container: bioinfo_tsinghua fa文件、fa.fai文件、gtf文件、chrom.sizes文件和所需tar.gz文件从这里下载清华大学云盘
需要用root权限进入container bioinfo_tsinghua
GenomicFeatures package used to extract needed sequence/提取所需序列
biozhuoer tools used to concat sequences of the same UTR or promoter/用于连接序列(具有相同UTR或启动子的序列)
将所需文件放在相应位置
# 将下载好的gtf文件和tar.gz文件放在share文件夹中
docker exec -it bioinfo_tsinghua bash
cp ~/share/example_motif.tar.gz ./
tar -zxvf example_motif.tar.gz
rm example_motif.tar.gz
mkdir -p ~/motif/sequence_motif/genome
# 将下载好的gtf文件复制到genome目录下
cd ~/motif/sequence_motif/genome
cp ~/share/GRCh38.p10.genome.fa ./
cp ~/share/GRCh38.p10.genome.fa.fai ./
cp ~/share/hg38.chrom.sizes ./
# 退出容器
exit
配置所需环境 To install this package, start R (my R version is “3.5.1”) and enter:
# 系统终端以root身份进入容器
docker exec -it -u root bioinfo_tsinghua bash
$ R
#进入R,依次执行下面几行语句
source("http://www.bioconductor.org/biocLite.R")
# 下面这个要跑挺久
biocLite("GenomicFeatures")
library("GenomicFeatures")
if (!("devtools" %in% .packages(T))) install.packages("devtools")
devtools::install_github("dongzhuoer/biozhuoer")
# 完成后会显示 *DONE(biozhuoer)
# 退出R
q()
# 退出docker容器
$ exit
# 首次进行Sequence Motif分析的时候需要运行上面命令来安装和更新package,再次使用就不需要了
mkdir -p /home/test/motif/sequence_motif/practice
cd /home/test/motif/sequence_motif/practice
There are many functions for us to get genome annotation file/基因组注释文件功能很多:
# 进入R环境
$ R
# 载入package-GenomicFeatures
library("GenomicFeatures")
# 指定路径
gtf_file="../genome/gencode.v27.annotation.gtf"
txdb <- makeTxDbFromGFF(gtf_file, format="gtf")
运行结果
Import genomic features from the file as a GRanges object ... OK
Prepare the 'metadata' data frame ... OK
Make the TxDb object ... OK
Warning message:
In .get_cds_IDX(type, phase) :
The "phase" metadata column contains non-NA values for features of type
stop_codon. This information was ignored.
>
# 继续操作
utr5p = fiveUTRsByTranscript(txdb, use.names=T)
utr3p = threeUTRsByTranscript(txdb, use.names=T)
utr3p.df=as.data.frame(utr3p)
utr5p.df=as.data.frame(utr5p)
write.table(utr3p.df, "utr3p.info", row.names=FALSE, sep='\t',quote=FALSE )
write.table(utr5p.df, "utr5p.info", row.names=FALSE, sep='\t' ,quote=FALSE)
# R环境下的操作结束,退出R,Save workspace image?选n即可
q()
# 查看生成的两个文件
$ ls
utr3p.info utr5p.info
get promoter site range 同样的操作获得promoter的位置信息
# 再次进入R环境
$ R
# 载入package-GenomicFeatures
library("GenomicFeatures")
# 指定路径
gtf_file="/home/test/0.genome/human_hg38/anno/gtf/gencode.v27.annotation.gtf"
txdb <- makeTxDbFromGFF(gtf_file, format="gtf")
# (如果上一小节没有退出R环境,就可以不用重新载入包和指定变量,可以再试试)没理解不要紧继续往下
promoter=promoters(txdb)
promoter.df=as.data.frame(promoter)
write.table(promoter.df, "promoter.info", row.names=FALSE, sep='\t' ,quote=FALSE)
q()
这样我们就获得了非常有用的三个文件
> q()
Save workspace image? [y/n/c]: n
test@1a8b4fa42d00:~/motif/sequence_motif/practice$ ls
promoter.info utr3p.info utr5p.info
test@1a8b4fa42d00:~/motif/sequence_motif/practice$
回到bash下对刚刚这几个文件进行进一步加工,获取我们想要的信息
sort -t $'\t' -k 2 utr3p.info|join -o 1.3 2.1 1.2 1.9 1.4 1.5 1.6 1.7 1.8 1.10 -t $'\t' -1 2 -2 2 - \
<(cut -f 1 ../SC2_SF2.ct.dn.1_0.01.protein_coding |sort |join -t $'\t' -1 1 -2 1 - <(sort -t $'\t' -k 1 \
<(grep -o -P -e "gene_id.*; transcript_id.*?;" ../genome/gencode.v27.annotation.gtf |sort |uniq|sed -e 's/gene_id "//' -e 's/"; transcript_id "/\t/' -e 's/";//'))|sort -t $'\t' -k 2 ) |\
sort -t $'\t' -k 1 >interested_three_prime_UTR.info
# 可以用less查看一下刚刚生成的文件
less interested_three_prime_UTR.info
# 按q退出
q
explanation for interested_three_prime_UTR.info:
column1: chr
column2: gene
column3: transprict
column4: exon_name
column5: start
column6: end
column7: width(seq length)
column8: strand
column9: exon_id
column10: exon_rank
同理再试一次,这次获取感兴趣的promoter信息,尝试思考每个命令的含义
sort -t $'\t' -k 7 promoter.info|join -o 1.1 2.1 1.7 1.2 1.3 1.4 1.5 1.6 -t $'\t' -1 7 -2 2 - \
<(cut -f 1 ../SC2_SF2.ct.dn.1_0.01.protein_coding |sort |join -t $'\t' -1 1 -2 1 - \
<(sort -t $'\t' -k 1 <(grep -o -P -e "gene_id.*; transcript_id.*?;" ../genome/gencode.v27.annotation.gtf |sort \
|uniq|sed -e 's/gene_id "//' -e 's/"; transcript_id "/\t/' -e 's/";//' ))|sort -t $'\t' -k 2 ) |\
sort -t $'\t' -k 1 >interested_promoter.info
explanation for interested_promoter.info:
column1: chr
column2: gene
column3: transprict
column4: start
column5: end
column6: width(seq length)
column7: strand
column8: transprict_id
cat interested_three_prime_UTR.info | \
awk '{print $1 "\t" $5-1 "\t" $6 "\t" $3 "\t" $2 "\t" $8}' | \
sort -u > interested_three_prime_UTR.bed
explanation for interested_three_prime_UTR.bed:
column1: chr
column2: start
column3: end
column4: gene
column5: transcript
column6: strand
cat interested_promoter.info | \
awk '{print $1 "\t" $4-1 "\t" $5 "\t" $3 "\t" $2 "\t" $7}' | \
sort -u > interested_promoter.bed
explanation for interested_promoter.bed:
column1: chr
column2: start
column3: end
column4: gene
column5: transcript
column6: strand
安装bedtools **使用docker的root用户进入容器(前面介绍如何使用root身份了)
apt-get install bedtools
# 退出docker
以test身份进入docker容器
cd motif/sequence_motif/practice/
bedtools getfasta -s -name -fi ../genome/GRCh38.p10.genome.fa \
-bed interested_three_prime_UTR.bed -fo interested_three_prime_UTR.fa
# less 查看生成的interested_three_prime_UTR.fa,可以看到序列信息
less interested_three_prime_UTR.fa
# R环境下
library(dplyr)
concatenate_seq <- function(fasta_file) {
biozhuoer::read_fasta(fasta_file) %>%
dplyr::mutate(name = stringr::str_extract(name, 'ENST[\\d\\.]+')) %>%
dplyr::group_by(name) %>% dplyr::summarise(seq = paste0(seq, collapse = '')) %>%
biozhuoer::write_fasta(fasta_file)
}
concatenate_seq('interested_three_prime_UTR.fa')
# less 查看生成的interested_three_prime_UTR.fa,这次处理后,该文件发生了什么变化?
less interested_three_prime_UTR.fa
# 回到bash
bedtools getfasta -s -name -fi ../genome/GRCh38.p10.genome.fa \
-bed interested_promoter.bed -fo interested_promoter.fa
library(dplyr)
concatenate_seq <- function(fasta_file){biozhuoer::read_fasta(fasta_file) %>% dplyr::mutate(name = stringr::str_extract(name, 'ENST[\\d\\.]+')) %>% dplyr::group_by(name) %>% dplyr::summarise(seq = paste0(seq, collapse = '')) %>% biozhuoer::write_fasta(fasta_file)}
concatenate_seq('interested_promoter.fa')
MEME安装 root用户进入容器
mkdir /home/test/software/MEME
cd /home/test/software/MEME
wget http://meme-suite.org/meme-software/5.1.0/meme-5.1.0.tar.gz
tar zxf meme-5.1.0.tar.gz
mdir meme
cd meme-5.1.0
./configure —-prefix=/home/test/software/MEME/meme —-with-url=http://meme-suite.org/ —-enable-build-libxml2 —-enable-build-libxslt
make test
make install
# 安装完成后加入环境变量
vim /home/test/.bashrc
# 在最后添加两行
export PATH=$PATH:/home/test/software/MEME/meme/bin/
export PATH=$PATH:/home/test/software/MEME/meme/libexec/meme-5.1.0
# 保存
there are three mothods to get random sequence: 1. shuffle the input sequence 2. downsteam 1000bp 3. bedtools shuffle
需要按照上述方法安装MEME
/home/test/motif/sequence_motif/practice
fasta-shuffle-letters \
interested_three_prime_UTR.fa \
interested_three_prime_UTR.control
fasta-shuffle-letters \
interested_promoter.fa \
interested_promoter.control
https://dongzhuoer.github.io/diff_exp_2018_zhuoer/motif.html
library(dplyr)
slide <- function(input_bed, output_bed, n = 1000) {
col_names <- c('chr', 'start', 'end', 'name', 'score', 'strand');
original <- readr::read_tsv(input_bed, col_names) %>%
dplyr::group_by_at(-2:-3) %>%
dplyr::summarise(length = sum(end - start), end = max(end)) %>%
dplyr::ungroup()
if (n > 0) {
slide <- original %>% dplyr::mutate(start = end + n, end = start + length)
} else {
slide <- original %>% dplyr::mutate(end = start + n, start = end - length)
}
slide %>% dplyr::select(chr, start, end, name, score, strand) %>%
readr::write_tsv(output_bed, col_names = F)
}
slide('interested_three_prime_UTR.bed', 'interested_three_prime_UTR_downstream.bed')
slide('interested_promoter.bed', 'interested_promoter_downstream.bed')
repeat get promoter and get 3'UTR section
bedtools shuffle -i interested_three_prime_UTR.bed \
-g ../genome/hg38.chrom.sizes >interested_three_prime_UTR_btools.bed
bedtools shuffle -i interested_promoter.bed \
-g ../genome/hg38.chrom.sizes >interested_promoter_btools.bed
repeat get promoter and get 3'UTR section
test用户进入容器
cd /home/test/motif/sequence_motif/practice/
meme -dna -maxsize 2000000 \
-minw 4 -maxw 12 \
-oc promoter_de_novo \
-nmotifs 5 \
interested_promoter.fa
# 可以查一查为什么用2000000,用1000000试试?
# 可以将输出文件夹整个cp到share中查看
cp -r promoter_de_novo/ ~/share/
output
-
download known motif from meme
-
add de novo motif file by meme
for 3'UTR
mkdir UTR_output
ame \
--control interested_three_prime_UTR.control \
--oc UTR_output/ \
interested_three_prime_UTR.fa \
../Homo_sapiens.meme \
../Ray2013_rbp_Homo_sapiens.meme
for promoter
mkdir promoter_output
ame \
--control interested_promoter.control \
--oc promoter_output/ \
interested_promoter.fa \
../JASPAR2018_CORE_vertebrates_non-redundant.meme \
../HOCOMOCOv11_core_HUMAN_mono_meme_format.meme
example output
- 理解“concatenate sequences of the same 3'UTR”的含义,并找出一个具体的gene的3’UTR当做例子,解释这一步实现的效果。
- 自己写一个脚本实现“concatenate sequences of the same 3'UTR”这一步,并以上面找到的具体gene的3'UTR当做示例,展示输入文件,输出文件,及运行脚本。