forked from GreenGilad/IML.HUJI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
147 lines (118 loc) · 6.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Basic imports and settings for working with data
import numpy as np
import pandas as pd
# Imports and settings for plotting of graphs
import plotly.io as pio
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.express as px
# pio.templates["custom"] = go.layout.Template(
# layout=go.Layout(
# margin=dict(l=20, r=20, t=40, b=0)
# )
# )
# pio.templates.default = "simple_white+custom"
class AnimationButtons():
@staticmethod
def play_scatter(frame_duration = 500, transition_duration = 300):
return dict(label="Play", method="animate", args=
[None, {"frame": {"duration": frame_duration, "redraw": False},
"fromcurrent": True, "transition": {"duration": transition_duration, "easing": "quadratic-in-out"}}])
@staticmethod
def play(frame_duration = 1000, transition_duration = 0):
return dict(label="Play", method="animate", args=
[None, {"frame": {"duration": frame_duration, "redraw": True},
"mode":"immediate",
"fromcurrent": True, "transition": {"duration": transition_duration, "easing": "linear"}}])
@staticmethod
def pause():
return dict(label="Pause", method="animate", args=
[[None], {"frame": {"duration": 0, "redraw": False}, "mode": "immediate", "transition": {"duration": 0}}])
@staticmethod
def slider(frame_names):
steps= [dict(args=[[i], dict(frame={'duration': 300, 'redraw': False}, mode="immediate", transition= {'duration': 300})],
label=i+1, method="animate")
for i, n in enumerate(frame_names)]
return [dict(yanchor="top", xanchor="left",
currentvalue={'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': True, 'xanchor': 'right'},
transition={'duration': 0, 'easing': 'linear'},
pad= {'b': 10, 't': 50},
len=0.9, x=0.1, y=0,
steps=steps)]
custom = [[0.0, "rgb(165,0,38)"],
[0.1111111111111111, "rgb(215,48,39)"],
[0.2222222222222222, "rgb(244,109,67)"],
[0.3333333333333333, "rgb(253,174,97)"],
[0.4444444444444444, "rgb(254,224,144)"],
[0.5555555555555556, "rgb(224,243,248)"],
[0.6666666666666666, "rgb(171,217,233)"],
[0.7777777777777778, "rgb(116,173,209)"],
[0.8888888888888888, "rgb(69,117,180)"],
[1.0, "rgb(49,54,149)"]]
class_symbols = np.array(["circle", "x", "diamond"])
class_colors = lambda n: [custom[i] for i in np.linspace(0, len(custom)-1, n).astype(int)]
def decision_surface(predict, xrange, yrange, density=120, dotted=False, colorscale=custom, showscale=True):
xrange, yrange = np.linspace(*xrange, density), np.linspace(*yrange, density)
xx, yy = np.meshgrid(xrange, yrange)
pred = predict(np.c_[xx.ravel(), yy.ravel()])
if dotted:
return go.Scatter(x=xx.ravel(), y=yy.ravel(), opacity=1, mode="markers", marker=dict(color=pred, size=1, colorscale=colorscale, reversescale=False), hoverinfo="skip", showlegend=False)
return go.Contour(x=xrange, y=yrange, z=pred.reshape(xx.shape), colorscale=colorscale, reversescale=False, opacity=.7, connectgaps=True, hoverinfo="skip", showlegend=False, showscale=showscale)
def animation_to_gif(fig, filename, frame_duration=100, width=1200, height=800):
import gif
@gif.frame
def plot(f, i):
f_ = go.Figure(data=f["frames"][i]["data"], layout=f["layout"])
f_["layout"]["updatemenus"] = []
f_.update_layout(title=f["frames"][i]["layout"]["title"], width=width, height=height)
return f_
gif.save([plot(fig, i) for i in range(len(fig["frames"]))], filename, duration=frame_duration)
def create_data_bagging_utils(d = 4, number_of_members = 1, n_samples = 1000):
def sample_beta(limit1, limit2):
margin1 = limit1 + (limit2 - limit1)*0.45
margin2 = limit2 - (limit2 - limit1)*0.45
beta = np.random.uniform(margin1, margin2)
return beta
# Creates n samples
samples = np.random.uniform(size=(n_samples, 2))
samples_of_half = "samples_of_half"
x_1 = "x_1"; x_2 = "x_2"; y_1 = "y_1"; y_2 = "y_2"; tag = "tag"
list_of_array = {0: {samples_of_half : samples, x_1 : 0, x_2 : 1, y_1 : 0, y_2 : 1}}
for i in range(0, d):
built_list = {}
for sample_curr_i, sample_curr in enumerate(list_of_array.values()):
# Choose if we want to split x axis or y axis
dim_half = np.random.choice([0,1])
dots_coords = sample_curr[samples_of_half]
if (dim_half == 0):
beta = sample_beta(sample_curr[x_1], sample_curr[x_2])
built_list[sample_curr_i*2] = {samples_of_half: dots_coords[dots_coords[:,0] <= beta],
x_1 : sample_curr[x_1],
x_2 : beta,
y_1 : sample_curr[y_1],
y_2 : sample_curr[y_2],
tag : np.random.choice([0, 1]).astype(int)}
built_list[sample_curr_i*2 + 1] = {samples_of_half: dots_coords[dots_coords[:,0] > beta],
x_1 : beta,
x_2 : sample_curr[x_2],
y_1 : sample_curr[y_1],
y_2 : sample_curr[y_2],
tag : np.random.choice([0, 1]).astype(int)}
else:
beta = sample_beta(sample_curr[y_1], sample_curr[y_2])
built_list[sample_curr_i*2] = {samples_of_half: dots_coords[dots_coords[:,1] <= beta],
x_1 : sample_curr[x_1],
x_2 : sample_curr[x_2],
y_1 : sample_curr[y_1],
y_2 : beta,
tag : np.random.choice([0, 1]).astype(int)}
built_list[sample_curr_i*2 + 1] = {samples_of_half: dots_coords[dots_coords[:,1] > beta],
x_1 : sample_curr[x_1],
x_2 : sample_curr[x_2],
y_1 : beta,
y_2 : sample_curr[y_2],
tag : np.random.choice([0, 1]).astype(int)}
list_of_array = built_list
samples = np.vstack([samples_["samples_of_half"] for samples_ in built_list.values()])
tags = np.hstack([np.repeat(samples_["tag"], samples_["samples_of_half"].shape[0]) for samples_ in built_list.values()])
return samples, tags