-
Notifications
You must be signed in to change notification settings - Fork 100
/
axilrd2wbsp.v
601 lines (543 loc) · 14.3 KB
/
axilrd2wbsp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axilrd2wbsp.v (AXI lite to wishbone slave, read channel)
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Bridge an AXI lite read channel pair to a single wishbone read
// channel.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2016-2024, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// }}}
module axilrd2wbsp #(
// {{{
parameter C_AXI_DATA_WIDTH = 32,
parameter C_AXI_ADDR_WIDTH = 28,
parameter AXILLSB = $clog2(C_AXI_DATA_WIDTH/8),
localparam AW = C_AXI_ADDR_WIDTH-AXILLSB,
localparam DW = C_AXI_DATA_WIDTH,
parameter LGFIFO = 3
// }}}
) (
// {{{
input wire i_clk,
input wire i_axi_reset_n,
// AXI read address channel signals
// {{{
input wire i_axi_arvalid,
output reg o_axi_arready,
input wire [C_AXI_ADDR_WIDTH-1:0] i_axi_araddr,
input wire [2:0] i_axi_arprot,
// }}}
// AXI read data channel signals
// {{{
output reg o_axi_rvalid,
input wire i_axi_rready,
output wire [C_AXI_DATA_WIDTH-1:0] o_axi_rdata,
output reg [1:0] o_axi_rresp,
// }}}
// Wishbone signals
// {{{
// We'll share the clock and the reset
output reg o_wb_cyc,
output reg o_wb_stb,
output reg [(AW-1):0] o_wb_addr,
output wire [(DW/8-1):0] o_wb_sel,
input wire i_wb_stall,
input wire i_wb_ack,
input wire [(C_AXI_DATA_WIDTH-1):0] i_wb_data,
input wire i_wb_err
`ifdef FORMAL
// {{{
// Output connections only used in formal mode
, output wire [LGFIFO:0] f_first,
output wire [LGFIFO:0] f_mid,
output wire [LGFIFO:0] f_last
// }}}
`endif
// }}}
// }}}
);
// Local declarations
// {{{
localparam AXI_LSBS = $clog2(C_AXI_DATA_WIDTH)-3;
wire w_reset;
assign w_reset = (!i_axi_reset_n);
reg r_stb;
reg [AW-1:0] r_addr;
localparam FLEN=(1<<LGFIFO);
reg [DW-1:0] dfifo [0:(FLEN-1)];
reg fifo_full, fifo_empty;
reg [LGFIFO:0] r_first, r_mid, r_last;
wire [LGFIFO:0] next_first, next_last;
reg wb_pending;
reg [LGFIFO:0] wb_outstanding;
wire [DW-1:0] read_data;
reg err_state;
reg [LGFIFO:0] err_loc;
// }}}
// o_wb_cyc, o_wb_stb
// {{{
initial o_wb_cyc = 1'b0;
initial o_wb_stb = 1'b0;
always @(posedge i_clk)
if ((w_reset)||((o_wb_cyc)&&(i_wb_err))||(err_state))
o_wb_stb <= 1'b0;
else if (r_stb || ((i_axi_arvalid)&&(o_axi_arready)))
o_wb_stb <= 1'b1;
else if ((o_wb_cyc)&&(!i_wb_stall))
o_wb_stb <= 1'b0;
always @(*)
o_wb_cyc = (wb_pending)||(o_wb_stb);
// }}}
// o_wb_addr
// {{{
always @(posedge i_clk)
if (r_stb && !i_wb_stall)
o_wb_addr <= r_addr;
else if ((o_axi_arready)&&((!o_wb_stb)||(!i_wb_stall)))
o_wb_addr <= i_axi_araddr[AW+1:AXI_LSBS];
// }}}
// o_wb_sel
// {{{
assign o_wb_sel = {(DW/8){1'b1}};
// }}}
// r_stb, r_addr
// {{{
// Shadow request
initial r_stb = 1'b0;
always @(posedge i_clk)
begin
if ((i_axi_arvalid)&&(o_axi_arready)&&(o_wb_stb)&&(i_wb_stall))
begin
r_stb <= 1'b1;
r_addr <= i_axi_araddr[AW+1:AXI_LSBS];
end else if ((!i_wb_stall)||(!o_wb_cyc))
r_stb <= 1'b0;
if ((w_reset)||(o_wb_cyc)&&(i_wb_err)||(err_state))
r_stb <= 1'b0;
end
// }}}
// wb_pending, wb_outstanding
// {{{
initial wb_pending = 0;
initial wb_outstanding = 0;
always @(posedge i_clk)
if ((w_reset)||(!o_wb_cyc)||(i_wb_err)||(err_state))
begin
wb_pending <= 1'b0;
wb_outstanding <= 0;
end else case({ (o_wb_stb)&&(!i_wb_stall), i_wb_ack })
2'b01: begin
wb_outstanding <= wb_outstanding - 1'b1;
wb_pending <= (wb_outstanding >= 2);
end
2'b10: begin
wb_outstanding <= wb_outstanding + 1'b1;
wb_pending <= 1'b1;
end
default: begin end
endcase
// }}}
assign next_first = r_first + 1'b1;
assign next_last = r_last + 1'b1;
// fifo_full, fifo_empty
// {{{
initial fifo_full = 1'b0;
initial fifo_empty = 1'b1;
always @(posedge i_clk)
if (w_reset)
begin
fifo_full <= 1'b0;
fifo_empty <= 1'b1;
end else case({ (o_axi_rvalid)&&(i_axi_rready),
(i_axi_arvalid)&&(o_axi_arready) })
2'b01: begin
fifo_full <= (next_first[LGFIFO-1:0] == r_last[LGFIFO-1:0])
&&(next_first[LGFIFO]!=r_last[LGFIFO]);
fifo_empty <= 1'b0;
end
2'b10: begin
fifo_full <= 1'b0;
fifo_empty <= 1'b0;
end
default: begin end
endcase
// }}}
// o_axi_arready
// {{{
initial o_axi_arready = 1'b1;
always @(posedge i_clk)
if (w_reset)
o_axi_arready <= 1'b1;
else if ((o_wb_cyc && i_wb_err) || err_state)
// On any error, drop the ready flag until it's been flushed
o_axi_arready <= 1'b0;
else if ((i_axi_arvalid)&&(o_axi_arready)&&(o_wb_stb)&&(i_wb_stall))
// On any request where we are already busy, r_stb will get
// set and we drop arready
o_axi_arready <= 1'b0;
else if (!o_axi_arready && o_wb_stb && i_wb_stall)
// If we've already stalled on o_wb_stb, remain stalled until
// the bus clears
o_axi_arready <= 1'b0;
else if (fifo_full && (!o_axi_rvalid || !i_axi_rready))
// If the FIFO is full, we must remain not ready until at
// least one acknowledgment is accepted
o_axi_arready <= 1'b0;
else if ( (!o_axi_rvalid || !i_axi_rready)
&& (i_axi_arvalid && o_axi_arready))
o_axi_arready <= (next_first[LGFIFO-1:0] != r_last[LGFIFO-1:0])
||(next_first[LGFIFO]==r_last[LGFIFO]);
else
o_axi_arready <= 1'b1;
// }}}
// r_first
// {{{
initial r_first = 0;
always @(posedge i_clk)
if (w_reset)
r_first <= 0;
else if ((i_axi_arvalid)&&(o_axi_arready))
r_first <= r_first + 1'b1;
// }}}
// r_mid
// {{{
initial r_mid = 0;
always @(posedge i_clk)
if (w_reset)
r_mid <= 0;
else if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
r_mid <= r_mid + 1'b1;
else if ((err_state)&&(r_mid != r_first))
r_mid <= r_mid + 1'b1;
// }}}
// r_last
// {{{
initial r_last = 0;
always @(posedge i_clk)
if (w_reset)
r_last <= 0;
else if ((o_axi_rvalid)&&(i_axi_rready))
r_last <= r_last + 1'b1;
// }}}
// Write to dfifo on data return
// {{{
always @(posedge i_clk)
if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
dfifo[r_mid[(LGFIFO-1):0]] <= i_wb_data;
// }}}
// err_loc -- FIFO address of any error
// {{{
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_err))
err_loc <= r_mid;
// }}}
assign read_data = dfifo[r_last[LGFIFO-1:0]];
assign o_axi_rdata = read_data[DW-1:0];
// o_axi_rresp
// {{{
initial o_axi_rresp = 2'b00;
always @(posedge i_clk)
if (w_reset)
o_axi_rresp <= 0;
else if ((!o_axi_rvalid)||(i_axi_rready))
begin
if ((!err_state)&&((!o_wb_cyc)||(!i_wb_err)))
o_axi_rresp <= 2'b00;
else if ((!err_state)&&(o_wb_cyc)&&(i_wb_err))
begin
if (o_axi_rvalid)
o_axi_rresp <= (r_mid == next_last) ? 2'b10 : 2'b00;
else
o_axi_rresp <= (r_mid == r_last) ? 2'b10 : 2'b00;
end else if (err_state)
begin
if (next_last == err_loc)
o_axi_rresp <= 2'b10;
else if (o_axi_rresp[1])
o_axi_rresp <= 2'b11;
end else
o_axi_rresp <= 0;
end
// }}}
// err_state
// {{{
initial err_state = 0;
always @(posedge i_clk)
if (w_reset)
err_state <= 0;
else if (r_first == r_last)
err_state <= 0;
else if ((o_wb_cyc)&&(i_wb_err))
err_state <= 1'b1;
// }}}
// o_axi_rvalid
// {{{
initial o_axi_rvalid = 1'b0;
always @(posedge i_clk)
if (w_reset)
o_axi_rvalid <= 0;
else if ((o_wb_cyc)&&((i_wb_ack)||(i_wb_err)))
o_axi_rvalid <= 1'b1;
else if ((o_axi_rvalid)&&(i_axi_rready))
begin
if (err_state)
o_axi_rvalid <= (next_last != r_first);
else
o_axi_rvalid <= (next_last != r_mid);
end
// }}}
// Make Verilator happy
// {{{
// verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0, i_axi_arprot,
i_axi_araddr[AXI_LSBS-1:0], fifo_empty };
// verilator lint_on UNUSED
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
// Local declarations
// {{{
reg f_past_valid;
reg f_fifo_empty;
reg [LGFIFO:0] f_fifo_fill;
wire [LGFIFO:0] f_wb_nreqs, f_wb_nacks, f_wb_outstanding;
wire [LGFIFO:0] wb_fill;
wire [LGFIFO:0] f_axi_rd_outstanding,
f_axi_wr_outstanding,
f_axi_awr_outstanding;
wire [LGFIFO:0] f_mid_minus_err, f_err_minus_last,
f_first_minus_err;
// }}}
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
always @(*)
begin
f_fifo_fill = (r_first - r_last);
f_fifo_empty = (f_fifo_fill == 0);
end
always @(*)
if (!f_past_valid)
assume(w_reset);
always @(*)
if (err_state)
assert(!o_axi_arready);
always @(*)
if (err_state)
assert((!o_wb_cyc)&&(!o_axi_arready));
always @(*)
if ((f_fifo_empty)&&(!w_reset))
assert((!fifo_full)&&(r_first == r_last)&&(r_mid == r_last));
always @(*)
if (fifo_full)
assert((!f_fifo_empty)
&&(r_first[LGFIFO-1:0] == r_last[LGFIFO-1:0])
&&(r_first[LGFIFO] != r_last[LGFIFO]));
always @(*)
assert(f_fifo_fill <= (1<<LGFIFO));
always @(*)
if (fifo_full)
assert(!o_axi_arready);
always @(*)
assert(fifo_full == (f_fifo_fill == (1<<LGFIFO)));
always @(*)
if (f_fifo_fill == (1<<LGFIFO))
assert(!o_axi_arready);
always @(*)
assert(wb_pending == (wb_outstanding != 0));
assign f_first = r_first;
assign f_mid = r_mid;
assign f_last = r_last;
fwb_master #(
// {{{
.AW(AW), .DW(DW), .F_LGDEPTH(LGFIFO+1)
// }}}
) fwb(
// {{{
i_clk, w_reset,
o_wb_cyc, o_wb_stb, 1'b0, o_wb_addr, {(DW){1'b0}}, o_wb_sel,
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
f_wb_nreqs,f_wb_nacks, f_wb_outstanding
// }}}
);
always @(*)
if (o_wb_cyc)
assert(f_wb_outstanding == wb_outstanding);
always @(*)
if (o_wb_cyc)
assert(wb_outstanding <= (1<<LGFIFO));
assign wb_fill = r_first - r_mid;
always @(*)
assert(wb_fill <= f_fifo_fill);
always @(*)
if (o_wb_stb)
assert(wb_outstanding+1+((r_stb)?1:0) == wb_fill);
always @(*)
if (o_wb_stb)
begin
assert(&o_wb_sel);
end else if (o_wb_cyc)
assert(wb_outstanding == wb_fill);
always @(*)
if (r_stb)
begin
assert(o_wb_stb);
assert(!o_axi_arready);
end
faxil_slave #(
// {{{
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.F_LGDEPTH(LGFIFO+1),
.F_OPT_READ_ONLY(1'b1),
.F_AXI_MAXWAIT(0),
.F_AXI_MAXDELAY(0)
// }}}
) faxil(
// {{{
.i_clk(i_clk), .i_axi_reset_n(i_axi_reset_n),
//
// AXI write address channel signals
.i_axi_awvalid(1'b0), .i_axi_awready(1'b0),
.i_axi_awaddr({(AW){1'b0}}),
// AXI write data channel signals
.i_axi_wvalid(1'b0), .i_axi_wready(1'b0), .i_axi_wdata(32'h0),
.i_axi_wstrb(4'h0),
// AXI write response channel signals
.i_axi_bvalid(1'b0), .i_axi_bready(1'b0), .i_axi_bresp(2'b00),
// AXI read address channel signals
.i_axi_arvalid(i_axi_arvalid), .i_axi_arready(o_axi_arready),
.i_axi_araddr(i_axi_araddr),.i_axi_arprot(i_axi_arprot),
// AXI read data channel signals
.i_axi_rvalid(o_axi_rvalid), .i_axi_rready(i_axi_rready),
.i_axi_rdata(o_axi_rdata), .i_axi_rresp(o_axi_rresp),
.f_axi_rd_outstanding(f_axi_rd_outstanding),
.f_axi_wr_outstanding(f_axi_wr_outstanding),
.f_axi_awr_outstanding(f_axi_awr_outstanding)
// }}}
);
always @(*)
assert(f_axi_wr_outstanding == 0);
always @(*)
assert(f_axi_awr_outstanding == 0);
always @(*)
assert(f_axi_rd_outstanding == f_fifo_fill);
assign f_mid_minus_err = f_mid - err_loc;
assign f_err_minus_last = err_loc - f_last;
assign f_first_minus_err = f_first - err_loc;
always @(*)
if (o_axi_rvalid)
begin
if (!err_state)
begin
assert(!o_axi_rresp[1]);
end else if (err_loc == f_last)
begin
assert(o_axi_rresp == 2'b10);
end else if (f_err_minus_last < (1<<LGFIFO))
begin
assert(!o_axi_rresp[1]);
end else
assert(o_axi_rresp[1]);
end
always @(*)
if (err_state)
begin
assert(o_axi_rvalid == (r_first != r_last));
end else
assert(o_axi_rvalid == (r_mid != r_last));
always @(*)
if (err_state)
assert(f_first_minus_err <= (1<<LGFIFO));
always @(*)
if (err_state)
assert(f_first_minus_err != 0);
always @(*)
if (err_state)
assert(f_mid_minus_err <= f_first_minus_err);
always @(*)
if ((f_past_valid)&&(i_axi_reset_n)&&(f_axi_rd_outstanding > 0))
begin
if (err_state)
begin
assert((!o_wb_cyc)&&(f_wb_outstanding == 0));
end else if (!o_wb_cyc)
assert((o_axi_rvalid)&&(f_axi_rd_outstanding>0)
&&(wb_fill == 0));
end
////////////////////////////////////////////////////////////////////////
//
// Cover properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
cover(o_wb_cyc && o_wb_stb);
always @(*)
if (LGFIFO > 2)
cover(o_wb_cyc && f_wb_outstanding > 2);
always @(posedge i_clk)
cover(o_wb_cyc && i_wb_ack
&& $past(o_wb_cyc && i_wb_ack)
&& $past(o_wb_cyc && i_wb_ack,2));
// AXI covers
always @(*)
cover(o_axi_rvalid && i_axi_rready);
always @(posedge i_clk)
cover(i_axi_arvalid && o_axi_arready
&& $past(i_axi_arvalid && o_axi_arready)
&& $past(i_axi_arvalid && o_axi_arready,2));
always @(posedge i_clk)
cover(o_axi_rvalid && i_axi_rready
&& $past(o_axi_rvalid && i_axi_rready)
&& $past(o_axi_rvalid && i_axi_rready,2));
// }}}
// Make Verilator happy
// {{{
// Verilator lint_off UNUSED
wire unused_formal;
assign unused_formal = &{ 1'b0, f_wb_nreqs, f_wb_nacks };
// Verilator lint_on UNUSED
// }}}
`endif
// }}}
endmodule
`ifndef YOSYS
`default_nettype wire
`endif