Skip to content

Latest commit

 

History

History
 
 

unimol2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Uni-Mol2: Exploring Molecular Pretraining Model at Scale

overview

We present Uni-Mol2 , an innovative molecular pretraining model that leverages a two-track transformer to effectively integrate features at the atomic level, graph level, and geometry structure level. Along with this, we systematically investigate the scaling law within molecular pretraining models, characterizing the power-law correlations between validation loss and model size, dataset size, and computational resources. Consequently, we successfully scale Uni-Mol2 to 1.1 billion parameters through pretraining on 800 million conformations, making it the largest molecular pretraining model to date.

Dependencies

Model Zoo

Model Layers Embedding dim Attention heads Pair embedding dim Pair hidden dim FFN embedding dim Learning rate Batch size
UniMol2-84M 12 768 48 512 64 768 1e-4 1024
UniMol2-164M 24 768 48 512 64 768 1e-4 1024
UniMol2-310M 32 1024 64 512 64 1024 1e-4 1024
UniMol2-570M 32 1536 96 512 64 1536 1e-4 1024
UniMol2-1.1B 64 1536 96 512 64 1536 1e-4 1024

Downstream Finetune

task_name="qm9dft_v2"  # molecular property prediction task name 
task_num=3
weight_name="checkpoint.pt"
loss_func="finetune_smooth_mae"
arch_name=84M
arch=unimol2_$arch_name


data_path='Your Data Path"
weight_path="Your Checkpoint Path"
weight_path=$weight_path/$weight_name

drop_feat_prob=1.0
use_2d_pos=0.0
ema_decay=0.999

lr=1e-4
batch_size=32
epoch=40
dropout=0
warmup=0.06
local_batch_size=16
seed=0
conf_size=11

n_gpu=1
reg_task="--reg"
metric="valid_agg_mae"
save_dir="./save_dir"

update_freq=`expr $batch_size / $local_batch_size`
global_batch_size=`expr $local_batch_size \* $n_gpu \* $update_freq`

torchrun --standalone --nnodes=1 --nproc_per_node=$n_gpu \
    $(which unicore-train) $data_path \
    --task-name $task_name --user-dir ./unimol2 --train-subset train --valid-subset valid,test \
    --conf-size $conf_size \
    --num-workers 8 --ddp-backend=c10d \
    --task mol_finetune --loss $loss_func --arch $arch  \
    --classification-head-name $task_name --num-classes $task_num \
    --optimizer adam --adam-betas "(0.9, 0.99)" --adam-eps 1e-6 --clip-norm 1.0 \
    --lr-scheduler polynomial_decay --lr $lr --warmup-ratio $warmup --max-epoch $epoch \
    --batch-size $local_batch_size --pooler-dropout $dropout\
    --update-freq $update_freq --seed $seed \
    --fp16 --fp16-init-scale 4 --fp16-scale-window 256 --no-save \
    --log-interval 100 --log-format simple \
    --validate-interval 1 \
    --finetune-from-model $weight_path \
    --best-checkpoint-metric $metric --patience 20 \
    --save-dir $save_dir \
    --drop-feat-prob ${drop_feat_prob} \
    --use-2d-pos-prob ${use_2d_pos} \
    $more_args \
    $reg_task \
    --find-unused-parameters

Citation

Please kindly cite this paper if you use the data/code/model.

@article{ji2024uni,
  title={Uni-Mol2: Exploring Molecular Pretraining Model at Scale},
  author={Xiaohong, Ji and Zhen, Wang and Zhifeng, Gao and Hang, Zheng and Linfeng, Zhang and Guolin, Ke and Weinan, E},
  journal={arXiv preprint arXiv:2406.14969},
  year={2024}
}

License

This project is licensed under the terms of the MIT license. See LICENSE for additional details.