forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
899 lines (720 loc) · 30.2 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import inspect
import itertools
import math
import os
import pprint
import random
import shutil
import subprocess
import tempfile
import types
import warnings
from ast import literal_eval
from collections.abc import Callable, Iterable, Sequence
from distutils.util import strtobool
from math import log10
from pathlib import Path
from typing import TYPE_CHECKING, Any, TypeVar, cast, overload
import numpy as np
import torch
from monai.config.type_definitions import NdarrayOrTensor, NdarrayTensor, PathLike
from monai.utils.module import optional_import, version_leq
if TYPE_CHECKING:
from yaml import SafeLoader
else:
SafeLoader, _ = optional_import("yaml", name="SafeLoader", as_type="base")
__all__ = [
"zip_with",
"star_zip_with",
"first",
"issequenceiterable",
"is_immutable",
"ensure_tuple",
"ensure_tuple_size",
"ensure_tuple_rep",
"to_tuple_of_dictionaries",
"fall_back_tuple",
"is_scalar_tensor",
"is_scalar",
"progress_bar",
"get_seed",
"set_determinism",
"list_to_dict",
"MAX_SEED",
"copy_to_device",
"str2bool",
"str2list",
"MONAIEnvVars",
"ImageMetaKey",
"is_module_ver_at_least",
"has_option",
"sample_slices",
"check_parent_dir",
"save_obj",
"label_union",
"path_to_uri",
"pprint_edges",
"check_key_duplicates",
"CheckKeyDuplicatesYamlLoader",
"ConvertUnits",
"check_kwargs_exist_in_class_init",
"run_cmd",
]
_seed = None
_flag_deterministic = torch.backends.cudnn.deterministic
_flag_cudnn_benchmark = torch.backends.cudnn.benchmark
NP_MAX = np.iinfo(np.uint32).max
MAX_SEED = NP_MAX + 1 # 2**32, the actual seed should be in [0, MAX_SEED - 1] for uint32
def zip_with(op, *vals, mapfunc=map):
"""
Map `op`, using `mapfunc`, to each tuple derived from zipping the iterables in `vals`.
"""
return mapfunc(op, zip(*vals))
def star_zip_with(op, *vals):
"""
Use starmap as the mapping function in zipWith.
"""
return zip_with(op, *vals, mapfunc=itertools.starmap)
T = TypeVar("T")
@overload
def first(iterable: Iterable[T], default: T) -> T: ...
@overload
def first(iterable: Iterable[T]) -> T | None: ...
def first(iterable: Iterable[T], default: T | None = None) -> T | None:
"""
Returns the first item in the given iterable or `default` if empty, meaningful mostly with 'for' expressions.
"""
for i in iterable:
return i
return default
def issequenceiterable(obj: Any) -> bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
try:
if hasattr(obj, "ndim") and obj.ndim == 0:
return False # a 0-d tensor is not iterable
except Exception:
return False
return isinstance(obj, Iterable) and not isinstance(obj, (str, bytes))
def is_immutable(obj: Any) -> bool:
"""
Determine if the object is an immutable object.
see also https://github.com/python/cpython/blob/3.11/Lib/copy.py#L109
"""
return isinstance(obj, (type(None), int, float, bool, complex, str, tuple, bytes, type, range, slice))
def ensure_tuple(vals: Any, wrap_array: bool = False) -> tuple:
"""
Returns a tuple of `vals`.
Args:
vals: input data to convert to a tuple.
wrap_array: if `True`, treat the input numerical array (ndarray/tensor) as one item of the tuple.
if `False`, try to convert the array with `tuple(vals)`, default to `False`.
"""
if wrap_array and isinstance(vals, (np.ndarray, torch.Tensor)):
return (vals,)
return tuple(vals) if issequenceiterable(vals) else (vals,)
def ensure_tuple_size(vals: Any, dim: int, pad_val: Any = 0, pad_from_start: bool = False) -> tuple:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(vals)
pad_dim = dim - len(tup)
if pad_dim <= 0:
return tup[:dim]
if pad_from_start:
return (pad_val,) * pad_dim + tup
return tup + (pad_val,) * pad_dim
def ensure_tuple_rep(tup: Any, dim: int) -> tuple[Any, ...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or duplicated input.
Raises:
ValueError: When ``tup`` is a sequence and ``tup`` length is not ``dim``.
Examples::
>>> ensure_tuple_rep(1, 3)
(1, 1, 1)
>>> ensure_tuple_rep(None, 3)
(None, None, None)
>>> ensure_tuple_rep('test', 3)
('test', 'test', 'test')
>>> ensure_tuple_rep([1, 2, 3], 3)
(1, 2, 3)
>>> ensure_tuple_rep(range(3), 3)
(0, 1, 2)
>>> ensure_tuple_rep([1, 2], 3)
ValueError: Sequence must have length 3, got length 2.
"""
if isinstance(tup, torch.Tensor):
tup = tup.detach().cpu().numpy()
if isinstance(tup, np.ndarray):
tup = tup.tolist()
if not issequenceiterable(tup):
return (tup,) * dim
if len(tup) == dim:
return tuple(tup)
raise ValueError(f"Sequence must have length {dim}, got {len(tup)}.")
def to_tuple_of_dictionaries(dictionary_of_tuples: dict, keys: Any) -> tuple[dict[Any, Any], ...]:
"""
Given a dictionary whose values contain scalars or tuples (with the same length as ``keys``),
Create a dictionary for each key containing the scalar values mapping to that key.
Args:
dictionary_of_tuples: a dictionary whose values are scalars or tuples whose length is
the length of ``keys``
keys: a tuple of string values representing the keys in question
Returns:
a tuple of dictionaries that contain scalar values, one dictionary for each key
Raises:
ValueError: when values in the dictionary are tuples but not the same length as the length
of ``keys``
Examples:
>>> to_tuple_of_dictionaries({'a': 1 'b': (2, 3), 'c': (4, 4)}, ("x", "y"))
({'a':1, 'b':2, 'c':4}, {'a':1, 'b':3, 'c':4})
"""
keys = ensure_tuple(keys)
if len(keys) == 0:
return tuple({})
dict_overrides = {k: ensure_tuple_rep(v, len(keys)) for k, v in dictionary_of_tuples.items()}
return tuple({k: v[ik] for (k, v) in dict_overrides.items()} for ik in range(len(keys)))
def fall_back_tuple(
user_provided: Any, default: Sequence | NdarrayTensor, func: Callable = lambda x: x and x > 0
) -> tuple[Any, ...]:
"""
Refine `user_provided` according to the `default`, and returns as a validated tuple.
The validation is done for each element in `user_provided` using `func`.
If `func(user_provided[idx])` returns False, the corresponding `default[idx]` will be used
as the fallback.
Typically used when `user_provided` is a tuple of window size provided by the user,
`default` is defined by data, this function returns an updated `user_provided` with its non-positive
components replaced by the corresponding components from `default`.
Args:
user_provided: item to be validated.
default: a sequence used to provided the fallbacks.
func: a Callable to validate every components of `user_provided`.
Examples::
>>> fall_back_tuple((1, 2), (32, 32))
(1, 2)
>>> fall_back_tuple(None, (32, 32))
(32, 32)
>>> fall_back_tuple((-1, 10), (32, 32))
(32, 10)
>>> fall_back_tuple((-1, None), (32, 32))
(32, 32)
>>> fall_back_tuple((1, None), (32, 32))
(1, 32)
>>> fall_back_tuple(0, (32, 32))
(32, 32)
>>> fall_back_tuple(range(3), (32, 64, 48))
(32, 1, 2)
>>> fall_back_tuple([0], (32, 32))
ValueError: Sequence must have length 2, got length 1.
"""
ndim = len(default)
user = ensure_tuple_rep(user_provided, ndim)
return tuple( # use the default values if user provided is not valid
user_c if func(user_c) else default_c for default_c, user_c in zip(default, user)
)
def is_scalar_tensor(val: Any) -> bool:
return isinstance(val, torch.Tensor) and val.ndim == 0
def is_scalar(val: Any) -> bool:
if isinstance(val, torch.Tensor) and val.ndim == 0:
return True
return bool(np.isscalar(val))
def progress_bar(index: int, count: int, desc: str | None = None, bar_len: int = 30, newline: bool = False) -> None:
"""print a progress bar to track some time consuming task.
Args:
index: current status in progress.
count: total steps of the progress.
desc: description of the progress bar, if not None, show before the progress bar.
bar_len: the total length of the bar on screen, default is 30 char.
newline: whether to print in a new line for every index.
"""
end = "\r" if not newline else "\r\n"
filled_len = int(bar_len * index // count)
bar = f"{desc} " if desc is not None else ""
bar += "[" + "=" * filled_len + " " * (bar_len - filled_len) + "]"
print(f"{index}/{count} {bar}", end=end)
if index == count:
print("")
def get_seed() -> int | None:
return _seed
def set_determinism(
seed: int | None = NP_MAX,
use_deterministic_algorithms: bool | None = None,
additional_settings: Sequence[Callable[[int], Any]] | Callable[[int], Any] | None = None,
) -> None:
"""
Set random seed for modules to enable or disable deterministic training.
Args:
seed: the random seed to use, default is np.iinfo(np.int32).max.
It is recommended to set a large seed, i.e. a number that has a good balance
of 0 and 1 bits. Avoid having many 0 bits in the seed.
if set to None, will disable deterministic training.
use_deterministic_algorithms: Set whether PyTorch operations must use "deterministic" algorithms.
additional_settings: additional settings that need to set random seed.
Note:
This function will not affect the randomizable objects in :py:class:`monai.transforms.Randomizable`, which
have independent random states. For those objects, the ``set_random_state()`` method should be used to
ensure the deterministic behavior (alternatively, :py:class:`monai.data.DataLoader` by default sets the seeds
according to the global random state, please see also: :py:class:`monai.data.utils.worker_init_fn` and
:py:class:`monai.data.utils.set_rnd`).
"""
if seed is None:
# cast to 32 bit seed for CUDA
seed_ = torch.default_generator.seed() % MAX_SEED
torch.manual_seed(seed_)
else:
seed = int(seed) % MAX_SEED
torch.manual_seed(seed)
global _seed
_seed = seed
random.seed(seed)
np.random.seed(seed)
if additional_settings is not None:
additional_settings = ensure_tuple(additional_settings)
for func in additional_settings:
func(seed)
if torch.backends.flags_frozen():
warnings.warn("PyTorch global flag support of backends is disabled, enable it to set global `cudnn` flags.")
torch.backends.__allow_nonbracketed_mutation_flag = True
if seed is not None:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # restore the original flags
torch.backends.cudnn.deterministic = _flag_deterministic
torch.backends.cudnn.benchmark = _flag_cudnn_benchmark
if use_deterministic_algorithms is not None:
if hasattr(torch, "use_deterministic_algorithms"): # `use_deterministic_algorithms` is new in torch 1.8.0
torch.use_deterministic_algorithms(use_deterministic_algorithms)
elif hasattr(torch, "set_deterministic"): # `set_deterministic` is new in torch 1.7.0
torch.set_deterministic(use_deterministic_algorithms)
else:
warnings.warn("use_deterministic_algorithms=True, but PyTorch version is too old to set the mode.")
def list_to_dict(items):
"""
To convert a list of "key=value" pairs into a dictionary.
For examples: items: `["a=1", "b=2", "c=3"]`, return: {"a": "1", "b": "2", "c": "3"}.
If no "=" in the pair, use None as the value, for example: ["a"], return: {"a": None}.
Note that it will remove the blanks around keys and values.
"""
def _parse_var(s):
items = s.split("=", maxsplit=1)
key = items[0].strip(" \n\r\t'")
value = items[1].strip(" \n\r\t'") if len(items) > 1 else None
return key, value
d = {}
if items:
for item in items:
key, value = _parse_var(item)
try:
if key in d:
raise KeyError(f"encounter duplicated key {key}.")
d[key] = literal_eval(value)
except ValueError:
try:
d[key] = bool(strtobool(str(value)))
except ValueError:
d[key] = value
return d
def copy_to_device(
obj: Any, device: str | torch.device | None, non_blocking: bool = True, verbose: bool = False
) -> Any:
"""
Copy object or tuple/list/dictionary of objects to ``device``.
Args:
obj: object or tuple/list/dictionary of objects to move to ``device``.
device: move ``obj`` to this device. Can be a string (e.g., ``cpu``, ``cuda``,
``cuda:0``, etc.) or of type ``torch.device``.
non_blocking: when `True`, moves data to device asynchronously if
possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
verbose: when `True`, will print a warning for any elements of incompatible type
not copied to ``device``.
Returns:
Same as input, copied to ``device`` where possible. Original input will be
unchanged.
"""
if hasattr(obj, "to"):
return obj.to(device, non_blocking=non_blocking)
if isinstance(obj, tuple):
return tuple(copy_to_device(o, device, non_blocking) for o in obj)
if isinstance(obj, list):
return [copy_to_device(o, device, non_blocking) for o in obj]
if isinstance(obj, dict):
return {k: copy_to_device(o, device, non_blocking) for k, o in obj.items()}
if verbose:
fn_name = cast(types.FrameType, inspect.currentframe()).f_code.co_name
warnings.warn(f"{fn_name} called with incompatible type: " + f"{type(obj)}. Data will be returned unchanged.")
return obj
def str2bool(value: str | bool, default: bool = False, raise_exc: bool = True) -> bool:
"""
Convert a string to a boolean. Case insensitive.
True: yes, true, t, y, 1. False: no, false, f, n, 0.
Args:
value: string to be converted to a boolean. If value is a bool already, simply return it.
raise_exc: if value not in tuples of expected true or false inputs,
should we raise an exception? If not, return `default`.
Raises
ValueError: value not in tuples of expected true or false inputs and
`raise_exc` is `True`.
Useful with argparse, for example:
parser.add_argument("--convert", default=False, type=str2bool)
python mycode.py --convert=True
"""
if isinstance(value, bool):
return value
true_set = ("yes", "true", "t", "y", "1")
false_set = ("no", "false", "f", "n", "0")
if isinstance(value, str):
value = value.lower()
if value in true_set:
return True
if value in false_set:
return False
if raise_exc:
raise ValueError(f"Got \"{value}\", expected a value from: {', '.join(true_set + false_set)}")
return default
def str2list(value: str | list | None, raise_exc: bool = True) -> list | None:
"""
Convert a string to a list. Useful with argparse commandline arguments:
parser.add_argument("--blocks", default=[1,2,3], type=str2list)
python mycode.py --blocks=1,2,2,4
Args:
value: string (comma separated) to be converted to a list
raise_exc: if not possible to convert to a list, raise an exception
Raises
ValueError: value not a string or list or not possible to convert
"""
if value is None:
return None
elif isinstance(value, list):
return value
elif isinstance(value, str):
v = value.split(",")
for i in range(len(v)):
try:
a = literal_eval(v[i].strip()) # attempt to convert
v[i] = a
except Exception:
pass
return v
elif raise_exc:
raise ValueError(f'Unable to convert "{value}", expected a comma-separated str, e.g. 1,2,3')
return None
class MONAIEnvVars:
"""
Environment variables used by MONAI.
"""
@staticmethod
def data_dir() -> str | None:
return os.environ.get("MONAI_DATA_DIRECTORY")
@staticmethod
def debug() -> bool:
val = os.environ.get("MONAI_DEBUG", False)
return val if isinstance(val, bool) else str2bool(val)
@staticmethod
def doc_images() -> str | None:
return os.environ.get("MONAI_DOC_IMAGES")
@staticmethod
def algo_hash() -> str | None:
return os.environ.get("MONAI_ALGO_HASH", "e4cf5a1")
@staticmethod
def trace_transform() -> str | None:
return os.environ.get("MONAI_TRACE_TRANSFORM", "1")
@staticmethod
def eval_expr() -> str | None:
return os.environ.get("MONAI_EVAL_EXPR", "1")
@staticmethod
def allow_missing_reference() -> str | None:
return os.environ.get("MONAI_ALLOW_MISSING_REFERENCE", "1")
@staticmethod
def extra_test_data() -> str | None:
return os.environ.get("MONAI_EXTRA_TEST_DATA", "1")
@staticmethod
def testing_algo_template() -> str | None:
return os.environ.get("MONAI_TESTING_ALGO_TEMPLATE", None)
class ImageMetaKey:
"""
Common key names in the metadata header of images
"""
FILENAME_OR_OBJ = "filename_or_obj"
PATCH_INDEX = "patch_index"
SPATIAL_SHAPE = "spatial_shape"
def has_option(obj: Callable, keywords: str | Sequence[str]) -> bool:
"""
Return a boolean indicating whether the given callable `obj` has the `keywords` in its signature.
"""
if not callable(obj):
return False
sig = inspect.signature(obj)
return all(key in sig.parameters for key in ensure_tuple(keywords))
def is_module_ver_at_least(module, version):
"""Determine if a module's version is at least equal to the given value.
Args:
module: imported module's name, e.g., `np` or `torch`.
version: required version, given as a tuple, e.g., `(1, 8, 0)`.
Returns:
`True` if module is the given version or newer.
"""
test_ver = ".".join(map(str, version))
return module.__version__ != test_ver and version_leq(test_ver, module.__version__)
def sample_slices(data: NdarrayOrTensor, dim: int = 1, as_indices: bool = True, *slicevals: int) -> NdarrayOrTensor:
"""sample several slices of input numpy array or Tensor on specified `dim`.
Args:
data: input data to sample slices, can be numpy array or PyTorch Tensor.
dim: expected dimension index to sample slices, default to `1`.
as_indices: if `True`, `slicevals` arg will be treated as the expected indices of slice, like: `1, 3, 5`
means `data[..., [1, 3, 5], ...]`, if `False`, `slicevals` arg will be treated as args for `slice` func,
like: `1, None` means `data[..., [1:], ...]`, `1, 5` means `data[..., [1: 5], ...]`.
slicevals: indices of slices or start and end indices of expected slices, depends on `as_indices` flag.
"""
slices = [slice(None)] * len(data.shape)
slices[dim] = slicevals if as_indices else slice(*slicevals) # type: ignore
return data[tuple(slices)]
def check_parent_dir(path: PathLike, create_dir: bool = True) -> None:
"""
Utility to check whether the parent directory of the `path` exists.
Args:
path: input path to check the parent directory.
create_dir: if True, when the parent directory doesn't exist, create the directory,
otherwise, raise exception.
"""
path = Path(path)
path_dir = path.parent
if not path_dir.exists():
if create_dir:
path_dir.mkdir(parents=True)
else:
raise ValueError(f"the directory of specified path does not exist: `{path_dir}`.")
def save_obj(
obj: object,
path: PathLike,
create_dir: bool = True,
atomic: bool = True,
func: Callable | None = None,
**kwargs: Any,
) -> None:
"""
Save an object to file with specified path.
Support to serialize to a temporary file first, then move to final destination,
so that files are guaranteed to not be damaged if exception occurs.
Args:
obj: input object data to save.
path: target file path to save the input object.
create_dir: whether to create dictionary of the path if not existing, default to `True`.
atomic: if `True`, state is serialized to a temporary file first, then move to final destination.
so that files are guaranteed to not be damaged if exception occurs. default to `True`.
func: the function to save file, if None, default to `torch.save`.
kwargs: other args for the save `func` except for the checkpoint and filename.
default `func` is `torch.save()`, details of other args:
https://pytorch.org/docs/stable/generated/torch.save.html.
"""
path = Path(path)
check_parent_dir(path=path, create_dir=create_dir)
if path.exists():
# remove the existing file
os.remove(path)
if func is None:
func = torch.save
if not atomic:
func(obj=obj, f=path, **kwargs)
return
try:
# writing to a temporary directory and then using a nearly atomic rename operation
with tempfile.TemporaryDirectory() as tempdir:
temp_path: Path = Path(tempdir) / path.name
func(obj=obj, f=temp_path, **kwargs)
if temp_path.is_file():
shutil.move(str(temp_path), path)
except PermissionError: # project-monai/monai issue #3613
pass
def label_union(x: list | np.ndarray) -> list:
"""
Compute the union of class IDs in label and generate a list to include all class IDs
Args:
x: a list of numbers (for example, class_IDs)
Returns
a list showing the union (the union the class IDs)
"""
return list(set.union(set(np.array(x).tolist())))
def prob2class(x: torch.Tensor, sigmoid: bool = False, threshold: float = 0.5, **kwargs: Any) -> torch.Tensor:
"""
Compute the lab from the probability of predicted feature maps
Args:
sigmoid: If the sigmoid function should be used.
threshold: threshold value to activate the sigmoid function.
"""
return torch.argmax(x, **kwargs) if not sigmoid else (x > threshold).int()
def path_to_uri(path: PathLike) -> str:
"""
Convert a file path to URI. if not absolute path, will convert to absolute path first.
Args:
path: input file path to convert, can be a string or `Path` object.
"""
return Path(path).absolute().as_uri()
def pprint_edges(val: Any, n_lines: int = 20) -> str:
"""
Pretty print the head and tail ``n_lines`` of ``val``, and omit the middle part if the part has more than 3 lines.
Returns: the formatted string.
"""
val_str = pprint.pformat(val).splitlines(True)
n_lines = max(n_lines, 1)
if len(val_str) > n_lines * 2 + 3:
hidden_n = len(val_str) - n_lines * 2
val_str = val_str[:n_lines] + [f"\n ... omitted {hidden_n} line(s)\n\n"] + val_str[-n_lines:]
return "".join(val_str)
def check_key_duplicates(ordered_pairs: Sequence[tuple[Any, Any]]) -> dict[Any, Any]:
"""
Checks if there is a duplicated key in the sequence of `ordered_pairs`.
If there is - it will log a warning or raise ValueError
(if configured by environmental var `MONAI_FAIL_ON_DUPLICATE_CONFIG==1`)
Otherwise, it returns the dict made from this sequence.
Satisfies a format for an `object_pairs_hook` in `json.load`
Args:
ordered_pairs: sequence of (key, value)
"""
keys = set()
for k, _ in ordered_pairs:
if k in keys:
if os.environ.get("MONAI_FAIL_ON_DUPLICATE_CONFIG", "0") == "1":
raise ValueError(f"Duplicate key: `{k}`")
else:
warnings.warn(f"Duplicate key: `{k}`")
else:
keys.add(k)
return dict(ordered_pairs)
class CheckKeyDuplicatesYamlLoader(SafeLoader):
def construct_mapping(self, node, deep=False):
mapping = set()
for key_node, _ in node.value:
key = self.construct_object(key_node, deep=deep)
if key in mapping:
if os.environ.get("MONAI_FAIL_ON_DUPLICATE_CONFIG", "0") == "1":
raise ValueError(f"Duplicate key: `{key}`")
else:
warnings.warn(f"Duplicate key: `{key}`")
mapping.add(key)
return super().construct_mapping(node, deep)
class ConvertUnits:
"""
Convert the values from input unit to the target unit
Args:
input_unit: the unit of the input quantity
target_unit: the unit of the target quantity
"""
imperial_unit_of_length = {"inch": 0.0254, "foot": 0.3048, "yard": 0.9144, "mile": 1609.344}
unit_prefix = {
"peta": 15,
"tera": 12,
"giga": 9,
"mega": 6,
"kilo": 3,
"hecto": 2,
"deca": 1,
"deci": -1,
"centi": -2,
"milli": -3,
"micro": -6,
"nano": -9,
"pico": -12,
"femto": -15,
}
base_units = ["meter", "byte", "bit"]
def __init__(self, input_unit: str, target_unit: str) -> None:
self.input_unit, input_base = self._get_valid_unit_and_base(input_unit)
self.target_unit, target_base = self._get_valid_unit_and_base(target_unit)
if input_base == target_base:
self.unit_base = input_base
else:
raise ValueError(
"Both input and target units should be from the same quantity. "
f"Input quantity is {input_base} while target quantity is {target_base}"
)
self._calculate_conversion_factor()
def _get_valid_unit_and_base(self, unit):
unit = str(unit).lower()
if unit in self.imperial_unit_of_length:
return unit, "meter"
for base_unit in self.base_units:
if unit.endswith(base_unit):
return unit, base_unit
raise ValueError(f"Currently, it only supports length conversion but `{unit}` is given.")
def _get_unit_power(self, unit):
"""Calculate the power of the unit factor with respect to the base unit"""
if unit in self.imperial_unit_of_length:
return log10(self.imperial_unit_of_length[unit])
prefix = unit[: len(self.unit_base)]
if prefix == "":
return 1.0
return self.unit_prefix[prefix]
def _calculate_conversion_factor(self):
"""Calculate unit conversion factor with respect to the input unit"""
if self.input_unit == self.target_unit:
return 1.0
input_power = self._get_unit_power(self.input_unit)
target_power = self._get_unit_power(self.target_unit)
self.conversion_factor = 10 ** (input_power - target_power)
def __call__(self, value: int | float) -> Any:
return float(value) * self.conversion_factor
def check_kwargs_exist_in_class_init(cls, kwargs):
"""
Check if the all keys in kwargs exist in the __init__ method of the class.
Args:
cls: the class to check.
kwargs: kwargs to examine.
Returns:
a boolean indicating if all keys exist.
a set of extra keys that are not used in the __init__.
"""
init_signature = inspect.signature(cls.__init__)
init_params = set(init_signature.parameters) - {"self"} # Exclude 'self' from the parameter list
input_kwargs = set(kwargs)
extra_kwargs = input_kwargs - init_params
return extra_kwargs == set(), extra_kwargs
def run_cmd(cmd_list: list[str], **kwargs: Any) -> subprocess.CompletedProcess:
"""
Run a command by using ``subprocess.run`` with capture_output=True and stderr=subprocess.STDOUT
so that the raise exception will have that information. The argument `capture_output` can be set explicitly
if desired, but will be overriden with the debug status from the variable.
Args:
cmd_list: a list of strings describing the command to run.
kwargs: keyword arguments supported by the ``subprocess.run`` method.
Returns:
a CompletedProcess instance after the command completes.
"""
debug = MONAIEnvVars.debug()
kwargs["capture_output"] = kwargs.get("capture_output", debug)
if kwargs.pop("run_cmd_verbose", False):
import monai
monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}")
try:
return subprocess.run(cmd_list, **kwargs)
except subprocess.CalledProcessError as e:
if not debug:
raise
output = str(e.stdout.decode(errors="replace"))
errors = str(e.stderr.decode(errors="replace"))
raise RuntimeError(f"subprocess call error {e.returncode}: {errors}, {output}.") from e
def is_sqrt(num: Sequence[int] | int) -> bool:
"""
Determine if the input is a square number or a squence of square numbers.
"""
num = ensure_tuple(num)
sqrt_num = [int(math.sqrt(_num)) for _num in num]
ret = [_i * _j for _i, _j in zip(sqrt_num, sqrt_num)]
return ensure_tuple(ret) == num
def unsqueeze_right(arr: NdarrayOrTensor, ndim: int) -> NdarrayOrTensor:
"""Append 1-sized dimensions to `arr` to create a result with `ndim` dimensions."""
return arr[(...,) + (None,) * (ndim - arr.ndim)]
def unsqueeze_left(arr: NdarrayOrTensor, ndim: int) -> NdarrayOrTensor:
"""Prepend 1-sized dimensions to `arr` to create a result with `ndim` dimensions."""
return arr[(None,) * (ndim - arr.ndim)]