-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
89 lines (71 loc) · 3.53 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import json
from llm import llm
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.exceptions import OutputParserException
def posts(raw_file_paths, processed_file_paths=None):
for raw_file_path, processed_file_path in zip(raw_file_paths, processed_file_paths):
with open(raw_file_path, encoding='utf-8') as file:
posts = json.load(file)
enriched_posts = []
for post in posts:
metadata = metadata(post['text'])
post_with_metadata = post | metadata
enriched_posts.append(post_with_metadata)
unified_tags = get_unified_tags(enriched_posts)
for post in enriched_posts:
current_tags = post['tags']
new_tags = {unified_tags[tag] for tag in current_tags}
post['tags'] = list(new_tags)
with open(processed_file_path, encoding='utf-8', mode="w") as outfile:
json.dump(enriched_posts, outfile, indent=4)
def metadata(post):
template = '''
You are given a LinkedIn post. You need to extract number of lines, language of the post and tags.
1. Return a valid JSON. No preamble.
2. JSON object should have exactly three keys: line_count, language and tags.
3. tags is an array of text tags. Extract maximum two tags.
4. Language should be English
Here is the actual post on which you need to perform this task:
{post}
'''
pt = PromptTemplate.from_template(template)
chain = pt | llm
response = chain.invoke(input={"post": post})
try:
json_parser = JsonOutputParser()
res = json_parser.parse(response.content)
except OutputParserException:
raise OutputParserException("Context too big. Unable to parse jobs.")
return res
def get_unified_tags(posts_with_metadata):
unique_tags = set()
for post in posts_with_metadata:
unique_tags.update(post['tags'])
unique_tags_list = ','.join(unique_tags)
template = '''I will give you a list of tags. You need to unify tags with the following requirements,
1. Tags are unified and merged to create a shorter list.
Example 1: "Jobseekers", "Job Hunting" can be all merged into a single tag "Job Search".
Example 2: "Motivation", "Inspiration", "Drive" can be mapped to "Motivation"
Example 3: "Personal Growth", "Personal Development", "Self Improvement" can be mapped to "Self Improvement"
Example 4: "Scam Alert", "Job Scam" etc. can be mapped to "Scams"
2. Each tag should follow title case convention. example: "Motivation", "Job Search"
3. Output should be a JSON object, No preamble
3. Output should have mapping of original tag and the unified tag.
For example: {{"Jobseekers": "Job Search", "Job Hunting": "Job Search", "Motivation": "Motivation}}
Here is the list of tags:
{tags}
'''
pt = PromptTemplate.from_template(template)
chain = pt | llm
response = chain.invoke(input={"tags": str(unique_tags_list)})
try:
json_parser = JsonOutputParser()
res = json_parser.parse(response.content)
except OutputParserException:
raise OutputParserException("Context too big. Unable to parse jobs.")
return res
if __name__ == "__main__":
raw_files = ["Data/hisham_sarwar.json", "Data/irfan_malik.json", "Data/usman_asif.json"]
processed_files = ["Data/hisham_sarwar_processed.json", "Data/irfan_malik_processed.json", "Data/usman_asif_processed.json"]
posts(raw_files, processed_files)