forked from Unidata/netcdf-c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtst_compress.c
655 lines (541 loc) · 22.8 KB
/
tst_compress.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
Copyright 2021, UCAR/Unidata See COPYRIGHT file for copying and
redistribution conditions.
This program tests and benchmarks netcdf-4 I/O doing compression.
This is a sequential version of tst_compress_par.c.
Also see the file gfs_sample.cdl to see what is being produced by
this program.
Ed Hartnett, 11/27/21
*/
#include <config.h>
#include <nc_tests.h>
#include <time.h>
#include <sys/time.h> /* Extra high precision time info. */
#include "err_macros.h"
#include <H5public.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <netcdf.h>
#include <netcdf_meta.h>
#define TEST_NAME "tst_compress"
#define NUM_META_VARS 7
#define NUM_META_TRIES 2
#define NDIM2 2
#define NDIM4 4
#define NDIM5 5
#define NUM_PROC 4
#define NUM_SHUFFLE_SETTINGS 1
/* #define NUM_DEFLATE_LEVELS 3 */
#define NUM_DEFLATE_LEVELS 1
#define NUM_UNLIM_TRIES 1
#define NUM_NSD_SETTINGS 2
#define THOUSAND 1000
#define NUM_DATA_VARS 3
#define ERR_AWFUL 1
#define NUM_TRIES 2
#define USE_SMALL 1
#ifdef USE_SMALL
#define GRID_XT_LEN 8
#define GRID_YT_LEN 4
#define PFULL_LEN 4
#define PHALF_LEN 5
#else
#define GRID_XT_LEN 3072
#define GRID_YT_LEN 1536
#define PFULL_LEN 127
#define PHALF_LEN 128
#endif /* USE_SMALL */
#define TIME_LEN 1
#define MAX_COMPRESSION_FILTERS 4
char compression_filter_name[MAX_COMPRESSION_FILTERS][NC_MAX_NAME + 1];
int deflate_level[MAX_COMPRESSION_FILTERS][NUM_DEFLATE_LEVELS];
int nsd[NUM_NSD_SETTINGS] = {0, 4};
char dim_name[NDIM5][NC_MAX_NAME + 1] = {"grid_xt", "grid_yt", "pfull",
"phalf", "time"};
char var_name[NUM_META_VARS][NC_MAX_NAME + 1] = {"grid_xt", "lon", "grid_yt",
"lat", "pfull", "phalf", "time"};
int var_type[NUM_META_VARS] = {NC_DOUBLE, NC_DOUBLE, NC_DOUBLE, NC_DOUBLE,
NC_FLOAT, NC_FLOAT, NC_DOUBLE};
int dim_len[NDIM5] = {GRID_XT_LEN, GRID_YT_LEN, PFULL_LEN, PHALF_LEN,
TIME_LEN};
/* Prototype from tst_utils.c. */
int nc4_timeval_subtract(struct timeval *result, struct timeval *x,
struct timeval *y);
/* Get the size of a file in bytes. */
int
get_file_size(char *filename, size_t *file_size)
{
FILE *fp;
assert(filename && file_size);
fp = NCfopen(filename, "r");
if (fp)
{
fseek(fp, 0 , SEEK_END);
*file_size = ftell(fp);
fclose(fp);
}
return 0;
}
/* Check all the metadata, including coordinate variable data. */
int
check_meta(int ncid, int *data_varid, int s, int f, int deflate, int u,
size_t phalf_size, size_t phalf_start, float *phalf, size_t *data_start,
size_t *data_count, size_t pfull_start, size_t pfull_size, float *pfull,
size_t grid_xt_start, size_t grid_xt_size, double *grid_xt, size_t grid_yt_start,
size_t grid_yt_size, double *grid_yt, size_t *latlon_start,
size_t *latlon_count, double *lat, double *lon)
{
int ndims, nvars, natts, unlimdimid;
char name_in[NC_MAX_NAME + 1];
int xtype_in;
int ndims_in;
int dimids_in[NDIM4];
size_t len_in;
double *grid_xt_in, *grid_yt_in;
double *lat_in, *lon_in;
float *phalf_in, *pfull_in;
int d, v, i;
/* Check number of dims, vars, atts. */
if (nc_inq(ncid, &ndims, &nvars, &natts, &unlimdimid)) ERR;
if (ndims != NDIM5 || nvars != NUM_META_VARS + NUM_DATA_VARS ||
natts != 0) ERR;
if (unlimdimid != (u ? 4 : -1)) ERR;
/* Check the dimensions. */
for (d = 0; d < NDIM5; d++)
{
if (nc_inq_dim(ncid, d, name_in, &len_in)) ERR;
if (strcmp(name_in, dim_name[d]) || len_in != dim_len[d]) ERR;
}
/* Check metadata vars. */
for (v = 0; v < NUM_META_VARS; v++)
{
if (nc_inq_var(ncid, v, name_in, &xtype_in, &ndims_in, dimids_in,
&natts)) ERR;
if (strcmp(name_in, var_name[v]) || xtype_in != var_type[v]) ERR;
}
/* Check the values for grid_xt. */
if (!(grid_xt_in = malloc(grid_xt_size * sizeof(double)))) ERR;
if (nc_get_vara_double(ncid, 0, &grid_xt_start, &grid_xt_size, grid_xt_in)) ERR;
for (i = 0; i < grid_xt_size; i++)
if (grid_xt_in[i] != grid_xt[i]) ERR;
free(grid_xt_in);
/* Check the values for lon. */
if (!(lon_in = malloc(latlon_count[0] * latlon_count[1] * sizeof(double)))) ERR;
if (nc_get_vara_double(ncid, 1, latlon_start, latlon_count, lon_in)) ERR;
for (i = 0; i < latlon_count[0] * latlon_count[1]; i++)
if (lon_in[i] != lon[i]) ERR;
free(lon_in);
/* Check the values for grid_yt. */
if (!(grid_yt_in = malloc(grid_yt_size * sizeof(double)))) ERR;
if (nc_get_vara_double(ncid, 2, &grid_yt_start, &grid_yt_size, grid_yt_in)) ERR;
for (i = 0; i < grid_yt_size; i++)
if (grid_yt_in[i] != grid_yt[i]) ERR;
free(grid_yt_in);
/* Check the values for lat. */
if (!(lat_in = malloc(latlon_count[0] * latlon_count[1] * sizeof(double)))) ERR;
if (nc_get_vara_double(ncid, 1, latlon_start, latlon_count, lat_in)) ERR;
for (i = 0; i < latlon_count[0] * latlon_count[1]; i++)
if (lat_in[i] != lat[i]) ERR;
free(lat_in);
/* Check the values for pfull. */
if (!(pfull_in = malloc(pfull_size * sizeof(float)))) ERR;
if (nc_get_vara_float(ncid, 4, &pfull_start, &pfull_size, pfull_in)) ERR;
for (i = 0; i < pfull_size; i++)
if (pfull_in[i] != pfull[i]) ERR;
free(pfull_in);
/* Check the values for phalf. */
if (!(phalf_in = malloc(phalf_size * sizeof(float)))) ERR;
if (nc_get_vara_float(ncid, 5, &phalf_start, &phalf_size, phalf_in)) ERR;
for (i = 0; i < phalf_size; i++)
if (phalf_in[i] != phalf[i]) ERR;
free(phalf_in);
return 0;
}
/* Write all the metadata, including coordinate variable data. */
int
write_meta(int ncid, int *data_varid, int s, int f, int nsd, int deflate, int u,
size_t phalf_size, size_t phalf_start, float *phalf, size_t *data_start,
size_t *data_count, size_t pfull_start, size_t pfull_size, float *pfull,
size_t grid_xt_start, size_t grid_xt_size, double *grid_xt, size_t grid_yt_start,
size_t grid_yt_size, double *grid_yt, size_t *latlon_start,
size_t *latlon_count, double *lat, double *lon)
{
int dimid[NDIM5];
int dimid_data[NDIM4];
int varid[NUM_META_VARS];
double value_time = 2.0;
int dv;
/* Turn off fill mode. */
if (nc_set_fill(ncid, NC_NOFILL, NULL)) ERR;
/* Define dimension grid_xt. */
if (nc_def_dim(ncid, dim_name[0], dim_len[0], &dimid[0])) ERR;
/* Define dimension grid_yt. */
if (nc_def_dim(ncid, dim_name[1], dim_len[1], &dimid[1])) ERR;
/* Define variable grid_xt. */
if (nc_def_var(ncid, var_name[0], var_type[0], 1, &dimid[0], &varid[0])) ERR;
/* Define variable lon. */
if (nc_def_var(ncid, var_name[1], var_type[1], 2, dimid, &varid[1])) ERR;
if (nc_put_att_text(ncid, varid[1], "long_name", strlen("T-cell longitude"), "T-cell longitude")) ERR;
if (nc_put_att_text(ncid, varid[1], "units", strlen("degrees_E"), "degrees_E")) ERR;
if (nc_put_att_text(ncid, varid[0], "cartesian_axis", strlen("X"), "X")) ERR;
/* Define variable grid_yt. */
if (nc_def_var(ncid, var_name[2], var_type[2], 1, &dimid[1], &varid[2])) ERR;
/* Define variable lat. */
if (nc_def_var(ncid, var_name[3], var_type[3], 2, dimid, &varid[3])) ERR;
if (nc_put_att_text(ncid, varid[3], "long_name", strlen("T-cell latitude"), "T-cell latitude")) ERR;
if (nc_put_att_text(ncid, varid[3], "units", strlen("degrees_N"), "degrees_N")) ERR;
if (nc_put_att_text(ncid, varid[2], "cartesian_axis", strlen("Y"), "Y")) ERR;
/* Define dimension pfull. */
if (nc_def_dim(ncid, dim_name[2], dim_len[2], &dimid[2])) ERR;
/* Define variable pfull and write data. */
if (nc_def_var(ncid, var_name[4], var_type[4], 1, &dimid[2], &varid[4])) ERR;
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_float(ncid, varid[4], &pfull_start, &pfull_size, pfull)) ERR;
if (nc_redef(ncid)) ERR;
/* Define dimension phalf. This dim is only used by the phalf coord var. */
if (nc_def_dim(ncid, dim_name[3], dim_len[3], &dimid[3])) ERR;
/* Define coord variable phalf and write data. */
if (nc_def_var(ncid, var_name[5], var_type[5], 1, &dimid[3], &varid[5])) ERR;
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_float(ncid, varid[5], &phalf_start, &phalf_size, phalf)) ERR;
if (nc_redef(ncid)) ERR;
/* Define dimension time, sometimes the unlimited dimension,
* sometimes a fixed dim of 1. */
if (nc_def_dim(ncid, dim_name[4], (u ? NC_UNLIMITED : 1), &dimid[4])) ERR;
/* Define variable time and write data. */
if (nc_def_var(ncid, var_name[6], var_type[6], 1, &dimid[4], &varid[6])) ERR;
if (nc_enddef(ncid)) ERR;
/* In NOAA code, do all processors write the single time value? */
if (nc_put_var_double(ncid, varid[6], &value_time)) ERR;;
if (nc_redef(ncid)) ERR;
/* Write variable grid_xt data. */
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_double(ncid, varid[0], &grid_xt_start, &grid_xt_size, grid_xt)) ERR;
if (nc_redef(ncid)) ERR;
/* Write lon data. */
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_double(ncid, varid[1], latlon_start, latlon_count, lon)) ERR;
if (nc_redef(ncid)) ERR;
/* Write grid_yt data. */
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_double(ncid, varid[2], &grid_yt_start, &grid_yt_size, grid_yt)) ERR;
if (nc_redef(ncid)) ERR;
/* Write lat data. */
if (nc_enddef(ncid)) ERR;
if (nc_put_vara_double(ncid, varid[3], latlon_start, latlon_count, lat)) ERR;
/* Specify dimensions for our data vars. */
dimid_data[0] = dimid[4];
dimid_data[1] = dimid[2];
dimid_data[2] = dimid[1];
dimid_data[3] = dimid[0];
/* Define data variables. */
for (dv = 0; dv < NUM_DATA_VARS; dv++)
{
char data_var_name[NC_MAX_NAME + 1];
sprintf(data_var_name, "var_%d", dv);
if (nc_redef(ncid)) ERR;
if (nc_def_var(ncid, data_var_name, NC_FLOAT, NDIM4, dimid_data, &data_varid[dv])) ERR;
if (nsd)
if (nc_def_var_quantize(ncid, data_varid[dv], NC_QUANTIZE_BITGROOM, nsd)) ERR;
/* Setting any filter only will work for HDF5-1.10.3 and later */
/* versions. Do nothing for "none". */
if (!strcmp(compression_filter_name[f], "zlib"))
if (nc_def_var_deflate(ncid, data_varid[dv], s, 1, deflate)) ERR;
#if NC_HAS_SZIP_WRITE
if (!strcmp(compression_filter_name[f], "szip"))
if (nc_def_var_szip(ncid, data_varid[dv], 32, 32)) ERR;
#endif /* NC_HAS_SZIP_WRITE */
if (nc_enddef(ncid)) ERR;
}
if (nc_redef(ncid)) ERR;
if (nc_put_att_text(ncid, varid[0], "long_name", strlen("T-cell longitude"), "T-cell longitude")) ERR;
if (nc_put_att_text(ncid, varid[0], "units", strlen("degrees_E"), "degrees_E")) ERR;
if (nc_put_att_text(ncid, varid[2], "long_name", strlen("T-cell latiitude"), "T-cell latiitude")) ERR;
if (nc_put_att_text(ncid, varid[2], "units", strlen("degrees_N"), "degrees_N")) ERR;
if (nc_enddef(ncid)) ERR;
if (nc_redef(ncid)) ERR;
for (dv = 0; dv < NUM_DATA_VARS; dv++)
{
float compress_err = 42.22;
int nbits = 5;
if (nc_put_att_float(ncid, data_varid[dv], "max_abs_compression_error", NC_FLOAT, 1, &compress_err)) ERR;
if (nc_put_att_int(ncid, data_varid[dv], "nbits", NC_INT, 1, &nbits)) ERR;
}
if (nc_enddef(ncid)) ERR;
return 0;
}
/* Calculate the decomposition of the 2D lat/lon coordinate
* variables. */
int
decomp_latlon(int *dim_len, size_t *latlon_start,
size_t *latlon_count, double **lat, double **lon)
{
int i, j;
assert(dim_len && latlon_start && latlon_count && lat && lon && !*lat &&
!*lon);
/* Size of local arrays (i.e. for this pe) lon and lat data. */
latlon_start[0] = 0;
latlon_start[1] = 0;
latlon_count[0] = dim_len[0];
latlon_count[1] = dim_len[1];
/* Allocate storage. */
if (!(*lon = malloc(latlon_count[0] * latlon_count[1] * sizeof(double)))) ERR;
if (!(*lat = malloc(latlon_count[0] * latlon_count[1] * sizeof(double)))) ERR;
/* Now calculate some latlon values to write. */
for (i = 0; i < latlon_count[0]; i++)
{
for (j = 0; j < latlon_count[1]; j++)
{
(*lon)[j * latlon_count[0] + i] = 100 + i + j;
(*lat)[j * latlon_count[0] + i] = 100 + i + j;
}
}
return 0;
}
/* Based on the MPI rank and number of tasks, calculate the
* decomposition of the 4D data. */
int
decomp_4D(int *dim_len, size_t *start, size_t *count)
{
/* Time dimension. */
start[0] = 0;
count[0] = 1;
/* Vertical dimension (pfull). */
count[1] = dim_len[2];
start[1] = 0;
start[2] = 0;
start[3] = 0;
count[2] = dim_len[1];
count[3] = dim_len[0];
return 0;
}
/* Decompose the grid_xt and grid_yt coordinate vars, and also come up
* with some data. */
int
decomp_grid(int *dim_len, size_t *grid_xt_start, size_t *grid_xt_size,
size_t *grid_yt_start, size_t *grid_yt_size, double **grid_xt, double **grid_yt)
{
int i;
/* Size of local (i.e. for this pe) grid_xt data. */
*grid_xt_size = dim_len[0];
*grid_xt_start = 0;
/* Size of local (i.e. for this pe) grid_yt data. */
*grid_yt_size = dim_len[1];
*grid_yt_start = 0;
/* Allocate storage for the grid_xy and grid_yt coordinate
* variable data. */
if (!(*grid_xt = malloc(*grid_xt_size * sizeof(double)))) ERR;
if (!(*grid_yt = malloc(*grid_yt_size * sizeof(double)))) ERR;
/* Fill the grid_xt and grid_yt coordinate data arrays. */
for (i = 0; i < *grid_xt_size; i++)
(*grid_xt)[i] = 100 + i;
for (i = 0; i < *grid_yt_size; i++)
(*grid_yt)[i] = 100 + i;
return 0;
}
/* Decompose the pfull and phalf coordinate vars. */
int
decomp_p(size_t *data_count, int *dim_len,
size_t *phalf_start, size_t *phalf_size, float **phalf,
size_t *pfull_start, size_t *pfull_size, float **pfull)
{
int i;
/* Size of local (i.e. for this pe) phalf data. */
*phalf_size = dim_len[3];
*phalf_start = 0;
*pfull_size = dim_len[2];
*pfull_start = 0;
/* Allocate space on this pe to hold the coordinate var data for this pe. */
if (!(*pfull = malloc(data_count[1] * sizeof(float)))) ERR;
if (!(*phalf = malloc(*phalf_size * sizeof(float)))) ERR;
/* Some fake data for this pe to write. */
for (i = 0; i < data_count[1]; i++)
(*pfull)[i] = 100 + i;
for (i = 0; i < *phalf_size; i++)
(*phalf)[i] = 100 + i;
return 0;
}
/* Determine what compression filters are present. */
int
find_filters(int *num_compression_filters, char compression_filter_name[][NC_MAX_NAME + 1],
int deflate_level[][NUM_DEFLATE_LEVELS])
{
int nfilters = 0;
int i;
/* Try with no compression. */
strcpy(compression_filter_name[nfilters], "none");
nfilters++;
/* zlib is always present. */
strcpy(compression_filter_name[nfilters], "zlib");
for (i = 0; i < NUM_DEFLATE_LEVELS; i++)
deflate_level[nfilters][i] = i + 1;
/* deflate_level[nfilters][0] = 1; */
/* deflate_level[nfilters][1] = 4; */
/* deflate_level[nfilters][2] = 9; */
nfilters++;
/* szip is optionally present. */
#if NC_HAS_SZIP_WRITE
strcpy(compression_filter_name[nfilters], "szip");
nfilters++;
#endif /* NC_HAS_SZIP_WRITE */
*num_compression_filters = nfilters;
return 0;
}
int
main(int argc, char **argv)
{
/* For timing. */
struct timeval start_time, end_time, diff_time;
int write_1_us;
int ncid;
size_t latlon_start[NDIM2], latlon_count[NDIM2];
size_t data_start[NDIM4], data_count[NDIM4];
/* Variables. */
int data_varid[NUM_DATA_VARS];
size_t pfull_size, pfull_start;
float *pfull = NULL;
size_t phalf_size, phalf_start;
float *phalf = NULL;
size_t grid_xt_size, grid_xt_start;
double *grid_xt = NULL;
size_t grid_yt_size, grid_yt_start;
double *grid_yt = NULL;
double *lon = NULL;
double *lat = NULL;
float *value_data;
/* Compression filter info. */
int num_compression_filters;
int f, s, n, try;
int i, j, k, dv, dl;
int ret;
/* Determine what compression filters are present. */
if ((ret = find_filters(&num_compression_filters, compression_filter_name, deflate_level)))
return ret;
/* Determine 4D data decomposition to write data vars. */
if (decomp_4D(dim_len, data_start, data_count)) ERR;
/* Determine 2D data decomposition to write lat/lon coordinate vars. */
if (decomp_latlon(dim_len, latlon_start, latlon_count, &lat, &lon)) ERR;
/* Decompose grid_xt and grid_yt coordiate vars. */
if (decomp_grid(dim_len, &grid_xt_start, &grid_xt_size,
&grid_yt_start, &grid_yt_size, &grid_xt, &grid_yt)) ERR;
/* Decompose phalf and pfull. */
if (decomp_p(data_count, dim_len, &phalf_start,
&phalf_size, &phalf, &pfull_start, &pfull_size, &pfull)) ERR;
/* printf("%d: data_count[3] %ld data_count[2] %ld data_count[1] %ld\n", my_rank, */
/* data_count[3], data_count[2], data_count[1]); */
/* Allocate space to hold the data. */
if (!(value_data = malloc(data_count[3] * data_count[2] * data_count[1] *
sizeof(float)))) ERR;
/* Create some data. */
size_t cnt = 0;
for (k = 0; k < data_count[1]; k++)
{
for (j = 0; j < data_count[2]; j++)
{
for(i = 0; i < data_count[3]; i++)
{
/* value_data[cnt] = (-1 * i%2) * my_rank * 1000 + cnt / sqrt(my_rank + cnt + 1) - (-1 * i%3 * i); */
value_data[cnt] = (-1 * i%2) + cnt / sqrt(cnt + 1) - (-1 * i%2 * i);
/* printf("%d: value_data[%ld] %g\n", my_rank, cnt, value_data[cnt]); */
cnt++;
}
}
}
printf("Benchmarking creation of file similar to one produced by the UFS.\n");
printf("comp, level, nsd, shuffle, data wr rate (MB/s), file size (MB)\n");
/* for (f = 0; f < num_compression_filters; f++) */
for (try = 0; try < NUM_TRIES; try++)
{
printf("try %d:\n", try);
for (f = 0; f < 2; f++)
{
/* for (s = 0; s < NUM_SHUFFLE_SETTINGS; s++) */
for (s = 0; s < 1; s++)
{
/* for (n = 0; n < NUM_NSD_SETTINGS; n++) */
for (n = 0; n < 1; n++)
{
for (dl = 0; dl < NUM_DEFLATE_LEVELS; dl++)
{
size_t file_size;
char file_name[NC_MAX_NAME * 3 + 1];
/* No deflate levels for szip or none. */
if (!strcmp(compression_filter_name[f], "szip") && dl) continue;
if (!strcmp(compression_filter_name[f], "none") && dl) continue;
/* Use the same filename every time, so we don't
* create many large files, just one. ;-) */
sprintf(file_name, "%s.nc", TEST_NAME);
/* Remove the last file. Ignore errors. */
remove(file_name);
/* nc_set_log_level(3); */
/* Create a netcdf-4 file. */
if (nc_create(file_name, NC_NETCDF4, &ncid)) ERR;
if (write_meta(ncid, data_varid, s, f, nsd[n], deflate_level[f][dl], 0,
phalf_size, phalf_start, phalf,
data_start, data_count, pfull_start, pfull_size, pfull, grid_xt_start,
grid_xt_size, grid_xt, grid_yt_start,
grid_yt_size, grid_yt, latlon_start,
latlon_count, lat, lon)) ERR;
if (gettimeofday(&start_time, NULL)) ERR;
/* Write one record each of the data variables. */
for (dv = 0; dv < NUM_DATA_VARS; dv++)
{
/* printf("%d: data_start %ld %ld %ld %ld data_count %ld %ld %ld %ld\n", my_rank, data_start[0], data_start[1], */
/* data_start[2], data_start[3], data_count[0], data_count[1], data_count[2], data_count[3]); */
if (nc_put_vara_float(ncid, data_varid[dv], data_start, data_count,
value_data)) ERR;
if (nc_redef(ncid)) ERR;
}
/* Close the file. */
if (nc_close(ncid)) ERR;
/* Stop the data timer. */
if (gettimeofday(&end_time, NULL)) ERR;
if (nc4_timeval_subtract(&diff_time, &end_time, &start_time)) ERR;
write_1_us = (int)diff_time.tv_sec * MILLION + (int)diff_time.tv_usec;
/* printf("write_1_us %d\n", write_1_us); */
/* Get the file size. */
if (get_file_size(file_name, &file_size)) ERR;
/* Check the file metadata for correctness. */
if (nc_open(file_name, NC_NOWRITE, &ncid)) ERR;
if (check_meta(ncid, data_varid, s, f, deflate_level[f][dl], 0,
phalf_size, phalf_start, phalf,
data_start, data_count, pfull_start, pfull_size,
pfull, grid_xt_start, grid_xt_size, grid_xt,
grid_yt_start, grid_yt_size, grid_yt, latlon_start,
latlon_count, lat, lon)) ERR;
if (nc_close(ncid)) ERR;
/* Print out results. */
{
float data_size, data_rate;
data_size = (NUM_DATA_VARS * dim_len[0] * dim_len[1] * dim_len[2] *
dim_len[4] * sizeof(float))/MILLION;
/* printf("data_size %f write_1_us / MILLION %g\n", data_size, (float)write_1_us/MILLION); */
data_rate = (float)data_size / ((float)write_1_us / MILLION);
printf("%s, %d, %d, %d, %g, %g\n", compression_filter_name[f],
deflate_level[f][dl], nsd[n], s,
data_rate, (float)file_size/MILLION);
}
} /* next deflate level */
} /* next nsd */
} /* next shuffle filter test */
} /* next compression filter (zlib and szip) */
} /* next try */
/* Free resources. */
if (grid_xt)
free(grid_xt);
if (grid_yt)
free(grid_yt);
if (pfull)
free(pfull);
if (phalf)
free(phalf);
if (lon)
free(lon);
if (lat)
free(lat);
free(value_data);
SUMMARIZE_ERR;
FINAL_RESULTS;
return 0;
}