forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_download.py
71 lines (57 loc) · 2.31 KB
/
data_download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Download and clean the Census Income Dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
from six.moves import urllib
import tensorflow as tf
DATA_URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult'
TRAINING_FILE = 'adult.data'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_FILE = 'adult.test'
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir', type=str, default='/tmp/census_data',
help='Directory to download census data')
def _download_and_clean_file(filename, url):
"""Downloads data from url, and makes changes to match the CSV format."""
temp_file, _ = urllib.request.urlretrieve(url)
with tf.gfile.Open(temp_file, 'r') as temp_eval_file:
with tf.gfile.Open(filename, 'w') as eval_file:
for line in temp_eval_file:
line = line.strip()
line = line.replace(', ', ',')
if not line or ',' not in line:
continue
if line[-1] == '.':
line = line[:-1]
line += '\n'
eval_file.write(line)
tf.gfile.Remove(temp_file)
def main(unused_argv):
if not tf.gfile.Exists(FLAGS.data_dir):
tf.gfile.MkDir(FLAGS.data_dir)
training_file_path = os.path.join(FLAGS.data_dir, TRAINING_FILE)
_download_and_clean_file(training_file_path, TRAINING_URL)
eval_file_path = os.path.join(FLAGS.data_dir, EVAL_FILE)
_download_and_clean_file(eval_file_path, EVAL_URL)
if __name__ == '__main__':
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(argv=[sys.argv[0]] + unparsed)