-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoriginal_actor_critic.py
162 lines (130 loc) · 4.91 KB
/
original_actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import cv2
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from model_component.cuda import cuda_wrapper
parser = argparse.ArgumentParser(description='PyTorch actor-critic')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 1)')
parser.add_argument('--render', action='store_true',
help='render the environment')
args = parser.parse_args()
env = gym.make('RoadRunner-v0')
env.seed(args.seed)
torch.manual_seed(args.seed)
action_space_size = env.action_space.n
model_weight_path = 'weights\\model_weight'
# hyperparameters
learning_rate = 0.0007
gamma = 0.99
img_w = 200
img_h = 160
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
class MLPPolicy(nn.Module):
def __init__(self):
super(MLPPolicy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.action_head(x)
state_values = self.value_head(x)
return F.softmax(action_scores, dim=-1), state_values
class CNNPolicy(nn.Module):
def __init__(self):
super(CNNPolicy, self).__init__()
self.conv1 = cuda_wrapper(nn.Conv2d(3, 32, 8, stride=4, padding=2))
self.conv2 = cuda_wrapper(nn.Conv2d(32, 64, 4, stride=2, padding=1))
self.conv3 = cuda_wrapper(nn.Conv2d(64, 64, 3, stride=1, padding=1))
self.fc = cuda_wrapper(nn.Linear(img_w*img_h, 16))
self.action_head = cuda_wrapper(nn.Linear(16, action_space_size))
self.value_head = cuda_wrapper(nn.Linear(16, 1))
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = cuda_wrapper(F.relu(self.conv1(x)))
x = cuda_wrapper(F.relu(self.conv2(x)))
x = cuda_wrapper(F.relu(self.conv3(x)))
x = cuda_wrapper(x.view(-1, img_w*img_h))
x = cuda_wrapper(F.relu(self.fc(x)))
action_scores = cuda_wrapper(self.action_head(x))
state_values = cuda_wrapper(self.value_head(x))
return cuda_wrapper(F.softmax(action_scores, dim=-1)), state_values
model = CNNPolicy()
# model.load_state_dict(torch.load("weights\model_weight6650"))
# model.eval()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
eps = np.finfo(np.float32).eps.item()
def select_action(state):
state = preprocess(state)
state = cuda_wrapper(state)
probs, state_value = model(state)
m = Categorical(probs)
action = m.sample()
model.saved_actions.append(SavedAction(m.log_prob(action), state_value[0]))
return action.item()
def finish_episode():
R = 0
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = cuda_wrapper(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for (log_prob, value), r in zip(saved_actions, rewards):
reward = r - value.item()
policy_losses.append(-log_prob * reward)
value_losses.append(F.smooth_l1_loss(cuda_wrapper(value), cuda_wrapper(torch.tensor([r]))))
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
loss.backward()
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
def preprocess(img):
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
img = img / 255.0
img = cv2.resize(img, dsize=(img_w, img_h))
img = torch.from_numpy(np.array([img.transpose(2,0,1)])).float()
return img
def main():
running_reward = 0
for i_episode in count(1):
state = env.reset()
for t in range(10000): # Don't infinite loop while learning
action = select_action(state)
state, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
break
running_reward = running_reward * 0.99 + t * 0.01
finish_episode()
print('Episode {}\tLast Reward: {:2d}\tAverage Reward: {:.2f}'.format(
i_episode, t, running_reward))
if i_episode % args.log_interval == 0:
sys.stdout.flush()
torch.save(model.state_dict(), model_weight_path+str(i_episode))
if i_episode > 5e7:
print("Solved! Running reward is now {} and "
"the last episode runs to {} time steps!".format(running_reward, t))
break
if __name__ == '__main__':
main()