forked from HirokiNakahara/GUINNESS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
137 lines (111 loc) · 4.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -----------------------------------------------------------------------
# eval.py
# Verification in Python code
#
# Creation Date : 04/Aug./2017
# Copyright (C) <2017> Hiroki Nakahara, All rights reserved.
#
# Released under the GPL v2.0 License.
#
# Acknowledgements:
# This source code is based on following projects:
#
# Chainer binarized neural network by Daisuke Okanohara
# https://github.com/hillbig/binary_net
# Various CNN models including Deep Residual Networks (ResNet)
# for CIFAR10 with Chainer by mitmul
# https://github.com/mitmul/chainer-cifar10
# -----------------------------------------------------------------------
import argparse
#import cPickle as pickle # python 2.7
import _pickle as pickle # python 3.5
import numpy as np
import os
import chainer
from chainer import optimizers, Variable
from chainer import serializers
import net3 # it will be generated by the GUINNESS
import trainer
import chainer.links as L
import time
import weight_clip
import cv2
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluation Python Code')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU device ID (negative value indicates CPU)')
parser.add_argument('--model', '-m', type=str, default='hoge.model',
help='Pre-Trained Model Name')
parser.add_argument('--dataset', '-d', type=str, default='two96_dataset.pkl',
help='Dataset image pkl file path')
parser.add_argument('--size', type=int, default=32,
help='Test Image Size')
args = parser.parse_args()
print('loading dataset...')
fname = args.dataset + '_dataset.pkl'
with open(fname, 'rb') as f:
images = pickle.load(f)
threshold = np.int32(len(images['train'])/10*9)
train_x = images['train'][:threshold].astype(np.float32)
valid_x = images['train'][threshold:].astype(np.float32)
test_x = images['test'].astype(np.float32)
fname = args.dataset + '_label.pkl'
with open(fname, 'rb') as f:
labels = pickle.load(f)
train_y = labels['train'][:threshold].astype(np.int32)
valid_y = labels['train'][threshold:].astype(np.int32)
test_y = labels['test'].astype(np.int32)
print('start evaluation')
net = net3.CNN()
print("load pre-trained npz")
serializers.load_npz(args.model, net)
# set image size
img_siz = args.size
eval_x = np.ones((1,3,img_siz,img_siz))
# load tag file
name = []
fname = args.dataset + '_tag.txt' # tag file be generated by 'gen_training_data.py'
with open(fname, 'r') as f:
lines2 = f.readlines()
for line in lines2:
name.append(line.rstrip('\n\r'))
n_class = len(name)
conf_matrix = np.zeros((n_class,n_class))
# specify the number of tests
n_tests = 10
n_acc = 0
# perform test
for idx in range(0,n_tests):
image = test_x
image = image.clip(0,255).astype(np.uint8)
print("label=%d(%s)" % (test_y[idx],name[test_y[idx]]))
# Note that, the test image is generated by the OpenCV2.0, thus, its format consists of 'BGR' not 'RGB'
image1 = image[idx].reshape(3, img_siz, img_siz).transpose(1, 2, 0)
# generate test bench
# you can comment out following to generate more test bech for C/C++ simulation in the Vivado HLS, and an FPGA board
'''
bench_img = image1.reshape(-1,)
fname = 'test_img_%d.txt' % idx # + str(idx) + '.txt'
print(' Test Image Fileout -> %s' % fname)
np.savetxt(fname, bench_img, fmt="%.0f", delimiter=",")
'''
eval_x[0,:,:,:] = test_x[idx] #/ 256.0
result = net(Variable(eval_x.astype(np.float32)),train=False)
print(result.data)
print("test=%d(%s)" % (result.data.argmax(),name[result.data.argmax()]))
# show test image
cv2.imshow("test image", image1)
cv2.waitKey(0)
cv2.destroyAllWindows()
# regist a confusion matrix
conf_matrix[test_y[idx],result.data.argmax()] = conf_matrix[test_y[idx],result.data.argmax()] + 1
if test_y[idx] == result.data.argmax():
n_acc = n_acc + 1
# show a confusion matrix
print("Confusion Matrix")
print(conf_matrix.astype(np.int32))
print("# corrests=%d" % n_acc)
print("Accuracy=%f" % (float(n_acc) / n_tests))
# -----------------------------------------------------------------------
# END OF PROGRAM
# -----------------------------------------------------------------------