversionMethod, InversionRegistry
+from ..twice_differentiable import (
+ InverseHvpResult,
+ TensorUtilities,
+ TwiceDifferentiable,
+)
+from .functional import get_hvp_function
+from .util import align_structure, as_tensor, flatten_tensors_to_vector
+
+__all__ = [
+ "TorchTwiceDifferentiable",
+ "solve_linear",
+ "solve_batch_cg",
+ "solve_lissa",
+ "solve_arnoldi",
+ "lanzcos_low_rank_hessian_approx",
+ "model_hessian_low_rank",
+]
+
+logger = logging.getLogger(__name__)
+
+
+class TorchTwiceDifferentiable(TwiceDifferentiable[torch.Tensor]):
+ r"""
+ Wraps a [torch.nn.Module][torch.nn.Module]
+ and a loss function and provides methods to compute gradients and
+ second derivative of the loss wrt. the model parameters
+
+ Args:
+ model: A (differentiable) function.
+ loss: A differentiable scalar loss \( L(\hat{y}, y) \),
+ mapping a prediction and a target to a real value.
+ """
+
+ def __init__(
+ self,
+ model: nn.Module,
+ loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
+ ):
+
+ if model.training:
+ logger.warning(
+ "Passed model not in evaluation mode. This can create several issues in influence "
+ "computation, e.g. due to batch normalization. Please call model.eval() before "
+ "computing influences."
+ )
+ self.loss = loss
+ self.model = model
+ first_param = next(model.parameters())
+ self.device = first_param.device
+ self.dtype = first_param.dtype
+
+ @classmethod
+ def tensor_type(cls):
+ return torch.Tensor
+
+ @property
+ def parameters(self) -> List[torch.Tensor]:
+ """
+ Returns:
+ All model parameters that require differentiating.
+ """
+
+ return [param for param in self.model.parameters() if param.requires_grad]
+
+ @property
+ def num_params(self) -> int:
+ """
+ Get the number of parameters of model f.
+
+ Returns:
+ int: Number of parameters.
+ """
+ return sum([p.numel() for p in self.parameters])
+
+ def grad(
+ self, x: torch.Tensor, y: torch.Tensor, create_graph: bool = False
+ ) -> torch.Tensor:
+ r"""
+ Calculates gradient of model parameters with respect to the model parameters.
+
+ Args:
+ x: A matrix [NxD] representing the features \( x_i \).
+ y: A matrix [NxK] representing the target values \( y_i \).
+ create_graph (bool): If True, the resulting gradient tensor can be used for further differentiation.
+
+ Returns:
+ An array [P] with the gradients of the model.
+ """
+
+ x = x.to(self.device)
+ y = y.to(self.device)
+
+ if create_graph and not x.requires_grad:
+ x = x.requires_grad_(True)
+
+ loss_value = self.loss(torch.squeeze(self.model(x)), torch.squeeze(y))
+ grad_f = torch.autograd.grad(
+ loss_value, self.parameters, create_graph=create_graph
+ )
+ return flatten_tensors_to_vector(grad_f)
+
+ def hessian(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
+ r"""
+ Calculates the explicit hessian of model parameters given data \(x\) and \(y\).
+
+ Args:
+ x: A matrix [NxD] representing the features \(x_i\).
+ y: A matrix [NxK] representing the target values \(y_i\).
+
+ Returns:
+ A tensor representing the hessian of the loss with respect to the model parameters.
+ """
+
+ def model_func(param):
+ outputs = torch.func.functional_call(
+ self.model,
+ align_structure(
+ {k: p for k, p in self.model.named_parameters() if p.requires_grad},
+ param,
+ ),
+ (x.to(self.device),),
+ strict=True,
+ )
+ return self.loss(outputs, y.to(self.device))
+
+ params = flatten_tensors_to_vector(
+ p.detach() for p in self.model.parameters() if p.requires_grad
+ )
+ return torch.func.hessian(model_func)(params)
+
+ @staticmethod
+ def mvp(
+ grad_xy: torch.Tensor,
+ v: torch.Tensor,
+ backprop_on: torch.Tensor,
+ *,
+ progress: bool = False,
+ ) -> torch.Tensor:
+ r"""
+ Calculates the second-order derivative of the model along directions v.
+ This second-order derivative can be selected through the `backprop_on` argument.
+
+ Args:
+ grad_xy: An array [P] holding the gradients of the model parameters with respect to input
+ \(x\) and labels \(y\), where P is the number of parameters of the model.
+ It is typically obtained through `self.grad`.
+ v: An array ([DxP] or even one-dimensional [D]) which multiplies the matrix,
+ where D is the number of directions.
+ progress: If True, progress will be printed.
+ backprop_on: Tensor used in the second backpropagation
+ (the first one is defined via grad_xy).
+
+ Returns:
+ A matrix representing the implicit matrix-vector product of the model along the given directions.
+ The output shape is [DxM], with M being the number of elements of `backprop_on`.
+ """
+
+ device = grad_xy.device
+ v = as_tensor(v, warn=False).to(device)
+ if v.ndim == 1:
+ v = v.unsqueeze(0)
+
+ z = (grad_xy * Variable(v)).sum(dim=1)
+
+ mvp = []
+ for i in maybe_progress(range(len(z)), progress, desc="MVP"):
+ mvp.append(
+ flatten_tensors_to_vector(
+ autograd.grad(z[i], backprop_on, retain_graph=True)
+ )
+ )
+ return torch.stack([grad.contiguous().view(-1) for grad in mvp]).detach()
+
+
+@dataclass
+class LowRankProductRepresentation:
+ r"""
+ Representation of a low rank product of the form \(H = V D V^T\),
+ where D is a diagonal matrix and V is orthogonal.
+
+ Args:
+ eigen_vals: Diagonal of D.
+ projections: The matrix V.
+ """
+
+ eigen_vals: torch.Tensor
+ projections: torch.Tensor
+
+ @property
+ def device(self) -> torch.device:
+ return (
+ self.eigen_vals.device
+ if hasattr(self.eigen_vals, "device")
+ else torch.device("cpu")
+ )
+
+ def to(self, device: torch.device):
+ """
+ Move the representing tensors to a device
+ """
+ return LowRankProductRepresentation(
+ self.eigen_vals.to(device), self.projections.to(device)
+ )
+
+ def __post_init__(self):
+ if self.eigen_vals.device != self.projections.device:
+ raise ValueError("eigen_vals and projections must be on the same device.")
+
+
+def lanzcos_low_rank_hessian_approx(
+ hessian_vp: Callable[[torch.Tensor], torch.Tensor],
+ matrix_shape: Tuple[int, int],
+ hessian_perturbation: float = 0.0,
+ rank_estimate: int = 10,
+ krylov_dimension: Optional[int] = None,
+ tol: float = 1e-6,
+ max_iter: Optional[int] = None,
+ device: Optional[torch.device] = None,
+ eigen_computation_on_gpu: bool = False,
+ torch_dtype: torch.dtype = None,
+) -> LowRankProductRepresentation:
+ r"""
+ Calculates a low-rank approximation of the Hessian matrix of a scalar-valued
+ function using the implicitly restarted Lanczos algorithm, i.e.:
+
+ \[ H_{\text{approx}} = V D V^T\]
+
+ where \(D\) is a diagonal matrix with the top (in absolute value) `rank_estimate` eigenvalues of the Hessian
+ and \(V\) contains the corresponding eigenvectors.
+
+ Args:
+ hessian_vp: A function that takes a vector and returns the product of
+ the Hessian of the loss function.
+ matrix_shape: The shape of the matrix, represented by the hessian vector
+ product.
+ hessian_perturbation: Regularization parameter added to the
+ Hessian-vector product for numerical stability.
+ rank_estimate: The number of eigenvalues and corresponding eigenvectors
+ to compute. Represents the desired rank of the Hessian approximation.
+ krylov_dimension: The number of Krylov vectors to use for the Lanczos
+ method. If not provided, it defaults to
+ \( \min(\text{model.num_parameters}, \max(2 \times \text{rank_estimate} + 1, 20)) \).
+ tol: The stopping criteria for the Lanczos algorithm, which stops when
+ the difference in the approximated eigenvalue is less than `tol`.
+ Defaults to 1e-6.
+ max_iter: The maximum number of iterations for the Lanczos method. If
+ not provided, it defaults to \( 10 \cdot \text{model.num_parameters}\).
+ device: The device to use for executing the hessian vector product.
+ eigen_computation_on_gpu: If True, tries to execute the eigen pair
+ approximation on the provided device via [cupy](https://cupy.dev/)
+ implementation. Ensure that either your model is small enough, or you
+ use a small rank_estimate to fit your device's memory. If False, the
+ eigen pair approximation is executed on the CPU with scipy's wrapper to
+ ARPACK.
+ torch_dtype: If not provided, the current torch default dtype is used for
+ conversion to torch.
+
+ Returns:
+ A [LowRankProductRepresentation][pydvl.influence.torch.torch_differentiable.LowRankProductRepresentation]
+ instance that contains the top (up until rank_estimate) eigenvalues
+ and corresponding eigenvectors of the Hessian.
+ """
+
+ torch_dtype = torch.get_default_dtype() if torch_dtype is None else torch_dtype
+
+ if eigen_computation_on_gpu:
+ try:
+ import cupy as cp
+ from cupyx.scipy.sparse.linalg import LinearOperator, eigsh
+ from torch.utils.dlpack import from_dlpack, to_dlpack
+ except ImportError as e:
+ raise ImportError(
+ f"Try to install missing dependencies or set eigen_computation_on_gpu to False: {e}"
+ )
+
+ if device is None:
+ raise ValueError(
+ "Without setting an explicit device, cupy is not supported"
+ )
+
+ def to_torch_conversion_function(x):
+ return from_dlpack(x.toDlpack()).to(torch_dtype)
+
+ def mv(x):
+ x = to_torch_conversion_function(x)
+ y = hessian_vp(x) + hessian_perturbation * x
+ return cp.from_dlpack(to_dlpack(y))
+
+ else:
+ from scipy.sparse.linalg import LinearOperator, eigsh
+
+ def mv(x):
+ x_torch = torch.as_tensor(x, device=device, dtype=torch_dtype)
+ y: NDArray = (
+ (hessian_vp(x_torch) + hessian_perturbation * x_torch)
+ .detach()
+ .cpu()
+ .numpy()
+ )
+ return y
+
+ to_torch_conversion_function = partial(torch.as_tensor, dtype=torch_dtype)
+
+ try:
+ eigen_vals, eigen_vecs = eigsh(
+ LinearOperator(matrix_shape, matvec=mv),
+ k=rank_estimate,
+ maxiter=max_iter,
+ tol=tol,
+ ncv=krylov_dimension,
+ return_eigenvectors=True,
+ )
+
+ except ArpackNoConvergence as e:
+ logger.warning(
+ f"ARPACK did not converge for parameters {max_iter=}, {tol=}, {krylov_dimension=}, "
+ f"{rank_estimate=}. \n Returning the best approximation found so far. Use those with care or "
+ f"modify parameters.\n Original error: {e}"
+ )
+
+ eigen_vals, eigen_vecs = e.eigenvalues, e.eigenvectors
+
+ eigen_vals = to_torch_conversion_function(eigen_vals)
+ eigen_vecs = to_torch_conversion_function(eigen_vecs)
+
+ return LowRankProductRepresentation(eigen_vals, eigen_vecs)
+
+
+def model_hessian_low_rank(
+ model: TorchTwiceDifferentiable,
+ training_data: DataLoader,
+ hessian_perturbation: float = 0.0,
+ rank_estimate: int = 10,
+ krylov_dimension: Optional[int] = None,
+ tol: float = 1e-6,
+ max_iter: Optional[int] = None,
+ eigen_computation_on_gpu: bool = False,
+) -> LowRankProductRepresentation:
+ r"""
+ Calculates a low-rank approximation of the Hessian matrix of the model's loss function using the implicitly
+ restarted Lanczos algorithm, i.e.
+
+ \[ H_{\text{approx}} = V D V^T\]
+
+ where \(D\) is a diagonal matrix with the top (in absolute value) `rank_estimate` eigenvalues of the Hessian
+ and \(V\) contains the corresponding eigenvectors.
+
+
+ Args:
+ model: A PyTorch model instance that is twice differentiable, wrapped into `TorchTwiceDifferential`.
+ The Hessian will be calculated with respect to this model's parameters.
+ training_data: A DataLoader instance that provides the model's training data.
+ Used in calculating the Hessian-vector products.
+ hessian_perturbation: Optional regularization parameter added to the Hessian-vector product
+ for numerical stability.
+ rank_estimate: The number of eigenvalues and corresponding eigenvectors to compute.
+ Represents the desired rank of the Hessian approximation.
+ krylov_dimension: The number of Krylov vectors to use for the Lanczos method.
+ If not provided, it defaults to min(model.num_parameters, max(2*rank_estimate + 1, 20)).
+ tol: The stopping criteria for the Lanczos algorithm, which stops when the difference
+ in the approximated eigenvalue is less than `tol`. Defaults to 1e-6.
+ max_iter: The maximum number of iterations for the Lanczos method. If not provided, it defaults to
+ 10*model.num_parameters.
+ eigen_computation_on_gpu: If True, tries to execute the eigen pair approximation on the provided
+ device via cupy implementation.
+ Make sure, that either your model is small enough or you use a
+ small rank_estimate to fit your device's memory.
+ If False, the eigen pair approximation is executed on the CPU by scipy wrapper to
+ ARPACK.
+
+ Returns:
+ A [LowRankProductRepresentation][pydvl.influence.torch.torch_differentiable.LowRankProductRepresentation]
+ instance that contains the top (up until rank_estimate) eigenvalues
+ and corresponding eigenvectors of the Hessian.
+ """
+ raw_hvp = get_hvp_function(
+ model.model, model.loss, training_data, use_hessian_avg=True
+ )
+
+ return lanzcos_low_rank_hessian_approx(
+ hessian_vp=raw_hvp,
+ matrix_shape=(model.num_params, model.num_params),
+ hessian_perturbation=hessian_perturbation,
+ rank_estimate=rank_estimate,
+ krylov_dimension=krylov_dimension,
+ tol=tol,
+ max_iter=max_iter,
+ device=model.device if hasattr(model, "device") else None,
+ eigen_computation_on_gpu=eigen_computation_on_gpu,
+ )
+
+
+class TorchTensorUtilities(TensorUtilities[torch.Tensor, TorchTwiceDifferentiable]):
+ twice_differentiable_type = TorchTwiceDifferentiable
+
+ @staticmethod
+ def einsum(equation: str, *operands) -> torch.Tensor:
+ """Sums the product of the elements of the input :attr:`operands` along dimensions specified using a notation
+ based on the Einstein summation convention.
+ """
+ return torch.einsum(equation, *operands)
+
+ @staticmethod
+ def cat(a: Sequence[torch.Tensor], **kwargs) -> torch.Tensor:
+ """Concatenates a sequence of tensors into a single torch tensor"""
+ return torch.cat(a, **kwargs)
+
+ @staticmethod
+ def stack(a: Sequence[torch.Tensor], **kwargs) -> torch.Tensor:
+ """Stacks a sequence of tensors into a single torch tensor"""
+ return torch.stack(a, **kwargs)
+
+ @staticmethod
+ def unsqueeze(x: torch.Tensor, dim: int) -> torch.Tensor:
+ """
+ Add a singleton dimension at a specified position in a tensor.
+
+ Args:
+ x: A PyTorch tensor.
+ dim: The position at which to add the singleton dimension. Zero-based indexing.
+
+ Returns:
+ A new tensor with an additional singleton dimension.
+ """
+
+ return x.unsqueeze(dim)
+
+ @staticmethod
+ def get_element(x: torch.Tensor, idx: int) -> torch.Tensor:
+ return x[idx]
+
+ @staticmethod
+ def slice(x: torch.Tensor, start: int, stop: int, axis: int = 0) -> torch.Tensor:
+ slicer = [slice(None) for _ in x.shape]
+ slicer[axis] = slice(start, stop)
+ return x[tuple(slicer)]
+
+ @staticmethod
+ def shape(x: torch.Tensor) -> Tuple[int, ...]:
+ return x.shape # type:ignore
+
+ @staticmethod
+ def reshape(x: torch.Tensor, shape: Tuple[int, ...]) -> torch.Tensor:
+ return x.reshape(shape)
+
+ @staticmethod
+ def cat_gen(
+ a: Generator[torch.Tensor, None, None],
+ resulting_shape: Tuple[int, ...],
+ model: TorchTwiceDifferentiable,
+ axis: int = 0,
+ ) -> torch.Tensor:
+ result = torch.empty(resulting_shape, dtype=model.dtype, device=model.device)
+
+ start_idx = 0
+ for x in a:
+ stop_idx = start_idx + x.shape[axis]
+
+ slicer = [slice(None) for _ in resulting_shape]
+ slicer[axis] = slice(start_idx, stop_idx)
+
+ result[tuple(slicer)] = x
+
+ start_idx = stop_idx
+
+ return result
+
+
+@InversionRegistry.register(TorchTwiceDifferentiable, InversionMethod.Direct)
+def solve_linear(
+ model: TorchTwiceDifferentiable,
+ training_data: DataLoader,
+ b: torch.Tensor,
+ hessian_perturbation: float = 0.0,
+) -> InverseHvpResult:
+ r"""
+ Given a model and training data, it finds x such that \(Hx = b\), with \(H\) being the model hessian.
+
+ Args:
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data: A DataLoader containing the training data.
+ b: A vector or matrix, the right hand side of the equation \(Hx = b\).
+ hessian_perturbation: Regularization of the hessian.
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+ having an array that solves the inverse problem, i.e. it returns \(x\) such that \(Hx = b\),
+ and a dictionary containing information about the solution.
+ """
+
+ all_x, all_y = [], []
+ for x, y in training_data:
+ all_x.append(x)
+ all_y.append(y)
+ hessian = model.hessian(torch.cat(all_x), torch.cat(all_y))
+ matrix = hessian + hessian_perturbation * torch.eye(
+ model.num_params, device=model.device
+ )
+ info = {"hessian": hessian}
+ return InverseHvpResult(x=torch.linalg.solve(matrix, b.T).T, info=info)
+
+
+@InversionRegistry.register(TorchTwiceDifferentiable, InversionMethod.Cg)
+def solve_batch_cg(
+ model: TorchTwiceDifferentiable,
+ training_data: DataLoader,
+ b: torch.Tensor,
+ hessian_perturbation: float = 0.0,
+ *,
+ x0: Optional[torch.Tensor] = None,
+ rtol: float = 1e-7,
+ atol: float = 1e-7,
+ maxiter: Optional[int] = None,
+ progress: bool = False,
+) -> InverseHvpResult:
+ r"""
+ Given a model and training data, it uses conjugate gradient to calculate the
+ inverse of the Hessian Vector Product. More precisely, it finds x such that \(Hx =
+ b\), with \(H\) being the model hessian. For more info, see
+ [Wikipedia](https://en.wikipedia.org/wiki/Conjugate_gradient_method).
+
+ Args:
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data: A DataLoader containing the training data.
+ b: A vector or matrix, the right hand side of the equation \(Hx = b\).
+ hessian_perturbation: Regularization of the hessian.
+ x0: Initial guess for hvp. If None, defaults to b.
+ rtol: Maximum relative tolerance of result.
+ atol: Absolute tolerance of result.
+ maxiter: Maximum number of iterations. If None, defaults to 10*len(b).
+ progress: If True, display progress bars.
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+ having a matrix of shape [NxP] with each line being a solution of \(Ax=b\),
+ and a dictionary containing information about the convergence of CG,
+ one entry for each line of the matrix.
+ """
+
+ total_grad_xy = 0
+ total_points = 0
+ for x, y in maybe_progress(training_data, progress, desc="Batch Train Gradients"):
+ grad_xy = model.grad(x, y, create_graph=True)
+ total_grad_xy += grad_xy * len(x)
+ total_points += len(x)
+ backprop_on = model.parameters
+ reg_hvp = lambda v: model.mvp(
+ total_grad_xy / total_points, v, backprop_on
+ ) + hessian_perturbation * v.type(torch.float64)
+ batch_cg = torch.zeros_like(b)
+ info = {}
+ for idx, bi in enumerate(maybe_progress(b, progress, desc="Conjugate gradient")):
+ batch_result, batch_info = solve_cg(
+ reg_hvp, bi, x0=x0, rtol=rtol, atol=atol, maxiter=maxiter
+ )
+ batch_cg[idx] = batch_result
+ info[f"batch_{idx}"] = batch_info
+ return InverseHvpResult(x=batch_cg, info=info)
+
+
+def solve_cg(
+ hvp: Callable[[torch.Tensor], torch.Tensor],
+ b: torch.Tensor,
+ *,
+ x0: Optional[torch.Tensor] = None,
+ rtol: float = 1e-7,
+ atol: float = 1e-7,
+ maxiter: Optional[int] = None,
+) -> InverseHvpResult:
+ r"""
+ Conjugate gradient solver for the Hessian vector product.
+
+ Args:
+ hvp: A callable Hvp, operating with tensors of size N.
+ b: A vector or matrix, the right hand side of the equation \(Hx = b\).
+ x0: Initial guess for hvp.
+ rtol: Maximum relative tolerance of result.
+ atol: Absolute tolerance of result.
+ maxiter: Maximum number of iterations. If None, defaults to 10*len(b).
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult],
+ with a vector x, solution of \(Ax=b\), and a dictionary containing
+ information about the convergence of CG.
+ """
+
+ if x0 is None:
+ x0 = torch.clone(b)
+ if maxiter is None:
+ maxiter = len(b) * 10
+
+ y_norm = torch.sum(torch.matmul(b, b)).item()
+ stopping_val = max([rtol**2 * y_norm, atol**2])
+
+ x = x0
+ p = r = (b - hvp(x)).squeeze().type(torch.float64)
+ gamma = torch.sum(torch.matmul(r, r)).item()
+ optimal = False
+
+ for k in range(maxiter):
+ if gamma < stopping_val:
+ optimal = True
+ break
+ Ap = hvp(p).squeeze()
+ alpha = gamma / torch.sum(torch.matmul(p, Ap)).item()
+ x += alpha * p
+ r -= alpha * Ap
+ gamma_ = torch.sum(torch.matmul(r, r)).item()
+ beta = gamma_ / gamma
+ gamma = gamma_
+ p = r + beta * p
+
+ info = {"niter": k, "optimal": optimal, "gamma": gamma}
+ return InverseHvpResult(x=x, info=info)
+
+
+@InversionRegistry.register(TorchTwiceDifferentiable, InversionMethod.Lissa)
+def solve_lissa(
+ model: TorchTwiceDifferentiable,
+ training_data: DataLoader,
+ b: torch.Tensor,
+ hessian_perturbation: float = 0.0,
+ *,
+ maxiter: int = 1000,
+ dampen: float = 0.0,
+ scale: float = 10.0,
+ h0: Optional[torch.Tensor] = None,
+ rtol: float = 1e-4,
+ progress: bool = False,
+) -> InverseHvpResult:
+ r"""
+ Uses LISSA, Linear time Stochastic Second-Order Algorithm, to iteratively
+ approximate the inverse Hessian. More precisely, it finds x s.t. \(Hx = b\),
+ with \(H\) being the model's second derivative wrt. the parameters.
+ This is done with the update
+
+ \[H^{-1}_{j+1} b = b + (I - d) \ H - \frac{H^{-1}_j b}{s},\]
+
+ where \(I\) is the identity matrix, \(d\) is a dampening term and \(s\) a scaling
+ factor that are applied to help convergence. For details, see
+ (Koh and Liang, 2017)1 and the original paper
+ (Agarwal et. al.)2 .
+
+ Args:
+ model: A model wrapped in the TwiceDifferentiable interface.
+ training_data: A DataLoader containing the training data.
+ b: A vector or matrix, the right hand side of the equation \(Hx = b\).
+ hessian_perturbation: Regularization of the hessian.
+ maxiter: Maximum number of iterations.
+ dampen: Dampening factor, defaults to 0 for no dampening.
+ scale: Scaling factor, defaults to 10.
+ h0: Initial guess for hvp.
+ rtol: tolerance to use for early stopping
+ progress: If True, display progress bars.
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.twice_differentiable.InverseHvpResult], with a matrix of shape [NxP] with each line being a solution of \(Ax=b\),
+ and a dictionary containing information about the accuracy of the solution.
+ """
+
+ if h0 is None:
+ h_estimate = torch.clone(b)
+ else:
+ h_estimate = h0
+ shuffled_training_data = DataLoader(
+ training_data.dataset, training_data.batch_size, shuffle=True
+ )
+
+ def lissa_step(
+ h: torch.Tensor, reg_hvp: Callable[[torch.Tensor], torch.Tensor]
+ ) -> torch.Tensor:
+ """Given an estimate of the hessian inverse and the regularised hessian
+ vector product, it computes the next estimate.
+
+ Args:
+ h: An estimate of the hessian inverse.
+ reg_hvp: Regularised hessian vector product.
+
+ Returns:
+ The next estimate of the hessian inverse.
+ """
+ return b + (1 - dampen) * h - reg_hvp(h) / scale
+
+ for _ in maybe_progress(range(maxiter), progress, desc="Lissa"):
+ x, y = next(iter(shuffled_training_data))
+ grad_xy = model.grad(x, y, create_graph=True)
+ reg_hvp = (
+ lambda v: model.mvp(grad_xy, v, model.parameters) + hessian_perturbation * v
+ )
+ residual = lissa_step(h_estimate, reg_hvp) - h_estimate
+ h_estimate += residual
+ if torch.isnan(h_estimate).any():
+ raise RuntimeError("NaNs in h_estimate. Increase scale or dampening.")
+ max_residual = torch.max(torch.abs(residual / h_estimate))
+ if max_residual < rtol:
+ break
+ mean_residual = torch.mean(torch.abs(residual / h_estimate))
+ logger.info(
+ f"Terminated Lissa with {max_residual*100:.2f} % max residual."
+ f" Mean residual: {mean_residual*100:.5f} %"
+ )
+ info = {
+ "max_perc_residual": max_residual * 100,
+ "mean_perc_residual": mean_residual * 100,
+ }
+ return InverseHvpResult(x=h_estimate / scale, info=info)
+
+
+@InversionRegistry.register(TorchTwiceDifferentiable, InversionMethod.Arnoldi)
+def solve_arnoldi(
+ model: TorchTwiceDifferentiable,
+ training_data: DataLoader,
+ b: torch.Tensor,
+ hessian_perturbation: float = 0.0,
+ *,
+ rank_estimate: int = 10,
+ krylov_dimension: Optional[int] = None,
+ low_rank_representation: Optional[LowRankProductRepresentation] = None,
+ tol: float = 1e-6,
+ max_iter: Optional[int] = None,
+ eigen_computation_on_gpu: bool = False,
+) -> InverseHvpResult:
+ r"""
+ Solves the linear system Hx = b, where H is the Hessian of the model's loss function and b is the given
+ right-hand side vector.
+ It employs the [implicitly restarted Arnoldi method](https://en.wikipedia.org/wiki/Arnoldi_iteration) for
+ computing a partial eigen decomposition, which is used fo the inversion i.e.
+
+ \[x = V D^{-1} V^T b\]
+
+ where \(D\) is a diagonal matrix with the top (in absolute value) `rank_estimate` eigenvalues of the Hessian
+ and \(V\) contains the corresponding eigenvectors.
+
+ Args:
+ model: A PyTorch model instance that is twice differentiable, wrapped into
+ [TorchTwiceDifferential][pydvl.influence.torch.torch_differentiable.TorchTwiceDifferentiable].
+ The Hessian will be calculated with respect to this model's parameters.
+ training_data: A DataLoader instance that provides the model's training data.
+ Used in calculating the Hessian-vector products.
+ b: The right-hand side vector in the system Hx = b.
+ hessian_perturbation: Optional regularization parameter added to the Hessian-vector
+ product for numerical stability.
+ rank_estimate: The number of eigenvalues and corresponding eigenvectors to compute.
+ Represents the desired rank of the Hessian approximation.
+ krylov_dimension: The number of Krylov vectors to use for the Lanczos method.
+ Defaults to min(model's number of parameters, max(2 times rank_estimate + 1, 20)).
+ low_rank_representation: An instance of
+ [LowRankProductRepresentation][pydvl.influence.torch.torch_differentiable.LowRankProductRepresentation]
+ containing a previously computed low-rank representation of the Hessian. If provided, all other parameters
+ are ignored; otherwise, a new low-rank representation is computed
+ using provided parameters.
+ tol: The stopping criteria for the Lanczos algorithm.
+ Ignored if `low_rank_representation` is provided.
+ max_iter: The maximum number of iterations for the Lanczos method.
+ Ignored if `low_rank_representation` is provided.
+ eigen_computation_on_gpu: If True, tries to execute the eigen pair approximation on the model's device
+ via a cupy implementation. Ensure the model size or rank_estimate is appropriate for device memory.
+ If False, the eigen pair approximation is executed on the CPU by the scipy wrapper to ARPACK.
+
+ Returns:
+ Instance of [InverseHvpResult][pydvl.influence.torch.torch_differentiable.InverseHvpResult],
+ having the solution vector x that satisfies the system \(Ax = b\),
+ where \(A\) is a low-rank approximation of the Hessian \(H\) of the model's loss function, and an instance
+ of [LowRankProductRepresentation][pydvl.influence.torch.torch_differentiable.LowRankProductRepresentation],
+ which represents the approximation of H.
+ """
+
+ b_device = b.device if hasattr(b, "device") else torch.device("cpu")
+
+ if low_rank_representation is None:
+ if b_device.type == "cuda" and not eigen_computation_on_gpu:
+ raise ValueError(
+ "Using 'eigen_computation_on_gpu=False' while 'b' is on a 'cuda' device is not supported. "
+ "To address this, consider the following options:\n"
+ " - Set eigen_computation_on_gpu=True if your model and data are small enough "
+ "and if 'cupy' is available in your environment.\n"
+ " - Move 'b' to the CPU with b.to('cpu').\n"
+ " - Precompute a low rank representation and move it to the 'b' device using:\n"
+ " low_rank_representation = model_hessian_low_rank(model, training_data, ..., "
+ "eigen_computation_on_gpu=False).to(b.device)"
+ )
+
+ low_rank_representation = model_hessian_low_rank(
+ model,
+ training_data,
+ hessian_perturbation=hessian_perturbation,
+ rank_estimate=rank_estimate,
+ krylov_dimension=krylov_dimension,
+ tol=tol,
+ max_iter=max_iter,
+ eigen_computation_on_gpu=eigen_computation_on_gpu,
+ )
+ else:
+ if b_device.type != low_rank_representation.device.type:
+ raise RuntimeError(
+ f"The devices for 'b' and 'low_rank_representation' do not match.\n"
+ f" - 'b' is on device: {b_device}\n"
+ f" - 'low_rank_representation' is on device: {low_rank_representation.device}\n"
+ f"\nTo resolve this, consider moving 'low_rank_representation' to '{b_device}' by using:\n"
+ f"low_rank_representation = low_rank_representation.to(b.device)"
+ )
+
+ logger.info("Using provided low rank representation, ignoring other parameters")
+
+ result = low_rank_representation.projections @ (
+ torch.diag_embed(1.0 / low_rank_representation.eigen_vals)
+ @ (low_rank_representation.projections.t() @ b.t())
+ )
+ return InverseHvpResult(
+ x=result.t(),
+ info={
+ "eigenvalues": low_rank_representation.eigen_vals,
+ "eigenvectors": low_rank_representation.projections,
+ },
+ )
diff --git a/src/pydvl/influence/torch/util.py b/src/pydvl/influence/torch/util.py
new file mode 100644
index 000000000..8347927f7
--- /dev/null
+++ b/src/pydvl/influence/torch/util.py
@@ -0,0 +1,185 @@
+import logging
+import math
+from typing import Any, Dict, Iterable, Tuple, TypeVar
+
+import torch
+
+logger = logging.getLogger(__name__)
+
+__all__ = [
+ "to_model_device",
+ "flatten_tensors_to_vector",
+ "reshape_vector_to_tensors",
+ "TorchTensorContainerType",
+ "align_structure",
+ "as_tensor",
+]
+
+
+def to_model_device(x: torch.Tensor, model: torch.nn.Module) -> torch.Tensor:
+ """
+ Returns the tensor `x` moved to the device of the `model`, if device of model is set
+
+ Args:
+ x: The tensor to be moved to the device of the model.
+ model: The model whose device will be used to move the tensor.
+
+ Returns:
+ The tensor `x` moved to the device of the `model`, if device of model is set.
+ """
+ if hasattr(model, "device"):
+ return x.to(model.device)
+ return x
+
+
+def flatten_tensors_to_vector(tensors: Iterable[torch.Tensor]) -> torch.Tensor:
+ """
+ Flatten multiple tensors into a single 1D tensor (vector).
+
+ This function takes an iterable of tensors and reshapes each of them into a 1D tensor.
+ These reshaped tensors are then concatenated together into a single 1D tensor in the order they were given.
+
+ Args:
+ tensors: An iterable of tensors to be reshaped and concatenated.
+
+ Returns:
+ A 1D tensor that is the concatenation of all the reshaped input tensors.
+ """
+ return torch.cat([t.contiguous().view(-1) for t in tensors])
+
+
+def reshape_vector_to_tensors(
+ input_vector: torch.Tensor, target_shapes: Iterable[Tuple[int, ...]]
+) -> Tuple[torch.Tensor, ...]:
+ """
+ Reshape a 1D tensor into multiple tensors with specified shapes.
+
+ This function takes a 1D tensor (input_vector) and reshapes it into a series of tensors with shapes given by 'target_shapes'.
+ The reshaped tensors are returned as a tuple in the same order as their corresponding shapes.
+
+ Note: The total number of elements in 'input_vector' must be equal to the sum of the products of the shapes in 'target_shapes'.
+
+ Args:
+ input_vector: The 1D tensor to be reshaped. Must be 1D.
+ target_shapes: An iterable of tuples. Each tuple defines the shape of a tensor to be reshaped from the 'input_vector'.
+
+ Returns:
+ A tuple of reshaped tensors.
+
+ Raises:
+ ValueError: If 'input_vector' is not a 1D tensor or if the total number of elements in 'input_vector' does not match the sum of the products of the shapes in 'target_shapes'.
+ """
+
+ if input_vector.dim() != 1:
+ raise ValueError("Input vector must be a 1D tensor")
+
+ total_elements = sum(math.prod(shape) for shape in target_shapes)
+
+ if total_elements != input_vector.shape[0]:
+ raise ValueError(
+ f"The total elements in shapes {total_elements} does not match the vector length {input_vector.shape[0]}"
+ )
+
+ tensors = []
+ start = 0
+ for shape in target_shapes:
+ size = math.prod(shape) # compute the total size of the tensor with this shape
+ tensors.append(
+ input_vector[start : start + size].view(shape)
+ ) # slice the vector and reshape it
+ start += size
+ return tuple(tensors)
+
+
+TorchTensorContainerType = TypeVar(
+ "TorchTensorContainerType",
+ torch.Tensor,
+ Tuple[torch.Tensor, ...],
+ Dict[str, torch.Tensor],
+)
+"""Type variable for a PyTorch tensor or a container thereof."""
+
+
+def align_structure(
+ source: Dict[str, torch.Tensor],
+ target: TorchTensorContainerType,
+) -> Dict[str, torch.Tensor]:
+ """
+ This function transforms `target` to have the same structure as `source`, i.e.,
+ it should be a dictionary with the same keys as `source` and each corresponding
+ value in `target` should have the same shape as the value in `source`.
+
+ Args:
+ source: The reference dictionary containing PyTorch tensors.
+ target: The input to be harmonized. It can be a dictionary, tuple, or tensor.
+
+ Returns:
+ The harmonized version of `target`.
+
+ Raises:
+ ValueError: If `target` cannot be harmonized to match `source`.
+ """
+
+ tangent_dict: Dict[str, torch.Tensor]
+
+ if isinstance(target, dict):
+
+ if list(target.keys()) != list(source.keys()):
+ raise ValueError("The keys in 'target' do not match the keys in 'source'.")
+
+ if [v.shape for v in target.values()] != [v.shape for v in source.values()]:
+
+ raise ValueError(
+ "The shapes of the values in 'target' do not match the shapes of the values in 'source'."
+ )
+
+ tangent_dict = target
+
+ elif isinstance(target, tuple) or isinstance(target, list):
+
+ if [v.shape for v in target] != [v.shape for v in source.values()]:
+
+ raise ValueError(
+ "'target' is a tuple/list but its elements' shapes do not match the shapes "
+ "of the values in 'source'."
+ )
+
+ tangent_dict = dict(zip(source.keys(), target))
+
+ elif isinstance(target, torch.Tensor):
+
+ try:
+ tangent_dict = dict(
+ zip(
+ source.keys(),
+ reshape_vector_to_tensors(
+ target, [p.shape for p in source.values()]
+ ),
+ )
+ )
+ except Exception as e:
+ raise ValueError(
+ f"'target' is a tensor but cannot be reshaped to match 'source'. Original error: {e}"
+ )
+
+ else:
+ raise ValueError(f"'target' is of type {type(target)} which is not supported.")
+
+ return tangent_dict
+
+
+def as_tensor(a: Any, warn=True, **kwargs) -> torch.Tensor:
+ """
+ Converts an array into a torch tensor.
+
+ Args:
+ a: Array to convert to tensor.
+ warn: If True, warns that `a` will be converted.
+
+ Returns:
+ A torch tensor converted from the input array.
+ """
+
+ if warn and not isinstance(a, torch.Tensor):
+ logger.warning("Converting tensor to type torch.Tensor.")
+ return torch.as_tensor(a, **kwargs)
diff --git a/src/pydvl/influence/twice_differentiable.py b/src/pydvl/influence/twice_differentiable.py
new file mode 100644
index 000000000..51700e89a
--- /dev/null
+++ b/src/pydvl/influence/twice_differentiable.py
@@ -0,0 +1,250 @@
+from abc import ABC, abstractmethod
+from dataclasses import dataclass
+from typing import (
+ Any,
+ Dict,
+ Generator,
+ Generic,
+ Iterable,
+ List,
+ Sequence,
+ Tuple,
+ Type,
+ TypeVar,
+)
+
+__all__ = [
+ "DataLoaderType",
+ "ModelType",
+ "TensorType",
+ "InverseHvpResult",
+ "TwiceDifferentiable",
+ "TensorUtilities",
+]
+
+TensorType = TypeVar("TensorType", bound=Sequence)
+"""Type variable for tensors, i.e. sequences of numbers"""
+
+ModelType = TypeVar("ModelType", bound="TwiceDifferentiable")
+"""Type variable for twice differentiable models"""
+
+DataLoaderType = TypeVar("DataLoaderType", bound=Iterable)
+"""Type variable for data loaders"""
+
+
+@dataclass(frozen=True)
+class InverseHvpResult(Generic[TensorType]):
+ r"""
+ Container class for results of solving a problem \(Ax=b\)
+
+ Args:
+ x: solution of a problem \(Ax=b\)
+ info: additional information, to couple with the solution itself
+ """
+ x: TensorType
+ info: Dict[str, Any]
+
+ def __iter__(self):
+ return iter((self.x, self.info))
+
+
+class TwiceDifferentiable(ABC, Generic[TensorType]):
+ """
+ Abstract base class for wrappers of differentiable models and losses. Meant to be subclassed for each
+ supported framework.
+ Provides methods to compute gradients and second derivative of the loss wrt. the model parameters
+ """
+
+ @classmethod
+ @abstractmethod
+ def tensor_type(cls):
+ pass
+
+ @property
+ @abstractmethod
+ def num_params(self) -> int:
+ """Returns the number of parameters of the model"""
+ pass
+
+ @property
+ @abstractmethod
+ def parameters(self) -> List[TensorType]:
+ """Returns all the model parameters that require differentiation"""
+ pass
+
+ def grad(
+ self, x: TensorType, y: TensorType, create_graph: bool = False
+ ) -> TensorType:
+ r"""
+ Calculates gradient of model parameters with respect to the model parameters.
+
+ Args:
+ x: A matrix representing the features \(x_i\).
+ y: A matrix representing the target values \(y_i\).
+ create_graph: Used for further differentiation on input parameters.
+
+ Returns:
+ An array with the gradients of the model.
+ """
+
+ pass
+
+ def hessian(self, x: TensorType, y: TensorType) -> TensorType:
+ r"""
+ Calculates the full Hessian of \(L(f(x),y)\) with respect to the model parameters given data \(x\) and \(y\).
+
+ Args:
+ x: An array representing the features \(x_i\).
+ y: An array representing the target values \(y_i\).
+
+ Returns:
+ A tensor representing the Hessian of the model, i.e. the second derivative
+ with respect to the model parameters.
+ """
+
+ pass
+
+ @staticmethod
+ @abstractmethod
+ def mvp(
+ grad_xy: TensorType,
+ v: TensorType,
+ backprop_on: TensorType,
+ *,
+ progress: bool = False,
+ ) -> TensorType:
+ r"""
+ Calculates the second order derivative of the model along directions \(v\).
+ The second order derivative can be selected through the `backprop_on` argument.
+
+ Args:
+ grad_xy: An array [P] holding the gradients of the model parameters with respect to input \(x\) and
+ labels \(y\). \(P\) is the number of parameters of the model. Typically obtained through `self.grad`.
+ v: An array ([DxP] or even one-dimensional [D]) which multiplies the matrix.
+ \(D\) is the number of directions.
+ progress: If `True`, progress is displayed.
+ backprop_on: Tensor used in the second backpropagation. The first one is along \(x\) and \(y\)
+ as defined via `grad_xy`.
+
+ Returns:
+ A matrix representing the implicit matrix-vector product of the model along the given directions.
+ Output shape is [DxM], where \(M\) is the number of elements of `backprop_on`.
+ """
+
+
+class TensorUtilities(Generic[TensorType, ModelType], ABC):
+ twice_differentiable_type: Type[TwiceDifferentiable]
+ registry: Dict[Type[TwiceDifferentiable], Type["TensorUtilities"]] = {}
+
+ def __init_subclass__(cls, **kwargs):
+ """
+ Automatically registers non-abstract subclasses in the registry.
+
+ This method checks if `twice_differentiable_type` is defined in the subclass and if it is of the correct type.
+ If either attribute is missing or incorrect, a `TypeError` is raised.
+
+ Args:
+ kwargs: Additional keyword arguments.
+
+ Raises:
+ TypeError: If the subclass does not define `twice_differentiable_type`, or if it is not of the correct type.
+ """
+
+ if not hasattr(cls, "twice_differentiable_type") or not isinstance(
+ cls.twice_differentiable_type, type
+ ):
+ raise TypeError(
+ f"'twice_differentiable_type' must be a Type[TwiceDifferentiable]"
+ )
+
+ cls.registry[cls.twice_differentiable_type] = cls
+
+ super().__init_subclass__(**kwargs)
+
+ @staticmethod
+ @abstractmethod
+ def einsum(equation, *operands) -> TensorType:
+ """Sums the product of the elements of the input `operands` along dimensions specified using a notation
+ based on the Einstein summation convention.
+ """
+
+ @staticmethod
+ @abstractmethod
+ def cat(a: Sequence[TensorType], **kwargs) -> TensorType:
+ """Concatenates a sequence of tensors into a single torch tensor"""
+
+ @staticmethod
+ @abstractmethod
+ def stack(a: Sequence[TensorType], **kwargs) -> TensorType:
+ """Stacks a sequence of tensors into a single torch tensor"""
+
+ @staticmethod
+ @abstractmethod
+ def unsqueeze(x: TensorType, dim: int) -> TensorType:
+ """Add a singleton dimension at a specified position in a tensor"""
+
+ @staticmethod
+ @abstractmethod
+ def get_element(x: TensorType, idx: int) -> TensorType:
+ """Get the tensor element x[i] from the first non-singular dimension"""
+
+ @staticmethod
+ @abstractmethod
+ def slice(x: TensorType, start: int, stop: int, axis: int = 0) -> TensorType:
+ """Slice a tensor in the provided axis"""
+
+ @staticmethod
+ @abstractmethod
+ def shape(x: TensorType) -> Tuple[int, ...]:
+ """Slice a tensor in the provided axis"""
+
+ @staticmethod
+ @abstractmethod
+ def reshape(x: TensorType, shape: Tuple[int, ...]) -> TensorType:
+ """Reshape a tensor to the provided shape"""
+
+ @staticmethod
+ @abstractmethod
+ def cat_gen(
+ a: Generator[TensorType, None, None],
+ resulting_shape: Tuple[int, ...],
+ model: ModelType,
+ ) -> TensorType:
+ """Concatenate tensors from a generator. Resulting tensor is of shape resulting_shape
+ and compatible to model
+ """
+
+ @classmethod
+ def from_twice_differentiable(
+ cls,
+ twice_diff: TwiceDifferentiable,
+ ) -> Type["TensorUtilities"]:
+ """
+ Factory method to create an instance of a subclass
+ [TensorUtilities][pydvl.influence.twice_differentiable.TensorUtilities] from an instance of a subclass of
+ [TwiceDifferentiable][pydvl.influence.twice_differentiable.TwiceDifferentiable].
+
+ Args:
+ twice_diff: An instance of a subclass of
+ [TwiceDifferentiable][pydvl.influence.twice_differentiable.TwiceDifferentiable]
+ for which a corresponding [TensorUtilities][pydvl.influence.twice_differentiable.TensorUtilities]
+ object is required.
+
+ Returns:
+ An subclass of [TensorUtilities][pydvl.influence.twice_differentiable.TensorUtilities]
+ registered to the provided subclass instance of
+ [TwiceDifferentiable][pydvl.influence.twice_differentiable.TwiceDifferentiable] object.
+
+ Raises:
+ KeyError: If there's no registered [TensorUtilities][pydvl.influence.twice_differentiable.TensorUtilities]
+ for the provided [TwiceDifferentiable][pydvl.influence.twice_differentiable.TwiceDifferentiable] type.
+ """
+
+ tu = cls.registry.get(type(twice_diff), None)
+
+ if tu is None:
+ raise KeyError(
+ f"No registered TensorUtilities for the type {type(twice_diff).__name__}"
+ )
+
+ return tu
diff --git a/src/pydvl/influence/types.py b/src/pydvl/influence/types.py
deleted file mode 100644
index 866214044..000000000
--- a/src/pydvl/influence/types.py
+++ /dev/null
@@ -1,48 +0,0 @@
-from abc import ABC
-from typing import Callable, Iterable, Optional, Tuple
-
-from numpy import ndarray
-
-__all__ = [
- "TwiceDifferentiable",
- "MatrixVectorProduct",
- "MatrixVectorProductInversionAlgorithm",
-]
-
-
-class TwiceDifferentiable(ABC):
- def num_params(self) -> int:
- pass
-
- def split_grad(self, x: ndarray, y: ndarray, progress: bool = False) -> ndarray:
- """
- Calculate the gradient of the model wrt each input x and labels y.
- The output is therefore of size [Nxp], with N the amout of points (the length of x and y) and
- P the number of parameters.
- """
- pass
-
- def grad(self, x: ndarray, y: ndarray) -> Tuple[ndarray, ndarray]:
- """
- It calculates the gradient of model parameters with respect to input x and labels y.
- """
- pass
-
- def mvp(
- self,
- grad_xy: ndarray,
- v: ndarray,
- progress: bool = False,
- backprop_on: Optional[Iterable] = None,
- ) -> ndarray:
- """
- Calculate the hessian vector product over the loss with all input parameters x and y with the vector v.
- """
- pass
-
-
-MatrixVectorProduct = Callable[[ndarray], ndarray]
-
-MatrixVectorProductInversionAlgorithm = Callable[
- [MatrixVectorProduct, ndarray], ndarray
-]
diff --git a/src/pydvl/reporting/plots.py b/src/pydvl/reporting/plots.py
index 8008bddf9..3d1090b14 100644
--- a/src/pydvl/reporting/plots.py
+++ b/src/pydvl/reporting/plots.py
@@ -21,23 +21,24 @@ def shaded_mean_std(
ax: Optional[Axes] = None,
**kwargs,
) -> Axes:
- """The usual mean +- x std deviations plot to aggregate runs of experiments.
-
- :param data: axis 0 is to be aggregated on (e.g. runs) and axis 1 is the
- data for each run.
- :param abscissa: values for the x axis. Leave empty to use increasing
- integers.
- :param num_std: number of standard deviations to shade around the mean.
- :param mean_color: color for the mean
- :param shade_color: color for the shaded region
- :param title:
- :param xlabel:
- :param ylabel:
- :param ax: If passed, axes object into which to insert the figure. Otherwise,
- a new figure is created and returned
- :param kwargs: these are forwarded to the ax.plot() call for the mean.
-
- :return: The axes used (or created)
+ """The usual mean \(\pm\) std deviation plot to aggregate runs of experiments.
+
+ Args:
+ data: axis 0 is to be aggregated on (e.g. runs) and axis 1 is the
+ data for each run.
+ abscissa: values for the x-axis. Leave empty to use increasing integers.
+ num_std: number of standard deviations to shade around the mean.
+ mean_color: color for the mean
+ shade_color: color for the shaded region
+ title: Title text. To use mathematics, use LaTeX notation.
+ xlabel: Text for the horizontal axis.
+ ylabel: Text for the vertical axis
+ ax: If passed, axes object into which to insert the figure. Otherwise,
+ a new figure is created and returned
+ kwargs: these are forwarded to the ax.plot() call for the mean.
+
+ Returns:
+ The axes used (or created)
"""
assert len(data.shape) == 2
mean = data.mean(axis=0)
@@ -58,85 +59,16 @@ def shaded_mean_std(
return ax
-def shapley_results(results: dict, filename: str = None):
- """
- FIXME: change this to use dataframes
-
- :param results: dict
- :param filename: For plt.savefig(). Set to None to disable saving.
-
- Here's an example results dictionary::
-
- results = {
- "all_values": num_runs x num_points
- "backward_scores": num_runs x num_points,
- "backward_scores_reversed": num_runs x num_points,
- "backward_random_scores": num_runs x num_points,
- "forward_scores": num_runs x num_points,
- "forward_scores_reversed": num_runs x num_points,
- "forward_random_scores": num_runs x num_points,
- "max_iterations": int,
- "score_name" str,
- "num_points": int
- }
- """
- plt.figure(figsize=(16, 5))
- num_runs = len(results["all_values"])
- num_points = len(results["backward_scores"][0])
- use_points = int(0.6 * num_points)
-
- plt.subplot(1, 2, 1)
- values = np.array(results["backward_scores"])[:, :use_points]
- shaded_mean_std(values, color="b", label="By increasing shapley value")
-
- values = np.array(results["backward_scores_reversed"])[:, :use_points]
- shaded_mean_std(values, color="g", label="By decreasing shapley value")
-
- values = np.array(results["backward_random_scores"])[:, :use_points]
- shaded_mean_std(values, color="r", linestyle="--", label="At random")
-
- plt.ylabel(f'Score ({results.get("score_name")})')
- plt.xlabel("Points removed")
- plt.title(
- f"Effect of point removal. "
- f'MonteCarlo with {results.get("max_iterations")} iterations '
- f"over {num_runs} runs"
- )
- plt.legend()
-
- plt.subplot(1, 2, 2)
-
- values = np.array(results["forward_scores"])[:, :use_points]
- shaded_mean_std(values, color="b", label="By increasing shapley value")
-
- values = np.array(results["forward_scores_reversed"])[:, :use_points]
- shaded_mean_std(values, color="g", label="By decreasing shapley value")
-
- values = np.array(results["forward_random_scores"])[:, :use_points]
- shaded_mean_std(values, color="r", linestyle="--", label="At random")
-
- plt.ylabel(f'Score ({results.get("score_name")})')
- plt.xlabel("Points added")
- plt.title(
- f"Effect of point addition. "
- f'MonteCarlo with {results["max_iterations"]} iterations '
- f"over {num_runs} runs"
- )
- plt.legend()
-
- if filename:
- plt.savefig(filename, dpi=300)
-
-
def spearman_correlation(vv: List[OrderedDict], num_values: int, pvalue: float):
"""Simple matrix plots with spearman correlation for each pair in vv.
- :param vv: list of OrderedDicts with index: value. Spearman correlation
- is computed for the keys.
- :param num_values: Use only these many values from the data (from the start
- of the OrderedDicts)
- :param pvalue: correlation coefficients for which the p-value is below the
- threshold `pvalue/len(vv)` will be discarded.
+ Args:
+ vv: list of OrderedDicts with index: value. Spearman correlation
+ is computed for the keys.
+ num_values: Use only these many values from the data (from the start
+ of the OrderedDicts)
+ pvalue: correlation coefficients for which the p-value is below the
+ threshold `pvalue/len(vv)` will be discarded.
"""
r: np.ndarray = np.ndarray((len(vv), len(vv)))
p: np.ndarray = np.ndarray((len(vv), len(vv)))
@@ -170,22 +102,25 @@ def plot_shapley(
df: pd.DataFrame,
*,
level: float = 0.05,
- ax: plt.Axes = None,
- title: str = None,
- xlabel: str = None,
- ylabel: str = None,
+ ax: Optional[plt.Axes] = None,
+ title: Optional[str] = None,
+ xlabel: Optional[str] = None,
+ ylabel: Optional[str] = None,
) -> plt.Axes:
- """Plots the shapley values, as returned from
- :func:`~pydvl.value.shapley.common.compute_shapley_values`, with error bars
+ r"""Plots the shapley values, as returned from
+ [compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values], with error bars
corresponding to an $\alpha$-level confidence interval.
- :param df: dataframe with the shapley values
- :param level: confidence level for the error bars
- :param ax: axes to plot on or None if a new subplots should be created
- :param title: string, title of the plot
- :param xlabel: string, x label of the plot
- :param ylabel: string, y label of the plot
- :return: the axes created or used
+ Args:
+ df: dataframe with the shapley values
+ level: confidence level for the error bars
+ ax: axes to plot on or None if a new subplots should be created
+ title: string, title of the plot
+ xlabel: string, x label of the plot
+ ylabel: string, y label of the plot
+
+ Returns:
+ The axes created or used
"""
if ax is None:
_, ax = plt.subplots()
@@ -204,11 +139,12 @@ def plot_influence_distribution_by_label(
influences: NDArray[np.float_], labels: NDArray[np.float_], title_extra: str = ""
):
"""Plots the histogram of the influence that all samples in the training set
- have over a single sample index, separated by labels.
+ have over a single sample index, separated by labels.
- :param influences: array of influences (training samples x test samples)
- :param labels: labels for the training set.
- :param title_extra:
+ Args:
+ influences: array of influences (training samples x test samples)
+ labels: labels for the training set.
+ title_extra:
"""
_, ax = plt.subplots()
unique_labels = np.unique(labels)
diff --git a/src/pydvl/reporting/scores.py b/src/pydvl/reporting/scores.py
index 6e562b730..b12e52248 100644
--- a/src/pydvl/reporting/scores.py
+++ b/src/pydvl/reporting/scores.py
@@ -20,12 +20,15 @@ def compute_removal_score(
r"""Fits model and computes score on the test set after incrementally removing
a percentage of data points from the training set, based on their values.
- :param u: Utility object with model, data, and scoring function.
- :param values: Data values of data instances in the training set.
- :param percentages: Sequence of removal percentages.
- :param remove_best: If True, removes data points in order of decreasing valuation.
- :param progress: If True, display a progress bar.
- :return: Dictionary that maps the percentages to their respective scores.
+ Args:
+ u: Utility object with model, data, and scoring function.
+ values: Data values of data instances in the training set.
+ percentages: Sequence of removal percentages.
+ remove_best: If True, removes data points in order of decreasing valuation.
+ progress: If True, display a progress bar.
+
+ Returns:
+ Dictionary that maps the percentages to their respective scores.
"""
# Sanity checks
if np.any([x >= 1.0 or x < 0.0 for x in percentages]):
diff --git a/src/pydvl/utils/caching.py b/src/pydvl/utils/caching.py
index 94b60d9a4..8be6dda32 100644
--- a/src/pydvl/utils/caching.py
+++ b/src/pydvl/utils/caching.py
@@ -1,74 +1,67 @@
""" Distributed caching of functions.
-pyDVL uses `memcached `_ to cache utility values, through
-`pymemcache `_. This allows sharing
+pyDVL uses [memcached](https://memcached.org) to cache utility values, through
+[pymemcache](https://pypi.org/project/pymemcache). This allows sharing
evaluations across processes and nodes in a cluster. You can run memcached as a
-service, locally or remotely, see :ref:`caching setup`.
+service, locally or remotely, see [Setting up the cache](#setting-up-the-cache)
-.. warning::
+!!! Warning
+ Function evaluations are cached with a key based on the function's signature
+ and code. This can lead to undesired cache hits, see [Cache reuse](#cache-reuse).
- Function evaluations are cached with a key based on the function's signature
- and code. This can lead to undesired cache hits, see :ref:`cache reuse`.
+ Remember **not to reuse utility objects for different datasets**.
- Remember **not to reuse utility objects for different datasets**.
+# Configuration
-Configuration
--------------
-
-Memoization is disabled by default but can be enabled easily, see :ref:`caching setup`.
+Memoization is disabled by default but can be enabled easily,
+see [Setting up the cache](#setting-up-the-cache).
When enabled, it will be added to any callable used to construct a
-:class:`pydvl.utils.utility.Utility` (done with the decorator :func:`memcached`).
+[Utility][pydvl.utils.utility.Utility] (done with the decorator [@memcached][pydvl.utils.caching.memcached]).
Depending on the nature of the utility you might want to
enable the computation of a running average of function values, see
-:ref:`caching stochastic functions`. You can see all configuration options under
-:class:`~pydvl.utils.config.MemcachedConfig`.
-
-.. rubric:: Default configuration
-
-.. code-block:: python
-
- default_config = dict(
- server=('localhost', 11211),
- connect_timeout=1.0,
- timeout=0.1,
- # IMPORTANT! Disable small packet consolidation:
- no_delay=True,
- serde=serde.PickleSerde(pickle_version=PICKLE_VERSION)
- )
-
-.. _caching stochastic functions:
+[Usage with stochastic functions](#usaage-with-stochastic-functions).
+You can see all configuration options under [MemcachedConfig][pydvl.utils.config.MemcachedConfig].
-Usage with stochastic functions
--------------------------------
+## Default configuration
-In addition to standard memoization, the decorator :func:`memcached` can compute
-running average and standard error of repeated evaluations for the same input.
-This can be useful for stochastic functions with high variance (e.g. model
-training for small sample sizes), but drastically reduces the speed benefits of
-memoization.
+```python
+default_config = dict(
+ server=('localhost', 11211),
+ connect_timeout=1.0,
+ timeout=0.1,
+ # IMPORTANT! Disable small packet consolidation:
+ no_delay=True,
+ serde=serde.PickleSerde(pickle_version=PICKLE_VERSION)
+)
+```
-This behaviour can be activated with
-:attr:`~pydvl.utils.config.MemcachedConfig.allow_repeated_evaluations`.
+# Usage with stochastic functions
-.. _cache reuse:
+In addition to standard memoization, the decorator
+[memcached()][pydvl.utils.caching.memcached] can compute running average and
+standard error of repeated evaluations for the same input. This can be useful
+for stochastic functions with high variance (e.g. model training for small
+sample sizes), but drastically reduces the speed benefits of memoization.
-Cache reuse
------------
+This behaviour can be activated with the argument `allow_repeated_evaluations`
+to [memcached()][pydvl.utils.caching.memcached].
-When working directly with :func:`memcached`, it is essential to only cache pure
-functions. If they have any kind of state, either internal or external (e.g. a
-closure over some data that may change), then the cache will fail to notice this
-and the same value will be returned.
+# Cache reuse
-When a function is wrapped with :func:`memcached` for memoization, its signature
-(input and output names) and code are used as a key for the cache. Alternatively
-you can pass a custom value to be used as key with
+When working directly with [memcached()][pydvl.utils.caching.memcached], it is
+essential to only cache pure functions. If they have any kind of state, either
+internal or external (e.g. a closure over some data that may change), then the
+cache will fail to notice this and the same value will be returned.
-.. code-block:: python
+When a function is wrapped with [memcached()][pydvl.utils.caching.memcached] for
+memoization, its signature (input and output names) and code are used as a key
+for the cache. Alternatively you can pass a custom value to be used as key with
- cached_fun = memcached(**asdict(cache_options))(fun, signature=custom_signature)
+```python
+cached_fun = memcached(**asdict(cache_options))(fun, signature=custom_signature)
+```
-If you are running experiments with the same :class:`~pydvl.utils.utility.Utility`
+If you are running experiments with the same [Utility][pydvl.utils.utility.Utility]
but different datasets, this will lead to evaluations of the utility on new data
returning old values because utilities only use sample indices as arguments (so
there is no way to tell the difference between '1' for dataset A and '1' for
@@ -76,18 +69,17 @@
cache between runs, but the preferred one is to **use a different Utility
object for each dataset**.
-Unexpected cache misses
------------------------
+# Unexpected cache misses
Because all arguments to a function are used as part of the key for the cache,
sometimes one must exclude some of them. For example, If a function is going to
run across multiple processes and some reporting arguments are added (like a
`job_id` for logging purposes), these will be part of the signature and make the
functions distinct to the eyes of the cache. This can be avoided with the use of
-:attr:`~pydvl.utils.config.MemcachedConfig.ignore_args` in the configuration.
-
+[ignore_args][pydvl.utils.config.MemcachedConfig] in the configuration.
"""
+from __future__ import annotations
import logging
import socket
@@ -98,7 +90,7 @@
from hashlib import blake2b
from io import BytesIO
from time import time
-from typing import Callable, Dict, Iterable, Optional, TypeVar, cast
+from typing import Any, Callable, Dict, Iterable, Optional, TypeVar, cast
from cloudpickle import Pickler
from pymemcache import MemcacheUnexpectedCloseError
@@ -116,7 +108,16 @@
@dataclass
class CacheStats:
- """Statistics gathered by cached functions."""
+ """Statistics gathered by cached functions.
+
+ Attributes:
+ sets: number of times a value was set in the cache
+ misses: number of times a value was not found in the cache
+ hits: number of times a value was found in the cache
+ timeouts: number of times a timeout occurred
+ errors: number of times an error occurred
+ reconnects: number of times the client reconnected to the server
+ """
sets: int = 0
misses: int = 0
@@ -126,7 +127,14 @@ class CacheStats:
reconnects: int = 0
-def serialize(x):
+def serialize(x: Any) -> bytes:
+ """Serialize an object to bytes.
+ Args:
+ x: object to serialize.
+
+ Returns:
+ serialized object.
+ """
pickled_output = BytesIO()
pickler = Pickler(pickled_output, PICKLE_VERSION)
pickler.dump(x)
@@ -140,7 +148,7 @@ def memcached(
rtol_stderr: float = 0.1,
min_repetitions: int = 3,
ignore_args: Optional[Iterable[str]] = None,
-):
+) -> Callable[[Callable[..., T], bytes | None], Callable[..., T]]:
"""
Transparent, distributed memoization of function calls.
@@ -151,43 +159,45 @@ def memcached(
If the function is deterministic, i.e. same input corresponds to the same
exact output, set `allow_repeated_evaluations` to `False`. If instead the
function is stochastic (like the training of a model depending on random
- initializations), memcached allows to set a minimum number of evaluations
+ initializations), memcached() allows to set a minimum number of evaluations
to compute a running average, and a tolerance after which the function will
not be called anymore. In other words, the function will be recomputed
until the value has stabilized with a standard error smaller than
`rtol_stderr * running average`.
- .. warning::
-
- Do not cache functions with state! See :ref:`cache reuse`
-
- .. code-block:: python
- :caption: Example usage
-
- cached_fun = memcached(**asdict(cache_options))(heavy_computation)
-
- :param client_config: configuration for `pymemcache's Client()
- `_.
- Will be merged on top of the default configuration (see below).
- :param time_threshold: computations taking less time than this many seconds
- are not cached.
- :param allow_repeated_evaluations: If `True`, repeated calls to a function
- with the same arguments will be allowed and outputs averaged until the
- running standard deviation of the mean stabilises below
- `rtol_stderr * mean`.
- :param rtol_stderr: relative tolerance for repeated evaluations. More
- precisely, :func:`memcached` will stop evaluating the function once the
- standard deviation of the mean is smaller than `rtol_stderr * mean`.
- :param min_repetitions: minimum number of times that a function evaluation
- on the same arguments is repeated before returning cached values. Useful
- for stochastic functions only. If the model training is very noisy, set
- this number to higher values to reduce variance.
- :param ignore_args: Do not take these keyword arguments into account when
- hashing the wrapped function for usage as key in memcached. This allows
- sharing the cache among different jobs for the same experiment run if
- the callable happens to have "nuisance" parameters like "job_id" which
- do not affect the result of the computation.
- :return: A wrapped function
+ !!! Warning
+ Do not cache functions with state! See [Cache reuse](cache-reuse)
+
+ ??? Example
+ ```python
+ cached_fun = memcached(**asdict(cache_options))(heavy_computation)
+ ```
+
+ Args:
+ client_config: configuration for pymemcache's
+ [Client][pymemcache.client.base.Client].
+ Will be merged on top of the default configuration (see below).
+ time_threshold: computations taking less time than this many seconds are
+ not cached.
+ allow_repeated_evaluations: If `True`, repeated calls to a function
+ with the same arguments will be allowed and outputs averaged until the
+ running standard deviation of the mean stabilises below
+ `rtol_stderr * mean`.
+ rtol_stderr: relative tolerance for repeated evaluations. More precisely,
+ [memcached()][pydvl.utils.caching.memcached] will stop evaluating the function once the
+ standard deviation of the mean is smaller than `rtol_stderr * mean`.
+ min_repetitions: minimum number of times that a function evaluation
+ on the same arguments is repeated before returning cached values. Useful
+ for stochastic functions only. If the model training is very noisy, set
+ this number to higher values to reduce variance.
+ ignore_args: Do not take these keyword arguments into account when
+ hashing the wrapped function for usage as key in memcached. This allows
+ sharing the cache among different jobs for the same experiment run if
+ the callable happens to have "nuisance" parameters like `job_id` which
+ do not affect the result of the computation.
+
+ Returns:
+ A wrapped function
"""
if ignore_args is None:
diff --git a/src/pydvl/utils/config.py b/src/pydvl/utils/config.py
index 89ddd023f..b5a4a6743 100644
--- a/src/pydvl/utils/config.py
+++ b/src/pydvl/utils/config.py
@@ -9,44 +9,47 @@
__all__ = ["ParallelConfig", "MemcachedClientConfig", "MemcachedConfig"]
-@dataclass
+@dataclass(frozen=True)
class ParallelConfig:
"""Configuration for parallel computation backend.
- :param backend: Type of backend to use.
- Defaults to 'ray'
- :param address: Address of existing remote or local cluster to use.
- :param n_cpus_local: Number of CPUs to use when creating a local ray cluster.
- This has no effect when using an existing ray cluster.
- :param logging_level: Logging level for the parallel backend's worker.
+ Args:
+ backend: Type of backend to use. Defaults to 'joblib'
+ address: Address of existing remote or local cluster to use.
+ n_cpus_local: Number of CPUs to use when creating a local ray cluster.
+ This has no effect when using an existing ray cluster.
+ logging_level: Logging level for the parallel backend's worker.
+ wait_timeout: Timeout in seconds for waiting on futures.
"""
- backend: Literal["sequential", "ray"] = "ray"
+ backend: Literal["joblib", "ray"] = "joblib"
address: Optional[Union[str, Tuple[str, int]]] = None
n_cpus_local: Optional[int] = None
logging_level: int = logging.WARNING
+ wait_timeout: float = 1.0
def __post_init__(self) -> None:
+ # FIXME: this is specific to ray
if self.address is not None and self.n_cpus_local is not None:
raise ValueError("When `address` is set, `n_cpus_local` should be None.")
-@dataclass
+@dataclass(frozen=True)
class MemcachedClientConfig:
"""Configuration of the memcached client.
- :param server: A tuple of (IP|domain name, port).
- :param connect_timeout: How many seconds to wait before raising
- `ConnectionRefusedError` on failure to connect.
- :param timeout: seconds to wait for send or recv calls on the socket
- connected to memcached.
- :param no_delay: set the `TCP_NODELAY` flag, which may help with performance
- in some cases.
- :param serde: a serializer / deserializer ("serde"). The default
- `PickleSerde` should work in most cases. See `pymemcached's
- documentation
- `_
- for details.
+ Args:
+ server: A tuple of (IP|domain name, port).
+ connect_timeout: How many seconds to wait before raising
+ `ConnectionRefusedError` on failure to connect.
+ timeout: seconds to wait for send or recv calls on the socket
+ connected to memcached.
+ no_delay: set the `TCP_NODELAY` flag, which may help with performance
+ in some cases.
+ serde: a serializer / deserializer ("serde"). The default `PickleSerde`
+ should work in most cases. See [pymemcached's
+ documentation](https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.Client)
+ for details.
"""
server: Tuple[str, int] = ("localhost", 11211)
@@ -58,30 +61,30 @@ class MemcachedClientConfig:
@dataclass
class MemcachedConfig:
- """Configuration for :func:`~pydvl.utils.caching.memcached`, providing
+ """Configuration for [memcached()][pydvl.utils.caching.memcached], providing
memoization of function calls.
Instances of this class are typically used as arguments for the construction
- of a :class:`~pydvl.utils.utility.Utility`.
-
- :param client_config: Configuration for the connection to the memcached
- server.
- :param time_threshold: computations taking less time than this many seconds
- are not cached.
- :param allow_repeated_evaluations: If `True`, repeated calls to a function
- with the same arguments will be allowed and outputs averaged until the
- running standard deviation of the mean stabilises below
- `rtol_stderr * mean`.
- :param rtol_stderr: relative tolerance for repeated evaluations. More
- precisely, :func:`~pydvl.utils.caching.memcached` will stop evaluating
- the function once the standard deviation of the mean is smaller than
- `rtol_stderr * mean`.
- :param min_repetitions: minimum number of times that a function evaluation
- on the same arguments is repeated before returning cached values. Useful
- for stochastic functions only. If the model training is very noisy, set
- this number to higher values to reduce variance.
- :param ignore_args: Do not take these keyword arguments into account when
- hashing the wrapped function for usage as key in memcached.
+ of a [Utility][pydvl.utils.utility.Utility].
+
+ Args:
+ client_config: Configuration for the connection to the memcached server.
+ time_threshold: computations taking less time than this many seconds are
+ not cached.
+ allow_repeated_evaluations: If `True`, repeated calls to a function
+ with the same arguments will be allowed and outputs averaged until the
+ running standard deviation of the mean stabilises below
+ `rtol_stderr * mean`.
+ rtol_stderr: relative tolerance for repeated evaluations. More precisely,
+ [memcached()][pydvl.utils.caching.memcached] will stop evaluating
+ the function once the standard deviation of the mean is smaller than
+ `rtol_stderr * mean`.
+ min_repetitions: minimum number of times that a function evaluation
+ on the same arguments is repeated before returning cached values. Useful
+ for stochastic functions only. If the model training is very noisy, set
+ this number to higher values to reduce variance.
+ ignore_args: Do not take these keyword arguments into account when hashing
+ the wrapped function for usage as key in memcached.
"""
client_config: MemcachedClientConfig = field(default_factory=MemcachedClientConfig)
diff --git a/src/pydvl/utils/dataset.py b/src/pydvl/utils/dataset.py
index d3c6eadf7..12a123806 100644
--- a/src/pydvl/utils/dataset.py
+++ b/src/pydvl/utils/dataset.py
@@ -5,32 +5,28 @@
(the *utility*). This is typically the performance of the model on a test set
(as an approximation to its true expected performance). It is therefore convenient
to keep both the training data and the test data together to be passed around to
-methods in :mod:`~pydvl.value.shapley` and :mod:`~pydvl.value.least_core`.
-This is done with :class:`~pydvl.utils.dataset.Dataset`.
+methods in [shapley][pydvl.value.shapley] and [least_core][pydvl.value.least_core].
+This is done with [Dataset][pydvl.utils.dataset.Dataset].
This abstraction layer also seamlessly grouping data points together if one is
interested in computing their value as a group, see
-:class:`~pydvl.utils.dataset.GroupedDataset`.
+[GroupedDataset][pydvl.utils.dataset.GroupedDataset].
-Objects of both types are used to construct a :class:`~pydvl.utils.utility.Utility`
+Objects of both types are used to construct a [Utility][pydvl.utils.utility.Utility]
object.
"""
-
import logging
from collections import OrderedDict
-from pathlib import Path
-from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union
+from typing import Any, Iterable, List, Optional, Sequence, Tuple, Union
import numpy as np
import pandas as pd
from numpy.typing import NDArray
-from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
-from sklearn.preprocessing import MinMaxScaler
from sklearn.utils import Bunch, check_X_y
-__all__ = ["Dataset", "GroupedDataset", "load_spotify_dataset", "load_wine_dataset"]
+__all__ = ["Dataset", "GroupedDataset"]
logger = logging.getLogger(__name__)
@@ -57,19 +53,20 @@ def __init__(
):
"""Constructs a Dataset from data and labels.
- :param x_train: training data
- :param y_train: labels for training data
- :param x_test: test data
- :param y_test: labels for test data
- :param feature_names: name of the features of input data
- :param target_names: names of the features of target data
- :param data_names: names assigned to data points.
- For example, if the dataset is a time series, each entry can be a
- timestamp which can be referenced directly instead of using a row
- number.
- :param description: A textual description of the dataset.
- :param is_multi_output: set to ``False`` if labels are scalars, or to
- ``True`` if they are vectors of dimension > 1.
+ Args:
+ x_train: training data
+ y_train: labels for training data
+ x_test: test data
+ y_test: labels for test data
+ feature_names: name of the features of input data
+ target_names: names of the features of target data
+ data_names: names assigned to data points.
+ For example, if the dataset is a time series, each entry can be a
+ timestamp which can be referenced directly instead of using a row
+ number.
+ description: A textual description of the dataset.
+ is_multi_output: set to `False` if labels are scalars, or to
+ `True` if they are vectors of dimension > 1.
"""
self.x_train, self.y_train = check_X_y(
x_train, y_train, multi_output=is_multi_output
@@ -145,15 +142,18 @@ def get_training_data(
"""Given a set of indices, returns the training data that refer to those
indices.
- This is used mainly by :class:`~pydvl.utils.utility.Utility` to retrieve
+ This is used mainly by [Utility][pydvl.utils.utility.Utility] to retrieve
subsets of the data from indices. It is typically **not needed in
algorithms**.
- :param indices: Optional indices that will be used to select points
- from the training data. If ``None``, the entire training data will
- be returned.
- :return: If ``indices`` is not ``None``, the selected x and y arrays
- from the training data. Otherwise, the entire dataset.
+ Args:
+ indices: Optional indices that will be used to select points from
+ the training data. If `None`, the entire training data will be
+ returned.
+
+ Returns:
+ If `indices` is not `None`, the selected x and y arrays from the
+ training data. Otherwise, the entire dataset.
"""
if indices is None:
return self.x_train, self.y_train
@@ -170,19 +170,20 @@ def get_test_data(
we generally want to score the trained model on the entire test data.
Additionally, the way this method is used in the
- :class:`~pydvl.utils.utility.Utility` class, the passed indices will
+ [Utility][pydvl.utils.utility.Utility] class, the passed indices will
be those of the training data and would not work on the test data.
There may be cases where it is desired to use parts of the test data.
- In those cases, it is recommended to inherit from the :class:`Dataset`
- class and to override the :meth:`~Dataset.get_test_data` method.
+ In those cases, it is recommended to inherit from
+ [Dataset][pydvl.utils.dataset.Dataset] and override
+ [get_test_data()][pydvl.utils.dataset.Dataset.get_test_data].
For example, the following snippet shows how one could go about
mapping the training data indices into test data indices
- inside :meth:`~Dataset.get_test_data`:
-
- :Example:
+ inside [get_test_data()][pydvl.utils.dataset.Dataset.get_test_data]:
+ ??? Example
+ ```pycon
>>> from pydvl.utils import Dataset
>>> import numpy as np
>>> class DatasetWithTestDataIndices(Dataset):
@@ -200,12 +201,15 @@ class and to override the :meth:`~Dataset.get_test_data` method.
>>> indices = np.random.choice(dataset.indices, 30, replace=False)
>>> _ = dataset.get_training_data(indices)
>>> _ = dataset.get_test_data(indices)
+ ```
+ Args:
+ indices: Optional indices into the test data. This argument is
+ unused left for compatibility with
+ [get_training_data()][pydvl.utils.dataset.Dataset.get_training_data].
- :param indices: Optional indices into the test data. This argument
- is unused and is left as is to keep the same interface as
- :meth:`Dataset.get_training_data`.
- :return: The entire test data.
+ Returns:
+ The entire test data.
"""
return self.x_test, self.y_test
@@ -251,31 +255,38 @@ def from_sklearn(
stratify_by_target: bool = False,
**kwargs,
) -> "Dataset":
- """Constructs a :class:`Dataset` object from an
- :class:`sklearn.utils.Bunch`, as returned by the `load_*` functions in
- `sklearn toy datasets
- `_.
-
- :param data: sklearn dataset. The following attributes are supported
- - ``data``: covariates [required]
- - ``target``: target variables (labels) [required]
- - ``feature_names``: the feature names
- - ``target_names``: the target names
- - ``DESCR``: a description
- :param train_size: size of the training dataset. Used in
- `train_test_split`
- :param random_state: seed for train / test split
- :param stratify_by_target: If `True`, data is split in a stratified
- fashion, using the target variable as labels. Read more in
- `scikit-learn's user guide
- `.
- :param kwargs: Additional keyword arguments to pass to the
- :class:`Dataset` constructor. Use this to pass e.g. ``is_multi_output``.
- :return: Object with the sklearn dataset
-
- .. versionchanged:: 0.6.0
- Added kwargs to pass to the :class:`Dataset` constructor.
+ """Constructs a [Dataset][pydvl.utils.Dataset] object from a
+ [sklearn.utils.Bunch][sklearn.utils.Bunch], as returned by the `load_*`
+ functions in [scikit-learn toy datasets](https://scikit-learn.org/stable/datasets/toy_dataset.html).
+
+ ??? Example
+ ```pycon
+ >>> from pydvl.utils import Dataset
+ >>> from sklearn.datasets import load_boston
+ >>> dataset = Dataset.from_sklearn(load_boston())
+ ```
+
+ Args:
+ data: scikit-learn Bunch object. The following attributes are supported:
+
+ - `data`: covariates.
+ - `target`: target variables (labels).
+ - `feature_names` (**optional**): the feature names.
+ - `target_names` (**optional**): the target names.
+ - `DESCR` (**optional**): a description.
+ train_size: size of the training dataset. Used in `train_test_split`
+ random_state: seed for train / test split
+ stratify_by_target: If `True`, data is split in a stratified
+ fashion, using the target variable as labels. Read more in
+ [scikit-learn's user guide](https://scikit-learn.org/stable/modules/cross_validation.html#stratification).
+ kwargs: Additional keyword arguments to pass to the
+ [Dataset][pydvl.utils.Dataset] constructor. Use this to pass e.g. `is_multi_output`.
+
+ Returns:
+ Object with the sklearn dataset
+
+ !!! tip "Changed in version 0.6.0"
+ Added kwargs to pass to the [Dataset][pydvl.utils.Dataset] constructor.
"""
x_train, x_test, y_train, y_test = train_test_split(
data.data,
@@ -305,30 +316,36 @@ def from_arrays(
stratify_by_target: bool = False,
**kwargs,
) -> "Dataset":
- """Constructs a :class:`Dataset` object from X and y numpy arrays as
- returned by the `make_*` functions in `sklearn generated datasets
- `_.
-
- :param X: numpy array of shape (n_samples, n_features)
- :param y: numpy array of shape (n_samples,)
- :param train_size: size of the training dataset. Used in
- `train_test_split`
- :param random_state: seed for train / test split
- :param stratify_by_target: If `True`, data is split in a stratified
- fashion, using the y variable as labels. Read more in
- `sklearn's user guide
- `.
- :param kwargs: Additional keyword arguments to pass to the
- :class:`Dataset` constructor. Use this to pass e.g. ``feature_names``
- or ``target_names``.
- :return: Object with the passed X and y arrays split across training
- and test sets.
-
- .. versionadded:: 0.4.0
-
- .. versionchanged:: 0.6.0
- Added kwargs to pass to the :class:`Dataset` constructor.
+ """Constructs a [Dataset][pydvl.utils.Dataset] object from X and y numpy arrays as
+ returned by the `make_*` functions in [sklearn generated datasets](https://scikit-learn.org/stable/datasets/sample_generators.html).
+
+ ??? Example
+ ```pycon
+ >>> from pydvl.utils import Dataset
+ >>> from sklearn.datasets import make_regression
+ >>> X, y = make_regression()
+ >>> dataset = Dataset.from_arrays(X, y)
+ ```
+
+ Args:
+ X: numpy array of shape (n_samples, n_features)
+ y: numpy array of shape (n_samples,)
+ train_size: size of the training dataset. Used in `train_test_split`
+ random_state: seed for train / test split
+ stratify_by_target: If `True`, data is split in a stratified fashion,
+ using the y variable as labels. Read more in [sklearn's user
+ guide](https://scikit-learn.org/stable/modules/cross_validation.html#stratification).
+ kwargs: Additional keyword arguments to pass to the
+ [Dataset][pydvl.utils.Dataset] constructor. Use this to pass e.g. `feature_names`
+ or `target_names`.
+
+ Returns:
+ Object with the passed X and y arrays split across training and test sets.
+
+ !!! tip "New in version 0.4.0"
+
+ !!! tip "Changed in version 0.6.0"
+ Added kwargs to pass to the [Dataset][pydvl.utils.Dataset] constructor.
"""
x_train, x_test, y_train, y_test = train_test_split(
X,
@@ -360,25 +377,26 @@ def __init__(
as logical units. For instance, one can group by value of a categorical
feature, by bin into which a continuous feature falls, or by label.
- :param x_train: training data
- :param y_train: labels of training data
- :param x_test: test data
- :param y_test: labels of test data
- :param data_groups: Iterable of the same length as ``x_train`` containing
- a group label for each training data point. The label can be of any
- type, e.g. ``str`` or ``int``. Data points with the same label will
- then be grouped by this object and considered as one for effects of
- valuation.
- :param feature_names: names of the covariates' features.
- :param target_names: names of the labels or targets y
- :param group_names: names of the groups. If not provided, the labels
- from ``data_groups`` will be used.
- :param description: A textual description of the dataset
- :param kwargs: Additional keyword arguments to pass to the
- :class:`Dataset` constructor.
-
- .. versionchanged:: 0.6.0
- Added ``group_names`` and forwarding of ``kwargs``
+ Args:
+ x_train: training data
+ y_train: labels of training data
+ x_test: test data
+ y_test: labels of test data
+ data_groups: Iterable of the same length as `x_train` containing
+ a group label for each training data point. The label can be of any
+ type, e.g. `str` or `int`. Data points with the same label will
+ then be grouped by this object and considered as one for effects of
+ valuation.
+ feature_names: names of the covariates' features.
+ target_names: names of the labels or targets y
+ group_names: names of the groups. If not provided, the labels
+ from `data_groups` will be used.
+ description: A textual description of the dataset
+ kwargs: Additional keyword arguments to pass to the
+ [Dataset][pydvl.utils.Dataset] constructor.
+
+ !!! tip "Changed in version 0.6.0"
+ Added `group_names` and forwarding of `kwargs`
"""
super().__init__(
x_train=x_train,
@@ -428,9 +446,12 @@ def get_training_data(
) -> Tuple[NDArray, NDArray]:
"""Returns the data and labels of all samples in the given groups.
- :param indices: group indices whose elements to return. If ``None``,
- all data from all groups are returned.
- :return: Tuple of training data x and labels y.
+ Args:
+ indices: group indices whose elements to return. If `None`,
+ all data from all groups are returned.
+
+ Returns:
+ Tuple of training data x and labels y.
"""
if indices is None:
indices = self.indices
@@ -449,31 +470,41 @@ def from_sklearn(
data_groups: Optional[Sequence] = None,
**kwargs,
) -> "GroupedDataset":
- """Constructs a :class:`GroupedDataset` object from a scikit-learn bunch
- as returned by the `load_*` functions in `sklearn toy datasets
- `_ and groups
+ """Constructs a [GroupedDataset][pydvl.utils.GroupedDataset] object from a
+ [sklearn.utils.Bunch][sklearn.utils.Bunch] as returned by the `load_*` functions in
+ [scikit-learn toy datasets](https://scikit-learn.org/stable/datasets/toy_dataset.html) and groups
it.
- :param data: sklearn dataset. The following attributes are supported
- - ``data``: covariates [required]
- - ``target``: target variables (labels) [required]
- - ``feature_names``: the feature names
- - ``target_names``: the target names
- - ``DESCR``: a description
- :param train_size: size of the training dataset. Used in
- `train_test_split`.
- :param random_state: seed for train / test split.
- :param stratify_by_target: If ``True``, data is split in a stratified
- fashion, using the target variable as labels. Read more in
- `sklearn's user guide
- `.
- :param data_groups: an array holding the group index or name for each
- data point. The length of this array must be equal to the number of
- data points in the dataset.
- :param kwargs: Additional keyword arguments to pass to the
- :class:`Dataset` constructor.
- :return: Dataset with the selected sklearn data
+ ??? Example
+ ```pycon
+ >>> from sklearn.datasets import load_iris
+ >>> from pydvl.utils import GroupedDataset
+ >>> iris = load_iris()
+ >>> data_groups = iris.data[:, 0] // 0.5
+ >>> dataset = GroupedDataset.from_sklearn(iris, data_groups=data_groups)
+ ```
+
+ Args:
+ data: scikit-learn Bunch object. The following attributes are supported:
+
+ - `data`: covariates.
+ - `target`: target variables (labels).
+ - `feature_names` (**optional**): the feature names.
+ - `target_names` (**optional**): the target names.
+ - `DESCR` (**optional**): a description.
+ train_size: size of the training dataset. Used in `train_test_split`.
+ random_state: seed for train / test split.
+ stratify_by_target: If `True`, data is split in a stratified
+ fashion, using the target variable as labels. Read more in
+ [sklearn's user guide](https://scikit-learn.org/stable/modules/cross_validation.html#stratification).
+ data_groups: an array holding the group index or name for each
+ data point. The length of this array must be equal to the number of
+ data points in the dataset.
+ kwargs: Additional keyword arguments to pass to the
+ [Dataset][pydvl.utils.Dataset] constructor.
+
+ Returns:
+ Dataset with the selected sklearn data
"""
if data_groups is None:
raise ValueError(
@@ -505,33 +536,48 @@ def from_arrays(
data_groups: Optional[Sequence] = None,
**kwargs,
) -> "Dataset":
- """Constructs a :class:`GroupedDataset` object from X and y numpy arrays
- as returned by the `make_*` functions in `sklearn generated datasets
- `_.
-
- :param X: array of shape (n_samples, n_features)
- :param y: array of shape (n_samples,)
- :param train_size: size of the training dataset. Used in
- ``train_test_split``.
- :param random_state: seed for train / test split.
- :param stratify_by_target: If ``True``, data is split in a stratified
- fashion, using the y variable as labels. Read more in
- `sklearn's user guide
- `.
- :param data_groups: an array holding the group index or name for each
- data point. The length of this array must be equal to the number of
- data points in the dataset.
- :param kwargs: Additional keyword arguments that will be passed
- to the :class:`~pydvl.utils.dataset.Dataset` constructor.
-
- :return: Dataset with the passed X and y arrays split across training
- and test sets.
-
- .. versionadded:: 0.4.0
-
- .. versionchanged:: 0.6.0
- Added kwargs to pass to the :class:`Dataset` constructor.
+ """Constructs a [GroupedDataset][pydvl.utils.GroupedDataset] object from X and y numpy arrays
+ as returned by the `make_*` functions in
+ [scikit-learn generated datasets](https://scikit-learn.org/stable/datasets/sample_generators.html).
+
+ ??? Example
+ ```pycon
+ >>> from sklearn.datasets import make_classification
+ >>> from pydvl.utils import GroupedDataset
+ >>> X, y = make_classification(
+ ... n_samples=100,
+ ... n_features=4,
+ ... n_informative=2,
+ ... n_redundant=0,
+ ... random_state=0,
+ ... shuffle=False
+ ... )
+ >>> data_groups = X[:, 0] // 0.5
+ >>> dataset = GroupedDataset.from_arrays(X, y, data_groups=data_groups)
+ ```
+
+ Args:
+ X: array of shape (n_samples, n_features)
+ y: array of shape (n_samples,)
+ train_size: size of the training dataset. Used in `train_test_split`.
+ random_state: seed for train / test split.
+ stratify_by_target: If `True`, data is split in a stratified
+ fashion, using the y variable as labels. Read more in
+ [sklearn's user guide](https://scikit-learn.org/stable/modules/cross_validation.html#stratification).
+ data_groups: an array holding the group index or name for each data
+ point. The length of this array must be equal to the number of
+ data points in the dataset.
+ kwargs: Additional keyword arguments that will be passed to the
+ [Dataset][pydvl.utils.Dataset] constructor.
+
+ Returns:
+ Dataset with the passed X and y arrays split across training and
+ test sets.
+
+ !!! tip "New in version 0.4.0"
+
+ !!! tip "Changed in version 0.6.0"
+ Added kwargs to pass to the [Dataset][pydvl.utils.Dataset] constructor.
"""
if data_groups is None:
raise ValueError(
@@ -554,15 +600,29 @@ def from_arrays(
def from_dataset(
cls, dataset: Dataset, data_groups: Sequence[Any]
) -> "GroupedDataset":
- """Creates a :class:`GroupedDataset` object from the data a
- :class:`Dataset` object and a mapping of data groups.
-
- :param dataset: The original data.
- :param data_groups: An array holding the group index or name for each
- data point. The length of this array must be equal to the number of
- data points in the dataset.
- :return: A :class:`GroupedDataset` with the initial :class:`Dataset`
- grouped by data_groups.
+ """Creates a [GroupedDataset][pydvl.utils.GroupedDataset] object from the data a
+ [Dataset][pydvl.utils.Dataset] object and a mapping of data groups.
+
+ ??? Example
+ ```pycon
+ >>> import numpy as np
+ >>> from pydvl.utils import Dataset, GroupedDataset
+ >>> dataset = Dataset.from_arrays(
+ ... X=np.asarray([[1, 2], [3, 4], [5, 6], [7, 8]]),
+ ... y=np.asarray([0, 1, 0, 1]),
+ ... )
+ >>> dataset = GroupedDataset.from_dataset(dataset, data_groups=[0, 0, 1, 1])
+ ```
+
+ Args:
+ dataset: The original data.
+ data_groups: An array holding the group index or name for each data
+ point. The length of this array must be equal to the number of
+ data points in the dataset.
+
+ Returns:
+ A [GroupedDataset][pydvl.utils.GroupedDataset] with the initial
+ [Dataset][pydvl.utils.Dataset] grouped by data_groups.
"""
return cls(
x_train=dataset.x_train,
@@ -574,154 +634,3 @@ def from_dataset(
target_names=dataset.target_names,
description=dataset.description,
)
-
-
-def load_spotify_dataset(
- val_size: float,
- test_size: float,
- min_year: int = 2014,
- target_column: str = "popularity",
- random_state: int = 24,
-):
- """Loads (and downloads if not already cached) the spotify music dataset.
- More info on the dataset can be found at
- https://www.kaggle.com/datasets/mrmorj/dataset-of-songs-in-spotify.
-
- If this method is called within the CI pipeline, it will load a reduced
- version of the dataset for testing purposes.
-
- :param val_size: size of the validation set
- :param test_size: size of the test set
- :param min_year: minimum year of the returned data
- :param target_column: column to be returned as y (labels)
- :param random_state: fixes sklearn random seed
- :return: Tuple with 3 elements, each being a list sith [input_data, related_labels]
- """
- root_dir_path = Path(__file__).parent.parent.parent.parent
- file_path = root_dir_path / "data/top_hits_spotify_dataset.csv"
- if file_path.exists():
- data = pd.read_csv(file_path)
- else:
- url = "https://raw.githubusercontent.com/appliedAI-Initiative/pyDVL/develop/data/top_hits_spotify_dataset.csv"
- data = pd.read_csv(url)
- data.to_csv(file_path, index=False)
-
- data = data[data["year"] > min_year]
- data["genre"] = data["genre"].astype("category").cat.codes
- y = data[target_column]
- X = data.drop(target_column, axis=1)
- X, X_test, y, y_test = train_test_split(
- X, y, test_size=test_size, random_state=random_state
- )
- X_train, X_val, y_train, y_val = train_test_split(
- X, y, test_size=val_size, random_state=random_state
- )
- return [X_train, y_train], [X_val, y_val], [X_test, y_test]
-
-
-def load_wine_dataset(
- train_size: float, test_size: float, random_state: Optional[int] = None
-):
- """Loads the sklearn wine dataset. More info can be found at
- https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-recognition-dataset.
-
- :param train_size: fraction of points used for training dataset
- :param test_size: fraction of points used for test dataset
- :param random_state: fix random seed. If None, no random seed is set.
- :return: A tuple of four elements with the first three being input and
- target values in the form of matrices of shape (N,D) the first
- and (N,) the second. The fourth element is a list containing names of
- features of the model. (FIXME doc)
- """
- try:
- import torch
- except ImportError as e:
- raise RuntimeError(
- "PyTorch is required in order to load the Wine Dataset"
- ) from e
-
- wine_bunch = load_wine(as_frame=True)
- x, x_test, y, y_test = train_test_split(
- wine_bunch.data,
- wine_bunch.target,
- train_size=1 - test_size,
- random_state=random_state,
- )
- x_train, x_val, y_train, y_val = train_test_split(
- x, y, train_size=train_size / (1 - test_size), random_state=random_state
- )
- x_transformer = MinMaxScaler()
-
- transformed_x_train = x_transformer.fit_transform(x_train)
- transformed_x_test = x_transformer.transform(x_test)
-
- transformed_x_train = torch.tensor(transformed_x_train, dtype=torch.float)
- transformed_y_train = torch.tensor(y_train.to_numpy(), dtype=torch.long)
-
- transformed_x_test = torch.tensor(transformed_x_test, dtype=torch.float)
- transformed_y_test = torch.tensor(y_test.to_numpy(), dtype=torch.long)
-
- transformed_x_val = x_transformer.transform(x_val)
- transformed_x_val = torch.tensor(transformed_x_val, dtype=torch.float)
- transformed_y_val = torch.tensor(y_val.to_numpy(), dtype=torch.long)
- return (
- (transformed_x_train, transformed_y_train),
- (transformed_x_val, transformed_y_val),
- (transformed_x_test, transformed_y_test),
- wine_bunch.feature_names,
- )
-
-
-def synthetic_classification_dataset(
- mus: np.ndarray,
- sigma: float,
- num_samples: int,
- train_size: float,
- test_size: float,
- random_seed=None,
-) -> Tuple[Tuple[Any, Any], Tuple[Any, Any], Tuple[Any, Any]]:
- """Sample from a uniform Gaussian mixture model.
-
- :param mus: 2d-matrix [CxD] with the means of the components in the rows.
- :param sigma: Standard deviation of each dimension of each component.
- :param num_samples: The number of samples to generate.
- :param train_size: fraction of points used for training dataset
- :param test_size: fraction of points used for test dataset
- :param random_seed: fix random seed. If None, no random seed is set.
- :returns: A tuple of matrix x of shape [NxD] and target vector y of shape [N].
- """
- num_features = mus.shape[1]
- num_classes = mus.shape[0]
- gaussian_cov = sigma * np.eye(num_features)
- gaussian_chol = np.linalg.cholesky(gaussian_cov)
- y = np.random.randint(num_classes, size=num_samples)
- x = (
- np.einsum(
- "ij,kj->ki",
- gaussian_chol,
- np.random.normal(size=[num_samples, num_features]),
- )
- + mus[y]
- )
- x, x_test, y, y_test = train_test_split(
- x, y, train_size=1 - test_size, random_state=random_seed
- )
- x_train, x_val, y_train, y_val = train_test_split(
- x, y, train_size=train_size / (1 - test_size), random_state=random_seed
- )
- return (x_train, y_train), (x_val, y_val), (x_test, y_test)
-
-
-def decision_boundary_fixed_variance_2d(
- mu_1: np.ndarray, mu_2: np.ndarray
-) -> Callable[[np.ndarray], np.ndarray]:
- """
- Closed-form solution for decision boundary dot(a, b) + b = 0 with fixed variance.
- :param mu_1: First mean.
- :param mu_2: Second mean.
- :returns: A callable which converts a continuous line (-infty, infty) to the decision boundary in feature space.
- """
- a = np.asarray([[0, 1], [-1, 0]]) @ (mu_2 - mu_1)
- b = (mu_1 + mu_2) / 2
- a = a.reshape([1, -1])
- return lambda z: z.reshape([-1, 1]) * a + b # type: ignore
diff --git a/src/pydvl/utils/functional.py b/src/pydvl/utils/functional.py
new file mode 100644
index 000000000..879068b9c
--- /dev/null
+++ b/src/pydvl/utils/functional.py
@@ -0,0 +1,108 @@
+"""
+Supporting utilities for manipulating arguments of functions.
+"""
+
+from __future__ import annotations
+
+import inspect
+from functools import partial
+from typing import Callable, Set, Union
+
+__all__ = ["maybe_add_argument"]
+
+
+def _accept_additional_argument(*args, fun: Callable, arg: str, **kwargs):
+ """Calls the given function with the given positional and keyword arguments,
+ removing `arg` from the keyword arguments.
+
+ Args:
+ args: Positional arguments to pass to the function.
+ fun: The function to call.
+ arg: The name of the argument to remove.
+ kwargs: Keyword arguments to pass to the function.
+
+ Returns:
+ The return value of the function.
+ """
+ try:
+ del kwargs[arg]
+ except KeyError:
+ pass
+
+ return fun(*args, **kwargs)
+
+
+def free_arguments(fun: Union[Callable, partial]) -> Set[str]:
+ """Computes the set of free arguments for a function or
+ [functools.partial][] object.
+
+ All arguments of a function are considered free unless they are set by a
+ partial. For example, if `f = partial(g, a=1)`, then `a` is not a free
+ argument of `f`.
+
+ Args:
+ fun: A callable or a [partial object][].
+
+ Returns:
+ The set of free arguments of `fun`.
+
+ !!! tip "New in version 0.7.0"
+ """
+ args_set_by_partial: Set[str] = set()
+
+ def _rec_unroll_partial_function_args(g: Union[Callable, partial]) -> Callable:
+ """Stores arguments and recursively call itself if `g` is a
+ [functools.partial][] object. In the end, returns the initially wrapped
+ function.
+
+ This handles the construct `partial(_accept_additional_argument, *args,
+ **kwargs)` that is used by `maybe_add_argument`.
+
+ Args:
+ g: A partial or a function to unroll.
+
+ Returns:
+ Initial wrapped function.
+ """
+ nonlocal args_set_by_partial
+
+ if isinstance(g, partial) and g.func == _accept_additional_argument:
+ arg = g.keywords["arg"]
+ if arg in args_set_by_partial:
+ args_set_by_partial.remove(arg)
+ return _rec_unroll_partial_function_args(g.keywords["fun"])
+ elif isinstance(g, partial):
+ args_set_by_partial.update(g.keywords.keys())
+ args_set_by_partial.update(g.args)
+ return _rec_unroll_partial_function_args(g.func)
+ else:
+ return g
+
+ wrapped_fn = _rec_unroll_partial_function_args(fun)
+ sig = inspect.signature(wrapped_fn)
+ return args_set_by_partial | set(sig.parameters.keys())
+
+
+def maybe_add_argument(fun: Callable, new_arg: str) -> Callable:
+ """Wraps a function to accept the given keyword parameter if it doesn't
+ already.
+
+ If `fun` already takes a keyword parameter of name `new_arg`, then it is
+ returned as is. Otherwise, a wrapper is returned which merely ignores the
+ argument.
+
+ Args:
+ fun: The function to wrap
+ new_arg: The name of the argument that the new function will accept
+ (and ignore).
+
+ Returns:
+ A new function accepting one more keyword argument.
+
+ !!! tip "Changed in version 0.7.0"
+ Ability to work with partials.
+ """
+ if new_arg in free_arguments(fun):
+ return fun
+
+ return partial(_accept_additional_argument, fun=fun, arg=new_arg)
diff --git a/src/pydvl/utils/numeric.py b/src/pydvl/utils/numeric.py
index fbe8aabab..d8b1ce915 100644
--- a/src/pydvl/utils/numeric.py
+++ b/src/pydvl/utils/numeric.py
@@ -10,11 +10,10 @@
import numpy as np
from numpy.typing import NDArray
+from pydvl.utils.types import Seed
+
__all__ = [
"running_moments",
- "linear_regression_analytical_derivative_d2_theta",
- "linear_regression_analytical_derivative_d_theta",
- "linear_regression_analytical_derivative_d_x_d_theta",
"num_samples_permutation_hoeffding",
"powerset",
"random_matrix_with_condition_number",
@@ -31,16 +30,22 @@ def powerset(s: NDArray[T]) -> Iterator[Collection[T]]:
"""Returns an iterator for the power set of the argument.
Subsets are generated in sequence by growing size. See
- :func:`random_powerset` for random sampling.
-
- >>> import numpy as np
- >>> from pydvl.utils.numeric import powerset
- >>> list(powerset(np.array((1,2))))
- [(), (1,), (2,), (1, 2)]
-
- :param s: The set to use
- :return: An iterator
- :raises TypeError: If the argument is not an ``Iterable``.
+ [random_powerset()][pydvl.utils.numeric.random_powerset] for random
+ sampling.
+
+ ??? Example
+ ``` pycon
+ >>> import numpy as np
+ >>> from pydvl.utils.numeric import powerset
+ >>> list(powerset(np.array((1,2))))
+ [(), (1,), (2,), (1, 2)]
+ ```
+
+ Args:
+ s: The set to use
+
+ Returns:
+ An iterator over all subsets of the set of indices `s`.
"""
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
@@ -53,93 +58,127 @@ def num_samples_permutation_hoeffding(eps: float, delta: float, u_range: float)
be ε-close to the true quantity, if at least this many permutations are
sampled.
- :param eps: ε > 0
- :param delta: 0 < δ <= 1
- :param u_range: Range of the :class:`~pydvl.utils.utility.Utility` function
- :return: Number of _permutations_ required to guarantee ε-correct Shapley
- values with probability 1-δ
+ Args:
+ eps: ε > 0
+ delta: 0 < δ <= 1
+ u_range: Range of the [Utility][pydvl.utils.utility.Utility] function
+
+ Returns:
+ Number of _permutations_ required to guarantee ε-correct Shapley
+ values with probability 1-δ
"""
return int(np.ceil(np.log(2 / delta) * 2 * u_range**2 / eps**2))
-def random_subset(s: NDArray[T], q: float = 0.5) -> NDArray[T]:
+def random_subset(
+ s: NDArray[T],
+ q: float = 0.5,
+ seed: Optional[Seed] = None,
+) -> NDArray[T]:
"""Returns one subset at random from ``s``.
- :param s: set to sample from
- :param q: Sampling probability for elements. The default 0.5 yields a
- uniform distribution over the power set of s.
- :return: the subset
+ Args:
+ s: set to sample from
+ q: Sampling probability for elements. The default 0.5 yields a
+ uniform distribution over the power set of s.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ The subset
"""
- rng = np.random.default_rng()
+ rng = np.random.default_rng(seed)
selection = rng.uniform(size=len(s)) > q
return s[selection]
def random_powerset(
- s: NDArray[T], n_samples: Optional[int] = None, q: float = 0.5
+ s: NDArray[T],
+ n_samples: Optional[int] = None,
+ q: float = 0.5,
+ seed: Optional[Seed] = None,
) -> Generator[NDArray[T], None, None]:
"""Samples subsets from the power set of the argument, without
pre-generating all subsets and in no order.
- See `powerset()` if you wish to deterministically generate all subsets.
+ See [powerset][pydvl.utils.numeric.powerset] if you wish to deterministically generate all subsets.
To generate subsets, `len(s)` Bernoulli draws with probability `q` are
drawn. The default value of `q = 0.5` provides a uniform distribution over
the power set of `s`. Other choices can be used e.g. to implement
- :func:`Owen sampling
- `.
+ [owen_sampling_shapley][pydvl.value.shapley.owen.owen_sampling_shapley].
+
+ Args:
+ s: set to sample from
+ n_samples: if set, stop the generator after this many steps.
+ Defaults to `np.iinfo(np.int32).max`
+ q: Sampling probability for elements. The default 0.5 yields a
+ uniform distribution over the power set of s.
+ seed: Either an instance of a numpy random number generator or a seed for it.
- :param s: set to sample from
- :param n_samples: if set, stop the generator after this many steps.
- Defaults to `np.iinfo(np.int32).max`
- :param q: Sampling probability for elements. The default 0.5 yields a
- uniform distribution over the power set of s.
+ Returns:
+ Samples from the power set of `s`.
- :return: Samples from the power set of s
- :raises: TypeError: if the data `s` is not a NumPy array
- :raises: ValueError: if the element sampling probability is not in [0,1]
+ Raises:
+ ValueError: if the element sampling probability is not in [0,1]
"""
- if not isinstance(s, np.ndarray):
- raise TypeError("Set must be an NDArray")
if q < 0 or q > 1:
raise ValueError("Element sampling probability must be in [0,1]")
+ rng = np.random.default_rng(seed)
total = 1
if n_samples is None:
n_samples = np.iinfo(np.int32).max
while total <= n_samples:
- yield random_subset(s, q)
+ yield random_subset(s, q, seed=rng)
total += 1
-def random_subset_of_size(s: NDArray[T], size: int) -> NDArray[T]:
+def random_subset_of_size(
+ s: NDArray[T],
+ size: int,
+ seed: Optional[Seed] = None,
+) -> NDArray[T]:
"""Samples a random subset of given size uniformly from the powerset
- of ``s``.
+ of `s`.
- :param s: Set to sample from
- :param size: Size of the subset to generate
- :return: The subset
- :raises ValueError: If size > len(s)
+ Args:
+ s: Set to sample from
+ size: Size of the subset to generate
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ The subset
+
+ Raises
+ ValueError: If size > len(s)
"""
if size > len(s):
raise ValueError("Cannot sample subset larger than set")
- rng = np.random.default_rng()
+ rng = np.random.default_rng(seed)
return rng.choice(s, size=size, replace=False)
-def random_matrix_with_condition_number(n: int, condition_number: float) -> "NDArray":
+def random_matrix_with_condition_number(
+ n: int, condition_number: float, seed: Optional[Seed] = None
+) -> NDArray:
"""Constructs a square matrix with a given condition number.
Taken from:
- https://gist.github.com/bstellato/23322fe5d87bb71da922fbc41d658079#file-random_mat_condition_number-py
+ [https://gist.github.com/bstellato/23322fe5d87bb71da922fbc41d658079#file-random_mat_condition_number-py](
+ https://gist.github.com/bstellato/23322fe5d87bb71da922fbc41d658079#file-random_mat_condition_number-py)
Also see:
- https://math.stackexchange.com/questions/1351616/condition-number-of-ata.
+ [https://math.stackexchange.com/questions/1351616/condition-number-of-ata](
+ https://math.stackexchange.com/questions/1351616/condition-number-of-ata).
+
+ Args:
+ n: size of the matrix
+ condition_number: duh
+ seed: Either an instance of a numpy random number generator or a seed for it.
- :param n: size of the matrix
- :param condition_number: duh
- :return: An (n,n) matrix with the requested condition number.
+ Returns:
+ An (n,n) matrix with the requested condition number.
"""
if n < 2:
raise ValueError("Matrix size must be at least 2")
@@ -147,6 +186,7 @@ def random_matrix_with_condition_number(n: int, condition_number: float) -> "NDA
if condition_number <= 1:
raise ValueError("Condition number must be greater than 1")
+ rng = np.random.default_rng(seed)
log_condition_number = np.log(condition_number)
exp_vec = np.arange(
-log_condition_number / 4.0,
@@ -156,80 +196,13 @@ def random_matrix_with_condition_number(n: int, condition_number: float) -> "NDA
exp_vec = exp_vec[:n]
s: np.ndarray = np.exp(exp_vec)
S = np.diag(s)
- U, _ = np.linalg.qr((np.random.rand(n, n) - 5.0) * 200)
- V, _ = np.linalg.qr((np.random.rand(n, n) - 5.0) * 200)
+ U, _ = np.linalg.qr((rng.uniform(size=(n, n)) - 5.0) * 200)
+ V, _ = np.linalg.qr((rng.uniform(size=(n, n)) - 5.0) * 200)
P: np.ndarray = U.dot(S).dot(V.T)
P = P.dot(P.T)
return P
-def linear_regression_analytical_derivative_d_theta(
- linear_model: Tuple["NDArray", "NDArray"], x: "NDArray", y: "NDArray"
-) -> "NDArray":
- """
- :param linear_model: A tuple of np.ndarray' of shape [NxM] and [N] representing A and b respectively.
- :param x: A np.ndarray of shape [BxM].
- :param y: A np.nparray of shape [BxN].
- :returns: A np.ndarray of shape [Bx((N+1)*M)], where each row vector is [d_theta L(x, y), d_b L(x, y)]
- """
-
- A, b = linear_model
- n, m = list(A.shape)
- residuals = x @ A.T + b - y
- kron_product = np.expand_dims(residuals, axis=2) * np.expand_dims(x, axis=1)
- test_grads = np.reshape(kron_product, [-1, n * m])
- full_grads = np.concatenate((test_grads, residuals), axis=1)
- return full_grads / n # type: ignore
-
-
-def linear_regression_analytical_derivative_d2_theta(
- linear_model: Tuple["NDArray", "NDArray"], x: "NDArray", y: "NDArray"
-) -> "NDArray":
- """
- :param linear_model: A tuple of np.ndarray' of shape [NxM] and [N] representing A and b respectively.
- :param x: A np.ndarray of shape [BxM],
- :param y: A np.nparray of shape [BxN].
- :returns: A np.ndarray of shape [((N+1)*M)x((N+1)*M)], representing the Hessian. It gets averaged over all samples.
- """
- A, b = linear_model
- n, m = tuple(A.shape)
- d2_theta = np.einsum("ia,ib->iab", x, x)
- d2_theta = np.mean(d2_theta, axis=0)
- d2_theta = np.kron(np.eye(n), d2_theta)
- d2_b = np.eye(n)
- mean_x = np.mean(x, axis=0, keepdims=True)
- d_theta_d_b = np.kron(np.eye(n), mean_x)
- top_matrix = np.concatenate((d2_theta, d_theta_d_b.T), axis=1)
- bottom_matrix = np.concatenate((d_theta_d_b, d2_b), axis=1)
- full_matrix = np.concatenate((top_matrix, bottom_matrix), axis=0)
- return full_matrix / n # type: ignore
-
-
-def linear_regression_analytical_derivative_d_x_d_theta(
- linear_model: Tuple["NDArray", "NDArray"], x: "NDArray", y: "NDArray"
-) -> "NDArray":
- """
- :param linear_model: A tuple of np.ndarray of shape [NxM] and [N] representing A and b respectively.
- :param x: A np.ndarray of shape [BxM].
- :param y: A np.nparray of shape [BxN].
- :returns: A np.ndarray of shape [Bx((N+1)*M)xM], representing the derivative.
- """
-
- A, b = linear_model
- N, M = tuple(A.shape)
- residuals = x @ A.T + b - y
- B = len(x)
- outer_product_matrix = np.einsum("ab,ic->iacb", A, x)
- outer_product_matrix = np.reshape(outer_product_matrix, [B, M * N, M])
- tiled_identity = np.tile(np.expand_dims(np.eye(M), axis=0), [B, N, 1])
- outer_product_matrix += tiled_identity * np.expand_dims(
- np.repeat(residuals, M, axis=1), axis=2
- )
- b_part_derivative = np.tile(np.expand_dims(A, axis=0), [B, 1, 1])
- full_derivative = np.concatenate((outer_product_matrix, b_part_derivative), axis=1)
- return full_derivative / N # type: ignore
-
-
@overload
def running_moments(
previous_avg: float, previous_variance: float, count: int, new_value: float
@@ -256,23 +229,23 @@ def running_moments(
"""Uses Welford's algorithm to calculate the running average and variance of
a set of numbers.
- See `Welford's algorithm in wikipedia
- `_
+ See [Welford's algorithm in wikipedia](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm)
- .. warning::
- This is not really using Welford's correction for numerical stability
- for the variance. (FIXME)
+ !!! Warning
+ This is not really using Welford's correction for numerical stability
+ for the variance. (FIXME)
- .. todo::
- This could be generalised to arbitrary moments. See `this paper
- `_
+ !!! Todo
+ This could be generalised to arbitrary moments. See [this paper](https://www.osti.gov/biblio/1028931)
+ Args:
+ previous_avg: average value at previous step
+ previous_variance: variance at previous step
+ count: number of points seen so far
+ new_value: new value in the series of numbers
- :param previous_avg: average value at previous step
- :param previous_variance: variance at previous step
- :param count: number of points seen so far
- :param new_value: new value in the series of numbers
- :return: new_average, new_variance, calculated with the new count
+ Returns:
+ new_average, new_variance, calculated with the new count
"""
# broadcasted operations seem not to be supported by mypy, so we ignore the type
new_average = (new_value + count * previous_avg) / (count + 1) # type: ignore
@@ -288,10 +261,13 @@ def top_k_value_accuracy(
"""Computes the top-k accuracy for the estimated values by comparing indices
of the highest k values.
- :param y_true: Exact/true value
- :param y_pred: Predicted/estimated value
- :param k: Number of the highest values taken into account
- :return: Accuracy
+ Args:
+ y_true: Exact/true value
+ y_pred: Predicted/estimated value
+ k: Number of the highest values taken into account
+
+ Returns:
+ Accuracy
"""
top_k_exact_values = np.argsort(y_true)[-k:]
top_k_pred_values = np.argsort(y_pred)[-k:]
diff --git a/src/pydvl/utils/parallel/__init__.py b/src/pydvl/utils/parallel/__init__.py
index be9f612f2..76319b197 100644
--- a/src/pydvl/utils/parallel/__init__.py
+++ b/src/pydvl/utils/parallel/__init__.py
@@ -1,3 +1,44 @@
+"""
+This module provides a common interface to parallelization backends. The list of
+supported backends is [here][pydvl.utils.parallel.backends]. Backends can be
+selected with the `backend` argument of an instance of
+[ParallelConfig][pydvl.utils.config.ParallelConfig], as seen in the examples
+below.
+
+We use [executors][concurrent.futures.Executor] to submit tasks in parallel. The
+basic high-level pattern is
+
+```python
+from pydvl.utils.parallel import init_executo
+from pydvl.utils.config import ParallelConfig
+
+config = ParallelConfig(backend="ray")
+with init_executor(max_workers=1, config=config) as executor:
+ future = executor.submit(lambda x: x + 1, 1)
+ result = future.result()
+assert result == 2
+```
+
+Running a map-reduce job is also easy:
+
+```python
+from pydvl.utils.parallel import init_executor
+from pydvl.utils.config import ParallelConfig
+
+config = ParallelConfig(backend="joblib")
+with init_executor(config=config) as executor:
+ results = list(executor.map(lambda x: x + 1, range(5)))
+assert results == [1, 2, 3, 4, 5]
+```
+
+There is an alternative map-reduce implementation
+[MapReduceJob][pydvl.utils.parallel.map_reduce.MapReduceJob] which internally
+uses joblib's higher level API with `Parallel()`
+"""
from .backend import *
+from .backends import *
from .futures import *
from .map_reduce import *
+
+if len(BaseParallelBackend.BACKENDS) == 0:
+ raise ImportError("No parallel backend found. Please install ray or joblib.")
diff --git a/src/pydvl/utils/parallel/backend.py b/src/pydvl/utils/parallel/backend.py
index f9840d77d..0191c7be6 100644
--- a/src/pydvl/utils/parallel/backend.py
+++ b/src/pydvl/utils/parallel/backend.py
@@ -1,65 +1,66 @@
+from __future__ import annotations
+
+import logging
import os
-from abc import ABCMeta, abstractmethod
-from dataclasses import asdict
-from typing import (
- Any,
- Callable,
- Dict,
- Iterable,
- List,
- Optional,
- Tuple,
- Type,
- TypeVar,
- Union,
-)
-
-import ray
-from ray import ObjectRef
+from abc import abstractmethod
+from concurrent.futures import Executor
+from enum import Flag, auto
+from typing import Any, Callable, Type, TypeVar
from ..config import ParallelConfig
+from ..types import NoPublicConstructor
-__all__ = ["init_parallel_backend", "effective_n_jobs", "available_cpus"]
-
-T = TypeVar("T")
-
-_PARALLEL_BACKENDS: Dict[str, "Type[BaseParallelBackend]"] = {}
+__all__ = [
+ "init_parallel_backend",
+ "effective_n_jobs",
+ "available_cpus",
+ "BaseParallelBackend",
+ "CancellationPolicy",
+]
-class NoPublicConstructor(ABCMeta):
- """Metaclass that ensures a private constructor
+log = logging.getLogger(__name__)
- If a class uses this metaclass like this:
- class SomeClass(metaclass=NoPublicConstructor):
- pass
+class CancellationPolicy(Flag):
+ """Policy to use when cancelling futures after exiting an Executor.
- If you try to instantiate your class (`SomeClass()`),
- a `TypeError` will be thrown.
+ !!! Note
+ Not all backends support all policies.
- Taken almost verbatim from:
- https://stackoverflow.com/a/64682734
+ Attributes:
+ NONE: Do not cancel any futures.
+ PENDING: Cancel all pending futures, but not running ones.
+ RUNNING: Cancel all running futures, but not pending ones.
+ ALL: Cancel all pending and running futures.
"""
- def __call__(cls, *args, **kwargs):
- raise TypeError(
- f"{cls.__module__}.{cls.__qualname__} cannot be initialized directly. "
- "Use init_parallel_backend() instead."
- )
-
- def _create(cls, *args: Any, **kwargs: Any):
- return super().__call__(*args, **kwargs)
+ NONE = 0
+ PENDING = auto()
+ RUNNING = auto()
+ ALL = PENDING | RUNNING
class BaseParallelBackend(metaclass=NoPublicConstructor):
- """Abstract base class for all parallel backends"""
+ """Abstract base class for all parallel backends."""
- config: Dict[str, Any] = {}
+ config: dict[str, Any] = {}
+ BACKENDS: dict[str, "Type[BaseParallelBackend]"] = {}
def __init_subclass__(cls, *, backend_name: str, **kwargs):
- global _PARALLEL_BACKENDS
- _PARALLEL_BACKENDS[backend_name] = cls
super().__init_subclass__(**kwargs)
+ BaseParallelBackend.BACKENDS[backend_name] = cls
+
+ @classmethod
+ @abstractmethod
+ def executor(
+ cls,
+ max_workers: int | None = None,
+ config: ParallelConfig = ParallelConfig(),
+ cancel_futures: CancellationPolicy = CancellationPolicy.PENDING,
+ ) -> Executor:
+ """Returns an executor for the parallel backend."""
+ ...
@abstractmethod
def get(self, v: Any, *args, **kwargs):
@@ -91,149 +92,54 @@ def __repr__(self) -> str:
return f"<{self.__class__.__name__}: {self.config}>"
-class SequentialParallelBackend(BaseParallelBackend, backend_name="sequential"):
- """Class used to run jobs sequentially and locally.
-
- It shouldn't be initialized directly. You should instead call
- :func:`~pydvl.utils.parallel.backend.init_parallel_backend`.
-
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig` with number of cpus
- """
-
- def __init__(self, config: ParallelConfig):
- self.config = {}
-
- def get(self, v: Any, *args, **kwargs):
- return v
-
- def put(self, v: Any, *args, **kwargs) -> Any:
- return v
-
- def wrap(self, fun: Callable, **kwargs) -> Callable:
- """Wraps a function for sequential execution.
-
- This is a noop and kwargs are ignored."""
- return fun
-
- def wait(self, v: Any, *args, **kwargs) -> Tuple[list, list]:
- return v, []
-
- def _effective_n_jobs(self, n_jobs: int) -> int:
- return 1
-
-
-class RayParallelBackend(BaseParallelBackend, backend_name="ray"):
- """Class used to wrap ray to make it transparent to algorithms.
-
- It shouldn't be initialized directly. You should instead call
- :func:`~pydvl.utils.parallel.backend.init_parallel_backend`.
-
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig` with
- cluster address, number of cpus, etc.
- """
-
- def __init__(self, config: ParallelConfig):
- config_dict = asdict(config)
- config_dict.pop("backend")
- n_cpus_local = config_dict.pop("n_cpus_local")
- if config_dict.get("address", None) is None:
- config_dict["num_cpus"] = n_cpus_local
- self.config = config_dict
- if not ray.is_initialized():
- ray.init(**self.config)
-
- def get(
- self,
- v: Union[ObjectRef, Iterable[ObjectRef], T],
- *args,
- **kwargs,
- ) -> Union[T, Any]:
- timeout: Optional[float] = kwargs.get("timeout", None)
- if isinstance(v, ObjectRef):
- return ray.get(v, timeout=timeout)
- elif isinstance(v, Iterable):
- return [self.get(x, timeout=timeout) for x in v]
- else:
- return v
-
- def put(self, v: T, *args, **kwargs) -> Union["ObjectRef[T]", T]:
- try:
- return ray.put(v, **kwargs) # type: ignore
- except TypeError:
- return v # type: ignore
+def init_parallel_backend(config: ParallelConfig) -> BaseParallelBackend:
+ """Initializes the parallel backend and returns an instance of it.
- def wrap(self, fun: Callable, **kwargs) -> Callable:
- """Wraps a function as a ray remote.
-
- :param fun: the function to wrap
- :param kwargs: keyword arguments to pass to @ray.remote
-
- :return: The `.remote` method of the ray `RemoteFunction`.
- """
- if len(kwargs) > 0:
- return ray.remote(**kwargs)(fun).remote # type: ignore
- return ray.remote(fun).remote # type: ignore
-
- def wait(
- self,
- v: List["ObjectRef"],
- *args,
- **kwargs,
- ) -> Tuple[List[ObjectRef], List[ObjectRef]]:
- num_returns: int = kwargs.get("num_returns", 1)
- timeout: Optional[float] = kwargs.get("timeout", None)
- return ray.wait( # type: ignore
- v,
- num_returns=num_returns,
- timeout=timeout,
- )
+ The following example creates a parallel backend instance with the default
+ configuration, which is a local joblib backend.
- def _effective_n_jobs(self, n_jobs: int) -> int:
- if n_jobs < 0:
- ray_cpus = int(ray._private.state.cluster_resources()["CPU"]) # type: ignore
- eff_n_jobs = ray_cpus
- else:
- eff_n_jobs = n_jobs
- return eff_n_jobs
+ ??? Example
+ ``` python
+ config = ParallelConfig()
+ parallel_backend = init_parallel_backend(config)
+ ```
+ To create a parallel backend instance with a different backend, e.g. ray,
+ you can pass the backend name as a string to the constructor of
+ [ParallelConfig][pydvl.utils.config.ParallelConfig].
-def init_parallel_backend(
- config: ParallelConfig,
-) -> BaseParallelBackend:
- """Initializes the parallel backend and returns an instance of it.
+ ??? Example
+ ```python
+ config = ParallelConfig(backend="ray")
+ parallel_backend = init_parallel_backend(config)
+ ```
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig`
- with cluster address, number of cpus, etc.
+ Args:
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
- :Example:
-
- >>> from pydvl.utils.parallel.backend import init_parallel_backend
- >>> from pydvl.utils.config import ParallelConfig
- >>> config = ParallelConfig(backend="ray")
- >>> parallel_backend = init_parallel_backend(config)
- >>> parallel_backend
-
"""
try:
- parallel_backend_cls = _PARALLEL_BACKENDS[config.backend]
+ parallel_backend_cls = BaseParallelBackend.BACKENDS[config.backend]
except KeyError:
raise NotImplementedError(f"Unexpected parallel backend {config.backend}")
- parallel_backend = parallel_backend_cls._create(config)
- return parallel_backend # type: ignore
+ return parallel_backend_cls.create(config) # type: ignore
def available_cpus() -> int:
"""Platform-independent count of available cores.
FIXME: do we really need this or is `os.cpu_count` enough? Is this portable?
- :return: Number of cores, or 1 if it is not possible to determine.
+
+ Returns:
+ Number of cores, or 1 if it is not possible to determine.
"""
from platform import system
if system() != "Linux":
return os.cpu_count() or 1
- return len(os.sched_getaffinity(0))
+ return len(os.sched_getaffinity(0)) # type: ignore
def effective_n_jobs(n_jobs: int, config: ParallelConfig = ParallelConfig()) -> int:
@@ -242,13 +148,18 @@ def effective_n_jobs(n_jobs: int, config: ParallelConfig = ParallelConfig()) ->
This number may vary depending on the parallel backend and the resources
available.
- :param n_jobs: the number of jobs requested. If -1, the number of available
- CPUs is returned.
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig` with
- cluster address, number of cpus, etc.
- :return: the effective number of jobs, guaranteed to be >= 1.
- :raises RuntimeError: if the effective number of jobs returned by the backend
- is < 1.
+ Args:
+ n_jobs: the number of jobs requested. If -1, the number of available
+ CPUs is returned.
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig] with
+ cluster address, number of cpus, etc.
+
+ Returns:
+ The effective number of jobs, guaranteed to be >= 1.
+
+ Raises:
+ RuntimeError: if the effective number of jobs returned by the backend
+ is < 1.
"""
parallel_backend = init_parallel_backend(config)
if (eff_n_jobs := parallel_backend.effective_n_jobs(n_jobs)) < 1:
diff --git a/src/pydvl/utils/parallel/backends/__init__.py b/src/pydvl/utils/parallel/backends/__init__.py
new file mode 100644
index 000000000..758d8dab7
--- /dev/null
+++ b/src/pydvl/utils/parallel/backends/__init__.py
@@ -0,0 +1,6 @@
+from .joblib import *
+
+try:
+ from .ray import *
+except ImportError:
+ pass
diff --git a/src/pydvl/utils/parallel/backends/joblib.py b/src/pydvl/utils/parallel/backends/joblib.py
new file mode 100644
index 000000000..c75618fbf
--- /dev/null
+++ b/src/pydvl/utils/parallel/backends/joblib.py
@@ -0,0 +1,74 @@
+from __future__ import annotations
+
+from concurrent.futures import Executor
+from typing import Callable, TypeVar, cast
+
+import joblib
+from joblib import delayed
+from joblib.externals.loky import get_reusable_executor
+
+from pydvl.utils import ParallelConfig
+from pydvl.utils.parallel.backend import BaseParallelBackend, CancellationPolicy, log
+
+__all__ = ["JoblibParallelBackend"]
+
+T = TypeVar("T")
+
+
+class JoblibParallelBackend(BaseParallelBackend, backend_name="joblib"):
+ """Class used to wrap joblib to make it transparent to algorithms.
+
+ It shouldn't be initialized directly. You should instead call
+ [init_parallel_backend()][pydvl.utils.parallel.backend.init_parallel_backend].
+
+ Args:
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
+ """
+
+ def __init__(self, config: ParallelConfig):
+ self.config = {
+ "logging_level": config.logging_level,
+ "n_jobs": config.n_cpus_local,
+ }
+
+ @classmethod
+ def executor(
+ cls,
+ max_workers: int | None = None,
+ config: ParallelConfig = ParallelConfig(),
+ cancel_futures: CancellationPolicy = CancellationPolicy.NONE,
+ ) -> Executor:
+ if cancel_futures not in (CancellationPolicy.NONE, False):
+ log.warning(
+ "Cancellation of futures is not supported by the joblib backend"
+ )
+ return cast(Executor, get_reusable_executor(max_workers=max_workers))
+
+ def get(self, v: T, *args, **kwargs) -> T:
+ return v
+
+ def put(self, v: T, *args, **kwargs) -> T:
+ return v
+
+ def wrap(self, fun: Callable, **kwargs) -> Callable:
+ """Wraps a function as a joblib delayed.
+
+ Args:
+ fun: the function to wrap
+
+ Returns:
+ The delayed function.
+ """
+ return delayed(fun) # type: ignore
+
+ def wait(self, v: list[T], *args, **kwargs) -> tuple[list[T], list[T]]:
+ return v, []
+
+ def _effective_n_jobs(self, n_jobs: int) -> int:
+ if self.config["n_jobs"] is None:
+ maximum_n_jobs = joblib.effective_n_jobs()
+ else:
+ maximum_n_jobs = self.config["n_jobs"]
+ eff_n_jobs: int = min(joblib.effective_n_jobs(n_jobs), maximum_n_jobs)
+ return eff_n_jobs
diff --git a/src/pydvl/utils/parallel/backends/ray.py b/src/pydvl/utils/parallel/backends/ray.py
new file mode 100644
index 000000000..a0f0f6603
--- /dev/null
+++ b/src/pydvl/utils/parallel/backends/ray.py
@@ -0,0 +1,92 @@
+from __future__ import annotations
+
+from concurrent.futures import Executor
+from typing import Any, Callable, Iterable, TypeVar
+
+import ray
+from ray import ObjectRef
+from ray.util.joblib import register_ray
+
+from pydvl.utils import ParallelConfig
+from pydvl.utils.parallel.backend import BaseParallelBackend, CancellationPolicy
+
+__all__ = ["RayParallelBackend"]
+
+
+T = TypeVar("T")
+
+
+class RayParallelBackend(BaseParallelBackend, backend_name="ray"):
+ """Class used to wrap ray to make it transparent to algorithms.
+
+ It shouldn't be initialized directly. You should instead call
+ [init_parallel_backend()][pydvl.utils.parallel.backend.init_parallel_backend].
+
+ Args:
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
+ """
+
+ def __init__(self, config: ParallelConfig):
+ self.config = {"address": config.address, "logging_level": config.logging_level}
+ if self.config["address"] is None:
+ self.config["num_cpus"] = config.n_cpus_local
+ if not ray.is_initialized():
+ ray.init(**self.config)
+ # Register ray joblib backend
+ register_ray()
+
+ @classmethod
+ def executor(
+ cls,
+ max_workers: int | None = None,
+ config: ParallelConfig = ParallelConfig(),
+ cancel_futures: CancellationPolicy = CancellationPolicy.PENDING,
+ ) -> Executor:
+ from pydvl.utils.parallel.futures.ray import RayExecutor
+
+ return RayExecutor(max_workers, config=config, cancel_futures=cancel_futures) # type: ignore
+
+ def get(self, v: ObjectRef | Iterable[ObjectRef] | T, *args, **kwargs) -> T | Any:
+ timeout: float | None = kwargs.get("timeout", None)
+ if isinstance(v, ObjectRef):
+ return ray.get(v, timeout=timeout)
+ elif isinstance(v, Iterable):
+ return [self.get(x, timeout=timeout) for x in v]
+ else:
+ return v
+
+ def put(self, v: T, *args, **kwargs) -> ObjectRef[T] | T:
+ try:
+ return ray.put(v, **kwargs) # type: ignore
+ except TypeError:
+ return v # type: ignore
+
+ def wrap(self, fun: Callable, **kwargs) -> Callable:
+ """Wraps a function as a ray remote.
+
+ Args:
+ fun: the function to wrap
+ kwargs: keyword arguments to pass to @ray.remote
+
+ Returns:
+ The `.remote` method of the ray `RemoteFunction`.
+ """
+ if len(kwargs) > 0:
+ return ray.remote(**kwargs)(fun).remote # type: ignore
+ return ray.remote(fun).remote # type: ignore
+
+ def wait(
+ self, v: list[ObjectRef], *args, **kwargs
+ ) -> tuple[list[ObjectRef], list[ObjectRef]]:
+ num_returns: int = kwargs.get("num_returns", 1)
+ timeout: float | None = kwargs.get("timeout", None)
+ return ray.wait(v, num_returns=num_returns, timeout=timeout) # type: ignore
+
+ def _effective_n_jobs(self, n_jobs: int) -> int:
+ ray_cpus = int(ray._private.state.cluster_resources()["CPU"]) # type: ignore
+ if n_jobs < 0:
+ eff_n_jobs = ray_cpus
+ else:
+ eff_n_jobs = min(n_jobs, ray_cpus)
+ return eff_n_jobs
diff --git a/src/pydvl/utils/parallel/futures/__init__.py b/src/pydvl/utils/parallel/futures/__init__.py
index 93b94fc27..937eb2a95 100644
--- a/src/pydvl/utils/parallel/futures/__init__.py
+++ b/src/pydvl/utils/parallel/futures/__init__.py
@@ -1,9 +1,14 @@
-from concurrent.futures import Executor, ThreadPoolExecutor
+from concurrent.futures import Executor
from contextlib import contextmanager
from typing import Generator, Optional
from pydvl.utils.config import ParallelConfig
-from pydvl.utils.parallel.futures.ray import RayExecutor
+from pydvl.utils.parallel.backend import BaseParallelBackend
+
+try:
+ from pydvl.utils.parallel.futures.ray import RayExecutor
+except ImportError:
+ pass
__all__ = ["init_executor"]
@@ -14,41 +19,35 @@ def init_executor(
config: ParallelConfig = ParallelConfig(),
**kwargs,
) -> Generator[Executor, None, None]:
- """Initializes a futures executor based on the passed parallel configuration object.
-
- :param max_workers: Maximum number of concurrent tasks.
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig` with cluster address, number of cpus, etc.
- :param kwargs: Other optional parameter that will be passed to the executor.
-
- :Example:
-
- >>> from pydvl.utils.parallel.futures import init_executor
- >>> from pydvl.utils.config import ParallelConfig
- >>> config = ParallelConfig(backend="ray")
- >>> with init_executor(max_workers=3, config=config) as executor:
- ... pass
-
- >>> from pydvl.utils.parallel.futures import init_executor
- >>> with init_executor() as executor:
- ... future = executor.submit(lambda x: x + 1, 1)
- ... result = future.result()
- ...
- >>> print(result)
- 2
-
- >>> from pydvl.utils.parallel.futures import init_executor
- >>> with init_executor() as executor:
- ... results = list(executor.map(lambda x: x + 1, range(5)))
- ...
- >>> print(results)
- [1, 2, 3, 4, 5]
-
+ """Initializes a futures executor for the given parallel configuration.
+
+ Args:
+ max_workers: Maximum number of concurrent tasks.
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
+ kwargs: Other optional parameter that will be passed to the executor.
+
+
+ ??? Examples
+ ``` python
+ from pydvl.utils.parallel.futures import init_executor
+ from pydvl.utils.config import ParallelConfig
+ config = ParallelConfig(backend="ray")
+ with init_executor(max_workers=1, config=config) as executor:
+ future = executor.submit(lambda x: x + 1, 1)
+ result = future.result()
+ assert result == 2
+ ```
+ ``` python
+ from pydvl.utils.parallel.futures import init_executor
+ with init_executor() as executor:
+ results = list(executor.map(lambda x: x + 1, range(5)))
+ assert results == [1, 2, 3, 4, 5]
+ ```
"""
- if config.backend == "ray":
- with RayExecutor(max_workers, config=config, **kwargs) as executor:
- yield executor
- elif config.backend == "sequential":
- with ThreadPoolExecutor(1) as executor:
- yield executor
- else:
- raise NotImplementedError(f"Unexpected parallel type {config.backend}")
+ try:
+ cls = BaseParallelBackend.BACKENDS[config.backend]
+ with cls.executor(max_workers=max_workers, config=config, **kwargs) as e:
+ yield e
+ except KeyError:
+ raise NotImplementedError(f"Unexpected parallel backend {config.backend}")
diff --git a/src/pydvl/utils/parallel/futures/ray.py b/src/pydvl/utils/parallel/futures/ray.py
index 62ad8d26b..677320396 100644
--- a/src/pydvl/utils/parallel/futures/ray.py
+++ b/src/pydvl/utils/parallel/futures/ray.py
@@ -1,21 +1,22 @@
import logging
-import math
import queue
import sys
import threading
import time
import types
from concurrent.futures import Executor, Future
-from dataclasses import asdict
from typing import Any, Callable, Optional, TypeVar
from weakref import WeakSet, ref
import ray
+from deprecate import deprecated
from pydvl.utils import ParallelConfig
__all__ = ["RayExecutor"]
+from pydvl.utils.parallel import CancellationPolicy
+
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -25,46 +26,59 @@ class RayExecutor(Executor):
"""Asynchronous executor using Ray that implements the concurrent.futures API.
It shouldn't be initialized directly. You should instead call
- :func:`~pydvl.utils.parallel.futures.init_executor`.
-
- :param max_workers: Maximum number of concurrent tasks. Each task can
- request itself any number of vCPUs. You must ensure the product
- of this value and the n_cpus_per_job parameter passed to submit()
- does not exceed available cluster resources.
- If set to None, it will default to the total number of vCPUs
- in the ray cluster.
- :param config: instance of :class:`~pydvl.utils.config.ParallelConfig`
- with cluster address, number of cpus, etc.
- :param cancel_futures_on_exit: If ``True``, all futures will be cancelled
- when exiting the context created by using this class instance as a
- context manager. It will be ignored when calling :meth:`shutdown`
- directly.
+ [init_executor()][pydvl.utils.parallel.futures.init_executor].
+
+ Args:
+ max_workers: Maximum number of concurrent tasks. Each task can request
+ itself any number of vCPUs. You must ensure the product of this
+ value and the n_cpus_per_job parameter passed to submit() does not
+ exceed available cluster resources. If set to `None`, it will
+ default to the total number of vCPUs in the ray cluster.
+ config: instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
+ cancel_futures: Select which futures will be cancelled when exiting this
+ context manager. `Pending` is the default, which will cancel all
+ pending futures, but not running ones, as done by
+ [concurrent.futures.ProcessPoolExecutor][]. Additionally, `All`
+ cancels all pending and running futures, and `None` doesn't cancel
+ any. See [CancellationPolicy][pydvl.utils.parallel.backend.CancellationPolicy]
"""
+ @deprecated(
+ target=True,
+ deprecated_in="0.7.0",
+ remove_in="0.8.0",
+ args_mapping={"cancel_futures_on_exit": "cancel_futures"},
+ )
def __init__(
self,
max_workers: Optional[int] = None,
*,
config: ParallelConfig = ParallelConfig(),
- cancel_futures_on_exit: bool = True,
+ cancel_futures: CancellationPolicy = CancellationPolicy.ALL,
):
if config.backend != "ray":
raise ValueError(
- f"Parallel backend must be set to 'ray' and not {config.backend}"
+ f"Parallel backend must be set to 'ray' and not '{config.backend}'"
)
if max_workers is not None:
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")
max_workers = max_workers
- self.cancel_futures_on_exit = cancel_futures_on_exit
+ if isinstance(cancel_futures, CancellationPolicy):
+ self._cancel_futures = cancel_futures
+ else:
+ self._cancel_futures = (
+ CancellationPolicy.PENDING
+ if cancel_futures
+ else CancellationPolicy.NONE
+ )
+
+ self.config = {"address": config.address, "logging_level": config.logging_level}
+ if config.address is None:
+ self.config["num_cpus"] = config.n_cpus_local
- config_dict = asdict(config)
- config_dict.pop("backend")
- n_cpus_local = config_dict.pop("n_cpus_local")
- if config_dict.get("address", None) is None:
- config_dict["num_cpus"] = n_cpus_local
- self.config = config_dict
if not ray.is_initialized():
ray.init(**self.config)
@@ -73,7 +87,6 @@ def __init__(
self._max_workers = int(ray._private.state.cluster_resources()["CPU"])
self._shutdown = False
- self._cancel_pending_futures = False
self._shutdown_lock = threading.Lock()
self._queue_lock = threading.Lock()
self._work_queue: "queue.Queue[Optional[_WorkItem]]" = queue.Queue(
@@ -92,13 +105,17 @@ def submit(self, fn: Callable[..., T], *args, **kwargs) -> "Future[T]":
Schedules the callable to be executed as fn(\*args, \**kwargs)
and returns a Future instance representing the execution of the callable.
- :param fn: Callable.
- :param args: Positional arguments that will be passed to ``fn``.
- :param kwargs: Keyword arguments that will be passed to ``fn``.
- It can also optionally contain options for the ray remote function
- as a dictionary as the keyword argument `remote_function_options`.
- :return: A Future representing the given call.
- :raises RuntimeError: If a task is submitted after the executor has been shut down.
+ Args:
+ fn: Callable.
+ args: Positional arguments that will be passed to `fn`.
+ kwargs: Keyword arguments that will be passed to `fn`.
+ It can also optionally contain options for the ray remote function
+ as a dictionary as the keyword argument `remote_function_options`.
+ Returns:
+ A Future representing the given call.
+
+ Raises:
+ RuntimeError: If a task is submitted after the executor has been shut down.
"""
with self._shutdown_lock:
logger.debug("executor acquired shutdown lock")
@@ -120,12 +137,33 @@ def submit(self, fn: Callable[..., T], *args, **kwargs) -> "Future[T]":
self._start_work_item_manager_thread()
return future
- def shutdown(self, wait: bool = True, *, cancel_futures: bool = False) -> None:
+ def shutdown(
+ self, wait: bool = True, *, cancel_futures: Optional[bool] = None
+ ) -> None:
+ """Clean up the resources associated with the Executor.
+
+ This method tries to mimic the behaviour of
+ [Executor.shutdown][concurrent.futures.Executor.shutdown]
+ while allowing one more value for ``cancel_futures`` which instructs it
+ to use the [CancellationPolicy][pydvl.utils.parallel.backend.CancellationPolicy]
+ defined upon construction.
+
+ Args:
+ wait: Whether to wait for pending futures to finish.
+ cancel_futures: Overrides the executor's default policy for
+ cancelling futures on exit. If ``True``, all pending futures are
+ cancelled, and if ``False``, no futures are cancelled. If ``None``
+ (default), the executor's policy set at initialization is used.
+ """
logger.debug("executor shutting down")
with self._shutdown_lock:
logger.debug("executor acquired shutdown lock")
self._shutdown = True
- self._cancel_pending_futures = cancel_futures
+ self._cancel_futures = {
+ None: self._cancel_futures,
+ True: CancellationPolicy.PENDING,
+ False: CancellationPolicy.NONE,
+ }[cancel_futures]
if wait:
logger.debug("executor waiting for futures to finish")
@@ -157,18 +195,13 @@ def _start_work_item_manager_thread(self) -> None:
self._work_item_manager_thread.start()
def __exit__(self, exc_type, exc_val, exc_tb):
- """Exit the runtime context related to the RayExecutor object.
-
- This explicitly sets cancel_futures to be equal to cancel_futures_on_exit
- attribute set at instantiation time in the call to the `shutdown()` method
- which is different from the base Executor class' __exit__ method.
- """
- self.shutdown(cancel_futures=self.cancel_futures_on_exit)
+ """Exit the runtime context related to the RayExecutor object."""
+ self.shutdown()
return False
class _WorkItem:
- """Inspired by code from: concurrent.futures.thread"""
+ """Inspired by code from: [concurrent.futures.thread][]"""
def __init__(
self,
@@ -216,8 +249,8 @@ class _WorkItemManagerThread(threading.Thread):
"""Manages submitting the work items and throttling.
It runs in a local thread.
-
- :param executor: An instance of RayExecutor that owns
+ Args:
+ executor: An instance of RayExecutor that owns
this thread. A weakref will be owned by the manager as well as
references to internal objects used to introspect the state of
the executor.
@@ -321,37 +354,43 @@ def flag_executor_shutting_down(self):
executor = self.executor_reference()
with self.shutdown_lock:
logger.debug("work item manager thread acquired shutdown lock")
- if executor is not None:
- executor._shutdown = True
- # Cancel pending work items if requested.
- if executor._cancel_pending_futures:
- logger.debug("forcefully cancelling running futures")
- # We cancel the future's object references
- # We cannot cancel a running future object.
- for future in self.submitted_futures:
- ray.cancel(future.object_ref)
- # Drain all work items from the queues,
- # and then cancel their associated futures.
- # We empty the pending queue first.
- logger.debug("cancelling pending work items")
- while True:
- with self.queue_lock:
- try:
- work_item = self.pending_queue.get_nowait()
- except queue.Empty:
- break
- if work_item is not None:
- work_item.future.cancel()
- del work_item
- while True:
- with self.queue_lock:
- try:
- work_item = self.work_queue.get_nowait()
- except queue.Empty:
- break
- if work_item is not None:
- work_item.future.cancel()
- del work_item
- # Make sure we do this only once to not waste time looping
- # on running processes over and over.
- executor._cancel_pending_futures = False
+ if executor is None:
+ return
+ executor._shutdown = True
+
+ if executor._cancel_futures & CancellationPolicy.PENDING:
+ # Drain all work items from the queues,
+ # and then cancel their associated futures.
+ # We empty the pending queue first.
+ logger.debug("cancelling pending work items")
+ while True:
+ with self.queue_lock:
+ try:
+ work_item = self.pending_queue.get_nowait()
+ except queue.Empty:
+ break
+ if work_item is not None:
+ work_item.future.cancel()
+ del work_item
+ while True:
+ with self.queue_lock:
+ try:
+ work_item = self.work_queue.get_nowait()
+ except queue.Empty:
+ break
+ if work_item is not None:
+ work_item.future.cancel()
+ del work_item
+ # Make sure we do this only once to not waste time looping
+ # on running processes over and over.
+ executor._cancel_futures &= ~CancellationPolicy.PENDING
+
+ if executor._cancel_futures & CancellationPolicy.RUNNING:
+ logger.debug("forcefully cancelling running futures")
+ # We cancel the future's object references
+ # We cannot cancel a running future object.
+ for future in self.submitted_futures:
+ ray.cancel(future.object_ref) # type: ignore
+ # Make sure we do this only once to not waste time looping
+ # on running processes over and over.
+ executor._cancel_futures &= ~CancellationPolicy.RUNNING
diff --git a/src/pydvl/utils/parallel/map_reduce.py b/src/pydvl/utils/parallel/map_reduce.py
index c7fd3ff6a..149cd2752 100644
--- a/src/pydvl/utils/parallel/map_reduce.py
+++ b/src/pydvl/utils/parallel/map_reduce.py
@@ -1,149 +1,97 @@
-import inspect
-from functools import singledispatch, update_wrapper
+"""
+This module contains a wrapper around joblib's `Parallel()` class that makes it
+easy to run map-reduce jobs.
+
+!!! Deprecation notice
+ This interface might be deprecated or changed in a future release before 1.0
+
+"""
+from functools import reduce
from itertools import accumulate, repeat
-from typing import (
- Any,
- Callable,
- Dict,
- Generic,
- List,
- Optional,
- Sequence,
- TypeVar,
- Union,
-)
-
-import numpy as np
-import ray
+from typing import Any, Collection, Dict, Generic, List, Optional, TypeVar, Union
+
+from joblib import Parallel, delayed
+from numpy.random import SeedSequence
from numpy.typing import NDArray
-from ray import ObjectRef
from ..config import ParallelConfig
-from ..types import maybe_add_argument
+from ..functional import maybe_add_argument
+from ..types import MapFunction, ReduceFunction, Seed, ensure_seed_sequence
from .backend import init_parallel_backend
__all__ = ["MapReduceJob"]
T = TypeVar("T")
R = TypeVar("R")
-Identity = lambda x, *args, **kwargs: x
-
-MapFunction = Callable[..., R]
-ReduceFunction = Callable[[List[R]], R]
-ChunkifyInputType = Union[NDArray[T], Sequence[T], T]
-
-
-def _wrap_func_with_remote_args(func: Callable, *, timeout: Optional[float] = None):
- def wrapper(*args, **kwargs):
- args = list(args)
- for i, v in enumerate(args[:]):
- args[i] = _get_value(v, timeout=timeout)
- for k, v in kwargs.items():
- kwargs[k] = _get_value(v, timeout=timeout)
- return func(*args, **kwargs)
-
- try:
- inspect.signature(func)
- wrapper = update_wrapper(wrapper, func)
- except ValueError:
- # Doing it manually here because using update_wrapper from functools
- # on numpy functions doesn't work with ray for some unknown reason.
- wrapper.__name__ = func.__name__
- wrapper.__qualname__ = func.__qualname__
- wrapper.__doc__ = func.__doc__
- return wrapper
-
-@singledispatch
-def _get_value(v: Any, *, timeout: Optional[float] = None) -> Any:
- return v
-
-@_get_value.register
-def _(v: ObjectRef, *, timeout: Optional[float] = None) -> Any:
- return ray.get(v, timeout=timeout)
-
-
-@_get_value.register
-def _(v: np.ndarray, *, timeout: Optional[float] = None) -> NDArray:
- return v
-
-
-# Careful to use list as hint. The dispatch does not work with typing generics
-@_get_value.register
-def _(v: list, *, timeout: Optional[float] = None) -> List[Any]:
- return [_get_value(x, timeout=timeout) for x in v]
+def identity(x: Any, *args: Any, **kwargs: Any) -> Any:
+ return x
class MapReduceJob(Generic[T, R]):
- """Takes an embarrassingly parallel fun and runs it in ``n_jobs`` parallel
+ """Takes an embarrassingly parallel fun and runs it in `n_jobs` parallel
jobs, splitting the data evenly into a number of chunks equal to the number of jobs.
Typing information for objects of this class requires the type of the inputs
- that are split for ``map_func`` and the type of its output.
-
- :param inputs: The input that will be split and passed to `map_func`.
- if it's not a sequence object. It will be repeat ``n_jobs`` number of times.
- :param map_func: Function that will be applied to the input chunks in each job.
- :param reduce_func: Function that will be applied to the results of
- ``map_func`` to reduce them.
- :param map_kwargs: Keyword arguments that will be passed to ``map_func`` in
- each job. Alternatively, one can use ``itertools.partial``.
- :param reduce_kwargs: Keyword arguments that will be passed to ``reduce_func``
- in each job. Alternatively, one can use :func:`itertools.partial`.
- :param config: Instance of :class:`~pydvl.utils.config.ParallelConfig`
- with cluster address, number of cpus, etc.
- :param n_jobs: Number of parallel jobs to run. Does not accept 0
- :param timeout: Amount of time in seconds to wait for remote results before
- ... TODO
- :param max_parallel_tasks: Maximum number of jobs to start in parallel. Any
- tasks above this number won't be submitted to the backend before some
- are done. This is to avoid swamping the work queue. Note that tasks have
- a low memory footprint, so this is probably not a big concern, except
- in the case of an infinite stream (not the case for MapReduceJob). See
- https://docs.ray.io/en/latest/ray-core/patterns/limit-pending-tasks.html
-
- :Examples:
-
- A simple usage example with 2 jobs:
-
- >>> from pydvl.utils.parallel import MapReduceJob
- >>> import numpy as np
- >>> map_reduce_job: MapReduceJob[np.ndarray, np.ndarray] = MapReduceJob(
- ... np.arange(5),
- ... map_func=np.sum,
- ... reduce_func=np.sum,
- ... n_jobs=2,
- ... )
- >>> map_reduce_job()
- 10
-
- When passed a single object as input, it will be repeated for each job:
-
- >>> from pydvl.utils.parallel import MapReduceJob
- >>> import numpy as np
- >>> map_reduce_job: MapReduceJob[int, np.ndarray] = MapReduceJob(
- ... 5,
- ... map_func=lambda x: np.array([x]),
- ... reduce_func=np.sum,
- ... n_jobs=4,
- ... )
- >>> map_reduce_job()
- 20
+ that are split for `map_func` and the type of its output.
+
+ Args:
+ inputs: The input that will be split and passed to `map_func`.
+ if it's not a sequence object. It will be repeat `n_jobs` number of times.
+ map_func: Function that will be applied to the input chunks in each job.
+ reduce_func: Function that will be applied to the results of
+ `map_func` to reduce them.
+ map_kwargs: Keyword arguments that will be passed to `map_func` in
+ each job. Alternatively, one can use [functools.partial][].
+ reduce_kwargs: Keyword arguments that will be passed to `reduce_func`
+ in each job. Alternatively, one can use [functools.partial][].
+ config: Instance of [ParallelConfig][pydvl.utils.config.ParallelConfig]
+ with cluster address, number of cpus, etc.
+ n_jobs: Number of parallel jobs to run. Does not accept 0
+
+ ??? Example
+ A simple usage example with 2 jobs:
+
+ ``` pycon
+ >>> from pydvl.utils.parallel import MapReduceJob
+ >>> import numpy as np
+ >>> map_reduce_job: MapReduceJob[np.ndarray, np.ndarray] = MapReduceJob(
+ ... np.arange(5),
+ ... map_func=np.sum,
+ ... reduce_func=np.sum,
+ ... n_jobs=2,
+ ... )
+ >>> map_reduce_job()
+ 10
+ ```
+
+ When passed a single object as input, it will be repeated for each job:
+ ``` pycon
+ >>> from pydvl.utils.parallel import MapReduceJob
+ >>> import numpy as np
+ >>> map_reduce_job: MapReduceJob[int, np.ndarray] = MapReduceJob(
+ ... 5,
+ ... map_func=lambda x: np.array([x]),
+ ... reduce_func=np.sum,
+ ... n_jobs=2,
+ ... )
+ >>> map_reduce_job()
+ 10
+ ```
"""
def __init__(
self,
- inputs: Union[Sequence[T], T],
+ inputs: Union[Collection[T], T],
map_func: MapFunction[R],
- reduce_func: Optional[ReduceFunction[R]] = None,
+ reduce_func: ReduceFunction[R] = identity,
map_kwargs: Optional[Dict] = None,
reduce_kwargs: Optional[Dict] = None,
config: ParallelConfig = ParallelConfig(),
*,
n_jobs: int = -1,
timeout: Optional[float] = None,
- max_parallel_tasks: Optional[int] = None,
):
self.config = config
parallel_backend = init_parallel_backend(self.config)
@@ -151,114 +99,56 @@ def __init__(
self.timeout = timeout
- self._n_jobs = 1
# This uses the setter defined below
self.n_jobs = n_jobs
- self.max_parallel_tasks = max_parallel_tasks
-
self.inputs_ = inputs
- if reduce_func is None:
- reduce_func = Identity
-
- if map_kwargs is None:
- self.map_kwargs = dict()
- else:
- self.map_kwargs = {
- k: self.parallel_backend.put(v) for k, v in map_kwargs.items()
- }
+ self.map_kwargs = map_kwargs if map_kwargs is not None else dict()
+ self.reduce_kwargs = reduce_kwargs if reduce_kwargs is not None else dict()
- if reduce_kwargs is None:
- self.reduce_kwargs = dict()
- else:
- self.reduce_kwargs = {
- k: self.parallel_backend.put(v) for k, v in reduce_kwargs.items()
- }
-
- self._map_func = maybe_add_argument(map_func, "job_id")
+ self._map_func = reduce(maybe_add_argument, ["job_id", "seed"], map_func)
self._reduce_func = reduce_func
def __call__(
self,
+ seed: Optional[Union[Seed, SeedSequence]] = None,
) -> R:
- map_results = self.map(self.inputs_)
- reduce_results = self.reduce(map_results)
- return reduce_results
-
- def map(self, inputs: Union[Sequence[T], T]) -> List["ObjectRef[R]"]:
- """Splits the input data into chunks and calls a wrapped :func:`map_func` on them."""
- map_results: List["ObjectRef[R]"] = []
-
- map_func = self._wrap_function(self._map_func)
-
- total_n_jobs = 0
- total_n_finished = 0
-
- chunks = self._chunkify(inputs, n_chunks=self.n_jobs)
+ """
+ Runs the map-reduce job.
- for j, next_chunk in enumerate(chunks):
- result = map_func(next_chunk, job_id=j, **self.map_kwargs)
- map_results.append(result)
- total_n_jobs += 1
+ Args:
+ seed: Either an instance of a numpy random number generator or a seed for
+ it.
- total_n_finished = self._backpressure(
- map_results,
- n_dispatched=total_n_jobs,
- n_finished=total_n_finished,
- )
- return map_results
-
- def reduce(self, chunks: List["ObjectRef[R]"]) -> R:
- """Reduces the resulting chunks from a call to :meth:`~pydvl.utils.parallel.map_reduce.MapReduceJob.map`
- by passing them to a wrapped :func:`reduce_func`."""
- reduce_func = self._wrap_function(self._reduce_func)
-
- reduce_result = reduce_func(chunks, **self.reduce_kwargs)
- result = self.parallel_backend.get(reduce_result, timeout=self.timeout)
- return result # type: ignore
-
- def _wrap_function(self, func: Callable, **kwargs) -> Callable:
- """Wraps a function with a timeout and remote arguments and puts it on
- the remote backend.
-
- :param func: Function to wrap
- :param kwargs: Additional keyword arguments to pass to the backend
- wrapper. These are *not* arguments for the wrapped function.
- :return: Remote function that can be called with the same arguments as
- the wrapped function. Depending on the backend, this may simply be
- the function itself.
- """
- return self.parallel_backend.wrap(
- _wrap_func_with_remote_args(func, timeout=self.timeout), **kwargs
- )
-
- def _backpressure(
- self, jobs: List[ObjectRef], n_dispatched: int, n_finished: int
- ) -> int:
- """This is used to limit the number of concurrent tasks.
- If :attr:`~pydvl.utils.parallel.map_reduce.MapReduceJob.max_parallel_tasks` is None then this function
- is a no-op that simply returns 0.
-
- See https://docs.ray.io/en/latest/ray-core/patterns/limit-pending-tasks.html
- :param jobs:
- :param n_dispatched:
- :param n_finished:
- :return:
+ Returns:
+ The result of the reduce function.
"""
- if self.max_parallel_tasks is None:
- return 0
- while (n_in_flight := n_dispatched - n_finished) > self.max_parallel_tasks:
- wait_for_num_jobs = n_in_flight - self.max_parallel_tasks
- finished_jobs, _ = self.parallel_backend.wait(
- jobs,
- num_returns=wait_for_num_jobs,
- timeout=10, # FIXME make parameter?
+ if self.config.backend == "joblib":
+ backend = "loky"
+ else:
+ backend = self.config.backend
+ # In joblib the levels are reversed.
+ # 0 means no logging and 50 means log everything to stdout
+ verbose = 50 - self.config.logging_level
+ seed_seq = ensure_seed_sequence(seed)
+ with Parallel(backend=backend, n_jobs=self.n_jobs, verbose=verbose) as parallel:
+ chunks = self._chunkify(self.inputs_, n_chunks=self.n_jobs)
+ map_results: List[R] = parallel(
+ delayed(self._map_func)(
+ next_chunk, job_id=j, seed=seed, **self.map_kwargs
+ )
+ for j, (next_chunk, seed) in enumerate(
+ zip(chunks, seed_seq.spawn(len(chunks)))
+ )
)
- n_finished += len(finished_jobs)
- return n_finished
- def _chunkify(self, data: ChunkifyInputType, n_chunks: int) -> List["ObjectRef[T]"]:
+ reduce_results: R = self._reduce_func(map_results, **self.reduce_kwargs)
+ return reduce_results
+
+ def _chunkify(
+ self, data: Union[NDArray, Collection[T], T], n_chunks: int
+ ) -> List[Union[NDArray, Collection[T], T]]:
"""If data is a Sequence, it splits it into Sequences of size `n_chunks` for each job that we call chunks.
If instead data is an `ObjectRef` instance, then it yields it repeatedly `n_chunks` number of times.
"""
@@ -266,16 +156,14 @@ def _chunkify(self, data: ChunkifyInputType, n_chunks: int) -> List["ObjectRef[T
raise ValueError("Number of chunks should be greater than 0")
if n_chunks == 1:
- data_id = self.parallel_backend.put(data)
- return [data_id]
+ return [data]
try:
# This is used as a check to determine whether data is iterable or not
# if it's the former, then the value will be used to determine the chunk indices.
- n = len(data)
+ n = len(data) # type: ignore
except TypeError:
- data_id = self.parallel_backend.put(data)
- return list(repeat(data_id, times=n_chunks))
+ return list(repeat(data, times=n_chunks))
else:
# This is very much inspired by numpy's array_split function
# The difference is that it only uses built-in functions
@@ -294,8 +182,8 @@ def _chunkify(self, data: ChunkifyInputType, n_chunks: int) -> List["ObjectRef[T
for start_index, end_index in zip(chunk_indices[:-1], chunk_indices[1:]):
if start_index >= end_index:
break
- chunk_id = self.parallel_backend.put(data[start_index:end_index])
- chunks.append(chunk_id)
+ chunk = data[start_index:end_index] # type: ignore
+ chunks.append(chunk)
return chunks
diff --git a/src/pydvl/utils/progress.py b/src/pydvl/utils/progress.py
index 17e925005..52493f27a 100644
--- a/src/pydvl/utils/progress.py
+++ b/src/pydvl/utils/progress.py
@@ -1,3 +1,10 @@
+"""
+!!! Warning
+ This module is deprecated and will be removed in a future release.
+ It implements a wrapper for the [tqdm](https://tqdm.github.io/) progress bar
+ iterator for easy toggling, but this functionality is already provided by
+ the `disable` argument of `tqdm`.
+"""
import collections.abc
from typing import Iterable, Iterator, Union
@@ -57,9 +64,10 @@ def maybe_progress(
"""Returns either a tqdm progress bar or a mock object which wraps the
iterator as well, but ignores any accesses to methods or properties.
- :param it: the iterator to wrap
- :param display: set to True to return a tqdm bar
- :param kwargs: Keyword arguments that will be forwarded to tqdm
+ Args:
+ it: the iterator to wrap
+ display: set to True to return a tqdm bar
+ kwargs: Keyword arguments that will be forwarded to tqdm
"""
if isinstance(it, int):
it = range(it) # type: ignore
diff --git a/src/pydvl/utils/score.py b/src/pydvl/utils/score.py
index 933706d98..578ed76ae 100644
--- a/src/pydvl/utils/score.py
+++ b/src/pydvl/utils/score.py
@@ -1,16 +1,17 @@
"""
-This module provides a :class:`Scorer` class that wraps scoring functions with
-additional information.
+This module provides a [Scorer][pydvl.utils.score.Scorer] class that wraps
+scoring functions with additional information.
Scorers can be constructed in the same way as in scikit-learn: either from
known strings or from a callable. Greater values must be better. If they are not,
-a negated version can be used, see scikit-learn's `make_scorer()
-`_.
-
-:class:`Scorer` provides additional information about the scoring function, like
-its range and default values, which can be used by some data valuation
-methods (like :func:`~pydvl.value.shapley.gt.group_testing_shapley`) to estimate
-the number of samples required for a certain quality of approximation.
+a negated version can be used, see scikit-learn's
+[make_scorer()](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).
+
+[Scorer][pydvl.utils.score.Scorer] provides additional information about the
+scoring function, like its range and default values, which can be used by some
+data valuation methods (like
+[group_testing_shapley()][pydvl.value.shapley.gt.group_testing_shapley]) to
+estimate the number of samples required for a certain quality of approximation.
"""
from typing import Callable, Optional, Protocol, Tuple, Union
@@ -35,20 +36,20 @@ class Scorer:
"""A scoring callable that takes a model, data, and labels and returns a
scalar.
- :param scoring: Either a string or callable that can be passed to
- `get_scorer
- `_.
- :param default: score to be used when a model cannot be fit, e.g. when too
- little data is passed, or errors arise.
- :param range: numerical range of the score function. Some Monte Carlo
- methods can use this to estimate the number of samples required for a
- certain quality of approximation. If not provided, it can be read from
- the ``scoring`` object if it provides it, for instance if it was
- constructed with :func:`~pydvl.utils.types.compose_score`.
- :param name: The name of the scorer. If not provided, the name of the
- function passed will be used.
-
- .. versionadded:: 0.5.0
+ Args:
+ scoring: Either a string or callable that can be passed to
+ [get_scorer](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer.html).
+ default: score to be used when a model cannot be fit, e.g. when too
+ little data is passed, or errors arise.
+ range: numerical range of the score function. Some Monte Carlo
+ methods can use this to estimate the number of samples required for a
+ certain quality of approximation. If not provided, it can be read from
+ the `scoring` object if it provides it, for instance if it was
+ constructed with [compose_score()][pydvl.utils.score.compose_score].
+ name: The name of the scorer. If not provided, the name of the
+ function passed will be used.
+
+ !!! tip "New in version 0.5.0"
"""
@@ -92,18 +93,22 @@ def compose_score(
Useful to squash unbounded scores into ranges manageable by data valuation
methods.
- .. code-block:: python
- :caption: Example usage
+ Example:
+
+ ```python
+ sigmoid = lambda x: 1/(1+np.exp(-x))
+ compose_score(Scorer("r2"), sigmoid, range=(0,1), name="squashed r2")
+ ```
- sigmoid = lambda x: 1/(1+np.exp(-x))
- compose_score(Scorer("r2"), sigmoid, range=(0,1), name="squashed r2")
+ Args:
+ scorer: The object to be composed.
+ transformation: A scalar transformation
+ range: The range of the transformation. This will be used e.g. by
+ [Utility][pydvl.utils.utility.Utility] for the range of the composed.
+ name: A string representation for the composition, for `str()`.
- :param scorer: The object to be composed.
- :param transformation: A scalar transformation
- :param range: The range of the transformation. This will be used e.g. by
- :class:`~pydvl.utils.utility.Utility` for the range of the composed.
- :param name: A string representation for the composition, for `str()`.
- :return: The composite :class:`Scorer`.
+ Returns:
+ The composite [Scorer][pydvl.utils.score.Scorer].
"""
class CompositeScorer(Scorer):
diff --git a/src/pydvl/utils/status.py b/src/pydvl/utils/status.py
index 52b0df1b0..7e109111d 100644
--- a/src/pydvl/utils/status.py
+++ b/src/pydvl/utils/status.py
@@ -4,67 +4,61 @@
class Status(Enum):
"""Status of a computation.
- Statuses can be combined using bitwise or (``|``) and bitwise and (``&``) to
+ Statuses can be combined using bitwise or (`|`) and bitwise and (`&`) to
get the status of a combined computation. For example, if we have two
computations, one that has converged and one that has failed, then the
- combined status is ``Status.Converged | Status.Failed == Status.Converged``,
- but ``Status.Converged & Status.Failed == Status.Failed``.
+ combined status is `Status.Converged | Status.Failed == Status.Converged`,
+ but `Status.Converged & Status.Failed == Status.Failed`.
+ ## OR
- :OR:
-
- The result of bitwise or-ing two valuation statuses with ``|`` is given
+ The result of bitwise or-ing two valuation statuses with `|` is given
by the following table:
- +---+---+---+---+
| | P | C | F |
- +===+===+===+===+
+ |---|---|---|---|
| P | P | C | P |
- +---+---+---+---+
| C | C | C | C |
- +---+---+---+---+
| F | P | C | F |
- +---+---+---+---+
where P = Pending, C = Converged, F = Failed.
- :AND:
+ ## AND
- The result of bitwise and-ing two valuation statuses with ``&`` is given
+ The result of bitwise and-ing two valuation statuses with `&` is given
by the following table:
- +---+---+---+---+
| | P | C | F |
- +===+===+===+===+
+ |---|---|---|---|
| P | P | P | F |
- +---+---+---+---+
| C | P | C | F |
- +---+---+---+---+
| F | F | F | F |
- +---+---+---+---+
where P = Pending, C = Converged, F = Failed.
- :NOT:
-
- The result of bitwise negation of a Status with ``~`` is ``Failed`` if
- the status is ``Converged``, or ``Converged`` otherwise:
+ ## NOT
- ~P == C, ~C == F, ~F == C
+ The result of bitwise negation of a Status with `~` is `Failed` if
+ the status is `Converged`, or `Converged` otherwise:
- :Boolean casting:
+ ```
+ ~P == C, ~C == F, ~F == C
+ ```
- A Status evaluates to ``True`` iff it's ``Converged`` or ``Failed``:
+ ## Boolean casting
- bool(Status.Pending) == False
- bool(Status.Converged) == True
- bool(Status.Failed) == True
+ A Status evaluates to `True` iff it's `Converged` or `Failed`:
- .. warning::
- These truth values are **inconsistent** with the usual boolean operations.
- In particular the XOR of two instances of ``Status`` is not the same as
- the XOR of their boolean values.
+ ```python
+ bool(Status.Pending) == False
+ bool(Status.Converged) == True
+ bool(Status.Failed) == True
+ ```
+ !!! Warning
+ These truth values are **inconsistent** with the usual boolean
+ operations. In particular the XOR of two instances of `Status` is not
+ the same as the XOR of their boolean values.
"""
Pending = "pending"
diff --git a/src/pydvl/utils/types.py b/src/pydvl/utils/types.py
index 05f9f724e..5df91923d 100644
--- a/src/pydvl/utils/types.py
+++ b/src/pydvl/utils/types.py
@@ -1,12 +1,34 @@
""" This module contains types, protocols, decorators and generic function
transformations. Some of it probably belongs elsewhere.
"""
-import inspect
-from typing import Callable, Protocol, Type
+from __future__ import annotations
+from abc import ABCMeta
+from typing import Any, Optional, Protocol, TypeVar, Union, cast
+
+from numpy.random import Generator, SeedSequence
from numpy.typing import NDArray
-__all__ = ["SupervisedModel"]
+__all__ = [
+ "ensure_seed_sequence",
+ "MapFunction",
+ "NoPublicConstructor",
+ "ReduceFunction",
+ "Seed",
+ "SupervisedModel",
+]
+
+R = TypeVar("R", covariant=True)
+
+
+class MapFunction(Protocol[R]):
+ def __call__(self, *args: Any, **kwargs: Any) -> R:
+ ...
+
+
+class ReduceFunction(Protocol[R]):
+ def __call__(self, *args: Any, **kwargs: Any) -> R:
+ ...
class SupervisedModel(Protocol):
@@ -27,28 +49,53 @@ def score(self, x: NDArray, y: NDArray) -> float:
pass
-def maybe_add_argument(fun: Callable, new_arg: str):
- """Wraps a function to accept the given keyword parameter if it doesn't
- already.
+class NoPublicConstructor(ABCMeta):
+ """Metaclass that ensures a private constructor
- If `fun` already takes a keyword parameter of name `new_arg`, then it is
- returned as is. Otherwise, a wrapper is returned which merely ignores the
- argument.
+ If a class uses this metaclass like this:
- :param fun: The function to wrap
- :param new_arg: The name of the argument that the new function will accept
- (and ignore).
- :return: A new function accepting one more keyword argument.
- """
- params = inspect.signature(fun).parameters
- if new_arg in params.keys():
- return fun
-
- def wrapper(*args, **kwargs):
- try:
- del kwargs[new_arg]
- except KeyError:
+ class SomeClass(metaclass=NoPublicConstructor):
pass
- return fun(*args, **kwargs)
- return wrapper
+ If you try to instantiate your class (`SomeClass()`),
+ a `TypeError` will be thrown.
+
+ Taken almost verbatim from:
+ [https://stackoverflow.com/a/64682734](https://stackoverflow.com/a/64682734)
+ """
+
+ def __call__(cls, *args, **kwargs):
+ raise TypeError(
+ f"{cls.__module__}.{cls.__qualname__} cannot be initialized directly. "
+ "Use the proper factory instead."
+ )
+
+ def create(cls, *args: Any, **kwargs: Any):
+ return super().__call__(*args, **kwargs)
+
+
+Seed = Union[int, Generator]
+
+
+def ensure_seed_sequence(
+ seed: Optional[Union[Seed, SeedSequence]] = None
+) -> SeedSequence:
+ """
+ If the passed seed is a SeedSequence object then it is returned as is. If it is
+ a Generator the internal protected seed sequence from the generator gets extracted.
+ Otherwise, a new SeedSequence object is created from the passed (optional) seed.
+
+ Args:
+ seed: Either an int, a Generator object a SeedSequence object or None.
+
+ Returns:
+ A SeedSequence object.
+
+ !!! tip "New in version 0.7.0"
+ """
+ if isinstance(seed, SeedSequence):
+ return seed
+ elif isinstance(seed, Generator):
+ return cast(SeedSequence, seed.bit_generator.seed_seq) # type: ignore
+ else:
+ return SeedSequence(seed)
diff --git a/src/pydvl/utils/utility.py b/src/pydvl/utils/utility.py
index 5763edeea..096a31b82 100644
--- a/src/pydvl/utils/utility.py
+++ b/src/pydvl/utils/utility.py
@@ -1,18 +1,26 @@
"""
This module contains classes to manage and learn utility functions for the
-computation of values. Please see the documentation on :ref:`data valuation` for
-more information.
+computation of values. Please see the documentation on
+[Computing Data Values][computing-data-values] for more information.
-:class:`Utility` holds information about model, data and scoring function (the
-latter being what one usually understands under *utility* in the general
-definition of Shapley value). It is automatically cached across machines.
+[Utility][pydvl.utils.utility.Utility] holds information about model,
+data and scoring function (the latter being what one usually understands
+under *utility* in the general definition of Shapley value).
+It is automatically cached across machines.
-:class:`DataUtilityLearning` adds support for learning the scoring function
-to avoid repeated re-training of the model to compute the score.
+[DataUtilityLearning][pydvl.utils.utility.DataUtilityLearning] adds support
+for learning the scoring function to avoid repeated re-training
+of the model to compute the score.
This module also contains Utility classes for toy games that are used
for testing and for demonstration purposes.
+## References
+
+[^1]: Wang, T., Yang, Y. and Jia, R., 2021.
+ [Improving cooperative game theory-based data valuation via data utility learning](https://arxiv.org/abs/2107.06336).
+ arXiv preprint arXiv:2107.06336.
+
"""
import logging
import warnings
@@ -39,66 +47,78 @@ class Utility:
"""Convenience wrapper with configurable memoization of the scoring
function.
- An instance of ``Utility`` holds the triple of model, dataset and scoring
- function which determines the value of data points. This is mosly used for
- the computation of :ref:`Shapley values` and
- :ref:`Least Core values`.
+ An instance of `Utility` holds the triple of model, dataset and scoring
+ function which determines the value of data points. This is used for the
+ computation of
+ [all game-theoretic values][game-theoretical-methods]
+ like [Shapley values][pydvl.value.shapley] and
+ [the Least Core][pydvl.value.least_core].
The Utility expect the model to fulfill
- the :class:`pydvl.utils.types.SupervisedModel` interface i.e. to have
- ``fit()``, ``predict()``, and ``score()`` methods.
+ the [SupervisedModel][pydvl.utils.types.SupervisedModel] interface i.e.
+ to have `fit()`, `predict()`, and `score()` methods.
When calling the utility, the model will be
- `cloned `_
+ [cloned](https://scikit-learn.org/stable/modules/generated/sklearn.base
+ .clone.html)
if it is a Sci-Kit Learn model, otherwise a copy is created using
- ``deepcopy()``
- from the builtin `copy `_
- module.
+ `deepcopy()` from the builtin [copy](https://docs.python.org/3/
+ library/copy.html) module.
Since evaluating the scoring function requires retraining the model
and that can be time-consuming, this class wraps it and caches
the results of each execution. Caching is available both locally
and across nodes, but must always be enabled for your
- project first, see :ref:`how to set up the cache`.
-
- :param model: Any supervised model. Typical choices can be found at
- https://scikit-learn.org/stable/supervised_learning.html
- :param data: :class:`Dataset` or :class:`GroupedDataset`.
- :param scorer: A scoring object. If None, the ``score()`` method of the model
- will be used. See :mod:`~pydvl.utils.scorer` for ways to create
- and compose scorers, in particular how to set default values and ranges.
- For convenience, a string can be passed, which will be used to construct
- a :class:`~pydvl.utils.scorer.Scorer`.
- :param default_score: As a convenience when no ``scorer`` object is passed
- (where a default value can be provided), this argument also allows to set
- the default score for models that have not been fit, e.g. when too little
- data is passed, or errors arise.
- :param score_range: As with ``default_score``, this is a convenience argument
- for when no ``scorer`` argument is provided, to set the numerical range
- of the score function. Some Monte Carlo methods can use this to estimate
- the number of samples required for a certain quality of approximation.
- :param catch_errors: set to ``True`` to catch the errors when fit() fails.
- This could happen in several steps of the pipeline, e.g. when too little
- training data is passed, which happens often during Shapley value
- calculations. When this happens, the :attr:`default_score` is returned
- as a score and computation continues.
- :param show_warnings: Set to ``False`` to suppress warnings thrown by
- ``fit()``.
- :param enable_cache: If ``True``, use memcached for memoization.
- :param cache_options: Optional configuration object for memcached.
- :param clone_before_fit: If True, the model will be cloned before calling
- ``fit()``.
-
- :Example:
-
- >>> from pydvl.utils import Utility, DataUtilityLearning, Dataset
- >>> from sklearn.linear_model import LinearRegression, LogisticRegression
- >>> from sklearn.datasets import load_iris
- >>> dataset = Dataset.from_sklearn(load_iris(), random_state=16)
- >>> u = Utility(LogisticRegression(random_state=16), dataset)
- >>> u(dataset.indices)
- 0.9
+ project first, see [Setting up the cache][setting-up-the-cache].
+
+ Attributes:
+ model: The supervised model.
+ data: An object containing the split data.
+ scorer: A scoring function. If None, the `score()` method of the model
+ will be used. See [score][pydvl.utils.score] for ways to create
+ and compose scorers, in particular how to set default values and
+ ranges.
+
+ Args:
+ model: Any supervised model. Typical choices can be found in the
+ [sci-kit learn documentation][https://scikit-learn.org/stable/supervised_learning.html].
+ data: [Dataset][pydvl.utils.dataset.Dataset]
+ or [GroupedDataset][pydvl.utils.dataset.GroupedDataset] instance.
+ scorer: A scoring object. If None, the `score()` method of the model
+ will be used. See [score][pydvl.utils.score] for ways to create
+ and compose scorers, in particular how to set default values and ranges.
+ For convenience, a string can be passed, which will be used to construct
+ a [Scorer][pydvl.utils.score.Scorer].
+ default_score: As a convenience when no `scorer` object is passed
+ (where a default value can be provided), this argument also allows to set
+ the default score for models that have not been fit, e.g. when too little
+ data is passed, or errors arise.
+ score_range: As with `default_score`, this is a convenience argument for
+ when no `scorer` argument is provided, to set the numerical range
+ of the score function. Some Monte Carlo methods can use this to
+ estimate the number of samples required for a certain quality of
+ approximation.
+ catch_errors: set to `True` to catch the errors when `fit()` fails. This
+ could happen in several steps of the pipeline, e.g. when too little
+ training data is passed, which happens often during Shapley value
+ calculations. When this happens, the `default_score` is returned as
+ a score and computation continues.
+ show_warnings: Set to `False` to suppress warnings thrown by `fit()`.
+ enable_cache: If `True`, use memcached for memoization.
+ cache_options: Optional configuration object for memcached.
+ clone_before_fit: If `True`, the model will be cloned before calling
+ `fit()`.
+
+ ??? Example
+ ``` pycon
+ >>> from pydvl.utils import Utility, DataUtilityLearning, Dataset
+ >>> from sklearn.linear_model import LinearRegression, LogisticRegression
+ >>> from sklearn.datasets import load_iris
+ >>> dataset = Dataset.from_sklearn(load_iris(), random_state=16)
+ >>> u = Utility(LogisticRegression(random_state=16), dataset)
+ >>> u(dataset.indices)
+ 0.9
+ ```
"""
@@ -152,6 +172,11 @@ def _initialize_utility_wrapper(self):
self._utility_wrapper = self._utility
def __call__(self, indices: Iterable[int]) -> float:
+ """
+ Args:
+ indices: a subset of valid indices for the
+ `x_train` attribute of [Dataset][pydvl.utils.dataset.Dataset].
+ """
utility: float = self._utility_wrapper(frozenset(indices))
return utility
@@ -159,19 +184,22 @@ def _utility(self, indices: FrozenSet) -> float:
"""Clones the model, fits it on a subset of the training data
and scores it on the test data.
- If the object is constructed with ``enable_cache = True``, results are
+ If the object is constructed with `enable_cache = True`, results are
memoized to avoid duplicate computation. This is useful in particular
when computing utilities of permutations of indices or when randomly
sampling from the powerset of indices.
- :param indices: a subset of valid indices for
- :attr:`~pydvl.utils.dataset.Dataset.x_train`. The type must be
- hashable for the caching to work, e.g. wrap the argument with
- `frozenset `_
- (rather than `tuple` since order should not matter)
- :return: 0 if no indices are passed, :attr:`default_score`` if we fail
- to fit the model or the scorer returns `NaN`. Otherwise, the score
- of the model on the test data.
+ Args:
+ indices: a subset of valid indices for the
+ `x_train` attribute of [Dataset][pydvl.utils.dataset.Dataset].
+ The type must be hashable for the caching to work,
+ e.g. wrap the argument with [frozenset][]
+ (rather than `tuple` since order should not matter)
+
+ Returns:
+ 0 if no indices are passed, `default_score` if we fail
+ to fit the model or the scorer returns [numpy.NaN][]. Otherwise, the score
+ of the model on the test data.
"""
if not indices:
return 0.0
@@ -205,8 +233,9 @@ def _clone_model(model: SupervisedModel) -> SupervisedModel:
"""Clones the passed model to avoid the possibility
of reusing a fitted estimator
- :param model: Any supervised model. Typical choices can be found at
- https://scikit-learn.org/stable/supervised_learning.html
+ Args:
+ model: Any supervised model. Typical choices can be found
+ on [this page](https://scikit-learn.org/stable/supervised_learning.html)
"""
try:
model = clone(model)
@@ -225,7 +254,7 @@ def signature(self):
@property
def cache_stats(self) -> Optional[CacheStats]:
"""Cache statistics are gathered when cache is enabled.
- See :class:`~pydvl.utils.caching.CacheInfo` for all fields returned.
+ See [CacheStats][pydvl.utils.caching.CacheStats] for all fields returned.
"""
if self.enable_cache:
return self._utility_wrapper.stats # type: ignore
@@ -244,34 +273,36 @@ def __setstate__(self, state):
class DataUtilityLearning:
- """Implementation of Data Utility Learning algorithm
- :footcite:t:`wang_improving_2022`.
+ """Implementation of Data Utility Learning
+ (Wang et al., 2022)1 .
- This object wraps a :class:`~pydvl.utils.utility.Utility` and delegates
+ This object wraps a [Utility][pydvl.utils.utility.Utility] and delegates
calls to it, up until a given budget (number of iterations). Every tuple
of input and output (a so-called *utility sample*) is stored. Once the
budget is exhausted, `DataUtilityLearning` fits the given model to the
utility samples. Subsequent calls will use the learned model to predict the
utility instead of delegating.
- :param u: The :class:`~pydvl.utils.utility.Utility` to learn.
- :param training_budget: Number of utility samples to collect before fitting
- the given model
- :param model: A supervised regression model
-
- :Example:
-
- >>> from pydvl.utils import Utility, DataUtilityLearning, Dataset
- >>> from sklearn.linear_model import LinearRegression, LogisticRegression
- >>> from sklearn.datasets import load_iris
- >>> dataset = Dataset.from_sklearn(load_iris())
- >>> u = Utility(LogisticRegression(), dataset)
- >>> wrapped_u = DataUtilityLearning(u, 3, LinearRegression())
- ... # First 3 calls will be computed normally
- >>> for i in range(3):
- ... _ = wrapped_u((i,))
- >>> wrapped_u((1, 2, 3)) # Subsequent calls will be computed using the fit model for DUL
- 0.0
+ Args:
+ u: The [Utility][pydvl.utils.utility.Utility] to learn.
+ training_budget: Number of utility samples to collect before fitting
+ the given model.
+ model: A supervised regression model
+
+ ??? Example
+ ``` pycon
+ >>> from pydvl.utils import Utility, DataUtilityLearning, Dataset
+ >>> from sklearn.linear_model import LinearRegression, LogisticRegression
+ >>> from sklearn.datasets import load_iris
+ >>> dataset = Dataset.from_sklearn(load_iris())
+ >>> u = Utility(LogisticRegression(), dataset)
+ >>> wrapped_u = DataUtilityLearning(u, 3, LinearRegression())
+ ... # First 3 calls will be computed normally
+ >>> for i in range(3):
+ ... _ = wrapped_u((i,))
+ >>> wrapped_u((1, 2, 3)) # Subsequent calls will be computed using the fit model for DUL
+ 0.0
+ ```
"""
@@ -286,7 +317,9 @@ def __init__(
self._utility_samples: Dict[FrozenSet, Tuple[NDArray[np.bool_], float]] = {}
def _convert_indices_to_boolean_vector(self, x: Iterable[int]) -> NDArray[np.bool_]:
- boolean_vector = np.zeros((1, len(self.utility.data)), dtype=bool)
+ boolean_vector: NDArray[np.bool_] = np.zeros(
+ (1, len(self.utility.data)), dtype=bool
+ )
if x is not None:
boolean_vector[:, tuple(x)] = True
return boolean_vector
@@ -312,7 +345,7 @@ def __call__(self, indices: Iterable[int]) -> float:
@property
def data(self) -> Dataset:
- """Returns the wrapped utility's :class:`~pydvl.utils.dataset.Dataset`."""
+ """Returns the wrapped utility's [Dataset][pydvl.utils.dataset.Dataset]."""
return self.utility.data
@@ -321,8 +354,8 @@ class MinerGameUtility(Utility):
Consider a group of n miners, who have discovered large bars of gold.
- If two miners can carry one piece of gold,
- then the payoff of a coalition $S$ is:
+ If two miners can carry one piece of gold, then the payoff of a
+ coalition $S$ is:
$${
v(S) = \left\{\begin{array}{lll}
@@ -336,9 +369,10 @@ class MinerGameUtility(Utility):
If there is an odd number of miners, then the core is empty.
- Taken from: https://en.wikipedia.org/wiki/Core_(game_theory)
+ Taken from [Wikipedia](https://en.wikipedia.org/wiki/Core_(game_theory))
- :param n_miners: Number of miners that participate in the game.
+ Args:
+ n_miners: Number of miners that participate in the game.
"""
def __init__(self, n_miners: int, **kwargs):
@@ -392,8 +426,9 @@ class GlovesGameUtility(Utility):
Where $L$, respectively $R$, is the set of players with left gloves,
respectively right gloves.
- :param left: Number of players with a left glove.
- :param right: Number of player with a right glove.
+ Args:
+ left: Number of players with a left glove.
+ right: Number of player with a right glove.
"""
diff --git a/src/pydvl/value/__init__.py b/src/pydvl/value/__init__.py
index 5fb7a82ad..f49d7bc73 100644
--- a/src/pydvl/value/__init__.py
+++ b/src/pydvl/value/__init__.py
@@ -1,8 +1,9 @@
-r"""
-Algorithms for the exact and approximate computation of value and semi-value.
+"""
+This module implements algorithms for the exact and approximate computation of
+values and semi-values.
-See :ref:`data valuation` for an introduction to the concepts and methods
-implemented here.
+See [Data valuation][computing-data-values] for an introduction to the concepts
+and methods implemented here.
"""
from .result import * # isort: skip
diff --git a/src/pydvl/value/least_core/__init__.py b/src/pydvl/value/least_core/__init__.py
index 319b074a3..8451dd4f0 100644
--- a/src/pydvl/value/least_core/__init__.py
+++ b/src/pydvl/value/least_core/__init__.py
@@ -1,21 +1,21 @@
"""
-.. versionadded:: 0.4.0
+!!! tip "New in version 0.4.0"
This package holds all routines for the computation of Least Core data values.
-Please refer to :ref:`data valuation` for an overview.
+Please refer to [Data valuation][computing-data-values] for an overview.
In addition to the standard interface via
-:func:`~pydvl.value.least_core.compute_least_core_values`, because computing the
+[compute_least_core_values()][pydvl.value.least_core.compute_least_core_values], because computing the
Least Core values requires the solution of a linear and a quadratic problem
*after* computing all the utility values, there is the possibility of performing
each step separately. This is useful when running multiple experiments: use
-:func:`~pydvl.value.least_core.naive.lc_prepare_problem` or
-:func:`~pydvl.value.least_core.montecarlo.mclc_prepare_problem` to prepare a
+[lc_prepare_problem()][pydvl.value.least_core.naive.lc_prepare_problem] or
+[mclc_prepare_problem()][pydvl.value.least_core.montecarlo.mclc_prepare_problem] to prepare a
list of problems to solve, then solve them in parallel with
-:func:`~pydvl.value.least_core.common.lc_solve_problems`.
+[lc_solve_problems()][pydvl.value.least_core.common.lc_solve_problems].
-Note that :func:`~pydvl.value.least_core.montecarlo.mclc_prepare_problem` is
+Note that [mclc_prepare_problem()][pydvl.value.least_core.montecarlo.mclc_prepare_problem] is
parallelized itself, so preparing the problems should be done in sequence in this
case. The solution of the linear systems can then be done in parallel.
@@ -52,30 +52,33 @@ def compute_least_core_values(
"""Umbrella method to compute Least Core values with any of the available
algorithms.
- See :ref:`data valuation` for an overview.
+ See [Data valuation][computing-data-values] for an overview.
The following algorithms are available. Note that the exact method can only
work with very small datasets and is thus intended only for testing.
- - ``exact``: uses the complete powerset of the training set for the constraints
- :func:`~pydvl.value.shapley.naive.combinatorial_exact_shapley`.
- - ``montecarlo``: uses the approximate Monte Carlo Least Core algorithm.
- Implemented in :func:`~pydvl.value.least_core.montecarlo.montecarlo_least_core`.
-
- :param u: Utility object with model, data, and scoring function
- :param n_jobs: Number of jobs to run in parallel. Only used for Monte Carlo
- Least Core.
- :param n_iterations: Number of subsets to sample and evaluate the utility on.
- Only used for Monte Carlo Least Core.
- :param mode: Algorithm to use. See :class:`LeastCoreMode` for available
- options.
- :param non_negative_subsidy: If True, the least core subsidy $e$ is constrained
- to be non-negative.
- :param solver_options: Optional dictionary of options passed to the solvers.
-
- :return: ValuationResult object with the computed values.
-
- .. versionadded:: 0.5.0
+ - `exact`: uses the complete powerset of the training set for the constraints
+ [combinatorial_exact_shapley()][pydvl.value.shapley.naive.combinatorial_exact_shapley].
+ - `montecarlo`: uses the approximate Monte Carlo Least Core algorithm.
+ Implemented in [montecarlo_least_core()][pydvl.value.least_core.montecarlo.montecarlo_least_core].
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_jobs: Number of jobs to run in parallel. Only used for Monte Carlo
+ Least Core.
+ n_iterations: Number of subsets to sample and evaluate the utility on.
+ Only used for Monte Carlo Least Core.
+ mode: Algorithm to use. See
+ [LeastCoreMode][pydvl.value.least_core.LeastCoreMode] for available
+ options.
+ non_negative_subsidy: If True, the least core subsidy $e$ is constrained
+ to be non-negative.
+ solver_options: Optional dictionary of options passed to the solvers.
+
+ Returns:
+ Object with the computed values.
+
+ !!! tip "New in version 0.5.0"
"""
progress: bool = kwargs.pop("progress", False)
diff --git a/src/pydvl/value/least_core/common.py b/src/pydvl/value/least_core/common.py
index 74d2922d4..f29e48a4a 100644
--- a/src/pydvl/value/least_core/common.py
+++ b/src/pydvl/value/least_core/common.py
@@ -35,12 +35,13 @@ def lc_solve_problem(
solver_options: Optional[dict] = None,
**options,
) -> ValuationResult:
- """Solves a linear problem prepared by :func:`mclc_prepare_problem`.
+ """Solves a linear problem as prepared by
+ [mclc_prepare_problem()][pydvl.value.least_core.montecarlo.mclc_prepare_problem].
Useful for parallel execution of multiple experiments by running this as a
remote task.
- See :func:`~pydvl.value.least_core.naive.exact_least_core` or
- :func:`~pydvl.value.least_core.montecarlo.montecarlo_least_core` for
+ See [exact_least_core()][pydvl.value.least_core.naive.exact_least_core] or
+ [montecarlo_least_core()][pydvl.value.least_core.montecarlo.montecarlo_least_core] for
argument descriptions.
"""
n = len(u.data)
@@ -95,7 +96,7 @@ def lc_solve_problem(
# because given the equality constraint
# it is the same as using the constraint e >= 0
# (i.e. setting non_negative_subsidy = True).
- mask = np.ones_like(b_lb, dtype=bool)
+ mask: NDArray[np.bool_] = np.ones_like(b_lb, dtype=bool)
mask[total_utility_indices] = False
b_lb = b_lb[mask]
A_lb = A_lb[mask]
@@ -169,17 +170,20 @@ def lc_solve_problems(
) -> List[ValuationResult]:
"""Solves a list of linear problems in parallel.
- :param u: Utility.
- :param problems: Least Core problems to solve, as returned by
- :func:`~pydvl.value.least_core.montecarlo.mclc_prepare_problem`.
- :param algorithm: Name of the valuation algorithm.
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param n_jobs: Number of parallel jobs to run.
- :param non_negative_subsidy: If True, the least core subsidy $e$ is constrained
- to be non-negative.
- :param solver_options: Additional options to pass to the solver.
- :return: List of solutions.
+ Args:
+ u: Utility.
+ problems: Least Core problems to solve, as returned by
+ [mclc_prepare_problem()][pydvl.value.least_core.montecarlo.mclc_prepare_problem].
+ algorithm: Name of the valuation algorithm.
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ n_jobs: Number of parallel jobs to run.
+ non_negative_subsidy: If True, the least core subsidy $e$ is constrained
+ to be non-negative.
+ solver_options: Additional options to pass to the solver.
+
+ Returns:
+ List of solutions.
"""
def _map_func(
@@ -216,35 +220,35 @@ def _solve_least_core_linear_program(
solver_options: dict,
non_negative_subsidy: bool = False,
) -> Tuple[Optional[NDArray[np.float_]], Optional[float]]:
- """Solves the Least Core's linear program using cvxopt.
-
- .. math::
+ r"""Solves the Least Core's linear program using cvxopt.
+ $$
\text{minimize} \ & e \\
\mbox{such that} \ & A_{eq} x = b_{eq}, \\
& A_{lb} x + e \ge b_{lb},\\
& A_{eq} x = b_{eq},\\
& x in \mathcal{R}^n , \\
-
- where :math:`x` is a vector of decision variables; ,
- :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
- :math:`A_{ub}` and :math:`A_{eq}` are matrices.
+ $$
+ where $x$ is a vector of decision variables; ,
+ $b_{ub}$, $b_{eq}$, $l$, and $u$ are vectors; and
+ $A_{ub}$ and $A_{eq}$ are matrices.
if `non_negative_subsidy` is True, then an additional constraint $e \ge 0$ is used.
- :param A_eq: The equality constraint matrix. Each row of ``A_eq`` specifies the
- coefficients of a linear equality constraint on ``x``.
- :param b_eq: The equality constraint vector. Each element of ``A_eq @ x`` must equal
- the corresponding element of ``b_eq``.
- :param A_lb: The inequality constraint matrix. Each row of ``A_lb`` specifies the
- coefficients of a linear inequality constraint on ``x``.
- :param b_lb: The inequality constraint vector. Each element represents a
- lower bound on the corresponding value of ``A_lb @ x``.
- :param non_negative_subsidy: If True, the least core subsidy $e$ is constrained
- to be non-negative.
- :param options: Keyword arguments that will be used to select a solver
- and to configure it. For all possible options, refer to `cvxpy's documentation
- `_
+ Args:
+ A_eq: The equality constraint matrix. Each row of `A_eq` specifies the
+ coefficients of a linear equality constraint on `x`.
+ b_eq: The equality constraint vector. Each element of `A_eq @ x` must equal
+ the corresponding element of `b_eq`.
+ A_lb: The inequality constraint matrix. Each row of `A_lb` specifies the
+ coefficients of a linear inequality constraint on `x`.
+ b_lb: The inequality constraint vector. Each element represents a
+ lower bound on the corresponding value of `A_lb @ x`.
+ non_negative_subsidy: If True, the least core subsidy $e$ is constrained
+ to be non-negative.
+ options: Keyword arguments that will be used to select a solver
+ and to configure it. For all possible options, refer to [cvxpy's
+ documentation](https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options).
"""
logger.debug(f"Solving linear program : {A_eq=}, {b_eq=}, {A_lb=}, {b_lb=}")
@@ -293,33 +297,35 @@ def _solve_egalitarian_least_core_quadratic_program(
b_lb: NDArray[np.float_],
solver_options: dict,
) -> Optional[NDArray[np.float_]]:
- """Solves the egalitarian Least Core's quadratic program using cvxopt.
-
- .. math::
+ r"""Solves the egalitarian Least Core's quadratic program using cvxopt.
+ $$
\text{minimize} \ & \| x \|_2 \\
\mbox{such that} \ & A_{eq} x = b_{eq}, \\
& A_{lb} x + e \ge b_{lb},\\
& A_{eq} x = b_{eq},\\
& x in \mathcal{R}^n , \\
& e \text{ is a constant.}
-
- where :math:`x` is a vector of decision variables; ,
- :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
- :math:`A_{ub}` and :math:`A_{eq}` are matrices.
-
- :param subsidy: Minimal subsidy returned by :func:`_solve_least_core_linear_program`
- :param A_eq: The equality constraint matrix. Each row of ``A_eq`` specifies the
- coefficients of a linear equality constraint on ``x``.
- :param b_eq: The equality constraint vector. Each element of ``A_eq @ x`` must equal
- the corresponding element of ``b_eq``.
- :param A_lb: The inequality constraint matrix. Each row of ``A_lb`` specifies the
- coefficients of a linear inequality constraint on ``x``.
- :param b_lb: The inequality constraint vector. Each element represents a
- lower bound on the corresponding value of ``A_lb @ x``.
- :param solver_options: Keyword arguments that will be used to select a solver
- and to configure it. Refer to the following page for all possible options:
- https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
+ $$
+ where $x$ is a vector of decision variables; ,
+ $b_{ub}$, $b_{eq}$, $l$, and $u$ are vectors; and
+ $A_{ub}$ and $A_{eq}$ are matrices.
+
+ Args:
+ subsidy: Minimal subsidy returned by
+ [_solve_least_core_linear_program()][pydvl.value.least_core.common._solve_least_core_linear_program]
+ A_eq: The equality constraint matrix. Each row of `A_eq` specifies the
+ coefficients of a linear equality constraint on `x`.
+ b_eq: The equality constraint vector. Each element of `A_eq @ x` must equal
+ the corresponding element of `b_eq`.
+ A_lb: The inequality constraint matrix. Each row of `A_lb` specifies the
+ coefficients of a linear inequality constraint on `x`.
+ b_lb: The inequality constraint vector. Each element represents a
+ lower bound on the corresponding value of `A_lb @ x`.
+ solver_options: Keyword arguments that will be used to select a solver
+ and to configure it. Refer to [cvxpy's
+ documentation](https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options)
+ for all possible options.
"""
logger.debug(f"Solving quadratic program : {A_eq=}, {b_eq=}, {A_lb=}, {b_lb=}")
diff --git a/src/pydvl/value/least_core/montecarlo.py b/src/pydvl/value/least_core/montecarlo.py
index ddb9f2347..fc2f9fe92 100644
--- a/src/pydvl/value/least_core/montecarlo.py
+++ b/src/pydvl/value/least_core/montecarlo.py
@@ -3,6 +3,7 @@
from typing import Iterable, Optional
import numpy as np
+from numpy.typing import NDArray
from pydvl.utils.config import ParallelConfig
from pydvl.utils.numeric import random_powerset
@@ -47,19 +48,24 @@ def montecarlo_least_core(
* $m$ is the number of subsets that will be sampled and whose utility will
be computed and used to compute the data values.
- :param u: Utility object with model, data, and scoring function
- :param n_iterations: total number of iterations to use
- :param n_jobs: number of jobs across which to distribute the computation
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param non_negative_subsidy: If True, the least core subsidy $e$ is constrained
- to be non-negative.
- :param solver_options: Dictionary of options that will be used to select a solver
- and to configure it. Refer to the following page for all possible options:
- https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
- :param options: (Deprecated) Dictionary of solver options. Use solver_options instead.
- :param progress: If True, shows a tqdm progress bar
- :return: Object with the data values and the least core value.
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_iterations: total number of iterations to use
+ n_jobs: number of jobs across which to distribute the computation
+ config: Object configuring parallel computation, with cluster
+ address, number of cpus, etc.
+ non_negative_subsidy: If True, the least core subsidy $e$ is constrained
+ to be non-negative.
+ solver_options: Dictionary of options that will be used to select a solver
+ and to configure it. Refer to [cvxpy's
+ documentation](https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options)
+ for all possible options.
+ options: (Deprecated) Dictionary of solver options. Use solver_options
+ instead.
+ progress: If True, shows a tqdm progress bar
+
+ Returns:
+ Object with the data values and the least core value.
"""
# TODO: remove this before releasing version 0.7.0
if options:
@@ -95,12 +101,14 @@ def mclc_prepare_problem(
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
) -> LeastCoreProblem:
- """Prepares a linear problem by sampling subsets of the data.
- Use this to separate the problem preparation from the solving with
- :func:`~pydvl.value.least_core.common.lc_solve_problem`. Useful for
- parallel execution of multiple experiments.
-
- See :func:`montecarlo_least_core` for argument descriptions.
+ """Prepares a linear problem by sampling subsets of the data. Use this to
+ separate the problem preparation from the solving with
+ [lc_solve_problem()][pydvl.value.least_core.common.lc_solve_problem]. Useful
+ for parallel execution of multiple experiments.
+
+ See
+ [montecarlo_least_core][pydvl.value.least_core.montecarlo.montecarlo_least_core]
+ for argument descriptions.
"""
n = len(u.data)
@@ -136,13 +144,17 @@ def mclc_prepare_problem(
def _montecarlo_least_core(
u: Utility, n_iterations: int, *, progress: bool = False, job_id: int = 1
) -> LeastCoreProblem:
- """Computes utility values and the Least Core upper bound matrix for a given number of iterations.
+ """Computes utility values and the Least Core upper bound matrix for a given
+ number of iterations.
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_iterations: total number of iterations to use
+ progress: If True, shows a tqdm progress bar
+ job_id: Integer id used to determine the position of the progress bar
- :param u: Utility object with model, data, and scoring function
- :param n_iterations: total number of iterations to use
- :param progress: If True, shows a tqdm progress bar
- :param job_id: Integer id used to determine the position of the progress bar
- :return:
+ Returns:
+ A solution
"""
n = len(u.data)
@@ -156,7 +168,7 @@ def _montecarlo_least_core(
for i, subset in enumerate(
maybe_progress(power_set, progress, total=n_iterations, position=job_id)
):
- indices = np.zeros(n, dtype=bool)
+ indices: NDArray[np.bool_] = np.zeros(n, dtype=bool)
indices[list(subset)] = True
A_lb[i, indices] = 1
utility_values[i] = u(subset)
@@ -166,7 +178,8 @@ def _montecarlo_least_core(
def _reduce_func(results: Iterable[LeastCoreProblem]) -> LeastCoreProblem:
"""Combines the results from different parallel runs of
- :func:`_montecarlo_least_core`"""
+ [_montecarlo_least_core()][pydvl.value.least_core.montecarlo._montecarlo_least_core]
+ """
utility_values_list, A_lb_list = zip(*results)
utility_values = np.concatenate(utility_values_list)
A_lb = np.concatenate(A_lb_list)
diff --git a/src/pydvl/value/least_core/naive.py b/src/pydvl/value/least_core/naive.py
index fdcbb97ed..4a6a941f2 100644
--- a/src/pydvl/value/least_core/naive.py
+++ b/src/pydvl/value/least_core/naive.py
@@ -3,6 +3,7 @@
from typing import Optional
import numpy as np
+from numpy.typing import NDArray
from pydvl.utils import Utility, maybe_progress, powerset
from pydvl.value.least_core.common import LeastCoreProblem, lc_solve_problem
@@ -23,12 +24,12 @@ def exact_least_core(
) -> ValuationResult:
r"""Computes the exact Least Core values.
- .. note::
- If the training set contains more than 20 instances a warning is printed
- because the computation is very expensive. This method is mostly used for
- internal testing and simple use cases. Please refer to the
- :func:`Monte Carlo method `
- for practical applications.
+ !!! Note
+ If the training set contains more than 20 instances a warning is printed
+ because the computation is very expensive. This method is mostly used for
+ internal testing and simple use cases. Please refer to the
+ [Monte Carlo method][pydvl.value.least_core.montecarlo.montecarlo_least_core]
+ for practical applications.
The least core is the solution to the following Linear Programming problem:
@@ -42,16 +43,20 @@ def exact_least_core(
Where $N = \{1, 2, \dots, n\}$ are the training set's indices.
- :param u: Utility object with model, data, and scoring function
- :param non_negative_subsidy: If True, the least core subsidy $e$ is constrained
- to be non-negative.
- :param solver_options: Dictionary of options that will be used to select a solver
- and to configure it. Refer to the following page for all possible options:
- https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
- :param options: (Deprecated) Dictionary of solver options. Use solver_options instead.
- :param progress: If True, shows a tqdm progress bar
-
- :return: Object with the data values and the least core value.
+ Args:
+ u: Utility object with model, data, and scoring function
+ non_negative_subsidy: If True, the least core subsidy $e$ is constrained
+ to be non-negative.
+ solver_options: Dictionary of options that will be used to select a solver
+ and to configure it. Refer to the [cvxpy's
+ documentation](https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options)
+ for all possible options.
+ options: (Deprecated) Dictionary of solver options. Use `solver_options`
+ instead.
+ progress: If True, shows a tqdm progress bar
+
+ Returns:
+ Object with the data values and the least core value.
"""
n = len(u.data)
if n > 20: # Arbitrary choice, will depend on time required, caching, etc.
@@ -84,10 +89,10 @@ def exact_least_core(
def lc_prepare_problem(u: Utility, progress: bool = False) -> LeastCoreProblem:
"""Prepares a linear problem with all subsets of the data
Use this to separate the problem preparation from the solving with
- :func:`~pydvl.value.least_core.common.lc_solve_problem`. Useful for
+ [lc_solve_problem()][pydvl.value.least_core.common.lc_solve_problem]. Useful for
parallel execution of multiple experiments.
- See :func:`~pydvl.value.least_core.naive.exact_least_core` for argument
+ See [exact_least_core()][pydvl.value.least_core.naive.exact_least_core] for argument
descriptions.
"""
n = len(u.data)
@@ -103,7 +108,7 @@ def lc_prepare_problem(u: Utility, progress: bool = False) -> LeastCoreProblem:
powerset(u.data.indices), progress, total=powerset_size - 1, position=0
)
):
- indices = np.zeros(n, dtype=bool)
+ indices: NDArray[np.bool_] = np.zeros(n, dtype=bool)
indices[list(subset)] = True
A_lb[i, indices] = 1
utility_values[i] = u(subset)
diff --git a/src/pydvl/value/loo/__init__.py b/src/pydvl/value/loo/__init__.py
index e300848c4..6b9e972fc 100644
--- a/src/pydvl/value/loo/__init__.py
+++ b/src/pydvl/value/loo/__init__.py
@@ -1 +1,2 @@
+from .loo import *
from .naive import *
diff --git a/src/pydvl/value/loo/loo.py b/src/pydvl/value/loo/loo.py
new file mode 100644
index 000000000..893594260
--- /dev/null
+++ b/src/pydvl/value/loo/loo.py
@@ -0,0 +1,81 @@
+from __future__ import annotations
+
+from concurrent.futures import FIRST_COMPLETED, Future, wait
+
+from tqdm import tqdm
+
+from pydvl.utils import ParallelConfig, Utility, effective_n_jobs, init_executor
+from pydvl.value.result import ValuationResult
+
+__all__ = ["compute_loo"]
+
+
+def compute_loo(
+ u: Utility,
+ *,
+ n_jobs: int = 1,
+ config: ParallelConfig = ParallelConfig(),
+ progress: bool = True,
+) -> ValuationResult:
+ r"""Computes leave one out value:
+
+ $$v(i) = u(D) - u(D \setminus \{i\}) $$
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ progress: If True, display a progress bar
+ n_jobs: Number of parallel jobs to use
+ config: Object configuring parallel computation, with cluster
+ address, number of cpus, etc.
+ progress: If True, display a progress bar
+
+ Returns:
+ Object with the data values.
+
+ !!! tip "New in version 0.7.0"
+ Renamed from `naive_loo` and added parallel computation.
+ """
+
+ if len(u.data) < 3:
+ raise ValueError("Dataset must have at least 2 elements")
+
+ result = ValuationResult.zeros(
+ algorithm="loo",
+ indices=u.data.indices,
+ data_names=u.data.data_names,
+ )
+
+ all_indices = set(u.data.indices)
+ total_utility = u(u.data.indices)
+
+ def fun(idx: int) -> tuple[int, float]:
+ return idx, total_utility - u(all_indices.difference({idx}))
+
+ max_workers = effective_n_jobs(n_jobs, config)
+ n_submitted_jobs = 2 * max_workers # number of jobs in the queue
+
+ # NOTE: this could be done with a simple executor.map(), but we want to
+ # display a progress bar
+
+ with init_executor(
+ max_workers=max_workers, config=config, cancel_futures=True
+ ) as executor:
+ pending: set[Future] = set()
+ index_it = iter(u.data.indices)
+
+ pbar = tqdm(disable=not progress, total=100, unit="%")
+ while True:
+ pbar.n = 100 * sum(result.counts) / len(u.data)
+ pbar.refresh()
+ completed, pending = wait(pending, timeout=0.1, return_when=FIRST_COMPLETED)
+ for future in completed:
+ idx, marginal = future.result()
+ result.update(idx, marginal)
+
+ # Ensure that we always have n_submitted_jobs running
+ try:
+ for _ in range(n_submitted_jobs - len(pending)):
+ pending.add(executor.submit(fun, next(index_it)))
+ except StopIteration:
+ if len(pending) == 0:
+ return result
diff --git a/src/pydvl/value/loo/naive.py b/src/pydvl/value/loo/naive.py
index 1b7a1eecd..c50a30f5a 100644
--- a/src/pydvl/value/loo/naive.py
+++ b/src/pydvl/value/loo/naive.py
@@ -1,35 +1,19 @@
-import numpy as np
+from deprecate import deprecated
-from pydvl.utils import Utility, maybe_progress
-from pydvl.utils.status import Status
+from pydvl.utils import Utility
from pydvl.value.result import ValuationResult
-__all__ = ["naive_loo"]
-
-
-def naive_loo(u: Utility, *, progress: bool = True) -> ValuationResult:
- r"""Computes leave one out value:
+from .loo import compute_loo
- $$v(i) = u(D) - u(D \setminus \{i\}) $$
-
- :param u: Utility object with model, data, and scoring function
- :param progress: If True, display a progress bar
- :return: Object with the data values.
- """
-
- if len(u.data) < 3:
- raise ValueError("Dataset must have at least 2 elements")
+__all__ = ["naive_loo"]
- values = np.zeros_like(u.data.indices, dtype=np.float_)
- all_indices = set(u.data.indices)
- total_utility = u(u.data.indices)
- for i in maybe_progress(u.data.indices, progress): # type: ignore
- subset = all_indices.difference({i})
- values[i] = total_utility - u(subset)
- return ValuationResult(
- algorithm="naive_loo",
- status=Status.Converged,
- values=values,
- data_names=u.data.data_names,
- )
+@deprecated(
+ target=compute_loo,
+ deprecated_in="0.7.0",
+ remove_in="0.8.0",
+ args_extra=dict(n_jobs=1),
+)
+def naive_loo(u: Utility, *, progress: bool = True, **kwargs) -> ValuationResult:
+ """Deprecated. Use [compute_loo][pydvl.value.loo.compute_loo] instead."""
+ pass # type: ignore
diff --git a/src/pydvl/value/result.py b/src/pydvl/value/result.py
index 0c7ae7fe4..989d6d92e 100644
--- a/src/pydvl/value/result.py
+++ b/src/pydvl/value/result.py
@@ -2,37 +2,42 @@
This module collects types and methods for the inspection of the results of
valuation algorithms.
-The most important class is :class:`ValuationResult`, which provides access
-to raw values, as well as convenient behaviour as a ``Sequence`` with extended
-indexing and updating abilities, and conversion to `pandas DataFrames
-`_.
+The most important class is [ValuationResult][pydvl.value.result.ValuationResult], which provides access
+to raw values, as well as convenient behaviour as a `Sequence` with extended
+indexing and updating abilities, and conversion to [pandas DataFrames][pandas.DataFrame].
-.. rubric:: Operating on results
+# Operating on results
-Results can be added together with the standard ``+`` operator. Because values
+Results can be added together with the standard `+` operator. Because values
are typically running averages of iterative algorithms, addition behaves like a
weighted average of the two results, with the weights being the number of
updates in each result: adding two results is the same as generating one result
with the mean of the values of the two results as values. The variances are
-updated accordingly. See :class:`ValuationResult` for details.
+updated accordingly. See [ValuationResult][pydvl.value.result.ValuationResult] for details.
Results can also be sorted by value, variance or number of updates, see
-:meth:`ValuationResult.sort`. The arrays of :attr:`ValuationResult.values`,
-:attr:`ValuationResult.variances`, :attr:`ValuationResult.counts`,
-:attr:`ValuationResult.indices` and :attr:`ValuationResult.names` are sorted in
+[sort()][pydvl.value.result.ValuationResult.sort]. The arrays of
+[ValuationResult.values][pydvl.value.result.ValuationResult.values],
+[ValuationResult.variances][pydvl.value.result.ValuationResult.variances],
+[ValuationResult.counts][pydvl.value.result.ValuationResult.counts],
+[ValuationResult.indices][pydvl.value.result.ValuationResult.indices],
+[ValuationResult.names][pydvl.value.result.ValuationResult.names] are sorted in
the same way.
-Indexing and slicing of results is supported and :class:`ValueItem` objects are
-returned. These objects can be compared with the usual operators, which take
-only the :attr:`ValueItem.value` into account.
+Indexing and slicing of results is supported and
+[ValueItem][pydvl.value.result.ValueItem] objects are returned. These objects
+can be compared with the usual operators, which take only the
+[ValueItem.value][pydvl.value.result.ValueItem] into account.
-.. rubric:: Creating result objects
+# Creating result objects
-The most commonly used factory method is :meth:`ValuationResult.zeros`, which
+The most commonly used factory method is
+[ValuationResult.zeros()][pydvl.value.result.ValuationResult.zeros], which
creates a result object with all values, variances and counts set to zero.
-:meth:`ValuationResult.empty` creates an empty result object, which can be used
-as a starting point for adding results together. Empty results are discarded
-when added to other results. Finally, :meth:`ValuationResult.from_random`
+[ValuationResult.empty()][pydvl.value.result.ValuationResult.empty] creates an
+empty result object, which can be used as a starting point for adding results
+together. Empty results are discarded when added to other results. Finally,
+[ValuationResult.from_random()][pydvl.value.result.ValuationResult.from_random]
samples random values uniformly.
"""
@@ -66,6 +71,7 @@
from pydvl.utils.dataset import Dataset
from pydvl.utils.numeric import running_moments
from pydvl.utils.status import Status
+from pydvl.utils.types import Seed
try:
import pandas # Try to import here for the benefit of mypy
@@ -86,24 +92,27 @@
class ValueItem(Generic[IndexT, NameT]):
"""The result of a value computation for one datum.
- ``ValueItems`` can be compared with the usual operators, forming a total
- order. Comparisons take only the :attr:`value` into account.
-
- .. todo::
- Maybe have a mode of comparing similar to `np.isclose`, or taking the
- :attr:`variance` into account.
+ `ValueItems` can be compared with the usual operators, forming a total
+ order. Comparisons take only the `value` into account.
+
+ !!! todo
+ Maybe have a mode of comparing similar to `np.isclose`, or taking the
+ `variance` into account.
+
+ Attributes:
+ index: Index of the sample with this value in the original
+ [Dataset][pydvl.utils.dataset.Dataset]
+ name: Name of the sample if it was provided. Otherwise, `str(index)`
+ value: The value
+ variance: Variance of the value if it was computed with an approximate
+ method
+ count: Number of updates for this value
"""
- #: Index of the sample with this value in the original
- # :class:`~pydvl.utils.dataset.Dataset`
index: IndexT
- #: Name of the sample if it was provided. Otherwise, `str(index)`
name: NameT
- #: The value
value: float
- #: Variance of the value if it was computed with an approximate method
variance: Optional[float]
- #: Number of updates for this value
count: Optional[int]
def __lt__(self, other):
@@ -128,76 +137,78 @@ class ValuationResult(
):
"""Objects of this class hold the results of valuation algorithms.
- These include indices in the original :class:`Dataset`, any data names (e.g.
- group names in :class:`GroupedDataset`), the values themselves, and variance
- of the computation in the case of Monte Carlo methods. ``ValuationResults``
- can be iterated over like any ``Sequence``: ``iter(valuation_result)``
- returns a generator of :class:`ValueItem` in the order in which the object
+ These include indices in the original [Dataset][pydvl.utils.dataset.Dataset],
+ any data names (e.g. group names in [GroupedDataset][pydvl.utils.dataset.GroupedDataset]),
+ the values themselves, and variance of the computation in the case of Monte
+ Carlo methods. `ValuationResults` can be iterated over like any `Sequence`:
+ `iter(valuation_result)` returns a generator of
+ [ValueItem][pydvl.value.result.ValueItem] in the order in which the object
is sorted.
- .. rubric:: Indexing
+ ## Indexing
Indexing can be position-based, when accessing any of the attributes
- :attr:`values`, :attr:`variances`, :attr:`counts` and :attr:`indices`, as
+ [values][pydvl.value.result.ValuationResult.values], [variances][pydvl.value.result.ValuationResult.variances],
+ [counts][pydvl.value.result.ValuationResult.counts] and [indices][pydvl.value.result.ValuationResult.indices], as
well as when iterating over the object, or using the item access operator,
both getter and setter. The "position" is either the original sequence in
which the data was passed to the constructor, or the sequence in which the
object is sorted, see below.
Alternatively, indexing can be data-based, i.e. using the indices in the
- original dataset. This is the case for the methods :meth:`get` and
- :meth:`update`.
+ original dataset. This is the case for the methods [get()][pydvl.value.result.ValuationResult.get] and
+ [update()][pydvl.value.result.ValuationResult.update].
- .. rubric:: Sorting
+ ## Sorting
- Results can be sorted in-place with :meth:`sort`, or alternatively using
- python's standard ``sorted()`` and ``reversed()`` Note that sorting values
- affects how iterators and the object itself as ``Sequence`` behave:
- ``values[0]`` returns a :class:`ValueItem` with the highest or lowest
+ Results can be sorted in-place with [sort()][pydvl.value.result.ValuationResult.sort], or alternatively using
+ python's standard `sorted()` and `reversed()` Note that sorting values
+ affects how iterators and the object itself as `Sequence` behave:
+ `values[0]` returns a [ValueItem][pydvl.value.result.ValueItem] with the highest or lowest
ranking point if this object is sorted by descending or ascending value,
- respectively. If unsorted, ``values[0]`` returns the ``ValueItem`` at
- position 0, which has data index ``indices[0]`` in the
- :class:`~pydvl.utils.dataset.Dataset`.
+ respectively. If unsorted, `values[0]` returns the `ValueItem` at
+ position 0, which has data index `indices[0]` in the
+ [Dataset][pydvl.utils.dataset.Dataset].
- The same applies to direct indexing of the ``ValuationResult``: the index
+ The same applies to direct indexing of the `ValuationResult`: the index
is positional, according to the sorting. It does not refer to the "data
- index". To sort according to data index, use :meth:`sort` with
- ``key="index"``.
+ index". To sort according to data index, use [sort()][pydvl.value.result.ValuationResult.sort] with
+ `key="index"`.
- In order to access :class:`ValueItem` objects by their data index, use
- :meth:`get`.
+ In order to access [ValueItem][pydvl.value.result.ValueItem] objects by their data index, use
+ [get()][pydvl.value.result.ValuationResult.get].
- .. rubric:: Operating on results
+ ## Operating on results
- Results can be added to each other with the ``+`` operator. Means and
- variances are correctly updated, using the ``counts`` attribute.
+ Results can be added to each other with the `+` operator. Means and
+ variances are correctly updated, using the `counts` attribute.
- Results can also be updated with new values using :meth:`update`. Means and
+ Results can also be updated with new values using [update()][pydvl.value.result.ValuationResult.update]. Means and
variances are updated accordingly using the Welford algorithm.
- Empty objects behave in a special way, see :meth:`empty`.
-
- :param values: An array of values. If omitted, defaults to an empty array
- or to an array of zeros if ``indices`` are given.
- :param indices: An optional array of indices in the original dataset. If
- omitted, defaults to ``np.arange(len(values))``. **Warning:** It is
- common to pass the indices of a :class:`Dataset` here. Attention must be
- paid in a parallel context to copy them to the local process. Just do
- ``indices=np.copy(data.indices)``.
- :param variance: An optional array of variances in the computation of each
- value.
- :param counts: An optional array with the number of updates for each value.
- Defaults to an array of ones.
- :param data_names: Names for the data points. Defaults to index numbers
- if not set.
- :param algorithm: The method used.
- :param status: The end status of the algorithm.
- :param sort: Whether to sort the indices by ascending value. See above how
- this affects usage as an iterable or sequence.
- :param extra_values: Additional values that can be passed as keyword arguments.
- This can contain, for example, the least core value.
-
- :raise ValueError: If input arrays have mismatching lengths.
+ Empty objects behave in a special way, see [empty()][pydvl.value.result.ValuationResult.empty].
+
+ Args:
+ values: An array of values. If omitted, defaults to an empty array
+ or to an array of zeros if `indices` are given.
+ indices: An optional array of indices in the original dataset. If
+ omitted, defaults to `np.arange(len(values))`. **Warning:** It is
+ common to pass the indices of a [Dataset][pydvl.utils.dataset.Dataset]
+ here. Attention must be paid in a parallel context to copy them to
+ the local process. Just do `indices=np.copy(data.indices)`.
+ variances: An optional array of variances in the computation of each value.
+ counts: An optional array with the number of updates for each value.
+ Defaults to an array of ones.
+ data_names: Names for the data points. Defaults to index numbers if not set.
+ algorithm: The method used.
+ status: The end status of the algorithm.
+ sort: Whether to sort the indices by ascending value. See above how
+ this affects usage as an iterable or sequence.
+ extra_values: Additional values that can be passed as keyword arguments.
+ This can contain, for example, the least core value.
+
+ Raises:
+ ValueError: If input arrays have mismatching lengths.
"""
_indices: NDArray[IndexT]
@@ -258,7 +269,9 @@ def __init__(
self._indices = indices
self._positions = {idx: pos for pos, idx in enumerate(indices)}
- self._sort_positions = np.arange(len(self._values), dtype=np.int_)
+ self._sort_positions: NDArray[np.int_] = np.arange(
+ len(self._values), dtype=np.int_
+ )
if sort:
self.sort()
@@ -268,16 +281,21 @@ def sort(
# Need a "Comparable" type here
key: Literal["value", "variance", "index", "name"] = "value",
) -> None:
- """Sorts the indices in place by ``key``.
+ """Sorts the indices in place by `key`.
Once sorted, iteration over the results, and indexing of all the
- properties :attr:`ValuationResult.values`,
- :attr:`ValuationResult.variances`, :attr:`ValuationResult.counts`,
- :attr:`ValuationResult.indices` and :attr:`ValuationResult.names` will
- follow the same order.
-
- :param reverse: Whether to sort in descending order by value.
- :param key: The key to sort by. Defaults to :attr:`ValueItem.value`.
+ properties
+ [ValuationResult.values][pydvl.value.result.ValuationResult.values],
+ [ValuationResult.variances][pydvl.value.result.ValuationResult.variances],
+ [ValuationResult.counts][pydvl.value.result.ValuationResult.counts],
+ [ValuationResult.indices][pydvl.value.result.ValuationResult.indices]
+ and [ValuationResult.names][pydvl.value.result.ValuationResult.names]
+ will follow the same order.
+
+ Args:
+ reverse: Whether to sort in descending order by value.
+ key: The key to sort by. Defaults to
+ [ValueItem.value][pydvl.value.result.ValueItem].
"""
keymap = {
"index": "_indices",
@@ -317,7 +335,7 @@ def indices(self) -> NDArray[IndexT]:
"""The indices for the values, possibly sorted.
If the object is unsorted, then these are the same as declared at
- construction or ``np.arange(len(values))`` if none were passed.
+ construction or `np.arange(len(values))` if none were passed.
"""
return self._indices[self._sort_positions]
@@ -325,7 +343,7 @@ def indices(self) -> NDArray[IndexT]:
def names(self) -> NDArray[NameT]:
"""The names for the values, possibly sorted.
If the object is unsorted, then these are the same as declared at
- construction or ``np.arange(len(values))`` if none were passed.
+ construction or `np.arange(len(values))` if none were passed.
"""
return self._names[self._sort_positions]
@@ -420,8 +438,8 @@ def __setitem__(
raise TypeError("Indices must be integers, iterable or slices")
def __iter__(self) -> Iterator[ValueItem[IndexT, NameT]]:
- """Iterate over the results returning :class:`ValueItem` objects.
- To sort in place before iteration, use :meth:`sort`.
+ """Iterate over the results returning [ValueItem][pydvl.value.result.ValueItem] objects.
+ To sort in place before iteration, use [sort()][pydvl.value.result.ValuationResult.sort].
"""
for pos in self._sort_positions:
yield ValueItem(
@@ -481,21 +499,21 @@ def __add__(self, other: "ValuationResult") -> "ValuationResult":
to this is if one argument has empty values, in which case the other
argument is returned.
- .. warning::
- Abusing this will introduce numerical errors.
+ !!! Warning
+ Abusing this will introduce numerical errors.
Means and standard errors are correctly handled. Statuses are added with
- bit-wise ``&``, see :class:`~pydvl.value.result.Status`.
- ``data_names`` are taken from the left summand, or if unavailable from
- the right one. The ``algorithm`` string is carried over if both terms
+ bit-wise `&`, see [Status][pydvl.value.result.Status].
+ `data_names` are taken from the left summand, or if unavailable from
+ the right one. The `algorithm` string is carried over if both terms
have the same one or concatenated.
It is possible to add ValuationResults of different lengths, and with
different or overlapping indices. The result will have the union of
indices, and the values.
- .. warning::
- FIXME: Arbitrary ``extra_values`` aren't handled.
+ !!! Warning
+ FIXME: Arbitrary `extra_values` aren't handled.
"""
# empty results
@@ -510,12 +528,12 @@ def __add__(self, other: "ValuationResult") -> "ValuationResult":
this_pos = np.searchsorted(indices, self._indices)
other_pos = np.searchsorted(indices, other._indices)
- n = np.zeros_like(indices, dtype=int)
- m = np.zeros_like(indices, dtype=int)
- xn = np.zeros_like(indices, dtype=float)
- xm = np.zeros_like(indices, dtype=float)
- vn = np.zeros_like(indices, dtype=float)
- vm = np.zeros_like(indices, dtype=float)
+ n: NDArray[np.int_] = np.zeros_like(indices, dtype=int)
+ m: NDArray[np.int_] = np.zeros_like(indices, dtype=int)
+ xn: NDArray[np.int_] = np.zeros_like(indices, dtype=float)
+ xm: NDArray[np.int_] = np.zeros_like(indices, dtype=float)
+ vn: NDArray[np.int_] = np.zeros_like(indices, dtype=float)
+ vm: NDArray[np.int_] = np.zeros_like(indices, dtype=float)
n[this_pos] = self._counts
xn[this_pos] = self._values
@@ -553,18 +571,24 @@ def __add__(self, other: "ValuationResult") -> "ValuationResult":
f"{other._names.dtype} to {self._names.dtype}"
)
- this_names = np.empty_like(indices, dtype=object)
- other_names = np.empty_like(indices, dtype=object)
- this_names[this_pos] = self._names
- other_names[other_pos] = other._names
- both = np.where(this_pos == other_pos)
+ both_pos = np.intersect1d(this_pos, other_pos)
+
+ if len(both_pos) > 0:
+ this_names: NDArray = np.empty_like(indices, dtype=object)
+ other_names: NDArray = np.empty_like(indices, dtype=object)
+ this_names[this_pos] = self._names
+ other_names[other_pos] = other._names
+
+ this_shared_names = np.take(this_names, both_pos)
+ other_shared_names = np.take(other_names, both_pos)
+
+ if np.any(this_shared_names != other_shared_names):
+ raise ValueError(f"Mismatching names in ValuationResults")
+
names = np.empty_like(indices, dtype=self._names.dtype)
names[this_pos] = self._names
names[other_pos] = other._names
- if np.any(other_names[both] != this_names[both]):
- raise ValueError(f"Mismatching names in ValuationResults")
-
return ValuationResult(
algorithm=self.algorithm or other.algorithm or "",
status=self.status & other.status,
@@ -581,10 +605,15 @@ def update(self, idx: int, new_value: float) -> "ValuationResult":
"""Updates the result in place with a new value, using running mean
and variance.
- :param idx: Data index of the value to update.
- :param new_value: New value to add to the result.
- :return: A reference to the same, modified result.
- :raises IndexError: If the index is not found.
+ Args:
+ idx: Data index of the value to update.
+ new_value: New value to add to the result.
+
+ Returns:
+ A reference to the same, modified result.
+
+ Raises:
+ IndexError: If the index is not found.
"""
try:
pos = self._positions[idx]
@@ -605,7 +634,9 @@ def update(self, idx: int, new_value: float) -> "ValuationResult":
def get(self, idx: Integral) -> ValueItem:
"""Retrieves a ValueItem by data index, as opposed to sort index, like
the indexing operator.
- :raises IndexError: If the index is not found.
+
+ Raises:
+ IndexError: If the index is not found.
"""
try:
pos = self._positions[idx]
@@ -625,14 +656,18 @@ def to_dataframe(
) -> pandas.DataFrame:
"""Returns values as a dataframe.
- :param column: Name for the column holding the data value. Defaults to
- the name of the algorithm used.
- :param use_names: Whether to use data names instead of indices for the
- DataFrame's index.
- :return: A dataframe with two columns, one for the values, with name
- given as explained in `column`, and another with standard errors for
- approximate algorithms. The latter will be named `column+'_stderr'`.
- :raise ImportError: If pandas is not installed
+ Args:
+ column: Name for the column holding the data value. Defaults to
+ the name of the algorithm used.
+ use_names: Whether to use data names instead of indices for the
+ DataFrame's index.
+
+ Returns:
+ A dataframe with two columns, one for the values, with name
+ given as explained in `column`, and another with standard errors for
+ approximate algorithms. The latter will be named `column+'_stderr'`.
+ Raises:
+ ImportError: If pandas is not installed
"""
if not pandas:
raise ImportError("Pandas required for DataFrame export")
@@ -649,28 +684,38 @@ def to_dataframe(
@classmethod
def from_random(
- cls, size: int, total: Optional[float] = None, **kwargs
+ cls,
+ size: int,
+ total: Optional[float] = None,
+ seed: Optional[Seed] = None,
+ **kwargs,
) -> "ValuationResult":
- """Creates a :class:`ValuationResult` object and fills it with an array
+ """Creates a [ValuationResult][pydvl.value.result.ValuationResult] object and fills it with an array
of random values from a uniform distribution in [-1,1]. The values can
be made to sum up to a given total number (doing so will change their range).
- :param size: Number of values to generate
- :param total: If set, the values are normalized to sum to this number
- ("efficiency" property of Shapley values).
- :param kwargs: Additional options to pass to the constructor of
- :class:`ValuationResult`. Use to override status, names, etc.
- :return: A valuation result with its status set to
- :attr:`Status.Converged` by default.
- :raises ValueError: If ``size`` is less than 1.
-
- .. versionchanged:: 0.6.0
- Added parameter ``total``. Check for zero size
+ Args:
+ size: Number of values to generate
+ total: If set, the values are normalized to sum to this number
+ ("efficiency" property of Shapley values).
+ kwargs: Additional options to pass to the constructor of
+ [ValuationResult][pydvl.value.result.ValuationResult]. Use to override status, names, etc.
+
+ Returns:
+ A valuation result with its status set to
+ [Status.Converged][pydvl.utils.status.Status] by default.
+
+ Raises:
+ ValueError: If `size` is less than 1.
+
+ !!! tip "Changed in version 0.6.0"
+ Added parameter `total`. Check for zero size
"""
if size < 1:
raise ValueError("Size must be a positive integer")
- values = np.random.uniform(low=-1, high=1, size=size)
+ rng = np.random.default_rng(seed)
+ values = rng.uniform(low=-1, high=1, size=size)
if total is not None:
values *= total / np.sum(values)
@@ -694,13 +739,16 @@ def empty(
data_names: Optional[Sequence[NameT] | NDArray[NameT]] = None,
n_samples: int = 0,
) -> "ValuationResult":
- """Creates an empty :class:`ValuationResult` object.
+ """Creates an empty [ValuationResult][pydvl.value.result.ValuationResult] object.
Empty results are characterised by having an empty array of values. When
another result is added to an empty one, the empty one is discarded.
- :param algorithm: Name of the algorithm used to compute the values
- :return: An instance of :class:`ValuationResult`
+ Args:
+ algorithm: Name of the algorithm used to compute the values
+
+ Returns:
+ Object with the results.
"""
if indices is not None or data_names is not None or n_samples != 0:
return cls.zeros(
@@ -719,19 +767,22 @@ def zeros(
data_names: Optional[Sequence[NameT] | NDArray[NameT]] = None,
n_samples: int = 0,
) -> "ValuationResult":
- """Creates an empty :class:`ValuationResult` object.
+ """Creates an empty [ValuationResult][pydvl.value.result.ValuationResult] object.
Empty results are characterised by having an empty array of values. When
another result is added to an empty one, the empty one is ignored.
- :param algorithm: Name of the algorithm used to compute the values
- :param indices: Data indices to use. A copy will be made. If not given,
- the indices will be set to the range ``[0, n_samples)``.
- :param data_names: Data names to use. A copy will be made. If not given,
- the names will be set to the string representation of the indices.
- :param n_samples: Number of data points whose values are computed. If
- not given, the length of ``indices`` will be used.
- :return: An instance of :class:`ValuationResult`
+ Args:
+ algorithm: Name of the algorithm used to compute the values
+ indices: Data indices to use. A copy will be made. If not given,
+ the indices will be set to the range `[0, n_samples)`.
+ data_names: Data names to use. A copy will be made. If not given,
+ the names will be set to the string representation of the indices.
+ n_samples: Number of data points whose values are computed. If
+ not given, the length of `indices` will be used.
+
+ Returns:
+ Object with the results.
"""
if indices is None:
indices = np.arange(n_samples, dtype=np.int_)
diff --git a/src/pydvl/value/sampler.py b/src/pydvl/value/sampler.py
index 86c29ec3d..0e3e479e9 100644
--- a/src/pydvl/value/sampler.py
+++ b/src/pydvl/value/sampler.py
@@ -1,30 +1,41 @@
-"""
+r"""
Samplers iterate over subsets of indices.
The classes in this module are used to iterate over indices and subsets of their
complement in the whole set, as required for the computation of marginal utility
for semi-values. The elements returned when iterating over any subclass of
-:class:`PowersetSampler` are tuples of the form ``(idx, subset)``, where ``idx``
-is the index of the element being added to the subset, and ``subset`` is the
-subset of the complement of ``idx``.
-
-.. note::
- This is the natural mode of iteration for the combinatorial definition of
- semi-values, in particular Shapley value. For the computation using
- permutations, adhering to this interface is not ideal, but we stick to it for
- consistency.
-
-The samplers are used in the :mod:`pydvl.value.semivalues` module to compute any
-semi-value, in particular Shapley and Beta values, and Banzhaf indices.
-
-.. rubric:: Slicing of samplers
+[PowersetSampler][pydvl.value.sampler.PowersetSampler] are tuples of the form
+`(idx, subset)`, where `idx` is the index of the element being added to the
+subset, and `subset` is the subset of the complement of `idx`.
+The classes in this module are used to iterate over an index set $I$ as required
+for the computation of marginal utility for semi-values. The elements returned
+when iterating over any subclass of :class:`PowersetSampler` are tuples of the
+form $(i, S)$, where $i$ is an index of interest, and $S \subset I \setminus \{i\}$
+is a subset of the complement of $i$.
+
+The iteration happens in two nested loops. An outer loop iterates over $I$, and
+an inner loop iterates over the powerset of $I \setminus \{i\}$. The outer
+iteration can be either sequential or at random.
+
+!!! Note
+ This is the natural mode of iteration for the combinatorial definition of
+ semi-values, in particular Shapley value. For the computation using
+ permutations, adhering to this interface is not ideal, but we stick to it for
+ consistency.
+
+The samplers are used in the [semivalues][pydvl.value.semivalues] module to
+compute any semi-value, in particular Shapley and Beta values, and Banzhaf
+indices.
+
+# Slicing of samplers
The samplers can be sliced for parallel computation. For those which are
embarrassingly parallel, this is done by slicing the set of "outer" indices and
returning new samplers over those slices. This includes all truly powerset-based
-samplers, such as :class:`DeterministicCombinatorialSampler` and
-:class:`UniformSampler`. In contrast, slicing a :class:`PermutationSampler`
-creates a new sampler which iterates over the same indices.
+samplers, such as [DeterministicUniformSampler][pydvl.value.sampler.DeterministicUniformSampler]
+and [UniformSampler][pydvl.value.sampler.UniformSampler]. In contrast, slicing a
+[PermutationSampler][pydvl.value.sampler.PermutationSampler] creates a new
+sampler which iterates over the same indices.
"""
from __future__ import annotations
@@ -33,48 +44,71 @@
import math
from enum import Enum
from itertools import permutations
-from typing import Generic, Iterable, Iterator, Sequence, Tuple, TypeVar, overload
+from typing import (
+ Generic,
+ Iterable,
+ Iterator,
+ Optional,
+ Sequence,
+ Tuple,
+ TypeVar,
+ Union,
+ overload,
+)
import numpy as np
+from deprecate import deprecated, void
from numpy.typing import NDArray
from pydvl.utils.numeric import powerset, random_subset, random_subset_of_size
+from pydvl.utils.types import Seed
__all__ = [
"AntitheticSampler",
- "DeterministicCombinatorialSampler",
+ "DeterministicUniformSampler",
"DeterministicPermutationSampler",
"PermutationSampler",
"PowersetSampler",
"RandomHierarchicalSampler",
"UniformSampler",
+ "StochasticSamplerMixin",
]
+
T = TypeVar("T", bound=np.generic)
-SampleType = Tuple[T, NDArray[T]]
+SampleT = Tuple[T, NDArray[T]]
Sequence.register(np.ndarray)
-class PowersetSampler(abc.ABC, Iterable[SampleType], Generic[T]):
- """Samplers iterate over subsets of indices.
+class PowersetSampler(abc.ABC, Iterable[SampleT], Generic[T]):
+ """Samplers are custom iterables over subsets of indices.
+
+ Calling ``iter()`` on a sampler returns an iterator over tuples of the form
+ $(i, S)$, where $i$ is an index of interest, and $S \subset I \setminus \{i\}$
+ is a subset of the complement of $i$.
- This is done in nested loops, where the outer loop iterates over the set of
- indices, and the inner loop iterates over subsets of the complement of the
- current index. The outer iteration can be either sequential or at random.
+ This is done in two nested loops, where the outer loop iterates over the set
+ of indices, and the inner loop iterates over subsets of the complement of
+ the current index. The outer iteration can be either sequential or at random.
- :Example:
+ !!! Note
+ Samplers are **not** iterators themselves, so that each call to ``iter()``
+ e.g. in a for loop creates a new iterator.
- >>>for idx, s in DeterministicCombinatorialSampler([1,2]):
- >>> print(s, end="")
- ()(2,)()(1,)
+ ??? Example
+ ``` pycon
+ >>>for idx, s in DeterministicUniformSampler(np.arange(2)):
+ >>> print(s, end="")
+ [][2,][][1,]
+ ```
- .. rubric:: Methods required in subclasses
+ # Methods required in subclasses
- Samplers must define a :meth:`weight` function to be used as a multiplier in
- Monte Carlo sums, so that the limit expectation coincides with the
- semi-value.
+ Samplers must implement a [weight()][pydvl.value.sampler.PowersetSampler.weight]
+ function to be used as a multiplier in Monte Carlo sums, so that the limit
+ expectation coincides with the semi-value.
- .. rubric:: Slicing of samplers
+ # Slicing of samplers
The samplers can be sliced for parallel computation. For those which are
embarrassingly parallel, this is done by slicing the set of "outer" indices
@@ -89,15 +123,16 @@ def __init__(
self,
indices: NDArray[T],
index_iteration: IndexIteration = IndexIteration.Sequential,
- outer_indices: NDArray[T] = None,
+ outer_indices: NDArray[T] | None = None,
):
"""
- :param indices: The set of items (indices) to sample from.
- :param index_iteration: the order in which indices are iterated over
- :param outer_indices: The set of items (indices) over which to iterate
- when sampling. Subsets are taken from the complement of each index
- in succession. For embarrassingly parallel computations, this set
- is sliced and the samplers are used to iterate over the slices.
+ Args:
+ indices: The set of items (indices) to sample from.
+ index_iteration: the order in which indices are iterated over
+ outer_indices: The set of items (indices) over which to iterate
+ when sampling. Subsets are taken from the complement of each index
+ in succession. For embarrassingly parallel computations, this set
+ is sliced and the samplers are used to iterate over the slices.
"""
self._indices = indices
self._index_iteration = index_iteration
@@ -138,19 +173,19 @@ def iterindices(self) -> Iterator[T]:
yield np.random.choice(self._outer_indices, size=1).item()
@overload
- def __getitem__(self, key: slice) -> "PowersetSampler[T]":
+ def __getitem__(self, key: slice) -> PowersetSampler[T]:
...
@overload
- def __getitem__(self, key: list[int]) -> "PowersetSampler[T]":
+ def __getitem__(self, key: list[int]) -> PowersetSampler[T]:
...
- def __getitem__(self, key: slice | list[int]) -> "PowersetSampler[T]":
+ def __getitem__(self, key: slice | list[int]) -> PowersetSampler[T]:
if isinstance(key, slice) or isinstance(key, Iterable):
return self.__class__(
self._indices,
index_iteration=self._index_iteration,
- outer_indices=self._indices[key],
+ outer_indices=self._outer_indices[key],
)
raise TypeError("Indices must be an iterable or a slice")
@@ -162,20 +197,21 @@ def __str__(self):
return f"{self.__class__.__name__}"
def __repr__(self):
- return f"{self.__class__.__name__}({self._indices})"
+ return f"{self.__class__.__name__}({self._indices}, {self._outer_indices})"
@abc.abstractmethod
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
...
+ @classmethod
@abc.abstractmethod
- def weight(self, subset: NDArray[T]) -> float:
+ def weight(cls, n: int, subset_len: int) -> float:
r"""Factor by which to multiply Monte Carlo samples, so that the
mean converges to the desired expression.
By the Law of Large Numbers, the sample mean of $\delta_i(S_j)$
- converges
- to the expectation under the distribution from which $S_j$ is sampled.
+ converges to the expectation under the distribution from which $S_j$ is
+ sampled.
$$ \frac{1}{m} \sum_{j = 1}^m \delta_i (S_j) c (S_j) \longrightarrow
\underset{S \sim \mathcal{D}_{- i}}{\mathbb{E}} [\delta_i (S) c (
@@ -187,52 +223,110 @@ def weight(self, subset: NDArray[T]) -> float:
...
-class DeterministicCombinatorialSampler(PowersetSampler[T]):
+class StochasticSamplerMixin:
+ """Mixin class for samplers which use a random number generator."""
+
+ def __init__(self, *args, seed: Optional[Seed] = None, **kwargs):
+ super().__init__(*args, **kwargs)
+ self._rng = np.random.default_rng(seed)
+
+
+class DeterministicUniformSampler(PowersetSampler[T]):
def __init__(self, indices: NDArray[T], *args, **kwargs):
- """Uniform deterministic sampling of subsets.
+ """An iterator to perform uniform deterministic sampling of subsets.
+
+ For every index $i$, each subset of the complement `indices - {i}` is
+ returned.
+
+ !!! Note
+ Indices are always iterated over sequentially, irrespective of
+ the value of `index_iteration` upon construction.
- For every index $i$, each subset of `indices - {i}` has equal
- probability $2^{n-1}$.
+ ??? Example
+ ``` pycon
+ >>> for idx, s in DeterministicUniformSampler(np.arange(2)):
+ >>> print(f"{idx} - {s}", end=", ")
+ 1 - [], 1 - [2], 2 - [], 2 - [1],
+ ```
- :param indices: The set of items (indices) to sample from.
+ Args:
+ indices: The set of items (indices) to sample from.
"""
# Force sequential iteration
kwargs.update({"index_iteration": PowersetSampler.IndexIteration.Sequential})
super().__init__(indices, *args, **kwargs)
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
for idx in self.iterindices():
- for subset in powerset(self.complement([idx])):
+ # FIXME: type ignore just necessary for CI ??
+ for subset in powerset(self.complement([idx])): # type: ignore
yield idx, np.array(subset)
self._n_samples += 1
- def weight(self, subset: NDArray[T]) -> float:
- return float(2 ** (self._n - 1)) if self._n > 0 else 1.0
-
+ @classmethod
+ def weight(cls, n: int, subset_len: int) -> float:
+ return float(2 ** (n - 1)) if n > 0 else 1.0
+
+
+class UniformSampler(StochasticSamplerMixin, PowersetSampler[T]):
+ """An iterator to perform uniform random sampling of subsets.
+
+ Iterating over every index $i$, either in sequence or at random depending on
+ the value of ``index_iteration``, one subset of the complement
+ ``indices - {i}`` is sampled with equal probability $2^{n-1}$. The
+ iterator never ends.
+
+ ??? Example
+ The code
+ ```python
+ for idx, s in UniformSampler(np.arange(3)):
+ print(f"{idx} - {s}", end=", ")
+ ```
+ Produces the output:
+ ```
+ 0 - [1 4], 1 - [2 3], 2 - [0 1 3], 3 - [], 4 - [2], 0 - [1 3 4], 1 - [0 2]
+ (...)
+ ```
+ """
-class UniformSampler(PowersetSampler[T]):
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
while True:
for idx in self.iterindices():
- subset = random_subset(self.complement([idx]))
+ subset = random_subset(self.complement([idx]), seed=self._rng)
yield idx, subset
self._n_samples += 1
if self._n_samples == 0: # Empty index set
break
- def weight(self, subset: NDArray[T]) -> float:
+ @classmethod
+ def weight(cls, n: int, subset_len: int) -> float:
"""Correction coming from Monte Carlo integration so that the mean of
the marginals converges to the value: the uniform distribution over the
- powerset of a set with n-1 elements has mass 2^{n-1} over each subset.
- The factor 1 / n corresponds to the one in the Shapley definition."""
- return float(2 ** (self._n - 1)) if self._n > 0 else 1.0
+ powerset of a set with n-1 elements has mass 2^{n-1} over each subset."""
+ return float(2 ** (n - 1)) if n > 0 else 1.0
-class AntitheticSampler(PowersetSampler[T]):
- def __iter__(self) -> Iterator[SampleType]:
+class DeterministicCombinatorialSampler(DeterministicUniformSampler[T]):
+ @deprecated(
+ target=DeterministicUniformSampler, deprecated_in="0.6.0", remove_in="0.8.0"
+ )
+ def __init__(self, indices: NDArray[T], *args, **kwargs):
+ void(indices, args, kwargs)
+
+
+class AntitheticSampler(StochasticSamplerMixin, PowersetSampler[T]):
+ """An iterator to perform uniform random sampling of subsets, and their
+ complements.
+
+ Works as :class:`~pydvl.value.sampler.UniformSampler`, but for every tuple
+ $(i,S)$, it subsequently returns $(i,S^c)$, where $S^c$ is the complement of
+ the set $S$, including the index $i$ itself.
+ """
+
+ def __iter__(self) -> Iterator[SampleT]:
while True:
for idx in self.iterindices():
- subset = random_subset(self.complement([idx]))
+ subset = random_subset(self.complement([idx]), seed=self._rng)
yield idx, subset
self._n_samples += 1
yield idx, self.complement(np.concatenate((subset, np.array([idx]))))
@@ -240,35 +334,45 @@ def __iter__(self) -> Iterator[SampleType]:
if self._n_samples == 0: # Empty index set
break
- def weight(self, subset: NDArray[T]) -> float:
- return float(2 ** (self._n - 1)) if self._n > 0 else 1.0
+ @classmethod
+ def weight(cls, n: int, subset_len: int) -> float:
+ return float(2 ** (n - 1)) if n > 0 else 1.0
+
+
+class PermutationSampler(StochasticSamplerMixin, PowersetSampler[T]):
+ """Sample permutations of indices and iterate through each returning
+ increasing subsets, as required for the permutation definition of
+ semi-values.
+ This sampler does not implement the two loops described in
+ [PowersetSampler][pydvl.value.sampler.PowersetSampler]. Instead, for a
+ permutation `(3,1,4,2)`, it returns in sequence the tuples of index and
+ sets: `(3, {})`, `(1, {3})`, `(4, {3,1})` and `(2, {3,1,4})`.
-class PermutationSampler(PowersetSampler[T]):
- """Sample permutations of indices and iterate through each returning sets,
- as required for the permutation definition of semi-values.
+ Note that the full index set is never returned.
- .. warning::
- This sampler requires caching to be enabled or computation
- will be doubled wrt. a "direct" implementation of permutation MC
+ !!! Warning
+ This sampler requires caching to be enabled or computation
+ will be doubled wrt. a "direct" implementation of permutation MC
"""
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
while True:
- permutation = np.random.permutation(self._indices)
+ permutation = self._rng.permutation(self._indices)
for i, idx in enumerate(permutation):
yield idx, permutation[:i]
self._n_samples += 1
if self._n_samples == 0: # Empty index set
break
- def __getitem__(self, key: slice | list[int]) -> "PowersetSampler[T]":
+ def __getitem__(self, key: slice | list[int]) -> PowersetSampler[T]:
"""Permutation samplers cannot be split across indices, so we return
a copy of the full sampler."""
return super().__getitem__(slice(None))
- def weight(self, subset: NDArray[T]) -> float:
- return self._n * math.comb(self._n - 1, len(subset)) if self._n > 0 else 1.0
+ @classmethod
+ def weight(cls, n: int, subset_len: int) -> float:
+ return n * math.comb(n - 1, subset_len) if n > 0 else 1.0
class DeterministicPermutationSampler(PermutationSampler[T]):
@@ -276,36 +380,49 @@ class DeterministicPermutationSampler(PermutationSampler[T]):
iterates through them, returning sets as required for the permutation-based
definition of semi-values.
- .. warning::
- This sampler requires caching to be enabled or computation
- will be doubled wrt. a "direct" implementation of permutation MC
+ !!! Warning
+ This sampler requires caching to be enabled or computation
+ will be doubled wrt. a "direct" implementation of permutation MC
+
+ !!! Warning
+ This sampler is not parallelizable, as it always iterates over the whole
+ set of permutations in the same order. Different processes would always
+ return the same values for all indices.
"""
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
for permutation in permutations(self._indices):
for i, idx in enumerate(permutation):
yield idx, np.array(permutation[:i], dtype=self._indices.dtype)
self._n_samples += 1
- if self._n_samples == 0: # Empty index set
- break
-class RandomHierarchicalSampler(PowersetSampler[T]):
+class RandomHierarchicalSampler(StochasticSamplerMixin, PowersetSampler[T]):
"""For every index, sample a set size, then a set of that size.
- .. todo::
- This is unnecessary, but a step towards proper stratified sampling.
+ !!! Todo
+ This is unnecessary, but a step towards proper stratified sampling.
"""
- def __iter__(self) -> Iterator[SampleType]:
+ def __iter__(self) -> Iterator[SampleT]:
while True:
for idx in self.iterindices():
- k = np.random.choice(np.arange(len(self._indices)), size=1).item()
- subset = random_subset_of_size(self.complement([idx]), size=k)
+ k = self._rng.choice(np.arange(len(self._indices)), size=1).item()
+ subset = random_subset_of_size(
+ self.complement([idx]), size=k, seed=self._rng
+ )
yield idx, subset
self._n_samples += 1
if self._n_samples == 0: # Empty index set
break
- def weight(self, subset: NDArray[T]) -> float:
- return float(2 ** (self._n - 1)) if self._n > 0 else 1.0
+ @classmethod
+ def weight(cls, n: int, subset_len: int) -> float:
+ return float(2 ** (n - 1)) if n > 0 else 1.0
+
+
+# TODO Replace by Intersection[StochasticSamplerMixin, PowersetSampler[T]]
+# See https://github.com/python/typing/issues/213
+StochasticSampler = Union[
+ UniformSampler, PermutationSampler, AntitheticSampler, RandomHierarchicalSampler
+]
diff --git a/src/pydvl/value/semivalues.py b/src/pydvl/value/semivalues.py
index 6dfb94116..488a25037 100644
--- a/src/pydvl/value/semivalues.py
+++ b/src/pydvl/value/semivalues.py
@@ -9,119 +9,145 @@
$$\sum_{k=1}^n w(k) = 1.$$
+!!! Note
+ For implementation consistency, we slightly depart from the common definition
+ of semi-values, which includes a factor $1/n$ in the sum over subsets.
+ Instead, we subsume this factor into the coefficient $w(k)$.
+
As such, the computation of a semi-value requires two components:
1. A **subset sampler** that generates subsets of the set $D$ of interest.
2. A **coefficient** $w(k)$ that assigns a weight to each subset size $k$.
-Samplers can be found in :mod:`pydvl.value.sampler`, and can be classified into
-two categories: powerset samplers and (one) permutation sampler. Powerset
+Samplers can be found in [sampler][pydvl.value.sampler], and can be classified
+into two categories: powerset samplers and permutation samplers. Powerset
samplers generate subsets of $D_{-i}$, while the permutation sampler generates
permutations of $D$. The former conform to the above definition of semi-values,
while the latter reformulates it as:
$$
-v_u(x_i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)}
-\tilde{w}( | \sigma_{:i} | )[u(\sigma_{:i} \cup \{i\}) − u(\sigma_{:i})],
+v(i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)}
+\tilde{w}( | \sigma_{:i} | )[U(\sigma_{:i} \cup \{i\}) − U(\sigma_{:i})],
$$
where $\sigma_{:i}$ denotes the set of indices in permutation sigma before the
-position where $i$ appears (see :ref:`data valuation` for details), and
-$\tilde{w}(k) = n \choose{n-1}{k} w(k)$ is the weight correction due to the
-reformulation.
+position where $i$ appears (see [Data valuation][computing-data-values] for
+details), and
+
+$$ \tilde{w} (k) = n \binom{n - 1}{k} w (k) $$
+
+is the weight correction due to the reformulation.
+
+!!! Warning
+ Both [PermutationSampler][pydvl.value.sampler.PermutationSampler] and
+ [DeterministicPermutationSampler][pydvl.value.sampler.DeterministicPermutationSampler]
+ require caching to be enabled or computation will be doubled wrt. a 'direct'
+ implementation of permutation MC.
+
+There are several pre-defined coefficients, including the Shapley value of
+(Ghorbani and Zou, 2019)[^1], the Banzhaf index of (Wang and Jia)[^3], and the Beta
+coefficient of (Kwon and Zou, 2022)[^2]. For each of these methods, there is a
+convenience wrapper function. Respectively, these are:
+[compute_shapley_semivalues][pydvl.value.semivalues.compute_shapley_semivalues],
+[compute_banzhaf_semivalues][pydvl.value.semivalues.compute_banzhaf_semivalues],
+and [compute_beta_shapley_semivalues][pydvl.value.semivalues.compute_beta_shapley_semivalues].
+instead.
-There are several pre-defined coefficients, including the Shapley value
-of :footcite:t:`ghorbani_data_2019`, the Banzhaf index of
-:footcite:t:`wang_data_2022`, and the Beta coefficient of
-:footcite:t:`kwon_beta_2022`.
+## References
-.. note::
- For implementation consistency, we slightly depart from the common definition
- of semi-values, which includes a factor $1/n$ in the sum over subsets.
- Instead, we subsume this factor into the coefficient $w(k)$.
+[^1]: Ghorbani, A., Zou, J., 2019.
+ [Data Shapley: Equitable Valuation of Data for Machine Learning](http://proceedings.mlr.press/v97/ghorbani19c.html).
+ In: Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2242–2251.
+[^2]: Kwon, Y. and Zou, J., 2022.
+ [Beta Shapley: A Unified and Noise-reduced Data Valuation Framework for Machine Learning](http://arxiv.org/abs/2110.14049).
+ In: Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Vol. 151. PMLR, Valencia, Spain.
+
+[^3]: Wang, J.T. and Jia, R., 2022.
+ [Data Banzhaf: A Robust Data Valuation Framework for Machine Learning](http://arxiv.org/abs/2205.15466).
+ ArXiv preprint arXiv:2205.15466.
"""
+from __future__ import annotations
+import logging
import math
-import operator
from enum import Enum
-from functools import reduce
-from itertools import takewhile
-from typing import Protocol, Type, cast
+from typing import Optional, Protocol, Tuple, Type, TypeVar, cast
+import numpy as np
import scipy as sp
+from deprecate import deprecated
from tqdm import tqdm
-from pydvl.utils import MapReduceJob, ParallelConfig, Utility
+from pydvl.utils import ParallelConfig, Utility
+from pydvl.utils.types import Seed
from pydvl.value import ValuationResult
-from pydvl.value.sampler import PermutationSampler, PowersetSampler
+from pydvl.value.sampler import (
+ PermutationSampler,
+ PowersetSampler,
+ SampleT,
+ StochasticSampler,
+)
from pydvl.value.stopping import MaxUpdates, StoppingCriterion
__all__ = [
- "banzhaf_coefficient",
+ "compute_banzhaf_semivalues",
+ "compute_beta_shapley_semivalues",
+ "compute_shapley_semivalues",
"beta_coefficient",
+ "banzhaf_coefficient",
"shapley_coefficient",
- "semivalues",
+ "compute_generic_semivalues",
+ "compute_semivalues",
"SemiValueMode",
]
+log = logging.getLogger(__name__)
+
class SVCoefficient(Protocol):
"""A coefficient for the computation of semi-values."""
- __name__: str
-
def __call__(self, n: int, k: int) -> float:
"""Computes the coefficient for a given subset size.
- :param n: Total number of elements in the set.
- :param k: Size of the subset for which the coefficient is being computed
+ Args:
+ n: Total number of elements in the set.
+ k: Size of the subset for which the coefficient is being computed
"""
...
-def _semivalues(
- sampler: PowersetSampler,
- u: Utility,
- coefficient: SVCoefficient,
- done: StoppingCriterion,
- *,
- progress: bool = False,
- job_id: int = 1,
-) -> ValuationResult:
- r"""Serial computation of semi-values. This is a helper function for
- :func:`semivalues`.
-
- :param sampler: The subset sampler to use for utility computations.
- :param u: Utility object with model, data, and scoring function.
- :param coefficient: The semivalue coefficient
- :param done: Stopping criterion.
- :param progress: Whether to display progress bars for each job.
- :param job_id: id to use for reporting progress.
- :return: Object with the results.
- """
- n = len(u.data.indices)
- result = ValuationResult.zeros(
- algorithm=f"semivalue-{str(sampler)}-{coefficient.__name__}",
- indices=sampler.indices,
- data_names=[u.data.data_names[i] for i in sampler.indices],
- )
+IndexT = TypeVar("IndexT", bound=np.generic)
+MarginalT = Tuple[IndexT, float]
- samples = takewhile(lambda _: not done(result), sampler)
- pbar = tqdm(disable=not progress, position=job_id, total=100, unit="%")
- for idx, s in samples:
- pbar.n = 100 * done.completion()
- pbar.refresh()
- marginal = (
- (u({idx}.union(s)) - u(s)) * coefficient(n, len(s)) * sampler.weight(s)
- )
- result.update(idx, marginal)
- return result
+def _marginal(u: Utility, coefficient: SVCoefficient, sample: SampleT) -> MarginalT:
+ """Computation of marginal utility. This is a helper function for
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues].
+ Args:
+ u: Utility object with model, data, and scoring function.
+ coefficient: The semivalue coefficient and sampler weight
+ sample: A tuple of index and subset of indices to compute a marginal
+ utility.
-def semivalues(
+ Returns:
+ Tuple with index and its marginal utility.
+ """
+ n = len(u.data)
+ idx, s = sample
+ marginal = (u({idx}.union(s)) - u(s)) * coefficient(n, len(s))
+ return idx, marginal
+
+
+# @deprecated(
+# target=compute_semivalues, # TODO: rename this to compute_semivalues
+# deprecated_in="0.8.0",
+# remove_in="0.9.0",
+# )
+def compute_generic_semivalues(
sampler: PowersetSampler,
u: Utility,
coefficient: SVCoefficient,
@@ -131,29 +157,78 @@ def semivalues(
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
) -> ValuationResult:
+ """Computes semi-values for a given utility function and subset sampler.
+
+ Args:
+ sampler: The subset sampler to use for utility computations.
+ u: Utility object with model, data, and scoring function.
+ coefficient: The semi-value coefficient
+ done: Stopping criterion.
+ n_jobs: Number of parallel jobs to use.
+ config: Object configuring parallel computation, with cluster
+ address, number of cpus, etc.
+ progress: Whether to display a progress bar.
+
+ Returns:
+ Object with the results.
"""
- Computes semi-values for a given utility function and subset sampler.
-
- :param sampler: The subset sampler to use for utility computations.
- :param u: Utility object with model, data, and scoring function.
- :param coefficient: The semi-value coefficient
- :param done: Stopping criterion.
- :param n_jobs: Number of parallel jobs to use.
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :return: Object with the results.
+ from concurrent.futures import FIRST_COMPLETED, Future, wait
- """
- map_reduce_job: MapReduceJob[PowersetSampler, ValuationResult] = MapReduceJob(
- sampler,
- map_func=_semivalues,
- reduce_func=lambda results: reduce(operator.add, results),
- map_kwargs=dict(u=u, coefficient=coefficient, done=done, progress=progress),
- config=config,
- n_jobs=n_jobs,
+ from pydvl.utils import effective_n_jobs, init_executor, init_parallel_backend
+
+ if isinstance(sampler, PermutationSampler) and not u.enable_cache:
+ log.warning(
+ "PermutationSampler requires caching to be enabled or computation "
+ "will be doubled wrt. a 'direct' implementation of permutation MC"
+ )
+
+ result = ValuationResult.zeros(
+ algorithm=f"semivalue-{str(sampler)}-{coefficient.__name__}", # type: ignore
+ indices=u.data.indices,
+ data_names=u.data.data_names,
)
- return map_reduce_job()
+
+ parallel_backend = init_parallel_backend(config)
+ u = parallel_backend.put(u)
+ correction = parallel_backend.put(
+ lambda n, k: coefficient(n, k) * sampler.weight(n, k)
+ )
+
+ max_workers = effective_n_jobs(n_jobs, config)
+ n_submitted_jobs = 2 * max_workers # number of jobs in the queue
+
+ sampler_it = iter(sampler)
+ pbar = tqdm(disable=not progress, total=100, unit="%")
+
+ with init_executor(
+ max_workers=max_workers, config=config, cancel_futures=True
+ ) as executor:
+ pending: set[Future] = set()
+ while True:
+ pbar.n = 100 * done.completion()
+ pbar.refresh()
+
+ completed, pending = wait(pending, timeout=1, return_when=FIRST_COMPLETED)
+ for future in completed:
+ idx, marginal = future.result()
+ result.update(idx, marginal)
+ if done(result):
+ return result
+
+ # Ensure that we always have n_submitted_jobs running
+ try:
+ for _ in range(n_submitted_jobs - len(pending)):
+ pending.add(
+ executor.submit(
+ _marginal,
+ u=u,
+ coefficient=correction,
+ sample=next(sampler_it),
+ )
+ )
+ except StopIteration:
+ if len(pending) == 0:
+ return result
def shapley_coefficient(n: int, k: int) -> float:
@@ -186,49 +261,210 @@ def beta_coefficient_w(n: int, k: int) -> float:
return cast(SVCoefficient, beta_coefficient_w)
+def compute_shapley_semivalues(
+ u: Utility,
+ *,
+ done: StoppingCriterion = MaxUpdates(100),
+ sampler_t: Type[StochasticSampler] = PermutationSampler,
+ n_jobs: int = 1,
+ config: ParallelConfig = ParallelConfig(),
+ progress: bool = False,
+ seed: Optional[Seed] = None,
+) -> ValuationResult:
+ """Computes Shapley values for a given utility function.
+
+ This is a convenience wrapper for
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues]
+ with the Shapley coefficient. Use
+ [compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values]
+ for a more flexible interface and additional methods, including TMCS.
+
+ Args:
+ u: Utility object with model, data, and scoring function.
+ done: Stopping criterion.
+ sampler_t: The sampler type to use. See :mod:`pydvl.value.sampler`
+ for a list.
+ n_jobs: Number of parallel jobs to use.
+ config: Object configuring parallel computation, with cluster
+ address, number of cpus, etc.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ progress: Whether to display a progress bar.
+
+ Returns:
+ Object with the results.
+ """
+ return compute_generic_semivalues(
+ sampler_t(u.data.indices, seed=seed),
+ u,
+ shapley_coefficient,
+ done,
+ n_jobs=n_jobs,
+ config=config,
+ progress=progress,
+ )
+
+
+def compute_banzhaf_semivalues(
+ u: Utility,
+ *,
+ done: StoppingCriterion = MaxUpdates(100),
+ sampler_t: Type[StochasticSampler] = PermutationSampler,
+ n_jobs: int = 1,
+ config: ParallelConfig = ParallelConfig(),
+ progress: bool = False,
+ seed: Optional[Seed] = None,
+) -> ValuationResult:
+ """Computes Banzhaf values for a given utility function.
+
+ This is a convenience wrapper for
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues]
+ with the Banzhaf coefficient.
+
+ Args:
+ u: Utility object with model, data, and scoring function.
+ done: Stopping criterion.
+ sampler_t: The sampler type to use. See :mod:`pydvl.value.sampler` for a
+ list.
+ n_jobs: Number of parallel jobs to use.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ progress: Whether to display a progress bar.
+
+ Returns:
+ Object with the results.
+ """
+ return compute_generic_semivalues(
+ sampler_t(u.data.indices, seed=seed),
+ u,
+ banzhaf_coefficient,
+ done,
+ n_jobs=n_jobs,
+ config=config,
+ progress=progress,
+ )
+
+
+def compute_beta_shapley_semivalues(
+ u: Utility,
+ *,
+ alpha: float = 1,
+ beta: float = 1,
+ done: StoppingCriterion = MaxUpdates(100),
+ sampler_t: Type[StochasticSampler] = PermutationSampler,
+ n_jobs: int = 1,
+ config: ParallelConfig = ParallelConfig(),
+ progress: bool = False,
+ seed: Optional[Seed] = None,
+) -> ValuationResult:
+ """Computes Beta Shapley values for a given utility function.
+
+ This is a convenience wrapper for
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues]
+ with the Beta Shapley coefficient.
+
+ Args:
+ u: Utility object with model, data, and scoring function.
+ alpha: Alpha parameter of the Beta distribution.
+ beta: Beta parameter of the Beta distribution.
+ done: Stopping criterion.
+ sampler_t: The sampler type to use. See :mod:`pydvl.value.sampler` for a list.
+ n_jobs: Number of parallel jobs to use.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ config: Object configuring parallel computation, with cluster address, number of
+ cpus, etc.
+ progress: Whether to display a progress bar.
+
+ Returns:
+ Object with the results.
+ """
+ return compute_generic_semivalues(
+ sampler_t(u.data.indices, seed=seed),
+ u,
+ beta_coefficient(alpha, beta),
+ done,
+ n_jobs=n_jobs,
+ config=config,
+ progress=progress,
+ )
+
+
+@deprecated(
+ target=True,
+ deprecated_in="0.7.0",
+ remove_in="0.8.0",
+)
class SemiValueMode(str, Enum):
+ """Enumeration of semi-value modes.
+
+ !!! warning "Deprecation notice"
+ This enum and the associated methods are deprecated and will be removed
+ in 0.8.0.
+ """
+
Shapley = "shapley"
BetaShapley = "beta_shapley"
Banzhaf = "banzhaf"
+@deprecated(target=True, deprecated_in="0.7.0", remove_in="0.8.0")
def compute_semivalues(
u: Utility,
*,
done: StoppingCriterion = MaxUpdates(100),
mode: SemiValueMode = SemiValueMode.Shapley,
- sampler_t: Type[PowersetSampler] = PermutationSampler,
+ sampler_t: Type[StochasticSampler] = PermutationSampler,
n_jobs: int = 1,
+ seed: Optional[Seed] = None,
**kwargs,
) -> ValuationResult:
- """Entry point for most common semi-value computations. All are implemented
- with permutation sampling.
-
- For any other sampling method, use :func:`parallel_semivalues` directly.
-
- See :ref:`data valuation` for an overview of valuation.
-
- The modes supported are:
-
- - :attr:`SemiValueMode.Shapley`: Shapley values.
- - :attr:`SemiValueMode.BetaShapley`: Implements the Beta Shapley semi-value
- as introduced in :footcite:t:`kwon_beta_2022`. Pass additional keyword
- arguments ``alpha`` and ``beta`` to set the parameters of the Beta
- distribution (both default to 1).
- - :attr:`SemiValueMode.Banzhaf`: Implements the Banzhaf semi-value as
- introduced in :footcite:t:`wang_data_2022`.
-
- :param u: Utility object with model, data, and scoring function.
- :param done: Stopping criterion.
- :param mode: The semi-value mode to use. See :class:`SemiValueMode` for a
- list.
- :param sampler_t: The sampler type to use. See :mod:`pydvl.value.sampler`
- for a list.
- :param n_jobs: Number of parallel jobs to use.
- :param kwargs: Additional keyword arguments passed to
- :func:`~pydvl.value.semivalues.semivalues`.
+ """Convenience entry point for most common semi-value computations.
+
+ !!! warning "Deprecation warning"
+ This method is deprecated and will be replaced in 0.8.0 by the more
+ general implementation of
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues].
+ Use
+ [compute_shapley_semivalues][pydvl.value.semivalues.compute_shapley_semivalues],
+ [compute_banzhaf_semivalues][pydvl.value.semivalues.compute_banzhaf_semivalues],
+ or
+ [compute_beta_shapley_semivalues][pydvl.value.semivalues.compute_beta_shapley_semivalues]
+ instead.
+
+ The modes supported with this interface are the following. For greater
+ flexibility use
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues]
+ directly.
+
+ - [SemiValueMode.Shapley][pydvl.value.semivalues.SemiValueMode]:
+ Shapley values.
+ - [SemiValueMode.BetaShapley][pydvl.value.semivalues.SemiValueMode.BetaShapley]:
+ Implements the Beta Shapley semi-value as introduced in
+ (Kwon and Zou, 2022)1 .
+ Pass additional keyword arguments `alpha` and `beta` to set the
+ parameters of the Beta distribution (both default to 1).
+ - [SemiValueMode.Banzhaf][SemiValueMode.Banzhaf]: Implements the Banzhaf
+ semi-value as introduced in (Wang and Jia, 2022)1 .
+
+ See [[data-valuation]] for an overview of valuation.
+ - [SemiValueMode.Banzhaf][pydvl.value.semivalues.SemiValueMode]: Implements
+ the Banzhaf semi-value as introduced in [@wang_data_2022].
+
+ Args:
+ u: Utility object with model, data, and scoring function.
+ done: Stopping criterion.
+ mode: The semi-value mode to use. See
+ [SemiValueMode][pydvl.value.semivalues.SemiValueMode] for a list.
+ sampler_t: The sampler type to use. See [sampler][pydvl.value.sampler]
+ for a list.
+ n_jobs: Number of parallel jobs to use.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ kwargs: Additional keyword arguments passed to
+ [compute_generic_semivalues][pydvl.value.semivalues.compute_generic_semivalues].
+
+ Returns:
+ Object with the results.
"""
- sampler_instance = sampler_t(u.data.indices)
if mode == SemiValueMode.Shapley:
coefficient = shapley_coefficient
elif mode == SemiValueMode.BetaShapley:
@@ -240,4 +476,11 @@ def compute_semivalues(
else:
raise ValueError(f"Unknown mode {mode}")
coefficient = cast(SVCoefficient, coefficient)
- return semivalues(sampler_instance, u, coefficient, done, n_jobs=n_jobs, **kwargs)
+ return compute_generic_semivalues(
+ sampler_t(u.data.indices, seed=seed),
+ u,
+ coefficient,
+ done,
+ n_jobs=n_jobs,
+ **kwargs,
+ )
diff --git a/src/pydvl/value/shapley/__init__.py b/src/pydvl/value/shapley/__init__.py
index 6f93cd60e..d4730237e 100644
--- a/src/pydvl/value/shapley/__init__.py
+++ b/src/pydvl/value/shapley/__init__.py
@@ -1,9 +1,12 @@
"""
This package holds all routines for the computation of Shapley Data value. Users
-will want to use :func:`~pydvl.value.shapley.common.compute_shapley_values` as a
-single interface to all methods defined in the modules.
+will want to use
+[compute_shapley_values][pydvl.value.shapley.common.compute_shapley_values] or
+[compute_semivalues][pydvl.value.semivalues.compute_semivalues] as interfaces to
+most methods defined in the modules.
-Please refer to :ref:`data valuation` for an overview of Shapley Data value.
+Please refer to [the guide on data valuation][data-valuation] for an overview of
+all methods.
"""
from ..result import *
diff --git a/src/pydvl/value/shapley/common.py b/src/pydvl/value/shapley/common.py
index 751185cbd..383ff589f 100644
--- a/src/pydvl/value/shapley/common.py
+++ b/src/pydvl/value/shapley/common.py
@@ -1,4 +1,7 @@
+from typing import Optional
+
from pydvl.utils import Utility
+from pydvl.utils.types import Seed
from pydvl.value.result import ValuationResult
from pydvl.value.shapley.gt import group_testing_shapley
from pydvl.value.shapley.knn import knn_shapley
@@ -24,73 +27,75 @@ def compute_shapley_values(
done: StoppingCriterion = MaxUpdates(100),
mode: ShapleyMode = ShapleyMode.TruncatedMontecarlo,
n_jobs: int = 1,
+ seed: Optional[Seed] = None,
**kwargs,
) -> ValuationResult:
"""Umbrella method to compute Shapley values with any of the available
algorithms.
- See :ref:`data valuation` for an overview.
+ See [[data-valuation]] for an overview.
The following algorithms are available. Note that the exact methods can only
work with very small datasets and are thus intended only for testing. Some
algorithms also accept additional arguments, please refer to the
documentation of each particular method.
- - ``combinatorial_exact``: uses the combinatorial implementation of data
+ - `combinatorial_exact`: uses the combinatorial implementation of data
Shapley. Implemented in
- :func:`~pydvl.value.shapley.naive.combinatorial_exact_shapley`.
- - ``combinatorial_montecarlo``: uses the approximate Monte Carlo
+ [combinatorial_exact_shapley()][pydvl.value.shapley.naive.combinatorial_exact_shapley].
+ - `combinatorial_montecarlo`: uses the approximate Monte Carlo
implementation of combinatorial data Shapley. Implemented in
- :func:`~pydvl.value.shapley.montecarlo.combinatorial_montecarlo_shapley`.
- - ``permutation_exact``: uses the permutation-based implementation of data
+ [combinatorial_montecarlo_shapley()][pydvl.value.shapley.montecarlo.combinatorial_montecarlo_shapley].
+ - `permutation_exact`: uses the permutation-based implementation of data
Shapley. Computation is **not parallelized**. Implemented in
- :func:`~pydvl.value.shapley.naive.permutation_exact_shapley`.
- - ``permutation_montecarlo``: uses the approximate Monte Carlo
- implementation of permutation data Shapley. Implemented in
- :func:`~pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley`.
- - ``truncated_montecarlo``: default option, same as ``permutation_montecarlo``
- but stops the computation whenever a certain accuracy is reached.
- Implemented in
- :func:`~pydvl.value.shapley.montecarlo.truncated_montecarlo_shapley`.
- - ``owen_sampling``: Uses the Owen continuous extension of the utility
+ [permutation_exact_shapley()][pydvl.value.shapley.naive.permutation_exact_shapley].
+ - `permutation_montecarlo`: uses the approximate Monte Carlo
+ implementation of permutation data Shapley. Accepts a
+ [TruncationPolicy][pydvl.value.shapley.truncated.TruncationPolicy] to stop
+ computing marginals. Implemented in
+ [permutation_montecarlo_shapley()][pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley].
+ - `owen_sampling`: Uses the Owen continuous extension of the utility
function to the unit cube. Implemented in
- :func:`~pydvl.value.shapley.montecarlo.owen_sampling_shapley`. This
- method does not take a :class:`~pydvl.value.stopping.StoppingCriterion`
- but instead requires a parameter ``q_max`` for the number of subdivisions
+ [owen_sampling_shapley()][pydvl.value.shapley.owen.owen_sampling_shapley]. This
+ method does not take a [StoppingCriterion][pydvl.value.stopping.StoppingCriterion]
+ but instead requires a parameter `q_max` for the number of subdivisions
of the unit interval to use for integration, and another parameter
- ``n_samples`` for the number of subsets to sample for each $q$.
- - ``owen_halved``: Same as 'owen_sampling' but uses correlated samples in the
+ `n_samples` for the number of subsets to sample for each $q$.
+ - `owen_halved`: Same as 'owen_sampling' but uses correlated samples in the
expectation. Implemented in
- :func:`~pydvl.value.shapley.montecarlo.owen_sampling_shapley`.
+ [owen_sampling_shapley()][pydvl.value.shapley.owen.owen_sampling_shapley].
This method requires an additional parameter `q_max` for the number of
subdivisions of the interval [0,0.5] to use for integration, and another
- parameter ``n_samples`` for the number of subsets to sample for each $q$.
- - ``group_testing``: estimates differences of Shapley values and solves a
+ parameter `n_samples` for the number of subsets to sample for each $q$.
+ - `group_testing`: estimates differences of Shapley values and solves a
constraint satisfaction problem. High sample complexity, not recommended.
- Implemented in :func:`~pydvl.value.shapley.gt.group_testing_shapley`. This
- method does not take a :class:`~pydvl.value.stopping.StoppingCriterion`
- but instead requires a parameter ``n_samples`` for the number of
+ Implemented in [group_testing_shapley()][pydvl.value.shapley.gt.group_testing_shapley]. This
+ method does not take a [StoppingCriterion][pydvl.value.stopping.StoppingCriterion]
+ but instead requires a parameter `n_samples` for the number of
iterations to run.
Additionally, one can use model-specific methods:
- - ``knn``: Exact method for K-Nearest neighbour models. Implemented in
- :func:`~pydvl.value.shapley.knn.knn_shapley`.
+ - `knn`: Exact method for K-Nearest neighbour models. Implemented in
+ [knn_shapley()][pydvl.value.shapley.knn.knn_shapley].
- :param u: :class:`~pydvl.utils.utility.Utility` object with model, data, and
- scoring function.
- :param done: :class:`~pydvl.value.stopping.StoppingCriterion` object, used
- to determine when to stop the computation for Monte Carlo methods. The
- default is to stop after 100 iterations. See the available criteria in
- :mod:`~pydvl.value.stopping`. It is possible to combine several criteria
- using boolean operators. Some methods ignore this argument, others
- require specific subtypes.
- :param n_jobs: Number of parallel jobs (available only to some methods)
- :param mode: Choose which shapley algorithm to use. See
- :class:`~pydvl.value.shapley.ShapleyMode` for a list of allowed value.
+ Args:
+ u: [Utility][pydvl.utils.utility.Utility] object with model, data, and
+ scoring function.
+ done: Object used to determine when to stop the computation for Monte
+ Carlo methods. The default is to stop after 100 iterations. See the
+ available criteria in [stopping][pydvl.value.stopping]. It is
+ possible to combine several of them using boolean operators. Some
+ methods ignore this argument, others require specific subtypes.
+ n_jobs: Number of parallel jobs (available only to some methods)
+ seed: Either an instance of a numpy random number generator or a seed
+ for it.
+ mode: Choose which shapley algorithm to use. See
+ [ShapleyMode][pydvl.value.shapley.ShapleyMode] for a list of allowed
+ value.
- :return: A :class:`~pydvl.value.result.ValuationResult` object with the
- results.
+ Returns:
+ Object with the results.
"""
progress: bool = kwargs.pop("progress", False)
@@ -98,24 +103,18 @@ def compute_shapley_values(
if mode not in list(ShapleyMode):
raise ValueError(f"Invalid value encountered in {mode=}")
- if mode == ShapleyMode.TruncatedMontecarlo:
+ if mode in (
+ ShapleyMode.PermutationMontecarlo,
+ ShapleyMode.ApproShapley,
+ ShapleyMode.TruncatedMontecarlo,
+ ):
truncation = kwargs.pop("truncation", NoTruncation())
- return truncated_montecarlo_shapley( # type: ignore
- u=u, done=done, n_jobs=n_jobs, truncation=truncation, **kwargs
+ return permutation_montecarlo_shapley( # type: ignore
+ u=u, done=done, truncation=truncation, n_jobs=n_jobs, seed=seed, **kwargs
)
elif mode == ShapleyMode.CombinatorialMontecarlo:
return combinatorial_montecarlo_shapley(
- u, done=done, n_jobs=n_jobs, progress=progress
- )
- elif mode in (ShapleyMode.PermutationMontecarlo, ShapleyMode.ApproShapley):
- truncation = kwargs.pop("truncation", NoTruncation())
- return permutation_montecarlo_shapley(
- u,
- done=done,
- n_jobs=n_jobs,
- progress=progress,
- truncation=truncation,
- **kwargs,
+ u, done=done, n_jobs=n_jobs, seed=seed, progress=progress
)
elif mode == ShapleyMode.CombinatorialExact:
return combinatorial_exact_shapley(u, n_jobs=n_jobs, progress=progress)
@@ -138,6 +137,7 @@ def compute_shapley_values(
max_q=int(kwargs.get("max_q", -1)),
method=method,
n_jobs=n_jobs,
+ seed=seed,
)
elif mode == ShapleyMode.KNN:
return knn_shapley(u, progress=progress)
@@ -151,11 +151,12 @@ def compute_shapley_values(
delta = kwargs.pop("delta", 0.05)
return group_testing_shapley(
u,
- epsilon=epsilon,
+ epsilon=float(epsilon),
delta=delta,
- n_samples=n_samples,
+ n_samples=int(n_samples),
n_jobs=n_jobs,
progress=progress,
+ seed=seed,
**kwargs,
)
else:
diff --git a/src/pydvl/value/shapley/gt.py b/src/pydvl/value/shapley/gt.py
index b4b093637..b78ac346c 100644
--- a/src/pydvl/value/shapley/gt.py
+++ b/src/pydvl/value/shapley/gt.py
@@ -1,32 +1,39 @@
"""
This module implements Group Testing for the approximation of Shapley values, as
-introduced in :footcite:t:`jia_efficient_2019`. The sampling of index subsets is
+introduced in (Jia, R. et al., 2019)[^1]. The sampling of index subsets is
done in such a way that an approximation to the true Shapley values can be
computed with guarantees.
-.. warning::
- This method is very inefficient. Potential improvements to the
- implementation notwithstanding, convergence seems to be very slow (in terms
- of evaluations of the utility required). We recommend other Monte Carlo
- methods instead.
+!!! Warning
+ This method is very inefficient. Potential improvements to the
+ implementation notwithstanding, convergence seems to be very slow (in terms
+ of evaluations of the utility required). We recommend other Monte Carlo
+ methods instead.
-You can read more :ref:`in the documentation`.
+You can read more [in the documentation][computing-data-values].
-.. versionadded:: 0.4.0
+!!! tip "New in version 0.4.0"
+## References
+
+[^1]: Jia, R. et al., 2019.
+ [Towards Efficient Data Valuation Based on the Shapley Value](http://proceedings.mlr.press/v89/jia19a.html).
+ In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, pp. 1167–1176. PMLR.
"""
import logging
from collections import namedtuple
-from typing import Iterable, Tuple, TypeVar, cast
+from typing import Iterable, Optional, Tuple, TypeVar, Union, cast
import cvxpy as cp
import numpy as np
+from numpy.random import SeedSequence
from numpy.typing import NDArray
from pydvl.utils import MapReduceJob, ParallelConfig, Utility, maybe_progress
from pydvl.utils.numeric import random_subset_of_size
from pydvl.utils.parallel.backend import effective_n_jobs
from pydvl.utils.status import Status
+from pydvl.utils.types import Seed, ensure_seed_sequence
from pydvl.value import ValuationResult
__all__ = ["group_testing_shapley", "num_samples_eps_delta"]
@@ -43,20 +50,21 @@ def _constants(
"""A helper function returning the constants for the algorithm. Pretty ugly,
yes.
- :param n: The number of data points.
- :param epsilon: The error tolerance.
- :param delta: The confidence level.
- :param utility_range: The range of the utility function.
-
- :return: A namedtuple with the constants. The fields are the same as in the
- paper:
- - kk: the sample sizes (i.e. an array of 1, 2, ..., n - 1)
- - Z: the normalization constant
- - q: the probability of drawing a sample of size k
- - q_tot: another normalization constant
- - T: the number of iterations. This will be -1 if the utility_range is
- infinite. E.g. because the :class:`~pydvl.utils.score.Scorer` does
- not define a range.
+ Args:
+ n: The number of data points.
+ epsilon: The error tolerance.
+ delta: The confidence level.
+ utility_range: The range of the utility function.
+
+ Returns:
+ A namedtuple with the constants. The fields are the same as in the paper:
+ - kk: the sample sizes (i.e. an array of 1, 2, ..., n - 1)
+ - Z: the normalization constant
+ - q: the probability of drawing a sample of size k
+ - q_tot: another normalization constant
+ - T: the number of iterations. This will be -1 if the utility_range is
+ infinite. E.g. because the [Scorer][pydvl.utils.score.Scorer] does
+ not define a range.
"""
r = utility_range
@@ -93,20 +101,21 @@ def h(u: T) -> T:
def num_samples_eps_delta(
eps: float, delta: float, n: int, utility_range: float
) -> int:
- r"""Implements the formula in Theorem 3 of :footcite:t:`jia_efficient_2019`
+ r"""Implements the formula in Theorem 3 of (Jia, R. et al., 2019)1
which gives a lower bound on the number of samples required to obtain an
(ε/√n,δ/(N(N-1))-approximation to all pair-wise differences of Shapley
values, wrt. $\ell_2$ norm.
- :param eps: ε
- :param delta: δ
- :param n: Number of data points
- :param utility_range: Range of the :class:`~pydvl.utils.utility.Utility`
- function
- :return: Number of samples from $2^{[n]}$ guaranteeing ε/√n-correct Shapley
- pair-wise differences of values with probability 1-δ/(N(N-1)).
+ Args:
+ eps: ε
+ delta: δ
+ n: Number of data points
+ utility_range: Range of the [Utility][pydvl.utils.utility.Utility] function
+ Returns:
+ Number of samples from $2^{[n]}$ guaranteeing ε/√n-correct Shapley
+ pair-wise differences of values with probability 1-δ/(N(N-1)).
- .. versionadded:: 0.4.0
+ !!! tip "New in version 0.4.0"
"""
constants = _constants(n=n, epsilon=eps, delta=delta, utility_range=utility_range)
@@ -114,29 +123,39 @@ def num_samples_eps_delta(
def _group_testing_shapley(
- u: Utility, n_samples: int, progress: bool = False, job_id: int = 1
+ u: Utility,
+ n_samples: int,
+ progress: bool = False,
+ job_id: int = 1,
+ seed: Optional[Union[Seed, SeedSequence]] = None,
):
- """Helper function for :func:`group_testing_shapley`.
+ """Helper function for
+ [group_testing_shapley()][pydvl.value.shapley.gt.group_testing_shapley].
Computes utilities of sets sampled using the strategy for estimating the
differences in Shapley values.
- :param u: Utility object with model, data, and scoring function.
- :param n_samples: total number of samples (subsets) to use.
- :param progress: Whether to display progress bars for each job.
- :param job_id: id to use for reporting progress (e.g. to place progres bars)
- :return:
+ Args:
+ u: Utility object with model, data, and scoring function.
+ n_samples: total number of samples (subsets) to use.
+ progress: Whether to display progress bars for each job.
+ job_id: id to use for reporting progress (e.g. to place progres bars)
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ Returns:
+
"""
- rng = np.random.default_rng()
+ rng = np.random.default_rng(seed)
n = len(u.data.indices)
const = _constants(n, 1, 1, 1) # don't care about eps,delta,range
- betas = np.zeros(shape=(n_samples, n), dtype=np.int_) # indicator vars
+ betas: NDArray[np.int_] = np.zeros(
+ shape=(n_samples, n), dtype=np.int_
+ ) # indicator vars
uu = np.empty(n_samples) # utilities
for t in maybe_progress(n_samples, progress=progress, position=job_id):
k = rng.choice(const.kk, size=1, p=const.q).item()
- s = random_subset_of_size(u.data.indices, k)
+ s = random_subset_of_size(u.data.indices, k, seed=rng)
uu[t] = u(s)
betas[t, s] = 1
return uu, betas
@@ -151,46 +170,51 @@ def group_testing_shapley(
n_jobs: int = 1,
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
+ seed: Optional[Seed] = None,
**options,
) -> ValuationResult:
"""Implements group testing for approximation of Shapley values as described
- in :footcite:t:`jia_efficient_2019`.
+ in (Jia, R. et al., 2019)1 .
- .. warning::
- This method is very inefficient. It requires several orders of magnitude
- more evaluations of the utility than others in
- :mod:`~pydvl.value.shapley.montecarlo`. It also uses several intermediate
- objects like the results from the runners and the constraint matrices
- which can become rather large.
+ !!! Warning
+ This method is very inefficient. It requires several orders of magnitude
+ more evaluations of the utility than others in
+ [montecarlo][pydvl.value.shapley.montecarlo]. It also uses several intermediate
+ objects like the results from the runners and the constraint matrices
+ which can become rather large.
By picking a specific distribution over subsets, the differences in Shapley
values can be approximated with a Monte Carlo sum. These are then used to
solve for the individual values in a feasibility problem.
- :param u: Utility object with model, data, and scoring function
- :param n_samples: Number of tests to perform. Use
- :func:`num_samples_eps_delta` to estimate this.
- :param epsilon: From the (ε,δ) sample bound. Use the same as for the
- estimation of ``n_iterations``.
- :param delta: From the (ε,δ) sample bound. Use the same as for the
- estimation of ``n_iterations``.
- :param n_jobs: Number of parallel jobs to use. Each worker performs a chunk
- of all tests (i.e. utility evaluations).
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :param options: Additional options to pass to `cvxpy.Problem.solve()
- `_.
- E.g. to change the solver (which defaults to `cvxpy.SCS`) pass
- `solver=cvxpy.CVXOPT`.
-
- :return: Object with the data values.
-
- .. versionadded:: 0.4.0
-
- .. versionchanged:: 0.5.0
- Changed the solver to cvxpy instead of scipy's linprog. Added the ability
- to pass arbitrary options to it.
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_samples: Number of tests to perform. Use
+ [num_samples_eps_delta][pydvl.value.shapley.gt.num_samples_eps_delta]
+ to estimate this.
+ epsilon: From the (ε,δ) sample bound. Use the same as for the
+ estimation of `n_iterations`.
+ delta: From the (ε,δ) sample bound. Use the same as for the
+ estimation of `n_iterations`.
+ n_jobs: Number of parallel jobs to use. Each worker performs a chunk
+ of all tests (i.e. utility evaluations).
+ config: Object configuring parallel computation, with cluster
+ address, number of cpus, etc.
+ progress: Whether to display progress bars for each job.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+ options: Additional options to pass to
+ [cvxpy.Problem.solve()](https://www.cvxpy.org/tutorial/advanced/index.html#solve-method-options).
+ E.g. to change the solver (which defaults to `cvxpy.SCS`) pass
+ `solver=cvxpy.CVXOPT`.
+
+ Returns:
+ Object with the data values.
+
+ !!! tip "New in version 0.4.0"
+
+ !!! tip "Changed in version 0.5.0"
+ Changed the solver to cvxpy instead of scipy's linprog. Added the ability
+ to pass arbitrary options to it.
"""
n = len(u.data.indices)
@@ -217,6 +241,9 @@ def reducer(
np.float_
), np.concatenate(list(x[1] for x in results_it)).astype(np.int_)
+ seed_sequence = ensure_seed_sequence(seed)
+ map_reduce_seed_sequence, cvxpy_seed = tuple(seed_sequence.spawn(2))
+
map_reduce_job: MapReduceJob[Utility, Tuple[NDArray, NDArray]] = MapReduceJob(
u,
map_func=_group_testing_shapley,
@@ -225,7 +252,7 @@ def reducer(
config=config,
n_jobs=n_jobs,
)
- uu, betas = map_reduce_job()
+ uu, betas = map_reduce_job(seed=map_reduce_seed_sequence)
# Matrix of estimated differences. See Eqs. (3) and (4) in the paper.
C = np.zeros(shape=(n, n))
diff --git a/src/pydvl/value/shapley/knn.py b/src/pydvl/value/shapley/knn.py
index 22bb857fb..5356ab946 100644
--- a/src/pydvl/value/shapley/knn.py
+++ b/src/pydvl/value/shapley/knn.py
@@ -1,13 +1,23 @@
"""
This module contains Shapley computations for K-Nearest Neighbours.
-.. todo::
- Implement approximate KNN computation for sublinear complexity)
+!!! Todo
+ Implement approximate KNN computation for sublinear complexity
+
+
+## References
+
+[^1]: Jia, R. et al., 2019. [Efficient
+ Task-Specific Data Valuation for Nearest Neighbor
+ Algorithms](https://doi.org/10.14778/3342263.3342637). In: Proceedings of
+ the VLDB Endowment, Vol. 12, No. 11, pp. 1610–1623.
+
"""
from typing import Dict, Union
import numpy as np
+from numpy.typing import NDArray
from sklearn.neighbors import KNeighborsClassifier, NearestNeighbors
from pydvl.utils import Utility, maybe_progress
@@ -20,20 +30,25 @@
def knn_shapley(u: Utility, *, progress: bool = True) -> ValuationResult:
"""Computes exact Shapley values for a KNN classifier.
- This implements the method described in :footcite:t:`jia_efficient_2019a`.
+ This implements the method described in (Jia, R. et al., 2019)1 .
It exploits the local structure of K-Nearest Neighbours to reduce the number
of calls to the utility function to a constant number per index, thus
reducing computation time to $O(n)$.
- :param u: Utility with a KNN model to extract parameters from. The object
- will not be modified nor used other than to call `get_params()
- `_
- :param progress: Whether to display a progress bar.
- :return: Object with the data values.
- :raises TypeError: If the model in the utility is not a `KNeighborsClassifier
- `_
+ Args:
+ u: Utility with a KNN model to extract parameters from. The object
+ will not be modified nor used other than to call [get_params()](
+ )
+ progress: Whether to display a progress bar.
+
+ Returns:
+ Object with the data values.
+
+ Raises:
+ TypeError: If the model in the utility is not a
+ [sklearn.neighbors.KNeighborsClassifier][].
- .. versionadded:: 0.1.0
+ !!! tip "New in version 0.1.0"
"""
if not isinstance(u.model, KNeighborsClassifier):
@@ -57,7 +72,7 @@ def knn_shapley(u: Utility, *, progress: bool = True) -> ValuationResult:
# closest to farthest
_, indices = nns.kneighbors(u.data.x_test)
- values = np.zeros_like(u.data.indices, dtype=np.float_)
+ values: NDArray[np.float_] = np.zeros_like(u.data.indices, dtype=np.float_)
n = len(u.data)
yt = u.data.y_train
iterator = enumerate(zip(u.data.y_test, indices), start=1)
diff --git a/src/pydvl/value/shapley/montecarlo.py b/src/pydvl/value/shapley/montecarlo.py
index ad43edad1..e9aba420b 100644
--- a/src/pydvl/value/shapley/montecarlo.py
+++ b/src/pydvl/value/shapley/montecarlo.py
@@ -1,49 +1,66 @@
r"""
Monte Carlo approximations to Shapley Data values.
-.. warning::
- You probably want to use the common interface provided by
- :func:`~pydvl.value.shapley.compute_shapley_values` instead of directly using
- the functions in this module.
+!!! Warning
+ You probably want to use the common interface provided by
+ [compute_shapley_values()][pydvl.value.shapley.compute_shapley_values] instead of directly using
+ the functions in this module.
Because exact computation of Shapley values requires $\mathcal{O}(2^n)$
-re-trainings of the model, several Monte Carlo approximations are available.
-The first two sample from the powerset of the training data directly:
-:func:`combinatorial_montecarlo_shapley` and :func:`owen_sampling_shapley`. The
-latter uses a reformulation in terms of a continuous extension of the utility.
+re-trainings of the model, several Monte Carlo approximations are available. The
+first two sample from the powerset of the training data directly:
+[combinatorial_montecarlo_shapley()][pydvl.value.shapley.montecarlo.combinatorial_montecarlo_shapley]
+and [owen_sampling_shapley()][pydvl.value.shapley.owen.owen_sampling_shapley].
+The latter uses a reformulation in terms of a continuous extension of the
+utility.
Alternatively, employing another reformulation of the expression above as a sum
over permutations, one has the implementation in
-:func:`permutation_montecarlo_shapley`, or using an early stopping strategy to
-reduce computation :func:`truncated_montecarlo_shapley`.
-
-.. seealso::
- It is also possible to use :func:`~pydvl.value.shapley.gt.group_testing_shapley`
- to reduce the number of evaluations of the utility. The method is however
- typically outperformed by others in this module.
-
-.. seealso::
- Additionally, you can consider grouping your data points using
- :class:`~pydvl.utils.dataset.GroupedDataset` and computing the values of the
- groups instead. This is not to be confused with "group testing" as
- implemented in :func:`~pydvl.value.shapley.gt.group_testing_shapley`: any of
- the algorithms mentioned above, including Group Testing, can work to valuate
- groups of samples as units.
+[permutation_montecarlo_shapley()][pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley],
+or using an early stopping strategy to reduce computation
+[truncated_montecarlo_shapley()][pydvl.value.shapley.truncated.truncated_montecarlo_shapley].
+
+!!! info "Also see"
+ It is also possible to use [group_testing_shapley()][pydvl.value.shapley.gt.group_testing_shapley]
+ to reduce the number of evaluations of the utility. The method is however
+ typically outperformed by others in this module.
+
+!!! info "Also see"
+ Additionally, you can consider grouping your data points using
+ [GroupedDataset][pydvl.utils.dataset.GroupedDataset] and computing the values
+ of the groups instead. This is not to be confused with "group testing" as
+ implemented in [group_testing_shapley()][pydvl.value.shapley.gt.group_testing_shapley]: any of
+ the algorithms mentioned above, including Group Testing, can work to valuate
+ groups of samples as units.
+
+## References
+
+[^1]: Ghorbani, A., Zou, J., 2019.
+ [Data Shapley: Equitable Valuation of Data for Machine Learning](http://proceedings.mlr.press/v97/ghorbani19c.html).
+ In: Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2242–2251.
+
"""
+from __future__ import annotations
+
import logging
import math
import operator
+from concurrent.futures import FIRST_COMPLETED, Future, wait
from functools import reduce
from itertools import cycle, takewhile
-from typing import Sequence
+from typing import Optional, Sequence, Union
import numpy as np
+from deprecate import deprecated
+from numpy.random import SeedSequence
from numpy.typing import NDArray
from tqdm import tqdm
+from pydvl.utils import effective_n_jobs, init_executor, init_parallel_backend
from pydvl.utils.config import ParallelConfig
from pydvl.utils.numeric import random_powerset
-from pydvl.utils.parallel import MapReduceJob
+from pydvl.utils.parallel import CancellationPolicy, MapReduceJob
+from pydvl.utils.types import Seed, ensure_seed_sequence
from pydvl.utils.utility import Utility
from pydvl.value.result import ValuationResult
from pydvl.value.shapley.truncated import NoTruncation, TruncationPolicy
@@ -54,56 +71,63 @@
__all__ = ["permutation_montecarlo_shapley", "combinatorial_montecarlo_shapley"]
-def _permutation_montecarlo_shapley(
+def _permutation_montecarlo_one_step(
u: Utility,
- *,
- done: StoppingCriterion,
truncation: TruncationPolicy,
- algorithm_name: str = "permutation_montecarlo_shapley",
- progress: bool = False,
- job_id: int = 1,
+ algorithm_name: str,
+ seed: Optional[Union[Seed, SeedSequence]] = None,
) -> ValuationResult:
- """Helper function for :func:`permutation_montecarlo_shapley`.
-
- Computes marginal utilities of each training sample in
- :obj:`pydvl.utils.utility.Utility.data` by iterating through randomly
- sampled permutations.
-
- :param u: Utility object with model, data, and scoring function
- :param done: Check on the results which decides when to stop
- :param truncation: A callable which decides whether to interrupt
- processing a permutation and set all subsequent marginals to zero.
- :param algorithm_name: For the results object. Used internally by different
- variants of Shapley using this subroutine
- :param progress: Whether to display progress bars for each job.
- :param job_id: id to use for reporting progress (e.g. to place progres bars)
- :return: An object with the results
+ """Helper function for [permutation_montecarlo_shapley()][pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley].
+
+ Computes marginal utilities of each training sample in a randomly sampled
+ permutation.
+ Args:
+ u: Utility object with model, data, and scoring function
+ truncation: A callable which decides whether to interrupt
+ processing a permutation and set all subsequent marginals to zero.
+ algorithm_name: For the results object. Used internally by different
+ variants of Shapley using this subroutine
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ An object with the results
"""
+
result = ValuationResult.zeros(
algorithm=algorithm_name, indices=u.data.indices, data_names=u.data.data_names
)
-
- pbar = tqdm(disable=not progress, position=job_id, total=100, unit="%")
- while not done(result):
- pbar.n = 100 * done.completion()
- pbar.refresh()
- prev_score = 0.0
- permutation = np.random.permutation(u.data.indices)
- permutation_done = False
- truncation.reset()
- for i, idx in enumerate(permutation):
- if permutation_done:
- score = prev_score
- else:
- score = u(permutation[: i + 1])
- marginal = score - prev_score
- result.update(idx, marginal)
- prev_score = score
- if not permutation_done and truncation(i, score):
- permutation_done = True
+ prev_score = 0.0
+ permutation = np.random.default_rng(seed).permutation(u.data.indices)
+ permutation_done = False
+ truncation.reset()
+ for i, idx in enumerate(permutation):
+ if permutation_done:
+ score = prev_score
+ else:
+ score = u(permutation[: i + 1])
+ marginal = score - prev_score
+ result.update(idx, marginal)
+ prev_score = score
+ if not permutation_done and truncation(i, score):
+ permutation_done = True
+ nans = np.isnan(result.values).sum()
+ if nans > 0:
+ logger.warning(
+ f"{nans} NaN values in current permutation, ignoring. "
+ "Consider setting a default value for the Scorer"
+ )
+ result = ValuationResult.empty(algorithm=algorithm_name)
return result
+@deprecated(
+ target=True,
+ deprecated_in="0.7.0",
+ remove_in="0.8.0",
+ args_mapping=dict(
+ coordinator_update_period=None, worker_update_period=None, progress=None
+ ),
+)
def permutation_montecarlo_shapley(
u: Utility,
done: StoppingCriterion,
@@ -112,44 +136,100 @@ def permutation_montecarlo_shapley(
n_jobs: int = 1,
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
+ seed: Seed = None,
) -> ValuationResult:
- r"""Computes an approximate Shapley value by sampling independent index
- permutations to approximate the sum:
+ r"""Computes an approximate Shapley value by sampling independent
+ permutations of the index set, approximating the sum:
$$
v_u(x_i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)}
\tilde{w}( | \sigma_{:i} | )[u(\sigma_{:i} \cup \{i\}) − u(\sigma_{:i})],
$$
- where $\sigma_{:i}$ denotes the set of indices in permutation sigma before the
- position where $i$ appears (see :ref:`data valuation` for details).
-
- :param u: Utility object with model, data, and scoring function.
- :param done: function checking whether computation must stop.
- :param truncation: An optional callable which decides whether to
- interrupt processing a permutation and set all subsequent marginals to
- zero. Typically used to stop computation when the marginal is small.
- :param n_jobs: number of jobs across which to distribute the computation.
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :return: Object with the data values.
+ where $\sigma_{:i}$ denotes the set of indices in permutation sigma before
+ the position where $i$ appears (see [[data-valuation]] for details).
+
+ This implements the method described in (Ghorbani and Zou, 2019)1
+ with a double stopping criterion.
+
+ .. todo::
+ Think of how to add Robin-Gelman or some other more principled stopping
+ criterion.
+
+ Instead of naively implementing the expectation, we sequentially add points
+ to coalitions from a permutation and incrementally compute marginal utilities.
+ We stop computing marginals for a given permutation based on a
+ [TruncationPolicy][pydvl.value.shapley.truncated.TruncationPolicy].
+ (Ghorbani and Zou, 2019)1
+ mention two policies: one that stops after a certain
+ fraction of marginals are computed, implemented in
+ [FixedTruncation][pydvl.value.shapley.truncated.FixedTruncation],
+ and one that stops if the last computed utility ("score") is close to the
+ total utility using the standard deviation of the utility as a measure of
+ proximity, implemented in
+ [BootstrapTruncation][pydvl.value.shapley.truncated.BootstrapTruncation].
+
+ We keep sampling permutations and updating all shapley values
+ until the [StoppingCriterion][pydvl.value.stopping.StoppingCriterion] returns
+ `True`.
+
+ Args:
+ u: Utility object with model, data, and scoring function.
+ done: function checking whether computation must stop.
+ truncation: An optional callable which decides whether to interrupt
+ processing a permutation and set all subsequent marginals to
+ zero. Typically used to stop computation when the marginal is small.
+ n_jobs: number of jobs across which to distribute the computation.
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ progress: Whether to display a progress bar.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ Object with the data values.
"""
-
- map_reduce_job: MapReduceJob[Utility, ValuationResult] = MapReduceJob(
- u,
- map_func=_permutation_montecarlo_shapley,
- reduce_func=lambda results: reduce(operator.add, results),
- map_kwargs=dict(
- algorithm_name="permutation_montecarlo_shapley",
- done=done,
- truncation=truncation,
- progress=progress,
- ),
- config=config,
- n_jobs=n_jobs,
- )
- return map_reduce_job()
+ algorithm = "permutation_montecarlo_shapley"
+
+ parallel_backend = init_parallel_backend(config)
+ u = parallel_backend.put(u)
+ max_workers = effective_n_jobs(n_jobs, config)
+ n_submitted_jobs = 2 * max_workers # number of jobs in the executor's queue
+
+ seed_sequence = ensure_seed_sequence(seed)
+ result = ValuationResult.zeros(algorithm=algorithm)
+
+ pbar = tqdm(disable=not progress, total=100, unit="%")
+
+ with init_executor(
+ max_workers=max_workers, config=config, cancel_futures=CancellationPolicy.ALL
+ ) as executor:
+ pending: set[Future] = set()
+ while True:
+ pbar.n = 100 * done.completion()
+ pbar.refresh()
+
+ completed, pending = wait(
+ pending, timeout=config.wait_timeout, return_when=FIRST_COMPLETED
+ )
+ for future in completed:
+ result += future.result()
+ # we could check outside the loop, but that means more
+ # submissions if the stopping criterion is unstable
+ if done(result):
+ return result
+
+ # Ensure that we always have n_submitted_jobs in the queue or running
+ n_remaining_slots = n_submitted_jobs - len(pending)
+ seeds = seed_sequence.spawn(n_remaining_slots)
+ for i in range(n_remaining_slots):
+ future = executor.submit(
+ _permutation_montecarlo_one_step,
+ u,
+ truncation,
+ algorithm,
+ seed=seeds[i],
+ )
+ pending.add(future)
def _combinatorial_montecarlo_shapley(
@@ -159,19 +239,26 @@ def _combinatorial_montecarlo_shapley(
*,
progress: bool = False,
job_id: int = 1,
+ seed: Optional[Seed] = None,
) -> ValuationResult:
- """Helper function for :func:`combinatorial_montecarlo_shapley`.
+ """Helper function for
+ [combinatorial_montecarlo_shapley][pydvl.value.shapley.montecarlo.combinatorial_montecarlo_shapley].
This is the code that is sent to workers to compute values using the
combinatorial definition.
- :param indices: Indices of the samples to compute values for.
- :param u: Utility object with model, data, and scoring function
- :param done: Check on the results which decides when to stop sampling
- subsets for an index.
- :param progress: Whether to display progress bars for each job.
- :param job_id: id to use for reporting progress
- :return: A tuple of ndarrays with estimated values and standard errors
+ Args:
+ indices: Indices of the samples to compute values for.
+ u: Utility object with model, data, and scoring function
+ done: Check on the results which decides when to stop sampling
+ subsets for an index.
+ progress: Whether to display progress bars for each job.
+ seed: Either an instance of a numpy random number generator or a seed
+ for it.
+ job_id: id to use for reporting progress
+
+ Returns:
+ The results for the indices.
"""
n = len(u.data)
@@ -186,6 +273,7 @@ def _combinatorial_montecarlo_shapley(
data_names=[u.data.data_names[i] for i in indices],
)
+ rng = np.random.default_rng(seed)
repeat_indices = takewhile(lambda _: not done(result), cycle(indices))
pbar = tqdm(disable=not progress, position=job_id, total=100, unit="%")
for idx in repeat_indices:
@@ -193,7 +281,7 @@ def _combinatorial_montecarlo_shapley(
pbar.refresh()
# Randomly sample subsets of full dataset without idx
subset = np.setxor1d(u.data.indices, [idx], assume_unique=True)
- s = next(random_powerset(subset, n_samples=1))
+ s = next(random_powerset(subset, n_samples=1, seed=rng))
marginal = (u({idx}.union(s)) - u(s)) / math.comb(n - 1, len(s))
result.update(idx, correction * marginal)
@@ -207,6 +295,7 @@ def combinatorial_montecarlo_shapley(
n_jobs: int = 1,
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
+ seed: Optional[Seed] = None,
) -> ValuationResult:
r"""Computes an approximate Shapley value using the combinatorial
definition:
@@ -215,26 +304,30 @@ def combinatorial_montecarlo_shapley(
\binom{n-1}{ | S | }^{-1} [u(S \cup \{i\}) − u(S)]$$
This consists of randomly sampling subsets of the power set of the training
- indices in :attr:`~pydvl.utils.utility.Utility.data`, and computing their
- marginal utilities. See :ref:`data valuation` for details.
+ indices in [u.data][pydvl.utils.utility.Utility], and computing their
+ marginal utilities. See [Data valuation][computing-data-values] for details.
Note that because sampling is done with replacement, the approximation is
poor even for $2^{m}$ subsets with $m>n$, even though there are $2^{n-1}$
subsets for each $i$. Prefer
- :func:`~pydvl.shapley.montecarlo.permutation_montecarlo_shapley`.
+ [permutation_montecarlo_shapley()][pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley].
Parallelization is done by splitting the set of indices across processes and
computing the sum over subsets $S \subseteq N \setminus \{i\}$ separately.
- :param u: Utility object with model, data, and scoring function
- :param done: Stopping criterion for the computation.
- :param n_jobs: number of parallel jobs across which to distribute the
- computation. Each worker receives a chunk of
- :attr:`~pydvl.utils.dataset.Dataset.indices`
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :return: Object with the data values.
+ Args:
+ u: Utility object with model, data, and scoring function
+ done: Stopping criterion for the computation.
+ n_jobs: number of parallel jobs across which to distribute the
+ computation. Each worker receives a chunk of
+ [indices][pydvl.utils.dataset.Dataset.indices]
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ progress: Whether to display progress bars for each job.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ Object with the data values.
"""
map_reduce_job: MapReduceJob[NDArray, ValuationResult] = MapReduceJob(
@@ -245,4 +338,4 @@ def combinatorial_montecarlo_shapley(
n_jobs=n_jobs,
config=config,
)
- return map_reduce_job()
+ return map_reduce_job(seed=seed)
diff --git a/src/pydvl/value/shapley/naive.py b/src/pydvl/value/shapley/naive.py
index d903ff80b..d1a29e8fd 100644
--- a/src/pydvl/value/shapley/naive.py
+++ b/src/pydvl/value/shapley/naive.py
@@ -1,7 +1,7 @@
import math
import warnings
from itertools import permutations
-from typing import List, Sequence
+from typing import Collection, List
import numpy as np
from numpy.typing import NDArray
@@ -18,16 +18,19 @@ def permutation_exact_shapley(u: Utility, *, progress: bool = True) -> Valuation
$$v_u(x_i) = \frac{1}{n!} \sum_{\sigma \in \Pi(n)} [u(\sigma_{i-1} \cup {i}) − u(\sigma_{i})].$$
- See :ref:`data valuation` for details.
+ See [Data valuation][computing-data-values] for details.
When the length of the training set is > 10 this prints a warning since the
computation becomes too expensive. Used mostly for internal testing and
- simple use cases. Please refer to the :mod:`Monte Carlo
- ` approximations for practical applications.
+ simple use cases. Please refer to the [Monte Carlo
+ approximations][pydvl.value.shapley.montecarlo] for practical applications.
- :param u: Utility object with model, data, and scoring function
- :param progress: Whether to display progress bars for each job.
- :return: Object with the data values.
+ Args:
+ u: Utility object with model, data, and scoring function
+ progress: Whether to display progress bars for each job.
+
+ Returns:
+ Object with the data values.
"""
n = len(u.data)
@@ -59,9 +62,10 @@ def permutation_exact_shapley(u: Utility, *, progress: bool = True) -> Valuation
def _combinatorial_exact_shapley(
- indices: Sequence[int], u: Utility, progress: bool
+ indices: NDArray, u: Utility, progress: bool
) -> NDArray:
- """Helper function for :func:`combinatorial_exact_shapley`.
+ """Helper function for
+ [combinatorial_exact_shapley()][pydvl.value.shapley.naive.combinatorial_exact_shapley].
Computes the marginal utilities for the set of indices passed and returns
the value of the samples according to the exact combinatorial definition.
@@ -69,7 +73,9 @@ def _combinatorial_exact_shapley(
n = len(u.data)
local_values = np.zeros(n)
for i in indices:
- subset = np.setxor1d(u.data.indices, [i], assume_unique=True).astype(np.int_)
+ subset: NDArray[np.int_] = np.setxor1d(
+ u.data.indices, [i], assume_unique=True
+ ).astype(np.int_)
for s in maybe_progress(
powerset(subset),
progress,
@@ -92,21 +98,24 @@ def combinatorial_exact_shapley(
$$v_u(i) = \frac{1}{n} \sum_{S \subseteq N \setminus \{i\}} \binom{n-1}{ | S | }^{-1} [u(S \cup \{i\}) − u(S)].$$
- See :ref:`data valuation` for details.
-
- .. note::
- If the length of the training set is > n_jobs*20 this prints a warning
- because the computation is very expensive. Used mostly for internal testing
- and simple use cases. Please refer to the
- :mod:`Monte Carlo ` approximations for practical
- applications.
-
- :param u: Utility object with model, data, and scoring function
- :param n_jobs: Number of parallel jobs to use
- :param config: Object configuring parallel computation, with cluster address,
- number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :return: Object with the data values.
+ See [Data valuation][computing-data-values] for details.
+
+ !!! Note
+ If the length of the training set is > n_jobs*20 this prints a warning
+ because the computation is very expensive. Used mostly for internal testing
+ and simple use cases. Please refer to the
+ [Monte Carlo][pydvl.value.shapley.montecarlo] approximations for practical
+ applications.
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_jobs: Number of parallel jobs to use
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ progress: Whether to display progress bars for each job.
+
+ Returns:
+ Object with the data values.
"""
# Arbitrary choice, will depend on time required, caching, etc.
if len(u.data) // n_jobs > 20:
diff --git a/src/pydvl/value/shapley/owen.py b/src/pydvl/value/shapley/owen.py
index ec61b4f4d..69b5dda89 100644
--- a/src/pydvl/value/shapley/owen.py
+++ b/src/pydvl/value/shapley/owen.py
@@ -1,14 +1,23 @@
+"""
+## References
+
+[^1]: Okhrati, R., Lipani, A., 2021.
+ [A Multilinear Sampling Algorithm to Estimate Shapley Values](https://ieeexplore.ieee.org/abstract/document/9412511).
+ In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7992–7999. IEEE.
+"""
+
import operator
from enum import Enum
from functools import reduce
from itertools import cycle, takewhile
-from typing import Sequence
+from typing import Optional, Sequence
import numpy as np
from numpy.typing import NDArray
from tqdm import tqdm
from pydvl.utils import MapReduceJob, ParallelConfig, Utility, random_powerset
+from pydvl.utils.types import Seed
from pydvl.value import ValuationResult
from pydvl.value.stopping import MinUpdates
@@ -29,25 +38,31 @@ def _owen_sampling_shapley(
*,
progress: bool = False,
job_id: int = 1,
+ seed: Optional[Seed] = None
) -> ValuationResult:
r"""This is the algorithm as detailed in the paper: to compute the outer
integral over q ∈ [0,1], use uniformly distributed points for evaluation
of the integrand. For the integrand (the expected marginal utility over the
power set), use Monte Carlo.
- .. todo::
+ !!! Todo
We might want to try better quadrature rules like Gauss or Rombert or
use Monte Carlo for the double integral.
- :param indices: Indices to compute the value for
- :param u: Utility object with model, data, and scoring function
- :param method: Either :attr:`~OwenAlgorithm.Full` for $q \in [0,1]$ or
- :attr:`~OwenAlgorithm.Halved` for $q \in [0,0.5]$ and correlated samples
- :param n_samples: Number of subsets to sample to estimate the integrand
- :param max_q: number of subdivisions for the integration over $q$
- :param progress: Whether to display progress bars for each job
- :param job_id: For positioning of the progress bar
- :return: Object with the data values, errors.
+ Args:
+ indices: Indices to compute the value for
+ u: Utility object with model, data, and scoring function
+ method: Either [OwenAlgorithm.Full][pydvl.value.shapley.owen.OwenAlgorithm]
+ for q ∈ [0, 1] or [OwenAlgorithm.Halved][pydvl.value.shapley.owen.OwenAlgorithm]
+ for q ∈ [0, 0.5] and correlated samples
+ n_samples: Number of subsets to sample to estimate the integrand
+ max_q: number of subdivisions for the integration over $q$
+ progress: Whether to display progress bars for each job
+ job_id: For positioning of the progress bar
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ Object with the data values, errors.
"""
q_stop = {OwenAlgorithm.Standard: 1.0, OwenAlgorithm.Antithetic: 0.5}
q_steps = np.linspace(start=0, stop=q_stop[method], num=max_q)
@@ -58,6 +73,7 @@ def _owen_sampling_shapley(
data_names=[u.data.data_names[i] for i in indices],
)
+ rng = np.random.default_rng(seed)
done = MinUpdates(1)
repeat_indices = takewhile(lambda _: not done(result), cycle(indices))
pbar = tqdm(disable=not progress, position=job_id, total=100, unit="%")
@@ -67,7 +83,7 @@ def _owen_sampling_shapley(
e = np.zeros(max_q)
subset = np.setxor1d(u.data.indices, [idx], assume_unique=True)
for j, q in enumerate(q_steps):
- for s in random_powerset(subset, n_samples=n_samples, q=q):
+ for s in random_powerset(subset, n_samples=n_samples, q=q, seed=rng):
marginal = u({idx}.union(s)) - u(s)
if method == OwenAlgorithm.Antithetic and q != 0.5:
s_complement = np.setxor1d(subset, s, assume_unique=True)
@@ -93,9 +109,10 @@ def owen_sampling_shapley(
n_jobs: int = 1,
config: ParallelConfig = ParallelConfig(),
progress: bool = False,
+ seed: Optional[Seed] = None
) -> ValuationResult:
r"""Owen sampling of Shapley values as described in
- :footcite:t:`okhrati_multilinear_2021`.
+ (Okhrati and Lipani, 2021)1 .
This function computes a Monte Carlo approximation to
@@ -122,28 +139,34 @@ def owen_sampling_shapley(
where now $q_j = \frac{j}{2Q} \in [0,\frac{1}{2}]$, and $S^c$ is the
complement of $S$.
- .. note::
- The outer integration could be done instead with a quadrature rule.
-
- :param u: :class:`~pydvl.utils.utility.Utility` object holding data, model
- and scoring function.
- :param n_samples: Numer of sets to sample for each value of q
- :param max_q: Number of subdivisions for q ∈ [0,1] (the element sampling
- probability) used to approximate the outer integral.
- :param method: Selects the algorithm to use, see the description. Either
- :attr:`~OwenAlgorithm.Full` for $q \in [0,1]$ or
- :attr:`~OwenAlgorithm.Halved` for $q \in [0,0.5]$ and correlated samples
- :param n_jobs: Number of parallel jobs to use. Each worker receives a chunk
- of the total of `max_q` values for q.
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param progress: Whether to display progress bars for each job.
- :return: Object with the data values.
-
- .. versionadded:: 0.3.0
-
- .. versionchanged:: 0.5.0
- Support for parallel computation and enable antithetic sampling.
+ !!! Note
+ The outer integration could be done instead with a quadrature rule.
+
+ Args:
+ u: [Utility][pydvl.utils.utility.Utility] object holding data, model
+ and scoring function.
+ n_samples: Numer of sets to sample for each value of q
+ max_q: Number of subdivisions for q ∈ [0,1] (the element sampling
+ probability) used to approximate the outer integral.
+ method: Selects the algorithm to use, see the description. Either
+ [OwenAlgorithm.Full][pydvl.value.shapley.owen.OwenAlgorithm] for
+ $q \in [0,1]$ or
+ [OwenAlgorithm.Halved][pydvl.value.shapley.owen.OwenAlgorithm] for
+ $q \in [0,0.5]$ and correlated samples
+ n_jobs: Number of parallel jobs to use. Each worker receives a chunk
+ of the total of `max_q` values for q.
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ progress: Whether to display progress bars for each job.
+ seed: Either an instance of a numpy random number generator or a seed for it.
+
+ Returns:
+ Object with the data values.
+
+ !!! tip "New in version 0.3.0"
+
+ !!! tip "Changed in version 0.5.0"
+ Support for parallel computation and enable antithetic sampling.
"""
map_reduce_job: MapReduceJob[NDArray, ValuationResult] = MapReduceJob(
@@ -161,4 +184,4 @@ def owen_sampling_shapley(
config=config,
)
- return map_reduce_job()
+ return map_reduce_job(seed=seed)
diff --git a/src/pydvl/value/shapley/truncated.py b/src/pydvl/value/shapley/truncated.py
index 23b871699..9efe87480 100644
--- a/src/pydvl/value/shapley/truncated.py
+++ b/src/pydvl/value/shapley/truncated.py
@@ -1,15 +1,21 @@
+"""
+## References
+
+[^1]: Ghorbani, A., Zou, J., 2019.
+ [Data Shapley: Equitable Valuation of Data for Machine Learning](http://proceedings.mlr.press/v97/ghorbani19c.html).
+ In: Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2242–2251.
+
+"""
import abc
import logging
-from concurrent.futures import FIRST_COMPLETED, wait
+from typing import cast
import numpy as np
from deprecate import deprecated
from pydvl.utils import ParallelConfig, Utility, running_moments
-from pydvl.utils.parallel.backend import effective_n_jobs, init_parallel_backend
-from pydvl.utils.parallel.futures import init_executor
from pydvl.value import ValuationResult
-from pydvl.value.stopping import MaxChecks, StoppingCriterion
+from pydvl.value.stopping import StoppingCriterion
__all__ = [
"TruncationPolicy",
@@ -28,14 +34,17 @@ class TruncationPolicy(abc.ABC):
"""A policy for deciding whether to stop computing marginals in a
permutation.
- Statistics are kept on the number of calls and truncations as :attr:`n_calls`
- and :attr:`n_truncations` respectively.
+ Statistics are kept on the number of calls and truncations as `n_calls` and
+ `n_truncations` respectively.
- .. todo::
- Because the policy objects are copied to the workers, the statistics
- are not accessible from the
- :class:`~pydvl.value.shapley.actor.ShapleyCoordinator`. We need to add
- methods for this.
+ Attributes:
+ n_calls: Number of calls to the policy.
+ n_truncations: Number of truncations made by the policy.
+
+ !!! Todo
+ Because the policy objects are copied to the workers, the statistics
+ are not accessible from the coordinating process. We need to add methods
+ for this.
"""
def __init__(self):
@@ -55,9 +64,12 @@ def reset(self):
def __call__(self, idx: int, score: float) -> bool:
"""Check whether the computation should be interrupted.
- :param idx: Position in the permutation currently being computed.
- :param score: Last utility computed.
- :return: ``True`` if the computation should be interrupted.
+ Args:
+ idx: Position in the permutation currently being computed.
+ score: Last utility computed.
+
+ Returns:
+ `True` if the computation should be interrupted.
"""
ret = self._check(idx, score)
self.n_calls += 1
@@ -78,9 +90,17 @@ def reset(self):
class FixedTruncation(TruncationPolicy):
"""Break a permutation after computing a fixed number of marginals.
- :param u: Utility object with model, data, and scoring function
- :param fraction: Fraction of marginals in a permutation to compute before
- stopping (e.g. 0.5 to compute half of the marginals).
+ The experiments in Appendix B of (Ghorbani and Zou, 2019)1
+ show that when the training set size is large enough, one can simply truncate the iteration
+ over permutations after a fixed number of steps. This happens because beyond
+ a certain number of samples in a training set, the model becomes insensitive
+ to new ones. Alas, this strongly depends on the data distribution and the
+ model and there is no automatic way of estimating this number.
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ fraction: Fraction of marginals in a permutation to compute before
+ stopping (e.g. 0.5 to compute half of the marginals).
"""
def __init__(self, u: Utility, fraction: float):
@@ -101,11 +121,12 @@ def reset(self):
class RelativeTruncation(TruncationPolicy):
"""Break a permutation if the marginal utility is too low.
- This is called "performance tolerance" in :footcite:t:`ghorbani_data_2019`.
+ This is called "performance tolerance" in (Ghorbani and Zou, 2019)1 .
- :param u: Utility object with model, data, and scoring function
- :param rtol: Relative tolerance. The permutation is broken if the
- last computed utility is less than ``total_utility * rtol``.
+ Args:
+ u: Utility object with model, data, and scoring function
+ rtol: Relative tolerance. The permutation is broken if the
+ last computed utility is less than `total_utility * rtol`.
"""
def __init__(self, u: Utility, rtol: float):
@@ -115,7 +136,8 @@ def __init__(self, u: Utility, rtol: float):
self.total_utility = u(u.data.indices)
def _check(self, idx: int, score: float) -> bool:
- return np.allclose(score, self.total_utility, rtol=self.rtol)
+ # Explicit cast for the benefit of mypy 🤷
+ return bool(np.allclose(score, self.total_utility, rtol=self.rtol))
def reset(self):
pass
@@ -125,10 +147,11 @@ class BootstrapTruncation(TruncationPolicy):
"""Break a permutation if the last computed utility is close to the total
utility, measured as a multiple of the standard deviation of the utilities.
- :param u: Utility object with model, data, and scoring function
- :param n_samples: Number of bootstrap samples to use to compute the variance
- of the utilities.
- :param sigmas: Number of standard deviations to use as a threshold.
+ Args:
+ u: Utility object with model, data, and scoring function
+ n_samples: Number of bootstrap samples to use to compute the variance
+ of the utilities.
+ sigmas: Number of standard deviations to use as a threshold.
"""
def __init__(self, u: Utility, n_samples: int, sigmas: float = 1):
@@ -160,34 +183,10 @@ def reset(self):
self.variance = self.mean = 0
-def _permutation_montecarlo_one_step(
- u: Utility,
- truncation: TruncationPolicy,
- algorithm: str,
-) -> ValuationResult:
- # Avoid circular imports
- from .montecarlo import _permutation_montecarlo_shapley
-
- result = _permutation_montecarlo_shapley(
- u,
- done=MaxChecks(1),
- truncation=truncation,
- algorithm_name=algorithm,
- )
- nans = np.isnan(result.values).sum()
- if nans > 0:
- logger.warning(
- f"{nans} NaN values in current permutation, ignoring. "
- "Consider setting a default value for the Scorer"
- )
- result = ValuationResult.empty(algorithm="truncated_montecarlo_shapley")
- return result
-
-
@deprecated(
target=True,
- deprecated_in="0.6.1",
- remove_in="0.7.0",
+ deprecated_in="0.7.0",
+ remove_in="0.8.0",
args_mapping=dict(coordinator_update_period=None, worker_update_period=None),
)
def truncated_montecarlo_shapley(
@@ -200,89 +199,32 @@ def truncated_montecarlo_shapley(
coordinator_update_period: int = 10,
worker_update_period: int = 5,
) -> ValuationResult:
- """Monte Carlo approximation to the Shapley value of data points.
-
- This implements the permutation-based method described in
- :footcite:t:`ghorbani_data_2019`. It is a Monte Carlo estimate of the sum
- over all possible permutations of the index set, with a double stopping
- criterion.
-
- .. todo::
- Think of how to add Robin-Gelman or some other more principled stopping
- criterion.
-
- Instead of naively implementing the expectation, we sequentially add points
- to a dataset from a permutation and incrementally compute marginal utilities.
- We stop computing marginals for a given permutation based on a
- :class:`TruncationPolicy`. :footcite:t:`ghorbani_data_2019` mention two
- policies: one that stops after a certain fraction of marginals are computed,
- implemented in :class:`FixedTruncation`, and one that stops if the last
- computed utility ("score") is close to the total utility using the standard
- deviation of the utility as a measure of proximity, implemented in
- :class:`BootstrapTruncation`.
-
- We keep sampling permutations and updating all shapley values
- until the :class:`StoppingCriterion` returns ``True``.
-
- :param u: Utility object with model, data, and scoring function
- :param done: Check on the results which decides when to stop
- sampling permutations.
- :param truncation: callable that decides whether to stop computing
- marginals for a given permutation.
- :param config: Object configuring parallel computation, with cluster
- address, number of cpus, etc.
- :param n_jobs: Number of permutation monte carlo jobs
- to run concurrently.
- :param coordinator_update_period: in seconds. How often to check the
- accumulated results from the workers for convergence.
- :param worker_update_period: interval in seconds between different
- updates to and from the coordinator
- :return: Object with the data values.
-
"""
- algorithm = "truncated_montecarlo_shapley"
-
- parallel_backend = init_parallel_backend(config)
- u = parallel_backend.put(u)
- # This represents the number of jobs that are running
- n_jobs = effective_n_jobs(n_jobs, config)
- # This determines the total number of submitted jobs
- # including the ones that are running
- n_submitted_jobs = 2 * n_jobs
-
- accumulated_result = ValuationResult.zeros(algorithm=algorithm)
-
- with init_executor(max_workers=n_jobs, config=config) as executor:
- futures = set()
- # Initial batch of computations
- for _ in range(n_submitted_jobs):
- future = executor.submit(
- _permutation_montecarlo_one_step,
- u,
- truncation,
- algorithm,
- )
- futures.add(future)
- while futures:
- # Wait for the next futures to complete.
- completed_futures, futures = wait(
- futures, timeout=60, return_when=FIRST_COMPLETED
- )
- for future in completed_futures:
- accumulated_result += future.result()
- if done(accumulated_result):
- break
- if done(accumulated_result):
- break
- # Submit more computations
- # The goal is to always have `n_jobs`
- # computations running
- for _ in range(n_submitted_jobs - len(futures)):
- future = executor.submit(
- _permutation_montecarlo_one_step,
- u,
- truncation,
- algorithm,
- )
- futures.add(future)
- return accumulated_result
+ !!! Warning
+ This method is deprecated and only a wrapper for
+ [permutation_montecarlo_shapley][pydvl.value.shapley.montecarlo.permutation_montecarlo_shapley].
+
+ !!! Todo
+ Think of how to add Robin-Gelman or some other more principled stopping
+ criterion.
+
+ Args:
+ u: Utility object with model, data, and scoring function
+ done: Check on the results which decides when to stop sampling
+ permutations.
+ truncation: callable that decides whether to stop computing marginals
+ for a given permutation.
+ config: Object configuring parallel computation, with cluster address,
+ number of cpus, etc.
+ n_jobs: Number of permutation monte carlo jobs to run concurrently.
+ Returns:
+ Object with the data values.
+ """
+ from pydvl.value.shapley.montecarlo import permutation_montecarlo_shapley
+
+ return cast(
+ ValuationResult,
+ permutation_montecarlo_shapley(
+ u, done=done, truncation=truncation, config=config, n_jobs=n_jobs
+ ),
+ )
diff --git a/src/pydvl/value/shapley/types.py b/src/pydvl/value/shapley/types.py
index 3b0d80d3d..e9a660539 100644
--- a/src/pydvl/value/shapley/types.py
+++ b/src/pydvl/value/shapley/types.py
@@ -4,8 +4,8 @@
class ShapleyMode(str, Enum):
"""Supported algorithms for the computation of Shapley values.
- .. todo::
- Make algorithms register themselves here.
+ !!! Todo
+ Make algorithms register themselves here.
"""
ApproShapley = "appro_shapley" # Alias for PermutationMontecarlo
@@ -17,4 +17,4 @@ class ShapleyMode(str, Enum):
OwenAntithetic = "owen_antithetic"
PermutationExact = "permutation_exact"
PermutationMontecarlo = "permutation_montecarlo"
- TruncatedMontecarlo = "truncated_montecarlo"
+ TruncatedMontecarlo = "truncated_montecarlo" # Alias for PermutationMontecarlo
diff --git a/src/pydvl/value/stopping.py b/src/pydvl/value/stopping.py
index 09ba84475..57484a81b 100644
--- a/src/pydvl/value/stopping.py
+++ b/src/pydvl/value/stopping.py
@@ -1,38 +1,49 @@
"""
Stopping criteria for value computations.
-This module provides a basic set of stopping criteria, like :class:`MaxUpdates`,
-:class:`MaxTime`, or :class:`HistoryDeviation` among others. These can behave in
-different ways depending on the context. For example, :class:`MaxUpdates` limits
+This module provides a basic set of stopping criteria, like [MaxUpdates][pydvl.value.stopping.MaxUpdates],
+[MaxTime][pydvl.value.stopping.MaxTime], or [HistoryDeviation][pydvl.value.stopping.HistoryDeviation] among others.
+These can behave in different ways depending on the context.
+For example, [MaxUpdates][pydvl.value.stopping.MaxUpdates] limits
the number of updates to values, which depending on the algorithm may mean a
different number of utility evaluations or imply other computations like solving
a linear or quadratic program.
-.. rubric:: Creating stopping criteria
+# Creating stopping criteria
The easiest way is to declare a function implementing the interface
-:data:`StoppingCriterionCallable` and wrap it with :func:`make_criterion`. This
-creates a :class:`StoppingCriterion` object that can be composed with other
-stopping criteria.
+[StoppingCriterionCallable][pydvl.value.stopping.StoppingCriterionCallable] and
+wrap it with [make_criterion()][pydvl.value.stopping.make_criterion]. This
+creates a [StoppingCriterion][pydvl.value.stopping.StoppingCriterion] object
+that can be composed with other stopping criteria.
Alternatively, and in particular if reporting of completion is required, one can
inherit from this class and implement the abstract methods
-:meth:`~pydvl.value.stopping.StoppingCriterion._check` and
-:meth:`~pydvl.value.stopping.StoppingCriterion.completion`.
+[_check][pydvl.value.stopping.StoppingCriterion._check] and
+[completion][pydvl.value.stopping.StoppingCriterion.completion].
-.. rubric:: Composing stopping criteria
+# Composing stopping criteria
-Objects of type :class:`StoppingCriterion` can be composed with the binary
-operators ``&`` (*and*), and ``|`` (*or*), following the truth tables of
-:class:`~pydvl.utils.status.Status`. The unary operator ``~`` (*not*) is also
-supported. See :class:`StoppingCriterion` for details on how these operations
-affect the behavior of the stopping criteria.
+Objects of type [StoppingCriterion][pydvl.value.stopping.StoppingCriterion] can
+be composed with the binary operators `&` (*and*), and `|` (*or*), following the
+truth tables of [Status][pydvl.utils.status.Status]. The unary operator `~`
+(*not*) is also supported. See
+[StoppingCriterion][pydvl.value.stopping.StoppingCriterion] for details on how
+these operations affect the behavior of the stopping criteria.
+
+## References
+
+[^1]: Ghorbani, A., Zou, J., 2019.
+ [Data Shapley: Equitable Valuation of Data for Machine Learning](http://proceedings.mlr.press/v97/ghorbani19c.html).
+ In: Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2242–2251.
"""
+from __future__ import annotations
+
import abc
import logging
from time import time
-from typing import Callable, Optional, Type
+from typing import Callable, Optional, Protocol, Type
import numpy as np
from deprecate import deprecated, void
@@ -55,53 +66,69 @@
logger = logging.getLogger(__name__)
-StoppingCriterionCallable = Callable[[ValuationResult], Status]
+
+class StoppingCriterionCallable(Protocol):
+ """Signature for a stopping criterion"""
+
+ def __call__(self, result: ValuationResult) -> Status:
+ ...
class StoppingCriterion(abc.ABC):
"""A composable callable object to determine whether a computation
must stop.
- A ``StoppingCriterion`` is a callable taking a
- :class:`~pydvl.value.result.ValuationResult` and returning a
- :class:`~pydvl.value.result.Status`. It also keeps track of individual
- convergence of values with :meth:`converged`, and reports the overall
- completion of the computation with :meth:`completion`.
-
- Instances of ``StoppingCriterion`` can be composed with the binary operators
- ``&`` (*and*), and ``|`` (*or*), following the truth tables of
- :class:`~pydvl.utils.status.Status`. The unary operator ``~`` (*not*) is
+ A `StoppingCriterion` is a callable taking a
+ [ValuationResult][pydvl.value.result.ValuationResult] and returning a
+ [Status][pydvl.value.result.Status]. It also keeps track of individual
+ convergence of values with
+ [converged][pydvl.value.stopping.StoppingCriterion.converged], and reports
+ the overall completion of the computation with
+ [completion][pydvl.value.stopping.StoppingCriterion.completion].
+
+ Instances of `StoppingCriterion` can be composed with the binary operators
+ `&` (*and*), and `|` (*or*), following the truth tables of
+ [Status][pydvl.utils.status.Status]. The unary operator `~` (*not*) is
also supported. These boolean operations act according to the following
rules:
- - The results of :meth:`_check` are combined with the operator. See
- :class:`~pydvl.utils.status.Status` for the truth tables.
- - The results of :meth:`converged` are combined with the operator (returning
- another boolean array).
- - The :meth:`completion` method returns the min, max, or the complement to 1
- of the completions of the operands, for AND, OR and NOT respectively. This
- is required for cases where one of the criteria does not keep track of the
- convergence of single values, e.g. :class:`MaxUpdates`, because
- :meth:`completion` by default returns the mean of the boolean convergence
- array.
-
- .. rubric:: Subclassing
-
- Subclassing this class requires implementing a :meth:`_check` method that
- returns a :class:`~pydvl.utils.status.Status` object based on a given
- :class:`~pydvl.value.result.ValuationResult`. This method should update the
- :attr:`converged` attribute, which is a boolean array indicating whether
- the value for each index has converged. When this is not possible,
- :meth:`completion` should be overridden to provide an overall completion
- value, since the default implementation returns the mean of :attr:`converged`.
-
- :param modify_result: If ``True`` the status of the input
- :class:`~pydvl.value.result.ValuationResult` is modified in place after
- the call.
+ - The results of [_check][pydvl.value.stopping.StoppingCriterion._check] are
+ combined with the operator. See [Status][pydvl.utils.status.Status] for
+ the truth tables.
+ - The results of
+ [converged][pydvl.value.stopping.StoppingCriterion.converged] are combined
+ with the operator (returning another boolean array).
+ - The [completion][pydvl.value.stopping.StoppingCriterion.completion]
+ method returns the min, max, or the complement to 1 of the completions of
+ the operands, for AND, OR and NOT respectively. This is required for cases
+ where one of the criteria does not keep track of the convergence of single
+ values, e.g. [MaxUpdates][pydvl.value.stopping.MaxUpdates], because
+ [completion][pydvl.value.stopping.StoppingCriterion.completion] by
+ default returns the mean of the boolean convergence array.
+
+ # Subclassing
+
+ Subclassing this class requires implementing a
+ [_check][pydvl.value.stopping.StoppingCriterion._check] method that
+ returns a [Status][pydvl.utils.status.Status] object based on a given
+ [ValuationResult][pydvl.value.result.ValuationResult]. This method should
+ update the attribute [_converged][pydvl.value.stopping.StoppingCriterion._converged],
+ which is a boolean array indicating whether the value for each index has
+ converged. When this does not make sense for a particular stopping criterion,
+ [completion][pydvl.value.stopping.StoppingCriterion.completion] should be
+ overridden to provide an overall completion value, since its default
+ implementation attempts to compute the mean of
+ [_converged][pydvl.value.stopping.StoppingCriterion._converged].
+
+ Args:
+ modify_result: If `True` the status of the input
+ [ValuationResult][pydvl.value.result.ValuationResult] is modified in
+ place after the call.
"""
- # A boolean array indicating whether the corresponding element has converged
- _converged: NDArray[np.bool_]
+ _converged: NDArray[
+ np.bool_
+ ] #: A boolean array indicating whether the corresponding element has converged
def __init__(self, modify_result: bool = True):
self.modify_result = modify_result
@@ -118,15 +145,19 @@ def completion(self) -> float:
"""
if self.converged.size == 0:
return 0.0
- return np.mean(self.converged).item()
+ return float(np.mean(self.converged).item())
@property
def converged(self) -> NDArray[np.bool_]:
"""Returns a boolean array indicating whether the values have converged
for each data point.
- Inheriting classes must set the ``_converged`` attribute in their
- :meth:`_check`.
+ Inheriting classes must set the `_converged` attribute in their
+ [_check][pydvl.value.stopping.StoppingCriterion._check].
+
+ Returns:
+ A boolean array indicating whether the values have converged for
+ each data point.
"""
return self._converged
@@ -135,7 +166,7 @@ def name(self):
return type(self).__name__
def __call__(self, result: ValuationResult) -> Status:
- """Calls :meth:`_check`, maybe updating the result."""
+ """Calls [_check][pydvl.value.stopping.StoppingCriterion._check], maybe updating the result."""
if len(result) == 0:
logger.warning(
"At least one iteration finished but no results where generated. "
@@ -173,28 +204,31 @@ def __invert__(self) -> "StoppingCriterion":
def make_criterion(
fun: StoppingCriterionCallable,
- converged: Callable[[], NDArray[np.bool_]] = None,
- completion: Callable[[], float] = None,
- name: str = None,
+ converged: Callable[[], NDArray[np.bool_]] | None = None,
+ completion: Callable[[], float] | None = None,
+ name: str | None = None,
) -> Type[StoppingCriterion]:
- """Create a new :class:`StoppingCriterion` from a function.
+ """Create a new [StoppingCriterion][pydvl.value.stopping.StoppingCriterion] from a function.
Use this to enable simpler functions to be composed with bitwise operators
- :param fun: The callable to wrap.
- :param converged: A callable that returns a boolean array indicating what
- values have converged.
- :param completion: A callable that returns a value between 0 and 1 indicating
- the rate of completion of the computation. If not provided, the fraction
- of converged values is used.
- :param name: The name of the new criterion. If ``None``, the ``__name__`` of
- the function is used.
- :return: A new subclass of :class:`StoppingCriterion`.
+ Args:
+ fun: The callable to wrap.
+ converged: A callable that returns a boolean array indicating what
+ values have converged.
+ completion: A callable that returns a value between 0 and 1 indicating
+ the rate of completion of the computation. If not provided, the fraction
+ of converged values is used.
+ name: The name of the new criterion. If `None`, the `__name__` of
+ the function is used.
+
+ Returns:
+ A new subclass of [StoppingCriterion][pydvl.value.stopping.StoppingCriterion].
"""
class WrappedCriterion(StoppingCriterion):
def __init__(self, modify_result: bool = True):
super().__init__(modify_result=modify_result)
- self._name = name or fun.__name__
+ self._name = name or getattr(fun, "__name__", "WrappedCriterion")
def _check(self, result: ValuationResult) -> Status:
return fun(result)
@@ -221,23 +255,24 @@ class AbsoluteStandardError(StoppingCriterion):
r"""Determine convergence based on the standard error of the values.
If $s_i$ is the standard error for datum $i$ and $v_i$ its value, then this
- criterion returns :attr:`~pydvl.utils.status.Status.Converged` if
+ criterion returns [Converged][pydvl.utils.status.Status] if
$s_i < \epsilon$ for all $i$ and a threshold value $\epsilon \gt 0$.
- :param threshold: A value is considered to have converged if the standard
- error is below this value. A way of choosing it is to pick some
- percentage of the range of the values. For Shapley values this is the
- difference between the maximum and minimum of the utility function (to
- see this substitute the maximum and minimum values of the utility into
- the marginal contribution formula).
- :param fraction: The fraction of values that must have converged for the
- criterion to return :attr:`~pydvl.utils.status.Status.Converged`.
- :param burn_in: The number of iterations to ignore before checking for
- convergence. This is required because computations typically start with
- zero variance, as a result of using
- :meth:`~pydvl.value.result.ValuationResult.empty`. The default is set to
- an arbitrary minimum which is usually enough but may need to be
- increased.
+ Args:
+ threshold: A value is considered to have converged if the standard
+ error is below this value. A way of choosing it is to pick some
+ percentage of the range of the values. For Shapley values this is
+ the difference between the maximum and minimum of the utility
+ function (to see this substitute the maximum and minimum values of
+ the utility into the marginal contribution formula).
+ fraction: The fraction of values that must have converged for the
+ criterion to return [Converged][pydvl.utils.status.Status].
+ burn_in: The number of iterations to ignore before checking for
+ convergence. This is required because computations typically start
+ with zero variance, as a result of using
+ [empty()][pydvl.value.result.ValuationResult.empty]. The default is
+ set to an arbitrary minimum which is usually enough but may need to
+ be increased.
"""
def __init__(
@@ -272,9 +307,10 @@ class MaxChecks(StoppingCriterion):
A "check" is one call to the criterion.
- :param n_checks: Threshold: if ``None``, no _check is performed,
- effectively creating a (never) stopping criterion that always returns
- ``Pending``.
+ Args:
+ n_checks: Threshold: if `None`, no _check is performed,
+ effectively creating a (never) stopping criterion that always returns
+ `Pending`.
"""
def __init__(self, n_checks: Optional[int], modify_result: bool = True):
@@ -302,15 +338,20 @@ class MaxUpdates(StoppingCriterion):
"""Terminate if any number of value updates exceeds or equals the given
threshold.
- This checks the ``counts`` field of a
- :class:`~pydvl.value.result.ValuationResult`, i.e. the number of times that
- each index has been updated. For powerset samplers, the maximum of this
- number coincides with the maximum number of subsets sampled. For permutation
- samplers, it coincides with the number of permutations sampled.
+ !!! Note
+ If you want to ensure that **all** values have been updated, you
+ probably want [MinUpdates][pydvl.value.stopping.MinUpdates] instead.
+
+ This checks the `counts` field of a
+ [ValuationResult][pydvl.value.result.ValuationResult], i.e. the number of
+ times that each index has been updated. For powerset samplers, the maximum
+ of this number coincides with the maximum number of subsets sampled. For
+ permutation samplers, it coincides with the number of permutations sampled.
- :param n_updates: Threshold: if ``None``, no _check is performed,
- effectively creating a (never) stopping criterion that always returns
- ``Pending``.
+ Args:
+ n_updates: Threshold: if `None`, no _check is performed,
+ effectively creating a (never) stopping criterion that always returns
+ `Pending`.
"""
def __init__(self, n_updates: Optional[int], modify_result: bool = True):
@@ -340,15 +381,16 @@ def completion(self) -> float:
class MinUpdates(StoppingCriterion):
"""Terminate as soon as all value updates exceed or equal the given threshold.
- This checks the ``counts`` field of a
- :class:`~pydvl.value.result.ValuationResult`, i.e. the number of times that
+ This checks the `counts` field of a
+ [ValuationResult][pydvl.value.result.ValuationResult], i.e. the number of times that
each index has been updated. For powerset samplers, the minimum of this
number is a lower bound for the number of subsets sampled. For
permutation samplers, it lower-bounds the amount of permutations sampled.
- :param n_updates: Threshold: if ``None``, no _check is performed,
- effectively creating a (never) stopping criterion that always returns
- ``Pending``.
+ Args:
+ n_updates: Threshold: if `None`, no _check is performed,
+ effectively creating a (never) stopping criterion that always returns
+ `Pending`.
"""
def __init__(self, n_updates: Optional[int], modify_result: bool = True):
@@ -378,10 +420,11 @@ class MaxTime(StoppingCriterion):
Checks the elapsed time since construction
- :param seconds: Threshold: The computation is terminated if the elapsed time
- between object construction and a _check exceeds this value. If ``None``,
- no _check is performed, effectively creating a (never) stopping criterion
- that always returns ``Pending``.
+ Args:
+ seconds: Threshold: The computation is terminated if the elapsed time
+ between object construction and a _check exceeds this value. If `None`,
+ no _check is performed, effectively creating a (never) stopping criterion
+ that always returns `Pending`.
"""
def __init__(self, seconds: Optional[float], modify_result: bool = True):
@@ -409,7 +452,7 @@ class HistoryDeviation(StoppingCriterion):
r"""A simple check for relative distance to a previous step in the
computation.
- The method used by :footcite:t:`ghorbani_data_2019` computes the relative
+ The method used by (Ghorbani and Zou, 2019)1 computes the relative
distances between the current values $v_i^t$ and the values at the previous
checkpoint $v_i^{t-\tau}$. If the sum is below a given threshold, the
computation is terminated.
@@ -426,14 +469,15 @@ class HistoryDeviation(StoppingCriterion):
pinned to that state. Once all indices have converged the method has
converged.
- .. warning::
- This criterion is meant for the reproduction of the results in the paper,
- but we do not recommend using it in practice.
+ !!! Warning
+ This criterion is meant for the reproduction of the results in the paper,
+ but we do not recommend using it in practice.
- :param n_steps: Checkpoint values every so many updates and use these saved
- values to compare.
- :param rtol: Relative tolerance for convergence ($\epsilon$ in the formula).
- :param pin_converged: If ``True``, once an index has converged, it is pinned
+ Args:
+ n_steps: Checkpoint values every so many updates and use these saved
+ values to compare.
+ rtol: Relative tolerance for convergence ($\epsilon$ in the formula).
+ pin_converged: If `True`, once an index has converged, it is pinned
"""
_memory: NDArray[np.float_]
diff --git a/tests/conftest.py b/tests/conftest.py
index a1e7f2f59..2cf9de4f8 100644
--- a/tests/conftest.py
+++ b/tests/conftest.py
@@ -6,7 +6,6 @@
import numpy as np
import pytest
-import ray
from pymemcache.client import Client
from sklearn import datasets
from sklearn.utils import Bunch
@@ -21,14 +20,7 @@
EXCEPTIONS_TYPE = Optional[Sequence[Type[BaseException]]]
-@pytest.fixture(scope="session", autouse=True)
-def ray_shutdown():
- yield
- ray.shutdown()
-
-
def is_memcache_responsive(hostname, port):
-
try:
client = Client(server=(hostname, port))
client.flush_all()
@@ -67,12 +59,24 @@ def seed(request):
return 24
+@pytest.fixture()
+def seed_alt(request):
+ return 42
+
+
+@pytest.fixture()
+def collision_tol(request):
+ return 0.01
+
+
@pytest.fixture(autouse=True)
def pytorch_seed(seed):
try:
import torch
torch.manual_seed(seed)
+ # TODO if necessary extract this into a separate fixture
+ torch.use_deterministic_algorithms(True, warn_only=True)
except ImportError:
pass
@@ -84,6 +88,7 @@ def do_not_start_memcache(request):
@pytest.fixture(scope="session")
def docker_services(
+ docker_compose_command,
docker_compose_file,
docker_compose_project_name,
docker_setup,
@@ -98,6 +103,7 @@ def docker_services(
yield
else:
with get_docker_services(
+ docker_compose_command,
docker_compose_file,
docker_compose_project_name,
docker_setup,
@@ -129,7 +135,6 @@ def memcached_service(docker_ip, docker_services, do_not_start_memcache):
@pytest.fixture(scope="function")
def memcache_client_config(memcached_service) -> MemcachedClientConfig:
-
client_config = MemcachedClientConfig(
server=memcached_service, connect_timeout=1.0, timeout=1, no_delay=True
)
@@ -196,8 +201,8 @@ def num_workers():
# Run with 2 CPUs inside GitHub actions
if os.getenv("CI"):
return 2
- # And a maximum of 8 CPUs locally (most tests don't really benefit from more)
- return max(1, min(available_cpus() - 1, 8))
+ # And a maximum of 4 CPUs locally (most tests don't really benefit from more)
+ return max(1, min(available_cpus() - 1, 4))
@pytest.fixture
diff --git a/tests/influence/conftest.py b/tests/influence/conftest.py
index 0174cfa6a..ce13e9b32 100644
--- a/tests/influence/conftest.py
+++ b/tests/influence/conftest.py
@@ -1,14 +1,12 @@
-from typing import TYPE_CHECKING, Tuple
+from typing import Tuple
import numpy as np
import pytest
+from numpy.typing import NDArray
from sklearn.preprocessing import MinMaxScaler
from pydvl.utils import Dataset, random_matrix_with_condition_number
-if TYPE_CHECKING:
- from numpy.typing import NDArray
-
@pytest.fixture
def input_dimension(request) -> int:
@@ -35,36 +33,6 @@ def condition_number(request) -> float:
return request.param
-@pytest.fixture(scope="function")
-def quadratic_linear_equation_system(quadratic_matrix: np.ndarray, batch_size: int):
- A = quadratic_matrix
- problem_dimension = A.shape[0]
- b = np.random.random([batch_size, problem_dimension])
- return A, b
-
-
-@pytest.fixture(scope="function")
-def quadratic_matrix(problem_dimension: int, condition_number: float):
- return random_matrix_with_condition_number(problem_dimension, condition_number)
-
-
-@pytest.fixture(scope="function")
-def singular_quadratic_linear_equation_system(
- quadratic_matrix: np.ndarray, batch_size: int
-):
- A = quadratic_matrix
- problem_dimension = A.shape[0]
- i, j = tuple(np.random.choice(problem_dimension, replace=False, size=2))
- if j < i:
- i, j = j, i
-
- v = (A[i] + A[j]) / 2
- A[i], A[j] = v, v
- b = np.random.random([batch_size, problem_dimension])
- return A, b
-
-
-@pytest.fixture(scope="function")
def linear_model(problem_dimension: Tuple[int, int], condition_number: float):
output_dimension, input_dimension = problem_dimension
A = random_matrix_with_condition_number(
@@ -75,14 +43,134 @@ def linear_model(problem_dimension: Tuple[int, int], condition_number: float):
return A, b
-def create_mock_dataset(
- linear_model: Tuple["NDArray[np.float_]", "NDArray[np.float_]"],
+def linear_derivative_analytical(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
+ x: NDArray[np.float_],
+ y: NDArray[np.float_],
+) -> NDArray[np.float_]:
+ """
+ Given a linear model it returns the first order derivative wrt its parameters.
+ More precisely, given a couple of matrices $A(\theta)$ and $b(\theta')$, with
+ $\theta$, $\theta'$ representing their generic entry, it calculates the
+ derivative wrt. $\theta$ and $\theta'$ of the linear model with the
+ following quadratic loss: $L(x,y) = (Ax +b - y)^2$.
+ :param linear_model: A tuple of arrays representing the linear model.
+ :param x: array, input to the linear model
+ :param y: array, output of the linear model
+ :returns: An array where each row holds the derivative over $\theta$ of $L(x, y)]$
+ """
+
+ A, b = linear_model
+ n, m = list(A.shape)
+ residuals = x @ A.T + b - y
+ kron_product = np.expand_dims(residuals, axis=2) * np.expand_dims(x, axis=1)
+ test_grads = np.reshape(kron_product, [-1, n * m])
+ full_grads = np.concatenate((test_grads, residuals), axis=1)
+ return 2 * full_grads / n # type: ignore
+
+
+def linear_hessian_analytical(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
+ x: NDArray[np.float_],
+ lam: float = 0.0,
+) -> NDArray[np.float_]:
+ """
+ Given a linear model it returns the hessian wrt. its parameters.
+ More precisely, given a couple of matrices $A(\theta)$ and $b(\theta')$, with
+ $\theta$, $\theta'$ representing their generic entry, it calculates the
+ second derivative wrt. $\theta$ and $\theta'$ of the linear model with the
+ following quadratic loss: $L(x,y) = (Ax +b - y)^2$.
+ :param linear_model: A tuple of arrays representing the linear model.
+ :param x: array, input to the linear model
+ :param y: array, output of the linear model
+ :param lam: hessian regularization parameter
+ :returns: An matrix where each entry i,j holds the second derivatives over $\theta$
+ of $L(x, y)$
+ """
+ A, b = linear_model
+ n, m = tuple(A.shape)
+ d2_theta = np.einsum("ia,ib->iab", x, x)
+ d2_theta = np.mean(d2_theta, axis=0)
+ d2_theta = np.kron(np.eye(n), d2_theta)
+ d2_b = np.eye(n)
+ mean_x = np.mean(x, axis=0, keepdims=True)
+ d_theta_d_b = np.kron(np.eye(n), mean_x)
+ top_matrix = np.concatenate((d2_theta, d_theta_d_b.T), axis=1)
+ bottom_matrix = np.concatenate((d_theta_d_b, d2_b), axis=1)
+ full_matrix = np.concatenate((top_matrix, bottom_matrix), axis=0)
+ return 2 * full_matrix / n + lam * np.identity(len(full_matrix)) # type: ignore
+
+
+def linear_mixed_second_derivative_analytical(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
+ x: NDArray[np.float_],
+ y: NDArray[np.float_],
+) -> NDArray[np.float_]:
+ """
+ Given a linear model it returns a second order partial derivative wrt its
+ parameters .
+ More precisely, given a couple of matrices $A(\theta)$ and $b(\theta')$, with
+ $\theta$, $\theta'$ representing their generic entry, it calculates the
+ second derivative wrt. $\theta$ and $\theta'$ of the linear model with the
+ following quadratic loss: $L(x,y) = (Ax +b - y)^2$.
+ :param linear_model: A tuple of arrays representing the linear model.
+ :param x: array, input to the linear model
+ :param y: array, output of the linear model
+ :returns: An matrix where each entry i,j holds the mixed second derivatives
+ over $\theta$ and $x$ of $L(x, y)$
+ """
+
+ A, b = linear_model
+ N, M = tuple(A.shape)
+ residuals = x @ A.T + b - y
+ B = len(x)
+ outer_product_matrix = np.einsum("ab,ic->iacb", A, x)
+ outer_product_matrix = np.reshape(outer_product_matrix, [B, M * N, M])
+ tiled_identity = np.tile(np.expand_dims(np.eye(M), axis=0), [B, N, 1])
+ outer_product_matrix += tiled_identity * np.expand_dims(
+ np.repeat(residuals, M, axis=1), axis=2
+ )
+ b_part_derivative = np.tile(np.expand_dims(A, axis=0), [B, 1, 1])
+ full_derivative = np.concatenate((outer_product_matrix, b_part_derivative), axis=1)
+ return 2 * full_derivative / N # type: ignore
+
+
+def linear_analytical_influence_factors(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
+ x: NDArray[np.float_],
+ y: NDArray[np.float_],
+ x_test: NDArray[np.float_],
+ y_test: NDArray[np.float_],
+ hessian_regularization: float = 0,
+) -> NDArray[np.float_]:
+ """
+ Given a linear model it calculates its influence factors.
+ :param linear_model: A tuple of arrays representing the linear model.
+ :param x: array, input to the linear model
+ :param y: array, output of the linear model
+ :returns: An array with analytical influence factors.
+ """
+ test_grads_analytical = linear_derivative_analytical(
+ linear_model,
+ x_test,
+ y_test,
+ )
+ hessian_analytical = linear_hessian_analytical(
+ linear_model,
+ x,
+ hessian_regularization,
+ )
+ return np.linalg.solve(hessian_analytical, test_grads_analytical.T).T
+
+
+def add_noise_to_linear_model(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
train_set_size: int,
test_set_size: int,
noise: float = 0.01,
) -> Tuple[
- Tuple["NDArray[np.float_]", "NDArray[np.float_]"],
- Tuple["NDArray[np.float_]", "NDArray[np.float_]"],
+ Tuple[NDArray[np.float_], NDArray[np.float_]],
+ Tuple[NDArray[np.float_], NDArray[np.float_]],
]:
A, b = linear_model
o_d, i_d = tuple(A.shape)
diff --git a/tests/influence/test_conjugate_gradients.py b/tests/influence/test_conjugate_gradients.py
deleted file mode 100644
index 98eee58d8..000000000
--- a/tests/influence/test_conjugate_gradients.py
+++ /dev/null
@@ -1,110 +0,0 @@
-import itertools
-from typing import List
-
-import numpy as np
-import pytest
-
-from pydvl.influence.conjugate_gradient import (
- batched_preconditioned_conjugate_gradient,
- conjugate_gradient_condition_number_based_error_bound,
-)
-
-
-class AlgorithmTestSettings:
- A_NORM_TOL: float = 1e-4
- ACCEPTABLE_FAILED_PERC_A_NORM: float = 1e-2
- ACCEPTABLE_FAILED_PERC_BOUND: float = 1e-2
- BOUND_TOL: float = 1e-4
- CG_DAMPING: float = 1e-10
-
- CG_TEST_CONDITION_NUMBERS: List[int] = [10]
- CG_TEST_BATCH_SIZES: List[int] = [16, 32]
- CG_TEST_DIMENSIONS: List[int] = [2, 20, 60, 100]
-
-
-test_cases = list(
- itertools.product(
- AlgorithmTestSettings.CG_TEST_DIMENSIONS,
- AlgorithmTestSettings.CG_TEST_BATCH_SIZES,
- AlgorithmTestSettings.CG_TEST_CONDITION_NUMBERS,
- )
-)
-
-
-def lmb_test_case_to_str(packed_i_test_case):
- i, test_case = packed_i_test_case
- return f"Problem #{i} of dimension {test_case[0]} with batch size {test_case[1]} and condition number"
-
-
-test_case_ids = list(map(lmb_test_case_to_str, zip(range(len(test_cases)), test_cases)))
-
-
-@pytest.mark.parametrize(
- "problem_dimension,batch_size,condition_number",
- test_cases,
- ids=test_case_ids,
- indirect=True,
-)
-def test_conjugate_gradients_mvp(quadratic_linear_equation_system):
- A, b = quadratic_linear_equation_system
- x0 = np.zeros_like(b)
- xn, n = batched_preconditioned_conjugate_gradient(A, b, x0=x0, rtol=10e-7)
- check_solution(A, b, n, x0, xn)
-
-
-@pytest.mark.parametrize(
- "problem_dimension,batch_size,condition_number",
- test_cases,
- ids=test_case_ids,
- indirect=True,
-)
-def test_conjugate_gradients_fn(quadratic_linear_equation_system):
- A, b = quadratic_linear_equation_system
- new_A = np.copy(A)
- A = lambda v: v @ new_A.T
- x0 = np.zeros_like(b)
- xn, n = batched_preconditioned_conjugate_gradient(A, b, x0=x0, rtol=10e-7)
- check_solution(new_A, b, n, x0, xn)
-
-
-@pytest.mark.parametrize(
- "problem_dimension,batch_size,condition_number",
- test_cases,
- ids=test_case_ids,
- indirect=True,
-)
-def test_conjugate_gradients_mvp_preconditioned(quadratic_linear_equation_system):
- A, b = quadratic_linear_equation_system
- x0 = np.zeros_like(b)
- xn, n = batched_preconditioned_conjugate_gradient(A, b, x0=x0, rtol=10e-7)
- check_solution(A, b, n, x0, xn)
-
-
-def check_solution(A, b, n, x0, xn):
- """
- Uses standard inversion techniques to verify the solution of the problem. It checks:
-
- - That the solution is not nan at all positions.
- - The solution fulfills an error bound, which depends on A and the number of iterations.
- - Only a certain percentage of the batch is allowed to be false.
- """
- assert np.all(np.logical_not(np.isnan(xn)))
- inv_A = np.linalg.pinv(A)
-
- xt = b @ inv_A.T
- bound = conjugate_gradient_condition_number_based_error_bound(A, n, x0, xt)
- norm_A = lambda v: np.sqrt(np.einsum("ia,ab,ib->i", v, A, v))
- assert np.all(np.logical_not(np.isnan(xn)))
-
- error = norm_A(xt - xn)
- failed = error > bound + AlgorithmTestSettings.BOUND_TOL
- realized_failed_percentage = np.sum(failed) / len(failed)
- assert (
- realized_failed_percentage < AlgorithmTestSettings.ACCEPTABLE_FAILED_PERC_BOUND
- )
-
- failed = error > AlgorithmTestSettings.A_NORM_TOL
- realized_failed_percentage = np.sum(failed) / len(failed)
- assert (
- realized_failed_percentage < AlgorithmTestSettings.ACCEPTABLE_FAILED_PERC_A_NORM
- )
diff --git a/tests/influence/test_influences.py b/tests/influence/test_influences.py
index 932ec8c86..ca953f43e 100644
--- a/tests/influence/test_influences.py
+++ b/tests/influence/test_influences.py
@@ -1,338 +1,487 @@
-import itertools
-from typing import List, Tuple
+from dataclasses import dataclass
+from typing import Callable, Dict, Tuple
import numpy as np
import pytest
-from .conftest import create_mock_dataset
-
-try:
- import torch.nn.functional as F
- from torch.optim import Adam, lr_scheduler
-
- from pydvl.influence.general import compute_influences
- from pydvl.influence.linear import (
- compute_linear_influences,
- influences_perturbation_linear_regression_analytical,
- influences_up_linear_regression_analytical,
- )
- from pydvl.influence.model_wrappers import TorchLinearRegression, TorchMLP
- from pydvl.utils.dataset import load_wine_dataset
-except ImportError:
- pass
-
-
-class InfluenceTestSettings:
- DATA_OUTPUT_NOISE: float = 0.01
- ACCEPTABLE_ABS_TOL_INFLUENCE: float = 5e-4
- ACCEPTABLE_ABS_TOL_INFLUENCE_CG: float = 1e-3
-
- INFLUENCE_TEST_CONDITION_NUMBERS: List[int] = [5]
- INFLUENCE_TRAINING_SET_SIZE: List[int] = [500]
- INFLUENCE_TEST_SET_SIZE: List[int] = [20]
- INFLUENCE_N_JOBS: List[int] = [1]
- INFLUENCE_DIMENSIONS: List[Tuple[int, int]] = [
- (10, 10),
- (20, 10),
- (3, 20),
- (20, 20),
- ]
-
-
-test_cases = list(
- itertools.product(
- InfluenceTestSettings.INFLUENCE_TRAINING_SET_SIZE,
- InfluenceTestSettings.INFLUENCE_TEST_SET_SIZE,
- InfluenceTestSettings.INFLUENCE_DIMENSIONS,
- InfluenceTestSettings.INFLUENCE_TEST_CONDITION_NUMBERS,
- InfluenceTestSettings.INFLUENCE_N_JOBS,
- )
+torch = pytest.importorskip("torch")
+import torch
+import torch.nn.functional as F
+from numpy.typing import NDArray
+from torch import nn
+from torch.optim import LBFGS
+from torch.utils.data import DataLoader, TensorDataset
+
+from pydvl.influence import InfluenceType, InversionMethod, compute_influences
+from pydvl.influence.torch import TorchTwiceDifferentiable, model_hessian_low_rank
+
+from .conftest import (
+ add_noise_to_linear_model,
+ linear_analytical_influence_factors,
+ linear_derivative_analytical,
+ linear_mixed_second_derivative_analytical,
+ linear_model,
)
-def lmb_test_case_to_str(packed_i_test_case):
- i, test_case = packed_i_test_case
- return (
- f"Problem #{i} of dimension {test_case[2]} with train size {test_case[0]}, "
- f"test size {test_case[1]}, condition number {test_case[3]} and {test_case[4]} jobs."
+def analytical_linear_influences(
+ linear_model: Tuple[NDArray[np.float_], NDArray[np.float_]],
+ x: NDArray[np.float_],
+ y: NDArray[np.float_],
+ x_test: NDArray[np.float_],
+ y_test: NDArray[np.float_],
+ influence_type: InfluenceType = InfluenceType.Up,
+ hessian_regularization: float = 0,
+):
+ """Calculates analytically the influence of each training sample on the
+ test samples for an ordinary least squares model (Ax+b=y with quadratic
+ loss).
+
+ :param linear_model: A tuple of arrays of shapes (N, M) and N representing A
+ and b respectively.
+ :param x: An array of shape (M, K) containing the features of the
+ training set.
+ :param y: An array of shape (M, L) containing the targets of the
+ training set.
+ :param x_test: An array of shape (N, K) containing the features of the test
+ set.
+ :param y_test: An array of shape (N, L) containing the targets of the test
+ set.
+ :param influence_type: the type of the influence.
+ :param hessian_regularization: regularization value for the hessian
+ :returns: An array of shape (B, C) with the influences of the training points
+ on the test points if influence_type is "up", an array of shape (K, L,
+ M) if influence_type is "perturbation".
+ """
+
+ s_test_analytical = linear_analytical_influence_factors(
+ linear_model, x, y, x_test, y_test, hessian_regularization
)
-
-
-test_case_ids = list(map(lmb_test_case_to_str, zip(range(len(test_cases)), test_cases)))
+ if influence_type == InfluenceType.Up:
+ train_grads_analytical = linear_derivative_analytical(
+ linear_model,
+ x,
+ y,
+ )
+ result: NDArray = np.einsum(
+ "ia,ja->ij", s_test_analytical, train_grads_analytical
+ )
+ elif influence_type == InfluenceType.Perturbation:
+ train_second_deriv_analytical = linear_mixed_second_derivative_analytical(
+ linear_model,
+ x,
+ y,
+ )
+ result: NDArray = np.einsum(
+ "ia,jab->ijb", s_test_analytical, train_second_deriv_analytical
+ )
+ return result
@pytest.mark.torch
@pytest.mark.parametrize(
- "train_set_size,test_set_size,problem_dimension,condition_number,n_jobs",
- test_cases,
- ids=test_case_ids,
+ "influence_type",
+ InfluenceType,
+ ids=[ifl.value for ifl in InfluenceType],
+)
+@pytest.mark.parametrize(
+ "train_set_size",
+ [200],
+ ids=["train_set_size_200"],
)
-def test_upweighting_influences_lr_analytical_cg(
+@pytest.mark.parametrize(
+ "inversion_method, inversion_method_kwargs, rtol",
+ [
+ [InversionMethod.Direct, {}, 1e-7],
+ [InversionMethod.Cg, {}, 1e-1],
+ [InversionMethod.Lissa, {"maxiter": 6000, "scale": 100}, 0.3],
+ ],
+ ids=[inv.value for inv in InversionMethod if inv is not InversionMethod.Arnoldi],
+)
+def test_influence_linear_model(
+ influence_type: InfluenceType,
+ inversion_method: InversionMethod,
+ inversion_method_kwargs: Dict,
+ rtol: float,
train_set_size: int,
- test_set_size: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
- n_jobs: int,
+ hessian_reg: float = 0.1,
+ test_set_size: int = 20,
+ problem_dimension: Tuple[int, int] = (4, 20),
+ condition_number: float = 2,
):
- A, _ = linear_model
- train_data, test_data = create_mock_dataset(
- linear_model, train_set_size, test_set_size
+
+ A, b = linear_model(problem_dimension, condition_number)
+ train_data, test_data = add_noise_to_linear_model(
+ (A, b), train_set_size, test_set_size
)
- model = TorchLinearRegression(A.shape[0], A.shape[1], init=linear_model)
+ linear_layer = nn.Linear(A.shape[0], A.shape[1])
+ linear_layer.eval()
+ linear_layer.weight.data = torch.as_tensor(A)
+ linear_layer.bias.data = torch.as_tensor(b)
loss = F.mse_loss
- influence_values_analytical = 2 * influences_up_linear_regression_analytical(
- linear_model,
+ analytical_influences = analytical_linear_influences(
+ (A, b),
*train_data,
*test_data,
+ influence_type=influence_type,
+ hessian_regularization=hessian_reg,
+ )
+
+ train_data_loader = DataLoader(list(zip(*train_data)), batch_size=40, shuffle=True)
+ input_data = DataLoader(list(zip(*train_data)), batch_size=40)
+ test_data_loader = DataLoader(
+ list(zip(*test_data)),
+ batch_size=40,
)
influence_values = compute_influences(
- model,
- loss,
- *train_data,
- *test_data,
+ TorchTwiceDifferentiable(linear_layer, loss),
+ training_data=train_data_loader,
+ test_data=test_data_loader,
+ input_data=input_data,
progress=True,
- influence_type="up",
- inversion_method="cg",
- inversion_method_kwargs={"rtol": 10e-7},
- )
+ influence_type=influence_type,
+ inversion_method=inversion_method,
+ hessian_regularization=hessian_reg,
+ **inversion_method_kwargs,
+ ).numpy()
+
assert np.logical_not(np.any(np.isnan(influence_values)))
- assert influence_values.shape == (len(test_data[0]), len(train_data[0]))
- influences_max_abs_diff = np.max(
- np.abs(influence_values - influence_values_analytical)
+ abs_influence = np.abs(influence_values)
+ upper_quantile_mask = abs_influence > np.quantile(abs_influence, 0.9)
+ assert np.allclose(
+ influence_values[upper_quantile_mask],
+ analytical_influences[upper_quantile_mask],
+ rtol=rtol,
)
- assert (
- influences_max_abs_diff < InfluenceTestSettings.ACCEPTABLE_ABS_TOL_INFLUENCE_CG
- ), "Upweighting influence values were wrong."
-@pytest.mark.torch
-@pytest.mark.parametrize(
- "train_set_size,test_set_size,problem_dimension,condition_number,n_jobs",
- test_cases,
- ids=test_case_ids,
-)
-def test_upweighting_influences_lr_analytical(
- train_set_size: int,
- test_set_size: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
- n_jobs: int,
-):
-
- A, _ = tuple(linear_model)
- train_data, test_data = create_mock_dataset(
- linear_model, train_set_size, test_set_size
+def create_conv3d_nn():
+ return nn.Sequential(
+ nn.Conv3d(in_channels=5, out_channels=3, kernel_size=2),
+ nn.Flatten(),
+ nn.Linear(24, 3),
)
- model = TorchLinearRegression(A.shape[0], A.shape[1], init=linear_model)
- loss = F.mse_loss
- influence_values_analytical = 2 * influences_up_linear_regression_analytical(
- linear_model,
- *train_data,
- *test_data,
+def create_conv2d_nn():
+ return nn.Sequential(
+ nn.Conv2d(in_channels=5, out_channels=3, kernel_size=3),
+ nn.Flatten(),
+ nn.Linear(27, 3),
)
- influence_values = compute_influences(
- model,
- loss,
- *train_data,
- *test_data,
- progress=True,
- influence_type="up",
- )
- assert np.logical_not(np.any(np.isnan(influence_values)))
- assert influence_values.shape == (len(test_data[0]), len(train_data[0]))
- influences_max_abs_diff = np.max(
- np.abs(influence_values - influence_values_analytical)
+
+def create_conv1d_nn():
+ return nn.Sequential(
+ nn.Conv1d(in_channels=5, out_channels=3, kernel_size=2),
+ nn.Flatten(),
+ nn.Linear(6, 3),
)
- assert (
- influences_max_abs_diff < InfluenceTestSettings.ACCEPTABLE_ABS_TOL_INFLUENCE
- ), "Upweighting influence values were wrong."
+
+
+def create_simple_nn_regr():
+ return nn.Sequential(nn.Linear(10, 10), nn.Linear(10, 3), nn.Linear(3, 1))
+
+
+@dataclass
+class TestCase:
+ case_id: str
+ module_factory: Callable[[], nn.Module]
+ input_dim: Tuple[int, ...]
+ output_dim: int
+ loss: nn.modules.loss._Loss
+ influence_type: InfluenceType
+
+
+@pytest.fixture
+def test_case(request):
+ return request.param
+
+
+test_cases = [
+ TestCase(
+ case_id="conv3d_nn_up",
+ module_factory=create_conv3d_nn,
+ input_dim=(5, 3, 3, 3),
+ output_dim=3,
+ loss=nn.MSELoss(),
+ influence_type=InfluenceType.Up,
+ ),
+ TestCase(
+ case_id="conv3d_nn_pert",
+ module_factory=create_conv3d_nn,
+ input_dim=(5, 3, 3, 3),
+ output_dim=3,
+ loss=nn.SmoothL1Loss(),
+ influence_type=InfluenceType.Perturbation,
+ ),
+ TestCase(
+ case_id="conv2d_nn_up",
+ module_factory=create_conv2d_nn,
+ input_dim=(5, 5, 5),
+ output_dim=3,
+ loss=nn.MSELoss(),
+ influence_type=InfluenceType.Up,
+ ),
+ TestCase(
+ case_id="conv2d_nn_pert",
+ module_factory=create_conv2d_nn,
+ input_dim=(5, 5, 5),
+ output_dim=3,
+ loss=nn.SmoothL1Loss(),
+ influence_type=InfluenceType.Perturbation,
+ ),
+ TestCase(
+ case_id="conv1d_nn_up",
+ module_factory=create_conv1d_nn,
+ input_dim=(5, 3),
+ output_dim=3,
+ loss=nn.MSELoss(),
+ influence_type=InfluenceType.Up,
+ ),
+ TestCase(
+ case_id="conv1d_nn_pert",
+ module_factory=create_conv1d_nn,
+ input_dim=(5, 3),
+ output_dim=3,
+ loss=nn.SmoothL1Loss(),
+ influence_type=InfluenceType.Perturbation,
+ ),
+ TestCase(
+ case_id="simple_nn_up",
+ module_factory=create_simple_nn_regr,
+ input_dim=(10,),
+ output_dim=1,
+ loss=nn.MSELoss(),
+ influence_type=InfluenceType.Up,
+ ),
+ TestCase(
+ case_id="simple_nn_pert",
+ module_factory=create_simple_nn_regr,
+ input_dim=(10,),
+ output_dim=1,
+ loss=nn.SmoothL1Loss(),
+ influence_type=InfluenceType.Perturbation,
+ ),
+]
+
+
+def create_random_data_loader(
+ input_dim: Tuple[int],
+ output_dim: int,
+ data_len: int,
+ batch_size: int = 1,
+) -> DataLoader:
+ """
+ Creates DataLoader instances with random data for testing purposes.
+
+ :param input_dim: The dimensions of the input data.
+ :param output_dim: The dimension of the output data.
+ :param data_len: The length of the training dataset to be generated.
+ :param batch_size: The size of the batches to be used in the DataLoader.
+
+ :return: DataLoader instances for data.
+ """
+ x = torch.rand((data_len, *input_dim))
+ y = torch.rand((data_len, output_dim))
+
+ return DataLoader(TensorDataset(x, y), batch_size=batch_size)
@pytest.mark.torch
@pytest.mark.parametrize(
- "train_set_size,test_set_size,problem_dimension,condition_number,n_jobs",
+ "inversion_method,inversion_method_kwargs",
+ [
+ ("cg", {}),
+ (
+ "lissa",
+ {
+ "maxiter": 150,
+ "scale": 10000,
+ },
+ ),
+ ],
+)
+@pytest.mark.parametrize(
+ "test_case",
test_cases,
- ids=test_case_ids,
+ ids=[case.case_id for case in test_cases],
+ indirect=["test_case"],
)
-def test_perturbation_influences_lr_analytical_cg(
- train_set_size: int,
- test_set_size: int,
- problem_dimension: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
- n_jobs: int,
+def test_influences_nn(
+ test_case: TestCase,
+ inversion_method: InversionMethod,
+ inversion_method_kwargs: Dict,
+ data_len: int = 20,
+ hessian_reg: float = 1e3,
+ test_data_len: int = 10,
+ batch_size: int = 10,
):
- train_data, test_data = create_mock_dataset(
- linear_model, train_set_size, test_set_size
+ module_factory = test_case.module_factory
+ input_dim = test_case.input_dim
+ output_dim = test_case.output_dim
+ loss = test_case.loss
+ influence_type = test_case.influence_type
+
+ train_data_loader = create_random_data_loader(
+ input_dim, output_dim, data_len, batch_size
+ )
+ test_data_loader = create_random_data_loader(
+ input_dim, output_dim, test_data_len, batch_size
)
- A, _ = linear_model
- model = TorchLinearRegression(A.shape[0], A.shape[1], init=linear_model)
- loss = F.mse_loss
+ model = module_factory()
+ model.eval()
+ model = TorchTwiceDifferentiable(model, loss)
- influence_values_analytical = (
- 2
- * influences_perturbation_linear_regression_analytical(
- linear_model,
- *train_data,
- *test_data,
- )
- )
- influence_values = compute_influences(
+ direct_influence = compute_influences(
model,
- loss,
- *train_data,
- *test_data,
+ training_data=train_data_loader,
+ test_data=test_data_loader,
progress=True,
- influence_type="perturbation",
- inversion_method="cg",
- inversion_method_kwargs={"rtol": 10e-7},
- )
- assert np.logical_not(np.any(np.isnan(influence_values)))
- assert influence_values.shape == (
- len(test_data[0]),
- len(train_data[0]),
- A.shape[1],
- )
- influences_max_abs_diff = np.max(
- np.abs(influence_values - influence_values_analytical)
+ influence_type=influence_type,
+ inversion_method=InversionMethod.Direct,
+ hessian_regularization=hessian_reg,
)
- assert (
- influences_max_abs_diff < InfluenceTestSettings.ACCEPTABLE_ABS_TOL_INFLUENCE
- ), "Perturbation influence values were wrong."
+
+ approx_influences = compute_influences(
+ model,
+ training_data=train_data_loader,
+ test_data=test_data_loader,
+ progress=True,
+ influence_type=influence_type,
+ inversion_method=inversion_method,
+ hessian_regularization=hessian_reg,
+ **inversion_method_kwargs,
+ ).numpy()
+ assert not np.any(np.isnan(approx_influences))
+
+ assert np.allclose(approx_influences, direct_influence, rtol=1e-1)
+
+ if influence_type == InfluenceType.Up:
+ assert approx_influences.shape == (test_data_len, data_len)
+
+ if influence_type == InfluenceType.Perturbation:
+ assert approx_influences.shape == (test_data_len, data_len, *input_dim)
+
+ # check that influences are not all constant
+ assert not np.all(approx_influences == approx_influences.item(0))
+
+
+def minimal_training(
+ model: torch.nn.Module,
+ dataloader: DataLoader,
+ loss_function: torch.nn.modules.loss._Loss,
+ lr=0.01,
+ epochs=50,
+):
+ """
+ Trains a PyTorch model using L-BFGS optimizer.
+
+ :param model: The PyTorch model to be trained.
+ :param dataloader: DataLoader providing the training data.
+ :param loss_function: The loss function to be used for training.
+ :param lr: The learning rate for the L-BFGS optimizer. Defaults to 0.01.
+ :param epochs: The number of training epochs. Defaults to 50.
+
+ :return: The trained model.
+ """
+ model = model.train()
+ optimizer = LBFGS(model.parameters(), lr=lr)
+
+ for epoch in range(epochs):
+ data = torch.cat([inputs for inputs, targets in dataloader])
+ targets = torch.cat([targets for inputs, targets in dataloader])
+
+ def closure():
+ optimizer.zero_grad()
+ outputs = model(data)
+ loss = loss_function(outputs, targets)
+ loss.backward()
+ return loss
+
+ optimizer.step(closure)
+
+ return model
@pytest.mark.torch
@pytest.mark.parametrize(
- "train_set_size,test_set_size,problem_dimension,condition_number,n_jobs",
+ "test_case",
test_cases,
- ids=test_case_ids,
+ ids=[case.case_id for case in test_cases],
+ indirect=["test_case"],
)
-def test_perturbation_influences_lr_analytical(
- train_set_size: int,
- test_set_size: int,
- problem_dimension: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
- n_jobs: int,
+def test_influences_arnoldi(
+ test_case: TestCase,
+ data_len: int = 20,
+ hessian_reg: float = 20.0,
+ test_data_len: int = 10,
):
- train_data, test_data = create_mock_dataset(
- linear_model, train_set_size, test_set_size
+ module_factory = test_case.module_factory
+ input_dim = test_case.input_dim
+ output_dim = test_case.output_dim
+ loss = test_case.loss
+ influence_type = test_case.influence_type
+
+ train_data_loader = create_random_data_loader(input_dim, output_dim, data_len)
+ test_data_loader = create_random_data_loader(input_dim, output_dim, test_data_len)
+
+ nn_architecture = module_factory()
+ nn_architecture = minimal_training(
+ nn_architecture, train_data_loader, loss, lr=0.3, epochs=100
)
- A, _ = linear_model
+ nn_architecture = nn_architecture.eval()
- model = TorchLinearRegression(A.shape[0], A.shape[1], init=linear_model)
- loss = F.mse_loss
+ model = TorchTwiceDifferentiable(nn_architecture, loss)
- influence_values_analytical = (
- 2
- * influences_perturbation_linear_regression_analytical(
- linear_model,
- *train_data,
- *test_data,
- )
- )
- influence_values = compute_influences(
+ direct_influence = compute_influences(
model,
- loss,
- *train_data,
- *test_data,
+ training_data=train_data_loader,
+ test_data=test_data_loader,
progress=True,
- influence_type="perturbation",
+ influence_type=influence_type,
+ inversion_method=InversionMethod.Direct,
+ hessian_regularization=hessian_reg,
)
- assert np.logical_not(np.any(np.isnan(influence_values)))
- assert influence_values.shape == (
- len(test_data[0]),
- len(train_data[0]),
- A.shape[1],
- )
- influences_max_abs_diff = np.max(
- np.abs(influence_values - influence_values_analytical)
- )
- assert (
- influences_max_abs_diff < InfluenceTestSettings.ACCEPTABLE_ABS_TOL_INFLUENCE
- ), "Perturbation influence values were wrong."
-
-@pytest.mark.torch
-@pytest.mark.parametrize(
- "train_set_size,test_set_size,problem_dimension,condition_number",
- itertools.product(
- InfluenceTestSettings.INFLUENCE_TRAINING_SET_SIZE,
- InfluenceTestSettings.INFLUENCE_TEST_SET_SIZE,
- InfluenceTestSettings.INFLUENCE_DIMENSIONS,
- InfluenceTestSettings.INFLUENCE_TEST_CONDITION_NUMBERS,
- ),
-)
-def test_linear_influences_up_perturbations_analytical(
- train_set_size: int,
- test_set_size: int,
- problem_dimension: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
-):
- train_data, test_data = create_mock_dataset(
- linear_model, train_set_size, test_set_size
- )
- up_influences = compute_linear_influences(
- *train_data,
- *test_data,
- influence_type="up",
+ num_parameters = sum(
+ p.numel() for p in nn_architecture.parameters() if p.requires_grad
)
- assert np.logical_not(np.any(np.isnan(up_influences)))
- assert up_influences.shape == (len(test_data[0]), len(train_data[0]))
- pert_influences = compute_linear_influences(
- *train_data,
- *test_data,
- influence_type="perturbation",
- )
- assert np.logical_not(np.any(np.isnan(pert_influences)))
- assert pert_influences.shape == (
- len(test_data[0]),
- len(train_data[0]),
- train_data[0].shape[1],
+ low_rank_influence = compute_influences(
+ model,
+ training_data=train_data_loader,
+ test_data=test_data_loader,
+ progress=True,
+ influence_type=influence_type,
+ inversion_method=InversionMethod.Arnoldi,
+ hessian_regularization=hessian_reg,
+ # as the hessian of the small shallow networks is in general not low rank, so for these test cases, we choose
+ # the rank estimate as high as possible
+ rank_estimate=num_parameters - 1,
)
+ assert np.allclose(direct_influence, low_rank_influence, rtol=1e-1)
-@pytest.mark.torch
-def test_influences_with_neural_network_explicit_hessian():
- train_ds, val_ds, test_ds, feature_names = load_wine_dataset(
- train_size=0.3, test_size=0.6
- )
- feature_dimension = train_ds[0].shape[1]
- unique_classes = np.unique(np.concatenate((train_ds[1], test_ds[1])))
- num_classes = len(unique_classes)
- num_epochs = 300
- network_size = [16, 16]
- nn = TorchMLP(feature_dimension, num_classes, network_size)
- optimizer = Adam(params=nn.parameters(), lr=0.001, weight_decay=0.001)
- loss = F.cross_entropy
- nn.fit(
- *train_ds,
- *test_ds,
- num_epochs=num_epochs,
- batch_size=32,
- loss=loss,
- optimizer=optimizer,
- scheduler=lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs),
+ precomputed_low_rank = model_hessian_low_rank(
+ model,
+ training_data=train_data_loader,
+ hessian_perturbation=hessian_reg,
+ rank_estimate=num_parameters - 1,
)
- model = nn
- loss = loss
-
- train_influences = compute_influences(
+ precomputed_low_rank_influence = compute_influences(
model,
- loss,
- *train_ds,
- *test_ds,
- inversion_method="direct",
+ training_data=train_data_loader,
+ test_data=test_data_loader,
+ progress=True,
+ influence_type=influence_type,
+ inversion_method=InversionMethod.Arnoldi,
+ low_rank_representation=precomputed_low_rank,
)
- assert np.all(np.logical_not(np.isnan(train_influences)))
+ assert np.allclose(direct_influence, precomputed_low_rank_influence, rtol=1e-1)
diff --git a/tests/influence/test_models.py b/tests/influence/test_models.py
deleted file mode 100644
index d4d855c07..000000000
--- a/tests/influence/test_models.py
+++ /dev/null
@@ -1,221 +0,0 @@
-"""
-Contains tests for LinearRegression, BinaryLogisticRegression as well as TwiceDifferentiable modules and
-its associated gradient and matrix vector product calculations. Note that there is no test for the neural network
-module.
-"""
-
-import itertools
-from typing import List, Tuple
-
-import numpy as np
-import pytest
-
-from pydvl.utils import (
- linear_regression_analytical_derivative_d2_theta,
- linear_regression_analytical_derivative_d_theta,
- linear_regression_analytical_derivative_d_x_d_theta,
-)
-
-try:
- import torch.nn.functional as F
-
- from pydvl.influence.frameworks import TorchTwiceDifferentiable
- from pydvl.influence.model_wrappers import TorchLinearRegression
-except ImportError:
- pass
-
-
-class ModelTestSettings:
- DATA_OUTPUT_NOISE: float = 0.01
- ACCEPTABLE_ABS_TOL_MODEL: float = (
- 0.04 # TODO: Reduce bound if tests are running with fixed seeds.
- )
- ACCEPTABLE_ABS_TOL_DERIVATIVE: float = 1e-5
-
- TEST_CONDITION_NUMBERS: List[int] = [5]
- TEST_SET_SIZE: List[int] = [20]
- TRAINING_SET_SIZE: List[int] = [500]
- PROBLEM_DIMENSIONS: List[Tuple[int, int]] = [
- (2, 2),
- (5, 10),
- (10, 5),
- (10, 10),
- ]
-
-
-test_cases_linear_regression_fit = list(
- itertools.product(
- ModelTestSettings.TRAINING_SET_SIZE,
- ModelTestSettings.TEST_SET_SIZE,
- ModelTestSettings.PROBLEM_DIMENSIONS,
- ModelTestSettings.TEST_CONDITION_NUMBERS,
- )
-)
-
-test_cases_logistic_regression_fit = list(
- itertools.product(
- ModelTestSettings.TRAINING_SET_SIZE,
- ModelTestSettings.TEST_SET_SIZE,
- [(1, 3), (1, 7), (1, 20)],
- ModelTestSettings.TEST_CONDITION_NUMBERS,
- )
-)
-
-test_cases_linear_regression_derivatives = list(
- itertools.product(
- ModelTestSettings.TRAINING_SET_SIZE,
- ModelTestSettings.PROBLEM_DIMENSIONS,
- ModelTestSettings.TEST_CONDITION_NUMBERS,
- )
-)
-
-
-def lmb_fit_test_case_to_str(packed_i_test_case):
- i, test_case = packed_i_test_case
- return f"Problem #{i} of dimension {test_case[2]} with train size {test_case[0]}, test size {test_case[1]} and condition number {test_case[3]}"
-
-
-def lmb_correctness_test_case_to_str(packed_i_test_case):
- i, test_case = packed_i_test_case
- return f"Problem #{i} of dimension {test_case[1]} with train size {test_case[0]} and condition number {test_case[2]}"
-
-
-fit_test_case_ids = list(
- map(
- lmb_fit_test_case_to_str,
- zip(
- range(len(test_cases_linear_regression_fit)),
- test_cases_linear_regression_fit,
- ),
- )
-)
-correctness_test_case_ids = list(
- map(
- lmb_correctness_test_case_to_str,
- zip(
- range(len(test_cases_linear_regression_derivatives)),
- test_cases_linear_regression_derivatives,
- ),
- )
-)
-
-
-@pytest.mark.torch
-@pytest.mark.parametrize(
- "train_set_size,problem_dimension,condition_number",
- test_cases_linear_regression_derivatives,
- ids=correctness_test_case_ids,
-)
-def test_linear_regression_model_grad(
- train_set_size: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
-):
- # some settings
- A, b = linear_model
- output_dimension, input_dimension = tuple(A.shape)
-
- # generate datasets
- data_model = lambda x: np.random.normal(
- x @ A.T + b, ModelTestSettings.DATA_OUTPUT_NOISE
- )
- train_x = np.random.uniform(size=[train_set_size, input_dimension])
- train_y = data_model(train_x)
-
- model = TorchLinearRegression(input_dimension, output_dimension, init=linear_model)
- loss = F.mse_loss
- mvp_model = TorchTwiceDifferentiable(model=model, loss=loss)
-
- train_grads_analytical = 2 * linear_regression_analytical_derivative_d_theta(
- (A, b), train_x, train_y
- )
- train_grads_autograd = mvp_model.split_grad(train_x, train_y)
- train_grads_max_diff = np.max(np.abs(train_grads_analytical - train_grads_autograd))
- assert (
- train_grads_max_diff < ModelTestSettings.ACCEPTABLE_ABS_TOL_DERIVATIVE
- ), "training set produces wrong gradients."
-
-
-@pytest.mark.torch
-@pytest.mark.parametrize(
- "train_set_size,problem_dimension,condition_number",
- test_cases_linear_regression_derivatives,
- ids=correctness_test_case_ids,
-)
-def test_linear_regression_model_hessian(
- train_set_size: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
-):
- # some settings
- A, b = linear_model
- output_dimension, input_dimension = tuple(A.shape)
-
- # generate datasets
- data_model = lambda x: np.random.normal(
- x @ A.T + b, ModelTestSettings.DATA_OUTPUT_NOISE
- )
- train_x = np.random.uniform(size=[train_set_size, input_dimension])
- train_y = data_model(train_x)
- model = TorchLinearRegression(input_dimension, output_dimension, init=linear_model)
- loss = F.mse_loss
- mvp_model = TorchTwiceDifferentiable(model=model, loss=loss)
-
- test_hessian_analytical = 2 * linear_regression_analytical_derivative_d2_theta(
- (A, b), train_x, train_y
- )
- grad_xy, _ = mvp_model.grad(train_x, train_y)
- estimated_hessian = mvp_model.mvp(
- grad_xy, np.eye((input_dimension + 1) * output_dimension)
- )
- test_hessian_max_diff = np.max(np.abs(test_hessian_analytical - estimated_hessian))
- assert (
- test_hessian_max_diff < ModelTestSettings.ACCEPTABLE_ABS_TOL_DERIVATIVE
- ), "Hessian was wrong."
-
-
-@pytest.mark.torch
-@pytest.mark.parametrize(
- "train_set_size,problem_dimension,condition_number",
- test_cases_linear_regression_derivatives,
- ids=correctness_test_case_ids,
-)
-def test_linear_regression_model_d_x_d_theta(
- train_set_size: int,
- condition_number: float,
- linear_model: Tuple[np.ndarray, np.ndarray],
-):
- # some settings
- A, b = linear_model
- output_dimension, input_dimension = tuple(A.shape)
-
- # generate datasets
- data_model = lambda x: np.random.normal(
- x @ A.T + b, ModelTestSettings.DATA_OUTPUT_NOISE
- )
- train_x = np.random.uniform(size=[train_set_size, input_dimension])
- train_y = data_model(train_x)
- model = TorchLinearRegression(input_dimension, output_dimension, init=(A, b))
- loss = F.mse_loss
- mvp_model = TorchTwiceDifferentiable(model=model, loss=loss)
-
- test_derivative = 2 * linear_regression_analytical_derivative_d_x_d_theta(
- (A, b),
- train_x,
- train_y,
- )
- model_mvp = []
- for i in range(len(train_x)):
- grad_xy, tensor_x = mvp_model.grad(train_x[i], train_y[i])
- model_mvp.append(
- mvp_model.mvp(
- grad_xy,
- np.eye((input_dimension + 1) * output_dimension),
- backprop_on=tensor_x,
- )
- )
- estimated_derivative = np.stack(model_mvp, axis=0)
- test_hessian_max_diff = np.max(np.abs(test_derivative - estimated_derivative))
- assert (
- test_hessian_max_diff < ModelTestSettings.ACCEPTABLE_ABS_TOL_DERIVATIVE
- ), "Hessian was wrong."
diff --git a/tests/influence/test_torch_differentiable.py b/tests/influence/test_torch_differentiable.py
new file mode 100644
index 000000000..2747466a5
--- /dev/null
+++ b/tests/influence/test_torch_differentiable.py
@@ -0,0 +1,196 @@
+"""
+Contains tests for LinearRegression, BinaryLogisticRegression as well as TwiceDifferentiable modules and
+its associated gradient and matrix vector product calculations. Note that there is no test for the neural network
+module.
+"""
+
+import itertools
+from typing import List, Tuple
+
+import numpy as np
+import pytest
+
+from .conftest import (
+ linear_derivative_analytical,
+ linear_hessian_analytical,
+ linear_mixed_second_derivative_analytical,
+ linear_model,
+)
+
+torch = pytest.importorskip("torch")
+import torch
+import torch.nn.functional as F
+from torch import nn
+from torch.utils.data import DataLoader
+
+from pydvl.influence.torch import (
+ TorchTwiceDifferentiable,
+ solve_batch_cg,
+ solve_linear,
+ solve_lissa,
+)
+
+DATA_OUTPUT_NOISE: float = 0.01
+
+PROBLEM_DIMENSIONS: List[Tuple[int, int]] = [
+ (2, 2),
+ (5, 10),
+ (10, 5),
+ (10, 10),
+]
+
+
+def linear_mvp_model(A, b):
+ output_dimension, input_dimension = tuple(A.shape)
+ model = nn.Linear(input_dimension, output_dimension)
+ model.eval()
+ model.weight.data = torch.as_tensor(A)
+ model.bias.data = torch.as_tensor(b)
+ loss = F.mse_loss
+ return TorchTwiceDifferentiable(model=model, loss=loss)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "problem_dimension",
+ PROBLEM_DIMENSIONS,
+ ids=[f"problem_dimension={dim}" for dim in PROBLEM_DIMENSIONS],
+)
+def test_linear_grad(
+ problem_dimension: Tuple[int, int],
+ train_set_size: int = 50,
+ condition_number: float = 5,
+):
+ # some settings
+ A, b = linear_model(problem_dimension, condition_number)
+ _, input_dimension = tuple(A.shape)
+
+ # generate datasets
+ data_model = lambda x: np.random.normal(x @ A.T + b, DATA_OUTPUT_NOISE)
+ train_x = np.random.uniform(size=[train_set_size, input_dimension])
+ train_y = data_model(train_x)
+
+ mvp_model = linear_mvp_model(A, b)
+
+ train_grads_analytical = linear_derivative_analytical((A, b), train_x, train_y)
+ train_x = torch.as_tensor(train_x).unsqueeze(1)
+ train_y = torch.as_tensor(train_y)
+
+ train_grads_autograd = torch.stack(
+ [mvp_model.grad(inpt, target) for inpt, target in zip(train_x, train_y)]
+ )
+
+ assert np.allclose(train_grads_analytical, train_grads_autograd, rtol=1e-5)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "problem_dimension",
+ PROBLEM_DIMENSIONS,
+ ids=[f"problem_dimension={dim}" for dim in PROBLEM_DIMENSIONS],
+)
+def test_linear_hessian(
+ problem_dimension: Tuple[int, int],
+ train_set_size: int = 50,
+ condition_number: float = 5,
+):
+ # some settings
+ A, b = linear_model(problem_dimension, condition_number)
+ output_dimension, input_dimension = tuple(A.shape)
+
+ # generate datasets
+ data_model = lambda x: np.random.normal(x @ A.T + b, DATA_OUTPUT_NOISE)
+ train_x = np.random.uniform(size=[train_set_size, input_dimension])
+ train_y = data_model(train_x)
+ mvp_model = linear_mvp_model(A, b)
+
+ test_hessian_analytical = linear_hessian_analytical((A, b), train_x)
+ grad_xy = mvp_model.grad(
+ torch.as_tensor(train_x), torch.as_tensor(train_y), create_graph=True
+ )
+ estimated_hessian = mvp_model.mvp(
+ grad_xy,
+ torch.as_tensor(np.eye((input_dimension + 1) * output_dimension)),
+ mvp_model.parameters,
+ )
+ assert np.allclose(test_hessian_analytical, estimated_hessian, rtol=1e-5)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "problem_dimension",
+ PROBLEM_DIMENSIONS,
+ ids=[f"problem_dimension={dim}" for dim in PROBLEM_DIMENSIONS],
+)
+def test_linear_mixed_derivative(
+ problem_dimension: Tuple[int, int],
+ train_set_size: int = 50,
+ condition_number: float = 5,
+):
+ # some settings
+ A, b = linear_model(problem_dimension, condition_number)
+ output_dimension, input_dimension = tuple(A.shape)
+
+ # generate datasets
+ data_model = lambda x: np.random.normal(x @ A.T + b, DATA_OUTPUT_NOISE)
+ train_x = np.random.uniform(size=[train_set_size, input_dimension])
+ train_y = data_model(train_x)
+
+ mvp_model = linear_mvp_model(A, b)
+
+ test_derivative = linear_mixed_second_derivative_analytical(
+ (A, b),
+ train_x,
+ train_y,
+ )
+ model_mvp = []
+ for i in range(len(train_x)):
+ tensor_x = torch.as_tensor(train_x[i]).requires_grad_(True)
+ tensor_y = torch.as_tensor(train_y[i])
+ grad_xy = mvp_model.grad(tensor_x, tensor_y, create_graph=True)
+ model_mvp.append(
+ mvp_model.mvp(
+ grad_xy,
+ np.eye((input_dimension + 1) * output_dimension),
+ backprop_on=tensor_x,
+ )
+ )
+ estimated_derivative = np.stack(model_mvp, axis=0)
+ assert np.allclose(test_derivative, estimated_derivative, rtol=1e-7)
+
+
+REDUCED_PROBLEM_DIMENSIONS: List[Tuple[int, int]] = [(5, 10), (2, 5)]
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "problem_dimension",
+ REDUCED_PROBLEM_DIMENSIONS,
+ ids=[f"problem_dimension={dim}" for dim in REDUCED_PROBLEM_DIMENSIONS],
+)
+def test_inversion_methods(
+ problem_dimension: Tuple[int, int],
+ train_set_size: int = 50,
+ condition_number: float = 5,
+):
+ # some settings
+ A, b = linear_model(problem_dimension, condition_number)
+ output_dimension, input_dimension = tuple(A.shape)
+
+ # generate datasets
+ data_model = lambda x: np.random.normal(x @ A.T + b, DATA_OUTPUT_NOISE)
+ train_x = np.random.uniform(size=[train_set_size, input_dimension])
+ train_y = data_model(train_x)
+ mvp_model = linear_mvp_model(A, b)
+
+ train_data_loader = DataLoader(list(zip(train_x, train_y)), batch_size=128)
+ b = torch.rand(size=(10, mvp_model.num_params), dtype=torch.float64)
+
+ linear_inverse, _ = solve_linear(mvp_model, train_data_loader, b)
+ linear_cg, _ = solve_batch_cg(mvp_model, train_data_loader, b)
+ linear_lissa, _ = solve_lissa(
+ mvp_model, train_data_loader, b, maxiter=5000, scale=5
+ )
+
+ assert np.allclose(linear_inverse, linear_cg, rtol=1e-1)
+ assert np.allclose(linear_inverse, linear_lissa, rtol=1e-1, atol=2e-1)
diff --git a/tests/influence/test_util.py b/tests/influence/test_util.py
new file mode 100644
index 000000000..b381426a9
--- /dev/null
+++ b/tests/influence/test_util.py
@@ -0,0 +1,226 @@
+from dataclasses import astuple, dataclass
+from typing import Any, Dict, Tuple
+
+import pytest
+
+torch = pytest.importorskip("torch")
+import torch.nn
+from numpy.typing import NDArray
+from torch.nn.functional import mse_loss
+from torch.utils.data import DataLoader, TensorDataset
+
+from pydvl.influence.torch.functional import batch_loss_function, get_hvp_function, hvp
+from pydvl.influence.torch.torch_differentiable import lanzcos_low_rank_hessian_approx
+from pydvl.influence.torch.util import (
+ TorchTensorContainerType,
+ align_structure,
+ flatten_tensors_to_vector,
+)
+from tests.influence.conftest import linear_hessian_analytical, linear_model
+
+
+@dataclass
+class ModelParams:
+ dimension: Tuple[int, int]
+ condition_number: float
+ train_size: int
+
+
+@dataclass
+class UtilTestParameters:
+ """
+ Helper class to add more test parameter combinations
+ """
+
+ model_params: ModelParams
+ batch_size: int
+ rank_estimate: int
+ regularization: float
+
+
+test_parameters = [
+ UtilTestParameters(
+ ModelParams(dimension=(30, 16), condition_number=4, train_size=60),
+ batch_size=4,
+ rank_estimate=200,
+ regularization=0.0001,
+ ),
+ UtilTestParameters(
+ ModelParams(dimension=(32, 35), condition_number=1e6, train_size=100),
+ batch_size=5,
+ rank_estimate=70,
+ regularization=0.001,
+ ),
+ UtilTestParameters(
+ ModelParams(dimension=(25, 15), condition_number=1e3, train_size=90),
+ batch_size=10,
+ rank_estimate=50,
+ regularization=0.0001,
+ ),
+ UtilTestParameters(
+ ModelParams(dimension=(30, 15), condition_number=1e4, train_size=120),
+ batch_size=8,
+ rank_estimate=160,
+ regularization=0.00001,
+ ),
+ UtilTestParameters(
+ ModelParams(dimension=(40, 13), condition_number=1e5, train_size=900),
+ batch_size=4,
+ rank_estimate=250,
+ regularization=0.00001,
+ ),
+]
+
+
+def linear_torch_model_from_numpy(A: NDArray, b: NDArray) -> torch.nn.Module:
+ """
+ Given numpy arrays representing the model $xA^t + b$, the function returns the corresponding torch model
+ :param A:
+ :param b:
+ :return:
+ """
+ output_dimension, input_dimension = tuple(A.shape)
+ model = torch.nn.Linear(input_dimension, output_dimension)
+ model.eval()
+ model.weight.data = torch.as_tensor(A, dtype=torch.get_default_dtype())
+ model.bias.data = torch.as_tensor(b, dtype=torch.get_default_dtype())
+ return model
+
+
+@pytest.fixture
+def model_data(request):
+ dimension, condition_number, train_size = request.param
+ A, b = linear_model(dimension, condition_number)
+ x = torch.rand(train_size, dimension[-1])
+ y = torch.rand(train_size, dimension[0])
+ torch_model = linear_torch_model_from_numpy(A, b)
+ vec = flatten_tensors_to_vector(
+ tuple(
+ torch.rand(*p.shape)
+ for name, p in torch_model.named_parameters()
+ if p.requires_grad
+ )
+ )
+ H_analytical = linear_hessian_analytical((A, b), x.numpy())
+ H_analytical = torch.as_tensor(H_analytical)
+ return torch_model, x, y, vec, H_analytical.to(torch.float32)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "model_data, tol",
+ [(astuple(tp.model_params), 1e-5) for tp in test_parameters],
+ indirect=["model_data"],
+)
+def test_hvp(model_data, tol: float):
+ torch_model, x, y, vec, H_analytical = model_data
+
+ params = dict(torch_model.named_parameters())
+
+ f = batch_loss_function(torch_model, torch.nn.functional.mse_loss, x, y)
+
+ Hvp_autograd = hvp(f, params, align_structure(params, vec))
+
+ flat_Hvp_autograd = flatten_tensors_to_vector(Hvp_autograd.values())
+ assert torch.allclose(flat_Hvp_autograd, H_analytical @ vec, rtol=tol)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "use_avg, tol", [(True, 1e-5), (False, 1e-5)], ids=["avg", "full"]
+)
+@pytest.mark.parametrize(
+ "model_data, batch_size",
+ [(astuple(tp.model_params), tp.batch_size) for tp in test_parameters],
+ indirect=["model_data"],
+)
+def test_get_hvp_function(model_data, tol: float, use_avg: bool, batch_size: int):
+ torch_model, x, y, vec, H_analytical = model_data
+ data_loader = DataLoader(TensorDataset(x, y), batch_size=batch_size)
+
+ Hvp_autograd = get_hvp_function(
+ torch_model, mse_loss, data_loader, use_hessian_avg=use_avg
+ )(vec)
+
+ assert torch.allclose(Hvp_autograd, H_analytical @ vec, rtol=tol)
+
+
+@pytest.mark.torch
+@pytest.mark.parametrize(
+ "model_data, batch_size, rank_estimate, regularization",
+ [astuple(tp) for tp in test_parameters],
+ indirect=["model_data"],
+)
+def test_lanzcos_low_rank_hessian_approx(
+ model_data, batch_size: int, rank_estimate, regularization
+):
+ _, _, _, vec, H_analytical = model_data
+
+ reg_H_analytical = H_analytical + regularization * torch.eye(H_analytical.shape[0])
+ low_rank_approx = lanzcos_low_rank_hessian_approx(
+ lambda z: reg_H_analytical @ z,
+ reg_H_analytical.shape,
+ rank_estimate=rank_estimate,
+ )
+ approx_result = low_rank_approx.projections @ (
+ torch.diag_embed(low_rank_approx.eigen_vals)
+ @ (low_rank_approx.projections.t() @ vec.t())
+ )
+ assert torch.allclose(approx_result, reg_H_analytical @ vec, rtol=1e-1)
+
+
+@pytest.mark.torch
+def test_lanzcos_low_rank_hessian_approx_exception():
+ """
+ In case cuda is not available, and cupy is not installed, the call should raise an import exception
+ """
+ if not torch.cuda.is_available():
+ with pytest.raises(ImportError):
+ lanzcos_low_rank_hessian_approx(
+ lambda x: x, (3, 3), eigen_computation_on_gpu=True
+ )
+
+
+@pytest.mark.parametrize(
+ "source,target",
+ [
+ (
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ ),
+ (
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ (torch.randn(5, 5), torch.randn(5, 5)),
+ ),
+ ({"a": torch.randn(5, 5), "b": torch.randn(5, 5)}, torch.randn(50)),
+ ],
+)
+def test_align_structure_success(
+ source: Dict[str, torch.Tensor], target: TorchTensorContainerType
+):
+ result = align_structure(source, target)
+ assert isinstance(result, dict)
+ assert list(result.keys()) == list(source.keys())
+ assert all([result[k].shape == source[k].shape for k in source.keys()])
+
+
+@pytest.mark.parametrize(
+ "source,target",
+ [
+ (
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ {"a": torch.randn(5, 5), "b": torch.randn(3, 3)},
+ ),
+ (
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ {"c": torch.randn(5, 5), "d": torch.randn(5, 5)},
+ ),
+ (
+ {"a": torch.randn(5, 5), "b": torch.randn(5, 5)},
+ "unsupported",
+ ),
+ ],
+)
+def test_align_structure_error(source: Dict[str, torch.Tensor], target: Any):
+ with pytest.raises(ValueError):
+ align_structure(source, target)
diff --git a/tests/test_results.py b/tests/test_results.py
index 50392aeaa..4ea80cf72 100644
--- a/tests/test_results.py
+++ b/tests/test_results.py
@@ -326,6 +326,18 @@ def test_adding_random():
["a", "b", "c"],
[0, 2, 3],
),
+ # Overlapping indices with different lengths, change order
+ (
+ [1, 2],
+ ["b", "c"],
+ [3, 4],
+ [0, 1, 2],
+ ["a", "b", "c"],
+ [0, 1, 2],
+ [0, 1, 2],
+ ["a", "b", "c"],
+ [0, 2, 3],
+ ),
],
)
def test_adding_different_indices(
diff --git a/tests/utils/conftest.py b/tests/utils/conftest.py
index df56a9583..923d391fb 100644
--- a/tests/utils/conftest.py
+++ b/tests/utils/conftest.py
@@ -1,18 +1,25 @@
import pytest
-import ray
-from ray.cluster_utils import Cluster
from pydvl.utils.config import ParallelConfig
-@pytest.fixture(scope="module", params=["sequential", "ray-local", "ray-external"])
+@pytest.fixture(scope="module", params=["joblib", "ray-local", "ray-external"])
def parallel_config(request, num_workers):
- if request.param == "sequential":
- yield ParallelConfig(backend=request.param)
+ if request.param == "joblib":
+ yield ParallelConfig(backend="joblib", n_cpus_local=num_workers)
elif request.param == "ray-local":
+ try:
+ import ray
+ except ImportError:
+ pytest.skip("Ray not installed.")
yield ParallelConfig(backend="ray", n_cpus_local=num_workers)
ray.shutdown()
elif request.param == "ray-external":
+ try:
+ import ray
+ from ray.cluster_utils import Cluster
+ except ImportError:
+ pytest.skip("Ray not installed.")
# Starts a head-node for the cluster.
cluster = Cluster(
initialize_head=True,
diff --git a/tests/utils/test_caching.py b/tests/utils/test_caching.py
index b4f350fbf..aae0dd416 100644
--- a/tests/utils/test_caching.py
+++ b/tests/utils/test_caching.py
@@ -3,6 +3,7 @@
import numpy as np
import pytest
+from numpy.typing import NDArray
from pydvl.utils import MapReduceJob, memcached
@@ -13,7 +14,7 @@ def test_failed_connection():
from pydvl.utils import MemcachedClientConfig
client_config = MemcachedClientConfig(server=("localhost", 0), connect_timeout=0.1)
- with pytest.raises(ConnectionRefusedError):
+ with pytest.raises((ConnectionRefusedError, OSError)):
memcached(client_config)(lambda x: x)
@@ -22,7 +23,7 @@ def test_memcached_single_job(memcached_client):
# TODO: maybe this should be a fixture too...
@memcached(client_config=config, time_threshold=0) # Always cache results
- def foo(indices: "NDArray[int]") -> float:
+ def foo(indices: NDArray[np.int_]) -> float:
return float(np.sum(indices))
n = 1000
@@ -43,7 +44,7 @@ def test_memcached_parallel_jobs(memcached_client, parallel_config):
# Note that we typically do NOT want to ignore run_id
ignore_args=["job_id", "run_id"],
)
- def foo(indices: "NDArray[int]", *args, **kwargs) -> float:
+ def foo(indices: NDArray[np.int_], *args, **kwargs) -> float:
# logger.info(f"run_id: {run_id}, running...")
return float(np.sum(indices))
@@ -79,7 +80,7 @@ def test_memcached_repeated_training(memcached_client):
# Note that we typically do NOT want to ignore run_id
ignore_args=["job_id", "run_id"],
)
- def foo(indices: "NDArray[int]") -> float:
+ def foo(indices: NDArray[np.int_]) -> float:
# from pydvl.utils.logging import logger
# logger.info(f"run_id: {run_id}, running...")
return float(np.sum(indices)) + np.random.normal(scale=10)
@@ -104,13 +105,13 @@ def test_memcached_faster_with_repeated_training(memcached_client):
# Note that we typically do NOT want to ignore run_id
ignore_args=["job_id", "run_id"],
)
- def foo_cache(indices: "NDArray[int]") -> float:
+ def foo_cache(indices: NDArray[np.int_]) -> float:
# from pydvl.utils.logging import logger
# logger.info(f"run_id: {run_id}, running...")
sleep(0.01)
return float(np.sum(indices)) + np.random.normal(scale=1)
- def foo_no_cache(indices: "NDArray[int]") -> float:
+ def foo_no_cache(indices: NDArray[np.int_]) -> float:
# from pydvl.utils.logging import logger
# logger.info(f"run_id: {run_id}, running...")
sleep(0.01)
@@ -138,9 +139,9 @@ def foo_no_cache(indices: "NDArray[int]") -> float:
assert fast_time < slow_time
-@pytest.mark.parametrize("n, atol", [(10, 4), (20, 10)])
+@pytest.mark.parametrize("n, atol", [(10, 5), (20, 10)])
@pytest.mark.parametrize("n_jobs", [1, 2])
-@pytest.mark.parametrize("n_runs", [100])
+@pytest.mark.parametrize("n_runs", [20])
def test_memcached_parallel_repeated_training(
memcached_client, n, atol, n_jobs, n_runs, parallel_config, seed=42
):
@@ -155,12 +156,12 @@ def test_memcached_parallel_repeated_training(
# Note that we typically do NOT want to ignore run_id
ignore_args=["job_id", "run_id"],
)
- def map_func(indices: "NDArray[np.int_]") -> float:
+ def map_func(indices: NDArray[np.int_]) -> float:
# from pydvl.utils.logging import logger
# logger.info(f"run_id: {run_id}, running...")
return np.sum(indices).item() + np.random.normal(scale=5)
- def reduce_func(chunks: "NDArray[np.float_]") -> float:
+ def reduce_func(chunks: NDArray[np.float_]) -> float:
return np.sum(chunks).item()
map_reduce_job = MapReduceJob(
diff --git a/tests/utils/test_numeric.py b/tests/utils/test_numeric.py
index e6101defb..632290cdb 100644
--- a/tests/utils/test_numeric.py
+++ b/tests/utils/test_numeric.py
@@ -1,5 +1,6 @@
import numpy as np
import pytest
+from numpy._typing import NDArray
from pydvl.utils.numeric import (
powerset,
@@ -8,6 +9,7 @@
random_subset_of_size,
running_moments,
)
+from pydvl.utils.types import Seed
def test_powerset():
@@ -68,6 +70,57 @@ def test_random_powerset(n, max_subsets):
)
+@pytest.mark.parametrize("n, max_subsets", [(10, 2**10)])
+def test_random_powerset_reproducible(n, max_subsets, seed):
+ """
+ Test that the same seeds produce the same results, and different seeds produce
+ different results for method :func:`random_powerset`.
+ """
+ n_collisions = _count_random_powerset_generator_collisions(
+ n, max_subsets, seed, seed
+ )
+ assert n_collisions == max_subsets
+
+
+@pytest.mark.parametrize("n, max_subsets", [(10, 2**10)])
+def test_random_powerset_stochastic(n, max_subsets, seed, seed_alt, collision_tol):
+ """
+ Test that the same seeds produce the same results, and different seeds produce
+ different results for method :func:`random_powerset`.
+ """
+ n_collisions = _count_random_powerset_generator_collisions(
+ n, max_subsets, seed, seed_alt
+ )
+ assert n_collisions / max_subsets < collision_tol
+
+
+def _count_random_powerset_generator_collisions(
+ n: int, max_subsets: int, seed: Seed, seed_alt: Seed
+):
+ """
+ Count the number of collisions between two generators of random subsets of a set
+ with `n` elements, each generating `max_subsets` subsets, using two different seeds.
+
+ Args:
+ n: number of elements in the set.
+ max_subsets: number of subsets to generate.
+ seed: Seed for the first generator.
+ seed_alt: Seed for the second generator.
+
+ Returns:
+ Number of collisions between the two generators.
+ """
+ s = np.arange(n)
+ parallel_subset_generators = zip(
+ random_powerset(s, n_samples=max_subsets, seed=seed),
+ random_powerset(s, n_samples=max_subsets, seed=seed_alt),
+ )
+ n_collisions = sum(
+ map(lambda t: set(t[0]) == set(t[1]), parallel_subset_generators)
+ )
+ return n_collisions
+
+
@pytest.mark.parametrize(
"n, size, exception",
[(0, 0, None), (0, 1, ValueError), (10, 0, None), (10, 3, None), (1000, 40, None)],
@@ -83,6 +136,36 @@ def test_random_subset_of_size(n, size, exception):
assert np.all([x in s for x in ss])
+@pytest.mark.parametrize(
+ "n, size",
+ [(10, 3), (1000, 40)],
+)
+def test_random_subset_of_size_stochastic(n, size, seed, seed_alt):
+ """
+ Test that the same seeds produce the same results, and different seeds produce
+ different results for method :func:`random_subset_of_size`.
+ """
+ s = np.arange(n)
+ subset_1 = random_subset_of_size(s, size=size, seed=seed)
+ subset_2 = random_subset_of_size(s, size=size, seed=seed_alt)
+ assert set(subset_1) != set(subset_2)
+
+
+@pytest.mark.parametrize(
+ "n, size",
+ [(10, 3), (1000, 40)],
+)
+def test_random_subset_of_size_stochastic(n, size, seed):
+ """
+ Test that the same seeds produce the same results, and different seeds produce
+ different results for method :func:`random_subset_of_size`.
+ """
+ s = np.arange(n)
+ subset_1 = random_subset_of_size(s, size=size, seed=seed)
+ subset_2 = random_subset_of_size(s, size=size, seed=seed)
+ assert set(subset_1) == set(subset_2)
+
+
@pytest.mark.parametrize(
"n, cond, exception",
[
@@ -109,6 +192,34 @@ def test_random_matrix_with_condition_number(n, cond, exception):
pytest.fail("Matrix is not positive definite")
+@pytest.mark.parametrize(
+ "n, cond",
+ [
+ (2, 10),
+ (7, 23),
+ (10, 2),
+ ],
+)
+def test_random_matrix_with_condition_number_reproducible(n, cond, seed):
+ mat_1 = random_matrix_with_condition_number(n, cond, seed=seed)
+ mat_2 = random_matrix_with_condition_number(n, cond, seed=seed)
+ assert np.all(mat_1 == mat_2)
+
+
+@pytest.mark.parametrize(
+ "n, cond",
+ [
+ (2, 10),
+ (7, 23),
+ (10, 2),
+ ],
+)
+def test_random_matrix_with_condition_number_stochastic(n, cond, seed, seed_alt):
+ mat_1 = random_matrix_with_condition_number(n, cond, seed=seed)
+ mat_2 = random_matrix_with_condition_number(n, cond, seed=seed_alt)
+ assert np.any(mat_1 != mat_2)
+
+
def test_running_moments():
"""Test that running moments are correct."""
n_samples, n_values = 15, 1000
diff --git a/tests/utils/test_parallel.py b/tests/utils/test_parallel.py
index 2d0037abd..8ba145aa8 100644
--- a/tests/utils/test_parallel.py
+++ b/tests/utils/test_parallel.py
@@ -2,29 +2,25 @@
import os
import time
from functools import partial, reduce
+from typing import List, Optional
import numpy as np
import pytest
from pydvl.utils.parallel import MapReduceJob, init_parallel_backend
-from pydvl.utils.parallel.backend import available_cpus, effective_n_jobs
+from pydvl.utils.parallel.backend import effective_n_jobs
from pydvl.utils.parallel.futures import init_executor
-from pydvl.utils.parallel.map_reduce import _get_value
+from pydvl.utils.types import Seed
def test_effective_n_jobs(parallel_config, num_workers):
parallel_backend = init_parallel_backend(parallel_config)
- if parallel_config.backend == "sequential":
- assert parallel_backend.effective_n_jobs(1) == 1
- assert parallel_backend.effective_n_jobs(4) == 1
- assert parallel_backend.effective_n_jobs(-1) == 1
+ assert parallel_backend.effective_n_jobs(1) == 1
+ assert parallel_backend.effective_n_jobs(4) == min(4, num_workers)
+ if parallel_config.address is None:
+ assert parallel_backend.effective_n_jobs(-1) == num_workers
else:
- assert parallel_backend.effective_n_jobs(1) == 1
- assert parallel_backend.effective_n_jobs(4) == 4
- if parallel_config.address is None:
- assert parallel_backend.effective_n_jobs(-1) == num_workers
- else:
- assert parallel_backend.effective_n_jobs(-1) == num_workers
+ assert parallel_backend.effective_n_jobs(-1) == num_workers
for n_jobs in [-1, 1, 2]:
assert parallel_backend.effective_n_jobs(n_jobs) == effective_n_jobs(
@@ -121,10 +117,9 @@ def test_map_reduce_job(map_reduce_job_and_parameters, indices, expected):
(np.arange(10), 4, np.array_split(np.arange(10), 4)),
],
)
-def test_chunkification(data, n_chunks, expected_chunks):
- map_reduce_job = MapReduceJob([], map_func=lambda x: x)
+def test_chunkification(parallel_config, data, n_chunks, expected_chunks):
+ map_reduce_job = MapReduceJob([], map_func=lambda x: x, config=parallel_config)
chunks = list(map_reduce_job._chunkify(data, n_chunks))
- chunks = map_reduce_job.parallel_backend.get(chunks)
for x, y in zip(chunks, expected_chunks):
if not isinstance(x, np.ndarray):
assert x == y
@@ -132,41 +127,6 @@ def test_chunkification(data, n_chunks, expected_chunks):
assert (x == y).all()
-@pytest.mark.parametrize(
- "max_parallel_tasks, n_finished, n_dispatched, expected_n_finished",
- [
- (1, 3, 6, 5),
- (3, 3, 3, 3),
- (10, 1, 15, 5),
- (20, 1, 3, 1),
- ],
-)
-def test_backpressure(
- max_parallel_tasks, n_finished, n_dispatched, expected_n_finished
-):
- def map_func(x):
- import time
-
- time.sleep(1)
- return x
-
- inputs_ = list(range(n_dispatched))
-
- map_reduce_job = MapReduceJob(
- inputs_,
- map_func=map_func,
- max_parallel_tasks=max_parallel_tasks,
- timeout=10,
- )
-
- map_func = map_reduce_job._wrap_function(map_func)
- jobs = [map_func(x) for x in inputs_]
- n_finished = map_reduce_job._backpressure(
- jobs, n_finished=n_finished, n_dispatched=n_dispatched
- )
- assert n_finished == expected_n_finished
-
-
def test_map_reduce_job_partial_map_and_reduce_func(parallel_config):
def map_func(x, y):
return x + y
@@ -188,21 +148,34 @@ def reduce_func(x, y):
@pytest.mark.parametrize(
- "x, expected_x",
+ "seed_1, seed_2, op",
[
- (None, None),
- ([0, 1], [0, 1]),
- (np.arange(3), np.arange(3)),
+ (None, None, operator.ne),
+ (None, 42, operator.ne),
+ (42, None, operator.ne),
+ (42, 42, operator.eq),
],
)
-def test_map_reduce_get_value(x, expected_x, parallel_config):
- assert np.all(_get_value(x) == expected_x)
- parallel_backend = init_parallel_backend(parallel_config)
- x_id = parallel_backend.put(x)
- assert np.all(_get_value(x_id) == expected_x)
+def test_map_reduce_seeding(parallel_config, seed_1, seed_2, op):
+ """Test that the same result is obtained when using the same seed. And that
+ different results are obtained when using different seeds.
+ """
+
+ map_reduce_job = MapReduceJob(
+ None,
+ map_func=_sum_of_random_integers,
+ reduce_func=np.mean,
+ config=parallel_config,
+ )
+ result_1 = map_reduce_job(seed=seed_1)
+ result_2 = map_reduce_job(seed=seed_2)
+ assert op(result_1, result_2)
def test_wrap_function(parallel_config, num_workers):
+ if parallel_config.backend != "ray":
+ pytest.skip("Only makes sense for ray")
+
def fun(x, **kwargs):
return dict(x=x * x, **kwargs)
@@ -215,15 +188,14 @@ def fun(x, **kwargs):
assert ret["x"] == 4
assert len(ret) == 1 # Ensure that kwargs are not passed to the function
- if parallel_config.backend != "sequential":
- # Test that the function is executed in different processes
- def get_pid():
- time.sleep(2) # FIXME: waiting less means fewer processes are used?!
- return os.getpid()
+ # Test that the function is executed in different processes
+ def get_pid():
+ time.sleep(2) # FIXME: waiting less means fewer processes are used?!
+ return os.getpid()
- wrapped_func = parallel_backend.wrap(get_pid, num_cpus=1)
- pids = parallel_backend.get([wrapped_func() for _ in range(num_workers)])
- assert len(set(pids)) == num_workers
+ wrapped_func = parallel_backend.wrap(get_pid, num_cpus=1)
+ pids = parallel_backend.get([wrapped_func() for _ in range(num_workers)])
+ assert len(set(pids)) == num_workers
def test_futures_executor_submit(parallel_config):
@@ -255,3 +227,40 @@ def func(_):
total_time = end_time - start_time
# We expect the time difference to be > 3 / num_workers, but has to be at least 1
assert total_time > max(1.0, 3 / num_workers)
+
+
+def test_future_cancellation(parallel_config):
+ if parallel_config.backend != "ray":
+ pytest.skip("Currently this test only works with Ray")
+
+ from pydvl.utils.parallel import CancellationPolicy
+
+ with init_executor(
+ config=parallel_config, cancel_futures=CancellationPolicy.NONE
+ ) as executor:
+ future = executor.submit(lambda x: x + 1, 1)
+
+ assert future.result() == 2
+
+ from ray.exceptions import TaskCancelledError
+
+ with init_executor(
+ config=parallel_config, cancel_futures=CancellationPolicy.ALL
+ ) as executor:
+ start = time.monotonic()
+ future = executor.submit(lambda t: time.sleep(t), 5)
+
+ assert future._state == "FINISHED"
+
+ with pytest.raises(TaskCancelledError):
+ future.result()
+
+ assert time.monotonic() - start < 1
+
+
+# Helper functions for tests :func:`test_map_reduce_reproducible` and
+# :func:`test_map_reduce_stochastic`.
+def _sum_of_random_integers(x: None, seed: Optional[Seed] = None):
+ rng = np.random.default_rng(seed)
+ values = rng.integers(0, rng.integers(10, 100), 10)
+ return np.sum(values)
diff --git a/tests/utils/test_status.py b/tests/utils/test_status.py
index 067b92eb8..4c8cd1ec9 100644
--- a/tests/utils/test_status.py
+++ b/tests/utils/test_status.py
@@ -48,10 +48,10 @@ def test_and_status():
def test_not_status():
- """The result of bitwise negation of a Status is ``Failed``
- if the status is ``Converged``, or ``Converged`` otherwise:
+ """The result of bitwise negation of a Status is `Failed`
+ if the status is `Converged`, or `Converged` otherwise:
- ``~P == C, ~C == F, ~F == C``
+ `~P == C, ~C == F, ~F == C`
"""
assert ~Status.Pending == Status.Converged
assert ~Status.Converged == Status.Failed
diff --git a/tests/value/conftest.py b/tests/value/conftest.py
index 2073415a2..d19256beb 100644
--- a/tests/value/conftest.py
+++ b/tests/value/conftest.py
@@ -1,8 +1,6 @@
import numpy as np
import pytest
-import ray
from numpy.typing import NDArray
-from ray.cluster_utils import Cluster
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
@@ -123,16 +121,6 @@ def linear_shapley(linear_dataset, scorer, n_jobs):
return u, exact_values
-@pytest.fixture(scope="module", params=["sequential", "ray-local", "ray-external"])
-def parallel_config(request):
- if request.param == "sequential":
- yield ParallelConfig(backend=request.param)
- elif request.param == "ray-local":
- yield ParallelConfig(backend="ray")
- ray.shutdown()
- elif request.param == "ray-external":
- # Starts a head-node for the cluster.
- cluster = Cluster(initialize_head=True, head_node_args={"num_cpus": 4})
- yield ParallelConfig(backend="ray", address=cluster.address)
- ray.shutdown()
- cluster.shutdown()
+@pytest.fixture(scope="module")
+def parallel_config(num_workers):
+ yield ParallelConfig(backend="joblib", n_cpus_local=num_workers, wait_timeout=0.1)
diff --git a/tests/value/loo/test_loo.py b/tests/value/loo/test_loo.py
index 2a5b74afd..04922a7a0 100644
--- a/tests/value/loo/test_loo.py
+++ b/tests/value/loo/test_loo.py
@@ -1,14 +1,14 @@
import pytest
-from pydvl.value.loo import naive_loo
+from pydvl.value.loo import compute_loo
from .. import check_total_value, check_values
@pytest.mark.parametrize("num_samples", [10, 100])
-def test_naive_loo(num_samples, analytic_loo):
- """Compares the naive loo with analytic values in a dummy model"""
+def test_loo(num_samples: int, n_jobs: int, parallel_config, analytic_loo):
+ """Compares LOO with analytic values in a dummy model"""
u, exact_values = analytic_loo
- values = naive_loo(u, progress=False)
+ values = compute_loo(u, n_jobs=n_jobs, config=parallel_config, progress=False)
check_total_value(u, values, rtol=0.1)
check_values(values, exact_values, rtol=0.1)
diff --git a/tests/value/shapley/test_montecarlo.py b/tests/value/shapley/test_montecarlo.py
index 0f92cde29..b7961cdb8 100644
--- a/tests/value/shapley/test_montecarlo.py
+++ b/tests/value/shapley/test_montecarlo.py
@@ -1,18 +1,29 @@
import logging
+from copy import copy, deepcopy
import numpy as np
import pytest
from sklearn.linear_model import LinearRegression
-from pydvl.utils import GroupedDataset, MemcachedConfig, Status, Utility
+from pydvl.utils import (
+ Dataset,
+ GroupedDataset,
+ MemcachedConfig,
+ ParallelConfig,
+ Status,
+ Utility,
+)
from pydvl.utils.numeric import num_samples_permutation_hoeffding
from pydvl.utils.score import Scorer, squashed_r2
+from pydvl.utils.types import Seed
from pydvl.value import compute_shapley_values
from pydvl.value.shapley import ShapleyMode
from pydvl.value.shapley.naive import combinatorial_exact_shapley
from pydvl.value.stopping import MaxChecks, MaxUpdates
from .. import check_rank_correlation, check_total_value, check_values
+from ..conftest import polynomial_dataset
+from ..utils import call_fn_multiple_seeds
log = logging.getLogger(__name__)
@@ -62,6 +73,74 @@ def test_analytic_montecarlo_shapley(
check_values(values, exact_values, rtol=rtol, atol=atol)
+test_cases_montecarlo_shapley_reproducible_stochastic = [
+ # TODO Add once issue #416 is closed.
+ # (12, ShapleyMode.PermutationMontecarlo, {"done": MaxChecks(1)}),
+ (
+ 12,
+ ShapleyMode.CombinatorialMontecarlo,
+ {"done": MaxChecks(4)},
+ ),
+ (12, ShapleyMode.Owen, dict(n_samples=4, max_q=200)),
+ (12, ShapleyMode.OwenAntithetic, dict(n_samples=4, max_q=200)),
+ (4, ShapleyMode.GroupTesting, dict(n_samples=21, epsilon=0.2, delta=0.01)),
+]
+
+
+@pytest.mark.parametrize(
+ "num_samples, fun, kwargs", test_cases_montecarlo_shapley_reproducible_stochastic
+)
+@pytest.mark.parametrize("num_points, num_features", [(12, 3)])
+def test_montecarlo_shapley_housing_dataset_reproducible(
+ num_samples: int,
+ housing_dataset: Dataset,
+ parallel_config: ParallelConfig,
+ n_jobs: int,
+ fun: ShapleyMode,
+ kwargs: dict,
+ seed: Seed,
+):
+ values_1, values_2 = call_fn_multiple_seeds(
+ compute_shapley_values,
+ Utility(LinearRegression(), data=housing_dataset, scorer="r2"),
+ mode=fun,
+ n_jobs=n_jobs,
+ config=parallel_config,
+ progress=False,
+ seeds=(seed, seed),
+ **deepcopy(kwargs)
+ )
+ np.testing.assert_equal(values_1.values, values_2.values)
+
+
+@pytest.mark.parametrize(
+ "num_samples, fun, kwargs", test_cases_montecarlo_shapley_reproducible_stochastic
+)
+@pytest.mark.parametrize("num_points, num_features", [(12, 4)])
+def test_montecarlo_shapley_housing_dataset_stochastic(
+ num_samples: int,
+ housing_dataset: Dataset,
+ parallel_config: ParallelConfig,
+ n_jobs: int,
+ fun: ShapleyMode,
+ kwargs: dict,
+ seed: Seed,
+ seed_alt: Seed,
+):
+ values_1, values_2 = call_fn_multiple_seeds(
+ compute_shapley_values,
+ Utility(LinearRegression(), data=housing_dataset, scorer="r2"),
+ mode=fun,
+ n_jobs=n_jobs,
+ config=parallel_config,
+ progress=False,
+ seeds=(seed, seed_alt),
+ **deepcopy(kwargs)
+ )
+ with pytest.raises(AssertionError):
+ np.testing.assert_equal(values_1.values, values_2.values)
+
+
@pytest.mark.parametrize("num_samples, delta, eps", [(8, 0.1, 0.1)])
@pytest.mark.parametrize(
"fun", [ShapleyMode.PermutationMontecarlo, ShapleyMode.CombinatorialMontecarlo]
diff --git a/tests/value/test_sampler.py b/tests/value/test_sampler.py
index 8affc108f..5fbf8f5c0 100644
--- a/tests/value/test_sampler.py
+++ b/tests/value/test_sampler.py
@@ -1,15 +1,18 @@
from itertools import takewhile
+from typing import Iterator, List, Type
import numpy as np
import pytest
from pydvl.utils import powerset
+from pydvl.utils.types import Seed
from pydvl.value.sampler import (
AntitheticSampler,
- DeterministicCombinatorialSampler,
DeterministicPermutationSampler,
+ DeterministicUniformSampler,
PermutationSampler,
RandomHierarchicalSampler,
+ StochasticSampler,
UniformSampler,
)
@@ -17,8 +20,9 @@
@pytest.mark.parametrize(
"sampler_class",
[
- DeterministicCombinatorialSampler,
+ DeterministicUniformSampler,
UniformSampler,
+ DeterministicPermutationSampler,
PermutationSampler,
AntitheticSampler,
RandomHierarchicalSampler,
@@ -38,7 +42,45 @@ def test_proper(sampler_class, indices):
@pytest.mark.parametrize(
"sampler_class",
[
- DeterministicCombinatorialSampler,
+ UniformSampler,
+ PermutationSampler,
+ AntitheticSampler,
+ RandomHierarchicalSampler,
+ ],
+)
+@pytest.mark.parametrize("indices", [(), (list(range(100)))])
+def test_proper_reproducible(sampler_class, indices, seed):
+ """Test that the sampler is reproducible."""
+ samples_1 = _create_seeded_sample_iter(sampler_class, indices, seed)
+ samples_2 = _create_seeded_sample_iter(sampler_class, indices, seed)
+
+ for (_, subset_1), (_, subset_2) in zip(samples_1, samples_2):
+ assert set(subset_1) == set(subset_2)
+
+
+@pytest.mark.parametrize(
+ "sampler_class",
+ [
+ UniformSampler,
+ PermutationSampler,
+ AntitheticSampler,
+ RandomHierarchicalSampler,
+ ],
+)
+@pytest.mark.parametrize("indices", [(), (list(range(100)))])
+def test_proper_stochastic(sampler_class, indices, seed, seed_alt):
+ """Test that the sampler is reproducible."""
+ samples_1 = _create_seeded_sample_iter(sampler_class, indices, seed)
+ samples_2 = _create_seeded_sample_iter(sampler_class, indices, seed_alt)
+
+ for (_, subset_1), (_, subset_2) in zip(samples_1, samples_2):
+ assert len(subset_1) == 0 or set(subset_1) != set(subset_2)
+
+
+@pytest.mark.parametrize(
+ "sampler_class",
+ [
+ DeterministicUniformSampler,
UniformSampler,
# PermutationSampler,
AntitheticSampler,
@@ -70,3 +112,14 @@ def test_chunkify_permutation(sampler_class):
# Missing tests for:
# - Correct distribution of subsets for random samplers
+
+
+def _create_seeded_sample_iter(
+ sampler_t: Type[StochasticSampler],
+ indices: List,
+ seed: Seed,
+) -> Iterator:
+ max_iterations = len(indices)
+ sampler = sampler_t(indices=np.array(indices), seed=seed)
+ sample_stream = takewhile(lambda _: sampler.n_samples < max_iterations, sampler)
+ return sample_stream
diff --git a/tests/value/test_semivalues.py b/tests/value/test_semivalues.py
index 17063c6c7..ec937d028 100644
--- a/tests/value/test_semivalues.py
+++ b/tests/value/test_semivalues.py
@@ -1,29 +1,26 @@
import math
-from typing import Dict, Type
+from typing import Type
import numpy as np
import pytest
-from pydvl.utils import Utility
+from pydvl.utils import ParallelConfig
from pydvl.value.sampler import (
AntitheticSampler,
- DeterministicCombinatorialSampler,
DeterministicPermutationSampler,
+ DeterministicUniformSampler,
PermutationSampler,
PowersetSampler,
UniformSampler,
)
from pydvl.value.semivalues import (
- SemiValueMode,
SVCoefficient,
- _semivalues,
banzhaf_coefficient,
beta_coefficient,
- compute_semivalues,
- semivalues,
+ compute_generic_semivalues,
shapley_coefficient,
)
-from pydvl.value.stopping import AbsoluteStandardError, MaxUpdates, StoppingCriterion
+from pydvl.value.stopping import AbsoluteStandardError, MaxUpdates
from . import check_values
@@ -32,67 +29,63 @@
@pytest.mark.parametrize(
"sampler",
[
- DeterministicCombinatorialSampler,
+ DeterministicUniformSampler,
DeterministicPermutationSampler,
UniformSampler,
PermutationSampler,
AntitheticSampler,
],
)
-@pytest.mark.parametrize(
- "coefficient, criterion",
- [
- (shapley_coefficient, AbsoluteStandardError(0.02, 1.0) | MaxUpdates(2**10)),
- (
- beta_coefficient(1, 1),
- AbsoluteStandardError(0.02, 1.0) | MaxUpdates(2**10),
- ),
- ],
-)
-@pytest.mark.parametrize("method", [_semivalues, semivalues])
+@pytest.mark.parametrize("coefficient", [shapley_coefficient, beta_coefficient(1, 1)])
def test_shapley(
num_samples: int,
analytic_shapley,
sampler: Type[PowersetSampler],
coefficient: SVCoefficient,
- criterion: StoppingCriterion,
- method,
+ n_jobs: int,
+ parallel_config: ParallelConfig,
):
u, exact_values = analytic_shapley
- kwargs = dict()
- if method == semivalues:
- kwargs.update(dict(n_jobs=2))
- values = method(sampler(u.data.indices), u, coefficient, criterion, **kwargs)
- check_values(values, exact_values, rtol=0.15)
+ criterion = AbsoluteStandardError(0.02, 1.0) | MaxUpdates(2 ** (num_samples * 2))
+ values = compute_generic_semivalues(
+ sampler(u.data.indices),
+ u,
+ coefficient,
+ criterion,
+ n_jobs=n_jobs,
+ config=parallel_config,
+ )
+ check_values(values, exact_values, rtol=0.2)
@pytest.mark.parametrize("num_samples", [5])
@pytest.mark.parametrize(
"sampler",
[
- DeterministicCombinatorialSampler,
+ DeterministicUniformSampler,
DeterministicPermutationSampler,
UniformSampler,
PermutationSampler,
AntitheticSampler,
],
)
-@pytest.mark.parametrize("method", [_semivalues, semivalues])
def test_banzhaf(
- num_samples: int, analytic_banzhaf, sampler: Type[PowersetSampler], method
+ num_samples: int,
+ analytic_banzhaf,
+ sampler: Type[PowersetSampler],
+ n_jobs: int,
+ parallel_config: ParallelConfig,
):
u, exact_values = analytic_banzhaf
- kwargs = dict()
- if method == semivalues:
- kwargs.update(dict(n_jobs=2))
- values = method(
+ values = compute_generic_semivalues(
sampler(u.data.indices),
u,
banzhaf_coefficient,
- AbsoluteStandardError(0.02, 1.0) | MaxUpdates(300),
- **kwargs,
+ AbsoluteStandardError(0.04, 1.0) | MaxUpdates(2 ** (num_samples * 2)),
+ n_jobs=n_jobs,
+ config=parallel_config,
)
- check_values(values, exact_values, rtol=0.15)
+ check_values(values, exact_values, rtol=0.2)
@pytest.mark.parametrize("n", [10, 100])
@@ -116,27 +109,3 @@ def test_coefficients(n: int, coefficient: SVCoefficient):
"""
s = [math.comb(n - 1, j - 1) * coefficient(n, j - 1) for j in range(1, n + 1)]
assert np.isclose(1, np.sum(s))
-
-
-@pytest.mark.parametrize("num_samples", [5])
-@pytest.mark.parametrize(
- "semi_value_mode,semi_value_mode_kwargs",
- [
- (SemiValueMode.Shapley, dict()),
- (SemiValueMode.BetaShapley, {"alpha": 1, "beta": 16}),
- (SemiValueMode.Banzhaf, dict()),
- ],
- ids=["shapley", "beta-shapley", "banzhaf"],
-)
-def test_dispatch_compute_semi_values(
- dummy_utility: Utility,
- semi_value_mode: SemiValueMode,
- semi_value_mode_kwargs: Dict[str, int],
-):
- values = compute_semivalues(
- u=dummy_utility,
- mode=semi_value_mode,
- done=MaxUpdates(1),
- **semi_value_mode_kwargs,
- progress=True,
- )
diff --git a/tests/value/utils.py b/tests/value/utils.py
new file mode 100644
index 000000000..7c38e344f
--- /dev/null
+++ b/tests/value/utils.py
@@ -0,0 +1,25 @@
+from __future__ import annotations
+
+from copy import deepcopy
+from typing import Callable, Tuple
+
+from pydvl.utils.types import Seed
+
+
+def call_fn_multiple_seeds(
+ fn: Callable, *args, seeds: Tuple[Seed, ...], **kwargs
+) -> Tuple:
+ """
+ Execute a function multiple times with different seeds. It copies the arguments
+ and keyword arguments before passing them to the function.
+
+ Args:
+ fn: The function to execute.
+ args: The arguments to pass to the function.
+ seeds: The seeds to use.
+ kwargs: The keyword arguments to pass to the function.
+
+ Returns:
+ A tuple of the results of the function.
+ """
+ return tuple(fn(*deepcopy(args), **deepcopy(kwargs), seed=seed) for seed in seeds)
diff --git a/tox.ini b/tox.ini
index 3433fe113..b01f1dfb5 100644
--- a/tox.ini
+++ b/tox.ini
@@ -1,15 +1,10 @@
[tox]
-envlist = base, report
+envlist = base, report, docs
wheel = true
[testenv]
deps =
- pytest
- pytest-cov
- pytest-lazy-fixture
- pytest-timeout
- pytest-mock
- pytest-docker==0.12.0
+ -r requirements-dev.txt
-r requirements.txt
setenv =
COVERAGE_FILE = {env:COVERAGE_FILE:{toxinidir}/.coverage.{envname}}
@@ -28,13 +23,16 @@ extras =
[testenv:notebooks]
description = Tests notebooks
+setenv =
+ PYTHONPATH={toxinidir}/notebooks
commands =
pytest notebooks/ --cov "{envsitepackagesdir}/pydvl"
deps =
{[testenv]deps}
jupyter==1.0.0
- nbconvert==6.4.5
+ nbconvert
datasets==2.6.1
+ torchvision==0.14.1
extras =
influence
passenv =
@@ -71,6 +69,7 @@ whitelist_externals =
bash
[testenv:type-checking]
+basepython = python3.8
skip_install = true
setenv =
MYPY_FORCE_COLOR=1
@@ -83,71 +82,3 @@ deps =
-r requirements.txt
commands =
mypy {posargs:src/}
-
-[testenv:docs]
-; NOTE: we don't use pytest for running the doctest, even though with pytest no
-; imports have to be written in them. The reason is that we want to be running
-; doctest during the docs build (which might happen on a remote machine, like
-; read_the_docs does) with possibly fewer external dependencies and use sphinx'
-; ability to automock the missing ones.
-commands =
- python build_scripts/update_docs.py --clean
- sphinx-build -v --color -W -b html -d "{envtmpdir}/doctrees" docs "docs/_build/html"
- sphinx-build -v --color -b doctest -d "{envtmpdir}/doctrees" docs "docs/_build/doctest"
-deps =
- sphinx==5.3.0
- sphinxcontrib-websupport==1.2.4
- sphinx-design
- sphinx-math-dollar
- sphinx-hoverxref
- sphinxcontrib-bibtex
- nbsphinx
- furo
- ipython
-extras =
- influence
-
-[testenv:docs-dev]
-description = This is a development environment for the docs that supports hot-reloading of the docs
-commands =
- python build_scripts/update_docs.py --clean
- sphinx-autobuild -W -b html -d "{envtmpdir}/doctrees" docs "docs/_build/html" --ignore "*.ipynb"
-deps =
- {[testenv:docs]deps}
- sphinx-autobuild
-extras =
- influence
-
-[testenv:publish-test-package]
-description = Publish package to TestPyPI
-skip_install = true
-passenv =
- TWINE_*
-deps =
- wheel
- twine
-commands =
- python setup.py sdist bdist_wheel
- twine upload -r testpypi --verbose --non-interactive dist/*
-
-[testenv:publish-release-package]
-description = Publish package to PyPI
-skip_install = true
-passenv =
- TWINE_*
-deps =
- {[testenv:publish-test-package]deps}
-commands =
- python setup.py sdist bdist_wheel
- twine upload --verbose --non-interactive dist/*
-
-
-[testenv:bump-dev-version]
-description = Bumps the build part of the version using the given number
-skip_install = true
-passenv =
- BUILD_NUMBER
-deps =
- bump2version
-commands =
- bump2version --no-tag --no-commit --verbose --serialize '\{major\}.\{minor\}.\{patch\}.\{release\}\{$BUILD_NUMBER\}' boguspart