This document has advanced instructions for running RFCN FP32
inference, which provides more control over the individual parameters that
are used. For more information on using /benchmarks/launch_benchmark.py
,
see the launch benchmark documentation.
Prior to using these instructions, please follow the setup instructions from
the model's README and/or the
AI Kit documentation to get your environment
setup (if running on bare metal) and download the dataset, pretrained model, etc.
If you are using AI Kit, please exclude the --docker-image
flag from the
commands below, since you will be running the the TensorFlow conda environment
instead of docker.
Any of the launch_benchmark.py
commands below can be run on bare metal by
removing the --docker-image
arg. Ensure that you have all of the
required prerequisites installed in your environment
before running without the docker container.
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.
Once your environment is setup, navigate to the benchmarks
directory of
the model zoo and set environment variables pointing to the directory for the
dataset, pretrained model frozen graph, the TensorFlow models repo, and an output
directory where log files will be written.
# cd to the benchmarks directory in the model zoo
cd benchmarks
export DATASET_DIR=<path to the dataset>
export PRETRAINED_MODEL=<path to the pretrained model frozen graph file>
export TF_MODELS_DIR=<path to your clone of the TensorFlow models repo>
export OUTPUT_DIR=<directory where log files will be saved>
The command below runs batch and online inference. Note that the
--data-location ${DATASET_DIR}
should point to the raw COCO dataset images
(for example: DATASET_DIR=/home/<user>/coco_dataset/val2017
).
python launch_benchmark.py \
--model-name rfcn \
--mode inference \
--precision fp32 \
--framework tensorflow \
--docker-image intel/intel-optimized-tensorflow:latest \
--model-source-dir ${TF_MODELS_DIR} \
--data-location ${DATASET_DIR} \
--in-graph ${PRETRAINED_MODEL} \
--output-dir ${OUTPUT_DIR} \
--benchmark-only \
-- number_of_steps=500
Or for accuracy testing, use the command below and set the --data-location ${DATASET_DIR}
to the path to the COCO validation TF records file (for example:
DATASET_DIR=/home/<user>/coco_output/coco_val.record
).
python launch_benchmark.py \
--model-name rfcn \
--mode inference \
--precision fp32 \
--framework tensorflow \
--docker-image intel/intel-optimized-tensorflow:latest \
--model-source-dir ${TF_MODELS_DIR} \
--data-location ${DATASET_DIR} \
--in-graph ${PRETRAINED_MODEL} \
--output-dir ${OUTPUT_DIR} \
--accuracy-only \
-- split="accuracy_message"
Note that the --verbose
flag can be added to any of the above commands
to get additional debug output .
Log files are located at the value of $OUTPUT_DIR
. Below is a sample log
file tail when running for batch and online inference:
Average time per step: ... sec
Received these standard args: Namespace(accuracy_only=False, batch_size=1, benchmark_only=False, checkpoint='/checkpoints', data_location='/dataset', framework='tensorflow', input_graph=None, intelai_models='/workspace/intelai_models', mode='inference', model_args=[], model_name='rfcn', model_source_dir='/workspace/models', num_cores=-1, num_inter_threads=2, num_intra_threads=56, precision='fp32, socket_id=0, use_case='object_detection', verbose=True)
Received these custom args: ['--config_file=rfcn_pipeline.config']
Run model here.
current directory: /workspace/models/research
Running: numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/inference/fp32/eval.py --inter_op 1 --intra_op 28 --omp 28 --pipeline_config_path /checkpoints/rfcn_pipeline.config --checkpoint_dir /checkpoints --eval_dir /workspace/models/research/object_detection/models/rfcn/eval --logtostderr --blocktime=0 --run_once=True
PYTHONPATH: :/workspace/intelai_models:/workspace/models/research:/workspace/models/research/slim:/workspace/models
RUNCMD: python common/tensorflow/run_tf_benchmark.py --framework=tensorflow --use-case=object_detection --model-name=rfcn --precision=fp32 --mode=inference --model-source-dir=/workspace/models --intelai-models=/workspace/intelai_models --num-cores=-1 --batch-size=1 --data-location=/dataset --socket-id 0 --verbose --checkpoint=/checkpoints --config_file=rfcn_pipeline.config
Batch Size: 1
Ran inference with batch size 1
Log location outside container: ${OUTPUT_DIR}/benchmark_rfcn_inference.log
And here is a sample log file tail when running for accuracy:
DONE (t=1.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.347
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.532
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.389
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.347
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.282
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.400
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.400
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Ran inference with batch size 1
Log location outside container: ${OUTPUT_DIR}/benchmark_rfcn_inference_fp32_20181221_211905.log