-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdual_student.py
525 lines (423 loc) · 22.4 KB
/
dual_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
import time
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler
import torchvision.datasets
from third_party.mean_teacher import data
from third_party.mean_teacher import mt_func
from third_party.mean_teacher.utils import *
from third_party.mean_teacher.data import NO_LABEL
from src import architectures, ramps, losses, cli, run_context, datasets
LOG = logging.getLogger('main')
args = None
best_prec1 = 0
global_step = 0
def create_data_loaders(train_transformation, eval_transformation, datadir, args):
traindir = os.path.join(datadir, args.train_subdir)
evaldir = os.path.join(datadir, args.eval_subdir)
assert_exactly_one([args.exclude_unlabeled, args.labeled_batch_size])
dataset = torchvision.datasets.ImageFolder(traindir, train_transformation)
ds_size = len(dataset.imgs)
if args.labels:
with open(args.labels) as f:
labels = dict(line.split(' ') for line in f.read().splitlines())
labeled_idxs, unlabeled_idxs = data.relabel_dataset(dataset, labels)
if args.exclude_unlabeled:
sampler = SubsetRandomSampler(labeled_idxs)
batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=True)
elif args.labeled_batch_size:
# domain adaptation dataset
if args.target_domain is not None:
LOG.info('\nYou set target domain: {0} on script.\n'
'This is a domain adaptation experiment.\n'.format(args.target_domain))
target_dataset_config = datasets.__dict__[args.target_domain]()
if args.target_domain == 'mnist':
valid_sources = ['usps']
if not args.dataset in valid_sources:
LOG.error('\nYou set \'mnist\' as the target domain. \n'
'However, you use the source domain: \'{0}\'.\n'
'The source domain should be \'{1}\''.format(args.dataset, valid_sources))
target_traindir = '{0}/train'.format(target_dataset_config['datadir'])
evaldir = '{0}/test'.format(target_dataset_config['datadir'])
eval_transformation = target_dataset_config['eval_transformation']
else:
LOG.error('Unsupport target domain: {0}.\n'.format(args.target_domain))
target_dataset = torchvision.datasets.ImageFolder(target_traindir, target_dataset_config['train_transformation'])
target_labeled_idxs, target_unlabeled_idxs = data.relabel_dataset(target_dataset, {})
dataset = ConcatDataset([dataset, target_dataset])
unlabeled_idxs += [ds_size + i for i in range(0, len(target_dataset.imgs))]
batch_sampler = data.TwoStreamBatchSampler(
unlabeled_idxs, labeled_idxs, args.batch_size, args.labeled_batch_size)
else:
assert False, "labeled batch size {}".format(args.labeled_batch_size)
train_loader = torch.utils.data.DataLoader(
dataset,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True)
eval_loader = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(evaldir, eval_transformation),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
drop_last=False)
return train_loader, eval_loader
def create_model(name, num_classes, ema=False):
LOG.info('=> creating {pretrained} {name} model: {arch}'.format(
pretrained='pre-trained' if args.pretrained else 'non-pre-trained',
name=name,
arch=args.arch))
model_factory = architectures.__dict__[args.arch]
model_params = dict(pretrained=args.pretrained, num_classes=num_classes)
model = model_factory(**model_params)
model = nn.DataParallel(model).cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
def adjust_learning_rate(optimizer, epoch, step_in_epoch, total_steps_in_epoch):
lr = args.lr
epoch = epoch + step_in_epoch / total_steps_in_epoch
# LR warm-up to handle large minibatch sizes from https://arxiv.org/abs/1706.02677
lr = ramps.linear_rampup(epoch, args.lr_rampup) * (args.lr - args.initial_lr) + args.initial_lr
# decline lr
lr *= ramps.zero_cosine_rampdown(epoch, args.epochs)
for param_groups in optimizer.param_groups:
param_groups['lr'] = lr
def validate(eval_loader, model, log, global_step, epoch):
class_criterion = nn.CrossEntropyLoss(size_average=False, ignore_index=NO_LABEL).cuda()
meters = AverageMeterSet()
model.eval()
end = time.time()
for i, (inputs, target) in enumerate(eval_loader):
meters.update('data_time', time.time() - end)
input_var = torch.autograd.Variable(inputs, volatile=True)
target_var = torch.autograd.Variable(target.cuda(async=True), volatile=True)
minibatch_size = len(target_var)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
assert labeled_minibatch_size > 0
meters.update('labeled_minibatch_size', labeled_minibatch_size)
output1, output2 = model(input_var)
# softmax1, softmax2 = F.softmax(output1, dim=1), F.softmax(output2, dim=1)
class_loss = class_criterion(output1, target_var) / minibatch_size
# measure accuracy and record loss
prec = mt_func.accuracy(output1.data, target_var.data, topk=(1, 5))
prec1, prec5 = prec[0], prec[1]
meters.update('class_loss', class_loss.data[0], labeled_minibatch_size)
meters.update('top1', prec1[0], labeled_minibatch_size)
meters.update('error1', 100.0 - prec1[0], labeled_minibatch_size)
meters.update('top5', prec5[0], labeled_minibatch_size)
meters.update('error5', 100.0 - prec5[0], labeled_minibatch_size)
# measure elapsed time
meters.update('batch_time', time.time() - end)
end = time.time()
if i % args.print_freq == 0:
LOG.info('Test: [{0}/{1}]\t'
'Time {meters[batch_time]:.3f}\t'
'Data {meters[data_time]:.3f}\t'
'Class {meters[class_loss]:.4f}\t'
'Prec@1 {meters[top1]:.3f}\t'
'Prec@5 {meters[top5]:.3f}'.format(
i, len(eval_loader), meters=meters))
LOG.info(' * Prec@1 {top1.avg:.3f}\tPrec@5 {top5.avg:.3f}'.format(
top1=meters['top1'], top5=meters['top5']))
log.record(epoch, {'step': global_step, **meters.values(),
**meters.averages(), **meters.sums()})
return meters['top1'].avg
def train_epoch(train_loader, l_model, r_model, l_optimizer, r_optimizer, epoch, log):
global global_step
meters = AverageMeterSet()
# define criterions
class_criterion = nn.CrossEntropyLoss(size_average=False, ignore_index=NO_LABEL).cuda()
residual_logit_criterion = losses.symmetric_mse_loss
if args.consistency_type == 'mse':
consistency_criterion = losses.softmax_mse_loss
stabilization_criterion = losses.softmax_mse_loss
elif args.consistency_type == 'kl':
consistency_criterion = losses.softmax_kl_loss
stabilization_criterion = losses.softmax_kl_loss
l_model.train()
r_model.train()
end = time.time()
for i, ((l_input, r_input), target) in enumerate(train_loader):
meters.update('data_time', time.time() - end)
# adjust learning rate
adjust_learning_rate(l_optimizer, epoch, i, len(train_loader))
adjust_learning_rate(r_optimizer, epoch, i, len(train_loader))
meters.update('l_lr', l_optimizer.param_groups[0]['lr'])
meters.update('r_lr', r_optimizer.param_groups[0]['lr'])
# prepare data
l_input_var = Variable(l_input)
r_input_var = Variable(r_input)
le_input_var = Variable(r_input, requires_grad=False, volatile=True)
re_input_var = Variable(l_input, requires_grad=False, volatile=True)
target_var = Variable(target.cuda(async=True))
minibatch_size = len(target_var)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
unlabeled_minibatch_size = minibatch_size - labeled_minibatch_size
assert labeled_minibatch_size >= 0 and unlabeled_minibatch_size >= 0
meters.update('labeled_minibatch_size', labeled_minibatch_size)
meters.update('unlabeled_minibatch_size', unlabeled_minibatch_size)
# forward
l_model_out = l_model(l_input_var)
r_model_out = r_model(r_input_var)
le_model_out = l_model(le_input_var)
re_model_out = r_model(re_input_var)
if isinstance(l_model_out, Variable):
assert args.logit_distance_cost < 0
l_logit1 = l_model_out
r_logit1 = r_model_out
le_logit1 = le_model_out
re_logit1 = re_model_out
elif len(l_model_out) == 2:
assert len(r_model_out) == 2
l_logit1, l_logit2 = l_model_out
r_logit1, r_logit2 = r_model_out
le_logit1, le_logit2 = le_model_out
re_logit1, re_logit2 = re_model_out
# logit distance loss from mean teacher
if args.logit_distance_cost >= 0:
l_class_logit, l_cons_logit = l_logit1, l_logit2
r_class_logit, r_cons_logit = r_logit1, r_logit2
le_class_logit, le_cons_logit = le_logit1, le_logit2
re_class_logit, re_cons_logit = re_logit1, re_logit2
l_res_loss = args.logit_distance_cost * residual_logit_criterion(l_class_logit, l_cons_logit) / minibatch_size
r_res_loss = args.logit_distance_cost * residual_logit_criterion(r_class_logit, r_cons_logit) / minibatch_size
meters.update('l_res_loss', l_res_loss.data[0])
meters.update('r_res_loss', r_res_loss.data[0])
else:
l_class_logit, l_cons_logit = l_logit1, l_logit1
r_class_logit, r_cons_logit = r_logit1, r_logit1
le_class_logit, le_cons_logit = le_logit1, le_logit1
re_class_logit, re_cons_logit = re_logit1, re_logit1
l_res_loss = 0.0
r_res_loss = 0.0
meters.update('l_res_loss', 0.0)
meters.update('r_res_loss', 0.0)
# classification loss
l_class_loss = class_criterion(l_class_logit, target_var) / minibatch_size
r_class_loss = class_criterion(r_class_logit, target_var) / minibatch_size
meters.update('l_class_loss', l_class_loss.data[0])
meters.update('r_class_loss', r_class_loss.data[0])
l_loss, r_loss = l_class_loss, r_class_loss
l_loss += l_res_loss
r_loss += r_res_loss
# consistency loss
consistency_weight = args.consistency_scale * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
le_class_logit = Variable(le_class_logit.detach().data, requires_grad=False)
l_consistency_loss = consistency_weight * consistency_criterion(l_cons_logit, le_class_logit) / minibatch_size
meters.update('l_cons_loss', l_consistency_loss.data[0])
l_loss += l_consistency_loss
re_class_logit = Variable(re_class_logit.detach().data, requires_grad=False)
r_consistency_loss = consistency_weight * consistency_criterion(r_cons_logit, re_class_logit) / minibatch_size
meters.update('r_cons_loss', r_consistency_loss.data[0])
r_loss += r_consistency_loss
# stabilization loss
# value (cls_v) and index (cls_i) of the max probability in the prediction
l_cls_v, l_cls_i = torch.max(F.softmax(l_class_logit, dim=1), dim=1)
r_cls_v, r_cls_i = torch.max(F.softmax(r_class_logit, dim=1), dim=1)
le_cls_v, le_cls_i = torch.max(F.softmax(le_class_logit, dim=1), dim=1)
re_cls_v, re_cls_i = torch.max(F.softmax(re_class_logit, dim=1), dim=1)
l_cls_i = l_cls_i.data.cpu().numpy()
r_cls_i = r_cls_i.data.cpu().numpy()
le_cls_i = le_cls_i.data.cpu().numpy()
re_cls_i = re_cls_i.data.cpu().numpy()
# stable prediction mask
l_mask = (l_cls_v > args.stable_threshold).data.cpu().numpy()
r_mask = (r_cls_v > args.stable_threshold).data.cpu().numpy()
le_mask = (le_cls_v > args.stable_threshold).data.cpu().numpy()
re_mask = (re_cls_v > args.stable_threshold).data.cpu().numpy()
# detach logit -> for generating stablilization target
in_r_cons_logit = Variable(r_cons_logit.detach().data, requires_grad=False)
tar_l_class_logit = Variable(l_class_logit.clone().detach().data, requires_grad=False)
in_l_cons_logit = Variable(l_cons_logit.detach().data, requires_grad=False)
tar_r_class_logit = Variable(r_class_logit.clone().detach().data, requires_grad=False)
# generate target for each sample
for sdx in range(0, minibatch_size):
l_stable = False
if l_mask[sdx] == 0 and le_mask[sdx] == 0:
# unstable: do not satisfy the 2nd condition
tar_l_class_logit[sdx, ...] = in_r_cons_logit[sdx, ...]
elif l_cls_i[sdx] != le_cls_i[sdx]:
# unstable: do not satisfy the 1st condition
tar_l_class_logit[sdx, ...] = in_r_cons_logit[sdx, ...]
else:
l_stable = True
r_stable = False
if r_mask[sdx] == 0 and re_mask[sdx] == 0:
# unstable: do not satisfy the 2nd condition
tar_r_class_logit[sdx, ...] = in_l_cons_logit[sdx, ...]
elif r_cls_i[sdx] != re_cls_i[sdx]:
# unstable: do not satisfy the 1st condition
tar_r_class_logit[sdx, ...] = in_l_cons_logit[sdx, ...]
else:
r_stable = True
# calculate stability if both models are stable for a sample
if l_stable and r_stable:
# compare by consistency
l_sample_cons = consistency_criterion(l_cons_logit[sdx:sdx+1, ...], le_class_logit[sdx:sdx+1, ...])
r_sample_cons = consistency_criterion(r_cons_logit[sdx:sdx+1, ...], re_class_logit[sdx:sdx+1, ...])
if l_sample_cons.data.cpu().numpy()[0] < r_sample_cons.data.cpu().numpy()[0]:
# loss: l -> r
tar_r_class_logit[sdx, ...] = in_l_cons_logit[sdx, ...]
elif l_sample_cons.data.cpu().numpy()[0] > r_sample_cons.data.cpu().numpy()[0]:
# loss: r -> l
tar_l_class_logit[sdx, ...] = in_r_cons_logit[sdx, ...]
# calculate stablization weight
stabilization_weight = args.stabilization_scale * ramps.sigmoid_rampup(epoch, args.stabilization_rampup)
if not args.exclude_unlabeled:
stabilization_weight = (unlabeled_minibatch_size / minibatch_size) * stabilization_weight
# stabilization loss for r model
if args.exclude_unlabeled:
r_stabilization_loss = stabilization_weight * stabilization_criterion(r_cons_logit, tar_l_class_logit) / minibatch_size
else:
for idx in range(unlabeled_minibatch_size, minibatch_size):
tar_l_class_logit[idx, ...] = in_r_cons_logit[idx, ...]
r_stabilization_loss = stabilization_weight * stabilization_criterion(r_cons_logit, tar_l_class_logit) / unlabeled_minibatch_size
meters.update('r_stable_loss', r_stabilization_loss.data[0])
r_loss += r_stabilization_loss
# stabilization loss for l model
if args.exclude_unlabeled:
l_stabilization_loss = stabilization_weight * stabilization_criterion(l_cons_logit, tar_r_class_logit) / minibatch_size
else:
for idx in range(unlabeled_minibatch_size, minibatch_size):
tar_r_class_logit[idx, ...] = in_l_cons_logit[idx, ...]
l_stabilization_loss = stabilization_weight * stabilization_criterion(l_cons_logit, tar_r_class_logit) / unlabeled_minibatch_size
meters.update('l_stable_loss', l_stabilization_loss.data[0])
l_loss += l_stabilization_loss
if np.isnan(l_loss.data[0]) or np.isnan(r_loss.data[0]):
LOG.info('Loss value equals to NAN!')
continue
assert not (l_loss.data[0] > 1e5), 'L-Loss explosion: {}'.format(l_loss.data[0])
assert not (r_loss.data[0] > 1e5), 'R-Loss explosion: {}'.format(r_loss.data[0])
meters.update('l_loss', l_loss.data[0])
meters.update('r_loss', r_loss.data[0])
# calculate prec and error
l_prec = mt_func.accuracy(l_class_logit.data, target_var.data, topk=(1, ))[0]
r_prec = mt_func.accuracy(r_class_logit.data, target_var.data, topk=(1, ))[0]
meters.update('l_top1', l_prec[0], labeled_minibatch_size)
meters.update('l_error1', 100. - l_prec[0], labeled_minibatch_size)
meters.update('r_top1', r_prec[0], labeled_minibatch_size)
meters.update('r_error1', 100. - r_prec[0], labeled_minibatch_size)
# update model
l_optimizer.zero_grad()
l_loss.backward()
l_optimizer.step()
r_optimizer.zero_grad()
r_loss.backward()
r_optimizer.step()
# record
global_step += 1
meters.update('batch_time', time.time() - end)
end = time.time()
if i % args.print_freq == 0:
LOG.info('Epoch: [{0}][{1}/{2}]\t'
'Batch-T {meters[batch_time]:.3f}\t'
'L-Class {meters[l_class_loss]:.4f}\t'
'R-Class {meters[r_class_loss]:.4f}\t'
'L-Res {meters[l_res_loss]:.4f}\t'
'R-Res {meters[r_res_loss]:.4f}\t'
'L-Cons {meters[l_cons_loss]:.4f}\t'
'R-Cons {meters[r_cons_loss]:.4f}\n'
'L-Stable {meters[l_stable_loss]:.4f}\t'
'R-Stable {meters[r_stable_loss]:.4f}\t'
'L-Prec@1 {meters[l_top1]:.3f}\t'
'R-Prec@1 {meters[r_top1]:.3f}\t'
.format(epoch, i, len(train_loader), meters=meters))
log.record(epoch + i / len(train_loader), {
'step': global_step,
**meters.values(),
**meters.averages(),
**meters.sums()})
def main(context):
global best_prec1
global global_step
# create loggers
checkpoint_path = context.transient_dir
training_log = context.create_train_log('training')
l_validation_log = context.create_train_log('l_validation')
r_validation_log = context.create_train_log('r_validation')
# create dataloaders
dataset_config = datasets.__dict__[args.dataset]()
num_classes = dataset_config.pop('num_classes')
train_loader, eval_loader = create_data_loaders(**dataset_config, args=args)
# create models
l_model = create_model(name='l', num_classes=num_classes)
r_model = create_model(name='r', num_classes=num_classes)
LOG.info(parameters_string(l_model))
LOG.info(parameters_string(r_model))
# create optimizers
l_optimizer = torch.optim.SGD(params=l_model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
r_optimizer = torch.optim.SGD(params=r_model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
# restore saved checkpoint
if args.resume:
assert os.path.isfile(args.resume), '=> no checkpoint found at: {}'.format(args.resume)
LOG.info('=> loading checkpoint: {}'.format(args.resume))
checkpoint = torch.load(args.resume)
# globel parameters
args.start_epoch = checkpoint['epoch']
global_step = checkpoint['global_step']
best_prec1 = checkpoint['best_prec1']
# models and optimizers
l_model.load_state_dict(checkpoint['l_model'])
r_model.load_state_dict(checkpoint['r_model'])
l_optimizer.load_state_dict(checkpoint['l_optimizer'])
r_optimizer.load_state_dict(checkpoint['r_optimizer'])
LOG.info('=> loaded checkpoint {} (epoch {})'.format(args.resume, checkpoint['epoch']))
cudnn.benchmark = True
# validation
if args.validation:
LOG.info('Validating the left model: ')
validate(eval_loader, l_model, l_validation_log, global_step, args.start_epoch)
LOG.info('Validating the right model: ')
validate(eval_loader, r_model, r_validation_log, global_step, args.start_epoch)
return
# training
for epoch in range(args.start_epoch, args.epochs):
start_time = time.time()
train_epoch(train_loader, l_model, r_model, l_optimizer, r_optimizer, epoch, training_log)
LOG.info('--- training epoch in {} seconds ---'.format(time.time() - start_time))
is_best = False
if args.validation_epochs and (epoch + 1) % args.validation_epochs == 0:
start_time = time.time()
LOG.info('Validating the left model: ')
l_prec1 = validate(eval_loader, l_model, l_validation_log, global_step, epoch + 1)
LOG.info('Validating the right model: ')
r_prec1 = validate(eval_loader, r_model, r_validation_log, global_step, epoch + 1)
LOG.info('--- validation in {} seconds ---'.format(time.time() - start_time))
better_prec1 = l_prec1 if l_prec1 > r_prec1 else r_prec1
best_prec1 = max(better_prec1, best_prec1)
is_best = better_prec1 > best_prec1
# save checkpoint
if args.checkpoint_epochs and (epoch + 1) % args.checkpoint_epochs == 0:
mt_func.save_checkpoint({
'epoch': epoch + 1,
'global_step': global_step,
'best_prec1': best_prec1,
'arch': args.arch,
'l_model': l_model.state_dict(),
'r_model': r_model.state_dict(),
'l_optimizer':l_optimizer.state_dict(),
'r_optimizer':r_optimizer.state_dict(),
}, is_best, checkpoint_path, epoch + 1)
LOG.info('Best top1 prediction: {0}'.format(best_prec1))
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
args = cli.parser_commandline_args()
main(run_context.RunContext(__file__, 0))