forked from d2l-ai/d2l-zh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
199 lines (181 loc) · 7.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from mxnet import gluon
from mxnet import autograd
from mxnet import nd
from mxnet import image
from mxnet.gluon import nn
import mxnet as mx
import numpy as np
from time import time
import matplotlib.pyplot as plt
class DataLoader(object):
"""similiar to gluon.data.DataLoader, but might be faster.
The main difference this data loader tries to read more exmaples each
time. But the limits are 1) all examples in dataset have the same shape, 2)
data transfomer needs to process multiple examples at each time
"""
def __init__(self, dataset, batch_size, shuffle):
self.dataset = dataset
self.batch_size = batch_size
self.shuffle = shuffle
def __iter__(self):
data = self.dataset[:]
X = data[0]
y = nd.array(data[1])
n = X.shape[0]
if self.shuffle:
idx = np.arange(n)
np.random.shuffle(idx)
X = nd.array(X.asnumpy()[idx])
y = nd.array(y.asnumpy()[idx])
for i in range(n//self.batch_size):
yield (X[i*self.batch_size:(i+1)*self.batch_size],
y[i*self.batch_size:(i+1)*self.batch_size])
def __len__(self):
return len(self.dataset)//self.batch_size
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"):
"""download the fashion mnist dataest and then load into memory"""
def transform_mnist(data, label):
# transform a batch of examples
if resize:
n = data.shape[0]
new_data = nd.zeros((n, resize, resize, data.shape[3]))
for i in range(n):
new_data[i] = image.imresize(data[i], resize, resize)
data = new_data
# change data from batch x height x weight x channel to batch x channel x height x weight
return nd.transpose(data.astype('float32'), (0,3,1,2))/255, label.astype('float32')
mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=transform_mnist)
mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=transform_mnist)
train_data = DataLoader(mnist_train, batch_size, shuffle=True)
test_data = DataLoader(mnist_test, batch_size, shuffle=False)
return (train_data, test_data)
def try_gpu():
"""If GPU is available, return mx.gpu(0); else return mx.cpu()"""
try:
ctx = mx.gpu()
_ = nd.array([0], ctx=ctx)
except:
ctx = mx.cpu()
return ctx
def try_all_gpus():
"""Return all available GPUs, or [mx.gpu()] if there is no GPU"""
ctx_list = []
try:
for i in range(16):
ctx = mx.gpu(i)
_ = nd.array([0], ctx=ctx)
ctx_list.append(ctx)
except:
pass
if not ctx_list:
ctx_list = [mx.cpu()]
return ctx_list
def SGD(params, lr):
for param in params:
param[:] = param - lr * param.grad
def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar()
def _get_batch(batch, ctx):
"""return data and label on ctx"""
if isinstance(batch, mx.io.DataBatch):
data = batch.data[0]
label = batch.label[0]
else:
data, label = batch
return (gluon.utils.split_and_load(data, ctx),
gluon.utils.split_and_load(label, ctx),
data.shape[0])
def evaluate_accuracy(data_iterator, net, ctx=[mx.cpu()]):
if isinstance(ctx, mx.Context):
ctx = [ctx]
acc = nd.array([0])
n = 0.
if isinstance(data_iterator, mx.io.MXDataIter):
data_iterator.reset()
for batch in data_iterator:
data, label, batch_size = _get_batch(batch, ctx)
for X, y in zip(data, label):
acc += nd.sum(net(X).argmax(axis=1)==y).copyto(mx.cpu())
n += y.size
acc.wait_to_read() # don't push too many operators into backend
return acc.asscalar() / n
def train(train_data, test_data, net, loss, trainer, ctx, num_epochs, print_batches=None):
"""Train a network"""
print("Start training on ", ctx)
if isinstance(ctx, mx.Context):
ctx = [ctx]
for epoch in range(num_epochs):
train_loss, train_acc, n, m = 0.0, 0.0, 0.0, 0.0
if isinstance(train_data, mx.io.MXDataIter):
train_data.reset()
start = time()
for i, batch in enumerate(train_data):
data, label, batch_size = _get_batch(batch, ctx)
losses = []
with autograd.record():
outputs = [net(X) for X in data]
losses = [loss(yhat, y) for yhat, y in zip(outputs, label)]
for l in losses:
l.backward()
train_acc += sum([(yhat.argmax(axis=1)==y).sum().asscalar()
for yhat, y in zip(outputs, label)])
train_loss += sum([l.sum().asscalar() for l in losses])
trainer.step(batch_size)
n += batch_size
m += sum([y.size for y in label])
if print_batches and (i+1) % print_batches == 0:
print("Batch %d. Loss: %f, Train acc %f" % (
n, train_loss/n, train_acc/m
))
test_acc = evaluate_accuracy(test_data, net, ctx)
print("Epoch %d. Loss: %.3f, Train acc %.2f, Test acc %.2f, Time %.1f sec" % (
epoch, train_loss/n, train_acc/m, test_acc, time() - start
))
class Residual(nn.HybridBlock):
def __init__(self, channels, same_shape=True, **kwargs):
super(Residual, self).__init__(**kwargs)
self.same_shape = same_shape
with self.name_scope():
strides = 1 if same_shape else 2
self.conv1 = nn.Conv2D(channels, kernel_size=3, padding=1,
strides=strides)
self.bn1 = nn.BatchNorm()
self.conv2 = nn.Conv2D(channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm()
if not same_shape:
self.conv3 = nn.Conv2D(channels, kernel_size=1,
strides=strides)
def hybrid_forward(self, F, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
if not self.same_shape:
x = self.conv3(x)
return F.relu(out + x)
def resnet18(num_classes):
net = nn.HybridSequential()
with net.name_scope():
net.add(
nn.BatchNorm(),
nn.Conv2D(64, kernel_size=3, strides=1),
nn.MaxPool2D(pool_size=3, strides=2),
Residual(64),
Residual(64),
Residual(128, same_shape=False),
Residual(128),
Residual(256, same_shape=False),
Residual(256),
nn.GlobalAvgPool2D(),
nn.Dense(num_classes)
)
return net
def show_images(imgs, nrows, ncols, figsize=None):
"""plot a list of images"""
if not figsize:
figsize = (ncols, nrows)
_, figs = plt.subplots(nrows, ncols, figsize=figsize)
for i in range(nrows):
for j in range(ncols):
figs[i][j].imshow(imgs[i*ncols+j].asnumpy())
figs[i][j].axes.get_xaxis().set_visible(False)
figs[i][j].axes.get_yaxis().set_visible(False)
plt.show()