-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman-filter
55 lines (44 loc) · 1.53 KB
/
kalman-filter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# coding: utf-8
from numpy import *
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (10, 8)
# initial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value
z = random.normal(x, 0.1, size=sz) # observations (normal about x, sigma=0.1)
Q = 1e-5 # process variance
# allocate space for arrays
xhat = zeros(sz) # a posteri estimate of x
P = zeros(sz) # a posteri error estimate
xhatminus = zeros(sz) # a priori estimate
Pminus = zeros(sz) # a priori error estimate
K = zeros(sz) # gain or blending factor
R = 0.1**2 # estimate of measurement variance, change to see effect
# initial guesses
xhat[0] = 0.0
P[0] = 1.0
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1] + Q
# measurement update
K[k] = Pminus[k]/(Pminus[k] + R)
xhat[k] = xhatminus[k] + K[k] * (z[k]-xhatminus[k])
P[k] = (1-K[k]) * Pminus[k]
plt.figure()
plt.plot(z, 'k+', label='noisy measurement')
plt.plot(xhat, 'b-', label='a posteri estimate')
plt.axhline(x, color='g', label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage')
plt.figure()
valid_iter = range(1, n_iter) # Pminus not valid at step 0
plt.plot(valid_iter, Pminus[valid_iter], label='a priori error estimate')
plt.title('Estimate $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(), 'ylim', [0,0.01])
plt.show()