-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsatisfiability_discovery.py
120 lines (100 loc) · 6.56 KB
/
satisfiability_discovery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch,os
from args import DeepArgs
from utils import set_gpu,get_datasets,generate_figure
from transformers import HfArgumentParser,AutoTokenizer,GPT2LMHeadModel
from circuit_model import trunk_model,assert_model
import logging
import json
from tqdm import tqdm
import copy
from demo_representation_vocb import assert_circuits_equal_output
hf_parser = HfArgumentParser((DeepArgs,))
args: DeepArgs = hf_parser.parse_args_into_dataclasses()[0]
torch.cuda.empty_cache()
set_gpu(args.gpu)
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter(
"[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s"
)
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
# sh = logging.StreamHandler()
# sh.setFormatter(formatter)
# logger.addHandler(sh)
return logger
if args.task_name=='satisfiability_discovery':
if args.model_name=='gpt2xl':
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model=trunk_model(args)
orig_model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
#check_model=assert_model(args)
#equal_model=assert_circuits_equal_output(args)
layer=12
circuit_layer=29
circuit_num=12*29
if args.case_type=='srodataset':
with open('dataset/srodataset.json','r') as f:
input_text=json.load(f)
if args.case_type=='ioidataset':
with open('dataset/ioidataset.json','r') as f:
input_text=json.load(f)
if args.case_type=='orcadataset':
with open('dataset/OpenOrcadataset.json','r') as f:
input_text=json.load(f)
for i in range (len(input_text)):
if args.case_type=='srodataset':
input_case=input_text[i]['prompt']
if args.case_type=='ioidataset':
input_case=input_text[i]['text']
if args.case_type=='orcadataset':
input_case=input_text[i]['text']
print('To record {}-th case'.format(i))
inputs = tokenizer(input_case, return_tensors="pt")
with torch.no_grad():
outputs = orig_model(**inputs, labels=inputs["input_ids"])
_,label_ids=torch.topk(outputs.logits[0][-1],1)
token_length=inputs['input_ids'].size()[-1]
branch_cut=torch.zeros((circuit_num,circuit_num))
#init the input matrix
token_num=inputs['input_ids'].size()[-1]
input_matrix=torch.zeros((12,29,token_num,768)).cuda()
cut_circuit_tensor_all=None
#equal_model(inputs)
top_token,input_matrix,cut_circuit_tensor_all=model(inputs,label_ids,0,0,input_matrix,cut_circuit_tensor_all)
assert top_token[0].item()==label_ids.item()
for m in tqdm(range(circuit_num)):
for n in range(circuit_num):
if m//circuit_layer > n//circuit_layer and (m+1)%29!=27 and (m+1)%29!=28 and (m+1)%29!=0 and (m+1)%29!=1 and (n+1)%29!=27 and (n+1)%29!=28 and (n+1)%29!=0 and (n+1)%29!=1 and branch_cut[m][n]!=1:
branch_cut[m][n]=1
top_token,input_matrix_new,cut_circuit_tensor_all=model(inputs,label_ids,m,n,input_matrix,cut_circuit_tensor_all)
if top_token[0].item()!=label_ids.item():
branch_cut[m][n]=0
else:
input_matrix=input_matrix_new
#check_model(inputs,label_ids,branch_cut)
torch.cuda.empty_cache()
logger = get_logger('logs/' +args.task_name+'/'+ args.model_name +'/'+args.case_type+'/'+input_case+'_logging.log')
all_branch_cut=[]
for id in range(29,348):
all_branch_cut_dict={}
branch_cut_id=branch_cut[id].split(29,dim=-1)
logger.info('### for layer {} and circuit {}, the cut list of layer 0 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[0]))
logger.info('### for layer {} and circuit {}, the cut list of layer 1 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[1]))
logger.info('### for layer {} and circuit {}, the cut list of layer 2 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[2]))
logger.info('### for layer {} and circuit {}, the cut list of layer 3 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[3]))
logger.info('### for layer {} and circuit {}, the cut list of layer 4 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[4]))
logger.info('### for layer {} and circuit {}, the cut list of layer 5 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[5]))
logger.info('### for layer {} and circuit {}, the cut list of layer 6 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[6]))
logger.info('### for layer {} and circuit {}, the cut list of layer 7 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[7]))
logger.info('### for layer {} and circuit {}, the cut list of layer 8 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[8]))
logger.info('### for layer {} and circuit {}, the cut list of layer 9 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[9]))
logger.info('### for layer {} and circuit {}, the cut list of layer 10 is \n{}'.format(id//circuit_layer,id%circuit_layer,branch_cut_id[10]))
all_branch_cut_dict['layer {} and circuit {}'.format(id//circuit_layer,id%circuit_layer)]=branch_cut[id].tolist()
all_branch_cut.append(all_branch_cut_dict)
with open('json_logs/satisfiability/gpt2xl/'+args.case_type+'/'+input_case+'.json','w',encoding='utf-8') as data:
json.dump(all_branch_cut,data,ensure_ascii=False,sort_keys=True)
logging.shutdown()